
Arm® Architecture Reference Manual
Armv8, for A-profile architecture
Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
ARM DDI 0487G.b (ID072021)

Arm Architecture Reference Manual
Armv8, for A-profile architecture

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Release Information

The following releases of this document have been made.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

Release history

Date Issue Confidentiality Change

30 April 2013 A.a-1 Confidential-Beta Draft Beta draft of first issue, limited circulation

12 June 2013 A.a-2 Confidential-Beta Draft Second beta draft of first issue, limited circulation

04 September 2013 A.a Non-Confidential Beta Beta release

24 December 2013 A.b Non-Confidential Beta Second beta release

18 July 2014 A.c Non-Confidential Beta Third beta release

09 October 2014 A.d Non-Confidential Beta Fourth beta release

17 December 2014 A.e Non-Confidential Beta Fifth beta release

25 March 2015 A.f Non-Confidential Beta Sixth beta release

10 July 2015 A.g Non-Confidential Beta Seventh beta release

30 September 2015 A.h Non-Confidential Beta Eighth beta release

28 January 2016 A.i Non-Confidential Beta Ninth beta release

03 June 2016 A.j Non-Confidential EAC EAC release

30 September 2016 A.k Non-Confidential Armv8.0 EAC Updated EAC release

31 March 2017 B.a Non-Confidential Armv8.1 EAC, v8.2 Beta Initial release incorporating Armv8.1 and Armv8.2

26 September 2017 B.b Non-Confidential Armv8.2 EAC Initial Armv8.2 EAC release, incorporating SPE

20 December 2017 C.a Non-Confidential Armv8.3 EAC Initial Armv8.3 EAC release

31 October 2018 D.a Non-Confidential Armv8.4 EAC Initial Armv8.4 EAC release

29 April 2019 D.b Non-Confidential Armv8.4 EAC Updated Armv8.4 EAC release incorporating
accessibility changes

05 July 2019 E.a Non-Confidential Armv8.5 EAC Initial Armv8.5 EAC release

20 February 2020 F.a Non-Confidential Armv8.6 Beta Initial Armv8.6 Beta release

31 March 2020 F.b Non-Confidential Armv8.5 EAC, v8.6 Beta Armv8.5 EAC release, initial Armv8.6 Beta release

17 July 2020 F.c Non-Confidential Armv8.6 EAC Initial Armv8.6 EAC release

22 January 2021 G.a Non-Confidential Armv8.7 EAC Initial Armv8.7 EAC release

22 July 2021 G.b Non-Confidential Armv8.7 EAC Updated Armv8.7 EAC release
ii Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. You must follow the Arm’s trademark usage guidelines
http://www.arm.com/company/policies/trademarks.

Copyright © 2013-2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349 version 21.0)

In this document, where the term Arm is used to refer to the company it means “Arm or any of its affiliates as appropriate”.

Note

• The term Arm can refer to versions of the Arm architecture, for example Armv8 refers to version 8 of the Arm architecture.
The context makes it clear when the term is used in this way.

• This document describes only the Armv8-A architecture profile. For the behaviors required by the previous version of this
architecture profile, ARMv7-A, see the ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

The information in this manual is at EAC quality, which means that all features of the specification are described in the manual.

Web Address

http://www.arm.com

Limitations of this issue

This issue of the Armv8 Architecture Reference Manual contains many improvements and corrections. Validation of this
document has identified the following issues that Arm will address in future issues:

• PE state on reset to AArch64 state on page D1-2472 and PE state on reset into AArch32 state on page G1-6100 require
further update. Since the reset information is present in the register descriptions, this does not affect the quality status of
the release.

• Appendix K14 Arm Pseudocode Definition requires further review and update. Since this appendix is informative, rather
than being part of the architecture specification, this does not affect the quality status of this release.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. iii
ID072021 Non-Confidential

• For a list of the known issues in this Manual, please refer to the Known Issues document on
https://developer.arm.com/documentation/102105/latest.

• For a list of the known issues in the System register and instruction XML content, please refer to the Release Notes on
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools.
iv Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Contents
Arm Architecture Reference Manual Armv8, for
A-profile architecture

Preface
About this Manual ... xviii
Using this Manual .. xx
Conventions .. xxvi
Additional reading ... xxviii
Feedback ... xxx

Part A Armv8 Architecture Introduction and Overview

Chapter A1 Introduction to the Armv8 Architecture
A1.1 About the Arm architecture ... A1-34
A1.2 Architecture profiles .. A1-36
A1.3 Armv8 architectural concepts .. A1-37
A1.4 Supported data types .. A1-40
A1.5 Advanced SIMD and floating-point support ... A1-52
A1.6 The Arm memory model .. A1-62

Chapter A2 Armv8-A Architecture Extensions
A2.1 Armv8.0 architecture extensions ... A2-64
A2.2 Architectural features within Armv8.0 architecture .. A2-68
A2.3 The Armv8 Cryptographic Extension ... A2-72
A2.4 The Armv8.1 architecture extension .. A2-74
A2.5 The Armv8.2 architecture extension .. A2-78
A2.6 The Armv8.3 architecture extension .. A2-87
A2.7 The Armv8.4 architecture extension .. A2-91
A2.8 The Armv8.5 architecture extension .. A2-96
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. v
ID072021 Non-Confidential

A2.9 The Armv8.6 architecture extension .. A2-100
A2.10 The Armv8.7 architecture extension .. A2-103
A2.11 The Performance Monitors Extension ... A2-107
A2.12 The Reliability, Availability, and Serviceability Extension A2-108
A2.13 The Statistical Profiling Extension (SPE) .. A2-109
A2.14 The Scalable Vector Extension (SVE) ... A2-110
A2.15 The Activity Monitors Extension (AMU) ... A2-111
A2.16 The Memory Partitioning and Monitoring (MPAM) Extension A2-112

Part B The AArch64 Application Level Architecture

Chapter B1 The AArch64 Application Level Programmers’ Model
B1.1 About the Application level programmers’ model .. B1-116
B1.2 Registers in AArch64 Execution state ... B1-117
B1.3 Software control features and EL0 .. B1-122

Chapter B2 The AArch64 Application Level Memory Model
B2.1 About the Arm memory model ... B2-126
B2.2 Atomicity in the Arm architecture ... B2-128
B2.3 Definition of the Armv8 memory model ... B2-133
B2.4 Caches and memory hierarchy ... B2-155
B2.5 Alignment support ... B2-160
B2.6 Endian support .. B2-162
B2.7 Memory types and attributes ... B2-165
B2.8 Mismatched memory attributes ... B2-176
B2.9 Synchronization and semaphores ... B2-179

Part C The AArch64 Instruction Set

Chapter C1 The A64 Instruction Set
C1.1 About the A64 instruction set .. C1-194
C1.2 Structure of the A64 assembler language ... C1-195
C1.3 Address generation ... C1-202
C1.4 Instruction aliases ... C1-205

Chapter C2 About the A64 Instruction Descriptions
C2.1 Understanding the A64 instruction descriptions .. C2-208
C2.2 General information about the A64 instruction descriptions C2-211

Chapter C3 A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions C3-216
C3.2 Loads and stores ... C3-224
C3.3 Data processing - immediate ... C3-242
C3.4 Data processing - register ... C3-247
C3.5 Data processing - SIMD and floating-point .. C3-255

Chapter C4 A64 Instruction Set Encoding
C4.1 A64 instruction set encoding ... C4-284

Chapter C5 The A64 System Instruction Class
C5.1 The System instruction class encoding space .. C5-394
C5.2 Special-purpose registers ... C5-408
C5.3 A64 System instructions for cache maintenance .. C5-506
C5.4 A64 System instructions for address translation ... C5-567
C5.5 A64 System instructions for TLB maintenance ... C5-592
C5.6 A64 System instructions for prediction restriction ... C5-860
vi Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter C6 A64 Base Instruction Descriptions
C6.1 About the A64 base instructions ... C6-872
C6.2 Alphabetical list of A64 base instructions .. C6-875

Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.1 About the A64 SIMD and floating-point instructions .. C7-1522
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions C7-1524

Part D The AArch64 System Level Architecture

Chapter D1 The AArch64 System Level Programmers’ Model
D1.1 Exception levels .. D1-2454
D1.2 Exception terminology ... D1-2455
D1.3 Execution state .. D1-2457
D1.4 Security state .. D1-2458
D1.5 Virtualization .. D1-2460
D1.6 Registers for instruction processing and exception handling D1-2463
D1.7 Process state, PSTATE .. D1-2466
D1.8 Program counter and stack pointer alignment ... D1-2469
D1.9 Reset ... D1-2471
D1.10 Exception entry ... D1-2475
D1.11 Exception return .. D1-2485
D1.12 Synchronous exception types, routing and priorities D1-2489
D1.13 Asynchronous exception types, routing, masking and priorities D1-2500
D1.14 Configurable instruction enables and disables, and trap controls D1-2510
D1.15 System calls .. D1-2535
D1.16 Mechanisms for entering a low-power state .. D1-2536
D1.17 Self-hosted debug ... D1-2542
D1.18 Event monitors .. D1-2544
D1.19 Interprocessing .. D1-2545
D1.20 The effect of implementation choices on the programmers’ model D1-2558

Chapter D2 AArch64 Self-hosted Debug
D2.1 About self-hosted debug ... D2-2564
D2.2 The debug exception enable controls ... D2-2568
D2.3 Routing debug exceptions ... D2-2569
D2.4 Enabling debug exceptions from the current Exception level D2-2571
D2.5 The effect of powerdown on debug exceptions ... D2-2573
D2.6 Summary of the routing and enabling of debug exceptions D2-2574
D2.7 Pseudocode description of debug exceptions ... D2-2576
D2.8 Breakpoint Instruction exceptions ... D2-2577
D2.9 Breakpoint exceptions ... D2-2579
D2.10 Watchpoint exceptions .. D2-2598
D2.11 Vector Catch exceptions ... D2-2612
D2.12 Software Step exceptions ... D2-2613
D2.13 Synchronization and debug exceptions .. D2-2626

Chapter D3 AArch64 Self-hosted Trace
D3.1 About self-hosted trace ... D3-2628
D3.2 Prohibited regions in self-hosted trace .. D3-2629
D3.3 Self-hosted trace timestamps .. D3-2631
D3.4 Synchronization in self-hosted trace ... D3-2632

Chapter D4 The AArch64 System Level Memory Model
D4.1 About the memory system architecture ... D4-2634
D4.2 Address space .. D4-2635
D4.3 Mixed-endian support .. D4-2636
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. vii
ID072021 Non-Confidential

D4.4 Cache support ... D4-2637
D4.5 External aborts .. D4-2666
D4.6 Memory barrier instructions ... D4-2668
D4.7 Pseudocode description of general memory System instructions D4-2669

Chapter D5 The AArch64 Virtual Memory System Architecture
D5.1 About the Virtual Memory System Architecture (VMSA) D5-2674
D5.2 The VMSAv8-64 address translation system .. D5-2682
D5.3 VMSAv8-64 Translation Table format descriptors ... D5-2739
D5.4 Memory access control ... D5-2754
D5.5 Memory region attributes .. D5-2776
D5.6 Virtualization Host Extensions ... D5-2787
D5.7 Nested virtualization .. D5-2793
D5.8 VMSAv8-64 memory aborts .. D5-2800
D5.9 Translation Lookaside Buffers (TLBs) ... D5-2810
D5.10 TLB maintenance requirements and the TLB maintenance instructions D5-2816
D5.11 Caches in a VMSAv8-64 implementation .. D5-2835

Chapter D6 Memory Tagging Extension
D6.1 Introduction ... D6-2840
D6.2 Allocation Tags .. D6-2841
D6.3 Tag checking ... D6-2842
D6.4 Tagged and Untagged Addresses .. D6-2843
D6.5 PE access to Allocation Tags .. D6-2844
D6.6 Enabling the Memory Tagging Extension .. D6-2845
D6.7 PE handling of Tag Check Fault ... D6-2846
D6.8 PE generation of Tag Checked and Tag Unchecked accesses D6-2848

Chapter D7 The Performance Monitors Extension
D7.1 About the Performance Monitors .. D7-2850
D7.2 Accuracy of the Performance Monitors ... D7-2853
D7.3 Behavior on overflow ... D7-2855
D7.4 Attributability .. D7-2857
D7.5 Controlling the PMU counters ... D7-2859
D7.6 Multithreaded implementations ... D7-2863
D7.7 Event filtering .. D7-2865
D7.8 Performance Monitors and Debug state .. D7-2867
D7.9 Counter access ... D7-2868
D7.10 PMU events and event numbers ... D7-2869
D7.11 Performance Monitors Extension registers ... D7-2940

Chapter D8 The Activity Monitors Extension
D8.1 About the Activity Monitors Extension ... D8-2942
D8.2 Properties and behavior of the activity monitors ... D8-2943
D8.3 AMU events and event numbers ... D8-2945

Chapter D9 The Statistical Profiling Extension
D9.1 About the Statistical Profiling Extension .. D9-2948
D9.2 Defining the sample population ... D9-2950
D9.3 Controlling when an operation is sampled .. D9-2951
D9.4 Enabling profiling ... D9-2954
D9.5 Filtering sample records .. D9-2956
D9.6 The profiling data .. D9-2958
D9.7 The Profiling Buffer ... D9-2968
D9.8 Profiling Buffer management ... D9-2973
D9.9 Synchronization and Statistical Profiling ... D9-2977
viii Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter D10 Statistical Profiling Extension Sample Record Specification
D10.1 About the Statistical Profiling Extension Sample Records D10-2980
D10.2 Alphabetical list of Statistical Profiling Extension packets D10-2983

Chapter D11 The Generic Timer in AArch64 state
D11.1 About the Generic Timer ... D11-3008
D11.2 The AArch64 view of the Generic Timer ... D11-3012

Chapter D12 AArch64 System Register Encoding
D12.1 The System register encoding space .. D12-3020
D12.2 op0==0b10, Moves to and from debug and trace System registers D12-3021
D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose registers

D12-3023

Chapter D13 AArch64 System Register Descriptions
D13.1 About the AArch64 System registers .. D13-3040
D13.2 General system control registers ... D13-3049
D13.3 Debug registers ... D13-3810
D13.4 Performance Monitors registers .. D13-3929
D13.5 Activity Monitors registers ... D13-4001
D13.6 Statistical Profiling Extension registers ... D13-4042
D13.7 RAS registers .. D13-4091
D13.8 Generic Timer registers ... D13-4139

Part E The AArch32 Application Level Architecture

Chapter E1 The AArch32 Application Level Programmers’ Model
E1.1 About the Application level programmers’ model .. E1-4248
E1.2 The Application level programmers’ model in AArch32 state E1-4249
E1.3 Advanced SIMD and floating-point instructions ... E1-4260
E1.4 About the AArch32 System register interface ... E1-4278
E1.5 Exceptions .. E1-4279

Chapter E2 The AArch32 Application Level Memory Model
E2.1 About the Arm memory model ... E2-4282
E2.2 Atomicity in the Arm architecture ... E2-4284
E2.3 Definition of the Armv8 memory model ... E2-4288
E2.4 Ordering of translation table walks .. E2-4306
E2.5 Caches and memory hierarchy ... E2-4307
E2.6 Alignment support ... E2-4312
E2.7 Endian support .. E2-4314
E2.8 Memory types and attributes ... E2-4318
E2.9 Mismatched memory attributes ... E2-4328
E2.10 Synchronization and semaphores ... E2-4331

Part F The AArch32 Instruction Sets

Chapter F1 About the T32 and A32 Instruction Descriptions
F1.1 Format of instruction descriptions .. F1-4344
F1.2 Standard assembler syntax fields .. F1-4348
F1.3 Conditional execution ... F1-4349
F1.4 Shifts applied to a register .. F1-4351
F1.5 Memory accesses .. F1-4353
F1.6 Encoding of lists of general-purpose registers and the PC F1-4354
F1.7 General information about the T32 and A32 instruction descriptions F1-4355
F1.8 Additional pseudocode support for instruction descriptions F1-4368
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ix
ID072021 Non-Confidential

F1.9 Additional information about Advanced SIMD and floating-point instructions .. F1-4369

Chapter F2 The AArch32 Instruction Sets Overview
F2.1 Support for instructions in different versions of the Arm architecture F2-4376
F2.2 Unified Assembler Language ... F2-4377
F2.3 Branch instructions ... F2-4379
F2.4 Data-processing instructions .. F2-4380
F2.5 PSTATE and banked register access instructions ... F2-4388
F2.6 Load/store instructions ... F2-4389
F2.7 Load/store multiple instructions .. F2-4392
F2.8 Miscellaneous instructions ... F2-4393
F2.9 Exception-generating and exception-handling instructions F2-4395
F2.10 System register access instructions ... F2-4397
F2.11 Advanced SIMD and floating-point load/store instructions F2-4398
F2.12 Advanced SIMD and floating-point register transfer instructions F2-4400
F2.13 Advanced SIMD data-processing instructions .. F2-4401
F2.14 Floating-point data-processing instructions .. F2-4412

Chapter F3 T32 Instruction Set Encoding
F3.1 T32 instruction set encoding .. F3-4416
F3.2 About the T32 Advanced SIMD and floating-point instructions and their encoding F3-4491

Chapter F4 A32 Instruction Set Encoding
F4.1 A32 instruction set encoding .. F4-4494
F4.2 About the A32 Advanced SIMD and floating-point instructions and their encoding F4-4562

Chapter F5 T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions F5-4564
F5.2 Encoding and use of banked register transfer instructions F5-5282

Chapter F6 T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions F6-5288

Part G The AArch32 System Level Architecture

Chapter G1 The AArch32 System Level Programmers’ Model
G1.1 About the AArch32 System level programmers’ model G1-6012
G1.2 Exception levels .. G1-6013
G1.3 Exception terminology ... G1-6014
G1.4 Execution state .. G1-6016
G1.5 Instruction Set state .. G1-6018
G1.6 Security state .. G1-6019
G1.7 Security state, Exception levels, and AArch32 execution privilege G1-6022
G1.8 Virtualization .. G1-6024
G1.9 AArch32 state PE modes, and general-purpose and Special-purpose registers G1-6026
G1.10 Process state, PSTATE .. G1-6035
G1.11 Instruction set states ... G1-6041
G1.12 Handling exceptions that are taken to an Exception level using AArch32 G1-6043
G1.13 Routing of aborts taken to AArch32 state ... G1-6062
G1.14 Exception return to an Exception level using AArch32 G1-6065
G1.15 Asynchronous exception behavior for exceptions taken from AArch32 state . G1-6070
G1.16 AArch32 state exception descriptions ... G1-6078
G1.17 Reset into AArch32 state .. G1-6100
G1.18 Mechanisms for entering a low-power state .. G1-6104
G1.19 The AArch32 System register interface ... G1-6109
G1.20 Advanced SIMD and floating-point support ... G1-6112
G1.21 Configurable instruction enables and disables, and trap controls G1-6117
x Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter G2 AArch32 Self-hosted Debug
G2.1 About self-hosted debug ... G2-6154
G2.2 The debug exception enable controls ... G2-6158
G2.3 Routing debug exceptions ... G2-6159
G2.4 Enabling debug exceptions from the current Privilege level and Security state G2-6161
G2.5 The effect of powerdown on debug exceptions ... G2-6163
G2.6 Summary of permitted routing and enabling of debug exceptions G2-6164
G2.7 Pseudocode description of debug exceptions ... G2-6166
G2.8 Breakpoint Instruction exceptions ... G2-6167
G2.9 Breakpoint exceptions ... G2-6170
G2.10 Watchpoint exceptions .. G2-6195
G2.11 Vector Catch exceptions ... G2-6209
G2.12 Synchronization and debug exceptions .. G2-6217

Chapter G3 AArch32 Self-hosted Trace
G3.1 About self-hosted trace ... G3-6220
G3.2 Prohibited regions in self-hosted trace .. G3-6221
G3.3 Self-hosted trace timestamps .. G3-6222
G3.4 Synchronization in self-hosted trace ... G3-6223

Chapter G4 The AArch32 System Level Memory Model
G4.1 About the memory system architecture ... G4-6226
G4.2 Address space .. G4-6227
G4.3 Mixed-endian support .. G4-6228
G4.4 AArch32 cache and branch predictor support ... G4-6229
G4.5 System register support for IMPLEMENTATION DEFINED memory features G4-6254
G4.6 External aborts .. G4-6255
G4.7 Memory barrier instructions ... G4-6257
G4.8 Pseudocode description of general memory System instructions G4-6258

Chapter G5 The AArch32 Virtual Memory System Architecture
G5.1 About VMSAv8-32 ... G5-6262
G5.2 The effects of disabling address translation stages on VMSAv8-32 behavior G5-6270
G5.3 Translation tables .. G5-6274
G5.4 The VMSAv8-32 Short-descriptor translation table format G5-6279
G5.5 The VMSAv8-32 Long-descriptor translation table format G5-6288
G5.6 Memory access control ... G5-6308
G5.7 Memory region attributes .. G5-6319
G5.8 Translation Lookaside Buffers (TLBs) ... G5-6332
G5.9 TLB maintenance requirements .. G5-6336
G5.10 Caches in VMSAv8-32 .. G5-6351
G5.11 VMSAv8-32 memory aborts .. G5-6354
G5.12 Exception reporting in a VMSAv8-32 implementation G5-6367
G5.13 Address translation instructions .. G5-6386
G5.14 Pseudocode description of VMSAv8-32 memory system operations G5-6393
G5.15 About the System registers for VMSAv8-32 .. G5-6396
G5.16 Functional grouping of VMSAv8-32 System registers G5-6401

Chapter G6 The Generic Timer in AArch32 state
G6.1 About the Generic Timer in AArch32 state .. G6-6404
G6.2 The AArch32 view of the Generic Timer ... G6-6408

Chapter G7 AArch32 System register Encoding
G7.1 The AArch32 System register encoding space ... G7-6416
G7.2 VMSAv8-32 organization of registers in the (coproc==0b1110) encoding space G7-6417
G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space G7-6420
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. xi
ID072021 Non-Confidential

Chapter G8 AArch32 System Register Descriptions
G8.1 About the AArch32 System registers .. G8-6438
G8.2 General system control registers ... G8-6454
G8.3 Debug registers ... G8-6945
G8.4 Performance Monitors registers .. G8-7074
G8.5 Activity Monitors registers ... G8-7155
G8.6 RAS registers .. G8-7192
G8.7 Generic Timer registers ... G8-7253

Part H External Debug

Chapter H1 About External Debug
H1.1 Introduction to external debug ... H1-7334
H1.2 External debug .. H1-7335
H1.3 Required debug authentication ... H1-7336

Chapter H2 Debug State
H2.1 About Debug state .. H2-7338
H2.2 Halting the PE on debug events .. H2-7339
H2.3 Entering Debug state .. H2-7345
H2.4 Behavior in Debug state .. H2-7348
H2.5 Exiting Debug state ... H2-7375

Chapter H3 Halting Debug Events
H3.1 Introduction to Halting debug events ... H3-7378
H3.2 Halting Step debug events .. H3-7380
H3.3 Halt Instruction debug event ... H3-7390
H3.4 Exception Catch debug event ... H3-7391
H3.5 External Debug Request debug event .. H3-7395
H3.6 OS Unlock Catch debug event .. H3-7396
H3.7 Reset Catch debug events .. H3-7397
H3.8 Software Access debug event ... H3-7398
H3.9 Synchronization and Halting debug events ... H3-7399

Chapter H4 The Debug Communication Channel and Instruction Transfer Register
H4.1 Introduction ... H4-7402
H4.2 DCC and ITR registers .. H4-7403
H4.3 DCC and ITR access modes ... H4-7406
H4.4 Flow control of the DCC and ITR registers .. H4-7410
H4.5 Synchronization of DCC and ITR accesses .. H4-7413
H4.6 Interrupt-driven use of the DCC .. H4-7418
H4.7 Pseudocode description of the operation of the DCC and ITR registers H4-7419

Chapter H5 The Embedded Cross-Trigger Interface
H5.1 About the Embedded Cross-Trigger (ECT) ... H5-7422
H5.2 Basic operation on the ECT .. H5-7424
H5.3 Cross-triggers on a PE in an Armv8 implementation H5-7428
H5.4 Description and allocation of CTI triggers ... H5-7429
H5.5 CTI registers programmers’ model .. H5-7433
H5.6 Examples .. H5-7434

Chapter H6 Debug Reset and Powerdown Support
H6.1 About Debug over powerdown .. H6-7438
H6.2 Power domains and debug ... H6-7439
H6.3 Core power domain power states .. H6-7440
H6.4 Powerup request mechanism .. H6-7442
H6.5 Emulating low-power states .. H6-7444
xii Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

H6.6 Debug OS Save and Restore sequences ... H6-7446
H6.7 Reset and debug ... H6-7452

Chapter H7 The PC Sample-based Profiling Extension
H7.1 About the PC Sample-based Profiling Extension .. H7-7456

Chapter H8 About the External Debug Registers
H8.1 Relationship between external debug and System registers H8-7460
H8.2 Endianness and supported access sizes .. H8-7461
H8.3 Synchronization of changes to the external debug registers H8-7462
H8.4 Memory-mapped accesses to the external debug interface H8-7466
H8.5 External debug interface register access permissions H8-7468
H8.6 External debug interface registers .. H8-7472
H8.7 Cross-trigger interface registers ... H8-7479
H8.8 External debug register resets .. H8-7481

Chapter H9 External Debug Register Descriptions
H9.1 About the debug registers ... H9-7486
H9.2 External debug registers ... H9-7487
H9.3 Cross-Trigger Interface registers ... H9-7599

Part I Memory-mapped Components of the Armv8 Architecture

Chapter I1 Requirements for Memory-mapped Components
I1.1 Supported access sizes .. I1-7656
I1.2 Synchronization of memory-mapped registers .. I1-7658
I1.3 Access requirements for reserved and unallocated registers I1-7660

Chapter I2 System Level Implementation of the Generic Timer
I2.1 About the Generic Timer specification .. I2-7662
I2.2 Memory-mapped counter module ... I2-7664
I2.3 Memory-mapped timer components .. I2-7668

Chapter I3 Recommended External Interface to the Performance Monitors
I3.1 About the external interface to the Performance Monitors registers I3-7674

Chapter I4 Recommended External Interface to the Activity Monitors
I4.1 About the external interface to the Activity Monitors Extension registers I4-7680

Chapter I5 External System Control Register Descriptions
I5.1 About the external system control register descriptions I5-7684
I5.2 External Performance Monitors registers summary .. I5-7686
I5.3 Performance Monitors external register descriptions .. I5-7689
I5.4 External Activity Monitors Extension registers summary I5-7765
I5.5 Activity Monitors external register descriptions ... I5-7767
I5.6 Generic Timer memory-mapped registers overview ... I5-7804
I5.7 Generic Timer memory-mapped register descriptions I5-7805
I5.8 RAS register descriptions .. I5-7849

Part J Architectural Pseudocode

Chapter J1 Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation ... J1-7960
J1.2 Pseudocode for AArch32 operation ... J1-8134
J1.3 Shared pseudocode ... J1-8221
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. xiii
ID072021 Non-Confidential

Part K Appendixes

Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors K1-8386
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors K1-8408

Appendix K2 Recommended External Debug Interface
K2.1 About the recommended external debug interface ... K2-8426
K2.2 PMUEVENT bus ... K2-8430
K2.3 Recommended authentication interface .. K2-8431
K2.4 Management registers and CoreSight compliance ... K2-8432

Appendix K3 Recommendations for Performance Monitors Event Numbers for
IMPLEMENTATION DEFINED Events

K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers K3-8446
K3.2 Summary of events for exceptions taken to an Exception level using AArch64 K3-8462

Appendix K4 Recommendations for Reporting Memory Attributes on an Interconnect
K4.1 Arm recommendations for reporting memory attributes on an interconnect ... K4-8466

Appendix K5 Additional Information for Implementations of the Generic Timer
K5.1 Providing a complete set of features in a system level implementation K5-8468
K5.2 Gray-count scheme for timer distribution scheme ... K5-8470

Appendix K6 Legacy Instruction Syntax for AArch32 Instruction Sets
K6.1 Legacy Instruction Syntax ... K6-8472

Appendix K7 Address Translation Examples
K7.1 AArch64 Address translation examples .. K7-8480
K7.2 AArch32 Address translation examples .. K7-8492

Appendix K8 Example OS Save and Restore Sequences
K8.1 Save Debug registers .. K8-8502
K8.2 Restore Debug registers ... K8-8504

Appendix K9 Recommended Upload and Download Processes for External Debug
K9.1 Using memory access mode in AArch64 state .. K9-8508

Appendix K10 Software Usage Examples
K10.1 Use of the Advanced SIMD complex number instructions K10-8512
K10.2 Use of the Armv8.2 extensions to the Cryptographic Extension K10-8514

Appendix K11 Barrier Litmus Tests
K11.1 Introduction ... K11-8522
K11.2 Load-Acquire, Store-Release and barriers .. K11-8525
K11.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers K11-8529
K11.4 Using a mailbox to send an interrupt ... K11-8534
K11.5 Cache and TLB maintenance instructions and barriers K11-8535
K11.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers .. K11-8547

Appendix K12 Random Number Generation
K12.1 Properties of the generated random number .. K12-8562

Appendix K13 Legacy Feature Naming Convention
K13.1 The Armv8.0 architecture .. K13-8564
xiv Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

K13.2 The Armv8.1 architecture extension .. K13-8565
K13.3 The Armv8.2 architecture extension .. K13-8566
K13.4 The Armv8.3 architecture extension .. K13-8568
K13.5 The Armv8.4 architecture extension .. K13-8569
K13.6 The Armv8.5 architecture extension .. K13-8570
K13.7 The Armv8.6 architecture extension .. K13-8571

Appendix K14 Arm Pseudocode Definition
K14.1 About the Arm pseudocode ... K14-8574
K14.2 Pseudocode for instruction descriptions .. K14-8575
K14.3 Data types ... K14-8577
K14.4 Operators .. K14-8582
K14.5 Statements and control structures .. K14-8588
K14.6 Built-in functions .. K14-8593
K14.7 Miscellaneous helper procedures and functions ... K14-8596
K14.8 Arm pseudocode definition index .. K14-8598

Appendix K15 Registers Index
K15.1 Introduction and register disambiguation .. K15-8602
K15.2 Alphabetical index of AArch64 registers and System instructions K15-8607
K15.3 Functional index of AArch64 registers and System instructions K15-8624
K15.4 Alphabetical index of AArch32 registers and System instructions K15-8640
K15.5 Functional index of AArch32 registers and System instructions K15-8650
K15.6 Alphabetical index of memory-mapped registers .. K15-8662
K15.7 Functional index of memory-mapped registers ... K15-8669

Glossary
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. xv
ID072021 Non-Confidential

xvi Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Preface

This preface introduces the Arm Architecture Reference Manual, Armv8, for Armv8-A architecture profile. It
contains the following sections:

• About this Manual on page xviii.

• Using this Manual on page xx.

• Conventions on page xxvi.

• Additional reading on page xxviii.

• Feedback on page xxx.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. xvii
ID072021 Non-Confidential

Preface
 About this Manual
About this Manual

This manual describes the Arm® architecture v8, Armv8. The architecture describes the operation of an Armv8-A
Processing element (PE), and this Manual includes descriptions of:

• The two Execution states, AArch64 and AArch32.

• The instruction sets:

— In AArch32 state, the A32 and T32 instruction sets, that are compatible with earlier versions of the
Arm architecture.

— In AArch64 state, the A64 instruction set.

• The states that determine how a PE operates, including the current Exception level and Security state, and in
AArch32 state the PE mode.

• The Exception model.

• The interprocessing model, that supports transitioning between AArch64 state and AArch32 state.

• The memory model, that defines memory ordering and memory management. This manual covers a single
architecture profile, Armv8-A, that defines a Virtual Memory System Architecture (VMSA).

• The programmers’ model, and its interfaces to System registers that control most PE and memory system
features, and provide status information.

• The Advanced SIMD and floating-point instructions, that provide high-performance:

— Single-precision, half-precision, and double-precision floating-point operations.

— Conversions between double-precision, single-precision, and half-precision floating-point values.

— Integer, single-precision floating-point, and half-precision floating-point vector operations in all
instruction sets.

— Double-precision floating-point vector operations in the A64 instruction set.

• The security model, that provides two Security states to support Secure applications.

• The virtualization model.

• The Debug architecture, that provides software access to debug features.

This manual gives the assembler syntax for the instructions it describes, meaning that it describes instructions in
textual form. However, this Manual is not a tutorial for Arm assembler language, nor does it describe Arm assembler
language, except at a very basic level. To make effective use of Arm assembler language, read the documentation
supplied with the assembler being used.

This manual is organized into parts:

Part A Provides an introduction to the Armv8-A architecture, and an overview of the AArch64 and
AArch32 Execution states.

Part B Describes the application level view of the AArch64 Execution state, meaning the view from EL0.
It describes the application level view of the programmers’ model and the memory model.

Part C Describes the A64 instruction set, that is available in the AArch64 Execution state. The descriptions
for each instruction also include the precise effects of each instruction when executed at EL0,
described as unprivileged execution, including any restrictions on its use, and how the effects of the
instruction differ at higher Exception levels. This information is of primary importance to authors
and users of compilers, assemblers, and other programs that generate Arm machine code.

Part D Describes the system level view of the AArch64 Execution state. It includes details of the System
registers, most of which are not accessible from EL0, and the system level view of the programmers’
model and the memory model. This part includes the description of self-hosted debug.
xviii Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Preface
 About this Manual
Part E Describes the application level view of the AArch32 Execution state, meaning the view from the
EL0. It describes the application level view of the programmers’ model and the memory model.

Note
In AArch32 state, execution at EL0 is execution in User mode.

Part F Describes the T32 and A32 instruction sets, that are available in the AArch32 Execution state. These
instruction sets are backwards-compatible with earlier versions of the Arm architecture. This part
describes the precise effects of each instruction when executed in User mode, described as
unprivileged execution or execution at EL0, including any restrictions on its use, and how the effects
of the instruction differ at higher Exception levels. This information is of primary importance to
authors and users of compilers, assemblers, and other programs that generate Arm machine code.

Note

User mode is the only mode where software execution is unprivileged.

Part G Describes the system level view of the AArch32 Execution state, that is generally compatible with
earlier versions of the Arm architecture. This part includes details of the System registers, most of
which are not accessible from EL0, and the instruction interface to those registers. It also describes
the system level view of the programmers’ model and the memory model.

Part H Describes the Debug architecture for external debug. This provides configuration, breakpoint and
watchpoint support, and a Debug Communications Channel (DCC) to a debug host.

Part I Describes additional features of the architecture that are not closely coupled to a processing element
(PE), and therefore are accessed through memory-mapped interfaces. Some of these features are
OPTIONAL.

Part J Provides pseudocode that describes various features of the Armv8 architecture.

Part K, Appendixes

Provide additional information. Some appendixes give information that is not part of the Armv8
architectural requirements. The cover page of each appendix indicates its status.

Glossary Defines terms used in this document that have a specialized meaning.

Note

Terms that are generally well understood in the microelectronics industry are not included in the
Glossary.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. xix
ID072021 Non-Confidential

Preface
 Using this Manual
Using this Manual

The information in this Manual is organized into parts, as described in this section.

Part A, Introduction and Architecture Overview

Part A gives an overview of the Armv8-A architecture profile, including its relationship to the other Arm PE
architectures. It introduces the terminology used to describe the architecture, and gives an overview of the
Executions states, AArch64 and AArch32. It contains the following chapter:

Chapter A1 Introduction to the Armv8 Architecture

Read this for an introduction to the Armv8 architecture.

Chapter A2 Armv8-A Architecture Extensions

Read this for an introduction to the Armv8 architecture extensions.

Part B, The AArch64 Application Level Architecture

Part B describes the AArch64 state application level view of the architecture. It contains the following chapters:

Chapter B1 The AArch64 Application Level Programmers’ Model

Read this for an application level description of the programmers’ model for software executing in
AArch64 state. It describes execution at EL0 when EL0 is using AArch64 state.

Chapter B2 The AArch64 Application Level Memory Model

Read this for an application level description of the memory model for software executing in
AArch64 state. It describes the memory model for execution in EL0 when EL0 is using AArch64
state. It includes information about Arm memory types, attributes, and memory access controls.

Part C, The A64 Instruction Set

Part C describes the A64 instruction set, that is used in AArch64 state. It contains the following chapters:

Chapter C1 The A64 Instruction Set

Read this for a description of the A64 instruction set and common instruction operation details.

Chapter C2 About the A64 Instruction Descriptions

Read this to understand the format of the A64 instruction descriptions.

Chapter C3 A64 Instruction Set Overview

Read this for an overview of the individual A64 instructions, that are divided into five functional
groups.

Chapter C4 A64 Instruction Set Encoding

Read this for a description of the A64 instruction set encoding.

Chapter C5 The A64 System Instruction Class

Read this for a description of the AArch64 System instructions and register descriptions, and the
System instruction class encoding space.

Chapter C6 A64 Base Instruction Descriptions

Read this for information on key aspects of the A64 base instructions and for descriptions of the
individual instructions, which are listed in alphabetical order.

Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions

Read this for information on key aspects of the A64 Advanced SIMD and floating-point instructions
and for descriptions of the individual instructions, which are listed in alphabetical order.
xx Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Preface
 Using this Manual
Part D, The AArch64 System Level Architecture

Part D describes the AArch64 state system level view of the architecture. It contains the following chapters:

Chapter D1 The AArch64 System Level Programmers’ Model

Read this for a description of the AArch64 state system level view of the programmers’ model.

Chapter D2 AArch64 Self-hosted Debug

Read this for an introduction to, and a description of, self-hosted debug in AArch64 state.

Chapter D3 AArch64 Self-hosted Trace

Read this for an introduction to, and a description of, self-hosted trace in AArch64 state.

Chapter D4 The AArch64 System Level Memory Model

Read this for a description of the AArch64 state system level view of the general features of the
memory system.

Chapter D5 The AArch64 Virtual Memory System Architecture

Read this for a system level view of the AArch64 Virtual Memory System Architecture (VMSA),
the memory system architecture of an Armv8 implementation executing in AArch64 state.

Chapter D7 The Performance Monitors Extension

Read this for a description of an implementation of the Arm Performance Monitors, an optional
non-invasive debug component.

Chapter D8 The Activity Monitors Extension

Read this for a description of an implementation of the Arm Activity Monitors, an optional
non-invasive component.

Chapter D9 The Statistical Profiling Extension

Read this for a description of an implementation of the Statistical Profiling Extension, an optional
AArch64 state non-invasive debug component.

Chapter D10 Statistical Profiling Extension Sample Record Specification

Read this for a description the sample records generated by the Statistical Profiling Extension.

Chapter D11 The Generic Timer in AArch64 state

Read this for a description of the AArch64 view of an implementation of the Arm Generic Timer.

Chapter D12 AArch64 System Register Encoding

Read this for a description of the encoding of the AArch64 System registers, and the other uses of
the AArch64 System registers encoding space.

Chapter D13 AArch64 System Register Descriptions

Read this for an introduction to, and description of, each of the AArch64 System registers.

Part E, The AArch32 Application Level Architecture

Part E describes the AArch32 state application level view of the architecture. It contains the following chapters:

Chapter E1 The AArch32 Application Level Programmers’ Model

Read this for an application level description of the programmers’ model for software executing in
AArch32 state. It describes execution at EL0 when EL0 is using AArch32 state.

Chapter E2 The AArch32 Application Level Memory Model

Read this for an application level description of the memory model for software executing in
AArch32 state. It describes the memory model for execution in EL0 when EL0 is using AArch32
state. It includes information about Arm memory types, attributes, and memory access controls.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. xxi
ID072021 Non-Confidential

Preface
 Using this Manual
Part F, The AArch32 Instruction Sets

Part F describes the T32 and A32 instruction sets, that are used in AArch32 state. It contains the following chapters:

Chapter F1 About the T32 and A32 Instruction Descriptions

Read this to understand the format of the T32 and A32 instruction descriptions.

Chapter F2 The AArch32 Instruction Sets Overview

Read this for an overview of the T32 and A32 instruction sets.

Chapter F3 T32 Instruction Set Encoding

Read this for a description of the T32 instruction set encoding. This includes the T32 encoding of
the Advanced SIMD and floating-point instructions.

Chapter F4 A32 Instruction Set Encoding

Read this for a description of the A32 instruction set encoding. This includes the A32 encoding of
the Advanced SIMD and floating-point instructions.

Chapter F5 T32 and A32 Base Instruction Set Instruction Descriptions

Read this for a description of each of the T32 and A32 base instructions.

Chapter F6 T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions

Read this for a description of each of the T32 and A32 Advanced SIMD and floating-point
instructions.

Part G, The AArch32 System Level Architecture

Part G describes the AArch32 state system level view of the architecture. It contains the following chapters:

Chapter G1 The AArch32 System Level Programmers’ Model

Read this for a description of the AArch32 state system level view of the programmers’ model for
execution in an Exception level that is using AArch32.

Chapter G2 AArch32 Self-hosted Debug

Read this for an introduction to, and a description of, self-hosted debug in AArch64 state.

Chapter G3 AArch32 Self-hosted Trace

Read this for an introduction to, and a description of, self-hosted trace in AArch64 state.

Chapter G4 The AArch32 System Level Memory Model

Read this for a system level view of the general features of the memory system.

Chapter G5 The AArch32 Virtual Memory System Architecture

Read this for a description of the AArch32 Virtual Memory System Architecture (VMSA).

Chapter G6 The Generic Timer in AArch32 state

Read this for a description of the AArch32 view of an implementation of the Arm Generic Timer.

Chapter G7 AArch32 System register Encoding

Read this for a description of the encoding of the AArch32 System registers, including the System
instructions that are part of the AArch32 System registers encoding space.

Chapter G8 AArch32 System Register Descriptions

Read this for a description of each of the AArch32 System registers.
xxii Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Preface
 Using this Manual
Part H, External Debug

Part H describes the architecture for external debug. It contains the following chapters:

Chapter H1 About External Debug

Read this for an introduction to external debug, and a definition of the scope of this part of the
manual.

Chapter H2 Debug State

Read this for a description of Debug state, which the PE might enter as the result of a Halting debug
event.

Chapter H3 Halting Debug Events

Read this for a description of the external debug events referred to as Halting debug events.

Chapter H4 The Debug Communication Channel and Instruction Transfer Register

Read this for a description of the communication between a debugger and the PE debug logic using
the Debug Communications Channel and the Instruction Transfer register.

Chapter H5 The Embedded Cross-Trigger Interface

Read this for a description of the embedded cross-trigger interface.

Chapter H6 Debug Reset and Powerdown Support

Read this for a description of reset and powerdown support in the Debug architecture.

Chapter H7 The PC Sample-based Profiling Extension

Read this for a description of the PC Sample-based Profiling Extension that is an OPTIONAL
extension to an Armv8 implementation.

Chapter H8 About the External Debug Registers

Read this for some additional information about the external debug registers.

Chapter H9 External Debug Register Descriptions

Read this for a description of each external debug register.

Part I, Memory-mapped Components of the Armv8 Architecture

Part I describes the memory-mapped components in the architecture. It contains the following chapters:

Chapter I1 Requirements for Memory-mapped Components

Read this for descriptions of some general requirements for memory-mapped components within a
system that complies with the Armv8 Architecture.

Chapter I2 System Level Implementation of the Generic Timer

Read this for a definition of a system level implementation of the Generic Timer.

Chapter I3 Recommended External Interface to the Performance Monitors

Read this for a description of the recommended memory-mapped and external debug interfaces to
the Performance Monitors.

Chapter I4 Recommended External Interface to the Activity Monitors

Read this for a description of the recommended memory-mapped interface to the Activity Monitors.

Chapter I5 External System Control Register Descriptions

Read this for a description of each memory-mapped system control register.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. xxiii
ID072021 Non-Confidential

Preface
 Using this Manual
Part J, Architectural Pseudocode

Part J contains pseudocode that describes various features of the Arm architecture. It contains the following chapter:

Chapter J1 Armv8 Pseudocode

Read this for the pseudocode definitions that describe various features of the Armv8 architecture,
for operation in AArch64 state and in AArch32 state.

Part K, Appendixes

This manual contains the following appendixes:

Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors

Read this for a description of the architecturally-required constraints on UNPREDICTABLE behaviors
in the Armv8 architecture, including AArch32 behaviors that were UNPREDICTABLE in previous
versions of the architecture.

Appendix K2 Recommended External Debug Interface

Read this for a description of the recommended external debug interface.

Note

This description is not part of the Arm architecture specification. It is included here as
supplementary information, for the convenience of developers and users who might require this
information.

Appendix K3 Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION
DEFINED Events

Read this for a description of Arm recommendations for the use of the IMPLEMENTATION DEFINED
event numbers.

Note

This description is not part of the Arm architecture specification. It is included here as
supplementary information, for the convenience of developers and users who might require this
information.

Appendix K4 Recommendations for Reporting Memory Attributes on an Interconnect

Read this for the Arm recommendations about how the architectural memory attributes are reported
on an interconnect.

Appendix K5 Additional Information for Implementations of the Generic Timer

Read this for additional information about implementations of the Arm Generic Timer. This
information does not form part of the architectural definition of the Generic Timer.

Appendix K6 Legacy Instruction Syntax for AArch32 Instruction Sets

Read this for information about the pre-UAL syntax of the AArch32 instruction sets, which can still
be valid for the A32 instruction set.

Appendix K7 Address Translation Examples

Read this for examples of translation table lookups using the translation regimes described in
Chapter D5 The AArch64 Virtual Memory System Architecture and Chapter G5 The AArch32 Virtual
Memory System Architecture.

Appendix K8 Example OS Save and Restore Sequences

Read this for software examples that perform the OS Save and Restore sequences for an Armv8
debug implementation.
xxiv Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Preface
 Using this Manual
Note

 Chapter H6 Debug Reset and Powerdown Support describes the OS Save and Restore mechanism.

Appendix K9 Recommended Upload and Download Processes for External Debug

Read this for information about implementing and using the Arm architecture.

Note

This description is not part of the Arm architecture specification. It is included here as
supplementary information, for the convenience of developers and users who might require this
information.

Appendix K10 Software Usage Examples

Read this for software examples that help understanding of some aspects of the Arm architecture.

Note

This description is not part of the Arm architecture specification. It is included here as
supplementary information, for the convenience of developers and users who might require this
information.

Appendix K11 Barrier Litmus Tests

Read this for examples of the use of barrier instructions provided by the Armv8 architecture.

Note

This description is not part of the Arm architecture specification. It is included here as
supplementary information, for the convenience of developers and users who might require this
information.

Appendix K14 Arm Pseudocode Definition

Read this for definitions of the AArch32 pseudocode.

Appendix K15 Registers Index

Read this for an alphabetic and functional index of AArch32 and AArch64 registers, and
memory-mapped registers.

Glossary

Defines terms used in this document that have a specialized meaning.

Note

Terms that are generally well understood in the microelectronics industry are not included in the Glossary.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. xxv
ID072021 Non-Confidential

Preface
 Conventions
Conventions

The following sections describe conventions that this book can use:

• Typographic conventions on page xxvi.

• Signals on page xxvii.

• Numbers on page xxvii.

• Pseudocode descriptions on page xxvii.

• Assembler syntax descriptions on page xxvii.

Typographic conventions

The typographical conventions are:

italic Introduces special terminology, and denotes citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, and are defined in the
Glossary.

Colored text Indicates a link. This can be:

• A URL, for example https://developer.arm.com.

• A cross-reference, that includes the page number of the referenced information if it is not on
the current page, for example, Assembler syntax descriptions on page xxvii.

• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that
defines the colored term, for example Simple sequential execution or SCTLR.

{ and } Braces, { and }, have two distinct uses:

Optional items

In syntax descriptions braces enclose optional items. In the following example they
indicate that the <shift> parameter is optional:

ADD <Wd|WSP>, <Wn|WSP>, #<imm>{, <shift>}

Similarly they can be used in generalized field descriptions, for example
TCR_ELx.{I}PS refers to a field in the TCR_ELx registers that is called either IPS or
PS.

Sets of items

Braces can be used to enclose sets. For example, HCR_EL2.{E2H, TGE} refers to a set
of two register fields, HCR_EL2.E2H and HCR_EL2.TGE

Notes Notes are formatted as:

Note

This is a Note.

In this Manual, Notes are used only to provide additional information, usually to help understanding
of the text. While a Note may repeat architectural information given elsewhere in the Manual, a
Note never provides any part of the definition of the architecture.
xxvi Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Preface
 Conventions
Signals

In general this specification does not define hardware signals, but it does include some signal examples and
recommendations. The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To improve
readability, long numbers can be written with an underscore separator between every four characters, for example
0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This manual uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in monospace font, and is described in Appendix K14 Arm Pseudocode Definition.

Assembler syntax descriptions

This manual contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font, and use the conventions described in Structure of the A64
assembler language on page C1-195, and Appendix K14 Arm Pseudocode Definition.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. xxvii
ID072021 Non-Confidential

Preface
 Additional reading
Additional reading

This section lists relevant publications from Arm and third parties.

See Arm Developer, https://developer.arm.com, for access to Arm documentation.

Arm publications

• ARM® AMBA® 4 ATB Protocol Specification, ATBv1.0 and ATBv1.1, (ARM IHI 0032B).

• ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406).

• ARM® Architecture Reference Manual Supplement, ARMv8, for the ARMv8-R AArch32 architecture profile
(ARM DDI 0568).

• ARM® Debug Interface Architecture Specification, ADIv6.0 (ARM IHI 0074).

• ARM® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2 (ARM IHI 0031).

• ARM® Embedded Trace Macrocell Architecture Specification, ETMv4 (ARM IHI 0064).

• ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0
(ARM IHI 0069).

• ARM® CoreSight™ SoC Technical Reference Manual (ARM DDI 0480).

• ARM® CoreSight™ Architecture Specification (ARM IHI 0029).

• ARM® Procedure Call Standard for the ARM 64-bit Architecture (ARM IHI 0055).

• Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture
profile (ARM DDI 0587).

• Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A (ARM
DDI 0584).

• Arm® Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring

(MPAM), for A-Profile Architecture (ARM DDI 0598).

Other publications

The following publications are referred to in this Manual, or provide more information:

• Announcing the Advanced Encryption Standard (AES), Federal Information Processing Standards
Publication 197, November 2001.

• IEEE Std 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.

• IEEE Std 754-1985, IEEE Standard for Floating-point Arithmetic, March 1985.

• Secure Hash Standard (SHA), Federal Information Processing Standards Publication 180-2, August 2002.

• The Galois/Counter Mode of Operation, McGraw, D. and Viega, J., Submission to NIST Modes of Operation
Process, January 2004.

• Memory Consistency Models for Shared Memory-Multiprocessors, Gharachorloo, Kourosh, 1995, Stanford
University Technical Report CSL-TR-95-685.

• Standard Manufacturer’s Identification Code, JEP106, JEDEC Solid State Technology Association.

• SM3 Cryptographic Hash Algorithm, China Internet Network Information Center (CNNIC).

• SM4 Block Cipher Algorithm, China Internet Network Information Center (CNNIC).

• The QARMA Block Cipher Family, Roberto Avanzi, Qualcomm Product Security Initiative.
xxviii Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Preface
 Additional reading
Available from https://eprint.iacr.org/2016/444.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. xxix
ID072021 Non-Confidential

Preface
 Feedback
Feedback

Arm welcomes feedback on its documentation.

Feedback on this Manual

If you have comments on the content of this Manual, send email to errata@arm.com. Give:

• The title, Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

• The number, ARM DDI 0487G.b.

• The section name to which your comments refer.

• The page numbers to which your comments refer.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of
any document when viewed with any other PDF reader.

Progressive Terminology Commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.
Arm strives to lead the industry and create change.

Previous issues of this document included terms that can be offensive. We have replaced these terms. If you find
offensive terms in this document, please contact terms@arm.com.
xxx Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Part A
Armv8 Architecture Introduction and Overview

Chapter A1
Introduction to the Armv8 Architecture

This chapter introduces the Arm architecture. It contains the following sections:

• About the Arm architecture on page A1-34.

• Architecture profiles on page A1-36.

• Armv8 architectural concepts on page A1-37.

• Supported data types on page A1-40.

• Advanced SIMD and floating-point support on page A1-52.

• The Arm memory model on page A1-62.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-33
ID072021 Non-Confidential

Introduction to the Armv8 Architecture
A1.1 About the Arm architecture
A1.1 About the Arm architecture

The Arm architecture described in this Architecture Reference Manual defines the behavior of an abstract machine,
referred to as a processing element, often abbreviated to PE. Implementations compliant with the Arm architecture
must conform to the described behavior of the processing element. It is not intended to describe how to build an
implementation of the PE, nor to limit the scope of such implementations beyond the defined behaviors.

Except where the architecture specifies differently, the programmer-visible behavior of an implementation that is
compliant with the Arm architecture must be the same as a simple sequential execution of the program on the
processing element. This programmer-visible behavior does not include the execution time of the program.

The Arm Architecture Reference Manual also describes rules for software to use the processing element.

The Arm architecture includes definitions of:

• An associated debug architecture, see:

— Chapter D2 AArch64 Self-hosted Debug.

— Chapter G2 AArch32 Self-hosted Debug.

— Part H of this Manual, External Debug on page Part H-7331.

• Associated trace architectures that define PE Trace Units that implementers can implement with the
associated processor hardware. For more information, see:

— The Embedded Trace Macrocell Architecture Specification.

— Chapter D3 AArch64 Self-hosted Trace.

— Chapter G3 AArch32 Self-hosted Trace.

The Arm architecture is a Reduced Instruction Set Computer (RISC) architecture with the following RISC
architecture features:

• A large uniform register file.

• A load/store architecture, where data-processing operations only operate on register contents, not directly on
memory contents.

• Simple addressing modes, with all load/store addresses determined from register contents and instruction
fields only.

The architecture defines the interaction of the PE with memory, including caches, and includes a memory translation
system. It also describes how multiple PEs interact with each other and with other observers in a system.

This document defines the Armv8-A architecture profile. See Architecture profiles on page A1-36 for more
information.

The Arm architecture supports implementations across a wide range of performance points. Implementation size,
performance, and very low power consumption are key attributes of the Arm architecture.

An important feature of the Armv8 architecture is backwards compatibility, combined with the freedom for optimal
implementation in a wide range of standard and more specialized use cases. The Armv8 architecture supports:

• A 64-bit Execution state, AArch64.

• A 32-bit Execution state, AArch32, that is compatible with previous versions of the Arm architecture.

Note

The AArch32 Execution state is compatible with the Armv7-A architecture profile, and enhances that profile to
support some features included in the AArch64 Execution state.

Features that are optional are explicitly defined as such in this Manual.

Note

The presence of an ID register field for a feature does not imply that the feature is optional.
A1-34 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Introduction to the Armv8 Architecture
A1.1 About the Arm architecture
Both Execution states support SIMD and floating-point instructions:

• AArch32 state provides:

— SIMD instructions in the base instruction sets that operate on the 32-bit general-purpose registers.

— Advanced SIMD instructions that operate on registers in the SIMD and floating-point register
(SIMD&FP register) file.

— Floating-point instructions that operate on registers in the SIMD&FP register file.

• AArch64 state provides:

— Advanced SIMD instructions that operate on registers in the SIMD&FP register file.

— Floating-point instructions that operate on registers in the SIMD&FP register file.

Note

See Conventions on page xxvi for information about conventions used in this Manual, including the use of SMALL
CAPITALS for particular terms that have Arm-specific meanings that are defined in the Glossary.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-35
ID072021 Non-Confidential

Introduction to the Armv8 Architecture
A1.2 Architecture profiles
A1.2 Architecture profiles

The Arm architecture has evolved significantly since its introduction, and Arm continues to develop it. Eight major
versions of the architecture have been defined to date, denoted by the version numbers 1 to 8. Of these, the first three
versions are now obsolete.

The generic names AArch64 and AArch32 describe the 64-bit and 32-bit Execution states:

AArch64 Is the 64-bit Execution state, meaning addresses are held in 64-bit registers, and instructions in the
base instruction set can use 64-bit registers for their processing. AArch64 state supports the A64
instruction set.

AArch32 Is the 32-bit Execution state, meaning addresses are held in 32-bit registers, and instructions in the
base instruction sets use 32-bit registers for their processing. AArch32 state supports the T32 and
A32 instruction sets.

Note

The Base instruction set comprises the supported instructions other than the Advanced SIMD and floating-point
instructions.

See sections Execution state on page A1-37 and The Armv8 instruction sets on page A1-38 for more information.

Arm defines three architecture profiles:

A Application profile, described in this Manual:

• Supports a Virtual Memory System Architecture (VMSA) based on a Memory Management
Unit (MMU).

Note
An Armv8-A implementation can be called an AArchv8-A implementation.

• Supports the A64, A32, and T32 instruction sets.

R Real-time profile:

• Supports a Protected Memory System Architecture (PMSA) based on a Memory Protection
Unit (MPU).

• Supports the A32 and T32 instruction sets.

M Microcontroller profile:

• Implements a programmers' model designed for low-latency interrupt processing, with
hardware stacking of registers and support for writing interrupt handlers in high-level
languages.

• Implements a variant of the R-profile PMSA.

• Supports a variant of the T32 instruction set.

Note

This Architecture Reference Manual describes only the Armv8-A profile.

For information about the R and M architecture profiles, and earlier Arm architecture versions see:

• The ARM® Architecture Reference Manual Supplement, ARMv8, for the ARMv8-R AArch32 architecture
profile.

• The ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

• The Arm®v8-M Architecture Reference Manual.

• The ARM®v7-M Architecture Reference Manual.

• The ARM®v6-M Architecture Reference Manual.
A1-36 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Introduction to the Armv8 Architecture
A1.3 Armv8 architectural concepts
A1.3 Armv8 architectural concepts

Armv8 introduces major changes to the Arm architecture, while maintaining a high level of consistency with
previous versions of the architecture. The Armv8 Architecture Reference Manual includes significant changes in
the terminology used to describe the architecture, and this section introduces both the Armv8 architectural concepts
and the associated terminology.

The following subsections describe key Armv8 architectural concepts. Each section introduces the corresponding
terms that are used to describe the architecture:

• Execution state on page A1-37.

• The Armv8 instruction sets on page A1-38.

• System registers on page A1-38.

• Armv8 Debug on page A1-39.

A1.3.1 Execution state

The Execution state defines the PE execution environment, including:

• The supported register widths.

• The supported instruction sets.

• Significant aspects of:

— The Exception model.

— The Virtual Memory System Architecture (VMSA).

— The programmers’ model.

The Execution states are:

AArch64 The 64-bit Execution state. This Execution state:

• Provides 31 64-bit general-purpose registers, of which X30 is used as the procedure link
register.

• Provides a 64-bit Program Counter (PC), stack pointers (SPs), and Exception Link Registers
(ELRs).

• Provides 32 128-bit registers for SIMD vector and scalar floating-point support.

• Provides a single instruction set, A64. For more information, see The Armv8 instruction sets
on page A1-38.

• Defines the Armv8 Exception model, with up to four Exception levels, EL0 - EL3, that
provide an execution privilege hierarchy, see Exception levels on page D1-2454.

• Provides support for 64-bit virtual addressing. For more information, including the limits on
address ranges, see Chapter D5 The AArch64 Virtual Memory System Architecture.

• Defines a number of Process state (PSTATE) elements that hold PE state. The A64
instruction set includes instructions that operate directly on various PSTATE elements.

• Names each System register using a suffix that indicates the lowest Exception level at which
the register can be accessed.

AArch32 The 32-bit Execution state. This Execution state:

• Provides 13 32-bit general-purpose registers, and a 32-bit PC, SP, and Link Register (LR).
The LR is used as both an ELR and a procedure link register.

Some of these registers have multiple banked instances for use in different PE modes.

• Provides a single ELR, for exception returns from Hyp mode.

• Provides 32 64-bit registers for Advanced SIMD vector and scalar floating-point support.

• Provides two instruction sets, A32 and T32. For more information, see The Armv8 instruction
sets on page A1-38.

• Supports the Armv7-A Exception model, based on PE modes, and maps this onto the Armv8
Exception model, that is based on the Exception levels.

• Provides support for 32-bit virtual addressing.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-37
ID072021 Non-Confidential

Introduction to the Armv8 Architecture
A1.3 Armv8 architectural concepts
• Defines a number of Process state (PSTATE) elements that hold PE state. The A32 and T32
instruction sets include instructions that operate directly on various PSTATE elements, and
instructions that access PSTATE by using the Application Program Status Register (APSR)
or the Current Program Status Register (CPSR).

Later subsections give more information about the different properties of the Execution states.

Transferring control between the AArch64 and AArch32 Execution states is known as interprocessing. The PE can
move between Execution states only on a change of Exception level, and subject to the rules given in
Interprocessing on page D1-2545. This means different software layers, such as an application, an operating system
kernel, and a hypervisor, executing at different Exception levels, can execute in different Execution states.

A1.3.2 The Armv8 instruction sets

In Armv8 the possible instruction sets depend on the Execution state:

AArch64 AArch64 state supports only a single instruction set, called A64. This is a fixed-length instruction
set that uses 32-bit instruction encodings.

For information on the A64 instruction set, see Chapter C3 A64 Instruction Set Overview.

AArch32 AArch32 state supports the following instruction sets:

A32 This is a fixed-length instruction set that uses 32-bit instruction encodings.

T32 This is a variable-length instruction set that uses both 16-bit and 32-bit instruction
encodings.

In previous documentation, these instruction sets were called the ARM and Thumb instruction sets.
Armv8 extends each of these instruction sets. In AArch32 state, the Instruction set state determines
the instruction set that the PE executes.

For information on the A32 and T32 instruction sets, see Chapter F2 The AArch32 Instruction Sets
Overview.

The Armv8 instruction sets support SIMD and scalar floating-point instructions. See Advanced SIMD and
floating-point support on page A1-52.

A1.3.3 System registers

System registers provide control and status information of architected features.

The System registers use a standard naming format: <register_name>.<bit_field_name> to identify specific
registers as well as control and status bits within a register.

Bits can also be described by their numerical position in the form <register_name>[x:y] or the generic form
bits[x:y].

In addition, in AArch64 state, most register names include the lowest Exception level that can access the register as
a suffix to the register name:

• <register_name>_ELx, where x is 0, 1, 2, or 3.

For information about Exception levels, see Exception levels on page D1-2454.

The System registers comprise:

• The following registers that are described in this Manual:

— General system control registers.

— Debug registers.

— Generic Timer registers.

— Optionally, Performance Monitor registers.

— Optionally, the Activity Monitors registers.
A1-38 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Introduction to the Armv8 Architecture
A1.3 Armv8 architectural concepts
• Optionally, one or more of the following groups of registers that are defined in other Arm architecture
specifications:

— Trace System registers, as defined in the Embedded Trace Macrocell Architecture Specification,
ETMv4.

— Scalable Vector Extension System registers, as defined in the Arm® Architecture Reference Manual
Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

— Generic Interrupt Controller (GIC) System registers, see The Arm Generic Interrupt Controller
System registers on page A1-39.

• RAS Extension System registers, as defined in the Arm® Reliability, Availability, and Serviceability (RAS)
Specification, Armv8, for the Armv8-A architecture profile. The RAS Extension is a mandatory extension to
the Armv8.2 architecture, and an OPTIONAL extension to the Armv8.0 and the Armv8.1 architectures.

For information about the AArch64 System registers, see Chapter D13 AArch64 System Register Descriptions.

For information about the AArch32 System registers, see Chapter G8 AArch32 System Register Descriptions.

The Arm Generic Interrupt Controller System registers

From version 3 of the Arm Generic Interrupt Controller architecture, GICv3, the GIC architecture specification
defines a System register interface to some of its functionality. The System register summaries in this Manual
include these registers, see:

• About the GIC System registers on page D12-3037, for more information about the AArch64 GIC System
registers.

• About the GIC System registers on page G7-6434, for more information about the AArch32 GIC System
registers.

These sections give only short overviews of the GIC System registers. For more information, including descriptions
of the registers, see the ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0
and version 4.0 (ARM IHI 0069).

Note

The programmers’ model for earlier versions of the GIC architecture is wholly memory-mapped.

A1.3.4 Armv8 Debug

Armv8 supports the following:

Self-hosted debug

In this model, the PE generates debug exceptions. Debug exceptions are part of the Armv8
Exception model.

External debug

In this model, debug events cause the PE to enter Debug state. In Debug state, the PE is controlled
by an external debugger.

All Armv8 implementations support both models. The model chosen by a particular user depends on the debug
requirements during different stages of the design and development life cycle of the product. For example, external
debug might be used during debugging of the hardware implementation and OS bring-up, and self-hosted debug
might be used during application development.

For more information about self-hosted debug:

• In AArch64 state, see Chapter D2 AArch64 Self-hosted Debug.

• In AArch32 state, see Chapter G2 AArch32 Self-hosted Debug.

For more information about external debug, see Part H External Debug on page Part H-7331.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-39
ID072021 Non-Confidential

Introduction to the Armv8 Architecture
A1.4 Supported data types
A1.4 Supported data types

The Armv8 architecture supports the following integer data types:

Byte 8 bits.

Halfword 16 bits.

Word 32 bits.

Doubleword 64 bits.

Quadword 128 bits.

The architecture also supports the following floating-point data types:

• Half-precision, see Half-precision floating-point formats on page A1-44 for details.

• Single-precision, see Single-precision floating-point format on page A1-46 for details.

• Double-precision, see Double-precision floating-point format on page A1-47 for details.

• BFloat16, see BFloat16 floating-point format on page A1-48 for details.

It also supports:

• Fixed-point interpretation of words and doublewords. See Fixed-point format on page A1-50.

• Vectors, where a register holds multiple elements, each of the same data type. See Vector formats on
page A1-41 for details.

The Armv8 architecture provides two register files:

• A general-purpose register file.

• A SIMD&FP register file.

In each of these, the possible register widths depend on the Execution state.

In AArch64 state:

• A general-purpose register file contains 64-bit registers:

— Many instructions can access these registers as 64-bit registers or as 32-bit registers, using only the
bottom 32 bits.

• A SIMD&FP register file contains 128-bit registers:

— The quadword integer data types only apply to the SIMD&FP register file.

— The floating-point data types only apply to the SIMD&FP register file.

— While the AArch64 vector registers support 128-bit vectors, the effective vector length can be 64-bits
or 128-bits depending on the A64 instruction encoding used, see Instruction Mnemonics on
page C1-197.

For more information on the register files in AArch64 state, see Registers in AArch64 Execution state on
page B1-117.

In AArch32 state:

• A general-purpose register file contains 32-bit registers:

— Two 32-bit registers can support a doubleword.

— Vector formatting is supported, see Figure A1-4 on page A1-44.

• A SIMD&FP register file contains 64-bit registers:

— AArch32 state does not support quadword integer or floating-point data types.

Note
Two consecutive 64-bit registers can be used as a 128-bit register.

For more information on the register files in AArch32 state, see The general-purpose registers, and the PC, in
AArch32 state on page E1-4251.
A1-40 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Introduction to the Armv8 Architecture
A1.4 Supported data types
A1.4.1 Vector formats

In an implementation that includes the SIMD instructions that operate on the SIMD&FP register file, a register can
hold one or more packed elements, all of the same size and type. The combination of a register and a data type
describes a vector of elements. The vector is considered to be an array of elements of the data type specified in the
instruction. The number of elements in the vector is implied by the size of the data elements and the size of the
register.

Vector indices are in the range 0 to (number of elements – 1). An index of 0 refers to the least significant end of the
vector.

Vector formats in AArch64 state

In AArch64 state, the SIMD&FP registers can be referred to as Vn, where n is a value from 0 to 31.

The SIMD&FP registers support three data formats for loads, stores, and data-processing operations:

• A single, scalar, element in the least significant bits of the register.

• A 64-bit vector of byte, halfword, or word elements.

• A 128-bit vector of byte, halfword, word, or doubleword elements.

The element sizes are defined in Table A1-1 on page A1-41 with the vector format described as:

• For a 128-bit vector: Vn{.2D, .4S, .8H, .16B}.

• For a 64-bit vector: Vn{.1D, .2S, .4H, .8B}.

Figure A1-1 on page A1-42 shows the SIMD vectors in AArch64 state.

Table A1-1 SIMD elements in AArch64 state

Mnemonic Size

B 8 bits

H 16 bits

S 32 bits

D 64 bits
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-41
ID072021 Non-Confidential

Introduction to the Armv8 Architecture
A1.4 Supported data types
Figure A1-1 SIMD vectors in AArch64 state

Vector formats in AArch32 state

Table A1-2 on page A1-42 shows the available formats. Each instruction description specifies the data types that
the instruction supports.

Polynomial arithmetic over {0, 1} on page A1-50 describes the polynomial data type.

The .F16 data type is the half-precision data type selected by the FPSCR.AHP bit, see Half-precision floating-point
formats on page A1-44.

The .F32 data type is the Arm standard single-precision floating-point data type, see Single-precision floating-point
format on page A1-46.

127 0

Vn

.S .S .S .S

[3] [2] [1] [0]

.H .H .H .H .H .H .H .H

[7] [6] [5] [4] [3] [2] [1] [0]

063

Vn

.S .S

[1] [0]

.H .H .H .H

[3] [2] [1] [0]

128-bit vector of 32-bit elements (.4S)

128-bit vector of 16-bit elements (.8H)

64-bit vector of 32-bit elements (.2S)

64-bit vector of 16-bit elements (.4H)

64 6396 95 32 31 16 1548 4780 79112 111

32 31 16 1548 47

.D .D128-bit vector of 64-bit elements (.2D)

[0][1]

.B .B .B .B .B .B .B .B

[14] [12] [10] [8] [6] [4] [2] [0]

128-bit vector of 8-bit elements (.16B) .B

[15] [13] [11] [9] [7] [5] [3] [1]

.B .B .B .B .B .B .B

.B .B .B .B

[7] [5] [3] [1]

64-bit vector of 8-bit elements (.8B) .B .B .B .B

[6] [4] [2] [0]

Table A1-2 Advanced SIMD data types in AArch32 state

Data type specifier Meaning

.<size> Any element of <size> bits

.F<size> Floating-point number of <size> bits

.I<size> Signed or unsigned integer of <size> bits

.P<size> Polynomial over {0, 1} of degree less than <size>

.S<size> Signed integer of <size> bits

.U<size> Unsigned integer of <size> bits
A1-42 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Introduction to the Armv8 Architecture
A1.4 Supported data types
The instruction definitions use a data type specifier to define the data types appropriate to the operation. Figure A1-2
on page A1-43 shows the hierarchy of the Advanced SIMD data types.

Figure A1-2 Advanced SIMD data type hierarchy in AArch32 state

For example, a multiply instruction must distinguish between integer and floating-point data types.

An integer multiply instruction that generates a double-width (long) result must specify the input data types as
signed or unsigned. However, some integer multiply instructions use modulo arithmetic, and therefore do not have
to distinguish between signed and unsigned inputs.

Figure A1-3 on page A1-44 shows the Advanced SIMD vectors in AArch32 state.

Note

In AArch32 state, a pair of even and following odd numbered doubleword registers can be concatenated and treated
as a single quadword register.

† Output format only. See VMULL instruction description.

.64

.32

.16

.8
.I8

.S64

.U64
.I64

.F32
-

-

.S8

.U8
.P8

-

.I16
.S16
.U16

.P16 †
.F16

.I32
.S32
.U32

.P64 ‡

‡ Available only if the Cyptographic Extension is implemented.
See VMULL instruction description.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-43
ID072021 Non-Confidential

Introduction to the Armv8 Architecture
A1.4 Supported data types
Figure A1-3 Advanced SIMD vectors in AArch32 state

The AArch32 general-purpose registers support vectors formats for use by the SIMD instructions in the Base
instruction set. Figure A1-4 on page A1-44 shows these formats, that means that a general-purpose register can be
treated as either 2 halfwords or 4 bytes.

Figure A1-4 Vector formatting in AArch32 state

A1.4.2 Half-precision floating-point formats

Armv8 supports two half-precision floating-point formats:

• IEEE half-precision, as described in the IEEE 754-2008 standard.

• Arm alternative half-precision format.

Note

BFloat16 is not a half-precision floating-point format, see BFloat16 floating-point format on page A1-48.

127 0

Qn

.32 .32 .32 .32

[3] [2] [1] [0]

.16 .16 .16 .16 .16 .16 .16 .16

[7] [6] [5] [4] [3] [2] [1] [0]

063

Dn

.32 .32

[1] [0]

.16 .16 .16 .16

[3] [2] [1] [0]

128-bit vector of single-precision
(32-bit) elements

128-bit vector of 16-bit elements

64-bit vector of 32-bit elements

64-bit vector of 16-bit elements

64 6396 95 32 31 16 1548 4780 79112 111

32 31 16 1548 47

.8 .8 .8 .8 .8 .8 .8 .8

[14] [12] [10] [8] [6] [4] [2] [0]

128-bit vector of 8-bit elements .8 .8 .8 .8 .8 .8 .8 .8

[15] [13] [11] [9] [7] [5] [3] [1]

.64 .64

[1] [0]

128-bit vector of double-precision
(64-bit) elements

.8 .8 .8 .8

[6] [4] [2] [0]

64-bit vector of 8-bit elements .8 .8 .8 .8

[7] [5] [3] [1]

31 0

Rn

.8 .8 .8 .8

[3] [2] [1] [0]

16 1524 23 8 7

.16 .16

[1] [0]

32-bit general-purpose register
as a set of two halfwords

32-bit general-purpose register
as a set of four bytes
A1-44 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Introduction to the Armv8 Architecture
A1.4 Supported data types
Both formats can be used for conversions to and from other floating-point formats. FPCR.AHP controls the format
in AArch64 state and FPSCR.AHP controls the format in AArch32 state. FEAT_FP16 adds half-precision
data-processing instructions, which always use the IEEE format. These instructions ignore the value of the relevant
AHP field, and behave as if it has an Effective value of 0.

The description of IEEE half-precision includes Arm-specific details that are left open by the standard, and is only
an introduction to the formats and to the values they can contain. For more information, especially on the handling
of infinities, NaNs, and signed zeros, see the IEEE 754 standard.

For both half-precision floating-point formats, the layout of the 16-bit format is the same. The format is:

The interpretation of the format depends on the value of the exponent field, bits[14:10] and on which half-precision
format is being used.

0 < exponent < 0x1F

The value is a normalized number and is equal to:

(–1)S × 2(exponent-15) × (1.fraction)

The minimum positive normalized number is 2–14, or approximately 6.104  10–5.

The maximum positive normalized number is (2 – 2–10) × 215, or 65504.

Larger normalized numbers can be expressed using the alternative format when the
exponent == 0x1F.

exponent == 0

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction == 0

The value is a zero. There are two distinct zeros:

+0 when S==0

–0 when S==1.

fraction != 0

The value is a denormalized number and is equal to:

(–1)S × 2–14 × (0.fraction)

The minimum positive denormalized number is 2–24, or approximately 5.960 × 10–8.

Half-precision denormalized numbers are not flushed to zero by default. When FEAT_FP16 is
implemented, the FPCR.FZ16 bit controls whether flushing denormalized numbers to zero is
enabled for half-precision data-processing instructions. For details, see Flushing denormalized
numbers to zero on page A1-54.

exponent == 0x1F

The value depends on which half-precision format is being used:

IEEE half-precision

The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:

fraction == 0

The value is an infinity. There are two distinct infinities:

+infinity When S==0. This represents all positive numbers that are too
big to be represented accurately as a normalized number.

-infinity When S==1. This represents all negative numbers with an
absolute value that is too big to be represented accurately as a
normalized number.

15 14 10 9 0

S exponent fraction
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-45
ID072021 Non-Confidential

Introduction to the Armv8 Architecture
A1.4 Supported data types
fraction != 0

The value is a NaN, and is either a quiet NaN or a signaling NaN.

The two types of NaN are distinguished by their most significant fraction
bit, bit[9]:

bit[9] == 0 The NaN is a signaling NaN. The sign bit can take any value,
and the remaining fraction bits can take any value except all
zeros.

bit[9] == 1 The NaN is a quiet NaN. The sign bit and remaining fraction
bits can take any value.

Alternative half-precision

The value is a normalized number and is equal to:

-1S × 216 × (1.fraction)

The maximum positive normalized number is (2-2-10) × 216 or 131008.

A1.4.3 Single-precision floating-point format

The single-precision floating-point format is as defined by the IEEE 754 standard.

This description includes Arm-specific details that are left open by the standard. It is only intended as an
introduction to the formats and to the values they can contain. For full details, especially of the handling of infinities,
NaNs, and signed zeros, see the IEEE 754 standard.

A single-precision value is a 32-bit word with the format:

The interpretation of the format depends on the value of the exponent field, bits[30:23]:

0 < exponent < 0xFF

The value is a normalized number and is equal to:

(–1)S × 2(exponent – 127) × (1.fraction)

The minimum positive normalized number is 2–126, or approximately 1.175 × 10–38.

The maximum positive normalized number is (2 – 2–23) × 2127, or approximately 3.403 × 1038.

exponent == 0

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction == 0

The value is a zero. There are two distinct zeros:

+0 When S==0.

–0 When S==1.

These usually behave identically. In particular, the result is equal if +0 and –0 are
compared as floating-point numbers. However, they yield different results in some
circumstances. For example, the sign of the infinity produced as the result of dividing
by zero depends on the sign of the zero. The two zeros can be distinguished from each
other by performing an integer comparison of the two words.

fraction != 0

The value is a denormalized number and is equal to:

(–1)S × 2–126 × (0.fraction)

The minimum positive denormalized number is 2–149, or approximately 1.401 × 10–45.

Denormalized numbers are always flushed to zero in Advanced SIMD processing in AArch32 state.
They are optionally flushed to zero in floating-point processing and in Advanced SIMD processing
in AArch64 state. For details, see Flushing denormalized numbers to zero on page A1-54.

fractionS

31 30 23 22 0

exponent
A1-46 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Introduction to the Armv8 Architecture
A1.4 Supported data types
exponent == 0xFF

The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:

fraction == 0

The value is an infinity. There are two distinct infinities:

+infinity When S==0. This represents all positive numbers that are too big to be
represented accurately as a normalized number.

-infinity When S==1. This represents all negative numbers with an absolute value
that is too big to be represented accurately as a normalized number.

fraction != 0

The value is a NaN, and is either a quiet NaN or a signaling NaN.

The two types of NaN are distinguished by their most significant fraction bit, bit[22]:

bit[22] == 0

The NaN is a signaling NaN. The sign bit can take any value, and the
remaining fraction bits can take any value except all zeros.

bit[22] == 1

The NaN is a quiet NaN. The sign bit and remaining fraction bits can take
any value.

For details of the default NaN, see The Default NaN on page A1-57.

Note

NaNs with different sign or fraction bits are distinct NaNs, but this does not mean software can use floating-point
comparison instructions to distinguish them. This is because the IEEE 754 standard specifies that a NaN compares
as unordered with everything, including itself.

A1.4.4 Double-precision floating-point format

The double-precision floating-point format is as defined by the IEEE 754 standard. Double-precision floating-point
is supported by both SIMD and floating-point instructions in AArch64 state, and only by floating-point instructions
in AArch32 state.

This description includes implementation-specific details that are left open by the standard. It is only intended as an
introduction to the formats and to the values they can contain. For full details, especially of the handling of infinities,
NaNs, and signed zeros, see the IEEE 754 standard.

A double-precision value is a 64-bit doubleword, with the format:

Double-precision values represent numbers, infinities, and NaNs in a similar way to single-precision values, with
the interpretation of the format depending on the value of the exponent:

0 < exponent < 0x7FF

The value is a normalized number and is equal to:

(–1)S × 2(exponent–1023) × (1.fraction)

The minimum positive normalized number is 2–1022, or approximately 2.225 × 10–308.

The maximum positive normalized number is (2 – 2–52) × 21023, or approximately 1.798 × 10308.

S

63 62 52 51 32 31 0

exponent fraction
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-47
ID072021 Non-Confidential

Introduction to the Armv8 Architecture
A1.4 Supported data types
exponent == 0

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction == 0

The value is a zero. There are two distinct zeros that behave in the same way as the two
single-precision zeros:

+0 when S==0

–0 when S==1.

fraction != 0

The value is a denormalized number and is equal to:

(-1)S × 2–1022 × (0.fraction)

The minimum positive denormalized number is 2–1074, or approximately 4.941 × 10–324.

Optionally, denormalized numbers are flushed to zero in floating-point calculations. For details, see
Flushing denormalized numbers to zero on page A1-54.

exponent == 0x7FF

The value is either an infinity or a NaN, depending on the fraction bits:

fraction == 0

The value is an infinity. As for single-precision, there are two infinities:

+infinity When S==0.

-infinity When S==1.

fraction != 0

The value is a NaN, and is either a quiet NaN or a signaling NaN.

The two types of NaN are distinguished by their most significant fraction bit, bit[51] of
the doubleword:

bit[51] == 0

The NaN is a signaling NaN. The sign bit can take any value, and the
remaining fraction bits can take any value except all zeros.

bit[51] == 1

The NaN is a quiet NaN. The sign bit and the remaining fraction bits can
take any value.

For details of the default NaN, see The Default NaN on page A1-57.

Note

NaNs with different sign or fraction bits are distinct NaNs, but this does not mean software can use floating-point
comparison instructions to distinguish them. This is because the IEEE 754 standard specifies that a NaN compares
as unordered with everything, including itself.

A1.4.5 BFloat16 floating-point format

BFloat16, or BF16, is a 16-bit floating-point storage format. The BF16 format inherits many of its properties and
behaviors from the single-precision format defined by the IEEE 754 standard, as described in Single-precision
floating-point format on page A1-46.

For the BFloat16 floating-point format, the layout is:

0 < exponent < 0xFF

The value is a normalized number and is equal to:

(–1)S × 2(exponent-127) × (1.fraction)

15 14 7 6 0

S

A1-48 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Introduction to the Armv8 Architecture
A1.4 Supported data types
The minimum positive normalized number is 2–126, or approximately 1.175  10–38.

The maximum positive normalized number is (2 – 2–7) × 2127, or approximately 3.390  1038.

exponent == 0

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction == 0

The value is a zero. There are two distinct zeros:

+0 when S==0

–0 when S==1.

These usually behave identically. However, they yield different results in some
circumstances. For example, the sign of the result produced as the result of multiplying
by zero depends on the sign of the zero. The two zeros can be distinguished from each
other by performing an integer bitwise comparison of the two halfwords.

fraction != 0

The value is a denormalized number and is equal to:

(–1)S × 2–126 × (0.fraction)

The minimum positive denormalized number is 2–133, or approximately 9.184 × 10–41.

If Flushing denormalized numbers to zero on page A1-54 is enabled, for the conversion instructions
that generate a BF16 result, a result will be flushed to zero if it satisfies the condition 0 < Abs(result)
< 2–126.

Denormalized numbers are unconditionally flushed to zero by the BF16 arithmetic instructions, and
by Advanced SIMD floating-point instructions in AArch32 state. They might be flushed to zero by
other floating-point instructions, see Flushing denormalized numbers to zero on page A1-54.

For the conversion instructions that generate a BF16 result, flushing denormalized numbers to zero
is enabled by the FPCR.FZ and FPCR.FIZ bits in AArch64 state and the FPSCR.FZ bit in AArch32
state.

exponent == 0xFF

The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:

fraction == 0

The value is an infinity. There are two distinct infinities:

+infinity When S==0. This represents all positive numbers that are too big to be
represented accurately as a normalized number.

-infinity When S==1. This represents all negative numbers with an absolute value
that is too big to be represented accurately as a normalized number.

fraction != 0

The value is a NaN, and is either a quiet NaN or a signaling NaN.

The two types of NaN are distinguished by their most significant fraction bit, bit[6]:

bit[6] == 0 The NaN is a signaling NaN. The sign bit can take any value, and the
remaining fraction bits can take any value except all zeros.

bit[6] == 1 The NaN is a quiet NaN. The sign bit and remaining fraction bits can take
any value.

In the arithmetic instructions that accept BF16 inputs, there is no distinction between quiet and
signaling input NaNs, since these instructions cannot signal a floating-point exception, and any type
of input NaN generates the same Default NaN result.

BF16 values are 16-bit halfwords that software can convert to single-precision format, by appending 16 zero bits,
so that single-precision arithmetic instructions can be used. A single-precision value can be converted to BF16
format if required, either by:

• Truncating, by removing the least significant 16 bits.

• Using the BFloat16 conversion instructions, see BFloat16 floating-point instructions on page C3-262.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-49
ID072021 Non-Confidential

Introduction to the Armv8 Architecture
A1.4 Supported data types
A1.4.6 Fixed-point format

Fixed-point formats are used only for conversions between floating-point and fixed-point values. They apply to
general-purpose registers.

Fixed-point values can be signed or unsigned, and can be 16-bit or 32-bit. Conversion instructions take an argument
that specifies the number of fraction bits in the fixed-point number. That is, it specifies the position of the binary
point.

A1.4.7 Conversion between floating-point and fixed-point values

Armv8 supports the conversion of a scalar floating-point to or from a signed or unsigned fixed-point value in a
general-purpose register.

The instruction argument #fbits indicates that the general-purpose register holds a fixed-point number with fbits bits
after the binary point, where fbits is in the range 1 to 64 for a 64-bit general-purpose register, or 1 to 32 for a 32-bit
general-purpose register.

More specifically:

• For a 64-bit register Xd:

— The integer part is Xd[63:#fbits].

— The fractional part is Xd[(#fbits-1):0].

• For a 32-bit register Wd or Rd:

— The integer part is Wd[31:#fbits] or Rd[31:#fbits].

— The fractional part is Wd[(#fbits-1):0] or Rd[(#fbits-1):0].

These instructions can cause the following floating-point exceptions:

Invalid Operation When the floating-point input is NaN or Infinity or when a numerical value cannot be
represented within the destination register.

Inexact When the numeric result differs from the input value.

Input Denormal When flushing denormalized numbers to zero is enabled and the denormal input is replaced
by a zero, see Flushing denormalized numbers to zero on page A1-54 and Input Denormal
exceptions on page D1-2495.

Note

An out of range fixed-point result is saturated to the destination size.

For more information, see Floating-point exceptions and exception traps on page D1-2495.

A1.4.8 Polynomial arithmetic over {0, 1}

Some SIMD instructions that operate on SIMD&FP registers can operate on polynomials over {0, 1}, see Supported
data types on page A1-40. The polynomial data type represents a polynomial in x of the form bn–1xn–1 + … + b1x
+ b0 where bk is bit[k] of the value.

The coefficients 0 and 1 are manipulated using the rules of Boolean arithmetic:

• 0 + 0 = 1 + 1 = 0.

• 0 + 1 = 1 + 0 = 1.

• 0 × 0 = 0 × 1 = 1 × 0 = 0.

• 1 × 1 = 1.

That is:

• Adding two polynomials over {0, 1} is the same as a bitwise exclusive OR.

• Multiplying two polynomials over {0, 1} is the same as integer multiplication except that partial products are
exclusive-ORed instead of being added.
A1-50 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Introduction to the Armv8 Architecture
A1.4 Supported data types
A64, A32, and T32 provide instructions for performing polynomial multiplication of 8-bit values.

• For AArch32, see VMUL (integer and polynomial) on page F6-5694 and VMULL (integer and polynomial)
on page F6-5700.

• For AArch64, see PMUL on page C7-2019 and PMULL, PMULL2 on page C7-2021.

The Cryptographic Extension adds the ability to perform long polynomial multiplies of 64-bit values. See PMULL,
PMULL2 on page C7-2021.

Pseudocode description of polynomial multiplication

In pseudocode, polynomial addition is described by the EOR operation on bitstrings.

Polynomial multiplication is described by the PolynomialMult() function defined in Chapter J1 Armv8 Pseudocode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-51
ID072021 Non-Confidential

Introduction to the Armv8 Architecture
A1.5 Advanced SIMD and floating-point support
A1.5 Advanced SIMD and floating-point support

Note

In AArch32 state, the SIMD instructions that operate on SIMD&FP registers are always described as the Advanced
SIMD instructions, to distinguish them from the SIMD instructions in the base instruction sets, that operate on the
32-bit general-purpose registers. The A64 instruction set does not provide any SIMD instructions that operate on
the general-purpose registers, and therefore some AArch64 state descriptions use SIMD as a synonym for Advanced
SIMD. Unless the context clearly indicates otherwise, this section describes the support for SIMD instructions that
operate on SIMD&FP registers.

Armv8 can support the following levels of support for Advanced SIMD and floating-point instructions:

• Full SIMD and floating-point support without exception trapping.

• Full SIMD and floating-point support with exception trapping.

• No floating-point or SIMD support. This option is licensed only for implementations targeting specialized
markets.

Note
All systems that support standard operating systems with rich application environments provide hardware
support for Advanced SIMD and floating-point. It is a requirement of the ARM Procedure Call Standard for
AArch64, see Procedure Call Standard for the Arm 64-bit Architecture.

Armv8 supports single-precision (32-bit) and double-precision (64-bit) floating-point data types and arithmetic as
defined by the IEEE 754 floating-point standard. It also supports the half-precision (16-bit) floating-point data type
for data storage, by supporting conversions between single-precision and half-precision data types and
double-precision and half-precision data types. When FEAT_FP16 is implemented, it also supports the
half-precision floating-point data type for data-processing operations.

The SIMD instructions provide packed Single Instruction Multiple Data (SIMD) and single-element scalar
operations, and support:

• Single-precision and double-precision arithmetic in AArch64 state.

• Single-precision arithmetic only in AArch32 state.

• When FEAT_FP16 is implemented, half-precision arithmetic is supported in AArch64 and AArch32 states.

Floating-point support in AArch64 state SIMD is IEEE 754-2008 compliant with:

• Configurable rounding modes.

• Configurable Default NaN behavior.

• Configurable flushing to zero of denormalized numbers.

Floating-point computation using AArch32 Advanced SIMD instructions remains unchanged from Armv7. A32
and T32 Advanced SIMD floating-point always uses Arm standard floating-point arithmetic and performs
IEEE 754 floating-point arithmetic with the following restrictions:

• Denormalized numbers are flushed to zero, see Flushing denormalized numbers to zero on page A1-54.

• Only default NaNs are supported, see The Default NaN on page A1-57.

• The Round to Nearest rounding mode is used.

• Untrapped floating-point exception handling is used for all floating-point exceptions.

If floating-point exception trapping is supported, floating-point exceptions, such as Overflow or Divide by Zero,
can be handled without trapping. This applies to both SIMD and floating-point operations. When handled in this
way, a floating-point exception causes a cumulative status register bit to be set to 1 and a default result to be
produced by the operation. For more information about floating-point exceptions, see Floating-point exceptions and
exception traps on page D1-2495.

In AArch64 state, the following registers control floating-point operation and return floating-point status
information:

• The Floating-Point Control Register, FPCR, controls:

— The half-precision format where applicable, FPCR.AHP bit.
A1-52 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Introduction to the Armv8 Architecture
A1.5 Advanced SIMD and floating-point support
— Default NaN behavior, FPCR.DN bit.

— Flushing of denormalized numbers to zero, FPCR.{FZ, FZ16} bits. If FEAT_FP16 is not
implemented, FPCR.FZ16 is RES0.

— Rounding mode support, FPCR.Rmode field.

— Len and Stride fields associated with execution in AArch32 state, and only supported for a context
save and restore from AArch64 state. These fields are obsolete in Armv8 and can be implemented as
RAZ/WI. If they are implemented as RW and are programmed to a nonzero value, they make some
AArch32 floating-point instructions UNDEFINED.

— Floating-point exception trap controls, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits, see
Floating-point exceptions and exception traps on page D1-2495.

• The Floating-Point Status Register, FPSR, provides:

— Cumulative floating-point exceptions flags, FPSR.{IDC, IXC, UFC, OFC, DZC, IOC and QC}.

— The AArch32 floating-point comparison flags {N,Z,C,V}. These bits are RES0 if AArch32
floating-point is not implemented.

Note
In AArch64 state, the process state flags, PSTATE.{N,Z,C,V} are used for all data-processing
compares and any associated conditional execution.

If FEAT_FlagM2 is implemented, the instructions AXFLAG and XAFLAG convert between the Arm
condition flag format and an alternative format shown in Relationship between ARM format and
alternative format PSTATE condition flags on page C6-874.

AArch32 state provides a single Floating-Point Status and Control Register, FPSCR, combining the FPCR and
FPSR fields.

For system level information about the SIMD and floating-point support, see Advanced SIMD and floating-point
support on page G1-6112.

A1.5.1 Instruction support

The Advanced SIMD and floating-point instructions support:

• Load and store for single elements and vectors of multiple elements.

Note
Single elements are also referred to as scalar elements.

• Data processing on single and multiple elements for both integer and floating-point data types.

• When FEAT_FCMA is implemented, complex number arithmetic.

• Floating-point conversion between different levels of precision.

• Conversion between floating-point, fixed-point integer, and integer data types.

• Floating-point rounding.

For more information on the SIMD and floating-point instructions in AArch64 state, see Chapter C3 A64
Instruction Set Overview.

For more information on the Advanced SIMD and floating-point instructions in AArch32 state, see Chapter F2 The
AArch32 Instruction Sets Overview.

A1.5.2 Floating-point standards, and terminology

The Arm architecture includes support for all the required features of ANSI/IEEE Std 754-2008, IEEE Standard for
Binary Floating-Point Arithmetic, referred to as IEEE 754-2008. However, some terms in this Manual are based on
the 1985 version of this standard, referred to as IEEE 754-1985:

• Arm floating-point terminology generally uses the IEEE 754-1985 terms. This section summarizes how
IEEE 754-2008 changes these terms.

• References to IEEE 754 that do not include the issue year apply to either issue of the standard.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-53
ID072021 Non-Confidential

Introduction to the Armv8 Architecture
A1.5 Advanced SIMD and floating-point support
Table A1-3 on page A1-54 shows how the terminology in this Manual differs from that used in IEEE 754-2008.

A1.5.3 Arm standard floating-point input and output values

Armv8 provides full IEEE 754 floating-point arithmetic support. In AArch32 state, floating-point operations
performed using Advanced SIMD instructions are limited to Arm standard floating-point operation, regardless of
the selected rounding mode in the FPSCR. Unlike AArch32, AArch64 SIMD floating point arithmetic is performed
using the rounding mode selected by the FPCR.

Arm standard floating-point arithmetic supports the following input formats defined by the IEEE 754 floating-point
standard:

• Zeros.

• Normalized numbers.

• Denormalized numbers are flushed to 0 before floating-point operations, see Flushing denormalized numbers
to zero on page A1-54.

• NaNs.

• Infinities.

Arm standard floating-point arithmetic supports the Round to Nearest (roundTiesToEven) rounding mode defined
by the IEEE 754 standard.

Arm standard floating-point arithmetic supports the following output result formats defined by the IEEE 754
standard:

• Zeros.

• Normalized numbers.

• Results that are less than the minimum normalized number are flushed to zero, see Flushing denormalized
numbers to zero on page A1-54.

• NaNs produced in floating-point operations are always the default NaN, see The Default NaN on page A1-57.

• Infinities.

A1.5.4 Flushing denormalized numbers to zero

For this section if FEAT_AFP is not implemented, the behavior is the same as if FPCR.AH == 0, FPCR.FZ == 0
and FPCR.NEP == 0.

Table A1-3 Floating-point terminology

This manual IEEE 754-2008

Normalized a

a. Normalized number is used in preference to normal number,
because of the other specific uses of normal in this Manual.

Normal

Denormal, or denormalized Subnormal

Round towards Minus Infinity (RM) roundTowardsNegative

Round towards Plus Infinity (RP) roundTowardsPositive

Round towards Zero (RZ) roundTowardZero

Round to Nearest (RN) roundTiesToEven

Round to Nearest with Ties to Away roundTiesToAway

Rounding mode Rounding-direction attribute
A1-54 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Introduction to the Armv8 Architecture
A1.5 Advanced SIMD and floating-point support
Calculations involving denormalized numbers and Underflow exceptions can reduce the performance of
floating-point processing. For many algorithms, replacing the denormalized operands and Intermediate results with
zeros can recover this performance, without significantly affecting the accuracy of the final result. Arm
floating-point implementations allow denormalized numbers to be flushed to zero to permit this optimization.

If a number value satisfies the condition 0 < Abs(value) < MinNorm, it is treated as a denormalized number.

MinNorm is defined as follows:

• For half-precision numbers, MinNorm is 2-14.

• For single-precision and BFloat16 numbers, MinNorm is 2-126.

• For double-precision numbers, MinNorm is 2-1022.

Flushing denormals to zero is incompatible with the IEEE 754 standard, and must not be used when IEEE 754
compatibility is a requirement. Enabling flushing of denormals to zero must be done with care. Although it can
improve performance on some algorithms, there are significant limitations on its use. These are
application-dependent:

• On many algorithms, it has no noticeable effect, because the algorithm does not usually process denormalized
numbers.

• On other algorithms, it can cause exceptions to occur and can seriously reduce the accuracy of the results of
the algorithm.

Flushing denormalized inputs to zero

If flushing denormalized inputs to zero is enabled for an instruction and a data type, and an input to that instruction
is a denormalized number of that data type, the input operand is flushed to zero, and its sign bit is not changed.

If a floating-point operation has an input denormalized number that is flushed to zero, for all purposes within the
instruction other than calculating Input Denormal floating-point exceptions, all inputs that are denormalized
numbers are treated as though they were zero with the same sign as the input.

For Advanced SIMD and floating-point instructions, if the instruction processes half-precision inputs, flushing
denormalized inputs to zero can be controlled as follows:

• If FPCR.FZ16 == 0, denormalized half-precision inputs are not flushed to zero.

• If FPCR.FZ16 == 1, for half-precision data-processing instructions, flushing of input denormalized numbers
to zero occurs as follows:

— If an instruction does not convert a half-precision input to a higher precision output, all input
denormalized numbers are flushed to zero.

— If an instruction converts a half-precision input to a higher precision output, input denormalized
numbers are not flushed to zero.

If FPCR.FIZ == 1, or both FPCR.AH == 0 and FPCR.FZ == 1, for Advanced SIMD, floating-point and BF16
instructions other than FABS and FNEG, all single-precision, double-precision and BF16 input operands that are
denormalized numbers are flushed to zero. Half-precision input operands are not flushed to zero.

If FPCR.FZ == 0, for Advanced SIMD, floating-point and BF16 instructions, for single-precision, double-precision
and BF16 inputs, the FPCR.FZ setting does not cause denormalized inputs to be flushed to zero, although other
factors might cause denormalized numbers to be flushed to zero.

If FPCR.AH == 1, regardless of the value of FPCR.FIZ, all of the following instructions flush all input denormal
numbers to zero:

• BFloat instructions: BFCVT, BFCVTN, BFCVTN2, BFMLALB, BFMLALT (by element), BFMLALB,
BFMLALT (vector), and BFCVTNT.

• Single-precision and double-precision instructions: FRECPE, FRECPS, FRECPX, FRSQRTE, and
FRSQRTS.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-55
ID072021 Non-Confidential

Introduction to the Armv8 Architecture
A1.5 Advanced SIMD and floating-point support
Flushing to zero of denormalized numbers as Intermediate results of some BF16
instructions

BF16 arithmetic instructions BFDOT (by element), BFDOT (vector), BFMMLA in AArch64, and VDOT (by
element), VDOT (vector), VMMLA in AArch32 when working with BF16 inputs, convert BF16 input values to
IEEE single-precision format, and calculate N-way dot-products, accumulating the products in single-precision
accumulators.

If a BF16 arithmetic instruction processes an Intermediate result that is a single-precision denormalized number, the
Intermediate result is unconditionally flushed to zero.

Flushing denormalized outputs to zero

If a denormalized output is flushed to zero, the output is returned as zero with the same sign bit as the denormalized
output value.

If FPCR.AH == 0, for half-precision, single-precision and double-precision numbers, the test for a denormalized
number for the purpose of flushing the output to zero occurs before rounding.

If FPCR.AH == 1, and if output flushing is caused by FPCR.FZ == 1 or FPCR.FZ16 == 1, for half-precision,
single-precision and double-precision numbers, the test for a denormalized number for the purpose of flushing the
output to zero occurs after rounding using an unbounded exponent.

If FPCR.AH == 1, and if FPCR.FZ == 0, Advanced SIMD, floating-point and BF16 instructions, for
single-precision, double-precision and BF16 outputs, the FPCR.FZ setting does not cause denormalized outputs to
be flushed to zero, although other factors might cause denormalized outputs to be flushed to zero.

BFDOT (by element), BFDOT (vector), and BFMMLA instructions unconditionally flush denormalized output
numbers to zero.

If FPCR.AH == 0, for Advanced SIMD, floating-point, and BF16 instructions, for single-precision,
double-precision and BF16 outputs, flushing denormalized numbers to zero can be controlled as follows:

• If FPCR.FZ == 0, the FPCR.FZ setting does not cause denormalized output numbers to be flushed to zero,
although other factors might cause denormalized output numbers to be flushed to zero.

• If FPCR.FZ == 1, for all Advanced SIMD, floating-point and BF16 instructions other than FABS and FNEG, all
single-precision, double-precision, and BF16 outputs that are denormalized numbers are flushed to zero.

If FPCR.FZ16 == 0 denormalized half-precision output numbers are not flushed to zero.

If FPCR.FZ16 == 1, for Advanced SIMD and floating-point instructions other than FABS, FNEG, FMAX*, and FMIN*, if
the instruction processes half-precision numbers, flushing denormalized output numbers to zero can be controlled
as follows:

• Instructions that convert between half-precision and single-precision numbers do not flush denormalized
half-precision output numbers to zero.

• Instructions that convert between half-precision and double-precision numbers do not flush denormalized
half-precision output numbers to zero.

• All other half-precision data-processing instructions flush all denormalized half-precision output numbers to
zero.

If FPCR.AH == 1 and FPCR.FZ == 1, for Advanced SIMD, floating-point and BF16 instructions, all of the
following apply:

• For all floating-point operations other than FABS, FNEG, FMAX*, and FMIN*, all single-precision and
double-precision denormalized output operands are flushed to zero.

• For FABS, FNEG, FMAX*, and FMIN*, denormalized output operands are not flushed to zero.
A1-56 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Introduction to the Armv8 Architecture
A1.5 Advanced SIMD and floating-point support
If FPCR.AH == 1, regardless of the value of FPCR.FZ bit, for both Advanced SIMD and SVE, all of the following
instructions flush all output denormal numbers to zero:

• BFloat instructions: BFCVT, BFCVTN, BFCVTN2, BFMLALB, BFMLALT (by element), BFMLALB,
BFMLALT (vector), and BFCVTNT.

• Single-precision and double-precision instructions: FRECPE, FRECPS, FRECPX, FRSQRTE, and
FRSQRTS.

A1.5.5 NaN handling and the Default NaN

The IEEE 754 standard defines a NaN as a number with all exponent bits set to 1 and a nonzero number in the
mantissa. The Arm architecture additionally defines a Default NaN which does not follow this format.

The IEEE 754 standard specifies that the sign bit of a NaN has no significance.

For a quiet NaN output derived from a signaling NaN operand, the most significant fraction bit is set to 1.

The Default NaN

The Default NaN is encoded as described inTable A1-4 on page A1-57.

IF FPCR.DN == 1, for Advanced SIMD and floating-point instructions other than FABS, FMAX* FMIN* and
FNEG, if any input to a floating-point operation performed by the instruction is a NaN, the output of the
floating-point operation is the Default NaN.

For FABS, FNEG, FMAX*, and FMIN*, Default NaN behavior is explained in the instruction description.

If FPCR.DN == 0, for floating-point processing the Default NaN is not used for NaN propagation.

If a floating-point instruction performs a floating-point operation, and that instruction generates an untrapped
Invalid Operation floating-point exception for a reason other than one of the inputs being a signaling NaN, the
output is the Default NaN.

NaN handling

The IEE 754 standard does not specify which input NaN is used as the output NaN. Therefore, where the Arm
architecture specifies which input NaN to use, this is an addition to the requirements in the IEEE 754 standard.

Depending on the operation, the exact value of a derived quiet NaN output might have both a different sign and a
different number of fraction bits from its source. See instruction descriptions for details.

Table A1-4 Default NaN encoding

Half-precision,

 IEEE Format
Single-precision Double-precision BFloat16

Sign bit

If FPCR.AH == 0

0 0 0 0

Sign bit

If FPCR.AH == 1

1 1 1 1

Exponent 0x1F 0xFF 0x7FF 0xFF

Fraction Bit[9] == 1,

bits[8:0] == 0

Bit[22] == 1,

bits[21:0] == 0

Bit[51] == 1,

bits[50:0] == 0

Bit[6] == 1,

bits[5:0] == 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-57
ID072021 Non-Confidential

Introduction to the Armv8 Architecture
A1.5 Advanced SIMD and floating-point support
NaN propagation

If an output NaN is derived from one of the operands, how the input NaN propagates to the output depends on the
instruction and the number of operands.

If an output NaN is derived from an input NaN and if the size of the output format is the same as the input format,
then all of the following apply:

• If the input NaN is a quiet NaN, the output NaN is the same as the input NaN.

• If the input NaN is a signaling NaN, the output NaN is derived as follows:

— If the handling of a signaling NaN by the instruction generates an Invalid Operation exception, the
output NaN is the quieted version of the input NaN.

— If the handling of a signaling NaN by the instruction does not generate an Invalid Operation exception,
the output NaN is the same as the input NaN. This case applies for FABS, FNEG, and FTSSEL
instructions.

If an output NaN is derived from an input NaN and if the size of the output format is larger than the input format,
all of the following apply:

• If the input NaN is a quiet NaN, the output NaN is the same as the input NaN except that the mantissa is
zero-extended in the low-order bit to fit the output format, and the exponent field is set to all ones.

• If the input NaN is a signaling NaN, the output NaN is the quieted version of the input NaN, except that the
mantissa is zero-extended in the low-order bits and the exponent field is set to all ones.

If an output NaN is derived from an input NaN and if the size of the output format is smaller than the input format,
all of the following apply:

• If the input NaN is a quiet NaN, the output NaN is the same as the input NaN except that the mantissa is
truncated in the lower-order bits to fit the output format, and the exponent field is set to all ones.

• If the input NaN is a signaling NaN, the output NaN is the quieted version of the input NaN except that the
mantissa is truncated in the lower-order bits to fit the output format, and the exponent field is set to all ones.

For the following descriptions, the term “first operand” and “second operand” relate to the left-to-right ordering of
the arguments of the pseudocode function that describes the operation.

If FPCR.DN == 0, for Advanced SIMD, floating-point, or BF16 instructions that perform a floating-point operation,
other than FABS, FNEG, FMAX*, and FMIN*, NaN outputs that derive from NaN inputs are derived as follows:

• If all of the following apply, an instruction outputs a quiet NaN derived from the first signaling NaN operand:

— FPCR.AH == 0.

— At least one operand is a signaling NaN.

— The instruction is not trapped.

• If all of the following apply, an instruction outputs a quiet NaN derived from the first NaN operand:

— FPCR.AH == 0.

— At least one operand is a NaN, but none of the operands is a signaling NaN.

— The instruction is not trapped.

• If all of the following apply, the output is a quiet NaN derived from the NaN operand:

— FPCR.AH == 1.

— The operation has two floating-point inputs.

— The operation has only one NaN operand.

• If all of the following apply, the output is a NaN derived from the <Vn>, <Hn>, <Sn>, or <Dn> register:

— FPCR.AH == 1.

— The operation has two floating-point inputs.

— The operation has two NaN operands.
A1-58 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Introduction to the Armv8 Architecture
A1.5 Advanced SIMD and floating-point support
• If all of the following apply, the output is a NaN derived from the NaN held in the <Vn>, <Hn>, <Sn>, or <Dn>
register:

— FPCR.AH == 1

— The instruction is one of: BFMLALB, BFMLALT (by element), BFMLALB, BFMLALT (vector),
FCMLA, FMADD, FMLA (by element), FMLA (vector), FMLAL, FMLAL2 (by element), FMLAL,
FMLAL2 (vector), FMLS (by element), FMLS (vector), FMLSL, FMLSL2 (by element), FMLSL,
FMLSL2 (vector), FMSUB, FNMADD, and FNMSUB.

— One of the following applies:

— The operation has three NaN operands.

— The operation has two NaN operands and the <Vn>, <Hn>, <Sn> or <Dn> register holds a NaN.

• If all of the following apply, the output is a NaN derived from the NaN held in the <Vm>, <Hm>, <Sm>, or <Dm>
register:

— FPCR.AH == 1

— The instruction is one of: BFMLALB, BFMLALT (by element), BFMLALB, BFMLALT (vector),
FCMLA, FMADD, FMLA (by element), FMLA (vector), FMLAL, FMLAL2 (by element), FMLAL,
FMLAL2 (vector), FMLS (by element), FMLS (vector), FMLSL, FMLSL2 (by element), FMLSL,
FMLSL2 (vector), FMSUB, FNMADD, and FNMSUB.

— The operation has two NaN operands and the <Vn>, <Hn>, <Sn> or <Dn> register does not hold a NaN.

If FPCR.AH == 0, and an output NaN is derived from an input NaN, the pseudocode functions FPAbs(), FPNeg(),
FPTrigMAdd(), and FPTrigSSel() can change the sign of the NaN,

If FPCR.AH == 1, and an output NaN is derived from an input NaN, for all cases, the sign bit of the NaN is
unchanged.

For FMAX* and FMIN*, the NaN handling is described in the instruction.

A1.5.6 Rounding

The rounding mode specifies how the exact result of a floating-point operation is rounded to a value in the
destination format.

The rounding mode is either determined by the rounding mode control field FPCR.RMode or by the instruction.

If FPCR.AH == 1, for any value of FPCR.RMode, the following instructions use Round to Nearest on outputs:

• BF16 instructions BFCVT, BFCVTN, BFCVTN2, BFMLALB, BFMLALT (by element), BFMLALB,
BFMLALT (vector), and the SVE instruction BFCVTNT.

• Single-precision and double-precision instructions FRECPE, FRECPS, FRECPX, FRSQRTE, and
FRSQRTS.

• Half-precision instructions FRECPE, FRECPS, FRECPX, FRSQRTE, and FRSQRTS.

The rounding mode control field FPCR.RMode can select the following rounding modes:

• Round to Nearest (RN) mode.

• Round towards Plus Infinity (RP) mode.

• Round towards Minus Infinity (RM) mode.

• Round towards Zero (RZ) mode.

The following two additional rounding modes are not selected by FPCR.RMode, but are used by some instructions:

• Round to Odd mode.

• Round to Nearest with ties to away mode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-59
ID072021 Non-Confidential

Introduction to the Armv8 Architecture
A1.5 Advanced SIMD and floating-point support
Round to Nearest mode

Round to Nearest rounding mode rounds the exact result of a floating-point operation to a value that is representable
in the destination format as follows:

• If the value before rounding has an absolute value that is too large to represent in the output format, the
rounded value is an Infinity. The sign of the rounded value is the same as the sign of the value before
rounding.

• If the value before rounding has an absolute value that is not too large to represent in the output format, the
result is calculated as follows:

— If the two nearest floating-point numbers bracketing the value before rounding are equally near, the
result is the number with an even least significant digit.

— If the two nearest floating-point numbers bracketing the value before rounding are not equally near,
the result is the floating-point number nearest to the value before rounding.

Round towards Plus Infinity mode

Round towards Plus Infinity rounding mode rounds the exact result of a floating-point operation to a value that is
representable in the destination format. The result is the floating-point number in the output format that is closest to
and not less than the value before rounding. The result can be plus infinity.

Round towards Minus Infinity mode

Round towards Minus Infinity rounding mode rounds the exact result of a floating-point operation to a value that is
representable in the destination format. The result is the number in the output format that is closest to and not greater
than the value before rounding. The result can be minus infinity.

Round towards Zero mode

Round towards Zero rounding mode rounds the exact result of a floating-point operation to a value that is
representable in the destination format. The result is the floating-point number in the output format that is closest to
and not greater in absolute value than the value before rounding.

Round to Nearest with Ties to Away

Round to Nearest with Ties to Away rounding mode is used by the FCVTAS (scalar), FCVTAS (vector), FCVTAU
(scalar), FCVTAU (vector), FRINTA (scalar), and FRINTA (vector) instructions.

Round to Nearest with Ties to Away rounding mode rounds the exact result of a floating-point operation to a value
that is representable in the destination format as follows:

• If the value before rounding has an absolute value that is too large to represent in the output format, the
rounded value is an Infinity, the sign of the rounded value is the same as the sign of the value before rounding.

• If the value before rounding has an absolute value that is not too large to represent in the output format, the
result is calculated as follows:

— If the two nearest floating-point numbers bracketing the value before rounding are equally near, the
result is the larger number.

— If the two nearest floating-point numbers bracketing the value before rounding are not equally near,
the result is the floating-point number nearest to the value before rounding.

Round to Odd mode

Round to Odd mode is not defined by IEEE 754, and differs between the FCVTXN, FCVTXN2 instructions, and
the BFDOT (by element), BFDOT (vector), and BFMMLA instructions.

The FCVTXN, FCVTXN2 instructions use Round to Odd rounding mode. If the result of the rounding is inexact,
the least significant bit of the mantissa is forced to 1.
A1-60 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Introduction to the Armv8 Architecture
A1.5 Advanced SIMD and floating-point support
Round to Odd rounding mode can avoid double rounding errors when a floating-point value is converted to a lower
precision destination format through an intermediate precision format.

Example A1-1 Converting 64-bit floating-point format to 16-bit floating-point format

A 64-bit floating-point value can be converted to a correctly rounded 16-bit floating-point value using the following
steps:

1. Use an FCVTXN instruction to produce a 32-bit value.

2. Use another instruction with the required rounding mode to convert the 32-bit value to the final 16-bit
floating-point value.

For BFDOT (by element), BFDOT (vector), and BFMMLA instructions, if the intermediate format has at least two
more bits of precision than the result format, Round to Odd mode is used and operates as follows:

• If the rounded value is inexact, the least significant bit of the fraction is set to 1.

• If the value is too large to represent in the single-precision format, the rounded value is a single-precision
Infinity, the sign of the rounded value is the same as the sign of the value before rounding.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-61
ID072021 Non-Confidential

Introduction to the Armv8 Architecture
A1.6 The Arm memory model
A1.6 The Arm memory model

The Arm memory model supports:

• Generating an exception on an unaligned memory access.

• Restricting access by applications to specified areas of memory.

• Translating virtual addresses (VAs) provided by executing instructions to physical addresses (PAs).

• Altering the interpretation of multi-byte data between big-endian and little-endian.

• Controlling the order of accesses to memory.

• Controlling caches and address translation structures.

• Synchronizing access to shared memory by multiple PEs.

• Barriers that control and prevent speculative access to memory.

VA support depends on the Execution state, as follows:

AArch64 state

Supports 64-bit virtual addressing, with the Translation Control Register determining the supported
VA range. Execution at EL1 and EL0 supports two independent VA ranges, each with its own
translation controls.

AArch32 state

Supports 32-bit virtual addressing, with the Translation Control Register determining the supported
VA range. For execution at EL1 and EL0, system software can split the VA range into two
subranges, each with its own translation controls.

The supported PA space is IMPLEMENTATION DEFINED, and can be discovered by system software.

Regardless of the Execution state, the Virtual Memory System Architecture (VMSA) can translate VAs to blocks or
pages of memory anywhere within the supported PA space.

For more information, see:

For execution in AArch64 state

• Chapter B2 The AArch64 Application Level Memory Model.

• Chapter D4 The AArch64 System Level Memory Model.

• Chapter D5 The AArch64 Virtual Memory System Architecture.

For execution in AArch32 state

• Chapter E2 The AArch32 Application Level Memory Model.

• Chapter G4 The AArch32 System Level Memory Model.

• Chapter G5 The AArch32 Virtual Memory System Architecture.
A1-62 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter A2
Armv8-A Architecture Extensions

This chapter introduces the Arm architecture versions and extensions. It contains the following sections:

• Armv8.0 architecture extensions on page A2-64.

• Architectural features within Armv8.0 architecture on page A2-68.

• The Armv8 Cryptographic Extension on page A2-72.

• The Armv8.1 architecture extension on page A2-74.

• The Armv8.2 architecture extension on page A2-78.

• The Armv8.3 architecture extension on page A2-87.

• The Armv8.4 architecture extension on page A2-91.

• The Armv8.5 architecture extension on page A2-96.

• The Armv8.6 architecture extension on page A2-100.

• The Armv8.7 architecture extension on page A2-103.

• The Performance Monitors Extension on page A2-107.

• The Reliability, Availability, and Serviceability Extension on page A2-108.

• The Statistical Profiling Extension (SPE) on page A2-109.

• The Scalable Vector Extension (SVE) on page A2-110.

• The Activity Monitors Extension (AMU) on page A2-111.

• The Memory Partitioning and Monitoring (MPAM) Extension on page A2-112.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-63
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.1 Armv8.0 architecture extensions
A2.1 Armv8.0 architecture extensions

The original Armv8-A architecture is called Armv8.0. The following sections of this manual describe or summarize
permitted extensions to Armv8.0:

• The Armv8 Cryptographic Extension on page A2-72.

• The Reliability, Availability, and Serviceability Extension on page A2-108.

• Event monitors on page D1-2544.

• The IVIPT Extension on page D5-2837.

• Chapter H7 The PC Sample-based Profiling Extension.

Note

The naming convention of features in the Arm architecture has been redefined. For more information on how these
names map to the legacy convention, see Appendix K13 Legacy Feature Naming Convention.

In addition to describing Armv8.0, this manual describes the following architectural extensions:

Features added to Armv8.0 in later releases

Architectural features and architectural requirements have been added to the original Armv8-A
architecture. For more information, see:

• Additional functionality added to Armv8.0 in later releases on page A2-68.

• Architectural requirements within Armv8.0 architecture on page A2-71.

For more information, see Architectural features within Armv8.0 architecture on page A2-68.

The Armv8.1 architectural extension

The Armv8.1 architecture extension adds both:

• Architectural features. Some of these are mandatory, others are optional. Some features must
be implemented together.

• Architectural requirements. These are mandatory.

An implementation is Armv8.1 compliant if all of the following apply:

• It includes all of the Armv8.1 architectural features that are mandatory. This includes all
architectural features of an optional architecture component or extension that are defined as
mandatory, if the Armv8.1 compliant implementation includes the optional architecture
component or extension. See Architectural features added by Armv8.1 on page A2-74 for all
of the Armv8.1 architectural features.

• It includes all of the Armv8.1 architectural requirements. Additional requirements of Armv8.1
on page A2-76 lists these requirements.

For more information, see The Armv8.1 architecture extension on page A2-74.

The Armv8.2 architectural extension

The Armv8.2 architecture extension is an extension to Armv8.1. It adds both:

• Architectural features. Some of these are mandatory, others are optional. Some features must
be implemented together.

• Architectural requirements. These are mandatory.

An implementation is Armv8.2 compliant if all of the following apply:

• It is Armv8.1 compliant.

• It includes all of the Armv8.2 architectural features that are mandatory. This includes all
architectural features of an optional architecture component or extension that are defined as
mandatory, if the Armv8.2 compliant implementation includes the optional architecture
component or extension. The features are listed at:

— Architectural features added by Armv8.2 on page A2-78, which lists the original
Armv8.2 architectural features.
A2-64 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.1 Armv8.0 architecture extensions
— Features added to the Armv8.2 extension in later releases on page A2-84, which lists
additional Armv8.2 architectural features.

• It includes all of the Armv8.2 architectural requirements. Additional requirements of Armv8.2
on page A2-84 lists these requirements.

For more information, see The Armv8.2 architecture extension on page A2-78.

The Armv8.3 architectural extension

The Armv8.3 architecture extension is an extension to Armv8.2. It adds both:

• Architectural features. Some of these are mandatory, others are optional. Some features must
be implemented together.

• Architectural requirements. These are mandatory.

An implementation is Armv8.3 compliant if all of the following apply:

• It is Armv8.2 compliant.

• It includes all of the Armv8.3 architectural features that are mandatory. This includes all
architectural features of an optional architecture component or extension that are defined as
mandatory, if the Armv8.3 compliant implementation includes the optional architecture
component or extension. The features are listed at:

— Architectural features added by Armv8.3 on page A2-87, which lists the original
Armv8.3 architectural features.

— Features added to the Armv8.3 extension in later releases on page A2-89, which lists
additional Armv8.3 architectural features.

• It includes all of the Armv8.3 architectural requirements. Additional requirements of Armv8.3
on page A2-89 lists these requirements.

For more information, see The Armv8.3 architecture extension on page A2-87.

The Armv8.4 architectural extension

The Armv8.4 architecture extension is an extension to Armv8.3. It adds architectural features. Some
of these are mandatory, others are optional. Some features must be implemented together.

An implementation is Armv8.4 compliant if all of the following apply:

• It is Armv8.3 compliant.

• It includes all of the Armv8.4 architectural features that are mandatory. This includes all
architectural features of an optional architecture component or extension that are defined as
mandatory, if the Armv8.4 compliant implementation includes the optional architecture
component or extension. See Architectural features added by Armv8.4 on page A2-91 for all
of the Armv8.4 architectural features.

For more information, see The Armv8.4 architecture extension on page A2-91.

The Armv8.5 architectural extension

The Armv8.5 architecture extension is an extension to Armv8.4. It adds architectural features. Some
of these are mandatory, others are optional. Some features must be implemented together.

An implementation is Armv8.5 compliant if all of the following apply:

• It is Armv8.4 compliant.

• It includes all of the Armv8.5 architectural features that are mandatory. This includes all
architectural features of an optional architecture component or extension that are defined as
mandatory, if the Armv8.5 compliant implementation includes the optional architecture
component or extension. See Architectural features added by Armv8.5 on page A2-96 for all
of the Armv8.5 architectural features.

• It includes all of the Armv8.5 architectural requirements. Additional requirements of Armv8.5
on page A2-98 lists these requirements.

For more information, see The Armv8.5 architecture extension on page A2-96.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-65
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.1 Armv8.0 architecture extensions
The Armv8.6 architectural extension

The Armv8.6 architecture extension is an extension to Armv8.5. It adds architectural features. Some
of these are mandatory, others are optional. Some features must be implemented together.

An implementation is Armv8.6 compliant if all of the following apply:

• It is Armv8.5 compliant.

• It includes all of the Armv8.6 architectural features that are mandatory. This includes all
architectural features of an optional architecture component or extension that are defined as
mandatory, if the Armv8.6 compliant implementation includes the optional architecture
component or extension. See Architectural features added by Armv8.6 on page A2-100 for
all of the Armv8.6 architectural features.

• It includes all of the Armv8.6 architectural requirements. Additional requirements of Armv8.6
on page A2-101 lists these requirements.

For more information, see The Armv8.6 architecture extension on page A2-100.

The Armv8.7 architectural extension

The Armv8.7 architecture extension is an extension to Armv8.6. It adds architectural features. Some
of these are mandatory, others are optional. Some features must be implemented together.

An implementation is Armv8.7 compliant if all of the following apply:

• It is Armv8.6 compliant.

• It includes all of the Armv8.7 architectural features that are mandatory. This includes all
architectural features of an optional architecture component or extension that are defined as
mandatory, if the Armv8.7 compliant implementation includes the optional architecture
component or extension. See Architectural features added by Armv8.7 on page A2-103 for
all of the Armv8.7 architectural features.

• It includes all of the Armv8.7 architectural requirements. Additional requirements of Armv8.7
on page A2-106 lists these requirements.

For more information, see The Armv8.7 architecture extension on page A2-103.

The Statistical Profiling Extension (SPE)

SPE is an optional extension to Armv8.2. That is, SPE requires the implementation of Armv8.2.

For more information, see The Statistical Profiling Extension (SPE) on page A2-109.

The Scalable Vector Extension (SVE)

SVE is an optional extension to Armv8.2. That is, SVE requires the implementation of Armv8.2.

For more information, see The Scalable Vector Extension (SVE) on page A2-110.

The Activity Monitors Extension (AMU)

AMU is an optional extension to Armv8.4. That is, AMU requires the implementation of Armv8.4.

For more information, see The Activity Monitors Extension (AMU) on page A2-111.

The Memory Partitioning and Monitoring Extension (MPAM)

MPAM is an optional extension to Armv8.2. That is, MPAM requires the implementation of
Armv8.2.

For more information, see The Memory Partitioning and Monitoring (MPAM) Extension on
page A2-112.

See also Permitted implementation of subsets of Armv8.x and Armv8.(x+1) architectural features on page A2-66.

A2.1.1 Permitted implementation of subsets of Armv8.x and Armv8.(x+1) architectural features

An Armv8.x compliant implementation can include any arbitrary subset of the architectural features of
Armv8.(x+1), subject only to those constraints that require that certain features be implemented together.
A2-66 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.1 Armv8.0 architecture extensions
Unless this manual permits otherwise, an Armv8.x compliant implementation does not include any features of
Armv8.(x+2) or later.

Note

The addition of Armv8.(x+1) features to an Armv8.x compliant implementation is permitted only if the implementer
has a license to Armv8.(x+1) in addition to the license to Armv8.x.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-67
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.2 Architectural features within Armv8.0 architecture
A2.2 Architectural features within Armv8.0 architecture

This includes architectural features and architectural requirements that have been added to the Armv8.0 architecture
since the initial release, that were not part of the original Armv8-A architecture, see:

• Additional functionality added to Armv8.0 in later releases on page A2-68.

• Architectural requirements within Armv8.0 architecture on page A2-71.

A2.2.1 Additional functionality added to Armv8.0 in later releases

An implementation of Armv8.0 can include any or all of the features that this section describes.

The Armv8.0 architecture extension adds the following architectural features, which are identified by the
architectural feature name and a short description of the feature:

FEAT_SB, Speculation Barrier

FEAT_SB introduces a barrier to control speculation.

This instruction is supported in both AArch64 and AArch32 states.

This feature is OPTIONAL in Armv8.0 implementations and mandatory in Armv8.5 implementations.

The following fields identify the presence of FEAT_SB:

• ID_AA64ISAR1_EL1.SB.

• ID_ISAR6_EL1.SB.

• ID_ISAR6.SB.

For more information, see:

• Speculation Barrier (SB) on page B2-148.

• Barriers and CLREX instructions on page C3-219.

• Speculation Barrier (SB) on page E2-4301.

• Miscellaneous instructions on page F2-4393.

FEAT_SSBS, FEAT_SBSS2, Speculative Store Bypass Safe

FEAT_SSBS allows software to indicate whether hardware is permitted to load or store
speculatively in a manner that could give rise to a cache timing side channel, which in turn could be
used to derive an address from values loaded to a register from memory.

FEAT_SSBS2 provides controls for the MSR and MRS instructions to read and write the
PSTATE.SSBS field.

FEAT_SSBS is supported in both AArch64 and AArch32 states. FEAT_SSBS2 is supported in
AArch64 state only.

This feature is OPTIONAL in Armv8.0 implementations and mandatory in Armv8.5 implementations.

The following fields identify the presence of FEAT_SSBS and FEAT_SSBS2:

• ID_AA64PFR1_EL1.SSBS.

• ID_PFR2_EL1.SSBS.

• ID_PFR2.SSBS.

For more information, see:

• Speculative Store Bypass Safe (SSBS) on page B2-145.

• Speculative Store Bypass Safe (SSBS) on page E2-4298.

FEAT_CSV2 and FEAT_CSV2_2, Cache Speculation Variant 2

FEAT_CSV2 adds a mechanism to identify if hardware cannot disclose information about whether
branch targets trained in one hardware described context can control speculative execution in a
different hardware described context.

FEAT_CSV2_2 adds the SCXTNUM_ELx registers, which provide a number that can be used to
separate out different context numbers within their respective Exception levels for the purpose of
protecting against side-channels using branch prediction and similar resources.

FEAT_CSV2 is supported in both AArch64 and AArch32 states.
A2-68 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.2 Architectural features within Armv8.0 architecture
FEAT_CSV2_2 is supported in AArch64 state only.

FEAT_CSV2 is OPTIONAL in Armv8.0 implementations and mandatory in Armv8.5
implementations.

FEAT_CSV2_2 is OPTIONAL in Armv8.0 implementations.

The following fields identify the presence of FEAT_CSV2:

• ID_AA64PFR0_EL1.CSV2.

• ID_PFR0_EL1.CSV2.

• ID_PFR0.CSV2.

The ID_AA64PFR0_EL1.CSV2 field identifies the presence of FEAT_CSV2_2.

For more information, see:

• Restrictions on the effects of speculation on page B2-144.

• Restrictions on the effects of speculation on page E2-4297.

FEAT_CSV2_1p1 and FEAT_CSV2_1p2, Cache Speculation Variant 2

For each of these features, within a hardware-described context, branch targets trained for branches
situated at one address can control speculative execution of branches situated at different addresses
only in a hard-to-determine way.

FEAT_CSV2_1p1 does not support the SCXTNUM_ELx registers, and the contexts do not include
the SCXTNUM_ELx register contexts.

FEAT_CSV2_1p2 adds the SCXTNUM_ELx registers, but the contexts do not include the
SCXTNUM_ELx register contexts.

These features are supported in AArch64 state only.

These features are OPTIONAL in Armv8.0 implementations.

The ID_AA64PFR1_EL1.CSV2_frac field identifies the presence of FEAT_CSV2_1p1 and
FEAT_CSV2_1p2.

For more information, see:

• Restrictions on the effects of speculation on page B2-144.

• Restrictions on the effects of speculation on page E2-4297.

FEAT_CSV3, Cache Speculation Variant 3

FEAT_CSV3 adds a mechanism to identify if hardware cannot disclose information about whether
data loaded under speculation with a permission or domain fault can be used to form an address,
generate condition codes, or generate SVE predicate values, to be used by instructions newer than
the load in the speculative sequence.

This feature is supported in both AArch64 and AArch32 states.

This feature is OPTIONAL in Armv8.0 implementations and mandatory in Armv8.5 implementations.

This feature is mandatory when FEAT_E0PD is implemented.

The following fields identify the presence of FEAT_CSV3:

• ID_AA64PFR0_EL1.CSV3.

• ID_PFR2_EL1.CSV3.

• ID_PFR2.CSV3.

FEAT_SPECRES, Speculation restriction instructions

FEAT_SPECRES adds the CFP RCTX, CPP RCTX, DVP RCTX, CFPRCTX, CPPRCTX, and
DVPRCTX System instructions. These instructions prevent predictions based on information
gathered from earlier execution within a particular execution context from affecting the later
speculative execution within that context, to the extent that the speculative execution is observable
through side channels.

This feature is supported in both AArch64 and AArch32 states.

This feature is OPTIONAL in Armv8.0 implementations and mandatory in Armv8.5 implementations.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-69
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.2 Architectural features within Armv8.0 architecture
The following fields identify the presence of FEAT_SPECRES:

• ID_AA64ISAR1_EL1.SPECRES.

• ID_ISAR6_EL1.SPECRES.

• ID_ISAR6.SPECRES.

For more information, see:

• Prediction restriction instructions on page C5-400.

• Execution and data prediction restriction System instructions on page D4-2663.

• Execution and data prediction restriction System instructions on page G4-6251.

FEAT_CP15SDISABLE2, CP15SDISABLE2

FEAT_CP15SDISABLE2 provides an implementation-defined mechanism, the CP15SDISABLE2
signal, which when asserted HIGH prevents writes to a set of Secure CP15 registers. This signal is
analogous to the existing CP15SDISABLE signal.

This feature is supported only when EL3 is executing in AArch32 state.

This feature is OPTIONAL in Armv8.0 implementations.

For more information, see The CP15SDISABLE and CP15SDISABLE2 input signals on
page G5-6400.

FEAT_DoubleLock, Double Lock

FEAT_DoubleLock is the mnemonic used for the OS Double Lock.

If FEAT_DoPD is not implemented and FEAT_Debugv8p2 is implemented, this feature is
OPTIONAL.

If FEAT_DoPD is not implemented and FEAT_Debugv8p2 is not implemented, this feature is
mandatory.

If FEAT_DoPD is implemented, this feature is not implemented.

The ID_AA64DFR0_EL1.DoubleLock field identifies that the OS Double Lock has been
implemented.

FEAT_DGH, Data Gathering Hint

FEAT_DGH adds the Data Gathering Hint instruction to the hint space.

This instruction is added to the A64 instruction set only.

This feature is OPTIONAL in Armv8.0 implementations.

The ID_AA64ISAR1_EL1.DGH field identifies the presence of FEAT_DGH.

For more information, see Hint instructions on page C3-219.

FEAT_ETS, Enhanced Translation Synchronization

FEAT_ETS adds support for enhanced memory access ordering requirements for translation table
walks.

This feature is supported in both AArch64 and AArch32 states.

This feature is OPTIONAL in Armv8.0 implementations and mandatory in Armv8.7 implementations.

The following fields identify the presence of FEAT_ETS:

• ID_AA64MMFR1_EL1.ETS.

• ID_MMFR5_EL1.ETS.

• ID_MMFR5.ETS.

For more information, see:

• Ordering of memory accesses from translation table walks on page D5-2707.

• Ordering of translation table walks on page E2-4306.
A2-70 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.2 Architectural features within Armv8.0 architecture
FEAT_nTLBPA, Intermediate caching of translation table walks

FEAT_nTLBPA adds a mechanism to identify if the intermediate caching of translation table walks
does not include non-coherent caches of previous valid translation table entries since the last
completed TLBI applicable to the PE.

This feature is supported in both AArch64 and AArch32 states.

This feature is OPTIONAL in Armv8.0 implementations.

The following fields identify the presence of FEAT_nTLBPA:

• ID_AA64MMFR1_EL1.nTLBPA.

• ID_MMFR5_EL1.nTLBPA.

• ID_MMFR5.nTLBPA.

For more information, see:

• General TLB maintenance requirements on page D5-2816.

• General TLB maintenance requirements on page G5-6336.

FEAT_PCSRv8, PC Sample-based Profiling Extension

FEAT_PCSRv8 adds support for PC Sample-based Profiling Extension that provides
coarse-grained, non-invasive profiling by an external debugger.

This feature is OPTIONAL in Armv8.0 implementations.

The following fields identify the presence of FEAT_PCSRv8:

• EDDEVID.PCSample.

• DBGDEVID.PCSample.

• EDDEVID1.PCSROffset.

• DBGDEVID1.PCSROffset.

• PMDEVID.PCSample.

For more information, see About the PC Sample-based Profiling Extension on page H7-7456.

A2.2.2 Architectural requirements within Armv8.0 architecture

The Armv8.0 architecture includes some mandatory changes, that have been added to the architecture at a later date,
that are not associated with a feature. These are:

Prefetch speculation protection

When substituting a direct branch with another direct branch, or a NOP with a direct branch, by the
modified PE, at around the time that the executing PE is executing the software being modified,
prefetch speculation protection prevents the old instructions from accidentally being fetched to the
executing PE. For further information on implementation of these requirements, see:

• Ordering of instruction fetches on page B2-143.

• Ordering of instruction fetches on page E2-4297.

An implementation of the Armv8.0 architecture must comply with all of the additional requirements. When
combined with the mandatory architectural features that have been added to the Armv8.0 architecture, such an
implementation is also called an implementation of the Armv8.0 architecture.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-71
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.3 The Armv8 Cryptographic Extension
A2.3 The Armv8 Cryptographic Extension

The Armv8.0 Cryptographic Extension provides instructions for the acceleration of encryption and decryption, and
includes the following features:

• FEAT_AES, which includes the AESD and AESE instructions.

• FEAT_PMULL, which includes the PMULL, PMULL2 instructions.

• FEAT_SHA1, which includes the SHA1* instructions.

• FEAT_SHA256, which includes the SHA256* instructions.

From Armv8.2, an implementation of the Armv8.0 Cryptographic Extension can include either or both of:

• The AES functionality, including support for multiplication of 64-bit polynomials. The
ID_AA64ISAR0_EL1.AES field indicates whether this functionality is supported.

• The SHA1 and SHA2-256 functionality. The ID_AA64ISAR0_EL1.{SHA2, SHA1} fields indicate whether
this functionality is supported.

The presence of the Cryptographic Extension in an implementation is subject to export license controls. The
Cryptographic Extension is an extension of the SIMD support and operates on the vector register file.

The Cryptographic Extension also provides multiply instructions that operate on long polynomials.

The Cryptographic Extension provides this functionality in AArch64 state and AArch32 state, and an
implementation that supports both AArch64 state and AArch32 state provides the same Cryptographic Extension
functionality in both states.

For more information, see The Cryptographic Extension on page C3-278 or The Cryptographic Extension in
AArch32 state on page F2-4410.

A2.3.1 Armv8.2 extensions to the Cryptographic Extension

Armv8.2 adds optional extensions to the Armv8 Cryptographic Extension, that provide cryptographic functionality
in AArch64 state only. These optional features are:

FEAT_SHA512, Advanced SIMD SHA512 instructions

FEAT_SHA512 adds Advanced SIMD instructions that support SHA2-512 functionality.

These instructions are added to the A64 instruction set only.

Implementation of FEAT_SHA512 requires implementation of the Armv8.0 Cryptographic
Extension FEAT_SHA1 and FEAT_SHA256 functionality.

The ID_AA64ISAR0_EL1.SHA2 field identifies the presence of FEAT_SHA512.

For more information, see FEAT_SHA512, SHA2-512 functionality on page C3-279.

FEAT_SHA3, Advanced SIMD SHA3 instructions

FEAT_SHA3 adds Advanced SIMD instructions that support SHA3 functionality.

These instructions are added to the A64 instruction set only.

Implementation of FEAT_SHA3 requires implementation of the Armv8.0 Cryptographic Extension
FEAT_SHA1 and FEAT_SHA256 functionality.

The ID_AA64ISAR0_EL1.SHA3 field identifies the presence of FEAT_SHA3.

For more information, see FEAT_SHA3, SHA3 functionality on page C3-279.

FEAT_SM3, Advanced SIMD SM3 instructions

FEAT_SM3 adds Advanced SIMD instructions that support the Chinese cryptography algorithm
SM3.

These instructions are added to the A64 instruction set only.

Implementation of FEAT_SM3 is independent of the implementation of any SHA functionality.

The ID_AA64ISAR0_EL1.SM3 field identifies the presence of FEAT_SM3.
A2-72 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.3 The Armv8 Cryptographic Extension
For more information, see FEAT_SM3, SM3 functionality on page C3-280.

FEAT_SM4, Advanced SIMD SM4 instructions

FEAT_SM4 adds Advanced SIMD instructions that support the Chinese cryptography algorithm
SM4.

Implementation of FEAT_SM4 is independent of the implementation of any SHA functionality.

These instructions are added to the A64 instruction set only.

The ID_AA64ISAR0_EL1.SM4 field identifies the presence of FEAT_SM4.

For more information, see FEAT_SM4, SM4 functionality on page C3-281.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-73
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.4 The Armv8.1 architecture extension
A2.4 The Armv8.1 architecture extension

The Armv8.1 architecture extension adds both architectural features and architectural requirements, see:

• Architectural features added by Armv8.1 on page A2-74.

• Additional requirements of Armv8.1 on page A2-76.

• Features added to the Armv8.1 extension in later releases on page A2-77.

• Features made optional in Armv8.1 implementations on page A2-77.

A2.4.1 Architectural features added by Armv8.1

An implementation of the Armv8.1 extension must include all of the features that this section describes as
mandatory. Such an implementation, when combined with the additional requirements of Armv8.1, is also called an
implementation of the Armv8.1 architecture.

The Armv8.1 architecture extension adds the following architectural features, which are identified by the
architectural feature name and a short description of the feature:

FEAT_LSE, Large System Extensions

FEAT_LSE introduces a set of atomic instructions:

• Compare and Swap instructions, CAS and CASP.

• Atomic memory operation instructions, LD<OP> and ST<OP>, where <OP> is one of ADD, CLR, EOR,
SET, SMAX, SMIN, UMAX, and UMIN.

• Swap instruction, SWP.

These instructions are added only to the A64 instruction set.

This feature is mandatory in Armv8.1 implementations.

Implementations of FEAT_VHE require the implementation of FEAT_LSE.

The ID_AA64ISAR0_EL1.Atomic field identifies the presence of FEAT_LSE.

For more information, see:

• Atomic memory operations on page C3-236.

• Swap on page C3-239.

• Compare and Swap on page C3-239.

FEAT_RDM, Advanced SIMD rounding double multiply accumulate instructions

FEAT_RDM introduces Rounding Double Multiply Add/Subtract Advanced SIMD instructions.
For more information, see:

For the A64 instruction set

• SQRDMLAH (by element) on page C7-2181.

• SQRDMLAH (vector) on page C7-2184.

• SQRDMLSH (by element) on page C7-2187.

• SQRDMLSH (vector) on page C7-2190.

For the T32 and A32 instruction sets

• VQRDMLAH on page F6-5776.

• VQRDMLSH on page F6-5780.

This feature is mandatory in Armv8.1 implementations.

The following fields identify the presence of FEAT_RDM:

• ID_AA64ISAR0_EL1.RDM.

• ID_ISAR5_EL1.RDM.

• ID_ISAR5.RDM.
A2-74 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.4 The Armv8.1 architecture extension
FEAT_LOR, Limited ordering regions

Limited ordering regions allow large systems to perform special Load-Acquire and Store-Release
instructions that provide order between the memory accesses to a region of the PA map as observed
by a limited set of observers.

This feature is supported in AArch64 state only.

This feature is mandatory in Armv8.1 implementations.

The ID_AA64MMFR1_EL1.LO field identifies the presence of FEAT_LOR.

For more information, see:

• Limited ordering regions on page B2-154.

FEAT_HPDS, Hierarchical permission disables

FEAT_HPDS introduces the facility to disable the hierarchical attributes, APTable, PXNTable, and
UXNTable, in the translation tables. This disable has no effect on the NSTable bit.

This feature is mandatory in Armv8.1 implementations.

This feature is added only to the VMSAv8-64 translation regimes. Armv8.2 extends this to the
AArch32 translation regimes, see FEAT_AA32HPD.

The ID_AA64MMFR1_EL1.HPDS field identifies the presence of FEAT_HPDS.

FEAT_HAFDBS, Hardware management of the Access flag and dirty state

In Armv8.0, all updates to the translation tables are performed by software. From Armv8.1, for the
VMSAv8-64 translation regimes only, hardware can perform updates to the translation tables in two
contexts:

• Hardware management of the Access flag.

• Hardware management of dirty state, with updates to a dirty state in the translation tables.

The dirty state is introduced in Armv8.1.

Hardware management of dirty state can only be enabled when hardware management of the Access
flag is also enabled.

This feature is OPTIONAL in Armv8.1 implementations. It is IMPLEMENTATION DEFINED whether this
is implemented.

The ID_AA64MMFR1_EL1.HAFDBS field identifies the presence of FEAT_HAFDBS.

For more information, see:

• The dirty state on page D5-2766.

• Hardware management of the Access flag and dirty state on page D5-2767.

FEAT_PAN, Privileged access never

FEAT_PAN adds a bit to PSTATE. When the value of this PAN state bit is 1, any privileged data
access from EL1, or EL2 when HCR_EL2.E2H is 1, to a virtual memory address that is accessible
to data accesses at EL0, generates a Permission fault.

This feature is mandatory in Armv8.1 implementations.

This feature is supported in both AArch64 and AArch32 states.

The following fields identify the presence of FEAT_PAN:

• ID_AA64MMFR1_EL1.PAN.

• ID_MMFR3_EL1.PAN.

• ID_MMFR3.PAN.

For more information, see:

• About PSTATE.PAN on page D5-2755.

• About the PAN bit on page G5-6311.

FEAT_VMID16, 16-bit VMID

In an Armv8.1 implementation, when EL2 is using AArch64, the virtual machine identifier (VMID)
size is an IMPLEMENTATION DEFINED choice of 8 bits or 16 bits.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-75
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.4 The Armv8.1 architecture extension
This feature is OPTIONAL in Armv8.1 implementations.

When implemented, this feature is supported only when EL2 is using AArch64.

The ID_AA64MMFR1_EL1.VMIDBits field identifies the supported VMID size.

For more information, see:

• VMID size on page D5-2812.

FEAT_VHE, Virtualization Host Extensions

Armv8.1 introduces the Virtualization Host Extensions (VHE) that provide enhanced support for
Type 2 hypervisors in Non-secure state.

This feature is mandatory in Armv8.1 implementations.

An implementation that includes FEAT_VHE requires FEAT_LSE to be implemented.

The ID_AA64MMFR1_EL1.VH field identifies the presence of FEAT_VHE.

The following fields indicate the presence of the Virtualization Host Extensions for debug,
including the changes for the PC Sample-based Profiling Extension and the Performance Monitors
Extension:

• ID_AA64DFR0_EL1.DebugVer.

• ID_DFR0_EL1.{CopSDbg, CopDbg}.

For more information, see:

• Virtualization Host Extensions on page D5-2787.

FEAT_PMUv3p1, PMU Extensions v3.1

Armv8.1 makes the following enhancements to the Performance Monitors Extension:

• The event number space is extended to 16 bits to allow additional IMPLEMENTATION DEFINED
event types, and the reserved space for future additions to the architecturally-defined event
types is extended.

• The HPMD bit is added to MDCR_EL2. This bit disables event counting at EL2.

• The STALL_FRONTEND and STALL_BACKEND events are required to be implemented.
For more information, see Required events on page D7-2937.

The Performance Monitors Extension is an OPTIONAL feature, but if it is implemented, an Arm8.1
implementation must include FEAT_PMUv3p1.

The following fields identify the presence of FEAT_PMUv3p1:

• ID_AA64DFR0_EL1.PMUVer.

• ID_DFR0_EL1.PerfMon.

• ID_DFR0.PerfMon.

A2.4.2 Additional requirements of Armv8.1

The Armv8.1 architecture includes some mandatory changes that are not associated with a feature. These are:

Changes to CRC32 instructions

All implementations of the Armv8.1 architecture are required to implement the CRC32* instructions.
These are OPTIONAL in Armv8.0.

The following fields identify the presence of the CRC32* instructions:

• ID_AA64ISAR0_EL1.CRC32.

• ID_ISAR5_EL1.CRC32.

• ID_ISAR5.CRC32.

An implementation of the Armv8.1 extension must comply with all of the additional requirements. Such an
implementation, when combined with the mandatory architectural features of Armv8.1, is also called an
implementation of the Armv8.1 architecture.
A2-76 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.4 The Armv8.1 architecture extension
A2.4.3 Features added to the Armv8.1 extension in later releases

FEAT_PAN3, Support for SCTLR_ELx.EPAN

FEAT_PAN3 adds a bit to SCTLR_EL1 and SCTLR_EL2, EPAN, to support using Privileged
Access Never with instruction accesses for stage 1 translation regimes.

This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.1 implementations and mandatory in Armv8.7 implementations.

The ID_AA64MMFR1_EL1.PAN field identifies the presence of FEAT_PAN3.

For more information, see About PSTATE.PAN on page D5-2755.

A2.4.4 Features made OPTIONAL in Armv8.1 implementations

The feature that has been made OPTIONAL in Armv8.1 implementations is FEAT_PAN2 on page A2-78.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-77
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.5 The Armv8.2 architecture extension
A2.5 The Armv8.2 architecture extension

The Armv8.2 architecture extension adds both architectural features and architectural requirements, see:

• Architectural features added by Armv8.2 on page A2-78.

• Additional requirements of Armv8.2 on page A2-84.

• Features added to the Armv8.2 extension in later releases on page A2-84.

• Features made optional in Armv8.2 implementations on page A2-86.

The Armv8.2 architecture extension also adds functionality to the Cryptographic Extension, see Armv8.2 extensions
to the Cryptographic Extension on page A2-72.

A2.5.1 Architectural features added by Armv8.2

An implementation of the Armv8.2 extension must include all of the features that this section describes as
mandatory. Such an implementation, when combined with the additional requirements of Armv8.2, is also called an
implementation of the Armv8.2 architecture.

The Armv8.2 architecture extension adds the following architectural features, which are identified by the
architectural feature name and a short description of the feature:

FEAT_ASMv8p2, Armv8.2 changes to the A64 ISA

FEAT_ASMv8p2 adds the BFC instruction to the A64 instruction set as an alias of BFM. It also requires
that the BFC instruction and the A64 pseudo-instruction REV64 are implemented by assemblers.

Note

• In Armv8.0 and Armv8.1, the A64 pseudo-instruction REV64 is OPTIONAL.

• Because this feature relates to support for an instruction alias and for a pseudo-instruction,
there are no corresponding feature ID register fields.

This change to the instruction set and assembler requirements is mandatory in an Armv8.2
implementation.

For more information, see:

• BFC on page C6-922.

• REV64 on page C6-1290.

FEAT_PAN2, AT S1E1R and AT S1E1W instruction variants affected by PSTATE.PAN

FEAT_PAN2 adds variants of the AArch64 AT S1E1R and AT S1E1W instructions and the AArch32
ATS1CPR and ATS1CPW instructions. These instructions factor in the PSTATE.PAN bit when
determining whether or not the location will generate a Permission fault for a privileged access, as
is reported in the PAR. For more information, see:

For the AArch64 System instructions

• AT S1E1RP, Address Translate Stage 1 EL1 Read PAN on page C5-582.

• AT S1E1WP, Address Translate Stage 1 EL1 Write PAN on page C5-586.

For the AArch32 System instructions

• ATS1CPRP, Address Translate Stage 1 Current state PL1 Read PAN on
page G8-6477.

• ATS1CPWP, Address Translate Stage 1 Current state PL1 Write PAN on
page G8-6479.

This feature is OPTIONAL in Armv8.1 implementations and mandatory in Armv8.2 implementations.

These instructions are added to the A64 and A32/T32 instruction sets.

The following fields identify the presence of FEAT_PAN2:

• ID_AA64MMFR1_EL1.PAN.

• ID_MMFR3_EL1.PAN.

• ID_MMFR3.PAN.
A2-78 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.5 The Armv8.2 architecture extension
For more information, see:

• Address translation instructions on page D5-2735.

• ATS1C**, Address translation stage 1, current security state on page G5-6387.

• Encoding and availability of the address translation instructions on page G5-6388.

FEAT_FP16, Half-precision floating-point data processing

FEAT_FP16 supports:

• Half-precision data-processing instructions for Advanced SIMD and floating-point in both
AArch64 and AArch32 states.

• The FPCR.FZ16 and FPSCR.FZ16 bits, which enables flushing of denormalized numbers to
zero for half-precision data-processing instructions.

This feature is OPTIONAL in Armv8.2 implementations, unless one of the following is implemented:

• The Scalable Vector Extension (SVE).

• FEAT_FHM.

If SVE or FEAT_FHM is implemented, FEAT_FP16 is implemented. From Armv8.4, if
FEAT_FHM is not implemented, FEAT_FP16 is not implemented.

When this feature is implemented it is implemented in both Advanced SIMD and floating-point, and
in AArch64 and AArch32 states.

The following fields identify the presence of FEAT_FP16:

• ID_AA64PFR0_EL1.{FP, AdvSIMD}.

• MVFR1_EL1.{FPHP, SIMDHP}.

• MVFR1.{FPHP, SIMDHP}.

For more information, see:

• Half-precision floating-point formats on page A1-44.

• Flushing denormalized numbers to zero on page A1-54.

• Modified immediate constants in A64 instructions on page C2-212.

FEAT_DotProd, Advanced SIMD dot product instructions

FEAT_DotProd provides instructions to perform the dot product of two 32-bit vectors,
accumulating the result in a third 32-bit vector. This can be performed using signed or unsigned
arithmetic.

This feature is OPTIONAL in Armv8.2 implementations and mandatory in Armv8.4 implementations.

These instructions are added to the A64 and A32/T32 instruction sets.

The following fields identify the presence of FEAT_DotProd:

• ID_AA64ISAR0_EL1.DP.

• ID_ISAR6_EL1.DP.

• ID_ISAR6.DP.

For more information, see:

• SIMD dot product on page C3-275.

• Advanced SIMD dot product instructions on page F2-4407.

FEAT_FHM, Floating-point half-precision multiplication instructions

FEAT_FHM adds floating-point multiplication instructions.

These instructions are added to the A64 and A32/T32 instruction sets.

This feature is OPTIONAL in Armv8.2 implementations, and can only be implemented when
FEAT_FP16 is implemented. This feature is mandatory in Armv8.4 implementations when
FEAT_FP16 is implemented. This feature is not implemented in Armv8.4 implementations when
FEAT_FP16 is not implemented.

The following fields identify the presence of FEAT_FHM:

• ID_AA64ISAR0_EL1.FHM.

• ID_ISAR6_EL1.FHM.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-79
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.5 The Armv8.2 architecture extension
• ID_ISAR6.FHM.

For more information, see:

• SIMD arithmetic on page C3-262.

• SIMD by element arithmetic on page C3-270.

• Advanced SIMD multiply instructions on page F2-4406.

FEAT_LSMAOC, AArch32 Load/Store Multiple instruction atomicity and ordering controls

FEAT_LSMAOC adds controls that disable legacy behavior of AArch32 load multiple and store
multiple instructions, and provide a trap of one aspect of this legacy behavior.

Implementation of FEAT_LSMAOC is OPTIONAL. When implemented it provides:

• LSMAOE fields in the SCTLR_EL1, SCTLR_EL2, HSCTLR, and SCTLR registers. These
fields can have the following effects on the behavior of AArch32 load multiple and store
multiple instructions:

— An interrupt can be taken between two memory accesses made by a single load
multiple or store multiple instruction.

— The memory accesses made by a single load multiple or store multiple instruction to
Device memory with the non-Reordering attribute can be reordered.

• nTLSMD fields in the SCTLR_EL1, SCTLR_EL2, HSCTLR, and SCTLR registers. These
fields can cause an access to Device-nGRE, Device-nGnRE, or Device-nGnRnE memory by
an AArch32 load multiple and store multiple instruction to generate an Alignment fault.

Note

Armv8.2 deprecates software dependence on the legacy behavior of AArch32 load multiple and
store multiple instructions, and these fields disable this behavior.

The following fields identify the presence of FEAT_LSMAOC:

• ID_AA64MMFR2_EL1.LSM.

• ID_MMFR4_EL1.LSM.

• ID_MMFR4.LSM.

For more information, see the register field descriptions and:

• Generation of Alignment faults by load/store multiple accesses to Device memory on
page E2-4313.

• Multi-register loads and stores that access Device memory on page E2-4326.

• Taking an interrupt or other exception during a multiple-register load or store on
page G1-6077.

FEAT_UAO, Unprivileged Access Override control

Armv8.2 adds a bit to PSTATE. When the value of PSTATE.UAO is 1, and when executed at EL1
or at EL2 with HCR_EL2.{E2H, TGE} == {1, 1}, the memory accesses made by the load/store
unprivileged instructions behave as if they were made by the load/store register instructions. See
Load/store unprivileged on page C3-228 and Load/store register on page C3-224.

This feature is mandatory in Armv8.2 implementations.

This feature is supported in AArch64 state only.

The ID_AA64MMFR2_EL1.UAO field identifies the presence of FEAT_UAO.

For more information, see About PSTATE.UAO on page D5-2756.

FEAT_DPB, DC CVAP instruction

FEAT_DPB introduces a mechanism to identify and manage persistent memory locations in a
shared memory hierarchy, including adding the DC CVAP instruction.

This feature is mandatory in Armv8.2 implementations.

This feature is supported in AArch64 state only.

The ID_AA64ISAR1_EL1.DPB field identifies the presence of FEAT_DPB.
A2-80 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.5 The Armv8.2 architecture extension
For more information about FEAT_DPB, see Memory hierarchy on page B2-155.

FEAT_VPIPT, VMID-aware PIPT instruction cache

FEAT_VPIPT supports a instruction cache type, described as the VMID-aware PIPT (VPIPT)
instruction cache.

Note

Armv8.2 adds VPIPT to the set of supported cache types, meaning an Armv8.2 implementation is
permitted to implement VPIPT caches, but is not required to do so.

This feature is supported in both AArch64 and AArch32 states.

The CTR_EL0.L1Ip and CTR.L1Ip fields identify the presence of FEAT_VPIPT.

For more information, see:

• VPIPT (VMID-aware PIPT) instruction caches on page D5-2836.

• VPIPT (VMID-aware PIPT) instruction caches on page G5-6352.

FEAT_AA32HPD, AArch32 hierarchical permission disables

FEAT_HPDS introduced the ability to disable the hierarchical attributes, APTable, PXNTable, and
UXNTable, in the VMSAv8-64 translation regimes. FEAT_AA32HPD extends this functionality to
the VMSAv8-32 translation regimes when those regimes are using the Long descriptor Translation
Table format.

This feature is OPTIONAL in Armv8.2 implementations. It is IMPLEMENTATION DEFINED whether this
is implemented.

The ID_MMFR4_EL1.HPDS and ID_MMFR4.HPDS fields identify the presence of
FEAT_AA32HPD.

For more information, see Attribute fields in VMSAv8-32 Long-descriptor translation table format
descriptors on page G5-6292.

FEAT_HPDS2, Translation table page-based hardware attributes

Armv8.2 provides a mechanism to allow operating systems or hypervisors to make up to four bits
of Translation Table final-level descriptors available for IMPLEMENTATION DEFINED hardware use.

This functionality is available for all translation regimes in AArch64 state and for stages of
translation in AArch32 state that use the Long descriptor Translation Table format.

FEAT_HPDS2 is OPTIONAL in Armv8.2 implementations, but implementation of FEAT_HPDS2
requires implementation of both:

• FEAT_HPDS.

• FEAT_AA32HPD, if any Exception level higher than EL0 can use AArch32.

Note

For stage 1 translations, page-based hardware attributes can only be used for a stage of translation
for which the Hierarchical permission disables field has a value of 1.

The following fields identify the presence of FEAT_HPDS2:

• ID_AA64MMFR1_EL1.HPDS.

• ID_MMFR4_EL1.HPDS.

• ID_MMFR4.HPDS.

For more information, see:

• Memory attribute fields in the VMSAv8-64 Translation Table format descriptors on
page D5-2746.

• Attribute fields in VMSAv8-32 Long-descriptor translation table format descriptors on
page G5-6292.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-81
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.5 The Armv8.2 architecture extension
FEAT_LPA, Large PA and IPA support

FEAT_LPA:

• Allows a larger intermediate physical address (IPA) and PA space of up to 52 bits when using
the 64KB translation granule.

• Allows a level 1 block size where the block covers a 4TB address range for the 64KB
translation granule if the implementation support 52 bits of PA.

This is an OPTIONAL feature in Armv8.2 implementations. It is IMPLEMENTATION DEFINED whether
it is implemented.

This feature is supported in AArch64 state only.

The ID_AA64MMFR0_EL1.PARange field identifies the presence of FEAT_LPA.

For more information about FEAT_LPA, see:

• VMSA address types and address spaces on page D5-2675.

• Address size configuration on page D5-2689.

• Extending addressing above 48 bits when using the 64KB translation granule on
page D5-2695.

• VMSAv8-64 translation table level -1, level 0, level 1, and level 2 descriptor formats on
page D5-2739.

• Armv8 translation table level 3 descriptor formats on page D5-2744.

FEAT_LVA, Large VA support

FEAT_LVA supports a larger VA space for each translation table base register of up to 52 bits when
using the 64KB translation granule.

This feature is supported in AArch64 state only.

This is an OPTIONAL feature in Armv8.2 implementations. It is IMPLEMENTATION DEFINED whether
it is implemented.

If FEAT_LVA is implemented, then any implemented trace macrocell must be at least ETMv4.2.

The ID_AA64MMFR2_EL1.VARange field identifies the presence of FEAT_LVA.

For more information about FEAT_LVA, see:

• VMSA address types and address spaces on page D5-2675.

• Address size configuration on page D5-2689.

• Extending addressing above 48 bits when using the 64KB translation granule on
page D5-2695.

• VMSAv8-64 translation table level -1, level 0, level 1, and level 2 descriptor formats on
page D5-2739.

• Armv8 translation table level 3 descriptor formats on page D5-2744.

FEAT_TTCNP, Translation table Common not private translations

FEAT_TTCNP permits multiple PEs in the same Inner Shareable domain to use the same translation
tables for a given stage of address translation.

This feature is mandatory in Armv8.2 implementations.

This facility is available for all VMSAv8-64 translation regimes and for VMSAv8-32 translation
stages that use the Long descriptor Translation Table format.

The following fields identify the presence of FEAT_TTCNP:

• ID_AA64MMFR2_EL1.CnP.

• ID_MMFR4_EL1.CnP.

• ID_MMFR4.CnP.

For more information, see:

• Common not private translations on page D5-2811.

• Common not private translations in VMSAv8-32 on page G5-6341.
A2-82 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.5 The Armv8.2 architecture extension
FEAT_XNX, Translation table stage 2 Unprivileged Execute-never

FEAT_XNX extends the stage 2 translation table access permissions to provide control of whether
memory is executable at EL0 independent of whether it is executable at EL1.

This feature is mandatory in Armv8.2 implementations that implement EL2.

This facility is available for stage 2 translation stages in VMSAv8-64 and VMSAv8-32.

The following fields identify the presence of FEAT_XNX:

• ID_AA64MMFR1_EL1.XNX.

• ID_MMFR4_EL1.XNX.

• ID_MMFR4.XNX.

For more information, see:

• Access permissions for instruction execution on page D5-2760.

• Access permissions for instruction execution on page G5-6312.

FEAT_Debugv8p2, Debug v8.2

FEAT_Debugv8p2 covers a selection of mandatory changes, including:

• If the Core power domain is powered up and DoubleLockStatus() == TRUE,
EDPRSR.{DLK,SPD,PU} is only permitted to read {UNKNOWN, 0, 0}.

• The definition of Exception Catch debug events is extended to include reset entry.

• All CONSTRAINED UNPREDICTABLE cases that generate Exception Catch debug events are
removed.

• Controls are added to EDECCR to control Exception Catch debug event generation on
exception return.

• All IMPLEMENTATION DEFINED control of external debug accesses to OSLAR_EL1 is
removed.

• ExternalSecureNoninvasiveDebugEnabled() cannot override software controls of counting
attributable events in Secure state.

If FEAT_Debugv8p2 is implemented, FEAT_DoubleLock is OPTIONAL.

The fields that identify the presence of FEAT_Debugv8p2 are:

• ID_AA64DFR0_EL1.DebugVer and DBGDIDR.Version.

• ID_DFR0_EL1.{CopSDbg, CopDbg} and ID_DFR0.{CopSDbg, CopDbg}.

• EDDEVARCH.ARCHID.

For more information, see:

• Exception Catch debug event on page H3-7391.

• EDPRSR.{DLK, SPD, PU} and the Core power domain on page H6-7446.

• Interaction with EL3 on page D7-2851.

• External access disabled on page H8-7468.

FEAT_PCSRv8p2, PC Sample-based profiling

In Armv8.2, the control and implementation of the OPTIONAL PC Sample-based Profiling extension
is moved from ED*SR Debug registers to PM*SR registers in the Performance Monitors address
space. See Chapter H7 The PC Sample-based Profiling Extension.

The PC Sample-based Profiling Extension is an OPTIONAL feature. If it is implemented, an Arm8.2
implementation must also include FEAT_PCSRv8p2.

If Secure EL2 and PC Sample-based Profiling are both implemented, FEAT_PCSRv8p2 is
mandatory.

The following fields identify the presence of FEAT_PCSRv8p2:

• EDDEVID.PCSample.

• DBGDEVID.PCSample.

• EDDEVID1.PCSROffset.

• DBGDEVID1.PCSROffset.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-83
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.5 The Armv8.2 architecture extension
• PMDEVID.PCSample.

FEAT_IESB, Implicit Error Synchronization event

FEAT_IESB adds an implicit error synchronization event at exception entry and return, controlled
by the added SCTLR_ELx.IESB fields. An IESB field is added to the ESR_ELx syndrome registers.

The implicit error synchronization events affect the same synchronizable asynchronous events that
are synchronized by the ESB instruction, see The Reliability, Availability, and Serviceability
Extension on page A2-108.

This feature is OPTIONAL in Armv8.2 implementations.

This feature is supported in AArch64 state only.

The ID_AA64MMFR2_EL1.IESB field identifies the presence of FEAT_IESB.

For more information, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
ARMv8, for the ARMv8-A architecture profile.

Extensions to the Arm Cryptographic Extensions

See the description of the FEAT_SHA512 and FEAT_SM3 features in Armv8.2 extensions to the
Cryptographic Extension on page A2-72.

A2.5.2 Additional requirements of Armv8.2

The Armv8.2 architecture includes some mandatory changes that are not associated with a feature. These are:

Change to ACTLR2 and HCTLR2 registers

In AArch32 state, the ACTLR2 and HACTLR2 registers become mandatory.

Implementation of RAS Extension

The RAS Extension must be implemented, see The Reliability, Availability, and Serviceability
Extension on page A2-108.

An implementation of the Armv8.2 extension must comply with all of the additional requirements. Such an
implementation, when combined with the mandatory architectural features of Armv8.2, is also called an
implementation of the Armv8.2 architecture.

If FEAT_PMUv3 is implemented, the feature FEAT_PMUv3p4 is OPTIONAL in Armv8.2 implementations.

A2.5.3 Features added to the Armv8.2 extension in later releases

FEAT_EVT, Enhanced Virtualization Traps

FEAT_EVT introduces additional traps for EL1 and EL0 Cache controls. These traps are
independent of existing controls.

This feature is supported in both AArch64 and AArch32 states.

This feature is OPTIONAL in Armv8.2 implementations and is mandatory in Armv8.5.

ID_AA64MMFR2_EL1.EVT identifies the presence of the AArch64 traps controls.

ID_MMFR4_EL1.EVT and ID_MMFR4.EVT identify the presence of the AArch32 traps.

For more information, see:

• HCR_EL2.{TTLBIS, TTLBOS, TICAB, TOCU, TID4}.

• HCR2.{TTLBIS, TICAB, TOCU, TID4}.

FEAT_DPB2, DC CVADP instruction

FEAT_DPB2 allows two levels of cache clean to the Point of Persistence by:

• Redefining Point of Persistence, which changes the scope of DC CVAP.

• Defining a Point of Deep Persistence.

• Adding the DC CVADP System instruction.

This feature is supported in AArch64 state only.
A2-84 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.5 The Armv8.2 architecture extension
This feature is OPTIONAL in Armv8.2 implementations and is mandatory in Armv8.5
implementations.

The ID_AA64ISAR1_EL1.DPB field identifies the presence of FEAT_DPB2.

For further information, see Terminology for Clean, Invalidate, and Clean and Invalidate
instructions on page D4-2645.

FEAT_BF16, AArch64 BFloat16 instructions

FEAT_BF16 supports the BFloat16, or BF16, 16-bit floating-point storage format in AArch64 state.
This format supports:

• The BFloat16 floating-point data type.

• Arithmetic instructions to accelerate dot products and matrix multiplications of BF16 values.

• Instructions to convert single-precision floating-point values to BF16 format.

This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.2 implementations and mandatory in Armv8.6 implementations.

The ID_AA64ISAR1_EL1.BF16 field identifies the presence of FEAT_BF16.

When both Advanced SIMD and SVE are implemented, the ID_AA64ISAR1_EL1.BF16 and
ID_AA64ZFR0_EL1.BF16 fields must return the same value.

For further information, see:

• BFloat16 floating-point format on page A1-48.

• BFloat16 floating-point instructions on page C3-262.

• SIMD BFloat16 on page C3-276.

• Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for
Armv8-A.

FEAT_AA32BF16, AArch32 BFloat16 instructions

FEAT_AA32BF16 supports the BFloat16, or BF16, 16-bit floating-point storage format in
AArch32 state. This format supports:

• The BFloat16 floating-point data type.

• Arithmetic instructions to accelerate dot products and matrix multiplications of BF16 values.

• Instructions to convert single-precision floating-point values to BF16 format.

This feature is supported in AArch32 state only.

This feature is OPTIONAL in Armv8.2 implementations.

The ID_ISAR6_EL1.BF16 and ID_ISAR6.BF16 fields identify the presence of FEAT_AA32BF16.

For further information, see:

• BFloat16 floating-point format on page A1-48.

• Advanced SIMD BFloat16 instructions on page F2-4408.

• Floating-point data-processing on page F3-4449.

FEAT_I8MM, AArch64 Int8 matrix multiplication instructions

FEAT_I8MM introduces integer matrix multiply-accumulate instructions and mixed sign dot
product instructions.

This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.2 implementations and mandatory in Armv8.6 implementations.

The ID_AA64ISAR1_EL1.I8MM field identifies the presence of FEAT_I8MM.

When both Advanced SIMD and SVE are implemented, the ID_AA64ISAR1_EL1.I8MM and the
ID_AA64ZFR0_EL1.I8MM fields must return the same value.

For further information, see:

• SIMD dot product on page C3-275.

• SIMD matrix multiplication on page C3-277.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-85
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.5 The Armv8.2 architecture extension
• Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for
Armv8-A.

FEAT_AA32I8MM, AArch32 Int8 matrix multiplication instructions

FEAT_AA32I8MM introduces integer matrix multiply-accumulate instructions and mixed sign dot
product instructions.

This feature is supported in AArch32 state only.

This feature is OPTIONAL in Armv8.2 implementations.

The ID_ISAR6_EL1.I8MM and ID_ISAR6.I8MM fields identify the presence of
FEAT_AA32I8MM.

For further information, see:

• Advanced SIMD dot product instructions on page F2-4407.

• Advanced SIMD matrix multiply instructions on page F2-4408.

A2.5.4 Features made OPTIONAL in Armv8.2 implementations

The features that have been made OPTIONAL in Armv8.2 implementations are:

• FEAT_FlagM on page A2-91.

• FEAT_LSE2 on page A2-91.

• FEAT_LRCPC2 on page A2-91.
A2-86 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.6 The Armv8.3 architecture extension
A2.6 The Armv8.3 architecture extension

The Armv8.3 architecture extension adds both architectural features and additional requirements, see:

• Architectural features added by Armv8.3 on page A2-87.

• Additional requirements of Armv8.3 on page A2-89.

• Features added to the Armv8.3 extension in later releases on page A2-89.

A2.6.1 Architectural features added by Armv8.3

An implementation of the Armv8.3 extension must include all of the features that this section describes as
mandatory. Such an implementation is also called an implementation of the Armv8.3 architecture.

The Armv8.3 architecture extension adds the following architectural features, which are identified by the
architectural feature name and a short description of the feature:

FEAT_FCMA, Floating-point complex number instructions

FEAT_FCMA introduces instructions for floating-point multiplication and addition of complex
numbers.

These instructions are added to the A64 and A32/T32 instruction sets.

This feature is mandatory in Armv8.3 implementations.

The half-precision versions of these instructions are implemented only if FEAT_FP16 is
implemented. Otherwise they are UNDEFINED.

The fields that identify the presence of FEAT_FCMA are:

• ID_AA64ISAR1_EL1.FCMA.

• ID_ISAR5_EL1.VCMA.

• ID_ISAR5.VCMA.

For more information, see:

• SIMD complex number arithmetic on page C3-276.

• Advanced SIMD complex number arithmetic instructions on page F2-4407.

FEAT_JSCVT, JavaScript conversion instructions

FEAT_JSCVT introduces instructions that perform a conversion from a double-precision floating
point value to a signed 32-bit integer, with rounding to zero. For more information, see:

For the A64 instruction set

• FJCVTZS on page C7-1754.

For the A32/T32 instruction set

• VJCVT on page F6-5538.

These instructions are added to the A64 and A32/T32 instruction sets.

This feature is mandatory in Armv8.3 implementations.

The fields that identify the presence of FEAT_JSCVT are:

• ID_AA64ISAR1_EL1.JSCVT.

• ID_ISAR6_EL1.JSCVT.

• ID_ISAR6.JSCVT.

For more information, see:

• Floating-point conversion on page C3-257.

• About the A64 SIMD and floating-point instructions on page C7-1522.

• Advanced SIMD and floating-point instructions on page E1-4260.

• Floating-point data-processing instructions on page F2-4412.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-87
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.6 The Armv8.3 architecture extension
FEAT_LRCPC, Load-Acquire RCpc instructions

FEAT_LRCPC introduces three instructions to support the weaker Release Consistency processor
consistent (RCpc) model that enables the reordering of a Store-Release followed by a Load-Acquire
to a different address:

• LDAPR on page C6-1048.

• LDAPRB on page C6-1050.

• LDAPRH on page C6-1052.

These instructions are added to the A64 instruction set.

The feature is mandatory in Armv8.3 implementations.

The ID_AA64ISAR1_EL1.LRCPC field identifies the presence of FEAT_LRCPC.

For more information, see:

• Load-Acquire, Load-AcquirePC, and Store-Release on page B2-152.

• Load-Acquire/Store-Release on page C3-229.

FEAT_NV, Nested virtualization support

FEAT_NV provides support for a Guest Hypervisor to run in Non-secure EL1 and ensures that the
Guest Hypervisor is unaware that it is running at that Exception level. A Guest Hypervisor is
supported regardless of the value of HCR_EL2.E2H.

This feature is supported in AArch64 state only.

The feature is OPTIONAL in Armv8.3 implementations. This feature must be implemented if
FEAT_NV2 is implemented.

The ID_AA64MMFR2_EL1.NV field identifies the presence of FEAT_NV.

For more information, see Nested virtualization on page D5-2793.

FEAT_CCIDX, Extended cache index

FEAT_CCIDX introduces the following registers to allow caches to be described with greater
numbers of sets and greater associativity:

• A 64-bit format of CCSIDR_EL1.

• CCSIDR2_EL1.

• CCSIDR2.

This feature is supported in both AArch64 and AArch32 states.

This feature is OPTIONAL in Armv8.3 implementations.

The following fields identify the presence of FEAT_CCIDX:

• ID_AA64MMFR2_EL1.CCIDX.

• ID_MMFR4_EL1.CCIDX.

• ID_MMFR4.CCIDX.

For more information, see:

• Possible formats of the Cache Size Identification Register, CCSIDR_EL1 on page D4-2639.

• Possible formats of the Cache Size Identification Registers, CCSIDR and CCSIDR2 on
page G4-6231.

FEAT_PAuth, Pointer authentication

FEAT_PAuth adds functionality that supports address authentication of the contents of a register
before that register is used as the target of an indirect branch, or as a load.

This feature is supported in AArch64 state only.

This feature is mandatory in Armv8.3 implementations.

The fields ID_AA64ISAR1_EL1.{GPI, GPA, API, APA} identify the presence of FEAT_PAuth.

For more information, see Pointer authentication in AArch64 state on page D5-2678.
A2-88 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.6 The Armv8.3 architecture extension
A2.6.2 Additional requirements of Armv8.3

If FEAT_PMUv3 is implemented, FEAT_PMUv3p4 is OPTIONAL in Armv8.3 implementations.

A2.6.3 Features added to the Armv8.3 extension in later releases

FEAT_SPEv1p1, Armv8.3 Statistical Profiling Extensions

FEAT_SPEv1p1 adds an Alignment Flag in the Events packet and filtering on this event using
PMSEVFR_EL1, together with support for the profiling of Scalable Vector Extension operations.

This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.3 implementations. An Armv8.5 implementation that includes
the Statistical Profiling Extension must include FEAT_SPEv1p1.

The fields in ID_AA64DFR0_EL1.PMSVer identify the presence of FEAT_SPEv1p1.

For more information, see Chapter D9 The Statistical Profiling Extension and Chapter D10
Statistical Profiling Extension Sample Record Specification.

FEAT_DoPD, Debug over Powerdown

FEAT_DoPD provides a debug programmers’ model where all debug and PMU registers are in the
Core power domain, all CTI registers are in the Debug power domain. Power control is provided by
a CoreSight Granular Power Requestor (GPR) component.

When the OPTIONAL powerup mechanism is implemented and this feature is implemented, the
debugger makes power control requests for the Core power domain using a CoreSight Class 0x9
ROM Table block, instead of using EDRCR.COREPURQ. EDRCR.COREPURQ is not
implemented. Refer to the ARM® CoreSight Architecture Specification for more information.

This feature is OPTIONAL in Armv8.3 implementations.

When FEAT_DoPD is implemented:

• FEAT_DoubleLock is not implemented.

• FEAT_Debugv8p2 must be implemented.

• If PC Sample-based profiling is implemented, FEAT_PCSRv8p2 must be implemented.

• The optional Software Lock is not implemented by the architecturally defined debug
components in the PE Core power domain.

• If an ETMv4 PE Trace Unit is implemented, the ETM must implement:

— ETMv4.2 or later.

— The Unified Power Domain Model.

The fields that identify the presence of FEAT_DoPD are:

• EDDEVID.DebugPower.

• CTIDEVARCH.REVISION.

For more information, see Chapter H6 Debug Reset and Powerdown Support.

FEAT_PAuth2, Enhancements to pointer authentication

FEAT_PAuth2 adds enhanced pointer authentication functionality that changes the mechanism by
which a PAC is added to the pointer.

This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.3 implementations and mandatory in Armv8.6 implementations.

The ID_AA64ISAR1_EL1.APA and ID_AA64ISAR1_EL1.API fields identify the presence of
FEAT_PAuth2.

For more information, see Pointer authentication in AArch64 state on page D5-2678.

FEAT_FPAC, Faulting on AUT* instructions

FEAT_FPAC introduces faulting on an AUT* instruction and, optionally, on the combined
instructions that perform pointer authentication. FEAT_FPAC is added as a further extension to
FEAT_PAuth2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-89
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.6 The Armv8.3 architecture extension
This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.3 implementations, and can be implemented only if
FEAT_PAuth2 is implemented.

The ID_AA64ISAR1_EL1.APA and ID_AA64ISAR1_EL1.API fields identify the presence of
FEAT_FPAC.

For more information, see Faulting on pointer authentication on page D5-2681.
A2-90 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.7 The Armv8.4 architecture extension
A2.7 The Armv8.4 architecture extension

The Armv8.4 architecture extension adds architectural features, see Architectural features added by Armv8.4 on
page A2-91. It also adds features to earlier architecture extensions, see Features added to earlier extensions on
page A2-95.

A2.7.1 Architectural features added by Armv8.4

An implementation of the Armv8.4 extension must include all of the features that this section describes as
mandatory. Such an implementation is also called an implementation of the Armv8.4 architecture.

The Armv8.4 architecture extension adds the following architectural features, which are identified by the
architectural feature name and a short description of the feature:

FEAT_DIT, Data Independent Timing instructions

FEAT_DIT provides independent timing for data processing instructions with the addition of the
PSTATE.DIT and CPSR.DIT fields.

This feature is supported in both AArch64 and AArch32 states.

This feature is mandatory in Armv8.4 implementations.

The following fields identify the presence of FEAT_DIT:

• ID_AA64PFR0_EL1.DIT.

• ID_PFR0_EL1.DIT.

• ID_PFR0.DIT.

For more information, see:

• About PSTATE.DIT on page B1-123.

• About the DIT bit on page E1-4259.

FEAT_FlagM, Flag manipulation instructions v2

FEAT_FlagM provides instructions which manipulate the PSTATE.{N,Z,C,V} flags.

These instructions are added to the A64 instruction set only.

This feature is OPTIONAL in Armv8.2 implementations.

This feature is mandatory in Armv8.4 implementations.

The ID_AA64ISAR0_EL1.TS field identifies the presence of FEAT_FlagM.

For more information, see Flag manipulation instructions on page C3-249.

FEAT_LRCPC2, Load-Acquire RCpc instructions v2

FEAT_LRCPC2 provides versions of LDAPR and STLR with a 9-bit unscaled signed immediate offset.

These instructions are added to the A64 instruction set only.

This feature is OPTIONAL in Armv8.2 implementations.

This feature is mandatory in Armv8.4 implementations.

The ID_AA64ISAR1_EL1.LRCPC field identifies the presence of FEAT_LRCPC2.

For more information, see:

• Changes to single-copy atomicity in Armv8.4 on page B2-129.

• Non-exclusive Load-Acquire and Store-Release instructions on page C3-230.

• A64 instructions that are changed in Debug state on page H2-7349.

FEAT_LSE2, Large System Extensions v2

FEAT_LSE2 introduces changes to single-copy atomicity requirements for loads and stores, and
changes to alignment requirements for loads and stores.

This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.2 implementations.

This feature is mandatory in Armv8.4 implementations.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-91
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.7 The Armv8.4 architecture extension
The ID_AA64MMFR2_EL1.AT field identifies the presence of FEAT_LSE2.

For more information, see:

• Requirements for single-copy atomicity on page B2-128.

• Alignment of data accesses on page B2-160.

FEAT_TLBIOS, TLB invalidate instructions in Outer Shareable domain

FEAT_TLBIOS provides TLBI maintenance instructions that extend to the Outer Shareable
domain.

This feature is supported in AArch64 state only.

This feature is mandatory in Armv8.4 implementations.

The field ID_AA64ISAR0_EL1.TLB identifies the presence of FEAT_TLBIOS.

For more information, see:

• TLB maintenance instruction syntax on page D5-2820.

FEAT_TLBIRANGE, TLB invalidate range instructions

FEAT_TLBIRANGE provides TLBI maintenance instructions that apply to a range of input
addresses. FEAT_TLBIRANGE being implemented implies that FEAT_TLBIOS is implemented.

This feature is supported in AArch64 state only.

This feature is mandatory in Armv8.4 implementations.

The field ID_AA64ISAR0_EL1.TLB identifies the presence of FEAT_TLBIRANGE.

For more information, see:

• TLB maintenance instruction syntax on page D5-2820.

• TLB range maintenance instructions on page D5-2828.

FEAT_TTL, Translation Table Level

FEAT_TTL provides the TTL field to indicate the level of translation table walk holding the leaf
entry for the address that is being invalidated. This field is provided in all TLB maintenance
instructions that take a VA or an IPA argument.

This feature is supported in AArch64 state only.

This feature is mandatory in Armv8.4 implementations.

The field ID_AA64MMFR2_EL1.TTL identifies the presence of FEAT_TTL.

For more information, see:

• TLB maintenance instruction syntax on page D5-2820.

• TLB range maintenance instructions on page D5-2828.

FEAT_S2FWB, Stage 2 forced Write-Back

FEAT_S2FWB reduces the requirement of additional cache maintenance instructions in systems
where the data Cacheability attributes used by the Guest operating system are different from those
expected by the Hypervisor.

This feature is supported in AArch64 state.

This feature is mandatory in Armv8.4 implementations that implement EL2.

The ID_AA64MMFR2_EL1.FWB field identifies the presence of FEAT_S2FWB.

For more information, see:

• Memory region attributes on page D5-2776.

• The stage 2 memory region attributes, EL1&0 translation regime on page D5-2778.

FEAT_TTST, Small translation tables

FEAT_TTST relaxes the lower limit on the size of translation tables, by increasing the maximum
permitted value of the T1SZ and T0SZ fields in TCR_EL1, TCR_EL2, TCR_EL3, VTCR_EL2 and
VSTCR_EL2.

This feature is supported in AArch64 state only.
A2-92 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.7 The Armv8.4 architecture extension
This feature is mandatory if FEAT_SEL2 is implemented.

This feature is OPTIONAL if FEAT_SEL2 is not implemented.

The ID_AA64MMFR2_EL1.ST field identifies the presence of FEAT_TTST.

For more information, see:

• Input address size on page D5-2691.

• Overview of the VMSAv8-64 address translation stages on page D5-2708.

FEAT_BBM, Translation table break-before-make levels

FEAT_BBM provides support to identify the requirements of hardware to have break-before-make
sequences when changing between block size for a translation.

This feature is supported in AArch64 state only.

This feature is mandatory in Armv8.4 implementations.

The ID_AA64MMFR2_EL1.BBM field identifies the presence of FEAT_BBM.

For more information, see:

• Memory attribute fields in the VMSAv8-64 Translation Table format descriptors on
page D5-2746.

• Support levels for changing block size on page D5-2818.

FEAT_SEL2, Secure EL2

FEAT_SEL2 permits EL2 to be implemented in Secure state. When Secure EL2 is enabled, a
translation regime is introduced that follows the same format as the other Secure translation
regimes.

This feature is not supported if EL2 is using AArch32.

This feature is mandatory in Armv8.4 implementations that implement both EL2 and Secure state.

The ID_AA64PFR0_EL1.SEL2 field identifies the presence of FEAT_SEL2.

For more information, see:

• Virtualization on page D1-2460.

• The VMSAv8-64 address translation system on page D5-2682.

FEAT_NV2, Enhanced nested virtualization support

FEAT_NV2 supports nested virtualization by redirecting register accesses that would be trapped to
EL1 and EL2 to access memory instead. The address of the memory access depends on information
held in introduced register, VNCR_EL2.

This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.4 implementations.

The ID_AA64MMFR2_EL1.NV field identifies the presence of FEAT_NV2.

For more information, see Enhanced support for nested virtualization on page D5-2795.

FEAT_IDST, ID space trap handling

FEAT_IDST causes all AArch64 read accesses to the feature ID space when exceptions are
generated to be reported in ESR_ELx using the EC code 0x18.

This feature is supported in AArch64 state only.

This feature is mandatory in Armv8.4 implementations.

The ID_AA64MMFR2_EL1.IDS field identifies the presence of FEAT_IDST.

FEAT_CNTSC, Generic Counter Scaling

FEAT_CNTSC adds a scaling register to the memory-mapped counter module that allows the
frequency of the counter that is generated to be scaled from the basic frequency reported in the
counter ID mechanisms.

This feature is supported in both AArch64 and AArch32 states.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-93
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.7 The Armv8.4 architecture extension
This feature is OPTIONAL in Armv8.4 implementations.

The CNTID.CNTSC field identifies the presence of FEAT_CNTSC.

For more information, see:

• CNTCR, Counter Control Register on page I5-7808.

FEAT_Debugv8p4, Debug v8.4

FEAT_Debugv8p4 covers a selection of mandatory changes:

• The fields MDCR_EL3.{EPMAD, EDAD} control Non-secure access to the debug and
PMU registers. The bus Requester is responsible for other debug authentication.

• The Software Lock is obsolete.

• Non-invasive Debug controls are relaxed.

• Secure and Non-secure views of the debug registers are enabled.

This feature is mandatory if FEAT_SEL2 is implemented.

The fields that identify the presence of FEAT_Debugv8p4 are:

• ID_AA64DFR0_EL1.DebugVer.

• DBGDIDR.Version.

• ID_DFR0_EL1.{CopSDbg, CopDbg}.

• ID_DFR0.{CopSDbg, CopDbg}.

• EDDEVARCH.ARCHID.

For more information, see:

• Definition and constraints of a debugger in the context of external debug on page H1-7334

• External debug interface register access permissions on page H8-7468

FEAT_TRF, Self-hosted Trace Extensions

FEAT_TRF adds controls of trace in a self-hosted system through System registers.

The feature provides:

• Control of Exception levels and Security states where trace generation is prohibited.

• Control of whether an offset is used for the timestamp recorded with trace information.

• A context synchronization instruction TSB CSYNC which can be used to prevent reordering of
trace operation accesses with respect to other accesses of the same System registers.

If an ETM Architecture PE Trace Unit is implemented and the ETM PE Trace Unit includes System
register access to its control registers, this feature is mandatory. If a different PE Trace Unit is
implemented or the ETM PE Trace Unit does not include System register access to its control
registers, this feature is OPTIONAL.

The reset state of the PE has prohibited regions controlled by the feature and not the external
authentication signals. An external trace controller must override the internal controls before
enabling trace, including trace from reset. This is a change from previous trace architectures and is
not backwards-compatible.

The fields that identify the presence of FEAT_TRF are:

• ID_AA64DFR0_EL1.TraceFilt.

• ID_DFR0_EL1.TraceFilt.

• ID_DFR0.TraceFilt.

• EDDFR.TraceVer.

• ID_AA64DFR0_EL1.TraceVer.

For more information, see:

• Chapter D3 AArch64 Self-hosted Trace.

• Chapter G3 AArch32 Self-hosted Trace.

FEAT_PMUv3p4, PMU Extensions v3.4

FEAT_PMUv3p4 introduces the PMMIR_EL1 and PMMIR registers.
A2-94 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.7 The Armv8.4 architecture extension
This feature is supported in both AArch64 and AArch32 states.

The Performance Monitors Extension is an OPTIONAL feature, but if it is implemented, an Armv8.4
implementation must include FEAT_PMUv3p4.

The fields that identify the presence of FEAT_PMUv3p4 are:

• ID_AA64DFR0_EL1.PMUVer.

• ID_DFR0_EL1.PerfMon.

• ID_DFR0.PerfMon.

• EDDFR.PMUVer.

For more information, see PMU events and event numbers on page D7-2869.

FEAT_RASv1p1, RAS Extension v1.1

FEAT_RASv1p1 implements RAS System Architecture v1.1 and adds support for:

• Simplifications to ERR<n>STATUS.

• Additional ERR<n>MISC<m> registers.

• The OPTIONAL RAS Common Fault Injection Model Extension.

This feature is supported in both AArch64 and AArch32 states.

This feature is OPTIONAL in Armv8.2 implementations and mandatory in Armv8.4 implementations.

The following fields identify the complete or partial presence of FEAT_RASv1p1:

• ID_AA64PFR0_EL1.RAS.

• ID_AA64PFR1_EL1.RAS_frac.

• ID_PFR0_EL1.RAS.

• ID_PFR2_EL1.RAS_frac.

• ID_PFR0.RAS.

• ID_PFR2.RAS_frac.

For more information, see:

• The Reliability, Availability, and Serviceability Extension on page A2-108.

• Arm® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the
ARMv8-A architecture profile.

FEAT_DoubleFault, Double Fault Extension

FEAT_DoubleFault provides two controls:

• SCR_EL3.EASE.

• SCR_EL3.NMEA.

This feature is supported in AArch64 state only.

This feature is mandatory in Armv8.4 implementations if EL3 is implemented and EL3 uses
AArch64. Otherwise, it is not implemented.

This feature is implemented if ID_AA64PFR0_EL1.RAS >= 0b0010 and the implementation
includes EL3 using AArch64.

For more information, see:

• The Reliability, Availability, and Serviceability Extension on page A2-108.

• Arm® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the
ARMv8-A architecture profile.

A2.7.2 Features added to earlier extensions

The existing functionality of OS Double Lock is added as a feature mnemonic in Armv8.0, see FEAT_DoubleLock
on page A2-70.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-95
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.8 The Armv8.5 architecture extension
A2.8 The Armv8.5 architecture extension

The Armv8.5 architecture extension adds architectural features and additional requirements, see:

• Architectural features added by Armv8.5 on page A2-96.

• Additional requirements of Armv8.5 on page A2-98.

• Features added to earlier extensions on page A2-99.

• Architectural requirements added to earlier extensions on page A2-99.

• Features added to the Armv8.5 extension in later releases on page A2-99.

A2.8.1 Architectural features added by Armv8.5

An implementation of the Armv8.5 extension must include all of the features that this section describes as
mandatory. Such an implementation is also called an implementation of the Armv8.5 architecture.

The Armv8.5 architecture extension adds the following architectural features, which are identified by the
architectural feature name and a short description of the feature:

FEAT_FlagM2, Enhancements to flag manipulation instructions

FEAT_FlagM2 provides instructions that convert between the PSTATE condition flag format used
by the FCMP instruction and an alternative format described in Relationship between ARM format
and alternative format PSTATE condition flags on page C6-874.

These instructions are added to the A64 instruction set only.

This feature is mandatory in Armv8.5 implementations.

The ID_AA64ISAR0_EL1.TS field identifies the presence of FEAT_FlagM2.

For more information, see:

• Flag manipulation instructions on page C3-249.

• Relationship between ARM format and alternative format PSTATE condition flags on
page C6-874.

FEAT_FRINTTS, Floating-point to integer instructions

FEAT_FRINTTS provides instructions that round a floating-point number to an integral valued
floating-point number that fits in a 32-bit or 64-bit integer number range.

These instructions are added to the A64 instruction set only.

This feature requires SIMD&FP, and is mandatory in Armv8.5 implementations when SIMD&FP
is implemented.

The ID_AA64ISAR1_EL1.FRINTTS identifies the presence of FEAT_FRINTTS.

For more information, see Floating-point round to integral value on page C3-258.

FEAT_ExS, Context synchronization and exception handling

FEAT_ExS provides a mechanism to control whether exception entry and exception return are
context synchronization events. Fields in the SCTLR_ELx registers enable and disable context
synchronization at exception entry and return at an Exception level.

This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.5 implementations.

The ID_AA64MMFR0_EL1.ExS identifies the presence of FEAT_ExS.

For more information, see:

• SCTLR_EL1, System Control Register (EL1) on page D13-3621, SCTLR_EL2 and
SCTLR_EL3.

• Context synchronization event on page Glossary-8678

FEAT_GTG, Guest translation granule size

FEAT_GTG allows a hypervisor to support different granule sizes for stage 2 and stage 1
translation, and allows a nested hypervisor to determine what stage 2 granule sizes are available.
A2-96 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.8 The Armv8.5 architecture extension
This feature is supported in AArch64 state only.

This feature is mandatory in Armv8.5 implementations.

The ID_AA64MMFR0_EL1.{TGran16_2, TGran64_2, TGran4_2} fields identify whether each of
the granule sizes is supported for stage 2 translation. The ID_AA64MMFR0_EL1.{TGran16,
TGran64, TGran4} fields identify whether each of the granule sizes is supported for stage 1
translations.

For more information, see Memory translation granule size on page D5-2698.

FEAT_BTI, Branch Target Identification

FEAT_BTI allows memory pages to be guarded against the execution of instructions that are not the
intended target of a branch. To do this, it introduces:

• The GP field, which denotes the blocks and pages in stage 1 translation tables that are
guarded pages.

• The PSTATE.BTYPE field, which is used to determine whether an access to a guarded
memory region will generate a Branch Target exception.

• The BTI instruction, which is used to guard against the execution of instructions that are not
the intended target of a branch.

This feature is supported in AArch64 state only.

This feature is mandatory in Armv8.5 implementations.

The ID_AA64PFR1_EL1.BT field identifies the presence of FEAT_BTI.

For more information, see:

• Exception entry on page D1-2475.

• Synchronous exception types, routing and priorities on page D1-2489.

• VMSAv8-64 translation table level -1, level 0, level 1, and level 2 descriptor formats on
page D5-2739.

• About PSTATE.BTYPE on page D5-2756.

• Effect of entering Debug state on PSTATE on page H2-7346.

FEAT_E0PD, Preventing EL0 access to halves of address maps

FEAT_E0PD prevents access at EL0 to half of the addresses in the memory map.

This feature is supported in AArch64 state only. When EL1 is using AArch64 state, this feature
affects access to EL0, in either Execution state.

This feature is mandatory in Armv8.5 implementations.

Implementations that support FEAT_E0PD must also support FEAT_CSV3.

The ID_AA64MMFR2_EL1.E0PD field identifies presence of FEAT_E0PD.

For more information, see:

• Preventing EL0 access to halves of the address map on page D5-2758.

• TCR_EL1.{E0PD0, E0PD1}.

• TCR_EL2.{E0PD0, E0PD1}.

FEAT_RNG, Random number generator

FEAT_RNG introduces the RNDR and RNDRRS registers. Reads to these registers return a 64-bit
random number. A read to RNDRRS will cause a reseeding of the random number before the
generation of the random number that is returned.

This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.5 implementations.

The ID_AA64ISAR0_EL1.RNDR field identifies presence of FEAT_RNG.

• Effect of random number generation instructions on Condition flags on page C6-874.

• Appendix K12 Random Number Generation.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-97
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.8 The Armv8.5 architecture extension
FEAT_MTE and FEAT_MTE2, Memory Tagging Extension

FEAT_MTE and FEAT_MTE2 provide architectural support for runtime, always-on detection of
various classes of memory error to aid with software debugging to eliminate vulnerabilities arising
from memory-unsafe languages.

These features are supported in AArch64 state only.

These features are OPTIONAL in Armv8.5 implementations.

The ID_AA64PFR1_EL1.MTE field identifies the presence of FEAT_MTE and FEAT_MTE2.

For more information, see:

• Chapter D6 Memory Tagging Extension.

• Chapter B2 The AArch64 Application Level Memory Model.

• PMU events and event numbers on page D7-2869.

• Chapter D9 The Statistical Profiling Extension.

• Chapter H2 Debug State.

FEAT_PMUv3p5, PMU Extensions v3.5

FEAT_PMUv3p5 extends event counters to 64-bit event counters, and adds mechanisms to disable
the cycle counter in Secure state and in EL2.

FEAT_PMUv3p5 relaxes the behavior of PMCR.{IMP, IDCODE}, and deprecates use of these
fields.

This feature is supported in both AArch64 and AArch32 states.

The Performance Monitors Extension is an OPTIONAL feature, but if it is implemented, an Armv8.5
implementation must include FEAT_PMUv3p5.

The fields that identify the presence of FEAT_PMUv3p5 are:

• ID_AA64DFR0_EL1.PMUVer.

• ID_DFR0_EL1.PerfMon.

• ID_DFR0.PerfMon.

• EDDFR.PMUVer.

For more information, see:

• Behavior on overflow on page D7-2855

• Controlling the PMU counters on page D7-2859.

• PMU events and event numbers on page D7-2869.

A2.8.2 Additional requirements of Armv8.5

The Armv8.5 architecture includes some mandatory changes that are not associated with a feature. These are:

Restrictions on effects of speculation

Further restrictions are placed on execution for:

• Execution prediction instructions that predict addresses or register values.

• Data loaded under speculation with a permission or domain fault.

• Any System register read under speculation to a register that is not architecturally accessible
from the current Exception level.

For more information, see:

• Restrictions on the effects of speculation on page B2-144.

• Restrictions on the effects of speculation on page E2-4297.

Changes to CTIDEVARCH, CTIDEVAFF0, and CTIDEVAFF1

CTIDEVARCH, CTIDEVAFF0, and CTIDEVAFF1 must be implemented.
A2-98 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.8 The Armv8.5 architecture extension
Changes to the input channel gate function

If the Cross Trigger Matrix (CTM) is implemented, the input channel gate function must be
implemented.

Deprecation of EDPRCR.CWRR

EDPRCR.CWRR is deprecated.

Mandatory changes are also made to earlier architectural extensions, see Architectural requirements added to
earlier extensions on page A2-99.

A2.8.3 Features added to earlier extensions

The features that have been added to earlier architectural extensions are:

• FEAT_SB on page A2-68.

• FEAT_SSBS on page A2-68.

• FEAT_CSV2 on page A2-68.

• FEAT_CSV3 on page A2-69.

• FEAT_SPECRES on page A2-69.

• FEAT_CP15SDISABLE2 on page A2-70.

• FEAT_EVT on page A2-84.

• FEAT_DPB2 on page A2-84.

• FEAT_SPEv1p1 on page A2-89.

• FEAT_DoPD on page A2-89.

A2.8.4 Architectural requirements added to earlier extensions

The additional architectural requirement that has been added to earlier extensions is Prefetch speculation protection
on page A2-71.

A2.8.5 Features added to the Armv8.5 extension in later releases

FEAT_MTE3, MTE Asymmetric Fault Handling

FEAT_MTE3 introduces support for asymmetric Tag Check Fault handling.

This feature is OPTIONAL in Armv8.5 implementations.

This feature is mandatory from Armv8.7 when FEAT_MTE2 is implemented.

This feature is supported in AArch64 state.

The ID_AA64PFR1_EL1.MTE field identifies the presence of FEAT_MTE3.

For more information, see Chapter D6 Memory Tagging Extension.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-99
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.9 The Armv8.6 architecture extension
A2.9 The Armv8.6 architecture extension

The Armv8.6 architecture extension adds architectural features and additional requirements, see:

• Architectural features added by Armv8.6 on page A2-100.

• Additional requirements of Armv8.6 on page A2-101.

Features are also added to earlier architecture extensions, see Features added to earlier extensions on page A2-102.

A2.9.1 Architectural features added by Armv8.6

An implementation of the Armv8.6 extension must include all of the features that this section describes as
mandatory. Such an implementation is also called an implementation of the Armv8.6 architecture.

The Armv8.6 architecture extension adds the following architectural features, which are identified by the
architectural feature name and a short description of the feature:

FEAT_ECV, Enhanced Counter Virtualization

FEAT_ECV enhances the Generic Timer architecture.

When executing in AArch64 state or AArch32 state, FEAT_ECV provides:

• Self-synchronizing views of the virtual and physical timers in AArch64 and AArch32 state.

• The ability to scale the generation of the event stream.

When EL2 is using AArch64 state, FEAT_ECV provides:

• An optional offset between the EL1 or EL0 view of physical time, and the EL2 or EL3 view
of physical time.

• Traps configurable in CNTHCTL_EL2 that trap EL0 and EL1 access to the virtual counter
or timer registers, and accesses to the physical timer registers when they are accessed using
an EL02 descriptor.

The optional offset to views of physical time, and the configurable traps in CNTHCTL_EL2, both
apply to EL1 and EL0 whether EL1 and EL0 are in AArch64 state or AArch32 state.

This feature is mandatory in Armv8.6 implementations.

The ID_AA64MMFR0_EL1.ECV field identifies the presence of FEAT_ECV. The
ID_PFR1_EL1.GenTimer and ID_PFR1.GenTimer fields identify support for self-synchronized
counter views in AArch32 state.

For more information, see:

• Self-hosted trace timestamps on page D3-2631.

• The profiling data on page D9-2958.

• The AArch64 view of the Generic Timer on page D11-3012.

• The AArch32 view of the Generic Timer on page G6-6408.

FEAT_FGT, Fine Grain Traps

FEAT_FGT introduces additional traps to EL2 of EL1 and EL0 access to individual or small groups
of System registers and instructions, and traps to EL3 and EL2 of the Debug Communications
Channel registers. The traps are independent of existing controls.

This feature is supported in AArch64, and when EL1 is using AArch64, EL0 accesses using
AArch32 are also trapped.

This feature is mandatory in Armv8.6 implementations.

The ID_AA64MMFR0_EL1.FGT field identifies the presence of FEAT_FGT.

For more information, see:

• Traps to EL3 of EL2 accesses to fine-grained trap registers on page D1-2532.

• Traps to EL2 of EL0 and EL1 accesses to the Debug Communications Channel registers on
page D1-2527.

• Traps to EL3 of EL2, EL1, and EL0 accesses to Debug Communication Channel registers on
page D1-2531.
A2-100 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.9 The Armv8.6 architecture extension
• Fine-grained traps to EL2 of EL0 and EL1 accesses to System registers on page D1-2525.

• Fine-grained traps to EL2 of EL0 and EL1 accesses to the debug, trace, and PMU registers
on page D1-2525.

• Fine-grained Traps to EL2 of EL0 and EL1 accesses to instructions on page D1-2525.

• Fine-grained traps to EL2 of EL0 and EL1 read accesses to Activity Monitors registers on
page D1-2520.

FEAT_TWED, Delayed Trapping of WFE

FEAT_TWED introduces support for configurable delayed trapping of the WFE instruction.

This feature is supported in both AArch64 and AArch32 states.

This feature is OPTIONAL in Armv8.6 implementations.

The ID_AA64MMFR1_EL1.TWED field identifies the presence of FEAT_TWED.

For more information, see The Wait For Event and Wait for Event with Timeout instructions on
page D1-2537.

FEAT_AMUv1p1, AMU Extensions v1.1

FEAT_AMUv1p1 introduces support for virtualization of Activity Monitors event counters, and
introduces controls to disable access to auxiliary event counters below the highest Exception level.

This feature is supported in AArch32 state and AArch64 state, if the hypervisor is using AArch64.

This feature is OPTIONAL in Armv8.6 implementations if the OPTIONAL FEAT_AMUv1 is
implemented.

The fields ID_AA64PFR0_EL1.AMU, ID_PFR0_EL1.AMU, and ID_PFR0.AMU identify the
presence of FEAT_AMUv1p1.

For more information, see Chapter D8 The Activity Monitors Extension.

FEAT_MTPMU, Multi-threaded PMU Extensions

FEAT_MTPMU introduces controls to disable PMEVTYPER<n>_EL0.MT.

This feature requires at least one of EL2 and EL3. If neither is implemented, this feature is not
implemented.

If EL2 or EL3 is implemented, the feature is OPTIONAL if FEAT_PMUv3 is implemented.

Multithreaded Armv8.6 implementations with FEAT_PMUv3 implemented must implement
FEAT_MTPMU to enable any multithreaded event counting.

This feature is supported in both AArch64 and AArch32 states.

The fields ID_AA64DFR0_EL1.MTPMU and ID_DFR1.MTPMU identify the presence of
FEAT_MTPMU.

For more information, see:

• Multithreaded implementations on page D7-2863.

• MDCR_EL3.MTPME, SDCR.MTPME, MDCR_EL2.MTPME, and HDCR.MTPME.

• Common event numbers on page D7-2876.

A2.9.2 Additional requirements of Armv8.6

The Armv8.6 architecture includes some mandatory changes that are not associated with a feature. These are:

Changes to the frequency of the physical counter

The frequency of CNTFRQ_EL0 is standardized to a frequency of 1GHz. This means that the
system counter must be implemented at 64 bits. For more information, see:

• The system counter on page D11-3010.

• The system counter on page G6-6406.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-101
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.9 The Armv8.6 architecture extension
A2.9.3 Features added to earlier extensions

The features that have been added to earlier architectural extensions are:

• FEAT_DGH on page A2-70.

• FEAT_ETS on page A2-70.

• FEAT_BF16 on page A2-85.

• FEAT_AA32BF16 on page A2-85.

• FEAT_I8MM on page A2-85.

• FEAT_AA32I8MM on page A2-86.

• FEAT_PAuth2 on page A2-89.

• FEAT_FPAC on page A2-89.
A2-102 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.10 The Armv8.7 architecture extension
A2.10 The Armv8.7 architecture extension

The Armv8.7 architecture extension adds architectural features and additional requirements, see:

• Architectural features added by Armv8.7 on page A2-103.

• Additional requirements of Armv8.7 on page A2-106.

Features are also added to earlier architecture extensions, see Features added to earlier extensions on page A2-106.

A2.10.1 Architectural features added by Armv8.7

An implementation of the Armv8.7 extension must include all of the features that this section describes as
mandatory. Such an implementation is also called an implementation of the Armv8.7 architecture.

The Armv8.7 architecture extension adds the following architectural features, which are identified by the
architectural feature name and a short description of the feature:

FEAT_AFP, Alternate floating-point behavior

FEAT_AFP allows alternate behavior for specified floating-point instructions including:

• Flushing of denormalized numbers to zero can be controlled separately on inputs and outputs.

• Alternate NaN propagation rules can apply.

• Output elements for specified scalar Advanced SIMD instructions can be determined using
alternate rules.

• Changes to floating-point exception generation.

This feature is supported in AArch64 state only.

This feature is mandatory in Armv8.7 implementations that implement floating-point support.

The ID_AA64MMFR1_EL1.AFP field identifies the presence of FEAT_AFP.

For more information, see:

• Flushing denormalized numbers to zero on page A1-54.

• NaN handling and the Default NaN on page A1-57.

• Rounding on page A1-59.

• Floating-point exceptions and exception traps on page D1-2495.

FEAT_RPRES, Increased precision of Reciprocal Estimate and Reciprocal Square Root Estimate

FEAT_RPRES allows an increase in the precision of the Reciprocal Estimate and Reciprocal Square
Root Estimate from an 8-bit mantissa to a 12-bit mantissa.

This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.7 implementations. This feature requires implementation of
FEAT_AFP.

The ID_AA64ISAR2_EL1.RPRES field identifies the presence of FEAT_RPRES.

For more information, see RecipEstimate() and RecipSqrtEstimate().

FEAT_LS64, FEAT_LS64_V, FEAT_LS64_ACCDATA, Support for 64 byte loads/stores

FEAT_LS64 introduces support for atomic single-copy 64-byte loads and stores without return and
adds the following instructions:

• LD64B on page C6-1040.

• ST64B on page C6-1325.

FEAT_LS64_V introduces support for atomic single-copy 64-byte stores with return and adds
ST64BV on page C6-1326.

This feature also introduces the ACCDATA_EL1 register.

FEAT_LS64 introduces support for atomic single-copy 64-byte EL0 stores with return and adds the
following:

• LD64B on page C6-1040.

• The ACCDATA_EL1 register.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-103
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.10 The Armv8.7 architecture extension
This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.7 implementations.

The ID_AA64ISAR1_EL1.LS64 field identifies the presence of FEAT_LS64. FEAT_LS64_V, and
FEAT_LS64_ACCDATA.

For more information, see Single-copy atomic 64-byte load/store on page C3-238.

FEAT_WFxT and FEAT_WFxT2, WFE and WFI instructions with timeout

FEAT_WFxT introduces WFET and WFIT. These instructions support the generation of a local timeout
event to act as a wake-up event for the PE when the virtual count in CNTVCT_EL0 equals or
exceeds the value supplied by the instruction for the first time.

FEAT_WFxT2 adds a mechanism to report the register number that holds the timeout value in
ESR_ELx for trapped WFET and WFIT instructions.

These instructions are added to the A64 instruction set only.

FEAT_WFxT is mandatory in Armv8.7 implementations. FEAT_WFxT2 is OPTIONAL in Armv8.7
implementations.

Note

Arm deprecates not implementing FEAT_WFxT2.

The ID_AA64ISAR2_EL1.WFxT field identifies the presence of FEAT_WFxT and FEAT_WFxT2.

For more information, see:

• Instructions with register argument on page C3-218.

• WFET on page C6-1513.

• WFIT on page C6-1515.

• Wait for Event mechanism and Send event on page D1-2536.

• Wait For Interrupt on page D1-2540.

FEAT_HCX, Support for the HCRX_EL2 register

FEAT_HCX introduces the Extended Hypervisor Configuration Register, HCRX_EL2, that
provides configuration controls for virtualization in addition to those provided by HCR_EL2,
including defining whether various operations are trapped to EL2.

This feature is supported in AArch64 state only.

This feature is mandatory in Armv8.7 implementations.

The ID_AA64MMFR1_EL1.HCX field identifies the presence of FEAT_HCX.

For more information, see Configurable instruction enables and disables, and trap controls on
page D1-2510.

FEAT_LPA2, Larger physical address for 4KB and 16KB translation granules

FEAT_LPA2:

• Allows a larger VA space for each translation table base register of up to 52 bits when using
the 4KB or 16KB translation granules.

• Allows a larger intermediate physical address (IPA) and PA space of up to 52 bits when using
the 4KB or 16KB translation granules.

• Allows a level 0 block size where the block covers a 512GB address range for the 4KB
translation granule if the implementation supports 52 bits of PA.

• Allows a level 1 block size where the block covers a 64GB address range for the 16KB
translation granule if the implementation supports 52 bits of PA.

This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.7 implementations. This feature requires implementation of
FEAT_LPA and FEAT_LVA.
A2-104 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.10 The Armv8.7 architecture extension
The ID_AA64MMFR0_EL1.{TGRAN4_2, TGRAN16_2, TGRAN4, TGRAN16} fields identify
the presence of FEAT_LPA2.

For more information, see:

• VMSA address types and address spaces on page D5-2675.

• Address size configuration on page D5-2689.

• Extending addressing above 48 bits when using the 4KB or 16KB translation granule on
page D5-2696.

• VMSAv8-64 translation table level -1, level 0, level 1, and level 2 descriptor formats on
page D5-2739.

• Armv8 translation table level 3 descriptor formats on page D5-2744.

FEAT_XS, XS attribute

FEAT_XS introduces the XS attribute for memory to indicate that an access could take a long time
to complete. This feature provides variants of DSB instructions and TLB maintenance instructions,
the completion of which does not depend on the completion of memory accesses with the XS
attribute.

FEAT_XS adds:

• A mechanism to define the XS attribute for memory.

• An optional nXS variant to the AArch64 DSB instruction and optional nXS qualifier to each
AArch64 TLBI instruction to handle memory accesses with the XS attribute.

• The FGTnXS bit to HCRX_EL2 to determine the behavior of fine-grained traps in
HFGITR_EL2 for TLB maintenance instructions with the nXS qualifier.

• The FnXS bit to HCRX_EL2 to determine the behavior of pre-existing TLB maintenance
instructions in relation to the XS attribute.

This feature is supported in AArch64 state only, but the XS attribute also impacts AArch32 state
execution.

This feature is mandatory in Armv8.7 implementations.

The ID_AA64ISAR1_EL1.XS field identifies the presence of FEAT_XS.

For more information, see:

• Data Synchronization Barrier (DSB) on page B2-150.

• Attribute fields in stage 2 VMSAv8-64 Block and Page descriptors on page D5-2751.

• The stage 1 memory region attributes on page D5-2776.

• Ordering and completion of TLB maintenance instructions on page D5-2831.

• Data Synchronization Barrier (DSB) on page E2-4301.

• Overview of memory region attributes for stage 1 translations on page G5-6319.

• Ordering and completion of TLB maintenance instructions on page G5-6339.

FEAT_PMUv3p7, Armv8.7 PMU extensions

FEAT_PMUv3p7 adds the following features to the Performance Monitors Extension:

• PMU counters can be frozen when an event counter has an unsigned overflow.

• Event counters can be prohibited from counting events at EL3 without affecting the rest of
Secure state.

• The cycle counter can be prohibited from counting cycles at EL3 without affecting the rest
of Secure state.

This feature is supported in both AArch64 and AArch32 states.

The Performance Monitors Extension is an OPTIONAL feature, but if it is implemented, an Armv8.7
implementation must include FEAT_PMUv3p7.

The fields that identify the presence of FEAT_PMUv3p7 are:

• ID_AA64DFR0_EL1.PMUVer.

• ID_DFR0_EL1.PerfMon.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-105
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.10 The Armv8.7 architecture extension
• ID_DFR0.PerfMon.

• EDDFR.PMUVer.

For more information, see:

• Controlling the PMU counters on page D7-2859.

• Freezing event counters on page D7-2860.

• Common microarchitectural events on page D7-2884.

• PMMIR_EL1, Performance Monitors Machine Identification Register on page D13-3974.

FEAT_SPEv1p2, Armv8.7 SPE features

FEAT_SPEv1p2 adds the following features to the Statistical Profiling Extension, FEAT_SPE:

• Adds an inverse event filter control.

• Adds controls to freeze the PMU event counters after an SPE buffer management event
occurs.

• Adds a discard mode that allows all SPE data to be discarded rather than written to memory.

This feature is mandatory from Armv8.7 when FEAT_SPE is implemented.

This feature is supported in AArch64 state.

FEAT_SPEv1p2 optionally enables support for a packet for each taken branch that provides the
target address for the previous taken branch.

ID_AA64DFR0_EL1.PMSVer identifies the presence of FEAT_SPEv1p2.

If FEAT_SPEv1p2 is implemented, PMSIDR_EL1.PBT indicates support for the previous branch
target packet.

For more information, see:

• Freezing event counters on page D7-2860.

• Common event numbers on page D7-2876.

• Filtering sample records on page D9-2956.

• Last branch target on page D9-2959.

• About the Statistical Profiling Extension Sample Records on page D10-2980.

• Address packet on page D10-2983.

A2.10.2 Additional requirements of Armv8.7

The Armv8.7 architecture includes some mandatory changes that are not associated with a feature. These are:

FEAT_ETS, Enhanced Translation Synchronization

All implementations of the Armv8.7 architecture are required to implement FEAT_ETS.

For more information, see FEAT_ETS on page A2-70.

A2.10.3 Features added to earlier extensions

The features that have been added to earlier architectural extensions are:

• FEAT_PAN3 on page A2-77.

• FEAT_MTE3 on page A2-99
A2-106 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.11 The Performance Monitors Extension
A2.11 The Performance Monitors Extension
The Performance Monitors Extension, FEAT_PMUv3, is an OPTIONAL extension but Arm strongly recommends
that Armv8-A implementations include version 3 of the Performance Monitors Extension.

ID_AA64DFR0_EL1.PMUVer indicates whether the Performance Monitors Extension is implemented.

For more information, see Chapter D7 The Performance Monitors Extension.

Armv8.1 introduces the following architectural feature to the Performance Monitors Extension:

• FEAT_PMUv3p1.

Armv8.4 introduces the following architectural feature to the Performance Monitors Extension:

• FEAT_PMUv3p4.

Armv8.5 introduces the following architectural feature to the Performance Monitors Extension:

• FEAT_PMUv3p5.

Armv8.6 introduces the following architectural feature to the Performance Monitors Extension:

• FEAT_MTPMU.

Armv8.7 introduces the following architectural feature to the Performance Monitors Extension:

• FEAT_PMUv3p7.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-107
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.12 The Reliability, Availability, and Serviceability Extension
A2.12 The Reliability, Availability, and Serviceability Extension

The RAS Extension, FEAT_RAS, is a mandatory extension to the Armv8.2 architecture, and an OPTIONAL extension
to the Armv8.0 and the Armv8.1 architectures.

The RAS Extension improves the dependability of a system by providing:

• Reliability, that is, the continuity of correct service.

• Availability, that is, the readiness for correct service.

• Serviceability, that is, the ability to undergo modifications and repairs.

ID_AA64PFR0_EL1.RAS in AArch64 state, and ID_PFR0.RAS in AArch32 state, indicate whether the RAS
Extension is implemented.

The RAS Extension introduces a barrier instruction, the Error Synchronization Barrier (ESB), to the A32, T32, and
A64 instruction sets.

System registers introduced by the RAS Extension are described in:

• For AArch64, RAS registers on page D13-4091.

• For AArch32, RAS registers on page G8-7192.

In addition, the RAS Extension introduces a number of memory-mapped registers. These are described in the Arm®
Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the Armv8-A architecture profile.

Armv8.2 introduces the following architectural features to the RAS Extension:

• FEAT_IESB.

Armv8.4 introduces the following architectural features to the RAS Extension:

• FEAT_RASv1p1.

• FEAT_DoubleFault.
A2-108 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.13 The Statistical Profiling Extension (SPE)
A2.13 The Statistical Profiling Extension (SPE)

The Statistical Profiling Extension, FEAT_SPE, is an OPTIONAL extension introduced by the Armv8.2 architecture.
Implementation of the Statistical Profiling Extension requires implementation of at least Armv8.1 of the Armv8-A
architecture profile. The Statistical Profiling Extension is supported only in AArch64 state.

The Statistical Profiling Extension provides a non-invasive method of sampling software and hardware using
randomized sampling of either architectural instructions, as defined by the instruction set architecture, or by
microarchitectural operations.

ID_AA64DFR0_EL1.PMSVer indicates whether the Statistical Profiling Extension is implemented.

For more information, see Chapter D9 The Statistical Profiling Extension.

Armv8.3 introduces the following architectural feature to the SPE:

• FEAT_SPEv1p1.

Armv8.7 introduces the following architectural feature to the SPE:

• FEAT_SPEv1p2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-109
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.14 The Scalable Vector Extension (SVE)
A2.14 The Scalable Vector Extension (SVE)

The Scalable Vector Extension, FEAT_SVE, is an OPTIONAL extension introduced by the Armv8.2 architecture.
SVE is supported in AArch64 state only.

The Scalable Vector Extension provides vector instructions that, primarily, support wider vectors than the Arm
Advanced SIMD instruction set. The Arm® Architecture Reference Manual Supplement, The Scalable Vector
Extension (SVE), for Armv8-A describes the SVE.

ID_AA64PFR0_EL1.SVE indicates whether the Scalable Vector Extension is implemented.

The Scalable Vector Extension affects some AArch64 System registers, and those register changes are included in
this issue of this Manual, where they are identified as SVE features. SVE also introduces AArch64 System registers,
but these do not appear in this manual. For more information about the System registers introduced by SVE, see the
Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

The SVE and Advanced SIMD events are documented in Chapter D7 The Performance Monitors Extension.

The Scalable Vector Extension introduces the following System registers:

• ID_AA64ZFR0_EL1.

• ZCR_EL1, and an EL2 alias of this register, ZCR_EL12.

• ZCR_EL2.

• ZCR_EL3.

The Scalable Vector Extension modifies the following existing System registers:

• CPACR_EL1.

• CPTR_EL2.

• CPTR_EL3.

• ESR_ELx.

• ID_AA64PFR0_EL1.

• TCR_EL1.

• TCR_EL2.
A2-110 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8-A Architecture Extensions
A2.15 The Activity Monitors Extension (AMU)
A2.15 The Activity Monitors Extension (AMU)

The Activity Monitors Extension is an OPTIONAL extension introduced by the Armv8.4 architecture. AMU is
supported in AArch64 and AArch32 states.

The Activity Monitors Extension implements version 1 of the Activity Monitors architecture, FEAT_AMUv1,
which provides a function similar to a subset of the existing Performance Monitors Extension functionality, intended
for system management use rather than debugging and profiling.

The Activity Monitors Extension implements a System register interface to the Activity Monitors registers, and
supports an optional external memory-mapped interface.

The fields that identify the presence of the Activity Monitors Extension are:

• ID_AA64PFR0_EL1.AMU.

• ID_PFR0_EL1.AMU.

• ID_PFR0.AMU.

• EDPFR.AMU.

For more information, see Chapter D8 The Activity Monitors Extension.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-111
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.16 The Memory Partitioning and Monitoring (MPAM) Extension
A2.16 The Memory Partitioning and Monitoring (MPAM) Extension

The MPAM Extension, FEAT_MPAM, is an OPTIONAL extension introduced by the Armv8.4 architecture and
requires implementation of at least Armv8.2 of the Armv8-A architecture profile. MPAM is supported in AArch64
state only.

The MPAM Extension provides a framework for memory-system component controls that partition one or more of
the performance resources of the component.

The fields that identify the presence of the MPAM Extension are:

• ID_AA64PFR0_EL1.MPAM.

• EDPFR.MPAM.

For more information, see ARM® Architecture Reference Manual Supplement, Memory System Resource
Partitioning and Monitoring (MPAM), for ARMv8-A.
A2-112 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Part B
The AArch64 Application Level Architecture

Chapter B1
The AArch64 Application Level Programmers’ Model

• About the Application level programmers’ model on page B1-116.

• Registers in AArch64 Execution state on page B1-117.

• Software control features and EL0 on page B1-122.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B1-115
ID072021 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.1 About the Application level programmers’ model
B1.1 About the Application level programmers’ model

This chapter contains the programmers’ model information required for application development.

The information in this chapter is distinct from the system information required to service and support application
execution under an operating system, or higher level of system software. However, some knowledge of the system
information is needed to put the Application level programmers' model into context.

Depending on the implementation choices, the architecture supports multiple levels of execution privilege,
indicated by different Exception levels that number upwards from EL0 to EL3. EL0 corresponds to the lowest
privilege level and is often described as unprivileged. The Application level programmers’ model is the
programmers’ model for software executing at EL0. For more information see Exception levels on page D1-2454.

System software determines the Exception level, and therefore the level of privilege, at which software runs. When
an operating system supports execution at both EL1 and EL0, an application usually runs unprivileged at EL0. This:

• Permits the operating system to allocate system resources to an application in a unique or shared manner.

• Provides a degree of protection from other processes, and so helps protect the operating system from
malfunctioning software.

This chapter indicates where some system level understanding is necessary, and where relevant it gives a reference
to the system level description.

Execution at any Exception level above EL0 is often referred to as privileged execution.

For more information on the system level view of the architecture refer to Chapter D1 The AArch64 System Level
Programmers’ Model.
B1-116 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state
B1.2 Registers in AArch64 Execution state

This section describes the registers and process state visible at EL0 when executing in the AArch64 state. It includes
the following:

• Registers in AArch64 state on page B1-117

• Process state, PSTATE on page B1-118

• System registers on page B1-120

B1.2.1 Registers in AArch64 state

In the AArch64 application level view, an Arm processing element has:

R0-R30 31 general-purpose registers, R0 to R30. Each register can be accessed as:

• A 64-bit general-purpose register named X0 to X30.

• A 32-bit general-purpose register named W0 to W30.

See the register name mapping in Figure B1-1 on page B1-117.

Figure B1-1 General-purpose register naming

The X30 general-purpose register is used as the procedure call link register.

Note

In instruction encodings, the value 0b11111 (31) is used to indicate the ZR (zero register). This
indicates that the argument takes the value zero, but does not indicate that the ZR is implemented
as a physical register.

SP A 64-bit dedicated Stack Pointer register. The least significant 32 bits of the stack pointer can be
accessed using the register name WSP.

The use of SP as an operand in an instruction, indicates the use of the current stack pointer.

Note

Stack pointer alignment to a 16-byte boundary is configurable at EL1. For more information see the
Procedure Call Standard for the Arm 64-bit Architecture.

PC A 64-bit Program Counter holding the address of the current instruction.

Software cannot write directly to the PC. It can only be updated on a branch, exception entry or
exception return.

Note
Attempting to execute an A64 instruction that is not word-aligned generates a PC alignment fault,
see PC alignment checking on page D1-2469.

V0-V31 32 SIMD&FP registers, V0 to V31. Each register can be accessed as:

• A 128-bit register named Q0 to Q31.

• A 64-bit register named D0 to D31.

• A 32-bit register named S0 to S31.

• A 16-bit register named H0 to H31.

• An 8-bit register named B0 to B31.

• A 128-bit vector of elements.

63 32 31 0

Rn

Wn
Xn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B1-117
ID072021 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state
• A 64-bit vector of elements.

Where the number of bits described by a register name does not occupy an entire SIMD&FP
register, it refers to the least significant bits. See Figure B1-2 on page B1-118.

Figure B1-2 SIMD and floating-point register naming

For more information about data types and vector formats, see Supported data types on page A1-40.

FPCR, FPSR Two SIMD and floating-point control and status registers, FPCR and FPSR.

See Registers for instruction processing and exception handling on page D1-2463 for more information on the
registers.

Pseudocode description of registers in AArch64 state

In the pseudocode functions that access registers:

• The assignment form is used for register writes.

• The non-assignment for register reads.

The uses of the X[] function are:

• Reading or writing X0-X30, using n to index the required register.

• Reading the zero register ZR, accessed as X[31].

Note

The pseudocode use of X[31] to represent the zero register does not indicate that hardware must implement this
register.

The AArch64 SP[] function is used to read or write the current SP.

The AArch64 PC[] function is used to read the PC.

The AArch64 V[] function is used to read or write the Advanced SIMD and floating-point registers V0-V31, using
a parameter n to index the required register.

The AArch64 Vpart[] function is used to read or write a part of one of V0-V31, using a parameter n to index the
required register, and a parameter part to indicate the required part of the register, see the function description for
more information.

The SP[], PC[], V[], and Vpart[] functions are defined in Chapter J1 Armv8 Pseudocode.

B1.2.2 Process state, PSTATE

Process state or PSTATE is an abstraction of process state information. All of the instruction sets provide
instructions that operate on elements of PSTATE.

127 64 63 16 1532 31 7 08

Vn

Bn
Hn

Sn
Dn

Qn
B1-118 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state
The following PSTATE information is accessible at EL0:

The Condition flags

Flag-setting instructions set these. They are:

N Negative Condition flag. If the result of the instruction is regarded as a two's
complement signed integer, the PE sets this to:

• 1 if the result is negative.

• 0 if the result is positive or zero.

Z Zero Condition flag. Set to:

• 1 if the result of the instruction is zero.

• 0 otherwise.

A result of zero often indicates an equal result from a comparison.

C Carry Condition flag. Set to:

• 1 if the instruction results in a carry condition, for example an unsigned overflow
that is the result of an addition.

• 0 otherwise.

V Overflow Condition flag. Set to:

• 1 if the instruction results in an overflow condition, for example a signed
overflow that is the result of an addition.

• 0 otherwise.

Conditional instructions test the N, Z, C and V Condition flags, combining them with the Condition
code for the instruction to determine whether the instruction must be executed. In this way,
execution of the instruction is conditional on the result of a previous operation. For more
information about conditional execution, see Condition flags and related instructions on
page C6-873.

The exception masking bits

D Debug exception mask bit. When EL0 is enabled to modify the mask bits, this bit is
visible and can be modified. However, this bit is architecturally ignored at EL0.

A SError interrupt mask bit.

I IRQ interrupt mask bit.

F FIQ interrupt mask bit.

For each bit, the values are:

0 Exception not masked.

1 Exception masked.

Access at EL0 using AArch64 state depends on SCTLR_EL1.UMA. See Traps to EL1 of EL0
accesses to the PSTATE.{D, A, I, F} interrupt masks on page D1-2514.

See Process state, PSTATE on page D1-2466 for the system level view of PSTATE.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B1-119
ID072021 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state
Accessing PSTATE fields at EL0

At EL0 using AArch64 state, PSTATE fields can be accessed using Special-purpose registers that can be directly
read using the MRS instruction and directly written using the MSR (register) instructions. Table B1-1 on
page B1-120 shows the Special-purpose registers that access the PSTATE fields that hold AArch64 state when the
PE is at EL0 using AArch64. All other PSTATE fields do not have direct read and write access at EL0.

Software can also use the MSR (immediate) instruction to directly write to PSTATE.{D, A, I, F}. Table B1-2 on
page B1-120 shows the MSR (immediate) operands that can directly write to PSTATE.{D, A, I, F} when the PE is
at EL0 using AArch64 state.

However, access to the PSTATE.{D, A, I, F} fields at EL0 using AArch64 state depends on SCTLR_EL1.UMA.
Traps to EL1 of EL0 accesses to the PSTATE.{D, A, I, F} interrupt masks on page D1-2514.

Writes to the PSTATE fields have side-effects on various aspects of the PE operation. All of these side-effects, are
guaranteed:

• Not to be visible to earlier instructions in the execution stream.

• To be visible to later instructions in the execution stream.

B1.2.3 System registers

System registers provide support for execution control, status and general system configuration. The majority of the
System registers are not accessible at EL0.

However, some System registers can be configured to allow access from software executing at EL0. Any access
from EL0 to a System register with the access right disabled causes the instruction to behave as UNDEFINED. The
registers that can be accessed from EL0 are:

Cache ID registers The CTR_EL0 and DCZID_EL0 registers provide implementation parameters for EL0
cache management support.

Debug registers A Debug Communications Channel is supported by the MDCCSR_EL0, DBGDTR_EL0,
DBGDTRRX_EL0 and DBGDTRTX_EL0 registers.

Performance Monitors registers

The Performance Monitors Extension provides counters and configuration registers.
Software executing at EL1 or a higher Exception level can configure some of these registers
to be accessible at EL0.

For more details, see Chapter D7 The Performance Monitors Extension.

Activity Monitors registers

The Activity Monitors Extension provides counters and configuration registers. Software
executing at EL1 or a higher Exception level can configure these registers to be accessible
at EL0.

Table B1-1 Accessing PSTATE fields at EL0 using MRS and MSR (register)

Special-purpose register PSTATE fields

NZCV N, Z, C, V

DAIF D, A, I, F

Table B1-2 Accessing PSTATE.{D, A, I, F} at EL0 using MSR (immediate)

Operand PSTATE fields Notes

DAIFSet D, A, I, F Directly sets any of the PSTATE.{D,A, I, F} bits to 1

DAIFClr D, A, I, F Directly clears any of the PSTATE.{D, A, I, F} bits to 0
B1-120 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state
For more details, see Chapter D8 The Activity Monitors Extension.

Thread ID registers The TPIDR_EL0 and TPIDRRO_EL0 registers are two thread ID registers with different
access rights.

Timer registers In Armv8 the following operations are performed:

• Read access to the system counter clock frequency using CNTFRQ_EL0.

• Physical and virtual timer count registers, CNTPCT_EL0 and CNTVCT_EL0.

• Physical up-count comparison, down-count value and timer control registers,
CNTP_CVAL_EL0, CNTP_TVAL_EL0, and CNTP_CTL_EL0.

• Virtual up-count comparison, down-count value and timer control registers,
CNTV_CVAL_EL0, CNTV_TVAL_EL0, and CNTV_CTL_EL0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B1-121
ID072021 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.3 Software control features and EL0
B1.3 Software control features and EL0

The following sections describe the EL0 view of the Armv8 software control features:

• Exception handling on page B1-122

• Wait for Interrupt and Wait for Event on page B1-122

• The YIELD instruction on page B1-122

• Application level cache management on page B1-123

• Instructions relating to Debug on page B1-123

• About PSTATE.DIT on page B1-123

B1.3.1 Exception handling

In the Arm architecture, an exception causes a change of program flow. Execution of an exception handler starts, at
an Exception level higher than EL0, from a defined vector that relates to the exception taken.

Exceptions include:

• Interrupts.

• Memory system aborts.

• Exceptions generated by attempting to execute an instruction that is UNDEFINED.

• System calls.

• Secure monitor or Hypervisor traps.

• Debug exceptions.

Most details of exception handling are not visible to application level software, and are described in Chapter D1 The
AArch64 System Level Programmers’ Model.

The SVC instruction causes a Supervisor Call exception. This provides a mechanism for unprivileged software to
make a system call to an operating system.

The BRK instruction generates a Breakpoint Instruction exception. This provides a mechanism for debugging
software using debugger executing on the same PE, see Breakpoint Instruction exceptions on page D2-2577.

Note

The BRK instruction is supported only in the A64 instruction set. The equivalent instruction in the T32 and A32
instruction sets is BKPT.

B1.3.2 Wait for Interrupt and Wait for Event

Issuing a WFI instruction indicates that no further execution is required until a WFI wake-up event occurs, see Wait
For Interrupt on page D1-2540. This permits entry to a low-power state.

Issuing a WFE instruction indicates that no further execution is required until a WFE wake-up event occurs, see Wait
for Event mechanism and Send event on page D1-2536. This permits entry to a low-power state.

B1.3.3 The YIELD instruction

The YIELD instruction provides a hint that the task performed by a thread is of low importance so that it could yield,
see YIELD on page C6-1519. This mechanism can be used to improve overall performance in a Symmetric
Multithreading (SMT) or Symmetric Multiprocessing (SMP) system.

Examples of when the YIELD instruction might be used include a thread that is sitting in a spin-lock, or where the
arbitration priority of the snoop bit in an SMP system is modified. The YIELD instruction permits binary
compatibility between SMT and SMP systems.

The YIELD instruction is a NOP hint instruction.
B1-122 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Programmers’ Model
B1.3 Software control features and EL0
The YIELD instruction has no effect in a single-threaded system, but developers of such systems can use the
instruction to flag its intended use for future migration to a multiprocessor or multithreading system. Operating
systems can use YIELD in places where a yield hint is wanted, knowing that it will be treated as a NOP if there is no
implementation benefit.

B1.3.4 Application level cache management

A small number of cache management instructions can be enabled at EL0 from higher levels of privilege using the
SCTLR_EL1 System register. Any access from EL0 to an operation with the access right disabled causes the
instruction to behave as UNDEFINED.

About the available operations, see Application level access to functionality related to caches on page B2-156.

B1.3.5 Instructions relating to Debug

Exception handling on page B1-122 refers to the BRK instruction, which generates a Breakpoint Instruction
exception. In addition, in both AArch64 state and AArch32 state, the HLT instruction causes the PE to halt execution
and enter Debug state. This provides a mechanism for debugging software using a debugger that is external to the
PE, see Chapter H1 About External Debug.

Note

In AArch32 state, previous versions of the architecture defined the DBG instruction, that could provide a hint to the
debug system. In Armv8, this instruction executes as a NOP. Arm deprecates the use of the DBG instruction.

B1.3.6 About PSTATE.DIT

When the value of PSTATE.DIT is 1:

• The instructions listed in DIT are required to have;

— Timing which is independent of the values of the data supplied in any of its registers, and the values
of the NZCV flags.

— Responses to asynchronous exceptions which do not vary based on the values supplied in any of their
registers, or the values of the NZCV flags.

• All loads and stores must have their timing insensitive to the value of the data being loaded or stored.

Note

• The use of value prediction for load data values when PSTATE.DIT is set, is not compatible with the
requirement that the timing is insensitive to the data value being loaded.

• Arm recommends that the FEAT_PAuth instructions do not have their timing dependent on the key value
used in the pointer authentication, regardless of the PSTATE.DIT bit.

• When the value of PSTATE.DIT is 0, the architecture makes no statement about the timing properties of any
instructions. However, it is likely that these instructions have timing that is invariant of the data in many
situations.

A corresponding DIT bit is added to PSTATE in AArch64 state, and to CPSR in AArch32 state.

On an exception that is taken from AArch64 state to AArch64 state, PSTATE.DIT is copied to SPSR_ELx.DIT.

On an exception that is taken from AArch32 state to AArch64 state, CPSR.DIT is copied to SPSR_ELx.DIT.

On an exception return from AArch64 state:

• SPSR_ELx.DIT is copied to PSTATE.DIT, when the target Exception level is in AArch64 state.

• SPSR_ELx.DIT is copied to CPSR.DIT, when the target Exception level is in AArch32 state.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B1-123
ID072021 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.3 Software control features and EL0
PSTATE.DIT can be written and read at all Exception levels.

Note
• PSTATE.DIT is unchanged on entry into Debug state.

• PSTATE.DIT is not guaranteed to have any effect in Debug state.
B1-124 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter B2
The AArch64 Application Level Memory Model

This chapter gives an application level view of the memory model. It contains the following sections:

• About the Arm memory model on page B2-126.

• Atomicity in the Arm architecture on page B2-128.

• Definition of the Armv8 memory model on page B2-133.

• Caches and memory hierarchy on page B2-155.

• Alignment support on page B2-160.

• Endian support on page B2-162.

• Memory types and attributes on page B2-165.

• Mismatched memory attributes on page B2-176.

• Synchronization and semaphores on page B2-179.

Note

In this chapter, System register names usually link to the description of the register in Chapter D13 AArch64 System
Register Descriptions, for example. SCTLR_EL1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-125
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.1 About the Arm memory model
B2.1 About the Arm memory model

The Arm architecture is a weakly ordered memory architecture that permits the observation and completion of
memory accesses in a different order from the program order. The following sections of this chapter provide the
complete definition of the Armv8 memory model, this introduction is not intended to contradict the definition found
in those sections. In general, the basic principles of the Armv8 memory model are:

• To provide a memory model that has similar weaknesses to those found in the memory models used by
high-level programming languages such as C or Java. For example, by permitting independent memory
accesses to be reordered as seen by other observers.

• To avoid the requirement for multi-copy atomicity in the majority of memory types.

• The provision of instructions and memory barriers to compensate for the lack of multi-copy atomicity in the
cases where it would be needed.

• The use of address, data, and control dependencies in the creation of order so as to avoid having excessive
numbers of barriers or other explicit instructions in common situations where some order is required by the
programmer or the compiler.

• If FEAT_MTE2 is implemented, the definitions of the memory model which apply to data accesses and data
apply to Allocation Tag accesses and Allocation tags.

This section contains:

• Address space on page B2-126.

• Memory type overview on page B2-126.

B2.1.1 Address space

Address calculations are performed using 64-bit registers. However, supervisory software can configure the top
eight address bits for use as a tag, as described in Address tagging in AArch64 state on page D5-2676. If this is done,
address bits[63:56]:

• Are not considered when determining whether the address is valid.

• Are never propagated to the program counter.

Supervisory software determines the valid address range. Attempting to access an address that is not valid generates
an MMU fault.

Simple sequential execution of instructions might overflow the valid address range. For more information, see
Virtual address space overflow on page D4-2635.

Memory accesses use the Mem[] function. This function makes an access of the required type. If supervisory software
configures the top eight address bits for use as a tag, the top eight address bits are ignored.

The AccType{} enumeration defines the different access types.

Note

• Chapter D4 The AArch64 System Level Memory Model and Chapter D5 The AArch64 Virtual Memory System
Architecture include descriptions of memory system features that are transparent to the application, including
memory access, address translation, memory maintenance instructions, and alignment checking and the
associated fault handling. These chapters also include pseudocode descriptions of these operations.

• For information on the pseudocode that relates to memory accesses, see Basic memory access on
page D4-2669, Unaligned memory access on page D4-2669, and Aligned memory access on page D4-2669.

B2.1.2 Memory type overview

Armv8 provides the following mutually-exclusive memory types:

Normal This is generally used for bulk memory operations, both read/write and read-only operations.
B2-126 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.1 About the Arm memory model
Device The Arm architecture forbids Speculative reads of any type of Device memory. This means Device
memory types are suitable attributes for read-sensitive Locations.

Locations of the memory map that are assigned to peripherals are usually assigned the Device
memory attribute.

Device memory has additional attributes that have the following effects:

• They prevent aggregation of reads and writes, maintaining the number and size of the
specified memory accesses. See Gathering on page B2-171.

• They preserve the access order and synchronization requirements for accesses to a single
peripheral. See Reordering on page B2-172.

• They indicate whether a write can be acknowledged other than at the end point. See Early
Write Acknowledgement on page B2-173.

For more information on Normal memory and Device memory, see Memory types and attributes on page B2-165.

Note

Earlier versions of the Arm architecture defined a single Device memory type and a Strongly-ordered memory type.
A Note in Device memory on page B2-169 describes how these memory types map onto the Armv8 memory types.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-127
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.2 Atomicity in the Arm architecture
B2.2 Atomicity in the Arm architecture

Atomicity is a feature of memory accesses, described as atomic accesses. The Arm architecture description refers to
two types of atomicity, single-copy atomicity and multi-copy atomicity. In the Armv8 architecture, the atomicity
requirements for memory accesses depend on the memory type, and whether the access is explicit or implicit. For
more information, see:

• Requirements for single-copy atomicity on page B2-128.

• Properties of single-copy atomic accesses on page B2-130.

• Multi-copy atomicity on page B2-130.

• Requirements for multi-copy atomicity on page B2-130.

• Concurrent modification and execution of instructions on page B2-130.

For more information about the memory types, see Memory type overview on page B2-126.

B2.2.1 Requirements for single-copy atomicity

For explicit memory effects generated from an Exception level the following rules apply:

• A read that is generated by a load instruction that loads a single general-purpose register and is aligned to the
size of the read in the instruction is single-copy atomic.

• A write that is generated by a store instruction that stores a single general-purpose register and is aligned to
the size of the write in the instruction is single-copy atomic.

• Reads that are generated by a Load Pair instruction that loads two general-purpose registers and are aligned
to the size of the load to each register are treated as two single-copy atomic reads, one for each register being
loaded.

• Writes that are generated by a Store pair instruction that stores two general-purpose registers and are aligned
to the size of the store of each register are treated as two single-copy atomic writes, one for each register being
stored.

• Load-Exclusive Pair instructions of two 32-bit quantities and Store-Exclusive Pair instructions of 32-bit
quantities are single-copy atomic.

• When the Store-Exclusive of a Load-Exclusive/Store-Exclusive pair instruction using two 64-bit quantities
succeeds, it causes a single-copy atomic update of the entire memory location being updated.

Note

To atomically load two 64-bit quantities, perform a Load-Exclusive pair/Store-Exclusive pair sequence of
reading and writing the same value for which the Store-Exclusive pair succeeds, and use the read values from
the Load-Exclusive pair.

• Where translation table walks generate a read of a translation table entry, this read is single-copy atomic.

• For the atomicity of instruction fetches, see Concurrent modification and execution of instructions on
page B2-130.

• Reads to SIMD and floating-point registers of a single 64-bit or smaller quantity that is aligned to the size of
the quantity being loaded are treated as single-copy atomic reads.

• Writes from SIMD and floating-point registers of a single 64-bit or smaller quantity that is aligned to the size
of the quantity being stored are treated as single-copy atomic writes.

• Element or Structure Reads to SIMD and floating-point registers of 64-bit or smaller elements, where each
element is aligned to the size of the element being loaded, have each element treated as a single-copy atomic
read.

• Element or Structure Writes from SIMD and floating-point registers of 64-bit or smaller elements, where
each element is aligned to the size of the element being stored, have each element treated as a single-copy
atomic store.
B2-128 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.2 Atomicity in the Arm architecture
• Reads to SIMD and floating-point registers of a 128-bit value that is 64-bit aligned in memory are treated as
a pair of single-copy atomic 64-bit reads.

• Writes from SIMD and floating-point registers of a 128-bit value that is 64-bit aligned in memory are treated
as a pair of single-copy atomic 64-bit writes.

• When FEAT_LS64 is implemented, a single-copy atomic load of a 64-byte value that is 64-byte aligned in
memory is treated as an atomic 64-byte read from the target address.

• When FEAT_LS64 is implemented, a single-copy atomic store of a 64-byte value that is 64-byte aligned in
memory is treated as an atomic 64-byte write to the target address.

• For unaligned memory accesses, the single-copy atomicity is described in Alignment of data accesses on
page B2-160.

• The reads and writes of the two words or two double-words accessed by CASP instructions are single-copy
atomic at the size of the two words or double-words.

All other memory accesses are regarded as streams of accesses to bytes, and no atomicity between accesses to
different bytes is ensured by the architecture.

All accesses to any byte are single-copy atomic.

Note

In AArch64 state, no memory accesses from a DC ZVA have single-copy atomicity of any quantity greater than
individual bytes.

If, according to these rules, an instruction is executed as a sequence of accesses, exceptions, including interrupts,
can be taken during that sequence, regardless of the memory type being accessed. If any of these exceptions are
returned from using their preferred return address, the instruction that generated the sequence of accesses is
re-executed, and so any access performed before the exception was taken is repeated. See also Taking an interrupt
or other exception during a multi-access load or store on page D1-2509.

Note

The exception behavior for these multiple access instructions means that they are not suitable for use for writes to
memory for the purpose of software synchronization.

Changes to single-copy atomicity in Armv8.4

Instructions that are introduced in FEAT_LRCPC are single-copy atomic when the following conditions are true:

• All bytes being accessed are within the same 16-byte quantity aligned to 16 bytes.

• Accesses are to Inner Write-Back, Outer Write-Back Normal cacheable memory.

Otherwise it is IMPLEMENTATION DEFINED whether they are single-copy atomic.

If FEAT_LSE2 is implemented, all loads and stores are single-copy atomic when the following conditions are true:

• Accesses are unaligned to their data size but are aligned within a 16-byte quantity that is aligned to 16 bytes.

• Accesses are to Inner Write-Back, Outer Write-Back Normal cacheable memory.

Otherwise it is IMPLEMENTATION DEFINED whether loads and stores are single-copy atomic.

If FEAT_LSE2 is implemented, LDP, LDNP, and STP instructions that load or store two 64-bit registers are single-copy
atomic when the following conditions are true:

• The overall memory access is aligned to 16 bytes.

• Accesses are to Inner Write-Back, Outer Write-Back Normal cacheable memory.

If FEAT_LSE2 is implemented, LDP, LDNP, and STP instructions that access fewer than 16 bytes are single-copy
atomic when the following conditions are true:

• All bytes being accessed are within a 16-byte quantity aligned to 16 bytes.

• Accesses are to Inner Write-Back, Outer Write-Back Normal cacheable memory.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-129
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.2 Atomicity in the Arm architecture
Otherwise it is IMPLEMENTATION DEFINED whether LDP, LDNP, or STP instructions that access fewer than 16 bytes are
single-copy atomic.

B2.2.2 Properties of single-copy atomic accesses

A memory access instruction that is single-copy atomic has the following properties:

1. For a pair of overlapping single-copy atomic store instructions, all of the overlapping writes generated by one
of the stores are Coherence-after the corresponding overlapping writes generated by the other store.

2. For a single-copy atomic load instruction L1 that overlaps a single-copy atomic store instruction S2, if one of
the overlapping reads generated by L1 Reads-from one of the overlapping writes generated by S2, then none
of the overlapping writes generated by S2 are Coherence-after the corresponding overlapping reads generated
by L1.

For more information, see Definition of the Armv8 memory model on page B2-133.

B2.2.3 Multi-copy atomicity

In a multiprocessing system, writes to a memory location are multi-copy atomic if the following conditions are both
true:

• All writes to the same location are serialized, meaning they are observed in the same order by all observers,
although some observers might not observe all of the writes.

• A read of a location does not return the value of a write until all observers observe that write.

Note

Writes that are not coherent are not multi-copy atomic.

B2.2.4 Requirements for multi-copy atomicity

For Normal memory, writes are not required to be multi-copy atomic.

For Device memory, writes are not required to be multi-copy atomic.

The Armv8 memory model is Other-multi-copy atomic. For more information, see External ordering constraints
on page B2-139.

B2.2.5 Concurrent modification and execution of instructions

The Armv8 architecture limits the set of instructions that can be executed by one thread of execution as they are
being modified by another thread of execution without requiring explicit synchronization.

Concurrent modification and execution of instructions can lead to the resulting instruction performing any behavior
that can be achieved by executing any sequence of instructions that can be executed from the same Exception level,
except where each of the instruction before modification and the instruction after modification is one of a B, B.cond,
BL, BRK, CBNZ, CBZ, HVC, ISB, NOP, SMC, SVC, TBNZ or TBZ instruction.

For the B, B.cond, BL, BRK, CBNZ, CBZ, HVC, ISB, NOP, SMC, SVC, TBNZ and TBZ instructions, the architecture guarantees
that after modification of the instruction, behavior is consistent with execution of either:

• The instruction originally fetched.

• A fetch of the modified instruction.

For all other instructions, to avoid UNPREDICTABLE or CONSTRAINED UNPREDICTABLE behavior, instruction
modifications must be explicitly synchronized before they are executed. The required synchronization is as follows:

1. No PE must be executing an instruction when another PE is modifying that instruction.

2. To ensure that the modified instructions are observable, a PE that is writing the instructions must issue the
following sequence of instructions and operations:
B2-130 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.2 Atomicity in the Arm architecture
; Coherency example for data and instruction accesses within the same Inner Shareable domain.
; enter this code with <Wt> containing a new 32-bit instruction,
; to be held in Cacheable space at a location pointed to by Xn.

STR Wt, [Xn]
DC CVAU, Xn ; Clean data cache by VA to point of unification (PoU)
DSB ISH ; Ensure visibility of the data cleaned from cache
IC IVAU, Xn ; Invalidate instruction cache by VA to PoU
DSB ISH

Note
• The DC CVAU operation is not required if the area of memory is either Non-cacheable or Write-Through

Cacheable.

• If the contents of physical memory differ between the mappings, changing the mapping of VAs to PAs
can cause the instructions to be concurrently modified by one PE and executed by another PE. If the
modifications affect instructions other than those listed as being acceptable for modification,
synchronization must be used to avoid UNPREDICTABLE or CONSTRAINED UNPREDICTABLE behavior.

3. In a multiprocessor system, the IC IVAU is broadcast to all PEs within the Inner Shareable domain of the PE
running this sequence. However, when the modified instructions are observable, each PE that is executing
the modified instructions must issue the following instruction to ensure execution of the modified
instructions:

 ISB ; Synchronize fetched instruction stream

For more information about the required synchronization operation, see Synchronization and coherency issues
between data and instruction accesses on page B2-158.

For information about memory accesses caused by instruction fetches, see Ordering relations on page B2-137.

B2.2.6 Possible implementation restrictions on using atomic instructions

In some implementations, and for some memory types, the properties of atomicity can be met only by functionality
outside the PE. Some system implementations might not support atomic instructions for all regions of the memory.
In particular, this can apply to:

• Any type of memory in the system that does not support hardware cache coherency.

• Device, Non-cacheable memory, or memory that is treated as Non-cacheable, in an implementation that does
support hardware cache coherency.

In such implementations, it is defined by the system:

• Whether the atomic instructions are atomic in regard to other agents that access memory.

• If the atomic instructions are atomic in regard to other agents that access memory, which address ranges or
memory types this applies to.

An implementation can choose which memory type is treated as Non-cacheable.

The memory types for which it is architecturally guaranteed that the atomic instructions will be atomic are:

• Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

• Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

The architecture only requires that Conventional memory that is mapped in this way supports this functionality.

If the atomic instructions are not atomic in regard to other agents that access memory, then performing an atomic
instruction to such a location can have one or more of the following effects:

• The instruction generates a synchronous External abort.

• The instruction generates a System Error interrupt.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-131
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.2 Atomicity in the Arm architecture
• The instruction generates an IMPLEMENTATION DEFINED MMU fault reported using the Data Abort Fault
status code of ESR_ELx.DFSC = 110101.

For the EL1&0 translation regime, if the atomic instruction is not supported because of the memory type that
is defined in the first stage of translation, or the second stage of translation is not enabled, then this exception
is a first stage abort and is taken to EL1. Otherwise, the exception is a second stage abort and is taken to EL2.

• The instruction is treated as a NOP.

• The instructions are performed, but there is no guarantee that the memory accesses were performed
atomically in regard to other agents that access memory. In this case, the instruction might also generate a
System Error interrupt.
B2-132 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
B2.3 Definition of the Armv8 memory model

This section describes observation and ordering in the Armv8 memory model. It contains the following subsections:

• Basic definitions on page B2-133.

• Dependency definitions on page B2-136.

• Ordering relations on page B2-137.

• Ordering constraints on page B2-138.

• Internal visibility requirement on page B2-139.

• External ordering constraints on page B2-139.

• Completion and endpoint ordering on page B2-141.

• Ordering of instruction fetches on page B2-143.

• Restrictions on the effects of speculation on page B2-144.

• Memory barriers on page B2-146.

• Limited ordering regions on page B2-154.

For more information about endpoint ordering of memory accesses, see Reordering on page B2-172.

In the Armv8 memory model, the Shareability memory attribute indicates the degree to which hardware must ensure
memory coherency between a set of observers, see Memory types and attributes on page B2-165.

The Armv8 architecture defines additional memory attributes and associated behaviors, which are defined in the
system level section of this manual. See:

• Chapter D4 The AArch64 System Level Memory Model.

• Chapter D5 The AArch64 Virtual Memory System Architecture.

See also Mismatched memory attributes on page B2-176.

B2.3.1 Basic definitions

The Armv8 memory model provides a set of definitions that are used to construct conditions on the permitted
sequences of accesses to memory.

Observer

An Observer refers to a processing element or mechanism in the system, such as a peripheral device,
that can generate reads from, or writes to, memory.

Common Shareability Domain

For the purpose of this section, all Observers are assumed to belong to a Common Shareability
Domain. All read and write effects access only Normal memory locations in a Common Shareability
Domain, and excludes the situations described in Mismatched memory attributes on page B2-176.

Location

A Location is a byte that is associated with an address in the physical address space.

Note

It is expected that an operating system will present the illusion to the application programmer that
is consistent with a location also being considered as a byte that is associated with an address in the
virtual address space.

Effects

The Effects of an instruction can be:

• Register effects.

• Memory effects.

• Barrier effects.

• Tag effects.

• Branching effects.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-133
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
The effects of an instruction I1 are said to appear in program order before the effects of an instruction
I2 if and only if I1 occurs before I2 in the order specified by the program. Each effect generated by
an instruction has a unique identifier, which characterizes it amongst the events generated by the
same instruction.

Register effect

The Register effects of an instruction are register reads or register writes of that instruction. For an
instruction that accesses registers, a register read effect is generated for each register read by the
instruction and a register write effect is generated for each register written by the instruction. An
instruction may generate both read and write Register effects.

Memory effect

The Memory effects of an instruction are the memory reads or writes generated by that instruction.
For an instruction that accesses memory, a memory read effect is generated for each Location read
by the instruction and a memory write effect is generated for each Location written by the
instruction. An instruction may generate both read and write Memory effects.

Tag effect

The Tag effects of a Memory Tagging instruction are the memory read or write effects of that
instruction that affect tag locations.

Tag-read

A Tag-read is a read of a tag location generated by an LDG instruction.

Tag-write

A Tag-write is a write of a tag location generated by an STG instruction.

Tag-Check-read

A Tag-Check-read is a read of a tag location that is generated by a checked memory access. All other
reads and writes are considered Data accesses.

Branching effect

The Branching effects of an instruction are effects which correspond to a branching decision being
taken.

Note

Conditional and compare-and-swap instructions do not create Branching effects.

Intrinsic order

There is a per-instruction Intrinsic order relation that provides a partial order over the effects of that
instruction, according to the operation of that instruction.

The operation of an instruction is defined by the pseudocode in Chapter C6 A64 Base Instruction
Descriptions.

Reads-from-register

The Reads-from-register relation couples register read and write effects to the same register such
that each register read effect is paired with exactly one register write effect in the execution of a
program. A register read effect R2 Reads-from-register a register write effect W1 to the same register
if and only if R2 takes its data from W1. By construction W1 must be in program order before R2
and there must be no intervening write to the same register in program order between W1 and R2.

Reads-from

The Reads-from relation couples memory read and write effects to the same Location such that each
memory read effect is paired with exactly one memory write effect in the execution of a program.
A memory read effect R2 from a Location Reads-from a memory write effect W1 to the same
Location if and only if R2 takes its data from W1.
B2-134 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
Coherence order

There is a per-location Coherence order relation that provides a total order over all memory write
effects from all coherent Observers to that Location, starting with a notional memory write effect of
the initial value. The Coherence order of a Location represents the order in which memory write
effects to the Location arrive at memory.

Local read successor

A memory read effect R2 of a Location is the Local read successor of a memory write effect W1
from the same Observer to the same Location if and only if W1 appears in program order before R2
and there is not a memory write effect W3 from the same Observer to the same Location appearing
in program order between W1 and R2.

Local write successor

A memory write effect W2 of a Location is a Local write successor of a memory read or write effect
RW1 from the same Observer to the same Location if and only if RW1 appears in program order
before W2.

Coherence-after

A memory write effect W2 to a Location is Coherence-after another memory write effect W1 to the
same Location if and only if W2 is sequenced after W1 in the Coherence order of the Location.

A memory write effect W2 to a Location is Coherence-after a memory read effect R1 of the same
location if and only if R1 Reads-from a memory write effect W3 to the same Location and W2 is
Coherence-after W3.

Observed-by

A memory read or write effect RW1 from an Observer is Observed-by a memory write effect W2
from a different Observer if and only if W2 is coherence-after RW1.

A memory write effect W1 from an Observer is Observed-by a memory read effect R2 from a
different Observer if and only if R2 Reads-from W1.

Note

The Observed-by relation only relates Memory effects generated by different Observers.

Overlapping accesses

Two Memory effects overlap if and only if they access the same Location. Two instructions overlap
if and only if one or more of their generated Memory effects overlap.

Single-copy-atomic-ordered-before

A memory read effect R1 is Single-copy-atomic-ordered-before another memory read effect R2 if
and only if all of the following statements are true:

• R1 and R2 are memory read effects generated by the same instruction.

• R1 is not a Local read successor of a memory write effect.

• R2 is a Local read successor of a memory write effect.

DMB FULL

A DMB FULL is a DMB with neither the LD or the ST qualifier.

Where this section refers to DMB without any qualification, then it is referring to all types of DMB.
Unless a specific shareability domain is defined, a DMB applies to the Common Shareability Domain.

All properties that apply to DMB also apply to the corresponding DSB.

Context synchronization instruction

A Context synchronization instruction is one of the following:

• An ISB instruction.

• An instruction that generates a synchronous exception.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-135
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
• An exception return instruction.

• A DCPS or DRPS instruction.

B2.3.2 Dependency definitions

Dependency through registers

A Dependency through registers from a first effect E1 to a second effect E2 exists within a PE if and
only if at least one of the following applies:

• E1 is a register write effect W1 which has not been generated by a Store Exclusive, E2 is a
register read effect R2 and R2 Reads-from-register W1.

• E1 and E2 have been generated by the same instruction and E1 is before E2 in the Intrinsic
order of that instruction.

• There is a Dependency through registers from E1 to a third effect E3, and there is a
Dependency through registers from E3 to E2.

Address dependency

An Address dependency from a memory read effect R1 to a Memory effect RW2 exists if and only if
there is a Dependency through registers from R1 to a Register effect E3 generated by RW2, and E3
affects the address part of RW2, and either:

• RW2 is a memory write effect W2.

• RW2 is a memory read effect R2 and there is no Branching effect D4 such that there is a
Dependency through registers from R1 to D4 and from D4 to R2.

Note

An Address dependency exists from a memory read effect R1 to a Tag-Check-read R2 if and only if
there is a Dependency through registers from R1 to the address part of R2.

Data dependency

A Data dependency from a memory read effect R1 to a memory write effect W2 exists if and only if
there is a Dependency through registers from R1 to a Register effect E3 generated by W2, and E3
affects the data part of W2.

Control dependency

A Control dependency from a memory read effect R1 to a Memory effect RW2 exists if and only if
either:

• There is a Dependency through registers from R1 to a Branching effect B3 and B3 is in
program order before RW2.

• There is a Dependency through registers from R1 to the determination of a synchronous
exception on an instruction generating an effect RW3, and RW2 appears in program order
after RW3.

Note

This notion is under review. Arm’s intent is that a branch instruction between a read and a write,
where the branch condition is dependent on the read, will provide order, regardless of whether the
branch is taken. This only applies to branch instructions and not to conditional selection or other
conditional data processing instructions. A formal definition of this change will be issued soon as
an erratum to the Armv8 Architecture Reference Manual.
B2-136 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
B2.3.3 Ordering relations

Dependency-ordered-before

A dependency creates externally-visible order between a memory read effect and another Memory
effect generated by the same Observer. A memory read effect R1 is Dependency-ordered-before a
memory read or write effect RW2 from the same Observer if and only if R1 appears in program order
before RW2 and any of the following cases apply:

• There is an Address dependency or a Data dependency from R1 to RW2.

• RW2 is a memory write effect W2 and there is a Control dependency from R1 to W2.

• RW2 is a memory read effect R2 generated by an instruction appearing in program order after
an instruction that generates a Context synchronization event E3, and there is a Dependency
through registers from R1 to E3.

• RW2 is a memory write effect W2 appearing in program order after a memory read or write
effect RW3 and there is an Address dependency from R1 to RW3.

• RW2 is a Local read successor R2 of a memory write effect W3 and there is an Address
dependency or a Data dependency from R1 to W3.

Atomic-ordered-before

Load-Exclusive and Store-Exclusive instructions provide some ordering guarantees, even in the
absence of dependencies. A memory read or write effect RW1 is Atomic-ordered-before a memory
read or write effect RW2 from the same Observer if and only if RW1 appears in program order before
RW2 and either of the following cases apply:

• RW1 is a memory read effect R1 and RW2 is a memory write effect W2 such that R1 and W2
are generated by an atomic instruction or a successful Load-Exclusive/Store-Exclusive
instruction pair to the same Location.

• RW1 is a memory write effect W1 generated by an atomic instruction or a successful
Store-Exclusive instruction and RW2 is a memory read effect R2 generated by an instruction
with Acquire or AcquirePC semantics such that R2 is a Local read successor of W1.

For more information, see Synchronization and semaphores on page B2-179.

Barrier-ordered-before

Barrier instructions order prior Memory effects before subsequent Memory effects generated by the
same Observer. A memory read or write effect RW1 is Barrier-ordered-before a memory read or
write effect RW2 from the same Observer if and only if RW1 appears in program order before RW2
and any of the following cases apply:

• RW1 appears in program order before a DMB FULL that appears in program order before RW2.

• RW1 is a memory write effect W1 and is generated by an atomic instruction with both Acquire
and Release semantics.

• RW1 is a memory write effect W1 generated by an instruction with Release semantics and
RW2 is a memory read effect R2, except a Tag-Check-read, generated by an instruction with
Acquire semantics.

• RW1 is a memory read effect R1 and appears in program order before a DMB LD that appears
in program order before RW2.

• RW1 is a memory read effect R1, except a Tag-Check-read, and is generated by an instruction
with Acquire or AcquirePC semantics.

• RW1 is a memory write effect W1 and RW2 is a memory write effect W2 appearing in
program order before a DMB ST that appears in program order before W2.

• RW2 is a memory write effect W2 and is generated by an instruction with Release semantics.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-137
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
Tag-ordered-before

If FEAT_MTE2 is implemented, a Tag read R1 is Tag-ordered-before a memory read or write effect
Checked data access RW2 generated by the same instruction if and only if all of the following apply:

• R1 is in the Intrinsic order of that instruction before RW2.

• R1 reads the Allocation Tag at a tag physical address and compares it with the physical
address Tag of the instruction. If the result of the comparison can cause a precise exception
and the result is negative, then RW2 does not architecturally occur.

Tag-Location-Ordered

Tag-Check-reads R1 and R2 are Tag-Location-Ordered if and only if all the following apply:

• R1 is Tag-ordered-before a Checked data access RW3.

• R2 is Tag-ordered-before a Checked data access RW4.

• RW3 and RW4 are to the same Location.

Locally-ordered-before

Dependencies, Local write successor, load/store-exclusive, atomic and barrier instructions can be
composed within an Observer to create externally-visible order. A memory read or write effect RW1
is Locally-ordered-before a memory read or write effect RW2 from the same Observer if and only if
any of the following cases apply:

• RW1 is a memory write effect W1 and RW2 is a memory write effect W2 that is equal to or
generated by the same instruction as a Local write successor of RW1.

• RW1 is Dependency-ordered-before RW2.

• RW1 is Atomic-ordered-before RW2.

• RW1 is Barrier-ordered-before RW2.

• RW1 is Tag-ordered-before RW2.

• RW1 is Locally-ordered-before a memory read or write effect that is Locally-ordered-before
RW2.

B2.3.4 Ordering constraints

The Armv8 memory model is described as being Other-multi-copy atomic. The definition of Other-multi-copy
atomic is as follows:

Other-multi-copy atomic

In an Other-multi-copy atomic system, it is required that a memory write effect from an Observer,
if observed by a different Observer, is then observed by all other Observers that access the Location
coherently. It is, however, permitted for an Observer to observe its own writes prior to making them
visible to other observers in the system.

The Other-multi-copy atomic property of the Armv8 memory model is enforced by placing constraints on the
possible executions of a program. Those executions that meet the constraints given by the ordering model are said
to be Architecturally well-formed. An implementation that is executing a program is only permitted to exhibit
behavior consistent with an Architecturally well-formed execution.

Architecturally well-formed

An Architecturally well-formed execution must satisfy both the Internal visibility requirement and
any of the three alternative External ordering constraints.
B2-138 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
B2.3.5 Internal visibility requirement

For a memory read or write effect RW1 that appears in program order before a memory read or write effect RW2 to
the same Location:

• Where one or more of the following statements is true:

— RW1 is not a Tag-Check-read.

— RW2 is not a Tag-Check-read.

— RW1 and RW2 are both Tag-Check-reads R1 and R2 that are Tag-Location-Ordered.

• The Internal visibility requirement requires that exactly one of the following statements is true:

— RW2 is a memory write effect W2 that is Coherence-after RW1.

— RW1 is a memory write effect W1, RW2 is a memory read effect R2 and either:

— R2 Reads-from W1.

— R2 Reads-from a memory write effect that is Coherence-after W1.

— RW1 and RW2 are both reads R1, R2, R1 Reads-from a memory write effect W3 and either:

— R2 Reads-from W3.

— R2 Reads-from a memory write effect that is Coherence-after W3.

Informally, if a Memory effect M1 from an Observer appears in program order before a Memory effect M2 from the
same Observer, then M1 will be seen to occur before M2 by that Observer.

B2.3.6 External ordering constraints

The Armv8 memory model offers the following three alternative representations of the External ordering
constraint:

• External visibility requirement.

• External completion requirement.

• External global completion requirement.

An Architecturally well-formed execution must satisfy both the Internal visibility requirement and one of the three
alternative representations in the External ordering constraints.

External visibility requirement

Ordered-before

An arbitrary pair of Memory effects is ordered if it can be linked by a chain of ordered accesses
consistent with external observation. A memory read or write effect RW1 is Ordered-before a
memory read or write effect RW2 if and only if any of the following cases apply:

• RW1 is Observed-by a memory read or write effect RW3 which is generated by the same
instruction as RW2.

• RW1 is Locally-ordered-before RW2.

• RW1 is Ordered-before a memory read or write effect that is Ordered-before RW2.

For a memory read or write effect RW1 from an Observer that is Ordered-before a memory read or write effect RW2
from a different Observer, the External visibility requirement requires that RW2 is not Observed-by RW1. This
means that an Architecturally well-formed execution must not exhibit a cycle in the Ordered-before relation.

Informally, if a Memory effect M1 from an Observer appears in program order before a Memory effect M2 from the
same Observer, then M1 will be seen to occur before M2 by all Observers in the system.

Completes-before order

The Completes-before order is a total order that corresponds to the order in which Memory effects complete within
the system. The following effects constitute a single entry in the Completes-before order:

• Writes from the same instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-139
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
• Reads from the same instruction which read from external writes.

• Reads from the same instruction which read from the same internal write.

All other reads constitute distinct entries in the Completes-before order.

Completes-before

A memory read or write effect RW1 Completes-before a memory read or write effect RW2 if and
only if RW1 appears in the Completes-before order before RW2.

Deriving Reads-from and Coherence order from the Completes-before order

The Completes-before order can be used to resolve the Reads-from and Coherence order relations
for every memory access in the system as follows:

• For a memory read effect R1 of a memory location by an Observer, then:

— If there is a memory write effect W2 to the same Location from the same Observer and
all of the following are true:

— W2 appears in program order before R1.

— R1 Completes-before W2.

— There are no writes to the Location appearing in program order between W2 and
R1 then R1 Reads-from W2.

— Otherwise, R1 Reads-from its closest preceding write in the Completes-before order to
the same Location. If no such write exists, then R1 Reads-from the initial value of the
memory location.

• The Coherence order of writes to a memory location is the order in which those writes appear
in the Completes-before order. The final value of each memory location is therefore
determined by the final write to each Location in the Completes-before order. If no such write
exists for a given Location, the final value is the initial value of that Location.

External completion requirement

A memory read or write effect RW1 Completes-before a memory read or write effect RW2 if and
only if any of the following statements are true:

• RW1 is Locally-ordered-before RW2.

• RW1 is a memory read effect R1 and RW2 is a memory read effect R2 and R1 is
Single-copy-atomic-ordered-before R2.

Globally-completes-before order

The Globally-completes-before order is a total order that corresponds to the order in which Memory effects
globally-complete within the system. The following effects constitute a single entry in the
Globally-completes-before order:

• Writes from the same instruction.

• Reads from the same instruction which read from external writes.

• Reads from the same instruction which read from the same internal write.

All other reads constitute distinct entries in the Globally-completes-before order.

Globally-completes-before

A memory read or write effect RW1 Globally-completes-before a memory read or write effect RW2
if and only if RW1 appears in the Globally-completes-before order before RW2.
B2-140 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
Deriving Reads-from and Coherence order from the Globally-completes-before order

The Globally-completes-before order can be used to resolve the Reads-from and Coherence order
relations for every memory access in the system as follows:

• A memory read effect R1 of a memory location by an Observer Reads-from its closest
preceding write in the Globally-completes-before order to the same Location. If no such write
exists, then R1 Reads-from the initial value of the memory location.

• The Coherence order of writes to a memory location is the order in which those writes appear
in the Globally-completes-before order. The final value of each memory location is therefore
determined by the final write to each Location in the Globally-completes-before order. If no
such write exists for a given Location, the final value is the initial value of that Location.

External global completion requirement

The External global completion requirement requires that a memory read or write effect RW1
Globally-completes-before a memory read or write effect RW2 if and only if any of the following
statements are true:

• RW1 is Locally-ordered-before RW2 and either:

— RW1 is a memory write effect.

— RW1 is a memory read effect R1 and either:

— R1 is not a Local read successor of a memory write effect.

— R1 is a Local read successor of a memory write effect that is
Locally-ordered-before RW2.

• RW1 is a memory read effect R1 and RW2 is a memory read effect R2 and R1 is
Single-copy-atomic-ordered-before R2.

B2.3.7 Completion and endpoint ordering

Interaction between Observers in a system is not restricted to communication via shared variables in coherent
memory. For example, an Observer could configure an interrupt controller to raise an interrupt on another Observer
as a form of message passing. These interactions typically involve an additional agent, which defines the instruction
sequence that is required to establish communication links between different Observers. When these forms of
interaction are used in conjunction with shared variables, a DSB instruction can be used to enforce ordering between
them.

For all memory, the completion rules are defined as:

• A memory read effect R1 to a Location is complete for a shareability domain when all of the following are
true:

— Any write to the same Location by an Observer within the shareability domain will be Coherence-after
R1.

— Any translation table walks associated with R1 are complete for that shareability domain.

• A memory write effect W1 to a Location is complete for a shareability domain when all of the following are
true:

— Any write to the same Location by an Observer within the shareability domain will be Coherence-after
W1.

— Any read to the same Location by an Observer within the shareability domain will either Reads-from
W1 or Reads-from a memory write effect that is Coherence-after W1.

— Any translation table walks associated with the write are complete for that shareability domain.

• A translation table walk is complete for a shareability domain when the memory accesses, including the
updates to translation table entries, associated with the translation table walk are complete for that
shareability domain, and the TLB is updated.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-141
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
• A cache maintenance instruction is complete for a shareability domain when the memory effects of the
instruction are complete for that shareability domain, and any translation table walks that arise from the
instruction are complete for that shareability domain.

• A TLB invalidate instruction is complete when all memory accesses using the TLB entries that have been
invalidated are complete.

The completion of any cache or TLB maintenance instruction includes its completion on all PEs that are affected
by both the instruction and the DSB operation that is required to guarantee visibility of the maintenance instruction.

Note

These completion rules mean that, for example, a cache maintenance instruction that operates by VA to the PoC
completes only after memory at the PoC has been updated.

Additionally, for Device-nGnRnE memory, a read or write of a Location in a Memory-mapped peripheral that
exhibits side-effects is complete only when the read or write both:

• Can begin to affect the state of the Memory-mapped peripheral.

• Can trigger all associated side-effects, whether they affect other peripheral devices, PEs, or memory.

Note

This requirement for Device-nGnRnE memory is consistent with the memory access having reached the peripheral
endpoint.

Peripherals

This section defines a Memory-mapped peripheral and the total order of reads and writes to a peripheral which is
defined as the Peripheral coherence order:

Memory-mapped peripheral

A Memory-mapped peripheral occupies a memory region of IMPLEMENTATION DEFINED size and
can be accessed using load and store instructions. Memory effects to a Memory-mapped peripheral
can have side-effects, such as causing the peripheral to perform an action. Values that are read from
addresses within a Memory-mapped peripheral might not correspond to the last data value written
to those addresses. As such, Memory effects to a Memory-mapped peripheral might not appear in
the Reads-from or Coherence order relations.

Peripheral coherence order

The Peripheral coherence order of a Memory-mapped peripheral is a total order on all reads and
writes to that peripheral.

Note
The Peripheral coherence order for a Memory-mapped peripheral signifies the order in which
accesses arrive at the endpoint.

For a memory read or write effect RW1 and a memory read or write effect RW2 to the same
peripheral, then RW1 will appear in the Peripheral coherence order for the peripheral before RW2 if
either of the following cases apply:

• RW1 and RW2 are accesses using Non-cacheable or Device attributes and RW1 is
Ordered-before RW2.

• RW1 and RW2 are accesses using Device-nGnRE or Device-nGnRnE attributes, with the
same XS attribute value, and RW1 appears in program order before RW2.
B2-142 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
Note

When FEAT_XS is implemented, if accesses marked with the Device-nGnRE or Device-nGnRnE
attributes are within the same Memory-mapped peripheral, but the XS attribute is not the same on
those accesses, the order of arrival at the endpoint is not defined by the architecture.

Out-of-band-ordered-before

A memory read or write effect RW1 is Out-of-band-ordered-before a memory read or write effect
RW2 if and only if either of the following cases apply:

• RW1 appears in program order before a DSB instruction that begins an IMPLEMENTATION
DEFINED instruction sequence indirectly leading to the generation of RW2.

• RW1 is Ordered-before a memory read or write effect RW3 and RW3 is
Out-of-band-ordered-before RW2.

If a Memory effect M1 is Out-of-band-ordered-before a memory read or write effect M2, then M1 is
seen to occur before M2 by all Observers.

Note

Arm expects that, in most systems with early acknowledgments, those acknowledgments will come from a point at
or after the point that establishes global visibility. This is expected in such systems to enable the acknowledgments
to be used as part of the mechanisms to implement the ordering requirements of the Arm memory model.

B2.3.8 Ordering of instruction fetches

For two memory locations A and B, if A has been written to and been made coherent with the instruction fetches of
the shareability domain, before an update to B by an observer in the same shareability domain, then the instruction
stream of each observer in the shareability domain will not see the updated value of B without also seeing the
updated value of A.

A write has been made coherent with an instruction fetch of a shareability domain when:

CTR_EL0.{DIC, IDC} == {0, 0}

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and
that clean is complete for the shareability domain. Subsequently the location has been invalidated
to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for
the shareability domain.

CTR_EL0.{DIC, IDC} == {1, 0}

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and
that clean is complete for the shareability domain.

CTR_EL0.{DIC, IDC} == {0, 1}

The write is complete for the shareability domain. Subsequently the location has been invalidated
to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for
the shareability domain.

CTR_EL0.{DIC, IDC} == {1, 1}

The write is complete for the shareability domain.

Note

Microarchitecturally, this means that these situations cannot both be true in an implementation:

• After delays in fetching from memory, the instruction queue can have entries written into it out of order.

• For an implementation:

— When CTR_EL0.DIC == 0, if there is an outstanding entry in the instruction queue, then later entries
in the instruction queue are not impacted by the IC IVAU instructions of a different core.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-143
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
— When CTR_EL0.DIC == 1, if there is a write to the location that is held in the queue when there is an
outstanding entry in the instruction queue for an older entry, then the instruction queue does not have
entries invalidated from it.

B2.3.9 Restrictions on the effects of speculation

This section covers restrictions on speculation effects, including:

• Restrictions on the effects of speculation on page B2-144.

• Speculative Store Bypass Safe (SSBS) on page B2-145.

• Restrictions on exploitative control of speculative execution on page B2-145.

• Restrictions on the effects of speculation from Armv8.5 on page B2-145.

Restrictions on the effects of speculation

The Arm architecture places certain restrictions on the effects of speculation. These are:

• Each load from a location using a particular VA after an exception return that is a Context synchronization
event will not speculatively read an entry from earlier in the coherence order for the location being loaded
from than the entry generated by the latest store to that location using the same VA before the exception exit.

• Each load from a location using a particular VA after an exception entry that is a Context synchronization
event will not speculatively read an entry from earlier in the coherence order for the location being loaded
from than the entry generated by the latest store to that location using the same VA before the exception entry.

• Any load from a location using a particular VA before an exception entry that is a Context synchronization
event will not speculatively read data from a store to the same location using the same VA after the exception
entry.

• Any load from a location using a particular VA before an exception return that is a Context synchronization
event will not speculatively read data from a store to the same location using the same VA after the exception
exit.

• When data is loaded under speculation with a Translation fault, it cannot be used to form an address, generate
condition codes, or generate SVE predicate values to be used by other instructions in the speculative
sequence.

• When data is loaded under speculation from a location without a translation for the translation regime being
speculated in, the data cannot be used to form an address, generate condition codes, or generate SVE
predicate values to be used by other instructions in the speculative sequence.

• Changes to System registers must not occur speculatively in a way that can affect a speculative memory
access that can cause a change to the micro-architectural state.

• Changes to Special-purpose registers can occur speculatively.

• Execute-never controls apply to speculative instruction fetching. See Access permissions for instruction
execution on page D5-2760.

Note

The prohibition of using data loaded under speculation with faults to form addresses, condition codes or SVE
predicate values does not prohibit the use of value predicted data from such locations for such purposes, so long as
the training of the data value prediction was from the hardware defined context that is using the prediction. A
consequence of this is that training of value prediction cannot be based on data loaded under speculation with a
translation or Permission fault.
B2-144 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
Speculative Store Bypass Safe (SSBS)

When FEAT_SSBS is implemented, PSTATE.SSBS is a control that can be set by software to indicate whether
hardware is permitted to use, in a manner that is potentially speculatively exploitable, a speculative value in a
register that has been loaded from memory using a load instruction that speculatively read the location being loaded
from, where the entry that is speculatively read is from earlier in the coherence order than the entry generated by
the latest store to that location using the same virtual address as the load instruction.

A speculative value in a register is used in a potentially speculatively exploitable manner if it is used to form an
address, generate condition codes, or generate SVE predicate values to be used by other instructions in the
speculative sequence or if the execution timing of any other instructions in the speculative sequence is a function of
the data loaded under speculation.

When the value of PSTATE.SSBS is 0, hardware is not permitted to use speculative register values in a potentially
speculatively exploitable manner if the speculative read that loads the register is from earlier in the coherence order
than the entry generated by the latest store to that location using the same virtual address as the load instruction.

When the value of PSTATE.SSBS is 1, hardware is permitted to use speculative register values in a potentially
speculatively exploitable manner if the speculative read that loads the register is from earlier in the coherence order
than the entry generated by the latest store to that location using the same virtual address as the load instruction.

Note

• If speculation is permitted, then cache timing side channels can lead to addresses being derived using reads
of address values that have been speculatively loaded from memory to a register.

• Software written for architectures from Armv8.0 to Armv8.4 will set SPSR_ELx.SSBS to 0. This means that
PSTATE.SSBS will not set, so hardware will not be permitted to use speculative loads with outstanding
memory disambiguation issues for any subsequent speculative memory accesses if there is any possibility of
those subsequent memory accesses creating a cache timing side channel.

Restrictions on exploitative control of speculative execution

The execution of some code (code1) can exploitatively control speculative execution of some other code (code2) if
and only if all of the following apply:

• The actions of code1 can influence the speculative execution of code2 to cause an irreversible change to the
microarchitectural state of the PE that is indicative of some architectural state accessible to the execution
context of code2.

• Code1 has control in determining the choice of the architecture state that causes the irreversible change to the
microarchitectural state.

• The irreversible changes to the microarchitectural state of the PE can be measured by code executing in an
execution context other than that of code2 to allow the retrieval of the architectural state in a computationally
feasible manner.

Restrictions on the effects of speculation from Armv8.5

From Armv8.5, there are some further restrictions on the effects of speculation in addition to those in Armv8.0:

• Data loaded under speculation with a permission or domain fault cannot be used to form an address, to
generate condition codes, or to generate SVE predicate values to be used by other instructions in the
speculative sequence.

• Any System register read under speculation to a register that is not architecturally accessible from the current
Exception level cannot be used to form an address, to generate condition codes, or to generate SVE predicate
values to be used by other instructions in the speculative sequence.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-145
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
Note

As the effects of speculation are not architecturally visible, this restriction requires that the effect of any
speculation cannot give rise to side channels that will leak the values of memory locations, System registers,
or Special-purpose registers to a level of privilege that would otherwise not be able to determine those values.

• Code running in one hardware-defined context cannot exploitatively control speculative execution of code in
a different hardware-defined context as a result of the behavior of any execution prediction resources that
predict address or register values. In the case of this definition, the hardware-defined context is determined
by:

— The Exception level.

— The Security state.

— When executing at EL1, if EL2 is implemented and enabled in the current Security state, the VMID.

— When executing at EL0, whether the EL1&0 or the EL2&0 translation regime is in use.

— When executing at EL0 and using the EL1&0 translation regime, the address space identifier (ASID)
and, if EL2 is implemented and enabled in the current Security state, the VMID.

— When executing at EL0 and using the EL2&0 translation regime, the ASID.

— When in AArch64 state, the current SCXTNUM_ELx value if SCXTNUM_ELx is implemented and
the hardware identifies that SCXTNUM_ELx is part of the context. Where SCXTNUM_ELx is not
included as part of the hardware-indicated context, an implementation can further identify that branch
targets trained for branches situated at one address can control speculative execution of branches
situated at different addresses only in a hard-to-determine way.

Note

— The definition of “hard-to-determine manner” is left open to implementations. Examples could include
the complete separation of prediction resources, or the isolation of the predictions using a
cryptographic or pseudo-random mechanism to separate each context.

— The architecture does not require that prediction resources that simply predict the direction of a branch
are separated in this way.

• Changes to System registers must not occur speculatively in a way that can affect a speculative memory
access that can cause a change to the micro-architectural state.

• Changes to Special-purpose registers can occur speculatively.

Note

If SCR_EL3.EEL2 is changed, in order to remove all VMID tagging from Secure EL1 and Secure EL0 entries, each
prediction resource should be invalidated by software for:

• Secure EL0 for all ASID and VMID values.

• Secure EL1 for all VMID values.

B2.3.10 Memory barriers

Memory barrier is the general term applied to an instruction, or sequence of instructions, that forces synchronization
events by a PE with respect to retiring load/store instructions. The memory barriers defined by the Armv8
architecture provide a range of functionality, including:

• Ordering of load/store instructions.

• Completion of load/store instructions.

• Context synchronization.

The following subsections describe the Armv8 memory barrier instructions:

• Instruction Synchronization Barrier (ISB) on page B2-147

• Data Memory Barrier (DMB) on page B2-147.

• Data Synchronization Barrier (DSB) on page B2-150.
B2-146 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
• Speculation Barrier (SB) on page B2-148.

• Consumption of Speculative Data Barrier (CSDB) on page B2-148.

• Speculative Store Bypass Barrier (SSBB) on page B2-148.

• Profiling Synchronization Barrier (PSB CSYNC) on page B2-149.

• Physical Speculative Store Bypass Barrier (PSSBB) on page B2-149.

• Trace Synchronization Barrier (TSB CSYNC) on page B2-149

• Shareability and access limitations on the data barrier operations on page B2-151.

• Load-Acquire, Load-AcquirePC, and Store-Release on page B2-152.

• LoadLOAcquire, StoreLORelease on page B2-153.

Note

Depending on the required synchronization, a program might use memory barriers on their own, or it might use them
in conjunction with cache maintenance and memory management instructions that in general are only available
when software execution is at EL1 or higher.

DMB and DSB instructions affect reads and writes to the memory system generated by load/store instructions and data
or unified cache maintenance instructions being executed by the PE.

Instruction Synchronization Barrier (ISB)

An ISB instruction ensures that all instructions that come after the ISB instruction in program order are fetched from
the cache or memory after the ISB instruction has completed. Using an ISB ensures that the effects of
context-changing operations executed before the ISB are visible to the instructions fetched after the ISB instruction.
Examples of context-changing operations that require the insertion of an ISB instruction to ensure the effects of the
operation are visible to instructions fetched after the ISB instruction are:

• Completed cache and TLB maintenance instructions.

• Changes to System registers.

Any context-changing operations appearing in program order after the ISB instruction only take effect after the ISB
has been executed.

The pseudocode function for the operation of an ISB is InstructionSynchronizationBarrier().

See also Memory barriers on page D4-2671.

Data Memory Barrier (DMB)

The DMB instruction is a memory barrier instruction that ensures the relative order of memory accesses before the
barrier with memory accesses after the barrier. The DMB instruction does not ensure the completion of any of the
memory accesses for which it ensures relative order.

The full definition of the DMB instruction is covered formally in the Definition of the Armv8 memory model on
page B2-133 and this introduction to the DMB instruction is not intended to contradict that section.

The basic principle of a DMB instruction is to introduce order between memory accesses that are specified to be
affected by the DMB options supplied as arguments to the DMB instruction. The DMB instruction ensures that all
affected memory accesses by the PE executing the DMB instruction that appear in program order before the DMB
instruction and those which originate from a different PE, to the extent required by the DMB options, which have
been Observed-by the PE before the DMB instruction is executed, are Observed-by each PE, to the extent required by
the DMB options, before any affected memory accesses that appear in program order after the DMB instruction are
Observed-by that PE.

The use of a DMB instruction creates order between the Memory effects of instructions as described in the definition
of Barrier-ordered-before.

The DMB instruction only affects memory accesses and the operation of data cache and unified cache maintenance
instructions, see A64 Cache maintenance instructions on page D4-2648. It has no effect on the ordering of any other
instructions executing on the PE.

The pseudocode function for the operation of a DMB instruction is DataMemoryBarrier().
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-147
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
Speculation Barrier (SB)

An SB instruction is a memory barrier that prevents speculative execution of instructions until after the barrier has
completed when those instructions could be observed through side-channels.

Until the barrier completes, the speculative execution of any instruction appearing later in the program order than
the barrier:

• Cannot be performed to the extent that such speculation can be observed through side-channels as a result of
control flow speculation or data value speculation.

• Can be performed when predicting that a instruction that could generate an exception does not generate an
exception.

Speculative execution of an SB instruction:

• Cannot be as a result of control flow speculation.

• Cannot be as a result of data value speculation.

• Can be as a result of predicting that an instruction that could generate an exception does not generate an
exception.

An SB instruction can complete when:

• It is known that it is not speculative.

• All the predicted data values generated by instructions appearing in program order before the SB instruction
have their predicted values confirmed.

Note

The SB instruction has no effect on the use of prediction resources to predict the instruction stream that is being
fetched, so long as the prediction of the instruction stream is not informed by data taken from the register outputs
of the speculative execution of instructions appearing in program order after the SB instruction.

Consumption of Speculative Data Barrier (CSDB)

The CSDB instruction is a memory barrier instruction that controls speculative execution and data value prediction.
This includes:

• Data value predictions of any instructions.

• PSTATE.{N,Z,C,V} predictions of any instructions other than conditional branch instructions appearing in
program order before the CSDB that have not been architecturally resolved.

• Predictions of SVE predication state for any SVE instructions.

For purposes of the definition of CSDB, PSTATE.{N,Z,C,V} is not considered a data value. This definition permits:

• Control flow speculation before and after the CSDB instruction.

• Speculative execution of conditional data processing instructions after the CSDB instruction, unless they use
the results of data value or PSTATE.{N,Z,C,V} predictions of instructions appearing in program order before
the CSDB instruction that have not been architecturally resolved.

Speculative Store Bypass Barrier (SSBB)

The SSBB instruction is a memory barrier that prevents speculative loads from bypassing earlier stores to the same
virtual address under certain conditions.
B2-148 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
The semantics of the Speculative Store Bypass Barrier are:

• When a load to a location appears in program order after the SSBB instruction, then the load does not
speculatively read an entry earlier in the coherence order for that location than the entry generated by the
latest store satisfying all of the following conditions:

— The store is to the same location as the load.

— The store uses the same virtual address as the load.

— The store appears in program order before the SSBB instruction.

• When a load to a location appears in program order before the SSBB instruction, then the load does not
speculatively read data from any store satisfying all of the following conditions:

— The store is to the same location as the load.

— The store uses the same virtual address as the load.

— The store appears in program order after the SSBB instruction.

Profiling Synchronization Barrier (PSB CSYNC)

The PSB CSYNC instruction is a memory barrier that ensures that all existing profiling data for the current PE has been
formatted, and profiling buffer addresses have been translated such that all writes to the profiling buffer have been
initiated. A following DSB instruction completes when the writes to the profiling buffer have completed.

If the Statistical Profiling Extension is not implemented, this instruction executes as a NOP.

Physical Speculative Store Bypass Barrier (PSSBB)

The PSSBB instruction is a memory barrier that prevents speculative loads from bypassing earlier stores to the same
physical address under certain conditions.

The semantics of the Physical Speculative Store Bypass Barrier are:

• When a load to a location appears in program order after the PSSBB instruction, then the load does not
speculatively read an entry earlier in the coherence order for that location than the entry generated by the
latest store satisfying all of the following conditions:

— The store is to the same location as the load.

— The store appears in program order before the PSSBB instruction.

• When a load to a location appears in program order before the PSSBB instruction, then the load does not
speculatively read data from any store satisfying all of the following conditions:

— The store is to the same location as the load.

— The store appears in program order after the PSSBB instruction.

Note

The effect of this barrier applies to accesses to the same location even if they are accessed with different virtual
addresses and from different Exception levels.

Trace Synchronization Barrier (TSB CSYNC)

The TSB CSYNC instruction is a memory barrier instruction that preserves the relative order of memory accesses to
System registers due to trace operations and other memory accesses to the same registers.

A trace operation is an operation of the PE Trace Unit generating trace for an instruction when FEAT_TRF is
implemented and enabled.

A TSB CSYNC instruction is not required to execute in program order with respect to other instructions. This includes
being reordered with respect to other trace instructions. One or more Context synchronization events are required
to ensure that TSB CSYNC instruction is executed in the necessary order.

If trace is generated between a Context synchronization event and a TSB CSYNC operation, these trace operations may
be reordered with respect to the TSB CSYNC operation, and therefore may not be synchronized.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-149
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
The following situations are synchronized using a TSB CSYNC operation:

• A direct write B to a System register is ordered after an indirect read or indirect write of the same register by
a trace operation of a traced instruction A, if all of the following are true:

— A is executed in program order before a Context synchronization event C.

— C is in program order before a TSB CSYNC operation T.

— B is executed in program order after T.

• A direct read B of a System register is ordered after an indirect write to the same register by a trace operation
of a traced instruction A if all the following are true:

— A is executed in program order before a Context synchronization event C1.

— C1 is in program order before TSB CSYNC operation T.

— T is executed in program order before a second Context synchronization event C2.

— B is executed in program order after C2.

A TSB CSYNC operation is not needed to ensure a direct write B to a System register is ordered before an indirect read
or indirect write of the same register by a trace operation of a traced instruction A, if all the following are true:

• A is executed in program order after a Context synchronization event C.

• B is executed in program order before C.

The pseudocode function for the operation of a TSB CSYNC instruction is TraceSynchronizationBarrier().

Data Synchronization Barrier (DSB)

A DSB instruction is a memory barrier that ensures that memory accesses that occur before the DSB instruction have
completed before the completion of the DSB instruction. In doing this, it acts as a stronger barrier than a DMB and
all ordering that is created by a DMB with specific options is also generated by a DSB with the same options.

Execution of a DSB instruction:

• At EL2 ensures that any memory accesses caused by Speculative translation table walks from the EL1&0
translation regime have been observed.

• At EL3 ensures that any memory accesses caused by speculative translation table walks from the EL2,
EL1&0 or EL2&0 translation regimes have been observed.

For more information, see Use of out-of-context translation regimes on page D5-2697.

A DSB instruction executed by a PE, PEe, completes when all of the following apply:

• All explicit memory effects of the required access types appearing in program order before the DSB are
complete for the set of observers in the required shareability domain.

• If the required access types of the DSB is reads and writes, the following instructions issued by PEe before the
DSB are complete for the required shareability domain:

— All cache maintenance instructions.

— All TLB maintenance instructions.

— All PSB CYNC instructions.

• When FEAT_XS is implemented, if the required access types of the DSB is reads and writes, completion of
the DSB instruction with the nXS qualifier executed by a PE, PEe, ensures that:

— All previous TLBInXS maintenance operations generated by AArch64 TLB maintenance instructions
with the nXS qualifier executed by PEe are finished for all PEs in the shareability domain of the DSB
instruction.

— All previous TLBInXS maintenance operations generated by AArch32 or AArch64 TLB maintenance
instructions executed at EL1 by PEe when HCRX_EL2.FnXS is 1 are finished for all PEs in the
shareability domain of the DSB instruction.
B2-150 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
Completion of the DSB instruction with the nXS qualifier executed by a PE, PEe, does not ensure that:

— All previous TLB maintenance operations generated by AArch32 or AArch64 TLB maintenance
instructions executed at EL1 by PEe when HCRX_EL2.FnXS is 0 are finished for all PEs in the
shareability domain of the DSB instruction.

— All previous TLB maintenance operations generated by AArch32 or AArch64 TLB maintenance
instructions executed at EL2 or EL3 by PEe are finished for all PEs in the shareability domain of the
DSB instruction.

In addition, no instruction that appears in program order after the DSB instruction can alter any state of the system or
perform any part of its functionality until the DSB completes other than:

• Being fetched from memory and decoded.

• Reading the general-purpose, SIMD and floating-point, Special-purpose, or System registers that are directly
or indirectly read without causing side-effects.

If FEAT_MTE2 is implemented, on completion of a DSB instruction operating over the Non-shareable domain, all
updates to TFSR_ELx.TFx or TFSRE0_EL1.TFx due to Tag Check fails caused by accesses for which the DSB
operates will be complete. For more information on FEAT_MTE2, see Chapter D6 Memory Tagging Extension.

When FEAT_XS is implemented and HCRX_EL2.FnXS is 1, an AArch64 DSB instruction executed at EL1 or EL0
behaves in the same way as the corresponding DSB instruction with the nXS qualifier executed at EL1 or EL0.

The pseudocode function for the operation of a DSB is DataSynchronizationBarrier().

See also:

• Memory barriers on page D4-2671.

• Ordering and completion of TLB maintenance instructions on page D5-2831.

Shareability and access limitations on the data barrier operations

The DMB and DSB instructions take an argument that specifies:

• The shareability domain over which the instruction must operate. This is one of:

— Full system.

— Outer Shareable.

— Inner Shareable.

— Non-shareable.

Full system applies to all the observers in the system and, as such, encompasses the Inner and Outer Shareable
domains of the processor.

Note
The distinction between Full system and Outer Shareable is only applicable for Normal Non-cacheable
memory accesses and Device memory accesses.

• The accesses for which the instruction operates. This is one of:

— Read and write accesses, both before and after the barrier instruction.

— Write accesses only, before and after the barrier instruction.

— Read accesses before the barrier instruction, and read and write accesses after the barrier instruction.

Note
This form of a DMB or DSB instruction can be described as a load-load/store barrier.

For more information on whether an access is before or after a barrier instruction, see Data Memory Barrier (DMB)
on page B2-147 or Data Synchronization Barrier (DSB) on page B2-150.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-151
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
Table B2-1 on page B2-152 shows how these options are encoded in the <option> field of the instruction:

See the instruction descriptions for more information:

• DMB on page C6-1013.

• DSB on page C6-1016.

Note

ISB also supports an optional limitation argument that can only contain one value that corresponds to full system
operation, see ISB on page C6-1039.

Load-Acquire, Load-AcquirePC, and Store-Release

Armv8 provides a set of instructions with Acquire semantics for loads, and Release semantics for stores. These
instructions support the Release Consistency sequentially consistent (RCsc) model. In addition, FEAT_LRCPC
provides Load-AcquirePC instructions. The combination of Load-AcquirePC and Store-Release can be use to
support the weaker Release Consistency processor consistent (RCpc) model.

The full definitions of the Load-Acquire and Load-AcquirePC instructions are covered formally in the Definition of
the Armv8 memory model on page B2-133. This introduction to the Load-Acquire and Load-AcquirePC instructions
is not intended to contradict that section.

The basic principle of both Load-Acquire and Load-AcquirePC instructions is to introduce order between:

• The memory access generated by the Load-Acquire or Load-AcquirePC instruction.

• The memory accesses appearing in program order after the Load-Acquire or Load-AcquirePC instruction,
such that the memory access generated by the Load-Acquire or Load-AcquirePC instruction is Observed-by
each PE to the extent that the PE is required to observe the access coherently, before any of the memory
accesses appearing in program order after the Load-Acquire or Load-AcquirePC instruction are Observed-by
that PE to the extent that the PE is required to observe the accesses coherently.

The use of a Load-Acquire or Load-AcquirePC instruction creates order between the Memory effects of instructions
as described in the definition of Barrier-ordered-before.

The full definition of the Store-Release instruction is covered formally in the Definition of the Armv8 memory model
on page B2-133 and this introduction to the Store-Release instruction is not intended to contradict that section.

The basic principle of a Store-Release instruction is to introduce order between the following:

• A set of memory accesses, RWx, that are generated by the PE executing the Store-Release instruction and
that appear in program order before the Store-Release instruction, together with those that originate from a
different PE to the extent that the PE is required to observe them coherently, Observed-by the PE before
executing the Store-release.

• The memory access generated by the Store-Release (Wrel), such that all of the memory accesses, RWx, are
Observed-by each PE to the extent that the PE is required to observe those accesses coherently, before Wrel
is Observed-by that PE to the extent that the PE is required to observe that access coherently.

Table B2-1 Encoding of the DMB and DSB <option> parameter

Accesses Shareability domain

Before the barrier After the barrier Full system Outer Shareable Inner Shareable Non-shareable

Reads and writes Reads and writes SY OSH ISH NSH

Writes Writes ST OSHST ISHST NSHST

Reads Reads and writes LD OSHLD ISHLD NSHLD
B2-152 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
The use of a Store-Release instruction creates order between the Memory effects of instructions as described in the
definition of Barrier-ordered-before.

Where a Load-Acquire appears in program order after a Store-Release, the memory access generated by the
Store-Release instruction is Observed-by each PE to the extent that PE is required to observe the access coherently,
before the memory access generated by the Load-Acquire instruction is Observed-by that PE, to the extent that the
PE is required to observe the access coherently. In addition, the use of a Load-Acquire, Load-AcquirePC or a
Store-Release instruction on accesses to a Memory-mapped peripheral introduces order between the Memory
effects of the instructions that access that peripheral, as described in the definition of Peripheral coherence order.

Load-Acquire, Load-AcquirePC and Store-Release, other than Load-Acquire Exclusive Pair and
Store-Release-Exclusive Pair, access only a single data element. This access is single-copy atomic. The address of
the data object must be aligned to the size of the data element being accessed, otherwise the access generates an
Alignment fault.

Load-Acquire Exclusive Pair and Store-Release Exclusive Pair access two data elements. The address supplied to
the instructions must be aligned to twice the size of the element being loaded, otherwise the access generates an
Alignment fault.

A Store-Release Exclusive instruction only has the release semantics if the store is successful.

Note

• Each Load-Acquire Exclusive and Store-Release Exclusive instruction is essentially a variant of the
equivalent Load-Exclusive or Store-Exclusive instruction. All usage restrictions and single-copy atomicity
properties:

— That apply to the Load-Exclusive instructions also apply to the Load-Acquire Exclusive instructions.

— That apply to the Store-Exclusive instructions also apply to the Store-Release Exclusive instructions.

• The Load-Acquire, Load-AcquirePC, and Store-Release instructions can remove the requirement to use the
explicit DMB instruction.

LoadLOAcquire, StoreLORelease

For each PE, the Non-secure physical memory map is divided into a set of LORegions using a table that is held
within the PE. Any PA in the Non-secure memory map can be a member of one LORegion. If a PA is assigned to
more than one LORegion, then an implementation might treat it as if it has been assigned to fewer LORegions than
that have been specified. A PA in the Secure physical memory map cannot be a member of any LORegion. For more
information, see Limited ordering regions on page B2-154.

Armv8.1 provides a set of instructions with Acquire semantics for loads, and Release semantics for stores that apply
in relation to the defined LORegions. The new variants of the Load-Acquire and Store-Release instructions are
LoadLOAcquire and StoreLORelease. See LoadLOAcquire/StoreLORelease on page C3-231.

For all memory types, these instructions have the following ordering requirements:

• LoadLOAcquire has the same semantics as Load-Acquire except that the memory accesses affected lie within
the same LORegion as the address of the memory access generated by the LoadLOAcquire instruction. See
Load-Acquire, Load-AcquirePC, and Store-Release on page B2-152.

• StoreLORelease has the same semantics as Store-Release except that the memory accesses affected lie within
the same LORegion as the address of the memory access generated by the StoreLORelease instruction. See
Load-Acquire, Load-AcquirePC, and Store-Release on page B2-152.

In addition, for accesses to Memory-mapped peripherals:

• LoadLOAcquire has the same semantics as Load-Acquire except that the affected Memory effects of
instructions that access the peripheral lie within the same LORegion as the address of the memory access
generated by the LoadLOAcquire instruction. See Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-153
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model
• StoreLORelease has the same semantics as Store-Release except that the affected Memory effects of
instructions that access the peripheral lie within the same LORegion as the address of the memory access
generated by the StoreLORelease instruction. See Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

Note

The LoadLOAcquire/StoreLORelease instructions can remove the requirement to use the explicit DMB instruction.

B2.3.11 Limited ordering regions

Armv8.1 introduces limited ordering regions (LORegions), which allow large systems to perform special
load-acquire and store-release instructions that provide order between the memory accesses to a region of the PA
map as observed by a set of observers.

This feature is supported in AArch64 state only.

Specification of the LORegions

The LORegions are defined in the Non-secure physical memory map using a set of LORegion descriptors. The
number of LORegion descriptors is IMPLEMENTATION DEFINED, and can be discovered by reading the LORID_EL1
register.

Each LORegion descriptor consists of:

• A tuple of the following values:

— A Start Address.

— An End Address.

— An LORegion Number.

• Valid bit which indicates whether that LORegion descriptor is valid.

A memory location lies within the LORegion identified by the LORegion Number if the PA lies between the Start
Address and the End Address, inclusive. The Start Address must be defined to be aligned to 64KB and the End
Address must be defined as the top byte of a 64KB block of memory.

The LORegion descriptors are programmed using the LORSA_EL1, LOREA_EL1, LORN_EL1, and LORC_EL1
registers in the System register space. These registers only describe memory addresses in the Non-secure memory
map. These registers are UNDEFINED if accessed when SCR_EL3.NS == 0.

If a LoadLOAcquire or a StoreLORelease does not match with any LORegion, then:

• The LoadLOAcquire will behave as a Load-Acquire, and will be ordered in the same way with respect to all
accesses, independent of their LORegions.

• The StoreLORelease will behave as a Store-Release, and will be ordered in the same way with respect to all
accesses, independent of their LORegions.

Note

If no LORegions are implemented, then the LoadLOAcquire and StoreLORelease will therefore behave as a
Load-Acquire and Store-Release.

A new access type AccType_LIMITEDORDERED has been added for these limited ordering instructions to be identified.
B2-154 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.4 Caches and memory hierarchy
B2.4 Caches and memory hierarchy

The implementation of a memory system depends heavily on the microarchitecture and therefore many details of
the memory system are IMPLEMENTATION DEFINED. Armv8 defines the application level interface to the memory
system, including a hierarchical memory system with multiple levels of cache. This section describes an application
level view of this system. It contains the subsections:

• Introduction to caches on page B2-155.

• Memory hierarchy on page B2-155.

• Application level access to functionality related to caches on page B2-156

• Implication of caches for the application programmer on page B2-157.

• Preloading caches on page B2-159.

B2.4.1 Introduction to caches

A cache is a block of high-speed memory that contains a number of entries, each consisting of:

• Main memory address information, commonly known as a tag.

• The associated data.

Caches increase the average speed of a memory access. Caching takes account of two principles of locality:

Spatial locality

An access to one Location is likely to be followed by accesses to adjacent Locations. Examples of
this principle are:

• Sequential instruction execution.

• Accessing a data structure.

Temporal locality

An access to an area of memory is likely to be repeated in a short time period. An example of this
principle is the execution of a software loop.

To minimize the quantity of control information stored, the spatial locality property groups several locations
together under the same tag. This logical block is commonly known as a cache line. When data is loaded into a
cache, access times for subsequent loads and stores are reduced, resulting in overall performance benefits. An access
to information already in a cache is known as a cache hit, and other accesses are called cache misses.

Normally, caches are self-managing, with the updates occurring automatically. Whenever the PE accesses a
cacheable memory location, the cache is checked. If the access is a cache hit, the access occurs in the cache.
Otherwise, the access is made to memory. Typically, when making this access, a cache location is allocated and the
cache line loaded from memory. Armv8 permits different cache topologies and access policies, provided they
comply with the memory coherency model described in this manual.

Caches introduce a number of potential problems, mainly because:

• Memory accesses can occur at times other than when the programmer would expect them.

• A data item can be held in multiple physical locations.

B2.4.2 Memory hierarchy

Typically memory close to a PE has very low latency, but is limited in size and expensive to implement. Further
from the PE it is common to implement larger blocks of memory but these have increased latency. To optimize
overall performance, an Armv8 memory system can include multiple levels of cache in a hierarchical memory
system that exploits this trade-off between size and latency. Figure B2-1 on page B2-156 shows an example of such
a system in an Armv8-A system that supports virtual addressing.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-155
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.4 Caches and memory hierarchy
Figure B2-1 Multiple levels of cache in a memory hierarchy

Note

In this manual, in a hierarchical memory system, Level 1 refers to the level closest to the processing element, as
shown in Figure B2-1 on page B2-156.

Instructions and data can be held in separate caches or in a unified cache. A cache hierarchy can have one or more
levels of separate instruction and data caches, with one or more unified caches that are located at the levels closest
to the main memory. Memory coherency for cache topologies can be defined using the conceptual points Point of
Unification (PoU), Point of Coherency (PoC), Point of Persistence (PoP), and Point of Deep Persistence (PoDP).

For more information, including the definitions of PoU, PoC, PoP, and PoDP, see About cache maintenance in
AArch64 state on page D4-2644.

If FEAT_MTE2 is implemented, the behavior of cache maintenance instructions is modified. For more information,
see Allocation Tags on page D6-2841.

The cacheability and shareability memory attributes

Cacheability and shareability are two attributes that describe the memory hierarchy in a multiprocessing system:

Cacheability This attribute defines whether memory locations are allowed to be allocated into a cache or not.
Cacheability is defined independently for Inner and Outer Cacheability locations.

Shareability This attribute defines whether memory locations are shareable between different agents in a system.
Marking a memory location as shareable for a particular domain requires hardware to ensure that
the location is coherent for all agents in that domain. Shareability is defined independently for Inner
and Outer Shareability domains.

For more information about Cacheability and Shareability, see Memory types and attributes on page B2-165.

B2.4.3 Application level access to functionality related to caches

As indicated in About the Application level programmers’ model on page B1-116, the application level corresponds
to execution at EL0. The architecture defines a set of cache maintenance instructions that software can use to
manage cache coherency. Software executing at a higher Exception level can enable use of some of this
functionality from EL0, as follows:

When the value of SCTLR_EL1.UCI is 1

Software executing at EL0 can access:

• The data cache maintenance instructions, DC CVAU, DC CVAC, DC CVAP, DC CVADP, and DC CIVAC.
See The data cache maintenance instruction (DC) on page D4-2650.

Device

PE,
AArch64 state

Instruction
fetch
Data

Level 1
Cache

Level 2
Cache

Level 3
Cache

DRAM, SRAM,
Storage-class

memory

Level 4
for example,

memory card,
disk

Address
translation

System configuration
and control

X30

X0

Physical address

Virtual
address
B2-156 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.4 Caches and memory hierarchy
• The instruction cache maintenance instruction IC IVAU. See The instruction cache
maintenance instruction (IC) on page D4-2650.

Attempted execution of these instructions might generate a Permission fault as described in
Permission fault on page D5-2801.

When the value of SCTLR_EL1.UCT is 1

Software executing at EL0 can access the cache type register. See CTR_EL0.

When the value of SCTLR_EL1.DZE is 1

Software executing at EL0 can access the data cache zero instruction DC ZVA. See Data cache zero
instruction on page D4-2661.

The SCTLR_EL1.{UCI, UCT, DZE} control fields are only accessible by software executing at EL1 or higher.

When HCR_EL2.{E2H, TGE} == 1 the controls {UCI, UCT and DZE} are found in SCTLR_EL2.

This functionality is UNDEFINED at EL0 when the value of the corresponding SCTLR_EL1 control field is 0, see:

• Traps to EL1 of EL0 execution of cache maintenance instructions on page D1-2514.

• Traps to EL1 of EL0 accesses to the CTR_EL0 on page D1-2514.

• Traps to EL1 of EL0 execution of DC ZVA instructions on page D1-2514.

B2.4.4 Implication of caches for the application programmer

In normal operation, the caches are largely invisible to the application programmer. However they can become
visible when there is a breakdown in the coherency of the caches. Such a breakdown can occur:

• When memory locations are updated by other agents in the system that do not use hardware management of
coherency.

• When memory updates made from the application software must be made visible to other agents in the
system, without the use of hardware management of coherency.

For example:

• In the absence of hardware management of coherency of DMA accesses, in a system with a DMA controller
that reads memory locations that are held in the data cache of a PE, a breakdown of coherency occurs when
the PE has written new data in the data cache, but the DMA controller reads the old data held in memory.

• In a Harvard cache implementation, where there are separate instruction and data caches, a breakdown of
coherency occurs when new instruction data has been written into the data cache, but the instruction cache
still contains the old instruction data.

Data coherency issues

Software can ensure the data coherency of caches in the following ways:

• By not using the caches in situations where coherency issues can arise. This can be achieved by:

— Using Non-cacheable or, in some cases, Write-Through Cacheable memory.

— Not enabling caches in the system.

• By using cache maintenance instructions to manage the coherency issues in software. See Application level
access to functionality related to caches on page B2-156.

• By using hardware coherency mechanisms to ensure the coherency of data accesses to memory for cacheable
locations by observers within the different shareability domains, see Non-shareable Normal memory on
page B2-167 and Shareable, Inner Shareable, and Outer Shareable Normal memory on page B2-166.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-157
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.4 Caches and memory hierarchy
Note

The performance of these hardware coherency mechanisms is highly implementation-specific. In some
implementations, the mechanism suppresses the ability to cache shareable locations. In other
implementations, cache coherency hardware can hold data in caches while managing coherency between
observers within the shareability domains.

Note

Not all these mechanisms are directly available to software operating at EL0 and might involve interaction with
software operating at a higher Exception level.

Synchronization and coherency issues between data and instruction accesses

How far ahead of the current point of execution instructions are fetched from is IMPLEMENTATION DEFINED. Such
prefetching can be either a fixed or a dynamically varying number of instructions, and can follow any or all possible
future execution paths. For all types of memory:

• The PE might have fetched the instructions from memory at any time since the last Context synchronization
event on that PE.

• Any instructions fetched in this way might be executed multiple times, if this is required by the execution of
the program, without being refetched from memory. In the absence of a Context synchronization event, there
is no limit on the number of times such an instruction might be executed without being refetched from
memory.

The Arm architecture requires the hardware to ensure coherency between instruction caches and memory, even for
locations of shared memory. A write has been made coherent with an instruction fetch of a shareability domain
when:

CTR_EL0.{DIC, IDC} == {0, 0}

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and
that clean is complete for the shareability domain. Subsequently the location has been invalidated
to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for
the shareability domain.

CTR_EL0.{DIC, IDC} == {1, 0}

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and
that clean is complete for the shareability domain.

CTR_EL0.{DIC, IDC} == {0, 1}

The write is complete for the shareability domain. Subsequently the location has been invalidated
to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for
the shareability domain.

CTR_EL0.{DIC, IDC} == {1, 1}

The write is complete for the shareability domain.

If software requires coherency between instruction execution and memory, it must manage this coherency using
Context synchronization events and cache maintenance instructions. The following code sequence can be used to
allow a PE to execute code that the same PE has written.

; Coherency example for data and instruction accesses within the same Inner Shareable domain.
; Enter this code with <Wt> containing a new 32-bit instruction,
; to be held in Cacheable space at a location pointed to by Xn.
 STR Wt, [Xn]
 DC CVAU, Xn ; Clean data cache by VA to point of unification (PoU)
 DSB ISH ; Ensure visibility of the data cleaned from cache
 IC IVAU, Xn ; Invalidate instruction cache by VA to PoU
 DSB ISH ; Ensure completion of the invalidations
 ISB ; Synchronize the fetched instruction stream
B2-158 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.4 Caches and memory hierarchy
Note

• If this sequence is not executed between writing data to a location and executing the instruction at that
location, the lack of coherency between instruction caches and memory means that the instructions that are
executed might be the old instruction or the updated instruction, and which is used can arbitrarily vary during
execution. It must not be assumed by software, before the synchronization sequence is executed, that when
the updated instruction has been seen, the old instruction will not be seen again.

• For Non-cacheable or Write-Through accesses, the clean data cache by VA instruction is not required.
However, the invalidate instruction cache instruction is required because the Armv8-A AArch64 architecture
allows Non-cacheable accesses to be held in an instruction cache. See Non-cacheable accesses and
instruction caches on page D4-2643.

• This code can be used when the thread of execution modifying the code is the same thread of execution that
is executing the code. The Armv8 architecture limits the set of instructions that can be executed by one thread
of execution as they are being modified by another thread of execution without requiring explicit
synchronization. See Concurrent modification and execution of instructions on page B2-130.

• The system software controls whether these cache maintenance instructions are available to the application
level by setting SCTLR_EL1.UCI.

B2.4.5 Preloading caches

The Arm architecture provides memory system hints PRFM, LDNP, and STNP that software can use to communicate the
expected use of memory locations to the hardware. The memory system can respond by taking actions that are
expected to speed up the memory accesses if they occur. The effect of these memory system hints is
IMPLEMENTATION DEFINED. Typically, implementations use this information to bring the data or instruction
locations into caches.

The Preload instructions are hints, and so implementations can treat them as NOPs without affecting the functional
behavior of the device. The instructions cannot generate synchronous Data Abort exceptions, but the resulting
memory system operations might, under exceptional circumstances, generate an asynchronous External abort,
which is taken using an SError interrupt exception. For more information, see ISS encoding for an exception from
a Data Abort on page D13-3172.

PrefetchHint{} defines the prefetch hint types.

The Hint_Prefetch() function signals to the memory system that memory accesses of the type hint to or from the
specified address are likely to occur in the near future. The memory system might take some action to speed up the
memory accesses when they do occur, such as preloading the specified address into one or more caches as indicated
by the innermost cache level target and non-temporal hint stream.

For more information on PRFM and load/store instructions that provide hints to the memory system, see Prefetch
memory on page C3-235 and Load/store SIMD and floating-point non-temporal pair on page C3-233.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-159
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.5 Alignment support
B2.5 Alignment support

This section describes alignment support. It contains the following subsections:

• Instruction alignment on page B2-160.

• Alignment of data accesses on page B2-160.

B2.5.1 Instruction alignment

A64 instructions must be word-aligned.

Attempting to fetch an instruction from a misaligned location results in a PC alignment fault. See PC alignment
checking on page D1-2469.

B2.5.2 Alignment of data accesses

An unaligned access to any type of Device memory causes an Alignment fault.

Unaligned accesses to Normal memory

The behavior of unaligned accesses to Normal memory is dependent on all of the following:

• The instruction causing the memory access.

• The memory attributes of the accessed memory.

• The value of SCTLR_ELx.{A, nAA}.

• Whether or not FEAT_LSE2 is implemented.

Load or Store of Single or Multiple registers

For all instructions that load or store single or multiple registers, but not Load-Exclusive, Store-Exclusive,
Load-Acquire/Store-Release and Atomic instructions, if the address that is accessed is not aligned to the size of the
data element being accessed, then:

When the value of SCTLR_ELx.A applicable to the current Exception level is 1, an Alignment fault is generated.

When the value of SCTLR_ELx.A applicable to the current Exception level is 0:

• An unaligned access is performed.

• If FEAT_LSE2 is not implemented, the access is not guaranteed to be single-copy atomic except at the byte
access level.

• If FEAT_LSE2 is implemented:

— If all the bytes of the memory access lie within a 16-byte quantity aligned to 16 bytes and are to Normal
Inner Write-Back, Outer Write-Back Cacheable memory, the memory access is single-copy atomic.
For a Load-Pair or Store-Pair, including load non-temporal pair, instructions the entire memory access
will be single-copy atomic.

— If all the bytes of the memory accessed do not lie within a 16-byte quantity aligned to 16 bytes or the
access is not to Normal Inner Write-Back, Outer Write-Back Cacheable memory the access is not
guaranteed to be single-copy atomic except at the byte access level.

For these instructions, the definition of an unaligned access is based on the size of the accessed elements, not the
overall size of the memory access. This affects SIMD element and structure loads and stores, and also load/store
pair instructions.

Load-Exclusive/ Store-Exclusive and Atomic instructions

For Load-Exclusive/Store-Exclusive, and Atomic instructions including those with acquire or acquire-release
semantics:

When the value of SCTLR_ELx.A applicable to the current Exception level is 1, an Alignment fault is generated.

When the value of SCTLR_ELx.A applicable to the current Exception level is 0:
B2-160 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.5 Alignment support
If FEAT_LSE2 is not implemented, these instructions generate an Alignment fault if the address being accessed is
not aligned to the size of the data structure being accessed.

If FEAT_LSE2 is implemented, then:

• If all the bytes of the memory access lie within a 16-byte quantity aligned to 16 bytes and are to Normal Inner
Write-Back, Outer Write-Back Cacheable memory, an unaligned access is performed.

• If all the bytes of the memory access do not lie within a 16-byte quantity aligned to 16-bytes, or the memory
access is not to Normal Inner Write-Back, Outer Write-Back Cacheable memory, then it is a CONSTRAINED
UNPREDICTABLE choice of either of the following:

— An unaligned access is performed meeting all of the semantics of the instruction.

— An Alignment fault is generated.

Where memory access is performed, then it is single-copy atomic.

For these instructions, the definition of an unaligned access is based on the overall access size.

If FEAT_LS64 is implemented, when a single-copy atomic 64-byte instruction accesses a memory location that is
not aligned to 64 bytes, an Alignment fault always occurs, regardless of the value of SCTLR_ELx.A.

Non-atomic Load-Acquire/Store-Release instructions

For Load-Acquire/Store-Release instructions which do not have exclusive or atomic behaviors:

When the value of SCTLR_ELx.A applicable to the current Exception level is 1, an Alignment fault is generated.

When the value of SCTLR_ELx.A applicable to the current Exception level is 0:

If FEAT_LSE2 is not implemented, then these instructions generate an Alignment fault if the address being accessed
is not aligned to the size of the data structure being accessed.

If FEAT_LSE2 is implemented, then:

• If the memory access is not to Normal Inner Write-Back or Outer Write-Back Cacheable memory, then it is
a CONSTRAINED UNPREDICTABLE choice of either of the following:

— An unaligned access is performed meeting all of the semantics of the instruction.

— An Alignment fault is generated.

• If all of the bytes of the memory access do not lie within a 16-byte quantity aligned to 16 bytes then the
following applies:

— If SCTLR_ELx.nAA applicable to the current Exception level is 0 an Alignment fault is generated.

— If SCTLR_ELx.nAA applicable to the current Exception level is 1 then an unaligned access is
performed which is not guaranteed to be single-copy atomic except at the byte access level.

In this case, the architecture does no define the order of the different transactions of the access defined by the
single instructions relative to each other.

Note

• Unaligned accesses typically take additional cycles to complete compared to a naturally-aligned access.

• An operation that is not single-copy atomic above the byte level can abort on any memory access that it makes
and can abort on more than one access. This means that an unaligned access that occurs across a page
boundary can generate an abort on either side of the page boundary.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-161
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.6 Endian support
B2.6 Endian support

General description of endianness in the Arm architecture on page B2-162 describes the relationship between
endianness and memory addressing in the Arm architecture.

The following subsections then describe the endianness schemes supported by the architecture:

• Instruction endianness on page B2-163.

• Data endianness on page B2-163.

• Endianness of memory-mapped peripherals on page B2-164.

B2.6.1 General description of endianness in the Arm architecture

This section only describes memory addressing and the effects of endianness for data elements up to quadwords of
128 bits. However, this description can be extended to apply to larger data elements.

For an address A, Figure B2-2 on page B2-162 shows, for big-endian and little-endian memory systems, the
relationship between:

• The quadword at address A.

• The doubleword at address A and A+8.

• The words at addresses A, A+4, A+8, and A+12.

• The halfwords at addresses A, A+2, A+4, A+6, A+8, A+10, A+12, and A+14.

• The bytes at addresses A, A+1, A+2, A+3, A+4, A+5, A+6, A+7, A+8, A+9, A+10, A+11, A+12, A+13,
A+14, and A+15.

The terms in Figure B2-2 on page B2-162 have the following definitions:

B_A Byte at address A.

HW_A Halfword at address A.

MSByte Most significant byte.

LSByte Least significant byte.

Figure B2-2 Endianness relationships

Big-endian memory system

Little-endian memory system

B_A+15B_A+14B_A+13B_A+12B_A+11 B_A+10 B_A+9 B_A+8 B_A+7 B_A+6 B_A+5 B_A+4 B_A+3 B_A+2 B_A+1 B_A

HW_A+14 HW_A+12 HW_A+10 HW_A+8 HW_A+6 HW_A+4 HW_A+2 HW_A

Word at address A+12 Word at address A+8 Word at address A+4 Word at address A

Doubleword at address A+8 Doubleword at address A

Quadword at address A

Incrementing byte address LSByteMSByte

Incrementing byte address

B_A+15B_A+14B_A+13B_A+12B_A+11B_A+10B_A+9B_A+8B_A+7B_A+6B_A+5B_A+4B_A+3B_A+2B_A+1B_A

HW_A+14HW_A+12HW_A+10HW_A+8HW_A+6HW_A+4HW_A+2HW_A

Word at address A+12Word at address A+8Word at address A+4Word at address A

Doubleword at address A+8Doubleword at address A

Quadword at address A

LSByteMSByte
B2-162 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.6 Endian support
The big-endian and little-endian mapping schemes determine the order in which the bytes of a quadword,
doubleword, word, or halfword are interpreted. For example, a load of a word from address 0x1000 always results
in an access to the bytes at memory locations 0x1000, 0x1001, 0x1002, and 0x1003. The endianness mapping scheme
determines the significance of these 4 bytes.

B2.6.2 Instruction endianness

In Armv8-A, A64 instructions have a fixed length of 32 bits and are always little-endian.

B2.6.3 Data endianness

SCTLR_EL1.E0E, configurable at EL1 or higher, determines the data endianness for execution at EL0.

The data size used for endianness conversions:

• Is the size of the data value that is loaded or stored for SIMD and floating-point register and general-purpose
register loads and stores.

• Is the size of the data element that is loaded or stored for SIMD element and data structure loads and stores.
For more information, see Endianness in SIMD operations on page B2-163.

Note

This means the Armv8 architecture introduces a requirement for 128-bit endian conversions.

Instructions to reverse bytes in a general-purpose register or a SIMD and floating-point
register

An application or device driver might have to interface to memory-mapped peripheral registers or shared memory
structures that are not the same endianness as the internal data structures. Similarly, the endianness of the operating
system might not match that of the peripheral registers or shared memory. In these cases, the PE requires an efficient
method to transform explicitly the endianness of the data.

Table B2-2 on page B2-163 shows the instructions that provide this functionality:

Endianness in SIMD operations

SIMD element load/store instructions transfer vectors of elements between memory and the SIMD and
floating-point register file. An instruction specifies both the length of the transfer and the size of the data elements
being transferred. This information is used to load and store data correctly in both big-endian and little-endian
systems.

Table B2-2 Byte reversal instructions

Function Instructions Notes

Reverse bytes in 32-bit word or wordsa

a. Can operate on multiple words.

REV32 For use with general-purpose registers

Reverse bytes in whole register REV For use with general-purpose registers

Reverse bytes in 16-bit halfwords REV16 For use with general-purpose registers

Reverse elements in doublewords, vector REV64 For use with SIMD and floating-point registers

Reverse elements in words, vector REV32 For use with SIMD and floating-point registers

Reverse elements in halfwords, vector REV16 For use with SIMD and floating-point registers
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-163
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.6 Endian support
For example:

LD1 {V0.4H}, [X1]

This loads a 64-bit register with four 16-bit values. The four elements appear in the register in array order, with the
lowest indexed element fetched from the lowest address. The order of bytes in the elements depends on the
endianness configuration, as shown in Figure B2-3 on page B2-164. Therefore, the order of the elements in the
registers is the same regardless of the endianness configuration.

Figure B2-3 SIMD byte order example

The BigEndian() pseudocode function determines the current endianness of the data.

The BigEndianReverse() pseudocode function reverses the endianness of a bitstring.

The BigEndian() and BigEndianReverse() functions are defined in Chapter J1 Armv8 Pseudocode.

B2.6.4 Endianness of memory-mapped peripherals

All memory-mapped peripherals defined in the Arm architecture must be little-endian.

Peripherals to which this requirement applies include:

• Memory-mapped register interfaces to a debugger, or to a Cross Trigger Interface, see Chapter H8 About the
External Debug Registers.

• The memory-mapped register interface to the system level implementation of the Generic Timer, see
Chapter I2 System Level Implementation of the Generic Timer.

• A memory-mapped register interface to the Performance Monitors, see Chapter I3 Recommended External
Interface to the Performance Monitors.

• A memory-mapped register interface to the Activity Monitors, see Chapter I4 Recommended External
Interface to the Activity Monitors.

• Memory-mapped register interfaces to an Arm Generic Interface Controller, see the ARM® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3.0 and version 4.0.

• The memory-mapped register interface to an Arm trace component. See, for example, the ARM® Embedded
Trace Macrocell Architecture Specification, ETMv4.

D[15:8] D[7:0] C[15:8] C[7:0] B[15:8] B[7:0] A[15:8] A[7:0]

64-bit register containing four 16-bit elements

0
1
2
3
4
5
6 D[7:0]

C[15:8]
C[7:0]
B[15:8]
B[7:0]
A[15:8]
A[7:0] 0

1
2
3
4
5
6

D[7:0]
D[15:8]
C[7:0]
C[15:8]
B[7:0]
B[15:8]
A[7:0]
A[15:8]

Memory system with
little-endian addressing (LE)

Memory system with
big-endian addressing (BE)

LD1 {V0.4H}, [X1] LD1 {V0.4H}, [X1]

77 D[15:8]
B2-164 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes
B2.7 Memory types and attributes

In Armv8 the ordering of accesses for addresses in memory, referred to as the memory order model, is defined by
the memory attributes. The following sections describe this model:

• Normal memory on page B2-165.

• Device memory on page B2-169.

• Memory access restrictions on page B2-174.

B2.7.1 Normal memory

The Normal memory type attribute applies to most memory in a system. It indicates that the hardware is permitted
by the architecture to perform Speculative data read accesses to these locations, regardless of the access permissions
for these locations.

The Normal memory type has the following properties:

• A write to a memory location with the Normal attribute completes in finite time.

• Writes to a memory location with the Normal memory type that is either Non-cacheable or Write-Through
cacheable for both the Inner and Outer cacheability must reach the endpoint for that location in the memory
system in finite time. Two writes to the same location, where at least one is using the Normal memory type,
might be merged before they reach the endpoint unless there is an ordered-before relationship between the
two writes.

• Unaligned memory accesses can access Normal memory if the system is configured to generate such
accesses.

• There is no requirement for the memory system beyond the PE to be able to identify the elements accessed
by multi-register load/store instructions. See Multi-register loads and stores that access Normal memory on
page B2-169.

Note

• The Normal memory attribute is appropriate for locations of memory that are idempotent, meaning that they
exhibit all of the following properties:

— Read accesses can be repeated with no side-effects.

— Repeated read accesses return the last value written to the resource being read.

— Read accesses can fetch additional memory locations with no side-effects.

— Write accesses can be repeated with no side-effects if the contents of the location accessed are
unchanged between the repeated writes or as the result of an exception, as described in this section.

— Unaligned accesses can be supported.

— Accesses can be merged before accessing the target memory system.

• Normal memory allows speculative reads and may be affected by intermediate buffering and forwarding of
data. If non-idempotent memory locations are mapped as Normal memory, the following may occur:

— Memory accesses return UNKNOWN values.

— UNPREDICTABLE effects on memory-mapped peripherals.

• An instruction that generates a sequence of accesses as described in Atomicity in the Arm architecture on
page B2-128 might be abandoned as a result of an exception being taken during the sequence of accesses. On
return from the exception the instruction is restarted, and therefore, one or more of the memory locations
might be accessed multiple times. This can result in repeated write accesses to a location that has been
changed between the write accesses.

For accesses to Normal memory, a DMB instruction is required to ensure the required ordering.

The following sections describe the other attributes for Normal memory:

• Shareable Normal memory on page B2-166.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-165
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes
• Non-shareable Normal memory on page B2-167.

• Cacheability attributes for Normal memory on page B2-167.

See also:

• Multi-register loads and stores that access Normal memory on page B2-169.

• Atomicity in the Arm architecture on page B2-128.

• Memory barriers on page B2-146.

• Concurrent modification and execution of instructions on page B2-130.

Shareable Normal memory

A Normal memory location has a Shareability attribute that is one of:

• Inner Shareable, meaning it applies across the Inner Shareable shareability domain.

• Outer Shareable, meaning it applies across both the Inner Shareable and the Outer Shareable shareability
domains.

• Non-shareable.

The shareability attributes define the data coherency requirements of the location, that hardware must enforce. They
do not affect the coherency requirements of instruction fetches, see Synchronization and coherency issues between
data and instruction accesses on page B2-158.

Note

• System designers can use the shareability attribute to specify the locations in Normal memory for which
coherency must be maintained. However, software developers must not assume that specifying a memory
location as Non-shareable permits software to make assumptions about the incoherency of the location
between different PEs in a shared memory system. Such assumptions are not portable between different
multiprocessing implementations that might use the shareability attribute. Any multiprocessing
implementation might implement caches that are shared, inherently, between different processing elements.

• This architecture assumes that all PEs that use the same operating system or hypervisor are in the same Inner
Shareable shareability domain.

Shareable, Inner Shareable, and Outer Shareable Normal memory

The Arm architecture abstracts the system as a series of Inner and Outer Shareability domains.

Each Inner Shareability domain contains a set of observers that are data coherent for each member of that set for
data accesses with the Inner Shareable attribute made by any member of that set.

Each Outer Shareability domain contains a set of observers that are data coherent for each member of that set for
data accesses with the Outer Shareable attribute made by any member of that set.

The following properties also hold:

• Each observer is only a member of a single Inner Shareability domain.

• Each observer is only a member of a single Outer Shareability domain.

• All observers in an Inner Shareability domain are always members of the same Outer Shareability domain.
This means that an Inner Shareability domain is a subset of an Outer Shareability domain, although it is not
required to be a proper subset.

Note

• Because all data accesses to Non-cacheable locations are data coherent to all observers, Non-cacheable
locations are always treated as Outer Shareable.

• The Inner Shareable domain is expected to be the set of PEs controlled by a single hypervisor or operating
system.
B2-166 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes
The details of the use of the shareability attributes are system-specific. Example B2-1 on page B2-167 shows how
they might be used.

Example B2-1 Use of shareability attributes

In an implementation, a particular subsystem with two clusters of PEs has the requirement that:

• In each cluster, the data caches or unified caches of the PEs in the cluster are transparent for all data accesses
to memory locations with the Inner Shareable attribute.

• However, between the two clusters, the caches:

— Are not required to be coherent for data accesses that have only the Inner Shareable attribute.

— Are coherent for data accesses that have the Outer Shareable attribute.

In this system, each cluster is in a different shareability domain for the Inner Shareable attribute, but all components
of the subsystem are in the same shareability domain for the Outer Shareable attribute.

A system might implement two such subsystems. If the data caches or unified caches of one subsystem are not
transparent to the accesses from the other subsystem, this system has two Outer Shareable shareability domains.

Having two levels of shareability means system designers can reduce the performance and power overhead for
shared memory locations that do not need to be part of the Outer Shareable shareability domain.

For shareable Normal memory, the Load-Exclusive and Store-Exclusive synchronization primitives take account of
the possibility of accesses by more than one observer in the same Shareability domain.

Non-shareable Normal memory

For Normal memory locations, the Non-shareable attribute identifies Normal memory that is likely to be accessed
only by a single PE.

A location in Normal memory with the Non-shareable attribute does not require the hardware to make data accesses
by different observers coherent, unless the memory is Non-cacheable. For a Non-shareable location, if other
observers share the memory system, software must use cache maintenance instructions, if the presence of caches
might lead to coherency issues when communicating between the observers. This cache maintenance requirement
is in addition to the barrier operations that are required to ensure memory ordering.

For Non-shareable Normal memory, it is IMPLEMENTATION DEFINED whether the Load-Exclusive and
Store-Exclusive synchronization primitives take account of the possibility of accesses by more than one observer.

Cacheability attributes for Normal memory

In addition to being Outer Shareable, Inner Shareable or Non-shareable, each region of Normal memory is assigned
a Cacheability attribute that is one of:

• Write-Through Cacheable.

• Write-Back Cacheable.

• Non-cacheable.

Also, for Write-Through Cacheable and Write-Back Cacheable Normal memory regions:

• A region might be assigned cache allocation hints for read and write accesses.

• It is IMPLEMENTATION DEFINED whether the cache allocation hints can have an additional attribute of
Transient or Non-transient.

For more information, see Cacheability, cache allocation hints, and cache transient hints on page D4-2640.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-167
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes
A memory location can be marked as having different cacheability attributes, for example when using aliases in a
VA to PA mapping:

• If the attributes differ only in the cache allocation hint, this does not affect the behavior of accesses to that
location.

• For other cases, see Mismatched memory attributes on page B2-176.

The cacheability attributes provide a mechanism of coherency control with observers that lie outside the shareability
domain of a region of memory. In some cases, the use of Write-Through Cacheable or Non-cacheable regions of
memory might provide a better mechanism for controlling coherency than the use of hardware coherency
mechanisms or the use of cache maintenance routines. To this end, the architecture requires the following properties
for Non-cacheable or Write-Through Cacheable memory:

• A completed write to a memory location that is Non-cacheable or Write-Through Cacheable for a level of
cache made by an observer accessing the memory system inside the level of cache is visible to all observers
accessing the memory system outside the level of cache without the need of explicit cache maintenance.

• A completed write to a memory location that is Non-cacheable for a level of cache made by an observer
accessing the memory system outside the level of cache is visible to all observers accessing the memory
system inside the level of cache without the need of explicit cache maintenance.

• For accesses to Normal memory that is Non-cacheable, a DMB instruction introduces a Barrier-ordered-before
relation on all accesses to a single peripheral or block of memory that is of IMPLEMENTATION DEFINED size.
For more information, see Ordering relations on page B2-137.

Note

Implementations can use the cache allocation hints to indicate a probable performance benefit of caching. For
example, a programmer might know that a piece of memory is not going to be accessed again and would be better
treated as Non-cacheable. The distinction between memory regions with attributes that differ only in the cache
allocation hints exists only as a hint for performance.

For Normal memory, the Arm architecture provides cacheability attributes that are defined independently for each
of two conceptual levels of cache, the inner and the outer cache. The relationship between these conceptual levels
of cache and the implemented physical levels of cache is IMPLEMENTATION DEFINED, and can differ from the
boundaries between the Inner and Outer Shareability domains. However:

• Inner refers to the innermost caches, meaning the caches that are closest to the PE, and always includes the
lowest level of cache.

• No cache that is controlled by the Inner cacheability attributes can lie outside a cache that is controlled by the
Outer cacheability attributes.

• An implementation might not have any outer cache.

Example B2-2 on page B2-168, Example B2-3 on page B2-169, and Example B2-4 on page B2-169 describe the
possible ways of implementing a system with three levels of cache, level 1 (L1) to level 3 (L3).

Note

• L1 cache is the level closest to the PE, see Memory hierarchy on page B2-155.

• When managing coherency, system designs must consider both the inner and outer cacheability attributes, as
well as the shareability attributes. This is because hardware might have to manage the coherency of caches
at one conceptual level, even when another conceptual level has the Non-cacheable attribute.

Example B2-2 Implementation with two inner and one outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:

• The Inner cacheability attribute applied to L1 and L2 cache.

• The Outer cacheability attribute applied to L3 cache.
B2-168 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes
Example B2-3 Implementation with three inner and no outer cache levels

Implement the three levels of cache in the system, L1 to L3, with the Inner cacheability attribute applied to L1, L2,
and L3 cache. Do not use the Outer cacheability attribute.

Example B2-4 Implementation with one inner and two outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:

• The Inner cacheability attribute applied to L1 cache.

• The Outer cacheability attribute applied to L2 and L3 cache.

Multi-register loads and stores that access Normal memory

For all instructions that load or store more than one general-purpose register from an Exception level there is no
requirement for the memory system beyond the PE to be able to identify the size of the elements accessed by these
load or store instructions.

For all instructions that load or store more than one general-purpose register from an Exception level the order in
which the registers are accessed is not defined by the architecture.

For all instructions that load or store one or more SIMD&FP registers from an Exception level, there is no
requirement for the memory system beyond the PE to be able to identify the size of the element accessed by these
load or store instructions.

B2.7.2 Device memory

The Device memory type attributes define memory locations where an access to the location can cause side-effects,
or where the value returned for a load can vary depending on the number of loads performed. Typically, the Device
memory attributes are used for memory-mapped peripherals and similar locations.

The attributes for Armv8 Device memory are:

Gathering Identified as G or nG, see Gathering on page B2-171.

Reordering Identified as R or nR, see Reordering on page B2-172.

Early Write Acknowledgement

Identified as E or nE, see Early Write Acknowledgement on page B2-173.

The Armv8 Device memory types are:

Device-nGnRnE Device non-Gathering, non-Reordering, No Early Write Acknowledgement.

Equivalent to the Strongly-ordered memory type in earlier versions of the architecture.

Device-nGnRE Device non-Gathering, non-Reordering, Early Write Acknowledgement.

Equivalent to the Device memory type in earlier versions of the architecture.

Device-nGRE Device non-Gathering, Reordering, Early Write Acknowledgement.

Armv8 adds this memory type to the translation table formats found in earlier versions of
the architecture. The use of barriers is required to order accesses to Device-nGRE memory.

Device-GRE Device Gathering, Reordering, Early Write Acknowledgement.

Armv8 adds this memory type to the translation table formats found in earlier versions of
the architecture. Device-GRE memory has the fewest constraints. It behaves similar to
Normal memory, with the restriction that Speculative accesses to Device-GRE memory is
forbidden.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-169
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes
Collectively these are referred to as any Device memory type. Going down the list, the memory types are described
as getting weaker; conversely the going up the list the memory types are described as getting stronger.

Note

• As the list of types shows, these additional attributes are hierarchical. For example, a memory location that
permits Gathering must also permit Reordering and Early Write Acknowledgement.

• The architecture does not require an implementation to distinguish between each of these memory types and
Arm recognizes that not all implementations will do so. The subsection that describes each of the attributes,
describes the implementation rules for the attribute.

All of these memory types have the following properties:

• Speculative data accesses are not permitted to any memory location with any Device memory attribute. This
means that each memory access to any Device memory type must be one that would be generated by a simple
sequential execution of the program.

The following exceptions to this apply:

— Reads generated by the SIMD and floating-point instructions can access bytes that are not explicitly
accessed by the instruction if the bytes accessed are in a 16-byte window, aligned to 16-bytes, that
contains at least one byte that is explicitly accessed by the instruction.

— For Device memory with the Gathering attribute, reads generated by the LDNP instructions are
permitted to access bytes that are not explicitly accessed by the instruction, provided that the bytes
accessed are in a 128-byte window, aligned to 128-bytes, that contains at least one byte that is
explicitly accessed by the instruction.

— Where a load or store instruction performs a sequence of memory accesses, as opposed to one
single-copy atomic access as defined in the rules for single-copy atomicity, these accesses might occur
multiple times as a result of executing the load or store instruction. See Properties of single-copy
atomic accesses on page B2-130.

Note

— An instruction that generates a sequence of accesses as described in Atomicity in the Arm architecture
on page B2-128 might be abandoned as a result of an exception being taken during the sequence of
accesses. On return from the exception, the instruction is restarted, and therefore, one or more of the
memory locations might be accessed multiple times. This can result in repeated accesses to a location
where the program only defines a single access. For this reason, Arm strongly recommends that no
accesses to Device memory are performed from a single instruction that spans the boundary of a
translation granule or which in some other way could lead to some of the accesses being aborted.

— Write speculation that is visible to other observers is prohibited for all memory types.

• A write to a memory location with any Device memory type completes in finite time.

• If a value that would be returned from a read of a memory location with the Device memory type changes
without an explicit memory write effect by an observer, this change must also be globally observed for all
observers in the system in finite time. Such a change might occur in a peripheral location that holds status
information.

• Data accesses to memory locations are coherent for all observers in the system, and correspondingly are
treated as being Outer Shareable.

• A memory location with any Device memory attribute cannot be allocated into a cache.

• Writes to a memory location with any Device memory attribute must reach the endpoint for that address in
the memory system in finite time. Two writes of Device memory type to the same location might be merged
before they reach the endpoint, unless both writes have the non-Gathering attribute or there is an
ordered-before relationship between the two writes.
B2-170 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes
• For accesses to any Device memory type, a DMB instruction introduces a Barrier-ordered-before relation on all
accesses to a single peripheral or block of memory that is of implementation defined size. For more
information, see Ordering relations on page B2-137.

• If a memory location is not capable of supporting unaligned memory accesses, then an unaligned access to
that memory location generates an Alignment fault at the first stage of translation that defined the location as
being Device.

• If a memory location is capable of supporting unaligned memory accesses, and such a memory location is
marked as Device, then it is IMPLEMENTATION DEFINED whether an unaligned access to that memory location
generates an Alignment fault at the first stage of translation that defined the location as being Device.

• Hardware does not prevent speculative instruction fetches from a memory location with any of the Device
memory attributes unless the memory location is also marked as execute-never for all Exception levels.

Note

This means that to prevent speculative instruction fetches from memory locations with Device memory
attributes, any location that is assigned any Device memory type must also be marked as execute-never for
all Exception levels. Failure to mark a memory location with any Device memory attribute as execute-never
for all Exception levels is a programming error.

Note

In the EL1&0 translation regime in systems where HCR_EL2.TGE==1 and HCR_EL2.DC==0, any Alignment
fault that results from the fact that all locations are treated as Device is a fault at the first stage of translation. This
causes ESR_EL2.ISS[24] to be 0.

See also Memory access restrictions on page B2-174.

The memory types for translation table walks cannot be defined as any Device memory type within the TCR_ELx.
For the EL1&0 translation regime, the memory accesses made during a stage 1 translation table walk are subject to
a stage 2 translation, and as a result of this second stage of translation, the accesses from the first stage translation
table walk might be made to memory locations with any Device memory type. These accesses might be made
speculatively. When the value of the HCR_EL2.PTW bit is 1, a stage 2 Permission fault is generated if a first stage
translation table walk is made to any Device memory type.

Note

In general, making a translation table walk to any Device memory type is the result of a programming error.

For an instruction fetch from a memory location with the Device attribute that is not marked as execute-never for
the current Exception level, an implementation can either:

• Treat the instruction fetch as if it were to a memory location with the Normal Non-cacheable attribute.

• Take a Permission fault.

Gathering

In the Device memory attribute:

G Indicates that the location has the Gathering attribute.

nG Indicates that the location does not have the Gathering attribute, meaning it is non-Gathering.

The Gathering attribute determines whether it is permissible for either:

• Multiple memory accesses of the same type, read or write, to the same memory location to be merged into a
single transaction.

• Multiple memory accesses of the same type, read or write, to different memory locations to be merged into
a single memory transaction on an interconnect.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-171
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes
Note

This also applies to writebacks from the cache, whether caused by a Natural eviction or as a result of a cache
maintenance instruction.

For memory types with the Gathering attribute, either of these behaviors is permitted, provided that the ordering and
coherency rules of the memory location are followed.

For memory types with the non-Gathering attribute, neither of these behaviors is permitted. As a result:

• The number of memory accesses that are made corresponds to the number that would be generated by a
simple sequential execution of the program.

• All accesses occur at their single-copy atomic sizes, except that there is no requirement for the memory
system beyond the PE to be able to identify the single-copy atomic sizes accessed by multi-register load/store
instructions that generate more than one single-copy atomic access. See Multi-register loads and stores that
access Device memory on page B2-174.

Gathering between memory accesses separated by a memory barrier that affects those memory accesses is not
permitted.

Gathering between two memory accesses generated by a Load-Acquire/Store-Release is not permitted.

A read from a memory location with the non-Gathering attribute cannot come from a cache or a buffer, but must
come from the endpoint for that address in the memory system. Typically this is a peripheral or physical memory.

Note

• A read from a memory location with the Gathering attribute can come from intermediate buffering of a
previous write, provided that:

— The accesses are not separated by a DMB or DSB barrier that affects both of the accesses.

— The accesses are not separated by other ordering constructions that require that the accesses are in
order. Such a construction might be a combination of Load-Acquire and Store-Release.

— The accesses are not generated by a Store-Release instruction.

• The Arm architecture only defines programmer visible behavior. Therefore, gathering can be performed if a
programmer cannot tell whether gathering has occurred.

An implementation is permitted to perform an access with the Gathering attribute in a manner consistent with the
requirements specified by the non-Gathering attribute.

An implementation is not permitted to perform an access with the non-Gathering attribute in a manner consistent
with the relaxations allowed by the Gathering attribute.

Reordering

In the Device memory attribute:

R Indicates that the location has the Reordering attribute. Accesses to the location can be reordered
within the same rules that apply to accesses to Normal Non-cacheable memory. All memory types
with the Reordering attribute have the same ordering rules as accesses to Normal Non-cacheable
memory, see Ordering relations on page B2-137.

nR Indicates that the location does not have the Reordering attribute, meaning it is non-Reordering.

Note

Some interconnect fabrics, such as PCIe, perform very limited reordering, which is not important
for the software usage. It is outside the scope of the Arm architecture to prohibit the use of a
non-Reordering memory type with these interconnects.
B2-172 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes
For all memory types with the non-Reordering attribute, the order of memory accesses arriving at a single peripheral
of IMPLEMENTATION DEFINED size, as defined by the peripheral, must be the same order that occurs in a simple
sequential execution of the program. That is, the accesses appear in program order. This ordering applies to all
accesses using any of the memory types with the non-Reordering attribute. As a result, if there is a mixture of
Device-nGnRE and Device-nGnRnE accesses to the same peripheral, these occur in program order. If the memory
accesses are not to a peripheral, then this attribute imposes no restrictions.

Note

• The IMPLEMENTATION DEFINED size of the single peripheral is the same as applies for the ordering guarantee
provided by the DMB instruction.

• The Arm architecture only defines programmer visible behavior. Therefore, reordering can be performed if
a programmer cannot tell whether reordering has occurred.

• The non-Reordering property is only required by the architecture to apply the order of arrival of accesses to
a single memory-mapped peripheral of an IMPLEMENTATION DEFINED size, and is not required to have an
impact on the order of observation of memory accesses to SDRAM. For this reason, there is no effect of the
non-Reordering attribute on the ordering relations between accesses to different locations described in
Ordering relations on page B2-137 as part of the formal definition of the memory model.

• If the same memory location is mapped with different aliases, and different attribute values, these are a type
of mismatched attribute. The different attributes could be:

— A different Reordering attribute value.

— A different Device memory attribute value.

— When FEAT_XS is implemented, a different XS attribute value.

For information about the effects of accessing memory with mismatched attributes, see Mismatched memory
attributes on page B2-176.

An implementation:

• Is permitted to perform an access with the Reordering attribute in a manner consistent with the requirements
specified by the non-Reordering attribute.

• Is not permitted to perform an access with the non-Reordering attribute in a manner consistent with the
relaxations allowed by the Reordering attribute.

The non-Reordering attribute does not require any additional ordering, other than that which applies to Normal
memory, between:

• Accesses to one physical address with the non-Reordering attribute and accesses to a different physical
address with the Reordering attribute.

• Access to one physical address with the non-Reordering attribute and access to a different physical address
to Normal memory.

• Accesses with the non-Reordering attribute and accesses to different peripherals of IMPLEMENTATION
DEFINED size.

The non-Reordering attribute has no effect on the ordering of cache maintenance instructions, even if the memory
location specified in the instruction has the non-Reordering attribute.

Early Write Acknowledgement

In the Device memory attribute:

E Indicates that the location has the Early Write Acknowledgement attribute.

nE Indicates that the location has the No Early Write Acknowledgement attribute.

If the No Early Write Acknowledgement attribute is assigned for a Device memory location:

• For memory system endpoints where the system architecture in which the PE is operating requires that
acknowledgement of a write comes from the endpoint, it is guaranteed that:

— Only the endpoint of the write access returns a write acknowledgement of the access.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-173
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes
— No earlier point in the memory system returns a write acknowledgement.

• For memory system endpoints where the system architecture in which the PE is operating does not require
that acknowledgement of a write comes from the endpoint, the acknowledgement of a write is not required
to come from the endpoint.

Note

A write with the No Early Write Acknowledgement attribute assigned for a Device memory location is not expected
to generate an abort in any situation where the equivalent write to the same location without the No Early Write
Acknowledgement attribute assigned does not generate an abort.

This means that a DSB barrier instruction, executed by the PE that performed the write to the No Early Write
Acknowledgement Location, completes only after the write has reached its endpoint in the memory system.

Peripherals are an example of system endpoints that require that the acknowledgement of a write comes from the
endpoint.

Note

• The Early Write Acknowledgement attribute only affects where the endpoint acknowledgement is returned
from, and does not affect the ordering of arrival at the endpoint between accesses, which is determined by
either the Device Reordering attribute, or the use of barriers to create order.

• The areas of the physical memory map for which write acknowledgement from the endpoint is required is
outside the scope of the Arm Architecture definition and must be defined as part of the system architecture
in which the PE is operating. In particular, regions of memory handled as PCIe configuration writes are
expected to support write acknowledgement from the endpoint.

• Arm recognizes that not all areas of a physical memory map will be capable of supporting write
acknowledgement from the endpoint. In particular, Arm expects that regions of memory handled as posted
writes under PCIe will not support write acknowledgement from the endpoint.

• For maximum software compatibility, Arm strongly recommends that all peripherals for which standard
software drivers expect that the use of a DSB instruction will determine that a write has reached its endpoint
are placed in areas of the physical memory map that support write acknowledgement from the endpoint.

Multi-register loads and stores that access Device memory

For all instructions that load or store more than one general-purpose register and generate more than one single-copy
atomic access for that load or store, there is no requirement for the memory system beyond the PE to be able to
identify the single-copy atomic sizes accessed by these load or store instructions.

For all instructions that load or store more than one general-purpose register, the order in which the registers are
accessed is not defined by the architecture. This applies even to accesses to any type of Device memory.

For all instructions that load or store one or more SIMD and floating-point or SVE registers, and generate more than
one single-copy atomic access for that load or store, there is no requirement for the memory system beyond the PE
to be able to identify the single-copy atomic sizes accessed by these load or store instructions, even for access to
any type of Device memory.

B2.7.3 Memory access restrictions

The following restrictions apply to memory accesses:

• For two explicit memory reads to any two adjacent bytes in memory, p and p+1, generated by the same
instruction, and for two explicit writes to any two adjacent bytes in memory, p and p+1, that are generated
by the same instruction:

— The bytes p and p+1 must have the same memory type and Shareability attributes, otherwise the
results are CONSTRAINED UNPREDICTABLE. For example, an LD1, ST1, or an unaligned load or store that
spans the boundary between Normal memory and Device memory is CONSTRAINED UNPREDICTABLE.
B2-174 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes
— Except for possible differences in the cache allocation hints, Arm deprecates having different
cacheability attributes for bytes p and p+1.

For the permitted CONSTRAINED UNPREDICTABLE behavior, see Crossing a page boundary with different
memory types or Shareability attributes on page K1-8413.

• If the accesses of an instruction that causes multiple accesses to any type of Device memory cross an address
boundary that corresponds to the smallest implemented translation granule, then behavior is CONSTRAINED
UNPREDICTABLE, and Crossing a peripheral boundary with a Device access on page K1-8414 describes the
permitted behaviors. For this reason, it is important that an access to a volatile memory device is not made
using a single instruction that crosses an address boundary of the size of the smallest implemented translation
granule.

Note

— The boundary referred to is between two Device memory regions that are both of the size of the
smallest implemented translation granule and aligned to the size of the smallest implemented
translation granule.

— This restriction means it is important that an access to a volatile memory device is not made using a
single instruction that crosses an address boundary of the size of the smallest implemented translation
granule.

— Arm expects this restriction to constrain the placing of volatile memory devices in the system memory
map, rather than expecting a compiler to be aware of the alignment of memory accesses.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-175
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.8 Mismatched memory attributes
B2.8 Mismatched memory attributes

Memory attributes are controlled by privileged software. For more information, see Chapter D5 The AArch64
Virtual Memory System Architecture.

Physical memory locations are accessed with mismatched attributes if all accesses to the location do not use a
common definition of all of the following attributes of that location:

• Memory type: Device-nGnRnE, Device-nGnRE, Device-nGRE, Device-GRE or Normal.

• Shareability.

• Cacheability, for the same level of the inner or outer cache, but excluding any cache allocation hints.

• When FEAT_XS is implemented, XS attribute.

Collectively these are referred to as memory attributes.

If FEAT_MTE2 is implemented, accesses to a location which use a common definition of the memory attributes but
the Tagged attribute of that location differs do not cause a mismatched access to occur.

Note

In this document, the terms location and memory location refer to any byte within the current coherency granule
and are used interchangeably.

When a memory Location is accessed with mismatched attributes, the only software visible effects are one or more
of the following:

• Uniprocessor semantics for reads and writes to that memory Location might be lost. This means:

— A read of the memory Location by one agent might not return the value most recently written to that
memory Location by the same agent.

— Multiple writes to the memory Location by one agent with different memory attributes might not be
ordered in program order.

• There might be a loss of coherency when multiple agents attempt to access a memory Location.

• There might be a loss of properties derived from the memory type, as described in later bullets in this section.

• If all Load-Exclusive/Store-Exclusive instructions executed across all threads to access a given memory
Location do not use consistent memory attributes, the Exclusives monitor state becomes UNKNOWN.

• Bytes written without the Write-Back cacheable attribute within the same Write-Back granule as bytes
written with the Write-Back cacheable attribute might have their values reverted to the old values as a result
of cache Write-Back.

The loss of properties associated with mismatched memory type attributes refers only to the following properties of
Device memory that are additional to the properties of Normal memory:

• Prohibition of Speculative read accesses.

• Prohibition on Gathering.

• Prohibition on reordering.

For the following situations, when a physical memory Location is accessed with mismatched attributes, a more
restrictive set of behaviors applies. The description of each situation also describes the behaviors that apply:

1. Any agent that reads that memory Location using the same common definition of the Memory type,
Shareability and Cacheability attributes is guaranteed to access it coherently, to the extent required by that
common definition of the memory attributes, only if all the following conditions are met:

• All writes are performed to an alias of the memory Location that uses the same definition of the
Memory type, Shareability and Cacheability attributes.

• Either:

— In the EL1&0 translation regime, HCR_EL2.MIOCNCE has a value of 0.

— All aliases with write permission have the Inner Cacheability attribute the same as the Outer
Cacheability attribute.
B2-176 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.8 Mismatched memory attributes
• Either:

— All writes are performed to an alias of the memory Location that has Inner Cacheability and
Outer Cacheability attributes both as Non-cacheable.

— All aliases to a memory Location use a definition of the Shareability attributes that encompasses
all the agents with permission to access the Location.

2. The possible software-visible effects caused by mismatched attributes for a memory Location are defined
more precisely if all of the mismatched attributes define the memory Location as one of:

• Any Device memory type.

• Inner Non-cacheable, Outer Non-cacheable Normal memory.

In these cases, the only permitted software-visible effects of the mismatched attributes are one or more of the
following:

• Possible loss of properties derived from the memory type when multiple agents attempt to access the
memory Location.

• Possible reordering of memory transactions to the same memory Location with different memory
attributes, potentially leading to a loss of coherency or uniprocessor semantics. Any possible loss of
coherency or uniprocessor semantics can be avoided by inserting DMB barrier instructions between
accesses to the same memory Location that might use different attributes.

Where there is a loss of the uniprocessor semantics, ordering, or coherency, the following approaches can be used:

1. If the mismatched attributes for a memory location all assign the same shareability attribute to a Location that
has a cacheable attribute, any loss of uniprocessor semantics, ordering, or coherency within a shareability
domain can be avoided by use of software cache management. To do so, software must use the techniques
that are required for the software management of the ordering or coherency of cacheable Locations between
agents in different shareability domains. This means:

• Before writing to a cacheable Location not using the Write-Back attribute, software must invalidate,
or clean, a Location from the caches if any agent might have written to the Location with the
Write-Back attribute. This avoids the possibility of overwriting the Location with stale data.

• After writing to a cacheable Location with the Write-Back attribute, software must clean the Location
from the caches, to make the write visible to external memory.

• Before reading the Location with a cacheable attribute, software must invalidate, or clean and
invalidate, the Location from the caches, to ensure that any value held in the caches reflects the last
value made visible in external memory.

• Executing a DMB barrier instruction, with scope that applies to the common shareability of the accesses,
between any accesses to the same cacheable Location that use different attributes.

In all cases:

• Location refers to any byte within the current coherency granule.

• A clean and invalidate instruction can be used instead of a clean instruction, or instead of an invalidate
instruction.

• In the sequences outlined in this section, all cache maintenance instructions and memory transactions
must be completed, or ordered by the use of barrier operations, if they are not naturally ordered by the
use of a common address, see Ordering and completion of data and instruction cache instructions on
page D4-2656.

Note
With software management of coherency, race conditions can cause loss of data. A race condition occurs
when different agents write simultaneously to bytes that are in the same Location, and the invalidate, write,
clean sequence of one agent overlaps with the equivalent sequence of another agent. A race condition also
occurs if the first operation of either sequence is a clean, rather than an invalidate.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-177
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.8 Mismatched memory attributes
2. If the mismatched attributes for a Location mean that multiple cacheable accesses to the Location might be
made with different shareability attributes, then uniprocessor semantics, ordering, and coherency are
guaranteed only if:

• Software running on a PE cleans and invalidates a Location from cache before and after each read or
write to that Location by that PE.

• A DMB barrier with scope that covers the full shareability of the accesses is placed between any accesses
to the same memory Location that use different attributes.

Note
The Note in rule 1 of this list, about possible race conditions, also applies to this rule.

In addition, if multiple agents attempt to use Load-Exclusive or Store-Exclusive instructions to access a Location,
and the accesses from the different agents have different memory attributes associated with the Location, the
Exclusives monitor state becomes UNKNOWN.

Arm strongly recommends that software does not use mismatched attributes for aliases of the same Location. An
implementation might not optimize the performance of a system that uses mismatched aliases.

Note

As described in Non-cacheable accesses and instruction caches on page D4-2643, a non-cacheable access is
permitted to be cached in an instruction cache, despite the fact that a non-cacheable access is not permitted to be
cached in a unified cache. Despite this, when cacheable and non-cacheable aliases exist for memory which is
executable, these must be treated as mismatched aliases to avoid coherency issues from the data or unified caches
that might hold entries that will be brought into the instruction caches.
B2-178 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores
B2.9 Synchronization and semaphores

Armv8 provides non-blocking synchronization of shared memory, using synchronization primitives. The
information in this section about memory accesses by synchronization primitives applies to accesses to both Normal
memory and to any type of Device memory.

Note

Use of the Armv8 synchronization primitives scales for multiprocessing system designs.

Table B2-3 on page B2-179 shows the synchronization primitives and the associated CLREX instruction.

Except for the row showing the CLREX instruction, the two instructions in a single row are a
Load-Exclusive/Store-Exclusive instruction pair. The model for the use of a Load-Exclusive/Store-Exclusive
instruction pair accessing a non-aborting memory address x is:

• The Load-Exclusive instruction reads a value from memory address x.

• The corresponding Store-Exclusive instruction succeeds in writing back to memory address x only if no other
observer, process, or thread has performed a more recent store to address x. The Store-Exclusive instruction
returns a status bit that indicates whether the memory write succeeded.

A Load-Exclusive instruction marks a small block of memory for exclusive access. The size of the marked block is
IMPLEMENTATION DEFINED, see Marking and the size of the marked memory block on page B2-185. A
Store-Exclusive instruction to any address in the marked block clears the marking.

Note

In this section, the term PE includes any observer that can generate a Load-Exclusive or a Store-Exclusive
instruction.

The following sections give more information:

• Exclusive access instructions and Non-shareable memory locations on page B2-180.

• Exclusive access instructions and Shareable memory locations on page B2-181.

• Marking and the size of the marked memory block on page B2-185.

• Context switch support on page B2-186.

Table B2-3 Synchronization primitives and associated instruction, A64 instruction set

Transaction size Additional semantics Load-Exclusivea

a. Instruction in the A64 instruction set.

Store-Exclusivea Othera

Byte - LDXRB STXRB -

Load-Acquire/Store-Release LDAXRB STLXRB -

Halfword - LDXRH STXRH -

Load-Acquire/Store-Release LDAXRH STLXRH -

Registerb

b. A register instruction operates on a doubleword if accessing an X register, or on a word if accessing a W register
A pair instruction operates on two doublewords if access X registers, or on two words if accessing W registers.

- LDXR STXR -

Load-Acquire/Store-Release LDAXR STLXR -

Pairb - LDXP STXP -

Load-Acquire/Store-Release LDAXP STLXP -

None Clear-Exclusive - - CLREX
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-179
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores
• Load-Exclusive and Store-Exclusive instruction usage restrictions on page B2-186.

• Use of WFE and SEV instructions by spin-locks on page B2-189.

B2.9.1 Exclusive access instructions and Non-shareable memory locations

For memory locations for which the shareability attribute is Non-shareable, the exclusive access instructions rely
on a local Exclusives monitor, or local monitor, that marks any address from which the PE executes a
Load-Exclusive instruction. Any non-aborted attempt by the same PE to use a Store-Exclusive instruction to modify
any address is guaranteed to clear the marking.

A Load-Exclusive instruction performs a load from memory, and:

• The executing PE marks the physical memory address for exclusive access.

• The local monitor of the executing PE transitions to the Exclusive Access state.

A Store-Exclusive instruction performs a conditional store to memory that depends on the state of the local monitor:

If the local monitor is in the Exclusive Access state

• If the address of the Store-Exclusive instruction is the same as the address that has been
marked in the monitor by an earlier Load-Exclusive instruction, then the store occurs.
Otherwise, it is IMPLEMENTATION DEFINED whether the store occurs.

• A status value is returned to a register:

— If the store took place, the status value is 0.

— Otherwise, the status value is 1.

• The local monitor of the executing PE transitions to the Open Access state.

When an Exclusives monitor is in the Exclusive Access state, the monitor is set.

If the local monitor is in the Open Access state

• No store takes place.

• A status value of 1 is returned to a register.

• The local monitor remains in the Open Access state.

When an Exclusives monitor is in the Open Access state, the monitor is clear.

The Store-Exclusive instruction defines the register to which the status value is returned.

When a PE writes using any instruction other than a Store-Exclusive instruction:

• If the write is to a PA that is not marked as Exclusive Access by its local monitor and that local monitor is in
the Exclusive Access state, it is IMPLEMENTATION DEFINED whether the write affects the state of the local
monitor.

• If the write is to a PA that is marked as Exclusive Access by its local monitor, it is IMPLEMENTATION DEFINED
whether the write affects the state of the local monitor.

It is IMPLEMENTATION DEFINED whether a store to a marked PA causes a mark in the local monitor to be cleared if
that store is by an observer other than the one that caused the PA to be marked.
B2-180 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores
Figure B2-4 on page B2-181 shows the state machine for the local monitor and the effect of each of the operations
shown in the figure.

Figure B2-4 Local monitor state machine diagram

For more information about marking, see Marking and the size of the marked memory block on page B2-185.

Note

For the local monitor state machine, as shown in Figure B2-4 on page B2-181:

• The IMPLEMENTATION DEFINED options for the local monitor are consistent with the local monitor being
constructed so that it does not hold any PA, but instead treats any access as matching the address of the
previous Load-Exclusive instruction.

• A local monitor implementation can be unaware of Load-Exclusive and Store-Exclusive instructions from
other PEs.

• The architecture does not require a load instruction by another PE, that is not a Load-Exclusive instruction,
to have any effect on the local monitor.

• It is IMPLEMENTATION DEFINED whether the transition from Exclusive Access to Open Access state occurs
when the Store or StoreExcl is from another observer.

Changes to the local monitor state resulting from speculative execution

The architecture permits a local monitor to transition to the Open Access state as a result of speculation, or from
some other cause. This is in addition to the transitions to Open Access state caused by the architectural execution
of an operation shown in Figure B2-4 on page B2-181.

An implementation must ensure that:

• The local monitor cannot be seen to transition to the Exclusive Access state except as a result of the
architectural execution of one of the operations shown in Figure B2-4 on page B2-181.

• Any transition of the local monitor to the Open Access state not caused by the architectural execution of an
operation shown in Figure B2-4 on page B2-181 must not indefinitely delay forward progress of execution.

B2.9.2 Exclusive access instructions and Shareable memory locations

In the context of this section, a shareable memory location is a memory location that has, or is treated as if it has, a
Shareability attribute of Inner Shareable or Outer Shareable.

Open
Access

Exclusive
Access

LoadExcl(x) LoadExcl(x)

CLREX

StoreExcl(x)

Store(x)

CLREX

Store(!Marked_address)*

Store(Marked_address)*

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.

Store(Marked_address)*

StoreExcl(Marked_address)

StoreExcl(!Marked_address)

Store(!Marked_address)*

In the diagram: LoadExcl represents any Load-Exclusive instruction
StoreExcl represents any Store-Exclusive instruction
Store represents any other store instruction.

Any LoadExcl operation updates the marked address to the most significant bits of the address x used for the operation.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-181
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores
For shareable memory locations, exclusive access instructions rely on:

• A local monitor for each PE in the system, that marks any address from which the PE executes a
Load-Exclusive. The local monitor operates as described in Exclusive access instructions and Non-shareable
memory locations on page B2-180, except that for shareable memory any Store-Exclusive is then subject to
checking by the global monitor if it is described in that section as doing at least one of the following:

— Updating memory.

— Returning a status value of 0.

The local monitor can ignore accesses from other PEs in the system.

• A global monitor that marks a PA as exclusive access for a particular PE. This marking is used later to
determine whether a Store-Exclusive to that address that has not been failed by the local monitor can occur.
Any successful write to the marked block by any other observer in the shareability domain of the memory
location is guaranteed to clear the marking. For each PE in the system, the global monitor:

— Can hold at least one marked block.

— Maintains a state machine for each marked block it can hold.

Note

For each PE, the architecture only requires global monitor support for a single marked address. Any situation
that might benefit from the use of multiple marked addresses on a single PE is UNPREDICTABLE or
CONSTRAINED UNPREDICTABLE, see Load-Exclusive and Store-Exclusive instruction usage restrictions on
page B2-186.

Note

The global monitor can either reside within the PE, or exist as a secondary monitor at the memory interfaces. The
IMPLEMENTATION DEFINED aspects of the monitors mean that the global monitor and local monitor can be combined
into a single unit, provided that the unit performs the global monitor and local monitor functions defined in this
manual.

For shareable memory locations, in some implementations and for some memory types, the properties of the global
monitor require functionality outside the PE. Some system implementations might not implement this functionality
for all locations of memory. In particular, this can apply to:

• Any type of memory in the system implementation that does not support hardware cache coherency.

• Non-cacheable memory, or memory treated as Non-cacheable, in an implementation that does support
hardware cache coherency.

In such a system, it is defined by the system:

• Whether the global monitor is implemented.

• If the global monitor is implemented, which address ranges or memory types it monitors.

Note

If FEAT_MTE2 is implemented, it is IMPLEMENTATION DEFINED whether a global monitor monitors access to the
Tag PA space. For more information, see Chapter D6 Memory Tagging Extension.

Note

To support the use of the Load-Exclusive/Store-Exclusive mechanism when address translation is disabled, a system
might define at least one location of memory, of at least the size of the translation granule, in the system memory
map to support the global monitor for all Arm PEs within a common Inner Shareable domain. However, this is not
an architectural requirement. Therefore, architecturally-compliant software that requires mutual exclusion must not
rely on using the Load-Exclusive/Store-Exclusive mechanism, and must instead use a software algorithm such as
Lamport’s Bakery algorithm to achieve mutual exclusion.
B2-182 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores
Because implementations can choose which memory types are treated as Non-cacheable, the only memory types for
which it is architecturally guaranteed that a global Exclusives monitor is implemented are:

• Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

• Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

The architecture only requires that Conventional memory mapped in this way supports this functionality.

If the global monitor is not implemented for an address range or memory type, then performing a Load-Exclusive
or a Store-Exclusive instruction to such a location has one or more of the following effects:

• The instruction generates an External abort.

• The instruction generates an IMPLEMENTATION DEFINED MMU fault. This is reported using the Data Abort
Fault status code of ESR_ELx.DFSC = 110101.

If the IMPLEMENTATION DEFINED MMU fault is generated for the EL1&0 translation regime then:

— If the fault is generated because of the memory type defined in the first stage of translation, or if the
second stage of translation is disabled, then this is a first stage fault and the exception is taken to EL1.

— Otherwise, the fault is a second stage fault and the exception is taken to EL2.

The priority of this fault is IMPLEMENTATION DEFINED.

• The instruction is treated as a NOP.

• The Load-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the
local monitor becomes UNKNOWN.

• The Store-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the
local monitor becomes UNKNOWN. In this case, if the store exclusive instruction is a store exclusive pair of
64-bit quantities, then the two quantities being stored might not be stored atomically.

• The value held in the result register of the Store-Exclusive instruction becomes UNKNOWN.

In addition, for write transactions generated by non-PE observers that do not implement exclusive accesses or other
atomic access mechanisms, the effect that writes have on the global and local monitors used by Arm PEs is
IMPLEMENTATION DEFINED. The writes might not clear the global monitors of other PEs for:

• Some address ranges.

• Some memory types.

Operation of the global Exclusives monitor

A Load-Exclusive instruction from shareable memory performs a load from memory, and causes the PA of the
access to be marked as exclusive access for the requesting PE. This access can also cause the exclusive access mark
to be removed from any other PA that has been marked by the requesting PE.

Note

The global monitor only supports a single outstanding exclusive access to shareable memory per PE.

A Load-Exclusive instruction by one PE has no effect on the global monitor state for any other PE.

A Store-Exclusive instruction performs a conditional store to memory:

• The store is guaranteed to succeed only if the PA accessed is marked as exclusive access for the requesting
PE and both the local monitor and the global monitor state machines for the requesting PE are in the
Exclusive Access state. In this case:

— A status value of 0 is returned to a register to acknowledge the successful store.

— The final state of the global monitor state machine for the requesting PE is IMPLEMENTATION DEFINED.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-183
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores
— If the address accessed is marked for exclusive access in the global monitor state machine for any other
PE, then that state machine transitions to Open Access state.

• If no address is marked as exclusive access for the requesting PE, the store does not succeed:

— A status value of 1 is returned to a register to indicate that the store failed.

— The global monitor is not affected and remains in Open Access state for the requesting PE.

• If a different PA is marked as exclusive access for the requesting PE, it is IMPLEMENTATION DEFINED whether
the store succeeds or not:

— If the store succeeds a status value of 0 is returned to a register, otherwise a value of 1 is returned.

— If the global monitor state machine for the PE was in the Exclusive Access state before the
Store-Exclusive instruction it is IMPLEMENTATION DEFINED whether that state machine transitions to
the Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.

In a shared memory system, the global monitor implements a separate state machine for each PE in the system. The
state machine for accesses to shareable memory by PE(n) can respond to all the shareable memory accesses visible
to it. This means that it responds to:

• Accesses generated by PE(n).

• Accesses generated by the other observers in the shareability domain of the memory location. These accesses
are identified as (!n).

In a shared memory system, the global monitor implements a separate state machine for each observer that can
generate a Load-Exclusive or a Store-Exclusive instruction in the system.

A global monitor:

• In the Exclusive Access state is set.

• In the Open Access state is clear.

Clear global monitor event

Whenever the global monitor state for a PE changes from Exclusive access to Open access, an event is generated
and held in the Event register for that PE. This register is used by the Wait for Event mechanism, see Mechanisms
for entering a low-power state on page D1-2536.

Figure B2-5 on page B2-185 shows the state machine for PE(n) in a global monitor.
B2-184 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores
Figure B2-5 Global monitor state machine diagram for PE(n) in a multiprocessor system

For more information about marking, see Marking and the size of the marked memory block on page B2-185.

Note

For the global monitor state machine, as shown in Figure B2-5 on page B2-185:

• The architecture does not require a load instruction by another PE, that is not a Load-Exclusive instruction,
to have any effect on the global monitor.

• Whether a Store-Exclusive instruction successfully updates memory or not depends on whether the address
accessed matches the marked shareable memory address for the PE issuing the Store-Exclusive instruction,
and whether the local and global monitors are in the exclusive state. For this reason, Figure B2-5 on
page B2-185 only shows how the operations by (!n) cause state transitions of the state machine for PE(n).

• A Load-Exclusive instruction can only update the marked shareable memory address for the PE issuing the
Load-Exclusive instruction.

• When the global monitor is in the Exclusive Access state, it is IMPLEMENTATION DEFINED whether a CLREX
instruction causes the global monitor to transition from Exclusive Access to Open Access state.

• It is IMPLEMENTATION DEFINED:

— Whether a modification to a Non-shareable memory location can cause a global monitor to transition
from Exclusive Access to Open Access state.

— Whether a Load-Exclusive instruction to a Non-shareable memory location can cause a global monitor
to transition from Open Access to Exclusive Access state.

B2.9.3 Marking and the size of the marked memory block

When a Load-Exclusive instruction is executed, the resulting marked block ignores the least significant bits of the
64-bit memory address.

When a Load-Exclusive instruction is executed, a marked block of size 2a bytes is created by ignoring the least
significant bits of the memory address. A marked address is any address within this marked block. The size of the
marked memory block is called the Exclusives reservation granule. The Exclusives reservation granule is
IMPLEMENTATION DEFINED in the range 4-512 words.

Any LoadExcl operation updates the marked address to the most significant bits of the address x used for the operation.

Open
Access

Exclusive
Access

LoadExcl(x,n) LoadExcl(x,n)

CLREX(n)

StoreExcl(x,n)

CLREX(n)*

StoreExcl(Marked_address,!n)‡
Store(Marked_address,!n)

StoreExcl(Marked_address,n)*

Store(!Marked_address,n)

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.
In the diagram: LoadExcl represents any Load-Exclusive instruction

StoreExcl represents any Store-Exclusive instruction
Store represents any other store instruction.

LoadExcl(x,!n)

StoreExcl(x,!n)

Store(x,n)

StoreExcl(!Marked_address,n)*

Store(Marked_address,n)*

StoreExcl(Marked_address,!n)‡

StoreExcl(Marked_address,n)*

StoreExcl(!Marked_address,n)*

Store(Marked_address,n)*

CLREX(n)*

StoreExcl(!Marked_address,!n)

Store(!Marked_address,!n)

CLREX(!n)

‡StoreExcl(Marked_address,!n) clears the monitor only if the StoreExcl updates memory

Store(x,!n)

CLREX(!n)
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-185
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores
Note

This definition means that the Exclusives reservation granule is:

• 4 words in an implementation where a is 4.

• 512 words in an implementation where a is 11.

For example, in an implementation where a is 4, a successful LDXRB of address 0x341B4 defines a marked block using
bits[47:4] of the address. This means that the four words of memory from 0x341B0 to 0x341BF are marked for
exclusive access.

In some implementations the CTR identifies the Exclusives reservation granule, see CTR_EL0. Otherwise, software
must assume that the maximum Exclusives reservation granule, 512 words, is implemented.

B2.9.4 Context switch support

An exception return clears the local monitor. As a result, performing a CLREX instruction as part of a context switch
is not required in most situations.

Note

Context switching is not an application level operation. However, this information is included here to complete the
description of the exclusive operations.

B2.9.5 Load-Exclusive and Store-Exclusive instruction usage restrictions

The Load-Exclusive and Store-Exclusive instructions are intended to work together as a pair, for example a
LDXP/STXP pair or a LDXR/STXR pair. To support different implementations of these functions, software must follow the
notes and restrictions given here.

The following notes describe the use of a LoadExcl/StoreExcl instruction pair, to indicate the use of any of the
Load-Exclusive/Store-Exclusive instruction pairs shown in Table B2-3 on page B2-179. In this context, a
LoadExcl/StoreExcl pair comprises two instructions in the same thread of execution:

• The exclusives support a single outstanding exclusive access for each PE thread that is executed. The
architecture makes use of this by not requiring an address or size check as part of the IsExclusiveLocal()
function. If the target VA of a StoreExcl is different from the VA of the preceding LoadExcl instruction in the
same thread of execution, behavior can be CONSTRAINED UNPREDICTABLE with the following behavior:

— The StoreExcl either passes or fails, the status value returned by the StoreExcl is UNKNOWN, and the
states of the local and global monitors for that PE are UNKNOWN.

Note
This means the StoreExcl might pass for some instances of a LoadExcl/StoreExcl pair with mismatched
addresses, and fail for other instances of a LoadExcl/StoreExcl pair with mismatched addresses.

— The data at the address accessed by the LoadExcl, and at the address accessed by the StoreExcl, is
UNKNOWN.

This means software can rely on a LoadExcl/StoreExcl pair to eventually succeed only if the LoadExcl and the
StoreExcl are executed with the same VA.

• An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any thread of
execution, the transaction size of a StoreExcl instruction is the same as the transaction size of the preceding
LoadExcl instruction executed in that thread. If the transaction size of a StoreExcl instruction is different from
the preceding LoadExcl instruction in the same thread of execution, behavior can be CONSTRAINED
UNPREDICTABLE with the following behavior:

— The StoreExcl either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.
B2-186 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores
Note
This means the StoreExcl might pass for some instances of a LoadExcl/StoreExcl pair with mismatched
transaction sizes, and fail for other instances of a LoadExcl/StoreExcl pair with mismatched transaction
sizes.

— The block of data of the size of the larger of the transaction sizes used by the LoadExcl/StoreExcl pair
at the address accessed by the LoadExcl/StoreExcl pair, is UNKNOWN.

This means software can rely on a LoadExcl/StoreExcl pair to eventually succeed only if the LoadExcl and the
StoreExcl have the same transaction size.

• An implementation of the LoadExcl and StoreExcl instructions can require that, in any thread of execution,
the StoreExcl instruction accesses the same number of registers as the preceding LoadExcl instruction
executed in that thread. If the StoreExcl instruction accesses a different number of registers than the preceding
LoadExcl instruction in the same thread of execution, behavior is CONSTRAINED UNPREDICTABLE. As a result,
software can rely on an LoadExcl/StoreExcl pair to eventually succeed only if they access the same number
of registers. For more information, see CONSTRAINED UNPREDICTABLE behavior when
Load-Exclusive/Store-Exclusive access a different number of registers on page B2-189.

• An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any thread of
execution, the Tag Checked property of a memory access due to a StoreExcl instruction is the same as the
Tag Checked property of a memory access by the preceding LoadExcl instruction executed in that thread. If
the Tag Checked property of memory accesses due to a LoadExcl/StoreExcl pair in the same thread of
execution differ, behavior can be CONSTRAINED UNPREDICTABLE with the following behavior:

— The StoreExcl either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.

Note
This means the StoreExcl might pass for some instances of such a LoadExcl/StoreExcl pair, and fail for
other instances of such a LoadExcl/StoreExcl pair.

— The data at the address accessed by the LoadExcl/StoreExcl pair is UNKNOWN.

This means software can rely on a LoadExcl/StoreExcl pair to eventually succeed only if the memory is
accessed with the same Tag Checked property.

• LoadExcl/StoreExcl loops are guaranteed to make forward progress only if, for any LoadExcl/StoreExcl loop
within a single thread of execution, the software meets all of the following conditions:

1 Between the Load-Exclusive and the Store-Exclusive, there are no explicit memory effects,
preloads, direct or indirect System register writes, address translation instructions, cache or TLB
maintenance instructions, exception generating instructions, exception returns, or indirect
branches.

2 Between the Store-Exclusive returning a failing result and the retry of the corresponding
Load-Exclusive:

• There are no stores or PRFM instructions to any address within the Exclusives reservation
granule accessed by the Store-Exclusive.

• There are no loads or preloads to any address within the Exclusives reservation granule
accessed by the Store-Exclusive that use a different VA alias to that address.

• There are no direct or indirect System register writes, address translation instructions,
cache or TLB maintenance instructions, exception generating instructions, exception
returns, or indirect branches.

• All loads and stores are to a block of contiguous virtual memory of not more than 512
bytes in size.

The Exclusives monitor can be cleared at any time without an application-related cause, provided that such
clearing is not systematically repeated so as to prevent the forward progress in finite time of at least one of
the threads that is accessing the Exclusives monitor. However, it is permissible for the LoadExcl/StoreExcl
loop not to make forward progress if a different thread is repeatedly doing any of the following in a tight loop:

— Performing stores to a PA covered by the Exclusives monitor.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-187
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores
— Prefetching with intent to write to a PA covered by the Exclusives monitor.

— Executing data cache clean, data cache invalidate, or data cache clean and invalidate instructions to a
PA covered by the Exclusives monitor.

— Executing instruction cache invalidate all instructions.

— Executing instruction cache invalidate by VA instructions to a PA covered by the Exclusives monitor.

— Executing TLB maintenance to a PA covered by the Exclusives monitor.

• Implementations can benefit from keeping the LoadExcl and StoreExcl operations close together in a single
thread of execution. This minimizes the likelihood of the Exclusives monitor state being cleared between the
LoadExcl instruction and the StoreExcl instruction. Therefore, for best performance, Arm strongly
recommends a limit of 128 bytes between LoadExcl and StoreExcl instructions in a single thread of execution.

• The architecture sets an upper limit of 2048 bytes on the Exclusives reservation granule that can be marked
as exclusive. For performance reasons, Arm recommends that objects that are accessed by exclusive accesses
are separated by the size of the Exclusives reservation granule. This is a performance guideline rather than a
functional requirement.

• After taking a Data Abort exception, the state of the Exclusives monitors is UNKNOWN.

• For the memory location accessed by a LoadExcl/StoreExcl pair, if the memory attributes for a StoreExcl
instruction are different from the memory attributes for the preceding LoadExcl instruction in the same thread
of execution, behavior is CONSTRAINED UNPREDICTABLE. Where this occurs because the translation of the
accessed address changes between the LoadExcl instruction and the StoreExcl instruction, the CONSTRAINED
UNPREDICTABLE behavior is as follows:

— The StoreExcl either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.

Note
This means the StoreExcl might pass for some instances of a LoadExcl/StoreExcl pair with changed
memory attributes, and fail for other instances of a LoadExcl/StoreExcl pair with changed memory
attributes.

— The data at the address accessed by the StoreExcl is UNKNOWN.

Note

Another bullet point in this list covers the case where the memory attributes of a LoadExcl/StoreExcl pair
differ as a result of using different VAs with different attributes that point to the same PA.

• The effect of a data or unified cache invalidate, clean, or clean and invalidate instruction on a local or global
Exclusives monitor that is in the Exclusive Access state is CONSTRAINED UNPREDICTABLE, and the instruction
might clear the monitor, or it might leave it in the Exclusive Access state. For address-based maintenance
instructions, this also applies to the monitors of other PEs in the same shareability domain as the PE executing
the cache maintenance instruction, as determined by the shareability domain of the address being maintained.

Note

Arm strongly recommends that implementations ensure that the use of such maintenance instructions by a
PE in the Non-secure state cannot cause a denial of service on a PE in the Secure state.

• If the mapping of the VA to PA is changed between the LoadExcl instruction and the STREX instruction, and
the change is performed using a break-before-make sequence as described in Using break-before-make when
updating translation table entries on page D5-2818, if the StoreExcl is performed after another write to the
same PA as the StoreExcl, and that other write was performed after the old translation was properly
invalidated and that invalidation was properly synchronized, then the StoreExcl will not pass its monitor
check.

Note
— The TLB invalidation will clear either the local or global monitor.

— The PA will be checked between the LoadExcl and StoreExcl.
B2-188 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores
• The Exclusive Access state for an address accessed by a PE can be lost as a result of a PFRM PST* instruction
to the same PA executed by another PE. This means that a very high rate of repeated PFRM PST* accesses to a
memory location might impede the forward progress of another PE.

• If FEAT_MTE2 is implemented, and if a Tag Unchecked store exclusive instruction would not perform the
store and return a status value of 1, it is CONSTRAINED UNPREDICTABLE whether:

— The instruction is a Tag Checked access,

— The instruction is an Tag Unchecked access.

For more information, see Chapter D6 Memory Tagging Extension.

Note

In the event of repeatedly-contending LoadExcl/StoreExcl instruction sequences from multiple PEs, an
implementation must ensure that forward progress is made by at least one PE.

CONSTRAINED UNPREDICTABLE behavior when Load-Exclusive/Store-Exclusive
access a different number of registers

As stated in this section, an implementation can require that the instructions of a Load-Exclusive/Store-Exclusive
pair access the same number of registers. In such an implementation, this means behavior is CONSTRAINED
UNPREDICTABLE if, in a single thread of execution, either:

• An LDXP instruction of two 32-bit quantities is followed by an STXR instruction of one 64-bit quantity at the
same address.

• An LDXR instruction of one 64-bit quantity is followed by an STXP instruction of two 32-bit quantities at the
same address.

In these cases, the CONSTRAINED UNPREDICTABLE behavior must be one of:

• The STXP or STXR instruction generates an external Data Abort.

• The STXP or STXR instruction generates an IMPLEMENTATION DEFINED MMU fault reported using the Data
Abort Fault status code of ESR_ELx.DFSC = 0b110101.

• The STXP or STXR instruction always fails, returning a status of 1.

• The STXP or STXR instruction always passes, returning a status of 0.

• This STXP or STXR instruction has the same pass or fail behavior that it would have had if the instruction had
used the same size and number of registers as the preceding LDXR or LDXP instruction.

B2.9.6 Use of WFE and SEV instructions by spin-locks

Armv8 provides Wait For Event, Send Event, and Send Event Local instructions, WFE, SEV, and SEVL, that can assist
with reducing power consumption and bus contention caused by PEs repeatedly attempting to obtain a spin-lock.
These instructions can be used at the application level, but a complete understanding of what they do depends on a
system level understanding of exceptions. They are described in Wait for Event mechanism and Send event on
page D1-2536. However, in Armv8, when the global monitor for a PE changes from Exclusive Access state to Open
Access state, an event is generated.

Note

This is equivalent to issuing an SEVL instruction on the PE for which the monitor state has changed. It removes the
need for spinlock code to include an SEV instruction after clearing a spinlock.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-189
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores
B2-190 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Part C
The AArch64 Instruction Set

Chapter C1
The A64 Instruction Set

This chapter describes the A64 instruction set. It contains the following sections:

• About the A64 instruction set on page C1-194.

• Structure of the A64 assembler language on page C1-195.

• Address generation on page C1-202.

• Instruction aliases on page C1-205.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C1-193
ID072021 Non-Confidential

The A64 Instruction Set
C1.1 About the A64 instruction set
C1.1 About the A64 instruction set

The A64 instruction set is the instruction set supported in the AArch64 Execution state.

All A64 instructions have a width of 32 bits. The A64 encoding structure breaks down into the following functional
groups:

• A miscellaneous group of branch instructions, exception generating instructions, and System instructions.

• Data-processing instructions associated with general-purpose registers. These instructions are supported by
two functional groups, depending on whether the operands:

— Are all held in registers.

— Include an operand with a constant immediate value.

• Load and store instructions associated with the general-purpose register file and the SIMD and floating-point
register file.

• SIMD and scalar floating-point data-processing instructions that operate on the SIMD and floating-point
registers.

The encoding hierarchy within a functional group breaks down as follows:

• A functional group consists of a set of related instruction classes. A64 instruction set encoding on
page C4-284 provides an overview of the instruction encodings in the form of a list of instruction classes
within their functional groups.

• An instruction class consists of a set of related instruction forms. Instruction forms are documented in one of
two alphabetic lists:

— The load, store, and data-processing instructions associated with the general-purpose registers,
together with those in the other instruction classes. See Chapter C6 A64 Base Instruction Descriptions.

— The load, store, and data-processing instructions associated with the SIMD and floating-point support.
See Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions.

• An instruction form might support a single instruction syntax. Where an instruction supports more than one
syntax, each syntax is an instruction variant. Instruction variants can occur because of differences in:

— The size or format of the operands.

— The register file used for the operands.

— The addressing mode used for load/load/store memory operands.

Instruction variants might also arise as the result of other factors.

Instruction variants are described in the instruction description for the individual instructions.

A64 instructions have a regular bit encoding structure:

• 5-bit register operand fields at fixed positions within the instruction. For general-purpose register operands,
the values 0-30 select one of 31 registers. The value 31 is used as a special case that can:

— Indicate use of the current stack pointer, when identifying a load/store base register or in a limited set
of data-processing instructions. See The stack pointer registers on page D1-2463.

— Indicate the value zero when used as a source register operand.

— Indicate discarding the result when used as a destination register operand.

For SIMD and floating-point register access, the value used selects one of 32 registers.

• Immediate bits that provide constant data-processing values or address offsets are placed in contiguous
bitfields. Some computed values in instruction variants use one or more immediate bitfields together with the
secondary encoding bitfields.

All encodings that are not fully defined are described as unallocated. An attempt to execute an unallocated
instruction is UNDEFINED, unless the behavior is otherwise defined in this Manual.
C1-194 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 Instruction Set
C1.2 Structure of the A64 assembler language
C1.2 Structure of the A64 assembler language

The following sections describe the A64 assembler syntax:

• General requirements on page C1-195.

• Common syntax terms on page C1-195.

• Instruction Mnemonics on page C1-197.

• Condition code on page C1-197.

• Register names on page C1-198.

C1.2.1 General requirements

The letter W denotes a general-purpose register holding a 32-bit word, and X denotes a general-purpose register
holding a 64-bit doubleword.

An A64 assembler recognizes both uppercase and lowercase variants of the instruction mnemonics and register
names, but not mixed case variants. An A64 disassembler can output either uppercase or lowercase mnemonics and
register names. Program and data labels are case-sensitive.

The A64 assembly language does not require the # character to introduce constant immediate operands, but an
assembler must allow immediate values introduced with or without the # character.

In Example C1-1 on page C1-197, the sequence // is used as a comment leader and A64 assemblers are encouraged
to accept this syntax.

C1.2.2 Common syntax terms

The following syntax terms are used frequently throughout the A64 instruction set description.

UPPER Text in upper-case letters is fixed. Text in lower-case letters is variable. This means that register
name Xn indicates that the X is required, followed by a variable register number, for example X29.

< > Any text enclosed by angle braces, < >, is a value that the user supplies. Subsequent text might
supply additional information.

{ } Any item enclosed by curly brackets, { }, is optional. A description of the item and how its presence
or absence affects the instruction is normally supplied by subsequent text. In some cases curly
braces are actual symbols in the syntax, for example when they surround a register list. These cases
are called out in the surrounding text.

[] Any items enclosed by square brackets, [], constitute a list of alternative characters. A single one
of the characters can be used in that position and the subsequent text describes the meaning of the
alternatives. In some case the square brackets are part of the syntax itself, such as addressing modes
or vector elements. These cases are called out in the surrounding text.

a|b Alternative words are separated by a vertical bar, |, and can be surrounded by parentheses to delimit
them. For example, U(ADD|SUB)W represents UADDW or USUBW.

± This indicates an optional + or - sign. If neither is used then + is assumed.

uimmn An n-bit unsigned, positive, immediate value.

simmn An n-bit two’s complement, signed immediate value, where n includes the sign bit.

SP See Register names on page C1-198.

Wn See Register names on page C1-198.

WSP See Register names on page C1-198.

WZR See Register names on page C1-198.

Xn See Register names on page C1-198.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C1-195
ID072021 Non-Confidential

The A64 Instruction Set
C1.2 Structure of the A64 assembler language
XZR See Register names on page C1-198
C1-196 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 Instruction Set
C1.2 Structure of the A64 assembler language
C1.2.3 Instruction Mnemonics

The A64 assembly language overloads instruction mnemonics and distinguishes between the different forms of an
instruction based on the operand types. For example, the following ADD instructions all have different opcodes.
However, the programmer must only remember one mnemonic, as the assembler automatically chooses the correct
opcode based on the operands. The disassembler follows the same procedure in reverse.

Example C1-1 ADD instructions with different opcodes

ADD W0, W1, W2 // add 32-bit register
ADD X0, X1, X2 // add 64-bit register
ADD X0, X1, W2, SXTW // add 64-bit extended register
ADD X0, X1, #42 // add 64-bit immediate

C1.2.4 Condition code

The A64 ISA has some instructions that set Condition flags or test Condition codes or both. For information about
instructions that set the Condition flags or use the condition mnemonics, see Condition flags and related instructions
on page C6-873.

Table C1-1 on page C1-197 shows the available Condition codes.

Table C1-1 Condition codes

cond Mnemonic Meaning (integer) Meaning (floating-point)a Condition flags

0000 EQ Equal Equal Z == 1

0001 NE Not equal Not equal or unordered Z == 0

0010 CS or HS Carry set Greater than, equal, or unordered C == 1

0011 CC or LO Carry clear Less than C == 0

0100 MI Minus, negative Less than N == 1

0101 PL Plus, positive or zero Greater than, equal, or unordered N == 0

0110 VS Overflow Unordered V == 1

0111 VC No overflow Ordered V == 0

1000 HI Unsigned higher Greater than, or unordered C ==1 && Z == 0

1001 LS Unsigned lower or same Less than or equal !(C ==1 && Z ==0)

1010 GE Signed greater than or equal Greater than or equal N == V

1011 LT Signed less than Less than, or unordered N! = V

1100 GT Signed greater than Greater than Z == 0 && N == V

1101 LE Signed less than or equal Less than, equal, or unordered !(Z == 0 && N == V)

1110 AL Always Always Any

1111 NVb Always Always Any

a. Unordered means at least one NaN operand.

b. The Condition code NV exists only to provide a valid disassembly of the 0b1111 encoding, otherwise its behavior is
identical to AL.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C1-197
ID072021 Non-Confidential

The A64 Instruction Set
C1.2 Structure of the A64 assembler language
C1.2.5 Register names

This section describes the AArch64 registers. It contains the following subsections:

• General-purpose register file and zero register and stack pointer on page C1-198.

• SIMD and floating-point register file on page C1-199.

• SIMD and floating-point scalar register names on page C1-199.

• SIMD vector register names on page C1-199.

• SIMD vector element names on page C1-200.

General-purpose register file and zero register and stack pointer

The 31 general-purpose registers in the general-purpose register file are named R0-R30 and encoded in the
instruction register fields with values 0-30. In a general-purpose register field the value 31 represents either the
current stack pointer or the zero register, depending on the instruction and the operand position.

When the registers are used in a specific instruction variant, they must be qualified to indicate the operand data size,
32 bits or 64 bits, and the data size of the instruction.

When the data size is 32 bits, the lower 32 bits of the register are used and the upper 32 bits are ignored on a read
and cleared to zero on a write.

Table C1-2 on page C1-198 shows the qualified names for registers, where n is a register number 0-30.

This list gives more information about the instruction arguments shown in Table C1-2 on page C1-198:

• The names Xn and Wn both refer to the same general-purpose register, Rn.

• There is no register named W31 or X31.

• The name SP represents the stack pointer for 64-bit operands where an encoding of the value 31 in the
corresponding register field is interpreted as a read or write of the current stack pointer. When instructions
do not interpret this operand encoding as the stack pointer, use of the name SP is an error.

• The name WSP represents the current stack pointer in a 32-bit context.

• The name XZR represents the zero register for 64-bit operands where an encoding of the value 31 in the
corresponding register field is interpreted as returning zero when read or discarding the result when written.
When instructions do not interpret this operand encoding as the zero register, use of the name XZR is an error.

• The name WZR represents the zero register in a 32-bit context.

• The architecture does not define a specific name for general-purpose register R30 to reflect its role as the link
register on procedure calls. However, an A64 assembler must always use W30 and X30 for this purpose, and
additional software names might be defined as part of the Procedure Call Standard, see Procedure Call
Standard for the Arm 64-bit Architecture.

Table C1-2 Naming of general-purpose registers, the zero register, and the stack pointer

 Name Size Encoding Description

Wn 32 bits 0-30 General-purpose register 0-30

Xn 64 bits 0-30 General-purpose register 0-30

WZR 32 bits 31 Zero register

XZR 64 bits 31 Zero register

WSP 32 bits 31 Current stack pointer

SP 64 bits 31 Current stack pointer
C1-198 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 Instruction Set
C1.2 Structure of the A64 assembler language
SIMD and floating-point register file

The 32 registers in the SIMD and floating-point register file, V0-V31, hold floating-point operands for the scalar
floating-point instructions, and both scalar and vector operands for the SIMD instructions. When they are used in a
specific instruction form, the names must be further qualified to indicate the data shape, that is the data element size
and the number of elements or lanes within the register. A similar requirement is placed on the general-purpose
registers. See General-purpose register file and zero register and stack pointer on page C1-198.

Note

The data type is described by the instruction mnemonics that operate on the data. The data type is not described by
the register name. The data type is the interpretation of bits within each register or vector element, whether these
are integers, floating-point values, polynomials, or cryptographic hashes.

SIMD and floating-point scalar register names

SIMD and floating-point instructions that operate on scalar data only access the lower bits of a SIMD and
floating-point register. The unused high bits are ignored on a read and cleared to 0 on a write.

Table C1-3 on page C1-199 shows the qualified names for accessing scalar SIMD and floating-point registers. The
letter n denotes a register number between 0 and 31.

SIMD vector register names

If a register holds multiple data elements on which arithmetic is performed in a parallel, SIMD, manner, then a
qualifier describes the vector shape. The vector shape is the element size and the number of elements or lanes. If the
element size in bits multiplied by the number of lanes does not equal 128, then the upper 64 bits of the register are
ignored on a read and cleared to zero on a write.

Table C1-4 on page C1-199 shows the SIMD vector register names. The letter n denotes a register number between
0 and 31.

Table C1-3 SIMD and floating-point scalar register names

Size Name

8 bits Bn

16 bits Hn

32 bits Sn

64 bits Dn

128 bits Qn

Table C1-4 SIMD vector register names

Shape Name

8 bits × 8 lanes Vn.8B

8 bits × 16 lanes Vn.16B

16 bits × 4 lanes Vn.4H

16 bits × 8 lanes Vn.8H

32 bits × 2 lanes Vn.2S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C1-199
ID072021 Non-Confidential

The A64 Instruction Set
C1.2 Structure of the A64 assembler language
SIMD vector element names

Appending a constant, zero-based element index to the register name inside square brackets indicates that a single
element from a SIMD and floating-point register is used as a scalar operand. The number of lanes is not represented,
as it is not encoded in the instruction and can only be inferred from the index value.

Table C1-5 on page C1-200 shows the vector register names and the element index. The letter i denotes the element
index.

An assembler must accept a fully qualified SIMD register name if the number of lanes is greater than the index
value. See SIMD vector register names on page C1-199. For example, an assembler must accept all of the following
forms as the name for the 32-bit element in bits [63:32] of the SIMD and floating-point register V9:

V9.S[1] //standard disassembly
V9.2S[1] //optional number of lanes
V9.4S[1] //optional number of lanes

Note

The SIMD and floating-point register element name Vn.S[0] is not equivalent to the scalar SIMD and floating-point
register name Sn. Although they represent the same bits in the register, they select different instruction encoding
forms, either the vector element or the scalar form.

SIMD vector register list

Where an instruction operates on multiple SIMD and floating-point registers, for example vector load/store
structure and table lookup operations, the registers are specified as a list enclosed by curly braces. This list consists
of either a sequence of registers separated by commas, or a register range separated by a hyphen. The registers must
be numbered in increasing order, modulo 32, in increments of one. The hyphenated form is preferred for
disassembly if there are more than two registers in the list and the register number are increasing. The following
examples are equivalent representations of a set of four registers V4 to V7, each holding four lanes of 32-bit elements:

{ V4.4S - V7.4S } //standard disassembly
{ V4.4S, V5.4S, V6.4S, V7.4S } //alternative representation

SIMD vector element list

Registers in a list can also have a vector element form. For example, the LD4 instruction can load one element into
each of four registers, and in this case the index is appended to the list as follows:

{ V4.S - V7.S }[3] //standard disassembly

32 bits × 4 lanes Vn.4S

64 bits × 1 lane Vn.1D

64 bits × 2 lanes Vn.2D

Table C1-5 Vector register names with element index

Size Name

8 bits Vn.B[i]

16 bits Vn.H[i]

32 bits Vn.S[i]

64 bits Vn.D[i]

Table C1-4 SIMD vector register names (continued)

Shape Name
C1-200 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 Instruction Set
C1.2 Structure of the A64 assembler language
{ V4.4S, V5.4S, V6.4S, V7.4S }[3] //alternative with optional number of lanes
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C1-201
ID072021 Non-Confidential

The A64 Instruction Set
C1.3 Address generation
C1.3 Address generation

The A64 instruction set supports 64-bit virtual addresses (VAs). The valid VA range is determined by the following
factors:

• The size of the implemented virtual address space.

• Memory Management Unit (MMU) configuration settings.

Limits on the VA size mean that the most significant bits of the virtual address do not hold valid address bits. These
unused bits can hold:

• A tag, see Address tagging in AArch64 state on page D5-2676.

• If FEAT_PAuth is implemented, a Pointer authentication code (PAC), see Pointer authentication in AArch64
state on page D5-2678.

For more information on memory management and address translation, see Chapter D5 The AArch64 Virtual
Memory System Architecture.

C1.3.1 Register indexed addressing

The A64 instruction set allows a 64-bit index register to be added to the 64-bit base register, with optional scaling
of the index by the access size. Additionally it allows for sign-extension or zero-extension of a 32-bit value within
an index register, followed by optional scaling.

C1.3.2 PC-relative addressing

The A64 instruction set has support for position-independent code and data addressing:

• PC-relative literal loads have an offset range of ± 1MB.

• Process state flag and compare based conditional branches have a range of ± 1MB. Test bit conditional
branches have a restricted range of ± 32KB.

• Unconditional branches, including branch and link, have a range of ± 128MB.

PC-relative load/store operations, and address generation with a range of ± 4GB can be performed using two
instructions.

C1.3.3 Load/store addressing modes

Load/store addressing modes in the A64 instruction set require a 64-bit base address from a general-purpose register
X0-X30 or the current stack pointer, SP, with an optional immediate or register offset. Table C1-6 on page C1-202
shows the assembler syntax for the complete set of load/store addressing modes.

Table C1-6 A64 Load/store addressing modes

Addressing Mode
Offset

Immediate Register Extended Register

Base register only (no offset) [base{, #0}] - -

Base plus offset [base{, #imm}] [base, Xm{, LSL #imm}] [base, Wm, (S|U)XT(X|W) {#imm}]

Pre-indexed [base, #imm]! - -

Post-indexed [base], #imm [base], Xma

a. The post-indexed by register offset mode can be used with the SIMD load/store structure instructions described in
Load/store Vector on page C3-233. Otherwise the post-indexed by register offset mode is not available.

-

Literal (PC-relative) label - -
C1-202 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 Instruction Set
C1.3 Address generation
Some types of load/store instruction support only a subset of the load/store addressing modes listed in Table C1-6
on page C1-202. Details of the supported modes are as follows:

• Base plus offset addressing means that the address is the value in the 64-bit base register plus an offset.

• Pre-indexed addressing means that the address is the sum of the value in the 64-bit base register and an offset,
and the address is then written back to the base register.

• Post-indexed addressing means that the address is the value in the 64-bit base register, and the sum of the
address and the offset is then written back to the base register.

• Literal addressing means that the address is the value of the 64-bit program counter for this instruction plus
a 19-bit signed word offset. This means that it is a 4 byte aligned address within ±1MB of the address of this
instruction with no offset. Literal addressing can only be used for loads of at least 32 bits and for prefetch
instructions. The PC cannot be referenced using any other addressing modes. The syntax for labels is specific
to individual toolchains.

• An immediate offset can be unsigned or signed, and scaled or unscaled, depending on the type of load/store
instruction. When the immediate offset is scaled it is encoded as a multiple of the transfer size, although the
assembly language always uses a byte offset, and the assembler or disassembler performs the necessary
conversion. The usable byte offsets therefore depend on the type of load/store instruction and the transfer
size.

Table C1-7 on page C1-203 shows the offset and the type of load/store instruction.

• A register offset means that the offset is the 64 bits from a general-purpose register, Xm, optionally scaled
by the transfer size, in bytes, if LSL #imm is present and where imm must be equal to log2(transfer_size). The
SXTX extend/shift option is functionally equivalent to LSL, but the LSL option is preferred in source code.

• An extended register offset means that offset is the bottom 32 bits from a general-purpose register Wm,
sign-extended or zero-extended to 64 bits, and then scaled by the transfer size if so indicated by #imm, where
imm must be equal to log2(transfer_size). An assembler must accept Wm or Xm as an extended register
offset, but Wm is preferred for disassembly.

• Generating an address lower than the value in the base register requires a negative signed immediate offset
or a register offset holding a negative value.

• When stack alignment checking is enabled by system software and the base register is the SP, the current
stack pointer must be initially quadword aligned, that is aligned to 16 bytes. Misalignment generates a Stack
Alignment fault. The offset does not have to be a multiple of 16 bytes unless the specific load/store instruction
requires this. SP cannot be used as a register offset.

Address calculation

General-purpose arithmetic instructions can calculate the result of most addressing modes and write the address to
a general-purpose register or, in most cases, to the current stack pointer.

Table C1-7 Immediate offsets and the type of load/store instruction

Offset bits Sign Scaling Write-Back Load/store type

0 - - - Exclusive/acquire/release

7 Signed Scaled Optional Register pair

9 Signed Unscaled Optional Single register

12 Unsigned Scaled No Single register
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C1-203
ID072021 Non-Confidential

The A64 Instruction Set
C1.3 Address generation
Table C1-8 on page C1-204 shows the arithmetic instructions that can compute addressing modes.

Note

• For the 64-bit base plus register offset form, the UXTX mnemonic is an alias for the LSL shift option, but LSL is
preferred for disassembly. Similarly the SXTX extend/shift option is functionally equivalent to the LSL option,
but the LSL option is preferred in source code.

• To calculate a base plus immediate offset the ADD instructions defined in Arithmetic (immediate) on
page C3-242 accept an unsigned 12-bit immediate offset, with an optional left shift by 12. This means that a
single ADD instruction cannot support the full range of byte offsets available to a single register load/store with
a scaled 12-bit immediate offset. For example, a quadword LDR effectively has a 16-bit byte offset. To
calculate an address with a byte offset that requires more than 12 bits it is necessary to use two ADD
instructions. The following example shows this:

ADD Xd, base, #(imm & 0xFFF)
ADD Xd, Xd, #(imm>>12), LSL #12

• To calculate a base plus extended register offset, the ADD instructions defined in Arithmetic (extended register)
on page C3-248 provide a superset of the addressing mode that also supports sign-extension or
zero-extension of a byte or halfword value with any shift amount between 0 and 4, for example:

ADD Xd, base, Wm, SXTW #3 // Xd = base + (SignExtend(Wm) LSL 3)
ADD Xd, base, Wm, UXTH #4 // Xd = base + (ZeroExtend(Wm<15:0>) LSL 4)

• If the same extended register offset is used by more than one load/store instruction, then, depending on the
implementation, it might be more efficient to calculate the extended and scaled intermediate result just once,
and then reuse it as a simple register offset. The extend and scale calculation can be performed using the SBFIZ
and UBFIZ bitfield instructions defined in Bitfield move on page C3-244, for example:

SBFIZ Xd, Xm, #3, #32 //Xd = “Wm, SXTW #3”
UBFIZ Xd, Xm, #4, #16 //Xd = “Wm, UXTH #4”

Table C1-8 Arithmetic instructions to compute addressing modes

Addressing Form
Offset

Immediate Register Extended Register

Base register (no
offset)

MOV Xd|SP, base - -

Base plus offset ADD Xd|SP, base,

#imm

or

SUB Xd|SP, base,

#imm

ADD <Xd|SP>, base,

Xm{,LSL#imm}

ADD <Xd|SP>, base, Wm,(S|U)XT(W|H|B|X)

{#imm}

Pre-indexed - - -

Post-indexed - - -

Literal (PC-relative) ADR Xd, label - -
C1-204 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 Instruction Set
C1.4 Instruction aliases
C1.4 Instruction aliases

Some instructions have an associated architecture alias that is used for disassembly of the encoding when the
associated conditions are met. Architecture alias instructions are included in the alphabetic lists of instruction types
and clearly presented as an alias form in descriptions for the individual instructions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C1-205
ID072021 Non-Confidential

The A64 Instruction Set
C1.4 Instruction aliases
C1-206 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter C2
About the A64 Instruction Descriptions

This chapter describes the instruction descriptions contained in Chapter C6 A64 Base Instruction Descriptions and
Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions.

It contains the following sections:

• Understanding the A64 instruction descriptions on page C2-208.

• General information about the A64 instruction descriptions on page C2-211.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C2-207
ID072021 Non-Confidential

About the A64 Instruction Descriptions
C2.1 Understanding the A64 instruction descriptions
C2.1 Understanding the A64 instruction descriptions

Each instruction description in Chapter C6 and Chapter C7 has the following content:

1. A title.

2. An introduction to the instruction.

3. The instruction encoding or encodings.

4. Any alias conditions.

5. A list of the assembler symbols for the instruction.

6. Pseudocode describing how the instruction operates.

7. Notes, if applicable.

The following sections describe each of these.

C2.1.1 The title

The title of an instruction description includes the base mnemonic for the instruction.

If different forms of an instruction use the same base mnemonic, each form has its own description. In this case, the
title is the mnemonic followed by a short description of the instruction form in parentheses. This is most often used
when an operand is an immediate value in one instruction form, but is a register in another form.

For example, in Chapter C6 there are the following titles for different forms of the ADD instruction:

• ADD (extended register) on page C6-880.

• ADD (immediate) on page C6-883.

• ADD (shifted register) on page C6-885.

C2.1.2 An introduction to the instruction

This briefly describes the function of the instruction. The introduction is not a complete description of the
instruction, and it is not definitive. If there is any conflict between it and the more detailed information that follows
it, the more detailed information takes priority.

C2.1.3 The instruction encoding or encodings

This shows the instruction encoding diagram, or if the instruction has more than one encoding, shows all of the
encoding diagrams. Each diagram has a subheading.

For example, for load and store instructions, the subheadings might be:

• Post-index.

• Pre-index.

• Unsigned offset.

Each diagram numbers the bits from 31 to 0. The diagram for an instruction at address A shows, from left to right,
the bytes at addresses A+3, A+2, A+1, and A.

There might be variants of an encoding, if the assembler syntax prototype differs depending on the value in one or
more of the encoding fields. In this case, each variant has a subheading that describes the variant and shows the
distinguishing field value or values in parentheses. For example, in Chapter C6 there are the following subheadings
for variants of the ADC instruction encoding:

• 32-bit variant (sf = 0).

• 64-bit variant (sf = 1).

The assembler syntax prototype for an encoding or variant of an encoding shows how to form a complete assembler
source code instruction that assembles to the encoding. Unless otherwise stated, the prototype is also the preferred
syntax for a disassembler to disassemble the encoding to. Disassemblers are permitted to omit optional symbols that
represent the default value of a field or set of fields, to produce more readable disassembled code, provided that the
output re-assembles to the same encoding.
C2-208 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the A64 Instruction Descriptions
C2.1 Understanding the A64 instruction descriptions
Each encoding diagram, and its associated assembler syntax prototypes, is followed by encoding-specific
pseudocode that translates the fields of that encoding into inputs for the encoding-independent pseudocode that
describes the operation of the instruction. See Pseudocode describing how the instruction operates on page C2-210.

C2.1.4 Any alias conditions, if applicable

This is an optional part of an instruction description. If included, it describes the set of conditions for which an
alternative mnemonic and its associated assembler syntax prototypes are preferred for disassembly by a
disassembler. It includes a link to the alias instruction description that defines the alternative syntax. The alias
syntax and the original syntax can be used interchangeably in the assembler source code.

Arm recommends that if a disassembler outputs the alias syntax, it consistently outputs the alias syntax.

C2.1.5 A list of the assembler symbols for the instruction

The Assembler symbols subsection of the instruction description contains a list of the symbols that the assembler
syntax prototype or prototypes use, if any.

In assembler syntax prototypes, the following conventions are used:

< > Angle brackets. Any symbol enclosed by these is a name or a value that the user supplies. For each
symbol, there is a description of what the symbol represents. The description usually also specifies
which encoding field or fields encodes the symbol.

{ } Brace brackets. Any symbols enclosed by these are optional. For each optional symbol, there is a
description of what the symbol represents and how its presence or absence is encoded.

In some assembler syntax prototypes, some brace brackets are mandatory, for example if they
surround a register list. When the use of brace brackets is mandatory, they are separated from other
syntax items by one or more spaces.

This usually precedes a numeric constant. All uses of # are optional in A64 assembler source code.
Arm recommends that disassemblers output the # where the assembler syntax prototype includes it.

+/- This indicates an optional + or - sign. If neither is coded, + is assumed.

Single spaces are used for clarity, to separate syntax items. Where a space is mandatory, the assembler syntax
prototype shows two or more consecutive spaces.

Any characters not shown in this conventions list must be coded exactly as shown in the assembler syntax prototype.
Apart from brace brackets, the characters shown are used as part of a meta-language to define the architectural
assembler syntax for an instruction encoding or alias, but have no architecturally defined significance in the input
to an assembler or in the output from a disassembler.

The following symbol conventions are used:

<Xn> The 64-bit name of a general-purpose register (X0-X30) or the zero register (XZR).

<Wn> The 32-bit name of a general-purpose register (W0-W30) or the zero register (WZR).

<Xn|SP> The 64-bit name of a general-purpose register (X0-X30) or the current stack pointer (SP).

<Wn|WSP> The 32-bit name of a general-purpose register (W0-W30) or the current stack pointer (WSP).

<Bn>, <Hn>, <Sn>, <Dn>, <Qn>

The 8, 16, 32, 64 or 128-bit name of a SIMD and floating-point register in a scalar context as
described in section Register names on page C1-198.

<Vn> The name of a SIMD and floating-point register name in a vector context as described in Register
names on page C1-198.

If the description of a symbol specifies that the symbol is a register, the description might also specify that the range
of permitted registers is extended or restricted. It also specifies any differences from the default rules for such fields.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C2-209
ID072021 Non-Confidential

About the A64 Instruction Descriptions
C2.1 Understanding the A64 instruction descriptions
Note

Register names on page C1-198 provides the A64 register names.

C2.1.6 Pseudocode describing how the instruction operates

The Operation subsection of the instruction description contains this pseudocode.

It is encoding-independent pseudocode that provides a precise description of what the instruction does.

Note

For a description of Arm pseudocode, see Appendix K14 Arm Pseudocode Definition. This appendix also describes
the execution model for an instruction.

C2.1.7 Notes, if applicable

If applicable, other notes about the instruction appear under additional subheadings.
C2-210 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the A64 Instruction Descriptions
C2.2 General information about the A64 instruction descriptions
C2.2 General information about the A64 instruction descriptions

This section provides general information about the A64 instruction descriptions. Some of this information also
applies to System register descriptions, for example the terms defined in Fixed values in AArch64 instruction and
System register descriptions on page C2-211 apply to the AArch64 descriptions throughout this manual. The
following subsections provide this information:

• Execution of instructions in debug state on page C2-211.

• Fixed values in AArch64 instruction and System register descriptions on page C2-211.

• Modified immediate constants in A64 instructions on page C2-212.

C2.2.1 Execution of instructions in debug state

In general, except for the instructions described in Debug state on page C3-218, the A64 instruction descriptions do
not indicate any differences in the behavior of the instruction if it is executed in Debug state. For this information,
see Executing instructions in Debug state on page H2-7349.

Note

For many instructions, execution is unchanged in Debug state. Executing instructions in Debug state on
page H2-7349 identifies these instructions,

C2.2.2 Fixed values in AArch64 instruction and System register descriptions

This section summarizes the terms used to describe fixed values in AArch64 register and instruction descriptions.
The Glossary gives full descriptions of these terms, and each entry in this section includes a link to the
corresponding Glossary entry.

Note

In register descriptions, the meaning of some bits depends on the PE state. This affects the definitions of RES0 and
RES1, as shown in the Glossary.

The following terms are used to describe bits or fields with fixed values:

RAZ Read-As-Zero. See Read-As-Zero (RAZ).

In diagrams, a RAZ bit can be shown as 0.

(0), RES0 Reserved, Should-Be-Zero (SBZ) or RES0.

In instruction encoding diagrams, and sometimes in other descriptions, (0) indicates an SBZ bit. If
the bit is set to 1, behavior is CONSTRAINED UNPREDICTABLE, and must be one of the following:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if the value of the bit was 0.

• Any destination registers of the instruction become UNKNOWN.

This notation can be expanded for fields, so a three-bit field can be shown as either (0)(0)(0) or as
(000).

In register diagrams, but not in the A64 encoding and instruction descriptions, bits or fields can be
shown as RES0. See the Glossary definition of RES0 for more information.

Note
Some of the System instruction descriptions in this chapter are based on the field description of the
input value for the instruction. These are register descriptions and therefore can include RES0 fields,

The (0) and RES0 descriptions can be applied to bits or bitfields that are read-only, or are write-only.
The Glossary definitions cover these cases.

RAO Read-As-One. See Read-As-One (RAO).

In diagrams, a RAO bit can be shown as 1.

(1), RES1 Reserved, Should-Be-One (SBO) or RES1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C2-211
ID072021 Non-Confidential

About the A64 Instruction Descriptions
C2.2 General information about the A64 instruction descriptions
In instruction encoding diagrams, and sometimes in other descriptions, (1) indicates an SBO bit. If
the bit is set to 0, behavior is CONSTRAINED UNPREDICTABLE, and must be one of the following:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if the value of the bit was 1.

• Any destination registers of the instruction become UNKNOWN.

This notation can be expanded for fields, so a three-bit field can be shown as either (1)(1)(1) or as
(111).

In register diagrams, but not in the A64 encoding and instruction descriptions, bits or fields can be
shown as RES1. See the Glossary definition of RES1 for more information.

Note
Some of the System instruction descriptions in this chapter are based on the field description of the
input value for the instruction. These are register descriptions and therefore can include RES1 fields,

The (1) and RES1 descriptions can be applied to bits or bitfields that are read-only, or are write-only.
The Glossary definitions cover these cases.

C2.2.3 Modified immediate constants in A64 instructions

It contains the following subsections:

• Modified immediate constants in A64 floating-point instructions on page C2-212.

Modified immediate constants in A64 floating-point instructions

Table C2-1 on page C2-212 shows the immediate constants available in FMOV (scalar, immediate) and FMOV (vector,
immediate) floating-point instructions.

The immediate value shown in the table is either:

• The value of the imm8 field for an FMOV (scalar, immediate) instruction, see FMOV (scalar, immediate) on
page C7-1824.

• The value obtained by concatenating the a:b:c:d:e:f:g:h fields for an FMOV (vector, immediate) instruction,
see FMOV (vector, immediate) on page C7-1817.

Table C2-1 A64 Floating-point modified immediate constants

Data type immediate Constant a

a. In this column, B = NOT(b). The bit pattern represents the floating-point number (–1)S × 2exp × mantissa, where
S = UInt(a), exp = UInt(NOT(b):c:d)-3 and mantissa = (16+UInt(e:f:g:h))/16.

F16 abcdefgh aBbbcdef gh000000

F32 abcdefgh aBbbbbbc defgh000 00000000 00000000

F64 abcdefgh aBbbbbbb bbcdefgh 00000000 00000000 00000000 00000000 00000000 00000000
C2-212 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the A64 Instruction Descriptions
C2.2 General information about the A64 instruction descriptions
Table C2-2 on page C2-213 shows the floating-point constant values encoded in the b:c:d:e:f:g:h fields of the FMOV
(vector, immediate) instruction.

Operation of modified immediate constants, floating-point instructions

For an A64 floating-point instruction that uses a modified immediate constant, the operation described by the
VFPExpandImm() pseudocode function returns the value of the immediate constant.

Table C2-2 Floating-point constant values

efgh
bcd

000 001 010 011 100 101 110 111

0000 2.0 4.0 8.0 16.0 0.125 0.25 0.5 1.0

0001 2.125 4.25 8.5 17.0 0.1328125 0.265625 0.53125 1.0625

0010 2.25 4.5 9.0 18.0 0.140625 0.28125 0.5625 1.125

0011 2.375 4.75 9.5 19.0 0.1484375 0.296875 0.59375 1.1875

0100 2.5 5.0 10.0 20.0 0.15625 0.3125 0.625 1.25

0101 2.625 5.25 10.5 21.0 0.1640625 0.328125 0.65625 1.3125

0110 2.75 5.5 11.0 22.0 0.171875 0.34375 0.6875 1.375

0111 2.875 5.75 11.5 23.0 0.1796875 0.359375 0.71875 1.4375

1000 3.0 6.0 12.0 24.0 0.1875 0.375 0.75 1.5

1001 3.125 6.25 12.5 25.0 0.1953125 0.390625 0.78125 1.5625

1010 3.25 6.5 13.0 26.0 0.203125 0.40625 0.8125 1.625

1011 3.375 6.75 13.5 27.0 0.2109375 0.421875 0.84375 1.6875

1100 3.5 7.0 14.0 28.0 0.21875 0.4375 0.875 1.75

1101 3.625 7.25 14.5 29.0 0.2265625 0.453125 0.90625 1.8125

1110 3.75 7.5 15.0 30.0 0.234375 0.46875 0.9375 1.875

1111 3.875 7.75 15.5 31.0 0.2421875 0.484375 0.96875 1.9375
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C2-213
ID072021 Non-Confidential

About the A64 Instruction Descriptions
C2.2 General information about the A64 instruction descriptions
C2-214 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter C3
A64 Instruction Set Overview

This chapter provides an overview of the A64 instruction set. It contains the following sections:

• Branches, Exception generating, and System instructions on page C3-216.

• Loads and stores on page C3-224.

• Data processing - immediate on page C3-242.

• Data processing - register on page C3-247.

• Data processing - SIMD and floating-point on page C3-255.

For a structured breakdown of instruction groups by encoding, see Chapter C4 A64 Instruction Set Encoding.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-215
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions
C3.1 Branches, Exception generating, and System instructions

This section describes the branch, exception generating, and System instructions. It contains the following
subsections:

• Conditional branch on page C3-216.

• Unconditional branch (immediate) on page C3-216.

• Unconditional branch (register) on page C3-217.

• Exception generation and return on page C3-217.

• System register instructions on page C3-218.

• System instructions on page C3-218.

• Hint instructions on page C3-219.

• Barriers and CLREX instructions on page C3-219.

• Pointer authentication instructions on page C3-220.

For information about the encoding structure of the instructions in this instruction group, see Branches, Exception
Generating and System instructions on page C4-289.

Note

Software must:

• Use only BLR or BL to perform a nested subroutine call when that subroutine is expected to return to the
immediately following instruction, that is, the instruction with the address of the BLR or BL instruction
incremented by four.

• Use only RET to perform a subroutine return, when that subroutine is expected to have been entered by a BL
or BLR instruction.

• Use only B, BR, or the instructions listed in Table C3-1 on page C3-216 to perform a control transfer that is
not a subroutine call or subroutine return described in this Note.

C3.1.1 Conditional branch

Conditional branches change the flow of execution depending on the current state of the Condition flags or the value
in a general-purpose register. See Table C1-1 on page C1-197 for a list of the Condition codes that can be used for
cond.

Table C3-1 on page C3-216 shows the Conditional branch instructions.

C3.1.2 Unconditional branch (immediate)

Unconditional branch (immediate) instructions change the flow of execution unconditionally by adding an
immediate offset with a range of ±128MB to the value of the program counter that fetched the instruction. The BL
instruction also writes the address of the sequentially following instruction to general-purpose register, X30.

Table C3-1 Conditional branch instructions

Mnemonic Instruction Branch offset range from the PC See

B.cond Branch conditionally ±1MB B.cond on page C6-920

CBNZ Compare and branch if nonzero ±1MB CBNZ on page C6-954

CBZ Compare and branch if zero ±1MB CBZ on page C6-955

TBNZ Test bit and branch if nonzero ±32KB TBNZ on page C6-1485

TBZ Test bit and branch if zero ±32KB TBZ on page C6-1486
C3-216 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions
Table C3-2 on page C3-217 shows the Unconditional branch instructions with an immediate branch offset.

C3.1.3 Unconditional branch (register)

Unconditional branch (register) instructions change the flow of execution unconditionally by setting the program
counter to the value in a general-purpose register. The BLR instruction also writes the address of the sequentially
following instruction to general-purpose register X30. The RET instruction behaves identically to BR, but provides an
additional hint to the PE that this is a return from a subroutine. Table C3-3 on page C3-217 shows Unconditional
branch instructions that jump directly to an address held in a general-purpose register.

C3.1.4 Exception generation and return

This section describes the following exceptions:

• Exception generating on page C3-217.

• Exception return on page C3-218.

• Debug state on page C3-218.

Exception generating

Table C3-4 on page C3-217 shows the Exception generating instructions.

Table C3-2 Unconditional branch instructions (immediate)

Mnemonic Instruction Immediate branch offset range from the PC See

B Branch unconditionally ±128MB B on page C6-921

BL Branch with link ±128MB BL on page C6-934

Table C3-3 Unconditional branch instructions (register)

Mnemonic Instruction See

BLR Branch with link to register BLR on page C6-935

BR Branch to register BR on page C6-938

RET Return from subroutine RET on page C6-1282

Table C3-4 Exception generating instructions

Mnemonic Instruction See

BRK Breakpoint Instruction BRK on page C6-941

HLT Halt Instruction HLT on page C6-1034

HVC Generate exception targeting Exception level 2 HVC on page C6-1035

SMC Generate exception targeting Exception level 3 SMC on page C6-1316

SVC Generate exception targeting Exception level 1 SVC on page C6-1470
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-217
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions
Exception return

Table C3-5 on page C3-218 shows the Exception return instructions.

Debug state

Table C3-6 on page C3-218 shows the Debug state instructions.

C3.1.5 System register instructions

For detailed information about the System register instructions, see Chapter C5 The A64 System Instruction Class.
Table C3-7 on page C3-218 shows the System register instructions.

C3.1.6 Instructions with register argument

For detailed information about instructions with register argument, see Chapter C6 A64 Base Instruction
Descriptions. Table C3-8 on page C3-218 shows the instructions with register argument.

C3.1.7 System instructions

For detailed information about the System instructions, see Chapter C5 The A64 System Instruction Class.

Table C3-5 Exception return instructions

Mnemonic Instruction See

ERET Exception return using current ELR and SPSR ERET on page C6-1026

Table C3-6 Debug state instructions

Mnemonic Instruction See

DCPS1 Debug switch to Exception level 1 DCPS1 on page C6-1009

DCPS2 Debug switch to Exception level 2 DCPS2 on page C6-1010

DCPS3 Debug switch to Exception level 3 DCPS3 on page C6-1011

DRPS Debug restore PE state DRPS on page C6-1015

Table C3-7 System register instructions

Mnemonic Instruction See

MRS Move System register to general-purpose register MRS on page C6-1236

MSR Move general-purpose register to System register MSR (register) on page C6-1240

Move immediate to PE state field MSR (immediate) on page C6-1237

Table C3-8 Instructions with register argument

Mnemonic Instruction See

WFET Wait for event with Timeout WFET on page C6-1513

WFIT Wait for interrupt with Timeout WFIT on page C6-1515
C3-218 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions
Table C3-9 on page C3-219 shows the System instructions.

C3.1.8 Hint instructions

Table C3-10 on page C3-219 shows the Hint instructions.

C3.1.9 Barriers and CLREX instructions

Table C3-11 on page C3-219 shows the barrier and CLREX instructions.

For more information about DSB, DMB, and ISB, see Memory barriers on page B2-146.

Table C3-9 System instructions

Mnemonic Instruction See

SYS System instruction SYS on page C6-1482

SYSL System instruction with result SYSL on page C6-1484

IC Instruction cache maintenance IC on page C6-1036 and Table C5-1 on page C5-399

DC Data cache maintenance DC on page C6-1007 and Table C5-1 on page C5-399

AT Address translation AT on page C6-911 and Table C5-3 on page C5-401

TLBI TLB Invalidate TLBI on page C6-1487 and Table C5-4 on page C5-402

Table C3-10 Hint instructions

Mnemonic Instruction See

NOP No operation NOP on page C6-1254

YIELD Yield hint YIELD on page C6-1519

WFE Wait for event WFE on page C6-1512

WFI Wait for interrupt WFI on page C6-1514

SEV Send event SEV on page C6-1312

SEVL Send event local SEVL on page C6-1313

HINT Unallocated hint HINT on page C6-1032

DGH Data Gathering Hint DGH on page C6-1012

Table C3-11 Barriers and CLREX instructions

Mnemonic Instruction See

CLREX Clear Exclusives monitor CLREX on page C6-970

DMB Data memory barrier DMB on page C6-1013

DSB Data synchronization barrier DSB on page C6-1016

ISB Instruction synchronization barrier ISB on page C6-1039
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-219
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions
Table C3-12 on page C3-220 shows the speculation and synchronization barriers. If these instructions are not
implemented, then these instructions execute as a NOP.

For more information about:

• CSDB, PSSBB, SB, SSBB, TSB CSYNC, see Memory barriers on page B2-146.

• ESB, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A
architecture profile.

• PSB CSYNC, see Chapter D9 The Statistical Profiling Extension.

C3.1.10 Pointer authentication instructions

FEAT_PAuth adds support for pointer authentication, see Pointer authentication in AArch64 state on page D5-2678.
This functionality includes the A64 instructions described in this section. These instructions fall into two groups,
see:

• Basic pointer authentication instructions on page C3-220.

• Combined instructions that include pointer authentication on page C3-222.

Basic pointer authentication instructions

Each of these instructions only performs an operation that supports pointer authentication.

Table C3-13 on page C3-220 shows the instructions that add a Pointer Authentication Code (PAC) to the address in
a register:

Table C3-12 Speculation and synchronization barriers

Mnemonic Instruction See

CSDB Consumption of Speculative Data Barrier CSDB on page C6-994

ESB Error synchronization barrier ESB on page C6-1028

PSB CSYNC Profiling synchronization barrier PSB CSYNC on page C6-1278

PSSBB Physical Speculative Store Bypass Barrier PSSBB on page C6-1279

SB Speculation Barrier SB on page C6-1298

SSBB Speculative Store Bypass Barrier SSBB on page C6-1322

TSB CSYNC Trace Synchronization Barrier TSB CSYNC on page C6-1490

Table C3-13 Instructions that add a PAC

Mnemonic Instruction See

PACIASP Add PAC to instruction address using APIAKey_EL1 and SP PACIA, PACIA1716, PACIASP, PACIAZ,
PACIZA on page C6-1264

PACIAZ Add PAC to instruction address using APIAKey_EL1 and zero

PACIA1716 Add PAC to instruction address X17 using APIAKey_EL1 and X16

PACIBSP Add PAC to instruction address using APIBKey_EL1 and SP PACIB, PACIB1716, PACIBSP, PACIBZ,
PACIZB on page C6-1267

PACIBZ Add PAC to instruction address using APIBKey_EL1 and zero

PACIB1716 Add PAC to instruction address X17 using APIBKey_EL1 and X16

PACIA Add PAC to instruction address using APIAKey_EL1, registers PACIA, PACIA1716, PACIASP, PACIAZ,
PACIZA on page C6-1264
C3-220 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions
Table C3-14 on page C3-221 shows the instructions that authenticate a PAC in a register:

PACDA Add PAC to data address using APDAKey_EL1, registers PACDA, PACDZA on page C6-1261

PACIB Add PAC to instruction address using APIBKey_EL1, registers PACIB, PACIB1716, PACIBSP, PACIBZ,
PACIZB on page C6-1267

PACDB Add PAC to data address using APDBKey_EL1, registers PACDB, PACDZB on page C6-1262

PACIZA Add PAC to instruction address using APIAKey_EL1, register and zero PACIA, PACIA1716, PACIASP, PACIAZ,
PACIZA on page C6-1264

PACDZA Add PAC to data address using APDAKey_EL1, register and zero PACDA, PACDZA on page C6-1261

PACIZB Add PAC to instruction address using APIBKey_EL1, register and zero PACIB, PACIB1716, PACIBSP, PACIBZ,
PACIZB on page C6-1267

PACDZB Add PAC to data address using APDBKey_EL1, register and zero PACDB, PACDZB on page C6-1262

PACGA Add generic PAC using APGAKey_EL1, registers PACGA on page C6-1263

Table C3-13 Instructions that add a PAC (continued)

Mnemonic Instruction See

Table C3-14 Instructions that authenticate a PAC

Mnemonic Instruction See

AUTIASP Authenticate PAC for instruction address using APIAKey_EL1 and SP AUTIA, AUTIA1716, AUTIASP,
AUTIAZ, AUTIZA on page C6-915

AUTIAZ Authenticate PAC for instruction address using APIAKey_EL1 and zero

AUTIA1716 Authenticate PAC for instruction address X17 using APIAKey_EL1 and X16

AUTIBSP Authenticate PAC for instruction address using APIBKey_EL1 and SP AUTIB, AUTIB1716, AUTIBSP,
AUTIBZ, AUTIZB on page C6-917

AUTIBZ Authenticate PAC for instruction address using APIBKey_EL1 and zero

AUTIB1716 Authenticate PAC for instruction address X17 using APIBKey_EL1 and X16

AUTIA Authenticate PAC for instruction address using APIAKey_EL1, registers AUTIA, AUTIA1716, AUTIASP,
AUTIAZ, AUTIZA on page C6-915

AUTDA Authenticate PAC for data address using APDAKey_EL1, registers AUTDA, AUTDZA on
page C6-913

AUTIB Authenticate PAC for instruction address using APIBKey_EL1, registers AUTIB, AUTIB1716, AUTIBSP,
AUTIBZ, AUTIZB on page C6-917

AUTDB Authenticate PAC for data address using APDBKey_EL1, registers AUTDB, AUTDZB on
page C6-914

AUTIZA Authenticate PAC for instruction address using APIAKey_EL1, register and
zero

AUTIA, AUTIA1716, AUTIASP,
AUTIAZ, AUTIZA on page C6-915
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-221
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions
Table C3-15 on page C3-222 shows the instructions that strip a PAC from a register, without performing any
authentication:

Combined instructions that include pointer authentication

Each of these instructions combines a pointer authentication with another operation that uses the authenticated
pointer. Table C3-16 on page C3-222 shows these instructions:

AUTDZA Authenticate PAC for data address using APDAKey_EL1, register and zero AUTDA, AUTDZA on
page C6-913

AUTIZB Authenticate PAC for instruction address using APIBKey_EL1, register and
zero

AUTIB, AUTIB1716, AUTIBSP,
AUTIBZ, AUTIZB on page C6-917

AUTDZB Authenticate PAC for data address using APDBKey_EL1, register and zero AUTDB, AUTDZB on
page C6-914

Table C3-14 Instructions that authenticate a PAC (continued)

Mnemonic Instruction See

Table C3-15 Instructions that strip a PAC

Mnemonic Instruction See

XPACLRI Strip instruction address PAC from LR XPACD, XPACI, XPACLRI on page C6-1517

XPACI Strip instruction address PAC, register

XPACD Strip data address PAC, register

Table C3-16 Combined pointer authentication instructions

Mnemonic Instruction See

RETAA Authenticate PAC for LR using APIAKey_EL1 and SP, and return RETAA, RETAB on
page C6-1283

RETAB Authenticate PAC for LR using APIBKey_EL1 and SP, and return

BRAA Authenticate PAC using APIAKey_EL1 (registers), and branch BRAA, BRAAZ, BRAB,
BRABZ on page C6-939

BRAB Authenticate PAC using APIBKey_EL1 (registers), and branch

BLRAA Authenticate PAC using APIAKey_EL1 (registers), and branch with link BLRAA, BLRAAZ,
BLRAB, BLRABZ on
page C6-936BLRAB Authenticate PAC using APIBKey_EL1 (registers), and branch with link

BRAAZ Authenticate PAC using APIAKey_EL1 (register and zero), and branch BRAA, BRAAZ, BRAB,
BRABZ on page C6-939

BRABZ Authenticate PAC using APIBKey_EL1 (register and zero), and branch

BLRAAZ Authenticate PAC using APIAKey_EL1 (register and zero), and branch with link BLRAA, BLRAAZ,
BLRAB, BLRABZ on
page C6-936BLRABZ Authenticate PAC using APIBKey_EL1 (register and zero), and branch with link

ERETAA Authenticate PAC for ELR using APIAKey_EL1 and SP, and exception return ERETAA, ERETAB on
page C6-1027

ERETAB Authenticate PAC for ELR using APIBKey_EL1 and SP, and exception return

LDRAA Authenticate PAC for data address using APDAKey_EL1 (register and zero) and Load LDRAA, LDRAB on
page C6-1113

LDRAB Authenticate PAC for data address using APDBKey_EL1 (register and zero) and Load
C3-222 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-223
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
C3.2 Loads and stores

This section describes the load/store instructions. It contains the following subsections:

• Load/store register on page C3-224.

• Load/store register (unscaled offset) on page C3-225.

• Load/store pair on page C3-226.

• Load/store non-temporal pair on page C3-227.

• Load/store unprivileged on page C3-228.

• Load-Exclusive/Store-Exclusive on page C3-228.

• Load-Acquire/Store-Release on page C3-229.

• LoadLOAcquire/StoreLORelease on page C3-231.

• Load/store scalar SIMD and floating-point on page C3-231.

• Load/store Vector on page C3-233.

• Prefetch memory on page C3-235.

• Atomic instructions on page C3-236.

• Memory Tagging instructions on page C3-240.

The requirements for the alignment of data memory accesses are strict, for more information see Alignment of data
accesses on page B2-160.

The additional control bits SCTLR_ELx.SA and SCTLR_EL1.SA0 control whether the stack pointer must be
quadword aligned when used as a base register. See SP alignment checking on page D1-2469. Using a misaligned
stack pointer generates an SP alignment fault exception.

For information about the encoding structure of the instructions in this instruction group, see Loads and Stores on
page C4-298.

Note

In some cases, load/store instructions can lead to CONSTRAINED UNPREDICTABLE behavior. See AArch64
CONSTRAINED UNPREDICTABLE behaviors on page K1-8408.

C3.2.1 Load/store register

The load/store register instructions support the following addressing modes:

• Base plus a scaled 12-bit unsigned immediate offset or base plus an unscaled 9-bit signed immediate offset.

• Base plus a 64-bit register offset, optionally scaled.

• Base plus a 32-bit extended register offset, optionally scaled.

• Pre-indexed by an unscaled 9-bit signed immediate offset.

• Post-indexed by an unscaled 9-bit signed immediate offset.

• PC-relative literal for loads of 32 bits or more.

See also Load/store addressing modes on page C1-202.

If a Load instruction specifies writeback and the register being loaded is also the base register, then behavior is
CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

• The instruction is treated as UNDEFINED.

• The instruction is treated as a NOP.

• The instruction performs the load using the specified addressing mode and the base register becomes
UNKNOWN. In addition, if an exception occurs during the execution of such an instruction, the base address
might be corrupted so that the instruction cannot be repeated.

If a Store instruction performs a writeback and the register that is stored is also the base register, then behavior is
CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

• The instruction is treated as UNDEFINED.
C3-224 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.2 Loads and stores
• The instruction is treated as a NOP.

• The instruction performs the store to the designated register using the specified addressing mode, but the
value stored is UNKNOWN.

Table C3-17 on page C3-225 shows the load/store register instructions.

C3.2.2 Load/store register (unscaled offset)

The load/store register instructions with an unscaled offset support only one addressing mode:

• Base plus an unscaled 9-bit signed immediate offset.

See Load/store addressing modes on page C1-202.

The load/store register (unscaled offset) instructions are required to disambiguate this instruction class from the
load/store register instruction forms that support an addressing mode of base plus a scaled, unsigned 12-bit
immediate offset, because that can represent some offset values in the same range.

The ambiguous immediate offsets are byte offsets that are both:

• In the range 0-255, inclusive.

• Naturally aligned to the access size.

Table C3-17 Load/store register instructions

Mnemonic Instruction See

LDR Load register (register offset) LDR (register) on page C6-1111

Load register (immediate offset) LDR (immediate) on page C6-1106

Load register (PC-relative literal) LDR (literal) on page C6-1109

LDRB Load byte (register offset) LDRB (register) on page C6-1118

Load byte (immediate offset) LDRB (immediate) on page C6-1115

LDRSB Load signed byte (register offset) LDRSB (register) on page C6-1129

Load signed byte (immediate offset) LDRSB (immediate) on page C6-1125

LDRH Load halfword (register offset) LDRH (register) on page C6-1123

Load halfword (immediate offset) LDRH (immediate) on page C6-1120

LDRSH Load signed halfword (register offset) LDRSH (register) on page C6-1135

Load signed halfword (immediate offset) LDRSH (immediate) on page C6-1131

LDRSW Load signed word (register offset) LDRSW (register) on page C6-1141

Load signed word (immediate offset) LDRSW (immediate) on page C6-1137

Load signed word (PC-relative literal) LDRSW (literal) on page C6-1140

STR Store register (register offset) STR (register) on page C6-1386

Store register (immediate offset) STR (immediate) on page C6-1383

STRB Store byte (register offset) STRB (register) on page C6-1391

Store byte (immediate offset) STRB (immediate) on page C6-1388

STRH Store halfword (register offset) STRH (register) on page C6-1396

Store halfword (immediate offset) STRH (immediate) on page C6-1393
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-225
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
Other byte offsets in the range -256 to 255 inclusive are unambiguous. An assembler program translating a
load/store instruction, for example LDR, is required to encode an unambiguous offset using the unscaled 9-bit offset
form, and to encode an ambiguous offset using the scaled 12-bit offset form. A programmer might force the
generation of the unscaled 9-bit form by using one of the mnemonics in Table C3-18 on page C3-226. Arm
recommends that a disassembler outputs all unscaled 9-bit offset forms using one of these mnemonics, but
unambiguous offsets can be output using a load/store single register mnemonic, for example, LDR.

Table C3-18 on page C3-226 shows the load/store register instructions with an unscaled offset.

C3.2.3 Load/store pair

The load/store pair instructions support the following addressing modes:

• Base plus a scaled 7-bit signed immediate offset.

• Pre-indexed by a scaled 7-bit signed immediate offset.

• Post-indexed by a scaled 7-bit signed immediate offset.

See also Load/store addressing modes on page C1-202.

If a Load Pair instruction specifies the same register for the two registers that are being loaded, then behavior is
CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

• The instruction is treated as UNDEFINED.

• The instruction is treated as a NOP.

• The instruction performs all the loads using the specified addressing mode and the register that is loaded takes
an UNKNOWN value.

If a Load Pair instruction specifies writeback and one of the registers being loaded is also the base register, then
behavior is CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

• The instruction is treated as UNDEFINED.

• The instruction is treated as a NOP.

• The instruction performs all of the loads using the specified addressing mode, and the base register becomes
UNKNOWN. In addition, if an exception occurs during the instruction, the base address might be corrupted so
that the instruction cannot be repeated.

Table C3-18 Load/store register (unscaled offset) instructions

Mnemonic Instruction See

LDUR Load register (unscaled offset) LDUR on page C6-1190

LDURB Load byte (unscaled offset) LDURB on page C6-1192

LDURSB Load signed byte (unscaled offset) LDURSB on page C6-1194

LDURH Load halfword (unscaled offset) LDURH on page C6-1193

LDURSH Load signed halfword (unscaled offset) LDURSH on page C6-1196

LDURSW Load signed word (unscaled offset) LDURSW on page C6-1198

STUR Store register (unscaled offset) STUR on page C6-1434

STURB Store byte (unscaled offset) STURB on page C6-1436

STURH Store halfword (unscaled offset) STURH on page C6-1437
C3-226 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.2 Loads and stores
If a Store Pair instruction performs a writeback and one of the registers being stored is also the base register, then
behavior is CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

• The instruction is treated as UNDEFINED.

• The instruction is treated as a NOP.

• The instruction performs all the stores of the registers indicated by the specified addressing mode, but the
value stored for the base register is UNKNOWN.

Table C3-19 on page C3-227 shows the load/store pair instructions.

C3.2.4 Load/store non-temporal pair

The load/store non-temporal pair instructions support only one addressing mode:

• Base plus a scaled 7-bit signed immediate offset.

See Load/store addressing modes on page C1-202.

The load/store non-temporal pair instructions provide a hint to the memory system that an access is non-temporal
or streaming, and unlikely to be repeated in the near future. This means that data caching is not required. However,
depending on the memory type, the instructions might permit memory reads to be preloaded and memory writes to
be gathered to accelerate bulk memory transfers.

In addition, there is an exception to the usual memory ordering rules. If an address dependency exists between two
memory reads, and a Load Non-temporal Pair instruction generated the second read, then in the absence of any other
barrier mechanism to achieve order, the memory accesses can be observed in any order by the other observers within
the shareability domain of the memory addresses being accessed.

If a Load Non-Temporal Pair instruction specifies the same register for the two registers that are being loaded, then
behavior is CONSTRAINED UNPREDICTABLE and one of the following must occur:

• The instruction is treated as UNDEFINED.

• The instruction is treated as a NOP.

• The instruction performs all the loads using the specified addressing mode and the register that is loaded takes
an UNKNOWN value.

Table C3-20 on page C3-227 shows the load/store non-temporal pair instructions.

Table C3-19 Load/store pair instructions

Mnemonic Instruction See

LDP Load Pair LDP on page C6-1099

LDPSW Load Pair signed words LDPSW on page C6-1103

STP Store Pair STP on page C6-1380

Table C3-20 Load/store non-temporal pair instructions

Mnemonic Instruction See

LDNP Load Non-temporal Pair LDNP on page C6-1097

STNP Store Non-temporal Pair STNP on page C6-1378
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-227
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
C3.2.5 Load/store unprivileged

The load/store unprivileged instructions support only one addressing mode:

• Base plus an unscaled 9-bit signed immediate offset.

See Load/store addressing modes on page C1-202.

The access permissions that apply to accesses made at EL0 apply to the memory accesses made by a load/store
unprivileged instruction that is executed either:

• At EL1 when the Effective value of PSTATE.UAO is 0.

• At EL2 when both the Effective value of HCR_EL2.{E2H, TGE} is {1, 1} and the Effective value of
PSTATE.UAO is 0.

Otherwise, memory accesses made by a load/store unprivileged instruction are subject to the access permissions that
apply to the Exception level at which the instruction is executed. These are the permissions that apply to the
corresponding load/store register instruction, see Load/store register on page C3-224.

Note

This means that when the value of PSTATE.UAO is 1 the access permissions for a load/store unprivileged
instruction are always the same as those for the corresponding load/store register instruction.

Table C3-21 on page C3-228 shows the load/store unprivileged instructions.

C3.2.6 Load-Exclusive/Store-Exclusive

The Load-Exclusive/Store-Exclusive instructions support only one addressing mode:

• Base register with no offset.

See Load/store addressing modes on page C1-202.

The Load-Exclusive instructions mark the physical address being accessed as an exclusive access. This exclusive
access mark is checked by the Store-Exclusive instruction, permitting the construction of atomic read-modify-write
operations on shared memory variables, semaphores, mutexes, and spinlocks. See Synchronization and semaphores
on page B2-179.

Table C3-21 Load-Store unprivileged instructions

Mnemonic Instruction See

LDTR Load unprivileged register LDTR on page C6-1164

LDTRB Load unprivileged byte LDTRB on page C6-1166

LDTRSB Load unprivileged signed byte LDTRSB on page C6-1170

LDTRH Load unprivileged halfword LDTRH on page C6-1168

LDTRSH Load unprivileged signed halfword LDTRSH on page C6-1172

LDTRSW Load unprivileged signed word LDTRSW on page C6-1174

STTR Store unprivileged register STTR on page C6-1416

STTRB Store unprivileged byte STTRB on page C6-1418

STTRH Store unprivileged halfword STTRH on page C6-1420
C3-228 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.2 Loads and stores
If FEAT_LSE2 is not implemented then:.

• The Load-Exclusive/Store-Exclusive instructions other than Load-Exclusive pair and Store-Exclusive pair
require natural alignment, and an unaligned address generates an Alignment fault.

• Memory accesses generated by Load-Exclusive pair or Store-Exclusive pair instructions must be aligned to
the size of the pair, otherwise the access generates an Alignment fault.

For more information on alignment requirements and behaviors see Load-Exclusive/ Store-Exclusive and
Atomic instructions on page B2-160.

When a Store-Exclusive pair succeeds, it causes a single-copy atomic update of the entire memory location being
stored to.

Table C3-22 on page C3-229 shows the Load-Exclusive/Store-Exclusive instructions.

C3.2.7 Load-Acquire/Store-Release

The Load-Acquire, Load-AcquirePC, and Store-Release instructions support only one addressing mode:

• Base register with no offset.

See Load/store addressing modes on page C1-202.

The Load-Acquire, Load-AcquirePC, and Store-Release instructions can remove the requirement to use the explicit
DMB memory barrier instruction. For more information about the ordering of Load-Acquire, Load-AcquirePC, and
Store-Release, see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-152.

The Load-Acquire, Load-AcquirePC, and Store-Release instructions other than Load-Acquire pair and
Store-Release pair require natural alignment, and an unaligned address generates an Alignment fault. Memory
accesses generated by Load-Acquire pair or Store-Release pair instructions must be aligned to the size of the pair,
otherwise the access generates an Alignment fault.

A Store-Release Exclusive instruction only has the Release semantics if the store is successful.

Armv8.1 adds more instructions with load-acquire and store-release mechanisms, see
LoadLOAcquire/StoreLORelease on page C3-231.

FEAT_LRCPC2 introduces changes to the alignment requirements of Load-Acquire/Store-Release instructions.

Table C3-22 Load-Exclusive/Store-Exclusive instructions

Mnemonic Instruction See

LDXR Load Exclusive register LDXR on page C6-1201

LDXRB Load Exclusive byte LDXRB on page C6-1203

LDXRH Load Exclusive halfword LDXRH on page C6-1204

LDXP Load Exclusive pair LDXP on page C6-1199

STXR Store Exclusive register STXR on page C6-1441

STXRB Store Exclusive byte STXRB on page C6-1443

STXRH Store Exclusive halfword STXRH on page C6-1445

STXP Store Exclusive pair STXP on page C6-1438
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-229
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
Table C3-23 on page C3-230 shows the Non-exclusive Load-Acquire/Store-Release instructions.

Table C3-24 on page C3-230 shows the Exclusive Load-Acquire/Store-Release instructions.

Table C3-23 Non-exclusive Load-Acquire and Store-Release instructions

Mnemonic Instruction See

LDAPR Load-Acquire RCpc Register LDAPR on page C6-1048

LDAPRB Load-Acquire RCpc Register Byte LDAPRB on page C6-1050

LDAPRH Load-Acquire RCpc Register Halfword LDAPRH on page C6-1052

LDAPUR Load-Acquire RCpc Register (unscaled) LDAPUR on page C6-1054

LDAPURB Load-Acquire RCpc Register Byte (unscaled) LDAPURB on page C6-1056

LDAPURH Load-Acquire RCpc Register Halfword (unscaled) LDAPURH on page C6-1058

LDAPURSB Load-Acquire RCpc Register Signed Byte (unscaled) 32-bit LDAPURSB on page C6-1060

LDAPURSB Load-Acquire RCpc Register Signed Byte (unscaled) 64-bit LDAPURSB on page C6-1060

LDAPURSH Load-Acquire RCpc Register Signed Halfword (unscaled) 32-bit LDAPURSH on page C6-1062

LDAPURSH Load-Acquire RCpc Register Signed Halfword (unscaled) 64-bit LDAPURSH on page C6-1062

LDAPURSW Load-Acquire RCpc Register Signed Word (unscaled) LDAPURSW on page C6-1064

LDAR Load-Acquire Register LDAR on page C6-1066

LDARB Load-Acquire Byte LDARB on page C6-1068

LDARH Load-Acquire Halfword LDARH on page C6-1069

STLR Store-Release Register STLR on page C6-1358

STLRB Store-Release Byte STLRB on page C6-1360

STLRH Store-Release Halfword STLRH on page C6-1361

STLUR Store-Release Register (unscaled) STLUR on page C6-1362

STLURB Store-Release Register Byte (unscaled) STLURB on page C6-1364

STLURH Store-Release Register Halfword (unscaled) STLURH on page C6-1366

Table C3-24 Exclusive Load-Acquire and Store-Release instructions

Mnemonic Instruction See

LDAXR Load-Acquire Exclusive register LDAXR on page C6-1072

LDAXRB Load-Acquire Exclusive byte LDAXRB on page C6-1074

LDAXRH Load-Acquire Exclusive halfword LDAXRH on page C6-1075

LDAXP Load-Acquire Exclusive pair LDAXP on page C6-1070

STLXR Store-Release Exclusive register STLXR on page C6-1371
C3-230 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.2 Loads and stores
C3.2.8 LoadLOAcquire/StoreLORelease

The LoadLOAcquire/StoreLORelease instructions support only one addressing mode:

• Base register with no offset.

See Load/store addressing modes on page C1-202.

The LoadLOAcquire/StoreLORelease instructions can remove the requirement to use the explicit DMB memory
barrier instruction. For more information about the ordering of LoadLOAcquire/StoreLORelease, see
LoadLOAcquire, StoreLORelease on page B2-153.

The LoadLOAcquire/StoreLORelease instructions require natural alignment, and an unaligned address generates an
Alignment fault.

Table C3-25 on page C3-231 shows the LoadLOAcquire/StoreLORelease instructions.

C3.2.9 Load/store scalar SIMD and floating-point

The load/store scalar SIMD and floating-point instructions operate on scalar values in the SIMD and floating-point
register file as described in SIMD and floating-point scalar register names on page C1-199. The memory addressing
modes available, described in Load/store addressing modes on page C1-202, are identical to the general-purpose
register load/store instructions, and like those instructions permit arbitrary address alignment unless strict alignment
checking is enabled. However, unlike the load/store instructions that transfer general-purpose registers, load/store
scalar SIMD and floating-point instructions make no guarantee of atomicity, even when the address is naturally
aligned to the size of the data.

Load/store scalar SIMD and floating-point register

 The load/store scalar SIMD and floating-point register instructions support the following addressing modes:

• Base plus a scaled 12-bit unsigned immediate offset or base plus unscaled 9-bit signed immediate offset.

• Base plus 64-bit register offset, optionally scaled.

• Base plus 32-bit extended register offset, optionally scaled.

• Pre-indexed by an unscaled 9-bit signed immediate offset.

• Post-indexed by an unscaled 9-bit signed immediate offset.

STLXRB Store-Release Exclusive byte STLXRB on page C6-1374

STLXRH Store-Release Exclusive halfword STLXRH on page C6-1376

STLXP Store-Release Exclusive pair STLXP on page C6-1368

Table C3-24 Exclusive Load-Acquire and Store-Release instructions (continued)

Mnemonic Instruction See

Table C3-25 LoadLOAcquire and StoreLORelease instructions

Mnemonic Instruction See

LDLARB LoadLOAcquire byte LDLARB on page C6-1093

LDLARH LoadLOAcquire halfword LDLARH on page C6-1094

LDLAR LoadLOAcquire register LDLAR on page C6-1095

STLLRB StoreLORelease byte STLLRB on page C6-1354

STLLRH StoreLORelease halfword STLLRH on page C6-1355

STLLR StoreLORelease register STLLR on page C6-1356
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-231
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
• PC-relative literal for loads of 32 bits or more.

For more information on the addressing modes, see Load/store addressing modes on page C1-202.

Note

The unscaled 9-bit signed immediate offset address mode requires its own instruction form, see Load/store scalar
SIMD and floating-point register (unscaled offset) on page C3-232.

 Table C3-26 on page C3-232 shows the load/store instructions for a single SIMD and floating-point register.

Load/store scalar SIMD and floating-point register (unscaled offset)

The load /store scalar SIMD and floating-point register instructions support only one addressing mode:

• Base plus an unscaled 9-bit signed immediate offset.

See also Load/store addressing modes on page C1-202.

The load/store scalar SIMD and floating-point register (unscaled offset) instructions are required to disambiguate
this instruction class from the load/store single SIMD and floating-point instruction forms that support an
addressing mode of base plus a scaled, unsigned 12-bit immediate offset. This is similar to the load/store register
(unscaled offset) instructions, that disambiguate this instruction class from the load/store register instruction, see
Load/store register (unscaled offset) on page C3-225.

Table C3-27 on page C3-232 shows the load/store SIMD and floating-point register instructions with an unscaled
offset.

Load/store SIMD and floating-point register pair

The load/store SIMD and floating-point register pair instructions support the following addressing modes:

• Base plus a scaled 7-bit signed immediate offset.

• Pre-indexed by a scaled 7-bit signed immediate offset.

• Post-indexed by a scaled 7-bit signed immediate offset.

See also Load/store addressing modes on page C1-202.

Table C3-26 Load/store single SIMD and floating-point register instructions

Mnemonic Instruction See

LDR Load scalar SIMD&FP register (register offset) LDR (register, SIMD&FP) on page C7-1976

Load scalar SIMD&FP register (immediate offset) LDR (immediate, SIMD&FP) on page C7-1970

Load scalar SIMD&FP register (PC-relative literal) LDR (literal, SIMD&FP) on page C7-1974

STR Store scalar SIMD&FP register (register offset) STR (register, SIMD&FP) on page C7-2294

Store scalar SIMD&FP register (immediate offset) STR (immediate, SIMD&FP) on page C7-2290

Table C3-27 Load/store SIMD and floating-point register instructions

Mnemonic Instruction See

LDUR Load scalar SIMD&FP register (unscaled offset) LDUR (SIMD&FP) on page C7-1979

STUR Store scalar SIMD&FP register (unscaled offset) STUR (SIMD&FP) on page C7-2297
C3-232 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.2 Loads and stores
If a Load pair instruction specifies the same register for the two registers that are being loaded, then behavior is
CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

• The instruction is treated as UNDEFINED.

• The instruction is treated as a NOP.

• The instruction performs all of the loads using the specified addressing mode and the register being loaded
takes an UNKNOWN value.

Table C3-28 on page C3-233 shows the load/store SIMD and floating-point register pair instructions.

Load/store SIMD and floating-point non-temporal pair

The load/store SIMD and floating-point non-temporal pair instructions support only one addressing mode:

• Base plus a scaled 7-bit signed immediate offset.

See also Load/store addressing modes on page C1-202.

The load/store non-temporal pair instructions provide a hint to the memory system that an access is non-temporal
or streaming, and unlikely to be repeated in the near future. This means that data caching is not required. However,
depending on the memory type, the instructions might permit memory reads to be preloaded and memory writes to
be gathered to accelerate bulk memory transfers.

In addition, there is an exception to the usual memory ordering rules. If an address dependency exists between two
memory reads, and a load non-temporal pair instruction generated the second read, then in the absence of any other
barrier mechanism to achieve order, those memory accesses can be observed in any order by the other observers
within the shareability domain of the memory addresses being accessed.

If a load non-temporal pair instruction specifies the same register for the two registers that are being loaded, then
behavior is CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

• The instruction is treated as UNDEFINED.

• The instruction is treated as a NOP.

• The instruction performs all the loads using the specified addressing mode and the register that is loaded takes
an UNKNOWN value.

 Table C3-29 on page C3-233 shows the load/store SIMD and floating-point Non-temporal pair instructions.

C3.2.10 Load/store Vector

The Vector load/store structure instructions support the following addressing modes:

• Base register only.

• Post-indexed by a 64-bit register.

Table C3-28 Load/store SIMD and floating-point register pair instructions

Mnemonic Instruction See

LDP Load pair of scalar SIMD&FP registers LDP (SIMD&FP) on page C7-1966

STP Store pair of scalar SIMD&FP registers STP (SIMD&FP) on page C7-2287

Table C3-29 Load/store SIMD and floating-point non-temporal pair instructions

Mnemonic Instruction See

LDNP Load pair of scalar SIMD&FP registers LDNP (SIMD&FP) on page C7-1964

STNP Store pair of scalar SIMD&FP registers STNP (SIMD&FP) on page C7-2285
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-233
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
• Post-indexed by an immediate, equal to the number of bytes transferred.

Load/store vector instructions, like other load/store instructions, allow any address alignment, unless strict
alignment checking is enabled. If strict alignment checking is enabled, then alignment checking to the size of the
element is performed. However, unlike the load/store instructions that transfer general-purpose registers, the
load/store vector instructions do not guarantee atomicity, even when the address is naturally aligned to the size of
the element.

Load/store structures

Table C3-30 on page C3-234 shows the load/store structure instructions. A post-increment immediate offset, if
present, must be 8, 16, 24, 32, 48, or 64, depending on the number of elements transferred.

Table C3-30 Load/store multiple structures instructions

Mnemonic Instruction See

LD1 Load single 1-element structure to one lane of one register LD1 (single structure) on page C7-1927

Load multiple 1-element structures to one register or to two,
three, or four consecutive registers

LD1 (multiple structures) on page C7-1923

LD2 Load single 2-element structure to one lane of two consecutive
registers

LD2 (single structure) on page C7-1937

Load multiple 2-element structures to two consecutive registers LD2 (multiple structures) on page C7-1934

LD3 Load single 3-element structure to one lane of three consecutive
registers

LD3 (single structure) on page C7-1947

Load multiple 3-element structures to three consecutive
registers

LD3 (multiple structures) on page C7-1944

LD4 Load single 4-element structure to one lane of four consecutive
registers

LD4 (single structure) on page C7-1957

Load multiple 4-element structures to four consecutive registers LD4 (multiple structures) on page C7-1954

ST1 Store single 1-element structure from one lane of one register ST1 (single structure) on page C7-2260

Store multiple 1-element structures from one register, or from
two, three, or four consecutive registers

ST1 (multiple structures) on page C7-2256

ST2 Store single 2-element structure from one lane of two
consecutive registers

ST2 (single structure) on page C7-2267

Store multiple 2-element structures from two consecutive
registers

ST2 (multiple structures) on page C7-2264

ST3 Store single 3-element structure from one lane of three
consecutive registers

ST3 (single structure) on page C7-2274

Store multiple 3-element structures from three consecutive
registers

ST3 (multiple structures) on page C7-2271

ST4 Store single 4-element structure from one lane of four
consecutive registers

ST4 (single structure) on page C7-2281

Store multiple 4-element structures from four consecutive
registers

ST4 (multiple structures) on page C7-2278
C3-234 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.2 Loads and stores
Load single structure and replicate

Table C3-31 on page C3-235 shows the Load single structure and replicate instructions. A post-increment
immediate offset, if present, must be 1, 2, 3, 4, 6, 8, 12, 16, 24, or 32, depending on the number of elements
transferred.

C3.2.11 Prefetch memory

The Prefetch memory instructions support the following addressing modes:

• Base plus a scaled 12-bit unsigned immediate offset or base plus an unscaled 9-bit signed immediate offset.

• Base plus a 64-bit register offset. This can be optionally scaled by 8-bits, for example LSL#3.

• Base plus a 32-bit extended register offset. This can be optionally scaled by 8-bits.

• PC-relative literal.

The prefetch memory instructions signal to the memory system that memory accesses from a specified address are
likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up
the memory access when they do occur, such as preloading the specified address into one or more caches. Because
these signals are only hints, it is valid for the PE to treat any or all prefetch instructions as a NOP.

Because they are hints to the memory system, the operation of a PRFM instruction cannot cause a synchronous
exception. However, a memory operation performed as a result of one of these memory system hints might in
exceptional cases trigger an asynchronous event, and thereby influence the execution of the PE. An example of an
asynchronous event that might be triggered is an SError interrupt.

A PRFM instruction can only have an effect on software visible structures, such as caches and translation lookaside
buffers associated with memory locations that can be accessed by reads, writes, or execution as defined in the
translation regime of the current Exception level.

A PRFM instruction is guaranteed not to access Device memory.

A PRFM instruction using a PLI hint must not result in any access that could not be performed by the PE speculatively
fetching an instruction. Therefore, if all associated MMUs are disabled, a PLI hint cannot access any memory
location that cannot be accessed by instruction fetches.

The PRFM instructions require an additional <prfop> operand to be specified, which must be one of the following:

PLDL1KEEP, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM

PSTL1KEEP, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM

PLIL1KEEP, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM

<prfop> is defined as <type><target><policy>.

Here:

<type> Is one of:

PLD Prefetch for load.

PST Prefetch for store.

PLI Preload instructions.

Table C3-31 Load single structure and replicate instructions

Mnemonic Instruction See

LD1R Load single 1-element structure and replicate to all lanes of one register LD1R on page C7-1931

LD2R Load single 2-element structure and replicate to all lanes of two registers LD2R on page C7-1941

LD3R Load single 3-element structure and replicate to all lanes of three registers LD3R on page C7-1951

LD4R Load single 4-element structure and replicate to all lanes of four registers LD4R on page C7-1961
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-235
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
<target> Is one of:

L1 Level 1 cache.

L2 Level 2 cache.

L3 Level 3 cache.

<policy> Is one of:

KEEP Retained or temporal prefetch, allocated in the cache normally.

STRM Streaming or non-temporal prefetch, for data that is used only once.

PRFUM explicitly uses the unscaled 9-bit signed immediate offset addressing mode, as described in Load/store
register (unscaled offset) on page C3-225.

Table C3-32 on page C3-236 shows the Prefetch memory instructions.

C3.2.12 Atomic instructions

The atomic instructions perform atomic read and write operations on a memory location such that the architecture
guarantees that no modification of that memory location by another observer can occur between the read and the
write defined by that instruction.

This section describes the following operations:

• Atomic memory operations on page C3-236.

• Single-copy atomic 64-byte load/store on page C3-238.

• Swap on page C3-239.

• Compare and Swap on page C3-239.

Atomic memory operations

The atomic memory operation instructions support only one addressing mode:

• Base register only.

See also Load/store addressing modes on page C1-202.

For the purpose of permission checking, and for watchpoints, all of the Atomic memory operation instructions are
treated as performing both a load and a store.

If FEAT_LSE2 is not implemented then the LD<OP> and ST<OP> instructions require natural alignment, and an
unaligned address generates an Alignment fault. For more information on alignment requirements and behaviors
see Load-Exclusive/ Store-Exclusive and Atomic instructions on page B2-160.

The instructions are provided with ordering options, which map to the acquire and release definitions used in the
Armv8-A architecture. The atomic instructions with release semantics have the same rules as Store-Release
instructions regarding multi-copy atomicity. These operations map to the acquire and release definitions, and are
counted as Load-Acquire and Store-Release operations respectively.

For the LD<OP> instructions, where the source and destination registers are the same, if the instruction generates a
synchronous Data Abort, then the source register is restored to the value it held before the instruction was executed.

Table C3-32 Prefetch memory instructions

Mnemonic Instruction See

PRFM Prefetch memory (register offset) PRFM (register) on page C6-1274

Prefetch memory (immediate offset) PRFM (immediate) on page C6-1270

Prefetch memory (PC-relative offset) PRFM (literal) on page C6-1272

PRFUM Prefetch memory (unscaled offset) PRFUM on page C6-1276
C3-236 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.2 Loads and stores
The ST<OP> instructions, and LD<OP> instructions where the destination register is WZR or XZR, are not regarded as
doing a read for the purpose of a DMB LD barrier.

Table C3-33 Atomic memory operation instructions

Mnemonic Instruction See

LDADD Atomic add LDADD, LDADDA, LDADDAL, LDADDL on page C6-1045

LDADDB Atomic add on byte LDADDB, LDADDAB, LDADDALB, LDADDLB on page C6-1041

LDADDH Atomic add on halfword LDADDH, LDADDAH, LDADDALH, LDADDLH on page C6-1043

LDCLR Atomic bit clear LDCLR, LDCLRA, LDCLRAL, LDCLRL on page C6-1080

LDCLRB Atomic bit clear on byte LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB on page C6-1076

LDCLRH Atomic bit clear on halfword LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH on page C6-1078

LDEOR Atomic exclusive OR LDEOR, LDEORA, LDEORAL, LDEORL on page C6-1087

LDEORB Atomic exclusive OR on byte LDEORB, LDEORAB, LDEORALB, LDEORLB on page C6-1083

LDEORH Atomic exclusive OR on halfword LDEORH, LDEORAH, LDEORALH, LDEORLH on page C6-1085

LDSET Atomic bit set LDSET, LDSETA, LDSETAL, LDSETL on page C6-1147

LDSETB Atomic bit set on byte LDSETB, LDSETAB, LDSETALB, LDSETLB on page C6-1143

LDSETH Atomic bit set on halfword LDSETH, LDSETAH, LDSETALH, LDSETLH on page C6-1145

LDMAX Atomic signed maximum LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL on page C6-1154

LDMAXB Atomic signed maximum on byte LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB on page C6-1150

LDMAXH Atomic signed maximum on halfword LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH on
page C6-1152

LDMIN Atomic signed minimum LDSMIN, LDSMINA, LDSMINAL, LDSMINL on page C6-1161

LDMINB Atomic signed minimum on byte LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB on page C6-1157

LDMINH Atomic signed minimum on halfword LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH on page C6-1159

LDUMAX Atomic unsigned maximum LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL on page C6-1180

LDUMAXB Atomic unsigned maximum on byte LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB on
page C6-1176

LDUMAXH Atomic unsigned maximum on halfword LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH on
page C6-1178

LDUMIN Atomic unsigned minimum LDUMIN, LDUMINA, LDUMINAL, LDUMINL on page C6-1187

LDUMINB Atomic unsigned minimum on byte LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB on page C6-1183

LDUMINH Atomic unsigned minimum on halfword LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH on
page C6-1185

STADD Atomic add, without return STADD, STADDL on page C6-1334

STADDB Atomic add on byte, without return STADDB, STADDLB on page C6-1330

STADDH Atomic add on halfword, without return STADDH, STADDLH on page C6-1332

STCLR Atomic bit clear, without return STCLR, STCLRL on page C6-1340
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-237
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
Single-copy atomic 64-byte load/store

If FEAT_LS64 is implemented, the following instructions are implemented.

The single-copy atomic 64-byte load/store instructions support one addressing mode:

• Base register only.

See also Load/store addressing modes on page C1-202.

STCLRB Atomic bit clear on byte, without return STCLRB, STCLRLB on page C6-1336

STCLRH Atomic bit clear on halfword, without
return

STCLRH, STCLRLH on page C6-1338

STEOR Atomic exclusive OR, without return STEOR, STEORL on page C6-1346

STEORB Atomic exclusive OR on byte, without
return

STEORB, STEORLB on page C6-1342

STEORH Atomic exclusive OR on halfword, without
return

STEORH, STEORLH on page C6-1344

STSET Atomic bit set, without return STSET, STSETL on page C6-1402

STSETB Atomic bit set on byte, without return STSETB, STSETLB on page C6-1398

STSETH Atomic bit set on halfword, without return STSETH, STSETLH on page C6-1400

STMAX Atomic signed maximum, without return STSMAX, STSMAXL on page C6-1408

STMAXB Atomic signed maximum on byte, without
return

STSMAXB, STSMAXLB on page C6-1404

STMAXH Atomic signed maximum on halfword,
without return

STSMAXH, STSMAXLH on page C6-1406

STMIN Atomic signed minimum, without return STSMIN, STSMINL on page C6-1414

STMINB Atomic signed minimum on byte, without
return

STSMINB, STSMINLB on page C6-1410

STMINH Atomic signed minimum on halfword,
without return

STSMINH, STSMINLH on page C6-1412

STUMAX Atomic unsigned maximum, without
return

STUMAX, STUMAXL on page C6-1426

STUMAXB Atomic unsigned maximum on byte,
without return

STUMAXB, STUMAXLB on page C6-1422

STUMAXH Atomic unsigned maximum on halfword,
without return

STUMAXH, STUMAXLH on page C6-1424

STUMIN Atomic unsigned minimum, without return STUMIN, STUMINL on page C6-1432

STUMINB Atomic unsigned minimum on byte,
without return

STUMINB, STUMINLB on page C6-1428

STUMINH Atomic unsigned minimum on halfword,
without return

STUMINH, STUMINLH on page C6-1430

Table C3-33 Atomic memory operation instructions (continued)

Mnemonic Instruction See
C3-238 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.2 Loads and stores
The memory location accessed by the instructions is required to be aligned on a 64-byte boundary, otherwise an
Alignment fault occurs.

When the instructions access a memory type for an enabled translation stage that is not one of the following, a data
abort for that translation stage occurs:

• Normal Inner Non-cacheable, Outer Non-cacheable.

• Device-GRE.

• Device-nGRE.

• Device-nGnRE.

• Device-nGnRnE.

Swap

The swap instructions support only one addressing mode:

• Base register only.

See also Load/store addressing modes on page C1-202.

For the purpose of permission checking, and for watchpoints, all of the Swap instructions are treated as performing
both a load and a store.

If FEAT_LSE2 is not implemented then the SWP instructions require natural alignment, and an unaligned address
generates an Alignment fault. For more information on alignment requirements and behaviors see Load-Exclusive/
Store-Exclusive and Atomic instructions on page B2-160.

The instructions are provided with ordering options, which map to the acquire and release definitions used in the
Armv8-A architecture. The atomic instructions with release semantics have the same rules as Store-Release
instructions regarding multi-copy atomicity.

For the SWP instructions, where the source and destination registers are the same, if the instruction generates a
synchronous Data Abort, then the source register is restored to the value it held before the instruction was executed.

Compare and Swap

The Compare and Swap instructions support only one addressing mode:

• Base register only.

See also Load/store addressing modes on page C1-202.

Table C3-34 Single-copy atomic 64-byte load/store instructions

Mnemonic Instruction See

LD64B Single-copy atomic 64-byte load LD64B on page C6-1040

ST64B Single-copy atomic 64-byte store without return ST64B on page C6-1325

ST64BV Single-copy atomic 64-byte store with return ST64BV on page C6-1326

ST64BV0 Single-copy atomic 64-byte EL0 store with return ST64BV0 on page C6-1328

Table C3-35 Swap instructions

Mnemonic Instruction See

SWP Swap SWP, SWPA, SWPAL, SWPL on page C6-1475

SWPB Swap byte SWPB, SWPAB, SWPALB, SWPLB on page C6-1471

SWPH Swap halfword SWPH, SWPAH, SWPALH, SWPLH on page C6-1473
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-239
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
For the purpose of permission checking, and for watchpoints, all of the Compare and Swap instructions are treated
as performing both a load and a store.

If FEAT_LSE2 is not implemented then:

• The CAS instructions require natural alignment.

• The CASP instructions require alignment to the total size of the memory being accessed.

For more information on alignment requirements and behaviors see Load-Exclusive/ Store-Exclusive and
Atomic instructions on page B2-160.

The instructions are provided with ordering options, which map to the acquire and release definitions used in the
Armv8-A architecture. If a compare and swap instruction does not perform a store, then the instruction does not
have release semantics, regardless of the instruction ordering options.

The atomic instructions with release semantics have the same rules as Store-Release instructions regarding
multi-copy atomicity.

For the CAS and CASP instructions, the architecture permits that a data read clears any Exclusives monitors associated
with that location, even if the compare subsequently fails. If these instructions generate a synchronous Data Abort,
the registers which are compared and loaded are restored to the values held in the registers before the instruction
was executed.

C3.2.13 Memory Tagging instructions

If FEAT_MTE is implemented, the following instructions are implemented.

Table C3-37 on page C3-240 shows the Memory Tagging Extension Tag generation instructions.

Table C3-38 on page C3-240 shows the Memory Tagging Extension Pointer Arithmetic instructions.

Table C3-36 Compare and swap instructions

Mnemonic Instruction See

CAS Compare and swap CAS, CASA, CASAL, CASL on page C6-951

CASB Compare and swap byte CASB, CASAB, CASALB, CASLB on page C6-944

CASH Compare and swap halfword CASH, CASAH, CASALH, CASLH on page C6-946

CASP Compare and swap pair CASP, CASPA, CASPAL, CASPL on page C6-948

Table C3-37 Tag generation instructions

Mnemonic Instruction See

ADDG Add immediate value to Logical Address Tag ADDG on page C6-887

GMI Tag Mask Insert GMI on page C6-1031

IRG Random Logical Address Tag generation IRG on page C6-1037

SUBG Subtract immediate value to Logical Address Tag SUBG on page C6-1459

Table C3-38 Pointer Arithmetic

Mnemonic Instruction See

SUBP(S) Subtract address and set flags SUBPS on page C6-1461
C3-240 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.2 Loads and stores
Table C3-39 on page C3-241 shows the Memory Tagging Extension Tag setting instructions.

Table C3-40 on page C3-241 shows the Memory Tagging Extension Tag getting instructions.

If FEAT_MTE2 is implemented, all of the FEAT_MTE instructions are implemented, plus the following
instructions.

Table C3-41 on page C3-241 shows the Memory Tagging Extension Bulk Allocation Tag access instructions.

Table C3-39 Tag setting instructions

Mnemonic Instruction See

STG Store Allocation Tag to granule STG on page C6-1348

STZG Store Allocation Tag to granule Zeroing STZG on page C6-1449

ST2G Store Allocation Tag to two granules ST2G on page C6-1323

STZ2G Store Allocation Tag to two granules Zeroing STZ2G on page C6-1447

STGP Store Allocation Tag to memory STGP on page C6-1351

Table C3-40 Tag getting instructions

Mnemonic Instruction See

LDG Load Allocation Tag LDG on page C6-1090

Table C3-41 Bulk Allocation Tag access

Mnemonic Instruction See

LDGM Load an IMPLEMENTATION DEFINED number of Allocation Tags LDGM on page C6-1091

STGM Store an IMPLEMENTATION DEFINED number of Allocation Tags STGM on page C6-1350

STZGM Store Allocation Tag to granule Zeroing Multiple STZGM on page C6-1451
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-241
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.3 Data processing - immediate
C3.3 Data processing - immediate

This section describes the instruction groups for data processing with immediate operands. It contains the following
subsections:

• Arithmetic (immediate) on page C3-242.

• Logical (immediate) on page C3-242.

• Move (wide immediate) on page C3-243.

• Move (immediate) on page C3-243.

• PC-relative address calculation on page C3-244.

• Bitfield move on page C3-244.

• Bitfield insert and extract on page C3-245

• Extract register on page C3-245.

• Shift (immediate) on page C3-245.

• Sign-extend and Zero-extend on page C3-246.

For information about the encoding structure of the instructions in this instruction group, see Data Processing --
Immediate on page C4-284.

C3.3.1 Arithmetic (immediate)

The Arithmetic (immediate) instructions accept a 12-bit unsigned immediate value, optionally shifted left by 12 bits.

The Arithmetic (immediate) instructions that do not set Condition flags can read from and write to the current stack
pointer. The flag setting instructions can read from the stack pointer, but they cannot write to it.

Table C3-42 on page C3-242 shows the Arithmetic instructions with an immediate offset.

C3.3.2 Logical (immediate)

The Logical (immediate) instructions accept a bitmask immediate value that is a 32-bit pattern or a 64-bit pattern
viewed as a vector of identical elements of size e = 2, 4, 8, 16, 32 or, 64 bits. Each element contains the same
sub-pattern, that is a single run of 1 to (e - 1) nonzero bits from bit 0 followed by zero bits, then rotated by 0 to (e -
1) bits. This mechanism can generate 5334 unique 64-bit patterns as 2667 pairs of pattern and their bitwise inverse.

Note

Values that consist of only zeros or only ones cannot be described in this way.

The Logical (immediate) instructions that do not set the Condition flags can write to the current stack pointer, for
example to align the stack pointer in a function prologue.

Table C3-42 Arithmetic instructions with an immediate

Mnemonic Instruction See

ADD Add ADD (immediate) on page C6-883

ADDS Add and set flags ADDS (immediate) on page C6-891

SUB Subtract SUB (immediate) on page C6-1455

SUBS Subtract and set flags SUBS (immediate) on page C6-1466

CMP Compare CMP (immediate) on page C6-982

CMN Compare negative CMN (immediate) on page C6-976
C3-242 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.3 Data processing - immediate
Note

Apart from ANDS, and its TST alias, Logical (immediate) instructions do not set the Condition flags. However, the
final results of a bitwise operation can be tested by a CBZ, CBNZ, TBZ, or TBNZ conditional branch.

Table C3-43 on page C3-243 shows the Logical immediate instructions.

C3.3.3 Move (wide immediate)

The Move (wide immediate) instructions insert a 16-bit immediate, or inverted immediate, into a 16-bit aligned
position in the destination register. The value of the other bits in the destination register depends on the variant used.
The optional shift amount can be any multiple of 16 that is smaller than the register size.

Table C3-44 on page C3-243 shows the Move (wide immediate) instructions.

C3.3.4 Move (immediate)

The Move (immediate) instructions are aliases for a single MOVZ, MOVN, or ORR (immediate with zero register),
instruction to load an immediate value into the destination register. An assembler must permit a signed or unsigned
immediate, as long as its binary representation can be generated using one of these instructions, and an assembler
error results if the immediate cannot be generated in this way. On disassembly, it is unspecified whether the
immediate is output as a signed or an unsigned value.

If there is a choice between the MOVZ, MOVN, and ORR instruction to encode the immediate, then an assembler must
prefer MOVZ to MOVN, and MOVZ or MOVN to ORR, to ensure reversability. A disassembler must output ORR (immediate with
zero register) MOVZ, and MOVN, as a MOV mnemonic except that the underlying instruction must be used when:

• ORR has an immediate that can be generated by a MOVZ or MOVN instruction.

• A MOVN instruction has an immediate that can be encoded by MOVZ.

• MOVZ #0 or MOVN #0 have a shift amount other than LSL #0.

Table C3-43 Logical immediate instructions

Mnemonic Instruction See

AND Bitwise AND AND (immediate) on page C6-897

ANDS Bitwise AND and set flags ANDS (immediate) on page C6-901

EOR Bitwise exclusive OR EOR (immediate) on page C6-1022

ORR Bitwise inclusive OR ORR (immediate) on page C6-1257

TST Test bits TST (immediate) on page C6-1491

Table C3-44 Move (wide immediate) instructions

Mnemonic Instruction See

MOVZ Move wide with zero MOVZ on page C6-1234

MOVN Move wide with NOT MOVN on page C6-1232

MOVK Move wide with keep MOVK on page C6-1230
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-243
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.3 Data processing - immediate
Table C3-45 on page C3-244 shows the Move (immediate) instructions.

C3.3.5 PC-relative address calculation

The ADR instruction adds a signed, 21-bit immediate to the value of the program counter that fetched this instruction,
and then writes the result to a general-purpose register. This permits the calculation of any byte address within
±1MB of the current PC.

The ADRP instruction shifts a signed, 21-bit immediate left by 12 bits, adds it to the value of the program counter with
the bottom 12 bits cleared to zero, and then writes the result to a general-purpose register. This permits the
calculation of the address at a 4KB aligned memory region. In conjunction with an ADD (immediate) instruction, or
a load/store instruction with a 12-bit immediate offset, this allows for the calculation of, or access to, any address
within ±4GB of the current PC.

Note

The term page used in the ADRP description is short-hand for the 4KB memory region, and is not related to the virtual
memory translation granule size.

Table C3-46 on page C3-244 shows the instructions used for PC-relative address calculations are as follows:

C3.3.6 Bitfield move

The Bitfield move instructions copy a field of constant width from bit 0 in the source register to a constant bit
position in the destination register, or from a constant bit position in the source register to bit 0 in the destination
register. The remaining bits in the destination register are set as follows:

• For BFM, the remaining bits are unchanged.

• For UBFM the lower bits, if any, and upper bits, if any, are set to zero.

• For SBFM, the lower bits, if any, are set to zero, and the upper bits, if any, are set to a copy of the
most-significant bit in the copied field.

Table C3-45 Move (immediate) instructions

Mnemonic Instruction See

MOV Move (inverted wide immediate) MOV (inverted wide immediate) on page C6-1222

Move (wide immediate) MOV (wide immediate) on page C6-1224

Move (bitmask immediate) MOV (bitmask immediate) on page C6-1226

Table C3-46 PC-relative address calculation instructions

Mnemonic Instruction See

ADRP Compute address of 4KB page at a PC-relative offset ADRP on page C6-896

ADR Compute address of label at a PC-relative offset. ADR on page C6-895
C3-244 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.3 Data processing - immediate
Table C3-47 on page C3-245 shows the Bitfield move instructions.

C3.3.7 Bitfield insert and extract

The Bitfield insert and extract instructions are implemented as aliases of the Bitfield move instructions. Table C3-48
on page C3-245 shows the Bitfield insert and extract aliases.

C3.3.8 Extract register

Depending on the register width of the operands, the Extract register instruction copies a 32-bit or 64-bit field from
a constant bit position within a double-width value formed by the concatenation of a pair of source registers to a
destination register.

Table C3-49 on page C3-245 shows the Extract (immediate) instructions.

C3.3.9 Shift (immediate)

Shifts and rotates by a constant amount are implemented as aliases of the Bitfield move or Extract register
instructions. The shift or rotate amount must be in the range 0 to one less than the register width of the instruction,
inclusive.

Table C3-47 Bitfield move instructions

Mnemonic Instruction See

BFM Bitfield move BFM on page C6-926

SBFM Signed bitfield move SBFM on page C6-1305

UBFM Unsigned bitfield move (32-bit) UBFM on page C6-1496

Table C3-48 Bitfield insert and extract instructions

Mnemonic Instruction See

BFC Bitfield insert clear BFC on page C6-922

BFI Bitfield insert BFI on page C6-924

BFXIL Bitfield extract and insert low BFXIL on page C6-928

SBFIZ Signed bitfield insert in zero SBFIZ on page C6-1303

SBFX Signed bitfield extract SBFX on page C6-1308

UBFIZ Unsigned bitfield insert in zero UBFIZ on page C6-1494

UBFX Unsigned bitfield extract UBFX on page C6-1499

Table C3-49 Extract register instructions

Mnemonic Instruction See

EXTR Extract register from pair EXTR on page C6-1029
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-245
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.3 Data processing - immediate
Table C3-50 on page C3-246 shows the aliases that can be used as immediate shift and rotate instructions.

C3.3.10 Sign-extend and Zero-extend

The Sign-extend and Zero-extend instructions are implemented as aliases of the Bitfield move instructions.

Table C3-51 on page C3-246 shows the aliases that can be used as zero-extend and sign-extend instructions.

Table C3-50 Aliases for immediate shift and rotate instructions

Mnemonic Instruction See

ASR Arithmetic shift right ASR (immediate) on page C6-907

LSL Logical shift left LSL (immediate) on page C6-1207

LSR Logical shift right LSR (immediate) on page C6-1213

ROR Rotate right ROR (immediate) on page C6-1292

Table C3-51 Zero-extend and sign-extend instructions

Mnemonic Instruction See

SXTB Sign-extend byte SXTB on page C6-1477

SXTH Sign-extend halfword SXTH on page C6-1479

SXTW Sign-extend word SXTW on page C6-1481

UXTB Unsigned extend byte UXTB on page C6-1510

UXTH Unsigned extend halfword UXTH on page C6-1511
C3-246 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.4 Data processing - register
C3.4 Data processing - register

This section describes the instruction groups for data processing with all register operands. It contains the following
subsections:

• Arithmetic (shifted register) on page C3-247.

• Arithmetic (extended register) on page C3-248.

• Arithmetic with carry on page C3-249.

• Flag manipulation instructions on page C3-249.

• Logical (shifted register) on page C3-249.

• Move (register) on page C3-250.

• Shift (register) on page C3-250.

• Multiply and divide on page C3-251.

• CRC32 on page C3-252.

• Bit operation on page C3-253.

• Conditional select on page C3-253.

• Conditional comparison on page C3-254.

For information about the encoding structure of the instructions in this instruction group, see Data Processing --
Register on page C4-332.

C3.4.1 Arithmetic (shifted register)

The Arithmetic (shifted register) instructions apply an optional shift operator to the second source register value
before performing the arithmetic operation. The register width of the instruction controls whether the new bits are
fed into the intermediate result on a right shift or rotate at bit[63] or bit[31].

The shift operators LSL, ASR, and LSR accept an immediate shift amount in the range 0 to one less than the register
width of the instruction, inclusive.

Omitting the shift operator implies LSL #0, which means that there is no shift. A disassembler must not output LSL
#0. However, a disassembler must output all other shifts by zero.

The current stack pointer, SP or WSP, cannot be used with this class of instructions. See Arithmetic (extended
register) on page C3-248 for arithmetic instructions that can operate on the current stack pointer.

Table C3-52 on page C3-247 shows the Arithmetic (shifted register) instructions.

Table C3-52 Arithmetic (shifted register) instructions

Mnemonic Instruction See

ADD Add ADD (shifted register) on page C6-885

ADDS Add and set flags ADDS (shifted register) on page C6-893

SUB Subtract SUB (shifted register) on page C6-1457

SUBS Subtract and set flags SUBS (shifted register) on page C6-1468

CMN Compare negative CMN (shifted register) on page C6-978

CMP Compare CMP (shifted register) on page C6-984

NEG Negate NEG (shifted register) on page C6-1246

NEGS Negate and set flags NEGS on page C6-1248
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-247
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.4 Data processing - register
C3.4.2 Arithmetic (extended register)

The extended register instructions provide an optional sign-extension or zero-extension of a portion of the second
source register value, followed by an optional left shift by a constant amount of 1-4, inclusive.

The extended shift is described by the mandatory extend operator SXTB, SXTH, SXTW, UXTB, UXTH, or UXTW. This is
followed by an optional left shift amount. If the shift amount is not specified, the default shift amount is zero. A
disassembler must not output a shift amount of zero.

For 64-bit instruction forms, the additional operators UXTX and SXTX use all 64 bits of the second source register with
an optional shift. In that case, Arm recommends UXTX as the operator. If and only if at least one register is SP, Arm
recommends use of the LSL operator name, rather than UXTX, and when the shift amount is also zero then both the
operator and the shift amount can be omitted. UXTW and SXTW both use all 32 bits of the second source register with
an optional shift. In that case Arm recommends UXTW as the operator. If and only if at least one register is WSP, Arm
recommends use of the LSL operator name, rather than UXTW, and when the shift amount is also zero then both the
operator and the shift amount can be omitted.

For 32-bit instruction forms, the operators UXTW and SXTW both use all 32 bits of the second source register with an
optional shift. In that case, Arm recommends UXTW as the operator. If and only if at least one register is WSP, Arm
recommends use of the LSL operator name, rather than UXTW, and when the shift amount is also zero then both the
operator and the shift amount can be omitted.

The non-flag setting variants of the extended register instruction permit the use of the current stack pointer as either
the destination register and the first source register. The flag setting variants only permit the stack pointer to be used
as the first source register.

In the 64-bit form of these instructions, the final register operand is written as Wm for all except the UXTX/LSL and SXTX
extend operators. For example:

CMP X4, W5, SXTW
ADD X1, X2, W3, UXTB #2
SUB SP, SP, X1 // SUB SP, SP, X1, UXTX #0

Table C3-53 on page C3-248 shows the Arithmetic (extended register) instructions.

Table C3-53 Arithmetic (extended register) instructions

Mnemonic Instruction See

ADD Add ADD (extended register) on page C6-880

ADDS Add and set flags ADDS (extended register) on page C6-888

SUB Subtract SUB (extended register) on page C6-1452

SUBS Subtract and set flags SUBS (extended register) on page C6-1463

CMN Compare negative CMN (extended register) on page C6-974

CMP Compare CMP (extended register) on page C6-980
C3-248 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.4 Data processing - register
C3.4.3 Arithmetic with carry

The Arithmetic with carry instructions accept two source registers, with the carry flag as an additional input to the
calculation. They do not support shifting of the second source register.

Table C3-54 on page C3-249 shows the Arithmetic with carry instructions

C3.4.4 Flag manipulation instructions

The Flag manipulation instructions set the value of the NZCV condition flags directly.

The instructions SETF8 and SETF16 accept one source register and set the NZV condition flags based on the value of
the input register. The instruction RMIF accepts one source register and two immediate values, rotating the first
source register using the first immediate value and setting the NZCV condition flags masked by the second
immediate value.

The instructions XAFLAG and AXFLAG convert PSTATE condition flags between the FCMP instruction format and an
alternative format. See Table C6-1 on page C6-874 for more information.

Table C3-55 on page C3-249 shows the Flag manipulation instructions.

C3.4.5 Logical (shifted register)

The Logical (shifted register) instructions apply an optional shift operator to the second source register value before
performing the main operation. The register width of the instruction controls whether the new bits are fed into the
intermediate result on a right shift or rotate at bit[63] or bit[31].

The shift operators LSL, ASR, LSR, and ROR accept a constant immediate shift amount in the range 0 to one less than
the register width of the instruction, inclusive.

Omitting the shift operator and amount implies LSL #0, which means that there is no shift. A disassembler must not
output LSL #0. However, a disassembler must output all other shifts by zero.

Table C3-54 Arithmetic with carry instructions

Mnemonic Instruction See

ADC Add with carry ADC on page C6-876

ADCS Add with carry and set flags ADCS on page C6-878

SBC Subtract with carry SBC on page C6-1299

SBCS Subtract with carry and set flags SBCS on page C6-1301

NGC Negate with carry NGC on page C6-1250

NGCS Negate with carry and set flags NGCS on page C6-1252

Table C3-55 Flag manipulation instructions

Mnemonic Instruction See

AXFLAG Convert from FCMP comparison format to the alternative format AXFLAG on page C6-919

CFINV Invert value of the PSTATE.C bit CFINV on page C6-964

RMIF Rotate, mask insert flags RMIF on page C6-1291

SETF8 Evaluation of 8-bit flags SETF8, SETF16 on page C6-1311

SETF16 Evaluation of 16-bit flags SETF8, SETF16 on page C6-1311

XAFLAG Convert from alternative format to FCMP comparison format XAFLAG on page C6-1516
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-249
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.4 Data processing - register
Note

Apart from ANDS, TST, and BICS the logical instructions do not set the Condition flags, but the final result of a bit
operation can usually directly control a CBZ, CBNZ, TBZ, or TBNZ conditional branch.

Table C3-56 on page C3-250 shows the Logical (shifted register) instructions.

C3.4.6 Move (register)

The Move (register) instructions are aliases for other data processing instructions. They copy a value from a
general-purpose register to another general-purpose register or the current stack pointer, or from the current stack
pointer to a general-purpose register.

C3.4.7 Shift (register)

In the Shift (register) instructions, the shift amount is the positive value in the second source register modulo the
register size. The register width of the instruction controls whether the new bits are fed into the result on a right shift
or rotate at bit[63] or bit[31].

Table C3-58 on page C3-250 shows the Shift (register) instructions.

Table C3-56 Logical (shifted register) instructions

Mnemonic Instruction See

AND Bitwise AND AND (shifted register) on page C6-899

ANDS Bitwise AND and set flags ANDS (shifted register) on page C6-903

BIC Bitwise bit clear BIC (shifted register) on page C6-930

BICS Bitwise bit clear and set flags BICS (shifted register) on page C6-932

EON Bitwise exclusive OR NOT EON (shifted register) on page C6-1020

EOR Bitwise exclusive OR EOR (shifted register) on page C6-1024

ORR Bitwise inclusive OR ORR (shifted register) on page C6-1259

MVN Bitwise NOT MVN on page C6-1244

ORN Bitwise inclusive OR NOT ORN (shifted register) on page C6-1255

TST Test bits TST (shifted register) on page C6-1492

Table C3-57 MOV register instructions

Mnemonic Instruction See

MOV Move register MOV (register) on page C6-1228

Move register to SP or move SP to register MOV (to/from SP) on page C6-1221

Table C3-58 Shift (register) instructions

Mnemonic Instruction See

ASRV Arithmetic shift right variable ASRV on page C6-909
C3-250 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.4 Data processing - register
However, the Shift (register) instructions have a preferred set of aliases that match the shift immediate aliases
described in Shift (immediate) on page C3-245.

Table C3-59 on page C3-251 shows the aliases for Shift (register) instructions.

C3.4.8 Multiply and divide

This section describes the instructions used for integer multiplication and division. It contains the following
subsections:

• Multiply on page C3-251.

• Divide on page C3-252.

Multiply

The Multiply instructions write to a single 32-bit or 64-bit destination register, and are built around the fundamental
four operand multiply-add and multiply-subtract operation, together with 32-bit to 64-bit widening variants. A
64-bit to 128-bit widening multiple can be constructed with two instructions, using SMULH or UMULH to generate the
upper 64 bits. Table C3-60 on page C3-251 shows the Multiply instructions.

LSLV Logical shift left variable LSLV on page C6-1209

LSRV Logical shift right variable LSRV on page C6-1215

RORV Rotate right variable RORV on page C6-1296

Table C3-59 Aliases for Variable shift instructions

Mnemonic Instruction See

ASR Arithmetic shift right ASR (register) on page C6-905

LSL Logical shift left LSL (register) on page C6-1205

LSR Logical shift right LSR (register) on page C6-1211

ROR Rotate right ROR (register) on page C6-1294

Table C3-58 Shift (register) instructions (continued)

Mnemonic Instruction See

Table C3-60 Multiply integer instructions

Mnemonic Instruction See

MADD Multiply-add MADD on page C6-1217

MSUB Multiply-subtract MSUB on page C6-1241

MNEG Multiply-negate MNEG on page C6-1219

MUL Multiply MUL on page C6-1243

SMADDL Signed multiply-add long SMADDL on page C6-1314

SMSUBL Signed multiply-subtract long SMSUBL on page C6-1318

SMNEGL Signed multiply-negate long SMNEGL on page C6-1317

SMULL Signed multiply long SMULL on page C6-1321

SMULH Signed multiply high SMULH on page C6-1320
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-251
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.4 Data processing - register
Divide

The Divide instructions compute the quotient of a division, rounded towards zero. The remainder can then be
computed as (numerator - (quotient × denominator)), using the MSUB instruction.

If a signed integer division (INT_MIN / -1) is performed where INT_MIN is the most negative integer value
representable in the selected register size, then the result overflows the signed integer range. No indication of this
overflow is produced and the result that is written to the destination register is INT_MIN.

A division by zero results in a zero being written to the destination register, without any indication that the division
by zero occurred.

Table C3-61 on page C3-252 shows the Divide instructions.

C3.4.9 CRC32

The CRC32 instructions operate on the general-purpose register file to update a 32-bit CRC value from an input value
comprising 1, 2, 4, or 8 bytes. There are two different classes of CRC instructions, CRC32, and CRC32C, that support two
commonly used 32-bit polynomials, known as CRC-32 and CRC-32C.

To fit with common usage, the bit order of the values is reversed as part of the operation.

When bits[19:16] of ID_AA64ISAR0_EL1 are set to 0b0001, the CRC instructions are implemented.

These instructions are OPTIONAL in an Armv8.0 implementation.

All implementations of Armv8.1 architecture and later are required to implement the CRC32 instructions.

Table C3-62 on page C3-252 shows the CRC instructions.

UMADDL Unsigned multiply-add long UMADDL on page C6-1503

UMSUBL Unsigned multiply-subtract long UMSUBL on page C6-1506

UMNEGL Unsigned multiply-negate long UMNEGL on page C6-1505

UMULL Unsigned multiply long UMULL on page C6-1509

UMULH Unsigned multiply high UMULH on page C6-1508

Table C3-61 Divide instructions

Mnemonic Instruction See

SDIV Signed divide SDIV on page C6-1310

UDIV Unsigned divide UDIV on page C6-1502

Table C3-60 Multiply integer instructions (continued)

Mnemonic Instruction See

Table C3-62 CRC32 instructions

Mnemonic Instruction See

CRC32B CRC-32 sum from byte CRC32B, CRC32H, CRC32W, CRC32X on page C6-990

CRC32H CRC-32 sum from halfword CRC32B, CRC32H, CRC32W, CRC32X on page C6-990

CRC32W CRC-32 sum from word CRC32B, CRC32H, CRC32W, CRC32X on page C6-990

CRC32X CRC-32 sum from doubleword CRC32B, CRC32H, CRC32W, CRC32X on page C6-990
C3-252 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.4 Data processing - register
C3.4.10 Bit operation

Table C3-63 on page C3-253 shows the Bit operation instructions.

C3.4.11 Conditional select

The Conditional select instructions select between the first or second source register, depending on the current state
of the Condition flags. When the named condition is true, the first source register is selected and its value is copied
without modification to the destination register. When the condition is false the second source register is selected
and its value might be optionally inverted, negated, or incremented by one, before writing to the destination register.

Other useful conditional set and conditional unary operations are implemented as aliases of the four Conditional
select instructions.

Table C3-64 on page C3-253 shows the Conditional select instructions.

CRC32CB CRC-32C sum from byte CRC32CB, CRC32CH, CRC32CW, CRC32CX on page C6-992

CRC32CH CRC-32C sum from halfword CRC32CB, CRC32CH, CRC32CW, CRC32CX on page C6-992

CRC32CW CRC-32C sum from word CRC32CB, CRC32CH, CRC32CW, CRC32CX on page C6-992

CRC32CX CRC-32C sum from doubleword CRC32CB, CRC32CH, CRC32CW, CRC32CX on page C6-992

Table C3-62 CRC32 instructions (continued)

Mnemonic Instruction See

Table C3-63 Bit operation instructions

Mnemonic Instruction See

CLS Count leading sign bits CLS on page C6-971

CLZ Count leading zero bits CLZ on page C6-973

RBIT Reverse bit order RBIT on page C6-1280

REV Reverse bytes in register REV on page C6-1284

REV16 Reverse bytes in halfwords REV16 on page C6-1286

REV32 Reverse bytes in words REV32 on page C6-1288

REV64 Reverse bytes in register REV64 on page C6-1290

Table C3-64 Conditional select instructions

Mnemonic Instruction See

CSEL Conditional select CSEL on page C6-995

CSINC Conditional select increment CSINC on page C6-1001

CSINV Conditional select inversion CSINV on page C6-1003

CSNEG Conditional select negation CSNEG on page C6-1005

CSET Conditional set CSET on page C6-997

CSETM Conditional set mask CSETM on page C6-999
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-253
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.4 Data processing - register
C3.4.12 Conditional comparison

The Conditional comparison instructions provide a conditional select for the NZCV Condition flags, setting the
flags to the result of an arithmetic comparison of its two source register values if the named input condition is true,
or to an immediate value if the input condition is false. There are register and immediate forms. The immediate form
compares the source register to a small 5-bit unsigned value.

Table C3-65 on page C3-254 shows the Conditional comparison instructions.

CINC Conditional increment CINC on page C6-966

CINV Conditional invert CINV on page C6-968

CNEG Conditional negate CNEG on page C6-987

Table C3-64 Conditional select instructions (continued)

Mnemonic Instruction See

Table C3-65 Conditional comparison instructions

Mnemonic Instruction See

CCMN Conditional compare negative (register) CCMN (register) on page C6-958

CCMN Conditional compare negative (immediate) CCMN (immediate) on page C6-956

CCMP Conditional compare (register) CCMP (register) on page C6-962

CCMP Conditional compare (immediate) CCMP (immediate) on page C6-960
C3-254 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
C3.5 Data processing - SIMD and floating-point

This section describes the instruction groups for data processing with SIMD and floating-point register operands.

Common features of SIMD instructions on page C3-255 gives general information about SIMD instructions.

The following subsections describe the scalar floating-point data processing instructions:

• Floating-point move (register) on page C3-256.

• Floating-point move (immediate) on page C3-256.

• Floating-point conversion on page C3-257.

• Floating-point round to integral value on page C3-258.

• Floating-point multiply-add on page C3-260.

• Floating-point arithmetic (one source) on page C3-260.

• Floating-point arithmetic (two sources) on page C3-260.

• Floating-point minimum and maximum on page C3-260.

• Floating-point comparison on page C3-261.

• Floating-point conditional select on page C3-262.

• BFloat16 floating-point instructions on page C3-262.

The following subsections describe the SIMD data processing instructions:

• SIMD move on page C3-262

• SIMD arithmetic on page C3-262.

• SIMD compare on page C3-266.

• SIMD widening and narrowing arithmetic on page C3-267.

• SIMD table lookup on page C3-276.

• SIMD by element arithmetic on page C3-270.

• SIMD permute on page C3-271.

• SIMD immediate on page C3-271.

• SIMD shift (immediate) on page C3-272.

• SIMD floating-point and integer conversion on page C3-273.

• SIMD reduce (across vector lanes) on page C3-274.

• SIMD pairwise arithmetic on page C3-275.

• SIMD dot product on page C3-275.

• SIMD table lookup on page C3-276.

• SIMD complex number arithmetic on page C3-276.

• SIMD BFloat16 on page C3-276.

• SIMD matrix multiplication on page C3-277.

• The Cryptographic Extension on page C3-278.

For information about the encoding structure of the instructions in this instruction group, see Data Processing --
Scalar Floating-Point and Advanced SIMD on page C4-342.

For information about the floating-point exceptions, see Floating-point exceptions and exception traps on
page D1-2495.

C3.5.1 Common features of SIMD instructions

A number of SIMD instructions come in three forms:

Wide Indicated by the suffix W. The element width of the destination register and the first source operand
is double that of the second source operand.

Long Indicated by the suffix L. The element width of the destination register is double that of both source
operands.

Narrow Indicated by the suffix N. The element width of the destination register is half that of both source
operands.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-255
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
In addition, each vector form of the instruction is part of a pair, with a second and upper half suffix of 2, to identify
the variant of the instruction:

• Where a SIMD operation widens or lengthens a 64-bit vector to a 128-bit vector, the instruction provides a
second part operation that can extract the source from the upper 64 bits of the source registers.

• Where a SIMD operation narrows a 128-bit vector to a 64-bit vector, the instruction provides a second-part
operation that can pack the result of a second operation into the upper part of the same destination register.

Note

This is referred to as a lane set specifier.

C3.5.2 Floating-point move (register)

The Floating-point move (register) instructions copy a scalar floating-point value from one register to another
register without performing any conversion.

Some of the Floating-point move (register) instructions overlap with the functionality provided by the Advanced
SIMD instructions DUP, INS, and UMOV. However, Arm recommends using the FMOV instructions when operating on
scalar floating-point data to avoid the creation of scalar floating-point code that depends on the availability of the
Advanced SIMD instruction set.

Table C3-66 on page C3-256 shows the Floating-point move (register) instructions.

C3.5.3 Floating-point move (immediate)

The Floating-point move (immediate) instructions convert a small constant immediate floating-point value into a
half-precision, single-precision, or double-precision scalar floating-point value in a SIMD and floating-point
register.

The floating-point constant can be specified either in decimal notation, such as 12.0 or -1.2e1, or as a string
beginning with 0x followed by a hexadecimal representation of the IEEE 754 half-precision, single-precision, or
double-precision encoding. Arm recommends that a disassembler uses the decimal notation, provided that this
displays the value precisely.

Note

When FEAT_FP16 is not implemented, the only half-precision instructions that are supported are floating-point
conversions between half-precision, single-precision, and double-precision.

The floating-point value must be expressible as (± n/16 × 2r), where n is an integer in the range 16  n  31 and r is
an integer in the range of -3 r  4, that is a normalized binary floating-point encoding with one sign bit, four bits
of fraction, and a 3-bit exponent.

Table C3-67 on page C3-256 shows the Floating-point move (immediate) instruction:

Table C3-66 Floating-point move (register) instructions

Mnemonic Instruction See

FMOV Floating-point move register without conversion FMOV (register) on page C7-1819

Floating-point move to or from general-purpose register without conversion FMOV (general) on page C7-1821

Table C3-67 Floating-point move (immediate) instruction

Mnemonic Instruction See

FMOV Floating-point move immediate FMOV (scalar, immediate) on page C7-1824
C3-256 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
C3.5.4 Floating-point conversion

The following subsections describe the conversion of floating-point values:

• Convert floating-point precision on page C3-257.

• Convert between floating-point and integer or fixed-point on page C3-257.

Convert floating-point precision

These instructions convert a floating-point scalar with one precision to a floating-point scalar with a different
precision, using the current rounding mode as specified by FPCR.RMode.

Table C3-68 on page C3-257 shows the Floating-point precision conversion instruction.

Convert between floating-point and integer or fixed-point

These instructions convert a floating-point scalar in a SIMD and floating-point register to or from a signed or
unsigned integer or fixed-point value in a general-purpose register. For a fixed-point value, a final immediate
operand indicates that the general-purpose register holds a fixed-point number and fbits indicates the number of
bits after the binary point. fbits is in the range 1- 32 inclusive for a 32-bit general-purpose register name, and 1-64
inclusive for a 64-bit general-purpose register name.

These instructions can cause the following floating-point exceptions:

Invalid Operation

Occurs if the floating-point input is a NaN, infinity, or a numerical value that cannot be represented
in the destination register. An out of range integer or fixed-point result is saturated to the size of the
destination register.

Inexact Occurs if the numeric result that differs from the input value.

Input Denormal

Can occur when zero replaces a double-precision or single-precision denormal input, see Flushing
denormalized numbers to zero on page A1-54 and Input Denormal exceptions on page D1-2495.

Table C3-69 on page C3-257 shows the Floating-point and fixed-point conversion instructions.

Table C3-68 Floating-point precision conversion instruction

Mnemonic Instruction See

FCVT Floating-point convert precision (scalar) FCVT on page C7-1681

Table C3-69 Floating-point and integer or fixed-point conversion instructions

Mnemonic Instruction See

FCVTAS Floating-point scalar convert to signed integer, rounding to nearest with ties to
away (scalar form)

FCVTAS (scalar) on page C7-1686

FCVTAU Floating-point scalar convert to unsigned integer, rounding to nearest with ties
to away (scalar form)

FCVTAU (scalar) on page C7-1691

FCVTMS Floating-point scalar convert to signed integer, rounding toward minus infinity
(scalar form)

FCVTMS (scalar) on page C7-1698

FCVTMU Floating-point scalar convert to unsigned integer, rounding toward minus
infinity (scalar form)

FCVTMU (scalar) on
page C7-1703

FCVTNS Floating-point scalar convert to signed integer, rounding to nearest with ties to
even (scalar form)

FCVTNS (scalar) on page C7-1710
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-257
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
C3.5.5 Floating-point round to integral value

The following subsections describe instructions which round a floating-point number to an integral valued
floating-point number in the same format:

• Floating-point round to an integer of the same size as the register on page C3-258

• Floating-point round to 32-bit or 64-bit integer on page C3-259

Floating-point round to an integer of the same size as the register

The following instructions round a floating-point value to an integer floating-point value of the same size.

For these instructions:

• A zero input gives a zero result with the same sign.

• An infinite input gives an infinite result with the same sign.

• A NaN is propagated as in normal floating-point arithmetic.

These instructions can cause the following floating-point exceptions:

Invalid Operation

Occurs in response to a floating-point input of a signaling NaN.

Inexact, FRINTX instruction only

Occurs if the result is numeric and does not have the same numerical value as the input.

FCVTNU Floating-point scalar convert to unsigned integer, rounding to nearest with ties
to even (scalar form)

FCVTNU (scalar) on page C7-1715

FCVTPS Floating-point scalar convert to signed integer, rounding toward positive
infinity (scalar form)

FCVTPS (scalar) on page C7-1720

FCVTPU Floating-point scalar convert to unsigned integer, rounding toward positive
infinity (scalar form)

FCVTPU (scalar) on page C7-1725

FCVTZS Floating-point scalar convert to signed integer, rounding toward zero (scalar
form)

FCVTZS (scalar, integer) on
page C7-1738

Floating-point convert to signed fixed-point, rounding toward zero (scalar
form)

FCVTZS (scalar, fixed-point) on
page C7-1736

FCVTZU Floating-point scalar convert to unsigned integer, rounding toward zero (scalar
form)

FCVTZU (scalar, integer) on
page C7-1748

Floating-point scalar convert to unsigned fixed-point, rounding toward zero
(scalar form)

FCVTZU (scalar, fixed-point) on
page C7-1746

FJCVTZS Floating-point Javascript convert to signed fixed-point, rounding toward zero FJCVTZS on page C7-1754

SCVTF Signed integer scalar convert to floating-point, using the current rounding
mode (scalar form)

SCVTF (scalar, integer) on
page C7-2064

Signed fixed-point convert to floating-point, using the current rounding mode
(scalar form)

SCVTF (scalar, fixed-point) on
page C7-2062

UCVTF Unsigned integer scalar convert to floating-point, using the current rounding
mode (scalar form)

UCVTF (scalar, integer) on
page C7-2343

Unsigned fixed-point convert to floating-point, using the current rounding
mode (scalar form)

UCVTF (scalar, fixed-point) on
page C7-2341

Table C3-69 Floating-point and integer or fixed-point conversion instructions (continued)

Mnemonic Instruction See
C3-258 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
Input Denormal

Can occur when zero replaces a double-precision or single-precision denormal input, see Flushing
denormalized numbers to zero on page A1-54 and Input Denormal exceptions on page D1-2495.

Table C3-70 on page C3-259 shows the Floating-point round to integer instructions.

Floating-point round to 32-bit or 64-bit integer

The following instructions are present if FEAT_FRINTTS is implemented, The instructions round to a value that
fits in a 32-bit integer or a 64-bit integer size, and use either round towards zero or the ambient rounding model.

Invalid Operation

Forced to be the most negative integer representable in the target size, and occurs in response to a
floating-point input of a signaling NaN, an infinite input, or an out of range input.

Inexact

Occurs if the result is numeric and does not have the same numerical value as the input.

Input Denormal

Can occur when zero replaces a double-precision or single-precision denormal input, see Flushing
denormalized numbers to zero on page A1-54 and Input Denormal exceptions on page D1-2495.

Table C3-71 on page C3-259 shows the Floating-point round to 32-bit or 64-bit integer instructions.

Table C3-70 Floating-point round to integer instructions

Mnemonic Instruction See

FRINTA Floating-point round to integer, to nearest with ties to away FRINTA (scalar) on page C7-1879

FRINTI Floating-point round to integer, using current rounding mode FRINTI (scalar) on page C7-1883

FRINTM Floating-point round to integer, toward minus infinity FRINTM (scalar) on page C7-1887

FRINTN Floating-point round to integer, to nearest with ties to even FRINTN (scalar) on page C7-1891

FRINTP Floating-point round to integer, toward positive infinity FRINTP (scalar) on page C7-1895

FRINTX Floating-point round to integer exact, using current rounding mode FRINTX (scalar) on page C7-1899

FRINTZ Floating-point round to integer, toward zero FRINTZ (scalar) on page C7-1903

Table C3-71 Floating-point round to integer instructions

Mnemonic Instruction See

FRINT32X Floating-point round to 32-bit integer, using current rounding model FRINT32X (scalar) on page C7-1863

FRINT32Z Floating-point round to 32-bit integer, toward zero FRINT32Z (scalar) on page C7-1867

FRINT64X Floating point round to 64-bit integer using current rounding model FRINT64X (scalar) on page C7-1871

FRINT64Z Floating point round to 64-bit integer, toward zero FRINT64Z (scalar) on page C7-1875
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-259
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
C3.5.6 Floating-point multiply-add

Table C3-72 on page C3-260 shows the Floating-point multiply-add instructions that require three source register
operands.

C3.5.7 Floating-point arithmetic (one source)

Table C3-73 on page C3-260 shows the Floating-point arithmetic instructions that require a single source register
operand.

C3.5.8 Floating-point arithmetic (two sources)

Table C3-74 on page C3-260 shows the Floating-point arithmetic instructions that require two source register
operands.

C3.5.9 Floating-point minimum and maximum

The min(x,y) and max(x,y) operations return a quiet NaN when either x or y is NaN.

As described in Flushing denormalized numbers to zero on page A1-54, if flushing denormalized inputs to zero is
enabled, denormal operands are flushed to zero before comparison, and if the result of the comparison is the flushed
value, then a zero value is returned. Where both x and y are zero, or denormal values flushed to zero, with different
signs, then +0.0 is returned by max() and -0.0 by min().

Table C3-72 Floating-point multiply-add instructions

Mnemonic Instruction See

FMADD Floating-point scalar fused multiply-add FMADD on page C7-1755

FMSUB Floating-point scalar fused multiply-subtract FMSUB on page C7-1826

FNMADD Floating-point scalar negated fused multiply-add FNMADD on page C7-1847

FNMSUB Floating-point scalar negated fused multiply-subtract FNMSUB on page C7-1849

Table C3-73 Floating-point arithmetic instructions with one source register

Mnemonic Instructions See

FABS Floating-point scalar absolute value FABS (scalar) on page C7-1618

FNEG Floating-point scalar negate FNEG (scalar) on page C7-1845

FSQRT Floating-point scalar square root FSQRT (scalar) on page C7-1913

Table C3-74 Floating-point arithmetic instructions with two source registers

Mnemonic Instruction See

FADD Floating-point scalar add FADD (scalar) on page C7-1630

FDIV Floating-point scalar divide FDIV (scalar) on page C7-1752

FMUL Floating-point scalar multiply FMUL (scalar) on page C7-1834

FNMUL Floating-point scalar multiply-negate FNMUL (scalar) on page C7-1851

FSUB Floating-point scalar subtract FSUB (scalar) on page C7-1917
C3-260 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
The minNum(x,y) and maxNum(x,y) operations follow the IEEE 754-2008 standard and return the numerical operand
when one operand is numerical and the other a quiet NaN. Apart from this additional handling of a single quiet NaN
the result is then identical to min(x,y) and max(x,y).

Table C3-75 on page C3-261 shows the Floating-point instructions that can perform floating-point minimum and
maximum operations.

C3.5.10 Floating-point comparison

These instructions set the NZCV Condition flags in PSTATE, based on the result of a comparison of two operands.
If the floating-point comparisons are unordered, where one or both operands are a form of NaN, the C and V bits
are set to 1 and the N and Z bits are cleared to 0.

Note

The NZCV flags in the FPSR are associated with AArch32 state. The A64 floating-point comparison instructions
do not change the Condition flags in the FPSR.

For the conditional Floating-point comparison instructions, if the condition is TRUE, the flags are updated to the
result of the comparison, otherwise the flags are updated to the immediate value that is defined in the instruction
encoding.

The quiet compare instructions generate an Invalid Operation floating-point exception if either of the source
operands is a signaling NaN. The signaling compare instructions generate an Invalid Operation floating-point
exception if either of the source operands is any type of NaN.

Note

If FEAT_FlagM2 is implemented, instructions AXFLAG and XAFLAG convert between the PSTATE condition
flag format used by the FCMP instruction and an alternative format. See FEAT_FlagM on page A2-91 for more
information.

Table C3-76 on page C3-261 shows the Floating-point comparison instructions.

Table C3-75 Floating-point minimum and maximum instructions

Mnemonic Instruction See

FMAX Floating-point scalar maximum FMAX (scalar) on page C7-1759

FMAXNM Floating-point scalar maximum number FMAXNM (scalar) on page C7-1763

FMIN Floating-point scalar minimum FMIN (scalar) on page C7-1779

FMINNM Floating-point scalar minimum number FMINNM (scalar) on page C7-1783

Table C3-76 Floating-point comparison instructions

Mnemonic Instruction See

FCMP Floating-point quiet compare FCMP on page C7-1675

FCMPE Floating-point signaling compare FCMPE on page C7-1677

FCCMP Floating-point conditional quiet compare FCCMP on page C7-1638

FCCMPE Floating-point conditional signaling compare FCCMPE on page C7-1640
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-261
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
C3.5.11 Floating-point conditional select

Table C3-77 on page C3-262 shows the Floating-point conditional select instructions.

C3.5.12 BFloat16 floating-point instructions

The BFloat16 floating-point instructions are provided by FEAT_BF16. The instructions to convert single-precision
floating-point values to BF16 format give a more accurate conversion than a simple truncation of F32 to BF16 by
removing the least significant 16 bits of the fraction. They also honor the settings of FPCR.

Table C3-78 on page C3-262 shows these instructions.

C3.5.13 SIMD move

The functionality of some data movement instructions overlaps with that provided by the scalar floating-point FMOV
instructions described in Floating-point move (register) on page C3-256.

Table C3-79 on page C3-262 shows the SIMD move instructions.

C3.5.14 SIMD arithmetic

Table C3-80 on page C3-263 shows the SIMD arithmetic instructions.

Table C3-77 Floating-point conditional select instructions

Mnemonic Instruction See

FCSEL Floating-point scalar conditional select FCSEL on page C7-1679

Table C3-78 BFloat16 floating-point instructions

Mnemonic Instruction See

BFCVT BFloat16 floating-point convert from single-precision to BFloat16 format (scalar) BFCVT on page C7-1545

Table C3-79 SIMD move instructions

Mnemonic Instruction See

DUP Duplicate vector element to vector or scalar DUP (element) on page C7-1603

DUP Duplicate general-purpose register to vector DUP (general) on page C7-1606

INSa Insert vector element from another vector element INS (element) on page C7-1919

Insert vector element from general-purpose register INS (general) on page C7-1921

MOV Move vector element to vector element MOV (element) on page C7-1991

Move general-purpose register to vector element MOV (from general) on page C7-1993

Move vector element to scalar MOV (scalar) on page C7-1989

Move vector element to general-purpose register MOV (to general) on page C7-1996

UMOV Unsigned move vector element to general-purpose register UMOV on page C7-2376

SMOV Signed move vector element to general-purpose register SMOV on page C7-2143

a. Disassembles as MOV.
C3-262 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
Table C3-80 SIMD arithmetic instructions

Mnemonic Instruction See

ADD Add (vector and scalar form) ADD (vector) on page C7-1527

AND Bitwise AND (vector form) AND (vector) on page C7-1541

BIC Bitwise bit clear (register) (vector form) BIC (vector, register) on
page C7-1559

BIF Bitwise insert if false (vector form) BIF on page C7-1561

BIT Bitwise insert if true (vector form) BIT on page C7-1563

BSL Bitwise select (vector form) BSL on page C7-1565

EOR Bitwise exclusive OR (vector form) EOR (vector) on page C7-1608

FABD Floating-point absolute difference (vector and scalar form) FABD on page C7-1613

FADD Floating-point add (vector form) FADD (vector) on page C7-1628

FDIV Floating-point divide (vector form) FDIV (vector) on page C7-1750

FMAX Floating-point maximum (vector form) FMAXP (vector) on page C7-1773

FMAXNM Floating-point maximum number (vector form) FMAXNM (vector) on page C7-1761

FMIN Floating-point minimum (vector form) FMIN (vector) on page C7-1777

FMINNM Floating-point minimum number (vector form) FMINNM (vector) on page C7-1781

FMLA Floating-point fused multiply-add (vector form) FMLA (vector) on page C7-1801

FMLAL,
FMLAL2

Floating-point fused multiply-add long (vector form) FMLAL, FMLAL2 (vector) on
page C7-1805

FMLS Floating-point fused multiply-subtract (vector form) FMLS (vector) on page C7-1811

FMLSL,
FMLSL2

Floating-point fused multiply-subtract long (vector form) FMLSL, FMLSL2 (vector) on
page C7-1815

FMUL Floating-point multiply (vector form) FMUL (vector) on page C7-1832

FMULX Floating-point multiply extended (vector and scalar form) FMULX on page C7-1840

FRECPS Floating-point reciprocal step (vector and scalar form) FRECPS on page C7-1856

FRSQRTS Floating-point reciprocal square root step (vector and scalar form) FRSQRTS on page C7-1908

FSUB Floating-point subtract (vector form) FSUB (vector) on page C7-1915

MLA Multiply-add (vector form) MLA (vector) on page C7-1983

MLS Multiply-subtract (vector form) MLS (vector) on page C7-1987

MUL Multiply (vector form) MUL (vector) on page C7-2003

MOV Move vector register (vector form) MOV (vector) on page C7-1995

ORN Bitwise inclusive OR NOT (vector form) ORN (vector) on page C7-2013

ORR Bitwise inclusive OR (register) (vector form) ORR (vector, register) on
page C7-2017

PMUL Polynomial multiply (vector form) PMUL on page C7-2019
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-263
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
SABA Signed absolute difference and accumulate (vector form) SABA on page C7-2038

SABD Signed absolute difference (vector form) SABD on page C7-2042

SHADD Signed halving add (vector form) SHADD on page C7-2088

SHSUB Signed halving subtract (vector form) SHSUB on page C7-2097

SMAX Signed maximum (vector form) SMAX on page C7-2120

SMIN Signed minimum (vector form) SMIN on page C7-2126

SQADD Signed saturating add (vector and scalar form) SQADD on page C7-2152

SQDMULH Signed saturating doubling multiply returning high half (vector and
scalar form)

SQDMULH (vector) on page C7-2171

SQRSHL Signed saturating rounding shift left (register) (vector and scalar form) SQRSHL on page C7-2198

SQRDMLAH Signed saturating rounding doubling multiply accumulate returning
high half

SQRDMLAH (vector) on
page C7-2184

SQRDMLSH Signed saturating rounding doubling multiply subtract returning high
half

SQRDMLSH (vector) on
page C7-2190

SQRDMULH Signed saturating rounding doubling multiply returning high half
(vector and scalar form)

SQRDMULH (vector) on
page C7-2196

SQSHL Signed saturating shift left (register) (vector and scalar form) SQSHL (register) on page C7-2209

SQSUB Signed saturating subtract (vector and scalar form) SQSUB on page C7-2220

SRHADD Signed rounding halving add (vector form) SRHADD on page C7-2228

SRSHL Signed rounding shift left (register) (vector and scalar form) SRSHL on page C7-2233

SSHL Signed shift left (register) (vector and scalar form) SSHL on page C7-2241

SUB Subtract (vector and scalar form) SUB (vector) on page C7-2299

UABA Unsigned absolute difference and accumulate (vector form) UABA on page C7-2317

UABD Unsigned absolute difference (vector form) UABD on page C7-2321

UHADD Unsigned halving add (vector form) UHADD on page C7-2349

UHSUB Unsigned halving subtract (vector form) UHSUB on page C7-2351

UMAX Unsigned maximum (vector form) UMAX on page C7-2353

UMIN Unsigned minimum (vector form) UMIN on page C7-2359

UQADD Unsigned saturating add (vector and scalar form) UQADD on page C7-2383

UQRSHL Unsigned saturating rounding shift left (register) (vector and scalar
form)

UQRSHL on page C7-2385

UQSHL Unsigned saturating shift left (register) (vector and scalar form) UQSHL (register) on page C7-2393

UQSUB Unsigned saturating subtract (vector and scalar form) UQSUB on page C7-2398

Table C3-80 SIMD arithmetic instructions (continued)

Mnemonic Instruction See
C3-264 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
URHADD Unsigned rounding halving add (vector form) URHADD on page C7-2404

URSHL Unsigned rounding shift left (register) (vector and scalar form) URSHL on page C7-2406

USHL Unsigned shift left (register) (vector and scalar form) USHL on page C7-2419

Table C3-80 SIMD arithmetic instructions (continued)

Mnemonic Instruction See
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-265
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
C3.5.15 SIMD compare

The SIMD compare instructions compare vector or scalar elements according to the specified condition and set the
destination vector element to all ones if the condition holds, or to zero if the condition does not hold.

Note

Some of the comparisons, such as LS, LE, LO, and LT, can be made by reversing the operands and using the
opposite comparison, HS, GE, HI, or GT.

Table C3-81 on page C3-266 shows that SIMD compare instructions.

Table C3-81 SIMD compare instructions

Mnemonic Instruction See

CMEQ Compare bitwise equal (vector and scalar form) CMEQ (register) on page C7-1571

Compare bitwise equal to zero (vector and scalar form) CMEQ (zero) on page C7-1573

CMHS Compare unsigned higher or same (vector and scalar form) CMHS (register) on page C7-1591

CMGE Compare signed greater than or equal (vector and scalar form) CMGE (register) on page C7-1576

Compare signed greater than or equal to zero (vector and scalar form) CMGE (zero) on page C7-1579

CMHI Compare unsigned higher (vector and scalar form) CMHI (register) on page C7-1588

CMGT Compare signed greater than (vector and scalar form) CMGT (register) on page C7-1582

Compare signed greater than zero (vector and scalar form) CMGT (zero) on page C7-1585

CMLE Compare signed less than or equal to zero (vector and scalar form) CMLE (zero) on page C7-1594

CMLT Compare signed less than zero (vector and scalar form) CMLT (zero) on page C7-1597

CMTST Compare bitwise test bits nonzero (vector and scalar form) CMTST on page C7-1599

FCMEQ Floating-point compare equal (vector and scalar form) FCMEQ (register) on page C7-1642

Floating-point compare equal to zero (vector and scalar form) FCMEQ (zero) on page C7-1646

FCMGE Floating-point compare greater than or equal (vector and scalar form) FCMGE (register) on page C7-1649

Floating-point compare greater than or equal to zero (vector and scalar form) FCMGE (zero) on page C7-1653

FCMGT Floating-point compare greater than (vector and scalar form) FCMGT (register) on page C7-1656

Floating-point compare greater than zero (vector and scalar form) FCMGT (zero) on page C7-1660

FCMLE Floating-point compare less than or equal to zero (vector and scalar form) FCMLE (zero) on page C7-1669

FCMLT Floating-point compare less than zero (vector and scalar form) FCMLT (zero) on page C7-1672

FACGE Floating-point absolute compare greater than or equal (vector and scalar form) FACGE on page C7-1620

FACGT Floating-point absolute compare greater than (vector and scalar form) FACGT on page C7-1624
C3-266 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
C3.5.16 SIMD widening and narrowing arithmetic

For information about the variants of these instructions, see Common features of SIMD instructions on page C3-255.

Table C3-82 on page C3-267 shows the SIMD widening and narrowing arithmetic instructions.

Table C3-82 SIMD widening and narrowing arithmetic instructions

Mnemonic Instruction See

ADDHN, ADDHN2 Add returning high, narrow (vector form) ADDHN, ADDHN2 on page C7-1529

PMULL, PMULL2 Polynomial multiply long (vector form) PMULL, PMULL2 on page C7-2021

See also The Cryptographic Extension on
page C3-278

RADDHN, RADDHN2 Rounding add returning high, narrow (vector form) RADDHN, RADDHN2 on page C7-2023

RSUBHN, RSUBHN2 Rounding subtract returning high, narrow (vector form) RSUBHN, RSUBHN2 on page C7-2036

SABAL, SABAL2 Signed absolute difference and accumulate long (vector form) SABAL, SABAL2 on page C7-2040

SABDL, SABDL2 Signed absolute difference long (vector form) SABDL, SABDL2 on page C7-2044

SADDL, SADDL2 Signed add long (vector form) SADDL, SADDL2 on page C7-2048

SADDW, SADDW2 Signed add wide (vector form) SADDW, SADDW2 on page C7-2054

SMLAL, SMLAL2 Signed multiply-add long (vector form) SMLAL, SMLAL2 (vector) on page C7-2135

SMLSL, SMLSL2 Signed multiply-subtract long (vector form) SMLSL, SMLSL2 (vector) on page C7-2140

SMULL, SMULL2 Signed multiply long (vector form) SMULL, SMULL2 (vector) on page C7-2148

SQDMLAL,

SQDMLAL2

Signed saturating doubling multiply-add long (vector and scalar
form)

SQDMLAL, SQDMLAL2 (vector) on
page C7-2158

SQDMLSL,

SQDMLSL2

Signed saturating doubling multiply-subtract long (vector and
scalar form)

SQDMLSL, SQDMLSL2 (vector) on
page C7-2165

SQDMULL,

SQDMULL2

Signed saturating doubling multiply long (vector and scalar
form)

SQDMULL, SQDMULL2 (vector) on
page C7-2176

SSUBL, SSUBL2 Signed subtract long (vector form) SSUBL, SSUBL2 on page C7-2252

SSUBW, SSUBW2 Signed subtract wide (vector form) SSUBW, SSUBW2 on page C7-2254

SUBHN, SUBHN2 Subtract returning high, narrow (vector form) SUBHN, SUBHN2 on page C7-2301

UABAL, UABAL2 Unsigned absolute difference and accumulate long (vector form) UABAL, UABAL2 on page C7-2319

UABDL, UABDL2 Unsigned absolute difference long (vector form) UABDL, UABDL2 on page C7-2323

UADDL, UADDL2 Unsigned add long (vector form) UADDL, UADDL2 on page C7-2327

UADDW, UADDW2 Unsigned add wide (vector form) UADDW, UADDW2 on page C7-2333

UMLAL, UMLAL2 Unsigned multiply-add long (vector form) UMLAL, UMLAL2 (vector) on page C7-2368

UMLSL, UMLSL2 Unsigned multiply-subtract long (vector form) UMLSL, UMLSL2 (vector) on page C7-2373

UMULL, UMULL2 Unsigned multiply long (vector form) UMULL, UMULL2 (vector) on page C7-2381

USUBL, USUBL2 Unsigned subtract long (vector form) USUBL, USUBL2 on page C7-2433

USUBW, USUBW2 Unsigned subtract wide (vector form) USUBW, USUBW2 on page C7-2435
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-267
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
C3.5.17 SIMD unary arithmetic

For information about the variants of these instructions, see Common features of SIMD instructions on page C3-255.

Table C3-83 on page C3-268 shows the SIMD unary arithmetic instructions.

Table C3-83 SIMD unary arithmetic instructions

Mnemonic Instruction See

ABS Absolute value (vector and scalar form) ABS on page C7-1525

CLS Count leading sign bits (vector form) CLS (vector) on page C7-1567

CLZ Count leading zero bits (vector form) CLZ (vector) on page C7-1569

CNT Population count per byte (vector form) CNT on page C7-1601

FABS Floating-point absolute (vector form) FABS (vector) on page C7-1616

FCVTL, FCVTL2 Floating-point convert to higher precision long (vector form) FCVTL, FCVTL2 on
page C7-1693

FCVTN, FCVTN2 Floating-point convert to lower precision narrow (vector form) FCVTN, FCVTN2 on
page C7-1705

FCVTXN,
FCVTXN2

Floating-point convert to lower precision narrow, rounding to odd (vector and
scalar form)

FCVTXN, FCVTXN2 on
page C7-1727

FNEG Floating-point negate (vector form) FNEG (vector) on page C7-1843

FRECPE Floating-point reciprocal estimate (vector and scalar form) FRECPE on page C7-1853

FRECPX Floating-point reciprocal exponent (scalar form) FRECPX on page C7-1859

FRINT32X Floating-point round to 32-bit integer, using current rounding mode (vector
form)

FRINT32X (vector) on
page C7-1861

FRINT32Z Floating-point round to 32-bit integer, toward zero (vector form) FRINT32Z (vector) on
page C7-1865

FRINT64X Floating-point round to 64-bit integer, using current rounding mode (vector
form)

FRINT64X (vector) on
page C7-1869

FRINT64Z Floating-point round to 64-bit integer, toward zero (vector form) FRINT64Z (vector) on
page C7-1873

FRINTA Floating-point round to integer, to nearest with ties to away (vector form) FRINTA (vector) on page C7-1877

FRINTI Floating-point round to integer, using current rounding mode (vector form) FRINTI (vector) on page C7-1881

FRINTM Floating-point round to integer, toward minus infinity (vector form) FRINTM (vector) on
page C7-1885

FRINTN Floating-point round to integer, to nearest with ties to even (vector form) FRINTN (vector) on
page C7-1889

FRINTP Floating-point round to integer, toward positive infinity (vector form) FRINTP (vector) on
page C7-1893

FRINTX Floating-point round to integer exact, using current rounding mode (vector
form)

FRINTX (vector) on
page C7-1897

FRINTZ Floating-point round to integer, toward zero (vector form) FRINTZ (vector) on page C7-1901

FRSQRTE Floating-point reciprocal square root estimate (vector and scalar form) FRSQRTE on page C7-1905
C3-268 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
FSQRT Floating-point square root (vector form) FSQRT (vector) on page C7-1911

MVN Bitwise NOT (vector form) MVN on page C7-2005

NEG Negate (vector and scalar form) NEG (vector) on page C7-2009

NOT Bitwise NOT (vector form) NOT on page C7-2011

RBIT Bitwise reverse (vector form) RBIT (vector) on page C7-2026

REV16 Reverse elements in 16-bit halfwords (vector form) REV16 (vector) on page C7-2028

REV32 Reverse elements in 32-bit words (vector form) REV32 (vector) on page C7-2030

REV64 Reverse elements in 64-bit doublewords (vector form) REV64 on page C7-2032

SADALP Signed add and accumulate long pairwise (vector form) SADALP on page C7-2046

SADDLP Signed add long pairwise (vector form) SADDLP on page C7-2050

SQABS Signed saturating absolute value (vector and scalar form) SQABS on page C7-2150

SQNEG Signed saturating negate (vector and scalar form) SQNEG on page C7-2179

SQXTN, SQXTN2 Signed saturating extract narrow (vector form) SQXTN, SQXTN2 on
page C7-2222

SQXTUN,
SQXTUN2

Signed saturating extract unsigned narrow (vector and scalar form) SQXTUN, SQXTUN2 on
page C7-2225

SUQADD Signed saturating accumulate of unsigned value (vector and scalar form) SUQADD on page C7-2305

SXTL, SXTL2 Signed extend long SXTL, SXTL2 on page C7-2307

UADALP Unsigned add and accumulate long pairwise (vector form) UADALP on page C7-2325

UADDLP Unsigned add long pairwise (vector form) UADDLP on page C7-2329

UQXTN, UQXTN2 Unsigned saturating extract narrow (vector form) UQXTN, UQXTN2 on
page C7-2400

URECPE Unsigned reciprocal estimate (vector form) URECPE on page C7-2403

URSQRTE Unsigned reciprocal square root estimate (vector form) URSQRTE on page C7-2411

USQADD Unsigned saturating accumulate of signed value (vector and scalar form) USQADD on page C7-2428

UXTL, UXTL2 Unsigned extend long UXTL, UXTL2 on page C7-2437

XTN, XTN2 Extract narrow (vector form) XTN, XTN2 on page C7-2444

Table C3-83 SIMD unary arithmetic instructions (continued)

Mnemonic Instruction See
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-269
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
C3.5.18 SIMD by element arithmetic

For information about the variants of these instructions, see Common features of SIMD instructions on page C3-255.

Table C3-84 on page C3-270 shows the SIMD by element arithmetic instructions.

Table C3-84 SIMD by element arithmetic instructions

Mnemonic Instruction See

FMLA Floating-point fused multiply-add (vector and scalar form) FMLA (by element) on page C7-1797

FMLAL, FMLAL2 Floating-point fused multiply-add long (vector form) FMLAL, FMLAL2 (by element) on
page C7-1803

FMLS Floating-point fused multiply-subtract (vector and scalar form) FMLS (by element) on page C7-1807.

FMLSL, FMLSL2 Floating-point fused multiply-subtract long (vector form) FMLSL, FMLSL2 (by element) on
page C7-1813

FMUL Floating-point multiply (vector and scalar form) FMUL (by element) on page C7-1828

FMULX Floating-point multiply extended (vector and scalar form) FMULX (by element) on page C7-1836

MLA Multiply-add (vector form) MLA (by element) on page C7-1981

MLS Multiply-subtract (vector form) MLS (by element) on page C7-1985

MUL Multiply (vector form) MUL (by element) on page C7-2001

SMLAL, SMLAL2 Signed multiply-add long (vector form) SMLAL, SMLAL2 (by element) on
page C7-2132

SMLSL, SMLSL2 Signed multiply-subtract long (vector form) SMLSL, SMLSL2 (by element) on
page C7-2137

SMULL, SMULL2 Signed multiply long (vector form) SMULL, SMULL2 (by element) on
page C7-2145

SQDMLAL,
SQDMLAL2

Signed saturating doubling multiply-add long (vector and scalar form) SQDMLAL, SQDMLAL2 (by element) on
page C7-2154

SQDMLSL,
SQDMLSL2

Signed saturating doubling multiply-subtract long (vector form) SQDMLSL, SQDMLSL2 (by element) on
page C7-2161

SQDMULH Signed saturating doubling multiply returning high half (vector and
scalar form)

SQDMULH (by element) on page C7-2168

SQDMULL,
SQDMULL2

Signed saturating doubling multiply long (vector and scalar form) SQDMULL, SQDMULL2 (by element) on
page C7-2173

SQRDMLAH Signed saturating rounding doubling multiply accumulate returning
high half

SQRDMLSH (by element) on page C7-2187

SQRDMLSH Signed saturating rounding doubling multiply subtract returning high
half

SQRDMLSH (vector) on page C7-2190

SQRDMULH Signed saturating rounding doubling multiply returning high half
(vector and scalar form)

SQRDMULH (by element) on page C7-2193
C3-270 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
C3.5.19 SIMD permute

Table C3-85 on page C3-271 shows the SIMD permute instructions.

C3.5.20 SIMD immediate

Table C3-86 on page C3-271 shows the SIMD immediate instructions.

C3.5.21 SIMD shift (immediate)

For information about the variants of these instructions, see Common features of SIMD instructions on page C3-255.

UMLAL, UMLAL2 Unsigned multiply-add long (vector form) UMLAL, UMLAL2 (by element) on
page C7-2365

UMLSL, UMLSL2 Unsigned multiply-subtract long (vector form) UMLSL, UMLSL2 (by element) on
page C7-2370

UMULL, UMULL2 Unsigned multiply long (vector form) UMULL, UMULL2 (by element) on
page C7-2378

Table C3-84 SIMD by element arithmetic instructions (continued)

Mnemonic Instruction See

Table C3-85 SIMD permute instructions

Mnemonic Instruction See

EXT Extract vector from a pair of vectors EXT on page C7-1611

TRN1 Transpose vectors (primary) TRN1 on page C7-2313

TRN2 Transpose vectors (secondary) TRN2 on page C7-2315

UZP1 Unzip vectors (primary) UZP1 on page C7-2439

UZP2 Unzip vectors (secondary) UZP2 on page C7-2441

ZIP1 Zip vectors (primary) ZIP1 on page C7-2446

ZIP2 Zip vectors (secondary) ZIP2 on page C7-2448

Table C3-86 SIMD immediate instructions

Mnemonic Instruction See

BIC Bitwise bit clear immediate BIC (vector, immediate) on page C7-1557

FMOV Floating-point move immediate FMOV (vector, immediate) on page C7-1817

MOVI Move immediate MOVI on page C7-1998

MVNI Move inverted immediate MVNI on page C7-2006

ORR Bitwise inclusive OR immediate ORR (vector, immediate) on page C7-2015
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-271
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
Table C3-87 on page C3-272 shows the SIMD shift immediate instructions.

Table C3-87 SIMD shift (immediate) instructions

Mnemonic Instruction See

RSHRN, RSHRN2 Rounding shift right narrow immediate (vector form) RSHRN, RSHRN2 on page C7-2034

SHL Shift left immediate (vector and scalar form) SHL on page C7-2090

SHLL, SHLL2 Shift left long (by element size) (vector form) SHLL, SHLL2 on page C7-2093

SHRN, SHRN2 Shift right narrow immediate (vector form) SHRN, SHRN2 on page C7-2095

SLI Shift left and insert immediate (vector and scalar form) SLI on page C7-2099

SQRSHRN,
SQRSHRN2

Signed saturating rounded shift right narrow immediate (vector and scalar
form)

SQRSHRN, SQRSHRN2 on
page C7-2200

SQRSHRUN,
SQRSHRUN2

Signed saturating shift right unsigned narrow immediate (vector and
scalar form)

SQRSHRUN, SQRSHRUN2 on
page C7-2203

SQSHL Signed saturating shift left immediate (vector and scalar form) SQSHL (immediate) on
page C7-2206

SQSHLU Signed saturating shift left unsigned immediate (vector and scalar form) SQSHLU on page C7-2211

SQSHRN, SQSHRN2 Signed saturating shift right narrow immediate (vector and scalar form) SQSHRN, SQSHRN2 on
page C7-2214

SQSHRUN,
SQSHRUN2

Signed saturating shift right unsigned narrow immediate (vector and
scalar form)

SQSHRUN, SQSHRUN2 on
page C7-2217

SRI Shift right and insert immediate (vector and scalar form) SRI on page C7-2230

SRSHR Signed rounding shift right immediate (vector and scalar form) SRSHR on page C7-2235

SRSRA Signed rounding shift right and accumulate immediate (vector and scalar
form)

SRSRA on page C7-2238.

SSHLL, SSHLL2 Signed shift left long immediate (vector form) SSHLL, SSHLL2 on page C7-2244

SSHR Signed shift right immediate (vector and scalar form) SSHR on page C7-2246

SSRA Signed integer shift right and accumulate immediate (vector and scalar
form)

SSRA on page C7-2249

SXTL, SXTL2 Signed integer extend (vector only) SXTL, SXTL2 on page C7-2307

UQRSHRN,
UQRSHRN2

Unsigned saturating rounded shift right narrow immediate (vector and
scalar form)

UQRSHRN, UQRSHRN2 on
page C7-2387

UQSHL Unsigned saturating shift left immediate (vector and scalar form) UQSHL (immediate) on
page C7-2390

UQSHRN, UQSHRN2 Unsigned saturating shift right narrow immediate (vector and scalar form) UQSHRN, UQSHRN2 on
page C7-2395

URSHR Unsigned rounding shift right immediate (vector and scalar form) URSHR on page C7-2408

URSRA Unsigned integer rounding shift right and accumulate immediate (vector
and scalar form)

URSRA on page C7-2412

USHLL, USHLL2 Unsigned shift left long immediate (vector form) USHLL, USHLL2 on page C7-2422
C3-272 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
C3.5.22 SIMD floating-point and integer conversion

The SIMD floating-point and integer conversion instructions generate the Invalid Operation floating-point
exception in response to a floating-point input of NaN, infinity, or a numerical value that cannot be represented
within the destination register. An out of range integer or a fixed-point result is saturated to the size of the destination
register. A numeric result that differs from the input raises the Inexact floating-point exception.

Table C3-88 on page C3-273 shows the SIMD floating-point and integer conversion instructions.

USHR Unsigned shift right immediate (vector and scalar form) USHR on page C7-2424

USRA Unsigned shift right and accumulate immediate (vector and scalar form) USRA on page C7-2430

UXTL, UXTL2 Unsigned integer extend (vector only) UXTL, UXTL2 on page C7-2437

Table C3-87 SIMD shift (immediate) instructions (continued)

Mnemonic Instruction See

Table C3-88 SIMD floating-point and integer conversion instructions

Mnemonic Instruction See

FCVTAS Floating-point convert to signed integer, rounding to nearest with ties
to away (vector and scalar form)

FCVTAS (vector) on page C7-1683

FCVTAU Floating-point convert to unsigned integer, rounding to nearest with
ties to away (vector and scalar form)

FCVTAU (vector) on page C7-1688

FCVTMS Floating-point convert to signed integer, rounding toward minus
infinity (vector and scalar form)

FCVTMS (vector) on page C7-1695

FCVTMU Floating-point convert to unsigned integer, rounding toward minus
infinity (vector and scalar form)

FCVTMU (vector) on page C7-1700

FCVTNS Floating-point convert to signed integer, rounding to nearest with ties
to even (vector and scalar form)

FCVTNS (vector) on page C7-1707

FCVTNU Floating-point convert to unsigned integer, rounding to nearest with
ties to even (vector and scalar form)

FCVTNU (vector) on page C7-1712

FCVTPS Floating-point convert to signed integer, rounding toward positive
infinity (vector and scalar form)

FCVTPS (vector) on page C7-1717

FCVTPU Floating-point convert to unsigned integer, rounding toward positive
infinity (vector and scalar form)

FCVTPU (vector) on page C7-1722

FCVTZS Floating-point convert to signed integer, rounding toward zero (vector
and scalar form)

FCVTZS (vector, integer) on
page C7-1733

Floating-point convert to signed fixed-point, rounding toward zero
(vector and scalar form)

FCVTZS (vector, fixed-point) on
page C7-1730

FCVTZU Floating-point convert to unsigned integer, rounding toward zero
(vector and scalar form)

FCVTZU (vector, integer) on
page C7-1743

Floating-point convert to unsigned fixed-point, rounding toward zero,
(vector and scalar form)

FCVTZU (vector, fixed-point) on
page C7-1740
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-273
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
C3.5.23 SIMD reduce (across vector lanes)

The SIMD reduce (across vector lanes) instructions perform arithmetic operations horizontally, that is across all
lanes of the input vector. They deliver a single scalar result.

Table C3-89 on page C3-274 shows the SIMD reduce (across vector lanes) instructions.

SCVTF Signed integer convert to floating-point (vector and scalar form) SCVTF (vector, integer) on
page C7-2059

Signed fixed-point convert to floating-point (vector and scalar form) SCVTF (vector, fixed-point) on
page C7-2056

UCVTF Unsigned integer convert to floating-point (vector and scalar form) UCVTF (vector, integer) on
page C7-2338

Unsigned fixed-point convert to floating-point (vector and scalar form) UCVTF (vector, fixed-point) on
page C7-2335

Table C3-88 SIMD floating-point and integer conversion instructions (continued)

Mnemonic Instruction See

Table C3-89 SIMD reduce (across vector lanes) instructions

Mnemonic Instruction See

ADDV Add (across vector) ADDV on page C7-1535

FMAXNMV Floating-point maximum number (across vector) FMAXNMV on page C7-1769

FMAXV Floating-point maximum (across vector) FMAXV on page C7-1775

FMINNMV Floating-point minimum number (across vector) FMINNMV on page C7-1789

FMINV Floating-point minimum (across vector) FMINV on page C7-1795

SADDLV Signed add long (across vector) SADDLV on page C7-2052

SMAXV Signed maximum (across vector) SMAXV on page C7-2124

SMINV Signed minimum (across vector) SMINV on page C7-2130

UADDLV Unsigned add long (across vector) UADDLV on page C7-2331

UMAXV Unsigned maximum (across vector) UMAXV on page C7-2357

UMINV Unsigned minimum (across vector) UMINV on page C7-2363
C3-274 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
C3.5.24 SIMD pairwise arithmetic

The SIMD pairwise arithmetic instructions perform operations on pairs of adjacent elements and deliver a vector
result.

Table C3-90 on page C3-275 shows the SIMD pairwise arithmetic instructions.

C3.5.25 SIMD dot product

FEAT_DotProd provides SIMD instructions that perform the dot product of the four 8-bit subelements of the 32-bit
elements of one vector with the four 8-bit subelements of a second vector. It provides two forms of the instructions,
each with signed and unsigned versions:

Vector form The dot product is calculated for each element of the first vector with the corresponding element of
the second vector.

Indexed form The dot product is calculated for each element of the first vector with the element of the second
vector that is indicated by the index argument to the instruction.

Note
That is, a single element from the second vector is used, and the dot product is calculated between
each element of the first vector and this single element from the second vector.

Table C3-90 SIMD pairwise arithmetic instructions

Mnemonic Instruction See

ADDP Add pairwise (vector and scalar form) ADDP (vector) on page C7-1533

ADDP (scalar) on page C7-1531

FADDP Floating-point add pairwise (vector and scalar form) FADDP (vector) on page C7-1634

FADDP (scalar) on page C7-1632

FMAXNMP Floating-point maximum number pairwise (vector and scalar form) FMAXNMP (vector) on page C7-1767

FMAXNMP (scalar) on page C7-1765

FMAXP Floating-point maximum pairwise (vector and scalar form) FMAXP (vector) on page C7-1773

FMAXP (scalar) on page C7-1771

FMINNMP Floating-point minimum number pairwise (vector and scalar form) FMINNMP (vector) on page C7-1787

FMINNMP (scalar) on page C7-1785

FMINP Floating-point minimum pairwise (vector and scalar form) FMINP (vector) on page C7-1793

FMINP (scalar) on page C7-1791

SMAXP Signed maximum pairwise SMAXP on page C7-2122

SMINP Signed minimum pairwise SMINP on page C7-2128

UMAXP Unsigned maximum pairwise UMAXP on page C7-2355

UMINP Unsigned minimum pairwise UMINP on page C7-2361
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-275
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
Table C3-91 on page C3-276 shows the SIMD dot product instructions.

C3.5.26 SIMD table lookup

Table C3-92 on page C3-276 shows the SIMD table lookup instructions.

C3.5.27 SIMD complex number arithmetic

FEAT_FCMA provides SIMD instructions that perform arithmetic on complex numbers held in element pairs in
vector registers, where the less significant element of the pair contains the real component and the more significant
element contains the imaginary component.

These instructions provide double-precision and single-precision versions. If FEAT_FP16 is implemented they also
provide half-precision versions, otherwise the half-precision encodings are UNDEFINED.

Table C3-93 on page C3-276 shows the FEAT_FCMA SIMD instructions.

A pair of FCMLA instructions can be used to perform a complex number multiplication. This is demonstrated in
Complex multiplication on page K10-8512.

C3.5.28 SIMD BFloat16

The SIMD BFloat16 instructions are provided by FEAT_BF16.

Table C3-91 SIMD dot product

Mnemonic Instruction See

SDOT Signed dot product (vector form) SDOT (vector) on page C7-2068

UDOT Unsigned dot product (vector form) UDOT (vector) on page C7-2347

SDOT Signed dot product (indexed form) SDOT (by element) on page C7-2066

UDOT Unsigned dot product (indexed form) UDOT (by element) on page C7-2345

USDOT Mixed sign integer dot product (vector form)a

a. This instruction is supported when FEAT_I8MM is implemented.

USDOT (vector) on page C7-2415

Mixed sign integer dot product by indexed quadupleta USDOT (by element) on page C7-2417

SUDOT Mixed sign integer dot product by indexed quadupleta SUDOT (by element) on page C7-2303

Table C3-92 SIMD table lookup instructions

Mnemonic Instruction See

TBL Table vector lookup TBL on page C7-2309

TBX Table vector lookup extension TBX on page C7-2311

Table C3-93 SIMD complex number arithmetic

Mnemonic Instruction See

FCADD Floating-point complex add FCADD on page C7-1636

FCMLA Floating-point complex multiply accumulate (vector form) FCMLA on page C7-1666

FCMLA Floating-point complex multiply accumulate (indexed form) FCMLA (by element) on page C7-1663
C3-276 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
These instructions perform an implicit conversion of vectors of BF16 input values to IEEE 754 single-precision
floating-point format, combined with an N-way dot product calculation that accumulates the products into a vector
of single-precision accumulators.

All of these instructions perform arithmetic with fixed behaviors, irrespective of the values of FPCR. These
behaviors are:

• Exceptional floating-point conditions produce the expected IEEE 754 default result, but do not modify the
cumulative floating-point exception flags in FPSR, and cannot cause a trapped floating-point exception.

• Multiplication and addition operations are always chained and never fused. Multiplication that overflows
cannot be brought back into range by a fused addition.

Note

The fractional part of the product of two BF16 inputs can be exactly represented in single-precision format,
see BFloat16 floating-point format on page A1-48.

Table C3-94 on page C3-277 shows these instructions.

C3.5.29 SIMD matrix multiplication

These instructions are provided by FEAT_I8MM, and include integer matrix multiply-accumulate instructions.

The matrix multiply-accumulate instructions delimit source and destination vectors into segments. Within each
segment:

• The first source vector matrix is organized in row-by-row order.

• The second source vector matrix is organized in a column-by-column order.

• The destination vector matrix is organized in row-by-row order.

One matrix multiplication is performed per segment.

Table C3-94 BFloat16 SIMD instructions

Mnemonic Instruction See

BFDOT BFloat16 floating-point dot product (vector and indexed forms) BFDOT (vector) on page C7-1550

BFDOT (by element) on page C7-1548

BFMMLA BFloat16 floating-point matrix multiply-accumulate into 2x2 matrix BFMMLA on page C7-1556

BFMLALB BFloat16 floating-point widening multiply-add long bottom (vector
and indexed forms)

BFMLALB, BFMLALT (vector) on
page C7-1554

BFMLALB, BFMLALT (by element) on
page C7-1552

BFMLALT BFloat16 floating-point widening multiply-add long top (vector and
index forms)

BFMLALB, BFMLALT (vector) on
page C7-1554

BFMLALB, BFMLALT (by element) on
page C7-1552

BFCVTN,
BFCVTN2

Floating-point convert from single-precision to BFloat16 format
(vector form)

BFCVTN, BFCVTN2 on page C7-1546
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-277
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
Table C3-95 on page C3-278 shows these instructions.

C3.5.30 The Cryptographic Extension

The instructions provided by the OPTIONAL Armv8.0 Cryptographic Extension use the SIMD and floating-point
register file. For more information about the functions they provide see:

• Announcing the Advanced Encryption Standard.

• The Galois/Counter Mode of Operation.

• Announcing the Secure Hash Standard.

Table C3-96 on page C3-278 shows the Armv8.0 Cryptographic Extension instructions.

See The Armv8 Cryptographic Extension on page A2-72 for information about the permitted implementation
options for the Cryptographic Extension.

Table C3-95 Matrix multiply SIMD instructions

Mnemonic Instruction See

SMMLA Widening 8-bit signed integer matrix multiply-accumulate into 2x2 matrix SMMLA (vector) on page C7-2142

UMMLA Widening 8-bit unsigned integer matrix multiply-accumulate into 2x2 matrix UMMLA (vector) on page C7-2375

USMMLA Widening 8-bit mixed sign integer matrix multiply-accumulate into 2x2 matrix USMMLA (vector) on page C7-2427

Table C3-96 Cryptographic Extension instructions

Mnemonic Instruction See

AESD AES single round decryption AESD on page C7-1537

AESE AES single round encryption AESE on page C7-1538

AESIMC AES inverse mix columns AESIMC on page C7-1539

AESMC AES mix columns AESMC on page C7-1540

PMULL Polynomial multiply long PMULL, PMULL2 on page C7-2021a

a. The Cryptographic Extension adds the variant of the instruction that operates on two
64-bit polynomials.

SHA1C SHA1 hash update (choose) SHA1C on page C7-2070

SHA1H SHA1 fixed rotate SHA1H on page C7-2071

SHA1M SHA1 hash update (majority) SHA1M on page C7-2072

SHA1P SHA1 hash update (parity) SHA1P on page C7-2073

SHA1SU0 SHA1 schedule update 0 SHA1SU0 on page C7-2074

SHA1SU1 SHA1 schedule update 1 SHA1SU1 on page C7-2075

SHA256H SHA256 hash update, part 1 SHA256H on page C7-2077

SHA256H2 SHA256 hash update, part 2 SHA256H2 on page C7-2076

SHA256SU0 SHA256 schedule update 0 SHA256SU0 on page C7-2078

SHA256SU1 SHA256 schedule update 1 SHA256SU1 on page C7-2079
C3-278 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
Armv8.2 extensions to the Cryptographic Extension

Armv8.2 supports the following OPTIONAL extensions to the Cryptographic Extension:

• FEAT_SHA512, SHA2-512 functionality on page C3-279.

• FEAT_SHA3, SHA3 functionality on page C3-279.

• FEAT_SM3, SM3 functionality on page C3-280.

• FEAT_SM4, SM4 functionality on page C3-281.

FEAT_SHA512, SHA2-512 functionality

FEAT_SHA512 provides instructions to accelerate the SHA-2 hash algorithm using a digest that is larger than 256
bits. The relevant standards are SHA-384, SHA-512, SHA-512|224 and SHA-512|256. These are all based on the
SHA-512 computation, and therefore this set of instructions is described as the SHA512 instructions.

Implementation of FEAT_SHA512 requires the implementation of the SHA1 and SHA2-256 instructions from the
Armv8.0 Cryptographic Extension.

Note

Implementation of FEAT_SHA512 does not require the implementation of the AES instructions, and the 64-bit
polynomial variants of the PMULL instructions, from the Armv8.0 Cryptographic Extension.

When FEAT_SHA512 is implemented, the value of ID_AA64ISAR0_EL1.SHA2 is 0b0010, indicating support for
the SHA512 instructions.

Table C3-97 on page C3-279 shows the FEAT_SHA512 instructions:

Use of the SHA512 instructions on page K10-8514 shows an example of the use of these instructions to calculate a
SHA512 hash iteration. This example code is not part of the architectural definition of these instructions.

FEAT_SHA3, SHA3 functionality

FEAT_SHA3 provides instructions to accelerate the SHA-3 hash algorithm. This set of instructions is described as
the SHA3 instructions.

Note

Implementation of FEAT_SHA3 does not require the implementation of the AES instructions, and the 64-bit
polynomial variants of the PMULL instructions, from the Armv8.0 Cryptographic Extension.

When FEAT_SHA3 is implemented, the value of ID_AA64ISAR0_EL1.SHA3 is 0b0001, indicating support for the
SHA3 instructions.

Table C3-98 on page C3-280 shows the FEAT_SHA3 instructions. The SHA-3 hash algorithm is based on a running
digest of 1600 bytes, arranged as a five by five array of 64-bit registers. The Arm acceleration of these instructions
is based on mapping the 25 64-bit values into 25 vector registers, with each 64-bit value occupying the same 64-bit
element in each vector. A series of transformations is performed on these registers as part of a round of the SHA-3
hash calculation.

Table C3-97 FEAT_SHA512 instructions

Mnemonic Instruction See

SHA512H SHA512 Hash update part 1 SHA512H on page C7-2081

SHA512H2 SHA512 Hash update part 2 SHA512H2 on page C7-2083

SHA512SU0 SHA512 Schedule Update 0 SHA512SU0 on page C7-2085

SHA512SU1 SHA512 Schedule Update 1 SHA512SU1 on page C7-2086
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-279
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
The SIMD nature of the vector registers means the acceleration can compute two parallel SHA3 hash calculations,
where one calculation is performed using the zeroth 64-bit element of each vector, and the other calculation is
performed using the first 64-bit element of each vector.

To provide acceleration where the SIMD calculation is not required, the instructions provide variants that operate
only on the zeroth 64-bit elements. These are provided as a power optimization.

Use of the SHA3 instructions on page K10-8515 shows an example of the use of these instructions to calculate the
combined theta, phi, rho and chi operations of a SHA3 iteration. This example code is not part of the architectural
definition of these instructions.

FEAT_SM3, SM3 functionality

FEAT_SM3 provides instructions to accelerate the SM3 hash algorithm, the standard Chinese hash algorithm. These
are described as the SM3 instructions.

FEAT_SM3 can be implemented independently of any part of the Armv8.0 Cryptographic Extension, and
independently of FEAT_SHA512.

Note

This means that Armv8.2 permits an implementation of the Cryptographic Extension that provides only the
FEAT_SM3 functionality.

When FEAT_SM3 is implemented, the value of ID_AA64ISAR0_EL1.SM3 is 0b0001, indicating support for the
SM3 instructions.

Table C3-99 on page C3-280 shows the FEAT_SM3 instructions. The SM3 algorithm computes a digest of 256 bits,
that can be held in two vector registers. The SM3 instructions include instructions to accelerate the computation of
the hash and the schedule update.

Note

The SM3 instruction names refer to intermediate variables defined as part of the SM3 Cryptographic Hash
Algorithm specification.

Table C3-98 FEAT_SHA3 instructions

Mnemonic Instruction See

EOR3 Three-way Exclusive OR EOR3 on page C7-1610

RAX1 Rotate and Exclusive OR RAX1 on page C7-2025

XAR Exclusive OR and Rotate XAR on page C7-2443

BCAX Bit Clear and Exclusive OR BCAX on page C7-1543

Table C3-99 FEAT_SM3 instructions

Mnemonic Instruction See

SM3SS1 SM3 SS1 calculation SM3SS1 on page C7-2106

SM3TT1A SM3 TT1 calculation, part A SM3TT1A on page C7-2108

SM3TT1B SM3 TT1 calculation, part B SM3TT1B on page C7-2110

SM3TT2A SM3 TT2 calculation, part A SM3TT2A on page C7-2112
C3-280 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
Use of the SM3 instructions on page K10-8516 shows an example of the use of these instructions to generate an
SM3 hash. This example code is not part of the architectural definition of these instructions.

FEAT_SM4, SM4 functionality

FEAT_SM4 provides instruction to accelerate the SM4 encryption algorithm, the standard Chinese encryption
algorithm. This set of instructions is described as the SM4 instructions.

FEAT_SM4 can be implemented independently of any part of the Armv8.0 Cryptographic Extension, and
independently of FEAT_SHA3.

Note

This means that Armv8.2 permits an implementation of the Cryptographic Extension that provides only the
FEAT_SM4 functionality.

When FEAT_SM4 is implemented, the value of ID_AA64ISAR0_EL1.SM4 is 0b0001, indicating support for the
SM4 instructions.

Table C3-100 on page C3-281 shows the FEAT_SM4 instructions. The SM4 algorithm is 128-bit wide block cipher.
The SM4E instruction accelerates a single round of encryption or decryption, and the SM4EKEY instruction accelerates
a single round of key generation:

Use of the SM4 instructions on page K10-8518 shows an example of the use of these instructions to perform SM4
encryption and decryption. This example code is not part of the architectural definition of these instructions.

SM3TT2B SM3 TT2 calculation, part B SM3TT2B on page C7-2114

SM3PARTW1 SM3 PARTW calculation, part 1 SM3PARTW1 on page C7-2102

SM3PARTW2 SM3 PARTW calculation, part 1 SM3PARTW2 on page C7-2104

Table C3-100 FEAT_SM4 instructions

Mnemonic Instruction See

SM4E SM4 Encrypt SM4E on page C7-2116

SM4EKEY SM4 Key SM4EKEY on page C7-2118

Table C3-99 FEAT_SM3 instructions (continued)

Mnemonic Instruction See
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-281
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
C3-282 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter C4
A64 Instruction Set Encoding

This chapter describes the encoding of the A64 instruction set. It contains the following section:

• A64 instruction set encoding on page C4-284.

In this chapter:

• In the decode tables, an entry of - for a field value means the value of the field does not affect the decoding.

• In the decode diagrams, a shaded field indicates that the bits in that field are not used in that level of decode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-283
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1 A64 instruction set encoding

The A64 instruction encoding is:

C4.1.1 Reserved

This section describes the encoding of the Reserved group. The encodings in this section are decoded from A64
instruction set encoding on page C4-284.

C4.1.2 Data Processing -- Immediate

This section describes the encoding of the Data Processing -- Immediate group. The encodings in this section are
decoded from A64 instruction set encoding on page C4-284.

Table C4-1 Main encoding table for the A64 instruction set

Decode fields
Decode group or instruction page

op0

 0000 Reserved on page C4-284.

 0001 Unallocated.

 0010 SVE instructions. See The Scalable Vector Extension (SVE) on page A2-110.

 0011 Unallocated.

 100x Data Processing -- Immediate on page C4-284.

 101x Branches, Exception Generating and System instructions on page C4-289.

 x1x0 Loads and Stores on page C4-298.

 x101 Data Processing -- Register on page C4-332.

 x111 Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

op0
31 29 28 25 24 0

Table C4-2 Encoding table for the Reserved group

Decode fields
Decode group or instruction page

op0 op1

 000 000000000 UDF

 000 0001xxxxx Unallocated.

 != 000 - Unallocated.

op0 0000 op1
31 29 28 25 24 16 15 0
C4-284 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
PC-rel. addressing

This section describes the encoding of the PC-rel. addressing instruction class. The encodings in this section are
decoded from Data Processing -- Immediate on page C4-284.

Add/subtract (immediate)

This section describes the encoding of the Add/subtract (immediate) instruction class. The encodings in this section
are decoded from Data Processing -- Immediate on page C4-284.

Table C4-3 Encoding table for the Data Processing -- Immediate group

Decode fields
Decode group or instruction page

op0

 00x PC-rel. addressing on page C4-285

 010 Add/subtract (immediate) on page C4-285

 011 Add/subtract (immediate, with tags) on page C4-286

 100 Logical (immediate) on page C4-286

 101 Move wide (immediate) on page C4-287

 110 Bitfield on page C4-288

 111 Extract on page C4-288

Decode fields
Instruction page

op

 0 ADR

 1 ADRP

100 op0
31 29 28 26 25 23 22 0

op immlo 1 0 0 0 0 immhi Rd
31 30 29 28 27 26 25 24 23 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-285
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Add/subtract (immediate, with tags)

This section describes the encoding of the Add/subtract (immediate, with tags) instruction class. The encodings in
this section are decoded from Data Processing -- Immediate on page C4-284.

Logical (immediate)

This section describes the encoding of the Logical (immediate) instruction class. The encodings in this section are
decoded from Data Processing -- Immediate on page C4-284.

Decode fields
Instruction page

sf op S

 0 0 0 ADD (immediate) - 32-bit variant

 0 0 1 ADDS (immediate) - 32-bit variant

 0 1 0 SUB (immediate) - 32-bit variant

 0 1 1 SUBS (immediate) - 32-bit variant

 1 0 0 ADD (immediate) - 64-bit variant

 1 0 1 ADDS (immediate) - 64-bit variant

 1 1 0 SUB (immediate) - 64-bit variant

 1 1 1 SUBS (immediate) - 64-bit variant

Decode fields
Instruction page Feature

sf op S o2

 - - - 1 Unallocated. -

 0 - - 0 Unallocated. -

 1 - 1 0 Unallocated. -

 1 0 0 0 ADDG FEAT_MTE

 1 1 0 0 SUBG FEAT_MTE

sf op S 1 0 0 0 1 0 sh imm12 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

sf op S 1 0 0 0 1 1 o2 uimm6 op3 uimm4 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 10 9 5 4 0
C4-286 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Move wide (immediate)

This section describes the encoding of the Move wide (immediate) instruction class. The encodings in this section
are decoded from Data Processing -- Immediate on page C4-284.

Decode fields
Instruction page

sf opc N

 0 - 1 Unallocated.

 0 00 0 AND (immediate) - 32-bit variant

 0 01 0 ORR (immediate) - 32-bit variant

 0 10 0 EOR (immediate) - 32-bit variant

 0 11 0 ANDS (immediate) - 32-bit variant

 1 00 - AND (immediate) - 64-bit variant

 1 01 - ORR (immediate) - 64-bit variant

 1 10 - EOR (immediate) - 64-bit variant

 1 11 - ANDS (immediate) - 64-bit variant

Decode fields
Instruction page

sf opc hw

 - 01 - Unallocated.

 0 - 1x Unallocated.

 0 00 0x MOVN - 32-bit variant

 0 10 0x MOVZ - 32-bit variant

 0 11 0x MOVK - 32-bit variant

 1 00 - MOVN - 64-bit variant

 1 10 - MOVZ - 64-bit variant

 1 11 - MOVK - 64-bit variant

sf opc 1 0 0 1 0 0 N immr imms Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

sf opc 1 0 0 1 0 1 hw imm16 Rd
31 30 29 28 27 26 25 24 23 22 21 20 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-287
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Bitfield

This section describes the encoding of the Bitfield instruction class. The encodings in this section are decoded from
Data Processing -- Immediate on page C4-284.

Extract

This section describes the encoding of the Extract instruction class. The encodings in this section are decoded from
Data Processing -- Immediate on page C4-284.

Decode fields
Instruction page

sf opc N

 - 11 - Unallocated.

 0 - 1 Unallocated.

 0 00 0 SBFM - 32-bit variant

 0 01 0 BFM - 32-bit variant

 0 10 0 UBFM - 32-bit variant

 1 - 0 Unallocated.

 1 00 1 SBFM - 64-bit variant

 1 01 1 BFM - 64-bit variant

 1 10 1 UBFM - 64-bit variant

Decode fields
Instruction page

sf op21 N o0 imms

 - x1 - - - Unallocated.

 - 00 - 1 - Unallocated.

 - 1x - - - Unallocated.

 0 - - - 1xxxxx Unallocated.

 0 - 1 - - Unallocated.

 0 00 0 0 0xxxxx EXTR - 32-bit variant

 1 - 0 - - Unallocated.

 1 00 1 0 - EXTR - 64-bit variant

sf opc 1 0 0 1 1 0 N immr imms Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

sf op21 1 0 0 1 1 1 N o0 Rm imms Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
C4-288 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.3 Branches, Exception Generating and System instructions

This section describes the encoding of the Branches, Exception Generating and System instructions group. The
encodings in this section are decoded from A64 instruction set encoding on page C4-284.

Table C4-4 Encoding table for the Branches, Exception Generating and System instructions
group

Decode fields
Decode group or instruction page

op0 op1 op2

 010 0xxxxxxxxxxxxx - Conditional branch (immediate) on page C4-290

 010 1xxxxxxxxxxxxx - Unallocated.

 110 00xxxxxxxxxxxx - Exception generation on page C4-290

 110 010000000x000x - Unallocated.

 110 010000000x001x - Unallocated.

 110 0100000010000x - Unallocated.

 110 0100000010001x - Unallocated.

 110 01000000110000 - Unallocated.

 110 01000000110001 - System instructions with register argument on page C4-291

 110 01000000110010 11111 Hints on page C4-292

 110 01000000110010 != 11111 Unallocated.

 110 01000000110011 - Barriers on page C4-293

 110 01000001xx000x - Unallocated.

 110 01000001xx001x - Unallocated.

 110 0100000xxx0100 - PSTATE on page C4-293

 110 0100000xxx0101 - Unallocated.

 110 0100000xxx011x - Unallocated.

 110 0100000xxx1xxx - Unallocated.

 110 0100x01xxxxxxx - System instructions on page C4-294

 110 0100x1xxxxxxxx - System register move on page C4-294

 110 0101xxxxxxxxxx - Unallocated.

 110 011xxxxxxxxxxx - Unallocated.

 110 1xxxxxxxxxxxxx - Unconditional branch (register) on page C4-295

 x00 - - Unconditional branch (immediate) on page C4-297

op0 101 op1 op2
31 29 28 26 25 12 11 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-289
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Conditional branch (immediate)

This section describes the encoding of the Conditional branch (immediate) instruction class. The encodings in this
section are decoded from Branches, Exception Generating and System instructions on page C4-289.

Exception generation

This section describes the encoding of the Exception generation instruction class. The encodings in this section are
decoded from Branches, Exception Generating and System instructions on page C4-289.

 x01 0xxxxxxxxxxxxx - Compare and branch (immediate) on page C4-298

 x01 1xxxxxxxxxxxxx - Test and branch (immediate) on page C4-298

 x11 - - Unallocated.

Decode fields
Instruction page

o1 o0

 0 0 B.cond

 0 1 Unallocated.

 1 - Unallocated.

Decode fields
Instruction page

opc op2 LL

 - 001 - Unallocated.

 - 01x - Unallocated.

 - 1xx - Unallocated.

 000 000 00 Unallocated.

 000 000 01 SVC

 000 000 10 HVC

Table C4-4 Encoding table for the Branches, Exception Generating and System instructions
group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2

0 1 0 1 0 1 0 o1 imm19 o0 cond
31 30 29 28 27 26 25 24 23 5 4 3 0

1 1 0 1 0 1 0 0 opc imm16 op2 LL
31 30 29 28 27 26 25 24 23 21 20 5 4 2 1 0
C4-290 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
System instructions with register argument

This section describes the encoding of the System instructions with register argument instruction class. The
encodings in this section are decoded from Branches, Exception Generating and System instructions on
page C4-289.

 000 000 11 SMC

 001 000 x1 Unallocated.

 001 000 00 BRK

 001 000 1x Unallocated.

 010 000 x1 Unallocated.

 010 000 00 HLT

 010 000 1x Unallocated.

 011 000 01 Unallocated.

 011 000 1x Unallocated.

 100 000 - Unallocated.

 101 000 00 Unallocated.

 101 000 01 DCPS1

 101 000 10 DCPS2

 101 000 11 DCPS3

 110 000 - Unallocated.

 111 000 - Unallocated.

Decode fields
Instruction page Feature

CRm op2

 != 0000 - Unallocated. -

 0000 000 WFET FEAT_WFxT

 0000 001 WFIT FEAT_WFxT

 0000 01x Unallocated. -

 0000 1xx Unallocated. -

Decode fields
Instruction page

opc op2 LL

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 1 CRm op2 Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-291
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Hints

This section describes the encoding of the Hints instruction class. The encodings in this section are decoded from
Branches, Exception Generating and System instructions on page C4-289.

Decode fields
Instruction page Feature

CRm op2

 - - HINT -

 0000 000 NOP -

 0000 001 YIELD -

 0000 010 WFE -

 0000 011 WFI -

 0000 100 SEV -

 0000 101 SEVL -

 0000 110 DGH FEAT_DGH

 0000 111 XPACD, XPACI, XPACLRI FEAT_PAuth

 0001 000 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA - PACIA1716 variant FEAT_PAuth

 0001 010 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB - PACIB1716 variant FEAT_PAuth

 0001 100 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA - AUTIA1716 variant FEAT_PAuth

 0001 110 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB - AUTIB1716 variant FEAT_PAuth

 0010 000 ESB FEAT_RAS

 0010 001 PSB CSYNC FEAT_SPE

 0010 010 TSB CSYNC FEAT_TRF

 0010 100 CSDB -

 0011 000 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA - PACIAZ variant FEAT_PAuth

 0011 001 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA - PACIASP variant FEAT_PAuth

 0011 010 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB - PACIBZ variant FEAT_PAuth

 0011 011 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB - PACIBSP variant FEAT_PAuth

 0011 100 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA - AUTIAZ variant FEAT_PAuth

 0011 101 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA - AUTIASP variant FEAT_PAuth

 0011 110 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB - AUTIBZ variant FEAT_PAuth

 0011 111 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB - AUTIBSP variant FEAT_PAuth

 0100 xx0 BTI FEAT_BTI

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 CRm op2 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0
C4-292 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Barriers

This section describes the encoding of the Barriers instruction class. The encodings in this section are decoded from
Branches, Exception Generating and System instructions on page C4-289.

PSTATE

This section describes the encoding of the PSTATE instruction class. The encodings in this section are decoded from
Branches, Exception Generating and System instructions on page C4-289.

Decode fields
Instruction page Feature

CRm op2 Rt

 - 000 - Unallocated. -

 - 001 != 11111 Unallocated. -

 - 010 11111 CLREX -

 - 100 11111 DSB - Encoding -

 - 101 11111 DMB -

 - 110 11111 ISB -

 - 111 != 11111 Unallocated. -

 - 111 11111 SB -

 xx0x 001 11111 Unallocated. -

 xx10 001 11111 DSB - Encoding FEAT_XS

 xx11 001 11111 Unallocated. -

 0001 011 - Unallocated. -

 001x 011 - Unallocated. -

 01xx 011 - Unallocated. -

 1xxx 011 - Unallocated. -

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm op2 Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-293
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
System instructions

This section describes the encoding of the System instructions instruction class. The encodings in this section are
decoded from Branches, Exception Generating and System instructions on page C4-289.

System register move

This section describes the encoding of the System register move instruction class. The encodings in this section are
decoded from Branches, Exception Generating and System instructions on page C4-289.

Decode fields
Instruction page Feature

op1 op2 Rt

 - - != 11111 Unallocated. -

 - - 11111 MSR (immediate) -

 000 000 11111 CFINV FEAT_FlagM

 000 001 11111 XAFLAG FEAT_FlagM2

 000 010 11111 AXFLAG FEAT_FlagM2

Decode fields
Instruction page

L

 0 SYS

 1 SYSL

Decode fields
Instruction page

L

 0 MSR (register)

 1 MRS

1 1 0 1 0 1 0 1 0 0 0 0 0 op1 0 1 0 0 CRm op2 Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 8 7 5 4 0

1 1 0 1 0 1 0 1 0 0 L 0 1 op1 CRn CRm op2 Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 1 0 1 0 1 0 1 0 0 L 1 o0 op1 CRn CRm op2 Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0
C4-294 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Unconditional branch (register)

This section describes the encoding of the Unconditional branch (register) instruction class. The encodings in this
section are decoded from Branches, Exception Generating and System instructions on page C4-289.

1 1 0 1 0 1 1 opc op2 op3 Rn op4
31 30 29 28 27 26 25 24 21 20 16 15 10 9 5 4 0

Decode fields
Instruction page Feature

opc op2 op3 Rn op4

 - != 11111 - - - Unallocated. -

 0000 11111 000000 - != 00000 Unallocated. -

 0000 11111 000000 - 00000 BR -

 0000 11111 000001 - - Unallocated. -

 0000 11111 000010 - != 11111 Unallocated. -

 0000 11111 000010 - 11111 BRAA, BRAAZ, BRAB, BRABZ - Key A, zero
modifier variant

FEAT_PAuth

 0000 11111 000011 - != 11111 Unallocated. -

 0000 11111 000011 - 11111 BRAA, BRAAZ, BRAB, BRABZ - Key B, zero
modifier variant

FEAT_PAuth

 0000 11111 0001xx - - Unallocated. -

 0000 11111 001xxx - - Unallocated. -

 0000 11111 01xxxx - - Unallocated. -

 0000 11111 1xxxxx - - Unallocated. -

 0001 11111 000000 - != 00000 Unallocated. -

 0001 11111 000000 - 00000 BLR -

 0001 11111 000001 - - Unallocated. -

 0001 11111 000010 - != 11111 Unallocated. -

 0001 11111 000010 - 11111 BLRAA, BLRAAZ, BLRAB, BLRABZ - Key A, zero
modifier variant

FEAT_PAuth

 0001 11111 000011 - != 11111 Unallocated. -

 0001 11111 000011 - 11111 BLRAA, BLRAAZ, BLRAB, BLRABZ - Key B, zero
modifier variant

FEAT_PAuth

 0001 11111 0001xx - - Unallocated. -

 0001 11111 001xxx - - Unallocated. -

 0001 11111 01xxxx - - Unallocated. -

 0001 11111 1xxxxx - - Unallocated. -

 0010 11111 000000 - != 00000 Unallocated. -
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-295
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 0010 11111 000000 - 00000 RET -

 0010 11111 000001 - - Unallocated. -

 0010 11111 000010 != 11111 != 11111 Unallocated. -

 0010 11111 000010 11111 11111 RETAA, RETAB - RETAA variant FEAT_PAuth

 0010 11111 000011 != 11111 != 11111 Unallocated. -

 0010 11111 000011 11111 11111 RETAA, RETAB - RETAB variant FEAT_PAuth

 0010 11111 0001xx - - Unallocated. -

 0010 11111 001xxx - - Unallocated. -

 0010 11111 01xxxx - - Unallocated. -

 0010 11111 1xxxxx - - Unallocated. -

 0011 11111 - - - Unallocated. -

 0100 11111 000000 != 11111 != 00000 Unallocated. -

 0100 11111 000000 != 11111 00000 Unallocated. -

 0100 11111 000000 11111 != 00000 Unallocated. -

 0100 11111 000000 11111 00000 ERET -

 0100 11111 000001 - - Unallocated. -

 0100 11111 000010 != 11111 != 11111 Unallocated. -

 0100 11111 000010 != 11111 11111 Unallocated. -

 0100 11111 000010 11111 != 11111 Unallocated. -

 0100 11111 000010 11111 11111 ERETAA, ERETAB - ERETAA variant FEAT_PAuth

 0100 11111 000011 != 11111 != 11111 Unallocated. -

 0100 11111 000011 != 11111 11111 Unallocated. -

 0100 11111 000011 11111 != 11111 Unallocated. -

 0100 11111 000011 11111 11111 ERETAA, ERETAB - ERETAB variant FEAT_PAuth

 0100 11111 0001xx - - Unallocated. -

 0100 11111 001xxx - - Unallocated. -

 0100 11111 01xxxx - - Unallocated. -

 0100 11111 1xxxxx - - Unallocated. -

 0101 11111 != 000000 - - Unallocated. -

 0101 11111 000000 != 11111 != 00000 Unallocated. -

 0101 11111 000000 != 11111 00000 Unallocated. -

 0101 11111 000000 11111 != 00000 Unallocated. -

Decode fields
Instruction page Feature

opc op2 op3 Rn op4
C4-296 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Unconditional branch (immediate)

This section describes the encoding of the Unconditional branch (immediate) instruction class. The encodings in
this section are decoded from Branches, Exception Generating and System instructions on page C4-289.

 0101 11111 000000 11111 00000 DRPS -

 011x 11111 - - - Unallocated. -

 1000 11111 00000x - - Unallocated. -

 1000 11111 000010 - - BRAA, BRAAZ, BRAB, BRABZ - Key A, register
modifier variant

FEAT_PAuth

 1000 11111 000011 - - BRAA, BRAAZ, BRAB, BRABZ - Key B, register
modifier variant

FEAT_PAuth

 1000 11111 0001xx - - Unallocated. -

 1000 11111 001xxx - - Unallocated. -

 1000 11111 01xxxx - - Unallocated. -

 1000 11111 1xxxxx - - Unallocated. -

 1001 11111 00000x - - Unallocated. -

 1001 11111 000010 - - BLRAA, BLRAAZ, BLRAB, BLRABZ - Key A,
register modifier variant

FEAT_PAuth

 1001 11111 000011 - - BLRAA, BLRAAZ, BLRAB, BLRABZ - Key B,
register modifier variant

FEAT_PAuth

 1001 11111 0001xx - - Unallocated. -

 1001 11111 001xxx - - Unallocated. -

 1001 11111 01xxxx - - Unallocated. -

 1001 11111 1xxxxx - - Unallocated. -

 101x 11111 - - - Unallocated. -

 11xx 11111 - - - Unallocated. -

Decode fields
Instruction page Feature

opc op2 op3 Rn op4

Decode fields
Instruction page

op

 0 B

 1 BL

op 0 0 1 0 1 imm26
31 30 29 28 27 26 25 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-297
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Compare and branch (immediate)

This section describes the encoding of the Compare and branch (immediate) instruction class. The encodings in this
section are decoded from Branches, Exception Generating and System instructions on page C4-289.

Test and branch (immediate)

This section describes the encoding of the Test and branch (immediate) instruction class. The encodings in this
section are decoded from Branches, Exception Generating and System instructions on page C4-289.

C4.1.4 Loads and Stores

This section describes the encoding of the Loads and Stores group. The encodings in this section are decoded from
A64 instruction set encoding on page C4-284.

Decode fields
Instruction page

sf op

 0 0 CBZ - 32-bit variant

 0 1 CBNZ - 32-bit variant

 1 0 CBZ - 64-bit variant

 1 1 CBNZ - 64-bit variant

Decode fields
Instruction page

op

 0 TBZ

 1 TBNZ

sf 0 1 1 0 1 0 op imm19 Rt
31 30 29 28 27 26 25 24 23 5 4 0

b5 0 1 1 0 1 1 op b40 imm14 Rt
31 30 29 28 27 26 25 24 23 19 18 5 4 0
C4-298 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
op0 1 0 op2 op3 op4
31 28 27 26 25 24 23 22 21 16 15 12 11 10 9 0

op1

Table C4-5 Encoding table for the Loads and Stores group

Decode fields
Decode group or instruction page

op0 op1 op2 op3 op4

 0x00 0 00 1xxxxx - Compare and swap pair on page C4-300

 0x00 1 00 000000 - Advanced SIMD load/store multiple structures on page C4-300

 0x00 1 01 0xxxxx - Advanced SIMD load/store multiple structures (post-indexed) on page C4-302

 0x00 1 0x 1xxxxx - Unallocated.

 0x00 1 10 x00000 - Advanced SIMD load/store single structure on page C4-303

 0x00 1 11 - - Advanced SIMD load/store single structure (post-indexed) on page C4-306

 0x00 1 x0 x1xxxx - Unallocated.

 0x00 1 x0 xx1xxx - Unallocated.

 0x00 1 x0 xxx1xx - Unallocated.

 0x00 1 x0 xxxx1x - Unallocated.

 0x00 1 x0 xxxxx1 - Unallocated.

 0x01 0 1x 1xxxxx - Unallocated.

 1001 0 1x 1xxxxx - Unallocated.

 1101 0 1x 1xxxxx - Load/store memory tags on page C4-309

 1x00 0 00 1xxxxx - Load/store exclusive pair on page C4-310

 1x00 1 - - - Unallocated.

 xx00 0 00 0xxxxx - Load/store exclusive register on page C4-310

 xx00 0 01 0xxxxx - Load/store ordered on page C4-311

 xx00 0 01 1xxxxx - Compare and swap on page C4-312

 xx00 0 1x - - Unallocated.

 xx01 0 1x 0xxxxx 00 LDAPR/STLR (unscaled immediate) on page C4-313

 xx01 1 1x 0xxxxx 00 Unallocated.

 xx01 - 0x - - Load register (literal) on page C4-314

 xx10 - 00 - - Load/store no-allocate pair (offset) on page C4-314

 xx10 - 01 - - Load/store register pair (post-indexed) on page C4-315

 xx10 - 10 - - Load/store register pair (offset) on page C4-315

 xx10 - 11 - - Load/store register pair (pre-indexed) on page C4-316
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-299
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Compare and swap pair

This section describes the encoding of the Compare and swap pair instruction class. The encodings in this section
are decoded from Loads and Stores on page C4-298.

Advanced SIMD load/store multiple structures

This section describes the encoding of the Advanced SIMD load/store multiple structures instruction class. The
encodings in this section are decoded from Loads and Stores on page C4-298.

 xx11 - 0x 0xxxxx 00 Load/store register (unscaled immediate) on page C4-317

 xx11 - 0x 0xxxxx 01 Load/store register (immediate post-indexed) on page C4-318

 xx11 - 0x 0xxxxx 10 Load/store register (unprivileged) on page C4-319

 xx11 - 0x 0xxxxx 11 Load/store register (immediate pre-indexed) on page C4-320

 xx11 - 0x 1xxxxx 00 Atomic memory operations on page C4-321

 xx11 - 0x 1xxxxx 10 Load/store register (register offset) on page C4-329

 xx11 - 0x 1xxxxx x1 Load/store register (pac) on page C4-330

 xx11 - 1x - - Load/store register (unsigned immediate) on page C4-331

Table C4-5 Encoding table for the Loads and Stores group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2 op3 op4

Decode fields
Instruction page Feature

sz L o0 Rt2

 - - - != 11111 Unallocated. -

 0 0 0 11111 CASP, CASPA, CASPAL, CASPL - 32-bit CASP variant FEAT_LSE

 0 0 1 11111 CASP, CASPA, CASPAL, CASPL - 32-bit CASPL variant FEAT_LSE

 0 1 0 11111 CASP, CASPA, CASPAL, CASPL - 32-bit CASPA variant FEAT_LSE

 0 1 1 11111 CASP, CASPA, CASPAL, CASPL - 32-bit CASPAL variant FEAT_LSE

 1 0 0 11111 CASP, CASPA, CASPAL, CASPL - 64-bit CASP variant FEAT_LSE

 1 0 1 11111 CASP, CASPA, CASPAL, CASPL - 64-bit CASPL variant FEAT_LSE

 1 1 0 11111 CASP, CASPA, CASPAL, CASPL - 64-bit CASPA variant FEAT_LSE

 1 1 1 11111 CASP, CASPA, CASPAL, CASPL - 64-bit CASPAL variant FEAT_LSE

0 sz 0 0 1 0 0 0 0 L 1 Rs o0 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0
C4-300 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Decode fields
Instruction page

L opcode

 0 0000 ST4 (multiple structures)

 0 0001 Unallocated.

 0 0010 ST1 (multiple structures) - Four registers variant

 0 0011 Unallocated.

 0 0100 ST3 (multiple structures)

 0 0101 Unallocated.

 0 0110 ST1 (multiple structures) - Three registers variant

 0 0111 ST1 (multiple structures) - One register variant

 0 1000 ST2 (multiple structures)

 0 1001 Unallocated.

 0 1010 ST1 (multiple structures) - Two registers variant

 0 1011 Unallocated.

 0 11xx Unallocated.

 1 0000 LD4 (multiple structures)

 1 0001 Unallocated.

 1 0010 LD1 (multiple structures) - Four registers variant

 1 0011 Unallocated.

 1 0100 LD3 (multiple structures)

 1 0101 Unallocated.

 1 0110 LD1 (multiple structures) - Three registers variant

 1 0111 LD1 (multiple structures) - One register variant

 1 1000 LD2 (multiple structures)

 1 1001 Unallocated.

 1 1010 LD1 (multiple structures) - Two registers variant

 1 1011 Unallocated.

 1 11xx Unallocated.

0 Q 0 0 1 1 0 0 0 L 0 0 0 0 0 0 opcode size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-301
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD load/store multiple structures (post-indexed)

This section describes the encoding of the Advanced SIMD load/store multiple structures (post-indexed) instruction
class. The encodings in this section are decoded from Loads and Stores on page C4-298.

Decode fields
Instruction page

L Rm opcode

 0 - 0001 Unallocated.

 0 - 0011 Unallocated.

 0 - 0101 Unallocated.

 0 - 1001 Unallocated.

 0 - 1011 Unallocated.

 0 - 11xx Unallocated.

 0 != 11111 0000 ST4 (multiple structures) - Register offset variant

 0 != 11111 0010 ST1 (multiple structures) - Four registers, register offset variant

 0 != 11111 0100 ST3 (multiple structures) - Register offset variant

 0 != 11111 0110 ST1 (multiple structures) - Three registers, register offset variant

 0 != 11111 0111 ST1 (multiple structures) - One register, register offset variant

 0 != 11111 1000 ST2 (multiple structures) - Register offset variant

 0 != 11111 1010 ST1 (multiple structures) - Two registers, register offset variant

 0 11111 0000 ST4 (multiple structures) - Immediate offset variant

 0 11111 0010 ST1 (multiple structures) - Four registers, immediate offset variant

 0 11111 0100 ST3 (multiple structures) - Immediate offset variant

 0 11111 0110 ST1 (multiple structures) - Three registers, immediate offset variant

 0 11111 0111 ST1 (multiple structures) - One register, immediate offset variant

 0 11111 1000 ST2 (multiple structures) - Immediate offset variant

 0 11111 1010 ST1 (multiple structures) - Two registers, immediate offset variant

 1 - 0001 Unallocated.

 1 - 0011 Unallocated.

 1 - 0101 Unallocated.

 1 - 1001 Unallocated.

 1 - 1011 Unallocated.

 1 - 11xx Unallocated.

0 Q 0 0 1 1 0 0 1 L 0 Rm opcode size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0
C4-302 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD load/store single structure

This section describes the encoding of the Advanced SIMD load/store single structure instruction class. The
encodings in this section are decoded from Loads and Stores on page C4-298.

 1 != 11111 0000 LD4 (multiple structures) - Register offset variant

 1 != 11111 0010 LD1 (multiple structures) - Four registers, register offset variant

 1 != 11111 0100 LD3 (multiple structures) - Register offset variant

 1 != 11111 0110 LD1 (multiple structures) - Three registers, register offset variant

 1 != 11111 0111 LD1 (multiple structures) - One register, register offset variant

 1 != 11111 1000 LD2 (multiple structures) - Register offset variant

 1 != 11111 1010 LD1 (multiple structures) - Two registers, register offset variant

 1 11111 0000 LD4 (multiple structures) - Immediate offset variant

 1 11111 0010 LD1 (multiple structures) - Four registers, immediate offset variant

 1 11111 0100 LD3 (multiple structures) - Immediate offset variant

 1 11111 0110 LD1 (multiple structures) - Three registers, immediate offset variant

 1 11111 0111 LD1 (multiple structures) - One register, immediate offset variant

 1 11111 1000 LD2 (multiple structures) - Immediate offset variant

 1 11111 1010 LD1 (multiple structures) - Two registers, immediate offset variant

Decode fields
Instruction page

L R opcode S size

 0 - 11x - - Unallocated.

 0 0 000 - - ST1 (single structure) - 8-bit variant

 0 0 001 - - ST3 (single structure) - 8-bit variant

 0 0 010 - x0 ST1 (single structure) - 16-bit variant

 0 0 010 - x1 Unallocated.

 0 0 011 - x0 ST3 (single structure) - 16-bit variant

 0 0 011 - x1 Unallocated.

 0 0 100 - 00 ST1 (single structure) - 32-bit variant

 0 0 100 - 1x Unallocated.

Decode fields
Instruction page

L Rm opcode

0 Q 0 0 1 1 0 1 0 L R 0 0 0 0 0 opcode S size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-303
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 0 0 100 0 01 ST1 (single structure) - 64-bit variant

 0 0 100 1 01 Unallocated.

 0 0 101 - 00 ST3 (single structure) - 32-bit variant

 0 0 101 - 10 Unallocated.

 0 0 101 0 01 ST3 (single structure) - 64-bit variant

 0 0 101 0 11 Unallocated.

 0 0 101 1 x1 Unallocated.

 0 1 000 - - ST2 (single structure) - 8-bit variant

 0 1 001 - - ST4 (single structure) - 8-bit variant

 0 1 010 - x0 ST2 (single structure) - 16-bit variant

 0 1 010 - x1 Unallocated.

 0 1 011 - x0 ST4 (single structure) - 16-bit variant

 0 1 011 - x1 Unallocated.

 0 1 100 - 00 ST2 (single structure) - 32-bit variant

 0 1 100 - 10 Unallocated.

 0 1 100 0 01 ST2 (single structure) - 64-bit variant

 0 1 100 0 11 Unallocated.

 0 1 100 1 x1 Unallocated.

 0 1 101 - 00 ST4 (single structure) - 32-bit variant

 0 1 101 - 10 Unallocated.

 0 1 101 0 01 ST4 (single structure) - 64-bit variant

 0 1 101 0 11 Unallocated.

 0 1 101 1 x1 Unallocated.

 1 0 000 - - LD1 (single structure) - 8-bit variant

 1 0 001 - - LD3 (single structure) - 8-bit variant

 1 0 010 - x0 LD1 (single structure) - 16-bit variant

 1 0 010 - x1 Unallocated.

 1 0 011 - x0 LD3 (single structure) - 16-bit variant

 1 0 011 - x1 Unallocated.

 1 0 100 - 00 LD1 (single structure) - 32-bit variant

 1 0 100 - 1x Unallocated.

 1 0 100 0 01 LD1 (single structure) - 64-bit variant

Decode fields
Instruction page

L R opcode S size
C4-304 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 1 0 100 1 01 Unallocated.

 1 0 101 - 00 LD3 (single structure) - 32-bit variant

 1 0 101 - 10 Unallocated.

 1 0 101 0 01 LD3 (single structure) - 64-bit variant

 1 0 101 0 11 Unallocated.

 1 0 101 1 x1 Unallocated.

 1 0 110 0 - LD1R

 1 0 110 1 - Unallocated.

 1 0 111 0 - LD3R

 1 0 111 1 - Unallocated.

 1 1 000 - - LD2 (single structure) - 8-bit variant

 1 1 001 - - LD4 (single structure) - 8-bit variant

 1 1 010 - x0 LD2 (single structure) - 16-bit variant

 1 1 010 - x1 Unallocated.

 1 1 011 - x0 LD4 (single structure) - 16-bit variant

 1 1 011 - x1 Unallocated.

 1 1 100 - 00 LD2 (single structure) - 32-bit variant

 1 1 100 - 10 Unallocated.

 1 1 100 0 01 LD2 (single structure) - 64-bit variant

 1 1 100 0 11 Unallocated.

 1 1 100 1 x1 Unallocated.

 1 1 101 - 00 LD4 (single structure) - 32-bit variant

 1 1 101 - 10 Unallocated.

 1 1 101 0 01 LD4 (single structure) - 64-bit variant

 1 1 101 0 11 Unallocated.

 1 1 101 1 x1 Unallocated.

 1 1 110 0 - LD2R

 1 1 110 1 - Unallocated.

 1 1 111 0 - LD4R

 1 1 111 1 - Unallocated.

Decode fields
Instruction page

L R opcode S size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-305
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD load/store single structure (post-indexed)

This section describes the encoding of the Advanced SIMD load/store single structure (post-indexed) instruction
class. The encodings in this section are decoded from Loads and Stores on page C4-298.

Decode fields
Instruction page

L R Rm opcode S size

 0 - - 11x - - Unallocated.

 0 0 - 010 - x1 Unallocated.

 0 0 - 011 - x1 Unallocated.

 0 0 - 100 - 1x Unallocated.

 0 0 - 100 1 01 Unallocated.

 0 0 - 101 - 10 Unallocated.

 0 0 - 101 0 11 Unallocated.

 0 0 - 101 1 x1 Unallocated.

 0 0 != 11111 000 - - ST1 (single structure) - 8-bit, register offset variant

 0 0 != 11111 001 - - ST3 (single structure) - 8-bit, register offset variant

 0 0 != 11111 010 - x0 ST1 (single structure) - 16-bit, register offset variant

 0 0 != 11111 011 - x0 ST3 (single structure) - 16-bit, register offset variant

 0 0 != 11111 100 - 00 ST1 (single structure) - 32-bit, register offset variant

 0 0 != 11111 100 0 01 ST1 (single structure) - 64-bit, register offset variant

 0 0 != 11111 101 - 00 ST3 (single structure) - 32-bit, register offset variant

 0 0 != 11111 101 0 01 ST3 (single structure) - 64-bit, register offset variant

 0 0 11111 000 - - ST1 (single structure) - 8-bit, immediate offset variant

 0 0 11111 001 - - ST3 (single structure) - 8-bit, immediate offset variant

 0 0 11111 010 - x0 ST1 (single structure) - 16-bit, immediate offset variant

 0 0 11111 011 - x0 ST3 (single structure) - 16-bit, immediate offset variant

 0 0 11111 100 - 00 ST1 (single structure) - 32-bit, immediate offset variant

 0 0 11111 100 0 01 ST1 (single structure) - 64-bit, immediate offset variant

 0 0 11111 101 - 00 ST3 (single structure) - 32-bit, immediate offset variant

 0 0 11111 101 0 01 ST3 (single structure) - 64-bit, immediate offset variant

 0 1 - 010 - x1 Unallocated.

 0 1 - 011 - x1 Unallocated.

0 Q 0 0 1 1 0 1 1 L R Rm opcode S size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
C4-306 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 0 1 - 100 - 10 Unallocated.

 0 1 - 100 0 11 Unallocated.

 0 1 - 100 1 x1 Unallocated.

 0 1 - 101 - 10 Unallocated.

 0 1 - 101 0 11 Unallocated.

 0 1 - 101 1 x1 Unallocated.

 0 1 != 11111 000 - - ST2 (single structure) - 8-bit, register offset variant

 0 1 != 11111 001 - - ST4 (single structure) - 8-bit, register offset variant

 0 1 != 11111 010 - x0 ST2 (single structure) - 16-bit, register offset variant

 0 1 != 11111 011 - x0 ST4 (single structure) - 16-bit, register offset variant

 0 1 != 11111 100 - 00 ST2 (single structure) - 32-bit, register offset variant

 0 1 != 11111 100 0 01 ST2 (single structure) - 64-bit, register offset variant

 0 1 != 11111 101 - 00 ST4 (single structure) - 32-bit, register offset variant

 0 1 != 11111 101 0 01 ST4 (single structure) - 64-bit, register offset variant

 0 1 11111 000 - - ST2 (single structure) - 8-bit, immediate offset variant

 0 1 11111 001 - - ST4 (single structure) - 8-bit, immediate offset variant

 0 1 11111 010 - x0 ST2 (single structure) - 16-bit, immediate offset variant

 0 1 11111 011 - x0 ST4 (single structure) - 16-bit, immediate offset variant

 0 1 11111 100 - 00 ST2 (single structure) - 32-bit, immediate offset variant

 0 1 11111 100 0 01 ST2 (single structure) - 64-bit, immediate offset variant

 0 1 11111 101 - 00 ST4 (single structure) - 32-bit, immediate offset variant

 0 1 11111 101 0 01 ST4 (single structure) - 64-bit, immediate offset variant

 1 0 - 010 - x1 Unallocated.

 1 0 - 011 - x1 Unallocated.

 1 0 - 100 - 1x Unallocated.

 1 0 - 100 1 01 Unallocated.

 1 0 - 101 - 10 Unallocated.

 1 0 - 101 0 11 Unallocated.

 1 0 - 101 1 x1 Unallocated.

 1 0 - 110 1 - Unallocated.

 1 0 - 111 1 - Unallocated.

 1 0 != 11111 000 - - LD1 (single structure) - 8-bit, register offset variant

Decode fields
Instruction page

L R Rm opcode S size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-307
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 1 0 != 11111 001 - - LD3 (single structure) - 8-bit, register offset variant

 1 0 != 11111 010 - x0 LD1 (single structure) - 16-bit, register offset variant

 1 0 != 11111 011 - x0 LD3 (single structure) - 16-bit, register offset variant

 1 0 != 11111 100 - 00 LD1 (single structure) - 32-bit, register offset variant

 1 0 != 11111 100 0 01 LD1 (single structure) - 64-bit, register offset variant

 1 0 != 11111 101 - 00 LD3 (single structure) - 32-bit, register offset variant

 1 0 != 11111 101 0 01 LD3 (single structure) - 64-bit, register offset variant

 1 0 != 11111 110 0 - LD1R - Register offset variant

 1 0 != 11111 111 0 - LD3R - Register offset variant

 1 0 11111 000 - - LD1 (single structure) - 8-bit, immediate offset variant

 1 0 11111 001 - - LD3 (single structure) - 8-bit, immediate offset variant

 1 0 11111 010 - x0 LD1 (single structure) - 16-bit, immediate offset variant

 1 0 11111 011 - x0 LD3 (single structure) - 16-bit, immediate offset variant

 1 0 11111 100 - 00 LD1 (single structure) - 32-bit, immediate offset variant

 1 0 11111 100 0 01 LD1 (single structure) - 64-bit, immediate offset variant

 1 0 11111 101 - 00 LD3 (single structure) - 32-bit, immediate offset variant

 1 0 11111 101 0 01 LD3 (single structure) - 64-bit, immediate offset variant

 1 0 11111 110 0 - LD1R - Immediate offset variant

 1 0 11111 111 0 - LD3R - Immediate offset variant

 1 1 - 010 - x1 Unallocated.

 1 1 - 011 - x1 Unallocated.

 1 1 - 100 - 10 Unallocated.

 1 1 - 100 0 11 Unallocated.

 1 1 - 100 1 x1 Unallocated.

 1 1 - 101 - 10 Unallocated.

 1 1 - 101 0 11 Unallocated.

 1 1 - 101 1 x1 Unallocated.

 1 1 - 110 1 - Unallocated.

 1 1 - 111 1 - Unallocated.

 1 1 != 11111 000 - - LD2 (single structure) - 8-bit, register offset variant

 1 1 != 11111 001 - - LD4 (single structure) - 8-bit, register offset variant

 1 1 != 11111 010 - x0 LD2 (single structure) - 16-bit, register offset variant

Decode fields
Instruction page

L R Rm opcode S size
C4-308 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Load/store memory tags

This section describes the encoding of the Load/store memory tags instruction class. The encodings in this section
are decoded from Loads and Stores on page C4-298.

 1 1 != 11111 011 - x0 LD4 (single structure) - 16-bit, register offset variant

 1 1 != 11111 100 - 00 LD2 (single structure) - 32-bit, register offset variant

 1 1 != 11111 100 0 01 LD2 (single structure) - 64-bit, register offset variant

 1 1 != 11111 101 - 00 LD4 (single structure) - 32-bit, register offset variant

 1 1 != 11111 101 0 01 LD4 (single structure) - 64-bit, register offset variant

 1 1 != 11111 110 0 - LD2R - Register offset variant

 1 1 != 11111 111 0 - LD4R - Register offset variant

 1 1 11111 000 - - LD2 (single structure) - 8-bit, immediate offset variant

 1 1 11111 001 - - LD4 (single structure) - 8-bit, immediate offset variant

 1 1 11111 010 - x0 LD2 (single structure) - 16-bit, immediate offset variant

 1 1 11111 011 - x0 LD4 (single structure) - 16-bit, immediate offset variant

 1 1 11111 100 - 00 LD2 (single structure) - 32-bit, immediate offset variant

 1 1 11111 100 0 01 LD2 (single structure) - 64-bit, immediate offset variant

 1 1 11111 101 - 00 LD4 (single structure) - 32-bit, immediate offset variant

 1 1 11111 101 0 01 LD4 (single structure) - 64-bit, immediate offset variant

 1 1 11111 110 0 - LD2R - Immediate offset variant

 1 1 11111 111 0 - LD4R - Immediate offset variant

Decode fields
Instruction page Feature

opc imm9 op2

 00 - 01 STG - Encoding FEAT_MTE

 00 - 10 STG - Encoding FEAT_MTE

 00 - 11 STG - Encoding FEAT_MTE

 00 000000000 00 STZGM FEAT_MTE2

 01 - 00 LDG FEAT_MTE

 01 - 01 STZG - Encoding FEAT_MTE

Decode fields
Instruction page

L R Rm opcode S size

1 1 0 1 1 0 0 1 opc 1 imm9 op2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-309
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Load/store exclusive pair

This section describes the encoding of the Load/store exclusive pair instruction class. The encodings in this section
are decoded from Loads and Stores on page C4-298.

Load/store exclusive register

This section describes the encoding of the Load/store exclusive register instruction class. The encodings in this
section are decoded from Loads and Stores on page C4-298.

 01 - 10 STZG - Encoding FEAT_MTE

 01 - 11 STZG - Encoding FEAT_MTE

 10 - 01 ST2G - Encoding FEAT_MTE

 10 - 10 ST2G - Encoding FEAT_MTE

 10 - 11 ST2G - Encoding FEAT_MTE

 10 != 000000000 00 Unallocated. -

 10 000000000 00 STGM FEAT_MTE2

 11 - 01 STZ2G - Encoding FEAT_MTE

 11 - 10 STZ2G - Encoding FEAT_MTE

 11 - 11 STZ2G - Encoding FEAT_MTE

 11 != 000000000 00 Unallocated. -

 11 000000000 00 LDGM FEAT_MTE2

Decode fields
Instruction page

sz L o0

 0 0 0 STXP - 32-bit variant

 0 0 1 STLXP - 32-bit variant

 0 1 0 LDXP - 32-bit variant

 0 1 1 LDAXP - 32-bit variant

 1 0 0 STXP - 64-bit variant

 1 0 1 STLXP - 64-bit variant

 1 1 0 LDXP - 64-bit variant

 1 1 1 LDAXP - 64-bit variant

Decode fields
Instruction page Feature

opc imm9 op2

1 sz 0 0 1 0 0 0 0 L 1 Rs o0 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0
C4-310 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Load/store ordered

This section describes the encoding of the Load/store ordered instruction class. The encodings in this section are
decoded from Loads and Stores on page C4-298.

Decode fields
Instruction page

size L o0

 00 0 0 STXRB

 00 0 1 STLXRB

 00 1 0 LDXRB

 00 1 1 LDAXRB

 01 0 0 STXRH

 01 0 1 STLXRH

 01 1 0 LDXRH

 01 1 1 LDAXRH

 10 0 0 STXR - 32-bit variant

 10 0 1 STLXR - 32-bit variant

 10 1 0 LDXR - 32-bit variant

 10 1 1 LDAXR - 32-bit variant

 11 0 0 STXR - 64-bit variant

 11 0 1 STLXR - 64-bit variant

 11 1 0 LDXR - 64-bit variant

 11 1 1 LDAXR - 64-bit variant

Decode fields
Instruction page Feature

size L o0

 00 0 0 STLLRB FEAT_LOR

 00 0 1 STLRB -

 00 1 0 LDLARB FEAT_LOR

size 0 0 1 0 0 0 0 L 0 Rs o0 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size 0 0 1 0 0 0 1 L 0 Rs o0 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-311
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Compare and swap

This section describes the encoding of the Compare and swap instruction class. The encodings in this section are
decoded from Loads and Stores on page C4-298.

 00 1 1 LDARB -

 01 0 0 STLLRH FEAT_LOR

 01 0 1 STLRH -

 01 1 0 LDLARH FEAT_LOR

 01 1 1 LDARH -

 10 0 0 STLLR - 32-bit variant FEAT_LOR

 10 0 1 STLR - 32-bit variant -

 10 1 0 LDLAR - 32-bit variant FEAT_LOR

 10 1 1 LDAR - 32-bit variant -

 11 0 0 STLLR - 64-bit variant FEAT_LOR

 11 0 1 STLR - 64-bit variant -

 11 1 0 LDLAR - 64-bit variant FEAT_LOR

 11 1 1 LDAR - 64-bit variant -

Decode fields
Instruction page Feature

size L o0 Rt2

 - - - != 11111 Unallocated. -

 00 0 0 11111 CASB, CASAB, CASALB, CASLB - CASB variant FEAT_LSE

 00 0 1 11111 CASB, CASAB, CASALB, CASLB - CASLB variant FEAT_LSE

 00 1 0 11111 CASB, CASAB, CASALB, CASLB - CASAB variant FEAT_LSE

 00 1 1 11111 CASB, CASAB, CASALB, CASLB - CASALB variant FEAT_LSE

 01 0 0 11111 CASH, CASAH, CASALH, CASLH - CASH variant FEAT_LSE

 01 0 1 11111 CASH, CASAH, CASALH, CASLH - CASLH variant FEAT_LSE

 01 1 0 11111 CASH, CASAH, CASALH, CASLH - CASAH variant FEAT_LSE

 01 1 1 11111 CASH, CASAH, CASALH, CASLH - CASALH variant FEAT_LSE

 10 0 0 11111 CAS, CASA, CASAL, CASL - 32-bit CAS variant FEAT_LSE

Decode fields
Instruction page Feature

size L o0

size 0 0 1 0 0 0 1 L 1 Rs o0 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0
C4-312 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
LDAPR/STLR (unscaled immediate)

This section describes the encoding of the LDAPR/STLR (unscaled immediate) instruction class. The encodings in
this section are decoded from Loads and Stores on page C4-298.

 10 0 1 11111 CAS, CASA, CASAL, CASL - 32-bit CASL variant FEAT_LSE

 10 1 0 11111 CAS, CASA, CASAL, CASL - 32-bit CASA variant FEAT_LSE

 10 1 1 11111 CAS, CASA, CASAL, CASL - 32-bit CASAL variant FEAT_LSE

 11 0 0 11111 CAS, CASA, CASAL, CASL - 64-bit CAS variant FEAT_LSE

 11 0 1 11111 CAS, CASA, CASAL, CASL - 64-bit CASL variant FEAT_LSE

 11 1 0 11111 CAS, CASA, CASAL, CASL - 64-bit CASA variant FEAT_LSE

 11 1 1 11111 CAS, CASA, CASAL, CASL - 64-bit CASAL variant FEAT_LSE

Decode fields
Instruction page Feature

size opc

 00 00 STLURB FEAT_LRCPC2

 00 01 LDAPURB FEAT_LRCPC2

 00 10 LDAPURSB - 64-bit variant FEAT_LRCPC2

 00 11 LDAPURSB - 32-bit variant FEAT_LRCPC2

 01 00 STLURH FEAT_LRCPC2

 01 01 LDAPURH FEAT_LRCPC2

 01 10 LDAPURSH - 64-bit variant FEAT_LRCPC2

 01 11 LDAPURSH - 32-bit variant FEAT_LRCPC2

 10 00 STLUR - 32-bit variant FEAT_LRCPC2

 10 01 LDAPUR - 32-bit variant FEAT_LRCPC2

 10 10 LDAPURSW FEAT_LRCPC2

 10 11 Unallocated. -

 11 00 STLUR - 64-bit variant FEAT_LRCPC2

 11 01 LDAPUR - 64-bit variant FEAT_LRCPC2

 11 10 Unallocated. -

 11 11 Unallocated. -

Decode fields
Instruction page Feature

size L o0 Rt2

size 0 1 1 0 0 1 opc 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-313
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Load register (literal)

This section describes the encoding of the Load register (literal) instruction class. The encodings in this section are
decoded from Loads and Stores on page C4-298.

Load/store no-allocate pair (offset)

This section describes the encoding of the Load/store no-allocate pair (offset) instruction class. The encodings in
this section are decoded from Loads and Stores on page C4-298.

Decode fields
Instruction page

opc V

 00 0 LDR (literal) - 32-bit variant

 00 1 LDR (literal, SIMD&FP) - 32-bit variant

 01 0 LDR (literal) - 64-bit variant

 01 1 LDR (literal, SIMD&FP) - 64-bit variant

 10 0 LDRSW (literal)

 10 1 LDR (literal, SIMD&FP) - 128-bit variant

 11 0 PRFM (literal)

 11 1 Unallocated.

Decode fields
Instruction page

opc V L

 00 0 0 STNP - 32-bit variant

 00 0 1 LDNP - 32-bit variant

 00 1 0 STNP (SIMD&FP) - 32-bit variant

 00 1 1 LDNP (SIMD&FP) - 32-bit variant

 01 0 - Unallocated.

 01 1 0 STNP (SIMD&FP) - 64-bit variant

 01 1 1 LDNP (SIMD&FP) - 64-bit variant

 10 0 0 STNP - 64-bit variant

 10 0 1 LDNP - 64-bit variant

opc 0 1 1 V 0 0 imm19 Rt
31 30 29 28 27 26 25 24 23 5 4 0

opc 1 0 1 V 0 0 0 L imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0
C4-314 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Load/store register pair (post-indexed)

This section describes the encoding of the Load/store register pair (post-indexed) instruction class. The encodings
in this section are decoded from Loads and Stores on page C4-298.

Load/store register pair (offset)

This section describes the encoding of the Load/store register pair (offset) instruction class. The encodings in this
section are decoded from Loads and Stores on page C4-298.

 10 1 0 STNP (SIMD&FP) - 128-bit variant

 10 1 1 LDNP (SIMD&FP) - 128-bit variant

 11 - - Unallocated.

Decode fields
Instruction page Feature

opc V L

 00 0 0 STP - 32-bit variant -

 00 0 1 LDP - 32-bit variant -

 00 1 0 STP (SIMD&FP) - 32-bit variant -

 00 1 1 LDP (SIMD&FP) - 32-bit variant -

 01 0 0 STGP FEAT_MTE

 01 0 1 LDPSW -

 01 1 0 STP (SIMD&FP) - 64-bit variant -

 01 1 1 LDP (SIMD&FP) - 64-bit variant -

 10 0 0 STP - 64-bit variant -

 10 0 1 LDP - 64-bit variant -

 10 1 0 STP (SIMD&FP) - 128-bit variant -

 10 1 1 LDP (SIMD&FP) - 128-bit variant -

 11 - - Unallocated. -

Decode fields
Instruction page

opc V L

opc 1 0 1 V 0 0 1 L imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-315
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Load/store register pair (pre-indexed)

This section describes the encoding of the Load/store register pair (pre-indexed) instruction class. The encodings in
this section are decoded from Loads and Stores on page C4-298.

Decode fields
Instruction page Feature

opc V L

 00 0 0 STP - 32-bit variant -

 00 0 1 LDP - 32-bit variant -

 00 1 0 STP (SIMD&FP) - 32-bit variant -

 00 1 1 LDP (SIMD&FP) - 32-bit variant -

 01 0 0 STGP FEAT_MTE

 01 0 1 LDPSW -

 01 1 0 STP (SIMD&FP) - 64-bit variant -

 01 1 1 LDP (SIMD&FP) - 64-bit variant -

 10 0 0 STP - 64-bit variant -

 10 0 1 LDP - 64-bit variant -

 10 1 0 STP (SIMD&FP) - 128-bit variant -

 10 1 1 LDP (SIMD&FP) - 128-bit variant -

 11 - - Unallocated. -

Decode fields
Instruction page Feature

opc V L

 00 0 0 STP - 32-bit variant -

 00 0 1 LDP - 32-bit variant -

 00 1 0 STP (SIMD&FP) - 32-bit variant -

 00 1 1 LDP (SIMD&FP) - 32-bit variant -

 01 0 0 STGP FEAT_MTE

 01 0 1 LDPSW -

opc 1 0 1 V 0 1 0 L imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc 1 0 1 V 0 1 1 L imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0
C4-316 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Load/store register (unscaled immediate)

This section describes the encoding of the Load/store register (unscaled immediate) instruction class. The encodings
in this section are decoded from Loads and Stores on page C4-298.

 01 1 0 STP (SIMD&FP) - 64-bit variant -

 01 1 1 LDP (SIMD&FP) - 64-bit variant -

 10 0 0 STP - 64-bit variant -

 10 0 1 LDP - 64-bit variant -

 10 1 0 STP (SIMD&FP) - 128-bit variant -

 10 1 1 LDP (SIMD&FP) - 128-bit variant -

 11 - - Unallocated. -

Decode fields
Instruction page

size V opc

 x1 1 1x Unallocated.

 00 0 00 STURB

 00 0 01 LDURB

 00 0 10 LDURSB - 64-bit variant

 00 0 11 LDURSB - 32-bit variant

 00 1 00 STUR (SIMD&FP) - 8-bit variant

 00 1 01 LDUR (SIMD&FP) - 8-bit variant

 00 1 10 STUR (SIMD&FP) - 128-bit variant

 00 1 11 LDUR (SIMD&FP) - 128-bit variant

 01 0 00 STURH

 01 0 01 LDURH

 01 0 10 LDURSH - 64-bit variant

 01 0 11 LDURSH - 32-bit variant

 01 1 00 STUR (SIMD&FP) - 16-bit variant

 01 1 01 LDUR (SIMD&FP) - 16-bit variant

 1x 0 11 Unallocated.

Decode fields
Instruction page Feature

opc V L

size 1 1 1 V 0 0 opc 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-317
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Load/store register (immediate post-indexed)

This section describes the encoding of the Load/store register (immediate post-indexed) instruction class. The
encodings in this section are decoded from Loads and Stores on page C4-298.

 1x 1 1x Unallocated.

 10 0 00 STUR - 32-bit variant

 10 0 01 LDUR - 32-bit variant

 10 0 10 LDURSW

 10 1 00 STUR (SIMD&FP) - 32-bit variant

 10 1 01 LDUR (SIMD&FP) - 32-bit variant

 11 0 00 STUR - 64-bit variant

 11 0 01 LDUR - 64-bit variant

 11 0 10 PRFUM

 11 1 00 STUR (SIMD&FP) - 64-bit variant

 11 1 01 LDUR (SIMD&FP) - 64-bit variant

Decode fields
Instruction page

size V opc

 x1 1 1x Unallocated.

 00 0 00 STRB (immediate)

 00 0 01 LDRB (immediate)

 00 0 10 LDRSB (immediate) - 64-bit variant

 00 0 11 LDRSB (immediate) - 32-bit variant

 00 1 00 STR (immediate, SIMD&FP) - 8-bit variant

 00 1 01 LDR (immediate, SIMD&FP) - 8-bit variant

 00 1 10 STR (immediate, SIMD&FP) - 128-bit variant

 00 1 11 LDR (immediate, SIMD&FP) - 128-bit variant

 01 0 00 STRH (immediate)

 01 0 01 LDRH (immediate)

 01 0 10 LDRSH (immediate) - 64-bit variant

Decode fields
Instruction page

size V opc

size 1 1 1 V 0 0 opc 0 imm9 0 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
C4-318 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Load/store register (unprivileged)

This section describes the encoding of the Load/store register (unprivileged) instruction class. The encodings in this
section are decoded from Loads and Stores on page C4-298.

 01 0 11 LDRSH (immediate) - 32-bit variant

 01 1 00 STR (immediate, SIMD&FP) - 16-bit variant

 01 1 01 LDR (immediate, SIMD&FP) - 16-bit variant

 1x 0 11 Unallocated.

 1x 1 1x Unallocated.

 10 0 00 STR (immediate) - 32-bit variant

 10 0 01 LDR (immediate) - 32-bit variant

 10 0 10 LDRSW (immediate)

 10 1 00 STR (immediate, SIMD&FP) - 32-bit variant

 10 1 01 LDR (immediate, SIMD&FP) - 32-bit variant

 11 0 00 STR (immediate) - 64-bit variant

 11 0 01 LDR (immediate) - 64-bit variant

 11 0 10 Unallocated.

 11 1 00 STR (immediate, SIMD&FP) - 64-bit variant

 11 1 01 LDR (immediate, SIMD&FP) - 64-bit variant

Decode fields
Instruction page

size V opc

 - 1 - Unallocated.

 00 0 00 STTRB

 00 0 01 LDTRB

 00 0 10 LDTRSB - 64-bit variant

 00 0 11 LDTRSB - 32-bit variant

 01 0 00 STTRH

 01 0 01 LDTRH

 01 0 10 LDTRSH - 64-bit variant

Decode fields
Instruction page

size V opc

size 1 1 1 V 0 0 opc 0 imm9 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-319
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Load/store register (immediate pre-indexed)

This section describes the encoding of the Load/store register (immediate pre-indexed) instruction class. The
encodings in this section are decoded from Loads and Stores on page C4-298.

 01 0 11 LDTRSH - 32-bit variant

 1x 0 11 Unallocated.

 10 0 00 STTR - 32-bit variant

 10 0 01 LDTR - 32-bit variant

 10 0 10 LDTRSW

 11 0 00 STTR - 64-bit variant

 11 0 01 LDTR - 64-bit variant

 11 0 10 Unallocated.

Decode fields
Instruction page

size V opc

 x1 1 1x Unallocated.

 00 0 00 STRB (immediate)

 00 0 01 LDRB (immediate)

 00 0 10 LDRSB (immediate) - 64-bit variant

 00 0 11 LDRSB (immediate) - 32-bit variant

 00 1 00 STR (immediate, SIMD&FP) - 8-bit variant

 00 1 01 LDR (immediate, SIMD&FP) - 8-bit variant

 00 1 10 STR (immediate, SIMD&FP) - 128-bit variant

 00 1 11 LDR (immediate, SIMD&FP) - 128-bit variant

 01 0 00 STRH (immediate)

 01 0 01 LDRH (immediate)

 01 0 10 LDRSH (immediate) - 64-bit variant

 01 0 11 LDRSH (immediate) - 32-bit variant

 01 1 00 STR (immediate, SIMD&FP) - 16-bit variant

 01 1 01 LDR (immediate, SIMD&FP) - 16-bit variant

Decode fields
Instruction page

size V opc

size 1 1 1 V 0 0 opc 0 imm9 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
C4-320 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Atomic memory operations

This section describes the encoding of the Atomic memory operations instruction class. The encodings in this
section are decoded from Loads and Stores on page C4-298.

 1x 0 11 Unallocated.

 1x 1 1x Unallocated.

 10 0 00 STR (immediate) - 32-bit variant

 10 0 01 LDR (immediate) - 32-bit variant

 10 0 10 LDRSW (immediate)

 10 1 00 STR (immediate, SIMD&FP) - 32-bit variant

 10 1 01 LDR (immediate, SIMD&FP) - 32-bit variant

 11 0 00 STR (immediate) - 64-bit variant

 11 0 01 LDR (immediate) - 64-bit variant

 11 0 10 Unallocated.

 11 1 00 STR (immediate, SIMD&FP) - 64-bit variant

 11 1 01 LDR (immediate, SIMD&FP) - 64-bit variant

Decode fields
Instruction page

size V opc

size 1 1 1 V 0 0 A R 1 Rs o3 opc 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

Decode fields
Instruction page Feature

size V A R Rs o3 opc

 - 0 - - - 1 11x Unallocated. -

 - 0 0 - - 1 100 Unallocated. -

 - 0 0 1 - 1 001 Unallocated. -

 - 0 0 1 - 1 010 Unallocated. -

 - 0 0 1 - 1 011 Unallocated. -

 - 0 0 1 - 1 101 Unallocated. -

 - 0 1 0 - 1 001 Unallocated. -

 - 0 1 0 - 1 010 Unallocated. -

 - 0 1 0 - 1 011 Unallocated. -

 - 0 1 0 - 1 101 Unallocated. -

 - 0 1 1 - 1 001 Unallocated. -
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-321
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 - 0 1 1 - 1 010 Unallocated. -

 - 0 1 1 - 1 011 Unallocated. -

 - 0 1 1 - 1 100 Unallocated. -

 - 0 1 1 - 1 101 Unallocated. -

 - 1 - - - - - Unallocated. -

 00 0 0 0 - 0 000 LDADDB, LDADDAB, LDADDALB, LDADDLB - LDADDB
variant

FEAT_LSE

 00 0 0 0 - 0 001 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB - LDCLRB
variant

FEAT_LSE

 00 0 0 0 - 0 010 LDEORB, LDEORAB, LDEORALB, LDEORLB - LDEORB
variant

FEAT_LSE

 00 0 0 0 - 0 011 LDSETB, LDSETAB, LDSETALB, LDSETLB - LDSETB variant FEAT_LSE

 00 0 0 0 - 0 100 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB -
LDSMAXB variant

FEAT_LSE

 00 0 0 0 - 0 101 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB -
LDSMINB variant

FEAT_LSE

 00 0 0 0 - 0 110 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB -
LDUMAXB variant

FEAT_LSE

 00 0 0 0 - 0 111 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB -
LDUMINB variant

FEAT_LSE

 00 0 0 0 - 1 000 SWPB, SWPAB, SWPALB, SWPLB - SWPB variant FEAT_LSE

 00 0 0 0 - 1 001 Unallocated. -

 00 0 0 0 - 1 010 Unallocated. -

 00 0 0 0 - 1 011 Unallocated. -

 00 0 0 0 - 1 101 Unallocated. -

 00 0 0 1 - 0 000 LDADDB, LDADDAB, LDADDALB, LDADDLB - LDADDLB
variant

FEAT_LSE

 00 0 0 1 - 0 001 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB - LDCLRLB
variant

FEAT_LSE

 00 0 0 1 - 0 010 LDEORB, LDEORAB, LDEORALB, LDEORLB - LDEORLB
variant

FEAT_LSE

 00 0 0 1 - 0 011 LDSETB, LDSETAB, LDSETALB, LDSETLB - LDSETLB
variant

FEAT_LSE

 00 0 0 1 - 0 100 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB -
LDSMAXLB variant

FEAT_LSE

 00 0 0 1 - 0 101 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB -
LDSMINLB variant

FEAT_LSE

Decode fields
Instruction page Feature

size V A R Rs o3 opc
C4-322 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 00 0 0 1 - 0 110 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB -
LDUMAXLB variant

FEAT_LSE

 00 0 0 1 - 0 111 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB -
LDUMINLB variant

FEAT_LSE

 00 0 0 1 - 1 000 SWPB, SWPAB, SWPALB, SWPLB - SWPLB variant FEAT_LSE

 00 0 1 0 - 0 000 LDADDB, LDADDAB, LDADDALB, LDADDLB - LDADDAB
variant

FEAT_LSE

 00 0 1 0 - 0 001 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB - LDCLRAB
variant

FEAT_LSE

 00 0 1 0 - 0 010 LDEORB, LDEORAB, LDEORALB, LDEORLB - LDEORAB
variant

FEAT_LSE

 00 0 1 0 - 0 011 LDSETB, LDSETAB, LDSETALB, LDSETLB - LDSETAB
variant

FEAT_LSE

 00 0 1 0 - 0 100 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB -
LDSMAXAB variant

FEAT_LSE

 00 0 1 0 - 0 101 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB -
LDSMINAB variant

FEAT_LSE

 00 0 1 0 - 0 110 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB -
LDUMAXAB variant

FEAT_LSE

 00 0 1 0 - 0 111 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB -
LDUMINAB variant

FEAT_LSE

 00 0 1 0 - 1 000 SWPB, SWPAB, SWPALB, SWPLB - SWPAB variant FEAT_LSE

 00 0 1 0 - 1 100 LDAPRB FEAT_LRCPC

 00 0 1 1 - 0 000 LDADDB, LDADDAB, LDADDALB, LDADDLB -
LDADDALB variant

FEAT_LSE

 00 0 1 1 - 0 001 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB - LDCLRALB
variant

FEAT_LSE

 00 0 1 1 - 0 010 LDEORB, LDEORAB, LDEORALB, LDEORLB - LDEORALB
variant

FEAT_LSE

 00 0 1 1 - 0 011 LDSETB, LDSETAB, LDSETALB, LDSETLB - LDSETALB
variant

FEAT_LSE

 00 0 1 1 - 0 100 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB -
LDSMAXALB variant

FEAT_LSE

 00 0 1 1 - 0 101 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB -
LDSMINALB variant

FEAT_LSE

 00 0 1 1 - 0 110 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB -
LDUMAXALB variant

FEAT_LSE

 00 0 1 1 - 0 111 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB -
LDUMINALB variant

FEAT_LSE

Decode fields
Instruction page Feature

size V A R Rs o3 opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-323
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 00 0 1 1 - 1 000 SWPB, SWPAB, SWPALB, SWPLB - SWPALB variant FEAT_LSE

 01 0 0 0 - 0 000 LDADDH, LDADDAH, LDADDALH, LDADDLH - LDADDH
variant

FEAT_LSE

 01 0 0 0 - 0 001 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH - LDCLRH
variant

FEAT_LSE

 01 0 0 0 - 0 010 LDEORH, LDEORAH, LDEORALH, LDEORLH - LDEORH
variant

FEAT_LSE

 01 0 0 0 - 0 011 LDSETH, LDSETAH, LDSETALH, LDSETLH - LDSETH
variant

FEAT_LSE

 01 0 0 0 - 0 100 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH -
LDSMAXH variant

FEAT_LSE

 01 0 0 0 - 0 101 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH -
LDSMINH variant

FEAT_LSE

 01 0 0 0 - 0 110 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH -
LDUMAXH variant

FEAT_LSE

 01 0 0 0 - 0 111 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH -
LDUMINH variant

FEAT_LSE

 01 0 0 0 - 1 000 SWPH, SWPAH, SWPALH, SWPLH - SWPH variant FEAT_LSE

 01 0 0 0 - 1 001 Unallocated. -

 01 0 0 0 - 1 010 Unallocated. -

 01 0 0 0 - 1 011 Unallocated. -

 01 0 0 0 - 1 101 Unallocated. -

 01 0 0 1 - 0 000 LDADDH, LDADDAH, LDADDALH, LDADDLH - LDADDLH
variant

FEAT_LSE

 01 0 0 1 - 0 001 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH - LDCLRLH
variant

FEAT_LSE

 01 0 0 1 - 0 010 LDEORH, LDEORAH, LDEORALH, LDEORLH - LDEORLH
variant

FEAT_LSE

 01 0 0 1 - 0 011 LDSETH, LDSETAH, LDSETALH, LDSETLH - LDSETLH
variant

FEAT_LSE

 01 0 0 1 - 0 100 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH -
LDSMAXLH variant

FEAT_LSE

 01 0 0 1 - 0 101 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH -
LDSMINLH variant

FEAT_LSE

 01 0 0 1 - 0 110 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH -
LDUMAXLH variant

FEAT_LSE

 01 0 0 1 - 0 111 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH -
LDUMINLH variant

FEAT_LSE

Decode fields
Instruction page Feature

size V A R Rs o3 opc
C4-324 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 01 0 0 1 - 1 000 SWPH, SWPAH, SWPALH, SWPLH - SWPLH variant FEAT_LSE

 01 0 1 0 - 0 000 LDADDH, LDADDAH, LDADDALH, LDADDLH - LDADDAH
variant

FEAT_LSE

 01 0 1 0 - 0 001 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH - LDCLRAH
variant

FEAT_LSE

 01 0 1 0 - 0 010 LDEORH, LDEORAH, LDEORALH, LDEORLH - LDEORAH
variant

FEAT_LSE

 01 0 1 0 - 0 011 LDSETH, LDSETAH, LDSETALH, LDSETLH - LDSETAH
variant

FEAT_LSE

 01 0 1 0 - 0 100 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH -
LDSMAXAH variant

FEAT_LSE

 01 0 1 0 - 0 101 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH -
LDSMINAH variant

FEAT_LSE

 01 0 1 0 - 0 110 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH -
LDUMAXAH variant

FEAT_LSE

 01 0 1 0 - 0 111 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH -
LDUMINAH variant

FEAT_LSE

 01 0 1 0 - 1 000 SWPH, SWPAH, SWPALH, SWPLH - SWPAH variant FEAT_LSE

 01 0 1 0 - 1 100 LDAPRH FEAT_LRCPC

 01 0 1 1 - 0 000 LDADDH, LDADDAH, LDADDALH, LDADDLH -
LDADDALH variant

FEAT_LSE

 01 0 1 1 - 0 001 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH - LDCLRALH
variant

FEAT_LSE

 01 0 1 1 - 0 010 LDEORH, LDEORAH, LDEORALH, LDEORLH - LDEORALH
variant

FEAT_LSE

 01 0 1 1 - 0 011 LDSETH, LDSETAH, LDSETALH, LDSETLH - LDSETALH
variant

FEAT_LSE

 01 0 1 1 - 0 100 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH -
LDSMAXALH variant

FEAT_LSE

 01 0 1 1 - 0 101 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH -
LDSMINALH variant

FEAT_LSE

 01 0 1 1 - 0 110 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH -
LDUMAXALH variant

FEAT_LSE

 01 0 1 1 - 0 111 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH -
LDUMINALH variant

FEAT_LSE

 01 0 1 1 - 1 000 SWPH, SWPAH, SWPALH, SWPLH - SWPALH variant FEAT_LSE

 10 0 0 0 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 32-bit LDADD
variant

FEAT_LSE

Decode fields
Instruction page Feature

size V A R Rs o3 opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-325
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 10 0 0 0 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 32-bit LDCLR
variant

FEAT_LSE

 10 0 0 0 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 32-bit LDEOR
variant

FEAT_LSE

 10 0 0 0 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 32-bit LDSET variant FEAT_LSE

 10 0 0 0 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 32-bit
LDSMAX variant

FEAT_LSE

 10 0 0 0 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 32-bit LDSMIN
variant

FEAT_LSE

 10 0 0 0 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 32-bit
LDUMAX variant

FEAT_LSE

 10 0 0 0 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 32-bit
LDUMIN variant

FEAT_LSE

 10 0 0 0 - 1 000 SWP, SWPA, SWPAL, SWPL - 32-bit SWP variant FEAT_LSE

 10 0 0 0 - 1 001 Unallocated. -

 10 0 0 0 - 1 010 Unallocated. -

 10 0 0 0 - 1 011 Unallocated. -

 10 0 0 0 - 1 101 Unallocated. -

 10 0 0 1 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 32-bit LDADDL
variant

FEAT_LSE

 10 0 0 1 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 32-bit LDCLRL
variant

FEAT_LSE

 10 0 0 1 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 32-bit LDEORL
variant

FEAT_LSE

 10 0 0 1 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 32-bit LDSETL variant FEAT_LSE

 10 0 0 1 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 32-bit
LDSMAXL variant

FEAT_LSE

 10 0 0 1 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 32-bit
LDSMINL variant

FEAT_LSE

 10 0 0 1 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 32-bit
LDUMAXL variant

FEAT_LSE

 10 0 0 1 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 32-bit
LDUMINL variant

FEAT_LSE

 10 0 0 1 - 1 000 SWP, SWPA, SWPAL, SWPL - 32-bit SWPL variant FEAT_LSE

 10 0 1 0 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 32-bit LDADDA
variant

FEAT_LSE

 10 0 1 0 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 32-bit LDCLRA
variant

FEAT_LSE

Decode fields
Instruction page Feature

size V A R Rs o3 opc
C4-326 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 10 0 1 0 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 32-bit LDEORA
variant

FEAT_LSE

 10 0 1 0 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 32-bit LDSETA variant FEAT_LSE

 10 0 1 0 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 32-bit
LDSMAXA variant

FEAT_LSE

 10 0 1 0 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 32-bit
LDSMINA variant

FEAT_LSE

 10 0 1 0 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 32-bit
LDUMAXA variant

FEAT_LSE

 10 0 1 0 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 32-bit
LDUMINA variant

FEAT_LSE

 10 0 1 0 - 1 000 SWP, SWPA, SWPAL, SWPL - 32-bit SWPA variant FEAT_LSE

 10 0 1 0 - 1 100 LDAPR - 32-bit variant FEAT_LRCPC

 10 0 1 1 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 32-bit LDADDAL
variant

FEAT_LSE

 10 0 1 1 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 32-bit LDCLRAL
variant

FEAT_LSE

 10 0 1 1 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 32-bit LDEORAL
variant

FEAT_LSE

 10 0 1 1 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 32-bit LDSETAL
variant

FEAT_LSE

 10 0 1 1 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 32-bit
LDSMAXAL variant

FEAT_LSE

 10 0 1 1 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 32-bit
LDSMINAL variant

FEAT_LSE

 10 0 1 1 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 32-bit
LDUMAXAL variant

FEAT_LSE

 10 0 1 1 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 32-bit
LDUMINAL variant

FEAT_LSE

 10 0 1 1 - 1 000 SWP, SWPA, SWPAL, SWPL - 32-bit SWPAL variant FEAT_LSE

 11 0 0 0 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 64-bit LDADD
variant

FEAT_LSE

 11 0 0 0 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 64-bit LDCLR
variant

FEAT_LSE

 11 0 0 0 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 64-bit LDEOR
variant

FEAT_LSE

 11 0 0 0 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 64-bit LDSET variant FEAT_LSE

 11 0 0 0 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 64-bit
LDSMAX variant

FEAT_LSE

Decode fields
Instruction page Feature

size V A R Rs o3 opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-327
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 11 0 0 0 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 64-bit LDSMIN
variant

FEAT_LSE

 11 0 0 0 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 64-bit
LDUMAX variant

FEAT_LSE

 11 0 0 0 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 64-bit
LDUMIN variant

FEAT_LSE

 11 0 0 0 - 1 000 SWP, SWPA, SWPAL, SWPL - 64-bit SWP variant FEAT_LSE

 11 0 0 0 - 1 010 ST64BV0 FEAT_LS64_V

 11 0 0 0 - 1 011 ST64BV FEAT_LS64_V

 11 0 0 0 11111 1 001 ST64B FEAT_LS64

 11 0 0 0 11111 1 101 LD64B FEAT_LS64

 11 0 0 1 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 64-bit LDADDL
variant

FEAT_LSE

 11 0 0 1 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 64-bit LDCLRL
variant

FEAT_LSE

 11 0 0 1 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 64-bit LDEORL
variant

FEAT_LSE

 11 0 0 1 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 64-bit LDSETL variant FEAT_LSE

 11 0 0 1 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 64-bit
LDSMAXL variant

FEAT_LSE

 11 0 0 1 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 64-bit
LDSMINL variant

FEAT_LSE

 11 0 0 1 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 64-bit
LDUMAXL variant

FEAT_LSE

 11 0 0 1 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 64-bit
LDUMINL variant

FEAT_LSE

 11 0 0 1 - 1 000 SWP, SWPA, SWPAL, SWPL - 64-bit SWPL variant FEAT_LSE

 11 0 1 0 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 64-bit LDADDA
variant

FEAT_LSE

 11 0 1 0 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 64-bit LDCLRA
variant

FEAT_LSE

 11 0 1 0 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 64-bit LDEORA
variant

FEAT_LSE

 11 0 1 0 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 64-bit LDSETA variant FEAT_LSE

 11 0 1 0 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 64-bit
LDSMAXA variant

FEAT_LSE

 11 0 1 0 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 64-bit
LDSMINA variant

FEAT_LSE

Decode fields
Instruction page Feature

size V A R Rs o3 opc
C4-328 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Load/store register (register offset)

This section describes the encoding of the Load/store register (register offset) instruction class. The encodings in
this section are decoded from Loads and Stores on page C4-298.

 11 0 1 0 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 64-bit
LDUMAXA variant

FEAT_LSE

 11 0 1 0 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 64-bit
LDUMINA variant

FEAT_LSE

 11 0 1 0 - 1 000 SWP, SWPA, SWPAL, SWPL - 64-bit SWPA variant FEAT_LSE

 11 0 1 0 - 1 100 LDAPR - 64-bit variant FEAT_LRCPC

 11 0 1 1 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 64-bit LDADDAL
variant

FEAT_LSE

 11 0 1 1 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 64-bit LDCLRAL
variant

FEAT_LSE

 11 0 1 1 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 64-bit LDEORAL
variant

FEAT_LSE

 11 0 1 1 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 64-bit LDSETAL
variant

FEAT_LSE

 11 0 1 1 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 64-bit
LDSMAXAL variant

FEAT_LSE

 11 0 1 1 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 64-bit
LDSMINAL variant

FEAT_LSE

 11 0 1 1 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 64-bit
LDUMAXAL variant

FEAT_LSE

 11 0 1 1 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 64-bit
LDUMINAL variant

FEAT_LSE

 11 0 1 1 - 1 000 SWP, SWPA, SWPAL, SWPL - 64-bit SWPAL variant FEAT_LSE

Decode fields
Instruction page Feature

size V A R Rs o3 opc

Decode fields
Instruction page

size V opc option

 x1 1 1x - Unallocated.

 00 0 00 != 011 STRB (register) - Extended register variant

 00 0 00 011 STRB (register) - Shifted register variant

 00 0 01 != 011 LDRB (register) - Extended register variant

size 1 1 1 V 0 0 opc 1 Rm option S 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-329
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Load/store register (pac)

This section describes the encoding of the Load/store register (pac) instruction class. The encodings in this section
are decoded from Loads and Stores on page C4-298.

 00 0 01 011 LDRB (register) - Shifted register variant

 00 0 10 != 011 LDRSB (register) - 64-bit with extended register offset variant

 00 0 10 011 LDRSB (register) - 64-bit with shifted register offset variant

 00 0 11 != 011 LDRSB (register) - 32-bit with extended register offset variant

 00 0 11 011 LDRSB (register) - 32-bit with shifted register offset variant

 00 1 00 != 011 STR (register, SIMD&FP)

 00 1 00 011 STR (register, SIMD&FP)

 00 1 01 != 011 LDR (register, SIMD&FP)

 00 1 01 011 LDR (register, SIMD&FP)

 00 1 10 - STR (register, SIMD&FP)

 00 1 11 - LDR (register, SIMD&FP)

 01 0 00 - STRH (register)

 01 0 01 - LDRH (register)

 01 0 10 - LDRSH (register) - 64-bit variant

 01 0 11 - LDRSH (register) - 32-bit variant

 01 1 00 - STR (register, SIMD&FP)

 01 1 01 - LDR (register, SIMD&FP)

 1x 0 11 - Unallocated.

 1x 1 1x - Unallocated.

 10 0 00 - STR (register) - 32-bit variant

 10 0 01 - LDR (register) - 32-bit variant

 10 0 10 - LDRSW (register)

 10 1 00 - STR (register, SIMD&FP)

 10 1 01 - LDR (register, SIMD&FP)

 11 0 00 - STR (register) - 64-bit variant

 11 0 01 - LDR (register) - 64-bit variant

 11 0 10 - PRFM (register)

 11 1 00 - STR (register, SIMD&FP)

 11 1 01 - LDR (register, SIMD&FP)

Decode fields
Instruction page

size V opc option
C4-330 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Load/store register (unsigned immediate)

This section describes the encoding of the Load/store register (unsigned immediate) instruction class. The
encodings in this section are decoded from Loads and Stores on page C4-298.

Decode fields
Instruction page Feature

size V M W

 != 11 - - - Unallocated. -

 11 0 0 0 LDRAA, LDRAB - Key A, offset variant FEAT_PAuth

 11 0 0 1 LDRAA, LDRAB - Key A, pre-indexed variant FEAT_PAuth

 11 0 1 0 LDRAA, LDRAB - Key B, offset variant FEAT_PAuth

 11 0 1 1 LDRAA, LDRAB - Key B, pre-indexed variant FEAT_PAuth

 11 1 - - Unallocated. -

Decode fields
Instruction page

size V opc

 x1 1 1x Unallocated.

 00 0 00 STRB (immediate)

 00 0 01 LDRB (immediate)

 00 0 10 LDRSB (immediate) - 64-bit variant

 00 0 11 LDRSB (immediate) - 32-bit variant

 00 1 00 STR (immediate, SIMD&FP) - 8-bit variant

 00 1 01 LDR (immediate, SIMD&FP) - 8-bit variant

 00 1 10 STR (immediate, SIMD&FP) - 128-bit variant

 00 1 11 LDR (immediate, SIMD&FP) - 128-bit variant

 01 0 00 STRH (immediate)

 01 0 01 LDRH (immediate)

 01 0 10 LDRSH (immediate) - 64-bit variant

 01 0 11 LDRSH (immediate) - 32-bit variant

size 1 1 1 V 0 0 M S 1 imm9 W 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size 1 1 1 V 0 1 opc imm12 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-331
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.5 Data Processing -- Register

This section describes the encoding of the Data Processing -- Register group. The encodings in this section are
decoded from A64 instruction set encoding on page C4-284.

 01 1 00 STR (immediate, SIMD&FP) - 16-bit variant

 01 1 01 LDR (immediate, SIMD&FP) - 16-bit variant

 1x 0 11 Unallocated.

 1x 1 1x Unallocated.

 10 0 00 STR (immediate) - 32-bit variant

 10 0 01 LDR (immediate) - 32-bit variant

 10 0 10 LDRSW (immediate)

 10 1 00 STR (immediate, SIMD&FP) - 32-bit variant

 10 1 01 LDR (immediate, SIMD&FP) - 32-bit variant

 11 0 00 STR (immediate) - 64-bit variant

 11 0 01 LDR (immediate) - 64-bit variant

 11 0 10 PRFM (immediate)

 11 1 00 STR (immediate, SIMD&FP) - 64-bit variant

 11 1 01 LDR (immediate, SIMD&FP) - 64-bit variant

Decode fields
Instruction page

size V opc

Table C4-6 Encoding table for the Data Processing -- Register group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 0 1 0110 - Data-processing (2 source) on page C4-333

 1 1 0110 - Data-processing (1 source) on page C4-334

 - 0 0xxx - Logical (shifted register) on page C4-336

 - 0 1xx0 - Add/subtract (shifted register) on page C4-337

 - 0 1xx1 - Add/subtract (extended register) on page C4-338

 - 1 0000 000000 Add/subtract (with carry) on page C4-338

 - 1 0000 000011 Unallocated.

101 op2 op3
31 30 29 28 27 25 24 21 20 16 15 10 9 0

op0
op1
C4-332 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Data-processing (2 source)

This section describes the encoding of the Data-processing (2 source) instruction class. The encodings in this section
are decoded from Data Processing -- Register on page C4-332.

 - 1 0000 0001xx Unallocated.

 - 1 0000 001xxx Unallocated.

 - 1 0000 x00001 Rotate right into flags on page C4-339

 - 1 0000 xx0010 Evaluate into flags on page C4-339

 - 1 0010 xxxx0x Conditional compare (register) on page C4-340

 - 1 0010 xxxx1x Conditional compare (immediate) on page C4-340

 - 1 0100 - Conditional select on page C4-341

 - 1 0xx1 - Unallocated.

 - 1 1xxx - Data-processing (3 source) on page C4-341

Decode fields
Instruction page Feature

sf S opcode

 - - 000001 Unallocated. -

 - - 011xxx Unallocated. -

 - - 1xxxxx Unallocated. -

 - 0 00011x Unallocated. -

 - 0 001101 Unallocated. -

 - 0 00111x Unallocated. -

 - 1 00001x Unallocated. -

 - 1 0001xx Unallocated. -

 - 1 001xxx Unallocated. -

 - 1 01xxxx Unallocated. -

 0 - 000000 Unallocated. -

 0 0 000010 UDIV - 32-bit variant -

 0 0 000011 SDIV - 32-bit variant -

Table C4-6 Encoding table for the Data Processing -- Register group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2 op3

sf 0 S 1 1 0 1 0 1 1 0 Rm opcode Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-333
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Data-processing (1 source)

This section describes the encoding of the Data-processing (1 source) instruction class. The encodings in this section
are decoded from Data Processing -- Register on page C4-332.

 0 0 00010x Unallocated. -

 0 0 001000 LSLV - 32-bit variant -

 0 0 001001 LSRV - 32-bit variant -

 0 0 001010 ASRV - 32-bit variant -

 0 0 001011 RORV - 32-bit variant -

 0 0 001100 Unallocated. -

 0 0 010x11 Unallocated. -

 0 0 010000 CRC32B, CRC32H, CRC32W, CRC32X - CRC32B variant -

 0 0 010001 CRC32B, CRC32H, CRC32W, CRC32X - CRC32H variant -

 0 0 010010 CRC32B, CRC32H, CRC32W, CRC32X - CRC32W variant -

 0 0 010100 CRC32CB, CRC32CH, CRC32CW, CRC32CX - CRC32CB variant -

 0 0 010101 CRC32CB, CRC32CH, CRC32CW, CRC32CX - CRC32CH variant -

 0 0 010110 CRC32CB, CRC32CH, CRC32CW, CRC32CX - CRC32CW variant -

 1 0 000000 SUBP FEAT_MTE

 1 0 000010 UDIV - 64-bit variant -

 1 0 000011 SDIV - 64-bit variant -

 1 0 000100 IRG FEAT_MTE

 1 0 000101 GMI FEAT_MTE

 1 0 001000 LSLV - 64-bit variant -

 1 0 001001 LSRV - 64-bit variant -

 1 0 001010 ASRV - 64-bit variant -

 1 0 001011 RORV - 64-bit variant -

 1 0 001100 PACGA FEAT_PAuth

 1 0 010xx0 Unallocated. -

 1 0 010x0x Unallocated. -

 1 0 010011 CRC32B, CRC32H, CRC32W, CRC32X - CRC32X variant -

 1 0 010111 CRC32CB, CRC32CH, CRC32CW, CRC32CX - CRC32CX variant -

 1 1 000000 SUBPS FEAT_MTE

Decode fields
Instruction page Feature

sf S opcode
C4-334 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
sf 1 S 1 1 0 1 0 1 1 0 opcode2 opcode Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

Decode fields
Instruction page Feature

sf S opcode2 opcode Rn

 - - - 1xxxxx - Unallocated. -

 - - xxx1x - - Unallocated. -

 - - xx1xx - - Unallocated. -

 - - x1xxx - - Unallocated. -

 - - 1xxxx - - Unallocated. -

 - 0 00000 00011x - Unallocated. -

 - 0 00000 001xxx - Unallocated. -

 - 0 00000 01xxxx - Unallocated. -

 - 1 - - - Unallocated. -

 0 - 00001 - - Unallocated. -

 0 0 00000 000000 - RBIT - 32-bit variant -

 0 0 00000 000001 - REV16 - 32-bit variant -

 0 0 00000 000010 - REV - 32-bit variant -

 0 0 00000 000011 - Unallocated. -

 0 0 00000 000100 - CLZ - 32-bit variant -

 0 0 00000 000101 - CLS - 32-bit variant -

 1 0 00000 000000 - RBIT - 64-bit variant -

 1 0 00000 000001 - REV16 - 64-bit variant -

 1 0 00000 000010 - REV32 -

 1 0 00000 000011 - REV - 64-bit variant -

 1 0 00000 000100 - CLZ - 64-bit variant -

 1 0 00000 000101 - CLS - 64-bit variant -

 1 0 00001 000000 - PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA - PACIA variant FEAT_PAuth

 1 0 00001 000001 - PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB - PACIB variant FEAT_PAuth

 1 0 00001 000010 - PACDA, PACDZA - PACDA variant FEAT_PAuth

 1 0 00001 000011 - PACDB, PACDZB - PACDB variant FEAT_PAuth

 1 0 00001 000100 - AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA - AUTIA
variant

FEAT_PAuth
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-335
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Logical (shifted register)

This section describes the encoding of the Logical (shifted register) instruction class. The encodings in this section
are decoded from Data Processing -- Register on page C4-332.

 1 0 00001 000101 - AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB - AUTIB
variant

FEAT_PAuth

 1 0 00001 000110 - AUTDA, AUTDZA - AUTDA variant FEAT_PAuth

 1 0 00001 000111 - AUTDB, AUTDZB - AUTDB variant FEAT_PAuth

 1 0 00001 001000 11111 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA - PACIZA variant FEAT_PAuth

 1 0 00001 001001 11111 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB - PACIZB variant FEAT_PAuth

 1 0 00001 001010 11111 PACDA, PACDZA - PACDZA variant FEAT_PAuth

 1 0 00001 001011 11111 PACDB, PACDZB - PACDZB variant FEAT_PAuth

 1 0 00001 001100 11111 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA - AUTIZA
variant

FEAT_PAuth

 1 0 00001 001101 11111 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB - AUTIZB
variant

FEAT_PAuth

 1 0 00001 001110 11111 AUTDA, AUTDZA - AUTDZA variant FEAT_PAuth

 1 0 00001 001111 11111 AUTDB, AUTDZB - AUTDZB variant FEAT_PAuth

 1 0 00001 010000 11111 XPACD, XPACI, XPACLRI - XPACI variant FEAT_PAuth

 1 0 00001 010001 11111 XPACD, XPACI, XPACLRI - XPACD variant FEAT_PAuth

 1 0 00001 01001x - Unallocated. -

 1 0 00001 0101xx - Unallocated. -

 1 0 00001 011xxx - Unallocated. -

Decode fields
Instruction page Feature

sf S opcode2 opcode Rn

Decode fields
Instruction page

sf opc N imm6

 0 - - 1xxxxx Unallocated.

 0 00 0 - AND (shifted register) - 32-bit variant

 0 00 1 - BIC (shifted register) - 32-bit variant

 0 01 0 - ORR (shifted register) - 32-bit variant

 0 01 1 - ORN (shifted register) - 32-bit variant

sf opc 0 1 0 1 0 shift N Rm imm6 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
C4-336 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Add/subtract (shifted register)

This section describes the encoding of the Add/subtract (shifted register) instruction class. The encodings in this
section are decoded from Data Processing -- Register on page C4-332.

 0 10 0 - EOR (shifted register) - 32-bit variant

 0 10 1 - EON (shifted register) - 32-bit variant

 0 11 0 - ANDS (shifted register) - 32-bit variant

 0 11 1 - BICS (shifted register) - 32-bit variant

 1 00 0 - AND (shifted register) - 64-bit variant

 1 00 1 - BIC (shifted register) - 64-bit variant

 1 01 0 - ORR (shifted register) - 64-bit variant

 1 01 1 - ORN (shifted register) - 64-bit variant

 1 10 0 - EOR (shifted register) - 64-bit variant

 1 10 1 - EON (shifted register) - 64-bit variant

 1 11 0 - ANDS (shifted register) - 64-bit variant

 1 11 1 - BICS (shifted register) - 64-bit variant

Decode fields
Instruction page

sf op S shift imm6

 - - - 11 - Unallocated.

 0 - - - 1xxxxx Unallocated.

 0 0 0 - - ADD (shifted register) - 32-bit variant

 0 0 1 - - ADDS (shifted register) - 32-bit variant

 0 1 0 - - SUB (shifted register) - 32-bit variant

 0 1 1 - - SUBS (shifted register) - 32-bit variant

 1 0 0 - - ADD (shifted register) - 64-bit variant

 1 0 1 - - ADDS (shifted register) - 64-bit variant

 1 1 0 - - SUB (shifted register) - 64-bit variant

 1 1 1 - - SUBS (shifted register) - 64-bit variant

Decode fields
Instruction page

sf opc N imm6

sf op S 0 1 0 1 1 shift 0 Rm imm6 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-337
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Add/subtract (extended register)

This section describes the encoding of the Add/subtract (extended register) instruction class. The encodings in this
section are decoded from Data Processing -- Register on page C4-332.

Add/subtract (with carry)

This section describes the encoding of the Add/subtract (with carry) instruction class. The encodings in this section
are decoded from Data Processing -- Register on page C4-332.

Decode fields
Instruction page

sf op S opt imm3

 - - - - 1x1 Unallocated.

 - - - - 11x Unallocated.

 - - - x1 - Unallocated.

 - - - 1x - Unallocated.

 0 0 0 00 - ADD (extended register) - 32-bit variant

 0 0 1 00 - ADDS (extended register) - 32-bit variant

 0 1 0 00 - SUB (extended register) - 32-bit variant

 0 1 1 00 - SUBS (extended register) - 32-bit variant

 1 0 0 00 - ADD (extended register) - 64-bit variant

 1 0 1 00 - ADDS (extended register) - 64-bit variant

 1 1 0 00 - SUB (extended register) - 64-bit variant

 1 1 1 00 - SUBS (extended register) - 64-bit variant

Decode fields
Instruction page

sf op S

 0 0 0 ADC - 32-bit variant

 0 0 1 ADCS - 32-bit variant

 0 1 0 SBC - 32-bit variant

 0 1 1 SBCS - 32-bit variant

 1 0 0 ADC - 64-bit variant

sf op S 0 1 0 1 1 opt 1 Rm option imm3 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 0

sf op S 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C4-338 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Rotate right into flags

This section describes the encoding of the Rotate right into flags instruction class. The encodings in this section are
decoded from Data Processing -- Register on page C4-332.

Evaluate into flags

This section describes the encoding of the Evaluate into flags instruction class. The encodings in this section are
decoded from Data Processing -- Register on page C4-332.

 1 0 1 ADCS - 64-bit variant

 1 1 0 SBC - 64-bit variant

 1 1 1 SBCS - 64-bit variant

Decode fields
Instruction page Feature

sf op S o2

 0 - - - Unallocated. -

 1 0 0 - Unallocated. -

 1 0 1 0 RMIF FEAT_FlagM

 1 0 1 1 Unallocated. -

 1 1 - - Unallocated. -

Decode fields
Instruction page Feature

sf op S opcode2 sz o3 mask

 0 0 0 - - - - Unallocated. -

 0 0 1 != 000000 - - - Unallocated. -

 0 0 1 000000 - 0 != 1101 Unallocated. -

 0 0 1 000000 - 1 - Unallocated. -

 0 0 1 000000 0 0 1101 SETF8, SETF16 - SETF8 variant FEAT_FlagM

Decode fields
Instruction page

sf op S

sf op S 1 1 0 1 0 0 0 0 imm6 0 0 0 0 1 Rn o2 mask
31 30 29 28 27 26 25 24 23 22 21 20 15 14 13 12 11 10 9 5 4 3 0

sf op S 1 1 0 1 0 0 0 0 opcode2 sz 0 0 1 0 Rn o3 mask
31 30 29 28 27 26 25 24 23 22 21 20 15 14 13 12 11 10 9 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-339
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Conditional compare (register)

This section describes the encoding of the Conditional compare (register) instruction class. The encodings in this
section are decoded from Data Processing -- Register on page C4-332.

Conditional compare (immediate)

This section describes the encoding of the Conditional compare (immediate) instruction class. The encodings in this
section are decoded from Data Processing -- Register on page C4-332.

 0 0 1 000000 1 0 1101 SETF8, SETF16 - SETF16 variant FEAT_FlagM

 0 1 - - - - - Unallocated. -

 1 - - - - - - Unallocated. -

Decode fields
Instruction page

sf op S o2 o3

 - - - - 1 Unallocated.

 - - - 1 - Unallocated.

 - - 0 - - Unallocated.

 0 0 1 0 0 CCMN (register) - 32-bit variant

 0 1 1 0 0 CCMP (register) - 32-bit variant

 1 0 1 0 0 CCMN (register) - 64-bit variant

 1 1 1 0 0 CCMP (register) - 64-bit variant

Decode fields
Instruction page

sf op S o2 o3

 - - - - 1 Unallocated.

 - - - 1 - Unallocated.

 - - 0 - - Unallocated.

 0 0 1 0 0 CCMN (immediate) - 32-bit variant

Decode fields
Instruction page Feature

sf op S opcode2 sz o3 mask

sf op S 1 1 0 1 0 0 1 0 Rm cond 0 o2 Rn o3 nzcv
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0

sf op S 1 1 0 1 0 0 1 0 imm5 cond 1 o2 Rn o3 nzcv
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
C4-340 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Conditional select

This section describes the encoding of the Conditional select instruction class. The encodings in this section are
decoded from Data Processing -- Register on page C4-332.

Data-processing (3 source)

This section describes the encoding of the Data-processing (3 source) instruction class. The encodings in this section
are decoded from Data Processing -- Register on page C4-332.

 0 1 1 0 0 CCMP (immediate) - 32-bit variant

 1 0 1 0 0 CCMN (immediate) - 64-bit variant

 1 1 1 0 0 CCMP (immediate) - 64-bit variant

Decode fields
Instruction page

sf op S op2

 - - - 1x Unallocated.

 - - 1 - Unallocated.

 0 0 0 00 CSEL - 32-bit variant

 0 0 0 01 CSINC - 32-bit variant

 0 1 0 00 CSINV - 32-bit variant

 0 1 0 01 CSNEG - 32-bit variant

 1 0 0 00 CSEL - 64-bit variant

 1 0 0 01 CSINC - 64-bit variant

 1 1 0 00 CSINV - 64-bit variant

 1 1 0 01 CSNEG - 64-bit variant

Decode fields
Instruction page

sf op S o2 o3

sf op S 1 1 0 1 0 1 0 0 Rm cond op2 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-341
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.6 Data Processing -- Scalar Floating-Point and Advanced SIMD

This section describes the encoding of the Data Processing -- Scalar Floating-Point and Advanced SIMD group. The
encodings in this section are decoded from A64 instruction set encoding on page C4-284.

Decode fields
Instruction page

sf op54 op31 o0

 - 00 010 1 Unallocated.

 - 00 011 - Unallocated.

 - 00 100 - Unallocated.

 - 00 110 1 Unallocated.

 - 00 111 - Unallocated.

 - 01 - - Unallocated.

 - 1x - - Unallocated.

 0 00 000 0 MADD - 32-bit variant

 0 00 000 1 MSUB - 32-bit variant

 0 00 001 0 Unallocated.

 0 00 001 1 Unallocated.

 0 00 010 0 Unallocated.

 0 00 101 0 Unallocated.

 0 00 101 1 Unallocated.

 0 00 110 0 Unallocated.

 1 00 000 0 MADD - 64-bit variant

 1 00 000 1 MSUB - 64-bit variant

 1 00 001 0 SMADDL

 1 00 001 1 SMSUBL

 1 00 010 0 SMULH

 1 00 101 0 UMADDL

 1 00 101 1 UMSUBL

 1 00 110 0 UMULH

sf op54 1 1 0 1 1 op31 Rm o0 Ra Rn Rd
31 30 29 28 27 26 25 24 23 21 20 16 15 14 10 9 5 4 0
C4-342 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
op0 111 op1 op2 op3
31 28 27 25 24 23 22 19 18 10 9 0

Table C4-7 Encoding table for the Data Processing -- Scalar Floating-Point and Advanced SIMD group

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3

 0000 0x x101 00xxxxx10 Unallocated. -

 0010 0x x101 00xxxxx10 Unallocated. -

 0100 0x x101 00xxxxx10 Cryptographic AES on page C4-345 -

 0101 0x x0xx xxx0xxx00 Cryptographic three-register SHA on page C4-345 -

 0101 0x x0xx xxx0xxx10 Unallocated. -

 0101 0x x101 00xxxxx10 Cryptographic two-register SHA on page C4-346 -

 0110 0x x101 00xxxxx10 Unallocated. -

 0111 0x x0xx xxx0xxxx0 Unallocated. -

 0111 0x x101 00xxxxx10 Unallocated. -

 01x1 00 00xx xxx0xxxx1 Advanced SIMD scalar copy on page C4-347 -

 01x1 01 00xx xxx0xxxx1 Unallocated. -

 01x1 0x 0111 00xxxxx10 Unallocated. -

 01x1 0x 10xx xxx00xxx1 Advanced SIMD scalar three same FP16 on page C4-347 -

 01x1 0x 10xx xxx01xxx1 Unallocated. -

 01x1 0x 1111 00xxxxx10 Advanced SIMD scalar two-register miscellaneous FP16 on page C4-348 -

 01x1 0x x0xx xxx1xxxx0 Unallocated. -

 01x1 0x x0xx xxx1xxxx1 Advanced SIMD scalar three same extra on page C4-349 -

 01x1 0x x100 00xxxxx10 Advanced SIMD scalar two-register miscellaneous on page C4-350 -

 01x1 0x x110 00xxxxx10 Advanced SIMD scalar pairwise on page C4-352 -

 01x1 0x x1xx 1xxxxxx10 Unallocated. -

 01x1 0x x1xx x1xxxxx10 Unallocated. -

 01x1 0x x1xx xxxxxxx00 Advanced SIMD scalar three different on page C4-352 -

 01x1 0x x1xx xxxxxxxx1 Advanced SIMD scalar three same on page C4-353 -

 01x1 10 - xxxxxxxx1 Advanced SIMD scalar shift by immediate on page C4-355 -

 01x1 11 - xxxxxxxx1 Unallocated. -

 01x1 1x - xxxxxxxx0 Advanced SIMD scalar x indexed element on page C4-357 -

 0x00 0x x0xx xxx0xxx00 Advanced SIMD table lookup on page C4-358 -

 0x00 0x x0xx xxx0xxx10 Advanced SIMD permute on page C4-359 -
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-343
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 0x10 0x x0xx xxx0xxxx0 Advanced SIMD extract on page C4-360 -

 0xx0 00 00xx xxx0xxxx1 Advanced SIMD copy on page C4-360 -

 0xx0 01 00xx xxx0xxxx1 Unallocated. -

 0xx0 0x 0111 00xxxxx10 Unallocated. -

 0xx0 0x 10xx xxx00xxx1 Advanced SIMD three same (FP16) on page C4-361 -

 0xx0 0x 10xx xxx01xxx1 Unallocated. -

 0xx0 0x 1111 00xxxxx10 Advanced SIMD two-register miscellaneous (FP16) on page C4-362 -

 0xx0 0x x0xx xxx1xxxx0 Unallocated. -

 0xx0 0x x0xx xxx1xxxx1 Advanced SIMD three-register extension on page C4-363 -

 0xx0 0x x100 00xxxxx10 Advanced SIMD two-register miscellaneous on page C4-365 -

 0xx0 0x x110 00xxxxx10 Advanced SIMD across lanes on page C4-367 -

 0xx0 0x x1xx 1xxxxxx10 Unallocated. -

 0xx0 0x x1xx x1xxxxx10 Unallocated. -

 0xx0 0x x1xx xxxxxxx00 Advanced SIMD three different on page C4-369 -

 0xx0 0x x1xx xxxxxxxx1 Advanced SIMD three same on page C4-370 -

 0xx0 10 0000 xxxxxxxx1 Advanced SIMD modified immediate on page C4-373 -

 0xx0 10 != 0000 xxxxxxxx1 Advanced SIMD shift by immediate on page C4-374 -

 0xx0 11 - xxxxxxxx1 Unallocated. -

 0xx0 1x - xxxxxxxx0 Advanced SIMD vector x indexed element on page C4-376 -

 1100 00 10xx xxx10xxxx Cryptographic three-register, imm2 on page C4-378 -

 1100 00 11xx xxx1x00xx Cryptographic three-register SHA 512 on page C4-378 -

 1100 00 - xxx0xxxxx Cryptographic four-register on page C4-379 -

 1100 01 00xx - XAR FEAT_SHA3

 1100 01 1000 0001000xx Cryptographic two-register SHA 512 on page C4-379 -

 11x1 - - - Unallocated. -

 1xx0 1x - - Unallocated. -

 x0x1 0x x0xx - Conversion between floating-point and fixed-point on page C4-380 -

 x0x1 0x x1xx xxx000000 Conversion between floating-point and integer on page C4-381 -

 x0x1 0x x1xx xxx100000 Unallocated. -

 x0x1 0x x1xx xxxx10000 Floating-point data-processing (1 source) on page C4-385 -

 x0x1 0x x1xx xxxxx1000 Floating-point compare on page C4-387 -

Table C4-7 Encoding table for the Data Processing -- Scalar Floating-Point and Advanced SIMD group (continued)

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3
C4-344 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Cryptographic AES

This section describes the encoding of the Cryptographic AES instruction class. The encodings in this section are
decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

Cryptographic three-register SHA

This section describes the encoding of the Cryptographic three-register SHA instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

 x0x1 0x x1xx xxxxxx100 Floating-point immediate on page C4-388 -

 x0x1 0x x1xx xxxxxxx01 Floating-point conditional compare on page C4-388 -

 x0x1 0x x1xx xxxxxxx10 Floating-point data-processing (2 source) on page C4-389 -

 x0x1 0x x1xx xxxxxxx11 Floating-point conditional select on page C4-390 -

 x0x1 1x - - Floating-point data-processing (3 source) on page C4-391 -

Table C4-7 Encoding table for the Data Processing -- Scalar Floating-Point and Advanced SIMD group (continued)

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3

Decode fields
Instruction page

size opcode

 - x1xxx Unallocated.

 - 000xx Unallocated.

 - 1xxxx Unallocated.

 x1 - Unallocated.

 00 00100 AESE

 00 00101 AESD

 00 00110 AESMC

 00 00111 AESIMC

 1x - Unallocated.

0 1 0 0 1 1 1 0 size 1 0 1 0 0 opcode 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-345
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Cryptographic two-register SHA

This section describes the encoding of the Cryptographic two-register SHA instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

Decode fields
Instruction page

size opcode

 - 111 Unallocated.

 x1 - Unallocated.

 00 000 SHA1C

 00 001 SHA1P

 00 010 SHA1M

 00 011 SHA1SU0

 00 100 SHA256H

 00 101 SHA256H2

 00 110 SHA256SU1

 1x - Unallocated.

Decode fields
Instruction page

size opcode

 - xx1xx Unallocated.

 - x1xxx Unallocated.

 - 1xxxx Unallocated.

 x1 - Unallocated.

 00 00000 SHA1H

 00 00001 SHA1SU1

 00 00010 SHA256SU0

 00 00011 Unallocated.

 1x - Unallocated.

0 1 0 1 1 1 1 0 size 0 Rm 0 opcode 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

0 1 0 1 1 1 1 0 size 1 0 1 0 0 opcode 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 12 11 10 9 5 4 0
C4-346 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD scalar copy

This section describes the encoding of the Advanced SIMD scalar copy instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

Advanced SIMD scalar three same FP16

This section describes the encoding of the Advanced SIMD scalar three same FP16 instruction class. The encodings
in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

Decode fields
Instruction page

op imm4

 0 xxx1 Unallocated.

 0 xx1x Unallocated.

 0 x1xx Unallocated.

 0 0000 DUP (element)

 0 1xxx Unallocated.

 1 - Unallocated.

Decode fields
Instruction page Feature

U a opcode

 - - 110 Unallocated. -

 - 1 011 Unallocated. -

 0 0 011 FMULX FEAT_FP16

 0 0 100 FCMEQ (register) FEAT_FP16

 0 0 101 Unallocated. -

 0 0 111 FRECPS FEAT_FP16

 0 1 100 Unallocated. -

 0 1 101 Unallocated. -

 0 1 111 FRSQRTS FEAT_FP16

 1 0 011 Unallocated. -

 1 0 100 FCMGE (register) FEAT_FP16

0 1 op 1 1 1 1 0 0 0 0 imm5 0 imm4 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 11 10 9 5 4 0

0 1 U 1 1 1 1 0 a 1 0 Rm 0 0 opcode 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-347
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD scalar two-register miscellaneous FP16

This section describes the encoding of the Advanced SIMD scalar two-register miscellaneous FP16 instruction
class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced
SIMD on page C4-342.

 1 0 101 FACGE FEAT_FP16

 1 0 111 Unallocated. -

 1 1 010 FABD FEAT_FP16

 1 1 100 FCMGT (register) FEAT_FP16

 1 1 101 FACGT FEAT_FP16

 1 1 111 Unallocated. -

Decode fields
Instruction page Feature

U a opcode

 - - 00xxx Unallocated. -

 - - 010xx Unallocated. -

 - - 10xxx Unallocated. -

 - - 1100x Unallocated. -

 - - 11110 Unallocated. -

 - 0 011xx Unallocated. -

 - 0 11111 Unallocated. -

 - 1 01111 Unallocated. -

 - 1 11100 Unallocated. -

 0 0 11010 FCVTNS (vector) FEAT_FP16

 0 0 11011 FCVTMS (vector) FEAT_FP16

 0 0 11100 FCVTAS (vector) FEAT_FP16

 0 0 11101 SCVTF (vector, integer) FEAT_FP16

 0 1 01100 FCMGT (zero) FEAT_FP16

 0 1 01101 FCMEQ (zero) FEAT_FP16

 0 1 01110 FCMLT (zero) FEAT_FP16

Decode fields
Instruction page Feature

U a opcode

0 1 U 1 1 1 1 0 a 1 1 1 1 0 0 opcode 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 12 11 10 9 5 4 0
C4-348 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD scalar three same extra

This section describes the encoding of the Advanced SIMD scalar three same extra instruction class. The encodings
in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

 0 1 11010 FCVTPS (vector) FEAT_FP16

 0 1 11011 FCVTZS (vector, integer) FEAT_FP16

 0 1 11101 FRECPE FEAT_FP16

 0 1 11111 FRECPX FEAT_FP16

 1 0 11010 FCVTNU (vector) FEAT_FP16

 1 0 11011 FCVTMU (vector) FEAT_FP16

 1 0 11100 FCVTAU (vector) FEAT_FP16

 1 0 11101 UCVTF (vector, integer) FEAT_FP16

 1 1 01100 FCMGE (zero) FEAT_FP16

 1 1 01101 FCMLE (zero) FEAT_FP16

 1 1 01110 Unallocated. -

 1 1 11010 FCVTPU (vector) FEAT_FP16

 1 1 11011 FCVTZU (vector, integer) FEAT_FP16

 1 1 11101 FRSQRTE FEAT_FP16

 1 1 11111 Unallocated. -

Decode fields
Instruction page Feature

U opcode

 - 001x Unallocated. -

 - 01xx Unallocated. -

 - 1xxx Unallocated. -

 0 0000 Unallocated. -

 0 0001 Unallocated. -

 1 0000 SQRDMLAH (vector) FEAT_RDM

 1 0001 SQRDMLSH (vector) FEAT_RDM

Decode fields
Instruction page Feature

U a opcode

0 1 U 1 1 1 1 0 size 0 Rm 1 opcode 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-349
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD scalar two-register miscellaneous

This section describes the encoding of the Advanced SIMD scalar two-register miscellaneous instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on
page C4-342.

Decode fields
Instruction page

U size opcode

 - - 0000x Unallocated.

 - - 00010 Unallocated.

 - - 0010x Unallocated.

 - - 00110 Unallocated.

 - - 01111 Unallocated.

 - - 1000x Unallocated.

 - - 10011 Unallocated.

 - - 10101 Unallocated.

 - - 10111 Unallocated.

 - - 1100x Unallocated.

 - - 11110 Unallocated.

 - 0x 011xx Unallocated.

 - 0x 11111 Unallocated.

 - 1x 10110 Unallocated.

 - 1x 11100 Unallocated.

 0 - 00011 SUQADD

 0 - 00111 SQABS

 0 - 01000 CMGT (zero)

 0 - 01001 CMEQ (zero)

 0 - 01010 CMLT (zero)

 0 - 01011 ABS

 0 - 10010 Unallocated.

 0 - 10100 SQXTN, SQXTN2

 0 0x 10110 Unallocated.

 0 0x 11010 FCVTNS (vector)

0 1 U 1 1 1 1 0 size 1 0 0 0 0 opcode 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 12 11 10 9 5 4 0
C4-350 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 0 0x 11011 FCVTMS (vector)

 0 0x 11100 FCVTAS (vector)

 0 0x 11101 SCVTF (vector, integer)

 0 1x 01100 FCMGT (zero)

 0 1x 01101 FCMEQ (zero)

 0 1x 01110 FCMLT (zero)

 0 1x 11010 FCVTPS (vector)

 0 1x 11011 FCVTZS (vector, integer)

 0 1x 11101 FRECPE

 0 1x 11111 FRECPX

 1 - 00011 USQADD

 1 - 00111 SQNEG

 1 - 01000 CMGE (zero)

 1 - 01001 CMLE (zero)

 1 - 01010 Unallocated.

 1 - 01011 NEG (vector)

 1 - 10010 SQXTUN, SQXTUN2

 1 - 10100 UQXTN, UQXTN2

 1 0x 10110 FCVTXN, FCVTXN2

 1 0x 11010 FCVTNU (vector)

 1 0x 11011 FCVTMU (vector)

 1 0x 11100 FCVTAU (vector)

 1 0x 11101 UCVTF (vector, integer)

 1 1x 01100 FCMGE (zero)

 1 1x 01101 FCMLE (zero)

 1 1x 01110 Unallocated.

 1 1x 11010 FCVTPU (vector)

 1 1x 11011 FCVTZU (vector, integer)

 1 1x 11101 FRSQRTE

 1 1x 11111 Unallocated.

Decode fields
Instruction page

U size opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-351
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD scalar pairwise

This section describes the encoding of the Advanced SIMD scalar pairwise instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

Advanced SIMD scalar three different

This section describes the encoding of the Advanced SIMD scalar three different instruction class. The encodings
in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

Decode fields
Instruction page Feature

U size opcode

 - - 00xxx Unallocated. -

 - - 010xx Unallocated. -

 - - 01110 Unallocated. -

 - - 10xxx Unallocated. -

 - - 1100x Unallocated. -

 - - 11010 Unallocated. -

 - - 111xx Unallocated. -

 - 1x 01101 Unallocated. -

 0 - 11011 ADDP (scalar) -

 0 0x 01100 FMAXNMP (scalar) - Encoding FEAT_FP16

 0 0x 01101 FADDP (scalar) - Encoding FEAT_FP16

 0 0x 01111 FMAXP (scalar) - Encoding FEAT_FP16

 0 1x 01100 FMINNMP (scalar) - Encoding FEAT_FP16

 0 1x 01111 FMINP (scalar) - Encoding FEAT_FP16

 1 - 11011 Unallocated. -

 1 0x 01100 FMAXNMP (scalar) - Encoding -

 1 0x 01101 FADDP (scalar) - Encoding -

 1 0x 01111 FMAXP (scalar) - Encoding -

 1 1x 01100 FMINNMP (scalar) - Encoding -

 1 1x 01111 FMINP (scalar) - Encoding -

0 1 U 1 1 1 1 0 size 1 1 0 0 0 opcode 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 12 11 10 9 5 4 0
C4-352 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD scalar three same

This section describes the encoding of the Advanced SIMD scalar three same instruction class. The encodings in
this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

Decode fields
Instruction page

U opcode

 - 00xx Unallocated.

 - 01xx Unallocated.

 - 1000 Unallocated.

 - 1010 Unallocated.

 - 1100 Unallocated.

 - 111x Unallocated.

 0 1001 SQDMLAL, SQDMLAL2 (vector)

 0 1011 SQDMLSL, SQDMLSL2 (vector)

 0 1101 SQDMULL, SQDMULL2 (vector)

 1 1001 Unallocated.

 1 1011 Unallocated.

 1 1101 Unallocated.

Decode fields
Instruction page

U size opcode

 - - 00000 Unallocated.

 - - 0001x Unallocated.

 - - 00100 Unallocated.

 - - 011xx Unallocated.

 - - 1001x Unallocated.

 - 1x 11011 Unallocated.

 0 - 00001 SQADD

0 1 U 1 1 1 1 0 size 1 Rm opcode 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

0 1 U 1 1 1 1 0 size 1 Rm opcode 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-353
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 0 - 00101 SQSUB

 0 - 00110 CMGT (register)

 0 - 00111 CMGE (register)

 0 - 01000 SSHL

 0 - 01001 SQSHL (register)

 0 - 01010 SRSHL

 0 - 01011 SQRSHL

 0 - 10000 ADD (vector)

 0 - 10001 CMTST

 0 - 10100 Unallocated.

 0 - 10101 Unallocated.

 0 - 10110 SQDMULH (vector)

 0 - 10111 Unallocated.

 0 0x 11000 Unallocated.

 0 0x 11001 Unallocated.

 0 0x 11010 Unallocated.

 0 0x 11011 FMULX

 0 0x 11100 FCMEQ (register)

 0 0x 11101 Unallocated.

 0 0x 11110 Unallocated.

 0 0x 11111 FRECPS

 0 1x 11000 Unallocated.

 0 1x 11001 Unallocated.

 0 1x 11010 Unallocated.

 0 1x 11100 Unallocated.

 0 1x 11101 Unallocated.

 0 1x 11110 Unallocated.

 0 1x 11111 FRSQRTS

 1 - 00001 UQADD

 1 - 00101 UQSUB

 1 - 00110 CMHI (register)

 1 - 00111 CMHS (register)

Decode fields
Instruction page

U size opcode
C4-354 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD scalar shift by immediate

This section describes the encoding of the Advanced SIMD scalar shift by immediate instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on
page C4-342.

 1 - 01000 USHL

 1 - 01001 UQSHL (register)

 1 - 01010 URSHL

 1 - 01011 UQRSHL

 1 - 10000 SUB (vector)

 1 - 10001 CMEQ (register)

 1 - 10100 Unallocated.

 1 - 10101 Unallocated.

 1 - 10110 SQRDMULH (vector)

 1 - 10111 Unallocated.

 1 0x 11000 Unallocated.

 1 0x 11001 Unallocated.

 1 0x 11010 Unallocated.

 1 0x 11011 Unallocated.

 1 0x 11100 FCMGE (register)

 1 0x 11101 FACGE

 1 0x 11110 Unallocated.

 1 0x 11111 Unallocated.

 1 1x 11000 Unallocated.

 1 1x 11001 Unallocated.

 1 1x 11010 FABD

 1 1x 11100 FCMGT (register)

 1 1x 11101 FACGT

 1 1x 11110 Unallocated.

 1 1x 11111 Unallocated.

Decode fields
Instruction page

U size opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-355
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Decode fields
Instruction page

U immh opcode

 - != 0000 00001 Unallocated.

 - != 0000 00011 Unallocated.

 - != 0000 00101 Unallocated.

 - != 0000 00111 Unallocated.

 - != 0000 01001 Unallocated.

 - != 0000 01011 Unallocated.

 - != 0000 01101 Unallocated.

 - != 0000 01111 Unallocated.

 - != 0000 101xx Unallocated.

 - != 0000 110xx Unallocated.

 - != 0000 11101 Unallocated.

 - != 0000 11110 Unallocated.

 - 0000 - Unallocated.

 0 != 0000 00000 SSHR

 0 != 0000 00010 SSRA

 0 != 0000 00100 SRSHR

 0 != 0000 00110 SRSRA

 0 != 0000 01000 Unallocated.

 0 != 0000 01010 SHL

 0 != 0000 01100 Unallocated.

 0 != 0000 01110 SQSHL (immediate)

 0 != 0000 10000 Unallocated.

 0 != 0000 10001 Unallocated.

 0 != 0000 10010 SQSHRN, SQSHRN2

 0 != 0000 10011 SQRSHRN, SQRSHRN2

 0 != 0000 11100 SCVTF (vector, fixed-point)

 0 != 0000 11111 FCVTZS (vector, fixed-point)

 1 != 0000 00000 USHR

0 1 U 1 1 1 1 1 0 immh immb opcode 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 11 10 9 5 4 0
C4-356 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD scalar x indexed element

This section describes the encoding of the Advanced SIMD scalar x indexed element instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on
page C4-342.

 1 != 0000 00010 USRA

 1 != 0000 00100 URSHR

 1 != 0000 00110 URSRA

 1 != 0000 01000 SRI

 1 != 0000 01010 SLI

 1 != 0000 01100 SQSHLU

 1 != 0000 01110 UQSHL (immediate)

 1 != 0000 10000 SQSHRUN, SQSHRUN2

 1 != 0000 10001 SQRSHRUN, SQRSHRUN2

 1 != 0000 10010 UQSHRN, UQSHRN2

 1 != 0000 10011 UQRSHRN, UQRSHRN2

 1 != 0000 11100 UCVTF (vector, fixed-point)

 1 != 0000 11111 FCVTZU (vector, fixed-point)

Decode fields
Instruction page Feature

U size opcode

 - - 0000 Unallocated. -

 - - 0010 Unallocated. -

 - - 0100 Unallocated. -

 - - 0110 Unallocated. -

 - - 1000 Unallocated. -

 - - 1010 Unallocated. -

 - - 1110 Unallocated. -

 - 01 0001 Unallocated. -

 - 01 0101 Unallocated. -

Decode fields
Instruction page

U immh opcode

0 1 U 1 1 1 1 1 size L M Rm opcode H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-357
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD table lookup

This section describes the encoding of the Advanced SIMD table lookup instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

 - 01 1001 Unallocated. -

 0 - 0011 SQDMLAL, SQDMLAL2 (by element) -

 0 - 0111 SQDMLSL, SQDMLSL2 (by element) -

 0 - 1011 SQDMULL, SQDMULL2 (by element) -

 0 - 1100 SQDMULH (by element) -

 0 - 1101 SQRDMULH (by element) -

 0 - 1111 Unallocated. -

 0 00 0001 FMLA (by element) - Encoding FEAT_FP16

 0 00 0101 FMLS (by element) - Encoding FEAT_FP16

 0 00 1001 FMUL (by element) - Encoding FEAT_FP16

 0 1x 0001 FMLA (by element) - Encoding -

 0 1x 0101 FMLS (by element) - Encoding -

 0 1x 1001 FMUL (by element) - Encoding -

 1 - 0011 Unallocated. -

 1 - 0111 Unallocated. -

 1 - 1011 Unallocated. -

 1 - 1100 Unallocated. -

 1 - 1101 SQRDMLAH (by element) FEAT_RDM

 1 - 1111 SQRDMLSH (by element) FEAT_RDM

 1 00 0001 Unallocated. -

 1 00 0101 Unallocated. -

 1 00 1001 FMULX (by element) - Encoding FEAT_FP16

 1 1x 0001 Unallocated. -

 1 1x 0101 Unallocated. -

 1 1x 1001 FMULX (by element) - Encoding -

Decode fields
Instruction page Feature

U size opcode
C4-358 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD permute

This section describes the encoding of the Advanced SIMD permute instruction class. The encodings in this section
are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

Decode fields
Instruction page

op2 len op

 x1 - - Unallocated.

 00 00 0 TBL - Single register table variant

 00 00 1 TBX - Single register table variant

 00 01 0 TBL - Two register table variant

 00 01 1 TBX - Two register table variant

 00 10 0 TBL - Three register table variant

 00 10 1 TBX - Three register table variant

 00 11 0 TBL - Four register table variant

 00 11 1 TBX - Four register table variant

 1x - - Unallocated.

Decode fields
Instruction page

opcode

 000 Unallocated.

 001 UZP1

 010 TRN1

 011 ZIP1

 100 Unallocated.

 101 UZP2

 110 TRN2

 111 ZIP2

0 Q 0 0 1 1 1 0 op2 0 Rm 0 len op 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 Q 0 0 1 1 1 0 size 0 Rm 0 opcode 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-359
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD extract

This section describes the encoding of the Advanced SIMD extract instruction class. The encodings in this section
are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

Advanced SIMD copy

This section describes the encoding of the Advanced SIMD copy instruction class. The encodings in this section are
decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

Decode fields
Instruction page

op2

 x1 Unallocated.

 00 EXT

 1x Unallocated.

Decode fields
Instruction page

Q op imm5 imm4

 - - x0000 - Unallocated.

 - 0 - 0000 DUP (element)

 - 0 - 0001 DUP (general)

 - 0 - 0010 Unallocated.

 - 0 - 0100 Unallocated.

 - 0 - 0110 Unallocated.

 - 0 - 1xxx Unallocated.

 0 0 - 0011 Unallocated.

 0 0 - 0101 SMOV

 0 0 - 0111 UMOV

 0 1 - - Unallocated.

 1 0 - 0011 INS (general)

0 Q 1 0 1 1 1 0 op2 0 Rm 0 imm4 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 11 10 9 5 4 0

0 Q op 0 1 1 1 0 0 0 0 imm5 0 imm4 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 11 10 9 5 4 0
C4-360 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD three same (FP16)

This section describes the encoding of the Advanced SIMD three same (FP16) instruction class. The encodings in
this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

 1 0 - 0101 SMOV

 1 0 x1000 0111 UMOV

 1 1 - - INS (element)

Decode fields
Instruction page Feature

U a opcode

 0 0 000 FMAXNM (vector) FEAT_FP16

 0 0 001 FMLA (vector) FEAT_FP16

 0 0 010 FADD (vector) FEAT_FP16

 0 0 011 FMULX FEAT_FP16

 0 0 100 FCMEQ (register) FEAT_FP16

 0 0 101 Unallocated. -

 0 0 110 FMAX (vector) FEAT_FP16

 0 0 111 FRECPS FEAT_FP16

 0 1 000 FMINNM (vector) FEAT_FP16

 0 1 001 FMLS (vector) FEAT_FP16

 0 1 010 FSUB (vector) FEAT_FP16

 0 1 011 Unallocated. -

 0 1 100 Unallocated. -

 0 1 101 Unallocated. -

 0 1 110 FMIN (vector) FEAT_FP16

 0 1 111 FRSQRTS FEAT_FP16

 1 0 000 FMAXNMP (vector) FEAT_FP16

 1 0 001 Unallocated. -

 1 0 010 FADDP (vector) FEAT_FP16

 1 0 011 FMUL (vector) FEAT_FP16

Decode fields
Instruction page

Q op imm5 imm4

0 Q U 0 1 1 1 0 a 1 0 Rm 0 0 opcode 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-361
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD two-register miscellaneous (FP16)

This section describes the encoding of the Advanced SIMD two-register miscellaneous (FP16) instruction class.
The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on
page C4-342.

 1 0 100 FCMGE (register) FEAT_FP16

 1 0 101 FACGE FEAT_FP16

 1 0 110 FMAXP (vector) FEAT_FP16

 1 0 111 FDIV (vector) FEAT_FP16

 1 1 000 FMINNMP (vector) FEAT_FP16

 1 1 001 Unallocated. -

 1 1 010 FABD FEAT_FP16

 1 1 011 Unallocated. -

 1 1 100 FCMGT (register) FEAT_FP16

 1 1 101 FACGT FEAT_FP16

 1 1 110 FMINP (vector) FEAT_FP16

 1 1 111 Unallocated. -

Decode fields
Instruction page Feature

U a opcode

 - - 00xxx Unallocated. -

 - - 010xx Unallocated. -

 - - 10xxx Unallocated. -

 - - 11110 Unallocated. -

 - 0 011xx Unallocated. -

 - 0 11111 Unallocated. -

 - 1 11100 Unallocated. -

 0 0 11000 FRINTN (vector) FEAT_FP16

 0 0 11001 FRINTM (vector) FEAT_FP16

 0 0 11010 FCVTNS (vector) FEAT_FP16

Decode fields
Instruction page Feature

U a opcode

0 Q U 0 1 1 1 0 a 1 1 1 1 0 0 opcode 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 12 11 10 9 5 4 0
C4-362 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD three-register extension

This section describes the encoding of the Advanced SIMD three-register extension instruction class. The encodings
in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

 0 0 11011 FCVTMS (vector) FEAT_FP16

 0 0 11100 FCVTAS (vector) FEAT_FP16

 0 0 11101 SCVTF (vector, integer) FEAT_FP16

 0 1 01100 FCMGT (zero) FEAT_FP16

 0 1 01101 FCMEQ (zero) FEAT_FP16

 0 1 01110 FCMLT (zero) FEAT_FP16

 0 1 01111 FABS (vector) FEAT_FP16

 0 1 11000 FRINTP (vector) FEAT_FP16

 0 1 11001 FRINTZ (vector) FEAT_FP16

 0 1 11010 FCVTPS (vector) FEAT_FP16

 0 1 11011 FCVTZS (vector, integer) FEAT_FP16

 0 1 11101 FRECPE FEAT_FP16

 0 1 11111 Unallocated. -

 1 0 11000 FRINTA (vector) FEAT_FP16

 1 0 11001 FRINTX (vector) FEAT_FP16

 1 0 11010 FCVTNU (vector) FEAT_FP16

 1 0 11011 FCVTMU (vector) FEAT_FP16

 1 0 11100 FCVTAU (vector) FEAT_FP16

 1 0 11101 UCVTF (vector, integer) FEAT_FP16

 1 1 01100 FCMGE (zero) FEAT_FP16

 1 1 01101 FCMLE (zero) FEAT_FP16

 1 1 01110 Unallocated. -

 1 1 01111 FNEG (vector) FEAT_FP16

 1 1 11000 Unallocated. -

 1 1 11001 FRINTI (vector) FEAT_FP16

 1 1 11010 FCVTPU (vector) FEAT_FP16

 1 1 11011 FCVTZU (vector, integer) FEAT_FP16

 1 1 11101 FRSQRTE FEAT_FP16

 1 1 11111 FSQRT (vector) FEAT_FP16

Decode fields
Instruction page Feature

U a opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-363
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Decode fields
Instruction page Feature

Q U size opcode

 - - 0x 0011 Unallocated. -

 - - 11 0011 Unallocated. -

 - 0 - 0000 Unallocated. -

 - 0 - 0001 Unallocated. -

 - 0 - 0010 SDOT (vector) FEAT_DotProd

 - 0 - 1xxx Unallocated. -

 - 0 10 0011 USDOT (vector) FEAT_I8MM

 - 1 - 0000 SQRDMLAH (vector) FEAT_RDM

 - 1 - 0001 SQRDMLSH (vector) FEAT_RDM

 - 1 - 0010 UDOT (vector) FEAT_DotProd

 - 1 - 10xx FCMLA FEAT_FCMA

 - 1 - 11x0 FCADD FEAT_FCMA

 - 1 00 1101 Unallocated. -

 - 1 00 1111 Unallocated. -

 - 1 01 1111 BFDOT (vector) FEAT_BF16

 - 1 1x 1101 Unallocated. -

 - 1 10 0011 Unallocated. -

 - 1 10 1111 Unallocated. -

 - 1 11 1111 BFMLALB, BFMLALT (vector) FEAT_BF16

 0 - - 01xx Unallocated. -

 0 1 01 1101 Unallocated. -

 1 - 0x 01xx Unallocated. -

 1 - 1x 011x Unallocated. -

 1 0 10 0100 SMMLA (vector) FEAT_I8MM

 1 0 10 0101 USMMLA (vector) FEAT_I8MM

 1 1 01 1101 BFMMLA FEAT_BF16

 1 1 10 0100 UMMLA (vector) FEAT_I8MM

 1 1 10 0101 Unallocated. -

0 Q U 0 1 1 1 0 size 0 Rm 1 opcode 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 11 10 9 5 4 0
C4-364 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD two-register miscellaneous

This section describes the encoding of the Advanced SIMD two-register miscellaneous instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on
page C4-342.

Decode fields
Instruction page Feature

U size opcode

 - - 1000x Unallocated. -

 - - 10101 Unallocated. -

 - 0x 011xx Unallocated. -

 - 1x 10111 Unallocated. -

 - 1x 11110 Unallocated. -

 - 11 10110 Unallocated. -

 0 - 00000 REV64 -

 0 - 00001 REV16 (vector) -

 0 - 00010 SADDLP -

 0 - 00011 SUQADD -

 0 - 00100 CLS (vector) -

 0 - 00101 CNT -

 0 - 00110 SADALP -

 0 - 00111 SQABS -

 0 - 01000 CMGT (zero) -

 0 - 01001 CMEQ (zero) -

 0 - 01010 CMLT (zero) -

 0 - 01011 ABS -

 0 - 10010 XTN, XTN2 -

 0 - 10011 Unallocated. -

 0 - 10100 SQXTN, SQXTN2 -

 0 0x 10110 FCVTN, FCVTN2 -

 0 0x 10111 FCVTL, FCVTL2 -

 0 0x 11000 FRINTN (vector) -

 0 0x 11001 FRINTM (vector) -

0 Q U 0 1 1 1 0 size 1 0 0 0 0 opcode 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-365
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 0 0x 11010 FCVTNS (vector) -

 0 0x 11011 FCVTMS (vector) -

 0 0x 11100 FCVTAS (vector) -

 0 0x 11101 SCVTF (vector, integer) -

 0 0x 11110 FRINT32Z (vector) FEAT_FRINTTS

 0 0x 11111 FRINT64Z (vector) FEAT_FRINTTS

 0 1x 01100 FCMGT (zero) -

 0 1x 01101 FCMEQ (zero) -

 0 1x 01110 FCMLT (zero) -

 0 1x 01111 FABS (vector) -

 0 1x 11000 FRINTP (vector) -

 0 1x 11001 FRINTZ (vector) -

 0 1x 11010 FCVTPS (vector) -

 0 1x 11011 FCVTZS (vector, integer) -

 0 1x 11100 URECPE -

 0 1x 11101 FRECPE -

 0 1x 11111 Unallocated. -

 0 10 10110 BFCVTN, BFCVTN2 FEAT_BF16

 1 - 00000 REV32 (vector) -

 1 - 00001 Unallocated. -

 1 - 00010 UADDLP -

 1 - 00011 USQADD -

 1 - 00100 CLZ (vector) -

 1 - 00110 UADALP -

 1 - 00111 SQNEG -

 1 - 01000 CMGE (zero) -

 1 - 01001 CMLE (zero) -

 1 - 01010 Unallocated. -

 1 - 01011 NEG (vector) -

 1 - 10010 SQXTUN, SQXTUN2 -

 1 - 10011 SHLL, SHLL2 -

 1 - 10100 UQXTN, UQXTN2 -

Decode fields
Instruction page Feature

U size opcode
C4-366 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD across lanes

This section describes the encoding of the Advanced SIMD across lanes instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

 1 0x 10110 FCVTXN, FCVTXN2 -

 1 0x 10111 Unallocated. -

 1 0x 11000 FRINTA (vector) -

 1 0x 11001 FRINTX (vector) -

 1 0x 11010 FCVTNU (vector) -

 1 0x 11011 FCVTMU (vector) -

 1 0x 11100 FCVTAU (vector) -

 1 0x 11101 UCVTF (vector, integer) -

 1 0x 11110 FRINT32X (vector) FEAT_FRINTTS

 1 0x 11111 FRINT64X (vector) FEAT_FRINTTS

 1 00 00101 NOT -

 1 01 00101 RBIT (vector) -

 1 1x 00101 Unallocated. -

 1 1x 01100 FCMGE (zero) -

 1 1x 01101 FCMLE (zero) -

 1 1x 01110 Unallocated. -

 1 1x 01111 FNEG (vector) -

 1 1x 11000 Unallocated. -

 1 1x 11001 FRINTI (vector) -

 1 1x 11010 FCVTPU (vector) -

 1 1x 11011 FCVTZU (vector, integer) -

 1 1x 11100 URSQRTE -

 1 1x 11101 FRSQRTE -

 1 1x 11111 FSQRT (vector) -

 1 10 10110 Unallocated. -

Decode fields
Instruction page Feature

U size opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-367
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Decode fields
Instruction page Feature

U size opcode

 - - 0000x Unallocated. -

 - - 00010 Unallocated. -

 - - 001xx Unallocated. -

 - - 0100x Unallocated. -

 - - 01011 Unallocated. -

 - - 01101 Unallocated. -

 - - 01110 Unallocated. -

 - - 10xxx Unallocated. -

 - - 1100x Unallocated. -

 - - 111xx Unallocated. -

 0 - 00011 SADDLV -

 0 - 01010 SMAXV -

 0 - 11010 SMINV -

 0 - 11011 ADDV -

 0 00 01100 FMAXNMV - Encoding FEAT_FP16

 0 00 01111 FMAXV - Encoding FEAT_FP16

 0 01 01100 Unallocated. -

 0 01 01111 Unallocated. -

 0 10 01100 FMINNMV - Encoding FEAT_FP16

 0 10 01111 FMINV - Encoding FEAT_FP16

 0 11 01100 Unallocated. -

 0 11 01111 Unallocated. -

 1 - 00011 UADDLV -

 1 - 01010 UMAXV -

 1 - 11010 UMINV -

 1 - 11011 Unallocated. -

 1 0x 01100 FMAXNMV - Encoding -

0 Q U 0 1 1 1 0 size 1 1 0 0 0 opcode 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 12 11 10 9 5 4 0
C4-368 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD three different

This section describes the encoding of the Advanced SIMD three different instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

 1 0x 01111 FMAXV - Encoding -

 1 1x 01100 FMINNMV - Encoding -

 1 1x 01111 FMINV - Encoding -

Decode fields
Instruction page

U opcode

 - 1111 Unallocated.

 0 0000 SADDL, SADDL2

 0 0001 SADDW, SADDW2

 0 0010 SSUBL, SSUBL2

 0 0011 SSUBW, SSUBW2

 0 0100 ADDHN, ADDHN2

 0 0101 SABAL, SABAL2

 0 0110 SUBHN, SUBHN2

 0 0111 SABDL, SABDL2

 0 1000 SMLAL, SMLAL2 (vector)

 0 1001 SQDMLAL, SQDMLAL2 (vector)

 0 1010 SMLSL, SMLSL2 (vector)

 0 1011 SQDMLSL, SQDMLSL2 (vector)

 0 1100 SMULL, SMULL2 (vector)

 0 1101 SQDMULL, SQDMULL2 (vector)

 0 1110 PMULL, PMULL2

 1 0000 UADDL, UADDL2

 1 0001 UADDW, UADDW2

 1 0010 USUBL, USUBL2

 1 0011 USUBW, USUBW2

Decode fields
Instruction page Feature

U size opcode

0 Q U 0 1 1 1 0 size 1 Rm opcode 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-369
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD three same

This section describes the encoding of the Advanced SIMD three same instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

 1 0100 RADDHN, RADDHN2

 1 0101 UABAL, UABAL2

 1 0110 RSUBHN, RSUBHN2

 1 0111 UABDL, UABDL2

 1 1000 UMLAL, UMLAL2 (vector)

 1 1001 Unallocated.

 1 1010 UMLSL, UMLSL2 (vector)

 1 1011 Unallocated.

 1 1100 UMULL, UMULL2 (vector)

 1 1101 Unallocated.

 1 1110 Unallocated.

Decode fields
Instruction page Feature

U size opcode

 0 - 00000 SHADD -

 0 - 00001 SQADD -

 0 - 00010 SRHADD -

 0 - 00100 SHSUB -

 0 - 00101 SQSUB -

 0 - 00110 CMGT (register) -

 0 - 00111 CMGE (register) -

 0 - 01000 SSHL -

 0 - 01001 SQSHL (register) -

 0 - 01010 SRSHL -

 0 - 01011 SQRSHL -

 0 - 01100 SMAX -

Decode fields
Instruction page

U opcode

0 Q U 0 1 1 1 0 size 1 Rm opcode 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 11 10 9 5 4 0
C4-370 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 0 - 01101 SMIN -

 0 - 01110 SABD -

 0 - 01111 SABA -

 0 - 10000 ADD (vector) -

 0 - 10001 CMTST -

 0 - 10010 MLA (vector) -

 0 - 10011 MUL (vector) -

 0 - 10100 SMAXP -

 0 - 10101 SMINP -

 0 - 10110 SQDMULH (vector) -

 0 - 10111 ADDP (vector) -

 0 0x 11000 FMAXNM (vector) -

 0 0x 11001 FMLA (vector) -

 0 0x 11010 FADD (vector) -

 0 0x 11011 FMULX -

 0 0x 11100 FCMEQ (register) -

 0 0x 11110 FMAX (vector) -

 0 0x 11111 FRECPS -

 0 00 00011 AND (vector) -

 0 00 11101 FMLAL, FMLAL2 (vector) - Encoding FEAT_FHM

 0 01 00011 BIC (vector, register) -

 0 01 11101 Unallocated. -

 0 1x 11000 FMINNM (vector) -

 0 1x 11001 FMLS (vector) -

 0 1x 11010 FSUB (vector) -

 0 1x 11011 Unallocated. -

 0 1x 11100 Unallocated. -

 0 1x 11110 FMIN (vector) -

 0 1x 11111 FRSQRTS -

 0 10 00011 ORR (vector, register) -

 0 10 11101 FMLSL, FMLSL2 (vector) - Encoding FEAT_FHM

 0 11 00011 ORN (vector) -

Decode fields
Instruction page Feature

U size opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-371
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 0 11 11101 Unallocated. -

 1 - 00000 UHADD -

 1 - 00001 UQADD -

 1 - 00010 URHADD -

 1 - 00100 UHSUB -

 1 - 00101 UQSUB -

 1 - 00110 CMHI (register) -

 1 - 00111 CMHS (register) -

 1 - 01000 USHL -

 1 - 01001 UQSHL (register) -

 1 - 01010 URSHL -

 1 - 01011 UQRSHL -

 1 - 01100 UMAX -

 1 - 01101 UMIN -

 1 - 01110 UABD -

 1 - 01111 UABA -

 1 - 10000 SUB (vector) -

 1 - 10001 CMEQ (register) -

 1 - 10010 MLS (vector) -

 1 - 10011 PMUL -

 1 - 10100 UMAXP -

 1 - 10101 UMINP -

 1 - 10110 SQRDMULH (vector) -

 1 - 10111 Unallocated. -

 1 0x 11000 FMAXNMP (vector) -

 1 0x 11010 FADDP (vector) -

 1 0x 11011 FMUL (vector) -

 1 0x 11100 FCMGE (register) -

 1 0x 11101 FACGE -

 1 0x 11110 FMAXP (vector) -

 1 0x 11111 FDIV (vector) -

 1 00 00011 EOR (vector) -

Decode fields
Instruction page Feature

U size opcode
C4-372 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD modified immediate

This section describes the encoding of the Advanced SIMD modified immediate instruction class. The encodings
in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

 1 00 11001 FMLAL, FMLAL2 (vector) - Encoding FEAT_FHM

 1 01 00011 BSL -

 1 01 11001 Unallocated. -

 1 1x 11000 FMINNMP (vector) -

 1 1x 11010 FABD -

 1 1x 11011 Unallocated. -

 1 1x 11100 FCMGT (register) -

 1 1x 11101 FACGT -

 1 1x 11110 FMINP (vector) -

 1 1x 11111 Unallocated. -

 1 10 00011 BIT -

 1 10 11001 FMLSL, FMLSL2 (vector) - Encoding FEAT_FHM

 1 11 00011 BIF -

 1 11 11001 Unallocated. -

Decode fields
Instruction page Feature

Q op cmode o2

 - 0 0xxx 1 Unallocated. -

 - 0 0xx0 0 MOVI - 32-bit shifted immediate variant -

 - 0 0xx1 0 ORR (vector, immediate) - 32-bit variant -

 - 0 10xx 1 Unallocated. -

 - 0 10x0 0 MOVI - 16-bit shifted immediate variant -

 - 0 10x1 0 ORR (vector, immediate) - 16-bit variant -

 - 0 110x 0 MOVI - 32-bit shifting ones variant -

 - 0 110x 1 Unallocated. -

 - 0 1110 0 MOVI - 8-bit variant -

Decode fields
Instruction page Feature

U size opcode

0 Q op 0 1 1 1 1 0 0 0 0 0 a b c cmode o2 1 d e f g h Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-373
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD shift by immediate

This section describes the encoding of the Advanced SIMD shift by immediate instruction class. The encodings in
this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

 - 0 1110 1 Unallocated. -

 - 0 1111 0 FMOV (vector, immediate) - Single-precision variant -

 - 0 1111 1 FMOV (vector, immediate) - Encoding FEAT_FP16

 - 1 - 1 Unallocated. -

 - 1 0xx0 0 MVNI - 32-bit shifted immediate variant -

 - 1 0xx1 0 BIC (vector, immediate) - 32-bit variant -

 - 1 10x0 0 MVNI - 16-bit shifted immediate variant -

 - 1 10x1 0 BIC (vector, immediate) - 16-bit variant -

 - 1 110x 0 MVNI - 32-bit shifting ones variant -

 0 1 1110 0 MOVI - 64-bit scalar variant -

 0 1 1111 0 Unallocated. -

 1 1 1110 0 MOVI - 64-bit vector variant -

 1 1 1111 0 FMOV (vector, immediate) - Double-precision variant -

Decode fields
Instruction page

U opcode

 - 00001 Unallocated.

 - 00011 Unallocated.

 - 00101 Unallocated.

 - 00111 Unallocated.

 - 01001 Unallocated.

 - 01011 Unallocated.

 - 01101 Unallocated.

 - 01111 Unallocated.

 - 10101 Unallocated.

 - 1011x Unallocated.

Decode fields
Instruction page Feature

Q op cmode o2

0 Q U 0 1 1 1 1 0 !=0000 immb opcode 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 11 10 9 5 4 0

immh
C4-374 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 - 110xx Unallocated.

 - 11101 Unallocated.

 - 11110 Unallocated.

 0 00000 SSHR

 0 00010 SSRA

 0 00100 SRSHR

 0 00110 SRSRA

 0 01000 Unallocated.

 0 01010 SHL

 0 01100 Unallocated.

 0 01110 SQSHL (immediate)

 0 10000 SHRN, SHRN2

 0 10001 RSHRN, RSHRN2

 0 10010 SQSHRN, SQSHRN2

 0 10011 SQRSHRN, SQRSHRN2

 0 10100 SSHLL, SSHLL2

 0 11100 SCVTF (vector, fixed-point)

 0 11111 FCVTZS (vector, fixed-point)

 1 00000 USHR

 1 00010 USRA

 1 00100 URSHR

 1 00110 URSRA

 1 01000 SRI

 1 01010 SLI

 1 01100 SQSHLU

 1 01110 UQSHL (immediate)

 1 10000 SQSHRUN, SQSHRUN2

 1 10001 SQRSHRUN, SQRSHRUN2

 1 10010 UQSHRN, UQSHRN2

 1 10011 UQRSHRN, UQRSHRN2

Decode fields
Instruction page

U opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-375
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Advanced SIMD vector x indexed element

This section describes the encoding of the Advanced SIMD vector x indexed element instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on
page C4-342.

 1 10100 USHLL, USHLL2

 1 11100 UCVTF (vector, fixed-point)

 1 11111 FCVTZU (vector, fixed-point)

Decode fields
Instruction page Feature

U size opcode

 - 01 1001 Unallocated. -

 0 - 0010 SMLAL, SMLAL2 (by element) -

 0 - 0011 SQDMLAL, SQDMLAL2 (by element) -

 0 - 0110 SMLSL, SMLSL2 (by element) -

 0 - 0111 SQDMLSL, SQDMLSL2 (by element) -

 0 - 1000 MUL (by element) -

 0 - 1010 SMULL, SMULL2 (by element) -

 0 - 1011 SQDMULL, SQDMULL2 (by element) -

 0 - 1100 SQDMULH (by element) -

 0 - 1101 SQRDMULH (by element) -

 0 - 1110 SDOT (by element) FEAT_DotProd

 0 0x 0000 Unallocated. -

 0 0x 0100 Unallocated. -

 0 00 0001 FMLA (by element) - Encoding FEAT_FP16

 0 00 0101 FMLS (by element) - Encoding FEAT_FP16

 0 00 1001 FMUL (by element) - Encoding FEAT_FP16

 0 00 1111 SUDOT (by element) FEAT_I8MM

 0 01 0001 Unallocated. -

 0 01 0101 Unallocated. -

Decode fields
Instruction page

U opcode

0 Q U 0 1 1 1 1 size L M Rm opcode H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
C4-376 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 0 01 1111 BFDOT (by element) FEAT_BF16

 0 1x 0001 FMLA (by element) - Encoding -

 0 1x 0101 FMLS (by element) - Encoding -

 0 1x 1001 FMUL (by element) - Encoding -

 0 10 0000 FMLAL, FMLAL2 (by element) - Encoding FEAT_FHM

 0 10 0100 FMLSL, FMLSL2 (by element) - Encoding FEAT_FHM

 0 10 1111 USDOT (by element) FEAT_I8MM

 0 11 0000 Unallocated. -

 0 11 0100 Unallocated. -

 0 11 1111 BFMLALB, BFMLALT (by element) FEAT_BF16

 1 - 0000 MLA (by element) -

 1 - 0010 UMLAL, UMLAL2 (by element) -

 1 - 0100 MLS (by element) -

 1 - 0110 UMLSL, UMLSL2 (by element) -

 1 - 1010 UMULL, UMULL2 (by element) -

 1 - 1011 Unallocated. -

 1 - 1101 SQRDMLAH (by element) FEAT_RDM

 1 - 1110 UDOT (by element) FEAT_DotProd

 1 - 1111 SQRDMLSH (by element) FEAT_RDM

 1 0x 1000 Unallocated. -

 1 0x 1100 Unallocated. -

 1 00 0001 Unallocated. -

 1 00 0011 Unallocated. -

 1 00 0101 Unallocated. -

 1 00 0111 Unallocated. -

 1 00 1001 FMULX (by element) - Encoding FEAT_FP16

 1 01 0xx1 FCMLA (by element) FEAT_FCMA

 1 1x 1001 FMULX (by element) - Encoding -

 1 10 0xx1 FCMLA (by element) FEAT_FCMA

 1 10 1000 FMLAL, FMLAL2 (by element) - Encoding FEAT_FHM

 1 10 1100 FMLSL, FMLSL2 (by element) - Encoding FEAT_FHM

 1 11 0001 Unallocated. -

Decode fields
Instruction page Feature

U size opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-377
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Cryptographic three-register, imm2

This section describes the encoding of the Cryptographic three-register, imm2 instruction class. The encodings in
this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

Cryptographic three-register SHA 512

This section describes the encoding of the Cryptographic three-register SHA 512 instruction class. The encodings
in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

 1 11 0011 Unallocated. -

 1 11 0101 Unallocated. -

 1 11 0111 Unallocated. -

 1 11 1000 Unallocated. -

 1 11 1100 Unallocated. -

Decode fields
Instruction page Feature

opcode

 00 SM3TT1A FEAT_SM3

 01 SM3TT1B FEAT_SM3

 10 SM3TT2A FEAT_SM3

 11 SM3TT2B FEAT_SM3

Decode fields
Instruction page Feature

O opcode

 0 00 SHA512H FEAT_SHA512

 0 01 SHA512H2 FEAT_SHA512

 0 10 SHA512SU1 FEAT_SHA512

Decode fields
Instruction page Feature

U size opcode

1 1 0 0 1 1 1 0 0 1 0 Rm 1 0 imm2 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

opcode

1 1 0 0 1 1 1 0 0 1 1 Rm 1 O 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

opcode
C4-378 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Cryptographic four-register

This section describes the encoding of the Cryptographic four-register instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

Cryptographic two-register SHA 512

This section describes the encoding of the Cryptographic two-register SHA 512 instruction class. The encodings in
this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

 0 11 RAX1 FEAT_SHA3

 1 00 SM3PARTW1 FEAT_SM3

 1 01 SM3PARTW2 FEAT_SM3

 1 10 SM4EKEY FEAT_SM4

 1 11 Unallocated. -

Decode fields
Instruction page Feature

Op0

 00 EOR3 FEAT_SHA3

 01 BCAX FEAT_SHA3

 10 SM3SS1 FEAT_SM3

 11 Unallocated. -

Decode fields
Instruction page Feature

opcode

 00 SHA512SU0 FEAT_SHA512

 01 SM4E FEAT_SM4

 1x Unallocated. -

Decode fields
Instruction page Feature

O opcode

1 1 0 0 1 1 1 0 0 Op0 Rm 0 Ra Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-379
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Conversion between floating-point and fixed-point

This section describes the encoding of the Conversion between floating-point and fixed-point instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on
page C4-342.

sf 0 S 1 1 1 1 0 ptype 0 rmode opcode scale Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 10 9 5 4 0

Decode fields
Instruction page Feature

sf S ptype rmode opcode scale

 - - - - 1xx - Unallocated. -

 - - - x0 00x - Unallocated. -

 - - - x1 01x - Unallocated. -

 - - - 0x 00x - Unallocated. -

 - - - 1x 01x - Unallocated. -

 - - 10 - - - Unallocated. -

 - 1 - - - - Unallocated. -

 0 - - - - 0xxxxx Unallocated. -

 0 0 00 00 010 - SCVTF (scalar, fixed-point) - 32-bit to single-precision variant -

 0 0 00 00 011 - UCVTF (scalar, fixed-point) - 32-bit to single-precision
variant

-

 0 0 00 11 000 - FCVTZS (scalar, fixed-point) - Single-precision to 32-bit
variant

-

 0 0 00 11 001 - FCVTZU (scalar, fixed-point) - Single-precision to 32-bit
variant

-

 0 0 01 00 010 - SCVTF (scalar, fixed-point) - 32-bit to double-precision
variant

-

 0 0 01 00 011 - UCVTF (scalar, fixed-point) - 32-bit to double-precision
variant

-

 0 0 01 11 000 - FCVTZS (scalar, fixed-point) - Double-precision to 32-bit
variant

-

 0 0 01 11 001 - FCVTZU (scalar, fixed-point) - Double-precision to 32-bit
variant

-

 0 0 11 00 010 - SCVTF (scalar, fixed-point) - 32-bit to half-precision variant FEAT_FP16

 0 0 11 00 011 - UCVTF (scalar, fixed-point) - 32-bit to half-precision variant FEAT_FP16

 0 0 11 11 000 - FCVTZS (scalar, fixed-point) - Half-precision to 32-bit variant FEAT_FP16

 0 0 11 11 001 - FCVTZU (scalar, fixed-point) - Half-precision to 32-bit
variant

FEAT_FP16

 1 0 00 00 010 - SCVTF (scalar, fixed-point) - 64-bit to single-precision variant -
C4-380 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Conversion between floating-point and integer

This section describes the encoding of the Conversion between floating-point and integer instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on
page C4-342.

 1 0 00 00 011 - UCVTF (scalar, fixed-point) - 64-bit to single-precision
variant

-

 1 0 00 11 000 - FCVTZS (scalar, fixed-point) - Single-precision to 64-bit
variant

-

 1 0 00 11 001 - FCVTZU (scalar, fixed-point) - Single-precision to 64-bit
variant

-

 1 0 01 00 010 - SCVTF (scalar, fixed-point) - 64-bit to double-precision
variant

-

 1 0 01 00 011 - UCVTF (scalar, fixed-point) - 64-bit to double-precision
variant

-

 1 0 01 11 000 - FCVTZS (scalar, fixed-point) - Double-precision to 64-bit
variant

-

 1 0 01 11 001 - FCVTZU (scalar, fixed-point) - Double-precision to 64-bit
variant

-

 1 0 11 00 010 - SCVTF (scalar, fixed-point) - 64-bit to half-precision variant FEAT_FP16

 1 0 11 00 011 - UCVTF (scalar, fixed-point) - 64-bit to half-precision variant FEAT_FP16

 1 0 11 11 000 - FCVTZS (scalar, fixed-point) - Half-precision to 64-bit variant FEAT_FP16

 1 0 11 11 001 - FCVTZU (scalar, fixed-point) - Half-precision to 64-bit
variant

FEAT_FP16

Decode fields
Instruction page Feature

sf S ptype rmode opcode scale

sf 0 S 1 1 1 1 0 ptype 1 rmode opcode 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

Decode fields
Instruction page Feature

sf S ptype rmode opcode

 - - - x1 01x Unallocated. -

 - - - x1 10x Unallocated. -

 - - - 1x 01x Unallocated. -

 - - - 1x 10x Unallocated. -

 - 0 10 - 0xx Unallocated. -

 - 0 10 - 10x Unallocated. -
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-381
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 - 1 - - - Unallocated. -

 0 0 00 x1 11x Unallocated. -

 0 0 00 00 000 FCVTNS (scalar) - Single-precision to 32-bit variant -

 0 0 00 00 001 FCVTNU (scalar) - Single-precision to 32-bit variant -

 0 0 00 00 010 SCVTF (scalar, integer) - 32-bit to single-precision variant -

 0 0 00 00 011 UCVTF (scalar, integer) - 32-bit to single-precision variant -

 0 0 00 00 100 FCVTAS (scalar) - Single-precision to 32-bit variant -

 0 0 00 00 101 FCVTAU (scalar) - Single-precision to 32-bit variant -

 0 0 00 00 110 FMOV (general) - Single-precision to 32-bit variant -

 0 0 00 00 111 FMOV (general) - 32-bit to single-precision variant -

 0 0 00 01 000 FCVTPS (scalar) - Single-precision to 32-bit variant -

 0 0 00 01 001 FCVTPU (scalar) - Single-precision to 32-bit variant -

 0 0 00 1x 11x Unallocated. -

 0 0 00 10 000 FCVTMS (scalar) - Single-precision to 32-bit variant -

 0 0 00 10 001 FCVTMU (scalar) - Single-precision to 32-bit variant -

 0 0 00 11 000 FCVTZS (scalar, integer) - Single-precision to 32-bit variant -

 0 0 00 11 001 FCVTZU (scalar, integer) - Single-precision to 32-bit variant -

 0 0 01 0x 11x Unallocated. -

 0 0 01 00 000 FCVTNS (scalar) - Double-precision to 32-bit variant -

 0 0 01 00 001 FCVTNU (scalar) - Double-precision to 32-bit variant -

 0 0 01 00 010 SCVTF (scalar, integer) - 32-bit to double-precision variant -

 0 0 01 00 011 UCVTF (scalar, integer) - 32-bit to double-precision variant -

 0 0 01 00 100 FCVTAS (scalar) - Double-precision to 32-bit variant -

 0 0 01 00 101 FCVTAU (scalar) - Double-precision to 32-bit variant -

 0 0 01 01 000 FCVTPS (scalar) - Double-precision to 32-bit variant -

 0 0 01 01 001 FCVTPU (scalar) - Double-precision to 32-bit variant -

 0 0 01 10 000 FCVTMS (scalar) - Double-precision to 32-bit variant -

 0 0 01 10 001 FCVTMU (scalar) - Double-precision to 32-bit variant -

 0 0 01 10 11x Unallocated. -

 0 0 01 11 000 FCVTZS (scalar, integer) - Double-precision to 32-bit variant -

 0 0 01 11 001 FCVTZU (scalar, integer) - Double-precision to 32-bit variant -

 0 0 01 11 110 FJCVTZS FEAT_JSCVT

Decode fields
Instruction page Feature

sf S ptype rmode opcode
C4-382 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 0 0 01 11 111 Unallocated. -

 0 0 10 - 11x Unallocated. -

 0 0 11 00 000 FCVTNS (scalar) - Half-precision to 32-bit variant FEAT_FP16

 0 0 11 00 001 FCVTNU (scalar) - Half-precision to 32-bit variant FEAT_FP16

 0 0 11 00 010 SCVTF (scalar, integer) - 32-bit to half-precision variant FEAT_FP16

 0 0 11 00 011 UCVTF (scalar, integer) - 32-bit to half-precision variant FEAT_FP16

 0 0 11 00 100 FCVTAS (scalar) - Half-precision to 32-bit variant FEAT_FP16

 0 0 11 00 101 FCVTAU (scalar) - Half-precision to 32-bit variant FEAT_FP16

 0 0 11 00 110 FMOV (general) - Half-precision to 32-bit variant FEAT_FP16

 0 0 11 00 111 FMOV (general) - 32-bit to half-precision variant FEAT_FP16

 0 0 11 01 000 FCVTPS (scalar) - Half-precision to 32-bit variant FEAT_FP16

 0 0 11 01 001 FCVTPU (scalar) - Half-precision to 32-bit variant FEAT_FP16

 0 0 11 10 000 FCVTMS (scalar) - Half-precision to 32-bit variant FEAT_FP16

 0 0 11 10 001 FCVTMU (scalar) - Half-precision to 32-bit variant FEAT_FP16

 0 0 11 11 000 FCVTZS (scalar, integer) - Half-precision to 32-bit variant FEAT_FP16

 0 0 11 11 001 FCVTZU (scalar, integer) - Half-precision to 32-bit variant FEAT_FP16

 1 0 00 - 11x Unallocated. -

 1 0 00 00 000 FCVTNS (scalar) - Single-precision to 64-bit variant -

 1 0 00 00 001 FCVTNU (scalar) - Single-precision to 64-bit variant -

 1 0 00 00 010 SCVTF (scalar, integer) - 64-bit to single-precision variant -

 1 0 00 00 011 UCVTF (scalar, integer) - 64-bit to single-precision variant -

 1 0 00 00 100 FCVTAS (scalar) - Single-precision to 64-bit variant -

 1 0 00 00 101 FCVTAU (scalar) - Single-precision to 64-bit variant -

 1 0 00 01 000 FCVTPS (scalar) - Single-precision to 64-bit variant -

 1 0 00 01 001 FCVTPU (scalar) - Single-precision to 64-bit variant -

 1 0 00 10 000 FCVTMS (scalar) - Single-precision to 64-bit variant -

 1 0 00 10 001 FCVTMU (scalar) - Single-precision to 64-bit variant -

 1 0 00 11 000 FCVTZS (scalar, integer) - Single-precision to 64-bit variant -

 1 0 00 11 001 FCVTZU (scalar, integer) - Single-precision to 64-bit variant -

 1 0 01 x1 11x Unallocated. -

 1 0 01 00 000 FCVTNS (scalar) - Double-precision to 64-bit variant -

 1 0 01 00 001 FCVTNU (scalar) - Double-precision to 64-bit variant -

Decode fields
Instruction page Feature

sf S ptype rmode opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-383
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 1 0 01 00 010 SCVTF (scalar, integer) - 64-bit to double-precision variant -

 1 0 01 00 011 UCVTF (scalar, integer) - 64-bit to double-precision variant -

 1 0 01 00 100 FCVTAS (scalar) - Double-precision to 64-bit variant -

 1 0 01 00 101 FCVTAU (scalar) - Double-precision to 64-bit variant -

 1 0 01 00 110 FMOV (general) - Double-precision to 64-bit variant -

 1 0 01 00 111 FMOV (general) - 64-bit to double-precision variant -

 1 0 01 01 000 FCVTPS (scalar) - Double-precision to 64-bit variant -

 1 0 01 01 001 FCVTPU (scalar) - Double-precision to 64-bit variant -

 1 0 01 1x 11x Unallocated. -

 1 0 01 10 000 FCVTMS (scalar) - Double-precision to 64-bit variant -

 1 0 01 10 001 FCVTMU (scalar) - Double-precision to 64-bit variant -

 1 0 01 11 000 FCVTZS (scalar, integer) - Double-precision to 64-bit variant -

 1 0 01 11 001 FCVTZU (scalar, integer) - Double-precision to 64-bit variant -

 1 0 10 x0 11x Unallocated. -

 1 0 10 01 110 FMOV (general) - Top half of 128-bit to 64-bit variant -

 1 0 10 01 111 FMOV (general) - 64-bit to top half of 128-bit variant -

 1 0 10 1x 11x Unallocated. -

 1 0 11 00 000 FCVTNS (scalar) - Half-precision to 64-bit variant FEAT_FP16

 1 0 11 00 001 FCVTNU (scalar) - Half-precision to 64-bit variant FEAT_FP16

 1 0 11 00 010 SCVTF (scalar, integer) - 64-bit to half-precision variant FEAT_FP16

 1 0 11 00 011 UCVTF (scalar, integer) - 64-bit to half-precision variant FEAT_FP16

 1 0 11 00 100 FCVTAS (scalar) - Half-precision to 64-bit variant FEAT_FP16

 1 0 11 00 101 FCVTAU (scalar) - Half-precision to 64-bit variant FEAT_FP16

 1 0 11 00 110 FMOV (general) - Half-precision to 64-bit variant FEAT_FP16

 1 0 11 00 111 FMOV (general) - 64-bit to half-precision variant FEAT_FP16

 1 0 11 01 000 FCVTPS (scalar) - Half-precision to 64-bit variant FEAT_FP16

 1 0 11 01 001 FCVTPU (scalar) - Half-precision to 64-bit variant FEAT_FP16

 1 0 11 10 000 FCVTMS (scalar) - Half-precision to 64-bit variant FEAT_FP16

 1 0 11 10 001 FCVTMU (scalar) - Half-precision to 64-bit variant FEAT_FP16

 1 0 11 11 000 FCVTZS (scalar, integer) - Half-precision to 64-bit variant FEAT_FP16

 1 0 11 11 001 FCVTZU (scalar, integer) - Half-precision to 64-bit variant FEAT_FP16

Decode fields
Instruction page Feature

sf S ptype rmode opcode
C4-384 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Floating-point data-processing (1 source)

This section describes the encoding of the Floating-point data-processing (1 source) instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on
page C4-342.

Decode fields
Instruction page Feature

M S ptype opcode

 - - - 1xxxxx Unallocated. -

 - 1 - - Unallocated. -

 0 0 00 000000 FMOV (register) - Single-precision variant -

 0 0 00 000001 FABS (scalar) - Single-precision variant -

 0 0 00 000010 FNEG (scalar) - Single-precision variant -

 0 0 00 000011 FSQRT (scalar) - Single-precision variant -

 0 0 00 000100 Unallocated. -

 0 0 00 000101 FCVT - Single-precision to double-precision variant -

 0 0 00 000110 Unallocated. -

 0 0 00 000111 FCVT - Single-precision to half-precision variant -

 0 0 00 001000 FRINTN (scalar) - Single-precision variant -

 0 0 00 001001 FRINTP (scalar) - Single-precision variant -

 0 0 00 001010 FRINTM (scalar) - Single-precision variant -

 0 0 00 001011 FRINTZ (scalar) - Single-precision variant -

 0 0 00 001100 FRINTA (scalar) - Single-precision variant -

 0 0 00 001101 Unallocated. -

 0 0 00 001110 FRINTX (scalar) - Single-precision variant -

 0 0 00 001111 FRINTI (scalar) - Single-precision variant -

 0 0 00 010000 FRINT32Z (scalar) - Single-precision variant FEAT_FRINTTS

 0 0 00 010001 FRINT32X (scalar) - Single-precision variant FEAT_FRINTTS

 0 0 00 010010 FRINT64Z (scalar) - Single-precision variant FEAT_FRINTTS

 0 0 00 010011 FRINT64X (scalar) - Single-precision variant FEAT_FRINTTS

 0 0 00 0101xx Unallocated. -

 0 0 00 011xxx Unallocated. -

 0 0 01 000000 FMOV (register) - Double-precision variant -

M 0 S 1 1 1 1 0 ptype 1 opcode 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-385
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 0 0 01 000001 FABS (scalar) - Double-precision variant -

 0 0 01 000010 FNEG (scalar) - Double-precision variant -

 0 0 01 000011 FSQRT (scalar) - Double-precision variant -

 0 0 01 000100 FCVT - Double-precision to single-precision variant -

 0 0 01 000101 Unallocated. -

 0 0 01 000110 BFCVT FEAT_BF16

 0 0 01 000111 FCVT - Double-precision to half-precision variant -

 0 0 01 001000 FRINTN (scalar) - Double-precision variant -

 0 0 01 001001 FRINTP (scalar) - Double-precision variant -

 0 0 01 001010 FRINTM (scalar) - Double-precision variant -

 0 0 01 001011 FRINTZ (scalar) - Double-precision variant -

 0 0 01 001100 FRINTA (scalar) - Double-precision variant -

 0 0 01 001101 Unallocated. -

 0 0 01 001110 FRINTX (scalar) - Double-precision variant -

 0 0 01 001111 FRINTI (scalar) - Double-precision variant -

 0 0 01 010000 FRINT32Z (scalar) - Double-precision variant FEAT_FRINTTS

 0 0 01 010001 FRINT32X (scalar) - Double-precision variant FEAT_FRINTTS

 0 0 01 010010 FRINT64Z (scalar) - Double-precision variant FEAT_FRINTTS

 0 0 01 010011 FRINT64X (scalar) - Double-precision variant FEAT_FRINTTS

 0 0 01 0101xx Unallocated. -

 0 0 01 011xxx Unallocated. -

 0 0 10 0xxxxx Unallocated. -

 0 0 11 000000 FMOV (register) - Half-precision variant FEAT_FP16

 0 0 11 000001 FABS (scalar) - Half-precision variant FEAT_FP16

 0 0 11 000010 FNEG (scalar) - Half-precision variant FEAT_FP16

 0 0 11 000011 FSQRT (scalar) - Half-precision variant FEAT_FP16

 0 0 11 000100 FCVT - Half-precision to single-precision variant -

 0 0 11 000101 FCVT - Half-precision to double-precision variant -

 0 0 11 00011x Unallocated. -

 0 0 11 001000 FRINTN (scalar) - Half-precision variant FEAT_FP16

 0 0 11 001001 FRINTP (scalar) - Half-precision variant FEAT_FP16

 0 0 11 001010 FRINTM (scalar) - Half-precision variant FEAT_FP16

Decode fields
Instruction page Feature

M S ptype opcode
C4-386 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Floating-point compare

This section describes the encoding of the Floating-point compare instruction class. The encodings in this section
are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

 0 0 11 001011 FRINTZ (scalar) - Half-precision variant FEAT_FP16

 0 0 11 001100 FRINTA (scalar) - Half-precision variant FEAT_FP16

 0 0 11 001101 Unallocated. -

 0 0 11 001110 FRINTX (scalar) - Half-precision variant FEAT_FP16

 0 0 11 001111 FRINTI (scalar) - Half-precision variant FEAT_FP16

 0 0 11 01xxxx Unallocated. -

 1 - - - Unallocated. -

Decode fields
Instruction page Feature

M S ptype op opcode2

 - - - - xxxx1 Unallocated. -

 - - - - xxx1x Unallocated. -

 - - - - xx1xx Unallocated. -

 - - - x1 - Unallocated. -

 - - - 1x - Unallocated. -

 - - 10 - - Unallocated. -

 - 1 - - - Unallocated. -

 0 0 00 00 00000 FCMP -

 0 0 00 00 01000 FCMP -

 0 0 00 00 10000 FCMPE -

 0 0 00 00 11000 FCMPE -

 0 0 01 00 00000 FCMP -

 0 0 01 00 01000 FCMP -

 0 0 01 00 10000 FCMPE -

 0 0 01 00 11000 FCMPE -

 0 0 11 00 00000 FCMP FEAT_FP16

Decode fields
Instruction page Feature

M S ptype opcode

M 0 S 1 1 1 1 0 ptype 1 Rm op 1 0 0 0 Rn opcode2
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-387
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Floating-point immediate

This section describes the encoding of the Floating-point immediate instruction class. The encodings in this section
are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

Floating-point conditional compare

This section describes the encoding of the Floating-point conditional compare instruction class. The encodings in
this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

 0 0 11 00 01000 FCMP FEAT_FP16

 0 0 11 00 10000 FCMPE FEAT_FP16

 0 0 11 00 11000 FCMPE FEAT_FP16

 1 - - - - Unallocated. -

Decode fields
Instruction page Feature

M S ptype imm5

 - - - xxxx1 Unallocated. -

 - - - xxx1x Unallocated. -

 - - - xx1xx Unallocated. -

 - - - x1xxx Unallocated. -

 - - - 1xxxx Unallocated. -

 - - 10 - Unallocated. -

 - 1 - - Unallocated. -

 0 0 00 00000 FMOV (scalar, immediate) - Single-precision variant -

 0 0 01 00000 FMOV (scalar, immediate) - Double-precision variant -

 0 0 11 00000 FMOV (scalar, immediate) - Half-precision variant FEAT_FP16

 1 - - - Unallocated. -

Decode fields
Instruction page Feature

M S ptype op opcode2

M 0 S 1 1 1 1 0 ptype 1 imm8 1 0 0 imm5 Rd
31 30 29 28 27 26 25 24 23 22 21 20 13 12 11 10 9 5 4 0
C4-388 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Floating-point data-processing (2 source)

This section describes the encoding of the Floating-point data-processing (2 source) instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on
page C4-342.

Decode fields
Instruction page Feature

M S ptype op

 - - 10 - Unallocated. -

 - 1 - - Unallocated. -

 0 0 00 0 FCCMP - Single-precision variant -

 0 0 00 1 FCCMPE - Single-precision variant -

 0 0 01 0 FCCMP - Double-precision variant -

 0 0 01 1 FCCMPE - Double-precision variant -

 0 0 11 0 FCCMP - Half-precision variant FEAT_FP16

 0 0 11 1 FCCMPE - Half-precision variant FEAT_FP16

 1 - - - Unallocated. -

Decode fields
Instruction page Feature

M S ptype opcode

 - - - 1xx1 Unallocated. -

 - - - 1x1x Unallocated. -

 - - - 11xx Unallocated. -

 - - 10 - Unallocated. -

 - 1 - - Unallocated. -

 0 0 00 0000 FMUL (scalar) - Single-precision variant -

 0 0 00 0001 FDIV (scalar) - Single-precision variant -

 0 0 00 0010 FADD (scalar) - Single-precision variant -

 0 0 00 0011 FSUB (scalar) - Single-precision variant -

 0 0 00 0100 FMAX (scalar) - Single-precision variant -

M 0 S 1 1 1 1 0 ptype 1 Rm cond 0 1 Rn op nzcv
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0

M 0 S 1 1 1 1 0 ptype 1 Rm opcode 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-389
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Floating-point conditional select

This section describes the encoding of the Floating-point conditional select instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

 0 0 00 0101 FMIN (scalar) - Single-precision variant -

 0 0 00 0110 FMAXNM (scalar) - Single-precision variant -

 0 0 00 0111 FMINNM (scalar) - Single-precision variant -

 0 0 00 1000 FNMUL (scalar) - Single-precision variant -

 0 0 01 0000 FMUL (scalar) - Double-precision variant -

 0 0 01 0001 FDIV (scalar) - Double-precision variant -

 0 0 01 0010 FADD (scalar) - Double-precision variant -

 0 0 01 0011 FSUB (scalar) - Double-precision variant -

 0 0 01 0100 FMAX (scalar) - Double-precision variant -

 0 0 01 0101 FMIN (scalar) - Double-precision variant -

 0 0 01 0110 FMAXNM (scalar) - Double-precision variant -

 0 0 01 0111 FMINNM (scalar) - Double-precision variant -

 0 0 01 1000 FNMUL (scalar) - Double-precision variant -

 0 0 11 0000 FMUL (scalar) - Half-precision variant FEAT_FP16

 0 0 11 0001 FDIV (scalar) - Half-precision variant FEAT_FP16

 0 0 11 0010 FADD (scalar) - Half-precision variant FEAT_FP16

 0 0 11 0011 FSUB (scalar) - Half-precision variant FEAT_FP16

 0 0 11 0100 FMAX (scalar) - Half-precision variant FEAT_FP16

 0 0 11 0101 FMIN (scalar) - Half-precision variant FEAT_FP16

 0 0 11 0110 FMAXNM (scalar) - Half-precision variant FEAT_FP16

 0 0 11 0111 FMINNM (scalar) - Half-precision variant FEAT_FP16

 0 0 11 1000 FNMUL (scalar) - Half-precision variant FEAT_FP16

 1 - - - Unallocated. -

Decode fields
Instruction page Feature

M S ptype opcode
C4-390 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Floating-point data-processing (3 source)

This section describes the encoding of the Floating-point data-processing (3 source) instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on
page C4-342.

Decode fields
Instruction page Feature

M S ptype

 - - 10 Unallocated. -

 - 1 - Unallocated. -

 0 0 00 FCSEL - Single-precision variant -

 0 0 01 FCSEL - Double-precision variant -

 0 0 11 FCSEL - Half-precision variant FEAT_FP16

 1 - - Unallocated. -

Decode fields
Instruction page Feature

M S ptype o1 o0

 - - 10 - - Unallocated. -

 - 1 - - - Unallocated. -

 0 0 00 0 0 FMADD - Single-precision variant -

 0 0 00 0 1 FMSUB - Single-precision variant -

 0 0 00 1 0 FNMADD - Single-precision variant -

 0 0 00 1 1 FNMSUB - Single-precision variant -

 0 0 01 0 0 FMADD - Double-precision variant -

 0 0 01 0 1 FMSUB - Double-precision variant -

 0 0 01 1 0 FNMADD - Double-precision variant -

 0 0 01 1 1 FNMSUB - Double-precision variant -

 0 0 11 0 0 FMADD - Half-precision variant FEAT_FP16

 0 0 11 0 1 FMSUB - Half-precision variant FEAT_FP16

M 0 S 1 1 1 1 0 ptype 1 Rm cond 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

M 0 S 1 1 1 1 1 ptype o1 Rm o0 Ra Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-391
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 0 0 11 1 0 FNMADD - Half-precision variant FEAT_FP16

 0 0 11 1 1 FNMSUB - Half-precision variant FEAT_FP16

 1 - - - - Unallocated. -

Decode fields
Instruction page Feature

M S ptype o1 o0
C4-392 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter C5
The A64 System Instruction Class

This chapter describes the A64 System instruction class, and the System instruction class encoding space, that is a
subset of the System registers encoding space. It contains the following sections:

• The System instruction class encoding space on page C5-394.

• Special-purpose registers on page C5-408.

• A64 System instructions for cache maintenance on page C5-506.

• A64 System instructions for address translation on page C5-567.

• A64 System instructions for TLB maintenance on page C5-592.

• A64 System instructions for prediction restriction on page C5-860.

See General information about the A64 instruction descriptions on page C2-211 for information about entries used
in the instruction encoding descriptions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-393
ID072021 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
C5.1 The System instruction class encoding space

Part of the A64 instruction encoding space is assigned to instructions that access the System register encoding space.
These instructions provide:

• Access to System registers, including the debug registers, that provide system control, and system status
information.

• Access to Special-purpose registers such as SPSR_ELx, ELR_ELx, and the equivalent fields of the Process
State.

• The cache and TLB maintenance instructions and address translation instructions.

• Barriers and the CLREX instruction.

• Architectural hint instructions.

This section describes the general model for accessing this functionality.

Note

• See Fixed values in AArch64 instruction and System register descriptions on page C2-211 for information
about abbreviations used in the System instruction descriptions.

• In AArch32 state much of this functionality is provided through the System register interface described in
The AArch32 System register interface on page G1-6109. In AArch64 state, the parameters used to
characterize the System register encoding space are {op0, op1, CRn, CRm, op2}. These are based on the
parameters that characterize the AArch32 System register encoding space, which reflect the original
implementation of these registers, as described in Background to the System register interface on
page G1-6110. In Armv8, there is no particular significance to the naming of these parameters, and no
functional distinction between the opn parameters and the CRx parameters.

Principles of the System instruction class encoding on page C5-394 describes some general properties of these
encodings. System instruction class encoding overview on page C5-395 then describes the top-level encoding of
these instructions, and the following sections then describe the next level of the encoding hierarchy of System
instructions and Special-purpose registers:

• op0==0b00, architectural hints, barriers and CLREX, and PSTATE access on page C5-396.

• op0==0b01, cache maintenance, TLB maintenance, and address translation instructions on page C5-399.

• op0==0b11, Moves to and from Special-purpose registers on page C5-405.

For the description of the next level of encoding hierarchy of System registers, see:

• op0==0b10, Moves to and from debug and trace System registers on page D12-3021.

• op0==0b11, Moves to and from non-debug System registers, Special-purpose registers on page D12-3023.

• Reserved encodings for IMPLEMENTATION DEFINED registers on page D12-3038.

C5.1.1 Principles of the System instruction class encoding

In Armv8, an encoding in the System instruction space is identified by a set of arguments,{op0, op1, CRn, CRm, op2}.
These form an encoding hierarchy, where:

op0 Defines the top-level division of the encoding space, see System instruction class encoding overview
on page C5-395.

op1 Identifies the lowest Exception level at which the encoding is accessible, as follows:

Accessible at EL0 op1 has the value 3.

Accessible at EL1 op1 has the value 0, 1, or 2. The value is the same as the op1 value used to
access the equivalent AArch32 register.

Accessible at Secure EL1

op1 has the value 7.
C5-394 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.1 The System instruction class encoding space
Accessible at EL2 op1 has the value 4 or 5. The value 5 is used for the EL12 encodings that
access EL1 System registers used when FEAT_VHE is implemented and
HCR_EL2.E2H is 1.

Accessible at EL3 op1 has the value 6.

Arm strongly recommends that implementers adopt this use of op1 when using the IMPLEMENTATION DEFINED
regions of the encoding space described in Reserved encodings for IMPLEMENTATION DEFINED registers on
page D12-3038.

C5.1.2 System instruction class encoding overview

The encoding of the System instruction class describes each instruction as being either:

• A transfer to a System register. This is a System instruction with the semantics of a write.

• A transfer from a System register. This is a System instruction with the semantics of a read.

A System instruction that initiates an operation operates as if it was making a transfer to a register.

In the AArch64 instruction set, the decode structure for the System instruction class is:

The value of L indicates the transfer direction:

0 Transfer to System register.

1 Transfer from System register.

The op0 field is the top level encoding of the System instruction type. Its possible values are:

0b00 These encodings provide:

• Instructions with an immediate field for accessing PSTATE, the current PE state.

• The architectural hint instructions.

• Barriers and the CLREX instruction.

For more information about these encodings, see op0==0b00, architectural hints, barriers and
CLREX, and PSTATE access on page C5-396.

0b01 These encodings provide the cache maintenance, TLB maintenance, and address translation
instructions.

Note

These are equivalent to operations in the AArch32 (coproc==0b1111) encoding space.

For more information, see op0==0b01, cache maintenance, TLB maintenance, and address
translation instructions on page C5-399.

0b10 These encodings provide moves to and from:

• Legacy AArch32 System registers for execution environments, to provide access to these
registers from higher Exception levels that are using AArch64.

• Debug and trace registers.

Note
These are equivalent to the registers in the AArch32 (coproc==0b1110) encoding space.

For more information, see op0==0b10, Moves to and from debug and trace System registers on
page D12-3021.

0b11 These encodings provide:

• Moves to and from Non-debug System registers. The accessed registers provide system
control, and system status information.

Rt1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 L op1 CRn CRm op2op0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-395
ID072021 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
Note
The accessed registers are equivalent to the registers in the AArch32 (coproc==0b1111)
encoding space.

• Access to Special-purpose registers.

For more information, see Instructions for accessing Special-purpose registers on page C5-405 and
Instructions for accessing non-debug System registers on page D12-3023.

UNDEFINED behaviors

In the System register instruction encoding space, the following principles apply:

• All unallocated encodings are treated as UNDEFINED.

• All encodings with L==1 and op0==0b0x are undefined, except for encodings in the area reserved for
implementation defined use, see Reserved encoding space for IMPLEMENTATION DEFINED instructions
on page C5-404.

For registers and operations that are accessible from a particular Exception level, any attempt to access those
registers from a lower Exception level is UNDEFINED.

If a particular Exception level:

• Defines a register to be RO, then any attempt to write to that register, at that Exception level, is UNDEFINED.
This means that any access to that register with L==0 is UNDEFINED.

• Defines a register to be WO, then any attempt to read from that register, at that Exception level, is UNDEFINED.
This means that any access to that register with L==1 is UNDEFINED.

For IMPLEMENTATION DEFINED encoding spaces, the treatment of the encodings is IMPLEMENTATION DEFINED, but
see the recommendation in Principles of the System instruction class encoding on page C5-394.

C5.1.3 op0==0b00, architectural hints, barriers and CLREX, and PSTATE access

The different groups of System register instructions with op0==0b00:

• Are identified by the value of CRn.

• Are always encoded with a value of 0b11111 in the Rt field.

The encoding of these instructions is:

The encoding of the CRn field is as follows:

0b0010 See Architectural hint instructions on page C5-396.

0b0011 See Barriers and CLREX on page C5-397.

0b0100 See Instructions for accessing the PSTATE fields on page C5-398.

Architectural hint instructions

Within the op0==0b00 encodings, the architectural hint instructions are identified by CRn having the value 0b0010. The
encoding of these instructions is:

The value of op<6:0>, formed by concatenating the CRm and op2 fields, determines the hint instruction as follows:

0b0000000 NOP instruction.

Rt

1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 L op1 CRn CRm op2

op0

0 0 1 1 1 1 1

1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 5 4 0

1 0 1 0 1 0 1 0 0 0 Op<6:0>0 0 0 0 1 0 1 1 1 1 10 1 1

Rtop1 CRn CRm op2op0
C5-396 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.1 The System instruction class encoding space
0b0000001 YIELD instruction.

0b0000010 WFE instruction.

0b0000011 WFI instruction.

0b0000100 SEV instruction.

0b0000101 SEVL instruction.

0b0000110 DGH instruction.

0b0000111 XPACD, XPACI, XPACLRI instruction.

0b0001000 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA instruction, PACIA1716 variant.

0b0001010 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB instruction, PACIB1716 variant.

0b0001100 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA instruction, AUTIA1716 variant.

0b0001110 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB instruction, AUTIB1716 variant.

0b0010000 ESB instruction.

0b0010001 PSB CSYNC instruction.

0b0010010 TSB CSYNC instruction.

0b0010100 CSDB instruction.

0b0011000 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA instruction, PACIAZ variant.

0b0011001 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA instruction, PACIASP variant.

0b0011010 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB instruction, PACIBZ variant.

0b0011011 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB instruction, PACIBSP variant.

0b0011100 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA instruction, AUTIAZ variant.

0b0011101 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA instruction, AUTIASP variant.

0b0011110 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB instruction, AUTIBZ variant.

0b0011111 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB instruction, AUTIBSP variant.

0b0100xx0 BTI instruction.

These instructions are described in Chapter C6 A64 Base Instruction Descriptions.

Note

• Instruction encodings with bits[4:0] not set to 0b11111 are UNDEFINED.

• The operation of the A64 instructions for architectural hints are identical to the corresponding A32 and T32
instructions.

For more information about:

• The WFE, WFI, SEV, and SEVL instructions, see Mechanisms for entering a low-power state on page D1-2536.

• The YIELD instruction, see Software control features and EL0 on page B1-122.

Barriers and CLREX

Within the op0==0b00 encodings, the barriers and CLREX instructions are identified by CRn having the value 0b0011.
The encoding of these instructions is:

The value of op2 determines the instruction, as follows.

0b001 DSB instruction, Memory nXS barrier variant.

0b010 CLREX instruction.

0b100 DSB instruction, Memory barrier variant.

0b101 DMB instruction.

1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 0 CRm op20 0 0 0 1 1 1 1 1 1 10 1 1

Rtop1 CRnop0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-397
ID072021 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
0b110 ISB instruction.

0b000, 0b011, 0b111 UNDEFINED.

These instructions are described in Chapter C6 A64 Base Instruction Descriptions.

Note
• Instruction encodings with bits[4:0] not set to 0b11111 are UNDEFINED.

• The operation of the A64 instructions for barriers and CLREX are identical to the corresponding A32 and T32
instructions.

For more information about:

• The barrier instructions, see Memory barriers on page B2-146.

• The CLREX instruction, see Synchronization and semaphores on page B2-179.

Instructions for accessing the PSTATE fields

Within the op0==0b00 encodings, the instructions that can be used to modify PSTATE fields directly are identified
by CRn having the value 0b0100. The encoding of these instructions is:

These instructions are:

CFINV ; Inverts the value of PSTATE.C
MSR DAIFSet, #Imm4 ; Used to set any or all of DAIF to 1
MSR DAIFClr, #Imm4 ; Used to clear any or all of DAIF to 0
MSR SPSel, #Imm4 ; Used to select the Stack Pointer, between SP_EL0 and SP_ELx
MSR UAO, #Imm4 ; Used to set the value of PSTATE.UAO
MSR PAN, #Imm4 ; Used to set the value of PSTATE.PAN
MSR DIT, #Imm4 ; Used to set the value of PSTATE.DIT
MSR SSBS, #Imm4 ; Used to set the value of PSTATE.SSBS
MSR TCO, #Imm4 ; Used to set the value of PSTATE.TCO

The value of op2 selects the instruction form, which defines the constraints on the values of the op1 and Imm4
arguments, as follows:

op2==0b000 Selects the CFINV instruction.

op2==0b011 Selects the MSR UAO instruction.

op2==0b100 Selects the MSR PAN instruction.

op2==0b101 Selects the MSR SPSel instruction.

op2==0b001 Selects the MSR SSBS instruction.

op2==0b010 Selects the MSR DIT instruction.

op2==0b100 Selects the MSR TCO instruction.

op2==0b110 Selects the MSR DAIFSet instruction, that sets the specified PSTATE.{D, A, I, F} bits to 1.

op2==0b111 Selects the MSR DAIFClr instruction, that clears the specified PSTATE.{D, A, I, F} bits to 0.

All other combinations of op1 and op2 are reserved, and the corresponding instructions are UNDEFINED.

Note

For PSTATE updates, instruction encodings with bits[4:0] not set to 0b11111 are UNDEFINED.

Writes to PSTATE occur in program order without the need for additional synchronization. Changing
PSTATE.SPSel to use SP_EL0 synchronizes any updates to SP_EL0 that have been written by an MSR to SP_EL0,
without the need for additional synchronization.

1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 0 op1 Imm4 op20 0 0 1 0 0 1 1 1 1 1

RtCRn CRmop0
C5-398 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.1 The System instruction class encoding space
C5.1.4 op0==0b01, cache maintenance, TLB maintenance, and address translation instructions

The System instructions are encoded with op0==0b01. The different groups of System instructions are identified by
the values of CRn and CRm, except that some of this encoding space is reserved for IMPLEMENTATION DEFINED
functionality. The encoding of these instructions is:

The grouping of these instructions depending on the CRn and CRm fields is as follows:

CRn==7 The instruction group is determined by the value of CRm, as follows:

CRm=={1, 5} Instruction cache maintenance instructions.

See Cache maintenance instructions, and data cache zero operation on
page C5-399.

CRm==3 Prediction restriction instructions.

See Prediction restriction instructions on page C5-400.

CRm==4 Data cache zero operation.

See Cache maintenance instructions, and data cache zero operation on
page C5-399.

CRm=={6, 10, 11, 12, 14}

Data cache maintenance instructions.

See Cache maintenance instructions, and data cache zero operation on
page C5-399.

CRm==8 See Address translation instructions on page C5-401.

CRn=={8, 9} See TLB maintenance instructions on page C5-401.

CRn=={11, 15} See Reserved encoding space for IMPLEMENTATION DEFINED instructions on page C5-404.

Cache maintenance instructions, and data cache zero operation

Table C5-1 on page C5-399 lists the Cache maintenance instructions and their encodings. Instructions that take an
argument include Xt in the instruction syntax. For instructions that do not take an argument, the Xt field is encoded
as 0b11111. For these instructions, if the Xt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Xt field is set to 0b11111.

Xt1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 0 op1 CRn CRm op20 1

op0

Table C5-1 Cache maintenance instructions and data cache zero operation

Instruction
Access instruction encoding

Notes
op0 op1 CRn CRm op2

IC IALLUIS 1 0 7 1 0 Accessible from EL1 or higher.

IC IALLU 5 0

IC IVAU, Xt 3 7 5 1 When SCTLR_EL1.UCI == 1, accessible from EL0 or higher. Otherwise,
accessible from EL1 or higher.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-399
ID072021 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
For more information about these instructions, see About cache maintenance in AArch64 state on page D4-2644 and
A64 Cache maintenance instructions on page D4-2648.

Prediction restriction instructions

Table C5-2 on page C5-400 lists the Prediction restriction instructions and their encodings. Instructions that take an
argument include Xt in the instruction syntax.

For more information about these instructions, see Execution and data prediction restriction System instructions on
page D4-2663.

DC IVAC, Xt 1 0 7 6 1 Accessible from EL1 or higher.

DC ISW, Xt 2

DC CSW, Xt 10 2

DC CISW, Xt 14 2

DC CVAC, Xt 3 7 10 1 When SCTLR_EL1.UCI == 1, accessible from EL0 or higher. Otherwise,
accessible from EL1 or higher.

DC CVAU, Xt 11 1

DC CVAP, Xt 12 1

DC CIVAC, Xt 14 1

DC ZVA, Xt 1 3 7 4 1 When SCTLR_EL1.DZE == 1, accessible from EL0 or higher. Otherwise,
accessible from EL1 or higher.

Table C5-1 Cache maintenance instructions and data cache zero operation (continued)

Instruction
Access instruction encoding

Notes
op0 op1 CRn CRm op2

Table C5-2 Prediction restriction instructions

Instruction
Prediction restriction encoding

Notes
op0 op1 CRn CRm op2

CFP RCTX, Xt 1 3 7 3 4 When FEAT_SPECRES is implemented, accessible from EL0 or higher.

CPP RCTX, Xt 5

DVP RCTX, Xt 7
C5-400 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.1 The System instruction class encoding space
Address translation instructions

Table C5-3 on page C5-401 lists the Address translation instructions and their encodings. The syntax of the
instructions includes Xt, that provides the address to be translated.

For more information about these instructions, see Address translation instructions on page D5-2735.

TLB maintenance instructions

Table C5-4 on page C5-402 lists the TLB maintenance instructions and their encodings. Instructions that take an
argument include Xt in the instruction syntax. For instructions that do not take an argument, the Xt field is encoded
as 0b11111. For these instructions, if the Xt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Xt field is set to 0b11111.

Table C5-3 Address translation instructions

Instruction
Access instruction encoding

Notes
op0 op1 CRn CRm op2

AT S1E1R, Xt 1 0 7 8 0 Accessible from EL1 or higher.

AT S1E1W, Xt 1

AT S1E0R, Xt 2

AT S1E0W, Xt 3

AT S1E1RP, Xt 9 0

AT S1E1WP, Xt 1

AT S1E2R, Xt 4 7 8 0 Accessible from EL2 or higher.

AT S1E2W, Xt 1

AT S12E1R, Xt 4

AT S12E1W, Xt 5

AT S12E0R, Xt 6

AT S12E0W, Xt 7

AT S1E3R, Xt 6 7 8 0 Accessible only from EL3.

AT S1E3W, Xt 1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-401
ID072021 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
Table C5-4 TLB maintenance instructions

Instruction
Access instruction encoding Notes

op0 op1 CRn CRm op2

TLBI VMALLE1OS, TLBI VMALLE1OSNXS, Xt 1 0 8, 9a 1 0 Accessible from EL1 or higher.

TLBI VAE1OS, TLBI VAE1OSNXS, Xt 1

TLBI ASIDE1OS, TLBI ASIDE1OSNXS, Xt 2

TLBI VAAE1OS, TLBI VAAE1OSNXS, Xt 3

TLBI VALE1OS, TLBI VALE1OSNXS, Xt 5

TLBI VAALE1OS, TLBI VAALE1OSNXS, Xt 7

TLBI RVAE1IS, TLBI RVAE1ISNXS, Xt 2 1

TLBI RVAAE1IS, TLBI RVAAE1ISNXS, Xt 3

TLBI RVALE1IS, TLBI RVALE1ISNXS, Xt 5

TLBI RVAALE1IS, TLBI RVAALE1ISNXS, Xt 7

TLBI VMALLE1IS, TLBI VMALLE1ISNXS 3 0

TLBI VAE1IS, TLBI VAE1ISNXS, Xt 1

TLBI ASIDE1IS, TLBI ASIDE1ISNXS, Xt 2

TLBI VAAE1IS, TLBI VAAE1ISNXS, Xt 3

TLBI VALE1IS, TLBI VALE1ISNXS, Xt 5

TLBI VAALE1IS, TLBI VAALE1ISNXS, Xt 7

TLBI RVAE1OS, TLBI RVAE1OSNXS, Xt 5 1

TLBI RVAAE1OS, TLBI RVAAE1OSNXS, Xt 3

TLBI RVALE1OS, TLBI RVALE1OSNXS, Xt 5

TLBI RVAALE1OS, TLBI RVAALE1OSNXS, Xt 7

TLBI RVAE1, TLBI RVAE1NXS, Xt 6 1

TLBI RVAAE1, TLBI RVAAE1NXS, Xt 3

TLBI RVALE1, TLBI RVALE1NXS, Xt 5

TLBI RVAALE1, TLBI RVAALE1NXS, Xt 7

TLBI VMALLE1, TLBI VMALLE1NXS 7 0

TLBI VAE1, TLBI VAE1NXS, Xt 1
C5-402 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.1 The System instruction class encoding space
TLBI ASIDE1, TLBI ASIDE1NXS, Xt 1 0 8, 9a 7 2 Accessible from EL1 or higher.

TLBI VAAE1, TLBI VAAE1NXS, Xt 3

TLBI VALE1, TLBI VALE1NXS, Xt 5

TLBI VAALE1, TLBI VAALE1NXS, Xt 7

TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS, Xt 4 8, 9a 0 1 Accessible from EL2 or higher.

TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS, Xt 2

TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS, Xt 5

TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, Xt 6

TLBI ALLE2OS, TLBI ALLE2OSNXS 1 0

TLBI VAE2OS, TLBI VAE2OSNXS, Xt 1

TLBI ALLE1OS, TLBI ALLE1OSNXS 4

TLBI VALE2OS, TLBI VALE2OSNXS, Xt 5

TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS 6

TLBI RVAE2IS, TLBI RVAE2ISNXS, Xt 2 1

TLBI RVALE2IS, TLBI RVALE2ISNXS, Xt 5

TLBI ALLE2IS, TLBI ALLE2ISNXS 3 0

TLBI VAE2IS, TLBI VAE2ISNXS, Xt 1

TLBI ALLE1IS, TLBI ALLE1ISNXS 4

TLBI VALE2IS, TLBI VALE2ISNXS, Xt 5

TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS 6

TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS, Xt 4 0

TLBI IPAS2E1, TLBI IPAS2E1NXS, Xt 1

TLBI RIPAS2E1, TLBI RIPAS2E1NXS, Xt 2

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, Xt 3

TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS, Xt 4

TLBI IPAS2LE1, TLBI IPAS2LE1NXS, Xt 5

TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS, Xt 6

TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, Xt 7

TLBI RVAE2OS, TLBI RVAE2OSNXS, Xt 5 1

TLBI RVALE2OS, TLBI RVALE2OSNXS, Xt 5

TLBI RVAE2, TLBI RVAE2NXS, Xt 6 1

Table C5-4 TLB maintenance instructions (continued)

Instruction
Access instruction encoding Notes

op0 op1 CRn CRm op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-403
ID072021 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
For more information about these instructions, see TLB maintenance instructions on page D5-2819.

Reserved encoding space for IMPLEMENTATION DEFINED instructions

The A64 instruction set reserves the following encoding space for IMPLEMENTATION DEFINED instructions:

The value of L defines the use of Rt as follows:

0 Rt is an argument supplied to the instruction.

1 Rt is a result returned by the instruction.

TLBI RVALE2, TLBI RVALE2NXS, Xt 1 4 8, 9a 6 5 Accessible from EL2 or higher.

TLBI ALLE2, TLBI ALLE2NXS 7 0

TLBI VAE2, TLBI VAE2NXS, Xt 1

TLBI ALLE1, TLBI ALLE1NXS 4

TLBI VALE2, TLBI VALE2NXS, Xt 5

TLBI VMALLS12E1, TLBI VMALLS12E1NXS 6

TLBI ALLE3OS, TLBI ALLE3OSNXS 6 8, 9a 1 0 Accessible only from EL3.

TLBI VAE3OS, TLBI VAE3OSNXS, Xt 1

TLBI VALE3OS, TLBI VALE3OSNXS, Xt 5

TLBI RVAE3IS, TLBI RVAE3ISNXS, Xt 2 1

TLBI RVALE3IS, TLBI RVALE3ISNXS, Xt 5

TLBI ALLE3IS, TLBI ALLE3ISNXS 3 0

TLBI VAE3IS, TLBI VAE3ISNXS, Xt 1

TLBI VALE3IS, TLBI VALE3ISNXS, Xt 5

TLBI RVAE3OS, TLBI RVAE3OSNXS, Xt 5 1

TLBI RVALE3OS, TLBI RVALE3OSNXS, Xt 5

TLBI RVAE3, TLBI RVAE3NXS, Xt 6 1

TLBI RVALE3, TLBI RVALE3NXS, Xt 5

TLBI ALLE3, TLBI ALLE3NXS 7 0

TLBI VAE3, TLBI VAE3NXS, Xt 1

TLBI VALE3, TLBI VALE3NXS, Xt 5

a. When FEAT_XS is implemented, applies to the nXS variant of the TLB maintenance instruction.

Table C5-4 TLB maintenance instructions (continued)

Instruction
Access instruction encoding Notes

op0 op1 CRn CRm op2

Rt1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 4 0

1 0 1 0 1 0 1 0 0 L 0 1 1 x 1 1
11 5

op1

CRnop0

op2
7

CRm
8

C5-404 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.1 The System instruction class encoding space
IMPLEMENTATION DEFINED instructions in this encoding space are accessed using the SYS and SYSL instructions, see
SYS on page C6-1482 and SYSL on page C6-1484.

See also Reserved encodings for IMPLEMENTATION DEFINED registers on page D12-3038.

C5.1.5 op0==0b11, Moves to and from Special-purpose registers

The instructions that move data to and from non-debug System registers are encoded with op0==0b11, except that
some of this encoding space is reserved for IMPLEMENTATION DEFINED functionality. The encoding of these
instructions is:

Instructions for accessing Special-purpose registers

The value of CRn provides the next level of decode of these instructions. For Special-purpose registers, the value of
CRn is 4.

The A64 instructions for accessing Special-purpose registers are:

MSR <Special-purpose register>, Xt ; Write to Special-purpose register
MRS Xt, <Special-purpose register> ; Read from Special-purpose register

For these accesses, CRn has the value 4. The encoding for Special-purpose register accesses is:

The full list of Special-purpose registers is in Table C5-5 on page C5-406. The characteristic of a Special-purpose
register is that all direct and indirect reads and writes to the register appear to occur in program order relative to
other instructions, without the need for any explicit synchronization.

Rt1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 L op1 CRn CRm op2

op0

1 1

Rt1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 L op1 CRm op21 1 0 1 0 0

op0 CRn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-405
ID072021 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
Table C5-5 on page C5-406 lists the encodings for op1, CRm, and op2 fields for accesses to the Special-purpose
registers in AArch64.

Table C5-5 Special-purpose register accesses

Register
Access instruction encoding

Notes
op0 op1 CRn CRm op2

SPSR_EL1 3 0 4 0 0 Accessible from EL1 or higher

ELR_EL1 1

SP_EL0 1 0 Accessible from EL1 or higher. If SP_EL0 is the current stack pointer
then the access is UNDEFINED.

SPSel 2 0 Accessible from EL1 or higher.

CurrentEL 2 RO. Accessible from EL1 or higher.

PAN 3 Accessible from EL1 or higher.

UAO 4

NZCV 3 4 2 0 Accessible from EL0 or higher.

DAIF 1 Configurable whether accesses at EL0 are permitted.

DIT 5 Accessible from EL0 or higher.

SSBS 6

TCO 7

FPCR 4 0 Accessible from EL0 or higher.

FPSR 1

DSPSR_EL0 5 0 Accessible only in Debug state, from EL0 or higher.

DLR_EL0 1

SPSR_EL2 4 4 0 0 Accessible from EL2 or higher.

ELR_EL2 1

SP_EL1 1 0

SPSR_irq 3 0

SPSR_abt 1

SPSR_und 2

SPSR_fiq 3

*_EL12 5 4 {0-15} {0-7} Reserved for EL2 aliases of EL1 Special-purpose registers, see
Table D5-49 on page D5-2792.

SPSR_EL3 3 6 4 0 0 Accessible from EL3 or higher.

ELR_EL3 1

SP_EL2 1 0
C5-406 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.1 The System instruction class encoding space
All direct and indirect reads and writes to Special-purpose registers appear to occur in program order relative to
other instructions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-407
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2 Special-purpose registers

This section describes the following Special-purpose registers:

• CurrentEL, that holds PSTATE.EL, and that software can read to determine the current Exception level.

• DAIF, that holds the current PSTATE.{D, A, I, F} interrupt mask bits.

• DIT, that holds the PSTATE.DIT bit.

• ELR_EL1, that holds the address to return to for an exception return from EL1.

• ELR_EL2, that holds the address to return to for an exception return from EL2.

• ELR_EL3, that holds the address to return to for an exception return from EL3.

• FPCR, that provides control of floating-point operation.

• FPSR, that provides floating-point status information.

• NZCV, that holds the PSTATE.{N, Z, C, V} condition flags.

• PAN, that holds the PSTATE.PAN state bit.

• SP_EL0, that holds the stack pointer for EL0.

• SP_EL1, that holds the stack pointer for EL1.

• SP_EL2, that holds the stack pointer for EL2.

• SP_EL3, that holds the stack pointer for EL3.

• SPSel, that holds PSTATE.SP, that at EL1 or higher selects the current SP.

• SPSR_abt, that holds process state on taking an exception to AArch32 Abort mode.

• SPSR_EL1, that holds process state on taking an exception to AArch64 EL1.

• SPSR_EL2, that holds process state on taking an exception to AArch64 EL2.

• SPSR_EL3, that holds process state on taking an exception to AArch64 EL3.

• SPSR_fiq, that holds process state on taking an exception to AArch32 FIQ mode.

• SPSR_irq, that holds process state on taking an exception to AArch32 IRQ mode.

• SPSR_und, that holds process state on taking an exception to AArch32 Undefined mode.

• SSBS, that holds the PSTATE.SSBS bit.

• TCO, that holds the PSTATE.TCO bit.

• UAO, that holds the PSTATE.UAO bit.

The following registers are also Special-purpose registers:

• DLR_EL0, that holds the address to return to for a return from Debug state.

• DSPSR_EL0, that holds process state on entry to Debug state.
C5-408 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.1 CurrentEL, Current Exception Level

The CurrentEL characteristics are:

Purpose

Holds the current Exception level.

Configurations

There are no configuration notes.

Attributes

CurrentEL is a 64-bit register.

Field descriptions

Bits [63:4]

Reserved, RES0.

EL, bits [3:2]

Current Exception level. Possible values of this field are:

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

When the HCR_EL2.NV bit is 1, EL1 read accesses to the CurrentEL register return the value of
0b10 in this field.

The reset behavior of this field is:

• This field resets to the highest implemented Exception level.

Bits [1:0]

Reserved, RES0.

Accessing CurrentEL

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CurrentEL

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then

RES0

63 32

RES0

31 4

EL

3 2

RES0

1 0

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0010 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-409
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 return Zeros(60):'10':Zeros(2);
 else
 return Zeros(60):PSTATE.EL:Zeros(2);
elsif PSTATE.EL == EL2 then
 return Zeros(60):PSTATE.EL:Zeros(2);
elsif PSTATE.EL == EL3 then
 return Zeros(60):PSTATE.EL:Zeros(2);

C5-410 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.2 DAIF, Interrupt Mask Bits

The DAIF characteristics are:

Purpose

Allows access to the interrupt mask bits.

Configurations

There are no configuration notes.

Attributes

DAIF is a 64-bit register.

Field descriptions

Bits [63:10]

Reserved, RES0.

D, bit [9]

Process state D mask. The possible values of this bit are:

0b0 Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception
level are not masked.

0b1 Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception
level are masked.

When the target Exception level of the debug exception is higher than the current Exception level,
the exception is not masked by this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

0b0 Exception not masked.

0b1 Exception masked.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

0b0 Exception not masked.

0b1 Exception masked.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

RES0

63 32

RES0

31 10

D

9

A

8

I

7

F

6

RES0

5 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-411
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
F, bit [6]

FIQ mask bit. The possible values of this bit are:

0b0 Exception not masked.

0b1 Exception masked.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Bits [5:0]

Reserved, RES0.

Accessing DAIF

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DAIF

if PSTATE.EL == EL0 then
 if (EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') || SCTLR_EL1.UMA == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 return Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);
elsif PSTATE.EL == EL1 then
 return Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);
elsif PSTATE.EL == EL2 then
 return Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);
elsif PSTATE.EL == EL3 then
 return Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);

MSR DAIF, <Xt>

if PSTATE.EL == EL0 then
 if (EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') || SCTLR_EL1.UMA == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 PSTATE.<D,A,I,F> = X[t]<9:6>;
elsif PSTATE.EL == EL1 then
 PSTATE.<D,A,I,F> = X[t]<9:6>;
elsif PSTATE.EL == EL2 then
 PSTATE.<D,A,I,F> = X[t]<9:6>;
elsif PSTATE.EL == EL3 then
 PSTATE.<D,A,I,F> = X[t]<9:6>;

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b001

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b001
C5-412 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
MSR DAIFSet, #<imm>

MSR DAIFClr, #<imm>

op0 op1 CRn op2

0b00 0b011 0b0100 0b110

op0 op1 CRn op2

0b00 0b011 0b0100 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-413
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.3 DIT, Data Independent Timing

The DIT characteristics are:

Purpose

Allows access to the Data Independent Timing bit.

Configurations

This register is present only when FEAT_DIT is implemented. Otherwise, direct accesses to DIT are
UNDEFINED.

Attributes

DIT is a 64-bit register.

Field descriptions

Bits [63:25]

Reserved, RES0.

DIT, bit [24]

Data Independent Timing.

0b0 The architecture makes no statement about the timing properties of any instructions.

0b1 The architecture requires that:

• The timing of every load and store instruction is insensitive to the value of the
data being loaded or stored.

• For certain data processing instructions, the instruction takes a time which is
independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• For certain data processing instructions, the response of the instruction to
asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

The data processing instructions affected by this bit are:

• All cryptographic instructions. These instructions are:

— AESD, AESE, AESIMC, AESMC, SHA1C, SHA1H, SHA1M, SHA1P, SHA1SU0, SHA1SU1, SHA256H,
SHA256H2, SHA256SU0, SHA256SU1, SHA512H, SHA512H2, SHA512SU0, SHA512SU1, EOR3, RAX1,
XAR, BCAX, SM3SS1, SM3TT1A, SM3TT1B, SM3TT2A, SM3TT2B, SM3PARTW1, SM3PARTW2, SM4E, and
SM4EKEY.

• A subset of those instructions which use the general-purpose register file. These instructions
are:

— ADC, ADCS, ADD, ADDS, AND, ANDS, ASR, ASRV, BFC, BFI, BFM, BFXIL, BIC, BICS, CCMN, CCMP, CFINV,
CINC, CINV, CLS, CLZ, CMN, CMP, CNEG, CSEL, CSET, CSETM, CSINC, CSINV, CSNEG, EON, EOR, EXTR,
LSL, LSLV, LSR, LSRV, MADD, MNEG, MOV, MOVK, MOVN, MOVZ, MSUB, MUL, MVN, NEG, NEGS, NGC, NGCS,

RES0

63 32

RES0

31 25 24

RES0

23 0

DIT
C5-414 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
NOP, ORN, ORR, RBIT, RET, REV, REV16, REV32, REV64, RMIF, ROR, RORV, SBC, SBCS, SBFIZ, SBFM,
SBFX, SETF8, SETF16, SMADDL, SMNEGL, SMSUBL, SMULH, SMULL, SUB, SUBS, SXTB, SXTH, SXTW, TST,
UBFIZ, UBFM, UBFX, UMADDL, UMNEGL, UMSUBL, UMULH, UMULL, UXTB, and UXTH.

— If FEAT_CRC32 is implemented, CRC32B, CRC32H, CRC32W, CRC32X, CRC32CB, CRC32CH,
CRC32CW, and CRC32CX.

• A subset of those instructions which use the SIMD&FP register file. These instructions are:

— ABS, ADD, ADDHN, ADDHN2, ADDP, ADDV, AND, BIC, BIF, BIT, BSL, CLS, CLZ, CMEQ, CMGE, CMGT, CMHI,
CMHS, CMLE, CMLT, CMTST, CNT, DUP, EOR, EXT, FCSEL, INS, MLA, MLS, MOV, MOVI, MUL, MVN, MVNI,
NEG, NOT, ORN, ORR, PMUL, PMULL, PMULL2, RADDHN, RADDHN2, RBIT, REV16, REV32, RSHRN, RSHRN2,
RSUBHN, RSUBHN2, SABA, SABD, SABAL, SABAL2, SABDL, SABDL2, SADALP, SADDL, SADDL2, SADDLP,
SADDLV, SADDW, SADDW2, SHADD, SHL, SHLL, SHLL2, SHRN, SHRN2, SHSUB, SLI, SMAX, SMAXP, SMAXV,
SMIN, SMINP, SMINV, SMLAL, SMLAL2, SMLSL, SMLSL2, SMOV, SMULL, SMULL2, SRI, SSHL, SSHLL,
SSHLL2, SSHR, SSRA, SSUBL, SSUBL2, SSUBW, SSUBW2, SUB, SUBHN, SUBHN2, SXTL, SXTL2, TBL, TBX,
TRN1, TRN2, UABA, UABAL, UABAL2, UABD, UABDL, UABDL2, UADALP, UADDL, UADDL2, UADDLP,
UADDLV, UADDW, UADDW2, UHADD, UHSUB, UMAX, UMAXP, UMAXV, UMIN, UMINP, UMINV, UMLAL, UMLAL2,
UMLSL, UMOV, UMLSL2, UMULL, UMULL2, USHL, USHLL, USHLL2, USHR, USRA, USUBL, USUBL2, USUBW,
USUBW2, UXTL, UXTL2, UZP1, UZP2, XTN, XTN2, ZIP1, and ZIP2.

Note

The architecture makes no statement about the timing properties when the PSTATE.DIT bit is not
set. However, it is likely that many of these instructions have timing that is invariant of the data in
many situations.

In particular, Arm strongly recommends that the Armv8.3 pointer authentication instructions do not
have their timing dependent on the key value used in the pointer authentication in all cases,
regardless of the PSTATE.DIT bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [23:0]

Reserved, RES0.

Accessing DIT

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DIT

if PSTATE.EL == EL0 then
 return Zeros(39):PSTATE.DIT:Zeros(24);
elsif PSTATE.EL == EL1 then
 return Zeros(39):PSTATE.DIT:Zeros(24);
elsif PSTATE.EL == EL2 then
 return Zeros(39):PSTATE.DIT:Zeros(24);
elsif PSTATE.EL == EL3 then
 return Zeros(39):PSTATE.DIT:Zeros(24);

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-415
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
MSR DIT, <Xt>

if PSTATE.EL == EL0 then
 PSTATE.DIT = X[t]<24>;
elsif PSTATE.EL == EL1 then
 PSTATE.DIT = X[t]<24>;
elsif PSTATE.EL == EL2 then
 PSTATE.DIT = X[t]<24>;
elsif PSTATE.EL == EL3 then
 PSTATE.DIT = X[t]<24>;

MSR DIT, #<imm>

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b101

op0 op1 CRn op2

0b00 0b011 0b0100 0b010
C5-416 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.4 ELR_EL1, Exception Link Register (EL1)

The ELR_EL1 characteristics are:

Purpose

When taking an exception to EL1, holds the address to return to.

Configurations

There are no configuration notes.

Attributes

ELR_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

Return address.

An exception return from EL1 using AArch64 makes ELR_EL1 become UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ELR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic ELR_EL1 or
ELR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ELR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x230];
 else
 return ELR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return ELR_EL2;
 else
 return ELR_EL1;

Return address

63 32

Return address

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-417
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
elsif PSTATE.EL == EL3 then
 return ELR_EL1;

MSR ELR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x230] = X[t];
 else
 ELR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 ELR_EL2 = X[t];
 else
 ELR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 ELR_EL1 = X[t];

MRS <Xt>, ELR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x230];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return ELR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return ELR_EL1;
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b101 0b0100 0b0000 0b001
C5-418 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
MSR ELR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x230] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 ELR_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 ELR_EL1 = X[t];
 else
 UNDEFINED;

MRS <Xt>, ELR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return ELR_EL1;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return ELR_EL2;
elsif PSTATE.EL == EL3 then
 return ELR_EL2;

MSR ELR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 ELR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b101 0b0100 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-419
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 ELR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 ELR_EL2 = X[t];

C5-420 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.5 ELR_EL2, Exception Link Register (EL2)

The ELR_EL2 characteristics are:

Purpose

When taking an exception to EL2, holds the address to return to.

Configurations

AArch64 System register ELR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register ELR_hyp[31:0].

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

ELR_EL2 is a 64-bit register.

Field descriptions

Bits [63:0]

Return address.

An exception return from EL2 using AArch64 makes ELR_EL2 become UNKNOWN.

When EL2 is in AArch32 Execution state and an exception is taken from EL0, EL1, or EL2 to EL3
and AArch64 execution, the upper 32-bits of ELR_EL2 are either set to 0 or hold the same value
that they did before AArch32 execution. Which option is adopted is determined by an
implementation, and might vary dynamically within an implementation. Correspondingly software
must regard the value as being an UNKNOWN choice between the two values.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ELR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic ELR_EL2 or
ELR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ELR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return ELR_EL1;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

Return address

63 32

Return address

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-421
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return ELR_EL2;
elsif PSTATE.EL == EL3 then
 return ELR_EL2;

MSR ELR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 ELR_EL1 = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 ELR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 ELR_EL2 = X[t];

MRS <Xt>, ELR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x230];
 else
 return ELR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return ELR_EL2;
 else
 return ELR_EL1;
elsif PSTATE.EL == EL3 then
 return ELR_EL1;

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b001
C5-422 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
MSR ELR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x230] = X[t];
 else
 ELR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 ELR_EL2 = X[t];
 else
 ELR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 ELR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-423
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.6 ELR_EL3, Exception Link Register (EL3)

The ELR_EL3 characteristics are:

Purpose

When taking an exception to EL3, holds the address to return to.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to ELR_EL3 are
UNDEFINED.

Attributes

ELR_EL3 is a 64-bit register.

Field descriptions

Bits [63:0]

Return address.

An exception return from EL3 using AArch64 makes ELR_EL3 become UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ELR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ELR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return ELR_EL3;

Return address

63 32

Return address

31 0

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0000 0b001
C5-424 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
MSR ELR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 ELR_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-425
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.7 FPCR, Floating-point Control Register

The FPCR characteristics are:

Purpose

Controls floating-point behavior.

Configurations

AArch64 System register FPCR bits [26:15] are architecturally mapped to AArch32 System register
FPSCR[26:15].

AArch64 System register FPCR bits [12:8] are architecturally mapped to AArch32 System register
FPSCR[12:8].

It is IMPLEMENTATION DEFINED whether the Len and Stride fields can be programmed to non-zero
values, which will cause some AArch32 floating-point instruction encodings to be UNDEFINED, or
whether these fields are RAZ.

Attributes

FPCR is a 64-bit register.

Field descriptions

Bits [63:27]

Reserved, RES0.

AHP, bit [26]

Alternative half-precision control bit.

0b0 IEEE half-precision format selected.

0b1 Alternative half-precision format selected.

This bit is used only for conversions between half-precision floating-point and other floating-point
formats.

The data-processing instructions added as part of the FEAT_FP16 extension always use the IEEE
half-precision format, and ignore the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DN, bit [25]

Default NaN use for NaN propagation.

0b0 NaN operands propagate through to the output of a floating-point operation.

0b1 Any operation involving one or more NaNs returns the Default NaN.

This bit has no effect on the output of FABS, FMAX*, FMIN*, and FNEG instructions,
and a default NaN is never returned as a result of these instructions.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

RES0

63 32

RES0

31 27 26

DN

25

FZ

24 23 22 21 20 19

Len

18 16 15

RES0

14 13 12 11 10 9 8

RES0

7 3 2

AH

1 0

AHP
RMode

Stride
FZ16

IDE

IOE
DZE

OFE
UFE

IXE

NEP FIZ
C5-426 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FZ, bit [24]

Flushing denormalized numbers to zero control bit.

0b0 If FPCR.AH is 0, the flushing to zero of single-precision and double-precision
denormalized inputs to, and outputs of, floating-point instructions not enabled by this
control, but other factors might cause the input denormalized numbers to be flushed to
zero.

If FPCR.AH is 1, the flushing to zero of single-precision and double-precision
denormalized outputs of floating-point instructions not enabled by this control, but
other factors might cause the input denormalized numbers to be flushed to zero.

0b1 If FPCR.AH is 0, denormalized single-precision and double-precision inputs to, and
outputs from, floating-point instructions are flushed to zero.

If FPCR.AH is 1, denormalized single-precision and double-precision outputs from
floating-point instructions are flushed to zero.

For more information, see 'Flushing denormalized numbers to zero' and the pseudocode of the
floating-point instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RMode, bits [23:22]

Rounding Mode control field.

0b00 Round to Nearest (RN) mode.

0b01 Round towards Plus Infinity (RP) mode.

0b10 Round towards Minus Infinity (RM) mode.

0b11 Round towards Zero (RZ) mode.

The specified rounding mode is used by both scalar and Advanced SIMD floating-point
instructions.

If FPCR.AH is 1, then the following instructions use Round to Nearest mode regardless of the value
of this bit:

• The FRECPE, FRECPS, FRECPX, FRSQRTE, and FRSQRTS instructions.

• The BFCVT, BFCVTN, BFCVTN2, BFCVTNT, BFMLALB, and BFMLALT instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Stride, bits [21:20]

This field has no function in AArch64 state, and non-zero values are ignored during execution in
AArch64 state.

This field is included only for context saving and restoration of the AArch32 FPSCR.Stride field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FZ16, bit [19]

When FEAT_FP16 is implemented:

FZ16

Flushing denormalized numbers to zero control bit on half-precision data-processing instructions.

0b0 For some instructions, this bit disables flushing to zero of inputs and outputs that are
half-precision denormalized numbers.

0b1 Flushing denormalized numbers to zero enabled.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-427
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
For some instructions that do not convert a half-precision input to a higher precision
output, this bit enables flushing to zero of inputs and outputs that are half-precision
denormalized numbers.

The value of this bit applies to both scalar and Advanced SIMD floating-point half-precision
calculations.

For more information, see 'Flushing denormalized numbers to zero' and the pseudocode of the
floating-point instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Len, bits [18:16]

This field has no function in AArch64 state, and non-zero values are ignored during execution in
AArch64 state.

This field is included only for context saving and restoration of the AArch32 FPSCR.Len field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDE, bit [15]

Input Denormal floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the
FPSR.IDC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does
not update the FPSR.IDC bit.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [14:13]

Reserved, RES0.

IXE, bit [12]

Inexact floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the
FPSR.IXC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does
not update the FPSR.IXC bit.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFE, bit [11]

Underflow floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the
FPSR.UFC bit is set to 1.
C5-428 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
0b1 Trapped exception handling selected. If the floating-point exception occurs and
Flush-to-zero is not enabled, the PE does not update the FPSR.UFC bit.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFE, bit [10]

Overflow floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the
FPSR.OFC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does
not update the FPSR.OFC bit.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZE, bit [9]

Divide by Zero floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the
FPSR.DZC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does
not update the FPSR.DZC bit.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOE, bit [8]

Invalid Operation floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the
FPSR.IOC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does
not update the FPSR.IOC bit.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:3]

Reserved, RES0.

NEP, bit [2]

When FEAT_AFP is implemented:

NEP

Controls how the output elements other than the lowest element of the vector are determined for
Advanced SIMD scalar instructions.

0b0 Does not affect how the output elements other than the lowest are determined for
Advanced SIMD scalar instructions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-429
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
0b1 The output elements other than the lowest are taken from the following registers:

• For 3-input scalar versions of the FMLA (by element) and FMLS (by element)
instructions, the <Hd>, <Sd>, or <Dd> register.

• For 3-input versions of the FMADD, FMSUB, FNMADD, and FNMSUB
instructions, the <Ha>, <Sa>, or <Da> register.

• For 2-input scalar versions of the FACGE, FACGT, FCMEQ (register), FCMGE
(register), and FCMGT (register) instructions, the <Hm>, <Sm>, or <Dm>
register.

• For 2-input scalar versions of the FABD, FADD (scalar), FDIV (scalar), FMAX
(scalar), FMAXNM (scalar), FMIN (scalar), FMINNM (scalar), FMUL (by
element), FMUL (scalar), FMULX (by element), FMULX, FNMUL (scalar),
FRECPS, FRSQRTS, and FSUB (scalar) instructions, the <Hn>, <Sn>, or <Dn>
register.

• For 1-input scalar versions of the following instructions, the <Hd>, <Sd>, or
<Dd> register:

— The (vector) versions of the FCVTAS, FCVTAU, FCVTMS, FCVTMU,
FCVTNS, FCVTNU, FCVTPS, and FCVTPU instructions.

— The (vector, fixed-point) and (vector, integer) versions of the FCVTZS,
FCVTZU, SCVTF, and UCVTF instructions.

— The (scalar) versions of the FABS, FNEG, FRINT32X, FRINT32Z,
FRINT64X, FRINT64Z, FRINTA, FRINTI, FRINTM, FRINTN,
FRINTP, FRINTX, FRINTZ, and FSQRT instructions.

— The (scalar, fixed-point) and (scalar, integer) versions of the SCVTF and
UCVTF instructions.

— The BFCVT, FCVT, FCVTXN, FRECPE, FRECPX, and FRSQRTE
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AH, bit [1]

When FEAT_AFP is implemented:

AH

Alternate Handling. Controls alternate handling of floating-point numbers.

The Arm architecture supports two models for handling some of the corner cases of the
floating-point behaviors, such as the nature of flushing of denormalized numbers, the detection of
tininess and other exceptions and a range of other behaviors. The value of the FPCR.AH bit selects
between these models.

For more information on the FPCR.AH bit, see 'Flushing denormalized numbers to zero',
'Floating-point exceptions and exception traps' and the pseudocode of the floating-point
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
C5-430 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
FIZ, bit [0]

When FEAT_AFP is implemented:

FIZ

Flush Inputs to Zero. Controls whether single-precision, double-precision and BFloat16 input
operands that are denormalized numbers are flushed to zero.

0b0 The flushing to zero of single-precision and double-precision denormalized inputs to
floating-point instructions not enabled by this control, but other factors might cause the
input denormalized numbers to be flushed to zero.

0b1 Denormalized single-precision and double-precision inputs to most floating-point
instructions flushed to zero.

For more information, see 'Flushing denormalized numbers to zero' and the pseudocode of the
floating-point instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing FPCR

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FPCR

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x00);
 else
 AArch64.SystemAccessTrap(EL1, 0x07);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN != '11' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 return FPCR;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif CPACR_EL1.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL1, 0x07);
 elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0100 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-431
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 return FPCR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 return FPCR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TFP == '1' then
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 return FPCR;

MSR FPCR, <Xt>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x00);
 else
 AArch64.SystemAccessTrap(EL1, 0x07);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN != '11' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 FPCR = X[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif CPACR_EL1.FPEN == 'x0' then

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0100 0b000
C5-432 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
 AArch64.SystemAccessTrap(EL1, 0x07);
 elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 FPCR = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 FPCR = X[t];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TFP == '1' then
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 FPCR = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-433
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.8 FPSR, Floating-point Status Register

The FPSR characteristics are:

Purpose

Provides floating-point system status information.

Configurations

AArch64 System register FPSR bits [31:27] are architecturally mapped to AArch32 System register
FPSCR[31:27].

AArch64 System register FPSR bit [7] is architecturally mapped to AArch32 System register
FPSCR[7].

AArch64 System register FPSR bits [4:0] are architecturally mapped to AArch32 System register
FPSCR[4:0].

Attributes

FPSR is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

N, bit [31]

When AArch32 is supported at EL0 and AArch32 floating-point is implemented:

N

Negative condition flag for AArch32 floating-point comparison operations.

Note

AArch64 floating-point comparisons set the PSTATE.N flag instead.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Z, bit [30]

When AArch32 is supported at EL0 and AArch32 floating-point is implemented:

Z

Zero condition flag for AArch32 floating-point comparison operations.

RES0

63 32

N

31

Z

30

C

29

V

28

QC

27

RES0

26 8 7

RES0

6 5 4 3 2 1 0

IDC
IXC

UFC

IOC
DZC

OFC
C5-434 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
Note

AArch64 floating-point comparisons set the PSTATE.Z flag instead.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

C, bit [29]

When AArch32 is supported at EL0 and AArch32 floating-point is implemented:

C

Carry condition flag for AArch32 floating-point comparison operations.

Note

AArch64 floating-point comparisons set the PSTATE.C flag instead.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

V, bit [28]

When AArch32 is supported at EL0 and AArch32 floating-point is implemented:

V

Overflow condition flag for AArch32 floating-point comparison operations.

Note

AArch64 floating-point comparisons set the PSTATE.V flag instead.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

QC, bit [27]

Cumulative saturation bit, Advanced SIMD only. This bit is set to 1 to indicate that an Advanced
SIMD integer operation has saturated since 0 was last written to this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [26:8]

Reserved, RES0.

IDC, bit [7]

Input Denormal cumulative floating-point exception bit. This bit is set to 1 to indicate that the Input
Denormal floating-point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of
the FPCR.IDE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.IDE is 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-435
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXC, bit [4]

Inexact cumulative floating-point exception bit. This bit is set to 1 to indicate that the Inexact
floating-point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of
the FPCR.IXE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.IXE is 0.

The criteria for the Inexact floating-point exception to occur are affected by whether denormalized
numbers are flushed to zero and by the value of the FPCR.AH bit. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFC, bit [3]

Underflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Underflow
floating-point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of
the FPCR.UFE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.UFE is 0
or if flushing denormalized numbers to zero is enabled.

The criteria for the Underflow floating-point exception to occur are affected by whether
denormalized numbers are flushed to zero and by the value of the FPCR.AH bit. For more
information, see Floating-point exceptions and exception traps on page D1-2495.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFC, bit [2]

Overflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Overflow
floating-point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of
the FPCR.OFE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.OFE is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZC, bit [1]

Divide by Zero cumulative floating-point exception bit. This bit is set to 1 to indicate that the Divide
by Zero floating-point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of
the FPCR.DZE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.DZE is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOC, bit [0]

Invalid Operation cumulative floating-point exception bit. This bit is set to 1 to indicate that the
Invalid Operation floating-point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of
the FPCR.IOE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.IOE is 0.

The criteria for the Invalid Operation floating-point exception to occur are affected by the value of
the FPCR.AH bit. For more information, see Floating-point exceptions and exception traps on
page D1-2495.
C5-436 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing FPSR

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FPSR

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x00);
 else
 AArch64.SystemAccessTrap(EL1, 0x07);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN != '11' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 return FPSR;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif CPACR_EL1.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL1, 0x07);
 elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 return FPSR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0100 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-437
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 return FPSR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TFP == '1' then
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 return FPSR;

MSR FPSR, <Xt>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x00);
 else
 AArch64.SystemAccessTrap(EL1, 0x07);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN != '11' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 FPSR = X[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif CPACR_EL1.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL1, 0x07);
 elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 FPSR = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0100 0b001
C5-438 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 FPSR = X[t];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TFP == '1' then
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 FPSR = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-439
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.9 NZCV, Condition Flags

The NZCV characteristics are:

Purpose

Allows access to the condition flags.

Configurations

There are no configuration notes.

Attributes

NZCV is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative condition flag. Set to 1 if the result of the last flag-setting instruction was negative.

Z, bit [30]

Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0
otherwise. A result of zero often indicates an equal result from a comparison.

C, bit [29]

Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for
example an unsigned overflow on an addition.

V, bit [28]

Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition,
for example a signed overflow on an addition.

Bits [27:0]

Reserved, RES0.

Accessing NZCV

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, NZCV

if PSTATE.EL == EL0 then
 return Zeros(32):PSTATE.<N,Z,C,V>:Zeros(28);

RES0

63 32

N

31

Z

30

C

29

V

28

RES0

27 0

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b000
C5-440 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
elsif PSTATE.EL == EL1 then
 return Zeros(32):PSTATE.<N,Z,C,V>:Zeros(28);
elsif PSTATE.EL == EL2 then
 return Zeros(32):PSTATE.<N,Z,C,V>:Zeros(28);
elsif PSTATE.EL == EL3 then
 return Zeros(32):PSTATE.<N,Z,C,V>:Zeros(28);

MSR NZCV, <Xt>

if PSTATE.EL == EL0 then
 PSTATE.<N,Z,C,V> = X[t]<31:28>;
elsif PSTATE.EL == EL1 then
 PSTATE.<N,Z,C,V> = X[t]<31:28>;
elsif PSTATE.EL == EL2 then
 PSTATE.<N,Z,C,V> = X[t]<31:28>;
elsif PSTATE.EL == EL3 then
 PSTATE.<N,Z,C,V> = X[t]<31:28>;

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-441
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.10 PAN, Privileged Access Never

The PAN characteristics are:

Purpose

Allows access to the Privileged Access Never bit.

Configurations

This register is present only when FEAT_PAN is implemented. Otherwise, direct accesses to PAN
are UNDEFINED.

Attributes

PAN is a 64-bit register.

Field descriptions

Bits [63:23]

Reserved, RES0.

PAN, bit [22]

Privileged Access Never.

0b0 Privileged reads and write are not disabled by this mechanism.

0b1 Disables privileged read and write accesses to addresses accessible at EL0 for an
enabled stage 1 translation regime that defines the EL0 permissions.

The value of this bit is usually preserved on taking an exception, except in the following situations:

• When the target of the exception is EL1, and the value of the SCTLR_EL1.SPAN bit is 0, this
bit is set to 1.

• When the target of the exception is EL2, HCR_EL2.{E2H, TGE} is {1, 1}, and the value of
the SCTLR_EL2.SPAN bit is 0, this bit is set to 1.

Bits [21:0]

Reserved, RES0.

Accessing PAN

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PAN

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

RES0

63 32

RES0

31 23 22

RES0

21 0

PAN

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0010 0b011
C5-442 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
 return Zeros(41):PSTATE.PAN:Zeros(22);
elsif PSTATE.EL == EL2 then
 return Zeros(41):PSTATE.PAN:Zeros(22);
elsif PSTATE.EL == EL3 then
 return Zeros(41):PSTATE.PAN:Zeros(22);

MSR PAN, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 PSTATE.PAN = X[t]<22>;
elsif PSTATE.EL == EL2 then
 PSTATE.PAN = X[t]<22>;
elsif PSTATE.EL == EL3 then
 PSTATE.PAN = X[t]<22>;

MSR PAN, #<imm>

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0010 0b011

op0 op1 CRn op2

0b00 0b000 0b0100 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-443
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.11 SP_EL0, Stack Pointer (EL0)

The SP_EL0 characteristics are:

Purpose

Holds the stack pointer associated with EL0. At higher Exception levels, this is used as the current
stack pointer when the value of SPSel.SP is 0.

Configurations

There are no configuration notes.

Attributes

SP_EL0 is a 64-bit register.

Field descriptions

Bits [63:0]

Stack pointer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SP_EL0

When the value of PSTATE.SP is 0, this register is accessible at all Exception levels as the current stack pointer.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SP_EL0

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if PSTATE.SP == '0' then
 UNDEFINED;
 else
 return SP_EL0;
elsif PSTATE.EL == EL2 then
 if PSTATE.SP == '0' then
 UNDEFINED;
 else
 return SP_EL0;
elsif PSTATE.EL == EL3 then
 if PSTATE.SP == '0' then
 UNDEFINED;

Stack pointer

63 32

Stack pointer

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0001 0b000
C5-444 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
 else
 return SP_EL0;

MSR SP_EL0, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if PSTATE.SP == '0' then
 UNDEFINED;
 else
 SP_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if PSTATE.SP == '0' then
 UNDEFINED;
 else
 SP_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.SP == '0' then
 UNDEFINED;
 else
 SP_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-445
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.12 SP_EL1, Stack Pointer (EL1)

The SP_EL1 characteristics are:

Purpose

Holds the stack pointer associated with EL1. When executing at EL1, the value of SPSel.SP
determines the current stack pointer:

Configurations

There are no configuration notes.

Attributes

SP_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

Stack pointer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SP_EL1

This accessibility information only applies to accesses using the MRS or MSR instructions.

When the value of SPSel.SP is 1, this register is also accessible at EL1 as the current stack pointer.

Note

When the value of SPSel.SP is 0, SP_EL0 is used as the current stack pointer at all Exception levels.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SP_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

SPSel.SP Current stack pointer

0b0 SP_EL0

0b1 SP_EL1

Stack pointer

63 32

Stack pointer

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0001 0b000
C5-446 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x240];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return SP_EL1;
elsif PSTATE.EL == EL3 then
 return SP_EL1;

MSR SP_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x240] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 SP_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 SP_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-447
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.13 SP_EL2, Stack Pointer (EL2)

The SP_EL2 characteristics are:

Purpose

Holds the stack pointer associated with EL2. When executing at EL2, the value of SPSel. SP
determines the current stack pointer:

Configurations

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

SP_EL2 is a 64-bit register.

Field descriptions

Bits [63:0]

Stack pointer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SP_EL2

This accessibility information only applies to accesses using the MRS or MSR instructions.

When the value of SPSel.SP is 1, this register is also accessible at EL2 as the current stack pointer.

Note

When the value of SPSel.SP is 0, SP_EL0 is used as the current stack pointer at all Exception levels.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SP_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

SPSel.SP Current stack pointer

0b0 SP_EL0

0b1 SP_EL2

Stack pointer

63 32

Stack pointer

31 0

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0001 0b000
C5-448 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return SP_EL2;

MSR SP_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SP_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-449
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.14 SP_EL3, Stack Pointer (EL3)

The SP_EL3 characteristics are:

Purpose

Holds the stack pointer associated with EL3. When executing at EL3, the value of SPSel.SP
determines the current stack pointer:

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to SP_EL3 are
UNDEFINED.

Attributes

SP_EL3 is a 64-bit register.

Field descriptions

Bits [63:0]

Stack pointer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSel.SP Current stack pointer

0b0 SP_EL0

0b1 SP_EL3

Stack pointer

63 32

Stack pointer

31 0
C5-450 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.15 SPSel, Stack Pointer Select

The SPSel characteristics are:

Purpose

Allows the Stack Pointer to be selected between SP_EL0 and SP_ELx.

Configurations

There are no configuration notes.

Attributes

SPSel is a 64-bit register.

Field descriptions

Bits [63:1]

Reserved, RES0.

SP, bit [0]

Stack pointer to use. Possible values of this bit are:

0b0 Use SP_EL0 at all Exception levels.

0b1 Use SP_ELx for Exception level ELx.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Accessing SPSel

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSel

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 return Zeros(63):PSTATE.SP;
elsif PSTATE.EL == EL2 then
 return Zeros(63):PSTATE.SP;
elsif PSTATE.EL == EL3 then
 return Zeros(63):PSTATE.SP;

RES0

63 32

RES0

31 1

SP

0

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-451
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
MSR SPSel, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 PSTATE.SP = X[t]<0>;
elsif PSTATE.EL == EL2 then
 PSTATE.SP = X[t]<0>;
elsif PSTATE.EL == EL3 then
 PSTATE.SP = X[t]<0>;

MSR SPSel, #<imm>

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0010 0b000

op0 op1 CRn op2

0b00 0b000 0b0100 0b101
C5-452 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.16 SPSR_abt, Saved Program Status Register (Abort mode)

The SPSR_abt characteristics are:

Purpose

Holds the saved process state when an exception is taken to Abort mode.

Configurations

AArch64 System register SPSR_abt bits [31:0] are architecturally mapped to AArch32 System
register SPSR_abt[31:0].

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes

SPSR_abt is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Abort mode, and
copied to PSTATE.N on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Abort mode, and
copied to PSTATE.Z on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Abort mode, and
copied to PSTATE.C on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Abort mode, and
copied to PSTATE.V on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-453
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Abort mode,
and copied to PSTATE.Q on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to Abort mode, and copied to
PSTATE.IT on executing an exception return operation in Abort mode.

SPSR_abt.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_abt[26:25].

• IT[7:2] is SPSR_abt[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Abort mode,
and copied to PSTATE.SSBS on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Abort mode,
and copied to PSTATE.PAN on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Abort mode,
and copied to PSTATE.DIT on executing an exception return operation in Abort mode.
C5-454 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Abort mode, and
copied to PSTATE.IL on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Abort mode,
and copied to PSTATE.GE on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Abort mode, and copied to
PSTATE.E on executing an exception return operation in Abort mode.

If the implementation does not support big-endian operation, SPSR_abt.E is RES0. If the
implementation does not support little-endian operation, SPSR_abt.E is RES1. On executing an
exception return operation in Abort mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_abt.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_abt.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Abort mode, and
copied to PSTATE.A on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Abort mode, and copied
to PSTATE.I on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Abort mode, and copied
to PSTATE.F on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Abort mode, and
copied to PSTATE.T on executing an exception return operation in Abort mode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-455
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Abort mode, and copied to
PSTATE.M[4:0] on executing an exception return operation in Abort mode.

0b10000 User.

0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10111 Abort.

0b11011 Undefined.

0b11111 System.

Other values are reserved. If SPSR_abt.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in Abort mode is an illegal
return event, as described in Illegal return events from AArch32 state on page G1-6066.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_abt

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_abt

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return SPSR_abt;
elsif PSTATE.EL == EL3 then
 return SPSR_abt;

MSR SPSR_abt, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0011 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0011 0b001
C5-456 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 SPSR_abt = X[t];
elsif PSTATE.EL == EL3 then
 SPSR_abt = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-457
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.17 SPSR_EL1, Saved Program Status Register (EL1)

The SPSR_EL1 characteristics are:

Purpose

Holds the saved process state when an exception is taken to EL1.

Configurations

AArch64 System register SPSR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register SPSR_svc[31:0].

Attributes

SPSR_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0 and exception taken from AArch32 state:

An exception return from EL1 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL1, and copied
to PSTATE.N on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL1, and copied to
PSTATE.Z on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL1, and copied to
PSTATE.C on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL1, and copied
to PSTATE.V on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

N

31

Z

30

C

29

V

28

Q

27 26 25 24 23 22

SS

21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
DIT

PAN
SSBS

M[4]
C5-458 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL1, and
copied to PSTATE.Q on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to EL1, and copied to PSTATE.IT
on executing an exception return operation in EL1.

SPSR_EL1.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_EL1[26:25].

• IT[7:2] is SPSR_EL1[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL1, and
copied to PSTATE.DIT on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL1, and
copied to PSTATE.SSBS on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL1, and
copied to PSTATE.PAN on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-459
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL1, and conditionally
copied to PSTATE.SS on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL1, and copied to
PSTATE.IL on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL1, and
copied to PSTATE.GE on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to EL1, and copied to PSTATE.E
on executing an exception return operation in EL1.

If the implementation does not support big-endian operation, SPSR_EL1.E is RES0. If the
implementation does not support little-endian operation, SPSR_EL1.E is RES1. On executing an
exception return operation in EL1, if the implementation does not support big-endian operation at
the Exception level being returned to, SPSR_EL1.E is RES0, and if the implementation does not
support little-endian operation at the Exception level being returned to, SPSR_EL1.E is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL1, and copied to
PSTATE.A on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL1, and copied to
PSTATE.I on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL1, and copied to
PSTATE.F on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL1, and copied
to PSTATE.T on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
C5-460 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
M[4], bit [4]

Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL1 from AArch32
state, and copied to PSTATE.nRW on executing an exception return operation in EL1.

0b1 AArch32 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL1, and copied to
PSTATE.M[3:0] on executing an exception return operation in EL1.

0b0000 User.

0b0001 FIQ.

0b0010 IRQ.

0b0011 Supervisor.

0b0111 Abort.

0b1011 Undefined.

0b1111 System.

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in EL1 is an illegal return
event, as described in Illegal return events from AArch64 state on page D1-2486.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When exception taken from AArch64 state:

An exception return from EL1 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL1, and copied
to PSTATE.N on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL1, and copied to
PSTATE.Z on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

N

31

Z

30

C

29

V

28

RES0

27 26 25 24 23 22

SS

21

IL

20

RES0

19 13 12 11 10

D

9

A

8

I

7

F

6 5 4

M[3:0]

3 0

TCO
DIT

PAN
UAO

SSBS
BTYPE

M[4]
RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-461
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL1, and copied to
PSTATE.C on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL1, and copied
to PSTATE.V on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

TCO, bit [25]

When FEAT_MTE is implemented:

TCO

Tag Check Override. Set to the value of PSTATE.TCO on taking an exception to EL1, and copied
to PSTATE.TCO on executing an exception return operation in EL1.

When FEAT_MTE is not implemented, it is CONSTRAINED UNPREDICTABLE whether this field is
RES0 or behaves as if FEAT_MTE is implemented.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL1, and
copied to PSTATE.DIT on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UAO, bit [23]

When FEAT_UAO is implemented:

UAO

User Access Override. Set to the value of PSTATE.UAO on taking an exception to EL1, and copied
to PSTATE.UAO on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
C5-462 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL1, and
copied to PSTATE.PAN on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL1, and conditionally
copied to PSTATE.SS on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL1, and copied to
PSTATE.IL on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

SSBS, bit [12]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL1, and
copied to PSTATE.SSBS on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BTYPE, bits [11:10]

When FEAT_BTI is implemented:

BTYPE

Branch Type Indicator. Set to the value of PSTATE.BTYPE on taking an exception to EL1, and
copied to PSTATE.BTYPE on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-463
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL1, and copied to
PSTATE.D on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL1, and copied to
PSTATE.A on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL1, and copied to
PSTATE.I on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL1, and copied to
PSTATE.F on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on taking an exception to EL1 from AArch64
state, and copied to PSTATE.nRW on executing an exception return operation in EL1.

0b0 AArch64 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

0b0000 EL0t.

0b0100 EL1t.

0b0101 EL1h.

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in EL1 is an illegal return
event, as described in Illegal return events from AArch64 state on page D1-2486.

The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on taking an exception to EL1 and copied to
PSTATE.EL on executing an exception return operation in EL1.

• M[1] is unused and is 0 for all non-reserved values.

• M[0] is set to the value of PSTATE.SP on taking an exception to EL1 and copied to
PSTATE.SP on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
C5-464 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
Accessing SPSR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SPSR_EL1 or
SPSR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x160];
 else
 return SPSR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return SPSR_EL2;
 else
 return SPSR_EL1;
elsif PSTATE.EL == EL3 then
 return SPSR_EL1;

MSR SPSR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x160] = X[t];
 else
 SPSR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 SPSR_EL2 = X[t];
 else
 SPSR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 SPSR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-465
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
MRS <Xt>, SPSR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x160];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return SPSR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return SPSR_EL1;
 else
 UNDEFINED;

MSR SPSR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x160] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 SPSR_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 SPSR_EL1 = X[t];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b0100 0b0000 0b000
C5-466 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
MRS <Xt>, SPSR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return SPSR_EL1;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return SPSR_EL2;
elsif PSTATE.EL == EL3 then
 return SPSR_EL2;

MSR SPSR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 SPSR_EL1 = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 SPSR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 SPSR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-467
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.18 SPSR_EL2, Saved Program Status Register (EL2)

The SPSR_EL2 characteristics are:

Purpose

Holds the saved process state when an exception is taken to EL2.

Configurations

AArch64 System register SPSR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register SPSR_hyp[31:0].

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

SPSR_EL2 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0 and exception taken from AArch32 state:

An exception return from EL2 using AArch64 makes SPSR_EL2 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL2, and copied
to PSTATE.N on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL2, and copied to
PSTATE.Z on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL2, and copied to
PSTATE.C on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL2, and copied
to PSTATE.V on executing an exception return operation in EL2.

RES0

63 32

N

31

Z

30

C

29

V

28

Q

27 26 25 24 23 22

SS

21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
DIT

PAN
SSBS

M[4]
C5-468 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL2, and
copied to PSTATE.Q on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to EL2, and copied to PSTATE.IT
on executing an exception return operation in EL2.

SPSR_EL2.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_EL2[26:25].

• IT[7:2] is SPSR_EL2[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL2, and
copied to PSTATE.DIT on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL2, and
copied to PSTATE.SSBS on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL2, and
copied to PSTATE.PAN on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-469
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL2, and conditionally
copied to PSTATE.SS on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL2, and copied to
PSTATE.IL on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL2, and
copied to PSTATE.GE on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to EL2, and copied to PSTATE.E
on executing an exception return operation in EL2.

If the implementation does not support big-endian operation, SPSR_EL2.E is RES0. If the
implementation does not support little-endian operation, SPSR_EL2.E is RES1. On executing an
exception return operation in EL2, if the implementation does not support big-endian operation at
the Exception level being returned to, SPSR_EL2.E is RES0, and if the implementation does not
support little-endian operation at the Exception level being returned to, SPSR_EL2.E is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL2, and copied to
PSTATE.A on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL2, and copied to
PSTATE.I on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL2, and copied to
PSTATE.F on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
C5-470 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL2, and copied
to PSTATE.T on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL2 from AArch32
state, and copied to PSTATE.nRW on executing an exception return operation in EL2.

0b1 AArch32 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL2, and copied to
PSTATE.M[3:0] on executing an exception return operation in EL2.

0b0000 User.

0b0001 FIQ.

0b0010 IRQ.

0b0011 Supervisor.

0b0111 Abort.

0b1010 Hyp.

0b1011 Undefined.

0b1111 System.

Other values are reserved. If SPSR_EL2.M[3:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in EL2 is an illegal return
event, as described in Illegal return events from AArch64 state on page D1-2486.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When exception taken from AArch64 state:

An exception return from EL2 using AArch64 makes SPSR_EL2 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL2, and copied
to PSTATE.N on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

N

31

Z

30

C

29

V

28

RES0

27 26 25 24 23 22

SS

21

IL

20

RES0

19 13 12 11 10

D

9

A

8

I

7

F

6 5 4

M[3:0]

3 0

TCO
DIT

PAN
UAO

SSBS
BTYPE

M[4]
RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-471
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL2, and copied to
PSTATE.Z on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL2, and copied to
PSTATE.C on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL2, and copied
to PSTATE.V on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

TCO, bit [25]

When FEAT_MTE is implemented:

TCO

Tag Check Override. Set to the value of PSTATE.TCO on taking an exception to EL2, and copied
to PSTATE.TCO on executing an exception return operation in EL2.

When FEAT_MTE is not implemented, it is CONSTRAINED UNPREDICTABLE whether this field is
RES0 or behaves as if FEAT_MTE is implemented.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL2, and
copied to PSTATE.DIT on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UAO, bit [23]

When FEAT_UAO is implemented:

UAO

User Access Override. Set to the value of PSTATE.UAO on taking an exception to EL2, and copied
to PSTATE.UAO on executing an exception return operation in EL2.
C5-472 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL2, and
copied to PSTATE.PAN on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL2, and conditionally
copied to PSTATE.SS on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL2, and copied to
PSTATE.IL on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

SSBS, bit [12]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL2, and
copied to PSTATE.SSBS on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BTYPE, bits [11:10]

When FEAT_BTI is implemented:

BTYPE

Branch Type Indicator. Set to the value of PSTATE.BTYPE on taking an exception to EL2, and
copied to PSTATE.BTYPE on executing an exception return operation in EL2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-473
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL2, and copied to
PSTATE.D on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL2, and copied to
PSTATE.A on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL2, and copied to
PSTATE.I on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL2, and copied to
PSTATE.F on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on taking an exception to EL2 from AArch64
state, and copied to PSTATE.nRW on executing an exception return operation in EL2.

0b0 AArch64 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

0b0000 EL0t.

0b0100 EL1t.

0b0101 EL1h.

0b1000 EL2t.

0b1001 EL2h.

Other values are reserved. If SPSR_EL2.M[3:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in EL2 is an illegal return
event, as described in Illegal return events from AArch64 state on page D1-2486.
C5-474 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on taking an exception to EL2 and copied to
PSTATE.EL on executing an exception return operation in EL2.

• M[1] is unused and is 0 for all non-reserved values.

• M[0] is set to the value of PSTATE.SP on taking an exception to EL2 and copied to
PSTATE.SP on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SPSR_EL2 or
SPSR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return SPSR_EL1;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return SPSR_EL2;
elsif PSTATE.EL == EL3 then
 return SPSR_EL2;

MSR SPSR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 SPSR_EL1 = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 SPSR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 SPSR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-475
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
MRS <Xt>, SPSR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x160];
 else
 return SPSR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return SPSR_EL2;
 else
 return SPSR_EL1;
elsif PSTATE.EL == EL3 then
 return SPSR_EL1;

MSR SPSR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x160] = X[t];
 else
 SPSR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 SPSR_EL2 = X[t];
 else
 SPSR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 SPSR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b000
C5-476 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.19 SPSR_EL3, Saved Program Status Register (EL3)

The SPSR_EL3 characteristics are:

Purpose

Holds the saved process state when an exception is taken to EL3.

Configurations

AArch64 System register SPSR_EL3 bits [31:0] can be mapped to AArch32 System register
SPSR_mon[31:0], but this is not architecturally mandated.

This register is present only when EL3 is implemented. Otherwise, direct accesses to SPSR_EL3
are UNDEFINED.

Attributes

SPSR_EL3 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0 and exception taken from AArch32 state:

An exception return from EL3 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL3, and copied
to PSTATE.N on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL3, and copied to
PSTATE.Z on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL3, and copied to
PSTATE.C on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL3, and copied
to PSTATE.V on executing an exception return operation in EL3.

RES0

63 32

N

31

Z

30

C

29

V

28

Q

27 26 25 24 23 22

SS

21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
DIT

PAN
SSBS

M[4]
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-477
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL3, and
copied to PSTATE.Q on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to EL3, and copied to PSTATE.IT
on executing an exception return operation in EL3.

SPSR_EL1.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_EL3[26:25].

• IT[7:2] is SPSR_EL3[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL3, and
copied to PSTATE.DIT on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL3, and
copied to PSTATE.SSBS on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL3, and
copied to PSTATE.PAN on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
C5-478 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL3, and conditionally
copied to PSTATE.SS on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL3, and copied to
PSTATE.IL on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL3, and
copied to PSTATE.GE on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to EL3, and copied to PSTATE.E
on executing an exception return operation in EL3.

If the implementation does not support big-endian operation, SPSR_EL1.E is RES0. If the
implementation does not support little-endian operation, SPSR_EL1.E is RES1. On executing an
exception return operation in EL3, if the implementation does not support big-endian operation at
the Exception level being returned to, SPSR_EL1.E is RES0, and if the implementation does not
support little-endian operation at the Exception level being returned to, SPSR_EL1.E is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL3, and copied to
PSTATE.A on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL3, and copied to
PSTATE.I on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL3, and copied to
PSTATE.F on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-479
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL3, and copied
to PSTATE.T on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL3 from AArch32
state, and copied to PSTATE.nRW on executing an exception return operation in EL3.

0b1 AArch32 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL3, and copied to
PSTATE.M[3:0] on executing an exception return operation in EL3.

0b0000 User.

0b0001 FIQ.

0b0010 IRQ.

0b0011 Supervisor.

0b0110 Monitor.

0b0111 Abort.

0b1010 Hyp.

0b1011 Undefined.

0b1111 System.

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in EL3 is an illegal return
event, as described in Illegal return events from AArch64 state on page D1-2486.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When exception taken from AArch64 state:

An exception return from EL3 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL3, and copied
to PSTATE.N on executing an exception return operation in EL3.

RES0

63 32

N

31

Z

30

C

29

V

28

RES0

27 26 25 24 23 22

SS

21

IL

20

RES0

19 13 12 11 10

D

9

A

8

I

7

F

6 5 4

M[3:0]

3 0

TCO
DIT

PAN
UAO

SSBS
BTYPE

M[4]
RES0
C5-480 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL3, and copied to
PSTATE.Z on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL3, and copied to
PSTATE.C on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL3, and copied
to PSTATE.V on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

TCO, bit [25]

When FEAT_MTE is implemented:

TCO

Tag Check Override. Set to the value of PSTATE.TCO on taking an exception to EL3, and copied
to PSTATE.TCO on executing an exception return operation in EL3.

When FEAT_MTE is not implemented, it is CONSTRAINED UNPREDICTABLE whether this field is
RES0 or behaves as if FEAT_MTE is implemented.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL3, and
copied to PSTATE.DIT on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-481
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
UAO, bit [23]

When FEAT_UAO is implemented:

UAO

User Access Override. Set to the value of PSTATE.UAO on taking an exception to EL3, and copied
to PSTATE.UAO on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL3, and
copied to PSTATE.PAN on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL3, and conditionally
copied to PSTATE.SS on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL3, and copied to
PSTATE.IL on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

SSBS, bit [12]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL3, and
copied to PSTATE.SSBS on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
C5-482 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
BTYPE, bits [11:10]

When FEAT_BTI is implemented:

BTYPE

Branch Type Indicator. Set to the value of PSTATE.BTYPE on taking an exception to EL3, and
copied to PSTATE.BTYPE on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL3, and copied to
PSTATE.D on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL3, and copied to
PSTATE.A on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL3, and copied to
PSTATE.I on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL3, and copied to
PSTATE.F on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on taking an exception to EL3 from AArch64
state, and copied to PSTATE.nRW on executing an exception return operation in EL3.

0b0 AArch64 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

0b0000 EL0t.

0b0100 EL1t.

0b0101 EL1h.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-483
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
0b1000 EL2t.

0b1001 EL2h.

0b1100 EL3t.

0b1101 EL3h.

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in EL3 is an illegal return
event, as described in Illegal return events from AArch64 state on page D1-2486.

The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on taking an exception to EL3 and copied to
PSTATE.EL on executing an exception return operation in EL3.

• M[1] is unused and is 0 for all non-reserved values.

• M[0] is set to the value of PSTATE.SP on taking an exception to EL3 and copied to
PSTATE.SP on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return SPSR_EL3;

MSR SPSR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SPSR_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0000 0b000
C5-484 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.20 SPSR_fiq, Saved Program Status Register (FIQ mode)

The SPSR_fiq characteristics are:

Purpose

Holds the saved process state when an exception is taken to FIQ mode.

Configurations

AArch64 System register SPSR_fiq bits [31:0] are architecturally mapped to AArch32 System
register SPSR_fiq[31:0].

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes

SPSR_fiq is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to FIQ mode, and
copied to PSTATE.N on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to FIQ mode, and copied
to PSTATE.Z on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to FIQ mode, and copied
to PSTATE.C on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to FIQ mode, and
copied to PSTATE.V on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-485
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to FIQ mode, and
copied to PSTATE.Q on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to FIQ mode, and copied to
PSTATE.IT on executing an exception return operation in FIQ mode.

SPSR_fiq.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_fiq[26:25].

• IT[7:2] is SPSR_fiq[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to FIQ mode,
and copied to PSTATE.SSBS on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to FIQ mode, and
copied to PSTATE.PAN on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to FIQ mode,
and copied to PSTATE.DIT on executing an exception return operation in FIQ mode.
C5-486 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to FIQ mode, and
copied to PSTATE.IL on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to FIQ mode,
and copied to PSTATE.GE on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to FIQ mode, and copied to
PSTATE.E on executing an exception return operation in FIQ mode.

If the implementation does not support big-endian operation, SPSR_fiq.E is RES0. If the
implementation does not support little-endian operation, SPSR_fiq.E is RES1. On executing an
exception return operation in FIQ mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_fiq.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_fiq.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to FIQ mode, and
copied to PSTATE.A on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to FIQ mode, and copied
to PSTATE.I on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to FIQ mode, and copied
to PSTATE.F on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to FIQ mode, and
copied to PSTATE.T on executing an exception return operation in FIQ mode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-487
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to FIQ mode, and copied to
PSTATE.M[4:0] on executing an exception return operation in FIQ mode.

0b10000 User.

0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10111 Abort.

0b11011 Undefined.

0b11111 System.

Other values are reserved. If SPSR_fiq.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in FIQ mode is an illegal
return event, as described in Illegal return events from AArch32 state on page G1-6066.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_fiq

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_fiq

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return SPSR_fiq;
elsif PSTATE.EL == EL3 then
 return SPSR_fiq;

MSR SPSR_fiq, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0011 0b011

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0011 0b011
C5-488 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 SPSR_fiq = X[t];
elsif PSTATE.EL == EL3 then
 SPSR_fiq = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-489
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.21 SPSR_irq, Saved Program Status Register (IRQ mode)

The SPSR_irq characteristics are:

Purpose

Holds the saved process state when an exception is taken to IRQ mode.

Configurations

AArch64 System register SPSR_irq bits [31:0] are architecturally mapped to AArch32 System
register SPSR_irq[31:0].

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes

SPSR_irq is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to IRQ mode, and
copied to PSTATE.N on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to IRQ mode, and copied
to PSTATE.Z on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to IRQ mode, and copied
to PSTATE.C on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to IRQ mode, and
copied to PSTATE.V on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
C5-490 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to IRQ mode, and
copied to PSTATE.Q on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to IRQ mode, and copied to
PSTATE.IT on executing an exception return operation in IRQ mode.

SPSR_irq.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_irq[26:25].

• IT[7:2] is SPSR_irq[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to IRQ mode,
and copied to PSTATE.SSBS on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to IRQ mode, and
copied to PSTATE.PAN on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to IRQ mode,
and copied to PSTATE.DIT on executing an exception return operation in IRQ mode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-491
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to IRQ mode, and
copied to PSTATE.IL on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to IRQ mode,
and copied to PSTATE.GE on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to IRQ mode, and copied to
PSTATE.E on executing an exception return operation in IRQ mode.

If the implementation does not support big-endian operation, SPSR_irq.E is RES0. If the
implementation does not support little-endian operation, SPSR_irq.E is RES1. On executing an
exception return operation in IRQ mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_irq.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_irq.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to IRQ mode, and
copied to PSTATE.A on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to IRQ mode, and copied
to PSTATE.I on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to IRQ mode, and copied
to PSTATE.F on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to IRQ mode, and
copied to PSTATE.T on executing an exception return operation in IRQ mode.
C5-492 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to IRQ mode, and copied to
PSTATE.M[4:0] on executing an exception return operation in IRQ mode.

0b10000 User.

0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10111 Abort.

0b11011 Undefined.

0b11111 System.

Other values are reserved. If SPSR_irq.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in IRQ mode is an illegal
return event, as described in Illegal return events from AArch32 state on page G1-6066.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_irq

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_irq

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return SPSR_irq;
elsif PSTATE.EL == EL3 then
 return SPSR_irq;

MSR SPSR_irq, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0011 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-493
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 SPSR_irq = X[t];
elsif PSTATE.EL == EL3 then
 SPSR_irq = X[t];

C5-494 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.22 SPSR_und, Saved Program Status Register (Undefined mode)

The SPSR_und characteristics are:

Purpose

Holds the saved process state when an exception is taken to Undefined mode.

Configurations

AArch64 System register SPSR_und bits [31:0] are architecturally mapped to AArch32 System
register SPSR_und[31:0].

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes

SPSR_und is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Undefined mode,
and copied to PSTATE.N on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Undefined mode, and
copied to PSTATE.Z on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Undefined mode, and
copied to PSTATE.C on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Undefined mode,
and copied to PSTATE.V on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-495
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Undefined
mode, and copied to PSTATE.Q on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to Undefined mode, and copied to
PSTATE.IT on executing an exception return operation in Undefined mode.

SPSR_und.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_und[26:25].

• IT[7:2] is SPSR_und[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Undefined
mode, and copied to PSTATE.SSBS on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Undefined
mode, and copied to PSTATE.PAN on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Undefined
mode, and copied to PSTATE.DIT on executing an exception return operation in Undefined mode.
C5-496 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Undefined mode,
and copied to PSTATE.IL on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Undefined
mode, and copied to PSTATE.GE on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Undefined mode, and copied
to PSTATE.E on executing an exception return operation in Undefined mode.

If the implementation does not support big-endian operation, SPSR_und.E is RES0. If the
implementation does not support little-endian operation, SPSR_und.E is RES1. On executing an
exception return operation in Undefined mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_und.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_und.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Undefined mode,
and copied to PSTATE.A on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Undefined mode, and
copied to PSTATE.I on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Undefined mode, and
copied to PSTATE.F on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Undefined mode,
and copied to PSTATE.T on executing an exception return operation in Undefined mode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-497
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Undefined mode, and copied
to PSTATE.M[4:0] on executing an exception return operation in Undefined mode.

0b10000 User.

0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10111 Abort.

0b11011 Undefined.

0b11111 System.

Other values are reserved. If SPSR_und.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in Undefined mode is an
illegal return event, as described in Illegal return events from AArch32 state on page G1-6066.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_und

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_und

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return SPSR_und;
elsif PSTATE.EL == EL3 then
 return SPSR_und;

MSR SPSR_und, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0011 0b010

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0011 0b010
C5-498 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 SPSR_und = X[t];
elsif PSTATE.EL == EL3 then
 SPSR_und = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-499
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.23 SSBS, Speculative Store Bypass Safe

The SSBS characteristics are:

Purpose

Allows access to the Speculative Store Bypass Safe bit.

Configurations

This register is present only when FEAT_SSBS is implemented. Otherwise, direct accesses to SSBS
are UNDEFINED.

Attributes

SSBS is a 64-bit register.

Field descriptions

Bits [63:13]

Reserved, RES0.

SSBS, bit [12]

Speculative Store Bypass Safe.

Prohibits speculative loads or stores which might practically allow a cache timing side channel.

A cache timing side channel might be exploited where a load or store uses an address that is derived
from a register that is being loaded from memory using a load instruction speculatively read from a
memory location. If PSTATE.SSBS is enabled, the address derived from the load instruction might
be from earlier in the coherence order than the latest store to that memory location with the same
virtual address.

0b0 Hardware is not permitted to load or store speculatively, in a manner that could
practically give rise to a cache timing side channel, using an address derived from a
register value that has been loaded from memory using a load instruction (L) that
speculatively reads an entry from earlier in the coherence order from that location being
loaded from than the entry generated by the latest store (S) to that location using the
same virtual address as L.

0b1 Hardware is permitted to load or store speculatively, in a manner that could practically
give rise to a cache timing side channel, using an address derived from a register value
that has been loaded from memory using a load instruction (L) that speculatively reads
an entry from earlier in the coherence order fro that location being loaded from than the
entry generated by the latest store (S) to that location using the same virtual address as L.

The value of this bit is set to the value in the SCTLR_ELx.DSSBS field on taking an exception to
ELx.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Bits [11:0]

Reserved, RES0.

RES0

63 32

RES0

31 13 12

RES0

11 0

SSBS
C5-500 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
Accessing SSBS

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SSBS

if PSTATE.EL == EL0 then
 return Zeros(51):PSTATE.SSBS:Zeros(12);
elsif PSTATE.EL == EL1 then
 return Zeros(51):PSTATE.SSBS:Zeros(12);
elsif PSTATE.EL == EL2 then
 return Zeros(51):PSTATE.SSBS:Zeros(12);
elsif PSTATE.EL == EL3 then
 return Zeros(51):PSTATE.SSBS:Zeros(12);

MSR SSBS, <Xt>

if PSTATE.EL == EL0 then
 PSTATE.SSBS = X[t]<12>;
elsif PSTATE.EL == EL1 then
 PSTATE.SSBS = X[t]<12>;
elsif PSTATE.EL == EL2 then
 PSTATE.SSBS = X[t]<12>;
elsif PSTATE.EL == EL3 then
 PSTATE.SSBS = X[t]<12>;

MSR SSBS, #<imm>

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b110

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b110

op0 op1 CRn op2

0b00 0b011 0b0100 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-501
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.24 TCO, Tag Check Override

The TCO characteristics are:

Purpose

When FEAT_MTE is implemented, this register allows tag checks to be disabled globally.

When FEAT_MTE is not implemented, it is CONSTRAINED UNPREDICTABLE whether this register is
RES0 or behaves as if FEAT_MTE is implemented.

Configurations

This register is present only when FEAT_MTE is implemented. Otherwise, direct accesses to TCO
are UNDEFINED.

Attributes

TCO is a 64-bit register.

Field descriptions

Bits [63:26]

Reserved, RES0.

TCO, bit [25]

Allows memory tag checks to be globally disabled.

0b0 Loads and Stores are not affected by this control.

0b1 Loads and Stores are unchecked.

Bits [24:0]

Reserved, RES0.

Accessing TCO

For information about the operation of the MSR (immediate) accessor, see MSR (immediate).

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TCO

if PSTATE.EL == EL0 then
 return Zeros(38):PSTATE.TCO:Zeros(25);
elsif PSTATE.EL == EL1 then
 return Zeros(38):PSTATE.TCO:Zeros(25);
elsif PSTATE.EL == EL2 then
 return Zeros(38):PSTATE.TCO:Zeros(25);

RES0

63 32

RES0

31 26 25

RES0

24 0

TCO

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b111
C5-502 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
elsif PSTATE.EL == EL3 then
 return Zeros(38):PSTATE.TCO:Zeros(25);

MSR TCO, <Xt>

if PSTATE.EL == EL0 then
 PSTATE.TCO = X[t]<25>;
elsif PSTATE.EL == EL1 then
 PSTATE.TCO = X[t]<25>;
elsif PSTATE.EL == EL2 then
 PSTATE.TCO = X[t]<25>;
elsif PSTATE.EL == EL3 then
 PSTATE.TCO = X[t]<25>;

MSR TCO, #<imm>

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b111

op0 op1 CRn op2

0b00 0b011 0b0100 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-503
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.25 UAO, User Access Override

The UAO characteristics are:

Purpose

Allows access to the User Access Override bit.

Configurations

This register is present only when FEAT_UAO is implemented. Otherwise, direct accesses to UAO
are UNDEFINED.

Attributes

UAO is a 64-bit register.

Field descriptions

Bits [63:24]

Reserved, RES0.

UAO, bit [23]

User Access Override.

0b0 The behavior of LDTR* and STTR* instructions is as defined in the base Armv8
architecture.

0b1 When executed at EL1, or at EL2 with HCR_EL2.{E2H, TGE} == {1, 1}, LDTR* and
STTR* instructions behave as the equivalent LDR* and STR* instructions.

When executed at EL3, or at EL2 with HCR_EL2.E2H == 0 or HCR_EL2.TGE == 0, the LDTR*
and STTR* instructions behave as the equivalent LDR* and STR* instructions, regardless of the setting
of the PSTATE.UAO bit.

Bits [22:0]

Reserved, RES0.

Accessing UAO

For more information about the operation of the MSR (immediate) accessor, see MSR (immediate).

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, UAO

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

RES0

63 32

RES0

31 24 23

RES0

22 0

UAO

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0010 0b100
C5-504 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers
 return Zeros(40):PSTATE.UAO:Zeros(23);
elsif PSTATE.EL == EL2 then
 return Zeros(40):PSTATE.UAO:Zeros(23);
elsif PSTATE.EL == EL3 then
 return Zeros(40):PSTATE.UAO:Zeros(23);

MSR UAO, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 PSTATE.UAO = X[t]<23>;
elsif PSTATE.EL == EL2 then
 PSTATE.UAO = X[t]<23>;
elsif PSTATE.EL == EL3 then
 PSTATE.UAO = X[t]<23>;

MSR UAO, #<imm>

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0010 0b100

op0 op1 CRn op2

0b00 0b000 0b0100 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-505
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3 A64 System instructions for cache maintenance

This section lists the A64 System instructions for cache maintenance.
C5-506 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.1 DC CGDSW, Clean of Data and Allocation Tags by Set/Way

The DC CGDSW characteristics are:

Purpose

Clean data and Allocation Tags in data cache by set/way.

Configurations

This instruction is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
DC CGDSW are UNDEFINED.

Attributes

DC CGDSW is a 64-bit System instruction.

Field descriptions

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DC CGDSW instruction

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

RES0

63 32

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-507
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CGDSW, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_SetWay);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1010 0b110
C5-508 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.2 DC CGDVAC, Clean of Data and Allocation Tags by VA to PoC

The DC CGDVAC characteristics are:

Purpose

Clean data and Allocation Tags in data cache by address to Point of Coherency.

Configurations

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC
CGDVAC are UNDEFINED.

Attributes

DC CGDVAC is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CGDVAC instruction

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA,
otherwise it generates a Permission fault, subject to the constraints described in Permission fault on page D5-2801.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC) on page D4-2650.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CGDVAC, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL1 then

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1010 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-509
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoC);

C5-510 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.3 DC CGDVADP, Clean of Data and Allocation Tags by VA to PoDP

The DC CGDVADP characteristics are:

Purpose

Clean Allocation Tags and data in data cache by address to Point of Deep Persistence.

If the memory system does not identify a Point of Deep Persistence, then this instruction behaves
as a DC CGDVAP.

Configurations

This instruction is present only when FEAT_DPB2 is implemented and FEAT_MTE is
implemented. Otherwise, direct accesses to DC CGDVADP are UNDEFINED.

Attributes

DC CGDVADP is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CGDVADP instruction

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA,
otherwise it generates a Permission fault, see Permission fault on page D5-2801.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC) on page D4-2650.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CGDVADP, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCVADP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1101 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-511
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoDP);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVADP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoDP);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoDP);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoDP);

C5-512 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.4 DC CGDVAP, Clean of Data and Allocation Tags by VA to PoP

The DC CGDVAP characteristics are:

Purpose

Clean data and Allocation Tags in data cache by address to Point of Persistence.

If the memory system does not identify a Point of Persistence, then this instruction behaves as a DC
CGDVAC.

Configurations

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC
CGDVAP are UNDEFINED.

Attributes

DC CGDVAP is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CGDVAP instruction

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA,
otherwise it generates a Permission fault, see Permission fault on page D5-2801.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC) on page D4-2650.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CGDVAP, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCVAP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1100 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-513
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoP);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoP);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoP);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoP);

C5-514 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.5 DC CGSW, Clean of Allocation Tags by Set/Way

The DC CGSW characteristics are:

Purpose

Clean Allocation Tags in data cache by set/way.

Configurations

This instruction is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
DC CGSW are UNDEFINED.

Attributes

DC CGSW is a 64-bit System instruction.

Field descriptions

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DC CGSW instruction

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

RES0

63 32

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-515
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CGSW, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Clean, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Clean, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Clean, CacheOpScope_SetWay);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1010 0b100
C5-516 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.6 DC CGVAC, Clean of Allocation Tags by VA to PoC

The DC CGVAC characteristics are:

Purpose

Clean Allocation Tags in data cache by address to Point of Coherency.

Configurations

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC
CGVAC are UNDEFINED.

Attributes

DC CGVAC is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CGVAC instruction

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA,
otherwise it generates a Permission fault, subject to the constraints described in Permission fault on page D5-2801.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC) on page D4-2650.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CGVAC, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL1 then

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1010 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-517
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoC);

C5-518 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.7 DC CGVADP, Clean of Allocation Tags by VA to PoDP

The DC CGVADP characteristics are:

Purpose

Clean Allocation tags by address to Point of Deep Persistence.

If the memory system does not identify a Point of Deep Persistence, then this instruction behaves
as a DC CGVAP.

Configurations

This instruction is present only when FEAT_DPB2 is implemented and FEAT_MTE is
implemented. Otherwise, direct accesses to DC CGVADP are UNDEFINED.

Attributes

DC CGVADP is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CGVADP instruction

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA,
otherwise it generates a Permission fault, see Permission fault on page D5-2801.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC) on page D4-2650.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CGVADP, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCVADP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1101 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-519
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoDP);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVADP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoDP);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoDP);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoDP);

C5-520 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.8 DC CGVAP, Clean of Allocation Tags by VA to PoP

The DC CGVAP characteristics are:

Purpose

Clean Allocation Tags in data cache by address to Point of Persistence.

If the memory system does not identify a Point of Persistence, then this instruction behaves as a DC
CGVAC.

Configurations

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC
CGVAP are UNDEFINED.

Attributes

DC CGVAP is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CGVAP instruction

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA,
otherwise it generates a Permission fault, see Permission fault on page D5-2801.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC) on page D4-2650.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CGVAP, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCVAP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1100 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-521
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoP);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoP);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoP);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoP);

C5-522 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.9 DC CIGDSW, Clean and Invalidate of Data and Allocation Tags by Set/Way

The DC CIGDSW characteristics are:

Purpose

Clean and Invalidate data and Allocation Tags in data cache by set/way.

Configurations

This instruction is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
DC CIGDSW are UNDEFINED.

Attributes

DC CIGDSW is a 64-bit System instruction.

Field descriptions

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DC CIGDSW instruction

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

RES0

63 32

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-523
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CIGDSW, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCISW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_CleanInvalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_CleanInvalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_CleanInvalidate, CacheOpScope_SetWay);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1110 0b110
C5-524 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.10 DC CIGDVAC, Clean and Invalidate of Data and Allocation Tags by VA to PoC

The DC CIGDVAC characteristics are:

Purpose

Clean and Invalidate data and Allocation Tags in data cache by address to Point of Coherency.

Configurations

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC
CIGDVAC are UNDEFINED.

Attributes

DC CIGDVAC is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CIGDVAC instruction

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC) on page D4-2650.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA,
otherwise it generates a Permission fault, subject to the constraints described in Permission fault on page D5-2801.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CIGDVAC, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCIVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL1 then

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1110 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-525
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);

C5-526 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.11 DC CIGSW, Clean and Invalidate of Allocation Tags by Set/Way

The DC CIGSW characteristics are:

Purpose

Clean and Invalidate Allocation Tags in data cache by set/way.

Configurations

This instruction is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
DC CIGSW are UNDEFINED.

Attributes

DC CIGSW is a 64-bit System instruction.

Field descriptions

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DC CIGSW instruction

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

RES0

63 32

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-527
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CIGSW, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCISW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Tag, CacheOp_CleanInvalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Tag, CacheOp_CleanInvalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Tag, CacheOp_CleanInvalidate, CacheOpScope_SetWay);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1110 0b100
C5-528 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.12 DC CIGVAC, Clean and Invalidate of Allocation Tags by VA to PoC

The DC CIGVAC characteristics are:

Purpose

Clean and Invalidate Allocation Tags in data cache by address to Point of Coherency.

Configurations

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC
CIGVAC are UNDEFINED.

Attributes

DC CIGVAC is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CIGVAC instruction

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC) on page D4-2650.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA,
otherwise it generates a Permission fault, subject to the constraints described in Permission fault on page D5-2801.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CIGVAC, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCIVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL1 then

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1110 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-529
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);

C5-530 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.13 DC CISW, Data or unified Cache line Clean and Invalidate by Set/Way

The DC CISW characteristics are:

Purpose

Clean and Invalidate data cache by set/way.

When FEAT_MTE is implemented, this instruction might clean and invalidate Allocation Tags from
caches.

Configurations

AArch64 System register DC CISW performs the same function as AArch32 System register
DCCISW.

Attributes

DC CISW is a 64-bit System instruction.

Field descriptions

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DC CISW instruction

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

RES0

63 32

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-531
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
— A single arbitrary cache line.

— Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CISW, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCISW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_SetWay);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1110 0b010
C5-532 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.14 DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC

The DC CIVAC characteristics are:

Purpose

Clean and Invalidate data cache by address to Point of Coherency.

When FEAT_MTE is implemented, this instruction might clean and invalidate Allocation Tags from
caches.

Configurations

AArch64 System register DC CIVAC performs the same function as AArch32 System register
DCCIMVAC.

Attributes

DC CIVAC is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CIVAC instruction

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC) on page D4-2650.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA,
otherwise it generates a Permission fault, subject to the constraints described in Permission fault on page D5-2801.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CIVAC, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCIVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1110 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-533
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.DC(X[t], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_PoC);

C5-534 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.15 DC CSW, Data or unified Cache line Clean by Set/Way

The DC CSW characteristics are:

Purpose

Clean data cache by set/way.

When FEAT_MTE is implemented, this instruction might clean Allocation Tags from caches.

Configurations

AArch64 System register DC CSW performs the same function as AArch32 System register
DCCSW.

Attributes

DC CSW is a 64-bit System instruction.

Field descriptions

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DC CSW instruction

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

RES0

63 32

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-535
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
— Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CSW, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data, CacheOp_Clean, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Data, CacheOp_Clean, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Data, CacheOp_Clean, CacheOpScope_SetWay);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1010 0b010
C5-536 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.16 DC CVAC, Data or unified Cache line Clean by VA to PoC

The DC CVAC characteristics are:

Purpose

Clean data cache by address to Point of Coherency.

When FEAT_MTE is implemented, this instruction might clean Allocation Tags from caches.

Configurations

AArch64 System register DC CVAC performs the same function as AArch32 System register
DCCMVAC.

Attributes

DC CVAC is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CVAC instruction

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA,
otherwise it generates a Permission fault, subject to the constraints described in Permission fault on page D5-2801.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC) on page D4-2650.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CVAC, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data, CacheOp_Clean, CacheOpScope_PoC);

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-537
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data, CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Data, CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Data, CacheOp_Clean, CacheOpScope_PoC);

C5-538 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.17 DC CVADP, Data or unified Cache line Clean by VA to PoDP

The DC CVADP characteristics are:

Purpose

Clean data cache by address to Point of Deep Persistence.

If the memory system does not identify a Point of Deep Persistence, then this instruction behaves
as a DC CVAP.

When FEAT_MTE is implemented, this instruction might clean Allocation Tags from caches.

Configurations

This instruction is present only when FEAT_DPB2 is implemented. Otherwise, direct accesses to
DC CVADP are UNDEFINED.

Attributes

DC CVADP is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CVADP instruction

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA,
otherwise it generates a Permission fault, see Permission fault on page D5-2801.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC) on page D4-2650.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CVADP, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCVADP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1101 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-539
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data, CacheOp_Clean, CacheOpScope_PoDP);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVADP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data, CacheOp_Clean, CacheOpScope_PoDP);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Data, CacheOp_Clean, CacheOpScope_PoDP);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Data, CacheOp_Clean, CacheOpScope_PoDP);

C5-540 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.18 DC CVAP, Data or unified Cache line Clean by VA to PoP

The DC CVAP characteristics are:

Purpose

Clean data cache by address to Point of Persistence.

If the memory system does not identify a Point of Persistence, then this instruction behaves as a DC
CVAC.

When FEAT_MTE is implemented, this instruction might clean Allocation Tags from caches.

Configurations

This instruction is present only when FEAT_DPB is implemented. Otherwise, direct accesses to DC
CVAP are UNDEFINED.

Attributes

DC CVAP is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CVAP instruction

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA,
otherwise it generates a Permission fault, see Permission fault on page D5-2801.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC) on page D4-2650.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CVAP, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCVAP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1100 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-541
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data, CacheOp_Clean, CacheOpScope_PoP);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data, CacheOp_Clean, CacheOpScope_PoP);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Data, CacheOp_Clean, CacheOpScope_PoP);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Data, CacheOp_Clean, CacheOpScope_PoP);

C5-542 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.19 DC CVAU, Data or unified Cache line Clean by VA to PoU

The DC CVAU characteristics are:

Purpose

Clean data cache by address to Point of Unification.

Configurations

AArch64 System register DC CVAU performs the same function as AArch32 System register
DCCMVAU.

Attributes

DC CVAU is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CVAU instruction

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA,
otherwise it generates a Permission fault, subject to the constraints described in Permission fault on page D5-2801.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC) on page D4-2650.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CVAU, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TOCU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCVAU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1011 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-543
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.DC(X[t], CacheType_Data, CacheOp_Clean, CacheOpScope_PoU);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TOCU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data, CacheOp_Clean, CacheOpScope_PoU);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Data, CacheOp_Clean, CacheOpScope_PoU);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Data, CacheOp_Clean, CacheOpScope_PoU);

C5-544 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.20 DC GVA, Data Cache set Allocation Tag by VA

The DC GVA characteristics are:

Purpose

Write a value to the Allocation Tags of a naturally aligned block of N bytes, where the size of N is
identified in DCZID_EL0. The Allocation Tag used is determined by the input address.

Configurations

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC
GVA are UNDEFINED.

Attributes

DC GVA is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. There is no alignment restriction on the address within the block of N bytes
that is used.

Executing DC GVA instruction

When this instruction is executed, it can generate memory faults or watchpoints which are prioritized in the same
way as other memory-related faults or watchpoints. If a synchronous data abort fault or a watchpoint is generated,
the CM bit in the ESR_ELx.ISS field is not set.

If the memory region being modified is any type of Device memory, this instruction can give an alignment fault that
is prioritized in the same way as other alignment faults that are determined by the memory type.

This instruction applies to Normal memory regardless of cacheability attributes.

This instruction behaves as a set of stores to each Allocation Tag within the block being accessed, and so it:

• Generates a Permission fault if the translation system does not permit writes to the locations.

• Requires the same considerations for ordering and the management of coherency as any other store
instructions.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC GVA, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.DZE == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b0100 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-545
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TDZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCZVA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.DZE == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.MemZero(X[t], CacheType_Tag);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TDZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCZVA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.MemZero(X[t], CacheType_Tag);
elsif PSTATE.EL == EL2 then
 AArch64.MemZero(X[t], CacheType_Tag);
elsif PSTATE.EL == EL3 then
 AArch64.MemZero(X[t], CacheType_Tag);

C5-546 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.21 DC GZVA, Data Cache set Allocation Tags and Zero by VA

The DC GZVA characteristics are:

Purpose

Zero data and write a value to the Allocation Tags of a naturally aligned block of N bytes, where the
size of N is identified in DCZID_EL0. The Allocation Tag used is determined by the input address.

Configurations

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC
GZVA are UNDEFINED.

Attributes

DC GZVA is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. There is no alignment restriction on the address within the block of N bytes
that is used.

Executing DC GZVA instruction

When this instruction is executed, it can generate memory faults or watchpoints which are prioritized in the same
way as other memory-related faults or watchpoints. If a synchronous data abort fault or a watchpoint is generated,
the CM bit in the ESR_ELx.ISS field is not set.

If the memory region being zeroed is any type of Device memory, this instruction can give an alignment fault which
is prioritized in the same way as other alignment faults that are determined by the memory type.

This instruction applies to Normal memory regardless of cacheability attributes.

This instruction behaves as a set of Stores to each byte and Allocation tag within the block being accessed, and so it:

• Generates a Permission fault if the translation system does not permit writes to the locations.

• Requires the same considerations for ordering and the management of coherency as any other store
instructions.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC GZVA, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.DZE == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b0100 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-547
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TDZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCZVA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.DZE == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.MemZero(X[t], CacheType_Data_Tag);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TDZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCZVA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.MemZero(X[t], CacheType_Data_Tag);
elsif PSTATE.EL == EL2 then
 AArch64.MemZero(X[t], CacheType_Data_Tag);
elsif PSTATE.EL == EL3 then
 AArch64.MemZero(X[t], CacheType_Data_Tag);

C5-548 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.22 DC IGDSW, Invalidate of Data and Allocation Tags by Set/Way

The DC IGDSW characteristics are:

Purpose

Invalidate data and Allocation Tags in data cache by set/way.

Configurations

This instruction is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
DC IGDSW are UNDEFINED.

Attributes

DC IGDSW is a 64-bit System instruction.

Field descriptions

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DC IGDSW instruction

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

RES0

63 32

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-549
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
Accesses to this instruction use the following encodings in the System instruction encoding space:

DC IGDSW, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCISW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Invalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Invalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Invalidate, CacheOpScope_SetWay);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b0110 0b110
C5-550 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.23 DC IGDVAC, Invalidate of Data and Allocation Tags by VA to PoC

The DC IGDVAC characteristics are:

Purpose

Invalidate data and Allocation Tags in data cache by address to Point of Coherency.

Configurations

This instruction is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
DC IGDVAC are UNDEFINED.

Attributes

DC IGDVAC is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC IGDVAC instruction

When the instruction is executed, it can generate a watchpoint, which is prioritized in the same way as other
watchpoints. If a watchpoint is generated, the CM bit in the ESR_ELx.ISS field is set to 1.

This instruction requires write access permission to the VA, otherwise it generates a Permission fault, subject to the
constraints described in Permission fault on page D5-2801.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC) on page D4-2650.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC IGDVAC, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCIVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Invalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Invalidate, CacheOpScope_PoC);

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b0110 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-551
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_Invalidate, CacheOpScope_PoC);

C5-552 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.24 DC IGSW, Invalidate of Allocation Tags by Set/Way

The DC IGSW characteristics are:

Purpose

Invalidate Allocation Tags in data cache by set/way.

Configurations

This instruction is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
DC IGSW are UNDEFINED.

Attributes

DC IGSW is a 64-bit System instruction.

Field descriptions

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DC IGSW instruction

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

RES0

63 32

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-553
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
Accesses to this instruction use the following encodings in the System instruction encoding space:

DC IGSW, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCISW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Invalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Invalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Invalidate, CacheOpScope_SetWay);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b0110 0b100
C5-554 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.25 DC IGVAC, Invalidate of Allocation Tags by VA to PoC

The DC IGVAC characteristics are:

Purpose

Invalidate Allocation Tags in data cache by address to Point of Coherency.

Configurations

This instruction is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
DC IGVAC are UNDEFINED.

Attributes

DC IGVAC is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC IGVAC instruction

When the instruction is executed, it can generate a watchpoint, which is prioritized in the same way as other
watchpoints. If a watchpoint is generated, the CM bit in the ESR_ELx.ISS field is set to 1.

This instruction requires write access permission to the VA, otherwise it generates a Permission fault, subject to the
constraints described in Permission fault on page D5-2801.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC) on page D4-2650.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC IGVAC, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCIVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Invalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Invalidate, CacheOpScope_PoC);

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b0110 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-555
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Tag, CacheOp_Invalidate, CacheOpScope_PoC);

C5-556 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.26 DC ISW, Data or unified Cache line Invalidate by Set/Way

The DC ISW characteristics are:

Purpose

Invalidate data cache by set/way.

When FEAT_MTE is implemented, this instruction might invalidate Allocation Tags from caches.
When it invalidates Allocation Tags from caches, it also cleans them.

Configurations

AArch64 System register DC ISW performs the same function as AArch32 System register
DCISW.

Attributes

DC ISW is a 64-bit System instruction.

Field descriptions

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DC ISW instruction

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

RES0

63 32

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-557
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
— A single arbitrary cache line.

— Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC ISW, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCISW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data, CacheOp_Invalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Data, CacheOp_Invalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Data, CacheOp_Invalidate, CacheOpScope_SetWay);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b0110 0b010
C5-558 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.27 DC IVAC, Data or unified Cache line Invalidate by VA to PoC

The DC IVAC characteristics are:

Purpose

Invalidate data cache by address to Point of Coherency.

When FEAT_MTE is implemented, this instruction might invalidate Allocation Tags from caches.
When it invalidates Allocation Tags from caches, it also cleans them.

Configurations

AArch64 System register DC IVAC performs the same function as AArch32 System register
DCIMVAC.

Attributes

DC IVAC is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC IVAC instruction

When the instruction is executed, it can generate a watchpoint, which is prioritized in the same way as other
watchpoints. If a watchpoint is generated, the CM bit in the ESR_ELx.ISS field is set to 1.

This instruction requires write access permission to the VA, otherwise it generates a Permission fault, subject to the
constraints described in Permission fault on page D5-2801.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC) on page D4-2650.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC IVAC, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCIVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t], CacheType_Data, CacheOp_Invalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t], CacheType_Data, CacheOp_Invalidate, CacheOpScope_PoC);

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b0110 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-559
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t], CacheType_Data, CacheOp_Invalidate, CacheOpScope_PoC);

C5-560 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.28 DC ZVA, Data Cache Zero by VA

The DC ZVA characteristics are:

Purpose

Zero data cache by address. Zeroes a naturally aligned block of N bytes, where the size of N is
identified in DCZID_EL0.

Configurations

There are no configuration notes.

Attributes

DC ZVA is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. There is no alignment restriction on the address within the block of N bytes
that is used.

Executing DC ZVA instruction

When this instruction is executed, it can generate memory faults or watchpoints which are prioritized in the same
way as other memory-related faults or watchpoints. If a synchronous data abort fault or a watchpoint is generated,
the CM bit in the ESR_ELx.ISS field is set to 0.

If the memory region being zeroed is any type of Device memory, this instruction can give an Alignment fault which
is prioritized in the same way as other Alignment faults that are determined by the memory type.

This instruction applies to Normal memory regardless of cacheability attributes.

This instruction behaves as a set of Stores to each byte within the block being accessed, and so it:

• Generates a Permission fault if the translation system does not permit writes to the locations.

• Requires the same considerations for ordering and the management of coherency as any other store
instructions.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC ZVA, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.DZE == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b0100 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-561
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TDZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCZVA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.DZE == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.MemZero(X[t], CacheType_Data);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TDZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCZVA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.MemZero(X[t], CacheType_Data);
elsif PSTATE.EL == EL2 then
 AArch64.MemZero(X[t], CacheType_Data);
elsif PSTATE.EL == EL3 then
 AArch64.MemZero(X[t], CacheType_Data);

C5-562 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.29 IC IALLU, Instruction Cache Invalidate All to PoU

The IC IALLU characteristics are:

Purpose

Invalidate all instruction caches of the PE executing the instruction to the Point of Unification.

Configurations

AArch64 System register IC IALLU performs the same function as AArch32 System register
ICIALLU.

Attributes

IC IALLU is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing IC IALLU instruction

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

IC IALLU{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TOCU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ICIALLU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.IC(CacheOpScope_ALLUIS);
 else
 AArch64.IC(CacheOpScope_ALLU);
elsif PSTATE.EL == EL2 then
 AArch64.IC(CacheOpScope_ALLU);
elsif PSTATE.EL == EL3 then
 AArch64.IC(CacheOpScope_ALLU);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b0101 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-563
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.30 IC IALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable

The IC IALLUIS characteristics are:

Purpose

Invalidate all instruction caches in the Inner Shareable domain of the PE executing the instruction
to the Point of Unification.

Configurations

AArch64 System register IC IALLUIS performs the same function as AArch32 System register
ICIALLUIS.

Attributes

IC IALLUIS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing IC IALLUIS instruction

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

IC IALLUIS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TICAB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ICIALLUIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.IC(CacheOpScope_ALLUIS);
elsif PSTATE.EL == EL2 then
 AArch64.IC(CacheOpScope_ALLUIS);
elsif PSTATE.EL == EL3 then
 AArch64.IC(CacheOpScope_ALLUIS);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b0001 0b000
C5-564 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.31 IC IVAU, Instruction Cache line Invalidate by VA to PoU

The IC IVAU characteristics are:

Purpose

Invalidate instruction cache by address to Point of Unification.

Configurations

AArch64 System register IC IVAU performs the same function as AArch32 System register
ICIMVAU.

Attributes

IC IVAU is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing IC IVAU instruction

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The instruction cache maintenance instruction (IC) on page D4-2650.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA,
otherwise it is IMPLEMENTATION DEFINED whether it generates a Permission fault, see Permission fault on
page D5-2801.

Accesses to this instruction use the following encodings in the System instruction encoding space:

IC IVAU{, <Xt>}

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TOCU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.ICIVAU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b0101 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-565
ID072021 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 else
 AArch64.IC(X[t], CacheOpScope_PoU);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TOCU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ICIVAU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.IC(X[t], CacheOpScope_PoU);
elsif PSTATE.EL == EL2 then
 AArch64.IC(X[t], CacheOpScope_PoU);
elsif PSTATE.EL == EL3 then
 AArch64.IC(X[t], CacheOpScope_PoU);

C5-566 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4 A64 System instructions for address translation

This section lists the A64 System instructions for address translation.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-567
ID072021 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.1 AT S12E0R, Address Translate Stages 1 and 2 EL0 Read

The AT S12E0R characteristics are:

Purpose

Performs stage 1 and 2 address translations from EL0, with permissions as if reading from the given
virtual address from EL0, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value
of SCR_EL3.NS:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

• Otherwise, the EL1&0 translation regime.

Configurations

There are no configuration notes.

Attributes

AT S12E0R is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S12E0R instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S12E0R, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00' then
 AT_S1E0R(X[t]);
 else
 AT_S12E0R(X[t]);

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b100 0b0111 0b1000 0b110
C5-568 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 AT_S1E0R(X[t]);
 elsif EL2Enabled() && (HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00') then
 AT_S1E0R(X[t]);
 else
 AT_S12E0R(X[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-569
ID072021 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.2 AT S12E0W, Address Translate Stages 1 and 2 EL0 Write

The AT S12E0W characteristics are:

Purpose

Performs stage 1 and 2 address translations from EL0, with permissions as if writing to the given
virtual address from EL0, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value
of SCR_EL3.NS:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

• Otherwise, the EL1&0 translation regime.

Configurations

There are no configuration notes.

Attributes

AT S12E0W is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S12E0W instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S12E0W, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00' then
 AT_S1E0W(X[t]);
 else
 AT_S12E0W(X[t]);

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b100 0b0111 0b1000 0b111
C5-570 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 AT_S1E0W(X[t]);
 elsif EL2Enabled() && (HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00') then
 AT_S1E0W(X[t]);
 else
 AT_S12E0W(X[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-571
ID072021 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.3 AT S12E1R, Address Translate Stages 1 and 2 EL1 Read

The AT S12E1R characteristics are:

Purpose

Performs stage 1 and 2 address translation, with permissions as if reading from the given virtual
address from EL1, or from EL2 if the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, using
the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value
of SCR_EL3.NS:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from
EL1.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from
EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

Configurations

There are no configuration notes.

Attributes

AT S12E1R is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S12E1R instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S12E1R, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00' then

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b100 0b0111 0b1000 0b100
C5-572 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
 AT_S1E1R(X[t]);
 else
 AT_S12E1R(X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 AT_S1E1R(X[t]);
 elsif EL2Enabled() && (HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00') then
 AT_S1E1R(X[t]);
 else
 AT_S12E1R(X[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-573
ID072021 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.4 AT S12E1W, Address Translate Stages 1 and 2 EL1 Write

The AT S12E1W characteristics are:

Purpose

Performs stage 1 and 2 address translation, with permissions as if writing to the given virtual address
from EL1, or from EL2 if the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, using the
following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value
of SCR_EL3.NS:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from
EL1.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from
EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

Configurations

There are no configuration notes.

Attributes

AT S12E1W is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S12E1W instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S12E1W, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00' then

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b100 0b0111 0b1000 0b101
C5-574 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
 AT_S1E1W(X[t]);
 else
 AT_S12E1W(X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 AT_S1E1W(X[t]);
 elsif EL2Enabled() && (HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00') then
 AT_S1E1W(X[t]);
 else
 AT_S12E1W(X[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-575
ID072021 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.5 AT S1E0R, Address Translate Stage 1 EL0 Read

The AT S1E0R characteristics are:

Purpose

Performs stage 1 address translation from EL0, with permissions as if reading from the given virtual
address from EL0, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value
of SCR_EL3.NS:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

• Otherwise, the EL1&0 translation regime.

Configurations

There are no configuration notes.

Attributes

AT S1E0R is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S1E0R instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E0R, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.AT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ATS1E0R == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AT_S1E0R(X[t]);
elsif PSTATE.EL == EL2 then
 AT_S1E0R(X[t]);

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1000 0b010
C5-576 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
elsif PSTATE.EL == EL3 then
 AT_S1E0R(X[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-577
ID072021 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.6 AT S1E0W, Address Translate Stage 1 EL0 Write

The AT S1E0W characteristics are:

Purpose

Performs stage 1 address translation from EL0, with permissions as if writing to the given virtual
address from EL0, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value
of SCR_EL3.NS:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

• Otherwise, the EL1&0 translation regime.

Configurations

There are no configuration notes.

Attributes

AT S1E0W is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S1E0W instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E0W, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.AT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ATS1E0W == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AT_S1E0W(X[t]);
elsif PSTATE.EL == EL2 then
 AT_S1E0W(X[t]);

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1000 0b011
C5-578 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
elsif PSTATE.EL == EL3 then
 AT_S1E0W(X[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-579
ID072021 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.7 AT S1E1R, Address Translate Stage 1 EL1 Read

The AT S1E1R characteristics are:

Purpose

Performs stage 1 address translation, with permissions as if reading from the given virtual address
from EL1, or from EL2 if the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, using the
following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value
of SCR_EL3.NS:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from
EL1.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from
EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

Configurations

There are no configuration notes.

Attributes

AT S1E1R is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S1E1R instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E1R, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.AT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ATS1E1R == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AT_S1E1R(X[t]);

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1000 0b000
C5-580 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
elsif PSTATE.EL == EL2 then
 AT_S1E1R(X[t]);
elsif PSTATE.EL == EL3 then
 AT_S1E1R(X[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-581
ID072021 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.8 AT S1E1RP, Address Translate Stage 1 EL1 Read PAN

The AT S1E1RP characteristics are:

Purpose

Performs a stage 1 address translation, where the value of PSTATE.PAN determines if a read from
a location will generate a Permission fault for a privileged access, using the following translation
regime:

• When EL2 is implemented and enabled in the Security state described by the current value
of SCR_EL3.NS:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from
EL1.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from
EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

Configurations

This instruction is present only when FEAT_PAN2 is implemented. Otherwise, direct accesses to
AT S1E1RP are UNDEFINED.

Attributes

AT S1E1RP is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S1E1RP instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E1RP, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.AT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ATS1E1RP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1001 0b000
C5-582 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
 AT_S1E1RP(X[t]);
elsif PSTATE.EL == EL2 then
 AT_S1E1RP(X[t]);
elsif PSTATE.EL == EL3 then
 AT_S1E1RP(X[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-583
ID072021 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.9 AT S1E1W, Address Translate Stage 1 EL1 Write

The AT S1E1W characteristics are:

Purpose

Performs stage 1 address translation, with permissions as if writing to the given virtual address from
EL1, or from EL2 if the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, using the following
translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value
of SCR_EL3.NS:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from
EL1.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from
EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

Configurations

There are no configuration notes.

Attributes

AT S1E1W is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S1E1W instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E1W, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.AT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ATS1E1W == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AT_S1E1W(X[t]);

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1000 0b001
C5-584 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
elsif PSTATE.EL == EL2 then
 AT_S1E1W(X[t]);
elsif PSTATE.EL == EL3 then
 AT_S1E1W(X[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-585
ID072021 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.10 AT S1E1WP, Address Translate Stage 1 EL1 Write PAN

The AT S1E1WP characteristics are:

Purpose

Performs a stage 1 address translation, where the value of PSTATE.PAN determines if a write to a
location will generate a Permission fault for a privileged access, using the following translation
regime:

• When EL2 is implemented and enabled in the Security state described by the current value
of SCR_EL3.NS:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from
EL1.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from
EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

Configurations

This instruction is present only when FEAT_PAN2 is implemented. Otherwise, direct accesses to
AT S1E1WP are UNDEFINED.

Attributes

AT S1E1WP is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S1E1WP instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E1WP, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.AT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ATS1E1WP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1001 0b001
C5-586 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
 AT_S1E1WP(X[t]);
elsif PSTATE.EL == EL2 then
 AT_S1E1WP(X[t]);
elsif PSTATE.EL == EL3 then
 AT_S1E1WP(X[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-587
ID072021 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.11 AT S1E2R, Address Translate Stage 1 EL2 Read

The AT S1E2R characteristics are:

Purpose

Performs stage 1 address translation as defined for EL2, with permissions as if reading from the
given virtual address.

Configurations

There are no configuration notes.

Attributes

AT S1E2R is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S1E2R instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E2R, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AT_S1E2R(X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 else
 AT_S1E2R(X[t]);

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b100 0b0111 0b1000 0b000
C5-588 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.12 AT S1E2W, Address Translate Stage 1 EL2 Write

The AT S1E2W characteristics are:

Purpose

Performs stage 1 address translation as defined for EL2, with permissions as if writing to the given
virtual address.

Configurations

There are no configuration notes.

Attributes

AT S1E2W is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S1E2W instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E2W, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AT_S1E2W(X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 else
 AT_S1E2W(X[t]);

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b100 0b0111 0b1000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-589
ID072021 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.13 AT S1E3R, Address Translate Stage 1 EL3 Read

The AT S1E3R characteristics are:

Purpose

Performs stage 1 address translation as defined for EL3, with permissions as if reading from the
given virtual address.

Configurations

There are no configuration notes.

Attributes

AT S1E3R is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S1E3R instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E3R, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AT_S1E3R(X[t]);

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b110 0b0111 0b1000 0b000
C5-590 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.14 AT S1E3W, Address Translate Stage 1 EL3 Write

The AT S1E3W characteristics are:

Purpose

Performs stage 1 address translation as defined for EL3, with permissions as if writing to the given
virtual address.

Configurations

There are no configuration notes.

Attributes

AT S1E3W is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S1E3W instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E3W, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AT_S1E3W(X[t]);

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b110 0b0111 0b1000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-591
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5 A64 System instructions for TLB maintenance

This section lists the A64 System instructions for TLB maintenance.

For more information about these instructions see TLB maintenance instructions on page D5-2819. In particular, for
the full description of the scope of each instruction see Scope of the A64 TLB maintenance instructions on
page D5-2824.
C5-592 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.1 TLBI ALLE1, TLBI ALLE1NXS, TLB Invalidate All, EL1

The TLBI ALLE1 and TLBI ALLE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table
walk.

• One of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate an address using the
Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate an address using the
Non-secure EL1&0 translation regime.

The invalidation applies to entries with any VMID.

The invalidation only applies to the PE that executes this System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global entries and non-global
entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI ALLE1, TLBI ALLE1NXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI ALLE1, TLBI ALLE1NXS instruction

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-593
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI ALLE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH, TLBI_AllAttr);

TLBI ALLE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH, TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH, TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0111 0b100

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0111 0b100
C5-594 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.2 TLBI ALLE1IS, TLBI ALLE1ISNXS, TLB Invalidate All, EL1, Inner Shareable

The TLBI ALLE1IS and TLBI ALLE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table
walk.

• One of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate an address using the
Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate an address using the
Non-secure EL1&0 translation regime.

The invalidation applies to entries with any VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global entries and non-global
entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI ALLE1IS, TLBI ALLE1ISNXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI ALLE1IS, TLBI ALLE1ISNXS instruction

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-595
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI ALLE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_ISH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_ISH, TLBI_AllAttr);

TLBI ALLE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_ISH, TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_ISH, TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0011 0b100

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0011 0b100
C5-596 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.3 TLBI ALLE1OS, TLBI ALLE1OSNXS, TLB Invalidate All, EL1, Outer Shareable

The TLBI ALLE1OS and TLBI ALLE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table
walk.

• One of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate an address using the
Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate an address using the
Non-secure EL1&0 translation regime.

The invalidation applies to entries with any VMID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global entries and non-global
entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI ALLE1OS, TLBI ALLE1OSNXS are UNDEFINED.

Attributes

TLBI ALLE1OS, TLBI ALLE1OSNXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI ALLE1OS, TLBI ALLE1OSNXS instruction

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-597
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI ALLE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_OSH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_OSH, TLBI_AllAttr);

TLBI ALLE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_OSH, TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_OSH, TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0001 0b100

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0001 0b100
C5-598 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.4 TLBI ALLE2, TLBI ALLE2NXS, TLB Invalidate All, EL2

The TLBI ALLE2 and TLBI ALLE2NXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• One of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate an address using the
Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate an address using the
Non-secure EL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI ALLE2, TLBI ALLE2NXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI ALLE2, TLBI ALLE2NXS instruction

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ALLE2{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0111 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-599
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_NSH, TLBI_AllAttr);
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_NSH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_NSH, TLBI_AllAttr);
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_NSH, TLBI_AllAttr);

TLBI ALLE2NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_NSH, TLBI_ExcludeXS);
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_NSH, TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_NSH, TLBI_ExcludeXS);
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_NSH, TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0111 0b000
C5-600 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.5 TLBI ALLE2IS, TLBI ALLE2ISNXS, TLB Invalidate All, EL2, Inner Shareable

The TLBI ALLE2IS and TLBI ALLE2ISNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• One of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate an address using the
Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate an address using the
Non-secure EL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI ALLE2IS, TLBI ALLE2ISNXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI ALLE2IS, TLBI ALLE2ISNXS instruction

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ALLE2IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-601
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_ISH, TLBI_AllAttr);
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_ISH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_ISH, TLBI_AllAttr);
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_ISH, TLBI_AllAttr);

TLBI ALLE2ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_ISH, TLBI_ExcludeXS);
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_ISH, TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_ISH, TLBI_ExcludeXS);
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_ISH, TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0011 0b000
C5-602 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.6 TLBI ALLE2OS, TLBI ALLE2OSNXS, TLB Invalidate All, EL2, Outer Shareable

The TLBI ALLE2OS and TLBI ALLE2OSNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• One of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate an address using the
Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate an address using the
Non-secure EL1&0 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI ALLE2OS, TLBI ALLE2OSNXS are UNDEFINED.

Attributes

TLBI ALLE2OS, TLBI ALLE2OSNXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI ALLE2OS, TLBI ALLE2OSNXS instruction

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ALLE2OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-603
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_OSH, TLBI_AllAttr);
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_OSH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_OSH, TLBI_AllAttr);
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_OSH, TLBI_AllAttr);

TLBI ALLE2OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_OSH, TLBI_ExcludeXS);
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_OSH, TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_OSH, TLBI_ExcludeXS);
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_OSH, TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0001 0b000
C5-604 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.7 TLBI ALLE3, TLBI ALLE3NXS, TLB Invalidate All, EL3

The TLBI ALLE3 and TLBI ALLE3NXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be required to translate an address using the EL3 translation regime.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI ALLE3, TLBI ALLE3NXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI ALLE3, TLBI ALLE3NXS instruction

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ALLE3{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL3, Shareability_NSH, TLBI_AllAttr);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0111 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-605
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI ALLE3NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL3, Shareability_NSH, TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0111 0b000
C5-606 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.8 TLBI ALLE3IS, TLBI ALLE3ISNXS, TLB Invalidate All, EL3, Inner Shareable

The TLBI ALLE3IS and TLBI ALLE3ISNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be required to translate an address using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI ALLE3IS, TLBI ALLE3ISNXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI ALLE3IS, TLBI ALLE3ISNXS instruction

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ALLE3IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL3, Shareability_ISH, TLBI_AllAttr);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-607
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI ALLE3ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL3, Shareability_ISH, TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0011 0b000
C5-608 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.9 TLBI ALLE3OS, TLBI ALLE3OSNXS, TLB Invalidate All, EL3, Outer Shareable

The TLBI ALLE3OS and TLBI ALLE3OSNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be required to translate an address using the EL3 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI ALLE3OS, TLBI ALLE3OSNXS are UNDEFINED.

Attributes

TLBI ALLE3OS, TLBI ALLE3OSNXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI ALLE3OS, TLBI ALLE3OSNXS instruction

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ALLE3OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL3, Shareability_OSH, TLBI_AllAttr);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-609
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI ALLE3OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL3, Shareability_OSH, TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0001 0b000
C5-610 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.10 TLBI ASIDE1, TLBI ASIDE1NXS, TLB Invalidate by ASID, EL1

The TLBI ASIDE1 and TLBI ASIDE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used for the specified ASID, and either:

— Is from a level of lookup above the final level.

— Is a non-global entry from the final level of lookup.

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate an address using the EL1&0 translation
regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate an
address using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate an address using the EL1&0 translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI ASIDE1, TLBI ASIDE1NXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by
this System instruction.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Bits [47:0]

Reserved, RES0.

ASID

63 48

RES0

47 32

RES0

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-611
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Executing TLBI ASIDE1, TLBI ASIDE1NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ASIDE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIASIDE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_AllAttr, X[t]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBI_AllAttr,
X[t]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBI_AllAttr,
X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBI_AllAttr,
X[t]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBI_AllAttr,
X[t]);

TLBI ASIDE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0111 0b010

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0111 0b010
C5-612 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIASIDE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBI_ExcludeXS,
X[t]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBI_ExcludeXS,
X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBI_ExcludeXS,
X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBI_ExcludeXS,
X[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-613
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.11 TLBI ASIDE1IS, TLBI ASIDE1ISNXS, TLB Invalidate by ASID, EL1, Inner Shareable

The TLBI ASIDE1IS and TLBI ASIDE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used for the specified ASID, and either:

— Is from a level of lookup above the final level.

— Is a non-global entry from the final level of lookup.

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate an address using the EL1&0 translation
regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate an
address using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate an address using the EL1&0 translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI ASIDE1IS, TLBI ASIDE1ISNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by
this System instruction.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Bits [47:0]

Reserved, RES0.

ASID

63 48

RES0

47 32

RES0

31 0
C5-614 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Executing TLBI ASIDE1IS, TLBI ASIDE1ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ASIDE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIASIDE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBI_AllAttr,
X[t]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBI_AllAttr,
X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBI_AllAttr,
X[t]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBI_AllAttr,
X[t]);

TLBI ASIDE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIASIDE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0011 0b010

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0011 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-615
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBI_ExcludeXS,
X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBI_ExcludeXS,
X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBI_ExcludeXS,
X[t]);

C5-616 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.12 TLBI ASIDE1OS, TLBI ASIDE1OSNXS, TLB Invalidate by ASID, EL1, Outer Shareable

The TLBI ASIDE1OS and TLBI ASIDE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used for the specified ASID, and either:

— Is from a level of lookup above the final level.

— Is a non-global entry from the final level of lookup.

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate an address using the EL1&0 translation
regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate an
address using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate an address using the EL1&0 translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI ASIDE1OS, TLBI ASIDE1OSNXS are UNDEFINED.

Attributes

TLBI ASIDE1OS, TLBI ASIDE1OSNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by
this System instruction.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

ASID

63 48

RES0

47 32

RES0

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-617
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Bits [47:0]

Reserved, RES0.

Executing TLBI ASIDE1OS, TLBI ASIDE1OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ASIDE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIASIDE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBI_AllAttr,
X[t]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBI_AllAttr,
X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBI_AllAttr,
X[t]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBI_AllAttr,
X[t]);

TLBI ASIDE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0001 0b010

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0001 0b010
C5-618 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIASIDE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBI_ExcludeXS,
X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBI_ExcludeXS,
X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBI_ExcludeXS,
X[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-619
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.13 TLBI IPAS2E1, TLBI IPAS2E1NXS, TLB Invalidate by Intermediate Physical Address, Stage 2,
EL1

The TLBI IPAS2E1 and TLBI IPAS2E1NXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• One of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to the PE that executes this System instruction.

For more information about the architectural requirements for this System instruction, see
Invalidation of TLB entries from stage 2 translations on page D5-2829.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI IPAS2E1, TLBI IPAS2E1NXS is a 64-bit System instruction.

Field descriptions

NS, bit [63]

When FEAT_SEL2 is implemented:

NS

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

NS

63

RES0

62 48

TTL

47 44

RES0

43 40 39 36 35 32

IPA[51:48] IPA[47:12]

IPA[47:12]

31 0
C5-620 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:40]

Reserved, RES0.

IPA[51:48], bits [39:36]

When FEAT_LPA is implemented:

IPA[51:48]

Extension to IPA[47:12]. For more information, see IPA[47:12].

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-621
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48
bits, the upper bits of this field are RES0.

When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use,
IPA[51:48] form the upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing TLBI IPAS2E1, TLBI IPAS2E1NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI IPAS2E1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

TLBI IPAS2E1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b001

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b001
C5-622 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.14 TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS, TLB Invalidate by Intermediate Physical Address,
Stage 2, EL1, Inner Shareable

The TLBI IPAS2E1IS and TLBI IPAS2E1ISNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• One of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

For more information about the architectural requirements for this System instruction, see
Invalidation of TLB entries from stage 2 translations on page D5-2829.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS is a 64-bit System instruction.

Field descriptions

NS, bit [63]

When FEAT_SEL2 is implemented:

NS

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

NS

63

RES0

62 48

TTL

47 44

RES0

43 40 39 36 35 32

IPA[51:48] IPA[47:12]

IPA[47:12]

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-623
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:40]

Reserved, RES0.

IPA[51:48], bits [39:36]

When FEAT_LPA is implemented:

IPA[51:48]

Extension to IPA[47:12]. For more information, see IPA[47:12].

Otherwise:

Reserved, RES0.
C5-624 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48
bits, the upper bits of this field are RES0.

When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use,
IPA[51:48] form the upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI IPAS2E1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

TLBI IPAS2E1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0000 0b001

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-625
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.15 TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS, TLB Invalidate by Intermediate Physical Address,
Stage 2, EL1, Outer Shareable

The TLBI IPAS2E1OS and TLBI IPAS2E1OSNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• One of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

For more information about the architectural requirements for this System instruction, see
Invalidation of TLB entries from stage 2 translations on page D5-2829.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS are UNDEFINED.

Attributes

TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS is a 64-bit System instruction.

Field descriptions

NS, bit [63]

When FEAT_SEL2 is implemented:

NS

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

NS

63

RES0

62 48

TTL

47 44

RES0

43 40 39 36 35 32

IPA[51:48] IPA[47:12]

IPA[47:12]

31 0
C5-626 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:40]

Reserved, RES0.

IPA[51:48], bits [39:36]

Extension to IPA[47:12]. For more information, see IPA[47:12].

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48
bits, the upper bits of this field are RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-627
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use,
IPA[51:48] form the upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI IPAS2E1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

TLBI IPAS2E1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b000

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b000
C5-628 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.16 TLBI IPAS2LE1, TLBI IPAS2LE1NXS, TLB Invalidate by Intermediate Physical Address, Stage
2, Last level, EL1

The TLBI IPAS2LE1 and TLBI IPAS2LE1NXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table
walk.

• One of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to the PE that executes this System instruction.

For more information about the architectural requirements for this System instruction, see
Invalidation of TLB entries from stage 2 translations on page D5-2829.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI IPAS2LE1, TLBI IPAS2LE1NXS is a 64-bit System instruction.

Field descriptions

NS, bit [63]

When FEAT_SEL2 is implemented:

NS

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

NS

63

RES0

62 48

TTL

47 44

RES0

43 40 39 36 35 32

IPA[51:48] IPA[47:12]

IPA[47:12]

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-629
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:40]

Reserved, RES0.

IPA[51:48], bits [39:36]

When FEAT_LPA is implemented:

IPA[51:48]

Extension to IPA[47:12]. For more information, see IPA[47:12].

Otherwise:

Reserved, RES0.
C5-630 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48
bits, the upper bits of this field are RES0.

When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use,
IPA[51:48] form the upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing TLBI IPAS2LE1, TLBI IPAS2LE1NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI IPAS2LE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

TLBI IPAS2LE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b101

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-631
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.17 TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS, TLB Invalidate by Intermediate Physical Address,
Stage 2, Last level, EL1, Inner Shareable

The TLBI IPAS2LE1IS and TLBI IPAS2LE1ISNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table
walk.

• One of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

For more information about the architectural requirements for this System instruction, see
Invalidation of TLB entries from stage 2 translations on page D5-2829.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS is a 64-bit System instruction.

Field descriptions

NS, bit [63]

When FEAT_SEL2 is implemented:

NS

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

NS

63

RES0

62 48

TTL

47 44

RES0

43 40 39 36 35 32

IPA[51:48] IPA[47:12]

IPA[47:12]

31 0
C5-632 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:40]

Reserved, RES0.

IPA[51:48], bits [39:36]

When FEAT_LPA is implemented:

IPA[51:48]

Extension to IPA[47:12]. For more information, see IPA[47:12].
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-633
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Otherwise:

Reserved, RES0.

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48
bits, the upper bits of this field are RES0.

When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use,
IPA[51:48] form the upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI IPAS2LE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

TLBI IPAS2LE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0000 0b101

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0000 0b101
C5-634 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 //no operation
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-635
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.18 TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS, TLB Invalidate by Intermediate Physical Address,
Stage 2, Last level, EL1, Outer Shareable

The TLBI IPAS2LE1OS and TLBI IPAS2LE1OSNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table
walk.

• One of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

For more information about the architectural requirements for this System instruction, see
Invalidation of TLB entries from stage 2 translations on page D5-2829.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS are UNDEFINED.

Attributes

TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS is a 64-bit System instruction.

Field descriptions

NS, bit [63]

When FEAT_SEL2 is implemented:

NS

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

NS

63

RES0

62 48

TTL

47 44

RES0

43 40 39 36 35 32

IPA[51:48] IPA[47:12]

IPA[47:12]

31 0
C5-636 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:40]

Reserved, RES0.

IPA[51:48], bits [39:36]

Extension to IPA[47:12]. For more information, see IPA[47:12].

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48
bits, the upper bits of this field are RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-637
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use,
IPA[51:48] form the upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI IPAS2LE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

TLBI IPAS2LE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b100

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b100
C5-638 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.19 TLBI RIPAS2E1, TLBI RIPAS2E1NXS, TLB Range Invalidate by Intermediate Physical
Address, Stage 2, EL1

The TLBI RIPAS2E1 and TLBI RIPAS2E1NXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• One of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see
Invalidation of TLB entries from stage 2 translations on page D5-2829.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RIPAS2E1, TLBI RIPAS2E1NXS are UNDEFINED.

Attributes

TLBI RIPAS2E1, TLBI RIPAS2E1NXS is a 64-bit System instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-639
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

NS, bit [63]

When FEAT_SEL2 is implemented:

NS

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

NS

63

RES0

62 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-640 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RIPAS2E1, TLBI RIPAS2E1NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RIPAS2E1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

TLBI RIPAS2E1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b010

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-641
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

C5-642 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.20 TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS, TLB Range Invalidate by Intermediate Physical
Address, Stage 2, EL1, Inner Shareable

The TLBI RIPAS2E1IS and TLBI RIPAS2E1ISNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• One of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see
Invalidation of TLB entries from stage 2 translations on page D5-2829.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS are UNDEFINED.

Attributes

TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS is a 64-bit System instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-643
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

NS, bit [63]

When FEAT_SEL2 is implemented:

NS

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

NS

63

RES0

62 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-644 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RIPAS2E1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

TLBI RIPAS2E1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0000 0b010

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0000 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-645
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

C5-646 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.21 TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, TLB Range Invalidate by Intermediate Physical
Address, Stage 2, EL1, Outer Shareable

The TLBI RIPAS2E1OS and TLBI RIPAS2E1OSNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• One of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see
Invalidation of TLB entries from stage 2 translations on page D5-2829.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is
implemented. Otherwise, direct accesses to TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS are
UNDEFINED.

Attributes

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS is a 64-bit System instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-647
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

NS, bit [63]

When FEAT_SEL2 is implemented:

NS

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

NS

63

RES0

62 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-648 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RIPAS2E1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

TLBI RIPAS2E1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b011

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-649
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

C5-650 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.22 TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS, TLB Range Invalidate by Intermediate Physical
Address, Stage 2, Last level, EL1

The TLBI RIPAS2LE1 and TLBI RIPAS2LE1NXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table
walk.

• One of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation only applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see
Invalidation of TLB entries from stage 2 translations on page D5-2829.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS are UNDEFINED.

Attributes

TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS is a 64-bit System instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-651
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

NS, bit [63]

When FEAT_SEL2 is implemented:

NS

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

NS

63

RES0

62 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-652 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RIPAS2LE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI RIPAS2LE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b110

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-653
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

C5-654 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.23 TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, TLB Range Invalidate by Intermediate Physical
Address, Stage 2, Last level, EL1, Inner Shareable

The TLBI RIPAS2LE1IS and TLBI RIPAS2LE1ISNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table
walk.

• One of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see
Invalidation of TLB entries from stage 2 translations on page D5-2829.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS are UNDEFINED.

Attributes

TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS is a 64-bit System instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-655
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

NS, bit [63]

When FEAT_SEL2 is implemented:

NS

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

NS

63

RES0

62 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-656 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RIPAS2LE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI RIPAS2LE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0000 0b110

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0000 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-657
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

C5-658 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.24 TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, TLB Range Invalidate by Intermediate Physical
Address, Stage 2, Last level, EL1, Outer Shareable

The TLBI RIPAS2LE1OS and TLBI RIPAS2LE1OSNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table
walk.

• One of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see
Invalidation of TLB entries from stage 2 translations on page D5-2829.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-659
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is
implemented. Otherwise, direct accesses to TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS are
UNDEFINED.

Attributes

TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS is a 64-bit System instruction.

Field descriptions

NS, bit [63]

When FEAT_SEL2 is implemented:

NS

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NS

63

RES0

62 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-660 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RIPAS2LE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-661
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RIPAS2LE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b111
C5-662 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.25 TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1

The TLBI RVAAE1 and TLBI RVAAE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to the PE that executes this System instruction.

Note
For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVAAE1, TLBI RVAAE1NXS are UNDEFINED.

Attributes

TLBI RVAAE1, TLBI RVAAE1NXS is a 64-bit System instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-663
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-664 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAAE1, TLBI RVAAE1NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAAE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

TLBI RVAAE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0110 0b011

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0110 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-665
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVAAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

C5-666 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.26 TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID, EL1, Inner
Shareable

The TLBI RVAAE1IS and TLBI RVAAE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-667
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVAAE1IS, TLBI RVAAE1ISNXS are UNDEFINED.

Attributes

TLBI RVAAE1IS, TLBI RVAAE1ISNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-668 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAAE1IS, TLBI RVAAE1ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAAE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0010 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-669
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVAAE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVAAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0010 0b011
C5-670 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.27 TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID, EL1, Outer
Shareable

The TLBI RVAAE1OS and TLBI RVAAE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-671
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is
implemented. Otherwise, direct accesses to TLBI RVAAE1OS, TLBI RVAAE1OSNXS are
UNDEFINED.

Attributes

TLBI RVAAE1OS, TLBI RVAAE1OSNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-672 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAAE1OS, TLBI RVAAE1OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAAE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0101 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-673
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVAAE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVAAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0101 0b011
C5-674 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.28 TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last level, EL1

The TLBI RVAALE1 and TLBI RVAALE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to the PE that executes this System instruction.

Note
For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVAALE1, TLBI RVAALE1NXS are UNDEFINED.

Attributes

TLBI RVAALE1, TLBI RVAALE1NXS is a 64-bit System instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-675
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-676 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAALE1, TLBI RVAALE1NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAALE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

TLBI RVAALE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0110 0b111

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0110 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-677
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVAALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

C5-678 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.29 TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID, Last Level,
EL1, Inner Shareable

The TLBI RVAALE1IS and TLBI RVAALE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-679
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVAALE1IS, TLBI RVAALE1ISNXS are UNDEFINED.

Attributes

TLBI RVAALE1IS, TLBI RVAALE1ISNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-680 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAALE1IS, TLBI RVAALE1ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAALE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0010 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-681
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVAALE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVAALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0010 0b111
C5-682 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.30 TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range Invalidate by VA, All ASID, Last Level,
EL1, Outer Shareable

The TLBI RVAALE1OS and TLBI RVAALE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-683
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is
implemented. Otherwise, direct accesses to TLBI RVAALE1OS, TLBI RVAALE1OSNXS are
UNDEFINED.

Attributes

TLBI RVAALE1OS, TLBI RVAALE1OSNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-684 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAALE1OS, TLBI RVAALE1OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAALE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0101 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-685
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVAALE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVAALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0101 0b111
C5-686 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.31 TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by VA, EL1

The TLBI RVAE1 and TLBI RVAE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVAE1, TLBI RVAE1NXS are UNDEFINED.

Attributes

TLBI RVAE1, TLBI RVAE1NXS is a 64-bit System instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-687
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-688 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAE1, TLBI RVAE1NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0110 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-689
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVAE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0110 0b001
C5-690 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.32 TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner Shareable

The TLBI RVAE1IS and TLBI RVAE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note
When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-691
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVAE1IS, TLBI RVAE1ISNXS are UNDEFINED.

Attributes

TLBI RVAE1IS, TLBI RVAE1ISNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-692 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAE1IS, TLBI RVAE1ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-693
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVAE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0010 0b001
C5-694 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.33 TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer Shareable

The TLBI RVAE1OS and TLBI RVAE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note
When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-695
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is
implemented. Otherwise, direct accesses to TLBI RVAE1OS, TLBI RVAE1OSNXS are
UNDEFINED.

Attributes

TLBI RVAE1OS, TLBI RVAE1OSNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-696 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAE1OS, TLBI RVAE1OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0101 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-697
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVAE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0101 0b001
C5-698 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.34 TLBI RVAE2, TLBI RVAE2NXS, TLB Range Invalidate by VA, EL2

The TLBI RVAE2 and TLBI RVAE2NXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA in the specified range determined by
the formula [BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) *
Translation_Granule_Size)] using the EL2 or EL2&0 translation regime for the Security
state.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

— The entry is from a level of the translation table walk above the final level and matches
the specified ASID.

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVAE2, TLBI RVAE2NXS are UNDEFINED.

Attributes

TLBI RVAE2, TLBI RVAE2NXS is a 64-bit System instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-699
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-700 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL2.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAE2, TLBI RVAE2NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE2{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0110 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-701
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVAE2NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0110 0b001
C5-702 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.35 TLBI RVAE2IS, TLBI RVAE2ISNXS, TLB Range Invalidate by VA, EL2, Inner Shareable

The TLBI RVAE2IS and TLBI RVAE2ISNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA in the specified range determined by
the formula [BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) *
Translation_Granule_Size)] using the EL2 or EL2&0 translation regime for the Security
state.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

— The entry is from a level of the translation table walk above the final level and matches
the specified ASID.

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVAE2IS, TLBI RVAE2ISNXS are UNDEFINED.

Attributes

TLBI RVAE2IS, TLBI RVAE2ISNXS is a 64-bit System instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-703
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-704 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL2.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAE2IS, TLBI RVAE2ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE2IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-705
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVAE2ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0010 0b001
C5-706 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.36 TLBI RVAE2OS, TLBI RVAE2OSNXS, TLB Range Invalidate by VA, EL2, Outer Shareable

The TLBI RVAE2OS and TLBI RVAE2OSNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA in the specified range determined by
the formula [BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) *
Translation_Granule_Size)] using the EL2 or EL2&0 translation regime for the Security
state.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

— The entry is from a level of the translation table walk above the final level and matches
the specified ASID.

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is
implemented. Otherwise, direct accesses to TLBI RVAE2OS, TLBI RVAE2OSNXS are
UNDEFINED.

Attributes

TLBI RVAE2OS, TLBI RVAE2OSNXS is a 64-bit System instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-707
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-708 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL2.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAE2OS, TLBI RVAE2OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE2OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0101 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-709
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVAE2OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0101 0b001
C5-710 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.37 TLBI RVAE3, TLBI RVAE3NXS, TLB Range Invalidate by VA, EL3

The TLBI RVAE3 and TLBI RVAE3NXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVAE3, TLBI RVAE3NXS are UNDEFINED.

Attributes

TLBI RVAE3, TLBI RVAE3NXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-711
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL3.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAE3, TLBI RVAE3NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE3{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0110 0b001
C5-712 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

TLBI RVAE3NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0110 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-713
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.38 TLBI RVAE3IS, TLBI RVAE3ISNXS, TLB Range Invalidate by VA, EL3, Inner Shareable

The TLBI RVAE3IS and TLBI RVAE3ISNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVAE3IS, TLBI RVAE3ISNXS are UNDEFINED.

Attributes

TLBI RVAE3IS, TLBI RVAE3ISNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-714 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL3.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAE3IS, TLBI RVAE3ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-715
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVAE3IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

TLBI RVAE3ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0010 0b001

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0010 0b001
C5-716 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.39 TLBI RVAE3OS, TLBI RVAE3OSNXS, TLB Range Invalidate by VA, EL3, Outer Shareable

The TLBI RVAE3OS and TLBI RVAE3OSNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is
implemented. Otherwise, direct accesses to TLBI RVAE3OS, TLBI RVAE3OSNXS are
UNDEFINED.

Attributes

TLBI RVAE3OS, TLBI RVAE3OSNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-717
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL3.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAE3OS, TLBI RVAE3OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:
C5-718 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVAE3OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

TLBI RVAE3OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0101 0b001

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0101 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-719
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.40 TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1

The TLBI RVALE1 and TLBI RVALE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see
Invalidation of TLB entries from stage 2 translations on page D5-2829.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVALE1, TLBI RVALE1NXS are UNDEFINED.

Attributes

TLBI RVALE1, TLBI RVALE1NXS is a 64-bit System instruction.
C5-720 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-721
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVALE1, TLBI RVALE1NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0110 0b101
C5-722 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVALE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0110 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-723
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.41 TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range Invalidate by VA, Last level, EL1, Inner
Shareable

The TLBI RVALE1IS and TLBI RVALE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.
C5-724 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVALE1IS, TLBI RVALE1ISNXS are UNDEFINED.

Attributes

TLBI RVALE1IS, TLBI RVALE1ISNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-725
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVALE1IS, TLBI RVALE1ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0010 0b101
C5-726 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

TLBI RVALE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0010 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-727
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.42 TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range Invalidate by VA, Last level, EL1, Outer
Shareable

The TLBI RVALE1OS and TLBI RVALE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.
C5-728 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is
implemented. Otherwise, direct accesses to TLBI RVALE1OS, TLBI RVALE1OSNXS are
UNDEFINED.

Attributes

TLBI RVALE1OS, TLBI RVALE1OSNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-729
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVALE1OS, TLBI RVALE1OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0101 0b101
C5-730 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

TLBI RVALE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIRVALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0101 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-731
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.43 TLBI RVALE2, TLBI RVALE2NXS, TLB Range Invalidate by VA, Last level, EL2

The TLBI RVALE2 and TLBI RVALE2NXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA in the specified range determined by
the formula [BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) *
Translation_Granule_Size)] using the EL2 or EL2&0 translation regime for the Security
state.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVALE2, TLBI RVALE2NXS are UNDEFINED.

Attributes

TLBI RVALE2, TLBI RVALE2NXS is a 64-bit System instruction.
C5-732 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-733
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL2.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVALE2, TLBI RVALE2NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE2{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0110 0b101
C5-734 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVALE2NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0110 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-735
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.44 TLBI RVALE2IS, TLBI RVALE2ISNXS, TLB Range Invalidate by VA, Last level, EL2, Inner
Shareable

The TLBI RVALE2IS and TLBI RVALE2ISNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA in the specified range determined by
the formula [BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) *
Translation_Granule_Size)] using the EL2 or EL2&0 translation regime for the Security
state.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVALE2IS, TLBI RVALE2ISNXS are UNDEFINED.

Attributes

TLBI RVALE2IS, TLBI RVALE2ISNXS is a 64-bit System instruction.
C5-736 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-737
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL2.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVALE2IS, TLBI RVALE2ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE2IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0010 0b101
C5-738 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVALE2ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0010 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-739
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.45 TLBI RVALE2OS, TLBI RVALE2OSNXS, TLB Range Invalidate by VA, Last level, EL2, Outer
Shareable

The TLBI RVALE2OS and TLBI RVALE2OSNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA in the specified range determined by
the formula [BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) *
Translation_Granule_Size)] using the EL2 or EL2&0 translation regime for the Security
state.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is
implemented. Otherwise, direct accesses to TLBI RVALE2OS, TLBI RVALE2OSNXS are
UNDEFINED.

Attributes

TLBI RVALE2OS, TLBI RVALE2OSNXS is a 64-bit System instruction.
C5-740 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-741
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL2.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVALE2OS, TLBI RVALE2OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE2OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0101 0b101
C5-742 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVALE2OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0101 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-743
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.46 TLBI RVALE3, TLBI RVALE3NXS, TLB Range Invalidate by VA, Last level, EL3

The TLBI RVALE3 and TLBI RVALE3NXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVALE3, TLBI RVALE3NXS are UNDEFINED.

Attributes

TLBI RVALE3, TLBI RVALE3NXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-744 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL3.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVALE3, TLBI RVALE3NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE3{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0110 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-745
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

TLBI RVALE3NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0110 0b101
C5-746 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.47 TLBI RVALE3IS, TLBI RVALE3ISNXS, TLB Range Invalidate by VA, Last level, EL3, Inner
Shareable

The TLBI RVALE3IS and TLBI RVALE3ISNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVALE3IS, TLBI RVALE3ISNXS are UNDEFINED.

Attributes

TLBI RVALE3IS, TLBI RVALE3ISNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-747
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL3.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVALE3IS, TLBI RVALE3ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:
C5-748 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVALE3IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

TLBI RVALE3ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0010 0b101

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0010 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-749
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.48 TLBI RVALE3OS, TLBI RVALE3OSNXS, TLB Range Invalidate by VA, Last level, EL3, Outer
Shareable

The TLBI RVALE3OS and TLBI RVALE3OSNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is
implemented. Otherwise, direct accesses to TLBI RVALE3OS, TLBI RVALE3OSNXS are
UNDEFINED.

Attributes

TLBI RVALE3OS, TLBI RVALE3OSNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
C5-750 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL3.DS == 1:

BaseADDR

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

BaseADDR

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVALE3OS, TLBI RVALE3OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-751
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVALE3OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

TLBI RVALE3OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0101 0b101

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0101 0b101
C5-752 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.49 TLBI VAAE1, TLBI VAAE1NXS, TLB Invalidate by VA, All ASID, EL1

The TLBI VAAE1 and TLBI VAAE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VAAE1, TLBI VAAE1NXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-753
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAAE1, TLBI VAAE1NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:
C5-754 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VAAE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

TLBI VAAE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIVAAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0111 0b011

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0111 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-755
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

C5-756 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.50 TLBI VAAE1IS, TLBI VAAE1ISNXS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable

The TLBI VAAE1IS and TLBI VAAE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation
regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VAAE1IS, TLBI VAAE1ISNXS is a 64-bit System instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-757
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
C5-758 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAAE1IS, TLBI VAAE1ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAAE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

TLBI VAAE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0011 0b011

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0011 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-759
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIVAAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

C5-760 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.51 TLBI VAAE1OS, TLBI VAAE1OSNXS, TLB Invalidate by VA, All ASID, EL1, Outer Shareable

The TLBI VAAE1OS and TLBI VAAE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI VAAE1OS, TLBI VAAE1OSNXS are UNDEFINED.

Attributes

TLBI VAAE1OS, TLBI VAAE1OSNXS is a 64-bit System instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-761
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
C5-762 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAAE1OS, TLBI VAAE1OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAAE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

TLBI VAAE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0001 0b011

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0001 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-763
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIVAAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

C5-764 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.52 TLBI VAALE1, TLBI VAALE1NXS, TLB Invalidate by VA, All ASID, Last level, EL1

The TLBI VAALE1 and TLBI VAALE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VAALE1, TLBI VAALE1NXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-765
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAALE1, TLBI VAALE1NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:
C5-766 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VAALE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

TLBI VAALE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIVAALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0111 0b111

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0111 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-767
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

C5-768 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.53 TLBI VAALE1IS, TLBI VAALE1ISNXS, TLB Invalidate by VA, All ASID, Last Level, EL1, Inner
Shareable

The TLBI VAALE1IS and TLBI VAALE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation
regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VAALE1IS, TLBI VAALE1ISNXS is a 64-bit System instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-769
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
C5-770 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAALE1IS, TLBI VAALE1ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAALE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

TLBI VAALE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0011 0b111

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0011 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-771
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIVAALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

C5-772 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.54 TLBI VAALE1OS, TLBI VAALE1OSNXS, TLB Invalidate by VA, All ASID, Last Level, EL1, Outer
Shareable

The TLBI VAALE1OS and TLBI VAALE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI VAALE1OS, TLBI VAALE1OSNXS are UNDEFINED.

Attributes

TLBI VAALE1OS, TLBI VAALE1OSNXS is a 64-bit System instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-773
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
C5-774 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAALE1OS, TLBI VAALE1OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAALE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

TLBI VAALE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0001 0b111

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0001 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-775
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIVAALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

C5-776 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.55 TLBI VAE1, TLBI VAE1NXS, TLB Invalidate by VA, EL1

The TLBI VAE1 and TLBI VAE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VAE1, TLBI VAE1NXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-777
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAE1, TLBI VAE1NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:
C5-778 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VAE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

TLBI VAE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIVAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0111 0b001

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0111 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-779
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

C5-780 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.56 TLBI VAE1IS, TLBI VAE1ISNXS, TLB Invalidate by VA, EL1, Inner Shareable

The TLBI VAE1IS and TLBI VAE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation
regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VAE1IS, TLBI VAE1ISNXS is a 64-bit System instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-781
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
C5-782 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAE1IS, TLBI VAE1ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0011 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-783
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VAE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIVAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0011 0b001
C5-784 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.57 TLBI VAE1OS, TLBI VAE1OSNXS, TLB Invalidate by VA, EL1, Outer Shareable

The TLBI VAE1OS and TLBI VAE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI VAE1OS, TLBI VAE1OSNXS are UNDEFINED.

Attributes

TLBI VAE1OS, TLBI VAE1OSNXS is a 64-bit System instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-785
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
C5-786 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAE1OS, TLBI VAE1OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0001 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-787
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VAE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIVAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0001 0b001
C5-788 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.58 TLBI VAE2, TLBI VAE2NXS, TLB Invalidate by VA, EL2

The TLBI VAE2 and TLBI VAE2NXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be required to translate the specified VA using the EL2 or EL2&0
translation regime for the Security state.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

— The entry is from a level of the translation table walk above the final level and matches
the specified ASID.

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VAE2, TLBI VAE2NXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-789
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAE2, TLBI VAE2NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:
C5-790 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VAE2{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

TLBI VAE2NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0111 0b001

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0111 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-791
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

C5-792 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.59 TLBI VAE2IS, TLBI VAE2ISNXS, TLB Invalidate by VA, EL2, Inner Shareable

The TLBI VAE2IS and TLBI VAE2ISNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be required to translate the specified VA using the EL2 or EL2&0
translation regime for the Security state.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

— The entry is from a level of the translation table walk above the final level and matches
the specified ASID.

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VAE2IS, TLBI VAE2ISNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-793
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAE2IS, TLBI VAE2ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:
C5-794 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VAE2IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

TLBI VAE2ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0011 0b001

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0011 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-795
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

C5-796 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.60 TLBI VAE2OS, TLBI VAE2OSNXS, TLB Invalidate by VA, EL2, Outer Shareable

The TLBI VAE2OS and TLBI VAE2OSNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be required to translate the specified VA using the EL2 or EL2&0
translation regime for the Security state.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

— The entry is from a level of the translation table walk above the final level and matches
the specified ASID.

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI VAE2OS, TLBI VAE2OSNXS are UNDEFINED.

Attributes

TLBI VAE2OS, TLBI VAE2OSNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-797
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Otherwise:

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.
C5-798 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Executing TLBI VAE2OS, TLBI VAE2OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAE2OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

TLBI VAE2OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0001 0b001

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0001 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-799
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

C5-800 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.61 TLBI VAE3, TLBI VAE3NXS, TLB Invalidate by VA, EL3

The TLBI VAE3 and TLBI VAE3NXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VAE3, TLBI VAE3NXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-801
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAE3, TLBI VAE3NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAE3{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0111 0b001
C5-802 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VAE3NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0111 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-803
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.62 TLBI VAE3IS, TLBI VAE3ISNXS, TLB Invalidate by VA, EL3, Inner Shareable

The TLBI VAE3IS and TLBI VAE3ISNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VAE3IS, TLBI VAE3ISNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
C5-804 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAE3IS, TLBI VAE3ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAE3IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0011 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-805
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VAE3ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0011 0b001
C5-806 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.63 TLBI VAE3OS, TLBI VAE3OSNXS, TLB Invalidate by VA, EL3, Outer Shareable

The TLBI VAE3OS and TLBI VAE3OSNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI VAE3OS, TLBI VAE3OSNXS are UNDEFINED.

Attributes

TLBI VAE3OS, TLBI VAE3OSNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-807
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAE3OS, TLBI VAE3OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAE3OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0001 0b001
C5-808 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VAE3OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSH, TLBILevel_Any,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0001 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-809
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.64 TLBI VALE1, TLBI VALE1NXS, TLB Invalidate by VA, Last level, EL1

The TLBI VALE1 and TLBI VALE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VALE1, TLBI VALE1NXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
C5-810 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VALE1, TLBI VALE1NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-811
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VALE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

TLBI VALE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIVALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0111 0b101

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0111 0b101
C5-812 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-813
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.65 TLBI VALE1IS, TLBI VALE1ISNXS, TLB Invalidate by VA, Last level, EL1, Inner Shareable

The TLBI VALE1IS and TLBI VALE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation
regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VALE1IS, TLBI VALE1ISNXS is a 64-bit System instruction.
C5-814 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-815
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VALE1IS, TLBI VALE1ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VALE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0011 0b101
C5-816 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VALE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIVALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0011 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-817
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.66 TLBI VALE1OS, TLBI VALE1OSNXS, TLB Invalidate by VA, Last level, EL1, Outer Shareable

The TLBI VALE1OS and TLBI VALE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI VALE1OS, TLBI VALE1OSNXS are UNDEFINED.

Attributes

TLBI VALE1OS, TLBI VALE1OSNXS is a 64-bit System instruction.
C5-818 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-819
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VALE1OS, TLBI VALE1OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VALE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0001 0b101
C5-820 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VALE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIVALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0001 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-821
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.67 TLBI VALE2, TLBI VALE2NXS, TLB Invalidate by VA, Last level, EL2

The TLBI VALE2 and TLBI VALE2NXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA using the EL2 or EL2&0 translation
regime for the Security state.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VALE2, TLBI VALE2NXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
C5-822 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VALE2, TLBI VALE2NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-823
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VALE2{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

TLBI VALE2NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
 else

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0111 0b101

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0111 0b101
C5-824 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-825
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.68 TLBI VALE2IS, TLBI VALE2ISNXS, TLB Invalidate by VA, Last level, EL2, Inner Shareable

The TLBI VALE2IS and TLBI VALE2ISNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA using the EL2 or EL2&0 translation
regime for the Security state.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VALE2IS, TLBI VALE2ISNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
C5-826 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VALE2IS, TLBI VALE2ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-827
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VALE2IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

TLBI VALE2ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
 else

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0011 0b101

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0011 0b101
C5-828 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-829
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.69 TLBI VALE2OS, TLBI VALE2OSNXS, TLB Invalidate by VA, Last level, EL2, Outer Shareable

The TLBI VALE2OS and TLBI VALE2OSNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA using the EL2 or EL2&0 translation
regime for the Security state.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI VALE2OS, TLBI VALE2OSNXS are UNDEFINED.

Attributes

TLBI VALE2OS, TLBI VALE2OSNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
C5-830 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Otherwise:

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-831
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Executing TLBI VALE2OS, TLBI VALE2OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VALE2OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

TLBI VALE2OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0001 0b101

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0001 0b101
C5-832 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-833
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.70 TLBI VALE3, TLBI VALE3NXS, TLB Invalidate by VA, Last level, EL3

The TLBI VALE3 and TLBI VALE3NXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VALE3, TLBI VALE3NXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
C5-834 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VALE3, TLBI VALE3NXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VALE3{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0111 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-835
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VALE3NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0111 0b101
C5-836 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.71 TLBI VALE3IS, TLBI VALE3ISNXS, TLB Invalidate by VA, Last level, EL3, Inner Shareable

The TLBI VALE3IS and TLBI VALE3ISNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VALE3IS, TLBI VALE3ISNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-837
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VALE3IS, TLBI VALE3ISNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VALE3IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0011 0b101
C5-838 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VALE3ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0011 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-839
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.72 TLBI VALE3OS, TLBI VALE3OSNXS, TLB Invalidate by VA, Last level, EL3, Outer Shareable

The TLBI VALE3OS and TLBI VALE3OSNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI VALE3OS, TLBI VALE3OSNXS are UNDEFINED.

Attributes

TLBI VALE3OS, TLBI VALE3OSNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

TTL

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
C5-840 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VALE3OS, TLBI VALE3OSNXS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VALE3OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_AllAttr, X[t]);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0001 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-841
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VALE3OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSH, TLBILevel_Last,
TLBI_ExcludeXS, X[t]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0001 0b101
C5-842 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.73 TLBI VMALLE1, TLBI VMALLE1NXS, TLB Invalidate by VMID, All at stage 1, EL1

The TLBI VMALLE1 and TLBI VMALLE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global entries and non-global
entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VMALLE1, TLBI VMALLE1NXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI VMALLE1, TLBI VMALLE1NXS instruction

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-843
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VMALLE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVMALLE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_AllAttr);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_ExcludeXS);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_AllAttr);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBI_AllAttr);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBI_AllAttr);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBI_AllAttr);

TLBI VMALLE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIVMALLE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS);
 else

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0111 0b000

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0111 0b000
C5-844 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBI_ExcludeXS);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBI_ExcludeXS);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_ExcludeXS);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-845
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.74 TLBI VMALLE1IS, TLBI VMALLE1ISNXS, TLB Invalidate by VMID, All at stage 1, EL1, Inner
Shareable

The TLBI VMALLE1IS and TLBI VMALLE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation
regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 translation regimes, the invalidation applies to both global entries and non-global
entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VMALLE1IS, TLBI VMALLE1ISNXS is a 64-bit System instruction.
C5-846 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI VMALLE1IS, TLBI VMALLE1ISNXS instruction

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VMALLE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVMALLE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_AllAttr);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBI_AllAttr);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBI_AllAttr);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBI_AllAttr);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-847
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VMALLE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIVMALLE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBI_ExcludeXS);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBI_ExcludeXS);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0011 0b000
C5-848 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.75 TLBI VMALLE1OS, TLBI VMALLE1OSNXS, TLB Invalidate by VMID, All at stage 1, EL1, Outer
Shareable

The TLBI VMALLE1OS and TLBI VMALLE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the current Security state:

— If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current
VMID and would be required to translate the specified VA using the EL1&0
translation regime for the Security state.

— If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the
specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 translation regimes, the invalidation applies to both global entries and non-global
entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI VMALLE1OS, TLBI VMALLE1OSNXS are UNDEFINED.

Attributes

TLBI VMALLE1OS, TLBI VMALLE1OSNXS is a 64-bit System instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-849
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI VMALLE1OS, TLBI VMALLE1OSNXS instruction

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VMALLE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVMALLE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() &&
HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBI_ExcludeXS);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBI_AllAttr);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBI_AllAttr);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBI_AllAttr);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBI_AllAttr);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0001 0b000
C5-850 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VMALLE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX) &&
(!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0') && HFGITR_EL2.TLBIVMALLE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL2 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBI_ExcludeXS);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then
 if HCR_EL2.<E2H,TGE> == '11' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBI_ExcludeXS);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-851
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.76 TLBI VMALLS12E1, TLBI VMALLS12E1NXS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1

The TLBI VMALLS12E1 and TLBI VMALLS12E1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table
walk.

• One of the following applies:

— If SCR_EL3.NS is 0, then:

— The entry would be required to translate an address using the Secure EL1&0
translation regime.

— If FEAT_SEL2 is implemented and enabled, the entry would be used with the
current VMID.

— If SCR_EL3.NS is 1, then:

— The entry would be required to translate an address using the Non-secure
EL1&0 translation regime.

— If Non-secure EL2 is implemented, the entry would be used with the current
VMID.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global entries and non-global
entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VMALLS12E1, TLBI VMALLS12E1NXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI VMALLS12E1, TLBI VMALLS12E1NXS instruction

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:
C5-852 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VMALLS12E1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBI_AllAttr);
 else
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_AllAttr);

TLBI VMALLS12E1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_ExcludeXS);
 else
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0111 0b110

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0111 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-853
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.77 TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS, TLB Invalidate by VMID, All at Stage 1 and 2,
EL1, Inner Shareable

The TLBI VMALLS12E1IS and TLBI VMALLS12E1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table
walk.

• One of the following applies:

— If SCR_EL3.NS is 0, then:

— The entry would be required to translate an address using the Secure EL1&0
translation regime.

— If FEAT_SEL2 is implemented and enabled, the entry would be used with the
current VMID.

— If SCR_EL3.NS is 1, then:

— The entry would be required to translate an address using the Non-secure
EL1&0 translation regime.

— If Non-secure EL2 is implemented, the entry would be used with the current
VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation
regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 translation regimes, the invalidation applies to both global entries and non-global
entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS is a 64-bit System instruction.
C5-854 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS instruction

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VMALLS12E1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBI_AllAttr);
 else
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_AllAttr);

TLBI VMALLS12E1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0011 0b110

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0011 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-855
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 else
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS);

C5-856 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.78 TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS, TLB Invalidate by VMID, All at Stage 1 and
2, EL1, Outer Shareable

The TLBI VMALLS12E1OS and TLBI VMALLS12E1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table
walk.

• One of the following applies:

— If SCR_EL3.NS is 0, then:

— The entry would be required to translate an address using the Secure EL1&0
translation regime.

— If FEAT_SEL2 is implemented and enabled, the entry would be used with the
current VMID.

— If SCR_EL3.NS is 1, then:

— The entry would be required to translate an address using the Non-secure
EL1&0 translation regime.

— If Non-secure EL2 is implemented, the entry would be used with the current
VMID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 translation regimes, the invalidation applies to both global entries and non-global
entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS are UNDEFINED.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-857
ID072021 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Attributes

TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS instruction

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VMALLS12E1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBI_AllAttr);
 else
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBI_AllAttr);

TLBI VMALLS12E1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH, TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0001 0b110

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0001 0b110
C5-858 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBI_ExcludeXS);
 else
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBI_ExcludeXS);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-859
ID072021 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
C5.6 A64 System instructions for prediction restriction

This section lists the A64 System instructions for prediction restriction.
C5-860 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
C5.6.1 CFP RCTX, Control Flow Prediction Restriction by Context

The CFP RCTX characteristics are:

Purpose

Control Flow Prediction Restriction by Context applies to all Control Flow Prediction Resources
that predict execution based on information gathered within the target execution context or contexts.

Control flow predictions determined by the actions of code in the target execution context or
contexts appearing in program order before the instruction cannot exploitatively control speculative
execution occurring after the instruction is complete and synchronized.

This instruction is guaranteed to be complete following a DSB that covers both read and write
behavior on the same PE as executed the original restriction instruction, and a subsequent context
synchronization event is required to ensure that the effect of the completion of the instructions is
synchronized to the current execution.

Note

This instruction does not require the invalidation of prediction structures so long as the behavior
described for completion of this instruction is met by the implementation.

On some implementations the instruction is likely to take a significant number of cycles to execute.
This instruction is expected to be used very rarely, such as on the roll-over of an ASID or VMID,
but should not be used on every context switch.

Configurations

This instruction is present only when FEAT_SPECRES is implemented. Otherwise, direct accesses
to CFP RCTX are UNDEFINED.

Attributes

CFP RCTX is a 64-bit System instruction.

Field descriptions

Bits [63:49]

Reserved, RES0.

GVMID, bit [48]

Execution of this instruction applies to all VMIDs or a specified VMID.

0b0 Applies to specified VMID for an EL0 or EL1 target execution context.

0b1 Applies to all VMIDs for an EL0 or EL1 target execution context.

For target execution contexts other than EL0 or EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

RES0

63 49 48

VMID

47 32

GVMID

RES0

31 27

NS

26

EL

25 24

RES0

23 17 16

ASID

15 0

GASID
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-861
ID072021 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
VMID, bits [47:32]

Only applies when bit[48] is 0 and the target execution context is either:

• EL1.

• EL0 when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0).

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0), this field
is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1), this
field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

If the implementation supports 16 bits of VMID, then the upper 8 bits of the VMID must be written
to 0 by software when the context being affected only uses 8 bits.

Bits [31:27]

Reserved, RES0.

NS, bit [26]

Security State. Defined values are:

0b0 Secure state.

0b1 Non-secure state.

When executed in Non-secure state, the Effective value of NS is 1.

EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, this instruction is
treated as a NOP.

Bits [23:17]

Reserved, RES0.

GASID, bit [16]

Execution of this instruction applies to all ASIDs or a specified ASID.

0b0 Applies to specified ASID for an EL0 target execution context.

0b1 Applies to all ASID for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [15:0]

Only applies for an EL0 target execution context and when bit[16] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being affected only uses 8 bits.
C5-862 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
Executing CFP RCTX instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

CFP RCTX, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.CFPRCTX == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CFP_RCTX(X[t]);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.CFPRCTX == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CFP_RCTX(X[t]);
elsif PSTATE.EL == EL2 then
 CFP_RCTX(X[t]);
elsif PSTATE.EL == EL3 then
 CFP_RCTX(X[t]);

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b0011 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-863
ID072021 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
C5.6.2 CPP RCTX, Cache Prefetch Prediction Restriction by Context

The CPP RCTX characteristics are:

Purpose

Cache Prefetch Prediction Restriction by Context applies to all Cache Allocation Resources that
predict cache allocations based on information gathered within the target execution context or
contexts.

Cache prefetch predictions determined by the actions of code in the target execution context or
contexts appearing in program order before the instruction cannot exploitatively control speculative
execution occurring after the instruction is complete and synchronized.

This instruction applies to all:

• Instruction caches.

• Data caches.

• TLB prefetching hardware used by the executing PE that applies to the supplied context or
contexts.

This instruction is guaranteed to be complete following a DSB that covers both read and write
behavior on the same PE as executed the original restriction instruction, and a subsequent context
synchronization event is required to ensure that the effect of the completion of the instructions is
synchronized to the current execution.

Note

This instruction does not require the invalidation of Cache Allocation Resources so long as the
behavior described for completion of this instruction is met by the implementation.

On some implementations the instruction is likely to take a significant number of cycles to execute.
This instruction is expected to be used very rarely, such as on the roll-over of an ASID or VMID,
but should not be used on every context switch.

Configurations

This instruction is present only when FEAT_SPECRES is implemented. Otherwise, direct accesses
to CPP RCTX are UNDEFINED.

Attributes

CPP RCTX is a 64-bit System instruction.

Field descriptions

Bits [63:49]

Reserved, RES0.

GVMID, bit [48]

Execution of this instruction applies to all VMIDs or a specified VMID.

0b0 Applies to specified VMID for an EL0 or EL1 target execution context.

0b1 Applies to all VMIDs for an EL0 or EL1 target execution context.

RES0

63 49 48

VMID

47 32

GVMID

RES0

31 27

NS

26

EL

25 24

RES0

23 17 16

ASID

15 0

GASID
C5-864 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
For target execution contexts other than EL0 and EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

VMID, bits [47:32]

Only applies when bit[48] is 0 and the target execution context is either:

• EL1.

• EL0 when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0).

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0), this field
is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1), this
field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

If the implementation supports 16 bits of VMID, then the upper 8 bits of the VMID must be written
to 0 by software when the context being affected only uses 8 bits.

Bits [31:27]

Reserved, RES0.

NS, bit [26]

Security State. Defined values are:

0b0 Secure state.

0b1 Non-secure state.

When executed in Non-secure state, the Effective value of NS is 1.

EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, this instruction is
treated as a NOP.

Bits [23:17]

Reserved, RES0.

GASID, bit [16]

Execution of this instruction applies to all ASIDs or a specified ASID.

0b0 Applies to specified ASID for an EL0 target execution context.

0b1 Applies to all ASID for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [15:0]

Only applies for an EL0 target execution context and when bit[16] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-865
ID072021 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being affected only uses 8 bits.

Executing CPP RCTX instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

CPP RCTX, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.CPPRCTX == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CPP_RCTX(X[t]);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.CPPRCTX == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CPP_RCTX(X[t]);
elsif PSTATE.EL == EL2 then
 CPP_RCTX(X[t]);
elsif PSTATE.EL == EL3 then
 CPP_RCTX(X[t]);

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b0011 0b111
C5-866 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
C5.6.3 DVP RCTX, Data Value Prediction Restriction by Context

The DVP RCTX characteristics are:

Purpose

Data Value Prediction Restriction by Context applies to all Data Value Prediction Resources that
predict execution based on information gathered within the target execution context or contexts.

Data value predictions determined by the actions of code in the target execution context or contexts
appearing in program order before the instruction cannot exploitatively control speculative
execution occurring after the instruction is complete and synchronized.

This instruction is guaranteed to be complete following a DSB that covers both read and write
behavior on the same PE as executed the original restriction instruction, and a subsequent context
synchronization event is required to ensure that the effect of the completion of the instructions is
synchronized to the current execution.

Note

This instruction does not require the invalidation of prediction structures so long as the behavior
described for completion of this instruction is met by the implementation.

On some implementations the instruction is likely to take a significant number of cycles to execute.
This instruction is expected to be used very rarely, such as on the roll-over of an ASID or VMID,
but should not be used on every context switch.

Configurations

This instruction is present only when FEAT_SPECRES is implemented. Otherwise, direct accesses
to DVP RCTX are UNDEFINED.

Attributes

DVP RCTX is a 64-bit System instruction.

Field descriptions

Bits [63:49]

Reserved, RES0.

GVMID, bit [48]

Execution of this instruction applies to all VMIDs or a specified VMID.

0b0 Applies to specified VMID for an EL0 or EL1 target execution context.

0b1 Applies to all VMIDs for an EL0 or EL1 target execution context.

For target execution contexts other than EL0 or EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, then this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

RES0

63 49 48

VMID

47 32

GVMID

RES0

31 27

NS

26

EL

25 24

RES0

23 17 16

ASID

15 0

GASID
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-867
ID072021 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
VMID, bits [47:32]

Only applies when bit[48] is 0 and the target execution context is either:

• EL1.

• EL0 when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0).

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0), this field
is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1), this
field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

If the implementation supports 16 bits of VMID, then the upper 8 bits of the VMID must be written
to 0 by software when the context being affected only uses 8 bits.

Bits [31:27]

Reserved, RES0.

NS, bit [26]

Security State. Defined values are:

0b0 Secure state.

0b1 Non-secure state.

When executed in Non-secure state, the Effective value of NS is 1.

EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, this instruction is
treated as a NOP.

Bits [23:17]

Reserved, RES0.

GASID, bit [16]

Execution of this instruction applies to all ASIDs or a specified ASID.

0b0 Applies to specified ASID for an EL0 target execution context.

0b1 Applies to all ASID for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [15:0]

Only applies for an EL0 target execution context and when bit[16] is 0.

Otherwise this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being affected only uses 8 bits.
C5-868 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
Executing DVP RCTX instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

DVP RCTX, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DVPRCTX == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 DVP_RCTX(X[t]);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DVPRCTX == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 DVP_RCTX(X[t]);
elsif PSTATE.EL == EL2 then
 DVP_RCTX(X[t]);
elsif PSTATE.EL == EL3 then
 DVP_RCTX(X[t]);

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b0011 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-869
ID072021 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
C5-870 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter C6
A64 Base Instruction Descriptions

This chapter describes the A64 base instructions.

It contains the following sections:

• About the A64 base instructions on page C6-872.

• Alphabetical list of A64 base instructions on page C6-875.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-871
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.1 About the A64 base instructions
C6.1 About the A64 base instructions

Alphabetical list of A64 base instructions on page C6-875 gives full descriptions of the A64 instructions that are in
the following instruction groups:

• Branch, Exception generation, and System instructions.

• Loads and stores associated with the general-purpose registers.

• Data processing (immediate).

• Data processing (register).

A64 instruction set encoding on page C4-284 provides an overview of the instruction encodings as well as of the
instruction classes within their functional groups.

The rest of this section is general description of the base instructions. It contains the following subsections:

• Register size on page C6-872.

• Use of the PC on page C6-872.

• Use of the stack pointer on page C6-873.

• Condition flags and related instructions on page C6-873.

C6.1.1 Register size

Most data processing, comparison, and conversion instructions that use the general-purpose registers as the source
or destination operand have two instruction variants that operate on either a 32-bit or a 64-bit value.

Where a 32-bit instruction form is selected, the following holds:

• The upper 32 bits of the source registers are ignored.

• The upper 32 bits of the destination register are set to zero.

• Right shifts and right rotates inject at bit[31], not at bit[63].

• The Condition flags, where set by the instruction, are computed from the lower 32 bits.

This distinction applies even when the results of a 32-bit instruction form are indistinguishable from the lower 32
bits computed by the equivalent 64-bit instruction form. For example, a 32-bit bitwise ORR could be performed using
a 64-bit ORR and simply ignoring the top 32 bits of the result. However, the A64 instruction set includes separate
32-bit and 64-bit forms of the ORR instruction.

As well as distinct sign-extend or zero-extend instructions, the A64 instruction set also provides the ability to extend
and shift the final source register of an ADD, SUB, ADDS, or SUBS instruction and the index register of a load/store
instruction. This enables array index calculations involving a 64-bit array pointer and a 32-bit array index to be
implemented efficiently.

The assembly language notation enables the distinct identification of registers holding 32-bit values and registers
holding 64-bit values. See Register names on page C1-198 and Register indexed addressing on page C1-202.

C6.1.2 Use of the PC

A64 instructions have limited access to the PC. The only instructions that can read the PC are those that generate a
PC relative address:

• ADR and ADRP.

• The Load register (literal) instruction class.

• Direct branches that use an immediate offset.

• The unconditional branch with link instructions, BL and BLR, that use the PC to create the return link
address.

Only explicit control flow instructions can modify the PC:

• Conditional and unconditional branch and return instructions.

• Exception generation and exception return instructions.

For more details of instructions that can modify the PC, see Branches, Exception generating, and System
instructions on page C3-216.
C6-872 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.1 About the A64 base instructions
C6.1.3 Use of the stack pointer

A64 instructions can use the stack pointer only in a limited number of cases:

• Load/store instructions use the current stack pointer as the base address:

— When stack alignment checking is enabled by system software and the base register is SP, the current
stack pointer must be initially quadword aligned, That is, it must be aligned to 16 bytes. Misalignment
generates an SP alignment fault. See SP alignment checking on page D1-2469 for more information.

• Add and subtract data processing instructions in their immediate and extended register forms, use the current
stack pointer as a source register or the destination register or both.

• Logical data processing instructions in their immediate form use the current stack pointer as the destination
register.

C6.1.4 Condition flags and related instructions

The A64 base instructions that use the Condition flags as an input are:

• Conditional branch. The conditional branch instruction is B.cond.

• Add or subtract with carry. These instruction types include instructions to perform multi-precision arithmetic
and calculate checksums. The add or subtract with carry instructions are ADC, ADCS, SBC, and SBCS, or an
architectural alias for these instructions.

• Conditional select with increment, negate, or invert. This instruction type conditionally selects between one
source register and a second, incremented, negated, inverted, or unmodified source register. The conditional
select with increment, negate, or invert instructions are CSINC, CSINV, and CSNEG.

These instructions also implement:

— Conditional select or move. The Condition flags select one of two source registers as the destination
register. Short conditional sequences can be replaced by unconditional instructions followed by a
conditional select, CSEL.

— Conditional set. Conditionally selects between 0 and 1, or 0 and -1. This can be used to convert the
Condition flags to a Boolean value or mask in a general-purpose register, for example. These
instructions include CSET and CSETM.

• Conditional compare. This instruction type sets the Condition flags to the result of a comparison if the
original condition is true, otherwise it sets the Condition flags to an immediate value. It permits the flattening
of nested conditional expressions without using conditional branches or performing Boolean arithmetic
within the general-purpose registers. The conditional compare instructions are CCMP and CCMN.

The A64 base instructions that update the Condition flags as an output are:

• Flag-setting data processing instructions, such as ADCS, ADDS, ANDS, BICS, RMIF, SBCS, SETF8, SETF16, and SUBS,
and the aliases CMN, CMP, and TST.

• Conditional compare instructions such as CCMN, CCMP.

• The random number generation instructions MRS RNDR and MRS RNDRRS, see Effect of random number generation
instructions on Condition flags on page C6-874.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-873
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.1 About the A64 base instructions
The A64 base instructions that manipulate the Condition flags are:

• The flag manipulation instruction CFINV, which inverts the value of the Carry flag.

• If FEAT_FlagM2 is implemented, the base instructions AXFLAG and XAFLAG. These instructions convert
between the Arm floating point comparison PSTATE condition flag format and an alternative format shown
in Table C6-1 on page C6-874.

The flags can be directly accessed for a read/write using the NZCV, Condition Flags on page C5-440.

The A64 base instructions also include conditional branch instructions that do not use the Condition flags as an
input:

• Compare and branch if a register is zero or nonzero, CBZ and CBNZ.

• Test a single bit in a register and branch if the bit is zero or nonzero, TBZ and TBNZ.

Effect of random number generation instructions on Condition flags

If FEAT_RNG is implemented, then:

• When a valid random number is returned, the PSTATE.NZCV flags are set to 0b0000.

• If the random number hardware is not capable of returning a random number in a reasonable period of time,
the PSTATE.NZCV flags are set to 0b0100, and the random number generation instructions return the value 0.

Note

The definition of “reasonable period of time” is IMPLEMENTATION DEFINED. The expectation is that software might
use this as an opportunity to reschedule or run a different routine, perhaps after a small number of retries have failed
to return a valid value.

Table C6-1 Relationship between ARM format and alternative format PSTATE condition flags

ARM format Alternative format

Result N Z C V N Z C V

Greater than 0 0 1 0 0 0 1 0

Less than 1 0 0 0 0 0 0 0

Equal 0 1 1 0 0 1 1 0

Unordered 0 0 1 1 0 1 0 0
C6-874 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2 Alphabetical list of A64 base instructions

This section lists every instruction in the base category of the A64 instruction set. For details of the format used, see
Understanding the A64 instruction descriptions on page C2-208.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-875
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.1 ADC

Add with Carry adds two register values and the Carry flag value, and writes the result to the destination register.

32-bit variant

Applies when sf == 0.

ADC <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

ADC <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = X[m];

 (result, -) = AddWithCarry(operand1, operand2, PSTATE.C);

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 0 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op S
C6-876 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-877
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.2 ADCS

Add with Carry, setting flags, adds two register values and the Carry flag value, and writes the result to the
destination register. It updates the condition flags based on the result.

32-bit variant

Applies when sf == 0.

ADCS <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

ADCS <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = X[m];
 bits(4) nzcv;

 (result, nzcv) = AddWithCarry(operand1, operand2, PSTATE.C);

 PSTATE.<N,Z,C,V> = nzcv;

 X[d] = result;

sf 0 1 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op S
C6-878 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-879
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.3 ADD (extended register)

Add (extended register) adds a register value and a sign or zero-extended register value, followed by an optional left
shift amount, and writes the result to the destination register. The argument that is extended from the <Rm> register
can be a byte, halfword, word, or doubleword.

32-bit variant

Applies when sf == 0.

ADD <Wd|WSP>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit variant

Applies when sf == 1.

ADD <Xd|SP>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = UInt(imm3);
 if shift > 4 then UNDEFINED;

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in the "option" field. It can have the following values:

W when option = 00x

W when option = 010

X when option = x11

W when option = 10x

W when option = 110

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in
the "Rm" field.

sf 0 0 0 1 0 1 1 0 0 1 Rm option imm3 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 0

op S
C6-880 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

LSL|UXTW when option = 010

UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rd" or "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted
when "imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is
'010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

UXTW when option = 010

LSL|UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rd" or "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in
the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL,
and is optional when <extend> is present but not LSL.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[] else X[n];
 bits(datasize) operand2 = ExtendReg(m, extend_type, shift);

 (result, -) = AddWithCarry(operand1, operand2, '0');

 if d == 31 then
 SP[] = result;
 else
 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-881
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-882 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.4 ADD (immediate)

Add (immediate) adds a register value and an optionally-shifted immediate value, and writes the result to the
destination register.

This instruction is used by the alias MOV (to/from SP). See Alias conditions on page C6-883 for details of when
each alias is preferred.

32-bit variant

Applies when sf == 0.

ADD <Wd|WSP>, <Wn|WSP>, #<imm>{, <shift>}

64-bit variant

Applies when sf == 1.

ADD <Xd|SP>, <Xn|SP>, #<imm>{, <shift>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer datasize = if sf == '1' then 64 else 32;
 bits(datasize) imm;

 case sh of
 when '0' imm = ZeroExtend(imm12, datasize);
 when '1' imm = ZeroExtend(imm12:Zeros(12), datasize);

Alias conditions

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

Alias is preferred when

 MOV (to/from SP) sh == '0' && imm12 == '000000000000' && (Rd == '11111' || Rn == '11111')

sf 0 0 1 0 0 0 1 0 sh imm12 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-883
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #12 when sh = 1

Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[] else X[n];

 (result, -) = AddWithCarry(operand1, imm, '0');

 if d == 31 then
 SP[] = result;
 else
 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-884 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.5 ADD (shifted register)

Add (shifted register) adds a register value and an optionally-shifted register value, and writes the result to the
destination register.

32-bit variant

Applies when sf == 0.

ADD <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

ADD <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;

 if shift == '11' then UNDEFINED;
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

sf 0 0 0 1 0 1 1 shift 0 Rm imm6 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-885
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

 (result, -) = AddWithCarry(operand1, operand2, '0');

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-886 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.6 ADDG

Add with Tag adds an immediate value scaled by the Tag granule to the address in the source register, modifies the
Logical Address Tag of the address using an immediate value, and writes the result to the destination register. Tags
specified in GCR_EL1.Exclude are excluded from the possible outputs when modifying the Logical Address Tag.

Integer

(FEAT_MTE)

Encoding

ADDG <Xd|SP>, <Xn|SP>, #<uimm6>, #<uimm4>

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer d = UInt(Xd);
 integer n = UInt(Xn);
 bits(64) offset = LSL(ZeroExtend(uimm6, 64), LOG2_TAG_GRANULE);

Assembler symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Xd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Xn" field.

<uimm6> Is an unsigned immediate, a multiple of 16 in the range 0 to 1008, encoded in the "uimm6" field.

<uimm4> Is an unsigned immediate, in the range 0 to 15, encoded in the "uimm4" field.

Operation

 bits(64) operand1 = if n == 31 then SP[] else X[n];
 bits(4) start_tag = AArch64.AllocationTagFromAddress(operand1);
 bits(16) exclude = GCR_EL1.Exclude;
 bits(64) result;
 bits(4) rtag;

 if AArch64.AllocationTagAccessIsEnabled(AccType_NORMAL) then
 rtag = AArch64.ChooseNonExcludedTag(start_tag, uimm4, exclude);
 else
 rtag = '0000';

 (result, -) = AddWithCarry(operand1, offset, '0');
 result = AArch64.AddressWithAllocationTag(result, AccType_NORMAL, rtag);

 if d == 31 then
 SP[] = result;
 else
 X[d] = result;

1 0 0 1 0 0 0 1 1 0 uimm6 (0) (0) uimm4 Xn Xd
31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 10 9 5 4 0

op3
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-887
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.7 ADDS (extended register)

Add (extended register), setting flags, adds a register value and a sign or zero-extended register value, followed by
an optional left shift amount, and writes the result to the destination register. The argument that is extended from
the <Rm> register can be a byte, halfword, word, or doubleword. It updates the condition flags based on the result.

This instruction is used by the alias CMN (extended register). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

ADDS <Wd>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit variant

Applies when sf == 1.

ADDS <Xd>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = UInt(imm3);
 if shift > 4 then UNDEFINED;

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in the "option" field. It can have the following values:

W when option = 00x

Alias is preferred when

 CMN (extended register) Rd == '11111'

sf 0 1 0 1 0 1 1 0 0 1 Rm option imm3 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 0

op S
C6-888 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
W when option = 010

X when option = x11

W when option = 10x

W when option = 110

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in
the "Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

LSL|UXTW when option = 010

UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

UXTW when option = 010

LSL|UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3"
is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in
the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL,
and is optional when <extend> is present but not LSL.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[] else X[n];
 bits(datasize) operand2 = ExtendReg(m, extend_type, shift);
 bits(4) nzcv;

 (result, nzcv) = AddWithCarry(operand1, operand2, '0');

 PSTATE.<N,Z,C,V> = nzcv;

 X[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-889
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-890 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.8 ADDS (immediate)

Add (immediate), setting flags, adds a register value and an optionally-shifted immediate value, and writes the result
to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias CMN (immediate). See Alias conditions on page C6-891 for details of when
each alias is preferred.

32-bit variant

Applies when sf == 0.

ADDS <Wd>, <Wn|WSP>, #<imm>{, <shift>}

64-bit variant

Applies when sf == 1.

ADDS <Xd>, <Xn|SP>, #<imm>{, <shift>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer datasize = if sf == '1' then 64 else 32;
 bits(datasize) imm;

 case sh of
 when '0' imm = ZeroExtend(imm12, datasize);
 when '1' imm = ZeroExtend(imm12:Zeros(12), datasize);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #12 when sh = 1

Alias is preferred when

 CMN (immediate) Rd == '11111'

sf 0 1 1 0 0 0 1 0 sh imm12 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-891
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[] else X[n];
 bits(4) nzcv;

 (result, nzcv) = AddWithCarry(operand1, imm, '0');

 PSTATE.<N,Z,C,V> = nzcv;

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-892 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.9 ADDS (shifted register)

Add (shifted register), setting flags, adds a register value and an optionally-shifted register value, and writes the
result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias CMN (shifted register). See Alias conditions on page C6-893 for details of when
each alias is preferred.

32-bit variant

Applies when sf == 0.

ADDS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

ADDS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;

 if shift == '11' then UNDEFINED;
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Alias is preferred when

 CMN (shifted register) Rd == '11111'

sf 0 1 0 1 0 1 1 shift 0 Rm imm6 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-893
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);
 bits(4) nzcv;

 (result, nzcv) = AddWithCarry(operand1, operand2, '0');

 PSTATE.<N,Z,C,V> = nzcv;

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-894 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.10 ADR

Form PC-relative address adds an immediate value to the PC value to form a PC-relative address, and writes the
result to the destination register.

Encoding

ADR <Xd>, <label>

Decode for this encoding

 integer d = UInt(Rd);
 bits(64) imm;

 imm = SignExtend(immhi:immlo, 64);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<label> Is the program label whose address is to be calculated. Its offset from the address of this instruction,
in the range +/-1MB, is encoded in "immhi:immlo".

Operation

 bits(64) base = PC[];

 X[d] = base + imm;

0 immlo 1 0 0 0 0 immhi Rd
31 30 29 28 27 26 25 24 23 5 4 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-895
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.11 ADRP

Form PC-relative address to 4KB page adds an immediate value that is shifted left by 12 bits, to the PC value to
form a PC-relative address, with the bottom 12 bits masked out, and writes the result to the destination register.

Encoding

ADRP <Xd>, <label>

Decode for this encoding

 integer d = UInt(Rd);
 bits(64) imm;

 imm = SignExtend(immhi:immlo:Zeros(12), 64);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<label> Is the program label whose 4KB page address is to be calculated. Its offset from the page address of
this instruction, in the range +/-4GB, is encoded as "immhi:immlo" times 4096.

Operation

 bits(64) base = PC[];

 base<11:0> = Zeros(12);

 X[d] = base + imm;

1 immlo 1 0 0 0 0 immhi Rd
31 30 29 28 27 26 25 24 23 5 4 0

op
C6-896 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.12 AND (immediate)

Bitwise AND (immediate) performs a bitwise AND of a register value and an immediate value, and writes the result
to the destination register.

32-bit variant

Applies when sf == 0 && N == 0.

AND <Wd|WSP>, <Wn>, #<imm>

64-bit variant

Applies when sf == 1.

AND <Xd|SP>, <Xn>, #<imm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer datasize = if sf == '1' then 64 else 32;
 bits(datasize) imm;
 if sf == '0' && N != '0' then UNDEFINED;
 (imm, -) = DecodeBitMasks(N, imms, immr, TRUE);

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n];

 result = operand1 AND imm;
 if d == 31 then
 SP[] = result;
 else
 X[d] = result;

sf 0 0 1 0 0 1 0 0 N immr imms Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-897
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-898 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.13 AND (shifted register)

Bitwise AND (shifted register) performs a bitwise AND of a register value and an optionally-shifted register value,
and writes the result to the destination register.

32-bit variant

Applies when sf == 0.

AND <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

AND <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

sf 0 0 0 1 0 1 0 shift 0 Rm imm6 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-899
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

 result = operand1 AND operand2;
 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-900 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.14 ANDS (immediate)

Bitwise AND (immediate), setting flags, performs a bitwise AND of a register value and an immediate value, and
writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias TST (immediate). See Alias conditions on page C6-901 for details of when each
alias is preferred.

32-bit variant

Applies when sf == 0 && N == 0.

ANDS <Wd>, <Wn>, #<imm>

64-bit variant

Applies when sf == 1.

ANDS <Xd>, <Xn>, #<imm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer datasize = if sf == '1' then 64 else 32;

 bits(datasize) imm;
 if sf == '0' && N != '0' then UNDEFINED;
 (imm, -) = DecodeBitMasks(N, imms, immr, TRUE);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Alias is preferred when

TST (immediate) Rd == '11111'

sf 1 1 1 0 0 1 0 0 N immr imms Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-901
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n];

 result = operand1 AND imm;
 PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-902 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.15 ANDS (shifted register)

Bitwise AND (shifted register), setting flags, performs a bitwise AND of a register value and an optionally-shifted
register value, and writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias TST (shifted register). See Alias conditions on page C6-903 for details of when
each alias is preferred.

32-bit variant

Applies when sf == 0.

ANDS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

ANDS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;

 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Alias is preferred when

TST (shifted register) Rd == '11111'

sf 1 1 0 1 0 1 0 shift 0 Rm imm6 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-903
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

 result = operand1 AND operand2;
 PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-904 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.16 ASR (register)

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in copies of its
sign bit, and writes the result to the destination register. The remainder obtained by dividing the second source
register by the data size defines the number of bits by which the first source register is right-shifted.

This instruction is an alias of the ASRV instruction. This means that:

• The encodings in this description are named to match the encodings of ASRV.

• The description of ASRV gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

ASR <Wd>, <Wn>, <Wm>

 is equivalent to

ASRV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

ASR <Xd>, <Xn>, <Xm>

 is equivalent to

ASRV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

The description of ASRV gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-905
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-906 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.17 ASR (immediate)

Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in copies
of the sign bit in the upper bits and zeros in the lower bits, and writes the result to the destination register.

This instruction is an alias of the SBFM instruction. This means that:

• The encodings in this description are named to match the encodings of SBFM.

• The description of SBFM gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0 && N == 0 && imms == 011111.

ASR <Wd>, <Wn>, #<shift>

 is equivalent to

SBFM <Wd>, <Wn>, #<shift>, #31

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1 && N == 1 && imms == 111111.

ASR <Xd>, <Xn>, #<shift>

 is equivalent to

SBFM <Xd>, <Xn>, #<shift>, #63

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<shift> For the 32-bit variant: is the shift amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, encoded in the "immr" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

sf 0 0 1 0 0 1 1 0 N immr x 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc imms
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-907
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-908 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.18 ASRV

Arithmetic Shift Right Variable shifts a register value right by a variable number of bits, shifting in copies of its sign
bit, and writes the result to the destination register. The remainder obtained by dividing the second source register
by the data size defines the number of bits by which the first source register is right-shifted.

This instruction is used by the alias ASR (register). The alias is always the preferred disassembly.

32-bit variant

Applies when sf == 0.

ASRV <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

ASRV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;
 ShiftType shift_type = DecodeShift(op2);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand2 = X[m];

 result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize);
 X[d] = result;

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-909
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-910 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.19 AT

Address Translate. For more information, see op0==0b01, cache maintenance, TLB maintenance, and address
translation instructions on page C5-399.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode for this instruction.

Encoding

AT <at_op>, <Xt>

 is equivalent to

SYS #<op1>, C7, <Cm>, #<op2>, <Xt>

and is the preferred disassembly when SysOp(op1,'0111',CRm,op2) == Sys_AT.

Assembler symbols

<at_op> Is an AT instruction name, as listed for the AT system instruction group, encoded in the
"op1:CRm<0>:op2" field. It can have the following values:

S1E1R when op1 = 000, CRm<0> = 0, op2 = 000

S1E1W when op1 = 000, CRm<0> = 0, op2 = 001

S1E0R when op1 = 000, CRm<0> = 0, op2 = 010

S1E0W when op1 = 000, CRm<0> = 0, op2 = 011

S1E2R when op1 = 100, CRm<0> = 0, op2 = 000

S1E2W when op1 = 100, CRm<0> = 0, op2 = 001

S12E1R when op1 = 100, CRm<0> = 0, op2 = 100

S12E1W when op1 = 100, CRm<0> = 0, op2 = 101

S12E0R when op1 = 100, CRm<0> = 0, op2 = 110

S12E0W when op1 = 100, CRm<0> = 0, op2 = 111

S1E3R when op1 = 110, CRm<0> = 0, op2 = 000

S1E3W when op1 = 110, CRm<0> = 0, op2 = 001

When FEAT_PAN2 is implemented, the following values are also valid:

S1E1RP when op1 = 000, CRm<0> = 1, op2 = 000

S1E1WP when op1 = 000, CRm<0> = 1, op2 = 001

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 0 1 1 1 1 0 0 x op2 Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L CRn CRm
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-911
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of SYS gives the operational pseudocode for this instruction.
C6-912 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.20 AUTDA, AUTDZA

Authenticate Data address, using key A. This instruction authenticates a data address, using a modifier and key A.

The address is in the general-purpose register that is specified by <Xd>.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTDA.

• The value zero, for AUTDZA.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the
authentication fails, the upper bits are corrupted and any subsequent use of the address results in a Translation fault.

Integer

(FEAT_PAuth)

AUTDA variant

Applies when Z == 0.

AUTDA <Xd>, <Xn|SP>

AUTDZA variant

Applies when Z == 1 && Rn == 11111.

AUTDZA <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !HavePACExt() then
 UNDEFINED;

 if Z == '0' then // AUTDA
 if n == 31 then source_is_sp = TRUE;
 else // AUTDZA
 if n != 31 then UNDEFINED;

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

 if HavePACExt() then
 if source_is_sp then
 X[d] = AuthDA(X[d], SP[], FALSE);
 else
 X[d] = AuthDA(X[d], X[n], FALSE);

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-913
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.21 AUTDB, AUTDZB

Authenticate Data address, using key B. This instruction authenticates a data address, using a modifier and key B.

The address is in the general-purpose register that is specified by <Xd>.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTDB.

• The value zero, for AUTDZB.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the
authentication fails, the upper bits are corrupted and any subsequent use of the address results in a Translation fault.

Integer

(FEAT_PAuth)

AUTDB variant

Applies when Z == 0.

AUTDB <Xd>, <Xn|SP>

AUTDZB variant

Applies when Z == 1 && Rn == 11111.

AUTDZB <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !HavePACExt() then
 UNDEFINED;

 if Z == '0' then // AUTDB
 if n == 31 then source_is_sp = TRUE;
 else // AUTDZB
 if n != 31 then UNDEFINED;

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

 if HavePACExt() then
 if source_is_sp then
 X[d] = AuthDB(X[d], SP[], FALSE);
 else
 X[d] = AuthDB(X[d], X[n], FALSE);

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
C6-914 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.22 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA

Authenticate Instruction address, using key A. This instruction authenticates an instruction address, using a modifier
and key A.

The address is:

• In the general-purpose register that is specified by <Xd> for AUTIA and AUTIZA.

• In X17, for AUTIA1716.

• In X30, for AUTIASP and AUTIAZ.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTIA.

• The value zero, for AUTIZA and AUTIAZ.

• In X16, for AUTIA1716.

• In SP, for AUTIASP.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the
authentication fails, the upper bits are corrupted and any subsequent use of the address results in a Translation fault.

Integer

(FEAT_PAuth)

AUTIA variant

Applies when Z == 0.

AUTIA <Xd>, <Xn|SP>

AUTIZA variant

Applies when Z == 1 && Rn == 11111.

AUTIZA <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !HavePACExt() then
 UNDEFINED;

 if Z == '0' then // AUTIA
 if n == 31 then source_is_sp = TRUE;
 else // AUTIZA
 if n != 31 then UNDEFINED;

System

(FEAT_PAuth)

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-915
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
AUTIA1716 variant

Applies when CRm == 0001 && op2 == 100.

AUTIA1716

AUTIASP variant

Applies when CRm == 0011 && op2 == 101.

AUTIASP

AUTIAZ variant

Applies when CRm == 0011 && op2 == 100.

AUTIAZ

Decode for all variants of this encoding

 integer d;
 integer n;
 boolean source_is_sp = FALSE;

 case CRm:op2 of
 when '0011 100' // AUTIAZ
 d = 30;
 n = 31;
 when '0011 101' // AUTIASP
 d = 30;
 source_is_sp = TRUE;
 when '0001 100' // AUTIA1716
 d = 17;
 n = 16;
 when '0001 000' SEE "PACIA";
 when '0001 010' SEE "PACIB";
 when '0001 110' SEE "AUTIB";
 when '0011 00x' SEE "PACIA";
 when '0011 01x' SEE "PACIB";
 when '0011 11x' SEE "AUTIB";
 when '0000 111' SEE "XPACLRI";
 otherwise SEE "HINT";

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation for all encodings

 if HavePACExt() then
 if source_is_sp then
 X[d] = AuthIA(X[d], SP[], FALSE);
 else
 X[d] = AuthIA(X[d], X[n], FALSE);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 x 1 1 0 x 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
C6-916 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.23 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB

Authenticate Instruction address, using key B. This instruction authenticates an instruction address, using a modifier
and key B.

The address is:

• In the general-purpose register that is specified by <Xd> for AUTIB and AUTIZB.

• In X17, for AUTIB1716.

• In X30, for AUTIBSP and AUTIBZ.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTIB.

• The value zero, for AUTIZB and AUTIBZ.

• In X16, for AUTIB1716.

• In SP, for AUTIBSP.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the
authentication fails, the upper bits are corrupted and any subsequent use of the address results in a Translation fault.

Integer

(FEAT_PAuth)

AUTIB variant

Applies when Z == 0.

AUTIB <Xd>, <Xn|SP>

AUTIZB variant

Applies when Z == 1 && Rn == 11111.

AUTIZB <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !HavePACExt() then
 UNDEFINED;

 if Z == '0' then // AUTIB
 if n == 31 then source_is_sp = TRUE;
 else // AUTIZB
 if n != 31 then UNDEFINED;

System

(FEAT_PAuth)

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-917
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
AUTIB1716 variant

Applies when CRm == 0001 && op2 == 110.

AUTIB1716

AUTIBSP variant

Applies when CRm == 0011 && op2 == 111.

AUTIBSP

AUTIBZ variant

Applies when CRm == 0011 && op2 == 110.

AUTIBZ

Decode for all variants of this encoding

 integer d;
 integer n;
 boolean source_is_sp = FALSE;

 case CRm:op2 of
 when '0011 110' // AUTIBZ
 d = 30;
 n = 31;
 when '0011 111' // AUTIBSP
 d = 30;
 source_is_sp = TRUE;
 when '0001 110' // AUTIB1716
 d = 17;
 n = 16;
 when '0001 000' SEE "PACIA";
 when '0001 010' SEE "PACIB";
 when '0001 100' SEE "AUTIA";
 when '0011 00x' SEE "PACIA";
 when '0011 01x' SEE "PACIB";
 when '0011 10x' SEE "AUTIA";
 when '0000 111' SEE "XPACLRI";
 otherwise SEE "HINT";

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation for all encodings

 if HavePACExt() then
 if source_is_sp then
 X[d] = AuthIB(X[d], SP[], FALSE);
 else
 X[d] = AuthIB(X[d], X[n], FALSE);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 x 1 1 1 x 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
C6-918 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.24 AXFLAG

Convert floating-point condition flags from Arm to external format. This instruction converts the state of the
PSTATE.{N,Z,C,V} flags from a form representing the result of an Arm floating-point scalar compare instruction
to an alternative representation required by some software.

System

(FEAT_FlagM2)

Encoding

AXFLAG

Decode for this encoding

 if !HaveFlagFormatExt() then UNDEFINED;

Operation

 bit Z = PSTATE.Z OR PSTATE.V;
 bit C = PSTATE.C AND NOT(PSTATE.V);

 PSTATE.N = '0';
 PSTATE.Z = Z;
 PSTATE.C = C;
 PSTATE.V = '0';

1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 (0) (0) (0) (0) 0 1 0 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

CRm
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-919
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.25 B.cond

Branch conditionally to a label at a PC-relative offset, with a hint that this is not a subroutine call or return.

Encoding

B.<cond> <label>

Decode for this encoding

 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 if ConditionHolds(cond) then
 BranchTo(PC[] + offset, BranchType_DIR, TRUE);

0 1 0 1 0 1 0 0 imm19 0 cond
31 30 29 28 27 26 25 24 23 5 4 3 0
C6-920 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.26 B

Branch causes an unconditional branch to a label at a PC-relative offset, with a hint that this is not a subroutine call
or return.

Encoding

B <label>

Decode for this encoding

 bits(64) offset = SignExtend(imm26:'00', 64);

Assembler symbols

<label> Is the program label to be unconditionally branched to. Its offset from the address of this instruction,
in the range +/-128MB, is encoded as "imm26" times 4.

Operation

 BranchTo(PC[] + offset, BranchType_DIR, FALSE);

0 0 0 1 0 1 imm26
31 30 29 28 27 26 25 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-921
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.27 BFC

Bitfield Clear sets a bitfield of <width> bits at bit position <lsb> of the destination register to zero, leaving the other
destination bits unchanged.

This instruction is an alias of the BFM instruction. This means that:

• The encodings in this description are named to match the encodings of BFM.

• The description of BFM gives the operational pseudocode for this instruction.

Leaving other bits unchanged

(FEAT_ASMv8p2)

32-bit variant

Applies when sf == 0 && N == 0.

BFC <Wd>, #<lsb>, #<width>

 is equivalent to

BFM <Wd>, WZR, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit variant

Applies when sf == 1 && N == 1.

BFC <Xd>, #<lsb>, #<width>

 is equivalent to

BFM <Xd>, XZR, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.

sf 0 1 1 0 0 1 1 0 N immr imms 1 1 1 1 1 Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc Rn
C6-922 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-923
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.28 BFI

Bitfield Insert copies a bitfield of <width> bits from the least significant bits of the source register to bit position
<lsb> of the destination register, leaving the other destination bits unchanged.

This instruction is an alias of the BFM instruction. This means that:

• The encodings in this description are named to match the encodings of BFM.

• The description of BFM gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

BFI <Wd>, <Wn>, #<lsb>, #<width>

 is equivalent to

BFM <Wd>, <Wn>, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit variant

Applies when sf == 1 && N == 1.

BFI <Xd>, <Xn>, #<lsb>, #<width>

 is equivalent to

BFM <Xd>, <Xn>, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.

sf 0 1 1 0 0 1 1 0 N immr imms !=11111 Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc Rn
C6-924 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-925
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.29 BFM

Bitfield Move is usually accessed via one of its aliases, which are always preferred for disassembly.

If <imms> is greater than or equal to <immr>, this copies a bitfield of (<imms>-<immr>+1) bits starting from bit position
<immr> in the source register to the least significant bits of the destination register.

If <imms> is less than <immr>, this copies a bitfield of (<imms>+1) bits from the least significant bits of the source
register to bit position (regsize-<immr>) of the destination register, where regsize is the destination register size of 32
or 64 bits.

In both cases the other bits of the destination register remain unchanged.

This instruction is used by the aliases BFC, BFI, and BFXIL. See Alias conditions on page C6-927 for details of
when each alias is preferred.

32-bit variant

Applies when sf == 0 && N == 0.

BFM <Wd>, <Wn>, #<immr>, #<imms>

64-bit variant

Applies when sf == 1 && N == 1.

BFM <Xd>, <Xn>, #<immr>, #<imms>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer datasize = if sf == '1' then 64 else 32;

 integer R;
 bits(datasize) wmask;
 bits(datasize) tmask;

 if sf == '1' && N != '1' then UNDEFINED;
 if sf == '0' && (N != '0' || immr<5> != '0' || imms<5> != '0') then UNDEFINED;

 R = UInt(immr);
 (wmask, tmask) = DecodeBitMasks(N, imms, immr, FALSE);

sf 0 1 1 0 0 1 1 0 N immr imms Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
C6-926 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<immr> For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.

<imms> For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31,
encoded in the "imms" field.

For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63,
encoded in the "imms" field.

Operation

 bits(datasize) dst = X[d];
 bits(datasize) src = X[n];

 // perform bitfield move on low bits
 bits(datasize) bot = (dst AND NOT(wmask)) OR (ROR(src, R) AND wmask);

 // combine extension bits and result bits
 X[d] = (dst AND NOT(tmask)) OR (bot AND tmask);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

Alias is preferred when

 BFC Rn == '11111' && UInt(imms) < UInt(immr)

 BFI Rn != '11111' && UInt(imms) < UInt(immr)

 BFXIL UInt(imms) >= UInt(immr)
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-927
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.30 BFXIL

Bitfield Extract and Insert Low copies a bitfield of <width> bits starting from bit position <lsb> in the source register
to the least significant bits of the destination register, leaving the other destination bits unchanged.

This instruction is an alias of the BFM instruction. This means that:

• The encodings in this description are named to match the encodings of BFM.

• The description of BFM gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

BFXIL <Wd>, <Wn>, #<lsb>, #<width>

 is equivalent to

BFM <Wd>, <Wn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when UInt(imms) >= UInt(immr).

64-bit variant

Applies when sf == 1 && N == 1.

BFXIL <Xd>, <Xn>, #<lsb>, #<width>

 is equivalent to

BFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when UInt(imms) >= UInt(immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.

sf 0 1 1 0 0 1 1 0 N immr imms Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
C6-928 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-929
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.31 BIC (shifted register)

Bitwise Bit Clear (shifted register) performs a bitwise AND of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register.

32-bit variant

Applies when sf == 0.

BIC <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

BIC <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

sf 0 0 0 1 0 1 0 shift 1 Rm imm6 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N
C6-930 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

 operand2 = NOT(operand2);

 result = operand1 AND operand2;
 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-931
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.32 BICS (shifted register)

Bitwise Bit Clear (shifted register), setting flags, performs a bitwise AND of a register value and the complement
of an optionally-shifted register value, and writes the result to the destination register. It updates the condition flags
based on the result.

32-bit variant

Applies when sf == 0.

BICS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

BICS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;

 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

sf 1 1 0 1 0 1 0 shift 1 Rm imm6 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N
C6-932 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

 operand2 = NOT(operand2);

 result = operand1 AND operand2;
 PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-933
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.33 BL

Branch with Link branches to a PC-relative offset, setting the register X30 to PC+4. It provides a hint that this is a
subroutine call.

Encoding

BL <label>

Decode for this encoding

 bits(64) offset = SignExtend(imm26:'00', 64);

Assembler symbols

<label> Is the program label to be unconditionally branched to. Its offset from the address of this instruction,
in the range +/-128MB, is encoded as "imm26" times 4.

Operation

 X[30] = PC[] + 4;

 BranchTo(PC[] + offset, BranchType_DIRCALL, FALSE);

1 0 0 1 0 1 imm26
31 30 29 28 27 26 25 0

op
C6-934 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.34 BLR

Branch with Link to Register calls a subroutine at an address in a register, setting register X30 to PC+4.

Encoding

BLR <Xn>

Decode for this encoding

 integer n = UInt(Rn);

Assembler symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field.

Operation

 bits(64) target = X[n];

 X[30] = PC[] + 4;

 // Value in BTypeNext will be used to set PSTATE.BTYPE
 BTypeNext = '10';
 BranchTo(target, BranchType_INDCALL, FALSE);

1 1 0 1 0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 Rn 0 0 0 0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

Z op A M Rm
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-935
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.35 BLRAA, BLRAAZ, BLRAB, BLRABZ

Branch with Link to Register, with pointer authentication. This instruction authenticates the address in the
general-purpose register that is specified by <Xn>, using a modifier and the specified key, and calls a subroutine at
the authenticated address, setting register X30 to PC+4.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xm|SP> for BLRAA and BLRAB.

• The value zero, for BLRAAZ and BLRABZ.

Key A is used for BLRAA and BLRAAZ, and key B is used for BLRAB and BLRABZ.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a
Translation fault is generated.

The authenticated address is not written back to the general-purpose register.

Integer

(FEAT_PAuth)

Key A, zero modifier variant

Applies when Z == 0 && M == 0 && Rm == 11111.

BLRAAZ <Xn>

Key A, register modifier variant

Applies when Z == 1 && M == 0.

BLRAA <Xn>, <Xm|SP>

Key B, zero modifier variant

Applies when Z == 0 && M == 1 && Rm == 11111.

BLRABZ <Xn>

Key B, register modifier variant

Applies when Z == 1 && M == 1.

BLRAB <Xn>, <Xm|SP>

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean use_key_a = (M == '0');
 boolean source_is_sp = ((Z == '1') && (m == 31));

 if !HavePACExt() then
 UNDEFINED;

 if Z == '0' && m != 31 then
 UNDEFINED;

1 1 0 1 0 1 1 Z 0 0 1 1 1 1 1 1 0 0 0 0 1 M Rn Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

op A
C6-936 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Assembler symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field.

<Xm|SP> Is the 64-bit name of the general-purpose source register or stack pointer holding the modifier,
encoded in the "Rm" field.

Operation

 bits(64) target = X[n];

 bits(64) modifier = if source_is_sp then SP[] else X[m];

 if use_key_a then
 target = AuthIA(target, modifier, TRUE);
 else
 target = AuthIB(target, modifier, TRUE);

 X[30] = PC[] + 4;

 // Value in BTypeNext will be used to set PSTATE.BTYPE
 BTypeNext = '10';
 BranchTo(target, BranchType_INDCALL, FALSE);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-937
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.36 BR

Branch to Register branches unconditionally to an address in a register, with a hint that this is not a subroutine return.

Encoding

BR <Xn>

Decode for this encoding

 integer n = UInt(Rn);

Assembler symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field.

Operation

 bits(64) target = X[n];

 // Value in BTypeNext will be used to set PSTATE.BTYPE
 if InGuardedPage then
 if n == 16 || n == 17 then
 BTypeNext = '01';
 else
 BTypeNext = '11';
 else
 BTypeNext = '01';
 BranchTo(target, BranchType_INDIR, FALSE);

1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 Rn 0 0 0 0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

Z op A M Rm
C6-938 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.37 BRAA, BRAAZ, BRAB, BRABZ

Branch to Register, with pointer authentication. This instruction authenticates the address in the general-purpose
register that is specified by <Xn>, using a modifier and the specified key, and branches to the authenticated address.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xm|SP> for BRAA and BRAB.

• The value zero, for BRAAZ and BRABZ.

Key A is used for BRAA and BRAAZ, and key B is used for BRAB and BRABZ.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a
Translation fault is generated.

The authenticated address is not written back to the general-purpose register.

Integer

(FEAT_PAuth)

Key A, zero modifier variant

Applies when Z == 0 && M == 0 && Rm == 11111.

BRAAZ <Xn>

Key A, register modifier variant

Applies when Z == 1 && M == 0.

BRAA <Xn>, <Xm|SP>

Key B, zero modifier variant

Applies when Z == 0 && M == 1 && Rm == 11111.

BRABZ <Xn>

Key B, register modifier variant

Applies when Z == 1 && M == 1.

BRAB <Xn>, <Xm|SP>

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean use_key_a = (M == '0');
 boolean source_is_sp = ((Z == '1') && (m == 31));

 if !HavePACExt() then
 UNDEFINED;

 if Z == '0' && m != 31 then
 UNDEFINED;

1 1 0 1 0 1 1 Z 0 0 0 1 1 1 1 1 0 0 0 0 1 M Rn Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

op A
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-939
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Assembler symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field.

<Xm|SP> Is the 64-bit name of the general-purpose source register or stack pointer holding the modifier,
encoded in the "Rm" field.

Operation

 bits(64) target = X[n];

 bits(64) modifier = if source_is_sp then SP[] else X[m];

 if use_key_a then
 target = AuthIA(target, modifier, TRUE);
 else
 target = AuthIB(target, modifier, TRUE);

 // Value in BTypeNext will be used to set PSTATE.BTYPE
 if InGuardedPage then
 if n == 16 || n == 17 then
 BTypeNext = '01';
 else
 BTypeNext = '11';
 else
 BTypeNext = '01';
 BranchTo(target, BranchType_INDIR, FALSE);
C6-940 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.38 BRK

Breakpoint instruction. A BRK instruction generates a Breakpoint Instruction exception. The PE records the
exception in ESR_ELx, using the EC value 0x3c, and captures the value of the immediate argument in
ESR_ELx.ISS.

Encoding

BRK #<imm>

Decode for this encoding

 if HaveBTIExt() then
 SetBTypeCompatible(TRUE);

Assembler symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

 AArch64.SoftwareBreakpoint(imm16);

1 1 0 1 0 1 0 0 0 0 1 imm16 0 0 0 0 0
31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-941
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.39 BTI

Branch Target Identification. A BTI instruction is used to guard against the execution of instructions which are not
the intended target of a branch.

Outside of a guarded memory region, a BTI instruction executes as a NOP. Within a guarded memory region while
PSTATE.BTYPE != 0b00, a BTI instruction compatible with the current value of PSTATE.BTYPE will not generate
a Branch Target Exception and will allow execution of subsequent instructions within the memory region.

The operand <targets> passed to a BTI instruction determines the values of PSTATE.BTYPE which the BTI
instruction is compatible with.

Note

Within a guarded memory region, when PSTATE.BTYPE != 0b00, all instructions will generate a Branch Target
Exception, other than BRK, BTI, HLT, PACIASP, and PACIBSP, which might not. See the individual instructions for more
information.

System

(FEAT_BTI)

Encoding

BTI {<targets>}

Decode for this encoding

 SystemHintOp op;

 if CRm:op2 == '0100 xx0' then
 op = SystemHintOp_BTI;
 // Check branch target compatibility between BTI instruction and PSTATE.BTYPE
 SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));
 else
 EndOfInstruction();

Assembler symbols

<targets> Is the type of indirection, encoded in the "op2<2:1>" field. It can have the following values:

(omitted) when op2<2:1> = 00

c when op2<2:1> = 01

j when op2<2:1> = 10

jc when op2<2:1> = 11

Operation

 case op of
 when SystemHintOp_YIELD
 Hint_Yield();

 when SystemHintOp_DGH
 Hint_DGH();

 when SystemHintOp_WFE

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 x x 0 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
C6-942 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 Hint_WFE(-1, WFxType_WFE);

 when SystemHintOp_WFI
 Hint_WFI(-1, WFxType_WFI);

 when SystemHintOp_SEV
 SendEvent();

 when SystemHintOp_SEVL
 SendEventLocal();

 when SystemHintOp_ESB
 SynchronizeErrors();
 AArch64.ESBOperation();
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
 TakeUnmaskedSErrorInterrupts();

 when SystemHintOp_PSB
 ProfilingSynchronizationBarrier();

 when SystemHintOp_TSB
 TraceSynchronizationBarrier();

 when SystemHintOp_CSDB
 ConsumptionOfSpeculativeDataBarrier();

 when SystemHintOp_BTI
 SetBTypeNext('00');

 otherwise // do nothing
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-943
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.40 CASB, CASAB, CASALB, CASLB

Compare and Swap byte in memory reads an 8-bit byte from memory, and compares it against the value held in a
first register. If the comparison is equal, the value in a second register is written to memory. If the write is performed,
the read and write occur atomically such that no other modification of the memory location can take place between
the read and write.

• CASAB and CASALB load from memory with acquire semantics.

• CASLB and CASALB store to memory with release semantics.

• CASB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, is
restored to the values held in the register before the instruction was executed.

No offset

(FEAT_LSE)

CASAB variant

Applies when L == 1 && o0 == 0.

CASAB <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASALB variant

Applies when L == 1 && o0 == 1.

CASALB <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASB variant

Applies when L == 0 && o0 == 0.

CASB <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASLB variant

Applies when L == 0 && o0 == 1.

CASLB <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs);

 AccType ldacctype = if L == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

0 0 0 0 1 0 0 0 1 L 1 Rs o0 1 1 1 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
C6-944 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 AccType stacctype = if o0 == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs"
field.

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) comparevalue;
 bits(8) newvalue;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 comparevalue = X[s];
 newvalue = X[t];

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomicCompareAndSwap(address, comparevalue, newvalue, ldacctype, stacctype);

 X[s] = ZeroExtend(data, 32);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-945
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.41 CASH, CASAH, CASALH, CASLH

Compare and Swap halfword in memory reads a 16-bit halfword from memory, and compares it against the value
held in a first register. If the comparison is equal, the value in a second register is written to memory. If the write is
performed, the read and write occur atomically such that no other modification of the memory location can take
place between the read and write.

• CASAH and CASALH load from memory with acquire semantics.

• CASLH and CASALH store to memory with release semantics.

• CAS has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, is
restored to the values held in the register before the instruction was executed.

No offset

(FEAT_LSE)

CASAH variant

Applies when L == 1 && o0 == 0.

CASAH <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASALH variant

Applies when L == 1 && o0 == 1.

CASALH <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASH variant

Applies when L == 0 && o0 == 0.

CASH <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASLH variant

Applies when L == 0 && o0 == 1.

CASLH <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs);

 AccType ldacctype = if L == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

0 1 0 0 1 0 0 0 1 L 1 Rs o0 1 1 1 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
C6-946 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 AccType stacctype = if o0 == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs"
field.

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) comparevalue;
 bits(16) newvalue;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 comparevalue = X[s];
 newvalue = X[t];

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomicCompareAndSwap(address, comparevalue, newvalue, ldacctype, stacctype);

 X[s] = ZeroExtend(data, 32);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-947
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.42 CASP, CASPA, CASPAL, CASPL

Compare and Swap Pair of words or doublewords in memory reads a pair of 32-bit words or 64-bit doublewords
from memory, and compares them against the values held in the first pair of registers. If the comparison is equal,
the values in the second pair of registers are written to memory. If the writes are performed, the reads and writes
occur atomically such that no other modification of the memory location can take place between the reads and
writes.

• CASPA and CASPAL load from memory with acquire semantics.

• CASPL and CASPAL store to memory with release semantics.

• CAS has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.

If the instruction generates a synchronous Data Abort, the registers which are compared and loaded, that is <Ws> and
<W(s+1)>, or <Xs> and <X(s+1)>, are restored to the values held in the registers before the instruction was executed.

No offset

(FEAT_LSE)

32-bit CASP variant

Applies when sz == 0 && L == 0 && o0 == 0.

CASP <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit CASPA variant

Applies when sz == 0 && L == 1 && o0 == 0.

CASPA <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit CASPAL variant

Applies when sz == 0 && L == 1 && o0 == 1.

CASPAL <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit CASPL variant

Applies when sz == 0 && L == 0 && o0 == 1.

CASPL <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

64-bit CASP variant

Applies when sz == 1 && L == 0 && o0 == 0.

CASP <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

0 sz 0 0 1 0 0 0 0 L 1 Rs o0 1 1 1 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

Rt2
C6-948 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit CASPA variant

Applies when sz == 1 && L == 1 && o0 == 0.

CASPA <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

64-bit CASPAL variant

Applies when sz == 1 && L == 1 && o0 == 1.

CASPAL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

64-bit CASPL variant

Applies when sz == 1 && L == 0 && o0 == 1.

CASPL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;
 if Rs<0> == '1' then UNDEFINED;
 if Rt<0> == '1' then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs);

 integer datasize = 32 << UInt(sz);
 AccType ldacctype = if L == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if o0 == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the first general-purpose register to be compared and loaded, encoded in the
"Rs" field. <Ws> must be an even-numbered register.

<W(s+1)> Is the 32-bit name of the second general-purpose register to be compared and loaded.

<Wt> Is the 32-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt"
field. <Wt> must be an even-numbered register.

<W(t+1)> Is the 32-bit name of the second general-purpose register to be conditionally stored.

<Xs> Is the 64-bit name of the first general-purpose register to be compared and loaded, encoded in the
"Rs" field. <Xs> must be an even-numbered register.

<X(s+1)> Is the 64-bit name of the second general-purpose register to be compared and loaded.

<Xt> Is the 64-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt"
field. <Xt> must be an even-numbered register.

<X(t+1)> Is the 64-bit name of the second general-purpose register to be conditionally stored.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(2*datasize) comparevalue;
 bits(2*datasize) newvalue;
 bits(2*datasize) data;

 bits(datasize) s1 = X[s];
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-949
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 bits(datasize) s2 = X[s+1];
 bits(datasize) t1 = X[t];
 bits(datasize) t2 = X[t+1];
 comparevalue = if BigEndian(ldacctype) then s1:s2 else s2:s1;
 newvalue = if BigEndian(stacctype) then t1:t2 else t2:t1;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomicCompareAndSwap(address, comparevalue, newvalue, ldacctype, stacctype);

 if BigEndian(ldacctype) then
 X[s] = data<2*datasize-1:datasize>;
 X[s+1] = data<datasize-1:0>;
 else
 X[s] = data<datasize-1:0>;
 X[s+1] = data<2*datasize-1:datasize>;
C6-950 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.43 CAS, CASA, CASAL, CASL

Compare and Swap word or doubleword in memory reads a 32-bit word or 64-bit doubleword from memory, and
compares it against the value held in a first register. If the comparison is equal, the value in a second register is
written to memory. If the write is performed, the read and write occur atomically such that no other modification of
the memory location can take place between the read and write.

• CASA and CASAL load from memory with acquire semantics.

• CASL and CASAL store to memory with release semantics.

• CAS has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, or
<Xs>, is restored to the value held in the register before the instruction was executed.

No offset

(FEAT_LSE)

32-bit CAS variant

Applies when size == 10 && L == 0 && o0 == 0.

CAS <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit CASA variant

Applies when size == 10 && L == 1 && o0 == 0.

CASA <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit CASAL variant

Applies when size == 10 && L == 1 && o0 == 1.

CASAL <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit CASL variant

Applies when size == 10 && L == 0 && o0 == 1.

CASL <Ws>, <Wt>, [<Xn|SP>{,#0}]

64-bit CAS variant

Applies when size == 11 && L == 0 && o0 == 0.

CAS <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit CASA variant

Applies when size == 11 && L == 1 && o0 == 0.

1 x 0 0 1 0 0 0 1 L 1 Rs o0 1 1 1 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-951
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
CASA <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit CASAL variant

Applies when size == 11 && L == 1 && o0 == 1.

CASAL <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit CASL variant

Applies when size == 11 && L == 0 && o0 == 1.

CASL <Xs>, <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if L == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if o0 == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs"
field.

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<Xs> Is the 64-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs"
field.

<Xt> Is the 64-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) comparevalue;
 bits(datasize) newvalue;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 comparevalue = X[s];
 newvalue = X[t];

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomicCompareAndSwap(address, comparevalue, newvalue, ldacctype, stacctype);
C6-952 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 X[s] = ZeroExtend(data, regsize);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-953
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.44 CBNZ

Compare and Branch on Nonzero compares the value in a register with zero, and conditionally branches to a label
at a PC-relative offset if the comparison is not equal. It provides a hint that this is not a subroutine call or return.
This instruction does not affect the condition flags.

32-bit variant

Applies when sf == 0.

CBNZ <Wt>, <label>

64-bit variant

Applies when sf == 1.

CBNZ <Xt>, <label>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer datasize = if sf == '1' then 64 else 32;
 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 bits(datasize) operand1 = X[t];
 if IsZero(operand1) == FALSE then
 BranchTo(PC[] + offset, BranchType_DIR, TRUE);

sf 0 1 1 0 1 0 1 imm19 Rt
31 30 29 28 27 26 25 24 23 5 4 0

op
C6-954 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.45 CBZ

Compare and Branch on Zero compares the value in a register with zero, and conditionally branches to a label at a
PC-relative offset if the comparison is equal. It provides a hint that this is not a subroutine call or return. This
instruction does not affect condition flags.

32-bit variant

Applies when sf == 0.

CBZ <Wt>, <label>

64-bit variant

Applies when sf == 1.

CBZ <Xt>, <label>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer datasize = if sf == '1' then 64 else 32;
 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 bits(datasize) operand1 = X[t];
 if IsZero(operand1) == TRUE then
 BranchTo(PC[] + offset, BranchType_DIR, TRUE);

sf 0 1 1 0 1 0 0 imm19 Rt
31 30 29 28 27 26 25 24 23 5 4 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-955
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.46 CCMN (immediate)

Conditional Compare Negative (immediate) sets the value of the condition flags to the result of the comparison of
a register value and a negated immediate value if the condition is TRUE, and an immediate value otherwise.

32-bit variant

Applies when sf == 0.

CCMN <Wn>, #<imm>, #<nzcv>, <cond>

64-bit variant

Applies when sf == 1.

CCMN <Xn>, #<imm>, #<nzcv>, <cond>

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer datasize = if sf == '1' then 64 else 32;
 bits(4) flags = nzcv;
 bits(datasize) imm = ZeroExtend(imm5, datasize);

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<imm> Is a five bit unsigned (positive) immediate encoded in the "imm5" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 if ConditionHolds(cond) then
 bits(datasize) operand1 = X[n];
 (-, flags) = AddWithCarry(operand1, imm, '0');
 PSTATE.<N,Z,C,V> = flags;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 1 1 1 0 1 0 0 1 0 imm5 cond 1 0 Rn 0 nzcv
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0

op
C6-956 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-957
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.47 CCMN (register)

Conditional Compare Negative (register) sets the value of the condition flags to the result of the comparison of a
register value and the inverse of another register value if the condition is TRUE, and an immediate value otherwise.

32-bit variant

Applies when sf == 0.

CCMN <Wn>, <Wm>, #<nzcv>, <cond>

64-bit variant

Applies when sf == 1.

CCMN <Xn>, <Xm>, #<nzcv>, <cond>

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;
 bits(4) flags = nzcv;

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 if ConditionHolds(cond) then
 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = X[m];
 (-, flags) = AddWithCarry(operand1, operand2, '0');
 PSTATE.<N,Z,C,V> = flags;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 0 1 1 1 0 1 0 0 1 0 Rm cond 0 0 Rn 0 nzcv
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0

op
C6-958 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-959
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.48 CCMP (immediate)

Conditional Compare (immediate) sets the value of the condition flags to the result of the comparison of a register
value and an immediate value if the condition is TRUE, and an immediate value otherwise.

32-bit variant

Applies when sf == 0.

CCMP <Wn>, #<imm>, #<nzcv>, <cond>

64-bit variant

Applies when sf == 1.

CCMP <Xn>, #<imm>, #<nzcv>, <cond>

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer datasize = if sf == '1' then 64 else 32;
 bits(4) flags = nzcv;
 bits(datasize) imm = ZeroExtend(imm5, datasize);

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<imm> Is a five bit unsigned (positive) immediate encoded in the "imm5" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 if ConditionHolds(cond) then
 bits(datasize) operand1 = X[n];
 bits(datasize) operand2;
 operand2 = NOT(imm);
 (-, flags) = AddWithCarry(operand1, operand2, '1');
 PSTATE.<N,Z,C,V> = flags;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 1 1 1 1 0 1 0 0 1 0 imm5 cond 1 0 Rn 0 nzcv
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0

op
C6-960 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-961
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.49 CCMP (register)

Conditional Compare (register) sets the value of the condition flags to the result of the comparison of two registers
if the condition is TRUE, and an immediate value otherwise.

32-bit variant

Applies when sf == 0.

CCMP <Wn>, <Wm>, #<nzcv>, <cond>

64-bit variant

Applies when sf == 1.

CCMP <Xn>, <Xm>, #<nzcv>, <cond>

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;
 bits(4) flags = nzcv;

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 if ConditionHolds(cond) then
 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = X[m];
 operand2 = NOT(operand2);
 (-, flags) = AddWithCarry(operand1, operand2, '1');
 PSTATE.<N,Z,C,V> = flags;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 1 1 1 1 0 1 0 0 1 0 Rm cond 0 0 Rn 0 nzcv
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0

op
C6-962 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-963
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.50 CFINV

Invert Carry Flag. This instruction inverts the value of the PSTATE.C flag.

System

(FEAT_FlagM)

Encoding

CFINV

Decode for this encoding

 if !HaveFlagManipulateExt() then UNDEFINED;

Operation

 PSTATE.C = NOT(PSTATE.C);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 (0) (0) (0) (0) 0 0 0 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

CRm
C6-964 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.51 CFP

Control Flow Prediction Restriction by Context prevents control flow predictions that predict execution addresses
based on information gathered from earlier execution within a particular execution context. Control flow predictions
determined by the actions of code in the target execution context or contexts appearing in program order before the
instruction cannot be used to exploitatively control speculative execution occurring after the instruction is complete
and synchronized.

For more information, see CFP RCTX.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode for this instruction.

System

(FEAT_SPECRES)

Encoding

CFP RCTX, <Xt>

 is equivalent to

SYS #3, C7, C3, #4, <Xt>

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 0 0 Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-965
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.52 CINC

Conditional Increment returns, in the destination register, the value of the source register incremented by 1 if the
condition is TRUE, and otherwise returns the value of the source register.

This instruction is an alias of the CSINC instruction. This means that:

• The encodings in this description are named to match the encodings of CSINC.

• The description of CSINC gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

CINC <Wd>, <Wn>, <cond>

 is equivalent to

CSINC <Wd>, <Wn>, <Wn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

64-bit variant

Applies when sf == 1.

CINC <Xd>, <Xn>, <cond>

 is equivalent to

CSINC <Xd>, <Xn>, <Xn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least
significant bit inverted.

Operation

The description of CSINC gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 0 1 0 0 !=11111 !=111x 0 1 !=11111 Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op Rm cond o2 Rn
C6-966 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-967
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.53 CINV

Conditional Invert returns, in the destination register, the bitwise inversion of the value of the source register if the
condition is TRUE, and otherwise returns the value of the source register.

This instruction is an alias of the CSINV instruction. This means that:

• The encodings in this description are named to match the encodings of CSINV.

• The description of CSINV gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

CINV <Wd>, <Wn>, <cond>

 is equivalent to

CSINV <Wd>, <Wn>, <Wn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

64-bit variant

Applies when sf == 1.

CINV <Xd>, <Xn>, <cond>

 is equivalent to

CSINV <Xd>, <Xn>, <Xn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least
significant bit inverted.

Operation

The description of CSINV gives the operational pseudocode for this instruction.

sf 1 0 1 1 0 1 0 1 0 0 !=11111 !=111x 0 0 !=11111 Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op Rm cond o2 Rn
C6-968 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-969
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.54 CLREX

Clear Exclusive clears the local monitor of the executing PE.

Encoding

CLREX {#<imm>}

Decode for this encoding

 // CRm field is ignored

Assembler symbols

<imm> Is an optional 4-bit unsigned immediate, in the range 0 to 15, defaulting to 15 and encoded in the
"CRm" field.

Operation

 ClearExclusiveLocal(ProcessorID());

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 0 1 0 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0
C6-970 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.55 CLS

Count Leading Sign bits counts the number of leading bits of the source register that have the same value as the
most significant bit of the register, and writes the result to the destination register. This count does not include the
most significant bit of the source register.

32-bit variant

Applies when sf == 0.

CLS <Wd>, <Wn>

64-bit variant

Applies when sf == 1.

CLS <Xd>, <Xn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer datasize = if sf == '1' then 64 else 32;

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 integer result;
 bits(datasize) operand1 = X[n];

 result = CountLeadingSignBits(operand1);

 X[d] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-971
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.
C6-972 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.56 CLZ

Count Leading Zeros counts the number of binary zero bits before the first binary one bit in the value of the source
register, and writes the result to the destination register.

32-bit variant

Applies when sf == 0.

CLZ <Wd>, <Wn>

64-bit variant

Applies when sf == 1.

CLZ <Xd>, <Xn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer datasize = if sf == '1' then 64 else 32;

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 integer result;
 bits(datasize) operand1 = X[n];

 result = CountLeadingZeroBits(operand1);
 X[d] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-973
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.57 CMN (extended register)

Compare Negative (extended register) adds a register value and a sign or zero-extended register value, followed by
an optional left shift amount. The argument that is extended from the <Rm> register can be a byte, halfword, word,
or doubleword. It updates the condition flags based on the result, and discards the result.

This instruction is an alias of the ADDS (extended register) instruction. This means that:

• The encodings in this description are named to match the encodings of ADDS (extended register).

• The description of ADDS (extended register) gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

CMN <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

 is equivalent to

ADDS WZR, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CMN <Xn|SP>, <R><m>{, <extend> {#<amount>}}

 is equivalent to

ADDS XZR, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

and is always the preferred disassembly.

Assembler symbols

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in the "option" field. It can have the following values:

W when option = 00x

W when option = 010

X when option = x11

W when option = 10x

W when option = 110

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in
the "Rm" field.

sf 0 1 0 1 0 1 1 0 0 1 Rm option imm3 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 0

op S Rd
C6-974 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

LSL|UXTW when option = 010

UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

UXTW when option = 010

LSL|UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3"
is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in
the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL,
and is optional when <extend> is present but not LSL.

Operation

The description of ADDS (extended register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-975
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.58 CMN (immediate)

Compare Negative (immediate) adds a register value and an optionally-shifted immediate value. It updates the
condition flags based on the result, and discards the result.

This instruction is an alias of the ADDS (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of ADDS (immediate).

• The description of ADDS (immediate) gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

CMN <Wn|WSP>, #<imm>{, <shift>}

 is equivalent to

ADDS WZR, <Wn|WSP>, #<imm> {, <shift>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CMN <Xn|SP>, #<imm>{, <shift>}

 is equivalent to

ADDS XZR, <Xn|SP>, #<imm> {, <shift>}

and is always the preferred disassembly.

Assembler symbols

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #12 when sh = 1

Operation

The description of ADDS (immediate) gives the operational pseudocode for this instruction.

sf 0 1 1 0 0 0 1 0 sh imm12 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S Rd
C6-976 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-977
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.59 CMN (shifted register)

Compare Negative (shifted register) adds a register value and an optionally-shifted register value. It updates the
condition flags based on the result, and discards the result.

This instruction is an alias of the ADDS (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of ADDS (shifted register).

• The description of ADDS (shifted register) gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

CMN <Wn>, <Wm>{, <shift> #<amount>}

 is equivalent to

ADDS WZR, <Wn>, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CMN <Xn>, <Xm>{, <shift> #<amount>}

 is equivalent to

ADDS XZR, <Xn>, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

sf 0 1 0 1 0 1 1 shift 0 Rm imm6 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S Rd
C6-978 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of ADDS (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-979
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.60 CMP (extended register)

Compare (extended register) subtracts a sign or zero-extended register value, followed by an optional left shift
amount, from a register value. The argument that is extended from the <Rm> register can be a byte, halfword, word,
or doubleword. It updates the condition flags based on the result, and discards the result.

This instruction is an alias of the SUBS (extended register) instruction. This means that:

• The encodings in this description are named to match the encodings of SUBS (extended register).

• The description of SUBS (extended register) gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

CMP <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

 is equivalent to

SUBS WZR, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CMP <Xn|SP>, <R><m>{, <extend> {#<amount>}}

 is equivalent to

SUBS XZR, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

and is always the preferred disassembly.

Assembler symbols

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in the "option" field. It can have the following values:

W when option = 00x

W when option = 010

X when option = x11

W when option = 10x

W when option = 110

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in
the "Rm" field.

sf 1 1 0 1 0 1 1 0 0 1 Rm option imm3 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 0

op S Rd
C6-980 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

LSL|UXTW when option = 010

UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

UXTW when option = 010

LSL|UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3"
is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in
the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL,
and is optional when <extend> is present but not LSL.

Operation

The description of SUBS (extended register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-981
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.61 CMP (immediate)

Compare (immediate) subtracts an optionally-shifted immediate value from a register value. It updates the condition
flags based on the result, and discards the result.

This instruction is an alias of the SUBS (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of SUBS (immediate).

• The description of SUBS (immediate) gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

CMP <Wn|WSP>, #<imm>{, <shift>}

 is equivalent to

SUBS WZR, <Wn|WSP>, #<imm> {, <shift>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CMP <Xn|SP>, #<imm>{, <shift>}

 is equivalent to

SUBS XZR, <Xn|SP>, #<imm> {, <shift>}

and is always the preferred disassembly.

Assembler symbols

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #12 when sh = 1

Operation

The description of SUBS (immediate) gives the operational pseudocode for this instruction.

sf 1 1 1 0 0 0 1 0 sh imm12 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S Rd
C6-982 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-983
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.62 CMP (shifted register)

Compare (shifted register) subtracts an optionally-shifted register value from a register value. It updates the
condition flags based on the result, and discards the result.

This instruction is an alias of the SUBS (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of SUBS (shifted register).

• The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

CMP <Wn>, <Wm>{, <shift> #<amount>}

 is equivalent to

SUBS WZR, <Wn>, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CMP <Xn>, <Xm>{, <shift> #<amount>}

 is equivalent to

SUBS XZR, <Xn>, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

sf 1 1 0 1 0 1 1 shift 0 Rm imm6 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S Rd
C6-984 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-985
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.63 CMPP

Compare with Tag subtracts the 56-bit address held in the second source register from the 56-bit address held in the
first source register, updates the condition flags based on the result of the subtraction, and discards the result.

This instruction is an alias of the SUBPS instruction. This means that:

• The encodings in this description are named to match the encodings of SUBPS.

• The description of SUBPS gives the operational pseudocode for this instruction.

Integer

()

Encoding

CMPP <Xn|SP>, <Xm|SP>

 is equivalent to

SUBPS XZR, <Xn|SP>, <Xm|SP>

and is always the preferred disassembly.

Assembler symbols

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm|SP> Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the
"Xm" field.

Operation

The description of SUBPS gives the operational pseudocode for this instruction.

1 0 1 1 1 0 1 0 1 1 0 Xm 0 0 0 0 0 0 Xn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

Xd
C6-986 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.64 CNEG

Conditional Negate returns, in the destination register, the negated value of the source register if the condition is
TRUE, and otherwise returns the value of the source register.

This instruction is an alias of the CSNEG instruction. This means that:

• The encodings in this description are named to match the encodings of CSNEG.

• The description of CSNEG gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

CNEG <Wd>, <Wn>, <cond>

 is equivalent to

CSNEG <Wd>, <Wn>, <Wn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

64-bit variant

Applies when sf == 1.

CNEG <Xd>, <Xn>, <cond>

 is equivalent to

CSNEG <Xd>, <Xn>, <Xn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least
significant bit inverted.

Operation

The description of CSNEG gives the operational pseudocode for this instruction.

sf 1 0 1 1 0 1 0 1 0 0 Rm !=111x 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op cond o2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-987
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-988 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.65 CPP

Cache Prefetch Prediction Restriction by Context prevents cache allocation predictions that predict execution
addresses based on information gathered from earlier execution within a particular execution context. Cache
allocation predictions determined by the actions of code in the target execution context or contexts appearing in
program order before the instruction cannot be used to exploitatively control speculative execution occurring after
the instruction is complete and synchronized.

For more information, see CPP RCTX.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode for this instruction.

System

(FEAT_SPECRES)

Encoding

CPP RCTX, <Xt>

 is equivalent to

SYS #3, C7, C3, #7, <Xt>

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-989
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.66 CRC32B, CRC32H, CRC32W, CRC32X

CRC32 checksum performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose
register. It takes an input CRC value in the first source operand, performs a CRC on the input value in the second
source operand, and returns the output CRC value. The second source operand can be 8, 16, 32, or 64 bits. To align
with common usage, the bit order of the values is reversed as part of the operation, and the polynomial 0x04C11DB7
is used for the CRC calculation.

In Armv8-A, this is an OPTIONAL instruction, and in Armv8.1 it is mandatory for all implementations to implement
it.

Note

ID_AA64ISAR0_EL1.CRC32 indicates whether this instruction is supported.

CRC32B variant

Applies when sf == 0 && sz == 00.

CRC32B <Wd>, <Wn>, <Wm>

CRC32H variant

Applies when sf == 0 && sz == 01.

CRC32H <Wd>, <Wn>, <Wm>

CRC32W variant

Applies when sf == 0 && sz == 10.

CRC32W <Wd>, <Wn>, <Wm>

CRC32X variant

Applies when sf == 1 && sz == 11.

CRC32X <Wd>, <Wn>, <Xm>

Decode for all variants of this encoding

 if !HaveCRCExt() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sf == '1' && sz != '11' then UNDEFINED;
 if sf == '0' && sz == '11' then UNDEFINED;
 integer size = 8 << UInt(sz);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose accumulator output register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose accumulator input register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose data source register, encoded in the "Rm" field.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 1 0 0 sz Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

C

C6-990 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Wm> Is the 32-bit name of the general-purpose data source register, encoded in the "Rm" field.

Operation

 bits(32) acc = X[n]; // accumulator
 bits(size) val = X[m]; // input value
 bits(32) poly = 0x04C11DB7<31:0>;

 bits(32+size) tempacc = BitReverse(acc):Zeros(size);
 bits(size+32) tempval = BitReverse(val):Zeros(32);

 // Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
 X[d] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-991
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.67 CRC32CB, CRC32CH, CRC32CW, CRC32CX

CRC32 checksum performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose
register. It takes an input CRC value in the first source operand, performs a CRC on the input value in the second
source operand, and returns the output CRC value. The second source operand can be 8, 16, 32, or 64 bits. To align
with common usage, the bit order of the values is reversed as part of the operation, and the polynomial 0x1EDC6F41
is used for the CRC calculation.

In Armv8-A, this is an OPTIONAL instruction, and in Armv8.1 it is mandatory for all implementations to implement
it.

Note

ID_AA64ISAR0_EL1.CRC32 indicates whether this instruction is supported.

CRC32CB variant

Applies when sf == 0 && sz == 00.

CRC32CB <Wd>, <Wn>, <Wm>

CRC32CH variant

Applies when sf == 0 && sz == 01.

CRC32CH <Wd>, <Wn>, <Wm>

CRC32CW variant

Applies when sf == 0 && sz == 10.

CRC32CW <Wd>, <Wn>, <Wm>

CRC32CX variant

Applies when sf == 1 && sz == 11.

CRC32CX <Wd>, <Wn>, <Xm>

Decode for all variants of this encoding

 if !HaveCRCExt() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sf == '1' && sz != '11' then UNDEFINED;
 if sf == '0' && sz == '11' then UNDEFINED;
 integer size = 8 << UInt(sz);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose accumulator output register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose accumulator input register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose data source register, encoded in the "Rm" field.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 1 0 1 sz Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

C

C6-992 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Wm> Is the 32-bit name of the general-purpose data source register, encoded in the "Rm" field.

Operation

 bits(32) acc = X[n]; // accumulator
 bits(size) val = X[m]; // input value
 bits(32) poly = 0x1EDC6F41<31:0>;

 bits(32+size) tempacc = BitReverse(acc):Zeros(size);
 bits(size+32) tempval = BitReverse(val):Zeros(32);

 // Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
 X[d] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-993
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.68 CSDB

Consumption of Speculative Data Barrier is a memory barrier that controls speculative execution and data value
prediction.

No instruction other than branch instructions appearing in program order after the CSDB can be speculatively
executed using the results of any:

• Data value predictions of any instructions.

• PSTATE.{N,Z,C,V} predictions of any instructions other than conditional branch instructions appearing in
program order before the CSDB that have not been architecturally resolved.

• Predictions of SVE predication state for any SVE instructions.

Note

For purposes of the definition of CSDB, PSTATE.{N,Z,C,V} is not considered a data value. This definition permits:

• Control flow speculation before and after the CSDB.

• Speculative execution of conditional data processing instructions after the CSDB, unless they use the results
of data value or PSTATE.{N,Z,C,V} predictions of instructions appearing in program order before the CSDB
that have not been architecturally resolved.

Encoding

CSDB

Decode for this encoding

 // Empty.

Operation

 ConsumptionOfSpeculativeDataBarrier();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
C6-994 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.69 CSEL

If the condition is true, Conditional Select writes the value of the first source register to the destination register. If
the condition is false, it writes the value of the second source register to the destination register.

32-bit variant

Applies when sf == 0.

CSEL <Wd>, <Wn>, <Wm>, <cond>

64-bit variant

Applies when sf == 1.

CSEL <Xd>, <Xn>, <Xm>, <cond>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 bits(datasize) result;
 if ConditionHolds(cond) then
 result = X[n];
 else
 result = X[m];

 X[d] = result;

sf 0 0 1 1 0 1 0 1 0 0 Rm cond 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op o2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-995
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-996 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.70 CSET

Conditional Set sets the destination register to 1 if the condition is TRUE, and otherwise sets it to 0.

This instruction is an alias of the CSINC instruction. This means that:

• The encodings in this description are named to match the encodings of CSINC.

• The description of CSINC gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

CSET <Wd>, <cond>

 is equivalent to

CSINC <Wd>, WZR, WZR, invert(<cond>)

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CSET <Xd>, <cond>

 is equivalent to

CSINC <Xd>, XZR, XZR, invert(<cond>)

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least
significant bit inverted.

Operation

The description of CSINC gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 0 1 1 0 1 0 1 0 0 1 1 1 1 1 !=111x 0 1 1 1 1 1 1 Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op Rm cond o2 Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-997
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-998 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.71 CSETM

Conditional Set Mask sets all bits of the destination register to 1 if the condition is TRUE, and otherwise sets all bits
to 0.

This instruction is an alias of the CSINV instruction. This means that:

• The encodings in this description are named to match the encodings of CSINV.

• The description of CSINV gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

CSETM <Wd>, <cond>

 is equivalent to

CSINV <Wd>, WZR, WZR, invert(<cond>)

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CSETM <Xd>, <cond>

 is equivalent to

CSINV <Xd>, XZR, XZR, invert(<cond>)

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least
significant bit inverted.

Operation

The description of CSINV gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1 !=111x 0 0 1 1 1 1 1 Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op Rm cond o2 Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-999
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1000 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.72 CSINC

Conditional Select Increment returns, in the destination register, the value of the first source register if the condition
is TRUE, and otherwise returns the value of the second source register incremented by 1.

This instruction is used by the aliases CINC and CSET. See Alias conditions on page C6-1001 for details of when
each alias is preferred.

32-bit variant

Applies when sf == 0.

CSINC <Wd>, <Wn>, <Wm>, <cond>

64-bit variant

Applies when sf == 1.

CSINC <Xd>, <Xn>, <Xm>, <cond>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Alias is preferred when

 CINC Rm != '11111' && cond != '111x' && Rn != '11111' && Rn == Rm

 CSET Rm == '11111' && cond != '111x' && Rn == '11111'

sf 0 0 1 1 0 1 0 1 0 0 Rm cond 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op o2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1001
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) result;
 if ConditionHolds(cond) then
 result = X[n];
 else
 result = X[m];
 result = result + 1;

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1002 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.73 CSINV

Conditional Select Invert returns, in the destination register, the value of the first source register if the condition is
TRUE, and otherwise returns the bitwise inversion value of the second source register.

This instruction is used by the aliases CINV and CSETM. See Alias conditions on page C6-1003 for details of when
each alias is preferred.

32-bit variant

Applies when sf == 0.

CSINV <Wd>, <Wn>, <Wm>, <cond>

64-bit variant

Applies when sf == 1.

CSINV <Xd>, <Xn>, <Xm>, <cond>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Alias is preferred when

 CINV Rm != '11111' && cond != '111x' && Rn != '11111' && Rn == Rm

 CSETM Rm == '11111' && cond != '111x' && Rn == '11111'

sf 1 0 1 1 0 1 0 1 0 0 Rm cond 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op o2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1003
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) result;
 if ConditionHolds(cond) then
 result = X[n];
 else
 result = X[m];
 result = NOT(result);

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1004 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.74 CSNEG

Conditional Select Negation returns, in the destination register, the value of the first source register if the condition
is TRUE, and otherwise returns the negated value of the second source register.

This instruction is used by the alias CNEG. See Alias conditions on page C6-1005 for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

CSNEG <Wd>, <Wn>, <Wm>, <cond>

64-bit variant

Applies when sf == 1.

CSNEG <Xd>, <Xn>, <Xm>, <cond>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 bits(datasize) result;
 if ConditionHolds(cond) then
 result = X[n];

Alias is preferred when

 CNEG cond != '111x' && Rn == Rm

sf 1 0 1 1 0 1 0 1 0 0 Rm cond 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op o2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1005
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 else
 result = X[m];
 result = NOT(result);
 result = result + 1;

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1006 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.75 DC

Data Cache operation. For more information, see op0==0b01, cache maintenance, TLB maintenance, and address
translation instructions on page C5-399.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode for this instruction.

Encoding

DC <dc_op>, <Xt>

 is equivalent to

SYS #<op1>, C7, <Cm>, #<op2>, <Xt>

and is the preferred disassembly when SysOp(op1,'0111',CRm,op2) == Sys_DC.

Assembler symbols

<dc_op> Is a DC instruction name, as listed for the DC system instruction group, encoded in the
"op1:CRm:op2" field. It can have the following values:

IVAC when op1 = 000, CRm = 0110, op2 = 001

ISW when op1 = 000, CRm = 0110, op2 = 010

CSW when op1 = 000, CRm = 1010, op2 = 010

CISW when op1 = 000, CRm = 1110, op2 = 010

ZVA when op1 = 011, CRm = 0100, op2 = 001

CVAC when op1 = 011, CRm = 1010, op2 = 001

CVAU when op1 = 011, CRm = 1011, op2 = 001

CIVAC when op1 = 011, CRm = 1110, op2 = 001

When FEAT_MTE2 is implemented, the following values are also valid:

IGVAC when op1 = 000, CRm = 0110, op2 = 011

IGSW when op1 = 000, CRm = 0110, op2 = 100

IGDVAC when op1 = 000, CRm = 0110, op2 = 101

IGDSW when op1 = 000, CRm = 0110, op2 = 110

CGSW when op1 = 000, CRm = 1010, op2 = 100

CGDSW when op1 = 000, CRm = 1010, op2 = 110

CIGSW when op1 = 000, CRm = 1110, op2 = 100

CIGDSW when op1 = 000, CRm = 1110, op2 = 110

When FEAT_MTE is implemented, the following values are also valid:

GVA when op1 = 011, CRm = 0100, op2 = 011

GZVA when op1 = 011, CRm = 0100, op2 = 100

CGVAC when op1 = 011, CRm = 1010, op2 = 011

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 0 1 1 1 CRm op2 Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L CRn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1007
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
CGDVAC when op1 = 011, CRm = 1010, op2 = 101

CGVAP when op1 = 011, CRm = 1100, op2 = 011

CGDVAP when op1 = 011, CRm = 1100, op2 = 101

CGVADP when op1 = 011, CRm = 1101, op2 = 011

CGDVADP when op1 = 011, CRm = 1101, op2 = 101

CIGVAC when op1 = 011, CRm = 1110, op2 = 011

CIGDVAC when op1 = 011, CRm = 1110, op2 = 101

When FEAT_DPB is implemented, the following value is also valid:

CVAP when op1 = 011, CRm = 1100, op2 = 001

When FEAT_DPB2 is implemented, the following value is also valid:

CVADP when op1 = 011, CRm = 1101, op2 = 001

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.
C6-1008 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.76 DCPS1

Debug Change PE State to EL1, when executed in Debug state:

• If executed at EL0 changes the current Exception level and SP to EL1 using SP_EL1.

• Otherwise, if executed at ELx, selects SP_ELx.

The target exception level of a DCPS1 instruction is:

• EL1 if the instruction is executed at EL0.

• Otherwise, the Exception level at which the instruction is executed.

When the target Exception level of a DCPS1 instruction is ELx, on executing this instruction:

• ELR_ELx becomes UNKNOWN.

• SPSR_ELx becomes UNKNOWN.

• ESR_ELx becomes UNKNOWN.

• DLR_EL0 and DSPSR_EL0 become UNKNOWN.

• The endianness is set according to SCTLR_ELx.EE.

This instruction is UNDEFINED at EL0 in Non-secure state if EL2 is implemented and HCR_EL2.TGE == 1.

This instruction is always UNDEFINED in Non-debug state.

For more information on the operation of the DCPSn instructions, see DCPS<n> on page H2-7366.

Encoding

DCPS1 {#<imm>}

Decode for this encoding

 if !Halted() then UNDEFINED;

Assembler symbols

<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in
the "imm16" field.

Operation

 DCPSInstruction(LL);

1 1 0 1 0 1 0 0 1 0 1 imm16 0 0 0 0 1
31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0

LL
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1009
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.77 DCPS2

Debug Change PE State to EL2, when executed in Debug state:

• If executed at EL0 or EL1 changes the current Exception level and SP to EL2 using SP_EL2.

• Otherwise, if executed at ELx, selects SP_ELx.

The target exception level of a DCPS2 instruction is:

• EL2 if the instruction is executed at an exception level that is not EL3.

• EL3 if the instruction is executed at EL3.

When the target Exception level of a DCPS2 instruction is ELx, on executing this instruction:

• ELR_ELx becomes UNKNOWN.

• SPSR_ELx becomes UNKNOWN.

• ESR_ELx becomes UNKNOWN.

• DLR_EL0 and DSPSR_EL0 become UNKNOWN.

• The endianness is set according to SCTLR_ELx.EE.

This instruction is UNDEFINED at the following exception levels:

• All exception levels if EL2 is not implemented.

• At EL0 and EL1 if EL2 is disabled in the current Security state.

This instruction is always UNDEFINED in Non-debug state.

For more information on the operation of the DCPSn instructions, see DCPS<n> on page H2-7366.

Encoding

DCPS2 {#<imm>}

Decode for this encoding

 if !Halted() then UNDEFINED;

Assembler symbols

<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in
the "imm16" field.

Operation

 DCPSInstruction(LL);

1 1 0 1 0 1 0 0 1 0 1 imm16 0 0 0 1 0
31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0

LL
C6-1010 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.78 DCPS3

Debug Change PE State to EL3, when executed in Debug state:

• If executed at EL3 selects SP_EL3.

• Otherwise, changes the current Exception level and SP to EL3 using SP_EL3.

The target exception level of a DCPS3 instruction is EL3.

On executing a DCPS3 instruction:

• ELR_EL3 becomes UNKNOWN.

• SPSR_EL3 becomes UNKNOWN.

• ESR_EL3 becomes UNKNOWN.

• DLR_EL0 and DSPSR_EL0 become UNKNOWN.

• The endianness is set according to SCTLR_EL3.EE.

This instruction is UNDEFINED at all exception levels if either:

• EDSCR.SDD == 1.

• EL3 is not implemented.

This instruction is always UNDEFINED in Non-debug state.

For more information on the operation of the DCPSn instructions, see DCPS<n> on page H2-7366.

Encoding

DCPS3 {#<imm>}

Decode for this encoding

 if !Halted() then UNDEFINED;

Assembler symbols

<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in
the "imm16" field.

Operation

 DCPSInstruction(LL);

1 1 0 1 0 1 0 0 1 0 1 imm16 0 0 0 1 1
31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0

LL
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1011
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.79 DGH

DGH is a hint instruction. A DGH instruction is not expected to be performance optimal to merge memory accesses
with Normal Non-cacheable or Device-GRE attributes appearing in program order before the hint instruction with
any memory accesses appearing after the hint instruction into a single memory transaction on an interconnect.

System

(FEAT_DGH)

Encoding

DGH

Decode for this encoding

 if !HaveDGHExt() then EndOfInstruction();

Operation

 Hint_DGH();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
C6-1012 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.80 DMB

Data Memory Barrier is a memory barrier that ensures the ordering of observations of memory accesses, see Data
Memory Barrier (DMB) on page B2-147.

Encoding

DMB <option>|#<imm>

Decode for this encoding

 case CRm<3:2> of
 when '00' domain = MBReqDomain_OuterShareable;
 when '01' domain = MBReqDomain_Nonshareable;
 when '10' domain = MBReqDomain_InnerShareable;
 when '11' domain = MBReqDomain_FullSystem;
 case CRm<1:0> of
 when '00' types = MBReqTypes_All; domain = MBReqDomain_FullSystem;
 when '01' types = MBReqTypes_Reads;
 when '10' types = MBReqTypes_Writes;
 when '11' types = MBReqTypes_All;

Assembler symbols

<option> Specifies the limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. This option is referred to as the full
system barrier. Encoded as CRm = 0b1111.

ST Full system is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b1110.

LD Full system is the required shareability domain, reads are the required access type before
the barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b1101.

ISH Inner Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm = 0b1011.

ISHST Inner Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b1010.

ISHLD Inner Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b1001.

NSH Non-shareable is the required shareability domain, reads and writes are the required
access, both before and after the barrier instruction. Encoded as CRm = 0b0111.

NSHST Non-shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b0110.

NSHLD Non-shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b0101.

OSH Outer Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm = 0b0011.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 1 0 1 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1013
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
OSHST Outer Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b0010.

OSHLD Outer Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b0001.

All other encodings of CRm that are not listed above are reserved, and can be encoded using the #<imm>
syntax. All unsupported and reserved options must execute as a full system barrier operation, but
software must not rely on this behavior. For more information on whether an access is before or after
a barrier instruction, see Data Memory Barrier (DMB) on page B2-147 or see Data Synchronization
Barrier (DSB) on page B2-150.

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

Operation

 DataMemoryBarrier(domain, types);
C6-1014 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.81 DRPS

Debug restore process state

Encoding

DRPS

Decode for this encoding

 if !Halted() || PSTATE.EL == EL0 then UNDEFINED;

Operation

 DRPSInstruction();

1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1015
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.82 DSB

Data Synchronization Barrier is a memory barrier that ensures the completion of memory accesses, see Data
Synchronization Barrier (DSB) on page B2-150.

A DSB instruction with the nXS qualifier is complete when the subset of these memory accesses with the XS
attribute set to 0 are complete. It does not require that memory accesses with the XS attribute set to 1 are complete.

This instruction is used by the aliases PSSBB and SSBB. See Alias conditions on page C6-1017 for details of when
each alias is preferred.

Memory barrier

Encoding

DSB <option>|#<imm>

Decode for this encoding

 boolean nXS = FALSE;

 case CRm of
 when '0000' alias = DSBAlias_SSBB;
 when '0100' alias = DSBAlias_PSSBB;
 otherwise alias = DSBAlias_DSB;

 case CRm<3:2> of
 when '00' domain = MBReqDomain_OuterShareable;
 when '01' domain = MBReqDomain_Nonshareable;
 when '10' domain = MBReqDomain_InnerShareable;
 when '11' domain = MBReqDomain_FullSystem;
 case CRm<1:0> of
 when '00' types = MBReqTypes_All; domain = MBReqDomain_FullSystem;
 when '01' types = MBReqTypes_Reads;
 when '10' types = MBReqTypes_Writes;
 when '11' types = MBReqTypes_All;

Memory nXS barrier

(FEAT_XS)

Encoding

DSB <option>nXS|#<imm>

Decode for this encoding

 if !HaveFeatXS() then UNDEFINED;
 MBReqTypes types = MBReqTypes_All;
 boolean nXS = TRUE;
 DSBAlias alias = DSBAlias_DSB;

 case imm2 of

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 1 0 0 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

opc

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 imm2 1 0 0 0 1 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C6-1016 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 when '00' domain = MBReqDomain_OuterShareable;
 when '01' domain = MBReqDomain_Nonshareable;
 when '10' domain = MBReqDomain_InnerShareable;
 when '11' domain = MBReqDomain_FullSystem;

Alias conditions

Assembler symbols

<option> For the memory barrier variant: specifies the limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. This option is referred to as the full
system barrier. Encoded as CRm = 0b1111.

ST Full system is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b1110.

LD Full system is the required shareability domain, reads are the required access type before
the barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b1101.

ISH Inner Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm = 0b1011.

ISHST Inner Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b1010.

ISHLD Inner Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b1001.

NSH Non-shareable is the required shareability domain, reads and writes are the required
access, both before and after the barrier instruction. Encoded as CRm = 0b0111.

NSHST Non-shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b0110.

NSHLD Non-shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b0101.

OSH Outer Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm = 0b0011.

OSHST Outer Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b0010.

OSHLD Outer Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b0001.

All other encodings of CRm, other than the values 0b0000 and 0b0100, that are not listed above are
reserved, and can be encoded using the #<imm> syntax. All unsupported and reserved options must
execute as a full system barrier operation, but software must not rely on this behavior. For more
information on whether an access is before or after a barrier instruction, see Data Memory Barrier
(DMB) on page B2-147 or see Data Synchronization Barrier (DSB) on page B2-150.

Alias is preferred when

 PSSBB CRm == '0100'

 SSBB CRm == '0000'
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1017
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Note

The value 0b0000 is used to encode SSBB and the value 0b0100 is used to encode PSSBB.

For the memory nXS barrier variant: specifies the limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. This option is referred to as the full
system barrier. Encoded as CRm<3:2> = 0b11.

ISH Inner Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm<3:2> =
0b10.

NSH Non-shareable is the required shareability domain, reads and writes are the required
access, both before and after the barrier instruction. Encoded as CRm<3:2> = 0b01.

OSH Outer Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm<3:2> =
0b00.

<imm> For the memory barrier variant: is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the
"CRm" field.

For the memory nXS barrier variant: is a 5-bit unsigned immediate, encoded in the "imm2" field. It
can have the following values:

16 when imm2 = 00

20 when imm2 = 01

24 when imm2 = 10

28 when imm2 = 11

Operation for all encodings

 case alias of
 when DSBAlias_SSBB
 SpeculativeStoreBypassBarrierToVA();
 when DSBAlias_PSSBB
 SpeculativeStoreBypassBarrierToPA();
 when DSBAlias_DSB
 if !nXS && HaveFeatXS() && HaveFeatHCX() then
 nXS = PSTATE.EL IN {EL0, EL1} && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1';
 DataSynchronizationBarrier(domain, types, nXS);
 otherwise
 Unreachable();
C6-1018 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.83 DVP

Data Value Prediction Restriction by Context prevents data value predictions that predict execution addresses based
on information gathered from earlier execution within a particular execution context. Data value predictions
determined by the actions of code in the target execution context or contexts appearing in program order before the
instruction cannot be used to exploitatively control speculative execution occurring after the instruction is complete
and synchronized.

For more information, see DVP RCTX.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode for this instruction.

System

(FEAT_SPECRES)

Encoding

DVP RCTX, <Xt>

 is equivalent to

SYS #3, C7, C3, #5, <Xt>

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1019
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.84 EON (shifted register)

Bitwise Exclusive OR NOT (shifted register) performs a bitwise Exclusive OR NOT of a register value and an
optionally-shifted register value, and writes the result to the destination register.

32-bit variant

Applies when sf == 0.

EON <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

EON <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

sf 1 0 0 1 0 1 0 shift 1 Rm imm6 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N
C6-1020 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

 operand2 = NOT(operand2);

 result = operand1 EOR operand2;

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1021
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.85 EOR (immediate)

Bitwise Exclusive OR (immediate) performs a bitwise Exclusive OR of a register value and an immediate value,
and writes the result to the destination register.

32-bit variant

Applies when sf == 0 && N == 0.

EOR <Wd|WSP>, <Wn>, #<imm>

64-bit variant

Applies when sf == 1.

EOR <Xd|SP>, <Xn>, #<imm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer datasize = if sf == '1' then 64 else 32;
 bits(datasize) imm;
 if sf == '0' && N != '0' then UNDEFINED;
 (imm, -) = DecodeBitMasks(N, imms, immr, TRUE);

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n];

 result = operand1 EOR imm;

 if d == 31 then
 SP[] = result;
 else
 X[d] = result;

sf 1 0 1 0 0 1 0 0 N immr imms Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
C6-1022 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1023
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.86 EOR (shifted register)

Bitwise Exclusive OR (shifted register) performs a bitwise Exclusive OR of a register value and an
optionally-shifted register value, and writes the result to the destination register.

32-bit variant

Applies when sf == 0.

EOR <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

EOR <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

sf 1 0 0 1 0 1 0 shift 0 Rm imm6 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N
C6-1024 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

 result = operand1 EOR operand2;

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1025
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.87 ERET

Exception Return using the ELR and SPSR for the current Exception level. When executed, the PE restores PSTATE
from the SPSR, and branches to the address held in the ELR.

The PE checks the SPSR for the current Exception level for an illegal return event. See Illegal return events from
AArch64 state on page D1-2486.

ERET is UNDEFINED at EL0.

Encoding

ERET

Decode for this encoding

 if PSTATE.EL == EL0 then UNDEFINED;

Operation

 AArch64.CheckForERetTrap(FALSE, TRUE);
 bits(64) target = ELR[];

 AArch64.ExceptionReturn(target, SPSR[]);

1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A M Rn op4
C6-1026 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.88 ERETAA, ERETAB

Exception Return, with pointer authentication. This instruction authenticates the address in ELR, using SP as the
modifier and the specified key, the PE restores PSTATE from the SPSR for the current Exception level, and branches
to the authenticated address.

Key A is used for ERETAA, and key B is used for ERETAB.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a
Translation fault is generated.

The authenticated address is not written back to ELR.

The PE checks the SPSR for the current Exception level for an illegal return event. See Illegal return events from
AArch64 state on page D1-2486.

ERETAA and ERETAB are UNDEFINED at EL0.

Integer

(FEAT_PAuth)

ERETAA variant

Applies when M == 0.

ERETAA

ERETAB variant

Applies when M == 1.

ERETAB

Decode for all variants of this encoding

 if PSTATE.EL == EL0 then UNDEFINED;
 boolean use_key_a = (M == '0');

 if !HavePACExt() then
 UNDEFINED;

Operation

 AArch64.CheckForERetTrap(TRUE, use_key_a);
 bits(64) target;

 if use_key_a then
 target = AuthIA(ELR[], SP[], TRUE);
 else
 target = AuthIB(ELR[], SP[], TRUE);

 AArch64.ExceptionReturn(target, SPSR[]);

1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 1 M 1 1 1 1 1 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A Rn op4
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1027
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.89 ESB

Error Synchronization Barrier is an error synchronization event that might also update DISR_EL1 and
VDISR_EL2.

This instruction can be used at all Exception levels and in Debug state.

In Debug state, this instruction behaves as if SError interrupts are masked at all Exception levels. See Error
Synchronization Barrier in the Arm(R) Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for
Armv8-A architecture profile.

If the RAS Extension is not implemented, this instruction executes as a NOP.

System

(FEAT_RAS)

Encoding

ESB

Decode for this encoding

 if !HaveRASExt() then EndOfInstruction();

Operation

 SynchronizeErrors();
 AArch64.ESBOperation();
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
 TakeUnmaskedSErrorInterrupts();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
C6-1028 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.90 EXTR

Extract register extracts a register from a pair of registers.

This instruction is used by the alias ROR (immediate). See Alias conditions on page C6-1029 for details of when
each alias is preferred.

32-bit variant

Applies when sf == 0 && N == 0 && imms == 0xxxxx.

EXTR <Wd>, <Wn>, <Wm>, #<lsb>

64-bit variant

Applies when sf == 1 && N == 1.

EXTR <Xd>, <Xn>, <Xm>, #<lsb>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;
 integer lsb;

 if N != sf then UNDEFINED;
 if sf == '0' && imms<5> == '1' then UNDEFINED;
 lsb = UInt(imms);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<lsb> For the 32-bit variant: is the least significant bit position from which to extract, in the range 0 to 31,
encoded in the "imms" field.

Alias is preferred when

 ROR (immediate) Rn == Rm

sf 0 0 1 0 0 1 1 1 N 0 Rm imms Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1029
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For the 64-bit variant: is the least significant bit position from which to extract, in the range 0 to 63,
encoded in the "imms" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = X[m];
 bits(2*datasize) concat = operand1:operand2;

 result = concat<lsb+datasize-1:lsb>;

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1030 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.91 GMI

Tag Mask Insert inserts the tag in the first source register into the excluded set specified in the second source register,
writing the new excluded set to the destination register.

Integer

(FEAT_MTE)

Encoding

GMI <Xd>, <Xn|SP>, <Xm>

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer d = UInt(Xd);
 integer n = UInt(Xn);
 integer m = UInt(Xm);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Xd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Xm" field.

Operation

 bits(64) address = if n == 31 then SP[] else X[n];
 bits(64) mask = X[m];
 bits(4) tag = AArch64.AllocationTagFromAddress(address);

 mask<UInt(tag)> = '1';
 X[d] = mask;

1 0 0 1 1 0 1 0 1 1 0 Xm 0 0 0 1 0 1 Xn Xd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1031
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.92 HINT

Hint instruction is for the instruction set space that is reserved for architectural hint instructions.

Some encodings described here are not allocated in this revision of the architecture, and behave as NOPs. These
encodings might be allocated to other hint functionality in future revisions of the architecture and therefore must
not be used by software.

Encoding

HINT #<imm>

Decode for this encoding

 SystemHintOp op;

 case CRm:op2 of
 when '0000 000' op = SystemHintOp_NOP;
 when '0000 001' op = SystemHintOp_YIELD;
 when '0000 010' op = SystemHintOp_WFE;
 when '0000 011' op = SystemHintOp_WFI;
 when '0000 100' op = SystemHintOp_SEV;
 when '0000 101' op = SystemHintOp_SEVL;
 when '0000 110'
 if !HaveDGHExt() then EndOfInstruction(); // Instruction executes as NOP
 op = SystemHintOp_DGH;
 when '0000 111' SEE "XPACLRI";
 when '0001 xxx'
 case op2 of
 when '000' SEE "PACIA1716";
 when '010' SEE "PACIB1716";
 when '100' SEE "AUTIA1716";
 when '110' SEE "AUTIB1716";
 otherwise EndOfInstruction();
 when '0010 000'
 if !HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
 op = SystemHintOp_ESB;
 when '0010 001'
 if !HaveStatisticalProfiling() then EndOfInstruction(); // Instruction executes as NOP
 op = SystemHintOp_PSB;
 when '0010 010'
 if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
 op = SystemHintOp_TSB;
 when '0010 100'
 op = SystemHintOp_CSDB;
 when '0011 xxx'
 case op2 of
 when '000' SEE "PACIAZ";
 when '001' SEE "PACIASP";
 when '010' SEE "PACIBZ";
 when '011' SEE "PACIBSP";
 when '100' SEE "AUTIAZ";
 when '101' SEE "AUTHASP";
 when '110' SEE "AUTIBZ";
 when '111' SEE "AUTIBSP";
 when '0100 xx0'
 op = SystemHintOp_BTI;
 // Check branch target compatibility between BTI instruction and PSTATE.BTYPE

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 CRm op2 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0
C6-1032 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));
 otherwise EndOfInstruction();

Assembler symbols

<imm> Is a 7-bit unsigned immediate, in the range 0 to 127 encoded in the "CRm:op2" field.

The encodings that are allocated to architectural hint functionality are described in the "Hints" table
in the "Index by Encoding".

Note

For allocated encodings of "CRm:op2":

• A disassembler will disassemble the allocated instruction, rather than the HINT instruction.

• An assembler may support assembly of allocated encodings using HINT with the
corresponding <imm> value, but it is not required to do so.

Operation

 case op of
 when SystemHintOp_YIELD
 Hint_Yield();

 when SystemHintOp_DGH
 Hint_DGH();

 when SystemHintOp_WFE
 Hint_WFE(-1, WFxType_WFE);

 when SystemHintOp_WFI
 Hint_WFI(-1, WFxType_WFI);

 when SystemHintOp_SEV
 SendEvent();

 when SystemHintOp_SEVL
 SendEventLocal();

 when SystemHintOp_ESB
 SynchronizeErrors();
 AArch64.ESBOperation();
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
 TakeUnmaskedSErrorInterrupts();

 when SystemHintOp_PSB
 ProfilingSynchronizationBarrier();

 when SystemHintOp_TSB
 TraceSynchronizationBarrier();

 when SystemHintOp_CSDB
 ConsumptionOfSpeculativeDataBarrier();

 when SystemHintOp_BTI
 SetBTypeNext('00');

 otherwise // do nothing
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1033
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.93 HLT

Halt instruction. An HLT instruction can generate a Halt Instruction debug event, which causes entry into Debug
state.

Encoding

HLT #<imm>

Decode for this encoding

 if EDSCR.HDE == '0' || !HaltingAllowed() then UNDEFINED;
 if HaveBTIExt() then
 SetBTypeCompatible(TRUE);

Assembler symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

 Halt(DebugHalt_HaltInstruction);

1 1 0 1 0 1 0 0 0 1 0 imm16 0 0 0 0 0
31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0
C6-1034 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.94 HVC

Hypervisor Call causes an exception to EL2. Software executing at EL1 can use this instruction to call the
hypervisor to request a service.

The HVC instruction is UNDEFINED:

• When EL3 is implemented and SCR_EL3.HCE is set to 0.

• When EL3 is not implemented and HCR_EL2.HCD is set to 1.

• When EL2 is not implemented.

• At EL1 if EL2 is not enabled in the current Security state.

• At EL0.

On executing an HVC instruction, the PE records the exception as a Hypervisor Call exception in ESR_ELx, using
the EC value 0x16, and the value of the immediate argument.

Encoding

HVC #<imm>

Decode for this encoding

 // Empty.

Assembler symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

 if !HaveEL(EL2) || PSTATE.EL == EL0 || (PSTATE.EL == EL1 && (!IsSecureEL2Enabled() && IsSecure())) then
 UNDEFINED;

 hvc_enable = if HaveEL(EL3) then SCR_EL3.HCE else NOT(HCR_EL2.HCD);

 if hvc_enable == '0' then
 UNDEFINED;
 else
 AArch64.CallHypervisor(imm16);

1 1 0 1 0 1 0 0 0 0 0 imm16 0 0 0 1 0
31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1035
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.95 IC

Instruction Cache operation. For more information, see op0==0b01, cache maintenance, TLB maintenance, and
address translation instructions on page C5-399.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode for this instruction.

Encoding

IC <ic_op>{, <Xt>}

 is equivalent to

SYS #<op1>, C7, <Cm>, #<op2>{, <Xt>}

and is the preferred disassembly when SysOp(op1,'0111',CRm,op2) == Sys_IC.

Assembler symbols

<ic_op> Is an IC instruction name, as listed for the IC system instruction pages, encoded in the
"op1:CRm:op2" field. It can have the following values:

IALLUIS when op1 = 000, CRm = 0001, op2 = 000

IALLU when op1 = 000, CRm = 0101, op2 = 000

IVAU when op1 = 011, CRm = 0101, op2 = 001

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in
the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 0 1 1 1 CRm op2 Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L CRn
C6-1036 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.96 IRG

Insert Random Tag inserts a random Logical Address Tag into the address in the first source register, and writes the
result to the destination register. Any tags specified in the optional second source register or in GCR_EL1.Exclude
are excluded from the selection of the random Logical Address Tag.

Integer

(FEAT_MTE)

Encoding

IRG <Xd|SP>, <Xn|SP>{, <Xm>}

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer d = UInt(Xd);
 integer n = UInt(Xn);
 integer m = UInt(Xm);

Assembler symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Xd"
field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Xm" field.
Defaults to XZR if absent.

Operation

 bits(64) operand = if n == 31 then SP[] else X[n];
 bits(64) exclude_reg = X[m];
 bits(16) exclude = exclude_reg<15:0> OR GCR_EL1.Exclude;

 if AArch64.AllocationTagAccessIsEnabled(AccType_NORMAL) then
 if GCR_EL1.RRND == '1' then
 RGSR_EL1 = bits(64) UNKNOWN;
 if IsOnes(exclude) then
 rtag = '0000';
 else
 rtag = ChooseRandomNonExcludedTag(exclude);
 else
 bits(4) start = RGSR_EL1.TAG;
 bits(4) offset = AArch64.RandomTag();

 rtag = AArch64.ChooseNonExcludedTag(start, offset, exclude);

 RGSR_EL1.TAG = rtag;
 else
 rtag = '0000';

 bits(64) result = AArch64.AddressWithAllocationTag(operand, AccType_NORMAL, rtag);

 if d == 31 then

1 0 0 1 1 0 1 0 1 1 0 Xm 0 0 0 1 0 0 Xn Xd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1037
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 SP[] = result;
 else
 X[d] = result;
C6-1038 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.97 ISB

Instruction Synchronization Barrier flushes the pipeline in the PE and is a context synchronization event. For more
information, see Instruction Synchronization Barrier (ISB) on page B2-147.

Encoding

ISB {<option>|#<imm>}

Decode for this encoding

 // No additional decoding required

Assembler symbols

<option> Specifies an optional limitation on the barrier operation. Values are:

SY Full system barrier operation, encoded as CRm = 0b1111. Can be omitted.

All other encodings of CRm are reserved. The corresponding instructions execute as full system
barrier operations, but must not be relied upon by software.

<imm> Is an optional 4-bit unsigned immediate, in the range 0 to 15, defaulting to 15 and encoded in the
"CRm" field.

Operation

 InstructionSynchronizationBarrier();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 1 1 0 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1039
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.98 LD64B

Single-copy Atomic 64-byte Load derives an address from a base register value, loads eight 64-bit doublewords
from a memory location, and writes them to consecutive registers, Xt to X(t+7). The data that is loaded is atomic
and is required to be 64-byte aligned.

Integer

(FEAT_LS64)

Encoding

LD64B <Xt>, [<Xn|SP> {,#0}]

Decode for this encoding

 if !HaveFeatLS64() then UNDEFINED;
 if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 boolean tag_checked = n != 31;

Assembler symbols

<Xt> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 CheckLDST64BEnabled();

 bits(512) data;
 bits(64) address;
 bits(64) value;
 acctype = AccType_ATOMICLS64;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemLoad64B(address, acctype);

 for i = 0 to 7
 value = data<63+64*i:64*i>;
 if BigEndian(acctype) then value = BigEndianReverse(value);
 X[t+i] = value;

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
C6-1040 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.99 LDADDB, LDADDAB, LDADDALB, LDADDLB

Atomic add on byte in memory atomically loads an 8-bit byte from memory, adds the value held in a register to it,
and stores the result back to memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDADDAB and LDADDALB load from memory with acquire semantics.

• LDADDLB and LDADDALB store to memory with release semantics.

• LDADDB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STADDB, STADDLB. See Alias conditions on page C6-1042 for details of
when each alias is preferred.

Integer

(FEAT_LSE)

LDADDAB variant

Applies when A == 1 && R == 0.

LDADDAB <Ws>, <Wt>, [<Xn|SP>]

LDADDALB variant

Applies when A == 1 && R == 1.

LDADDALB <Ws>, <Wt>, [<Xn|SP>]

LDADDB variant

Applies when A == 0 && R == 0.

LDADDB <Ws>, <Wt>, [<Xn|SP>]

LDADDLB variant

Applies when A == 0 && R == 1.

LDADDLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 0 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1041
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_ADD, value, ldacctype, stacctype);

 if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

 STADDB, STADDLB A == '0' && Rt == '11111'
C6-1042 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.100 LDADDH, LDADDAH, LDADDALH, LDADDLH

Atomic add on halfword in memory atomically loads a 16-bit halfword from memory, adds the value held in a
register to it, and stores the result back to memory. The value initially loaded from memory is returned in the
destination register.

• If the destination register is not WZR, LDADDAH and LDADDALH load from memory with acquire semantics.

• LDADDLH and LDADDALH store to memory with release semantics.

• LDADDH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STADDH, STADDLH. See Alias conditions on page C6-1044 for details of
when each alias is preferred.

Integer

(FEAT_LSE)

LDADDAH variant

Applies when A == 1 && R == 0.

LDADDAH <Ws>, <Wt>, [<Xn|SP>]

LDADDALH variant

Applies when A == 1 && R == 1.

LDADDALH <Ws>, <Wt>, [<Xn|SP>]

LDADDH variant

Applies when A == 0 && R == 0.

LDADDH <Ws>, <Wt>, [<Xn|SP>]

LDADDLH variant

Applies when A == 0 && R == 1.

LDADDLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 0 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1043
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_ADD, value, ldacctype, stacctype);

 if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

 STADDH, STADDLH A == '0' && Rt == '11111'
C6-1044 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.101 LDADD, LDADDA, LDADDAL, LDADDL

Atomic add on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory,
adds the value held in a register to it, and stores the result back to memory. The value initially loaded from memory
is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDADDA and LDADDAL load from memory with acquire
semantics.

• LDADDL and LDADDAL store to memory with release semantics.

• LDADD has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STADD, STADDL. See Alias conditions on page C6-1046 for details of when
each alias is preferred.

Integer

(FEAT_LSE)

32-bit LDADD variant

Applies when size == 10 && A == 0 && R == 0.

LDADD <Ws>, <Wt>, [<Xn|SP>]

32-bit LDADDA variant

Applies when size == 10 && A == 1 && R == 0.

LDADDA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDADDAL variant

Applies when size == 10 && A == 1 && R == 1.

LDADDAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDADDL variant

Applies when size == 10 && A == 0 && R == 1.

LDADDL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDADD variant

Applies when size == 11 && A == 0 && R == 0.

LDADD <Xs>, <Xt>, [<Xn|SP>]

64-bit LDADDA variant

Applies when size == 11 && A == 1 && R == 0.

LDADDA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 0 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1045
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDADDAL variant

Applies when size == 11 && A == 1 && R == 1.

LDADDAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDADDL variant

Applies when size == 11 && A == 0 && R == 1.

LDADDL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_ADD, value, ldacctype, stacctype);

Alias is preferred when

 STADD, STADDL A == '0' && Rt == '11111'
C6-1046 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if t != 31 then
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1047
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.102 LDAPR

Load-Acquire RCpc Register derives an address from a base register value, loads a 32-bit word or 64-bit
doubleword from the derived address in memory, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
on page B2-152, except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes on page C1-202.

Integer

(FEAT_LRCPC)

32-bit variant

Applies when size == 10.

LDAPR <Wt>, [<Xn|SP> {,#0}]

64-bit variant

Applies when size == 11.

LDAPR <Xt>, [<Xn|SP> {,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 integer elsize = 8 << UInt(size);
 integer regsize = if elsize == 64 then 64 else 32;
 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 if HaveMTE2Ext() then

1 x 1 1 1 0 0 0 1 0 1 (1) (1) (1) (1) (1) 1 1 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size Rs
C6-1048 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = Mem[address, dbytes, AccType_ORDERED];
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1049
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.103 LDAPRB

Load-Acquire RCpc Register Byte derives an address from a base register value, loads a byte from the derived
address in memory, zero-extends it and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
on page B2-152, except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes on page C1-202.

Integer

(FEAT_LRCPC)

Encoding

LDAPRB <Wt>, [<Xn|SP> {,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = Mem[address, 1, AccType_ORDERED];
 X[t] = ZeroExtend(data, 32);

0 0 1 1 1 0 0 0 1 0 1 (1) (1) (1) (1) (1) 1 1 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size Rs
C6-1050 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1051
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.104 LDAPRH

Load-Acquire RCpc Register Halfword derives an address from a base register value, loads a halfword from the
derived address in memory, zero-extends it and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
on page B2-152, except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes on page C1-202.

Integer

(FEAT_LRCPC)

Encoding

LDAPRH <Wt>, [<Xn|SP> {,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = Mem[address, 2, AccType_ORDERED];
 X[t] = ZeroExtend(data, 32);

0 1 1 1 1 0 0 0 1 0 1 (1) (1) (1) (1) (1) 1 1 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size Rs
C6-1052 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1053
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.105 LDAPUR

Load-Acquire RCpc Register (unscaled) calculates an address from a base register and an immediate offset, loads
a 32-bit word or 64-bit doubleword from memory, zero-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
on page B2-152, except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes on page C1-202.

Unscaled offset

(FEAT_LRCPC2)

32-bit variant

Applies when size == 10.

LDAPUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

LDAPUR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer regsize;

 regsize = if size == '11' then 64 else 32;

1 x 0 1 1 0 0 1 0 1 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1054 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 integer datasize = 8 << scale;
 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = Mem[address, datasize DIV 8, AccType_ORDERED];
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1055
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.106 LDAPURB

Load-Acquire RCpc Register Byte (unscaled) calculates an address from a base register and an immediate offset,
loads a byte from memory, zero-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
on page B2-152, except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes on page C1-202.

Unscaled offset

(FEAT_LRCPC2)

Encoding

LDAPURB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();

0 0 0 1 1 0 0 1 0 1 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1056 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = Mem[address, 1, AccType_ORDERED];
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1057
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.107 LDAPURH

Load-Acquire RCpc Register Halfword (unscaled) calculates an address from a base register and an immediate
offset, loads a halfword from memory, zero-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
on page B2-152, except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes on page C1-202.

Unscaled offset

(FEAT_LRCPC2)

Encoding

LDAPURH <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();

0 1 0 1 1 0 0 1 0 1 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1058 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = Mem[address, 2, AccType_ORDERED];
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1059
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.108 LDAPURSB

Load-Acquire RCpc Register Signed Byte (unscaled) calculates an address from a base register and an immediate
offset, loads a signed byte from memory, sign-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
on page B2-152, except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes on page C1-202.

Unscaled offset

(FEAT_LRCPC2)

32-bit variant

Applies when opc == 11.

LDAPURSB <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDAPURSB <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then

0 0 0 1 1 0 0 1 1 x 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1060 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tag_checked = memop != MemOp_PREFETCH && (n != 31);

Operation

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 case memop of
 when MemOp_STORE
 data = X[t];
 Mem[address, 1, AccType_ORDERED] = data;

 when MemOp_LOAD
 data = Mem[address, 1, AccType_ORDERED];
 if signed then
 X[t] = SignExtend(data, regsize);
 else
 X[t] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1061
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.109 LDAPURSH

Load-Acquire RCpc Register Signed Halfword (unscaled) calculates an address from a base register and an
immediate offset, loads a signed halfword from memory, sign-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
on page B2-152, except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes on page C1-202.

Unscaled offset

(FEAT_LRCPC2)

32-bit variant

Applies when opc == 11.

LDAPURSH <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDAPURSH <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then

0 1 0 1 1 0 0 1 1 x 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1062 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tag_checked = memop != MemOp_PREFETCH && (n != 31);

Operation

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 case memop of
 when MemOp_STORE
 data = X[t];
 Mem[address, 2, AccType_ORDERED] = data;

 when MemOp_LOAD
 data = Mem[address, 2, AccType_ORDERED];
 if signed then
 X[t] = SignExtend(data, regsize);
 else
 X[t] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1063
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.110 LDAPURSW

Load-Acquire RCpc Register Signed Word (unscaled) calculates an address from a base register and an immediate
offset, loads a signed word from memory, sign-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
on page B2-152, except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes on page C1-202.

Unscaled offset

(FEAT_LRCPC2)

Encoding

LDAPURSW <Xt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(32) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();

1 0 0 1 1 0 0 1 1 0 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1064 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = Mem[address, 4, AccType_ORDERED];
 X[t] = SignExtend(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1065
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.111 LDAR

Load-Acquire Register derives an address from a base register value, loads a 32-bit word or 64-bit doubleword from
memory, and writes it to a register. The instruction also has memory ordering semantics as described in
Load-Acquire, Load-AcquirePC, and Store-Release on page B2-152. For information about memory accesses, see
Load/store addressing modes on page C1-202.

Note

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

32-bit variant

Applies when size == 10.

LDAR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

LDAR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 integer elsize = 8 << UInt(size);
 integer regsize = if elsize == 64 then 64 else 32;
 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

1 x 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
C6-1066 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 data = Mem[address, dbytes, AccType_ORDERED];
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1067
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.112 LDARB

Load-Acquire Register Byte derives an address from a base register value, loads a byte from memory, zero-extends
it and writes it to a register. The instruction also has memory ordering semantics as described in Load-Acquire,
Load-AcquirePC, and Store-Release on page B2-152. For information about memory accesses, see Load/store
addressing modes on page C1-202.

Note

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

Encoding

LDARB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = Mem[address, 1, AccType_ORDERED];
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
C6-1068 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.113 LDARH

Load-Acquire Register Halfword derives an address from a base register value, loads a halfword from memory,
zero-extends it, and writes it to a register. The instruction also has memory ordering semantics as described in
Load-Acquire, Load-AcquirePC, and Store-Release on page B2-152. For information about memory accesses, see
Load/store addressing modes on page C1-202.

Note

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

Encoding

LDARH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = Mem[address, 2, AccType_ORDERED];
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1069
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.114 LDAXP

Load-Acquire Exclusive Pair of Registers derives an address from a base register value, loads two 32-bit words or
two 64-bit doublewords from memory, and writes them to two registers. For information on single-copy atomicity
and alignment requirements, see Requirements for single-copy atomicity on page B2-128 and Alignment of data
accesses on page B2-160. The PE marks the physical address being accessed as an exclusive access. This exclusive
access mark is checked by Store Exclusive instructions. See Synchronization and semaphores on page B2-179. The
instruction also has memory ordering semantics, as described in Load-Acquire, Load-AcquirePC, and Store-Release
on page B2-152. For information about memory accesses, see Load/store addressing modes on page C1-202.

32-bit variant

Applies when sz == 0.

LDAXP <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit variant

Applies when sz == 1.

LDAXP <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);

 integer elsize = 32 << UInt(sz);
 integer datasize = elsize * 2;
 boolean tag_checked = n != 31;

 boolean rt_unknown = FALSE;
 if t == t2 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDAXP on page K1-8415.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

1 sz 0 0 1 0 0 0 0 1 1 (1) (1) (1) (1) (1) 1 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

L Rs o0
C6-1070 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, dbytes);

 if rt_unknown then
 // ConstrainedUNPREDICTABLE case
 X[t] = bits(datasize) UNKNOWN; // In this case t = t2
 elsif elsize == 32 then
 // 32-bit load exclusive pair (atomic)
 data = Mem[address, dbytes, AccType_ORDEREDATOMIC];
 if BigEndian(AccType_ORDEREDATOMIC) then
 X[t] = data<datasize-1:elsize>;
 X[t2] = data<elsize-1:0>;
 else
 X[t] = data<elsize-1:0>;
 X[t2] = data<datasize-1:elsize>;
 else // elsize == 64
 // 64-bit load exclusive pair (not atomic),
 // but must be 128-bit aligned
 if address != Align(address, dbytes) then
 AArch64.Abort(address, AlignmentFault(AccType_ORDEREDATOMIC, FALSE, FALSE));
 X[t] = Mem[address, 8, AccType_ORDEREDATOMIC];
 X[t2] = Mem[address+8, 8, AccType_ORDEREDATOMIC];

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1071
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.115 LDAXR

Load-Acquire Exclusive Register derives an address from a base register value, loads a 32-bit word or 64-bit
doubleword from memory, and writes it to a register. The memory access is atomic. The PE marks the physical
address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive
instructions. See Synchronization and semaphores on page B2-179. The instruction also has memory ordering
semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-152. For information
about memory accesses see Load/store addressing modes on page C1-202.

32-bit variant

Applies when size == 10.

LDAXR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

LDAXR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 integer elsize = 8 << UInt(size);
 integer regsize = if elsize == 64 then 64 else 32;
 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the

1 x 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
C6-1072 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, dbytes);

 data = Mem[address, dbytes, AccType_ORDEREDATOMIC];
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1073
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.116 LDAXRB

Load-Acquire Exclusive Register Byte derives an address from a base register value, loads a byte from memory,
zero-extends it and writes it to a register. The memory access is atomic. The PE marks the physical address being
accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores on page B2-179. The instruction also has memory ordering semantics as described
in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-152. For information about memory accesses see
Load/store addressing modes on page C1-202.

Encoding

LDAXRB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, 1);

 data = Mem[address, 1, AccType_ORDEREDATOMIC];
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
C6-1074 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.117 LDAXRH

Load-Acquire Exclusive Register Halfword derives an address from a base register value, loads a halfword from
memory, zero-extends it and writes it to a register. The memory access is atomic. The PE marks the physical address
being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores on page B2-179. The instruction also has memory ordering semantics as described
in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-152. For information about memory accesses see
Load/store addressing modes on page C1-202.

Encoding

LDAXRH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, 2);

 data = Mem[address, 2, AccType_ORDEREDATOMIC];
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1075
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.118 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB

Atomic bit clear on byte in memory atomically loads an 8-bit byte from memory, performs a bitwise AND with the
complement of the value held in a register on it, and stores the result back to memory. The value initially loaded
from memory is returned in the destination register.

• If the destination register is not WZR, LDCLRAB and LDCLRALB load from memory with acquire semantics.

• LDCLRLB and LDCLRALB store to memory with release semantics.

• LDCLRB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STCLRB, STCLRLB. See Alias conditions on page C6-1077 for details of when
each alias is preferred.

Integer

(FEAT_LSE)

LDCLRAB variant

Applies when A == 1 && R == 0.

LDCLRAB <Ws>, <Wt>, [<Xn|SP>]

LDCLRALB variant

Applies when A == 1 && R == 1.

LDCLRALB <Ws>, <Wt>, [<Xn|SP>]

LDCLRB variant

Applies when A == 0 && R == 0.

LDCLRB <Ws>, <Wt>, [<Xn|SP>]

LDCLRLB variant

Applies when A == 0 && R == 1.

LDCLRLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 0 0 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
C6-1076 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_BIC, value, ldacctype, stacctype);

 if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

 STCLRB, STCLRLB A == '0' && Rt == '11111'
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1077
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.119 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH

Atomic bit clear on halfword in memory atomically loads a 16-bit halfword from memory, performs a bitwise AND
with the complement of the value held in a register on it, and stores the result back to memory. The value initially
loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDCLRAH and LDCLRALH load from memory with acquire semantics.

• LDCLRLH and LDCLRALH store to memory with release semantics.

• LDCLRH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STCLRH, STCLRLH. See Alias conditions on page C6-1079 for details of when
each alias is preferred.

Integer

(FEAT_LSE)

LDCLRAH variant

Applies when A == 1 && R == 0.

LDCLRAH <Ws>, <Wt>, [<Xn|SP>]

LDCLRALH variant

Applies when A == 1 && R == 1.

LDCLRALH <Ws>, <Wt>, [<Xn|SP>]

LDCLRH variant

Applies when A == 0 && R == 0.

LDCLRH <Ws>, <Wt>, [<Xn|SP>]

LDCLRLH variant

Applies when A == 0 && R == 1.

LDCLRLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 0 0 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
C6-1078 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_BIC, value, ldacctype, stacctype);

 if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

 STCLRH, STCLRLH A == '0' && Rt == '11111'
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1079
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.120 LDCLR, LDCLRA, LDCLRAL, LDCLRL

Atomic bit clear on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from
memory, performs a bitwise AND with the complement of the value held in a register on it, and stores the result
back to memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDCLRA and LDCLRAL load from memory with acquire
semantics.

• LDCLRL and LDCLRAL store to memory with release semantics.

• LDCLR has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STCLR, STCLRL. See Alias conditions on page C6-1081 for details of when
each alias is preferred.

Integer

(FEAT_LSE)

32-bit LDCLR variant

Applies when size == 10 && A == 0 && R == 0.

LDCLR <Ws>, <Wt>, [<Xn|SP>]

32-bit LDCLRA variant

Applies when size == 10 && A == 1 && R == 0.

LDCLRA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDCLRAL variant

Applies when size == 10 && A == 1 && R == 1.

LDCLRAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDCLRL variant

Applies when size == 10 && A == 0 && R == 1.

LDCLRL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDCLR variant

Applies when size == 11 && A == 0 && R == 0.

LDCLR <Xs>, <Xt>, [<Xn|SP>]

64-bit LDCLRA variant

Applies when size == 11 && A == 1 && R == 0.

LDCLRA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 0 0 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
C6-1080 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDCLRAL variant

Applies when size == 11 && A == 1 && R == 1.

LDCLRAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDCLRL variant

Applies when size == 11 && A == 0 && R == 1.

LDCLRL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_BIC, value, ldacctype, stacctype);

Alias is preferred when

 STCLR, STCLRL A == '0' && Rt == '11111'
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1081
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if t != 31 then
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1082 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.121 LDEORB, LDEORAB, LDEORALB, LDEORLB

Atomic exclusive OR on byte in memory atomically loads an 8-bit byte from memory, performs an exclusive OR
with the value held in a register on it, and stores the result back to memory. The value initially loaded from memory
is returned in the destination register.

• If the destination register is not WZR, LDEORAB and LDEORALB load from memory with acquire semantics.

• LDEORLB and LDEORALB store to memory with release semantics.

• LDEORB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STEORB, STEORLB. See Alias conditions on page C6-1084 for details of when
each alias is preferred.

Integer

(FEAT_LSE)

LDEORAB variant

Applies when A == 1 && R == 0.

LDEORAB <Ws>, <Wt>, [<Xn|SP>]

LDEORALB variant

Applies when A == 1 && R == 1.

LDEORALB <Ws>, <Wt>, [<Xn|SP>]

LDEORB variant

Applies when A == 0 && R == 0.

LDEORB <Ws>, <Wt>, [<Xn|SP>]

LDEORLB variant

Applies when A == 0 && R == 1.

LDEORLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 0 1 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1083
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_EOR, value, ldacctype, stacctype);

 if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

 STEORB, STEORLB A == '0' && Rt == '11111'
C6-1084 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.122 LDEORH, LDEORAH, LDEORALH, LDEORLH

Atomic exclusive OR on halfword in memory atomically loads a 16-bit halfword from memory, performs an
exclusive OR with the value held in a register on it, and stores the result back to memory. The value initially loaded
from memory is returned in the destination register.

• If the destination register is not WZR, LDEORAH and LDEORALH load from memory with acquire semantics.

• LDEORLH and LDEORALH store to memory with release semantics.

• LDEORH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STEORH, STEORLH. See Alias conditions on page C6-1086 for details of
when each alias is preferred.

Integer

(FEAT_LSE)

LDEORAH variant

Applies when A == 1 && R == 0.

LDEORAH <Ws>, <Wt>, [<Xn|SP>]

LDEORALH variant

Applies when A == 1 && R == 1.

LDEORALH <Ws>, <Wt>, [<Xn|SP>]

LDEORH variant

Applies when A == 0 && R == 0.

LDEORH <Ws>, <Wt>, [<Xn|SP>]

LDEORLH variant

Applies when A == 0 && R == 1.

LDEORLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 0 1 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1085
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_EOR, value, ldacctype, stacctype);

 if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

 STEORH, STEORLH A == '0' && Rt == '11111'
C6-1086 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.123 LDEOR, LDEORA, LDEORAL, LDEORL

Atomic exclusive OR on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from
memory, performs an exclusive OR with the value held in a register on it, and stores the result back to memory. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDEORA and LDEORAL load from memory with acquire
semantics.

• LDEORL and LDEORAL store to memory with release semantics.

• LDEOR has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STEOR, STEORL. See Alias conditions on page C6-1088 for details of when
each alias is preferred.

Integer

(FEAT_LSE)

32-bit LDEOR variant

Applies when size == 10 && A == 0 && R == 0.

LDEOR <Ws>, <Wt>, [<Xn|SP>]

32-bit LDEORA variant

Applies when size == 10 && A == 1 && R == 0.

LDEORA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDEORAL variant

Applies when size == 10 && A == 1 && R == 1.

LDEORAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDEORL variant

Applies when size == 10 && A == 0 && R == 1.

LDEORL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDEOR variant

Applies when size == 11 && A == 0 && R == 0.

LDEOR <Xs>, <Xt>, [<Xn|SP>]

64-bit LDEORA variant

Applies when size == 11 && A == 1 && R == 0.

LDEORA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 0 1 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1087
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDEORAL variant

Applies when size == 11 && A == 1 && R == 1.

LDEORAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDEORL variant

Applies when size == 11 && A == 0 && R == 1.

LDEORL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_EOR, value, ldacctype, stacctype);

Alias is preferred when

 STEOR, STEORL A == '0' && Rt == '11111'
C6-1088 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if t != 31 then
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1089
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.124 LDG

Load Allocation Tag loads an Allocation Tag from a memory address, generates a Logical Address Tag from the
Allocation Tag and merges it into the destination register. The address used for the load is calculated from the base
register and an immediate signed offset scaled by the Tag granule.

Integer

(FEAT_MTE)

Encoding

LDG <Xt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer t = UInt(Xt);
 integer n = UInt(Xn);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0
and encoded in the "imm9" field.

Operation

 bits(64) address;
 bits(4) tag;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;
 address = Align(address, TAG_GRANULE);

 tag = AArch64.MemTag[address, AccType_NORMAL];
 X[t] = AArch64.AddressWithAllocationTag(X[t], AccType_NORMAL, tag);

1 1 0 1 1 0 0 1 0 1 1 imm9 0 0 Xn Xt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
C6-1090 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.125 LDGM

Load Tag Multiple reads a naturally aligned block of N Allocation Tags, where the size of N is identified in
GMID_EL1.BS, and writes the Allocation Tag read from address A to the destination register at
4*A<7:4>+3:4*A<7:4>. Bits of the destination register not written with an Allocation Tag are set to 0.

This instruction is UNDEFINED at EL0.

This instruction generates an Unchecked access.

If ID_AA64PFR1_EL1 != 0b0010, this instruction is UNDEFINED.

Integer

(FEAT_MTE2)

Encoding

LDGM <Xt>, [<Xn|SP>]

Decode for this encoding

 if !HaveMTE2Ext() then UNDEFINED;
 integer t = UInt(Xt);
 integer n = UInt(Xn);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

Operation

 if PSTATE.EL == EL0 then
 UNDEFINED;

 bits(64) data = Zeros(64);
 bits(64) address;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 integer size = 4 * (2 ^ (UInt(GMID_EL1.BS)));
 address = Align(address, size);
 integer count = size >> LOG2_TAG_GRANULE;
 integer index = UInt(address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE>);

 for i = 0 to count-1
 bits(4) tag = AArch64.MemTag[address, AccType_NORMAL];
 data<(index*4)+3:index*4> = tag;
 address = address + TAG_GRANULE;
 index = index + 1;

1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 Xn Xt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1091
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 X[t] = data;
C6-1092 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.126 LDLARB

Load LOAcquire Register Byte loads a byte from memory, zero-extends it and writes it to a register. The instruction
also has memory ordering semantics as described in LoadLOAcquire, StoreLORelease on page B2-153. For
information about memory accesses, see Load/store addressing modes on page C1-202.

Note

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

No offset

(FEAT_LOR)

Encoding

LDLARB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = Mem[address, 1, AccType_LIMITEDORDERED];
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1093
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.127 LDLARH

Load LOAcquire Register Halfword loads a halfword from memory, zero-extends it, and writes it to a register. The
instruction also has memory ordering semantics as described in LoadLOAcquire, StoreLORelease on page B2-153.
For information about memory accesses, see Load/store addressing modes on page C1-202.

Note

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

No offset

(FEAT_LOR)

Encoding

LDLARH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = Mem[address, 2, AccType_LIMITEDORDERED];
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
C6-1094 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.128 LDLAR

Load LOAcquire Register loads a 32-bit word or 64-bit doubleword from memory, and writes it to a register. The
instruction also has memory ordering semantics as described in LoadLOAcquire, StoreLORelease on page B2-153.
For information about memory accesses, see Load/store addressing modes on page C1-202.

Note

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

No offset

(FEAT_LOR)

32-bit variant

Applies when size == 10.

LDLAR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

LDLAR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 integer elsize = 8 << UInt(size);
 integer regsize = if elsize == 64 then 64 else 32;
 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else

1 x 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1095
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 address = X[n];

 data = Mem[address, dbytes, AccType_LIMITEDORDERED];
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1096 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.129 LDNP

Load Pair of Registers, with non-temporal hint, calculates an address from a base register value and an immediate
offset, loads two 32-bit words or two 64-bit doublewords from memory, and writes them to two registers.

For information about memory accesses, see Load/store addressing modes on page C1-202. For information about
Non-temporal pair instructions, see Load/store non-temporal pair on page C3-227.

32-bit variant

Applies when opc == 00.

LDNP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 10.

LDNP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

 // Empty.

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDNP on page K1-8415.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256
to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512
to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 if opc<0> == '1' then UNDEFINED;

x 0 1 0 1 0 0 0 0 1 imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1097
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 integer scale = 2 + UInt(opc<1>);
 integer datasize = 8 << scale;
 bits(64) offset = LSL(SignExtend(imm7, 64), scale);
 boolean tag_checked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation

 bits(64) address;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 if HaveLSE2Ext() then
 bits(2*datasize) full_data;
 full_data = Mem[address, 2*dbytes, AccType_NORMAL, TRUE];
 if BigEndian(AccType_STREAM) then
 data2 = full_data<(datasize-1):0>;
 data1 = full_data<(2*datasize-1):datasize>;
 else
 data1 = full_data<(datasize-1):0>;
 data2 = full_data<(2*datasize-1):datasize>;
 else
 data1 = Mem[address, dbytes, AccType_STREAM];
 data2 = Mem[address+dbytes, dbytes, AccType_STREAM];
 if rt_unknown then
 data1 = bits(datasize) UNKNOWN;
 data2 = bits(datasize) UNKNOWN;
 X[t] = data1;
 X[t2] = data2;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1098 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.130 LDP

Load Pair of Registers calculates an address from a base register value and an immediate offset, loads two 32-bit
words or two 64-bit doublewords from memory, and writes them to two registers. For information about memory
accesses, see Load/store addressing modes on page C1-202.

Post-index

32-bit variant

Applies when opc == 00.

LDP <Wt1>, <Wt2>, [<Xn|SP>], #<imm>

64-bit variant

Applies when opc == 10.

LDP <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;

Pre-index

32-bit variant

Applies when opc == 00.

LDP <Wt1>, <Wt2>, [<Xn|SP>, #<imm>]!

64-bit variant

Applies when opc == 10.

LDP <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;

Signed offset

x 0 1 0 1 0 0 0 1 1 imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

x 0 1 0 1 0 0 1 1 1 imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

x 0 1 0 1 0 0 1 0 1 imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1099
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
32-bit variant

Applies when opc == 00.

LDP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 10.

LDP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDP on page K1-8415.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a
multiple of 4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in
the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a
multiple of 8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in
the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 if L:opc<0> == '01' || opc == '11' then UNDEFINED;
 boolean signed = (opc<0> != '0');
 integer scale = 2 + UInt(opc<1>);
 integer datasize = 8 << scale;
 bits(64) offset = LSL(SignExtend(imm7, 64), scale);
 boolean tag_checked = wback || n != 31;

 boolean rt_unknown = FALSE;
 boolean wb_unknown = FALSE;

 if wback && (t == n || t2 == n) && n != 31 then
 Constraint c = ConstrainUnpredictable();
C6-1100 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

 if t == t2 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
 address = address + offset;

 if HaveLSE2Ext() && !signed then
 bits(2*datasize) full_data;
 full_data = Mem[address, 2*dbytes, AccType_NORMAL, TRUE];
 if BigEndian(AccType_NORMAL) then
 data2 = full_data<(datasize-1):0>;
 data1 = full_data<(2*datasize-1):datasize>;
 else
 data1 = full_data<(datasize-1):0>;
 data2 = full_data<(2*datasize-1):datasize>;
 else
 data1 = Mem[address, dbytes, AccType_NORMAL];
 data2 = Mem[address+dbytes, dbytes, AccType_NORMAL];
 if rt_unknown then
 data1 = bits(datasize) UNKNOWN;
 data2 = bits(datasize) UNKNOWN;
 if signed then
 X[t] = SignExtend(data1, 64);
 X[t2] = SignExtend(data2, 64);
 else
 X[t] = data1;
 X[t2] = data2;

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
 else
 X[n] = address;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1101
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1102 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.131 LDPSW

Load Pair of Registers Signed Word calculates an address from a base register value and an immediate offset, loads
two 32-bit words from memory, sign-extends them, and writes them to two registers. For information about memory
accesses, see Load/store addressing modes on page C1-202.

Post-index

Encoding

LDPSW <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;

Pre-index

Encoding

LDPSW <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]!

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;

Signed offset

Encoding

LDPSW <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;

0 1 1 0 1 0 0 0 1 1 imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

0 1 1 0 1 0 0 1 1 1 imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

0 1 1 0 1 0 0 1 0 1 imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1103
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDPSW on page K1-8416.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the post-index and pre-index variant: is the signed immediate byte offset, a multiple of 4 in the
range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the
range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 bits(64) offset = LSL(SignExtend(imm7, 64), 2);
 boolean tag_checked = wback || n != 31;

 boolean rt_unknown = FALSE;
 boolean wb_unknown = FALSE;

 if wback && (t == n || t2 == n) && n != 31 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

 if t == t2 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(32) data1;
 bits(32) data2;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
C6-1104 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 address = address + offset;

 if HaveLSE2Ext() && FALSE then
 bits(64) full_data;
 full_data = Mem[address, 8, AccType_NORMAL, TRUE];
 if BigEndian(AccType_NORMAL) then
 data2 = full_data<31:0>;
 data1 = full_data<63:32>;
 else
 data1 = full_data<31:0>;
 data2 = full_data<63:32>;
 else
 data1 = Mem[address, 4, AccType_NORMAL];
 data2 = Mem[address+4, 4, AccType_NORMAL];
 if rt_unknown then
 data1 = bits(32) UNKNOWN;
 data2 = bits(32) UNKNOWN;
 X[t] = SignExtend(data1, 64);
 X[t2] = SignExtend(data2, 64);
 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
 else
 X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1105
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.132 LDR (immediate)

Load Register (immediate) loads a word or doubleword from memory and writes it to a register. The address that is
used for the load is calculated from a base register and an immediate offset. For information about memory accesses,
see Load/store addressing modes on page C1-202. The Unsigned offset variant scales the immediate offset value by
the size of the value accessed before adding it to the base register value.

Post-index

32-bit variant

Applies when size == 10.

LDR <Wt>, [<Xn|SP>], #<simm>

64-bit variant

Applies when size == 11.

LDR <Xt>, [<Xn|SP>], #<simm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

32-bit variant

Applies when size == 10.

LDR <Wt>, [<Xn|SP>, #<simm>]!

64-bit variant

Applies when size == 11.

LDR <Xt>, [<Xn|SP>, #<simm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

1 x 1 1 1 0 0 0 0 1 0 imm9 0 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

1 x 1 1 1 0 0 0 0 1 0 imm9 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1106 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Unsigned offset

32-bit variant

Applies when size == 10.

LDR <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit variant

Applies when size == 11.

LDR <Xt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 integer scale = UInt(size);
 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDR (immediate) on page K1-8417.

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0
to 16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.

For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0
to 32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer regsize;

 regsize = if size == '11' then 64 else 32;
 integer datasize = 8 << scale;
 boolean tag_checked = wback || n != 31;

 boolean wb_unknown = FALSE;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of

1 x 1 1 1 0 0 1 0 1 imm12 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1107
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
 address = address + offset;

 data = Mem[address, datasize DIV 8, AccType_NORMAL];
 X[t] = ZeroExtend(data, regsize);

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
 else
 X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1108 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.133 LDR (literal)

Load Register (literal) calculates an address from the PC value and an immediate offset, loads a word from memory,
and writes it to a register. For information about memory accesses, see Load/store addressing modes on
page C1-202.

32-bit variant

Applies when opc == 00.

LDR <Wt>, <label>

64-bit variant

Applies when opc == 01.

LDR <Xt>, <label>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 MemOp memop = MemOp_LOAD;
 boolean signed = FALSE;
 integer size;
 bits(64) offset;

 case opc of
 when '00'
 size = 4;
 when '01'
 size = 8;
 when '10'
 size = 4;
 signed = TRUE;
 when '11'
 memop = MemOp_PREFETCH;

 offset = SignExtend(imm19:'00', 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this
instruction, in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 bits(64) address = PC[] + offset;
 bits(size*8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(FALSE);

0 x 0 1 1 0 0 0 imm19 Rt
31 30 29 28 27 26 25 24 23 5 4 0

opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1109
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 case memop of
 when MemOp_LOAD
 data = Mem[address, size, AccType_NORMAL];
 if signed then
 X[t] = SignExtend(data, 64);
 else
 X[t] = data;

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1110 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.134 LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads a word
from memory, and writes it to a register. The offset register value can optionally be shifted and extended. For
information about memory accesses, see Load/store addressing modes on page C1-202.

32-bit variant

Applies when size == 10.

LDR <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit variant

Applies when size == 11.

LDR <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then scale else 0;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#2 when S = 1

1 x 1 1 1 0 0 0 0 1 1 Rm option S 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1111
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#3 when S = 1

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);
 integer regsize;

 regsize = if size == '11' then 64 else 32;
 integer datasize = 8 << scale;

Operation

 bits(64) offset = ExtendReg(m, extend_type, shift);
 bits(64) address;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = Mem[address, datasize DIV 8, AccType_NORMAL];
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1112 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.135 LDRAA, LDRAB

Load Register, with pointer authentication. This instruction authenticates an address from a base register using a
modifier of zero and the specified key, adds an immediate offset to the authenticated address, and loads a 64-bit
doubleword from memory at this resulting address into a register.

Key A is used for LDRAA, and key B is used for LDRAB.

If the authentication passes, the PE behaves the same as for an LDR instruction. If the authentication fails, a
Translation fault is generated.

The authenticated address is not written back to the base register, unless the pre-indexed variant of the instruction
is used. In this case, the address that is written back to the base register does not include the pointer authentication
code.

For information about memory accesses, see Load/store addressing modes on page C1-202.

Unscaled offset

(FEAT_PAuth)

Key A, offset variant

Applies when M == 0 && W == 0.

LDRAA <Xt>, [<Xn|SP>{, #<simm>}]

Key A, pre-indexed variant

Applies when M == 0 && W == 1.

LDRAA <Xt>, [<Xn|SP>{, #<simm>}]!

Key B, offset variant

Applies when M == 1 && W == 0.

LDRAB <Xt>, [<Xn|SP>{, #<simm>}]

Key B, pre-indexed variant

Applies when M == 1 && W == 1.

LDRAB <Xt>, [<Xn|SP>{, #<simm>}]!

Decode for all variants of this encoding

 if !HavePACExt() then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 boolean wback = (W == '1');
 boolean use_key_a = (M == '0');
 bits(10) S10 = S:imm9;
 bits(64) offset = LSL(SignExtend(S10, 64), 3);
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

1 1 1 1 1 0 0 0 M S 1 imm9 W 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1113
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, a multiple of 8 in the range -4096 to 4088, defaulting
to 0 and encoded in the "S:imm9" field as <simm>/8.

Operation

 bits(64) address;
 bits(64) data;
 boolean wb_unknown = FALSE;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

 if n == 31 then
 address = SP[];
 else
 address = X[n];

 if use_key_a then
 address = AuthDA(address, X[31], TRUE);
 else
 address = AuthDB(address, X[31], TRUE);

 if n == 31 then
 CheckSPAlignment();

 address = address + offset;
 data = Mem[address, 8, AccType_NORMAL];
 X[t] = data;

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 if n == 31 then
 SP[] = address;
 else
 X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1114 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.136 LDRB (immediate)

Load Register Byte (immediate) loads a byte from memory, zero-extends it, and writes the result to a register. The
address that is used for the load is calculated from a base register and an immediate offset. For information about
memory accesses, see Load/store addressing modes on page C1-202.

Post-index

Encoding

LDRB <Wt>, [<Xn|SP>], #<simm>

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

Encoding

LDRB <Wt>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

Encoding

LDRB <Wt>, [<Xn|SP>{, #<pimm>}]

Decode for this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 0);

0 0 1 1 1 0 0 0 0 1 0 imm9 0 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 0 1 1 1 0 0 0 0 1 0 imm9 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 0 1 1 1 0 0 1 0 1 imm12 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1115
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDRB (immediate) on page K1-8417.

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded
in the "imm12" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = wback || n != 31;

 boolean wb_unknown = FALSE;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
 address = address + offset;

 data = Mem[address, 1, AccType_NORMAL];
 X[t] = ZeroExtend(data, 32);

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
 else
 X[n] = address;
C6-1116 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1117
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.137 LDRB (register)

Load Register Byte (register) calculates an address from a base register value and an offset register value, loads a
byte from memory, zero-extends it, and writes it to a register. For information about memory accesses, see
Load/store addressing modes on page C1-202.

Extended register variant

Applies when option != 011.

LDRB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

Shifted register variant

Applies when option == 011.

LDRB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

Decode for all variants of this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend specifier, encoded in the "option" field. It can have the following values:

UXTW when option = 010

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

0 0 1 1 1 0 0 0 0 1 1 Rm option S 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc
C6-1118 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(64) offset = ExtendReg(m, extend_type, 0);
 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = Mem[address, 1, AccType_NORMAL];
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1119
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.138 LDRH (immediate)

Load Register Halfword (immediate) loads a halfword from memory, zero-extends it, and writes the result to a
register. The address that is used for the load is calculated from a base register and an immediate offset. For
information about memory accesses, see Load/store addressing modes on page C1-202.

Post-index

Encoding

LDRH <Wt>, [<Xn|SP>], #<simm>

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

Encoding

LDRH <Wt>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

Encoding

LDRH <Wt>, [<Xn|SP>{, #<pimm>}]

Decode for this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 1);

0 1 1 1 1 0 0 0 0 1 0 imm9 0 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 1 1 1 1 0 0 0 0 1 0 imm9 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 1 1 1 1 0 0 1 0 1 imm12 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc
C6-1120 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDRH (immediate) on page K1-8417.

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0
and encoded in the "imm12" field as <pimm>/2.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = wback || n != 31;

 boolean wb_unknown = FALSE;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
 address = address + offset;

 data = Mem[address, 2, AccType_NORMAL];
 X[t] = ZeroExtend(data, 32);

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
 else
 X[n] = address;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1121
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1122 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.139 LDRH (register)

Load Register Halfword (register) calculates an address from a base register value and an offset register value, loads
a halfword from memory, zero-extends it, and writes it to a register. For information about memory accesses, see
Load/store addressing modes on page C1-202.

Encoding

LDRH <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then 1 else 0;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be
optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

#0 when S = 0

#1 when S = 1

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

0 1 1 1 1 0 0 0 0 1 1 Rm option S 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1123
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(64) offset = ExtendReg(m, extend_type, shift);
 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = Mem[address, 2, AccType_NORMAL];
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1124 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.140 LDRSB (immediate)

Load Register Signed Byte (immediate) loads a byte from memory, sign-extends it to either 32 bits or 64 bits, and
writes the result to a register. The address that is used for the load is calculated from a base register and an immediate
offset. For information about memory accesses, see Load/store addressing modes on page C1-202.

Post-index

32-bit variant

Applies when opc == 11.

LDRSB <Wt>, [<Xn|SP>], #<simm>

64-bit variant

Applies when opc == 10.

LDRSB <Xt>, [<Xn|SP>], #<simm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

32-bit variant

Applies when opc == 11.

LDRSB <Wt>, [<Xn|SP>, #<simm>]!

64-bit variant

Applies when opc == 10.

LDRSB <Xt>, [<Xn|SP>, #<simm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

0 0 1 1 1 0 0 0 1 x 0 imm9 0 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 0 1 1 1 0 0 0 1 x 0 imm9 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1125
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Unsigned offset

32-bit variant

Applies when opc == 11.

LDRSB <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit variant

Applies when opc == 10.

LDRSB <Xt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 0);

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDRSB (immediate) on
page K1-8418.

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded
in the "imm12" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

0 0 1 1 1 0 0 1 1 x imm12 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc
C6-1126 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

 boolean wb_unknown = FALSE;
 boolean rt_unknown = FALSE;

 if memop == MemOp_LOAD && wback && n == t && n != 31 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

 if memop == MemOp_STORE && wback && n == t && n != 31 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
 address = address + offset;

 case memop of
 when MemOp_STORE
 if rt_unknown then
 data = bits(8) UNKNOWN;
 else
 data = X[t];
 Mem[address, 1, AccType_NORMAL] = data;

 when MemOp_LOAD
 data = Mem[address, 1, AccType_NORMAL];
 if signed then
 X[t] = SignExtend(data, regsize);
 else
 X[t] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1127
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 else
 X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1128 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.141 LDRSB (register)

Load Register Signed Byte (register) calculates an address from a base register value and an offset register value,
loads a byte from memory, sign-extends it, and writes it to a register. For information about memory accesses, see
Load/store addressing modes on page C1-202.

32-bit with extended register offset variant

Applies when opc == 11 && option != 011.

LDRSB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

32-bit with shifted register offset variant

Applies when opc == 11 && option == 011.

LDRSB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

64-bit with extended register offset variant

Applies when opc == 10 && option != 011.

LDRSB <Xt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

64-bit with shifted register offset variant

Applies when opc == 10 && option == 011.

LDRSB <Xt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

Decode for all variants of this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend specifier, encoded in the "option" field. It can have the following values:

UXTW when option = 010

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

0 0 1 1 1 0 0 0 1 x 1 Rm option S 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1129
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tag_checked = memop != MemOp_PREFETCH;

Operation

 bits(64) offset = ExtendReg(m, extend_type, 0);
 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 case memop of
 when MemOp_STORE
 data = X[t];
 Mem[address, 1, AccType_NORMAL] = data;

 when MemOp_LOAD
 data = Mem[address, 1, AccType_NORMAL];
 if signed then
 X[t] = SignExtend(data, regsize);
 else
 X[t] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1130 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.142 LDRSH (immediate)

Load Register Signed Halfword (immediate) loads a halfword from memory, sign-extends it to 32 bits or 64 bits,
and writes the result to a register. The address that is used for the load is calculated from a base register and an
immediate offset. For information about memory accesses, see Load/store addressing modes on page C1-202.

Post-index

32-bit variant

Applies when opc == 11.

LDRSH <Wt>, [<Xn|SP>], #<simm>

64-bit variant

Applies when opc == 10.

LDRSH <Xt>, [<Xn|SP>], #<simm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

32-bit variant

Applies when opc == 11.

LDRSH <Wt>, [<Xn|SP>, #<simm>]!

64-bit variant

Applies when opc == 10.

LDRSH <Xt>, [<Xn|SP>, #<simm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

0 1 1 1 1 0 0 0 1 x 0 imm9 0 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 1 1 1 1 0 0 0 1 x 0 imm9 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1131
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Unsigned offset

32-bit variant

Applies when opc == 11.

LDRSH <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit variant

Applies when opc == 10.

LDRSH <Xt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 1);

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDRSH (immediate) on
page K1-8418.

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0
and encoded in the "imm12" field as <pimm>/2.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

0 1 1 1 1 0 0 1 1 x imm12 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc
C6-1132 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

 boolean wb_unknown = FALSE;
 boolean rt_unknown = FALSE;

 if memop == MemOp_LOAD && wback && n == t && n != 31 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

 if memop == MemOp_STORE && wback && n == t && n != 31 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
 address = address + offset;

 case memop of
 when MemOp_STORE
 if rt_unknown then
 data = bits(16) UNKNOWN;
 else
 data = X[t];
 Mem[address, 2, AccType_NORMAL] = data;

 when MemOp_LOAD
 data = Mem[address, 2, AccType_NORMAL];
 if signed then
 X[t] = SignExtend(data, regsize);
 else
 X[t] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1133
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 else
 X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1134 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.143 LDRSH (register)

Load Register Signed Halfword (register) calculates an address from a base register value and an offset register
value, loads a halfword from memory, sign-extends it, and writes it to a register. For information about memory
accesses see Load/store addressing modes on page C1-202.

32-bit variant

Applies when opc == 11.

LDRSH <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit variant

Applies when opc == 10.

LDRSH <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for all variants of this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then 1 else 0;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be
optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

#0 when S = 0

#1 when S = 1

0 1 1 1 1 0 0 0 1 x 1 Rm option S 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1135
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tag_checked = memop != MemOp_PREFETCH;

Operation

 bits(64) offset = ExtendReg(m, extend_type, shift);
 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 case memop of
 when MemOp_STORE
 data = X[t];
 Mem[address, 2, AccType_NORMAL] = data;

 when MemOp_LOAD
 data = Mem[address, 2, AccType_NORMAL];
 if signed then
 X[t] = SignExtend(data, regsize);
 else
 X[t] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1136 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.144 LDRSW (immediate)

Load Register Signed Word (immediate) loads a word from memory, sign-extends it to 64 bits, and writes the result
to a register. The address that is used for the load is calculated from a base register and an immediate offset. For
information about memory accesses, see Load/store addressing modes on page C1-202.

Post-index

Encoding

LDRSW <Xt>, [<Xn|SP>], #<simm>

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

Encoding

LDRSW <Xt>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

Encoding

LDRSW <Xt>, [<Xn|SP>{, #<pimm>}]

Decode for this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 2);

1 0 1 1 1 0 0 0 1 0 0 imm9 0 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

1 0 1 1 1 0 0 0 1 0 0 imm9 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

1 0 1 1 1 0 0 1 1 0 imm12 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1137
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDRSW (immediate) on
page K1-8418.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380, defaulting to
0 and encoded in the "imm12" field as <pimm>/4.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = wback || n != 31;

 boolean wb_unknown = FALSE;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(32) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
 address = address + offset;

 data = Mem[address, 4, AccType_NORMAL];
 X[t] = SignExtend(data, 64);
 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
 else
 X[n] = address;
C6-1138 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1139
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.145 LDRSW (literal)

Load Register Signed Word (literal) calculates an address from the PC value and an immediate offset, loads a word
from memory, and writes it to a register. For information about memory accesses, see Load/store addressing modes
on page C1-202.

Encoding

LDRSW <Xt>, <label>

Decode for this encoding

 integer t = UInt(Rt);
 bits(64) offset;

 offset = SignExtend(imm19:'00', 64);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this
instruction, in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 bits(64) address = PC[] + offset;
 bits(32) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(FALSE);

 data = Mem[address, 4, AccType_NORMAL];
 X[t] = SignExtend(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

1 0 0 1 1 0 0 0 imm19 Rt
31 30 29 28 27 26 25 24 23 5 4 0

opc
C6-1140 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.146 LDRSW (register)

Load Register Signed Word (register) calculates an address from a base register value and an offset register value,
loads a word from memory, sign-extends it to form a 64-bit value, and writes it to a register. The offset register value
can be shifted left by 0 or 2 bits. For information about memory accesses, see Load/store addressing modes on
page C1-202.

Encoding

LDRSW <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then 2 else 0;

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be
optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

#0 when S = 0

#2 when S = 1

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

1 0 1 1 1 0 0 0 1 0 1 Rm option S 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1141
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(64) offset = ExtendReg(m, extend_type, shift);
 bits(64) address;
 bits(32) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = Mem[address, 4, AccType_NORMAL];
 X[t] = SignExtend(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1142 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.147 LDSETB, LDSETAB, LDSETALB, LDSETLB

Atomic bit set on byte in memory atomically loads an 8-bit byte from memory, performs a bitwise OR with the value
held in a register on it, and stores the result back to memory. The value initially loaded from memory is returned in
the destination register.

• If the destination register is not WZR, LDSETAB and LDSETALB load from memory with acquire semantics.

• LDSETLB and LDSETALB store to memory with release semantics.

• LDSETB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STSETB, STSETLB. See Alias conditions on page C6-1144 for details of when
each alias is preferred.

Integer

(FEAT_LSE)

LDSETAB variant

Applies when A == 1 && R == 0.

LDSETAB <Ws>, <Wt>, [<Xn|SP>]

LDSETALB variant

Applies when A == 1 && R == 1.

LDSETALB <Ws>, <Wt>, [<Xn|SP>]

LDSETB variant

Applies when A == 0 && R == 0.

LDSETB <Ws>, <Wt>, [<Xn|SP>]

LDSETLB variant

Applies when A == 0 && R == 1.

LDSETLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 0 1 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1143
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_ORR, value, ldacctype, stacctype);

 if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STSETB, STSETLB A == '0' && Rt == '11111'
C6-1144 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.148 LDSETH, LDSETAH, LDSETALH, LDSETLH

Atomic bit set on halfword in memory atomically loads a 16-bit halfword from memory, performs a bitwise OR with
the value held in a register on it, and stores the result back to memory. The value initially loaded from memory is
returned in the destination register.

• If the destination register is not WZR, LDSETAH and LDSETALH load from memory with acquire semantics.

• LDSETLH and LDSETALH store to memory with release semantics.

• LDSETH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STSETH, STSETLH. See Alias conditions on page C6-1146 for details of when
each alias is preferred.

Integer

(FEAT_LSE)

LDSETAH variant

Applies when A == 1 && R == 0.

LDSETAH <Ws>, <Wt>, [<Xn|SP>]

LDSETALH variant

Applies when A == 1 && R == 1.

LDSETALH <Ws>, <Wt>, [<Xn|SP>]

LDSETH variant

Applies when A == 0 && R == 0.

LDSETH <Ws>, <Wt>, [<Xn|SP>]

LDSETLH variant

Applies when A == 0 && R == 1.

LDSETLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 0 1 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1145
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_ORR, value, ldacctype, stacctype);

 if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STSETH, STSETLH A == '0' && Rt == '11111'
C6-1146 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.149 LDSET, LDSETA, LDSETAL, LDSETL

Atomic bit set on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from
memory, performs a bitwise OR with the value held in a register on it, and stores the result back to memory. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDSETA and LDSETAL load from memory with acquire
semantics.

• LDSETL and LDSETAL store to memory with release semantics.

• LDSET has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STSET, STSETL. See Alias conditions on page C6-1148 for details of when
each alias is preferred.

Integer

(FEAT_LSE)

32-bit LDSET variant

Applies when size == 10 && A == 0 && R == 0.

LDSET <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSETA variant

Applies when size == 10 && A == 1 && R == 0.

LDSETA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSETAL variant

Applies when size == 10 && A == 1 && R == 1.

LDSETAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSETL variant

Applies when size == 10 && A == 0 && R == 1.

LDSETL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDSET variant

Applies when size == 11 && A == 0 && R == 0.

LDSET <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSETA variant

Applies when size == 11 && A == 1 && R == 0.

LDSETA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 0 1 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1147
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDSETAL variant

Applies when size == 11 && A == 1 && R == 1.

LDSETAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSETL variant

Applies when size == 11 && A == 0 && R == 1.

LDSETL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_ORR, value, ldacctype, stacctype);

Alias is preferred when

 STSET, STSETL A == '0' && Rt == '11111'
C6-1148 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if t != 31 then
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1149
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.150 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB

Atomic signed maximum on byte in memory atomically loads an 8-bit byte from memory, compares it against the
value held in a register, and stores the larger value back to memory, treating the values as signed numbers. The value
initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMAXAB and LDSMAXALB load from memory with acquire semantics.

• LDSMAXLB and LDSMAXALB store to memory with release semantics.

• LDSMAXB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STSMAXB, STSMAXLB. See Alias conditions on page C6-1151 for details of
when each alias is preferred.

Integer

(FEAT_LSE)

LDSMAXAB variant

Applies when A == 1 && R == 0.

LDSMAXAB <Ws>, <Wt>, [<Xn|SP>]

LDSMAXALB variant

Applies when A == 1 && R == 1.

LDSMAXALB <Ws>, <Wt>, [<Xn|SP>]

LDSMAXB variant

Applies when A == 0 && R == 0.

LDSMAXB <Ws>, <Wt>, [<Xn|SP>]

LDSMAXLB variant

Applies when A == 0 && R == 1.

LDSMAXLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 1 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
C6-1150 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_SMAX, value, ldacctype, stacctype);

 if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STSMAXB, STSMAXLB A == '0' && Rt == '11111'
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1151
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.151 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH

Atomic signed maximum on halfword in memory atomically loads a 16-bit halfword from memory, compares it
against the value held in a register, and stores the larger value back to memory, treating the values as signed
numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMAXAH and LDSMAXALH load from memory with acquire semantics.

• LDSMAXLH and LDSMAXALH store to memory with release semantics.

• LDSMAXH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STSMAXH, STSMAXLH. See Alias conditions on page C6-1153 for details of
when each alias is preferred.

Integer

(FEAT_LSE)

LDSMAXAH variant

Applies when A == 1 && R == 0.

LDSMAXAH <Ws>, <Wt>, [<Xn|SP>]

LDSMAXALH variant

Applies when A == 1 && R == 1.

LDSMAXALH <Ws>, <Wt>, [<Xn|SP>]

LDSMAXH variant

Applies when A == 0 && R == 0.

LDSMAXH <Ws>, <Wt>, [<Xn|SP>]

LDSMAXLH variant

Applies when A == 0 && R == 1.

LDSMAXLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 1 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
C6-1152 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_SMAX, value, ldacctype, stacctype);

 if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

 STSMAXH, STSMAXLH A == '0' && Rt == '11111'
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1153
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.152 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL

Atomic signed maximum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, compares it against the value held in a register, and stores the larger value back to memory, treating
the values as signed numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDSMAXA and LDSMAXAL load from memory with acquire
semantics.

• LDSMAXL and LDSMAXAL store to memory with release semantics.

• LDSMAX has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STSMAX, STSMAXL. See Alias conditions on page C6-1155 for details of
when each alias is preferred.

Integer

(FEAT_LSE)

32-bit LDSMAX variant

Applies when size == 10 && A == 0 && R == 0.

LDSMAX <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMAXA variant

Applies when size == 10 && A == 1 && R == 0.

LDSMAXA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMAXAL variant

Applies when size == 10 && A == 1 && R == 1.

LDSMAXAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMAXL variant

Applies when size == 10 && A == 0 && R == 1.

LDSMAXL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDSMAX variant

Applies when size == 11 && A == 0 && R == 0.

LDSMAX <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMAXA variant

Applies when size == 11 && A == 1 && R == 0.

LDSMAXA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 1 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
C6-1154 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDSMAXAL variant

Applies when size == 11 && A == 1 && R == 1.

LDSMAXAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMAXL variant

Applies when size == 11 && A == 0 && R == 1.

LDSMAXL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_SMAX, value, ldacctype, stacctype);

Alias is preferred when

STSMAX, STSMAXL A == '0' && Rt == '11111'
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1155
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if t != 31 then
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1156 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.153 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB

Atomic signed minimum on byte in memory atomically loads an 8-bit byte from memory, compares it against the
value held in a register, and stores the smaller value back to memory, treating the values as signed numbers. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMINAB and LDSMINALB load from memory with acquire semantics.

• LDSMINLB and LDSMINALB store to memory with release semantics.

• LDSMINB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STSMINB, STSMINLB. See Alias conditions on page C6-1158 for details of
when each alias is preferred.

Integer

(FEAT_LSE)

LDSMINAB variant

Applies when A == 1 && R == 0.

LDSMINAB <Ws>, <Wt>, [<Xn|SP>]

LDSMINALB variant

Applies when A == 1 && R == 1.

LDSMINALB <Ws>, <Wt>, [<Xn|SP>]

LDSMINB variant

Applies when A == 0 && R == 0.

LDSMINB <Ws>, <Wt>, [<Xn|SP>]

LDSMINLB variant

Applies when A == 0 && R == 1.

LDSMINLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 1 0 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1157
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_SMIN, value, ldacctype, stacctype);

 if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STSMINB, STSMINLB A == '0' && Rt == '11111'
C6-1158 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.154 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH

Atomic signed minimum on halfword in memory atomically loads a 16-bit halfword from memory, compares it
against the value held in a register, and stores the smaller value back to memory, treating the values as signed
numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMINAH and LDSMINALH load from memory with acquire semantics.

• LDSMINLH and LDSMINALH store to memory with release semantics.

• LDSMINH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STSMINH, STSMINLH. See Alias conditions on page C6-1160 for details of
when each alias is preferred.

Integer

(FEAT_LSE)

LDSMINAH variant

Applies when A == 1 && R == 0.

LDSMINAH <Ws>, <Wt>, [<Xn|SP>]

LDSMINALH variant

Applies when A == 1 && R == 1.

LDSMINALH <Ws>, <Wt>, [<Xn|SP>]

LDSMINH variant

Applies when A == 0 && R == 0.

LDSMINH <Ws>, <Wt>, [<Xn|SP>]

LDSMINLH variant

Applies when A == 0 && R == 1.

LDSMINLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 1 0 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1159
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_SMIN, value, ldacctype, stacctype);

 if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

 STSMINH, STSMINLH A == '0' && Rt == '11111'
C6-1160 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.155 LDSMIN, LDSMINA, LDSMINAL, LDSMINL

Atomic signed minimum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, compares it against the value held in a register, and stores the smaller value back to memory, treating
the values as signed numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDSMINA and LDSMINAL load from memory with acquire
semantics.

• LDSMINL and LDSMINAL store to memory with release semantics.

• LDSMIN has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STSMIN, STSMINL. See Alias conditions on page C6-1162 for details of when
each alias is preferred.

Integer

(FEAT_LSE)

32-bit LDSMIN variant

Applies when size == 10 && A == 0 && R == 0.

LDSMIN <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMINA variant

Applies when size == 10 && A == 1 && R == 0.

LDSMINA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMINAL variant

Applies when size == 10 && A == 1 && R == 1.

LDSMINAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMINL variant

Applies when size == 10 && A == 0 && R == 1.

LDSMINL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDSMIN variant

Applies when size == 11 && A == 0 && R == 0.

LDSMIN <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMINA variant

Applies when size == 11 && A == 1 && R == 0.

LDSMINA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 1 0 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1161
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDSMINAL variant

Applies when size == 11 && A == 1 && R == 1.

LDSMINAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMINL variant

Applies when size == 11 && A == 0 && R == 1.

LDSMINL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_SMIN, value, ldacctype, stacctype);

Alias is preferred when

 STSMIN, STSMINL A == '0' && Rt == '11111'
C6-1162 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if t != 31 then
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1163
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.156 LDTR

Load Register (unprivileged) loads a word or doubleword from memory, and writes it to a register. The address that
is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes on page C1-202.

32-bit variant

Applies when size == 10.

LDTR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

LDTR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
 unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

 user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
 if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
 acctype = AccType_UNPRIV;
 else
 acctype = AccType_NORMAL;

1 x 1 1 1 0 0 0 0 1 0 imm9 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1164 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 integer regsize;

 regsize = if size == '11' then 64 else 32;
 integer datasize = 8 << scale;
 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = Mem[address, datasize DIV 8, acctype];
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1165
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.157 LDTRB

Load Register Byte (unprivileged) loads a byte from memory, zero-extends it, and writes the result to a register. The
address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes on page C1-202.

Encoding

LDTRB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
 unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

 user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
 if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
 acctype = AccType_UNPRIV;
 else
 acctype = AccType_NORMAL;

 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then

0 0 1 1 1 0 0 0 0 1 0 imm9 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1166 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = Mem[address, 1, acctype];
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1167
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.158 LDTRH

Load Register Halfword (unprivileged) loads a halfword from memory, zero-extends it, and writes the result to a
register. The address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes on page C1-202.

Encoding

LDTRH <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
 unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

 user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
 if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
 acctype = AccType_UNPRIV;
 else
 acctype = AccType_NORMAL;

 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then

0 1 1 1 1 0 0 0 0 1 0 imm9 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1168 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = Mem[address, 2, acctype];
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1169
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.159 LDTRSB

Load Register Signed Byte (unprivileged) loads a byte from memory, sign-extends it to 32 bits or 64 bits, and writes
the result to a register. The address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes on page C1-202.

32-bit variant

Applies when opc == 11.

LDTRSB <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDTRSB <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
 unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

 user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
 if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
 acctype = AccType_UNPRIV;
 else
 acctype = AccType_NORMAL;

0 0 1 1 1 0 0 0 1 x 0 imm9 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1170 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tag_checked = memop != MemOp_PREFETCH && (n != 31);

Operation

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 case memop of
 when MemOp_STORE
 data = X[t];
 Mem[address, 1, acctype] = data;

 when MemOp_LOAD
 data = Mem[address, 1, acctype];
 if signed then
 X[t] = SignExtend(data, regsize);
 else
 X[t] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1171
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.160 LDTRSH

Load Register Signed Halfword (unprivileged) loads a halfword from memory, sign-extends it to 32 bits or 64 bits,
and writes the result to a register. The address that is used for the load is calculated from a base register and an
immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes on page C1-202.

32-bit variant

Applies when opc == 11.

LDTRSH <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDTRSH <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
 unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

 user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
 if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
 acctype = AccType_UNPRIV;
 else
 acctype = AccType_NORMAL;

0 1 1 1 1 0 0 0 1 x 0 imm9 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1172 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tag_checked = memop != MemOp_PREFETCH && (n != 31);

Operation

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 case memop of
 when MemOp_STORE
 data = X[t];
 Mem[address, 2, acctype] = data;

 when MemOp_LOAD
 data = Mem[address, 2, acctype];
 if signed then
 X[t] = SignExtend(data, regsize);
 else
 X[t] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1173
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.161 LDTRSW

Load Register Signed Word (unprivileged) loads a word from memory, sign-extends it to 64 bits, and writes the
result to a register. The address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes on page C1-202.

Encoding

LDTRSW <Xt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
 unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

 user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
 if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
 acctype = AccType_UNPRIV;
 else
 acctype = AccType_NORMAL;

 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(32) data;

 if HaveMTE2Ext() then

1 0 1 1 1 0 0 0 1 0 0 imm9 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1174 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = Mem[address, 4, acctype];
 X[t] = SignExtend(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1175
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.162 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB

Atomic unsigned maximum on byte in memory atomically loads an 8-bit byte from memory, compares it against
the value held in a register, and stores the larger value back to memory, treating the values as unsigned numbers.
The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMAXAB and LDUMAXALB load from memory with acquire semantics.

• LDUMAXLB and LDUMAXALB store to memory with release semantics.

• LDUMAXB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STUMAXB, STUMAXLB. See Alias conditions on page C6-1177 for details
of when each alias is preferred.

Integer

(FEAT_LSE)

LDUMAXAB variant

Applies when A == 1 && R == 0.

LDUMAXAB <Ws>, <Wt>, [<Xn|SP>]

LDUMAXALB variant

Applies when A == 1 && R == 1.

LDUMAXALB <Ws>, <Wt>, [<Xn|SP>]

LDUMAXB variant

Applies when A == 0 && R == 0.

LDUMAXB <Ws>, <Wt>, [<Xn|SP>]

LDUMAXLB variant

Applies when A == 0 && R == 1.

LDUMAXLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 1 1 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
C6-1176 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_UMAX, value, ldacctype, stacctype);

 if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

 STUMAXB, STUMAXLB A == '0' && Rt == '11111'
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1177
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.163 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH

Atomic unsigned maximum on halfword in memory atomically loads a 16-bit halfword from memory, compares it
against the value held in a register, and stores the larger value back to memory, treating the values as unsigned
numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMAXAH and LDUMAXALH load from memory with acquire semantics.

• LDUMAXLH and LDUMAXALH store to memory with release semantics.

• LDUMAXH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STUMAXH, STUMAXLH. See Alias conditions on page C6-1179 for details
of when each alias is preferred.

Integer

(FEAT_LSE)

LDUMAXAH variant

Applies when A == 1 && R == 0.

LDUMAXAH <Ws>, <Wt>, [<Xn|SP>]

LDUMAXALH variant

Applies when A == 1 && R == 1.

LDUMAXALH <Ws>, <Wt>, [<Xn|SP>]

LDUMAXH variant

Applies when A == 0 && R == 0.

LDUMAXH <Ws>, <Wt>, [<Xn|SP>]

LDUMAXLH variant

Applies when A == 0 && R == 1.

LDUMAXLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 1 1 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
C6-1178 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_UMAX, value, ldacctype, stacctype);

 if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

 STUMAXH, STUMAXLH A == '0' && Rt == '11111'
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1179
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.164 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL

Atomic unsigned maximum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, compares it against the value held in a register, and stores the larger value back to memory, treating
the values as unsigned numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDUMAXA and LDUMAXAL load from memory with acquire
semantics.

• LDUMAXL and LDUMAXAL store to memory with release semantics.

• LDUMAX has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STUMAX, STUMAXL. See Alias conditions on page C6-1181 for details of
when each alias is preferred.

Integer

(FEAT_LSE)

32-bit LDUMAX variant

Applies when size == 10 && A == 0 && R == 0.

LDUMAX <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMAXA variant

Applies when size == 10 && A == 1 && R == 0.

LDUMAXA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMAXAL variant

Applies when size == 10 && A == 1 && R == 1.

LDUMAXAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMAXL variant

Applies when size == 10 && A == 0 && R == 1.

LDUMAXL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDUMAX variant

Applies when size == 11 && A == 0 && R == 0.

LDUMAX <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMAXA variant

Applies when size == 11 && A == 1 && R == 0.

LDUMAXA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 1 1 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
C6-1180 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDUMAXAL variant

Applies when size == 11 && A == 1 && R == 1.

LDUMAXAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMAXL variant

Applies when size == 11 && A == 0 && R == 1.

LDUMAXL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_UMAX, value, ldacctype, stacctype);

Alias is preferred when

 STUMAX, STUMAXL A == '0' && Rt == '11111'
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1181
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if t != 31 then
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1182 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.165 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB

Atomic unsigned minimum on byte in memory atomically loads an 8-bit byte from memory, compares it against the
value held in a register, and stores the smaller value back to memory, treating the values as unsigned numbers. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMINAB and LDUMINALB load from memory with acquire semantics.

• LDUMINLB and LDUMINALB store to memory with release semantics.

• LDUMINB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STUMINB, STUMINLB. See Alias conditions on page C6-1184 for details of
when each alias is preferred.

Integer

(FEAT_LSE)

LDUMINAB variant

Applies when A == 1 && R == 0.

LDUMINAB <Ws>, <Wt>, [<Xn|SP>]

LDUMINALB variant

Applies when A == 1 && R == 1.

LDUMINALB <Ws>, <Wt>, [<Xn|SP>]

LDUMINB variant

Applies when A == 0 && R == 0.

LDUMINB <Ws>, <Wt>, [<Xn|SP>]

LDUMINLB variant

Applies when A == 0 && R == 1.

LDUMINLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 1 1 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1183
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_UMIN, value, ldacctype, stacctype);

 if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

 STUMINB, STUMINLB A == '0' && Rt == '11111'
C6-1184 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.166 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH

Atomic unsigned minimum on halfword in memory atomically loads a 16-bit halfword from memory, compares it
against the value held in a register, and stores the smaller value back to memory, treating the values as unsigned
numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMINAH and LDUMINALH load from memory with acquire semantics.

• LDUMINLH and LDUMINALH store to memory with release semantics.

• LDUMINH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STUMINH, STUMINLH. See Alias conditions on page C6-1186 for details of
when each alias is preferred.

Integer

(FEAT_LSE)

LDUMINAH variant

Applies when A == 1 && R == 0.

LDUMINAH <Ws>, <Wt>, [<Xn|SP>]

LDUMINALH variant

Applies when A == 1 && R == 1.

LDUMINALH <Ws>, <Wt>, [<Xn|SP>]

LDUMINH variant

Applies when A == 0 && R == 0.

LDUMINH <Ws>, <Wt>, [<Xn|SP>]

LDUMINLH variant

Applies when A == 0 && R == 1.

LDUMINLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 1 1 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1185
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_UMIN, value, ldacctype, stacctype);

 if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

 STUMINH, STUMINLH A == '0' && Rt == '11111'
C6-1186 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.167 LDUMIN, LDUMINA, LDUMINAL, LDUMINL

Atomic unsigned minimum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, compares it against the value held in a register, and stores the smaller value back to memory, treating
the values as unsigned numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDUMINA and LDUMINAL load from memory with acquire
semantics.

• LDUMINL and LDUMINAL store to memory with release semantics.

• LDUMIN has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is used by the alias STUMIN, STUMINL. See Alias conditions on page C6-1188 for details of when
each alias is preferred.

Integer

(FEAT_LSE)

32-bit LDUMIN variant

Applies when size == 10 && A == 0 && R == 0.

LDUMIN <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMINA variant

Applies when size == 10 && A == 1 && R == 0.

LDUMINA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMINAL variant

Applies when size == 10 && A == 1 && R == 1.

LDUMINAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMINL variant

Applies when size == 10 && A == 0 && R == 1.

LDUMINL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDUMIN variant

Applies when size == 11 && A == 0 && R == 0.

LDUMIN <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMINA variant

Applies when size == 11 && A == 1 && R == 0.

LDUMINA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 1 1 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1187
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDUMINAL variant

Applies when size == 11 && A == 1 && R == 1.

LDUMINAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMINL variant

Applies when size == 11 && A == 0 && R == 1.

LDUMINL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = MemAtomic(address, MemAtomicOp_UMIN, value, ldacctype, stacctype);

Alias is preferred when

 STUMIN, STUMINL A == '0' && Rt == '11111'
C6-1188 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if t != 31 then
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1189
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.168 LDUR

Load Register (unscaled) calculates an address from a base register and an immediate offset, loads a 32-bit word or
64-bit doubleword from memory, zero-extends it, and writes it to a register. For information about memory accesses,
see Load/store addressing modes on page C1-202.

32-bit variant

Applies when size == 10.

LDUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

LDUR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer regsize;

 regsize = if size == '11' then 64 else 32;
 integer datasize = 8 << scale;
 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();

1 x 1 1 1 0 0 0 0 1 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1190 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = Mem[address, datasize DIV 8, AccType_NORMAL];
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1191
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.169 LDURB

Load Register Byte (unscaled) calculates an address from a base register and an immediate offset, loads a byte from
memory, zero-extends it, and writes it to a register. For information about memory accesses, see Load/store
addressing modes on page C1-202.

Encoding

LDURB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = Mem[address, 1, AccType_NORMAL];
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 1 1 1 0 0 0 0 1 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1192 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.170 LDURH

Load Register Halfword (unscaled) calculates an address from a base register and an immediate offset, loads a
halfword from memory, zero-extends it, and writes it to a register. For information about memory accesses, see
Load/store addressing modes on page C1-202.

Encoding

LDURH <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = Mem[address, 2, AccType_NORMAL];
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 1 1 1 0 0 0 0 1 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1193
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.171 LDURSB

Load Register Signed Byte (unscaled) calculates an address from a base register and an immediate offset, loads a
signed byte from memory, sign-extends it, and writes it to a register. For information about memory accesses, see
Load/store addressing modes on page C1-202.

32-bit variant

Applies when opc == 11.

LDURSB <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDURSB <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tag_checked = memop != MemOp_PREFETCH && (n != 31);

0 0 1 1 1 0 0 0 1 x 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1194 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 case memop of
 when MemOp_STORE
 data = X[t];
 Mem[address, 1, AccType_NORMAL] = data;

 when MemOp_LOAD
 data = Mem[address, 1, AccType_NORMAL];
 if signed then
 X[t] = SignExtend(data, regsize);
 else
 X[t] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1195
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.172 LDURSH

Load Register Signed Halfword (unscaled) calculates an address from a base register and an immediate offset, loads
a signed halfword from memory, sign-extends it, and writes it to a register. For information about memory accesses,
see Load/store addressing modes on page C1-202.

32-bit variant

Applies when opc == 11.

LDURSH <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDURSH <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tag_checked = memop != MemOp_PREFETCH && (n != 31);

0 1 1 1 1 0 0 0 1 x 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1196 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 case memop of
 when MemOp_STORE
 data = X[t];
 Mem[address, 2, AccType_NORMAL] = data;

 when MemOp_LOAD
 data = Mem[address, 2, AccType_NORMAL];
 if signed then
 X[t] = SignExtend(data, regsize);
 else
 X[t] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1197
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.173 LDURSW

Load Register Signed Word (unscaled) calculates an address from a base register and an immediate offset, loads a
signed word from memory, sign-extends it, and writes it to a register. For information about memory accesses, see
Load/store addressing modes on page C1-202.

Encoding

LDURSW <Xt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(32) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = Mem[address, 4, AccType_NORMAL];
 X[t] = SignExtend(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

1 0 1 1 1 0 0 0 1 0 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1198 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.174 LDXP

Load Exclusive Pair of Registers derives an address from a base register value, loads two 32-bit words or two 64-bit
doublewords from memory, and writes them to two registers. For information on single-copy atomicity and
alignment requirements, see Requirements for single-copy atomicity on page B2-128 and Alignment of data
accesses on page B2-160. The PE marks the physical address being accessed as an exclusive access. This exclusive
access mark is checked by Store Exclusive instructions. See Synchronization and semaphores on page B2-179. For
information about memory accesses, see Load/store addressing modes on page C1-202.

32-bit variant

Applies when sz == 0.

LDXP <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit variant

Applies when sz == 1.

LDXP <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);

 integer elsize = 32 << UInt(sz);
 integer datasize = elsize * 2;
 boolean tag_checked = n != 31;

 boolean rt_unknown = FALSE;
 if t == t2 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDXP on page K1-8419.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

1 sz 0 0 1 0 0 0 0 1 1 (1) (1) (1) (1) (1) 0 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

L Rs o0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1199
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, dbytes);

 if rt_unknown then
 // ConstrainedUNPREDICTABLE case
 X[t] = bits(datasize) UNKNOWN; // In this case t = t2
 elsif elsize == 32 then
 // 32-bit load exclusive pair (atomic)
 data = Mem[address, dbytes, AccType_ATOMIC];
 if BigEndian(AccType_ATOMIC) then
 X[t] = data<datasize-1:elsize>;
 X[t2] = data<elsize-1:0>;
 else
 X[t] = data<elsize-1:0>;
 X[t2] = data<datasize-1:elsize>;
 else // elsize == 64
 // 64-bit load exclusive pair (not atomic),
 // but must be 128-bit aligned
 if address != Align(address, dbytes) then
 AArch64.Abort(address, AlignmentFault(AccType_ATOMIC, FALSE, FALSE));
 X[t] = Mem[address, 8, AccType_ATOMIC];
 X[t2] = Mem[address+8, 8, AccType_ATOMIC];

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1200 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.175 LDXR

Load Exclusive Register derives an address from a base register value, loads a 32-bit word or a 64-bit doubleword
from memory, and writes it to a register. The memory access is atomic. The PE marks the physical address being
accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores on page B2-179. For information about memory accesses see Load/store
addressing modes on page C1-202.

32-bit variant

Applies when size == 10.

LDXR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

LDXR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 integer elsize = 8 << UInt(size);
 integer regsize = if elsize == 64 then 64 else 32;
 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of

1 x 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1201
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, dbytes);

 data = Mem[address, dbytes, AccType_ATOMIC];
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1202 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.176 LDXRB

Load Exclusive Register Byte derives an address from a base register value, loads a byte from memory, zero-extends
it and writes it to a register. The memory access is atomic. The PE marks the physical address being accessed as an
exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See Synchronization and
semaphores on page B2-179. For information about memory accesses see Load/store addressing modes on
page C1-202.

Encoding

LDXRB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, 1);

 data = Mem[address, 1, AccType_ATOMIC];
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1203
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.177 LDXRH

Load Exclusive Register Halfword derives an address from a base register value, loads a halfword from memory,
zero-extends it and writes it to a register. The memory access is atomic. The PE marks the physical address being
accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores on page B2-179. For information about memory accesses see Load/store
addressing modes on page C1-202.

Encoding

LDXRH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, 2);

 data = Mem[address, 2, AccType_ATOMIC];
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
C6-1204 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.178 LSL (register)

Logical Shift Left (register) shifts a register value left by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The remainder obtained by dividing the second source register by the data size
defines the number of bits by which the first source register is left-shifted.

This instruction is an alias of the LSLV instruction. This means that:

• The encodings in this description are named to match the encodings of LSLV.

• The description of LSLV gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

LSL <Wd>, <Wn>, <Wm>

 is equivalent to

LSLV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

LSL <Xd>, <Xn>, <Xm>

 is equivalent to

LSLV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

The description of LSLV gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1205
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1206 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.179 LSL (immediate)

Logical Shift Left (immediate) shifts a register value left by an immediate number of bits, shifting in zeros, and
writes the result to the destination register.

This instruction is an alias of the UBFM instruction. This means that:

• The encodings in this description are named to match the encodings of UBFM.

• The description of UBFM gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0 && N == 0 && imms != 011111.

LSL <Wd>, <Wn>, #<shift>

 is equivalent to

UBFM <Wd>, <Wn>, #(-<shift> MOD 32), #(31-<shift>)

and is the preferred disassembly when imms + 1 == immr.

64-bit variant

Applies when sf == 1 && N == 1 && imms != 111111.

LSL <Xd>, <Xn>, #<shift>

 is equivalent to

UBFM <Xd>, <Xn>, #(-<shift> MOD 64), #(63-<shift>)

and is the preferred disassembly when imms + 1 == immr.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<shift> For the 32-bit variant: is the shift amount, in the range 0 to 31.

For the 64-bit variant: is the shift amount, in the range 0 to 63.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

sf 1 0 1 0 0 1 1 0 N immr imms Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1207
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1208 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.180 LSLV

Logical Shift Left Variable shifts a register value left by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The remainder obtained by dividing the second source register by the data size
defines the number of bits by which the first source register is left-shifted.

This instruction is used by the alias LSL (register). The alias is always the preferred disassembly.

32-bit variant

Applies when sf == 0.

LSLV <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

LSLV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;
 ShiftType shift_type = DecodeShift(op2);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand2 = X[m];

 result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize);
 X[d] = result;

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1209
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1210 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.181 LSR (register)

Logical Shift Right (register) shifts a register value right by a variable number of bits, shifting in zeros, and writes
the result to the destination register. The remainder obtained by dividing the second source register by the data size
defines the number of bits by which the first source register is right-shifted.

This instruction is an alias of the LSRV instruction. This means that:

• The encodings in this description are named to match the encodings of LSRV.

• The description of LSRV gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

LSR <Wd>, <Wn>, <Wm>

 is equivalent to

LSRV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

LSR <Xd>, <Xn>, <Xm>

 is equivalent to

LSRV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

The description of LSRV gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1211
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1212 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.182 LSR (immediate)

Logical Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in zeros, and
writes the result to the destination register.

This instruction is an alias of the UBFM instruction. This means that:

• The encodings in this description are named to match the encodings of UBFM.

• The description of UBFM gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0 && N == 0 && imms == 011111.

LSR <Wd>, <Wn>, #<shift>

 is equivalent to

UBFM <Wd>, <Wn>, #<shift>, #31

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1 && N == 1 && imms == 111111.

LSR <Xd>, <Xn>, #<shift>

 is equivalent to

UBFM <Xd>, <Xn>, #<shift>, #63

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<shift> For the 32-bit variant: is the shift amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, encoded in the "immr" field.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

sf 1 0 1 0 0 1 1 0 N immr x 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc imms
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1213
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1214 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.183 LSRV

Logical Shift Right Variable shifts a register value right by a variable number of bits, shifting in zeros, and writes
the result to the destination register. The remainder obtained by dividing the second source register by the data size
defines the number of bits by which the first source register is right-shifted.

This instruction is used by the alias LSR (register). The alias is always the preferred disassembly.

32-bit variant

Applies when sf == 0.

LSRV <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

LSRV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;
 ShiftType shift_type = DecodeShift(op2);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand2 = X[m];

 result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize);
 X[d] = result;

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1215
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1216 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.184 MADD

Multiply-Add multiplies two register values, adds a third register value, and writes the result to the destination
register.

This instruction is used by the alias MUL. See Alias conditions on page C6-1217 for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

MADD <Wd>, <Wn>, <Wm>, <Wa>

64-bit variant

Applies when sf == 1.

MADD <Xd>, <Xn>, <Xm>, <Xa>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);
 integer destsize = if sf == '1' then 64 else 32;

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Wa> Is the 32-bit name of the third general-purpose source register holding the addend, encoded in the
"Ra" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Alias is preferred when

 MUL Ra == '11111'

sf 0 0 1 1 0 1 1 0 0 0 Rm 0 Ra Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

o0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1217
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Xa> Is the 64-bit name of the third general-purpose source register holding the addend, encoded in the
"Ra" field.

Operation

 bits(destsize) operand1 = X[n];
 bits(destsize) operand2 = X[m];
 bits(destsize) operand3 = X[a];

 integer result;

 result = UInt(operand3) + (UInt(operand1) * UInt(operand2));

 X[d] = result<destsize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1218 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.185 MNEG

Multiply-Negate multiplies two register values, negates the product, and writes the result to the destination register.

This instruction is an alias of the MSUB instruction. This means that:

• The encodings in this description are named to match the encodings of MSUB.

• The description of MSUB gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

MNEG <Wd>, <Wn>, <Wm>

 is equivalent to

MSUB <Wd>, <Wn>, <Wm>, WZR

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

MNEG <Xd>, <Xn>, <Xm>

 is equivalent to

MSUB <Xd>, <Xn>, <Xm>, XZR

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

The description of MSUB gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 1 0 0 0 Rm 1 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

o0 Ra
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1219
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1220 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.186 MOV (to/from SP)

Move between register and stack pointer : Rd = Rn

This instruction is an alias of the ADD (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of ADD (immediate).

• The description of ADD (immediate) gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

MOV <Wd|WSP>, <Wn|WSP>

 is equivalent to

ADD <Wd|WSP>, <Wn|WSP>, #0

and is the preferred disassembly when (Rd == '11111' || Rn == '11111').

64-bit variant

Applies when sf == 1.

MOV <Xd|SP>, <Xn|SP>

 is equivalent to

ADD <Xd|SP>, <Xn|SP>, #0

and is the preferred disassembly when (Rd == '11111' || Rn == '11111').

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

Operation

The description of ADD (immediate) gives the operational pseudocode for this instruction.

sf 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S sh imm12
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1221
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.187 MOV (inverted wide immediate)

Move (inverted wide immediate) moves an inverted 16-bit immediate value to a register.

This instruction is an alias of the MOVN instruction. This means that:

• The encodings in this description are named to match the encodings of MOVN.

• The description of MOVN gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0 && hw == 0x.

MOV <Wd>, #<imm>

 is equivalent to

MOVN <Wd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00') && ! IsOnes(imm16).

64-bit variant

Applies when sf == 1.

MOV <Xd>, #<imm>

 is equivalent to

MOVN <Xd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00').

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> For the 32-bit variant: is a 32-bit immediate, the bitwise inverse of which can be encoded in
"imm16:hw", but excluding 0xffff0000 and 0x0000ffff

For the 64-bit variant: is a 64-bit immediate, the bitwise inverse of which can be encoded in
"imm16:hw".

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or
16, encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16,
32 or 48, encoded in the "hw" field as <shift>/16.

Operation

The description of MOVN gives the operational pseudocode for this instruction.

sf 0 0 1 0 0 1 0 1 hw imm16 Rd
31 30 29 28 27 26 25 24 23 22 21 20 5 4 0

opc
C6-1222 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1223
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.188 MOV (wide immediate)

Move (wide immediate) moves a 16-bit immediate value to a register.

This instruction is an alias of the MOVZ instruction. This means that:

• The encodings in this description are named to match the encodings of MOVZ.

• The description of MOVZ gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0 && hw == 0x.

MOV <Wd>, #<imm>

 is equivalent to

MOVZ <Wd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00').

64-bit variant

Applies when sf == 1.

MOV <Xd>, #<imm>

 is equivalent to

MOVZ <Xd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00').

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> For the 32-bit variant: is a 32-bit immediate which can be encoded in "imm16:hw".

For the 64-bit variant: is a 64-bit immediate which can be encoded in "imm16:hw".

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or
16, encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16,
32 or 48, encoded in the "hw" field as <shift>/16.

Operation

The description of MOVZ gives the operational pseudocode for this instruction.

sf 1 0 1 0 0 1 0 1 hw imm16 Rd
31 30 29 28 27 26 25 24 23 22 21 20 5 4 0

opc
C6-1224 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1225
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.189 MOV (bitmask immediate)

Move (bitmask immediate) writes a bitmask immediate value to a register.

This instruction is an alias of the ORR (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of ORR (immediate).

• The description of ORR (immediate) gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

MOV <Wd|WSP>, #<imm>

 is equivalent to

ORR <Wd|WSP>, WZR, #<imm>

and is the preferred disassembly when ! MoveWidePreferred(sf, N, imms, immr).

64-bit variant

Applies when sf == 1.

MOV <Xd|SP>, #<imm>

 is equivalent to

ORR <Xd|SP>, XZR, #<imm>

and is the preferred disassembly when ! MoveWidePreferred(sf, N, imms, immr).

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr", but excluding values
which could be encoded by MOVZ or MOVN.

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr", but excluding values
which could be encoded by MOVZ or MOVN.

Operation

The description of ORR (immediate) gives the operational pseudocode for this instruction.

sf 0 1 1 0 0 1 0 0 N immr imms 1 1 1 1 1 Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc Rn
C6-1226 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1227
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.190 MOV (register)

Move (register) copies the value in a source register to the destination register.

This instruction is an alias of the ORR (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of ORR (shifted register).

• The description of ORR (shifted register) gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

MOV <Wd>, <Wm>

 is equivalent to

ORR <Wd>, WZR, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

MOV <Xd>, <Xm>

 is equivalent to

ORR <Xd>, XZR, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

Operation

The description of ORR (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 1 0 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 1 1 1 1 1 Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc shift N imm6 Rn
C6-1228 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1229
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.191 MOVK

Move wide with keep moves an optionally-shifted 16-bit immediate value into a register, keeping other bits
unchanged.

32-bit variant

Applies when sf == 0 && hw == 0x.

MOVK <Wd>, #<imm>{, LSL #<shift>}

64-bit variant

Applies when sf == 1.

MOVK <Xd>, #<imm>{, LSL #<shift>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer datasize = if sf == '1' then 64 else 32;
 integer pos;

 if sf == '0' && hw<1> == '1' then UNDEFINED;
 pos = UInt(hw:'0000');

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or
16, encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16,
32 or 48, encoded in the "hw" field as <shift>/16.

Operation

 bits(datasize) result;

 result = X[d];
 result<pos+15:pos> = imm16;
 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 1 1 1 0 0 1 0 1 hw imm16 Rd
31 30 29 28 27 26 25 24 23 22 21 20 5 4 0

opc
C6-1230 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1231
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.192 MOVN

Move wide with NOT moves the inverse of an optionally-shifted 16-bit immediate value to a register.

This instruction is used by the alias MOV (inverted wide immediate). See Alias conditions on page C6-1232 for
details of when each alias is preferred.

32-bit variant

Applies when sf == 0 && hw == 0x.

MOVN <Wd>, #<imm>{, LSL #<shift>}

64-bit variant

Applies when sf == 1.

MOVN <Xd>, #<imm>{, LSL #<shift>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer datasize = if sf == '1' then 64 else 32;
 integer pos;

 if sf == '0' && hw<1> == '1' then UNDEFINED;
 pos = UInt(hw:'0000');

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or
16, encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16,
32 or 48, encoded in the "hw" field as <shift>/16.

Alias of variant is preferred when

 MOV (inverted wide immediate) 64-bit ! (IsZero(imm16) && hw != '00')

 MOV (inverted wide immediate) 32-bit ! (IsZero(imm16) && hw != '00') && ! IsOnes(imm16)

sf 0 0 1 0 0 1 0 1 hw imm16 Rd
31 30 29 28 27 26 25 24 23 22 21 20 5 4 0

opc
C6-1232 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) result;

 result = Zeros();

 result<pos+15:pos> = imm16;
 result = NOT(result);
 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1233
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.193 MOVZ

Move wide with zero moves an optionally-shifted 16-bit immediate value to a register.

This instruction is used by the alias MOV (wide immediate). See Alias conditions on page C6-1234 for details of
when each alias is preferred.

32-bit variant

Applies when sf == 0 && hw == 0x.

MOVZ <Wd>, #<imm>{, LSL #<shift>}

64-bit variant

Applies when sf == 1.

MOVZ <Xd>, #<imm>{, LSL #<shift>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer datasize = if sf == '1' then 64 else 32;
 integer pos;

 if sf == '0' && hw<1> == '1' then UNDEFINED;
 pos = UInt(hw:'0000');

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or
16, encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16,
32 or 48, encoded in the "hw" field as <shift>/16.

Operation

 bits(datasize) result;

 result = Zeros();

Alias is preferred when

 MOV (wide immediate) ! (IsZero(imm16) && hw != '00')

sf 1 0 1 0 0 1 0 1 hw imm16 Rd
31 30 29 28 27 26 25 24 23 22 21 20 5 4 0

opc
C6-1234 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 result<pos+15:pos> = imm16;
 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1235
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.194 MRS

Move System Register allows the PE to read an AArch64 System register into a general-purpose register.

Encoding

MRS <Xt>, (<systemreg>|S<op0>_<op1>_<Cn>_<Cm>_<op2>)

Decode for this encoding

 AArch64.CheckSystemAccess('1':o0, op1, CRn, CRm, op2, Rt, L);

 integer t = UInt(Rt);

 integer sys_op0 = 2 + UInt(o0);
 integer sys_op1 = UInt(op1);
 integer sys_op2 = UInt(op2);
 integer sys_crn = UInt(CRn);
 integer sys_crm = UInt(CRm);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.

<systemreg> Is a System register name, encoded in the "o0:op1:CRn:CRm:op2".

The System register names are defined in Chapter D13 AArch64 System Register Descriptions.

<op0> Is an unsigned immediate, encoded in the "o0" field. It can have the following values:

2 when o0 = 0

3 when o0 = 1

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

Operation

 X[t] = AArch64.SysRegRead(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2);

1 1 0 1 0 1 0 1 0 0 1 1 o0 op1 CRn CRm op2 Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L

C6-1236 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.195 MSR (immediate)

Move immediate value to Special Register moves an immediate value to selected bits of the PSTATE. For more
information, see PSTATE.

The bits that can be written by this instruction are:

• PSTATE.D, PSTATE.A, PSTATE.I, PSTATE.F, and PSTATE.SP.

• If FEAT_SSBS is implemented, PSTATE.SSBS.

• If FEAT_PAN is implemented, PSTATE.PAN.

• If FEAT_UAO is implemented, PSTATE.UAO.

• If FEAT_DIT is implemented, PSTATE.DIT.

• If FEAT_MTE is implemented, PSTATE.TCO.

Encoding

MSR <pstatefield>, #<imm>

Decode for this encoding

 if op1 == '000' && op2 == '000' then SEE "CFINV";
 if op1 == '000' && op2 == '001' then SEE "XAFLAG";
 if op1 == '000' && op2 == '010' then SEE "AXFLAG";

 AArch64.CheckSystemAccess('00', op1, '0100', CRm, op2, '11111', '0');
 bits(2) min_EL;
 boolean need_secure = FALSE;

 case op1 of
 when '00x'
 min_EL = EL1;
 when '010'
 min_EL = EL1;
 when '011'
 min_EL = EL0;
 when '100'
 min_EL = EL2;
 when '101'
 if !HaveVirtHostExt() then
 UNDEFINED;
 min_EL = EL2;
 when '110'
 min_EL = EL3;
 when '111'
 min_EL = EL1;
 need_secure = TRUE;

 if UInt(PSTATE.EL) < UInt(min_EL) || (need_secure && !IsSecure()) then
 UNDEFINED;

 PSTATEField field;
 case op1:op2 of
 when '000 011'
 if !HaveUAOExt() then

1 1 0 1 0 1 0 1 0 0 0 0 0 op1 0 1 0 0 CRm op2 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 8 7 5 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1237
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 UNDEFINED;
 field = PSTATEField_UAO;
 when '000 100'
 if !HavePANExt() then
 UNDEFINED;
 field = PSTATEField_PAN;
 when '000 101' field = PSTATEField_SP;
 when '011 010'
 if !HaveDITExt() then
 UNDEFINED;
 field = PSTATEField_DIT;
 when '011 100'
 if !HaveMTEExt() then
 UNDEFINED;
 field = PSTATEField_TCO;
 when '011 110' field = PSTATEField_DAIFSet;
 when '011 111' field = PSTATEField_DAIFClr;
 when '011 001'
 if !HaveSSBSExt() then
 UNDEFINED;
 field = PSTATEField_SSBS;
 otherwise UNDEFINED;

 // Check that an AArch64 MSR/MRS access to the DAIF flags is permitted
 if PSTATE.EL == EL0 && field IN {PSTATEField_DAIFSet, PSTATEField_DAIFClr} then
 if !ELUsingAArch32(EL1) && ((EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') || SCTLR_EL1.UMA == '0')
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);

Assembler symbols

<pstatefield> Is a PSTATE field name, encoded in the "op1:op2" field. It can have the following values:

SPSel when op1 = 000, op2 = 101

DAIFSet when op1 = 011, op2 = 110

DAIFClr when op1 = 011, op2 = 111

When FEAT_UAO is implemented, the following value is also valid:

UAO when op1 = 000, op2 = 011

When FEAT_PAN is implemented, the following value is also valid:

PAN when op1 = 000, op2 = 100

When FEAT_SSBS is implemented, the following value is also valid:

SSBS when op1 = 011, op2 = 001

When FEAT_DIT is implemented, the following value is also valid:

DIT when op1 = 011, op2 = 010

When FEAT_MTE is implemented, the following value is also valid:

TCO when op1 = 011, op2 = 100

See PSTATE on page C4-293 when op1 = 000, op2 = 00x.

See PSTATE on page C4-293 when op1 = 000, op2 = 010.

The following encodings are reserved:

• op1 = 000, op2 = 11x.

• op1 = 001, op2 = xxx.

• op1 = 010, op2 = xxx.

• op1 = 011, op2 = 000.
C6-1238 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• op1 = 011, op2 = 011.

• op1 = 011, op2 = 101.

• op1 = 1xx, op2 = xxx.

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

Operation

 case field of
 when PSTATEField_SSBS
 PSTATE.SSBS = CRm<0>;
 when PSTATEField_SP
 PSTATE.SP = CRm<0>;
 when PSTATEField_DAIFSet
 PSTATE.D = PSTATE.D OR CRm<3>;
 PSTATE.A = PSTATE.A OR CRm<2>;
 PSTATE.I = PSTATE.I OR CRm<1>;
 PSTATE.F = PSTATE.F OR CRm<0>;
 when PSTATEField_DAIFClr
 PSTATE.D = PSTATE.D AND NOT(CRm<3>);
 PSTATE.A = PSTATE.A AND NOT(CRm<2>);
 PSTATE.I = PSTATE.I AND NOT(CRm<1>);
 PSTATE.F = PSTATE.F AND NOT(CRm<0>);
 when PSTATEField_PAN
 PSTATE.PAN = CRm<0>;
 when PSTATEField_UAO
 PSTATE.UAO = CRm<0>;
 when PSTATEField_DIT
 PSTATE.DIT = CRm<0>;
 when PSTATEField_TCO
 PSTATE.TCO = CRm<0>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1239
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.196 MSR (register)

Move general-purpose register to System Register allows the PE to write an AArch64 System register from a
general-purpose register.

Encoding

MSR (<systemreg>|S<op0>_<op1>_<Cn>_<Cm>_<op2>), <Xt>

Decode for this encoding

 AArch64.CheckSystemAccess('1':o0, op1, CRn, CRm, op2, Rt, L);

 integer t = UInt(Rt);

 integer sys_op0 = 2 + UInt(o0);
 integer sys_op1 = UInt(op1);
 integer sys_op2 = UInt(op2);
 integer sys_crn = UInt(CRn);
 integer sys_crm = UInt(CRm);

Assembler symbols

<systemreg> Is a System register name, encoded in the "o0:op1:CRn:CRm:op2".

The System register names are defined in Chapter D13 AArch64 System Register Descriptions.

<op0> Is an unsigned immediate, encoded in the "o0" field. It can have the following values:

2 when o0 = 0

3 when o0 = 1

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

 AArch64.SysRegWrite(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2, X[t]);

1 1 0 1 0 1 0 1 0 0 0 1 o0 op1 CRn CRm op2 Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L

C6-1240 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.197 MSUB

Multiply-Subtract multiplies two register values, subtracts the product from a third register value, and writes the
result to the destination register.

This instruction is used by the alias MNEG. See Alias conditions on page C6-1241 for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

MSUB <Wd>, <Wn>, <Wm>, <Wa>

64-bit variant

Applies when sf == 1.

MSUB <Xd>, <Xn>, <Xm>, <Xa>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);
 integer destsize = if sf == '1' then 64 else 32;

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Wa> Is the 32-bit name of the third general-purpose source register holding the minuend, encoded in the
"Ra" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Alias is preferred when

 MNEG Ra == '11111'

sf 0 0 1 1 0 1 1 0 0 0 Rm 1 Ra Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

o0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1241
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Xa> Is the 64-bit name of the third general-purpose source register holding the minuend, encoded in the
"Ra" field.

Operation

 bits(destsize) operand1 = X[n];
 bits(destsize) operand2 = X[m];
 bits(destsize) operand3 = X[a];

 integer result;

 result = UInt(operand3) - (UInt(operand1) * UInt(operand2));
 X[d] = result<destsize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1242 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.198 MUL

Multiply : Rd = Rn * Rm

This instruction is an alias of the MADD instruction. This means that:

• The encodings in this description are named to match the encodings of MADD.

• The description of MADD gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

MUL <Wd>, <Wn>, <Wm>

 is equivalent to

MADD <Wd>, <Wn>, <Wm>, WZR

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

MUL <Xd>, <Xn>, <Xm>

 is equivalent to

MADD <Xd>, <Xn>, <Xm>, XZR

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

The description of MADD gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 1 0 0 0 Rm 0 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

o0 Ra
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1243
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.199 MVN

Bitwise NOT writes the bitwise inverse of a register value to the destination register.

This instruction is an alias of the ORN (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of ORN (shifted register).

• The description of ORN (shifted register) gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

MVN <Wd>, <Wm>{, <shift> #<amount>}

 is equivalent to

ORN <Wd>, WZR, <Wm>{, <shift> #<amount>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

MVN <Xd>, <Xm>{, <shift> #<amount>}

 is equivalent to

ORN <Xd>, XZR, <Xm>{, <shift> #<amount>}

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

sf 0 1 0 1 0 1 0 shift 1 Rm imm6 1 1 1 1 1 Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N Rn
C6-1244 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of ORN (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1245
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.200 NEG (shifted register)

Negate (shifted register) negates an optionally-shifted register value, and writes the result to the destination register.

This instruction is an alias of the SUB (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of SUB (shifted register).

• The description of SUB (shifted register) gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

NEG <Wd>, <Wm>{, <shift> #<amount>}

 is equivalent to

SUB <Wd>, WZR, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

NEG <Xd>, <Xm>{, <shift> #<amount>}

 is equivalent to

SUB <Xd>, XZR, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

sf 1 0 0 1 0 1 1 shift 0 Rm imm6 1 1 1 1 1 Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S Rn
C6-1246 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of SUB (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1247
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.201 NEGS

Negate, setting flags, negates an optionally-shifted register value, and writes the result to the destination register. It
updates the condition flags based on the result.

This instruction is an alias of the SUBS (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of SUBS (shifted register).

• The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

NEGS <Wd>, <Wm>{, <shift> #<amount>}

 is equivalent to

SUBS <Wd>, WZR, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

NEGS <Xd>, <Xm>{, <shift> #<amount>}

 is equivalent to

SUBS <Xd>, XZR, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

sf 1 1 0 1 0 1 1 shift 0 Rm imm6 1 1 1 1 1 !=11111
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S Rn Rd
C6-1248 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1249
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.202 NGC

Negate with Carry negates the sum of a register value and the value of NOT (Carry flag), and writes the result to
the destination register.

This instruction is an alias of the SBC instruction. This means that:

• The encodings in this description are named to match the encodings of SBC.

• The description of SBC gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

NGC <Wd>, <Wm>

 is equivalent to

SBC <Wd>, WZR, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

NGC <Xd>, <Xm>

 is equivalent to

SBC <Xd>, XZR, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

Operation

The description of SBC gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 1 0 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 1 1 1 1 1 Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op S Rn
C6-1250 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1251
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.203 NGCS

Negate with Carry, setting flags, negates the sum of a register value and the value of NOT (Carry flag), and writes
the result to the destination register. It updates the condition flags based on the result.

This instruction is an alias of the SBCS instruction. This means that:

• The encodings in this description are named to match the encodings of SBCS.

• The description of SBCS gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

NGCS <Wd>, <Wm>

 is equivalent to

SBCS <Wd>, WZR, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

NGCS <Xd>, <Xm>

 is equivalent to

SBCS <Xd>, XZR, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

Operation

The description of SBCS gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 1 1 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 1 1 1 1 1 Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op S Rn
C6-1252 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1253
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.204 NOP

No Operation does nothing, other than advance the value of the program counter by 4. This instruction can be used
for instruction alignment purposes.

Note

The timing effects of including a NOP instruction in a program are not guaranteed. It can increase execution time,
leave it unchanged, or even reduce it. Therefore, NOP instructions are not suitable for timing loops.

Encoding

NOP

Decode for this encoding

 // Empty.

Operation

 // do nothing

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
C6-1254 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.205 ORN (shifted register)

Bitwise OR NOT (shifted register) performs a bitwise (inclusive) OR of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register.

This instruction is used by the alias MVN. See Alias conditions on page C6-1255 for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

ORN <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

ORN <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

Alias is preferred when

 MVN Rn == '11111'

sf 0 1 0 1 0 1 0 shift 1 Rm imm6 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1255
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

 operand2 = NOT(operand2);

 result = operand1 OR operand2;
 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1256 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.206 ORR (immediate)

Bitwise OR (immediate) performs a bitwise (inclusive) OR of a register value and an immediate register value, and
writes the result to the destination register.

This instruction is used by the alias MOV (bitmask immediate). See Alias conditions on page C6-1257 for details
of when each alias is preferred.

32-bit variant

Applies when sf == 0 && N == 0.

ORR <Wd|WSP>, <Wn>, #<imm>

64-bit variant

Applies when sf == 1.

ORR <Xd|SP>, <Xn>, #<imm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer datasize = if sf == '1' then 64 else 32;
 bits(datasize) imm;
 if sf == '0' && N != '0' then UNDEFINED;
 (imm, -) = DecodeBitMasks(N, imms, immr, TRUE);

Alias conditions

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Alias is preferred when

 MOV (bitmask immediate) Rn == '11111' && ! MoveWidePreferred(sf, N, imms, immr)

sf 0 1 1 0 0 1 0 0 N immr imms Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1257
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n];

 result = operand1 OR imm;
 if d == 31 then
 SP[] = result;
 else
 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1258 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.207 ORR (shifted register)

Bitwise OR (shifted register) performs a bitwise (inclusive) OR of a register value and an optionally-shifted register
value, and writes the result to the destination register.

This instruction is used by the alias MOV (register). See Alias conditions on page C6-1259 for details of when each
alias is preferred.

32-bit variant

Applies when sf == 0.

ORR <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

ORR <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

Alias is preferred when

 MOV (register) shift == '00' && imm6 == '000000' && Rn == '11111'

sf 0 1 0 1 0 1 0 shift 0 Rm imm6 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1259
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

 result = operand1 OR operand2;
 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1260 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.208 PACDA, PACDZA

Pointer Authentication Code for Data address, using key A. This instruction computes and inserts a pointer
authentication code for a data address, using a modifier and key A.

The address is in the general-purpose register that is specified by <Xd>.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACDA.

• The value zero, for PACDZA.

Integer

(FEAT_PAuth)

PACDA variant

Applies when Z == 0.

PACDA <Xd>, <Xn|SP>

PACDZA variant

Applies when Z == 1 && Rn == 11111.

PACDZA <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !HavePACExt() then
 UNDEFINED;

 if Z == '0' then // PACDA
 if n == 31 then source_is_sp = TRUE;
 else // PACDZA
 if n != 31 then UNDEFINED;

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

 if source_is_sp then
 X[d] = AddPACDA(X[d], SP[]);
 else
 X[d] = AddPACDA(X[d], X[n]);

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1261
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.209 PACDB, PACDZB

Pointer Authentication Code for Data address, using key B. This instruction computes and inserts a pointer
authentication code for a data address, using a modifier and key B.

The address is in the general-purpose register that is specified by <Xd>.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACDB.

• The value zero, for PACDZB.

Integer

(FEAT_PAuth)

PACDB variant

Applies when Z == 0.

PACDB <Xd>, <Xn|SP>

PACDZB variant

Applies when Z == 1 && Rn == 11111.

PACDZB <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !HavePACExt() then
 UNDEFINED;

 if Z == '0' then // PACDB
 if n == 31 then source_is_sp = TRUE;
 else // PACDZB
 if n != 31 then UNDEFINED;

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

 if source_is_sp then
 X[d] = AddPACDB(X[d], SP[]);
 else
 X[d] = AddPACDB(X[d], X[n]);

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
C6-1262 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.210 PACGA

Pointer Authentication Code, using Generic key. This instruction computes the pointer authentication code for an
address in the first source register, using a modifier in the second source register, and the Generic key. The computed
pointer authentication code is returned in the upper 32 bits of the destination register.

Integer

(FEAT_PAuth)

Encoding

PACGA <Xd>, <Xn>, <Xm|SP>

Decode for this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if !HavePACExt() then
 UNDEFINED;

 if m == 31 then source_is_sp = TRUE;

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm|SP> Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the
"Rm" field.

Operation

 if source_is_sp then
 X[d] = AddPACGA(X[n], SP[]);
 else
 X[d] = AddPACGA(X[n], X[m]);

1 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1263
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.211 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA

Pointer Authentication Code for Instruction address, using key A. This instruction computes and inserts a pointer
authentication code for an instruction address, using a modifier and key A.

The address is:

• In the general-purpose register that is specified by <Xd> for PACIA and PACIZA.

• In X17, for PACIA1716.

• In X30, for PACIASP and PACIAZ.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACIA.

• The value zero, for PACIZA and PACIAZ.

• In X16, for PACIA1716.

• In SP, for PACIASP.

Integer

(FEAT_PAuth)

PACIA variant

Applies when Z == 0.

PACIA <Xd>, <Xn|SP>

PACIZA variant

Applies when Z == 1 && Rn == 11111.

PACIZA <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !HavePACExt() then
 UNDEFINED;

 if Z == '0' then // PACIA
 if n == 31 then source_is_sp = TRUE;
 else // PACIZA
 if n != 31 then UNDEFINED;

System

(FEAT_PAuth)

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
C6-1264 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
PACIA1716 variant

Applies when CRm == 0001 && op2 == 000.

PACIA1716

PACIASP variant

Applies when CRm == 0011 && op2 == 001.

PACIASP

PACIAZ variant

Applies when CRm == 0011 && op2 == 000.

PACIAZ

Decode for all variants of this encoding

 integer d;
 integer n;
 boolean source_is_sp = FALSE;

 case CRm:op2 of
 when '0011 000' // PACIAZ
 d = 30;
 n = 31;
 when '0011 001' // PACIASP
 d = 30;
 source_is_sp = TRUE;
 if HaveBTIExt() then
 // Check for branch target compatibility between PSTATE.BTYPE
 // and implicit branch target of PACIASP instruction.
 SetBTypeCompatible(BTypeCompatible_PACIXSP());

 when '0001 000' // PACIA1716
 d = 17;
 n = 16;
 when '0001 010' SEE "PACIB";
 when '0001 100' SEE "AUTIA";
 when '0001 110' SEE "AUTIB";
 when '0011 01x' SEE "PACIB";
 when '0011 10x' SEE "AUTIA";
 when '0011 11x' SEE "AUTIB";
 when '0000 111' SEE "XPACLRI";
 otherwise SEE "HINT";

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation for all encodings

 if HavePACExt() then
 if source_is_sp then
 X[d] = AddPACIA(X[d], SP[]);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 x 1 0 0 x 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1265
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 else
 X[d] = AddPACIA(X[d], X[n]);
C6-1266 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.212 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB

Pointer Authentication Code for Instruction address, using key B. This instruction computes and inserts a pointer
authentication code for an instruction address, using a modifier and key B.

The address is:

• In the general-purpose register that is specified by <Xd> for PACIB and PACIZB.

• In X17, for PACIB1716.

• In X30, for PACIBSP and PACIBZ.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACIB.

• The value zero, for PACIZB and PACIBZ.

• In X16, for PACIB1716.

• In SP, for PACIBSP.

Integer

(FEAT_PAuth)

PACIB variant

Applies when Z == 0.

PACIB <Xd>, <Xn|SP>

PACIZB variant

Applies when Z == 1 && Rn == 11111.

PACIZB <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !HavePACExt() then
 UNDEFINED;

 if Z == '0' then // PACIB
 if n == 31 then source_is_sp = TRUE;
 else // PACIZB
 if n != 31 then UNDEFINED;

System

(FEAT_PAuth)

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1267
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
PACIB1716 variant

Applies when CRm == 0001 && op2 == 010.

PACIB1716

PACIBSP variant

Applies when CRm == 0011 && op2 == 011.

PACIBSP

PACIBZ variant

Applies when CRm == 0011 && op2 == 010.

PACIBZ

Decode for all variants of this encoding

 integer d;
 integer n;
 boolean source_is_sp = FALSE;

 case CRm:op2 of
 when '0011 010' // PACIBZ
 d = 30;
 n = 31;
 when '0011 011' // PACIBSP
 d = 30;
 source_is_sp = TRUE;
 if HaveBTIExt() then
 // Check for branch target compatibility between PSTATE.BTYPE
 // and implicit branch target of PACIBSP instruction.
 SetBTypeCompatible(BTypeCompatible_PACIXSP());
 when '0001 010' // PACIB1716
 d = 17;
 n = 16;
 when '0001 000' SEE "PACIA";
 when '0001 100' SEE "AUTIA";
 when '0001 110' SEE "AUTIB";
 when '0011 00x' SEE "PACIA";
 when '0011 10x' SEE "AUTIA";
 when '0011 11x' SEE "AUTIB";
 when '0000 111' SEE "XPACLRI";
 otherwise SEE "HINT";

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation for all encodings

 if HavePACExt() then
 if source_is_sp then
 X[d] = AddPACIB(X[d], SP[]);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 x 1 0 1 x 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
C6-1268 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 else
 X[d] = AddPACIB(X[d], X[n]);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1269
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.213 PRFM (immediate)

Prefetch Memory (immediate) signals the memory system that data memory accesses from a specified address are
likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up
the memory accesses when they do occur, such as preloading the cache line containing the specified address into
one or more caches.

The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory on
page C3-235.

For information about memory accesses, see Load/store addressing modes on page C1-202.

Encoding

PRFM (<prfop>|#<imm5>), [<Xn|SP>{, #<pimm>}]

Decode for this encoding

 bits(64) offset = LSL(ZeroExtend(imm12, 64), 3);

Assembler symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.

<type> is one of:

PLD Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI Preload instructions, encoded in the "Rt<4:3>" field as 0b01.

PST Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:

L1 Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2 Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3 Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

<policy> is one of:

KEEP Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>"
field as 0.

STRM Streaming or non-temporal prefetch, for data that is used only once. Encoded in the
"Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory on page C3-235.

For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.

This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760, defaulting to
0 and encoded in the "imm12" field as <pimm>/8.

1 1 1 1 1 0 0 1 1 0 imm12 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc
C6-1270 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

Operation

 bits(64) address;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(FALSE);

 if n == 31 then
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 Prefetch(address, t<4:0>);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1271
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.214 PRFM (literal)

Prefetch Memory (literal) signals the memory system that data memory accesses from a specified address are likely
to occur in the near future. The memory system can respond by taking actions that are expected to speed up the
memory accesses when they do occur, such as preloading the cache line containing the specified address into one
or more caches.

The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory on
page C3-235.

For information about memory accesses, see Load/store addressing modes on page C1-202.

Encoding

PRFM (<prfop>|#<imm5>), <label>

Decode for this encoding

 integer t = UInt(Rt);
 bits(64) offset;

 offset = SignExtend(imm19:'00', 64);

Assembler symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.

<type> is one of:

PLD Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI Preload instructions, encoded in the "Rt<4:3>" field as 0b01.

PST Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:

L1 Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2 Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3 Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

<policy> is one of:

KEEP Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>"
field as 0.

STRM Streaming or non-temporal prefetch, for data that is used only once. Encoded in the
"Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory on page C3-235.

For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.

This syntax is only for encodings that are not accessible using <prfop>.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this
instruction, in the range +/-1MB, is encoded as "imm19" times 4.

1 1 0 1 1 0 0 0 imm19 Rt
31 30 29 28 27 26 25 24 23 5 4 0

opc
C6-1272 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(64) address = PC[] + offset;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(FALSE);

 Prefetch(address, t<4:0>);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1273
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.215 PRFM (register)

Prefetch Memory (register) signals the memory system that data memory accesses from a specified address are
likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up
the memory accesses when they do occur, such as preloading the cache line containing the specified address into
one or more caches.

The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory on
page C3-235.

For information about memory accesses, see Load/store addressing modes on page C1-202.

Encoding

PRFM (<prfop>|#<imm5>), [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then 3 else 0;

Assembler symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.

<type> is one of:

PLD Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI Preload instructions, encoded in the "Rt<4:3>" field as 0b01.

PST Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:

L1 Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2 Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3 Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

<policy> is one of:

KEEP Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>"
field as 0.

STRM Streaming or non-temporal prefetch, for data that is used only once. Encoded in the
"Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory on page C3-235.

For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.

This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

1 1 1 1 1 0 0 0 1 0 1 Rm option S 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc
C6-1274 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be
optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

#0 when S = 0

#3 when S = 1

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

Operation

 bits(64) offset = ExtendReg(m, extend_type, shift);
 bits(64) address;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(FALSE);

 if n == 31 then
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 Prefetch(address, t<4:0>);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1275
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.216 PRFUM

Prefetch Memory (unscaled offset) signals the memory system that data memory accesses from a specified address
are likely to occur in the near future. The memory system can respond by taking actions that are expected to speed
up the memory accesses when they do occur, such as preloading the cache line containing the specified address into
one or more caches.

The effect of an PRFUM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory on
page C3-235.

For information about memory accesses, see Load/store addressing modes on page C1-202.

Encoding

PRFUM (<prfop>|#<imm5>), [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.

<type> is one of:

PLD Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI Preload instructions, encoded in the "Rt<4:3>" field as 0b01.

PST Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:

L1 Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2 Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3 Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

<policy> is one of:

KEEP Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>"
field as 0.

STRM Streaming or non-temporal prefetch, for data that is used only once. Encoded in the
"Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory on page C3-235.

For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.

This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

1 1 1 1 1 0 0 0 1 0 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1276 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

Operation

 bits(64) address;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(FALSE);

 if n == 31 then
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 Prefetch(address, t<4:0>);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1277
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.217 PSB CSYNC

Profiling Synchronization Barrier. This instruction is a barrier that ensures that all existing profiling data for the
current PE has been formatted, and profiling buffer addresses have been translated such that all writes to the
profiling buffer have been initiated. A following DSB instruction completes when the writes to the profiling buffer
have completed.

If the Statistical Profiling Extension is not implemented, this instruction executes as a NOP.

System

(FEAT_SPE)

Encoding

PSB CSYNC

Decode for this encoding

 if !HaveStatisticalProfiling() then EndOfInstruction();

Operation

 ProfilingSynchronizationBarrier();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
C6-1278 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.218 PSSBB

Physical Speculative Store Bypass Barrier is a memory barrier which prevents speculative loads from bypassing
earlier stores to the same physical address.

The semantics of the Physical Speculative Store Bypass Barrier are:

• When a load to a location appears in program order after the PSSBB, then the load does not speculatively
read an entry earlier in the coherence order for that location than the entry generated by the latest store
satisfying all of the following conditions:

— The store is to the same location as the load.

— The store appears in program order before the PSSBB.

• When a load to a location appears in program order before the PSSBB, then the load does not speculatively
read data from any store satisfying all of the following conditions:

— The store is to the same location as the load.

— The store appears in program order after the PSSBB.

This instruction is an alias of the DSB instruction. This means that:

• The encodings in this description are named to match the encodings of DSB.

• The description of DSB gives the operational pseudocode for this instruction.

Encoding

PSSBB

 is equivalent to

DSB #4

and is always the preferred disassembly.

Operation

The description of DSB gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

CRm opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1279
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.219 RBIT

Reverse Bits reverses the bit order in a register.

32-bit variant

Applies when sf == 0.

RBIT <Wd>, <Wn>

64-bit variant

Applies when sf == 1.

RBIT <Xd>, <Xn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer datasize = if sf == '1' then 64 else 32;

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(datasize) operand = X[n];
 bits(datasize) result;

 for i = 0 to datasize-1
 result<datasize-1-i> = operand<i>;

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
C6-1280 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1281
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.220 RET

Return from subroutine branches unconditionally to an address in a register, with a hint that this is a subroutine
return.

Encoding

RET {<Xn>}

Decode for this encoding

 integer n = UInt(Rn);

Assembler symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field. Defaults to X30 if absent.

Operation

 bits(64) target = X[n];

 // Value in BTypeNext will be used to set PSTATE.BTYPE
 BTypeNext = '00';

 BranchTo(target, BranchType_RET, FALSE);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 Rn 0 0 0 0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

Z op A M Rm
C6-1282 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.221 RETAA, RETAB

Return from subroutine, with pointer authentication. This instruction authenticates the address that is held in LR,
using SP as the modifier and the specified key, branches to the authenticated address, with a hint that this instruction
is a subroutine return.

Key A is used for RETAA, and key B is used for RETAB.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a
Translation fault is generated.

The authenticated address is not written back to LR.

Integer

(FEAT_PAuth)

RETAA variant

Applies when M == 0.

RETAA

RETAB variant

Applies when M == 1.

RETAB

Decode for all variants of this encoding

 boolean use_key_a = (M == '0');

 if !HavePACExt() then
 UNDEFINED;

Operation

 bits(64) target = X[30];

 bits(64) modifier = SP[];

 if use_key_a then
 target = AuthIA(target, modifier, TRUE);
 else
 target = AuthIB(target, modifier, TRUE);

 // Value in BTypeNext will be used to set PSTATE.BTYPE
 BTypeNext = '00';

 BranchTo(target, BranchType_RET, FALSE);

1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 1 M 1 1 1 1 1 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

Z op A Rn Rm
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1283
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.222 REV

Reverse Bytes reverses the byte order in a register.

This instruction is used by the pseudo-instruction REV64. The pseudo-instruction is never the preferred
disassembly.

32-bit variant

Applies when sf == 0 && opc == 10.

REV <Wd>, <Wn>

64-bit variant

Applies when sf == 1 && opc == 11.

REV <Xd>, <Xn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer datasize = if sf == '1' then 64 else 32;

 integer container_size;
 case opc of
 when '00'
 Unreachable();
 when '01'
 container_size = 16;
 when '10'
 container_size = 32;
 when '11'
 if sf == '0' then UNDEFINED;
 container_size = 64;

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(datasize) operand = X[n];
 bits(datasize) result;

 integer containers = datasize DIV container_size;
 integer elements_per_container = container_size DIV 8;
 integer index = 0;

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 x Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

opc
C6-1284 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 integer rev_index;
 for c = 0 to containers-1
 rev_index = index + ((elements_per_container - 1) * 8);
 for e = 0 to elements_per_container-1
 result<rev_index+7:rev_index> = operand<index+7:index>;
 index = index + 8;
 rev_index = rev_index - 8;

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1285
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.223 REV16

Reverse bytes in 16-bit halfwords reverses the byte order in each 16-bit halfword of a register.

32-bit variant

Applies when sf == 0.

REV16 <Wd>, <Wn>

64-bit variant

Applies when sf == 1.

REV16 <Xd>, <Xn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer datasize = if sf == '1' then 64 else 32;

 integer container_size;
 case opc of
 when '00'
 Unreachable();
 when '01'
 container_size = 16;
 when '10'
 container_size = 32;
 when '11'
 if sf == '0' then UNDEFINED;
 container_size = 64;

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(datasize) operand = X[n];
 bits(datasize) result;

 integer containers = datasize DIV container_size;
 integer elements_per_container = container_size DIV 8;
 integer index = 0;
 integer rev_index;
 for c = 0 to containers-1
 rev_index = index + ((elements_per_container - 1) * 8);

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

opc
C6-1286 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 for e = 0 to elements_per_container-1
 result<rev_index+7:rev_index> = operand<index+7:index>;
 index = index + 8;
 rev_index = rev_index - 8;

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1287
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.224 REV32

Reverse bytes in 32-bit words reverses the byte order in each 32-bit word of a register.

Encoding

REV32 <Xd>, <Xn>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer datasize = if sf == '1' then 64 else 32;

 integer container_size;
 case opc of
 when '00'
 Unreachable();
 when '01'
 container_size = 16;
 when '10'
 container_size = 32;
 when '11'
 if sf == '0' then UNDEFINED;
 container_size = 64;

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(datasize) operand = X[n];
 bits(datasize) result;

 integer containers = datasize DIV container_size;
 integer elements_per_container = container_size DIV 8;
 integer index = 0;
 integer rev_index;
 for c = 0 to containers-1
 rev_index = index + ((elements_per_container - 1) * 8);
 for e = 0 to elements_per_container-1
 result<rev_index+7:rev_index> = operand<index+7:index>;
 index = index + 8;
 rev_index = rev_index - 8;

 X[d] = result;

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

sf opc
C6-1288 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1289
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.225 REV64

Reverse Bytes reverses the byte order in a 64-bit general-purpose register.

When assembling for Armv8.2, an assembler must support this pseudo-instruction. It is OPTIONAL whether an
assembler supports this pseudo-instruction when assembling for an architecture earlier than Armv8.2.

This instruction is a pseudo-instruction of the REV instruction. This means that:

• The encodings in this description are named to match the encodings of REV.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of REV gives the operational pseudocode for this instruction.

64-bit variant

REV64 <Xd>, <Xn>

 is equivalent to

REV <Xd>, <Xn>

and is never the preferred disassembly.

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of REV gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

sf opc
C6-1290 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.226 RMIF

Performs a rotation right of a value held in a general purpose register by an immediate value, and then inserts a
selection of the bottom four bits of the result of the rotation into the PSTATE flags, under the control of a second
immediate mask.

Integer

(FEAT_FlagM)

Encoding

RMIF <Xn>, #<shift>, #<mask>

Decode for this encoding

 if !HaveFlagManipulateExt() then UNDEFINED;
 integer lsb = UInt(imm6);
 integer n = UInt(Rn);

Assembler symbols

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<shift> Is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

<mask> Is the flag bit mask, an immediate in the range 0 to 15, which selects the bits that are inserted into
the NZCV condition flags, encoded in the "mask" field.

Operation

 bits(4) tmp;
 bits(64) tmpreg = X[n];
 tmp = (tmpreg:tmpreg)<lsb+3:lsb>;
 if mask<3> == '1' then PSTATE.N = tmp<3>;
 if mask<2> == '1' then PSTATE.Z = tmp<2>;
 if mask<1> == '1' then PSTATE.C = tmp<1>;
 if mask<0> == '1' then PSTATE.V = tmp<0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 1 1 1 0 1 0 0 0 0 imm6 0 0 0 0 1 Rn 0 mask
31 30 29 28 27 26 25 24 23 22 21 20 15 14 13 12 11 10 9 5 4 3 0

sf
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1291
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.227 ROR (immediate)

Rotate right (immediate) provides the value of the contents of a register rotated by a variable number of bits. The
bits that are rotated off the right end are inserted into the vacated bit positions on the left.

This instruction is an alias of the EXTR instruction. This means that:

• The encodings in this description are named to match the encodings of EXTR.

• The description of EXTR gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0 && N == 0 && imms == 0xxxxx.

ROR <Wd>, <Ws>, #<shift>

 is equivalent to

EXTR <Wd>, <Ws>, <Ws>, #<shift>

and is the preferred disassembly when Rn == Rm.

64-bit variant

Applies when sf == 1 && N == 1.

ROR <Xd>, <Xs>, #<shift>

 is equivalent to

EXTR <Xd>, <Xs>, <Xs>, #<shift>

and is the preferred disassembly when Rn == Rm.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Ws> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xs> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<shift> For the 32-bit variant: is the amount by which to rotate, in the range 0 to 31, encoded in the "imms"
field.

For the 64-bit variant: is the amount by which to rotate, in the range 0 to 63, encoded in the "imms"
field.

Operation

The description of EXTR gives the operational pseudocode for this instruction.

sf 0 0 1 0 0 1 1 1 N 0 Rm imms Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
C6-1292 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1293
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.228 ROR (register)

Rotate Right (register) provides the value of the contents of a register rotated by a variable number of bits. The bits
that are rotated off the right end are inserted into the vacated bit positions on the left. The remainder obtained by
dividing the second source register by the data size defines the number of bits by which the first source register is
right-shifted.

This instruction is an alias of the RORV instruction. This means that:

• The encodings in this description are named to match the encodings of RORV.

• The description of RORV gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

ROR <Wd>, <Wn>, <Wm>

 is equivalent to

RORV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

ROR <Xd>, <Xn>, <Xm>

 is equivalent to

RORV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

The description of RORV gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2
C6-1294 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1295
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.229 RORV

Rotate Right Variable provides the value of the contents of a register rotated by a variable number of bits. The bits
that are rotated off the right end are inserted into the vacated bit positions on the left. The remainder obtained by
dividing the second source register by the data size defines the number of bits by which the first source register is
right-shifted.

This instruction is used by the alias ROR (register). The alias is always the preferred disassembly.

32-bit variant

Applies when sf == 0.

RORV <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

RORV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;
 ShiftType shift_type = DecodeShift(op2);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand2 = X[m];

 result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize);
 X[d] = result;

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2
C6-1296 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1297
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.230 SB

Speculation Barrier is a barrier that controls speculation.

The semantics of the Speculation Barrier are that the execution, until the barrier completes, of any instruction that
appears later in the program order than the barrier:

• Cannot be performed speculatively to the extent that such speculation can be observed through side-channels
as a result of control flow speculation or data value speculation.

• Can be speculatively executed as a result of predicting that a potentially exception generating instruction has
not generated an exception.

In particular, any instruction that appears later in the program order than the barrier cannot cause a speculative
allocation into any caching structure where the allocation of that entry could be indicative of any data value present
in memory or in the registers.

The SB instruction:

• Cannot be speculatively executed as a result of control flow speculation or data value speculation.

• Can be speculatively executed as a result of predicting that a potentially exception generating instruction has
not generated an exception. The potentially exception generating instruction can complete once it is known
not to be speculative, and all data values generated by instructions appearing in program order before the SB
instruction have their predicted values confirmed.

When the prediction of the instruction stream is not informed by data taken from the register outputs of the
speculative execution of instructions appearing in program order after an uncompleted SB instruction, the SB
instruction has no effect on the use of prediction resources to predict the instruction stream that is being fetched.

Encoding

SB

Decode for this encoding

 if !HaveSBExt() then UNDEFINED;

Operation

 SpeculationBarrier();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 (0) (0) (0) (0) 1 1 1 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

CRm opc
C6-1298 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.231 SBC

Subtract with Carry subtracts a register value and the value of NOT (Carry flag) from a register value, and writes
the result to the destination register.

This instruction is used by the alias NGC. See Alias conditions on page C6-1299 for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

SBC <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

SBC <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = X[m];

 operand2 = NOT(operand2);

Alias is preferred when

 NGC Rn == '11111'

sf 1 0 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1299
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 (result, -) = AddWithCarry(operand1, operand2, PSTATE.C);

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1300 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.232 SBCS

Subtract with Carry, setting flags, subtracts a register value and the value of NOT (Carry flag) from a register value,
and writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias NGCS. See Alias conditions on page C6-1301 for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

SBCS <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

SBCS <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = X[m];
 bits(4) nzcv;

Alias is preferred when

 NGCS Rn == '11111'

sf 1 1 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1301
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 operand2 = NOT(operand2);

 (result, nzcv) = AddWithCarry(operand1, operand2, PSTATE.C);

 PSTATE.<N,Z,C,V> = nzcv;

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1302 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.233 SBFIZ

Signed Bitfield Insert in Zeros copies a bitfield of <width> bits from the least significant bits of the source register
to bit position <lsb> of the destination register, setting the destination bits below the bitfield to zero, and the bits
above the bitfield to a copy of the most significant bit of the bitfield.

This instruction is an alias of the SBFM instruction. This means that:

• The encodings in this description are named to match the encodings of SBFM.

• The description of SBFM gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

SBFIZ <Wd>, <Wn>, #<lsb>, #<width>

 is equivalent to

SBFM <Wd>, <Wn>, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit variant

Applies when sf == 1 && N == 1.

SBFIZ <Xd>, <Xn>, #<lsb>, #<width>

 is equivalent to

SBFM <Xd>, <Xn>, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

sf 0 0 1 0 0 1 1 0 N immr imms Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1303
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1304 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.234 SBFM

Signed Bitfield Move is usually accessed via one of its aliases, which are always preferred for disassembly.

If <imms> is greater than or equal to <immr>, this copies a bitfield of (<imms>-<immr>+1) bits starting from bit position
<immr> in the source register to the least significant bits of the destination register.

If <imms> is less than <immr>, this copies a bitfield of (<imms>+1) bits from the least significant bits of the source
register to bit position (regsize-<immr>) of the destination register, where regsize is the destination register size of 32
or 64 bits.

In both cases the destination bits below the bitfield are set to zero, and the bits above the bitfield are set to a copy
of the most significant bit of the bitfield.

This instruction is used by the aliases ASR (immediate), SBFIZ, SBFX, SXTB, SXTH, and SXTW. See Alias
conditions on page C6-1306 for details of when each alias is preferred.

32-bit variant

Applies when sf == 0 && N == 0.

SBFM <Wd>, <Wn>, #<immr>, #<imms>

64-bit variant

Applies when sf == 1 && N == 1.

SBFM <Xd>, <Xn>, #<immr>, #<imms>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer datasize = if sf == '1' then 64 else 32;

 integer R;
 integer S;
 bits(datasize) wmask;
 bits(datasize) tmask;

 if sf == '1' && N != '1' then UNDEFINED;
 if sf == '0' && (N != '0' || immr<5> != '0' || imms<5> != '0') then UNDEFINED;

 R = UInt(immr);
 S = UInt(imms);
 (wmask, tmask) = DecodeBitMasks(N, imms, immr, FALSE);

sf 0 0 1 0 0 1 1 0 N immr imms Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1305
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<immr> For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.

<imms> For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31,
encoded in the "imms" field.

For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63,
encoded in the "imms" field.

Operation

 bits(datasize) src = X[n];

 // perform bitfield move on low bits
 bits(datasize) bot = ROR(src, R) AND wmask;

 // determine extension bits (sign, zero or dest register)
 bits(datasize) top = Replicate(src<S>);

 // combine extension bits and result bits
 X[d] = (top AND NOT(tmask)) OR (bot AND tmask);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

Alias of variant is preferred when

 ASR (immediate) 32-bit imms == '011111'

 ASR (immediate) 64-bit imms == '111111'

 SBFIZ -
UInt(imms) < UInt(immr)

 SBFX -
BFXPreferred(sf, opc<1>, imms, immr)

 SXTB - immr == '000000' && imms == '000111'

 SXTH - immr == '000000' && imms == '001111'

 SXTW - immr == '000000' && imms == '011111'
C6-1306 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1307
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.235 SBFX

Signed Bitfield Extract copies a bitfield of <width> bits starting from bit position <lsb> in the source register to the
least significant bits of the destination register, and sets destination bits above the bitfield to a copy of the most
significant bit of the bitfield.

This instruction is an alias of the SBFM instruction. This means that:

• The encodings in this description are named to match the encodings of SBFM.

• The description of SBFM gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

SBFX <Wd>, <Wn>, #<lsb>, #<width>

 is equivalent to

SBFM <Wd>, <Wn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

64-bit variant

Applies when sf == 1 && N == 1.

SBFX <Xd>, <Xn>, #<lsb>, #<width>

 is equivalent to

SBFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

sf 0 0 1 0 0 1 1 0 N immr imms Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
C6-1308 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1309
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.236 SDIV

Signed Divide divides a signed integer register value by another signed integer register value, and writes the result
to the destination register. The condition flags are not affected.

32-bit variant

Applies when sf == 0.

SDIV <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

SDIV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = X[m];
 integer result;

 if IsZero(operand2) then
 result = 0;
 else
 result = RoundTowardsZero(Real(Int(operand1, FALSE)) / Real(Int(operand2, FALSE)));

 X[d] = result<datasize-1:0>;

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o1
C6-1310 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.237 SETF8, SETF16

Set the PSTATE.NZV flags based on the value in the specified general-purpose register. SETF8 treats the value as an
8 bit value, and SETF16 treats the value as an 16 bit value.

The PSTATE.C flag is not affected by these instructions.

Integer

(FEAT_FlagM)

SETF8 variant

Applies when sz == 0.

SETF8 <Wn>

SETF16 variant

Applies when sz == 1.

SETF16 <Wn>

Decode for all variants of this encoding

 if !HaveFlagManipulateExt() then UNDEFINED;
 integer msb = if sz == '1' then 15 else 7;
 integer n = UInt(Rn);

Assembler symbols

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(32) tmpreg = X[n];
 PSTATE.N = tmpreg<msb>;
 PSTATE.Z = if (tmpreg<msb:0> == Zeros(msb + 1)) then '1' else '0';
 PSTATE.V = tmpreg<msb+1> EOR tmpreg<msb>;
 //PSTATE.C unchanged;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 sz 0 0 1 0 Rn 0 1 1 0 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 3 2 1 0

sf
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1311
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.238 SEV

Send Event is a hint instruction. It causes an event to be signaled to all PEs in the multiprocessor system. For more
information, see Wait for Event mechanism and Send event on page D1-2536.

Encoding

SEV

Decode for this encoding

 // Empty.

Operation

 SendEvent();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
C6-1312 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.239 SEVL

Send Event Local is a hint instruction that causes an event to be signaled locally without requiring the event to be
signaled to other PEs in the multiprocessor system. It can prime a wait-loop which starts with a WFE instruction.

Encoding

SEVL

Decode for this encoding

 // Empty.

Operation

 SendEventLocal();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1313
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.240 SMADDL

Signed Multiply-Add Long multiplies two 32-bit register values, adds a 64-bit register value, and writes the result
to the 64-bit destination register.

This instruction is used by the alias SMULL. See Alias conditions on page C6-1314 for details of when each alias
is preferred.

Encoding

SMADDL <Xd>, <Wn>, <Wm>, <Xa>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);

Alias conditions

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the addend, encoded in the
"Ra" field.

Operation

 bits(32) operand1 = X[n];
 bits(32) operand2 = X[m];
 bits(64) operand3 = X[a];

 integer result;

 result = Int(operand3, FALSE) + (Int(operand1, FALSE) * Int(operand2, FALSE));

 X[d] = result<63:0>;

Alias is preferred when

 SMULL Ra == '11111'

1 0 0 1 1 0 1 1 0 0 1 Rm 0 Ra Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0
C6-1314 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1315
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.241 SMC

Secure Monitor Call causes an exception to EL3.

SMC is available only for software executing at EL1 or higher. It is UNDEFINED in EL0.

If the values of HCR_EL2.TSC and SCR_EL3.SMD are both 0, execution of an SMC instruction at EL1 or higher
generates a Secure Monitor Call exception, recording it in ESR_ELx, using the EC value 0x17, that is taken to EL3.

If the value of HCR_EL2.TSC is 1 and EL2 is enabled in the current Security state, execution of an SMC instruction
at EL1 generates an exception that is taken to EL2, regardless of the value of SCR_EL3.SMD. For more
information, see Traps to EL2 of EL1 execution of SMC instructions on page D1-2523.

If the value of HCR_EL2.TSC is 0 and the value of SCR_EL3.SMD is 1, the SMC instruction is UNDEFINED.

Encoding

SMC #<imm>

Decode for this encoding

 // Empty.

Assembler symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

 AArch64.CheckForSMCUndefOrTrap(imm16);
 AArch64.CallSecureMonitor(imm16);

1 1 0 1 0 1 0 0 0 0 0 imm16 0 0 0 1 1
31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0
C6-1316 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.242 SMNEGL

Signed Multiply-Negate Long multiplies two 32-bit register values, negates the product, and writes the result to the
64-bit destination register.

This instruction is an alias of the SMSUBL instruction. This means that:

• The encodings in this description are named to match the encodings of SMSUBL.

• The description of SMSUBL gives the operational pseudocode for this instruction.

Encoding

SMNEGL <Xd>, <Wn>, <Wm>

 is equivalent to

SMSUBL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

The description of SMSUBL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 1 0 1 1 0 0 1 Rm 1 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0 Ra
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1317
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.243 SMSUBL

Signed Multiply-Subtract Long multiplies two 32-bit register values, subtracts the product from a 64-bit register
value, and writes the result to the 64-bit destination register.

This instruction is used by the alias SMNEGL. See Alias conditions on page C6-1318 for details of when each alias
is preferred.

Encoding

SMSUBL <Xd>, <Wn>, <Wm>, <Xa>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);

Alias conditions

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the minuend, encoded in the
"Ra" field.

Operation

 bits(32) operand1 = X[n];
 bits(32) operand2 = X[m];
 bits(64) operand3 = X[a];

 integer result;

 result = Int(operand3, FALSE) - (Int(operand1, FALSE) * Int(operand2, FALSE));
 X[d] = result<63:0>;

Alias is preferred when

 SMNEGL Ra == '11111'

1 0 0 1 1 0 1 1 0 0 1 Rm 1 Ra Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0
C6-1318 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1319
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.244 SMULH

Signed Multiply High multiplies two 64-bit register values, and writes bits[127:64] of the 128-bit result to the 64-bit
destination register.

Encoding

SMULH <Xd>, <Xn>, <Xm>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

 bits(64) operand1 = X[n];
 bits(64) operand2 = X[m];

 integer result;

 result = Int(operand1, FALSE) * Int(operand2, FALSE);

 X[d] = result<127:64>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 1 0 1 1 0 1 0 Rm 0 (1) (1) (1) (1) (1) Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U Ra
C6-1320 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.245 SMULL

Signed Multiply Long multiplies two 32-bit register values, and writes the result to the 64-bit destination register.

This instruction is an alias of the SMADDL instruction. This means that:

• The encodings in this description are named to match the encodings of SMADDL.

• The description of SMADDL gives the operational pseudocode for this instruction.

Encoding

SMULL <Xd>, <Wn>, <Wm>

 is equivalent to

SMADDL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

The description of SMADDL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 1 0 1 1 0 0 1 Rm 0 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0 Ra
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1321
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.246 SSBB

Speculative Store Bypass Barrier is a memory barrier which prevents speculative loads from bypassing earlier stores
to the same virtual address under certain conditions.

The semantics of the Speculative Store Bypass Barrier are:

• When a load to a location appears in program order after the SSBB, then the load does not speculatively read
an entry earlier in the coherence order for that location than the entry generated by the latest store satisfying
all of the following conditions:

— The store is to the same location as the load.

— The store uses the same virtual address as the load.

— The store appears in program order before the SSBB.

• When a load to a location appears in program order before the SSBB, then the load does not speculatively
read data from any store satisfying all of the following conditions:

— The store is to the same location as the load.

— The store uses the same virtual address as the load.

— The store appears in program order after the SSBB.

This instruction is an alias of the DSB instruction. This means that:

• The encodings in this description are named to match the encodings of DSB.

• The description of DSB gives the operational pseudocode for this instruction.

Encoding

SSBB

 is equivalent to

DSB #0

and is always the preferred disassembly.

Operation

The description of DSB gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

CRm opc
C6-1322 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.247 ST2G

Store Allocation Tags stores an Allocation Tag to two Tag granules of memory. The address used for the store is
calculated from the base register and an immediate signed offset scaled by the Tag granule. The Allocation Tag is
calculated from the Logical Address Tag in the source register.

This instruction generates an Unchecked access.

Post-index

(FEAT_MTE)

Encoding

ST2G <Xt|SP>, [<Xn|SP>], #<simm>

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = TRUE;

Pre-index

(FEAT_MTE)

Encoding

ST2G <Xt|SP>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = FALSE;

Signed offset

(FEAT_MTE)

1 1 0 1 1 0 0 1 1 0 1 imm9 0 1 Xn Xt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 1 0 1 imm9 1 1 Xn Xt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 1 0 1 imm9 1 0 Xn Xt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1323
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Encoding

ST2G <Xt|SP>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = FALSE;
 boolean postindex = FALSE;

Assembler symbols

<Xt|SP> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0
and encoded in the "imm9" field.

Operation for all encodings

 bits(64) address;
 bits(64) data = if t == 31 then SP[] else X[t];
 bits(4) tag = AArch64.AllocationTagFromAddress(data);

 SetTagCheckedInstruction(FALSE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
 address = address + offset;

 AArch64.MemTag[address, AccType_NORMAL] = tag;
 AArch64.MemTag[address+TAG_GRANULE, AccType_NORMAL] = tag;

 if writeback then
 if postindex then
 address = address + offset;

 if n == 31 then
 SP[] = address;
 else
 X[n] = address;
C6-1324 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.248 ST64B

Single-copy Atomic 64-byte Store without Return stores eight 64-bit doublewords from consecutive registers, Xt to
X(t+7), to a memory location. The data that is stored is atomic and is required to be 64-byte-aligned.

Integer

(FEAT_LS64)

Encoding

ST64B <Xt>, [<Xn|SP> {,#0}]

Decode for this encoding

 if !HaveFeatLS64() then UNDEFINED;
 if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 boolean tag_checked = n != 31;

Assembler symbols

<Xt> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 CheckLDST64BEnabled();

 bits(512) data;
 bits(64) address;
 bits(64) value;
 acctype = AccType_ATOMICLS64;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 for i = 0 to 7
 value = X[t+i];
 if BigEndian(acctype) then value = BigEndianReverse(value);
 data<63+64*i:64*i> = value;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 MemStore64B(address, data, acctype);

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1325
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.249 ST64BV

Single-copy Atomic 64-byte Store with Return stores eight 64-bit doublewords from consecutive registers, Xt to
X(t+7), to a memory location, and writes the status result of the store to a register. The data that is stored is atomic
and is required to be 64-byte aligned.

Integer

(FEAT_LS64_V)

Encoding

ST64BV <Xs>, <Xt>, [<Xn|SP>]

Decode for this encoding

 if !HaveFeatLS64() then UNDEFINED;
 if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs);
 boolean tag_checked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register into which the status result of this instruction is
written, encoded in the "Rs" field.

The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

0xFFFFFFFF_FFFFFFFFIf the memory location accessed does not support this instruction.

If XZR is used, then the return value is ignored.

<Xt> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 CheckST64BVEnabled();

 bits(512) data;
 bits(64) address;
 bits(64) value;
 bits(64) status;
 acctype = AccType_ATOMICLS64;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 for i = 0 to 7
 value = X[t+i];
 if BigEndian(acctype) then value = BigEndianReverse(value);
 data<63+64*i:64*i> = value;

1 1 1 1 1 0 0 0 0 0 1 Rs 1 0 1 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C6-1326 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 status = MemStore64BWithRet(address, data, acctype);

 if s != 31 then X[s] = status;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1327
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.250 ST64BV0

Single-copy Atomic 64-byte EL0 Store with Return stores eight 64-bit doublewords from consecutive registers, Xt
to X(t+7), to a memory location, with the bottom 32 bits taken from ACCDATA_EL1, and writes the status result
of the store to a register. The data that is stored is atomic and is required to be 64-byte aligned.

Integer

(FEAT_LS64_V)

Encoding

ST64BV0 <Xs>, <Xt>, [<Xn|SP>]

Decode for this encoding

 if !HaveFeatLS64() then UNDEFINED;
 if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs);
 boolean tag_checked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register into which the status result of this instruction is
written, encoded in the "Rs" field.

The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

0xFFFFFFFF_FFFFFFFFIf the memory location accessed does not support this instruction.

If XZR is used, then the return value is ignored.

<Xt> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 CheckST64BV0Enabled();

 bits(512) data;
 bits(64) address;
 bits(64) value;
 bits(64) status;
 acctype = AccType_ATOMICLS64;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 bits(64) Xt = X[t];
 value<31:0> = ACCDATA_EL1<31:0>;
 value<63:32> = Xt<63:32>;
 if BigEndian(acctype) then value = BigEndianReverse(value);

1 1 1 1 1 0 0 0 0 0 1 Rs 1 0 1 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C6-1328 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 data<63:0> = value;
 for i = 1 to 7
 value = X[t+i];
 if BigEndian(acctype) then value = BigEndianReverse(value);
 data<63+64*i:64*i> = value;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 status = MemStore64BWithRet(address, data, acctype);

 if s != 31 then X[s] = status;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1329
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.251 STADDB, STADDLB

Atomic add on byte in memory, without return, atomically loads an 8-bit byte from memory, adds the value held in
a register to it, and stores the result back to memory.

• STADDB does not have release semantics.

• STADDLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDADDB, LDADDAB, LDADDALB, LDADDLB instruction. This means that:

• The encodings in this description are named to match the encodings of LDADDB, LDADDAB,
LDADDALB, LDADDLB.

• The description of LDADDB, LDADDAB, LDADDALB, LDADDLB gives the operational pseudocode for
this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STADDB <Ws>, [<Xn|SP>]

 is equivalent to

LDADDB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STADDLB <Ws>, [<Xn|SP>]

 is equivalent to

LDADDLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDADDB, LDADDAB, LDADDALB, LDADDLB gives the operational pseudocode for this
instruction.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 0 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1330 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1331
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.252 STADDH, STADDLH

Atomic add on halfword in memory, without return, atomically loads a 16-bit halfword from memory, adds the value
held in a register to it, and stores the result back to memory.

• STADDH does not have release semantics.

• STADDLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDADDH, LDADDAH, LDADDALH, LDADDLH instruction. This means that:

• The encodings in this description are named to match the encodings of LDADDH, LDADDAH,
LDADDALH, LDADDLH.

• The description of LDADDH, LDADDAH, LDADDALH, LDADDLH gives the operational pseudocode for
this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STADDH <Ws>, [<Xn|SP>]

 is equivalent to

LDADDH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STADDLH <Ws>, [<Xn|SP>]

 is equivalent to

LDADDLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDADDH, LDADDAH, LDADDALH, LDADDLH gives the operational pseudocode for this
instruction.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 0 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1332 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1333
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.253 STADD, STADDL

Atomic add on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword
from memory, adds the value held in a register to it, and stores the result back to memory.

• STADD does not have release semantics.

• STADDL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDADD, LDADDA, LDADDAL, LDADDL instruction. This means that:

• The encodings in this description are named to match the encodings of LDADD, LDADDA, LDADDAL,
LDADDL.

• The description of LDADD, LDADDA, LDADDAL, LDADDL gives the operational pseudocode for this
instruction.

Integer

(FEAT_LSE)

32-bit LDADD alias variant

Applies when size == 10 && R == 0.

STADD <Ws>, [<Xn|SP>]

 is equivalent to

LDADD <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDADDL alias variant

Applies when size == 10 && R == 1.

STADDL <Ws>, [<Xn|SP>]

 is equivalent to

LDADDL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDADD alias variant

Applies when size == 11 && R == 0.

STADD <Xs>, [<Xn|SP>]

 is equivalent to

LDADD <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 0 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1334 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDADDL alias variant

Applies when size == 11 && R == 1.

STADDL <Xs>, [<Xn|SP>]

 is equivalent to

LDADDL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDADD, LDADDA, LDADDAL, LDADDL gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1335
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.254 STCLRB, STCLRLB

Atomic bit clear on byte in memory, without return, atomically loads an 8-bit byte from memory, performs a bitwise
AND with the complement of the value held in a register on it, and stores the result back to memory.

• STCLRB does not have release semantics.

• STCLRLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB instruction. This means that:

• The encodings in this description are named to match the encodings of LDCLRB, LDCLRAB, LDCLRALB,
LDCLRLB.

• The description of LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB gives the operational pseudocode for
this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STCLRB <Ws>, [<Xn|SP>]

 is equivalent to

LDCLRB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STCLRLB <Ws>, [<Xn|SP>]

 is equivalent to

LDCLRLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB gives the operational pseudocode for this
instruction.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 0 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1336 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1337
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.255 STCLRH, STCLRLH

Atomic bit clear on halfword in memory, without return, atomically loads a 16-bit halfword from memory, performs
a bitwise AND with the complement of the value held in a register on it, and stores the result back to memory.

• STCLRH does not have release semantics.

• STCLRLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH instruction. This means that:

• The encodings in this description are named to match the encodings of LDCLRH, LDCLRAH, LDCLRALH,
LDCLRLH.

• The description of LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH gives the operational pseudocode for
this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STCLRH <Ws>, [<Xn|SP>]

 is equivalent to

LDCLRH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STCLRLH <Ws>, [<Xn|SP>]

 is equivalent to

LDCLRLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH gives the operational pseudocode for this
instruction.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 0 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1338 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1339
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.256 STCLR, STCLRL

Atomic bit clear on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, performs a bitwise AND with the complement of the value held in a register on it, and
stores the result back to memory.

• STCLR does not have release semantics.

• STCLRL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDCLR, LDCLRA, LDCLRAL, LDCLRL instruction. This means that:

• The encodings in this description are named to match the encodings of LDCLR, LDCLRA, LDCLRAL,
LDCLRL.

• The description of LDCLR, LDCLRA, LDCLRAL, LDCLRL gives the operational pseudocode for this
instruction.

Integer

(FEAT_LSE)

32-bit LDCLR alias variant

Applies when size == 10 && R == 0.

STCLR <Ws>, [<Xn|SP>]

 is equivalent to

LDCLR <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDCLRL alias variant

Applies when size == 10 && R == 1.

STCLRL <Ws>, [<Xn|SP>]

 is equivalent to

LDCLRL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDCLR alias variant

Applies when size == 11 && R == 0.

STCLR <Xs>, [<Xn|SP>]

 is equivalent to

LDCLR <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 0 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1340 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDCLRL alias variant

Applies when size == 11 && R == 1.

STCLRL <Xs>, [<Xn|SP>]

 is equivalent to

LDCLRL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDCLR, LDCLRA, LDCLRAL, LDCLRL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1341
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.257 STEORB, STEORLB

Atomic exclusive OR on byte in memory, without return, atomically loads an 8-bit byte from memory, performs an
exclusive OR with the value held in a register on it, and stores the result back to memory.

• STEORB does not have release semantics.

• STEORLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDEORB, LDEORAB, LDEORALB, LDEORLB instruction. This means that:

• The encodings in this description are named to match the encodings of LDEORB, LDEORAB, LDEORALB,
LDEORLB.

• The description of LDEORB, LDEORAB, LDEORALB, LDEORLB gives the operational pseudocode for
this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STEORB <Ws>, [<Xn|SP>]

 is equivalent to

LDEORB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STEORLB <Ws>, [<Xn|SP>]

 is equivalent to

LDEORLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDEORB, LDEORAB, LDEORALB, LDEORLB gives the operational pseudocode for this
instruction.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 1 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1342 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1343
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.258 STEORH, STEORLH

Atomic exclusive OR on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
performs an exclusive OR with the value held in a register on it, and stores the result back to memory.

• STEORH does not have release semantics.

• STEORLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDEORH, LDEORAH, LDEORALH, LDEORLH instruction. This means that:

• The encodings in this description are named to match the encodings of LDEORH, LDEORAH,
LDEORALH, LDEORLH.

• The description of LDEORH, LDEORAH, LDEORALH, LDEORLH gives the operational pseudocode for
this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STEORH <Ws>, [<Xn|SP>]

 is equivalent to

LDEORH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STEORLH <Ws>, [<Xn|SP>]

 is equivalent to

LDEORLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDEORH, LDEORAH, LDEORALH, LDEORLH gives the operational pseudocode for this
instruction.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 1 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1344 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1345
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.259 STEOR, STEORL

Atomic exclusive OR on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, performs an exclusive OR with the value held in a register on it, and stores the result
back to memory.

• STEOR does not have release semantics.

• STEORL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDEOR, LDEORA, LDEORAL, LDEORL instruction. This means that:

• The encodings in this description are named to match the encodings of LDEOR, LDEORA, LDEORAL,
LDEORL.

• The description of LDEOR, LDEORA, LDEORAL, LDEORL gives the operational pseudocode for this
instruction.

Integer

(FEAT_LSE)

32-bit LDEOR alias variant

Applies when size == 10 && R == 0.

STEOR <Ws>, [<Xn|SP>]

 is equivalent to

LDEOR <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDEORL alias variant

Applies when size == 10 && R == 1.

STEORL <Ws>, [<Xn|SP>]

 is equivalent to

LDEORL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDEOR alias variant

Applies when size == 11 && R == 0.

STEOR <Xs>, [<Xn|SP>]

 is equivalent to

LDEOR <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 1 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1346 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDEORL alias variant

Applies when size == 11 && R == 1.

STEORL <Xs>, [<Xn|SP>]

 is equivalent to

LDEORL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDEOR, LDEORA, LDEORAL, LDEORL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1347
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.260 STG

Store Allocation Tag stores an Allocation Tag to memory. The address used for the store is calculated from the base
register and an immediate signed offset scaled by the Tag granule. The Allocation Tag is calculated from the Logical
Address Tag in the source register.

This instruction generates an Unchecked access.

Post-index

(FEAT_MTE)

Encoding

STG <Xt|SP>, [<Xn|SP>], #<simm>

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = TRUE;

Pre-index

(FEAT_MTE)

Encoding

STG <Xt|SP>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = FALSE;

Signed offset

(FEAT_MTE)

1 1 0 1 1 0 0 1 0 0 1 imm9 0 1 Xn Xt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 0 0 1 imm9 1 1 Xn Xt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 0 0 1 imm9 1 0 Xn Xt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
C6-1348 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Encoding

STG <Xt|SP>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = FALSE;
 boolean postindex = FALSE;

Assembler symbols

<Xt|SP> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0
and encoded in the "imm9" field.

Operation for all encodings

 bits(64) address;

 SetTagCheckedInstruction(FALSE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
 address = address + offset;

 bits(64) data = if t == 31 then SP[] else X[t];
 bits(4) tag = AArch64.AllocationTagFromAddress(data);
 AArch64.MemTag[address, AccType_NORMAL] = tag;

 if writeback then
 if postindex then
 address = address + offset;

 if n == 31 then
 SP[] = address;
 else
 X[n] = address;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1349
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.261 STGM

Store Tag Multiple writes a naturally aligned block of N Allocation Tags, where the size of N is identified in
GMID_EL1.BS, and the Allocation Tag written to address A is taken from the source register at
4*A<7:4>+3:4*A<7:4>.

This instruction is UNDEFINED at EL0.

This instruction generates an Unchecked access.

If ID_AA64PFR1_EL1 != 0b0010, this instruction is UNDEFINED.

Integer

(FEAT_MTE2)

Encoding

STGM <Xt>, [<Xn|SP>]

Decode for this encoding

 if !HaveMTE2Ext() then UNDEFINED;
 integer t = UInt(Xt);
 integer n = UInt(Xn);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

Operation

 if PSTATE.EL == EL0 then
 UNDEFINED;

 bits(64) data = X[t];
 bits(64) address;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 integer size = 4 * (2 ^ (UInt(GMID_EL1.BS)));
 address = Align(address, size);
 integer count = size >> LOG2_TAG_GRANULE;
 integer index = UInt(address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE>);

 for i = 0 to count-1
 bits(4) tag = data<(index*4)+3:index*4>;
 AArch64.MemTag[address, AccType_NORMAL] = tag;
 address = address + TAG_GRANULE;
 index = index + 1;

1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 Xn Xt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
C6-1350 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.262 STGP

Store Allocation Tag and Pair of registers stores an Allocation Tag and two 64-bit doublewords to memory, from
two registers. The address used for the store is calculated from the base register and an immediate signed offset
scaled by the Tag granule. The Allocation Tag is calculated from the Logical Address Tag in the base register.

This instruction generates an Unchecked access.

Post-index

(FEAT_MTE)

Encoding

STGP <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 integer t2 = UInt(Xt2);
 bits(64) offset = LSL(SignExtend(simm7, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = TRUE;

Pre-index

(FEAT_MTE)

Encoding

STGP <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]!

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 integer t2 = UInt(Xt2);
 bits(64) offset = LSL(SignExtend(simm7, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = FALSE;

Signed offset

(FEAT_MTE)

0 1 1 0 1 0 0 0 1 0 simm7 Xt2 Xn Xt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

0 1 1 0 1 0 0 1 1 0 simm7 Xt2 Xn Xt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1351
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Encoding

STGP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 integer t2 = UInt(Xt2);
 bits(64) offset = LSL(SignExtend(simm7, 64), LOG2_TAG_GRANULE);
 boolean writeback = FALSE;
 boolean postindex = FALSE;

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Xt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Xt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<imm> For the post-index and pre-index variant: is the signed immediate offset, a multiple of 16 in the range
-1024 to 1008, encoded in the "simm7" field.

For the signed offset variant: is the optional signed immediate offset, a multiple of 16 in the range
-1024 to 1008, defaulting to 0 and encoded in the "simm7" field.

Operation for all encodings

 bits(64) address;
 bits(64) data1;
 bits(64) data2;

 SetTagCheckedInstruction(FALSE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data1 = X[t];
 data2 = X[t2];

 if !postindex then
 address = address + offset;

 if address != Align(address, TAG_GRANULE) then
 AArch64.Abort(address, AlignmentFault(AccType_NORMAL, TRUE, FALSE));

 Mem[address, 8, AccType_NORMAL] = data1;
 Mem[address+8, 8, AccType_NORMAL] = data2;

 AArch64.MemTag[address, AccType_NORMAL] = AArch64.AllocationTagFromAddress(address);

 if writeback then
 if postindex then

0 1 1 0 1 0 0 1 0 0 simm7 Xt2 Xn Xt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0
C6-1352 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 address = address + offset;

 if n == 31 then
 SP[] = address;
 else
 X[n] = address;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1353
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.263 STLLRB

Store LORelease Register Byte stores a byte from a 32-bit register to a memory location. The instruction also has
memory ordering semantics as described in LoadLOAcquire, StoreLORelease on page B2-153. For information
about memory accesses, see Load/store addressing modes on page C1-202.

No offset

(FEAT_LOR)

Encoding

STLLRB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = X[t];
 Mem[address, 1, AccType_LIMITEDORDERED] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
C6-1354 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.264 STLLRH

Store LORelease Register Halfword stores a halfword from a 32-bit register to a memory location. The instruction
also has memory ordering semantics as described in LoadLOAcquire, StoreLORelease on page B2-153. For
information about memory accesses, see Load/store addressing modes on page C1-202.

No offset

(FEAT_LOR)

Encoding

STLLRH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = X[t];
 Mem[address, 2, AccType_LIMITEDORDERED] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1355
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.265 STLLR

Store LORelease Register stores a 32-bit word or a 64-bit doubleword to a memory location, from a register. The
instruction also has memory ordering semantics as described in LoadLOAcquire, StoreLORelease on page B2-153.
For information about memory accesses, see Load/store addressing modes on page C1-202.

No offset

(FEAT_LOR)

32-bit variant

Applies when size == 10.

STLLR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

STLLR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 integer elsize = 8 << UInt(size);
 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = X[t];
 Mem[address, dbytes, AccType_LIMITEDORDERED] = data;

1 x 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
C6-1356 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1357
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.266 STLR

Store-Release Register stores a 32-bit word or a 64-bit doubleword to a memory location, from a register. The
instruction also has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
on page B2-152. For information about memory accesses, see Load/store addressing modes on page C1-202.

32-bit variant

Applies when size == 10.

STLR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

STLR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 integer elsize = 8 << UInt(size);
 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = X[t];
 Mem[address, dbytes, AccType_ORDERED] = data;

1 x 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
C6-1358 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1359
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.267 STLRB

Store-Release Register Byte stores a byte from a 32-bit register to a memory location. The instruction also has
memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-152.
For information about memory accesses, see Load/store addressing modes on page C1-202.

Encoding

STLRB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = X[t];
 Mem[address, 1, AccType_ORDERED] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
C6-1360 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.268 STLRH

Store-Release Register Halfword stores a halfword from a 32-bit register to a memory location. The instruction also
has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152. For information about memory accesses, see Load/store addressing modes on page C1-202.

Encoding

STLRH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 data = X[t];
 Mem[address, 2, AccType_ORDERED] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1361
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.269 STLUR

Store-Release Register (unscaled) calculates an address from a base register value and an immediate offset, and
stores a 32-bit word or a 64-bit doubleword to the calculated address, from a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
on page B2-152

For information about memory accesses, see Load/store addressing modes on page C1-202.

Unscaled offset

(FEAT_LRCPC2)

32-bit variant

Applies when size == 10.

STLUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

STLUR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 integer datasize = 8 << scale;
 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

1 x 0 1 1 0 0 1 0 0 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1362 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = X[t];
 Mem[address, datasize DIV 8, AccType_ORDERED] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1363
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.270 STLURB

Store-Release Register Byte (unscaled) calculates an address from a base register value and an immediate offset,
and stores a byte to the calculated address, from a 32-bit register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
on page B2-152

For information about memory accesses, see Load/store addressing modes on page C1-202.

Unscaled offset

(FEAT_LRCPC2)

Encoding

STLURB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

0 0 0 1 1 0 0 1 0 0 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1364 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 data = X[t];
 Mem[address, 1, AccType_ORDERED] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1365
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.271 STLURH

Store-Release Register Halfword (unscaled) calculates an address from a base register value and an immediate
offset, and stores a halfword to the calculated address, from a 32-bit register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
on page B2-152

For information about memory accesses, see Load/store addressing modes on page C1-202.

Unscaled offset

(FEAT_LRCPC2)

Encoding

STLURH <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

0 1 0 1 1 0 0 1 0 0 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1366 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 data = X[t];
 Mem[address, 2, AccType_ORDERED] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1367
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.272 STLXP

Store-Release Exclusive Pair of registers stores two 32-bit words or two 64-bit doublewords to a memory location
if the PE has exclusive access to the memory address, from two registers, and returns a status value of 0 if the store
was successful, or of 1 if no store was performed. See Synchronization and semaphores on page B2-179. For
information on single-copy atomicity and alignment requirements, see Requirements for single-copy atomicity on
page B2-128 and Alignment of data accesses on page B2-160. If a 64-bit pair Store-Exclusive succeeds, it causes a
single-copy atomic update of the 128-bit memory location being updated. The instruction also has memory ordering
semantics, as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-152. For information
about memory accesses, see Load/store addressing modes on page C1-202.

32-bit variant

Applies when sz == 0.

STLXP <Ws>, <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit variant

Applies when sz == 1.

STLXP <Ws>, <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2); // ignored by load/store single register
 integer s = UInt(Rs); // ignored by all loads and store-release

 integer elsize = 32 << UInt(sz);
 integer datasize = elsize * 2;
 boolean tag_checked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t || (s == t2) then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STLXP on page K1-8419.

1 sz 0 0 1 0 0 0 0 0 1 Rs 1 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

L o0
C6-1368 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort
exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n];

 if rt_unknown then
 data = bits(datasize) UNKNOWN;
 else
 bits(datasize DIV 2) el1 = X[t];
 bits(datasize DIV 2) el2 = X[t2];
 data = if BigEndian(AccType_ORDEREDATOMIC) then el1:el2 else el2:el1;
 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].
 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
 // This atomic write will be rejected if it does not refer
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1369
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 // to the same physical locations after address translation.
 Mem[address, dbytes, AccType_ORDEREDATOMIC] = data;
 status = ExclusiveMonitorsStatus();
 X[s] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1370 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.273 STLXR

Store-Release Exclusive Register stores a 32-bit word or a 64-bit doubleword to memory if the PE has exclusive
access to the memory address, from two registers, and returns a status value of 0 if the store was successful, or of 1
if no store was performed. See Synchronization and semaphores on page B2-179. The memory access is atomic.
The instruction also has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152. For information about memory accesses see Load/store addressing modes on
page C1-202.

32-bit variant

Applies when size == 10.

STLXR <Ws>, <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

STLXR <Ws>, <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs); // ignored by all loads and store-release

 integer elsize = 8 << UInt(size);
 boolean tag_checked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STLXR on page K1-8420.

1 x 0 0 1 0 0 0 0 0 0 Rs 1 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L o0 Rt2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1371
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort
exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n];

 if rt_unknown then
 data = bits(elsize) UNKNOWN;
 else
 data = X[t];

 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].
 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, dbytes, AccType_ORDEREDATOMIC] = data;
 status = ExclusiveMonitorsStatus();
 X[s] = ZeroExtend(status, 32);
C6-1372 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1373
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.274 STLXRB

Store-Release Exclusive Register Byte stores a byte from a 32-bit register to memory if the PE has exclusive access
to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed.
See Synchronization and semaphores on page B2-179. The memory access is atomic. The instruction also has
memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-152.
For information about memory accesses see Load/store addressing modes on page C1-202.

Encoding

STLXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs); // ignored by all loads and store-release

 boolean tag_checked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STLXRB on page K1-8420.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts

0 0 0 0 1 0 0 0 0 0 0 Rs 1 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L o0 Rt2
C6-1374 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n];

 if rt_unknown then
 data = bits(8) UNKNOWN;
 else
 data = X[t];

 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].
 if AArch64.ExclusiveMonitorsPass(address, 1) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, 1, AccType_ORDEREDATOMIC] = data;
 status = ExclusiveMonitorsStatus();
 X[s] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1375
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.275 STLXRH

Store-Release Exclusive Register Halfword stores a halfword from a 32-bit register to memory if the PE has
exclusive access to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store
was performed. See Synchronization and semaphores on page B2-179. The memory access is atomic. The
instruction also has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
on page B2-152. For information about memory accesses see Load/store addressing modes on page C1-202.

Encoding

STLXRH <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs); // ignored by all loads and store-release

 boolean tag_checked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STLXRH on page K1-8420.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

0 1 0 0 1 0 0 0 0 0 0 Rs 1 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L o0 Rt2
C6-1376 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject
to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n];

 if rt_unknown then
 data = bits(16) UNKNOWN;
 else
 data = X[t];

 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].
 if AArch64.ExclusiveMonitorsPass(address, 2) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, 2, AccType_ORDEREDATOMIC] = data;
 status = ExclusiveMonitorsStatus();
 X[s] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1377
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.276 STNP

Store Pair of Registers, with non-temporal hint, calculates an address from a base register value and an immediate
offset, and stores two 32-bit words or two 64-bit doublewords to the calculated address, from two registers. For
information about memory accesses, see Load/store addressing modes on page C1-202. For information about
Non-temporal pair instructions, see Load/store non-temporal pair on page C3-227.

32-bit variant

Applies when opc == 00.

STNP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 10.

STNP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

 // Empty.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256
to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512
to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 if opc<0> == '1' then UNDEFINED;
 integer scale = 2 + UInt(opc<1>);
 integer datasize = 8 << scale;
 bits(64) offset = LSL(SignExtend(imm7, 64), scale);
 boolean tag_checked = n != 31;

x 0 1 0 1 0 0 0 0 0 imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L
C6-1378 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(64) address;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data1 = X[t];
 data2 = X[t2];
 Mem[address, dbytes, AccType_STREAM] = data1;
 Mem[address+dbytes, dbytes, AccType_STREAM] = data2;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1379
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.277 STP

Store Pair of Registers calculates an address from a base register value and an immediate offset, and stores two
32-bit words or two 64-bit doublewords to the calculated address, from two registers. For information about
memory accesses, see Load/store addressing modes on page C1-202.

Post-index

32-bit variant

Applies when opc == 00.

STP <Wt1>, <Wt2>, [<Xn|SP>], #<imm>

64-bit variant

Applies when opc == 10.

STP <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;

Pre-index

32-bit variant

Applies when opc == 00.

STP <Wt1>, <Wt2>, [<Xn|SP>, #<imm>]!

64-bit variant

Applies when opc == 10.

STP <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;

Signed offset

x 0 1 0 1 0 0 0 1 0 imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

x 0 1 0 1 0 0 1 1 0 imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

x 0 1 0 1 0 0 1 0 0 imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L
C6-1380 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
32-bit variant

Applies when opc == 00.

STP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 10.

STP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STP on page K1-8419.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a
multiple of 4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in
the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a
multiple of 8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in
the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 if L:opc<0> == '01' || opc == '11' then UNDEFINED;
 integer scale = 2 + UInt(opc<1>);
 integer datasize = 8 << scale;
 bits(64) offset = LSL(SignExtend(imm7, 64), scale);
 boolean tag_checked = wback || n != 31;

 boolean rt_unknown = FALSE;

 if wback && (t == n || t2 == n) && n != 31 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1381
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 when Constraint_NONE rt_unknown = FALSE; // value stored is pre-writeback
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
 address = address + offset;

 if rt_unknown && t == n then
 data1 = bits(datasize) UNKNOWN;
 else
 data1 = X[t];
 if rt_unknown && t2 == n then
 data2 = bits(datasize) UNKNOWN;
 else
 data2 = X[t2];
 if HaveLSE2Ext() then
 bits(2*datasize) full_data;
 if BigEndian(AccType_NORMAL) then
 full_data = data1:data2;
 else
 full_data = data2:data1;
 Mem[address, 2*dbytes, AccType_NORMAL, TRUE] = full_data;
 else
 Mem[address, dbytes, AccType_NORMAL] = data1;
 Mem[address+dbytes, dbytes, AccType_NORMAL] = data2;

 if wback then
 if postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
 else
 X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1382 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.278 STR (immediate)

Store Register (immediate) stores a word or a doubleword from a register to memory. The address that is used for
the store is calculated from a base register and an immediate offset. For information about memory accesses, see
Load/store addressing modes on page C1-202.

Post-index

32-bit variant

Applies when size == 10.

STR <Wt>, [<Xn|SP>], #<simm>

64-bit variant

Applies when size == 11.

STR <Xt>, [<Xn|SP>], #<simm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

32-bit variant

Applies when size == 10.

STR <Wt>, [<Xn|SP>, #<simm>]!

64-bit variant

Applies when size == 11.

STR <Xt>, [<Xn|SP>, #<simm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

1 x 1 1 1 0 0 0 0 0 0 imm9 0 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

1 x 1 1 1 0 0 0 0 0 0 imm9 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1383
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Unsigned offset

32-bit variant

Applies when size == 10.

STR <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit variant

Applies when size == 11.

STR <Xt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 integer scale = UInt(size);
 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0
to 16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.

For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0
to 32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 integer datasize = 8 << scale;
 boolean tag_checked = wback || n != 31;

 boolean rt_unknown = FALSE;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

1 x 1 1 1 0 0 1 0 0 imm12 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc
C6-1384 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation for all encodings

 bits(64) address;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
 address = address + offset;

 if rt_unknown then
 data = bits(datasize) UNKNOWN;
 else
 data = X[t];
 Mem[address, datasize DIV 8, AccType_NORMAL] = data;

 if wback then
 if postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
 else
 X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1385
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.279 STR (register)

Store Register (register) calculates an address from a base register value and an offset register value, and stores a
32-bit word or a 64-bit doubleword to the calculated address, from a register. For information about memory
accesses, see Load/store addressing modes on page C1-202.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base
register value and an offset register value. The offset can be optionally shifted and extended.

32-bit variant

Applies when size == 10.

STR <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit variant

Applies when size == 11.

STR <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then scale else 0;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

1 x 1 1 1 0 0 0 0 0 1 Rm option S 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc
C6-1386 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
#2 when S = 1

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#3 when S = 1

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

 integer datasize = 8 << scale;

Operation

 bits(64) offset = ExtendReg(m, extend_type, shift);
 bits(64) address;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = X[t];
 Mem[address, datasize DIV 8, AccType_NORMAL] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1387
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.280 STRB (immediate)

Store Register Byte (immediate) stores the least significant byte of a 32-bit register to memory. The address that is
used for the store is calculated from a base register and an immediate offset. For information about memory
accesses, see Load/store addressing modes on page C1-202.

Post-index

Encoding

STRB <Wt>, [<Xn|SP>], #<simm>

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

Encoding

STRB <Wt>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

Encoding

STRB <Wt>, [<Xn|SP>{, #<pimm>}]

Decode for this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 0);

0 0 1 1 1 0 0 0 0 0 0 imm9 0 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 0 1 1 1 0 0 0 0 0 0 imm9 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 0 1 1 1 0 0 1 0 0 imm12 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc
C6-1388 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STRB (immediate) on page K1-8421.

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded
in the "imm12" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = wback || n != 31;

 boolean rt_unknown = FALSE;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
 address = address + offset;

 if rt_unknown then
 data = bits(8) UNKNOWN;
 else
 data = X[t];
 Mem[address, 1, AccType_NORMAL] = data;

 if wback then
 if postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1389
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 else
 X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1390 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.281 STRB (register)

Store Register Byte (register) calculates an address from a base register value and an offset register value, and stores
a byte from a 32-bit register to the calculated address. For information about memory accesses, see Load/store
addressing modes on page C1-202.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base
register value and an offset register value. The offset can be optionally shifted and extended.

Extended register variant

Applies when option != 011.

STRB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

Shifted register variant

Applies when option == 011.

STRB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

Decode for all variants of this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend specifier, encoded in the "option" field. It can have the following values:

UXTW when option = 010

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

0 0 1 1 1 0 0 0 0 0 1 Rm option S 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1391
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(64) offset = ExtendReg(m, extend_type, 0);
 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = X[t];
 Mem[address, 1, AccType_NORMAL] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1392 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.282 STRH (immediate)

Store Register Halfword (immediate) stores the least significant halfword of a 32-bit register to memory. The
address that is used for the store is calculated from a base register and an immediate offset. For information about
memory accesses, see Load/store addressing modes on page C1-202.

Post-index

Encoding

STRH <Wt>, [<Xn|SP>], #<simm>

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

Encoding

STRH <Wt>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

Encoding

STRH <Wt>, [<Xn|SP>{, #<pimm>}]

Decode for this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 1);

0 1 1 1 1 0 0 0 0 0 0 imm9 0 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 1 1 1 1 0 0 0 0 0 0 imm9 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 1 1 1 1 0 0 1 0 0 imm12 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1393
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STRH (immediate) on page K1-8421.

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0
and encoded in the "imm12" field as <pimm>/2.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = wback || n != 31;

 boolean rt_unknown = FALSE;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
 address = address + offset;

 if rt_unknown then
 data = bits(16) UNKNOWN;
 else
 data = X[t];
 Mem[address, 2, AccType_NORMAL] = data;

 if wback then
 if postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
C6-1394 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 else
 X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1395
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.283 STRH (register)

Store Register Halfword (register) calculates an address from a base register value and an offset register value, and
stores a halfword from a 32-bit register to the calculated address. For information about memory accesses, see
Load/store addressing modes on page C1-202.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base
register value and an offset register value. The offset can be optionally shifted and extended.

Encoding

STRH <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then 1 else 0;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be
optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

#0 when S = 0

#1 when S = 1

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

0 1 1 1 1 0 0 0 0 0 1 Rm option S 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc
C6-1396 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(64) offset = ExtendReg(m, extend_type, shift);
 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = X[t];
 Mem[address, 2, AccType_NORMAL] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1397
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.284 STSETB, STSETLB

Atomic bit set on byte in memory, without return, atomically loads an 8-bit byte from memory, performs a bitwise
OR with the value held in a register on it, and stores the result back to memory.

• STSETB does not have release semantics.

• STSETLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDSETB, LDSETAB, LDSETALB, LDSETLB instruction. This means that:

• The encodings in this description are named to match the encodings of LDSETB, LDSETAB, LDSETALB,
LDSETLB.

• The description of LDSETB, LDSETAB, LDSETALB, LDSETLB gives the operational pseudocode for this
instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STSETB <Ws>, [<Xn|SP>]

 is equivalent to

LDSETB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STSETLB <Ws>, [<Xn|SP>]

 is equivalent to

LDSETLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSETB, LDSETAB, LDSETALB, LDSETLB gives the operational pseudocode for this
instruction.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 1 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1398 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1399
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.285 STSETH, STSETLH

Atomic bit set on halfword in memory, without return, atomically loads a 16-bit halfword from memory, performs
a bitwise OR with the value held in a register on it, and stores the result back to memory.

• STSETH does not have release semantics.

• STSETLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDSETH, LDSETAH, LDSETALH, LDSETLH instruction. This means that:

• The encodings in this description are named to match the encodings of LDSETH, LDSETAH, LDSETALH,
LDSETLH.

• The description of LDSETH, LDSETAH, LDSETALH, LDSETLH gives the operational pseudocode for this
instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STSETH <Ws>, [<Xn|SP>]

 is equivalent to

LDSETH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STSETLH <Ws>, [<Xn|SP>]

 is equivalent to

LDSETLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSETH, LDSETAH, LDSETALH, LDSETLH gives the operational pseudocode for this
instruction.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 1 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1400 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1401
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.286 STSET, STSETL

Atomic bit set on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, performs a bitwise OR with the value held in a register on it, and stores the result back
to memory.

• STSET does not have release semantics.

• STSETL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDSET, LDSETA, LDSETAL, LDSETL instruction. This means that:

• The encodings in this description are named to match the encodings of LDSET, LDSETA, LDSETAL,
LDSETL.

• The description of LDSET, LDSETA, LDSETAL, LDSETL gives the operational pseudocode for this
instruction.

Integer

(FEAT_LSE)

32-bit LDSET alias variant

Applies when size == 10 && R == 0.

STSET <Ws>, [<Xn|SP>]

 is equivalent to

LDSET <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDSETL alias variant

Applies when size == 10 && R == 1.

STSETL <Ws>, [<Xn|SP>]

 is equivalent to

LDSETL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDSET alias variant

Applies when size == 11 && R == 0.

STSET <Xs>, [<Xn|SP>]

 is equivalent to

LDSET <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 1 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1402 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDSETL alias variant

Applies when size == 11 && R == 1.

STSETL <Xs>, [<Xn|SP>]

 is equivalent to

LDSETL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSET, LDSETA, LDSETAL, LDSETL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1403
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.287 STSMAXB, STSMAXLB

Atomic signed maximum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares
it against the value held in a register, and stores the larger value back to memory, treating the values as signed
numbers.

• STSMAXB does not have release semantics.

• STSMAXLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB instruction. This
means that:

• The encodings in this description are named to match the encodings of LDSMAXB, LDSMAXAB,
LDSMAXALB, LDSMAXLB.

• The description of LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB gives the operational
pseudocode for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STSMAXB <Ws>, [<Xn|SP>]

 is equivalent to

LDSMAXB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STSMAXLB <Ws>, [<Xn|SP>]

 is equivalent to

LDSMAXLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 0 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1404 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB gives the operational pseudocode for
this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1405
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.288 STSMAXH, STSMAXLH

Atomic signed maximum on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the larger value back to memory, treating the values as
signed numbers.

• STSMAXH does not have release semantics.

• STSMAXLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH instruction. This
means that:

• The encodings in this description are named to match the encodings of LDSMAXH, LDSMAXAH,
LDSMAXALH, LDSMAXLH.

• The description of LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH gives the operational
pseudocode for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STSMAXH <Ws>, [<Xn|SP>]

 is equivalent to

LDSMAXH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STSMAXLH <Ws>, [<Xn|SP>]

 is equivalent to

LDSMAXLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 0 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1406 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH gives the operational pseudocode
for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1407
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.289 STSMAX, STSMAXL

Atomic signed maximum on word or doubleword in memory, without return, atomically loads a 32-bit word or
64-bit doubleword from memory, compares it against the value held in a register, and stores the larger value back
to memory, treating the values as signed numbers.

• STSMAX does not have release semantics.

• STSMAXL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL instruction. This means that:

• The encodings in this description are named to match the encodings of LDSMAX, LDSMAXA,
LDSMAXAL, LDSMAXL.

• The description of LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL gives the operational pseudocode for
this instruction.

Integer

(FEAT_LSE)

32-bit LDSMAX alias variant

Applies when size == 10 && R == 0.

STSMAX <Ws>, [<Xn|SP>]

 is equivalent to

LDSMAX <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDSMAXL alias variant

Applies when size == 10 && R == 1.

STSMAXL <Ws>, [<Xn|SP>]

 is equivalent to

LDSMAXL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDSMAX alias variant

Applies when size == 11 && R == 0.

STSMAX <Xs>, [<Xn|SP>]

 is equivalent to

LDSMAX <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 0 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1408 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDSMAXL alias variant

Applies when size == 11 && R == 1.

STSMAXL <Xs>, [<Xn|SP>]

 is equivalent to

LDSMAXL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1409
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.290 STSMINB, STSMINLB

Atomic signed minimum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares
it against the value held in a register, and stores the smaller value back to memory, treating the values as signed
numbers.

• STSMINB does not have release semantics.

• STSMINLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB instruction. This means
that:

• The encodings in this description are named to match the encodings of LDSMINB, LDSMINAB,
LDSMINALB, LDSMINLB.

• The description of LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB gives the operational pseudocode
for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STSMINB <Ws>, [<Xn|SP>]

 is equivalent to

LDSMINB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STSMINLB <Ws>, [<Xn|SP>]

 is equivalent to

LDSMINLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 0 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1410 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1411
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.291 STSMINH, STSMINLH

Atomic signed minimum on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the smaller value back to memory, treating the values as
signed numbers.

• STSMINH does not have release semantics.

• STSMINLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH instruction. This means
that:

• The encodings in this description are named to match the encodings of LDSMINH, LDSMINAH,
LDSMINALH, LDSMINLH.

• The description of LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH gives the operational pseudocode
for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STSMINH <Ws>, [<Xn|SP>]

 is equivalent to

LDSMINH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STSMINLH <Ws>, [<Xn|SP>]

 is equivalent to

LDSMINLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 0 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1412 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH gives the operational pseudocode for
this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1413
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.292 STSMIN, STSMINL

Atomic signed minimum on word or doubleword in memory, without return, atomically loads a 32-bit word or
64-bit doubleword from memory, compares it against the value held in a register, and stores the smaller value back
to memory, treating the values as signed numbers.

• STSMIN does not have release semantics.

• STSMINL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDSMIN, LDSMINA, LDSMINAL, LDSMINL instruction. This means that:

• The encodings in this description are named to match the encodings of LDSMIN, LDSMINA, LDSMINAL,
LDSMINL.

• The description of LDSMIN, LDSMINA, LDSMINAL, LDSMINL gives the operational pseudocode for this
instruction.

Integer

(FEAT_LSE)

32-bit LDSMIN alias variant

Applies when size == 10 && R == 0.

STSMIN <Ws>, [<Xn|SP>]

 is equivalent to

LDSMIN <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDSMINL alias variant

Applies when size == 10 && R == 1.

STSMINL <Ws>, [<Xn|SP>]

 is equivalent to

LDSMINL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDSMIN alias variant

Applies when size == 11 && R == 0.

STSMIN <Xs>, [<Xn|SP>]

 is equivalent to

LDSMIN <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 0 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1414 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDSMINL alias variant

Applies when size == 11 && R == 1.

STSMINL <Xs>, [<Xn|SP>]

 is equivalent to

LDSMINL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSMIN, LDSMINA, LDSMINAL, LDSMINL gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1415
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.293 STTR

Store Register (unprivileged) stores a word or doubleword from a register to memory. The address that is used for
the store is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes on page C1-202.

32-bit variant

Applies when size == 10.

STTR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

STTR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
 unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

 user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
 if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
 acctype = AccType_UNPRIV;
 else
 acctype = AccType_NORMAL;

1 x 1 1 1 0 0 0 0 0 0 imm9 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1416 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 integer datasize = 8 << scale;
 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = X[t];
 Mem[address, datasize DIV 8, acctype] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1417
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.294 STTRB

Store Register Byte (unprivileged) stores a byte from a 32-bit register to memory. The address that is used for the
store is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes on page C1-202.

Encoding

STTRB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
 unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

 user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
 if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
 acctype = AccType_UNPRIV;
 else
 acctype = AccType_NORMAL;

 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then

0 0 1 1 1 0 0 0 0 0 0 imm9 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1418 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = X[t];
 Mem[address, 1, acctype] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1419
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.295 STTRH

Store Register Halfword (unprivileged) stores a halfword from a 32-bit register to memory. The address that is used
for the store is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes on page C1-202.

Encoding

STTRH <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
 unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

 user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
 if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
 acctype = AccType_UNPRIV;
 else
 acctype = AccType_NORMAL;

 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then

0 1 1 1 1 0 0 0 0 0 0 imm9 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1420 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = X[t];
 Mem[address, 2, acctype] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1421
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.296 STUMAXB, STUMAXLB

Atomic unsigned maximum on byte in memory, without return, atomically loads an 8-bit byte from memory,
compares it against the value held in a register, and stores the larger value back to memory, treating the values as
unsigned numbers.

• STUMAXB does not have release semantics.

• STUMAXLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB instruction. This
means that:

• The encodings in this description are named to match the encodings of LDUMAXB, LDUMAXAB,
LDUMAXALB, LDUMAXLB.

• The description of LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB gives the operational
pseudocode for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STUMAXB <Ws>, [<Xn|SP>]

 is equivalent to

LDUMAXB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STUMAXLB <Ws>, [<Xn|SP>]

 is equivalent to

LDUMAXLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 1 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1422 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB gives the operational pseudocode
for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1423
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.297 STUMAXH, STUMAXLH

Atomic unsigned maximum on halfword in memory, without return, atomically loads a 16-bit halfword from
memory, compares it against the value held in a register, and stores the larger value back to memory, treating the
values as unsigned numbers.

• STUMAXH does not have release semantics.

• STUMAXLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH instruction. This
means that:

• The encodings in this description are named to match the encodings of LDUMAXH, LDUMAXAH,
LDUMAXALH, LDUMAXLH.

• The description of LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH gives the operational
pseudocode for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STUMAXH <Ws>, [<Xn|SP>]

 is equivalent to

LDUMAXH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STUMAXLH <Ws>, [<Xn|SP>]

 is equivalent to

LDUMAXLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 1 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1424 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH gives the operational pseudocode
for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1425
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.298 STUMAX, STUMAXL

Atomic unsigned maximum on word or doubleword in memory, without return, atomically loads a 32-bit word or
64-bit doubleword from memory, compares it against the value held in a register, and stores the larger value back
to memory, treating the values as unsigned numbers.

• STUMAX does not have release semantics.

• STUMAXL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL instruction. This means
that:

• The encodings in this description are named to match the encodings of LDUMAX, LDUMAXA,
LDUMAXAL, LDUMAXL.

• The description of LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL gives the operational pseudocode
for this instruction.

Integer

(FEAT_LSE)

32-bit LDUMAX alias variant

Applies when size == 10 && R == 0.

STUMAX <Ws>, [<Xn|SP>]

 is equivalent to

LDUMAX <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDUMAXL alias variant

Applies when size == 10 && R == 1.

STUMAXL <Ws>, [<Xn|SP>]

 is equivalent to

LDUMAXL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDUMAX alias variant

Applies when size == 11 && R == 0.

STUMAX <Xs>, [<Xn|SP>]

 is equivalent to

LDUMAX <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 1 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1426 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDUMAXL alias variant

Applies when size == 11 && R == 1.

STUMAXL <Xs>, [<Xn|SP>]

 is equivalent to

LDUMAXL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1427
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.299 STUMINB, STUMINLB

Atomic unsigned minimum on byte in memory, without return, atomically loads an 8-bit byte from memory,
compares it against the value held in a register, and stores the smaller value back to memory, treating the values as
unsigned numbers.

• STUMINB does not have release semantics.

• STUMINLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB instruction. This means
that:

• The encodings in this description are named to match the encodings of LDUMINB, LDUMINAB,
LDUMINALB, LDUMINLB.

• The description of LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB gives the operational
pseudocode for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STUMINB <Ws>, [<Xn|SP>]

 is equivalent to

LDUMINB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STUMINLB <Ws>, [<Xn|SP>]

 is equivalent to

LDUMINLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 1 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1428 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB gives the operational pseudocode for
this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1429
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.300 STUMINH, STUMINLH

Atomic unsigned minimum on halfword in memory, without return, atomically loads a 16-bit halfword from
memory, compares it against the value held in a register, and stores the smaller value back to memory, treating the
values as unsigned numbers.

• STUMINH does not have release semantics.

• STUMINLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH instruction. This means
that:

• The encodings in this description are named to match the encodings of LDUMINH, LDUMINAH,
LDUMINALH, LDUMINLH.

• The description of LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH gives the operational
pseudocode for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STUMINH <Ws>, [<Xn|SP>]

 is equivalent to

LDUMINH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STUMINLH <Ws>, [<Xn|SP>]

 is equivalent to

LDUMINLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 1 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1430 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH gives the operational pseudocode for
this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1431
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.301 STUMIN, STUMINL

Atomic unsigned minimum on word or doubleword in memory, without return, atomically loads a 32-bit word or
64-bit doubleword from memory, compares it against the value held in a register, and stores the smaller value back
to memory, treating the values as unsigned numbers.

• STUMIN does not have release semantics.

• STUMINL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

This instruction is an alias of the LDUMIN, LDUMINA, LDUMINAL, LDUMINL instruction. This means that:

• The encodings in this description are named to match the encodings of LDUMIN, LDUMINA, LDUMINAL,
LDUMINL.

• The description of LDUMIN, LDUMINA, LDUMINAL, LDUMINL gives the operational pseudocode for
this instruction.

Integer

(FEAT_LSE)

32-bit LDUMIN alias variant

Applies when size == 10 && R == 0.

STUMIN <Ws>, [<Xn|SP>]

 is equivalent to

LDUMIN <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDUMINL alias variant

Applies when size == 10 && R == 1.

STUMINL <Ws>, [<Xn|SP>]

 is equivalent to

LDUMINL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDUMIN alias variant

Applies when size == 11 && R == 0.

STUMIN <Xs>, [<Xn|SP>]

 is equivalent to

LDUMIN <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 1 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
C6-1432 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDUMINL alias variant

Applies when size == 11 && R == 1.

STUMINL <Xs>, [<Xn|SP>]

 is equivalent to

LDUMINL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDUMIN, LDUMINA, LDUMINAL, LDUMINL gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1433
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.302 STUR

Store Register (unscaled) calculates an address from a base register value and an immediate offset, and stores a
32-bit word or a 64-bit doubleword to the calculated address, from a register. For information about memory
accesses, see Load/store addressing modes on page C1-202.

32-bit variant

Applies when size == 10.

STUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

STUR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 integer datasize = 8 << scale;
 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else

1 x 1 1 1 0 0 0 0 0 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1434 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 address = X[n];

 address = address + offset;

 data = X[t];
 Mem[address, datasize DIV 8, AccType_NORMAL] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1435
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.303 STURB

Store Register Byte (unscaled) calculates an address from a base register value and an immediate offset, and stores
a byte to the calculated address, from a 32-bit register. For information about memory accesses, see Load/store
addressing modes on page C1-202.

Encoding

STURB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = X[t];
 Mem[address, 1, AccType_NORMAL] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 1 1 1 0 0 0 0 0 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
C6-1436 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.304 STURH

Store Register Halfword (unscaled) calculates an address from a base register value and an immediate offset, and
stores a halfword to the calculated address, from a 32-bit register. For information about memory accesses, see
Load/store addressing modes on page C1-202.

Encoding

STURH <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tag_checked = n != 31;

Operation

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data = X[t];
 Mem[address, 2, AccType_NORMAL] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 1 1 1 0 0 0 0 0 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1437
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.305 STXP

Store Exclusive Pair of registers stores two 32-bit words or two 64-bit doublewords from two registers to a memory
location if the PE has exclusive access to the memory address, and returns a status value of 0 if the store was
successful, or of 1 if no store was performed. See Synchronization and semaphores on page B2-179. For information
on single-copy atomicity and alignment requirements, see Requirements for single-copy atomicity on page B2-128
and Alignment of data accesses on page B2-160. If a 64-bit pair Store-Exclusive succeeds, it causes a single-copy
atomic update of the 128-bit memory location being updated. For information about memory accesses, see
Load/store addressing modes on page C1-202.

32-bit variant

Applies when sz == 0.

STXP <Ws>, <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit variant

Applies when sz == 1.

STXP <Ws>, <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2); // ignored by load/store single register
 integer s = UInt(Rs); // ignored by all loads and store-release

 integer elsize = 32 << UInt(sz);
 integer datasize = elsize * 2;
 boolean tag_checked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t || (s == t2) then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STXP on page K1-8422.

1 sz 0 0 1 0 0 0 0 0 1 Rs 0 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

L o0
C6-1438 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort
exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n];

 if rt_unknown then
 data = bits(datasize) UNKNOWN;
 else
 bits(datasize DIV 2) el1 = X[t];
 bits(datasize DIV 2) el2 = X[t2];
 data = if BigEndian(AccType_ATOMIC) then el1:el2 else el2:el1;
 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].
 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
 // This atomic write will be rejected if it does not refer
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1439
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 // to the same physical locations after address translation.
 Mem[address, dbytes, AccType_ATOMIC] = data;
 status = ExclusiveMonitorsStatus();
 X[s] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1440 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.306 STXR

Store Exclusive Register stores a 32-bit word or a 64-bit doubleword from a register to memory if the PE has
exclusive access to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store
was performed. See Synchronization and semaphores on page B2-179. For information about memory accesses see
Load/store addressing modes on page C1-202.

32-bit variant

Applies when size == 10.

STXR <Ws>, <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

STXR <Ws>, <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs); // ignored by all loads and store-release

 integer elsize = 8 << UInt(size);
 boolean tag_checked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STXR on page K1-8422.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 x 0 0 1 0 0 0 0 0 0 Rs 0 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L o0 Rt2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1441
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
1 If the operation fails to update memory.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort
exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n];

 if rt_unknown then
 data = bits(elsize) UNKNOWN;
 else
 data = X[t];

 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].
 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, dbytes, AccType_ATOMIC] = data;
 status = ExclusiveMonitorsStatus();
 X[s] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1442 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.307 STXRB

Store Exclusive Register Byte stores a byte from a register to memory if the PE has exclusive access to the memory
address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See
Synchronization and semaphores on page B2-179. The memory access is atomic.

For information about memory accesses see Load/store addressing modes on page C1-202.

Encoding

STXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs); // ignored by all loads and store-release

 boolean tag_checked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STXRB on page K1-8422.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts

0 0 0 0 1 0 0 0 0 0 0 Rs 0 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L o0 Rt2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1443
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n];

 if rt_unknown then
 data = bits(8) UNKNOWN;
 else
 data = X[t];

 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].
 if AArch64.ExclusiveMonitorsPass(address, 1) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, 1, AccType_ATOMIC] = data;
 status = ExclusiveMonitorsStatus();
 X[s] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1444 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.308 STXRH

Store Exclusive Register Halfword stores a halfword from a register to memory if the PE has exclusive access to
the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed.
See Synchronization and semaphores on page B2-179. The memory access is atomic.

For information about memory accesses see Load/store addressing modes on page C1-202.

Encoding

STXRH <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs); // ignored by all loads and store-release

 boolean tag_checked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

0 1 0 0 1 0 0 0 0 0 0 Rs 0 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L o0 Rt2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1445
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject
to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(16) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n];

 if rt_unknown then
 data = bits(16) UNKNOWN;
 else
 data = X[t];

 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].
 if AArch64.ExclusiveMonitorsPass(address, 2) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, 2, AccType_ATOMIC] = data;
 status = ExclusiveMonitorsStatus();
 X[s] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6-1446 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.309 STZ2G

Store Allocation Tags, Zeroing stores an Allocation Tag to two Tag granules of memory, zeroing the associated data
locations. The address used for the store is calculated from the base register and an immediate signed offset scaled
by the Tag granule. The Allocation Tag is calculated from the Logical Address Tag in the source register.

This instruction generates an Unchecked access.

Post-index

(FEAT_MTE)

Encoding

STZ2G <Xt|SP>, [<Xn|SP>], #<simm>

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = TRUE;

Pre-index

(FEAT_MTE)

Encoding

STZ2G <Xt|SP>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = FALSE;

Signed offset

(FEAT_MTE)

1 1 0 1 1 0 0 1 1 1 1 imm9 0 1 Xn Xt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 1 1 1 imm9 1 1 Xn Xt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 1 1 1 imm9 1 0 Xn Xt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1447
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Encoding

STZ2G <Xt|SP>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = FALSE;
 boolean postindex = FALSE;

Assembler symbols

<Xt|SP> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0
and encoded in the "imm9" field.

Operation for all encodings

 bits(64) address;
 bits(64) data = if t == 31 then SP[] else X[t];
 bits(4) tag = AArch64.AllocationTagFromAddress(data);

 SetTagCheckedInstruction(FALSE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
 address = address + offset;

 if address != Align(address, TAG_GRANULE) then
 AArch64.Abort(address, AlignmentFault(AccType_NORMAL, TRUE, FALSE));

 Mem[address, TAG_GRANULE, AccType_NORMAL] = Zeros(TAG_GRANULE * 8);
 Mem[address+TAG_GRANULE, TAG_GRANULE, AccType_NORMAL] = Zeros(TAG_GRANULE * 8);

 AArch64.MemTag[address, AccType_NORMAL] = tag;
 AArch64.MemTag[address+TAG_GRANULE, AccType_NORMAL] = tag;

 if writeback then
 if postindex then
 address = address + offset;

 if n == 31 then
 SP[] = address;
 else
 X[n] = address;
C6-1448 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.310 STZG

Store Allocation Tag, Zeroing stores an Allocation Tag to memory, zeroing the associated data location. The address
used for the store is calculated from the base register and an immediate signed offset scaled by the Tag granule. The
Allocation Tag is calculated from the Logical Address Tag in the source register.

This instruction generates an Unchecked access.

Post-index

(FEAT_MTE)

Encoding

STZG <Xt|SP>, [<Xn|SP>], #<simm>

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = TRUE;

Pre-index

(FEAT_MTE)

Encoding

STZG <Xt|SP>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = FALSE;

Signed offset

(FEAT_MTE)

1 1 0 1 1 0 0 1 0 1 1 imm9 0 1 Xn Xt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 0 1 1 imm9 1 1 Xn Xt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 0 1 1 imm9 1 0 Xn Xt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1449
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Encoding

STZG <Xt|SP>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = FALSE;
 boolean postindex = FALSE;

Assembler symbols

<Xt|SP> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0
and encoded in the "imm9" field.

Operation for all encodings

 bits(64) address;

 SetTagCheckedInstruction(FALSE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
 address = address + offset;

 if address != Align(address, TAG_GRANULE) then
 AArch64.Abort(address, AlignmentFault(AccType_NORMAL, TRUE, FALSE));

 Mem[address, TAG_GRANULE, AccType_NORMAL] = Zeros(TAG_GRANULE * 8);

 bits(64) data = if t == 31 then SP[] else X[t];
 bits(4) tag = AArch64.AllocationTagFromAddress(data);
 AArch64.MemTag[address, AccType_NORMAL] = tag;

 if writeback then
 if postindex then
 address = address + offset;

 if n == 31 then
 SP[] = address;
 else
 X[n] = address;
C6-1450 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.311 STZGM

Store Tag and Zero Multiple writes a naturally aligned block of N Allocation Tags and stores zero to the associated
data locations, where the size of N is identified in DCZID_EL0.BS, and the Allocation Tag written to address A is
taken from the source register bits<3:0>.

This instruction is UNDEFINED at EL0.

This instruction generates an Unchecked access.

If ID_AA64PFR1_EL1 != 0b0010, this instruction is UNDEFINED.

Integer

(FEAT_MTE2)

Encoding

STZGM <Xt>, [<Xn|SP>]

Decode for this encoding

 if !HaveMTE2Ext() then UNDEFINED;
 integer t = UInt(Xt);
 integer n = UInt(Xn);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

Operation

 if PSTATE.EL == EL0 then
 UNDEFINED;

 bits(64) data = X[t];
 bits(4) tag = data<3:0>;
 bits(64) address;
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 integer size = 4 * (2 ^ (UInt(DCZID_EL0.BS)));
 address = Align(address, size);
 integer count = size >> LOG2_TAG_GRANULE;

 for i = 0 to count-1
 AArch64.MemTag[address, AccType_NORMAL] = tag;
 Mem[address, TAG_GRANULE, AccType_NORMAL] = Zeros(8 * TAG_GRANULE);
 address = address + TAG_GRANULE;

1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Xn Xt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1451
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.312 SUB (extended register)

Subtract (extended register) subtracts a sign or zero-extended register value, followed by an optional left shift
amount, from a register value, and writes the result to the destination register. The argument that is extended from
the <Rm> register can be a byte, halfword, word, or doubleword.

32-bit variant

Applies when sf == 0.

SUB <Wd|WSP>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit variant

Applies when sf == 1.

SUB <Xd|SP>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = UInt(imm3);
 if shift > 4 then UNDEFINED;

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in the "option" field. It can have the following values:

W when option = 00x

W when option = 010

X when option = x11

W when option = 10x

W when option = 110

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in
the "Rm" field.

sf 1 0 0 1 0 1 1 0 0 1 Rm option imm3 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 0

op S
C6-1452 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

LSL|UXTW when option = 010

UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rd" or "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted
when "imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is
'010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

UXTW when option = 010

LSL|UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rd" or "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in
the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL,
and is optional when <extend> is present but not LSL.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[] else X[n];
 bits(datasize) operand2 = ExtendReg(m, extend_type, shift);

 operand2 = NOT(operand2);
 (result, -) = AddWithCarry(operand1, operand2, '1');

 if d == 31 then
 SP[] = result;
 else
 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1453
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1454 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.313 SUB (immediate)

Subtract (immediate) subtracts an optionally-shifted immediate value from a register value, and writes the result to
the destination register.

32-bit variant

Applies when sf == 0.

SUB <Wd|WSP>, <Wn|WSP>, #<imm>{, <shift>}

64-bit variant

Applies when sf == 1.

SUB <Xd|SP>, <Xn|SP>, #<imm>{, <shift>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer datasize = if sf == '1' then 64 else 32;
 bits(datasize) imm;

 case sh of
 when '0' imm = ZeroExtend(imm12, datasize);
 when '1' imm = ZeroExtend(imm12:Zeros(12), datasize);

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #12 when sh = 1

Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[] else X[n];
 bits(datasize) operand2;

 operand2 = NOT(imm);
 (result, -) = AddWithCarry(operand1, operand2, '1');

sf 1 0 1 0 0 0 1 0 sh imm12 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1455
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if d == 31 then
 SP[] = result;
 else
 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1456 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.314 SUB (shifted register)

Subtract (shifted register) subtracts an optionally-shifted register value from a register value, and writes the result
to the destination register.

This instruction is used by the alias NEG (shifted register). See Alias conditions on page C6-1457 for details of
when each alias is preferred.

32-bit variant

Applies when sf == 0.

SUB <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

SUB <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;

 if shift == '11' then UNDEFINED;
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Alias is preferred when

 NEG (shifted register) Rn == '11111'

sf 1 0 0 1 0 1 1 shift 0 Rm imm6 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1457
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

 operand2 = NOT(operand2);
 (result, -) = AddWithCarry(operand1, operand2, '1');

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1458 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.315 SUBG

Subtract with Tag subtracts an immediate value scaled by the Tag granule from the address in the source register,
modifies the Logical Address Tag of the address using an immediate value, and writes the result to the destination
register. Tags specified in GCR_EL1.Exclude are excluded from the possible outputs when modifying the Logical
Address Tag.

Integer

(FEAT_MTE)

Encoding

SUBG <Xd|SP>, <Xn|SP>, #<uimm6>, #<uimm4>

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer d = UInt(Xd);
 integer n = UInt(Xn);
 bits(64) offset = LSL(ZeroExtend(uimm6, 64), LOG2_TAG_GRANULE);

Assembler symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Xd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Xn" field.

<uimm6> Is an unsigned immediate, a multiple of 16 in the range 0 to 1008, encoded in the "uimm6" field.

<uimm4> Is an unsigned immediate, in the range 0 to 15, encoded in the "uimm4" field.

Operation

 bits(64) operand1 = if n == 31 then SP[] else X[n];
 bits(4) start_tag = AArch64.AllocationTagFromAddress(operand1);
 bits(16) exclude = GCR_EL1.Exclude;
 bits(64) result;
 bits(4) rtag;

 if AArch64.AllocationTagAccessIsEnabled(AccType_NORMAL) then
 rtag = AArch64.ChooseNonExcludedTag(start_tag, uimm4, exclude);
 else
 rtag = '0000';

 (result, -) = AddWithCarry(operand1, NOT(offset), '1');

 result = AArch64.AddressWithAllocationTag(result, AccType_NORMAL, rtag);

 if d == 31 then
 SP[] = result;
 else
 X[d] = result;

1 1 0 1 0 0 0 1 1 0 uimm6 (0) (0) uimm4 Xn Xd
31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 10 9 5 4 0

op3
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1459
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.316 SUBP

Subtract Pointer subtracts the 56-bit address held in the second source register from the 56-bit address held in the
first source register, sign-extends the result to 64-bits, and writes the result to the destination register.

Integer

(FEAT_MTE)

Encoding

SUBP <Xd>, <Xn|SP>, <Xm|SP>

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer d = UInt(Xd);
 integer n = UInt(Xn);
 integer m = UInt(Xm);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Xd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm|SP> Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the
"Xm" field.

Operation

 bits(64) operand1 = if n == 31 then SP[] else X[n];
 bits(64) operand2 = if m == 31 then SP[] else X[m];
 operand1 = SignExtend(operand1<55:0>, 64);
 operand2 = SignExtend(operand2<55:0>, 64);

 bits(64) result;

 operand2 = NOT(operand2);
 (result, -) = AddWithCarry(operand1, operand2, '1');

 X[d] = result;

1 0 0 1 1 0 1 0 1 1 0 Xm 0 0 0 0 0 0 Xn Xd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C6-1460 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.317 SUBPS

Subtract Pointer, setting Flags subtracts the 56-bit address held in the second source register from the 56-bit address
held in the first source register, sign-extends the result to 64-bits, and writes the result to the destination register. It
updates the condition flags based on the result of the subtraction.

This instruction is used by the alias CMPP. See Alias conditions on page C6-1461 for details of when each alias is
preferred.

Integer

(FEAT_MTE)

Encoding

SUBPS <Xd>, <Xn|SP>, <Xm|SP>

Decode for this encoding

 if !HaveMTEExt() then UNDEFINED;
 integer d = UInt(Xd);
 integer n = UInt(Xn);
 integer m = UInt(Xm);

Alias conditions

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Xd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm|SP> Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the
"Xm" field.

Operation

 bits(64) operand1 = if n == 31 then SP[] else X[n];
 bits(64) operand2 = if m == 31 then SP[] else X[m];
 operand1 = SignExtend(operand1<55:0>, 64);
 operand2 = SignExtend(operand2<55:0>, 64);

 bits(64) result;
 bits(4) nzcv;

 operand2 = NOT(operand2);
 (result, nzcv) = AddWithCarry(operand1, operand2, '1');

Alias is preferred when

 CMPP S == '1' && Xd == '11111'

1 0 1 1 1 0 1 0 1 1 0 Xm 0 0 0 0 0 0 Xn Xd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1461
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 PSTATE.<N,Z,C,V> = nzcv;
 X[d] = result;
C6-1462 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.318 SUBS (extended register)

Subtract (extended register), setting flags, subtracts a sign or zero-extended register value, followed by an optional
left shift amount, from a register value, and writes the result to the destination register. The argument that is extended
from the <Rm> register can be a byte, halfword, word, or doubleword. It updates the condition flags based on the
result.

This instruction is used by the alias CMP (extended register). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

SUBS <Wd>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit variant

Applies when sf == 1.

SUBS <Xd>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = UInt(imm3);
 if shift > 4 then UNDEFINED;

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

Alias is preferred when

 CMP (extended register) Rd == '11111'

sf 1 1 0 1 0 1 1 0 0 1 Rm option imm3 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 0

op S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1463
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<R> Is a width specifier, encoded in the "option" field. It can have the following values:

W when option = 00x

W when option = 010

X when option = x11

W when option = 10x

W when option = 110

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in
the "Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

LSL|UXTW when option = 010

UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

UXTW when option = 010

LSL|UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3"
is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in
the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL,
and is optional when <extend> is present but not LSL.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[] else X[n];
 bits(datasize) operand2 = ExtendReg(m, extend_type, shift);
 bits(4) nzcv;

 operand2 = NOT(operand2);
 (result, nzcv) = AddWithCarry(operand1, operand2, '1');

 PSTATE.<N,Z,C,V> = nzcv;

 X[d] = result;
C6-1464 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1465
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.319 SUBS (immediate)

Subtract (immediate), setting flags, subtracts an optionally-shifted immediate value from a register value, and writes
the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias CMP (immediate). See Alias conditions on page C6-1466 for details of when
each alias is preferred.

32-bit variant

Applies when sf == 0.

SUBS <Wd>, <Wn|WSP>, #<imm>{, <shift>}

64-bit variant

Applies when sf == 1.

SUBS <Xd>, <Xn|SP>, #<imm>{, <shift>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer datasize = if sf == '1' then 64 else 32;
 bits(datasize) imm;

 case sh of
 when '0' imm = ZeroExtend(imm12, datasize);
 when '1' imm = ZeroExtend(imm12:Zeros(12), datasize);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #12 when sh = 1

Alias is preferred when

 CMP (immediate) Rd == '11111'

sf 1 1 1 0 0 0 1 0 sh imm12 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S
C6-1466 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[] else X[n];
 bits(datasize) operand2;
 bits(4) nzcv;

 operand2 = NOT(imm);
 (result, nzcv) = AddWithCarry(operand1, operand2, '1');

 PSTATE.<N,Z,C,V> = nzcv;

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1467
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.320 SUBS (shifted register)

Subtract (shifted register), setting flags, subtracts an optionally-shifted register value from a register value, and
writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the aliases CMP (shifted register) and NEGS. See Alias conditions on page C6-1468 for
details of when each alias is preferred.

32-bit variant

Applies when sf == 0.

SUBS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

SUBS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;

 if shift == '11' then UNDEFINED;
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Alias is preferred when

 CMP (shifted register) Rd == '11111'

 NEGS Rn == '11111' && Rd != '11111'

sf 1 1 0 1 0 1 1 shift 0 Rm imm6 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S
C6-1468 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);
 bits(4) nzcv;

 operand2 = NOT(operand2);
 (result, nzcv) = AddWithCarry(operand1, operand2, '1');

 PSTATE.<N,Z,C,V> = nzcv;

 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1469
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.321 SVC

Supervisor Call causes an exception to be taken to EL1.

On executing an SVC instruction, the PE records the exception as a Supervisor Call exception in ESR_ELx on
page K15-8606, using the EC value 0x15, and the value of the immediate argument.

Encoding

SVC #<imm>

Decode for this encoding

 // Empty.

Assembler symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

 AArch64.CheckForSVCTrap(imm16);
 AArch64.CallSupervisor(imm16);

1 1 0 1 0 1 0 0 0 0 0 imm16 0 0 0 0 1
31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0
C6-1470 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.322 SWPB, SWPAB, SWPALB, SWPLB

Swap byte in memory atomically loads an 8-bit byte from a memory location, and stores the value held in a register
back to the same memory location. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, SWPAB and SWPALB load from memory with acquire semantics.

• SWPLB and SWPALB store to memory with release semantics.

• SWPB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

Integer

(FEAT_LSE)

SWPAB variant

Applies when A == 1 && R == 0.

SWPAB <Ws>, <Wt>, [<Xn|SP>]

SWPALB variant

Applies when A == 1 && R == 1.

SWPALB <Ws>, <Wt>, [<Xn|SP>]

SWPB variant

Applies when A == 0 && R == 0.

SWPB <Ws>, <Wt>, [<Xn|SP>]

SWPLB variant

Applies when A == 0 && R == 1.

SWPLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

0 0 1 1 1 0 0 0 A R 1 Rs 1 0 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1471
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;
 bits(8) store_value;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 store_value = X[s];
 data = MemAtomic(address, MemAtomicOp_SWP, store_value, ldacctype, stacctype);
 X[t] = ZeroExtend(data, 32);
C6-1472 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.323 SWPH, SWPAH, SWPALH, SWPLH

Swap halfword in memory atomically loads a 16-bit halfword from a memory location, and stores the value held in
a register back to the same memory location. The value initially loaded from memory is returned in the destination
register.

• If the destination register is not WZR, SWPAH and SWPALH load from memory with acquire semantics.

• SWPLH and SWPALH store to memory with release semantics.

• SWPH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

Integer

(FEAT_LSE)

SWPAH variant

Applies when A == 1 && R == 0.

SWPAH <Ws>, <Wt>, [<Xn|SP>]

SWPALH variant

Applies when A == 1 && R == 1.

SWPALH <Ws>, <Wt>, [<Xn|SP>]

SWPH variant

Applies when A == 0 && R == 0.

SWPH <Ws>, <Wt>, [<Xn|SP>]

SWPLH variant

Applies when A == 0 && R == 1.

SWPLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 1 0 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1473
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;
 bits(16) store_value;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 store_value = X[s];
 data = MemAtomic(address, MemAtomicOp_SWP, store_value, ldacctype, stacctype);
 X[t] = ZeroExtend(data, 32);
C6-1474 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.324 SWP, SWPA, SWPAL, SWPL

Swap word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from a memory location,
and stores the value held in a register back to the same memory location. The value initially loaded from memory
is returned in the destination register.

• If the destination register is not one of WZR or XZR, SWPA and SWPAL load from memory with acquire semantics.

• SWPL and SWPAL store to memory with release semantics.

• SWP has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

For information about memory accesses see Load/store addressing modes on page C1-202.

Integer

(FEAT_LSE)

32-bit SWP variant

Applies when size == 10 && A == 0 && R == 0.

SWP <Ws>, <Wt>, [<Xn|SP>]

32-bit SWPA variant

Applies when size == 10 && A == 1 && R == 0.

SWPA <Ws>, <Wt>, [<Xn|SP>]

32-bit SWPAL variant

Applies when size == 10 && A == 1 && R == 1.

SWPAL <Ws>, <Wt>, [<Xn|SP>]

32-bit SWPL variant

Applies when size == 10 && A == 0 && R == 1.

SWPL <Ws>, <Wt>, [<Xn|SP>]

64-bit SWP variant

Applies when size == 11 && A == 0 && R == 0.

SWP <Xs>, <Xt>, [<Xn|SP>]

64-bit SWPA variant

Applies when size == 11 && A == 1 && R == 0.

SWPA <Xs>, <Xt>, [<Xn|SP>]

64-bit SWPAL variant

Applies when size == 11 && A == 1 && R == 1.

1 x 1 1 1 0 0 0 A R 1 Rs 1 0 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1475
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
SWPAL <Xs>, <Xt>, [<Xn|SP>]

64-bit SWPL variant

Applies when size == 11 && A == 0 && R == 1.

SWPL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
 boolean tag_checked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) data;
 bits(datasize) store_value;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 store_value = X[s];
 data = MemAtomic(address, MemAtomicOp_SWP, store_value, ldacctype, stacctype);
 X[t] = ZeroExtend(data, regsize);
C6-1476 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.325 SXTB

Signed Extend Byte extracts an 8-bit value from a register, sign-extends it to the size of the register, and writes the
result to the destination register.

This instruction is an alias of the SBFM instruction. This means that:

• The encodings in this description are named to match the encodings of SBFM.

• The description of SBFM gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

SXTB <Wd>, <Wn>

 is equivalent to

SBFM <Wd>, <Wn>, #0, #7

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1 && N == 1.

SXTB <Xd>, <Wn>

 is equivalent to

SBFM <Xd>, <Xn>, #0, #7

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 0 1 0 0 1 1 0 N 0 0 0 0 0 0 0 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc immr imms
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1477
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1478 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.326 SXTH

Sign Extend Halfword extracts a 16-bit value, sign-extends it to the size of the register, and writes the result to the
destination register.

This instruction is an alias of the SBFM instruction. This means that:

• The encodings in this description are named to match the encodings of SBFM.

• The description of SBFM gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

SXTH <Wd>, <Wn>

 is equivalent to

SBFM <Wd>, <Wn>, #0, #15

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1 && N == 1.

SXTH <Xd>, <Wn>

 is equivalent to

SBFM <Xd>, <Xn>, #0, #15

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 0 1 0 0 1 1 0 N 0 0 0 0 0 0 0 0 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc immr imms
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1479
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1480 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.327 SXTW

Sign Extend Word sign-extends a word to the size of the register, and writes the result to the destination register.

This instruction is an alias of the SBFM instruction. This means that:

• The encodings in this description are named to match the encodings of SBFM.

• The description of SBFM gives the operational pseudocode for this instruction.

64-bit variant

SXTW <Xd>, <Wn>

 is equivalent to

SBFM <Xd>, <Xn>, #0, #31

and is always the preferred disassembly.

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

sf opc N immr imms
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1481
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.328 SYS

System instruction. For more information, see op0==0b01, cache maintenance, TLB maintenance, and address
translation instructions on page C5-399 for the encodings of System instructions.

This instruction is used by the aliases AT, CFP, CPP, DC, DVP, IC, and TLBI. See Alias conditions on
page C6-1482 for details of when each alias is preferred.

Encoding

SYS #<op1>, <Cn>, <Cm>, #<op2>{, <Xt>}

Decode for this encoding

 AArch64.CheckSystemAccess('01', op1, CRn, CRm, op2, Rt, L);

 integer t = UInt(Rt);

 integer sys_op1 = UInt(op1);
 integer sys_op2 = UInt(op2);
 integer sys_crn = UInt(CRn);
 integer sys_crm = UInt(CRm);

Alias conditions

Assembler symbols

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

Alias is preferred when

 AT CRn == '0111' && CRm == '100x' && SysOp(op1,'0111',CRm,op2) == Sys_AT

 CFP op1 == '011' && CRn == '0111' && CRm == '0011' && op2 == '100'

 CPP op1 == '011' && CRn == '0111' && CRm == '0011' && op2 == '111'

 DC CRn == '0111' && SysOp(op1,'0111',CRm,op2) == Sys_DC

 DVP op1 == '011' && CRn == '0111' && CRm == '0011' && op2 == '101'

 IC CRn == '0111' && SysOp(op1,'0111',CRm,op2) == Sys_IC

 TLBI CRn == '1000' && SysOp(op1,'1000',CRm,op2) == Sys_TLBI

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 CRn CRm op2 Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L

C6-1482 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in
the "Rt" field.

Operation

 AArch64.SysInstr(1, sys_op1, sys_crn, sys_crm, sys_op2, X[t]);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1483
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.329 SYSL

System instruction with result. For more information, see op0==0b01, cache maintenance, TLB maintenance, and
address translation instructions on page C5-399 for the encodings of System instructions.

Encoding

SYSL <Xt>, #<op1>, <Cn>, <Cm>, #<op2>

Decode for this encoding

 AArch64.CheckSystemAccess('01', op1, CRn, CRm, op2, Rt, L);

 integer t = UInt(Rt);

 integer sys_op1 = UInt(op1);
 integer sys_op2 = UInt(op2);
 integer sys_crn = UInt(CRn);
 integer sys_crm = UInt(CRm);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

Operation

 // No architecturally defined instructions here.
 X[t] = AArch64.SysInstrWithResult(1, sys_op1, sys_crn, sys_crm, sys_op2);

1 1 0 1 0 1 0 1 0 0 1 0 1 op1 CRn CRm op2 Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L

C6-1484 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.330 TBNZ

Test bit and Branch if Nonzero compares the value of a bit in a general-purpose register with zero, and conditionally
branches to a label at a PC-relative offset if the comparison is not equal. It provides a hint that this is not a subroutine
call or return. This instruction does not affect condition flags.

Encoding

TBNZ <R><t>, #<imm>, <label>

Decode for this encoding

 integer t = UInt(Rt);

 integer datasize = if b5 == '1' then 64 else 32;
 integer bit_pos = UInt(b5:b40);
 bits(64) offset = SignExtend(imm14:'00', 64);

Assembler symbols

<R> Is a width specifier, encoded in the "b5" field. It can have the following values:

W when b5 = 0

X when b5 = 1

In assembler source code an 'X' specifier is always permitted, but a 'W' specifier is only permitted
when the bit number is less than 32.

<t> Is the number [0-30] of the general-purpose register to be tested or the name ZR (31), encoded in
the "Rt" field.

<imm> Is the bit number to be tested, in the range 0 to 63, encoded in "b5:b40".

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-32KB, is encoded as "imm14" times 4.

Operation

 bits(datasize) operand = X[t];
 if operand<bit_pos> == op then
 BranchTo(PC[] + offset, BranchType_DIR, TRUE);

b5 0 1 1 0 1 1 1 b40 imm14 Rt
31 30 29 28 27 26 25 24 23 19 18 5 4 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1485
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.331 TBZ

Test bit and Branch if Zero compares the value of a test bit with zero, and conditionally branches to a label at a
PC-relative offset if the comparison is equal. It provides a hint that this is not a subroutine call or return. This
instruction does not affect condition flags.

Encoding

TBZ <R><t>, #<imm>, <label>

Decode for this encoding

 integer t = UInt(Rt);

 integer datasize = if b5 == '1' then 64 else 32;
 integer bit_pos = UInt(b5:b40);
 bits(64) offset = SignExtend(imm14:'00', 64);

Assembler symbols

<R> Is a width specifier, encoded in the "b5" field. It can have the following values:

W when b5 = 0

X when b5 = 1

In assembler source code an 'X' specifier is always permitted, but a 'W' specifier is only permitted
when the bit number is less than 32.

<t> Is the number [0-30] of the general-purpose register to be tested or the name ZR (31), encoded in
the "Rt" field.

<imm> Is the bit number to be tested, in the range 0 to 63, encoded in "b5:b40".

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-32KB, is encoded as "imm14" times 4.

Operation

 bits(datasize) operand = X[t];
 if operand<bit_pos> == op then
 BranchTo(PC[] + offset, BranchType_DIR, TRUE);

b5 0 1 1 0 1 1 0 b40 imm14 Rt
31 30 29 28 27 26 25 24 23 19 18 5 4 0

op
C6-1486 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.332 TLBI

TLB Invalidate operation. For more information, see op0==0b01, cache maintenance, TLB maintenance, and
address translation instructions on page C5-399.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode for this instruction.

Encoding

TLBI <tlbi_op>{, <Xt>}

 is equivalent to

SYS #<op1>, C8, <Cm>, #<op2>{, <Xt>}

and is the preferred disassembly when SysOp(op1,'1000',CRm,op2) == Sys_TLBI.

Assembler symbols

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<tlbi_op> Is a TLBI instruction name, as listed for the TLBI system instruction group, encoded in the
"op1:CRm:op2" field. It can have the following values:

VMALLE1IS when op1 = 000, CRm = 0011, op2 = 000

VAE1IS when op1 = 000, CRm = 0011, op2 = 001

ASIDE1IS when op1 = 000, CRm = 0011, op2 = 010

VAAE1IS when op1 = 000, CRm = 0011, op2 = 011

VALE1IS when op1 = 000, CRm = 0011, op2 = 101

VAALE1IS when op1 = 000, CRm = 0011, op2 = 111

VMALLE1 when op1 = 000, CRm = 0111, op2 = 000

VAE1 when op1 = 000, CRm = 0111, op2 = 001

ASIDE1 when op1 = 000, CRm = 0111, op2 = 010

VAAE1 when op1 = 000, CRm = 0111, op2 = 011

VALE1 when op1 = 000, CRm = 0111, op2 = 101

VAALE1 when op1 = 000, CRm = 0111, op2 = 111

IPAS2E1IS when op1 = 100, CRm = 0000, op2 = 001

IPAS2LE1IS when op1 = 100, CRm = 0000, op2 = 101

ALLE2IS when op1 = 100, CRm = 0011, op2 = 000

VAE2IS when op1 = 100, CRm = 0011, op2 = 001

ALLE1IS when op1 = 100, CRm = 0011, op2 = 100

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 1 0 0 0 CRm op2 Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L CRn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1487
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
VALE2IS when op1 = 100, CRm = 0011, op2 = 101

VMALLS12E1IS when op1 = 100, CRm = 0011, op2 = 110

IPAS2E1 when op1 = 100, CRm = 0100, op2 = 001

IPAS2LE1 when op1 = 100, CRm = 0100, op2 = 101

ALLE2 when op1 = 100, CRm = 0111, op2 = 000

VAE2 when op1 = 100, CRm = 0111, op2 = 001

ALLE1 when op1 = 100, CRm = 0111, op2 = 100

VALE2 when op1 = 100, CRm = 0111, op2 = 101

VMALLS12E1 when op1 = 100, CRm = 0111, op2 = 110

ALLE3IS when op1 = 110, CRm = 0011, op2 = 000

VAE3IS when op1 = 110, CRm = 0011, op2 = 001

VALE3IS when op1 = 110, CRm = 0011, op2 = 101

ALLE3 when op1 = 110, CRm = 0111, op2 = 000

VAE3 when op1 = 110, CRm = 0111, op2 = 001

VALE3 when op1 = 110, CRm = 0111, op2 = 101

When FEAT_TLBIOS is implemented, the following values are also valid:

VMALLE1OS when op1 = 000, CRm = 0001, op2 = 000

VAE1OS when op1 = 000, CRm = 0001, op2 = 001

ASIDE1OS when op1 = 000, CRm = 0001, op2 = 010

VAAE1OS when op1 = 000, CRm = 0001, op2 = 011

VALE1OS when op1 = 000, CRm = 0001, op2 = 101

VAALE1OS when op1 = 000, CRm = 0001, op2 = 111

ALLE2OS when op1 = 100, CRm = 0001, op2 = 000

VAE2OS when op1 = 100, CRm = 0001, op2 = 001

ALLE1OS when op1 = 100, CRm = 0001, op2 = 100

VALE2OS when op1 = 100, CRm = 0001, op2 = 101

VMALLS12E1OS when op1 = 100, CRm = 0001, op2 = 110

IPAS2E1OS when op1 = 100, CRm = 0100, op2 = 000

IPAS2LE1OS when op1 = 100, CRm = 0100, op2 = 100

ALLE3OS when op1 = 110, CRm = 0001, op2 = 000

VAE3OS when op1 = 110, CRm = 0001, op2 = 001

VALE3OS when op1 = 110, CRm = 0001, op2 = 101

When FEAT_TLBIRANGE is implemented, the following values are also valid:

RVAE1IS when op1 = 000, CRm = 0010, op2 = 001

RVAAE1IS when op1 = 000, CRm = 0010, op2 = 011

RVALE1IS when op1 = 000, CRm = 0010, op2 = 101

RVAALE1IS when op1 = 000, CRm = 0010, op2 = 111

RVAE1OS when op1 = 000, CRm = 0101, op2 = 001

RVAAE1OS when op1 = 000, CRm = 0101, op2 = 011

RVALE1OS when op1 = 000, CRm = 0101, op2 = 101

RVAALE1OS when op1 = 000, CRm = 0101, op2 = 111

RVAE1 when op1 = 000, CRm = 0110, op2 = 001

RVAAE1 when op1 = 000, CRm = 0110, op2 = 011

RVALE1 when op1 = 000, CRm = 0110, op2 = 101
C6-1488 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
RVAALE1 when op1 = 000, CRm = 0110, op2 = 111

RIPAS2E1IS when op1 = 100, CRm = 0000, op2 = 010

RIPAS2LE1IS when op1 = 100, CRm = 0000, op2 = 110

RVAE2IS when op1 = 100, CRm = 0010, op2 = 001

RVALE2IS when op1 = 100, CRm = 0010, op2 = 101

RIPAS2E1 when op1 = 100, CRm = 0100, op2 = 010

RIPAS2E1OS when op1 = 100, CRm = 0100, op2 = 011

RIPAS2LE1 when op1 = 100, CRm = 0100, op2 = 110

RIPAS2LE1OS when op1 = 100, CRm = 0100, op2 = 111

RVAE2OS when op1 = 100, CRm = 0101, op2 = 001

RVALE2OS when op1 = 100, CRm = 0101, op2 = 101

RVAE2 when op1 = 100, CRm = 0110, op2 = 001

RVALE2 when op1 = 100, CRm = 0110, op2 = 101

RVAE3IS when op1 = 110, CRm = 0010, op2 = 001

RVALE3IS when op1 = 110, CRm = 0010, op2 = 101

RVAE3OS when op1 = 110, CRm = 0101, op2 = 001

RVALE3OS when op1 = 110, CRm = 0101, op2 = 101

RVAE3 when op1 = 110, CRm = 0110, op2 = 001

RVALE3 when op1 = 110, CRm = 0110, op2 = 101

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in
the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1489
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.333 TSB CSYNC

Trace Synchronization Barrier. This instruction is a barrier that synchronizes the trace operations of instructions.

If FEAT_TRF is not implemented, this instruction executes as a NOP.

System

(FEAT_TRF)

Encoding

TSB CSYNC

Decode for this encoding

 if !HaveSelfHostedTrace() then EndOfInstruction();

Operation

 TraceSynchronizationBarrier();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
C6-1490 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.334 TST (immediate)

Test bits (immediate) , setting the condition flags and discarding the result : Rn AND imm

This instruction is an alias of the ANDS (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of ANDS (immediate).

• The description of ANDS (immediate) gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

TST <Wn>, #<imm>

 is equivalent to

ANDS WZR, <Wn>, #<imm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

TST <Xn>, #<imm>

 is equivalent to

ANDS XZR, <Xn>, #<imm>

and is always the preferred disassembly.

Assembler symbols

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Operation

The description of ANDS (immediate) gives the operational pseudocode for this instruction.

sf 1 1 1 0 0 1 0 0 N immr imms Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc Rd
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1491
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.335 TST (shifted register)

Test (shifted register) performs a bitwise AND operation on a register value and an optionally-shifted register value.
It updates the condition flags based on the result, and discards the result.

This instruction is an alias of the ANDS (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of ANDS (shifted register).

• The description of ANDS (shifted register) gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

TST <Wn>, <Wm>{, <shift> #<amount>}

 is equivalent to

ANDS WZR, <Wn>, <Wm>{, <shift> #<amount>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

TST <Xn>, <Xm>{, <shift> #<amount>}

 is equivalent to

ANDS XZR, <Xn>, <Xm>{, <shift> #<amount>}

and is always the preferred disassembly.

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

sf 1 1 0 1 0 1 0 shift 0 Rm imm6 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N Rd
C6-1492 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of ANDS (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1493
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.336 UBFIZ

Unsigned Bitfield Insert in Zeros copies a bitfield of <width> bits from the least significant bits of the source register
to bit position <lsb> of the destination register, setting the destination bits above and below the bitfield to zero.

This instruction is an alias of the UBFM instruction. This means that:

• The encodings in this description are named to match the encodings of UBFM.

• The description of UBFM gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

UBFIZ <Wd>, <Wn>, #<lsb>, #<width>

 is equivalent to

UBFM <Wd>, <Wn>, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit variant

Applies when sf == 1 && N == 1.

UBFIZ <Xd>, <Xn>, #<lsb>, #<width>

 is equivalent to

UBFM <Xd>, <Xn>, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

sf 1 0 1 0 0 1 1 0 N immr imms Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
C6-1494 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1495
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.337 UBFM

Unsigned Bitfield Move is usually accessed via one of its aliases, which are always preferred for disassembly.

If <imms> is greater than or equal to <immr>, this copies a bitfield of (<imms>-<immr>+1) bits starting from bit position
<immr> in the source register to the least significant bits of the destination register.

If <imms> is less than <immr>, this copies a bitfield of (<imms>+1) bits from the least significant bits of the source
register to bit position (regsize-<immr>) of the destination register, where regsize is the destination register size of 32
or 64 bits.

In both cases the destination bits below and above the bitfield are set to zero.

This instruction is used by the aliases LSL (immediate), LSR (immediate), UBFIZ, UBFX, UXTB, and UXTH. See
Alias conditions on page C6-1497 for details of when each alias is preferred.

32-bit variant

Applies when sf == 0 && N == 0.

UBFM <Wd>, <Wn>, #<immr>, #<imms>

64-bit variant

Applies when sf == 1 && N == 1.

UBFM <Xd>, <Xn>, #<immr>, #<imms>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer datasize = if sf == '1' then 64 else 32;

 integer R;
 bits(datasize) wmask;
 bits(datasize) tmask;

 if sf == '1' && N != '1' then UNDEFINED;
 if sf == '0' && (N != '0' || immr<5> != '0' || imms<5> != '0') then UNDEFINED;

 R = UInt(immr);
 (wmask, tmask) = DecodeBitMasks(N, imms, immr, FALSE);

sf 1 0 1 0 0 1 1 0 N immr imms Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
C6-1496 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<immr> For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.

<imms> For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31,
encoded in the "imms" field.

For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63,
encoded in the "imms" field.

Operation

 bits(datasize) src = X[n];

 // perform bitfield move on low bits
 bits(datasize) bot = ROR(src, R) AND wmask;

 // combine extension bits and result bits
 X[d] = bot AND tmask;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

Alias of variant is preferred when

 LSL (immediate) 32-bit imms != '011111' && imms + 1 == immr

 LSL (immediate) 64-bit imms != '111111' && imms + 1 == immr

 LSR (immediate) 32-bit imms == '011111'

 LSR (immediate) 64-bit imms == '111111'

 UBFIZ -
UInt(imms) < UInt(immr)

 UBFX -
BFXPreferred(sf, opc<1>, imms, immr)

 UXTB - immr == '000000' && imms == '000111'

 UXTH - immr == '000000' && imms == '001111'
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1497
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.
C6-1498 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.338 UBFX

Unsigned Bitfield Extract copies a bitfield of <width> bits starting from bit position <lsb> in the source register to
the least significant bits of the destination register, and sets destination bits above the bitfield to zero.

This instruction is an alias of the UBFM instruction. This means that:

• The encodings in this description are named to match the encodings of UBFM.

• The description of UBFM gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

UBFX <Wd>, <Wn>, #<lsb>, #<width>

 is equivalent to

UBFM <Wd>, <Wn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

64-bit variant

Applies when sf == 1 && N == 1.

UBFX <Xd>, <Xn>, #<lsb>, #<width>

 is equivalent to

UBFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

sf 1 0 1 0 0 1 1 0 N immr imms Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1499
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1500 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.339 UDF

Permanently Undefined generates an Undefined Instruction exception (ESR_ELx.EC = 0b000000). The encodings
for UDF used in this section are defined as permanently UNDEFINED in the Armv8-A architecture.

Encoding

UDF #<imm>

Decode for this encoding

 // The imm16 field is ignored by hardware.
 UNDEFINED;

Assembler symbols

<imm> is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field. The PE
ignores the value of this constant.

Operation

 // No operation.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 imm16
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1501
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.340 UDIV

Unsigned Divide divides an unsigned integer register value by another unsigned integer register value, and writes
the result to the destination register. The condition flags are not affected.

32-bit variant

Applies when sf == 0.

UDIV <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

UDIV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if sf == '1' then 64 else 32;

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = X[m];
 integer result;

 if IsZero(operand2) then
 result = 0;
 else
 result = RoundTowardsZero(Real(Int(operand1, TRUE)) / Real(Int(operand2, TRUE)));

 X[d] = result<datasize-1:0>;

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o1
C6-1502 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.341 UMADDL

Unsigned Multiply-Add Long multiplies two 32-bit register values, adds a 64-bit register value, and writes the result
to the 64-bit destination register.

This instruction is used by the alias UMULL. See Alias conditions on page C6-1503 for details of when each alias
is preferred.

Encoding

UMADDL <Xd>, <Wn>, <Wm>, <Xa>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);

Alias conditions

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the addend, encoded in the
"Ra" field.

Operation

 bits(32) operand1 = X[n];
 bits(32) operand2 = X[m];
 bits(64) operand3 = X[a];

 integer result;

 result = Int(operand3, TRUE) + (Int(operand1, TRUE) * Int(operand2, TRUE));

 X[d] = result<63:0>;

Alias is preferred when

 UMULL Ra == '11111'

1 0 0 1 1 0 1 1 1 0 1 Rm 0 Ra Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1503
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1504 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.342 UMNEGL

Unsigned Multiply-Negate Long multiplies two 32-bit register values, negates the product, and writes the result to
the 64-bit destination register.

This instruction is an alias of the UMSUBL instruction. This means that:

• The encodings in this description are named to match the encodings of UMSUBL.

• The description of UMSUBL gives the operational pseudocode for this instruction.

Encoding

UMNEGL <Xd>, <Wn>, <Wm>

 is equivalent to

UMSUBL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

The description of UMSUBL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 1 0 1 1 1 0 1 Rm 1 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0 Ra
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1505
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.343 UMSUBL

Unsigned Multiply-Subtract Long multiplies two 32-bit register values, subtracts the product from a 64-bit register
value, and writes the result to the 64-bit destination register.

This instruction is used by the alias UMNEGL. See Alias conditions on page C6-1506 for details of when each alias
is preferred.

Encoding

UMSUBL <Xd>, <Wn>, <Wm>, <Xa>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);

Alias conditions

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the minuend, encoded in the
"Ra" field.

Operation

 bits(32) operand1 = X[n];
 bits(32) operand2 = X[m];
 bits(64) operand3 = X[a];

 integer result;

 result = Int(operand3, TRUE) - (Int(operand1, TRUE) * Int(operand2, TRUE));
 X[d] = result<63:0>;

Alias is preferred when

 UMNEGL Ra == '11111'

1 0 0 1 1 0 1 1 1 0 1 Rm 1 Ra Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0
C6-1506 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1507
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.344 UMULH

Unsigned Multiply High multiplies two 64-bit register values, and writes bits[127:64] of the 128-bit result to the
64-bit destination register.

Encoding

UMULH <Xd>, <Xn>, <Xm>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

 bits(64) operand1 = X[n];
 bits(64) operand2 = X[m];

 integer result;

 result = Int(operand1, TRUE) * Int(operand2, TRUE);

 X[d] = result<127:64>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 1 0 1 1 1 1 0 Rm 0 (1) (1) (1) (1) (1) Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U Ra
C6-1508 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.345 UMULL

Unsigned Multiply Long multiplies two 32-bit register values, and writes the result to the 64-bit destination register.

This instruction is an alias of the UMADDL instruction. This means that:

• The encodings in this description are named to match the encodings of UMADDL.

• The description of UMADDL gives the operational pseudocode for this instruction.

Encoding

UMULL <Xd>, <Wn>, <Wm>

 is equivalent to

UMADDL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

The description of UMADDL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 1 0 1 1 1 0 1 Rm 0 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0 Ra
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1509
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.346 UXTB

Unsigned Extend Byte extracts an 8-bit value from a register, zero-extends it to the size of the register, and writes
the result to the destination register.

This instruction is an alias of the UBFM instruction. This means that:

• The encodings in this description are named to match the encodings of UBFM.

• The description of UBFM gives the operational pseudocode for this instruction.

32-bit variant

UXTB <Wd>, <Wn>

 is equivalent to

UBFM <Wd>, <Wn>, #0, #7

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

sf opc N immr imms
C6-1510 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.347 UXTH

Unsigned Extend Halfword extracts a 16-bit value from a register, zero-extends it to the size of the register, and
writes the result to the destination register.

This instruction is an alias of the UBFM instruction. This means that:

• The encodings in this description are named to match the encodings of UBFM.

• The description of UBFM gives the operational pseudocode for this instruction.

32-bit variant

UXTH <Wd>, <Wn>

 is equivalent to

UBFM <Wd>, <Wn>, #0, #15

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

sf opc N immr imms
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1511
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.348 WFE

Wait For Event is a hint instruction that indicates that the PE can enter a low-power state and remain there until a
wakeup event occurs. Wakeup events include the event signaled as a result of executing the SEV instruction on any
PE in the multiprocessor system. For more information, see Wait for Event mechanism and Send event on
page D1-2536.

As described in Wait for Event mechanism and Send event on page D1-2536, the execution of a WFE instruction that
would otherwise cause entry to a low-power state can be trapped to a higher Exception level. See:

• Traps to EL1 of EL0 execution of WFE, WFI, WFET, and WFIT instructions on page D1-2514.

• Traps to EL2 of EL0 and EL1 execution of WFE, WFI, WFET, and WFIT instructions on page D1-2524.

• Traps to EL3 of EL2, EL1, and EL0 execution of WFE, WFI, WFET, and WFIT instructions on page D1-2533.

Encoding

WFE

Decode for this encoding

 // Empty.

Operation

 Hint_WFE(-1, WFxType_WFE);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
C6-1512 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.349 WFET

Wait For Event with Timeout is a hint instruction that indicates that the PE can enter a low-power state and remain
there until either a local timeout event or a wakeup event occurs. Wakeup events include the event signaled as a
result of executing the SEV instruction on any PE in the multiprocessor system. For more information, see Wait for
Event mechanism and Send event on page D1-2536.

As described in Wait for Event mechanism and Send event on page D1-2536, the execution of a WFET instruction that
would otherwise cause entry to a low-power state can be trapped to a higher Exception level. See:

• Traps to EL1 of EL0 execution of WFE, WFI, WFET, and WFIT instructions on page D1-2514.

• Traps to EL2 of EL0 and EL1 execution of WFE, WFI, WFET, and WFIT instructions on page D1-2524.

• Traps to EL3 of EL2, EL1, and EL0 execution of WFE, WFI, WFET, and WFIT instructions on page D1-2533.

System

(FEAT_WFxT)

Encoding

WFET <Xt>

Decode for this encoding

 if !HaveFeatWFxT() then UNDEFINED;

 integer d = UInt(Rd);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rd" field.

Operation

 bits(64) operand = X[d];
 integer localtimeout = UInt(operand);

 if Halted() && ConstrainUnpredictableBool() then
 EndOfInstruction();

 Hint_WFE(localtimeout, WFxType_WFET);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 0

op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1513
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.350 WFI

Wait For Interrupt is a hint instruction that indicates that the PE can enter a low-power state and remain there until
a wakeup event occurs. For more information, see Wait For Interrupt on page D1-2540.

As described in Wait For Interrupt on page D1-2540, the execution of a WFI instruction that would otherwise cause
entry to a low-power state can be trapped to a higher Exception level. See:

• Traps to EL1 of EL0 execution of WFE, WFI, WFET, and WFIT instructions on page D1-2514.

• Traps to EL2 of EL0 and EL1 execution of WFE, WFI, WFET, and WFIT instructions on page D1-2524.

• Traps to EL3 of EL2, EL1, and EL0 execution of WFE, WFI, WFET, and WFIT instructions on page D1-2533.

Encoding

WFI

Decode for this encoding

 // Empty.

Operation

 Hint_WFI(-1, WFxType_WFI);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
C6-1514 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.351 WFIT

Wait For Interrupt with Timeout is a hint instruction that indicates that the PE can enter a low-power state and
remain there until either a local timeout event or a wakeup event occurs. For more information, see Wait For
Interrupt on page D1-2540.

As described in Wait For Interrupt on page D1-2540, the execution of a WFIT instruction that would otherwise cause
entry to a low-power state can be trapped to a higher Exception level. See:

• Traps to EL1 of EL0 execution of WFE, WFI, WFET, and WFIT instructions on page D1-2514.

• Traps to EL2 of EL0 and EL1 execution of WFE, WFI, WFET, and WFIT instructions on page D1-2524.

• Traps to EL3 of EL2, EL1, and EL0 execution of WFE, WFI, WFET, and WFIT instructions on page D1-2533.

System

(FEAT_WFxT)

Encoding

WFIT <Xt>

Decode for this encoding

 if !HaveFeatWFxT() then UNDEFINED;

 integer d = UInt(Rd);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rd" field.

Operation

 bits(64) operand = X[d];
 integer localtimeout = UInt(operand);

 if Halted() && ConstrainUnpredictableBool() then
 EndOfInstruction();

 Hint_WFI(localtimeout, WFxType_WFIT);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 0

op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1515
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.352 XAFLAG

Convert floating-point condition flags from external format to Arm format. This instruction converts the state of the
PSTATE.{N,Z,C,V} flags from an alternative representation required by some software to a form representing the
result of an Arm floating-point scalar compare instruction.

System

(FEAT_FlagM2)

Encoding

XAFLAG

Decode for this encoding

 if !HaveFlagFormatExt() then UNDEFINED;

Operation

 bit N = NOT(PSTATE.C) AND NOT(PSTATE.Z);
 bit Z = PSTATE.Z AND PSTATE.C;
 bit C = PSTATE.C OR PSTATE.Z;
 bit V = NOT(PSTATE.C) AND PSTATE.Z;

 PSTATE.N = N;
 PSTATE.Z = Z;
 PSTATE.C = C;
 PSTATE.V = V;

1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 (0) (0) (0) (0) 0 0 1 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

CRm
C6-1516 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.353 XPACD, XPACI, XPACLRI

Strip Pointer Authentication Code. This instruction removes the pointer authentication code from an address. The
address is in the specified general-purpose register for XPACI and XPACD, and is in LR for XPACLRI.

The XPACD instruction is used for data addresses, and XPACI and XPACLRI are used for instruction addresses.

Integer

(FEAT_PAuth)

XPACD variant

Applies when D == 1.

XPACD <Xd>

XPACI variant

Applies when D == 0.

XPACI <Xd>

Decode for all variants of this encoding

 boolean data = (D == '1');
 integer d = UInt(Rd);

 if !HavePACExt() then
 UNDEFINED;

System

(FEAT_PAuth)

Encoding

XPACLRI

Decode for this encoding

 integer d = 30;
 boolean data = FALSE;

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 D 1 1 1 1 1 Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

Rn

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1517
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation for all encodings

 if HavePACExt() then
 X[d] = Strip(X[d], data);
C6-1518 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.354 YIELD

YIELD is a hint instruction. Software with a multithreading capability can use a YIELD instruction to indicate to the
PE that it is performing a task, for example a spin-lock, that could be swapped out to improve overall system
performance. The PE can use this hint to suspend and resume multiple software threads if it supports the capability.

For more information about the recommended use of this instruction, see The YIELD instruction on page B1-122.

Encoding

YIELD

Decode for this encoding

 // Empty.

Operation

 Hint_Yield();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C6-1519
ID072021 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6-1520 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter C7
A64 Advanced SIMD and Floating-point Instruction
Descriptions

This chapter describes the A64 Advanced SIMD and floating-point instructions.

It contains the following sections:

• About the A64 SIMD and floating-point instructions on page C7-1522.

• Alphabetical list of A64 Advanced SIMD and floating-point instructions on page C7-1524.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1521
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.1 About the A64 SIMD and floating-point instructions
C7.1 About the A64 SIMD and floating-point instructions

Alphabetical list of A64 Advanced SIMD and floating-point instructions on page C7-1524 gives full descriptions of
the A64 instructions that are in the following instruction groups:

• Loads and store instructions associated with the SIMD and floating-point registers.

• Data processing instructions with SIMD and floating-point registers.

A64 instruction set encoding on page C4-284 in the A64 Instruction Encodings chapter provides an overview of the
instruction encodings as part of an instruction class within a functional group.

The rest of this section is a general description of the SIMD and floating-point instructions. It contains the following
subsections:

• Register size on page C7-1522.

• Data types on page C7-1523.

• Condition flags and related instructions on page C7-1523.

C7.1.1 Register size

A64 provides a comprehensive set of packed Single Instruction Multiple Data (SIMD) and scalar operations using
data held in the 32 entry 128-bit wide SIMD and floating-point register file.

Each SIMD and floating-point register can be used to hold:

• A single scalar value of the floating-point or integer type.

• A 64-bit wide vector containing one or more elements.

• A 128-bit wide vector containing two or more elements.

Where the entire 128-bit wide register is not fully utilized, the vector or scalar quantity is held in the least significant
bits of the register, with the most significant bits being cleared to zero on a write, see Vector formats on page A1-41.

The following instructions can insert data into individual elements within a SIMD and floating-pointer register
without clearing the remaining bits to zero:

• Insert vector element from another vector element or general-purpose register, INS.

• Load structure into a single lane, for example LD3.

• All second-part narrowing operations, for example SHRN2.

C7.1.2 Output element control

When FEAT_AFP is implemented, the FPCR.NEP bit controls how output elements are determined for the scalar
Advanced SIMD instructions for elements other than the lowest element of the vector.

If FPCR.NEP == 1, the following instructions determine output elements as follows:

• The 3-input floating-point scalar versions of FMLA (by element) and FMLS (by element) take output
elements other than the lowest element from the <Hd>, <Sd>, or <Dd> register.

• The 3-input floating-point FMADD, FMSUB, FNMADD, and FNMSUB instructions take output elements
other than the lowest element from the <Ha>, <Sa>, or <Da> register.

• The 2-input floating-point scalar versions of FCMGE (register), FCMGT (register), FCMEQ (register),
FACGE, FACGT, take output elements other than the lowest element from the <Hm>, <Sm>, or <Dm>
register.

• The 2-input floating-point scalar versions of FMULX, FRECPS, FRSQRTS, FABD, FMUL (by element),
FMUL (scalar), FDIV (scalar), FADD (scalar), FSUB (scalar), FMAX (scalar), FMIN (scalar), FMAXNM
(scalar), FMINNM (scalar), FNMUL (scalar), take output elements other than the lowest element from the
<Hn>, <Sn>, or <Dn> register.

• For 1-input floating-point scalar versions of the instructions FCVTNS (vector), FCVTMS (vector), FCVTAS
(vector), FCVTPS (vector), SCVTF (vector, integer), UCVTF (vector, integer) FCVTZS (vector, integer),
FCVTZU (vector, integer), FCVTNU (vector), FCVTMU (vector), FCVTAU (vector), FCVTPU (vector),
SCVTF (vector, fixed-point), UCVTF (vector, fixed-point), FCVTZS (vector, fixed-point), FCVTZU
(vector, fixed-point), SCVTF (scalar, integer), UCVTF (scalar, integer), SCVTF (scalar, fixed-point),
UCVTF (scalar, fixed-point), BFCVT, FCVT, FCVTXN, FRECPE, FRECPX, FRSQRTE, FABS (scalar),
C7-1522 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.1 About the A64 SIMD and floating-point instructions
FNEG (scalar), FSQRT (scalar), FRINTN (scalar), FRINTP (scalar), FRINTM (scalar), FRINTZ (scalar),
FRINTA (scalar), FRINTI (scalar), FRINTX (scalar), FRINT32Z (scalar), FRINT32X (scalar), FRINT64Z
(scalar), FRINT64X (scalar), take output elements other than the lowest element from the <Hd>,<Sd>, or
<Dd> register.

C7.1.3 Data types

The A64 instruction set provides support for arithmetic, conversion, and bitwise operations on:

• Half-precision, single-precision, and double-precision floating-points.

• Signed and unsigned integers.

• Polynomials over {0, 1}.

• When FEAT_FCMA is implemented, complex numbers.

For all AArch64 floating-point operations, including SIMD operations, the rounding mode and exception trap
handling are controlled by the FPCR.

Note

• AArch32 Advanced SIMD operations always use Arm standard floating-point arithmetic, regardless of the
rounding mode specified by the AArch64 FPCR or the AArch32 FPSCR.

• In AArch64 state, floating-point multiply-add operations are always performed as fused operations, but
AArch32 state provides both fused and chained multiply-add instructions.

In addition to operations that consume and produce values of the same width and type, the A64 instruction set
supports SIMD and scalar operations that produce a wider or narrower vector result:

• Where a SIMD operation narrows a 128-bit vector to a 64-bit vector, the A64 instruction set provides a
second-part operation, for example SHRN2, that can pack the result of a second operation into the upper part
of the same destination register.

• Where a SIMD operation widens a 64-bit vector to a 128-bit vector, the A64 instruction set provides a
second-part operation, for example SMLAL2, that can extract the source from the upper 64 bits of the source
registers.

All SIMD operations that could produce side-effects that are not limited to the destination SIMD and floating-point
register, for example a potential update of FPSR.Q or FPSR.IDC, have a dedicated scalar variant to support the use
of SIMD with loops requiring specialised head or tail handling, or both.

C7.1.4 Condition flags and related instructions

The A64 instruction set provides support for flag setting and conditional operations on the SIMD and floating-point
register file:

• Floating-point FCSEL and FCCMP instructions are equivalent to the integer CSEL and CCMP instructions.

• Floating-point FCMP, FCMPE, FCCMP, and FCCMP instructions set the PSTATE.{N, Z, C, V} flags based on the
result of the floating-point comparison.

• Floating-point FJCVTZS instruction sets the PSTATE.Z flag if the result of the conversion, when converted
back to a double-precision floating-point number, gives precisely the same value as the original. Other
PSTATE flags are cleared by this instruction.

• Floating-point and integer instructions provide a means of producing either a scalar or a vector mask based
on a comparison in a SIMD and floating-point register, for example FCMEQ.

Note

FCMP and FCMPE differ from the A32/T32 VCMP and VCMPE instructions, which use the dedicated FPSCR.NZCV field
for the result. A64 instructions store the result of an FCMP or FCMPE operation in the PSTATE.{N, Z, C, V} field.

If FEAT_FlagM2 is implemented, base instructions XAFLAG and AXFLAG convert between the PSTATE
condition flag format used by the FCMP instruction and an alternative format. See Table C6-1 on page C6-874.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1523
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

This section lists every section in the Advanced SIMD and floating-point categories of the A64 instruction set. For
details of the format used, see Structure of the A64 assembler language on page C1-195.
C7-1524 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.1 ABS

Absolute value (vector). This instruction calculates the absolute value of each vector element in the source
SIMD&FP register, puts the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

ABS <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size != '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean neg = (U == '1');

Vector

Encoding

ABS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean neg = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1525
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• size = 10.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 integer element;

 for e = 0 to elements-1
 element = SInt(Elem[operand, e, esize]);
 if neg then
 element = -element;
 else
 element = Abs(element);
 Elem[result, e, esize] = element<esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1526 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.2 ADD (vector)

Add (vector). This instruction adds corresponding elements in the two source SIMD&FP registers, places the results
into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

ADD <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size != '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean sub_op = (U == '1');

Vector

Encoding

ADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean sub_op = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

0 1 0 1 1 1 1 0 size 1 Rm 1 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1527
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if sub_op then
 Elem[result, e, esize] = element1 - element2;
 else
 Elem[result, e, esize] = element1 + element2;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1528 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.3 ADDHN, ADDHN2

Add returning High Narrow. This instruction adds each vector element in the first source SIMD&FP register to the
corresponding vector element in the second source SIMD&FP register, places the most significant half of the result
into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register.

The results are truncated. For rounded results, see RADDHN, RADDHN2.

The ADDHN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the ADDHN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

ADDHN{2} <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Ta>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean round = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1529
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand1 = V[n];
 bits(2*datasize) operand2 = V[m];
 bits(datasize) result;
 integer round_const = if round then 1 << (esize - 1) else 0;
 bits(2*esize) element1;
 bits(2*esize) element2;
 bits(2*esize) sum;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, 2*esize];
 element2 = Elem[operand2, e, 2*esize];
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 sum = sum + round_const;
 Elem[result, e, esize] = sum<2*esize-1:esize>;

 Vpart[d, part] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1530 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.4 ADDP (scalar)

Add Pair of elements (scalar). This instruction adds two vector elements in the source SIMD&FP register and writes
the scalar result into the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

ADDP <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size != '11' then UNDEFINED;

 integer esize = 8 << UInt(size);
 integer datasize = esize * 2;

Assembler symbols

<V> Is the destination width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is the source arrangement specifier, encoded in the "size" field. It can have the following values:

2D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 V[d] = Reduce(ReduceOp_ADD, operand, esize);

0 1 0 1 1 1 1 0 size 1 1 0 0 0 1 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1531
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1532 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.5 ADDP (vector)

Add Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source
SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent
vector elements from the concatenated vector, adds each pair of values together, places the result into a vector, and
writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

ADDP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1533
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 Elem[result, e, esize] = element1 + element2;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1534 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.6 ADDV

Add across Vector. This instruction adds every vector element in the source SIMD&FP register together, and writes
the scalar result to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

ADDV <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '100' then UNDEFINED;
 if size == '11' then UNDEFINED;

 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;

Assembler symbols

<V> Is the destination width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 10, Q = 0.

• size = 11, Q = x.

0 Q 0 0 1 1 1 0 size 1 1 0 0 0 1 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1535
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 V[d] = Reduce(ReduceOp_ADD, operand, esize);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1536 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.7 AESD

AES single round decryption.

Encoding

AESD <Vd>.16B, <Vn>.16B

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 if !HaveAESExt() then UNDEFINED;

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) operand1 = V[d];
 bits(128) operand2 = V[n];
 bits(128) result;
 result = operand1 EOR operand2;
 result = AESInvSubBytes(AESInvShiftRows(result));
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

D

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1537
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.8 AESE

AES single round encryption.

Encoding

AESE <Vd>.16B, <Vn>.16B

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 if !HaveAESExt() then UNDEFINED;

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) operand1 = V[d];
 bits(128) operand2 = V[n];
 bits(128) result;
 result = operand1 EOR operand2;
 result = AESSubBytes(AESShiftRows(result));

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

D

C7-1538 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.9 AESIMC

AES inverse mix columns.

Encoding

AESIMC <Vd>.16B, <Vn>.16B

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 if !HaveAESExt() then UNDEFINED;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) operand = V[n];
 bits(128) result;
 result = AESInvMixColumns(operand);
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

D

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1539
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.10 AESMC

AES mix columns.

Encoding

AESMC <Vd>.16B, <Vn>.16B

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 if !HaveAESExt() then UNDEFINED;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) operand = V[n];
 bits(128) result;
 result = AESMixColumns(operand);
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

D

C7-1540 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.11 AND (vector)

Bitwise AND (vector). This instruction performs a bitwise AND between the two source SIMD&FP registers, and
writes the result to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

AND <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if Q == '1' then 128 else 64;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;

 result = operand1 AND operand2;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

0 Q 0 0 1 1 1 0 0 0 1 Rm 0 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1541
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.
C7-1542 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.12 BCAX

Bit Clear and Exclusive OR performs a bitwise AND of the 128-bit vector in a source SIMD&FP register and the
complement of the vector in another source SIMD&FP register, then performs a bitwise exclusive OR of the
resulting vector and the vector in a third source SIMD&FP register, and writes the result to the destination
SIMD&FP register.

This instruction is implemented only when FEAT_SHA3 is implemented.

Advanced SIMD

(FEAT_SHA3)

Encoding

BCAX <Vd>.16B, <Vn>.16B, <Vm>.16B, <Va>.16B

Decode for this encoding

 if !HaveSHA3Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the name of the third SIMD&FP source register, encoded in the "Ra" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m];
 bits(128) Vn = V[n];
 bits(128) Va = V[a];
 V[d] = Vn EOR (Vm AND NOT(Va));

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

1 1 0 0 1 1 1 0 0 0 1 Rm 0 Ra Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1543
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.
C7-1544 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.13 BFCVT

Floating-point convert from single-precision to BFloat16 format (scalar) converts the single-precision
floating-point value in the 32-bit SIMD&FP source register to BFloat16 format and writes the result in the 16-bit
SIMD&FP destination register.

Unlike the BFloat16 multiplication instructions, this instruction honors all the control bits in the FPCR that apply
to single-precision arithmetic, including the rounding mode. This instruction can generate a floating-point exception
that causes a cumulative exception bit in the FPSR to be set, or a synchronous exception to be taken, depending on
the enable bits in the FPCR. ID_AA64ISAR1_EL1.BF16 indicates whether this instruction is supported.

Single-precision to BFloat16

(FEAT_BF16)

Encoding

BFCVT <Hd>, <Sn>

Decode for this encoding

 if !HaveBF16Ext() then UNDEFINED;
 integer n = UInt(Rn);
 integer d = UInt(Rd);

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();

 bits(32) operand = V[n];
 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 Elem[result, 0, 16] = FPConvertBF(operand, fpcr);

 V[d] = result;

0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1545
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.14 BFCVTN, BFCVTN2

Floating-point convert from single-precision to BFloat16 format (vector) reads each single-precision element in the
SIMD&FP source vector, converts each value to BFloat16 format, and writes the results in the lower or upper half
of the SIMD&FP destination vector. The result elements are half the width of the source elements.

The BFCVTN instruction writes the half-width results to the lower half of the destination vector and clears the upper
half to zero, while the BFCVTN2 instruction writes the results to the upper half of the destination vector without
affecting the other bits in the register.

Unlike the BFloat16 multiplication instructions, this instruction honors all of the control bits in the FPCR that apply
to single-precision arithmetic, including the rounding mode. It can also generate a floating-point exception that
causes cumulative exception bits in the FPSR to be set, or a synchronous exception to be taken, depending on the
enable bits in the FPCR.

Vector single-precision to BFloat16

(FEAT_BF16)

Encoding

BFCVTN{2} <Vd>.<Ta>, <Vn>.4S

Decode for this encoding

 if !HaveBF16Ext() then UNDEFINED;
 integer n = UInt(Rn);
 integer d = UInt(Rd);
 integer part = UInt(Q);
 integer elements = 64 DIV 16;

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0

8H when Q = 1

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(128) operand = V[n];
 bits(64) result;

 for e = 0 to elements-1
 Elem[result, e, 16] = FPConvertBF(Elem[operand, e, 32], FPCR[]);

0 Q 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
C7-1546 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 Vpart[d, part] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1547
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.15 BFDOT (by element)

BFloat16 floating-point dot product (vector, by element). This instruction delimits the source vectors into pairs of
16-bit BF16 elements. Each pair of elements in the first source vector is multiplied by the specified pair of elements
in the second source vector. The resulting single-precision products are then summed and added destructively to the
single-precision element of the destination vector that aligns with the pair of BF16 values in the first source vector.
The instruction ignores the FPCR and does not update the FPSR exception status.

The BF16 pair within the second source vector is specified using an immediate index. The index range is from 0 to
3 inclusive. ID_AA64ISAR1_EL1.BF16 indicates whether this instruction is supported.

Vector

(FEAT_BF16)

Encoding

BFDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.2H[<index>]

Decode for this encoding

 if !HaveBF16Ext() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(M:Rm);
 integer d = UInt(Rd);
 integer i = UInt(H:L);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV 32;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0

8H when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<index> Is the immediate index of a pair of 16-bit elements in the range 0 to 3, encoded in the "H:L" fields.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(128) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;

 for e = 0 to elements-1

0 Q 0 0 1 1 1 1 0 1 L M Rm 1 1 1 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0
C7-1548 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 bits(16) elt1_a = Elem[operand1, 2*e+0, 16];
 bits(16) elt1_b = Elem[operand1, 2*e+1, 16];
 bits(16) elt2_a = Elem[operand2, 2*i+0, 16];
 bits(16) elt2_b = Elem[operand2, 2*i+1, 16];

 bits(32) sum = Elem[operand3, e, 32];
 sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR[]);
 Elem[result, e, 32] = sum;

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1549
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.16 BFDOT (vector)

BFloat16 floating-point dot product (vector). This instruction delimits the source vectors into pairs of 16-bit BF16
elements. Within each pair, the elements in the first source vector are multiplied by the corresponding elements in
the second source vector. The resulting single-precision products are then summed and added destructively to the
single-precision element of the destination vector that aligns with the pair of BF16 values in the first source vector.
The instruction ignores the FPCR and does not update the FPSR exception status.

Vector

(FEAT_BF16)

Encoding

BFDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 if !HaveBF16Ext() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV 32;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0

8H when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;

 for e = 0 to elements-1
 bits(16) elt1_a = Elem[operand1, 2*e+0, 16];
 bits(16) elt1_b = Elem[operand1, 2*e+1, 16];
 bits(16) elt2_a = Elem[operand2, 2*e+0, 16];
 bits(16) elt2_b = Elem[operand2, 2*e+1, 16];

 bits(32) sum = Elem[operand3, e, 32];

0 Q 1 0 1 1 1 0 0 1 0 Rm 1 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-1550 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR[]);
 Elem[result, e, 32] = sum;

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1551
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.17 BFMLALB, BFMLALT (by element)

BFloat16 floating-point widening multiply-add long (by element) widens the even-numbered (bottom) or
odd-numbered (top) 16-bit elements in the first source vector, and the indexed element in the second source vector
from Bfloat16 to single-precision format. The instruction then multiplies and adds these values to the overlapping
single-precision elements of the destination vector.

This performs a fused multiply-add without intermediate rounding that honors all of the control bits in the FPCR
that apply to single-precision arithmetic, including the rounding mode. It can also generate a floating-point
exception that causes cumulative exception bits in the FPSR to be set, or a synchronous exception to be taken,
depending on the enable bits in the FPCR. ID_AA64ISAR1_EL1.BF16 indicates whether this instruction is
supported.

Vector

(FEAT_BF16)

Encoding

BFMLAL<bt> <Vd>.4S, <Vn>.8H, <Vm>.H[<index>]

Decode for this encoding

 if !HaveBF16Ext() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt('0':Rm);
 integer d = UInt(Rd);
 integer index = UInt(H:L:M);

 integer elements = 128 DIV 32;
 integer sel = UInt(Q);

Assembler symbols

<bt> Is the bottom or top element specifier, encoded in the "Q" field. It can have the following values:

B when Q = 0

T when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, in the range V0 to V15, encoded in the "Rm"
field.

<index> Is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(128) result;
 bits(128) operand1 = V[n];
 bits(128) operand2 = V[m];
 bits(128) operand3 = V[d];
 bits(32) element2 = Elem[operand2, index, 16]:Zeros(16);

0 Q 0 0 1 1 1 1 1 1 L M Rm 1 1 1 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0
C7-1552 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 for e = 0 to elements-1
 bits(32) element1 = Elem[operand1, 2*e+sel, 16]:Zeros(16);
 bits(32) addend = Elem[operand3, e, 32];
 Elem[result, e, 32] = BFMulAdd(addend, element1, element2, FPCR[]);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1553
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.18 BFMLALB, BFMLALT (vector)

BFloat16 floating-point widening multiply-add long (vector) widens the even-numbered (bottom) or odd-numbered
(top) 16-bit elements in the first and second source vectors from Bfloat16 to single-precision format. The instruction
then multiplies and adds these values to the overlapping single-precision elements of the destination vector.

This performs a fused multiply-add without intermediate rounding that honors all of the control bits in the FPCR
that apply to single-precision arithmetic, including the rounding mode. It can also generate a floating-point
exception that causes cumulative exception bits in the FPSR to be set, or a synchronous exception to be taken,
depending on the enable bits in the FPCR. ID_AA64ISAR1_EL1.BF16 indicates whether these instruction is
supported.

Vector

(FEAT_BF16)

Encoding

BFMLAL<bt> <Vd>.4S, <Vn>.8H, <Vm>.8H

Decode for this encoding

 if !HaveBF16Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 integer elements = 128 DIV 32;
 integer sel = UInt(Q);

Assembler symbols

<bt> Is the bottom or top element specifier, encoded in the "Q" field. It can have the following values:

B when Q = 0

T when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(128) operand1 = V[n];
 bits(128) operand2 = V[m];
 bits(128) operand3 = V[d];
 bits(128) result;

 for e = 0 to elements-1
 bits(32) element1 = Elem[operand1, 2*e+sel, 16]:Zeros(16);
 bits(32) element2 = Elem[operand2, 2*e+sel, 16]:Zeros(16);
 bits(32) addend = Elem[operand3, e, 32];
 Elem[result, e, 32] = BFMulAdd(addend, element1, element2, FPCR[]);

0 Q 1 0 1 1 1 0 1 1 0 Rm 1 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-1554 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1555
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.19 BFMMLA

BFloat16 floating-point matrix multiply-accumulate into 2x2 matrix. This instruction multiplies the 2x4 matrix of
BF16 values held in the first 128-bit source vector by the 4x2 BF16 matrix in the second 128-bit source vector. The
resulting 2x2 single-precision matrix product is then added destructively to the 2x2 single-precision matrix in the
128-bit destination vector. This is equivalent to performing a 4-way dot product per destination element. The
instruction ignores the FPCR and does not update the FPSR exception status.

Note

Arm expects that the BFMMLA instruction will deliver a peak BF16 multiply throughput that is at least as high as
can be achieved using two BFDOT instructions, with a goal that it should have significantly higher throughput.

Vector

(FEAT_BF16)

Encoding

BFMMLA <Vd>.4S, <Vn>.8H, <Vm>.8H

Decode for this encoding

 if !HaveBF16Ext() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(128) op1 = V[n];
 bits(128) op2 = V[m];
 bits(128) acc = V[d];

 V[d] = BFMatMulAdd(acc, op1, op2);

0 1 1 0 1 1 1 0 0 1 0 Rm 1 1 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-1556 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.20 BIC (vector, immediate)

Bitwise bit Clear (vector, immediate). This instruction reads each vector element from the destination SIMD&FP
register, performs a bitwise AND between each result and the complement of an immediate constant, places the
result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

16-bit variant

Applies when cmode == 10x1.

BIC <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit variant

Applies when cmode == 0xx1.

BIC <Vd>.<T>, #<imm8>{, LSL #<amount>}

Decode for all variants of this encoding

 integer rd = UInt(Rd);

 integer datasize = if Q == '1' then 128 else 64;
 bits(datasize) imm;
 bits(64) imm64;

 ImmediateOp operation;
 case cmode:op of
 when '0xx01' operation = ImmediateOp_MVNI;
 when '0xx11' operation = ImmediateOp_BIC;
 when '10x01' operation = ImmediateOp_MVNI;
 when '10x11' operation = ImmediateOp_BIC;
 when '110x1' operation = ImmediateOp_MVNI;
 when '1110x' operation = ImmediateOp_MOVI;
 when '11111'
 // FMOV Dn,#imm is in main FP instruction set
 if Q == '0' then UNDEFINED;
 operation = ImmediateOp_MOVI;

 imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
 imm = Replicate(imm64, datasize DIV 64);

Assembler symbols

<Vd> Is the name of the SIMD&FP register, encoded in the "Rd" field.

<T> For the 16-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

0 Q 1 0 1 1 1 1 0 0 0 0 0 a b c x x x 1 0 1 d e f g h Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 0

op cmode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1557
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
For the 32-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

2S when Q = 0

4S when Q = 1

<imm8> Is an 8-bit immediate encoded in "a:b:c:d:e:f:g:h".

<amount> For the 16-bit variant: is the shift amount encoded in the "cmode<1>" field. It can have the
following values:

0 when cmode<1> = 0

8 when cmode<1> = 1

 defaulting to 0 if LSL is omitted.

For the 32-bit variant: is the shift amount encoded in the "cmode<2:1>" field. It can have the
following values:

0 when cmode<2:1> = 00

8 when cmode<2:1> = 01

16 when cmode<2:1> = 10

24 when cmode<2:1> = 11

 defaulting to 0 if LSL is omitted.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand;
 bits(datasize) result;

 case operation of
 when ImmediateOp_MOVI
 result = imm;
 when ImmediateOp_MVNI
 result = NOT(imm);
 when ImmediateOp_ORR
 operand = V[rd];
 result = operand OR imm;
 when ImmediateOp_BIC
 operand = V[rd];
 result = operand AND NOT(imm);

 V[rd] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1558 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.21 BIC (vector, register)

Bitwise bit Clear (vector, register). This instruction performs a bitwise AND between the first source SIMD&FP
register and the complement of the second source SIMD&FP register, and writes the result to the destination
SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

BIC <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if Q == '1' then 128 else 64;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;

 operand2 = NOT(operand2);

 result = operand1 AND operand2;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 Q 0 0 1 1 1 0 0 1 1 Rm 0 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1559
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1560 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.22 BIF

Bitwise Insert if False. This instruction inserts each bit from the first source SIMD&FP register into the destination
SIMD&FP register if the corresponding bit of the second source SIMD&FP register is 0, otherwise leaves the bit in
the destination register unchanged.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

BIF <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if Q == '1' then 128 else 64;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1;
 bits(datasize) operand3;
 bits(datasize) operand4 = V[n];

 operand1 = V[d];
 operand3 = NOT(V[m]);

 V[d] = operand1 EOR ((operand1 EOR operand4) AND operand3);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 Q 1 0 1 1 1 0 1 1 1 Rm 0 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

opc2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1561
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1562 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.23 BIT

Bitwise Insert if True. This instruction inserts each bit from the first source SIMD&FP register into the SIMD&FP
destination register if the corresponding bit of the second source SIMD&FP register is 1, otherwise leaves the bit in
the destination register unchanged.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

BIT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if Q == '1' then 128 else 64;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1;
 bits(datasize) operand3;
 bits(datasize) operand4 = V[n];

 operand1 = V[d];
 operand3 = V[m];
 V[d] = operand1 EOR ((operand1 EOR operand4) AND operand3);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 Q 1 0 1 1 1 0 1 0 1 Rm 0 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

opc2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1563
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1564 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.24 BSL

Bitwise Select. This instruction sets each bit in the destination SIMD&FP register to the corresponding bit from the
first source SIMD&FP register when the original destination bit was 1, otherwise from the second source SIMD&FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

BSL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if Q == '1' then 128 else 64;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1;
 bits(datasize) operand3;
 bits(datasize) operand4 = V[n];

 operand1 = V[m];
 operand3 = V[d];
 V[d] = operand1 EOR ((operand1 EOR operand4) AND operand3);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 Q 1 0 1 1 1 0 0 1 1 Rm 0 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

opc2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1565
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1566 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.25 CLS (vector)

Count Leading Sign bits (vector). This instruction counts the number of consecutive bits following the most
significant bit that are the same as the most significant bit in each vector element in the source SIMD&FP register,
places the result into a vector, and writes the vector to the destination SIMD&FP register. The count does not include
the most significant bit itself.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

CLS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 CountOp countop = if U == '1' then CountOp_CLZ else CountOp_CLS;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;

 integer count;
 for e = 0 to elements-1
 if countop == CountOp_CLS then
 count = CountLeadingSignBits(Elem[operand, e, esize]);
 else

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1567
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 count = CountLeadingZeroBits(Elem[operand, e, esize]);
 Elem[result, e, esize] = count<esize-1:0>;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1568 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.26 CLZ (vector)

Count Leading Zero bits (vector). This instruction counts the number of consecutive zeros, starting from the most
significant bit, in each vector element in the source SIMD&FP register, places the result into a vector, and writes
the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

CLZ <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 CountOp countop = if U == '1' then CountOp_CLZ else CountOp_CLS;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;

 integer count;
 for e = 0 to elements-1
 if countop == CountOp_CLS then
 count = CountLeadingSignBits(Elem[operand, e, esize]);
 else
 count = CountLeadingZeroBits(Elem[operand, e, esize]);

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1569
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 Elem[result, e, esize] = count<esize-1:0>;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1570 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.27 CMEQ (register)

Compare bitwise Equal (vector). This instruction compares each vector element from the first source SIMD&FP
register with the corresponding vector element from the second source SIMD&FP register, and if the comparison is
equal sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets
every bit of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMEQ <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size != '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean and_test = (U == '0');

Vector

Encoding

CMEQ <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean and_test = (U == '0');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

0 1 1 1 1 1 1 0 size 1 Rm 1 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1571
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;
 boolean test_passed;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if and_test then
 test_passed = !IsZero(element1 AND element2);
 else
 test_passed = (element1 == element2);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1572 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.28 CMEQ (zero)

Compare bitwise Equal to zero (vector). This instruction reads each vector element in the source SIMD&FP register
and if the value is equal to zero sets every bit of the corresponding vector element in the destination SIMD&FP
register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register
to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMEQ <V><d>, <V><n>, #0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size != '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector

Encoding

CMEQ <Vd>.<T>, <Vn>.<T>, #0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;

0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 1 0 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 1 0 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1573
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 integer element;
 boolean test_passed;

 for e = 0 to elements-1
 element = SInt(Elem[operand, e, esize]);
 case comparison of
 when CompareOp_GT test_passed = element > 0;
 when CompareOp_GE test_passed = element >= 0;
 when CompareOp_EQ test_passed = element == 0;
 when CompareOp_LE test_passed = element <= 0;
 when CompareOp_LT test_passed = element < 0;
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
C7-1574 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1575
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.29 CMGE (register)

Compare signed Greater than or Equal (vector). This instruction compares each vector element in the first source
SIMD&FP register with the corresponding vector element in the second source SIMD&FP register and if the first
signed integer value is greater than or equal to the second signed integer value sets every bit of the corresponding
vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector
element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMGE <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size != '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean cmp_eq = (eq == '1');

Vector

Encoding

CMGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');
 boolean cmp_eq = (eq == '1');

0 1 0 1 1 1 1 0 size 1 Rm 0 0 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U eq

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U eq
C7-1576 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 boolean test_passed;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 test_passed = if cmp_eq then element1 >= element2 else element1 > element2;
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1577
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1578 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.30 CMGE (zero)

Compare signed Greater than or Equal to zero (vector). This instruction reads each vector element in the source
SIMD&FP register and if the signed integer value is greater than or equal to zero sets every bit of the corresponding
vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector
element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMGE <V><d>, <V><n>, #0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size != '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector

Encoding

CMGE <Vd>.<T>, <Vn>.<T>, #0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;

0 1 1 1 1 1 1 0 size 1 0 0 0 0 0 1 0 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 1 0 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1579
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 integer element;
 boolean test_passed;

 for e = 0 to elements-1
 element = SInt(Elem[operand, e, esize]);
 case comparison of
 when CompareOp_GT test_passed = element > 0;
 when CompareOp_GE test_passed = element >= 0;
 when CompareOp_EQ test_passed = element == 0;
 when CompareOp_LE test_passed = element <= 0;
 when CompareOp_LT test_passed = element < 0;
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
C7-1580 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1581
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.31 CMGT (register)

Compare signed Greater than (vector). This instruction compares each vector element in the first source SIMD&FP
register with the corresponding vector element in the second source SIMD&FP register and if the first signed integer
value is greater than the second signed integer value sets every bit of the corresponding vector element in the
destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the
destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMGT <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size != '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean cmp_eq = (eq == '1');

Vector

Encoding

CMGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');
 boolean cmp_eq = (eq == '1');

0 1 0 1 1 1 1 0 size 1 Rm 0 0 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U eq

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U eq
C7-1582 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 boolean test_passed;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 test_passed = if cmp_eq then element1 >= element2 else element1 > element2;
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1583
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1584 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.32 CMGT (zero)

Compare signed Greater than zero (vector). This instruction reads each vector element in the source SIMD&FP
register and if the signed integer value is greater than zero sets every bit of the corresponding vector element in the
destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the
destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMGT <V><d>, <V><n>, #0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size != '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector

Encoding

CMGT <Vd>.<T>, <Vn>.<T>, #0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;

0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 1 0 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 1 0 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1585
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 integer element;
 boolean test_passed;

 for e = 0 to elements-1
 element = SInt(Elem[operand, e, esize]);
 case comparison of
 when CompareOp_GT test_passed = element > 0;
 when CompareOp_GE test_passed = element >= 0;
 when CompareOp_EQ test_passed = element == 0;
 when CompareOp_LE test_passed = element <= 0;
 when CompareOp_LT test_passed = element < 0;
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
C7-1586 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1587
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.33 CMHI (register)

Compare unsigned Higher (vector). This instruction compares each vector element in the first source SIMD&FP
register with the corresponding vector element in the second source SIMD&FP register and if the first unsigned
integer value is greater than the second unsigned integer value sets every bit of the corresponding vector element in
the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the
destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMHI <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size != '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean cmp_eq = (eq == '1');

Vector

Encoding

CMHI <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');
 boolean cmp_eq = (eq == '1');

0 1 1 1 1 1 1 0 size 1 Rm 0 0 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U eq

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U eq
C7-1588 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 boolean test_passed;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 test_passed = if cmp_eq then element1 >= element2 else element1 > element2;
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1589
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1590 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.34 CMHS (register)

Compare unsigned Higher or Same (vector). This instruction compares each vector element in the first source
SIMD&FP register with the corresponding vector element in the second source SIMD&FP register and if the first
unsigned integer value is greater than or equal to the second unsigned integer value sets every bit of the
corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the
corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMHS <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size != '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean cmp_eq = (eq == '1');

Vector

Encoding

CMHS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');
 boolean cmp_eq = (eq == '1');

0 1 1 1 1 1 1 0 size 1 Rm 0 0 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U eq

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U eq
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1591
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 boolean test_passed;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 test_passed = if cmp_eq then element1 >= element2 else element1 > element2;
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1592 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1593
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.35 CMLE (zero)

Compare signed Less than or Equal to zero (vector). This instruction reads each vector element in the source
SIMD&FP register and if the signed integer value is less than or equal to zero sets every bit of the corresponding
vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector
element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMLE <V><d>, <V><n>, #0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size != '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector

Encoding

CMLE <Vd>.<T>, <Vn>.<T>, #0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;

0 1 1 1 1 1 1 0 size 1 0 0 0 0 0 1 0 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 1 0 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
C7-1594 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 integer element;
 boolean test_passed;

 for e = 0 to elements-1
 element = SInt(Elem[operand, e, esize]);
 case comparison of
 when CompareOp_GT test_passed = element > 0;
 when CompareOp_GE test_passed = element >= 0;
 when CompareOp_EQ test_passed = element == 0;
 when CompareOp_LE test_passed = element <= 0;
 when CompareOp_LT test_passed = element < 0;
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1595
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1596 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.36 CMLT (zero)

Compare signed Less than zero (vector). This instruction reads each vector element in the source SIMD&FP register
and if the signed integer value is less than zero sets every bit of the corresponding vector element in the destination
SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination
SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMLT <V><d>, <V><n>, #0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size != '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;

 CompareOp comparison = CompareOp_LT;

Vector

Encoding

CMLT <Vd>.<T>, <Vn>.<T>, #0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 CompareOp comparison = CompareOp_LT;

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1597
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 integer element;
 boolean test_passed;

 for e = 0 to elements-1
 element = SInt(Elem[operand, e, esize]);
 case comparison of
 when CompareOp_GT test_passed = element > 0;
 when CompareOp_GE test_passed = element >= 0;
 when CompareOp_EQ test_passed = element == 0;
 when CompareOp_LE test_passed = element <= 0;
 when CompareOp_LT test_passed = element < 0;
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1598 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.37 CMTST

Compare bitwise Test bits nonzero (vector). This instruction reads each vector element in the first source SIMD&FP
register, performs an AND with the corresponding vector element in the second source SIMD&FP register, and if
the result is not zero, sets every bit of the corresponding vector element in the destination SIMD&FP register to one,
otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMTST <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size != '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean and_test = (U == '0');

Vector

Encoding

CMTST <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean and_test = (U == '0');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

0 1 0 1 1 1 1 0 size 1 Rm 1 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1599
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;
 boolean test_passed;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if and_test then
 test_passed = !IsZero(element1 AND element2);
 else
 test_passed = (element1 == element2);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1600 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.38 CNT

Population Count per byte. This instruction counts the number of bits that have a value of one in each vector element
in the source SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

CNT <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size != '00' then UNDEFINED;
 integer esize = 8;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV 8;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

The following encodings are reserved:

• size = 01, Q = x.

• size = 1x, Q = x.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;

 integer count;
 for e = 0 to elements-1
 count = BitCount(Elem[operand, e, esize]);
 Elem[result, e, esize] = count<esize-1:0>;
 V[d] = result;

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1601
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1602 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.39 DUP (element)

Duplicate vector element to vector or scalar. This instruction duplicates the vector element at the specified element
index in the source SIMD&FP register into a scalar or each element in a vector, and writes the result to the
destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (scalar). The alias is always the preferred disassembly.

Scalar

Encoding

DUP <V><d>, <Vn>.<T>[<index>]

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer size = LowestSetBit(imm5);
 if size > 3 then UNDEFINED;

 integer index = UInt(imm5<4:size+1>);
 integer idxdsize = if imm5<4> == '1' then 128 else 64;

 integer esize = 8 << size;
 integer datasize = esize;
 integer elements = 1;

Vector

Encoding

DUP <Vd>.<T>, <Vn>.<Ts>[<index>]

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer size = LowestSetBit(imm5);
 if size > 3 then UNDEFINED;

 integer index = UInt(imm5<4:size+1>);
 integer idxdsize = if imm5<4> == '1' then 128 else 64;

 if size == 3 && Q == '0' then UNDEFINED;
 integer esize = 8 << size;

0 1 0 1 1 1 1 0 0 0 0 imm5 0 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 Q 0 0 1 1 1 0 0 0 0 imm5 0 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1603
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Assembler symbols

<T> For the scalar variant: is the element width specifier, encoded in the "imm5" field. It can have the
following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

For the vector variant: is an arrangement specifier, encoded in the "imm5:Q" field. It can have the
following values:

8B when imm5 = xxxx1, Q = 0

16B when imm5 = xxxx1, Q = 1

4H when imm5 = xxx10, Q = 0

8H when imm5 = xxx10, Q = 1

2S when imm5 = xx100, Q = 0

4S when imm5 = xx100, Q = 1

2D when imm5 = x1000, Q = 1

The following encodings are reserved:

• imm5 = x0000, Q = x.

• imm5 = x1000, Q = 0.

<Ts> Is an element size specifier, encoded in the "imm5" field. It can have the following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<V> Is the destination width specifier, encoded in the "imm5" field. It can have the following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<index> Is the element index encoded in the "imm5" field. It can have the following values:

imm5<4:1> when imm5 = xxxx1

imm5<4:2> when imm5 = xxx10

imm5<4:3> when imm5 = xx100

imm5<4> when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
C7-1604 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(idxdsize) operand = V[n];
 bits(datasize) result;
 bits(esize) element;

 element = Elem[operand, index, esize];
 for e = 0 to elements-1
 Elem[result, e, esize] = element;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1605
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.40 DUP (general)

Duplicate general-purpose register to vector. This instruction duplicates the contents of the source general-purpose
register into a scalar or each element in a vector, and writes the result to the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

DUP <Vd>.<T>, <R><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer size = LowestSetBit(imm5);
 if size > 3 then UNDEFINED;

 // imm5<4:size+1> is IGNORED

 if size == 3 && Q == '0' then UNDEFINED;
 integer esize = 8 << size;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "imm5:Q" field. It can have the following values:

8B when imm5 = xxxx1, Q = 0

16B when imm5 = xxxx1, Q = 1

4H when imm5 = xxx10, Q = 0

8H when imm5 = xxx10, Q = 1

2S when imm5 = xx100, Q = 0

4S when imm5 = xx100, Q = 1

2D when imm5 = x1000, Q = 1

The following encodings are reserved:

• imm5 = x0000, Q = x.

• imm5 = x1000, Q = 0.

<R> Is the width specifier for the general-purpose source register, encoded in the "imm5" field. It can
have the following values:

W when imm5 = xxxx1

W when imm5 = xxx10

W when imm5 = xx100

X when imm5 = x1000

0 Q 0 0 1 1 1 0 0 0 0 imm5 0 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-1606 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding imm5 = x0000 is reserved.

 Unspecified bits in "imm5" are ignored but should be set to zero by an assembler.

<n> Is the number [0-30] of the general-purpose source register or ZR (31), encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(esize) element = X[n];
 bits(datasize) result;

 for e = 0 to elements-1
 Elem[result, e, esize] = element;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1607
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.41 EOR (vector)

Bitwise Exclusive OR (vector). This instruction performs a bitwise Exclusive OR operation between the two source
SIMD&FP registers, and places the result in the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

EOR <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if Q == '1' then 128 else 64;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1;
 bits(datasize) operand2;
 bits(datasize) operand3;
 bits(datasize) operand4 = V[n];

 operand1 = V[m];
 operand2 = Zeros();
 operand3 = Ones();
 V[d] = operand1 EOR ((operand2 EOR operand4) AND operand3);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 Q 1 0 1 1 1 0 0 0 1 Rm 0 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

opc2
C7-1608 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1609
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.42 EOR3

Three-way Exclusive OR performs a three-way exclusive OR of the values in the three source SIMD&FP registers,
and writes the result to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SHA3 is implemented.

Advanced SIMD

(FEAT_SHA3)

Encoding

EOR3 <Vd>.16B, <Vn>.16B, <Vm>.16B, <Va>.16B

Decode for this encoding

 if !HaveSHA3Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the name of the third SIMD&FP source register, encoded in the "Ra" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m];
 bits(128) Vn = V[n];
 bits(128) Va = V[a];
 V[d] = Vn EOR Vm EOR Va;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 0 1 1 1 0 0 0 0 Rm 0 Ra Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0
C7-1610 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.43 EXT

Extract vector from pair of vectors. This instruction extracts the lowest vector elements from the second source
SIMD&FP register and the highest vector elements from the first source SIMD&FP register, concatenates the
results into a vector, and writes the vector to the destination SIMD&FP register vector. The index value specifies
the lowest vector element to extract from the first source register, and consecutive elements are extracted from the
first, then second, source registers until the destination vector is filled.

The following figure shows the operation of EXT doubleword operation for Q = 0 and imm4<2:0> = 3.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

EXT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>, #<index>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if Q == '0' && imm4<3> == '1' then UNDEFINED;

 integer datasize = if Q == '1' then 128 else 64;
 integer position = UInt(imm4) << 3;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<index> Is the lowest numbered byte element to be extracted, encoded in the "Q:imm4" field. It can have
the following values:

imm4<2:0> when Q = 0, imm4<3> = 0

imm4 when Q = 1, imm4<3> = x

7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

Vm Vn

Vd

0 Q 1 0 1 1 1 0 0 0 0 Rm 0 imm4 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1611
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding Q = 0, imm4<3> = 1 is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) hi = V[m];
 bits(datasize) lo = V[n];
 bits(datasize*2) concat = hi:lo;

 V[d] = concat<position+datasize-1:position>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1612 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.44 FABD

Floating-point Absolute Difference (vector). This instruction subtracts the floating-point values in the elements of
the second source SIMD&FP register, from the corresponding floating-point values in the elements of the first
source SIMD&FP register, places the absolute value of each result in a vector, and writes the vector to the
destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FABD <Hd>, <Hn>, <Hm>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;
 boolean abs = TRUE;

Scalar single-precision and double-precision

Encoding

FABD <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;
 boolean abs = TRUE;

0 1 1 1 1 1 1 0 1 1 0 Rm 0 0 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 1 1 1 1 1 0 1 sz 1 Rm 1 1 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1613
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Vector half precision

(FEAT_FP16)

Encoding

FABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean abs = (U == '1');

Vector single-precision and double-precision

Encoding

FABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean abs = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

0 Q 1 0 1 1 1 0 1 1 0 Rm 0 0 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 1 sz 1 Rm 1 1 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

C7-1614 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];

 bits(esize) element1;
 bits(esize) element2;
 bits(esize) diff;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[n] else Zeros();

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 diff = FPSub(element1, element2, fpcr);
 Elem[result, e, esize] = if abs then FPAbs(diff) else diff;

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1615
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.45 FABS (vector)

Floating-point Absolute value (vector). This instruction calculates the absolute value of each vector element in the
source SIMD&FP register, writes the result to a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FABS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean neg = (U == '1');

Single-precision and double-precision

Encoding

FABS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean neg = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

C7-1616 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 if neg then
 element = FPNeg(element);
 else
 element = FPAbs(element);
 Elem[result, e, esize] = element;

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1617
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.46 FABS (scalar)

Floating-point Absolute value (scalar). This instruction calculates the absolute value in the SIMD&FP source
register and writes the result to the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FABS <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FABS <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FABS <Dd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 0 0 1 1 1 1 0 ftype 1 0 0 0 0 0 1 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

opc
C7-1618 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 bits(esize) operand = V[n];

 Elem[result, 0, esize] = FPAbs(operand);
 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1619
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.47 FACGE

Floating-point Absolute Compare Greater than or Equal (vector). This instruction compares the absolute value of
each floating-point value in the first source SIMD&FP register with the absolute value of the corresponding
floating-point value in the second source SIMD&FP register and if the first value is greater than or equal to the
second value sets every bit of the corresponding vector element in the destination SIMD&FP register to one,
otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FACGE <Hd>, <Hn>, <Hm>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Scalar single-precision and double-precision

Encoding

FACGE <V><d>, <V><n>, <V><m>

0 1 1 1 1 1 1 0 0 1 0 Rm 0 0 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac

0 1 1 1 1 1 1 0 0 sz 1 Rm 1 1 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac
C7-1620 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector half precision

(FEAT_FP16)

Encoding

FACGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector single-precision and double-precision

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1621
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FACGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
C7-1622 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];

 bits(esize) element1;
 bits(esize) element2;
 boolean test_passed;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[m] else Zeros();

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if abs then
 element1 = FPAbs(element1);
 element2 = FPAbs(element2);
 case cmp of
 when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, fpcr);
 when CompareOp_GE test_passed = FPCompareGE(element1, element2, fpcr);
 when CompareOp_GT test_passed = FPCompareGT(element1, element2, fpcr);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1623
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.48 FACGT

Floating-point Absolute Compare Greater than (vector). This instruction compares the absolute value of each vector
element in the first source SIMD&FP register with the absolute value of the corresponding vector element in the
second source SIMD&FP register and if the first value is greater than the second value sets every bit of the
corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the
corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FACGT <Hd>, <Hn>, <Hm>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Scalar single-precision and double-precision

Encoding

FACGT <V><d>, <V><n>, <V><m>

0 1 1 1 1 1 1 0 1 1 0 Rm 0 0 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac

0 1 1 1 1 1 1 0 1 sz 1 Rm 1 1 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac
C7-1624 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector half precision

(FEAT_FP16)

Encoding

FACGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector single-precision and double-precision

0 Q 1 0 1 1 1 0 1 1 0 Rm 0 0 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac

0 Q 1 0 1 1 1 0 1 sz 1 Rm 1 1 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1625
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FACGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
C7-1626 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];

 bits(esize) element1;
 bits(esize) element2;
 boolean test_passed;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[m] else Zeros();

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if abs then
 element1 = FPAbs(element1);
 element2 = FPAbs(element2);
 case cmp of
 when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, fpcr);
 when CompareOp_GE test_passed = FPCompareGE(element1, element2, fpcr);
 when CompareOp_GT test_passed = FPCompareGT(element1, element2, fpcr);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1627
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.49 FADD (vector)

Floating-point Add (vector). This instruction adds corresponding vector elements in the two source SIMD&FP
registers, writes the result into a vector, and writes the vector to the destination SIMD&FP register. All the values
in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');

Single-precision and double-precision

Encoding

FADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

C7-1628 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPAdd(element1, element2, FPCR[]);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1629
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.50 FADD (scalar)

Floating-point Add (scalar). This instruction adds the floating-point values of the two source SIMD&FP registers,
and writes the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FADD <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FADD <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FADD <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 Rm 0 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
C7-1630 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();
 bits(esize) operand1 = V[n];
 bits(esize) operand2 = V[m];

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[n] else Zeros();

 Elem[result, 0, esize] = FPAdd(operand1, operand2, fpcr);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1631
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.51 FADDP (scalar)

Floating-point Add Pair of elements (scalar). This instruction adds two floating-point vector elements in the source
SIMD&FP register and writes the scalar result into the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FADDP <V><d>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer esize = 16;
 if sz == '1' then UNDEFINED;
 integer datasize = 32;

Single-precision and double-precision

Encoding

FADDP <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);
 integer datasize = esize * 2;

Assembler symbols

<V> For the half-precision variant: is the destination width specifier, encoded in the "sz" field. It can
have the following values:

H when sz = 0

0 1 0 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 1 1 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
C7-1632 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the destination width specifier, encoded in
the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in the "sz" field. It can
have the following values:

2H when sz = 0

The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the source arrangement specifier, encoded
in the "sz" field. It can have the following values:

2S when sz = 0

2D when sz = 1

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 V[d] = Reduce(ReduceOp_FADD, operand, esize);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1633
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.52 FADDP (vector)

Floating-point Add Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the
first source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair
of adjacent vector elements from the concatenated vector, adds each pair of values together, places the result into a
vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are
floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FADDP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');

Single-precision and double-precision

Encoding

FADDP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

C7-1634 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 boolean pair = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPAdd(element1, element2, FPCR[]);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1635
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.53 FCADD

Floating-point Complex Add.

This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with
the more significant element holding the imaginary part of the number and the less significant element holding the
real part of the number. Each element holds a floating-point value. It performs the following computation on the
corresponding complex number element pairs from the two source registers:

• Considering the complex number from the second source register on an Argand diagram, the number is
rotated counterclockwise by 90 or 270 degrees.

• The rotated complex number is added to the complex number from the first source register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Vector

(FEAT_FCMA)

Encoding

FCADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>, #<rotate>

Decode for this encoding

 if !HaveFCADDExt() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '00' then UNDEFINED;
 if Q == '0' && size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 if !HaveFP16Ext() && esize == 16 then UNDEFINED;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

0 Q 1 0 1 1 1 0 size 0 Rm 1 1 1 rot 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-1636 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• size = 11, Q = 0.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<rotate> Is the rotation, encoded in the "rot" field. It can have the following values:

90 when rot = 0

270 when rot = 1

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element3;

 for e = 0 to (elements DIV 2)-1
 case rot of
 when '0'
 element1 = FPNeg(Elem[operand2, e*2+1, esize]);
 element3 = Elem[operand2, e*2, esize];
 when '1'
 element1 = Elem[operand2, e*2+1, esize];
 element3 = FPNeg(Elem[operand2, e*2, esize]);
 Elem[result, e*2, esize] = FPAdd(Elem[operand1, e*2, esize], element1, FPCR[]);
 Elem[result, e*2+1, esize] = FPAdd(Elem[operand1, e*2+1, esize], element3, FPCR[]);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1637
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.54 FCCMP

Floating-point Conditional quiet Compare (scalar). This instruction compares the two SIMD&FP source register
values and writes the result to the PSTATE.{N, Z, C, V} flags. If the condition does not pass then the PSTATE.{N,
Z, C, V} flags are set to the flag bit specifier.

This instruction raises an Invalid Operation floating-point exception if either or both of the operands is a signaling
NaN.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FCCMP <Hn>, <Hm>, #<nzcv>, <cond>

Single-precision variant

Applies when ftype == 00.

FCCMP <Sn>, <Sm>, #<nzcv>, <cond>

Double-precision variant

Applies when ftype == 01.

FCCMP <Dn>, <Dm>, #<nzcv>, <cond>

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer m = UInt(Rm);

 integer datasize;
 case ftype of
 when '00' datasize = 32;
 when '01' datasize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 datasize = 16;
 else
 UNDEFINED;

 bits(4) flags = nzcv;

Assembler symbols

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

0 0 0 1 1 1 1 0 ftype 1 Rm cond 0 1 Rn 0 nzcv
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0

op
C7-1638 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 CheckFPEnabled64();

 bits(datasize) operand1 = V[n];
 bits(datasize) operand2;

 operand2 = V[m];

 if ConditionHolds(cond) then
 flags = FPCompare(operand1, operand2, FALSE, FPCR[]);
 PSTATE.<N,Z,C,V> = flags;

Operational information

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either
or both of the operands is a NaN, they are unordered, and all three of (Operand1 < Operand2), (Operand1 ==
Operand2) and (Operand1 > Operand2) are false. An unordered comparison sets the PSTATE condition flags to
N=0, Z=0, C=1, and V=1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1639
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.55 FCCMPE

Floating-point Conditional signaling Compare (scalar). This instruction compares the two SIMD&FP source
register values and writes the result to the PSTATE.{N, Z, C, V} flags. If the condition does not pass then the
PSTATE.{N, Z, C, V} flags are set to the flag bit specifier.

This instruction raises an Invalid Operation floating-point exception if either or both of the operands is any type of
NaN.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FCCMPE <Hn>, <Hm>, #<nzcv>, <cond>

Single-precision variant

Applies when ftype == 00.

FCCMPE <Sn>, <Sm>, #<nzcv>, <cond>

Double-precision variant

Applies when ftype == 01.

FCCMPE <Dn>, <Dm>, #<nzcv>, <cond>

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer m = UInt(Rm);

 integer datasize;
 case ftype of
 when '00' datasize = 32;
 when '01' datasize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 datasize = 16;
 else
 UNDEFINED;

 bits(4) flags = nzcv;

Assembler symbols

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

0 0 0 1 1 1 1 0 ftype 1 Rm cond 0 1 Rn 1 nzcv
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0

op
C7-1640 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 CheckFPEnabled64();

 bits(datasize) operand1 = V[n];
 bits(datasize) operand2;

 operand2 = V[m];

 if ConditionHolds(cond) then
 flags = FPCompare(operand1, operand2, TRUE, FPCR[]);
 PSTATE.<N,Z,C,V> = flags;

Operational information

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either
or both of the operands is a NaN, they are unordered, and all three of (Operand1 < Operand2), (Operand1 ==
Operand2) and (Operand1 > Operand2) are false. An unordered comparison sets the PSTATEcondition flags to N=0,
Z=0, C=1, and V=1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1641
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.56 FCMEQ (register)

Floating-point Compare Equal (vector). This instruction compares each floating-point value from the first source
SIMD&FP register, with the corresponding floating-point value from the second source SIMD&FP register, and if
the comparison is equal sets every bit of the corresponding vector element in the destination SIMD&FP register to
one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCMEQ <Hd>, <Hn>, <Hm>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Scalar single-precision and double-precision

Encoding

FCMEQ <V><d>, <V><n>, <V><m>

0 1 0 1 1 1 1 0 0 1 0 Rm 0 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac

0 1 0 1 1 1 1 0 0 sz 1 Rm 1 1 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac
C7-1642 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector half precision

(FEAT_FP16)

Encoding

FCMEQ <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector single-precision and double-precision

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1643
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FCMEQ <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
C7-1644 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];

 bits(esize) element1;
 bits(esize) element2;
 boolean test_passed;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[m] else Zeros();

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if abs then
 element1 = FPAbs(element1);
 element2 = FPAbs(element2);
 case cmp of
 when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, fpcr);
 when CompareOp_GE test_passed = FPCompareGE(element1, element2, fpcr);
 when CompareOp_GT test_passed = FPCompareGT(element1, element2, fpcr);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1645
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.57 FCMEQ (zero)

Floating-point Compare Equal to zero (vector). This instruction reads each floating-point value in the source
SIMD&FP register and if the value is equal to zero sets every bit of the corresponding vector element in the
destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the
destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCMEQ <Hd>, <Hn>, #0.0

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Scalar single-precision and double-precision

Encoding

FCMEQ <V><d>, <V><n>, #0.0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
C7-1646 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector half precision

(FEAT_FP16)

Encoding

FCMEQ <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector single-precision and double-precision

Encoding

FCMEQ <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1647
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) zero = FPZero('0');
 bits(esize) element;
 boolean test_passed;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 case comparison of
 when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR[]);
 when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR[]);
 when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR[]);
 when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR[]);
 when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR[]);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;
C7-1648 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.58 FCMGE (register)

Floating-point Compare Greater than or Equal (vector). This instruction reads each floating-point value in the first
source SIMD&FP register and if the value is greater than or equal to the corresponding floating-point value in the
second source SIMD&FP register sets every bit of the corresponding vector element in the destination SIMD&FP
register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register
to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCMGE <Hd>, <Hn>, <Hm>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Scalar single-precision and double-precision

Encoding

FCMGE <V><d>, <V><n>, <V><m>

0 1 1 1 1 1 1 0 0 1 0 Rm 0 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac

0 1 1 1 1 1 1 0 0 sz 1 Rm 1 1 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1649
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector half precision

(FEAT_FP16)

Encoding

FCMGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector single-precision and double-precision

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac
C7-1650 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FCMGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1651
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];

 bits(esize) element1;
 bits(esize) element2;
 boolean test_passed;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[m] else Zeros();

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if abs then
 element1 = FPAbs(element1);
 element2 = FPAbs(element2);
 case cmp of
 when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, fpcr);
 when CompareOp_GE test_passed = FPCompareGE(element1, element2, fpcr);
 when CompareOp_GT test_passed = FPCompareGT(element1, element2, fpcr);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;
C7-1652 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.59 FCMGE (zero)

Floating-point Compare Greater than or Equal to zero (vector). This instruction reads each floating-point value in
the source SIMD&FP register and if the value is greater than or equal to zero sets every bit of the corresponding
vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector
element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCMGE <Hd>, <Hn>, #0.0

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Scalar single-precision and double-precision

Encoding

FCMGE <V><d>, <V><n>, #0.0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);

0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 1 1 1 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1653
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector half precision

(FEAT_FP16)

Encoding

FCMGE <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector single-precision and double-precision

Encoding

FCMGE <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
C7-1654 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) zero = FPZero('0');
 bits(esize) element;
 boolean test_passed;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 case comparison of
 when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR[]);
 when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR[]);
 when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR[]);
 when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR[]);
 when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR[]);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1655
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.60 FCMGT (register)

Floating-point Compare Greater than (vector). This instruction reads each floating-point value in the first source
SIMD&FP register and if the value is greater than the corresponding floating-point value in the second source
SIMD&FP register sets every bit of the corresponding vector element in the destination SIMD&FP register to one,
otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCMGT <Hd>, <Hn>, <Hm>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Scalar single-precision and double-precision

Encoding

FCMGT <V><d>, <V><n>, <V><m>

0 1 1 1 1 1 1 0 1 1 0 Rm 0 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac

0 1 1 1 1 1 1 0 1 sz 1 Rm 1 1 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac
C7-1656 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector half precision

(FEAT_FP16)

Encoding

FCMGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector single-precision and double-precision

0 Q 1 0 1 1 1 0 1 1 0 Rm 0 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac

0 Q 1 0 1 1 1 0 1 sz 1 Rm 1 1 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1657
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FCMGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
C7-1658 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];

 bits(esize) element1;
 bits(esize) element2;
 boolean test_passed;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[m] else Zeros();

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if abs then
 element1 = FPAbs(element1);
 element2 = FPAbs(element2);
 case cmp of
 when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, fpcr);
 when CompareOp_GE test_passed = FPCompareGE(element1, element2, fpcr);
 when CompareOp_GT test_passed = FPCompareGT(element1, element2, fpcr);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1659
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.61 FCMGT (zero)

Floating-point Compare Greater than zero (vector). This instruction reads each floating-point value in the source
SIMD&FP register and if the value is greater than zero sets every bit of the corresponding vector element in the
destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the
destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCMGT <Hd>, <Hn>, #0.0

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Scalar single-precision and double-precision

Encoding

FCMGT <V><d>, <V><n>, #0.0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
C7-1660 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector half precision

(FEAT_FP16)

Encoding

FCMGT <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector single-precision and double-precision

Encoding

FCMGT <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1661
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) zero = FPZero('0');
 bits(esize) element;
 boolean test_passed;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 case comparison of
 when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR[]);
 when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR[]);
 when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR[]);
 when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR[]);
 when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR[]);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;
C7-1662 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.62 FCMLA (by element)

Floating-point Complex Multiply Accumulate (by element).

This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with
the more significant element holding the imaginary part of the number and the less significant element holding the
real part of the number. Each element holds a floating-point value. It performs the following computation on
complex numbers from the first source register and the destination register with the specified complex number from
the second source register:

• Considering the complex number from the second source register on an Argand diagram, the number is
rotated counterclockwise by 0, 90, 180, or 270 degrees.

• The two elements of the transformed complex number are multiplied by:

— The real element of the complex number from the first source register, if the transformation was a
rotation by 0 or 180 degrees.

— The imaginary element of the complex number from the first source register, if the transformation was
a rotation by 90 or 270 degrees.

• The complex number resulting from that multiplication is added to the complex number from the destination
register.

The multiplication and addition operations are performed as a fused multiply-add, without any intermediate
rounding.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Vector

(FEAT_FCMA)

Encoding

Applies when size == 01.

FCMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>], #<rotate>

Encoding

Applies when size == 10.

FCMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>], #<rotate>

Decode for all variants of this encoding

 if !HaveFCADDExt() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(M:Rm);
 if size == '00' || size == '11' then UNDEFINED;
 if size == '01' then index = UInt(H:L);
 if size == '10' then index = UInt(H);
 integer esize = 8 << UInt(size);
 if !HaveFP16Ext() && esize == 16 then UNDEFINED;

0 Q 1 0 1 1 1 1 size L M Rm 0 rot 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1663
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 if size == '10' && (L == '1' || Q == '0') then UNDEFINED;
 if size == '01' && H == '1' && Q == '0' then UNDEFINED;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 10, Q = 0.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:H:L" field. It can have the following values:

H:L when size = 01

H when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<rotate> Is the rotation, encoded in the "rot" field. It can have the following values:

0 when rot = 00

90 when rot = 01

180 when rot = 10

270 when rot = 11

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 FPCRType fpcr = FPCR[];

 for e = 0 to (elements DIV 2)-1
 case rot of
 when '00'
C7-1664 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 element1 = Elem[operand2, index*2, esize];
 element2 = Elem[operand1, e*2, esize];
 element3 = Elem[operand2, index*2+1, esize];
 element4 = Elem[operand1, e*2, esize];
 when '01'
 element1 = FPNeg(Elem[operand2, index*2+1, esize]);
 element2 = Elem[operand1, e*2+1, esize];
 element3 = Elem[operand2, index*2, esize];
 element4 = Elem[operand1, e*2+1, esize];
 when '10'
 element1 = FPNeg(Elem[operand2, index*2, esize]);
 element2 = Elem[operand1, e*2, esize];
 element3 = FPNeg(Elem[operand2, index*2+1, esize]);
 element4 = Elem[operand1, e*2, esize];
 when '11'
 element1 = Elem[operand2, index*2+1, esize];
 element2 = Elem[operand1, e*2+1, esize];
 element3 = FPNeg(Elem[operand2, index*2, esize]);
 element4 = Elem[operand1, e*2+1, esize];

 Elem[result, e*2, esize] = FPMulAdd(Elem[operand3, e*2, esize], element2, element1, fpcr);
 Elem[result, e*2+1, esize] = FPMulAdd(Elem[operand3, e*2+1, esize], element4, element3, fpcr);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1665
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.63 FCMLA

Floating-point Complex Multiply Accumulate.

This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with
the more significant element holding the imaginary part of the number and the less significant element holding the
real part of the number. Each element holds a floating-point value. It performs the following computation on the
corresponding complex number element pairs from the two source registers and the destination register:

• Considering the complex number from the second source register on an Argand diagram, the number is
rotated counterclockwise by 0, 90, 180, or 270 degrees.

• The two elements of the transformed complex number are multiplied by:

— The real element of the complex number from the first source register, if the transformation was a
rotation by 0 or 180 degrees.

— The imaginary element of the complex number from the first source register, if the transformation was
a rotation by 90 or 270 degrees.

• The complex number resulting from that multiplication is added to the complex number from the destination
register.

The multiplication and addition operations are performed as a fused multiply-add, without any intermediate
rounding.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Vector

(FEAT_FCMA)

Encoding

FCMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>, #<rotate>

Decode for this encoding

 if !HaveFCADDExt() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '00' then UNDEFINED;
 if Q == '0' && size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 if !HaveFP16Ext() && esize == 16 then UNDEFINED;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

0 Q 1 0 1 1 1 0 size 0 Rm 1 1 0 rot 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-1666 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = 0.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<rotate> Is the rotation, encoded in the "rot" field. It can have the following values:

0 when rot = 00

90 when rot = 01

180 when rot = 10

270 when rot = 11

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;
 bits(esize) element3;
 bits(esize) element4;
 FPCRType fpcr = FPCR[];

 for e = 0 to (elements DIV 2)-1
 case rot of
 when '00'
 element1 = Elem[operand2, e*2, esize];
 element2 = Elem[operand1, e*2, esize];
 element3 = Elem[operand2, e*2+1, esize];
 element4 = Elem[operand1, e*2, esize];
 when '01'
 element1 = FPNeg(Elem[operand2, e*2+1, esize]);
 element2 = Elem[operand1, e*2+1, esize];
 element3 = Elem[operand2, e*2, esize];
 element4 = Elem[operand1, e*2+1, esize];
 when '10'
 element1 = FPNeg(Elem[operand2, e*2, esize]);
 element2 = Elem[operand1, e*2, esize];
 element3 = FPNeg(Elem[operand2, e*2+1, esize]);
 element4 = Elem[operand1, e*2, esize];
 when '11'
 element1 = Elem[operand2, e*2+1, esize];
 element2 = Elem[operand1, e*2+1, esize];
 element3 = FPNeg(Elem[operand2, e*2, esize]);
 element4 = Elem[operand1, e*2+1, esize];

 Elem[result, e*2, esize] = FPMulAdd(Elem[operand3, e*2, esize], element2, element1, fpcr);
 Elem[result, e*2+1, esize] = FPMulAdd(Elem[operand3, e*2+1, esize], element4, element3, fpcr);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1667
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 V[d] = result;
C7-1668 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.64 FCMLE (zero)

Floating-point Compare Less than or Equal to zero (vector). This instruction reads each floating-point value in the
source SIMD&FP register and if the value is less than or equal to zero sets every bit of the corresponding vector
element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element
in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCMLE <Hd>, <Hn>, #0.0

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Scalar single-precision and double-precision

Encoding

FCMLE <V><d>, <V><n>, #0.0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);

0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 1 1 1 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1669
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector half precision

(FEAT_FP16)

Encoding

FCMLE <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector single-precision and double-precision

Encoding

FCMLE <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
C7-1670 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) zero = FPZero('0');
 bits(esize) element;
 boolean test_passed;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 case comparison of
 when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR[]);
 when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR[]);
 when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR[]);
 when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR[]);
 when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR[]);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1671
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.65 FCMLT (zero)

Floating-point Compare Less than zero (vector). This instruction reads each floating-point value in the source
SIMD&FP register and if the value is less than zero sets every bit of the corresponding vector element in the
destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the
destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCMLT <Hd>, <Hn>, #0.0

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;

 CompareOp comparison = CompareOp_LT;

Scalar single-precision and double-precision

Encoding

FCMLT <V><d>, <V><n>, #0.0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;

 CompareOp comparison = CompareOp_LT;

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
C7-1672 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Vector half precision

(FEAT_FP16)

Encoding

FCMLT <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 CompareOp comparison = CompareOp_LT;

Vector single-precision and double-precision

Encoding

FCMLT <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 CompareOp comparison = CompareOp_LT;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1673
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) zero = FPZero('0');
 bits(esize) element;
 boolean test_passed;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 case comparison of
 when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR[]);
 when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR[]);
 when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR[]);
 when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR[]);
 when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR[]);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

 V[d] = result;
C7-1674 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.66 FCMP

Floating-point quiet Compare (scalar). This instruction compares the two SIMD&FP source register values, or the
first SIMD&FP source register value and zero. It writes the result to the PSTATE.{N, Z, C, V} flags.

This instruction raises an Invalid Operation floating-point exception if either or both of the operands is a signaling
NaN.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11 && opc == 00.

FCMP <Hn>, <Hm>

Half-precision, zero variant

Applies when ftype == 11 && Rm == (00000) && opc == 01.

FCMP <Hn>, #0.0

Single-precision variant

Applies when ftype == 00 && opc == 00.

FCMP <Sn>, <Sm>

Single-precision, zero variant

Applies when ftype == 00 && Rm == (00000) && opc == 01.

FCMP <Sn>, #0.0

Double-precision variant

Applies when ftype == 01 && opc == 00.

FCMP <Dn>, <Dm>

Double-precision, zero variant

Applies when ftype == 01 && Rm == (00000) && opc == 01.

FCMP <Dn>, #0.0

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer m = UInt(Rm); // ignored when opc<0> == '1'

 integer datasize;
 case ftype of
 when '00' datasize = 32;

0 0 0 1 1 1 1 0 ftype 1 Rm 0 0 1 0 0 0 Rn 0 x 0 0 0
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 2 1 0

opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1675
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 when '01' datasize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 datasize = 16;
 else
 UNDEFINED;

 boolean signal_all_nans = (opc<1> == '1');
 boolean cmp_with_zero = (opc<0> == '1');

Assembler symbols

<Dn> For the double-precision variant: is the 64-bit name of the first SIMD&FP source register, encoded
in the "Rn" field.

For the double-precision, zero variant: is the 64-bit name of the SIMD&FP source register, encoded
in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hn> For the half-precision variant: is the 16-bit name of the first SIMD&FP source register, encoded in
the "Rn" field.

For the half-precision, zero variant: is the 16-bit name of the SIMD&FP source register, encoded in
the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sn> For the single-precision variant: is the 32-bit name of the first SIMD&FP source register, encoded
in the "Rn" field.

For the single-precision, zero variant: is the 32-bit name of the SIMD&FP source register, encoded
in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();

 bits(datasize) operand1 = V[n];
 bits(datasize) operand2;

 operand2 = if cmp_with_zero then FPZero('0') else V[m];

 PSTATE.<N,Z,C,V> = FPCompare(operand1, operand2, signal_all_nans, FPCR[]);

Operational information

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either
or both of the operands is a NaN, they are unordered, and all three of (Operand1 < Operand2), (Operand1 ==
Operand2) and (Operand1 > Operand2) are false. An unordered comparison sets the PSTATE condition flags to
N=0, Z=0, C=1, and V=1.
C7-1676 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.67 FCMPE

Floating-point signaling Compare (scalar). This instruction compares the two SIMD&FP source register values, or
the first SIMD&FP source register value and zero. It writes the result to the PSTATE.{N, Z, C, V} flags.

This instruction raises an Invalid Operation floating-point exception if either or both of the operands is any type of
NaN.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11 && opc == 10.

FCMPE <Hn>, <Hm>

Half-precision, zero variant

Applies when ftype == 11 && Rm == (00000) && opc == 11.

FCMPE <Hn>, #0.0

Single-precision variant

Applies when ftype == 00 && opc == 10.

FCMPE <Sn>, <Sm>

Single-precision, zero variant

Applies when ftype == 00 && Rm == (00000) && opc == 11.

FCMPE <Sn>, #0.0

Double-precision variant

Applies when ftype == 01 && opc == 10.

FCMPE <Dn>, <Dm>

Double-precision, zero variant

Applies when ftype == 01 && Rm == (00000) && opc == 11.

FCMPE <Dn>, #0.0

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer m = UInt(Rm); // ignored when opc<0> == '1'

 integer datasize;
 case ftype of
 when '00' datasize = 32;

0 0 0 1 1 1 1 0 ftype 1 Rm 0 0 1 0 0 0 Rn 1 x 0 0 0
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 2 1 0

opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1677
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 when '01' datasize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 datasize = 16;
 else
 UNDEFINED;

 boolean signal_all_nans = (opc<1> == '1');
 boolean cmp_with_zero = (opc<0> == '1');

Assembler symbols

<Dn> For the double-precision variant: is the 64-bit name of the first SIMD&FP source register, encoded
in the "Rn" field.

For the double-precision, zero variant: is the 64-bit name of the SIMD&FP source register, encoded
in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hn> For the half-precision variant: is the 16-bit name of the first SIMD&FP source register, encoded in
the "Rn" field.

For the half-precision, zero variant: is the 16-bit name of the SIMD&FP source register, encoded in
the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sn> For the single-precision variant: is the 32-bit name of the first SIMD&FP source register, encoded
in the "Rn" field.

For the single-precision, zero variant: is the 32-bit name of the SIMD&FP source register, encoded
in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();

 bits(datasize) operand1 = V[n];
 bits(datasize) operand2;

 operand2 = if cmp_with_zero then FPZero('0') else V[m];

 PSTATE.<N,Z,C,V> = FPCompare(operand1, operand2, signal_all_nans, FPCR[]);

Operational information

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either
or both of the operands is a NaN, they are unordered, and all three of (Operand1 < Operand2), (Operand1 ==
Operand2) and (Operand1 > Operand2) are false. An unordered comparison sets the PSTATE condition flags to
N=0, Z=0, C=1, and V=1.
C7-1678 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.68 FCSEL

Floating-point Conditional Select (scalar). This instruction allows the SIMD&FP destination register to take the
value from either one or the other of two SIMD&FP source registers. If the condition passes, the first SIMD&FP
source register value is taken, otherwise the second SIMD&FP source register value is taken.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FCSEL <Hd>, <Hn>, <Hm>, <cond>

Single-precision variant

Applies when ftype == 00.

FCSEL <Sd>, <Sn>, <Sm>, <cond>

Double-precision variant

Applies when ftype == 01.

FCSEL <Dd>, <Dn>, <Dm>, <cond>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 integer datasize;
 case ftype of
 when '00' datasize = 32;
 when '01' datasize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 datasize = 16;
 else
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

0 0 0 1 1 1 1 0 ftype 1 Rm cond 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1679
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 CheckFPEnabled64();
 bits(datasize) result;

 result = if ConditionHolds(cond) then V[n] else V[m];

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1680 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.69 FCVT

Floating-point Convert precision (scalar). This instruction converts the floating-point value in the SIMD&FP source
register to the precision for the destination register data type using the rounding mode that is determined by the
FPCR and writes the result to the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to single-precision variant

Applies when ftype == 11 && opc == 00.

FCVT <Sd>, <Hn>

Half-precision to double-precision variant

Applies when ftype == 11 && opc == 01.

FCVT <Dd>, <Hn>

Single-precision to half-precision variant

Applies when ftype == 00 && opc == 11.

FCVT <Hd>, <Sn>

Single-precision to double-precision variant

Applies when ftype == 00 && opc == 01.

FCVT <Dd>, <Sn>

Double-precision to half-precision variant

Applies when ftype == 01 && opc == 11.

FCVT <Hd>, <Dn>

Double-precision to single-precision variant

Applies when ftype == 01 && opc == 00.

FCVT <Sd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer srcsize;
 integer dstsize;

 if ftype == opc then UNDEFINED;

 case ftype of
 when '00' srcsize = 32;
 when '01' srcsize = 64;
 when '10' UNDEFINED;
 when '11' srcsize = 16;

0 0 0 1 1 1 1 0 ftype 1 0 0 0 1 opc 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1681
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 case opc of
 when '00' dstsize = 32;
 when '01' dstsize = 64;
 when '10' UNDEFINED;
 when '11' dstsize = 16;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 bits(srcsize) operand = V[n];
 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 Elem[result, 0, dstsize] = FPConvert(operand, fpcr);

 V[d] = result;
C7-1682 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.70 FCVTAS (vector)

Floating-point Convert to Signed integer, rounding to nearest with ties to Away (vector). This instruction converts
each element in a vector from a floating-point value to a signed integer value using the Round to Nearest with Ties
to Away rounding mode and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCVTAS <Hd>, <Hn>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;

 FPRounding rounding = FPRounding_TIEAWAY;
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

FCVTAS <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;

0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 1 0 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1683
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding = FPRounding_TIEAWAY;
 boolean unsigned = (U == '1');

Vector half precision

(FEAT_FP16)

Encoding

FCVTAS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 FPRounding rounding = FPRounding_TIEAWAY;
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

FCVTAS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 FPRounding rounding = FPRounding_TIEAWAY;
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

C7-1684 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 bits(esize) element;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, fpcr, rounding);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1685
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.71 FCVTAS (scalar)

Floating-point Convert to Signed integer, rounding to nearest with ties to Away (scalar). This instruction converts
the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round to
Nearest with Ties to Away rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTAS <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTAS <Xd>, <Hn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTAS <Wd>, <Sn>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTAS <Xd>, <Sn>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTAS <Wd>, <Dn>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTAS <Xd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer intsize = if sf == '1' then 64 else 32;
 integer fltsize;

 case ftype of

sf 0 0 1 1 1 1 0 ftype 1 0 0 1 0 0 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
C7-1686 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 when '00'
 fltsize = 32;
 when '01'
 fltsize = 64;
 when '10'
 UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 bits(fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n];
 intval = FPToFixed(fltval, 0, FALSE, fpcr, FPRounding_TIEAWAY);
 X[d] = intval;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1687
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.72 FCVTAU (vector)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (vector). This instruction converts
each element in a vector from a floating-point value to an unsigned integer value using the Round to Nearest with
Ties to Away rounding mode and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCVTAU <Hd>, <Hn>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;

 FPRounding rounding = FPRounding_TIEAWAY;
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

FCVTAU <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;

0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 1 1 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

C7-1688 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding = FPRounding_TIEAWAY;
 boolean unsigned = (U == '1');

Vector half precision

(FEAT_FP16)

Encoding

FCVTAU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 FPRounding rounding = FPRounding_TIEAWAY;
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

FCVTAU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 FPRounding rounding = FPRounding_TIEAWAY;
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1689
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 bits(esize) element;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, fpcr, rounding);

 V[d] = result;
C7-1690 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.73 FCVTAU (scalar)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (scalar). This instruction converts
the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round to
Nearest with Ties to Away rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTAU <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTAU <Xd>, <Hn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTAU <Wd>, <Sn>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTAU <Xd>, <Sn>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTAU <Wd>, <Dn>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTAU <Xd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer intsize = if sf == '1' then 64 else 32;
 integer fltsize;

 case ftype of

sf 0 0 1 1 1 1 0 ftype 1 0 0 1 0 1 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1691
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 when '00'
 fltsize = 32;
 when '01'
 fltsize = 64;
 when '10'
 UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 bits(fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n];
 intval = FPToFixed(fltval, 0, TRUE, fpcr, FPRounding_TIEAWAY);
 X[d] = intval;
C7-1692 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.74 FCVTL, FCVTL2

Floating-point Convert to higher precision Long (vector). This instruction reads each element in a vector in the
SIMD&FP source register, converts each value to double the precision of the source element using the rounding
mode that is determined by the FPCR, and writes each result to the equivalent element of the vector in the
SIMD&FP destination register.

Where the operation lengthens a 64-bit vector to a 128-bit vector, the FCVTL2 variant operates on the elements in the
top 64 bits of the source register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

FCVTL{2} <Vd>.<Ta>, <Vn>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16 << UInt(sz);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "sz" field. It can have the following values:

4S when sz = 0

2D when sz = 1

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

4H when sz = 0, Q = 0

8H when sz = 0, Q = 1

2S when sz = 1, Q = 0

4S when sz = 1, Q = 1

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 0 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1693
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = Vpart[n, part];
 bits(2*datasize) result;

 for e = 0 to elements-1
 Elem[result, e, 2*esize] = FPConvert(Elem[operand, e, esize], FPCR[]);

 V[d] = result;
C7-1694 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.75 FCVTMS (vector)

Floating-point Convert to Signed integer, rounding toward Minus infinity (vector). This instruction converts a scalar
or each element in a vector from a floating-point value to a signed integer value using the Round towards Minus
Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCVTMS <Hd>, <Hn>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

FCVTMS <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;

0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 1 0 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1695
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector half precision

(FEAT_FP16)

Encoding

FCVTMS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

FCVTMS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
C7-1696 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 bits(esize) element;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, fpcr, rounding);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1697
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.76 FCVTMS (scalar)

Floating-point Convert to Signed integer, rounding toward Minus infinity (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round towards
Minus Infinity rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTMS <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTMS <Xd>, <Hn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTMS <Wd>, <Sn>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTMS <Xd>, <Sn>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTMS <Wd>, <Dn>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTMS <Xd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer intsize = if sf == '1' then 64 else 32;
 integer fltsize;
 FPRounding rounding;

sf 0 0 1 1 1 1 0 ftype 1 1 0 0 0 0 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
C7-1698 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 case ftype of
 when '00'
 fltsize = 32;
 when '01'
 fltsize = 64;
 when '10'
 UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

 rounding = FPDecodeRounding(rmode);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 bits(fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n];
 intval = FPToFixed(fltval, 0, FALSE, fpcr, rounding);
 X[d] = intval;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1699
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.77 FCVTMU (vector)

Floating-point Convert to Unsigned integer, rounding toward Minus infinity (vector). This instruction converts a
scalar or each element in a vector from a floating-point value to an unsigned integer value using the Round towards
Minus Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCVTMU <Hd>, <Hn>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

FCVTMU <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;

0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 1 1 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
C7-1700 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector half precision

(FEAT_FP16)

Encoding

FCVTMU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

FCVTMU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1701
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 bits(esize) element;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, fpcr, rounding);

 V[d] = result;
C7-1702 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.78 FCVTMU (scalar)

Floating-point Convert to Unsigned integer, rounding toward Minus infinity (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round towards
Minus Infinity rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTMU <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTMU <Xd>, <Hn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTMU <Wd>, <Sn>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTMU <Xd>, <Sn>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTMU <Wd>, <Dn>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTMU <Xd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer intsize = if sf == '1' then 64 else 32;
 integer fltsize;
 FPRounding rounding;

sf 0 0 1 1 1 1 0 ftype 1 1 0 0 0 1 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1703
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 case ftype of
 when '00'
 fltsize = 32;
 when '01'
 fltsize = 64;
 when '10'
 UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

 rounding = FPDecodeRounding(rmode);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 bits(fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n];
 intval = FPToFixed(fltval, 0, TRUE, fpcr, rounding);
 X[d] = intval;
C7-1704 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.79 FCVTN, FCVTN2

Floating-point Convert to lower precision Narrow (vector). This instruction reads each vector element in the
SIMD&FP source register, converts each result to half the precision of the source element, writes the final result to
a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. The destination
vector elements are half as long as the source vector elements. The rounding mode is determined by the FPCR.

The FCVTN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the FCVTN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Encoding

FCVTN{2} <Vd>.<Tb>, <Vn>.<Ta>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16 << UInt(sz);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

4H when sz = 0, Q = 0

8H when sz = 0, Q = 1

2S when sz = 1, Q = 0

4S when sz = 1, Q = 1

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "sz" field. It can have the following values:

4S when sz = 0

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 0 1 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1705
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
2D when sz = 1

Operation

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand = V[n];
 bits(datasize) result;

 for e = 0 to elements-1
 Elem[result, e, esize] = FPConvert(Elem[operand, e, 2*esize], FPCR[]);

 Vpart[d, part] = result;
C7-1706 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.80 FCVTNS (vector)

Floating-point Convert to Signed integer, rounding to nearest with ties to even (vector). This instruction converts a
scalar or each element in a vector from a floating-point value to a signed integer value using the Round to Nearest
rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCVTNS <Hd>, <Hn>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

FCVTNS <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;

0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 1 0 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1707
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector half precision

(FEAT_FP16)

Encoding

FCVTNS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

FCVTNS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
C7-1708 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 bits(esize) element;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, fpcr, rounding);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1709
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.81 FCVTNS (scalar)

Floating-point Convert to Signed integer, rounding to nearest with ties to even (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round to Nearest
rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTNS <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTNS <Xd>, <Hn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTNS <Wd>, <Sn>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTNS <Xd>, <Sn>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTNS <Wd>, <Dn>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTNS <Xd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer intsize = if sf == '1' then 64 else 32;
 integer fltsize;
 FPRounding rounding;

sf 0 0 1 1 1 1 0 ftype 1 0 0 0 0 0 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
C7-1710 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 case ftype of
 when '00'
 fltsize = 32;
 when '01'
 fltsize = 64;
 when '10'
 UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

 rounding = FPDecodeRounding(rmode);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 bits(fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n];
 intval = FPToFixed(fltval, 0, FALSE, fpcr, rounding);
 X[d] = intval;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1711
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.82 FCVTNU (vector)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (vector). This instruction converts
a scalar or each element in a vector from a floating-point value to an unsigned integer value using the Round to
Nearest rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCVTNU <Hd>, <Hn>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

FCVTNU <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;

0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 1 1 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
C7-1712 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector half precision

(FEAT_FP16)

Encoding

FCVTNU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

FCVTNU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1713
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 bits(esize) element;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, fpcr, rounding);

 V[d] = result;
C7-1714 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.83 FCVTNU (scalar)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (scalar). This instruction converts
the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round to
Nearest rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTNU <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTNU <Xd>, <Hn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTNU <Wd>, <Sn>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTNU <Xd>, <Sn>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTNU <Wd>, <Dn>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTNU <Xd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer intsize = if sf == '1' then 64 else 32;
 integer fltsize;
 FPRounding rounding;

sf 0 0 1 1 1 1 0 ftype 1 0 0 0 0 1 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1715
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 case ftype of
 when '00'
 fltsize = 32;
 when '01'
 fltsize = 64;
 when '10'
 UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

 rounding = FPDecodeRounding(rmode);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 bits(fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n];
 intval = FPToFixed(fltval, 0, TRUE, fpcr, rounding);
 X[d] = intval;
C7-1716 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.84 FCVTPS (vector)

Floating-point Convert to Signed integer, rounding toward Plus infinity (vector). This instruction converts a scalar
or each element in a vector from a floating-point value to a signed integer value using the Round towards Plus
Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCVTPS <Hd>, <Hn>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

FCVTPS <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1717
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector half precision

(FEAT_FP16)

Encoding

FCVTPS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

FCVTPS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
C7-1718 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 bits(esize) element;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, fpcr, rounding);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1719
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.85 FCVTPS (scalar)

Floating-point Convert to Signed integer, rounding toward Plus infinity (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round towards
Plus Infinity rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTPS <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTPS <Xd>, <Hn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTPS <Wd>, <Sn>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTPS <Xd>, <Sn>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTPS <Wd>, <Dn>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTPS <Xd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer intsize = if sf == '1' then 64 else 32;
 integer fltsize;
 FPRounding rounding;

sf 0 0 1 1 1 1 0 ftype 1 0 1 0 0 0 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
C7-1720 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 case ftype of
 when '00'
 fltsize = 32;
 when '01'
 fltsize = 64;
 when '10'
 UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

 rounding = FPDecodeRounding(rmode);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 bits(fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n];
 intval = FPToFixed(fltval, 0, FALSE, fpcr, rounding);
 X[d] = intval;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1721
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.86 FCVTPU (vector)

Floating-point Convert to Unsigned integer, rounding toward Plus infinity (vector). This instruction converts a
scalar or each element in a vector from a floating-point value to an unsigned integer value using the Round towards
Plus Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCVTPU <Hd>, <Hn>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

FCVTPU <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;

0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 1 1 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
C7-1722 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector half precision

(FEAT_FP16)

Encoding

FCVTPU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

FCVTPU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1723
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 bits(esize) element;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, fpcr, rounding);

 V[d] = result;
C7-1724 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.87 FCVTPU (scalar)

Floating-point Convert to Unsigned integer, rounding toward Plus infinity (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round towards
Plus Infinity rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTPU <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTPU <Xd>, <Hn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTPU <Wd>, <Sn>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTPU <Xd>, <Sn>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTPU <Wd>, <Dn>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTPU <Xd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer intsize = if sf == '1' then 64 else 32;
 integer fltsize;
 FPRounding rounding;

sf 0 0 1 1 1 1 0 ftype 1 0 1 0 0 1 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1725
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 case ftype of
 when '00'
 fltsize = 32;
 when '01'
 fltsize = 64;
 when '10'
 UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

 rounding = FPDecodeRounding(rmode);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 bits(fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n];
 intval = FPToFixed(fltval, 0, TRUE, fpcr, rounding);
 X[d] = intval;
C7-1726 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.88 FCVTXN, FCVTXN2

Floating-point Convert to lower precision Narrow, rounding to odd (vector). This instruction reads each vector
element in the source SIMD&FP register, narrows each value to half the precision of the source element using the
Round to Odd rounding mode, writes the result to a vector, and writes the vector to the destination SIMD&FP
register.

Note

This instruction uses the Round to Odd rounding mode which is not defined by the IEEE 754-2008 standard. This
rounding mode ensures that if the result of the conversion is inexact the least significant bit of the mantissa is forced
to 1. This rounding mode enables a floating-point value to be converted to a lower precision format via an
intermediate precision format while avoiding double rounding errors. For example, a 64-bit floating-point value can
be converted to a correctly rounded 16-bit floating-point value by first using this instruction to produce a 32-bit
value and then using another instruction with the wanted rounding mode to convert the 32-bit value to the final
16-bit floating-point value.

The FCVTXN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the FCVTXN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

FCVTXN <Vb><d>, <Va><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz == '0' then UNDEFINED;
 integer esize = 32;
 integer datasize = esize;
 integer elements = 1;
 integer part = 0;

Vector

Encoding

FCVTXN{2} <Vd>.<Tb>, <Vn>.<Ta>

0 1 1 1 1 1 1 0 0 sz 1 0 0 0 0 1 0 1 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 0 1 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1727
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz == '0' then UNDEFINED;
 integer esize = 32;
 integer datasize = 64;
 integer elements = 2;
 integer part = UInt(Q);

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 1, Q = 0

4S when sz = 1, Q = 1

The encoding sz = 0, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "sz" field. It can have the following values:

2D when sz = 1

The encoding sz = 0 is reserved.

<Vb> Is the destination width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 1

The encoding sz = 0 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Va> Is the source width specifier, encoded in the "sz" field. It can have the following values:

D when sz = 1

The encoding sz = 0 is reserved.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(2*datasize) operand = V[n];
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 for e = 0 to elements-1
 Elem[result, e, esize] = FPConvert(Elem[operand, e, 2*esize], fpcr, FPRounding_ODD);

 if merge then
 V[d] = result;
C7-1728 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 else
 Vpart[d, part] = Elem[result, 0, datasize];
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1729
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.89 FCVTZS (vector, fixed-point)

Floating-point Convert to Signed fixed-point, rounding toward Zero (vector). This instruction converts a scalar or
each element in a vector from floating-point to fixed-point signed integer using the Round towards Zero rounding
mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar

Encoding

FCVTZS <V><d>, <V><n>, #<fbits>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then UNDEFINED;
 integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
 integer datasize = esize;
 integer elements = 1;

 integer fracbits = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 FPRounding rounding = FPRounding_ZERO;

Vector

Encoding

FCVTZS <Vd>.<T>, <Vn>.<T>, #<fbits>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then UNDEFINED;
 if immh<3>:Q == '10' then UNDEFINED;
 integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 integer fracbits = (esize * 2) - UInt(immh:immb);

0 1 0 1 1 1 1 1 0 !=0000 immb 1 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh

0 Q 0 0 1 1 1 1 0 !=0000 immb 1 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh
C7-1730 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean unsigned = (U == '1');
 FPRounding rounding = FPRounding_ZERO;

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 001x

S when immh = 01xx

D when immh = 1xxx

The encoding immh = 000x is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The following encodings are reserved:

• immh = 0001, Q = x.

• immh = 1xxx, Q = 0.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded
in the "immh:immb" field. It can have the following values:

(32-Uint(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 000x is reserved.

For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded
in the "immh:immb" field. It can have the following values:

(32-Uint(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 0001 is reserved.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 bits(esize) element;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1731
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 bits(128) result = if merge then V[d] else Zeros();
 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, fracbits, unsigned, fpcr, rounding);

 V[d] = result;
C7-1732 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.90 FCVTZS (vector, integer)

Floating-point Convert to Signed integer, rounding toward Zero (vector). This instruction converts a scalar or each
element in a vector from a floating-point value to a signed integer value using the Round towards Zero rounding
mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCVTZS <Hd>, <Hn>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

FCVTZS <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1733
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector half precision

(FEAT_FP16)

Encoding

FCVTZS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

FCVTZS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
C7-1734 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 bits(esize) element;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, fpcr, rounding);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1735
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.91 FCVTZS (scalar, fixed-point)

Floating-point Convert to Signed fixed-point, rounding toward Zero (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit fixed-point signed integer using the Round
towards Zero rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTZS <Wd>, <Hn>, #<fbits>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTZS <Xd>, <Hn>, #<fbits>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTZS <Wd>, <Sn>, #<fbits>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTZS <Xd>, <Sn>, #<fbits>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTZS <Wd>, <Dn>, #<fbits>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTZS <Xd>, <Dn>, #<fbits>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer intsize = if sf == '1' then 64 else 32;
 integer fltsize;

 case ftype of

sf 0 0 1 1 1 1 0 ftype 0 1 1 0 0 0 scale Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 10 9 5 4 0

rmode opcode
C7-1736 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 when '00' fltsize = 32;
 when '01' fltsize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

 if sf == '0' && scale<5> == '0' then UNDEFINED;
 integer fracbits = 64 - UInt(scale);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the double-precision to 32-bit, half-precision to 32-bit and single-precision to 32-bit variant: is
the number of bits after the binary point in the fixed-point destination, in the range 1 to 32, encoded
as 64 minus "scale".

For the double-precision to 64-bit, half-precision to 64-bit and single-precision to 64-bit variant: is
the number of bits after the binary point in the fixed-point destination, in the range 1 to 64, encoded
as 64 minus "scale".

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 bits(fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n];
 intval = FPToFixed(fltval, fracbits, FALSE, fpcr, FPRounding_ZERO);
 X[d] = intval;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1737
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.92 FCVTZS (scalar, integer)

Floating-point Convert to Signed integer, rounding toward Zero (scalar). This instruction converts the floating-point
value in the SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round towards Zero rounding
mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTZS <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTZS <Xd>, <Hn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTZS <Wd>, <Sn>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTZS <Xd>, <Sn>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTZS <Wd>, <Dn>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTZS <Xd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer intsize = if sf == '1' then 64 else 32;
 integer fltsize;
 FPRounding rounding;

sf 0 0 1 1 1 1 0 ftype 1 1 1 0 0 0 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
C7-1738 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 case ftype of
 when '00'
 fltsize = 32;
 when '01'
 fltsize = 64;
 when '10'
 UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

 rounding = FPDecodeRounding(rmode);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 bits(fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n];
 intval = FPToFixed(fltval, 0, FALSE, fpcr, rounding);
 X[d] = intval;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1739
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.93 FCVTZU (vector, fixed-point)

Floating-point Convert to Unsigned fixed-point, rounding toward Zero (vector). This instruction converts a scalar
or each element in a vector from floating-point to fixed-point unsigned integer using the Round towards Zero
rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar

Encoding

FCVTZU <V><d>, <V><n>, #<fbits>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then UNDEFINED;
 integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
 integer datasize = esize;
 integer elements = 1;

 integer fracbits = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 FPRounding rounding = FPRounding_ZERO;

Vector

Encoding

FCVTZU <Vd>.<T>, <Vn>.<T>, #<fbits>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then UNDEFINED;
 if immh<3>:Q == '10' then UNDEFINED;
 integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 integer fracbits = (esize * 2) - UInt(immh:immb);

0 1 1 1 1 1 1 1 0 !=0000 immb 1 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh

0 Q 1 0 1 1 1 1 0 !=0000 immb 1 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh
C7-1740 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean unsigned = (U == '1');
 FPRounding rounding = FPRounding_ZERO;

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 001x

S when immh = 01xx

D when immh = 1xxx

The encoding immh = 000x is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The following encodings are reserved:

• immh = 0001, Q = x.

• immh = 1xxx, Q = 0.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded
in the "immh:immb" field. It can have the following values:

(32-Uint(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 000x is reserved.

For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded
in the "immh:immb" field. It can have the following values:

(32-Uint(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 0001 is reserved.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 bits(esize) element;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1741
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 bits(128) result = if merge then V[d] else Zeros();
 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, fracbits, unsigned, fpcr, rounding);

 V[d] = result;
C7-1742 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.94 FCVTZU (vector, integer)

Floating-point Convert to Unsigned integer, rounding toward Zero (vector). This instruction converts a scalar or
each element in a vector from a floating-point value to an unsigned integer value using the Round towards Zero
rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCVTZU <Hd>, <Hn>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

FCVTZU <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;

0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 1 1 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1743
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector half precision

(FEAT_FP16)

Encoding

FCVTZU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

FCVTZU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
C7-1744 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 bits(esize) element;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, fpcr, rounding);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1745
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.95 FCVTZU (scalar, fixed-point)

Floating-point Convert to Unsigned fixed-point, rounding toward Zero (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit fixed-point unsigned integer using the
Round towards Zero rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTZU <Wd>, <Hn>, #<fbits>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTZU <Xd>, <Hn>, #<fbits>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTZU <Wd>, <Sn>, #<fbits>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTZU <Xd>, <Sn>, #<fbits>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTZU <Wd>, <Dn>, #<fbits>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTZU <Xd>, <Dn>, #<fbits>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer intsize = if sf == '1' then 64 else 32;
 integer fltsize;

 case ftype of

sf 0 0 1 1 1 1 0 ftype 0 1 1 0 0 1 scale Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 10 9 5 4 0

rmode opcode
C7-1746 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 when '00' fltsize = 32;
 when '01' fltsize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

 if sf == '0' && scale<5> == '0' then UNDEFINED;
 integer fracbits = 64 - UInt(scale);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the double-precision to 32-bit, half-precision to 32-bit and single-precision to 32-bit variant: is
the number of bits after the binary point in the fixed-point destination, in the range 1 to 32, encoded
as 64 minus "scale".

For the double-precision to 64-bit, half-precision to 64-bit and single-precision to 64-bit variant: is
the number of bits after the binary point in the fixed-point destination, in the range 1 to 64, encoded
as 64 minus "scale".

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 bits(fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n];
 intval = FPToFixed(fltval, fracbits, TRUE, fpcr, FPRounding_ZERO);
 X[d] = intval;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1747
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.96 FCVTZU (scalar, integer)

Floating-point Convert to Unsigned integer, rounding toward Zero (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round towards
Zero rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTZU <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTZU <Xd>, <Hn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTZU <Wd>, <Sn>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTZU <Xd>, <Sn>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTZU <Wd>, <Dn>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTZU <Xd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer intsize = if sf == '1' then 64 else 32;
 integer fltsize;
 FPRounding rounding;

sf 0 0 1 1 1 1 0 ftype 1 1 1 0 0 1 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
C7-1748 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 case ftype of
 when '00'
 fltsize = 32;
 when '01'
 fltsize = 64;
 when '10'
 UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

 rounding = FPDecodeRounding(rmode);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 bits(fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n];
 intval = FPToFixed(fltval, 0, TRUE, fpcr, rounding);
 X[d] = intval;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1749
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.97 FDIV (vector)

Floating-point Divide (vector). This instruction divides the floating-point values in the elements in the first source
SIMD&FP register, by the floating-point values in the corresponding elements in the second source SIMD&FP
register, places the results in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FDIV <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Single-precision and double-precision

Encoding

FDIV <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-1750 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPDiv(element1, element2, FPCR[]);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1751
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.98 FDIV (scalar)

Floating-point Divide (scalar). This instruction divides the floating-point value of the first source SIMD&FP
register by the floating-point value of the second source SIMD&FP register, and writes the result to the destination
SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FDIV <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FDIV <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FDIV <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 Rm 0 0 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-1752 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();
 bits(esize) operand1 = V[n];
 bits(esize) operand2 = V[m];

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[n] else Zeros();

 Elem[result, 0, esize] = FPDiv(operand1, operand2, FPCR[]);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1753
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.99 FJCVTZS

Floating-point Javascript Convert to Signed fixed-point, rounding toward Zero. This instruction converts the
double-precision floating-point value in the SIMD&FP source register to a 32-bit signed integer using the Round
towards Zero rounding mode, and writes the result to the general-purpose destination register. If the result is too
large to be represented as a signed 32-bit integer, then the result is the integer modulo 232, as held in a 32-bit signed
integer.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Double-precision to 32-bit

(FEAT_JSCVT)

Encoding

FJCVTZS <Wd>, <Dn>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !HaveFJCVTZSExt() then UNDEFINED;

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 bits(64) fltval;
 bits(32) intval;

 bit Z;
 fltval = V[n];
 (intval, Z) = FPToFixedJS(fltval, fpcr, TRUE);
 PSTATE.<N,Z,C,V> = '0':Z:'00';
 X[d] = intval;

0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

sf ftype rmode opcode
C7-1754 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.100 FMADD

Floating-point fused Multiply-Add (scalar). This instruction multiplies the values of the first two SIMD&FP source
registers, adds the product to the value of the third SIMD&FP source register, and writes the result to the SIMD&FP
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FMADD <Hd>, <Hn>, <Hm>, <Ha>

Single-precision variant

Applies when ftype == 00.

FMADD <Sd>, <Sn>, <Sm>, <Sa>

Double-precision variant

Applies when ftype == 01.

FMADD <Dd>, <Dn>, <Dm>, <Da>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer a = UInt(Ra);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

0 0 0 1 1 1 1 1 ftype 0 Rm 0 Ra Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

o1 o0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1755
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Da> Is the 64-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra"
field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Ha> Is the 16-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra"
field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Sa> Is the 32-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra"
field.

Operation

 CheckFPEnabled64();

 bits(esize) operanda = V[a];
 bits(esize) operand1 = V[n];
 bits(esize) operand2 = V[m];

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[a] else Zeros();

 Elem[result, 0, esize] = FPMulAdd(operanda, operand1, operand2, fpcr);

 V[d] = result;
C7-1756 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.101 FMAX (vector)

Floating-point Maximum (vector). This instruction compares corresponding vector elements in the two source
SIMD&FP registers, places the larger of each of the two floating-point values into a vector, and writes the vector to
the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Single-precision and double-precision

Encoding

FMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1757
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];

 if minimum then
 Elem[result, e, esize] = FPMin(element1, element2, FPCR[]);
 else
 Elem[result, e, esize] = FPMax(element1, element2, FPCR[]);

 V[d] = result;
C7-1758 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.102 FMAX (scalar)

Floating-point Maximum (scalar). This instruction compares the two source SIMD&FP registers, and writes the
larger of the two floating-point values to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FMAX <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FMAX <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FMAX <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 Rm 0 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1759
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();
 bits(esize) operand1 = V[n];
 bits(esize) operand2 = V[m];

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[n] else Zeros();

 Elem[result, 0, esize] = FPMax(operand1, operand2, fpcr);
 V[d] = result;
C7-1760 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.103 FMAXNM (vector)

Floating-point Maximum Number (vector). This instruction compares corresponding vector elements in the two
source SIMD&FP registers, writes the larger of the two floating-point values into a vector, and writes the vector to
the destination SIMD&FP register.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet
NaN, the result placed in the vector is the numerical value, otherwise the result is identical to FMAX (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMAXNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (a == '1');

Single-precision and double-precision

Encoding

FMAXNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U a

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1761
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];

 if minimum then
 Elem[result, e, esize] = FPMinNum(element1, element2, FPCR[]);
 else
 Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR[]);

 V[d] = result;
C7-1762 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.104 FMAXNM (scalar)

Floating-point Maximum Number (scalar). This instruction compares the first and second source SIMD&FP
register values, and writes the larger of the two floating-point values to the destination SIMD&FP register.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet
NaN, the result that is placed in the vector is the numerical value, otherwise the result is identical to FMAX (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FMAXNM <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FMAXNM <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FMAXNM <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

0 0 0 1 1 1 1 0 ftype 1 Rm 0 1 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1763
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();
 bits(esize) operand1 = V[n];
 bits(esize) operand2 = V[m];

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[n] else Zeros();

 Elem[result, 0, esize] = FPMaxNum(operand1, operand2, fpcr);
 V[d] = result;
C7-1764 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.105 FMAXNMP (scalar)

Floating-point Maximum Number of Pair of elements (scalar). This instruction compares two vector elements in the
source SIMD&FP register and writes the largest of the floating-point values as a scalar to the destination SIMD&FP
register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMAXNMP <V><d>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 if sz == '1' then UNDEFINED;
 integer datasize = 32;

Single-precision and double-precision

Encoding

FMAXNMP <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);
 integer datasize = esize * 2;

0 1 0 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1

0 1 1 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1765
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> For the half-precision variant: is the destination width specifier, encoded in the "sz" field. It can
have the following values:

H when sz = 0

The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the destination width specifier, encoded in
the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in the "sz" field. It can
have the following values:

2H when sz = 0

The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the source arrangement specifier, encoded
in the "sz" field. It can have the following values:

2S when sz = 0

2D when sz = 1

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 V[d] = Reduce(ReduceOp_FMAXNUM, operand, esize, FALSE);
C7-1766 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.106 FMAXNMP (vector)

Floating-point Maximum Number Pairwise (vector). This instruction creates a vector by concatenating the vector
elements of the first source SIMD&FP register after the vector elements of the second source SIMD&FP register,
reads each pair of adjacent vector elements in the two source SIMD&FP registers, writes the largest of each pair of
values into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are
floating-point values.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet
NaN, the result is the numerical value, otherwise the result is identical to FMAX (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMAXNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (a == '1');

Single-precision and double-precision

Encoding

FMAXNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U a

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1767
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];

 if minimum then
 Elem[result, e, esize] = FPMinNum(element1, element2, FPCR[]);
 else
 Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR[]);

 V[d] = result;
C7-1768 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.107 FMAXNMV

Floating-point Maximum Number across Vector. This instruction compares all the vector elements in the source
SIMD&FP register, and writes the largest of the values as a scalar to the destination SIMD&FP register. All the
values in this instruction are floating-point values.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet
NaN, the result of the comparison is the numerical value, otherwise the result is identical to FMAX (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMAXNMV <V><d>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;

Single-precision and double-precision

Encoding

FMAXNMV <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q != '01' then UNDEFINED; // .4S only

 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;

0 Q 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1

0 Q 1 0 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1769
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> For the half-precision variant: is the destination width specifier, H.

For the single-precision and double-precision variant: is the destination width specifier, encoded in
the "sz" field. It can have the following values:

S when sz = 0

The encoding sz = 1 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"Q:sz" field. It can have the following values:

4S when Q = 1, sz = 0

The following encodings are reserved:

• Q = 0, sz = x.

• Q = 1, sz = 1.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 V[d] = Reduce(ReduceOp_FMAXNUM, operand, esize, FALSE);
C7-1770 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.108 FMAXP (scalar)

Floating-point Maximum of Pair of elements (scalar). This instruction compares two vector elements in the source
SIMD&FP register and writes the largest of the floating-point values as a scalar to the destination SIMD&FP
register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMAXP <V><d>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 if sz == '1' then UNDEFINED;
 integer datasize = 32;

Single-precision and double-precision

Encoding

FMAXP <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);
 integer datasize = esize * 2;

0 1 0 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1

0 1 1 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1771
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> For the half-precision variant: is the destination width specifier, encoded in the "sz" field. It can
have the following values:

H when sz = 0

The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the destination width specifier, encoded in
the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in the "sz" field. It can
have the following values:

2H when sz = 0

The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the source arrangement specifier, encoded
in the "sz" field. It can have the following values:

2S when sz = 0

2D when sz = 1

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 V[d] = Reduce(ReduceOp_FMAX, operand, esize);
C7-1772 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.109 FMAXP (vector)

Floating-point Maximum Pairwise (vector). This instruction creates a vector by concatenating the vector elements
of the first source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each
pair of adjacent vector elements from the concatenated vector, writes the larger of each pair of values into a vector,
and writes the vector to the destination SIMD&FP register. All the values in this instruction are floating-point
values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Single-precision and double-precision

Encoding

FMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1773
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];

 if minimum then
 Elem[result, e, esize] = FPMin(element1, element2, FPCR[]);
 else
 Elem[result, e, esize] = FPMax(element1, element2, FPCR[]);

 V[d] = result;
C7-1774 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.110 FMAXV

Floating-point Maximum across Vector. This instruction compares all the vector elements in the source SIMD&FP
register, and writes the largest of the values as a scalar to the destination SIMD&FP register. All the values in this
instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMAXV <V><d>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;

Single-precision and double-precision

Encoding

FMAXV <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q != '01' then UNDEFINED;

 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;

Assembler symbols

<V> For the half-precision variant: is the destination width specifier, H.

0 Q 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1

0 Q 1 0 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1775
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
For the single-precision and double-precision variant: is the destination width specifier, encoded in
the "sz" field. It can have the following values:

S when sz = 0

The encoding sz = 1 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"Q:sz" field. It can have the following values:

4S when Q = 1, sz = 0

The following encodings are reserved:

• Q = 0, sz = x.

• Q = 1, sz = 1.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 V[d] = Reduce(ReduceOp_FMAX, operand, esize);
C7-1776 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.111 FMIN (vector)

Floating-point minimum (vector). This instruction compares corresponding elements in the vectors in the two
source SIMD&FP registers, places the smaller of each of the two floating-point values into a vector, and writes the
vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Single-precision and double-precision

Encoding

FMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

0 Q 0 0 1 1 1 0 1 1 0 Rm 0 0 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1

0 Q 0 0 1 1 1 0 1 sz 1 Rm 1 1 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1777
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];

 if minimum then
 Elem[result, e, esize] = FPMin(element1, element2, FPCR[]);
 else
 Elem[result, e, esize] = FPMax(element1, element2, FPCR[]);

 V[d] = result;
C7-1778 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.112 FMIN (scalar)

Floating-point Minimum (scalar). This instruction compares the first and second source SIMD&FP register values,
and writes the smaller of the two floating-point values to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FMIN <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FMIN <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FMIN <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 Rm 0 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1779
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();
 bits(esize) operand1 = V[n];
 bits(esize) operand2 = V[m];

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[n] else Zeros();

 Elem[result, 0, esize] = FPMin(operand1, operand2, fpcr);
 V[d] = result;
C7-1780 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.113 FMINNM (vector)

Floating-point Minimum Number (vector). This instruction compares corresponding vector elements in the two
source SIMD&FP registers, writes the smaller of the two floating-point values into a vector, and writes the vector
to the destination SIMD&FP register.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet
NaN, the result placed in the vector is the numerical value, otherwise the result is identical to FMIN (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMINNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (a == '1');

Single-precision and double-precision

Encoding

FMINNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;

0 Q 0 0 1 1 1 0 1 1 0 Rm 0 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U a

0 Q 0 0 1 1 1 0 1 sz 1 Rm 1 1 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1781
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];

 if minimum then
 Elem[result, e, esize] = FPMinNum(element1, element2, FPCR[]);
 else
 Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR[]);

 V[d] = result;
C7-1782 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.114 FMINNM (scalar)

Floating-point Minimum Number (scalar). This instruction compares the first and second source SIMD&FP register
values, and writes the smaller of the two floating-point values to the destination SIMD&FP register.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet
NaN, the result that is placed in the vector is the numerical value, otherwise the result is identical to FMIN (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FMINNM <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FMINNM <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FMINNM <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

0 0 0 1 1 1 1 0 ftype 1 Rm 0 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1783
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();
 bits(esize) operand1 = V[n];
 bits(esize) operand2 = V[m];

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[n] else Zeros();

 Elem[result, 0, esize] = FPMinNum(operand1, operand2, fpcr);

 V[d] = result;
C7-1784 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.115 FMINNMP (scalar)

Floating-point Minimum Number of Pair of elements (scalar). This instruction compares two vector elements in the
source SIMD&FP register and writes the smallest of the floating-point values as a scalar to the destination
SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMINNMP <V><d>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 if sz == '1' then UNDEFINED;
 integer datasize = 32;

Single-precision and double-precision

Encoding

FMINNMP <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);
 integer datasize = esize * 2;

0 1 0 1 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1

0 1 1 1 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1785
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> For the half-precision variant: is the destination width specifier, encoded in the "sz" field. It can
have the following values:

H when sz = 0

The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the destination width specifier, encoded in
the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in the "sz" field. It can
have the following values:

2H when sz = 0

The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the source arrangement specifier, encoded
in the "sz" field. It can have the following values:

2S when sz = 0

2D when sz = 1

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 V[d] = Reduce(ReduceOp_FMINNUM, operand, esize, FALSE);
C7-1786 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.116 FMINNMP (vector)

Floating-point Minimum Number Pairwise (vector). This instruction creates a vector by concatenating the vector
elements of the first source SIMD&FP register after the vector elements of the second source SIMD&FP register,
reads each pair of adjacent vector elements in the two source SIMD&FP registers, writes the smallest of each pair
of floating-point values into a vector, and writes the vector to the destination SIMD&FP register. All the values in
this instruction are floating-point values.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet
NaN, the result is the numerical value, otherwise the result is identical to FMIN (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMINNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (a == '1');

Single-precision and double-precision

Encoding

FMINNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;

0 Q 1 0 1 1 1 0 1 1 0 Rm 0 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U a

0 Q 1 0 1 1 1 0 1 sz 1 Rm 1 1 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1787
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];

 if minimum then
 Elem[result, e, esize] = FPMinNum(element1, element2, FPCR[]);
 else
 Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR[]);

 V[d] = result;
C7-1788 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.117 FMINNMV

Floating-point Minimum Number across Vector. This instruction compares all the vector elements in the source
SIMD&FP register, and writes the smallest of the values as a scalar to the destination SIMD&FP register. All the
values in this instruction are floating-point values.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet
NaN, the result of the comparison is the numerical value, otherwise the result is identical to FMIN (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMINNMV <V><d>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;

Single-precision and double-precision

Encoding

FMINNMV <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q != '01' then UNDEFINED; // .4S only

 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;

0 Q 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1

0 Q 1 0 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1789
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> For the half-precision variant: is the destination width specifier, H.

For the single-precision and double-precision variant: is the destination width specifier, encoded in
the "sz" field. It can have the following values:

S when sz = 0

The encoding sz = 1 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"Q:sz" field. It can have the following values:

4S when Q = 1, sz = 0

The following encodings are reserved:

• Q = 0, sz = x.

• Q = 1, sz = 1.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 V[d] = Reduce(ReduceOp_FMINNUM, operand, esize, FALSE);
C7-1790 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.118 FMINP (scalar)

Floating-point Minimum of Pair of elements (scalar). This instruction compares two vector elements in the source
SIMD&FP register and writes the smallest of the floating-point values as a scalar to the destination SIMD&FP
register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMINP <V><d>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 if sz == '1' then UNDEFINED;
 integer datasize = 32;

Single-precision and double-precision

Encoding

FMINP <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);
 integer datasize = esize * 2;

0 1 0 1 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1

0 1 1 1 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1791
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> For the half-precision variant: is the destination width specifier, encoded in the "sz" field. It can
have the following values:

H when sz = 0

The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the destination width specifier, encoded in
the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in the "sz" field. It can
have the following values:

2H when sz = 0

The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the source arrangement specifier, encoded
in the "sz" field. It can have the following values:

2S when sz = 0

2D when sz = 1

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 V[d] = Reduce(ReduceOp_FMIN, operand, esize);
C7-1792 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.119 FMINP (vector)

Floating-point Minimum Pairwise (vector). This instruction creates a vector by concatenating the vector elements
of the first source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each
pair of adjacent vector elements from the concatenated vector, writes the smaller of each pair of values into a vector,
and writes the vector to the destination SIMD&FP register. All the values in this instruction are floating-point
values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Single-precision and double-precision

Encoding

FMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

0 Q 1 0 1 1 1 0 1 1 0 Rm 0 0 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1

0 Q 1 0 1 1 1 0 1 sz 1 Rm 1 1 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1793
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];

 if minimum then
 Elem[result, e, esize] = FPMin(element1, element2, FPCR[]);
 else
 Elem[result, e, esize] = FPMax(element1, element2, FPCR[]);

 V[d] = result;
C7-1794 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.120 FMINV

Floating-point Minimum across Vector. This instruction compares all the vector elements in the source SIMD&FP
register, and writes the smallest of the values as a scalar to the destination SIMD&FP register. All the values in this
instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMINV <V><d>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;

Single-precision and double-precision

Encoding

FMINV <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q != '01' then UNDEFINED;

 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;

Assembler symbols

<V> For the half-precision variant: is the destination width specifier, H.

0 Q 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1

0 Q 1 0 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1795
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
For the single-precision and double-precision variant: is the destination width specifier, encoded in
the "sz" field. It can have the following values:

S when sz = 0

The encoding sz = 1 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"Q:sz" field. It can have the following values:

4S when Q = 1, sz = 0

The following encodings are reserved:

• Q = 0, sz = x.

• Q = 1, sz = 1.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 V[d] = Reduce(ReduceOp_FMIN, operand, esize);
C7-1796 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.121 FMLA (by element)

Floating-point fused Multiply-Add to accumulator (by element). This instruction multiplies the vector elements in
the first source SIMD&FP register by the specified value in the second source SIMD&FP register, and accumulates
the results in the vector elements of the destination SIMD&FP register. All the values in this instruction are
floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar, half-precision

(FEAT_FP16)

Encoding

FMLA <Hd>, <Hn>, <Vm>.H[<index>]

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer idxdsize = if H == '1' then 128 else 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);
 integer index = UInt(H:L:M);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;
 boolean sub_op = (o2 == '1');

Scalar, single-precision and double-precision

Encoding

FMLA <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi = M;
 case sz:L of
 when '0x' index = UInt(H:L);
 when '10' index = UInt(H);
 when '11' UNDEFINED;

0 1 0 1 1 1 1 1 0 0 L M Rm 0 0 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2

0 1 0 1 1 1 1 1 1 sz L M Rm 0 0 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1797
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;
 boolean sub_op = (o2 == '1');

Vector, half-precision

(FEAT_FP16)

Encoding

FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer idxdsize = if H == '1' then 128 else 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);
 integer index = UInt(H:L:M);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean sub_op = (o2 == '1');

Vector, single-precision and double-precision

Encoding

FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi = M;
 case sz:L of
 when '0x' index = UInt(H:L);
 when '10' index = UInt(H);
 when '11' UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

0 Q 0 0 1 1 1 1 0 0 L M Rm 0 0 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2

0 Q 0 0 1 1 1 1 1 sz L M Rm 0 0 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2
C7-1798 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean sub_op = (o2 == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"Q:sz" field. It can have the following values:

2S when Q = 0, sz = 0

4S when Q = 1, sz = 0

2D when Q = 1, sz = 1

The encoding Q = 0, sz = 1 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> For the half-precision variant: is the name of the second SIMD&FP source register, in the range V0
to V15, encoded in the "Rm" field.

For the single-precision and double-precision variant: is the name of the second SIMD&FP source
register, encoded in the "M:Rm" fields.

<Ts> Is an element size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<index> For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M"
fields.

For the single-precision and double-precision variant: is the element index, encoded in the "sz:L:H"
field. It can have the following values:

H:L when sz = 0, L = x

H when sz = 1, L = 0

The encoding sz = 1, L = 1 is reserved.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1799
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(idxdsize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(esize) element1;
 bits(esize) element2 = Elem[operand2, index, esize];
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 if sub_op then element1 = FPNeg(element1);
 Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], element1, element2, fpcr);

 V[d] = result;
C7-1800 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.122 FMLA (vector)

Floating-point fused Multiply-Add to accumulator (vector). This instruction multiplies corresponding
floating-point values in the vectors in the two source SIMD&FP registers, adds the product to the corresponding
vector element of the destination SIMD&FP register, and writes the result to the destination SIMD&FP register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean sub_op = (a == '1');

Single-precision and double-precision

Encoding

FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean sub_op = (op == '1');

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

a

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1801
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if sub_op then element1 = FPNeg(element1);
 Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], element1, element2, FPCR[]);

 V[d] = result;
C7-1802 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.123 FMLAL, FMLAL2 (by element)

Floating-point fused Multiply-Add Long to accumulator (by element). This instruction multiplies the vector
elements in the first source SIMD&FP register by the specified value in the second source SIMD&FP register, and
accumulates the product to the corresponding vector element of the destination SIMD&FP register. The instruction
does not round the result of the multiply before the accumulation.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_AA64ISAR0_EL1.FHM indicates whether this instruction is supported.

FMLAL

(FEAT_FHM)

Encoding

FMLAL <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.H[<index>]

Decode for this encoding

 if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt('0':Rm); // Vm can only be in bottom 16 registers.
 if sz == '1' then UNDEFINED;
 integer index = UInt(H:L:M);

 integer esize = 32;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean sub_op = (S == '1');
 integer part = 0;

FMLAL2

(FEAT_FHM)

Encoding

FMLAL2 <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.H[<index>]

0 Q 0 0 1 1 1 1 1 0 L M Rm 0 0 0 0 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sz S

0 Q 1 0 1 1 1 1 1 0 L M Rm 1 0 0 0 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sz S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1803
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt('0':Rm); // Vm can only be in bottom 16 registers.
 if sz == '1' then UNDEFINED;
 integer index = UInt(H:L:M);

 integer esize = 32;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean sub_op = (S == '1');
 integer part = 1;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2H when Q = 0

4H when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<index> Is the element index, encoded in the "H:L:M" fields.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize DIV 2) operand1 = Vpart[n, part];
 bits(128) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 bits(esize DIV 2) element1;
 bits(esize DIV 2) element2 = Elem[operand2, index, esize DIV 2];

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1);
 Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, FPCR[]);
 V[d] = result;
C7-1804 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.124 FMLAL, FMLAL2 (vector)

Floating-point fused Multiply-Add Long to accumulator (vector). This instruction multiplies corresponding
half-precision floating-point values in the vectors in the two source SIMD&FP registers, and accumulates the
product to the corresponding vector element of the destination SIMD&FP register. The instruction does not round
the result of the multiply before the accumulation.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_AA64ISAR0_EL1.FHM indicates whether this instruction is supported.

FMLAL

(FEAT_FHM)

Encoding

FMLAL <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz == '1' then UNDEFINED;
 integer esize = 32;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean sub_op = (S == '1');
 integer part = 0;

FMLAL2

(FEAT_FHM)

Encoding

FMLAL2 <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

0 Q 0 0 1 1 1 0 0 0 1 Rm 1 1 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S sz

0 Q 1 0 1 1 1 0 0 0 1 Rm 1 1 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S sz
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1805
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz == '1' then UNDEFINED;
 integer esize = 32;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean sub_op = (S == '1');
 integer part = 1;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2H when Q = 0

4H when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize DIV 2) operand1 = Vpart[n, part];
 bits(datasize DIV 2) operand2 = Vpart[m, part];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 bits(esize DIV 2) element1;
 bits(esize DIV 2) element2;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize DIV 2];
 element2 = Elem[operand2, e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1);
 Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, FPCR[]);
 V[d] = result;
C7-1806 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.125 FMLS (by element)

Floating-point fused Multiply-Subtract from accumulator (by element). This instruction multiplies the vector
elements in the first source SIMD&FP register by the specified value in the second source SIMD&FP register, and
subtracts the results from the vector elements of the destination SIMD&FP register. All the values in this instruction
are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar, half-precision

(FEAT_FP16)

Encoding

FMLS <Hd>, <Hn>, <Vm>.H[<index>]

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer idxdsize = if H == '1' then 128 else 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);
 integer index = UInt(H:L:M);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;
 boolean sub_op = (o2 == '1');

Scalar, single-precision and double-precision

Encoding

FMLS <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi = M;
 case sz:L of
 when '0x' index = UInt(H:L);
 when '10' index = UInt(H);
 when '11' UNDEFINED;

0 1 0 1 1 1 1 1 0 0 L M Rm 0 1 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2

0 1 0 1 1 1 1 1 1 sz L M Rm 0 1 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1807
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;
 boolean sub_op = (o2 == '1');

Vector, half-precision

(FEAT_FP16)

Encoding

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer idxdsize = if H == '1' then 128 else 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);
 integer index = UInt(H:L:M);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean sub_op = (o2 == '1');

Vector, single-precision and double-precision

Encoding

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi = M;
 case sz:L of
 when '0x' index = UInt(H:L);
 when '10' index = UInt(H);
 when '11' UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

0 Q 0 0 1 1 1 1 0 0 L M Rm 0 1 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2

0 Q 0 0 1 1 1 1 1 sz L M Rm 0 1 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2
C7-1808 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean sub_op = (o2 == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"Q:sz" field. It can have the following values:

2S when Q = 0, sz = 0

4S when Q = 1, sz = 0

2D when Q = 1, sz = 1

The encoding Q = 0, sz = 1 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> For the half-precision variant: is the name of the second SIMD&FP source register, in the range V0
to V15, encoded in the "Rm" field.

For the single-precision and double-precision variant: is the name of the second SIMD&FP source
register, encoded in the "M:Rm" fields.

<Ts> Is an element size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<index> For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M"
fields.

For the single-precision and double-precision variant: is the element index, encoded in the "sz:L:H"
field. It can have the following values:

H:L when sz = 0, L = x

H when sz = 1, L = 0

The encoding sz = 1, L = 1 is reserved.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1809
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(idxdsize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(esize) element1;
 bits(esize) element2 = Elem[operand2, index, esize];
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 if sub_op then element1 = FPNeg(element1);
 Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], element1, element2, fpcr);

 V[d] = result;
C7-1810 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.126 FMLS (vector)

Floating-point fused Multiply-Subtract from accumulator (vector). This instruction multiplies corresponding
floating-point values in the vectors in the two source SIMD&FP registers, negates the product, adds the result to the
corresponding vector element of the destination SIMD&FP register, and writes the result to the destination
SIMD&FP register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean sub_op = (a == '1');

Single-precision and double-precision

Encoding

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

0 Q 0 0 1 1 1 0 1 1 0 Rm 0 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

a

0 Q 0 0 1 1 1 0 1 sz 1 Rm 1 1 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1811
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 boolean sub_op = (op == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if sub_op then element1 = FPNeg(element1);
 Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], element1, element2, FPCR[]);

 V[d] = result;
C7-1812 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.127 FMLSL, FMLSL2 (by element)

Floating-point fused Multiply-Subtract Long from accumulator (by element). This instruction multiplies the
negated vector elements in the first source SIMD&FP register by the specified value in the second source
SIMD&FP register, and accumulates the product to the corresponding vector element of the destination SIMD&FP
register. The instruction does not round the result of the multiply before the accumulation.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_AA64ISAR0_EL1.FHM indicates whether this instruction is supported.

FMLSL

(FEAT_FHM)

Encoding

FMLSL <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.H[<index>]

Decode for this encoding

 if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt('0':Rm); // Vm can only be in bottom 16 registers.
 if sz == '1' then UNDEFINED;
 integer index = UInt(H:L:M);

 integer esize = 32;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean sub_op = (S == '1');
 integer part = 0;

FMLSL2

(FEAT_FHM)

Encoding

FMLSL2 <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.H[<index>]

0 Q 0 0 1 1 1 1 1 0 L M Rm 0 1 0 0 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sz S

0 Q 1 0 1 1 1 1 1 0 L M Rm 1 1 0 0 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sz S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1813
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt('0':Rm); // Vm can only be in bottom 16 registers.
 if sz == '1' then UNDEFINED;
 integer index = UInt(H:L:M);

 integer esize = 32;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean sub_op = (S == '1');
 integer part = 1;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2H when Q = 0

4H when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<index> Is the element index, encoded in the "H:L:M" fields.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize DIV 2) operand1 = Vpart[n, part];
 bits(128) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 bits(esize DIV 2) element1;
 bits(esize DIV 2) element2 = Elem[operand2, index, esize DIV 2];

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1);
 Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, FPCR[]);
 V[d] = result;
C7-1814 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.128 FMLSL, FMLSL2 (vector)

Floating-point fused Multiply-Subtract Long from accumulator (vector). This instruction negates the values in the
vector of one SIMD&FP register, multiplies these with the corresponding values in another vector, and accumulates
the product to the corresponding vector element of the destination SIMD&FP register. The instruction does not
round the result of the multiply before the accumulation.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_AA64ISAR0_EL1.FHM indicates whether this instruction is supported.

FMLSL

(FEAT_FHM)

Encoding

FMLSL <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz == '1' then UNDEFINED;
 integer esize = 32;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean sub_op = (S == '1');
 integer part = 0;

FMLSL2

(FEAT_FHM)

Encoding

FMLSL2 <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

0 Q 0 0 1 1 1 0 1 0 1 Rm 1 1 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S sz

0 Q 1 0 1 1 1 0 1 0 1 Rm 1 1 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S sz
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1815
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz == '1' then UNDEFINED;
 integer esize = 32;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean sub_op = (S == '1');
 integer part = 1;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2H when Q = 0

4H when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize DIV 2) operand1 = Vpart[n, part];
 bits(datasize DIV 2) operand2 = Vpart[m, part];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 bits(esize DIV 2) element1;
 bits(esize DIV 2) element2;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize DIV 2];
 element2 = Elem[operand2, e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1);
 Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, FPCR[]);
 V[d] = result;
C7-1816 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.129 FMOV (vector, immediate)

Floating-point move immediate (vector). This instruction copies an immediate floating-point constant into every
element of the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMOV <Vd>.<T>, #<imm>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer rd = UInt(Rd);

 integer datasize = if Q == '1' then 128 else 64;
 bits(datasize) imm;

 imm8 = a:b:c:d:e:f:g:h;
 imm16 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>, 2):imm8<5:0>:Zeros(6);

 imm = Replicate(imm16, datasize DIV 16);

Single-precision and double-precision

Single-precision variant

Applies when op == 0.

FMOV <Vd>.<T>, #<imm>

Double-precision variant

Applies when Q == 1 && op == 1.

FMOV <Vd>.2D, #<imm>

Decode for all variants of this encoding

 integer rd = UInt(Rd);

 integer datasize = if Q == '1' then 128 else 64;
 bits(datasize) imm;
 bits(64) imm64;

 if cmode:op == '11111' then

0 Q 0 0 1 1 1 1 0 0 0 0 0 a b c 1 1 1 1 1 1 d e f g h Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0

0 Q op 0 1 1 1 1 0 0 0 0 0 a b c 1 1 1 1 0 1 d e f g h Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 0

cmode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1817
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 // FMOV Dn,#imm is in main FP instruction set
 if Q == '0' then UNDEFINED;

 imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
 imm = Replicate(imm64, datasize DIV 64);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have
the following values:

2S when Q = 0

4S when Q = 1

<imm> Is a signed floating-point constant with 3-bit exponent and normalized 4 bits of precision, encoded
in "a:b:c:d:e:f:g:h". For details of the range of constants available and the encoding of <imm>, see
Modified immediate constants in A64 floating-point instructions on page C2-212.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 V[rd] = imm;
C7-1818 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.130 FMOV (register)

Floating-point Move register without conversion. This instruction copies the floating-point value in the SIMD&FP
source register to the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FMOV <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FMOV <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FMOV <Dd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 0 0 1 1 1 1 0 ftype 1 0 0 0 0 0 0 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1819
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPEnabled64();

 bits(esize) operand = V[n];

 Elem[Zeros(), 0, esize] = operand;
 V[d] = Zeros();
C7-1820 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.131 FMOV (general)

Floating-point Move to or from general-purpose register without conversion. This instruction transfers the contents
of a SIMD&FP register to a general-purpose register, or the contents of a general-purpose register to a SIMD&FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11 && rmode == 00 && opcode == 110.

FMOV <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11 && rmode == 00 && opcode == 110.

FMOV <Xd>, <Hn>

32-bit to half-precision variant

Applies when sf == 0 && ftype == 11 && rmode == 00 && opcode == 111.

FMOV <Hd>, <Wn>

32-bit to single-precision variant

Applies when sf == 0 && ftype == 00 && rmode == 00 && opcode == 111.

FMOV <Sd>, <Wn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00 && rmode == 00 && opcode == 110.

FMOV <Wd>, <Sn>

64-bit to half-precision variant

Applies when sf == 1 && ftype == 11 && rmode == 00 && opcode == 111.

FMOV <Hd>, <Xn>

64-bit to double-precision variant

Applies when sf == 1 && ftype == 01 && rmode == 00 && opcode == 111.

FMOV <Dd>, <Xn>

64-bit to top half of 128-bit variant

Applies when sf == 1 && ftype == 10 && rmode == 01 && opcode == 111.

FMOV <Vd>.D[1], <Xn>

sf 0 0 1 1 1 1 0 ftype 1 0 x 1 1 x 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1821
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01 && rmode == 00 && opcode == 110.

FMOV <Xd>, <Dn>

Top half of 128-bit to 64-bit variant

Applies when sf == 1 && ftype == 10 && rmode == 01 && opcode == 110.

FMOV <Xd>, <Vn>.D[1]

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer intsize = if sf == '1' then 64 else 32;
 integer fltsize;
 FPConvOp op;
 FPRounding rounding;
 boolean unsigned;
 integer part;

 case ftype of
 when '00'
 fltsize = 32;
 when '01'
 fltsize = 64;
 when '10'
 if opcode<2:1>:rmode != '11 01' then UNDEFINED;
 fltsize = 128;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

 case opcode<2:1>:rmode of
 when '00 xx' // FCVT[NPMZ][US]
 rounding = FPDecodeRounding(rmode);
 unsigned = (opcode<0> == '1');
 op = FPConvOp_CVT_FtoI;
 when '01 00' // [US]CVTF
 rounding = FPRoundingMode(FPCR[]);
 unsigned = (opcode<0> == '1');
 op = FPConvOp_CVT_ItoF;
 when '10 00' // FCVTA[US]
 rounding = FPRounding_TIEAWAY;
 unsigned = (opcode<0> == '1');
 op = FPConvOp_CVT_FtoI;
 when '11 00' // FMOV
 if fltsize != 16 && fltsize != intsize then UNDEFINED;
 op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
 part = 0;
 when '11 01' // FMOV D[1]
 if intsize != 64 || fltsize != 128 then UNDEFINED;
 op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
 part = 1;
 fltsize = 64; // size of D[1] is 64
 when '11 11' // FJCVTZS
 if !HaveFJCVTZSExt() then UNDEFINED;
 rounding = FPRounding_ZERO;
 unsigned = (opcode<0> == '1');
 op = FPConvOp_CVT_FtoI_JS;
 otherwise
 UNDEFINED;
C7-1822 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 integer fsize = if op == FPConvOp_CVT_ItoF && merge then 128 else fltsize;
 bits(fsize) fltval;
 bits(intsize) intval;

 case op of
 when FPConvOp_CVT_FtoI
 fltval = V[n];
 intval = FPToFixed(fltval, 0, unsigned, fpcr, rounding);
 X[d] = intval;
 when FPConvOp_CVT_ItoF
 intval = X[n];
 fltval = if merge then V[d] else Zeros();
 Elem[fltval, 0, fltsize] = FixedToFP(intval, 0, unsigned, fpcr, rounding);
 V[d] = fltval;
 when FPConvOp_MOV_FtoI
 fltval = Vpart[n, part];
 intval = ZeroExtend(fltval, intsize);
 X[d] = intval;
 when FPConvOp_MOV_ItoF
 intval = X[n];
 fltval = intval<fsize-1:0>;
 Vpart[d, part] = fltval;
 when FPConvOp_CVT_FtoI_JS
 bit Z;
 fltval = V[n];
 (intval, Z) = FPToFixedJS(fltval, fpcr, TRUE);
 PSTATE.<N,Z,C,V> = '0':Z:'00';
 X[d] = intval;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1823
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.132 FMOV (scalar, immediate)

Floating-point move immediate (scalar). This instruction copies a floating-point immediate constant into the
SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FMOV <Hd>, #<imm>

Single-precision variant

Applies when ftype == 00.

FMOV <Sd>, #<imm>

Double-precision variant

Applies when ftype == 01.

FMOV <Dd>, #<imm>

Decode for all variants of this encoding

 integer d = UInt(Rd);

 integer datasize;
 case ftype of
 when '00' datasize = 32;
 when '01' datasize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 datasize = 16;
 else
 UNDEFINED;

 bits(datasize) imm = VFPExpandImm(imm8);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<imm> Is a signed floating-point constant with 3-bit exponent and normalized 4 bits of precision, encoded
in the "imm8" field. For details of the range of constants available and the encoding of <imm>, see
Modified immediate constants in A64 floating-point instructions on page C2-212.

0 0 0 1 1 1 1 0 ftype 1 imm8 1 0 0 0 0 0 0 0 Rd
31 30 29 28 27 26 25 24 23 22 21 20 13 12 11 10 9 8 7 6 5 4 0
C7-1824 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPEnabled64();

 V[d] = imm;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1825
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.133 FMSUB

Floating-point Fused Multiply-Subtract (scalar). This instruction multiplies the values of the first two SIMD&FP
source registers, negates the product, adds that to the value of the third SIMD&FP source register, and writes the
result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FMSUB <Hd>, <Hn>, <Hm>, <Ha>

Single-precision variant

Applies when ftype == 00.

FMSUB <Sd>, <Sn>, <Sm>, <Sa>

Double-precision variant

Applies when ftype == 01.

FMSUB <Dd>, <Dn>, <Dm>, <Da>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer a = UInt(Ra);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

0 0 0 1 1 1 1 1 ftype 0 Rm 1 Ra Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

o1 o0
C7-1826 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Da> Is the 64-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra"
field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Ha> Is the 16-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra"
field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Sa> Is the 32-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra"
field.

Operation

 CheckFPEnabled64();

 bits(esize) operanda = V[a];
 bits(esize) operand1 = V[n];
 bits(esize) operand2 = V[m];

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[a] else Zeros();

 operand1 = FPNeg(operand1);
 Elem[result, 0, esize] = FPMulAdd(operanda, operand1, operand2, fpcr);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1827
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.134 FMUL (by element)

Floating-point Multiply (by element). This instruction multiplies the vector elements in the first source SIMD&FP
register by the specified value in the second source SIMD&FP register, places the results in a vector, and writes the
vector to the destination SIMD&FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar, half-precision

(FEAT_FP16)

Encoding

FMUL <Hd>, <Hn>, <Vm>.H[<index>]

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer idxdsize = if H == '1' then 128 else 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);
 integer index = UInt(H:L:M);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;
 boolean mulx_op = (U == '1');

Scalar, single-precision and double-precision

Encoding

FMUL <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi = M;
 case sz:L of
 when '0x' index = UInt(H:L);
 when '10' index = UInt(H);
 when '11' UNDEFINED;

0 1 0 1 1 1 1 1 0 0 L M Rm 1 0 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

0 1 0 1 1 1 1 1 1 sz L M Rm 1 0 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

C7-1828 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;
 boolean mulx_op = (U == '1');

Vector, half-precision

(FEAT_FP16)

Encoding

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer idxdsize = if H == '1' then 128 else 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);
 integer index = UInt(H:L:M);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean mulx_op = (U == '1');

Vector, single-precision and double-precision

Encoding

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi = M;
 case sz:L of
 when '0x' index = UInt(H:L);
 when '10' index = UInt(H);
 when '11' UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

0 Q 0 0 1 1 1 1 0 0 L M Rm 1 0 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 1 1 sz L M Rm 1 0 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1829
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean mulx_op = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"Q:sz" field. It can have the following values:

2S when Q = 0, sz = 0

4S when Q = 1, sz = 0

2D when Q = 1, sz = 1

The encoding Q = 0, sz = 1 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> For the half-precision variant: is the name of the second SIMD&FP source register, in the range V0
to V15, encoded in the "Rm" field.

For the single-precision and double-precision variant: is the name of the second SIMD&FP source
register, encoded in the "M:Rm" fields.

<Ts> Is an element size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<index> For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M"
fields.

For the single-precision and double-precision variant: is the element index, encoded in the "sz:L:H"
field. It can have the following values:

H:L when sz = 0, L = x

H when sz = 1, L = 0

The encoding sz = 1, L = 1 is reserved.
C7-1830 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(idxdsize) operand2 = V[m];
 bits(esize) element1;
 bits(esize) element2 = Elem[operand2, index, esize];
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[n] else Zeros();

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 if mulx_op then
 Elem[result, e, esize] = FPMulX(element1, element2, fpcr);
 else
 Elem[result, e, esize] = FPMul(element1, element2, fpcr);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1831
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.135 FMUL (vector)

Floating-point Multiply (vector). This instruction multiplies corresponding floating-point values in the vectors in
the two source SIMD&FP registers, places the result in a vector, and writes the vector to the destination SIMD&FP
register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Single-precision and double-precision

Encoding

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-1832 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPMul(element1, element2, FPCR[]);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1833
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.136 FMUL (scalar)

Floating-point Multiply (scalar). This instruction multiplies the floating-point values of the two source SIMD&FP
registers, and writes the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FMUL <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FMUL <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FMUL <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 Rm 0 0 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
C7-1834 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();
 bits(esize) operand1 = V[n];
 bits(esize) operand2 = V[m];

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[n] else Zeros();

 bits(esize) product = FPMul(operand1, operand2, fpcr);
 Elem[result, 0, esize] = product;

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1835
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.137 FMULX (by element)

Floating-point Multiply extended (by element). This instruction multiplies the floating-point values in the vector
elements in the first source SIMD&FP register by the specified floating-point value in the second source SIMD&FP
register, places the results in a vector, and writes the vector to the destination SIMD&FP register.

If one value is zero and the other value is infinite, the result is 2.0. In this case, the result is negative if only one of
the values is negative, otherwise the result is positive.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar, half-precision

(FEAT_FP16)

Encoding

FMULX <Hd>, <Hn>, <Vm>.H[<index>]

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer idxdsize = if H == '1' then 128 else 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);
 integer index = UInt(H:L:M);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;
 boolean mulx_op = (U == '1');

Scalar, single-precision and double-precision

Encoding

FMULX <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi = M;
 case sz:L of
 when '0x' index = UInt(H:L);

0 1 1 1 1 1 1 1 0 0 L M Rm 1 0 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

0 1 1 1 1 1 1 1 1 sz L M Rm 1 0 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

C7-1836 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 when '10' index = UInt(H);
 when '11' UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;
 boolean mulx_op = (U == '1');

Vector, half-precision

(FEAT_FP16)

Encoding

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer idxdsize = if H == '1' then 128 else 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);
 integer index = UInt(H:L:M);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean mulx_op = (U == '1');

Vector, single-precision and double-precision

Encoding

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi = M;
 case sz:L of
 when '0x' index = UInt(H:L);
 when '10' index = UInt(H);
 when '11' UNDEFINED;

 integer d = UInt(Rd);

0 Q 1 0 1 1 1 1 0 0 L M Rm 1 0 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 1 1 sz L M Rm 1 0 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1837
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean mulx_op = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"Q:sz" field. It can have the following values:

2S when Q = 0, sz = 0

4S when Q = 1, sz = 0

2D when Q = 1, sz = 1

The encoding Q = 0, sz = 1 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> For the half-precision variant: is the name of the second SIMD&FP source register, in the range V0
to V15, encoded in the "Rm" field.

For the single-precision and double-precision variant: is the name of the second SIMD&FP source
register, encoded in the "M:Rm" fields.

<Ts> Is an element size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<index> For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M"
fields.

For the single-precision and double-precision variant: is the element index, encoded in the "sz:L:H"
field. It can have the following values:

H:L when sz = 0, L = x

H when sz = 1, L = 0

The encoding sz = 1, L = 1 is reserved.
C7-1838 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(idxdsize) operand2 = V[m];
 bits(esize) element1;
 bits(esize) element2 = Elem[operand2, index, esize];
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[n] else Zeros();

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 if mulx_op then
 Elem[result, e, esize] = FPMulX(element1, element2, fpcr);
 else
 Elem[result, e, esize] = FPMul(element1, element2, fpcr);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1839
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.138 FMULX

Floating-point Multiply extended. This instruction multiplies corresponding floating-point values in the vectors of
the two source SIMD&FP registers, places the resulting floating-point values in a vector, and writes the vector to
the destination SIMD&FP register.

If one value is zero and the other value is infinite, the result is 2.0. In this case, the result is negative if only one of
the values is negative, otherwise the result is positive.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FMULX <Hd>, <Hn>, <Hm>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;

Scalar single-precision and double-precision

Encoding

FMULX <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;

0 1 0 1 1 1 1 0 0 1 0 Rm 0 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 1 1 1 1 0 0 sz 1 Rm 1 1 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-1840 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Vector half precision

(FEAT_FP16)

Encoding

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Vector single-precision and double-precision

Encoding

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1841
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];

 bits(esize) element1;
 bits(esize) element2;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[n] else Zeros();

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPMulX(element1, element2, fpcr);
 V[d] = result;
C7-1842 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.139 FNEG (vector)

Floating-point Negate (vector). This instruction negates the value of each vector element in the source SIMD&FP
register, writes the result to a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FNEG <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean neg = (U == '1');

Single-precision and double-precision

Encoding

FNEG <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean neg = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1843
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 if neg then
 element = FPNeg(element);
 else
 element = FPAbs(element);
 Elem[result, e, esize] = element;

 V[d] = result;
C7-1844 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.140 FNEG (scalar)

Floating-point Negate (scalar). This instruction negates the value in the SIMD&FP source register and writes the
result to the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FNEG <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FNEG <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FNEG <Dd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 0 0 1 1 1 1 0 ftype 1 0 0 0 0 1 0 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1845
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 bits(esize) operand = V[n];

 Elem[result, 0, esize] = FPNeg(operand);
 V[d] = result;
C7-1846 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.141 FNMADD

Floating-point Negated fused Multiply-Add (scalar). This instruction multiplies the values of the first two
SIMD&FP source registers, negates the product, subtracts the value of the third SIMD&FP source register, and
writes the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FNMADD <Hd>, <Hn>, <Hm>, <Ha>

Single-precision variant

Applies when ftype == 00.

FNMADD <Sd>, <Sn>, <Sm>, <Sa>

Double-precision variant

Applies when ftype == 01.

FNMADD <Dd>, <Dn>, <Dm>, <Da>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer a = UInt(Ra);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

0 0 0 1 1 1 1 1 ftype 1 Rm 0 Ra Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

o1 o0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1847
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Da> Is the 64-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra"
field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Ha> Is the 16-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra"
field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Sa> Is the 32-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra"
field.

Operation

 CheckFPEnabled64();

 bits(esize) operanda = V[a];
 bits(esize) operand1 = V[n];
 bits(esize) operand2 = V[m];

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[a] else Zeros();

 operanda = FPNeg(operanda);
 operand1 = FPNeg(operand1);
 Elem[result, 0, esize] = FPMulAdd(operanda, operand1, operand2, fpcr);

 V[d] = result;
C7-1848 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.142 FNMSUB

Floating-point Negated fused Multiply-Subtract (scalar). This instruction multiplies the values of the first two
SIMD&FP source registers, subtracts the value of the third SIMD&FP source register, and writes the result to the
destination SIMD&FP register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FNMSUB <Hd>, <Hn>, <Hm>, <Ha>

Single-precision variant

Applies when ftype == 00.

FNMSUB <Sd>, <Sn>, <Sm>, <Sa>

Double-precision variant

Applies when ftype == 01.

FNMSUB <Dd>, <Dn>, <Dm>, <Da>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer a = UInt(Ra);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

0 0 0 1 1 1 1 1 ftype 1 Rm 1 Ra Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

o1 o0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1849
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Da> Is the 64-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra"
field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Ha> Is the 16-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra"
field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Sa> Is the 32-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra"
field.

Operation

 CheckFPEnabled64();

 bits(esize) operanda = V[a];
 bits(esize) operand1 = V[n];
 bits(esize) operand2 = V[m];

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[a] else Zeros();

 operanda = FPNeg(operanda);
 Elem[result, 0, esize] = FPMulAdd(operanda, operand1, operand2, fpcr);

 V[d] = result;
C7-1850 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.143 FNMUL (scalar)

Floating-point Multiply-Negate (scalar). This instruction multiplies the floating-point values of the two source
SIMD&FP registers, and writes the negation of the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FNMUL <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FNMUL <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FNMUL <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 Rm 1 0 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1851
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();
 bits(esize) operand1 = V[n];
 bits(esize) operand2 = V[m];

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[n] else Zeros();

 bits(esize) product = FPMul(operand1, operand2, fpcr);
 product = FPNeg(product);
 Elem[result, 0, esize] = product;

 V[d] = result;
C7-1852 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.144 FRECPE

Floating-point Reciprocal Estimate. This instruction finds an approximate reciprocal estimate for each vector
element in the source SIMD&FP register, places the result in a vector, and writes the vector to the destination
SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FRECPE <Hd>, <Hn>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;

Scalar single-precision and double-precision

Encoding

FRECPE <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;

Vector half precision

(FEAT_FP16)

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1853
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FRECPE <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Vector single-precision and double-precision

Encoding

FRECPE <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
C7-1854 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRecipEstimate(element, FPCR[]);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1855
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.145 FRECPS

Floating-point Reciprocal Step. This instruction multiplies the corresponding floating-point values in the vectors of
the two source SIMD&FP registers, subtracts each of the products from 2.0, places the resulting floating-point
values in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FRECPS <Hd>, <Hn>, <Hm>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;

Scalar single-precision and double-precision

Encoding

FRECPS <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;

Vector half precision

(FEAT_FP16)

0 1 0 1 1 1 1 0 0 1 0 Rm 0 0 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 1 1 1 1 0 0 sz 1 Rm 1 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-1856 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FRECPS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Vector single-precision and double-precision

Encoding

FRECPS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1857
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];

 bits(esize) element1;
 bits(esize) element2;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[n] else Zeros();

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPRecipStepFused(element1, element2);

 V[d] = result;
C7-1858 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.146 FRECPX

Floating-point Reciprocal exponent (scalar). This instruction finds an approximate reciprocal exponent for each
vector element in the source SIMD&FP register, places the result in a vector, and writes the vector to the destination
SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FRECPX <Hd>, <Hn>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;

Single-precision and double-precision

Encoding

FRECPX <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1859
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(esize) operand = V[n];

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 Elem[result, 0, esize] = FPRecpX(operand, fpcr);

 V[d] = result;
C7-1860 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.147 FRINT32X (vector)

Floating-point Round to 32-bit Integer, using current rounding mode (vector). This instruction rounds a vector of
floating-point values in the SIMD&FP source register to integral floating-point values that fit into a 32-bit integer
size using the rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination
register.

A zero input returns a zero result with the same sign. When one of the result values is not numerically equal to the
corresponding input value, an Inexact exception is raised. When an input is infinite, NaN or out-of-range, the
instruction returns for the corresponding result value the most negative integer representable in the destination size,
and an Invalid Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Vector single-precision and double-precision

(FEAT_FRINTTS)

Encoding

FRINT32X <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFrintExt() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 integer intsize = if op == '0' then 32 else 64;
 FPRounding rounding = if U == '0' then FPRounding_ZERO else FPRoundingMode(FPCR[]);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1861
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundIntN(element, FPCR[], rounding, intsize);

 V[d] = result;
C7-1862 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.148 FRINT32X (scalar)

Floating-point Round to 32-bit Integer, using current rounding mode (scalar). This instruction rounds a
floating-point value in the SIMD&FP source register to an integral floating-point value that fits into a 32-bit integer
size using the rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination
register.

A zero input returns a zero result with the same sign. When the result value is not numerically equal to the input
value, an Inexact exception is raised. When the input is infinite, NaN or out-of-range, the instruction returns {for
the corresponding result value} the most negative integer representable in the destination size, and an Invalid
Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Floating-point

(FEAT_FRINTTS)

Single-precision variant

Applies when ftype == 00.

FRINT32X <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINT32X <Dd>, <Dn>

Decode for all variants of this encoding

 if !HaveFrintExt() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '1x' UNDEFINED;

 FPRounding rounding = FPRoundingMode(FPCR[]);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 0 0 1 1 1 1 0 0 x 1 0 1 0 0 0 1 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

ftype op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1863
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();
 bits(esize) operand = V[n];

 Elem[result, 0, esize] = FPRoundIntN(operand, fpcr, rounding, 32);

 V[d] = result;
C7-1864 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.149 FRINT32Z (vector)

Floating-point Round to 32-bit Integer toward Zero (vector). This instruction rounds a vector of floating-point
values in the SIMD&FP source register to integral floating-point values that fit into a 32-bit integer size using the
Round towards Zero rounding mode, and writes the result to the SIMD&FP destination register.

A zero input returns a zero result with the same sign. When one of the result values is not numerically equal to the
corresponding input value, an Inexact exception is raised. When an input is infinite, NaN or out-of-range, the
instruction returns for the corresponding result value the most negative integer representable in the destination size,
and an Invalid Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Vector single-precision and double-precision

(FEAT_FRINTTS)

Encoding

FRINT32Z <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFrintExt() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 integer intsize = if op == '0' then 32 else 64;
 FPRounding rounding = if U == '0' then FPRounding_ZERO else FPRoundingMode(FPCR[]);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1865
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundIntN(element, FPCR[], rounding, intsize);

 V[d] = result;
C7-1866 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.150 FRINT32Z (scalar)

Floating-point Round to 32-bit Integer toward Zero (scalar). This instruction rounds a floating-point value in the
SIMD&FP source register to an integral floating-point value that fits into a 32-bit integer size using the Round
towards Zero rounding mode, and writes the result to the SIMD&FP destination register.

A zero input returns a zero result with the same sign. When the result value is not numerically equal to the
{corresponding} input value, an Inexact exception is raised. When the input is infinite, NaN or out-of-range, the
instruction returns {for the corresponding result value} the most negative integer representable in the destination
size, and an Invalid Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Floating-point

(FEAT_FRINTTS)

Single-precision variant

Applies when ftype == 00.

FRINT32Z <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINT32Z <Dd>, <Dn>

Decode for all variants of this encoding

 if !HaveFrintExt() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '1x' UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 0 0 1 1 1 1 0 0 x 1 0 1 0 0 0 0 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

ftype op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1867
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();
 bits(esize) operand = V[n];

 Elem[result, 0, esize] = FPRoundIntN(operand, fpcr, FPRounding_ZERO, 32);

 V[d] = result;
C7-1868 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.151 FRINT64X (vector)

Floating-point Round to 64-bit Integer, using current rounding mode (vector). This instruction rounds a vector of
floating-point values in the SIMD&FP source register to integral floating-point values that fit into a 64-bit integer
size using the rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination
register.

A zero input returns a zero result with the same sign. When one of the result values is not numerically equal to the
corresponding input value, an Inexact exception is raised. When an input is infinite, NaN or out-of-range, the
instruction returns for the corresponding result value the most negative integer representable in the destination size,
and an Invalid Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Vector single-precision and double-precision

(FEAT_FRINTTS)

Encoding

FRINT64X <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFrintExt() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 integer intsize = if op == '0' then 32 else 64;
 FPRounding rounding = if U == '0' then FPRounding_ZERO else FPRoundingMode(FPCR[]);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1869
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundIntN(element, FPCR[], rounding, intsize);

 V[d] = result;
C7-1870 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.152 FRINT64X (scalar)

Floating-point Round to 64-bit Integer, using current rounding mode (scalar). This instruction rounds a
floating-point value in the SIMD&FP source register to an integral floating-point value that fits into a 64-bit integer
size using the rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination
register.

A zero input returns a zero result with the same sign. When the result value is not numerically equal to the input
value, an Inexact exception is raised. When the input is infinite, NaN or out-of-range, the instruction returns {for
the corresponding result value} the most negative integer representable in the destination size, and an Invalid
Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Floating-point

(FEAT_FRINTTS)

Single-precision variant

Applies when ftype == 00.

FRINT64X <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINT64X <Dd>, <Dn>

Decode for all variants of this encoding

 if !HaveFrintExt() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '1x' UNDEFINED;

 FPRounding rounding = FPRoundingMode(FPCR[]);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 0 0 1 1 1 1 0 0 x 1 0 1 0 0 1 1 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

ftype op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1871
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();
 bits(esize) operand = V[n];

 Elem[result, 0, esize] = FPRoundIntN(operand, fpcr, rounding, 64);

 V[d] = result;
C7-1872 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.153 FRINT64Z (vector)

Floating-point Round to 64-bit Integer toward Zero (vector). This instruction rounds a vector of floating-point
values in the SIMD&FP source register to integral floating-point values that fit into a 64-bit integer size using the
Round towards Zero rounding mode, and writes the result to the SIMD&FP destination register.

A zero input returns a zero result with the same sign. When one of the result values is not numerically equal to the
corresponding input value, an Inexact exception is raised. When an input is infinite, NaN or out-of-range, the
instruction returns for the corresponding result value the most negative integer representable in the destination size,
and an Invalid Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Vector single-precision and double-precision

(FEAT_FRINTTS)

Encoding

FRINT64Z <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFrintExt() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 integer intsize = if op == '0' then 32 else 64;
 FPRounding rounding = if U == '0' then FPRounding_ZERO else FPRoundingMode(FPCR[]);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1873
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundIntN(element, FPCR[], rounding, intsize);

 V[d] = result;
C7-1874 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.154 FRINT64Z (scalar)

Floating-point Round to 64-bit Integer toward Zero (scalar). This instruction rounds a floating-point value in the
SIMD&FP source register to an integral floating-point value that fits into a 64-bit integer size using the Round
towards Zero rounding mode, and writes the result to the SIMD&FP destination register.

A zero input returns a zero result with the same sign. When the result value is not numerically equal to the
{corresponding} input value, an Inexact exception is raised. When the input is infinite, NaN or out-of-range, the
instruction returns {for the corresponding result value} the most negative integer representable in the destination
size, and an Invalid Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Floating-point

(FEAT_FRINTTS)

Single-precision variant

Applies when ftype == 00.

FRINT64Z <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINT64Z <Dd>, <Dn>

Decode for all variants of this encoding

 if !HaveFrintExt() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '1x' UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 0 0 1 1 1 1 0 0 x 1 0 1 0 0 1 0 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

ftype op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1875
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();
 bits(esize) operand = V[n];

 Elem[result, 0, esize] = FPRoundIntN(operand, fpcr, FPRounding_ZERO, 64);

 V[d] = result;
C7-1876 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.155 FRINTA (vector)

Floating-point Round to Integral, to nearest with ties to Away (vector). This instruction rounds a vector of
floating-point values in the SIMD&FP source register to integral floating-point values of the same size using the
Round to Nearest with Ties to Away rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FRINTA <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR[]);

Single-precision and double-precision

Encoding

FRINTA <Vd>.<T>, <Vn>.<T>

0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1877
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR[]);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundInt(element, FPCR[], rounding, exact);

 V[d] = result;
C7-1878 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.156 FRINTA (scalar)

Floating-point Round to Integral, to nearest with ties to Away (scalar). This instruction rounds a floating-point value
in the SIMD&FP source register to an integral floating-point value of the same size using the Round to Nearest with
Ties to Away rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FRINTA <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FRINTA <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINTA <Dd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 0 0 1 1 0 0 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 15 14 13 12 11 10 9 5 4 0

rmode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1879
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();
 bits(esize) operand = V[n];

 Elem[result, 0, esize] = FPRoundInt(operand, fpcr, FPRounding_TIEAWAY, FALSE);

 V[d] = result;
C7-1880 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.157 FRINTI (vector)

Floating-point Round to Integral, using current rounding mode (vector). This instruction rounds a vector of
floating-point values in the SIMD&FP source register to integral floating-point values of the same size using the
rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FRINTI <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR[]);

Single-precision and double-precision

Encoding

FRINTI <Vd>.<T>, <Vn>.<T>

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1881
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR[]);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundInt(element, FPCR[], rounding, exact);

 V[d] = result;
C7-1882 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.158 FRINTI (scalar)

Floating-point Round to Integral, using current rounding mode (scalar). This instruction rounds a floating-point
value in the SIMD&FP source register to an integral floating-point value of the same size using the rounding mode
that is determined by the FPCR, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FRINTI <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FRINTI <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINTI <Dd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

 FPRounding rounding;
 rounding = FPRoundingMode(FPCR[]);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 0 0 1 1 1 1 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 15 14 13 12 11 10 9 5 4 0

rmode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1883
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();
 bits(esize) operand = V[n];

 Elem[result, 0, esize] = FPRoundInt(operand, fpcr, rounding, FALSE);

 V[d] = result;
C7-1884 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.159 FRINTM (vector)

Floating-point Round to Integral, toward Minus infinity (vector). This instruction rounds a vector of floating-point
values in the SIMD&FP source register to integral floating-point values of the same size using the Round towards
Minus Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FRINTM <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR[]);

Single-precision and double-precision

Encoding

FRINTM <Vd>.<T>, <Vn>.<T>

0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1885
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR[]);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundInt(element, FPCR[], rounding, exact);

 V[d] = result;
C7-1886 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.160 FRINTM (scalar)

Floating-point Round to Integral, toward Minus infinity (scalar). This instruction rounds a floating-point value in
the SIMD&FP source register to an integral floating-point value of the same size using the Round towards Minus
Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FRINTM <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FRINTM <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINTM <Dd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

 FPRounding rounding;
 rounding = FPDecodeRounding('10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 0 0 1 0 1 0 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 15 14 13 12 11 10 9 5 4 0

rmode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1887
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();
 bits(esize) operand = V[n];

 Elem[result, 0, esize] = FPRoundInt(operand, fpcr, rounding, FALSE);

 V[d] = result;
C7-1888 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.161 FRINTN (vector)

Floating-point Round to Integral, to nearest with ties to even (vector). This instruction rounds a vector of
floating-point values in the SIMD&FP source register to integral floating-point values of the same size using the
Round to Nearest rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FRINTN <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR[]);

Single-precision and double-precision

Encoding

FRINTN <Vd>.<T>, <Vn>.<T>

0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1889
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR[]);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundInt(element, FPCR[], rounding, exact);

 V[d] = result;
C7-1890 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.162 FRINTN (scalar)

Floating-point Round to Integral, to nearest with ties to even (scalar). This instruction rounds a floating-point value
in the SIMD&FP source register to an integral floating-point value of the same size using the Round to Nearest
rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FRINTN <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FRINTN <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINTN <Dd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

 FPRounding rounding;
 rounding = FPDecodeRounding('00');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 0 0 1 0 0 0 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 15 14 13 12 11 10 9 5 4 0

rmode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1891
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();
 bits(esize) operand = V[n];

 Elem[result, 0, esize] = FPRoundInt(operand, fpcr, rounding, FALSE);

 V[d] = result;
C7-1892 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.163 FRINTP (vector)

Floating-point Round to Integral, toward Plus infinity (vector). This instruction rounds a vector of floating-point
values in the SIMD&FP source register to integral floating-point values of the same size using the Round towards
Plus Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FRINTP <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR[]);

Single-precision and double-precision

Encoding

FRINTP <Vd>.<T>, <Vn>.<T>

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1893
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR[]);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundInt(element, FPCR[], rounding, exact);

 V[d] = result;
C7-1894 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.164 FRINTP (scalar)

Floating-point Round to Integral, toward Plus infinity (scalar). This instruction rounds a floating-point value in the
SIMD&FP source register to an integral floating-point value of the same size using the Round towards Plus Infinity
rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FRINTP <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FRINTP <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINTP <Dd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

 FPRounding rounding;
 rounding = FPDecodeRounding('01');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 0 0 1 0 0 1 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 15 14 13 12 11 10 9 5 4 0

rmode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1895
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();
 bits(esize) operand = V[n];

 Elem[result, 0, esize] = FPRoundInt(operand, fpcr, rounding, FALSE);

 V[d] = result;
C7-1896 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.165 FRINTX (vector)

Floating-point Round to Integral exact, using current rounding mode (vector). This instruction rounds a vector of
floating-point values in the SIMD&FP source register to integral floating-point values of the same size using the
rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination register.

When a result value is not numerically equal to the corresponding input value, an Inexact exception is raised. A zero
input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN
is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FRINTX <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR[]);

Single-precision and double-precision

Encoding

FRINTX <Vd>.<T>, <Vn>.<T>

0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1897
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR[]);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundInt(element, FPCR[], rounding, exact);

 V[d] = result;
C7-1898 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.166 FRINTX (scalar)

Floating-point Round to Integral exact, using current rounding mode (scalar). This instruction rounds a
floating-point value in the SIMD&FP source register to an integral floating-point value of the same size using the
rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination register.

When the result value is not numerically equal to the input value, an Inexact exception is raised. A zero input gives
a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated
as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FRINTX <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FRINTX <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINTX <Dd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

 FPRounding rounding;
 rounding = FPRoundingMode(FPCR[]);

0 0 0 1 1 1 1 0 ftype 1 0 0 1 1 1 0 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 15 14 13 12 11 10 9 5 4 0

rmode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1899
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();
 bits(esize) operand = V[n];

 Elem[result, 0, esize] = FPRoundInt(operand, fpcr, rounding, TRUE);

 V[d] = result;
C7-1900 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.167 FRINTZ (vector)

Floating-point Round to Integral, toward Zero (vector). This instruction rounds a vector of floating-point values in
the SIMD&FP source register to integral floating-point values of the same size using the Round towards Zero
rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FRINTZ <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR[]);

Single-precision and double-precision

Encoding

FRINTZ <Vd>.<T>, <Vn>.<T>

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1901
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR[]);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundInt(element, FPCR[], rounding, exact);

 V[d] = result;
C7-1902 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.168 FRINTZ (scalar)

Floating-point Round to Integral, toward Zero (scalar). This instruction rounds a floating-point value in the
SIMD&FP source register to an integral floating-point value of the same size using the Round towards Zero
rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FRINTZ <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FRINTZ <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINTZ <Dd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

 FPRounding rounding;
 rounding = FPDecodeRounding('11');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 0 0 1 0 1 1 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 15 14 13 12 11 10 9 5 4 0

rmode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1903
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();
 bits(esize) operand = V[n];

 Elem[result, 0, esize] = FPRoundInt(operand, fpcr, rounding, FALSE);

 V[d] = result;
C7-1904 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.169 FRSQRTE

Floating-point Reciprocal Square Root Estimate. This instruction calculates an approximate square root for each
vector element in the source SIMD&FP register, places the result in a vector, and writes the vector to the destination
SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FRSQRTE <Hd>, <Hn>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;

Scalar single-precision and double-precision

Encoding

FRSQRTE <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;

Vector half precision

(FEAT_FP16)

0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 1 1 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1905
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FRSQRTE <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Vector single-precision and double-precision

Encoding

FRSQRTE <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
C7-1906 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 bits(esize) element;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRSqrtEstimate(element, fpcr);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1907
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.170 FRSQRTS

Floating-point Reciprocal Square Root Step. This instruction multiplies corresponding floating-point values in the
vectors of the two source SIMD&FP registers, subtracts each of the products from 3.0, divides these results by 2.0,
places the results into a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FRSQRTS <Hd>, <Hn>, <Hm>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;

Scalar single-precision and double-precision

Encoding

FRSQRTS <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;

Vector half precision

(FEAT_FP16)

0 1 0 1 1 1 1 0 1 1 0 Rm 0 0 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 1 1 1 1 0 1 sz 1 Rm 1 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-1908 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FRSQRTS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Vector single-precision and double-precision

Encoding

FRSQRTS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

0 Q 0 0 1 1 1 0 1 1 0 Rm 0 0 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 Q 0 0 1 1 1 0 1 sz 1 Rm 1 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1909
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];

 bits(esize) element1;
 bits(esize) element2;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[n] else Zeros();

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPRSqrtStepFused(element1, element2);

 V[d] = result;
C7-1910 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.171 FSQRT (vector)

Floating-point Square Root (vector). This instruction calculates the square root for each vector element in the source
SIMD&FP register, places the result in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FSQRT <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Single-precision and double-precision

Encoding

FSQRT <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1911
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPSqrt(element, FPCR[]);

 V[d] = result;
C7-1912 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.172 FSQRT (scalar)

Floating-point Square Root (scalar). This instruction calculates the square root of the value in the SIMD&FP source
register and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FSQRT <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FSQRT <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FSQRT <Dd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 0 0 0 0 1 1 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1913
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 bits(esize) operand = V[n];

 Elem[result, 0, esize] = FPSqrt(operand, fpcr);

 V[d] = result;
C7-1914 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.173 FSUB (vector)

Floating-point Subtract (vector). This instruction subtracts the elements in the vector in the second source
SIMD&FP register, from the corresponding elements in the vector in the first source SIMD&FP register, places each
result into elements of a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean abs = (U == '1');

Single-precision and double-precision

Encoding

FSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean abs = (U == '1');

0 Q 0 0 1 1 1 0 1 1 0 Rm 0 0 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 1 sz 1 Rm 1 1 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1915
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];

 bits(esize) element1;
 bits(esize) element2;
 bits(esize) diff;
 FPCRType fpcr = FPCR[];
 bits(datasize) result;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 diff = FPSub(element1, element2, fpcr);
 Elem[result, e, esize] = if abs then FPAbs(diff) else diff;

 V[d] = result;
C7-1916 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.174 FSUB (scalar)

Floating-point Subtract (scalar). This instruction subtracts the floating-point value of the second source SIMD&FP
register from the floating-point value of the first source SIMD&FP register, and writes the result to the destination
SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FSUB <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FSUB <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FSUB <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 integer esize;
 case ftype of
 when '00' esize = 32;
 when '01' esize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 esize = 16;
 else
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 Rm 0 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1917
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();
 bits(esize) operand1 = V[n];
 bits(esize) operand2 = V[m];

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 bits(128) result = if merge then V[n] else Zeros();

 Elem[result, 0, esize] = FPSub(operand1, operand2, fpcr);
 V[d] = result;
C7-1918 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.175 INS (element)

Insert vector element from another vector element. This instruction copies the vector element of the source
SIMD&FP register to the specified vector element of the destination SIMD&FP register.

This instruction can insert data into individual elements within a SIMD&FP register without clearing the remaining
bits to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (element). The alias is always the preferred disassembly.

Encoding

INS <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer size = LowestSetBit(imm5);
 if size > 3 then UNDEFINED;

 integer dst_index = UInt(imm5<4:size+1>);
 integer src_index = UInt(imm4<3:size>);
 integer idxdsize = if imm4<3> == '1' then 128 else 64;
 // imm4<size-1:0> is IGNORED

 integer esize = 8 << size;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ts> Is an element size specifier, encoded in the "imm5" field. It can have the following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<index1> Is the destination element index encoded in the "imm5" field. It can have the following values:

imm5<4:1> when imm5 = xxxx1

imm5<4:2> when imm5 = xxx10

imm5<4:3> when imm5 = xx100

imm5<4> when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

0 1 1 0 1 1 1 0 0 0 0 imm5 0 imm4 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1919
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<index2> Is the source element index encoded in the "imm5:imm4" field. It can have the following values:

imm4<3:0> when imm5 = xxxx1

imm4<3:1> when imm5 = xxx10

imm4<3:2> when imm5 = xx100

imm4<3> when imm5 = x1000

The encoding imm5 = x0000 is reserved.

 Unspecified bits in "imm4" are ignored but should be set to zero by an assembler.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(idxdsize) operand = V[n];
 bits(128) result;

 result = V[d];
 Elem[result, dst_index, esize] = Elem[operand, src_index, esize];
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1920 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.176 INS (general)

Insert vector element from general-purpose register. This instruction copies the contents of the source
general-purpose register to the specified vector element in the destination SIMD&FP register.

This instruction can insert data into individual elements within a SIMD&FP register without clearing the remaining
bits to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (from general). The alias is always the preferred disassembly.

Encoding

INS <Vd>.<Ts>[<index>], <R><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer size = LowestSetBit(imm5);

 if size > 3 then UNDEFINED;
 integer index = UInt(imm5<4:size+1>);

 integer esize = 8 << size;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ts> Is an element size specifier, encoded in the "imm5" field. It can have the following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<index> Is the element index encoded in the "imm5" field. It can have the following values:

imm5<4:1> when imm5 = xxxx1

imm5<4:2> when imm5 = xxx10

imm5<4:3> when imm5 = xx100

imm5<4> when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<R> Is the width specifier for the general-purpose source register, encoded in the "imm5" field. It can
have the following values:

W when imm5 = xxxx1

0 1 0 0 1 1 1 0 0 0 0 imm5 0 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1921
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
W when imm5 = xxx10

W when imm5 = xx100

X when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<n> Is the number [0-30] of the general-purpose source register or ZR (31), encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(esize) element = X[n];
 bits(128) result;

 result = V[d];
 Elem[result, index, esize] = element;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1922 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.177 LD1 (multiple structures)

Load multiple single-element structures to one, two, three, or four registers. This instruction loads multiple
single-element structures from memory and writes the result to one, two, three, or four SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

One register variant

Applies when opcode == 0111.

LD1 { <Vt>.<T> }, [<Xn|SP>]

Two registers variant

Applies when opcode == 1010.

LD1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

Three registers variant

Applies when opcode == 0110.

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

Four registers variant

Applies when opcode == 0010.

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean tag_checked = wback || n != 31;

Post-index

One register, immediate offset variant

Applies when Rm == 11111 && opcode == 0111.

LD1 { <Vt>.<T> }, [<Xn|SP>], <imm>

One register, register offset variant

Applies when Rm != 11111 && opcode == 0111.

0 Q 0 0 1 1 0 0 0 1 0 0 0 0 0 0 x x 1 x size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 5 4 0

L opcode

0 Q 0 0 1 1 0 0 1 1 0 Rm x x 1 x size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

L opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1923
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
LD1 { <Vt>.<T> }, [<Xn|SP>], <Xm>

Two registers, immediate offset variant

Applies when Rm == 11111 && opcode == 1010.

LD1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Two registers, register offset variant

Applies when Rm != 11111 && opcode == 1010.

LD1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

Three registers, immediate offset variant

Applies when Rm == 11111 && opcode == 0110.

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Three registers, register offset variant

Applies when Rm != 11111 && opcode == 0110.

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

Four registers, immediate offset variant

Applies when Rm == 11111 && opcode == 0010.

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Four registers, register offset variant

Applies when Rm != 11111 && opcode == 0010.

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

1D when size = 11, Q = 0

2D when size = 11, Q = 1

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.
C7-1924 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the one register, immediate offset variant: is the post-index immediate offset, encoded in the "Q"
field. It can have the following values:

#8 when Q = 0

#16 when Q = 1

For the two registers, immediate offset variant: is the post-index immediate offset, encoded in the
"Q" field. It can have the following values:

#16 when Q = 0

#32 when Q = 1

For the three registers, immediate offset variant: is the post-index immediate offset, encoded in the
"Q" field. It can have the following values:

#24 when Q = 0

#48 when Q = 1

For the four registers, immediate offset variant: is the post-index immediate offset, encoded in the
"Q" field. It can have the following values:

#32 when Q = 0

#64 when Q = 1

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = if Q == '1' then 128 else 64;
 integer esize = 8 << UInt(size);
 integer elements = datasize DIV esize;

 integer rpt; // number of iterations
 integer selem; // structure elements

 case opcode of
 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
 otherwise UNDEFINED;

 // .1D format only permitted with LD1 & ST1
 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) offs;
 bits(datasize) rval;
 integer tt;
 constant integer ebytes = esize DIV 8;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1925
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 offs = Zeros();
 for r = 0 to rpt-1
 for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt];
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[tt] = rval;
 else // memop == MemOp_STORE
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7-1926 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.178 LD1 (single structure)

Load one single-element structure to one lane of one register. This instruction loads a single-element structure from
memory and writes the result to the specified lane of the SIMD&FP register without affecting the other bits of the
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

8-bit variant

Applies when opcode == 000.

LD1 { <Vt>.B }[<index>], [<Xn|SP>]

16-bit variant

Applies when opcode == 010 && size == x0.

LD1 { <Vt>.H }[<index>], [<Xn|SP>]

32-bit variant

Applies when opcode == 100 && size == 00.

LD1 { <Vt>.S }[<index>], [<Xn|SP>]

64-bit variant

Applies when opcode == 100 && S == 0 && size == 01.

LD1 { <Vt>.D }[<index>], [<Xn|SP>]

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean tag_checked = wback || n != 31;

Post-index

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 000.

LD1 { <Vt>.B }[<index>], [<Xn|SP>], #1

0 Q 0 0 1 1 0 1 0 1 0 0 0 0 0 0 x x 0 S size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R opcode

0 Q 0 0 1 1 0 1 1 1 0 Rm x x 0 S size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1927
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
8-bit, register offset variant

Applies when Rm != 11111 && opcode == 000.

LD1 { <Vt>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 010 && size == x0.

LD1 { <Vt>.H }[<index>], [<Xn|SP>], #2

16-bit, register offset variant

Applies when Rm != 11111 && opcode == 010 && size == x0.

LD1 { <Vt>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 100 && size == 00.

LD1 { <Vt>.S }[<index>], [<Xn|SP>], #4

32-bit, register offset variant

Applies when Rm != 11111 && opcode == 100 && size == 00.

LD1 { <Vt>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 100 && S == 0 && size == 01.

LD1 { <Vt>.D }[<index>], [<Xn|SP>], #8

64-bit, register offset variant

Applies when Rm != 11111 && opcode == 100 && S == 0 && size == 01.

LD1 { <Vt>.D }[<index>], [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.
C7-1928 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Shared decode for all encodings

 integer init_scale = UInt(opcode<2:1>);
 integer scale = init_scale;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when 3
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = UInt(size);
 replicate = TRUE;
 when 0
 index = UInt(Q:S:size); // B[0-15]
 when 1
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when 2
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = 3;

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = if Q == '1' then 128 else 64;
 integer esize = 8 << scale;

Operation for all encodings

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 offs = Zeros();
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 element = Mem[address+offs, ebytes, AccType_VEC];
 // replicate to fill 128- or 64-bit register
 V[t] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t];
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1929
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[t] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7-1930 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.179 LD1R

Load one single-element structure and Replicate to all lanes (of one register). This instruction loads a single-element
structure from memory and replicates the structure to all the lanes of the SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

Encoding

LD1R { <Vt>.<T> }, [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean tag_checked = wback || n != 31;

Post-index

Immediate offset variant

Applies when Rm == 11111.

LD1R { <Vt>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

LD1R { <Vt>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R opcode S

0 Q 0 0 1 1 0 1 1 1 0 Rm 1 1 0 0 size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1931
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

1D when size = 11, Q = 0

2D when size = 11, Q = 1

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "size" field. It can have the following values:

#1 when size = 00

#2 when size = 01

#4 when size = 10

#8 when size = 11

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 integer init_scale = UInt(opcode<2:1>);
 integer scale = init_scale;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when 3
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = UInt(size);
 replicate = TRUE;
 when 0
 index = UInt(Q:S:size); // B[0-15]
 when 1
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when 2
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = 3;

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = if Q == '1' then 128 else 64;
 integer esize = 8 << scale;

Operation for all encodings

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) offs;
C7-1932 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 offs = Zeros();
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 element = Mem[address+offs, ebytes, AccType_VEC];
 // replicate to fill 128- or 64-bit register
 V[t] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t];
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[t] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1933
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.180 LD2 (multiple structures)

Load multiple 2-element structures to two registers. This instruction loads multiple 2-element structures from
memory and writes the result to the two SIMD&FP registers, with de-interleaving.

For an example of de-interleaving, see LD3 (multiple structures).

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

Encoding

LD2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean tag_checked = wback || n != 31;

Post-index

Immediate offset variant

Applies when Rm == 11111.

LD2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

LD2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

0 Q 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 5 4 0

L opcode

0 Q 0 0 1 1 0 0 1 1 0 Rm 1 0 0 0 size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

L opcode
C7-1934 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#16 when Q = 0

#32 when Q = 1

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = if Q == '1' then 128 else 64;
 integer esize = 8 << UInt(size);
 integer elements = datasize DIV esize;

 integer rpt; // number of iterations
 integer selem; // structure elements

 case opcode of
 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
 otherwise UNDEFINED;

 // .1D format only permitted with LD1 & ST1
 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) offs;
 bits(datasize) rval;
 integer tt;
 constant integer ebytes = esize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1935
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 else
 address = X[n];

 offs = Zeros();
 for r = 0 to rpt-1
 for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt];
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[tt] = rval;
 else // memop == MemOp_STORE
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7-1936 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.181 LD2 (single structure)

Load single 2-element structure to one lane of two registers. This instruction loads a 2-element structure from
memory and writes the result to the corresponding elements of the two SIMD&FP registers without affecting the
other bits of the registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

8-bit variant

Applies when opcode == 000.

LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>]

16-bit variant

Applies when opcode == 010 && size == x0.

LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>]

32-bit variant

Applies when opcode == 100 && size == 00.

LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>]

64-bit variant

Applies when opcode == 100 && S == 0 && size == 01.

LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>]

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean tag_checked = wback || n != 31;

Post-index

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 000.

LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], #2

0 Q 0 0 1 1 0 1 0 1 1 0 0 0 0 0 x x 0 S size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R opcode

0 Q 0 0 1 1 0 1 1 1 1 Rm x x 0 S size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1937
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
8-bit, register offset variant

Applies when Rm != 11111 && opcode == 000.

LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 010 && size == x0.

LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], #4

16-bit, register offset variant

Applies when Rm != 11111 && opcode == 010 && size == x0.

LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 100 && size == 00.

LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], #8

32-bit, register offset variant

Applies when Rm != 11111 && opcode == 100 && size == 00.

LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 100 && S == 0 && size == 01.

LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], #16

64-bit, register offset variant

Applies when Rm != 11111 && opcode == 100 && S == 0 && size == 01.

LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
C7-1938 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 integer init_scale = UInt(opcode<2:1>);
 integer scale = init_scale;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when 3
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = UInt(size);
 replicate = TRUE;
 when 0
 index = UInt(Q:S:size); // B[0-15]
 when 1
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when 2
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = 3;

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = if Q == '1' then 128 else 64;
 integer esize = 8 << scale;

Operation for all encodings

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 offs = Zeros();
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 element = Mem[address+offs, ebytes, AccType_VEC];
 // replicate to fill 128- or 64-bit register
 V[t] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1939
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 for s = 0 to selem-1
 rval = V[t];
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[t] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7-1940 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.182 LD2R

Load single 2-element structure and Replicate to all lanes of two registers. This instruction loads a 2-element
structure from memory and replicates the structure to all the lanes of the two SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

Encoding

LD2R { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean tag_checked = wback || n != 31;

Post-index

Immediate offset variant

Applies when Rm == 11111.

LD2R { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

LD2R { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 0 0 1 1 0 1 0 1 1 0 0 0 0 0 1 1 0 0 size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R opcode S

0 Q 0 0 1 1 0 1 1 1 1 Rm 1 1 0 0 size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1941
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

1D when size = 11, Q = 0

2D when size = 11, Q = 1

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "size" field. It can have the following values:

#2 when size = 00

#4 when size = 01

#8 when size = 10

#16 when size = 11

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 integer init_scale = UInt(opcode<2:1>);
 integer scale = init_scale;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when 3
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = UInt(size);
 replicate = TRUE;
 when 0
 index = UInt(Q:S:size); // B[0-15]
 when 1
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when 2
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = 3;

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = if Q == '1' then 128 else 64;
 integer esize = 8 << scale;

Operation for all encodings

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 CheckFPAdvSIMDEnabled64();

C7-1942 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 bits(64) address;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 offs = Zeros();
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 element = Mem[address+offs, ebytes, AccType_VEC];
 // replicate to fill 128- or 64-bit register
 V[t] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t];
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[t] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1943
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.183 LD3 (multiple structures)

Load multiple 3-element structures to three registers. This instruction loads multiple 3-element structures from
memory and writes the result to the three SIMD&FP registers, with de-interleaving.

The following figure shows the operation of de-interleaving of a LD3.16 (multiple 3-element structures)
instruction:.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

Encoding

LD3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean tag_checked = wback || n != 31;

Post-index

Immediate offset variant

Applies when Rm == 11111.

LD3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

A[0].x
A[0].y
A[0].z
A[1].x
A[1].y
A[1].z
A[2].x
A[2].y
A[2].z
A[3].x
A[3].y
A[3].z

Memory

Z3 Z2 Z1 Z0 D2
Y3 Y1 D1

X3 X2 X1 D0
Y2 Y0

X0

Registers

A is a packed array of
3-element structures.
Each element is a 16-bit
halfword.

0 Q 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 5 4 0

L opcode

0 Q 0 0 1 1 0 0 1 1 0 Rm 0 1 0 0 size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

L opcode
C7-1944 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Register offset variant

Applies when Rm != 11111.

LD3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#24 when Q = 0

#48 when Q = 1

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = if Q == '1' then 128 else 64;
 integer esize = 8 << UInt(size);
 integer elements = datasize DIV esize;

 integer rpt; // number of iterations
 integer selem; // structure elements

 case opcode of
 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
 otherwise UNDEFINED;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1945
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 // .1D format only permitted with LD1 & ST1
 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) offs;
 bits(datasize) rval;
 integer tt;
 constant integer ebytes = esize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 offs = Zeros();
 for r = 0 to rpt-1
 for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt];
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[tt] = rval;
 else // memop == MemOp_STORE
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7-1946 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.184 LD3 (single structure)

Load single 3-element structure to one lane of three registers. This instruction loads a 3-element structure from
memory and writes the result to the corresponding elements of the three SIMD&FP registers without affecting the
other bits of the registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

8-bit variant

Applies when opcode == 001.

LD3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>]

16-bit variant

Applies when opcode == 011 && size == x0.

LD3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>]

32-bit variant

Applies when opcode == 101 && size == 00.

LD3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>]

64-bit variant

Applies when opcode == 101 && S == 0 && size == 01.

LD3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>]

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean tag_checked = wback || n != 31;

Post-index

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 001.

LD3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], #3

0 Q 0 0 1 1 0 1 0 1 0 0 0 0 0 0 x x 1 S size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R opcode

0 Q 0 0 1 1 0 1 1 1 0 Rm x x 1 S size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1947
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
8-bit, register offset variant

Applies when Rm != 11111 && opcode == 001.

LD3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 011 && size == x0.

LD3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], #6

16-bit, register offset variant

Applies when Rm != 11111 && opcode == 011 && size == x0.

LD3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 101 && size == 00.

LD3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], #12

32-bit, register offset variant

Applies when Rm != 11111 && opcode == 101 && size == 00.

LD3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 101 && S == 0 && size == 01.

LD3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], #24

64-bit, register offset variant

Applies when Rm != 11111 && opcode == 101 && S == 0 && size == 01.

LD3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
C7-1948 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 integer init_scale = UInt(opcode<2:1>);
 integer scale = init_scale;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when 3
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = UInt(size);
 replicate = TRUE;
 when 0
 index = UInt(Q:S:size); // B[0-15]
 when 1
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when 2
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = 3;

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = if Q == '1' then 128 else 64;
 integer esize = 8 << scale;

Operation for all encodings

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 offs = Zeros();
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 element = Mem[address+offs, ebytes, AccType_VEC];
 // replicate to fill 128- or 64-bit register
 V[t] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1949
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 for s = 0 to selem-1
 rval = V[t];
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[t] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7-1950 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.185 LD3R

Load single 3-element structure and Replicate to all lanes of three registers. This instruction loads a 3-element
structure from memory and replicates the structure to all the lanes of the three SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

Encoding

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean tag_checked = wback || n != 31;

Post-index

Immediate offset variant

Applies when Rm == 11111.

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 1 1 0 size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R opcode S

0 Q 0 0 1 1 0 1 1 1 0 Rm 1 1 1 0 size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1951
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

1D when size = 11, Q = 0

2D when size = 11, Q = 1

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "size" field. It can have the following values:

#3 when size = 00

#6 when size = 01

#12 when size = 10

#24 when size = 11

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 integer init_scale = UInt(opcode<2:1>);
 integer scale = init_scale;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when 3
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = UInt(size);
 replicate = TRUE;
 when 0
 index = UInt(Q:S:size); // B[0-15]
 when 1
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when 2
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = 3;

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = if Q == '1' then 128 else 64;
 integer esize = 8 << scale;

Operation for all encodings

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

C7-1952 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 offs = Zeros();
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 element = Mem[address+offs, ebytes, AccType_VEC];
 // replicate to fill 128- or 64-bit register
 V[t] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t];
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[t] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1953
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.186 LD4 (multiple structures)

Load multiple 4-element structures to four registers. This instruction loads multiple 4-element structures from
memory and writes the result to the four SIMD&FP registers, with de-interleaving.

For an example of de-interleaving, see LD3 (multiple structures).

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

Encoding

LD4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean tag_checked = wback || n != 31;

Post-index

Immediate offset variant

Applies when Rm == 11111.

LD4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

LD4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

0 Q 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 5 4 0

L opcode

0 Q 0 0 1 1 0 0 1 1 0 Rm 0 0 0 0 size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

L opcode
C7-1954 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#32 when Q = 0

#64 when Q = 1

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = if Q == '1' then 128 else 64;
 integer esize = 8 << UInt(size);
 integer elements = datasize DIV esize;

 integer rpt; // number of iterations
 integer selem; // structure elements

 case opcode of
 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
 otherwise UNDEFINED;

 // .1D format only permitted with LD1 & ST1
 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) offs;
 bits(datasize) rval;
 integer tt;
 constant integer ebytes = esize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1955
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 offs = Zeros();
 for r = 0 to rpt-1
 for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt];
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[tt] = rval;
 else // memop == MemOp_STORE
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7-1956 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.187 LD4 (single structure)

Load single 4-element structure to one lane of four registers. This instruction loads a 4-element structure from
memory and writes the result to the corresponding elements of the four SIMD&FP registers without affecting the
other bits of the registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

8-bit variant

Applies when opcode == 001.

LD4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>]

16-bit variant

Applies when opcode == 011 && size == x0.

LD4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>]

32-bit variant

Applies when opcode == 101 && size == 00.

LD4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>]

64-bit variant

Applies when opcode == 101 && S == 0 && size == 01.

LD4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>]

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean tag_checked = wback || n != 31;

Post-index

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 001.

LD4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>], #4

0 Q 0 0 1 1 0 1 0 1 1 0 0 0 0 0 x x 1 S size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R opcode

0 Q 0 0 1 1 0 1 1 1 1 Rm x x 1 S size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1957
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
8-bit, register offset variant

Applies when Rm != 11111 && opcode == 001.

LD4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 011 && size == x0.

LD4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>], #8

16-bit, register offset variant

Applies when Rm != 11111 && opcode == 011 && size == x0.

LD4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 101 && size == 00.

LD4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>], #16

32-bit, register offset variant

Applies when Rm != 11111 && opcode == 101 && size == 00.

LD4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 101 && S == 0 && size == 01.

LD4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>], #32

64-bit, register offset variant

Applies when Rm != 11111 && opcode == 101 && S == 0 && size == 01.

LD4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".
C7-1958 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 integer init_scale = UInt(opcode<2:1>);
 integer scale = init_scale;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when 3
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = UInt(size);
 replicate = TRUE;
 when 0
 index = UInt(Q:S:size); // B[0-15]
 when 1
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when 2
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = 3;

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = if Q == '1' then 128 else 64;
 integer esize = 8 << scale;

Operation for all encodings

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 offs = Zeros();
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 element = Mem[address+offs, ebytes, AccType_VEC];
 // replicate to fill 128- or 64-bit register
 V[t] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1959
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t];
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[t] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7-1960 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.188 LD4R

Load single 4-element structure and Replicate to all lanes of four registers. This instruction loads a 4-element
structure from memory and replicates the structure to all the lanes of the four SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

Encoding

LD4R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean tag_checked = wback || n != 31;

Post-index

Immediate offset variant

Applies when Rm == 11111.

LD4R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

LD4R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 0 0 1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R opcode S

0 Q 0 0 1 1 0 1 1 1 1 Rm 1 1 1 0 size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1961
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

1D when size = 11, Q = 0

2D when size = 11, Q = 1

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "size" field. It can have the following values:

#4 when size = 00

#8 when size = 01

#16 when size = 10

#32 when size = 11

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 integer init_scale = UInt(opcode<2:1>);
 integer scale = init_scale;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when 3
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = UInt(size);
 replicate = TRUE;
 when 0
 index = UInt(Q:S:size); // B[0-15]
 when 1
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when 2
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = 3;

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = if Q == '1' then 128 else 64;
 integer esize = 8 << scale;
C7-1962 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 offs = Zeros();
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 element = Mem[address+offs, ebytes, AccType_VEC];
 // replicate to fill 128- or 64-bit register
 V[t] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t];
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[t] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1963
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.189 LDNP (SIMD&FP)

Load Pair of SIMD&FP registers, with Non-temporal hint. This instruction loads a pair of SIMD&FP registers from
memory, issuing a hint to the memory system that the access is non-temporal. The address that is used for the load
is calculated from a base register value and an optional immediate offset.

For information about non-temporal pair instructions, see Load/store SIMD and floating-point non-temporal pair
on page C3-233.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

32-bit variant

Applies when opc == 00.

LDNP <St1>, <St2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 01.

LDNP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}]

128-bit variant

Applies when opc == 10.

LDNP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

 // Empty.

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDNP (SIMD&FP) on page K1-8415.

Assembler symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

opc 1 0 1 1 0 0 0 1 imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

L

C7-1964 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256
to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512
to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

For the 128-bit variant: is the optional signed immediate byte offset, a multiple of 16 in the range
-1024 to 1008, defaulting to 0 and encoded in the "imm7" field as <imm>/16.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 if opc == '11' then UNDEFINED;
 integer scale = 2 + UInt(opc);
 integer datasize = 8 << scale;
 bits(64) offset = LSL(SignExtend(imm7, 64), scale);
 boolean tag_checked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data1 = Mem[address, dbytes, AccType_VECSTREAM];
 data2 = Mem[address+dbytes, dbytes, AccType_VECSTREAM];
 if rt_unknown then
 data1 = bits(datasize) UNKNOWN;
 data2 = bits(datasize) UNKNOWN;
 V[t] = data1;
 V[t2] = data2;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1965
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.190 LDP (SIMD&FP)

Load Pair of SIMD&FP registers. This instruction loads a pair of SIMD&FP registers from memory. The address
that is used for the load is calculated from a base register value and an optional immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Post-index

32-bit variant

Applies when opc == 00.

LDP <St1>, <St2>, [<Xn|SP>], #<imm>

64-bit variant

Applies when opc == 01.

LDP <Dt1>, <Dt2>, [<Xn|SP>], #<imm>

128-bit variant

Applies when opc == 10.

LDP <Qt1>, <Qt2>, [<Xn|SP>], #<imm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;

Pre-index

32-bit variant

Applies when opc == 00.

LDP <St1>, <St2>, [<Xn|SP>, #<imm>]!

64-bit variant

Applies when opc == 01.

LDP <Dt1>, <Dt2>, [<Xn|SP>, #<imm>]!

128-bit variant

Applies when opc == 10.

LDP <Qt1>, <Qt2>, [<Xn|SP>, #<imm>]!

opc 1 0 1 1 0 0 1 1 imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

L

opc 1 0 1 1 0 1 1 1 imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

L

C7-1966 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;

Signed offset

32-bit variant

Applies when opc == 00.

LDP <St1>, <St2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 01.

LDP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}]

128-bit variant

Applies when opc == 10.

LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see LDP (SIMD&FP) on
page K1-8416, and particularly LDNP (SIMD&FP) on page K1-8415.

Assembler symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a
multiple of 4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in
the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

opc 1 0 1 1 0 1 0 1 imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

L

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1967
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a
multiple of 8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in
the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

For the 128-bit post-index and 128-bit pre-index variant: is the signed immediate byte offset, a
multiple of 16 in the range -1024 to 1008, encoded in the "imm7" field as <imm>/16.

For the 128-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 16
in the range -1024 to 1008, defaulting to 0 and encoded in the "imm7" field as <imm>/16.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 if opc == '11' then UNDEFINED;
 integer scale = 2 + UInt(opc);
 integer datasize = 8 << scale;
 bits(64) offset = LSL(SignExtend(imm7, 64), scale);
 boolean tag_checked = wback || n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
 address = address + offset;

 data1 = Mem[address, dbytes, AccType_VEC];
 data2 = Mem[address+dbytes, dbytes, AccType_VEC];
 if rt_unknown then
 data1 = bits(datasize) UNKNOWN;
 data2 = bits(datasize) UNKNOWN;
 V[t] = data1;
 V[t2] = data2;

 if wback then
 if postindex then
 address = address + offset;
 if n == 31 then
C7-1968 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 SP[] = address;
 else
 X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1969
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.191 LDR (immediate, SIMD&FP)

Load SIMD&FP Register (immediate offset). This instruction loads an element from memory, and writes the result
as a scalar to the SIMD&FP register. The address that is used for the load is calculated from a base register value,
a signed immediate offset, and an optional offset that is a multiple of the element size.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Post-index

8-bit variant

Applies when size == 00 && opc == 01.

LDR <Bt>, [<Xn|SP>], #<simm>

16-bit variant

Applies when size == 01 && opc == 01.

LDR <Ht>, [<Xn|SP>], #<simm>

32-bit variant

Applies when size == 10 && opc == 01.

LDR <St>, [<Xn|SP>], #<simm>

64-bit variant

Applies when size == 11 && opc == 01.

LDR <Dt>, [<Xn|SP>], #<simm>

128-bit variant

Applies when size == 00 && opc == 11.

LDR <Qt>, [<Xn|SP>], #<simm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

size 1 1 1 1 0 0 x 1 0 imm9 0 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

opc

size 1 1 1 1 0 0 x 1 0 imm9 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

opc
C7-1970 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
8-bit variant

Applies when size == 00 && opc == 01.

LDR <Bt>, [<Xn|SP>, #<simm>]!

16-bit variant

Applies when size == 01 && opc == 01.

LDR <Ht>, [<Xn|SP>, #<simm>]!

32-bit variant

Applies when size == 10 && opc == 01.

LDR <St>, [<Xn|SP>, #<simm>]!

64-bit variant

Applies when size == 11 && opc == 01.

LDR <Dt>, [<Xn|SP>, #<simm>]!

128-bit variant

Applies when size == 00 && opc == 11.

LDR <Qt>, [<Xn|SP>, #<simm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

8-bit variant

Applies when size == 00 && opc == 01.

LDR <Bt>, [<Xn|SP>{, #<pimm>}]

16-bit variant

Applies when size == 01 && opc == 01.

LDR <Ht>, [<Xn|SP>{, #<pimm>}]

32-bit variant

Applies when size == 10 && opc == 01.

LDR <St>, [<Xn|SP>{, #<pimm>}]

size 1 1 1 1 0 1 x 1 imm12 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1971
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
64-bit variant

Applies when size == 11 && opc == 01.

LDR <Dt>, [<Xn|SP>{, #<pimm>}]

128-bit variant

Applies when size == 00 && opc == 11.

LDR <Qt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

Assembler symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 8-bit variant: is the optional positive immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.

For the 16-bit variant: is the optional positive immediate byte offset, a multiple of 2 in the range 0
to 8190, defaulting to 0 and encoded in the "imm12" field as <pimm>/2.

For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0
to 16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.

For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0
to 32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.

For the 128-bit variant: is the optional positive immediate byte offset, a multiple of 16 in the range
0 to 65520, defaulting to 0 and encoded in the "imm12" field as <pimm>/16.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = 8 << scale;
 boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(64) address;
 bits(datasize) data;

C7-1972 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
 address = address + offset;

 case memop of
 when MemOp_STORE
 data = V[t];
 Mem[address, datasize DIV 8, AccType_VEC] = data;

 when MemOp_LOAD
 data = Mem[address, datasize DIV 8, AccType_VEC];
 V[t] = data;

 if wback then
 if postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
 else
 X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1973
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.192 LDR (literal, SIMD&FP)

Load SIMD&FP Register (PC-relative literal). This instruction loads a SIMD&FP register from memory. The
address that is used for the load is calculated from the PC value and an immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

32-bit variant

Applies when opc == 00.

LDR <St>, <label>

64-bit variant

Applies when opc == 01.

LDR <Dt>, <label>

128-bit variant

Applies when opc == 10.

LDR <Qt>, <label>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer size;
 bits(64) offset;

 case opc of
 when '00'
 size = 4;
 when '01'
 size = 8;
 when '10'
 size = 16;
 when '11'
 UNDEFINED;

 offset = SignExtend(imm19:'00', 64);

Assembler symbols

<Dt> Is the 64-bit name of the SIMD&FP register to be loaded, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be loaded, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be loaded, encoded in the "Rt" field.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this
instruction, in the range +/-1MB, is encoded as "imm19" times 4.

opc 0 1 1 1 0 0 imm19 Rt
31 30 29 28 27 26 25 24 23 5 4 0
C7-1974 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();

 bits(64) address = PC[] + offset;
 bits(size*8) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(FALSE);

 data = Mem[address, size, AccType_VEC];
 V[t] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1975
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.193 LDR (register, SIMD&FP)

Load SIMD&FP Register (register offset). This instruction loads a SIMD&FP register from memory. The address
that is used for the load is calculated from a base register value and an offset register value. The offset can be
optionally shifted and extended.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

8-fsreg,LDR-8-fsreg variant

Applies when size == 00 && opc == 01 && option != 011.

LDR <Bt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

8-fsreg,LDR-8-fsreg variant

Applies when size == 00 && opc == 01 && option == 011.

LDR <Bt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

16-fsreg,LDR-16-fsreg variant

Applies when size == 01 && opc == 01.

LDR <Ht>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

32-fsreg,LDR-32-fsreg variant

Applies when size == 10 && opc == 01.

LDR <St>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-fsreg,LDR-64-fsreg variant

Applies when size == 11 && opc == 01.

LDR <Dt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

128-fsreg,LDR-128-fsreg variant

Applies when size == 00 && opc == 11.

LDR <Qt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for all variants of this encoding

 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then scale else 0;

Assembler symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

size 1 1 1 1 0 0 x 1 1 Rm option S 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

opc
C7-1976 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> For the 8-bit variant: is the index extend specifier, encoded in the "option" field. It can have the
following values:

UXTW when option = 010

SXTW when option = 110

SXTX when option = 111

For the 128-bit, 16-bit, 32-bit and 64-bit variant: is the index extend/shift specifier, defaulting to
LSL, and which must be omitted for the LSL option when <amount> is omitted. encoded in the
"option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> For the 8-bit variant: is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1
if present.

For the 16-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#1 when S = 1

For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#2 when S = 1

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#3 when S = 1

For the 128-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where
it is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#4 when S = 1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1977
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);
 MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = 8 << scale;
 boolean tag_checked = memop != MemOp_PREFETCH;

Operation

 bits(64) offset = ExtendReg(m, extend_type, shift);
 CheckFPAdvSIMDEnabled64();
 bits(64) address;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 case memop of
 when MemOp_STORE
 data = V[t];
 Mem[address, datasize DIV 8, AccType_VEC] = data;

 when MemOp_LOAD
 data = Mem[address, datasize DIV 8, AccType_VEC];
 V[t] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7-1978 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.194 LDUR (SIMD&FP)

Load SIMD&FP Register (unscaled offset). This instruction loads a SIMD&FP register from memory. The address
that is used for the load is calculated from a base register value and an optional immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

8-bit variant

Applies when size == 00 && opc == 01.

LDUR <Bt>, [<Xn|SP>{, #<simm>}]

16-bit variant

Applies when size == 01 && opc == 01.

LDUR <Ht>, [<Xn|SP>{, #<simm>}]

32-bit variant

Applies when size == 10 && opc == 01.

LDUR <St>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11 && opc == 01.

LDUR <Dt>, [<Xn|SP>{, #<simm>}]

128-bit variant

Applies when size == 00 && opc == 11.

LDUR <Qt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

size 1 1 1 1 0 0 x 1 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1979
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = 8 << scale;
 boolean tag_checked = memop != MemOp_PREFETCH && (n != 31);

Operation

 CheckFPAdvSIMDEnabled64();
 bits(64) address;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 case memop of
 when MemOp_STORE
 data = V[t];
 Mem[address, datasize DIV 8, AccType_VEC] = data;

 when MemOp_LOAD
 data = Mem[address, datasize DIV 8, AccType_VEC];
 V[t] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7-1980 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.195 MLA (by element)

Multiply-Add to accumulator (vector, by element). This instruction multiplies the vector elements in the first source
SIMD&FP register by the specified value in the second source SIMD&FP register, and accumulates the results with
the vector elements of the destination SIMD&FP register. All the values in this instruction are unsigned integer
values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

MLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean sub_op = (o2 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

0 Q 1 0 1 1 1 1 size L M Rm 0 0 0 0 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1981
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(idxdsize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 integer element1;
 integer element2;
 bits(esize) product;

 element2 = UInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = UInt(Elem[operand1, e, esize]);
 product = (element1*element2)<esize-1:0>;
 if sub_op then
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 else
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1982 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.196 MLA (vector)

Multiply-Add to accumulator (vector). This instruction multiplies corresponding elements in the vectors of the two
source SIMD&FP registers, and accumulates the results with the vector elements of the destination SIMD&FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

MLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean sub_op = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;
 bits(esize) product;

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1983
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 product = (UInt(element1)*UInt(element2))<esize-1:0>;
 if sub_op then
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 else
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1984 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.197 MLS (by element)

Multiply-Subtract from accumulator (vector, by element). This instruction multiplies the vector elements in the first
source SIMD&FP register by the specified value in the second source SIMD&FP register, and subtracts the results
from the vector elements of the destination SIMD&FP register. All the values in this instruction are unsigned integer
values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

MLS <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean sub_op = (o2 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

0 Q 1 0 1 1 1 1 size L M Rm 0 1 0 0 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1985
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(idxdsize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 integer element1;
 integer element2;
 bits(esize) product;

 element2 = UInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = UInt(Elem[operand1, e, esize]);
 product = (element1*element2)<esize-1:0>;
 if sub_op then
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 else
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1986 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.198 MLS (vector)

Multiply-Subtract from accumulator (vector). This instruction multiplies corresponding elements in the vectors of
the two source SIMD&FP registers, and subtracts the results from the vector elements of the destination SIMD&FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

MLS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean sub_op = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;
 bits(esize) product;

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1987
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 product = (UInt(element1)*UInt(element2))<esize-1:0>;
 if sub_op then
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 else
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1988 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.199 MOV (scalar)

Move vector element to scalar. This instruction duplicates the specified vector element in the SIMD&FP source
register into a scalar, and writes the result to the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the DUP (element) instruction. This means that:

• The encodings in this description are named to match the encodings of DUP (element).

• The description of DUP (element) gives the operational pseudocode for this instruction.

Encoding

MOV <V><d>, <Vn>.<T>[<index>]

 is equivalent to

DUP <V><d>, <Vn>.<T>[<index>]

and is always the preferred disassembly.

Assembler symbols

<V> Is the destination width specifier, encoded in the "imm5" field. It can have the following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is the element width specifier, encoded in the "imm5" field. It can have the following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<index> Is the element index encoded in the "imm5" field. It can have the following values:

imm5<4:1> when imm5 = xxxx1

imm5<4:2> when imm5 = xxx10

imm5<4:3> when imm5 = xx100

imm5<4> when imm5 = x1000

The encoding imm5 = x0000 is reserved.

0 1 0 1 1 1 1 0 0 0 0 imm5 0 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1989
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

The description of DUP (element) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1990 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.200 MOV (element)

Move vector element to another vector element. This instruction copies the vector element of the source SIMD&FP
register to the specified vector element of the destination SIMD&FP register.

This instruction can insert data into individual elements within a SIMD&FP register without clearing the remaining
bits to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the INS (element) instruction. This means that:

• The encodings in this description are named to match the encodings of INS (element).

• The description of INS (element) gives the operational pseudocode for this instruction.

Encoding

MOV <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]

 is equivalent to

INS <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]

and is always the preferred disassembly.

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ts> Is an element size specifier, encoded in the "imm5" field. It can have the following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<index1> Is the destination element index encoded in the "imm5" field. It can have the following values:

imm5<4:1> when imm5 = xxxx1

imm5<4:2> when imm5 = xxx10

imm5<4:3> when imm5 = xx100

imm5<4> when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<index2> Is the source element index encoded in the "imm5:imm4" field. It can have the following values:

imm4<3:0> when imm5 = xxxx1

imm4<3:1> when imm5 = xxx10

imm4<3:2> when imm5 = xx100

0 1 1 0 1 1 1 0 0 0 0 imm5 0 imm4 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1991
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
imm4<3> when imm5 = x1000

The encoding imm5 = x0000 is reserved.

 Unspecified bits in "imm4" are ignored but should be set to zero by an assembler.

Operation

The description of INS (element) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1992 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.201 MOV (from general)

Move general-purpose register to a vector element. This instruction copies the contents of the source
general-purpose register to the specified vector element in the destination SIMD&FP register.

This instruction can insert data into individual elements within a SIMD&FP register without clearing the remaining
bits to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the INS (general) instruction. This means that:

• The encodings in this description are named to match the encodings of INS (general).

• The description of INS (general) gives the operational pseudocode for this instruction.

Encoding

MOV <Vd>.<Ts>[<index>], <R><n>

 is equivalent to

INS <Vd>.<Ts>[<index>], <R><n>

and is always the preferred disassembly.

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ts> Is an element size specifier, encoded in the "imm5" field. It can have the following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<index> Is the element index encoded in the "imm5" field. It can have the following values:

imm5<4:1> when imm5 = xxxx1

imm5<4:2> when imm5 = xxx10

imm5<4:3> when imm5 = xx100

imm5<4> when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<R> Is the width specifier for the general-purpose source register, encoded in the "imm5" field. It can
have the following values:

W when imm5 = xxxx1

W when imm5 = xxx10

W when imm5 = xx100

X when imm5 = x1000

0 1 0 0 1 1 1 0 0 0 0 imm5 0 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1993
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding imm5 = x0000 is reserved.

<n> Is the number [0-30] of the general-purpose source register or ZR (31), encoded in the "Rn" field.

Operation

The description of INS (general) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-1994 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.202 MOV (vector)

Move vector. This instruction copies the vector in the source SIMD&FP register into the destination SIMD&FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the ORR (vector, register) instruction. This means that:

• The encodings in this description are named to match the encodings of ORR (vector, register).

• The description of ORR (vector, register) gives the operational pseudocode for this instruction.

Encoding

MOV <Vd>.<T>, <Vn>.<T>

 is equivalent to

ORR <Vd>.<T>, <Vn>.<T>, <Vn>.<T>

and is the preferred disassembly when Rm == Rn.

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

Operation

The description of ORR (vector, register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 Q 0 0 1 1 1 0 1 0 1 Rm 0 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1995
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.203 MOV (to general)

Move vector element to general-purpose register. This instruction reads the unsigned integer from the source
SIMD&FP register, zero-extends it to form a 32-bit or 64-bit value, and writes the result to the destination
general-purpose register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the UMOV instruction. This means that:

• The encodings in this description are named to match the encodings of UMOV.

• The description of UMOV gives the operational pseudocode for this instruction.

32-bit variant

Applies when Q == 0 && imm5 == xx100.

MOV <Wd>, <Vn>.S[<index>]

 is equivalent to

UMOV <Wd>, <Vn>.S[<index>]

and is always the preferred disassembly.

64-reg,UMOV-64-reg variant

Applies when Q == 1 && imm5 == x1000.

MOV <Xd>, <Vn>.D[<index>]

 is equivalent to

UMOV <Xd>, <Vn>.D[<index>]

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<index> For the 32-bit variant: is the element index encoded in "imm5<4:3>".

For the 64-reg,UMOV-64-reg variant: is the element index encoded in "imm5<4>".

Operation

The description of UMOV gives the operational pseudocode for this instruction.

0 Q 0 0 1 1 1 0 0 0 0 x x x 0 0 0 0 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

imm5
C7-1996 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1997
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.204 MOVI

Move Immediate (vector). This instruction places an immediate constant into every vector element of the
destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

8-bit variant

Applies when op == 0 && cmode == 1110.

MOVI <Vd>.<T>, #<imm8>{, LSL #0}

16-bit shifted immediate variant

Applies when op == 0 && cmode == 10x0.

MOVI <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit shifted immediate variant

Applies when op == 0 && cmode == 0xx0.

MOVI <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit shifting ones variant

Applies when op == 0 && cmode == 110x.

MOVI <Vd>.<T>, #<imm8>, MSL #<amount>

64-bit scalar variant

Applies when Q == 0 && op == 1 && cmode == 1110.

MOVI <Dd>, #<imm>

64-bit vector variant

Applies when Q == 1 && op == 1 && cmode == 1110.

MOVI <Vd>.2D, #<imm>

Decode for all variants of this encoding

 integer rd = UInt(Rd);

 integer datasize = if Q == '1' then 128 else 64;
 bits(datasize) imm;
 bits(64) imm64;

 ImmediateOp operation;
 case cmode:op of
 when '0xx00' operation = ImmediateOp_MOVI;
 when '0xx01' operation = ImmediateOp_MVNI;
 when '0xx10' operation = ImmediateOp_ORR;
 when '0xx11' operation = ImmediateOp_BIC;
 when '10x00' operation = ImmediateOp_MOVI;

0 Q op 0 1 1 1 1 0 0 0 0 0 a b c cmode 0 1 d e f g h Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 0
C7-1998 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 when '10x01' operation = ImmediateOp_MVNI;
 when '10x10' operation = ImmediateOp_ORR;
 when '10x11' operation = ImmediateOp_BIC;
 when '110x0' operation = ImmediateOp_MOVI;
 when '110x1' operation = ImmediateOp_MVNI;
 when '1110x' operation = ImmediateOp_MOVI;
 when '11110' operation = ImmediateOp_MOVI;
 when '11111'
 // FMOV Dn,#imm is in main FP instruction set
 if Q == '0' then UNDEFINED;
 operation = ImmediateOp_MOVI;

 imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
 imm = Replicate(imm64, datasize DIV 64);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<imm> Is a 64-bit immediate 'aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh',
encoded in "a:b:c:d:e:f:g:h".

<T> For the 8-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the following
values:

8B when Q = 0

16B when Q = 1

For the 16-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the 32-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

2S when Q = 0

4S when Q = 1

<imm8> Is an 8-bit immediate encoded in "a:b:c:d:e:f:g:h".

<amount> For the 16-bit shifted immediate variant: is the shift amount encoded in the "cmode<1>" field. It
can have the following values:

0 when cmode<1> = 0

8 when cmode<1> = 1

 defaulting to 0 if LSL is omitted.

For the 32-bit shifted immediate variant: is the shift amount encoded in the "cmode<2:1>" field. It
can have the following values:

0 when cmode<2:1> = 00

8 when cmode<2:1> = 01

16 when cmode<2:1> = 10

24 when cmode<2:1> = 11

 defaulting to 0 if LSL is omitted.

For the 32-bit shifting ones variant: is the shift amount encoded in the "cmode<0>" field. It can
have the following values:

8 when cmode<0> = 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-1999
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16 when cmode<0> = 1

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand;
 bits(datasize) result;

 case operation of
 when ImmediateOp_MOVI
 result = imm;
 when ImmediateOp_MVNI
 result = NOT(imm);
 when ImmediateOp_ORR
 operand = V[rd];
 result = operand OR imm;
 when ImmediateOp_BIC
 operand = V[rd];
 result = operand AND NOT(imm);

 V[rd] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2000 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.205 MUL (by element)

Multiply (vector, by element). This instruction multiplies the vector elements in the first source SIMD&FP register
by the specified value in the second source SIMD&FP register, places the results in a vector, and writes the vector
to the destination SIMD&FP register. All the values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

MUL <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

0 Q 0 0 1 1 1 1 size L M Rm 1 0 0 0 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2001
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(idxdsize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 bits(esize) product;

 element2 = UInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = UInt(Elem[operand1, e, esize]);
 product = (element1*element2)<esize-1:0>;
 Elem[result, e, esize] = product;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2002 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.206 MUL (vector)

Multiply (vector). This instruction multiplies corresponding elements in the vectors of the two source SIMD&FP
registers, places the results in a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

MUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if U == '1' && size != '00' then UNDEFINED;
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean poly = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;
 bits(esize) product;

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2003
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if poly then
 product = PolynomialMult(element1, element2)<esize-1:0>;
 else
 product = (UInt(element1)*UInt(element2))<esize-1:0>;
 Elem[result, e, esize] = product;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2004 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.207 MVN

Bitwise NOT (vector). This instruction reads each vector element from the source SIMD&FP register, places the
inverse of each value into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the NOT instruction. This means that:

• The encodings in this description are named to match the encodings of NOT.

• The description of NOT gives the operational pseudocode for this instruction.

Encoding

MVN <Vd>.<T>, <Vn>.<T>

 is equivalent to

NOT <Vd>.<T>, <Vn>.<T>

and is always the preferred disassembly.

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

The description of NOT gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 Q 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2005
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.208 MVNI

Move inverted Immediate (vector). This instruction places the inverse of an immediate constant into every vector
element of the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

16-bit shifted immediate variant

Applies when cmode == 10x0.

MVNI <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit shifted immediate variant

Applies when cmode == 0xx0.

MVNI <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit shifting ones variant

Applies when cmode == 110x.

MVNI <Vd>.<T>, #<imm8>, MSL #<amount>

Decode for all variants of this encoding

 integer rd = UInt(Rd);

 integer datasize = if Q == '1' then 128 else 64;
 bits(datasize) imm;
 bits(64) imm64;

 ImmediateOp operation;
 case cmode:op of
 when '0xx01' operation = ImmediateOp_MVNI;
 when '0xx11' operation = ImmediateOp_BIC;
 when '10x01' operation = ImmediateOp_MVNI;
 when '10x11' operation = ImmediateOp_BIC;
 when '110x1' operation = ImmediateOp_MVNI;
 when '1110x' operation = ImmediateOp_MOVI;
 when '11111'
 // FMOV Dn,#imm is in main FP instruction set
 if Q == '0' then UNDEFINED;
 operation = ImmediateOp_MOVI;

 imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
 imm = Replicate(imm64, datasize DIV 64);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

0 Q 1 0 1 1 1 1 0 0 0 0 0 a b c cmode 0 1 d e f g h Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 0

op
C7-2006 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> For the 16-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the 32-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

2S when Q = 0

4S when Q = 1

<imm8> Is an 8-bit immediate encoded in "a:b:c:d:e:f:g:h".

<amount> For the 16-bit shifted immediate variant: is the shift amount encoded in the "cmode<1>" field. It
can have the following values:

0 when cmode<1> = 0

8 when cmode<1> = 1

 defaulting to 0 if LSL is omitted.

For the 32-bit shifted immediate variant: is the shift amount encoded in the "cmode<2:1>" field. It
can have the following values:

0 when cmode<2:1> = 00

8 when cmode<2:1> = 01

16 when cmode<2:1> = 10

24 when cmode<2:1> = 11

 defaulting to 0 if LSL is omitted.

For the 32-bit shifting ones variant: is the shift amount encoded in the "cmode<0>" field. It can
have the following values:

8 when cmode<0> = 0

16 when cmode<0> = 1

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand;
 bits(datasize) result;

 case operation of
 when ImmediateOp_MOVI
 result = imm;
 when ImmediateOp_MVNI
 result = NOT(imm);
 when ImmediateOp_ORR
 operand = V[rd];
 result = operand OR imm;
 when ImmediateOp_BIC
 operand = V[rd];
 result = operand AND NOT(imm);

 V[rd] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2007
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2008 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.209 NEG (vector)

Negate (vector). This instruction reads each vector element from the source SIMD&FP register, negates each value,
puts the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

NEG <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size != '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean neg = (U == '1');

Vector

Encoding

NEG <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean neg = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

0 1 1 1 1 1 1 0 size 1 0 0 0 0 0 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 1 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2009
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• size = 10.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 integer element;

 for e = 0 to elements-1
 element = SInt(Elem[operand, e, esize]);
 if neg then
 element = -element;
 else
 element = Abs(element);
 Elem[result, e, esize] = element<esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2010 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.210 NOT

Bitwise NOT (vector). This instruction reads each vector element from the source SIMD&FP register, places the
inverse of each value into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MVN. The alias is always the preferred disassembly.

Encoding

NOT <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 8;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV 8;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = NOT(element);

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

0 Q 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2011
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2012 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.211 ORN (vector)

Bitwise inclusive OR NOT (vector). This instruction performs a bitwise OR NOT between the two source
SIMD&FP registers, and writes the result to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

ORN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if Q == '1' then 128 else 64;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;

 operand2 = NOT(operand2);

 result = operand1 OR operand2;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 Q 0 0 1 1 1 0 1 1 1 Rm 0 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2013
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2014 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.212 ORR (vector, immediate)

Bitwise inclusive OR (vector, immediate). This instruction reads each vector element from the destination
SIMD&FP register, performs a bitwise OR between each result and an immediate constant, places the result into a
vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

16-bit variant

Applies when cmode == 10x1.

ORR <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit variant

Applies when cmode == 0xx1.

ORR <Vd>.<T>, #<imm8>{, LSL #<amount>}

Decode for all variants of this encoding

 integer rd = UInt(Rd);

 integer datasize = if Q == '1' then 128 else 64;
 bits(datasize) imm;
 bits(64) imm64;

 ImmediateOp operation;
 case cmode:op of
 when '0xx00' operation = ImmediateOp_MOVI;
 when '0xx10' operation = ImmediateOp_ORR;
 when '10x00' operation = ImmediateOp_MOVI;
 when '10x10' operation = ImmediateOp_ORR;
 when '110x0' operation = ImmediateOp_MOVI;
 when '1110x' operation = ImmediateOp_MOVI;
 when '11110' operation = ImmediateOp_MOVI;
 imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
 imm = Replicate(imm64, datasize DIV 64);

Assembler symbols

<Vd> Is the name of the SIMD&FP register, encoded in the "Rd" field.

<T> For the 16-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the 32-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

2S when Q = 0

4S when Q = 1

0 Q 0 0 1 1 1 1 0 0 0 0 0 a b c x x x 1 0 1 d e f g h Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 0

op cmode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2015
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<imm8> Is an 8-bit immediate encoded in "a:b:c:d:e:f:g:h".

<amount> For the 16-bit variant: is the shift amount encoded in the "cmode<1>" field. It can have the
following values:

0 when cmode<1> = 0

8 when cmode<1> = 1

 defaulting to 0 if LSL is omitted.

For the 32-bit variant: is the shift amount encoded in the "cmode<2:1>" field. It can have the
following values:

0 when cmode<2:1> = 00

8 when cmode<2:1> = 01

16 when cmode<2:1> = 10

24 when cmode<2:1> = 11

 defaulting to 0 if LSL is omitted.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand;
 bits(datasize) result;

 case operation of
 when ImmediateOp_MOVI
 result = imm;
 when ImmediateOp_MVNI
 result = NOT(imm);
 when ImmediateOp_ORR
 operand = V[rd];
 result = operand OR imm;
 when ImmediateOp_BIC
 operand = V[rd];
 result = operand AND NOT(imm);

 V[rd] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2016 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.213 ORR (vector, register)

Bitwise inclusive OR (vector, register). This instruction performs a bitwise OR between the two source SIMD&FP
registers, and writes the result to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (vector). See Alias conditions on page C7-2017 for details of when each
alias is preferred.

Encoding

ORR <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer datasize = if Q == '1' then 128 else 64;

Alias conditions

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;

 result = operand1 OR operand2;

 V[d] = result;

Alias is preferred when

MOV (vector) Rm == Rn

0 Q 0 0 1 1 1 0 1 0 1 Rm 0 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2017
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2018 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.214 PMUL

Polynomial Multiply. This instruction multiplies corresponding elements in the vectors of the two source SIMD&FP
registers, places the results in a vector, and writes the vector to the destination SIMD&FP register.

For information about multiplying polynomials see Polynomial arithmetic over {0, 1} on page A1-50.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

PMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if U == '1' && size != '00' then UNDEFINED;
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean poly = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

The following encodings are reserved:

• size = 01, Q = x.

• size = 1x, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;
 bits(esize) product;

 for e = 0 to elements-1

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2019
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if poly then
 product = PolynomialMult(element1, element2)<esize-1:0>;
 else
 product = (UInt(element1)*UInt(element2))<esize-1:0>;
 Elem[result, e, esize] = product;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2020 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.215 PMULL, PMULL2

Polynomial Multiply Long. This instruction multiplies corresponding elements in the lower or upper half of the
vectors of the two source SIMD&FP registers, places the results in a vector, and writes the vector to the destination
SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

For information about multiplying polynomials see Polynomial arithmetic over {0, 1} on page A1-50.

The PMULL instruction extracts each source vector from the lower half of each source register. The PMULL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

PMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '01' || size == '10' then UNDEFINED;
 if size == '11' && !HaveBit128PMULLExt() then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

1Q when size = 11

The following encodings are reserved:

• size = 01.

• size = 10.

The '1Q' arrangement is only allocated in an implementation that includes the Cryptographic
Extension, and is otherwise RESERVED.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

0 Q 0 0 1 1 1 0 size 1 Rm 1 1 1 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2021
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

1D when size = 11, Q = 0

2D when size = 11, Q = 1

The following encodings are reserved:

• size = 01, Q = x.

• size = 10, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) result;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, 2*esize] = PolynomialMult(element1, element2);

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2022 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.216 RADDHN, RADDHN2

Rounding Add returning High Narrow. This instruction adds each vector element in the first source SIMD&FP
register to the corresponding vector element in the second source SIMD&FP register, places the most significant
half of the result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register.

The results are rounded. For truncated results, see ADDHN, ADDHN2.

The RADDHN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the RADDHN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

RADDHN{2} <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Ta>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean round = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2023
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand1 = V[n];
 bits(2*datasize) operand2 = V[m];
 bits(datasize) result;
 integer round_const = if round then 1 << (esize - 1) else 0;
 bits(2*esize) element1;
 bits(2*esize) element2;
 bits(2*esize) sum;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, 2*esize];
 element2 = Elem[operand2, e, 2*esize];
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 sum = sum + round_const;
 Elem[result, e, esize] = sum<2*esize-1:esize>;

 Vpart[d, part] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2024 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.217 RAX1

Rotate and Exclusive OR rotates each 64-bit element of the 128-bit vector in a source SIMD&FP register left by 1,
performs a bitwise exclusive OR of the resulting 128-bit vector and the vector in another source SIMD&FP register,
and writes the result to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SHA3 is implemented.

Advanced SIMD

(FEAT_SHA3)

Encoding

RAX1 <Vd>.2D, <Vn>.2D, <Vm>.2D

Decode for this encoding

 if !HaveSHA3Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m];
 bits(128) Vn = V[n];
 V[d] = Vn EOR (ROL(Vm<127:64>, 1):ROL(Vm<63:0>, 1));

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 0 1 1 1 0 0 1 1 Rm 1 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2025
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.218 RBIT (vector)

Reverse Bit order (vector). This instruction reads each vector element from the source SIMD&FP register, reverses
the bits of the element, places the results into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

RBIT <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 8;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV 8;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(esize) element;
 bits(esize) rev;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 for i = 0 to esize-1
 rev<esize-1-i> = element<i>;
 Elem[result, e, esize] = rev;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

0 Q 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
C7-2026 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2027
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.219 REV16 (vector)

Reverse elements in 16-bit halfwords (vector). This instruction reverses the order of 8-bit elements in each halfword
of the vector in the source SIMD&FP register, places the results into a vector, and writes the vector to the destination
SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

REV16 <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 // size=esize: B(0), H(1), S(1), D(S)
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;

 // op=REVx: 64(0), 32(1), 16(2)
 bits(2) op = o0:U;

 // => op+size:
 // 64+B = 0, 64+H = 1, 64+S = 2, 64+D = X
 // 32+B = 1, 32+H = 2, 32+S = X, 32+D = X
 // 16+B = 2, 16+H = X, 16+S = X, 16+D = X
 // 8+B = X, 8+H = X, 8+S = X, 8+D = X
 // => 3-(op+size) (index bits in group)
 // 64/B = 3, 64+H = 2, 64+S = 1, 64+D = X
 // 32+B = 2, 32+H = 1, 32+S = X, 32+D = X
 // 16+B = 1, 16+H = X, 16+S = X, 16+D = X
 // 8+B = X, 8+H = X, 8+S = X, 8+D = X

 // index bits within group: 1, 2, 3
 if UInt(op) + UInt(size) >= 3 then UNDEFINED;

 integer container_size;
 case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;

 integer containers = datasize DIV container_size;
 integer elements_per_container = container_size DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 0 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o0
C7-2028 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• size = 01, Q = x.

• size = 1x, Q = x.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 integer element = 0;
 integer rev_element;
 for c = 0 to containers-1
 rev_element = element + elements_per_container - 1;
 for e = 0 to elements_per_container-1
 Elem[result, rev_element, esize] = Elem[operand, element, esize];
 element = element + 1;
 rev_element = rev_element - 1;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2029
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.220 REV32 (vector)

Reverse elements in 32-bit words (vector). This instruction reverses the order of 8-bit or 16-bit elements in each
word of the vector in the source SIMD&FP register, places the results into a vector, and writes the vector to the
destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

REV32 <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 // size=esize: B(0), H(1), S(1), D(S)
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;

 // op=REVx: 64(0), 32(1), 16(2)
 bits(2) op = o0:U;

 // => op+size:
 // 64+B = 0, 64+H = 1, 64+S = 2, 64+D = X
 // 32+B = 1, 32+H = 2, 32+S = X, 32+D = X
 // 16+B = 2, 16+H = X, 16+S = X, 16+D = X
 // 8+B = X, 8+H = X, 8+S = X, 8+D = X
 // => 3-(op+size) (index bits in group)
 // 64/B = 3, 64+H = 2, 64+S = 1, 64+D = X
 // 32+B = 2, 32+H = 1, 32+S = X, 32+D = X
 // 16+B = 1, 16+H = X, 16+S = X, 16+D = X
 // 8+B = X, 8+H = X, 8+S = X, 8+D = X

 // index bits within group: 1, 2, 3
 if UInt(op) + UInt(size) >= 3 then UNDEFINED;

 integer container_size;
 case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;

 integer containers = datasize DIV container_size;
 integer elements_per_container = container_size DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 0 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o0
C7-2030 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4H when size = 01, Q = 0

8H when size = 01, Q = 1

The encoding size = 1x, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 integer element = 0;
 integer rev_element;
 for c = 0 to containers-1
 rev_element = element + elements_per_container - 1;
 for e = 0 to elements_per_container-1
 Elem[result, rev_element, esize] = Elem[operand, element, esize];
 element = element + 1;
 rev_element = rev_element - 1;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2031
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.221 REV64

Reverse elements in 64-bit doublewords (vector). This instruction reverses the order of 8-bit, 16-bit, or 32-bit
elements in each doubleword of the vector in the source SIMD&FP register, places the results into a vector, and
writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

REV64 <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 // size=esize: B(0), H(1), S(1), D(S)
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;

 // op=REVx: 64(0), 32(1), 16(2)
 bits(2) op = o0:U;

 // => op+size:
 // 64+B = 0, 64+H = 1, 64+S = 2, 64+D = X
 // 32+B = 1, 32+H = 2, 32+S = X, 32+D = X
 // 16+B = 2, 16+H = X, 16+S = X, 16+D = X
 // 8+B = X, 8+H = X, 8+S = X, 8+D = X
 // => 3-(op+size) (index bits in group)
 // 64/B = 3, 64+H = 2, 64+S = 1, 64+D = X
 // 32+B = 2, 32+H = 1, 32+S = X, 32+D = X
 // 16+B = 1, 16+H = X, 16+S = X, 16+D = X
 // 8+B = X, 8+H = X, 8+S = X, 8+D = X

 // index bits within group: 1, 2, 3
 if UInt(op) + UInt(size) >= 3 then UNDEFINED;

 integer container_size;
 case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;

 integer containers = datasize DIV container_size;
 integer elements_per_container = container_size DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 0 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o0
C7-2032 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 integer element = 0;
 integer rev_element;
 for c = 0 to containers-1
 rev_element = element + elements_per_container - 1;
 for e = 0 to elements_per_container-1
 Elem[result, rev_element, esize] = Elem[operand, element, esize];
 element = element + 1;
 rev_element = rev_element - 1;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2033
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.222 RSHRN, RSHRN2

Rounding Shift Right Narrow (immediate). This instruction reads each unsigned integer value from the vector in
the source SIMD&FP register, right shifts each result by an immediate value, writes the final result to a vector, and
writes the vector to the lower or upper half of the destination SIMD&FP register. The destination vector elements
are half as long as the source vector elements. The results are rounded. For truncated results, see SHRN, SHRN2.

The RSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the RSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

RSHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3> == '1' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

0 Q 0 0 1 1 1 1 0 !=0000 immb 1 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh op
C7-2034 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding immh = 1xxx, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

<shift> Is the right shift amount, in the range 1 to the destination element width in bits, encoded in the
"immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize*2) operand = V[n];
 bits(datasize) result;
 integer round_const = if round then (1 << (shift - 1)) else 0;
 integer element;

 for e = 0 to elements-1
 element = (UInt(Elem[operand, e, 2*esize]) + round_const) >> shift;
 Elem[result, e, esize] = element<esize-1:0>;

 Vpart[d, part] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2035
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.223 RSUBHN, RSUBHN2

Rounding Subtract returning High Narrow. This instruction subtracts each vector element of the second source
SIMD&FP register from the corresponding vector element of the first source SIMD&FP register, places the most
significant half of the result into a vector, and writes the vector to the lower or upper half of the destination
SIMD&FP register.

The results are rounded. For truncated results, see SUBHN, SUBHN2.

The RSUBHN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the RSUBHN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

RSUBHN{2} <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Ta>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean round = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
C7-2036 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand1 = V[n];
 bits(2*datasize) operand2 = V[m];
 bits(datasize) result;
 integer round_const = if round then 1 << (esize - 1) else 0;
 bits(2*esize) element1;
 bits(2*esize) element2;
 bits(2*esize) sum;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, 2*esize];
 element2 = Elem[operand2, e, 2*esize];
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 sum = sum + round_const;
 Elem[result, e, esize] = sum<2*esize-1:esize>;

 Vpart[d, part] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2037
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.224 SABA

Signed Absolute difference and Accumulate. This instruction subtracts the elements of the vector of the second
source SIMD&FP register from the corresponding elements of the first source SIMD&FP register, and accumulates
the absolute values of the results into the elements of the vector of the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SABA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean accumulate = (ac == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 bits(esize) absdiff;

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U ac
C7-2038 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 result = if accumulate then V[d] else Zeros();
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 absdiff = Abs(element1-element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + absdiff;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2039
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.225 SABAL, SABAL2

Signed Absolute difference and Accumulate Long. This instruction subtracts the vector elements in the lower or
upper half of the second source SIMD&FP register from the corresponding vector elements of the first source
SIMD&FP register, and accumulates the absolute values of the results into the vector elements of the destination
SIMD&FP register. The destination vector elements are twice as long as the source vector elements.

The SABAL instruction extracts each source vector from the lower half of each source register. The SABAL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SABAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean accumulate = (op == '0');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U op
C7-2040 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) absdiff;

 result = if accumulate then V[d] else Zeros();
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 absdiff = Abs(element1-element2)<2*esize-1:0>;
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2041
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.226 SABD

Signed Absolute Difference. This instruction subtracts the elements of the vector of the second source SIMD&FP
register from the corresponding elements of the first source SIMD&FP register, places the the absolute values of the
results into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean accumulate = (ac == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 bits(esize) absdiff;

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U ac
C7-2042 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 result = if accumulate then V[d] else Zeros();
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 absdiff = Abs(element1-element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + absdiff;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2043
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.227 SABDL, SABDL2

Signed Absolute Difference Long. This instruction subtracts the vector elements of the second source SIMD&FP
register from the corresponding vector elements of the first source SIMD&FP register, places the absolute value of
the results into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. The
destination vector elements are twice as long as the source vector elements.

The SABDL instruction extracts each source vector from the lower half of each source register, while the SABDL2
instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SABDL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean accumulate = (op == '0');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U op
C7-2044 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) absdiff;

 result = if accumulate then V[d] else Zeros();
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 absdiff = Abs(element1-element2)<2*esize-1:0>;
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2045
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.228 SADALP

Signed Add and Accumulate Long Pairwise. This instruction adds pairs of adjacent signed integer values from the
vector in the source SIMD&FP register and accumulates the results into the vector elements of the destination
SIMD&FP register. The destination vector elements are twice as long as the source vector elements.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SADALP <Vd>.<Ta>, <Vn>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV (2 * esize);
 boolean acc = (op == '1');
 boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 00, Q = 0

8H when size = 00, Q = 1

2S when size = 01, Q = 0

4S when size = 01, Q = 1

1D when size = 10, Q = 0

2D when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 1 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
C7-2046 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;

 bits(2*esize) sum;
 integer op1;
 integer op2;

 if acc then result = V[d];
 for e = 0 to elements-1
 op1 = Int(Elem[operand, 2*e+0, esize], unsigned);
 op2 = Int(Elem[operand, 2*e+1, esize], unsigned);
 sum = (op1+op2)<2*esize-1:0>;
 if acc then
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + sum;
 else
 Elem[result, e, 2*esize] = sum;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2047
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.229 SADDL, SADDL2

Signed Add Long (vector). This instruction adds each vector element in the lower or upper half of the first source
SIMD&FP register to the corresponding vector element of the second source SIMD&FP register, places the results
into a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice
as long as the source vector elements. All the values in this instruction are signed integer values.

The SADDL instruction extracts each source vector from the lower half of each source register. The SADDL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SADDL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
C7-2048 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 integer sum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 Elem[result, e, 2*esize] = sum<2*esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2049
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.230 SADDLP

Signed Add Long Pairwise. This instruction adds pairs of adjacent signed integer values from the vector in the
source SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP register.
The destination vector elements are twice as long as the source vector elements.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SADDLP <Vd>.<Ta>, <Vn>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV (2 * esize);
 boolean acc = (op == '1');
 boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 00, Q = 0

8H when size = 00, Q = 1

2S when size = 01, Q = 0

4S when size = 01, Q = 1

1D when size = 10, Q = 0

2D when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
C7-2050 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;

 bits(2*esize) sum;
 integer op1;
 integer op2;

 if acc then result = V[d];
 for e = 0 to elements-1
 op1 = Int(Elem[operand, 2*e+0, esize], unsigned);
 op2 = Int(Elem[operand, 2*e+1, esize], unsigned);
 sum = (op1+op2)<2*esize-1:0>;
 if acc then
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + sum;
 else
 Elem[result, e, 2*esize] = sum;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2051
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.231 SADDLV

Signed Add Long across Vector. This instruction adds every vector element in the source SIMD&FP register
together, and writes the scalar result to the destination SIMD&FP register. The destination scalar is twice as long as
the source vector elements. All the values in this instruction are signed integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SADDLV <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '100' then UNDEFINED;
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');

Assembler symbols

<V> Is the destination width specifier, encoded in the "size" field. It can have the following values:

H when size = 00

S when size = 01

D when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 10, Q = 0.

• size = 11, Q = x.

0 Q 0 0 1 1 1 0 size 1 1 0 0 0 0 0 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

C7-2052 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 integer sum;

 sum = Int(Elem[operand, 0, esize], unsigned);
 for e = 1 to elements-1
 sum = sum + Int(Elem[operand, e, esize], unsigned);

 V[d] = sum<2*esize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2053
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.232 SADDW, SADDW2

Signed Add Wide. This instruction adds vector elements of the first source SIMD&FP register to the corresponding
vector elements in the lower or upper half of the second source SIMD&FP register, places the results in a vector,
and writes the vector to the SIMD&FP destination register.

The SADDW instruction extracts the second source vector from the lower half of the second source register. The SADDW2
instruction extracts the second source vector from the upper half of the second source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SADDW{2} <Vd>.<Ta>, <Vn>.<Ta>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 0 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
C7-2054 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand1 = V[n];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 integer sum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, 2*esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 Elem[result, e, 2*esize] = sum<2*esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2055
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.233 SCVTF (vector, fixed-point)

Signed fixed-point Convert to Floating-point (vector). This instruction converts each element in a vector from
fixed-point to floating-point using the rounding mode that is specified by the FPCR, and writes the result to the
SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SCVTF <V><d>, <V><n>, #<fbits>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then UNDEFINED;
 integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
 integer datasize = esize;
 integer elements = 1;

 integer fracbits = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 FPRounding rounding = FPRoundingMode(FPCR[]);

Vector

Encoding

SCVTF <Vd>.<T>, <Vn>.<T>, #<fbits>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then UNDEFINED;
 if immh<3>:Q == '10' then UNDEFINED;
 integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 integer fracbits = (esize * 2) - UInt(immh:immb);

0 1 0 1 1 1 1 1 0 !=0000 immb 1 1 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh

0 Q 0 0 1 1 1 1 0 !=0000 immb 1 1 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh
C7-2056 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean unsigned = (U == '1');
 FPRounding rounding = FPRoundingMode(FPCR[]);

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 001x

S when immh = 01xx

D when immh = 1xxx

The encoding immh = 000x is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The following encodings are reserved:

• immh = 0001, Q = x.

• immh = 1xxx, Q = 0.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded
in the "immh:immb" field. It can have the following values:

(32-Uint(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 000x is reserved.

For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded
in the "immh:immb" field. It can have the following values:

(32-Uint(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 0001 is reserved.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 bits(esize) element;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2057
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 bits(128) result = if merge then V[d] else Zeros();

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FixedToFP(element, fracbits, unsigned, fpcr, rounding);

 V[d] = result;
C7-2058 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.234 SCVTF (vector, integer)

Signed integer Convert to Floating-point (vector). This instruction converts each element in a vector from signed
integer to floating-point using the rounding mode that is specified by the FPCR, and writes the result to the
SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

SCVTF <Hd>, <Hn>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

SCVTF <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');

0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 1 0 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2059
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Vector half precision

(FEAT_FP16)

Encoding

SCVTF <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

SCVTF <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

C7-2060 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 FPRounding rounding = FPRoundingMode(fpcr);
 bits(esize) element;
 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FixedToFP(element, 0, unsigned, fpcr, rounding);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2061
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.235 SCVTF (scalar, fixed-point)

Signed fixed-point Convert to Floating-point (scalar). This instruction converts the signed value in the 32-bit or
64-bit general-purpose source register to a floating-point value using the rounding mode that is specified by the
FPCR, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

32-bit to half-precision variant

Applies when sf == 0 && ftype == 11.

SCVTF <Hd>, <Wn>, #<fbits>

32-bit to single-precision variant

Applies when sf == 0 && ftype == 00.

SCVTF <Sd>, <Wn>, #<fbits>

32-bit to double-precision variant

Applies when sf == 0 && ftype == 01.

SCVTF <Dd>, <Wn>, #<fbits>

64-bit to half-precision variant

Applies when sf == 1 && ftype == 11.

SCVTF <Hd>, <Xn>, #<fbits>

64-bit to single-precision variant

Applies when sf == 1 && ftype == 00.

SCVTF <Sd>, <Xn>, #<fbits>

64-bit to double-precision variant

Applies when sf == 1 && ftype == 01.

SCVTF <Dd>, <Xn>, #<fbits>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer intsize = if sf == '1' then 64 else 32;
 integer fltsize;
 FPRounding rounding;

sf 0 0 1 1 1 1 0 ftype 0 0 0 0 1 0 scale Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 10 9 5 4 0

rmode opcode
C7-2062 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 case ftype of
 when '00' fltsize = 32;
 when '01' fltsize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

 if sf == '0' && scale<5> == '0' then UNDEFINED;
 integer fracbits = 64 - UInt(scale);

 rounding = FPRoundingMode(FPCR[]);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<fbits> For the 32-bit to double-precision, 32-bit to half-precision and 32-bit to single-precision variant: is
the number of bits after the binary point in the fixed-point source, in the range 1 to 32, encoded as
64 minus "scale".

For the 64-bit to double-precision, 64-bit to half-precision and 64-bit to single-precision variant: is
the number of bits after the binary point in the fixed-point source, in the range 1 to 64, encoded as
64 minus "scale".

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 integer fsize = if merge then 128 else fltsize;
 bits(fsize) fltval;
 bits(intsize) intval;

 intval = X[n];
 fltval = if merge then V[d] else Zeros();
 Elem[fltval, 0, fltsize] = FixedToFP(intval, fracbits, FALSE, fpcr, rounding);
 V[d] = fltval;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2063
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.236 SCVTF (scalar, integer)

Signed integer Convert to Floating-point (scalar). This instruction converts the signed integer value in the
general-purpose source register to a floating-point value using the rounding mode that is specified by the FPCR, and
writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

32-bit to half-precision variant

Applies when sf == 0 && ftype == 11.

SCVTF <Hd>, <Wn>

32-bit to single-precision variant

Applies when sf == 0 && ftype == 00.

SCVTF <Sd>, <Wn>

32-bit to double-precision variant

Applies when sf == 0 && ftype == 01.

SCVTF <Dd>, <Wn>

64-bit to half-precision variant

Applies when sf == 1 && ftype == 11.

SCVTF <Hd>, <Xn>

64-bit to single-precision variant

Applies when sf == 1 && ftype == 00.

SCVTF <Sd>, <Xn>

64-bit to double-precision variant

Applies when sf == 1 && ftype == 01.

SCVTF <Dd>, <Xn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer intsize = if sf == '1' then 64 else 32;
 integer fltsize;
 FPRounding rounding;

sf 0 0 1 1 1 1 0 ftype 1 0 0 0 1 0 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
C7-2064 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 case ftype of
 when '00'
 fltsize = 32;
 when '01'
 fltsize = 64;
 when '10'
 UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

 rounding = FPRoundingMode(FPCR[]);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 integer fsize = if merge then 128 else fltsize;
 bits(fsize) fltval;
 bits(intsize) intval;

 intval = X[n];
 fltval = if merge then V[d] else Zeros();
 Elem[fltval, 0, fltsize] = FixedToFP(intval, 0, FALSE, fpcr, rounding);
 V[d] = fltval;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2065
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.237 SDOT (by element)

Dot Product signed arithmetic (vector, by element). This instruction performs the dot product of the four 8-bit
elements in each 32-bit element of the first source register with the four 8-bit elements of an indexed 32-bit element
in the second source register, accumulating the result into the corresponding 32-bit element of the destination
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported.

Vector

(FEAT_DotProd)

Encoding

SDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.4B[<index>]

Decode for this encoding

 if !HaveDOTPExt() then UNDEFINED;
 if size != '10' then UNDEFINED;
 boolean signed = (U == '0');

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(M:Rm);
 integer index = UInt(H:L);

 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

0 Q 0 0 1 1 1 1 size L M Rm 1 1 1 0 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

C7-2066 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<index> Is the element index, encoded in the "H:L" fields.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(128) operand2 = V[m];
 bits(datasize) result = V[d];
 for e = 0 to elements-1
 integer res = 0;
 integer element1, element2;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4*e+i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4*index+i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4*e+i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4*index+i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2067
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.238 SDOT (vector)

Dot Product signed arithmetic (vector). This instruction performs the dot product of the four signed 8-bit elements
in each 32-bit element of the first source register with the four signed 8-bit elements of the corresponding 32-bit
element in the second source register, accumulating the result into the corresponding 32-bit element of the
destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported.

Vector

(FEAT_DotProd)

Encoding

SDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 if !HaveDOTPExt() then UNDEFINED;
 if size != '10' then UNDEFINED;
 boolean signed = (U == '0');
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

0 Q 0 0 1 1 1 0 size 0 Rm 1 0 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

C7-2068 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;

 result = V[d];
 for e = 0 to elements-1
 integer res = 0;
 integer element1, element2;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4*e+i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4*e+i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4*e+i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4*e+i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2069
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.239 SHA1C

SHA1 hash update (choose).

Encoding

SHA1C <Qd>, <Sn>, <Vm>.4S

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if !HaveSHA1Ext() then UNDEFINED;

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) X = V[d];
 bits(32) Y = V[n]; // Note: 32 not 128 bits wide
 bits(128) W = V[m];
 bits(32) t;

 for e = 0 to 3
 t = SHAchoose(X<63:32>, X<95:64>, X<127:96>);
 Y = Y + ROL(X<31:0>, 5) + t + Elem[W, e, 32];
 X<63:32> = ROL(X<63:32>, 30);
 <Y, X> = ROL(Y:X, 32);
 V[d] = X;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 1 1 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-2070 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.240 SHA1H

SHA1 fixed rotate.

Encoding

SHA1H <Sd>, <Sn>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 if !HaveSHA1Ext() then UNDEFINED;

Assembler symbols

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(32) operand = V[n]; // read element [0] only, [1-3] zeroed
 V[d] = ROL(operand, 30);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2071
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.241 SHA1M

SHA1 hash update (majority).

Encoding

SHA1M <Qd>, <Sn>, <Vm>.4S

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if !HaveSHA1Ext() then UNDEFINED;

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) X = V[d];
 bits(32) Y = V[n]; // Note: 32 not 128 bits wide
 bits(128) W = V[m];
 bits(32) t;

 for e = 0 to 3
 t = SHAmajority(X<63:32>, X<95:64>, X<127:96>);
 Y = Y + ROL(X<31:0>, 5) + t + Elem[W, e, 32];
 X<63:32> = ROL(X<63:32>, 30);
 <Y, X> = ROL(Y:X, 32);
 V[d] = X;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 1 1 1 0 0 0 0 Rm 0 0 1 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-2072 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.242 SHA1P

SHA1 hash update (parity).

Encoding

SHA1P <Qd>, <Sn>, <Vm>.4S

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if !HaveSHA1Ext() then UNDEFINED;

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) X = V[d];
 bits(32) Y = V[n]; // Note: 32 not 128 bits wide
 bits(128) W = V[m];
 bits(32) t;

 for e = 0 to 3
 t = SHAparity(X<63:32>, X<95:64>, X<127:96>);
 Y = Y + ROL(X<31:0>, 5) + t + Elem[W, e, 32];
 X<63:32> = ROL(X<63:32>, 30);
 <Y, X> = ROL(Y:X, 32);
 V[d] = X;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 1 1 1 0 0 0 0 Rm 0 0 0 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2073
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.243 SHA1SU0

SHA1 schedule update 0.

Encoding

SHA1SU0 <Vd>.4S, <Vn>.4S, <Vm>.4S

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if !HaveSHA1Ext() then UNDEFINED;

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) operand1 = V[d];
 bits(128) operand2 = V[n];
 bits(128) operand3 = V[m];
 bits(128) result;

 result = operand2<63:0>:operand1<127:64>;
 result = result EOR operand1 EOR operand3;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 1 1 1 0 0 0 0 Rm 0 0 1 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-2074 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.244 SHA1SU1

SHA1 schedule update 1.

Encoding

SHA1SU1 <Vd>.4S, <Vn>.4S

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 if !HaveSHA1Ext() then UNDEFINED;

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) operand1 = V[d];
 bits(128) operand2 = V[n];
 bits(128) result;
 bits(128) T = operand1 EOR LSR(operand2, 32);
 result<31:0> = ROL(T<31:0>, 1);
 result<63:32> = ROL(T<63:32>, 1);
 result<95:64> = ROL(T<95:64>, 1);
 result<127:96> = ROL(T<127:96>, 1) EOR ROL(T<31:0>, 2);
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2075
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.245 SHA256H2

SHA256 hash update (part 2).

Encoding

SHA256H2 <Qd>, <Qn>, <Vm>.4S

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if !HaveSHA256Ext() then UNDEFINED;

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.

<Qn> Is the 128-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) result;
 result = SHA256hash(V[n], V[d], V[m], FALSE);
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 1 1 1 0 0 0 0 Rm 0 1 0 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

P

C7-2076 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.246 SHA256H

SHA256 hash update (part 1).

Encoding

SHA256H <Qd>, <Qn>, <Vm>.4S

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if !HaveSHA256Ext() then UNDEFINED;

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.

<Qn> Is the 128-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) result;
 result = SHA256hash(V[d], V[n], V[m], TRUE);
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 1 1 1 0 0 0 0 Rm 0 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

P

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2077
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.247 SHA256SU0

SHA256 schedule update 0.

Encoding

SHA256SU0 <Vd>.4S, <Vn>.4S

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 if !HaveSHA256Ext() then UNDEFINED;

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) operand1 = V[d];
 bits(128) operand2 = V[n];
 bits(128) result;
 bits(128) T = operand2<31:0>:operand1<127:32>;
 bits(32) elt;

 for e = 0 to 3
 elt = Elem[T, e, 32];
 elt = ROR(elt, 7) EOR ROR(elt, 18) EOR LSR(elt, 3);
 Elem[result, e, 32] = elt + Elem[operand1, e, 32];
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
C7-2078 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.248 SHA256SU1

SHA256 schedule update 1.

Encoding

SHA256SU1 <Vd>.4S, <Vn>.4S, <Vm>.4S

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if !HaveSHA256Ext() then UNDEFINED;

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) operand1 = V[d];
 bits(128) operand2 = V[n];
 bits(128) operand3 = V[m];
 bits(128) result;
 bits(128) T0 = operand3<31:0>:operand2<127:32>;
 bits(64) T1;
 bits(32) elt;

 T1 = operand3<127:64>;
 for e = 0 to 1
 elt = Elem[T1, e, 32];
 elt = ROR(elt, 17) EOR ROR(elt, 19) EOR LSR(elt, 10);
 elt = elt + Elem[operand1, e, 32] + Elem[T0, e, 32];
 Elem[result, e, 32] = elt;

 T1 = result<63:0>;
 for e = 2 to 3
 elt = Elem[T1, e-2, 32];
 elt = ROR(elt, 17) EOR ROR(elt, 19) EOR LSR(elt, 10);
 elt = elt + Elem[operand1, e, 32] + Elem[T0, e, 32];
 Elem[result, e, 32] = elt;

 V[d] = result;

0 1 0 1 1 1 1 0 0 0 0 Rm 0 1 1 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2079
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2080 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.249 SHA512H

SHA512 Hash update part 1 takes the values from the three 128-bit source SIMD&FP registers and produces a
128-bit output value that combines the sigma1 and chi functions of two iterations of the SHA512 computation. It
returns this value to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SHA512 is implemented.

Advanced SIMD

(FEAT_SHA512)

Encoding

SHA512H <Qd>, <Qn>, <Vm>.2D

Decode for this encoding

 if !HaveSHA512Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Qn> Is the 128-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vtmp;
 bits(64) MSigma1;
 bits(64) tmp;
 bits(128) X = V[n];
 bits(128) Y = V[m];
 bits(128) W = V[d];

 MSigma1 = ROR(Y<127:64>, 14) EOR ROR(Y<127:64>, 18) EOR ROR(Y<127:64>, 41);
 Vtmp<127:64> = (Y<127:64> AND X<63:0>) EOR (NOT(Y<127:64>) AND X<127:64>);
 Vtmp<127:64> = (Vtmp<127:64> + MSigma1 + W<127:64>);
 tmp = Vtmp<127:64> + Y<63:0>;
 MSigma1 = ROR(tmp, 14) EOR ROR(tmp, 18) EOR ROR(tmp, 41);
 Vtmp<63:0> = (tmp AND Y<127:64>) EOR (NOT(tmp) AND X<63:0>);
 Vtmp<63:0> = (Vtmp<63:0> + MSigma1 + W<63:0>);
 V[d] = Vtmp;

1 1 0 0 1 1 1 0 0 1 1 Rm 1 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2081
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2082 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.250 SHA512H2

SHA512 Hash update part 2 takes the values from the three 128-bit source SIMD&FP registers and produces a
128-bit output value that combines the sigma0 and majority functions of two iterations of the SHA512 computation.
It returns this value to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SHA512 is implemented.

Advanced SIMD

(FEAT_SHA512)

Encoding

SHA512H2 <Qd>, <Qn>, <Vm>.2D

Decode for this encoding

 if !HaveSHA512Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Qn> Is the 128-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vtmp;
 bits(64) NSigma0;
 bits(128) X = V[n];
 bits(128) Y = V[m];
 bits(128) W = V[d];

 NSigma0 = ROR(Y<63:0>, 28) EOR ROR(Y<63:0>, 34) EOR ROR(Y<63:0>, 39);
 Vtmp<127:64> = (X<63:0> AND Y<127:64>) EOR (X<63:0> AND Y<63:0>) EOR (Y<127:64> AND Y<63:0>);
 Vtmp<127:64> = (Vtmp<127:64> + NSigma0 + W<127:64>);
 NSigma0 = ROR(Vtmp<127:64>, 28) EOR ROR(Vtmp<127:64>, 34) EOR ROR(Vtmp<127:64>, 39);
 Vtmp<63:0> = (Vtmp<127:64> AND Y<63:0>) EOR (Vtmp<127:64> AND Y<127:64>) EOR (Y<127:64> AND Y<63:0>);
 Vtmp<63:0> = (Vtmp<63:0> + NSigma0 + W<63:0>);

 V[d] = Vtmp;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

1 1 0 0 1 1 1 0 0 1 1 Rm 1 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2083
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2084 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.251 SHA512SU0

SHA512 Schedule Update 0 takes the values from the two 128-bit source SIMD&FP registers and produces a
128-bit output value that combines the gamma0 functions of two iterations of the SHA512 schedule update that are
performed after the first 16 iterations within a block. It returns this value to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SHA512 is implemented.

Advanced SIMD

(FEAT_SHA512)

Encoding

SHA512SU0 <Vd>.2D, <Vn>.2D

Decode for this encoding

 if !HaveSHA512Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(64) sig0;
 bits(128) Vtmp;
 bits(128) X = V[n];
 bits(128) W = V[d];
 sig0 = ROR(W<127:64>, 1) EOR ROR(W<127:64>, 8) EOR ('0000000':W<127:71>);
 Vtmp<63:0> = W<63:0> + sig0;
 sig0 = ROR(X<63:0>, 1) EOR ROR(X<63:0>, 8) EOR ('0000000':X<63:7>);
 Vtmp<127:64> = W<127:64> + sig0;
 V[d] = Vtmp;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2085
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.252 SHA512SU1

SHA512 Schedule Update 1 takes the values from the three source SIMD&FP registers and produces a 128-bit
output value that combines the gamma1 functions of two iterations of the SHA512 schedule update that are
performed after the first 16 iterations within a block. It returns this value to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SHA512 is implemented.

Advanced SIMD

(FEAT_SHA512)

Encoding

SHA512SU1 <Vd>.2D, <Vn>.2D, <Vm>.2D

Decode for this encoding

 if !HaveSHA512Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(64) sig1;
 bits(128) Vtmp;
 bits(128) X = V[n];
 bits(128) Y = V[m];
 bits(128) W = V[d];

 sig1 = ROR(X<127:64>, 19) EOR ROR(X<127:64>, 61) EOR ('000000':X<127:70>);
 Vtmp<127:64> = W<127:64> + sig1 + Y<127:64>;
 sig1 = ROR(X<63:0>, 19) EOR ROR(X<63:0>, 61) EOR ('000000':X<63:6>);
 Vtmp<63:0> = W<63:0> + sig1 + Y<63:0>;
 V[d] = Vtmp;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 0 1 1 1 0 0 1 1 Rm 1 0 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-2086 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2087
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.253 SHADD

Signed Halving Add. This instruction adds corresponding signed integer values from the two source SIMD&FP
registers, shifts each result right one bit, places the results into a vector, and writes the vector to the destination
SIMD&FP register.

The results are truncated. For rounded results, see SRHADD.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SHADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer sum;

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

C7-2088 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 sum = element1 + element2;
 Elem[result, e, esize] = sum<esize:1>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2089
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.254 SHL

Shift Left (immediate). This instruction reads each value from a vector, left shifts each result by an immediate value,
writes the final result to a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SHL <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 integer esize = 8 << 3;
 integer datasize = esize;
 integer elements = 1;

 integer shift = UInt(immh:immb) - esize;

Vector

Encoding

SHL <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 integer shift = UInt(immh:immb) - esize;

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

0 1 0 1 1 1 1 1 0 !=0000 immb 0 1 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh

0 Q 0 0 1 1 1 1 0 !=0000 immb 0 1 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh
C7-2090 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to 63, encoded in the "immh:immb"
field. It can have the following values:

(UInt(immh:immb)-64) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1,
encoded in the "immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001

(UInt(immh:immb)-16) when immh = 001x

(UInt(immh:immb)-32) when immh = 01xx

(UInt(immh:immb)-64) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;

 for e = 0 to elements-1
 Elem[result, e, esize] = LSL(Elem[operand, e, esize], shift);

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2091
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.
C7-2092 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.255 SHLL, SHLL2

Shift Left Long (by element size). This instruction reads each vector element in the lower or upper half of the source
SIMD&FP register, left shifts each result by the element size, writes the final result to a vector, and writes the vector
to the destination SIMD&FP register. The destination vector elements are twice as long as the source vector
elements.

The SHLL instruction extracts vector elements from the lower half of the source register. The SHLL2 instruction
extracts vector elements from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SHLL{2} <Vd>.<Ta>, <Vn>.<Tb>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = esize;
 boolean unsigned = FALSE; // Or TRUE without change of functionality

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 1 0 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2093
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<shift> Is the left shift amount, which must be equal to the source element width in bits, encoded in the
"size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = Vpart[n, part];
 bits(2*datasize) result;
 integer element;

 for e = 0 to elements-1
 element = Int(Elem[operand, e, esize], unsigned) << shift;
 Elem[result, e, 2*esize] = element<2*esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2094 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.256 SHRN, SHRN2

Shift Right Narrow (immediate). This instruction reads each unsigned integer value from the source SIMD&FP
register, right shifts each result by an immediate value, puts the final result into a vector, and writes the vector to the
lower or upper half of the destination SIMD&FP register. The destination vector elements are half as long as the
source vector elements. The results are truncated. For rounded results, see RSHRN, RSHRN2.

The RSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the RSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3> == '1' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

0 Q 0 0 1 1 1 1 0 !=0000 immb 1 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2095
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding immh = 1xxx, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

<shift> Is the right shift amount, in the range 1 to the destination element width in bits, encoded in the
"immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize*2) operand = V[n];
 bits(datasize) result;
 integer round_const = if round then (1 << (shift - 1)) else 0;
 integer element;

 for e = 0 to elements-1
 element = (UInt(Elem[operand, e, 2*esize]) + round_const) >> shift;
 Elem[result, e, esize] = element<esize-1:0>;

 Vpart[d, part] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2096 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.257 SHSUB

Signed Halving Subtract. This instruction subtracts the elements in the vector in the second source SIMD&FP
register from the corresponding elements in the vector in the first source SIMD&FP register, shifts each result right
one bit, places each result into elements of a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SHSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer diff;

 for e = 0 to elements-1

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2097
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 diff = element1 - element2;
 Elem[result, e, esize] = diff<esize:1>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2098 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.258 SLI

Shift Left and Insert (immediate). This instruction reads each vector element in the source SIMD&FP register, left
shifts each vector element by an immediate value, and inserts the result into the corresponding vector element in the
destination SIMD&FP register such that the new zero bits created by the shift are not inserted but retain their
existing value. Bits shifted out of the left of each vector element in the source register are lost.

The following figure shows the operation of shift left by 3 for an 8-bit vector element.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SLI <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 integer esize = 8 << 3;
 integer datasize = esize;
 integer elements = 1;

 integer shift = UInt(immh:immb) - esize;

Vector

Encoding

SLI <Vd>.<T>, <Vn>.<T>, #<shift>

Vd.B[7] after operation

Vd.B[7] before operation

Vn.B[7]
63 56 55 0

63 56 55 0

63 56 55 0

0 1 1 1 1 1 1 1 0 !=0000 immb 0 1 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh

0 Q 1 0 1 1 1 1 0 !=0000 immb 0 1 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2099
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 integer shift = UInt(immh:immb) - esize;

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to 63, encoded in the "immh:immb"
field. It can have the following values:

(UInt(immh:immb)-64) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1,
encoded in the "immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001

(UInt(immh:immb)-16) when immh = 001x

(UInt(immh:immb)-32) when immh = 01xx

(UInt(immh:immb)-64) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) operand2 = V[d];
C7-2100 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 bits(datasize) result;
 bits(esize) mask = LSL(Ones(esize), shift);
 bits(esize) shifted;

 for e = 0 to elements-1
 shifted = LSL(Elem[operand, e, esize], shift);
 Elem[result, e, esize] = (Elem[operand2, e, esize] AND NOT(mask)) OR shifted;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2101
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.259 SM3PARTW1

SM3PARTW1 takes three 128-bit vectors from the three source SIMD&FP registers and returns a 128-bit result in
the destination SIMD&FP register. The result is obtained by a three-way exclusive OR of the elements within the
input vectors with some fixed rotations, see the Operation pseudocode for more information.

This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD

(FEAT_SM3)

Encoding

SM3PARTW1 <Vd>.4S, <Vn>.4S, <Vm>.4S

Decode for this encoding

 if !HaveSM3Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m];
 bits(128) Vn = V[n];
 bits(128) Vd = V[d];
 bits(128) result;

 result<95:0> = (Vd EOR Vn)<95:0> EOR (ROL(Vm<127:96>, 15):ROL(Vm<95:64>, 15):ROL(Vm<63:32>, 15));

 for i = 0 to 3
 if i == 3 then
 result<127:96> = (Vd EOR Vn)<127:96> EOR (ROL(result<31:0>, 15));
 result<(32*i)+31:(32*i)> = result<(32*i)+31:(32*i)> EOR ROL(result<(32*i)+31:(32*i)>, 15) EOR
ROL(result<(32*i)+31:(32*i)>, 23);
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

1 1 0 0 1 1 1 0 0 1 1 Rm 1 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-2102 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2103
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.260 SM3PARTW2

SM3PARTW2 takes three 128-bit vectors from three source SIMD&FP registers and returns a 128-bit result in the
destination SIMD&FP register. The result is obtained by a three-way exclusive OR of the elements within the input
vectors with some fixed rotations, see the Operation pseudocode for more information.

This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD

(FEAT_SM3)

Encoding

SM3PARTW2 <Vd>.4S, <Vn>.4S, <Vm>.4S

Decode for this encoding

 if !HaveSM3Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m];
 bits(128) Vn = V[n];
 bits(128) Vd = V[d];
 bits(128) result;
 bits(128) tmp;
 bits(32) tmp2;
 tmp<127:0> = Vn EOR (ROL(Vm<127:96>, 7):ROL(Vm<95:64>, 7):ROL(Vm<63:32>, 7):ROL(Vm<31:0>, 7));
 result<127:0> = Vd<127:0> EOR tmp<127:0>;
 tmp2 = ROL(tmp<31:0>, 15);
 tmp2 = tmp2 EOR ROL(tmp2, 15) EOR ROL(tmp2, 23);
 result<127:96> = result<127:96> EOR tmp2;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 0 1 1 1 0 0 1 1 Rm 1 1 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-2104 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2105
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.261 SM3SS1

SM3SS1 rotates the top 32 bits of the 128-bit vector in the first source SIMD&FP register by 12, and adds that 32-bit
value to the two other 32-bit values held in the top 32 bits of each of the 128-bit vectors in the second and third
source SIMD&FP registers, rotating this result left by 7 and writing the final result into the top 32 bits of the vector
in the destination SIMD&FP register, with the bottom 96 bits of the vector being written to 0.

This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD

(FEAT_SM3)

Encoding

SM3SS1 <Vd>.4S, <Vn>.4S, <Vm>.4S, <Va>.4S

Decode for this encoding

 if !HaveSM3Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the name of the third SIMD&FP source register, encoded in the "Ra" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m];
 bits(128) Vn = V[n];
 bits(128) Vd = V[d];
 bits(128) Va = V[a];
 Vd<127:96> = ROL((ROL(Vn<127:96>, 12) + Vm<127:96> + Va<127:96>), 7);
 Vd<95:0> = Zeros();
 V[d] = Vd;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 0 1 1 1 0 0 1 0 Rm 0 Ra Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0
C7-2106 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2107
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.262 SM3TT1A

SM3TT1A takes three 128-bit vectors from three source SIMD&FP registers and a 2-bit immediate index value,
and returns a 128-bit result in the destination SIMD&FP register. It performs a three-way exclusive OR of the three
32-bit fields held in the upper three elements of the first source vector, and adds the resulting 32-bit value and the
following three other 32-bit values:

• The bottom 32-bit element of the first source vector, Vd, that was used for the three-way exclusive OR.

• The result of the exclusive OR of the top 32-bit element of the second source vector, Vn, with a rotation left
by 12 of the top 32-bit element of the first source vector.

• A 32-bit element indexed out of the third source vector, Vm.

The result of this addition is returned as the top element of the result. The other elements of the result are taken from
elements of the first source vector, with the element returned in bits<63:32> being rotated left by 9.

This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD

(FEAT_SM3)

Encoding

SM3TT1A <Vd>.4S, <Vn>.4S, <Vm>.S[<imm2>]

Decode for this encoding

 if !HaveSM3Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer i = UInt(imm2);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

<imm2> Is a 32-bit element indexed out of <Vm>, encoded in "imm2".

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m];
 bits(128) Vn = V[n];
 bits(128) Vd = V[d];
 bits(32) WjPrime;
 bits(128) result;
 bits(32) TT1;
 bits(32) SS2;

 WjPrime = Elem[Vm, i, 32];

1 1 0 0 1 1 1 0 0 1 0 Rm 1 0 imm2 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-2108 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 SS2 = Vn<127:96> EOR ROL(Vd<127:96>, 12);
 TT1 = Vd<63:32> EOR (Vd<127:96> EOR Vd<95:64>);
 TT1 = (TT1+Vd<31:0>+SS2+WjPrime)<31:0>;
 result<31:0> = Vd<63:32>;
 result<63:32> = ROL(Vd<95:64>, 9);
 result<95:64> = Vd<127:96>;
 result<127:96> = TT1;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2109
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.263 SM3TT1B

SM3TT1B takes three 128-bit vectors from three source SIMD&FP registers and a 2-bit immediate index value, and
returns a 128-bit result in the destination SIMD&FP register. It performs a 32-bit majority function between the
three 32-bit fields held in the upper three elements of the first source vector, and adds the resulting 32-bit value and
the following three other 32-bit values:

• The bottom 32-bit element of the first source vector, Vd, that was used for the 32-bit majority function.

• The result of the exclusive OR of the top 32-bit element of the second source vector, Vn, with a rotation left
by 12 of the top 32-bit element of the first source vector.

• A 32-bit element indexed out of the third source vector, Vm.

The result of this addition is returned as the top element of the result. The other elements of the result are taken from
elements of the first source vector, with the element returned in bits<63:32> being rotated left by 9.

This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD

(FEAT_SM3)

Encoding

SM3TT1B <Vd>.4S, <Vn>.4S, <Vm>.S[<imm2>]

Decode for this encoding

 if !HaveSM3Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer i = UInt(imm2);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

<imm2> Is a 32-bit element indexed out of <Vm>, encoded in "imm2".

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m];
 bits(128) Vn = V[n];
 bits(128) Vd = V[d];
 bits(32) WjPrime;
 bits(128) result;
 bits(32) TT1;
 bits(32) SS2;

 WjPrime = Elem[Vm, i, 32];

1 1 0 0 1 1 1 0 0 1 0 Rm 1 0 imm2 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-2110 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 SS2 = Vn<127:96> EOR ROL(Vd<127:96>, 12);
 TT1 = (Vd<127:96> AND Vd<63:32>) OR (Vd<127:96> AND Vd<95:64>) OR (Vd<63:32> AND Vd<95:64>);
 TT1 = (TT1+Vd<31:0>+SS2+WjPrime)<31:0>;
 result<31:0> = Vd<63:32>;
 result<63:32> = ROL(Vd<95:64>, 9);
 result<95:64> = Vd<127:96>;
 result<127:96> = TT1;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2111
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.264 SM3TT2A

SM3TT2A takes three 128-bit vectors from three source SIMD&FP register and a 2-bit immediate index value, and
returns a 128-bit result in the destination SIMD&FP register. It performs a three-way exclusive OR of the three
32-bit fields held in the upper three elements of the first source vector, and adds the resulting 32-bit value and the
following three other 32-bit values:

• The bottom 32-bit element of the first source vector, Vd, that was used for the three-way exclusive OR.

• The 32-bit element held in the top 32 bits of the second source vector, Vn.

• A 32-bit element indexed out of the third source vector, Vm.

A three-way exclusive OR is performed of the result of this addition, the result of the addition rotated left by 9, and
the result of the addition rotated left by 17. The result of this exclusive OR is returned as the top element of the
returned result. The other elements of this result are taken from elements of the first source vector, with the element
returned in bits<63:32> being rotated left by 19.

This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD

(FEAT_SM3)

Encoding

SM3TT2A <Vd>.4S, <Vn>.4S, <Vm>.S[<imm2>]

Decode for this encoding

 if !HaveSM3Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer i = UInt(imm2);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

<imm2> Is a 32-bit element indexed out of <Vm>, encoded in "imm2".

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m];
 bits(128) Vn = V[n];
 bits(128) Vd = V[d];
 bits(32) Wj;
 bits(128) result;
 bits(32) TT2;

 Wj = Elem[Vm, i, 32];

1 1 0 0 1 1 1 0 0 1 0 Rm 1 0 imm2 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-2112 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 TT2 = Vd<63:32> EOR (Vd<127:96> EOR Vd<95:64>);
 TT2 = (TT2+Vd<31:0>+Vn<127:96>+Wj)<31:0>;

 result<31:0> = Vd<63:32>;
 result<63:32> = ROL(Vd<95:64>, 19);
 result<95:64> = Vd<127:96>;
 result<127:96> = TT2 EOR ROL(TT2, 9) EOR ROL(TT2, 17);
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2113
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.265 SM3TT2B

SM3TT2B takes three 128-bit vectors from three source SIMD&FP registers, and a 2-bit immediate index value,
and returns a 128-bit result in the destination SIMD&FP register. It performs a 32-bit majority function between the
three 32-bit fields held in the upper three elements of the first source vector, and adds the resulting 32-bit value and
the following three other 32-bit values:

• The bottom 32-bit element of the first source vector, Vd, that was used for the 32-bit majority function.

• The 32-bit element held in the top 32 bits of the second source vector, Vn.

• A 32-bit element indexed out of the third source vector, Vm.

A three-way exclusive OR is performed of the result of this addition, the result of the addition rotated left by 9, and
the result of the addition rotated left by 17. The result of this exclusive OR is returned as the top element of the
returned result. The other elements of this result are taken from elements of the first source vector, with the element
returned in bits<63:32> being rotated left by 19.

This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD

(FEAT_SM3)

Encoding

SM3TT2B <Vd>.4S, <Vn>.4S, <Vm>.S[<imm2>]

Decode for this encoding

 if !HaveSM3Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer i = UInt(imm2);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

<imm2> Is a 32-bit element indexed out of <Vm>, encoded in "imm2".

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m];
 bits(128) Vn = V[n];
 bits(128) Vd = V[d];
 bits(32) Wj;
 bits(128) result;
 bits(32) TT2;

 Wj = Elem[Vm, i, 32];

1 1 0 0 1 1 1 0 0 1 0 Rm 1 0 imm2 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-2114 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 TT2 = (Vd<127:96> AND Vd<95:64>) OR (NOT(Vd<127:96>) AND Vd<63:32>);
 TT2 = (TT2+Vd<31:0>+Vn<127:96>+Wj)<31:0>;

 result<31:0> = Vd<63:32>;
 result<63:32> = ROL(Vd<95:64>, 19);
 result<95:64> = Vd<127:96>;
 result<127:96> = TT2 EOR ROL(TT2, 9) EOR ROL(TT2, 17);
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2115
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.266 SM4E

SM4 Encode takes input data as a 128-bit vector from the first source SIMD&FP register, and four iterations of the
round key held as the elements of the 128-bit vector in the second source SIMD&FP register. It encrypts the data
by four rounds, in accordance with the SM4 standard, returning the 128-bit result to the destination SIMD&FP
register.

This instruction is implemented only when FEAT_SM4 is implemented.

Advanced SIMD

(FEAT_SM4)

Encoding

SM4E <Vd>.4S, <Vn>.4S

Decode for this encoding

 if !HaveSM4Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vn = V[n];
 bits(32) intval;
 bits(128) roundresult;
 bits(32) roundkey;

 roundresult = V[d];
 for index = 0 to 3
 roundkey = Elem[Vn, index, 32];

 intval = roundresult<127:96> EOR roundresult<95:64> EOR roundresult<63:32> EOR roundkey;

 for i = 0 to 3
 Elem[intval, i, 8] = Sbox(Elem[intval, i, 8]);

 intval = intval EOR ROL(intval, 2) EOR ROL(intval, 10) EOR ROL(intval, 18) EOR ROL(intval, 24);
 intval = intval EOR roundresult<31:0>;

 roundresult<31:0> = roundresult<63:32>;
 roundresult<63:32> = roundresult<95:64>;
 roundresult<95:64> = roundresult<127:96>;
 roundresult<127:96> = intval;

 V[d] = roundresult;

1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
C7-2116 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2117
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.267 SM4EKEY

SM4 Key takes an input as a 128-bit vector from the first source SIMD&FP register and a 128-bit constant from the
second SIMD&FP register. It derives four iterations of the output key, in accordance with the SM4 standard,
returning the 128-bit result to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SM4 is implemented.

Advanced SIMD

(FEAT_SM4)

Encoding

SM4EKEY <Vd>.4S, <Vn>.4S, <Vm>.4S

Decode for this encoding

 if !HaveSM4Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m];
 bits(32) intval;
 bits(128) result;
 bits(32) const;
 bits(128) roundresult;

 roundresult = V[n];
 for index = 0 to 3
 const = Elem[Vm, index, 32];

 intval = roundresult<127:96> EOR roundresult<95:64> EOR roundresult<63:32> EOR const;

 for i = 0 to 3
 Elem[intval, i, 8] = Sbox(Elem[intval, i, 8]);

 intval = intval EOR ROL(intval, 13) EOR ROL(intval, 23);
 intval = intval EOR roundresult<31:0>;

 roundresult<31:0> = roundresult<63:32>;
 roundresult<63:32> = roundresult<95:64>;
 roundresult<95:64> = roundresult<127:96>;
 roundresult<127:96> = intval;

1 1 0 0 1 1 1 0 0 1 1 Rm 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-2118 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 V[d] = roundresult;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2119
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.268 SMAX

Signed Maximum (vector). This instruction compares corresponding elements in the vectors in the two source
SIMD&FP registers, places the larger of each pair of signed integer values into a vector, and writes the vector to the
destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer maxmin;

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
C7-2120 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
 Elem[result, e, esize] = maxmin<esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2121
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.269 SMAXP

Signed Maximum Pairwise. This instruction creates a vector by concatenating the vector elements of the first source
SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent
vector elements in the two source SIMD&FP registers, writes the largest of each pair of signed integer values into
a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 integer element1;

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
C7-2122 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer element2;
 integer maxmin;

 for e = 0 to elements-1
 element1 = Int(Elem[concat, 2*e, esize], unsigned);
 element2 = Int(Elem[concat, (2*e)+1, esize], unsigned);
 maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
 Elem[result, e, esize] = maxmin<esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2123
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.270 SMAXV

Signed Maximum across Vector. This instruction compares all the vector elements in the source SIMD&FP register,
and writes the largest of the values as a scalar to the destination SIMD&FP register. All the values in this instruction
are signed integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMAXV <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '100' then UNDEFINED;
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean min = (op == '1');

Assembler symbols

<V> Is the destination width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 10, Q = 0.

• size = 11, Q = x.

0 Q 0 0 1 1 1 0 size 1 1 0 0 0 0 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
C7-2124 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 integer maxmin;
 integer element;

 maxmin = Int(Elem[operand, 0, esize], unsigned);
 for e = 1 to elements-1
 element = Int(Elem[operand, e, esize], unsigned);
 maxmin = if min then Min(maxmin, element) else Max(maxmin, element);

 V[d] = maxmin<esize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2125
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.271 SMIN

Signed Minimum (vector). This instruction compares corresponding elements in the vectors in the two source
SIMD&FP registers, places the smaller of each of the two signed integer values into a vector, and writes the vector
to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer maxmin;

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
C7-2126 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
 Elem[result, e, esize] = maxmin<esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2127
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.272 SMINP

Signed Minimum Pairwise. This instruction creates a vector by concatenating the vector elements of the first source
SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent
vector elements in the two source SIMD&FP registers, writes the smallest of each pair of signed integer values into
a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 integer element1;

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
C7-2128 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer element2;
 integer maxmin;

 for e = 0 to elements-1
 element1 = Int(Elem[concat, 2*e, esize], unsigned);
 element2 = Int(Elem[concat, (2*e)+1, esize], unsigned);
 maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
 Elem[result, e, esize] = maxmin<esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2129
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.273 SMINV

Signed Minimum across Vector. This instruction compares all the vector elements in the source SIMD&FP register,
and writes the smallest of the values as a scalar to the destination SIMD&FP register. All the values in this
instruction are signed integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMINV <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '100' then UNDEFINED;
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean min = (op == '1');

Assembler symbols

<V> Is the destination width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 10, Q = 0.

• size = 11, Q = x.

0 Q 0 0 1 1 1 0 size 1 1 0 0 0 1 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
C7-2130 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 integer maxmin;
 integer element;

 maxmin = Int(Elem[operand, 0, esize], unsigned);
 for e = 1 to elements-1
 element = Int(Elem[operand, e, esize], unsigned);
 maxmin = if min then Min(maxmin, element) else Max(maxmin, element);

 V[d] = maxmin<esize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2131
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.274 SMLAL, SMLAL2 (by element)

Signed Multiply-Add Long (vector, by element). This instruction multiplies each vector element in the lower or
upper half of the first source SIMD&FP register by the specified vector element in the second source SIMD&FP
register, and accumulates the results with the vector elements of the destination SIMD&FP register. The destination
vector elements are twice as long as the elements that are multiplied. All the values in this instruction are signed
integer values.

The SMLAL instruction extracts vector elements from the lower half of the first source register. The SMLAL2 instruction
extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean sub_op = (o2 == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

0 Q 0 0 1 1 1 1 size L M Rm 0 0 1 0 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U o2
C7-2132 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• size = 00.

• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(idxdsize) operand2 = V[m];
 bits(2*datasize) operand3 = V[d];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;

 element2 = Int(Elem[operand2, index, esize], unsigned);
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2133
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 if sub_op then
 Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] - product;
 else
 Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] + product;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2134 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.275 SMLAL, SMLAL2 (vector)

Signed Multiply-Add Long (vector). This instruction multiplies corresponding signed integer values in the lower or
upper half of the vectors of the two source SIMD&FP registers, and accumulates the results with the vector elements
of the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are
multiplied.

The SMLAL instruction extracts each source vector from the lower half of each source register. The SMLAL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;
 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2135
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) operand3 = V[d];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;
 bits(2*esize) accum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
 if sub_op then
 accum = Elem[operand3, e, 2*esize] - product;
 else
 accum = Elem[operand3, e, 2*esize] + product;
 Elem[result, e, 2*esize] = accum;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2136 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.276 SMLSL, SMLSL2 (by element)

Signed Multiply-Subtract Long (vector, by element). This instruction multiplies each vector element in the lower or
upper half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP
register and subtracts the results from the vector elements of the destination SIMD&FP register. The destination
vector elements are twice as long as the elements that are multiplied.

The SMLSL instruction extracts vector elements from the lower half of the first source register. The SMLSL2 instruction
extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean sub_op = (o2 == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

0 Q 0 0 1 1 1 1 size L M Rm 0 1 1 0 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U o2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2137
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• size = 00.

• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(idxdsize) operand2 = V[m];
 bits(2*datasize) operand3 = V[d];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;

 element2 = Int(Elem[operand2, index, esize], unsigned);
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
C7-2138 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 if sub_op then
 Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] - product;
 else
 Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] + product;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2139
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.277 SMLSL, SMLSL2 (vector)

Signed Multiply-Subtract Long (vector). This instruction multiplies corresponding signed integer values in the
lower or upper half of the vectors of the two source SIMD&FP registers, and subtracts the results from the vector
elements of the destination SIMD&FP register. The destination vector elements are twice as long as the elements
that are multiplied.

The SMLSL instruction extracts each source vector from the lower half of each source register. The SMLSL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;
 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
C7-2140 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) operand3 = V[d];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;
 bits(2*esize) accum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
 if sub_op then
 accum = Elem[operand3, e, 2*esize] - product;
 else
 accum = Elem[operand3, e, 2*esize] + product;
 Elem[result, e, 2*esize] = accum;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2141
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.278 SMMLA (vector)

Signed 8-bit integer matrix multiply-accumulate. This instruction multiplies the 2x8 matrix of signed 8-bit integer
values in the first source vector by the 8x2 matrix of signed 8-bit integer values in the second source vector. The
resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix accumulator in the
destination vector. This is equivalent to performing an 8-way dot product per destination element.

From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that
include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

Vector

(FEAT_I8MM)

Encoding

SMMLA <Vd>.4S, <Vn>.16B, <Vm>.16B

Decode for this encoding

 if !HaveInt8MatMulExt() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(128) operand1 = V[n];
 bits(128) operand2 = V[m];
 bits(128) addend = V[d];

 V[d] = MatMulAdd(addend, operand1, operand2, FALSE, FALSE);

0 1 0 0 1 1 1 0 1 0 0 Rm 1 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U B
C7-2142 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.279 SMOV

Signed Move vector element to general-purpose register. This instruction reads the signed integer from the source
SIMD&FP register, sign-extends it to form a 32-bit or 64-bit value, and writes the result to destination
general-purpose register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

32-bit variant

Applies when Q == 0.

SMOV <Wd>, <Vn>.<Ts>[<index>]

64-reg,SMOV-64-reg variant

Applies when Q == 1.

SMOV <Xd>, <Vn>.<Ts>[<index>]

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer size;
 case Q:imm5 of
 when 'xxxxx1' size = 0; // SMOV [WX]d, Vn.B
 when 'xxxx10' size = 1; // SMOV [WX]d, Vn.H
 when '1xx100' size = 2; // SMOV Xd, Vn.S
 otherwise UNDEFINED;

 integer idxdsize = if imm5<4> == '1' then 128 else 64;
 integer index = UInt(imm5<4:size+1>);
 integer esize = 8 << size;
 integer datasize = if Q == '1' then 64 else 32;

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ts> For the 32-bit variant: is an element size specifier, encoded in the "imm5" field. It can have the
following values:

B when imm5 = xxxx1

H when imm5 = xxx10

The encoding imm5 = xxx00 is reserved.

For the 64-reg,SMOV-64-reg variant: is an element size specifier, encoded in the "imm5" field. It
can have the following values:

B when imm5 = xxxx1

0 Q 0 0 1 1 1 0 0 0 0 imm5 0 0 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2143
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
H when imm5 = xxx10

S when imm5 = xx100

The encoding imm5 = xx000 is reserved.

<index> For the 32-bit variant: is the element index encoded in the "imm5" field. It can have the following
values:

imm5<4:1> when imm5 = xxxx1

imm5<4:2> when imm5 = xxx10

The encoding imm5 = xxx00 is reserved.

For the 64-reg,SMOV-64-reg variant: is the element index encoded in the "imm5" field. It can have
the following values:

imm5<4:1> when imm5 = xxxx1

imm5<4:2> when imm5 = xxx10

imm5<4:3> when imm5 = xx100

The encoding imm5 = xx000 is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(idxdsize) operand = V[n];

 X[d] = SignExtend(Elem[operand, index, esize], datasize);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2144 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.280 SMULL, SMULL2 (by element)

Signed Multiply Long (vector, by element). This instruction multiplies each vector element in the lower or upper
half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP register,
places the result in a vector, and writes the vector to the destination SIMD&FP register. The destination vector
elements are twice as long as the elements that are multiplied.

The SMULL instruction extracts vector elements from the lower half of the first source register. The SMULL2 instruction
extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

The following encodings are reserved:

• size = 00.

0 Q 0 0 1 1 1 1 size L M Rm 1 0 1 0 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2145
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(idxdsize) operand2 = V[m];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;

 element2 = Int(Elem[operand2, index, esize], unsigned);
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
 Elem[result, e, 2*esize] = product;

 V[d] = result;
C7-2146 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2147
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.281 SMULL, SMULL2 (vector)

Signed Multiply Long (vector). This instruction multiplies corresponding signed integer values in the lower or upper
half of the vectors of the two source SIMD&FP registers, places the results in a vector, and writes the vector to the
destination SIMD&FP register.

The destination vector elements are twice as long as the elements that are multiplied.

The SMULL instruction extracts each source vector from the lower half of each source register. The SMULL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 0 0 1 1 1 0 size 1 Rm 1 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

C7-2148 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) result;
 integer element1;
 integer element2;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 Elem[result, e, 2*esize] = (element1*element2)<2*esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2149
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.282 SQABS

Signed saturating Absolute value. This instruction reads each vector element from the source SIMD&FP register,
puts the absolute value of the result into a vector, and writes the vector to the destination SIMD&FP register. All the
values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQABS <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean neg = (U == '1');

Vector

Encoding

SQABS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean neg = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 0 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

C7-2150 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
H when size = 01

S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = SInt(Elem[operand, e, esize]);
 if neg then
 element = -element;
 else
 element = Abs(element);
 (Elem[result, e, esize], sat) = SignedSatQ(element, esize);
 if sat then FPSR.QC = '1';

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2151
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.283 SQADD

Signed saturating Add. This instruction adds the values of corresponding elements of the two source SIMD&FP
registers, places the results into a vector, and writes the vector to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQADD <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');

Vector

Encoding

SQADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

0 1 0 1 1 1 1 0 size 1 Rm 0 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

C7-2152 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer sum;
 boolean sat;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 sum = element1 + element2;
 (Elem[result, e, esize], sat) = SatQ(sum, esize, unsigned);
 if sat then FPSR.QC = '1';

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2153
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.284 SQDMLAL, SQDMLAL2 (by element)

Signed saturating Doubling Multiply-Add Long (by element). This instruction multiplies each vector element in the
lower or upper half of the first source SIMD&FP register by the specified vector element of the second source
SIMD&FP register, doubles the results, and accumulates the final results with the vector elements of the destination
SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

The SQDMLAL instruction extracts vector elements from the lower half of the first source register. The SQDMLAL2
instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 integer part = 0;

 boolean sub_op = (o2 == '1');

Vector

Encoding

SQDMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

0 1 0 1 1 1 1 1 size L M Rm 0 0 1 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2

0 Q 0 0 1 1 1 1 size L M Rm 0 0 1 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2
C7-2154 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o2 == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Va> Is the destination width specifier, encoded in the "size" field. It can have the following values:

S when size = 01

D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2155
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(idxdsize) operand2 = V[m];
 bits(2*datasize) operand3 = V[d];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;
 integer accum;
 boolean sat1;
 boolean sat2;

 element2 = SInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 (product, sat1) = SignedSatQ(2 * element1 * element2, 2 * esize);
 if sub_op then
 accum = SInt(Elem[operand3, e, 2*esize]) - SInt(product);
 else
C7-2156 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 accum = SInt(Elem[operand3, e, 2*esize]) + SInt(product);
 (Elem[result, e, 2*esize], sat2) = SignedSatQ(accum, 2 * esize);
 if sat1 || sat2 then FPSR.QC = '1';

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2157
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.285 SQDMLAL, SQDMLAL2 (vector)

Signed saturating Doubling Multiply-Add Long. This instruction multiplies corresponding signed integer values in
the lower or upper half of the vectors of the two source SIMD&FP registers, doubles the results, and accumulates
the final results with the vector elements of the destination SIMD&FP register. The destination vector elements are
twice as long as the elements that are multiplied.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

The SQDMLAL instruction extracts each source vector from the lower half of each source register. The SQDMLAL2
instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQDMLAL <Va><d>, <Vb><n>, <Vb><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '00' || size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 integer part = 0;

 boolean sub_op = (o1 == '1');

Vector

Encoding

SQDMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '00' || size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);

0 1 0 1 1 1 1 0 size 1 Rm 1 0 0 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o1

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o1
C7-2158 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the destination width specifier, encoded in the "size" field. It can have the following values:

S when size = 01

D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2159
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) operand3 = V[d];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;
 integer accum;
 boolean sat1;
 boolean sat2;

 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element2 = SInt(Elem[operand2, e, esize]);
 (product, sat1) = SignedSatQ(2 * element1 * element2, 2 * esize);
 if sub_op then
 accum = SInt(Elem[operand3, e, 2*esize]) - SInt(product);
 else
 accum = SInt(Elem[operand3, e, 2*esize]) + SInt(product);
 (Elem[result, e, 2*esize], sat2) = SignedSatQ(accum, 2 * esize);
 if sat1 || sat2 then FPSR.QC = '1';

 V[d] = result;
C7-2160 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.286 SQDMLSL, SQDMLSL2 (by element)

Signed saturating Doubling Multiply-Subtract Long (by element). This instruction multiplies each vector element
in the lower or upper half of the first source SIMD&FP register by the specified vector element of the second source
SIMD&FP register, doubles the results, and subtracts the final results from the vector elements of the destination
SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied. All the
values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

The SQDMLSL instruction extracts vector elements from the lower half of the first source register. The SQDMLSL2
instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQDMLSL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 integer part = 0;

 boolean sub_op = (o2 == '1');

Vector

Encoding

SQDMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

0 1 0 1 1 1 1 1 size L M Rm 0 1 1 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2

0 Q 0 0 1 1 1 1 size L M Rm 0 1 1 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2161
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o2 == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Va> Is the destination width specifier, encoded in the "size" field. It can have the following values:

S when size = 01

D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.
C7-2162 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(idxdsize) operand2 = V[m];
 bits(2*datasize) operand3 = V[d];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;
 integer accum;
 boolean sat1;
 boolean sat2;

 element2 = SInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 (product, sat1) = SignedSatQ(2 * element1 * element2, 2 * esize);
 if sub_op then
 accum = SInt(Elem[operand3, e, 2*esize]) - SInt(product);
 else
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2163
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 accum = SInt(Elem[operand3, e, 2*esize]) + SInt(product);
 (Elem[result, e, 2*esize], sat2) = SignedSatQ(accum, 2 * esize);
 if sat1 || sat2 then FPSR.QC = '1';

 V[d] = result;
C7-2164 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.287 SQDMLSL, SQDMLSL2 (vector)

Signed saturating Doubling Multiply-Subtract Long. This instruction multiplies corresponding signed integer
values in the lower or upper half of the vectors of the two source SIMD&FP registers, doubles the results, and
subtracts the final results from the vector elements of the destination SIMD&FP register. The destination vector
elements are twice as long as the elements that are multiplied.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

The SQDMLSL instruction extracts each source vector from the lower half of each source register. The SQDMLSL2
instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQDMLSL <Va><d>, <Vb><n>, <Vb><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '00' || size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 integer part = 0;

 boolean sub_op = (o1 == '1');

Vector

Encoding

SQDMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '00' || size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);

0 1 0 1 1 1 1 0 size 1 Rm 1 0 1 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o1

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2165
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the destination width specifier, encoded in the "size" field. It can have the following values:

S when size = 01

D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
C7-2166 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) operand3 = V[d];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;
 integer accum;
 boolean sat1;
 boolean sat2;

 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element2 = SInt(Elem[operand2, e, esize]);
 (product, sat1) = SignedSatQ(2 * element1 * element2, 2 * esize);
 if sub_op then
 accum = SInt(Elem[operand3, e, 2*esize]) - SInt(product);
 else
 accum = SInt(Elem[operand3, e, 2*esize]) + SInt(product);
 (Elem[result, e, 2*esize], sat2) = SignedSatQ(accum, 2 * esize);
 if sat1 || sat2 then FPSR.QC = '1';

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2167
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.288 SQDMULH (by element)

Signed saturating Doubling Multiply returning High half (by element). This instruction multiplies each vector
element in the first source SIMD&FP register by the specified vector element of the second source SIMD&FP
register, doubles the results, places the most significant half of the final results into a vector, and writes the vector
to the destination SIMD&FP register.

The results are truncated. For rounded results, see SQRDMULH (by element).

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQDMULH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;

 boolean round = (op == '1');

Vector

Encoding

SQDMULH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;

0 1 0 1 1 1 1 1 size L M Rm 1 1 0 0 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

op

0 Q 0 0 1 1 1 1 size L M Rm 1 1 0 0 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

op
C7-2168 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean round = (op == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2169
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(idxdsize) operand2 = V[m];
 bits(datasize) result;
 integer round_const = if round then 1 << (esize - 1) else 0;
 integer element1;
 integer element2;
 integer product;
 boolean sat;

 element2 = SInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 product = (2 * element1 * element2) + round_const;
 // The following only saturates if element1 and element2 equal -(2^(esize-1))
 (Elem[result, e, esize], sat) = SignedSatQ(product >> esize, esize);
 if sat then FPSR.QC = '1';

 V[d] = result;
C7-2170 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.289 SQDMULH (vector)

Signed saturating Doubling Multiply returning High half. This instruction multiplies the values of corresponding
elements of the two source SIMD&FP registers, doubles the results, places the most significant half of the final
results into a vector, and writes the vector to the destination SIMD&FP register.

The results are truncated. For rounded results, see SQRDMULH (vector).

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQDMULH <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' || size == '00' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean rounding = (U == '1');

Vector

Encoding

SQDMULH <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' || size == '00' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean rounding = (U == '1');

0 1 0 1 1 1 1 0 size 1 Rm 1 0 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2171
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer round_const = if rounding then 1 << (esize - 1) else 0;
 integer element1;
 integer element2;
 integer product;
 boolean sat;

 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element2 = SInt(Elem[operand2, e, esize]);
 product = (2 * element1 * element2) + round_const;
 (Elem[result, e, esize], sat) = SignedSatQ(product >> esize, esize);
 if sat then FPSR.QC = '1';

 V[d] = result;
C7-2172 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.290 SQDMULL, SQDMULL2 (by element)

Signed saturating Doubling Multiply Long (by element). This instruction multiplies each vector element in the
lower or upper half of the first source SIMD&FP register by the specified vector element of the second source
SIMD&FP register, doubles the results, places the final results in a vector, and writes the vector to the destination
SIMD&FP register. All the values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

The SQDMULL instruction extracts the first source vector from the lower half of the first source register. The SQDMULL2
instruction extracts the first source vector from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQDMULL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 integer part = 0;

Vector

Encoding

SQDMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;

0 1 0 1 1 1 1 1 size L M Rm 1 0 1 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

0 Q 0 0 1 1 1 1 size L M Rm 1 0 1 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2173
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Va> Is the destination width specifier, encoded in the "size" field. It can have the following values:

S when size = 01

D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10
C7-2174 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• size = 00.

• size = 11.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(datasize) operand1 = Vpart[n, part];
 bits(idxdsize) operand2 = V[m];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;
 boolean sat;

 element2 = SInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 (product, sat) = SignedSatQ(2 * element1 * element2, 2 * esize);
 Elem[result, e, 2*esize] = product;
 if sat then FPSR.QC = '1';

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2175
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.291 SQDMULL, SQDMULL2 (vector)

Signed saturating Doubling Multiply Long. This instruction multiplies corresponding vector elements in the lower
or upper half of the two source SIMD&FP registers, doubles the results, places the final results in a vector, and
writes the vector to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

The SQDMULL instruction extracts each source vector from the lower half of each source register. The SQDMULL2
instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQDMULL <Va><d>, <Vb><n>, <Vb><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '00' || size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 integer part = 0;

Vector

Encoding

SQDMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '00' || size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

0 1 0 1 1 1 1 0 size 1 Rm 1 1 0 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 Q 0 0 1 1 1 0 size 1 Rm 1 1 0 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-2176 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the destination width specifier, encoded in the "size" field. It can have the following values:

S when size = 01

D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2177
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;
 boolean sat;

 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element2 = SInt(Elem[operand2, e, esize]);
 (product, sat) = SignedSatQ(2 * element1 * element2, 2 * esize);
 Elem[result, e, 2*esize] = product;
 if sat then FPSR.QC = '1';

 V[d] = result;
C7-2178 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.292 SQNEG

Signed saturating Negate. This instruction reads each vector element from the source SIMD&FP register, negates
each value, places the result into a vector, and writes the vector to the destination SIMD&FP register. All the values
in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQNEG <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean neg = (U == '1');

Vector

Encoding

SQNEG <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean neg = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

0 1 1 1 1 1 1 0 size 1 0 0 0 0 0 0 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2179
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
H when size = 01

S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = SInt(Elem[operand, e, esize]);
 if neg then
 element = -element;
 else
 element = Abs(element);
 (Elem[result, e, esize], sat) = SignedSatQ(element, esize);
 if sat then FPSR.QC = '1';

 V[d] = result;
C7-2180 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.293 SQRDMLAH (by element)

Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (by element). This instruction
multiplies the vector elements of the first source SIMD&FP register with the value of a vector element of the second
source SIMD&FP register without saturating the multiply results, doubles the results, and accumulates the most
significant half of the final results with the vector elements of the destination SIMD&FP register. The results are
rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

(FEAT_RDM)

Encoding

SQRDMLAH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;

 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Vector

(FEAT_RDM)

Encoding

SQRDMLAH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

0 1 1 1 1 1 1 1 size L M Rm 1 1 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S

0 Q 1 0 1 1 1 1 size L M Rm 1 1 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2181
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.
C7-2182 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(idxdsize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 integer rounding_const = if rounding then 1 << (esize - 1) else 0;
 integer element1;
 integer element2;
 integer element3;
 integer product;
 boolean sat;

 element2 = SInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element3 = SInt(Elem[operand3, e, esize]);
 if sub_op then
 accum = ((element3 << esize) - 2 * (element1 * element2) + rounding_const);
 else
 accum = ((element3 << esize) + 2 * (element1 * element2) + rounding_const);
 (Elem[result, e, esize], sat) = SignedSatQ(accum >> esize, esize);
 if sat then FPSR.QC = '1';

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2183
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.294 SQRDMLAH (vector)

Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (vector). This instruction
multiplies the vector elements of the first source SIMD&FP register with the corresponding vector elements of the
second source SIMD&FP register without saturating the multiply results, doubles the results, and accumulates the
most significant half of the final results with the vector elements of the destination SIMD&FP register. The results
are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

(FEAT_RDM)

Encoding

SQRDMLAH <V><d>, <V><n>, <V><m>

Decode for this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' || size == '00' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Vector

(FEAT_RDM)

Encoding

SQRDMLAH <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' || size == '00' then UNDEFINED;
 integer esize = 8 << UInt(size);

0 1 1 1 1 1 1 0 size 0 Rm 1 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

0 Q 1 0 1 1 1 0 size 0 Rm 1 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

C7-2184 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 integer rounding_const = if rounding then 1 << (esize - 1) else 0;
 integer element1;
 integer element2;
 integer element3;
 integer product;
 boolean sat;

 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element2 = SInt(Elem[operand2, e, esize]);
 element3 = SInt(Elem[operand3, e, esize]);
 if sub_op then
 accum = ((element3 << esize) - 2 * (element1 * element2) + rounding_const);
 else
 accum = ((element3 << esize) + 2 * (element1 * element2) + rounding_const);
 (Elem[result, e, esize], sat) = SignedSatQ(accum >> esize, esize);
 if sat then FPSR.QC = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2185
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 V[d] = result;
C7-2186 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.295 SQRDMLSH (by element)

Signed Saturating Rounding Doubling Multiply Subtract returning High Half (by element). This instruction
multiplies the vector elements of the first source SIMD&FP register with the value of a vector element of the second
source SIMD&FP register without saturating the multiply results, doubles the results, and subtracts the most
significant half of the final results from the vector elements of the destination SIMD&FP register. The results are
rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

(FEAT_RDM)

Encoding

SQRDMLSH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;

 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Vector

(FEAT_RDM)

Encoding

SQRDMLSH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

0 1 1 1 1 1 1 1 size L M Rm 1 1 1 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S

0 Q 1 0 1 1 1 1 size L M Rm 1 1 1 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2187
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.
C7-2188 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(idxdsize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 integer rounding_const = if rounding then 1 << (esize - 1) else 0;
 integer element1;
 integer element2;
 integer element3;
 integer product;
 boolean sat;

 element2 = SInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element3 = SInt(Elem[operand3, e, esize]);
 if sub_op then
 accum = ((element3 << esize) - 2 * (element1 * element2) + rounding_const);
 else
 accum = ((element3 << esize) + 2 * (element1 * element2) + rounding_const);
 (Elem[result, e, esize], sat) = SignedSatQ(accum >> esize, esize);
 if sat then FPSR.QC = '1';

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2189
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.296 SQRDMLSH (vector)

Signed Saturating Rounding Doubling Multiply Subtract returning High Half (vector). This instruction multiplies
the vector elements of the first source SIMD&FP register with the corresponding vector elements of the second
source SIMD&FP register without saturating the multiply results, doubles the results, and subtracts the most
significant half of the final results from the vector elements of the destination SIMD&FP register. The results are
rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

(FEAT_RDM)

Encoding

SQRDMLSH <V><d>, <V><n>, <V><m>

Decode for this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' || size == '00' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Vector

(FEAT_RDM)

Encoding

SQRDMLSH <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' || size == '00' then UNDEFINED;
 integer esize = 8 << UInt(size);

0 1 1 1 1 1 1 0 size 0 Rm 1 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

0 Q 1 0 1 1 1 0 size 0 Rm 1 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

C7-2190 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 integer rounding_const = if rounding then 1 << (esize - 1) else 0;
 integer element1;
 integer element2;
 integer element3;
 integer product;
 boolean sat;

 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element2 = SInt(Elem[operand2, e, esize]);
 element3 = SInt(Elem[operand3, e, esize]);
 if sub_op then
 accum = ((element3 << esize) - 2 * (element1 * element2) + rounding_const);
 else
 accum = ((element3 << esize) + 2 * (element1 * element2) + rounding_const);
 (Elem[result, e, esize], sat) = SignedSatQ(accum >> esize, esize);
 if sat then FPSR.QC = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2191
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 V[d] = result;
C7-2192 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.297 SQRDMULH (by element)

Signed saturating Rounding Doubling Multiply returning High half (by element). This instruction multiplies each
vector element in the first source SIMD&FP register by the specified vector element of the second source
SIMD&FP register, doubles the results, places the most significant half of the final results into a vector, and writes
the vector to the destination SIMD&FP register.

The results are rounded. For truncated results, see SQDMULH (by element).

If any of the results overflows, they are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQRDMULH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;

 boolean round = (op == '1');

Vector

Encoding

SQRDMULH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of

0 1 0 1 1 1 1 1 size L M Rm 1 1 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

op

0 Q 0 0 1 1 1 1 size L M Rm 1 1 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2193
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean round = (op == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.
C7-2194 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(idxdsize) operand2 = V[m];
 bits(datasize) result;
 integer round_const = if round then 1 << (esize - 1) else 0;
 integer element1;
 integer element2;
 integer product;
 boolean sat;

 element2 = SInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 product = (2 * element1 * element2) + round_const;
 // The following only saturates if element1 and element2 equal -(2^(esize-1))
 (Elem[result, e, esize], sat) = SignedSatQ(product >> esize, esize);
 if sat then FPSR.QC = '1';

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2195
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.298 SQRDMULH (vector)

Signed saturating Rounding Doubling Multiply returning High half. This instruction multiplies the values of
corresponding elements of the two source SIMD&FP registers, doubles the results, places the most significant half
of the final results into a vector, and writes the vector to the destination SIMD&FP register.

The results are rounded. For truncated results, see SQDMULH (vector).

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQRDMULH <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' || size == '00' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean rounding = (U == '1');

Vector

Encoding

SQRDMULH <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' || size == '00' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean rounding = (U == '1');

0 1 1 1 1 1 1 0 size 1 Rm 1 0 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

C7-2196 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer round_const = if rounding then 1 << (esize - 1) else 0;
 integer element1;
 integer element2;
 integer product;
 boolean sat;

 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element2 = SInt(Elem[operand2, e, esize]);
 product = (2 * element1 * element2) + round_const;
 (Elem[result, e, esize], sat) = SignedSatQ(product >> esize, esize);
 if sat then FPSR.QC = '1';

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2197
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.299 SQRSHL

Signed saturating Rounding Shift Left (register). This instruction takes each vector element in the first source
SIMD&FP register, shifts it by a value from the least significant byte of the corresponding vector element of the
second source SIMD&FP register, places the results into a vector, and writes the vector to the destination SIMD&FP
register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are rounded. For
truncated results, see SQSHL (register).

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQRSHL <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');
 if S == '0' && size != '11' then UNDEFINED;

Vector

Encoding

SQRSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

0 1 0 1 1 1 1 0 size 1 Rm 0 1 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S
C7-2198 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;

 integer round_const = 0;
 integer shift;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 shift = SInt(Elem[operand2, e, esize]<7:0>);
 if rounding then
 round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
 element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
 if saturating then
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
 else
 Elem[result, e, esize] = element<esize-1:0>;

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2199
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.300 SQRSHRN, SQRSHRN2

Signed saturating Rounded Shift Right Narrow (immediate). This instruction reads each vector element in the
source SIMD&FP register, right shifts each result by an immediate value, saturates each shifted result to a value that
is half the original width, puts the final result into a vector, and writes the vector to the lower or upper half of the
destination SIMD&FP register. All the values in this instruction are signed integer values. The destination vector
elements are half as long as the source vector elements. The results are rounded. For truncated results, see SQSHRN,
SQSHRN2.

The SQRSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the SQRSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQRSHRN <Vb><d>, <Va><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then UNDEFINED;
 if immh<3> == '1' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = esize;
 integer elements = 1;
 integer part = 0;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');
 boolean unsigned = (U == '1');

Vector

Encoding

SQRSHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";

0 1 0 1 1 1 1 1 0 !=0000 immb 1 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op

0 Q 0 0 1 1 1 1 0 !=0000 immb 1 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op
C7-2200 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 if immh<3> == '1' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vb> Is the destination width specifier, encoded in the "immh" field. It can have the following values:

B when immh = 0001

H when immh = 001x

S when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 0001

S when immh = 001x

D when immh = 01xx
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2201
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

For the vector variant: is the right shift amount, in the range 1 to the destination element width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize*2) operand = V[n];
 bits(datasize) result;
 integer round_const = if round then (1 << (shift - 1)) else 0;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = (Int(Elem[operand, e, 2*esize], unsigned) + round_const) >> shift;
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';

 Vpart[d, part] = result;
C7-2202 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.301 SQRSHRUN, SQRSHRUN2

Signed saturating Rounded Shift Right Unsigned Narrow (immediate). This instruction reads each signed integer
value in the vector of the source SIMD&FP register, right shifts each value by an immediate value, saturates the
result to an unsigned integer value that is half the original width, places the final result into a vector, and writes the
vector to the destination SIMD&FP register. The results are rounded. For truncated results, see SQSHRUN,
SQSHRUN2.

The SQRSHRUN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the SQRSHRUN2 instruction writes the vector to the upper half of the destination register without affecting the other
bits of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQRSHRUN <Vb><d>, <Va><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then UNDEFINED;
 if immh<3> == '1' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = esize;
 integer elements = 1;
 integer part = 0;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');

Vector

Encoding

SQRSHRUN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3> == '1' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);

0 1 1 1 1 1 1 1 0 !=0000 immb 1 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh op

0 Q 1 0 1 1 1 1 0 !=0000 immb 1 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2203
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vb> Is the destination width specifier, encoded in the "immh" field. It can have the following values:

B when immh = 0001

H when immh = 001x

S when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 0001

S when immh = 001x

D when immh = 01xx
C7-2204 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

For the vector variant: is the right shift amount, in the range 1 to the destination element width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize*2) operand = V[n];
 bits(datasize) result;
 integer round_const = if round then (1 << (shift - 1)) else 0;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = (SInt(Elem[operand, e, 2*esize]) + round_const) >> shift;
 (Elem[result, e, esize], sat) = UnsignedSatQ(element, esize);
 if sat then FPSR.QC = '1';

 Vpart[d, part] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2205
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.302 SQSHL (immediate)

Signed saturating Shift Left (immediate). This instruction reads each vector element in the source SIMD&FP
register, shifts each result by an immediate value, places the final result in a vector, and writes the vector to the
destination SIMD&FP register. The results are truncated. For rounded results, see UQRSHL.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQSHL <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = esize;
 integer elements = 1;

 integer shift = UInt(immh:immb) - esize;

 boolean src_unsigned;
 boolean dst_unsigned;
 case op:U of
 when '00' UNDEFINED;
 when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
 when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
 when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Vector

Encoding

SQSHL <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);

0 1 0 1 1 1 1 1 0 !=0000 immb 0 1 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op

0 Q 0 0 1 1 1 1 0 !=0000 immb 0 1 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op
C7-2206 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 integer shift = UInt(immh:immb) - esize;

 boolean src_unsigned;
 boolean dst_unsigned;
 case op:U of
 when '00' UNDEFINED;
 when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
 when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
 when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

B when immh = 0001

H when immh = 001x

S when immh = 01xx

D when immh = 1xxx

The encoding immh = 0000 is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to the operand width in bits minus 1,
encoded in the "immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001

(UInt(immh:immb)-16) when immh = 001x

(UInt(immh:immb)-32) when immh = 01xx

(UInt(immh:immb)-64) when immh = 1xxx

The encoding immh = 0000 is reserved.

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1,
encoded in the "immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001

(UInt(immh:immb)-16) when immh = 001x

(UInt(immh:immb)-32) when immh = 01xx
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2207
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
(UInt(immh:immb)-64) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = Int(Elem[operand, e, esize], src_unsigned) << shift;
 (Elem[result, e, esize], sat) = SatQ(element, esize, dst_unsigned);
 if sat then FPSR.QC = '1';

 V[d] = result;
C7-2208 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.303 SQSHL (register)

Signed saturating Shift Left (register). This instruction takes each element in the vector of the first source SIMD&FP
register, shifts each element by a value from the least significant byte of the corresponding element of the second
source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are truncated. For
rounded results, see SQRSHL.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQSHL <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');
 if S == '0' && size != '11' then UNDEFINED;

Vector

Encoding

SQSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

0 1 0 1 1 1 1 0 size 1 Rm 0 1 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2209
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;

 integer round_const = 0;
 integer shift;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 shift = SInt(Elem[operand2, e, esize]<7:0>);
 if rounding then
 round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
 element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
 if saturating then
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
 else
 Elem[result, e, esize] = element<esize-1:0>;

 V[d] = result;
C7-2210 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.304 SQSHLU

Signed saturating Shift Left Unsigned (immediate). This instruction reads each signed integer value in the vector of
the source SIMD&FP register, shifts each value by an immediate value, saturates the shifted result to an unsigned
integer value, places the result in a vector, and writes the vector to the destination SIMD&FP register. The results
are truncated. For rounded results, see UQRSHL.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQSHLU <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = esize;
 integer elements = 1;

 integer shift = UInt(immh:immb) - esize;

 boolean src_unsigned;
 boolean dst_unsigned;
 case op:U of
 when '00' UNDEFINED;
 when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
 when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
 when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Vector

Encoding

SQSHLU <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);

0 1 1 1 1 1 1 1 0 !=0000 immb 0 1 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op

0 Q 1 0 1 1 1 1 0 !=0000 immb 0 1 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2211
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 integer shift = UInt(immh:immb) - esize;

 boolean src_unsigned;
 boolean dst_unsigned;
 case op:U of
 when '00' UNDEFINED;
 when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
 when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
 when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

B when immh = 0001

H when immh = 001x

S when immh = 01xx

D when immh = 1xxx

The encoding immh = 0000 is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to the operand width in bits minus 1,
encoded in the "immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001

(UInt(immh:immb)-16) when immh = 001x

(UInt(immh:immb)-32) when immh = 01xx

(UInt(immh:immb)-64) when immh = 1xxx

The encoding immh = 0000 is reserved.

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1,
encoded in the "immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001

(UInt(immh:immb)-16) when immh = 001x

(UInt(immh:immb)-32) when immh = 01xx
C7-2212 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
(UInt(immh:immb)-64) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = Int(Elem[operand, e, esize], src_unsigned) << shift;
 (Elem[result, e, esize], sat) = SatQ(element, esize, dst_unsigned);
 if sat then FPSR.QC = '1';

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2213
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.305 SQSHRN, SQSHRN2

Signed saturating Shift Right Narrow (immediate). This instruction reads each vector element in the source
SIMD&FP register, right shifts and truncates each result by an immediate value, saturates each shifted result to a
value that is half the original width, puts the final result into a vector, and writes the vector to the lower or upper
half of the destination SIMD&FP register. All the values in this instruction are signed integer values. The destination
vector elements are half as long as the source vector elements. For rounded results, see SQRSHRN, SQRSHRN2.

The SQSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the SQSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQSHRN <Vb><d>, <Va><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then UNDEFINED;
 if immh<3> == '1' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = esize;
 integer elements = 1;
 integer part = 0;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');
 boolean unsigned = (U == '1');

Vector

Encoding

SQSHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3> == '1' then UNDEFINED;

0 1 0 1 1 1 1 1 0 !=0000 immb 1 0 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op

0 Q 0 0 1 1 1 1 0 !=0000 immb 1 0 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op
C7-2214 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vb> Is the destination width specifier, encoded in the "immh" field. It can have the following values:

B when immh = 0001

H when immh = 001x

S when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 0001

S when immh = 001x

D when immh = 01xx
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2215
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

For the vector variant: is the right shift amount, in the range 1 to the destination element width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize*2) operand = V[n];
 bits(datasize) result;
 integer round_const = if round then (1 << (shift - 1)) else 0;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = (Int(Elem[operand, e, 2*esize], unsigned) + round_const) >> shift;
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';

 Vpart[d, part] = result;
C7-2216 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.306 SQSHRUN, SQSHRUN2

Signed saturating Shift Right Unsigned Narrow (immediate). This instruction reads each signed integer value in the
vector of the source SIMD&FP register, right shifts each value by an immediate value, saturates the result to an
unsigned integer value that is half the original width, places the final result into a vector, and writes the vector to
the destination SIMD&FP register. The results are truncated. For rounded results, see SQRSHRUN, SQRSHRUN2.

The SQSHRUN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the SQSHRUN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQSHRUN <Vb><d>, <Va><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then UNDEFINED;
 if immh<3> == '1' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = esize;
 integer elements = 1;
 integer part = 0;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');

Vector

Encoding

SQSHRUN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3> == '1' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = 64;

0 1 1 1 1 1 1 1 0 !=0000 immb 1 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh op

0 Q 1 0 1 1 1 1 0 !=0000 immb 1 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2217
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vb> Is the destination width specifier, encoded in the "immh" field. It can have the following values:

B when immh = 0001

H when immh = 001x

S when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 0001

S when immh = 001x

D when immh = 01xx

The following encodings are reserved:

• immh = 0000.
C7-2218 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• immh = 1xxx.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

For the vector variant: is the right shift amount, in the range 1 to the destination element width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize*2) operand = V[n];
 bits(datasize) result;
 integer round_const = if round then (1 << (shift - 1)) else 0;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = (SInt(Elem[operand, e, 2*esize]) + round_const) >> shift;
 (Elem[result, e, esize], sat) = UnsignedSatQ(element, esize);
 if sat then FPSR.QC = '1';

 Vpart[d, part] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2219
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.307 SQSUB

Signed saturating Subtract. This instruction subtracts the element values of the second source SIMD&FP register
from the corresponding element values of the first source SIMD&FP register, places the results into a vector, and
writes the vector to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQSUB <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');

Vector

Encoding

SQSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

0 1 0 1 1 1 1 0 size 1 Rm 0 0 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

C7-2220 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
H when size = 01

S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer diff;
 boolean sat;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 diff = element1 - element2;
 (Elem[result, e, esize], sat) = SatQ(diff, esize, unsigned);
 if sat then FPSR.QC = '1';

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2221
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.308 SQXTN, SQXTN2

Signed saturating extract Narrow. This instruction reads each vector element from the source SIMD&FP register,
saturates the value to half the original width, places the result into a vector, and writes the vector to the lower or
upper half of the destination SIMD&FP register. The destination vector elements are half as long as the source
vector elements. All the values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

The SQXTN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the SQXTN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQXTN <Vb><d>, <Va><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer part = 0;
 integer elements = 1;

 boolean unsigned = (U == '1');

Vector

Encoding

SQXTN{2} <Vd>.<Tb>, <Vn>.<Ta>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

0 1 0 1 1 1 1 0 size 1 0 0 0 0 1 0 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 1 0 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

C7-2222 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vb> Is the destination width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Va> Is the source width specifier, encoded in the "size" field. It can have the following values:

H when size = 00

S when size = 01

D when size = 10

The encoding size = 11 is reserved.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand = V[n];
 bits(datasize) result;
 bits(2*esize) element;
 boolean sat;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2223
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 for e = 0 to elements-1
 element = Elem[operand, e, 2*esize];
 (Elem[result, e, esize], sat) = SatQ(Int(element, unsigned), esize, unsigned);
 if sat then FPSR.QC = '1';

 Vpart[d, part] = result;
C7-2224 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.309 SQXTUN, SQXTUN2

Signed saturating extract Unsigned Narrow. This instruction reads each signed integer value in the vector of the
source SIMD&FP register, saturates the value to an unsigned integer value that is half the original width, places the
result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. The
destination vector elements are half as long as the source vector elements.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The SQXTUN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the SQXTUN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQXTUN <Vb><d>, <Va><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer part = 0;
 integer elements = 1;

Vector

Encoding

SQXTUN{2} <Vd>.<Tb>, <Vn>.<Ta>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

0 1 1 1 1 1 1 0 size 1 0 0 0 0 1 0 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 1 0 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2225
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vb> Is the destination width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Va> Is the source width specifier, encoded in the "size" field. It can have the following values:

H when size = 00

S when size = 01

D when size = 10

The encoding size = 11 is reserved.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand = V[n];
 bits(datasize) result;
 bits(2*esize) element;
 boolean sat;

 for e = 0 to elements-1
 element = Elem[operand, e, 2*esize];
 (Elem[result, e, esize], sat) = UnsignedSatQ(SInt(element), esize);
 if sat then FPSR.QC = '1';
C7-2226 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 Vpart[d, part] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2227
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.310 SRHADD

Signed Rounding Halving Add. This instruction adds corresponding signed integer values from the two source
SIMD&FP registers, shifts each result right one bit, places the results into a vector, and writes the vector to the
destination SIMD&FP register.

The results are rounded. For truncated results, see SHADD.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SRHADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

C7-2228 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 Elem[result, e, esize] = (element1+element2+1)<esize:1>;

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2229
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.311 SRI

Shift Right and Insert (immediate). This instruction reads each vector element in the source SIMD&FP register,
right shifts each vector element by an immediate value, and inserts the result into the corresponding vector element
in the destination SIMD&FP register such that the new zero bits created by the shift are not inserted but retain their
existing value. Bits shifted out of the right of each vector element of the source register are lost.

The following figure shows the operation of shift right by 3 for an 8-bit vector element.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SRI <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 integer esize = 8 << 3;
 integer datasize = esize;
 integer elements = 1;

 integer shift = (esize * 2) - UInt(immh:immb);

Vector

Encoding

SRI <Vd>.<T>, <Vn>.<T>, #<shift>

Vd.B[7] after operation

Vd.B[7] before operation

Vn.B[7]
63 56 55 0

63 56 55 0

63 56 55 0

0 1 1 1 1 1 1 1 0 !=0000 immb 0 1 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh

0 Q 1 0 1 1 1 1 0 !=0000 immb 0 1 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh
C7-2230 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 integer shift = (esize * 2) - UInt(immh:immb);

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb"
field. It can have the following values:

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded
in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) operand2 = V[d];
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2231
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 bits(datasize) result;
 bits(esize) mask = LSR(Ones(esize), shift);
 bits(esize) shifted;

 for e = 0 to elements-1
 shifted = LSR(Elem[operand, e, esize], shift);
 Elem[result, e, esize] = (Elem[operand2, e, esize] AND NOT(mask)) OR shifted;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2232 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.312 SRSHL

Signed Rounding Shift Left (register). This instruction takes each signed integer value in the vector of the first
source SIMD&FP register, shifts it by a value from the least significant byte of the corresponding element of the
second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP
register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a rounding right shift. For
a truncating shift, see SSHL.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SRSHL <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');
 if S == '0' && size != '11' then UNDEFINED;

Vector

Encoding

SRSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');

0 1 0 1 1 1 1 0 size 1 Rm 0 1 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2233
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;

 integer round_const = 0;
 integer shift;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 shift = SInt(Elem[operand2, e, esize]<7:0>);
 if rounding then
 round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
 element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
 if saturating then
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
 else
 Elem[result, e, esize] = element<esize-1:0>;

 V[d] = result;
C7-2234 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.313 SRSHR

Signed Rounding Shift Right (immediate). This instruction reads each vector element in the source SIMD&FP
register, right shifts each result by an immediate value, places the final result into a vector, and writes the vector to
the destination SIMD&FP register. All the values in this instruction are signed integer values. The results are
rounded. For truncated results, see SSHR.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SRSHR <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 integer esize = 8 << 3;
 integer datasize = esize;
 integer elements = 1;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Vector

Encoding

SRSHR <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');

0 1 0 1 1 1 1 1 0 !=0000 immb 0 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0

0 Q 0 0 1 1 1 1 0 !=0000 immb 0 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2235
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb"
field. It can have the following values:

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded
in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) operand2;
 bits(datasize) result;
 integer round_const = if round then (1 << (shift - 1)) else 0;
 integer element;

 operand2 = if accumulate then V[d] else Zeros();
 for e = 0 to elements-1
 element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;
C7-2236 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2237
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.314 SRSRA

Signed Rounding Shift Right and Accumulate (immediate). This instruction reads each vector element in the source
SIMD&FP register, right shifts each result by an immediate value, and accumulates the final results with the vector
elements of the destination SIMD&FP register. All the values in this instruction are signed integer values. The
results are rounded. For truncated results, see SSRA.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SRSRA <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 integer esize = 8 << 3;
 integer datasize = esize;
 integer elements = 1;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Vector

Encoding

SRSRA <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');

0 1 0 1 1 1 1 1 0 !=0000 immb 0 0 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0

0 Q 0 0 1 1 1 1 0 !=0000 immb 0 0 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0
C7-2238 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb"
field. It can have the following values:

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded
in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) operand2;
 bits(datasize) result;
 integer round_const = if round then (1 << (shift - 1)) else 0;
 integer element;

 operand2 = if accumulate then V[d] else Zeros();
 for e = 0 to elements-1
 element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2239
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 V[d] = result;
C7-2240 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.315 SSHL

Signed Shift Left (register). This instruction takes each signed integer value in the vector of the first source
SIMD&FP register, shifts each value by a value from the least significant byte of the corresponding element of the
second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP
register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a truncating right shift. For
a rounding shift, see SRSHL.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SSHL <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');
 if S == '0' && size != '11' then UNDEFINED;

Vector

Encoding

SSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');

0 1 0 1 1 1 1 0 size 1 Rm 0 1 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2241
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;

 integer round_const = 0;
 integer shift;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 shift = SInt(Elem[operand2, e, esize]<7:0>);
 if rounding then
 round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
 element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
 if saturating then
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
 else
 Elem[result, e, esize] = element<esize-1:0>;

 V[d] = result;
C7-2242 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2243
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.316 SSHLL, SSHLL2

Signed Shift Left Long (immediate). This instruction reads each vector element from the source SIMD&FP register,
left shifts each vector element by the specified shift amount, places the result into a vector, and writes the vector to
the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements.
All the values in this instruction are signed integer values.

The SSHLL instruction extracts vector elements from the lower half of the source register. The SSHLL2 instruction
extracts vector elements from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias SXTL, SXTL2. See Alias conditions on page C7-2244 for details of when each
alias is preferred.

Encoding

SSHLL{2} <Vd>.<Ta>, <Vn>.<Tb>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3> == '1' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = UInt(immh:immb) - esize;
 boolean unsigned = (U == '1');

Alias conditions

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

Alias is preferred when

SXTL, SXTL2 immb == '000' && BitCount(immh) == 1

0 Q 0 0 1 1 1 1 0 !=0000 immb 1 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh
C7-2244 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

<shift> Is the left shift amount, in the range 0 to the source element width in bits minus 1, encoded in the
"immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001

(UInt(immh:immb)-16) when immh = 001x

(UInt(immh:immb)-32) when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = Vpart[n, part];
 bits(datasize*2) result;
 integer element;

 for e = 0 to elements-1
 element = Int(Elem[operand, e, esize], unsigned) << shift;
 Elem[result, e, 2*esize] = element<2*esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2245
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.317 SSHR

Signed Shift Right (immediate). This instruction reads each vector element in the source SIMD&FP register, right
shifts each result by an immediate value, places the final result into a vector, and writes the vector to the destination
SIMD&FP register. All the values in this instruction are signed integer values. The results are truncated. For
rounded results, see SRSHR.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SSHR <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 integer esize = 8 << 3;
 integer datasize = esize;
 integer elements = 1;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Vector

Encoding

SSHR <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');

0 1 0 1 1 1 1 1 0 !=0000 immb 0 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0

0 Q 0 0 1 1 1 1 0 !=0000 immb 0 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0
C7-2246 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb"
field. It can have the following values:

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded
in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) operand2;
 bits(datasize) result;
 integer round_const = if round then (1 << (shift - 1)) else 0;
 integer element;

 operand2 = if accumulate then V[d] else Zeros();
 for e = 0 to elements-1
 element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2247
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2248 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.318 SSRA

Signed Shift Right and Accumulate (immediate). This instruction reads each vector element in the source
SIMD&FP register, right shifts each result by an immediate value, and accumulates the final results with the vector
elements of the destination SIMD&FP register. All the values in this instruction are signed integer values. The
results are truncated. For rounded results, see SRSRA.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SSRA <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 integer esize = 8 << 3;
 integer datasize = esize;
 integer elements = 1;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Vector

Encoding

SSRA <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');

0 1 0 1 1 1 1 1 0 !=0000 immb 0 0 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0

0 Q 0 0 1 1 1 1 0 !=0000 immb 0 0 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2249
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb"
field. It can have the following values:

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded
in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) operand2;
 bits(datasize) result;
 integer round_const = if round then (1 << (shift - 1)) else 0;
 integer element;

 operand2 = if accumulate then V[d] else Zeros();
 for e = 0 to elements-1
 element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;
C7-2250 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2251
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.319 SSUBL, SSUBL2

Signed Subtract Long. This instruction subtracts each vector element in the lower or upper half of the second source
SIMD&FP register from the corresponding vector element of the first source SIMD&FP register, places the results
into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are signed
integer values. The destination vector elements are twice as long as the source vector elements.

The SSUBL instruction extracts each source vector from the lower half of each source register. The SSUBL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SSUBL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
C7-2252 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 integer sum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 Elem[result, e, 2*esize] = sum<2*esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2253
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.320 SSUBW, SSUBW2

Signed Subtract Wide. This instruction subtracts each vector element in the lower or upper half of the second source
SIMD&FP register from the corresponding vector element in the first source SIMD&FP register, places the result
in a vector, and writes the vector to the SIMD&FP destination register. All the values in this instruction are signed
integer values.

The SSUBW instruction extracts the second source vector from the lower half of the second source register. The SSUBW2
instruction extracts the second source vector from the upper half of the second source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SSUBW{2} <Vd>.<Ta>, <Vn>.<Ta>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
C7-2254 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand1 = V[n];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 integer sum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, 2*esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 Elem[result, e, 2*esize] = sum<2*esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2255
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.321 ST1 (multiple structures)

Store multiple single-element structures from one, two, three, or four registers. This instruction stores elements to
memory from one, two, three, or four SIMD&FP registers, without interleaving. Every element of each register is
stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

One register variant

Applies when opcode == 0111.

ST1 { <Vt>.<T> }, [<Xn|SP>]

Two registers variant

Applies when opcode == 1010.

ST1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

Three registers variant

Applies when opcode == 0110.

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

Four registers variant

Applies when opcode == 0010.

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean tag_checked = wback || n != 31;

Post-index

One register, immediate offset variant

Applies when Rm == 11111 && opcode == 0111.

ST1 { <Vt>.<T> }, [<Xn|SP>], <imm>

0 Q 0 0 1 1 0 0 0 0 0 0 0 0 0 0 x x 1 x size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 5 4 0

L opcode

0 Q 0 0 1 1 0 0 1 0 0 Rm x x 1 x size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

L opcode
C7-2256 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
One register, register offset variant

Applies when Rm != 11111 && opcode == 0111.

ST1 { <Vt>.<T> }, [<Xn|SP>], <Xm>

Two registers, immediate offset variant

Applies when Rm == 11111 && opcode == 1010.

ST1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Two registers, register offset variant

Applies when Rm != 11111 && opcode == 1010.

ST1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

Three registers, immediate offset variant

Applies when Rm == 11111 && opcode == 0110.

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Three registers, register offset variant

Applies when Rm != 11111 && opcode == 0110.

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

Four registers, immediate offset variant

Applies when Rm == 11111 && opcode == 0010.

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Four registers, register offset variant

Applies when Rm != 11111 && opcode == 0010.

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

1D when size = 11, Q = 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2257
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
2D when size = 11, Q = 1

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the one register, immediate offset variant: is the post-index immediate offset, encoded in the "Q"
field. It can have the following values:

#8 when Q = 0

#16 when Q = 1

For the two registers, immediate offset variant: is the post-index immediate offset, encoded in the
"Q" field. It can have the following values:

#16 when Q = 0

#32 when Q = 1

For the three registers, immediate offset variant: is the post-index immediate offset, encoded in the
"Q" field. It can have the following values:

#24 when Q = 0

#48 when Q = 1

For the four registers, immediate offset variant: is the post-index immediate offset, encoded in the
"Q" field. It can have the following values:

#32 when Q = 0

#64 when Q = 1

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = if Q == '1' then 128 else 64;
 integer esize = 8 << UInt(size);
 integer elements = datasize DIV esize;

 integer rpt; // number of iterations
 integer selem; // structure elements

 case opcode of
 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
 otherwise UNDEFINED;

 // .1D format only permitted with LD1 & ST1
 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) offs;
C7-2258 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 bits(datasize) rval;
 integer tt;
 constant integer ebytes = esize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 offs = Zeros();
 for r = 0 to rpt-1
 for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt];
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[tt] = rval;
 else // memop == MemOp_STORE
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2259
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.322 ST1 (single structure)

Store a single-element structure from one lane of one register. This instruction stores the specified element of a
SIMD&FP register to memory.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

8-bit variant

Applies when opcode == 000.

ST1 { <Vt>.B }[<index>], [<Xn|SP>]

16-bit variant

Applies when opcode == 010 && size == x0.

ST1 { <Vt>.H }[<index>], [<Xn|SP>]

32-bit variant

Applies when opcode == 100 && size == 00.

ST1 { <Vt>.S }[<index>], [<Xn|SP>]

64-bit variant

Applies when opcode == 100 && S == 0 && size == 01.

ST1 { <Vt>.D }[<index>], [<Xn|SP>]

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean tag_checked = wback || n != 31;

Post-index

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 000.

ST1 { <Vt>.B }[<index>], [<Xn|SP>], #1

8-bit, register offset variant

Applies when Rm != 11111 && opcode == 000.

0 Q 0 0 1 1 0 1 0 0 0 0 0 0 0 0 x x 0 S size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R opcode

0 Q 0 0 1 1 0 1 1 0 0 Rm x x 0 S size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode
C7-2260 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
ST1 { <Vt>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 010 && size == x0.

ST1 { <Vt>.H }[<index>], [<Xn|SP>], #2

16-bit, register offset variant

Applies when Rm != 11111 && opcode == 010 && size == x0.

ST1 { <Vt>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 100 && size == 00.

ST1 { <Vt>.S }[<index>], [<Xn|SP>], #4

32-bit, register offset variant

Applies when Rm != 11111 && opcode == 100 && size == 00.

ST1 { <Vt>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 100 && S == 0 && size == 01.

ST1 { <Vt>.D }[<index>], [<Xn|SP>], #8

64-bit, register offset variant

Applies when Rm != 11111 && opcode == 100 && S == 0 && size == 01.

ST1 { <Vt>.D }[<index>], [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2261
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Shared decode for all encodings

 integer init_scale = UInt(opcode<2:1>);
 integer scale = init_scale;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when 3
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = UInt(size);
 replicate = TRUE;
 when 0
 index = UInt(Q:S:size); // B[0-15]
 when 1
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when 2
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = 3;

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = if Q == '1' then 128 else 64;
 integer esize = 8 << scale;

Operation for all encodings

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 offs = Zeros();
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 element = Mem[address+offs, ebytes, AccType_VEC];
 // replicate to fill 128- or 64-bit register
 V[t] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t];
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
C7-2262 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[t] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2263
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.323 ST2 (multiple structures)

Store multiple 2-element structures from two registers. This instruction stores multiple 2-element structures from
two SIMD&FP registers to memory, with interleaving. Every element of each register is stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

Encoding

ST2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean tag_checked = wback || n != 31;

Post-index

Immediate offset variant

Applies when Rm == 11111.

ST2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

ST2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 5 4 0

L opcode

0 Q 0 0 1 1 0 0 1 0 0 Rm 1 0 0 0 size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

L opcode
C7-2264 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#16 when Q = 0

#32 when Q = 1

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = if Q == '1' then 128 else 64;
 integer esize = 8 << UInt(size);
 integer elements = datasize DIV esize;

 integer rpt; // number of iterations
 integer selem; // structure elements

 case opcode of
 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
 otherwise UNDEFINED;

 // .1D format only permitted with LD1 & ST1
 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) offs;
 bits(datasize) rval;
 integer tt;
 constant integer ebytes = esize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2265
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 offs = Zeros();
 for r = 0 to rpt-1
 for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt];
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[tt] = rval;
 else // memop == MemOp_STORE
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7-2266 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.324 ST2 (single structure)

Store single 2-element structure from one lane of two registers. This instruction stores a 2-element structure to
memory from corresponding elements of two SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

8-bit variant

Applies when opcode == 000.

ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>]

16-bit variant

Applies when opcode == 010 && size == x0.

ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>]

32-bit variant

Applies when opcode == 100 && size == 00.

ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>]

64-bit variant

Applies when opcode == 100 && S == 0 && size == 01.

ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>]

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean tag_checked = wback || n != 31;

Post-index

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 000.

ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], #2

8-bit, register offset variant

Applies when Rm != 11111 && opcode == 000.

0 Q 0 0 1 1 0 1 0 0 1 0 0 0 0 0 x x 0 S size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R opcode

0 Q 0 0 1 1 0 1 1 0 1 Rm x x 0 S size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2267
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 010 && size == x0.

ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], #4

16-bit, register offset variant

Applies when Rm != 11111 && opcode == 010 && size == x0.

ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 100 && size == 00.

ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], #8

32-bit, register offset variant

Applies when Rm != 11111 && opcode == 100 && size == 00.

ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 100 && S == 0 && size == 01.

ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], #16

64-bit, register offset variant

Applies when Rm != 11111 && opcode == 100 && S == 0 && size == 01.

ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.
C7-2268 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Shared decode for all encodings

 integer init_scale = UInt(opcode<2:1>);
 integer scale = init_scale;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when 3
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = UInt(size);
 replicate = TRUE;
 when 0
 index = UInt(Q:S:size); // B[0-15]
 when 1
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when 2
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = 3;

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = if Q == '1' then 128 else 64;
 integer esize = 8 << scale;

Operation for all encodings

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 offs = Zeros();
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 element = Mem[address+offs, ebytes, AccType_VEC];
 // replicate to fill 128- or 64-bit register
 V[t] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t];
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2269
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[t] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7-2270 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.325 ST3 (multiple structures)

Store multiple 3-element structures from three registers. This instruction stores multiple 3-element structures to
memory from three SIMD&FP registers, with interleaving. Every element of each register is stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

Encoding

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean tag_checked = wback || n != 31;

Post-index

Immediate offset variant

Applies when Rm == 11111.

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 5 4 0

L opcode

0 Q 0 0 1 1 0 0 1 0 0 Rm 0 1 0 0 size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

L opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2271
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#24 when Q = 0

#48 when Q = 1

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = if Q == '1' then 128 else 64;
 integer esize = 8 << UInt(size);
 integer elements = datasize DIV esize;

 integer rpt; // number of iterations
 integer selem; // structure elements

 case opcode of
 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
 otherwise UNDEFINED;

 // .1D format only permitted with LD1 & ST1
 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) offs;
 bits(datasize) rval;
 integer tt;
 constant integer ebytes = esize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
C7-2272 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 address = X[n];

 offs = Zeros();
 for r = 0 to rpt-1
 for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt];
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[tt] = rval;
 else // memop == MemOp_STORE
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2273
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.326 ST3 (single structure)

Store single 3-element structure from one lane of three registers. This instruction stores a 3-element structure to
memory from corresponding elements of three SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

8-bit variant

Applies when opcode == 001.

ST3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>]

16-bit variant

Applies when opcode == 011 && size == x0.

ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>]

32-bit variant

Applies when opcode == 101 && size == 00.

ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>]

64-bit variant

Applies when opcode == 101 && S == 0 && size == 01.

ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>]

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean tag_checked = wback || n != 31;

Post-index

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 001.

ST3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], #3

8-bit, register offset variant

Applies when Rm != 11111 && opcode == 001.

0 Q 0 0 1 1 0 1 0 0 0 0 0 0 0 0 x x 1 S size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R opcode

0 Q 0 0 1 1 0 1 1 0 0 Rm x x 1 S size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode
C7-2274 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
ST3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 011 && size == x0.

ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], #6

16-bit, register offset variant

Applies when Rm != 11111 && opcode == 011 && size == x0.

ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 101 && size == 00.

ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], #12

32-bit, register offset variant

Applies when Rm != 11111 && opcode == 101 && size == 00.

ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 101 && S == 0 && size == 01.

ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], #24

64-bit, register offset variant

Applies when Rm != 11111 && opcode == 101 && S == 0 && size == 01.

ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2275
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Shared decode for all encodings

 integer init_scale = UInt(opcode<2:1>);
 integer scale = init_scale;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when 3
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = UInt(size);
 replicate = TRUE;
 when 0
 index = UInt(Q:S:size); // B[0-15]
 when 1
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when 2
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = 3;

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = if Q == '1' then 128 else 64;
 integer esize = 8 << scale;

Operation for all encodings

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 offs = Zeros();
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 element = Mem[address+offs, ebytes, AccType_VEC];
 // replicate to fill 128- or 64-bit register
 V[t] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t];
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
C7-2276 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[t] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2277
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.327 ST4 (multiple structures)

Store multiple 4-element structures from four registers. This instruction stores multiple 4-element structures to
memory from four SIMD&FP registers, with interleaving. Every element of each register is stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

Encoding

ST4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean tag_checked = wback || n != 31;

Post-index

Immediate offset variant

Applies when Rm == 11111.

ST4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

ST4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 5 4 0

L opcode

0 Q 0 0 1 1 0 0 1 0 0 Rm 0 0 0 0 size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

L opcode
C7-2278 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#32 when Q = 0

#64 when Q = 1

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = if Q == '1' then 128 else 64;
 integer esize = 8 << UInt(size);
 integer elements = datasize DIV esize;

 integer rpt; // number of iterations
 integer selem; // structure elements

 case opcode of
 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
 otherwise UNDEFINED;

 // .1D format only permitted with LD1 & ST1
 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) offs;
 bits(datasize) rval;
 integer tt;
 constant integer ebytes = esize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2279
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 address = SP[];
 else
 address = X[n];

 offs = Zeros();
 for r = 0 to rpt-1
 for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt];
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[tt] = rval;
 else // memop == MemOp_STORE
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7-2280 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.328 ST4 (single structure)

Store single 4-element structure from one lane of four registers. This instruction stores a 4-element structure to
memory from corresponding elements of four SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

8-bit variant

Applies when opcode == 001.

ST4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>]

16-bit variant

Applies when opcode == 011 && size == x0.

ST4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>]

32-bit variant

Applies when opcode == 101 && size == 00.

ST4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>]

64-bit variant

Applies when opcode == 101 && S == 0 && size == 01.

ST4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>]

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean tag_checked = wback || n != 31;

Post-index

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 001.

ST4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>], #4

8-bit, register offset variant

Applies when Rm != 11111 && opcode == 001.

0 Q 0 0 1 1 0 1 0 0 1 0 0 0 0 0 x x 1 S size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R opcode

0 Q 0 0 1 1 0 1 1 0 1 Rm x x 1 S size Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2281
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
ST4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 011 && size == x0.

ST4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>], #8

16-bit, register offset variant

Applies when Rm != 11111 && opcode == 011 && size == x0.

ST4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 101 && size == 00.

ST4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>], #16

32-bit, register offset variant

Applies when Rm != 11111 && opcode == 101 && size == 00.

ST4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 101 && S == 0 && size == 01.

ST4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>], #32

64-bit, register offset variant

Applies when Rm != 11111 && opcode == 101 && S == 0 && size == 01.

ST4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
C7-2282 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 integer init_scale = UInt(opcode<2:1>);
 integer scale = init_scale;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when 3
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = UInt(size);
 replicate = TRUE;
 when 0
 index = UInt(Q:S:size); // B[0-15]
 when 1
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when 2
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = 3;

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = if Q == '1' then 128 else 64;
 integer esize = 8 << scale;

Operation for all encodings

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 offs = Zeros();
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 element = Mem[address+offs, ebytes, AccType_VEC];
 // replicate to fill 128- or 64-bit register
 V[t] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2283
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 for s = 0 to selem-1
 rval = V[t];
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[t] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7-2284 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.329 STNP (SIMD&FP)

Store Pair of SIMD&FP registers, with Non-temporal hint. This instruction stores a pair of SIMD&FP registers to
memory, issuing a hint to the memory system that the access is non-temporal. The address used for the store is
calculated from an address from a base register value and an immediate offset. For information about non-temporal
pair instructions, see Load/store SIMD and floating-point non-temporal pair on page C3-233.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

32-bit variant

Applies when opc == 00.

STNP <St1>, <St2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 01.

STNP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}]

128-bit variant

Applies when opc == 10.

STNP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

 // Empty.

Assembler symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256
to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512
to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

For the 128-bit variant: is the optional signed immediate byte offset, a multiple of 16 in the range
-1024 to 1008, defaulting to 0 and encoded in the "imm7" field as <imm>/16.

opc 1 0 1 1 0 0 0 0 imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

L

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2285
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 if opc == '11' then UNDEFINED;
 integer scale = 2 + UInt(opc);
 integer datasize = 8 << scale;
 bits(64) offset = LSL(SignExtend(imm7, 64), scale);
 boolean tag_checked = n != 31;

Operation

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 data1 = V[t];
 data2 = V[t2];
 Mem[address, dbytes, AccType_VECSTREAM] = data1;
 Mem[address+dbytes, dbytes, AccType_VECSTREAM] = data2;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7-2286 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.330 STP (SIMD&FP)

Store Pair of SIMD&FP registers. This instruction stores a pair of SIMD&FP registers to memory. The address used
for the store is calculated from a base register value and an immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Post-index

32-bit variant

Applies when opc == 00.

STP <St1>, <St2>, [<Xn|SP>], #<imm>

64-bit variant

Applies when opc == 01.

STP <Dt1>, <Dt2>, [<Xn|SP>], #<imm>

128-bit variant

Applies when opc == 10.

STP <Qt1>, <Qt2>, [<Xn|SP>], #<imm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;

Pre-index

32-bit variant

Applies when opc == 00.

STP <St1>, <St2>, [<Xn|SP>, #<imm>]!

64-bit variant

Applies when opc == 01.

STP <Dt1>, <Dt2>, [<Xn|SP>, #<imm>]!

128-bit variant

Applies when opc == 10.

STP <Qt1>, <Qt2>, [<Xn|SP>, #<imm>]!

opc 1 0 1 1 0 0 1 0 imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

L

opc 1 0 1 1 0 1 1 0 imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

L

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2287
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;

Signed offset

32-bit variant

Applies when opc == 00.

STP <St1>, <St2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 01.

STP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}]

128-bit variant

Applies when opc == 10.

STP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;

Assembler symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a
multiple of 4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in
the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a
multiple of 8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in
the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

opc 1 0 1 1 0 1 0 0 imm7 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

L

C7-2288 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
For the 128-bit post-index and 128-bit pre-index variant: is the signed immediate byte offset, a
multiple of 16 in the range -1024 to 1008, encoded in the "imm7" field as <imm>/16.

For the 128-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 16
in the range -1024 to 1008, defaulting to 0 and encoded in the "imm7" field as <imm>/16.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 if opc == '11' then UNDEFINED;
 integer scale = 2 + UInt(opc);
 integer datasize = 8 << scale;
 bits(64) offset = LSL(SignExtend(imm7, 64), scale);
 boolean tag_checked = wback || n != 31;

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
 address = address + offset;

 data1 = V[t];
 data2 = V[t2];
 Mem[address, dbytes, AccType_VEC] = data1;
 Mem[address+dbytes, dbytes, AccType_VEC] = data2;

 if wback then
 if postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
 else
 X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2289
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.331 STR (immediate, SIMD&FP)

Store SIMD&FP register (immediate offset). This instruction stores a single SIMD&FP register to memory. The
address that is used for the store is calculated from a base register value and an immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Post-index

8-bit variant

Applies when size == 00 && opc == 00.

STR <Bt>, [<Xn|SP>], #<simm>

16-bit variant

Applies when size == 01 && opc == 00.

STR <Ht>, [<Xn|SP>], #<simm>

32-bit variant

Applies when size == 10 && opc == 00.

STR <St>, [<Xn|SP>], #<simm>

64-bit variant

Applies when size == 11 && opc == 00.

STR <Dt>, [<Xn|SP>], #<simm>

128-bit variant

Applies when size == 00 && opc == 10.

STR <Qt>, [<Xn|SP>], #<simm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

8-bit variant

Applies when size == 00 && opc == 00.

size 1 1 1 1 0 0 x 0 0 imm9 0 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

opc

size 1 1 1 1 0 0 x 0 0 imm9 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

opc
C7-2290 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
STR <Bt>, [<Xn|SP>, #<simm>]!

16-bit variant

Applies when size == 01 && opc == 00.

STR <Ht>, [<Xn|SP>, #<simm>]!

32-bit variant

Applies when size == 10 && opc == 00.

STR <St>, [<Xn|SP>, #<simm>]!

64-bit variant

Applies when size == 11 && opc == 00.

STR <Dt>, [<Xn|SP>, #<simm>]!

128-bit variant

Applies when size == 00 && opc == 10.

STR <Qt>, [<Xn|SP>, #<simm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

8-bit variant

Applies when size == 00 && opc == 00.

STR <Bt>, [<Xn|SP>{, #<pimm>}]

16-bit variant

Applies when size == 01 && opc == 00.

STR <Ht>, [<Xn|SP>{, #<pimm>}]

32-bit variant

Applies when size == 10 && opc == 00.

STR <St>, [<Xn|SP>{, #<pimm>}]

64-bit variant

Applies when size == 11 && opc == 00.

STR <Dt>, [<Xn|SP>{, #<pimm>}]

size 1 1 1 1 0 1 x 0 imm12 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2291
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
128-bit variant

Applies when size == 00 && opc == 10.

STR <Qt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

Assembler symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 8-bit variant: is the optional positive immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.

For the 16-bit variant: is the optional positive immediate byte offset, a multiple of 2 in the range 0
to 8190, defaulting to 0 and encoded in the "imm12" field as <pimm>/2.

For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0
to 16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.

For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0
to 32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.

For the 128-bit variant: is the optional positive immediate byte offset, a multiple of 16 in the range
0 to 65520, defaulting to 0 and encoded in the "imm12" field as <pimm>/16.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = 8 << scale;
 boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(64) address;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
C7-2292 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 else
 address = X[n];

 if !postindex then
 address = address + offset;

 case memop of
 when MemOp_STORE
 data = V[t];
 Mem[address, datasize DIV 8, AccType_VEC] = data;

 when MemOp_LOAD
 data = Mem[address, datasize DIV 8, AccType_VEC];
 V[t] = data;

 if wback then
 if postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
 else
 X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2293
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.332 STR (register, SIMD&FP)

Store SIMD&FP register (register offset). This instruction stores a single SIMD&FP register to memory. The
address that is used for the store is calculated from a base register value and an offset register value. The offset can
be optionally shifted and extended.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

8-fsreg,STR-8-fsreg variant

Applies when size == 00 && opc == 00 && option != 011.

STR <Bt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

8-fsreg,STR-8-fsreg variant

Applies when size == 00 && opc == 00 && option == 011.

STR <Bt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

16-fsreg,STR-16-fsreg variant

Applies when size == 01 && opc == 00.

STR <Ht>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

32-fsreg,STR-32-fsreg variant

Applies when size == 10 && opc == 00.

STR <St>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-fsreg,STR-64-fsreg variant

Applies when size == 11 && opc == 00.

STR <Dt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

128-fsreg,STR-128-fsreg variant

Applies when size == 00 && opc == 10.

STR <Qt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for all variants of this encoding

 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then scale else 0;

Assembler symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

size 1 1 1 1 0 0 x 0 1 Rm option S 1 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

opc
C7-2294 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> For the 8-bit variant: is the index extend specifier, encoded in the "option" field. It can have the
following values:

UXTW when option = 010

SXTW when option = 110

SXTX when option = 111

For the 128-bit, 16-bit, 32-bit and 64-bit variant: is the index extend/shift specifier, defaulting to
LSL, and which must be omitted for the LSL option when <amount> is omitted. encoded in the
"option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> For the 8-bit variant: is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1
if present.

For the 16-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#1 when S = 1

For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#2 when S = 1

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#3 when S = 1

For the 128-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where
it is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#4 when S = 1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2295
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);
 MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = 8 << scale;
 boolean tag_checked = memop != MemOp_PREFETCH;

Operation

 bits(64) offset = ExtendReg(m, extend_type, shift);
 CheckFPAdvSIMDEnabled64();
 bits(64) address;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 case memop of
 when MemOp_STORE
 data = V[t];
 Mem[address, datasize DIV 8, AccType_VEC] = data;

 when MemOp_LOAD
 data = Mem[address, datasize DIV 8, AccType_VEC];
 V[t] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7-2296 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.333 STUR (SIMD&FP)

Store SIMD&FP register (unscaled offset). This instruction stores a single SIMD&FP register to memory. The
address that is used for the store is calculated from a base register value and an optional immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

8-bit variant

Applies when size == 00 && opc == 00.

STUR <Bt>, [<Xn|SP>{, #<simm>}]

16-bit variant

Applies when size == 01 && opc == 00.

STUR <Ht>, [<Xn|SP>{, #<simm>}]

32-bit variant

Applies when size == 10 && opc == 00.

STUR <St>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11 && opc == 00.

STUR <Dt>, [<Xn|SP>{, #<simm>}]

128-bit variant

Applies when size == 00 && opc == 10.

STUR <Qt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

size 1 1 1 1 0 0 x 0 0 imm9 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

opc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2297
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 integer datasize = 8 << scale;
 boolean tag_checked = memop != MemOp_PREFETCH && (n != 31);

Operation

 CheckFPAdvSIMDEnabled64();
 bits(64) address;
 bits(datasize) data;

 if HaveMTE2Ext() then
 SetTagCheckedInstruction(tag_checked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 case memop of
 when MemOp_STORE
 data = V[t];
 Mem[address, datasize DIV 8, AccType_VEC] = data;

 when MemOp_LOAD
 data = Mem[address, datasize DIV 8, AccType_VEC];
 V[t] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7-2298 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.334 SUB (vector)

Subtract (vector). This instruction subtracts each vector element in the second source SIMD&FP register from the
corresponding vector element in the first source SIMD&FP register, places the result into a vector, and writes the
vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SUB <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size != '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean sub_op = (U == '1');

Vector

Encoding

SUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean sub_op = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

0 1 1 1 1 1 1 0 size 1 Rm 1 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2299
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if sub_op then
 Elem[result, e, esize] = element1 - element2;
 else
 Elem[result, e, esize] = element1 + element2;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2300 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.335 SUBHN, SUBHN2

Subtract returning High Narrow. This instruction subtracts each vector element in the second source SIMD&FP
register from the corresponding vector element in the first source SIMD&FP register, places the most significant
half of the result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register.
All the values in this instruction are signed integer values.

The results are truncated. For rounded results, see RSUBHN, RSUBHN2.

The SUBHN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the SUBHN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SUBHN{2} <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Ta>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean round = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2301
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand1 = V[n];
 bits(2*datasize) operand2 = V[m];
 bits(datasize) result;
 integer round_const = if round then 1 << (esize - 1) else 0;
 bits(2*esize) element1;
 bits(2*esize) element2;
 bits(2*esize) sum;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, 2*esize];
 element2 = Elem[operand2, e, 2*esize];
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 sum = sum + round_const;
 Elem[result, e, esize] = sum<2*esize-1:esize>;

 Vpart[d, part] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2302 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.336 SUDOT (by element)

Dot product index form with signed and unsigned integers. This instruction performs the dot product of the four
signed 8-bit integer values in each 32-bit element of the first source register with the four unsigned 8-bit integer
values in an indexed 32-bit element of the second source register, accumulating the result into the corresponding
32-bit element of the destination vector.

From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that
include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

Vector

(FEAT_I8MM)

Encoding

SUDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.4B[<index>]

Decode for this encoding

 if !HaveInt8MatMulExt() then UNDEFINED;
 boolean op1_unsigned = (US == '1');
 boolean op2_unsigned = (US == '0');
 integer n = UInt(Rn);
 integer m = UInt(M:Rm);
 integer d = UInt(Rd);
 integer i = UInt(H:L);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV 32;

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<index> Is the immediate index of a quadtuplet of four 8-bit elements in the range 0 to 3, encoded in the
"H:L" fields.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(128) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;

0 Q 0 0 1 1 1 1 0 0 L M Rm 1 1 1 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

US
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2303
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 bits(32) res = Elem[operand3, e, 32];
 for b = 0 to 3
 integer element1 = Int(Elem[operand1, 4*e+b, 8], op1_unsigned);
 integer element2 = Int(Elem[operand2, 4*i+b, 8], op2_unsigned);
 res = res + element1 * element2;
 Elem[result, e, 32] = res;
 V[d] = result;
C7-2304 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.337 SUQADD

Signed saturating Accumulate of Unsigned value. This instruction adds the unsigned integer values of the vector
elements in the source SIMD&FP register to corresponding signed integer values of the vector elements in the
destination SIMD&FP register, and writes the resulting signed integer values to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SUQADD <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;

 boolean unsigned = (U == '1');

Vector

Encoding

SUQADD <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');

0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2305
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;

 bits(datasize) operand2 = V[d];
 integer op1;
 integer op2;
 boolean sat;

 for e = 0 to elements-1
 op1 = Int(Elem[operand, e, esize], !unsigned);
 op2 = Int(Elem[operand2, e, esize], unsigned);
 (Elem[result, e, esize], sat) = SatQ(op1 + op2, esize, unsigned);
 if sat then FPSR.QC = '1';
 V[d] = result;
C7-2306 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.338 SXTL, SXTL2

Signed extend Long. This instruction duplicates each vector element in the lower or upper half of the source
SIMD&FP register into a vector, and writes the vector to the destination SIMD&FP register. The destination vector
elements are twice as long as the source vector elements. All the values in this instruction are signed integer values.

The SXTL instruction extracts the source vector from the lower half of the source register. The SXTL2 instruction
extracts the source vector from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the SSHLL, SSHLL2 instruction. This means that:

• The encodings in this description are named to match the encodings of SSHLL, SSHLL2.

• The description of SSHLL, SSHLL2 gives the operational pseudocode for this instruction.

Encoding

SXTL{2} <Vd>.<Ta>, <Vn>.<Tb>

 is equivalent to

SSHLL{2} <Vd>.<Ta>, <Vn>.<Tb>, #0

and is the preferred disassembly when BitCount(immh) == 1.

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

0 Q 0 0 1 1 1 1 0 !=0000 0 0 0 1 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh immb
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2307
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

Operation

The description of SSHLL, SSHLL2 gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2308 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.339 TBL

Table vector Lookup. This instruction reads each value from the vector elements in the index source SIMD&FP
register, uses each result as an index to perform a lookup in a table of bytes that is described by one to four source
table SIMD&FP registers, places the lookup result in a vector, and writes the vector to the destination SIMD&FP
register. If an index is out of range for the table, the result for that lookup is 0. If more than one source register is
used to describe the table, the first source register describes the lowest bytes of the table.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Two register table variant

Applies when len == 01.

TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B }, <Vm>.<Ta>

Three register table variant

Applies when len == 10.

TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B }, <Vm>.<Ta>

Four register table variant

Applies when len == 11.

TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B, <Vn+3>.16B }, <Vm>.<Ta>

Single register table variant

Applies when len == 00.

TBL <Vd>.<Ta>, { <Vn>.16B }, <Vm>.<Ta>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV 8;
 integer regs = UInt(len) + 1;
 boolean is_tbl = (op == '0');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

0 Q 0 0 1 1 1 0 0 0 0 Rm 0 len 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2309
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Vn> For the four register table, three register table and two register table variant: is the name of the first
SIMD&FP table register, encoded in the "Rn" field.

For the single register table variant: is the name of the SIMD&FP table register, encoded in the "Rn"
field.

<Vn+1> Is the name of the second SIMD&FP table register, encoded as "Rn" plus 1 modulo 32.

<Vn+2> Is the name of the third SIMD&FP table register, encoded as "Rn" plus 2 modulo 32.

<Vn+3> Is the name of the fourth SIMD&FP table register, encoded as "Rn" plus 3 modulo 32.

<Vm> Is the name of the SIMD&FP index register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) indices = V[m];
 bits(128*regs) table = Zeros();
 bits(datasize) result;
 integer index;

 // Create table from registers
 for i = 0 to regs-1
 table<128*i+127:128*i> = V[n];
 n = (n + 1) MOD 32;

 result = if is_tbl then Zeros() else V[d];
 for i = 0 to elements-1
 index = UInt(Elem[indices, i, 8]);
 if index < 16 * regs then
 Elem[result, i, 8] = Elem[table, index, 8];

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2310 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.340 TBX

Table vector lookup extension. This instruction reads each value from the vector elements in the index source
SIMD&FP register, uses each result as an index to perform a lookup in a table of bytes that is described by one to
four source table SIMD&FP registers, places the lookup result in a vector, and writes the vector to the destination
SIMD&FP register. If an index is out of range for the table, the existing value in the vector element of the destination
register is left unchanged. If more than one source register is used to describe the table, the first source register
describes the lowest bytes of the table.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Two register table variant

Applies when len == 01.

TBX <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B }, <Vm>.<Ta>

Three register table variant

Applies when len == 10.

TBX <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B }, <Vm>.<Ta>

Four register table variant

Applies when len == 11.

TBX <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B, <Vn+3>.16B }, <Vm>.<Ta>

Single register table variant

Applies when len == 00.

TBX <Vd>.<Ta>, { <Vn>.16B }, <Vm>.<Ta>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV 8;
 integer regs = UInt(len) + 1;
 boolean is_tbl = (op == '0');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

0 Q 0 0 1 1 1 0 0 0 0 Rm 0 len 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2311
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Vn> For the four register table, three register table and two register table variant: is the name of the first
SIMD&FP table register, encoded in the "Rn" field.

For the single register table variant: is the name of the SIMD&FP table register, encoded in the "Rn"
field.

<Vn+1> Is the name of the second SIMD&FP table register, encoded as "Rn" plus 1 modulo 32.

<Vn+2> Is the name of the third SIMD&FP table register, encoded as "Rn" plus 2 modulo 32.

<Vn+3> Is the name of the fourth SIMD&FP table register, encoded as "Rn" plus 3 modulo 32.

<Vm> Is the name of the SIMD&FP index register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) indices = V[m];
 bits(128*regs) table = Zeros();
 bits(datasize) result;
 integer index;

 // Create table from registers
 for i = 0 to regs-1
 table<128*i+127:128*i> = V[n];
 n = (n + 1) MOD 32;

 result = if is_tbl then Zeros() else V[d];
 for i = 0 to elements-1
 index = UInt(Elem[indices, i, 8]);
 if index < 16 * regs then
 Elem[result, i, 8] = Elem[table, index, 8];

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2312 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.341 TRN1

Transpose vectors (primary). This instruction reads corresponding even-numbered vector elements from the two
source SIMD&FP registers, starting at zero, places each result into consecutive elements of a vector, and writes the
vector to the destination SIMD&FP register. Vector elements from the first source register are placed into
even-numbered elements of the destination vector, starting at zero, while vector elements from the second source
register are placed into odd-numbered elements of the destination vector.

Note

By using this instruction with TRN2, a 2 x 2 matrix can be transposed.

The following figure shows the operation of TRN1 and TRN2 halfword operations where Q = 0.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

TRN1 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 integer part = UInt(op);
 integer pairs = elements DIV 2;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0123

Vn

Vd

TRN1.16

Vm

0123

Vn

Vd

TRN2.16

Vm

0 Q 0 0 1 1 1 0 size 0 Rm 0 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2313
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;

 for p = 0 to pairs-1
 Elem[result, 2*p+0, esize] = Elem[operand1, 2*p+part, esize];
 Elem[result, 2*p+1, esize] = Elem[operand2, 2*p+part, esize];

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2314 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.342 TRN2

Transpose vectors (secondary). This instruction reads corresponding odd-numbered vector elements from the two
source SIMD&FP registers, places each result into consecutive elements of a vector, and writes the vector to the
destination SIMD&FP register. Vector elements from the first source register are placed into even-numbered
elements of the destination vector, starting at zero, while vector elements from the second source register are placed
into odd-numbered elements of the destination vector.

Note

By using this instruction with TRN1, a 2 x 2 matrix can be transposed.

The following figure shows the operation of TRN1 and TRN2 halfword operations where Q = 0.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

TRN2 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 integer part = UInt(op);
 integer pairs = elements DIV 2;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

0123

Vn

Vd

TRN1.16

Vm

0123

Vn

Vd

TRN2.16

Vm

0 Q 0 0 1 1 1 0 size 0 Rm 0 1 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2315
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;

 for p = 0 to pairs-1
 Elem[result, 2*p+0, esize] = Elem[operand1, 2*p+part, esize];
 Elem[result, 2*p+1, esize] = Elem[operand2, 2*p+part, esize];

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2316 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.343 UABA

Unsigned Absolute difference and Accumulate. This instruction subtracts the elements of the vector of the second
source SIMD&FP register from the corresponding elements of the first source SIMD&FP register, and accumulates
the absolute values of the results into the elements of the vector of the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UABA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean accumulate = (ac == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 bits(esize) absdiff;

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U ac
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2317
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 result = if accumulate then V[d] else Zeros();
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 absdiff = Abs(element1-element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + absdiff;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2318 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.344 UABAL, UABAL2

Unsigned Absolute difference and Accumulate Long. This instruction subtracts the vector elements in the lower or
upper half of the second source SIMD&FP register from the corresponding vector elements of the first source
SIMD&FP register, and accumulates the absolute values of the results into the vector elements of the destination
SIMD&FP register. The destination vector elements are twice as long as the source vector elements. All the values
in this instruction are unsigned integer values.

The UABAL instruction extracts each source vector from the lower half of each source register. The UABAL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UABAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean accumulate = (op == '0');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2319
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) absdiff;

 result = if accumulate then V[d] else Zeros();
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 absdiff = Abs(element1-element2)<2*esize-1:0>;
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2320 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.345 UABD

Unsigned Absolute Difference (vector). This instruction subtracts the elements of the vector of the second source
SIMD&FP register from the corresponding elements of the first source SIMD&FP register, places the the absolute
values of the results into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean accumulate = (ac == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 bits(esize) absdiff;

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U ac
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2321
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 result = if accumulate then V[d] else Zeros();
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 absdiff = Abs(element1-element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + absdiff;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2322 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.346 UABDL, UABDL2

Unsigned Absolute Difference Long. This instruction subtracts the vector elements in the lower or upper half of the
second source SIMD&FP register from the corresponding vector elements of the first source SIMD&FP register,
places the absolute value of the result into a vector, and writes the vector to the destination SIMD&FP register. The
destination vector elements are twice as long as the source vector elements. All the values in this instruction are
unsigned integer values.

The UABDL instruction extracts each source vector from the lower half of each source register. The UABDL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UABDL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean accumulate = (op == '0');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2323
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) absdiff;

 result = if accumulate then V[d] else Zeros();
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 absdiff = Abs(element1-element2)<2*esize-1:0>;
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff;
 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2324 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.347 UADALP

Unsigned Add and Accumulate Long Pairwise. This instruction adds pairs of adjacent unsigned integer values from
the vector in the source SIMD&FP register and accumulates the results with the vector elements of the destination
SIMD&FP register. The destination vector elements are twice as long as the source vector elements.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UADALP <Vd>.<Ta>, <Vn>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV (2 * esize);
 boolean acc = (op == '1');
 boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 00, Q = 0

8H when size = 00, Q = 1

2S when size = 01, Q = 0

4S when size = 01, Q = 1

1D when size = 10, Q = 0

2D when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 1 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2325
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;

 bits(2*esize) sum;
 integer op1;
 integer op2;

 if acc then result = V[d];
 for e = 0 to elements-1
 op1 = Int(Elem[operand, 2*e+0, esize], unsigned);
 op2 = Int(Elem[operand, 2*e+1, esize], unsigned);
 sum = (op1+op2)<2*esize-1:0>;
 if acc then
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + sum;
 else
 Elem[result, e, 2*esize] = sum;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2326 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.348 UADDL, UADDL2

Unsigned Add Long (vector). This instruction adds each vector element in the lower or upper half of the first source
SIMD&FP register to the corresponding vector element of the second source SIMD&FP register, places the result
into a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice
as long as the source vector elements. All the values in this instruction are unsigned integer values.

The UADDL instruction extracts each source vector from the lower half of each source register. The UADDL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UADDL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2327
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 integer sum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 Elem[result, e, 2*esize] = sum<2*esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2328 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.349 UADDLP

Unsigned Add Long Pairwise. This instruction adds pairs of adjacent unsigned integer values from the vector in the
source SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP register.
The destination vector elements are twice as long as the source vector elements.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UADDLP <Vd>.<Ta>, <Vn>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV (2 * esize);
 boolean acc = (op == '1');
 boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 00, Q = 0

8H when size = 00, Q = 1

2S when size = 01, Q = 0

4S when size = 01, Q = 1

1D when size = 10, Q = 0

2D when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2329
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;

 bits(2*esize) sum;
 integer op1;
 integer op2;

 if acc then result = V[d];
 for e = 0 to elements-1
 op1 = Int(Elem[operand, 2*e+0, esize], unsigned);
 op2 = Int(Elem[operand, 2*e+1, esize], unsigned);
 sum = (op1+op2)<2*esize-1:0>;
 if acc then
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + sum;
 else
 Elem[result, e, 2*esize] = sum;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2330 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.350 UADDLV

Unsigned sum Long across Vector. This instruction adds every vector element in the source SIMD&FP register
together, and writes the scalar result to the destination SIMD&FP register. The destination scalar is twice as long as
the source vector elements. All the values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UADDLV <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '100' then UNDEFINED;
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');

Assembler symbols

<V> Is the destination width specifier, encoded in the "size" field. It can have the following values:

H when size = 00

S when size = 01

D when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 10, Q = 0.

• size = 11, Q = x.

0 Q 1 0 1 1 1 0 size 1 1 0 0 0 0 0 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2331
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 integer sum;

 sum = Int(Elem[operand, 0, esize], unsigned);
 for e = 1 to elements-1
 sum = sum + Int(Elem[operand, e, esize], unsigned);

 V[d] = sum<2*esize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2332 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.351 UADDW, UADDW2

Unsigned Add Wide. This instruction adds the vector elements of the first source SIMD&FP register to the
corresponding vector elements in the lower or upper half of the second source SIMD&FP register, places the result
in a vector, and writes the vector to the SIMD&FP destination register. The vector elements of the destination
register and the first source register are twice as long as the vector elements of the second source register. All the
values in this instruction are unsigned integer values.

The UADDW instruction extracts vector elements from the lower half of the second source register. The UADDW2
instruction extracts vector elements from the upper half of the second source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UADDW{2} <Vd>.<Ta>, <Vn>.<Ta>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 0 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2333
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand1 = V[n];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 integer sum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, 2*esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 Elem[result, e, 2*esize] = sum<2*esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2334 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.352 UCVTF (vector, fixed-point)

Unsigned fixed-point Convert to Floating-point (vector). This instruction converts each element in a vector from
fixed-point to floating-point using the rounding mode that is specified by the FPCR, and writes the result to the
SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar

Encoding

UCVTF <V><d>, <V><n>, #<fbits>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then UNDEFINED;
 integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
 integer datasize = esize;
 integer elements = 1;

 integer fracbits = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 FPRounding rounding = FPRoundingMode(FPCR[]);

Vector

Encoding

UCVTF <Vd>.<T>, <Vn>.<T>, #<fbits>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then UNDEFINED;
 if immh<3>:Q == '10' then UNDEFINED;
 integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 integer fracbits = (esize * 2) - UInt(immh:immb);

0 1 1 1 1 1 1 1 0 !=0000 immb 1 1 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh

0 Q 1 0 1 1 1 1 0 !=0000 immb 1 1 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2335
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean unsigned = (U == '1');
 FPRounding rounding = FPRoundingMode(FPCR[]);

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 001x

S when immh = 01xx

D when immh = 1xxx

The encoding immh = 000x is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The following encodings are reserved:

• immh = 0001, Q = x.

• immh = 1xxx, Q = 0.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded
in the "immh:immb" field. It can have the following values:

(32-Uint(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 000x is reserved.

For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded
in the "immh:immb" field. It can have the following values:

(32-Uint(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 0001 is reserved.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 bits(esize) element;
 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
C7-2336 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 bits(128) result = if merge then V[d] else Zeros();

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FixedToFP(element, fracbits, unsigned, fpcr, rounding);

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2337
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.353 UCVTF (vector, integer)

Unsigned integer Convert to Floating-point (vector). This instruction converts each element in a vector from an
unsigned integer value to a floating-point value using the rounding mode that is specified by the FPCR, and writes
the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

UCVTF <Hd>, <Hn>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

UCVTF <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 32 << UInt(sz);
 integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');

0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 1 1 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

C7-2338 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Vector half precision

(FEAT_FP16)

Encoding

UCVTF <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

UCVTF <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 integer esize = 32 << UInt(sz);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2339
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];

 FPCRType fpcr = FPCR[];
 boolean merge = elements == 1 && IsMerging(fpcr);
 bits(128) result = if merge then V[d] else Zeros();

 FPRounding rounding = FPRoundingMode(fpcr);
 bits(esize) element;
 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FixedToFP(element, 0, unsigned, fpcr, rounding);

 V[d] = result;
C7-2340 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.354 UCVTF (scalar, fixed-point)

Unsigned fixed-point Convert to Floating-point (scalar). This instruction converts the unsigned value in the 32-bit
or 64-bit general-purpose source register to a floating-point value using the rounding mode that is specified by the
FPCR, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

32-bit to half-precision variant

Applies when sf == 0 && ftype == 11.

UCVTF <Hd>, <Wn>, #<fbits>

32-bit to single-precision variant

Applies when sf == 0 && ftype == 00.

UCVTF <Sd>, <Wn>, #<fbits>

32-bit to double-precision variant

Applies when sf == 0 && ftype == 01.

UCVTF <Dd>, <Wn>, #<fbits>

64-bit to half-precision variant

Applies when sf == 1 && ftype == 11.

UCVTF <Hd>, <Xn>, #<fbits>

64-bit to single-precision variant

Applies when sf == 1 && ftype == 00.

UCVTF <Sd>, <Xn>, #<fbits>

64-bit to double-precision variant

Applies when sf == 1 && ftype == 01.

UCVTF <Dd>, <Xn>, #<fbits>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer intsize = if sf == '1' then 64 else 32;
 integer fltsize;
 FPRounding rounding;

sf 0 0 1 1 1 1 0 ftype 0 0 0 0 1 1 scale Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 10 9 5 4 0

rmode opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2341
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 case ftype of
 when '00' fltsize = 32;
 when '01' fltsize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

 if sf == '0' && scale<5> == '0' then UNDEFINED;
 integer fracbits = 64 - UInt(scale);

 rounding = FPRoundingMode(FPCR[]);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<fbits> For the 32-bit to double-precision, 32-bit to half-precision and 32-bit to single-precision variant: is
the number of bits after the binary point in the fixed-point source, in the range 1 to 32, encoded as
64 minus "scale".

For the 64-bit to double-precision, 64-bit to half-precision and 64-bit to single-precision variant: is
the number of bits after the binary point in the fixed-point source, in the range 1 to 64, encoded as
64 minus "scale".

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 integer fsize = if merge then 128 else fltsize;
 bits(fsize) fltval;
 bits(intsize) intval;

 intval = X[n];
 fltval = if merge then V[d] else Zeros();
 Elem[fltval, 0, fltsize] = FixedToFP(intval, fracbits, TRUE, fpcr, rounding);
 V[d] = fltval;
C7-2342 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.355 UCVTF (scalar, integer)

Unsigned integer Convert to Floating-point (scalar). This instruction converts the unsigned integer value in the
general-purpose source register to a floating-point value using the rounding mode that is specified by the FPCR, and
writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

32-bit to half-precision variant

Applies when sf == 0 && ftype == 11.

UCVTF <Hd>, <Wn>

32-bit to single-precision variant

Applies when sf == 0 && ftype == 00.

UCVTF <Sd>, <Wn>

32-bit to double-precision variant

Applies when sf == 0 && ftype == 01.

UCVTF <Dd>, <Wn>

64-bit to half-precision variant

Applies when sf == 1 && ftype == 11.

UCVTF <Hd>, <Xn>

64-bit to single-precision variant

Applies when sf == 1 && ftype == 00.

UCVTF <Sd>, <Xn>

64-bit to double-precision variant

Applies when sf == 1 && ftype == 01.

UCVTF <Dd>, <Xn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer intsize = if sf == '1' then 64 else 32;
 integer fltsize;
 FPRounding rounding;

sf 0 0 1 1 1 1 0 ftype 1 0 0 0 1 1 0 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2343
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 case ftype of
 when '00'
 fltsize = 32;
 when '01'
 fltsize = 64;
 when '10'
 UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

 rounding = FPRoundingMode(FPCR[]);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 FPCRType fpcr = FPCR[];
 boolean merge = IsMerging(fpcr);
 integer fsize = if merge then 128 else fltsize;
 bits(fsize) fltval;
 bits(intsize) intval;

 intval = X[n];
 fltval = if merge then V[d] else Zeros();
 Elem[fltval, 0, fltsize] = FixedToFP(intval, 0, TRUE, fpcr, rounding);
 V[d] = fltval;
C7-2344 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.356 UDOT (by element)

Dot Product unsigned arithmetic (vector, by element). This instruction performs the dot product of the four 8-bit
elements in each 32-bit element of the first source register with the four 8-bit elements of an indexed 32-bit element
in the second source register, accumulating the result into the corresponding 32-bit element of the destination
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported.

Vector

(FEAT_DotProd)

Encoding

UDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.4B[<index>]

Decode for this encoding

 if !HaveDOTPExt() then UNDEFINED;
 if size != '10' then UNDEFINED;
 boolean signed = (U == '0');

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(M:Rm);
 integer index = UInt(H:L);

 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

0 Q 1 0 1 1 1 1 size L M Rm 1 1 1 0 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2345
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<index> Is the element index, encoded in the "H:L" fields.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(128) operand2 = V[m];
 bits(datasize) result = V[d];
 for e = 0 to elements-1
 integer res = 0;
 integer element1, element2;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4*e+i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4*index+i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4*e+i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4*index+i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
 V[d] = result;
C7-2346 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.357 UDOT (vector)

Dot Product unsigned arithmetic (vector). This instruction performs the dot product of the four unsigned 8-bit
elements in each 32-bit element of the first source register with the four unsigned 8-bit elements of the
corresponding 32-bit element in the second source register, accumulating the result into the corresponding 32-bit
element of the destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported.

Vector

(FEAT_DotProd)

Encoding

UDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 if !HaveDOTPExt() then UNDEFINED;
 if size != '10' then UNDEFINED;
 boolean signed = (U == '0');
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

0 Q 1 0 1 1 1 0 size 0 Rm 1 0 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2347
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;

 result = V[d];
 for e = 0 to elements-1
 integer res = 0;
 integer element1, element2;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4*e+i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4*e+i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4*e+i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4*e+i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
 V[d] = result;
C7-2348 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.358 UHADD

Unsigned Halving Add. This instruction adds corresponding unsigned integer values from the two source
SIMD&FP registers, shifts each result right one bit, places the results into a vector, and writes the vector to the
destination SIMD&FP register.

The results are truncated. For rounded results, see URHADD.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UHADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer sum;

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2349
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 sum = element1 + element2;
 Elem[result, e, esize] = sum<esize:1>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2350 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.359 UHSUB

Unsigned Halving Subtract. This instruction subtracts the vector elements in the second source SIMD&FP register
from the corresponding vector elements in the first source SIMD&FP register, shifts each result right one bit, places
each result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UHSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer diff;

 for e = 0 to elements-1

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2351
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 diff = element1 - element2;
 Elem[result, e, esize] = diff<esize:1>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2352 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.360 UMAX

Unsigned Maximum (vector). This instruction compares corresponding elements in the vectors in the two source
SIMD&FP registers, places the larger of each pair of unsigned integer values into a vector, and writes the vector to
the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer maxmin;

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2353
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
 Elem[result, e, esize] = maxmin<esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2354 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.361 UMAXP

Unsigned Maximum Pairwise. This instruction creates a vector by concatenating the vector elements of the first
source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of
adjacent vector elements in the two source SIMD&FP registers, writes the largest of each pair of unsigned integer
values into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 integer element1;

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2355
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer element2;
 integer maxmin;

 for e = 0 to elements-1
 element1 = Int(Elem[concat, 2*e, esize], unsigned);
 element2 = Int(Elem[concat, (2*e)+1, esize], unsigned);
 maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
 Elem[result, e, esize] = maxmin<esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2356 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.362 UMAXV

Unsigned Maximum across Vector. This instruction compares all the vector elements in the source SIMD&FP
register, and writes the largest of the values as a scalar to the destination SIMD&FP register. All the values in this
instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMAXV <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '100' then UNDEFINED;
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean min = (op == '1');

Assembler symbols

<V> Is the destination width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 10, Q = 0.

• size = 11, Q = x.

0 Q 1 0 1 1 1 0 size 1 1 0 0 0 0 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2357
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 integer maxmin;
 integer element;

 maxmin = Int(Elem[operand, 0, esize], unsigned);
 for e = 1 to elements-1
 element = Int(Elem[operand, e, esize], unsigned);
 maxmin = if min then Min(maxmin, element) else Max(maxmin, element);

 V[d] = maxmin<esize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2358 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.363 UMIN

Unsigned Minimum (vector). This instruction compares corresponding vector elements in the two source
SIMD&FP registers, places the smaller of each of the two unsigned integer values into a vector, and writes the
vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer maxmin;

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2359
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
 Elem[result, e, esize] = maxmin<esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2360 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.364 UMINP

Unsigned Minimum Pairwise. This instruction creates a vector by concatenating the vector elements of the first
source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of
adjacent vector elements in the two source SIMD&FP registers, writes the smallest of each pair of unsigned integer
values into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 integer element1;

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2361
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer element2;
 integer maxmin;

 for e = 0 to elements-1
 element1 = Int(Elem[concat, 2*e, esize], unsigned);
 element2 = Int(Elem[concat, (2*e)+1, esize], unsigned);
 maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
 Elem[result, e, esize] = maxmin<esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2362 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.365 UMINV

Unsigned Minimum across Vector. This instruction compares all the vector elements in the source SIMD&FP
register, and writes the smallest of the values as a scalar to the destination SIMD&FP register. All the values in this
instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMINV <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '100' then UNDEFINED;
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean min = (op == '1');

Assembler symbols

<V> Is the destination width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 10, Q = 0.

• size = 11, Q = x.

0 Q 1 0 1 1 1 0 size 1 1 0 0 0 1 1 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2363
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 integer maxmin;
 integer element;

 maxmin = Int(Elem[operand, 0, esize], unsigned);
 for e = 1 to elements-1
 element = Int(Elem[operand, e, esize], unsigned);
 maxmin = if min then Min(maxmin, element) else Max(maxmin, element);

 V[d] = maxmin<esize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2364 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.366 UMLAL, UMLAL2 (by element)

Unsigned Multiply-Add Long (vector, by element). This instruction multiplies each vector element in the lower or
upper half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP
register and accumulates the results with the vector elements of the destination SIMD&FP register. The destination
vector elements are twice as long as the elements that are multiplied.

The UMLAL instruction extracts vector elements from the lower half of the first source register. The UMLAL2 instruction
extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean sub_op = (o2 == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

0 Q 1 0 1 1 1 1 size L M Rm 0 0 1 0 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U o2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2365
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• size = 00.

• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(idxdsize) operand2 = V[m];
 bits(2*datasize) operand3 = V[d];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;

 element2 = Int(Elem[operand2, index, esize], unsigned);
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
C7-2366 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 if sub_op then
 Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] - product;
 else
 Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] + product;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2367
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.367 UMLAL, UMLAL2 (vector)

Unsigned Multiply-Add Long (vector). This instruction multiplies the vector elements in the lower or upper half of
the first source SIMD&FP register by the corresponding vector elements of the second source SIMD&FP register,
and accumulates the results with the vector elements of the destination SIMD&FP register. The destination vector
elements are twice as long as the elements that are multiplied.

The UMLAL instruction extracts vector elements from the lower half of the first source register. The UMLAL2 instruction
extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;
 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
C7-2368 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) operand3 = V[d];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;
 bits(2*esize) accum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
 if sub_op then
 accum = Elem[operand3, e, 2*esize] - product;
 else
 accum = Elem[operand3, e, 2*esize] + product;
 Elem[result, e, 2*esize] = accum;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2369
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.368 UMLSL, UMLSL2 (by element)

Unsigned Multiply-Subtract Long (vector, by element). This instruction multiplies each vector element in the lower
or upper half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP
register and subtracts the results from the vector elements of the destination SIMD&FP register. The destination
vector elements are twice as long as the elements that are multiplied.

The UMLSL instruction extracts vector elements from the lower half of the first source register. The UMLSL2 instruction
extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean sub_op = (o2 == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

0 Q 1 0 1 1 1 1 size L M Rm 0 1 1 0 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U o2
C7-2370 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• size = 00.

• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(idxdsize) operand2 = V[m];
 bits(2*datasize) operand3 = V[d];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;

 element2 = Int(Elem[operand2, index, esize], unsigned);
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2371
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 if sub_op then
 Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] - product;
 else
 Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] + product;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2372 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.369 UMLSL, UMLSL2 (vector)

Unsigned Multiply-Subtract Long (vector). This instruction multiplies corresponding vector elements in the lower
or upper half of the two source SIMD&FP registers, and subtracts the results from the vector elements of the
destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.
All the values in this instruction are unsigned integer values.

The UMLSL instruction extracts each source vector from the lower half of each source register. The UMLSL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;
 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 1 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2373
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) operand3 = V[d];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;
 bits(2*esize) accum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
 if sub_op then
 accum = Elem[operand3, e, 2*esize] - product;
 else
 accum = Elem[operand3, e, 2*esize] + product;
 Elem[result, e, 2*esize] = accum;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2374 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.370 UMMLA (vector)

Unsigned 8-bit integer matrix multiply-accumulate. This instruction multiplies the 2x8 matrix of unsigned 8-bit
integer values in the first source vector by the 8x2 matrix of unsigned 8-bit integer values in the second source
vector. The resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix
accumulator in the destination vector. This is equivalent to performing an 8-way dot product per destination
element.

From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that
include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

Vector

(FEAT_I8MM)

Encoding

UMMLA <Vd>.4S, <Vn>.16B, <Vm>.16B

Decode for this encoding

 if !HaveInt8MatMulExt() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(128) operand1 = V[n];
 bits(128) operand2 = V[m];
 bits(128) addend = V[d];

 V[d] = MatMulAdd(addend, operand1, operand2, TRUE, TRUE);

0 1 1 0 1 1 1 0 1 0 0 Rm 1 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U B
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2375
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.371 UMOV

Unsigned Move vector element to general-purpose register. This instruction reads the unsigned integer from the
source SIMD&FP register, zero-extends it to form a 32-bit or 64-bit value, and writes the result to the destination
general-purpose register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (to general). See Alias conditions on page C7-2376 for details of when
each alias is preferred.

32-bit variant

Applies when Q == 0.

UMOV <Wd>, <Vn>.<Ts>[<index>]

64-reg,UMOV-64-reg variant

Applies when Q == 1 && imm5 == x1000.

UMOV <Xd>, <Vn>.<Ts>[<index>]

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer size;
 case Q:imm5 of
 when '0xxxx1' size = 0; // UMOV Wd, Vn.B
 when '0xxx10' size = 1; // UMOV Wd, Vn.H
 when '0xx100' size = 2; // UMOV Wd, Vn.S
 when '1x1000' size = 3; // UMOV Xd, Vn.D
 otherwise UNDEFINED;

 integer idxdsize = if imm5<4> == '1' then 128 else 64;
 integer index = UInt(imm5<4:size+1>);
 integer esize = 8 << size;
 integer datasize = if Q == '1' then 64 else 32;

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

Alias is preferred when

MOV (to general) imm5 == 'x1000'

 MOV (to general) imm5 == 'xx100'

0 Q 0 0 1 1 1 0 0 0 0 imm5 0 0 1 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
C7-2376 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ts> For the 32-bit variant: is an element size specifier, encoded in the "imm5" field. It can have the
following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

The encoding imm5 = xx000 is reserved.

For the 64-reg,UMOV-64-reg variant: is an element size specifier, encoded in the "imm5" field. It
can have the following values:

D when imm5 = x1000

The following encodings are reserved:

• imm5 = x0000.

• imm5 = xxxx1.

• imm5 = xxx10.

• imm5 = xx100.

<index> For the 32-bit variant: is the element index encoded in the "imm5" field. It can have the following
values:

imm5<4:1> when imm5 = xxxx1

imm5<4:2> when imm5 = xxx10

imm5<4:3> when imm5 = xx100

The encoding imm5 = xx000 is reserved.

For the 64-reg,UMOV-64-reg variant: is the element index encoded in "imm5<4>".

Operation

 CheckFPAdvSIMDEnabled64();
 bits(idxdsize) operand = V[n];

 X[d] = ZeroExtend(Elem[operand, index, esize], datasize);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2377
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.372 UMULL, UMULL2 (by element)

Unsigned Multiply Long (vector, by element). This instruction multiplies each vector element in the lower or upper
half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP register,
places the results in a vector, and writes the vector to the destination SIMD&FP register. The destination vector
elements are twice as long as the elements that are multiplied.

The UMULL instruction extracts vector elements from the lower half of the first source register. The UMULL2 instruction
extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

Decode for this encoding

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

The following encodings are reserved:

• size = 00.

0 Q 1 0 1 1 1 1 size L M Rm 1 0 1 0 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

C7-2378 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(idxdsize) operand2 = V[m];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;

 element2 = Int(Elem[operand2, index, esize], unsigned);
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
 Elem[result, e, 2*esize] = product;

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2379
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2380 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.373 UMULL, UMULL2 (vector)

Unsigned Multiply long (vector). This instruction multiplies corresponding vector elements in the lower or upper
half of the two source SIMD&FP registers, places the result in a vector, and writes the vector to the destination
SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied. All the
values in this instruction are unsigned integer values.

The UMULL instruction extracts each source vector from the lower half of each source register. The UMULL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

0 Q 1 0 1 1 1 0 size 1 Rm 1 1 0 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2381
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) result;
 integer element1;
 integer element2;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 Elem[result, e, 2*esize] = (element1*element2)<2*esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2382 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.374 UQADD

Unsigned saturating Add. This instruction adds the values of corresponding elements of the two source SIMD&FP
registers, places the results into a vector, and writes the vector to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

UQADD <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');

Vector

Encoding

UQADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

0 1 1 1 1 1 1 0 size 1 Rm 0 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2383
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer sum;
 boolean sat;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 sum = element1 + element2;
 (Elem[result, e, esize], sat) = SatQ(sum, esize, unsigned);
 if sat then FPSR.QC = '1';

 V[d] = result;
C7-2384 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.375 UQRSHL

Unsigned saturating Rounding Shift Left (register). This instruction takes each vector element of the first source
SIMD&FP register, shifts the vector element by a value from the least significant byte of the corresponding vector
element of the second source SIMD&FP register, places the results into a vector, and writes the vector to the
destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are rounded. For
truncated results, see UQSHL (immediate).

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

UQRSHL <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');
 if S == '0' && size != '11' then UNDEFINED;

Vector

Encoding

UQRSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

0 1 1 1 1 1 1 0 size 1 Rm 0 1 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2385
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;

 integer round_const = 0;
 integer shift;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 shift = SInt(Elem[operand2, e, esize]<7:0>);
 if rounding then
 round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
 element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
 if saturating then
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
 else
 Elem[result, e, esize] = element<esize-1:0>;

 V[d] = result;
C7-2386 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.376 UQRSHRN, UQRSHRN2

Unsigned saturating Rounded Shift Right Narrow (immediate). This instruction reads each vector element in the
source SIMD&FP register, right shifts each result by an immediate value, puts the final result into a vector, and
writes the vector to the lower or upper half of the destination SIMD&FP register. All the values in this instruction
are unsigned integer values. The results are rounded. For truncated results, see UQSHRN, UQSHRN2.

The UQRSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the UQRSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

UQRSHRN <Vb><d>, <Va><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then UNDEFINED;
 if immh<3> == '1' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = esize;
 integer elements = 1;
 integer part = 0;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');
 boolean unsigned = (U == '1');

Vector

Encoding

UQRSHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3> == '1' then UNDEFINED;

0 1 1 1 1 1 1 1 0 !=0000 immb 1 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op

0 Q 1 0 1 1 1 1 0 !=0000 immb 1 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2387
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vb> Is the destination width specifier, encoded in the "immh" field. It can have the following values:

B when immh = 0001

H when immh = 001x

S when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 0001

S when immh = 001x

D when immh = 01xx
C7-2388 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

For the vector variant: is the right shift amount, in the range 1 to the destination element width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize*2) operand = V[n];
 bits(datasize) result;
 integer round_const = if round then (1 << (shift - 1)) else 0;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = (Int(Elem[operand, e, 2*esize], unsigned) + round_const) >> shift;
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';

 Vpart[d, part] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2389
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.377 UQSHL (immediate)

Unsigned saturating Shift Left (immediate). This instruction takes each vector element in the source SIMD&FP
register, shifts it by an immediate value, places the results in a vector, and writes the vector to the destination
SIMD&FP register. The results are truncated. For rounded results, see UQRSHL.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

UQSHL <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = esize;
 integer elements = 1;

 integer shift = UInt(immh:immb) - esize;

 boolean src_unsigned;
 boolean dst_unsigned;
 case op:U of
 when '00' UNDEFINED;
 when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
 when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
 when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Vector

Encoding

UQSHL <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);

0 1 1 1 1 1 1 1 0 !=0000 immb 0 1 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op

0 Q 1 0 1 1 1 1 0 !=0000 immb 0 1 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op
C7-2390 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 integer shift = UInt(immh:immb) - esize;

 boolean src_unsigned;
 boolean dst_unsigned;
 case op:U of
 when '00' UNDEFINED;
 when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
 when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
 when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

B when immh = 0001

H when immh = 001x

S when immh = 01xx

D when immh = 1xxx

The encoding immh = 0000 is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to the operand width in bits minus 1,
encoded in the "immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001

(UInt(immh:immb)-16) when immh = 001x

(UInt(immh:immb)-32) when immh = 01xx

(UInt(immh:immb)-64) when immh = 1xxx

The encoding immh = 0000 is reserved.

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1,
encoded in the "immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001

(UInt(immh:immb)-16) when immh = 001x

(UInt(immh:immb)-32) when immh = 01xx
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2391
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
(UInt(immh:immb)-64) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = Int(Elem[operand, e, esize], src_unsigned) << shift;
 (Elem[result, e, esize], sat) = SatQ(element, esize, dst_unsigned);
 if sat then FPSR.QC = '1';

 V[d] = result;
C7-2392 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.378 UQSHL (register)

Unsigned saturating Shift Left (register). This instruction takes each element in the vector of the first source
SIMD&FP register, shifts the element by a value from the least significant byte of the corresponding element of the
second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP
register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are truncated. For
rounded results, see UQRSHL.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

UQSHL <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');
 if S == '0' && size != '11' then UNDEFINED;

Vector

Encoding

UQSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

0 1 1 1 1 1 1 0 size 1 Rm 0 1 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2393
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;

 integer round_const = 0;
 integer shift;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 shift = SInt(Elem[operand2, e, esize]<7:0>);
 if rounding then
 round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
 element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
 if saturating then
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
 else
 Elem[result, e, esize] = element<esize-1:0>;

 V[d] = result;
C7-2394 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.379 UQSHRN, UQSHRN2

Unsigned saturating Shift Right Narrow (immediate). This instruction reads each vector element in the source
SIMD&FP register, right shifts each result by an immediate value, saturates each shifted result to a value that is half
the original width, puts the final result into a vector, and writes the vector to the lower or upper half of the destination
SIMD&FP register. All the values in this instruction are unsigned integer values. The results are truncated. For
rounded results, see UQRSHRN, UQRSHRN2.

The UQSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the UQSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

UQSHRN <Vb><d>, <Va><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then UNDEFINED;
 if immh<3> == '1' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = esize;
 integer elements = 1;
 integer part = 0;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');
 boolean unsigned = (U == '1');

Vector

Encoding

UQSHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";

0 1 1 1 1 1 1 1 0 !=0000 immb 1 0 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op

0 Q 1 0 1 1 1 1 0 !=0000 immb 1 0 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2395
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 if immh<3> == '1' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vb> Is the destination width specifier, encoded in the "immh" field. It can have the following values:

B when immh = 0001

H when immh = 001x

S when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 0001

S when immh = 001x

D when immh = 01xx
C7-2396 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

For the vector variant: is the right shift amount, in the range 1 to the destination element width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize*2) operand = V[n];
 bits(datasize) result;
 integer round_const = if round then (1 << (shift - 1)) else 0;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = (Int(Elem[operand, e, 2*esize], unsigned) + round_const) >> shift;
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';

 Vpart[d, part] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2397
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.380 UQSUB

Unsigned saturating Subtract. This instruction subtracts the element values of the second source SIMD&FP register
from the corresponding element values of the first source SIMD&FP register, places the results into a vector, and
writes the vector to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

UQSUB <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');

Vector

Encoding

UQSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

0 1 1 1 1 1 1 0 size 1 Rm 0 0 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

C7-2398 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
H when size = 01

S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer diff;
 boolean sat;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 diff = element1 - element2;
 (Elem[result, e, esize], sat) = SatQ(diff, esize, unsigned);
 if sat then FPSR.QC = '1';

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2399
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.381 UQXTN, UQXTN2

Unsigned saturating extract Narrow. This instruction reads each vector element from the source SIMD&FP register,
saturates each value to half the original width, places the result into a vector, and writes the vector to the destination
SIMD&FP register. All the values in this instruction are unsigned integer values.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The UQXTN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the UQXTN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

UQXTN <Vb><d>, <Va><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer part = 0;
 integer elements = 1;

 boolean unsigned = (U == '1');

Vector

Encoding

UQXTN{2} <Vd>.<Tb>, <Vn>.<Ta>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

0 1 1 1 1 1 1 0 size 1 0 0 0 0 1 0 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 1 0 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

C7-2400 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vb> Is the destination width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Va> Is the source width specifier, encoded in the "size" field. It can have the following values:

H when size = 00

S when size = 01

D when size = 10

The encoding size = 11 is reserved.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand = V[n];
 bits(datasize) result;
 bits(2*esize) element;
 boolean sat;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2401
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 for e = 0 to elements-1
 element = Elem[operand, e, 2*esize];
 (Elem[result, e, esize], sat) = SatQ(Int(element, unsigned), esize, unsigned);
 if sat then FPSR.QC = '1';

 Vpart[d, part] = result;
C7-2402 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.382 URECPE

Unsigned Reciprocal Estimate. This instruction reads each vector element from the source SIMD&FP register,
calculates an approximate inverse for the unsigned integer value, places the result into a vector, and writes the vector
to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

URECPE <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz == '1' then UNDEFINED;
 integer esize = 32;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

The encoding sz = 1, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(32) element;

 for e = 0 to elements-1
 element = Elem[operand, e, 32];
 Elem[result, e, 32] = UnsignedRecipEstimate(element);

 V[d] = result;

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2403
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.383 URHADD

Unsigned Rounding Halving Add. This instruction adds corresponding unsigned integer values from the two source
SIMD&FP registers, shifts each result right one bit, places the results into a vector, and writes the vector to the
destination SIMD&FP register.

The results are rounded. For truncated results, see UHADD.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

URHADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 integer element1;
 integer element2;

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

C7-2404 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 Elem[result, e, esize] = (element1+element2+1)<esize:1>;

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2405
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.384 URSHL

Unsigned Rounding Shift Left (register). This instruction takes each element in the vector of the first source
SIMD&FP register, shifts the vector element by a value from the least significant byte of the corresponding element
of the second source SIMD&FP register, places the results in a vector, and writes the vector to the destination
SIMD&FP register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a rounding right shift.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

URSHL <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');
 if S == '0' && size != '11' then UNDEFINED;

Vector

Encoding

URSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');

0 1 1 1 1 1 1 0 size 1 Rm 0 1 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S
C7-2406 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;

 integer round_const = 0;
 integer shift;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 shift = SInt(Elem[operand2, e, esize]<7:0>);
 if rounding then
 round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
 element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
 if saturating then
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
 else
 Elem[result, e, esize] = element<esize-1:0>;

 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2407
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.385 URSHR

Unsigned Rounding Shift Right (immediate). This instruction reads each vector element in the source SIMD&FP
register, right shifts each result by an immediate value, writes the final result to a vector, and writes the vector to the
destination SIMD&FP register. All the values in this instruction are unsigned integer values. The results are
rounded. For truncated results, see USHR.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

URSHR <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 integer esize = 8 << 3;
 integer datasize = esize;
 integer elements = 1;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Vector

Encoding

URSHR <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');

0 1 1 1 1 1 1 1 0 !=0000 immb 0 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0

0 Q 1 0 1 1 1 1 0 !=0000 immb 0 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0
C7-2408 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb"
field. It can have the following values:

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded
in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) operand2;
 bits(datasize) result;
 integer round_const = if round then (1 << (shift - 1)) else 0;
 integer element;

 operand2 = if accumulate then V[d] else Zeros();
 for e = 0 to elements-1
 element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2409
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 V[d] = result;
C7-2410 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.386 URSQRTE

Unsigned Reciprocal Square Root Estimate. This instruction reads each vector element from the source SIMD&FP
register, calculates an approximate inverse square root for each value, places the result into a vector, and writes the
vector to the destination SIMD&FP register. All the values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

URSQRTE <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz == '1' then UNDEFINED;
 integer esize = 32;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

The encoding sz = 1, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;
 bits(32) element;

 for e = 0 to elements-1
 element = Elem[operand, e, 32];
 Elem[result, e, 32] = UnsignedRSqrtEstimate(element);

 V[d] = result;

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2411
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.387 URSRA

Unsigned Rounding Shift Right and Accumulate (immediate). This instruction reads each vector element in the
source SIMD&FP register, right shifts each result by an immediate value, and accumulates the final results with the
vector elements of the destination SIMD&FP register. All the values in this instruction are unsigned integer values.
The results are rounded. For truncated results, see USRA.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

URSRA <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 integer esize = 8 << 3;
 integer datasize = esize;
 integer elements = 1;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Vector

Encoding

URSRA <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');

0 1 1 1 1 1 1 1 0 !=0000 immb 0 0 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0

0 Q 1 0 1 1 1 1 0 !=0000 immb 0 0 1 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0
C7-2412 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb"
field. It can have the following values:

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded
in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) operand2;
 bits(datasize) result;
 integer round_const = if round then (1 << (shift - 1)) else 0;
 integer element;

 operand2 = if accumulate then V[d] else Zeros();
 for e = 0 to elements-1
 element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2413
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 V[d] = result;
C7-2414 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.388 USDOT (vector)

Dot Product vector form with unsigned and signed integers. This instruction performs the dot product of the four
unsigned 8-bit integer values in each 32-bit element of the first source register with the four signed 8-bit integer
values in the corresponding 32-bit element of the second source register, accumulating the result into the
corresponding 32-bit element of the destination register.

From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that
include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

Vector

(FEAT_I8MM)

Encoding

USDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 if !HaveInt8MatMulExt() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV 32;

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;

 for e = 0 to elements-1
 bits(32) res = Elem[operand3, e, 32];
 for b = 0 to 3
 integer element1 = UInt(Elem[operand1, 4*e+b, 8]);
 integer element2 = SInt(Elem[operand2, 4*e+b, 8]);

0 Q 0 0 1 1 1 0 1 0 0 Rm 1 0 0 1 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2415
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 res = res + element1 * element2;
 Elem[result, e, 32] = res;

 V[d] = result;
C7-2416 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.389 USDOT (by element)

Dot Product index form with unsigned and signed integers. This instruction performs the dot product of the four
unsigned 8-bit integer values in each 32-bit element of the first source register with the four signed 8-bit integer
values in an indexed 32-bit element of the second source register, accumulating the result into the corresponding
32-bit element of the destination register.

From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that
include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

Vector

(FEAT_I8MM)

Encoding

USDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.4B[<index>]

Decode for this encoding

 if !HaveInt8MatMulExt() then UNDEFINED;
 boolean op1_unsigned = (US == '1');
 boolean op2_unsigned = (US == '0');
 integer n = UInt(Rn);
 integer m = UInt(M:Rm);
 integer d = UInt(Rd);
 integer i = UInt(H:L);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV 32;

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<index> Is the immediate index of a quadtuplet of four 8-bit elements in the range 0 to 3, encoded in the
"H:L" fields.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(128) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;

0 Q 0 0 1 1 1 1 1 0 L M Rm 1 1 1 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

US
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2417
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 bits(32) res = Elem[operand3, e, 32];
 for b = 0 to 3
 integer element1 = Int(Elem[operand1, 4*e+b, 8], op1_unsigned);
 integer element2 = Int(Elem[operand2, 4*i+b, 8], op2_unsigned);
 res = res + element1 * element2;
 Elem[result, e, 32] = res;
 V[d] = result;
C7-2418 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.390 USHL

Unsigned Shift Left (register). This instruction takes each element in the vector of the first source SIMD&FP
register, shifts each element by a value from the least significant byte of the corresponding element of the second
source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a truncating right shift. For
a rounding shift, see URSHL.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

USHL <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');
 if S == '0' && size != '11' then UNDEFINED;

Vector

Encoding

USHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');

0 1 1 1 1 1 1 0 size 1 Rm 0 1 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2419
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;

 integer round_const = 0;
 integer shift;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 shift = SInt(Elem[operand2, e, esize]<7:0>);
 if rounding then
 round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
 element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
 if saturating then
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
 else
 Elem[result, e, esize] = element<esize-1:0>;

 V[d] = result;
C7-2420 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2421
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.391 USHLL, USHLL2

Unsigned Shift Left Long (immediate). This instruction reads each vector element in the lower or upper half of the
source SIMD&FP register, shifts the unsigned integer value left by the specified number of bits, places the result
into a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice
as long as the source vector elements.

The USHLL instruction extracts vector elements from the lower half of the source register. The USHLL2 instruction
extracts vector elements from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias UXTL, UXTL2. See Alias conditions on page C7-2422 for details of when each
alias is preferred.

Encoding

USHLL{2} <Vd>.<Ta>, <Vn>.<Tb>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3> == '1' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = UInt(immh:immb) - esize;
 boolean unsigned = (U == '1');

Alias conditions

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

Alias is preferred when

UXTL, UXTL2 immb == '000' && BitCount(immh) == 1

0 Q 1 0 1 1 1 1 0 !=0000 immb 1 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh
C7-2422 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

<shift> Is the left shift amount, in the range 0 to the source element width in bits minus 1, encoded in the
"immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001

(UInt(immh:immb)-16) when immh = 001x

(UInt(immh:immb)-32) when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = Vpart[n, part];
 bits(datasize*2) result;
 integer element;

 for e = 0 to elements-1
 element = Int(Elem[operand, e, esize], unsigned) << shift;
 Elem[result, e, 2*esize] = element<2*esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2423
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.392 USHR

Unsigned Shift Right (immediate). This instruction reads each vector element in the source SIMD&FP register, right
shifts each result by an immediate value, writes the final result to a vector, and writes the vector to the destination
SIMD&FP register. All the values in this instruction are unsigned integer values. The results are truncated. For
rounded results, see URSHR.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

USHR <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 integer esize = 8 << 3;
 integer datasize = esize;
 integer elements = 1;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Vector

Encoding

USHR <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');

0 1 1 1 1 1 1 1 0 !=0000 immb 0 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0

0 Q 1 0 1 1 1 1 0 !=0000 immb 0 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0
C7-2424 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb"
field. It can have the following values:

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded
in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) operand2;
 bits(datasize) result;
 integer round_const = if round then (1 << (shift - 1)) else 0;
 integer element;

 operand2 = if accumulate then V[d] else Zeros();
 for e = 0 to elements-1
 element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2425
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2426 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.393 USMMLA (vector)

Unsigned and signed 8-bit integer matrix multiply-accumulate. This instruction multiplies the 2x8 matrix of
unsigned 8-bit integer values in the first source vector by the 8x2 matrix of signed 8-bit integer values in the second
source vector. The resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix
accumulator in the destination vector. This is equivalent to performing an 8-way dot product per destination
element.

From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that
include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

Vector

(FEAT_I8MM)

Encoding

USMMLA <Vd>.4S, <Vn>.16B, <Vm>.16B

Decode for this encoding

 if !HaveInt8MatMulExt() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(128) operand1 = V[n];
 bits(128) operand2 = V[m];
 bits(128) addend = V[d];

 V[d] = MatMulAdd(addend, operand1, operand2, TRUE, FALSE);

0 1 0 0 1 1 1 0 1 0 0 Rm 1 0 1 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U B
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2427
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.394 USQADD

Unsigned saturating Accumulate of Signed value. This instruction adds the signed integer values of the vector
elements in the source SIMD&FP register to corresponding unsigned integer values of the vector elements in the
destination SIMD&FP register, and accumulates the resulting unsigned integer values with the vector elements of
the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

USQADD <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;

 boolean unsigned = (U == '1');

Vector

Encoding

USQADD <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');

0 1 1 1 1 1 1 0 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

C7-2428 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) result;

 bits(datasize) operand2 = V[d];
 integer op1;
 integer op2;
 boolean sat;

 for e = 0 to elements-1
 op1 = Int(Elem[operand, e, esize], !unsigned);
 op2 = Int(Elem[operand2, e, esize], unsigned);
 (Elem[result, e, esize], sat) = SatQ(op1 + op2, esize, unsigned);
 if sat then FPSR.QC = '1';
 V[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2429
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.395 USRA

Unsigned Shift Right and Accumulate (immediate). This instruction reads each vector element in the source
SIMD&FP register, right shifts each result by an immediate value, and accumulates the final results with the vector
elements of the destination SIMD&FP register. All the values in this instruction are unsigned integer values. The
results are truncated. For rounded results, see URSRA.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

USRA <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 integer esize = 8 << 3;
 integer datasize = esize;
 integer elements = 1;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Vector

Encoding

USRA <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 integer esize = 8 << HighestSetBit(immh);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');

0 1 1 1 1 1 1 1 0 !=0000 immb 0 0 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0

0 Q 1 0 1 1 1 1 0 !=0000 immb 0 0 0 1 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0
C7-2430 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb"
field. It can have the following values:

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded
in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n];
 bits(datasize) operand2;
 bits(datasize) result;
 integer round_const = if round then (1 << (shift - 1)) else 0;
 integer element;

 operand2 = if accumulate then V[d] else Zeros();
 for e = 0 to elements-1
 element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2431
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2432 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.396 USUBL, USUBL2

Unsigned Subtract Long. This instruction subtracts each vector element in the lower or upper half of the second
source SIMD&FP register from the corresponding vector element of the first source SIMD&FP register, places the
result into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are
unsigned integer values. The destination vector elements are twice as long as the source vector elements.

The USUBL instruction extracts each source vector from the lower half of each source register. The USUBL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

USUBL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 0 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2433
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 integer sum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 Elem[result, e, 2*esize] = sum<2*esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2434 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.397 USUBW, USUBW2

Unsigned Subtract Wide. This instruction subtracts each vector element of the second source SIMD&FP register
from the corresponding vector element in the lower or upper half of the first source SIMD&FP register, places the
result in a vector, and writes the vector to the SIMD&FP destination register. All the values in this instruction are
unsigned integer values.

The vector elements of the destination register and the first source register are twice as long as the vector elements
of the second source register.

The USUBW instruction extracts vector elements from the lower half of the first source register. The USUBW2 instruction
extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

USUBW{2} <Vd>.<Ta>, <Vn>.<Ta>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 1 0 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2435
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand1 = V[n];
 bits(datasize) operand2 = Vpart[m, part];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 integer sum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, 2*esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 Elem[result, e, 2*esize] = sum<2*esize-1:0>;

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2436 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.398 UXTL, UXTL2

Unsigned extend Long. This instruction copies each vector element from the lower or upper half of the source
SIMD&FP register into a vector, and writes the vector to the destination SIMD&FP register. The destination vector
elements are twice as long as the source vector elements.

The UXTL instruction extracts vector elements from the lower half of the source register. The UXTL2 instruction
extracts vector elements from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the USHLL, USHLL2 instruction. This means that:

• The encodings in this description are named to match the encodings of USHLL, USHLL2.

• The description of USHLL, USHLL2 gives the operational pseudocode for this instruction.

Encoding

UXTL{2} <Vd>.<Ta>, <Vn>.<Tb>

 is equivalent to

USHLL{2} <Vd>.<Ta>, <Vn>.<Tb>, #0

and is the preferred disassembly when BitCount(immh) == 1.

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate on page C4-373 when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

0 Q 1 0 1 1 1 1 0 !=0000 0 0 0 1 0 1 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh immb
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2437
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate on page C4-373 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

Operation

The description of USHLL, USHLL2 gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2438 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.399 UZP1

Unzip vectors (primary). This instruction reads corresponding even-numbered vector elements from the two source
SIMD&FP registers, starting at zero, places the result from the first source register into consecutive elements in the
lower half of a vector, and the result from the second source register into consecutive elements in the upper half of
a vector, and writes the vector to the destination SIMD&FP register.

Note

This instruction can be used with UZP2 to de-interleave two vectors.

The following figure shows the operation of UZP1 and UZP2 with the arrangement specifier 8B.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UZP1 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 integer part = UInt(op);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

A2

A5

A0

A1

A1

A3

A3

A7

A4

B1

A5

B3

A6

B5

A7

B7

UZP1.8, doubleword

B2 B0B1B3B4B5

A4 A0A2A6B0B2B4B6

UZP2.8, doubleword

B7 B6

Vd

Vn
Vm

Vd

0 Q 0 0 1 1 1 0 size 0 Rm 0 0 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2439
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operandl = V[n];
 bits(datasize) operandh = V[m];
 bits(datasize) result;

 bits(datasize*2) zipped = operandh:operandl;
 for e = 0 to elements-1
 Elem[result, e, esize] = Elem[zipped, 2*e+part, esize];

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2440 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.400 UZP2

Unzip vectors (secondary). This instruction reads corresponding odd-numbered vector elements from the two
source SIMD&FP registers, places the result from the first source register into consecutive elements in the lower
half of a vector, and the result from the second source register into consecutive elements in the upper half of a vector,
and writes the vector to the destination SIMD&FP register.

Note

This instruction can be used with UZP1 to de-interleave two vectors.

The following figure shows the operation of UZP1 and UZP2 with the arrangement specifier 8B.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UZP2 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 integer part = UInt(op);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

A2

A5

A0

A1

A1

A3

A3

A7

A4

B1

A5

B3

A6

B5

A7

B7

UZP1.8, doubleword

B2 B0B1B3B4B5

A4 A0A2A6B0B2B4B6

UZP2.8, doubleword

B7 B6

Vd

Vn
Vm

Vd

0 Q 0 0 1 1 1 0 size 0 Rm 0 1 0 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2441
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operandl = V[n];
 bits(datasize) operandh = V[m];
 bits(datasize) result;

 bits(datasize*2) zipped = operandh:operandl;
 for e = 0 to elements-1
 Elem[result, e, esize] = Elem[zipped, 2*e+part, esize];

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C7-2442 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.401 XAR

Exclusive OR and Rotate performs a bitwise exclusive OR of the 128-bit vectors in the two source SIMD&FP
registers, rotates each 64-bit element of the resulting 128-bit vector right by the value specified by a 6-bit immediate
value, and writes the result to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SHA3 is implemented.

Advanced SIMD

(FEAT_SHA3)

Encoding

XAR <Vd>.2D, <Vn>.2D, <Vm>.2D, #<imm6>

Decode for this encoding

 if !HaveSHA3Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<imm6> Is a rotation right, encoded in "imm6".

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m];
 bits(128) Vn = V[n];
 bits(128) tmp;
 tmp = Vn EOR Vm;
 V[d] = ROR(tmp<127:64>, UInt(imm6)):ROR(tmp<63:0>, UInt(imm6));

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 0 1 1 1 0 1 0 0 Rm imm6 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2443
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.402 XTN, XTN2

Extract Narrow. This instruction reads each vector element from the source SIMD&FP register, narrows each value
to half the original width, places the result into a vector, and writes the vector to the lower or upper half of the
destination SIMD&FP register. The destination vector elements are half as long as the source vector elements.

The XTN instruction writes the vector to the lower half of the destination register and clears the upper half, while the
XTN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

XTN{2} <Vd>.<Tb>, <Vn>.<Ta>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 1 0 0 1 0 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
C7-2444 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand = V[n];
 bits(datasize) result;
 bits(2*esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, 2*esize];
 Elem[result, e, esize] = element<esize-1:0>;
 Vpart[d, part] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2445
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.403 ZIP1

Zip vectors (primary). This instruction reads adjacent vector elements from the lower half of two source SIMD&FP
registers as pairs, interleaves the pairs and places them into a vector, and writes the vector to the destination
SIMD&FP register. The first pair from the first source register is placed into the two lowest vector elements, with
subsequent pairs taken alternately from each source register.

Note

This instruction can be used with ZIP2 to interleave two vectors.

The following figure shows the operation of ZIP1 and ZIP2 with the arrangement specifier 8B.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

ZIP1 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 integer part = UInt(op);
 integer pairs = elements DIV 2;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

A2

A5

A0

A1

A1

A3

A3

A7

A4

B1

A5

B3

A6

B5

A7

B7

ZIP1.8, doubleword

B2 B0B1B3B4B5

A4A0A2 A6B0B2 B4B6

ZIP2.8, doubleword

B7 B6

Vn
Vm

Vd Vd

0 Q 0 0 1 1 1 0 size 0 Rm 0 0 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
C7-2446 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;

 integer base = part * pairs;

 for p = 0 to pairs-1
 Elem[result, 2*p+0, esize] = Elem[operand1, base+p, esize];
 Elem[result, 2*p+1, esize] = Elem[operand2, base+p, esize];

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2447
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.404 ZIP2

Zip vectors (secondary). This instruction reads adjacent vector elements from the upper half of two source
SIMD&FP registers as pairs, interleaves the pairs and places them into a vector, and writes the vector to the
destination SIMD&FP register. The first pair from the first source register is placed into the two lowest vector
elements, with subsequent pairs taken alternately from each source register.

Note

This instruction can be used with ZIP1 to interleave two vectors.

The following figure shows the operation of ZIP1 and ZIP2 with the arrangement specifier 8B.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

ZIP2 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size:Q == '110' then UNDEFINED;
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 integer part = UInt(op);
 integer pairs = elements DIV 2;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

A2

A5

A0

A1

A1

A3

A3

A7

A4

B1

A5

B3

A6

B5

A7

B7

ZIP1.8, doubleword

B2 B0B1B3B4B5

A4A0A2 A6B0B2 B4B6

ZIP2.8, doubleword

B7 B6

Vn
Vm

Vd Vd

0 Q 0 0 1 1 1 0 size 0 Rm 0 1 1 1 1 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
C7-2448 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;

 integer base = part * pairs;

 for p = 0 to pairs-1
 Elem[result, 2*p+0, esize] = Elem[operand1, base+p, esize];
 Elem[result, 2*p+1, esize] = Elem[operand2, base+p, esize];

 V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C7-2449
ID072021 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7-2450 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Part D
The AArch64 System Level Architecture

Chapter D1
The AArch64 System Level Programmers’ Model

This chapter describes the AArch64 system level programmers’ model. It contains the following sections:

• Exception levels on page D1-2454.

• Exception terminology on page D1-2455.

• Execution state on page D1-2457.

• Security state on page D1-2458.

• Virtualization on page D1-2460.

• Registers for instruction processing and exception handling on page D1-2463.

• Process state, PSTATE on page D1-2466.

• Program counter and stack pointer alignment on page D1-2469.

• Reset on page D1-2471.

• Exception entry on page D1-2475.

• Exception return on page D1-2485.

• Synchronous exception types, routing and priorities on page D1-2489.

• Asynchronous exception types, routing, masking and priorities on page D1-2500.

• Configurable instruction enables and disables, and trap controls on page D1-2510.

• System calls on page D1-2535.

• Mechanisms for entering a low-power state on page D1-2536.

• Self-hosted debug on page D1-2542.

• Event monitors on page D1-2544.

• Interprocessing on page D1-2545.

• The effect of implementation choices on the programmers’ model on page D1-2558.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2453
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.1 Exception levels
D1.1 Exception levels

The Armv8-A architecture defines a set of Exception levels, EL0 to EL3, where:

• If ELn is the Exception level, increased values of n indicate increased software execution privilege.

• Execution at EL0 is called unprivileged execution.

• EL2 provides support for virtualization.

• EL3 provides support for switching between two Security states, Secure state and Non-secure state.

An implementation might not include all of the Exception levels. All implementations must include EL0 and EL1.
EL2 and EL3 are optional.

Note

A PE is not required to implement a contiguous set of Exception levels. For example, it is permissible for an
implementation to include only EL0, EL1, and EL3.

The effect of implementation choices on the programmers’ model on page D1-2558 shows some example
implementations.

When executing in AArch64 state, execution can move between Exception levels only on taking an exception or on
returning from an exception:

• On taking an exception, the Exception level can only increase or remain the same.

• On returning from an exception, the Exception level can only decrease or remain the same.

The Exception level that execution changes to or remains in on taking an exception is called the target Exception
level of the exception.

Each exception type has a target Exception level that is either:

• Implicit in the nature of the exception.

• Defined by configuration bits in the System registers.

An exception cannot target EL0.

Exception levels exist within a particular Security state. The Armv8-A security model on page D1-2458 describes
this. When executing at an Exception level, the PE can access both of the following:

• The resources that are available for the combination of the current Exception level and the current Security
state.

• The resources that are available at all lower Exception levels, provided that those resources are available to
the current Security state.

This means that if the implementation includes EL3, then when execution is at EL3, the PE can access all resources
available at all Exception levels, for both Security states.

Each Exception level other than EL0 has its own translation regime and associated control registers. For information
on the translation regimes, see Chapter D5 The AArch64 Virtual Memory System Architecture.

D1.1.1 Typical Exception level usage model

The architecture does not specify what software uses which Exception level. Such choices are outside the scope of
the architecture. However, the following is a common usage model for the Exception levels:

EL0 Applications.

EL1 OS kernel and associated functions that are typically described as privileged.

EL2 Hypervisor.

EL3 Secure monitor.
D1-2454 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.2 Exception terminology
D1.2 Exception terminology

The following subsections define the terms used when describing exceptions:

• Terminology for taking an exception on page D1-2455.

• Terminology for returning from an exception on page D1-2455.

• Exception levels on page D1-2455.

• Definition of a precise exception on page D1-2455.

• Definitions of synchronous and asynchronous exceptions on page D1-2456.

D1.2.1 Terminology for taking an exception

An exception is generated when the PE first responds to an exceptional condition. The PE state at this time is the
state the exception is taken from. The PE state immediately after taking the exception is the state the exception is
taken to.

D1.2.2 Terminology for returning from an exception

To return from an exception, the PE must execute an exception return instruction. The PE state when an exception
return instruction is committed for execution is the state the exception returns from. The PE state immediately after
the execution of that instruction is the state the exception returns to.

D1.2.3 Exception levels

An Exception level, ELn, with a larger value of n than another Exception level, is described as being a higher
Exception level than the other Exception level. For example, EL3 is a higher Exception level than EL1.

An Exception level with a smaller value of n than another Exception level is described as being a lower Exception
level than the other Exception level. For example, EL0 is a lower Exception level than EL1.

An Exception level is described as:

• Using AArch64 when execution in that Exception level is in the AArch64 Execution state.

• Using AArch32 when execution in that Exception level is in the AArch32 Execution state.

D1.2.4 Definition of a precise exception

An exception is described as precise when the exception handler receives the PE state and memory system state that
is consistent with the PE having executed all of the instructions up to but not including the point in the instruction
stream where the exception was taken, and none afterwards.

An exception is described as imprecise if it is not precise.

Other than the SError interrupt, all exceptions taken to AArch64 state are required to be precise. For each
occurrence of an SError interrupt, whether the interrupt is precise or imprecise is IMPLEMENTATION DEFINED.

The terms precise and imprecise can also apply to Debug entry state. See Imprecise entry to Debug state on
page H2-7342.

Where a synchronous exception that is taken to AArch64 state is generated as part of an instruction that performs
more than one single-copy atomic memory access, the definition of precise permits that the values in registers or
memory affected by the instructions can be UNKNOWN, provided that:

• The accesses affecting those registers or memory locations do not, themselves, generate exceptions.

• The registers are not involved in the calculation of the memory address used by the instruction.

Also, for synchronous Data Aborts and Watchpoints from load or store instructions executed in AArch64 state:

• If the load or store instruction specifies writeback of a new base address, the base address is restored to the
original value on taking the exception.

• If the instruction was a load to either the base address register or the offset register, that register is restored
to the original value. Any other destination registers become UNKNOWN.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2455
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.2 Exception terminology
• If the instruction was a load that does not load the base address register or the offset register, then the
destination registers become UNKNOWN.

Examples of instructions that perform more than one single-copy atomic memory access are the AArch32 LDM and
STM instructions and the AArch64 LDP and STP instructions.

Note

For the definition of a single-copy atomic access, see Properties of single-copy atomic accesses on page B2-130.

D1.2.5 Definitions of synchronous and asynchronous exceptions

An exception is described as synchronous if all of the following apply:

• The exception is generated as a result of direct execution or attempted execution of an instruction.

• The return address presented to the exception handler is guaranteed to indicate the instruction that caused the
exception.

• The exception is precise.

For more information about synchronous exceptions, see Synchronous exception types, routing and priorities on
page D1-2489.

An exception is described as asynchronous if any of the following apply:

• The exception is not generated as a result of direct execution or attempted execution of the instruction stream.

• The return address presented to the exception handler is not guaranteed to indicate the instruction that caused
the exception.

• The exception is imprecise.

For more information about asynchronous exceptions, see Asynchronous exception types, routing, masking and
priorities on page D1-2500.
D1-2456 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.3 Execution state
D1.3 Execution state

The Execution states are:

AArch64 The 64-bit Execution state.

AArch32 The 32-bit Execution state. Operation in this state is compatible with Armv7-A operation.

Execution state on page A1-37 gives more information about them.

Exception levels use Execution states. For example, EL0, EL1 and EL2 might all be using AArch32, under EL3
using AArch64.

This means that:

• Different software layers, such as an application, an operating system kernel, and a hypervisor, executing at
different Exception levels, can execute in different Execution states.

• The PE can change Execution states only either:

— At reset.

— On a change of Exception level.

Note

• Typical Exception level usage model on page D1-2454 shows which Exception levels different software
layers might typically use.

• The effect of implementation choices on the programmers’ model on page D1-2558 gives information on
supported configurations of Exception levels and Execution states.

The interaction between the AArch64 and AArch32 Execution states is called interprocessing.For more information
on interprocessing, see Interprocessing on page D1-2545.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2457
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.4 Security state
D1.4 Security state

The Armv8-A architecture provides two Security states, each with an associated physical memory address space,
as follows:

Secure state When in this state, the PE can access both the Secure physical address space and the
Non-secure physical address space.

Non-secure state When in this state, the PE:

• Can access only the Non-secure physical address space.

• Cannot access the Secure system control resources.

For information on how virtual addresses translate onto Secure physical and Non-secure addresses, see About the
Virtual Memory System Architecture (VMSA) on page D5-2674.

D1.4.1 The Armv8-A security model

The principles of the Armv8-A security model are:

• If the implementation includes EL3, then it has two Security states, Secure and Non-secure, and:

— EL3 exists only in Secure state.

— A change from Non-secure state to Secure state can only occur on taking an exception to EL3.

— A change from Secure state to Non-secure state can only occur on an exception return from EL3.

— If FEAT_SEL2 is not implemented, EL2 exists only in Non-secure state.

— If FEAT_SEL2 is implemented, EL2 can exist in Secure state. It is enabled when the value of
SCR_EL3.EEL2 is 1.

• If the implementation does not include EL3, it has one Security state, that is:

— IMPLEMENTATION DEFINED, if the implementation does not include EL2 or if FEAT_SEL2 is
implemented.

— Non-secure state, if the implementation includes EL2 and FEAT_SEL2 is not implemented.

Security model when EL3 is using AArch64 state

Figure D1-1 on page D1-2459 shows the security model when EL3 is using AArch64 state. The figure shows how
instances of EL0 and EL1 are present in both Security states. It also shows the expected software usage of the
different Exception levels.
D1-2458 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.4 Security state
Figure D1-1 Armv8-A security model when EL3 is using AArch64

For an overview of the Security model when EL3 is using AArch32, see Figure G1-1 on page G1-6020.

Secure App2Secure App1App2App1App2App1

AArch32 or
AArch64†

Guest OS1

AArch32 or AArch64‡

AArch32 or
AArch64†

AArch32 or
AArch64†

AArch32 or
AArch64†

AArch32 or
AArch64†

AArch32 or
AArch64†

Guest OS2

AArch32 or AArch64‡

Secure OS

AArch32 or AArch64

Hypervisor

AArch32 or AArch64

Secure monitor

AArch64

EL0

† AArch64 permitted only if EL1 is using AArch64
‡ AArch64 permitted only if EL2 is using AArch64

EL1

EL2

EL3

Non-secure state Secure state

Secure Hypervisor

AArch64
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2459
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.5 Virtualization
D1.5 Virtualization

The support for virtualization described in this section applies only to an implementation that includes EL2.

When enabled in the current Security state, EL2 provides a set of features that support virtualizing an Armv8-A
implementation. The basic model of a virtualized system involves:

• A hypervisor, running in EL2, that is responsible for switching between virtual machines. A virtual machine
comprises EL1 and EL0.

• A number of Guest operating systems. A Guest OS runs on a virtual machine in EL1.

• For each Guest operating system, applications, that run on the virtual machine of that Guest OS, usually in
EL0.

Note

In some systems, a Guest OS is unaware that it is running on a virtual machine, and is unaware of any other Guest
OS. In other systems, a hypervisor makes the Guest OS aware of these facts. The Armv8-A architecture supports
both of these models.

The hypervisor assigns a VMID to each virtual machine.

EL2 supports Guest OS management and provides controls to:

• Provide virtual values for the contents of a small number of identification registers. A read of one of these
registers by a Guest OS or the applications for a Guest OS returns the virtual value.

• Trap various operations, including memory management operations and accesses to many other registers. A
trapped operation generates an exception that is taken to EL2. See Configurable instruction enables and
disables, and trap controls on page D1-2510.

• Route interrupts to the appropriate one of:

— The current Guest OS.

— A Guest OS that is not currently running.

— The hypervisor.

Armv8.1 introduces the Virtualization Host Extensions (VHE) that provide enhanced support for Type 2
hypervisors. For more information, see Virtualization Host Extensions on page D5-2787.

In an implementation that includes EL2:

• The implementation provides an independent translation regime for memory accesses from EL2, the EL2
translation regime. An implementation that includes FEAT_VHE also supports an alternative EL2&0
translation regime.

Note
An implementation that includes FEAT_VHE can be configured so that the EL2&0 translation regime is used
both for accesses from EL2 and for accesses from EL0.

• For the EL1&0 translation regime, address translation occurs in two stages:

— Stage 1 maps the virtual address (VA) to an intermediate physical address (IPA). This is managed at
EL1, usually by a Guest OS. The Guest OS believes that the IPA is the physical address (PA).

— Stage 2 maps the IPA to the PA. This is managed at EL2. The Guest OS might be completely unaware
of this stage.

• When FEAT_NV is implemented, a Guest Hypervisor can be run at EL1. For more information on how this
affects address translation, see Nested virtualization on page D5-2793.
D1-2460 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.5 Virtualization
• When FEAT_NV2 is implemented, then accesses of EL1 and EL2 registers that would be trapped are instead
transformed into memory accesses. For more information, see Enhanced support for nested virtualization on
page D5-2795.

For more information on the translation regimes, see Chapter D5 The AArch64 Virtual Memory System Architecture.

D1.5.1 The effect of implementing EL2 on the Exception model

An implementation that includes EL2 implements the following exceptions:

• HVC on page C6-1035.

• Traps to EL2. EL2 configurable controls on page D1-2516, describes these.

• All of the virtual interrupts:

— Virtual SError.

— Virtual IRQ.

— Virtual FIQ.

All virtual interrupts are always taken to EL1, and can only be taken from EL1 or EL0.

Each of the virtual interrupts can be independently enabled using controls at EL2.

Each of the virtual interrupts has a corresponding physical interrupt. See Virtual interrupts on page D1-2461.

When a virtual interrupt is enabled, its corresponding physical exception is taken to EL2, unless EL3 has configured
that physical exception to be taken to EL3.

For more information, see Asynchronous exception types, routing, masking and priorities on page D1-2500.

An implementation that includes EL2 also:

• Provides controls that can be used to route some synchronous exceptions. For more information, see:

— Routing exceptions from EL0 to EL2 on page D1-2489.

— Routing debug exceptions on page D2-2569.

• Provides mechanisms to trap PE operations to EL2. For more information, see EL2 configurable controls on
page D1-2516.

When an operation is trapped to EL2, the hypervisor typically either:

— Emulates the required operation. The application running in the Guest OS is unaware of the trap.

— Returns an error to the Guest OS.

Virtual interrupts

The virtual interrupts have names that correspond to the physical interrupts, as shown in Table D1-1 on
page D1-2461.

Software executing in EL2 can use virtual interrupts to signal physical interrupts to EL1 and EL0. Example D1-1
on page D1-2462 shows a usage model for virtual interrupts.

Table D1-1 The virtual interrupt

Physical interrupt Corresponding virtual interrupt

SError Virtual SError

IRQ Virtual IRQ

FIQ Virtual FIQ
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2461
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.5 Virtualization
Example D1-1 Virtual interrupt usage model

A virtual interrupt usage model is as follows:

1. Software executing at EL2 routes a physical interrupt to EL2.

2. When a physical interrupt of that type occurs, the exception handler executing in EL2 determines whether
the interrupt can be handled in EL2 or requires routing to a Guest OS in EL1. If the interrupt requires routing
to a Guest OS:

• If the Guest OS is currently running, the hypervisor uses the appropriate virtual interrupt type to signal
the physical interrupt to the Guest OS.

• If the Guest OS is not currently running, the physical interrupt is marked as pending for the guest OS.
When the hypervisor next switches to the virtual machine that is running that Guest OS, the hypervisor
uses the appropriate virtual interrupt type to signal the physical interrupt to the Guest OS.

A hypervisor can prevent EL1 and EL0 from distinguishing a virtual interrupt from a physical interrupt.
D1-2462 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.6 Registers for instruction processing and exception handling
D1.6 Registers for instruction processing and exception handling

In the Arm architecture, registers fall into two main categories:

• Registers that provide system control or status reporting. These are described in Chapter D13 AArch64
System Register Descriptions.

• Registers that are used in instruction processing, for example to accumulate a result, and in handling
exceptions. This section introduces these registers, for execution in AArch64 state.

This section contains the following subsections:

• The general-purpose registers, R0-R30 on page D1-2463.

• The stack pointer registers on page D1-2463.

• The SIMD and floating-point registers, V0-V31 on page D1-2464.

• Saved Program Status Registers (SPSRs) on page D1-2464.

• Exception Link Registers (ELRs) on page D1-2465.

D1.6.1 The general-purpose registers, R0-R30

The general-purpose register bank is used when processing instructions in the base instruction set. It comprises 31
general-purpose registers, R0-R30.

These registers can be accessed as 31 64-bit registers, X0-X30, or 31 32-bit registers, W0-W30. See Register size
on page C6-872.

For information on the format of these registers, see Registers in AArch64 state on page B1-117.

D1.6.2 The stack pointer registers

In AArch64 state, in addition to the general-purpose registers, a dedicated stack pointer register is implemented for
each implemented Exception level. The stack pointer registers are:

• SP_EL0 and SP_EL1.

• If the implementation includes EL2, SP_EL2.

• If the implementation includes EL3, SP_EL3.

Note

The four stack pointer register names define an architecture state requirement for four registers. For information on
how to access these registers, and access restrictions, see Special-purpose registers on page C5-408.

For information on stack pointer alignment restrictions, see SP alignment checking on page D1-2469.

Stack pointer register selection

When executing at EL0, the PE uses the EL0 stack pointer, SP_EL0.

When executing at any other Exception level, the PE can be configured to use either SP_EL0 or the stack pointer
for that Exception level, SP_ELx.

By default, taking an exception selects the stack pointer for the target Exception level, SP_ELx. For example, taking
an exception to EL1 selects SP_EL1. Software executing at the target Exception level can then choose to change
the stack pointer to SP_EL0 by updating PSTATE.SP.

This applies even if taking the exception does not change the Exception level. For example, if the PE is executing
at EL1 and the PE is using the SP_EL0 stack pointer, then on taking an exception that targets EL1, the stack pointer
changes to SP_EL1.

The selected stack pointer can be indicated by a suffix to the Exception level:

t Indicates use of the SP_EL0 stack pointer.

h Indicates use of the SP_ELx stack pointer.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2463
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.6 Registers for instruction processing and exception handling
Note

The t and h suffixes are based on the terminology of thread and handler.

Table D1-2 on page D1-2464 shows the set of stack pointer options.

D1.6.3 The SIMD and floating-point registers, V0-V31

The SIMD and floating-point instructions share a common bank of registers for floating-point, vector, and other
SIMD-related scalar operations.

The SIMD and floating-point register bank comprises 32 quadword (128-bit) registers, V0-V31.

These registers can be accessed as:

• 32 doubleword (64-bit) registers, D0-D31.

• 32 word (32-bit) registers, S0-S31.

• 32 halfword (16-bit) registers, H0-H31.

• 32 byte (8-bit) registers, B0-B31.

For information on the format of these registers, see Registers in AArch64 state on page B1-117.

D1.6.4 Saved Program Status Registers (SPSRs)

The Saved Program Status Registers (SPSRs) are used to save PE state on taking exceptions.

In AArch64 state, there is an SPSR at each Exception level exceptions can be taken to, as follows:

• SPSR_EL1, for exceptions taken to EL1 using AArch64.

• If EL2 is implemented, SPSR_EL2, for exceptions taken to EL2 using AArch64.

• If EL3 is implemented, SPSR_EL3, for exceptions taken to EL3 using AArch64.

Note

Exceptions cannot be taken to EL0.

When the PE takes an exception, the PE state is saved from PSTATE in the SPSR at the Exception level the
exception is taken to. For example, if the PE takes an exception to EL1, the PE state is saved in SPSR_EL1. For
more information on PSTATE, see Process state, PSTATE on page D1-2466.

Saving the PE state means the exception handler can:

• On return from the exception, restore the PE state to the state stored in the SPSR at the Exception level the
exception is returning from. For example, on returning from EL1, the PE state is restored to the state stored
in SPSR_EL1.

• Examine the value that PSTATE had when the exception was taken, for example to determine the Execution
state and Exception level in which the instruction that caused an exception was executed.

Table D1-2 AArch64 stack pointer options

Exception level (EL) Stack pointer (SP) options

EL0 SP_EL0t

EL1 SP_EL1t, SP_EL1h

EL2 SP_EL2t, SP_EL2h

EL3 SP_EL3t, SP_EL3h
D1-2464 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.6 Registers for instruction processing and exception handling
Note

• All PSTATE fields are saved, including those which have no direct read and write access, and those that are
meaningful only in AArch32 state.

• Those PSTATE fields that are meaningful only in AArch32 state are saved when an exception is taken from
AArch32 state to AArch64 state.

The SPSRs are UNKNOWN on a Warm reset.

SPSR bits that are defined as RES0 on an exception are ignored:

• If taken from AArch32 state, on any exception return to AArch32 state.

• If taken from AArch64 state, on any exception return to AArch64 state.

Pseudocode description of SPSR operations

The SPSR[] pseudocode function accesses the current SPSR, and is common to AArch32 and AArch64 operations.

The SetPSTATEFromPSR() pseudocode function updates PSTATE from an SPSR.

D1.6.5 Exception Link Registers (ELRs)

Exception Link Registers hold preferred exception return addresses.

Whenever the PE takes an exception, the preferred return address is saved in the ELR at the Exception level the
exception is taken to. For example, whenever the PE takes an exception to EL1, the preferred return address is saved
in ELR_EL1.

On an exception return, the PC is restored to the address stored in the ELR. For example, on returning from EL1,
the PC is restored to the address stored in ELR_EL1.

AArch64 state provides an ELR for each Exception level exceptions can be taken to. The ELRs that AArch64 state
provides are:

• ELR_EL1, for exceptions taken to EL1.

• If EL2 is implemented, ELR_EL2, for exceptions taken to EL2.

• If EL3 is implemented, ELR_EL3, for exceptions taken to EL3.

On taking an exception from AArch32 state to AArch64 state, bits[63:32] of the ELR are set to zero.

The preferred return address depends on the nature of the exception. For more information, see Preferred exception
return address on page D1-2476.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2465
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.7 Process state, PSTATE
D1.7 Process state, PSTATE

In the Armv8-A architecture, Process state or PSTATE is an abstraction of process state information. All of the
instruction sets provide instructions that operate on elements of PSTATE.

PSTATE includes all of the following:

• Fields that are meaningful only in AArch32 state.

• Fields that are meaningful only in AArch64 state.

• Fields that are meaningful in both Execution states.

PSTATE is defined in pseudocode as the PSTATE structure, of type ProcState. ProcState is defined in Chapter J1
Armv8 Pseudocode.

The PSTATE fields that are meaningful in AArch64 state are:

The Condition flags

N Negative Condition flag.

Z Zero Condition flag.

C Carry Condition flag.

V Overflow Condition flag.

Process state, PSTATE on page B1-118 gives more information about these flags.

The Execution state controls

SS Software Step bit, see Software Step exceptions on page D2-2613. On a Warm reset or
taking an exception to AArch64 state, this bit is set to 0.

IL Illegal Execution state bit, see The Illegal Execution state exception on page D1-2488.
On a Warm reset or taking an exception to AArch64 state, this bit is set to 0.

nRW Current Execution state, see Execution state on page D1-2457. This bit is 0 when the
current Execution state is AArch64. This bit is set to 0:

• On a Warm reset into an Exception level that is using AArch64.

• On taking an exception to an Exception level that is using AArch64.

EL Current Exception level, see Exception levels on page D1-2454. On a Warm reset to
AArch64 state, this field holds the encoding for the highest implemented Exception
level.

Note
The Arm architecture requires that a PE resets into the highest implemented Exception
level.

SP Stack pointer register selection bit, see Stack pointer register selection on
page D1-2463. On a Warm reset or taking an exception to AArch64 state, this bit is set
to 1, meaning that SP_ELx is selected.

The exception mask bits

D Debug exception mask bit, see The PSTATE debug mask bit, D on page D1-2542. On a
Warm reset or taking an exception to AArch64 state, this bit is set to 1.

A, I, F Asynchronous exception mask bits:

A SError interrupt mask bit.

I IRQ interrupt mask bit.

F FIQ interrupt mask bit.

See Asynchronous exception types, routing, masking and priorities on page D1-2500.
On a Warm reset or taking an exception to AArch64 state, each of these bits is set to 1.

Access control bits

PAN Privileged Access Never (PAN) state bit. For more information, see About PSTATE.PAN
on page D5-2755.
D1-2466 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.7 Process state, PSTATE
This bit is implemented only when FEAT_PAN is implemented.

UAO User Access Override (UAO) bit. For more information, see About PSTATE.UAO on
page D5-2756.

This bit is implemented only when FEAT_UAO is implemented.

TCO Tag Check Override (TCO) bit. For more information, see Chapter D6 Memory Tagging
Extension.

This bit is implemented only when FEAT_MTE is implemented.

When FEAT_MTE2 is not implemented it is CONSTRAINED UNPREDICTABLE whether
this bit is RES0 or behaves as if FEAT_MTE is implemented.

BTYPE Branch target identification bit. For more information, see About PSTATE.BTYPE on
page D5-2756.

This bit is implemented only when FEAT_BTI is implemented.

Timing control bits

DIT Data Independent Timing (DIT) bit. For more information, see About PSTATE.DIT on
page B1-123.

This bit is implemented only when FEAT_DIT is implemented.

On a Warm reset to AArch64 state, this bit is set to 0.

Speculation control bits

SSBS Speculative Store Bypass Safe (SSBS) bit. For more information, see Speculative Store
Bypass Safe (SSBS) on page B2-145.

This bit is implemented only when FEAT_SSBS is implemented.

On a Warm reset, this bit is set to an IMPLEMENTATION DEFINED value.

D1.7.1 Accessing PSTATE fields

In AArch64 state, PSTATE fields can be accessed using Special-purpose registers that can be directly read using the
MRS instruction, and directly written using the MSR (register) instructions. Table D1-3 on page D1-2467 shows
the Special-purpose registers that access the PSTATE fields that hold AArch64 state, when the PE is in AArch64
state. All other PSTATE fields do not have direct read and write access.

Table D1-3 Accessing PSTATE fields using MRS and MSR (register)

Special-purpose register PSTATE fields

NZCV N, Z, C, V

DAIF D, A, I, F

CurrentEL EL

SPSel SP

PAN PAN

UAO UAO

DIT DIT

SSBS SSBS

TCO TCO
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2467
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.7 Process state, PSTATE
Software can also use the MSR (immediate) instruction to directly write to PSTATE.{D, A, I, F, SP, PAN, UAO,
DIT, SSBS, TCO}. Table D1-4 on page D1-2468 shows the MSR (immediate) operands that can directly write to
these PSTATE fields when the PE is in AArch64 state.

PSTATE.{N, Z, C, V, SSBS, DIT, TCO} can be accessed at EL0. Access to PSTATE.{D, A, I, F} at EL0 using
AArch64 depends on SCTLR_EL1.UMA, see Traps to EL1 of EL0 accesses to the PSTATE.{D, A, I, F} interrupt
masks on page D1-2514. All other PSTATE access instructions can be executed at EL1 or higher and are UNDEFINED
at EL0.

Writes to the PSTATE fields have side-effects on various aspects of the PE operation. All of these side-effects are
guaranteed:

• Not to be visible to earlier instructions in the execution stream.

• To be visible to later instructions in the execution stream.

D1.7.2 The Saved Program Status Registers (SPSRs)

On taking an exception, PSTATE is preserved in the SPSR of the Exception level the exception is taken to. The
SPSRs are described in Saved Program Status Registers (SPSRs) on page D1-2464.

Table D1-4 Accessing PSTATE.{D, A, I, F, SP} using MSR (immediate)

Operand PSTATE fields Notes

DAIFSet D, A, I, F Directly sets any of the PSTATE.{D,A, I, F} bits to 1

DAIFClr D, A, I, F Directly clears any of the PSTATE.{D, A, I, F} bits to 0

SPSel SP Directly sets PSTATE.SP to either 1 or 0

PAN PAN Directly sets PSTATE.PAN to either 1 or 0

UAO UAO Directly sets PSTATE.UAO to either 1 or 0

DIT DIT Directly sets PSTATE.DIT to either 1 or 0

SSBS SSBS Directly sets PSTATE.SSBS to either 1 or 0

TCO TCOa

a. PSTATE.TCO can also be accessed by an MSR Xt instruction.

Directly sets PSTATE.TCO to either 1 or 0.
D1-2468 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.8 Program counter and stack pointer alignment
D1.8 Program counter and stack pointer alignment

This section contains the following:

• PC alignment checking on page D1-2469.

• SP alignment checking on page D1-2469.

D1.8.1 PC alignment checking

PC alignment checking generates a PC alignment fault exception associated with the instruction fetch if, in
AArch64 state, there is an attempt to architecturally execute an instruction that was fetched with a misaligned PC.
A misaligned PC is when bits[1:0] of the PC are not 0b00.

Note

As with Instruction Aborts, speculative fetching of an instruction does not generate an exception. An exception
occurs only on an attempt to architecturally execute the instruction.

If an exception is generated as a result of an instruction fetch at EL0, it is taken to EL1. If an exception occurs when
HCR_EL2.TGE bit is 1 and EL2 is enabled in the current Security state, it is taken to EL2. If an exception is
generated as a result of an instruction fetch at any other Exception level, the Exception level is unchanged.

A PC misalignment sets the EC field in the Exception Syndrome Register (ESR) to 0x22, for the ESR associated
with the target Exception level.

When the exception is taken to an Exception level using AArch64, the associated Exception Link Register holds the
entire PC in its misaligned form, as does the FAR_ELx for the Exception level that the exception is taken to.

Exception return and PC alignment on page D1-2486 gives more information on PC alignment checking associated
with exception returns.

Note

A misalignment of the PC is a common indication of a serious error, for example software corruption of an address.

The pseudocode function AArch64.CheckPCAlignment() performs PC alignment checking in AArch64 state. When
necessary it calls AArch64.PCAlignmentFault() to generate an exception.

D1.8.2 SP alignment checking

A misaligned stack pointer is where bits[3:0] of the stack pointer are not 0b0000, when the stack pointer is used as
the base address of the calculation, regardless of any offset applied by the instruction.

The PE can be configured so that if a load or store instruction uses a misaligned stack pointer, the PE generates an
SP alignment fault exception on the attempt to execute the instruction. In this configuration, CheckSPAlignment()
performs the stack pointer check, and calls AArch64.SPAlignmentFault() if a misaligned stack pointer is found.

Note

• As with Data Aborts, a speculative data access to memory using the stack pointer does not generate the
exception. The exception occurs only on an attempt to architecturally execute the instruction.

• Prefetch memory abort instructions do not cause synchronous exceptions. See Prefetch memory on
page C3-235.

Stack pointer alignment checking is only performed in AArch64 state, and can be enabled for each Exception level
as follows:

• SCTLR_EL1.{SA0, SA} controls EL0 and EL1, respectively.

• SCTLR_EL2.SA controls EL2.

• SCTLR_EL3.SA controls EL3.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2469
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.8 Program counter and stack pointer alignment
If an exception is generated as a result of a load or store at EL0, it is taken as an exception to EL1. If an exception
occurs when the HCR_EL2.TGE bit is set and EL2 is enabled in the current Security state, it is taken to EL2. If an
exception is generated as a result of a load or store at any other Exception level, the Exception level is unchanged.

A stack pointer misalignment sets the EC field to 0x26, in the ESR associated with the target Exception level. If
memory alignment checking and stack pointer alignment checking are enabled, then an SP alignment fault has
priority in setting the value of the EC field, in the ESR associated with the target Exception level.

The pseudocode function CheckSPAlignment() performs the stack pointer alignment check. When necessary it calls
AArch64.SPAlignmentFault() to generate an exception.
D1-2470 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.9 Reset
D1.9 Reset

The Armv8-A architecture supports the following resets:

Cold reset Resets all of the logic on which the PE executes, including the integrated debug
functionality.

In some contexts, this logic is described as belonging to the Cold reset domain.

Warm reset Resets some of the logic on which the PE executes. However, some state is purposefully
unchanged by a Warm reset.

In some contexts, this logic is described as belonging to the Warm reset domain.

All logic on the which the PE executes that is reset by a Warm reset is also reset by a Cold reset.

Note

The Armv8-A architecture also supports an external debug reset. See External debug register resets on
page H8-7481.

If an RMR_ELx register is implemented:

• A Warm reset permits debugging across a reset of the PE logic.

• Writing 1 to RMR_ELx.RR requests a Warm reset.

The mechanisms, other than RMR_ELx.RR, to assert these resets are IMPLEMENTATION DEFINED. It is
IMPLEMENTATION DEFINED whether:

• It is possible to independently assert an External Debug reset and a Cold reset.

• It is possible to assert a Warm reset, as opposed to asserting a Cold reset, other than by the use of
RMR_ELx.RR.

Note

Arm recommends that:

• If separate Core and Debug power domains are implemented, as described in Reset and debug on
page H6-7452, then a Cold reset can be asserted independently of External Debug reset.

• A Warm reset can be asserted to permit debugging across a reset of the PE logic.

This means that an implementation can define other resets according to the requirements the implementation or
system must fulfil. These other resets are outside the scope of the Armv8-A architecture. However, they can be
mapped onto the resets described here.

In the description that follows, the term reset is used in contexts where there is no difference between the effect of
a Cold reset and the effect of a Warm reset.

On a reset, the PE enters the highest implemented Exception level.

If the highest implemented Exception level can use either Execution state, then:

• The implementation must include a Reset Management Register (RMR). Only one RMR is implemented. The
RMR implemented is the RMR is associated with the highest Exception level.

• On a Cold reset, the Execution state entered is determined by a configuration input signal.

• On a Warm reset, the Execution state entered is determined by RMR_ELx.AA64.

If the highest implemented Exception level is configured to use AArch64 state, then on reset:

• The stack pointer for the highest implemented Exception level, SP_ELx, is selected.

• Execution starts at an IMPLEMENTATION DEFINED address, anywhere in the physical address range. The
RVBAR associated with the highest implemented Exception level, RVBAR_EL1, RVBAR_EL2, or
RVBAR_EL3, holds this address.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2471
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.9 Reset
The remainder of this section contains the following:

• PE state on reset to AArch64 state on page D1-2472.

• Code sequence to use RMR_ELx.RR to request a Warm reset on page D1-2474.

For more information about reset, see:

• Behavior of caches at reset on page D4-2643.

• TLB behavior at reset on page D5-2814.

• Reset and debug on page H6-7452.

D1.9.1 PE state on reset to AArch64 state

Note

See the ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0
for the reset requirements for GIC System registers.

Immediately after a reset, much of the PE state is UNKNOWN. However, some of the PE state is defined. If the PE
resets to AArch64 state using either a Cold or a Warm reset, the PE state that is defined is as follows:

• Each of the PSTATE.{D, A, I, F} interrupt masks is set to 1.

• The Software step control bit, PSTATE.SS, is set to 0.

• The IL process state bit, PSTATE.IL, is set to 0.

• All general-purpose, and SIMD and floating-point registers are UNKNOWN.

• The ELR and SPSR for each Exception level are UNKNOWN.

• The stack pointer register for each Exception level is UNKNOWN.

• The global exclusive monitor and local exclusive monitor for the PE are UNKNOWN.

• Unless explicitly defined in this subsection, each System register at each Exception level is in an
architecturally UNKNOWN state.

• The TLBs and caches are in an IMPLEMENTATION DEFINED state. This means that the TLBs, the caches, or
both, might require invalidation using IMPLEMENTATION DEFINED invalidation sequences before the memory
management system is enabled or Normal memory accesses are permitted to be Cacheable.

Note

— On a Warm reset, System register Cacheability control fields force all Normal memory accesses to be
treated as Non-cacheable. This applies only for the translation regime used by the Exception level and
Security state entered on reset. For information about these controls see Enabling and disabling the
caching of memory accesses on page D4-2641.

— The implementation might include IMPLEMENTATION DEFINED resets. If it does, each of these resets
might treat the cache and TLB state differently. The Armv8-A architecture permits this.

— Different IMPLEMENTATION DEFINED invalidation sequences might be required for different
IMPLEMENTATION DEFINED resets.

— In some implementations, the IMPLEMENTATION DEFINED invalidation sequence might be a NOP.

• In the SCTLR_ELx for the highest implemented Exception level:

— Each of the {M, C, I} bits is set to 0

— The EE bit is set to an IMPLEMENTATION DEFINED value, typically defined by a configuration input.

• If an RMR is implemented, RMR_ELx.RR is set to 0. ELx in this context is the highest implemented
Exception level.

• PMCR_EL0.E is set to 0.
D1-2472 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.9 Reset
Note

This means the Performance Monitors cannot assert interrupts at reset.

• OSDLR_EL1.DLK bit is set to 0.

• Each of MDCCINT_EL1.{TX, RX} is set to 0.

• EDPRCR.CWRR is set to 0.

• EDPRSR.SR is set to 1.

• If the implementation includes EL3, then each of MDCR_EL3.{EPMAD, EDAD, SPME} is set to 0.

• If the implementation includes EL2, then MDCR_EL2.HPMN is set to the value of PMCR_EL0.N.

• EDESR.OSUC is set to 0.

• If FEAT_DoPD is not implemented,EDESR.SS is set to the value of EDECR.SS.

• If FEAT_DoPD is implemented, EDESR.RC is set to the value of CTIDEVCTL.RCE. Otherwise EDESR.RC
is set to the value of EDECR.RCE.

Note

On an External debug reset, EDECR.{SS, RCE} are set to 0. If FEAT_DoPD is implemented,
CTIDEVCTL.{OSUCE, RCE} are set to 0.

Additionally, for a Cold reset into AArch64 state:

• If an RMR is implemented, RMR_ELx.AA64 is set to 1. ELx in this context is the highest implemented
Exception level.

• Each of MDCCSR_EL0.{TXfull, RXfull} is set to 0.

• If FEAT_DoPD is not implemented, DBGPRCR_EL1.CORENPDRQ is set to the value of
EDPRCR.COREPURQ.

Note

An External Debug reset sets EDPRCR.COREPURQ to 0, see External debug register resets on
page H8-7481. If an External Debug reset and a Cold reset coincide, both DBGPRCR_EL1.CORENPDRQ
and EDPRCR.COREPURQ are reset to 0.

If FEAT_DoPD is implemented, DBGPRCR_EL1.CORENPDRQ is set to an IMPLEMENTATION DEFINED
choice of 0 or 1 if the powerup request is implemented and asserted, otherwise is set to 0.

• The debug CLAIM bits are reset to 0.

Note
These are the bits that are set to 1 by writing to DBGCLAIMSET_EL1.CLAIM, and cleared to 0 by writing
to DBGCLAIMCLR_EL1.CLAIM.

• Each of EDSCR.{RXO, TXU, INTdis, TDA, MA, HDE, ERR, RXfull, TXfull} is set to 0.

• Each of EDECCR.{NSE, SE} is set to 0.

• If FEAT_DoPD is implemented, EDECR.SS is set to 0.

• OSLSR_EL1.OSLK is set to 1.

• In the EDPRSR:

— The SPMAD, SDAD fields are set to 0.

— The SPD field is set to 1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2473
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.9 Reset
• Each field of AMCNTENCLR0_EL0, AMCNTENCLR1_EL0, AMCNTENSET0_EL0, and
AMCNTENSET1_EL0 is set to 0.

• Each of the implemented architected activity monitor counters AMEVCNTR0<n>_EL0 and each of the
implemented auxiliary activity monitor counters AMEVCNTR1<n>_EL0 are set to 0.

For more information about resets in AArch64 System registers, see Chapter D13 AArch64 System Register
Descriptions.

D1.9.2 Code sequence to use RMR_ELx.RR to request a Warm reset

The following assembler sequence uses RMR_ELx.RR to request a Warm reset:

; in addition, interrupts and debug requests for this PE should be disabled
; in the system before running this sequence to ensure the WFI suspends execution
 MOV Wy, #3 ; for AArch64, #2 for AArch32; y is any register
 DSB ; ensure all stores etc are complete
 MSR RMR_ELx, Wy ; request the reset
 ISB ; synchronise change to the RMR
Loop
 WFI ; enter a quiescent state
 B Loop

D1.9.3 Pseudocode description of reset

The AArch64.TakeReset() pseudocode function performs a reset into AArch64 state.

AArch64.TakeReset() calls the functions AArch64.ResetGeneralRegisters(), AArch64.ResetSIMDFPRegisters(),
AArch64.ResetSpecialRegisters(), AArch64.ResetSystemRegisters(), and ResetExternalDebugRegisters().

AArch64.ResetSystemRegisters() resets all System registers to their reset state as defined in the register descriptions
in PE state on reset to AArch64 state on page D1-2472 and Chapter D13 AArch64 System Register Descriptions.

Note

The AArch64.ResetSystemRegisters() function only resets the System registers.

ResetExternalDebugRegisters() resets all external debug registers to their reset state as defined in the register
descriptions in Chapter H9 External Debug Register Descriptions.
D1-2474 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.10 Exception entry
D1.10 Exception entry

Exceptions are targeted at particular Exception levels. The Exception level that an exception targets is either
programmed by software, or is determined by the nature of the exception.

Under no circumstances do exceptions cause execution to move to a lower Exception level.

If an asynchronous exception targets a lower Exception level, the exception is not taken and remains pending. See
Asynchronous exception routing on page D1-2501 and Asynchronous exception masking on page D1-2504.

Note

The construction of the architecture means that usually, it is impossible for an exception to target a lower Exception
level.

The Security state can only change on taking an exception if taken from Non-secure state to EL3.

Note

Taking an exception to EL3 from any Exception level has no effect on the value of the SCR_EL3.NS bit.

On taking an exception to AArch64 state:

• The PE state is saved in the SPSR_ELx at the target Exception level. See Saved Program Status Registers
(SPSRs) on page D1-2464.

• The preferred return address is saved in the ELR_ELx at the target Exception level. See Exception Link
Registers (ELRs) on page D1-2465.

• All of PSTATE.{D, A, I, F} are set to 1. See Process state, PSTATE on page D1-2466.

• PSTATE.SSBS is set to the value of SCTLR_ELx.DSSBS.

• If FEAT_UAO is implemented, PSTATE.UAO is set to 0. See Process state, PSTATE on page D1-2466.

• If the exception is a synchronous exception or an SError interrupt, information characterizing the reason for
the exception is saved in the ESR_ELx at the target Exception level. See Use of the ESR_EL1, ESR_EL2, and
ESR_EL3 on page D1-2478.

• If FEAT_MTE is implemented, PSTATE.TCO is set to 1. See Process state, PSTATE on page D1-2466.

• If FEAT_BTI is implemented, on taking an asynchronous exception from AArch64 to AArch64,
PSTATE.BTYPE is copied to SPSR_ELx.BTYPE and then set to 0.

• If FEAT_BTI is implemented, on taking certain types of synchronous exception from AArch64 to AArch64,
PSTATE.BTYPE is copied to SPSR_ELx.BTYPE and then set to 0. These types of synchronous exceptions
are:

— Software Step exception.

— PC alignment fault exception.

— Instruction Abort exception.

— Breakpoint exceptions or Address Matching Vector Catch exception.

— Illegal Execution state exception.

— Software Breakpoint exception.

— Branch Target exception.

On taking any other synchronous exception from AArch64 to AArch64, it is CONSTRAINED UNPREDICTABLE
whether:

— SPSR_ELx.BTYPE is set to the value of PSTATE.BTYPE.

— SPSR_ELx.BTYPE is set to 0.

PSTATE.BTYPE is then set to 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2475
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.10 Exception entry
• The stack pointer register selected is the dedicated stack pointer register for the target Exception level. See
The stack pointer registers on page D1-2463.

• For a physical SError interrupt exception, the pending state of the physical SError is cleared when any of:

— The SError interrupt is edge-triggered.

— FEAT_DoubleFault is implemented.

— If The Reliability, Availability, and Serviceability Extension is implemented, and on taking the SError
interrupt, the syndrome recorded in ESR_ELx indicates an SError other than IMPLEMENTATION
DEFINED or uncategorized SError interrupt syndrome.

Otherwise, it is IMPLEMENTATION DEFINED whether the pending state of the physical SError is cleared.

This IMPLEMENTATION DEFINED behavior might vary according to the nature of the SError interrupt.

• For a virtual SError interrupt exception, the pending state of the virtual SError, held in the HCR_EL2.VSE
bit, is cleared to zero. See Virtual interrupts on page D1-2506.

• If FEAT_IESB is implemented, when the Effective value of the SCTLR_ELx.IESB bit at the target Exception
level is 1, the PE inserts an error synchronization event. See Arm® Reliability, Availability, and Serviceability
(RAS) Specification, ARMv8, for the ARMv8-A architecture profile.

• Execution moves to the target Exception level, and starts at the address defined by the exception vector.
Which exception vector is used is also an indicator of whether the exception came from a lower Exception
level or the current Exception level. See Exception vectors on page D1-2477.

• If an Instruction Abort exception, Data Abort exception, PC alignment fault exception, or a Watchpoint
exception is taken to an Exception level using AArch64, the faulting virtual address is saved in FAR_ELx.
For more information, see Validity of FAR_ELx on page D1-2484.

• If an Instruction Abort exception, or Data Abort exception is taken to EL2 and the fault is one connected with
stage 2 translation, the faulting IPA is saved in HPFAR_EL2. For more information, see Validity of
HPFAR_EL2 on page D1-2484.

If FEAT_ExS is implemented and SCTLR_ELx.EIS is 0, though exception entry is not a context synchronization
event, the indirect writes to ESR_ELx, FAR_ELx, SPSR_ELx, ELR_ELx, and HPFAR_EL2 due to exception entry
are synchronized so that a direct read of the register after exception entry sees the indirectly written value caused
by the exception entry.

Note

On exception entry, the memory transactions, including instruction fetches, from an exception level always use the
translation resources associated with that translation regime.

The remainder of this section contains the following:

• Preferred exception return address on page D1-2476.

• Exception vectors on page D1-2477.

• Pseudocode description of exception entry to AArch64 state on page D1-2478.

• Exception classes and the ESR_ELx syndrome registers on page D1-2478.

• Summary of register updates on faults taken to an Exception level that is using AArch64 on page D1-2483.

D1.10.1 Preferred exception return address

For an exception taken to an Exception level using AArch64, the Exception Link Register for that Exception level,
ELR_ELx, holds the preferred exception return address. The preferred exception return address depends on the
nature of the exception, as follows:

• For asynchronous exceptions, it is the address of the instruction following the instruction boundary at which
the interrupt occurs. Therefore, it is the address of the first instruction that did not execute, or did not
complete execution, as a result of taking the interrupt.
D1-2476 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.10 Exception entry
• For synchronous exceptions other than system calls, it is the address of the instruction that generates the
exception.

• For exception generating instructions, it is the address of the instruction that follows the exception generating
instruction.

Note

If an exception generating instruction is trapped, disabled, or is UNDEFINED because the Exception level has
insufficient privilege to execute the instruction, the preferred exception return address is the address of the exception
generating instruction.

When an exception is taken from an Exception level using AArch32 to an Exception level using AArch64, the top
32 bits of the modified ELR_ELx are 0.

D1.10.2 Exception vectors

When the PE takes an exception to an Exception level that is using AArch64, execution is forced to an address that
is the exception vector for the exception. The exception vector exists in a vector table at the Exception level the
exception is taken to.

A vector table occupies a number of word-aligned addresses in memory, starting at the vector base address.

Each Exception level has an associated Vector Base Address Register (VBAR), which defines the exception base
address for the table at that Exception level.

For exceptions taken to AArch64 state, the vector table provides the following information:

• Whether the exception is one of the following:

— Synchronous exception.

— SError.

— IRQ.

— FIQ.

• Information about the Exception level that the exception came from, combined with information about the
stack pointer in use, and the state of the register file.

Table D1-5 on page D1-2477 shows this.

Table D1-5 Vector offsets from vector table base address

Exception taken from

Offset for exception type

Synchron
ous

IRQ or
vIRQ

FIQ or
vFIQ

SError or
vSError

Current Exception level with SP_EL0. 0x000a 0x080 0x100 0x180

Current Exception level with SP_ELx, x>0. 0x200a 0x280 0x300 0x380

Lower Exception level, where the implemented level immediately lower
than the target level is using AArch64.b

0x400a 0x480 0x500 0x580

Lower Exception level, where the implemented level immediately lower
than the target level is using AArch32.b

0x600a 0x680 0x700 0x780

a. When FEAT_DoubleFault is implemented, SCR_EL3.EASE is set to 1, and the exception is a synchronous External abort taken to EL3, the
exception is routed to the offset in the SError or vSError column.

b. For exceptions taken to EL3, if EL2 is implemented, the level immediately lower than the target level is EL2 if the exception was taken from
Non-secure state, but EL1 if the exception was taken from Secure EL1 or EL0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2477
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.10 Exception entry
Reset is treated as a special vector for the highest implemented Exception level. This special vector uses an
IMPLEMENTATION DEFINED address that is typically set either by a hardwired configuration of the PE or by
configuration input signals. The RVBAR_ELx register contains this reset vector address, where x is the number of
the highest implemented Exception level.

D1.10.3 Pseudocode description of exception entry to AArch64 state

The AArch64.TakeException() pseudocode function describes the behavior when the PE takes an exception to an
Exception level that is using AArch64. The AArch64.ExceptionClass() function determines the EC (Exception class)
and IL (Instruction length) values required to report the exception, and AArch64.ReportException() reports the
exception.

The pseudocode functions AArch64.TakeException(), AArch64.ExceptionClass(), and AArch64.ReportException() are
described in Chapter J1 Armv8 Pseudocode.

D1.10.4 Exception classes and the ESR_ELx syndrome registers

If the exception is a synchronous exception or an SError interrupt, information characterizing the reason for the
exception is saved in the ESR_ELx at the Exception level the exception is taken to. The information saved is
determined at the time the exception is taken, and is not changed as a result of the explicit synchronization that takes
place at the start of taking the exception. See Synchronization requirements for AArch64 System registers on
page D13-3041. The following sections give more information:

• Use of the ESR_EL1, ESR_EL2, and ESR_EL3 on page D1-2478.

• The EC used to report an exception routed to EL2 because HCR_EL2.TGE is 1 on page D1-2483.

Use of the ESR_EL1, ESR_EL2, and ESR_EL3

An ESR_ELx holds the syndrome information for an exception that is taken to AArch64 state.

Note

This use of a syndrome is also the reporting model used for exceptions taken to Hyp mode when they are taken to
EL2 using AArch32.

Figure D1-2 on page D1-2478 shows the general format of the ESR_ELx registers.

Figure D1-2 Overall format of the ESR_ELx registers

The ESR_ELx fields are:

EC, bits[31:26] The Exception class field, that indicates the cause of the exception.

IL, bit[25] The Instruction length bit, for synchronous exceptions, that indicates whether a trapped
instruction was a 16-bit or a 32-bit instruction.

ISS, bits[24:0] The Instruction specific syndrome field. Architecturally, this field can be defined
independently for each defined Exception class. However, in practice, some ISS encodings
are used for more than one Exception class.

ESR_EL1, Exception Syndrome Register (EL1) on page D13-3145, ESR_EL2, Exception Syndrome Register (EL2)
on page D13-3191 and ESR_EL3, Exception Syndrome Register (EL3) on page D13-3237 describe the registers in
full, including:

• Listing the valid EC field values.

• Describing the ISS for each Exception class.

ISSEC IL

31 26 25 24 0
D1-2478 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.10 Exception entry
• Giving a full description of the use of the IL field.

Table D1-6 on page D1-2479 shows the encoding of the ESR_ELx.EC field, the Exception class field. For each EC
value, the table references a subsection of the ESR_ELx register definition that describes the ISS format, with links
to descriptions of possible causes of the exception, for example the configuration required to enable a trap.

Table D1-6 ESR_ELx.EC field encoding

EC Exception class
From, state To, Exception level

ISS encoding description
AArch32a AArch64 EL1 EL2 EL3

000000 Unknown reason Yes Yes Yes Yes Yes ISS encoding for exceptions
with an unknown reason on
page D13-3150

000001 Trapped WFE, WFI, WFET or WFIT
instruction executionb

Yes Yes Yes Yes Yes ISS encoding for an exception
from a WF* instruction on
page D13-3151

000011 Trapped MCR or MRC access with
(coproc==0b1111)b that is not
reported using EC 0b000000

Yes No Yes Yes Yesc ISS encoding for an exception
from an MCR or MRC access
on page D13-3153

000100 Trapped MCRR or MRRC access with
(coproc==0b1111)b that is not
reported using EC 0b000000

Yes No Yes Yes Yesd ISS encoding for an exception
from an MCRR or MRRC
access on page D13-3157

000101 Trapped MCR or MRC access with
(coproc==0b1110)b

Yes No Yes Yes Yes ISS encoding for an exception
from an MCR or MRC access
on page D13-3153

000110 Trapped LDC or STC accessb Yes No Yes Yes Yes ISS encoding for an exception
from an LDC or STC
instruction on page D13-3159

000111 Access to SVE, Advanced SIMD
or floating-point functionality
trapped by CPACR_EL1.FPEN
or CPTR_ELx.TFP controle

Yes Yes Yes Yes Yes ISS encoding for an exception
from an access to SVE,
Advanced SIMD or
floating-point functionality,
resulting from the FPEN and
TFP traps on page D13-3162

001000 Trapped VMRS access, from ID
group traps, that is not reported
using EC 0b000111 f

Yes No No Yes No ISS encoding for an exception
from an MCR or MRC access
on page D13-3153

001001 Trapped access to an
FEAT_PAuth instruction

No Yes No Yes Yes ISS encoding for an exception
from a Pointer Authentication
instruction when
HCR_EL2.API == 0 ||
SCR_EL3.API == 0 on
page D13-3186

001010 Trapped execution of an LD64B,
ST64B, ST64BV, or ST64BV0
instruction

No Yes Yes Yes Yes ISS encoding for an exception
from an LD64B or ST64B*
instruction on page D13-3203

001100 Trapped MRRC access with
(coproc==0b1110)b

Yes No Yes Yes Yes ISS encoding for an exception
from an MCRR or MRRC
access on page D13-3157
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2479
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.10 Exception entry
001110 Illegal Execution state Yes Yes Yes Yes Yes ISS encoding for an exception
from an Illegal Execution
state, or a PC or SP alignment
fault on page D13-3163

010001 SVC instruction execution in
AArch32 state

Yes No Yes Yesg No ISS encoding for an exception
from HVC or SVC instruction
execution on page D13-3164

010010 HVC instruction execution in
AArch32 state, when HVC is not
disabled

Yes No No Yes No

010011 SMC instruction execution in
AArch32 state, when SMC is not
disabled

Yes No No Yesh Yes ISS encoding for an exception
from SMC instruction
execution in AArch32 state on
page D13-3164

010101 SVC instruction execution in
AArch64 state

No Yes Yes Yes Yes ISS encoding for an exception
from HVC or SVC instruction
execution on page D13-3164

010110 HVC instruction execution in
AArch64 state, when HVC is not
disabled

No Yes No Yes Yes

010111 SMC instruction execution in
AArch64 state, when SMC is not
disabled

No Yes No Yesh Yes ISS encoding for an exception
from SMC instruction
execution in AArch64 state on
page D13-3166

011000 Trapped MSR, MRS, or System
instruction execution, that is not
reported using EC 0x00, 0x01, or
0x07

When FEAT_IDST is
implemented, trapped ID registers

No Yes Yes Yes Yes ISS encoding for an exception
from MSR, MRS, or System
instruction execution in
AArch64 state on
page D13-3166

011001 Trapped access to SVE
functionality, that is not reported
using EC 0b000000 i

No Yes Yes Yes Yes ISS encoding for an exception
from an access to SVE,
Advanced SIMD or
floating-point functionality,
resulting from the FPEN and
TFP traps on page D13-3162

011010 Trapped ERET, ERETAA or ERETAB
instruction executionj

No Yes No Yes No ISS encoding for an exception
from an ERET, ERETAA, or
ERETAB instruction on
page D13-3185

011100 Exception from a pointer
authentication instruction
authentication failure

No Yes Yes Yes Yes ISS encoding for an exception
from a Pointer Authentication
instruction authentication
failure on page D13-3187

Table D1-6 ESR_ELx.EC field encoding (continued)

EC Exception class
From, state To, Exception level

ISS encoding description
AArch32a AArch64 EL1 EL2 EL3
D1-2480 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.10 Exception entry
011111 IMPLEMENTATION DEFINED
exception taken to EL3

Yes Yes No No Yes ISS encoding for an
IMPLEMENTATION
DEFINED exception to EL3
on page D13-3169

100000 Instruction Abort from a lower
Exception levelk

Yes Yes Yes Yes Yes ISS encoding for an exception
from an Instruction Abort on
page D13-3170

100001 Instruction Abort taken without a
change in Exception levelk

Yes Yes Yes Yes Yes

100010 PC alignment fault Yes Yes Yes Yes Yes ISS encoding for an exception
from an Illegal Execution
state, or a PC or SP alignment
fault on page D13-3163

100100 Data Abort from a lower
Exception level, excluding Data
Aborts taken to EL2 as a result of
accesses generated associated
with VNCR_EL2 as part of
nested virtualization supportl

Yes Yes Yes Yes Yes ISS encoding for an exception
from a Data Abort on
page D13-3264

100101 Data Abort taken without a
change in Exception level, or
Data Aborts taken to EL2 as a
result of accesses generated
associated with VNCR_EL2 as
part of nested virtualization
supportl

Yes Yes Yes Yes Yes

100110 SP alignment fault No Yes Yes Yes Yes ISS encoding for an exception
from an Illegal Execution
state, or a PC or SP alignment
fault on page D13-3163

101000 Trapped floating-point exception
taken from AArch32 state

Yes No Yes Yes No ISS encoding for an exception
from a trapped floating-point
exception on page D13-3179

101100 Trapped floating-point exception
taken from AArch64 state

No Yes Yes Yes Yes

101111 SError interrupt Yes Yes Yes Yes Yes ISS encoding for an SError
interrupt on page D13-3181

110000 Breakpoint exception from a
lower Exception level

Yes Yes Yes Yesm No ISS encoding for an exception
from a Breakpoint or Vector
Catch debug exception on
page D13-3183110001 Breakpoint exception taken

without a change in Exception
level

Yes Yes Yes Yesm No

Table D1-6 ESR_ELx.EC field encoding (continued)

EC Exception class
From, state To, Exception level

ISS encoding description
AArch32a AArch64 EL1 EL2 EL3
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2481
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.10 Exception entry
110010 Software Step exception from a
lower Exception level

Yes Yes Yes Yesm No ISS encoding for an exception
from a Software Step exception
on page D13-3183

110011 Software Step exception taken
without a change in Exception
level

Yes Yes Yes Yesm No

110100 Watchpoint exception from a
lower Exception level, excluding
watchpoint exceptions taken to
EL2 as a result of accesses
generated associated with
VNCR_EL2 as part of nested
virtualization support

Yes Yes Yes Yesm No ISS encoding for an exception
from a Watchpoint exception
on page D13-3184

110101 Watchpoint exception taken
without a change in Exception
level, or Watchpoint exceptions
taken to EL2 as a result of
accesses generated associated
with the VNCR_EL2 as part of
nested virtualization support

Yes Yes Yes Yesm No

111000 BKPT instruction execution in
AArch32 state

Yes No Yes Yesm No ISS encoding for an exception
from a Breakpoint or Vector
Catch debug exception on
page D13-3183111010 Vector Catch exception from

AArch32 state
Yes No No Yesm No

111100 BRK instruction execution in
AArch64 state

No Yes Yes Yesm Yesn

a. See also Reporting AArch32 synchronous exceptions taken to an Exception level using AArch64 on page D1-2483.

b. Exceptions caused by configurable traps, enables, or disables.

c. See Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32 on page D1-2530.

d. Only for MCRR or MRRC accesses to the PMCCNTR_EL0 or PMCCNTR.

e. Excludes exceptions that are generated because the value of HCR_EL2.TGE is 1, see The EC used to report an exception routed to EL2
because HCR_EL2.TGE is 1 on page D1-2483.

f. Applies only to traps of accesses to MVFR0, MVFR1, MVFR2, or FPSID. Includes traps of VMRS accesses. Because the MVFRn registers
are read-only and a VMSR access to the FPSID is ignored and not trapped, there are no MCR or VMSR accesses that can be trapped with this EC
value.

g. Only as a result of HCR_EL2.TGE.

h. Only as a result of HCR_EL2.TSC.

i. Only if The Scalable Vector Extension (SVE) is implemented. Otherwise the EC value is reserved.

j. Only if FEAT_NV is implemented and HCR_EL2.NV is 1.

k. Used for MMU faults generated by instruction accesses, and for synchronous External aborts, including synchronous parity or ECC errors.
Not used for debug-related exceptions.

l. Used for MMU faults generated by data accesses, Alignment faults other than SP alignment faults and PC alignment faults, and for
synchronous External aborts, including synchronous parity or ECC errors. Not used for debug-related exceptions.

m. Only as a result of HCR_EL2.TGE ==1 or MDCR_EL2.TDE ==1.

n. Only if the BRK instruction is executed in EL3. This is the only debug exception that can be taken to EL3 when EL3 is using AArch64.

Table D1-6 ESR_ELx.EC field encoding (continued)

EC Exception class
From, state To, Exception level

ISS encoding description
AArch32a AArch64 EL1 EL2 EL3
D1-2482 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.10 Exception entry
Reserved EC values

For EC values not shown in Table D1-6 on page D1-2479:

• Unused EC values in the range 0b000000-0b101100 (0x00-0x2C) are reserved by Arm for future use for
synchronous exceptions.

• Unused EC values in the range 0b101101-0b111111 (0x2D-0x3F) are reserved by Arm for future use, and might
be used for synchronous or asynchronous exceptions.

The EC used to report an exception routed to EL2 because HCR_EL2.TGE is 1

When an exception is taken from EL0 to EL2 because the value of HCR_EL2.TGE is 1, the exception is reported
in ESR_EL2. The EC value and corresponding ISS encoding used to report the exception in ESR_EL2 depend on
how an exception of the same class would be reported in ESR_EL1 when the value of HCR_EL2.{TGE, RW} is
{0, 1}:

• If the exception would have been reported in ESR_EL1 using the EC value 0x07 then it is reported in
ESR_EL2 using the EC value 0x00 and corresponding ISS encoding.

• Otherwise, the exception is reported in ESR_EL2 using the EC value and ISS encoding that would have been
used to report the exception ESR_EL1.

Reporting AArch32 synchronous exceptions taken to an Exception level using AArch64

Although possible exception causes are generally similar for AArch32 state and AArch64 state, AArch32 state has
additional exception taxonomy that is not present in AArch64 state. The following sections described named
AArch32 exceptions that can, in some contexts, be taken to an Exception level that is using AArch64:

• Undefined Instruction exception on page G1-6078.

• Supervisor Call (SVC) exception on page G1-6082.

• Secure Monitor Call (SMC) exception on page G1-6083.

• Hypervisor Call (HVC) exception on page G1-6084.

• Prefetch Abort exception on page G1-6085.

• Data Abort exception on page G1-6089.

When EL2 is using AArch64 and the value of HCR_EL2.TGE is 1, these exceptions are routed to EL2, and reported
in the ESR_EL2. Table D1-7 on page D1-2483 shows how they are reported.

D1.10.5 Summary of register updates on faults taken to an Exception level that is using AArch64

For all exceptions taken to an Exception level using AArch64 that are not listed in Validity of FAR_ELx on
page D1-2484, the FAR_ELx for the Exception level the exception is taken to is UNKNOWN.

Table D1-7 Syndrome reporting in ESR_EL2 of HCR_EL2 routing of exceptions

AArch32 exception Pseudocode EC value used to report exception in ESR_ELx

Undefined Instruction AArch32.UndefinedFault() 0x00, Exception for an unknown reason

Supervisor Call AArch32.CallSupervisor() 0x11, Exception from SVC instruction executed in AArch32 state

Secure Monitor Call See SMC on page F5-5022a 0x13, Exception from SMC instruction executed in AArch32 state

Hypervisor Call AArch32.CallHypervisor() 0x12, Exception from HVC instruction executed in AArch32 state

Prefetch Abort AArch32.Abort() 0x20, Exception from an Instruction abort at a lower Exception level

Data Abort AArch32.Abort() 0x24, Exception from a Data abort at a lower Exception level

a. The pseudocode in Operation for all encodings on page F5-5023 identifies when the execution of an SMC instruction in AArch32
state generates an exception that is taken to EL3 using AArch64.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2483
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.10 Exception entry
For all exceptions taken to EL2 using AArch64 that are not listed in Validity of HPFAR_EL2 on page D1-2484, the
HPFAR_EL2 is UNKNOWN.

The following sections give more information:

• Validity of FAR_ELx on page D1-2484.

• Validity of HPFAR_EL2 on page D1-2484.

Validity of FAR_ELx

The faulting virtual address is saved in FAR_ELx for the Exception level the exception is taken to if an exception
is one of:

• An Instruction Abort exception.

• A Data Abort exception.

• A PC alignment fault exception.

• A Watchpoint exception.

The architecture permits that the FAR_ELx is UNKNOWN for synchronous External aborts other than synchronous
External aborts on translation table walks. In this case, the ISS.FnV bit returned in ESR_ELx indicates whether
FAR_ELx is valid.

If an exception is taken from an Exception level using AArch32 into an Exception level using AArch64, and that
exception writes the FAR_ELx at the Exception level the exception is taken to, the most significant 32 bits of
FAR_ELx are all zero, unless both of the following apply, in which case the most significant 32 bits of FAR_ELx
are 0x00000001:

• The faulting address was generated by a load or store that sequentially incremented from address 0xFFFFFFFF.
Such a load or store instruction is CONSTRAINED UNPREDICTABLE, see Out of range VA on page K1-8396.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

The FAR_ELx for an Exception level is made UNKNOWN as a result of an exception return from that Exception level.

Validity of HPFAR_EL2

The faulting IPA is saved in HPFAR_EL2 if the exception is an Instruction Abort or Data Abort taken to EL2 and
the fault is one of:

• A Translation or Access Flag fault on a stage 2 translation.

• A stage 2 Address Size fault.

• A fault on the stage 2 translation of an address accessed in a stage 1 translation table walk.

HPFAR_EL2 is made UNKNOWN as a result of an exception return from EL2.
D1-2484 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.11 Exception return
D1.11 Exception return

In the Armv8-A architecture, an exception return is always to the same Exception level or a lower Exception level.
An exception return is used for:

• A return to a previously executing thread.

• Entry to a new execution thread. For example:

— The initialization of a hypervisor by a Secure monitor.

— The initialization of an operating system by a hypervisor.

— Application entry from an operating system or hypervisor.

If FEAT_ExS is not implemented, or if FEAT_ExS is implemented and the SCTLR_ELx.EOS field is set, exception
return from ELx is a context synchronization event.

An exception return requires the simultaneous restoration of the PC and PSTATE to values that are consistent with
the desired state of execution on returning from the exception. The indirect write of the PSTATE information and
the PC is synchronized even if the return is not a context synchronization event.

In AArch64 state, an ERET, ERETAA, or ERETAB instruction causes an exception return, see ERET on page C6-1026, and
ERETAA, ERETAB on page C6-1027.

If FEAT_IESB is implemented, when the SCTLR_ELx.IESB bit at the Exception level that the exception is
returning from is 1 and the exception return instruction does not generate an exception, the PE inserts an error
synchronization event before the Exception return instruction. See Arm® Reliability, Availability, and Serviceability
(RAS) Specification, ARMv8, for the ARMv8-A architecture profile.

On executing an Exception return instruction at ELx:

• The PC is restored with the value held in ELR_ELx.

• PSTATE is restored by using the contents of SPSR_ELx.

ELR_ELx and SPSR_ELx are the ELR_ELx and SPSR_ELx at the Exception level the exception is returning from.
The exception return makes this ELR_ELx and SPSR_ELx UNKNOWN.

See Address tagging in AArch64 state on page D5-2676 for details of how tagged addresses are handled in an
Exception return from an Exception level using AArch64 to an Exception level using AArch64.

Note

When returning from an Exception level using AArch64 to an Exception level using AArch32, the top 32 bits of the
ELR_ELx are ignored.

An Exception return instruction also:

• Sets the Event Register for the PE executing the Exception return instruction. See Mechanisms for entering
a low-power state on page D1-2536.

• Resets the local Exclusives monitor for the PE executing the Exception return instruction. This removes the
risk of errors that might be caused when a path to an exception return fails to include a CLREX instruction.

Note
This behavior prevents self-hosted debug from software stepping through a Load-Exclusive/Store-Exclusive
pair. However, when self-hosted debug is using software step, it is highly probable that the Exclusives
monitor state would be lost anyway, for other reasons. Stepping code that uses Exclusives monitors on
page D2-2624 describes this.

It is IMPLEMENTATION DEFINED whether the resetting of the local Exclusives monitor also resets the global
Exclusives monitor.

The Exception return instruction is UNDEFINED in EL0.

When returning from an Exception level using AArch64 to an Exception level using AArch32, the AArch32 context
is restored. The Armv8-A architecture defines the relationship between AArch64 state and AArch32 state, for:

• General-purpose registers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2485
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.11 Exception return
• Special-purpose registers.

• System registers.

In an implementation that includes EL3, the Security state can only change on returning from an exception if the
return is from EL3 to a lower Exception level.

The following sections give more information:

• Exception return and PC alignment on page D1-2486.

• Illegal return events from AArch64 state on page D1-2486.

• Legal returns that set PSTATE.IL to 1 on page D1-2488.

• The Illegal Execution state exception on page D1-2488.

• Pseudocode description of exception return on page D1-2488.

D1.11.1 Exception return and PC alignment

When SPSR_ELx.M[4] == 0, indicating an Exception return to AArch64 state, the value of ELR_ELx is transferred
to the PC. If this value is misaligned, subsequent execution results in a PC alignment fault exception.

When SPSR_ELx.M[4] == 1, indicating an Exception return to AArch32 state, the value of ELR_ELx is transferred
to the PC except that, for a legal exception return:

• If SPSR_ELx.T is 0, ELR_ELx[1:0] are treated as being 0 for restoring the PC.

• If SPSR_ELx.T is 1, ELR_ELx[0] is treated as being 0 for restoring the PC.

This means that a PC alignment fault exception cannot occur following a legal exception return from AArch64 state
to AArch32 state. However, where the Exception return with SPSR_ELx.M[4] == 1 is an illegal exception return
then it is IMPLEMENTATION DEFINED whether a misaligned value in ELR_ELx is aligned when it is restored to the
PC.

Note

In an implementation that forces the alignment of the PC value restored from SPSR_ELx on an illegal exception
return with SPSR_ELx.M[4] == 1, if SPSR_ELx.T == 1 the restored PC value might give rise to a PC alignment
fault exception, because the PE remains in AArch64 state and only ELR_ELx[0] is treated as being 0 for restoring
the PC.

For more information about the illegal exception return cases, see Illegal return events from AArch64 state on
page D1-2486.

D1.11.2 Illegal return events from AArch64 state

In this section:

Return In AArch64 state, refers to any of:

• Execution of an Exception return instruction.

• Execution of a DRPS instruction in Debug state.

• Exit from Debug state.

Saved process state value
In AArch64 state, refers to any of:

• The value held in the SPSR_ELx for an Exception return instruction.

• The value held in the SPSR_ELx for a DRPS instruction executed in Debug state.

• The value held in the DSPSR_EL0 for a Debug state exit.

Link address In AArch64 state, refers to any of:

• The address held in ELR_ELx for an Exception return instruction.

• The address held in DLR_EL0 for a Debug state exit.

Configured from reset
Indicates the state determined on powerup or reset by a configuration input signal, or by another
IMPLEMENTATION DEFINED mechanism.
D1-2486 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.11 Exception return
The Armv8 architecture has a generic mechanism for handling returns to a mode or state that is illegal. In AArch64
state, this can occur as the result of any of the following situations:

• A return where the Exception level being returned to is higher than the current Exception level.

• A return where the Exception level being returned to is not implemented. For example a return to EL2 when
EL2 is not implemented.

• If FEAT_SEL2 is not implemented and the value of SCR_EL3.EEL2 is 0, a return to EL2 when EL3 is
implemented and the value of the SCR_EL3.NS bit is 0.

• A return to EL1 when EL2 is implemented and enabled in the current Security state, and the value of the
HCR_EL2.TGE bit is 1.

• A return where the value of the saved process state M[4] bit is 0, indicating a return to AArch64 state, and
one of the following is true:

— The M[1] bit is 1.

— The M[3:0] bits are 0b0001.

— The Exception level being returned to is using AArch32 state, as programmed by the SCR_EL3.RW
or HCR_EL2.RW bits, or as configured from reset.

• A return where the value of the saved process state M[4] bit is 1, indicating a return to AArch32 state, and
one of the following is true:

— The M field value is not a valid AArch32 state PE mode. Table G1-5 on page G1-6026 shows the valid
encoding values for AArch32 state PE modes. This includes the case where M is 0b10000, indicating
User mode, and EL0 does not support AArch32 state.

— The Exception level being returned to is using AArch64 state as determined by the SCR_EL3.RW or
HCR_EL2.RW field or the configuration from reset. This includes the case where the Exception level
being returned to does not support AArch32 state.

Note

This means that, in an implementation that supports only AArch64 state, any attempt to return to AArch32
state is an illegal exception return.

• A Debug state exit from EL0 using AArch64 state, to EL0 using AArch32 state.

In these cases:

• PSTATE.IL is set to 1, to indicate an illegal return.

• PSTATE.{EL, nRW, SP} are unchanged. This means the Exception level, Execution state, and stack pointer
selection do not change as a result of the return.

• The following PSTATE bits are restored from the saved process state value:

— The N, Z, C, V Condition flags.

— The D, A, I, F exception mask bits.

• If the illegal return is an illegal exception return, the PSTATE.SS bit is handled as normal for a return. That
is, the SS bit is handled in the same way as an exception return that is not an illegal exception return. See
Software Step exceptions on page D2-2613.

In all these cases the PSTATE.SS bit is handled as it would be for a normal return, as described in Entering
the active-not-pending state on page D2-2615 and Exiting Debug state on page H2-7375. DRPS never sets
the SS bit. This is indicated in Entering the active-not-pending state on page D2-2615.

• If the illegal return is not a DRPS instruction executed in Debug state, the PC is restored from the link address.
However, if the value of the M[4] bit of the saved process state is 1, indicating a return to AArch32 state, then:

— Bits[31:2] of the PC are restored from the link address.

— Bits[63:32, 1:0] of the PC are UNKNOWN.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2487
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.11 Exception return
When the value of the PSTATE.IL bit is 1, any attempt to execute any instruction results in an Illegal Execution state
exception. See The Illegal Execution state exception on page D1-2488.

All aspects of the illegal return, other than the effects described in this section, occur as they do for a legal return.

D1.11.3 Legal returns that set PSTATE.IL to 1

In this section, return, saved process state value, and link address have the same meaning as defined in Illegal return
events from AArch64 state on page D1-2486.

If the value of the IL bit in the saved process state is 1, then it is copied to PSTATE by a return, meaning that
PSTATE.IL is set to 1. In this case, if the return is not an illegal return, and targets AArch32 state, then the
PSTATE.{IT, T} bits are either:

• Set to 0.

• Copied from the saved process state value.

The choice between these two options is determined by an implementation, and might vary dynamically within the
implementation. Correspondingly software must regard the value as being an UNKNOWN choice between the two
values.

The PSTATE.{IT, T} bits are only valid in AArch32 state, see Process state, PSTATE on page G1-6035.

When the PSTATE.IL bit is 1, any attempt to execute any instruction results in an Illegal Execution state exception.
See The Illegal Execution state exception on page D1-2488.

D1.11.4 The Illegal Execution state exception

When the value of the PSTATE.IL bit is 1, any attempt to execute any instruction results in an Illegal Execution state
exception. In AArch64 state, the PSTATE.IL bit can be to set to 1 by any of:

• An illegal return, as described in Illegal return events from AArch64 state on page D1-2486.

• A legal return that sets PSTATE.IL to 1, as described in Legal returns that set PSTATE.IL to 1 on
page D1-2488.

If an Illegal Execution state exception is generated at EL0, it is taken to EL1. If the exception occurs when EL2 is
implemented and enabled in the current Security state, and HCR_EL2.TGE == 1, then it is taken to EL2. If an Illegal
Execution state exception is generated at any other Exception level, the Exception level is unchanged.

An Illegal Execution state exception sets ESR_ELx.EC for the target Exception level to the value of 0x0E.

On taking any exception to an Exception level that is using AArch64 state:

1. The value of the PSTATE.IL bit is copied into the SPSR_ELx.IL bit for the Exception level to which the
exception is taken.

2. The PSTATE.IL bit is cleared to 0.

Note

This means that it is not possible for software to observe the value of PSTATE.IL.

For the priority of this exception class, see Synchronous exception prioritization for exceptions taken to AArch64
state on page D1-2490.

D1.11.5 Pseudocode description of exception return

The AArch64.ExceptionReturn() pseudocode function transfers the return address to the PC, and restores PSTATE
to its saved value by calling SetPSTATEFromPSR().

The IllegalExceptionReturn() function checks for an Illegal Execution state exception.
D1-2488 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.12 Synchronous exception types, routing and priorities
D1.12 Synchronous exception types, routing and priorities

Synchronous exceptions are:

• Any exception generated by attempting to execute an instruction that is UNDEFINED, including:

— Attempts to execute instructions at an inappropriate Exception level.

— Attempts to execute instructions when they are disabled.

— Attempts to execute instruction bit patterns that have not been allocated.

• Illegal Execution state exceptions. These are caused by attempts to execute an instruction when the value of
PSTATE.IL is 1, see Illegal return events from AArch64 state on page D1-2486.

• Exceptions caused by the use of a misaligned SP.

• Exceptions caused by attempting to execute an instruction with a misaligned PC.

• Exceptions caused by the exception-generating instructions SVC, HVC, or SMC.

• Traps on attempts to execute instructions that the System registers define as instructions that are trapped to a
higher Exception level. See Configurable instruction enables and disables, and trap controls on
page D1-2510.

• Instruction Aborts generated by the memory address translation system that are associated with attempts to
execute instructions from areas of memory that generate faults.

• Data Aborts generated by the memory address translation system that are associated with attempts to read or
write memory that generate faults.

• Data Aborts caused by a misaligned address.

• Data Aborts caused by a Tag Check Fault if FEAT_MTE2 is implemented. For more information, see
Chapter D6 Memory Tagging Extension.

• All of the debug exceptions:

— Breakpoint Instruction exceptions.

— Breakpoint exceptions.

— Watchpoint exceptions.

— Vector Catch exceptions.

— Software Step exceptions.

• In an implementation that supports the trapping of floating-point exceptions, exceptions caused by trapped
IEEE floating-point exceptions, see Floating-point exceptions and exception traps on page D1-2495.

• In some implementations, External aborts. External aborts are failed memory accesses, and include accesses
to those parts of the memory system that occur during the address translation. The Armv8 architecture
permits, but does not require, implementations to treat such exceptions synchronously. See External aborts
on page D4-2666.

This remainder of this section contains the following:

• Routing exceptions from EL0 to EL2 on page D1-2489.

• Routing debug exceptions to EL2 on page D1-2490.

• Routing synchronous External aborts on page D1-2490

• Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2490.

• Effect of Data Aborts and watchpoints on page D1-2494.

• Floating-point exceptions and exception traps on page D1-2495.

D1.12.1 Routing exceptions from EL0 to EL2

When EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1, any exception taken from
EL0 that would otherwise be taken to EL1 is, instead, routed to EL2. This means that an application can execute at
EL0 without using any functionality at EL1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2489
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.12 Synchronous exception types, routing and priorities
Note

• When EL2 is using AArch64 state, the HCR_EL2.TGE control applies regardless of whether EL0 is using
AArch32 state or AArch64 state.

• Implementations typically use the following Exception level and software hierarchy:

EL2 Hypervisor.

EL1 Operating system.

EL0 Application.

In such an implementation, setting HCR_EL2.TGE to 1 means that an application can run at EL0 under the
direct control of a hypervisor executing at EL2, with no operating system involvement.

D1.12.2 Routing debug exceptions to EL2

When EL2 is enabled in the current Security state and the value of MDCR_EL2.TDE is 1, debug exceptions are
routed to EL2. For more information, see Routing debug exceptions on page D2-2569.

When the value of MDCR_EL2.TDE is 1, each of the MDCR_EL2.{TDRA, TDOSA, TDA} bits is treated as 1 for
all purposes other than direct reads of the MDCR_EL2.

D1.12.3 Routing synchronous External aborts

When the value of SCR_EL3.EA is 1, synchronous External aborts are taken to EL3.

When the RAS Extension is implemented, EL2 is enabled in the current Security state, and the value of
HCR_EL2.TEA is 1, synchronous External aborts from EL0 and EL1 that are not routed to EL3 are routed to EL2.

D1.12.4 Synchronous exception prioritization for exceptions taken to AArch64 state

In principle, any single instruction can generate a number of different synchronous exceptions, between the fetching
of the instruction, its decode, and eventual execution. For exceptions taken to an Exception level that is using
AArch64, these are prioritized as follows, where 1 is the highest priority.

Note

The priority numbering in this list correlates with the equivalent AArch32 state list in Synchronous exception
prioritization for exceptions taken to AArch32 state on page G1-6047 and the list in Debug state entry and debug
event prioritization on page H2-7341.

1-3 These priority numbers represent debug events.

4 Software Step exceptions. See Software Step exceptions on page D2-2613.

5 This priority number represents debug events.

6 PC alignment fault exceptions. See PC alignment checking on page D1-2469.

7 Instruction Abort exceptions. See AArch64 state prioritization of synchronous aborts from a single
stage of address translation on page D5-2807.

8 Breakpoint exceptions or Address Matching Vector Catch exceptions. See:

• Breakpoint exceptions on page D2-2579.

• Vector Catch exceptions on page D2-2612.

Vector Catch exceptions are only taken from AArch32 state.
D1-2490 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.12 Synchronous exception types, routing and priorities
Note

An Exception Trapping Vector Catch exception is generated on exception entry for an exception that
has been prioritized as described in Synchronous exception prioritization for exceptions taken to
AArch32 state on page G1-6047. This means that it is outside the scope of the description of this
section.

9 Illegal Execution state exceptions. See Illegal return events from AArch64 state on page D1-2486.

10 Software Breakpoint exceptions caused by the execution of a Breakpoint instruction:

• For exceptions taken from AArch64 state, BRK.

• For exceptions taken from AArch32 state, BKPT.

11 Branch Target exceptions. See About PSTATE.BTYPE on page D5-2756.

12 Exceptions taken from EL1 to EL2 because of one of the following configuration settings:

• HSTR_EL2.Tn.

• HCR_EL2.TIDCP.

• If FEAT_NV is implemented, HCR_EL2.NV or HCR_EL2.NV1.

Note

If FEAT_NV2 is implemented and HCR_EL2.{NV, NV1, NV2} are set such that register accesses
to EL1 are transformed into memory accesses, then HCR_EL2.{NV, NV1} do not generate
exceptions to EL2.

13 Exceptions that occur as a result of attempting to execute an instruction that is UNDEFINED for one
or more of the following reasons:

• Attempting to execute an unallocated instruction encoding, including an encoding for an
instruction that is not implemented in the PE implementation.

• Attempting to execute an instruction that is defined never to be accessible at the current
Exception level and Security state regardless of any enables or traps.

• Debug state execution of an instruction encoding that is not accessible in Debug state.

• Non-debug state execution of an instruction encoding that is not accessible in Non-debug
state.

• Execution of an HVC instruction, when HVC instructions are disabled by SCR_EL3.HCE or
HCR_EL2.HCD.

• Execution of an MSR or MRS instruction to SP_EL0 when the value of SPSel is 0.

• Attempted execution of an MSR or MRS instruction using an _EL12 register name when
HCR_EL2.E2H == 0.

• Execution of an HLT instruction when HLT instructions are disabled by EDSCR.HDE or halting
is prohibited.

• In Debug state:

— Execution of a DCPS1 instruction in Non-secure EL0 when HCR_EL2.TGE is 1.

— Execution of a DCPS2 instruction in EL1 or EL0 when EL2 is disabled in the current
Security state or is not implemented.

— Execution of a DCPS3 instruction when EDSCR.SDD is 1 or when EL3 is not
implemented.

— When the value of EDSCR.SDD is 1, execution in EL2, EL1, or EL0 of an instruction
that is configured by EL3 control registers to trap to EL3. It is IMPLEMENTATION
DEFINED whether this type of exception is prioritized at this level or has the priority of
the original trap exception.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2491
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.12 Synchronous exception types, routing and priorities
• When executing in AArch32 state, execution of an instruction that is UNDEFINED as a result
of any of:

— Being in an IT block when SCTLR_EL1.ITD is 1.

— Executing a SETEND instruction executed when SCTLR_EL1.SED is 1.

— Executing a CP15DMB, CP15DSB, or CP15ISB barrier instruction when
SCTLR_EL1.CP15BEN is 0.

Note
These are the controls for exceptions taken to AArch64 state. For exceptions taken to
AArch32 state the equivalent controls are SCTLR.{ITD, SED, CP15BEN}, with additional
controls HSCTLR.{ITD, SED, CP15BEN}.

See Disabling or enabling EL0 use of AArch32 optional functionality on page D1-2515

• When executing in AArch32 state, execution of an instruction that is UNDEFINED because at
least one of FPCR.{Stride, Len} is nonzero, when programming these bits to nonzero values
is supported. See Floating-point exceptions and exception traps on page E1-4268.

Note

— This case applies only when EL0 is using AArch32 and EL1 is using AArch64. The
exception generated by the attempted execution at EL0 of the UNDEFINED instruction
is taken to EL1 using AArch64.

— When EL1 is using AArch32, the corresponding controls are FPSCR.{Stride, Len},
and any exception generated by the attempted execution at EL0 or EL1 of an
instruction that is UNDEFINED because of a nonzero {Stride, Len} value is taken to EL1
using AArch32.

14 Exceptions taken to EL1, or taken to EL2 because the value of HCR_EL2.TGE is 1, that are
generated because of configurable access to instructions, and that are not covered by any of
priorities 4-13.

Note

When EL2 is using AArch32, the equivalent control for routing exceptions to EL2 is HCR.TGE.

15 Exceptions taken from EL0 to EL2 because of one of the following configuration settings:

• HSTR_EL2.Tn.

• HCR_EL2.TIDCP.

Note

These are the controls for exceptions taken to AArch64 state. For exceptions taken to AArch32 state
the equivalent controls are HSTR.Tn and HCR.TIDCP.

16 Exceptions taken to EL2 because of configuration settings in CPTR_EL2.

Note
These are the controls for exceptions taken to AArch64 state. For exceptions taken to AArch32
state, the equivalent controls are in HCPTR.

17 Exceptions taken to EL2 because of one of the following configuration settings:

• Any setting in HCR_EL2 other than the {TIDCP, NV} fields, and MRS/MSR instruction using
an _EL12 register name with HCR_EL2.E2H == 0.

• Any setting in CNTHCTL_EL2.

• Any setting in MDCR_EL2.

• Any of the fine-grained traps in HAFGRTR_EL2, HDFGRTR_EL2, HDFGWTR_EL2,
HFGITR_EL2, HFGRTR_EL2, HFGWTR_EL2.
D1-2492 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.12 Synchronous exception types, routing and priorities
Note

These are the controls for exceptions taken to AArch64 state. For exceptions taken to AArch32
state, equivalent controls are:

• Settings in HCR, other than the TIDCP bit.

For exceptions taken to AArch32 state there is no control equivalent to HCR_EL2.NV.

• Any setting in CNTHCTL or HDCR.

• If EL1 is using AArch64 state, any of the fine-grained traps in HAFGRTR_EL2,
HDFGRTR_EL2, HDFGWTR_EL2, HFGITR_EL2, HFGRTR_EL2, HFGWTR_EL2.

18 Exceptions taken to EL2 because of configurable access to instructions, and that are not covered by
any of priorities 4-17.

19 Exceptions caused by the SMC instruction being UNDEFINED because the value of SCR_EL3.SMD is
1.

20 Exceptions caused by the execution of an Exception generating instruction not covered by priority
10:

• For exceptions taken from AArch64 state, Branches, Exception generating, and System
instructions on page C3-216 defines these and the priority 10 instructions.

• When executing in AArch32 state, the exception-generating instructions are SVC, HVC, and SMC.

21 Exceptions taken to EL3 because of configuration settings in the CPTR_EL3.

Note

When in Debug state and the value of EDSCR.SDD is 1, instructions executed at EL2, EL1 or EL0
that are configured by EL3 control registers to trap to EL3 are treated as UNDEFINED and generate
an exception taken to EL2 or EL1. It is IMPLEMENTATION DEFINED whether these exceptions are
prioritized as an UNDEFINED instruction or have the priority of the original trap exception.

22 Exceptions taken to EL3 from Secure EL1 using AArch32, because of execution of the instructions
listed in Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32 on
page D1-2530.

23 Exceptions taken to EL3 from EL0, EL1, or EL2 because of configuration settings in the
MDCR_EL3.

Note

When in Debug state and the value of EDSCR.SDD is 1, instructions executed at EL2, EL1 or EL0
that are configured by EL3 control registers to trap to EL3 are treated as UNDEFINED and generate
an exception taken to EL2 or EL1. It is IMPLEMENTATION DEFINED whether these exceptions are
prioritized as an UNDEFINED instruction or have the priority of the original trap exception.

24 Exceptions taken to EL3 because of configurable access to instructions, and that are not covered by
any of priorities 4-23.

Note

When in Debug state and the value of EDSCR.SDD is 1, instructions executed at EL2, EL1 or EL0
that are configured by EL3 control registers to trap to EL3 are treated as UNDEFINED and generate
an exception taken to EL2 or EL1. It is IMPLEMENTATION DEFINED whether these exceptions are
prioritized as an UNDEFINED instruction or have the priority of the original trap exception.

25 If FEAT_FPAC is implemented, exceptions generated from a pointer authentication instruction
authorization failure. See Faulting on pointer authentication on page D5-2681.

26 Trapped floating-point exceptions, if supported. See Floating-point exceptions and exception traps
on page D1-2495.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2493
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.12 Synchronous exception types, routing and priorities
27 This priority number represents debug events.

28 SP alignment faults. See SP alignment checking on page D1-2469.

29 Data Abort exceptions other than a Data Abort exception generated by a synchronous External abort
that was not generated by a translation table walk or the update of a translation table entry. That is,
any Data Abort exception that is not covered by item 31. See AArch64 state prioritization of
synchronous aborts from a single stage of address translation on page D5-2807. It is
IMPLEMENTATION DEFINED whether synchronous External aborts are prioritized here or as item 31.

30 Watchpoint exceptions. See Watchpoint exceptions on page D2-2598.

31 Data Abort exception:

• Generated by a synchronous External abort that was not generated by a translation table walk
or the update of a translation table entry, see External aborts on page D4-2666.

• Generated by a Tag Check Fault if FEAT_MTE2 is implemented. For more information, see
PE handling of Tag Check Fault on page D6-2846.

• It is IMPLEMENTATION DEFINED whether synchronous External aborts are prioritized here or
as item 29.

For items 29-31, if an instruction results in more than one single-copy atomic memory access, the prioritization
between synchronous exceptions generated on each of those different memory accesses is not defined by the
architecture.

Note

Exceptions generated by a translation table walk are reported and prioritized as either an Instruction Abort
exception, priority 7 in this list, or a Data Abort exception, priority 29 in this list. See also AArch64 state
prioritization of synchronous aborts from a single stage of address translation on page D5-2807.

D1.12.5 Effect of Data Aborts and watchpoints

If an instruction that stores to memory generates a Data Abort or watchpoint, the value of each memory location
that instruction stores to is either:

• Unchanged for any location for which one of the following applies:

— An Alignment fault is generated.

— An MMU fault is generated.

— A Watchpoint exception or Watchpoint debug event is generated.

— An External abort is generated, if that External abort is taken synchronously.

Note
If an External abort is taken asynchronously, using the SError interrupt, it is outside the scope of the
architecture to define the effect of the store on the memory location, because it depends on the
system-specific nature of the External abort. However, in general, Arm recommends that such memory
locations are not updated.

• UNKNOWN for any location for which no exception and no debug event is generated.

For External aborts and Watchpoint exceptions, the size of a memory location is defined as being the size for which
a memory access is single-copy atomic.

Note

For the definition of a single-copy atomic access, see Properties of single-copy atomic accesses on page B2-130.

An External abort might signal a data corruption to the PE. For example a memory location might have been
corrupted. The error that caused the External abort might have been propagated. The RAS Extension provides
mechanisms for software to determine the extent of the corruption and contain propagation of the error. For more
information, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A
architecture profile.
D1-2494 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.12 Synchronous exception types, routing and priorities
For Data Aborts from load or store instructions executed in AArch64 state, if the:

Data Abort is taken synchronously

If the load or store instruction specifies writeback of a new base address, the base address is restored
to the original value on taking the exception.

If the instruction was a load to the base address register or the offset register, that register is restored
to the original value. Any other destination registers become UNKNOWN.

If the instruction was a load that does not load either the base address register or the offset register,
then the destination registers become UNKNOWN.

Data Abort is taken asynchronously, using the SError interrupt

If the instruction was a load, the destination registers of the load take an UNKNOWN value if the
SError interrupt is taken at a point in the instruction stream after the load.

D1.12.6 Floating-point exceptions and exception traps

Execution of a floating-point instruction, or execution of an Advanced SIMD instruction that performs
floating-point operations, can generate an exceptional condition, called a floating-point exception.

Note

In AArch64 state, an Advanced SIMD instruction that operates on floating-point values can perform multiple
floating-point operations. Therefore, this section describes the handling of a floating-point exception on an
operation, rather than on an instruction.

The Armv8-A architecture does not support asynchronous reporting of floating-point exceptions.

For each of the following floating-point exceptions, it is IMPLEMENTATION DEFINED whether an implementation
includes synchronous exception generation:

• Input Denormal.

• Inexact.

• Underflow.

• Overflow.

• Divide by Zero.

• Invalid Operation.

If an implementation does not support synchronous exception generation from a floating-point exception, then that
synchronous exception is never generated and all statements about synchronous exception generation from that
floating-point exception do not apply to the implementation.

Synchronous exception generation by floating-point exceptions is enabled using the FPCR as follows:

• For each floating-point exception that has synchronous exception generation supported, the relevant control
bits chosen from FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} are used to enable synchronous exception
generation.

• For each floating-point exception that does not have synchronous exception generation supported, the
relevant bits chosen from FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} are RAZ/WI.

Input Denormal exceptions

The cumulative floating-point exception bit FPSR.IDC, and the trap enable bit FPCR.IDE both relate to Input
Denormal exceptions.

If an input denormalized number is flushed to zero, the occurrence of the Input Denormal exception is determined
using the value before flushing.

If an input denormalized number is flushed to zero, and FPCR.AH is 0, the occurrence of all floating-point
exceptions, except Input Denormal, is determined treating the input value that is flushed to zero as zero.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2495
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.12 Synchronous exception types, routing and priorities
If an input denormalized number is flushed to zero, and FPCR.AH is 1, the occurrence of all floating-point
exceptions is determined treating the input value that is flushed to zero as zero.

If FPCR.AH is 0, when a single-precision or double-precision floating-point input is flushed to zero, an Input
Denormal exception is generated.

If FPCR.AH is 1, and FPCR.FIZ is 0, if and only if none of the following apply, any operation that unpacks a
denormalized floating-point input, other than unpacking a BFloat or half-precision value, generates an Input
Denormal exception:

• One of the other operands of the instruction is a NaN.

• The operation generates an Invalid Operation floating-point exception.

• The operation generates a Divide-by-Zero floating-point exception.

• The instruction that generated the operation was one of: BFCVTN, BFCVTN2, BFCVT, and BFCVTNT.

• The denormalized floating-point input is flushed to zero.

When a half-precision floating-point value is flushed to zero, an Input Denormal exception is not generated.

If FPCR.AH is 1, or FPCR.FZ is 0, when FPCR.FIZ causes flushing of a denormalized number, an Input Denormal
Exception is not generated.

Inexact exceptions

The cumulative floating-point exception bit FPSR.IXC and the trap enable bit FPCR.IXE both relate to Inexact
exceptions.

If a denormalized output is flushed to zero, all of the following apply:

• If FPCR.AH is 1, an Inexact exception is generated.

• If FPCR.AH is 0, an Inexact exception is not generated.

If a result is not flushed to zero, and the result does not equal the result computed with unbounded exponent range
and unbounded precision, then an Inexact exception is generated.

Underflow exceptions

The cumulative floating-point exception bit FPSR.UFC, and the trap enable bit FPCR.UFE both relate to Underflow
exceptions.

If FPCR.AH is 1, for all floating points other than BFMul() and BFAdd() which are used by BFDOT and BFMLLA, for the
purpose of underflow floating-point exception generation, a denormalized number is detected after rounding with
an unbounded exponent.

If FPCR.AH is 0, for the purpose of underflow floating-point exception generation, a denormalized number is
detected before rounding is applied.

If the result of a floating-point operation is a denormalized number that is not flushed to zero, then:

• If FPCR.UFE is 0, and the result is inexact, then the underflow floating-point exception is generated.

• If FPCR.UFE is 1, then the underflow floating-point exception is generated.

If the result of a floating-point operation is a denormalized number that is flushed to zero, then the Underflow
floating-point exception is not generated.

Overflow exceptions

The cumulative floating-point exception bit FPSR.OFC, and the trap enable bit FPCR.OFE both relate to Overflow
exceptions.

If the output of an instruction rounded with an unbounded exponent is greater than the maximum normalized
number for the output precision, an overflow exception is generated.
D1-2496 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.12 Synchronous exception types, routing and priorities
If an untrapped Overflow exception is generated, the result is determined by the rounding mode and the sign of the
result before rounding as follows:

• Round to Nearest carries all overflows to infinity with the sign of the result before rounding.

• Round towards Plus Infinity carries negative overflows to the most negative finite number of the output
precision, and carries positive overflows to plus infinity.

• Round towards Minus Infinity carries positive overflows to the largest finite number of the output precision,
and carries negative overflows to minus infinity.

• Round towards Zero carries all overflows to the output precision’s largest finite number with the sign of the
result before rounding.

Divide by Zero exceptions

The cumulative floating-point exception bit FPSR.DZC, and the trap enable bit FPCR.DZE both relate to Divide by
Zero exceptions.

If a floating-point operation divides a finite non-zero number by zero, a Divide by Zero exception is generated.

If a floating-point operation divides a finite non-zero number by zero, and the Divide by Zero exception is
untrapped, the result is a correctly signed infinity.

Invalid Operation exceptions

The cumulative floating-point exception bit FPSR.IOC, and the trap enable bit FPCR.IOE both relate to Invalid
Operation exceptions.

For any floating-point instruction that performs a floating-point operation, if any of the following apply, the
instruction generates an Invalid Operation exception:

• At least one operand is a signaling NaN.

• Magnitude subtraction of infinities.

• Multiplying a zero by an infinity.

• Dividing a zero by a zero.

• Dividing an infinity by an infinity.

• Square root of an operand that is less than zero.

If the input is one of: a quiet NaN, an infinity, or a number that overflows the values that can be represented in the
output format, and if another exception is not generated to signal the condition, then a conversion from
floating-point to either integer or fixed-point format, generates an Invalid Operation exception.

For the signaling compare instructions FCMPE and FCCMPE, if either of the source operands is any type of NaN,
the instruction generates an Invalid Operation floating-point exception.

If FPCR.AH is 1, for FMAX (vector), FMAX (scalar), FMAXP (scalar), FMAXP (vector), FMAXV, FMIN
(vector), FMIN (scalar), FMINP (scalar), FMINP (vector), and FMINV, if either input is any type of NaN, then an
Invalid Operation floating-point exception is generated.

Operations that do not generate floating point exceptions

BFDOT (by element), BFDOT (vector), and BFMMLA do not generate floating-point exceptions.

If FPCR.AH is 1, all of the following instructions do not generate any floating-point exceptions regardless of their
input values:

• BF16 instructions BFMLALB, BFMLALT (by element), BFMLALB, BFMLALT (vector), BFCVT,
BFCVTN, BFCVTN2, and BFCVTNT.

• Single-precision, double-precision and half-precision instructions FRECPE, FRECPS, FRECPX,
FRSQRTE, and FRSQRTS.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2497
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.12 Synchronous exception types, routing and priorities
• Floating-point to integer and floating-point rounding instructions: FCVTMS (scalar), FCVTMS (vector),
FCVTMU (scalar), FCVTMU (vector), FCVTNS (scalar), FCVTNS (vector), FCVTNU (scalar), FCVTNU
(vector), FCVTPS (scalar), FCVTPS (vector), FCVTPU (scalar), FCVTPU (vector), FCVTZS (scalar,
fixed-point), FCVTZS (scalar, integer), FCVTZS (vector, fixed-point), FCVTZS (vector, integer),
FCVTZU (scalar, fixed-point), FCVTZU (scalar, integer), FCVTZU (vector, fixed-point), FCVTAS
(scalar), FCVTAS (vector), FCVTAU (scalar), FCVTAU (vector), FCVTZS (scalar, fixed-point), FCVTZS
(scalar, integer), FCVTZS (vector, fixed-point), FCVTZS (vector, integer), FRINTA (scalar), FRINTA
(vector), FRINTZ (scalar), FRINTZ (vector), FRINTM (scalar), FRINTM (vector), FRINTP (scalar),
FRINTP (vector), FRINTN (scalar), FRINTN (vector), FRINTX (scalar), FRINTX (vector), FRINTI
(scalar), FRINTI (vector), FRINT32X (scalar), FRINT32X (vector), FRINT32Z (scalar), FRINT32Z
(vector), FRINT64X (scalar), FRINT64X (vector), FRINT64Z (scalar), and FRINT64Z (vector).

FPAbs() and FPNeg() are not classified as floating-point operations and all of the following apply to them:

• They cannot generate floating-point exceptions.

• The floating-point behavior described in the Flushing denormalized numbers to zero on page A1-54 does not
apply to them.

• The floating-point behavior described in the sectionNaN handling and the Default NaN on page A1-57 does
not apply to them.

Handling floating-point exceptions

If generating synchronous exceptions is enabled for one or more floating-point exceptions, the synchronous
exceptions generated by the floating-point exception traps are taken to the lowest Exception level that can handle
such an exception and that is not at a lower Exception level than where the exception was generated.

If an implementation includes synchronous exception generation for floating-point exceptions in AArch64 state, all
of the following apply:

• The registers that are presented to the exception handler are consistent with the state of the PE immediately
before the instruction that caused the exception, except that an implementation is permitted to not restore the
cumulative floating-point exception bits in the event of such an exception.

• When the execution of separate operations in separate SIMD elements causes multiple floating-point
exceptions, the ESR_ELx reports one exception associated with one element that the instruction uses. The
architecture does not specify which element is reported.

The AArch64.FPTrappedException() and FPProcessException() pseudocode functions describe the handling of
trapped floating-point exceptions generated in AArch64 state.

Combinations of floating-point exceptions

More than one floating-point exception can occur on the same operation. The only combinations of floating-point
exceptions that can occur are:

• Overflow with Inexact.

• Underflow with Inexact.

• If FPCR.AH is 0, Input Denormal with any other floating-point exceptions.

• If FPCR.AH is 1, Input Denormal with Inexact, Underflow, or Overflow.

If two floating-point exceptions occur on the same operation, the Input Denormal exception is treated as highest
priority and the Inexact exception is treated as lowest priority.

Some floating-point instructions specify more than one floating-point operation, this is indicated by the pseudocode
descriptions of the instruction. In these cases, it is possible for one instruction to generate multiple exceptions.
Multiple exceptions from one instruction are prioritized as follows:

• If an exception generating operation outputs a result that is used by a second exception generating operation,
the exception of the operation that outputs the result is treated as higher priority than the exception of the
second operation that uses the result.
D1-2498 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.12 Synchronous exception types, routing and priorities
• If exception generating operations do not use the outputs of other exception generating operations, it is
CONSTRAINED UNPREDICTABLE which floating-point exception is treated as higher priority. The exception
prioritized might differ between different instances of the same two floating-point exceptions being generated
on the same operation during execution of the instruction.

• A trapped underflow floating-point exception has priority over a trapped inexact floating-point exception.

If none of the floating-point exceptions caused by an operation is trapped, any floating-point exception that occurs
causes the associated cumulative bit in the FPSR to be set to 1.

When a floating-point exception is trapped, all of the following apply:

• When the trapped floating-point exception is taken, it is IMPLEMENTATION DEFINED whether the FPSR is
restored to the value of the FPSR immediately before the instruction that generated the trapped floating-point
exception.

When the trapped floating-point exception is taken, if the FPSR is not restored, it is CONSTRAINED
UNPREDICTABLE which untrapped floating-point exceptions, if any, are indicated by the corresponding FPSR
cumulative floating-point exception bits having the value 1.

• In the ESR_ELx to which the trapped exception is taken all of the following apply:

— The highest priority trapped floating-point exception has a floating-point exception trapped bit set to 1.

— If any other untrapped floating-point exceptions are generated by the same operation, each untrapped
exception has a floating-point exception trapped bit set to 0. This applies to both higher priority and
lower priority untrapped floating-point exceptions.

— If any lower priority trapped floating-point exceptions are generated by the same operation, for each
exception, it is CONSTRAINED UNPREDICTABLE whether the floating-point exception trapped bit is set
to 1.

The architectural requirements for floating-point exception prioritization apply only to multiple floating-point
exceptions generated on the same element of an Advanced SIMD operation. For trapped floating-point exceptions
from Advanced SIMD instructions, the architecture does not define the floating-point exception prioritization
between different elements of the instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2499
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.13 Asynchronous exception types, routing, masking and priorities
D1.13 Asynchronous exception types, routing, masking and priorities

In the Armv8-A architecture, asynchronous exceptions that are taken to AArch64 state are also known as interrupts.

There are two types of interrupts:

Physical interrupts Are signals sent to the PE from outside the PE. They are:

• SError. System Error.

• IRQ.

• FIQ.

Virtual interrupts Are interrupts that software executing at EL2 can enable and make pending. A virtual
interrupt is taken from EL0 or EL1 to EL1.

Virtual interrupts have names that correspond to the physical interrupts:

• vSError.

• vIRQ.

• vFIQ.

Note

• For information about how virtual interrupts might be used, see Virtual interrupt usage model on
page D1-2462.

• The SError interrupt replaces the Armv7 asynchronous abort. The new name better describes the nature of
the exception, and means that, in AArch64 state, it is categorized as a unique exception class, with EC
encoding 0x2F.

An External abort generated by the memory system might be taken asynchronously using the SError interrupt.
These SError interrupts always behave as edge-triggered interrupts. An implementation might include other sources
of SError interrupt. It is IMPLEMENTATION DEFINED whether these other sources are edge-triggered or
level-sensitive. See also External aborts on page D4-2666.

Each physical interrupt type can be assigned a target Exception level of EL1, EL2 or EL3, as shown in Asynchronous
exception routing on page D1-2501.

When an interrupt occurs:

• On taking an SError or a vSError interrupt to an Exception level using AArch64, the Exception Syndrome
register for that Exception level is updated to describe an SError interrupt.

When the RAS Extension is implemented, the exception syndrome for the vSError interrupt is taken from the
values in the VSESR_EL2 register. See Exception classes and the ESR_ELx syndrome registers on
page D1-2478, and the Arm® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the
ARMv8-A architecture profile.

• On taking an IRQ, vIRQ, FIQ or vFIQ interrupt to an Exception level using AArch64, the Exception
Syndrome register for that Exception level is not updated.

The remainder of this section contains the following:

• Asynchronous exception routing on page D1-2501.

• Asynchronous exception masking on page D1-2504.

• Virtual interrupts on page D1-2506.

• Prioritization and recognition of interrupts on page D1-2508.

• Taking an interrupt or other exception during a multi-access load or store on page D1-2509.
D1-2500 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.13 Asynchronous exception types, routing, masking and priorities
D1.13.1 Asynchronous exception routing

The following tables show the routing of physical interrupts when the highest implemented Exception level is using
AArch64:

• For implementations that include both EL2 and EL3, see Table D1-8 on page D1-2501.

• For implementations that include EL3 but not EL2, see Table D1-9 on page D1-2502.

• For implementations that include EL2 but not EL3, see Table D1-10 on page D1-2503.

When the highest implemented Exception level is using AArch32, see Table G1-19 on page G1-6076.

In the tables:

SCR This is the Effective value of a field in SCR.

FIQ IRQ EA The Effective value of the field that handles the asynchronous exception type in SCR, if the highest
EL is using AArch32, or SCR_EL3, if the highest EL is using AArch64.

HCR This is the Effective value of a field in HCR, if EL2 is using AArch32 or HCR_EL2 if EL2 is using
AArch64.

When the value of the TGE is 1, the virtual exceptions are disabled.

When the Effective value of HCR.{E2H, TGE} is:

{0, 1} The Effective value of each of the HCR.{AMO, IMO, FMO} fields is 1.

{1, 1} The Effective value of each of the HCR.{AMO, IMO, FMO} fields is 0.

FMO IMO AMO The Effective value of the mask override field for the asynchronous exception type in HCR, if
EL2 is using AArch32 or HCR_EL2 if EL2 is using AArch64.

EL2 The exception is taken to EL2 using AArch64.

EL3 The exception is taken to EL3 using AArch64.

C The interrupt is not taken and remains pending, regardless of the PSTATE.{A, I, F} interrupt masks.

FIQ IRQ Abt The exception is taken to the FIQ mode, the IRQ mode or the Abort mode according to the type of
asynchronous exception.

Hyp The exception is taken to AArch32 Hyp mode.

Mon The exception is taken to AArch32 Monitor mode.

n/a Not applicable. The field does not exist in the register in this configuration or the Exception level is
not accessible in this configuration.

Table D1-8 Routing when both EL3 and EL2 are implemented

SCR HCR
Target
when
taken
from EL0

Target
when
taken
from EL1

Target
when
taken
from EL2

Target
when
taken
from EL3NS EEL2a

EA
IRQ
FIQ

RW TGE
AMO
IMO
FMO

E2H RW

0 0 0 0 x x x x FIQ IRQ
Abt

FIQ IRQ
Abt

n/a C

1 x x x x EL1 EL1 n/a C

1 x x x x x EL3 EL3 n/a EL3

1 0 x 0 0 0 0 FIQ IRQ
Abt

FIQ IRQ
Abt

C C

1 EL1 EL1 C C
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2501
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.13 Asynchronous exception types, routing, masking and priorities
1 x EL1 EL1 C C

1 x x EL2 EL2 EL2 C

1 x x x EL2 n/a EL2 C

1 x 0 x x x EL3 EL3 EL3 EL3

1 x x x EL3 n/a EL3 EL3

1 x 0 0 0 0 n/a n/a FIQ IRQ
Abt

FIQ IRQ
Abt

Hyp C

1 n/a n/a Hyp Hyp Hyp C

1 x n/a n/a Hyp n/a Hyp C

1 0 0 0 0 FIQ IRQ
Abt

FIQ IRQ
Abt

C C

1 EL1 EL1 C C

1 x EL1 EL1 C C

1 x x EL2 EL2 EL2 C

1 x x x EL2 n/a EL2 C

1 x 0 x x x EL3 EL3 EL3 EL3

1 x x x EL3 n/a EL3 EL3

a. When the implementation does not include FEAT_SEL2, the SCR_EL3.EEL2 field is not implemented and the Effective value of EEL2 is 0.

Table D1-8 Routing when both EL3 and EL2 are implemented (continued)

SCR HCR
Target
when
taken
from EL0

Target
when
taken
from EL1

Target
when
taken
from EL2

Target
when
taken
from EL3NS EEL2a

EA
IRQ
FIQ

RW TGE
AMO
IMO
FMO

E2H RW

Table D1-9 Routing when EL3 is implemented and EL2 is not implemented

SCR_EL3 Target Exception level when executing at

EA
IRQ
FIQ

EL0 EL1 EL3

0 EL1 EL1 C

1 EL3 EL3 EL3
D1-2502 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.13 Asynchronous exception types, routing, masking and priorities
Table D1-10 Routing when EL3 is not implemented and EL2 is implemented

HCR_EL2 Target Exception level when executing at

TGE
AMO
IMO
FMO

EL0 EL1 EL2

0 0 EL1 EL1 C

1 EL2 EL2 EL2

1 x EL2 n/a EL2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2503
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.13 Asynchronous exception types, routing, masking and priorities
D1.13.2 Asynchronous exception masking

When an interrupt is masked, it means that it cannot be taken. Instead, it remains pending.

When executing in AArch64 state, interrupts are masked implicitly when the target Exception level of the interrupt
is lower than the current Exception level.

In addition, interrupts can be masked when the target Exception level is the current Exception level. The controls
for this are:

SError PSTATE.A

IRQ PSTATE.I

FIQ PSTATE.F

When the target Exception level is higher than the current Exception level:

• If the target Exception level is EL3, the interrupt cannot be masked by the PSTATE.{A, I, F} bits.

• If the target Exception level is EL2, and either HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, the interrupt
cannot be masked by the PSTATE.{A, I, F} bits.

• If the target Exception level is EL2, HCR_EL2.E2H is 1, and HCR_EL2.TGE is 1, the interrupt can be
masked by the PSTATE.{A, I, F} bits.

• If the target Exception level is EL1, the interrupt can be masked by the PSTATE.{A, I, F} bits.

Note

• The ability to execute in EL0 with interrupts to EL1 masked is required by some user level driver code.

• The PSTATE.{A, I, F} bits can mask both physical interrupts and virtual interrupts.

• The Armv8-A architecture does not support Non-maskable FIQ (NMFI) operations. This means that it does
not provide a configuration option to override the masking of FIQs by PSTATE.F.

On taking any exception to an Exception level using AArch64, all of PSTATE.{A, I, F} are set to 1, masking all
interrupts that target that Exception level.

The following tables show the masking of physical interrupts when the highest implemented Exception level is
using AArch64:

• For implementations that include both EL2 and EL3, see Table D1-11 on page D1-2505.

• For implementations that include EL3 but not EL2, see Table D1-12 on page D1-2506.

• For implementations that include EL2 but not EL3, see Table D1-13 on page D1-2506.

For the masking of interrupts when the highest implemented Exception level is using AArch32, see Table G1-20 on
page G1-6077.

For the masking of virtual interrupts, see Virtual interrupts on page D1-2506.

In the tables:

SCR This is the Effective value of a field in SCR.

FIQ IRQ EA The Effective value of the field that handles the asynchronous exception type in SCR, if the highest
EL is using AArch32, or SCR_EL3, if the highest EL is using AArch64.

HCR This is the Effective value of a field in HCR.

When the value of HCR.TGE is 1, the virtual exceptions are disabled.

When the Effective value of HCR.{E2H, TGE} is:

{0, 1} The Effective value of each of the HCR.{AMO, IMO, FMO} fields is 1.

{1, 1} The Effective value of each of the HCR.{AMO, IMO, FMO} fields is 0.

FMO IMO AMO The Effective value of the mask override field for the asynchronous exception type in HCR, if
EL2 is using AArch32 or HCR_EL2 if EL2 is using AArch64.

A When the interrupt is asserted it is taken regardless of the value of the PSTATE.{A, I, F} interrupt
masks.
D1-2504 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.13 Asynchronous exception types, routing, masking and priorities
B When the interrupt is asserted it is subject to the corresponding Process state mask. If the value of
the mask is 1 then the interrupt is not taken. If the value of the mask is 0 the interrupt is taken.

A/B When FEAT_DoubleFault is implemented, the interrupt is an SError interrupt, and
SCR_EL3.NMEA is 1, then the interrupt behaves as A. Otherwise, the interrupt behaves as B.

C When the interrupt is asserted it is not taken, regardless of the value of the PSTATE.{A, I, F}
interrupt masks.

n/a Not applicable. The PE cannot be executing at this Exception level for the specified state of HCR
and SCR_EL3.

Table D1-11 Physical interrupt target and masking when both EL3 and EL2 are implemented

SCR HCR Effect of the interrupt mask when executing at:

NS EEL2a

EA

IRQ

FIQ

RW TGE E2Hb

AMO

IMO

FMO

EL0 EL1 EL2 EL3

0 0 0 x x x x B B n/a C

1 x x x x A A n/a A/B

1 0 x 0 x 0 B B C C

1 A A B C

1 0 x A n/a B C

1 x B n/a B C

1 x 0 x x A A A A/B

1 x x A n/a A A/B

1 x 0 0 0 n/a 0 B B B C

1 A A B C

1 n/a x A n/a B C

1 0 x 0 B B C C

1 A A B C

1 0 x A n/a B C

1 x B n/a B C

1 x 0 x x A A A A/B

1 x x A n/a A A/B

a. When the implementation does not include FEAT_SEL2, the SCR_EL3.EEL2 field is not implemented and the Effective
value of EEL2 is 0.

b. When the implementation does not include FEAT_VHE, the HCR_EL2.E2H field is not implemented and the Effective
value of E2H is 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2505
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.13 Asynchronous exception types, routing, masking and priorities
D1.13.3 Virtual interrupts

When the value of HCR_EL2.TGE is 0, setting an HCR_EL2.{FMO, IMO, AMO} routing control bit to 1 enables
the corresponding virtual interrupt. When the value of HCR_EL2.TGE is 1 all virtual interrupts are disabled.

When execution is at EL2, if enabled in the current Security state, or EL3, all types of virtual interrupts are always
masked. If EL2 is not enabled in the current Security state, all types of virtual interrupts are always masked.

Virtual interrupts can only be taken from EL0 or EL1 to EL1. When a virtual interrupt type is enabled, that type of
interrupt can be generated by:

• Software setting the corresponding virtual interrupt pending bit, HCR_EL2.{VSE, VI, VF}, to 1.

• For a vIRQ or a vFIQ, by an IMPLEMENTATION DEFINED mechanism. This might be a signal from an interrupt
controller. See, for example, the ARM Generic Interrupt Controller Architecture Specification.

Note

For a usage model for virtual interrupts, see Virtual interrupt usage model on page D1-2462.

When a virtual interrupt is disabled:

• It cannot be taken.

• It cannot be seen in the ISR_EL1.

Each virtual interrupt type can be masked when execution is in EL1 or EL0, by using the same Process State mask
bits that mask the physical interrupts, PSTATE.{A, I, F}.

Table D1-12 Physical interrupt target and masking when EL3 is implemented and EL2 is not implemented

SCR_EL3

Target
Exception level

Effect of the interrupt mask when executing at:

NS
EA
IRQ
FIQ

EL0 EL1 EL3

x 0 EL1 B B C

1 EL3 A A A/B

Table D1-13 Physical interrupt target and masking when EL3 is not implemented and EL2 is implemented

HCR_EL2

Target
Exception level

Effect of the interrupt mask when executing at:

E2Ha TGE

AMO

IMO

FMO

EL0 EL1 EL2

x 0 0 EL1 B B C

1 EL2 A A B

0 1 x EL2 A n/a B

1 1 x EL2 B n/a B

a. If the implementation does not include FEAT_VHE, the HCR.E2H field is not implemented and behavior is as if the value
of E2H is 0.
D1-2506 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.13 Asynchronous exception types, routing, masking and priorities
Table D1-14 on page D1-2507 summarizes the bits that enable virtual interrupts and the bits that cause virtual
interrupts to be pending.

On taking a vIRQ or a vFIQ interrupt, the corresponding virtual interrupt pending bit in the HCR_EL2 retains its
state.

On taking a vSError interrupt, HCR_EL2.VSE is cleared to 0.

Note

This means that if the virtual interrupt pending bits are used, the vIRQ or vFIQ exception handler must cause
software executing at EL2 or EL3 to set their corresponding virtual interrupt pending bits to 0.

Taking a vSError interrupt to an Exception level using AArch64 updates ESR_EL1 with the encoding for an SError
interrupt. For the encoding, see Exception classes and the ESR_ELx syndrome registers on page D1-2478. When
the RAS Extension is implemented, the exception syndrome for the vSError interrupt is taken from the values in the
VSESR_EL2 register, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the
ARMv8-A architecture profile. Taking a vIRQ or a vFIQ interrupt to an Exception level using AArch64 does not
update the ESR_EL1.

The following table shows the masking of virtual interrupts when the highest implemented Exception level is using
AArch64. In the table:

B When the interrupt is asserted it is subject to the corresponding Process state mask. If the value of
the mask is 1 then the interrupt is not taken. If the value of the mask is 0 the interrupt is taken.

C When the interrupt is asserted it is not taken, regardless of the value of the Process state mask.

n/a Not applicable. The PE cannot be executing at this Exception level for the specified state of HCR
and SCR_EL3.

HCR In Table D1-15 on page D1-2508, including in the table footnote:

• When EL2 is using AArch64 HCR refers to the AArch64 register HCR_EL2.

• When EL2 is using AArch32 HCR refers to the AArch32 register HCR.

When the value of HCR.TGE is 1, the virtual exceptions are disabled.

When the Effective value of HCR.{E2H, TGE} is:

{0, 1} The Effective value of each of the HCR.{AMO, IMO, FMO} fields is 1.

Table D1-14 HCR_EL2 interrupt control bits

Virtual interrupt type Enable controla

a. Applies only when the value of HCR_EL2.TGE is 0, otherwise the virtual interrupts are disabled.

Cause a virtual interrupt to be pending

vSError HCR_EL2.AMO HCR_EL2.VSE

vIRQ HCR_EL2.IMO HCR_EL2.VI

vFIQ HCR_EL2.FMO HCR_EL2.VF
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2507
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.13 Asynchronous exception types, routing, masking and priorities
{1, 1} The Effective value of each of the HCR.{AMO, IMO, FMO} fields is 0.

D1.13.4 Prioritization and recognition of interrupts

The prioritization of interrupts, including virtual interrupts, is IMPLEMENTATION DEFINED.

Note

As indicated at the start of Asynchronous exception types, routing, masking and priorities on page D1-2500, in
AArch64 state all possible asynchronous exceptions are defined as interrupts.

Any interrupt that is pending before a Context synchronization event in the following list, is taken before the first
instruction after the context synchronizing event, provided that the pending interrupt is not masked:

• Execution of an ISB instruction.

• Exception entry, if FEAT_ExS is not implemented, or if FEAT_ExS is implemented and the appropriate
SCTLR_ELx.EIS bit is set.

• Exception return, if FEAT_ExS is not implemented or if FEAT_ExS is implemented and the appropriate
SCTLR_ELx.EOS bit is set.

• Exit from Debug state.

Note

• If the first instruction after the context synchronizing event generates a synchronous exception, then the
architecture does not define whether the PE takes the interrupt or the synchronous exception first.

• The ISR_EL1 identifies any pending interrupts.

• Interrupts are masked when the PE is in Debug state, and therefore this list of context synchronizing events
does not include the DCPS and DRPS instructions.

An error synchronization event defines additional requirements for taking an SError interrupt, see the Arm®
Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture profile.

In the absence of a specific requirement to take an interrupt, the architecture only requires that unmasked pending
interrupts are taken in finite time.

Table D1-15 Virtual interrupt masking

SCR_EL3 HCR Effect of the interrupt mask when executing at:

EEL2 NS

EA

IRQ

FIQ

E2Ha TGE

AMO

IMO

FMO

EL0 EL1 EL2 EL3

0 0 x x x x C C n/a C

1 0 x x 0 0 C C C C

1 B B C C

1 x C n/a C C

x 1 x x 0 0 C C C C

1 B B C C

1 x C n/a C C

a. If EL2 is using AArch32 or the implementation does not include FEAT_VHE, the HCR.E2H field is not implemented and
behavior is as if the value of E2H is 0.
D1-2508 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.13 Asynchronous exception types, routing, masking and priorities
If an unmasked interrupt was pending but is changed to not pending before it is taken, then the architecture permits
the interrupt to be taken, but does not require this to happen. If the interrupt is taken then it must be taken before the
first Context synchronization event after the interrupt was changed to not pending.

D1.13.5 Taking an interrupt or other exception during a multi-access load or store

In AArch64 state, interrupts can be taken during a sequence of memory accesses caused by a single load or store
instruction. This is true regardless of the memory type being accessed.

If an interrupt, or another exception, is taken from AArch64 during the execution of an instruction that performs a
sequence of memory accesses, rather than a single single-copy atomic access, then:

• For a load, any register being loaded by the instruction other than ones used in the generation of the address
by the instruction, can contain an UNKNOWN value. Registers used in the generation of the address are
restored to their initial value.

• For a store, any data location being stored to by the instruction can contain an UNKNOWN value.

• For either a load or a store, if the instruction specifies writeback of the base address, then that register is
restored to its initial value.

Note

• This interrupt behavior is in contrast to behavior in AArch32 state, when interrupts cannot be taken during a
sequence of memory accesses caused by a single load or store instruction.

• In both Execution states, synchronous data abort exceptions can be taken during the execution of an
instruction that performs a sequence of memory accesses.

• Software must avoid using multiple-register load and store instructions for accesses to Device memory,
particularly to Device memory with the non-Gathering attribute, because an exception taken during the load
or store can result in repeated accesses.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2509
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
D1.14 Configurable instruction enables and disables, and trap controls

This section describes the controls provided by AArch64 state for enabling, disabling, and trapping particular
instructions. Each control is categorized as an instruction enable, an instruction disable, or a trap control:

Instruction enables and instruction disables

Enable or disable the use of one or more particular instructions at a particular Exception level and
Security state.

When an instruction is disabled as a result of an instruction enable or disable, it is UNDEFINED.

Trap controls A trap control determines whether one or more particular instructions, whenever executed at a
particular Exception level, are trapped.

A trapped instruction generates a Trap exception.

For trap controls provided by:

EL1 Trap exceptions are taken to EL1, unless routed from EL0 to EL2 because
HCR_EL2.TGE is 1 as described in Routing exceptions from EL0 to EL2 on
page D1-2489.

EL2 Trap exceptions are taken to EL2.

For descriptions of these controls, see EL2 configurable controls on page D1-2516.

EL3 Trap exceptions are taken to EL3.

For descriptions of these controls, see EL3 configurable controls on page D1-2528.

Note

The definitions of traps and enables and disables overlap, and the classification of some controls is historical. In
AArch64 state, the most significant characteristic of an exception report is the ESR_ELx.EC value with which it is
reported. Describing a register control field as an instruction enable, an instruction disable, or a trap control, gives
no indication of how an exception that is generated as a consequence of the value of that field is handled or reported.

An exception generated as a result of an instruction enable or disable, or a trap control, is only taken if both of the
following apply:

• The instruction generating the exception does not also generate a higher priority exception. Synchronous
exception prioritization for exceptions taken to AArch64 state on page D1-2490 defines the prioritization of
different exceptions on the same instruction.

• The instruction is not UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in the PE state it is executed in.
UNPREDICTABLE and CONSTRAINED UNPREDICTABLE instructions can generate exceptions as a result of these
controls, but the architecture does not require them to do so.

Exceptions generated as a result of these controls are synchronous exceptions.

Exceptions are reported in the ESR_ELx, with an EC value that indicates the Exception class, and:

• Many cases, including all traps, are reported with a non-zero EC value and an associated syndrome.

• Some cases where an instruction is UNDEFINED are reported with an EC value 0x00, the value for an exception
for an unknown or uncategorized reason, and in these cases no syndrome is provided. ISS encoding for
exceptions with an unknown reason on page D13-3150 identifies the cases that are reported with EC value
0x00.

Table D1-6 on page D1-2479 lists the EC values that are used for exceptions that result from traps, enables, and
disables.

Note

• A particular control might have a mnemonic that suggests it is different type of control to the control type it
is categorized as. For example, SCTLR_EL1.DZE is a trap control even though DZE means DC ZVA Enable.

• In addition to the controls described in this section, a routing control, HCR_EL2.TGE, can be used to route
exceptions from EL0 to EL2. See Routing exceptions from EL0 to EL2 on page D1-2489.
D1-2510 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
• An implementation might provide additional controls, in IMPLEMENTATION DEFINED registers, to provide
control of trapping of IMPLEMENTATION DEFINED features.

This section is organized as follows:

• Traps on instructions on page D1-2511.

• EL1 configurable controls on page D1-2511.

• EL2 configurable controls on page D1-2516.

• EL3 configurable controls on page D1-2528.

D1.14.1 Traps on instructions

When an instruction is disabled or trapped, the exception is taken before execution of the instruction. This means
the preferred exception return of the exception is the instruction that is trapped.

If a conditional instruction is trapped, in AArch32 state, the Armv8-A architecture permits, but does not require the
trap to apply to conditional AArch32 instructions that fail their Condition code check. For more information, see:

• Conditional execution of undefined instructions on page G1-6080.

• EL2 configurable controls on page G1-6126.

• EL3 configurable controls on page G1-6146.

• Limitations of the instruction pseudocode on page K14-8576.

If the instruction is a register access instruction:

• No access is made before the exception is taken.

• Side-effects that are normally associated with the access do not occur before the exception is taken.

D1.14.2 EL1 configurable controls

These controls are in EL0 and EL1 System registers. The resulting exceptions might be taken from either Execution
state. SPSR_EL1.M[4] indicates which Execution state the exception was taken from.

If HCR_EL2.TGE is 1 and EL2 is enabled in the current Security state, these Trap exceptions are routed to EL2
instead of EL1, see Routing exceptions from EL0 to EL2 on page D1-2489.

Table D1-16 on page D1-2511 shows the EL0 and EL1 System registers that contain these controls.

Table D1-16 EL1 registers that contain instruction enables and disables, and trap controls

Register name Register description

AMUSERENR_EL0 Activity Monitors User Enable Register

CPACR_EL1 Architectural Feature Access Control Register

MDSCR_EL1 Monitor System Debug Control Register

PMUSERENR_EL0 Performance Monitors User Enable Register

SCTLR_EL1 System Control Register (EL1)

TCR_EL1 Translation Control Register (EL1)
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2511
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
Table D1-17 on page D1-2512 summarizes the controls provided by EL1.

Table D1-17 Instruction enables and disables, and trap controls, provided by EL1

Control Control typea Description

AMUSERENR_EL0.EN T Traps to EL1 of EL0 accesses to Activity Monitors registers on
page D1-2513

CNTKCTL_EL1.{EL0PTEN, EL0VTEN,
EL0PCTEN, EL0VCTEN}

T Traps to EL1 of EL0 accesses to the Generic Timer registers
on page D1-2513

CPACR_EL1.TTA T Traps to EL1 of EL0 and EL1 System register accesses to the
trace registers on page D1-2513

CPACR_EL1.FPEN T Traps to EL1 of EL0 and EL1 accesses to SIMD and
floating-point functionality on page D1-2513

MDSCR_EL1.TDCC T Traps to EL1 of EL0 accesses to the Debug Communications
Channel (DCC) registers on page D1-2513

PMUSERENR_EL0.{ER, CR, SW, EN} T Traps to EL1 of EL0 accesses to Performance Monitors
registers on page D1-2513

SCTLR_EL1.{EnALS, EnAS0, EnASR} T Traps to EL1 of EL0 execution of single-copy atomic 64-byte
instructions on page D1-2514

SCTLR_EL1.{EnDA, EnDB, EnIA, EnIB} E Enabling use of the Pointer authentication instructions,
EL1&0 translation regime on page D1-2514

SCTLR_EL1.UCI T Traps to EL1 of EL0 execution of cache maintenance
instructions on page D1-2514

SCTLR_EL1.{nTWE, nTWI} T Traps to EL1 of EL0 execution of WFE, WFI, WFET, and
WFIT instructions on page D1-2514

SCTLR_EL1.UCT T Traps to EL1 of EL0 accesses to the CTR_EL0 on
page D1-2514

SCTLR_EL1.DZE T Traps to EL1 of EL0 execution of DC ZVA instructions on
page D1-2514

SCTLR_EL1.UMA T Traps to EL1 of EL0 accesses to the PSTATE.{D, A, I, F}
interrupt masks on page D1-2514

SCTLR_EL1.{SED, ITD}

SCTLR_EL1.CP15BEN

D

E

Disabling or enabling EL0 use of AArch32 optional
functionality on page D1-2515

TCR_EL1.{TBID0, TBID1} D Disabling Address tagging for instruction accesses, EL1&0
translation regime on page D1-2515

a. See Table D1-18 on page D1-2512.

Table D1-18 Control types, for exceptions taken to EL1

Abbreviation Type See

D Disable Instruction enables and instruction disables on page D1-2510

E Enable Instruction enables and instruction disables on page D1-2510

T Trap Trap controls on page D1-2510
D1-2512 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
Traps to EL1 of EL0 accesses to Activity Monitors registers

AMUSERENR_EL0.EN traps EL0 accesses to the Activity Monitors registers to EL1.

Traps to EL1 of EL0 accesses to the Generic Timer registers

CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} trap EL0 accesses to the Generic Timer
registers to EL1, as follows:

• CNTKCTL_EL1.EL0PTEN traps EL0 accesses to the physical timer registers.

• CNTKCTL_EL1.EL0VTEN traps EL0 accesses to the virtual timer registers.

• CNTKCTL_EL1.EL0PCTEN traps EL0 accesses to the frequency register and physical counter register.

• CNTKCTL_EL1.EL0VCTEN traps EL0 accesses to the frequency register and virtual counter register.

Accesses to the frequency register, CNTFRQ_EL0 or CNTFRQ, are only trapped if CNTKCTL_EL1.EL0PCTEN
and CNTKCTL_EL1.EL0VCTEN are both 0.

Traps to EL1 of EL0 and EL1 System register accesses to the trace registers

CPACR_EL1.TTA traps EL0 and EL1 System register accesses to the trace registers to EL1.

Note

• The ETMv4 architecture does not permit EL0 to access the trace registers. If the Armv8-A architecture is
implemented with an ETMv4 implementation, EL0 accesses to the trace registers are UNDEFINED, and the
resulting exception is higher priority than a CPACR_EL1.TTA Trap exception.

• The Armv8-A architecture does not provide traps on trace register accesses through the OPTIONAL
Memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, no
side-effects occur before the exception is taken, see Traps on instructions on page D1-2511.

Traps to EL1 of EL0 and EL1 accesses to SIMD and floating-point functionality

When EL1 is using AArch64, CPACR_EL1.FPEN traps EL0 and EL1 accesses of the following registers to EL1:

• FPCR, FPSR, and any of the SIMD and floating-point registers V0-V31, including their views as D0-D31
registers or S0-S31 registers. See The SIMD and floating-point registers, V0-V31 on page D1-2464.

• FPSCR, and any of the SIMD and floating-point registers Q0-Q15, including their views as D0-D31 registers
or S0-S31 registers. See Advanced SIMD and floating-point System registers on page G1-6114.

The value of CPACR_EL1.FPEN determines whether the trap applies to accesses from both EL0 and EL1 using
AArch64, or only to accesses from EL0 accesses from both Execution states.

Traps to EL1 of EL0 accesses to the Debug Communications Channel (DCC) registers

MDSCR_EL1.TDCC traps EL0 accesses to the DCC registers to EL1.

Traps of AArch32 accesses to DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

Traps of AArch64 accesses to DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0 are ignored in Debug
state.

Traps to EL1 of EL0 accesses to Performance Monitors registers

PMUSERENR_EL0.{ER, CR, SW, EN} trap EL0 accesses to the Performance Monitors registers to EL1.

For those Performance Monitors registers that more than one PMUSERENR_EL0.{ER, CR, SW, EN} control
applies to, accesses are only trapped if all controls that apply are set to 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2513
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
The accesses that these trap controls trap might be reads, writes, or both.

PMUSERENR_EL0.EN traps EL0 access only if the corresponding EL1 accesses is permitted. For example, the
PMSWINC_EL0 and PMSWINC registers are WO at EL1, and therefore are not trapped.

Traps to EL1 of EL0 execution of single-copy atomic 64-byte instructions

If FEAT_LS64 is implemented, SCTLR_EL1.{EnALS, EnAS0, EnASR} traps execution of single-copy atomic
64-byte instructions to EL1 when HCR_EL2.{E2H, TGE} is not {1,1}.

Enabling use of the Pointer authentication instructions, EL1&0 translation regime

If FEAT_PAuth is implemented, each of the SCTLR_EL1.{EnDA, EnDB, EnIA, EnIB} fields enables the pointer
authentication functionality for the corresponding Pointer authentication instructions for the EL1&0 translation
regime. For more information, see System register control of pointer authentication on page D5-2681.

Note

These controls cause the pointer authentication instructions to execute as NOPs. They never cause an exception to be
generated.

Traps to EL1 of EL0 execution of cache maintenance instructions

SCTLR_EL1.UCI traps EL0 execution using AArch64 of cache maintenance instructions to EL1.

Traps to EL1 of EL0 execution of WFE, WFI, WFET, and WFIT instructions

When FEAT_WFxT or FEAT_WFxT2 is implemented, the instructions Wait for Event with Timeout (WFET) and
Wait for Event with Interrupt (WFIT) are implemented as additional forms of the Wait for Event (WFE) and Wait for
Interrupt (WFI) instructions.

SCTLR_EL1.{nTWE, nTWI} trap EL0 execution of WFE, WFI, WFET, or WFIT instructions to EL1 if the instruction
would otherwise have caused the PE to enter a low-power state.

Note

Since a WFE, WFI, WFET, or WFIT instruction can complete at any time, even without a Wakeup or local timeout event,
the traps on these instructions are not guaranteed to be taken, even if the instruction is executed when there is no
Wakeup or local timeout event. The only guarantee is that if the instruction does not complete in finite time in the
absence of a Wakeup or local timeout event, the trap will be taken.

For more information about these instructions, and when they can cause the PE to enter a low-power state, see:

• Wait for Event mechanism and Send event on page D1-2536.

• Wait For Interrupt on page D1-2540.

Traps to EL1 of EL0 accesses to the CTR_EL0

SCTLR_EL1.UCT traps EL0 accesses using AArch64 to the CTR_EL0 to EL1.

Traps to EL1 of EL0 execution of DC ZVA instructions

SCTLR_EL1.DZE traps EL0 execution of DC ZVA instructions to EL1. If the trap is enabled, reading the
DCZID_EL0 returns a value that indicates that DC ZVA instructions are not implemented.

Traps to EL1 of EL0 accesses to the PSTATE.{D, A, I, F} interrupt masks

SCTLR_EL1.UMA traps EL0 execution of MSR and MRS instructions that access the PSTATE.{D, A, I, F} masks to
EL1. If HCR_EL2.TGE is 1 and EL2 is enabled in the current Security state, these Trap exceptions are routed to
EL2.
D1-2514 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
Disabling or enabling EL0 use of AArch32 optional functionality

Table D1-19 on page D1-2515 shows the optional AArch32 functionality that might have disable controls in the
SCTLR_EL1:

• The SED control is implemented if the implementation supports mixed-endian operation at any Exception
level.

• Whether the ITD control is implemented is IMPLEMENTATION DEFINED.

• Whether the CP15BEN control is implemented is IMPLEMENTATION DEFINED.

• If a control is not implemented, then the associated functionality cannot be disabled.

These SCTLR_EL1 controls apply only to execution at EL0 using AArch32. When an instruction is disabled by one
of these controls, it is UNDEFINED at EL0 using AArch32. When HCR_EL2.{E2H,TGE} is {1, 1}, the control is
from SCTLR_EL2.

Table D1-19 on page D1-2515 shows how the exceptions are reported in ESR_EL1:

Note

• The uses of the IT instruction, and use of the CP15DMB, CP15DSB, and CP15ISB barrier instructions, are
deprecated for performance reasons.

• The SCTLR provides similar controls that apply when EL1 is using AArch32, and the HSCTLR provides
similar controls that apply when EL2 is using AArch32.

Disabling Address tagging for instruction accesses, EL1&0 translation regime

This control is implemented when FEAT_PAuth is implemented.

When a TCR_EL1.{TBI0, TBI1} field enables the use of address tagging for the EL1&0 translation regime, the
corresponding TCR_EL1.{TBID0, TBID1} field determines whether address tagging is used for both data and
instruction addresses, or only for data addresses. For more information, see Address tagging in AArch64 state on
page D5-2676.

Note

These controls determine the scope of address tagging. They never cause an exception to be generated.

Table D1-19 EL1 controls for disabling and enabling EL0 use of AArch32 optional functionality

Optional AArch32
functionality

Instruction enable or
disable in the
SCTLR_EL1

Disabled instructions
Syndrome reporting in
ESR_EL1a

SETEND instructions SEDb SETEND instructions Exception for an unknown
reason, using EC value
0x00Some uses of IT instructions ITDc See the SCTLR_EL1.IT

description

Accesses to the CP15DMB,
CP15DSB, and CP15ISB barrier
instructions

CP15BENd MCR accesses to the CP15DMB,
CP15DSB, and CP15ISB
instructions

a. If HCR_EL2.TGE is 1 and EL2 is enabled in the current Security state, the exception is routed to EL2 and reported in ESR_EL2 using the
EC value shown in the table.

b. SETEND instruction disable. SETEND instructions are disabled when the value of this field is 1.

c. IT instruction disable. If this control is implemented, some uses of IT instructions are disabled when the value of this field is 1.

d. System register (coproc==0b1111) memory barrier enable. If this control is implemented, the specified register accesses are disabled when
the value of CP15BEN is 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2515
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
D1.14.3 EL2 configurable controls

These controls are in EL2 System registers. The resulting exceptions might be taken from either Execution state.
SPSR_EL2.M[4] indicates which Execution state the exception was taken from.

If Secure EL2 is implemented and enabled, configurable instruction controls available at EL2 apply in Secure state.
If Secure EL2 is not implemented or not enabled, the configurable instruction controls available at EL2 are ignored
in Secure state.

FEAT_FGT introduces additional traps to EL2 of EL1 and EL0 access to individual or small groups of System
registers and instructions. The traps are independent of existing controls. If implementations have IMPLEMENTATION
DEFINED registers accessible from EL1 or EL0, Arm recommends that EL2 accessible fine-grained traps are
provided for these registers using a control register held in IMPLEMENTATION DEFINED space.

Table D1-20 on page D1-2516 shows the EL2 System registers that contain these controls.

Table D1-21 on page D1-2517 summarizes the controls.

Note

For completeness, Table D1-21 on page D1-2517 includes the routing control described in Routing exceptions from
EL0 to EL2 on page D1-2489.

Table D1-20 EL2 registers that contain instruction disables and trap controls

Register name Register description

CPTR_EL2 Architectural Feature Trap Register, EL2

HAFGRTR_EL2 Hypervisor Activity Monitors Fine-Grained Read Trap Register

HCR_EL2 Hypervisor Configuration Register

HCRX_EL2 Extended Hypervisor Configuration Register

HDFGRTR_EL2 Hypervisor Debug Fine-Grained Read Trap Register

HDFGWTR_EL2 Hypervisor Debug Fine-Grained Write Trap Register

HFGITR_EL2 Hypervisor Fine-Grained Instruction Trap Register

HFGRTR_EL2 Hypervisor Fine-Grained Read Trap Register

HFGWTR_EL2 Hypervisor Fine-Grained Write Trap Register

HSTR_EL2 Hypervisor System Trap Register

MDCR_EL2 Monitor Debug Configuration Register, EL2

SCTLR_EL2 System Control Register, EL2

TCR_EL2 Translation Control Register, EL2
D1-2516 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
Table D1-21 Instruction disables and trap controls provided by EL2

Control Control typea Description

CNTHCTL_EL2.{EL
1PCEN, EL1PCTEN}

T Traps to EL2 of EL0 and EL1 accesses to the Generic Timer registers on page D1-2519

CPTR_EL2.TCPAC T Trapping to EL2 of EL1 accesses to the CPACR_EL1 or CPACR on page D1-2519

CPTR_EL2.TAM T Traps to EL2 of EL1 and EL0 accesses to Activity Monitors registers on page D1-2519

CPTR_EL2.TTA T Traps to EL2 of EL2, EL1, and EL0 System register accesses to the trace registers on
page D1-2519

CPTR_EL2.FPEN T Traps to EL2 of EL2, EL1, and EL0 accesses to SIMD and floating-point functionality
on page D1-2520

CPTR_EL2.TFP T General trapping to EL2 of accesses to the SIMD and floating-point registers on
page D1-2520

HAFGRTR_EL2 T Fine-grained traps to EL2 of EL0 and EL1 read accesses to Activity Monitors registers
on page D1-2520

HCR_EL2.FIEN T Traps to EL2 of EL1 accesses to the RAS error record registers on page D1-2520

HCR_EL2.AT T Trap to EL2 of EL1 accesses to AT S1E* instructions on page D1-2520

HCR_EL2.{NV,
NV1}

T Traps to EL2 for nested virtualization on page D1-2520

HCR_EL2.API T Trap to EL2 of EL0 accesses to Pointer authentication instructions on page D1-2521

HCR_EL2.APK T Trap to EL2 of EL1 accesses to Pointer authentication key registers on page D1-2521

HCR_EL2.TERR T Traps to EL2 of EL1 accesses to the RAS error record registers on page D1-2520

HCR_EL2.{TRVM,
TVM}

T Traps to EL2 of EL1 accesses to virtual memory control registers on page D1-2521

HCR_EL2.HCD D Disabling execution of HVC instructions on page D1-2522

HCR_EL2.TDZ T Traps to EL2 of EL0 and EL1 execution of DC ZVA instructions on page D1-2522

HCR_EL2.TGE R Routing exceptions from EL0 to EL2 on page D1-2489

HCR_EL2.TTLB T Traps to EL2 of EL1 execution of TLB maintenance instructions on page D1-2522

HCR_EL2.{TSW,
TPC, TPU}

T Traps to EL2 of EL0 and EL1 execution of cache maintenance instructions on
page D1-2522

HCR_EL2.TACR T Traps to EL2 of EL1 accesses to the Auxiliary Control Register on page D1-2523

HCR_EL2.TIDCP T Traps to EL2 of EL0 and EL1 accesses to lockdown, DMA, and TCM operations on
page D1-2523

HCR_EL2.TSC T Traps to EL2 of EL1 execution of SMC instructions on page D1-2523

HCR_EL2.{TID0,
TID1, TID2, TID3}

T Traps to EL2 of EL0 and EL1 accesses to the ID registers on page D1-2524

HCR_EL2.{TWI,
TWE}

T Traps to EL2 of EL0 and EL1 execution of WFE, WFI, WFET, and WFIT instructions on
page D1-2524
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2517
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
HCRX_EL2.{EnALS
, EnAS0, EnASR}

T Traps to EL2 of EL0 and EL1 execution of single-copy atomic 64-byte instructions on
page D1-2525

HDFGRTR_EL2
HDFGWTR_EL2

T Fine-grained traps to EL2 of EL0 and EL1 accesses to the debug, trace, and PMU
registers on page D1-2525

HFGRTR_EL2
HFGWTR_EL2

T Fine-grained traps to EL2 of EL0 and EL1 accesses to System registers on
page D1-2525

HFGITR_EL2 T Fine-grained Traps to EL2 of EL0 and EL1 accesses to instructions on page D1-2525

HSTR_EL2.{T0-T3,
T5-T13, T15}

T General trapping to EL2 of EL0 and EL1 accesses to System registers, from AArch32
state only on page D1-2526

MDCR_EL2.TDCC T Traps to EL2 of EL0 and EL1 accesses to the Debug Communications Channel registers
on page D1-2527

MDCR_EL2.TTRF T Traps to EL2 of System register accesses to the trace filter control registers on
page D1-2526

MDCR_EL2.{TDRA,
TDOSA, TDA}

T Traps to EL2 of EL0 and EL1 System register accesses to debug registers on
page D1-2526

MDCR_EL2.{TPM,
TPMCR}

T Traps to EL2 of EL0 and EL1 accesses to Performance Monitors registers on
page D1-2527

SCTLR_EL2.{EnAL
S, EnAS0, EnASR}

T Traps to EL2 of EL0 and EL1 execution of single-copy atomic 64-byte instructions on
page D1-2525

SCTLR_EL2.{EnDA,
EnDB, EnIA, EnIB}

E Enabling use of the Pointer authentication instructions, EL2 translation regime on
page D1-2527

SCTLR_EL2.UCI T Traps to EL2 of EL0 execution of cache maintenance instructions on page D1-2527

SCTLR_EL2.{nTWE
, nTWI}

T Traps to EL2 of EL0 and EL1 execution of WFE, WFI, WFET, and WFIT instructions on
page D1-2524

SCTLR_EL2.UCT T Traps to EL2 of EL0 accesses to the CTR_EL0 on page D1-2527

SCTLR_EL2.DZE T Traps to EL2 of EL0 execution of DC ZVA instructions on page D1-2528

SCTLR_EL2.{SED,
ITD}

SCTLR_EL2.CP15B
EN

D

E

Disabling or enabling EL0 use of AArch32 optional functionality on page D1-2528

TCR_EL2.TBID0 or
TCR_EL2.{TBID0,
TBID1}

D Disabling Address tagging for instruction accesses, EL2 translation regime on
page D1-2528

a. See Table D1-22 on page D1-2519.

Table D1-21 Instruction disables and trap controls provided by EL2 (continued)

Control Control typea Description
D1-2518 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
Also see the following for more general information about traps to EL2:

• Traps on instructions on page D1-2511.

• For traps from an Exception level using AArch32:

— Instructions that fail their Condition code check on page G1-6128.

— Trapping to EL2 of instructions that are UNPREDICTABLE on page G1-6129.

Traps to EL2 of EL0 and EL1 accesses to the Generic Timer registers

CNTHCTL_EL2.{EL1PCEN, EL1PCTEN} trap EL0 and EL1 accesses to the Generic Timer registers to EL2 if
enabled for the current Security state, as follows:

• CNTHCTL_EL2.EL1PCEN traps EL0 and EL1 accesses to the physical timer registers.

• CNTHCTL_EL2.EL1PCTEN traps EL0 and EL1 accesses to the physical counter register.

Trapping to EL2 of EL1 accesses to the CPACR_EL1 or CPACR

CPTR_EL2.TCPAC traps EL1 accesses to the CPACR_EL1 or CPACR to EL2:

Note

• The CPACR_EL1 or CPACR is not accessible at EL0.

• In Armv7 and earlier versions of the Arm architecture, one function of the CPACR is as an ID register that
identifies what coprocessor or conceptual coprocessor functionality is implemented. Legacy software might
use this identification mechanism, and a hypervisor can use this trap to emulate this mechanism. For more
information about this coprocessor model, see Background to the System register interface on page G1-6110.

Traps to EL2 of EL1 and EL0 accesses to Activity Monitors registers

CPTR_EL2.TAM traps EL1 and EL0 accesses to the Activity Monitor registers to EL2.

Traps to EL2 of EL2, EL1, and EL0 System register accesses to the trace registers

CPTR_EL2.TTA traps EL2, EL1, and EL0 System register accesses to the trace registers to EL2.

Note

• The ETMv4 architecture does not permit EL0 to access the trace registers. If the Armv8-A architecture is
implemented with an ETMv4 implementation, EL0 accesses to the trace registers are UNDEFINED, and any
resulting exception is higher priority than a CPTR_EL2.TTA Trap exception.

• EL2 does not provide traps on trace register accesses through the Memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, no
side-effects occur before the exception is taken, see Traps on instructions on page D1-2511.

Table D1-22 Control types, for exceptions taken to EL1

Abbreviation Type See

D Disable Instruction enables and instruction disables on page D1-2510

E Enable Instruction enables and instruction disables on page D1-2510

R Routing control Routing exceptions from EL0 to EL2 on page D1-2489

T Trap Trap controls on page D1-2510
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2519
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
Traps to EL2 of EL2, EL1, and EL0 accesses to SIMD and floating-point functionality

This control is applicable only when FEAT_VHE is implemented and HCR_EL2.E2H is 1.

CPTR_EL2.FPEN traps execution at EL2, EL1, and EL0 of instructions that access the Advanced SIMD and
floating-point registers to EL2.

General trapping to EL2 of accesses to the SIMD and floating-point registers

CPTR_EL2.TFP traps accesses to the following SIMD and floating-point registers to EL2:

• FPCR, FPSR, FPEXC32_EL2, and any of the SIMD and floating-point registers V0-V31, including their
views as D0-D31 registers or S0-S31 registers. See The SIMD and floating-point registers, V0-V31 on
page D1-2464.

• FPSID, MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point registers
Q0-Q15, including their views as D0-D31 registers or S0-S31 registers. See Advanced SIMD and
floating-point System registers on page G1-6114. Permitted VMSR accesses to the FPSID are ignored, but for
the purposes of this trap the architecture defines a VMSR access to the FPSID from EL1 or higher as an access
to a SIMD and floating-point register.

Fine-grained traps to EL2 of EL0 and EL1 read accesses to Activity Monitors registers

The fields in HAFGRTR_EL2 trap read accesses to individual or pairs of Activity Monitors registers to EL2 if
enabled in the current Security state. The values of the register are treated as 0 for all purposes other than direct
reads of the register when HCR_EL2.{E2H, TGE} is {1,1}.

EL1 accesses are trapped from AArch64. When EL1 is using AArch64 and the functionality is accessible from EL0,
EL0 accesses are trapped from AArch64 or AArch32.

If the Activity monitors extension is not implemented, HAFGRTR_EL2 is not implemented. If an Activity monitor
auxiliary counter is not implemented, the corresponding field in HAGFRTR_EL2 is RES0.

Traps to EL2 of EL1 accesses to the RAS error record registers

HCR_EL2.TERR traps EL1 accesses to the RAS ER* registers to EL2 if enabled in the current Security state.

HCR_EL2.FIEN traps EL1 accesses to the RAS ER* registers to EL2 if enabled in the current Security state.

Trap to EL2 of EL1 accesses to AT S1E* instructions

This control is implemented when FEAT_NV is implemented.

HCR_EL2.AT traps to EL2, if enabled in the current Security state, from EL1 accesses to some Address translation
instructions. Because nested virtualization is supported only in AArch64 state this control only traps from AArch64
state.

For more information, see Effect of HCR_EL2.{NV, NV1} on page D5-2793.

Traps to EL2 for nested virtualization

These controls are implemented when FEAT_NV is implemented.

Note

When FEAT_NV2 is implemented and HCR_EL2.NV2 is 1, the redirection of register accesses to memory accesses
has priority over the trapping of register accesses by HCR_EL2.{NV, NV1}, see Enhanced support for nested
virtualization on page D5-2795.
D1-2520 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
HCR_EL2.NV traps the following to EL2, if enabled in the current Security state, from EL1:

• Some System register, System instruction, and Special-purpose register accesses that are UNDEFINED at EL1
when FEAT_NV is not implemented.

Only accesses that are not UNDEFINED at EL2 are trapped.

Note

This means that, for a register that is RO at EL2, and UNDEFINED at Non-secure EL1 when FEAT_NV is not
implemented, when FEAT_NV is implemented and this trap is enabled:

— Read accesses to the register from EL1 are trapped to EL2.

— Write accesses to the register from EL1 remain UNDEFINED.

• The execution of some instructions that are UNDEFINED at EL1 when FEAT_NV is not implemented.

Because nested virtualization is supported only in AArch64 state this control only traps from AArch64 state.

Note

In addition, when the value of HCR_EL2.NV is 1, a read of CurrentEL returns the value 0b10 for bits[3:2].

HCR_EL2.NV1 traps to EL2, if enabled in the current Security state, from EL1 accesses to some System registers
and Special-purpose registers. Because nested virtualization is supported only in AArch64 state this control only
traps from AArch64 state.

For more information, see Effect of HCR_EL2.{NV, NV1} on page D5-2793.

Trap to EL2 of EL0 accesses to Pointer authentication instructions

This control is implemented when FEAT_PAuth is implemented.

HCR_EL2.API traps, to EL2 if enabled in the current Security state, accesses to any of the Pointer authentication
instructions for which pointer authentication is enabled, for instructions executed either:

• At EL1.

• If the Effective value of HCR_EL2.{TGE, E2H} is not {1, 1}, at EL0.

Because pointer authentication is supported only in AArch64 state, this control only traps from AArch64 state.

For more information, including the description of when pointer authentication is enabled for an instruction, see
System register control of pointer authentication on page D5-2681.

Trap to EL2 of EL1 accesses to Pointer authentication key registers

This control is implemented when FEAT_PAuth is implemented.

HCR_EL2.APK traps, to EL2 if enabled in the current Security state, accesses to the Pointer authentication key
registers from EL1 to EL2. Because pointer authentication is supported only in AArch64 state this control only traps
from AArch64 state.

For more information, see System register control of pointer authentication on page D5-2681.

Traps to EL2 of EL1 accesses to virtual memory control registers

HCR_EL2.{TRVM, TVM} trap EL1 accesses to the virtual memory control registers to EL2, if enabled in the
current Security state.

Note

EL2 provides a second stage of address translation, that a hypervisor can use to remap the address map defined by
a Guest OS. In addition, a hypervisor can trap attempts by a Guest OS to write to the registers that control the
Non-secure memory system. A hypervisor might use this trap as part of its virtualization of memory management.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2521
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
Disabling execution of HVC instructions

HCR_EL2.HCD disables execution of HVC instructions at EL2 and EL1, and any resulting exception is taken from
the current Exception level to the current Exception level.

Note

HVC instructions are always UNDEFINED at EL0.

HCR_EL2.HCD is only implemented if EL3 is not implemented. Otherwise, it is RES0.

Traps to EL2 of EL0 and EL1 execution of DC ZVA instructions

HCR_EL2.TDZ traps EL0 and EL1 execution of DC ZVA instructions to EL2 if enabled in the current Security state,
and reading the DCZID_EL0 returns a value that indicates that DC ZVA instructions are not implemented.

Traps to EL2 of EL1 execution of TLB maintenance instructions

In the Armv8-A architecture, the System instruction encoding space includes TLB maintenance instructions.

HCR_EL2.TTLB traps EL1 execution of TLB maintenance instructions to EL2 if enabled in the current Security
state:

Note

These instructions are always UNDEFINED at EL0.

For more information about these instructions, see:

• TLB maintenance instructions on page D5-2819, for the AArch64 state instructions.

• The scope of TLB maintenance instructions on page G5-6345, for the AArch32 state instructions.

Traps to EL2 of EL0 and EL1 execution of cache maintenance instructions

HCR_EL2.{TSW, TPC, TPU} trap cache maintenance instructions to EL2, if enabled in the current Security state.
Execution is trapped from EL1, or from EL0 if permitted by SCTLR_EL1.UCI.

HCR_EL2.TSW traps data or unified cache maintenance by set/way instructions.

 These instructions are always UNDEFINED at EL0.

HCR_EL2.TPC traps data or unified cache maintenance to point of coherency instructions.

Note

DC IVAC is always UNDEFINED at EL0 using AArch64.

DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED at EL0 using AArch32.

HCR_EL2.TPU traps cache maintenance to point of unification instructions.

Note

IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using AArch64.

ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always UNDEFINED at EL0 using AArch32.

For more information about these instructions, see:

• Cache maintenance instructions, and data cache zero operation on page C5-399 for the AArch64
instructions.

• Cache maintenance system instructions on page K15-8631 for the AArch32 instructions.
D1-2522 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
Traps to EL2 of EL1 accesses to the Auxiliary Control Register

HCR_EL2.TACR traps EL1 accesses to the Auxiliary Control Registers to EL2 if enabled in the current Security
state:

Note

• The ACTLR_EL1, ACTLR, and ACTLR2 are not accessible at EL0.

• The Auxiliary Control Registers are IMPLEMENTATION DEFINED registers that might implement global control
bits for the PE.

Traps to EL2 of EL0 and EL1 accesses to lockdown, DMA, and TCM operations

The lockdown, DMA, and TCM features of the Armv8-A architecture are IMPLEMENTATION DEFINED. The
architecture reserves the encodings of a number of System registers for control of these features.

HCR_EL2.TIDCP traps the execution of System register access instructions that access any of the encodings
described in Reserved encodings for IMPLEMENTATION DEFINED registers on page D12-3038 and any of the
following AArch32 encodings:

• CRn==c9, opc1=={0-7}, CRm=={c0-c2, c5-c8}, opc2=={0-7}.

• CRn==c10, opc1=={0-7}, CRm=={c0, c1, c4, c8}, opc2=={0-7}.

• CRn==c11, opc1=={0-7}, CRm=={c0-c8, c15}, opc2=={0-7}.

Execution at EL1 is trapped to EL2 if enabled in the current Security state. Execution at EL1 is an IMPLEMENTATION
DEFINED choice between either a trap to EL2, or UNDEFINED with any resulting exception taken to EL1.

An implementation can also include IMPLEMENTATION DEFINED registers that provide additional controls, to give
finer-grained control of the trapping of IMPLEMENTATION DEFINED features.

Note

• Arm expects the trapping of EL0 accesses to these functions to EL2 to be unusual, and used only when the
hypervisor is virtualizing EL0 operation. Arm strongly recommends that unless the hypervisor must
virtualize EL0 operation, a EL0 access to any of these functions is UNDEFINED, as it would be if the
implementation did not include EL2. The PE then takes any resulting exception to EL1.

• The trapping of accesses to these registers from EL1 is higher priority than an exception resulting from the
register access being UNDEFINED.

Traps to EL2 of EL1 execution of SMC instructions

HCR_EL2.TSC traps EL1 execution of SMC instructions to EL2 if enabled in the current Security state. the value of
SCR_EL3.SMD is ignored.

If EL3 is not implemented, HCR_EL2.TSC is RES0.

For more information about SMC instructions, see SMC on page C6-1316.

Note

• This trap is implemented only if the implementation includes EL3.

• SMC instructions are UNDEFINED at EL0.

• HCR_EL2.TSC traps execution of the SMC instruction. It is not a routing control for the SMC exception. Trap
exceptions and SMC exceptions have different preferred return addresses.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2523
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
Traps to EL2 of EL0 and EL1 accesses to the ID registers

Other than the MIDR_EL1, MPIDR_EL1, and PMCR_EL0.N, the ID registers are divided into groups, with a trap
control in the HCR_EL2 for each group.

HCR_EL2.TID0 traps accesses to primary device identification registers at EL1 and EL0 to EL2 if enabled in the
current Security state. HCR_EL2.TID1 traps accesses to implementation identification registers at EL1 to EL2 if
enabled in the current Security state. HCR_EL2.TID2 traps accesses to cache identification registers at EL1 and
EL0 to EL2 if enabled in the current Security state. HCR_EL2.TID3 traps accesses to detailed feature identification
registers at EL1 to EL2 if enabled in the current Security state.

Note

In AArch32 state, the detailed feature identification registers are called the CPUID registers. There is no
requirement for this trap to apply to those registers that the CPUID Identification Scheme defines as reserved. See
The CPUID identification scheme on page G8-6439.

For the MIDR_EL1 and MPIDR_EL1, and for PMCR_EL0.N, the architecture provides read/write aliases. The
original register becomes accessible only from EL2 or Secure state, and an EL0 or EL1 read of the original register
returns the value of the read/write alias. This substitution is invisible to the EL0 or EL1 software reading the register.

Note

• If the OPTIONAL Performance Monitors Extension is not implemented, MDCR_EL2.HPMN is RES0 and
PMCR_EL0 is reserved.

• MDCR_EL2.HPMN also controls whether a Performance Monitors counter can be accessed from EL0 or
EL1. See the register description of MDCR_EL2 for more information.

• PMCR_EL0 contains other fields that identify the implementation. For more information about trapping
accesses to the PMCR_EL0, see Traps to EL2 of EL0 and EL1 accesses to Performance Monitors registers
on page D1-2527.

Traps to EL2 of EL0 and EL1 execution of WFE, WFI, WFET, and WFIT instructions

When FEAT_WFxT or FEAT_WFxT2 is implemented, the instructions Wait for Event with Timeout (WFET) and
Wait for Event with Interrupt (WFIT) are implemented as additional forms of the Wait for Event (WFE) and Wait for
Interrupt (WFI) instructions.

HCR_EL2.{TWE, TWI} trap EL0 and EL1 execution of WFE, WFI, WFET, or WFIT instructions to EL2 if the instruction
would otherwise have caused the PE to enter a low-power state.

When HCR_EL2.{E2H, TGE} is {1, 1}, SCTLR_EL2.{nTWE, nTWI} trap EL0 execution of WFE, WFI, WFET, or WFIT
instructions to EL2.

Note

Since a WFE, WFI, WFET, or WFIT instruction can complete at any time, even without a Wakeup or local timeout event,
the traps on these instructions are not guaranteed to be taken, even if the instruction is executed when there is no
Wakeup or local timeout event. The only guarantee is that if the instruction does not complete in finite time in the
absence of a Wakeup or local timeout event, the trap will be taken.

Table D1-23 ID register substitution

Register Original Alias, EL2 using AArch64

Main ID MIDR_EL1 VPIDR_EL2

Multiprocessor Affinity MPIDR_EL1 VMPIDR_EL2

Performance Monitors Control Register PMCR_EL0.N MDCR_EL2.HPMN
D1-2524 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
For more information about these instructions, and when they can cause the PE to enter a low-power state, see:

• Wait for Event mechanism and Send event on page D1-2536.

• Wait For Interrupt on page D1-2540.

Traps to EL2 of EL0 and EL1 execution of single-copy atomic 64-byte instructions

If FEAT_LS64 is implemented, HCRX_EL2.{EnALS, EnAS0, EnASR} traps execution of single-copy atomic
64-byte instructions to EL2 under the following conditions:

• The instruction is executed from EL0 when HCR_EL2.{E2H, TGE} is not {1,1} and it is not trapped to EL1
as a result of the corresponding SCTLR_EL1.{EnALS, EnAS0, EnASR} bit.

• The instruction is executed from EL1.

If FEAT_LS64 is implemented, SCTLR_EL2.{EnALS, EnAS0, EnASR} traps EL0 execution of single-copy
atomic 64-byte instructions to EL2 when HCR_EL2.{E2H, TGE} is {1,1}.

Fine-grained traps to EL2 of EL0 and EL1 accesses to the debug, trace, and PMU
registers

The fields in HDFGRTR_EL2 and HDFGWTR_EL2 trap read and write accesses to individual and groups of related
debug and trace registers to EL2 if enabled in the current Security state. The values of the registers are treated as 0
for all purposes other than direct reads of the register when HCR_EL2.{E2H, TGE} is {1,1}.

Most RW registers have fine-grained traps for read and write accesses. However, PMCR_EL0 has a trap for write
accesses only. For more details, see HDFGRTR_EL2 and HDFGWTR_EL2.

If a fine-grained trap selects a breakpoint or watchpoint that is not implemented, the access is UNDEFINED. Accesses
to unimplemented registers and unimplemented event counters are UNDEFINED.

When FEAT_FGT is implemented, access to an implemented Performance Monitors event counter <n> when n is
greater than, or equal to MDCR_EL2.HPMN is always trapped to EL2, and the value of the corresponding
fine-grained trap field in HDFGRTR_EL2 or HDFGWTR_EL2 is ignored. If FEAT_FGT is not implemented,
access to an implemented Performance Monitors event counter <n> when n is greater than or equal to
MDCR_EL2.HPMN has CONSTRAINED UNPREDICTABLE behavior.

Fine-grained traps to EL2 of EL0 and EL1 accesses to System registers

The fields in HFGRTR_EL2 and HFGWTR_EL2 trap read or write accesses to individual or small groups of system
registers to EL2 if enabled in the current Security state. The values of the register are treated as 0 for all purposes
other than direct reads of the register when HCR_EL2.{E2H, TGE} is {1,1}.

EL1 accesses are trapped from AArch64. When EL1 is using AArch64 and the functionality is accessible from EL0,
EL0 accesses are trapped from AArch64 or AArch32.

If a register is not implemented, the corresponding field is RES0.

Fine-grained Traps to EL2 of EL0 and EL1 accesses to instructions

The fields in HFGITR_EL2 trap specific system instructions to EL2 if enabled in the current Security state. The
values of the register are treated as 0 for all purposes other than direct reads of the register when HCR_EL2.{E2H,
TGE} is {1,1}.

If an instruction is not implemented and behaves as an unallocated instruction, the corresponding field in
HFGITR_EL2 is RES0.

For cache maintenance instructions to a PoC, PoU, PoP, or PoDP, if no caches are defined to be affected in the
implementation before that point in the memory system, it is IMPLEMENTATION DEFINED whether the instruction is
trapped when the corresponding trap enable field is set.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2525
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
General trapping to EL2 of EL0 and EL1 accesses to System registers, from AArch32
state only

HSTR_EL2.{T0-T3, T5-T13, T15} trap accesses to the AArch32 System registers in the coproc==0b1111 encoding
space, by the register number, {c0-c3, c5-c13, c15} used for:

• The CRn argument used when accessing the register using an MCR or MRC instruction.

• The CRm argument used when accessing the register using an MCRR or MRRC instruction.

These traps are from AArch32 state only. They are from both:

• EL1 using AArch32.

• EL0 using AArch32.

Note

HSTR_EL2[4, 14] is reserved, RES0. Although the Generic Timer AArch32 System registers are implemented in
the coproc==0b1111 encoding space and accessed using a CRn or CRm value of c14, EL2 does not provide a trap on
accesses to the Generic Timer System registers.

System registers in the (coproc==0b1111) encoding space with IMPLEMENTATION DEFINED
access permission from EL0

For an AArch32 System register in the (coproc==0b1111) encoding space, which is accessed using a CRn or CRm
value that can be trapped by a HSTR_EL2.Tn control, if an access to the register from EL0 is UNDEFINED when the
value of the corresponding HSTR_EL2.Tn trap control is 0, then when that HSTR_EL2.Tn trap control is 1, it is
IMPLEMENTATION DEFINED whether an access from Non-secure EL0 using AArch32:

• Generates a Trap exception that is taken to EL2.

• Is UNDEFINED and generates an exception that is taken to Non-secure EL1.

If the instruction is treated as UNDEFINED and generates an exception that is taken to Non-secure EL1, and
Non-secure EL1 is using AArch64, the exception is reported in ESR_EL1 as an exception for an unknown reason,
using EC value 0x00.

Note

Arm expects that trapping to EL2 of Non-secure EL0 accesses to AArch32 System register in the (coproc==0b1111)
encoding space will be unusual, and used only when the hypervisor must virtualize EL0 operation. Arm
recommends that, whenever possible, Non-secure EL0 accesses to the System registers behave as they would if the
implementation did not include EL2. This means that, if the architecture does not support the Non-secure EL0
access, then the register access instruction is treated as UNDEFINED and generates an exception that is taken to
Non-secure EL1.

Traps to EL2 of System register accesses to the trace filter control registers

MDCR_EL2.TTRF traps System register accesses to the trace filter control registers to EL2, if enabled in the
current Security state.

Traps to EL2 of EL0 and EL1 System register accesses to debug registers

MDCR_EL2.{TDRA, TDOSA, TDA} trap System register accesses to the debug registers to EL2 if enabled in the
current Security state, as follows:

• MDCR_EL2.TDRA traps EL0 and EL1 accesses to the Debug ROM registers to EL2 if enabled in the current
Security state. This trap applies to Non-secure EL0 only if it is using AArch32.If MDCR_EL2.TDE or
HCR_EL2.TGE is 1, behavior is as if MDCR_EL2.TDRA is 1 other than for the purpose of a direct read.

• MDCR_EL2.TDOSA traps EL1 accesses to powerdown debug registers to EL2 if enabled in the current
Security state. These registers are not accessible at EL0.If MDCR_EL2.TDE or HCR_EL2.TGE is 1,
behavior is as if MDCR_EL2.TDOSA is 1 other than for the purpose of a direct read.
D1-2526 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
• MDCR_EL2.TDA traps EL0 and EL1 accesses to those debug System registers that are not trapped by
MDCR_EL2.TDRA and MDCR_EL2.TDOSA. The MDCR_EL2.TDA traps are to EL2 if enabled in the
current Security state. If MDCR_EL2.TDE or HCR_EL2.TGE is 1, behavior is as if MDCR_EL2.TDA is 1
other than for the purpose of a direct read.

Note

EL2 does not provide traps on debug register accesses through the optional memory-mapped external debug
interfaces.

System register accesses to the debug registers can have side-effects. When a System register access is trapped to
EL2, no side-effects occur before the exception is taken to EL2. See Traps on instructions on page D1-2511.

Traps to EL2 of EL0 and EL1 accesses to the Debug Communications Channel registers

If the PE is not in Debug state, MDCR_EL2.TDCC traps EL0 and EL1 accesses to DCC registers to EL2 if enabled
for the current Security state.

If the PE is in Debug state, MDCR_EL2.TDCC does not trap accesses to DBGDTR_EL0, DBGDTRRX_EL0,
DBGDTRTX_EL0, DBGDTRRXint, and DBGDTRTXint that would otherwise be trapped. See
MDCR_EL2.TDCC for more information.

Traps to EL2 of EL0 and EL1 accesses to Performance Monitors registers

MDCR_EL2.{TPM, TPMCR} trap EL0 and EL1 accesses to the Performance Monitors registers to EL2 if enabled
in the current Security state:

Note

EL2 does not provide traps on Performance Monitor register accesses through the optional memory-mapped
external debug interface.

MDCR_EL2.HPMN controls whether a counter can be accessed from Non-secure EL0 or EL1. See the register
description of MDCR_EL2 for more information.

Enabling use of the Pointer authentication instructions, EL2 translation regime

This control is implemented when FEAT_PAuth is implemented.

Each of the SCTLR_EL2.{EnDA, EnDB, EnIA, EnIB} fields enables the pointer authentication functionality for
the corresponding Pointer authentication instructions for the EL2 or EL2&0 translation regime. For more
information, see System register control of pointer authentication on page D5-2681.

Note

These controls cause the pointer authentication instructions to execute as NOPs. They never cause an exception to be
generated.

Traps to EL2 of EL0 execution of cache maintenance instructions

This control is implemented when HCR_EL2.{E2H, TGE} is {1, 1}.

SCTLR_EL2.UCI traps EL0 execution using AArch64 of cache maintenance instructions to EL2.

Traps to EL2 of EL0 accesses to the CTR_EL0

This control is implemented when HCR_EL2.{E2H, TGE} is {1, 1}.

SCTLR_EL2.UCT traps EL0 accesses using AArch64 to the CTR_EL0 to EL2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2527
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
Traps to EL2 of EL0 execution of DC ZVA instructions

This control is implemented when HCR_EL2.{E2H, TGE} is {1, 1}.

SCTLR_EL2.DZE traps EL0 execution of DC ZVA instructions to EL2. If the trap is enabled, reading the
DCZID_EL0 returns a value that indicates that DC ZVA instructions are not implemented.

Disabling or enabling EL0 use of AArch32 optional functionality

These controls are implemented when HCR_EL2.{E2H, TGE} is {1, 1}, and apply only to execution at EL0 using
AArch32, as follows:

• SCTLR_EL2.SED disables SETEND instructions at EL0 using AArch32.

• SCTLR_EL2.ITD disables some uses of IT instructions at EL0 using AArch32.

• SCTLR_EL2.CP15BEN enables accesses to the DMB, DSB, and ISB System instructions in the coproc==0b1111
encoding space from EL0.

See also Disabling or enabling EL0 use of AArch32 optional functionality on page D1-2515.

Disabling Address tagging for instruction accesses, EL2 translation regime

This control is implemented when FEAT_PAuth is implemented.

When a TCR_EL2.TBI or TCR_EL2.{TBI0, TBI1} field enables the use of address tagging for the EL2 translation
regime, the corresponding TCR_EL2.TBID or TCR_EL2.{TBID0, TBID1} field determines whether address
tagging is used for both data and instruction addresses, or only for data addresses. For more information, see Address
tagging in AArch64 state on page D5-2676.

Note

These controls determine the scope of address tagging. They never cause an exception to be generated.

D1.14.4 EL3 configurable controls

These controls are in EL3 System registers. The resulting exceptions might be taken from either Execution state.
SPSR_EL3.M[4] indicates which Execution state the exception was taken from.

Table D1-24 on page D1-2528 shows the EL3 System registers that contain these controls.

Table D1-24 EL3 registers that contain instruction enables and disables, and trap controls

Register name Register description

SCTLR_EL3 System Control Register, EL3

SCR_EL3 Secure Configuration Register

CPTR_EL3 Architectural Feature Trap Register, EL3

MDCR_EL3 Monitor Debug Configuration Register, EL3

TCR_EL3 Translation Control Register, EL3
D1-2528 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
Table D1-25 on page D1-2529 summarizes the controls.

Table D1-25 Instruction enables and disables, and trap controls, provided by EL3

Control Control typea Description

CPTR_EL3.TCPAC T Trapping to EL3 of EL2 accesses to the CPTR_EL2 or HCPTR, and EL2 and
EL1 accesses to the CPACR_EL1 or CPACR on page D1-2530

CPTR_EL3.TAM T Traps to EL3 of EL2, EL1, and EL0 accesses to Activity Monitors registers on
page D1-2530

CPTR_EL3.TTA T Traps to EL3 of System register accesses to the trace registers on
page D1-2530

CPTR_EL3.TFP T Traps to EL3 of all accesses to the SIMD and floating-point registers on
page D1-2531

MDCR_EL3.TDCC T Traps to EL3 of EL2, EL1, and EL0 accesses to Debug Communication
Channel registers on page D1-2531

MDCR_EL3.TTRF T Traps to EL3 of EL2 and EL1 System register accesses to the trace filter
control registers on page D1-2531

MDCR_EL3.{TDOSA, TDA} T Traps to EL3 of EL2, EL1, and EL0 System register accesses to debug
registers on page D1-2531

MDCR_EL3.TPM T Traps to EL3 of EL2, EL1, and EL0 accesses to Performance Monitors
registers on page D1-2532

SCR_EL3.EnAS0 T Traps to EL3 of EL2, EL1, and EL0 execution of single-copy atomic 64-byte
EL0 store with return instruction on page D1-2532

SCR_EL3.FGTEn E Traps to EL3 of EL2 accesses to fine-grained trap registers on page D1-2532

SCR_EL3.FIEN T Traps to EL3 of EL1 and EL2 accesses to the RAS error record registers on
page D1-2532

SCR_EL3.API T Trap to EL3 accesses to Pointer authentication instructions on page D1-2532

SCR_EL3.APK T Trap to EL3 accesses to Pointer authentication key registers on
page D1-2532

SCR_EL3.TERR T Traps to EL3 of EL1 and EL2 accesses to the RAS error record registers on
page D1-2532

SCR_EL3.{TWE, TWI} T Traps to EL3 of EL2, EL1, and EL0 execution of WFE, WFI, WFET, and
WFIT instructions on page D1-2533

SCR_EL3.ST T Traps to EL3 of Secure EL1 accesses to the Counter-timer Physical Secure
timer registers on page D1-2533

SCR_EL3.HCE E Enabling EL3, EL2, and EL1 execution of HVC instructions on
page D1-2533

SCR_EL3.SMD D Disabling EL3, EL2, and EL1 execution of SMC instructions on
page D1-2533

SCTLR_EL3.{EnDA, EnDB,
EnIA, EnIB}

E Enabling use of the Pointer authentication instructions, EL3 translation
regime on page D1-2533

TCR_EL3.TBID D Disabling Address tagging for instruction accesses, EL3 translation regime
on page D1-2534

a. See Table D1-26 on page D1-2530.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2529
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
Also see the following for more general information about traps to EL3:

• Traps on instructions on page D1-2511.

• Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32 on page D1-2530.

Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32

If EL1 is using AArch32, all of the following are trapped to EL3:

• Secure EL1 reads and writes to any of the SCR, NSACR, MVBAR or SDCR.

• Any attempt at Secure EL1 to execute any of the following:

— ATS12NSO** instructions.

— SRS instructions that use the R13_mon banked register.

— MRS or MSR instructions that access any of the SPSR_mon, R13_mon or R14_mon banked registers.

In addition, if EL1 is using AArch32:

• Secure EL1 write accesses to the CNTFRQ register are UNDEFINED. They are not trapped to EL3.

• Any attempt at Secure EL1 to change the PE mode to Monitor mode, by using a CPS or an MSR instruction, or
by performing an exception return, is treated as an illegal change of the CPSR.M field. See Illegal changes
to PSTATE.M on page G1-6039.

Note

• Reads of the NSACR from either Non-secure EL1 using AArch32 or Non-secure EL2 using AArch32 return
the value 0x00000C00. See Restricted access System registers on page G5-6397.

• These operations are not available at EL0.

Trapping to EL3 of EL2 accesses to the CPTR_EL2 or HCPTR, and EL2 and EL1
accesses to the CPACR_EL1 or CPACR

CPTR_EL3.TCPAC traps all of the following to EL3:

• EL2 accesses to the CPTR_EL2 or HCPTR.

• EL2 and EL1 accesses to the CPACR_EL1 or CPACR.

When CPTR_EL3.TCPAC is:

For EL1, this trap control applies to accesses from both Security states.

Traps to EL3 of EL2, EL1, and EL0 accesses to Activity Monitors registers

CPTR_EL3.TAM traps EL2, EL1, and EL0 accesses to the Activity Monitor registers to EL3.

Traps to EL3 of System register accesses to the trace registers

CPTR_EL3.TTA traps System register accesses to the trace registers, from all Exception levels, to EL3.

Table D1-26 Control types, for exceptions taken to EL1

Abbreviation Type See

D Disable Instruction enables and instruction disables on page D1-2510

E Enable Instruction enables and instruction disables on page D1-2510

T Trap Trap controls on page D1-2510
D1-2530 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
Note

• The ETMv4 architecture does not permit EL0 to access the trace registers. If the Armv8-A architecture is
implemented with an ETMv4 implementation, EL0 accesses to the trace registers are UNDEFINED, and any
resulting exception is higher priority than a CPTR_EL3.TTA Trap exception.

• EL3 does not provide traps on trace register accesses through the Memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, no
side-effects occur before the exception is taken, see Traps on instructions on page D1-2511.

Traps to EL3 of all accesses to the SIMD and floating-point registers

CPTR_EL3.TFP traps all accesses to the following SIMD and floating-point registers, from all Exception levels, to
EL3:

• FPCR, FPSR, FPEXC32_EL2, and any of the SIMD and floating-point registers V0-V31, including their
views as D0-D31 registers or S0-S31 registers. See The SIMD and floating-point registers, V0-V31 on
page D1-2464.

• FPSID, MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point registers
Q0-Q15, including their views as D0-D31 registers or S0-S31 registers. See Advanced SIMD and
floating-point System registers on page G1-6114. Permitted VMSR accesses to the FPSID are ignored, but for
the purposes of this trap the architecture defines a VMSR access to the FPSID from EL1 or higher is an access
to a SIMD and floating-point register.

For EL0 and EL1, this trap control applies to accesses from both Security states.

Note
• FPEXC32_EL2 is not accessible from EL0 using AArch64.

• FPSID, MVFR0, MVFR1, and FPEXC are not accessible from EL0 using AArch32.

Traps to EL3 of EL2, EL1, and EL0 accesses to Debug Communication Channel
registers

MDCR_EL3.TDCC traps EL2, EL1, and EL0 accesses to DCC registers to EL3.

If the PE is in Debug state, MDCR_EL3.TDCC does not trap accesses to DBGDTR_EL0, DBGDTRRX_EL0,
DBGDTRTX_EL0, DBGDTRRXint, and DBGDTRTXint that would otherwise be trapped. See
MDCR_EL3.TDCC for more information.

Traps to EL3 of EL2 and EL1 System register accesses to the trace filter control
registers

MDCR_EL3.TTRF traps System register accesses to the trace filter registers, from EL1 and EL2, to EL3.

Traps to EL3 of EL2, EL1, and EL0 System register accesses to debug registers

MDCR_EL3.TDOSA traps EL2, EL1, and EL0 System register accesses to the powerdown debug registers to EL3,
from both Security states. For EL1, this trap control applies to accesses from both Security states.

MDCR_EL3.TDA traps EL2, EL1, and EL0 System register accesses to the debug registers that are not trapped by
MDCR_EL3.TDOSA, to EL3, from both Security states.

Note

EL3 does not provide traps on debug register accesses through the Memory-mapped or External debug interfaces.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2531
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
System register accesses to the debug registers can have side-effects. When a System register access is trapped to
EL3, no side-effects occur before the exception is taken to EL3. See Traps on instructions on page D1-2511.

Traps to EL3 of EL2, EL1, and EL0 accesses to Performance Monitors registers

MDCR_EL3.TPM traps EL2, EL1, and EL0 accesses to the Performance Monitors registers to EL3.

For EL0 and EL1, this trap control applies to accesses from both Security states.

Traps to EL3 of EL2, EL1, and EL0 execution of single-copy atomic 64-byte EL0 store
with return instruction

If FEAT_LS64 is implemented, SCR_EL3.EnAS0 traps execution of the single-copy atomic 64-byte EL0 store with
return instruction, ST64BV0, to EL3 under the following conditions:

• The instruction is executed from EL2.

• The instruction is executed from EL1 and is not trapped to EL2 as a result of the HCRX_EL2.EnAS0 bit.

• The instruction is executed from EL0 and is not trapped to EL1 as a result of the SCTLR_EL1.EnAS0 bit, or
to EL2 as a result of either the HCRX_EL2.EnAS0 or SCTLR_EL2.EnAS0 bit.

Traps to EL3 of EL2 accesses to fine-grained trap registers

If SCR_EL3.FGTEn is set to 0, EL2 accesses to the following fine-grained trap registers are trapped to EL3:

• HFGRTR_EL2, HFGWTR_EL2 for System register traps.

• HFGITR_EL2 for System instruction traps.

• HDFGRTR_EL2, HDFGWTR_EL2 for debug and trace register traps.

• HAFGRTR_EL2 for activity monitor register traps.

Traps to EL3 of EL1 and EL2 accesses to the RAS error record registers

SCR_EL3.FIEN traps EL1 and EL2 accesses to the RAS ERXP* registers to EL3.

SCR_EL3.TERR traps EL1 and EL2 read accesses to the RAS ER* registers that are not trapped by
SCR_EL3.FIEN, to EL3.

Trap to EL3 accesses to Pointer authentication instructions

This control is implemented when FEAT_PAuth is implemented.

SCR_EL3.API traps, to EL3, accesses to any of the Pointer authentication instructions for which pointer
authentication is enabled, for instructions executed at an Exception level lower than EL3, in either Security state.

Because pointer authentication is supported only in AArch64 state this control only traps from AArch64 state.

For more information, including the description of when pointer authentication is enabled for an instruction, see
System register control of pointer authentication on page D5-2681.

Trap to EL3 accesses to Pointer authentication key registers

This control is implemented when FEAT_PAuth is implemented.

SCR_EL3.APK traps, to EL3, accesses to the Pointer authentication key registers from EL2 or from Secure or
Non-secure EL1. Because pointer authentication is supported only in AArch64 state this control only traps from
AArch64 state.

For more information, see System register control of pointer authentication on page D5-2681.
D1-2532 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
Traps to EL3 of EL2, EL1, and EL0 execution of WFE, WFI, WFET, and WFIT instructions

When FEAT_WFxT or FEAT_WFxT2 is implemented, the instructions Wait for Event with Timeout (WFET) and
Wait for Event with Interrupt (WFIT) are implemented as additional forms of the Wait for Event (WFE) and Wait for
Interrupt (WFI) instructions.

SCR_EL3.{TWE, TWI} trap EL2, EL1, and EL0 execution of WFE, WFI, WFET, or WFIT instructions to EL3.

Note

Since a WFE, WFI, WFET, or WFIT instruction can complete at any time, even without a Wakeup or local timeout event,
the traps on these instructions are not guaranteed to be taken, even if the instruction is executed when there is no
Wakeup or local timeout event. The only guarantee is that if the instruction does not complete in finite time in the
absence of a Wakeup or local timeout event, the trap will be taken.

For more information about these instructions, and when they can cause the PE to enter a low-power state, see:

• Wait for Event mechanism and Send event on page D1-2536.

• Wait For Interrupt on page D1-2540.

Traps to EL3 of Secure EL1 accesses to the Counter-timer Physical Secure timer
registers

SCR_EL3.ST traps Secure EL1 accesses to the Counter-timer Physical Secure timer registers to EL3.

Note
• Accesses to the Counter-timer Physical Secure timer registers are always enabled at EL3.

• These registers are not accessible at EL0.

Enabling EL3, EL2, and EL1 execution of HVC instructions

SCR_EL3.HCE enables HVC instruction execution at EL1 and above. Otherwise, HVC instructions are UNDEFINED at
EL1, EL2, and EL3, and any resulting exception is taken from the current Exception level to the current Exception
level.

For EL1, this enable control applies to Secure state only if EL2 is enabled in Secure state in the current Execution
state.

If EL2 is not implemented, this bit is RES0.

Note

HVC instructions are always UNDEFINED at EL0.

Disabling EL3, EL2, and EL1 execution of SMC instructions

SCR_EL3.SMD disables SMC instruction execution at EL1 and above. SMC instructions are UNDEFINED at EL1 and
above, and any resulting exception is taken from the current Exception level to the current Exception level.

For EL1, this disable control applies to SMC instructions in both Security states.

Note

SMC instructions are always UNDEFINED at EL0.

If HCR_EL2.TSC or HCR.TSC traps attempted EL1 execution of SMC instructions to EL2, that trap has priority over
this disable.

Enabling use of the Pointer authentication instructions, EL3 translation regime

This control is implemented when FEAT_PAuth is implemented.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2533
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.14 Configurable instruction enables and disables, and trap controls
Each of the SCTLR_EL3.{EnDA, EnDB, EnIA, EnIB} fields enables the pointer authentication functionality for
the corresponding Pointer authentication instructions for the EL3 translation regime. For more information, see
System register control of pointer authentication on page D5-2681.

Note

These controls cause the pointer authentication instructions to execute as NOPs. They never cause an exception to be
generated.

Disabling Address tagging for instruction accesses, EL3 translation regime

This control is implemented when FEAT_PAuth is implemented.

When the TCR_EL3.TBI field enables the use of address tagging for the EL3 translation regime, the
TCR_EL3.TBID field determines whether address tagging is used for both data and instruction addresses, or only
for data addresses. For more information, see Address tagging in AArch64 state on page D5-2676.

Note

This control determines the scope of address tagging. It never causes an exception to be generated.
D1-2534 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.15 System calls
D1.15 System calls

A system call is generated by the execution of an SVC, HVC, or SMC instruction:

• By default, the execution of an SVC instruction generates a Supervisor Call, a synchronous exception that
targets EL1. This provides a mechanism for software executing at EL0 to make a call to an operating system
or other software executing at EL1.

• In an implementation that includes EL2, the execution of an HVC instruction generates a Hypervisor Call, a
synchronous exception that targets EL2 by default.

The HVC instruction is UNDEFINED:

— At EL0.

— At EL1 in Secure state.

Note

Software executing at EL0 cannot directly generate a Hypervisor Call.

• In an implementation that includes EL3, by default the execution of an SMC instruction generates a Secure
Monitor Call, a synchronous exception that targets EL3.

The SMC instruction is UNDEFINED at EL0, meaning software executing at EL0 cannot directly generate a
Secure Monitor Call.

The default behavior applies when the instruction is not UNDEFINED and both of the following are true:

• The instruction is executed at an Exception level that is the same as or lower than the target Exception level.

• The instruction is not trapped to a different Exception level.

If an SVC or HVC instruction is executed at an Exception level that is higher than the target Exception then it generates
a synchronous exception that is taken to the current Exception level.

EL2 and EL3 can disable Hypervisor Call exceptions, see:

• Disabling execution of HVC instructions on page D1-2522.

• Enabling EL3, EL2, and EL1 execution of HVC instructions on page D1-2533.

EL2 can trap use of the SMC instruction, see Traps to EL2 of EL1 execution of SMC instructions on page D1-2523.

EL3 can disable Secure Monitor Call exceptions, see Disabling EL3, EL2, and EL1 execution of SMC instructions
on page D1-2533.

D1.15.1 Pseudocode description of system calls

The AArch64.CallSupervisor() pseudocode function performs an SVC call in AArch64 state.

The AArch64.CallHypervisor() pseudocode function performs an HVC call in AArch64 state.

The AArch64.CallSecureMonitor() pseudocode function performs an SMC call in AArch64 state.

The AArch64.CallSupervisor(), AArch64.CallHypervisor(), and AArch64.CallSecureMonitor() functions are
described in Chapter J1 Armv8 Pseudocode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2535
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.16 Mechanisms for entering a low-power state
D1.16 Mechanisms for entering a low-power state

The Arm architecture provides mechanisms that software can use to indicate that the PE can enter a low-power state,
if it supports that state. The following sections describe those mechanisms:

• Wait for Event mechanism and Send event on page D1-2536.

• Wait For Interrupt on page D1-2540.

D1.16.1 Wait for Event mechanism and Send event

When FEAT_WFxT or FEAT_WFxT2 is implemented, the instruction Wait for Event with Timeout (WFET) is
implemented as an additional form of the Wait for Event (WFE) instruction.

A PE can use the Wait for Event (WFE) mechanism to enter a low-power state, depending on the value of the Event
Register for that PE. To enter the low-power state, the PE executes a WFE or WFET instruction, and if the Event
Register is clear, the PE can enter the low-power state.

If the PE does enter the low-power state, it remains in that low-power state until it receives a WFE wake-up event.

The architecture does not define the exact nature of the low-power state, except that the execution of a WFE or a WFET
instruction, must not cause a loss of memory coherency.

WFE mechanism behavior depends on the interaction of all of the following, that are described in the subsections
that follow:

• The Event Register for the PE. See subsection The Event Register on page D1-2537.

• The Wait For Event (WFE) or Wait for Event with Timeout instruction (WFET). See subsection The Wait For
Event and Wait for Event with Timeout instructions on page D1-2537.

• WFE wake-up events. See subsection WFE wake-up events in AArch64 state on page D1-2538.

• The Send Event instructions, SEV and SEVL that can cause WFE wake-up events. See subsection The Send
Event instructions on page D1-2539.

Note

Because the Wait for Event mechanism is associated with suspending execution on a PE for the purpose of power
saving, Arm recommends that the Event Register is set only infrequently. However, software must only use the
setting of the Event Register as a hint, and must not assume that any particular message is sent as a result of the
setting of the Event Register.

Example D1-2 on page D1-2536 describes how a spinlock implementation might use the WFE mechanism to save
energy.

Example D1-2 Spinlock as an example of using Wait For Event and Send Event

A multiprocessor operating system requires locking mechanisms to protect data structures from being accessed
simultaneously by multiple PEs. These mechanisms prevent the data structures becoming inconsistent or corrupted
if different PEs try to make conflicting changes. If a lock is busy, because a data structure is being used by one PE,
it might not be practical for another PE to do anything except wait for the lock to be released. For example, if a PE
is handling an interrupt from a device, it might need to add data received from the device to a queue. If another PE
is removing data from the same queue, it will have locked the memory area that holds the queue. The first PE cannot
add the new data until the queue is in a consistent state and the second PE has released the lock. The first PE cannot
return from the interrupt handler until the data has been added to the queue, so it must wait.

Typically, a spin-lock mechanism is used in these circumstances:

• A PE requiring access to the protected data attempts to obtain the lock using single-copy atomic
synchronization primitives such as the Load-Exclusive and Store-Exclusive operations described in
Synchronization and semaphores on page B2-179.

• If the PE obtains the lock it performs its memory operation and then releases the lock.
D1-2536 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.16 Mechanisms for entering a low-power state
• If the PE cannot obtain the lock, it reads the lock value repeatedly in a tight loop until the lock becomes
available. When the lock becomes available, the PE again attempts to obtain it.

A spin-lock mechanism is not ideal for all situations:

• In a low-power system the tight read loop is undesirable because it uses energy to no effect.

• In a multiprocessor system the execution of spin-locks by multiple waiting PEs can degrade overall
performance.

Using the Wait For Event and Send Event mechanism can improve the energy efficiency of a spinlock:

• A PE that fails to obtain a lock executes a WFE or WFET instruction, to request entry to a low-power state, at the
time when the Exclusives monitor is set holding the address of the location holding the lock.

• When a PE releases a lock, the write to the lock location causes the Exclusives monitor of any PE monitoring
the lock location to be cleared. This clearing of the Exclusives monitors generates a WFE wake-up event for
each of those PEs. Then, these PEs can attempt to obtain the lock again.

For large systems, more advanced locking systems, such as ticket locks, can avoid unfairness caused by having
multiple PEs simultaneously reading the lock. In such systems, the WFE mechanism can be used in a similar way
to monitor the next ticket value.

The Event Register

When FEAT_WFxT or FEAT_WFxT2 is implemented, the instruction Wait for Event with Timeout (WFET) is
implemented as an additional form of the Wait for Event (WFE) instruction.

The Event Register is a single bit register for each PE. When set, an Event Register indicates that an event has
occurred since the register was last cleared, that might require some action by the PE. Therefore, when the Event
Register is set, the PE must not suspend operation on executing a WFE or a WFET instruction.

The reset value of the Event Register is UNKNOWN.

The Event Register for a PE is set by any of the following:

• A Send Event instruction, SEV, executed by any PE in the system.

• A Send Event Local instruction, SEVL, executed by the PE.

• An exception return.

• The clearing of the global monitor for the PE.

• An event from a Generic Timer event stream, see Event streams on page D11-3015.

• An event sent by some IMPLEMENTATION DEFINED mechanism.

The Event Register is cleared only by a Wait For Event (WFE), or a Wait for Event with Timeout instruction (WFET),
instruction.

Note

Software cannot read or write the value of the Event Register directly.

The Wait For Event and Wait for Event with Timeout instructions

When FEAT_WFxT or FEAT_WFxT2 is implemented, the instruction Wait for Event with Timeout (WFET) is
implemented as an additional form of the Wait for Event (WFE) instruction.

The action of the Wait For Event (WFE) or the Wait for Event with Timeout instructions (WFET), depend on the state
of the Event Register:

• If the Event Register is set, the instruction clears the register and completes immediately.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2537
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.16 Mechanisms for entering a low-power state
• If the Event Register is clear the PE can suspend execution and enter a low-power state. It remains in that
state until the PE detects a WFE wake-up event, or earlier if the implementation chooses, or until a reset.
When the PE detects a WFE wake-up event, or earlier if chosen, the WFE or WFET instruction completes. If the
wake-up event sets the Event Register, it is IMPLEMENTATION DEFINED whether on restarting execution, the
Event Register is cleared.

Note

Software using the Wait For Event mechanism must tolerate spurious wake-up events, including multiple wake-ups.

Trapping of WFE and WFET

The WFE and WFET instructions, are available at all Exception levels. Attempts to enter a low-power state made by
software executing at EL0, EL1, or EL2 might be trapped to a higher Exception level. See:

• Traps to EL1 of EL0 execution of WFE, WFI, WFET, and WFIT instructions on page D1-2514.

• Traps to EL2 of EL0 and EL1 execution of WFE, WFI, WFET, and WFIT instructions on page D1-2524.

• Traps to EL3 of EL2, EL1, and EL0 execution of WFE, WFI, WFET, and WFIT instructions on page D1-2533.

If FEAT_TWED is implemented, the delay for taking a WFE trap is configurable.

The delay on the trap does not effect the priority of the traps. In particular, if execution is subject to a trap at EL1 as
a result of SCTLR_EL1.nTWE==0 and HCR_EL2.TWE==1, the only trap that will be taken is a trap to EL1, even
if the delay at EL1 is longer than the delay at EL2.

WFE wake-up events in AArch64 state

The following are WFE wake-up events:

• The execution of an SEV instruction on any PE in the multiprocessor system.

• Any physical SError interrupt, IRQ interrupt, or FIQ interrupt received by the PE, that is not disabled by
EDSCR.INTdis and:

— Is marked as A in the tables in Asynchronous exception masking on page D1-2504, regardless of the
value of the corresponding PSTATE.{A, I, F} mask bit.

— Is marked as B in the tables in Asynchronous exception masking on page D1-2504, if the value of the
corresponding PSTATE.{A, I, F} mask bit is 0.

Note

Any physical SError interrupt, IRQ interrupt, or FIQ interrupt that is marked as A/B behaves as A or B. See
A/B on page D1-2505.

• In EL1 or EL0, any virtual SError interrupt, IRQ interrupt, or FIQ interrupt received by the PE, that is not
disabled by EDSCR.INTdis and is marked as B in Table D1-15 on page D1-2508 in Virtual interrupts on
page D1-2506, if the value of the corresponding PSTATE.{A, I, F} mask bit is 0.

• An asynchronous External Debug Request debug event, if halting is allowed. For the definition of halting is
allowed see Halting allowed and halting prohibited on page H2-7339.

See also External Debug Request debug event on page H3-7395.

• An event sent by the timer event stream for the PE. See Event streams on page D11-3015.

• An event caused by the clearing of the global monitor for the PE.

• An event sent by some IMPLEMENTATION DEFINED mechanism.

• When FEAT_WFxT or FEAT_WFxT2 is implemented, for WFIT instructions, a local timeout event caused by
the virtual count threshold value, expressed in CNTVCT_EL0, being equaled or exceeded.

Not all of these wake-up events set the Event Register.
D1-2538 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.16 Mechanisms for entering a low-power state
Note

The disabling of interrupts, and WFE wake-up events, by EDSCR.INTdis is possible only when external debug is
enabled.

The Send Event instructions

When FEAT_WFxT or FEAT_WFxT2 is implemented, the instruction Wait for Event with Timeout (WFET) is
implemented as an additional form of the Wait for Event (WFE) instruction.

The Send Event instructions are:

SEV, Send Event This causes an event to be signaled to all PEs in the multiprocessor system.

SEVL, Send Event Local

This must set the local Event Register.

Note

It might signal an event to other PEs by some IMPLEMENTATION DEFINED mechanism, but
is not required to do so.

The mechanism that signals an event to other PEs is IMPLEMENTATION DEFINED. The PE is not required to guarantee
the ordering of this event with respect to the completion of memory accesses by instructions before the SEV
instruction. Therefore, Arm recommends that software includes a DSB instruction before any SEV instruction.

Note

A DSB instruction ensures that no instructions, including any SEV instructions, that appear in program order after the
DSB instruction, can execute until the DSB instruction has completed. See Data Synchronization Barrier (DSB) on
page B2-150.

The SEVL instruction appears to execute in program order relative to any subsequent WFE or WFET instruction executed
on the same PE. This is without the need for any explicit insertion of barrier instructions.

The receipt of a signaled SEV or SEVL event by a PE sets the Event Register on that PE.

The SEV and SEVL instructions are available at all Exception levels.

Pseudocode description of the Wait For Event mechanism

This section identifies pseudocode functions that describe the behavior of the Wait For Event mechanism.

The ClearEventRegister() pseudocode function clears the Event Register of the current PE.

The IsEventRegisterSet() pseudocode function returns TRUE if the Event Register of the current PE is set and
FALSE if it is clear.

The WaitForEvent() pseudocode function optionally suspends execution until one of the following occurs:

• A WFE wake-up event.

• A reset.

• When FEAT_WFxT or FEAT_WFxT2 is implemented, a Wait for Event with Timeout (WFET) is executing,
and a local timeout event occurs.

• The implementation chooses to resume execution.

It is IMPLEMENTATION DEFINED whether restarting execution after the period of suspension causes
ClearEventRegister() to be called.

The SendEvent() pseudocode function sets the Event Register of every PE in the multiprocessor system.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2539
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.16 Mechanisms for entering a low-power state
The SendEventLocal() pseudocode function sets the event register for the local PE.

D1.16.2 Wait For Interrupt

When FEAT_WFxT or FEAT_WFxT2 is implemented, the instruction Wait for Interrupt with Timeout (WFIT) is
implemented as an additional form of the Wait for Interrupt (WFI) instruction.

Software can use the Wait for Interrupt (WFI) and Wait for Interrupt with Timeout (WFIT) instructions to cause the
PE to enter a low-power state. The PE then remains in that low-power state until it receives a WFI wake-up event,
or until some other IMPLEMENTATION DEFINED reason causes it to leave the low-power state. The architecture
permits a PE to leave the low-power state for any reason, but requires that it must leave the low-power state on
receipt of any architected WFI wake-up event.

Note

Because the architecture permits a PE to leave the low-power state for any reason, it is permissible for a PE to treat
WFI as a NOP, but this is not recommended for lowest power operation.

When the PE leaves a low-power state that was entered as a result of a WFI or WFIT instruction, that instruction
completes.

The architecture does not define the exact nature of the low-power state, except that the execution of a WFI or WFIT
instruction must not cause a loss of memory coherency.

Attempts to enter a low-power state made by software executing at EL0, EL1, or EL2 might be trapped to a higher
Exception level. See:

• Traps to EL1 of EL0 execution of WFE, WFI, WFET, and WFIT instructions on page D1-2514.

• Traps to EL2 of EL0 and EL1 execution of WFE, WFI, WFET, and WFIT instructions on page D1-2524.

• Traps to EL3 of EL2, EL1, and EL0 execution of WFE, WFI, WFET, and WFIT instructions on page D1-2533.

WFI wake-up events

The following are WFI wake-up events:

• Any physical SError interrupt, IRQ interrupt, or FIQ interrupt received by the PE, that is marked as A, Bor
A/B in the tables in Asynchronous exception masking on page D1-2504, regardless of the value of the
corresponding PSTATE.{A, I, F} mask bit.

• In EL1 or EL0, any virtual SError interrupt, IRQ interrupt, or FIQ interrupt received by the PE, that is marked
as B in Table D1-15 on page D1-2508 in Virtual interrupts on page D1-2506, regardless of the value of the
corresponding PSTATE.{A, I, F} mask bit.

• An asynchronous External Debug Request debug event, if halting is allowed. For the definition of halting is
allowed see Halting allowed and halting prohibited on page H2-7339.

See also External Debug Request debug event on page H3-7395.

• An event sent by some IMPLEMENTATION DEFINED mechanism.

• When FEAT_WFxT or FEAT_WFxT2 is implemented, a local timeout event caused by the virtual count
threshold value, expressed in CNTVCT_EL0, being equaled or exceeded.

Note

• WFI wake-up events are never disabled by EDSCR.INTdis, and are never masked by the PSTATE.{A, I, F}
mask bits. If wake-up is invoked by an interrupt that is disabled or masked the interrupt is not taken.

• Because debug events are WFI wake-up events, Arm recommends that Wait For Interrupt is used as part of
an idle loop rather than waiting for a single specific interrupt event to occur and then moving forward. This
ensures that the intervention of debug while waiting does not significantly change the function of the program
being debugged.
D1-2540 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.16 Mechanisms for entering a low-power state
• Some implementations of the WFI mechanism drain down any pending memory activity before suspending
execution. This increases power saving, by increasing the area over which clocks can be stopped. The
architecture does not require this operation, therefore software must not rely on the WFI mechanism
operating in this way.

Using WFI to indicate an idle state on bus interfaces

When FEAT_WFxT or FEAT_WFxT2 is implemented, the instruction Wait for Event with Interrupt (WFIT) is
implemented as an additional form of the Wait for Interrupt (WFI) instruction.

Software can use the WFI mechanism to force quiescence on a PE, and, combined with preventing any possible WFI
wakeup events, this can be used to complete an entry into a powerdown state.

Because mechanisms for entering powerdown states are inherently IMPLEMENTATION DEFINED, whether an
implementation uses the WFI mechanism is IMPLEMENTATION DEFINED. If it does, the WFI or WFIT instruction forces
the suspension of execution, and of all associated bus activity.

The control logic that does this also tracks the activity on the bus interfaces of the PE, so that when the PE has
completed all current operations and any associated bus activity has completed, it can signal to an external power
controller that there is no ongoing bus activity.

However, the PE must continue to process memory-mapped and external debug interface accesses to debug registers
when in the WFI state. The indication of idle state to the system normally only applies to the non-debug functional
interfaces used by the PE, not the debug interfaces.

If the OS Double Lock control is implemented and OSDLR_EL1.DLK is 1, the PE must not signal this idle state to
the control logic unless it can also guarantee that the debug interface is idle. For more information about the OS
Double Lock, see Debug behavior when the OS Double Lock is locked on page H6-7450.

Note

In a PE that implements separate Core and Debug power domains, the debug interface referred to in this section is
the interface between the Core and Debug power domains, since the signal to the power controller indicates that the
Core power domain is idle. For more information about the power domains, see Power domains and debug on
page H6-7439.

The exact nature of this interface is IMPLEMENTATION DEFINED, but the use of Wait For Interrupt as the only
architecturally-defined mechanism that completely suspends execution makes it very suitable as the preferred
powerdown entry mechanism.

Pseudocode description of Wait For Interrupt

The WaitForInterrupt() pseudocode function optionally suspends execution until one of the following occurs:

• A WFI wake-up event.

• A reset.

• When FEAT_WFxT or FEAT_WFxT2 is implemented, a Wait for Interrupt with Timeout (WFIT) is executing,
and a local timeout event occurs.

• The implementation chooses to resume execution.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2541
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.17 Self-hosted debug
D1.17 Self-hosted debug

The Armv8-A architecture supports both of the following:

Self-hosted debug

The PE itself hosts a debugger. The debugger programs the PE to generate debug exceptions. Debug
exceptions are accommodated in the Armv8-A Exception model.

External debug

The PE is controlled by an external debugger. The debugger programs the PE to generate Debug
events, that cause the PE to enter Debug state. In Debug state, the PE is halted.

This section describes self-hosted debug. It includes:

• Debug exceptions on page D1-2542.

• The PSTATE debug mask bit, D on page D1-2542.

For external debug, see Part H External Debug.

D1.17.1 Debug exceptions

Debug exceptions occur during normal program flow, if a debugger has programmed the PE to generate them.

For example, a software developer might use a debugger contained in an operating system to debug an application.
To do this, the debugger might enable one or more debug exceptions.

The possible debug exceptions are:

• Breakpoint Instruction exceptions.

• Breakpoint exceptions.

• Watchpoint exceptions.

• Vector Catch exceptions.

• Software Step exceptions.

Chapter D2 AArch64 Self-hosted Debug describes these in detail for AArch64.

For the PE to generate a debug exception requires that:

• The debug exception is enabled. The debug exception enable controls on page D2-2568 gives the controls for
the different debug exceptions.

• Debug exceptions are enabled from the current Exception level and Security state. See Enabling debug
exceptions from the current Exception level on page D2-2571.

Debug exceptions are synchronous exceptions, and are accommodated in the Armv8 Exception model.

Note

Breakpoints and Watchpoints can cause entry to Debug state instead of causing debug exceptions. See Chapter H1
About External Debug.

D1.17.2 The PSTATE debug mask bit, D

As with all other exceptions, when a debug exception is taken, software must take care to avoid generating another
instance of an exception within the exception handler, to avoid recursive entry into the exception handler and loss
of return state.

To help avoid this, the Armv8 architecture provides a debug exception mask bit, PSTATE.D, that can mask
Watchpoint, Breakpoint, and Software Step exceptions when the target Exception level is the current Exception
level.

PSTATE.D is set to 1 on taking an exception. This means that while handling an exception in AArch64 state,
Watchpoint, Breakpoint, and Software Step exceptions are masked. This prevents recursive entry at the Exception
level that debug exceptions are targeted to.
D1-2542 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.17 Self-hosted debug
When execution is in AArch64 state, debug exceptions are also masked implicitly when the target Exception level
is lower than the current Exception level.

When the target Exception level is higher than the current Exception level, debug exceptions cannot be masked by
PSTATE.D.

Because debug exceptions are synchronous, the architecture requires that debug exceptions are not generated when
PSTATE.D is 1. By preventing debug exception generation, debug exceptions cannot be taken at a subsequent time
when the Process state D mask bit is cleared to 0.

Note

This differs from the behavior for interrupts, where the PSTATE.{A, I, F} mask has the effect of preventing the
interrupt from being taken, but instead the interrupt remains pending.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2543
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.18 Event monitors
D1.18 Event monitors

The Armv8-A architecture supports the following non-invasive architectural components that allow for event
monitoring:

Performance Monitors

The Performance Monitors have a wide feature set, flexible selection of counted events, and are
read/write in operation. See The Performance Monitors Extension on page D1-2544.

Activity Monitors

The Activity Monitors have a narrow feature set, limited selection of counted events, and are
read-only in operation. See The Activity Monitors Extension on page D1-2544.

D1.18.1 The Performance Monitors Extension

The System registers provide access to a Performance Monitors Unit (PMU), defined as the OPTIONAL Performance
Monitors Extension to the architecture, a non-invasive debug resource that provides information about the operation
of the PE. The PMU provides:

• A 64-bit cycle counter.

• An IMPLEMENTATION DEFINED number of event counters. If FEAT_PMUv3p5 is implemented, the event
counters are 64-bit unsigned counters, otherwise the event counters are 32-bit event counters.

Each event counter can be configured to count occurrences of a specified event. The events that can be
counted are:

— Architectural and microarchitectural events that are likely to be consistent across many
microarchitectures. The PMU architecture uses event numbers to identify an event, and the PMU
specification defines which event number must be used for each of these architectural and
microarchitectural events.

— Implementation-specific events. The PMU specification reserves event numbers for
implementation-specific events. See Appendix K3 Recommendations for Performance Monitors
Event Numbers for IMPLEMENTATION DEFINED Events.

For more information, see Chapter D7 The Performance Monitors Extension.

D1.18.2 The Activity Monitors Extension

When the OPTIONAL Activity Monitors Extension is implemented, the System registers provide access to controls
and counters for the Activity Monitors Unit (AMU). For more information, see Chapter D8 The Activity Monitors
Extension.
D1-2544 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.19 Interprocessing
D1.19 Interprocessing

Interprocessing is the term used to describe moving between the AArch64 and AArch32 Execution states.

The Execution state can change only on a change of Exception level. This means that the Execution state can change
only on taking an exception to a higher Exception level, or returning from an exception to a lower Exception level.

On taking an exception to a higher Exception level, the Execution state either:

• Remains unchanged.

• Changes from AArch32 state to AArch64 state.

On returning from an exception to a lower Exception level, the Execution state either:

• Remains unchanged.

• Changes from AArch64 state to AArch32 state.

Note

If, on taking or returning from an exception, the Exception level remains the same, the Execution state cannot
change.

For the description of:

• Exception entry to an Exception level using AArch64, see Exception entry on page D1-2475.

• Exception return from an Exception level using AArch64 state, see Exception return on page D1-2485.

• Exception return to AArch32 state, see Exception return to an Exception level using AArch32 on
page G1-6065.

Note

The description in Handling exceptions that are taken to an Exception level using AArch32 on page G1-6043
is outside the scope of interprocessing, because such exceptions must have been taken from an Exception
level that is using AArch32, and therefore there is no change of Execution state.

The following sections describe the behavior associated with interprocessing.

• Register mappings between AArch32 state and AArch64 state on page D1-2545.

• State of the general-purpose registers on taking an exception to AArch64 state on page D1-2555.

• SPSR, ELR, and AArch64 SP relationships on changing Execution state on page D1-2557.

D1.19.1 Register mappings between AArch32 state and AArch64 state

This section defines the architectural mappings between AArch32 state registers and AArch64 state registers.

The mappings describe:

• For exceptions taken from AArch32 state to AArch64 state, where the AArch32 register content is found.

• For exception returns from AArch64 state to AArch32 state, how the AArch32 register content is derived.

The general model is:

• The AArch32 register contents are situated in the bottom 32 bits of the AArch64 registers.

• In AArch32 state, the upper 32 bits of AArch64 registers are inaccessible and are ignored.

Note

System software that executes in AArch64 state, such as an OS or Hypervisor, can use these mappings for context
save and restore, or to interpret and modify the AArch32 registers of an application or virtual machine.

For more information, see the following subsections:

• Mapping of the general-purpose registers between the Execution states on page D1-2546.

• Mapping of the SIMD and floating-point registers between the Execution states on page D1-2547.

• Mapping of the System registers between the Execution states on page D1-2548.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2545
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.19 Interprocessing
Mapping of the general-purpose registers between the Execution states

Table D1-27 on page D1-2546 shows how each of the AArch32 general-purpose registers, R0-R12, SP, and LR,
including the banked copies of these registers, maps to an AArch64 general-purpose register. A register in the
AArch64 register on page D1-2546 column of the table provides the AArch64 view of the corresponding register in
the AArch32 register on page D1-2546 column.

Note

For some exceptions, the exception syndrome given in the ESR_ELx identifies one or more register numbers from
the issued instruction that generated the exception. Where the exception is taken from an Exception level using
AArch32, these register numbers give the AArch64 view of the register. For example, if an exception is taken from
AArch32 Abort mode, and the faulting instruction specified R14, the ESR_ELx.ISS field would report this using
the EC value 0b10100, because register X20 provides the AArch64 view of LR_abt, which is the copy of R14 used
in Abort mode.

Table D1-27 General-purpose register mapping between AArch32 state and AArch64 state

AArch32 register AArch64 register

R0 X0

R1 X1

R2 X2

R3 X3

R4 X4

R5 X5

R6 X6

R7 X7

R8_usr X8

R9_usr X9

R10_usr X10

R11_usr X11

R12_usr X12

SP_usr X13

LR_usr X14

SP_hyp X15

LR_irq X16

SP_irq X17

LR_svc X18

SP_svc X19

LR_abt X20

SP_abt X21
D1-2546 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.19 Interprocessing
Note

For a description of the banking of AArch32 general-purpose registers R8-R12, SP, and LR, see AArch32
general-purpose registers, the PC, and the Special-purpose registers on page G1-6031.

Mapping of the SIMD and floating-point registers between the Execution states

Table D1-28 on page D1-2547 shows the mapping between the AArch64 V registers and the AArch32 Q registers.

The AArch64 registers V16-V31 are not accessible from AArch32 state.

The mapping between the V, D, and S registers in AArch64 state is not the same as the mapping between the Q, D,
and S registers in AArch32 state:

• In AArch64 state, there are:

— 32 128-bit V registers, V0-V31.

— 32 64-bit D registers, D0-D31.

— 32 32-bit S registers, S0-S31.

A smaller register occupies the least-significant bytes of the corresponding larger register. For example, S5
is the least-significant word of D5 and V5. Figure D1-3 on page D1-2548 shows this mapping.

LR_und X22

SP_und X23

R8_fiq X24

R9_fiq X25

R10_fiq X26

R11_fiq X27

R12_fiq X28

SP_fiq X29

LR_fiq X30

Table D1-28 SIMD and floating-point register mapping between AArch64 state and AArch32 state

AArch64 register AArch32 register

V0 Q0

V1 Q1

V2 Q2

.

.

.

.

.

.

V15 Q15

Table D1-27 General-purpose register mapping between AArch32 state and AArch64 state

AArch32 register AArch64 register
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2547
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.19 Interprocessing
Figure D1-3 AArch64 state SIMD and floating-point register mappings

• In AArch32 state, there are:

— 16 128-bit Q registers, Q0-Q15.

— 32 64-bit D registers, D0-D31.

— 32 32-bit S registers, S0-S31.

Smaller registers are packed into larger registers. Figure D1-4 on page D1-2548 shows this mapping.

Figure D1-4 AArch32 state SIMD and floating-point register mappings

In AArch32 state:

• There are no S registers that correspond to Q8-Q15.

• D16-D31 pack into Q8-Q15. For example, D16 and D17 pack into Q8.

Note

A consequence of this mapping is that if software executing in AArch64 state interprets D or S registers from
AArch32 state, it must unpack the D or S registers from the V registers before it uses them.

Mapping of the System registers between the Execution states

Armv8 architecturally defines the relationship between the AArch64 System registers and the AArch32 System
registers, to allow supervisory code such as a hypervisor, that is executing in AArch64 state, to save, restore, and
interpret the System registers belonging to a lower Exception level that is using AArch32.

Any modifications made to AArch32 System registers affects only those parts of those AArch64 registers that are
mapped to the AArch32 System registers. Bits[63:32] of AArch64 registers, where they are not mapped to AArch32
registers, are unchanged by AArch32 state execution.

Note

This model is different to the model for the general-purpose registers described in Mapping of the general-purpose
registers between the Execution states on page D1-2546. In this model, there are several cases where two AArch32
System registers are packed into a single AArch64 System register.

When EL3 is implemented and is using AArch32, some System registers are banked between the two Security
states. When a register is banked in this way, there is an instance of the register in Secure state, and another instance
of the register in Non-secure state. In Table D1-29 on page D1-2549 these banked registers are identified by
footnotea. This banking is not supported when EL3 is using AArch64 or if EL3 is not implemented. This means that
when EL3 is implemented and is using AArch64, exactly the same registers are accessed in the following states:

• Secure EL1 with EL1 using AArch32.

• Non-secure EL1 with EL1 using AArch32.

127 64 63 32 31 0

Vn

Sn
Dn

127 64 63 32 31 0

Qn

S(4n)
D(2n)D(2n+1)

S(4n+1)S(4n+2)S(4n+3)
D1-2548 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.19 Interprocessing
This means that, architecturally, it is not possible to determine whether an AArch64 register is mapped onto the
Secure instance of the corresponding AArch32 register, or onto the Non-secure instance of that register. When EL3
is using AArch64, the interrupt asserted by the AArch64 CNTP_* timer is the same interrupt as is asserted by the
Non-secure AArch32 CNTP_* timer when EL3 is using AArch32.

Note

Although the architecture does not require this, because it is not architecturally visible, Arm expects that
implementations will map many of the AArch64 registers for use by EL3 to the Secure instances of the banked
AArch32 registers, and will map many of the AArch64 registers for use by EL1 to the Non-secure instances of the
banked AArch32 registers. However, if EL2 and EL3 are implemented and both support use of AArch32, this is not
possible for the following registers:

IFAR This is because when EL3 is using AArch32, HIFAR is an alias of the Secure IFAR.

DFAR This is because when EL3 is using AArch32, HDFAR is an alias of the Secure DFAR.

Table D1-29 on page D1-2549 shows the mappings between the writable AArch64 System registers and the
AArch32 System registers.

Table D1-29 Mapping of writable AArch64 System registers to the AArch32 System registers

AArch64 register AArch32 register

ACTLR_EL1[31:0] ACTLRa

ACTLR_EL1[63:32] ACTLR2a if implemented

AFSR0_EL1[31:0] ADFSRa

AFSR1_EL1[31:0] AIFSRa

AMAIR_EL1[31:0] AMAIR0a

AMAIR_EL1[63:32] AMAIR1a

CONTEXTIDR_EL1[31:0] CONTEXTIDRa

CPACR_EL1[31:0] CPACR

CSSELR_EL1[31:0] CSSELRa

DACR32_EL2[31:0] DACRa

FAR_EL1[31:0] DFARa

ESR_EL1[31:0] DFSRa

HACR_EL2[31:0] HACR

ACTLR_EL2[31:0] HACTLR

ACTLR_EL2[63:32] HACTLR2 if implemented

AFSR0_EL2[31:0] HADFSR

AFSR1_EL2[31:0] HAIFSR

AMAIR_EL2[31:0] HAMAIR0

AMAIR_EL2[63:32] HAMAIR1

CPTR_EL2[31:0] HCPTR

HCR_EL2[31:0] HCR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2549
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.19 Interprocessing
HCR_EL2[63:32] HCR2

MDCR_EL2[31:0] HDCR

FAR_EL2[31:0] HDFAR

FAR_EL2[63:32] HIFAR

MAIR_EL2[31:0] HMAIR0

MAIR_EL2[63:32] HMAIR1

HPFAR_EL2[31:0] HPFAR

SCTLR_EL2[31:0] HSCTLR

ESR_EL2[31:0] HSR

HSTR_EL2[31:0] HSTR

TCR_EL2[31:0] HTCR

TPIDR_EL2[31:0] HTPIDR

TTBR0_EL2[47:1] HTTBR

VBAR_EL2[31:0] HVBAR

FAR_EL1[63:32] IFARa

IFSR32_EL2[31:0] IFSRa

MAIR_EL1[63:32] NMRR or MAIR1a

PAR_EL1[63:0] PARa

MAIR_EL1[31:0] PRRR or MAIR0a

RMR_EL1[31:0] RMR (at EL1)

RMR_EL2[31:0] HRMR

RMR_EL3[31:0] RMR (at EL3)

SCTLR_EL1[31:0] SCTLRa

SDER32_EL3[31:0] SDER

TPIDR_EL1[31:0] TPIDRPRWa

TPIDRRO_EL0[31:0] TPIDRUROa

TPIDR_EL0[31:0] TPIDRURWa

TCR_EL1[31:0] TTBCRa

TCR_EL1[63:32] TTBCR2a if implemented

TTBR0_EL1[63:0] TTBR0a

TTBR1_EL1[63:0] TTBR1a

VBAR_EL1[31:0] VBARa

Table D1-29 Mapping of writable AArch64 System registers to the AArch32 System registers

AArch64 register AArch32 register
D1-2550 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.19 Interprocessing
VMPIDR_EL2[31:0] VMPIDR

VPIDR_EL2[31:0] VPIDR

VTCR_EL2[31:0] VTCR

VTTBR_EL2[63:0] VTTBR

Timer registers

CNTFRQ_EL0[31:0] CNTFRQ

CNTHCTL_EL2[31:0] CNTHCTL

CNTHP_CTL_EL2[31:0] CNTHP_CTL

CNTHP_CVAL_EL2[63:0] CNTHP_CVAL

CNTHP_TVAL_EL2[31:0] CNTHP_TVAL

CNTHPS_CTL_EL2[31:0] CNTHPS_CTL

CNTHPS_CVAL_EL2[31:0] CNTHPS_CVAL

CNTHPS_TVAL_EL2[31:0] CNTHPS_TVAL

CNTKCTL_EL1[31:0] CNTKCTL

CNTP_CTL_EL0[31:0] CNTP_CTLa

CNTP_CVAL_EL0[63:0] CNTP_CVALa

CNTP_TVAL_EL0[31:0] CNTP_TVALa

CNTPCT_EL0[63:0] CNTPCT

CNTV_CTL_EL0[31:0] CNTV_CTL

CNTV_CVAL_EL0[63:0] CNTV_CVAL

CNTV_TVAL_EL0[31:0] CNTV_TVAL

CNTHV_CTL_EL2[63:0] CNTHV_CTL

CNTHV_CVAL_EL2[63:0] CNTHV_CVAL

CNTHV_TVAL_EL2[63:0] CNTHV_TVAL

CNTHVS_CTL_EL2[31:0] CNTHVS_CTL

CNTHVS_CVAL_EL2[63:0] CNTHVS_CVAL

CNTHVS_TVAL_EL2[63:0] CNTHVS_TVAL

CNTVCT_EL0[63:0] CNTVCT

CNTVOFF_EL2[63:0] CNTVOFF

Debug System registers

DBGAUTHSTATUS_EL1[31:0] DBGAUTHSTATUS

DBGBCR<n>_EL1[31:0] DBGBCR<n>

Table D1-29 Mapping of writable AArch64 System registers to the AArch32 System registers

AArch64 register AArch32 register
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2551
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.19 Interprocessing
DBGBVR<n>_EL1[31:0] DBGBVR<n>

DBGBVR<n>_EL1[63:32] DBGBXVR<n>

DBGCLAIMCLR_EL1[31:0] DBGCLAIMCLR

DBGCLAIMSET_EL1[31:0] DBGCLAIMSET

DBGDTR_EL0[63:32] DBGDTRRXint

DBGDTR_EL0[31:0] DBGDTRTXint

DBGDTRRX_EL0[31:0] DBGDTRRXint

DBGDTRTX_EL0[31:0] DBGDTRRXint

DBGPRCR_EL1[31:0] DBGPRCR

DBGVCR32_EL2[31:0] DBGVCR

DBGWCR<n>_EL1[31:0] DBGWCR<n>

DBGWVR<n>_EL1[31:0] DBGWVR<n>

ID_DFR0_EL1[31:0] ID_DFR0

MDCCSR_EL0b[30:29] DBGDSCRintb

MDCR_EL2[31:0] HDCR

MDRAR_EL1[63:0] DBGDRAR

MDSCR_EL1b[31:0] DBGDSCRextb

OSDLR_EL1[31:0] DBGOSDLR

OSDTRRX_EL1b[31:0] DBGDTRRXextb

OSDTRTX_EL1b[31:0] DBGDTRTXextb

OSECCR_EL1[31:0] DBGOSECCR

OSLAR_EL1[31:0] DBGOSLAR

OSLSR_EL1[31:0] DBGOSLSR

SDER32_EL3[31:0] SDER

Performance Monitors System registers

PMCCNTR_EL0[31:0] PMCCNTR (MRC/MCR)

PMCEID0_EL0[31:0] PMCEID0

PMCEID0_EL0[63:32] PMCEID2

PMCEID1_EL0[31:0] PMCEID1

PMCEID1_EL0[63:32] PMCEID3

PMCNTENCLR_EL0[31:0] PMCNTENCLR

PMCNTENSET_EL0[31:0] PMCNTENSET

Table D1-29 Mapping of writable AArch64 System registers to the AArch32 System registers

AArch64 register AArch32 register
D1-2552 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.19 Interprocessing
PMCR_EL0[31:0] PMCR

PMEVCNTR<n>_EL0[31:0] PMEVCNTR<n>

PMEVTYPER<n>_EL0[31:0] PMEVTYPER<n>

PMINTENCLR_EL1[31:0] PMINTENCLR

PMINTENSET_EL1[31:0] PMINTENSET

PMSELR_EL0[31:0] PMSELR

PMSWINC_EL0[31:0] PMSWINC

PMUSERENR_EL0[31:0] PMUSERENR

PMXEVCNTR_EL0[31:0] PMXEVCNTR

PMXEVTYPER_EL0[31:0] PMXEVTYPER

Activity Monitors System registers

AMCNTENCLR0_EL0[31:0] AMCNTENCLR0

AMCNTENCLR1_EL0[31:0] AMCNTENCLR1

AMCNTENSET0_EL0[31:0] AMCNTENSET0

AMCNTENSET1_EL0[31:0] AMCNTENSET1

AMCR_EL0[31:0] AMCR

AMEVCNTR0<n>_EL0[63:0] AMEVCNTR0<n>

AMEVCNTR1<n>_EL0[63:0] AMEVCNTR1<n>

AMEVTYPER1<n>_EL0[31:0] AMEVTYPER1<n>

RAS System registers

DISR_EL1[31:0] DISR

ERRIDR_EL1[31:0] ERRIDR

ERRSELR_EL1[31:0] ERRSELR

ERXADDR_EL1[31:0] ERXADDR

ERXADDR_EL1[63:32] ERXADDR2

ERXCTLR_EL1[31:0] ERXCTLR

ERXCTLR_EL1[63:32] ERXCTLR2

ERXFR_EL1[31:0] ERXFR

ERXFR_EL1[63:32] ERXFR2

ERXMISC0_EL1[31:0] ERXMISC0

ERXMISC0_EL1[63:32] ERXMISC1

ERXMISC1_EL1[31:0] ERXMISC2

Table D1-29 Mapping of writable AArch64 System registers to the AArch32 System registers

AArch64 register AArch32 register
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2553
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.19 Interprocessing
There are a small number of AArch32 System registers that are not mapped to any AArch64 System registers. The
AArch64 registers listed in Table D1-30 on page D1-2554 can be used to access these from a higher Exception level
that is using AArch64. The registers shown in the table are UNDEFINED if EL1 cannot use AArch32.

Table D1-31 on page D1-2554 shows the AArch64 System registers that allow access from AArch64 state to the
AArch32 ID registers. These AArch64 registers are UNKNOWN if no Exception level can use AArch32.

ERXMISC1_EL1[63:32] ERXMISC3

ERXMISC2_EL1[31:0] ERXMISC4

ERXMISC2_EL1[63:32] ERXMISC5

ERXMISC3_EL1[31:0] ERXMISC6

ERXMISC3_EL1[63:32] ERXMISC7

ERXSTATUS_EL1[31:0] ERXSTATUS

VDISR_EL2[31:0] VDISR

VSESR_EL2[31:0] VDFSR

a. AArch32 registers that are banked if EL3 is using AArch32.

b. These registers have overlapping register content. One or more
bits of one register appear in the other register.

Table D1-29 Mapping of writable AArch64 System registers to the AArch32 System registers

AArch64 register AArch32 register

Table D1-30 AArch64 registers for accessing registers that are only used in AArch32 state

AArch32 register Register for access from AArch64 state Short description

DACR DACR32_EL2 Domain Access Control Register

DBGVCR DBGVCR32_EL2 Debug Vector Catch Register

FPEXC FPEXC32_EL2 Floating-Point Exception Control Register

IFSR IFSR32_EL2 Instruction Fault Status Register

SDER SDER32_EL3 AArch32 Secure Debug Enable Register

Table D1-31 AArch64 registers that access the AArch32 ID registers

AArch32 register Register for access from AArch64 state Short description

ID_AFR0 ID_AFR0_EL1 AArch32 Auxiliary Feature Register 0

ID_DFR0 ID_DFR0_EL1 AArch32 Debug Feature Register 0

ID_ISAR0 ID_ISAR0_EL1 EL1, AArch32 Instruction Set Attribute Register 0

ID_ISAR1 ID_ISAR1_EL1 EL1, AArch32 Instruction Set Attribute Register 1

ID_ISAR2 ID_ISAR2_EL1 EL1, AArch32 Instruction Set Attribute Register 2

ID_ISAR3 ID_ISAR3_EL1 EL1, AArch32 Instruction Set Attribute Register 3

ID_ISAR4 ID_ISAR4_EL1 EL1, AArch32 Instruction Set Attribute Register 4

ID_ISAR5 ID_ISAR5_EL1 EL1, AArch32 Instruction Set Attribute Register 5
D1-2554 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.19 Interprocessing
D1.19.2 State of the general-purpose registers on taking an exception to AArch64 state

When an exception is taken from AArch32 state to AArch64 state, the state of a general-purpose register depends
on whether, immediately before the exception, the register was accessible from AArch32 state, as follows:

If the general-purpose register was accessible from AArch32 state

The upper 32 bits either become zero, or hold the value that the same architectural register held
before any AArch32 execution. The choice between these two options is IMPLEMENTATION
DEFINED, and might vary dynamically within an implementation. Correspondingly, software must
regard the value as being a CONSTRAINED UNPREDICTABLE choice between these two values.

This behavior applies regardless of whether any execution occurred at the Exception level that was
using AArch32. That is, this behavior applies even if AArch32 state was entered by an exception
return from AArch64 state, and another exception was immediately taken to AArch64 state without
any instruction execution in AArch32 state.

Which general-purpose registers have their upper 32 bits affected in this way depends on both:

• The AArch64 state target Exception level.

• The values of both:

— SCR_EL3.RW.

— HCR_EL2.RW or HCR.RW, where HCR.RW is a notional bit that is RES0.

Table D1-32 on page D1-2555 shows which general-purpose registers can have their upper 32 bits
set to zero.

ID_MMFR0 ID_MMFR0_EL1 AArch32 Memory Model Feature Register 0

ID_MMFR1 ID_MMFR1_EL1 AArch32 Memory Model Feature Register 1

ID_MMFR2 ID_MMFR2_EL1 AArch32 Memory Model Feature Register 2

ID_MMFR3 ID_MMFR3_EL1 AArch32 Memory Model Feature Register 3

ID_MMFR4 ID_MMFR4_EL1 AArch32 Memory Model Feature Register 4

ID_PFR0 ID_PFR0_EL1 AArch32 PE Feature Register 0

ID_PFR1 ID_PFR1_EL1 AArch32 PE Feature Register 1

Table D1-31 AArch64 registers that access the AArch32 ID registers (continued)

AArch32 register Register for access from AArch64 state Short description

Table D1-32 General-purpose registers that can have their upper 32 bits set to zero on taking an
exception to AArch64 state from AArch32 state

SCR_EL3.RW
HCR_EL2.RW or
HCR.RWa

a. HCR.RW is a notional bit that is RES0.

Registers when the target Exception level is:

EL3 EL2 EL1

0 0 X0-X30 -b

b. The RW bit values are not valid for the targeted Exception level.

-b

0 1 -c

c. Not valid because the RW bit values would imply that EL2 is AArch32 and EL1 is AArch64.

-c -c

1 0 X0-X14, X16-X30 X0-X14, X16-X30 -b

1 1 X0-X14 X0-X14 X0-X14
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2555
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.19 Interprocessing
Note

If EL2 is not implemented, or the SCR_EL3.NS or SCR.NS bit prevents its use, then as described
in The effects of supporting fewer than four Exception levels on page D1-2560, the behavior is
consistent with HCR_EL2.RW taking the value of SCR_EL3.RW.

If the general-purpose register was not accessible from AArch32 state

The general rule is that the register retains the state it had before any AArch32 execution.

There is one exception to this rule, that is when taking an exception to EL3 using AArch64 when
either EL2 is not implemented or EL1 is in Secure state. In these cases, the X15 register must be
treated as if it is accessible when the value of SCR_EL3.RW is 0, and therefore the upper bits of
X15 might either be set to zero or retain their previous value.

Which general-purpose registers retain their state depends on both:

• The AArch64 state target Exception level.

• The values of both:

— SCR_EL3.RW.

— HCR_EL2.RW or HCR.RW, where HCR.RW is a notional bit that is RES0.

Table D1-33 on page D1-2556 shows which general-purpose registers can retain their state.

Note

If EL2 is not implemented, or the SCR_EL3.NS bit prevents its use, then as described in The effects
of supporting fewer than four Exception levels on page D1-2560, the behavior is consistent with
HCR_EL2.RW taking the value of SCR_EL3.RW.

Table D1-33 General-purpose registers that can retain their state on taking an exception to
AArch64 from AArch32

SCR_EL3.RW
HCR_EL2.RW or
HCR.RWa

a. HCR.RW is a notional bit that is RES0.

Registers when the target Exception level is:

EL3 EL2 EL1

0 0 None -b

b. The RW bit values are not valid for the targeted Exception level.

-b

0 1 -c

c. Not valid because the RW bit values would imply that EL2 is AArch32 and EL1 is AArch64.

-c -c

1 0 X15 X15 -b

1 1 X15-X30 X15-X30 X15-X30
D1-2556 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.19 Interprocessing
D1.19.3 SPSR, ELR, and AArch64 SP relationships on changing Execution state

Table D1-34 on page D1-2557 shows the SPSR and ELR registers that are architecturally mapped between
AArch32 state and AArch64 state.

On exception entry to EL3 using AArch64 state from an Exception level using AArch32 state, when EL2 has been
using AArch32 state, the upper 32-bits of ELR_EL2 are either set to zero or they retain the value before the
AArch32 state execution. The implementation determines the choice between these two options, and the choice
might vary dynamically within an implementation. Therefore, software must regard the upper 32-bits as being
UNKNOWN.

On exception entry to an Exception level using AArch64 state from an Exception level using AArch32 state, the
AArch64 Stack Pointers and Exception Link Registers associated with an Exception level that are not accessible
during execution in AArch32 state at that Exception level, retain the state that they had before the execution in
AArch32 state.

The following AArch32 registers are used only during execution in AArch32 state. However, they retain their state
when there is execution at EL1 with EL1 using AArch64 state:

• SPSR_abt.

• SPSR_und.

• SPSR_irq.

• SPSR_fiq.

Note

• These registers are accessible during execution in AArch64 state at Exception levels higher than EL1, for
context switching.

• If EL1 does not support execution in AArch32 state then these registers are RES0.

On exception entry to an Exception level using AArch64 from an Exception level using AArch32, the AArch64
Stack Pointers and Exception Link Registers associated with an Exception level that are not accessible during
AArch32 execution at that Exception level retain the state that they had before AArch32 execution. This applies to
the following registers:

• SP_EL0.

• SP_EL1.

• SP_EL2.

• ELR_EL1.

Table D1-34 SPSR and ELR mappings between AArch32 state and AArch64 state

AArch32 register AArch64 register

SPSR_svc SPSR_EL1

SPSR_hyp SPSR_EL2

ELR_hyp ELR_EL2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2557
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.20 The effect of implementation choices on the programmers’ model
D1.20 The effect of implementation choices on the programmers’ model

Three of the implementation choices in Armv8 are:

• The number of Exception levels implemented.

• Which Exception levels support AArch32 and which Exception levels support AArch64.

• Whether SIMD and floating-point support is implemented.

The following subsections give more information about how these choices affect the programmers’ model:

• Implication of Exception levels implemented on page D1-2558.

• Support for Exception levels and Execution states on page D1-2559.

• Implementations not including Advanced SIMD and floating-point instructions on page D1-2559.

• The effects of supporting fewer than four Exception levels on page D1-2560.

D1.20.1 Implication of Exception levels implemented

All implementations must include EL0 and EL1.

EL2 and EL3 are optional. The architecture permits all combinations of EL2 and EL3.

See also Implementations not including Advanced SIMD and floating-point instructions on page D1-2559 and The
effects of supporting fewer than four Exception levels on page D1-2560.

For an implementation that includes all of the Exception levels Figure D1-5 on page D1-2558 shows the
implemented Exception levels and the possible Execution states at lower Exception levels when EL3 is using
AArch64. Figure D1-5 on page D1-2558 applies regardless of whether EL3 also supports use of AArch32.

Figure D1-5 Armv8-A security model when EL3 is using AArch64

Secure App2Secure App1App2App1App2App1

AArch32 or
AArch64†

Guest OS1

AArch32 or AArch64‡

AArch32 or
AArch64†

AArch32 or
AArch64†

AArch32 or
AArch64†

AArch32 or
AArch64†

AArch32 or
AArch64†

Guest OS2

AArch32 or AArch64‡

Secure OS

AArch32 or AArch64

Hypervisor

AArch32 or AArch64

Secure monitor

AArch64

EL0

† AArch64 permitted only if EL1 is using AArch64
‡ AArch64 permitted only if EL2 is using AArch64

EL1

EL2

EL3

Non-secure state Secure state

Secure Hypervisor

AArch64
D1-2558 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.20 The effect of implementation choices on the programmers’ model
The possible combinations of Exception levels are as follows:

• EL0, EL1, and EL2. The implementation supports only a single Security state. This might be either Secure
state or Non-secure state.

• EL0, EL1, and EL3. The implementation does not support Virtualization. The Exception levels and
Execution states depend on whether EL3 is using AArch64 state or AArch32 state, as follows:

— If EL3 is using AArch64, the Exception levels and Execution states are as shown in Figure D1-5 on
page D1-2558 with EL2 removed and no virtualization of EL1 and EL0.

— If EL3 is using AArch32, the Exception levels and Execution states are as shown in Figure G1-1 on
page G1-6020 with EL2 removed and no virtualization of EL1 and EL0.

• EL0 and EL1 only. The implementation supports only a single Security state. This might be either Secure
state or Non-secure state, see Behavior when only EL1 and EL0 are implemented on page D1-2561.

• EL0, EL1, EL2, and EL3, as described in this section.

For more information, see The effects of supporting fewer than four Exception levels on page D1-2560.

D1.20.2 Support for Exception levels and Execution states

Subject to the interprocessing rules defined in Interprocessing on page D1-2545, an implementation of the Arm
architecture could support:

• AArch64 state only.

• AArch64 and AArch32 states.

• AArch32 state only.

This means the Armv8-A architecture can, potentially, support implementations with very large number of
combinations of Execution state and Exception level. Arm intends to license only a subset of the possible
combinations.

In an implementation that:

• Supports AArch64 state, all Exception levels are included.

• Has Secure and Non-secure states, EL3 should be implemented.

• Includes all Exception levels, EL3 cannot be included in AArch32 state.

D1.20.3 Implementations not including Advanced SIMD and floating-point instructions

In general, Armv8-A requires the inclusion of the Advanced SIMD and floating-point instructions in all instruction
sets. Exceptionally, for implementations targeting specialized markets that do not require support for floating-point
or use of Advanced SIMD, Arm might produce or license an Armv8-A implementation that does not provide any
support for Advanced SIMD and floating-point instructions. In such an implementation:

In AArch64 state

• The CPACR_EL1.FPEN field is RES0.

• The CPTR_EL2.TFP bit is RES1.

• The CPTR_EL3.TFP bit is RES1.

• Each of the ID_AA64PFR0_EL1.{AdvSIMD, FP} fields is 0b1111.

• The FPEXC32_EL2, FPCR, and FPSR registers are not implemented, and their encodings
are UNDEFINED.

• Attempted accesses to Advanced SIMD and floating-point functionality are UNDEFINED. This
means:

— All Advanced SIMD and floating-point instructions are UNDEFINED.

— Attempts to access the Advanced SIMD and floating-point System registers are
UNDEFINED.

• If at least one Exception level supports execution in AArch32 state, the MVFR0_EL1,
MVFR1_EL1 and MVFR2_EL1 registers are RAZ. When no Exception level supports
execution in AArch32 state these registers are UNKNOWN.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2559
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.20 The effect of implementation choices on the programmers’ model
In AArch32 state

See AArch32 implications of not including support for Advanced SIMD and floating-point on
page G1-6112.

D1.20.4 The effects of supporting fewer than four Exception levels

The effect of implementation choices on the programmers’ model on page D1-2558 defines the permitted
combinations of Exception levels in an Armv8-A implementation.

In every implementation that supports the highest Exception level using either AArch64 state or AArch32 state, an
IMPLEMENTATION DEFINED mechanism determines whether the highest implemented Exception level uses AArch64
state or AArch32 state from a Cold reset. Typically, this mechanism is a configuration input. When the highest level
is configured to be AArch64 state, then after a Cold reset execution starts at the reset vector in that Exception level.

The unimplemented Exception levels have no effect on execution:

• No interrupts are routed to these Exception levels.

• No traps that target these Exception levels are active.

• All systems calls to unimplemented Exception levels from lower Exception levels are treated as UNDEFINED.

• There is no support for address translation from these Exception levels.

• Any exception return that targets an unimplemented Exception level is treated as an illegal exception return
as described in Illegal return events from AArch64 state on page D1-2486.

• Every accessible register associated with an unimplemented Exception level is RES0 unless the register is
associated with the Exception level only to provide the ability to transfer execution to a lower Exception
level.

Note
If, for example, EL3 is not implemented and EL2 is the highest implemented Exception level, then because
none of the EL3 registers are accessible from EL2, the content of those registers is not architecturally visible.

The following subsections give more information about each of the permitted combinations of Exception levels that
do not include all Exception levels.

Behavior when EL3 is not implemented

If EL3 is not implemented:

• If EL2 is implemented and Secure EL2 is not implemented, the Effective value of SCR_EL3.NS is 0b1.

• If Secure EL2 is implemented, the Effective value of SCR_EL3.EEL2 is 0b1 and the Effective value of
SCR_EL3.NS is 0b0.

• If EL2 is not implemented, it is IMPLEMENTATION DEFINED whether the Effective value of SCR_EL3.NS is
0b1 or 0b0.

Behavior when EL2 is not implemented

If EL2 is not implemented and EL3 is implemented:

• If EL1 can use AArch32 then the following registers are not RES0:

— DACR32_EL2.

— IFSR32_EL2.

— FPEXC32_EL2.

— DBGVCR32_EL2.

• The VMPIDR_EL2 and VPIDR_EL2 behave as follows:

— Reads of VMPIDR_EL2 return the value of MPIDR_EL1, writes to VMPIDR_EL2 are ignored.

— Reads of VPIDR_EL2 return the value of MIDR_EL1, writes to VPIDR_EL2 are ignored.
D1-2560 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Programmers’ Model
D1.20 The effect of implementation choices on the programmers’ model
• Behavior is consistent with the HCR_EL2.RW bit taking the value of the SCR_EL3.RW bit for all purposes
other than reading the HCR_EL2.

• Virtual interrupts are disabled.

• The following address translation and TLB invalidation instructions are UNDEFINED:

— AT S1E2R and AT S1E2W.

— TLBI VAE2, TLBI VAE2NXS, TLBI VALE2, TLBI VALE2NXS, TLBI VAE2IS, TLBI
VAE2ISNXS, TLBI VALE2IS, TLBI VALE2ISNXS, TLBI VAE2OS, TLBI VAE2OSNXS, TLBI
VALE2OS, TLBI VALE2OSNXS, TLBI ALLE2, TLBI ALLE2NXS, TLBI ALLE2IS, TLBI
ALLE2ISNXS, TLBI ALLE2OS, TLBI ALLE2OSNXS, TLBI RVAE2, TLBI RVAE2NXS, TLBI
RVALE2, TLBI RVALE2NXS, TLBI RVAE2IS, TLBI RVAE2ISNXS, TLBI RVALE2IS, TLBI
RVALE2ISNXS, TLBI RVAE2OS, TLBI RVAE2OSNXS, TLBI RVALE2OS, TLBI
RVALE2OSNXS.

Note
No other TLB or address translation instructions become UNDEFINED with this combination of
Exception levels.

• The SCR_EL3.HCE bit is RES0.

If EL2 is not implemented, regardless of whether EL3 is implemented:

• The Effective value of CNTHCTL_EL2[1:0] is 0b11.

• The Effective value of MDCR_EL2.HPMN is the value of PMCR_EL0.N.

Behavior when only EL1 and EL0 are implemented

If EL3 and EL2 are not implemented, it is IMPLEMENTATION DEFINED whether the Effective value of the
SCR_EL3.NS bit is 0b1 or 0b0.

This means that if the PE is part of a system that supports two Security states:

• When the Effective value of the SCR_EL3.NS bit is 0b1, the PE can only access Non-secure memory.

• When the Effective value of the SCR_EL3.NS bit is 0b0, the PE can access both Secure memory and
Non-secure memory.

If the Effective value of the SCR_EL3.NS bit is 0b0, then:

• The Effective value of MDCR_EL3.{EPMAD, EDAD} is {0b1, 0b1}.

• The Effective value of MDCR_EL3.{SPME, NSPB} is {0b1, 0b01}.

• The Effective value of MDCR_EL3.SPD32 is 0b11.

If EL3 is not implemented, regardless of whether EL2 is implemented, the Effective value of MDCR_EL3.STE is
the inverse of the Effective value of SCR_EL3.NS.

Note

• The behavior described in this subsection still applies if EL1 is configured to use AArch32.

• The implementation can provide a configuration input that determines, from reset, the Effective value of the
SCR_EL3.NS bit.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D1-2561
ID072021 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.20 The effect of implementation choices on the programmers’ model
D1-2562 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter D2
AArch64 Self-hosted Debug

When the PE is using self-hosted debug, it generates debug exceptions. This chapter describes the AArch64
self-hosted debug exception model. It is organized as follows:

Introductory information

• About self-hosted debug on page D2-2564.

• The debug exception enable controls on page D2-2568.

The debug Exception model

• Routing debug exceptions on page D2-2569.

• Enabling debug exceptions from the current Exception level on page D2-2571.

• The effect of powerdown on debug exceptions on page D2-2573.

• Summary of the routing and enabling of debug exceptions on page D2-2574.

• Pseudocode description of debug exceptions on page D2-2576.

The debug exceptions

• Breakpoint Instruction exceptions on page D2-2577.

• Breakpoint exceptions on page D2-2579.

• Watchpoint exceptions on page D2-2598.

• Vector Catch exceptions on page D2-2612.

• Software Step exceptions on page D2-2613.

Synchronization requirements

The behavior of self-hosted debug after changes to System registers, or after changes to the
authentication interface, but before a Context synchronization event guarantees the effects of the
changes:

• Synchronization and debug exceptions on page D2-2626.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2563
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.1 About self-hosted debug
D2.1 About self-hosted debug

Self-hosted debug supports debugging through the generation and handling of debug exceptions, that are taken using
the exception model described in Chapter D1 The AArch64 System Level Programmers’ Model. This section
introduces some terms that are used in describing self-hosted debug, and then introduces the debug exceptions. See:

• Definition of a debugger in the context of self-hosted debug on page D2-2564.

• Context ID and Process ID on page D2-2564.

• About debug exceptions on page D2-2564.

D2.1.1 Definition of a debugger in the context of self-hosted debug

Within this chapter, debugger means that part of an operating system, or higher level of system software, that
handles debug exceptions and programs the Debug System registers. An operating system with rich application
environments might provide debug services that support a debugger user interface executing at EL0. From the
architectural perspective, the debug services are the debugger.

D2.1.2 Context ID and Process ID

A CONTEXTIDR_ELx identifies the current Context ID, that is used by:

• The debug logic, for breakpoint and watchpoint matching.

• Implemented trace logic, to identify the current process.

In AArch64 state, the CONTEXTIDR_ELx has a single field, PROCID, that is defined as the Process Identifier
(Process ID). Therefore, in AArch64 state, the Context ID and Process ID are identical.

D2.1.3 About debug exceptions

Debug exceptions occur during normal program flow if a debugger has programmed the PE to generate them. For
example, a software developer might use a debugger contained in an operating system to debug an application. To
do this, the debugger enables one or more debug exceptions. The debug exceptions that can be generated in stage 1
of an AArch64 translation regime are:

• Breakpoint Instruction exceptions on page D2-2565.

• Breakpoint exceptions on page D2-2565, generated by hardware breakpoints.

• Watchpoint exceptions on page D2-2565, generated by hardware watchpoints.

• Software Step exceptions on page D2-2566.

In addition, debug exceptions generated in an AArch32 translation regime might be routed to EL2 using AArch64.
See Routing debug exceptions on page D2-2569. Chapter G2 describes the debug exceptions that can be generated
in an AArch32 translation regime.

Vector Catch exceptions are exceptions that cannot be generated in an AArch64 translation regime but can be
generated in stage 1 of an AArch32 translation regime and routed to EL2 using AArch64. Vector Catch exceptions
on page D2-2612 describes the behavior for this case.

The PE can only generate a particular debug exception when both:

1. Debug exceptions are enabled from the current Exception level and Security state.

See Enabling debug exceptions from the current Exception level on page D2-2571. Breakpoint Instruction
exceptions are always enabled from the current Exception level and Security state.

2. A debugger has enabled that particular debug exception.

All of the debug exceptions except for Breakpoint Instruction exceptions have an enable control contained in
the MDSCR_EL1. See The debug exception enable controls on page D2-2568.

Note

If halting is allowed and EDSCR.HDE is 1, hardware breakpoints and watchpoints cause entry to Debug state
instead of causing debug exceptions. In Debug state, the PE is halted.
D2-2564 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.1 About self-hosted debug
For the definition of halting is allowed, see Halting allowed and halting prohibited on page H2-7339.

The following list summarizes each of the debug exceptions:

Breakpoint Instruction exceptions

Breakpoint instructions generate these. Breakpoint instructions are instructions that software
developers can use to cause exceptions at particular points in the program flow.

The breakpoint instruction in the A64 instruction set is BRK #<immediate>. Whenever one of these is
committed for execution, the PE takes a Breakpoint Instruction exception.

PE behavior

Breakpoint Instruction exceptions cannot be masked. The PE takes Breakpoint
Instruction exceptions regardless of both of the following:

• The current Exception level.

• The current Security state.

For more information, see Breakpoint Instruction exceptions on page D2-2577.

Breakpoint exceptions

The Armv8-A architecture provides 2-16 hardware breakpoints. These can be programmed to
generate Breakpoint exceptions based on particular instruction addresses, or based on particular PE
contexts, or both.

For example, a software developer might program a hardware breakpoint to generate a Breakpoint
exception whenever the instruction with address 0x1000 is committed for execution.

The Armv8-A architecture supports the following types of hardware breakpoint for use in stage 1
of an AArch64 translation regime:

• Address.

— Comparisons are made with the virtual address of each instruction in the program flow.

• Context:

— Context ID Match. Matches with the Context ID held in the CONTEXTIDR_EL1.

— VMID Match. Matches with the VMID value held in the VTTBR_EL2.

— Context ID and VMID Match. Matches with both the Context ID and the VMID value.

An Address breakpoint can link to a Context breakpoint, so that the Address breakpoint only
generates a Breakpoint exception if the PE is in a particular context when the address match occurs.

A breakpoint generates a Breakpoint exception whenever an instruction that causes a match is
committed for execution.

PE behavior

If halting is allowed and EDSCR.HDE is 1, hardware breakpoints cause entry to Debug
state. That is, they halt the PE. See Chapter H2 Debug State.

Otherwise:

• If debug exceptions are enabled, hardware breakpoints cause Breakpoint
exceptions.

• If debug exceptions are disabled, hardware breakpoints are ignored.

For more information, see Breakpoint exceptions on page D2-2579.

Watchpoint exceptions

The Armv8-A architecture provides 2-16 hardware watchpoints. These can be programmed to
generate Watchpoint exceptions based on accesses to particular data addresses, or based on accesses
to any address in a data address range.

For example, a software developer might program a hardware watchpoint to generate a Watchpoint
exception on an access to any address in the data address range 0x1000 - 0x101F.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2565
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.1 About self-hosted debug
A hardware watchpoint can link to a hardware breakpoint if the hardware breakpoint is a Linked
Context type. In this case, the watchpoint only generates a Watchpoint exception if the PE is in a
particular context when the data address match occurs.

The smallest data address size that a watchpoint can be programmed to match on is a byte. A single
watchpoint can be programmed to match on one or more bytes.

A watchpoint generates a Watchpoint exception whenever an instruction that initiates an access that
causes a match is committed for execution.

PE behavior

If halting is allowed and EDSCR.HDE is 1, hardware watchpoints cause entry to Debug
state. That is, they halt the PE. See Chapter H2 Debug State.

Otherwise:

• If debug exceptions are enabled, hardware watchpoints cause Watchpoint
exceptions.

• If debug exceptions are disabled, hardware watchpoints are ignored.

For more information, see Watchpoint exceptions on page D2-2598.

Vector Catch exceptions

These are not generated in an AArch64 translation regime. They can only be generated in an
AArch32 translation regime. See Vector Catch exceptions on page D2-2612.

Software Step exceptions

Software step is a resource that a debugger can use to make the PE single-step instructions.

For example, by using software step, debugger software executing at a higher Exception level can
debug software executing at a lower Exception level, by making it single-step instructions.

After the software being debugged has single-stepped an instruction, the PE takes a Software Step
exception.

PE behavior

Software step can only be used by a debugger executing in an Exception level that is
using AArch64. However, the instruction stepped might be executed in either Execution
state, and therefore Software Step exceptions can be taken from either Execution state.

If debug exceptions are enabled, Software Step exceptions can be generated.

If debug exceptions are disabled, software step is inactive.

For more information, see Software Step exceptions on page D2-2613.

Table D2-1 on page D2-2566 summarizes PE behavior and shows the location of the pseudocode for each of the
debug exceptions.

Table D2-1 PE behavior and pseudocode for each of the debug exceptions

Debug exception

PE behavior if debug
exceptions are:

Pseudocode

Enabled Disabled

Breakpoint Instruction
exceptions

Takes the
exception

Takes the
exception

Pseudocode description of Breakpoint Instruction exceptions on
page D2-2578

Breakpoint exceptions Takes the
exceptiona

Ignored Pseudocode description of Breakpoint exceptions taken from AArch64
state on page D2-2596
D2-2566 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.1 About self-hosted debug
Watchpoint exceptions Takes the
exceptiona

Ignored Pseudocode description of Watchpoint exceptions taken from AArch64
state on page D2-2611

Vector Catch exceptions Takes the
exception

Ignored Pseudocode description of Vector Catch exceptions on page G2-6216

Software Step
exceptions

Takes the
exception

Not
applicableb

Pseudocode description of Software Step exceptions on page D2-2625

a. If halting is allowed and EDSCR.HDE is 1, hardware breakpoints and watchpoints cause the PE to enter Debug state instead of causing debug
exceptions. See Chapter H2 Debug State.

b. Software Step is inactive if debug exceptions are disabled. No Software Step exceptions can be generated.

Table D2-1 PE behavior and pseudocode for each of the debug exceptions (continued)

Debug exception

PE behavior if debug
exceptions are:

Pseudocode

Enabled Disabled
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2567
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.2 The debug exception enable controls
D2.2 The debug exception enable controls

The enable controls for each debug exception are as follows:

Breakpoint Instruction exceptions

None. Breakpoint Instruction exceptions are always enabled.

Breakpoint exceptions

MDSCR_EL1.MDE, plus an enable control for each breakpoint, DBGBCR<n>_EL1.E.

Watchpoint exceptions

MDSCR_EL1.MDE, plus an enable control for each watchpoint, DBGWCR<n>_EL1.E.

Vector Catch exceptions

MDSCR_EL1.MDE.

Software Step exceptions

MDSCR_EL1.SS.

In addition, for all debug exceptions other than Breakpoint Instruction exceptions, software must configure the
controls that enable debug exceptions from the current Exception level and Security state. See Enabling debug
exceptions from the current Exception level on page D2-2571.

The PE cannot take a debug exception if debug exceptions are disabled from either the current Exception level or
the current Security state.

Breakpoint Instruction exceptions are always enabled from the current Exception level and Security state.
D2-2568 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.3 Routing debug exceptions
D2.3 Routing debug exceptions

Debug exceptions are enabled and routed according to the following controls:

• MDCR_EL2.TDE.

• HCR_EL2.TGE.

• MDCR_EL3.SDD.

• The Security state when the exception is taken.

• The Exception level where the exception is taken.

Breakpoint Instructions are enabled in some situations where other Debug exceptions are disabled.

If the OS Lock is locked, or if DoubleLockStatus() == TRUE, a Debug exception cannot be taken.

Note

If EL2 is not implemented, the Effective value of HCR_EL2.TGE is 0 and the Effective value of MDCR_EL2.TDE
is 0. Throughout this section, references to the values of these fields are to the Effective values of the fields.

If EL3 is not implemented, and the implementation is a Secure state only implementation, the Effective value of
MDCR_EL3.SDD is 0.

The routing of debug exceptions is as follows:

Table D2-2 on page D2-2569 shows when debug exceptions are enabled from the current Security state.

Debug exceptions taken when EL2 is implemented and enabled in the current Security state

The routing of debug exceptions taken depends on the values of MDCR_EL2.TDE and
HCR_EL2.TGE:

If the Effective value of {MDCR_EL2.TDE, HCR_EL2.TGE} is not {0, 0}

Debug exceptions are routed to EL2, ELD is EL2.

Otherwise

Debug exceptions behave as follows:

• Debug exceptions taken from EL1 and EL0 are routed to EL1. ELD is EL1

• Breakpoint Instruction exceptions taken from EL2 are routed to EL2.

• All other debug exceptions are disabled from EL2 using AArch64.

When EL3 is implemented

Breakpoint Instruction exceptions taken from EL3 are routed to EL3.

All other debug exceptions are disabled from EL3 using AArch64.

Otherwise Debug exceptions are routed to EL1.

This means that, for all debug exceptions, the debug target Exception level, ELD, is either EL1 or EL2. When
executing in the same exception level as ELD, see Enabling debug exceptions from the current Exception level on
page D2-2571.

Table D2-2 Whether debug exceptions are enabled from the current Security state

Current Security
state

Breakpoint Instruction
exceptions

All other debug exceptions

Non-secure Enabled Enabled

Secure Enabled Disabled if MDCR_EL3.SDD is 1. See Disabling debug exceptions from
Secure state on page D2-2571.

Otherwise enabled.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2569
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.3 Routing debug exceptions
Table D2-3 on page D2-2570, Table D2-4 on page D2-2570, and Table D2-5 on page D2-2570 show the routing of
debug exceptions. In these tables:

NS Means the Effective value of SCR_EL3.NS.

EEL2 Means the Effective value of SCR_EL3.EEL2. If FEAT_SEL2 is not implemented, this is 0.

TDE or TGE Means the logical OR of the Effective value of MDCR_EL2.TDE and the Effective value of
HCR_EL2.TGE.

(ELx) Means ELD is ELx. However:

• All debug exceptions other than Breakpoint Instruction exceptions are disabled from this
Exception level.

• Breakpoint Instruction exceptions taken when executing in this Exception level are routed to
the same Exception level. This may not be the same as the ELD Exception level.

ELx Means ELD is ELx.

D2.3.1 Pseudocode description of routing debug exceptions

DebugTarget() returns the current debug target Exception level.

DebugTargetFrom() returns the debug target Exception level for the specified Security state.

These functions are described in Chapter J1 Armv8 Pseudocode.

Table D2-3 Routing when both EL3 and EL2 are implemented

NS EEL2 TDE or TGE
ELD when executing in:

EL0 EL1 EL2 EL3

0 0 x EL1 EL1 n/a (EL1)

0 1 0 EL1 EL1 (EL1) (EL1)

0 1 1 EL2 EL2 EL2 (EL2)

1 x 0 EL1 EL1 (EL1) (EL1)

1 x 1 EL2 EL2 EL2 (EL2)

Table D2-4 Routing when EL3 is implemented and EL2 is not implemented

ELD when executing in:

EL0 EL1 EL3

EL1 EL1 (EL1)

Table D2-5 Routing when EL3 is not implemented and EL2 is implemented

TDE
ELD when executing in:

EL0 EL1 EL2

0 EL1 EL1 (EL1)

1 EL2 EL2 EL2
D2-2570 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.4 Enabling debug exceptions from the current Exception level
D2.4 Enabling debug exceptions from the current Exception level

A debug exception can only be taken if all of the following are true:

• The OS Lock is unlocked.

• DoubleLockStatus() == FALSE.

• The debug exception is enabled from the current Exception level.

• The debug exception is enabled from the current Security state.

Table D2-6 on page D2-2571 shows when debug exceptions are enabled from the current Exception level. In the
table, ELD is the Exception level that Table D2-3 on page D2-2570 defines.

Note

PSTATE.D is set to 1 at reset and on exception entry.

D2.4.1 Disabling debug exceptions from Secure state

If EL3 is implemented, software executing at EL3 can set the Secure Debug Disable bit, MDCR_EL3.SDD, to 1 to
disable all debug exceptions taken from AArch64 Secure state other than Breakpoint Instruction exceptions.

The Armv8-A architecture does not support disabling debug in Non-secure state.

Note

• If the boot software executed when reset is deasserted sets MDCR_EL3.SDD to 1, software operating at EL3
never has to switch the debug registers between Secure state and Non-secure state.

• The PE cannot take a debug exception unless it is enabled from the current Exception level. See Table D2-6
on page D2-2571.

• If either the OS Lock or the OS Double Lock is locked, debug exceptions other than Breakpoint Instruction
exceptions are disabled.

• If EL3 and EL2 are not implemented, and the implementation is a Secure state only implementation, the PE
behaves as if MDCR_EL3.SDD is 0.

Table D2-6 Whether debug exceptions are enabled from the current Exception level

Current Exception level
Breakpoint Instruction
exceptions

All other debug exceptions

Any Exception level that is
higher than ELDa

Enabled Disabled

ELD Enabled Disabled if either of the following is true:

• The Local (kernel) Debug Enable bit, MDSCR_EL1.KDE, is
0.

• The Debug exception mask bit, PSTATE.D, is 1.

Otherwise enabled.

This means that a debugger must explicitly enable these debug
exceptions from ELD by setting MDSCR_EL1.KDE to 1 and
PSTATE.D to 0.

Any Exception level that is
lower than ELD

Enabled Enabled

a. This includes EL3. EL3 is always higher than ELD.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2571
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.4 Enabling debug exceptions from the current Exception level
D2.4.2 Pseudocode description of enabling debug exceptions

AArch64.GenerateDebugExceptions() determines whether debug exceptions other than Breakpoint Instruction
exceptions are enabled from the current Exception level and Security state.

AArch64.GenerateDebugExceptionsFrom() determines whether debug exceptions other than Breakpoint Instruction
exceptions are enabled from the specified Exception level and Security state.

These functions are described in Chapter J1 Armv8 Pseudocode.
D2-2572 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.5 The effect of powerdown on debug exceptions
D2.5 The effect of powerdown on debug exceptions

Debug OS Save and Restore sequences on page H6-7446 describes the powerdown save routine and the restore
routine.

When executing either routine, software must use the OS Lock to disable generation of all of the following:

• Breakpoint exceptions.

• Watchpoint exceptions.

• Vector Catch exceptions.

• Software Step exceptions.

This is because the generation of these exceptions depends on the state of the debug registers, and the state of the
debug registers might be lost over these routines.

If the OS Lock is unlocked, and DoubleLockStatus()== FALSE, debug exceptions other than Breakpoint Instruction
exceptions are enabled.

If OS Lock is locked, or if DoubleLockStatus()==TRUE, debug exceptions other than Breakpoint Instruction
exceptions are disabled.

Breakpoint Instruction exceptions are enabled regardless of the state of the OS Lock and the OS Double Lock.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2573
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.6 Summary of the routing and enabling of debug exceptions
D2.6 Summary of the routing and enabling of debug exceptions

Behavior is as follows:

Breakpoint Instruction exceptions

These are always enabled, regardless of the current Exception level and Security state. A Breakpoint
Instruction exception taken from EL3 is always routed to EL3. A Breakpoint Instruction exception
taken from EL2 is routed to EL2. A Breakpoint Instruction exception taken from EL0 or EL1 is
always routed to ELD.

All other debug exceptions

Table D2-7 on page D2-2574 shows the valid combinations of MDCR_EL3.SDD,
MDCR_EL2.TDE, MDSCR_EL1.KDE, and PSTATE.D, and for each combination shows where
these exceptions are enabled from and where they are taken to.

In the table:

Lock Means the value of (OSLSR_EL1.OSLK == ’1’ || DoubleLockStatus()).

NS Means the Effective value of SCR_EL3.NS.

SDD Means the Effective value of MDCR_EL3.SDD. See Disabling debug exceptions from
Secure state on page D2-2571.

EEL2 Means the Effective value of SCR_EL3.EEL2. If FEAT_SEL2 is not implemented, this
is 0.

TGE Means the value of HCR_EL2.TGE. If EL2 is not implemented, the PE behaves as if
this is 0.

TDE Means the value of MDCR_EL2.TDE. If EL2 is not implemented, the PE behaves as if
this is 0.

KDE Means the value of MDSCR_EL1.KDE.

D Means the value of PSTATE.D.

n/a Means not applicable. The PE cannot be executing at this Exception level.

- Means that debug exceptions are disabled from that Exception level.

Table D2-7 Routing of Breakpoint, Watchpoint, Software Step, and Vector Catch exceptions

Debug
state

Lock NS SDD EEL2 TGE TDE KDE D
ELD when enabled from:

EL0 EL1 EL2 EL3

Yes X X X X X X X X - - - -

No TRUE X X X X X X X - - - -

FALSE 0 1 X X X X X - - - -

0 0 X X 0 X EL1 - n/a -

1 0 EL1 EL1 n/a -

1 EL1 - n/a -

1 0 0 0 X EL1 - - -

1 0 EL1 EL1 - -

1 EL1 - - -
D2-2574 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.6 Summary of the routing and enabling of debug exceptions
No FALSE 0 0 1 0 1 0 X EL2 EL2 - -

1 0 EL2 EL2 EL2 -

1 EL2 EL2 - -

1 X 0 X EL2 n/a - -

1 0 EL2 n/a EL2 -

1 EL2 n/a - -

1 X X 0 0 0 X EL1 - - -

1 0 EL1 EL1 - -

1 EL1 - - -

1 0 X EL2 EL2 - -

1 0 EL2 EL2 EL2 -

1 EL2 EL2 - -

1 X 0 X EL2 n/a - -

1 0 EL2 n/a EL2 -

1 EL2 n/a - -

Table D2-7 Routing of Breakpoint, Watchpoint, Software Step, and Vector Catch exceptions

Debug
state

Lock NS SDD EEL2 TGE TDE KDE D
ELD when enabled from:

EL0 EL1 EL2 EL3
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2575
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.7 Pseudocode description of debug exceptions
D2.7 Pseudocode description of debug exceptions

AArch64.DebugFault() returns a FaultRecord object that indicates that a memory access has generated a debug
exception:

The AArch64.Abort() function processes FaultRecord objects, as described in Abort exceptions on page D4-2670,
and generates a debug exception.

Some functions called by AArch64.Abort() are:

• AArch64.BreakpointException().

• AArch64.WatchpointException().

• AArch64.VectorCatchException().

• AArch64.InstructionAbort().

• AArch64.DataAbort().

These functions are defined in Chapter J1 Armv8 Pseudocode.
D2-2576 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.8 Breakpoint Instruction exceptions
D2.8 Breakpoint Instruction exceptions

This section describes Breakpoint Instruction exceptions in an AArch64 translation regime.

The PE is using an AArch64 translation regime when it is executing either:

• In an Exception level that is using AArch64.

• At EL0 using AArch32 when EL1 is using AArch64.

For software executing in an Exception level that is using AArch64, a Breakpoint Instruction exception results from
the execution of an A64 BRK instruction. However, within the AArch64 EL1&0 translation regime, executing a T32
or A32 BKPT instruction at EL0 using AArch32 generates a Breakpoint Instruction exception.

For more information about the T32 and A32 BKPT instructions, see:

• Breakpoint instruction in the A32 and T32 instruction sets on page G2-6167.

• BKPT instructions as the first instruction in an IT block on page G2-6168.

The following subsections describe Breakpoint Instruction exceptions in an AArch64 translation regime:

• About Breakpoint Instruction exceptions on page D2-2577.

• Breakpoint instructions on page D2-2577.

• Exception syndrome information and preferred return address on page D2-2578.

• Pseudocode description of Breakpoint Instruction exceptions on page D2-2578.

D2.8.1 About Breakpoint Instruction exceptions

A breakpoint is an event that results from the execution of an instruction, which is based on either:

• The instruction address, the PE context, or both. This type of breakpoint is called a hardware breakpoint.

• The instruction itself. That is, the instruction is a breakpoint instruction. These can be included in the
program that the PE executes. This type of breakpoint is called a software breakpoint.

Breakpoint Instruction exceptions, that this section describes, are software breakpoints. Breakpoint exceptions on
page D2-2579 describes hardware breakpoints.

There is no enable control for Breakpoint Instruction exceptions. They are always enabled, and cannot be masked.

A Breakpoint Instruction exception is generated whenever a breakpoint instruction is committed for execution,
regardless of all of the following:

• The current Exception level.

• The current Security state.

• Whether the debug target Exception level, ELD, is using AArch64 or AArch32.

Note

• The debug target Exception level, ELD, is the Exception level that debug exceptions are targeting. Routing
debug exceptions on page D2-2569 describes how ELD is derived.

• Debuggers using breakpoint instructions must be aware of the Armv8 rules for concurrent modification and
execution of instructions. See Concurrent modification and execution of instructions on page B2-130.

D2.8.2 Breakpoint instructions

The breakpoint instruction in the A64 instruction set is BRK #<immediate>. It is unconditional.

For details of the instruction encoding, see BRK on page C6-941.

The breakpoint instruction in the A32 and T32 instruction sets is BKPT #<immediate>.

For more information about the A32 and T32 breakpoint instruction, see Breakpoint instruction in the A32 and T32
instruction sets on page G2-6167.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2577
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint Instruction exceptions
D2.8.3 Exception syndrome information and preferred return address

See the following:

• Exception syndrome information on page D2-2578.

• Preferred return address on page D2-2578.

Exception syndrome information

On taking a Breakpoint Instruction exception, the PE records information about the exception in the Exception
Syndrome Register (ESR) at the Exception level the exception is taken to. The ESR used is one of:

• ESR_EL1.

• ESR_EL2.

• ESR_EL3.

Note

Breakpoint Instruction exceptions are the only debug exception that can be taken to EL3 using AArch64.

Table D2-8 on page D2-2578 shows the information that the PE records.

Note

• If debug exceptions are routed to EL2, it is the exception that is routed, not the instruction that is trapped.
Therefore, if a Breakpoint Instruction exception is routed to EL2, ESR_EL2.EC is set to the same value as if
the exception was taken to EL1.

• For information about how debug exceptions can be routed to EL2, see Routing debug exceptions on
page D2-2569.

Preferred return address

The preferred return address is the address of the breakpoint instruction, not the next instruction. This is different
to the behavior of other exception-generating instructions, like SVC.

D2.8.4 Pseudocode description of Breakpoint Instruction exceptions

AArch64.SoftwareBreakpoint() generates a Breakpoint Instruction exception that is taken to AArch64 state.

This function is defined in Chapter J1 Armv8 Pseudocode.

Table D2-8 Information recorded in the ESR_ELx

ESR_ELx field Information recorded in ESR_EL1, ESR_EL2, or ESR_EL3.

Exception Class, EC Whether the breakpoint instruction was executed in AArch64 state or AArch32 state. The PE sets
this to:

• 0x3C for an A64 BRK instruction.

• 0x38 for an A32 or T32 BKPT instruction.

Instruction Length, IL The PE sets this to:

• 0 for a 16-bit T32 BKPT instruction.

• 1 for an A64 BRK instruction, or an A32 BKPT instruction.

Instruction Specific Syndrome, ISS ISS[24:16] RES0.

ISS[15:0] The PE copies the instruction Comment field value into here, zero extended as
necessary.
D2-2578 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.9 Breakpoint exceptions
D2.9 Breakpoint exceptions

This section describes Breakpoint exceptions in stage 1 of an AArch64 translation regime.

The PE is using an AArch64 translation regime when it is executing either:

• In an Exception level that is using AArch64.

• At EL0 using AArch32 when EL1 is using AArch64.

This section contains the following subsections:

• About Breakpoint exceptions on page D2-2579.

• Breakpoint types and linking of breakpoints on page D2-2580.

• Execution conditions for which a breakpoint generates Breakpoint exceptions on page D2-2589.

• Breakpoint instruction address comparisons on page D2-2590.

• Breakpoint context comparisons on page D2-2592.

• Breakpoint usage constraints on page D2-2593.

• Preferred return address on page D2-2596.

• Pseudocode description of Breakpoint exceptions taken from AArch64 state on page D2-2596.

D2.9.1 About Breakpoint exceptions

A breakpoint is an event that results from the execution of an instruction, which is based on either:

• The instruction address, the PE context, or both. This type of breakpoint is called a hardware breakpoint.

• The instruction itself. That is, the instruction is a breakpoint instruction. These can be included in the
program that the PE executes. This type of breakpoint is called a software breakpoint.

Breakpoint exceptions are generated by Breakpoint debug events. Breakpoint debug events are generated by
hardware breakpoints. Software breakpoints are described in Breakpoint Instruction exceptions on page D2-2577.

An implementation can include between 2-16 hardware breakpoints. ID_AA64DFR0_EL1.BRPs shows how many
are implemented.

To use an implemented hardware breakpoint, a debugger programs the following registers for the breakpoint:

• The Breakpoint Control Register, DBGBCR<n>_EL1. This contains controls for the breakpoint, for example
an enable control.

• The Breakpoint Value Register, DBGBVR<n>_EL1. This holds the value used for breakpoint matching, that
is one of:

— An instruction virtual address.

— A Context ID.

— A VMID value.

— A concatenation of both a Context ID value and a VMID value.

These registers are numbered, so that:

• DBGBCR0_EL1 and DBGBVR0_EL1 are for breakpoint number zero.

• DBGBCR1_EL1 and DBGBVR1_EL1 are for breakpoint number one.

• DBGBCR2_EL1 and DBGBVR2_EL1 are for breakpoint number two.

• …

• …

• DBGBCR<n-1>_EL1 and DBGBVR<n-1>_EL1 are for breakpoint number (n-1).

A debugger can link a breakpoint that is programmed with an address and a breakpoint that is programmed with
anything other than an address together, so that a Breakpoint debug event is only generated if both breakpoints
match.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2579
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Breakpoint exceptions
For each instruction in the program flow, all of the breakpoints are tested. When a breakpoint is tested, it generates
a Breakpoint debug event if all of the following are true:

• The breakpoint is enabled. That is, the breakpoint enable control for it, DBGBCR<n>_EL1.E, is 1.

• The conditions specified in the DBGBCR<n>_EL1 are met.

• The comparison with the value held in the DBGBVR<n>_EL1 is successful.

• If the breakpoint is linked to another breakpoint, the comparisons made by that other breakpoint are also
successful.

• The instruction is committed for execution.

If all of these conditions are met, the breakpoint generates the Breakpoint debug event regardless of the following:

• Whether the instruction passes its Condition code check.

• The instruction type.

If halting is allowed and EDSCR.HDE is 1, Breakpoint debug events cause entry to Debug state.

Otherwise, if debug exceptions are:

• Enabled, Breakpoint debug events generate Breakpoint exceptions.

• Disabled, Breakpoint debug events are ignored.

Note

The remainder of this Breakpoint exceptions section, including all subsections, describes breakpoints as generating
Breakpoint exceptions.

However, the behavior described also applies if breakpoints are causing entry to Debug state.

The debug exception enable controls on page D2-2568 describes the enable controls for Breakpoint debug events.

D2.9.2 Breakpoint types and linking of breakpoints

Each implemented breakpoint is one of the following:

• A context-aware breakpoint. This is a breakpoint that can be programmed to generate a Breakpoint exception
on any one of the following:

— An instruction address match.

— A Context ID match, with the value held in the CONTEXTIDR_EL1.

— A VMID match, with the VMID value held in the VTTBR_EL2.

— Both a Context ID match and a VMID match.

• A breakpoint that is not context-aware. These can only be programmed to generate a Breakpoint exception
on an instruction address match.

ID_AA64DFR0_EL1.CTX_CMPs shows how many of the implemented breakpoints are context-aware
breakpoints. At least one implemented breakpoint must be context-aware. The context-aware breakpoints are the
highest numbered breakpoints.

Any breakpoint that is programmed to generate a Breakpoint exception on an instruction address match is
categorized as an Address breakpoint. Breakpoints that are programmed to match on anything else are categorized
as Context breakpoints.

When a debugger programs a breakpoint to be an Address or a Context breakpoint, it must also program that
breakpoint so that it is either:

• Used in isolation. In this case, the breakpoint is called an Unlinked breakpoint.

• Enabled for linking to another breakpoint. In this case, the breakpoint is called a Linked breakpoint.
D2-2580 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.9 Breakpoint exceptions
By linking an Address breakpoint and a Context breakpoint together, the debugger can create a breakpoint pair that
only generates a Breakpoint exception if the PE is in a particular context when an instruction address match occurs.
For example, a debugger might:

1. Program breakpoint number one to be a Linked Address Match breakpoint.

2. Program breakpoint number five to be a Linked Context ID Match breakpoint.

3. Link these two breakpoints together. A Breakpoint exception is only generated if both the instruction address
matches and the Context ID matches.

The Breakpoint Type field for a breakpoint, DBGBCR<n>_EL1.BT, controls the breakpoint type and whether the
breakpoint is enabled for linking. If BT[0] is 1, the breakpoint is enabled for linking.

If AArch32 state is implemented, Address breakpoints can be programmed to generate Breakpoint exceptions on
addresses that are halfword-aligned but not word-aligned. This makes it possible to breakpoint on T32 instructions.
See Specifying the halfword-aligned address that an Address breakpoint matches on on page D2-2591.

Note

Stage 1 of an AArch32 translation regimes supports two additional breakpoint types, Unlinked and Linked Address
Mismatch breakpoints, BT == 0b0100 and BT == 0b0101. For information about these, see Chapter G2 AArch32
Self-hosted Debug. These types are reserved in stage 1 of an AArch64 translation regime. See Reserved BT values
on page D2-2594.

Rules for linking breakpoints

The rules for breakpoint linking are as follows:

• Only Linked breakpoint types can be linked.

• Any type of Linked Address breakpoint can link to any type of Linked Context breakpoint. The Linked
Breakpoint Number field, DBGBCR<n>_EL1.LBN, for the Linked Address breakpoint specifies the
particular Linked Context breakpoint that the Linked Address breakpoint links to, and:

— DBGBCR<n>_EL1.{SSC, HMC, PMC} for the Linked Address breakpoint define the execution
conditions that the breakpoint pair generates Breakpoint exceptions for. See Execution conditions for
which a breakpoint generates Breakpoint exceptions on page D2-2589.

— DBGBCR<n>_EL1.{SSC, HMC, PMC} for the Linked Context breakpoint are ignored.

• Linked Context breakpoint types can only be linked to. The LBN field for Context breakpoints is therefore
ignored.

• Linked Address breakpoints cannot link to watchpoints. The LBN field can therefore only specify another
breakpoint.

• If a Linked Address breakpoint links to a breakpoint that is not context-aware, the behavior of the Linked
Address breakpoint is CONSTRAINED UNPREDICTABLE. See Other usage constraints for Address breakpoints
on page D2-2596.

• If a Linked Address breakpoint links to an Unlinked Context breakpoint, the Linked Address breakpoint
never generates any Breakpoint exceptions.

• Multiple Linked Address breakpoints can link to a single Linked Context breakpoint.

Note
Multiple Linked watchpoints can also link to a single Linked Context breakpoint. Watchpoint exceptions on
page D2-2598 describes watchpoints.

These rules mean that a single Linked Context breakpoint might be linked to by all, or any combination of, the
following:

• Multiple Linked Address Match breakpoints.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2581
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Breakpoint exceptions
• Multiple Linked watchpoints.

Note

If FEAT_NV2 is implemented, the hypervisor must use the 0b1101, Linked CONTEXTIDR_EL2 Match breakpoint
type to guarantee a linked match, see Interaction with self-hosted and External debug on page D5-2799.

It is also possible that a Linked Context breakpoint might have no breakpoints or watchpoints linked to it.

Figure D2-1 on page D2-2582 shows an example of permitted breakpoint and watchpoint linking.

Figure D2-1 The role of linking in Breakpoint and Watchpoint exception generation

In Figure D2-1 on page D2-2582, each Linked Address breakpoint can only generate a Breakpoint exception if the
comparisons made by both it, and the Linked Context breakpoint that it links, to are successful. Similarly, each
Linked watchpoint can only generate a Watchpoint exception if the comparisons made by both it, and the Linked
Context breakpoint that it links to, are successful.

•
•
•

Linked watchpoint

Linked watchpoint

Unlinked watchpoint

Linked watchpoint

Links

Breakpoints WatchpointsBreakpoint or
watchpoint number

0

2

1

Linked watchpoint

Linked watchpoint

3

4

5

6

n

Unlinked Address type

Linked Address type

Linked Address type

Linked Address type

Linked Context type

Linked Context type

Unlinked Context type

Linked Context type

Unlinked watchpoint

Linked watchpoint

•
•
•

•
•
•

D2-2582 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.9 Breakpoint exceptions
Breakpoint types defined by DBGBCRn_EL1.BT

The following list provides more detail about each breakpoint type:

0b0000, Unlinked Address Match breakpoint

Generation of a Breakpoint exception depends on both:

• DBGBCR<n>_EL1.{SSC, HMC, PMC}. These define the execution conditions for which
the breakpoint generates Breakpoint exceptions. See Execution conditions for which a
breakpoint generates Breakpoint exceptions on page D2-2589.

• A successful address match, as described in Breakpoint instruction address comparisons on
page D2-2590.

DBGBCR<n>_EL1.LBN for this breakpoint is ignored.

0b0001, Linked Address Match breakpoint

Generation of a Breakpoint exception depends on all of the following:

• DBGBCR<n>_EL1.{SSC, HMC, PMC} for this breakpoint. These define the execution
conditions that the breakpoint generates Breakpoint exceptions for. See Execution conditions
for which a breakpoint generates Breakpoint exceptions on page D2-2589.

• A successful address match defined by this breakpoint, as described in Breakpoint instruction
address comparisons on page D2-2590.

• A successful context match defined by the Linked Context breakpoint that this breakpoint
links to.

DBGBCR<n>_EL1.LBN for this breakpoint selects the Linked Context breakpoint that this
breakpoint links to.

0b0010, Unlinked Context ID Match breakpoint

BT == 0b0010 is a reserved value if the breakpoint is not a context-aware breakpoint.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>_EL1.{SSC, HMC, PMC}. These define the execution conditions for which
the breakpoint generates Breakpoint exceptions. See Execution conditions for which a
breakpoint generates Breakpoint exceptions on page D2-2589.

• A successful Context ID match, as described in Breakpoint context comparisons on
page D2-2592.

The value of DBGBVR<n>_EL1.ContextID is compared with the current Context ID.

CONTEXTIDR_EL2 holds the current Context ID when all of:

• The implementation includes FEAT_VHE.

• EL2 is implemented and enabled in the current Security state.

• EL2 using AArch64 and HCR_EL2.E2H is set to 1.

• The PE is executing at EL0 and HCR_EL2.TGE is 1, or the PE is executing at EL2.

Otherwise, CONTEXTIDR_EL1 holds the current Context ID.

DBGBCR<n>_EL1.{LBN, BAS} for this breakpoint are ignored

0b0011, Linked Context ID Match breakpoint

BT == 0b0011 is a reserved value if the breakpoint is not a context-aware breakpoint.

For context-aware breakpoints, one of the following applies:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint
does not generate any Breakpoint exceptions.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address breakpoint that
links to this breakpoint, see Breakpoint instruction address comparisons on
page D2-2590.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2583
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Breakpoint exceptions
— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons on page D2-2592.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons on page D2-2603.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons on page D2-2592.

The value of DBGBVR<n>_EL1.ContextID is compared with the current Context ID.

CONTEXTIDR_EL2 holds the current Context ID when all of:

• The implementation includes FEAT_VHE.

• EL2 is implemented and enabled in the current Security state.

• EL2 using AArch64 and HCR_EL2.E2H is set to 1.

• The PE is executing at EL0 and HCR_EL2.TGE is 1, or the PE is executing at EL2.

Otherwise, CONTEXTIDR_EL1 holds the current Context ID.

DBGBCR<n>_EL1.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b0100, Unlinked Address Mismatch breakpoint

BT == 0b0100 is a reserved value in stage 1 of an AArch64 translation regime. See Reserved BT
values on page D2-2594.

0b0100, Unlinked Address Mismatch breakpoint on page G2-6175 describes the behavior of
Address Mismatch breakpoints in stage 1 of an AArch32 translation regime.

0b0101, Linked Address Mismatch breakpoint

BT == 0b0101 is a reserved value in stage 1 of an AArch64 translation regime. See Reserved BT
values on page D2-2594.

0b0101, Linked Address Mismatch breakpoint on page G2-6175 describes the behavior of Address
Mismatch breakpoints in stage 1 of an AArch32 translation regime.

0b0110, Unlinked CONTEXTIDR_EL1 Match breakpoint

BT == 0b0110 is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• The implementation does not include FEAT_VHE.

In an implementation that includes FEAT_VHE, for context-aware breakpoints, generation of a
Breakpoint exception depends on both:

• DBGBCR<n>_EL1.{SSC, HMC, PMC}. These define the execution conditions for which
the breakpoint generates Breakpoint exceptions.

• A successful Context ID match defined by this breakpoint, as described in Breakpoint context
comparisons on page D2-2592.

The Context ID check is made against the value in CONTEXTIDR_EL1. The value of
DBGBVR<n>_EL1.ContextID is compared with the Context ID value held in
CONTEXTIDR_EL1.

Note
The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>_EL1.{LBN, BAS} for this breakpoint are ignored.

0b0111, Linked CONTEXTIDR_EL1 Match breakpoint

BT == 0b0111 is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• The implementation does not include FEAT_VHE.
D2-2584 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.9 Breakpoint exceptions
In an implementation that includes FEAT_VHE, for context-aware breakpoints, one of the
following applies:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint
does not generate any Breakpoint exceptions.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address match
breakpoint that links to this breakpoint, see Breakpoint instruction address
comparisons on page D2-2590.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons on page D2-2592.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons on page D2-2603.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons on page D2-2592.

The Context ID check is made against the value in CONTEXTIDR_EL1. The value of
DBGBVR<n>_EL1.ContextID is compared with the Context ID value held in
CONTEXTIDR_EL1.

Note

The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>_EL1.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b1000, Unlinked VMID Match breakpoint

BT == 0b1000 is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• EL2 is not implemented.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>_EL1.{SSC, HMC, PMC}. These define the execution conditions for which
the breakpoint generates Breakpoint exceptions. See Execution conditions for which a
breakpoint generates Breakpoint exceptions on page D2-2589.

• A successful VMID match, as described in Breakpoint context comparisons on
page D2-2592.

DBGBCR<n>_EL1.{LBN, BAS} for this breakpoint are ignored.

0b1001, Linked VMID Match breakpoint

BT == 0b1000 is a reserved value if either:

• The breakpoint is not a context-matching breakpoint.

• EL2 is not implemented.

For context-aware breakpoints, one of the following applies:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint
does not generate any Breakpoint exceptions.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address Match
breakpoint that links to this breakpoint. See Breakpoint instruction address
comparisons on page D2-2590.

— A successful VMID match defined by this breakpoint, as described in Breakpoint
context comparisons on page D2-2592.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2585
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Breakpoint exceptions
• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons on page D2-2603.

— A successful VMID match defined by this breakpoint, as described in Breakpoint
context comparisons on page D2-2592.

DBGBCR<n>_EL1.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b1010, Unlinked Context ID and VMID Match breakpoint

BT == 0b1010 is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• EL2 is not implemented.

When EL2 is implemented, for context-aware breakpoints, generation of a Breakpoint exception
depends on all of the following:

• DBGBCR<n>_EL1.{SSC, HMC, PMC}. These define the execution conditions that the
breakpoint generates a Breakpoint exception for. See Execution conditions for which a
breakpoint generates Breakpoint exceptions on page D2-2589.

• A successful Context ID match, as described in Breakpoint context comparisons on
page D2-2592.

• A successful VMID match.

The value of DBGBVR<n>_EL1.ContextID is compared with CONTEXTIDR_EL1.

Breakpoint context comparisons on page D2-2592 describes the requirements for a successful
Context ID match and a successful VMID match.

DBGBCR<n>_EL1.{LBN, BAS} for this breakpoint are ignored.

0b1011, Linked Context ID and VMID Match breakpoint

BT == 0b1011 is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• EL2 is not implemented.

When EL2 is implemented, for context-aware breakpoints, one of the following applies:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint
does not generate any Breakpoint exceptions.

• Generation of a Breakpoint exception depends on all of the following:

— A successful instruction address match, defined by a Linked Address breakpoint that
links to this breakpoint, see Breakpoint instruction address comparisons on
page D2-2590.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons on page D2-2592.

— A successful VMID match defined by this breakpoint.

• Generation of a Watchpoint exception depends on all of the following:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons on page D2-2603.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons on page D2-2592.

— A successful VMID match defined by this breakpoint.

The value of DBGBVR<n>_EL1.ContextID is compared with CONTEXTIDR_EL1.

Breakpoint context comparisons on page D2-2592 describes the requirements for a successful
Context ID match and a successful VMID match by this breakpoint.

DBGBCR<n>_EL1.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.
D2-2586 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.9 Breakpoint exceptions
0b1100, Unlinked CONTEXTIDR_EL2 Match breakpoint

BT == 0b1100 is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means
the implementation does not include CONTEXTIDR_EL2.

In an implementation in which FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented,
for context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>_EL1.{SSC, HMC, PMC}. These define the execution conditions for which
the breakpoint generates Breakpoint exceptions.

• A successful CONTEXTIDR_EL2 match, as described in Breakpoint context comparisons
on page D2-2592.

The Context ID check is made against the value in CONTEXTIDR_EL2. The value of
DBGBVR<n>_EL1 is compared with the Context ID value held in CONTEXTIDR_EL2.

Note

The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>_EL1.{LBN, BAS} for this breakpoint are ignored.

0b1101, Linked CONTEXTIDR_EL2 Match breakpoint

BT == 0b1101 is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means
the implementation does not include CONTEXTIDR_EL2.

In an implementation in which FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented,
for context-aware breakpoints, either:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint
does not generate any Breakpoint exceptions.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address match
breakpoint that links to this breakpoint, see Breakpoint instruction address
comparisons on page D2-2590.

— A successful CONTEXTIDR_EL2 match, as described in Breakpoint context
comparisons on page D2-2592.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons on page D2-2603.

— A successful CONTEXTIDR_EL2 match, as described in Breakpoint context
comparisons on page D2-2592.

The Context ID check is made against the value in CONTEXTIDR_EL2. The value of
DBGBVR<n>_EL1 is compared with the Context ID value held in CONTEXTIDR_EL2.

Note

The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>_EL1.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b1110, Unlinked Full Context ID Match breakpoint

BT == 0b1110 is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means
the implementation does not include CONTEXTIDR_EL2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2587
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Breakpoint exceptions
In an implementation in which FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented,
for context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>_EL1.{SSC, HMC, PMC}. These define the execution conditions for which
the breakpoint generates Breakpoint exceptions.

• A successful Context ID match, as described in Breakpoint context comparisons on
page D2-2592.

The Context ID check is made against the values in both CONTEXTIDR_EL1 and
CONTEXTIDR_EL2. The value of DBGBVR<n>_EL1[31:0] is compared with the Context ID
value held in CONTEXTIDR_EL1, and the value of DBGBVR<n>_EL1[63:32] is compared with
the Context ID value held in CONTEXTIDR_EL2. Both comparisons must match for the Context
ID check.

Note
The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>_EL1.{LBN, BAS} for this breakpoint are ignored.

0b1111, Linked Full Context ID Match breakpoint

BT == 0b1111 is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means
the implementation does not include CONTEXTIDR_EL2.

In an implementation in which FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented,
for context-aware breakpoints, one of the following applies:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint
does not generate any Breakpoint exceptions.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address match
breakpoint that links to this breakpoint, see Breakpoint instruction address
comparisons on page D2-2590.

— A successful Context ID match, as described in Breakpoint context comparisons on
page D2-2592.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons on page D2-2603.

— A successful Context ID match, as described in Breakpoint context comparisons on
page D2-2592.

The Context ID check is made against the values in both CONTEXTIDR_EL1 and
CONTEXTIDR_EL2. The value of DBGBVR<n>_EL1[31:0] is compared with the Context ID
value held in CONTEXTIDR_EL1, and the value of DBGBVR<n>_EL1[63:32] is compared with
the Context ID value held in CONTEXTIDR_EL2. Both comparisons must match for the Context
ID check.

Note

The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>_EL1.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

Note

See Reserved DBGBCR<n>_EL1.BT values on page D2-2594 for the behavior of breakpoints programmed with
reserved BT values.
D2-2588 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.9 Breakpoint exceptions
D2.9.3 Execution conditions for which a breakpoint generates Breakpoint exceptions

Each breakpoint can be programmed so that it only generates Breakpoint exceptions for certain execution
conditions. For example, a breakpoint might be programmed to generate Breakpoint exceptions only when the PE
is executing at EL0 in Secure state.

DBGBCR<n>_EL1.{SSC, HMC, PMC} defines the execution conditions the breakpoint generates Breakpoint
exceptions for, as follows:

Security State Control, SSC

Controls whether the breakpoint generates Breakpoint exceptions only in Secure state, only in
Non-secure state, or in both Security states.

Note

This is determined by the Security state of the PE, not from the NS attribute returned by the
translation of the virtual address on which the breakpoint is set.

Higher Mode Control, HMC, and Privileged Mode Control, PMC

HMC and PMC together control which Exception levels the breakpoint generates Breakpoint
exceptions in.

Table D2-9 on page D2-2589 shows the valid combinations of the values of HMC, SSC, and PMC, and for each
combination shows which Exception levels breakpoints generate Breakpoint exceptions in.

In the table:

Y Means that a breakpoint programmed with the values of HMC, SSC, and PMC shown in that row
can generate Breakpoint exceptions in that Exception level and Security state.

- Means that a breakpoint programmed with the values of HMC, SSC, and PMC shown in that row
cannot generate Breakpoint exceptions in that Exception level and Security state.

For information about which combinations of HMC, SSC and PMC are reserved if an Exception level or Security
state are not implemented or enabled, see Reserved DBGBCR<n>_EL1.{SSC, HMC, PMC} values on
page D2-2594.

Table D2-9 Summary of breakpoint HMC, SSC, and PMC encodings

HMC SSC PMC Security state EL3a EL2 EL1 EL0

0 00 01 Both - - Y -

0 00 10 - - - Y

0 00 11 - - Y Y
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2589
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Breakpoint exceptions
All combinations of HMC, SSC, and PMC that this table does not show are reserved. See Reserved
DBGBCR<n>_EL1.{SSC, HMC, PMC} values on page D2-2594.

D2.9.4 Breakpoint instruction address comparisons

In this subsection, the term AddrTop represents the most significant bit of a virtual address used by breakpoint data
address comparisons. AddrTop is:

• 55, if address tagging is used for the address. See Address tagging in AArch64 state on page D5-2676.

• 63, otherwise.

Note

When stage 1 translation is enabled, in AArch64 state, a virtual address has a maximum address width of either 48
bits or, when FEAT_LVA is implemented and the 64KB translation granule is used, 52 bits. Software can configure
a smaller address width for a virtual address, see Input address size on page D5-2691. Attempting to translate an
address that is larger than the configured input address size generates a Translation fault.

0 01 01 Non-secure n/a - Y -

0 01 10 n/a - - Y

0 01 11 n/a - Y Y

0 10 01 Secure - - Y -

0 10 10 - - - Y

0 10 11 - - Y Y

0 11 00 Secure - Y - -

0 11 01 - Y Y -

0 11 11 - Y Y Y

1 00 01 Both Y Y Y -

1 00 11 Y Y Y Y

1 01 00 Non-secure n/a Y - -

1 01 01 n/a Y Y -

1 01 11 n/a Y Y Y

1 10 00 Secure Y - - -

1 10 01 Y Y Y -

1 10 11 Y Y Y Y

1 11 00 Both - Y - -

1 11 01 - Y Y -

1 11 11 - Y Y Y

a. Debug exceptions are not generated at EL3 using AArch64. This means that
these combinations of HMC, SSC, and PMC are only relevant if breakpoints
cause entry to Debug state. Self-hosted debuggers must avoid combinations
of HMC, SSC, and PMC that generate Breakpoint exceptions at EL3 using
AArch64.

Table D2-9 Summary of breakpoint HMC, SSC, and PMC encodings (continued)

HMC SSC PMC Security state EL3a EL2 EL1 EL0
D2-2590 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.9 Breakpoint exceptions
When stage 1 translation is disabled, using an address that is larger than the implemented PA size generates an
Address size fault. The implemented PA size is IMPLEMENTATION DEFINED up to 52 bits, see Physical address size
on page D5-2690.

These faults have a higher priority than breakpoints.

An address comparison is successful if bits [AddrTop:2] of the current instruction virtual address are equal to
DBGBVR<n>_EL1[AddrTop:2].

Note

DBGBVR<n>_EL1 is a 64-bit register. The most significant bits of this register are sign-extension bits.
DBGBVR<n>_EL1[1:0] are RES0 and are ignored.

If EL1 is using AArch64 and EL0 is using AArch32, A32 and T32 instructions can be executed in stage 1 of an
AArch64 translation regime. In this case, the instruction addresses are zero-extended before comparison with the
breakpoint.

Specifying the halfword-aligned address that an Address breakpoint matches on

For Address Match breakpoints, if the implementation supports AArch32 state, a debugger must program the Byte
Address Selection field, DBGBCR<n>_EL1.BAS.

If the implementation is an AArch64-only implementation, all instructions are word-aligned and
DBGBCR<n>_EL1.BAS is RES1.

Figure D2-2 on page D2-2592 shows a summary of when Address Match breakpoints programmed with particular
BAS values generate Breakpoint exceptions. The figure contains four parts:

• A column showing the row number, on the left.

• An instruction set and instruction size table.

• A location of instruction figure.

• A BAS field values table, on the right.

To use the figure, read across the rows. For example, row 7 shows that a breakpoint with DBGBCR<n>_EL1.BAS
programmed as either 0b0011 or 0b1111 generates Breakpoint exceptions for A64 instructions. A64 instructions are
always at word-aligned addresses.

Note

To breakpoint on an A64 instruction, Arm recommends that the debugger programs DBGBCR<n>_EL1.BAS as
0b1111.

In the figure:

Yes Means that the breakpoint generates a Breakpoint exception.

No Means that the breakpoint does not generate a Breakpoint exception.

UNP Means that is it CONSTRAINED UNPREDICTABLE whether the breakpoint generates a Breakpoint
exception. See Other usage constraints for Address breakpoints on page D2-2596.

Table D2-10 Programmable BAS values

BAS Match instruction at Constraint for debuggers

0b0011 DBGBCR<n>_EL1 Use for T32 instructions.

0b1100 DBGBCR<n>_EL1 + 2 Use for T32 instructions.

0b1111 DBGBCR<n>_EL1 Use for A64 and A32 instructions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2591
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Breakpoint exceptions
Figure D2-2 Summary of BAS field meanings for Address Match breakpoints

D2.9.5 Breakpoint context comparisons

The breakpoint type defined by DBGBCR<n>_EL1.BT determines what context comparison is required, if any.
Table D2-11 on page D2-2592 shows the BT values that require a comparison, and the match required for the
comparison to be successful.

No Context ID or VMID comparison is required for other valid DBGBCR<n>.BT values.

-2 -1 +2+10 +3 +4Size

16-bit

16-bit

32-bit

32-bit

32-bit

32-bit

+5Instruction set

T32

T32

A32

Yes

UNP

UNP

Yes

UNP

Yes

0b0011

Yes

UNP

Yes

BAS[3:0]
0b1100 0b1111

No

Yes

No

No

No

UNP

Yes

UNP

Yes

Location of instructiona

a. 0 means the word-aligned address held in the DBGBVR<n>_EL1[maxAddressSize:2]:00.
The other locations are as follows:
• -2 means ((DBGBVR<n>_EL1[maxAddressSize:2]:00) –
• -1 means ((DBGBVR<n>_EL1[maxAddressSize:2]:00) –
• ...
• ...
• +5 means ((DBGBVR<n>_EL1[maxAddressSize:2]:00) + 5).

The solid areas show the location of the instruction.

Row 1

ROW 2

ROW 3

Row 4

ROW 5

Row 6

A64 32-bit Yes YesUNPRow 7

Table D2-11 Breakpoint Context ID and VMID comparison tests

DBGBCR<n>.BT Test required for successful context comparison

0b001x • When FEAT_VHE is implemented, EL2 is using AArch64, the Effective value of
HCR_EL2.E2H is 1, and either the PE is executing at EL0 with HCR_EL2.TGE set to 1,
or the PE is executing at EL2, CONTEXTIDR_EL2 must match the DBGBVR<n>_EL1.
ContextID value.

• Otherwise, CONTEXTIDR_EL1 must match the DBGBVR<n>_EL1.ContextID value.

0b011x CONTEXTIDR_EL1 must match the DBGBVR<n>_EL1.ContextID value.

0b100x VTTBR_EL2.VMID must match the DBGBVR<n>_EL1.VMID value.

0b101x CONTEXTIDR_EL1 must match the DBGBVR<n>_EL1.ContextID value and
VTTBR_EL2.VMID must match the DBGBVR<n>_EL1.VMID value.

0b110x CONTEXTIDR_EL2 must match the DBGBVR<n>_EL1.ContextID2 value,
DBGBVR<n>_EL1[63:32].

0b111x Both:

• CONTEXTIDR_EL1 must match the DBGBVR<n>_EL1.ContextID value,
DBGBVR<n>_EL1[31:0].

• CONTEXTIDR_EL2 must match the DBGBVR<n>_EL1.ContextID2 value,
DBGBVR<n>_EL1[63:32].
D2-2592 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.9 Breakpoint exceptions
Context breakpoints do not generate Breakpoint exceptions when any of:

• The comparison uses the value of CONTEXTIDR_EL1 and any of:

— The PE is executing at EL3 using AArch64.

— The PE is executing at EL2.

— FEAT_VHE is implemented, EL2 is using AArch64, EL2 is enabled in the current Security state, and
HCR_EL2.{E2H, TGE} == {1, 1}.

• The comparison uses the value of CONTEXTIDR_EL2 and any of:

— Neither FEAT_VHE is implemented, nor FEAT_Debugv8p2 is implemented.

— If the PE is in Secure state, and either FEAT_SEL2 is not implemented, or Secure EL2 is disabled.

— The PE is executing at EL3.

— EL2 is using AArch32.

— EL2 is not implemented.

• The comparison uses the current VMID value and any of:

— EL2 is not implemented.

— If the PE is in Secure state, and either FEAT_SEL2 is not implemented, or Secure EL2 is disabled.

— The PE is executing at EL2.

— The PE is executing at EL3.

— FEAT_VHE is implemented, EL2 is using AArch64, EL2 is enabled in the current Security state, and
HCR_EL2.{E2H, TGE} == {1, 1}.

Note
• For all Context breakpoints, DBGBCR<n>_EL1.BAS is RES1 and is ignored.

• For Linked Context breakpoints, DBGBCR<n>_EL1.{LBN, SSC, HMC, PMC} are RES0 and are ignored.

D2.9.6 Breakpoint usage constraints

See the following sections:

• Reserved DBGBCR<n>_EL1.BT values on page D2-2594.

• Reserved DBGBCR<n>_EL1.{SSC, HMC, PMC} values on page D2-2594.

• Reserved DBGBCR<n>_EL1.BAS values on page D2-2595.

• Reserved DBGBCR<n>_EL1.LBN values on page D2-2596.

• Other usage constraints for Address breakpoints on page D2-2596.

• Other usage constraints for Context breakpoints on page D2-2596.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2593
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Breakpoint exceptions
Reserved DBGBCR<n>_EL1.BT values

Table D2-12 on page D2-2594 shows when particular DBGBCR<n>_EL1.BT values are reserved.

If a breakpoint is programmed with one of these reserved BT values:

• The breakpoint must behave as if it is either:

— Disabled.

— Programmed with a BT value that is not reserved, other than for a direct or external read of
DBGBCR<n>_EL1.

• For a direct or external read of DBGBCR<n>_EL1, if the reserved BT value:

— Has no function for any execution conditions, the value read back is UNKNOWN.

— Has a function for execution conditions other than the current execution conditions, the value read
back is the value written. This permits software to save and restore the BT value so that the breakpoint
functions for the other execution conditions.

The behavior of breakpoints with reserved BT values might change in future revisions of the architecture. For this
reason, software must not rely on the behavior described here.

Reserved DBGBCR<n>_EL1.{SSC, HMC, PMC} values

Table D2-13 on page D2-2594 shows when particular combinations of DBGBCR<n>_EL1.{SSC, HMC, PMC} are
reserved in stage 1 of an AArch64 translation regime.

Table D2-12 Reserved BT values

BT
value

Breakpoint type Reserved

0b001x Context ID Match If the breakpoint is not context-aware

0b010x Address Mismatch In stage 1 of an AArch64 translation regime, or if EDSCR.HDE is 1 and halting is allowed

0b011x CONTEXTIDR_EL1
Match

If FEAT_VHE is not implemented, or the breakpoint is not context-aware

0b100x VMID Match If EL2 is not implemented, or the breakpoint is not context-aware

0b101x Context ID and VMID
Match

If EL2 is not implemented, or the breakpoint is not context-aware

0b110x CONTEXTIDR_EL2
Match

If FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, or if the
breakpoint is not context-aware

0b111x Full Context ID Match

Table D2-13 Reserved HMC, SSC, and PMC combinations

HMC, SSC, and PMC combination Reserved

All combinations with SSC set to 0b01 or 0b10, except for the combination with
HMC set to 1, SSC set to 0b01, and PMC set to 0b00

When EL3 is not implemented and EL2 is
implemented

Any combination where HMC or SSC is nonzero, except for the combination with
HMC set to 1, SSC set to 0b01, and PMC set to 0b00, or combinations when SSC is
set to 0b11

When both of EL2 and EL3 are not
implemented

The combination with HMC set to 1, SSC set to 0b11, and PMC set to 0b00 When EL2 is not implemented
D2-2594 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.9 Breakpoint exceptions
For all breakpoints except Linked Context breakpoints, if a breakpoint is programmed with one of these reserved
combinations:

• If the reserved combination has a function for other execution conditions:

— The breakpoint must behave as if it is disabled.

— A direct or external read of DBGBCR<n>_EL1.{SSC, HMC, PMC} returns the values written. This
means that software can save and restore the combination so that the breakpoint can function for the
other execution conditions.

• If the reserved combination does not have a function for other execution conditions:

— It must behave either as if it is programmed with a combination that is not reserved or as if it is
disabled.

— A direct or external read of DBGBCR<n>_EL1.{SSC, HMC, PMC} returns UNKNOWN values.

If the breakpoint is a Linked Context breakpoint, then:

• The values of HMC, SSC, and PMC are ignored.

• A direct or external read of DBGBCR<n>_EL1.{SSC, HMC, PMC} returns UNKNOWN values

The behavior of breakpoints with reserved combinations of HMC, SSC, and PMC might change in future revisions
of the architecture. For this reason, software must not rely on the behavior described here.

Reserved DBGBCR<n>_EL1.BAS values

In an AArch64-only implementation, DBGBCR<n>_EL1.BAS for all breakpoints is RES1.

Otherwise:

For all Context breakpoints

DBGBCR<n>_EL1.BAS is RES1 and is ignored.

For all Address breakpoints

Table D2-10 on page D2-2591 gives the valid values of the DBGBCR<n>_EL1.BAS field.

If a breakpoint is programmed with a reserved BAS value:

• The breakpoint must behave as if it is either:

— Disabled.

— Programmed with a BAS value that is not reserved, other than for a direct or external read of
DBGBCR<n>_EL1.

• A direct or external read of DBGBCR<n>_EL1.BAS returns an UNKNOWN value.

Software must not rely on these properties as the behavior of reserved values might change in a future revision of
the architecture.

The combinations with SSC set to 0b11 except the combination with HMC set to 1,
SSC set to 0b11 and PMC set to 0b00

When Secure EL2 is not implemented

The combination with HMC set to 1, SSC set to 0b01 and PMC set to 0b00 When Secure EL2 is not implemented

Combinations not included in Table D2-9 on page D2-2589 Always

Table D2-13 Reserved HMC, SSC, and PMC combinations (continued)

HMC, SSC, and PMC combination Reserved
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2595
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Breakpoint exceptions
Reserved DBGBCR<n>_EL1.LBN values

For all Context breakpoints

DBGBCR<n>_EL1.LBN reads UNKNOWN and its value is ignored.

For Linked Address breakpoints

A Linked Address breakpoint must link to a context-aware breakpoint. For a Linked Address
breakpoint, any DBGBCR<n>_EL1.LBN value that is not for a context-aware breakpoint is
reserved.

If a Linked Address breakpoint links to a breakpoint that is not implemented, or that is not
context-aware, then reads of DBGBCR<n>_EL1.LBN return an unknown value and behavior is
CONSTRAINED UNPREDICTABLE. The Linked Address breakpoint behaves as if it is either:

• Disabled.

• Linked to an UNKNOWN context-aware breakpoint.

If a Linked Address breakpoint links to a breakpoint that is implemented and that is context-aware,
but that is either not enabled or not programmed as a Linked Context breakpoint, it behaves as if it
is disabled.

For Unlinked Address breakpoints

DBGBCR<n>_EL1.LBN reads UNKNOWN and its value is ignored.

Other usage constraints for Address breakpoints

For all Address breakpoints

• DBGBVR<n>_EL1[1:0] are RES0 and are ignored.

• If the implementation supports AArch32 state:

— For 32-bit instructions, if a breakpoint matches on the address of the second halfword
but not the address of the first halfword, it is CONSTRAINED UNPREDICTABLE whether
the breakpoint generates a Breakpoint exception.

— If DBGBCR<n>.BAS is 0b1111, it is CONSTRAINED UNPREDICTABLE whether the
breakpoint generates a Breakpoint exception for a T32 instruction starting at address
((DBGBVR<n>[48:2]:00) + 2). For T32 instructions, Arm recommends that the
debugger programs the BAS field with either 0b0011 or 0b1100.

Other usage constraints for Context breakpoints

For all Context breakpoints

Any bits of DBGBVR<n>_EL1 that are not used to specify Context ID or VMID are RES0 and are
ignored.

For Linked Context breakpoints

If no Linked Address breakpoints or Linked watchpoints link to a Linked Context breakpoint, the
Linked Context breakpoint does not generate any Breakpoint exceptions.

D2.9.7 Preferred return address

The preferred return address of a Breakpoint exception is the address of the instruction that was not executed
because the PE took the Breakpoint exception instead.

This means that the preferred return address is the address of the instruction that caused the exception.

D2.9.8 Pseudocode description of Breakpoint exceptions taken from AArch64 state

AArch64.BreakpointValueMatch() tests the value in DBGBVR<n>_EL1.
D2-2596 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.9 Breakpoint exceptions
AArch64.StateMatch() tests the values in DBGBCR<n>_EL1.{SSC, HMC, PMC} and, if the breakpoint links to a
Linked Context breakpoint, also tests the Linked Context breakpoint.

For a watchpoint, AArch64.StateMatch() tests the values in DBGWCR<n>_EL1.{SSC, HMC, PAC} and, if the
watchpoint links to a Linked Context breakpoint, also tests the Linked Context breakpoint.

AArch64.BreakpointMatch() tests a committed instruction against all breakpoints.

AArch64.CheckBreakpoint() generates a Breakpoint exception if all of the following are true:

• MDSCR_EL1.MDE is 1.

• Debug exceptions are enabled from the current Exception level and Security state. See Enabling debug
exceptions from the current Exception level on page D2-2571.

• All of the conditions required for Breakpoint exception generation are met. See About Breakpoint exceptions
on page D2-2579.

Note

AArch64.CheckBreakpoint() might halt the PE and cause it to enter Debug state. External debug uses Debug state.

AArch64.BreakpointException() is called to generate a Breakpoint exception.

These functions are defined in Chapter J1 Armv8 Pseudocode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2597
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.10 Watchpoint exceptions
D2.10 Watchpoint exceptions

This section describes Watchpoint exceptions in stage 1 of an AArch64 translation regime.

The PE is using an AArch64 translation regime when it is executing either:

• In an Exception level that is using AArch64.

• At EL0 using AArch32 when EL1 is using AArch64.

This section contains the following subsections:

• About Watchpoint exceptions on page D2-2598.

• Watchpoint types and linking of watchpoints on page D2-2599.

• Execution conditions for which a watchpoint generates Watchpoint exceptions on page D2-2600.

• Watchpoint data address comparisons on page D2-2603.

• Determining the memory location that caused a Watchpoint exception on page D2-2606.

• Watchpoint behavior on other instructions on page D2-2607.

• Watchpoint usage constraints on page D2-2608.

• Exception syndrome information and preferred return address on page D2-2610.

• Pseudocode description of Watchpoint exceptions taken from AArch64 state on page D2-2611.

D2.10.1 About Watchpoint exceptions

A watchpoint is an event that results from the execution of an instruction, based on a data address. Watchpoints are
also known as data breakpoints.

A watchpoint operates as follows:

1. A debugger programs the watchpoint with a data address, or a data address range.

2. The watchpoint generates a Watchpoint debug event on an access to the address, or any address in the address
range.

A watchpoint never generates a Watchpoint debug event on an instruction fetch.

An implementation can include between 2-16 watchpoints. In an implementation, ID_AA64DFR0_EL1.WRPs
shows how many are implemented.

To use an implemented watchpoint, a debugger programs the following registers for the watchpoint:

• The Watchpoint Control Register, DBGWCR<n>_EL1. This contains controls for the watchpoint, for
example an enable control.

• The Watchpoint Value Register, DBGWVR<n>_EL1. This holds the data virtual address used for watchpoint
matching.

These registers are numbered, so that:

• DBGWCR0_EL1 and DBGWVR0_EL1 are for watchpoint number zero.

• DBGWCR1_EL1 and DBGWVR1_EL1 are for watchpoint number one.

• DBGWCR2_EL1 and DBGWVR2_EL1 are for watchpoint number two.

• …

• …

• DBGWCR<n-1>_EL1 and DBGWVR<n-1>_EL1 are for watchpoint number (n-1).

A watchpoint can:

• Be programmed to generate Watchpoint debug events on read accesses only, on write accesses only, or on
both types of access.

• Link to a Linked Context breakpoint, so that a Watchpoint debug event is only generated if the PE is in a
particular context when the address match occurs.
D2-2598 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.10 Watchpoint exceptions
A single watchpoint can be programmed to match on one or more address bytes. A watchpoint generates a
Watchpoint debug event on an access to any byte that it is watching. The number of bytes a watchpoint is watching
is either:

• One to eight bytes, provided that these bytes are contiguous and that they are all in the same naturally-aligned
doubleword. A debugger uses the Byte Address Select field, DBGWCR<n>_EL1.BAS, to select the bytes.
See Programming a watchpoint with eight bytes or fewer on page D2-2604.

• Eight bytes to 2GB, provided that both of the following are true:

— The number of bytes is a power-of-two.

— The range starts at an address that is aligned to the range size.

A debugger uses the MASK field, DBGWCR<n>_EL1.MASK, to program a watchpoint with eight bytes to
2GB. See Programming a watchpoint with eight or more bytes on page D2-2605.

A debugger must use either the BAS field or the MASK field. If it uses both, whether the watchpoint generates
Watchpoint debug events is CONSTRAINED UNPREDICTABLE. See Programming dependencies of the BAS and MASK
fields on page D2-2609.

For each memory access, all of the watchpoints are tested. When a watchpoint is tested, it generates a Watchpoint
debug event if all of the following are true:

• The watchpoint is enabled. That is, the watchpoint enable control for it, DBGWCR<n>_EL1.E, is 1.

• The conditions specified in the DBGWCR<n>_EL1 are met.

• The comparison with the address held in the DBGWVR<n>_EL1 is successful.

• If the watchpoint links to a Linked Context breakpoint, the comparison or comparisons made by the Linked
Context breakpoint also are successful. See Figure D2-1 on page D2-2582. See also Breakpoint context
comparisons on page D2-2592.

• The instruction that initiates the memory access is committed for execution.

• The instruction that initiates the memory access passes its Condition code check.

• If the access is due to a System register access instruction executed at EL1 and transformed into a memory
access by the mechanism described in Enhanced support for nested virtualization on page D5-2795 and one
of the following is true:

— EDSCR.HDE is set to 1 and halting is allowed.

— Debug exceptions are enabled at EL2.

If halting is allowed and EDSCR.HDE is 1, Watchpoint debug events cause entry to Debug state.

Otherwise, if debug exceptions are:

• Enabled, Watchpoint debug events generate Watchpoint exceptions.

• Disabled, Watchpoint debug events are ignored.

Note

The remainder of this Watchpoint Exceptions section, including all subsections, describes watchpoints as generating
Watchpoint exceptions.

However, the behavior described also applies if watchpoints are causing entry to Debug state.

The debug exception enable controls on page D2-2568 describes the enable controls for Watchpoint debug events.

D2.10.2 Watchpoint types and linking of watchpoints

When a debugger programs a watchpoint, it must program that watchpoint so that it is either:

• Used in isolation. In this case, the watchpoint is called an Unlinked watchpoint.

• Enabled for linking to a Linked Context breakpoint. In this case, the watchpoint is called a Linked watchpoint.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2599
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.10 Watchpoint exceptions
When a Linked watchpoint links to a Linked Context breakpoint, the Linked watchpoint only generates a
Watchpoint exception if the PE is in a particular context when the data address match occurs. For example, a
debugger might:

1. Program watchpoint number one with a data address.

2. Program breakpoint number five to be a Linked VMID Match breakpoint.

3. Link the watchpoint and the breakpoint together. A Watchpoint exception is only generated if both the data
address matches and the VMID matches.

The Watchpoint Type field for a watchpoint, DBGWCR<n>_EL1.WT, controls whether the watchpoint is enabled
for linking. If DBGWCR<n>_EL1.WT is 1, the watchpoint is enabled for linking.

Rules for linking watchpoints

The rules for watchpoint linking are as follows:

• Only Linked watchpoints can be linked.

• A Linked watchpoint can link to any type of Linked Context breakpoint. The Linked Breakpoint Number
field, DBGWCR<n>_EL1.LBN, for the Linked watchpoint specifies the particular Linked Context
breakpoint that the Linked watchpoint links to, and:

— DBGWCR<n>_EL1.{SSC, HMC, PAC} for the Linked watchpoint defines the execution conditions
that the watchpoint generates Watchpoint exceptions for. See Execution conditions for which a
watchpoint generates Watchpoint exceptions on page D2-2600.

— DBGBCR<n>_EL1.{SSC, HMC, PMC} for the Linked Context breakpoint are ignored.

• A Linked watchpoint cannot link to another watchpoint. The LBN field can therefore only specify a
breakpoint.

• If a Linked watchpoint links to a breakpoint that is not context-aware, the behavior of the Linked watchpoint
is CONSTRAINED UNPREDICTABLE. See Watchpoint usage constraints on page D2-2608.

• If a Linked watchpoint links to an Unlinked Context breakpoint, the Linked watchpoint never generates any
Watchpoint exceptions.

• If the access is due to a System register access instruction executed at EL1 and transformed into a memory
access by the mechanism described in Enhanced support for nested virtualization on page D5-2795, and the
watchpoint is linked to a context-aware breakpoint that is programmed to match the value held in
CONTEXTIDR_EL1, then it is CONSTRAINED UNPREDICTABLE whether there is a watchpoint match.

• Multiple Linked watchpoints can link to a single Linked Context breakpoint.

Note
Multiple Address breakpoints can also link to a single Linked Context breakpoint. Breakpoint exceptions on
page D2-2579 describes breakpoints.

Figure D2-1 on page D2-2582 shows an example of permitted watchpoint linking.

D2.10.3 Execution conditions for which a watchpoint generates Watchpoint exceptions

Each watchpoint can be programmed so that it only generates Watchpoint exceptions for certain execution
conditions. For example, a watchpoint might be programmed to generate Watchpoint exceptions only for
Non-secure EL2 accesses.
D2-2600 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.10 Watchpoint exceptions
DBGWCR<n>_EL1.{SSC, HMC, PAC} define the execution conditions a watchpoint generates Watchpoint
exceptions for, as follows:

Security State Control, SSC

Controls whether the watchpoint generates Watchpoint exceptions only in Secure state, only in
Non-secure state, or in both Security states.

Note
This is determined by the Security state of the PE, not from the NS attribute returned by the
translation of the virtual address on which the watchpoint is set.

Higher Mode Control, HMC, and Privileged Access Control, PAC

HMC and PAC together control which Exception levels the watchpoint generates Watchpoint
exceptions in.

The PAC control relates to the privilege of the memory access, not to the Exception level at which
the access was made:

• Load unprivileged or Store unprivileged instructions executed at EL1, or executed at EL2
when HCR_EL2.E2H is 1, are treated as EL0 accesses.

• System register accesses executed at EL1 and transformed into a memory access by the
mechanism described in Enhanced support for nested virtualization on page D5-2795 are
treated as EL2 accesses.

Note

This means that, if the PE executes a Load unprivileged or Store unprivileged instruction at EL1,
the resulting data access triggers a watchpoint only if both:

• PAC is programmed to a value that generates watchpoints on EL0 accesses.

• All other conditions for generating the watchpoint are met.

Example A64 Load unprivileged and Store unprivileged instructions are LDTR and STTR.

Table D2-14 on page D2-2602 shows the valid combinations of HMC, SSC, and PAC, and for each combination
shows which Exception levels watchpoints generate Watchpoint exceptions in.

In the table:

Y or - Means that a watchpoint programmed with the values of HMC, SSC, and PAC shown in that row:

Y Can generate Watchpoint exceptions in that Exception level and Security state.

- Cannot generate Watchpoint exceptions in that Exception level and Security state.

For information about which combinations of HMC, SSC and PMC are reserved if an Exception level or Security
state are not implemented or enabled, see Reserved DBGWCR<n>_EL1.{SSC, HMC, PAC} values on
page D2-2608.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2601
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.10 Watchpoint exceptions
All combinations of HMC, SSC, and PAC that this table does not show are reserved. See Reserved
DBGWCR<n>_EL1.{SSC, HMC, PAC} values on page D2-2608.

Table D2-14 Summary of watchpoint HMC, SSC, and PAC encodings

HMC SSC PAC Security state EL3a

a. Debug exceptions are not generated at EL3 using AArch64. This means that
these combinations of HMC, SSC, and PAC are only relevant if watchpoints
cause entry to Debug state. Self-hosted debuggers must avoid combinations
of HMC, SSC, and PMC that generate Watchpoint exceptions at EL3 using
AArch64.

EL2 EL1 EL0

0 00 01 Both - - Y -

0 00 10 - - - Y

0 00 11 - - Y Y

0 01 01 Non-secure n/a - Y -

0 01 10 n/a - - Y

0 01 11 n/a - Y Y

0 10 01 Secure - - Y -

0 10 10 - - - Y

0 10 11 - - Y Y

0 11 00 - Y - -

0 11 01 - Y Y -

0 11 11 - Y Y Y

1 00 01 Both Y Y Y -

1 00 11 Y Y Y Y

1 01 00 Non-secure n/a Y - -

1 01 01 n/a Y Y -

1 01 11 n/a Y Y Y

1 10 00 Secure Y - - -

1 10 01 Y Y Y -

1 10 11 Y Y Y Y

1 11 00 Both - Y - -

1 11 01 - Y Y -

1 11 11 - Y Y Y
D2-2602 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.10 Watchpoint exceptions
D2.10.4 Watchpoint data address comparisons

In this subsection, the term AddrTop represents the most significant bit of a virtual address used by watchpoint data
address comparisons. AddrTop is:

• 55, if address tagging is used for the address. See Address tagging in AArch64 state on page D5-2676.

• 63, otherwise.

Note

When stage 1 translation is enabled, in AArch64 state, a virtual address has a maximum address width of either 48
bits or, when FEAT_LVA is implemented and the 64KB translation granule is used, 52 bits. Software can configure
a smaller address width for a virtual address. See Input address size on page D5-2691. Attempting to translate an
address that is larger than the configured input address size generates a Translation fault.

When stage 1 translation is disabled, using an address that is larger than the implemented PA size generates an
Address size fault. The implemented PA size is IMPLEMENTATION DEFINED up to 52 bits. See Physical address size
on page D5-2690.

These faults have a higher priority than watchpoints.

An address comparison is successful if bits [AddrTop:2] of the current data address are equal to
DBGWVR<n>_EL1[AddrTop:2], taking into account all of the following:

• The size of the access. See Size of the data access on page D2-2603.

If EL1 is using AArch64 and EL0 is using AArch32, AArch32 instructions can be executed in stage 1 of an
AArch64 translation regime. In this case, data addresses are zero-extended before comparison with the
watchpoint.

• The bytes selected by DBGWVR<n>_EL1.BAS. See Programming a watchpoint with eight bytes or fewer
on page D2-2604.

• Any address ranges indicated by DBGWVR<n>_EL1.MASK. See Programming a watchpoint with eight or
more bytes on page D2-2605.

Note
• DBGWVR<n>_EL1 is a 64-bit register. The most significant bits of this register are sign-extension bits.

• DBGWVR<n>_EL1[1:0] are RES0 and are ignored.

Size of the data access

Because watchpoints can be programmed to generate Watchpoint exceptions on individual bytes, the size of each
data access must be taken into account. See Example D2-1 on page D2-2603.

Example D2-1

1. A debugger programs a watchpoint to generate Watchpoint exceptions only when the byte at address 0x1009
is accessed.

2. The PE accesses the unaligned doubleword starting at address 0x1003.

In this scenario, the watchpoint must generate a Watchpoint exception.

The size of data accesses initiated by DC ZVA instructions is the DC ZVA block size that DCZID_EL0.BS defines.

The size of data accesses initiated by DC IVAC instructions is an IMPLEMENTATION DEFINED size that is both:

• From the inclusive range between:

— The size that CTR_EL0.DminLine defines.

— 2KB.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2603
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.10 Watchpoint exceptions
• A power-of-two.

For both of these instructions:

• The lowest address accessed by the instruction is the address supplied to the instruction, rounded down to the
nearest multiple of the access size initiated by that instruction.

• The highest address accessed is (size - 1) bytes above the lowest address accessed.

See also, Watchpoint behavior on accesses by the DC IVAC instruction and the DC ZVA, DC GVA, and DC GZVA
instructions on page D2-2608.

Programming a watchpoint with eight bytes or fewer

The Byte Address Select field, DBGWCR<n>_EL1.BAS, selects which bytes in the doubleword starting at the
address contained in the DBGWVR<n>_EL1 the watchpoint generates Watchpoint exceptions for.

If the address programmed into the DBGWVR<n>_EL1 is:

• Doubleword-aligned:

— All eight bits of DBGWCR<n>_EL1.BAS are used, and the descriptions given in Table D2-15 on
page D2-2604 apply.

• Word-aligned but not doubleword-aligned:

— Only DBGWCR<n>_EL1.BAS[3:0] are used, and the descriptions given in Table D2-16 on
page D2-2604 apply. In this case, DBGWCR<n>_EL1.BAS[7:4] are RES0.

Table D2-15 Supported BAS values when the DBGWVRn_EL1 address alignment is doubleword

BAS value Description

0b00000000 Watchpoint never generates a Watchpoint exception.

BAS[0] == 1 Generates a Watchpoint exception if the byte at address DBGWVR<n>_EL1[AddrTop:3]:000 is accessed.

BAS[1] == 1 Generates a Watchpoint exception if the byte at address DBGWVR<n>_EL1[AddrTop:3]:001 is accessed.

BAS[2] == 1 Generates a Watchpoint exception if the byte at address DBGWVR<n>_EL1[AddrTop:3]:010 is accessed.

BAS[3] == 1 Generates a Watchpoint exception if the byte at address DBGWVR<n>_EL1[AddrTop:3]:011 is accessed.

BAS[4] == 1 Generates a Watchpoint exception if the byte at address DBGWVR<n>_EL1[AddrTop:3]:100 is accessed.

BAS[5] == 1 Generates a Watchpoint exception if the byte at address DBGWVR<n>_EL1[AddrTop:3]:101 is accessed.

BAS[6] == 1 Generates a Watchpoint exception if the byte at address DBGWVR<n>_EL1[AddrTop:3]:110 is accessed.

BAS[7] == 1 Generates a Watchpoint exception if the byte at address DBGWVR<n>_EL1[AddrTop:3]:111 is accessed.

Table D2-16 Supported BAS values when the DBGWVRn_EL1 address alignment is word

BAS valuea Description

0b00000000 Watchpoint never generates a Watchpoint exception

BAS[0] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>_EL1[AddrTop:2]:00 is accessed.

BAS[1] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>_EL1[AddrTop:2]:01 is accessed.

BAS[2] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>_EL1[AddrTop:2]:10 is accessed.

BAS[3] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>_EL1[AddrTop:2]:11 is accessed.

a. DBGWCR<n>_EL1.BAS[7:4] are RES0.
D2-2604 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.10 Watchpoint exceptions
If the BAS field is programmed with more than one byte, the bytes that it is programmed with must be contiguous.
For watchpoint behavior when its BAS field is programmed with non-contiguous bytes, see Other usage constraints
on page D2-2610.

When programming the BAS field with anything other than 0b11111111, a debugger must program
DBGWCR<n>_EL1.MASK to be 0b00000. See Programming dependencies of the BAS and MASK fields on
page D2-2609.

A watchpoint generates a Watchpoint exception whenever a watched byte is accessed, even if:

• The access size is smaller or larger than the address region being watched.

• The access is misaligned, and the base address of the access is not in the doubleword or word of memory
addressed by the DBGWVR<n>_EL1[AddrTop:3]. See Example D2-1 on page D2-2603.

The following are some example configurations of the BAS field:

• To program a watchpoint to generate a Watchpoint exception on the byte at address 0x1003, program:

— DBGWVR<n>_EL1 with 0x1000.

— DBGWCR<n>_EL1.BAS to be 0b00001000.

• To program a watchpoint to generate a Watchpoint exception on the bytes at addresses 0x2003, 0x2004 and
0x2005, program:

— DBGWVR<n>_EL1 with 0x2000.

— DBGWCR<n>_EL1.BAS to be 0b00111000.

• If the address programmed into the DBGWVR<n>_EL1 is doubleword-aligned:

— To generate a Watchpoint exception when any byte in the word starting at the doubleword-aligned
address is accessed, program DBGWCR<n>_EL1.BAS to be 0b00001111.

— To generate a Watchpoint exception when any byte in the word starting at address
DBGWVR<n>_EL1[31:3]:100 is accessed, program DBGWCR<n>_EL1.BAS to be 0b11110000.

Note

Arm deprecates programming a DBGWVR<n>_EL1 with an address that is not doubleword-aligned.

Programming a watchpoint with eight or more bytes

A debugger can use the MASK field, DBGWCR<n>_EL1.MASK, to program a single watchpoint with a data
address range. The range must meet all of the following criteria:

• It is a size that is:

— A power-of-two.

— A minimum of eight bytes.

— A maximum of 2GB.

• It starts at an address that is aligned to the size.

The MASK field specifies the number of least significant data address bits that must be masked. Up to 31 least
significant bits can be masked:

MASK 0b00000 No bits are masked.

0b00001 Reserved.

0b00010 Reserved.

0b00011 Three least significant bits are masked.

0b00100 Four least significant bits are masked.

0b00101 Five least significant bits are masked.

… …

0b11111 31 least significant bits are masked.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2605
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.10 Watchpoint exceptions
If n least significant address bits are masked, the watchpoint generates a Watchpoint exception on all of the
following:

• Address DBGWVR<n>_EL1[AddrTop:n]:000…

• Address DBGWVR<n>_EL1[AddrTop:n]:111…

• Any address between these two addresses.

For example, if the four least significant address bits are masked, Watchpoint exceptions are generated for all
addresses between DBGWVR<n>_EL1[AddrTop:4]:0000 and DBGWVR<n>_EL1[AddrTop:4]:1111, including
these addresses.

Note

• The 17 most significant bits cannot be masked. This means that the full address cannot be masked.

• For watchpoint behavior when its MASK field is programmed with a reserved value, see Reserved
DBGWCR<n>_EL1.MASK values on page D2-2610.

When masking address bits, a debugger must both:

• Program DBGWCR<n>_EL1.BAS to be 0b11111111. See Programming dependencies of the BAS and MASK
fields on page D2-2609.

• In the DBGWVR<n>_EL1, set the masked address bits to 0. For watchpoint behavior when any of the
masked address bits are not 0, see Other usage constraints on page D2-2610.

D2.10.5 Determining the memory location that caused a Watchpoint exception

On taking a Watchpoint exception, the PE records an address in a Fault Address Register that the debugger can use
to determine the memory location that triggered the watchpoint.

The Fault Address Register (FAR) used is either:

• FAR_EL1, if the exception is taken to EL1.

• FAR_EL2, if the exception is taken to EL2.

In cases where one instruction triggers multiple watchpoints, only one address is recorded.

On entering Debug state on a Watchpoint debug event, the PE records the address in the EDWAR.

For more information, see the subsections that follow. These are:

• Address recorded for Watchpoint exceptions generated by instructions other than data cache maintenance
instructions on page D2-2606.

• Address recorded for Watchpoint exceptions generated by data cache maintenance instructions on
page D2-2607

Address recorded for Watchpoint exceptions generated by instructions other than data
cache maintenance instructions

Note

Despite its mnemonic, the DC ZVA, Data Cache Zero by VA instruction is not a data cache maintenance instruction.

The address recorded must be both:

• From the inclusive range between:

— The lowest address accessed by the memory access or set of contiguous memory accesses that
triggered the watchpoint.

— The highest watchpointed address accessed by the memory access or set of contiguous memory
accesses that triggered the watchpoint. A watchpointed address is an address that the watchpoint is
watching.
D2-2606 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.10 Watchpoint exceptions
• Within a naturally-aligned block of memory that is all of the following:

— A power-of-two size.

— No larger than the DC ZVA block size.

— Contains a watchpointed address accessed by the memory access or set of contiguous memory
accesses that triggered the watchpoint.

The size of the block is IMPLEMENTATION DEFINED. There is no architectural means of discovering the size.

Example D2-2 Address recorded for a watchpoint programmed on 0x8019

A debugger programs a watchpoint to generate a Watchpoint exception on any access to the byte 0x8019.

An A32 load multiple instruction then loads nine registers starting from address 0x8004 upwards. This triggers the
watchpoint.

If the DC ZVA block size is:

• 32 bytes, the address that the PE records must be between 0x8004 and 0x8019 inclusive.

• 16 bytes, the address that the PE records must be between 0x8010 and 0x8019 inclusive.

Address recorded for Watchpoint exceptions generated by data cache maintenance
instructions

The address recorded is the address passed to the instruction. This means that the address recorded might be higher
than the address of the location that triggered the watchpoint.

D2.10.6 Watchpoint behavior on other instructions

Under normal operating conditions, the following do not generate Watchpoint exceptions:

• Instruction cache maintenance instructions.

• Address translation instructions.

• TLB maintenance instructions.

• Prefetch memory instructions.

• All data cache maintenance instructions except DC IVAC.

Note

Despite its mnemonic, the DC ZVA, Data Cache Zero by VA instruction is not a data cache maintenance instruction.

However, the debug architecture allows for IMPLEMENTATION DEFINED controls, such as those in ACTLR registers,
to enable watchpoints on an implementation defined subset of these instructions. Whether a watchpoint treats the
instruction as a load or a store, and the access size of instruction cache, address translation, and TLB operations are
implementation defined.

The access size of the IMPLEMENTATION DEFINED instruction cache, address translation, and TLB operations which
generate Watchpoint exceptions are IMPLEMENTATION DEFINED.

See also the following subsections:

• Watchpoint behavior on accesses by Store-Exclusive instructions on page D2-2607.

• Watchpoint behavior on accesses by the DC IVAC instruction and the DC ZVA, DC GVA, and DC GZVA
instructions on page D2-2608.

Watchpoint behavior on accesses by Store-Exclusive instructions

If a watchpoint matches on a data access caused by a Store-Exclusive instruction, then:

• If the store fails because an Exclusives monitor does not permit it, it is IMPLEMENTATION DEFINED whether
the watchpoint generates a Watchpoint exception.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2607
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.10 Watchpoint exceptions
• Otherwise, the watchpoint generates a Watchpoint exception.

Watchpoint behavior on accesses by the DC IVAC instruction and the DC ZVA, DC GVA,
and DC GZVA instructions

DC ZVA, DC GVA and DC GZVA operations can generate Watchpoint exceptions. If the Point of Coherency is before any
level of cache, it is IMPLEMENTATION DEFINED whether a DC IVAC instruction can generate a Watchpoint exception.
Otherwise, DC IVAC operations can generate Watchpoint exceptions.

DC IVAC, DC ZVA, DC GZVA and DC GVA operations are treated as data stores by DBGWCR<n>_EL1.LSC.

Note

For the size of data accesses performed by the DC IVAC instruction and the DC ZVA instruction, see Watchpoint data
address comparisons on page D2-2603. The size of all data accesses must be considered because watchpoints can
be programmed to match on individual bytes.

D2.10.7 Watchpoint usage constraints

See the following:

• Reserved DBGWCR<n>_EL1.{SSC, HMC, PAC} values on page D2-2608.

• Reserved DBGWCR<n>_EL1.LBN values on page D2-2609.

• Programming dependencies of the BAS and MASK fields on page D2-2609.

• Reserved DBGWCR<n>_EL1.BAS values on page D2-2609.

• Reserved DBGWCR<n>_EL1.MASK values on page D2-2610.

• Other usage constraints on page D2-2610.

Reserved DBGWCR<n>_EL1.{SSC, HMC, PAC} values

Table D2-17 on page D2-2608 shows when particular combinations of DBGWCR<n>_EL1.{SSC, HMC, PAC} are
reserved.

If a watchpoint is programmed with one of these reserved combinations:

• The watchpoint must behave as if it is either:

— Disabled.

— Programmed with a combination that is not reserved, other than for a direct or external read of
DBGWCR<n>_EL1.

Table D2-17 Reserved SSC, HMC, and PAC combinations

HMC, SSC, and PAC combination Reserved

All combinations with SSC set to 0b01 or 0b10 except for the combination with HMC set
to 1, SSC set to 0b01, and PAC set to 0b00.

When EL3 is not implemented and EL2 is
implemented.

All combinations where HMC or SSC is nonzero, except for the combination with HMC
set to 1, SSC set to 0b01, and PAC set to 0b00 or combinations with SSC set to 0b11.

When both of EL2 and EL3 are not
implemented.

The combination with HMC set to 1, SSC set to 0b11, and PAC set to 0b00. When EL2 is not implemented.

The combinations with SSC set to 0b11 except the combination with HMC set to 1, SSC
set to 0b11, and PAC set to 0b00.

When Secure EL2 is not implemented.

The combination with HMC set to 1, SSC set to 0b01, and PAC set to 0b00. When Secure EL2 is not implemented.

Combinations not included in Table D2-14 on page D2-2602. Always.
D2-2608 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.10 Watchpoint exceptions
• For a direct or external read of DBGWCR<n>_EL1, if the reserved combination:

— Has no function for any execution conditions, the value read back for each of SSC, HMC, and PMC
is UNKNOWN.

— Has a function for execution conditions other than the current execution conditions, the value read
back is the value written. This permits software to save and restore the combination so that the
watchpoint functions for the other execution conditions.

The behavior of watchpoints with reserved combinations of SSC, HMC, and PAC might change in future revisions
of the architecture. For this reason, software must not rely on the behavior described here.

Reserved DBGWCR<n>_EL1.LBN values

For Linked Watchpoints

A Linked watchpoint must link to a context-aware breakpoint. For a Linked watchpoint, any
DBGWCR<n>_EL1.LBN value that is not for a context-aware breakpoint is reserved.

If a Linked watchpoint links to a breakpoint that is not implemented, or that is not context-aware,
then reads of DBGWCR<n>_EL1.LBN return an UNKNOWN value and the behavior is
CONSTRAINED UNPREDICTABLE. The Linked watchpoint behaves as if it is either:

• Disabled

• Linked to an UNKNOWN context-aware breakpoint.

If a Linked watchpoint links to a breakpoint that is implemented and is context-aware, but that is
either not enabled or not programmed as a Linked Context breakpoint, it behaves as if it is disabled.

For Unlinked Watchpoints For Unlinked watchpoints, DBGWCR<n>_EL1.LBN reads UNKNOWN and its value is
ignored.

Programming dependencies of the BAS and MASK fields

When programming a watchpoint, a debugger must use either:

• The MASK field, to program the watchpoint with an address range that can be eight bytes to 2GB.

• The BAS field, to select which bytes in the doubleword or word starting at the address contained in the
DBGWVR<n>_EL1 the watchpoint must generate Watchpoint exceptions for.

If the debugger uses the:

• MASK field, it must program BAS to be 0b11111111, so that all bytes in the doubleword or word are selected.

• BAS field, it must program MASK to be 0b00000, so that the MASK field does not indicate any address
ranges.

If an enabled watchpoint has a MASK field that is non-zero and a BAS field that is not set to 0b11111111, then for
each byte in the address range, it is CONSTRAINED UNPREDICTABLE whether or not a Watchpoint exception
is generated.

Reserved DBGWCR<n>_EL1.BAS values

The BAS field must be programmed with a value Zeros(8-n-m):Ones(n):Zeros(m), where:

• n is a non-zero positive integer less-than-or-equal-to 8.

• m is a positive integer less-than 8.

• n+m is less-than-or-equal-to 8.

All other values are reserved.

Note

If x is zero, then Zeros(x) is an empty bitstring.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2609
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.10 Watchpoint exceptions
If DBGWVR<n>_EL1[2] is 1, DBGWCR<n>_EL1.BAS[7:4] are RES0 and are ignored.

If a watchpoint is programmed with a reserved BAS value:

• It is CONSTRAINED UNPREDICTABLE whether the watchpoint generates a Watchpoint exception for each byte
in the doubleword or word of memory addressed by the DBGWVR<n>_EL1.

• A direct or external read of DBGWCR<n>_EL1.BAS returns an UNKNOWN value.

Software must not rely on these properties as the behavior of reserved values might change in a future revision of
the architecture.

Reserved DBGWCR<n>_EL1.MASK values

If a watchpoint is programmed with a reserved MASK value:

• The watchpoint must behave as if it is either:

— Disabled.

— Programmed with an UNKNOWN value that is not reserved, that might be 0b00000, other than for a direct
or external read of DBGWCR<n>_EL1.

• A direct or external read of DBGWCR<n>_EL1.MASK returns an UNKNOWN value.

Other usage constraints

For all watchpoints:

• DBGWVR<n>_EL1[1:0] are RES0 and are ignored.

• If DBGWCR<n>_EL1.MASK is nonzero, and any masked bits of DBGWVR<n>_EL1 are
not 0, it is CONSTRAINED UNPREDICTABLE whether the watchpoint generates a Watchpoint
exception when the unmasked bits match.

• A watchpoint never generates any Watchpoint exceptions if DBGWCR<n>_EL1.LSC is
0b00.

D2.10.8 Exception syndrome information and preferred return address

See the following:

• Exception syndrome information on page D2-2610.

• Preferred return address on page D2-2611.

Exception syndrome information

On taking a Watchpoint exception, the PE records all of the following:

• Information about the exception in the Exception Syndrome Register (ESR_ELx) at the Exception level the
exception is taken to.

• An address that the debugger can use to determine the memory location that caused the exception. The PE
records this in a Fault Address Register (FAR).

The ESR and FAR used is either:

• ESR_EL1 and FAR_EL1, if the exception is taken to EL1.

• ESR_EL2 and FAR_EL2, if the exception is taken to EL2.

Note

Watchpoint exceptions cannot be taken to EL3 using AArch64.

See ISS encoding for an exception from a Watchpoint exception on page D13-3184 for more information.
D2-2610 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.10 Watchpoint exceptions
Preferred return address

The preferred return address of a Watchpoint exception is the address of the instruction that was not executed
because the PE took the Watchpoint exception instead.

This means that the preferred return address is the address of the instruction that caused the exception.

D2.10.9 Pseudocode description of Watchpoint exceptions taken from AArch64 state

AArch64.WatchpointByteMatch() tests an individual byte accessed by an operation.

AArch64.StateMatch() tests the values in DBGWCR<n>_EL1.{HMC, SSC, PAC}, and if the watchpoint is Linked,
also tests the Linked Context breakpoint that the watchpoint links to.

AArch64.WatchpointMatch() tests the value in DBGWVR<n>_EL1.

AArch64.CheckWatchpoint() generates a FaultRecord that AArch64.Abort() raises a Watchpoint exception for if all of
the following are true:

• MDSCR_EL1.MDE is 1.

• Debug exceptions are enabled from the current Exception level and Security state. See Enabling debug
exceptions from the current Exception level on page D2-2571.

• All of the conditions required for Watchpoint exception generation are met. See About Watchpoint exceptions
on page D2-2598.

Note

AArch64.CheckWatchpoint() might halt the PE and cause it to enter Debug state. External debug uses Debug state.

AArch64.WatchpointException() is called to generate a Watchpoint exception.

These functions are defined in Chapter J1 Armv8 Pseudocode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2611
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.11 Vector Catch exceptions
D2.11 Vector Catch exceptions

Vector Catch exceptions are not generated in AArch64 translation regimes.

Note

This means that they are never taken to EL1 using AArch64 and are only supported if at least EL1 using AArch32
is supported.

A debugger that is executing in EL2 using AArch64 can route Vector Catch exceptions to EL2 using AArch64. See
Routing debug exceptions on page D2-2569.

AArch64.VectorCatchException() is called to generate a Vector Catch exception.

Vector Catch exceptions on page G2-6209 describes Vector Catch exceptions.
D2-2612 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.12 Software Step exceptions
D2.12 Software Step exceptions

The following subsections describe Software Step exceptions:

• About Software Step exceptions on page D2-2613.

• Rules for setting MDSCR_EL1.SS to 1 on page D2-2613.

• The software step state machine on page D2-2613.

• Entering the active-not-pending state on page D2-2615.

• Behavior in the active-not-pending state on page D2-2618.

• Entering the active-pending state on page D2-2620.

• Behavior in the active-pending state on page D2-2621.

• Stepping T32 IT instructions on page D2-2621.

• Exception syndrome information and preferred return address on page D2-2622.

• Additional considerations on page D2-2623.

• Pseudocode description of Software Step exceptions on page D2-2625.

D2.12.1 About Software Step exceptions

Software step is an Armv8-A resource that a debugger can use to make the PE single-step instructions.

For example, by using software step, debugger software executing at a higher Exception level can single-step
instructions at a lower Exception level.

Operation is as follows:

1. A debugger:

a. Enables software step by setting MDSCR_EL1.SS to 1. See The debug exception enable controls on
page D2-2568.

b. Executes an exception return instruction, to branch to the instruction to be single-stepped in the
software being debugged.

2. The PE then:

a. Executes the instruction to be single-stepped.

b. Takes a Software Step exception on the next instruction, returning control to the debugger.

However, another exception might be generated while the instruction is being stepped. This exception is either:

• A synchronous exception that is generated by the instruction being stepped.

• An asynchronous exception that is taken before or after the instruction being stepped.

The PE can only take a Software Step exception if debug exceptions are enabled from the current Exception level
and Security state. See Enabling debug exceptions from the current Exception level on page D2-2571.

A state machine describes the behavior of software step, shown in The software step state machine on
page D2-2613.

Throughout this Software Step exceptions on page D2-2613 section, including in all subsections, ELD means the
Exception level that Software Step exceptions are targeting. Routing debug exceptions on page D2-2569 defines
ELD as the debug target Exception level.

D2.12.2 Rules for setting MDSCR_EL1.SS to 1

Debugger software must be executing in an Exception level and Security state that debug exceptions are disabled
from when it sets MDSCR_EL1.SS to 1.

The Exception level that hosts the debugger software must be using AArch64.

D2.12.3 The software step state machine

In Figure D2-3 on page D2-2614:

• The OS Lock is unlocked and DoubleLockStatus() == FALSE.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2613
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.12 Software Step exceptions
• The PE is not in Secure state with MDCR_EL3.SDD set to 1. That is, the PE is in Non-secure state, or is in
Secure state with MDCR_EL3.SDD set to 0, or the implementation does not include EL3.

Figure D2-3 Software step state machine

For a description of when debug exceptions are enabled or disabled from an Exception level, see Enabling debug
exceptions from the current Exception level on page D2-2571.

For more information about how a step is completed, see Behavior in the active-not-pending state on page D2-2618.

By a debugger setting
MDSCR_EL1.SS to 1

Inactive

MDSCR_EL1.SS == 0

MDSCR_EL1.SS == 1

Execution is in the software being debugged, at
either:

• An Exception level that is lower than ELD.
• ELD with (PSTATE.D == 0 &&

MDSCR_EL1.KDE == 1).

Inactive
PSTATE.SS=0

Execution has returned to the debugger.

Execution is in the software being debugged, at
either:

• An Exception level that is lower than ELD.
• ELD with (PSTATE.D == 0 &&

MDSCR_EL1.KDE == 1).
A Software Step exception is pending.

Execution is at either:
• An Exception level that is higher than ELD.
• ELD with (PSTATE.D == 1 ||

MDSCR_EL1.KDE == 0).
This is termed execution in a debugger or above.

a. The step is the PE either:
• Taking an exception to an Exception level that debug exceptions are disabled from.
• If execution is at ELD with MDSCR_EL1.KDE == 1, executing an instruction that sets PSTATE.D to 1.

 Software step is inactive when debug exceptions are disabled from the current Exception level, and debug exceptions are disabled from ELD when
PSTATE.D is 1.

b. The step is the PE either:
• Executing the instruction to be stepped without taking an exception.
• Taking an exception to an Exception level that debug exceptions are enabled from. The Exception level might be using AArch64 or AArch32.

c. Or, if execution is at ELD with MDSCR_EL1.KDE == 1, by software setting PSTATE.D to 0.

To make the PE single-step an instruction, the
debugger:

1. Sets SPSR_ELx.SS to 1.
2. Programs the ELR_ELx to point to the

instruction to be stepped.
3. Executes an Exception return instruction.By an Exception return instruction

setting PSTATE.SS to 1

By an Exception return instruction
setting PSTATE.SS to 0c

Step completeda

By an asynchronous exception
taken to an Exception level that
debug exceptions are disabled
from

Inactive
PSTATE.SS=0

Execution in a
debugger or above

Active-not-
pending

PSTATE.SS=1

Step completedb

Active-pending
PSTATE.SS=0

Software Step
exception

By an asynchronous exception
taken to an Exception level that
debug exceptions are enabled

from

Execution in a
debugger or above
D2-2614 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.12 Software Step exceptions
The software step states are:

Inactive Software step is inactive. It cannot generate any Software Step exceptions or affect PE execution.
Software step is inactive whenever any of the following are true:

• MDSCR_EL1.SS is 0.

• ELD is using AArch32.

• Debug exceptions are disabled from the current Exception level or Security state.

Active-not-pending

None of the conditions mentioned in Inactive on page D2-2615 are true, therefore software step is
active.

The current instruction is the instruction to be stepped.

Active-pending

None of the conditions mentioned in Inactive on page D2-2615 are true, therefore software step is
active.

A Software Step exception is pending on the current instruction.

Whenever software step is active, whether the state machine is in the active-not pending state or the active-pending
state depends on PSTATE.SS. Table D2-18 on page D2-2615 shows this.

D2.12.4 Entering the active-not-pending state

Software step can only enter the active-not-pending state from the inactive state.

Software step:

• Enters the active-not-pending state when an Exception return instruction writes 1 to PSTATE.SS, by copying
from SPSR_ELx.SS when it restores PSTATE.

• Might enter the active-not-pending state on exiting Debug state when DSPSR_EL0.SS or DSPSR.SS is 1.
See Exiting Debug state on page H2-7375.

An Exception return instruction only copies 1 from SPSR_ELx.SS to PSTATE.SS if all of the following are true:

• MDSCR_EL1.SS is 1.

• ELD is using AArch64.

• Debug exceptions are disabled from the current Exception level.

• Debug exceptions are enabled from the Exception level that the Exception return instruction targets.

Otherwise, Exception return instructions set PSTATE.SS to 0, regardless of the value of SPSR_ELx.SS.

Table D2-19 on page D2-2616 shows this. In the table:

Lock Means the value of (OSLSR_EL1.OSLK == ’1’ || DoubleLockStatus()).

NS Means the Effective value of SCR_EL3.NS.

Table D2-18 State machine states

ELD using:
Debug exception enable status in the
current Exception level and Security state

MDSCR_EL1.SS PSTATE.SS
State machine
state

AArch32 X X X Inactive

AArch64 Disabled X X Inactive

AArch64 Enabled 0 X Inactive

AArch64 Enabled 1 1 Active-not-pending

AArch64 Enabled 1 0 Active-pending
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2615
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.12 Software Step exceptions
SDD Means the Effective value of MDCR_EL3.SDD. See Disabling debug exceptions from Secure state
on page D2-2571.

EEL2 Means the Effective value of SCR_EL3.EEL2. If FEAT_SEL2 is not implemented, this is 0.

TGE Means the value of HCR_EL2.TGE. If EL2 is not implemented, the PE behaves as if this is 0.

TDE Means the Effective value of MDCR_EL2.TDE. See Routing debug exceptions on page D2-2569.

EL1 is using The Execution state when the ELD is EL1.

EL2 is using The Execution state when the ELD is EL2.

For:

• If ELD is EL1 using AArch64, Table D2-20 on page D2-2617 shows the value an Exception return instruction
writes to PSTATE.SS.

Table D2-19 Value an Exception return instruction writes to PSTATE.SS

MDSCR_EL1.SS Lock NS SDD EEL2 TGE TDE
EL1 is
using

EL2 is
using

Value an Exception
return instruction
writes to PSTATE.SS

0 X X X X X X X X 0

1 TRUE X X X X X X X 0

FALSE 0 1 X X X X X 0

0 0 X X AArch32 n/a 0

AArch64 n/a See Table D2-20 on
page D2-2617

1 0 0 AArch32 n/a 0

AArch64 AArch64 See Table D2-20 on
page D2-2617

1 AArch32 AArch32 0

X AArch64 See Table D2-21 on
page D2-2618

1 X n/a AArch32 0

n/a AArch64 See Table D2-21 on
page D2-2618

1 X X 0 0 AArch32 n/a 0

AArch64 AArch64 See Table D2-20 on
page D2-2617

1 AArch32 AArch32 0

X AArch64 See Table D2-21 on
page D2-2618

1 X n/a AArch32 0

n/a AArch64 See Table D2-21 on
page D2-2618
D2-2616 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.12 Software Step exceptions
• If ELD is EL2 using AArch64, Table D2-21 on page D2-2618 shows the value an Exception return instruction
writes to PSTATE.SS.

In both tables:

From EL Means the Exception level at which the PE executes the Exception return instruction.

Target EL Is the target Exception level of the Exception return instruction.

Note

If the Exception return instruction is an illegal exception return, the target Exception level of the
Exception return instruction is the current Exception level. See Illegal return events from AArch64
state on page D1-2486.

KDE Is MDSCR_EL1.KDE. See Enabling debug exceptions from the current Exception level on
page D2-2571.

Table D2-20 Value an Exception return instruction writes to PSTATE.SS if ELD is EL1 using AArch64

From
EL

Target
EL

KDE PSTATE.D SPSR_ELx.D

Software step enable
status at:

Value an Exception return
instruction writes to PSTATE.SS

From EL Target EL

EL3 EL3 X X X Disabled Disabled 0

EL2 X X X Disabled Disabled 0

EL1 0 X X Disabled Disabled 0

1 X 1 Disabled Disabled 0

0 Disabled Enabled SPSR_EL3.SS

EL0 X X X Disabled Enabled SPSR_EL3.SS

EL2 EL2 X X X Disabled Disabled 0

EL1 0 X X Disabled Disabled 0

1 X 1 Disabled Disabled 0

0 Disabled Enabled SPSR_EL2.SS

EL0 X X X Disabled Enabled SPSR_EL2.SS

EL1 EL1 0 X X Disabled Disabled 0

1 0 X Enableda -b 0

1 1 Disabled Disabled 0

0 Disabled Enabled SPSR_EL1.SS

EL0 0 X X Disabled Enabled SPSR_EL1.SS

1 0 X Enableda Enabled 0

1 X Disabled Enabled SPSR_EL1.SS

a. Because MDSCR_EL1.SS == 1, it means that the Exception return instruction is itself being stepped.

b. Depends on SPSR_EL1.D.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2617
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.12 Software Step exceptions
Note

No AArch32 instruction can set PSTATE.SS to 1.

D2.12.5 Behavior in the active-not-pending state

In this state, the PE does one of the following:

• Executes the instruction to be stepped and either:

— Completes it without taking a synchronous exception.

— Takes a synchronous exception if the instruction generates one.

• Takes an asynchronous exception without executing any instructions.

• Enters Debug state because of a Halting debug event.

Table D2-21 Value an Exception return instruction writes to PSTATE.SS if ELD is EL2 using AArch64

From
EL

Target
EL

KDE PSTATE.D SPSR_ELx.D

Software step enable
status at:

Value an Exception return
instruction writes to PSTATE.SS

From EL Target EL

EL3 EL3 X X X Disabled Disabled 0

EL2 0 X X Disabled Disabled 0

1 X 1 Disabled Disabled 0

0 Disabled Enabled SPSR_EL3.SS

EL1 X X X Disabled Enabled SPSR_EL3.SS

EL0 X X X Disabled Enabled SPSR_EL3.SS

EL2 EL2 0 X X Disabled Disabled 0

1 0 X Enableda -b 0

1 1 Disabled Disabled 0

0 Disabled Enabled SPSR_EL2.SS

EL1 0 X X Disabled Enabled SPSR_EL2.SS

1 0 X Enableda Enabled 0

1 X Disabled Enabled SPSR_EL2.SS

EL0 0 X X Disabled Enabled SPSR_EL2.SS

1 0 X Enableda Enabled 0

1 X Disabled Enabled SPSR_EL2.SS

EL1 EL1 X X X Enableda Enabled 0

EL0 X X X Enableda Enabled 0

a. Because MDSCR_EL1.SS == 1, it means that the Exception return instruction is itself being stepped.

b. Depends on SPSR_EL2.D.
D2-2618 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.12 Software Step exceptions
If the PE executes the instruction without taking any exceptions, then the PE sets PSTATE.SS to 0, meaning that
after the instruction has been executed:

• If the instruction has disabled debug by setting PSTATE.D to 1 then software step advances to the inactive
state.

• If the instruction disables software step by a direct write to a System register, for example a write to
MDSCR_EL1.KDE or MDSCR_EL1.SS, then software step might advance to the inactive state. These
writes require explicit synchronization to guarantee their effect. See Synchronization and the software step
state machine on page D2-2624.

• Otherwise, software step advances to the active-pending state. See Behavior in the active-pending state on
page D2-2621.

If the PE takes either a synchronous or an asynchronous exception, behavior is as described in one of the following:

• If the PE takes an exception to an Exception level that is using AArch64 on page D2-2619.

• If the PE takes an exception to an Exception level that is using AArch32 on page D2-2620.

If the PE enters Debug state because of a Halting debug event, behavior is as described in Entering Debug state and
Software Step on page H2-7347.

If the PE takes an exception to an Exception level that is using AArch64

As part of exception entry, the PE does all of the following:

• Sets SPSR_ELx.SS to 0 or 1, depending on the exception. See Table D2-22 on page D2-2619.

• It is UNPREDICTABLE whether SPSR_ELx.SS to 0 or 1 when an SError interrupt is taken to ELx without
executing the instruction.

• Sets PSTATE.SS to 0. This causes software step to enter either the active-pending state or the inactive state,
depending on whether debug exceptions are enabled or disabled from the Exception level that the exception
is taken to:

Enabled Software step enters the active-pending state.

Disabled Software step enters the inactive state.

In either case, on taking the exception, a step is complete.

• Sets PSTATE.D to 1.

Note

If an SMC instruction executed at Non-secure EL1 is trapped to EL2 because HCR_EL2.TSC is 1, the exception is a
Trap exception, not a Secure Monitor Call exception, and so SPSR_ELx.SS is set to 1, not 0.

Table D2-22 Categorization of exceptions, for setting SPSR_ELx.SS to 0 or 1

Exception description Exceptions SPSR_ELx.SS

Exceptions whose preferred return address is for the
instruction that follows the instruction to be stepped.

Supervisor Call (SVC) exceptions.

Hypervisor Call (HVC) exceptions.

Secure Monitor Call (SMC) exceptions.

0

Exceptions whose preferred return address is the
address of the instruction to be stepped.

All other synchronous exceptions, and asynchronous
exceptions that are taken before the instruction to be
stepped.

1

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2619
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.12 Software Step exceptions
If the PE takes an exception to an Exception level that is using AArch32

This can only happen when all of the following is true:

• EL2 is implemented and is using AArch64, and the Effective value of MDCR_EL2.TDE is 1. Because
MDCR_EL2.TDE is 1, ELD is EL2.

• The exception is taken to EL1 using AArch32.

As part of exception entry, the PE sets PSTATE.SS to 0. This causes software step to enter the active-pending state.

Note

• Software step always enters the active-pending state because the exception is taken to an Exception level that
debug exceptions are enabled from, EL1. Debug exceptions are enabled from EL1 because ELD is EL2, and
debug exceptions are always enabled from Exception levels that are lower than ELD.

• AArch32 SPSRs have no SS bit.

Summary of behavior in the active-not-pending state

Table D2-23 on page D2-2620 summarizes behavior in the active-not-pending state.

D2.12.6 Entering the active-pending state

Software step enters the active-pending state after any of the following operations, provided that both:

• MDSCR_EL1.SS is 1.

• Debug exceptions are enabled from the Exception level and Security state that execution is in after the
operation.

The operations are:

While software step is in the active-not-pending state

The PE either:

• Executing the instruction to be stepped without taking any exceptions.

• Taking an exception.

Table D2-23 Summary of behavior in the active-not-pending state

Event
Value written to
PSTATE.SS

Target Exception
level is using:

Detailsa Value written to
SPSR_ELx.SS

Next state

No
exception

0 n/a Disables Software step n/a Inactive

Otherwise n/a Active-pending

Exception 0 AArch64 Supervisor Call (SVC)

Hypervisor Call (HVC)

Secure Monitor Call
(SMC)

0 Active-pending or
inactiveb

Other 1

AArch32 All 0 Active-pending

a. For the No exception rows, this column shows the effect of the event.

For the Exception rows, this column shows the exception taken.

b. Which state software step enters depends on whether debug exceptions are enabled or disabled from the target Exception level. See
Figure D2-3 on page D2-2614.
D2-2620 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.12 Software Step exceptions
While software step is in the active-pending state

The PE takes an asynchronous exception.

While software step is in the inactive state

The PE executes either:

• An Exception return instruction when SPSR_ELx.SS is 0.

• An instruction that enables debug by setting PSTATE.D to 0.

Note

If entry to the active-pending state is because of the PE taking an exception, it means that the exception is one that
is taken to EL1 when MDCR_EL2.TDE is 1 and EL2 is implemented and enabled in the current Security state.
Otherwise, debug exceptions are masked by PSTATE.D, therefore they would be disabled from the target Exception
level of the exception.

In addition, software step might enter the active-pending state either:

• After a direct write to a System register, for example a write to MDSCR_EL1.KDE or MDSCR_EL1.SS.
These writes require explicit synchronization to guarantee their effect. See Synchronization and the software
step state machine on page D2-2624.

• On exiting Debug state when DSPSR_EL0.SS or DSPSR.SS is 0. See Exiting Debug state on page H2-7375.

D2.12.7 Behavior in the active-pending state

When the PE is in the active-pending state, a Software Step exception is taken before the PE executes an instruction.

The Software Step exception has higher priority than all other types of synchronous exception. However, the
prioritization of this exception with respect to any unmasked pending asynchronous exception is not defined by the
architecture.

For more information, see the following:

• Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2490.

• Prioritization and recognition of interrupts on page D1-2508.

• Architectural requirements for taking asynchronous exceptions on page G1-6049.

D2.12.8 Stepping T32 IT instructions

The Armv8-A architecture permits a combination of an IT instruction and another 16-bit T32 instruction to comprise
one 32-bit instruction.

For the purpose of stepping an item, it is IMPLEMENTATION DEFINED whether:

• The PE considers this combination to be one instruction.

• The PE considers this combination to be two instructions.

In an implementation that supports the ITD control, that can disable some uses of the IT instruction, it is then
IMPLEMENTATION DEFINED whether this behavior depends on the value of the applicable ITD field. For example:

• The PE might consider this combination to be one instruction, regardless of the state of the applicable ITD
field.

• The PE might consider this combination to be two instructions, regardless of the state of the applicable ITD
field.

• The PE might consider this combination to be one instruction when the applicable ITD field is 1, and two
instructions when it is 0.

The applicable ITD field is one of:

• SCTLR_EL1.ITD if execution is at EL0 using AArch32 when EL1 is using AArch64.

• SCTLR.ITD if execution is at EL0 or EL1 when EL1 is using AArch32.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2621
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.12 Software Step exceptions
• HSCTLR.ITD if execution is at Non-secure EL2 using AArch32.

D2.12.9 Exception syndrome information and preferred return address

See the following:

• Exception syndrome information on page D2-2622.

• Preferred return address on page D2-2623.

Exception syndrome information

On taking a Software Step exception, the PE records information about the exception in the Exception Syndrome
Register (ESR_ELx) at the Exception level the exception is taken to. See ISS encoding for an exception from a
Software Step exception on page D13-3183 for more information.

If no instruction was stepped because software step entered the active-pending state from the inactive state without
passing through the active-not-pending state, then ESR_ELx.{ISV, EX} are set to 0.

When an instruction has been stepped, if the stepped instruction was a conditional Load-Exclusive instruction that
failed its Condition code test, then ESR_ELx.EX is set to a CONSTRAINED UNPREDICTABLE choice of 0 or 1.

When an instruction has been stepped, if the stepped instruction was an Exception return instruction or an ISB. then
ESR_ELx.ISV is set to a CONSTRAINED UNPREDICTABLE choice of 0 or 1, and ESR_ELx.EX is set to 0.

If the Effective value of MDCR_EL2.TDE == 1, EL2 is implemented and enabled in the current Security state, and
a different exception is taken before the Software Step exception, then ESR_ELx.ISV is set to a CONSTRAINED
UNPREDICTABLE choice of 0 or 1. In this case:

• If ESR_ELx.ISV is set to 1, then ESR_ELx.EX is set to the correct value for the instruction.

• If ESR_ELx.ISV is set to 0, then ESR_ELx.EX is set to zero.

Other than for the cases described above, when an instruction has been stepped:

• ESR_ELx.ISV is set to 1, to indicate that the EX bit is valid.

• The value of ESR_ELx.EX is set according to the instruction stepped. When:

— The instruction stepped was an instruction other than a Load-Exclusive instruction, an Exception
Return instruction, or an ISB, and no other exception was taken before the Software Step exception,
ESR_ELx.EX is set to 0.

— The instruction stepped was a Load-Exclusive instruction that was either not conditional or did not fail
its Condition code test, ESR_ELx.EX is set to 1.

Note

A Load-Exclusive instruction is any one of the following:

• In the A64 instruction set, any instruction that has a mnemonic starting with either LDX or LDAX.

• In the A32 and T32 instruction sets, any instruction that has a mnemonic starting with either LDREX or LDAEX.

Note

An implementation that always sets ISV to 0 and never sets EX is not compliant.
D2-2622 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.12 Software Step exceptions
Table D2-24 on page D2-2623 summarizes the possible values that the PE can record in ESR_ELx.{ISV, EX}.

Preferred return address

The preferred return of a Software Step exception is the address of the instruction that was not executed because the
PE took the Software Step exception instead.

D2.12.10 Additional considerations

This section contains the following:

• Behavior when an Exception return instruction is an illegal exception return on page D2-2623.

• Behavior when the instruction stepped writes a misaligned PC value on page D2-2624.

• Stepping code that uses Exclusives monitors on page D2-2624.

• Synchronization and the software step state machine on page D2-2624.

Behavior when an Exception return instruction is an illegal exception return

If the conditions for entering the active-not-pending state in Entering the active-not-pending state on page D2-2615
are met, but the PE executes an Exception return instruction that is an illegal exception return, the exception return
must be taken to the same Exception level that it was taken from. In this scenario, even though the Exception level
remains the same before and after the Exception return instruction, software step can advance from the inactive state
to one of the active states. Consider the following case:

1. MDSCR_EL1.SS is 1 and software step is inactive. The current Exception level is EL1 using AArch64, the
OS Lock and OS Double Lock are unlocked, and MDCR_EL2.TDE is 0, MDSCR_EL1.KDE is 1, and
PSTATE.D is 1.

PSTATE.D == 1 is the reason why software step is inactive, because PSTATE.D == 1 means that debug
exceptions are disabled from the current Exception level.

2. The PE executes an Exception return instruction.

Table D2-24 Values that the PE can record in ESR_ELx.{ISV, EX}

Description ESR_ELx.ISV ESR_ELx.EX

Syndrome data is not available because no instruction was stepped. 0 0

Syndrome data is available because an instruction was stepped. The instruction
stepped was a conditional Load-Exclusive instruction that failed its Condition code
test.

1 0 or 1

Syndrome data is available because an instruction was stepped. The instruction
stepped was an Exception Return instruction or an ISB.

0 or 1 0

A different exception is taken before the Software Step exception. 0 0

1 Set to the correct value
for the instruction.

Syndrome data is available because an instruction was stepped. The instruction
stepped was an instruction other than a Load-Exclusive instruction, an Exception
Return instruction, or an ISB, and no other exception was taken before the Software
Step exception.

1 0

Syndrome data is available because an instruction was stepped. The instruction
stepped was a Load-Exclusive instruction that was either not conditional or did not
fail its Condition code test.

1 1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2623
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.12 Software Step exceptions
3. The intended target of the Exception return instruction is EL2. This means that the Exception return
instruction is an illegal exception return because the intended target is higher than the Exception level the
Exception return instruction it is executed at. In this case, the Exception return instruction must target EL1
instead of EL2.

If SPSR_EL1.D is 0, then on the Exception return instruction PSTATE.D becomes 0 and debug exceptions
become enabled from the current Exception level. Software step therefore advances from the inactive state
to one of the active states.

Which active state software step advances to depends on whether SPSR_ELx.SS is 1 or 0:

• If SPSR_ELx.SS is 1, software step advances to the active-not-pending state.

In this case, an Illegal Execution state exception is pending on the instruction to be stepped, and the PE takes
the Illegal Execution state exception instead of executing the instruction to be stepped.

• If SPSR_ELx.SS is 0, software step advances to the active-pending state.

In this case, a Software Step exception and an Illegal Execution state exception are both pending. The
Software Step exception has higher priority. On taking the Software Step exception, the PE sets
SPSR_ELx.IL to 1.

Note

Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2490 shows the relative
priorities of synchronous exceptions.

Behavior when the instruction stepped writes a misaligned PC value

An indirect branch that writes a misaligned PC value might generate a PC alignment fault exception at the target of
the branch. However, if the indirect branch is stepped using software step, the PE takes a Software Step exception
instead, because the Software Step exception has higher priority. Behavior on returning from the Software Step
exception depends on which Execution state the Exception level being returned to is using:

AArch64 A PC alignment fault exception is generated.

AArch32 The return from the Software Step exception forces the PC to the correct alignment, and no PC
alignment fault exception is generated.

Debugger software must therefore take care when using software step to single-step an indirect branch instruction
executed in AArch32 state, that it does not hide a PC alignment fault exception.

Stepping code that uses Exclusives monitors

The Armv8-A architecture provides no mechanism for preserving the state of the Exclusives monitors when a
Load-Exclusive or a Store-Exclusive instruction is stepped.

However, for certain progressions through the software step state machine, on taking a Software Step exception, the
PE provides an indication of whether the instruction stepped was a Load-Exclusive instruction.

Debugger software can use this to detect the state of the Exclusives monitors. For example, if the PE reports that
the instruction stepped was a Load-Exclusive instruction, the debugger is aware that the next Store-Exclusive
operation will fail, because all Exclusives monitors are cleared on returning from the Software Step exception. The
debugger must then take action to ensure that the code being stepped makes forwards progress.

For more information on how the PE reports whether the instruction stepped was a Load-Exclusive instruction, see
Exception syndrome information and preferred return address on page D2-2622.

Synchronization and the software step state machine

Any of the following can cause transitions between software step states:

• A direct write to a System register.

• A direct write to a Special-purpose register.
D2-2624 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Debug
D2.12 Software Step exceptions
• A write to an external debug register.

The software step state machine indirectly reads some of these registers and so is not guaranteed to observe any new
values until after a Context synchronization event has occurred.

Between a write to the register and the next Context synchronization event, it is CONSTRAINED UNPREDICTABLE
whether software step uses the state of the PE before the write, or the state of the PE after the write.

After a Context synchronization event, the state machine must use the state of the PE after the write.

Example D2-3 Example of synchronization and software step state machine changing states

1. Software changes MDSCR_EL1.SS from 0 to 1 when debug exceptions are enabled.

2. The PE executes some instructions.

3. A Context synchronization event occurs.

During step 2, it is CONSTRAINED UNPREDICTABLE whether software step remains in the inactive state, as if
MDSCR_EL1.SS is 0, or enters the active-pending state because MDSCR_EL1.SS is 1. If it is in the:

• Inactive state, then after the Context synchronization event, it must enter the active-pending state.

• Active-pending state, the PE might take a Software Step exception before the Context synchronization event.

Note

A direct write to a Special-purpose register does not require explicit synchronization.

D2.12.11 Pseudocode description of Software Step exceptions

SSAdvance() advances software step from the active-not-pending state to the active-pending state, by setting
PSTATE.SS to 0. It is called on completing execution of each instruction.

CheckSoftwareStep() checks whether software step is in the active-pending state, and if it is, generates a Software
Step exception. It is called before each instruction executed, regardless of Execution state, before checking for any
other synchronous exceptions.

DebugExceptionReturnSS() returns the value to write to PSTATE.SS on an exception return or an exit from Debug
state. See Entering the active-not-pending state on page D2-2615.

These functions are defined in Chapter J1 Armv8 Pseudocode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D2-2625
ID072021 Non-Confidential

AArch64 Self-hosted Debug
D2.13 Synchronization and debug exceptions
D2.13 Synchronization and debug exceptions

The behavior of debug depends on all of the following:

• The state of the external debug authentication interface.

• Indirect reads of:

— External debug registers.

— System registers, including system debug registers.

— Special-purpose registers.

If a change is made to any of these, the effect of that change on debug exception generation cannot be relied on until
after a Context synchronization event has occurred. Similarly, the effect of the change on the software step state
machine cannot be relied on until after a Context synchronization event has occurred.

For any instructions executed between the time when the change is made and the time when the next Context
synchronization event occurs, it is CONSTRAINED UNPREDICTABLE whether debug uses the state of the PE before the
change, or the state of the PE after the change.

Example D2-4 Example of synchronization and Breakpoint exception generation

1. Software changes MDSCR_EL1.MDE from 0 to 1.

2. An instruction is executed, that would cause a Breakpoint exception if self-hosted debug uses the state of the
PE after the change.

3. A Context synchronization event occurs.

In this case, it is CONSTRAINED UNPREDICTABLE whether the instruction generates a Breakpoint exception.

Example D2-5 Example of synchronization and debug exceptions generation

1. Software unlocks the OS Lock.

2. The PE executes some instructions.

3. A Context synchronization event occurs.

During the time when the PE is executing some instructions, step 2, it is CONSTRAINED UNPREDICTABLE whether
debug exceptions other than Breakpoint Instruction exceptions can be generated.

Note

Some register updates are self-synchronizing. Others require an explicit Context synchronization event. For more
information, see:

• Accessing PSTATE fields on page D1-2467.

• Synchronization requirements for AArch64 System registers on page D13-3041.

• Synchronization of changes to the external debug registers on page H8-7462.
D2-2626 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter D3
AArch64 Self-hosted Trace

This chapter describes the AArch64 self-hosted trace:

Introductory information:

• About self-hosted trace on page D3-2628.

• Trace sinks on page D3-2628.

• Register controls to enable self-hosted trace on page D3-2628.

Prohibited regions in trace:

• Controls to prohibit trace at Exception levels on page D3-2629.

• Self-hosted trace and visibility of virtual data on page D3-2630.

Timestamps and Synchronization:

• Self-hosted trace timestamps on page D3-2631.

• Synchronization in self-hosted trace on page D3-2632.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D3-2627
ID072021 Non-Confidential

AArch64 Self-hosted Trace
D3.1 About self-hosted trace
D3.1 About self-hosted trace

A PE Trace Unit generates trace data to describe the program flow of the PE.

The PE Trace Unit may be an implementation of a standard Arm Embedded Trace Macrocell (ETM), or another
type of Arm Trace Architecture, or an IMPLEMENTATION DEFINED trace function.

If an Armv8.4-compliant PE implements an ETM Architecture PE Trace Unit that includes the ETM System register
interface, FEAT_TRF must be implemented.

If an Armv8.4-compliant PE implements a Trace Unit that is either not an ETM Architecture PE Trace Unit or does
not implement the ETM System register interface, Arm recommends that FEAT_TRF is implemented, but this is
not mandatory.

Self-hosted trace happens when the agent controlling the trace collection is part of the same software stack as the
software being traced. The agent controls prohibited regions. The information collected by the agent is sent to a trace
sink.

The PE Trace Unit and the PE must have the same view of the debug authentication interface. If FEAT_TRF is
implemented, ExternalNoninvasiveDebugEnabled() is always TRUE.

D3.1.1 Trace sinks

The PE Trace Unit sends the trace data to a trace sink. A system might include multiple trace sinks, and allow
software to configure which trace sink or sinks are used.

An example of an internal trace sink is an Embedded Trace Router (ETR), which allows software to define a buffer
in memory. Trace data is written to this buffer.

Arm recommends that a system that a system that includes FEAT_TRF incorporates an ETR, and follows the system
architecture described by the CoreSight Base System Architecture (CS-BSA).

The self-hosted trace extensions do not describe the programmers’ model trace sinks.

D3.1.2 Register controls to enable self-hosted trace

If FEAT_TRF is implemented, self-hosted trace is enabled if one of the following is true:

• EDSCR.TFO == 0.

• EDSCR.TFO == 1, EL3 is implemented, MDCR_EL3.STE == 1 and
ExternalSecureNoninvasiveDebugEnabled() == FALSE.

• EDSCR.TFO ==1, EL3 is not implemented, the PE executes in Secure state and
ExternalSecureNoninvasiveDebugEnabled() = FALSE.

The pseudocode function SelfHostedTraceEnabled() shows these rules.

If FEAT_TRF is not implemented, SelfHostedTraceEnabled() returns FALSE.

While SelfHostedTraceEnabled() == FALSE, ExternalSecureNoninvasiveDebugEnabled() and
ExternalNoninvasiveDebugEnabled() control whether tracing is prohibited or allowed in each Security state.

The self-hosted trace extensions do not provide any mechanism to control software access to the PE Trace Unit
external debug interface.
D3-2628 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Trace
D3.2 Prohibited regions in self-hosted trace
D3.2 Prohibited regions in self-hosted trace

Trace is not generated in prohibited regions. The pseudocode function TraceAllowed() indicates whether tracing is
allowed in the current Security state and Exception level.

The IMPLEMENTATION DEFINED debug authentication interface can allow an external agent to disable the self-hosted
trace extension.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited in Secure state when MDCR_EL3.STE == 0. If
FEAT_TRF is implemented but not enabled, tracing is prohibited in Secure state when
ExternalSecureNoninvasiveDebugEnabled() == FALSE.

D3.2.1 Controls to prohibit trace at Exception levels

If SelfHostedTraceEnabled() == TRUE, TRFCR_EL1 and TRFCR_EL2 control whether trace is prohibited at an
Exception level. While SelfHostedTraceEnabled() == FALSE, the registers TRFCR_EL1 and TRFCR_EL2 are
ignored.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited at EL0 if one of the following is true:

• The Effective value of HCR_EL2.TGE == 0 and TRFCR_EL1.E0TRE == 0.

• The Effective value of HCR_EL2.TGE == 1 and TRFCR_EL2.E0HTRE == 0.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited at EL1 if TRFCR_EL1.E1TRE == 0.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited at EL2 if TRFCR_EL2.E2TRE == 0.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited at EL3 if one of the following is true:

• EL3 is using AArch64 state.

• EL3 is using AArch32 state and TRFCR.E1TRE == 0.

The pseudocode TraceAllowed() shows the above rules.

If SelfHostedTraceEnabled() == TRUE, no events are exported to the PE Trace Unit when tracing is prohibited.

If SelfHostedTraceEnabled() == FALSE, no events are exported to the PE Trace Unit when the PE is in Secure state
and counting in Secure state is prohibited.

When PMCR_EL0.X==0 or PMCR.X==0, no PMU events are exported to the PE Trace Unit.

Otherwise, PMU events are exported to the PE Trace Unit.

If SelfHostedTraceEnabled() == TRUE, Table D3-1 on page D3-2630 shows the prohibited regions by Exception
level and state.

In the table:

STE Means the Effective value of MDCR_EL3.STE or SDCR.STE, as applicable.

EEL2 Means the Effective value of SCR_EL3.EEL2.

TGE Means the Effective value of HCR_EL2.TGE.

P Means prohibited.

E2TRE Means allowed if TRFCR_EL2.E2TRE == 1.

E1TRE Means allowed if TRFCR_EL1.E1TRE == 1.

E0HTRE Means allowed if TRFCR_EL2.E0HTRE == 1.

E0TRE Means allowed if TRFCR_EL1.E0TRE == 1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D3-2629
ID072021 Non-Confidential

AArch64 Self-hosted Trace
D3.2 Prohibited regions in self-hosted trace
n/a Not applicable.

D3.2.2 Self-hosted trace and visibility of virtual data

A hypervisor can use TRFCR_EL2.CX to control visibility of CONTEXTIDR_EL2 and VTTBR_EL2.VMID.

If SelfHostedTraceEnabled() == TRUE and TRFCR_EL2.CX == 0, or if EL2 is not implemented:

• The values of CONTEXTIDR_EL2 and VTTBR_EL2.VMID are not traced.

• Comparisons between CONTEXTIDR_EL2 and VTTBR_EL2.VMID do not match and results of
comparison are not exposed through the comparators.

The PE Trace Unit may either prohibit trace for these values, or may record a CONTEXTIDR_EL2 or
VTTBR_EL2.VMID value of zero in the trace.

Table D3-1 Prohibited regions

Controls Tracing prohibited at

State STE EL3 using EEL2 TGE EL3 EL2 EL1 EL0

Non-secureX X X 0 n/a E2TRE E1TRE E0TRE

X X X 1 n/a E2TRE n/a E0HTRE

Secure 0 X X X P P P P

1 AArch64 0 |X P n/a E1TRE E0TRE

1 0 P E2TRE E1TRE E0TRE

1 1 P E2TRE n/a E0HTRE

AArch32 X X E1TRE n/a n/a E0TRE
D3-2630 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 Self-hosted Trace
D3.3 Self-hosted trace timestamps
D3.3 Self-hosted trace timestamps

The trace timestamp is a value that represents the passage of time in real-time. It is calculated from a counter which
increments all the time, when the PE is generating trace and when the PE is in a prohibited region.

While SelfHostedTraceEnabled() == FALSE, the external trace provides the trace timestamp. If the external trace is
a standard CoreSight system, the relationship between CoreSight time and the Generic Timer counter is
IMPLEMENTATION DEFINED.

When SelfHostedTraceEnabled() == TRUE, the trace timestamp is one of the following:

• The physical counter value CNTPCT_EL0.

• An offset physical counter value, which is calculated from the physical counter value CNTPCT_EL0, minus
an offset CNTPOFF_EL2. When any of the following are true, the Effective value of CNTPOFF_EL2 is 0
for all trace purposes:

— EL3 is using AArch32.

— EL2 is not implemented.

— FEAT_ECV is not implemented.

— The Effective value of SCR_EL3.{NS,RW} is {1,0}.

— CNTHCTL_EL2.ECV is 0.

— SCR_EL3.ECVEn is 0.

• A virtual counter value, which is calculated from the physical counter value CNTPCT_EL0, minus an offset
CNTVOFF_EL2.

The fields TRFCR_EL2.TS, HTRFCR.TS, TRFCR_EL1.TS and TRFCR.TS control which counter is used for
self-hosted trace.

The timestamp used for trace is shown in Table D3-2 on page D3-2631.

Note

The counter value used for the trace timestamp is not affected by the value of HCR_EL2.E2H, or whether EL2 is
enabled or disabled in the current Security state.

Table D3-2 Timestamp used for trace.

SelfHostedTraceEnabled() TRFCR_EL2.TS TRFCR_EL1.TS Timestamp traced

FALSE xx xx CoreSight time

TRUE 0b00 0b01 CNTPCT_EL0 - CNTVOFF_EL2

0b00 0b10 CNTPCT_EL0 - CNTPOFF_EL2a

a. This register is only implemented when FEAT_ECV is implemented.

0b00 0b11 CNTPCT_EL0

0b01 xx CNTPCT_EL0 - CNTVOFF_EL2

0b10 xx CNTPCT_EL0 - CNTPOFF_EL2a

0b11 xx CNTPCT_EL0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D3-2631
ID072021 Non-Confidential

AArch64 Self-hosted Trace
D3.4 Synchronization in self-hosted trace
D3.4 Synchronization in self-hosted trace

The PE Trace Unit is an indirect observer of the System registers.

While SelfHostedTraceEnabled() == TRUE, indirect reads of the trace filter control fields, TRFCR_EL1.{E1TRE,
E0TRE} and TRFCR_EL2.{E2TRE, E0HTRE} are treated as indirect reads made by the instruction being traced.
For these register fields, in addition to the standard requirements for synchronization of System register accesses,
when a trace filter control value is changed and synchronization is not explicitly specified, one of the following
occurs:

• The behavior of the PE must be consistent with the control value having the old value.

• The behavior of the PE must change the control value at a point in the simple sequential execution of the
program, so that before that point, the behavior of the PE is consistent with the control value having the old
value, and after that point the behavior of the PE is consistent with the control value having the new value.

If there are multiple direct writes to the register without explicit synchronization, the behavior is consistent with the
writes occurring in program order.

The TSB CSYNC operation is used to ensure that a trace operation, due to a PE Trace Unit generating trace for an
instruction has completed. The TSB CSYNC operation may be reordered with respect to other instructions, so must be
combined with at least one Context synchronization event to ensure the operations are executed in the required
order. This means that a direct write to TRFCR_EL1 or TRFCR_EL2 is guaranteed to be observed by the PE Trace
Unit only after a subsequent Context synchronization event. For more information, see Trace Synchronization
Barrier (TSB CSYNC) on page B2-149.

While SelfHostedTraceEnabled() == FALSE, the PE Trace Unit might impose stronger synchronization
requirements.
D3-2632 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter D4
The AArch64 System Level Memory Model

This chapter provides a system level view of the general features of the memory system. It contains the following
sections:

• About the memory system architecture on page D4-2634.

• Address space on page D4-2635.

• Mixed-endian support on page D4-2636.

• Cache support on page D4-2637.

• External aborts on page D4-2666.

• Memory barrier instructions on page D4-2668.

• Pseudocode description of general memory System instructions on page D4-2669.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D4-2633
ID072021 Non-Confidential

The AArch64 System Level Memory Model
D4.1 About the memory system architecture
D4.1 About the memory system architecture

The Arm architecture supports different implementation choices for the memory system microarchitecture and
memory hierarchy, depending on the requirements of the system being implemented. In this respect, the memory
system architecture describes a design space in which an implementation is made. The architecture does not
prescribe a particular form for the memory systems. Key concepts are abstracted in a way that permits
implementation choices to be made while enabling the development of common software routines that do not have
to be specific to a particular microarchitectural form of the memory system. For more information about the concept
of a hierarchical memory system see Memory hierarchy on page B2-155.

If FEAT_MTE2 is implemented, the definitions of the memory model which apply to data accesses and data apply
to Allocation Tag accesses and Allocation tags, unless otherwise specified in Chapter D6 Memory Tagging
Extension.

D4.1.1 Form of the memory system architecture

The Armv8 A-profile architecture includes a Virtual Memory System Architecture (VMSA). Chapter D5 The
AArch64 Virtual Memory System Architecture describes the AArch64 view of the VMSA.

D4.1.2 Memory attributes

Memory types and attributes on page B2-165 describes the memory attributes, including how different memory
types have different attributes. Each location in memory has a set of memory attributes, and the translation tables
define the virtual memory locations, and the attributes for each location.

Table D4-1 on page D4-2634 shows the memory attributes that are visible at the system level.

For more information on cacheability and shareability see Shareable Normal memory on page B2-166,
Non-shareable Normal memory on page B2-167, and Caches and memory hierarchy on page B2-155.

Table D4-1 Memory attribute summary

Memory type Shareability Cacheability

Devicea

a. Takes additional attributes, see Device memory on page B2-169.

Outer Shareable Non-cacheable.

Normal One of:

• Non-shareable.

• Inner Shareable.

• Outer Shareable.

One ofb:

• Non-cacheable.

• Write-Through Cacheable.

• Write-Back Cacheable.

b. See also Cacheability, cache allocation hints, and cache transient hints on
page D4-2640.
D4-2634 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Memory Model
D4.2 Address space
D4.2 Address space

The Armv8 architecture is designed to support a wide range of applications with different memory requirements. It
supports a range of physical address (PA) sizes, and provides associated control and identification mechanisms. For
more information, see Address size configuration on page D5-2689.

D4.2.1 Virtual address space overflow

When a PE performs a Simple sequential execution of instructions, it calculates:

(address_of_current_instruction) + (size_of_executed_instruction)

This calculation is performed after each instruction to determine which instruction to execute next.

If the address calculation performed after executing an instruction overflows 0xFFFF FFFF FFFF FFFF, the program
counter becomes UNKNOWN.

Note

Address tags are not propagated to the program counter, so the tag does not affect the address calculation.

Where an instruction accesses a sequential set of bytes that crosses the 0xFFFF_FFFF_FFFF_FFFF boundary when
tagged addresses are not used, or the 0xxxFF_FFFF_FFFF_FFFF boundary when tagged addresses are used, then the
virtual address accessed for the bytes above this boundary is UNKNOWN. When tagged addresses are used, the value
of the tag associated with the address also becomes UNKNOWN.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D4-2635
ID072021 Non-Confidential

The AArch64 System Level Memory Model
D4.3 Mixed-endian support
D4.3 Mixed-endian support

A control bit, SCTLR_EL1.E0E is provided to allow the endianness of explicit data accesses made while executing
at EL0 to be controlled independently of those made while executing at EL1. Table D4-2 on page D4-2636 shows
the endianness of explicit data accesses and translation table walks.

Note

SCTLR_EL1.E0E has no effect on the endianness of the LDTR, LDTRH, LDTRSH, and LDTRSW instructions, or on the
endianness of the STTR and STTRH instructions, when these are executed at EL1.

AArch64 state provides the following options for endianness support:

• All Exception levels support mixed-endianness:

— SCTLR_ELx.EE is RW and SCTLR_EL1.E0E is RW.

• Only EL0 supports mixed-endianness and EL1, EL2, and EL3 support only little-endianness:

— SCTLR_ELx.EE is RES0 and SCTLR_EL1.E0E is RW.

• Only EL0 supports mixed-endianness and EL1, EL2, and EL3 support only big-endianness:

— SCTLR_ELx.EE is RES1 and SCTLR_EL1.E0E is RW.

• All Exception levels support only little-endianness:

— SCTLR_ELx.EE is RES0 and SCTLR_EL1.E0E is RES0.

• All Exception levels support only big-endianness:

— SCTLR_ELx.EE is RES1 and SCTLR_EL1.E0E is RES1.

If mixed endian support is implemented for an Exception level using AArch32, endianness is controlled by
PSTATE.E. For exception returns to AArch32 state, PSTATE.E is copied from SPSR_ELx.E. If the target Exception
level supports only little-endian accesses, SPSR_ELx.E is RES0. If the target Exception level supports only
big-endian accesses, SPSR_ELx.E is RES1. PSTATE.E is ignored in AArch64 state.

The BigEndian() function determines whether the current Exception level and Execution state are using big-endian
data. This function is defined in Chapter J1 Armv8 Pseudocode.

For more information about endianness in the Arm architecture see Endian support on page B2-162.

Table D4-2 Endianness support

Exception level Explicit data accesses Stage 1 translation table walks Stage 2 translation table walks

EL0 SCTLR_EL1.E0E SCTLR_EL1.EE SCTLR_EL2.EE

EL1 SCTLR_EL1.EE SCTLR_EL1.EE SCTLR_EL2.EE

EL2 SCTLR_EL2.EE SCTLR_EL2.EE n/a

EL3 SCTLR_EL3.EE SCTLR_EL3.EE n/a
D4-2636 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Memory Model
D4.4 Cache support
D4.4 Cache support

This section describes the Armv8 cache identification and control mechanisms, and the A64 cache maintenance
instructions, in the following sections:

• General behavior of the caches on page D4-2637.

• Cache identification on page D4-2638.

• Cacheability, cache allocation hints, and cache transient hints on page D4-2640.

• Enabling and disabling the caching of memory accesses on page D4-2641.

• Behavior of caches at reset on page D4-2643

• Non-cacheable accesses and instruction caches on page D4-2643.

• About cache maintenance in AArch64 state on page D4-2644.

• A64 Cache maintenance instructions on page D4-2648

• Data cache zero instruction on page D4-2661.

• Cache lockdown on page D4-2662.

• System level caches on page D4-2663.

• Branch prediction on page D4-2663.

• Execution and data prediction restriction System instructions on page D4-2663.

See also Caches in a VMSAv8-64 implementation on page D5-2835.

D4.4.1 General behavior of the caches

When a memory location has a Normal Cacheable memory attribute, determining whether a copy of the memory
location is held in a cache still depends on many aspects of the implementation. The following non-exhaustive list
of factors might be involved:

• The size, line length, and associativity of the cache.

• The cache allocation algorithm.

• Activity by other elements of the system that can access the memory.

• Speculative instruction fetching algorithms.

• Speculative data fetching algorithms.

• Interrupt behaviors.

Given this range of factors, and the large variety of cache systems that might be implemented, the architecture
cannot guarantee whether:

• A memory location present in the cache remains in the cache.

• A memory location not present in the cache is brought into the cache.

Instead, the following principles apply to the behavior of caches:

• The architecture has a concept of an entry locked down in the cache. How lockdown is achieved is
IMPLEMENTATION DEFINED, and lockdown might not be supported by:

— A particular implementation.

— Some memory attributes.

• An unlocked entry in a cache might not remain in that cache. The architecture does not guarantee that an
unlocked cache entry remains in the cache or remains incoherent with the rest of memory. Software must not
assume that an unlocked item that remains in the cache remains dirty.

• A locked entry in a cache is guaranteed to remain in that cache. The architecture does not guarantee that a
locked cache entry remains incoherent with the rest of memory, that is, it might not remain dirty.

Note

For more information, see The interaction of cache lockdown with cache maintenance instructions on
page D4-2662.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D4-2637
ID072021 Non-Confidential

The AArch64 System Level Memory Model
D4.4 Cache support
• Any memory location that has a Normal Cacheable attribute at either the current Exception level or at a
higher Exception level can be allocated to a cache at any time.

• It is guaranteed that no memory location will be allocated into a Data or Unified cache if that location does
not have a Normal Cacheable attribute in either:

— The translation regime at the current Exception level.

— The translation regime at any higher Exception level.

• For data accesses, any memory location with a Normal Inner Shareable or Normal Outer Shareable attribute
is guaranteed to be coherent with all Requesters in its shareability domain.

• Any memory location is not guaranteed to remain incoherent with the rest of memory.

• The eviction of a cache entry from a cache level can overwrite memory that has been written by another
observer only if the entry contains a memory location that has been written to by an observer in the
shareability domain of that memory location. The maximum size of the memory that can be overwritten is
called the Cache Write-back Granule. In some implementations the CTR_EL0 identifies the Cache
Write-back Granule.

• The allocation of a memory location into a cache cannot cause the most recent value of that memory location
to become invisible to an observer if it was previously visible to that observer.

Note

The Cacheability attribute of an address is determined by the applicable translation table entry for that address, as
modified by any applicable System register Cacheability controls, such as the SCTLR_EL1.{I, C} controls.

For the purpose of these principles, a cache entry covers at least 16 bytes and no more than 2KB of contiguous
address space, aligned to the size of the cache entry.

D4.4.2 Cache identification

The Armv8 cache identification registers describe the implemented caches that are affected by cache maintenance
instructions executed on the PE. This includes the cache maintenance instructions that:

• Affect the entire cache, for example IC IALLU.

• Operate by VA, for example IC IVAU.

• Operate by set/way, for example DC ISW.

The cache identification registers are:

• The Cache Type Register, CTR_EL0, that defines:

— The minimum line length of any of the instruction caches affected by the instruction cache
maintenance instructions.

— The minimum line length of any of the data or unified caches, affected by the data cache maintenance
instruction.

— The cache indexing and tagging policy of the Level 1 instruction cache.

Note
It is IMPLEMENTATION DEFINED whether caches beyond the PoC will be reported by this mechanism, and
because of the possible existence of system caches some caches before the PoC might not be reported. For
more information about system caches see System level caches on page D4-2663.

• A single Cache Level ID Register, CLIDR_EL1, that defines:

— The type of cache that is implemented and can be maintained using the architected cache maintenance
instructions that operate by set/way or operate on the entire cache at each cache level, up to the
maximum of seven levels.

— The Level of Coherence (LoC) for the caches. See Terms used in describing the cache maintenance
instructions on page D4-2644 for the definition of LoC.
D4-2638 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Memory Model
D4.4 Cache support
— The Level of Unification Uniprocessor (LoUU) for the caches. See Terms used in describing the cache
maintenance instructions on page D4-2644 for the definition of LoUU.

— An optional ICB field to indicate the boundary between the caches use for caching Inner Cacheable
memory regions and those used only for caching Outer Cacheable regions.

• A single Cache Size Selection Register, CSSELR_EL1, that selects the cache level and cache type of the
current Cache Size Identification Register.

• For each implemented cache that is identifiable by this mechanism, across all the levels of caching, a Cache
Size Identification Register, CCSIDR_EL1, that defines:

— Whether the cache supports Write-Through, Write-Back, Read-Allocate and Write-Allocate.

— The number of sets, associativity and line length of the cache. See Terms used in describing the cache
maintenance instructions on page D4-2644 for a definition of these terms.

Note

From Armv8.3, multiple formats of the Cache Size Identification Register are supported. For more
information, see Possible formats of the Cache Size Identification Register, CCSIDR_EL1 on page D4-2639.

To determine the cache topology associated with a PE:

1. Read the Cache Type Register to find the indexing and tagging policy used for the Level 1 instruction cache.
This register also provides the size of the smallest cache lines used for the instruction caches, and for the data
and unified caches. These values are used in cache maintenance instructions.

2. Read the Cache Level ID Register to find what caches are implemented. The register includes seven Cache
type fields, for cache levels 1 to 7. Scanning these fields, starting from Level 1, identifies the instruction, data
or unified caches implemented at each level. This scan ends when it reaches a level at which no caches are
defined. The Cache Level ID Register also specifies the Level of Unification (LoU) and the Level of
Coherence (LoC) for the cache implementation.

3. For each cache identified at stage 2:

• Write to the Cache Size Selection Register to select the required cache. A cache is identified by its
level, and whether it is:

— An instruction cache.

— A data or unified cache.

• Read the Cache Size Identification Register to find details of the cache.

Possible formats of the Cache Size Identification Register, CCSIDR_EL1

From Armv8.3, the Cache Size Identification Register, CCSIDR_EL1 has two different formats available for
defining the number of sets and associativity of the cache. For a definition of these terms, see Terms used in
describing the cache maintenance instructions on page D4-2644.

When FEAT_CCIDX is implemented:

• CCSIDR_EL1 is a 64-bit register.

• The length of the CCSIDR_EL1.Assoc field is 21 bits. This limits the associativity of the currently selected
cache to 221.

• The length of the CCSIDR_EL1.NumSets field is 24 bits. This limits the number of sets in the currently
selected cache to 224.

This is the 64-bit format of the Cache Size Identification Register.

When FEAT_CCIDX is not implemented:

• CCSIDR_EL1 is a 32-bit register.

• The length of the CCSIDR_EL1.Assoc field is 10 bits. This limits the associativity of the currently selected
cache to 210.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D4-2639
ID072021 Non-Confidential

The AArch64 System Level Memory Model
D4.4 Cache support
• The length of the CCSIDR_EL1.NumSets field is 15 bits. This limits the number of sets in the currently
selected cache to 215.

This is the 32-bit format of the Cache Size Identification Register.

When one of these formats is implemented, it is implemented across all the levels of caching.

D4.4.3 Cacheability, cache allocation hints, and cache transient hints

Cacheability only applies to Normal memory, and can be defined independently for Inner and Outer cache locations.
All types of Device memory are always treated as Non-cacheable.

As described in Memory types and attributes on page B2-165, the memory attributes include a cacheability attribute
that is one of:

• Non-cacheable.

• Write-Through cacheable.

• Write-Back cacheable.

In Armv8, Cacheability attributes other than Non-cacheable can be complemented by a cache allocation hint. This
is an indication to the memory system of whether allocating a value to a cache is likely to improve performance. In
addition, it is IMPLEMENTATION DEFINED whether a cache transient hint is supported, see Transient cacheability hint
on page D4-2640.

The cache allocation hints are assigned independently for read and write accesses, and therefore when the Transient
hint is supported the following cache allocation hints can be assigned:

For read accesses: Read-Allocate, Transient Read-Allocate, or No Read-Allocate.

For write accesses: Write-Allocate, Transient Write-Allocate, or No Write-Allocate.

Note

• A Cacheable location with both No Read-Allocate and No Write-Allocate hints is not the same as a
Non-cacheable location. A Non-cacheable location has coherency guarantees for all observers within the
system that do not apply for a location that is Cacheable, No Read-Allocate, No Write-Allocate.

• Implementations can use the cache allocation hints to limit cache pollution to a part of a cache, such as to a
subset of ways.

• For VMSAv8-64 translation table walks, the TCR_ELx.{IRGNn, ORGNn} fields define the memory
attributes of the translation tables, including the cacheability. However, this assignment supports only a
subset of the cacheability attributes described in this section.

The architecture does not require an implementation to make any use of cache allocation hints. This means an
implementation might not make any distinction between memory locations with attributes that differ only in their
cache allocation hint.

Transient cacheability hint

In Armv8, it is IMPLEMENTATION DEFINED whether a Transient hint is supported. In an implementation that supports
the Transient hint, the Transient hint is a qualifier of the cache allocation hints, and indicates that the benefit of
caching is for a relatively short period. It indicates that it might be better to restrict allocation of transient entries, to
avoid possibly casting-out other, less transient, entries.

Note

The architecture does not specify what is meant by a relatively short period.

The description of the AArch64 MAIR_EL1, MAIR_EL2, and MAIR_EL3 registers, and the AArch32 MAIR0,
MAIR1, HMAIR0, and HMAIR1 registers, includes the assignment of the Transient hint in an implementation that
supports this option. In this assignment:

• The Transient hint is defined independently for Inner Cacheable and Outer Cacheable memory regions.
D4-2640 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Memory Model
D4.4 Cache support
• A single Transient hint applies to both read and write accesses to a memory region.

D4.4.4 Enabling and disabling the caching of memory accesses

In Armv8, Cacheability control fields can force all memory locations with the Normal memory type to be treated
as Non-cacheable, regardless of their assigned Cacheability attribute. Independent controls are provided for each
stage of address translation, with separate controls for:

• Data accesses. These controls also apply to accesses to the translation tables.

• Instruction accesses.

Note

These Cacheability controls replace the cache enable controls provided in previous versions of the Arm architecture.

The Cacheability control fields and their effects are as follows:

For the EL1&0 translation regime

• When the value of SCTLR_EL1.C is 0:

— All stage 1 translations for data accesses to Normal memory are Non-cacheable.

— All accesses to the EL1&0 stage 1 translation tables are Non-cacheable.

• When the value of SCTLR_EL1.I is 0:

— All stage 1 translations for instruction accesses to Normal memory are Non-cacheable.

• When the value of HCR_EL2.CD is 1:

— All stage 2 translations for data accesses to Normal memory are Non-cacheable.

— All accesses to the EL1&0 stage 2 translation tables are Non-cacheable.

• When the value of HCR_EL2.ID is 1:

— All stage 2 translations for instruction accesses to Normal memory are Non-cacheable.

• When the value of HCR_EL2.DC is 1, all stage 1 translations and all accesses to the EL1&0
stage 1 translation tables, are treated as accesses to Normal Non-shareable Inner Write-Back
Cacheable Read-Allocate Write-Allocate, Outer Write-Back Cacheable Read-Allocate
Write-Allocate memory, regardless of the value of SCTLR_EL1.{I, C}. This applies to
translations for both data and instruction accesses.

Note

• The stage 1 and stage 2 cacheability attributes are combined as described in Combining the
stage 1 and stage 2 cacheability attributes for Normal memory on page D5-2785.

• The SCTLR_EL1.{C, I} and HCR_EL2.DC fields have no effect on the EL2, EL2&0, and
EL3 translation regimes.

• The HCR_EL2.{ID, CD} fields affect only stage 2 of the EL1&0 translation regime.

• When EL2 is using AArch64 and EL1 is using AArch32, the HCR_EL2.{ID, CD, DC}
controls apply as described here, but the EL1 controls are SCTLR.{C, I}.

• When FEAT_XS is implemented, the SCTLR_EL1.{C, I} and HCR_EL2.{ID, CD} fields
have no effect on the value of the XS attribute.

For the EL2 translation regime

• When the value of SCTLR_EL2.C is 0:

— All data accesses to Normal memory using the EL2 translation regime are
Non-cacheable.

— All accesses to the EL2 translation tables are Non-cacheable.

• When the value of SCTLR_EL2.I is 0:

— All instruction accesses to Normal memory using the EL2 translation regime are
Non-cacheable.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D4-2641
ID072021 Non-Confidential

The AArch64 System Level Memory Model
D4.4 Cache support
Note

• The SCTLR_EL2.{I, C} fields have no effect on the EL1&0 and EL3 translation regimes.

• When FEAT_XS is implemented, the SCTLR_EL2.{I, C} fields have no effect on the value
of the XS attribute.

For the EL2&0 translation regime

• When the value of SCTLR_EL2.C is 0:

— All stage 1 translations for data accesses to Normal memory are Non-cacheable.

— All accesses to the EL2&0 stage 1 translation tables are Non-cacheable.

• When the value of SCTLR_EL2.I is 0:

— All stage 1 translations for instruction accesses to Normal memory are Non-cacheable.

Note

When FEAT_XS is implemented, the SCTLR_EL2.{I, C} fields have no effect on the value of the
XS attribute.

For the EL3 translation regime

• When the value of SCTLR_EL3.C is 0:

— All data accesses to Normal memory using the EL3 translation regime are
Non-cacheable.

— All accesses to the EL3 translation tables are Non-cacheable.

• When the value of SCTLR_EL3.I is 0:

— All instruction accesses to Normal memory using the EL3 translation regime are
Non-cacheable.

Note

• The SCTLR_EL3{I, C} fields have no effect on the EL1&0, EL2, and EL2&0 translation
regimes.

• When FEAT_XS is implemented, the SCTLR_EL3.{I, C} fields have no effect on the value
of the XS attribute.

In addition:

• For translation regimes other than the EL1&0 translation regime, if the value of SCTLR_ELx.M is 0,
indicating that stage 1 translations are disabled for that translation regime, then:

— If the value of SCTLR_ELx.I is 0, instruction accesses to Normal memory from stage 1 of the
translation regime are Outer Shareable, Inner Non-cacheable, Outer Non-cacheable.

— If the value of SCTLR_ELx.I is 1, instruction accesses to Normal memory from stage 1 of the
translation regime are Outer Shareable, Inner Write-Through cacheable, Outer Write-Through
cacheable.

• For the EL1&0 translation regime, if the value of SCTLR_EL1.M is 0, indicating that stage 1 translations are
disabled for that translation regime, and the value of HCR_EL2.DC is 0:

— If the value of SCTLR_EL1.I is 0, instruction accesses to Normal memory from stage 1 of the
translation regime are Outer Shareable, Inner Non-cacheable, Outer Non-cacheable.

— If the value of SCTLR_EL1.I is 1, instruction accesses to Normal memory from stage 1 of the
translation regime are Outer Shareable, Inner Write-Through Cacheable, Outer Write-Through
Cacheable.

The effect of SCTLR_ELx.C, HCR_EL2.DC and HCR_EL2.CD is reflected in the result of the address translation
instructions in the PAR when these bits have an effect on the stages of translation being reported in the PAR.
D4-2642 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Memory Model
D4.4 Cache support
Note

• In conjunction with the requirements in Non-cacheable accesses and instruction caches on page D4-2643,
the requirements in this section mean the architecturally required effect of SCTLR_ELx.I is limited to its
effect on caching instruction accesses in unified caches.

• This specification can give rise to different cacheability attributes between instruction and data accesses to
the same location. Where this occurs, the measures for mismatch memory attributes described in Mismatched
memory attributes on page B2-176 must be followed to manage the corresponding loss of coherency.

D4.4.5 Behavior of caches at reset

In Armv8:

• All caches reset to IMPLEMENTATION DEFINED states that might be UNKNOWN.

• The Cacheability control fields described in Enabling and disabling the caching of memory accesses on
page D4-2641 reset to values that force all memory locations to be treated as Non-cacheable.

Note

This applies only to the controls that apply to the Translation regime that is used by the Exception level and
Security state entered on reset.

• An implementation can require the use of a specific cache initialization routine to invalidate its storage array
before caching is enabled. The exact form of any required initialization routine is IMPLEMENTATION DEFINED,
and the routine must be documented clearly as part of the documentation of the device.

• If an implementation permits cache hits when the Cacheability control fields force all memory locations to
be treated as Non-cacheable then the cache initialization routine must:

— Provide a mechanism to ensure the correct initialization of the caches.

— Be documented clearly as part of the documentation of the device.

In particular, if an implementation permits cache hits when the Cacheability controls force all memory
locations to be treated as Non-cacheable, and the cache contents are not invalidated at reset, the initialization
routine must avoid any possibility of running from an uninitialized cache. It is acceptable for an initialization
routine to require a fixed instruction sequence to be placed in a restricted range of memory.

• Arm recommends that whenever an invalidation routine is required, it is based on the Armv8 cache
maintenance instructions.

See also TLB behavior at reset on page D5-2814.

D4.4.6 Non-cacheable accesses and instruction caches

In AArch64 state, instruction accesses to Non-cacheable Normal memory can be held in instruction caches.

Correspondingly, the sequence for ensuring that modifications to instructions are available for execution must
include invalidation of the modified locations from the instruction cache, even if the instructions are held in Normal
Non-cacheable memory. This includes cases where System register Cacheability control fields force instruction
accesses to memory to be Non-cacheable.

Therefore when using self-modified code in Non-cacheable space in a uniprocessor system, the following sequence
is required:

; Enter this code with <Wt> containing the new 32-bit instruction
; to be held at a location pointed to by <Xn> in Normal Non-cacheable memory.
STR <Wt>, [Xn]
DSB ISH; Ensure visibility of the data stored
IC IVAU, [Xn] ; Invalidate instruction cache by VA to PoU
DSB ISH; Ensure completion of the invalidations
ISB ;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D4-2643
ID072021 Non-Confidential

The AArch64 System Level Memory Model
D4.4 Cache support
In a multiprocessor system, the IC IVAU for a non-cacheable location is broadcast to all PEs within the Inner
Shareable domain of the PE running this sequence. This is despite non-cacheable normal memory locations being
treated as Outer Shared in other parts of the architecture.

Additional software steps might be required to synchronize the threads with other PEs. This might be necessary so
that the PEs executing the modified instructions can execute an ISB after completing the invalidation, and to avoid
issues associated with concurrent modification and execution of instruction sequences. See also Concurrent
modification and execution of instructions on page B2-130 and Concurrent modification and execution of
instructions on page E2-4286.

Larger blocks of instructions can be modified using the IC IALLU instruction for a uniprocessor system, or a IC
IALLUIS for a multiprocessor system.

Note

This section applies even when the Cacheability control fields force instruction accesses to memory in AArch64
state to be Non-cacheable, as described in Enabling and disabling the caching of memory accesses on
page D4-2641.

D4.4.7 About cache maintenance in AArch64 state

The following sections give general information about cache maintenance:

• Terms used in describing the cache maintenance instructions on page D4-2644.

• The Armv8 abstraction of the cache hierarchy on page D4-2647.

The following sections describe the A64 cache maintenance instructions:

• The instruction cache maintenance instruction (IC) on page D4-2650.

• The data cache maintenance instruction (DC) on page D4-2650.

Note

Some descriptions of the cache maintenance instructions refer to the cacheability of the address on which the
instruction operates. The Cacheability of an address is determined by the applicable translation table entry for that
address, as modified by any applicable System register Cacheability controls, such as the SCTLR_EL1.{I, C}
controls.

Terms used in describing the cache maintenance instructions

Cache maintenance instructions are defined to act on particular memory locations. Instruction scope can be defined:

• By the virtual address of the memory location to be maintained, referred to as operating by VA.

• By a mechanism that describes the location in the hardware of the cache, referred to as operating by set/way.

In addition, for instruction caches, there are instructions that invalidate all entries.

The following subsections define the terms used in the descriptions of the cache maintenance instructions:

• Terminology for cache maintenance instructions operating by set/way on page D4-2645.

• Terminology for Clean, Invalidate, and Clean and Invalidate instructions on page D4-2645.

Note

There is no terminology specific to cache maintenance instructions that operate by VA. When all applicable stages
of translation are disabled, the VA used is identical to the PA. For more information about memory system behavior
when address translation is disabled, see The effects of disabling a stage of address translation on page D5-2731.
D4-2644 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Memory Model
D4.4 Cache support
Terminology for cache maintenance instructions operating by set/way

Cache maintenance instruction that operate by set/way refer to the particular structures in a cache. Three parameters
describe the location in a cache hierarchy that an instruction works on. These parameters are:

Level The cache level of the hierarchy. The number of levels of cache is IMPLEMENTATION DEFINED. The
cache levels that can be managed using the architected cache maintenance instructions that operate
by set/way can be determined from the CLIDR_EL1.

In the Arm architecture, the lower numbered cache levels are those closest to the PE. See Memory
hierarchy on page B2-155.

Set Each level of a cache is split up into a number of sets. Each set is a set of locations in a cache level
to which an address can be assigned. Usually, the set number is an IMPLEMENTATION DEFINED
function of an address.

In the Arm architecture, sets are numbered from 0.

Way The associativity of a cache is the number of locations in a set to which a specific address can be
assigned. The way number specifies one of these locations.

In the Arm architecture, ways are numbered from 0.

Note

Because the allocation of a memory address to a cache location is entirely IMPLEMENTATION DEFINED, Arm expects
that most portable software will use only the cache maintenance instructions by set/way as single steps in a routine
to perform maintenance on the entire cache.

Terminology for Clean, Invalidate, and Clean and Invalidate instructions

Caches introduce coherency problems in two possible directions:

1. An update to a memory location by a PE that accesses a cache might not be visible to other observers that
can access memory. This can occur because new updates are still in the cache and are not visible yet to the
other observers that do not access that cache.

2. Updates to memory locations by other observers that can access memory might not be visible to a PE that
accesses a cache. This can occur when the cache contains an old, or stale, copy of the memory location that
has been updated.

The Clean and Invalidate instructions address these two issues. The definitions of these instructions are:

Clean A cache clean instruction ensures that updates made by an observer that controls the cache are made
visible to other observers that can access memory at the point to which the instruction is performed.
Once the Clean has completed, the new memory values are guaranteed to be visible to the point to
which the instruction is performed, for example to the Point of Unification.

The cleaning of a cache entry from a cache can overwrite memory that has been written by another
observer only if the entry contains a location that has been written to by an observer in the
shareability domain of that memory location.

Invalidate A cache invalidate instruction ensures that updates made visible by observers that access memory
at the point to which the invalidate is defined, are made visible to an observer that controls the cache.
This might result in the loss of updates to the locations affected by the invalidate instruction that
have been written by observers that access the cache, if those updates have not been cleaned from
the cache since they were made.

If the address of an entry on which the invalidate instruction operates is Normal, Non-cacheable or
any type of Device memory then an invalidate instruction also ensures that this address is not
present in the cache.

Note
Entries for addresses that are Normal Cacheable can be allocated to the cache at any time, and so
the cache invalidate instruction cannot ensure that the address is not present in a cache.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D4-2645
ID072021 Non-Confidential

The AArch64 System Level Memory Model
D4.4 Cache support
Clean and Invalidate

A cache clean and invalidate instruction behaves as the execution of a clean instruction followed
immediately by an invalidate instruction. Both instructions are performed to the same location.

The points to which a cache maintenance instruction can be defined differ depending on whether the instruction
operates by VA or by set/way:

• For instructions operating by set/way, the point is defined to be to the next level of caching. For the All
operations, the point is defined as the Point of Unification for each location held in the cache.

• For instructions operating by VA, the following conceptual points are defined:

Point of Coherency (PoC)

The point at which all agents that can access memory are guaranteed to see the same copy of a
memory location for accesses of any memory type or cacheability attribute. In many cases this is
effectively the main system memory, although the architecture does not prohibit the
implementation of caches beyond the PoC that have no effect on the coherency between memory
system agents.

Note
The presence of system caches can affect the determination of the point of coherency as described
in System level caches on page D4-2663.

Point of Unification (PoU)

The PoU for a PE is the point by which the instruction and data caches and the translation table
walks of that PE are guaranteed to see the same copy of a memory location. In many cases, the
Point of Unification is the point in a uniprocessor memory system by which the instruction and
data caches and the translation table walks have merged.

The PoU for an Inner Shareable shareability domain is the point by which the instruction and data
caches and the translation table walks of all the PEs in that Inner Shareable shareability domain
are guaranteed to see the same copy of a memory location. Defining this point permits
self-modifying software to ensure future instruction fetches are associated with the modified
version of the software by using the standard correctness policy of:

1. Clean data cache entry by address.

2. Invalidate instruction cache entry by address.

Point of Persistence (PoP)

When FEAT_DPB is implemented:

The point in a memory system, if it exists, at or beyond the Point of Coherency, where
a write to memory is maintained when system power is removed, and reliably
recovered when power is restored to the affected locations in memory.

When FEAT_DPB and FEAT_DPB2 are implemented:

The point in a memory system where there is a system guarantee that there is
sufficient energy within the system to ensure that a write to memory will be persistent
if system power is removed.

Note
Such memory is sometimes called non-volatile memory. For example, the Storage-class memory
shown in Figure B2-1 on page B2-156 could be used as target memory for this feature.

Point of Deep Persistence (PoDP)

The point in a memory system where any writes that have reached that point are persistent, even
in the event of an instantaneous hardware failure of the power system.
D4-2646 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Memory Model
D4.4 Cache support
The following fields in the CLIDR_EL1 relate to the PoC and PoU:

LoC, Level of Coherence

This field defines the last level of cache that must be cleaned or invalidated when cleaning or
invalidating to the Point of Coherency. The LoC value is a cache level, so, for example, if LoC
contains the value 3:

• A clean to the Point of Coherency operation requires the level 1, level 2 and level 3 caches
to be cleaned.

• Level 4 cache is the first level that does not have to be maintained.

If the LoC field value is 0x0, this means that no levels of cache need to cleaned or invalidated
when cleaning or invalidating to the Point of Coherency.

If the LoC field value is a nonzero value that corresponds to a level that is not implemented, this
indicates that all implemented caches are before the Point of Coherency.

LoUU, Level of Unification, uniprocessor

This field defines the last level of data cache that must be cleaned or invalidated when cleaning
or invalidating to the Point of Unification for the PE. As with LoC, the LoUU value is a cache
level.

If the LoUU field value is 0x0, this means that no levels of data cache need to be cleaned or
invalidated when cleaning or invalidating to the Point of Unification.

If the LoUU field value is a nonzero value that corresponds to a level that is not implemented,
this indicates that all implemented caches are before the Point of Unification.

LoUIS, Level of Unification, Inner Shareable

In any implementation:

• This field defines the last level of data or unified cache that must be cleaned or invalidated
when cleaning or invalidating to the Point of Unification for the Inner Shareable
shareability domain. As with LoC, the LoUIS value is a cache level.

• If the LoUIS field value is 0x0, this means that no levels of data or unified cache need to
cleaned or invalidated when cleaning or invalidating to the Point of Unification for the
Inner Shareable shareability domain.

• If the LoUIS field value is a nonzero value that corresponds to a level that is not
implemented, this indicates that all implemented caches are before the Point of
Unification.

The Armv8 abstraction of the cache hierarchy

The following subsections describe the Armv8 abstraction of the cache hierarchy:

• Cache maintenance instructions that operate by VA on page D4-2647.

• Cache maintenance instructions that operate by set/way on page D4-2648.

Cache maintenance instructions that operate by VA

The VA-based cache maintenance instructions are described as operating by VA. Each of these instructions is always
qualified as being one of:

• Performed to the Point of Coherency.

• Performed to the Point of Unification.

• When FEAT_DPB is implemented, performed to the Point of Persistence.

See Terms used in describing the cache maintenance instructions on page D4-2644 for definitions of these terms,
and for more information about possible meanings of VA.

A64 Cache maintenance instructions on page D4-2648 lists the VA-based maintenance instructions.

The CTR_EL0 holds minimum line length values for:

• The instruction caches.

• The data and unified caches.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D4-2647
ID072021 Non-Confidential

The AArch64 System Level Memory Model
D4.4 Cache support
These values support efficient invalidation of a range of VAs, because this value is the most efficient address stride
to use to apply a sequence of VA-based maintenance instructions to a range of VAs.

For the Invalidate data or unified cache line by VA instruction, the Cache Write-back Granule field of the CTR_EL0
defines the maximum granule that a single invalidate instruction can invalidate. This meaning of the Cache
Write-back Granule is in addition to its defining the maximum size that can be written back.

Cache maintenance instructions that operate by set/way

A64 Cache maintenance instructions on page D4-2648 lists the set/way-based maintenance instructions. Some
encodings of these instructions include a required field that specifies the cache level for the instruction:

• A clean instruction cleans from the level of cache specified through to at least the next level of cache, moving
further from the PE.

• An invalidate instruction invalidates only at the level specified.

D4.4.8 A64 Cache maintenance instructions

The A64 cache maintenance instructions are part of the A64 System instruction class in the register encoding space.
For encoding details and other general information on these System instructions, see System instructions on
page C3-218, SYS on page C6-1482 and Cache maintenance instructions, and data cache zero operation on
page C5-399.

Table D4-3 on page D4-2648 shows the AArch64 System instructions that perform instruction or data cache
maintenance. Instructions that take an argument include Xt in the entry in the System instruction on page D4-2648
column.

Note

• In Table D4-3 on page D4-2648 the Point of Unification is the Point of Unification of the PE executing the
cache maintenance instruction.

• In general, the AArch32 instruction and data cache maintenance instructions provide equivalent functionality
to the AArch64 cache maintenance instructions, see AArch32 cache and branch predictor maintenance
instructions on page G4-6239. However, the Data Cache Clean to the Point of Persistence instruction,
implemented when FEAT_DPB is implemented, is supported in AArch64 state only.

Table D4-3 System instructions for cache maintenance

System instruction Instruction Notes

Instruction cache maintenance instructions

IC IALLUIS Invalidate all to Point of Unification, Inner Shareable EL1 or higher access.

IC IALLU Invalidate all to Point of Unification EL1 or higher access.

IC IVAU, Xt Invalidate by virtual address to Point of Unification When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise, EL1 or higher access.

Data cache maintenance instructions

DC IVAC, Xt Invalidate by virtual address to Point of Coherency EL1 or higher access.

DC IGVAC, Xt Invalidate of Allocation Tags by virtual address to
Point of Coherency

EL1 or higher access.

DC IGDVAC, Xt Invalidate of data and Allocation Tags by virtual
address to Point of Coherency

EL1 or higher access.
D4-2648 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Memory Model
D4.4 Cache support
A DSB or DMB instruction intended to ensure the completion of cache or branch predictor maintenance instructions
must have an access type of both loads and stores.

The following subsections give more information about these instructions:

• The instruction cache maintenance instruction (IC) on page D4-2650.

• The data cache maintenance instruction (DC) on page D4-2650.

• EL0 accessibility of cache maintenance instructions on page D4-2652.

• General requirements for the scope of maintenance instructions on page D4-2652.

• Effects of instructions that operate by VA to the PoC on page D4-2652.

• Effects of instructions that operate by VA to the PoP on page D4-2653.

DC ISW, Xt Invalidate by set/way EL1 or higher access.

DC CVAC, Xt Clean by virtual address to Point of Coherency When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CGVAC, Xt Clean of Allocation Tags by virtual address to Point of
Coherency

When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CGDVAC, Xt Clean of data and Allocation Tags by virtual address
to Point of Coherency

When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CVADP, Xt Clean by virtual address to Point of Deep Persistence When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CGVADP, Xt Clean of Allocation Tags by virtual address to Point of
Deep Persistence

When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CGDVADP, Xt Clean of data and Allocation Tags by virtual address
to Point of Deep Persistence

When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CGDVAP, Xt Clean of data and Allocation Tags by virtual address
to Point of Persistence

When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CGVAP, Xt Clean of Allocation Tags by virtual address to Point of
Persistence

When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CVAP, Xt Clean by virtual address to Point of Persistenceb When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CSW, Xt Clean by set/way EL1 or higher access.

DC CVAU, Xt Clean by virtual address to Point of Unification When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CIVAC, Xt Clean and invalidate by virtual address to
Point of Coherency

When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CIGVAC, Xt Clean and invalidate of Allocation Tags by virtual
address to Point of Coherency

When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CIGDVAC, Xt Clean and invalidate of data and Allocation Tags by
virtual address to Point of Coherency

When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CISW, Xt Clean and invalidate by set/way EL1 or higher access.

a. When HCR_EL2.{E2H,TGE} == {1, 1}, the control is from SCTLR_EL2.

b. Supported only when FEAT_DPB is implemented.

Table D4-3 System instructions for cache maintenance (continued)

System instruction Instruction Notes
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D4-2649
ID072021 Non-Confidential

The AArch64 System Level Memory Model
D4.4 Cache support
• Effects of instructions that operate by VA to the PoU on page D4-2654.

• Effects of All and set/way maintenance instructions on page D4-2654.

• Effects of virtualization and Security state on the cache maintenance instructions on page D4-2654.

• Boundary conditions for cache maintenance instructions on page D4-2656.

• Ordering and completion of data and instruction cache instructions on page D4-2656.

• Performing cache maintenance instructions on page D4-2660.

The instruction cache maintenance instruction (IC)

System instructions on page C3-218 describes the A64 assembly syntax for this instruction.

When an IC instruction requires an address argument this takes the form of a 64-bit register that holds the VA
argument. No alignment restrictions apply for this address.

Any cache maintenance instruction operating by VA includes as part of any required VA to PA translation:

• For an instruction executed at EL1, or at EL2 when HCR_EL2.E2H==1, the current ASID.

• The current Security state.

• Whether the instruction was executed at EL1 or EL2.

• For an instruction executed at EL1, the current VMID.

That VA to PA translation might fault. However, for an instruction cache maintenance instruction that operates by
VA:

• It is IMPLEMENTATION DEFINED whether the instruction can generate:

— An Access flag fault.

— A Translation fault.

• The instruction cannot generate a Permission fault, except for:

— The possible generation of a Permission fault by the execution of an IC IVAU instruction at EL0 when
the specified address does not have read access at EL0, as described in EL0 accessibility of cache
maintenance instructions on page D4-2652.

— The possible Permission fault on a Stage 2 fault on a stage 1 translation table walk.

For more information about possible faults on a cache maintenance instruction that operates by VA see VMSAv8-64
memory aborts on page D5-2800.

See also Ordering and completion of data and instruction cache instructions on page D4-2656.

The data cache maintenance instruction (DC)

System instructions on page C3-218 describes the A64 assembly syntax for this instruction.

When a DC instruction requires a set/way/level argument this takes the form of a 64-bit register, the upper 32 bits of
which are RES0.

If a data cache maintenance by set/way instruction specifies a set, way, or level argument that is larger than the value
supported by the implementation then the instruction is CONSTRAINED UNPREDICTABLE, see Out of range values of
the Set/Way/Index fields in cache maintenance instructions on page K1-8423 or the instruction description.

When a DC instruction requires an address argument this takes the form of a 64-bit register that holds the VA
argument. No alignment restrictions apply for this address.

Any cache maintenance instruction operating by VA includes as part of any required VA to PA translation:

• For an instruction executed at EL1, or at EL2 when HCR_EL2.E2H is 1, the current ASID.

• The current Security state.

• Whether the instruction is executed at EL1 or EL2.

• For an instruction executed at EL1, the current VMID.
D4-2650 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Memory Model
D4.4 Cache support
That VA to PA translation might fault. However, a data or unified cache maintenance instruction that operates by
VA cannot generate a Permission fault except in the following cases:

• The possible generation of a Permission fault by:

— The execution of a DC IVAC instruction when the specified address does not have write permission.

— The execution of an enabled DC * instruction at EL0 when the specified address does not have read
access at EL0, as described in EL0 accessibility of cache maintenance instructions on page D4-2652.

The description of Permission faults includes possible constraints on the generation of Permission faults on
cache maintenance by VA instructions.

• The possible Permission fault on a Stage 2 fault on a stage 1 translation table walk.

For more information about possible faults on a VA to PA translation see VMSAv8-64 memory aborts on
page D5-2800.

When executed at EL1, a DC ISW instruction performs a clean and invalidate, meaning it performs the same
maintenance as a DC CISW instruction, if all of the following apply:

• EL2 is implemented and enabled in the current Security state.

• Either:

— The value of HCR_EL2.SWIO is 1, forcing a cache clean to perform a clean and invalidate.

— The value of HCR_EL2.VM is 1, meaning EL1&0 stage two address translation is enabled.

When executed at EL1, a DC IVAC instruction performs a clean and invalidate, meaning it performs the same
maintenance as a DC CIVAC instruction, if all of the following apply:

• EL2 is implemented and enabled in the current Security state.

• The value of HCR_EL2.VM is 1, meaning EL1&0 stage two address translation is enabled.

Note

The forcing of a clean instruction to perform a clean invalidate applies to the AArch32 cache maintenance
instructions DCIMVAC and DCISW. See AArch32 data cache maintenance instructions (DC*) on page G4-6241.

When FEAT_DPB is implemented, meaning the DC CVAP instruction is implemented, if the memory system does not
support the Point of Persistence, a data cache clean to the PoP, DC CVAP, behaves as a data cache clean to the PoC,
DC CVAC.

Note

• Support for the Point of Persistence does not change the definition or behavior of the CLIDR_EL1 System
register.

• Because a DSB SYS instruction will not complete until all previous DC CVAP instructions have completed, the
following sequence can be used to ensure the completion of any store to the Point of Persistence, where the
store might be to Non-cacheable memory:

 DMB ; Note this can be any DMB that applies to both loads and stores
 DC CVAP, Xt
 DSB SYS

• If caches that are invisible to the programmer exist beyond the Point of Coherency but before the Point of
Persistence and hold data that is marked as Non-cacheable, the DC CVAP operation causes the Non-cacheable
locations to be cleaned from those caches.

If a memory fault that sets the FAR for the translation regime applicable for the cache maintenance instruction is
generated from a data cache maintenance instruction, the FAR holds the address specified in the register argument
of the instruction.

Note

Despite its mnemonic, DC ZVA is not a cache maintenance instruction.

See also EL0 accessibility of cache maintenance instructions on page D4-2652 and Ordering and completion of
data and instruction cache instructions on page D4-2656.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D4-2651
ID072021 Non-Confidential

The AArch64 System Level Memory Model
D4.4 Cache support
EL0 accessibility of cache maintenance instructions

The SCTLR_EL1.UCI bit enables EL0 access for the DC CVAU, DC CVAC, DC CVAP, DC CIVAC, and IC IVAU instructions.
When EL0 use of these instructions is disabled because SCTLR_EL1.UCI == 0, executing one of these instructions
at EL0 generates a trap to EL1, that is reported using EC = 0x18. When HCR_EL2.{E2H,TGE} == 1, the control is
from SCTLR_EL2.

Note

DC CVAP is implemented only if FEAT_DPB is implemented.

For these instructions read access permission is required. When the value of SCTLR_EL1.UCI is 1:

• For the DC CVAU, DC CVAC, DC CVAP, and DC CIVAC instructions, if the instruction is executed at EL0 and the
address specified in the argument cannot be read at EL0, a Permission fault might be generated.

• For the IC IVAU instruction, if the instruction is executed at EL0 and the address specified in the argument
cannot be read at EL0, it is IMPLEMENTATION DEFINED whether a Permission fault is generated.

For more information see the description of Permission faults, In the case of a DC * instruction executed at EL0 when
the address specified cannot be read at EL0 the Permission fault is generated unless one of the permitted constraints
described in that section applies and means the fault cannot be generated.

Software can read the CTR_EL0 to discover the stride needed for cache maintenance instructions. The
SCTLR_EL1.UCT bit enables EL0 access to the CTR_EL0. When EL0 access to the Cache Type register is
disabled, a register access instruction executed at EL0 is trapped to EL1 using EC = 0x18.

General requirements for the scope of maintenance instructions

The Armv8 specification of the cache maintenance instructions describes what each instruction is guaranteed to do
in a system. It does not limit other behaviors that might occur, provided they are consistent with the requirements
described in General behavior of the caches on page D4-2637, Behavior of caches at reset on page D4-2643, and
Preloading caches on page B2-159.

This means that as a side-effect of a cache maintenance instruction:

• Any location in the cache might be cleaned.

• Any unlocked location in the cache might be cleaned and invalidated.

Note

Arm recommends that, for best performance, such side-effects are kept to a minimum. Arm strongly recommends
that the side-effects of operations performed in Non-secure state do not have a significant performance impact on
execution in Secure state.

Effects of instructions that operate by VA to the PoC

For Normal memory that is not Inner Non-cacheable, Outer Non-cacheable, cache maintenance instructions that
operate by VA to the PoC must affect the caches of other PEs in the shareability domain described by the shareability
attributes of the VA supplied with the instruction.

For Device memory and Normal memory that is Inner Non-cacheable, Outer Non-cacheable, these instructions must
affect the caches of all PEs in the Outer Shareable shareability domain of the PE on which the instruction is
operating.

In all cases, for any affected PE, these instructions affect all data and unified caches to the PoC. Table D4-4 on
page D4-2653 shows the scope of these Data and unified cache maintenance instructions.
D4-2652 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Memory Model
D4.4 Cache support
Note

It is IMPLEMENTATION DEFINED by the system whether the cache maintenance instructions have an effect on
the caches of observers that are not PEs within the affected shareability domain to which the cache maintenance
instructions apply.

Effects of instructions that operate by VA to the PoP

For Normal memory that is not Inner Non-cacheable, Outer Non-cacheable, cache maintenance instructions that
operate by VA to the PoP must affect the caches of other PEs in the shareability domain described by the shareability
attributes of the VA supplied with the instruction.

For Device memory and Normal memory that is Inner Non-cacheable, Outer Non-cacheable, these instructions must
affect the caches of all PEs in the Outer Shareable shareability domain of the PE on which the instruction is
operating.

In all cases, for any affected PE, these instructions affect all data and unified caches to the PoP. Table D4-5 on
page D4-2653 shows the scope of these Data and unified cache maintenance to the PoP instructions.

Note

It is IMPLEMENTATION DEFINED by the system whether the cache maintenance instructions have an effect on
the caches of observers that are not PEs within the affected shareability domain to which the cache maintenance
instructions apply.

Table D4-4 PEs affected by cache maintenance instructions to the PoC

Shareability PEs affected Effective to

Non-shareable The PE executing the instruction The PoC of the entire
system

Inner
Shareable

All PEs in the same Inner Shareable shareability domain as the PE executing the
instruction

The PoC of the entire
system

Outer
Shareable

All PEs in the same Outer Shareable shareability domain as the PE executing the
instruction

The PoC of the entire
system

Table D4-5 PEs affected by cache maintenance instructions to the PoP

Shareability PEs affected Effective to

Non-shareable The PE executing the instruction The PoPof the entire
system

Inner
Shareable

All PEs in the same Inner Shareable shareability domain as the PE executing the
instruction

The PoP of the entire
system

Outer
Shareable

All PEs in the same Outer Shareable shareability domain as the PE executing the
instruction

The PoP of the entire
system
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D4-2653
ID072021 Non-Confidential

The AArch64 System Level Memory Model
D4.4 Cache support
Effects of instructions that operate by VA to the PoU

For cache maintenance instructions that operate by VA to the PoU, Table D4-6 on page D4-2654 shows how, for a
VA in a Normal or Device memory location, the shareability attribute of the VA determines the minimum set of PEs
affected, and the point to which the instruction must be effective.

Note

• The set of PEs guaranteed to be affected is never greater than the PEs in the Inner Shareable shareability
domain containing the PE executing the instruction.

• It is IMPLEMENTATION DEFINED by the system whether the cache maintenance instructions have an
effect on the caches of observers that are not PEs within the affected shareability domain to which the cache
maintenance instructions apply.

Effects of All and set/way maintenance instructions

The IC IALLU and DC set/way instructions apply only to the caches of the PE that performs the instruction.

The IC IALLUIS instruction can affect the caches of all PEs in the same Inner Shareable shareability domain as the
PE that performs the instruction. This instruction has an effect to the Point of Unification of instruction cache fills,
data cache fills, and write-backs, and translation table walks, of all PEs in the same Inner Shareable shareability
domain.

Note

• The possible presence of system caches, as described in System level caches on page D4-2663, means
architecture does not guarantee that all levels of the cache can be maintained using set/way instructions.

• It is IMPLEMENTATION DEFINED by the system whether the cache maintenance instructions have an
effect on the caches of observers that are not PEs within the affected shareability domain to which the cache
maintenance instructions apply.

Effects of virtualization and Security state on the cache maintenance instructions

Each Security state has its own physical address (PA) space, therefore cache entries are associated with PA space.

Table D4-7 on page D4-2655 shows the effects of virtualization and security on the cache maintenance instructions.
In the table, the Specified entries on page D4-2655 are entries that the architecture requires the instruction to affect.

Table D4-6 PEs affected by cache maintenance instructions to the PoU

Shareability PEs affected Effective to

Non-shareable The PE executing the instruction The PoU of instruction cache fills, data cache fills and
write-backs, and translation table walks, on the PE
executing the instruction

Inner Shareable or
Outer Shareable

All PEs in the same Inner Shareable shareability
domain as the PE executing the instruction

The PoU of instruction cache fills, data cache fills and
write-backs, and translation table walks, of all PEs in
the same Inner Shareable shareability domain as the PE
executing the instruction
D4-2654 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Memory Model
D4.4 Cache support
Note

The rules described in General behavior of the caches on page D4-2637 mean that an instruction might also affect
other entries.

Table D4-7 Effects of virtualization and security on the maintenance instructions

Cache maintenance instructions
Security
state

Specified entries

Data or unified cache maintenance instructions

Invalidate, Clean, or Clean and
Invalidate by VA:

DC IVAC, DC CVAC, DC CVAP,

DC CVAU, DC CIVAC, DC CVAP

Both All lines that hold the PA that, in the current Security state, is mapped to
by the combination of all of:

• The specified VA.

• For an instruction executed at EL1, EL0, or at EL2 when
HCR_EL2.E2H is set to 1 the current ASID if the location is
mapped to by a non-global page.

• For an instruction executed at EL1 when SCR_EL3.NS == 1 or
SCR_EL3.EEL2 == 1, the current VMID.a

• For an instruction executed at EL0 when (SCR_EL3.NS == 1 or
SCR_EL3.EEL2 == 1) and (HCR_EL2.E2H == 0 or
HCR_EL2.TGE == 0), the current VMID.a

Invalidate, Clean, or Clean and
Invalidate by set/way:

DC ISW, DC CSW, DC CISW

Non-secure Line specified by set/way provided that the entry comes from the
Non-secure PA space.

Secure Line specified by set/way regardless of the PA space that the entry has
come from.

Instruction cache maintenance instructions

Invalidate by VA:

IC IVAU

Both All lines corresponding to the specified VAb in the current translation
regime and:

• For an instruction executed at EL1, EL0, or at EL2 when
HCR_EL2.E2H is set to 1 the current ASID.

• For an instruction executed at EL1 when SCR_EL3.NS == 1 or
SCR_EL3.EEL2 == 1, the current VMID.a

• For an instruction executed at EL0 when (SCR_EL3.NS == 1 or
SCR_EL3.EEL2 == 1) and (HCR_EL2.E2H == 0 or
HCR_EL2.TGE == 0), the current VMID.a

Invalidate All:

IC IALLU, IC IALLUIS

Both For an instruction executed at:

• EL1 when SCR_EL3.NS == 0 and SCR_EL3.EEL2 == 1, all
instruction cache lines containing entries associated with the
current VMID.

• EL1 when SCR_EL3.NS == 1, all instruction cache lines
containing Non-secure entries associated with the current VMID.

• EL2 when SCR_EL3.NS == 1, all instruction cache lines
containing Non-secure entries.

• EL1 when the Effective value of SCR_EL3.{EEL2, NS} is {0,0},
EL2 when SCR_EL3.{EEL2,NS} is {1, 0}, or EL3, all instruction
cache lines.

a. Dependencies on the VMID apply even when HCR_EL2.VM is set to 0. The architecture does not define a reset value for
VTTBR_EL2.VMID, and therefore, in any implementation that includes EL2, the boot software executed when reset is deasserted must
initialize VTTBR_EL2.VMID.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D4-2655
ID072021 Non-Confidential

The AArch64 System Level Memory Model
D4.4 Cache support
For locked entries and entries that might be locked, the behavior of cache maintenance instructions described in The
interaction of cache lockdown with cache maintenance instructions on page D4-2662 applies.

With an implementation that generates aborts if entries are locked or might be locked in the cache, when the use of
lockdown aborts is enabled, these aborts can occur on any cache maintenance instructions.

In an implementation that includes EL2:

• The architecture does not require cache cleaning when switching between virtual machines. Cache
invalidation by set/way must not present an opportunity for one virtual machine to corrupt state associated
with a second virtual machine. To ensure this requirement is met, invalidate by set/way instructions can,
instead, perform a clean and invalidate by set/way.

• As described in The data cache maintenance instruction (DC) on page D4-2650, the AArch64 Data cache
invalidate instructions, DC IVAC and DC ISW, when executed at EL1 and EL0, and the AArch32 Data cache
invalidate instructions DCIMVAC and DCISW, when executed at EL1, can be configured to perform a cache clean
as well as a cache invalidation.

• TLB and instruction cache invalidate instructions executed at EL1 are broadcast across the Inner Shareable
domain when all of the following is true:

— When the value of HCR_EL2.FB is 1.

— EL3 is not implemented, or EL3 is implemented and either SCR_EL3.NS == 1 or SCR_EL3.EEL2
== 1.

When EL1 is using AArch64, this applies to the IC IALLU instruction. This means the instruction performs
the invalidation that would be performed by the corresponding Inner Shareable instruction IC IALLUIS.

For more information about the cache maintenance instructions, see About cache maintenance in AArch64 state on
page D4-2644, A64 Cache maintenance instructions on page D4-2648, and Chapter D5 The AArch64 Virtual
Memory System Architecture.

Boundary conditions for cache maintenance instructions

Cache maintenance instructions operate on the caches regardless of whether the System register Cacheability
controls force all memory accesses to be Non-cacheable.

For VA-based cache maintenance instructions, the instruction operates on the caches regardless of the memory type
and cacheability attributes marked for the memory address in the VMSA translation table entries. This means that
the effects of the cache maintenance instructions can apply regardless of:

• Whether the address accessed:

— Is Normal memory or Device memory.

— Has the Cacheable attribute or the Non-cacheable attribute.

• Any applicable domain control of the address accessed.

• The access permissions for the address accessed, other than the effect of the stage two write permission on
data or unified cache invalidation instructions.

Ordering and completion of data and instruction cache instructions

All data cache instructions, other than DC ZVA, that specify an address:

• Execute in program order relative to loads or stores that have all of the following properties:

— Access an address in Normal memory with either Inner Write Through or Inner Write Back attributes
within the same cache line of minimum size, as indicated by CTR_EL0.DMinLine.

b. The type of instruction cache used affects the interpretation of the specified entries in this table such that:
�For a PIPT instruction cache, the cache maintenance applies to all entries whose physical address corresponds to the specified address.
�For a VIPT instruction cache, the cache maintenance applies to entries whose virtual index and physical tag corresponds to the specified
address.

For information on types of instruction cache see Instruction caches on page D5-2835.
D4-2656 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Memory Model
D4.4 Cache support
— Use an address with the same cacheability attributes as the address passed to the data cache instruction.

• Can execute in any order relative to loads or stores that have all of the following properties:

— Access an address in Normal memory with either Inner Write Through or Inner Write Back attributes
within the same cache line of minimum size, as indicated by CTR_EL0.DMinLine.

— Use an address with different cacheability attributes as the address passed to the data cache instruction.

— Do not have a DMB or DSB executed between the load or store instruction and the data cache
instruction.

• Can execute in any order relative to loads or stores that access any address with the Device memory attribute,
or with Normal memory with Inner Non-cacheable attribute unless a DMB or DSB is executed between the
instructions.

• Execute in program order relative to other data cache instructions, other than DC ZVA, that specify an address
within the same cache line of minimum size, as indicated by CTR_EL0.DMinLine.

• Can execute in any order relative to loads or stores that access an address in a different cache line of minimum
size, as indicated by CTR_EL0.DMinLine, unless a DMB or DSB is executed between the instructions.

• Can execute in any order relative to other data cache instructions, other than DC ZVA, that specify an address
in a different cache line of minimum size, as indicated by CTR_EL0.DMinLine, unless a DMB or DSB is
executed between the instructions.

• Can execute in any order relative to instruction cache maintenance instructions unless a DSB is executed
between the instructions.

• Can execute in any order relative to data cache maintenance instructions that do not specify an address unless
a DMB or DSB is executed between the instructions.

Note

Despite its mnemonic, the DC ZVA, Data Cache Zero by VA instruction is not a data cache maintenance
instruction.

Note

• Data cache ordering rules by address are consistent with physically indexed physically tagged caches. See
Data and unified caches on page D5-2835.

• Data cache zero instruction on page D4-2661 describes the ordering and completion rules for Data Cache
Zero.

All data cache maintenance instructions that do not specify an address:

• Can execute in any order relative to data cache maintenance instructions that do not specify an address unless
a DMB or DSB is executed between the instructions.

• Can execute in any order relative to data cache maintenance instructions that specify an address, other than
Data Cache Zero, unless a DMB or DSB is executed between the instructions.

• Can execute in any order relative to loads or stores unless a DMB or DSB is executed between the instructions.

• Can execute in any order relative to instruction cache maintenance instructions unless a DSB is executed
between the instructions.

All instruction cache maintenance instructions can execute in any order relative to other instruction cache
instructions, data cache instructions, loads, and stores unless a DSB is executed between the instructions.

A cache maintenance instruction can complete at any time after it is executed, but is only guaranteed to be complete,
and its effects visible to other observers, following a DSB instruction executed by the PE that executed the cache
maintenance instruction. See also the requirements for cache maintenance instructions in Completion and endpoint
ordering on page B2-141.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D4-2657
ID072021 Non-Confidential

The AArch64 System Level Memory Model
D4.4 Cache support
In all cases, where the text in this section refers to a DMB or a DSB, this means a DMB or DSB whose required access type
is both loads and stores.

Note

These ordering requirements are extended from the requirements in AArch32 state given in:

• Ordering of cache and branch predictor maintenance instructions on page G4-6248.

• AArch32 instruction cache maintenance instructions (IC*) on page G4-6240.

Ordering and completion of Data Cache Clean to Point of Persistence

The update of the persistent memory as a result of Data Cache Clean to the Point of Persistence is guaranteed to
have occurred either after:

• The execution of a DSB applying to both reads and writes after the execution of the Data Cache Clean to the
Point of Persistence.

• The update to persistent memory caused by a different Data Cache Clean to the Point of Persistence that is
ordered after a DMB applying to both reads and writes that appears after the original Data Cache Clean to the
Point of Persistence.

Note

This second point is an aspect of the fact that the Data Cache Clean to the Point of Persistence instructions are
ordered by DMB, and this controls the order of arrival in persistent memory.

Note

The ordering effect for the Data Cache Clean to the Point of Persistence by DMB applying to both read and writes is
not sufficient to ensure that in Example D4-1 on page D4-2658, observation of the value '1' in the memory location
X3 implies that the Data Cache Clean to the Point of Persistence has caused an update of persistent memory:

Example D4-1 The ordering effect for the Data Cache Clean to the Point of Persistence

; initial condition has [X3]=0.

DC CVADP, X1
DMB
MOV X2,#1
STR X2, [X3]

However, in Example D4-2 on page D4-2658, the ordering effects of the DMB instruction will ensure that the location
pointed by P0: X1 will reach the Point of Persistence before, or at the same time as, the location pointed by P1:X8.

Example D4-2 The ordering effect for the Data Cache Clean to the Point of Persistence

; initial conditions has P0: X3 and P1: X3 point to the same location, which is 0 at the start of this example

P0

DC CVAP, X1
DMB
MOV X2, #1
STR X2, [X3]

P1

loop
 LDR X2, [X3]
 CBZ X2, loop
D4-2658 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Memory Model
D4.4 Cache support
 DMB
 DC CVAP, X8

Ordering and completion of Data Cache Clean to Point of Deep Persistence

The update of the deep persistent memory as a result of Data Cache Clean to the Point of Deep Persistence is
guaranteed to have occurred either after:

• The execution of a DSB applying to both reads and writes after the execution of the Data Cache Clean to the
Point of Deep Persistence.

• The update to deep persistent memory caused by a different Data Cache Clean to the Point of Deep
Persistence that is ordered after a DMB applying to both reads and writes that appears after the original Data
Cache Clean to the Point of Deep Persistence.

Note

This second point is an aspect of the fact that the Data Cache Clean to the Point of Deep Persistence instructions are
ordered by DMB, and this controls the order of arrival in deep persistent memory.

Note

The ordering effect for the Data Cache Clean to the Point of Deep Persistence by DMB applying to both read and
writes is not sufficient to ensure that in Example D4-3 on page D4-2659, observation of the value '1' in the memory
location X3 implies that the Data Cache Clean to the Point of Deep Persistence has caused an update of deep
persistent memory:

Example D4-3 The ordering effect for the Data Cache Clean to the Point of Deep Persistence

; initial conditions has [X3]=0.

DC CVADP, X1
DMB
MOV X2,#1
STR X2, [X3]

However, in Example D4-4 on page D4-2659, the ordering effects of the DMB instruction will ensure that the location
pointed by P0: X1 will reach the Point of Deep Persistence before, or at the same time as, the location pointed by
P1: X8.

Example D4-4 The ordering effect for the Data Cache Clean to the Point of Deep Persistence

; initial conditions has P0: X3 and P1: X3 point to the same location, which is 0 at the start of this
example

P0

 DC CVADP, X1
 DMB
 MOV X2, #1
 STR X2, [X3]

P1

loop
 LDR X2, [X3]
 CBZ X2, loop
 DMB
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D4-2659
ID072021 Non-Confidential

The AArch64 System Level Memory Model
D4.4 Cache support
 DC CVADP, X8

Performing cache maintenance instructions

To ensure all cache lines in a block of address space are maintained through all levels of cache Arm strongly
recommends that software:

• For data or unified cache maintenance, uses the CTR_EL0.DMinLine value to determine the loop increment
size for a loop of data cache maintenance by VA instructions.

• For instruction cache maintenance, uses the CTR_EL0.IMinLine value to determine the loop increment size
for a loop of instruction cache maintenance by VA instructions.

Example code for cache maintenance instructions

The cache maintenance instructions by set/way can clean or invalidate, or both, the entirety of one or more levels
of cache attached to a PE. However, unless all PEs attached to the caches regard all memory locations as
Non-cacheable, it is not possible to prevent locations being allocated into the cache during such a sequence of the
cache maintenance instructions.

Note

Since the set/way instructions are performed only locally, there is no guarantee of the atomicity of cache
maintenance between different PEs, even if those different PEs are each executing the same cache maintenance
instructions at the same time. Since any cacheable line can be allocated into the cache at any time, it is possible for
a cache line to migrate from an entry in the cache of one PE to the cache of a different PE in a way that means the
line is not affected by set/way based cache maintenance. Therefore, Arm strongly discourages the use of set/way
instructions to manage coherency in coherent systems. The expected use of the cache maintenance instructions that
operate by set/way is limited to the cache maintenance associated with the powerdown and powerup of caches, if
this is required by the implementation.

The limitations of cache maintenance by set/way mean maintenance by set/way does not happen on multiple PEs,
and cannot be made to happen atomically for each address on each PE. Therefore in multiprocessor or multithreaded
systems, the use of cache maintenance by set/way to clean, or clean and invalidate, the entire cache for coherency
management with very large buffers or with buffers with unknown address can fail to provide the expected
coherency results because of speculation by other PEs, or possibly by other threads. The only way that these
instructions can be used in this way is to first ensure that all PEs that might cause speculative accesses to caches that
need to be maintained are not capable of generating speculative accesses. This can be achieved by ensuring that
those PEs have no memory locations with a Normal Cacheable attribute. Such an approach can have very large
system performance effects, and Arm advises implementers to use hardware coherency mechanisms in systems
where this will be an issue.

System level caches on page D4-2663 refers to other limitations of cache maintenance by set/way.

The following example code for cleaning a data or unified cache to the Point of Coherency illustrates a generic
mechanism for cleaning the entire data or unified cache to the Point of Coherency. It assumes that the current Cache
Size Identification Register is in 32-bit format. For more information, see Possible formats of the Cache Size
Identification Register, CCSIDR_EL1 on page D4-2639.

 MRS X0, CLIDR_EL1
 AND W3, W0, #0x07000000 // Get 2 x Level of Coherence
 LSR W3, W3, #23
 CBZ W3, Finished
 MOV W10, #0 // W10 = 2 x cache level
 MOV W8, #1 // W8 = constant 0b1
Loop1: ADD W2, W10, W10, LSR #1 // Calculate 3 x cache level
 LSR W1, W0, W2 // extract 3-bit cache type for this level
 AND W1, W1, #0x7
 CMP W1, #2
 B.LT Skip // No data or unified cache at this level
D4-2660 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Memory Model
D4.4 Cache support
 MSR CSSELR_EL1, X10 // Select this cache level
 ISB // Synchronize change of CSSELR
 MRS X1, CCSIDR_EL1 // Read CCSIDR
 AND W2, W1, #7 // W2 = log2(linelen)-4
 ADD W2, W2, #4 // W2 = log2(linelen)
 UBFX W4, W1, #3, #10 // W4 = max way number, right aligned
 CLZ W5, W4 // W5 = 32-log2(ways), bit position of way in DC operand
 LSL W9, W4, W5 // W9 = max way number, aligned to position in DC operand
 LSL W16, W8, W5 // W16 = amount to decrement way number per iteration
Loop2: UBFX W7, W1, #13, #15 // W7 = max set number, right aligned
 LSL W7, W7, W2 // W7 = max set number, aligned to position in DC operand
 LSL W17, W8, W2 // W17 = amount to decrement set number per iteration
Loop3: ORR W11, W10, W9 // W11 = combine way number and cache number ...
 ORR W11, W11, W7 // ... and set number for DC operand
 DC CSW, X11 // Do data cache clean by set and way
 SUBS W7, W7, W17 // Decrement set number
 B.GE Loop3
 SUBS X9, X9, X16 // Decrement way number
 B.GE Loop2
Skip: ADD W10, W10, #2 // Increment 2 x cache level
 CMP W3, W10
 DSB // Ensure completion of previous cache maintenance instruction
 B.GT Loop1
Finished:

Similar approaches can be used for all cache maintenance instructions.

D4.4.9 Data cache zero instruction

The Data Cache Zero by Address instruction, DC ZVA, writes 0x00 to each byte of a block of N bytes, aligned in
memory to N bytes in size, where:

• The block in memory is identified by the address supplied as an argument to the DC ZVA instruction. There are
no alignment restrictions on this address.

Note

This means that each byte of the block of memory that includes the supplied address is set to zero.

• The DCZID_EL0 register indicates the block size, N bytes, that is written with byte values of zero.

Software can restrict access to this instruction. See Configurable instruction enables and disables, and trap controls
on page D1-2510 and the description of the DC ZVA instruction.

The DC ZVA instruction behaves as a set of stores to the location being accessed, and:

• Generates a Permission fault if the translation regime being used when the instruction is executed does not
permit writes to the locations.

• Requires the same considerations for ordering and the management of coherency as any other store
instruction.

In addition:

• When the instruction is executed, it can generate memory faults or watchpoints that are prioritized in the same
way as other memory related faults or watchpoints. Where a synchronous Data Abort fault or a watchpoint
is generated, the CM bit in the syndrome field is not set to 1, which would be the case for all other cache
maintenance instructions. See ISS encoding for an exception from a Data Abort on page D13-3172 for more
information about the encoding of the associated ESR_ELx.ISS field.

• If the memory region being zeroed is any type of Device memory, then DC ZVA generates an Alignment fault
which is prioritized in the same way as other alignment faults that are determined by the memory type.

Note

The architecture makes no statements about whether or not a DC ZVA instruction causes allocation to any particular
level of the cache, for addresses that have a cacheable attribute for those levels of cache.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D4-2661
ID072021 Non-Confidential

The AArch64 System Level Memory Model
D4.4 Cache support
Despite its mnemonic, the DC ZVA instruction is not a data cache maintenance instruction.

D4.4.10 Cache lockdown

The concept of an entry locked in a cache is allowed, but not architecturally defined. How lockdown is achieved is
IMPLEMENTATION DEFINED and might not be supported by:

• An implementation.

• Some memory attributes.

An unlocked entry in a cache might not remain in that cache. The architecture does not guarantee that an unlocked
cache entry remains in the cache or remains incoherent with the rest of memory. Software must not assume that an
unlocked item that remains in the cache remains dirty.

A locked entry in a cache is guaranteed to remain in that cache. The architecture does not guarantee that a locked
cache entry remains incoherent with the rest of memory, that is, it might not remain dirty.

The interaction of cache lockdown with cache maintenance instructions

The interaction of cache lockdown and cache maintenance instructions is IMPLEMENTATION DEFINED. However, an
architecturally-defined cache maintenance instruction on a locked cache line must comply with the following
general rules:

• The effect of the following instructions on locked cache entries is IMPLEMENTATION DEFINED:

— Cache clean by set/way, DC CSW.

— Cache invalidate by set/way, DC ISW.

— Cache clean and invalidate by set/way, DC CISW.

— Instruction cache invalidate all, IC IALLU and IC IALLUIS.

However, one of the following approaches must be adopted in all these cases:

1. If the instruction specified an invalidation, a locked entry is not invalidated from the cache.

2. If the instruction specified a clean it is IMPLEMENTATION DEFINED whether locked entries are cleaned.

3. If an entry is locked down, or could be locked down, an IMPLEMENTATION DEFINED Data Abort
exception is generated, using the DFSC value defined for this purpose, see ISS encoding for an
exception from a Data Abort on page D13-3172.

This permits a usage model for cache invalidate routines to operate on a large range of addresses by
performing the required operation on the entire cache, without having to consider whether any cache entries
are locked.

The effect of the following instructions is IMPLEMENTATION DEFINED:

• Cache clean by virtual address, DC CVAC, DC CVAP, and DC CVAU.

• Cache invalidate by virtual address, DC IVAC.

• Cache clean and invalidate by virtual address, DC CIVAC.

However, one of the following approaches must be adopted in all these cases:

1. If the instruction specified an invalidation, a locked entry is invalidated from the cache. For the clean and
invalidate instructions, the entry must be cleaned before it is invalidated.

2. If the instruction specified an invalidation, a locked entry is not invalidated from the cache. If the instruction
specified a clean it is IMPLEMENTATION DEFINED whether locked entries are cleaned.

3. If an entry is locked down, or could be locked down, an IMPLEMENTATION DEFINED Data Abort exception is
generated, using the DFSC value defined for this purpose. See ESR_ELx on page K15-8606.

In an implementation that includes EL2 enabled in the current Security state, if HCR_EL2.TIDCP is set to 1, any
exception relating to lockdown of an entry is routed to EL2.
D4-2662 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Memory Model
D4.4 Cache support
Note

An implementation that uses an abort mechanism for entries that can be locked down but are not actually locked
down must:

• Document the IMPLEMENTATION DEFINED instruction sequences that perform the required operations on
entries that are not locked down.

• Implement one of the other permitted alternatives for the locked entries.

Arm recommends that, when possible, such IMPLEMENTATION DEFINED instruction sequences use
architecturally-defined instructions. This minimizes the number of customized instructions required.

In addition, an implementation that uses an abort to handle cache maintenance instructions for entries that might be
locked must provide a mechanism that ensures that no entries are locked in the cache.

The reset setting of the cache must be that no cache entries are locked.

Additional cache functions for the implementation of lockdown

An implementation can add additional cache maintenance functions for the handling of lockdown in the
IMPLEMENTATION DEFINED spaces reserved for Cache Lockdown, see Reserved encodings for IMPLEMENTATION
DEFINED registers on page D12-3038.

D4.4.11 System level caches

The Arm Architecture defines a system cache as a cache that is not described in the PE Cache Identification
registers, CCSIDR_EL1 and CLIDR_EL1, and for which the set/way cache maintenance instructions do not apply.

Conceptually, three classes of system cache can be envisaged:

1. System caches which lie before the point of coherency and cannot be managed by any cache maintenance
instructions. Such systems fundamentally undermine the concept of cache maintenance instructions
operating to the point of coherency, as they imply the use of non-architecture mechanisms to manage
coherency. The use of such systems in the Arm architecture is explicitly prohibited.

2. System caches which lie before the point of coherency and can be managed by cache maintenance by address
instructions that apply to the point of coherency, but cannot be managed by cache maintenance by set/way
instructions. Where maintenance of the entirety of such a cache must be performed, as in the case for power
management, it must be performed using non-architectural mechanisms.

3. System caches which lie beyond the point of coherency and so are invisible to the software. The management
of such caches is outside the scope of the architecture.

D4.4.12 Branch prediction

Armv8 does not define any branch predictor maintenance instructions for AArch64 state.

If branch prediction is architecturally visible, cache maintenance must also apply to branch prediction.

D4.4.13 Execution and data prediction restriction System instructions

When FEAT_SPECRES is implemented, the System instructions listed in A64 System instructions for prediction
restriction on page C5-860 prevent predictions based on information gathered from earlier execution within a
particular execution context (CTX), from affecting the later speculative execution within that CTX, to the extent
that the speculative execution is observable through side-channels.

The prediction restriction System instructions being used by a particular CTX apply to:

• All control flow prediction resources that predict execution addresses.

• Data value prediction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D4-2663
ID072021 Non-Confidential

The AArch64 System Level Memory Model
D4.4 Cache support
• Cache allocation prediction.

For these System instructions, the CTX is defined by:

• The Security state.

• The Exception level.

• When executing at EL1, if EL2 is implemented and enabled in the current Security state, the VMID.

• When executing at EL0, whether the EL1&0 or the EL2&0 translation regime is in use.

• When executing at EL0 when using the EL1&0 translation regime, the ASID and, if EL2 is implemented and
enabled in the current Security state, the VMID.

• When executing at EL0 when using the EL2&0 translation regime, the ASID.

Note

• The data value prediction applies to all prediction resources that use some form of training to speculate data
values as part of an execution.

• The cache allocation applies to all instruction and data caches, and TLB prefetching hardware used by the
executing PE that applies to the supplied context.

The context information is passed as a register argument, and is restricted so that:

• Execution of the System instruction at EL0 only applies to the current hardware defined context.

• Execution of the System instruction at EL1only applies to the current VMID and Security state, and does not
apply to EL2 or EL3.

• Execution of the System instruction at EL2 can only apply to the current Security state, and does not apply
to EL3.

If the System instruction is specified to apply to Exception levels that are not implemented, or which are higher than
the Exception level that the System instruction is executed at, then the System instruction is treated as a NOP.

When the System instruction is complete and synchronized, no predictions of the restricted type for the affected
context are influenced by the execution of the program before the System instruction in a manner that can be
observed by the use of any side channels.

Note

• Prediction restriction System instructions do not require the invalidation of prediction structures so long as
the behavior described for completion is met by an implementation.

• Prediction restriction System instructions are permitted to invalidate more prediction information than is
defined by the supplied execution context.

These System instructions are guaranteed to be complete following a DSB that covers both read and write behavior
on the same PE that executed the original instruction. A subsequent Context synchronization event is required to
ensure that the effect of the completion of the instructions is synchronized to the current execution.

In AArch64 state, EL0 access to the System instructions is controlled by:

• When HCR_EL2.{E2H, TGE} is not {1, 1}, SCTLR_EL1.EnRCTX.

• When HCR_EL2.{E2H, TGE} == {1, 1}, SCTLR_EL2.EnRCTX.

Note

If the SCR_EL3.EEL2 is changed, in order to remove all VMID tagging from Secure EL1 and Secure EL0 entries,
each prediction resource should be invalidated for:

• Secure EL0 for all ASID and VMID values.
D4-2664 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Memory Model
D4.4 Cache support
• Secure EL1 for all VMID values.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D4-2665
ID072021 Non-Confidential

The AArch64 System Level Memory Model
D4.5 External aborts
D4.5 External aborts

The Arm architecture defines External aborts as errors that occur in the memory system, other than those that are
detected by the MMU or debug logic. An External abort might signal a data corruption to the PE. For example, a
memory location might have been corrupted, and this corruption is detected by hardware using a parity or error
correction code (ECC). The error might have been propagated. The RAS Extension provides mechanisms for
software to determine the extent of the corruption and contain propagation of the error. For more information, see
the Arm® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture
profile.

An External abort is one of the following:

• Synchronous.

• Precise asynchronous.

• Imprecise asynchronous.

For more information, see Exception terminology on page D1-2455.

The RAS Extension provides a more granular taxonomy of aborts. When the RAS Extension is not implemented,
the Arm architecture does not provide any method to distinguish between precise asynchronous and imprecise
asynchronous External aborts.

It is IMPLEMENTATION DEFINED which External aborts, if any, are supported.

External aborts on data accesses and translation table walks on data accesses can be either synchronous or
asynchronous.

When FEAT_DoubleFault is not implemented, External aborts on instruction fetches and translation table walks on
instruction fetches can be either synchronous or asynchronous.

When FEAT_DoubleFault is implemented, all External abort exceptions on instruction fetches and translation table
walks on instruction fetches must be synchronous.

A synchronous External abort on an instruction fetch, including a translation table walk on an instruction fetch, is
taken precisely using the Instruction Abort exception.

A synchronous External abort on a data read or write, including a translation table walk on a data read or write, is
taken precisely using the Data Abort exception.

See Synchronous exception types, routing and priorities on page D1-2489.

An asynchronous External abort is taken using the SError interrupt exception. See Asynchronous exception types,
routing, masking and priorities on page D1-2500.

The effect of a failed memory access is described in Effect of Data Aborts and watchpoints on page D1-2494.

Normally, External aborts are rare. An imprecise asynchronous External abort is likely to be fatal to the process that
is running, Arm recommends that implementations make External aborts precise wherever possible.

The following subsections give more information about possible External aborts:

• Provision for the classification of External aborts on page D4-2666.

• Parity or ECC error reporting, RAS Extension not implemented on page D4-2667.

D4.5.1 Provision for the classification of External aborts

In AArch64 state, an implementation can use ESR_ELx.EA, ISS[9], to provide more information about
synchronous External aborts. For all synchronous aborts other than synchronous External aborts, ESR_ELx.EA,
ISS[9], returns a value of 0.

If the RAS Extension is implemented:

• The ESR_ELx.SET field provides information about the state of the PE following a synchronous External
abort.

• The ESR_ELx.AET field might contain more information following an asynchronous abort taken as an
SError interrupt.
D4-2666 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Memory Model
D4.5 External aborts
• The implementation might define error record registers.

For more information, see:

• ISS encoding for an exception from an Instruction Abort on page D13-3170.

• ISS encoding for an exception from a Data Abort on page D13-3172.

• ISS encoding for an SError interrupt on page D13-3181.

• Arm® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture
profile.

D4.5.2 Parity or ECC error reporting, RAS Extension not implemented

The Arm architecture supports the reporting of both synchronous and asynchronous parity or ECC errors from the
cache system. It is IMPLEMENTATION DEFINED what parity or ECC errors in the cache systems, if any, result in
synchronous or asynchronous parity or ECC errors.

A fault code is defined for reporting parity or ECC errors, see Use of the ESR_EL1, ESR_EL2, and ESR_EL3 on
page D1-2478. However, when parity or ECC error reporting is implemented, it is implementation defined whether
a parity or ECC error is reported using the assigned fault code or using another appropriate encoding.

For all purposes other than the Fault status encoding, parity or ECC errors are treated as External aborts.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D4-2667
ID072021 Non-Confidential

The AArch64 System Level Memory Model
D4.6 Memory barrier instructions
D4.6 Memory barrier instructions

Memory barriers on page B2-146 describes the memory barrier instructions. This section describes the system level
controls of those instructions.

D4.6.1 EL2 control of the shareability of data barrier instructions executed at EL0 or EL1

In an implementation that includes EL2 enabled in the current Security state and supports shareability limitations
on the data barrier instructions, the HCR_EL2.BSU field can modify the required shareability of an instruction that
is executed at EL0 or EL1. Table D4-8 on page D4-2668 shows the encoding of this field.

For an instruction executed at EL0 or EL1, Table D4-9 on page D4-2668 shows how the HCR_EL2.BSU is
combined with the shareability specified by the argument of the DMB or DSB instruction to give the scope of the
instruction.

Table D4-8 EL2 control of shareability of barrier instructions executed at EL0 or EL1

HCR_EL2.BSU Minimum shareability of barrier instructions

00 No effect, shareability is as specified by the instruction

01 Inner Shareable

10 Outer Shareable

11 Full system

Table D4-9 Effect of HCR_EL2.BSU on barrier instructions executed at EL1 or EL0

Shareability specified by the DMB or DSB argument HCR_EL2.BSU Resultant shareability

Full system Any Full system

Outer Shareable 00, 01, or 10 Outer Shareable

11, Full system Full system

Inner Shareable 00 or 01 Inner Shareable

10, Outer Shareable Outer Shareable

11, Full system Full system

Non-shareable 00, No effect Non-shareable

01, Inner Shareable Inner Shareable

10, Outer Shareable Outer Shareable

11, Full system Full system
D4-2668 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Memory Model
D4.7 Pseudocode description of general memory System instructions
D4.7 Pseudocode description of general memory System instructions

This section lists the pseudocode describing general memory operations:

• Memory data type definitions on page D4-2669.

• Basic memory access on page D4-2669.

• Aligned memory access on page D4-2669.

• Unaligned memory access on page D4-2669.

• Exclusives monitors operations on page D4-2669.

• Access permission checking on page D4-2670.

• Abort exceptions on page D4-2670.

• Memory barriers on page D4-2671.

D4.7.1 Memory data type definitions

This section lists the memory data types.

The memory data types are:

• Address descriptor, defined by the AddressDescriptor type.

• Full address, defined by the FullAddress type.

• Memory attributes, defined by the MemoryAttributes type.

• Memory type, defined by the MemType enumeration.

• Device memory type, defined by the DeviceType enumeration.

• Normal memory attributes, defined by the MemAttrHints type.

• Cacheability attributes, defined by the MemAttr_NC, MemAttr_WT, and MemAttr_WB constants.

• Allocation hints, defined by the MemHint_No, MemHint_WA, MemHint_RA, and MemHint_RWA constants.

• Access permissions, defined by the Permissions type.

These types are defined in Chapter J1 Armv8 Pseudocode.

D4.7.2 Basic memory access

The PhysMemRead() and PhysMemRead() functions perform single-copy atomic, aligned, little-endian memory accesses
of size bytes to or from the underlying physical memory array of bytes.

The attributes in memaddrdesc.memattrs are used by the memory system to determine caching and ordering behaviors
as described in Memory types and attributes on page B2-165, Ordering relations on page B2-137, and Atomicity in
the Arm architecture on page B2-128.

D4.7.3 Aligned memory access

The two MemSingle[] accessors, non-assignment (memory read) AArch64.MemSingle[] and assignment (memory
write) AArch64.MemSingle[], make atomic, little-endian accesses of size bytes.

D4.7.4 Unaligned memory access

The two Mem[] accessors, Non-assignment (memory read) Mem[] and Assignment (memory write) Mem[], make
accesses of the required type. If an access is not architecturally defined to be atomic, Mem[] synthesizes accesses
from multiple calls to AArch64.MemSingle[]. It also reverses the byte order if the access is big-endian.

The AArch64.CheckAlignment() function checks the alignment of memory accesses.

D4.7.5 Exclusives monitors operations

The AArch64.SetExclusiveMonitors() function sets the Exclusives monitors for a block of bytes, the size of which
is determined by size, at the virtual address defined by address.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D4-2669
ID072021 Non-Confidential

The AArch64 System Level Memory Model
D4.7 Pseudocode description of general memory System instructions
The AArch64.ExclusiveMonitorsPass() function checks whether the Exclusives monitors are set to include the
location of a number of bytes specified by size, at the virtual address defined by address. The atomic write that
follows after the Exclusives monitors have been set must be to the same physical address. It is permitted, but not
required, for this function to return FALSE if the virtual address is not the same as that used in the previous call to
AArch64.SetExclusiveMonitors().

The ExclusiveMonitorsStatus() function returns 0 if the previous atomic write was to the same physical memory
locations selected by AArch64.ExclusiveMonitorsPass() and therefore succeeded. Otherwise the function returns 1,
indicating that the address translation delivered a different physical address.

The MarkExclusiveGlobal() procedure takes as arguments a FullAddress paddress, the PE identifier processorid and
the size of the transfer. The procedure records that the PE processorid has requested exclusive access covering at
least size bytes from address paddress. The size of the location marked as exclusive is IMPLEMENTATION DEFINED,
up to a limit of 2KB and no smaller than two words, and aligned in the address space to the size of the location. It
is CONSTRAINED UNPREDICTABLE whether this causes any previous request for exclusive access to any other address
by the same PE to be cleared.

The MarkExclusiveLocal() procedure takes as arguments a FullAddress paddress, the PE identifier processorid and
the size of the transfer. The procedure records in a local record that PE processorid has requested exclusive access
to an address covering at least size bytes from address paddress. The size of the location marked as exclusive is
IMPLEMENTATION DEFINED, and can at its largest cover the whole of memory but is no smaller than two words, and
is aligned in the address space to the size of the location. It is IMPLEMENTATION DEFINED whether this procedure
also performs a MarkExclusiveGlobal() using the same parameters.

The IsExclusiveGlobal() function takes as arguments a FullAddress paddress, the PE identifier processorid and the
size of the transfer. The function returns TRUE if the PE processorid has marked in a global record an address range
as exclusive access requested that covers at least size bytes from address paddress. It is IMPLEMENTATION DEFINED
whether it returns TRUE or FALSE if a global record has marked a different address as exclusive access requested.
If no address is marked in a global record as exclusive access, IsExclusiveGlobal() returns FALSE.

The IsExclusiveLocal() function takes as arguments a FullAddress paddress, the PE identifier processorid and the
size of the transfer. The function returns TRUE if the PE processorid has marked an address range as exclusive
access requested that covers at least the size bytes from address paddress. It is IMPLEMENTATION DEFINED whether
this function returns TRUE or FALSE if the address marked as exclusive access requested does not cover all of size
bytes from address paddress. If no address is marked as exclusive access requested, then this function returns
FALSE. It is IMPLEMENTATION DEFINED whether this result is ANDed with the result of IsExclusiveGlobal() with
the same parameters.

The ClearExclusiveByAddress() procedure takes as arguments a FullAddress paddress, the PE identifier processorid
and the size of the transfer. The procedure clears the global records of all PEs, other than processorid, for which an
address region including any of size bytes starting from paddress has had a request for an exclusive access. It is
IMPLEMENTATION DEFINED whether the equivalent global record of the PE processorid is also cleared if any of size
bytes starting from paddress has had a request for an exclusive access, or if any other address has had a request for
an exclusive access.

The ClearExclusiveLocal() procedure takes as arguments the PE identifier processorid. The procedure clears the
local record of PE processorid for which an address has had a request for an exclusive access. It is IMPLEMENTATION
DEFINED whether this operation also clears the global record of PE processorid that an address has had a request for
an exclusive access.

D4.7.6 Access permission checking

The AArch64.S1HasPermissionsFault() and AArch64.S2HasPermissionsFault()functions are used by the architecture
to perform access permission checking based on attributes derived from the Translation Table descriptors.

The interpretation of access permission is shown in Memory access control on page D5-2754.

D4.7.7 Abort exceptions

The function AArch64.Abort() generates either a Data Abort or an Instruction Abort exception by calling
AArch64.DataAbort() or AArch64.InstructionAbort(). It also can generate a debug exception for debug related faults,
see Chapter D2 AArch64 Self-hosted Debug.
D4-2670 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 System Level Memory Model
D4.7 Pseudocode description of general memory System instructions
The function AArch64.DataAbort() generates a Data Abort exception, routes the exception to EL2 or EL3, and
records the information required for the Exception Syndrome registers, ESR_ELx. See ISS encoding for an
exception from a Data Abort on page D13-3172. A second stage abort might also record the intermediate physical
address, IPA, but this depends on the type of the abort.

For a synchronous abort, AArch64.DataAbort() also sets the FAR to the VA of the abort.

The function AArch64.InstructionAbort() generates an Instruction Abort exception, routes the exception to EL2 or
EL3, and records the information required for the Exception Syndrome registers, ESR_ELx, see ISS encoding for
an exception from an Instruction Abort on page D13-3170. A second stage abort might also record the intermediate
physical address, IPA, but this depends on the type of the abort.

For a synchronous abort, AArch64.InstructionAbort() also sets the FAR to the VA of the abort.

The FaultRecord type describes a fault. Functions that check for faults return a record of this type appropriate to the
type of fault.

The function NoFault() returns a null record that indicates no fault. The IsFault() function tests whether a
FaultRecord contains a fault.

D4.7.8 Memory barriers

The definition for the memory barrier functions is given by the enumerations MBReqDomain and MBReqTypes.

These enumerations define the required shareability domains and required access types used as arguments for DMB
and DSB instructions.

The procedures DataMemoryBarrier, DataSynchronizationBarrier, and InstructionSynchronizationBarrier perform
the memory barriers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D4-2671
ID072021 Non-Confidential

The AArch64 System Level Memory Model
D4.7 Pseudocode description of general memory System instructions
D4-2672 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter D5
The AArch64 Virtual Memory System Architecture

This chapter provides a system level view of the AArch64 Virtual Memory System Architecture (VMSAv8-64), the
memory system architecture of an Armv8 implementation that is executing in AArch64 state. It contains the
following sections:

• About the Virtual Memory System Architecture (VMSA) on page D5-2674.

• The VMSAv8-64 address translation system on page D5-2682.

• VMSAv8-64 Translation Table format descriptors on page D5-2739.

• Memory access control on page D5-2754.

• Memory region attributes on page D5-2776.

• Virtualization Host Extensions on page D5-2787.

• Nested virtualization on page D5-2793.

• VMSAv8-64 memory aborts on page D5-2800.

• Translation Lookaside Buffers (TLBs) on page D5-2810.

• TLB maintenance requirements and the TLB maintenance instructions on page D5-2816.

• Caches in a VMSAv8-64 implementation on page D5-2835.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2673
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.1 About the Virtual Memory System Architecture (VMSA)
D5.1 About the Virtual Memory System Architecture (VMSA)

This chapter describes the Armv8 Virtual Memory System Architecture (VMSA), and in particular how it applies to
a PE that is executing in AArch64 state. In this state the PE is using VMSAv8-64, as defined in Armv8 VMSA
naming on page D5-2674. See The Armv8 VMSA when some Exception levels are using AArch32 on page D5-2674
for information about the VMSA in other contexts.

A VMSA provides a Memory Management Unit (MMU) that controls address translation, access permissions, and
memory attribute determination and checking, for memory accesses made by the PE. The process of address
translation maps the virtual addresses (VAs) used by the PE onto the physical addresses (PAs) of the physical
memory system. The mapping of a VA to a PA requires either a single stage of translation, or two sequential stages
of translation.

The translations are defined independently for different Exception levels and Security states, as described in The
VMSAv8-64 address translation system on page D5-2682.

VMSAv8-64 supports tagging of VAs:

• Address tagging as described in Address tagging in AArch64 state on page D5-2676. As that section
describes, this address tagging has no effect on the address translation process.

• If FEAT_MTE2 is implemented, Memory tagging as described in Chapter D6 Memory Tagging Extension.

The remainder of this chapter gives a full description of VMSAv8-64 for an implementation that includes all of the
Exception levels. The implemented Exception levels and the resulting translation stages and regimes on
page D5-2687 describes the differences in the VMSA if some Exception levels are not implemented.

The following sections give more information about the VMSA:

• Armv8 VMSA naming on page D5-2674.

• The Armv8 VMSA when some Exception levels are using AArch32 on page D5-2674.

• VMSA address types and address spaces on page D5-2675.

• Address tagging in AArch64 state on page D5-2676.

• Pointer authentication in AArch64 state on page D5-2678.

D5.1.1 Armv8 VMSA naming

The Armv8 VMSA naming model reflects the possible stages of address translation, as follows:

VMSAv8 The overall translation scheme, within which an address translation has one or two stages.

VMSAv8-32 The translation scheme for a single stage of address translation that is managed from an Exception
level that is using AArch32.

VMSAv8-32 is sometimes used to refer to the two stages of translation used to map a VA to a PA,
where each stage is managed from an Exception level that is using AArch32.

VMSAv8-64 The translation scheme for a single stage of address translation that is managed from an Exception
level that is using AArch64.

VMSAv8-64 is sometimes used to refer to the two stages of translation used to map a VA to a PA,
where each stage is managed from an Exception level that is using AArch64.

D5.1.2 The Armv8 VMSA when some Exception levels are using AArch32

As stated at the start of the chapter, this chapter describes VMSAv8-64, the Armv8 VMSA that applies to an
Exception level that is using AArch64. However, when a higher Exception level is using AArch64, and therefore
using VMSAv8-64, lower Exception levels can be using AArch32. Chapter G5 The AArch32 Virtual Memory
System Architecture describes VMSAv8-32, meaning it describes:

• The translation stages and translation regimes when EL3 is using AArch32.

• Any stages of address translation that are using VMSAv8-32 when EL3 is using AArch64.
D5-2674 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.1 About the Virtual Memory System Architecture (VMSA)
However, a PE can be executing at EL0 using AArch32 when the next higher Exception level is using AArch64, for
example when EL0 is using AArch32 and EL1 is using AArch64. When this is the case execution at EL0 uses a
VMSAv8-64 translation regime as described in Constraints on accesses from EL0 when EL0 is using AArch32 on
page D5-2685.

D5.1.3 VMSA address types and address spaces

A description of the VMSA refers to the following address types.

Note

These descriptions relate to the VMSAv8 description and therefore give more detail than the generic definitions
given in the glossary.

Virtual address (VA)

An address used in an instruction, as a data or instruction address, is a Virtual Address (VA).

Note

This means that an address held in the PC, LR, SP, or an ELR, is a VA.

In AArch64 state, the VA has a maximum address width of one of the following:

• 48 bits.

• 52 bits when FEAT_LVA is implemented and the 64KB translation granule is used.

• 52 bits when all of the following are true:

— FEAT_LPA2 is implemented.

— TCR_ELx.DS==1 for the translation regime controlled by that register.

— The 4KB or 16KB translation granule is used.

As About address translation and supported input address ranges on page D5-2686 describes, a
stage of address translation can support one or two VA ranges:

Translation stage can support only a single VA range

For a translation stage that supports a single VA range, a 48-bit VA width gives a VA
range of 0x0000000000000000 to 0x0000FFFFFFFFFFFF.

For a translation stage that supports a single VA range, the 52-bit VA width gives a VA
range of 0x0000000000000000 to 0x000FFFFFFFFFFFFF.

Translation stage can support two VA ranges

For a translation stage that supports two VA subranges, one at the bottom of the full
64-bit address range, and one at the top, as follows:

• The bottom VA range runs up from address 0x0000000000000000.

With a maximum VA width of 48 bits this gives a VA range of
0x0000000000000000 to 0x0000FFFFFFFFFFFF.

With a maximum VA width of 52 bits this gives a VA range of
0x0000000000000000 to 0x000FFFFFFFFFFFFF.

• The top VA subrange runs up to address 0xFFFFFFFFFFFFFFFF.

With a maximum VA width of 48 bits this gives a VA range of
0xFFFF000000000000 to 0xFFFFFFFFFFFFFFFF.

With a maximum VA width of 52 bits this gives a VA range of
0xFFF0000000000000 to 0xFFFFFFFFFFFFFFFF.

Reducing the VA width for this subrange increases the bottom address of the
range.

Note
• When FEAT_VHE is not implemented, the only translation stage that can support two VA

ranges is stage 1 of the EL1&0 translation regime.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2675
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.1 About the Virtual Memory System Architecture (VMSA)
• When FEAT_VHE is implemented and the value of HCR_EL2.E2H is 1, stage 1 of the EL2,
or EL2&0, translation regime also can support two VA ranges.

A 48-bit VA range corresponds to an address space of 256TB. A 52-bit VA range corresponds to an
address space of 4PB.

Each translation regime that takes a VA as an input address can be configured to support fewer than
the maximum number of bits of VA space, see Address size configuration on page D5-2689.

Intermediate physical address (IPA)

In a translation regime that provides two stages of address translation, the IPA is:

• The OA from the stage 1 translation.

• The IA for the stage 2 translation.

In a translation regime that provides only one stage of address translation, the IPA is identical to the
PA. Alternatively, the translation regime can be considered as having no concept of IPAs.

The EL3, Secure EL1, and if FEAT_SEL2 is implemented, Secure EL2 Exception levels provide
independent definitions of the PA spaces for Secure and Non-secure operation. This means they
provide two independent address spaces, where:

• A VA accessed in Secure state can be translated to either the Secure or the Non-secure PA
space.

• When in Non-secure state, a VA is always mapped to the Non-secure PA space.

For more information about maximum address widths, see Address size configuration on
page D5-2689.

Physical address (PA)

The address of a location in a physical memory map. That is, an output address from the PE to the
memory system.

The EL3, Secure EL1, and if FEAT_SEL2 is implemented, Secure EL2 Exception levels provide
independent definitions of the PA spaces for Secure and Non-secure operation. This means they
provide two independent address spaces, where:

• A VA accessed in Secure state can be translated to either the Secure or the Non-secure PA
space.

• When in Non-secure state, a VA is always mapped to the Non-secure PA space.

For more information about maximum address widths, see Address size configuration on
page D5-2689.

D5.1.4 Address tagging in AArch64 state

In AArch64 state, the Armv8 architecture supports the tagging of addresses.

Note

Address tagging in this section is not to be confused with memory tagging that is described in Chapter D6 Memory
Tagging Extension.

In the case of Address tagging the top eight bits of the VA are ignored when determining:

• If the translation system is enabled, whether the address is out of range and therefore causes a Translation
fault.

• If the translation system is not enabled, whether the address is out of range and therefore causes an Address
size fault.

• Whether the address requires invalidation when performing a TLB invalidation instruction by address.
D5-2676 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.1 About the Virtual Memory System Architecture (VMSA)
The use of address tags is controlled as follows:

For addresses when stage 1 translation can support two VA ranges

The value of bit[55] of the VA determines the register bit that controls the use of address tags, as
follows:

VA[55]==0 TCR_ELx.TBI0 determines whether address tags are used. If stage 1
translation is enabled, TTBR0_ELx holds the base address of the translation
tables used to translate the address.

VA[55]==1 TCR_ELx.TBI1 determines whether address tags are used. If stage 1
translation is enabled, TTBR1_ELx holds the base address of the translation
tables used to translate the address.

For addresses when stage 1 translation supports only a single VA range

TCR_ELx.TBI determines whether address tags are used. If stage 1 translation is enabled,
TTBR0_ELx holds the base address of the translation tables used to translate the address.

Note

The TCR_ELx.TBI{n} bit determines whether address tags are used regardless of whether the corresponding
translation regime is enabled.

When FEAT_PAuth is implemented, TBID{n} bits are added to TCR_ELx registers.

When a TCR_ELx.TBI{n} bit enables the use of address tagging, the corresponding TBID{n} bit determines
whether address tagging is used for both instruction and data addresses, or only for data addresses.

Note

Restricting address tagging to data addresses means instruction addresses can use larger Pointer authentication code
fields. See Pointer authentication in AArch64 state on page D5-2678.

An address tag enable bit also has an effect on the PC value in the following cases:

• On taking an exception to the controlled Exception level, regardless of whether this is also the Exception
level from which the exception was taken.

• Any branch within the controlled Exception level, unless that branch generates an Illegal exception return.

• On performing an exception return that is not an Illegal exception return to the controlled Exception level,
regardless of whether this is also the Exception level from which the exception return was performed.

Note

On an Illegal exception return, bits[63:32] of the PC become UNKNOWN.

• Exiting from debug state to the controlled Exception level.

Note

As an example of what is meant by the controlled Exception level, TCR_EL3.TBI controls this effect for:

• A branch or procedure return within EL3.

• Taking an exception to EL3.

• Performing an exception return or a debug state exit to EL3.

The effect of the controlling TBI{n} bit is:

For a translation regime where stage 1 translation can support two VA ranges

If the controlling TBIn bit for the address being loaded into the PC is set to 1, then
bits[63:56] of the PC are forced to be a sign-extension of bit[55] of that address.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2677
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.1 About the Virtual Memory System Architecture (VMSA)
For a translation regime where stage 1 translation supports only a single VA range

If the controlling TBI bit for the address being loaded into the PC is set to 1, then bits[63:56]
of the PC are forced to be 0x00.

However, when FEAT_PAuth is implemented and the value of a TCR_ELx.TBID{n} field is 1, the Effective value
of the corresponding TCR_ELx.TBI{n} field is 0 for any of:

• A branch or procedure return within an Exception level.

• Taking an exception to an Exception level.

• Exception return to an Exception level.

• Exit from Debug state to an Exception level.

The AddrTop() pseudocode function shows the algorithm determining the most significant bit of the VA, and
therefore whether the VA is using tagging. For a translation regime where the stage 1 translation supports two VA
ranges, this pseudocode includes the selection between TTBR0_ELx and TTBR1_ELx described in Selection
between TTBR0_ELx and TTBR1_ELx when two VA ranges are supported on page D5-2723.

Note

The required behavior prevents a tagged address being propagated to the program counter.

When address tagging is enabled for an address that causes a Data Abort or a Watchpoint, the address tag is included
in the VA returned in the FAR.

D5.1.5 Pointer authentication in AArch64 state

FEAT_PAuth adds functionality that supports the authentication of the contents of a register before that register is
used as the target of an indirect branch, or as a load. This functionality is supported only in AArch64 state.

For pointer authentication, this functionality provides:

• An instruction that inserts a Pointer Authentication Code (PAC) into the upper bits of a register. The bits used
are the extension bits that do not hold valid address bits. The inserted PAC value is calculated from the value
of the register and one other 64-bit value.

• An instruction that extracts the PAC from the upper bits of a register, and checks that the value is correct,
based on the value of the register and one other 64-bit value, and:

— If the value is correct, replaces the PAC with the extension bits.

— Otherwise, replaces the PAC with the extension bits, except that two bits of the extension are set to a
fixed unique number. This means that, if the register is used as the target of an indirect branch,
execution branches to an address that generates a Translation fault because the VA is not mapped.

• An instruction that removes the PAC, replacing it with the extension bits, without any verification.

Multiple versions of these instructions are provided to support different use cases. These include instructions that
combine a pointer authentication operation with another operation. Pointer authentication instructions on
page C3-220 summarizes these instructions.

FEAT_PAuth2 adds enhanced functionality that changes the mechanism by which a PAC is added to the pointer.
The mechanism exclusive-ORs the upper bits of the pointer with the PAC instead of replacing the upper bits of the
pointer with the PAC.

Note

If FEAT_PAuth2 is implemented but FEAT_FPAC is not implemented, when stage 1 translation is disabled, and
TCR_ELx.T0SZ or TCR_ELx.T1SZ is set to indicate an address range that is smaller than the PA size, for some
PAC values, the address generated by a failed PAC authentication can still be an address within the PA size. This
means that using such an address that has failed PAC authentication for a memory access will not generate an
Address size fault. Instead, the memory access will be performed that has its upper bits, those between the PA size
and the size indicated by the TCR_ELx.T0SZ or TCR_ELx.T1SZ field, taken from the result of the authentication
D5-2678 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.1 About the Virtual Memory System Architecture (VMSA)
process. As a result, if FEAT_PAuth2 is implemented but FEAT_FPAC is not implemented, when stage 1 translation
is disabled, Arm recommends not setting the TCR_ELx.T0SZ or TCR_ELx.T1SZ values to indicate an address
range that is smaller than the PA size.

For the Pointer authentication instructions, it is IMPLEMENTATION DEFINED whether PACs are generated using:

• The QARMA algorithm, see The QARMA Block Cipher Family. When this is the case, the value of
ID_AA64ISAR1_EL1.APA is non-zero.

• An IMPLEMENTATION DEFINED algorithm. When this is the case, the value of ID_AA64ISAR1_EL1.API is
non-zero.

FEAT_PAuth provides a generic authentication instruction, PACGA, that generates a 32-bit PAC from two 64-bit
values.

Note

The PACGA instruction can be used to provide protection for small blocks of memory. Instructions can be chained
to allow protection of an arbitrary-sized block.

For the PACGA instruction, it is IMPLEMENTATION DEFINED whether PACs are generated using:

• The QARMA algorithm, see The QARMA Block Cipher Family. When this is the case, the value of
ID_AA64ISAR1_EL1.GPA is non-zero.

• An IMPLEMENTATION DEFINED algorithm. When this is the case, the value of ID_AA64ISAR1_EL1.GPI is
non-zero.

The pseudocode descriptions of the operation of these instructions describe the use of the QARMA algorithm. When
an IMPLEMENTATION DEFINED algorithm is used the ComputePAC() function:

• Must have the same arguments as the function defined in this Manual.

• For a set of arguments passed to the function, must give the same result for all PEs that a thread of execution
could migrate between.

Pointer authentication is implemented if the value of at least one of ID_AA64ISAR1_EL1.{APA, API, GPA, GPI}
are not 0b0000.

Note

Pointer authentication functionality is useful only when address translation is enabled. However, this functionality
is the same whether address translation is enabled or disabled.

The following sections give more information about the FEAT_PAuth, FEAT_PAuth2, and FEAT_FPAC
functionality:

• Supported PAC field and relation to the use of address tagging on page D5-2679.

• Keys for PAC generation and verification on page D5-2680.

• System register control of pointer authentication on page D5-2681.

• Faulting on pointer authentication on page D5-2681.

Supported PAC field and relation to the use of address tagging

As stated earlier in this section, the PAC is held in the extension bits of a register, that do not hold valid address bits.
However, as described in Address tagging in AArch64 state on page D5-2676, when address tagging is used, the tag
is held in Xn[63:56]. Therefore, when Xn is a 64-bit register holding an address:

When address tagging is used

The PAC field is Xn[54:bottom_PAC_bit].
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2679
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.1 About the Virtual Memory System Architecture (VMSA)
When address tagging is not used

The PAC field is Xn[63:56, 54:bottom_PAC_bit].

In the PAC field definitions, bottom_PAC_bit == 64-TCR_ELx.TnSZ,

Note

Xn[55] determines whether the address lies in the upper or lower address range for the purpose of determining
whether address tagging is used, see Address tagging in AArch64 state on page D5-2676. The value of Xn[55] is the
value of n in TnSZ. Therefore, it also determines whether Xn[63:56] are part of the PAC field, and which of
TCR_ELx.{T0SZ, T1SZ} determines the value of bottom_PAC_bit.

If the value of TCR_ELx.TnSZ is outside its permitted range then it is CONSTRAINED UNPREDICTABLE whether the
value used to determine bottom_PAC_bit is the programmed value of the field, or is forced to the maximum or
minimum permitted value of the field. However, if the PE treats an out of range TnSZ value as the maximum or
minimum permitted value of the field for all purposes except reading the value of the field then that behavior also
applies to determining bottom_PAC_bit.

FEAT_PAuth adds a new control to TCR_ELx, that disables the use of address tagging for instruction addresses, see
Address tagging in AArch64 state on page D5-2676.

Note

This control means software can use larger PAC field for instruction addresses, while using tagging and the smaller
PAC field for data addresses.

Keys for PAC generation and verification

For pointer authentication, two 128-bit keys are provided for each of instruction addresses and data addresses, and
a fifth 128-bit key is provided for the generic authentication instruction, as follows:

Keys for instruction address PACs

APIAKey_EL1

The concatenation of the register values APIAKeyHi_EL1:APIAKeyLo_EL1.

APIBKey_EL1

The concatenation of the register values APIBKeyHi_EL1:APIBKeyLo_EL1.

Keys for data address PACs

APDAKey_EL1

The concatenation of the register values APDAKeyHi_EL1:APDAKeyLo_EL1.

APDBKey_EL1

The concatenation of the register values APDBKeyHi_EL1:APDBKeyLo_EL1.

Key for generic authentication

APGAKey_EL1

The concatenation of the register values APGAKeyHi_EL1:APGAKeyLo_EL1.

Note

Keys are not banked by Exception level. Arm expects software to switch the keys between Exception levels,
typically by swapping the values with zero so that the current key values are not present in memory.
D5-2680 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.1 About the Virtual Memory System Architecture (VMSA)
System register control of pointer authentication

FEAT_PAuth adds controls to the SCTLR_ELx registers that enable generation and validation of PACs for data and
instruction addresses. Formally, the definition of these fields is that when the functionality is disabled the
AddPAC<I|D><A|B>() and Auth<I|D><A|B>() pseudocode functions return the value of the first parameter passed to
them. This means:

• Except for PACGA, the instructions listed in Table C3-13 on page C3-220, that add a PAC to an address in a
register, execute as NOPs.

• The instructions listed in Table C3-14 on page C3-221, that authenticate a pointer, execute as NOPs.

• For the Combined instructions listed in Table C3-16 on page C3-222, the Auth<I|D><A|B>() function has no
effect on the operation of the instruction, which operates as the equivalent non-Authenticate pointer
instruction. This means that, for example:

— A RETAA instruction operates as a RET instruction.

— A LDRAA Xt, [Xn, #<simm10>]! instruction operates as a LDR Xt, [Xn, #<simm10>:000]! instruction.

These controls do not affect the PACGA and XPAC* instructions, that are always enabled.

The controls added to the SCTLR_ELx registers are:

EnIA Controls instructions that apply to PACs for instruction addresses that are generated using the
APIAKey_EL1 key.

EnIB Controls instructions that apply to PACs for instruction addresses that are generated using the
APIBKey_EL1 key.

EnDA Controls instructions that apply to PACs for data addresses that are generated using the APDAKey_EL1
key.

EnDB Controls instructions that apply to PACs for data addresses that are generated using the APDBKey_EL1
key.

See the SCTLR_ELx.{EnIA, EnIB, EnDA, EnDB} field descriptions for more information.

Note

These fields are RES0 in versions of the architecture before Armv8.3, and therefore should be written as 0 by legacy
software.

Faulting on pointer authentication

In addition to FEAT_PAuth2, FEAT_FPAC introduces faulting on instructions that authenticate a PAC and,
optionally, on the combined instructions that include pointer authentication. If the PAC supplied is incorrect on any
instructions listed in Table C3-14 on page C3-221, that authenticate a PAC, the instruction generates a synchronous
exception.

It is IMPLEMENTATION DEFINED whether the combined instructions listed in Table C3-16 on page C3-222 generate
an exception directly from an authorization failure, rather than changing the address in a way that will generate a
Translation fault when the address is accessed.

If an exception from an authorization failure is generated at EL0 and HCR_EL2.TGE==1, the exception is taken at
EL2. Otherwise, the exception is taken at EL1.

An exception from the authorization failure generated at any other Exception level is taken at the same Exception
level. The ESR_ELx.EC code used for such an exception is 0x1C.

Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2490 describes the
prioritization of exceptions taken from an authorization failure.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2681
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
D5.2 The VMSAv8-64 address translation system

The following subsections describe the VMSAv8-64 address translation system, which maps VAs to PAs:

• About the VMSAv8-64 address translation system on page D5-2682.

• The implemented Exception levels and the resulting translation stages and regimes on page D5-2687.

• Controlling address translation stages on page D5-2688.

• Memory translation granule size on page D5-2698.

• Translation tables and the translation process on page D5-2704.

• Overview of the VMSAv8-64 address translation stages on page D5-2708.

• The VMSAv8-64 translation table format on page D5-2719.

• The algorithm for finding the Translation Table descriptors on page D5-2727.

• The effects of disabling a stage of address translation on page D5-2731.

• The implemented Exception levels and the resulting translation stages and regimes on page D5-2687.

• Pseudocode description of VMSAv8-64 address translation on page D5-2733.

• Address translation instructions on page D5-2735.

Related to this:

• VMSAv8-64 Translation Table format descriptors on page D5-2739 describes the translation table entries.

• Memory region attributes on page D5-2776 describes the attributes that are held in the translation table
entries, including how different attributes can interact.

• Translation Lookaside Buffers (TLBs) on page D5-2810 describes the caching of translation table lookups in
TLBs, and the architected instructions for maintaining TLBs.

• AArch64 Address translation examples on page K7-8480 gives detailed descriptions of typical examples of
translating a VA to a final PA, and obtaining the memory attributes of that PA.

• Chapter D6 Memory Tagging Extension, gives details of modified behavior of the VMSAv8-64 address
translation system when FEAT_MTE2 is implemented.

D5.2.1 About the VMSAv8-64 address translation system

The Memory Management Unit (MMU) controls address translation, memory access permissions, and memory
attribute determination and checking, for memory accesses made by the PE.

The general model of MMU operation is that the MMU takes information about a required memory access,
including an input address (IA), and either:

• Returns an associated output address (OA), and the memory attributes for that address.

• Is unable to perform the translation for one of a number of reasons, and therefore causes an exception to be
generated. This exception is called an MMU fault. System registers are used to report any MMU faults that
occur.

The process of mapping an IA to an OA is an address translation, or more precisely a single stage of address
translation.

When using a VMSA, a translation regime maps a VA to a PA using one or two stages of translation, and:

• The AArch64 translation regimes on page D5-2683 defines the translation regimes.

• VMSA address types and address spaces on page D5-2675 give more information about VAs and PAs.

The translation granule specifies the granularity of the mapping from IA to OA. That is, it defines both:

• The page size for a stage of address translation, where a page is the smallest block of memory for which an
IA to OA mapping can be specified.

• The size of a complete translation table for that stage of address translation.
D5-2682 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
The MMU is controlled by System registers that provide independent control of each address translation stage,
including a control to disable the stage of address translation. The effects of disabling a stage of address translation
on page D5-2731 defines how the MMU handles an access for which a required address translation stage is disabled.

This section describes the address translation system for an implementation that includes all of the Exception levels,
and gives a complete description of translations that are controlled by an Exception level that is using AArch64. In
addition:

• The Armv8 VMSA when some Exception levels are using AArch32 on page D5-2674 gives information about
the VMSA when some Exception levels are using AArch32.

• The implemented Exception levels and the resulting translation stages and regimes on page D5-2687
describes the effect on the address translation model when some Exception levels are not implemented.

Each enabled stage of address translation uses a set of address translations and associated memory properties held
in memory mapped tables called translation tables. A single translation table lookup can resolve only a limited
number of bits of the IA, and therefore a single address translation can require multiple lookups. These are described
as different levels of lookup.

Translation table entries can be cached in a Translation Lookaside Buffer (TLB).

As well as defining the OA that corresponds to the IA, the translation table entries define the following properties:

• For accesses made from Secure state, whether the access is to the Secure or Non-secure address map.

• Memory access permissions.

• Memory region attributes.

For more information, see Memory attribute fields in the VMSAv8-64 Translation Table format descriptors on
page D5-2746.

The following subsections give more information:

• The AArch64 translation regimes on page D5-2683.

• About address translation and supported input address ranges on page D5-2686.

• The VMSAv8-64 translation table format on page D5-2686.

The AArch64 translation regimes

The architecture defines a number of translation regimes, where a translation regime comprises either:

• A single stage of address translation.

This maps an input VA to an output PA.

• Two, sequential, stages of address translation, where:

— Stage 1 maps an input VA to an output IPA.

— Stage 2 maps an input IPA to an output PA.

Figure D5-1 on page D5-2684 shows these translation stages and translation regimes when EL3 is using AArch64.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2683
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Figure D5-1 VMSAv8 AArch64 translation regimes, translation stages, and associated controls

This means that in VMSAv8-64 the set of translation regimes is:

The Secure EL1&0 translation regime, when EL2 is disabled

This has a single stage of translation, stage 1, that maps VAs to PAs and can support two VA ranges
and the use of ASIDs.

This translation regime is used:

• For memory accesses from EL1 or EL0 when the value of HCR_EL2.{E2H, TGE} is {0,0}.

The Non-secure EL1&0 translation regime, when EL2 is disabled

This has a single stage of translation, stage 1, that maps VAs to PAs and can support two VA ranges
and the use of ASIDs.

This translation regime is used:

• For memory accesses from EL1 or EL0 when the value of HCR_EL2.{E2H, TGE} is {0,0}.

The memory access will be Non-secure when SCR_EL3.NS is 1.

The Secure EL1&0 translation regime, when EL2 is enabled

If cached in a TLB, a translation table lookup for this regime is associated with the VMID that
identifies the current virtual machine. This regime has two stages of lookup:

Stage 1 Maps VAs to IPAs. This stage can support two VA ranges and the use of ASIDs.

Stage 2 Maps IPAs to PAs. This stage supports a single IPA range.

This translation regime is used:

• For memory access from EL1 or EL0 when the value of HCR_EL2.{E2H, TGE} is {0, 0}.

The Non-secure EL1&0 translation regime, when EL2 is enabled

If cached in a TLB, a translation table lookup for this regime is associated with the VMID that
identifies the current virtual machine. This regime has two stages of lookup:

Stage 1 Maps VAs to IPAs. This stage can support two VA ranges and the use of ASIDs.

Stage 2 Maps IPAs to PAs. This stage supports a single IPA range.

This translation regime is used:

• For memory access from EL1 or EL0 when the value of HCR_EL2.{E2H, TGE} is {0,0}.

The Secure EL2&0 translation regime

When FEAT_VHE is implemented, this regime has a single stage of translation, stage 1, that maps
VAs to PAs and can support two VA ranges and the use of ASIDs.

This translation regime is used:

• For memory accesses from EL0 when the value of HCR_EL2.{E2H, TGE} is {1,1}.

Translation regimes, when EL3 is using AArch64

EL1&0, when EL2 is disabled VA PA

VAEL1&0, when EL2 is enabled Controlled from EL1† IPA

PAEL2 or EL2&0‡ VA

EL1&0 stage 1

EL2, or EL2&0‡, stage 1

PAEL1&0 stage 1 EL1&0 stage 2
Controlled from EL2†

Controlled from EL2†

Controlled from EL1†

† Typically controlled from this Exception level, but also accessible from higher Exception levels

EL3 VA PAEL3 stage 1
Controlled from EL3

‡Only when the implementation includes FEAT_VHE and the value of HCR_EL2.E2H is 1
D5-2684 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
• For memory accesses from EL2 when the value of HCR_EL2.E2H is 1.

This translation regime is present when FEAT_SEL2 is implemented and enabled.

The Non-secure EL2&0 translation regime

When FEAT_VHE is implemented, this regime has a single stage of translation, stage 1, that maps
VAs to PAs and can support two VA ranges and the use of ASIDs.

This translation regime is used:

• For memory accesses from EL0 when the value of HCR_EL2.{E2H, TGE} is {1, 1}.

• For memory accesses from EL2 when the value of HCR_EL2.E2H is 1.

The Secure EL2 translation regime

This has a single stage of translation, stage 1, that maps VAs to PAs and supports a single VA range.

This translation regime is used:

• For all memory accesses from EL2 in implementations that do not include FEAT_VHE.

• For all memory access from EL2, when FEAT_VHE is implemented and HCR_EL2.E2H is
0.

This translation regime is present when FEAT_SEL2 is implemented and enabled.

The Non-secure EL2 translation regime

This has a single stage of translation, stage 1, that maps VAs to PAs and supports a single VA range.

This translation regime is used:

• For all memory accesses from EL2 in implementations that do not include FEAT_VHE.

• For all memory access from EL2, when FEAT_VHE is implemented and HCR_EL2.E2H is
0.

The Secure EL3 translation regime

This has a single stage of translation, stage 1, that maps VAs to PAs and supports a single VA range.

An MMU fault might be generated by a particular stage of translation. An MMU fault is described as either a stage 1
MMU fault or a stage 2 MMU fault.

Note

• In the Arm architecture, a software agent, such as an operating system, that uses or defines stage 1 memory
translations, might be unaware of the second stage of translation, and of the distinction between IPA and PA.

• A more generalized description of the translation regimes is that a regime always comprises two sequential
stages of translation, but in some regimes the stage 2 translation both:

— Returns an OA that equals the IA. This is called a flat mapping of the IA to the OA.

— Does not change the memory attributes returned by the stage 1 address translation.

Constraints on accesses from EL0 when EL0 is using AArch32

Armv8 permits execution with EL0 using AArch32 when the next higher Exception level is using AArch64. This
happens in the following situations:

• EL1 is using AArch64. Execution at EL0 using AArch32 uses the VMSAv8-64 EL1&0 translation regime.

• EL2 is using AArch64 and the Effective value of HCR_EL2.{E2H, TGE} is {0, 1} or {1, 0}. Execution at
EL0 using AArch32 uses the VMSAv8-64 EL1&0 translation regime.

• In an implementation that includes FEAT_VHE, EL2 is using AArch64 and the value of HCR_EL2.{E2H,
TGE} is {1, 1}. Execution at EL0 using AArch32 uses the VMSAv8-64 EL2&0 translation regime.

In this case, accesses from EL0 using AArch32 are using:

• The stated VMSAv8-64 translation regime, EL1&0 or EL2&0.

• The AArch32 memory model.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2685
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
In particular, this means the accesses from EL0 are limited to a 32-bit VA range.

About address translation and supported input address ranges

For a single stage of address translation, a Translation table base register (TTBR_ELx) indicates the start of the first
translation table required for a mapping from input address (IA) to output address (OA). For a stage of address
translation that supports two VA ranges each VA range is an independent mapping from IA to OA. This means that
each implemented translation stage shown in VMSAv8 AArch64 translation regimes, translation stages, and
associated controls on page D5-2684 requires:

• Two associated sets of translation tables if it supports two IA ranges.

• One associated set of translation tables if it supports a single IA range.

Note

• Stage 2 translations never support two IA ranges. This means that, for the translation stages that support two
IA ranges the IA is always a VA.

• Example use of the split VA range, and the TTBR0_ELx and TTBR1_ELx controls on page D5-2724 shows
how two supported VA ranges might be used.

Controlling address translation stages on page D5-2688 summarizes the System registers that control address
translation by the MMU, and Selection between TTBR0_ELx and TTBR1_ELx when two VA ranges are supported
on page D5-2723 gives more information about the address translation stages that support two VA ranges.

A full translation table lookup is called a translation table walk. It is performed automatically by hardware, and can
have a significant cost in execution time. To support fine granularity of the VA to PA mapping, a single IA to OA
translation can require multiple accesses to the translation tables, with each access giving finer granularity. Each
access is described as a level of address lookup. The final level of the lookup defines:

• The high bits of the required output address.

• The attributes and access permissions of the addressed memory.

Translation table entries can be cached in a Translation Lookaside Buffer, see Translation Lookaside Buffers (TLBs)
on page D5-2810.

The VMSAv8-64 translation table format

Stages of address translation that are controlled by an Exception level that is using AArch64 use the VMSAv8-64
translation table format. This format uses 64-bit descriptor entries in the translation tables.

Note

This format is an extension of the VMSAv8-32 Long-descriptor translation table format originally defined by the
Armv7 Large Physical Address Extension, and extended slightly by Armv8. VMSAv8-32 also supports a
Short-descriptor translation table format. Chapter G5 The AArch32 Virtual Memory System Architecture describes
both of these formats.

The VMSAv8-64 translation table format provides:

• Up to four levels of address lookup.

• A translation granule size of 4KB, 16KB, or 64KB.

• Input addresses of:

— Up to 52 bits when all of the following are true:

— FEAT_LPA2 is implemented.

— TCR_ELx.DS==1 for the translation regime controlled by that register.

— The 4KB or 16KB translation granule is used.

— Up to 52 bits if FEAT_LVA is implemented and the 64KB translation granule is used.

— Otherwise, up to 48 bits.
D5-2686 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
• Output addresses of:

— Up to 52 bits when all of the following are true:

— FEAT_LPA2 is implemented.

— TCR_ELx.DS==1 for the translation regime controlled by that register.

— The 4KB or 16KB translation granule is used.

— Up to 52 bits if FEAT_LPA is implemented and the 64KB translation granule is used.

— Otherwise, up to 48 bits.

For more information about input address and output address sizes, see Address size configuration on
page D5-2689.

D5.2.2 The implemented Exception levels and the resulting translation stages and regimes

About the VMSAv8-64 address translation system on page D5-2682 describes an implementation that includes all
Exception levels. Controlling address translation stages on page D5-2688 describes the control of address
translation by Exception levels that are using AArch64. This subsection describes how the address translation
scheme changes if an implementation does not include all of the Exception levels.

If an implementation does not include EL3, it has only a single Security state, with MMU controls equivalent to the
Secure state MMU controls.

If an implementation does not include EL2 then:

• If it also does not include EL3, the MMU provides only a single EL1&0 stage 1 translation regime.

• If it includes EL3, the MMU provides an EL1&0 stage 1 translation regime in each Security state.

Figure D5-1 on page D5-2684 shows the set of translation regimes for an implementation that implements all of the
Exception levels. Table D5-1 on page D5-2687 shows how the supported translation stages depend on the
implemented Exception levels, and in some cases on the Execution state being used by the highest implemented
Exception level.

Table D5-1 The relation between the implemented translation stages and Exception levels for AArch64

Translation stage Requires

Secure EL3 stage 1 EL3 implemented and using AArch64.

Secure EL2a stage 1 EL2 implemented and using AArch64.

Secure EL2&0ab stage 1 EL2 implemented and using AArch64.

Secure EL1&0a stage 2 EL2 implemented and using AArch64.

Secure EL1&0 stage 1 Either:

• EL3 implemented and using AArch64.

• Only EL1 and EL0 implemented, all operation is in Secure state, and EL1 is using
AArch64.

Non-secure EL2 stage 1 EL2 implemented.

Non-secure EL2&0b stage 1 EL2 implemented.

Non-secure EL1&0 stage 2 EL2 implemented.

Non-secure EL1&0 stage 1 Any implementation except:

• Only EL1 and EL0 implemented, with all operation in the Secure state.

a. This translation regime is supported only if an implementation includes FEAT_SEL2. When supported, it is used when the value of
SCR_EL3.EEL2 is 1.

b. The EL2&0 translation regime is supported only if an implementation includes FEAT_VHE. When supported, it is used when the value
of HCR_EL2.E2H is 1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2687
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
D5.2.3 Controlling address translation stages

The implemented Exception levels and the resulting translation stages and regimes on page D5-2687 defines the
translation regimes and stages. For each supported address translation stages controlled from AArch64, Table D5-2
on page D5-2688 shows:

• A System register bit enables the stage of address translation, SCTLR_ELx.M or HCR_EL2.VM.

• A System register bit determines the endianness of the translation table lookups, SCTLR_ELx.EE.

• A Translation Control Register (TCR_ELx) controls the stage of address translation.

• If a stage of address translation supports two VA ranges then that stage of translation provides:

— A single TCR_ELx.

— A TTBR_ELx for each VA range. TTBR0_ELx points to the translation tables for the address range
that starts at 0x0000000000000000, and TTBR1_ELx points to the translation tables for the address
range that ends at 0xFFFFFFFFFFFFFFFF.

Otherwise, a stage of translation provides a single TCR_ELx and a single TTBR_ELx that holds the address
of the translation table that must be used for the first lookup for the stage of address translation.

Table D5-2 Enable and endianness bits for the AArch64 translation stages

Translation stage Controlled from Controlling registers

Secure EL3 stage 1 EL3 SCTLR_EL3.{EE, M} TCR_EL3
TTBR0_EL3

Secure EL2a stage 1

a. This translation regime is supported only if an implementation includes FEAT_SEL2. When
supported, it is used when the value of SCR_EL3.EEL2 is 1.

Secure EL2 SCTLR_EL2.{EE, M} TCR_EL2
TTBR0_EL2

Secure EL2&0b stage 1

b. The EL2&0 translation regime is supported only if an implementation includes FEAT_VHE.
When supported, it is used when the value of HCR_EL2.E2H is 1.

Secure EL2 SCTLR_EL2.{EE, M} TCR_EL2
TTBR0_EL2
TTBR1_EL2

Secure EL1&0a stage 2 Secure EL2 SCTLR_EL2.EE
HCR_EL2.VM

VSTCR_EL2
VSTTBR_EL2
VTCR_EL2
VTTBR_EL2

Secure EL1&0 stage 1 Secure EL1 SCTLR_EL1.{EE, M} TCR_EL1
TTBR0_EL1
TTBR1_EL1

Non-secure EL2 stage 1 Non-secure EL2 SCTLR_EL2.{EE, M} TCR_EL2
TTBR0_EL2

Non-secure EL2&0b stage 1 Non-secure EL2 SCTLR_EL2.{EE, M} TCR_EL2
TTBR0_EL2
TTBR1_EL2

Non-secure EL1&0 stage 2 Non-secure EL2 SCTLR_EL2.EE
HCR_EL2.VM

VTCR_EL2
VTTBR_EL2

Non-secure EL1&0 stage 1 Non-secure EL1 SCTLR_EL1.{EE, M} TCR_EL1
TTBR0_EL1
TTBR1_EL1
D5-2688 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Note

If the PA of the software that enables or disables a particular stage of address translation differs from its VA,
speculative instruction fetching can cause complications. Arm strongly recommends that the PA and VA of any
software that enables or disables a stage of address translation are identical if that stage of translation controls
translations that apply to the software currently being executed.

The following subsections give more information about controlling address translation:

• System registers relevant to MMU operation on page D5-2689.

• Address size configuration on page D5-2689.

• Atomicity of register changes on changing virtual machine on page D5-2697.

• Use of out-of-context translation regimes on page D5-2697.

• If FEAT_MTE2 is implemented, Chapter D6 Memory Tagging Extension provides further controls for the
checking of Tagged and Untagged addresses.

System registers relevant to MMU operation

In AArch64 state, System registers have a suffix that indicates the lowest Exception level from which they can be
accessed. In some general descriptions of MMU control and address translation, this chapter uses a Common
abbreviation on page D5-2689 for each of the System registers that affects MMU operation, as Table D5-3 on
page D5-2689 shows. The common abbreviation is used when describing features that apply to multiple translation
regimes or stages.

Note

The only translation regime that supports a stage 2 translation is the EL1&0 translation regime, when EL2 is
enabled.

Address size configuration

The following subsubsections specify the configuration of the PA size and of the input and output address sizes for
each of the stages of address translation:

• Physical address size on page D5-2690.

• Output address size on page D5-2690.

Table D5-3 Abbreviations for System registers used in this chapter

Common
abbreviation

Translation
stage

Exception level

EL1 EL2 EL3

SCTLR_ELx - SCTLR_EL1 SCTLR_EL2 SCTLR_EL3

TCR_ELx Stage 1 TCR_EL1 TCR_EL2 TCR_EL3

Stage 2 - VTCR_EL2 VSTCR_EL2a -

TTBR_ELx Stage 1 TTBR0_EL1, TTBR1_EL1 TTBR0_EL2 TTBR0_EL3

Stage 2 - VTTBR_EL2, VSTTBR_EL2a -

TTBR0_ELx Stage 1 TTBR0_EL1 TTBR0_EL2 TTBR0_EL3

TTBR1_ELx Stage 1 TTBR1_EL1 TTBR1_EL2b -

a. Only when both the implementation includes FEAT_SEL2 and the value of SCR_EL3.EEL2 is 1.

b. Only when both the implementation includes FEAT_VHE and the value of HCR_EL2.E2H is 1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2689
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
• Input address size on page D5-2691.

• Supported IPA size on page D5-2693.

Physical address size

The ID_AA64MMFR0_EL1.PARange field indicates the implemented PA size, as Table D5-4 on page D5-2690
shows.

All other PARange values are reserved.

Output address size

For each enabled stage of address translation, TCR_ELx.{I}PS must be programmed to maximum output address
size for that stage of translation, using the encodings as shown in Table D5-5 on page D5-2690.

Table D5-4 Physical address size implementation options

ID_AA64MMFR0_EL1.PARange Total PA size PA address size

0000 4 GB 32 bits, PA[31:0]

0001 64 GB 36 bits, PA[35:0]

0010 1 TB 40 bits, PA[39:0]

0011 4 TB 42 bits, PA[41:0]

0100 16 TB 44 bits, PA[43:0]

0101 256 TB 48 bits, PA[47:0]

0110 4PB 52 bits, PA[51:0]a

a. Only when FEAT_LPA is implemented and the 64KB translation granule is
used, see Extending addressing above 48 bits when using the 64KB
translation granule on page D5-2695, or when FEAT_LPA2 is implemented
and the value of TCR_ELx.DS is 1, see Extending addressing above 48 bits
when using the 4KB or 16KB translation granule on page D5-2696.

Table D5-5 Output address size implementation options

TCR_ELx.{I}PS Total output size Output address size

000 4 GB 32 bits, PA[31:0]

001 64 GB 36 bits, PA[35:0]

010 1 TB 40 bits, PA[39:0]

011 4 TB 42 bits, PA[41:0]

100 16 TB 44 bits, PA[43:0]

101 256 TB 48 bits, PA[47:0]

110 4PB 52 bits, PA[51:0]a

a. Only when FEAT_LPA is implemented and the 64KB translation
granule is used, see Extending addressing above 48 bits when
using the 64KB translation granule on page D5-2695 or when
FEAT_LPA2 is implemented and the value of TCR_ELx.DS is 1,
see Extending addressing above 48 bits when using the 4KB or
16KB translation granule on page D5-2696.
D5-2690 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Note
• The naming of this field is as follows:

IPS • In TCR_EL1.

• In an implementation that includes FEAT_VHE, in TCR_EL2 when the value of
HCR_EL2.E2H is 1.

PS Otherwise.

• The {I}PS fields are 3-bit fields, corresponding to the least-significant PARange bits shown in Table D5-4
on page D5-2690.

If {I}PS is programmed to a value larger than the implemented PA size, then the PE behaves as if programmed with
the implemented PA size, but software must not rely on this behavior. That is, the output address size is never larger
than the implemented PA size. Table D5-4 on page D5-2690 shows the implemented PA size.

The PE checks that the TTBR_ELx, translation table entries, and the output address for the stage of address
translation have the address bits above the output address size set to zero. If this is not the case, an Address size fault
is generated for the level and stage of translation that caused the fault. An Address size fault from the TTBR_ELx
is always reported as a level 0 fault. When a translation granule of 4KB or 16KB is in use and the Effective value of
TCR_ELx.DS is 0, all output addresses are treated as having bits[51:48] set to 0b0000. For a description of the
Effective value of TCR_ELx.DS, see Extending addressing above 48 bits when using the 4KB or 16KB translation
granule on page D5-2696.

If stage 1 translation is disabled and the input address is larger than the implemented PA size, then a stage 1 level 0
Address size fault is generated.

Note

These faults are reported as level 0 faults even if they occur in a translation stage that does not perform level 0
lookups.

When using two stages of translation:

• If stage 2 translation is disabled and the output address from the stage 1 translation is larger than the
implemented PA size, then a stage 1 Address size fault is generated for the level of the stage 1 translation that
generated the output address.

• If stage 2 translation is enabled and the output address from the stage 1 translation does not generate a stage 1
Address size fault, but is larger than the input address size specified for the stage 2 translation, then a stage 2
Translation fault is generated.

Input address size

For each enabled stage of address translation, the TCR_ELx.TxSZ fields specify the input address size:

For a stage of translation that can support two VA ranges

The TCR_ELx has two TxSZ fields, corresponding to the two VA ranges:

• TCR_ELx.T0SZ specifies the size for the lower VA range, translated using TTBR0_ELx.

• TCR_ELx.T1SZ specifies the size for the upper VA range, translated using TTBR1_ELx.

For a stage of translation that supports only a single input address (IA) range

The TCR_ELx has a single T0SZ field, and IAs are translated using TTBR0_ELx.

Attempting to translate an address that is larger than the configured input address size generates a Translation fault.
This means:

• For a TCR_ELx with a single T0SZ field and a 48-bit address size, Figure D5-2 on page D5-2692 shows the
input address map:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2691
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Figure D5-2 AArch64 input address map when using a single TTBR and 48-bit input address size

• For a TCR_ELx with two TxSZ fields, the input address is always a VA, and Selection between TTBR0_ELx
and TTBR1_ELx when two VA ranges are supported on page D5-2723 describes the VA address map.

For the EL1&0 translation regime when EL2 is enabled, when both stages of translation are enabled, if the output
address from the stage 1 translation does not generate a stage 1 address size fault, and is larger than the input address
specified by VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ, then the input address size check for the stage 2 translation
generates a Translation fault.

Although software can configure the input address size to be smaller than 48 bits, all implemented AArch64
TTBR_ELxs must support input address sizes of up to 48 bits, and in an implementation that includes FEAT_LVA,
all TTBR_ELxs must support input address sizes of up to 52 bits.

Overview of the VMSAv8-64 address translation stages on page D5-2708 gives more information about the
relationship between the required input address size, the value of TxSZ, and the required initial lookup level, and
how these are affected by the translation granule size. However:

For all translation stages

If FEAT_TTST is implemented, while the PE is executing in AArch64 state and is using 4KB or
16KB translation granules, the maximum TxSZ value is 48.

If FEAT_TTST is implemented, while the PE is executing in AArch64 state and is using 64KB
translation granules, the maximum TxSZ value is 47.

If FEAT_TTST is not implemented or while the PE is executing in AArch32 state, the maximum
TxSZ value is 39.

If TxSZ is programmed to a value larger than the defined maximum then it is IMPLEMENTATION
DEFINED whether:

• The implementation behaves as if the field is programmed to the maximum for all purposes
other than reading back the value of the field.

• Any use of the TxSZ value generates a Level 0 Translation fault for the stage of translation
at which TxSZ is used.

For a stage 1 translation

The effective minimum value of TxSZ is determined as follows:

• If FEAT_LVA is not implemented, the effective minimum value of TxSZ is 16.

• If FEAT_LVA is implemented, the Effective value of TCR_ELx.DS is 0, and the 4KB or
16KB translation granule size is used, the effective minimum value of TxSZ is 16.

• If FEAT_LVA is implemented, and the 64KB translation granule size is used, the effective
minimum value of TxSZ is 12.

• If FEAT_LPA2 is implemented and the value of TCR_ELx.DS is 1, the effective minimum
value of TxSZ is 12.

0x0000_0000_0000_0000

0xFFFF_FFFF_FFFF_FFFF

0x0000_FFFF_FFFF_FFFF Boundary, when TCR_ELx.T0SZ==16

TTBR0_ELx
region

Accesses
generate

Translation
faults

Effect of increasing TCR_ELx.T0SZ

Input address (IA)
D5-2692 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
If TxSZ is programmed to a value smaller than the effective minimum value, and if FEAT_LVA is
not supported, then it is IMPLEMENTATION DEFINED whether:

• The implementation behaves as if the field were programmed to 16 for all purposes other than
reading back the value of the field.

• Any use of the TxSZ value generates a stage 1 level 0 Translation fault.

If TxSZ is programmed to a value smaller than the effective minimum value when FEAT_LVA is
supported, then any use of the TxSZ value generates a stage 1 level 0 Translation fault.

For more information, see Extending addressing above 48 bits when using the 64KB translation
granule on page D5-2695.

For a stage 2 translation

Supported IPA size on page D5-2693 defines the effective minimum value of T0SZ, that depends on
the supported PA size, and also describes the possible effects of programming T0SZ to a value that
is smaller than this effective minimum value.

Supported IPA size

When EL2 is enabled in the current Security state, for the EL1&0 translation regime, the maximum IPA size is the
maximum input address size for the second stage of translation is specified by VTCR_EL2.T0SZ or
VSTCR_EL2.T0SZ. For more information, see Input address size on page D5-2691 and Output address size on
page D5-2690.

The maximum IPA size is constrained by the implemented PA size that is specified by
ID_AA64MMFR0_EL1.PARange, see Physical address size on page D5-2690.

The implemented PA size also constrains the following values that specify the initial lookup level:

• VTCR_EL2.SL0 and VSTCR_EL2.SL0.

• When the Effective value of VTCR_EL2.DS is 1, VTCR_EL2.SL2 and VSTCR_EL2.SL2.

SL0 and SL2 also depend on the translation granule, as described in Overview of the VMSAv8-64 address
translation stages on page D5-2580.

Table D5-6 PA size implications for the VTCR_EL2.T0SZ and VSTCR_EL2.T0SZ fields

Supported PA size Effective minimum T0SZ value
Valid initial lookup levels

4KB granule 16KB granule 64KB granule

32 bits 32 if EL1 is using AArch64

24 if EL1 is using AArch32
 3a, 2, 1 3, 2 3, 2

36 bits 28 if EL1 is using AArch64

24 if EL1 is using AArch32
3a, 2, 1 3, 2 3, 2

40 bits 24 3a, 2, 1 3, 2 3, 2

42 bits 22 3a, 2, 1 3, 2, 1 3, 2

44 bits 20 3a, 2. 1, 0 3, 2, 1 3, 2, 1

48 bits 16 3a, 2, 1, 0 3, 2, 1 3, 2, 1

52 bits 12b 3a, 2, 1, 0, -1 3, 2, 1, 0 3, 2, 1

a. Only supported if FEAT_TTST is implemented, while the PE is executing in AArch64 state.

b. For the 64KB granule, only supported if FEAT_LPA is implemented. For the 4KB and 16KB granules, only supported if
the Effective value value of VTCR_EL2.DS is 1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2693
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
If VTCR_EL2.T0SZ is programmed to a value smaller than the effective minimum value shown in Table D5-6 on
page D5-2693, and if FEAT_LPA is not implemented, then the implementation consistently does one of the
following:

• Treats the VTCR_EL2.T0SZ field as being programmed to the effective minimum value for all purposes
other than reading back the value of the field.

• Treats the VTCR_EL2.T0SZ field as being programmed to the effective minimum value for all purposes
other than:

— Reading back the value of the field.

— Checking whether the value of VTCR_EL2.T0SZ is consistent with the value of VTCR_EL2.SL0.

• Generates a stage 2 level 0 Translation fault on any memory access that uses the second stage of translation.

If T0SZ is programmed to a value smaller than the effective minimum value when FEAT_LPA is supported, then
any use of the T0SZ value generates a stage 2 level 0 Translation fault.

For more information, see Extending addressing above 48 bits when using the 64KB translation granule on
page D5-2695.

Note

Programming VTCR_EL2.T0SZ to a value smaller than the effective minimum value shown in Table D5-6 on
page D5-2693 can never provide support for a larger address range than the range given by the effective minimum
value, because the stage 1 output address will give an Address size fault if it is larger than either:

• The PA size, for a VMSAv8-64 stage 1 translation.

• 40 bits, for a VMSAv8-32 stage 1 translation.

If FEAT_LPA2 is implemented, then VTCR_EL2.SL2 and VSTCR_EL2.SL2 have the following properties:

• If VTCR_EL2.DS==0, then SL2 is RES0.

• If the translation granule is not 4KB, then SL2 is RES0.

• If VTCR_EL2.DS==1 and the translation granule is 4KB, then SL2 is combined with SL0 to determine the
initial lookup level for a stage 2 translation table walk, as shown in Table D5-7 on page D5-2694.

If any of VTCR_EL2.SL0, VTCR_EL2.SL2, VSTCR_EL2.SL0, or VSTCR_EL2.SL2 are programmed to represent
an initial lookup level not shown in Table D5-7 on page D5-2694, or are programmed to a reserved value, then any
memory access that uses the second stage of translation generates a stage 2 level 0 Translation fault.

Table D5-7 SL2a and SL0 encoding for initial lookup level in a 4KB translation granule

SL2a

a. Requires implementation of
FEAT_LPA2.

SL0 Initial lookup level

0 00 Level 2

0 01 Level 1

0 10 Level 0

0 11 Level 3

1 00 Level -1

1 01 Reserved

1 10 Reserved

1 11 Reserved
D5-2694 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Extending addressing above 48 bits

The following features provide support for 52-bit addressing:

FEAT_LVA When using the 64KB translation granule, supports 52-bit VAs. The maximum IPA and PA
sizes remain 48-bit unless FEAT_LPA is implemented.

FEAT_LPA When using the 64KB translation granule, supports 52-bit IPAs and PAs. The maximum VA
size remains 48-bit unless FEAT_LVA is implemented.

FEAT_LPA2 When using the 4KB or 16KB translation granule, supports 52-bit VAs, IPAs, and PAs.

FEAT_LPA and FEAT_LVA can be implemented independently of each other. FEAT_LPA2 requires the
implementation of both FEAT_LVA and FEAT_LPA.

For more information on using addresses larger than 48 bits with the 64KB granule, see Extending addressing above
48 bits when using the 64KB translation granule on page D5-2695.

For more information on using addresses larger than 48 bits with the 4KB and 16 KB granules, see Extending
addressing above 48 bits when using the 4KB or 16KB translation granule on page D5-2696.

Note

The ID_AA64MMFR2_EL1.VA field indicates the supported VA size.

The ID_AA64MMFR0_EL1.PArange field indicates the supported PA and IPA size.

Extending addressing above 48 bits when using the 64KB translation granule

When using the 64KB translation granule, FEAT_LPA supports Block descriptors in level 1 translation tables. In
this case, a block covers a 4TB address range.

When the 64KB translation granule is used and FEAT_LVA is implemented, the 52-bit VA size is supported as
follows:

• For stage 1 translations, the minimum value of the TCR_ELx.TnSZ field is 12.

If TCR_ELx.TnSZ is programmed to a value less than 12, any use of the TCR_ELx.TnSZ bit generates a
stage 1 level 0 Translation fault.

• For stage 2 translations, the minimum value of VTCR_EL2.T0SZ and VSTCR_EL2.T0SZ is 12.

If VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ is programmed to a value less than 12, then any use of a stage 2
translation generates a stage 2 level 0 Translation fault.

Table D5-26 on page D5-2730 shows the Translation Table descriptor addressing for each level of lookup when
using the 64KB translation granule.

When the 64KB translation granule is used and FEAT_LPA is implemented, the 52-bit IPA and PA sizes are
supported as follows:

• Bits[15:12] of each valid Translation Table descriptor hold bits[51:48] of the output address, or of the address
of the translation table to be used for the initial lookup at the next level of translation. If the implementation
does not support 52-bit physical addresses, then it is IMPLEMENTATION DEFINED whether non-zero values for
these bits generate an Address size fault. In this case, not generating an Address Size Fault is deprecated.

• For a stage 1 translation, bits[5:2] of TTBR0_ELx or TTBR1_ELx holds bits[51:48] of the address of the
translation table to be used for the initial lookup of that translation regime. If the implementation does not
support 52-bit physical addresses, then non-zero values for these bits generate an Address size fault.

• For a stage 2 translation, bits[5:2] of VTTBR_EL2 or VSTTBR_EL2 holds bits[51:48] of the address of the
translation table to be used for the initial lookup of the stage 2 translation. If the implementation does not
support 52-bit physical addresses, then non-zero values for these bits generate an Address size fault.

• The minimum alignment of a translation table containing fewer than eight entries is 64 bytes.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2695
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Note
This is because, when the OA space is more than 48 bits, TTBR_ELx[5:2] specifies bits[51:48] of the
translation table base address, and a translation table of fewer than eight entries would require one or more
bits of TTBR_ELx[5:2] to be RES0 if the table was aligned to its size.

For more information, see VMSAv8-64 translation table level -1, level 0, level 1, and level 2 descriptor formats on
page D5-2739 and Armv8 translation table level 3 descriptor formats on page D5-2744.

Extending addressing above 48 bits when using the 4KB or 16KB translation granule

When using the 4KB translation granule, FEAT_LPA2 supports Block descriptors in level 0 translation tables. In
this case, a block covers a 512GB address range.

When using the 16KB translation granule, FEAT_LPA2 supports Block descriptors in level 1 translation tables. In
this case, a block covers a 64GB address range.

If FEAT_LPA2 is implemented, TCR_ELx.DS and VTCR_EL2.DS control when the 4KB and 16KB translation
granules can use an address size greater than 48 bits:

• When DS==0, the maximum address size for the translation regime is 48 bits.

• When DS==1, the maximum address size for the translation regime is 52 bits.

Note

TCR_ELx.DS and VTCR_EL2.DS are RES0 when using the 64KB translation granule.

If FEAT_LPA2 is not implemented, the Effective value of the TCR_ELx.DS and VTCR_EL2.DS bit is 0.

To support the larger address size when the translation regime’s TCR_ELx.DS or VTCR_EL2.DS bit is 1, the
shareability field in the Block and Page descriptors is used for addressing, see VMSAv8-64 Translation Table format
descriptors on page D5-2739. For a stage 1 translation, the shareability of a cacheable block or page is taken from
the shareability attribute field in the translation regime's TCR_ELx register, see Stage 1 Shareability when
FEAT_LPA2 is implemented on page D5-2778. For a stage 2 translation, the shareability of a cacheable block or
page is taken from the shareability attribute field in the translation regime's VTCR_EL2 register, see Stage 2
Shareability attribute, for Normal memory on page D5-2780.

For a translation regime, when the TCR_ELx.DS or VTCR_EL2.DS bit is 1, the 52-bit VA size is supported in the
4KB and 16KB translation granules as follows:

• For stage 1 translations, the minimum value of the TCR_ELx.TnSZ field is 12.

If TCR_ELx.TnSZ is programmed to a value less than 12, any use of the TCR_ELx.TnSZ bit generates a
stage 1 level 0 Translation fault.

• For stage 2 translations, the minimum value of VTCR_EL2.T0SZ and VSTCR_EL2.T0SZ is 12.

If VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ is programmed to a value less than 12, any use of a stage 2
translation generates a stage 2 level 0 Translation fault.

Table D5-24 on page D5-2728 shows the Translation Table descriptor addressing for each level of lookup when
using the 4KB translation granule. Table D5-25 on page D5-2729 shows the Translation Table descriptor addressing
for each level of lookup when using the 16KB translation granule.

For a translation regime, when the TCR_ELx.DS or VTCR_EL2.DS bit is 1, the 52-bit IPA and PA size is supported
in the 4KB and 16KB translation granules as follows:

• Bits[49:48] of each valid Translation Table descriptor hold bits[49:48] of the output address, or of the address
of the translation table to be used for the initial lookup at the next level of translation.

• Bits[9:8] of each valid Translation Table descriptor hold bits[51:50] of the output address, or of the address
of the translation table to be used for the initial lookup at the next level of translation.

• For a stage 1 translation, bits[5:2] of TTBR0_ELx or TTBR1_ELx holds bits[51:48] of the address of the
translation table to be used for the initial lookup of that translation regime.

• For a stage 2 translation, bits[5:2] of VTTBR_EL2 or VSTTBR_EL2 holds bits[51:48] of the address of the
translation table to be used for the initial lookup of the stage 2 translation.

• The minimum alignment of a translation table containing fewer than eight entries is 64 bytes.
D5-2696 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Note
This is because, when the OA space is more than 48 bits, TTBR_ELx[5:2] specifies bits[51:48] of the
translation table base address, and a translation table of fewer than eight entries would require one or more
bits of TTBR_ELx[5:2] to be RES0 if the table was aligned to its size.

For more information, see VMSAv8-64 translation table level -1, level 0, level 1, and level 2 descriptor formats on
page D5-2739 and Armv8 translation table level 3 descriptor formats on page D5-2744.

The following register fields determine support for 52-bit input and output addresses using FEAT_LPA2:

• ID_AA64MMFR0_EL1.TGran4 determines 52-bit address support for the 4KB translation granule at
stage 1.

• ID_AA64MMFR0_EL1.TGran4_2 determines 52-bit address support for the 4KB translation granule at
stage 2.

• ID_AA64MMFR0_EL1.TGran16 determines 52-bit address support for the 16KB translation granule at
stage 1.

• ID_AA64MMFR0_EL1.TGran16_2 determines 52-bit address support for the 16KB translation granule at
stage 2.

Atomicity of register changes on changing virtual machine

From the viewpoint of software executing at EL1 or EL0, when there is a switch from one virtual machine to
another, the registers that control or affect address translation must be changed atomically. This applies to the
registers for the EL1&0, when EL2 is enabled, translation regime. This means that all of the following registers must
change atomically:

• The registers associated with the stage 1 translations:

— MAIR_EL1 and AMAIR_EL1.

— TTBR0_EL1, TTBR1_EL1, TCR_EL1, and CONTEXTIDR_EL1.

— SCTLR_EL1.

• The registers associated with the stage 2 translations:

— VTTBR_EL2 and VTCR_EL2.

— SCTLR_EL2.

Note

Only some bits of SCTLR_EL1 affect the stage 1 translation, and only some bits of SCTLR_EL2 affect the stage 2
translation. However, in each case, changing these bits requires a write to the register, and that write must be atomic
with the other register updates.

These registers apply to execution using the EL1&0, when EL2 is enabled, translation regime. However, when
updated as part of a switch of virtual machines they are updated by software executing at EL2. This means the
registers are out of context when they are updated, and no synchronization precautions are required.

Similar considerations apply when FEAT_VHE is implemented.

Use of out-of-context translation regimes

The architecture requires that:

• When executing at EL3 or EL2, the PE must not use the registers associated with the EL1&0 translation
regime for speculative memory accesses.

• When executing at EL3 the PE must not use the registers associated with the EL2 or EL2&0 translation
regime for speculative memory accesses.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2697
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
If the Statistical Profiling Unit (SPU) is not in use for a lower Exception level when entering an Exception level, on
completion of a DSB instruction, then no new memory accesses using any translation table entries from a translation
regime of an Exception level lower than the Exception level that has been entered will be observed by any observers,
to the extent that those accesses are required to be observed as determined by the shareability and cacheability of
those translation table entries.

If the SPU is in use for a lower Exception level when entering an Exception level, on completion of a PSB CSYNC and
a subsequent DSB instruction, then no new memory accesses using any translation table entries from a translation
regime of an Exception level lower than the Exception level that has been entered will be observed by any observers,
to the extent that those accesses are required to be observed as determined by the shareability and cacheability of
those translation table entries.

Note

• This does not require that speculative memory accesses cannot be performed using those entries if it is
impossible to tell that those memory accesses have been observed by the observers.

• This requirement does not imply that, on taking an exception to a higher Exception level, any translation table
walks started before the exception was taken will be completed by the time the higher Exception level is
entered, and therefore memory accesses required for such a translation table walk might, in effect, be
performed speculatively. However, the execution of a DSB on entry to the higher Exception level ensures that
these accesses are complete.

D5.2.4 Memory translation granule size

The memory translation granule size defines both:

• The maximum size of a single translation table.

• The memory page size. That is, the granularity of a translation table lookup.

VMSAv8-64 supports translation granule sizes of 4KB, 16KB, and 64KB. Support for each granule size is optional.
If FEAT_GTG is implemented, support for granule size in Stage 1 is indicated as shown in Table D5-8 on
page D5-2698, and support for granule size in Stage 2 is indicated as shown in Table D5-9 on page D5-2699.
Otherwise, support for granule size in both Stages 1 and 2 is indicated as shown in Table D5-8 on page D5-2698:

Table D5-8 Identifying supported granule sizes for stage 1 translation

Granule size
Support indicated by:

Field Values

4KB ID_AA64MMFR0_EL1.TGran4 0b0000 4KB granule size with 48-bit addresses supported.

0b0001 4KB granule size with 52-bit addresses supported.

0b1111 4KB granule size not supported.

16KB ID_AA64MMFR0_EL1.TGran16 0b0000 16KB granule size not supported.

0b0001 16KB granule size with 48-bit addresses supported.

0b0010 16KB granule size with 52-bit addresses supported.

64KB ID_AA64MMFR0_EL1.TGran64 0b0000 64KB granule size supported.

0b1111 64KB granule size not supported.
D5-2698 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Note

From a hardware viewpoint, the TGran*_2 fields hold the same information as the corresponding TGran* fields.

In VMSAv8-64, each address translation stage is configured, independently, to use one of the supported granule
sizes.

Note

• Using a larger granule size can reduce the maximum required number of levels of address lookup because:

— The increased translation table size means the translation table holds more entries. This means a single
lookup can resolve more bits of the input address.

— The increased page size means more of the least-significant address bits are required to address a page.
These address bits are flat mapped from the input address to the output address, and therefore do not
require translation.

• Arm recommends that memory-mapped peripherals are separated by an integer multiple of the largest
granule size supported by the operating system or hypervisor, to allow each peripheral to be managed
independently.

Table D5-10 on page D5-2699 summarizes the effects of the different granule sizes.

How the granule size affects the address translation process

As Table D5-10 on page D5-2699 shows, the translation granule determines the number of address bits:

• Required to address a memory page.

Table D5-9 Identifying supported granule sizes for stage 2 translation

Granule size
Support indicated by:

Field Values

4KB ID_AA64MMFR0_EL1.TGran4_2 0b0010 4KB granule size with 48-bit addresses supported at stage 2.

0b0001 4KB granule size not supported at stage 2.

0b0011 4KB granule size with 52-bit addresses supported at stage 2.

16KB ID_AA64MMFR0_EL1.TGran16_
2

0b0010 16KB granule size with 48-bit addresses supported at stage 2.

0b0001 16KB granule size not supported at stage 2.

0b0011 16KB granule size with 52-bit addresses supported at stage 2.

64KB ID_AA64MMFR0_EL1.TGran64_
2

0b0010 64KB granule size supported at stage 2.

0b0001 64KB granule size not supported at stage 2.

Table D5-10 Effect of granule size on a stage of address translation

Property 4KB granule 16KB granule 64KB granule Notes

Maximum number of entries in a
translation table

512 2048 (2K) 8192 (8K) -

Address bits resolved in one level of lookup 9 11 13 29=512, 211=2K,
213=8K

Page size 4KB 16KB 64KB -

Page address range VA[11:0] =
PA[11:0]

VA[13:0] =
PA[13:0]

VA[15:0] =
PA[15:0]

212=4K, 214=16K,
216=64K
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2699
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
• That can be resolved in a single translation table lookup.

This means the translation granule determines how the input address (IA) is resolved to an output address (OA) by
the translation process.

Because a single translation table lookup can resolve only a limited number of address bits, the IA to OA resolution
requires multiple levels of lookup.

Considering the resolution of an IA range of 48 bits, with a translation granule size of 2n bytes:

• The least-significant n bits of the IA address the memory page. This means OA[(n-1):0]=IA[(n-1):0].

• The remaining (48-n) bits of the IA, IA[47:n], must be resolved by the address translation.

• A Translation Table descriptor is 8 bytes. Therefore:

— A complete translation table holds 2(n-3) descriptors.

— A single level of translation can resolve a maximum of (n-3) bits of address.

Consider the translation process, working back from the final level of lookup, that resolves the least
significant of the address bits that require translation. Because the translation needs to resolve IA[47:n] and
a level of lookup can resolve (n-3) bits of address:

— The final level of lookup resolves IA[(2n-4):n].

— The previous level of lookup resolves IA[(3n-7):(2n-3)].

However, the level of lookup that resolves the most significant bits of the IA might not require a full-sized
translation table. Therefore, in general, for a 48-bit IA the address bits resolved in a level of lookup are:

IA[Min(47, ((3-m)(n-3)+2n-4)):(n+(3-m)(n-3))], where:

Min(a, b) Is a function that returns the minimum of a and b.

m Indicates the level of lookup. This is defined so that the level that resolves the least significant
bit of the translated IA bits is level 3.

Figure D5-3 on page D5-2700 shows how a 52-bit IA is resolved when using the 4KB translation granule. An input
address size greater than 48 bits requires implementation of FEAT_LPA2.

Figure D5-3 How a 52-bit IA is resolved when using the 4KB translation granule

Input address (IA)
47 30 29 021 20 12 1139 38

Using the 4KB translation granule

IA[11:0]

IA[20:12]
Index the level 3 translation table†

or
OA[20:12]‡

OA[11:0]

Index the level 2 translation table†

or
OA[29:21]‡

IA[29:21]

Index the level 0 translation table†IA[47:39]

Index the level -1 translation tableIA[51:48]

OA Output address
† Table entry at previous lookup level
‡ Block entry at previous lookup level

4851

Index the level 1 translation table†

or
OA[38:30]‡

IA[38:30]
D5-2700 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Figure D5-4 on page D5-2701 shows how a 52-bit IA is resolved when using the 16KB translation granule. An input
address size greater than 48 bits requires implementation of FEAT_LPA2.

Figure D5-4 How a 52-bit IA is resolved when using the 16KB translation granule

Figure D5-5 on page D5-2701 shows how a 52-bit IA is resolved when using the 64KB translation granule. An input
address size greater than 48 bits requires implementation of FEAT_LVA for stage 1 translations, and FEAT_LPA for
stage 2 translations.

Figure D5-5 How a 52-bit IA is resolved when using the 64KB translation granule

Later sections of this chapter give more information about the translation process, and explain the terminology used
in these figures.

Effect of granule size on translation table addressing and indexing

Table D5-11 on page D5-2702 shows the effect of the translation granule size on the addressing and indexing of the
TTBR_ELx, and on the input address range that must be resolved.

Input address (IA)
46 025 24 14 1336 35

Using the 16KB translation granule

IA[13:0]

IA[24:14]
Index the level 3 translation table†

or
OA[24:14]‡

OA[13:0]

Index the level 2 translation table†

or
OA[35:25]‡

IA[35:25]

Index the level 0 translation tableIA[51:47]

OA Output address
† Table entry at previous lookup level
‡ Block entry at previous lookup level

4751

Index the level 1 translation table†IA[46:36]

Input address (IA)
51 29 28 016 1542 41

Using the 64KB translation granule

IA[15:0] OA[15:0]

IA[28:16]
Index the level 3 translation table†

or
OA[28:16]‡

Index the level 2 translation table†

or
OA[41:29]‡

IA[41:29]

Index the level 1 translation tableIA[51:42]

OA Output address
† Table entry at previous lookup level
‡ Block entry at previous lookup level
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2701
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
In Table D5-11 on page D5-2702, the entries in the Addressed by and Translation resolves columns apply as follows:

• For the 4KB and 16KB granules, the second entry is for an implementation that includes FEAT_LPA2 and
has selected an IA space larger than 48 bits, see Extending addressing above 48 bits when using the 4KB or
16KB translation granule on page D5-2696. The first entry applies otherwise.

• For the 64KB granule, the second entry is for an implementation that includes FEAT_LVA and has selected
an IA space larger than 48 bits, see Extending addressing above 48 bits when using the 64KB translation
granule on page D5-2695. The first entry applies otherwise.

Table D5-12 on page D5-2702 shows the IA bits resolved at each level of lookup, and how these correspond to the
possible values of x in Table D5-11 on page D5-2702.

Table D5-11 The effect of translation granule size on the translation tables

Granule size
Translation table

Translation resolvesa Notes
Addressed by Indexed byb

4KB TTBR_ELx[47:12]

TTBR_ELx[5:2, 47:12]

IA[(x + 8):x] IA[47:12]c

IA[51:12]

One lookup level resolves up toc 9 IA bits

16KB TTBR_ELx[47:14]c

TTBR_ELx[5:2, 47:14]

IA[(x + 10):x] IA[47:14]c

IA[51:14]

One lookup level resolves up to 11 IA bits

64KB TTBR_ELx[47:16]

TTBR_ELx[5:2, 47:16]

IA[(x + 12):x] IA[47:16]

IA[51:16]

One lookup level resolves up to 13 IA bits

a. When translating a maximum-sized input address, and accessing a page of memory.

b. Where the value of x depends on the lookup level, see Table D5-12 on page D5-2702.

c. Depending on the IA size, the initial lookup might resolve fewer bits of the IA.

Table D5-12 IA bits resolved at different levels of lookup

Lookup level 4KB granule size 16KB granule size 64KB granule size

Minus one IA[51b:48], x = 48 -a

a. Level -1 lookup only possible with the 4KB granule size in an implementation that
includes FEAT_LPA2.

-a

Zero IA[47:39], x = 39 IA[47b], x = 47c

IA[51b:47], x = 47

b. Smaller value than indicated in Table D5-11 on page D5-2702, as explained in this
section.

c. The second entry applies to an implementation that includes FEAT_LPA2 and has selected
an IA space larger than 48 bits, see Extending addressing above 48 bits when using the
4KB or 16KB translation granule on page D5-2696, The first entry applies otherwise.

-d

d. Level 0 lookup not possible with 64KB granule size

First IA[38:30], x = 30 IA[46:36], x = 36 IA[47b:42], x = 42e

IA[51b:42], x = 42

e. The second entry applies to an implementation that includes FEAT_LVA and has selected
an IA space larger than 48 bits, see Extending addressing above 48 bits when using the
64KB translation granule on page D5-2695, The first entry applies otherwise.

Second IA[29:21], x = 21 IA[35:25], x = 25 IA[41:29], x = 29

Third IA[20:12], x = 12 IA[24:14], x = 14 IA[28:16], x = 16
D5-2702 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Table D5-11 on page D5-2702 refers to accessing a complete translation table, of 4KB, 16KB, or 64KB. However,
the Armv8 translation system supports the following possible variations from the information in Table D5-11 on
page D5-2702:

Reduced IA width

Depending on the configuration and implementation choices, the required input address width for
the initial level of lookup might be smaller than the number of address bits that can be resolved at
that level. This means that, for this initial level of lookup:

• The translation table size is reduced. The size of the translation table is halved for each 1-bit
reduction in the input address size.

Note

— This has no effect on the translation table size for subsequent levels of lookup, for
which the lookups always use full-sized translation tables.

— For a stage 2 translation, it might be possible to start the translation at a lower level,
see Concatenated translation tables on page D5-2703.

• More low-order TTBR_ELx bits are needed to hold the translation table base address.
Example D5-1 on page D5-2703 shows how this applies to translating a 35-bit input address
range using the 4KB granule.

Example D5-1 Effect of an IA width of 35 bits when using the 4KB granule size

With a 4KB granule size, a single level of lookup can resolve up to 9 bits of IA. If an implementation has a 35-bit
input address range, IA[34:0], Table D5-12 on page D5-2702 shows that lookup must start at level 1, and that the
initial lookup must resolve IA[34:30], meaning it resolves 5 bits of address. This 4-bit reduction in the required
resolution means:

• The translation table size is divided by 24, giving a size of 256B.

• The TTBR_ELx requires 4 more bits for the translation table base address, which becomes
TTBR_ELx[47:8].

When using the 64KB translation granule to translate the maximum IA size of 48 bits, Table D5-12
on page D5-2702 shows that a level 1 lookup must resolve only IA[47:42]. This is 6 bits of address,
compared to the 13 bits that can be resolved at a single level of lookup. This 7-bit reduction in the
required resolution means:

• The translation table size is divided by 27, giving a size of 512B.

• The TTBR_ELx requires 7 more bits for the translation table base address, which becomes
TTBR_ELx[47:9].

Concatenated translation tables

For stage 2 address translations, for the initial lookup, up to 16 translation tables can be
concatenated. This means additional IA bits can be resolved at that lookup level. The block of
concatenated translation tables must be aligned to the size of the block of translation tables.

This means that each additional IA bit resolved:

• Doubles the number of translation tables required. Resolving an additional n bits requires 2n
concatenated translation tables at the initial lookup level.

• Reduces by 1 bit the width of the translation table base address held in the TTBR_ELx.

This means that, for the initial lookup of a stage 2 translation table, the IA ranges shown in
Table D5-12 on page D5-2702 can be extended by up to 4 bits. Example D5-2 on page D5-2704
shows how concatenation can be used to resolve a 40-bit IA when using the 4KB translation granule.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2703
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Example D5-2 Concatenating translation tables to resolve a 40-bit IA range, with the 4K granule

Table D5-12 on page D5-2702 shows that, when using the 4KB translation granule, a level 1 lookup can resolve a
39-bit IA, with the first lookup resolving IA[38:30]. For a stage 2 translation, to extend the IA width to 40 bits and
resolve IA[39:30] with the first lookup:

• Two translation tables are concatenated, giving a total size of 8KB.

• The TTBR_ELx requires 1 fewer bit for the translation table base address, which becomes
TTBR_ELx[47:13].

For more information, see Use of concatenated translation tables for the initial stage 2 lookup on
page D5-2724.

In all cases, the translation table, or block of concatenated translation tables, must be aligned to the actual size of
the table or block of concatenated tables.

The translation table base address held in the TTBR_ELx is defined in the OA map for that stage of address
translation. The information given in this section assumes this stage of translation has the maximum OA size,
meaning the translation table base address is:

• TTBR_ELx[47:12] if using the 4KB translation granule with an OA of 48 bits.

• In an implementation that includes FEAT_LPA2 and is using the 4KB translation granule, OA[51:12], where:

— TTBR_ELx[5:2] holds OA[51:48].

— TTBR_ELx[47:12] holds OA[47:12].

• TTBR_ELx[47:14] if using the 16KB translation granule with an OA of 48 bits.

• In an implementation that includes FEAT_LPA2 and is using the 16KB translation granule, OA[51:12],
where:

— TTBR_ELx[5:2] holds OA[51:48].

— TTBR_ELx[47:12] holds OA[47:12].

• TTBR_ELx[47:16] if using the 64KB translation granule with an OA of 48 bits.

• In an implementation that includes FEAT_LPA and is using the 64KB translation granule, OA[51:16], where:

— TTBR_ELx[5:2] holds OA[51:48].

— TTBR_ELx[47:16] holds OA[47:16].

If the OA address is smaller than 48 bits then the upper bits of this field must be written as zero. For example, for a
40-bit OA range:

• If using the 4KB translation granule:

— TTBR_ELx[47:40] must be set to zero.

— TTBR_ELx[39:12] holds the translation table base address.

• If using the 16KB translation granule:

— TTBR_ELx[47:40] must be set to zero.

— TTBR_ELx[39:14] holds the translation table base address.

• If using the 64KB translation granule:

— TTBR_ELx[47:40] must be set to zero.

— TTBR_ELx[39:16] holds the translation table base address.

In all cases, if TTBR_ELx[47:40] is not zero, any attempt to access the translation table generates an Address size
fault.

D5.2.5 Translation tables and the translation process

The following subsections describe general properties of the translation tables and translation table walks, that are
largely independent of the translation table format:

• Translation table walks on page D5-2705.

• Ordering of memory accesses from translation table walks on page D5-2707.

• Security state of translation table lookups on page D5-2707.

• Control of translation table walks on page D5-2707.
D5-2704 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
See also Selection between TTBR0_ELx and TTBR1_ELx when two VA ranges are supported on page D5-2723.

Translation table walks

A translation table walk comprises one or more translation table lookups. The translation table walk is the set of
lookups that are required to translate the VA to the PA. For the EL1&0, when EL2 is enabled, translation regime,
this set includes lookups for both the stage 1 translation and the stage 2 translation, but translation table walk can
also be used to refer to either:

• The set of lookups required for the stage 1 translation, that translates the VA to the IPA. This is the stage 1
translation table walk.

• The set of lookups required for the stage 2 translation, that translates the IPA to the PA. This is the stage 2
translation table walk.

The information returned by a successful translation table walk is:

• The required PA. If the access is from Secure state this includes identifying whether the access is to the Secure
PA space or the Non-secure PA space, see Security state of translation table lookups on page D5-2707.

• The memory attributes for the target memory region, as described in Memory types and attributes on
page B2-165. For more information about how the Translation Table descriptors specify these attributes, see
Memory region attributes on page D5-2776.

• The access permissions for the target memory regions. For more information about how the Translation Table
descriptors specify these permissions, see Memory access control on page D5-2754.

The translation table walk starts with a read of the translation table for the initial lookup. The TTBR_ELx for the
stage of translation holds the base address of this table. Each translation table lookup returns a descriptor that
indicates one of the following:

• The entry is the final entry of the walk. In this case, the entry contains the OA, and the permissions and
attributes for the access.

• An additional level of lookup is required. In this case, the entry contains the translation table base address for
that lookup. In addition:

— The descriptor provides hierarchical attributes that are applied to the final translation, see Hierarchical
control of Secure or Non-secure memory accesses on page D5-2753 and Hierarchical control of data
access permissions on page D5-2759.

— If the translation is in a Secure translation regime, the descriptor indicates whether that base address
is in the Secure or Non-secure address space, unless a hierarchical control at a previous level of lookup
has indicated that it must be in the Non-secure address space.

• The descriptor is invalid. In this case, the memory access generates a Translation fault.

Figure D5-6 on page D5-2705 gives a generalized view of a single stage of address translation where three levels
of lookup are required.

Figure D5-6 Generalized view of a stage of address translation

TTBR

Level 1 table

Memory
page

D_Block Memory
region

D_Table

Level 3 table

D_Page

Level 2 table

D_Block Memory
region

D_Table

a

a

a

a Indexed by bits from the input address.
Each lookup level resolves additional bits.

D_Block is a Block descriptor
D_Page is a Page descriptor

D_Table is a Table descriptor
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2705
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
A translation table lookup from VMSAv8-64 performs a single-copy atomic 64-bit access to the translation table
entry. This means the translation table entry is treated as a 64-bit object for the purpose of endianness.
SCTLR_ELx.EE determines the endianness of the translation table lookups.

Note

Dynamically changing translation table endianness

Because any change to an SCTLR_ELx.EE, bit requires synchronization before it is visible to
subsequent operations, Arm strongly recommends that any EE bit is changed only when either:

• Executing at an Exception level that does not use the translation tables affected by the EE bit
being changed.

• Executing with address translation disabled for any stage of translation affected by the EE bit
being changed.

Address translation stages are disabled by setting an SCTLR_ELx.M bit or the HCR_EL2.VM bit
to 0. See the appropriate register description for more information.

The appropriate TTBR_ELx holds the output address of the base of the translation table used for the initial lookup,
and:

• For all address translation stages other than EL1&0, when EL2 is enabled, stage 1 translations, the output
address held in the TTBR_ELx, and any translation table base address returned by a Translation Table
descriptor, is the PA of the base of the translation table.

• For EL1&0, when EL2 is enabled, stage 1 translations, the output address held in the TTBR_ELx, and any
translation table base address returned by a Translation Table descriptor, is the IPA of the base of the
translation table. This means that if stage 2 address translation is enabled, each of these OAs is subject to
second stage translation.

Note
TLB caching can be used to minimize the number of translation table lookups that must be performed. For
the EL1&0, when EL2 is enabled, translation regime, because each stage 1 OA generated during a translation
table walk is subject to a stage 2 translation, if the caching of translation table entries is ineffective, a VA to
PA address translation with two stages of translation can give rise to multiple translation table lookups. The
number of lookups required is given by the following equation:

(S1+1)*(S2+1) - 1

Where, for this translation regime, S1 is the number of levels of lookup required for a stage 1 translation, and
S2 is the number of levels of lookup required for a stage 2 translation.

The TCR_ELx determines the memory cacheability and shareability attributes that apply, for the corresponding
stage of translation, to all translation table lookups generated by that stage of translation.

The Normal memory type is the memory type defined for a translation table lookup for a stage of translation.

Note
• In a two-stage translation regime, a translation table lookup from stage 1, that has the Normal memory type

defined at stage 1 by this rule, can still be given the Device memory type as part of the stage 2 translation of
that address. Arm strongly recommends against such a remapping of the memory type, and the architecture
includes a trap of this behavior to EL2. For more information, see Stage 2 fault on a stage 1 translation table
walk on page D5-2806.

• The rules about mismatched attributes given in Mismatched memory attributes on page B2-176 apply to the
relationship between translation table walks and explicit memory effects to the translation tables in the same
way that they apply to the relationship between different explicit memory effects to the same location. For
this reason, Arm strongly recommends that the attributes that the TCR_ELx applies to the translation tables
are the same as the attributes that are applied for explicit memory effects to the memory that holds the
translation tables.

For more information, see Overview of the VMSAv8-64 address translation stages on page D5-2708.

See also Selection between TTBR0_ELx and TTBR1_ELx when two VA ranges are supported on page D5-2723.
D5-2706 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Ordering of memory accesses from translation table walks

A translation table walk is considered to be a separate observer. An explicit memory write effect to the translation
tables might be observed by that separate observer for either of the following:

• A translation table walk caused by a different explicit memory write effect generated by the same instruction.

• A translation table walk caused by an explicit memory effect generated by any instruction appearing in
program order after the instruction doing the explicit memory write effect to the translation table.

The explicit memory write effect to the translation tables is guaranteed to be observable, to the extent required by
the shareability attributes, only after the execution of a DSB instruction. This DSB instruction and the instruction that
performed the explicit memory write effect to the translation tables must have been executed by the same PE.

Any writes to the translation tables are not seen by any translation table accesses associated with an explicit memory
effect generated by a load or store that occurs in program order before the instruction that performs the write to the
translation tables.

If FEAT_ETS is implemented, and a memory access RW1 is Ordered-before a second memory access RW2, then
RW1 is also Ordered-before any translation table walk generated by RW2 that generates any of the following:

• A Translation fault.

• An Address size fault.

• An Access flag fault.

Security state of translation table lookups

For a Non-secure translation regime, all translation table lookups are performed to Non-secure output addresses.

For a Secure translation regime, for the first stage of translation, the initial translation table lookup is performed to
a Secure IPA.

If the Translation Table descriptor returned as a result of that initial lookup points to a second translation table, then
the NSTable bit in that descriptor determines whether that translation table lookup is made to a Secure or to a
Non-secure IPA.

This applies for all subsequent translation table lookups as part of that translation table walk, with the additional
rule that any Translation Table descriptor that is returned from Non-secure memory is treated as if the NSTable bit
in that descriptor indicates that the subsequent translation table lookup is to Non-secure memory.

Where the Secure IPA from a first stage translation table is translated by the second stage translation, the security
of the output address of that memory access is determined by:

• For accesses made to Secure IPA space, the VSTCR_EL2.SA bit.

• For accesses made to Non-secure IPA space, the VTCR_EL2.NSA bit.

For a Secure translation regime, for the second stage of translation, the security of the output address of the
translation table walk is determined by:

• For translation table walks for the Secure IPA space, the VSTCR_EL2.SW bit.

• For translation table walks for the Non-secure IPA space, the VTCR_EL2.NSW bit.

Control of translation table walks

When stage 1 translations of a translation can support two VA ranges the TCR_ELx.{EPD0, EPD1} bits determine
whether, for that regime, the two sets of translation tables for stage 1 are valid. EPD0 indicates whether the tables
that TTBR0_ELx points to is valid, and EPD1 indicates whether the tables that TTBR1_ELx points to is valid. The
effect of these bits is:

EPDn == 0 The translation tables are valid, and can be used for a translation table lookup.

EPDn == 1 If a TLB miss occurs based on TTBR_ELx, a Translation fault is returned, and no translation table
walk is performed. The fault is reported as a level 0 fault.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2707
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
D5.2.6 Overview of the VMSAv8-64 address translation stages

As shown in Memory translation granule size on page D5-2698, the granule size determines significant aspects of
the address translation process. Effect of granule size on translation table addressing and indexing on page D5-2701
shows, for each granule size:

• How the required input address range determines the required initial lookup levels.

• For stage 2 translations, the possible effect described in Concatenated translation tables on page D5-2703.

• The TTBR_ELx addressing and indexing for the initial lookup.

The following subsections summarize the multiple levels of lookup that can be required for a single stage of address
translation that might require the maximum number of lookups:

• Overview of VMSAv8-64 address translation using the 4KB translation granule on page D5-2708.

• Overview of VMSAv8-64 address translation using the 16KB translation granule on page D5-2712.

• Overview of VMSAv8-64 address translation using the 64KB translation granule on page D5-2716.

Overview of VMSAv8-64 address translation using the 4KB translation granule

The requirements for the level of the initial lookup are different for stage 1 and stage 2 translations.

Overview of stage 1 translations, 4KB granule

For a stage 1 translation, the required initial lookup level is determined only by the required input address range
specified by the corresponding TCR_ELx.TnSZ field. When using the 4KB translation granule, Table D5-13 on
page D5-2708 shows this requirement.

These configuration options are also permitted for stage 2 translations.

Note

Some bits of the IA do not require resolution by the translation table lookup, because they always map directly to
the OA, When using the 4KB translation granule, IA[11:0] = OA[11:0] for all translations.

Table D5-13 TCR_ELx.TnSZ values and IA ranges, 4KB granule with no concatenation of tables

Initial lookup level
TnSZ values for and input address rangesa for starting at this level

a. The IAs show the address bits to be resolved when addressing a page of memory, see the Note that follows.

TnSZmin IAmax TnSZmax IAmin

-1b

b. Lookup level -1 is only supported when FEAT_LPA2 is implemented and TCR_ELx.DS is 1.

12 IA[51:12] 15 IA[48:12]

0 16 IA[47:12] 24 IA[39:12]

1 25 IA[38:12] 33 IA[30:12]

2 34 IA[29:12] 42c

c. If FEAT_TTST is not implemented, or while the PE is executing in AArch32 state, TnSZmax is 39.

IA[21:12]

3d

d. Only available if FEAT_TTST is implemented, while the PE is executing in AArch64 state.

43 IA[20:12] 48d IA[15:12]
D5-2708 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Figure D5-7 on page D5-2709 shows the stage 1 address translation using the 4KB granule and an input address size
up to 52 bits. An input address size greater than 48 bits requires implementation of FEAT_LPA2.

Figure D5-7 General view of VMSAv8-64 stage 1 address translation, 4KB granule, up to 52 bit IA

Overview of stage 2 translations, 4KB granule

For a stage 2 translation, up to 16 translation tables can be concatenated at the initial lookup level. For certain input
address sizes, concatenating tables in this way means that the lookup starts at a lower level than would otherwise be
the case. For more information, see Use of concatenated translation tables for the initial stage 2 lookup on
page D5-2724.

When using the 4KB translation granule, Table D5-14 on page D5-2709 shows all possibilities for the initial lookup
for a stage 2 translation.

D_Block

D_Table

Level -1 table

Level 0 table

4KB
memory
page1GB

region

Level 3 table

Level 1 table
2MB
region

a

b

d

TTBR_ELx

D_Page

D_Block

D_Table
D_Block

D_Table

D_Table

512GB
region

Level 2 table

c

e

b Indexed by IA[47:39]
c Indexed by IA[38:30]
d Indexed by IA[29:21]
e Indexed by IA[20:12]

D_Block is a Block descriptor
D_Page is a Page descriptor

D_Table is a Table descriptor

Key:

a Indexed by IA[n:48], where IA width is (n+1) bits

Table D5-14 VTCR_EL2.T0SZ values and IA ranges, 4KB granule with possible concatenation of translation tables

Tablesa 1 2 4 8 16

Initial lookup
level

T0SZ values and input address rangesb for starting at this level

T0S
Z

IA
T0S
Z

IA
T0S
Z

IA
T0S
Z

IA
T0S
Z

IA

-1c 12-15 IA[51:12]-
IA[48:12]

0 16-24 IA[47:12]-
IA[39:12]

15c IA[48:1
2]

14c IA[49:1
2]

13c IA[50:1
2]

12c IA[51:1
2]
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2709
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Note
• Because concatenating translation tables reduces the number of levels of lookup required, when using the

4KB translation granule:

— When the input address is 48 bits or less, tables cannot be concatenated at level 0.

— When the input address is more than 48 bits, tables cannot be concatenated at level -1.

• Some bits of the IA do not require resolution by the translation table lookup, because they always map
directly to the OA. When using the 4KB translation granule, IA[11:0] = OA[11:0] for all translations.

Because the maximum number of concatenated translation tables is 16, there is a relationship between the permitted
VTCR_EL2.{T0SZ, SL0, SL2} values. Table D5-14 on page D5-2709 shows the permitted T0SZ values for each
initial lookup level. Table D5-7 on page D5-2694 shows the relationship between the permitted
VTCR_EL2.{T0SZ, SL0, SL2} values.

If FEAT_LPA2 is implemented, lookup level -1 is the initial lookup level when VTCR_EL2.{SL0, SL2} is {0,1}.
For all other lookup levels, the Effective value of VTCR_EL2.SL2 is 0. When a translation table walk is started, if
the T0SZ value is not consistent with the combined SL0 and SL2 value, or VTCR_EL2.{SL0, SL2}is programmed
to a reserved value, a stage 2 level 0 Translation fault is generated.

Figure D5-8 on page D5-2711 shows the stage 2 address translation using the 4KB granule and an input address size
up to 52 bits. For an input address size greater than 48 bits, the lookup can start at either level -1 or level 0. An input
address size greater than 48 bits requires implementation of FEAT_LPA2.

1 25-33 IA[38:12]-
IA[30:12]

24 IA[39:1
2]

23 IA[40:1
2]

22 IA[41:1
2]

21 IA[42:1
2]

2 34-42
d

IA[29:12]-
IA[21:12]

33 IA[30:1
2]

32 IA[31:1
2]

31 IA[32:1
2]

30 IA[33:1
2]

3e 43-48 IA[20:12]-
IA[15:12]

42 IA[21:1
2]

41 IA[22:1
2]

40 IA[23:1
2]

39 IA[24:1
2]

a. Number of concatenated translation tables at the initial lookup level. 1 table corresponds to no concatenation, also shown in Table D5-13 on
page D5-2708.

b. The IAs shown in the table indicate the address bits to be resolved by an address translation addressing a page of memory, see the Note that
follows.

c. Only supported when the Effective value of VTCR_EL2.DS is 1.

d. If FEAT_TTST is not implemented or while the PE is executing in AArch32 state, the maximum value of T0SZ is 39 with corresponding
IA[29:12]-IA[24:12].

e. If FEAT_TTST is implemented, while the PE is executing in AArch64 state, and is using 4KB granules, an initial lookup level 3,
(VTCR_EL2.SL0 ==3) is possible.

Table D5-14 VTCR_EL2.T0SZ values and IA ranges, 4KB granule with possible concatenation of translation tables

Tablesa 1 2 4 8 16

Initial lookup
level

T0SZ values and input address rangesb for starting at this level

T0S
Z

IA
T0S
Z

IA
T0S
Z

IA
T0S
Z

IA
T0S
Z

IA
D5-2710 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Figure D5-8 General view of VMSAv8-64 stage 2 address translation, 4KB granule, up to 52 bit IA

Up to 16 concatenated
tables at the initial level

VTCR_EL2.{SL2, SL0} defines the start level.

Starting at level -1

D_Block

D_Table

4KB
memory
page1GB

region

Level 3 table

Level 1 table
2MB
region

d

D_Page

D_Block

D_Table

Level 2 table

e

Starting at level 0

Level -1 table

Level 0 table

a

b1

VTTBR_EL2

D_Block

D_Table

D_Table

512GB
region

c

D_Block

D_TableLevel 0 table

4KB
memory
page1GB

region

Level 3 table

Level 1 table
2MB
region

b2

d

VTTBR_EL2

D_Page

D_Block

D_Table
D_Block

D_Table

512GB
region

Level 2 table

c

e

D_Table

b1 Indexed by IA[47:39]

c Indexed by IA[38:30]
d Indexed by IA[29:21]
e Indexed by IA[20:12]

D_Block is a Block descriptor
D_Page is a Page descriptor

D_Table is a Table descriptor

Key for both diagrams:

a Indexed by IA[n:48], where IA width is (n+1) bits

b2 Indexed by IA[n:39], where IA width is (n+1) bits
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2711
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Overview of VMSAv8-64 address translation using the 16KB translation granule

The requirements for the level of the initial lookup are different for stage 1 and stage 2 translations.

Overview of stage 1 translations, 16KB granule

For a stage 1 translation, the required initial lookup level is determined only by the required input address range
specified by the corresponding TCR_ELx.TnSZ field. When using the 16KB translation granule, Table D5-15 on
page D5-2712 shows this requirement.

The configuration options for an initial lookup at level 1, level 2, or level 3 are also permitted for stage 2 translations.
If the Effective value of TCR_ELx.DS is 1, an initial lookup at level 0 is permitted for stage 2 translations.
Otherwise, an initial lookup at level 0 is not permitted.

Note
• When using the 16KB translation granule, if FEAT_LPA2 is not implemented, a maximum of 1 bit of IA is

resolved by a level 0 lookup.

• Some bits of the IA do not require resolution by the translation table lookup, because they always map
directly to the OA, When using the 16KB translation granule, IA[13:0] = OA[13:0] for all translations.

Figure D5-9 on page D5-2713 shows the stage 1 address translation using the 16KB granule and an input address
size up to 52 bits. An input address size greater than 48 bits requires implementation of FEAT_LPA2.

Table D5-15 TCR_ELx.TnSZ values and IA ranges, 16KB granule with no concatenation of tables

Initial lookup level
TnSZ values for and input address rangesa for starting at this level

a. The IAs show the address bits to be resolved when addressing a page of memory, see the Note that follows.

TnSZmin IAmax TnSZmax IAmin

0 12b

b. If the Effective value of TCR_ELx.DS is 0, TnSZmin is 16, and IAmax is IA[47:14].

IA[51:14]b 16 IA[47:14]

1 17 IA[46:14] 27 IA[36:14]

2 28 IA[35:14] 38 IA[25:14]

3 39 IA[24:14] 48c

c. If FEAT_TTST is not implemented, the maximum is 39.

IA[15:14]
D5-2712 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Figure D5-9 General view of VMSAv8-64 stage 1 address translation, 16KB granule, up to 52 bit IA

Overview of stage 2 translations, 16KB granule

For a stage 2 translation, up to 16 translation tables can be concatenated at the initial lookup level. For certain input
address sizes, concatenating tables in this way means that the lookup starts at a lower level than would otherwise be
the case. For more information, see Use of concatenated translation tables for the initial stage 2 lookup on
page D5-2724.

When using the 16KB granule, for a stage 2 translation with an input address size of 48 bits, the initial lookup is
determined as follows:

• If the Effective value of VTCR_EL2.DS is 0, the initial lookup must be at level 1, with two concatenated
translation tables at this level.

• If the Effective value of VTCR_EL2.DS is 1, the initial lookup can be at level 0, with up to 16 concatenated
translation tables at this level.

TTBR_ELx

Level 0 table

Level 1 table

16KB
memory
page

Level 3 table

D_Page

Level 2 table

d

a Indexed by IA[51:47]
b Indexed by IA[46:36]
c Indexed by IA[35:25]
d Indexed by IA[24:14]

D_Block is a Block descriptor
D_Page is a Page descriptor

D_Table is a Table descriptor

Key:D_Table

a

D_Block 32MB
region

D_Table

cD_Block 64GB
region

D_Table

b

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2713
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
When using the 16KB translation granule, Table D5-16 on page D5-2714 shows all possibilities for the initial
lookup for a stage 2 translation.

Note

Some bits of the IA do not require resolution by the translation table lookup, because they always map directly to
the OA. When using the 16KB translation granule, IA[13:0] = OA[13:0] for all translations.

Because the maximum number of concatenated translation tables is 16, there is a relationship between the permitted
VTCR_EL2.{T0SZ, SL0} values. Table D5-16 on page D5-2714 shows the permitted values of T0SZ for each
initial lookup level.

When a translation table walk is started, if the T0SZ value is not consistent with the SL0 value, or VTCR_EL2.SL0
is programmed to a reserved value, a stage 2 level 0 Translation fault is generated.

Figure D5-10 on page D5-2715 shows the stage 2 address translation using the 16KB granule with an input address
size up to 52 bits. An input address size greater than 48 bits requires implementation of FEAT_LPA2. When stage
2 translation supports a 48-bit input address range and FEAT_LPA2 is not implemented, translation must start with
a level 1 lookup using two concatenated translation tables.

Table D5-16 VTCR_EL2.T0SZ values and IA ranges, 16KB granule with possible concatenation of translation tables

Tablesa 1 2 4 8 16

Initial
lookup
level
(SL0 value)

T0SZ values and input address rangesb for starting at this level

T0SZ IA T0SZ IA T0SZ IA T0SZ IA T0SZ IA

0c (3) 16-26 IA[47:14]
-
IA[37:14]

15 IA[48:14] 14 IA[49:14] 13 IA[50:14] 12 IA[51:14]

1 (2) 17-27 IA[46:14]
-
IA[36:14]

16 IA[47:14] 15c IA[48:14] 14c IA[49:14] 13c IA[50:14]

2 (1) 28-38 IA[35:14]
-
IA[25:14]

27 IA[36:14] 26 IA[37:14] 25 IA[38:14] 24 IA[39:14]

3 (0) 39-48d IA[24:14]
-
IA[15:14]

38 IA[25:14] 37 IA[26:14] 36 IA[27:14] 35 IA[28:14]

a. Number of concatenated translation tables at the initial lookup level. 1 table corresponds to no concatenation, also shown in Table D5-15
on page D5-2712.

b. The IAs shown in the table indicate the address bits to be resolved by an address translation addressing a page of memory, see the Note that
follows.

c. Only supported when the Effective value of VTCR_EL2.DS is 1.

d. If FEAT_TTST is not implemented or while the PE is executing in AArch32 state, the maximum value of T0SZ is 39 with corresponding
IA[24:14].
D5-2714 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Figure D5-10 General view of VMSAv8-64 stage 2 address translation, 16KB granule, up to 52 bit IA

VTCR_EL2.SL0 defines the start level.

Starting at level 0

Starting at level 1

Up to 16 concatenated
tables at the initial level

D_Table

D_Table

D_Block

b2

VTTBR_EL2

Level 0 table

Level 1 table

16KB
memory
page

Level 3 table

D_Page

Level 2 table

d

D_Table

a

D_Block 32MB
region

D_Table

c
D_Block 64GB

region

D_Table

b1

VTTBR_EL2

Level 1 table
16KB
memory
page

Level 3 table

D_Page

Level 2 table

d
D_Block 32MB

region

D_Table

c

64GB
region

a Indexed by IA[n:47], where IA width is (n+1) bits
b1 Indexed by IA[46:36]

d Indexed by IA[24:14]

b2 Indexed by IA[n:36], where IA width is (n+1) bits

D_Block is a Block descriptor
D_Page is a Page descriptor

D_Table is a Table descriptor

Key for both diagrams:

c Indexed by IA[35:25]
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2715
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Overview of VMSAv8-64 address translation using the 64KB translation granule

The requirements for the level of the initial lookup are different for stage 1 and stage 2 translations.

Overview of stage 1 translations, 64KB granule

For a stage 1 translation, the required initial lookup level is determined only by the required input address range
specified by the corresponding TCR_ELx.TxSZ field. When using the 64KB translation granule, Table D5-17 on
page D5-2716 shows this requirement.

These configuration options are also permitted for stage 2 translations.

Note
• When using the 64KB translation granule, there are no level 0 lookups.

• Some bits of the IA do not require resolution by the translation table lookup, because they always map
directly to the OA. When using the 64KB translation granule, IA[15:0] = OA[15:0] for all translations.

• When FEAT_LPA is implemented, a level 1 block attribute is supported when using the 64KB granule.

Table D5-17 TCR_ELx.TnSZ values and IA ranges, 64KB granule with no concatenation of tables

Lookup level
TnSZ values for and input address rangesa for starting at this level

a. The IAs show the address bits to be resolved when addressing a page of memory, see the Note that
follows.

TnSZmin IAmax TnSZmax IAmin

1b

b. Supported only if FEAT_LVA is implemented and the 64KB translation granule is used, see
Extending addressing above 48 bits when using the 64KB translation granule on page D5-2695.

12 IA[51:16] 21 IA[42:16]

1 16 IA[47:16] 21 IA[42:16]

2 22 IA[41:16] 34 IA[29:16]

3 35 IA[28:16] 47c

c. If FEAT_TTST is not implemented or while the PE is executing in AArch32 state, the maximum
value of TnSZ is 39 with IA[24:16].

IA[16:16]
D5-2716 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Figure D5-11 on page D5-2717 shows the stage 1 address translation using the 64KB granule with an input address
size up to 52 bits. An input address size greater than 48 bits requires implementation of FEAT_LVA.

Figure D5-11 General view of VMSAv8-64 stage 1 address translation, 64KB granule with 52-bit VA support

Overview of stage 2 translations, 64KB granule

For a stage 2 translation, up to 16 translation tables can be concatenated at the initial lookup level. For certain input
address sizes, concatenating tables in this way means that the lookup starts at a lower level than would otherwise be
the case. For more information, see Use of concatenated translation tables for the initial stage 2 lookup on
page D5-2724.

When using the 64KB translation granule, Table D5-18 on page D5-2717 shows all possibilities for the initial
lookup for a stage 2 translation.

TTBR_ELx

Level 1 table

D_Table

Level 2 table

64KB
page

D_Block 512MB
region

D_Table

Level 3 table

D_Page

a

b

c

D_Block † 4TB
region

D_Block is a Block descriptor
D_Page is a Page descriptor

D_Table is a Table descriptor

Key:

† D_Block supported at Level 1 for 64KB granule
only if implementation includes FEAT_LPA

a Indexed by IA[n:42], where IA width is (n+1) bits
b Indexed by IA[41:29]
c Indexed by IA[28:16]

Table D5-18 VTCR_EL2.T0SZ values and IA ranges, 64KB granule with possible concatenation of translation tables

Tablesa 1 2 4 8 16

Initial lookup
level
(SL0 value)

T0SZ values and input address rangesb for starting at this level

T0SZ IA T0SZ IA T0SZ IA
T0
SZ

IA
T0
SZ

IA

1c (2) 12-21 IA[51:16]-
IA[48:16]

- - - - - - - -

1 (2) 16-21 IA[47:16]-
IA[42:16]

- - - - - - - -

2 (1) 22-34 IA[41:16]-
IA[29:16]

21 IA[42:16] 20 IA[43:16] 19 IA[44:16] 18 IA[45:16]

3 (0) 35-47
d

IA[28:16]-
IA[16:16]

34 IA[29:16] 33 IA[30:16] 32 IA[31:16] 31 IA[32:16]

a. Number of concatenated translation tables at the initial lookup level. 1 table corresponds to no concatenation, also shown in Table D5-17
on page D5-2716.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2717
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Note
• When using the 64KB translation granule, there are no level 0 lookups.

• Because concatenating translation tables reduces the number of levels of lookup required, when using the
64KB translation granule, tables cannot be concatenated at level 1.

• Some bits of the IA do not require resolution by the translation table lookup, because they always map
directly to the OA. When using the 64KB translation granule, IA[15:0] = OA[15:0] for all translations.

Because the maximum number of concatenated translation tables is 16, there is a relationship between the permitted
VTCR_EL2.{T0SZ, SL0} values. Table D5-18 on page D5-2717 shows the permitted values of T0SZ for each
initial lookup level.

When a translation table walk is started, if the T0SZ value is not consistent with the SL0 value, or VTCR_EL2.SL0
is programmed to a reserved value, a stage 2 level 0 Translation fault is generated.

Figure D5-12 on page D5-2718 shows the stage 2 address translation, for an input address size of between 43 and
46 bits. This means the lookup can start at either level 1 or level 2.

Figure D5-12 General view of VMSAv8-64 stage 2 address translation, 64KB granule

b. The IAs shown in the table indicate the address bits to be resolved by an address translation addressing a page of memory, see the Note that
follows.

c. Only supported if the PA size is 52 bits, see Extending addressing above 48 bits when using the 64KB translation granule on page D5-2695.

d. If FEAT_TTST is not implemented or while the PE is executing in AArch32 state, the maximum T0SZ value is 39, with IA[24:16].

VTTBR_EL2

Level 1 table

D_Table

Level 2 table

VTCR_EL2.SL0 defines the start level.

Starting at level 1

D_Block 512MB
region

D_Table

64KB
page

Level 3 table

D_Page

D_Table

VTTBR_EL2

Starting at level 2

Level 2 table

D_Block 512MB
region

D_Table

64KB
page

Level 3 table

D_Page

Up to 16 concatenated
tables at the initial level

a

b1

b2

c

c

a Indexed by IA[n:42],
where IA width is (n+1) bits

b1 Indexed by IA[41:29]
b2 Indexed by IA[n:29],

where IA width is (n+1) bits
c Indexed by IA[28:16]

D_Block is a Block descriptor
D_Page is a Page descriptor

D_Table is a Table descriptor

Key for both diagrams
D5-2718 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
D5.2.7 The VMSAv8-64 translation table format

This section provides the full description of the VMSAv8-64 translation table format, its use for address translations
that are controlled by an Exception level using AArch64. For these translation regimes:

For a stage 1 translation that can support two VA ranges

• For the lower VA range, that uses TTBR0_ELx:

— The TCR_ELx.{SH0, ORGN0, IRGN0} fields define memory region attributes for the
translation table walks.

— The TCR_ELx.TG0 field defines the Translation granule size.

— If FEAT_LPA2 is implemented, when using the 4KB and 16KB translation granules,
the TCR_ELx.DS field determines whether addresses greater than 48 bits are
supported.

• For the upper VA range, that uses TTBR1_ELx:

— The TCR_ELx.{SH1, ORGN1, IRGN1} fields define memory region attributes for the
translation table walks.

— The TCR_ELx.TG1 field defines the Translation granule size.

— If FEAT_LPA2 is implemented, when using the 4KB and 16KB translation granules,
the TCR_ELx.DS field determines whether addresses greater than 48 bits are
supported.

• Each of TTBR0_ELx and TTBR1_ELx contains an ASID field, and the TCR_ELx.A1 field
selects which of these specifies the ASID to use.

For a stage 1 translation that supports only one VA range

The translation table walks use TTBR0_ELx, and:

• The TCR_ELx.{SH0, ORGN0, IRGN0} fields define memory region attributes for the
translation table walks.

• The TCR_ELx.TG0 field defines the Translation granule size.

• If FEAT_LPA2 is implemented, when using the 4KB and 16KB translation granules, the
TCR_ELx.DS field determines whether addresses greater than 48 bits are supported.

For a stage 2 translation

The Non-secure translation table walks use VTTBR_EL2, and:

• The VTCR_EL2.{SH0, ORGN0, IRGN0} fields define memory region attributes for the
translation table walks.

• The VTCR_EL2.TG0 field defines the Translation granule size.

• If FEAT_LPA2 is implemented:

— When using the 4KB and 16KB translation granules, the VTCR_EL2.DS field
determines whether addresses greater than 48 bits are supported.

— When using the 4KB translation granule and VTCR_EL2.DS is 1, the
VTCR_EL2.SL2 field is combined with the VTCR_EL2.SL0 field to determine the
initial lookup level.

The Secure translation table walks use VSTTBR_EL2, and:

• The VTCR_EL2.{SH0, ORGN0, IRGN0} fields define memory region attributes for the
translation table walks.

• The VSTCR_EL2.TG0 field defines the Translation granule size.

• If FEAT_LPA2 is implemented:

— When using the 4KB and 16KB translation granules, the VTCR_EL2.DS field
determines whether addresses greater than 48 bits are supported.

— When using the 4KB translation granule and VSTCR_EL2.DS is 1, the
VSTCR_EL2.SL2 field is combined with the VSTCR_EL2.SL0 field to determine the
initial lookup level.

For the VMSAv8-64 translation table format, Overview of the VMSAv8-64 address translation stages on
page D5-2708 summarizes the lookup levels, and Descriptor encodings, Armv8 level 0, level 1, and level 2 formats
on page D5-2742 describes the translation table entries.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2719
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
The following subsections describe the use of this translation table format:

• Translation granule size and associated block and page sizes on page D5-2720.

• Selection between TTBR0_ELx and TTBR1_ELx when two VA ranges are supported on page D5-2723.

• Use of concatenated translation tables for the initial stage 2 lookup on page D5-2724.

• Possible errors in programming the translation table registers on page D5-2726.

Translation granule size and associated block and page sizes

Table D5-19 on page D5-2720 shows the supported granule sizes, block sizes and page sizes, for the different
granule sizes. In the table, the OA bit ranges are the OA bits that the Translation Table descriptor specifies to address
the block or page of memory, in an implementation that supports a 52-bit OA range.

Bit[1] of a Translation Table descriptor identifies whether the descriptor is a Block descriptor, and:

• The 4KB granule size supports Block descriptors in level 1 and level 2 translation tables. If FEAT_LPA2 is
implemented and the implementation supports 52 bits of physical address, Block descriptors in level 0
translation tables are also supported

• The 16KB granule size supports Block descriptors in level 2 translation tables. If FEAT_LPA2 is
implemented and the implementation supports 52 bits of physical address, Block descriptors in level 1
translation tables are also supported.

• The 64KB granule size supports Block descriptors in level 2 translation tables. If FEAT_LPA is implemented
and the implementation supports 52 bits of physical address, Block descriptors in level 1 translation tables
are also supported.

If descriptor bit[1] is 0 in a translation table that does not support Block descriptors then a translation table walk that
accesses that descriptor generates a level 1 Translation fault.

Table D5-19 Translation granule sizes, with block and page sizes, and output address ranges

Granule size Table level Block size and OA bit range Page size and OA bit range

4KB Minus onea

a. Only available when FEAT_LPA2 is implemented, see Extending addressing above 48 bits when using the
4KB or 16KB translation granule on page D5-2696.

- -

Zero 512GB, OA[51:39]a -

One 1GB, OA[47:30] -

Two 2MB, OA[47:21] -

Three - 4KB, OA[47:12]

16KB Zero - -

One 64GB, OA[51:36]a -

Two 32MB, OA[47:25] -

Three - 16KB, OA[47:14]

64KB One 4TB, OA[51:42]b

b. Only available when FEAT_LPA is implemented, see Extending addressing above 48 bits when using the
64KB translation granule on page D5-2695.

-

Two 512MB, OA[47:29] -

Three - 64KB, OA[47:16]
D5-2720 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
For translations managed from AArch64 state, the following tables expand the information for each granule size,
showing for an access to a single translation table at each lookup level:

• The maximum IA size, and the address bits that are resolved for that maximum size.

• The maximum OA range resolved by the Translation Table descriptors at this level, and the corresponding
memory region size.

• The maximum size of the translation table. This is the size required for the maximum IA size.

Table D5-20 on page D5-2721 shows this information for the 4KB translation granule size, Table D5-21 on
page D5-2721 shows this information for the 16KB translation granule size, and Table D5-22 on page D5-2722
shows this information for the 64KB translation granule size.

Table D5-20 Properties of the address lookup levels, 4KB granule size

Level

Maximum input address Maximum output address

Number of entries
Block entries
supported?

Size Address range Address range
Size of
addressed
regiona

Minus oneb 4PB Address[51:48] Address[51:48] 256TB Up to 16c No

Zero 256TB Address[47:39] Address[47:39] 512GB Up to 512 No

Address[51:39]b 512GB Up to 512 Yesb

One 512GB Address[38:30] Address[47:30] 1GB Up to 512 Yes

Address[51:30]b 1GB Up to 512 Yes

Two 1GB Address[29:21] Address[47:21] 2MB Up to 512 Yes

Address[51:21]b 2MB Up to 512 Yes

Three 2MB Address[20:12] Address[47:12] 4KB 512 Page only

Address[51:21]b 4KB 512 Page only

a. That is, the size of the region either addressed by descriptors at this level or to be resolved at this and the subsequent levels of lookup.

b. Only when FEAT_LPA2 is supported.

c. The translation table size is less than the maximum for this granule size, and therefore the number of entries is reduced.

Table D5-21 Properties of the address lookup levels, 16KB granule size

Level

Maximum input address Maximum output address

Number of entries
Block entries
supported?

Size Address range Address range
Size of
addressed
regiona

Zero 256TB Address[47] Address[47] 128TB 2b No

4PBc Address[51:47]c Address[51:47]c 128TB Up to 32bc No

One 128TB Address[46:36] Address[47:36] 64GB Up to 2048 No

Address[51:36]c 64GB Up to 2048 Yesc
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2721
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
For the initial lookup level:

• If the IA range specified by the TCR_ELx.TxSZ field is smaller than the maximum size shown in these table
then this reduces the number of addresses in the table and therefore reduces the table size. The smaller
translation table is aligned to its table size.

• For stage 2 translations, multiple translation tables can be concatenated to extend the maximum IA size
beyond that shown in these tables. For more information, see the stage 2 translation overviews in Overview
of the VMSAv8-64 address translation stages on page D5-2708 and Use of concatenated translation tables
for the initial stage 2 lookup on page D5-2724.

If a supplied input address is larger than the configured input address size, a Translation fault is generated.

Two 64GB Address[35:25] Address[47:25] 32MB Up to 2048 Yes

Address[51:25]c 32MB Up to 2048 Yes

Three 32MB Address[24:14] Address[47:14] 16KB 2048 Page only

Address[51:14]c 16KB 2048 Page only

a. That is, the size of the region either addressed by descriptors at this level or to be resolved at this and the subsequent levels of lookup.

b. The translation table size is less than the maximum for this granule size, and therefore the number of entries is reduced.

c. Only when FEAT_LPA2 is supported.

Table D5-21 Properties of the address lookup levels, 16KB granule size (continued)

Level

Maximum input address Maximum output address

Number of entries
Block entries
supported?

Size Address range Address range
Size of
addressed
regiona

Table D5-22 Properties of the address lookup levels, 64KB granule size

Level

Maximum input address Maximum output address

Number of entries
Block entries
supported?

Size Address range Address range
Size of
addressed
regiona

One 256TB Address[47:42] Address[47:42] 4TB Up to 64b No

4PBc Address[51:42]c Address[51:42]d 4TB Up to 1024bd Yesd

Two 4TB Address[41:29] Address[47:29] 512MB Up to 8192 Yes

Address[51:29]d 512MB Up to 8192 Yes

Three 512MB Address[28:16] Address[47:16] 64KB 8192 Page only

Address[51:16]d 64KB 8192 Page only

a. That is, the size of the region either addressed by descriptors at this level or to be resolved at this and the subsequent levels
of lookup.

b. The translation table size is less than the maximum for this granule size, and therefore the number of entries is reduced.

c. For stage 1 translations, only when FEAT_LVA is supported. For stage 2 translations, only when FEAT_LPA is supported.

d. Only when FEAT_LPA is supported.
D5-2722 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Note

Larger translation granule sizes typically requires fewer levels of translation tables to translate a particular size of
VA.

For the TCR_ELx programming requirements for the initial lookup, see Overview of the VMSAv8-64 address
translation stages on page D5-2708.

Selection between TTBR0_ELx and TTBR1_ELx when two VA ranges are supported

Every translation table walk starts by accessing the translation table addressed by the TTBR_ELx for the stage 1
translation for the required translation regime.

For a stage 1 translation that can support two VA ranges, Figure D5-13 on page D5-2723 shows this VA range split
when using 48-bit VAs, and:

• TTBR0_ELx points to the initial translation table for the lower VA range, that starts at address
0x0000000000000000.

• TTBR1_ELx points to the initial translation table for the upper VA range, that runs up to address
0xFFFFFFFFFFFFFFFF.

Figure D5-13 AArch64 TTBRn boundaries and VA ranges for 48-bit VAs

As Figure D5-13 on page D5-2723 shows, for 48-bit VAs:

• The address range translated using TTBR0_ELx is 0x0000000000000000 to 0x0000FFFFFFFFFFFF.

• The address range translated using TTBR1_ELx is 0xFFFF000000000000 to 0xFFFFFFFFFFFFFFFF.

For 52-bit VAs, if FEAT_LVA is implemented and the 64KB translation granule is used, or the Effective value of
TCR_ELx.DS is 1 and the 4KB or 16KB translation granule is used:

• The address range translated using TTBR0_ELx is 0x0000000000000000 to 0x000FFFFFFFFFFFFF.

• The address range translated using TTBR1_ELx is 0xFFF0000000000000 to 0xFFFFFFFFFFFFFFFF.

Which TTBR_ELx is used depends only on the VA presented for translation. The most significant bits of the VA
must all be the same value and:

• If the most significant bits of the VA are zero, then TTBR0_ELx is used.

• If the most significant bits of the VA are one, then TTBR1_ELx is used.

However, it is configurable whether VA[63:56] are considered when determining which TTBR_ELx is used, as
described in Address tagging in AArch64 state on page D5-2676.

0x0000_0000_0000_0000

0xFFFF_FFFF_FFFF_FFFF

0xFFFF_0000_0000_0000

0x0000_FFFF_FFFF_FFFF Boundary, when TCR_ELx.T0SZ==16

TTBR1_ELx
region

TTBR0_ELx
region

Access generates
a Translation
fault, see text

Boundary, when TCR_ELx.T1SZ==16

Effect of increasing TCR_ELx.T1SZ

Effect of increasing TCR_ELx.T0SZ

VA
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2723
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Note

The handling of the Contiguous bit can mean that the boundary between the translation regions defined by the
TCR_ELx.TnSZ values and the region for which an access generates a Translation fault is wider than shown in
Figure D5-13 on page D5-2723. That is, if the descriptor for an access to the region shown as generating a fault has
the Contiguous bit set to 1, the access might not generate a fault. Possible errors in programming the translation
table registers on page D5-2726 describes this possibility.

Example D5-3 on page D5-2724 shows a typical application of this VA split.

Example D5-3 Example use of the split VA range, and the TTBR0_ELx and TTBR1_ELx controls

An example of using the split VA range is:

TTBR0_ELx Used for process-specific addresses.

Each process maintains a separate level 1 translation table. On a context switch:

• TTBR0_ELx is updated to point to the level 1 translation table for the new context

• TCR_ELx is updated if this change changes the size of the translation table

• CONTEXTIDR_ELx is updated.

TTBR1_ELx Used for operating system and I/O addresses, that do not change on a context switch.

For each VA subrange, the input address size is 2(64-TnSZ), where TnSZ is one of TCR_ELx.{T0SZ, T1SZ},

This means the two VA subranges are:

Lower VA subrange 0x0000_0000_0000_0000 to (2(64-T0SZ) - 1).

Upper VA subrange (264 - 2(64-T1SZ)) to 0xFFFF_FFFF_FFFF_FFFF.

If FEAT_E0PD is implemented, the TCR_ELx.E0PD1 field can prevent unprivileged access to the addresses
translated by TTBR1_ELx.

For the situation where the minimum TnSZ value is 16, corresponding to a maximum input address range of 48 bits,
Example D5-4 on page D5-2724 shows the two VA subranges when T0SZ and T1SZ are both set to this minimum
value.

Example D5-4 Maximum VA ranges when a stage of translation supports two ranges

The maximum VA subranges correspond to T0SZ and T1SZ each having a minimum value of 16. In this case the
subranges are:

Lower VA subrange 0x0000_0000_0000_0000 to 0x0000_FFFF_FFFF_FFFF.

Upper VA subrange 0xFFFF_0000_0000_0000 to 0xFFFF_FFFF_FFFF_FFFF.

Figure D5-13 on page D5-2723 indicates the effect of varying the TnSZ values.

As described in Overview of the VMSAv8-64 address translation stages on page D5-2708, the TnSZ values also
determine the initial lookup level for the translation.

Use of concatenated translation tables for the initial stage 2 lookup

Overview of the VMSAv8-64 address translation stages on page D5-2708 introduced the ability to concatenate
translation tables for the initial stage 2 translation lookup. This section gives more information about that
concatenation.
D5-2724 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
If a stage 2 translation would require 16 entries or fewer in its top-level translation table, that stage of translation
can, instead, be configured so that:

• It requires the corresponding number of concatenated translation tables at the next translation level, aligned
to the size of the block of concatenated translation tables.

• The stage 2 translation starts at that next translation level.

When using the 16KB translation granule, if a 48-bit input address size is required for the stage 2 translations,
lookup must start with two concatenated translation tables at level 1.

The use of concatenated translation tables requires the software that is defining the translation to:

• Define the concatenated translation tables with the required overall alignment.

• Program VTTBR_EL2 or VSTTBR_EL2 to hold the address of the first of the concatenated translation
tables.

• Program VTCR_EL2 or VSTCR_EL2 to indicate the required input address range and initial lookup level.

Note

The use of concatenated translation tables avoids the overhead of an additional level of translation.

Concatenating additional translation tables at the initial level of look up resolves additional address bits at that level.
To resolve n additional address bits requires 2n concatenated translation tables. Example D5-5 on page D5-2725
shows how, for level 1 lookups using the 4KB translation granule, translation tables can be concatenated to resolve
three additional address bits.

Example D5-5 Adding three bits of address resolution at level 1 lookup, using the 4KB granule

When using the 4KB translation granule, a level 1 lookup with a single translation table resolves address bits[38:30].
To add three more address bits requires 23 translation tables, that is, eight translation tables. This means:

• The total size of the concatenated translation tables is 84KB=32KB.

• This block of concatenated translation tables must be aligned to 32KB.

• The address range resolved at this lookup level is A[41:30], of which:

— Bits A[41:39] select the 4KB translation table.

— Bits A[38:30] index a descriptor within that translation table.

As an example of the concatenation of translation tables at the initial lookup level, when using the 4KB translation
granule, Table D5-23 on page D5-2725 shows the possible uses of concatenated translation tables to permit lookup
to start at level 1 rather than at level 0. For completeness, the table starts with the case where the required IPA range
means lookup starts at level 1 with a single translation table at that level.

Table D5-23 Possible uses of concatenated translation tables for level 1 lookup, 4KB granule

Configured stage 2 IA size Lookup starts at level 0 Lookup starts at level 1

IPA range Size Required level 0 entries Number of concatenated tables Required alignmenta

IPA[38:0] 236 bytes - 1 4KB

IPA[39:0] 237 bytes 2 2 8KB

IPA[40:0] 238 bytes 4 4 16KB

IPA[41:0] 239 bytes 8 8 32KB

IPA[42:0] 240 bytes 16 16 64KB

a. Required alignment of the set of concatenated level 2 tables.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2725
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Note

Because concatenation is permitted only for a stage 2 translation, the input addresses in the table are IPAs.

Overview of the VMSAv8-64 address translation stages on page D5-2708 identifies all of the possible uses of
concatenation. In all cases, the block of concatenated translation tables must be aligned to the block size.

Possible errors in programming the translation table registers

This subsection describes possible errors in programming the translation table registers.

Misprogramming the VTCR_EL2.{T0SZ, SL0, SL2} and VSTCR_EL2.{T0SZ, SL0, SL2} fields

The following programming errors can cause a stage 2 level 0 Translation fault to occur during a stage 2 translation
table walk:

• Programming the VTCR_EL2{T0SZ, SL0} or VSTCR_EL2{T0SZ, SL0} fields to inconsistent values.

• Programming the VTCR_EL2.SL0 or VSTCR_EL2.SL0 to a reserved value.

• If the Effective value of VTCR_EL2.DS is 1 and the 4KB translation granule is used, programming the
VTCR_EL2{T0SZ, SL0, SL2} or VSTCR_EL2{T0SZ, SL0, SL2} fields to inconsistent values.

For more information, see Overview of the VMSAv8-64 address translation stages on page D5-2708.

Misprogramming of the Contiguous bit

For more information about the Contiguous bit, and the range of translation table entries that must have the bit set
to 1 to mark the entries as contiguous, see The Contiguous bit on page D5-2782.

If one or more of the following errors is made in programming the translation tables, the TLB might contain
overlapping entries:

• One or more of the contiguous translation table entries does not have the Contiguous bit set to 1.

• One or more of the contiguous translation table entries holds an output address that is not consistent with all
of the entries pointing to the same aligned contiguous address range.

• The attributes and permissions of the contiguous entries are not all the same.

Such misprogramming of the translation tables means the output address, memory permissions, or attributes for a
lookup might be corrupted, and might be equal to values that are not consistent with any of the programmed
translation table values.

In some implementations, such misprogramming might also give rise to a TLB Conflict abort.

The architecture guarantees that misprogramming of the Contiguous bit cannot provide a mechanism for any of the
following to occur:

• Software executing at EL1 or EL0 accessing regions of physical memory that are not accessible by
programming the translation tables, from EL1, with arbitrary chosen values that do not misprogram the
Contiguous bit.

• Software executing at EL1 or EL0 accessing regions of physical memory with attributes or permissions that
are not possible by programming the translation tables, from EL1, with arbitrary chosen values that do not
misprogram the Contiguous bit.

• Software executing in Non-secure state accessing Secure physical memory.

Note

Hardware implementations must ensure that use of the Contiguous bit cannot provide a mechanism for avoiding
output address range checking. This might occur if a Contiguous bit block size of 0.5GB or 1GB is used in a system
with the output address size configured to 4GB. The architecture permits the implemented mechanism for
preventing any avoidance of output address range checking to suppress the use of the Contiguous bit for such entries
in such a system.
D5-2726 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Where the Contiguous bit is used to mark a set of blocks as contiguous, if the address range translated by a set of
blocks marked as contiguous is larger than the size of the input address supported at a stage of translation used to
translate that address at that stage of translation, as defined by the TCR_ELx.TxSZ field, then this is a programming
error. An implementation is permitted, but not required, to:

• Treat such a block within a contiguous set of blocks as causing a Translation fault, even though the block is
valid, and the address accessed within that block is within the size of the input address supported at a stage
of translation, as defined by the TCR_ELx.TxSZ field.

• Treat such a block within a contiguous set of blocks as not causing a Translation fault, even though the
address accessed within that block is outside the size of the input address supported at a stage of translation,
as defined by the TCR_ELx.TxSZ field, provided that both of the following apply:

— The block is valid.

— At least one address within the block, or contiguous set of blocks, is within the size of the input address
supported at a stage of translation.

When FEAT_LVA is implemented, level 1 Block descriptors for the 64KB granule do not support the Contiguous
bit, and that field is RES0. When the Effective value of VTCR_EL2.DS is 1, level 0 Block descriptors for the 4KB
granule and level 1 Block descriptors for the 16KB granule do not support the Contiguous bit, and that field is RES0.

D5.2.8 The algorithm for finding the Translation Table descriptors

This subsection gives the algorithms for finding the Translation Table descriptor that corresponds to a given IA, for
each required level of lookup. The algorithms encode the descriptions of address translation given earlier in this
section. The algorithm details depend on the translation granule size for the stage of address translation, see:

• Finding the Translation Table descriptor when using the 4KB translation granule on page D5-2728.

• Finding the Translation Table descriptor when using the 16KB translation granule on page D5-2729.

• Finding the Translation Table descriptor when using the 64KB translation granule on page D5-2730.

Each subsection uses the following terms:

BaseAddr The base address for the level of lookup, as defined by:

• For the initial lookup level, the value of the appropriate TTBR_ELx.BADDR field.

• Otherwise, the translation table address returned by the previous level of lookup.

PAMax The supported PA width, in bits.

IA The supplied IA for this stage of translation.

TnSZ The translation table size for this stage of translation:

For EL1&0 stage 1

TCR_EL1.T0SZ or TCR_EL1.T1SZ, as appropriate.

For Non-secure EL1&0 stage 2

VTCR_EL2.T0SZ.

For Secure EL1&0 stage 2

VSTCR_EL2.T0SZ

For EL2 stage 1 TCR_EL2.T0SZ.

For EL2&0 stage 1 TCR_EL2.T0SZ or TCR_EL2.T1SZ, as appropriate.

For EL3 stage 1 TCR_EL3.T0SZ.

SL0 The initial lookup level for this stage of translation:

For Non-secure EL1&0 stage 2 translation

VTCR_EL2.SL0

For Secure EL1&0 stage 2 translation

VSTCR_EL2.SL0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2727
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
SL2 Combined with SL0, the initial lookup level for this stage of translation when the Effective value of
VTCR_EL2.DS is 1 and using the 4KB translation granule:

For Non-secure EL1&0 stage 2 translation

VTCR_EL2.SL2

For Secure EL1&0 stage 2 translation

VSTCR_EL2.SL2

These subsections show only architecturally-valid programming of the TCR_ELx. See also Possible errors in
programming the translation table registers on page D5-2726.

Finding the Translation Table descriptor when using the 4KB translation granule

Table D5-24 on page D5-2728 shows the Translation Table descriptor address, for each level of lookup, when using
the 4KB translation granule. See the start of The algorithm for finding the Translation Table descriptors on
page D5-2727 for more information about terms used in the table.

Table D5-24 Translation table entry addresses when using the 4KB translation granule

Lookup
level

Entry address and conditions
General
conditions

Stage 1 translation Stage 2 translation

Minus
onea

BaseAddr[PAMax-1:x]:IA[y:48]:0b000

ifb 12  TnSZ  15 then x = (19 - TnSZ)

BaseAddr[PAMax-1:x]:IA[y:48]:0b000

if SL0 == 0 and SL2 == 1 then

ifb 12  T0SZ  15 then x = (19 - T0SZ)

y = (x + 44)

Zero BaseAddr[PAMax-1:x]:IA[y:39]:0b000

ifb 16  TnSZ  24 then x = (28 - TnSZ)

elsea,c x =12

BaseAddr[PAMax-1:x]:IA[y:39]:0b000

if SL0 == 2 then

ifb 16  T0SZ  24 then x = (28 - T0SZ)

elsifa,c SL0 == 0 and SL2 == 1 then x = 12

y = (x + 35)

One BaseAddr[PAMax-1:x]:IA[y:30]:0b000

ifb 25  TnSZ  33 then x = (37 - TnSZ)

elsec x =12

BaseAddr[PAMax-1:x]:IA[y:30]:0b000

if SL0 == 1 then

ifb 21  T0SZ  33 then x = (37 - T0SZ)

elsifc SL0 == 2

or (SL0 == 0 and SL2 == 1)a

then x = 12

y = (x + 26)

Two BaseAddr[PAMax-1:x]:IA[y:21]:0b000

ifb 34  TnSZ  42 then x = (46 - TnSZ)

elsec x =12

BaseAddr[PAMax-1:x]:IA[y:21]:0b000

if SL0 == 0 then

ifb 30  T0SZ  42 then x = (46 - T0SZ)

elsifc SL0 ==1 or 2

or (SL0 == 0 and SL2 == 1)a

then x = 12

y = (x + 17)

Three BaseAddr[PAMax-1:x]:IA[y:12]:0b000 ifb 43  TnSZ 
48 then x=(55-TnSZ)

elsec x=12

BaseAddr[PAMax-1:x]:IA[y:12]:0b000 if
SL0 == 3 then

ifb 39  T0SZ  48 then x = (55 - T0SZ)

elsifc SL0 =0, 1, or 2 then x=12

y = (x+ 8)

a. Only when the Effective value of VTCR_EL2.DS is 1.

b. This line indicates the range of permitted values for TnSZ, for a lookup that starts at this level, see Overview of VMSAv8-64 address
translation using the 4KB translation granule on page D5-2708.

c. This is the case where this level of lookup is not the initial level of lookup.
D5-2728 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Table D5-8 on page D5-2698 shows how software can determine whether an implementation supports the 4KB
granule size.

Finding the Translation Table descriptor when using the 16KB translation granule

Table D5-25 on page D5-2729 shows the Translation Table descriptor address, for each level of lookup, when using
the 16KB translation granule. See the start of The algorithm for finding the Translation Table descriptors on
page D5-2727 for more information about terms used in the table.

Table D5-8 on page D5-2698 shows how software can determine whether an implementation supports the 16KB
granule size.

Table D5-25 Translation table entry addresses when using the 16KB translation granule

Lookup
level

Entry address and conditions
General conditions

Stage 1 translation Stage 2 translation

Zeroa BaseAddr[PAMax-1:x]:IA[y:47]:0b000

ifb 12  TnSZ  16 then x = (20 - TnSZ)

BaseAddr[PAMax-1:x]:IA[y:47]:0b000

if SL0 == 3 then

ifb 12 T0SZ  16 then x = (20 - T0SZ)

y = (x + 43)

Zero BaseAddr[PAMax-1:4]:IA[47]:0b000

ifb 16 == TnSZ

- Only applies to stage 1

One BaseAddr[PAMax-1:x]:IA[y:36]:0b000

ifb 17  TnSZ  27 then x = (31 - TnSZ)

elsec x =14

BaseAddr[PAMax-1:x]:IA[y:36]:0b000

if SL0 == 2 then

ifb z T0SZ  27 then x = (31 - T0SZ)

elsifa,c SL0 == 3 then x = 14

y = (x + 32)

z = 16 or 13a

Two BaseAddr[PAMax-1:x]:IA[y:25]:0b000

ifb 28  TnSZ  38 then x = (42 - TnSZ)

elsec x =14

BaseAddr[PAMax-1:x]:IA[y:25]:0b000

if SL0 == 1 then

ifb 24  T0SZ  38 then x = (42 - T0SZ)

elsifc SL0 == 2 or 3a then x = 14

y = (x + 21)

Three BaseAddr[PAMax-1:x]:IA[y:14]:0b000

ifb 39  TnSZ  48 then x = (53 - TnSZ)

elsec x=14

BaseAddr[PAMax-1:x]:IA[y:14]:0b000

if SL0 == 0 then

ifb 35  T0SZ  48 then x = (53 - T0SZ)

elsifc SL0 ==1, 2, or 3a then x = 14

y = (x + 10)

a. Only when the Effective value of VTCR_EL2.DS is 1.

b. This line indicates the range of permitted values for TnSZ, for a lookup that starts at this level, see Overview of VMSAv8-64 address
translation using the 16KB translation granule on page D5-2712.

c. This is the case where this level of lookup is not the initial level of lookup.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2729
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Finding the Translation Table descriptor when using the 64KB translation granule

Table D5-26 on page D5-2730 shows the Translation Table descriptor address, for each level of lookup, when using
the 64KB translation granule. See the start of The algorithm for finding the Translation Table descriptors on
page D5-2727 for more information about terms used in the table.

Table D5-8 on page D5-2698 shows how software can determine whether an implementation supports the 64KB
granule size.

Table D5-26 Translation table entry addresses when using the 64KB translation granule

Lookup
level

Entry address and conditions
General conditions

Stage 1 translation Stage 2 translation

One BaseAddr[PAMax-1:x]:IA[y:42]:0b000

ifa zb  TnSZ  21 then x = (25 - TnSZ)

BaseAddr[PAMax-1:x]:IA[y:42]:0b000

if SL0 == 2 then

ifa zb  T0SZ  21 then x = (25 - T0SZ)

y = (x + 38)

z = 16 or 12b

Two BaseAddr[PAMax-1:x]:IA[y:29]:0b000

ifa 22  TnSZ  34 then x = (38 - TnSZ)

elsec x =16

BaseAddr[PAMax-1:x]:IA[y:29]:0b000

if SL0 == 1 then

ifa 18  T0SZ  34 then x = (38 - T0SZ)

elsif SL0c == 2 then x = 16

y = (x + 25)

Three BaseAddr[PAMax-1:x]:IA[y:16]:0b000

ifa 35  TnSZ  47 then x = (51 - TnSZ)

elsec x =16

BaseAddr[PAMax-1:x]:IA[y:16]:0b000

if SL0 == 0 then

ifa 31  T0SZ  47 then x = (51 - T0SZ)

elsif SL0c ==1 or 2 then x = 16

y = (x + 12)

a. This line indicates the range of permitted values for TnSZ, for a lookup that starts at this level, see Overview of VMSAv8-64 address
translation using the 64KB translation granule on page D5-2716.

b. If FEAT_LVA is implemented, the value of z is 12, see Extending addressing above 48 bits when using the 64KB translation
granule on page D5-2695. Otherwise, the value of z is 16.

c. This is the case where this level of lookup is not the initial level of lookup.
D5-2730 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
D5.2.9 The effects of disabling a stage of address translation

The following sections describe the effect on MMU behavior of disabling each stage of translation:

• Behavior when stage 1 address translation is disabled on page D5-2731.

• Behavior when stage 2 address translation is disabled on page D5-2732.

• Behavior of instruction fetches when all associated stages of translation are disabled on page D5-2732.

Behavior when stage 1 address translation is disabled

When a stage 1 address translation is disabled, memory accesses that would otherwise be translated by that stage of
translation are treated as follows:

EL1 and EL0 accesses if the HCR_EL2.DC bit is set to 1

For the EL1&0, when EL2 is enabled, translation regime, when the value of HCR_EL2.DC is 1, the
stage 1 translation assigns the Normal Non-shareable, Inner Write-Back Read-Allocate
Write-Allocate, Outer Write-Back Read-Allocate Write-Allocate memory attributes.

Note

This applies for both instruction and data accesses.

When FEAT_XS is implemented, if HCR_EL2.DC is 1, the XS attribute is set to 0 at stage 1 of the
translation. Otherwise, the XS attribute is set to 1 at stage 1 of the translation.

All other accesses

For all other accesses, when stage 1 address translation is disabled, the assigned attributes depend
on whether the access is a data access or an instruction access, as follows:

Data access

The stage 1 translation assigns the Device-nGnRnE memory type.

Instruction access

The stage 1 translation assigns the Normal memory attribute, with the cacheability and
shareability attributes determined by the value of the SCTLR_ELx.I bit for the
translation regime, as follows:

When the value of I is 0

The stage 1 translation assigns the Non-cacheable and Outer Shareable
attributes.

When the value of I is 1

The stage 1 translation assigns the Cacheable, Inner Write-Through
Read-Allocate No Write-Allocate, Outer Write-Through Read-Allocate No
Write-Allocate Outer Shareable attribute.

Secure accesses and Non-secure accesses

For accesses from the Non-secure state, the output address is to the Non-secure output address
space.

For accesses from the Secure state, the output address is to the Secure output address space.

For this stage of translation:

• No memory access permission checks are performed, and therefore no MMU Permission faults can be
generated for this stage of address translation.

• No memory is guarded.

Note

Alignment checking is performed, and therefore Alignment faults can occur.

For every access, the input address of the stage 1 translation is flat-mapped to the output address.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2731
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
For a EL1 or EL0 access, if EL1&0 stage 2 address translation is enabled, the stage 1 memory attribute assignments
and output address can be modified by the stage 2 translation.

When the value of HCR_EL2.DC is 1:

• The SCTLR_EL1.M bit behaves as if it is 0, for all purposes other than reading the value of the bit. This
means EL1&0 stage 1 address translation is disabled.

• The HCR_EL2.VM bit behaves as if it is 1, for all purposes other than reading the value of the bit. This means
that EL1&0 stage 2 address translation is enabled.

See also Behavior of instruction fetches when all associated stages of translation are disabled on page D5-2732.

Effect of disabling address translation on maintenance and address translation instruction
instructions

Cache maintenance instructions act on the target cache regardless of whether any stages of address translation are
disabled, and regardless of the values of the memory attributes. However, if a stage of address translation is disabled,
they use the flat address mapping for that translation stage.

TLB invalidate operations act on the target TLB regardless of whether any stage of address translation is disabled.

The value of HCR_EL2.DC affect some address translation instructions, see Address translation instructions, AT*
on page D5-2735.

Behavior when stage 2 address translation is disabled

When stage 2 address translation is disabled:

• The IPA output from the stage 1 translation maps flat to the PA.

• The memory attributes and permissions from the stage 1 translation apply to the PA.

When both stages of address translation are disabled, see also Behavior of instruction fetches when all associated
stages of translation are disabled on page D5-2732.

Secure accesses and Non-secure accesses

For accesses from the Non-secure IPA address space, the output address is to the Non-secure
physical address space.

For accesses from the Secure IPA address space, the output address is to the Secure physical address
space.

Behavior of instruction fetches when all associated stages of translation are disabled

When EL3 is using AArch64, this section applies to:

• The Secure EL1&0, when EL2 is disabled, translation regime when stage 1 address translation is disabled in
that regime.

• The EL3 translation regime when stage 1 address translation is disabled in that regime.

• The Secure EL2, or Secure EL2&0, translation regime when stage 1 address translation is disabled in that
regime

• The Non-secure EL1&0, when EL2 is enabled, translation regime, when both stages of address translation
are disabled.

Note
• The behaviors in Non-secure state apply regardless of the Execution state that EL3 is using.

• When the value of HCR_EL2.DC is 1, then the behavior of the EL1&0 translation regime is as if stage 1
translation is disabled and stage 2 translation is enabled, as described in Behavior when stage 1 address
translation is disabled on page D5-2731.
D5-2732 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
In these cases, when execution is in AArch64 state, a memory location might be accessed as a result of an instruction
fetch if either:

• The memory location is in the same block of memory as, or in the next contiguous block of memory to, an
instruction that a simple sequential execution of the program either requires to be fetched now or has required
to be fetched since the last reset.

• The memory location is the target of a direct branch that a simple sequential execution of the program would
have taken since the most recent of:

— The last reset.

— The last synchronization of instruction cache maintenance targeting the address of the branch
instruction.

In this description, the blocks of memory referred to are of the size of the minimum implemented translation granule
and are aligned to that size.

These accesses can be caused by speculative instruction fetches, regardless of whether the prefetched instruction is
committed for execution.

Note

To ensure architectural compliance, software must ensure that both of the following apply:

• Instructions that will be executed when all associated stages of address translation are disabled are located in
blocks of the address space, of the translation granule size, that contain only memory that is tolerant to
speculative accesses.

• Each block of the address space, of the translation granule size, that immediately follows a similar block that
holds instructions that will be executed when all associated stages address translation are disabled, contains
only memory that is tolerant to speculative accesses.

D5.2.10 Pseudocode description of VMSAv8-64 address translation

The following subsections outline a pseudocode description of the translation table walk:

• Full Physical Address on page D5-2733.

• Address translation on page D5-2733.

• Translation table walk on page D5-2734.

• Hardware update of Translation Table descriptors on page D5-2734.

• Address decoding and calculation on page D5-2734.

• Memory attribute decoding on page D5-2734.

• Fault detection on page D5-2735.

Full Physical Address

A complete physical address necessary to identify a location in physical memory is captured by the type
FullAddress. This is composed of:

• A bitstring address, which identifies the physical address.

• An enumeration paspace which identifies the physical address space.

Address translation

AArch64.TranslateAddress() acts as the entry point to VMSAv8-64 and performs the required address translation
based on the provided parameters and system register configurations. The function returns an AddressDescriptor()
structure holding valid data for either of the following:

• Target memory address and attributes for a non-faulting translation.

• Fault details holding data to be populated in syndrome registers.

AArch64.FullTranslate() selects the translation regime and performs first and potentially second stage of translation
returning the physical address (PA) and attributes of target memory. AArch64.S1Translate() carries out the first stage
of translation when stage 1 is not disabled, mapping the virtual address (VA) to the intermediate physical address
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2733
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
(IPA) and carrying out permission checks. Otherwise, AArch64.S1DisabledOutput() assigns the appropriate memory
attributes and flat maps the input address to the output address. AArch64.S2Translate() carries out stage 2 translation
for the EL1&0 translation regime when enabled mapping the IPA to the PA. Otherwise, the IPA is the PA.

Translation table walk

Each stage of translation has a separate walk function, AArch64.S1Walk() and AArch64.S2Walk(), corresponding to the
first and second stage of translation respectively. Each use walk parameters extracted from related system registers.
Parameters are collected based on the active translation regime. For instance, stage 1 EL2 translation regime
parameters are obtained and returned by the function AArch64.S1TTWParamsEL2(). Given these parameters, a walk
initializes a walk state of the type TTWState, holding the base address of the first translation table.

The walk progressively fetches and decodes Translation Table descriptors, updating the walk state to the next base
address as it descends through the levels of tables until a Block or Page descriptor is discovered or an invalid
descriptor is fetched. Decoding the descriptor for both stage 1 and stage 2 walks is carried out by the function
AArch64.DecodeDescriptorType().

For a non-faulting walk, three items are returned by a translation table walk:

• The final walk state.

• The final descriptor fetched.

• The address of the final descriptor.

The final descriptor and its address are used to update the descriptor as specified by Hardware management of the
Access flag and dirty state on page D5-2767.

A faulting walk could report one of the following at a specified level:

• Translation Fault.

• Address Size Fault.

• Access Flag Fault.

Hardware update of Translation Table descriptors

The walk parameters collected from system registers indicate the ability to update the Access flag or set write
permissions within descriptors. This is controlled by the Dirty Bit Modifier, and the conditions specified in
Hardware management of the Access flag and dirty state on page D5-2767. The translation functions
AArch64.S1Translate() or AArch64.S2Translate() set the appropriate descriptor bits returned by the walk functions
and call AArch64.MemSwapTableDesc() to swap the old descriptor for the updated one in an atomic fashion.

Address decoding and calculation

The walk state is initialized to hold the base address of the first translation table, using AArch64.TTBaseAddress() to
decode TTBR0_ELx and TTBR1_ELx registers. The walk progressively fetches and decodes Translation Table
descriptors, updating the walk state to the next base address utilizing AArch64.NextTableBase() as it descends
through the levels of tables. Prior to every descriptor fetch the base address is indexed by the function
AArch64.TTEntryAddress() to point to the specific table entry. Indexing at the start level of stage 2 tables is shown in
AArch64.S2SLTTEntryAddress() which caters for concatenated tables. The final walk state would hold the base
address for the output block or page; this is extracted from the Leaf descriptor in AArch64.BlockBase() or
AArch64.PageBase() respectively.

Memory attribute decoding

If a stage of translation is enabled, fetched descriptors that are blocks or pages encode memory attributes assigned
to the output of translation. Stage 1 memory attributes are decoded by the function S1DecodeMemAttrs(). Likewise,
the stage 2 memory attributes are decoded by the function S2DecodeMemAttrs() followed by combining stage 1 and
stage 2 attributes by the function S2CombineS1MemAttrs(). However, if FEAT_S2FWB is enabled, this behavior is
overridden and memory attributes are decoded as specified in Stage 2 memory region type and Cacheability
attributes when FEAT_S2FWB is implemented on page D5-2780. This is captured by the function
AArch64.S2ApplyFWBMemAttrs().
D5-2734 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Fault detection

As soon as translation is invoked a reserve FaultRecord accompanies the process capturing the stage and level of
translation as it proceeds. When a fault is detected, it is reflected in the FaultRecord and reported back as the result
of translation with the most recent state to be reported already captured within. The following functions detect a
certain type of fault, their outputs are all boolean with a TRUE value on detection:

• The AArch64.S1HasPermissionsFault() and AArch64.S2HasPermissionsFault() function detect a permissions
fault for stage 1 and stage 2 respectively.

Note

For atomic instructions introduced by FEAT_LSE, these functions are called twice, once to check for read
permissions and another for write allowing the correct failure to be reported.

• The AArch64.S1HasAlignmentFault() and AArch64.S2HasAlignmentFault() functions detect an alignment fault
for stage 1 and stage 2 respectively.

• The AArch64.S1InvalidTxSZ() and AArch64.S2InvalidTxSZ() functions detect a translation fault caused by
erroneous configuration of TCR_ELx.TxSZ field. Additionally, the AArch64.S2InconsistentSL() and
AArch64.S2InvalidSL() functions detect a stage 2 translation faults caused by erroneous configuration of the
VSTCR_EL2.{SL2, SL0} and VTCR_EL2.{SL2, SL0} fields.

• AArch64.VAIsOutOfRange() detects a stage 1 translation fault caused by virtual addresses larger than the
address input size configured. Similarly, AArch64.IPAIsOutOfRange() detects a stage 2 translation fault caused
by the output of stage 1 being larger than the configured input size for stage 2.

• AArch64.ContiguousBitFaults() detects a stage 1 or 2 translation fault caused by a mis-programmed
contiguous bit within a fetched descriptor.

D5.2.11 Address translation instructions

Each of the Armv8 instruction sets provides instructions that return the result of translating an input address,
supplied as an argument to the instruction, using a specified translation stage or regime.

The available instructions only perform translations that are accessible from the Security state and Exception level
at which the instruction is executed. That is:

• No instruction executed in Non-secure state can return the result of a Secure address translation stage.

• No instruction can return the result of an address translation stage that is controlled by an Exception level
that is higher than the Exception level at which the instruction is executed.

Address translation instructions, AT* on page D5-2735 summarizes the A64 address translation instructions.

See also A64 System instructions for address translation on page C5-567.

If FEAT_MTE2 is implemented, the behavior of AT* instructions in AArch64 state are modified. For more
information, see Virtual address translation on page D6-2843.

Address translation instructions, AT*

The A64 assembly language syntax for address translation instructions is:

AT <operation>, <Xt>

Where:

<operation> Is one of S1E1R, S1E1RP, S1E1W, S1E1WP, S1E0R, S1E0W, S12E1R, S12E1W, S12E0R, S12E0W, S1E2R, S1E2W,
S1E3R, or S1E3W.

<operation> has a structure of <stages><level><read|write><pan>, where:

<stages> Is one of:

S1 Stage 1 translation.

S12 Stage 1 translation followed by stage 2 translation.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2735
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
<level> Describes the Exception level that the translation applies to. Is one of:

E0 EL0.

E1 EL1.

E2 EL2.

E3 EL3.

If <level> is higher than the current Exception level, the instruction is UNDEFINED.

<read|write>

Is one of:

R Read.

W Write.

<pan>

Only available when FEAT_PAN2 is implemented. Optional, but if present:

P Determines action based on value of PSTATE.PAN.

Only permitted for <stages>=S1 and <level>=E1.

<Xt> The address to be translated. No alignment restrictions apply for the address.

If EL2 is not implemented, the AT S1E2R and AT S1E2W instructions are UNDEFINED.

Note

If EL2 is not implemented but EL3 is implemented, the AT S12E** instructions are not UNDEFINED, but behave the
same way as the equivalent AT S1E** instructions. This is consistent with the behavior if EL2 is implemented but
stage 2 translation is disabled.

In each case, the address being translated is held in the 64-bit address argument register, Xt. If the address translation
instruction uses a translation regime that is using AArch32, meaning it requires a VA of only 32 bits, then VA[63:32]
is RES0.

If the address translation is successful, the resulting output address is returned in PAR_EL1.PA, and PAR_EL1.F is
set to 0 to indicate that the translation was successful. Otherwise, see Synchronous faults generated by address
translation instructions on page D5-2737.

Note

The architecture provides a single PAR, PAR_EL1, that is used regardless of:

• The Exception level at which the instruction was executed.

• The Exception level that controls the stage or stages of translation used by the instruction.

For all of these instructions, the current context information determines which entries in TLB caching structures are
used, and how the translation table walk is performed. However, it is IMPLEMENTATION DEFINED whether the
Address translation instructions return the values held in a TLB or the result of a translation table walk. Therefore,
Arm recommends that these instructions are not used at a time when the TLB entries might be different from the
underlying translation tables held in memory.

If EL3 is implemented, then for instructions that apply to the EL1 or EL0 Exception level, SCR_EL3.NS determines
the translation regime to which the instruction applies, as follows:

SCR_EL3.NS == 0 Secure EL1&0 translation regime.

SCR_EL3.NS == 1 Non-secure EL1&0 translation regime.

All relevant context information used for the translation depends on this determination.

When EL1&0 stage 1 address translation is disabled, any AT S1E0*, AT S1E1*, AT S12E0*, or AT S12E1* address
translation instruction that accesses the Non-secure state translation reflects the effect of the HCR_EL2.DC bit as
described in Behavior when stage 1 address translation is disabled on page D5-2731.

If Secure EL2 translation regime is disabled, executing AT S1E2R or AT S1E2W at EL3 with SCR_EL3.NS == 0 is
UNDEFINED.
D5-2736 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
Note

AT S12E** instructions at EL3 with SCR_EL3.NS == 0 are not UNDEFINED but behave the same way as the equivalent
AT S1E** instructions.

Synchronous faults generated by address translation instructions

The address translation instructions use the translation mechanism, and that mechanism can generate the following
synchronous faults:

• Translation fault.

• Access flag fault.

• Permission fault.

• Domain fault, when translating using the AArch32 translation systems.

• Address size fault.

• TLB conflict fault.

• Synchronous External aborts during a translation table walk.

In addition:

• If the address translation instruction requires two stages of translation then these faults could arise from either
stage 1 or stage 2.

• For a stage 1 translation for the EL1&0 translation regime, the fault might be generated on the stage 2
translation of an address accessed as part of the stage 1 translation table walk, see Stage 2 fault on a stage 1
translation table walk on page D5-2806.

Except as described in this section, these faults are not taken as an exception for the address translation instructions,
but instead the PAR_EL1.FST field holds the Fault status information. In these cases the PAR_EL1.PA field does
not hold the output address of the translation.

The exceptions to this reporting the fault in PAR_EL1 are:

• Synchronous External aborts during a translation table walk are taken as a Data Abort exception.

For an address translation instruction executed at a particular Exception level, if the synchronous External
abort is generated on a stage 1 translation table walk, the Data Abort exception is taken to the Exception level
to which a synchronous External abort on a stage 1 translation table walk for a memory access from that
Exception level would be taken.

If the synchronous External abort is generated on a stage 2 translation table walk then:

— If the address translation instruction was executed at EL3, the synchronous Data Abort exception is
taken to EL3.

— If the address translation instruction was executed at EL2 or EL1, the Data Abort exception is taken
to the Exception level to which a synchronous External abort on a stage 2 translation table walk for a
memory access from that Exception level would be taken.

In any case where the address translation instruction causes a synchronous Data Abort exception to be taken:

— The PAR_EL1 is UNKNOWN.

— The ESR_ELx of the target Exception level of the exception indicates that the fault was due to a
translation table walk for a cache maintenance instruction.

— The FAR_ELx of the target Exception level holds the VA for the translation request.

• For the AT S1E0* and AT S1E1* instructions executed from EL1, if there is a synchronous stage 2 fault on a
memory access made as part of the translation table walk then:

— If the fault is a synchronous External abort on a stage 2 translation table and SCR_EL3.EA is 1, then
a synchronous External abort on a stage 2 translation table walk is taken to EL3.

— Otherwise the fault is taken as an exception to EL2.

If the exception is taken to EL2 the following apply:

— PAR_EL1 is UNKNOWN.

— ESR_EL2 indicates that the fault occurred on a translation table walk, and that the operation that
faulted was a cache maintenance instruction.

— HPFAR_EL2 holds the IPA that faulted.

— FAR_EL2 holds the VA that the executing software supplied to the address translation instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2737
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system
This fault can occur for any of the following reasons:

— Stage 2 Translation fault.

— Stage 2 Access fault.

— Stage 2 Permission fault.

— Stage 2 Address size fault.

— Synchronous External abort on a stage 2 translation table walk.

Synchronization requirements of the address translation instructions

Where an instruction results in an update to a System register, as is the case with the AT * address translation
instructions, explicit synchronization must be performed before the result is guaranteed to be visible to subsequent
direct reads of the PAR_EL1.

Note

This is consistent with the AArch32 requirement, where the VA to PA translation instructions are executed as writes
to the (coproc==0b1111) System register encoding space, and the effect of those writes to other registers require
explicit synchronization before the result is guaranteed to be visible to subsequent instructions.
D5-2738 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.3 VMSAv8-64 Translation Table format descriptors
D5.3 VMSAv8-64 Translation Table format descriptors

In general, a descriptor is one of:

• An invalid or fault entry.

• A table entry that points to the next-level translation table.

• A block entry that defines the memory properties for the access.

• A reserved format.

Bit[1] of the descriptor indicates the descriptor type, and bit[0] indicates whether the descriptor is valid.

The following sections describe the Armv8 Translation Table descriptor formats:

• VMSAv8-64 translation table level -1, level 0, level 1, and level 2 descriptor formats on page D5-2739.

• Armv8 translation table level 3 descriptor formats on page D5-2744.

Memory attribute fields in the VMSAv8-64 Translation Table format descriptors on page D5-2746 then gives more
information about the descriptor attribute fields, and Control of Secure or Non-secure memory access on
page D5-2753 describe how the NS and NSTable together control whether a memory access from Secure state
accesses the Secure memory map or the Non-secure memory map.

D5.3.1 VMSAv8-64 translation table level -1, level 0, level 1, and level 2 descriptor formats

The difference in the level -1, level 0, level 1 and level 2 VMSAv8-64 Translation Table descriptor formats depends
on the following:

• The translation granule size.

• Whether a Block descriptor is permitted.

• If a Block descriptor is permitted, the size of the memory region described by that entry.

• The maximum supported OA size.

4KB granule If the Effective value of TCR_ELx.DS is 1

Level -1 translation tables do not support Block descriptors.

A Block descriptor:

• In a level 0 table describes the mapping of the associated 512GB input address
range.

• In a level 1 table describes the mapping of the associated 1GB input address
range.

• In a level 2 table describes the mapping of the associated 2MB input address
range.

The maximum OA size of a lookup is 52 bits.

If the Effective value of TCR_ELx.DS is 0

Level -1 lookup is not supported.

Level 0 translation tables do not support Block descriptors.

A Block descriptor:

• In a level 1 table describes the mapping of the associated 1GB input address
range.

• In a level 2 table describes the mapping of the associated 2MB input address
range.

The maximum OA size of a lookup is 48 bits.

16KB granule Level -1 lookup is not supported.

If the Effective value of TCR_ELx.DS is 1

Level 0 translation tables do not support Block descriptors.

A Block descriptor:

• In a level 1 table describes the mapping of the associated 64GB input address
range.

• In a level 2 table describes the mapping of the associated 32MB input address
range.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2739
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.3 VMSAv8-64 Translation Table format descriptors
The maximum OA size of a lookup is 52 bits.

If the Effective value of TCR_ELx.DS is 0

Level 0 and level 1 translation tables do not support Block descriptors.

A Block descriptor in a level 2 table describes the mapping of the associated 32MB
input address range.

The maximum OA size of a lookup is 48 bits.

64KB granule Level -1 and level 0 lookups are not supported.

If FEAT_LPA is implemented

A Block descriptor:

• In a level 1 table describes the mapping of the associated 4TB input address
range.

• In a level 2 table describes the mapping of the associated 512MB input address
range.

The maximum OA size of a lookup is 52 bits.

If FEAT_LPA is not implemented

Level 1 translation tables do not support Block descriptors.

A Block descriptor in a level 2 table describes the mapping of the associated 512MB
input address range.

The maximum OA size of a lookup is 48 bits.

When a lookup returns a Table descriptor, the OA is the next-level table address.

Figure D5-14 on page D5-2740 shows the Armv8 level 0, level 1, and level 2 descriptor formats that provide 48-bit
OAs:

Figure D5-14 VMSAv8-64 level 0, level 1 and level 2 descriptor formats with 48-bit OAs

If the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 1, when a 4KB or 16KB granule is used, the Block and
Table descriptors are redefined as Figure D5-15 on page D5-2741 shows:

nT RES0

RES0‡RES0 1
63 62 61 60 59 58 52 51 48 47 12 11 2 1 0

IGNORED Next-level table address[47:m] IGNORED 1Table

PXNTable
XNTable
APTable
NSTable

Stage 1 only,
RES0 at stage 2

A level 0 Table descriptor returns the address of the level 1 table.
A level 1 Table descriptor returns the address of the level 2 table.
A level 2 Table descriptor returns the address of the level 3 table.

With the 4KB granule size m is 12‡, with the 16KB granule size m is 14, and with the 64KB granule size, m is 16.

RES0 1Upper block attributes
63 4748 12 11 2 1 0

Output address[47:n] RES0 Lower block attributes 0Block

With the 4KB granule size, for the level 1 descriptor n is 30, and for the level 2 descriptor, n is 21.

With the 64KB granule size, for the level 2 descriptor, n is 29.
With the 16KB granule size, for the level 2 descriptor, n is 25.

0IGNORED

63 1 0
Invalid

‡ When m is 12, the RES0 field shown for bits[(m-1):12] is absent.

m m-1

n n-1 151650 49
D5-2740 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.3 VMSAv8-64 Translation Table format descriptors
Figure D5-15 VMSAv8-64 level -1, level 0, level 1 and level 2 descriptor formats, 4KB or 16KB granule with 52-bit OAs

In an implementation that includes FEAT_LPA, when the 64KB granule is used, the Block and Table descriptors
are redefined as Figure D5-16 on page D5-2741 shows:

Figure D5-16 VMSAv8-64 level 1 and level 2 descriptor formats, 64KB granule with 52-bit OAs

IGNORED Next-level table address[49:m]RES0

nT RES0

RES0‡ 1
63 62 61 60 59 58 52 51 12 11 2 1 0

1Table

PXNTable
XNTable
APTable
NSTable

Stage 1 only,
RES0 at stage 2

A level -1 Table descriptor returns the address of the level 0 table.
A level 0 Table descriptor returns the address of the level 1 table.
A level 1 Table descriptor returns the address of the level 2 table.
A level 2 Table descriptor returns the address of the level 3 table.

With the 4KB granule size m is 12‡ and with the 16KB granule size m is 14.

1Upper block attributes
63 12 11 2 1 0

Output address[49:n] RES0 0Block

With the 4KB granule size, for the level -1 descriptor n is 48, for the level 0 descriptor n is 39, for the level 1
descriptor n is 30, and for the level 2 descriptor n is 21.
With the 16KB granule size, for the level 0 descriptor n is 47, for the level 1 descriptor n is 36, and for the level 2
descriptor n is 25.

0IGNORED

63 1 0
Invalid

‡ When m is 12, the RES0 field shown for bits[(m-1):12] is absent.

m m-1

n n-1 151650 49 10 89 7

10 89 74950

IGNORED
Next-level table address[51:50]

IGNORED

Lower block attributes
Output address[51:50]
Lower block attributes

nT

TA[51:48]‡
16 15

RES0RES0 1Upper block attributes
63 50 4748 n n-1 12 11 2 1 0

Output address[47:n] OA[51:48] Lower block attributes 0Block

0IGNORED

63 1 0
Invalid

For the level 1 descriptor n is 42, and for the level 2 descriptor n is 29.

16 15

RES0 1
63 62 61 60 59 58 5051 48 47 12 11 2 1 0

IGNORED Next-level table address[47:16] IGNORED 1Table

PXNTable
XNTable
APTable
NSTable

Stage 1 only,
RES0 at stage 2

A level 1 Table descriptor returns the address of the level 2 table.
A level 2 Table descriptor returns the address of the level 3 table.

‡ TA[51:48] indicates bits[51:48] of the next-level table address.

49
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2741
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.3 VMSAv8-64 Translation Table format descriptors
Note

The effects on the Non-secure EL1 descriptors when FEAT_HPDS is enabled and HCR_EL2.{NV, NV1} =={1,1}
are detailed in Effect of HCR_EL2.{NV, NV1} on page D5-2793.

Descriptor encodings, Armv8 level 0, level 1, and level 2 formats

Descriptor bit[0] identifies whether the descriptor is valid, and is 1 for a valid descriptor. If a lookup returns an
invalid descriptor, the associated input address is unmapped, and any attempt to access it generates a Translation
fault.

Descriptor bit[1] identifies the descriptor type, and is encoded as:

0, Block The descriptor gives the base address of a block of memory, and the attributes for that memory
region.

1, Table The descriptor gives the address of the next level of translation table, and for a stage 1 translation,
some attributes for that translation.

The other fields in the valid descriptors are:

Block descriptor

Gives the base address and attributes of a block of memory, as follows:

4KB translation granule

If the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 1:

• For a level 0 Block descriptor, bits[9:8] are bits[51:50] of the output address and
bits[49:39] are bits[49:39] of the output address. This output address specifies a
512GB block of memory.

• For a level 1 Block descriptor, bits[9:8] are bits[51:50] of the output address and
bits[49:30] are bits[49:30] of the output address. This output address specifies a
1GB block of memory.

• For a level 2 Block descriptor, bits[9:8] are bits[51:50] of the output address and
bits[49:21] are bits[49:21] of the output address. This output address specifies a
2MB block of memory.

If the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 0:

• For a level 1 Block descriptor, bits[47:30] are bits[47:30] of the output address.
This output address specifies a 1GB block of memory.

• For a level 2 Block descriptor, bits[47:21] are bits[47:21] of the output
address.This output address specifies a 2MB block of memory.

16KB translation granule

If the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 1:

• For a level 1 Block descriptor, bits[9:8] are bits[51:50] of the output address and
bits[49:36] are bits[49:36] of the output address. This output address specifies a
64GB block of memory.

• For a level 2 Block descriptor, bits[9:8] are bits[51:50] of the output address and
bits[49:25] are bits[49:25] of the output address. This output address specifies a
32MB block of memory.

If the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 0:

• A level 1 Block descriptor is not supported.

• For a level 2 Block descriptor, bits[47:25] are bits[47:25] of the output
address.This output address specifies a 32MB block of memory.
D5-2742 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.3 VMSAv8-64 Translation Table format descriptors
64KB translation granule

If FEAT_LPA is implemented:

• For a level 1 Block descriptor, bits[15:12] are bits[51:48] of the output address
and bits[47:42] are bits [47:42] of the output address. This output address
specifies a 4TB block of memory.

• For a level 2 Block descriptor, bits[15:12] are bits[51:48] of the output address,
and bits[47:29] are bits [47:29] of the output address.This output address
specifies a 512MB block of memory.

If FEAT_LPA is not implemented:

• A level 1 Block descriptor is not supported.

• For a level 2 Block descriptor, bits[47:29] are bits[47:29] of the output
address.This output address specifies a 512MB block of memory.

The following bits provide attributes for the target memory block:

• If the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 0, bits[63:52, 11:2].

• If the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 1, bits[63:52, 11:10, 7:2].

• If FEAT_HAFDBS is implemented, bit 51 is also used as an attribute.

For more information, see Memory attribute fields in the VMSAv8-64 Translation Table format
descriptors on page D5-2746.

Note
• In Armv8.0, the position and contents of bits[63:52, 11:2] are identical to bits[63:52, 11:2] in

the Page descriptors.

• When FEAT_HAFDBS is implemented, the position and contents of bits[63:51, 11:2] are
identical to bits[63:51, 11:2] in the Page descriptors.

• When FEAT_HPDS2 is implemented, hardware can use bits[62:59] of the Block descriptors
for IMPLEMENTATION DEFINED purposes, see Memory attribute fields in the VMSAv8-64
Translation Table format descriptors on page D5-2746.

• When the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 1, the position and contents
of bits[63:51, 11:10, 7:2] are identical to bits[63:51, 11:10, 7:2] in the Page descriptors.

Table descriptor

Gives the translation table address for the next-level lookup, as follows:

4KB translation granule

• Bits[47:12] are bits[47:12] of the address of the required next-level table, which
is:

— When the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 1, for a
level -1 Table descriptor, the address of a level 0 table.

— For a level 0 Table descriptor, the address of a level 1 table.

— For a level 1 Table descriptor, the address of a level 2 table.

— For a level 2 Table descriptor, the address of a level 3 table.

When the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 1, bits[49:48]
are bits[49:48] of the required next-level table, and bits[9:8] are bits[51:50] of the
required next-level table.

• Bits[11:0] of the table address are zero.

16KB translation granule

• Bits[47:14] are bits[47:14] of the address of the required next-level table, which
is:

— For a level 0 Table descriptor, the address of a level 1 table.

— For a level 1 Table descriptor, the address of a level 2 table.

— For a level 2 Table descriptor, the address of a level 3 table.

When the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 1, bits[49:48]
are bits[49:48] of the required next-level table, and bits[9:8] are bits[51:50] of the
required next-level table.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2743
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.3 VMSAv8-64 Translation Table format descriptors
• Bits[13:0] of the table address are zero.

64KB translation granule

• Bits[47:16] are bits[47:16] of the address of the required next-level table, which
is:

— For a level 1 Table descriptor, the address of a level 2 table.

— For a level 2 Table descriptor, the address of a level 3 table.

When FEAT_LPA is implemented, bits[15:12] are bits[51:48] of the required
next-level table.

• Bits[15:0] of the table address are zero.

For a stage 1 translation only, bits[63:59] provide attributes for the next-level lookup, see Memory
attribute fields in the VMSAv8-64 Translation Table format descriptors on page D5-2746.

If the translation table defines either the Secure or Non-secure EL1&0, when EL2 is enabled, stage 1 translations,
then the output address in the descriptor is the IPA of the target block or table. Otherwise, it is the PA of the target
block or table.

D5.3.2 Armv8 translation table level 3 descriptor formats

For the 4KB granule size, each entry in a level 3 table describes the mapping of the associated 4KB input address
range.

For the 16KB granule size, each entry in a level 3 table describes the mapping of the associated 16KB input address
range.

For the 64KB granule size, each entry in a level 3 table describes the mapping of the associated 64KB input address
range.

Figure D5-17 on page D5-2745 shows the Armv8 level 3 descriptor formats for both 52-bit and 48-bit output
addresses.
D5-2744 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.3 VMSAv8-64 Translation Table format descriptors
Figure D5-17 VMSAv8-64 level 3 descriptor format

Descriptor bit[0] identifies whether the descriptor is valid, and is 1 for a valid descriptor. If a lookup returns an
invalid descriptor, the associated input address is unmapped, and any attempt to access it generates a Translation
fault.

Descriptor bit[1] identifies the descriptor type, and is encoded as:

0, Reserved, invalid

Behaves identically to encodings with bit[0] set to 0.

This encoding must not be used in level 3 translation tables.

1, Page Gives the address and attributes of a 4KB, 16KB, or 64KB page of memory.

At this level, the only valid format is the Page descriptor. The other fields in the Page descriptor are:

Page descriptor

Gives the output address of a page of memory, as follows:

4KB translation granule

If the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 1, bits[9:8] are bits[51:50]
of the output address and bits[49:12] are bits[49:12] of the output address for a page of
memory.

0IGNORED

63 1 0
Invalid

Output address[47:14] RES0 1Upper attributes
63 50 4748 12 11 2 1 0

RES0 Lower attributes 1
14 13

Page, 16KB granule
48-bit OA

1Upper attributes
63 50 4748 12 11 2 1 0

RES0 Output address[47:12] Lower attributes 1Page, 4KB granule
48-bit OA

1Upper attributes
63 50 12 11 2 1 0

Output address[49:12] 1Page, 4KB granule
52-bit OA

10 89 7

Lower attributes
Output address[51:50]

Lower attributes

49

RES0

Output address[49:14] RES0 1Upper attributes
63 50 12 11 2 1 0

1
14 13

Page, 16KB granule
52-bit OA

10 89 7

Lower attributes
Output address[51:50]

Lower attributes

49

RES0

RES0Output address[47:16] 1Upper attributes
63 50 4748 12 11 2 1 0

RES0 Lower attributes 1
16 15

Page, 64KB granule
48-bit OA

OA[51:48]Output address[47:16] 1Upper attributes
63 50 4748 12 11 2 1 0

RES0 Lower attributes 1
16 15

Page, 64KB granule
52-bit OA

Reserved 1RES0
63 2 1 0

0

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2745
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.3 VMSAv8-64 Translation Table format descriptors
If the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 0, bits[47:12] are
bits[47:12] of the output address for a page of memory.

16KB translation granule

If the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 1, bits[9:8] are bits[51:50]
of the output address and bits[49:14] are bits[49:14] of the output address for a page of
memory.

If the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 0, bits[47:14] are
bits[47:14] of the output address for a page of memory.

64KB translation granule

If FEAT_LPA is implemented, bits[15:12] are bits[51:48] and bits[47:16] are
bits[47:16] of the output address for a page of memory.

If FEAT_LPA is not implemented, bits[47:16] are bits[47:16] of the output address for
a page of memory.

The following bits provide attributes for the target memory page:

• If the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 0, bits[63:52, 11:2].

• If the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 1, bits[63:52, 11:10, 7:2].

For more information, see Memory attribute fields in the VMSAv8-64 Translation Table format
descriptors on page D5-2746.

Note
• In Armv8.0, the position and contents of bits[63:52, 11:2] are identical to bits[63:52, 11:2] in

the level 0, level 1, and level 2 Block descriptors.

• When FEAT_HAFDBS is implemented, the position and contents of bits[63:51, 11:2] are
identical to bits[63:51, 11:2] in the level 0, level 1, and level 2 Block descriptors.

• When FEAT_HPDS2 is implemented, hardware can use bits[62:59] of the Page descriptors
for IMPLEMENTATION DEFINED purposes, see Memory attribute fields in the VMSAv8-64
Translation Table format descriptors on page D5-2746.

For either the Secure or Non-secure EL1&0, when EL2 is enabled, stage 1 translations, the output address in the
descriptor is the IPA of the target page. Otherwise, it is the PA of the target page.

D5.3.3 Memory attribute fields in the VMSAv8-64 Translation Table format descriptors

Memory region attributes on page D5-2776 describes the region attribute fields. The following subsections
summarize the descriptor attributes as follows:

Table descriptor

Table descriptors for stage 2 translations do not include any attribute field. For a summary of the
attribute fields in a stage 1 Table descriptor, that define the attributes for the next lookup level, see
Next-level attributes in stage 1 VMSAv8-64 Table descriptors on page D5-2747.

Block and Page descriptors

These descriptors define memory attributes for the target block or page of memory. Stage 1 and
stage 2 translations have some differences in these attributes, see:

• Attribute fields in stage 1 VMSAv8-64 Block and Page descriptors on page D5-2749

• Attribute fields in stage 2 VMSAv8-64 Block and Page descriptors on page D5-2751.
D5-2746 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.3 VMSAv8-64 Translation Table format descriptors
Next-level attributes in stage 1 VMSAv8-64 Table descriptors

In a Table descriptor for a stage 1 translation, bits[63:59] of the descriptor define the attributes for the next-level
translation table access, and bits[58:51] are IGNORED:

These attributes are:

NSTable, bit[63]

For memory accesses from Secure state, specifies the Security state for subsequent levels of lookup,
see Hierarchical control of Secure or Non-secure memory accesses on page D5-2753.

For memory accesses from Non-secure state, including all accesses in the EL2 or EL2&0 translation
regime, this bit is RES0 and is ignored by the PE.

APTable, bits[62:61]

Access permissions limit for subsequent levels of lookup, see Hierarchical control of data access
permissions on page D5-2759.

APTable[0] is RES0:

• In the EL2 translation regime.

Note
In an implementation that includes FEAT_VHE, when the value of HCR_EL2.E2H is 1 the
translation regime for memory accesses from EL2 is the EL2&0 translation regime.
APTable[0] can be valid (not RES0) in the EL2&0 translation regime.

• In the EL3 translation regime.

From Armv8.1, when FEAT_HPDS is implemented, this field can be disabled. When the value of
TCR_ELx.HPD{0} or TCR_ELx.HPD1 is 1:

• The value of the corresponding APTable field is IGNORED by hardware, allowing the field to
be used by software.

• The behavior of the system is as if the value of the corresponding APTable field is 0.

Note
From Armv8.3, if EL2 is enabled in the current Security state, in the EL1 translation regime, when
the value of HCR_EL2.{NV, NV1} == {1, 1}, bit[61] is treated as 0 regardless of the actual value,
see Additional behaviors when HCR_EL2.NV == 1 and HCR_EL2.NV1 == 1 on page D5-2794.

UXNTable or XNTable, bit[60]

XN limit for subsequent levels of lookup, see Hierarchical control of instruction fetching on
page D5-2764.

The naming of this field depends on whether stage 1 of the translation regime can support two VA
ranges:

Stage 1 can support two VA ranges

This field is UXNTable, and determines whether execution at EL0 of instructions
fetched from the region identified at a lower level of lookup permitted.

† UXNTable for a translation regime that can apply to execution at EL0, otherwise XNTable.
‡ RES0 for a translation regime that cannot apply to execution at EL0.

Next-level descriptor attributes, stage 1 only

63 62 61 60 59 58 51
IGNORED

NSTable
APTable

UXNTable or XNTable †
PXNTable ‡
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2747
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.3 VMSAv8-64 Translation Table format descriptors
Note
PXNTable is the equivalent control of execution at a higher Exception level.

Stage 1 supports only one VA range

This field is XNTable.

From Armv8.1, when FEAT_HPDS is implemented, this field can be disabled. When the value of
TCR_ELx.HPD{0} or TCR_ELx.HPD1 is 1:

• The value of the corresponding UXNTable field is IGNORED by hardware, allowing the field
to be used by software.

• The behavior of the system is as if the value of the corresponding UXNTable field is 0.

Note

From Armv8.3, if EL2 is enabled in the current Security state, in the EL1 translation regime, when
the value of HCR_EL2.{NV, NV1} == {1, 1}, bit[60] holds PXNTable, see Additional behaviors
when HCR_EL2.NV == 1 and HCR_EL2.NV1 == 1 on page D5-2794.

PXNTable, bit[59]

PXN limit for subsequent levels of lookup, see Hierarchical control of instruction fetching on
page D5-2764.

This field is valid only for a stage 1 translation that can support two VA ranges. It is RES0 for stage 1
translations that can support only one VA range.

From Armv8.1, when FEAT_HPDS is implemented, this field can be disabled. When the value of
TCR_ELx.HPD{0} or TCR_EL1.HPD1 is 1:

• The value of the corresponding PXNTable field is IGNORED by hardware, allowing the field
to be used by software.

• The behavior of the system is as if the value of the corresponding PXNTable field is 0.

Note

From Armv8.3, if EL2 is enabled in the current Security state, in the EL1&0 translation regime,
when the value of HCR_EL2.{NV, NV1} == {1, 1}, bit[59] is RES0, see Additional behaviors when
HCR_EL2.NV == 1 and HCR_EL2.NV1 == 1 on page D5-2794.

The definition of IGNORED means the architecture guarantees that the PE makes no use of the field, see IGNORED
on page Glossary-8682. For more information about these fields, see Other fields in the VMSAv8-64 Translation
Table format descriptors on page D5-2781.
D5-2748 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.3 VMSAv8-64 Translation Table format descriptors
Attribute fields in stage 1 VMSAv8-64 Block and Page descriptors

In Block and Page descriptors, the memory attributes are split into an upper block and a lower block, as shown for
a stage 1 translation:

For a stage 1 descriptor, the attributes are:

PBHA, bits[62:59]

Page-based Hardware Attributes bits.

These bits are IGNORED when FEAT_HPDS2 is not implemented.

When FEAT_HPDS2 is implemented, each TCR_ELx has a control bit for each PBHA bit in the
translation tables that it controls. When the value of that control bit is 1, and the value of the
corresponding Hierarchical permission disables bit, TCR_ELx.HPD{n} is 1, hardware can use that
PBHA bit for IMPLEMENTATION DEFINED purposes. When the PBHA bit is used for
IMPLEMENTATION DEFINED purposes, the value of 0 in the PBHA bit is a safe default setting that
gives the same behavior as when the PBHA bit is not used for IMPLEMENTATION DEFINED purposes.

The TCR_ELx control bits for this feature are:

For a translation regime that supports only a single VA range

HWU0nn Controls whether Block or Page descriptor bit[nn] can be used by hardware.

These controls apply only when the value of TCR_ELx.HPD0 is 1.

For a translation regime that can support two VA ranges

HWU0nn For the translation tables indicated by TTBR0_ELx, controls whether Block
or Page descriptor bit[nn] can be used by hardware.

These controls apply only when the value of TCR_ELx.HPD0 is 1.

HWU1nn For the translation tables indicated by TTBR1_ELx, controls whether Block
or Page descriptor bit[nn] can be used by hardware.

These controls apply only when the value of TCR_ELx.HPD1 is 1.

If FEAT_HPDS2 is not implemented, then the TCR_ELx control bits are RAZ/WI.

XN or UXN, bit[54]

The Execute-never or Unprivileged execute-never field, see Access permissions for instruction
execution on page D5-2760.

Note

From Armv8.3, in the Non-secure EL1 translation regime, when the value of HCR_EL2.{NV, NV1}
== {1, 1}, bit[54] holds PXN, see Additional behaviors when HCR_EL2.NV == 1 and
HCR_EL2.NV1 == 1 on page D5-2794.

nT

Upper attributes Lower attributes

63 59 58 55 54 53 52
IGNORED

11 10 9 8 7 6 5 4 2

nG
AF

SH[1:0]#

AP[2:1]
NS

AttrIndx[2:0]

Attribute fields for VMSAv8-64 stage 1 Block and Page descriptors

51
PBHA¶

62

† UXN for a translation regime that can apply to execution at EL0, otherwise XN.
‡ RES0 for a translation regime that cannot apply to execution at EL0.
* RES0 if FEAT_HAFDBS is not implemented.

IGNORED

¶ IGNORED if FEAT_HPDS2 is not implemented.

UXN or XN †

PXN ‡

Contiguous

Reserved for software use

DBM *

121516
OA§

§ RES0 if FEAT_LPA is not implemented.

GP

50

OA[51:50] if the Effective value of TCR_Elx.DS or VTCR_EL2.DS is 1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2749
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.3 VMSAv8-64 Translation Table format descriptors
PXN, bit[53] The Privileged execute-never field, see Access permissions for instruction execution on
page D5-2760.

This field is valid only when stage 1 of the translation regime can support two VA ranges. It is RES0
when stage 1 can support only one VA range.

Note

From Armv8.3, in the Non-secure EL1 translation regime, when the value of HCR_EL2.{NV, NV1}
== {1, 1}, bit[53] is RES0, see Additional behaviors when HCR_EL2.NV == 1 and HCR_EL2.NV1
== 1 on page D5-2794.

Contiguous, bit[52]

A hint bit indicating that the translation table entry is one of a contiguous set of entries, that might
be cached in a single TLB entry, see The Contiguous bit on page D5-2782.

DBM, bit[51] Dirty Bit Modifier, see The dirty state on page D5-2766.

GP, bit[50] Guarded Page.

If FEAT_BTI is implemented, this field is present in stage 1 block and page translation table entries.
Otherwise, this field is RES0.

This field is RES0 in stage 2 block and page translation table entries.

nT, bit[16] Block translation entry, see Block translation entry on page D5-2766.

If FEAT_BBM is implemented, this field is present in stage 1 block translation table entries.
Otherwise, this field is RES0.

nG, bit[11] The not global bit. If a lookup using this descriptor is cached in a TLB, determines whether the TLB
entry applies to all ASID values, or only to the current ASID value. See Global and process-specific
translation table entries on page D5-2813.

This field is valid only when stage 1 of the translation regime can support two VA ranges. It is RES0
when stage 1 can support only one VA range.

AF, bit[10] The Access flag, see The Access flag on page D5-2765.

SH, bits[9:8] If the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 0, descriptor bits[9:8] are the
Shareability field, see Memory region attributes on page D5-2776. If the Effective value of
TCR_ELx.DS or VTCR_EL2.DS is 1, descriptor bits[9:8] are OA[51:50] and Shareability is
determined by TCR_ELx.SHn, see Stage 1 Shareability when FEAT_LPA2 is implemented on
page D5-2778.

AP[2:1], bits[7:6]

Data Access Permissions bits, see Memory access control on page D5-2754.

Note

The Armv8 Translation Table descriptor format defines AP[2:1] as the Access Permissions bits, and
does not define an AP[0] bit.

AP[1] is valid only for stage 1 of a translation regime that can support two VA ranges. It is RES1
when stage 1 translations can support only one VA range.

Note

From Armv8.3, in the Non-secure EL1 translation regime, when the value of HCR_EL2.{NV, NV1}
== {1, 1}, bit[6] is treated as 0 regardless of its actual value, see Additional behaviors when
HCR_EL2.NV == 1 and HCR_EL2.NV1 == 1 on page D5-2794.

NS, bit[5] Non-secure bit. For memory accesses from Secure state, specifies whether the output address is in
the Secure or Non-secure address map, see Control of Secure or Non-secure memory access on
page D5-2753.
D5-2750 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.3 VMSAv8-64 Translation Table format descriptors
For memory accesses from Non-secure state this bit is RES0 and is ignored by the PE.

AttrIndx[2:0], bits[4:2]

Stage 1 memory attributes index field, for the MAIR_ELx, see Stage 1 memory region type and
Cacheability attributes on page D5-2776.

The definition of IGNORED means the architecture guarantees that the PE makes no use of the field, see IGNORED
on page Glossary-8682. For more information about these fields, see Other fields in the VMSAv8-64 Translation
Table format descriptors on page D5-2781.

Attribute fields in stage 2 VMSAv8-64 Block and Page descriptors

In Block and Page descriptors, the memory attributes are split into an upper block and a lower block, as shown for
a stage 2 translation:

For a stage 2 descriptor, the attributes are:

PBHA[3:1], bits[62:60]

Page-based hardware attributes bits.

These bits are IGNORED and reserved for System MMU use when FEAT_HPDS2 is not
implemented.

When FEAT_HPDS2 is implemented, VTCR_EL2 has a control bit for each PBHA bit in the
EL1&0 stage 2 translation tables:

• When the value of that control bit is 1, hardware can use the corresponding PBHA bit for
IMPLEMENTATION DEFINED purposes. When the PBHA bit is used for IMPLEMENTATION
DEFINED purposes, the value of 0 in the PBHA bit is a safe default setting that gives the same
behavior as when the PBHA bit is not used for IMPLEMENTATION DEFINED purposes.

• When the value of that control bit is 0, the corresponding PBHA bit is IGNORED and reserved
for System MMU use.

PBHA[0], bit[59]

Page-based hardware attributes bit.

This bit is IGNORED when FEAT_HPDS2 is not implemented.

nT

Lower attributes

11 10 9 8 7 6 5 2

Upper attributes

PBHA†
63 59 58 55 54 53 52

IGNORED

XN[1:0]‡

Contiguous

Reserved for software use

Attribute fields for VMSAv8-64 stage 2 Block and Page descriptors

5162

DBM*

‡ Bit[53] is RES0 if FEAT_XNX is not implemented.

Reserved for use by a System MMU

* RES0 if FEAT_HAFDBS is not implemented.

† Bits [62:60] are IGNORED and reserved for use by System MMU if FEAT_HPDS2 is not implemented.

121516

§ RES0 if FEAT_LPA is not implemented.

OA§

Bits [59] is IGNORED if FEAT_HPDS2 is not implemented.

60

OA[51:50] if the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 1.

MemAttr[3:0]

AF
SH[1:0]#

S2AP[1:0]

FnXS
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2751
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.3 VMSAv8-64 Translation Table format descriptors
When FEAT_HPDS2 is implemented, VTCR_EL2 has a control bit for this bit in the EL1&0 stage
2 translation tables:

• When the value of that control bit is 1, hardware can use this bit for IMPLEMENTATION
DEFINED purposes. When the PBHA bit is used for IMPLEMENTATION DEFINED purposes, the
value of 0 in the PBHA bit is a safe default setting that gives the same behavior as when the
PBHA bit is not used for IMPLEMENTATION DEFINED purposes.

• When the value of that control bit is 0, this bit is IGNORED.

XN[1:0], bits[54:53]

The Execute-never field, see Access permissions for instruction execution on page D5-2760.

If FEAT_XNX is not implemented, bit[53] is RES0.

Contiguous, bit[52]

A hint bit indicating that the translation table entry is one of a contiguous set or entries, that might
be cached in a single TLB entry, see The Contiguous bit on page D5-2782.

DBM, bit[51] Dirty Bit Modifier, see The dirty state on page D5-2766.

nT, bit[16] Block translation entry, see Block translation entry on page D5-2766.

If FEAT_BBM is implemented, this field is present in stage 2 block translation table entries.
Otherwise, this field is RES0.

FnXS, bit[11] XS attribute modifier, see XS attribute modifier on page D5-2766.

When FEAT_XS is implemented, this field is present in stage 2 block and page translation table
entries. Otherwise, this field is RES0.

AF, bit[10] The Access flag, see The Access flag on page D5-2765.

SH, bits[9:8] If the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 0, descriptor bits[9:8] are the
Shareability field, see The stage 2 memory region attributes, EL1&0 translation regime on
page D5-2778. If the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 1, descriptor bits[9:8]
are OA[51:50] and Shareability is determined by VTCR_EL2.SH0, see Stage 2 Shareability
attribute, for Normal memory on page D5-2780.

S2AP, bits[7:6]

Stage 2 data Access Permissions bits, see The S2AP data access permissions, Secure or Non-secure
EL1&0, when EL2 is enabled, translation regime on page D5-2759.

Note

In the original VMSAv7-32 Long-descriptor attribute definition, this field was called HAP[2:1], for
consistency with the AP[2:1] field in the stage 1 descriptors and despite there being no HAP[0] bit.
Armv8 renames the field for greater clarity.

MemAttr, bits[5:2]

Stage 2 memory attributes, see The stage 2 memory region attributes, EL1&0 translation regime on
page D5-2778.

The definition of IGNORED means the architecture guarantees that the PE makes no use of the field, see IGNORED
on page Glossary-8682. For more information about these fields, see Other fields in the VMSAv8-64 Translation
Table format descriptors on page D5-2781.
D5-2752 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.3 VMSAv8-64 Translation Table format descriptors
D5.3.4 Control of Secure or Non-secure memory access

As this section describes, the NS bit in the translation table entries:

• For accesses from Secure state, if the translation table entry was held in secure memory, determines whether
the access is to Secure or Non-secure memory.

• Is ignored by:

— Accesses from Non-secure state.

— Accesses from Secure state if the translation table entry was held in Non-secure memory.

In the VMSAv8-64 translation table format:

• The NS bit relates only to the memory block or page at the output address defined by the descriptor.

• The descriptors also include an NSTable bit, that affects accesses at lower levels of lookup, see Hierarchical
control of Secure or Non-secure memory accesses on page D5-2753.

The NS and NSTable bits are valid only for memory accesses from Secure state described by Translation Table
descriptors that are fetched from Secure memory, and:

• In the Translation Table descriptors in a Non-secure translation table, the NS and NSTable bits are SBZ.

• Memory accesses from Non-secure state, including all accesses from EL2, ignore the values of these bits.

In the Secure translation regimes, for Translation Table descriptors that are fetched from Secure memory, the NS bit
in a descriptor indicates whether the descriptor refers to the Secure or the Non-secure address map, as follows:

NS == 0 Access the Secure PA space.

NS == 1 Access the Non-secure PA space.

For Non-secure translation regimes, and for Translation Table descriptors fetched from Non-secure memory, the
corresponding bit is RES0 and is ignored by the PE. The access is made to Non-secure memory, regardless of the
value of the bit.

Hierarchical control of Secure or Non-secure memory accesses

For VMSAv8-64 Table descriptors for stage 1 translations, the descriptor includes an NSTable bit, that indicates
whether the table identified in the descriptor is in Secure or Non-secure memory. For accesses from Secure state,
the meaning of the NSTable bit is:

NSTable == 0 The defined table address is in the Secure PA space. In the descriptors in that translation table, NS
bits and NSTable bits have their defined meanings.

NSTable == 1 The defined table address is in the Non-secure PA space. Because this table is fetched from the
Non-secure address space, the NS and NSTable bits in the descriptors in this table must be ignored.
This means that, for this table:

• The value of the NS bit in any Block or Page descriptor is ignored. The block or page address
refers to Non-secure memory.

• The value of the NSTable bit in any Table descriptor is ignored, and the table address refers
to Non-secure memory. When this table is accessed, the NS bit in any Block or Page
descriptor is ignored, and all descriptors in the table refer to Non-secure memory.

In addition, an entry fetched in Secure state is treated as non-global if it is part of a stage 1 translation which supports
both global and non-global entries, and the stage 1 translation was read from a Non-secure stage 1 output address.
These entries must be treated as if nG==1, regardless of the value of the nG bit. For more information about the nG
bit, see Global and process-specific translation table entries on page D5-2813.

The effect of NSTable applies to later entries in the translation table walk, and so its effects can be held in one or
more TLB entries. Therefore a change to NSTable requires coarse-grained invalidation of the TLB to ensure that
the effect of the change is visible to subsequent memory transactions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2753
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
D5.4 Memory access control

The access control fields in the Translation Table descriptors determine whether the PE, in its current state, is
permitted to perform the required access to the output address given in the Translation Table descriptor. If a
translation stage does not permit the access then an MMU fault is generated for that translation stage, and no
memory access is performed.

The following sections describe the memory access controls:

• About access permissions on page D5-2754.

• About PSTATE.PAN on page D5-2755.

• About PSTATE.UAO on page D5-2756.

• About PSTATE.BTYPE on page D5-2756.

• Data access permission controls on page D5-2758.

• Access permissions for instruction execution on page D5-2760.

• The Access flag on page D5-2765.

• The dirty state on page D5-2766.

• Software management of the Access flag on page D5-2766.

• Hardware management of the Access flag and dirty state on page D5-2767.

• Ordering of hardware updates to the translation tables on page D5-2773.

• Restriction on memory types for hardware updates on translation tables on page D5-2773.

• Use of the Contiguous bit with hardware updates of the translation table entries on page D5-2774.

Note

This section describes the access controls for each of the translation regimes, and for each stage of translation in the
EL1&0, when EL2 is enabled, translation regime.

A translation applies to memory accesses from either:

• Only a single Exception level, for example the EL3 translation regime.

• EL0 and one higher Exception level, for example the EL1&0 translation regime.

In addition to an output address, a translation table entry that refers to a page or region of memory includes fields
that define properties of the target memory region. These fields can be classified as address map control, access
control, and region attribute fields. Control of Secure or Non-secure memory access on page D5-2753 describes the
address map control, and Memory region attributes on page D5-2776 describes the other fields.

D5.4.1 About access permissions

The Translation Table descriptors include fields that define access permissions for data accesses and for instruction
fetches. This section introduces those fields. In addition:

• System register controls can prevent execution from writable locations, see Preventing execution from
writable locations on page D5-2765.

• For the effect of disabling a stage of address translation on the access permissions, see The effects of disabling
a stage of address translation on page D5-2731.

• From Armv8.1, the PSTATE.PAN bit can affect the access permissions for privileged data accesses, see
About PSTATE.PAN on page D5-2755.

• From Armv8.2, the PSTATE.UAO bit can affect the access permissions for unprivileged instructions, see
About PSTATE.UAO on page D5-2756.

Note

This section gives a general description of memory access permissions. In an implementation that includes EL2,
software executing at EL1 can see only the access permissions defined by the EL1&0, when EL2 is enabled, stage
1 translations. However, software executing at EL2 can modify these permissions. This modification is invisible to
the software executing at EL1 or EL0.
D5-2754 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
The access permission bits control access to the corresponding memory region. The VMSAv8-64 translation table
format:

• In stage 1 translations, uses AP[2:1] to define the data access permissions, see The AP[2:1] data access
permissions, for stage 1 translations on page D5-2758.

Note
The description of the access permission field as AP[2:1] is for consistency with the VMSAv8-32
Short-descriptor translation table format, see The VMSAv8-32 Short-descriptor translation table format on
page G5-6279. The VMSAv8-64 translation table format does not define an AP[0] bit.

• In stage 2 translations, uses S2AP[1:0] to define the data access permissions, see The S2AP data access
permissions, Secure or Non-secure EL1&0, when EL2 is enabled, translation regime on page D5-2759.

• Uses the UXN, XN and PXN fields to define access controls for instruction fetches, see Access permissions
for instruction execution on page D5-2760.

An attempt to perform a memory access that the translation table access permission bits do not permit generates a
Permission fault, for the corresponding stage of translation.

Note

In an implementation that includes EL2, each stage of the translation of a memory access made using the Secure or
Non-secure EL1&0, when EL2 is enabled, translation regime has its own, independent, permission check.

D5.4.2 About PSTATE.PAN

When the value of PSTATE.PAN is 1, any privileged data access from EL1, or EL2 when HCR_EL2.E2H is 1, to a
virtual memory address that is accessible to data accesses at EL0, generates a Permission fault.

When the value of PSTATE.PAN is 0, the translation system is the same as in Armv8.0.

When FEAT_PAN is implemented, the SPSR_EL1.PAN, SPSR_EL2.PAN, and SPSR_EL3.PAN bits are used for
exception returns, and the DSPSR_EL0 register is used for entry to or exit from Debug state.

When FEAT_PAN is implemented, the SCTLR_EL1.SPAN and SCTLR_EL2.SPAN bits are used to control
whether the PAN bit is set on an exception to EL1 or EL2.

When HCR_EL2.{E2H, TGE} == {1, 1} SCTLR_EL1.SPAN and SCTLR_EL2.SPAN are ignored.

When FEAT_PAN3 is implemented, the SCTLR_EL1.EPAN and SCTLR_EL2.EPAN bits are used to control
whether the PAN bit affects instruction accesses from EL1 or EL2. SCTLR_EL2.EPAN is available when
HCR_EL2.E2H is 1.

When FEAT_PAN3 is implemented, it is IMPLEMENTATION DEFINED whether SCR_EL3.SIF is also used to
determine instruction access permission for the purpose of PAN.

Note

The SCTLR_EL1.EPAN and SCTLR_EL2.EPAN bits affect the AT S1E1RP and AT S12E1WP instructions, consistent
with those instructions using PSTATE.PAN to determine whether the memory access causes a Permission fault.

The PAN bit has no effect on:

• Data Cache instructions other than DC ZVA.

• Address translation instructions, other than ATS1E1RP and ATS1E1WP when FEAT_PAN2 is implemented.

• Unprivileged instructions, LDTR, LDTRB, LDTRH, LDTRSB, LDTRSH, LDTRSW, STTR, STTRB, and STTRH, unless
HCR_EL2.{E2H, TGE} == {1, 0}.

The PAN bit has no effect when the first stage of translation is disabled for the current translation regime or when
the first stage of translation for the current translation regime does not describe the permissions for access at EL0.

If access is disabled, then the access will cause a stage 1 Permission fault.

On an exception that is taken from AArch64 state to AArch64 state, PSTATE.PAN is copied to SPSR_ELx.PAN.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2755
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
On an exception return from AArch64 state:

• SPSR_ELx.PAN is copied to PSTATE.PAN, when the target Exception level is in AArch64 state.

• SPSR_ELx.PAN is copied to CPSR.PAN, when the target Exception level is in AArch32 state.

Note

• In Non-debug state, in AArch64 state:

— Software can use an MSR PAN, #Imm4 or MSR PAN, Xt instruction to modify PSTATE.PAN, or an MRS Xt,
PAN instruction to read PSTATE.PAN.

— In EL1, when HCR_EL2.{NV, NV1} == {1, 1}, PSTATE.PAN is treated as 0 for all purposes except
reading the value of the bit.

• In Debug state, in AArch64 state, a debugger can use the DRPS instruction to modify PSTATE.PAN.

D5.4.3 About PSTATE.UAO

When the value of PSTATE.UAO is 1, a load/store unprivileged instruction executed at EL1, or executed at EL2
when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1} is subject to the memory access permissions that apply
to the Exception level at which it is executed, rather than being subject to the EL0 access permissions. This means
the load/store unprivileged instruction is subject to the same access permissions as the corresponding load/store
register instruction. See Load/store unprivileged on page C3-228 and Load/store register on page C3-224.

When FEAT_UAO is implemented and PSTATE.UAO is 0, it has no effect on the described behavior of any
load/store unprivileged instruction.

A corresponding UAO bit is added to SPSR_EL1, SPSR_EL2, and SPSR_EL3 for exception returns, and
DSPSR_EL0 for entry to or exit from Debug state.

On an exception that is taken from AArch64 state to AArch64 state, PSTATE.UAO is copied to SPSR_ELx.UAO
and then set to 0.

On an exception that is taken from AArch32 state to AArch64 state:

• PSTATE.UAO is set to 0.

• SPSR_ELx.UAO is set to 0.

On an exception return from AArch64 state to AArch64 state, SPSR_ELx.UAO is copied to PSTATE.UAO.

Note
• In Non-debug state, in AArch64 state, software can use an MSR UAO, #Imm4 or MSR UAO, Xt instruction to

modify PSTATE.UAO, or an MRS Xt, UAO instruction to read PSTATE.UAO.

• In Debug state, in AArch64 state, a debugger can use the DRPS instruction to modify PSTATE.UAO.

D5.4.4 About PSTATE.BTYPE

When FEAT_BTI is implemented, on execution of an instruction, the guarded status of the memory region and the
register that is accessed by the instruction determines the value that the PSTATE.BTYPE field is set at the end of
the execution of the instruction as shown in Table D5-27 on page D5-2756:

Table D5-27 Values taken by PSTATE.BTYPE on execution of an instruction

Instruction executed Memory region
Register
accessed

PSTATE.BTYPE

BR, BRAA, BRAAZ, BRAB, BRABZ Guarded Any register other than
X16 or X17

0b11

BLR, BLRAA, BLRAAZ, BLRAB, BLRABZ Any Any register 0b10
D5-2756 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
The BTI instructions <targets> operand identifies the compatibility of the BTI instruction to different
PSTATE.BTYPE values, as seen in Table D5-28 on page D5-2757.

When accessing a guarded memory region and if PSTATE.BTYPE has a value of 0b01, 0b10, or 0b11, then a BTI
instruction that is compatible with the current value of PSTATE.BTYPE will not generate a Branch Target exception
and will allow execution of subsequent instructions within the memory region.

A Branch Target exception is generated for an instruction that lies within a guarded page if PSTATE.BTYPE field
is not 0b00 and if the instruction is not any of:

• A BTI instruction that is compatible with the PSTATE.BTYPE field.

• A PACIASP or PACIBSP instruction, and the PSTATE.BTYPE is consistent with implicit BTI behavior of these
instructions.

• A Breakpoint Instruction exception.

• A Halt Instruction debug event.

A Branch Target exception is taken to:

• EL1 when executing at EL0 and HCR_EL2.TGE == 0.

• EL2 when executing at EL0 and HCR_EL2.TGE == 1.

• ELx when executing at ELx, where x is 1, 2, or 3.

The ESR_ELx.EC code for a Branch Target exception is 0x0D, see ISS encoding for an exception from Branch Target
Identification instruction on page D13-3186.

When accessing a guarded memory region, PACIASP and PACIBSP instructions have an implicit branch target
identification instruction. This means that they are a target that is compatible with:

• A PSTATE.BTYPE value of 0b10 or 0b01.

• When the associated SCTLR_ELx.{BT0, BT1, BT} bits are 0, a PSTATE.BTYPE value of 0b11.

Note
• The implicit branch target identification property of PACIASP and PACIBSP is independent of the setting of the

SCTLR_ELx.{EnIA, EnIB} bits.

• The Branch Target Identification instructions are NOPs in a non-guarded page.

• There is no direct way of reading or writing to the PSTATE.BTYPE field.

BR, BRAA, BRAAZ, BRAB, BRABZ Guarded X16 or X17 0b01

BR, BRAA, BRAAZ, BRAB, BRABZ Non-guarded Any register 0b01

Any instruction other than BR, BRAA, BRAAZ, BRAB, BRABZ, BLR,
BLRAA, BLRAAZ, BLRAB, BLRABZ, RET, RETAA, RETAB

Any Any register 0b00

Table D5-27 Values taken by PSTATE.BTYPE on execution of an instruction (continued)

Instruction executed Memory region
Register
accessed

PSTATE.BTYPE

Table D5-28 Compatibility of BTI instruction to different PSTATE.BTYPE values

<targets>
PSTATE.BTYPE value

0b00 0b01 0b10 0b11

(omitted) n/a Not compatible Not compatible Not compatible

c n/a Compatible Compatible Not compatible

j n/a Compatible Not compatible Compatible

jc n/a Compatible Compatible Compatible
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2757
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
D5.4.5 Data access permission controls

The following subsubsections describe the data access permission controls:

• Preventing EL0 access to halves of the address map on page D5-2758

• The AP[2:1] data access permissions, for stage 1 translations on page D5-2758.

• The S2AP data access permissions, Secure or Non-secure EL1&0, when EL2 is enabled, translation regime
on page D5-2759.

• Hierarchical control of data access permissions on page D5-2759.

Preventing EL0 access to halves of the address map

If FEAT_E0PD is implemented, the TCR_ELx.{E0PD0, E0PD1} fields can prevent unprivileged access to the
addresses translated by TTBR0_ELx or TTBR1_ELx. If access is prevented, the fault is reported as a level 0
Translation fault. The fault should take the same time to generate, whether the address is present in the TLB or not,
to mitigate attacks that use fault timing. This type of fault is not counted as a TLB miss for performance monitoring
features.

The AP[2:1] data access permissions, for stage 1 translations

In VMSAv8-64, for a translation regime that applies to both EL0 and a higher Exception level, the AP[2:1] bits
control the stage 1 data access permissions, and:

AP[2] Selects between read-only and read/write access.

AP[1] Selects between Application level (EL0) control and the higher Exception level control.

This provides four permission settings for data accesses:

• Read-only at all levels.

• Read/write at all levels.

• Read-only at the higher Exception level, no access by software executing at EL0.

• Read/write at the higher Exception level, no access by software executing at EL0.

Note

In an implementation that does not include FEAT_VHE, the only translation regime that applies to EL0 and a higher
Exception level is the EL1&0 translation regime. In an implementation that includes FEAT_VHE, the EL2&0
translation regime applies to both Non-secure EL0 and EL2 when the value of HCR_EL2.{E2H, TGE} is {1, 1}.

For translation regimes that apply only to accesses from a single Exception level, AP[2] determines the stage 1 data
access permissions, and AP[1] is RES1, meaning it is ignored by hardware and is treated as if it is 1.

Table D5-29 on page D5-2758 shows the meaning of the AP[2:1] field for stage 1 of a translation regime that applies
to both EL0 and a higher Exception level. In this table, an entry of None indicates that any access from that
Exception level faults.

For the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime:

• The stage 2 translation also defines data access permissions, see The S2AP data access permissions, Secure
or Non-secure EL1&0, when EL2 is enabled, translation regime on page D5-2759.

Table D5-29 Data access permissions for stage 1 translations that applies to EL0 and a higher
Exception level

AP[2:1] Access from higher Exception level Access from EL0

00 Read/write None

01 Read/write Read/write

10 Read-only None

11 Read-only Read-only
D5-2758 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
• When both stages of translation are enabled, Combining the stage 1 and stage 2 data access permissions on
page D5-2784 describes how these permissions are combined.

Table D5-30 on page D5-2759 shows the effect of the AP[2] field for stage 1 of a translation regime that applies to
only a single Exception level.

The S2AP data access permissions, Secure or Non-secure EL1&0, when EL2 is enabled,
translation regime

In the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime, when stage 2 address translation is
enabled, the S2AP field in the stage 2 Translation Table descriptors define the data access permissions as
Table D5-31 on page D5-2759 shows. In this table, an entry of None indicates that any access generates a
Permission fault.

The S2AP access permissions make no distinction between Non-secure accesses from EL1 and Non-secure accesses
from EL0. However, when both stages of address translation are enabled, these permissions are combined with the
stage 1 access permissions defined by AP[2:1], see Combining the stage 1 and stage 2 data access permissions on
page D5-2784.

Combining the stage 1 and stage 2 attributes, EL1&0 translation regime on page D5-2783 gives more information
about the use of the stage 1 and stage 2 access permissions in an implementation of virtualization.

Hierarchical control of data access permissions

The VMSAv8-64 translation table format includes mechanisms by which entries at one level of translation table
lookup can set limits on the permitted entries at subsequent levels of lookup. This subsection describes how these
controls apply to the data access permissions.

Note

Similar hierarchical controls apply to instruction fetching, see Hierarchical control of instruction fetching on
page D5-2764.

However, in an implementation that includes FEAT_HPDS, when the value of a TCR_ELx.HPD{0} field is 1, or
the value of the TCR_ELx.HPD1 field is 1, the hierarchical control of data access permissions is disabled for the
translation stage controlled by that TCR_ELx, and the information in this subsection does not apply.

Table D5-30 Data access permissions for stage 1 translations that apply to only a single Exception
level

AP[2] Access permission

0 Read/write

1 Read-only

Table D5-31 Data access permissions for stage 2 of the Secure or Non-secure EL1&0, when EL2
is enabled, translation regime

S2AP Access from Non-secure EL1 or Non-secure EL0

00 None

01 Read-only

10 Write-only

11 Read/write
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2759
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
The restrictions apply only to subsequent levels of lookup for the same stage of translation. The APTable[1:0] field
restricts the access permissions, as Table D5-32 on page D5-2760 shows. As stated in the table footnote, for a
translation regime that applies to only a single Exception level, APTable[0] is RES0, meaning it is ignored by the
hardware.

Note

The APTable[1:0] settings are combined with the translation table access permissions in the Translation Tables
descriptors accessed in subsequent levels of lookup. They do not restrict or change the values entered in those
descriptors.

The VMSAv8-64 provides APTable[1:0] control only for stage 1 translations. The corresponding bits are RES0 in
the stage 2 Translation Table descriptors.

The effect of APTable applies to later entries in the translation table walk, and so its effects can be held in one or
more TLB entries. Therefore, a change to APTable requires coarse-grained invalidation of the TLB to ensure that
the effect of the change is visible to subsequent memory transactions.

D5.4.6 Access permissions for instruction execution

Execute-never controls determine whether instructions can be executed from a memory region. These controls are:

UXN, Unprivileged execute-never, stage 1 only

Descriptor bit[54], defined as UXN only for stage 1 of any translation regime for which stage 1
translation can support two VA ranges.

This field applies only to execution at EL0. A value of 0 indicates that this control permits
execution.

XN, Execute-never

Descriptor bit[54], defined as XN for:

• Stage 1 of any translation regime for which the stage 1 translation can support only a single
VA range.

• Stage 2 translations when FEAT_XNX is not implemented.

Note
XN[1:0], Execute-never, stage 2 only describes the stage 2 control when FEAT_XNX is
implemented.

This field applies to execution at any Exception level to which the stage of translation applies. A
value of 0 indicates that this control permits execution.

Table D5-32 Effect of APTable[1:0] on subsequent levels of lookup

APTable[1:0] Effect

00 No effect on permissions in subsequent levels of lookup.

01a Access at EL0 not permitted, regardless of permissions in subsequent levels of lookup.

10 Write access not permitted, at any Exception level, regardless of permissions in subsequent levels
of lookup.

11a Regardless of permissions in subsequent levels of lookup:

• Write access not permitted, at any Exception level.

• Read access not permitted at EL0.

a. Not valid for any translation regime that applies to only a single Exception level. In the translation tables for such a
regime, APTable[0] is RES0.
D5-2760 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
PXN, Privileged execute-never, stage 1 only

Descriptor bit[53], used only for stage 1 of any translation regime for which stage 1 translation can
support two VA ranges.

• For stage 1 of a translation regime for which the stage 1 translation supports only a single VA
range the stage 1 descriptors define a PXN field that is RES0, meaning it is ignored by
hardware.

This field applies only to execution at an Exception level higher than EL0. A value of 0 indicates
that this control permits execution.

XN[1:0], Execute-never, stage 2 only

Descriptor bits[54:53], defined as XN[1:0] for:

• Stage 2 translations when FEAT_XNX is implemented.

Table D5-33 on page D5-2761 shows the operation of this control.

Note

For stage 2 translations when FEAT_XNX is not implemented, descriptor bit[53] is RES0, meaning
it is ignored by hardware.

Note

In an implementation that does not include FEAT_VHE, the only translation regime for which stage 1 translation
can support two VA ranges is the EL1&0 translation regime. In an implementation that includes FEAT_VHE:

• When the value of HCR_EL2.E2H is 1, TCR_EL2 controls the EL2&0 translation regime, and this regime:

— Supports two VA ranges, corresponding to TTBR0_EL2 and TTBR1_EL2.

— Always supports both UXN and PXN fields.

• Memory accesses from EL0 are translated using the EL2&0 translation regime only when the value of
HCR_EL2.{E2H, TGE} is {1, 1}.

Table D5-33 on page D5-2761 shows the operation of the stage 2 XN[1:0] control, and for each single-bit
execute-never field a value of 1 indicates that, at an Exception level to which the control applies, instructions cannot
be executed from the target memory region. In addition:

• For a translation regime that applies to EL0 and a higher Exception level, if the value of the AP[2:1] bits is
0b01, permitting write access from EL0, then the PXN field is treated as if it has the value 1, regardless of its
actual value.

• In a translation regime with two stages of translation, a region is execute-never if execution is not permitted
by the value of the applicable execute-never field in one or both of:

— The stage 1 Translation Table descriptor.

— The stage 2 Translation Table descriptor.

• For each translation regime, if the value of the corresponding SCTLR_ELx.WXN field is 1 then any memory
region that is writable is treated as XN, regardless of the value of the corresponding UXN, XN, or PXN field.
For more information, see Preventing execution from writable locations on page D5-2765.

• The SCR_EL3.SIF bit prevents execution in Secure state of any instruction fetched from Non-secure
memory, see Restriction on Secure instruction fetch on page D5-2765.

Table D5-33 XN[1:0] stage 2 access permissions model

XN[1] XN[0] Access

0 0 The stage 2 control permits execution at EL1 and EL0

0 1 The stage 2 control does not permit execution at EL1, but permits execution at EL0

1 0 The stage 2 control does not permit execution at EL1 or EL0

1 1 The stage 2 control permits execution at EL1, but does not permit execution at EL0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2761
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
The execute-never controls apply to speculative instruction fetching, meaning speculative instruction fetch from a
memory region that is execute-never at the current Exception level is prohibited.

Note
• Although the execute-never controls apply to speculative fetching, on a speculative instruction fetch from an

execute-never location, no Permission fault is generated unless the PE attempts to execute the instruction that
would have been fetched from that location. This means that, if a speculative fetch from an execute-never
location is attempted, but there is no attempt to execute the corresponding instruction, a Permission fault is
not generated.

• The software that defines a translation table must mark any region of memory that is read-sensitive as
execute-never, to avoid the possibility of a speculative fetch accessing the memory region. This means it must
mark any memory region that corresponds to a read-sensitive peripheral as execute-never. Hardware does not
prevent speculative accesses to a region of any Device memory type unless that region is also marked as
execute-never for all Exception levels from which it can be accessed.

• When no stage of address translation for the translation regime is enabled, memory regions cannot have
UXN, XN, or PXN attributes assigned. Behavior of instruction fetches when all associated stages of
translation are disabled on page D5-2732 describes how disabling all stages of address translation affects
instruction fetching.

The following subsubsections give more information about the instruction fetch and execution permission controls:

• Stage 1 instruction access and execution permissions on page D5-2762.

• Stage 2 instruction execution permissions on page D5-2764.

• Hierarchical control of instruction fetching on page D5-2764.

• Preventing execution from writable locations on page D5-2765.

• Restriction on Secure instruction fetch on page D5-2765.

Stage 1 instruction access and execution permissions

Table D5-34 on page D5-2762 and Table D5-35 on page D5-2763 include the AP[2:1] read and write permissions
shown in Table D5-29 on page D5-2758 and Table D5-30 on page D5-2759. These permissions are shown as:

R Indicates Read permission granted.

W Indicates Write permission granted.

Table D5-34 on page D5-2762 shows the stage 1 access permissions for instruction execution when using a
translation regime that applies to EL0 and a higher Exception level.

Table D5-34 Stage 1 access permissions for instruction execution for a translation regime that applies to EL0 and a
higher Exception level

UXN PXN AP[2:1] SCTLR_ELx.WXNa Access from higher Exception level Access from EL0

0 0 00 0 R, W, Executable Executable

1 R, W, Not executableb Executable

01 0 R, W, Not executablec R, W, Executable

1 R, W, Not executable R, W, Not executabled

10 x R, Executable Executable

11 x R, Executable R, Executable
D5-2762 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
Table D5-35 on page D5-2763 shows the stage 1 access permissions for instruction execution when using a
translation regime that applies to only a single Exception level.

0 1 00 x R, W, Not executable Executable

01 0 R, W, Not executable R, W, Executable

1 R, W, Not executable R, W, Not executabled

10 x R, Not executable Executable

11 x R, Not executable R, Executable

1 0 00 0 R, W, Executable Not executable

1 R, W, Not executableb Not executable

01 x R, W, Not executablec R, W, Not executable

10 x R, Executable Not executable

11 x R, Executable R, Not executable

1 00 x R, W, Not executable Not executable

01 x R, W, Not executable R, W, Not executable

10 x R, Not executable Not executable

11 x R, Not executable R, Not executable

a. Where ELx is the higher Exception level to which the translation regime applies.

b. Not executable because of SCTLR_ELx.WXN control, because region is writable at ELx.

c. Not executable, because AArch64 execution treats all regions writable at EL0 as being PXN.

d. Not executable because of SCTLR_ELx.WXN control, because region is writable at EL0.

Table D5-34 Stage 1 access permissions for instruction execution for a translation regime that applies to EL0 and a
higher Exception level (continued)

UXN PXN AP[2:1] SCTLR_ELx.WXNa Access from higher Exception level Access from EL0

Table D5-35 Access permissions for instruction execution for a translation regime that applies to
only a single Exception level

XN AP[2] SCTLR_ELx.WXNa

a. Where ELx is the higher Exception level to which the
translation regime applies.

Access permission

0 0 0 R, W, Executable

1 R, W, Not executableb

b. Not executable because of the SCTLR_ELx.WXN control,
because region is writable at ELx.

1 x R, Executable

1 0 x R, W, Not executable

1 x R, Not executable
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2763
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
Note

The Access permissions for an AArch64 translation regime that applies to only a single Exception level are
consistent with the following fields in the translation table entries being treated as shown:

• AP treated as RES1.

• APTable[0] treated as RES0.

• PXN treated as RES0.

• PXNTable treated as RES0.

Stage 2 instruction execution permissions

For the Secure or Non-secure EL1&0, when EL2 is enabled, stage 2 translation, the XN fields in the stage 2
Translation Table descriptors control the execution permission, and this control is completely independent of the
S2AP access permissions:

• When FEAT_XNX is not implemented the stage 2 XN field is a 1-bit field that applies to execution at both
EL0 and EL1, see XN, Execute-never on page D5-2760.

• When FEAT_XNX is implemented the stage 2 XN field is a 2-bit field that provides independent control of
execution from EL0 and execution from EL1, see XN[1:0], Execute-never, stage 2 only on page D5-2761.

See also Combining the stage 1 and stage 2 instruction execution permissions on page D5-2784.

Hierarchical control of instruction fetching

The VMSAv8-64 translation table format includes mechanisms by which entries at one level of translation table
lookup can set limits on the permitted entries at subsequent levels of lookup. This subsection describes how these
controls apply to the instruction fetching controls.

Note

Similar hierarchical controls apply to data accesses, see Hierarchical control of data access permissions on
page D5-2759.

However, in an implementation that includes FEAT_HPDS, when the value of a TCR_ELx.HPD{0} field is 1, or
the value of the TCR_ELx.HPD1 field is 1, the hierarchical control of instruction fetching is disabled for the
translation stage controlled by that TCR_ELx, and the information in this subsection does not apply.

The restrictions apply only to subsequent levels of lookup at the same stage of translation, and:

• UXNTable or XNTable restricts the execute-never control:

— When the value of the XNTable bit is 1, the XN bit is treated as 1 in all subsequent levels of lookup,
regardless of its actual value.

— When the value of the UXNTable bit is 1, the UXN bit is treated as 1 in all subsequent levels of lookup,
regardless of its actual value.

— When the value of a UXNTable or XNTable bit is 0 the bit has no effect.

• For a translation regime that applies to EL0 and a higher Exception level, PXNTable restricts the PXN
control:

— When the value of PXNTable is 1, the PXN bit is treated as 1 in all subsequent levels of lookup,
regardless of the actual value of the bit.

— When the value of PXNTable is 0 it has no effect.

Note

The UXNTable, XNTable, and PXNTable settings are combined with the XN, UXN, and PXN bits in the Translation
Table descriptors accessed at subsequent levels of lookup. They do not restrict or change the values entered in those
descriptors.

The UXNTable, XNTable, and PXNTable controls are provided only for stage 1 translations. The corresponding bits
are RES0 in the stage 2 Translation Table descriptors.
D5-2764 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
The effect of UXNTable, XNTable, or PXNTable applies to later entries in the translation table walk, and so its
effects can be held in one or more TLB entries. Therefore, a change to UXNTable, XNTable, or PXNTable requires
coarse-grained invalidation of the TLB to ensure that the effect of the change is visible to subsequent memory
transactions.

Preventing execution from writable locations

Armv8 provides control bits that, when corresponding stage 1 address translation is enabled, force writable memory
to be treated as execute-never:

• For a translation regime that applies to EL0 and a higher Exception level, ELx, when the value of the
applicable SCTLR_ELx.WXN field is 1:

— All regions that are writable from EL0 at stage 1 of the address translation are treated as stage 1
execute-never at EL0.

— All regions that are writable from ELx at stage 1 of the address translation are treated as stage 1
execute-never at ELx.

• For a translation regime that applies to only a single Exception level, ELx, when the value of the applicable
SCTLR_ELx.WXN field is 1, all regions that are writable at stage 1 of the address translation are treated as
stage 1 execute-never at ELx.

Note
• The SCTLR_ELx.WXN controls are intended to be used in systems with very high security requirements.

• Setting a WXN field to 1 changes the interpretation of the translation table entry, overriding a zero value of
a XN, UXN, or PXN field. It does not cause any change to the translation table entry.

For any given virtual machine, Arm expects WXN to remain static in normal operation. In particular, it is
IMPLEMENTATION DEFINED whether TLB entries associated with a particular VMID reflect the effect of the values
of these fields. This means that any change of these fields without a corresponding change of VMID might require
synchronization and TLB invalidation, as described in TLB maintenance requirements and the TLB maintenance
instructions on page D5-2816.

Restriction on Secure instruction fetch

EL3 provides a Secure instruction fetch bit, SCR_EL3.SIF. When the value of this bit is 1, and execution is using
the EL3 translation regime, the Secure EL2 translation regime, or the Secure EL1&0 translation regime, any attempt
to execute an instruction fetched from memory marked in the first stage of translation as Non-secure memory causes
a Permission fault. TLB entries might reflect the value of this bit, and therefore any change to the value of this bit
requires synchronization and TLB invalidation, as described in TLB maintenance requirements and the TLB
maintenance instructions on page D5-2816.

In an implementation that does not implement EL3, the Effective value of this bit is 0.

D5.4.7 The Access flag

The Access flag indicates when a page or section of memory is accessed for the first time since the Access flag in
the corresponding Translation Table descriptor was set to 0.

The AF bit in the Translation Table descriptors is the Access flag.

In Armv8.0, the Access flag is managed by software as described in Software management of the Access flag on
page D5-2766.

From Armv8.1, the Access flag can be managed by hardware as described in Hardware management of the Access
flag on page D5-2767.

Note

The support for hardware management of the Access flag applies only to the VMSAv8-64 translation regimes.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2765
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
D5.4.8 The dirty state

The dirty state indicates whether a page or section of memory is modified.

The dirty state can be managed by hardware as described in Hardware management of dirty state on page D5-2768.

Where the dirty state is managed in hardware, the dirty state information is encoded using the access permission bits
AP[2] and S2AP[1] in conjunction with the DBM bit.

D5.4.9 Block translation entry

While the nT bit is set, if the implementation meets either level 1 or level 2 support, the PE either:

• Generates a Translation fault when using a translation table entry that has the nT bit set. Such an entry is not
permitted to be cached within the TLB.

• Guarantees that using a translation table entry that has the nT bit set does not break coherency, ordering
guarantees or uniprocessor semantics, or fail to clear the Exclusives monitors when an entry that does not
have the nT bit set is translating the same address cached within the TLB.

Note

Using a translation table entry that has the nT bit set might significantly impact the performance of the translation.

For more information, see Support levels for changing block size on page D5-2818.

D5.4.10 XS attribute modifier

The FnXS bit indicates whether the XS attribute is modified by the stage 2 translation regime:

• When the FnXS bit is 0, the XS attribute of the resultant memory translation is not modified by this
mechanism.

• When the FnXS bit is 1, the XS attribute of the resultant memory translation is set to 0 for this translation.

When HCR_EL2.FWB is 1 and forces the memory type to be Normal Inner Write-Back, Outer Write-Back
Cacheable, the XS attribute is set to 0 on the resultant memory translation. This is not dependent on value of the
FnXS bit in the stage 2 translation regime.

This stage 2 impact applies for stage 1 translations in the EL1&0 translation regime from AArch32 or AArch64.

See also:

• Enabling and disabling the caching of memory accesses on page D4-2641.

• The stage 1 memory region attributes on page D5-2776.

D5.4.11 Software management of the Access flag

Armv8.0 requires that software manages the Access flag. This means an Access flag fault is generated whenever an
attempt is made to read into the TLB a Translation Table descriptor entry for which the value of Access flag is 0.

The Access flag mechanism expects that, when an Access flag fault occurs, software resets the Access flag to 1 in
the translation table entry that caused the fault. This prevents the fault occurring the next time that memory location
is accessed. Entries with the Access flag set to 0 are never held in the TLB, meaning software does not have to flush
the entry from the TLB after setting the flag.

Note

If a system incorporates components that can autonomously update translation table entries that are shared with the
Arm PE, then the software must be aware of the possibility that such components can update the access flag
autonomously.

In such a system, system software should perform any changes of translation table entries with an Access flag of 0,
other than changes to the Access flag value, by using an Load-Exclusive/Store-Exclusive loop, to allow for the
possibility of simultaneous updates.
D5-2766 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
D5.4.12 Hardware management of the Access flag and dirty state

Armv8.1 introduces the following OPTIONAL features that perform hardware updates to the translation tables:

• Hardware management of the Access flag on page D5-2767.

• Hardware management of dirty state on page D5-2768.

The support for hardware management of the Access flag and dirty state is identified by the feature
FEAT_HAFDBS.

When the hardware management of the Access flag is enabled, in situations where, without this feature, an Access
flag fault would be generated, the hardware instead performs an atomic read-modify-write of the appropriate
Translation Table descriptor to update the Access flag from 0 to 1.

When the hardware management of dirty state is enabled, if the Block or Page descriptor in a translation table
indicates that a data access does not have write permission, then in situations where, without this feature, a data
access would generate a Permission fault only because of this lack of write permission, the hardware checks the
value of the DBM field in the Block or Page descriptor. If this field is 1, then instead of generating a Permission
fault, the hardware performs an atomic read-modify-write of the Translation Table descriptor, to change the value
of the bit that prohibits the write access.

It is permissible, but not required, that a stage 2 permission failure on the stage 1 translation table walk is generated
(and has priority over the stage 1 abort generated by the stage 1 translation table entry) if all of the following are true:

• Stage 1 hardware updating of either access or dirty information is enabled.

• A stage 1 translation table entry would result in the stage 1 translation table entry having the access or dirty
bit updated.

• The stage 1 translation table entry has stage 2 read permission but not stage 2 write permission.

• The stage 1 translation entry generates an abort (which might be one of an address size fault, an alignment
fault caused by memory type or a Permission fault).

Hardware management of the Access flag

Hardware management of the Access flag is enabled, for the corresponding stage of address translation, by the
following configuration fields:

For stage 1 translations

• TCR_EL1.HA.

• TCR_EL2.HA.

• TCR_EL3.HA.

For stage 2 translations

• VTCR_EL2.HA.

Implementations are not required to support the hardware management of the Access flag. If FEAT_HAFDBS is
not supported, then the HA bit in TCR_EL1, TCR_EL2, TCR_EL3, and VTCR_EL2 is RES0.

When the value of a configuration bit, HA, is 1, then when a memory access is made using a translation table Block
or Page descriptor from the corresponding stage of address translation:

• The PE sets the value of the Access flag to 1 in the translation table descriptor in memory, in a coherent
manner, by an atomic read-modify-write of the Translation Table descriptor, if both of the following
conditions are true:

— The descriptor does not generate a Permission fault or an Alignment fault based on the memory type.

— If the hardware update mechanism was disabled or not implemented, the access would have generated
an Access flag fault.

When the PE updates the Access flag in this way no Access flag fault is generated.

• It is CONSTRAINED UNPREDICTABLE whether the PE sets the value of the Access flag in the translation table
entry in memory to 1, in a coherent manner, by an atomic read-modify-write of the Translation Table
descriptor, if both of the following conditions are true.

— The descriptor generates a Permission fault or an Alignment fault based on the memory type.

— If the hardware update mechanism was disabled or not implemented, the access would have generated
an Access flag fault.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2767
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
This means that the value of the Access flag becomes UNKNOWN if the above conditions are all true.

The Access flag might be set to 1 as a result of speculative accesses by the PE.

Note

A consequence of the architectural rules for translation table accesses is that the architecture requires that for any
translation to which an architecturally executed memory access occurs, the Access flag is set to 1, except as
indicated in Using break-before-make when updating translation table entries on page D5-2818. However, because
the architecture permits speculative accesses, the Access flag is permitted to be set to 1, even if there is no
architecturally executed memory accesses by the processor.

When hardware updating of the Access flag is enabled, each stage of translation is treated independently. This
means that a single memory access can cause a hardware update to either or both:

• The stage 1 Access flag.

• The stage 2 Access flag.

Note

Since speculative accesses are permitted to update the Access flags, it is permissible for:

• The stage 1 Access flag for a translation of a virtual address to be updated in situations where the stage 2
translation of the associated intermediate physical address that is returned by the stage 1 of the virtual address
does not permit access.

• The stage 2 Access flag for a translation of an intermediate physical address to be updated in situations where
the stage 1 translation of the associated virtual address which returned that intermediate physical address does
not permit access.

An address translation instruction for an address is permitted, but not required, to set the Access flag in the
translation table entries for that address. Correspondingly, it is IMPLEMENTATION DEFINED whether such an
instruction can generate a Data Abort if the Access flag for a stage of translation is updated to be set.

When hardware updates of the Access flag are enabled for a stage of translation an address translation instruction
that uses that stage of translation will not report that the address will give rise to an Access flag fault in the PAR,
and the result in PAR will be as if the value of the Access flag in the translation table entries for that address was 1.

Hardware management of dirty state

The hardware management of dirty state mechanism can only be enabled if hardware management of the Access
flag is enabled. For information on the hardware management of the Access flag, see Hardware management of the
Access flag on page D5-2767.

Note

The hardware management of dirty state mechanism uses:

• In a stage 1 translation table access, the AP[2] bit in conjunction with the DBM bit in the Translation Table
descriptors.

• In a stage 2 translation table access, the S2AP[1] bit in conjunction with the DBM bit in the Translation Table
descriptors.

Hardware management of dirty state is enabled, for the corresponding stage of address translation, by the following
configuration fields:

For stage 1 translations

• TCR_EL1.HD.

• TCR_EL2.HD.

• TCR_EL3.HD.

For stage 2 translations

• VTCR_EL2.HD.
D5-2768 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
Implementations are not required to support the dirty state mechanism. If this mechanism is not supported, then the
HD bit in TCR_EL1, TCR_EL2, TCR_EL3, and VTCR_EL2 is RES0.

When hardware management of dirty state is enabled, and a memory access is made using a translation table Block
or Page descriptor:

• For a stage 1 address translation, if the value of the TCR_ELx.HD field corresponding to the address
translation is 1, then the PE sets AP[2] to 0 in the Translation descriptor in memory, in a coherent manner by
an atomic read-modify-write of the Translation Table descriptor, if both of the following conditions are true:

— The value of the DBM field in the descriptor is 1.

— If the hardware update mechanism was disabled or not implemented, the access using this descriptor
would have generated a Permission fault only because the value of the AP[2] field is 1, indicating that
the access does not have write permission.

When the PE updates AP[2] in this way no Permission fault is generated because of the value of the AP[2]
field.

• For a stage 2 address translation, if the value of the VTCR_EL2.HD field is 1, then the PE sets S2AP[1] to 1
in the Translation descriptor in memory, in a coherent manner by an atomic read-modify-write of the
Translation Table descriptor, if both of the following conditions are true:

— The value of the DBM field in the descriptor is 1.

— If the hardware update mechanism was disabled or not implemented, the access using this descriptor
would have generated a Permission fault only because the value of the S2AP[1] field is 0, indicating
that the access does not have write permission.

When the PE updates S2AP[1] in this way no Permission fault is generated because of the value of the
S2AP[1] field.

Note

The PE that does the atomic update of the Translation Table descriptor is expected to ensure that any cached copy
of that Translation Table descriptor for that PE is similarly updated, or removed from the TLB, so that multiple
writes from the same thread on the same PE do not lead to multiple updates to the table. This is only a performance
expectation.

If, for a write access, the PE finds that a cached copy of the descriptor in a TLB had the DBM bit set to 1 and the
AP[2] or S2AP[1] bit set to the value that forbids writes, then the PE must check that the cached copy is not stale
with regard to the descriptor entry in memory, and if necessary perform an atomic read-modify-write update of the
descriptor in memory. This applies if the cached copy of the descriptor in a TLB is either:

• A stage 1 descriptor in which DBM has the value 1 and AP[2] has the value 1.

• A stage 2 descriptor in which DBM has the value 1 and S2AP[1] has the value 0.

Note

Arm expects that, in many implementations, any atomic update of a translation table entry required by the dirty state
management mechanism will cause a translation table walk.

For the hardware updating of the AP[2] and S2AP[1] bits, each translation stage is treated independently. This
means a single memory access can update either or both of:

• The stage 1 AP[2] bit.

• The stage 2 S2AP[1] bit.

The architecture does not permit updates to AP[2] and S2AP[1] by the hardware management of the dirty state
mechanism to occur as a result of speculative accesses by the PE that are not performed architecturally, except that
for translation table entries for which the value of DBM is 1:

• A non-speculative access that passes stage 1 permissions check can update AP[2] if writes to that stage
translation table are permitted and subsequently encounter a stage 2 fault. A non-speculative access that
passes its stage 1 permission check but subsequently encounters a stage 2 fault is also permitted (but not
required) to generate a stage 2 Permission fault on the stage 1 translation table walk if all of the following are
true:

— The stage 1 hardware updating of the access flag or dirty state is enabled.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2769
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
— The stage 2 translation table entry translating the last level stage 1 translation entry has S2AP[1] ==0
and either DBM ==0 or hardware updating of the dirty state information is not enabled.

Note
These are cases where there is no stage 2 write permission for the hardware updating of the last level stage 1
translation table entry.

• A non-speculative access that generates an Alignment fault only because the memory type accessed is Device
memory by a stage of translation can update AP[2] or S2AP[1] of that stage of translation if the memory
access would have updated that translation table bit had the memory access not generated the Alignment
fault.

• If the stage 2 hardware management of dirty state mechanism is enabled, the S2AP[1] field of a stage 2
translation table entry that is translating a stage 1 translation table without generating a stage 2 MMU fault:

— Is updated from 0 to 1 as a result of a speculative update of the Access flag in an entry of that stage 1
translation table.

— Is permitted to be updated speculatively from 0 to 1 as a result of performing a translation table walk
using that stage1 translation table, even if the entry in the stage 1 translation table is not updated. The
speculative update is permitted to generate a synchronous External abort or an IMPLEMENTATION
DEFINED abort caused by the memory type not supporting an atomic read-modify-write.

Note
This applies even if the stage 1 translation table contains entries that are not the final level entries and
therefore would not be updated. This relaxation avoids the hardware complexity of having to detect
whether the stage 1 entry is a final level entry before deciding to set the stage 2 dirty state information.

• If an instruction that generates more than one single-copy atomic memory access has a fault on some, but not
all, of those memory accesses, then AP[2] and S2AP[1] bits associated with accesses from that instruction,
which do not fault are permitted to be updated if the associated hardware update of dirty state mechanism is
enabled.

• If the hardware update of dirty state mechanism is enabled and a write to memory is prevented by a
Synchronous Tag Check Fault, the AP[2] and S2AP[1] bits associated with that write are permitted to be
updated. For more information, see Chapter D6 Memory Tagging Extension.

• When enabled, the Statistical Profiling Unit can update the AP[2] or S2AP[1] for any Page or Block
translation table entry in the Profiling Buffer. See Hardware management of dirty state and the Access flag
by the Statistical Profiling Extension on page D9-2975.

• The dirty state information for a stage of translation can be updated to indicate dirty even if the store
performing the access has an exception which has a lower priority than a Permission fault from that stage of
translation, as determined by Synchronous exception prioritization for exceptions taken to AArch64 state on
page D1-2490 and AArch64 state prioritization of synchronous aborts from a single stage of address
translation on page D5-2807.

For a Block or Page Translation Table descriptor for which the AF bit is 0, the DBM bit is 1, and either the value of
the stage 1 AP[2] bit is 1 or the value of the stage 2 S2AP[1] bit is 0, both AF can be set to 1, and either AP[2] set
to 0 or S2AP[1] set to 1, in a single atomic read-modify-write operation, as a result of an attempted write to a
memory location that uses the translation table entry.

Implications of enabling the dirty state management mechanism

This subsection describes behaviors that result from having the dirty state management mechanism enabled for a
particular stage of address translation.

For the final level of lookup in a stage 1 translation:

In the EL3 translation regime

The OA of the lookup is treated as writable if all of the following conditions apply:

• In the descriptor for the final level of lookup, the value of DBM is 1 and the value of
AP[2] is 1.

• In the descriptor for every higher level of lookup, the value of APTable[1] is 0.
D5-2770 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
In this case, if the value of SCTLR_EL3.WXN is 1 then the OA is treated as Execute-never.

In the EL2 or EL2&0 translation regime, when the value of HCR_EL2.{E2H, TGE} is not {1, 1}

Note

When the value of HCR_EL2.E2H is 1, TCR_EL2 controls the EL2&0 translation regime, and
otherwise it controls the EL2 translation regime.

The OA of the lookup is treated as writable if all of the following conditions apply:

• In the descriptor for the final level of lookup, the value of DBM is 1 and the value of
AP[2] is 1.

• In the descriptor for every higher level of lookup, the value of APTable[1] is 0.

In this the value of SCTLR_EL2.WXN is 1 then the OA is treated as Execute-never.

In addition, if the value of HCR_EL2.E2H is 1, the OA is treated as Privileged execute-never if all
of the following conditions apply:

• In the descriptor for the final level of lookup, the value of DBM is 1 and the value of AP[2:1]
is 0b11.

• In the descriptor for every higher level of lookup, the value of APTable[1:0] is 0b00.

Note

When the value of HCR_EL2.{E2H, TGE} is not {1, 1}, memory accesses from EL0 do not use the
EL2, or EL2&0, translation regime.

In the EL2&0 translation regime, when the value of HCR_EL2.{E2H, TGE} is {1, 1}

The OA of the lookup is treated as writable at EL2 and EL0, Privileged execute-never, if all of the
following conditions apply:

• In the descriptor for the final level of lookup, the value of DBM is 1 and the value of
AP[2:1] is 0b11.

• In the descriptor for every higher level of lookup, the value of APTable[1:0] is 0b00.

In this case, if the value of SCTLR_EL2.WXN is 1 then the OA is also treated as Unprivileged
execute-never.

The OA of the lookup is treated as writable at EL2 but not writable at EL0 if either:

• Both:

— In the descriptor for the final level of lookup, the value of DBM is 1 and the value of
AP[2:1] is 0b10.

— In the descriptor for every higher level of lookup the value of APTable[1:0] is 0b0x.

In this case, if the value of SCTLR_EL2.WXN is 1 then the OA is treated as Privileged
execute-never.

• Both:

— In the descriptor for the final level of lookup, the value of DBM is 1 and the value of
AP[2:1] is 0b11.

— In at least one of the descriptors for higher levels of lookup the value of APTable[1:0]
is 0b01.

In this case, if the value of SCTLR_EL2.WXN is 1 then the OA is treated as Privileged
execute-never.

In the EL1&0 translation regime

The OA of the lookup is treated as writable at EL1 and EL0, Privileged execute-never, if all of the
following conditions apply:

• In the descriptor for the final level of lookup, the value of DBM is 1 and the value of
AP[2:1] is 0b11.

• In the descriptor for every higher level of lookup, the value of APTable[1:0] is 0b00.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2771
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
In this case, if the value of SCTLR_EL1.WXN is 1 then the OA is treated as Unprivileged
execute-never.

The OA of the lookup is treated as writable at EL1 but not writable at EL0 if either:

• Both:

— In the descriptor for the final level of lookup, the value of DBM is 1 and the value of
AP[2:1] is 0b11.

— In at least one of the descriptors for higher levels of lookup the value of APTable[1:0]
is 0b01.

In this case, if the value of SCTLR_EL1.WXN is 1 then the OA is treated as Privileged
execute-never.

• Both:

— In the descriptor for the final level of lookup, the value of DBM is 1 and the value of
AP[2:1] is 0b10.

— In the descriptor for every higher level of lookup the value of APTable[1:0] is 0b0x.

In this case, if the value of SCTLR_EL1.WXN is 1 then the OA is treated as Privileged
execute-never.

The OA of a translation table entry where the DBM bit is 1, and the stage 1 AP[2] bit is 1 or the stage 2 S2AP[1]
bit is 0, is treated as writable:

• For data cache invalidation instructions that require write permission, that is for the DC IVAC instruction.

• For address translation instructions that require write permission, that is for the AT S12E0W, AT S12E1W,
AT S1E0W, AT S1E1W, AT S1E2W, and AT S1E3W instructions.

Cache invalidation and address translation instructions never cause the stage 1 AP[2] bit or the stage 2 S2AP[1] bit
in the translation table entry to be updated.

For a Store-Exclusive instruction to a memory location for which the DBM bit is 1 and the stage 1 AP[2] bit is 1, if
the Store-Exclusive fails because the Exclusives monitor is not in the exclusive state, it is IMPLEMENTATION
DEFINED whether the AP[2] bit in the translation table is updated.

For a Store-Exclusive instruction to a memory location for which the DBM bit is 1, and the stage 2 S2AP[1] bit is
0, if the Store-Exclusive fails because the Exclusives monitor is not in the Exclusive access state, it is
IMPLEMENTATION DEFINED whether the S2AP[1] bit in the translation table is updated.

For a store to a memory location for which the DBM bit is 1, and the stage 1 AP[2] bit is 1, it is IMPLEMENTATION
DEFINED whether the AP[2] bit in the translation table is updated:

• If the memory location generates a synchronous External abort on a write for a store to a memory location.

• If the memory location generates a watchpoint on a write.

For a store to a memory location for which the DBM bit is 1, and the stage 2 S2AP[1] bit is 0, it is IMPLEMENTATION
DEFINED whether the S2AP[1] bit in the translation table is updated:

• If the memory location generates a synchronous External abort on a write for a store to a memory location.

• If the memory location generates a watchpoint on a write.

In the event of a PE setting the stage 1 AP[2] bit to 0, it is not required that all associated entries are removed from
the TLBs of other PEs in the system.

In the event of a PE setting the stage 2 S2AP[1] bit to 1, it is not required that all associated entries are removed
from the TLBs of other PEs in the system.

For the stage 2 translation tables, it is CONSTRAINED UNPREDICTABLE whether the stage 2 S2AP[1] entry is updated
in response to a stage 1 translation table walk where the stage 1 translation system is configured to perform hardware
updates to the Access flag or stage 1 AP[2] bit, but the values of the Access flag and AP[2] bit are such that a
hardware update to the stage 1 translation table entry being accessed is not required.

In the event of a PE encountering a situation for a data write for which the DBM bit is 1 and the stage 1 AP[2] bit
is 1 in a TLB, it is required that the hardware checks that the cached copy is not stale with regards to the translation
table entry in memory and performs the atomic read-modify-write update with respect to table entry in memory.
D5-2772 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
In the event of a PE encountering a situation for a data write for which the DBM bit is 1 and stage 2 S2AP[1] bit is
0 in a TLB, it is required that the hardware checks that the cached copy is not stale with regards to the translation
table entry in memory and performs the atomic read-modify-write update with respect to table entry in memory.

For a CAS or CASP instruction to a memory location for which the DBM bit is 1, and the stage 1 AP[2] bit is 1, if the
compare fails, and the location is not updated, it is CONSTRAINED UNPREDICTABLE whether the AP[2] bit in the
translation table is updated.

For a CAS or CASP instruction to a memory location for which the DBM bit is 1, and the stage 2 S2AP[1] bit is 0, if
the compare fails, and the location is not updated, it is CONSTRAINED UNPREDICTABLE whether the S2AP[1] bit in
the translation table is updated.

For an atomic instruction to a memory location for which the DBM bit is 1, and the stage 2 S2AP[0:1] is 0b00, if the
instruction generates a stage 2 Permission fault as a result of not having read permission, it is CONSTRAINED
UNPREDICTABLE whether the S2AP[1] bit in the translation table is updated.

D5.4.13 Ordering of hardware updates to the translation tables

A hardware update to the translation table that is caused by a load or a store, including an atomic instruction, is
guaranteed to be observed, to the extent required by the shareability attributes:

• Before a load or store, including an atomic instruction, to an arbitrary address, other than the address of the
translation table entry, that appears in program order after the load or store, including an atomic instruction,
causing the update to the translation table entry only if a DSB with the appropriate shareability attributes,
where the DSB applies to both loads and stores, is executed between the load or store, including an atomic
instruction, that caused the update to the translation table and the subsequent load or store.

• Before a load to the translation table entry that is being updated that appears in program order after the load
or store, including an atomic instruction, causing the update to the translation table entry only if a DSB with
the appropriate shareability attributes, where the DSB applies to both loads and stores, is executed between
the load or store, including an atomic instruction, that caused the update to the translation table and the
subsequent load.

• Before a store or atomic access to the translation table entry that is being updated that appears in program
order after the load or store, including an atomic instruction, causing the update to the translation table entry.

• Before a cache maintenance instruction to an arbitrary address appearing in program order after the load or
store, including an atomic instruction, causing the update to the translation table entry only if a DSB with the
appropriate shareability attributes, where the DSB applies to both loads and stores, is executed between the
load or store, including an atomic instructing that caused the update to the translation table entry and the
subsequent cache maintenance instruction.

An update to the translation table that is caused by a load is not ordered with respect to the load itself.

An update to the translation table that is caused by a store or an atomic access is observed by all observers, to the
extent required by the shareability attributes, before the store itself in the case that the store is to the same location
as the translation table update.

An update to the translation table that is caused by a store or an atomic access is not ordered with respect to the store
itself in the case that the store is not the same location as the translation table update.

D5.4.14 Restriction on memory types for hardware updates on translation tables

Translation tables can be placed in Normal memory with any cacheability, but the hardware updates to the
translation tables require an atomic update of memory. The properties of the atomicity can be met only by
functionality outside the PE. Some system implementations might not implement this functionality for all regions
of memory. This can apply to:

• Any type of memory in the system that does not support hardware cache coherency.

• Non-cacheable memory, or memory that is treated as Non-cacheable, in an implementation that does not
support hardware cache coherency.

An implementation can choose which memory type is treated as Non-cacheable.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2773
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
The memory types for which it is architecturally guaranteed that the hardware updates of the translation tables will
be atomic are:

• Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

• Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

The architecture only requires that Conventional memory that is mapped in this way supports this functionality.

If the hardware updates of the translation tables are not atomic in regard to other agents that access memory, then
performing a hardware update to such a location can have one or more of the following effects:

• The hardware update generates a synchronous External abort, which is presented as an External abort on a
translation table walk.

• The instruction generates a SError interrupt.

• The hardware update generates an Unsupported atomic hardware update MMU fault reported using the Fault
status code of:

— ESR_ELx.DFSC = 110001 for Data Abort exceptions.

— ESR_ELx.IFSC = 110001 for Instruction Abort exceptions.

— PMBSR_EL1.FSC = 110001 for an abort on a write to the Statistical Profiling buffer.

For the Secure or Non-secure EL1&0 translation regime, when EL2 is implemented and enabled in the
current Security state, if atomic hardware update is not supported because of the memory type that is defined
in the first stage of translation, or the second stage of translation is not enabled, then this exception is a first
stage abort and is taken to EL1. Otherwise, the exception is a second stage abort and is taken to EL2.

The priority of this MMU fault for a stage of the translation lies at an IMPLEMENTATION DEFINED point
between:

— Immediately before the priority of an Access Flag fault generated by the same stage of translation as
the stage of this MMU fault.

— Immediately after the priority of a Permission fault generated by the same stage of translation as the
stage of this MMU fault.

• The hardware updates are performed, but there is no guarantee that the memory accesses were performed
atomically in regard to other agents that access memory. In this case, the instruction might also generate a
SError interrupt.

The execution of an address translation instruction can report an Unsupported atomic hardware update fault, in
PAR_EL1, using the Fault status code of 0b110001, as follows:

• On an address translation instruction executed at EL1, if hardware updates to the translation tables are
enabled for stage 1, and the stage 1 translation tables are held in memory with a memory type that means that
hardware updates of the translation tables are not atomic as observed by other agents that can access memory,
then the architecture permits, but does not require, that PAR_EL1 reports a Translation table hardware update
fault.

• On an address translation instruction executed at EL2 or EL3, if hardware updates to the translation tables
used by the instruction are enabled, and those translation tables are held in memory with a memory type that
means that hardware updates of the translation tables are not atomic as observed by other agents that can
access memory, then the architecture permits, but does not require, that PAR_EL1 reports a Translation table
hardware fault.

D5.4.15 Use of the Contiguous bit with hardware updates of the translation table entries

Hardware updates of the Access flag, and the AP[2] or S2AP[1] bit, only apply to a single translation table entry.
An update to one of these bits in a translation table entry that also has the Contiguous bit set to 1 can give rise to
translation table entries that have different Access flag, or different AP[2] or S2AP[1] bits, within the members of
a group of contiguous translation table entries.

This is acceptable under the architecture when using hardware updates of the translation table entries. In addition,
an access or a write to a location translated by an entry that has the Contiguous bit set might not result in a hardware
update of the Access flag or the AP[2] or S2AP[1] bit, if at least one entry in the set of contiguous translation table
entries has the Access flag set to 1, or the AP[2] or S2AP[1] bit indicating that the entry is dirty.
D5-2774 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.4 Memory access control
Note
• The provision of the Contiguous bit permits, but does not require, the hardware to hold a single entry in a

TLB for the set of translation table entries in the group, and to have updated only one or more of the Access
flags and the AP[2] bit or S2AP[1] bit for the single translation table entry that gave rise to the TLB entry.

• A consequence of this is that software must combine the Access flag values, and AP[2] or S2AP[1] values,
across all translation table entries in a contiguous group to determine whether any of the entries have been
accessed or written to.

For more information on the Contiguous bit, see The Contiguous bit on page D5-2782.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2775
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.5 Memory region attributes
D5.5 Memory region attributes

The memory region attribute fields control the memory type, accesses to the caches, and whether the memory region
is Shareable and therefore is coherent. This section also describes some additional translation table fields that this
manual groups with the memory region attributes.

In the EL1&0 translation regime, each enabled stage of address translation assigns memory region attributes, as
described in this section. When both stages of translation are enabled, Combining the stage 1 and stage 2 attributes,
EL1&0 translation regime on page D5-2783 describes how the assignments from the two stages are combined.

Note

In a virtualization implementation, a hypervisor, executing at EL2, might usefully:

• Reduce the permitted cacheability of a region.

• Increase the required shareability of a region.

The combining of attributes from stage 1 and stage 2 translations supports both of these options.

The following sections describe these attributes:

• The stage 1 memory region attributes on page D5-2776.

• The stage 2 memory region attributes, EL1&0 translation regime on page D5-2778.

• Other fields in the VMSAv8-64 Translation Table format descriptors on page D5-2781.

• Combining the stage 1 and stage 2 attributes, EL1&0 translation regime on page D5-2783.

Note
• This section describes the memory region attributes for each of the translation regimes, and for each stage of

translation in the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime.

• A translation applies to memory accesses from either:

— Only a single Exception level, for example the EL3 translation regime.

— EL0 and one higher Exception level, for example the EL1&0 translation regime.

• In general, attribute assignment is simpler in a regime that applies to only a single Exception level, and in
these regimes behavior is consistent with fields in the translation tables being treated as follows:

— AP[1] is RES1, meaning the PE ignores the value of the bit and behaves as if it is 1.

— APTable[0] is RES0, meaning the PE ignores the value of the bit and behaves as if it is 0.

— The PXN field is RES0, meaning the PE ignores the value of the bit and behaves as if it is 0.

— The PXNTable bit is RES0, meaning the PE ignores the value of the bit and behaves as if it is 0.

D5.5.1 The stage 1 memory region attributes

The description of the memory region attributes in a Translation descriptor divides into:

Memory type and Cacheability

These are described indirectly, by registers referenced by bits in the Table descriptor. This is
described as remapping the memory type and attribute description. Stage 1 memory region type and
Cacheability attributes on page D5-2776 describes this encoding.

Shareability The SH[1:0] field in the Translation Table descriptor encodes shareability information. Stage 1
Shareability attribute, for Normal memory on page D5-2777 describes this encoding.

Stage 1 memory region type and Cacheability attributes

In the VMSAv8-64 translation table format, the AttrIndx[2:0] field in a Block or Page Translation Table descriptor
for a stage 1 translation indicates the 8-bit field in the MAIR_ELx that specifies the attributes for the corresponding
memory region. The required field is Attrn, where n = AttrIndx[2:0]. For more information about AttrIndx[2:0], see
Attribute fields in stage 1 VMSAv8-64 Block and Page descriptors on page D5-2749.
D5-2776 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.5 Memory region attributes
Note

Each MAIR_ELx is a 64-bit register that is architecturally mapped to a pair of AArch32 registers. See the
MAIR_ELx register descriptions for more information.

Each MAIR_ELx.Attrn field defines, for the corresponding memory region:

• The memory type: Device or Normal.

• For Device memory:

— The Device memory type, one of: Device-nGnRnE, Device-nGnRE, Device-nGRE, Device-GRE.

— The XS attribute, used when FEAT_XS is implemented. See Stage 1 definition of the XS attribute on
page D5-2777.

• For Normal memory:

— The inner and outer cacheability: Non-cacheable, Write-Through, or Write-Back.

— For Write-Through Cacheable and Write-Back Cacheable regions, the Read-Allocate and
Write-Allocate policy hints, each of which is Allocate or No Allocate, and the Transient allocation
hints, if supported.

— If FEAT_MTE2 is implemented, the Tagged attribute.

— The XS attribute, used when FEAT_XS is implemented. See Stage 1 definition of the XS attribute on
page D5-2777.

For more information about the memory type and attributes, see Memory types and attributes on page B2-165,
Cacheability, cache allocation hints, and cache transient hints on page D4-2640, and Tagged and Untagged
Addresses on page D6-2843.

Stage 1 definition of the XS attribute

When FEAT_XS is implemented, all stage 1 memory types defined in the MAIR_ELx or TCR_ELx registers have
the XS attribute set to 1, unless they are any of the following, which have the XS attribute set to 0:

• For Device memory:

— Device memory types that use the MAIR_ELx.Attrn encoding 0b0000dd01.

• For Normal memory:

— Inner Write-Back Cacheable, Outer Write-back Cacheable memory types defined in the MAIR_ELx
or TCR_ELx registers, including any memory types that are treated as Write-Back Cacheable as a
result of IMPLEMENTATION DEFINED choices in the architecture.

— Inner Write-through Cacheable and Outer Write-through Cacheable memory types that use the
MAIR_ELx.Attrn encoding 0b1010000.

— Inner Non-cacheable, Outer Non-cacheable memory types that use the MAIR_ELx.Attrn encoding
0b01000000.

Stage 1 Shareability attribute, for Normal memory

If the Effective value of TCR_ELx.DS is 0, when using the VMSAv8-64 translation table format, the SH[1:0] field
in a block or page Translation Table descriptor specifies the Shareability attributes of the corresponding memory
region. Table D5-36 on page D5-2777 shows the encoding of this field.

Table D5-36 SH[1:0] field encoding for Normal memory, VMSAv8-64 translation table format

SH[1:0] Normal memory

00 Non-shareable

01 Reserved, CONSTRAINED UNPREDICTABLEa

10 Outer Shareable

11 Inner Shareable
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2777
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.5 Memory region attributes
Note

The shareability field is only relevant if the memory is a Normal Cacheable memory type. All Device and Normal
Non-cacheable memory regions are always treated as Outer Shareable, regardless of the translation table
shareability attributes.

If the Effective value of TCR_ELx.DS is 1, descriptor bits[9:8] are OA[51:50] and Shareability is determined by
TCR_ELx.SHn, see Stage 1 Shareability when FEAT_LPA2 is implemented on page D5-2778.

See Combining the stage 1 and stage 2 shareability attributes for Normal memory on page D5-2786 for constraints
on the Shareability attributes of a Normal memory region that is Inner Non-cacheable, Outer Non-cacheable.

Stage 1 Shareability when FEAT_LPA2 is implemented

If FEAT_LPA2 is implemented, when TCR_ELx.DS==1, OA[51:50] replaces the SH[1:0] field in the Block or Page
descriptor for the stage 1 translation regime controlled by that register. In that case, the Shareability of normal
cacheable locations determined by a Block or Page descriptor is taken from the following:

• For the EL3 translation regime, TCR_EL3.SH0.

• For the EL2 translation regime if HCR_EL2.E2H==0, TCR_EL2.SH0.

• For the EL2 and EL2&0 translation regimes, if HCR_EL2.E2H==1 and the VA is an address that is translated
using tables pointed to by TTBR0_EL2, TCR_EL2.SH0.

• For the EL2 and EL2&0 translation regimes, if HCR_EL2.E2H==1 and the VA is an address that is translated
using tables pointed to by TTBR1_EL2, TCR_EL2.SH1.

• For the EL1&0 translation regime, if the VA is an address that is translated using tables pointed to by
TTBR0_EL1, TCR_EL1.SH0.

• For the EL1&0 translation regime, if the VA is an address that is translated using tables pointed to by
TTBR1_EL1, TCR_EL1.SH1.

See Combining the stage 1 and stage 2 shareability attributes for Normal memory on page D5-2786 for constraints
on the Shareability attributes of a Normal memory region that is Inner Non-cacheable, Outer Non-cacheable.

D5.5.2 The stage 2 memory region attributes, EL1&0 translation regime

In the stage 2 Translation Table descriptors for memory regions and pages, the MemAttr[3:0] and SH[1:0] fields
describe the stage 2 memory region attributes:

• Stage 2 memory region type and Cacheability attributes on page D5-2779 describes how the MemAttr[3:0]
field defines these attributes.

• If the Effective value of VTCR_EL2.DS is 0, the SH[1:0] field in the Translation Table descriptor encodes
shareability information. Stage 2 Shareability attribute, for Normal memory on page D5-2780 describes this
encoding.

If the Effective value of VTCR_EL2.DS is 1, descriptor bits[9:8] are OA[51:50] and Shareability is determined by
VTCR_EL2.SH0, see Stage 2 Shareability attribute, for Normal memory on page D5-2780.

The following sections describe how, when both stages of address translation are enabled, the memory region
attributes assigned at stage 2 of the translation are combined with those assigned at stage 1:

• Combining the stage 1 and stage 2 memory type attributes on page D5-2784.

• Combining the stage 1 and stage 2 cacheability attributes for Normal memory on page D5-2785.

• Combining the stage 1 and stage 2 shareability attributes for Normal memory on page D5-2786.

a. See Reserved values in System and
memory-mapped registers and translation table
entries on page K1-8423 for the permitted
CONSTRAINED UNPREDICTABLE behavior.
D5-2778 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.5 Memory region attributes
D5.5.3 Stage 2 memory region type and Cacheability attributes

Table D5-37 on page D5-2779 shows how MemAttr[3:2] gives a top-level definition of the memory type, and of the
Outer cacheability of a Normal memory region.

The encoding of MemAttr[1:0] depends on the Memory type indicated by MemAttr[3:2]:

• When MemAttr[3:2]==0b00, indicating Device memory, Table D5-38 on page D5-2779 shows the encoding
of MemAttr[1:0].

• When MemAttr[3:2]!=0b00, indicating Normal memory, Table D5-39 on page D5-2779 shows the encoding
of MemAttr[1:0].

Note
• The stage 2 translation does not assign any allocation hints.

• The following stage 2 translation table attribute settings leave the stage 1 settings unchanged:

— MemAttr[3:2] == 0b11, Normal memory, Outer Write-Back Cacheable.

— MemAttr[1:0] == 0b11, Inner Write-Back Cacheable.

Table D5-37 VMSAv8-64 MemAttr[3:2] encoding, stage 2 translation

MemAttr[3:2] Memory type Outer cacheability

00 Device. MemAttr[1:0] encodes the Device memory type. Not applicable

01 Normal. MemAttr[1:0] encodes the Inner Cacheability. Outer Non-cacheable

10 Outer Write-Through Cacheable

11 Outer Write-Back Cacheable

Table D5-38 MemAttr[1:0] encoding for Device memory

MemAttr[1:0] Meaning when MemAttr[3:2] == 0b00

00 Region is Device-nGnRnE memory

01 Region is Device-nGnRE memory

10 Region is Device-nGRE memory

11 Region is Device-GRE memory

Table D5-39 MemAttr[1:0] encoding for Normal memory

MemAttr[1:0] Meaning when MemAttr[3:2] != 0b00

00 Reserved, CONSTRAINED UNPREDICTABLEa

a. See Reserved values in System and memory-mapped
registers and translation table entries on page K1-8423
for the permitted CONSTRAINED UNPREDICTABLE behavior.

01 Inner Non-cacheable

10 Inner Write-Through Cacheable

11 Inner Write-Back Cacheable
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2779
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.5 Memory region attributes
D5.5.4 Stage 2 Shareability attribute, for Normal memory

If the Effective value of VTCR_EL2.DS is 0, when using the VMSAv8-64 translation table format, the SH[1:0] field
in a block or page Translation Table descriptor specifies the Shareability attributes of the corresponding memory
region. Table D5-40 on page D5-2780 shows the encoding of this field.

Note
• VMSAv8-64 Translation Table format descriptors on page D5-2739This encoding is the same as the

shareability encoding described in Stage 1 Shareability attribute, for Normal memory on page D5-2777.

• The shareability field is only relevant if the memory is a Normal Cacheable memory type. All Device and
Normal Non-cacheable memory regions are always treated as Outer Shareable, regardless of the translation
table shareability attributes.

If FEAT_LPA2 is implemented, when VTCR_EL2.DS==1, OA[51:50] replaces the SH[1:0] field in the Block or
Page descriptor for the stage 2 translation regime. In that case, the Shareability of normal cacheable locations
determined by a Block or Page descriptor is taken from VTCR_EL2.SH0.

See Combining the stage 1 and stage 2 shareability attributes for Normal memory on page D5-2786 for constraints
on the Shareability attributes of a Normal memory region that is Inner Non-cacheable, Outer Non-cacheable.

D5.5.5 Stage 2 memory region type and Cacheability attributes when FEAT_S2FWB is implemented

When FEAT_S2FWB is implemented and HCR_EL2.FWB is set to 1, the MemAttr[3:0] field is encoded in bits[5:2]
of the Stage 2 Page or Block descriptor as follows:

• Bit[5] is RES0.

• Bit[4] determines the interpretation of bits [3:2].

When bit[4] is one the effects of bits [3:2] are defined in Table D5-41 on page D5-2780.

Table D5-40 SH[1:0] field encoding for Normal memory, VMSAv8-64 translation table format

SH[1:0] Normal memory

00 Non-shareable

01 Reserved, CONSTRAINED UNPREDICTABLEa

a. See Reserved values in System and
memory-mapped registers and translation table
entries on page K1-8423 for the permitted
CONSTRAINED UNPREDICTABLE behavior.

10 Outer Shareable

11 Inner Shareable

Table D5-41 Effect of bit[4] == 1 on Cacheability and Memory Type

Stage 1 Memory Type and Inner or Outer
Cacheability attribute

Stage 2 Block/ Descriptor
Bits[3:2]

Resultant Memory type and
Cacheability attribute

Normal Write-Back 0b11 Normal Write-Back

Normal Write-Through Normal Write-Though

Normal Non-cacheable Normal Non-cacheable

Device<attr> Device<attr>
D5-2780 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.5 Memory region attributes
When HCR_EL2.FWB is set to 1 and Bit[4] is 0, then the stage 2 memory type is Device. Bits[3:2] of the Stage 2
Page or Block descriptor define the stage 2 Device memory attributes. The stage 2 Device Memory attributes are
defined in Table D5-42 on page D5-2781.

When FEAT_XS is implemented, HCR_EL2.FWB is set to 1, and the resultant memory attributes become Normal
Inner Write-back, Outer Write-back Cacheable, the XS attribute is set to 0 on the resultant memory translation.

The following are unaffected by the value of HCR_EL2.FWB:

• The way that Shareability attributes from stage 1 and stage 2 are combined.

• The way that stage 1 memory types and attributes are combined with stage 2 Device type and attributes.

D5.5.6 Other fields in the VMSAv8-64 Translation Table format descriptors

The following subsections describe the other fields in the Translation Table Block and Page descriptors:

• The Contiguous bit on page D5-2782.

• IGNORED fields on page D5-2783.

• Field reserved for software use on page D5-2783.

Normal Write-Back 0b10 Normal Write-Back

Normal Write-Through

Normal Non-cacheable

Device<attr>

Normal Write-Back 0b01 Normal Non-cacheable

Normal Write-Through

Normal Non-cacheable

Device<attr> Device<attr>

- 0b00 RESERVED

Table D5-41 Effect of bit[4] == 1 on Cacheability and Memory Type (continued)

Stage 1 Memory Type and Inner or Outer
Cacheability attribute

Stage 2 Block/ Descriptor
Bits[3:2]

Resultant Memory type and
Cacheability attribute

Table D5-42 Device Memory Attributes when Bit[4] == 0

Stage 2 Page/Block descriptor bits [3:2] Device Memory Attribute

0b00 Device-nGnRnE

0b01 Device-nGnRE

0b10 Device-nGRE

0b11 Device-GRE
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2781
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.5 Memory region attributes
The Contiguous bit

When the value of the Contiguous bit is 1, it indicates that the entry is one of a number of adjacent translation table
entries that point to a contiguous output address range. The required number of adjacent entries depends on the
current translation granule size, as follows:

4KB granule 16 adjacent translation table entries point to a contiguous output address range that has the same
permissions and attributes. These 16 entries must be aligned in the translation table. If accessing a
full-sized 4KB translation table, this means that the top 5 of the 9 input addresses bits that index the
descriptor positions in the translation table are the same for all of the entries.

The contiguous output address range must be aligned to size of 16 translation table entries at the
same translation table level.

16KB granule This bit indicates that adjacent translation table entries point to contiguous output address range that
has the same permissions and attributes. With the 16KB granule, the number of contiguous entries
indicated by setting this bit to 1 depends on the lookup level of the translation table:

Level 2 lookup The bit indicates 32 contiguous entries, giving a 1GB block of memory.
These entries must be aligned in the translation table. When accessing a
full-sized 16KB translation table, this means the top 6 of the 11 input
addresses bits that index the descriptor positions in the translation table are
the same for all of the entries.

The contiguous output address range must be aligned to size of 32
translation table entries at the same translation table level.

 Level 3 lookup The bit indicates 128 contiguous entries, giving a 2MB block of memory.
These entries must be aligned in the translation table. When accessing a
full-sized 16KB translation table, this means the top 4 of the 11 input
addresses bits that index the descriptor positions in the translation table are
the same for all of the entries.

The contiguous output address range must be aligned to size of 128
translation table entries at the same translation table level.

64KB granule 32 adjacent translation table entries point to a contiguous output address range that has the same
permissions and attributes. These 32 entries must be aligned in the translation table. If accessing a
full-sized 64KB translation table, this means that the top 8 of the 13 input addresses bits that index
the descriptor positions in the translation table are the same for all of the entries.

The contiguous output address range must be aligned to size of 32 translation table entries at the
same translation table level.

Setting this bit to 1 means that the TLB can cache a single entry to cover the contiguous translation table entries.

This section defines the requirements for programming the Contiguous bit. Possible errors in programming the
translation table registers on page D5-2726 describes the effect of not meeting these requirements.

The architecture does not require a PE to cache TLB entries in this way. To avoid TLB coherency issues, any TLB
maintenance by address must not assume any optimization of the TLB tables that might result from use of the
Contiguous bit.

TLB maintenance must be performed based on the size of the underlying translation table entries, to avoid TLB
coherency issues.

Use of the Contiguous bit with hardware updates of the translation table entries on page D5-2774 describes the
effect of hardware management of the Access flag and dirty state on the Contiguous bit.

Note

When FEAT_LVA is implemented, the level 1 block size for the 64KB granule does not support the Contiguous bit,
and that field is RES0.

If the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 1, level 0 Block descriptors for the 4KB granule and
level 1 Block descriptors for the 16KB granule do not support the Contiguous bit, and that field is RES0.
D5-2782 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.5 Memory region attributes
IGNORED fields

In the VMSAv8-64 Translation Table descriptors, the following fields are identified as IGNORED, meaning the
architecture guarantees that a PE makes no use of these fields:

• In the stage 1 and stage 2 Table descriptors, bits[58:51] and bits[11:2].

• In the stage 1 and stage 2 Block and Page descriptors, bit[63] and bits[58:55].

• In the stage 1 and stage 2 Block and Page descriptors in an implementation that does not include
FEAT_HPDS2, bits[62:59].

Of these fields:

• In the stage 1 and stage 2 Block and Page descriptors, bits[58:55] are reserved for software use, see Field
reserved for software use on page D5-2783.

• In the stage 2 Block and Page descriptors:

— Bit[63] is reserved for use by a System MMU.

— In an implementation that does not include FEAT_HPDS2, bits[62:59] are reserved for use by a
System MMU.

Field reserved for software use

The architecture reserves a 4-bit IGNORED field in the Block and Translation Table descriptors, bits[58:55], for
software use. The definition of IGNORED means the architecture guarantees that hardware makes no use of this field.

Note

This means there is no need to invalidate the TLB if these bits are changed.

D5.5.7 Combining the stage 1 and stage 2 attributes, EL1&0 translation regime

When EL2 is enabled, the Secure or Non-secure EL1&0 translation regime comprises two stages of translation, each
of which can be enabled independently:

• Stage 1 translation is configured and controlled from EL1. When enabled, stage 1 translation can define
access permissions independently for access from EL0 and for accesses from EL1.

Stage 1 MMU faults are taken to EL1.

• When stage 2 translation is enabled, the stage 2 access controls defined at EL2:

— Affect the stage 1 access permissions settings.

— Take no account of whether the accesses are at EL1 or EL0.

— Permit software executing at EL2 to assign a write-only attribute to a memory region.

Stage 2 MMU faults are taken to EL2.

Note

In an implementation of virtualization, the attributes defined in the stage 2 translation tables mean a hypervisor can
define additional access restrictions to those defined by a Guest OS in the stage 1 translation tables. For a particular
access, the actual access permission is the more restrictive of the permissions defined by:

• The Guest OS, in the stage 1 translation tables.

• The hypervisor, in the stage 2 translation tables.

The effects of the combination of attributes defined by the Hypervisor are functionally transparent to the Guest OS.

When HCR_EL2.FWB is 1 and the final memory type is Normal Cacheable:

• If the stage 1 Page or Block descriptor specifies a cacheable memory type, then the final cache allocation hint
is the stage 1 cache allocation hint.

• If the stage 1 Page or Block descriptor does not specify a cacheable memory type, then the final cache
allocation hint is Read Allocate, Write Allocate.

The effects of HCR_EL2.FWB apply to both Secure and Non-secure stage 2 translation regime.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2783
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.5 Memory region attributes
When FEAT_S2FWB is implemented, the architecture requires that CLIDR_EL1.{LoUU, LoIUS} are zero so that
no levels of data cache need to be cleaned in order to manage coherency with instruction fetches.

When HCR_EL2.FWB is set to 1, and the stage 2 Page or Block descriptor [4:2] is set to 0b110, the resultant memory
type is Normal Write-Back Cacheable regardless of the value of the stage 1 memory type.

When FEAT_XS is implemented, HCR_EL2.FWB is set to 1, and the resultant memory type becomes Normal
Write-Back Cacheable, the XS attribute is set to 0 on the resultant memory translation.

If the stage 1 translation is treated as Tagged, the final memory type is Tagged only if the final cacheable memory
type is Inner and Outer Write-back Cacheable and the final allocation hints are Read-Allocate, Write-Allocate.

Combining the stage 1 and stage 2 data access permissions

When both stages of translation are enabled, the following access permissions are combined:

• The stage 1 permissions described in The AP[2:1] data access permissions, for stage 1 translations on
page D5-2758.

• The stage 2 permissions described in The S2AP data access permissions, Secure or Non-secure EL1&0, when
EL2 is enabled, translation regime on page D5-2759.

The stage 1 and stage 2 permissions are combined as follows:

1. If an access is not permitted by the stage 1 permissions, then it generates a stage 1 Permission fault, regardless
of the stage 2 permissions.

2. If an access is permitted by the stage 1 permissions, but is not permitted by the stage 2 Permissions, then it
generates a stage 2 Permission fault.

3. If an access is permitted by both the stage 1 permissions and the stage 2 permissions, then it does not generate
a Permission fault.

Combining the stage 1 and stage 2 instruction execution permissions

When both stages of translation are enabled, the following access permissions are combined:

• The stage 1 permissions described in Stage 1 instruction access and execution permissions on page D5-2762.

• The stage 2 permissions described in Stage 2 instruction execution permissions on page D5-2764.

The stage 1 and stage 2 permissions are combined as follows:

1. If an instruction fetch is not permitted by the stage 1 permissions, then it generates a stage 1 Permission fault,
regardless of the stage 2 permissions.

2. If an instruction fetch is permitted by the stage 1 permissions, but is not permitted by the stage 2 Permissions,
then it generates a stage 2 Permission fault.

3. If an instruction fetch is permitted by both the stage 1 permissions and the stage 2 permissions, then it does
not generate a Permission fault.

Combining the stage 1 and stage 2 memory type attributes

The combining of memory type attributes from the two stages of translation applies only if HCR_EL2.FWB is set
to 0.
D5-2784 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.5 Memory region attributes
Table D5-43 on page D5-2785 shows the rules for combining the stage 1 and stage 2 memory type assignments.

Regardless of any shareability attribute obtained as described in Combining the stage 1 and stage 2 shareability
attributes for Normal memory on page D5-2786:

• Any location for which the resultant memory type is any type of Device memory is always treated as Outer
Shareable.

• Any location for which the resultant memory type is Normal Inner Non-cacheable, Outer Non-cacheable is
always treated as Outer Shareable.

For information about how the cacheability attribute is obtained from the attributes assigned at each stage of
translation, see Combining the stage 1 and stage 2 cacheability attributes for Normal memory on
page D5-2785.

The combining of the memory type attributes from the two stages of translation means a translation table walk for
stage 1 translation can be made to a type of Device memory. If this occurs, then:

• If the value of HCR_EL2.PTW is 0, then the translation table walk occurs as if it is to Normal Non-cacheable
memory. This means it can be done speculatively.

• If the value of HCR_EL2.PTW is 1, then the memory access generates a stage 2 Permission fault.

When the first stage of the translation regime specifies Device memory, HCR_EL2.FWB is set to 1, and the stage
2 Page or Block descriptor [4:2] is set to 0b110:

• Instruction fetches from Device memory are not prevented from being a CONSTRAINED UNPREDICTABLE
choice between:

— Generating a prefetch abort.

— Accessing memory as the resultant memory type of Normal Write-Back cacheable.

• It is IMPLEMENTATION DEFINED whether Atomic memory accesses or Exclusives are supported, in the same
way as it is for accesses to memory locations whose resultant memory type is Device memory.

• It is CONSTRAINED UNPREDICTABLE whether a misaligned access can generate a stage 1 alignment fault as a
result of the memory type described in the stage 1 translation.

• It is CONSTRAINED UNPREDICTABLE whether a DC ZVA, DC GZVA, or DC GVA instruction can generate a stage 1
alignment fault as a result of the memory type described in the stage 1 translation.

Combining the stage 1 and stage 2 cacheability attributes for Normal memory

The combining of cacheability attributes from the two stages of translation applies only if HCR_EL2.FWB is set to
0.

Table D5-43 Combining the stage 1 and stage 2 memory type assignments

Rule
If either stage of translation
assigns:

The resultant memory
type is:

Device has precedence over Normal Any Device memory type A Device memory type

non-Gathering has precedence over Gathering A Device-nGxx memory type A Device-nGxx memory
type

non-Reordering has precedence over Reordering A Device-nGnRx memory type A Device-nGnRx memory
type

No Early write acknowledge has precedence over Early write
acknowledge

The Device-nGnRnE memory type The Device-nGnRnE
memory type
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2785
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.5 Memory region attributes
For a Normal memory region, Table D5-44 on page D5-2786 shows how the stage 1 and stage 2 cacheability
assignments are combined. This combination applies, independently, for the Inner cacheability and Outer
cacheability attributes.

Combining the stage 1 and stage 2 shareability attributes for Normal memory

A memory region is treated as Outer Shareable, regardless of any shareability assignments at either stage of
translation, if either:

• The resultant memory type attribute, described in Combining the stage 1 and stage 2 memory type attributes
on page D5-2784, is any type of Device memory.

• The resultant memory type attribute, described in Combining the stage 1 and stage 2 memory type attributes
on page D5-2784, is Normal memory, and the resultant cacheability, described in Combining the stage 1 and
stage 2 cacheability attributes for Normal memory on page D5-2785, is Inner Non-cacheable, Outer
Non-cacheable.

For a memory region with a resultant memory type attribute of Normal, that is not Inner Non-cacheable, Outer
Non-cacheable, Table D5-45 on page D5-2786 shows how the stage 1 and stage 2 shareability assignments are
combined.

Table D5-44 Combining the stage 1 and stage 2 cacheability assignments for Normal memory

Assignment in stage 1 Assignment in stage 2 Resultant cacheability

Non-cacheable Any Non-cacheable

Any Non-cacheable Non-cacheable

Write-Through Cacheable Write-Through or Write-Back Cacheable Write-Through Cacheable

Write-Through or Write-Back Cacheable Write-Through Cacheable Write-Through Cacheable

Write-Back Cacheable Write-Back Cacheable Write-Back Cacheable

Table D5-45 Combining the stage 1 and stage 2 Shareability assignments for Normal memorya

a. Applies only if the Normal memory is not Inner Non-cacheable, Outer Non-cacheable,
see text.

Assignment in stage 1 Assignment in stage 2 Resultant shareability

Outer Shareable Any Outer Shareable

Inner Shareable Outer Shareable Outer Shareable

Inner Shareable Inner Shareable Inner Shareable

Inner Shareable Non-shareable Inner Shareable

Non-shareable Outer Shareable Outer Shareable

Non-shareable Inner Shareable Inner Shareable

Non-shareable Non-shareable Non-shareable
D5-2786 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.6 Virtualization Host Extensions
D5.6 Virtualization Host Extensions

Armv8.1 introduces the Virtualization Host Extensions that provide enhanced support for a Type 2 virtualization
solution, where there is a Host OS, which is either more privileged than the hypervisor, or is a peer of the hypervisor.

The Virtualization Host Extensions only apply to an implementation that includes EL2 using AArch64.

D5.6.1 State added by the Virtualization Host Extensions

The following state is added as part of FEAT_VHE:

• A configuration bit, E2H, is added to HCR_EL2.

• New registers:

— CONTEXTIDR_EL2, which has the same format and contents as CONTEXTIDR_EL1.

— TTBR1_EL2, which has the same format and contents as TTBR1_EL1.

• An EL2 virtual timer which is accessed using the registers CNTHV_CTL_EL2, CNTHV_CVAL_EL2, and
CNTHV_TVAL_EL2. The registers take the same format as CNTV_CTL_EL0, CNTV_CVAL_EL0, and
CNTV_TVAL_EL0 respectively. The virtual offset is treated as 0 for this timer.

D5.6.2 Behavior of HCR_EL2.E2H

When the value of HCR_EL2.E2H is 0:

• There are no changes to the Armv8 functionality other than the new state described in State added by the
Virtualization Host Extensions on page D5-2787.

Note
This means the translation regime controlled by TCR_EL2 is called the EL2 translation regime.

• The contents of TTBR1_EL2 are ignored by hardware, other than reads by an MRS instruction and writes by
an MSR instruction.

• The Context ID matching breakpoint is disabled at EL2, and uses the value of CONTEXTIDR_EL1 at EL0
and EL1.

When the value of HCR_EL2.E2H is 1, and EL2 is enabled for the current Security state:

• The translation regime controlled by TCR_EL2 is the EL2&0 translation regime, and the behaviors of this
translation regime differ from those of the EL2 translation regime.

• The EL2&0 translation regime behaves in the same way as stage 1 of the EL1&0 translation regime, with an
upper address range translated by tables pointed to by TTBR1_EL2. The existing TTBR0_EL2 translates the
lower address range of the EL2&0 translation regime and is extended to have the same contents and format
as the TTBR0_EL1.

• The translation tables used in the EL2&0 translation regime take the same format as the EL1&0 translation
regime. EL2 accesses are treated as privileged in this format.

• Context ID matching can occur at EL2. When executing at EL2, a Context ID matching breakpoint uses
CONTEXTIDR_EL2.

• VMID and VMID + Context ID matching breakpoints do not match at EL2.

• The virtual offset is treated as 0 when CNTVCT_EL0 is read from EL2.

• The Privileged Access Never mechanism applies to accesses from EL2 to a virtual address which has access
permitted in the EL2&0 translation regime.

• The following registers are redefined:

— CNTHCTL_EL2.

— CPTR_EL2.

— TCR_EL2.

If HCR_EL2.{E2H, TGE}== {1, 0}, then all accesses from EL1 and EL0 are not included in the EL2&0 translation
regime.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2787
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.6 Virtualization Host Extensions
If HCR_EL2.{E2H, TGE} == {1, 1}:

• The EL2&0 translation regime is used when executing at EL0 as well as when executing at EL2, where EL0
accesses are treated as unprivileged.

Note
Accesses from EL1 are not possible under this configuration.

• In EL2, the unprivileged instructions LDTR, LDTRB, LDTRH, LDTRSB, LDTRSH, LDTRSW, STTR, STTRB, and STTRH act as
if they are executing at EL0 for permission and watchpoint checking.

• Except for the purpose of reading the value held in the register, some fields in HCR_EL2 and all fields in
HSTR_EL2 are treated as having a specific value.

• SCTLR_EL2 is redefined to include additional fields from SCTLR_EL1, and to apply to execution at EL0.

• The following timer registers, and their equivalent AArch32 registers, are redefined to access the associated
EL2 register, rather than accessing the EL0 register when in EL0:

— CNTP_CTL_EL0.

— CNTP_CVAL_EL0.

— CNTP_TVAL_EL0.

— CNTV_CTL_EL0.

— CNTV_CVAL_EL0.

— CNTV_TVAL_EL0.

For some information on registers that are redirected, see System and Special-purpose register redirection on
page D5-2788.

• When executing at EL0, a Context ID matching breakpoint uses CONTEXTIDR_EL2.

• VMID and VMID + Context ID matching breakpoints do not match at EL0.

• The CPACR_EL1 register does not cause any instructions to be trapped to EL1, regardless of the contents of
CPACR_EL1.

• The CNTKCTL_EL1 register does not cause any instructions to be trapped to EL1, and the event stream
event caused by the CNTKCTL_EL1 is disabled, regardless of the contents of CNTKCTL_EL1.

• The virtual offset is treated as 0 when CNTVCT_EL0 is read from EL0 or EL2.

• The TLB maintenance and address translation instructions that apply to the EL1&0 translation regime are
redefined to apply to the EL2&0 translation regime. See A64 System instructions for address translation on
page C5-567 and A64 System instructions for TLB maintenance on page C5-592.

• When executing at EL2 or EL0, any physical interrupt that is configured to be taken at EL2 is subject to the
PSTATE.{D, A, I, F} interrupt masks. If the mask bit is set, then the corresponding interrupt will not be taken.
If the mask bit is not set, then the corresponding interrupt will be taken. See Asynchronous exception masking
on page D1-2504.

• When an exception is taken from EL0 to EL2, the value of the HCR_EL2.RW bit is not considered when
determining the exception vector offset to use. Table D1-5 on page D1-2477 lists the vector offsets used when
an exception is taken from EL0.

D5.6.3 System and Special-purpose register redirection

When FEAT_VHE is implemented, and HCR_EL2.E2H is set to 1, when executing at EL2, some EL1 System
register access instructions are redefined to access the equivalent EL2 register.
D5-2788 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.6 Virtualization Host Extensions
Table D5-46 on page D5-2789 shows the System register access instruction encodings that are redirected to the
equivalent EL2 register when the named mnemonic is used.

Table D5-46 System register redirection

System register access instruction encoding
Mnemonic Equivalent register accessed at EL2

op0 op1 CRn CRm op2

3 0 1 0 0 SCTLR_EL1 SCTLR_EL2

2 CPACR_EL1 CPTR_EL2

2 1 TRFCR_EL1 TRFCR_EL2

2 0 0 TTBR0_EL1 TTBR0_EL2

1 TTBR1_EL1 TTBR1_EL2

2 TCR_EL1 TCR_EL2

5 1 0 AFSR0_EL1 AFSR0_EL2

1 AFSR1_EL1 AFSR1_EL2

2 0 ESR_EL1 ESR_EL2

6 0 0 FAR_EL1 FAR_EL2

10 2 0 MAIR_EL1 MAIR_EL2

3 0 AMAIR_EL1 AMAIR_EL2

12 0 0 VBAR_EL1 VBAR_EL2

13 0 1 CONTEXTIDR_EL1 CONTEXTIDR_EL2

14 1 0 CNTKCTL_EL1 CNTHCTL_EL2

3 14 2 0 CNTP_TVAL_EL0 CNTHP_TVAL_EL2

CNTHPS_TVAL_EL2a

1 CNTP_CTL_EL0 CNTHP_CTL_EL2

CNTHPS_CTL_EL2a

2 CNTP_CVAL_EL0 CNTHP_CVAL_EL2

CNTHPS_CVAL_EL2a

3 3 14 3 0 CNTV_TVAL_EL0 CNTHV_TVAL_EL2

CNTHVS_TVAL_EL2a

1 CNTV_CTL_EL0 CNTHV_CTL_EL2

CNTHVS_CTL_EL2a

2 CNTV_CVAL_EL0 CNTHV_CVAL_EL2

CNTHVS_CVAL_EL2a

a. This register is accessed when FEAT_SEL2 is implemented and enabled, when the value of SCR_EL3.EEL2 is 1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2789
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.6 Virtualization Host Extensions
Table D5-47 on page D5-2790 shows the Special-purpose register access instruction encodings that are redirected
to the equivalent EL2 register when the named mnemonic is used.

D5.6.4 System and Special-purpose register aliasing

New register encodings, and aliases, are provided so that software executing at EL2 can access the EL1 registers for
which accesses from EL2 are redirected as described in System and Special-purpose register redirection on
page D5-2788. These aliases can also be used at EL3, but are UNDEFINED at EL1 and EL0.

Table D5-47 Special-purpose register redirection

Special-purpose register access instruction encoding
Mnemonic Equivalent register accessed at EL2

op1 CRm op2

0 0 0 SPSR_EL1 SPSR_EL2

1 ELR_EL1 ELR_EL2
D5-2790 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.6 Virtualization Host Extensions
Table D5-48 on page D5-2791 shows the System register access instruction encodings that are aliased.

Table D5-48 System register aliases

System register access instruction encoding
Mnemonic Register accessed

op0 op1 CRn CRm op2

3 5 1 0 0 SCTLR_EL12 SCTLR_EL1

2 CPACR_EL12 CPACR_EL1

2 0 ZCR_EL12 ZCR_EL1a

a. Scalable Vector Extension System register, see The Scalable Vector Extension (SVE) on page A2-110.

1 TRFCR_EL12 TRFCR_EL1

2 0 0 TTBR0_EL12 TTBR0_EL1

1 TTBR1_EL12 TTBR1_EL1

2 TCR_EL12 TCR_EL1

5 1 0 AFSR0_EL12 AFSR0_EL1

1 AFSR1_EL12 AFSR1_EL1

2 0 ESR_EL12 ESR_EL1

6 0 0 FAR_EL12 FAR_EL1

9 9 0 PMSCR_EL12 PMSCR_EL1

10 2 0 MAIR_EL12 MAIR_EL1

3 0 AMAIR_EL12 AMAIR_EL1

12 0 0 VBAR_EL12 VBAR_EL1

13 0 1 CONTEXTIDR_EL12 CONTEXTIDR_EL1

14 1 0 CNTKCTL_EL12 CNTKCTL_EL1

2 0 CNTP_TVAL_EL02 CNTP_TVAL_EL0

1 CNTP_CTL_EL02 CNTP_CTL_EL0

2 CNTP_CVAL_EL02 CNTP_CVAL_EL0

3 5 14 3 0 CNTV_TVAL_EL02 CNTV_TVAL_EL0

1 CNTV_CTL_EL02 CNTV_CTL_EL0

2 CNTV_CVAL_EL02 CNTV_CVAL_EL0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2791
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.6 Virtualization Host Extensions
Table D5-49 on page D5-2792 shows the Special-purpose register aliasing.

Table D5-49 Special-purpose register aliases

Special-purpose register access instruction encoding
Register name Register accessed

op0 op1 CRn CRm op2

3 5 4 0 0 SPSR_EL12 SPSR_EL1

1 ELR_EL12 ELR_EL1
D5-2792 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.7 Nested virtualization
D5.7 Nested virtualization

From Armv8.3, nested virtualization is supported in AArch64 state:

• If FEAT_NV is implemented, a Host hypervisor executing at EL2 can run a Guest hypervisor at EL1, see
Armv8.3 nested virtualization functionality on page D5-2793.

• If FEAT_NV2 is implemented, the PE further transforms System register accesses into memory accesses, see
Enhanced support for nested virtualization on page D5-2795.

D5.7.1 Armv8.3 nested virtualization functionality

Note
• When running a Guest hypervisor with HCR_EL2.E2H == 0, the Host hypervisor must set HCR_EL2.TVM

and CPTR_EL2.TCPAC to trap any Guest hypervisor accesses to the EL1 System registers that would be
accesses from any Guest OS running under the Guest hypervisor.

• FEAT_NV does not introduce any changes to either debug or to the Performance Monitors. Arm assumes that
the Host hypervisor will trap accesses to the Breakpoint and Performance Monitors registers to EL2, so that
it can process any accesses to these registers made by a Guest hypervisor or by a Guest OS running under the
Guest hypervisor.

FEAT_NV adds the fields HCR_EL2.{NV, NV1, AT}, see:

• Effect of HCR_EL2.{NV, NV1} on page D5-2793.

• Effect of HCR_EL2.AT on page D5-2794.

Effect of HCR_EL2.{NV, NV1}

The following subsections describe the effect of HCR_EL2.{NV, NV1}:

• Behavior when HCR_EL2.NV==1 on page D5-2793.

• Additional behavior when HCR_EL2.NV == 1 and HCR_EL2.NV1 == 0 on page D5-2794.

• Additional behaviors when HCR_EL2.NV == 1 and HCR_EL2.NV1 == 1 on page D5-2794.

• Behavior when HCR_EL2.NV == 0 and HCR_EL2.NV1 == 1 on page D5-2794.

HCR_EL2.{NV, NV1} are both permitted to be cached in a TLB.

Behavior when HCR_EL2.NV==1

The following behaviors apply when the value of HCR_EL2.NV is 1, regardless of the value of HCR_EL2.NV1.
At EL1:

• Reads or writes to any allocated and implemented System register or Special-purpose register named *_EL2,
*_EL02, or *_EL12 in the MRS or MSR instruction, other than SP_EL2, are trapped to EL2 rather than being
UNDEFINED. In this case, ESR_EL2 uses the EC code of 0x18.

Only accesses that are permitted at EL2 are trapped. This means that, for example, if the register is a
read-only register at EL2, then an MSR from Non-secure EL1 to the register is not trapped by this mechanism.
Instead the register access remains UNDEFINED.

Note
The priority of this trapping relative to other configurable traps follows the standard hierarchy of exceptions,
see Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2490.

• Reads or writes to SPSR_irq, SPSR_abt, SPSR_und, or SPSR_fiq using MRS and MSR instructions are trapped
to EL2 rather than being UNDEFINED. In this case the exception is reported in ESR_EL2 using the EC code
0x18.

• Reads or writes to SP_EL1 using the dedicated MRS and MSR instruction for accessing that register are trapped
to EL2 rather than being UNDEFINED. In this case the exception is reported in ESR_EL2 using the EC code
0x18.

• Execution of the EL2 translation regime Address translation instructions and TLB maintenance instructions
are trapped to EL2 rather than being UNDEFINED. In this case the exception is reported in ESR_EL2 using the
EC code 0x18.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2793
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.7 Nested virtualization
• Execution of the EL1 translation regime Address translation instructions and TLB maintenance instructions
that are only accessible from EL2 and above are trapped to EL2 rather than being UNDEFINED. In this case
the exception is reported in ESR_EL2 using the EC code 0x18.

• The ERETAA, ERETAB, and ERET instructions are trapped to EL2. In this case the exception is reported in
ESR_EL2 using the EC code 0x1A.

Note
The ERETAA and ERETAB instructions are only available when FEAT_PAuth is implemented.

• A read of CurrentEL returns the value 0x2 in bits[3:2].

• If EL3 is not implemented and HCR_EL2.TSC == 1, an SMC instruction executed at EL1 is trapped to EL2
rather than being UNDEFINED, and HCR_EL2.TSC is not RES0. In this case the exception is reported in
ESR_EL2 using the EC code 0x17.

Additional behavior when HCR_EL2.NV == 1 and HCR_EL2.NV1 == 0

At EL1, all the behaviors described in Behavior when HCR_EL2.NV==1 on page D5-2793 apply.

In addition, when HCR_EL2.{NV, NV1}=={1, 0}, any exception taken from EL1 to EL1 causes
SPSR_EL1.M[3:2] to be set to 0b10 rather than 0b01.

Additional behaviors when HCR_EL2.NV == 1 and HCR_EL2.NV1 == 1

At Non-secure EL1, all the behaviors described in Behavior when HCR_EL2.NV==1 on page D5-2793 apply.

In addition, when HCR_EL2.{NV, NV1}=={1, 1}:

• Accesses to VBAR_EL1, ELR_EL1, SPSR_EL1, and, if implemented, SCXTNUM_EL1, from EL1 are
trapped to EL2. In this case the exception is reported in ESR_EL2 using the EC code 0x18.

• In the EL1 translation table Block and Page descriptors:

— Bit[54] holds PXN, not UXN.

— Bit[53] is RES0.

— Bit[6] is treated as 0 regardless of the actual value.

• If Hierarchical permissions are enabled, then in the EL1 Translation Table descriptor:

— Bit[61] is treated as 0 regardless of the actual value.

— Bit[60] holds PXNTable, not UXNTable.

— Bit[59] is RES0.

• When in EL1, PSTATE.PAN is treated as 0 for all purposes except reading the value of the bit.

• When executed at EL1, the LDTR* behave as the corresponding LDR* instructions, and the STTR* instructions
behave as the equivalent STR* instructions.

Behavior when HCR_EL2.NV == 0 and HCR_EL2.NV1 == 1

When HCR_EL2.{NV, NV1}=={0, 1}, the behavior is a CONSTRAINED UNPREDICTABLE choice of:

• Behaving as if HCR_EL2.NV==1 and HCR_EL2.NV1==1 for all purposes other than reading back the
value of the HCR_EL2.NV bit.

• Behaving as if HCR_EL2.NV==0 and HCR_EL2.NV1==0 for all purposes other than reading back the
value of the HCR_EL2.NV1 bit.

• Behaving as defined for HCR_EL2.NV==0, with HCR_EL2.NV1==1 having the effect of causing accesses
to VBAR_EL1, ELR_EL1, and SPSR_EL1 from EL1 to be trapped to EL2.

Effect of HCR_EL2.AT

When FEAT_NV is implemented, if HCR_EL2.AT is 1, then EL1 accesses to AT S1E0R, AT S1E0W, AT S1E1R,
AT S1E1W, AT S1E1RP, and AT S1E1WP, are trapped to EL2. In this case the exception is reported in ESR_EL2
using the EC code 0x18.
D5-2794 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.7 Nested virtualization
D5.7.2 Enhanced support for nested virtualization

If FEAT_NV2 is implemented, the PE can access the VNCR_EL2 register and the control bit HCR_EL2.NV2.

When HCR_EL2.NV2 is 1:

• When in EL1, the PE redirects EL2 register accesses to EL1 register accesses, see Redirection of register
accesses from EL2 to EL1 on page D5-2795.

• When a Guest hypervisor issues System register access instructions to a Guest Guest OS, the PE transforms
the System register access instructions into memory access instructions, see Loads and stores generated by
transforming register accesses on page D5-2795.

When HCR_EL2.NV2 is 0, the behavior of HCR_EL2.NV and HCR_EL2.NV1 are as described in Armv8.3 nested
virtualization functionality on page D5-2793.

Redirection of register accesses from EL2 to EL1

When HCR_EL2.NV and HCR_EL2.NV2 are set to 1, instructions accessing certain Special-purpose EL2 registers
executed at EL1 are redefined to access the corresponding EL1 register:

When HCR_EL2.NV and HCR_EL2.NV2 are set to 1, instructions accessing certain System registers executed at
EL1 are redefined to access the corresponding EL1 register:

Loads and stores generated by transforming register accesses

When an MRS or MSR instruction is executed at EL1 and is accessing a register listed in Table D5-52 on
page D5-2796, the PE transforms that access into a load or store, respectively.

When the PE transforms a System register access into a memory access, the address of the resulting memory access
is defined using a combination of a base address and an offset according to the formula SignExtend(VNCR_EL2.BADDR
: Offset<11:0>, 64):

• VNCR_EL2 holds the base memory address used for memory redirection of System register accesses.

Table D5-50 Redirection of accesses to special-purpose registers at EL2

Special register access instruction a

a. For further information, see op0==0b11, Moves to and from Special-purpose registers on page C5-405.

Named EL2 register Actual register accessed

op1 = 4, CRm=0, op2=0 SPSR_EL2 SPSR_EL1

op1 = 4, CRm=0, op2=1 ELR_EL2 ELR_EL1

Table D5-51 Redirection of accesses to System registers at EL2

System register access instruction a

a. For further information, see Instructions for accessing non-debug System registers on page D12-3023.

Named EL2 register Actual register accessed

op0 = 3, op1=4, CRn=5, CRm=2, op2=0 ESR_EL2 ESR_EL1

op0 = 3, op1=4, CRn=6, CRm=0, op2=0 FAR_EL2 FAR_EL1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2795
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.7 Nested virtualization
• Each register which supports redirection to memory has a unique offset value, see Table D5-52 on
page D5-2796.

Table D5-52 Memory address offsets associated with each transformed register access

Register access
Offset

If HCR_EL2.{NV, NV1, NV2} == {1, 0, 1} If HCR_EL2.{NV, NV1, NV2} == {1, 1, 1}

VTTBR_EL2 VTTBR_EL2 0x20

VSTTBR_EL2 VSTTBR_EL2 0x30

VTCR_EL2 VTCR_EL2 0x40

VSTCR_EL2 VSTCR_EL2 0x48

VMPIDR_EL2 VMPIDR_EL2 0x50

CNTVOFF_EL2 CNTVOFF_EL2 0x60

HCR_EL2 HCR_EL2 0x78

HSTR_EL2 HSTR_EL2 0x80

VPIDR_EL2 VPIDR_EL2 0x88

TPIDR_EL2 TPIDR_EL2 0x90

HCRX_EL2 HCRX_EL2 0xA0

VNCR_EL2 VNCR_EL2 0xB0

CPACR_EL12 CPACR_EL1 0x100

CONTEXTIDR_EL12 CONTEXTIDR_EL1 0x108

SCTLR_EL12 SCTLR_EL1 0x110

ACTLR_EL1 ACTLR_EL1 0x118

TCR_EL12 TCR_EL1 0x120

AFSR0_EL12 AFSR0_EL1 0x128

AFSR1_EL12 AFSR1_EL1 0x130

ESR_EL12 ESR_EL1 0x138

MAIR_EL12 MAIR_EL1 0x140

AMAIR_EL12 AMAIR_EL1 0x148

MDSCR_EL1 MDSCR_EL1 0x158

SPSR_EL12 SPSR_EL1 0x160

CNTV_CVAL_EL02 CNTV_CVAL_EL0 0x168

CNTV_CTL_EL02 CNTV_CTL_EL0 0x170

CNTP_CVAL_EL02 CNTP_CVAL_EL0 0x178

CNTP_CTL_EL02 CNTP_CTL_EL0 0x180

SCXTNUM_EL12 SCXTNUM_EL1 0x188
D5-2796 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.7 Nested virtualization
TFSR_EL12 TFSR_EL1 0x190

CNTPOFF_EL2 CNTPOFF_EL2 0x1A8

HFGRTR_EL2 HFGRTR_EL2 0x1B8

HFGWTR_EL2 HFGWTR_EL2 0x1C0

HFGITR_EL2 HFGITR_EL2 0x1C8

HDFGRTR_EL2 HDFGRTR_EL2 0x1D0

HDFGWTR_EL2 HDFGWTR_EL2 0x1D8

ZCR_EL12 ZCR_EL1 0x1E0

HAFGRTR_EL2 HAFGRTR_EL2 0x1E8

TTBR0_EL12 TTBR0_EL1 0x200

TTBR1_EL12 TTBR1_EL1 0x210

FAR_EL12 FAR_EL1 0x220

ELR_EL12 ELR_EL1 0x230

SP_EL1 SP_EL1 0x240

VBAR_EL12 VBAR_EL1 0x250

ICH_LR<n>_EL2 ICH_LR<n>_EL2 0x400+8*n

ICH_AP0R<n>_EL2 ICH_AP0R<n>_EL2 0x480+8*n

ICH_AP1R<n>_EL2 ICH_AP1R<n>_EL2 0x4A0+8*n

ICH_HCR_EL2 ICH_HCR_EL2 0x4C0

ICH_VMCR_EL2 ICH_VMCR_EL2 0x4C8

VDISR_EL2 VDISR_EL2 0x500

VSESR_EL2 VSESR_EL2 0x508

PMBLIMITR_EL1 PMBLIMITR_EL1 0x800

PMBPTR_EL1 PMBPTR_EL1 0x810

PMBSR_EL1 PMBSR_EL1 0x820

PMSCR_EL12 PMSCR_EL1 0x828

PMSEVFR_EL1 PMSEVFR_EL1 0x830

PMSICR_EL1 PMSICR_EL1 0x838

PMSIRR_EL1 PMSIRR_EL1 0x840

PMSLATFR_EL1 PMSLATFR_EL1 0x848

Table D5-52 Memory address offsets associated with each transformed register access

Register access
Offset

If HCR_EL2.{NV, NV1, NV2} == {1, 0, 1} If HCR_EL2.{NV, NV1, NV2} == {1, 1, 1}
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2797
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.7 Nested virtualization
Note

Software should assume that future expansion of the architecture will allocate offset values up to but not including
0x1000.

Registers that affect hypervisor execution by controlling the event stream are not included in Table D5-52 on
page D5-2796:

• CNTHCTL_EL2

• When HCR_EL2.NV1 is 0, CNTKCTL_EL12.

• When HCR_EL2.NV1 is 1, CNTKCTL_EL1.

When a System register access is transformed into a memory access, that memory access has a defined format:

• The addressees the memory access is translated by the EL2 translation regime.

• The endianness of the memory access is defined by SCTLR_EL2.EE.

• The memory access is 64-bit single-copy atomic aligned to 64 bits.

• The memory access does not have acquire or release semantics.

Note
The value of the transformed System register access is not affected by fields that are defined to be RES0 or
RES1 in the associated System register.

• When there is no context synchronizing operation between the read or write of the register and the load or
store instruction accessing the address, the PE is permitted, but not required, to reorder the memory accesses
with respect to any EL1 reads or writes generated by load or store instructions to the same address.

• The memory accesses behave as if PSTATE.PAN == 0 regardless of the value of PSTATE.PAN.

When a register access instruction targets a register that is not implemented, the PE treats access to that register as
UNALLOCATED.

Any attempt to trap a register access instruction is subject to the exception prioritization rules, unless it is trapped
by either or both of HCR_EL2.{NV, NV1}. When a System register access instruction is trapped by either or both
of HCR_EL2.{NV, NV1}, then the instruction is transformed into a memory access instruction instead of creating
a trap, see Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2490.

Exceptions from transformed register accesses

When HCR_EL2.{NV2, NV} == {1,1} any exception taken from EL1 and taken to EL1 causes the
SPSR_EL1.M[3:2] to be set to 0b10 and not 0b01.

When the memory access generates a Data Abort, then the resulting fault has a defined format:

• The fault is taken to EL2, using the standard vector offset for exceptions from EL1 to EL2.

• The fault is reported as a Data Abort from the current exception level with the ESR_EL2.EC code 0x25, see
ISS encoding for an exception from a Data Abort on page D13-3219.

• FAR_EL2 is updated to hold the faulting address.

TRFCR_EL12 TRFCR_EL1 0x880

AMEVCNTVOFF0<n>_EL2 AMEVCNTVOFF0<n>_EL2 0xA00+8*n

AMEVCNTVOFF1<n>_EL2 AMEVCNTVOFF1<n>_EL2 0xA80+8*n

Table D5-52 Memory address offsets associated with each transformed register access

Register access
Offset

If HCR_EL2.{NV, NV1, NV2} == {1, 0, 1} If HCR_EL2.{NV, NV1, NV2} == {1, 1, 1}
D5-2798 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.7 Nested virtualization
When the memory access generates a synchronous External abort, and when External aborts are not configured to
be taken to EL3, then the resulting fault has a defined format:

• The fault is taken to EL2 using the standard vector offset for exceptions from EL1 to EL2.

• The fault is reported as a Data Abort from the current Exception level with ESR_EL2.EC code 0x25, see ISS
encoding for an exception from a Data Abort on page D13-3219.

The VNCR field in ESR_EL2 and ESR_EL3 identifies whether the fault came from use of VNCR_EL2 by EL1, see
ISS encoding for an exception from a Data Abort on page D13-3219.

Interaction with self-hosted and External debug

When a register access is transformed into a memory access, the PE:

• Treats the instruction as an instruction executed at EL1.

• Treads the loads and stores generated by the transformation of reads and writes of registers as an EL2 access.

This means that:

• When filtering PMU events by Exception level, filtering instructions by Exception level for trace or
Statistical Profiling, and when checking the instruction address against breakpoint registers or trace
resources, the operation is checked as an instruction executed at EL1.

• When checking the memory access against the watchpoint registers, or recording the address in a Statistical
Profiling record, the PE treats the access as an EL2 access.

When the memory access matches an EL2 access in the watchpoint registers, while a watchpoint is linked to a
context-aware breakpoint that is programmed to match the value held in CONTEXTIDR_EL1 or VMID, then it is
CONSTRAINED UNPREDICTABLE whether there is a watchpoint match.

When there is a watchpoint match, while EDSCR.HDE is set to 1 and halting is allowed, the watchpoint match
generates a Watchpoint debug event.

When there is a watchpoint match, while EDSCR.HDE is set to 0 and debug exceptions are enabled at EL2, then
the watchpoint match generates a Watchpoint exception.

When the watchpoint match generates a Watchpoint exception, the resulting exception has a defined format:

• The exception is taken to EL2.

• The exception is reported as a Watchpoint from the current Exception level with the ESR_EL2.EC code 0x35,
see ISS encoding for an exception from a Watchpoint exception on page D13-3231.

• FAR_EL2 is updated to hold the watchpointed address.

The VNCR field in ESR_EL2 identifies whether the Watchpoint exception came from use of VNCR_EL2 by EL1,
see ISS encoding for an exception from a Watchpoint exception on page D13-3231.

The loads and stores generated by the transformation of reads and writes of registers are treated by the Performance
Monitors as Memory-read operations and Memory-write operations. For more information, see Memory-read
operation on page D7-2872 and Memory-write operation on page D7-2872.

When the Statistical Profiling Unit (SPU) selects the instruction generating the memory access for profiling, it
records the operation as a load/store operation. For more information, see Operation Type packet payload
(load/store) on page D10-3000.

When the SPU selects the instruction generating the memory access for profiling while Statistical Profiling is
disabled at EL2, the virtual address for the memory access is not recorded.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2799
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.8 VMSAv8-64 memory aborts
D5.8 VMSAv8-64 memory aborts

In a VMSAv8-64 implementation, the following mechanisms cause a PE to take an exception on a failed memory
access:

Debug exception An exception caused by the debug configuration, see Chapter D2 AArch64 Self-hosted
Debug.

Alignment fault An Alignment fault is generated if the address used for a memory access does not have the
required alignment for the operation. For more information, see Alignment support on
page B2-160.

MMU fault An MMU fault is a fault generated by the fault checking sequence for the current translation
regime. See Types of MMU faults on page D5-2800.

External abort Any memory system fault other than a Debug exception, an Alignment fault, or an MMU
fault.

Collectively, these mechanisms are called aborts. Chapter D2 AArch64 Self-hosted Debug and on page H3-7377
describe Debug exceptions, and the remainder of this section describes Alignment faults, MMU faults, and External
aborts.

An access that causes an abort is said to be aborted, and uses the Fault Address Registers (FARs) and Exception
Syndrome Registers (ESRs) to record context information.

In AArch64 state MMU faults are synchronous exceptions that are reported as either:

• Data Aborts.

• Instruction Aborts

Note

Instruction Aborts report any synchronous memory abort on an instruction fetch.

The Exception level that an MMU fault is taken to depends on the translation regime and stage that generated the
fault. The fault context saved in the appropriate ESR_ELx, where ELx is the Exception level that the fault is taken
to, is dependent on whether:

• The MMU fault is reported as an Instruction or as a Data Abort.

• The exception is taken from the same or a lower Exception level.

For more information, see Synchronous exception types, routing and priorities on page D1-2489.

External aborts can be reported synchronously or asynchronously. Asynchronous External aborts are reported using
the SError interrupt. For more information, see External aborts on page D4-2666.

Software stepping, which is a debug feature, and a PC alignment fault exception are the only exceptions that are
higher priority than an Instruction Abort. Only watchpoints are at a lower priority than Data Aborts in the exception
priority hierarchy. For more information, see Synchronous exception prioritization for exceptions taken to AArch64
state on page D1-2490.

The following sections describe the abort mechanisms:

• Types of MMU faults on page D5-2800.

• The MMU fault-checking sequence on page D5-2803.

• AArch64 state prioritization of synchronous aborts from a single stage of address translation on
page D5-2807.

D5.8.1 Types of MMU faults

This section describes the faults that might be detected during one of the fault-checking sequences described in The
MMU fault-checking sequence on page D5-2803. The following list includes all the types of exceptions that can
occur:

• Alignment fault on a data access, see Alignment support on page B2-160.

• Permission fault.
D5-2800 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.8 VMSAv8-64 memory aborts
• Translation fault.

• Address size fault.

• Synchronous External abort on a translation table walk.

• Access flag fault.

• TLB conflict abort.

When an MMU fault generates an abort for a region of memory, no memory access is made if that region is or could
be marked as Device.

The following subsections describe the MMU faults that are not described elsewhere this Manual.

Permission fault

A Permission fault can be generated at any level of lookup, and the reported fault code identifies the lookup level.
See About access permissions on page D5-2754 for information about conditions that cause a Permission fault.

A TLB might hold a translation table entry that causes a Permission fault. Therefore, if the handling of a Permission
fault results in an update to the associated translation tables, the software that updates the translation tables must
invalidate the appropriate TLB entry, to prevent the stale information in the TLB being used on a subsequent
memory access.

This maintenance requirement applies to Permission faults in both stage 1 and stage 2 translations.

Cache maintenance instructions cannot generate Permission faults, except that:

• A stage 1 translation table walk performed as part of a cache maintenance instruction can generate a stage 2
Permission fault as described in Stage 2 fault on a stage 1 translation table walk.

• When the value of SCTLR_EL1.UCI is 1, enabling EL0 execution of the DC CVAU, DC CVAC, DC CVAP, DC CIVAC,
and IC IVAU instructions:

— Executing a DC CVAU, DC CVAC, DC CVAP, or DC CIVAC instruction at EL0 to a location that does not have
read permission at EL0 generates a Permission fault, subject to the constraints described in this
section.

— It is IMPLEMENTATION DEFINED whether executing an IC IVAU instruction at EL0 to a location that does
not have read permission at EL0 generates a Permission fault.

• A DC IVAC instruction requires write permission to the address it invalidates, otherwise it generates a
Permission fault, subject to the constraints described in this section.

Note
— Execution of the DCIMVAC instruction in AArch32 state does not have this write permission requirement.

— When EL1&0 stage 2 address translation is enabled, a DC IVAC instruction executed in Non-secure state
performs a cache clean and invalidate, meaning it performs the same invalidation as a DC CIVAC
instruction, as described in Effects of virtualization and Security state on the cache maintenance
instructions on page D4-2654.

In all cases where the execution of a cache maintenance instruction might generate a Permission fault:

• If the Point of Coherency is before any level of cache, it is IMPLEMENTATION DEFINED whether a cache
maintenance by VA to the Point of Coherency instruction can generate a Permission fault.

• If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether a data
or unified cache clean by VA to the Point of Unification instruction can generate a Permission fault.

The Data Cache Zero instruction, DC ZVA, operates as set of stores to each byte within the block being accessed, and
therefore it generates a Permission fault if the translation system does not permit writes to these locations.

Translation fault

A Translation fault can be generated at any level of lookup, and the reported fault code identifies the lookup level.
A Translation fault is generated if bits[1:0] of a Translation Table descriptor identify the descriptor as either a Fault
encoding or a reserved encoding. For more information, see VMSAv8-64 Translation Table format descriptors on
page D5-2739.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2801
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.8 VMSAv8-64 memory aborts
In addition, a Translation fault is generated if the input address for a translation either does not map onto an address
range of a TTBR_ELx, or the TTBR_ELx range that it maps onto is disabled. In these cases, the fault is reported as
a level 0 Translation fault on the translation stage at which the mapping to a region described by a TTBR_ELx
failed.

A data or unified cache maintenance by VA instruction can generate a Translation fault, except that:

• If the Point of Coherency is before any level of cache, it is IMPLEMENTATION DEFINED whether a data or
unified cache maintenance by VA instruction can generate a Translation fault.

• If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether a data
or unified cache clean by VA to the Point of Unification instruction can generate a Translation fault.

It is IMPLEMENTATION DEFINED whether an instruction cache invalidate by VA operation can generate a Translation
fault.

The architecture guarantees that any translation table entry that causes a Translation fault is not cached, meaning
the TLB never holds such an entry. Therefore, when a Translation fault occurs, the fault handler does not have to
perform any TLB maintenance instructions to remove the faulting entry.

If FEAT_E0PD is implemented and enabled, the TCR_ELx.{E0D0, E0D1} fields can prevent unprivileged access
to the addresses translated by TTBR0_ELx or TTBR1_ELx. If access is prevented, the fault is reported as a level 0
Translation fault, and should take the same time to generate, whether the address is present in the TLB or not, to
mitigate attacks that use fault timing.

Address size fault

An Address size fault can be generated at any level of lookup.

An Address size fault is generated if one of the following has nonzero address bits above the output address size,
for the current stage of translation:

• The TTBR_ELx used for the translation.

• A translation table entry.

• The output address of the translation.

For an Address size fault generated because the TTBR_ELx used for the translation has nonzero address bits above
the output address size, the reported fault code indicates a fault at level 0. Otherwise, the reported fault code
indicates the lookup level at which the fault occurred.

A data or unified cache maintenance by VA instruction can generate an Address size fault, except that:

• If the Point of Coherency is before any level of cache, it is IMPLEMENTATION DEFINED whether a data or
unified cache maintenance by VA instruction can generate an Address size fault.

• If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether a data
or unified cache clean by VA to the Point of Unification instruction can generate an Address size fault.

It is IMPLEMENTATION DEFINED whether an instruction cache invalidate by VA operation can generate an Address
size fault.

The architecture guarantees that any translation table entry that causes an Address size fault is not cached, meaning
the TLB never holds such an entry. Therefore, when an Address size fault occurs, the fault handler does not have to
perform any TLB maintenance instructions to remove the faulting entry.

For more information on Address size faults, see Output address size on page D5-2690.

External abort on a translation table walk

An External abort on a translation table walk can be either synchronous or asynchronous. An External abort on a
translation table walk is reported:

• If the External abort is synchronous, using:

— A synchronous Instruction Abort exception if the translation table walk is for an instruction fetch.

— A synchronous Data Abort exception if the translation table walk is for a data access.

• If the External abort is asynchronous, using the SError interrupt exception.
D5-2802 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.8 VMSAv8-64 memory aborts
Behavior of External aborts on a translation table walk caused by address translation instructions

The address translation instructions summarized in Address translation instructions on page C5-401 require
translation table walks. An External abort can occur in the translation table walk. This is reported as follows:

• If the External abort is synchronous, using a synchronous Data Abort exception.

• If the External abort is asynchronous, using the SError interrupt exception.

For more information, see Synchronous faults generated by address translation instructions on page D5-2737.

Access flag fault

An Access flag fault can be generated at any level of lookup, and the reported fault code identifies the lookup level.
An Access flag fault is generated only if a Translation Table descriptor with the Access flag bit set to 0 is used.

For more information about the Access flag bit, see VMSAv8-64 Translation Table format descriptors on
page D5-2739.

The architecture guarantees that any translation table entry that causes an Access flag fault is not cached, meaning
the TLB never holds such an entry. Therefore, when an Access flag fault occurs, the fault handler does not have to
execute any TLB maintenance instructions to remove the faulting entry.

Whether any cache maintenance by VA instructions can generate Access flag faults is IMPLEMENTATION DEFINED.

For more information, see The Access flag on page D5-2765.

D5.8.2 The MMU fault-checking sequence

This section describes the MMU checks made for the memory accesses required for instruction fetches and for
explicit memory effects:

• If an instruction fetch faults, it generates an Instruction Abort.

• If a data memory access faults, it generates a Data Abort.

MMU fault checking is performed for each stage of address translation.

The fault-checking sequence shows a translation from an Input address to an Output address. For more information
about this terminology, see About address translation and supported input address ranges on page D5-2686.

Note

The descriptions in this section do not include the possibility that the attempted address translation generates a TLB
conflict abort, as described in TLB conflict aborts on page D5-2814.

Types of MMU faults on page D5-2800 describes the faults that an MMU fault-checking sequence can report.

Figure D5-18 on page D5-2804 shows the process of fetching a descriptor from the translation table. For the
top-level fetch for any translation, the descriptor is fetched only if the input address passes any required alignment
check. As the figure shows, if the translation is stage 1 of the Secure or Non-secure EL1&0 translation regime, when
EL2 is enabled, then the descriptor address is in the IPA address space, and is subject to a stage 2 translation to obtain
the required PA. This stage 2 translation requires a recursive entry to the fault checking sequence.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2803
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.8 VMSAv8-64 memory aborts
Figure D5-18 Fetching the descriptor in a VMSAv8-64 translation table walk

Figure D5-19 on page D5-2805 shows the full VMSA fault checking sequence, including the alignment check on
the initial access.

Descriptor address

Translate address.
Descriptor address is input

address for stage 2
translation A1

Fault checking sequence,
for stage 2 translation

A2

Returns descriptor PA

Fetch descriptor

No

Yes
Synchronous

External
abort ?

Synchronous
External abort on
translation table

walk or hardware
update of

translation table

Is this address an IPA for a
Non-secure EL0 or EL1 access?

Return descriptor

No

Translation
Required?

Yes
D5-2804 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.8 VMSAv8-64 memory aborts
Figure D5-19 VMSAv8-64 fault checking sequence

Input address

Alignment
check?

Fetch descriptor ‡

No

Table
entry

?

Check address alignment

Misaligned
?

Yes Alignment
fault

Check access permissions

Violation
?

Output address

Yes

Descriptor
valid?

Translation
faultNo

No

Yes Permission
fault

A1†

A2†

No

Alignment
fault

Alignment
valid

?

No

AF bit
== 0

?

Access flag
faultYes

Translatable
?

No Translation
faultYesGet translation table base address

Address
size valid

?

Address
size faultNo

Yes

Yes

Address
size valid

?

Address
size faultNo

Yes

No

No

Yes

See 3

See 4

Yes

See 1

See 2

1 Is the access subject to an alignment check?

2 Does the address map to a TTBR?

3 Not permitted at the lowest lookup level

4 Fault any unaligned access to Device memory

‡ See Fetching the descriptor flowchart

† Links to and from Fetching the descriptor flowchart
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2805
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.8 VMSAv8-64 memory aborts
Stage 2 fault on a stage 1 translation table walk

On performing a translation table walk for the stage 1 translations, the descriptor addresses must be translated from
IPA to PA, using a stage 2 translation. This means that a memory access made as part of a stage 1 translation table
lookup might generate, on a stage 2 translation:

• A Translation fault, Access flag fault, or Permission fault.

• A synchronous External abort on the memory access.

If SCR_EL3.EA is set to 1, a synchronous External abort is taken to EL3. Otherwise, these faults are reported as
stage 2 memory aborts. ESR_EL2.ISS[7] is set to 1, to indicate a stage 2 fault during a stage 1 translation table walk,
and the part of the ISS field that might contain details of the instruction is invalid. For more information, see Use of
the ESR_EL1, ESR_EL2, and ESR_EL3 on page D1-2478.

Alternatively, a memory access made as part of a stage 1 translation table lookup might target an area of memory
with the Device attribute assigned on the stage 2 translation of the address accessed. When the HCR_EL2.PTW bit
is set to 1, such an access generates a stage 2 Permission fault.

Note

On most systems, such a mapping to Device memory on the stage 2 translation is likely to indicate a Guest OS error,
where the stage 1 translation table is corrupted. Therefore, it is appropriate to trap this access to the hypervisor.

A TLB might hold entries that depend on the effect of HCR_EL2.PTW. Therefore, if HCR_EL2.PTW is changed
without changing the current VMID, the TLBs must be invalidated before executing in EL1 or EL0 state.

A cache maintenance instruction executed at EL1 or EL0 can cause a stage 1 translation table walk that might
generate a stage 2 Permission fault as described in this section. However:

• If the Point of Coherency is before any level of cache, it is IMPLEMENTATION DEFINED whether a cache
maintenance by VA instruction can generate a Permission fault in this way.

• If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether a data
or unified cache clean by VA to the Point of Unification instruction can generate a Permission fault in this
way.

• It is IMPLEMENTATION DEFINED whether an instruction cache invalidation by VA instruction can generate a
Permission fault in this way.

Note

This is an exception to the general rule that a cache maintenance instruction cannot generate a Permission fault.

The level associated with MMU faults

For MMU faults, Table D5-53 on page D5-2806 shows how the LL bits in the ESR_ELx.STATUS fields encode the
lookup level associated with the fault.

The lookup level associated with a fault is:

• For a fault generated on a translation table walk, the lookup level of the walk being performed.

Table D5-53 Use of LL bits to encode the lookup level at which the fault occurred

LL bits Meaning

00 Level 0 of translation or translation table base register.

01 Level 1.

10 Level 2.

11 Level 3. When xFSR.STATUS indicates a Domain fault, this value is reserved.
D5-2806 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.8 VMSAv8-64 memory aborts
• For a Translation fault, the lookup level of the translation table that gave the fault. If a fault occurs because
a stage of address translation is disabled, or because the input address is outside the range specified by the
appropriate base address register or registers, or because FEAT_E0PD is enabled and prevents access to the
translation table, the fault is reported as a level 0 fault.

• For an Access flag fault, the lookup level of the translation table that gave the fault.

• For a Permission fault, including a Permission fault caused by hierarchical permissions, the lookup level of
the final level of translation table accessed for the translation. That is, the lookup level of the translation table
that returned a Block or Page descriptor.

Also see Synchronous External aborts from address translation caching structures on page D5-2809

D5.8.3 AArch64 state prioritization of synchronous aborts from a single stage of address translation

Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2490 describes the
prioritization of exceptions taken to an Exception level that is using AArch64. This section gives additional
information about the prioritization of MMU faults from VMSAv8-64 translation regimes.

Note

The priority numbering in this list only shows the relative priorities of aborts from a single stage of address
translation in a VMSAv8-64 translation regime. This numbering has no global significance and, for example, does
not correlate with the equivalent AArch32 list in AArch32 state prioritization of synchronous aborts from a single
stage of address translation on page G5-6364.

For a single stage of translation in a VMSAv8-64 translation regime, the following numbered list shows the priority
of the possible memory management faults on a memory access. In this list:

• For memory accesses that undergo two stages of translation, the italic entries show where the faults from the
stage 2 translation can occur. A stage 2 fault within a stage 1 translation table walk follows the same
prioritization of faults:

• For synchronous External aborts from translation table walks, see also Synchronous External aborts from
address translation caching structures on page D5-2809.

The prioritization between the stage 2 permission failure on the stage 1 translation table walk and the stage 1 abort
generated by the stage 1 translation table entry is IMPLEMENTATION DEFINED if all the following are true:

• Stage 1 hardware updating of either access or dirty information is enabled.

• A stage 1 translation table entry results in the stage 1 translation table entry having the access or dirty bit
updated.

• The stage 1 translation table entry has stage 2 read permission but not stage 2 write permission.

• The stage 1 translation entry generates an abort (which might be one of an address size fault, an alignment
fault caused by memory type or a Permission fault).

The priority order, from highest priority to lowest priority, is:

1. Alignment fault not caused by memory type. This is possible for a stage 1 translation only.

2. Translation fault due to the input address being out of the address range to be translated or requiring a
TTBR_ELx that is disabled. This includes VTCR_EL2.SL0 being inconsistent with VTCR_EL2.T0SZ,
VSTCR_EL2.SL0 being inconsistent with VSTCR_EL2.T0SZ, or SL0 programmed to a reserved value. If
the Effective value of VTCR_EL2.DS is 1, this includes VTCR_EL2.SL2 being inconsistent with
VTCR_EL2.T0SZ, VSTCR_EL2.SL2 being inconsistent with VSTCR_EL2.T0SZ, or SL2 programmed to a
reserved value.

3. Address size fault on a TTBR_ELx caused by either:

• The check on TCR_EL1.IPS, TCR_EL2.{I}PS, TCR_EL3.PS, or VTCR_EL2.PS.

• The PA being out of the range implemented.

4. Second stage abort on a level -1 memory access of a a stage 1 table walk. When stage 2 address translation
is enabled this includes an Address size fault caused by the PA being out of the range implemented. This is a
second stage abort during a first stage translation table walk.

5. Synchronous parity or ECC error on a level -1 lookup of a translation table walk.

6. Synchronous External abort on a level -1 lookup level of a translation table walk.

7. Translation fault on a level -1 translation table entry.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2807
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.8 VMSAv8-64 memory aborts
8. Address size fault a level -1 lookup translation table entry caused by either:

• The check on TCR_EL1.IPS, TCR_EL2.{I}PS, TCR_EL3.PS, or VTCR_EL2.PS.

• The output address being out of the range implemented.

9. Second stage abort on a level 0 memory access of a a stage 1 table walk. When stage 2 address translation
is enabled this includes an Address size fault caused by the PA being out of the range implemented. This is a
second stage abort during a first stage translation table walk.

10. Synchronous parity or ECC error on a level 0 lookup of a translation table walk.

11. Synchronous External abort on a level 0 lookup level of a translation table walk.

12. Translation fault on a level 0 translation table entry.

13. Address size fault a level 0 lookup translation table entry caused by either:

• The check on TCR_EL1.IPS, TCR_EL2.{I}PS, TCR_EL3.PS, or VTCR_EL2.PS.

• The output address being out of the range implemented.

14. Second stage abort on a level 1 memory access of a a stage 1 table walk. When stage 2 address translation
is enabled this includes an Address size fault caused by the PA being out of the range implemented. This is a
second stage abort during a first stage translation table walk.

15. Synchronous parity or ECC error on a level 1 lookup of a translation table walk.

16. Synchronous External abort on a level 1 lookup level of a translation table walk.

17. Translation fault on a level 1 translation table entry.

18. Address size fault on a level 1 lookup translation table entry caused by either:

• The check on TCR_EL1.IPS, TCR_EL2.{I}PS, TCR_EL3.PS, or VTCR_EL2.PS.

• The output address being out of the range implemented.

19. Second stage abort on a level 2 memory access of a a stage 1 table walk. When stage 2 address translation
is enabled this includes an Address size fault caused by the PA being out of the range implemented. This is a
second stage abort during a first stage translation table walk.

20. Synchronous parity or ECC error on a level 2 lookup of a translation table walk.

21. Synchronous External abort on a level 2 lookup level of a translation table walk.

22. Translation fault on a level 2 translation table entry.

23. Address size fault on a level 2 lookup translation table entry caused by either:

• The check on TCR_EL1.IPS, TCR_EL2.{I}PS, TCR_EL3.PS, or VTCR_EL2.PS.

• The output address being out of the range implemented.

24. Second stage abort on a level 3 memory access of a a stage 1 table walk. When stage 2 address translation
is enabled this includes an Address size fault caused by the PA being out of the range implemented. This is a
second stage abort during a first stage translation table walk.

25. Synchronous parity or ECC error on a level 3 lookup of a translation table walk.

26. Synchronous External abort on a level 3 lookup level of a translation table walk.

27. Translation fault on a level 3 translation table entry.

28. Address size fault on a level 3 lookup translation table entry caused by either:

• The check on TCR_EL1.IPS, TCR_EL2.{I}PS, TCR_EL3.PS, or VTCR_EL2.PS.

• The output address being out of the range implemented.

29. Access Flag fault.

30. Alignment fault caused by the memory type.

31. Permission fault.

32. A fault from the stage 2 translation of the memory access. When stage 2 address translation is enabled this
includes an Address size fault caused by the PA being out of the range implemented.

33. Synchronous parity or ECC error on the memory access.

34. Synchronous External abort on the memory access.

Note
• The prioritization of TLB Conflict aborts is IMPLEMENTATION DEFINED, as the exact cause of these aborts

depends on the form of TLBs implemented. However, the TLB conflict abort must have higher priority than
any abort that depends on a value held in the TLB.

• The prioritization of IMPLEMENTATION DEFINED MMU faults for a Load-Exclusive or Store-Exclusive to an
unsupported memory type is IMPLEMENTATION DEFINED.
D5-2808 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.8 VMSAv8-64 memory aborts
• The prioritization of an unsupported atomic hardware update MMU fault is IMPLEMENTATION DEFINED to be
at a point between immediately before the priority of an Access Flag fault generated by the same stage of
translation as the stage of this MMU fault, and immediately after the priority of a Permission fault generated
by the same stage of translation as the stage of this MMU fault.

Synchronous External aborts from address translation caching structures

A caching structure used for caching translation table walks might support:

• An arbitrary number of levels of translation table lookup.

• One or more stages of translation, that might not correspond to the stages of an address translation lookup.

This might mean that, on a synchronous External aborts arising from the caching structure, including parity or ECC
errors, the PE cannot precisely determine one or both of the translation stage and level of lookup at which the error
occurred. In this case:

• If the PE cannot determine precisely the translation stage at which the error occurred, it is reported and
prioritized as a stage 1 error.

• If the PE cannot determine precisely the lookup level at which the error occurred, the level is reported and
prioritized as either:

— The lowest-numbered level that could have given rise to the error.

— Level 0 if it the PE cannot determine any information about the level.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2809
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.9 Translation Lookaside Buffers (TLBs)
D5.9 Translation Lookaside Buffers (TLBs)

Translation Lookaside Buffers (TLBs) reduce the average cost of a memory access by caching the results of
translation table walks. TLBs behave as caches of the translation table information, and the VMSA provides TLB
maintenance instructions for the management of TLB contents.

Note

The Arm architecture permits TLBs to hold any translation table entry that does not directly cause a Translation
fault, an Address size fault, or an Access flag fault.

The following sections describe the architectural requirements for Translation Lookaside Buffers (TLBs) and their
maintenance:

• Use of ASIDs and VMIDs to reduce TLB maintenance requirements on page D5-2810.

• About Armv8 Translation Lookaside Buffers (TLBs) on page D5-2812.

• TLB maintenance requirements and the TLB maintenance instructions on page D5-2816.

In these descriptions, TLB entries for a translation regime for a particular Exception level are out of context when
executing at a higher Exception level.

Note

In addition to the functions described in this section, the TLB might cache information from control registers that
are described as being “permitted to be cached in a TLB”, even when any or all of the stages of translation are
disabled. This caching of information gives rise to the maintenance requirements described in General TLB
maintenance requirements on page D5-2816.

D5.9.1 Use of ASIDs and VMIDs to reduce TLB maintenance requirements

To reduce the need for TLB maintenance on context switches, the lookups from some translation regimes can be
associated with an ASID, or with an ASID and a VMID, as follows:

ASID For stage 1 of a translation regime that can support two VA ranges the VMSA can distinguish
between Global pages and Process-specific pages. The ASID identifies pages associated with a
specific process and provides a mechanism for changing process-specific tables without having to
maintain the TLB structures.

For these stage 1 translations, each of TTBR0_ELx and TTBR1_ELx has a valid ASID field, and
TCR_ELx.A1 determines which of these holds the current ASID.

Note
The selected ASID applies regardless of which set of translation tables are used. For example, when
the value of TCR_ELx.A1 is 0, any translation table lookup using this stage of translation is
associated with the ASID from TTBR0_ELx.ASID, regardless of whether the translation lookup
uses TTBR0_ELx or TTBR1_ELx.

See also ASID size on page D5-2811 and Global and process-specific translation table entries on
page D5-2813.

For a symmetric multiprocessor cluster where a single operating system is running on the set of
processing elements, the Arm architecture requires all ASID values to be assigned uniquely within
any single Inner Shareable domain. In other words, each ASID value must have the same meaning
to all processing elements in the system.

VMID For the Secure or Non-secure EL1&0 translation regime, when EL2 is enabled, the VMID identifies
the current virtual machine, with its own independent ASID space. The TLB entries include this
VMID information, meaning TLBs do not require explicit invalidation when changing from one
virtual machine to another if the virtual machines have different VMIDs.

VTTBR_EL2.VMID holds the current VMID.
D5-2810 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.9 Translation Lookaside Buffers (TLBs)
Common not private translations

In an implementation that includes FEAT_TTCNP, multiple PEs in the same Inner Shareable domain can use the
same translation table entries for a given stage of translation in a particular translation regime. This sharing is
enabled by the TTBR_ELx.CnP field for the stage of address translation.

When the value of a TTBR_ELx.CnP field is 1, translation table entries pointed to by that TTBR_ELx are shared
with all other PEs in the Inner Shareable domain for which the following conditions are met:

• The corresponding TTBR_ELx.CnP field has the value 1.

• That TTBR_ELx relates to the same translation regime.

Note
— For TTBR0_EL1 the current Security state determines whether the register relates to the Secure

EL1&0, when EL2 is disabled, translation regime, or to the Non-secure EL1&0, when EL2 is enabled,
translation regime.

— For TTBR0_EL2 the value of HCR_EL2.E2H determines whether the register relates to the EL2
translation regime, or to the EL2&0 translation regime.

• If an ASID applies to the stage of translation corresponding to that TTBR_ELx then the current ASID value
must be the same for all of the PEs that are sharing entries for any translation table entry that is not global or
not leaf level.

• If a VMID applies to the stage of translation corresponding to that TTBR_ELx then the current VMID value
must be the same for all of the PEs that are sharing entries.

For all PEs that are sharing translation table entries for a stage of translation, all system registers bits that apply to
that stage of translation and that are described as being permitted to be cached in a TLB must be the same for all the
PEs that are sharing the translation table entry. If this condition is not met by software then it is CONSTRAINED
UNPREDICTABLE whether or not the value of such a control bit that has a different value between PEs, interpreted
by a PE, called PE1 here, takes the value configured for:

• The system register bit of PE1.

• The system register bit of one of the PEs that is sharing the translation table entry.

For a translation regime with both stage 1 and stage 2 translations, where a TLB holds only stage 1 translation tables
or where a TLB combines information from stage 1 and stage 2 translation table entries into a single entry, this entry
can be shared between different PEs only if the value of the TTBR_ELx.CnP bit is 1 for both stage 1 and stage 2 of
the translation table walk.

The TTBR_ELx.CnP bit can be cached in a TLB.

For a given TTBR_ELx, if the value of TTBR_ELx.CnP is 1 on multiple PEs in the same Inner Shareable domain,
and those PEs meet the other conditions for sharing translation table entries as defined in this section, but those
TTBR_ELxs do not point to the same translation table entries, then the system is misconfigured, and performing an
address translation using that TTBR_ELx:

• Might generate multiple hits in the TLB, and as a result generate an exception that is reported using the TLB
conflict fault code, see TLB conflict aborts on page D5-2814.

• Otherwise, has a CONSTRAINED UNPREDICTABLE result, as described in CONSTRAINED UNPREDICTABLE
behaviors due to caching of control or data values on page K1-8409.

ASID size

In VMSAv8-64, the ASID size is an IMPLEMENTATION DEFINED choice of 8 bits or 16 bits, and
ID_AA64MMFR0_EL1.ASIDBits identifies the supported size.

When an implementation supports a 16-bit ASID, TCR_ELx.AS selects whether the top 8 bits of the ASID are used.

When the value of TCR_ELx.AS is 0, ASID[15:8]:

• Are ignored by hardware for every purpose other than direct reads of TTBR0_ELx.ASID and
TTBR1_ELx.ASID.

• Are treated as if they are all zeros when used for allocating and matching entries in the TLB.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2811
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.9 Translation Lookaside Buffers (TLBs)
Note

VMSAv8-32 uses an 8-bit ASID. For backwards compatibility, when executing using translations controlled from
an Exception level that is using AArch32, the ASID size remains at 8 bits. If the implementation supports 16-bit
ASIDs, the 8-bit ASID used is zero-extended to 16 bits.

VMID size

From Armv8.1, the VMID size is an IMPLEMENTATION DEFINED choice of 8 bits or 16 bits, and
ID_AA64MMFR1_EL1.VMIDBits identifies the supported size.

When FEAT_VMID16 is implemented, VTTBR_EL2[63:48] contains the 16-bit VMID.

When an implementation supports a 16-bit VMID, VTCR_EL2.VS selects whether the top 8 bits of the VMID are
used.

When the value of VTCR_EL2.VS is 0, VMID[63:56]:

• Are ignored by hardware for every purpose other than reads of ID_AA64MMFR1_EL1.

• Are treated as if they are all zeros when used for allocating and matching entries in the TLB.

FEAT_VMID16 is only supported when EL2 is using AArch64.

D5.9.2 About Armv8 Translation Lookaside Buffers (TLBs)

Translation Lookaside Buffers (TLBs) are an implementation technique that caches translations or translation table
entries. TLBs avoid the requirement for every memory access to perform a translation table walk in memory. The
Arm architecture does not specify the exact form of the TLB structures for any design. In a similar way to the
requirements for caches, the architecture only defines certain principles for TLBs:

• The architecture has a concept of an entry locked down in the TLB. The method by which lockdown is
achieved is IMPLEMENTATION DEFINED, and an implementation might not support lockdown.

• The architecture does not guarantee that an unlocked TLB entry remains in the TLB.

• The architecture guarantees that a locked TLB entry remains in the TLB. However, a locked TLB entry might
be updated by subsequent updates to the translation tables. Therefore, when a change is made to the
translation tables, the architecture does not guarantee that a locked TLB entry remains incoherent with an
entry in the translation table.

• The architecture guarantees that a translation table entry that generates a Translation fault, an Address size
fault, or an Access flag fault is not held in the TLB. However a translation table entry that generates a
Permission fault might be held in the TLB.

• When address translation is enabled, any translation table entry that does not generate a Translation fault, an
Address size fault, or an Access flag fault and is not from a translation regime for an Exception level that is
lower than the current Exception level can be allocated to a TLB at any time. The only translation table entries
guaranteed not to be held in a TLB are those that generate a Translation fault, an Address size fault, or an
Access flag fault.

Note
A TLB can hold a translation table entry that does not itself generate a Translation fault but that points to a
subsequent table in the translation table walk. This is referred to as intermediate caching of TLB entries.

• Software can rely on the fact that between disabling and re-enabling a stage of address translation, entries in
the TLB relating to that stage of translation have not have been corrupted to give incorrect translations.

The following sections give more information about TLB implementation:

• Global and process-specific translation table entries on page D5-2813.

• TLB matching on page D5-2813.

• TLB behavior at reset on page D5-2814.

• TLB lockdown on page D5-2814.

• TLB conflict aborts on page D5-2814.

See also TLB maintenance requirements and the TLB maintenance instructions on page D5-2816.
D5-2812 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.9 Translation Lookaside Buffers (TLBs)
Global and process-specific translation table entries

In a VMSA implementation, system software can divide the virtual memory map used by a stage of translation that
can support two VA ranges into global and non-global regions, indicated by the nG bit in the Translation Table
descriptors:

nG == 0 The translation is global, meaning the region is available for all processes.

nG == 1 The translation is non-global, or process-specific, meaning it relates to the current ASID, as defined
by:

• TTBR0_ELx.ASID, if the value of TCR_ELx.A1 is 0.

• TTBR1_ELx.ASID, if the value of TCR_ELx.A1 is 1.

As indicated by the nG field definitions, each non-global region has an associated ASID. These identifiers mean
different translation table mappings can co-exist in a caching structure such as a TLB. This means that software can
create a new mapping of a non-global memory region without removing previous mappings.

Note
• The selected ASID applies to the translation of any address for which the value of the nG bit is 1, regardless

of whether the address is translated based on TTBR0_ELx or on TTBR1_ELx.

• In an implementation that does not include FEAT_VHE, the only stage of translation that can support two
VA ranges is stage 1 of the EL1&0 translation regime. In an implementation that includes FEAT_VHE stage
1 of the EL2&0 translation regime also can support two VA ranges.

ASIDs are supported only when stage 1 translations can support two VA ranges. Stage 2 translations, and stage 1
translations that can support only a single VA range do not support ASIDs, and all descriptors in these regimes are
treated as global.

In a translation regime that supports global and non-global translations, translation table entries from lookup levels
other than the final level of lookup are treated as being non-global, regardless of the value of the nG bit.

When a PE is using the VMSAv8-64 translation table format which supports both global and non-global entries, and
is in Secure state, a stage 1 translation must be treated as non-global, regardless of the value of the nG bit, if NSTable
is set to 1 at any level of the translation table walk.

For more information, see Control of Secure or Non-secure memory access on page D5-2753.

TLB matching

A TLB is a hardware caching structure for translation table information. Like other hardware caching structures, it
is mostly invisible to software. However, there are some situations where it can become visible. These are associated
with coherency problems caused by an update to the translation table that has not been reflected in the TLB. Use of
the TLB maintenance instructions described in TLB maintenance requirements and the TLB maintenance
instructions on page D5-2816 can prevent any TLB incoherency becoming a problem.

A particular case where the presence of the TLB can become visible is if the translation table entries that are in use
under a particular ASID and VMID are changed without suitable invalidation of the TLB. This can occur only if the
architecturally-required break-before-make sequence described in Using break-before-make when updating
translation table entries on page D5-2818 is not used. If the break-before make sequence is not used, the TLB can
hold two mappings for the same address, and this:

• Might generate an exception that is reported using the TLB conflict fault code, see TLB conflict aborts on
page D5-2814.

• Might lead to CONSTRAINED UNPREDICTABLE behavior. In this case, behavior will be consistent with one of
the mappings held in the TLB, or with some amalgamation of the values held in the TLB, but cannot give
access to regions of memory with permissions or attributes that could not be assigned by valid translation
table entries in the translation regime being used for access. In addition, where all the entries being
amalgamated come from Non-secure memory, the amalgamation cannot give rise to an output address that
accesses Secure memory. For more information, see CONSTRAINED UNPREDICTABLE behaviors due to
caching of control or data values on page K1-8409.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2813
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.9 Translation Lookaside Buffers (TLBs)
TLB behavior at reset

The Arm architecture does not require a reset to invalidate the TLBs. The architecture recognizes that an
implementation might require caches, including TLBs, to maintain their contents over a system reset. Possible
reasons for doing so include power management and debug requirements.

Therefore, for Armv8:

• All TLBs reset to an IMPLEMENTATION DEFINED state that might be UNKNOWN.

• All TLBs are disabled from reset. All stages of address translation are disabled from reset, and the contents
of the TLBs have no effect on address translation. For more information, see Controlling address translation
stages on page D5-2688.

• An implementation can require the use of a specific TLB invalidation routine, to invalidate the TLB arrays
before they are enabled after a reset. The exact form of this routine is IMPLEMENTATION DEFINED, but if an
invalidation routine is required it must be documented clearly as part of the documentation of the device.

Arm recommends that if an invalidation routine is required for this purpose, the routine is based on the TLB
maintenance instructions described in TLB maintenance instructions on page D5-2819.

Similar rules apply to cache behavior, see Behavior of caches at reset on page D4-2643.

TLB lockdown

The Arm architecture recognizes that any TLB lockdown scheme is heavily dependent on the microarchitecture,
making it inappropriate to define a common mechanism across all implementations. This means that:

• VMSAv8-64 does not require TLB lockdown support.

• If TLB lockdown support is implemented, the lockdown mechanism is IMPLEMENTATION DEFINED. However,
key properties of the interaction of lockdown with the architecture must be documented as part of the
implementation documentation.

This means that a region of the System instruction encoding space is reserved for IMPLEMENTATION DEFINED
functions, see Reserved encodings for IMPLEMENTATION DEFINED registers on page D12-3038. An
implementation might use some of these encodings to implement TLB lockdown functions. These functions might
include:

• Unlock all locked TLB entries.

• Preload into a specific level of TLB. This is beyond the scope of the PLI and PLD hint instructions.

In an implementation that includes EL2, exceptions generated as a result of TLB lockdown when executing in EL1
or EL0 state can be routed to either:

• EL1, as a Data Abort exception.

• EL2, as a Hyp Trap exception.

For more information, see Traps to EL2 of EL0 and EL1 accesses to lockdown, DMA, and TCM operations on
page D1-2523.

TLB conflict aborts

If an address matches multiple entries in the TLB, it is IMPLEMENTATION DEFINED whether a TLB conflict abort is
generated.

Note

An address can hit multiple entries in the TLB if the TLB has been invalidated inappropriately, for example if TLB
invalidation required by the architecture has not been performed.

An implementation can generate TLB conflict aborts on either or both instruction fetches and data accesses. A TLB
conflict abort:

• On an instruction fetch is reported as an Instruction Abort, see ISS encoding for an exception from an
Instruction Abort on page D13-3170.

• On a data access is reported as a Data Abort, see ISS encoding for an exception from a Data Abort on
page D13-3219.
D5-2814 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.9 Translation Lookaside Buffers (TLBs)
Armv8 defines the Fault status encoding of 0b110000 for TLB conflict aborts. On a TLB conflict abort, the returned
syndrome includes the address that generated the fault. That is, it includes the address that was being looked up in
the TLB.

It is IMPLEMENTATION DEFINED whether a TLB conflict abort is a stage 1 abort or a stage 2 abort.

Note

A stage 2 abort cannot be generated if stage 2 of the Secure or Non-secure EL1&0, when EL2 is enabled, translation
regime is disabled.

The priority of the TLB conflict abort is IMPLEMENTATION DEFINED, because it depends on the form of a TLB that
can generate the abort. However, the TLB conflict abort must have higher priority than any abort that depends on a
value held in the TLB.

If an address matches multiple entries in the TLB and no TLB conflict abort is generated, the resulting behavior is
CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of control or
data values on page K1-8409. The CONSTRAINED UNPREDICTABLE behavior must not permit access to regions of
memory with permissions or attributes that mean they cannot be accessed in the current Security state at the current
Exception level.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2815
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.10 TLB maintenance requirements and the TLB maintenance instructions
D5.10 TLB maintenance requirements and the TLB maintenance instructions

Translation Lookaside Buffers (TLBs) are an implementation mechanism that caches translations or translation
table entries. The Arm architecture does not specify the form of any TLB structures, but defines the mechanisms by
which TLBs can be maintained. The following sections describe the VMSA TLB maintenance instructions:

• General TLB maintenance requirements on page D5-2816.

• TLB maintenance instructions on page D5-2819.

See also Atomicity of register changes on changing virtual machine on page D5-2697.

D5.10.1 General TLB maintenance requirements

TLB maintenance instructions provide a mechanism for invalidating entries from TLB caching structures to ensure
that changes to the translation tables are reflected correctly in those TLB caching structures.

The architecture permits the caching of any translation table entry that has been returned from memory without a
fault, provided that the entry does not, itself, cause a Translation fault, an Address size fault, or an Access Flag fault.
This means that the entries that can be cached include:

• Entries in translation tables that point to subsequent tables to be used in that stage of translation.

• Stage 2 translation table entries used as part of a stage 1 translation table walk.

• Stage 2 translation table entries used to translate the output address of the stage 1 translation.

Such entries might be held in intermediate TLB caching structures that are used during a translation table walk and
that are distinct from the data caches in that they are not required to be invalidated as the result of writes of the data.
The architecture makes no restriction on the form of these intermediate TLB caching structures when these caches
are indexed by their input address. The architecture does not restrict having either:

• Translation table entry caching that is indexed by the physical address of the location holding the translation
table entry.

• Translation table entry caching that is used for stage 1 translations and is indexed by the intermediate physical
address of the location holding the translation table entry. However, FEAT_nTLBPA allows software
discoverability of whether such caches exist, such that if FEAT_nTLBPA is implemented, such caching is not
implemented.

If all of the following are true, a TLB maintenance instruction will ensure that any physical address or intermediate
physical address indexed cached copies of translation table entries are invalidated for a PE:

• The TLB maintenance instruction applies to that PE with the context information that is relevant to
translation table entry caching that is either:

— Indexed by the physical address of the location holding the translation table entry.

— Stage 1 translation information that is indexed by the intermediate physical address of the location
holding the translation table entry.

• FEAT_nTLBPA is not implemented.

Note

Any TLB caching based on the physical address or intermediate physical address obeys the other rules regarding
the caching to TLB entries described in this manner, including restrictions on types of entries that cannot be held in
a TLB, and a requirement that entries held in a TLB are distinguished by context information such as translation
regime, VMID, and ASID.

The architecture does not intend to restrict the form of TLB caching structures used for holding translation table
entries, and in particular for a translation regime that involves two stages of translation, it is recognized that such
caching structures might contain:

• Entries containing information from stage 1 translation table entries, at any level of the translation table walk.

• Entries containing information from stage 2 translation table entries, at any level of the translation table walk.

• Entries that combine information from stage 1 and stage 2 translation table entries, at any level of the
translation table walk.
D5-2816 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.10 TLB maintenance requirements and the TLB maintenance instructions
Note

For the purpose of TLB maintenance, the term TLB entry denotes any structure, including temporary working
registers in translation table walk hardware, that holds a translation table entry.

Where a TLB maintenance instruction is:

• Required to apply to stage 1 entries, then it must apply to any cached entries in caching structures that include
any stage 1 information that are used to translate the address being invalidated.

Note
— Where stage 1 information has been cached in multiple TLB entries, as could occur from splintering

a page when caching in the TLB, then the invalidation must apply to each cached entry containing
stage 1 information from the page that is used to translate the address being invalidated, regardless of
whether or not that cached entry would be used to translate the address being invalidated.

— As stated in Global and process-specific translation table entries on page D5-2813, translation table
entries from levels of translation other than the final level are treated as being non-global. Arm expects
that, in at least some implementations, cached copies of levels of the translation table walk other than
the last level are tagged with their ASID, regardless of whether the final level is global. This means
that TLB invalidations that involve the ASID require the ASID to match such entries to perform the
required invalidation.

• Required to apply to stage 2 entries only, then:

— It is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

— It must apply to caching structures that contain information only from stage 2 translation table entries.

• Required to apply to both stage 1 and stage 2 entries, then it must apply to any entry in the caching structures
that includes information from either a stage 1 translation table entry or a stage 2 translation table entry,
including any entry that combines information from both stage 1 and stage 2 translation table entries.

Whenever translation tables entries associated with a particular VMID or ASID are changed, the corresponding
entries must be invalidated from the TLB to ensure that these changes are visible to subsequent execution, including
speculative execution, that uses the changed translation table entries.

Some System register field descriptions state that the effect of the field is permitted to be cached in a TLB. This
means that all TLB entries that might be affected by a change of the field must be invalidated whenever that field
is changed, to ensure that the effect of the change of that control field is visible to subsequent execution, including
speculative execution, that uses that control field. This invalidation is required in addition to, and after, the normal
synchronization of the System registers described in Synchronization requirements for AArch64 System registers on
page D13-3041, and applies to any stage of address translation that is implemented for the translation regime, and
VMID and ASID as appropriate, that is affected by that control field. A control field that is permitted to be cached
in a TLB requires this maintenance even when all stages of address translation are disabled.

In addition to any TLB maintenance requirement, when changing the cacheability attributes of an area of memory,
software must ensure that any cached copies of affected locations are removed from the caches. For more
information, see Cache maintenance requirement created by changing translation table attributes on
page D5-2837.

Because a TLB never holds any translation table entry that generates a Translation fault, an Address size fault, or
an Access Flag fault, a change from a translation table entry that causes a Translation, Address size, or Access flag
fault to one that does not fault, does not require any TLB invalidation. However, a Context synchronization event is
required to ensure that instruction fetches are affected by a completed change to translation table entries that, before
the change, generated a Translation, Address size, or Access flag fault.

Special considerations apply to translation table updates that change the memory type, cacheability, or output
address of an entry, see Using break-before-make when updating translation table entries on page D5-2818.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2817
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.10 TLB maintenance requirements and the TLB maintenance instructions
Using break-before-make when updating translation table entries

To avoid possibly creating multiple TLB entries for the same address, and to avoid the effects of TLB caching
possibly breaking coherency, single-copy atomicity properties, ordering guarantees or uniprocessor semantics, or
possibly failing to clear the Exclusives monitors, the architecture requires the use of a break-before-make sequence
when changing translation table entries whenever multiple threads of execution can use the same translation tables
and the change to the translation table entries involves any of:

• A change of the memory type, including shareability.

• A change of the cacheability attributes.

• A change of the output address (OA), if the OA of at least one of the old translation table entry and the new
translation table entry is writable, including if the DBM bit is set and hardware updates to the dirty bits are
enabled.

• A change to the size of block used by the translation system. This applies both:

— When changing from a smaller size to a larger size, for example by replacing a table mapping with a
block mapping in a stage 2 translation table.

— When changing from a larger size to a smaller size, for example by replacing a block mapping with a
table mapping in a stage 2 translation table.

• A change of the output address (OA), if the contents of memory at the new OA do not match the contents of
memory at the previous OA.

• Creating a global entry when there might be non-global entries in a TLB that overlap with that global entry.

Note

Changes to the output address (OA) include changing between Secure and Non-secure output addresses.

A break-before-make sequence on changing from an old translation table entry to a new translation table entry
requires the following steps:

1. Replace the old translation table entry with an invalid entry, and execute a DSB instruction.

2. Invalidate the translation table entry with a broadcast TLB invalidation instruction, and execute a DSB
instruction to ensure the completion of that invalidation.

3. Write the new translation table entry, and execute a DSB instruction to ensure that the new entry is visible.

This sequence ensures that at no time are both the old and new entries simultaneously visible to different threads of
execution, and therefore the problems described at the start of this subsection cannot arise.

In Armv8.1, with the introduction of hardware updates to the translation table entries, the effects of not following
the break-before-make rules are extended.

If the break-before-make rules are not followed for changing the translation table entries, the Armv8.1 architecture
permits that the following failures associated with the hardware updates of the translation table entries could occur:

• The Access flag is not set on such a translation table entry despite the fact that the memory location associated
with that entry was accessed.

• The AP[2] or S2AP[1] bit is modified by the hardware on such a translation table entry despite the fact that
the memory location associated with that entry was not written to.

• The AP[2] or S2AP[1] bit is not modified by the hardware on such a translation table entry despite the fact
that the memory location associated with that entry was written to.

• The ordering required between hardware updates to such a translation table entry and stores appearing later
in program order is not followed.

Support levels for changing block size

If FEAT_BBM is implemented, the PE provides three levels of support when changing block size, without changing
any other parameters that require break-before-make:

Level 0 Software must use break-before-make to avoid breaking coherency, ordering guarantees or
uniprocessor semantics, or failing to clear the Exclusives monitors when changing block size. See
Using break-before-make when updating translation table entries on page D5-2818.
D5-2818 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.10 TLB maintenance requirements and the TLB maintenance instructions
Level 1 Software can use the level 0 approach, or software can use the nT block translation entry to avoid
breaking coherency, ordering guarantees or uniprocessor semantics, or failing to clear the
Exclusives monitors when changing block size. See Block translation entry on page D5-2766.

Level 2 Software can use the level 0 or level 1 approach and, in addition, changing block size does not break
coherency, ordering guarantees or uniprocessor semantics, or fail to clear the Exclusives monitors.
If there has not been a TLB invalidation of the entries that have changed since the writes that
changed those entries were completed, this change might cause Conflict aborts. This is because
multiple translation entries might exist within the TLB for the same input address.

In addition, an implementation that uses the level 1 or level 2 approach supports the following without breaking
coherency, ordering guarantees or uniprocessor semantics, or failing to clear the Exclusives monitors:

• A change to a set of blocks or pages from having the Contiguous bit set to having the Contiguous bit not set.

• A change to a set of blocks or pages from having the Contiguous bit not set to having the Contiguous bit set.

If multiple translation entries exist within the TLB for the same input address, this change might cause Conflict
aborts when translating the address.

For level 1 or level 2 support, if the change of block size or contiguous bit gives rise to a Conflict abort, then in a
translation regime for which stage 2 translations are enabled, the Conflict abort is reported to EL2.

Clearing entries associated with a Conflict abort

While using level 1 or level 2 support, on a Conflict abort, the following instructions are guaranteed to clear the
entries associated with the conflict:

• For the EL1&0 translation regime, while stage 2 translations are in use: TLBI VMALLS12E1, TLBI ALLE1.

• For the EL1&0 translation regime, while stage 2 translations are not in use: TLBI VMALLE1, TLBI ALLE1.

• For the EL2&0 translation regime: TLBI VMALLE1, TLBI ALLE1.

• For the EL2 translation regime: TLBI ALLE2.

• For the EL3 translation regime: TLBI ALLE3.

D5.10.2 TLB maintenance instructions

The architecture defines TLB maintenance instructions, which provide the following:

• Invalidate all entries in the TLB.

• Invalidate a single TLB entry by ASID for a non-global entry.

• Invalidate all TLB entries that match a specified ASID.

• Invalidate all TLB entries that match a specified VA, regardless of the ASID.

• Invalidate all TLB entries within a range of addresses.

Each instruction can be specified as applying only to the PE that executes the instruction, or as applying to all PEs
in the same shareability domain as the PE that executes the instruction.

The following subsubsections describe these instructions:

• TLB maintenance instruction syntax on page D5-2820.

• Operation of the TLB maintenance instructions on page D5-2823.

• Scope of the A64 TLB maintenance instructions on page D5-2824.

• TLB range maintenance instructions on page D5-2828.

• Invalidation of TLB entries from stage 2 translations on page D5-2829.

• Broadcast TLB maintenance between AArch32 and AArch64 on page D5-2830.

• Broadcast TLB maintenance with different translation granule sizes on page D5-2831.

• Ordering and completion of TLB maintenance instructions on page D5-2831.

• TLB maintenance in the event of TLB conflict on page D5-2833.

• The interaction of TLB lockdown with TLB maintenance instructions on page D5-2833.

TLB maintenance instructions on page C5-401 describes the encoding of the TLB maintenance instructions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2819
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.10 TLB maintenance requirements and the TLB maintenance instructions
TLB maintenance instruction syntax

The A64 syntax for TLB maintenance instructions is:

TLBI <operation>{, <Xt>}

Where:

<operation> Is one of ALLE1{NXS}, ALLE2{NXS}, ALLE3{NXS}, ALLE1IS{NXS}, ALLE2IS{NXS}, ALLE3IS{NXS},
ALLE1OS{NXS}, ALLE2OS{NXS}, ALLE3OS{NXS}, VMALLE1{NXS}, VMALLE1IS{NXS}, VMALLE1OS{NXS},
VMALLS12E1{NXS}, VMALLS12E1IS{NXS}, VMALLS12E1OS{NXS}, ASIDE1{NXS}, ASIDE1IS{NXS},
ASIDE1OS{NXS}, {R}VA{L}E1{NXS}, {R}VA{L}E2{NXS}, {R}VA{L}E3{NXS}, {R}VA{L}E1IS{NXS},
{R}VA{L}E2IS{NXS}, {R}VA{L}E3IS{NXS}, {R}VA{L}E1OS{NXS}, {R}VA{L}E2OS{NXS}, {R}VA{L}E3OS{NXS},
{R}VAA{L}E1{NXS}, {R}VAA{L}E1IS{NXS}, {R}VAA{L}E1OS{NXS}, {R}IPAS2{L}E1{NXS},
{R}IPAS2{L}E1IS{NXS}, or {R}IPAS2{L}E1OS{NXS}.

<operation> has a structure of {R}<type><level><shareability>{NXS} where:

R When present, indicates that the function applies to all TLBs that are within a
determined address range, see TLB range maintenance instructions on page D5-2828.
When not present, indicates that the function applies to all TLBs at a single address that
contain entries that could be used by the PE that executes the TLBI instruction.

<type> Is one of:

ALL All translations used at <level>.

For the scope of ALL instructions, see ALL on page D5-2824.

The ALL instructions are valid for all values of <level>.

VMALL All stage 1 translations used at <level> with the current VMID, if
appropriate.

For the scope of the VMALL instructions, see VMALL on page D5-2825.

The VMALL instructions are valid only when level == E1.

VMALLS12 All stage 1 and stage 2 translations used at EL1 with the current VMID, if
appropriate.

For the scope of the VMALLS12 instructions, see VMALLS12 on
page D5-2825.

The VMALLS12 instructions are valid only when level == E1.

ASID All translations used at EL1 with the supplied ASID.

For the scope of the ASID instructions, see ASID on page D5-2825.

The ASID instructions are valid only when level == E1.

VA{L} Translations used at <level> for the specified address and, if appropriate, the
specified ASID.

For the scope of the VA instructions, see VA on page D5-2826. For the scope
of the VAL instructions, see VAL on page D5-2826.

The VA{L} instructions are valid for all values of <level>.

VAA{L} Translations used at <level> for the specified address, for all ASID values,
if appropriate.

For the scope of the VAA instructions, see VAA on page D5-2826. For the
scope of the VAAL instructions, see VAAL on page D5-2826.

The VAA{L} instructions are valid only when level == E1.

IPAS2{L} Translations used at <level> for the specified IPA that are held in stage 2
only caching structures.

For the scope of the IPAS2 instructions, see IPAS2 on page D5-2827. For the
scope of the IPAS2L instructions, see IPAS2L on page D5-2827.

The IPAS2{L} instructions are valid only when level == E1.

In the VA{L}, VAA{L}, and IPAS2{L} types:

L An optional parameter that indicates that the invalidation only applies to
caching of entries returned from the final lookup level of the translation
table walk.
D5-2820 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.10 TLB maintenance requirements and the TLB maintenance instructions
<level> Defines the Exception level of the translation regime that the invalidation applies to. Is
one of:

E1 EL1.

E2 EL2.

E3 EL3.

An instruction that applies to the translation regime of an Exception level higher than
the Exception level at which the instruction is executed is UNDEFINED.

TLBI ALLE1{NXS}, TLBI ALLE1IS{NXS}, TLBI ALLE1OS{NXS}, TLBI {R}IPAS2{L}E1{NXS}, TLBI
{R}IPAS2{L}E1IS{NXS}, TLBI {R}IPAS2{L}E1OS{NXS}, TLBI VMALLS12E1{NXS}, TLBI
VMALLS12E1IS{NXS}, and TLBI VMALLS12E1OS{NXS} are UNDEFINED at EL1.

Note
All TLB maintenance instructions are UNDEFINED at EL0.

<shareability>

Is one of:

IS When present, it indicates that the function applies to all TLBs in the Inner
Shareable shareability domain.

OS When present, it indicates that the function applies to all TLBs in the Outer
Shareable shareability domain.

<blank> When no Shareability is present, it indicates that the function applies to all
TLBs that contain entries that could be used by the PE that executes the
TLBI instruction.

Note
When a TLB entry has been invalidated for one PE, it is not consistent with the
architecture to allow another PE to refill that TLB entry where the new entry might give
the appearance to software that the invalidation has not occurred.

NXS When present, indicates that the scope of the TLB maintenance instruction does not
apply to memory transactions with the XS attribute. This parameter is optional and
applies only when FEAT_XS is implemented.

<Xt> Passes one or both of an address and an ASID as an argument, where required. <Xt> is required for
the TLB ASID, TLB VA{L}, TLB VAA{L}, and TLB IPAS2{L} instructions.

If EL2 is not implemented, the TLBI VA{L}E2{NXS}, TLBI VA{L}E2IS{NXS}, TLBI VA{L}E2OS{NXS}, TLBI ALLE2{NXS}, TLBI
ALLE2IS{NXS}, TLBI ALLE2OS{NXS}, TLBI RVA{L}E2{NXS}, TLBI RVA{L}E2IS{NXS}, and TLBI RVA{L}E2OS{NXS} instructions
are UNDEFINED.

VMSAv8-64 TLB maintenance instructions that take a register argument that holds a VA, an ASID, or both, and
that do not apply to a range of addresses, use the register argument format:

Bits[63:48] ASID. These bits are RES0 if the instruction does not require an ASID argument.

Bits[47:44] TTL. Indicates the level of the translation table walk that holds the leaf entry for the address being
invalidated, see Translation table level hints on page D5-2822. This field is RES0 if the instruction
does not require an VA argument, or if FEAT_TTL is not implemented.

Bits[43:0] VA[55:12]. For an instruction that requires a VA argument, the treatment of the low-order bits of
this field depends on the translation granule size, as follows:

4KB granule size All bits are valid and used for the invalidation.

16KB granule size Bits[1:0] RES0 and ignored when the instruction is executed, because
VA[13:12] have no effect on the operation of the instruction.

64KB granule size Bits[3:0] are RES0 and ignored when the instruction is executed, because
VA[15:12] have no effect on the operation of the instruction.

These bits are RES0 if the instruction does not require a VA argument.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2821
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.10 TLB maintenance requirements and the TLB maintenance instructions
For TLB maintenance instructions that take an address argument, hardware interprets VA[63:56] as each having the
same value as VA[55].

If a TLB maintenance instruction targets a translation regime that is using AArch32, meaning the VA is only 32-bit,
then software must treat VA[55:32] as RES0, and these bits are ignored when the instruction is executed.

If the implementation supports 16 bits of ASID then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

VMSAv8-64 TLB maintenance instructions that take a register argument that holds an IPA, and that do not apply to
a range of addresses, use the register argument format:

Bit[63] NS. Specifies the Secure or Non-secure IPA space. This field is RES0 if the instruction is executed
in Non-secure state, or when FEAT_SEL2 is not implemented or is disabled in the current Security
state.

Bits[62:48] RES0.

Bits[47:44] TTL. Indicates the level of the translation table walk that holds the leaf entry for the address being
invalidated, see Translation table level hints on page D5-2822. This field is RES0 if the instruction
does not require an IPA argument, or if FEAT_TTL is not implemented.

Bits[43:40] RES0.

Bits[39:36] IPA[51:48]. Extension to IPA[47:12]. When 52-bit addresses are in use, forms the upper part of the
address value. This field is RES0 if 52-bit addresses are not in use.

Bits[35:0] IPA[47:12]. For an instruction that requires a VA argument, the treatment of the low-order bits of
this field depends on the translation granule size, as follows:

4KB granule size All bits are valid and used for the invalidation.

16KB granule size Bits[1:0] RES0 and ignored when the instruction is executed, because
IPA[13:12] have no effect on the operation of the instruction.

64KB granule size Bits[3:0] are RES0 and ignored when the instruction is executed, because
IPA[15:12] have no effect on the operation of the instruction.

For the register argument format of TLB instructions that apply to a range of addresses, see TLB range maintenance
instructions on page D5-2828.

Translation table level hints

When FEAT_TTL is implemented, the TTL field indicates the level of translation table walk holding the leaf entry
for the address being invalidated. Hardware can use this information to determine if there was a risk of splintering.

If an incorrect value for the entry being invalidated by the instruction is specified in the TTL field, then no entries
are required by the architecture to be invalidated from the TLB.

The TTL field in TLB maintenance instructions that take a register argument that holds a VA or an IPA, and that do
not apply to a range of addresses, use the encodings in Table D5-54 on page D5-2822.

Table D5-54 TTL field encodings in TLB instructions that apply to a single address

TTL[3:2] TTL[1:0] Information supplied

00 RES0 No information supplied about the translation level.
Hardware must assume that the entry can be from any level.

01 00 The entry comes from a 4KB translation granule.
If FEAT_LPA2 is not implemented, this value is reserved, and hardware should treat this as if
TTL[3:2] is 0b00.
If FEAT_LPA2 is implemented, the leaf entry for the address being invalidated is on level 0 of the
translation table walk.

01 The entry comes from a 4KB translation granule.
The leaf entry for the address being invalidated is on level 1 of the translation table walk.

10 The entry comes from a 4KB translation granule.
The leaf entry for the address being invalidated is on level 2 of the translation table walk.
D5-2822 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.10 TLB maintenance requirements and the TLB maintenance instructions
The TTL field in TLB maintenance instructions that take a register argument that holds a VA or an IPA, and apply
to a range of addresses, use the encodings in Table D5-55 on page D5-2823.

Operation of the TLB maintenance instructions

Any TLB maintenance instruction can affect any TLB entries that are not locked down.

The TLB maintenance instructions specify the Exception level of the translation regime to which they apply.

11 The entry comes from a 4KB translation granule.
The leaf entry for the address being invalidated is on level 3 of the translation table walk.

10 00 The entry comes from a 16KB translation granule.
This value is reserved, and hardware should treat this as if TTL[3:2] is 0b00.

01 The entry comes from a 16KB translation granule.
If FEAT_LPA2 is not implemented, this value is reserved, and hardware should treat this as if
TTL[3:2] is 0b00.
If FEAT_LPA2 is implemented, the leaf entry for the address being invalidated is on level 1 of the
translation table walk.

10 The entry comes from a 16KB translation granule.
The leaf entry for the address being invalidated is on level 2 of the translation table walk.

11 The entry comes from a 16KB translation granule.
The leaf entry for the address being invalidated is on level 3 of the translation table walk.

11 00 The entry comes from a 64KB translation granule.
This value is reserved, and hardware should treat this as if TTL[3:2] is 0b00.

01 The entry comes from a 64KB translation granule.
The leaf entry for the address being invalidated is on level 1 of the translation table walk.

10 The entry comes from a 64KB translation granule.
The leaf entry for the address being invalidated is on level 2 of the translation table walk.

11 The entry comes from a 64KB translation granule.
The leaf entry for the address being invalidated is on level 3 of the translation table walk.

Table D5-54 TTL field encodings in TLB instructions that apply to a single address (continued)

TTL[3:2] TTL[1:0] Information supplied

Table D5-55 TTL field encodings in TLB instructions that apply to multiple addresses

TTL Information supplied

00 The entries in the range can be using any level for the translation table entries.

01 When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation
table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value is reserved,
and hardware should treat the TTL field as 0b00.
If FEAT_LPA2 is implemented, when using a 16KB translation granule, all entries to invalidate
are Level 1 translation table entries.

10 All entries to invalidate are Level 2 translation table entries.

11 All entries to invalidate are Level 3 translation table entries.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2823
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.10 TLB maintenance requirements and the TLB maintenance instructions
Note

Because there is no guarantee that an unlocked TLB entry remains in the cache, architecturally it is not possible to
tell whether a TLB maintenance instruction has affected any TLB entries that were not specified by the instruction.

If a TLB maintenance instruction specifies a VA, and a data or instruction access to that VA would generate an MMU
abort, the TLB maintenance instruction does not generate an abort. VAs for which a TLB maintenance instruction
does not generate an abort include VAs that are not in the range of VAs that can be translated.

When EL3 is implemented:

• The TLB maintenance instructions that apply to the EL1&0 translation regime take account of the current
Security state, as part of the address translation required for the TLB operation.

• SCR_EL3.NS modifies the effect of the TLB maintenance instructions as follows:

— For instructions that apply to the EL1&0 translation regime, the SCR_EL3.NS bit identifies whether
the maintenance instructions apply to the Secure or Non-secure EL1&0 translation regime.

Note
If EL3 is not implemented, then there is only a single EL1&0 translation regime.

— When SCR_EL3.EEL2 is 0 instructions that apply to the EL2 translation regime, or to the EL2&0
translation regime, the SCR_EL3.NS bit must be 1 or the instruction is UNDEFINED.

— For instructions that apply to the EL3 translation regime, the SCR_EL3.NS bit has no effect.

Note
• An address-based TLB maintenance instruction that applies to the Inner Shareable domain or the Outer

Shareable domain does so regardless of the Shareability attributes of the address supplied as an argument to
the instruction.

• Previous versions of the Arm architecture included TLB maintenance instructions that operated only on
instruction TLBs, or only on data TLBs. From the introduction of Armv7, Arm deprecated any use of these
instructions. In Armv8:

— AArch64 state does not include any of these instructions.

— AArch32 state includes some of these instructions, but Arm deprecates their use.

The Arm architecture does not dictate the form in which the TLB stores translation table entries. However, when a
TLB maintenance instruction is executed, the minimum size of the table entry that is invalidated from the TLB must
be at least the size that appears in the translation table entry.

Note

The Contiguous bit does not affect the minimum size of entry that must be invalidated from the TLB.

Scope of the A64 TLB maintenance instructions

The TLB invalidation instruction <type> affects the different possible cached entries in the TLB as follows:

ALL The invalidation applies to all cached copies of the stage 1 and stage 2 translation table entries from
any level of the translation table walk required to translate any address at the specified Exception
level, that would be used with the state specified by SCR_EL3.NS and SCR_EL3.EEL2.

For entries from the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime, ALL
applies to entries with any VMID.

For entries from a translation regime for which an ASID is valid, the invalidation applies to:

• All entries above the final level of lookup.

• All entries at the final level of lookup.

Note
This means the invalidation applies to both:

— Global entries.
D5-2824 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.10 TLB maintenance requirements and the TLB maintenance instructions
— Non-global entries with any ASID.

VMALL The invalidation applies to all cached copies of the stage 1 translation table entries, from any level
of the translation table walk required to translate any address at the specified Exception level, that
would be used with all of:

• The Security state specified by SCR_EL3.NS and SCR_EL3.EEL2.

• For the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime, the current
VMID.

For entries from a translation regime for which an ASID is valid that meet the other specified
conditions, the invalidation applies to:

• All entries above the final level of lookup.

• All entries at the final level of lookup.

Note
This means the invalidation applies to both:

— Global entries.

— Non-global entries with any ASID.

VMALL is valid for:

• EL1.

• EL2, when HCR_EL2.{E2H, TGE} is {1, 1}.

VMALLS12 The invalidation applies to all cached copies of the stage 1 and stage 2 translation table entries from
any level of the translation table walk required to translate any address at the specified Exception
level, that would be used with all of:

• The Security state specified by SCR_EL3.NS and SCR_EL3.EEL2.

• For the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime, the current
VMID.

For entries from a translation regime for which an ASID is valid that meet the other specified
conditions, the invalidation applies to:

• All entries above the final level of lookup.

• All entries at the final level of lookup.

Note
This means the invalidation applies to both:

— Global entries.

— Non-global entries with any ASID.

VMALLS12 is valid for EL1.

If EL2 is not implemented, or if the TLBI VMALLS12 instruction is executed when the value of
SCR_EL3.NS is 0 and EL2 is disabled, the instruction is not UNDEFINED but it has the same effect
as TLBI VMALL. This is because there are no stage 2 translations to invalidate.

ASID The invalidation applies to all cached copies of the stage 1 translation table entries from any level
of the translation table walk required to translate any address at the specified Exception level, that
would be used with all of:

• The Security state specified by SCR_EL3.NS and SCR_EL3.EEL2.

• For the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime, the current
VMID.

For entries from a translation regime for which an ASID is valid that meet the other specified
conditions, the invalidation applies only if either:

• The entry is from a level of lookup above the final level and matches the specified ASID.

• The entry is a non-global entry from the final level of lookup and matches the specified
ASID.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2825
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.10 TLB maintenance requirements and the TLB maintenance instructions
ASID is valid for:

• EL1.

• EL2, when HCR_EL2.{E2H, TGE} is {1, 1}.

VA The invalidation applies to all cached copies of the stage 1 translation table entries, from any level
of the translation table walk required to translate the address specified in the invalidation instruction
at the specified Exception level, that would be used with the following:

• The Security state specified by SCR_EL3.NS and SCR_EL3.EEL2.

• The current VMID, for the Secure or Non-secure EL1&0 translation regime, when EL2 is
enabled.

• The current translation regime. For EL2&0 translation regimes, this is determined by
HCR_EL2.E2H.

For entries from a translation regime which has a valid ASID, one of the following must also apply:

• The entry is from a level of lookup above the final level and matches the specified ASID.

• The entry is a global entry from the final level of lookup.

• The entry is a non-global entry from the final level of lookup that matches the specified
ASID.

VAL The invalidation applies to all cached copies of the stage 1 translation table entry, from the final
level of the translation table walk required to translate the address specified in the invalidation
instruction at the specified Exception level, that would be used with the following:

• The Security state specified by SCR_EL3.NS and SCR_EL3.EEL2.

• The current VMID, for the Secure or Non-secure EL1&0 translation regime, when EL2 is
enabled.

• The current translation regime. For EL2&0 translation regimes, this is determined by
HCR_EL2.E2H.

For entries from a translation regime which has a valid ASID, either of the following must also
apply:

• The entry is a global entry from the final level of lookup.

• The entry is a non-global entry from the final level of lookup that matches the specified
ASID.

VAA The invalidation applies to all cached copies of the stage 1 translation table entries, from any level
of the translation table walk required to translate the address specified in the invalidation instruction
at the specified Exception level that would be used with the following:

• The Security state specified by SCR_EL3.NS and SCR_EL3.EEL2.

• The current VMID, for the Secure or Non-secure EL1&0 translation regime, when EL2 is
enabled.

• The current translation regime. For EL2&0 translation regimes, this is determined by
HCR_EL2.E2H.

For entries from a translation regime which has a valid ASID, the invalidation applies to all of the
following:

• All entries above the final level of lookup.

• All entries at the final level of lookup.

Note
This means the invalidation applies to both:

— Global entries.

— Non-global entries with any ASID.

VAAL The invalidation applies to all cached copies of the stage 1 translation table entry, from the final
level of the translation table walk required to translate the address specified in the invalidation
instruction at the specified Exception level that would be used with the following:

• The Security state specified by SCR_EL3.NS and SCR_EL3.EEL2.
D5-2826 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.10 TLB maintenance requirements and the TLB maintenance instructions
• The current VMID, for the Secure or Non-secure EL1&0 translation regime, when EL2 is
enabled.

• The current translation regime. For EL2&0 translation regimes, this is determined by
HCR_EL2.E2H.

For entries from a translation regime which has a valid ASID, the invalidation applies to all entries
at the final level of lookup.

Note

This means the invalidation apples to both:

• Global entries.

• Non-global entries with any ASID.

IPAS2 The invalidation applies to all cached copies of the stage 2 translation table entries from any level
of the translation table walk required to translate the specified IPA, that both:

• Are held in TLB caching structures holding stage 2 only entries.

• Would be used with the current VMID.

It is not required that this instruction invalidates TLB caching structures holding entries that
combine stage 1 and stage 2 of the translation.

The only translation regime to which this instruction can apply is the Secure or Non-secure EL1&0,
when EL2 is enabled, translation regime.

When executed with the SCR_EL3.NS == 0, or in an implementation that does not implement EL2,
this instruction is a NOP.

For more information about the architectural requirements for the IPAS2 instruction, see Invalidation
of TLB entries from stage 2 translations on page D5-2829.

IPAS2L The invalidation applies to cached copies of the stage 2 translation table entry from the final level
of the stage 2 translation table walk required to translate the specified IPA, that both:

• Are held in TLB caching structures holding stage 2 only entries.

• Would be used with the current VMID.

It is not required that this instruction invalidates TLB caching structures holding entries that
combine stage 1 and stage 2 of the translation.

The only translation regime to which this instruction can apply is the Secure or Non-secure EL1&0,
when EL2 is enabled, translation regime.

When executed with the SCR_EL3.NS == 0, or in an implementation that does not implement EL2,
this instruction is a NOP.

For more information about the architectural requirements for the IPAS2L instruction, see
Invalidation of TLB entries from stage 2 translations on page D5-2829.

The entries that the invalidations apply to are not affected by the state of any other control bits involved in the
translation process.

Note

In particular, in response to a commonly asked question, TLB maintenance applies when memory translation is
disabled.

In AArch64 state

SCTLR_EL1.M, SCTLR_EL2.M, SCTLR_EL3.{M, RW], HCR_EL2.{VM, RW},
TCR_EL1.{TG1, EPD1, T1SZ, TG0, EPD0, T0SZ, AS, A1}, TCR_EL2.{TG0, T0SZ},
TCR_EL3.{TG0, T0SZ}, VTCR_EL2.{SL0, T0SZ}, TTBR0_EL1.ASID, TTBR1_EL1.ASID.

In AArch32 state

SCTLR.M, HCR.VM, TTBCR.{EAE, PD1, PD0, N, EPD1, T1SZ, EPD0, T0SZ, A1},
HTCR.T0SZ, VTCR.{SL0, T0SZ}, TTBR0.ASID, TTBR1.ASID, CONTEXTIDR.ASID.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2827
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.10 TLB maintenance requirements and the TLB maintenance instructions
Note
• Arm expects most TLB maintenance performed by an operating system to occur to the last level entries of

the stage 1 translation table walks, and the purpose of the address-based TLB invalidation instructions where
the invalidation need only apply to caching of entries returned from the last level of translation table walk of
stage 1 translation is to avoid unnecessary loss of the intermediate caching of the translation table entries.
Similarly, for stage 2 translations, Arm expects that most TLB maintenance performed by a hypervisor for a
given Guest operation system will affect only the last level entries of the stage 2 translations. Therefore,
similar capability is provided for instructions that invalidate single stage 2 entries.

• The architecture permits the invalidation of entries in TLB caching structures at any time, so for each of these
instructions the definition is in terms of the minimum set of entries that must be invalidated from TLB
caching structures, and an implementation might choose to invalidate more entries. In general, for best
performance, Arm recommends not invalidating entries that are not required to be invalidated.

• Dependencies on the VMID for the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime
apply even when the value of HCR_EL2.VM is 0. The VTTBR_EL2.VMID field resets to a value that is
architecturally UNKNOWN, and therefore VTTBR_EL2.VMID[7:0] must be set to a known value, that might
be zero, as part of the PE initialization sequence, even if stage 2 translation is not in use.

TLB range maintenance instructions

Specific TLB invalidation instructions apply to a range of input addresses rather than a single address. All TLB
range maintenance instructions invalidate TLB entries translating addresses that are within the address range
determined by the formula: [BaseADDR <= input_address < BaseADDR + ((NUM +1)*2^(5*SCALE +1) *
Translation_Granule_Size)].

Note

The set of Requesters containing TLBs that can be affected by the TLB range maintenance instructions are defined
by the system architecture. In some systems, there might be Requesters containing TLBs that are not affected by the
TLB range maintenance instructions within the defined Shareability domains.

Within an Inner Shareable domain, it is expected that all PEs are similarly affected by broadcast TLB range
maintenance instructions.

VMSAv8-64 TLB range maintenance instructions that take a register argument that holds a VA, or a VA and an
ASID, use the following register argument format:

Bits[63:48] ASID. These bits are RES0 if the instruction does not require an ASID argument.

Bits[47:46] TG. This field gives the translation granule size for the translations that are being invalidated. If the
translations use a different translation granule size than the one specified, then the architecture does
not require that the instruction invalidates any entries.

Bits[45:44] SCALE. This field gives the exponent element of the calculation that is used to produce the upper
range.

Bits[43:39] NUM. This field gives the base element of the calculation that is used to produce the upper range.

Bits[38:37] TTL level hint, see Translation table level hints on page D5-2822. This field is RES0 if the
instruction does not require a VA argument, or if FEAT_TTL is not implemented.

Bits[36:0] BaseADDR. This field gives the starting address for the range of the maintenance instruction.

If the Effective value of TCR_EL1.DS is 0:

4KB granule size BaseADDR[48:12].

16KB granule size BaseADDR[50:14].

64KB granule size BaseADDR[52:16].

If FEAT_LPA2 is implemented and TCR_EL1.DS is 1:

4KB granule size BaseADDR[52:16], BaseADDR[15:12] is treated as 0b0000.

16KB granule size BaseADDR[52:16], BaseADDR[15:14] is treated as 0b00.
D5-2828 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.10 TLB maintenance requirements and the TLB maintenance instructions
64KB granule size BaseADDR[52:16].

VMSAv8-64 TLB range maintenance instructions that take a register argument that holds an IPA, use the following
register argument format:

Bits[63] NS. This bit is RES0 if the instruction is executed in Non-secure state.

Bits[62:48] RES0.

Bits[47:46] TG. This field gives the translation granule size for the translations that are being invalidated. If the
translations use a different translation granule size than the one specified, then the architecture does
not require that the instruction invalidates any entries.

Bits[45:44] SCALE. This field gives the exponent element of the calculation that is used to produce the upper
range.

Bits[43:39] NUM. This field gives the base element of the calculation that is used to produce the upper range.

Bits[38:37] TTL level hint, see Translation table level hints on page D5-2822. This field is RES0 if the
instruction does not require a VA argument, or if FEAT_TTL is not implemented.

Bits[36:0] BaseADDR. This field gives the starting address for the range of the maintenance instruction.

If the Effective value of TCR_EL1.DS is 0:

4KB granule size BaseADDR[48:12].

16KB granule size BaseADDR[50:14].

64KB granule size BaseADDR[52:16].

If FEAT_LPA2 is implemented and TCR_EL1.DS is 1:

4KB granule size BaseADDR[52:16], BaseADDR[15:12] is treated as 0b0000.

16KB granule size BaseADDR[52:16], BaseADDR[15:14] is treated as 0b00.

64KB granule size BaseADDR[52:16].

The range of addresses invalidated is UNPREDICTABLE when:

• When a 4K translation granule used, if FEAT_LPA2 is implemented, TCR_EL1.DS is 1, the TTL field is
0b00, and BaseADDR[38:12] does not equal 0b000000000000000000000000000.

• When a 4K translation granule used, if the TTL field is 0b01 and BaseADDR[29:12] does not equal
0b000000000000000000.

• When a 4K translation granule used, if the TTL field is 0b10 and BaseADDR[20:12] does not equal
0b000000000.

• When a 16K translation granule used, if FEAT_LPA2 is implemented, TCR_EL1.DS is 1, the TTL field is
0b01, and BaseADDR[35:14] does not equal 0b0000000000000000000000.

• When a 16K translation granule used, if the TTL field is 0b10 and BaseADDR[24:14] does not equal
0b00000000000.

• When a 64K translation granule used, if the TTL field is 0b01 and BaseADDR[41:16] does not equal
0b00000000000000000000000000.

• When a 64K translation granule used, if the TTL field is 0b10 and BaseADDR[28:16] does not equal
0b0000000000000.

Invalidation of TLB entries from stage 2 translations

The architectural requirements of the IPAS2 instruction are that:

1. The following code is sufficient to invalidate all cached copies of the stage 2 translation of the IPA held in Xt
for the current VMID, with the corresponding requirement for the broadcast versions of the instructions:
TLBI IPAS2E1, Xt
DSB
TLBI VMALLE1

2. The following code is sufficient to invalidate all cached copies of the stage 2 translations of the IPA held in
Xt used to translate the VA (and the specified ASID when executing TLBI VAE1) held in Xt2, with the
corresponding requirement for the broadcast versions of the instructions:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2829
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.10 TLB maintenance requirements and the TLB maintenance instructions
TLBI IPAS2E1, Xt
DSB
TLBI VAE1, Xt2 ; or TLBI VAAE1, Xt2

3. The following code is sufficient to invalidate all cached copies of the stage 2 translations of the IPA held in
Xt used to translate the IPA produced by the last level of stage 1 translation table lookup for the VA (and ASID
when executing TLBI VALE1) held in Xt2, with the corresponding requirement for the broadcast versions of the
instructions:
TLBI IPAS2E1, Xt
DSB
TLBI VALE1, Xt2 ; or TLBI VAALE1, Xt2

Note

Software must use these entire sequences for an EL1&0 translation regime with stage 2 translation enabled, even if
stage 1 translation is disabled.

Equivalent architectural requirements apply to the IPAS2L instruction, except that the only TLB entries that must be
invalidated by an IPAS2L instruction are those that come from the final level of the translation table lookup.

Broadcast TLB maintenance between AArch32 and AArch64

In most cases, a TLB maintenance instruction affecting the shareability domain executed by a PE in an Exception
level that is using AArch64 also affects any other PE in the same shareability domain that is executing at the same
Exception level and is using AArch32, provided that the address, qualify the scope of the ASID and VMID matching
requirements of the original instruction are met, as specified in Scope of the A64 TLB maintenance instructions on
page D5-2824.

Note

The requirement to match means that the invalidation only occurs on the PE that is using AArch32 if, for the PE
that executed the TLB maintenance instruction at an Exception level that is using AArch64, both of the following
apply:

• If VA matching is required, the VA is 0x0000FFFFFFFF or lower in the memory map.

• If ASID matching is required and the PE is using a 16-bit ASID, then the top 8 bits of the ASID are zero.

Except for the cases identified here, a TLB maintenance instruction affecting the Inner Shareable shareability
domain executed by a PE in an Exception level that is using AArch32 also affects any other PE in the same Inner
Shareable domain that is executing at the same Exception level and is using AArch64, provided that the address,
ASID, and VMID matching requirements of the original instruction are met, as specified in Scope of the A64 TLB
maintenance instructions on page D5-2824. In addition, for the instruction executed in AArch32 state:

• For a TLBIMVAAIS, TLBIMVAALIS, TLBIMVAHIS, TLBIMVAIS, TLBIMVALHIS, or TLBIMVALIS instruction, the VA supplied
as an argument is zero-extended.

• For a TLBIIPAS2IS or TLBIIPAS2LIS instruction, the IPA supplied as an argument is zero-extended.

• For a TLBIASIDIS, TLBIMVAIS, or TLBIMVALIS instruction, the ASID supplied as an argument is zero-extended if
the PE executing in AArch64 state is using a 16-bit ASID.

The VA from the instruction executed in AArch32 state is zero-extended, and the ASID is zero-extended if the PE
executing in AArch64 state is using a 16-bit ASID.

The exceptions to these general rules are as follows:

1. An Armv7 PE in the same Inner Shareable domain is treated in the same way as an Armv8 PE for which EL3
is using AArch32, except that if an Armv8 PE issues a broadcast instruction that is not defined in Armv7,
then that instruction is not required to have an effect on the TLBs of the Armv7 PE. The instructions that do
not exist in Armv7 include the following TLB maintenance instructions that Armv8 adds to the T32 and A32
instruction sets:

• The following instructions that operate on TLB entries for the final level of translation table walk for
stage 1 translations:

TLBIMVALIS, TLBIMVAALIS, TLBIMVALHIS, TLBIMVAL, TLBIMVAAL, and TLBIMVALH.

• The following instructions that operate by IPA on TLB entries for stage 2 translations:
D5-2830 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.10 TLB maintenance requirements and the TLB maintenance instructions
TLBIIPAS2IS, TLBIIPAS2LIS, TLBIIPAS2, and TLBIIPAS2L.

2. The number of Exception levels in Secure state depends on whether EL3 is using AArch32 or EL3 is using
AArch64. This means that, within the Inner Shareable domain, there might be PEs with different numbers of
Exception levels in Secure state. Therefore, the following exceptions are made to the general rules:

• If a PE with EL3 using AArch32 issues a broadcast AArch32 TLB maintenance instruction affecting
Secure entries, and the Inner Shareable domain also contains PEs with EL3 using AArch64, then the
architecture does not require that the broadcast AArch32 TLB maintenance instruction has any effect
on either:

— The EL3 translation regime of the PEs with EL3 using AArch64.

— The Secure or Non-secureEL1&0, when EL2 is disabled, translation regime of the PEs with
EL3 using AArch64, regardless of whether the Secure or Non-secure EL1&0, when EL2 is
disabled, translation regime is using AArch64 or AArch32.

• If a PE with EL3 using AArch64 issues a broadcast AArch64 TLB maintenance instruction affecting
EL3 entries, and the Inner Shareable domain also contains PEs with EL3 using AArch32, then the
architecture does not require that the broadcast AArch64 TLB maintenance instruction has any effect
on the EL3 translation regime of the PEs with EL3 using AArch32.

• If a PE with EL3 using AArch64 issues a broadcast AArch64 TLB maintenance instruction affecting
Secure EL1 entries, and the Inner Shareable domain also contains PEs with EL3 using AArch32 then
the architecture does not require that the broadcast AArch64 TLB maintenance instruction has any
effect on the EL3 translation regime of the PEs with EL3 using AArch32.

Note

While the exceptions to the general rule mean the architecture does not require the specified TLB invalidations, the
architecture also does not require that entries in the TLB remain in the TLB at any time, and so it is permissible that
such broadcast instructions affect these translation regimes.

Broadcast TLB maintenance with different translation granule sizes

In the following cases, a broadcast TLB maintenance instruction is not required to perform any invalidation on the
recipient PE:

• The TLB maintenance instruction specifying a VA and affecting the EL2 translation regime, the EL2&0
translation regime, or the EL3 translation regime is broadcast from a PE using one translation granule size
for that translation regime to a PE using a different translation granule size for that same translation regime.

• The TLB maintenance instruction specifying a VA and affecting the EL1&0 translation regime is broadcast
from a PE using one stage 1 translation granule size for that translation regime for a particular ASID (if
applicable), VMID (if applicable), and Security state, to a PE where EL1 for the same ASID (if applicable),
VMID (if applicable), and Security state, is using a different stage 1 translation granule size.

• The TLB maintenance instruction specifying a VA and affecting the Secure or Non-secure EL1&0, when EL2
is enabled, translation regime is broadcast from a PE using one stage 2 translation granule size for a particular
ASID (if applicable) and VMID, to a PE where EL1 for the same ASID (if applicable) and VMID is using a
different stage 2 translation granule size.

• The TLB maintenance instruction specifying an IPA and affecting the Secure or Non-secure EL1&0, when
EL2 is enabled, translation regime is broadcast from a PE using one stage 2 translation granule size for a
particular VMID to a PE where EL1 for the same VMID is using a different stage 2 translation granule size.

Ordering and completion of TLB maintenance instructions

For AArch64 execution, a TLB maintenance instruction can be executed in any order relative to:

• Any load or store instruction, unless a DSB is executed between the load or store and the TLB maintenance
instruction.

Note
In the Arm architecture, a translation table walk is considered to be a separate observer, and a store to the
translation tables can be observed by that separate observer at any time after the instruction has been
executed, but is only guaranteed to be observable after the execution of a DSB instruction by the PE that
executed the store to the translation tables.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2831
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.10 TLB maintenance requirements and the TLB maintenance instructions
• Another TLB maintenance instruction, unless a DSB is executed between the instructions.

• A data or instruction cache maintenance instruction, unless a DSB is executed between the instructions.

For AArch64 execution, the completion rules are:

• A TLB maintenance instruction executed by a PE, PEe, causes a TLB maintenance operation to be generated
on each PE within the shareability domain of PEe that is specified by the instruction. If the TLB maintenance
instruction has the nXS qualifier, the associated TLB maintenance operations have the nXS qualifier. If the
TLB maintenance instruction does not have the nXS qualifier:

— At EL2 or EL3, or at EL1 when the Effective value of HCRX_EL2.FnXS is 0, the associated TLB
maintenance operations do not have the nXS qualifier.

— At EL1, when the Effective value of HCRX_EL2.FnXS is 1, the associated TLB maintenance
operations have the nXS qualifier.

Note

When FEAT_XS is not implemented, all TLB maintenance instructions do not have the nXS qualifier and
the Effective value of HCRX_EL2.FnXS is 0.

• A TLB maintenance operation without the nXS qualifier generated by a TLB maintenance instruction is
finished for a PE when:

— All memory accesses generated by that PE using in-scope old translation information are complete.

— All memory accesses RWx generated by that PE are complete.

RWx is the set of all memory accesses generated by instructions for that PE that appear in program order
before an instruction I1 executed by that PE where all of the following apply:

— I1 uses the in-scope old translation information.

— The use of the in-scope old translation information generates a synchronous Data Abort.

— If I1 did not generate an abort from use of the in-scope old translation information, I1 would generate
a memory access that RWx would be locally-ordered-before.

A TLB maintenance operation with the nXS qualifier generated by a TLB maintenance instruction is finished
for a PE when:

— All memory accesses with the XS attribute set to 0 generated by that PE using in-scope old translation
information are complete.

— All memory accesses RWx generated by that PE are complete.

RWx is the set of all memory accesses generated by instructions for that PE that appear in program order
before an instruction I1 executed by that PE where all of the following apply:

— I1 uses the in-scope old translation information.

— The use of the in-scope old translation information generates a synchronous Data Abort.

— If I1 did not generate an abort from use of the in-scope old translation information, I1 would generate
a memory access with the XS attribute set to 0 that RWx would be locally-ordered-before.

In-scope old translation information is any translation information, for addresses that are in the scope of the
TLB maintenance instruction, that is not consistent with either:

— The architectural translation information held in the translation tables at the time that the TLB
maintenance instruction is executed by PEe.

— Any architecture translation information that is Coherence-after the information held in the translation
tables at the time that the TLB maintenance instruction is executed by PEe.

Note

— Old translation information of this type might be held in TLBs or other non-coherent caching
structures.

— In a translation regime using two stages of translation, the XS attribute used to determine the behavior
of the TLB maintenance instruction with the nXS qualifier is the attribute determined after both stages
of translation have been applied.
D5-2832 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.10 TLB maintenance requirements and the TLB maintenance instructions
— For best real-time performance, Arm recommends that the completion of a TLB maintenance
instruction with the nXS qualifier executed by a PE should not be dependent on the completion of any
memory accesses with the XS attribute set to 1 generated by a second PE.

A TLB maintenance instruction is complete when the TLB maintenance operations specified by the TLB
maintenance instruction are finished for all PEs.

After the TLB maintenance instruction is complete, no new memory accesses using the in-scope old
translation information will be architecturally performed by any observer that is affected by the TLB
maintenance instruction.

Note

Speculative memory accesses can be performed using those entries if it is impossible for software running
on any observer to tell that those memory accesses have been performed.

• A TLB maintenance instruction executed by a PE, PEx, can complete at any time after it is issued, but is only
guaranteed to be finished for a PE other than PEx after the execution of DSB by the PEx.

• In an implementation that does not implement FEAT_ETS, a TLB maintenance instruction executed by a PE,
PEx, can complete at any time after it is issued, but is only guaranteed to be finished for a PE, PEx, after the
execution of DSB by the PEx followed by a Context synchronization event.

• In an implementation that implements FEAT_ETS:

— A TLB maintenance instruction that applies only to translations without execute permission and where
the later translations also do not have execute permission, executed by a PE, PEx, can complete at any
time after it is issued, but is only guaranteed to be finished for a PE, PEx, after the execution of DSB.

— A TLB maintenance instruction that applies to any translations with execute permission executed by
a PE, PEx, can complete at any time after it is issued, but is only guaranteed to be finished for a PE,
PEx, after the execution of DSB by the PEx followed by a Context synchronization event.

In all cases in this section where a DMB or DSB is referred to, it refers to a DMB or DSB whose required access type is
both loads and stores. A DSB NSH is sufficient to ensure completion of TLB maintenance instructions that apply to a
single PE. A DSB ISH is sufficient to ensure completion of TLB maintenance instructions that apply to PEs in the
same Inner Shareable domain.

TLB maintenance in the event of TLB conflict

In the event that multiple entries in the TLB are being used to translate a given address (which implies that an
attempt to access the given address might give rise to a TLB Conflict abort), it is IMPLEMENTATION DEFINED as to
the form of TLB maintenance operation that the software must perform in order to be guaranteed that all TLB entries
associated with the given address and translation regime have been invalidated. In all cases, an ALL or VMALL form of
TLB maintenance operation that targets the given translation regime is guaranteed to remove all entries within that
regime, even if there are multiple, conflicting TLB entries for any given address within that regime.

The interaction of TLB lockdown with TLB maintenance instructions

The precise interaction of TLB lockdown with the TLB maintenance instructions is IMPLEMENTATION DEFINED.
However, the architecturally-defined TLB maintenance instructions must comply with these rules:

• The effect on a locked TLB entry of a TLB invalidate all operation that would invalidate that entry if the entry
was not locked must be one of the following, and it is IMPLEMENTATION DEFINED which behavior applies:

— The operation has no effect on entries that are locked down.

— The operation generates an IMPLEMENTATION DEFINED Data Abort exception if an entry is locked
down, or might be locked down.

Any such exceptions taken from Non-secure EL1 can be trapped to EL2, see Traps to EL2 of EL0 and
EL1 accesses to lockdown, DMA, and TCM operations on page D1-2523.

Note
These options permit a usage model for TLB invalidate routines, where the routine invalidates a large range
of addresses, without considering whether any entries are locked in the TLB.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2833
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.10 TLB maintenance requirements and the TLB maintenance instructions
• The effect on a locked TLB entry of a TLB invalidate by VA or invalidate by ASID match operation that
would invalidate that entry if the entry was not locked must be one of the following, and it is
IMPLEMENTATION DEFINED which behavior applies:

— The locked entry is invalidated in the TLB.

— The operation has no effect on any locked entry in the TLB. In the case of an invalidate single entry
by VA, this means the PE treats the operation as a NOP.

— The operation generates an IMPLEMENTATION DEFINED Data Abort exception if it operates on an entry
that is locked down, or might be locked down.

The exception syndrome definitions include a fault code for cache and TLB lockdown faults, see ESR_EL1,
Exception Syndrome Register (EL1) on page D13-3145.

Note

Any implementation that uses an abort mechanism for entries that can be locked down but are not actually locked
down must:

• Document the IMPLEMENTATION DEFINED instruction sequences that perform the required operations on
entries that are not locked down.

• Implement one of the other specified alternatives for the locked entries.

Arm recommends that, when possible, such IMPLEMENTATION DEFINED instruction sequences use the
architecturally-defined operations. This minimizes the number of customized operations required.

In addition, an implementation that uses an abort mechanism for handling the effect of TLB maintenance
instructions on entries that can be locked down but are not actually locked down must provide an IMPLEMENTATION
DEFINED mechanism that ensures that no TLB entries are locked.

Similar rules apply to cache lockdown, see The interaction of cache lockdown with cache maintenance instructions
on page D4-2662.

The architecture does not guarantee that any unlocked entry in the TLB remains in the TLB. This means that, as a
side effect of any TLB maintenance instruction, any unlocked entry in the TLB might be invalidated.
D5-2834 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.11 Caches in a VMSAv8-64 implementation
D5.11 Caches in a VMSAv8-64 implementation

The Arm architecture describes the required behavior of an implementation of the architecture. As far as possible it
does not restrict the implemented microarchitecture, or the implementation techniques that might achieve the
required behavior.

In particular, maintaining this level of abstraction is difficult when describing the relationship between memory
address translation and caches, especially regarding the indexing and tagging policy of caches. This section:

• Summarizes the architectural requirements for the interaction between caches and address translation.

• Gives some information about the likely implementation impact of the required behavior.

The following sections give this information:

• Data and unified caches on page D5-2835.

• Instruction caches on page D5-2835.

In addition, Cache maintenance requirement created by changing translation table attributes on page D5-2837
describes the cache maintenance required after updating the translation tables to change the attributes of an area of
memory.

For more information about cache maintenance, see A64 Cache maintenance instructions on page D4-2648, that
describes the cache maintenance instructions in the A64 instruction set.

D5.11.1 Data and unified caches

For data and unified caches, the use of address translation is entirely transparent to any data access other than as
described in Mismatched memory attributes on page B2-176.

This means that the behavior of accesses from the same observer to different VAs, that are translated to the same PA
with the same memory attributes, is fully coherent. This means these accesses behave as follows, regardless of
which VA is accessed:

• Two writes to the same PA occur in program order.

• A read of a PA returns the value of the last successful write to that PA.

• A write to a PA that occurs, in program order, after a read of that PA, has no effect on the value returned by
that read.

The memory system behaves in this way without any requirement to use barrier or cache maintenance instructions.

In addition, if cache maintenance is performed on a memory location, the effect of that cache maintenance is visible
to all aliases of that physical memory location.

These properties are consistent with implementing all caches that can handle data accesses as Physically-indexed,
physically-tagged (PIPT) caches.

D5.11.2 Instruction caches

In the Arm architecture, an instruction cache is a cache that is accessed only as a result of an instruction fetch.
Therefore, an instruction cache is never written to by any load or store instruction executed by the PE.

The Arm architecture permits different behaviors for instruction caches. These are identified by descriptions of the
associated expected implementation. The following subsections describe the behavior associated with these cache
types, including any occasions where explicit cache maintenance is required to make the use of address translation
transparent to the instruction cache:

• PIPT (Physically-indexed, physically-tagged) instruction caches on page D5-2836.

• VPIPT (VMID-aware PIPT) instruction caches on page D5-2836.

• VIPT (Virtually-indexed, physically-tagged) instruction caches on page D5-2836.

• The IVIPT Extension on page D5-2837.

The CTR_EL0.L1Ip field identifies the form of the instruction caches.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2835
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.11 Caches in a VMSAv8-64 implementation
Note

For software to be portable between implementations that might use any of PIPT instruction caches, VPIPT
instruction caches, or VIPT instruction caches, software must invalidate the instruction cache whenever any
condition occurs that would require instruction cache maintenance for at least one of the instruction cache types.

PIPT (Physically-indexed, physically-tagged) instruction caches

For a PIPT instruction cache:

• The use of memory address translation is entirely transparent to all instruction fetches other than as described
in Mismatched memory attributes on page B2-176.

• If cache maintenance is performed on a memory location, the effect of that cache maintenance is visible to
all aliases of that physical memory location.

An implementation that provides PIPT instruction caches implements the IVIPT Extension, see The IVIPT
Extension on page D5-2837.

VPIPT (VMID-aware PIPT) instruction caches

An Armv8.2 implementation can implement VPIPT instruction caches. If it does so then it is described as
implementing FEAT_VPIPT.

The CTR_EL0.L1Ip field identifies the implemented cache type, meaning it identifies whether FEAT_VPIPT is
implemented.

For a VPIPT instruction cache:

• If VMIDs are being used for the current Security state, instruction fetches from EL1 and EL0 are only
permitted to hit in the cache if the instruction fetch is made using the VMID that was used when the entry in
the instruction cache was fetched.

• If VMIDs are being used for the current Security state, an instruction cache maintenance instruction executed
at EL0 or at EL1 is required to have an effect on entries in the instruction cache only if those entries were
fetched using the VMID that is current when the cache maintenance instruction is executed.

All other requirements for the use of cache maintenance instructions are the same as for PIPT (Physically-indexed,
physically-tagged) instruction caches on page D5-2836.

An implementation that provides VPIPT instruction caches implements the IVIPT Extension, see The IVIPT
Extension on page D5-2837.

VIPT (Virtually-indexed, physically-tagged) instruction caches

For a VIPT instruction cache:

• The use of memory address translation is transparent to all instruction fetches other than for the effect of
memory address translation on instruction cache invalidate by address operations or as described in
Mismatched memory attributes on page B2-176.

Note
Cache invalidation is the only cache maintenance that can be performed on an instruction cache.

• If instruction cache invalidation by address is performed on a memory location, the effect of that invalidation
is visible only to the VA supplied with the operation. The effect of the invalidation might not be visible to
any other aliases of that physical memory location.

The only architecturally-guaranteed way to invalidate all aliases of a PA from a VIPT instruction cache is to
invalidate the entire instruction cache.

An implementation that provides VIPT instruction caches implements the IVIPT Extension, see The IVIPT
Extension on page D5-2837.
D5-2836 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch64 Virtual Memory System Architecture
D5.11 Caches in a VMSAv8-64 implementation
The IVIPT Extension

In Armv8, any permitted instruction cache implementation can be described as implementing the IVIPT Extension
to the Arm architecture.

The formal definition of the Arm IVIPT Extension is that it reduces the instruction cache maintenance requirement
to the following condition:

• Instruction cache maintenance is required only after writing new data to a PA that holds an instruction.

Note

Previous versions of the Arm architecture have permitted an instruction cache option that does not implement the
Arm IVIPT Extension.

D5.11.3 Cache maintenance requirement created by changing translation table attributes

Any change to the translation tables to change the attributes of an area of memory can require maintenance of the
translation tables, as described in General TLB maintenance requirements on page D5-2816. If the change affects
the cacheability attributes of the area of memory, including any change between Write-Through and Write-Back
attributes, software must ensure that any cached copies of affected locations are removed from the caches, typically
by cleaning and invalidating the locations from the levels of cache that might hold copies of the locations affected
by the attribute change. Any of the following changes to the inner cacheability or outer cacheability attribute creates
this maintenance requirement:

• Write-Back to Write-Through.

• Write-Back to Non-cacheable.

• Write-Through to Non-cacheable.

• Write-Through to Write-Back.

The cache clean and invalidate avoids any possible coherency errors caused by mismatched memory attributes.

Similarly, to avoid possible coherency errors caused by mismatched memory attributes, the following sequence
must be followed when changing the shareability attributes of a cacheable memory location:

1. Make the memory location Non-cacheable, Outer Shareable.

2. Clean and invalidate the location from them cache.

3. Change the shareability attributes to the required new values.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D5-2837
ID072021 Non-Confidential

The AArch64 Virtual Memory System Architecture
D5.11 Caches in a VMSAv8-64 implementation
D5-2838 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter D6
Memory Tagging Extension

This chapter describes the Memory Tagging Extension. It contains the following sections:

• Introduction on page D6-2840.

• Allocation Tags on page D6-2841.

• Tag checking on page D6-2842.

• Tagged and Untagged Addresses on page D6-2843.

• PE access to Allocation Tags on page D6-2844.

• Enabling the Memory Tagging Extension on page D6-2845.

• PE handling of Tag Check Fault on page D6-2846.

• PE generation of Tag Checked and Tag Unchecked accesses on page D6-2848.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D6-2839
ID072021 Non-Confidential

Memory Tagging Extension
D6.1 Introduction
D6.1 Introduction

There are three versions of the Memory tagging extension:

FEAT_MTE

FEAT_MTE supports the Memory tagging instructions accessible in EL0.

When FEAT_MTE is implemented:

• A set of tag load and tag store instructions are provided.

• Instructions to generate and insert Logical Tags in addresses are provided.

• System instructions to Clean, and Clean and Invalidate Allocation Tags from caches are
provided.

• If FEAT_MTE2 is not implemented, all System instructions defined by the Memory Tagging
Extension are UNDEFINED.

• If FEAT_MTE2 is not implemented, all operations which read Allocation Tags treat the
Allocation Tag as zero, and any traps or permission checks continue to apply.

• If FEAT_MTE2 is not implemented, instructions which insert Allocation Tags into addresses
treat the Allocation Tag as zero.

• If FEAT_MTE2 is not implemented, the Tagged memory type encoding in the Memory
Attribute Indirection Registers are UNPREDICTABLE.

FEAT_MTE2

FEAT_MTE2 supports all instructions and System registers defined by the extension, Allocation
Tags in memory, and Tag Checking of accesses to tagged memory.

When FEAT_MTE2 is implemented:

• All FEAT_MTE functionalities are available for use.

• System register and page level control over access to Allocation Tags in memory is provided.

• Allocation Tags are provided for each 16-byte granule of Conventional memory.

• The tag PA space is separate to the data physical address (data PA) space accessed by data
load and store instructions to access data in normal memory and devices.

• Any associated fields in System control registers are available for use.

• All System registers defined by the extension become available for use.

• All System instructions and instructions defined by the extension become available for use.

FEAT_MTE3

FEAT_MTE3 adds support for asymmetric Tag Check Fault handling.

When FEAT_MTE3 is implemented:

• All FEAT_MTE and FEAT_MTE2 functionalities are available for use.

• Tag Check Faults can be configured to cause a synchronous exception on reads, and be
asynchronously accumulated on writes.

• Any Tag Check Fault on an access that performs both a read and a write can be configured to
cause a synchronous exception.
D6-2840 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Memory Tagging Extension
D6.2 Allocation Tags
D6.2 Allocation Tags

The tag PA space provides access to Allocation Tags stored in memory. The data PA space provides access to data
held in memory.

An Allocation Tag is 4-bits wide.

Each naturally-aligned set of 16 tag PA space locations is a Tag Granule. Each Tag Granule is associated with one
Allocation Tag.

Note

The value 0b1111 may incur a higher performance overhead than other Allocation Tag encodings.

If FEAT_MTE2 is implemented, storage is provided for Allocation Tags at each tag PA where Conventional memory
exists at the same physical address in the data PA space.

Note

Arm recommends that software does not use instructions which write 0b1111 as an Allocation Tag to memory.

The result of an access to the tag PA where Allocation Tag storage is not provided is IMPLEMENTATION DEFINED.

It is IMPLEMENTATION DEFINED whether Allocation Tags are permitted to be accessed through regions of the data
PA space. If Allocation Tags are accessible through the data PA space, then the layout of Allocation Tags is
IMPLEMENTATION DEFINED.

It is not architecturally required for an Allocation Tag accessed via the tag PA space to be coherent with the same
Allocation Tag accessed via the data PA space. A write to one location can be made visible at the other location by
the use of the cache maintenance operations.

Unless otherwise stated, the definitions in Chapter B2 The AArch64 Application Level Memory Model and
Chapter D4 The AArch64 System Level Memory Model that apply to data accesses and data, apply separately to
Allocation Tag accesses and Allocation Tags.

It is IMPLEMENTATION DEFINED whether accesses to the tag PA space are monitored by the global monitor.

D6.2.1 Cache activity and Allocation Tags

When data is evicted from a cache entry at a cache level, the evicted data can overwrite data in memory that has
been written by another observer if either, or any of the following are true:

• The data has been written by an observer in the Shareability domain of that memory location, where the
maximum size of the memory that can be overwritten is defined by the Cache Write-Back Granule in
CTR_EL0.

• The associated Allocation Tags have been written to by an observer in the Shareability domain of that
memory location, where the maximum size of the memory that can be overwritten is defined by the Cache
Write-Back Granule in CTR_EL0.

When Allocation Tags are evicted from a cache entry at a cache level, the evicted Allocation Tags can overwrite
Allocation Tags in memory that have been written by another observer only if the following are true:

• The entry contains a memory location where the Allocation Tags have been written to by an observer in the
Shareability domain of that memory location.

• The maximum size of the memory that can be overwritten is defined by the Cache Write-Back Granule in
CTR_EL0.

For more information on DC operations that affect Allocation Tags see A64 System instructions for cache
maintenance on page C5-506.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D6-2841
ID072021 Non-Confidential

Memory Tagging Extension
D6.3 Tag checking
D6.3 Tag checking

A memory access that is a read or write can be either Tag Checked or Tag Unchecked.

An access to the data PA space can be either Tag Checked or Tag Unchecked.

An access to the tag PA space is always Tag Unchecked.

A data access which is performed as part of a prefetch operation is Tag Unchecked.

When the value of PSTATE.TCO is 1, all loads and stores are Tag Unchecked.

A Tag Checked memory access includes a Physical Address Tag.

A Tag Checked access causes a Tag Check operation to be performed.

If the Allocation Tag and Physical Address Tag in a Tag Check operation do not match, the Tag Check operation
generates a Tag Check Fault.

The read of an Allocation Tag due to a Tag Check operation, and the dependent data access, are not required to form
an atomic operation.

Software cannot rely on a Load-Exclusive/Store-Exclusive pair to eventually succeed if the Tag Checked properties
of the following in a Load-Exclusive/Store-Exclusive instruction pair accessing the same location from the same
PE do not match:

• A memory access due to a Store-Exclusive instruction.

• A memory access due to the preceding Load-Exclusive instruction.

D6.3.1 Tag Check Faults

A Tag Check Fault can be configured to cause one of the following:

• A synchronous exception.

• A bit to be asynchronously set in TFSR_ELx.

• To be ignored.

If a store causes a synchronous Tag Check Fault exception, the faulting memory locations being written to by the
store that caused the fault are unchanged.

If a Tag Check Fault is not configured to cause a synchronous exception then the following are true:

• There is no effect on the data access, that is the load or store completes unless another exception is taken.

• There is no effect on any of the side effects caused by the completion of the data access.

If FEAT_MTE2 is implemented, a synchronous exception due to a Tag Check Fault is reported as a Data Abort with
a Data Fault Status Code of Synchronous Tag Check Fault and the faulting virtual address is reported in FAR_ELx.
For more information, see PE handling of Tag Check Fault on page D6-2846.
D6-2842 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Memory Tagging Extension
D6.4 Tagged and Untagged Addresses
D6.4 Tagged and Untagged Addresses

Virtual addresses can either be Tagged or Untagged.

An access to memory at:

• An Untagged virtual address generates a Tag Unchecked access.

• A Tagged virtual address permits the generation of a Tag Checked or Tag Unchecked access.

A read of an Allocation Tag from an Untagged virtual address returns the value 0b0000.

A write of an Allocation Tag to an Untagged address is IGNORED.

Accesses of Allocation Tags at Tagged virtual addresses are permitted.

All virtual addresses in AArch32 state are Untagged.

D6.4.1 Virtual address translation

If stage 1 translation at the current Exception level is enabled, stage 1 translations are Tagged or Untagged
depending on the Memory Attributes for the memory location being accessed.

If stage 1 translation at the current Exception level is disabled:

• When the value of HCR_EL2.DC is 1, stage 1 translations are Tagged or Untagged depending on the value
of HCR_EL2.DCT.

• When the value of HCR_EL2.DC is 0, stage 1 translations are treated as Untagged.

Memory locations are treated as Tagged where all of the following is true:

• The combined effects of stage 1 and stage 2 translations define the memory attributes as:

— Normal memory.

— Inner, and Outer Write-Back Non-Transient Read-Allocate Write-Allocate.

• The stage 1 translation is treated as Tagged.

Otherwise memory locations are Untagged.

If a memory location is marked as Untagged, a data cache invalidation operation that would invalidate Allocation
Tags at that location cleans and invalidates the Allocation Tags.

Note

If a memory location is marked as both Tagged and Non-shared, it is IMPLEMENTATION DEFINED whether the
memory location is treated as Tagged or Untagged.

When the EL1&0 stage 1 translation regime is disabled and HCR_EL2.DC is 1, in the current Security state, the
execution of any of the AT S1E0, AT S1E1, AT S12E0, AT S12E1 address translation instructions will reflect the effect of
HCR_EL2.DCT in PAR_EL1.ATTR.

If SCTLR_ELx.C is 0 for a stage 1 translation regime, it is CONSTRAINED UNPREDICTABLE between:

• The stage 1 translation is treated as Untagged.

• SCTLR_ELx.C has no effect on whether the stage 1 translation is treated as Tagged or Untagged.

Note
To ensure consistent behavior, software can set SCTLR_ELx.ATA to 0 when SCTLR_ELx.C is 0.

For more information on Virtual address translation, see The VMSAv8-64 address translation system on
page D5-2682.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D6-2843
ID072021 Non-Confidential

Memory Tagging Extension
D6.5 PE access to Allocation Tags
D6.5 PE access to Allocation Tags

Instructions that load or store Allocation Tags apply the same address translation and permission checks as a load
or store of data to a virtual address.

Instructions that load or store Allocation Tags at a virtual address have the same effect on the Access flag and dirty
state as instructions that load or store data at the same virtual address.

An instruction that loads or stores an Allocation Tag:

• Is considered a load or store of data to each location associated with the Allocation Tag for the purpose of
triggering Watchpoints and PMU events, other than for events which count bytes of data transferred.

• Is treated as a load or store for the purpose of Statistical profiling.

• Generates a tag PA with the same physical address as a load or store of data to a virtual address.

Instructions that store Allocation Tags to memory locations marked as Device memory result in a CONSTRAINED
UNPREDICTABLE choice between:

• Storing the data, if any, to the specified locations.

• Generating an Alignment Fault, which is prioritized in the same way as other alignment faults that are
determined by the memory type.

DC GZVA and DC GVA are instructions that store Allocation tags.

Instructions which load or store Allocation tags are considered to perform the access, irrespective of whether access
to Allocation tags in memory is disabled due to Allocation tag access controls in HCR_EL2, SCR_EL3 and
SCTLR_ELx, or due to the absence of the Tagged attribute on the locations being accessed, for the purpose of:

• Address translation.

• Triggering watchpoints.

• Generating PMU events.

• Statistical profiling.

A read of an Allocation Tag that returns zero due to access to Allocation tags being disabled by HCR_EL2.ATA,
SCR_EL3.ATA or SCTLR_ELx.{ATA, ATA0}, or due to the memory type not having the Tagged attribute, is
permitted to generate an External abort if a read of data from the same address would generate an External abort.

For more information on which instructions can be used to access an Allocation tag, see:

• Loads and stores on page C3-224, for load and store instructions.

• Branches, Exception generating, and System instructions on page C3-216, for System instructions.
D6-2844 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Memory Tagging Extension
D6.6 Enabling the Memory Tagging Extension
D6.6 Enabling the Memory Tagging Extension

Access to Allocation Tags in memory can be enabled by use of the following controls:

• SCR_EL3.ATA.

• HCR_EL2.ATA.

• SCTLR_ELx.ATA.

• SCTLR_ELx.ATA0.

When executed at an exception level where accesses to Allocation Tags are disabled, instructions that:

• Load or store data, are Unchecked.

• Load or store Allocation Tags treat the Allocation Tag as RAZ/WI.

• Insert Logical Address Tags into addresses treat the Allocation Tag used to generate the Logical Address Tag
as zero,

• Invalidate Allocation Tags from caches, behave as the equivalent Clean and Invalidate operation on
Allocation Tags.

For the purpose of determining Allocation Tag access, unprivileged load and store instructions are treated as if
executed at EL0 when executed at either:

• EL1, when the Effective value of PSTATE.UAO is 0.

• EL2, when both the Effective value of HCR_EL2.{E2H, TGE} is {1, 1} and the Effective value of
PSTATE.UAO is 0.

Note

Arm recommends that:

• When software requires access to Allocation Tags in a context but Tag Checking is not required, the
SCTLR_ELx.TCF or SCTLR_ELx.TCF0 affecting that context is set to 0.

• When software does not require access to Allocation Tags in a context, one or more SCTLR_ELx.ATA
affecting that context are set to 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D6-2845
ID072021 Non-Confidential

Memory Tagging Extension
D6.7 PE handling of Tag Check Fault
D6.7 PE handling of Tag Check Fault

If SCTLR_ELx.TCF has the value of 0b00, a Tag Check Fault due to a load or store at ELx has no effect on the PE.

A Tag Check Fault due to a load or store at EL0 has no effect on the PE if either of the following conditions are true:

• SCTLR_EL1.TCF0 has the value of 0b00, and HCR_EL2.{E2H, TGE} does not have the value of {1,1}.

• SCTLR_EL2.TCF0 has the value of 0b00, and HCR_EL2.{E2H, TGE} has the value of {1,1}.

If SCTLR_ELx.TCF has the value of 0b01, a Tag Check Fault due to a load or store at ELx generates a synchronous
exception.

If SCTLR_ELx.TCF has the value of 0b10, a Tag Check Fault due to a load or store at ELy using TTBR_ELx causes
TFSR_ELy.TFx to be asynchronously set to 1.

If FEAT_MTE3 is implemented, and SCTLR_ELx.TCF has the value of 0b11, a Tag Check Fault due to a load, or
an atomic operation, generates a synchronous exception.

If FEAT_MTE3 is implemented, and SCTLR_ELx.TCF has the value of 0b11, a Tag Check Fault due to a store at
ELy using TTBR_ELx causes TFSR_ELy.TFx to be asynchronously set to 1.

 A Tag Check Fault due to a load or store at EL0 has no effect on the PE if either of the following conditions are true:

• SCTLR_EL1.TCF0 has the value of 0b00, and HCR_EL2{E2H, TGE} does not have the value of {1,1}.

• SCTLR_EL2.TCF0 has the value of 0b00, and HCR_EL2{E2H, TGE} has the value of {1,1}.

A Tag Check Fault due to a load or store at EL0 generates a synchronous exception if either of the following
conditions are true:

• SCTLR_EL1.TCF0 has the value of 0b01, and HCR_EL2{E2H, TGE} does not have the value of {1,1}.

• SCTLR_EL2.TCF0 has the value of 0b01, and HCR_EL2{E2H, TGE} has the value of {1,1}.

A Tag Check Fault due to a load or store at EL0 using TTBRy_EL1 or TTBRy_EL2, causes TFSRE0_EL1.TFy to
be set to 1 if either of the following conditions are true:

• SCTLR_EL1.TCF0 has the value of 0b10, and HCR_EL2{E2H, TGE} does not have the value of {1,1}

• SCTLR_EL2.TCF0 has the value of 0b10, and HCR_EL2{E2H, TGE} has the value of {1,1}.

If FEAT_MTE3 is implemented, a Tag Check Fault due to a load, or an atomic operation, at EL0 generates a
synchronous exception, if either of the following conditions are true:

• SCTLR_EL1.TCF0 has the value of 0b11, and HCR_EL2{E2H, TGE} does not have the value of {1,1}.

• SCTLR_EL2.TCF0 has the value of 0b11, and HCR_EL2{E2H, TGE} has the value of {1,1}.

If FEAT_MTE3 is implemented, a Tag Check Fault due to a store at EL0 using TTBRy_EL1 or TTBRy_EL2 causes
TFSRE0_EL1.TFy to be set to 1, if either of the following conditions are true:

• SCTLR_EL1.TCF0 has the value of 0b11, and HCR_EL2{E2H, TGE} does not have the value of {1,1}.

• SCTLR_EL2.TCF0 has the value of 0b11, and HCR_EL2{E2H, TGE} has the value of {1,1}.

TFSR_ELx and TFSRE0_EL1 are unchanged by a memory data access causing a Tag Check pass.

A synchronous exception due to a Tag Check Fault is reported as a Data Abort, with a Data Fault status code of
Synchronous Tag Check Fault, and the faulting virtual address is reported in FAR_ELx.

A Data Abort due to a Tag Check Fault is taken from EL0 to one of the following exception levels:

• EL1 if HCR_EL2.TGE is 0.

• EL2 if HCR_EL2.TGE is 1.

A Data Abort due to a Tag Check Fault is taken from ELx to ELx where x is 1, 2 or 3.

A Data Abort due to a Tag Check Fault is prioritized as a Data Abort exception generated by a synchronous External
abort that was not generated by a translation table walk.

If an access generates both a Data Abort due to a Synchronous Tag Check Fault, and a Data Abort due to a
synchronous External abort that was not generated by a translation table walk, it is IMPLEMENTATION DEFINED
which abort is reported. For more information on prioritization of exceptions see Synchronous exception types,
routing and priorities on page D1-2489.
D6-2846 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Memory Tagging Extension
D6.7 PE handling of Tag Check Fault
If an instruction that stores to memory generates a Data Abort that is a Synchronous Tag Check Fault, the value of
each memory location that the instruction stores to is UNKNOWN for any location for which no exceptions, and no
Debug event is generated. The size of a memory location is defined as being the size for which a memory access is
single-copy atomic.

For the purpose of determining Tag Check Fault handling, unprivileged load and store instructions are treated as if
executed at EL0 when executed at either:

• EL1, when the Effective value of PSTATE.UAO is 0.

• EL2, when both the Effective value of HCR_EL2.{E2H, TGE} is {1, 1} and the Effective value of
PSTATE.UAO is 0.

Indirect writes to TFSRE0_EL1 and any TFSR_ELx accessible at ELy that are caused by a Tag Check Fault are
synchronized by any of:

• An exception entry to ELy, if SCTLR_ELy.ITFSB has the value of 0b1.

• A DSB over the Non-shareable domain at ELy in program order, after the instruction causing the Tag Check
Fault.

When FEAT_SVE is implemented, if a load of an element in a SVE Non-faulting or First-faulting load instruction
causes a Tag Check Fault, and is not the First active element in a First-faulting instruction, the Tag Check Fault:

• Is recorded in the corresponding FFR register.

• Does not generate a Synchronous Tag Check Fault exception.

• Does not cause any bit in any TFSR_ELx or TFSRE0_EL1 registers to be set.

• The value loaded into the element is UNKNOWN.

When FEAT_SVE is implemented, if a load of an element in a SVE Non-faulting or First-faulting load instruction
causes a Tag Check Fault, and is the First active element in a First-faulting instruction, the Tag Check Fault:

• Is not recorded in the corresponding FFR register.

• Generates a Synchronous Tag Check Fault exception if configured to do so.

• Sets a bit in TFSR_ELx or TFSRE0_EL1 registers if configured to do so.

• If a synchronous Tag Check Fault is generated, the value loaded into the element is UNKNOWN.

It is CONSTRAINED UNPREDICTABLE whether the FFR element associated with the read of an Active element in an
SVE Non-fault load, or an Active element which is not the First active element in an SVE First-fault load, R2, to
location X, is set to FALSE if all of the following are true:

• Tag Check Faults are configured as asynchronous for both reads and writes.

• A read or write RW1 to location Y causes a Tag Check Fault.

• Tag Check Faults for locations X and Y are reported in the same status bit, either:

— TFSR_ELx.TFy.

— TFSRE0_EL1.TFy.

• RW1 is in program order before R2, or is the First active element in the first-fault load instruction causing R2.

• There are no other faults caused by R2 that are reported in FFR.

• There is not a DSB and a direct write of 0b0 to that status bit appearing in program order between the instruction
causing RW1 and the instruction causing R2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D6-2847
ID072021 Non-Confidential

Memory Tagging Extension
D6.8 PE generation of Tag Checked and Tag Unchecked accesses
D6.8 PE generation of Tag Checked and Tag Unchecked accesses

A Logical Address Tag is formed by bits [59:56] of the 64-bit address that is used for a load or store instruction.

The PE generates a Physical Address Tag from the Logical Address Tag for each Tag Checked access to memory.

Unless an access is explicitly defined as a Tag Unchecked access, it is a Tag Checked access.

D6.8.1 Tag Unchecked accesses

The following operations generate a Tag Unchecked access:

• An instruction fetch.

• A load instruction that loads an Allocation Tag.

• A store instruction that stores an Allocation Tag.

When PSTATE.TCO is 1, all loads and stores generate Tag Unchecked accesses.

A cache maintenance by virtual address operation other than DC ZVA, Data Cache Zero by VA, generates a Tag
Unchecked access.

An access due to a translation table walk generates a Tag Unchecked access.

If FEAT_NV2 is implemented, loads and stores relative to VNCR_EL2 generate a Tag Unchecked access.

If the Statistical Profiling Extension is implemented, all accesses to the Profiling Buffer are Tag Unchecked
accesses. See Chapter D9 The Statistical Profiling Extension for more information.

Data accesses by an external Debugger may generate Tag Checked accesses. See Chapter H2 Debug State for more
information.

An access which would be translated using TTBR0_ELx is Tag Unchecked, irrespective of whether the stage 1
address translation for the ELx translation regime is enabled or not, where either of the following conditions apply:

• TCR_ELx.TBI is 0.

• TCR_ELx.TBI0 is 0.

If TCR_ELx.TBI1 has the value of zero, an access which would be translated using TTBR1_ELx is Tag Unchecked,
irrespective of whether the stage 1 address translation for the ELx translation regime is enabled or not.

An access will be Tag Unchecked, irrespective of whether the stage 1 address translation for the ELx translation
regime is enabled or not, where all of the following conditions apply:

• The access would be translated using TTBR0_ELx.

• The Logical Address Tag is 0b0000.

• TCR_ELx.TCMA is 1, or TCR_ELx.TCMA0 is 1.

An access will be Tag Unchecked, irrespective of whether the stage 1 address translation for the ELx translation
regime is enabled or not, when all of the following conditions apply:

• The access would be translated using TTBR1_ELx.

• The Logical Address Tag is 0b1111.

• TCR_ELx.TCMA1 is 1.

A Tag Unchecked access will be generated for a load or store that uses either of the following:

• A base register only, with the SP as the base register.

• A base register plus immediate offset addressing form, with the SP as the base register.

Literal (PC-relative) loads generate a Tag Unchecked access.

D6.8.2 Constrained Unpredictable behavior

When executing a Store-Exclusive instruction, that if Tag Unchecked would not perform the store, and would return
a status value of one, it is CONSTRAINED UNPREDICTABLE whether:

• The instruction generates a Tag Checked access.

• The instruction generates a Tag Unchecked access.
D6-2848 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter D7
The Performance Monitors Extension

This chapter describes the Armv8 implementation of the Arm Performance Monitors, that are an optional
non-invasive debug component. It describes version 3 of the Performance Monitor Unit (PMU) architecture,
FEAT_PMUv3. It contains the following sections:

• About the Performance Monitors on page D7-2850.

• Accuracy of the Performance Monitors on page D7-2853.

• Behavior on overflow on page D7-2855.

• Attributability on page D7-2857.

• Controlling the PMU counters on page D7-2859.

• Event filtering on page D7-2865

• Performance Monitors and Debug state on page D7-2867.

• Enabling event counters on page D7-2859.

• Counter access on page D7-2868.

• PMU events and event numbers on page D7-2869.

• Performance Monitors Extension registers on page D7-2940.

Note

Table K15-2 on page K15-8604 disambiguates the general register references used in this chapter.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2849
ID072021 Non-Confidential

The Performance Monitors Extension
D7.1 About the Performance Monitors
D7.1 About the Performance Monitors

In Armv8-A, the Performance Monitors Extension is an OPTIONAL feature of an implementation, but Arm strongly
recommends that Armv8-A implementations include version 3 of the Performance Monitors Extension,
FEAT_PMUv3.

Note

No previous versions of the Performance Monitors Extension can be implemented in Armv8.

The basic form of the Performance Monitors is:

• A 64-bit cycle counter, see Time as measured by the Performance Monitors cycle counter on page D7-2852.

• A number of 64-bit or 32-bit event counters. If FEAT_PMUv3p5 is implemented and the highest Exception
level is using AArch64, the event counters are 64-bit. If FEAT_PMUv3p5 is not implemented, the event
counters are 32-bit.

• The event counted by each event counter is programmable. Armv8 provides space for up to 31 event
counters. The actual number of event counters is IMPLEMENTATION DEFINED, and the specification includes
an identification mechanism.

Note

The Performance Monitors Extension permits an implementation with no event counters
(PMCR_EL0.N==0). However, Arm recommends that at least two event counters are implemented, and that
hypervisors provide at least this many event counters to guest operating systems.

• When EL2 is implemented, the required controls to partition the implemented event counters into the
following sets:

— A set which is available for use by the guest operating system accessible at all Exception levels.

— A set which is available for use by the hypervisor accessible at EL3 and EL2, and, if FEAT_SEL2 is
not implemented or if Secure EL2 is disabled, in Secure state.

• Controls for:

— Enabling and resetting counters.

— Flagging overflows.

— Enabling interrupts on overflow.

— Disabling or freezing counters.

The PMU architecture uses event numbers to identify an event. It:

• Defines event numbers for common events, for use across many architectures and microarchitectures.

Note
Implementations that include FEAT_PMUv3 must, as a minimum requirement, implement a subset of the
common events. See Common event numbers on page D7-2876.

• Reserves a large event number space for IMPLEMENTATION DEFINED events.

The full set of events for an implementation is IMPLEMENTATION DEFINED. Arm recommends that implementations
include all of the events that are appropriate to the architecture profile and microarchitecture of the implementation.

When an implementation includes the Performance Monitors Extension, Armv8 defines the following possible
interfaces to the Performance Monitors Extension registers:

• A System register interface. This interface is mandatory.

Note
In AArch32 state, the interface is in the (coproc==0b1111) encoding space.
D7-2850 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.1 About the Performance Monitors
• An external debug interface which optionally supports memory-mapped accesses. Implementation of this
interface is OPTIONAL. See Chapter I3 Recommended External Interface to the Performance Monitors.

An operating system can use the System registers to access the counters.

Also, if required, the operating system can enable application software to access the counters. This enables an
application to monitor its own performance with fine-grain control without requiring operating system support. For
example, an application might implement per-function performance monitoring.

To enable interaction with external monitoring, an implementation might consider additional enhancements, such
as providing:

• A set of events, from which a selection can be exported onto a bus for use as external events.

• The ability to count external events. This enhancement requires the implementation to include a set of
external event input signals.

The Performance Monitors Extension is common to AArch64 operation and AArch32 operation. This means the
Armv8 architecture defines both AArch64 and AArch32 System registers to access the Performance Monitors. For
example, the Performance Monitors Cycle Count Register is accessible as:

• When executing in AArch64 state, PMCCNTR_EL0.

• When executing in AArch32 state, PMCCNTR.

When executing in AArch32 state, if FEAT_PMUv3p5 is implemented, bits [63:32] of the event counters are not
accessible. If the implementation does not support AArch64 at any Exception level, 64-bit event counters are not
required to be implemented.

D7.1.1 Interaction with EL3

Software executing at EL3 can trap attempts by lower Exception levels to access the PMU. This means that the
Secure monitor can identify any software which is using the PMU and switch contexts, if required.

Software executing at EL3 can:

• Prohibit counting of events Attributable to Secure state.

• If FEAT_PMUv3p5 is implemented, prohibit counting of cycles in Secure state, see Controlling the PMU
counters on page D7-2859.

• If FEAT_PMUv3p7 is implemented:

— Prohibit event counters from counting events at EL3 without affecting the rest of Secure state.

— Prohibit the cycle counter from counting cycles at EL3 without affecting the rest of Secure state.

For more information, see Controlling the PMU counters on page D7-2859 and Freezing event counters on
page D7-2860.

In AArch32 state, the Performance Monitors registers are Common registers, see Classification of System registers
on page G5-6396.

If FEAT_MTPMU is implemented and EL3 is implemented, MDCR_EL3.MTPME and SDCR.MTPME enable and
disable the PMEVTYPER<n>.MT bit.

D7.1.2 Interaction with EL2

Software can program HDCR.HPMN to reserve the highest-numbered event counters by partitioning the event
counters into two sets. This does not depend on whether EL2 is enabled in the current Security state. Each set of
event counters has its own global controls.

Software executing at EL3, and when EL2 is implemented and enabled in the current Security state, software
executing at EL2 can:

• Trap an access at EL0 or EL1 to the PMU. This means the hypervisor can identify which Guest OSs are using
the PMU and intelligently employ switching of the PMU state. There is a separate trap for the PMCR register,
and if FEAT_FGT is implemented and enabled, fine-grained traps are provided.

• If FEAT_PMUv3p1 is implemented, prohibit counting of events Attributable to EL2 by the counters
accessible to EL1 and EL0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2851
ID072021 Non-Confidential

The Performance Monitors Extension
D7.1 About the Performance Monitors
• If FEAT_PMUv3p5 is implemented, prohibit counting of cycles at EL2.

When EL2 is implemented and enabled in the current Security state, software executing at EL1 and, if enabled by
PMUSERENR, EL0:

• Will read the value of HDCR.HPMN for PMCR.N.

• Cannot access the highest-numbered event counters, or the controls associated with them.

If FEAT_MTPMU is implemented, EL3 is not implemented, and EL2 is implemented, MDCR_EL2.MTPME and
HDCR.MTPME enable and disable the PMEVTYPER<n>.MT bit.

For more information, see:

• Enabling event counters on page D7-2859.

• Counter access on page D7-2868.

• Controlling the PMU counters on page D7-2859.

• Multithreaded implementations on page D7-2863.

D7.1.3 Time as measured by the Performance Monitors cycle counter

The Performance Monitors cycle counter, accessed through PMCCNTR_EL0 or PMCCNTR, increments from the
hardware processor clock, not PE clock cycles.

The relationship between the count recorded by the Performance Monitors cycle counter and the passage of real
time is IMPLEMENTATION DEFINED.

See Controlling the PMU counters on page D7-2859 for information about when the cycle counter does not
increment.

Note

• This means that, in an implementation where PEs are multithreaded, when enabled, the cycle counter
continues to increment across all PEs, rather than only counting cycles for which the current PE is active.

• Although the architecture requires that direct reads of PMCCNTR_EL0 or PMCCNTR occur in program
order, there is no requirement that the count increments between two such reads. Even when the counter is
incrementing on every clock cycle, software might need check that the difference between two reads of the
counter is nonzero.

The architecture requires that an indirect write to the PMCCNTR_EL0 or PMCCNTR is observable to direct
reads of the register in finite time. The counter increments from the hardware processor clock are indirect
writes to these registers.

D7.1.4 Interaction with trace

It is IMPLEMENTATION DEFINED whether the implementation exports counter events to a PE Trace Unit, or other
external monitoring agent, to provide triggering information. The form of any exporting is also IMPLEMENTATION
DEFINED. If implemented, this exporting might be enabled as part of the performance monitoring control
functionality.

Arm recommends system designers include a mechanism for importing a set of external events to be counted, but
such a feature is IMPLEMENTATION DEFINED. When implemented, this feature enables the PE Trace Unit to pass in
events to be counted.

Exporting PMU events to the ETM is prohibited for some Exception levels when SelfHostedTraceEnabled() ==
TRUE. For more information, see Controls to prohibit trace at Exception levels on page D3-2629.
D7-2852 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.2 Accuracy of the Performance Monitors
D7.2 Accuracy of the Performance Monitors

The Performance Monitors:

• Are a non-invasive debug component. See Non-invasive behavior on page D7-2853.

• Must provide broadly accurate and statistically useful count information.

However, the Performance Monitors allow for:

• A reasonable degree of inaccuracy in the counts to keep the implementation and validation cost low. See A
reasonable degree of inaccuracy on page D7-2853.

• IMPLEMENTATION DEFINED controls, such as those in ACTLR registers, to put the PE in an operating state
that might do one or both of the following:

— Change the level of non-invasiveness of the Performance Monitors so that enabling an event counter
can impact the performance or behavior of the PE.

— Allow inaccurate counts. This includes, but is not limited to, cycle counts.

D7.2.1 Non-invasive behavior

The Performance Monitors are a non-invasive debug feature. A non-invasive debug feature permits the observation
of data and program flow. Performance Monitors, PC Sample-based Profiling and Trace are non-invasive debug
features.

Non-invasive debug components do not guarantee that they do not make any changes to the behavior or
performance of the processor. Any changes that do occur must not be severe however, as this will reduce the
usefulness of event counters for performance measurement and profiling. This does not include any change to
program behavior that results from the same program being instrumented to use the Performance Monitors, or from
some other performance monitoring process being run concurrently with the process being profiled in a multitasking
operating system. As such, a reasonable variation in performance is permissible.

Note

Power consumption is one measure of performance. Therefore, a reasonable variation in power consumption is
permissible.

Arm does not define a reasonable variation in performance, but recommends that such a variation is kept within 5%
of normal operating performance, when averaged across a suite of code that is representative of the application
workload.

Note

For profiles other than A-profile, there is the potential for stronger requirements. Ultimately, performance
requirements are determined by end-users, and not set by the architecture.

For some common architectural events, this requirement to be non-invasive can conflict with the requirement to
present an accurate value of the count under normal operating conditions. Should an implementation require more
performance-invasive techniques to accurately count an event, there are the following options:

• If the event is optional, define an alternative implementation defined event that accurately counts the event
and document the impact on performance of enabling the event.

• Provide an implementation defined control that disables accurate counting of the event to restore broadly
accurate performance, and document the impact on performance of accurate counting.

D7.2.2 A reasonable degree of inaccuracy

The Performance Monitors provide broadly accurate and statistically useful count information. To keep the
implementation and validation cost low, a reasonable degree of inaccuracy in the counts is acceptable. Arm does
not define a reasonable degree of inaccuracy but recommends the following guidelines:

• Under normal operating conditions, the counters must present an accurate value of the count.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2853
ID072021 Non-Confidential

The Performance Monitors Extension
D7.2 Accuracy of the Performance Monitors
• In exceptional circumstances, such as a change in Security state or other boundary condition, it is acceptable
for the count to be inaccurate.

• Under very unusual, non-repeating pathological cases, the counts can be inaccurate. These cases are likely to
occur as a result of asynchronous exceptions, such as interrupts, where the chance of a systematic error in the
count is very unlikely.

Note

An implementation must not introduce inaccuracies that can be triggered systematically by the execution of normal
pieces of software. For example, it is not reasonable for the count of branch behavior to be inaccurate when caused
by a systematic error generated by the loop structure producing a dropping in branch count.

However, dropping a single branch count as the result of a rare interaction with an interrupt is acceptable.

The permitted inaccuracy limits the possible uses of the Performance Monitors. In particular, the architecture does
not define the points in a pipeline where the event is generated and where it is counted, relative to the point where
a read of the counters is made. This means that pipelining effects can cause some imprecision.

Where a direct write to a Performance Monitors control register disables a counter, and is followed by a Context
synchronization event, any subsequent indirect read of the control register by the Performance Monitors to
determine whether the counter is enabled will return the updated value. Any subsequent direct read of the counter
will return the value at the point the counter was disabled.

Note

The imprecision means that the counter might have counted an event around the time the counter was disabled, but
does not allow the event to be observed as counted after the counter was disabled.

A change of Security state can also affect the accuracy of the Performance Monitors, see Interaction with EL3 on
page D7-2851.

In addition to this, entry to and exit from Debug state can disturb the normal running of the PE, causing further
inaccuracy in the Performance Monitors. Disabling the counters while in Debug state limits the extent of this
inaccuracy. An implementation can employ methods to limit this inaccuracy, for example by promptly disabling the
counters during the Debug state entry sequence.

An implementation must document any particular scenarios where significant inaccuracies are expected.
D7-2854 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.3 Behavior on overflow
D7.3 Behavior on overflow

The event counters, PMEVCNTR<n> are either 32-bit or 64-bit unsigned counters that overflow in the following
situations:

• If FEAT_PMUv3p5 is not implemented, 32-bit event counters are implemented, and if incrementing
PMEVCNTR<n> causes an unsigned overflow of an event counter, the PE sets PMOVSCLR[n] to 1.

• If FEAT_PMUv3p5 is implemented, 64-bit event counters are implemented, and either n is in the range [0 ..
(HDCR.HPMN-1)] or EL2 is not implemented, then event counter overflow is configured by PMCR.LP:

— When PMCR.LP is set to 0, if incrementing PMEVCNTR<n> causes an unsigned overflow of bits
[31:0] of the event counter, the PE sets PMOVSCLR[n] to 1.

— When PMCR.LP is set to 1, if incrementing PMEVCNTR<n> causes an unsigned overflow of bits
[63:0] of the event counter, the PE sets PMOVSCLR[n] to 1.

• If FEAT_PMUv3p5 is implemented, 64-bit event counters are implemented, and EL2 is implemented, when
n is in the range [HDCR.HPMN .. (PMCR.N-1)], event counter overflow is configured by HDCR.HLP:

— When HDCR.HLP is set to 0, if incrementing PMEVCNTR<n> causes an unsigned overflow of bits
[31:0] of the event counter, the PE sets PMOVSCLR[n] to 1.

— When HDCR.HLP is set to 1, if incrementing PMEVCNTR<n> causes an unsigned overflow of bits
[63:0] of the event counter, the PE sets PMOVSCLR[n] to 1.

The cycle counter, PMCCNTR, is a 64-bit unsigned counter, that is configured by PMCR.LC:

• If PMCR.LC is set to 0, if incrementing PMCCNTR causes an unsigned overflow of bits [31:0] of the cycle
counter, the PE sets PMOVSCLR[31] to 1.

• If PMCR.LC is set to 1, if incrementing PMCCNTR causes an unsigned overflow of bits [63:0] of the cycle
counter, the PE sets PMOVSCLR[31] to 1.

For all 64-bit counters, incrementing the counter is the same whether an unsigned overflow occurs at [31:0] or
[63:0]. If the counter increments for an event, bits [63:0] are always incremented,

When any overflow occurs, an interrupt request is generated if the PE is configured to generate counter overflow
interrupts. For more information, see Generating overflow interrupt requests on page D7-2855.

If FEAT_PMUv3p7 is implemented, event counting can be frozen after an unsigned overflow is detected, see
Freezing event counters on page D7-2860.

Note

Software executing at EL1 or higher must take care that setting PMCR.LP or HDCR.HLP does not cause software
executing at lower Exception levels to malfunction. If legacy software accesses the PMU at lower Exception levels,
software at the higher Exception levels should not set the PMCR.LP or HDCR.HLP fields to 1. However, if the
legacy software does not use the counter overflow, it is not affected by setting the PMCR.LP or HDCR.HLP to 1.

D7.3.1 Generating overflow interrupt requests

Software can program the Performance Monitors so that an overflow interrupt request is generated when a counter
overflows. See PMINTENSET and PMINTENCLR.

Note

• The mechanism by which an interrupt request from the Performance Monitors generates an FIQ or IRQ
exception is IMPLEMENTATION DEFINED.

• Arm recommends that the overflow interrupt requests:

— Translate into a PMUIRQ signal, so that they are observable to external devices.

— Connect to inputs on an IMPLEMENTATION DEFINED Generic Interrupt Controller as a Private
Peripheral Interrupt (PPI) for the originating processor. See the ARM Generic Interrupt Controller
Architecture Specification for information about PPIs.

— Connect to a Cross Trigger Interface (CTI), see Chapter H5 The Embedded Cross-Trigger Interface.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2855
ID072021 Non-Confidential

The Performance Monitors Extension
D7.3 Behavior on overflow
• Arm strongly discourages implementations from connecting overflow interrupt requests from multiple PEs
to the same System Peripheral Interrupt (SPI) identifier.

• From GICv3, the ARM® Generic Interrupt Controller Architecture Specification recommends that the Private
Peripheral Interrupt (PPI) with ID 23 is used for overflow interrupt requests.

Software can write to the counters to control the frequency at which interrupt requests occur. For example, software
might set a 32-bit counter to 0xFFFF0000, to generate another counter overflow after 65536 increments, and reset it
to this value every time an overflow interrupt occurs.

Note

If an event can occur multiple times in a single clock cycle, then counter overflow can occur without the counter
registering a value of zero.

The overflow interrupt request is a level-sensitive request. The PE signals a request for:

• Any given PMEVCNTR<n> counter, when the value of PMOVSSET[n] is 1, the value of PMINTENSET[n]
is 1, and one of the following is true:

— EL2 is not implemented and the value of PMCR.E is 1.

— EL2 is implemented, n is less than the value of HDCR.HPMN, and the value of PMCR.E is 1.

— EL2 is implemented, n is greater than or equal to the value of HDCR.HPMN, and the value of
HDCR.HPME is 1.

• The cycle counter, when the values of PMOVSSET[31], PMINTENSET[31], and PMCR.E are all 1.

The overflow interrupt request is active in both Secure and Non-secure states. In particular, if EL3 and EL2 are both
implemented, overflow events from PMEVCNTR<n> where n is greater than or equal to the value of
HDCR.HPMN can be signaled from all modes and states but only if the value of HDCR.HPME is 1.

The interrupt handler for the counter overflow request must cancel the interrupt request, by writing 1 to
PMOVSCLR[n] to clear the overflow bit to 0.

Pseudocode description of overflow interrupt requests

See Chapter J1 Armv8 Pseudocode for a pseudocode description of overflow interrupt requests. The
AArch64.CheckForPMUOverflow() and AArch32.CheckForPMUOverflow() pseudocode functions signal PMU overflow
interrupt requests to an interrupt controller and PMU overflow trigger events to the cross-trigger interface.
D7-2856 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.4 Attributability
D7.4 Attributability

An event caused by the PE counting the event is Attributable. If an agent other than the PE that is counting the events
causes an event, these events are Unattributable.

An event is defined as being either Attributable or Unattributable. If the event is Attributable, it is further defined
whether it is Attributable to:

• The current Security state of the PE.

• The current Exception level of the PE.

• When the PE is in Debug state, operations issued to the PE by the debugger through the external debug
interface.

In a multithreaded implementation, an event might be generated by another PE with the same values for affinity
level 1 and higher. This event is further defined as Attributable to:

• The current Security state of that PE.

• The current Exception level of that PE.

• When that PE is in Debug state, operations issued to that PE by the debugger through the external debug
interface.

See Multithreaded implementations on page D7-2863 for information about enabling and restricting counting
events in a multithreaded implementation.

Note

• In an implementation containing multiple PEs, each PE is identified by a unique affinity value reported by
MPIDR_EL1{Aff3, Aff2, Aff1, Aff0}, where the value of affinity level 0 is the most significant for
determining the PE behavior, and the values of higher affinity levels are less significant. Affinity level 3 is
only supported in AArch64 state.

• An implementation is described as multithreaded when the lowest level of affinity consists of logical PEs that
are implemented using a multithreading type approach. In this section, when referring to a multithreaded
implementation, thread is used to mean processing elements with:

— MPIDR_EL1.MT or MPIDR.MT set to 1,

— Different values for affinity level 0.

— The same values for affinity level 1 and higher.

An event can be defined as the combination of multiple subevents, which can be either Attributable or
Unattributable.

All architecturally defined events are Attributable, unless otherwise stated.

Unattributable events might be counted when Attributable events are not counted. See:

• Interaction with EL3 on page D7-2851.

• Event filtering on page D7-2865.

• Performance Monitors and Debug state on page D7-2867.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2857
ID072021 Non-Confidential

The Performance Monitors Extension
D7.4 Attributability
These sections are summarized by Table D7-1 on page D7-2858 for events Attributable to the processor, and
Unattributable events. Table D7-1 on page D7-2858 entries apply when the counter and PMU are enabled and not
frozen. Otherwise, events are not counted.

Table D7-1 Counting events

State
Allowed or
prohibited

Filtered
Event type

If Attributable to: Then Else

Non-
debug

Allowed Not
filtered

X Count Count

Filtered Current Exception level Do not
count

IMPLEMENTATION
DEFINED

Prohibited X Current Security state Do not
count

IMPLEMENTATION
DEFINED

Debug X X Debugger operations or raw
cycles

Do not
count

IMPLEMENTATION
DEFINED
D7-2858 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.5 Controlling the PMU counters
D7.5 Controlling the PMU counters

This section describes the mechanisms available for controlling the PMU event and cycle counters. The following
sections describe those mechanisms:

• Enabling event counters on page D7-2859.

• Freezing event counters on page D7-2860.

• Prohibiting event and cycle counting on page D7-2861.

D7.5.1 Enabling event counters

Table D7-2 on page D7-2859 shows an implementation that does not include EL2, where the PMCR.E bit is a global
counter enable bit, and PMCNTENSET provides an enable bit for each counter.

If the implementation includes EL2, then in addition to the PMCR.E and PMCNTENSET enable bits:

• HDCR.HPME overrides the value of PMCR.E for counters configured for access in EL2.

• HDCR.HPMN specifies the number of performance counters that the Guest OS can access. The minimum
permitted value of HDCR.HPMN is 1, meaning there must be at least one counter that the Guest OS can
access.

Table D7-3 on page D7-2859 shows the combined effect of all the counter enable controls.

Note

• The effect of HDCR.{HPME, HPMN} on the counter enables applies at all Exception levels and in both
Security states.

• The value returned for PMCR.N is not affected by HDCR.HPMN at:

— EL3.

— EL2.

— Secure EL1, if FEAT_SEL2 is not implemented or Secure EL2 is disabled.

— Secure EL0, if FEAT_SEL2 is not implemented or Secure EL2 is disabled.

Table D7-2 Event counter enables when an implementation does not include EL2

PMCR.E PMCNTENSET[n] == 0 PMCNTENSET[n] == 1

0 PMEVCNTR<n> disabled PMEVCNTR<n> disabled

1 PMEVCNTR<n> disabled PMEVCNTR<n> enabled

Table D7-3 Event counter enables when an implementation includes EL2

HDCR.HPME PMCR.E PMCNTENSET[n] == 0
PMCNTENSET[n] == 1

n < HDCR.HPMN n ≥ HDCR.HPMN

0 0 PMEVCNTR<n> disabled PMEVCNTR<n> disabled PMEVCNTR<n> disabled

0 1 PMEVCNTR<n> disabled PMEVCNTR<n> enabled PMEVCNTR<n> disabled

1 0 PMEVCNTR<n> disabled PMEVCNTR<n> disabled PMEVCNTR<n> enabled

1 1 PMEVCNTR<n> disabled PMEVCNTR<n> enabled PMEVCNTR<n> enabled
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2859
ID072021 Non-Confidential

The Performance Monitors Extension
D7.5 Controlling the PMU counters
Note

The cycle counter, PMCCNTR, counts unless disabled or prohibited as described in Prohibiting event and cycle
counting on page D7-2861.

D7.5.2 Freezing event counters

When FEAT_SPEv1p2 is implemented, the PMU can be configured to freeze event counters when an SPE buffer
management event occurs.A counter is disabled under the following conditions:

• If EL2 is implemented, n is in the range [0 .. (MDCR_EL2.HPMN-1)], when PMBSR_EL1.S is 1, and
PMBLIMITR_EL1.E is 1, indicating an SPE buffer management event occurred, event counter n does not
count if all the following are true:

— PMBLIMITR_EL1.PMFZ is 1.

— PMCR_EL0.FZS is 1.

• If EL2 is not implemented, n is in the range [0 .. (PMCR_EL0.N-1)], when PMBSR_EL1.S is 1 and
PMBLIMITR_EL1.E is 1, indicating an SPE buffer management event occurred, event counter n does not
count if all the following are true:

— PMBLIMITR_EL1.PMFZ is 1.

— PMCR_EL0.FZS is 1.

• If EL2 is implemented, n is in the range [MDCR_EL2.HPMN .. (PMCR_EL0.N-1)], when PMBSR_EL1.S
is 1 and PMBLIMITR_EL1.E is 1, indicating an SPE buffer management event occurred, event counter n
does not count if all the following are true:

— PMBLIMITR_EL1.PMFZ is 1.

— MDCR_EL2.HPMFZS is 1.

Note
This also applies when EL2 is disabled in the current Security state.

If the highest implemented Exception level is using AArch32, then the Effective value of PMBLIMITR_EL1.E is 0
and FEAT_SPEv1p2 does not affect the PMU event counters. Otherwise, the effect of FEAT_SPEv1p2 on PMU
event counters applies in AArch32 state.

When FEAT_PMUv3p7 is implemented, the PMU can be configured to freeze event counters when an unsigned
overflow of a counter occurs.A counter is disabled under the following conditions:

• If EL2 is implemented, n is in the range [0 .. (MDCR_EL2.HPMN-1)], when
PMOVSCLR_EL0[(MDCR_EL2.HPMN-1):0] is non-zero, indicating an unsigned overflow in one of the
event counters in the range, event counter n does not count when PMCR_EL0.FZO is 1.

• If EL2 is implemented, MDCR_EL2.HPMN is less than PMCR_EL0.N and n is in the range
[MDCR_EL2.HPMN .. (PMCR_EL0.N-1)], when
PMOVSCLR_EL0[(PMCR_EL0.N-1):MDCR_EL2.HPMN] is non-zero, indicating an unsigned overflow in
one of the event counters in the range, event counter n does not count when PMCR_EL0.FZO is 1.

• If EL2 is not implemented and n is in the range [0 .. (PMCR_EL0.N-1)], when
PMOVSCLR_EL0[(PMCR_EL0.N-1):0] is non-zero, indicating an unsigned overflow in one of the event
counters in the range, event counter n does not count when PMCR_EL0.FZO is 1.

When the applicable PMCR_EL0.FZO or MDCR_EL2.HPMFZO bit is 1, it is CONSTRAINED UNPREDICTABLE
whether any event happening at or about the same time as the event that caused the overflow is counted. This
includes other instances of the same event.

Note

The architecture does not define when PMU events are counted relative to the instructions that caused the event.
Events caused by an instruction might be counted before or after the instruction becomes architecturally executed,
and events might be counted for operations that are not architecturally executed. Events can be counted
speculatively, out-of-order, or both with respect to the simple sequential execution of the program. Events might
also be counted simultaneously by other event counters when the overflow occurs, including events from different
instructions. Multiple instances of an event might occur simultaneously, thus an event counter unsigned overflow
can yield a nonzero value in the event counter.
D7-2860 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.5 Controlling the PMU counters
Arm recommends that such counting anomalies are minimized when software uses the freeze on overflow feature.

When the freeze on overflow feature is being used, software cannot assume that the event counter stops counting at
zero when an overflow occurs.

If an event counter <n> overflows, where n is even and event counter <n+1> is configured to count the CHAIN
event, it is CONSTRAINED UNPREDICTABLE whether the CHAIN event observes the overflow event when the
applicable PMCR_EL0.FZO or MDCR_EL2.HPMFZO bit is 1 and the corresponding PMCR_EL0.LP or
MDCR_EL2.HLP bit is 0.

D7.5.3 Prohibiting event and cycle counting

Counting Attributable events in Secure state is prohibited unless any one of the following is true:

• EL3 is not implemented.

• FEAT_PMUv3p7 is not implemented, EL3 is implemented, is using AArch64, and the value of
MDCR_EL3.SPME is 1.

• FEAT_PMUv3p7 is implemented, EL3 is implemented, EL3 is using AArch64, the value of
MDCR_EL3.SPME is 1. and the value of MDCR_EL3.MPMX is 0.

• FEAT_PMUv3p7 is implemented, EL3 is implemented, the PE is not at EL3, EL3 is using AArch64, and the
value of MDCR_EL3.MPMX is 1

• EL3 is implemented, is using AArch32, and the value of SDCR.SPME is 1.

• EL3 is implemented, EL3 or EL1 is using AArch32, executing at EL0, and the value of
SDER32_EL3.SUNIDEN is 1.

• If FEAT_Debugv8p2 is not implemented, EL3 is implemented, and counting is permitted by an
IMPLEMENTATION DEFINED authentication interface, ExternalSecureNoninvasiveDebugEnabled() == TRUE.

Note
Software can read the Authentication Status register, DBGAUTHSTATUS to determine the state of an
IMPLEMENTATION DEFINED authentication interface.

If a direct read of PMOVSCLR_EL0 returns a non-zero value for a subset of the overflow flags, which means an
event counter <n> should not count, then a sequence of direct reads of PMEVCNTR<n>_EL0 ordered after the read
of PMOVSCLR_EL0 and before the PMOVSCLR_EL0 flags are cleared to zero, will return the same value for each
read, because the event counter has stopped counting.

Note

Direct reads of System registers require explicit synchronization for following direct reads of other System registers
to be ordered after the first direct read.

If FEAT_PMUv3p7 is implemented and MDCR_EL3.MPMX is 1, counting Attributable events at EL3 for event
counter n is prohibited if any of the following are true:

• EL2 is not implemented, and n is in the range [0 .. (PMCR_EL0.N-1)].

• EL2 is implemented, MDCR_EL3.SPME is 0, and n is in the range [0 .. (PMCR_EL0.N-1)].

• EL2 is implemented, MDCR_EL3.SPME is 1, and n is in the range [0 .. (MDCR_EL2.HPMN-1)].

If EL2 is implemented and MDCR_EL3.{SPME, MPMX} is {1, 1}, when MDCR_EL2.HPMN is less than
PMCR_EL0.N and n is in the range [MDCR_EL2.HPMN .. (PMCR_EL0.N-1)], counting Attributable events at
EL3 for event counter n is allowed.

Counting Attributable events at EL2 is prohibited unless any of the following are true:

• FEAT_PMUv3p1 is not implemented.

• HDCR.HPMD is 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2861
ID072021 Non-Confidential

The Performance Monitors Extension
D7.5 Controlling the PMU counters
• MDCR_EL2.HPMN is less than PMCR_EL0.N and event counter n is in the range [MDCR_EL2.HPMN ..
(PMCR_EL0.N-1)].

If FEAT_SEL2 is implemented, counting Attributable events at Secure EL2 is allowed if and only if counting events
is allowed in Secure state, and counting events is allowed at EL2.

The accessibility of Performance Monitors registers is unaffected by whether event counting is enabled or
prohibited.

The cycle counter, PMCCNTR, counts unless any of the following is true:

• The cycle counter is disabled by PMCR_EL0.E or PMCNTENSET_EL0[31].

• Event counting is prohibited and PMCR.DP is set to 1.

• The PE is in Debug state.

• FEAT_PMUv3p5 is implemented, EL3 is implemented, the PE is in Secure state, and SDCR.SCCD is set to
1.

• FEAT_PMUv3p5 is implemented, EL2 is implemented, the PE is executing at EL2, and HDCR.HCCD is set
to 1.

• FEAT_PMUv3p7 is implemented, the PE is at EL3, EL3 is using AArch64, and MDCR_EL3.MCCD is set
to 1.

For each Unattributable event, it is IMPLEMENTATION DEFINED whether it is counted when counting Attributable
events is prohibited.

See AArch64.CountEvents() and AArch32.CountEvents() in Chapter J1 Armv8 Pseudocode for more information. The
CountEvents(n) functions return TRUE if PMEVCNTR<n> is enabled and allowed to count events at the current
Exception level or state, and FALSE otherwise, The function CountEvents(31) returns TRUE if the cycle counter is
enabled and allowed to count cycles at the current Exception level and state and FALSE otherwise. However, these
functions do not completely describe the behavior for Unattributable events.

The Performance Monitors are intended to be broadly accurate and statistically useful, see Accuracy of the
Performance Monitors on page D7-2853. Some inaccuracy is permitted at the point of changing between a state
where counting is prohibited and a state where counting is allowed, however. To avoid the leaking of information,
the permitted inaccuracy is that transactions that are not prohibited can be uncounted. Where possible, prohibited
transactions must not be counted, but if they are counted, then that counting must not degrade security.
D7-2862 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.6 Multithreaded implementations
D7.6 Multithreaded implementations

If an implementation is multithreaded and the Effective value of PMEVTYPER<n>.MT ==1, events on other PEs
with the same level 1 Affinity are also counted. A pair of PEs have the same level 1 Affinity if they have the same
values for all fields in MPIDR_EL1or MPIDR except the Aff0 field.

Events on other PEs are not counted when the Effective value of PMEVTYPER<n>.MT is 0.

If the CPU implements multithreading, and FEAT_MTPMU is not implemented, for Armv8.5 and earlier, it is
IMPLEMENTATION DEFINED whether PMEVTYPER<n>.MT is implemented as RW or RES0. From Armv8.6, if the
OPTIONAL FEAT_MTPMU feature is not implemented, the Effective value of PMEVTYPER<n>.MT is RES0.

If FEAT_MTPMU is implemented, EL3 is implemented, and MDCR_EL3.MTPME is 0 or SDCR.MTPME is 0,
FEAT_MTPMU is disabled and the Effective value of PMEVTYPER<n>.MT is 0.

If FEAT_MTPMU is implemented, EL3 is not implemented, EL2 is implemented, and MDCR_EL2.MTPME is 0
or HDCR.MTPME is 0, FEAT_MTPMU is disabled and the Effective value of PMEVTYPER<n>.MT is 0.

If FEAT_MTPMU is disabled on a Processing Element PEA, it is IMPLEMENTATION DEFINED whether
FEAT_MTPMU is disabled on another Processing Element PEB, if all the following are true:

• FEAT_MTPMUis implemented on PEA and PEB.

• PEA and PEB have the same values for Affinity level 1 and higher.

• PEA and PEB both have MPIDR_EL1.MT or MPIDR.MT set to 1.

However, even when the Effective value of PMEVTYPER<n>.MT is 1, PEA does not count an event that is
Attributable to Secure state on PEB if counting events Attributable to Secure state is prohibited on PEA. Similarly,
PEA does not count an event that is Attributable to EL2 on PEB if counting events Attributable to EL2 is prohibited
on PEA.

Example D7-1 The effect of having PMEVTYPER<n>.MT == 1

If the value of MDCR_EL3.SPME is 0, and <n> is less than PMCR.N on PEA, then event counter <n> on PEA does
not count events Attributable to Secure state on PEB, even if one or both of the following applies:

• PEA is in Non-secure state.

• MDCR_EL3.SPME==1 on PEB.

Example D7-2 The effect of having PMEVTYPER<n>.MT == 1

If the value of MDCR_EL2.HPMD is 1 and <n> is less than MDCR_EL2.HPMN on PEA, then event counter <n>
on PEA does not count events Attributable to EL2 on PEB, even if one of the following applies:

• MDCR_EL2.HPMD==0 on PEB.

• PEA is not executing at EL2.

When the current configuration is not multithreaded, and PEA prohibits counting of events Attributable to Secure
state when PEA is in Secure state, it is IMPLEMENTATION DEFINED whether:

• Counting events Attributable to Secure state when PEA is in Non-secure state is permitted.

• Counting Unattributable events related to other Secure operations in the system when PEA is in Non-secure
state is permitted.

Otherwise, counting events in Non-secure state is permitted.

When the current configuration is not multithreaded, and PEA prohibits counting of events Attributable to EL2 when
PEA is at EL2, it is IMPLEMENTATION DEFINED whether:

• Counting events Attributable to EL2 when PEA is using another Exception level is permitted.

• Counting Unattributable events related to EL2 when PEA is using another Exception level is permitted.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2863
ID072021 Non-Confidential

The Performance Monitors Extension
D7.6 Multithreaded implementations
Otherwise, counting events at another Exception level is permitted.
D7-2864 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.7 Event filtering
D7.7 Event filtering

The PMU can filter events by various combinations of Exception level and Security state. This gives software the
flexibility to count events across multiple processes.

D7.7.1 Filtering by Exception level and Security state

In AArch64 state:

• For each event counter, PMEVTYPER<n>_EL0 specifies the Exception levels in which the counter counts
events Attributable to Exception levels.

• PMCCFILTR_EL0 specifies the Exception levels in which the cycle counter counts.

For an event that is Attributable to an Exception level, in a multithreaded implementation:

• When the Effective value of PMEVTYPER<n>_EL0.MT is 1, the specified filtering is evaluated using the
current Exception level and Security state of the thread to which the event is Attributable. See Example D7-3
on page D7-2865.

• When the Effective value of PMEVTYPER<n>_EL0.MT is 0, the event is only counted if it is Attributable
to the counting thread, and the filtering is evaluated using the Exception level and Security state of the
counting thread.

Example D7-3 Example of the effect of the PMEVTYPER<n>_EL0.MT control

In a multithreaded implementation, if the Effective value of PMEVTYPER<n>_EL0.MT is 1 and the value of
PMEVTYPER<n>_EL0.U is 1 on the counting thread, then event counter <n> does not count events Attributable
to EL0 on another thread, even if the counting thread is not executing at EL0.

For each Unattributable event, it is IMPLEMENTATION DEFINED whether the filtering applies. In a multithreaded
implementation, if the filtering applies to an Unattributable event, then the filtering is evaluated using the Exception
level and Security state of the counting thread.

In AArch32 state, the filtering controls are provided by the PMEVTYPER<n> and PMCCFILTR registers.

For more information, see the individual register descriptions and Multithreaded implementations on
page D7-2863.

D7.7.2 Accuracy of event filtering

For most events, it is acceptable that, during a transition between states, events generated by instructions executed
in one state are counted in the other state. The following sections describe the cases where event counts must not be
counted in the wrong state:

• Exception-related events on page D7-2865.

• Software increment events on page D7-2866.

Exception-related events

The PMU must filter events related to exceptions and exception handling according to the Exception level in which
the event occurred. These events are:

• EXC_TAKEN, Exception taken.

• EXC_RETURN, Instruction architecturally executed, Condition code check pass, exception return.

• CID_WRITE_RETIRED, Instruction architecturally executed, Condition code check pass, write to
CONTEXTIDR.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2865
ID072021 Non-Confidential

The Performance Monitors Extension
D7.7 Event filtering
• TTBR_WRITE_RETIRED, Instruction architecturally executed, Condition code check pass, write to
translation table base.

The PMU must not count an exception after it has been taken because this could systematically report a result of
zero exceptions at EL0. Similarly, it is not acceptable for the PMU to count exception returns or writes to
CONTEXTIDR after the return from the exception.

Software increment events

The PMU must filter software increment events according to the Exception level in which the software increment
occurred. Software increment counting must also be precise, meaning the PMU must count every architecturally
executed software increment event, and must not count any Speculatively executed software increment.

Software increment events must also be counted without the need for explicit synchronization. For example, two
software increments executed without an intervening Context synchronization event must increment the event
counter twice.

For more information, see SW_INCR, Instruction architecturally executed, Condition code check pass, software
increment.

D7.7.3 Pseudocode description of event filtering

See AArch64.CountEvents() and AArch32.CountEvents() in Chapter J1 Armv8 Pseudocode for a pseudocode
description of event filtering. However, this function does not completely describe the behavior for Unattributable
events.
D7-2866 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.8 Performance Monitors and Debug state
D7.8 Performance Monitors and Debug state

Events that count cycles are not counted in Debug state.

Events Attributable to the operations issued by the debugger through the external debug interface are not counted
in Debug state.

In an implementation that supports multithreading, when the Effective value of PMEVTYPER<n>_EL0.MT is 1, if
an event is Attributable to an operation issued by the debugger through the external debug interface to another thread
that is in Debug state, then the event is not counted, and it is IMPLEMENTATION DEFINED whether the event is counted
when the counting thread is in Debug state.

For each Unattributable event, it is IMPLEMENTATION DEFINED whether it is counted when the counting PE is in
Debug state. If the event might be counted, then the rules in Filtering by Exception level and Security state on
page D7-2865 apply for the current Security state in Debug state.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2867
ID072021 Non-Confidential

The Performance Monitors Extension
D7.9 Counter access
D7.9 Counter access

All implemented event counters are accessible in EL3 and EL2. If EL2 is implemented the hypervisor uses
HDCR.HPMN to reserve an event counter, with the effect that if EL2 is enabled in the current Security state,
software cannot access that counter and its associated state from EL0 or EL1.

If FEAT_FGT is implemented, if PMSELR.SEL or n indicates an unimplemented event counter, access to
PMXEVTYPER, PMXEVCNTR, PMEVTYPER<n>, or PMEVCNTR<n> is UNDEFINED.

Note

Whether software can access an event counter at an Exception level does not affect whether the counter counts
events at that Exception level. For more information, see Controlling the PMU counters on page D7-2859 and
Enabling event counters on page D7-2859.

D7.9.1 PMEVCNTR<n> event counters

Table D7-4 on page D7-2868 shows how the number of implemented event counters, PMCR.N, and if EL2 is
implemented, the value of the HDCR.HPMN field affects the behavior of permitted accesses to the
PMEVCNTR<n> event counter registers for values of n from 0 to 30.

Where Table D7-4 on page D7-2868 shows access succeeds for an event counter <n>, the access might be
UNDEFINED or generate a trap exception. See the descriptions of PMEVCNTR<n> and PMXEVCNTR for details.

Where Table D7-4 on page D7-2868 shows no access for an event counter <n>:

• When PMSELR.SEL is n, the PE prevents direct reads and direct writes of PMXEVTYPER or
PMXEVCNTR. See the register descriptions for more information.

• The PE prevents direct reads and direct writes of PMEVTYPER<n> or PMEVCNTR<n>. See the register
descriptions for more information.

• Direct reads and direct writes of the following registers are RAZ/WI. PMOVSCLR[n], PMOVSSET[n],
PMCNTENSET[n], PMCNTENCLR[n], PMINTENSET[n], and PMINTENCLR[n].

• Direct writes to PMSWINC[n] are ignored.

• A direct write of 1 to PMCR.P does not reset PMEVCNTR<n>.

D7.9.2 Cycle counter

The PMU does not provide any control that a hypervisor can use to reserve the cycle counter for its own use.
However, access to the PMU registers are subject to the access permissions described in Configurable instruction
enables and disables, and trap controls on page D1-2510.

Table D7-4 Result of PMEVCNTR<n> event counter accesses

Condition
Access at Exception level

EL3 EL2 EL1 EL0

n < PMCR.N and either EL2 is not implemented or EL2 is disabled in the current
Security state

Succeeds n/a Succeeds Succeeds

n < HDCR.HPMN and EL2 is implemented and enabled in the current Security
state

Succeeds Succeeds Succeeds Succeeds

n  HDCR.HPMN and n < PMCR.N and EL2 is implemented and enabled in the
current Security state

Succeeds Succeeds No access No access

n  PMCR.N No access No access No access No access
D7-2868 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
D7.10 PMU events and event numbers

The following sections describe the events that can be counted and their associated event numbers, and the
mnemonics for the events:

• Definitions on page D7-2869.

• The PMU event number space and common events on page D7-2875.

• Common event numbers on page D7-2876.

• Cycle event counting on page D7-2936.

• Meaningful ratios between common microarchitectural events on page D7-2937.

• Required events on page D7-2937.

• IMPLEMENTATION DEFINED event numbers on page D7-2939.

D7.10.1 Definitions

The following subsections give more information about terms used in the event definitions:

• Definition of terms on page D7-2869.

• Levels of caches and TLBs on page D7-2874.

• Shared caches and buses on page D7-2875.

Definition of terms

ALU operation counts

The PMU events 0x80C0 to 0x80CF count the number of arithmetic logic unit operations performed
by each instruction.

Table D7-5 on page D7-2870 gives the ALU operation counts for accumulator instruction PMU
events.

In this table:

Input size The element size of input operands other than the accumulator.

Acc size The element size of the accumulator operand.

Count The number of addition and multiply operations per 128 bits of input:

• Scalable vector operations increment the counter by the Count value for an
applicable *_SCALE_OPS_SPEC event.

• Advanced SIMD operations operating on a 128-bit register increment the counter
by the Count value for an applicable *_FIXED_OPS_SPEC event.

• Advanced SIMD operations operating on a 64-bit register increment the counter
by half the Count value for an applicable *_FIXED_OPS_SPEC event.

Type The data type classification for the operations. This determines for which events the
event counter counts the operation.

Predicated operations are counted even if the Governing predicate for the element is FALSE.

Note
The FP64 FMMLA instruction works on 256-bit segments, and performs 16 operations per 256-bit
segment. The table represents counts per 128 bits of input, so the counter increments by 8.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2869
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
Note

Predicated operations are counted even if the governing predicate for the element is FALSE.

For other instructions, the PMU events that count ALU operations are incremented as follows:

• Multiply-add, multiply-subtract, fused multiply-add, and fused multiply-subtract instructions
generate two ALU operations of the specified type per input element. For floating-point
operations, these are the instructions counted by FP_FMA_SPEC.

• All other data processing operations generate one ALU operation of the specified type per
input element.

For example, ALU operation counters are incremented as follows:

• Non-SVE load and store of a single register instructions increment the counter by 1. This
includes loads and stores of Sx, Dx, and Qx SIMD&FP registers.

• Non-SVE load and store of a pair of registers instructions increment the counter by 2. This
includes loads and stores of pairs of Sx, Dx, and Qx SIMD&FP registers.

• AArch32 load and store multiple registers instructions increment the counter by the number
of registers transferred.

• Atomic store instructions increment the counter by 1. These are instructions that atomically
update a value in memory without returning a value to a register.

• Atomic load, compare and swap of a single register, and swap instructions increment the
counter by 2. Atomic load instructions are instructions that atomically update a value in
memory, returning a value to a register.

• Compare and swap of a pair of registers increment the counter by 4.

• SVE and Advanced SIMD LD1R instructions increment the counter by 1.

• SVE LD1RQ instructions increment the counter by (128 ÷ CSIZE).

• Advanced SIMD LD[1-4] and ST[1-4] instructions increment the counter by the number of
elements transferred per vector multiplied by the number of transferred registers.

• DC ZVA and DC GZVA instructions increment by the counter by an IMPLEMENTATION DEFINED
amount

CSIZE Container size, in bits, that corresponds to the largest non-overlapping SVE or Advanced SIMD
vector element size or scalar register size that is encoded in the instruction opcode. This excludes
the 64-bit elements of the wide element variants of the SVE bitwise shift and integer compare
instructions that overlap the narrower source and destination elements.

Table D7-5 ALU operation counts

Operation Input size Acc size Count Type

SDOT, UDOT, USDOT, SUDOT 8 bits 32 bits 32 Integer

SDOT, UDOT 16 bits 64 bits 16 Integer

BFDOT 16 bits 32 bits 16 Single-precision floating point

BFMMLA 16 bits 32 bits 32 Single-precision floating point

BFMLAL, FMLAL, and FMLSL 16 bits 32 bits 8 Single-precision floating point

SMMLA, UMMLA, or USMMLA 8 bits 32 bits 64 Integer

FMMLA 32 bits 32 bits 16 Single-precision floating point

FMMLA 64 bits 64 bits 8 Double-precision floating point
D7-2870 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
Instruction architecturally executed

Instruction architecturally executed is a class of event that counts for each instruction of the
specified type. Architecturally executed means that the program flow is such that the counted
instruction would be executed in a Simple sequential execution of the program. Therefore an
instruction that has been executed and retired is defined to be architecturally executed. When a PE
can perform speculative execution, an instruction is not architecturally executed if the PE discards
the results of the speculative execution.

If an instruction that would be executed in a Simple sequential execution of the program generates
a synchronous exception, it is IMPLEMENTATION DEFINED whether the instruction is counted.

Each architecturally executed instruction is counted once, even if the implementation splits the
instruction into multiple operations. Instructions that have no visible effect on the architectural state
of the PE are architecturally executed if they form part of the architecturally executed program flow.
The point where such instructions are retired is IMPLEMENTATION DEFINED.

Examples of instructions that have no visible effect are:

• A NOP.

• A conditional instruction that fails its Condition code check.

• A Compare and Branch on Zero, CBZ, instruction that does not branch.

• A Compare and Branch on Nonzero, CBNZ, instruction that does not branch.

The point at which an event causes an event counter to be updated is not defined.

Unless otherwise stated, all instructions of the specified type are counted even if they have no visible
effect on the architectural state of the PE. This includes a conditional instruction that fails its
Condition code check.

For events that count only the execution of instructions that update context state, such as writes to
the CONTEXTIDR, if such an instruction is executed twice without an intervening Context
synchronization event, it is CONSTRAINED UNPREDICTABLE whether the first instruction is counted.

Instruction architecturally executed, Condition code check pass

Instruction architecturally executed, Condition code check pass is a class of events that explicitly
do not occur for:

• A conditional instruction that fails its Condition code check.

• A Compare and Branch on Zero, CBZ, instruction that does not branch.

• A Compare and Branch on Nonzero, CBNZ, instruction that does not branch.

• A Test and Branch on Zero, TBZ, instruction that does not branch.

• A Test and Branch on Nonzero, TBNZ, instruction that does not branch.

• A Store-Exclusive instruction that does not write to memory.

Otherwise, the definition of architecturally executed is the same as for Instruction architecturally
executed.

A branch that is architecturally executed, with condition code check pass is also described as a
branch taken.

Instruction memory access

A PE acquires instructions for execution through instruction fetches. Instruction fetches might be
due to:

• Fetching instructions that are architecturally executed.

• The result of the execution of an instruction preload instruction, PLI.

• Speculation that a particular instruction might be executed in the future.

The relationship between the fetch of an individual instruction and an instruction memory access is
IMPLEMENTATION DEFINED. For example, an implementation might fetch many instructions
including a non-integer number of instructions in a single instruction memory access.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2871
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
Memory-read operations

A PE accesses memory through memory-read operations and Memory-write operations. A
memory-read operation might be due to:

• The result of an architecturally executed memory-reading instructions.

• The result of a Speculatively executed memory-reading instructions.

• A translation table walk.

For levels of cache hierarchy beyond the Level 1 caches, memory-read operations also include
accesses made as part of a refill of another cache closer to the PE. Such refills might be due to:

• Memory-read operations or Memory-write operations that miss in the cache

• The execution of a data preload instruction.

• The execution of an instruction preload instruction on a unified cache.

• The execution of a cache maintenance instruction.

Note
A preload instruction or cache maintenance instruction is not, in itself, an access to that
cache. However, it might generate cache refills which are then treated as memory-read
operations beyond that cache.

• Speculation that a future instruction might access the memory location.

• Instruction memory accesses.

This list is not exhaustive.

The relationship between memory-read instructions and memory-read operations is
IMPLEMENTATION DEFINED. For example, for some implementations an LDP instruction that reads
two 64-bit registers might generate one memory-read operation if the address is quadword-aligned,
but for other addresses it generates two or more memory-read operations.

Memory-write operations

Memory-write operations might be due to:

• The result of an architecturally executed memory-writing instructions.

• The result of a Speculatively executed memory-writing instructions.

Note
Speculatively executed memory-writing instructions that do not become architecturally executed
must not alter the architecturally defined view of memory. They can, however, generate a
memory-write operation that is later undone in some implementation specific way.

For levels of cache hierarchy beyond the Level 1 caches, memory-write operations also include
accesses made as part of a write-back from another cache closer to the PE. Such write-backs might
be due to:

• Evicting a dirty line from the cache, to allocate a cache line for a cache refill, see
Memory-read operations.

• The execution of a cache maintenance instruction.

Note
A cache maintenance instruction is not in itself an access to that cache. However, it might
generate write-backs which are then treated as memory-write operations beyond that cache.

• The result of a coherency request from another PE.

This list is not exhaustive.

DC ZVA is counted as a Memory-write operation.

The relationship between memory-writing instructions and memory-write operations is
IMPLEMENTATION DEFINED. For example, for some implementations an STP instruction that writes
two 64-bit registers might generate one memory-write operation if the address is quadword-aligned,
D7-2872 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
but for other addresses it generates two or more memory-write operations. In some
implementations, the result of two STR instructions that write to adjacent memory might be merged
into a single memory-write operation.

Note

The data written back from a cache that is shared with other PEs might not be data that was written
by the PE that performs the operation that leads to the write-back. Nevertheless, the event is counted
as a write-back event for that PE.

Microarchitectural operation

It is permissible for an implementation of a PE to break down instructions into separate, smaller,
operations. The use of Microarchitectural operations (micro-ops) is IMPLEMENTATION DEFINED.

An instruction might create one or more micro-ops at any point in the execution pipeline. For the
purpose of event counting, the micro-ops are counted. The definition of a micro-op is
implementation specific. An architecture instruction might create more than one micro-op for each
instruction. micro-ops might also be removed or merged in the execution stream, so an architecture
instruction might create no micro-ops for an instruction. Any arbitrary translation of instructions to
an equivalent sequence of micro-ops is permitted.

The counting of operations can indicate the workload on the PE. However, there is no requirement
for operations to represent similar amounts of work, and direct comparisons between different
microarchitectures are not meaningful.

For example, an implementation might split an A32 or T32 LDM instruction of six registers into six
micro-ops, one for each load, and a seventh address-generation operation to determine the base
address or writeback address. Also, for doubleword alignment, the six load micro-ops might
combine into four operations, that is, a word load, two doubleword loads, and a second word load.
This single instruction can then be counted as five, or possibly six, events:

• Four (Operations speculatively executed - Load) events.

• One (Operations speculatively executed - Integer data processing) event.

• One (Operations speculatively executed - Software change of the PC) event if the PC was one
of the six registers in the LDM instruction.

MSIZE Memory element access size, in bits, that corresponds to a load or store instruction mnemonic suffix,
where B=8, H=16, W=32 and D=64. When an instruction mnemonic does not end with B, H, W or
D, the memory access size is implied by the scalar transfer register size or SIMD transfer register
element size.

non-SIMD SVE instructions

These are instructions listed in the non-SIMD SVE instruction category in the Arm® Architecture
Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

Operations speculatively executed

A Microarchitectural operation that is Speculatively executed.

There is no architecturally guaranteed relationship between a Speculatively executed micro-op and
an architecturally executed instruction.

The results of such an operation can also be discarded, if it transpires that the operation was not
required, following a mispredicted branch. Therefore, Armv8-A defines these events as operations
speculatively executed, where appropriate.

Note
In some events, operation has a more specific meaning described in the event. See ALU operation
counts on page D7-2869.

Processor cycle
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2873
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
For a non-multithreaded implementation, this means a cycle of the processor. For a multithreaded
implementation, processor cycle means each cycle of the multithreaded processor, not just those
cycles for which the PE counting the event is active.

Slot

An implementation of a PE might be able to execute multiple micro-ops in a single processor cycle.
The maximum number of micro-ops that can be executed might vary at different points in the
execution pipeline.

To allow profiling of the utilization of the resource of the PE, an implementation specific point in
the execution pipeline is chosen where the maximum number of micro-ops that can be executed is
an IMPLEMENTATION DEFINED fixed value.

Each possible micro-op that can be executed at that point in a cycle is called a Slot. The maximum
number of micro-ops that can be executed is defined by PMMIR.SLOTS.

Software change of the PC

Some events relate to instructions that cause a software change of the PC. This includes all:

• Branch instructions.

• Memory-reading instructions that explicitly write to the PC.

• Data-processing instructions that explicitly write to the PC.

• Exception return instructions.

It is IMPLEMENTATION DEFINED whether any or all of the following are treated as software changes
of the PC:

• BRK and BKPT instructions.

• An exception generated because an instruction is UNDEFINED.

• The exception-generating instructions, SVC, HVC, and SMC.

• Context synchronization barrier ISB instructions.

Speculatively executed

Many events relate to speculatively executed operations. Here, speculatively executed means the PE
did some work associated with one or more instructions but the instructions were not necessarily
architecturally executed.

See Operations speculatively executed for speculation of micro-ops.

Note

The definition of speculatively executed does not mean only those operations that are executed
speculatively and later abandoned, for example due to a branch misprediction or fault. That is,
speculatively executed operations must count operations on both false and correct execution paths.

Different groups of events can have different IMPLEMENTATION DEFINED definitions of
speculatively executed. Such groups share a common base type, which the event name denotes.
Each of the events in the previous example is of the base type, operation speculatively executed.

For groups of events with a common base type, speculatively executed operations are all counted
on the same basis, which normally means at the same point in the pipeline. It is possible to compare
the counts and make meaningful observations about the program being profiled.

Within these groups, events are commonly defined with reference to a particular architecture
instruction or group of instructions. In the case of speculatively executed operations this means
operations with semantics that map to that type of instruction.

VL The current SVE vector length, in bits.

Levels of caches and TLBs

The mapping of levels of cache and TLB to the PMU events is IMPLEMENTATION DEFINED. Although CLIDR_EL1
and CLIDR define the implemented levels of cache, these are not required to correspond with the levels of cache
defined for PMU events. The architecture does not provide any way of determining implemented levels of TLB.
D7-2874 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
Also, many implementations include structures that provide some caching at a higher level than the level 1 caches
or TLBs. Typically, these structures, that might be called Level 0 caches, or mini caches, or microcaches, are
invisible to software. The implementation-specific nature of cache and TLB implementations mean that, in general,
PMU event counts cannot be used reliably to make direct comparisons between different implementations.

Shared caches and buses

There is no architectural concept of a shared component. However, when a cache, a bus, or any other system
component that might generate countable events is implemented, and:

• The extent of the first-order effects due to an event from that component are only applicable to a single PE,
then the event is not shared.

• Otherwise, the event is shared.

Second-order effects are not considered when determining if an event is shared.

Example D7-4 First and second order effects of a cache miss in a multiple-PE implementation

In an implementation that consists of two PEs, each with its own L1 cache, a cache miss by one of the PEs is a
first-order effect of an access to its cache. Any snoop that is performed on the L1 cache of the other PE in the
implementation as a result of that cache miss is a second order effect.

Note

Shared events are inherently linked to microarchitectures and so the implementer must make an informed decision
about how such events are implemented.

D7.10.2 The PMU event number space and common events

In Armv8.0, the event number space is 10 bits. Armv8.1 extends the event number space, and therefore the
PMEVTYPER<n>_EL0.evtCount field to 16 bits, and is allocated as Table D7-6 on page D7-2875 shows. For more
information about the entries in the Allocation on page D7-2875 column see the text that follows this table:

Table D7-6 Allocation of the PMU event number space

Event numbers Allocation

In all versions of Armv8

0x0000-0x003F Common architectural and microarchitectural events.

0x0040-0x00BF Arm-recommended common architectural and microarchitectural events.

0x00C0-0x03FF IMPLEMENTATION DEFINED events.

From Armv8.1

0x0400-0x3FFF IMPLEMENTATION DEFINED events.

0x4000-0x403F Common architectural and microarchitectural events.

0x4040-0x40BF Arm-recommended common architectural and microarchitectural events.

0x40C0-0x7FFF IMPLEMENTATION DEFINED events.

0x8000-0x80FF Common architectural and microarchitectural events.

0x8100-0x8124 Previously reserved.
From Armv8.6, common architectural and microarchitectural events.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2875
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
The meaning of the entries in the Allocation on page D7-2875 column of Table D7-6 on page D7-2875 is as follows:

Common architectural and microarchitectural events

Arm defines the use of these event numbers. For more information see Common event numbers on
page D7-2876.

Arm-recommended common architectural and microarchitectural events

The use of these event numbers is IMPLEMENTATION DEFINED. For more information see:

• IMPLEMENTATION DEFINED event numbers on page D7-2939.

• Appendix K3 Recommendations for Performance Monitors Event Numbers for
IMPLEMENTATION DEFINED Events.

IMPLEMENTATION DEFINED event numbers

For more information about the use of these event numbers see IMPLEMENTATION DEFINED
event numbers on page D7-2939.

D7.10.3 Common event numbers

The event numbers of the common architectural and microarchitectural events are reserved for the specified events.
Each of these event numbers must either:

• Be used for its assigned event.

• Not be used.

However, see Required events on page D7-2937.

When an implementation supports monitoring of an event that is assigned a common architectural or
microarchitectural event number, Arm strongly recommends that it uses that number for the event. However,
software might encounter implementations where an event assigned a number in this range is monitored using an
event number from an IMPLEMENTATION DEFINED range.

Note

Arm might define other common architectural and microarchitectural event numbers. This is one reason why
software must not assume that an event with an assigned common architectural or microarchitectural event number
is never monitored using an event number from the IMPLEMENTATION DEFINED range.

It is IMPLEMENTATION DEFINED which events, including Common events, are generated by IMPLEMENTATION
DEFINED extensions to the architecture, including accesses to IMPLEMENTATION DEFINED System registers and
IMPLEMENTATION DEFINED System instructions. However, the functionality of the IMPLEMENTATION DEFINED
extension must be appropriate for the generated events.

The common events are described in the following sections:

• Common architectural events on page D7-2877.

• Common microarchitectural events on page D7-2884.

0x8125-0x8127 Reserved.

0x8128-0x81FF Previously reserved.
From Armv8.6, common architectural and microarchitectural events.

0x8200-0xC0BF Reserved.

0xC0C0-0xFFFF IMPLEMENTATION DEFINED events.

Table D7-6 Allocation of the PMU event number space (continued)

Event numbers Allocation
D7-2876 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
The supported common architectural and microarchitectural events in the ranges 0x0000-0x003F and 0x4000-0x403F
are discoverable to software through:

• The PMCEID0_EL0 and PMCEID1_EL0 registers in AArch64 state.

• The PMCEID0, PMCEID1, PMCEID2, and PMCEID3 registers in AArch32 state.

Arm recommends that the value of 0 is used for the PMCEID0_EL0 or PMCEID1_EL0 bit corresponding to any
event that an implementation never generates, even if the implementation is considered to support but never count
the event.

Note

• For example, if an implementation never generates the L1D_CACHE_ALLOCATE event, event 31, Arm
recommends that PMCEID0_EL0[31] is RAZ.

• In an implementation that supports both Execution states, each bit in the AArch64 PMCEID0_EL0 and
PMCEID1_EL0 registers corresponds to a single bit in the AArch32 PMCEID0, PMCEID1, PMCEID2, and
PMCEID3 registers, and corresponding bits must have the same behavior.

However, for some implementations, an event in the common events range might be generated by the system,
meaning behavior can vary between systems. In such a case, the corresponding PMCEIDn_EL0 bit might be RAO.

Event numbers that Table D7-6 on page D7-2875 shows as allocated for common architectural and
microarchitectural events that are not described in Common architectural events on page D7-2877 and Common
microarchitectural events on page D7-2884 are reserved. Future revisions of this Manual, or of the architecture,
might assign these reserved values to additional common events. Events that do not require additional features in
the PMU can be implemented retrospectively, meaning an implementation of a particular version of the PMU
specification might support common events that are first defined in a later version of the PMU specification.

Note

• The requirement that an event that is implemented retrospectively does not require additional features in the
PMU means that it must be possible to represent the event n the PMEVTYPER<n>_EL0.evtCount field. This
means, for example, that an implementation with a 10-bit PMEVTYPER<n>_EL0.evtCount field can only
implement events with event numbers 0x0000-0x03FF.

• This means that, for example, an Armv7 PMUv2 implementation, for which the evtCount field is 8 bits, can
include support for any of the event numbers that are described in Common architectural events on
page D7-2877 and Common microarchitectural events on page D7-2884 define in the range 0x00-0xFF.

Common architectural events

This section describes the use of the defined common architectural event numbers.

For the common features, normally the counters must increment only once for each event. The event descriptions
include any exceptions to this rule.

In these definitions, the term architecturally executed means that the instruction flow is such that the counted
instruction would have been executed in a Simple sequential execution model.

The events corresponding to the common architectural event numbers are:

0x0000, SW_INCR, Instruction architecturally executed, Condition code check pass, software increment

The counter increments on writes to the PMSWINC register.

If the PE performs two architecturally executed writes to the PMSWINC register without an
intervening Context synchronization event, then the counter is incremented twice.

If PMEVTYPER<n>_EL0.evtCount is set to 0x0000, then in AArch64 state, counts MSR writes to
PMSWINC_EL0 with bit [n] set to 1.

If the value of PMEVTYPER<n>_EL0.MT is 1 then, in a multithreaded implementation, this counts
writes by all PEs that have the same affinity at level 1 and above.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2877
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x0006, LD_RETIRED, Instruction architecturally executed, Condition code check pass, load

The counter increments for every executed memory-reading instruction.

Note

The counter 0x0006 does not count the return status value of a Store-Exclusive instruction.

Whether the preload instructions PRFM, PLD, PLDW, PLI, count as memory-reading instructions is
IMPLEMENTATION DEFINED. Arm recommends that if the instruction is not implemented as a NOP
then it is counted as a memory-reading instruction.

If FEAT_MTE is implemented, the counter increments for every executed Allocation tag load
instruction.

0x0007, ST_RETIRED, Instruction architecturally executed, Condition code check pass, store

The counter increments for every executed memory-writing instruction.

DC ZVA is counted as a store.

The counter does not increment for a Store-Exclusive instruction that fails.

If FEAT_MTE is implemented, the counter increments for every executed Allocation tag store
instruction.

0x0008, INST_RETIRED, Instruction architecturally executed

The counter increments for every architecturally executed instruction.

It is IMPLEMENTATION DEFINED whether the counter increments for the MOVPRFX instruction.

0x0009, EXC_TAKEN, Exception taken

The counter increments for each exception taken. See Exception-related events on page D7-2865.

Note

The counter counts the PE exceptions described in:

• For exceptions taken to an Exception level using AArch64, Exception entry on
page D1-2475.

• For exceptions taken to an Exception level using AArch32, AArch32 state exception
descriptions on page G1-6078.

0x000A, EXC_RETURN, Instruction architecturally executed, Condition code check pass, exception return

The counter increments for each executed exception return instruction. See also Exception-related
events on page D7-2865. The following sections define the counted instructions:

• For an exception return from an Exception level using AArch64, Exception return on
page D1-2485.

• For an exception return from an Exception level using AArch32, Exception return
instructions on page G1-6065.

However, is CONSTRAINED UNPREDICTABLE whether this event counts the execution of an exception
return instruction if either:

• Execution of the instruction is, itself, CONSTRAINED UNPREDICTABLE.

Note
Examples of when an exception return instruction is CONSTRAINED UNPREDICTABLE are if the
instruction is executed at EL0, or in AArch32 state in System mode.

• Execution of the instruction sets PSTATE.IL and does not generate an exception return.
D7-2878 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
Note

A particular consequence of this CONSTRAINED UNPREDICTABLE behavior is that an implementation
that does not support AArch32 state at EL1 or higher does not have to treat AArch32 MOVS PC, LR
instructions, and related instructions, as exception return instructions.

0x000B, CID_WRITE_RETIRED, Instruction architecturally executed, Condition code check pass, write to
CONTEXTIDR

The counter increments for every write to CONTEXTIDR. See Exception-related events on
page D7-2865.

If the PE performs two architecturally-executed writes to CONTEXTIDR without an intervening
Context synchronization event, it is CONSTRAINED UNPREDICTABLE whether the first write is
counted.

When FEAT_VHE is implemented, the counter is:

• Incremented as a result of the retirement of an instruction accessing the named register
CONTEXTIDR_EL1, even when executing at EL2.

• Not incremented as a result of the retirement of an instruction accessing the named register
CONTEXTIDR_EL12.

Note

The event is defined by the name used to access the register. The counter does not count writes to
the named register CONTEXTIDR_EL2.

0x000C, PC_WRITE_RETIRED, Instruction architecturally executed, Condition code check pass, software
change of the PC

The counter increments for every Software change of the PC.

The counter does not increment for exceptions other than those explicitly identified as a Software
change of the PC.

If PC_WRITE_RETIRED and BR_SKIP_RETIRED events are both implemented, the PE must
have a consistent definition of Software change of the PC instructions. This means the definition
must treat the following instructions in the same way for both events:

• BRK and BKPT instructions.

• An exception generated because an instruction is UNDEFINED.

• The exception-generating instructions, SVC, HVC, and SMC.

• Context synchronization barrier instructions.

From Armv8.6, when BR_RETIRED is also implemented, the PE must treat these instructions in
the same way for BR_RETIRED, PC_WRITE_RETIRED, and BR_SKIP_RETIRED.

Note

Conditional branches are only counted if the branch is taken.

0x000D, BR_IMMED_RETIRED, Instruction architecturally executed, immediate branch

The counter counts all immediate branch instructions on the architecturally executed path.

In AArch32 state, the counter increments each time the PE executes one of the following
instructions:

• B{<c>} <label>.

• BL{<c>} <label>.

• BLX{<c>} <label>.

• CBZ <Rn>, <label>.

• CBNZ <label>.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2879
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
In AArch64 state, the counter increments each time the PE executes one of the following
instructions:

• B <label>.

• B.cond <label>.

• BL <label>.

• CBZ <Rn>, <label>.

• CBNZ <Rn>, <label>.

• TBZ <Rn>, <label>.

• TBNZ <Rn>, <label>.

Note

Conditional branches are always counted, regardless of whether the branch is taken.

If an ISB is counted as a software change of the PC instruction, then it is IMPLEMENTATION DEFINED
whether an ISB is counted as an immediate branch instruction.

0x000E, BR_RETURN_RETIRED, Instruction architecturally executed, Condition code check pass,
procedure return

In AArch32 state, the counter counts the following procedure return instructions:

• BX R14.

• MOV PC, LR.

• POP {…, PC}.

• LDR PC, [SP], #offset.

Note

The counter counts only the listed instructions as procedure returns. For example, it does not count
the following as procedure return instructions:

• BX R0, because Rm != R14.

• MOV PC, R0, because Rm != R14.

• LDM SP, {…, PC}, because writeback is not specified.

• LDR PC, [SP, #offset], because this specifies the wrong addressing mode.

In AArch64 state, the counter counts all architecturally executed RET, RETAA, and RETAB instructions.

0x000F, UNALIGNED_LDST_RETIRED, Instruction architecturally executed, Condition code check pass,
unaligned load or store

The counter counts each memory-reading instruction or memory-writing instruction access that
would generate an Alignment fault when Alignment fault checking is enabled.

The counter does not count accesses that would generate an SP alignment fault exception if the
applicable stack pointer alignment check is enabled, unless that access would also generate an
Alignment fault Data Abort exception if Alignment fault checking is enabled.

It is IMPLEMENTATION DEFINED whether this event counts accesses that generate an exception,
including accesses that do generate Alignment fault Data Abort exceptions.

See SP alignment checking on page D1-2469 for more information.

See Unaligned data access on page E2-4312 for more information.

0x001C, TTBR_WRITE_RETIRED, Instruction architecturally executed, Condition code check pass, write to
TTBR

The counter counts writes to TTBR0_EL1 and TTBR1_EL1 in AArch64 state and TTBR0 and
TTBR1 in AArch32 state. When EL3 is implemented and using AArch32, this includes counting
writes to both banked copies of TTBR0 and TTBR1. See Exception-related events on
page D7-2865.

If the PE executes two writes to the same TTBR, without an intervening Context synchronization
event, it is CONSTRAINED UNPREDICTABLE whether the first write to the TTBR, is counted.
D7-2880 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
If EL3 is implemented and using AArch64, the counter does not count writes to TTBR0_EL3.

If EL2 is implemented and using AArch64, the counter does not count writes to TTBR0_EL2 and
to VTTBR_EL2.

If EL2 is implemented and using AArch32, the counter does not count writes to HTTBR and to
VTTBR.

When FEAT_VHE is implemented, the counter is:

• Incremented as a result of the retirement of an instruction accessing the named registers
TTBR0_EL1 and TTBR1_EL1.

• Not incremented as a result of the retirement of an instruction accessing the named registers
TTBR0_EL12 and TTBR1_EL12.

0x001E, CHAIN

Even-numbered counters never increment as a result of this event. For an odd-numbered counter
n+1, the odd-numbered event counter n+1 increments when an event increments the preceding
even-numbered counter n on the same PE causing unsigned overflow of bits [31:0] of event counter
n, and any of the following is true:

• FEAT_PMUv3p5 is not implemented.

• EL2 is not implemented and PMCR.LP is set to 0.

• EL2 is implemented, <n> is less than HDCR.HPMN and PMCR.LP is set to 0.

• EL2 is implemented, <n+1> is greater than or equal to HDCR.HPMN and HDCR.HLP is set
to 0.

Otherwise, the odd-numbered event counter n+1 increments when an event increments the
preceding even-numbered counter n on the same PE and causes an unsigned overflow of bits [31:0]
of event counter n.

This means the CHAIN event can be used to link the odd-numbered counter with the preceding
even-numbered counter to provide a 64-bit counter.

Note

When FEAT_PMUv3p5 is not implemented, the CHAIN event can be used by software to provide
N 32-bit counters, N/2 64-bit counters, or a mixture of 32-bit counters and 64-bit counters.

The CHAIN event only counts overflows from the preceding even-numbered counter on the same
PE. This means it is unaffected by the value of PMEVTYPER<n>_EL0.MT.

To filter the Exception levels and Security states in which the event is counted, software must:

• Program PMEVTYPER<n>_EL0 to count the event in the required conditions.

• Program PMEVTYPER<n+1>_EL0 to count the CHAIN event in all Exception levels and
states.

This allows, but does not require, hardware to ignore the filter settings for the CHAIN event and
behave as if they are set to count in all Exception levels and states.

If software does not program the event in this way, the count becomes UNPREDICTABLE.

There is no atomic access to a pair of counters, so if software reads a counter-pair that is enabled, it
must use a high-low-high read sequence, or employ reasonable heuristics, to avoid tearing.
Similarly, if using CHAIN events, when disabling the counters software must take care that the
result is not torn by the low counter overflowing at the same time as the counters are disabled
Example D7-5 on page D7-2882 shows suitable sequences for disabling and enabling CHAIN
counters.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2881
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
Example D7-5 Usage examples for 64-bit counters

An example high-low-high read sequence for a 64-bit counter created by a pair of 32-bit counters paired by a
CHAIN event is:

retry:

MRS W2,PMEVCNTR1_EL0 ;; read high counter, must be odd-numbered

 ISB ;; force ordering

 MRS W0,PMEVCNTR0_EL0 ;; read low counter

 ;; must return the previous counter to PMEVCNTR1_EL0

 ISB ;; force ordering

 MRS W1,PMEVCNTR1_EL0 ;; read high counter

 CMP W1,W2

 BNE retry ;; if the high counter has changed, then retry

When disabling a pair of counters that are paired by a CHAIN event, software must:

1. Disable the low counter, by setting PMCNTENCLR_EL0[n] to 1.

2. Execute an ISB instruction, or perform another Context synchronization event.

3. Disable the high counter, by setting PMCNTENCLR_EL0[n+1] to 1, or setting PMCR_EL0.E to 0.

When enabling a pair of counters that are paired by a CHAIN event, software must:

1. Enable the high counter, by setting PMCNTENSET_EL0[n+1] to 1 and, if necessary, setting PMCR_EL0.E
to 1.

2. Execute an ISB instruction, or perform another Context synchronization event.

3. Enable the low counter by setting PMCNTENSET_EL0[n] to 1.

When using 64-bit counters created by a pair of 32-bit counters paired by a CHAIN event, the
architecture does not define the latency between the first counter overflowing and the second
counter incrementing the CHAIN event. There is no requirement for updates to occur
synchronously, but software reading or enabling the counter pair using a low-ISB-high sequence, as
shown in Example D7-5 on page D7-2882, must not observe the low counter incrementing and
overflowing for the event and the high counter not incrementing for the resulting CHAIN event.
This means that the ISB executed after reading the low counter must ensure the completion of the
update of the high counter by the CHAIN event.

0x0021, BR_RETIRED, Instruction architecturally executed, branch

The counter counts all branches on the architecturally executed path that would incur cost if
mispredicted.

Counts all branch instructions, memory-reading and data-processing instructions that explicitly
write to the PC, at retirement.

Note

Conditional branches are always counted, whether the branch is taken or not taken.

It is IMPLEMENTATION DEFINED whether this includes each of:

• Unconditional direct branch instructions. Arm recommends these are included.

• Exception-generating instructions.

• Exception return instructions. Arm recommends these are included.

• Context synchronization instructions.

From Armv8.6, when PC_WRITE_RETIRED and BR_RETIRED are both implemented, the PE
must treat the following types of instruction in the same way for both events:

• BRK and BKPT instructions.

• UNDEFINED instructions.

• The exception-generating instructions, SVC, HVC, and SMC.
D7-2882 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
• Context synchronization barrier instructions.

0x8000, SIMD_INST_RETIRED, SIMD Instruction architecturally executed

The counter counts the following architecturally executed SIMD instructions:

• SVE instructions, but not non-SIMD SVE instructions.

• Advanced SIMD instructions, but not Advanced SIMD scalar instructions.

0x8001, ASE_INST_RETIRED, Advanced SIMD Instruction architecturally executed

The counter counts architecturally executed Advanced SIMD instructions. It is IMPLEMENTATION
DEFINED whether this event counts Advanced SIMD scalar instructions.

0x8002, SVE_INST_RETIRED, Instruction architecturally executed, SVE

The counter counts architecturally executed SVE instructions. It is IMPLEMENTATION DEFINED
whether this event counts non-SIMD SVE instructions.

0x8003, ASE SVE_INST_RETIRED, Advanced SIMD and SVE Instruction architecturally executed

The counter counts architecturally executed instructions that are counted by ASE_INST_RETIRED
or SVE_INST_RETIRED.

0x8107, BR_SKIP_RETIRED, Instruction architecturally executed, branch not taken

The counter counts the each conditional Software change of the PC instruction, on the
architecturally executed path, that is not taken.

Note

Many of these instructions can only be conditional in the AArch32 instruction sets.

The counter does not increment for exceptions not listed as a Software change of the PC.

If PC_WRITE_RETIRED and BR_SKIP_RETIRED events are both implemented, the PE must
have a consistent definition of Software change of the PC instructions. This means the definition
must treat the following instructions in the same way for both events:

• BRK and BKPT instructions.

• UNDEFINED instructions.

• The exception-generating instructions, SVC, HVC, and SMC.

• Context synchronization barrier instructions.

From Armv8.6, when the BR_RETIRED event is implemented, the PE must treat these instructions
in the same way for the BR_RETIRED event.

0x8108, BR_IMMED_TAKEN_RETIRED, Instruction architecturally executed, immediate branch taken

The counter counts the instructions, on the architecturally executed path, counted by both
BR_IMMED_RETIRED and PC_WRITE_RETIRED. These are all immediate branch instructions
where the branch is taken.

0x8109, BR_IMMED_SKIP_RETIRED, Instruction architecturally executed, immediate branch not taken

The counter counts the instructions on the architecturally executed path, counted by both
BR_IMMED_RETIRED, and BR_SKIP_RETIRED. These are all immediate branch instructions
where the branch is not taken.

0x810A, BR_IND_TAKEN_RETIRED, Instruction architecturally executed, indirect branch taken

The counter counts the instructions, on the architecturally executed path, counted by both
BR_IND_RETIRED and PC_WRITE_RETIRED. These are branch instructions where the branch
is taken, but do not include immediate instructions.

A64 does not include conditional indirect branches. If AArch32 is not supported at any Exception
level, this event is not implemented because BR_IND_RETIRED counts the same events.

0x810B, BR_IND_SKIP_RETIRED, Instruction architecturally executed, indirect branch not taken
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2883
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
The counter counts the instructions on the architecturally executed path, counted by both
BR_IND_RETIRED, and BR_SKIP_RETIRED. These are branch instructions, where the branch is
not taken, but do not include immediate instructions.

A64 does not include conditional indirect branches. If AArch32 is not supported at any Exception
level, this event is not implemented.

0x810C, BR_INDNR_TAKEN_RETIRED, Instruction architecturally executed, indirect branch taken
excluding returns

The counter counts the instructions, on the architecturally executed path, counted by both
BR_IND_RETIRED and PC_WRITE_RETIRED, but not BR_RETURN_RETIRED. These are
branch instructions, where the branch is taken, but do not include returns or immediate instructions.

0x810D, BR_INDNR_SKIP_RETIRED, Instruction architecturally executed, indirect branch not taken
excluding returns

The counter counts the instructions, on the architecturally executed path, counted by both
BR_INDNR_RETIRED and BR_SKIP_RETIRED. These are branch instructions, where the
branch is not taken, but do not include returns or immediate instructions.

A64 does not include conditional indirect branches. If AArch32 is not supported at any Exception
level, this event is not implemented.

0x810E, BR_RETURN_ANY_RETIRED, Instruction architecturally executed, procedure return

The counter counts the instructions counted on the architecturally executed path by
BR_IND_RETIRED where, if taken, the branch would be counted by BR_RETURN_RETIRED.

A64 does not include conditional indirect branches. If AArch32 is not supported at any Exception
level, this event is not implemented, because BR_RETURN_RETIRED counts the same events.

0x810F, BR_RETURN_SKIP_RETIRED, Instruction architecturally executed, procedure return not taken

The counter counts the instructions on the architecturally executed path, counted by both
BR_RETURN_ANY_RETIRED and BR_SKIP_RETIRED. These are branch return instructions,
where the branch is not taken.

A64 does not include conditional indirect branches. If AArch32 is not supported at any Exception
level, this event is not implemented.

0x811D, BR_IND_RETIRED, Instruction architecturally executed, indirect branch

The counter counts each Software change of the PC on the architecturally executed path that is not
counted by BR_IMMED_RETIRED. These are all branch instructions that are not immediate
branch instructions.

Note
Conditional branches are always counted, whether the branch is taken or not taken.

0x811E, BR_INDNR_RETIRED, Instruction architecturally executed, indirect branch excluding procedure
return

The counter counts the instructions on the architecturally executed path counted by
BR_IND_RETIRED, but not counted by BR_RETURN_ANY_RETIRED. These are branch
instructions but do not include returns or immediate instructions.

If AArch32 is not supported at any Exception level, this event is not implemented, because
BR_INDNR_TAKEN_RETIRED counts the same events.

Common microarchitectural events

This section describes the use of the defined common microarchitectural event numbers.

The common microarchitectural events are features that are likely to be implemented across a wide range of
implementations. Unlike the common architectural events, there can be some IMPLEMENTATION DEFINED variation
between definitions on different implementations.
D7-2884 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
Unless otherwise stated, the common microarchitectural features relate only to events resulting from the operation
of the PE counting the events. Events resulting from the operation of other PEs that might share a resource must not
be counted. Where a resource can be subject to events that do not result from the operation of any of the PEs that
share it, Arm recommends that the resource implements its own event counters. An example of a resource that might
require its own event counters is a shared Level 2 cache that is subject to accesses from a system coherency port on
that cache.

The event definitions relating to Level 2 caches generally assume the Level 2 cache is shared. The event definitions
relating to Level 1 caches generally assume the Level 1 cache is not shared.

The events corresponding to the common microarchitectural event numbers are:

0x0001, L1I_CACHE_REFILL, Level 1 instruction cache refill

The counter counts each access counted by L1I_CACHE that causes a refill of any of the Level 1
caches outside the Level 1 caches of this PE.

A refill includes any access that causes data to be fetched from outside the cache, even if the data is
ultimately not allocated into the cache. For example, data might be fetched into a buffer but then
discarded, rather than being allocated into a cache. These buffers are treated as part of the cache.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted. If FEAT_PMUv3p4 is not implemented, the counter does not count cache
maintenance instructions. If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED
whether accesses that result from cache maintenance instructions are counted by this event.

See also:

• Attributability on page D7-2857.

• Meaningful ratios between common microarchitectural events on page D7-2937.

0x0002, L1I_TLB_REFILL, Level 1 instruction TLB refill

The counter counts each Instruction memory access counted by L1I_TLB that causes a TLB refill
of the Level 1 instruction TLB. This includes an access that causes memory system accesses due to
a translation table walk or an access to another TLB level.

The counter does not count an access if any of the following are true:

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• The access is due to a TLB maintenance instruction.

• The access misses in the TLB and generates a translation table walk but does not cause a refill
of the TLB.

It is IMPLEMENTATION DEFINED whether the counter counts:

• A refill for any other reason that results in a Translation fault, other than for those cases where
the event must not be counted.

• A refill that is not allocated in the TLB.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

See also:

• Attributability on page D7-2857.

• Meaningful ratios between common microarchitectural events on page D7-2937.

0x0003, L1D_CACHE_REFILL, Level 1 data cache refill

The counter counts each access counted by L1D_CACHE that causes a refill of at least the Level 1
data or unified cache from outside the Level 1 cache. Each access to a cache line that causes a new
linefill is counted, including those from instructions that generate multiple accesses, such as load or
store multiples, and PUSH and POP instructions. In particular, the counter counts accesses to the Level
1 cache that cause a refill that is satisfied by another Level 1 data or unified cache, or a Level 2
cache, or memory.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2885
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
A refill includes any access that causes data to be fetched from outside the cache, even if the data is
ultimately not allocated into the cache. For example, data might be fetched into a buffer but then
discarded, rather than being allocated into a cache. These buffers are treated as part of the cache.

The counter does not count:

• A miss that does not cause a new refill but is satisfied by the refill of a previous miss, even
if that previous refill is not complete at the time of the miss.

• A miss that does not generate a refill, such as a write through the cache.

• If FEAT_PMUv3p4 is not implemented, cache maintenance instructions.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted. If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether
accesses that result from cache maintenance instructions are counted by this event.

See also:

• Attributability on page D7-2857.

• Meaningful ratios between common microarchitectural events on page D7-2937.

0x0004, L1D_CACHE, Level 1 data cache access

The counter counts each Memory-read operation or Memory-write operation that causes a cache
access to at least the Level 1 data or unified cache.

Each cache line access is counted, including multiple accesses caused by single instructions, such
as LDM and STM. Accesses to other level 1 data or unified cache structures, such as refill buffers, write
buffers, and write-back buffers, are also counted.

If FEAT_PMUv3p4 is implemented, accesses that only update the cache status information for a
cache entry without accessing the content of the cache entry are not counted. An example of cache
status information is whether the cached data is held in an exclusive or shared state.

If FEAT_PMUv3p4 is not implemented, it is IMPLEMENTATION DEFINED whether updates to cache
status information are counted.

If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether accesses caused by
cache maintenance instructions are counted.

If FEAT_PMUv3p4 is not implemented, the counter does not count cache maintenance instructions.

When the L1D_CACHE_PRFM and L1D_CACHE_RW events are implemented, accesses to the
Level 1 data or unified cache due to a preload or prefetch instruction are counted. Otherwise, it is
IMPLEMENTATION DEFINED whether accesses to the Level 1 data or unified cache due to a preload
or prefetch instruction are counted.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted.

See also Attributability on page D7-2857.

0x0005, L1D_TLB_REFILL, Level 1 data or unified TLB refill

The counter counts each access counted by L1D_TLB that causes a TLB refill of the Level 1 data
or unified TLB. This includes an access that causes memory system accesses due to a translation
table walk or an access to another TLB level.

The counter does not count an access if any of the following are true:

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• The access is due to a TLB maintenance instruction.

• The access misses in the TLB and generates a translation table walk but does not cause a refill
of the TLB.
D7-2886 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
It is IMPLEMENTATION DEFINED whether the counter counts:

• A refill for any other reason that results in a Translation fault, other than for those cases where
the event must not be counted.

• A refill that is not allocated in the TLB.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

See also:

• Attributability on page D7-2857.

• Meaningful ratios between common microarchitectural events on page D7-2937.

0x0010, BR_MIS_PRED, Mispredicted or not predicted branch Speculatively executed

The counter counts each correction to the predicted program flow that occurs because of a
misprediction from, or no prediction from, the branch prediction resources and that relates to
instructions that the branch prediction resources are capable of predicting.

If no program-flow prediction resources are implemented, Arm recommends that the counter counts
all branches that are not taken.

0x0011, CPU_CYCLES, Cycle

The counter increments on every cycle.

All counters are subject to changes in clock frequency. It is CONSTRAINED UNPREDICTABLE whether
or not CPU_CYCLES continues to increment when the PE is in WFI or WFE state.

Note

Unlike PMCCNTR, this count is not affected by PMCR.DP, PMCR.D, PMCR.C, SDCR.SCCD or
HDCR.HCCD:

• The counter is not incremented in prohibited regions, so is not affected by PMCR.DP.

• The counter increments on every cycle, regardless of the setting of PMCR.D.

• The counter is reset when event counters are reset by PMCR.P, never by PMCR.C.

• The counter is not disabled when FEAT_PMUv3p5 is implemented, EL3 is implemented, the
PE is in Secure state, and SDCR.SCCD is set to 1.

• The counter is not disabled when FEAT_PMUv3p5 is implemented, EL2 is implemented, the
PE is executing at EL2, and HDCR.HCCD is set to 1.

In a multithreaded implementation, CPU_CYCLES counts each cycle for the processor for which
this PE thread is active and can issue an instruction. For more information, see Cycle event counting
on page D7-2936.

0x0012, BR_PRED, Predictable branch Speculatively executed

The counter counts every branch or other change in the program flow that the branch prediction
resources are capable of predicting.

If all branches are subject to prediction, for example a BTB or BTAC, then all branches are
predictable branches.

If branches are decoded before the predictor, so that the branch prediction logic dynamically
predicts only some branches, for example conditional and indirect branches, then it is
IMPLEMENTATION DEFINED whether other branches are counted as predictable branches. Arm
recommends that all branches are counted.

An implementation might include other structures that predict branches, such as a loop buffer that
predicts short backwards direct branches as taken. Each execution of such a branch is a predictable
branch. Terminating the loop might generate a misprediction event that is counted by
BR_MIS_PRED.

If no program-flow prediction resources are implemented, this event is optional, but Arm
recommends that BR_PRED counts all branches.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2887
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x0013, MEM_ACCESS, Data memory access

The counter counts Memory-read operations and Memory-write operations that the PE made. The
counter increments whether the access results in an access to a Level 1 data or unified cache, a
Level 2 data or unified cache, or neither of these.

The counter does not increment as a result of:

• Instruction memory accesses, see Definition of terms on page D7-2869.

• Translation table walks.

• Write-back from any cache.

• Refilling of any cache.

The number of accesses generated by each instruction is IMPLEMENTATION DEFINED.

If FEAT_PMUv3p4 is not implemented, the counter does not count cache maintenance instructions.
If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether accesses that result
from cache maintenance instructions are counted.

0x0014, L1I_CACHE, Level 1 instruction cache access

The counter counts each Instruction memory access to at least the Level 1 instruction cache.

Each access to other Level 1 instruction memory structures, such as refill buffers, is also counted.

If FEAT_PMUv3p4 is implemented, accesses that only update the cache status information for a
cache entry without accessing the content of the cache entry are not counted. An example of cache
status information is whether the cached data is held in an exclusive or shared state.

If FEAT_PMUv3p4 is not implemented, it is IMPLEMENTATION DEFINED whether updates to cache
status information are counted.

When the L1I_CACHE_PRFM and L1I_CACHE_RD events are implemented, accesses to the
Level 1 instruction cache due to a preload or prefetch instruction are counted. Otherwise, it is
IMPLEMENTATION DEFINED whether accesses to the Level 1 instruction cache due to a preload or
prefetch instruction are counted.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted.

See also Attributability on page D7-2857.

0x0015, L1D_CACHE_WB, Attributable Level 1 data cache write-back

The counter counts every write-back of data from the Level 1 data or unified cache. The counter
counts each write-back that causes data to be written from the Level 1 cache to outside of the
Level 1 cache. For example, the counter counts the following cases:

• A write-back that causes data to be written to a Level 2 cache or memory.

• A write-back of a recently fetched cache line that has not been allocated to the Level 1 cache.

• Transfer of data from the Level 1 cache to outside of this cache made as a result of a
coherency request. The conditions determining which of these are counted for transfers to
other Level 1 caches within the same multiprocessor cluster are IMPLEMENTATION DEFINED.

Each write-back is counted once, even if multiple accesses are required to complete the write-back.

Whether write-backs made as a result of cache maintenance instructions are counted is
IMPLEMENTATION DEFINED.

The counter does not count:

• The invalidation of a cache line without any write-back to a Level 2 cache or memory.

• Writes from the PE that write through the Level 1 cache to outside of the Level 1 cache.

An Unattributable write-back event occurs when a requestor outside the PE makes a coherency
request that results in write-back. If the cache is shared, then an Unattributable write-back event is
not counted. If the cache is not shared, then the event is counted. See Attributability on
page D7-2857.

It is IMPLEMENTATION DEFINED whether a write of a whole cache line that is not the result of the
eviction of a line from the cache, is counted. For example, this applies when the PE determines
streaming writes to memory and does not allocate lines to the cache, or by a DC ZVA operation.
D7-2888 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
See also Attributability on page D7-2857.

0x0016, L2D_CACHE, Level 2 data cache access

The counter counts each Memory-read operation or Memory-write operation that causes a cache
access to at least the Level 2 data or unified cache.

Each cache line access is counted, including multiple accesses caused by single instructions, such
as LDM and STM. Accesses to other level 2 data or unified cache structures, such as refill buffers, write
buffers, and write-back buffers, are also counted.

If FEAT_PMUv3p4 is implemented, accesses that only update the cache status information for a
cache entry without accessing the content of the cache entry are not counted. An example of cache
status information is whether the cached data is held in an exclusive or shared state.

If FEAT_PMUv3p4 is not implemented, it is IMPLEMENTATION DEFINED whether updates to cache
status information are counted.

If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether accesses caused by
cache maintenance instructions are counted.

If FEAT_PMUv3p4 is not implemented, the counter does not count cache maintenance instructions.

When the L2D_CACHE_PRFM and L2D_CACHE_RW events are implemented, accesses to the
Level 2 data or unified cache due to a preload or prefetch instruction, or a prefetch to another cache,
are counted. Otherwise, it is IMPLEMENTATION DEFINED whether accesses to the Level 2 data or
unified cache due to a preload or prefetch instruction, or a prefetch to another cache, are counted.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted.

See also Attributability on page D7-2857.

0x0017, L2D_CACHE_REFILL, Level 2 data cache refill

The counter counts each access counted by L2D_CACHE that causes a refill of a refill of any of the
Level 1 or Level 2 caches from outside the Level 1 and Level 2 caches of the PE.

A refill includes any access that causes data to be fetched from outside the cache, even if the data is
ultimately not allocated into the cache. For example, data might be fetched into a buffer but then
discarded, rather than being allocated into a cache. These buffers are treated as part of the cache.

For example, the counter counts:

• Accesses to the Level 2 cache that cause a refill that is satisfied by another Level 2 cache, a
Level 3 cache, or memory.

• Refills of and write-backs from any Level 1 data, instruction or unified cache that cause a
refill from outside the Level 1 and Level 2 caches.

• Accesses to the Level 2 cache that cause a refill of a Level 1 cache from outside of the
Level 1 and Level 2 caches, even if there is no refill of the Level 2 cache.

The counter does not count, as events on this PE:

• A miss that does not cause a new refill but is satisfied by the refill of a previous miss, even
if that previous refill is not complete at the time of the miss.

• A miss that does not generate a refill, such as a write through the cache.

• If FEAT_PMUv3p4 is not implemented, cache maintenance instructions.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted. If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether
accesses that result from cache maintenance instructions are counted by this event.

See also:

• Attributability on page D7-2857.

• Meaningful ratios between common microarchitectural events on page D7-2937.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2889
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x0018, L2D_CACHE_WB, Attributable Level 2 data cache write-back

The counter counts every write-back of data from the Level 2 data or unified cache that occurs as a
result of an operation by this PE. It counts each write-back that causes data to be written from the
Level 2 cache to outside the Level 1 and Level 2 caches. For example, the counter counts:

• A write-back that causes data to be written to a Level 3 cache or memory.

• A write-back of a recently fetched cache line that has not been allocated to the Level 2 cache.

Each write-back is counted once, even if it requires multiple accesses to complete the write-back.

It is IMPLEMENTATION DEFINED whether the counter counts:

• A transfer of data from the Level 2 cache to outside the Level 1 and Level 2 cache made as a
result of a coherency request.

• Write-backs made as a result of Cache maintenance instructions.

The counter does not count:

• The invalidation of a cache line without any write-back to a Level 3 cache or memory.

• Writes from the PE or Level 1 data or unified cache that write through the Level 2 cache to
outside the Level 1 and Level 2 caches.

• Transfers of data from the Level 2 cache to a Level 1 cache, to satisfy a Level 1 cache refill.

An Unattributable write-back event occurs when a requestor outside the PE makes a coherency
request that results in write-back. If the cache is shared, then an Unattributable write-back event is
not counted. If the cache is not shared, then the event is counted.

It is IMPLEMENTATION DEFINED whether a write of a whole cache line that is not the result of the
eviction of a line from the cache, is counted. For example, this applies when the PE determines
streaming writes to memory and does not allocate lines to the cache, or by a DC ZVA operation.

See also Attributability on page D7-2857.

0x0019, BUS_ACCESS, Attributable Bus access

The counter counts Memory-read operations and Memory-write operations that access outside of
the boundary of the PE and its closely-coupled caches. Where this boundary lies with respect to any
implemented caches is IMPLEMENTATION DEFINED.

The definition of a bus access is IMPLEMENTATION DEFINED but physically is a single beat rather
than a burst. That is, for each bus cycle for which the bus is active.

Bus accesses include refills of and write-backs from data, instruction, and unified caches. Whether
bus accesses include operations that do use the bus but not explicitly transfer data is
IMPLEMENTATION DEFINED.

An Unattributable bus access occurs when a requestor outside the PE makes a request that results in
a bus access, for example, a coherency request. If the bus is shared, then an Unattributable bus
access is not counted. If the bus is not shared, then the event is counted.

If the bus is shared, then only Attributable bus accesses are counted. If the bus is not shared, then
all bus accesses are counted.

Where an implementation has multiple buses at this boundary, this event counts the sum of accesses
across all buses.

If a bus supports multiple accesses per cycle, for example through multiple channels, the counter
increments once for each channel that is active on a cycle, and so it might increment by more than
one in any given cycle.

The maximum increment in any given cycle is implementation defined.

See also:

• Attributability on page D7-2857.

• Meaningful ratios between common microarchitectural events on page D7-2937.
D7-2890 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x001A, MEMORY_ERROR, Local memory error

The counter counts every occurrence of a memory error signaled by a memory closely coupled to
this PE. The definition of local memories is IMPLEMENTATION DEFINED but includes caches,
tightly-coupled memories, and TLB arrays.

Memory error refers to a physical error detected by the hardware, such as a parity or ECC error. It
includes errors that are correctable and those that are not. It does not include errors as defined in the
architecture, such as MMU faults.

0x001B, INST_SPEC, Operation Speculatively executed

The counter counts Speculatively executed operations. The definition of Speculatively executed is
IMPLEMENTATION DEFINED.

0x001D, BUS_CYCLES, Bus cycle

The counter increments on every cycle of the interface at the boundary of the PE and its
closely-coupled caches. Where this boundary lies with respect to any implemented caches is
IMPLEMENTATION DEFINED.

Note

If the implementation clocks the external memory interface at the same rate as the processor
hardware, the counter counts every cycle.

See also Meaningful ratios between common microarchitectural events on page D7-2937.

0x001F, L1D_CACHE_ALLOCATE, Level 1 data cache allocation without refill

The counter counts each cache line allocation in the Level 1 data or unified cache that is not a refill
counted by L1D_CACHE_REFILL or L1D_CACHE_HWPRF.The counter increments on every
Attributable write that writes an entire line into the Level 1 cache without fetching from outside the
Level 1 cache, for example:

• A write of an entire cache line from a PE coalescing write buffer.

• A DC ZVA operation executed by a PE.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted.

See also Attributability on page D7-2857.

0x0020, L2D_CACHE_ALLOCATE, Level 2 data cache allocation without refill

The counter counts each cache line allocation in the Level 2 data or unified cache that is not a refill
counted by L2D_CACHE_REFILL or L2D_CACHE_HWPRF. The counter increments on every
Attributable write that writes an entire line into the Level 2 cache without fetching from outside the
Level 1 or Level 2 caches, for example:

• A write-back of an entire cache line from another cache.

• A write of an entire cache line from a PE coalescing write buffer.

• A DC ZVA operation executed by a PE.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted.

See also Attributability on page D7-2857.

0x0022, BR_MIS_PRED_RETIRED, Instruction architecturally executed, mispredicted branch

The counter counts all instructions counted by BR_RETIRED that were not correctly predicted.

If no program-flow prediction resources are implemented, this event counts all retired not-taken
branches.

0x0023, STALL_FRONTEND, No operation issued due to the frontend

The counter counts every cycle counted by the CPU_CYCLES event on which no operation was
issued because there are no operations available to issue for this PE from the frontend.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2891
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
The division between frontend and backend is IMPLEMENTATION DEFINED. STALL,
STALL_FRONTEND, and STALL_BACKEND events must count at the same point in the pipeline.

Note
• For a simplified pipeline model of Fetch  Decode  Issue  Execute  Retire,

Arm recommends that the events are counted when instructions are dispatched from Decode
to Issue.

• On a given cycle, both events might be counted if the backend is unable to accept any
operations and there are no operations available to issue from the frontend.

For more information, see Cycle event counting on page D7-2936.

0x0024, STALL_BACKEND, No operation issued due to the backend

The counter counts every cycle counted by the CPU_CYCLES event on which no operation was
issued because either:

• The backend is unable to accept any of the operations available for issue for this PE.

• The backend is unable to accept any operations.

For example, the backend might be unable to accept operations because of a resource conflict or
non-availability.

The division between frontend and backend is IMPLEMENTATION DEFINED. STALL,
STALL_FRONTEND, and STALL_BACKEND events must count at the same point in the pipeline.
See STALL_FRONTEND for more information.

For more information, see Cycle event counting on page D7-2936.

0x0025, L1D_TLB, Level 1 data or unified TLB access

The counter counts each Memory-read operation or Memory-write operation that causes a TLB
access to at least the Level 1 data or unified TLB. Each access to a TLB entry is counted, including
multiple accesses caused by single instructions, such as LDM or STM.

The counter does not count TLB maintenance instructions.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

See also Attributability on page D7-2857.

0x0026, L1I_TLB, Level 1 instruction TLB access

The counter counts each Instruction memory access that causes a TLB access to at least the Level 1
instruction TLB.

The counter does not count TLB maintenance instructions.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

See also Attributability on page D7-2857.

0x0027, L2I_CACHE, Level 2 instruction cache access

The counter counts each Instruction memory access to at least the Level 2 instruction cache.

Each access to other Level 2 instruction memory structures, such as refill buffers, is also counted.

If FEAT_PMUv3p4 is implemented, accesses that only update the cache status information for a
cache entry without accessing the content of the cache entry are not counted. An example of cache
status information is whether the cached data is held in an exclusive or shared state.

If FEAT_PMUv3p4 is not implemented, it is IMPLEMENTATION DEFINED whether updates to cache
status information are counted.

When the L2I_CACHE_PRFM and L2I_CACHE_RD events are implemented, accesses to the
Level 2 instruction cache due to a preload or prefetch instruction, or a prefetch to another cache, are
counted. Otherwise, it is IMPLEMENTATION DEFINED whether accesses to the Level 2 instruction
cache due to a preload or prefetch instruction, or a prefetch to another cache, are counted.
D7-2892 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted.

See also Attributability on page D7-2857.

0x0028, L2I_CACHE_REFILL, Attributable Level 2 instruction cache refill

The counter counts each access counted by L2I_CACHE that causes a refill of any of the Level 1
or 2 caches outside the Level 1 or 2 caches of this PE.

A refill includes any access that causes data to be fetched from outside the cache, even if the data is
ultimately not allocated into the cache. For example, data might be fetched into a buffer but then
discarded, rather than being allocated into a cache. These buffers are treated as part of the cache.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted. If FEAT_PMUv3p4 is not implemented, the counter does not count cache
maintenance instructions. If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED
whether accesses that result from cache maintenance instructions are counted by this event.

See also:

• Attributability on page D7-2857.

• Meaningful ratios between common microarchitectural events on page D7-2937.

0x0029, L3D_CACHE_ALLOCATE, Level 3 data cache allocation without refill

The counter counts each cache line allocation in the Level 3 data or unified cache that is not a refill
counted by L3D_CACHE_REFILL or L3D_CACHE_HWPRF. The counter increments on every
Attributable write that writes an entire line into the Level 3 cache without fetching from outside the
Level 1, Level 2, or Level 3 cache, for example:

• A write-back of an entire cache line from another cache.

• A write of an entire cache line from a PE coalescing write buffer.

• A DC ZVA operation executed by a PE.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted.

See also Attributability on page D7-2857.

0x002A, L3D_CACHE_REFILL, Attributable Level 3 data cache refill

The counter counts each access counted by L3D_CACHE which causes a refill of any of the Level
1, Level 2, or Level 3 caches from outside the Level 1, Level 2, and Level 3 caches.

A refill includes any access that causes data to be fetched from outside the cache, even if the data is
ultimately not allocated into the cache. For example, data might be fetched into a buffer but then
discarded, rather than being allocated into a cache. These buffers are treated as part of the cache.

The counter does not count as events on this PE:

• A miss that does not cause a new refill but is satisfied by the refill of a previous miss, even
if that previous refill is not complete at the time of the miss.

• A miss that does not generate a refill, such as a write through the cache.

• If FEAT_PMUv3p4 is not implemented, cache maintenance instructions.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted. If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether
accesses that result from cache maintenance instructions are counted by this event.

See also:

• Attributability on page D7-2857.

• Meaningful ratios between common microarchitectural events on page D7-2937.

0x002B, L3D_CACHE, Level 3 data cache access

The counter counts each Memory-read operation or Memory-write operation that causes a cache
access to at least the Level 3 data or unified cache.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2893
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
Each cache line access is counted, including multiple accesses caused by single instructions, such
as LDM and STM. Accesses to other level 3 data or unified cache structures, such as refill buffers, write
buffers, and write-back buffers, are also counted.

If FEAT_PMUv3p4 is implemented, accesses that only update the cache status information for a
cache entry without accessing the content of the cache entry are not counted. An example of cache
status information is whether the cached data is held in an exclusive or shared state.

If FEAT_PMUv3p4 is not implemented, it is IMPLEMENTATION DEFINED whether updates to cache
status information are counted.

If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether accesses caused by
cache maintenance instructions are counted.

If FEAT_PMUv3p4 is not implemented, the counter does not count cache maintenance instructions.

When the L3D_CACHE_PRFM and L3D_CACHE_RW events are implemented, accesses to the
Level 3 data or unified cache due to a preload or prefetch instruction, or a prefetch to another cache,
are counted. Otherwise, it is IMPLEMENTATION DEFINED whether accesses to the Level 3 data or
unified cache due to a preload or prefetch instruction, or a prefetch to another cache, are counted.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted.

See also Attributability on page D7-2857.

0x002C, L3D_CACHE_WB, Attributable Level 3 data cache write-back

The counter counts every write-back of data from the Level 3 data or unified cache that occurs as a
result of an operation by this PE. It counts each write-back that causes data to be written from the
Level 3 cache to outside of the Level 1, Level 2, and Level 3 caches. For example, the counter
counts the following cases:

• A write-back that causes data to be written to a Level 4 cache, or to memory.

• A write-back of a recently fetched cache line that has not been allocated to the Level 3 cache.

Each write-back is counted once, even if multiple accesses are required to complete the write-back.

It is IMPLEMENTATION DEFINED whether the counter counts:

• A transfer of data from the Level 3 cache to outside the Level 1, Level 2, and Level 3 caches
made as a result of a coherency request.

• A write-back made as a result of a Cache maintenance instruction.

The counter does not count:

• The invalidation of a cache line without any write-back to a Level 4 cache or memory.

• Writes from the PE, Level 1, or Level 2 data or unified cache, that write through the Level 3
cache to outside of the Level 3 cache.

• Transfers of data from the Level 3 cache to a Level 1 or Level 2 cache, to satisfy a Level 1 or
Level 2 cache refill.

An Unattributable write-back event occurs when a requestor outside the PE makes a coherency
request that results in write-back. If the cache is shared, then Unattributable write-back events are
not counted. If the cache is not shared, then Unattributable write-back events are counted.

It is IMPLEMENTATION DEFINED whether a write of a whole cache line that is not the result of the
eviction of a line from the cache, is counted. For example, this applies when the PE determines
streaming writes to memory and does not allocate lines to the cache, or by a DC ZVA operation.

See also Attributability on page D7-2857.

0x002D, L2D_TLB_REFILL, Level 2 data or unified TLB refill

The counter counts each access counted by L2D_TLB that causes a TLB refill of any of the Level
1 to Level 2 data or unified TLB. This includes an access that causes memory system accesses due
to a translation table walk or an access to another TLB level.

It is IMPLEMENTATION DEFINED whether the counter counts:

• A refill that results in a Translation fault, other than for those cases where the event must not
be counted.
D7-2894 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
• A refill that is not allocated in the TLB.

The counter does not count an access if any of the following are true:

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• The access is due to a TLB maintenance instruction.

• The access misses in the TLB and generates a translation table walk but does not cause a refill
of the TLB.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

See also:

• Attributability on page D7-2857.

• Meaningful ratios between common microarchitectural events on page D7-2937.

0x002E, L2I_TLB_REFILL, Level 2 instruction TLB refill

The counter counts each access counted by L2I_TLB that causes a TLB refill of any of the Level 1
to Level 2 instruction TLBs. This includes an access that causes memory system accesses due to a
translation table walk or an access to another TLB level.

It is IMPLEMENTATION DEFINED whether the counter counts:

• A refill that results in a Translation fault, other than for those cases where the event must not
be counted.

• A refill that is not allocated in the TLB.

The counter does not count an access if any of the following are true:

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• The access is due to a TLB maintenance instruction.

• The access misses in the TLB and generates a translation table walk but does not cause a refill
of the TLB.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

See also:

• Attributability on page D7-2857.

• Meaningful ratios between common microarchitectural events on page D7-2937.

0x002F, L2D_TLB, Level 2 data or unified TLB access

The counter counts each memory read operation or memory write operation that causes a TLB
access to at least the Level 2 data or unified TLB. Each access to a TLB entry is counted, including
multiple accesses caused by single instructions, such as LDM or STM.

The counter does not count TLB maintenance instructions.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

See also Attributability on page D7-2857.

0x0030, L2I_TLB, Level 2 instruction TLB access

The counter counts each Instruction memory access that causes a TLB access to at least the Level 2
instruction TLB.

The counter does not count TLB maintenance instructions.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2895
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
See also Attributability on page D7-2857.

0x0031, REMOTE_ACCESS, Access to another socket in a multi-socket system

The counter counts each Attributable memory read operation or memory write operation that causes
an access to another socket in a multi-socket system.

It is IMPLEMENTATION DEFINED whether an access that causes a snoop into another socket but does
not return data from or pass data to the remote socket is counted.

See also Attributability on page D7-2857.

0x0032, LL_CACHE, Last Level cache access

The counter counts each Memory-read operation or Memory-write operation that causes a cache
access to at least the Last Level data or unified cache.

Each cache line access is counted, including multiple accesses caused by single instructions, such
as LDM and STM. Accesses to other last level data or unified cache structures, such as refill buffers,
write buffers, and write-back buffers, are also counted.

If FEAT_PMUv3p4 is implemented, accesses that only update the cache status information for a
cache entry without accessing the content of the cache entry are not counted. An example of cache
status information is whether the cached data is held in an exclusive or shared state.

If FEAT_PMUv3p4 is not implemented, it is IMPLEMENTATION DEFINED whether updates to cache
status information are counted.

If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether accesses caused by
cache maintenance instructions are counted.

If FEAT_PMUv3p4 is not implemented, the counter does not count cache maintenance instructions.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted.

See also Attributability on page D7-2857.

0x0033, LL_CACHE_MISS, Last Level cache miss

The Counter counts each Attributable Memory-read operation or Memory-write operation that
causes a cache access to at least the Last Level data or unified cache, but is not completed by the
Last Level cache. That is, either of the following:

• A memory read operation that does not return data from the Last Level cache.

• A memory write operation that does not update the Last Level cache.

The counter does not count operations that are completed by a cache above the Last Level cache.

If FEAT_PMUv3p4 is not implemented, the counter does not count cache maintenance instructions.
If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether accesses that result
from cache maintenance instructions are counted.

See also:

• Attributability on page D7-2857.

• Meaningful ratios between common microarchitectural events on page D7-2937.

0x0034, DTLB_WALK, Access to data or unified TLB causes a translation table walk

The counter counts each access counted by L1D_TLB that causes a refill of a data or unified TLB
involving at least one translation table walk access. This includes each complete or partial
translation table walk that causes an access to memory, including to data or translation table walk
caches.

If Armv8.7 is not implemented, it is IMPLEMENTATION DEFINED whether accesses that cause a
translation table entry update involving at least one translation table walk access and update an
existing TLB entry are counted. If Armv8.7 is implemented, these accesses are counted.

The counter does not count if any of the following are true:

• The access is due to a TLB maintenance instruction.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.
D7-2896 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

See also:

• Attributability on page D7-2857.

• Meaningful ratios between common microarchitectural events on page D7-2937.

0x0035, ITLB_WALK, Access to instruction TLB that causes a translation table walk

The counter counts each access counted by L1I_TLB that causes a refill of an instruction TLB,
involving at least one translation table walk access. This includes each complete or partial
translation table walk that causes an access to memory, including to data or translation table walk
caches.

If Armv8.7 is not implemented, it is IMPLEMENTATION DEFINED whether accesses that cause a
translation table entry update involving at least one translation table walk access and update an
existing TLB entry are counted. If Armv8.7 is implemented, these accesses are counted.

The counter does not count if any of the following are true:

• The access is due to a TLB maintenance instruction.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

See also:

• Attributability on page D7-2857.

• Meaningful ratios between common microarchitectural events on page D7-2937.

0x0036, LL_CACHE_RD, Last level data cache access, read

The counter counts each access counted by LL_CACHE that is a Memory-read operation.

If FEAT_PMUv3p4 is not implemented, the counter does not count cache maintenance instructions.
If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether accesses that result
from cache maintenance instructions are counted by this event.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted.

See also:

• Attributability on page D7-2857.

• Meaningful ratios between common microarchitectural events on page D7-2937.

0x0037, LL_CACHE_MISS_RD, Last level cache miss, read

As LL_CACHE_MISS, but counts only memory read operations.

If FEAT_PMUv3p4 is not implemented, the counter does not count cache maintenance instructions.
If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether accesses that result
from cache maintenance instructions are counted.

See also:

• Attributability on page D7-2857.

• Meaningful ratios between common microarchitectural events on page D7-2937.

0x0038, REMOTE_ACCESS_RD, Access to another socket in a multi-socket system, read

As REMOTE_ACCESS, but counts only memory read operations.

See also:

• Attributability on page D7-2857.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2897
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
• Meaningful ratios between common microarchitectural events on page D7-2937.

0x0039, L1D_CACHE_LMISS_RD, Level 1 data cache long-latency read miss

The counter counts each memory read access counted by L1D_CACHE that incurs additional
latency because it returns data from outside the Level 1 data or unified cache of this PE.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted. It is IMPLEMENTATION DEFINED whether accesses that result from cache
maintenance instructions are counted.

The event indicates to software that the access missed in the Level 1 data or unified cache and might
have a significant performance impact compared to the latency of an access that hits in the Level 1
data or unified cache.

This counter does not count:

• Access where the additional latency is unlikely to be significantly performance-impacting.
For example, if the access hits in another cache in the same local cluster, and the additional
latency is small when compared against a miss in all Level 1 caches that the access looks up
in that results in an access being made to a Level 2 cache or elsewhere beyond the Level 1
data and unified cache.

• A miss that does not cause a new cache refill but is satisfied from a previous miss.

An implementation is not required to measure the latency nor to track the access to determine
whether the additional latency had a performance impact. An implementation can extend the
definition of this event with additional scenarios where a memory read access counted by
L1D_CACHE might have a significant performance impact due to additional latency for the
address.

See also Attributability on page D7-2857.

0x003A, OP_RETIRED, Micro-operation architecturally executed

The counter counts each operation counted by OP_SPEC that would be executed in a Simple
sequential execution of the program.

0x003B, OP_SPEC, Micro-operation Speculatively executed

The counter counts the number of operations executed by the PE, including those that are executed
speculatively and would not be executed in a Simple sequential execution of the program.

0x003C, STALL, No operation sent for execution

The counter counts every Attributable cycle on which no Attributable instruction or operation was
sent for execution on this PE.

If the PMU supports multi-threading:

• When PMEVTYPER<n>_EL0.MT = 0b0, the counter counts cycles for which only
instructions or operations Attributable to other PEs are sent for execution when this PE is
eligible to execute instructions or operations on that cycle. The counter does not count cycles
when this PE of the multi-threaded operation is not eligible to execute instructions or
operations.

• When PMEVTYPER<n>_EL0.MT = 0b1, the counter counts all cycles when no instructions
or operations for any PE of the multi-threaded operation are sent for execution.

The division between frontend and backend is IMPLEMENTATION DEFINED. STALL,
STALL_FRONTEND, and STALL_BACKEND events must count at the same point in the pipeline.
For more information, see STALL_FRONTEND.

See also:

• Attributability on page D7-2857.

• Meaningful ratios between common microarchitectural events on page D7-2937.
D7-2898 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x003D, STALL_SLOT_BACKEND, No operation sent for execution on a Slot due to the backend

Counts each Slot counted by STALL_SLOT where no Attributable instruction or operation was sent
for execution because the backend is unable to accept one of:

• The instruction operation available for the PE on the Slot.

• Any operations on the Slot.

The division between frontend and backend is IMPLEMENTATION DEFINED. STALL_SLOT,
STALL_SLOT_FRONTEND, and STALL_SLOT_BACKEND events must count at the same point
in the pipeline. The maximum value that STALL_SLOT_FRONTEND and
STALL_SLOT_BACKEND events can count in a single-cycle is IMPLEMENTATION DEFINED. For
more information, see STALL_SLOT.

See also Attributability on page D7-2857.

0x003E, STALL_SLOT_FRONTEND, No operation sent for execution on a Slot due to the frontend

Counts each Slot counted by STALL_SLOT where no Attributable instruction or operation was sent
for execution because there was no Attributable instruction or operation available to issue from the
PE from the frontend for the Slot.

The division between frontend and backend is IMPLEMENTATION DEFINED. STALL_SLOT,
STALL_SLOT_FRONTEND, and STALL_SLOT_BACKEND events must count at the same point
in the pipeline. The maximum value that STALL_SLOT_FRONTEND and
STALL_SLOT_BACKEND events can count in a single-cycle is implementation defined. For more
information, see STALL_SLOT.

Note

Arm recommends that STALL_SLOT_FRONTEND counts instructions that have been decoded
and, if applicable, split into micro-operations.

See also Attributability on page D7-2857.

0x003F, STALL_SLOT, No operation sent for execution on a Slot

The counter counts on each Attributable cycle the number of instruction or operation Slots that were
not occupied by an instruction or operation Attributable to the PE.

If the PMU supports multi-threading:

• When PMEVTYPER<n>_EL0.MT = 0b0, the counter counts instruction or operation Slots
for which those Slots are occupied by instructions or operations Attributable to other PEs of
the multi-threaded implementation only when the PE was eligible to execute instruction or
operations in that cycle. The counter does not count any instruction or operation Slots on
cycles when this PE was not eligible to execute instructions or operations.

• When PMEVTYPER<n>_EL0.MT = 0b1, for every cycle the counter counts all instruction
or operation Slots not occupied by any instruction or operation for any PE of the
multi-threaded implementation.

If FEAT_PMUv3p4 is implemented then PMMIR.SLOTS defines the largest value by which this
event can increment the counter in a single cycle.

See also Attributability on page D7-2857.

0x4000, SAMPLE_POP, Statistical Profiling sample population

The counter increments for each operation that might be sampled, whether or not the operation was
sampled. Operations that are executed at an Exception level or Security state in which the Statistical
Profiling Extension is disabled are not counted.

0x4001, SAMPLE_FEED, Statistical Profiling sample taken

The counter increments each time the sample interval counter reaches zero and is reloaded, and the
sample does not collide with the previous sample. Samples that are removed by filtering, or
discarded, and not written to the Profiling Buffer are counted.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2899
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x4002, SAMPLE_FILTRATE, Statistical Profiling sample taken and not removed by filtering

The counter counts each sample counted by SAMPLE_FEED that is not removed by filtering.
Sample records that are not removed by filtering, but are discarded before being written to the
Profiling Buffer because of a Profiling Buffer management event or because Discard mode is
implemented and enabled, are counted.

0x4003, SAMPLE_COLLISION, Statistical Profiling sample collided with a previous sample

The counter increments for each sample record that is taken when the previous sampled operation
has not completed generating its sample record.

0x4004, CNT_CYCLES, Constant frequency cycles

The counter increments at a constant frequency equal to the rate of increment of the System counter,
CNTPCT_EL0.

It is CONSTRAINED UNPREDICTABLE whether or not CNT_CYCLES continues to increment when the
PE is in WFI or WFE state.

In a multithreaded implementation, CNT_CYCLES counts when this PE thread is active and can
issue an instruction. For more information, see Cycle event counting on page D7-2936.

0x4005, STALL_BACKEND_MEM, Memory stall cycles

The counter counts each cycle counted by STALL_BACKEND where there is a cache miss in the
last level of cache within the PE clock domain.

It is IMPLEMENTATION DEFINED whether the counter counts backend stall cycles when a
non-cacheable access is in progress.

0x4006, L1I_CACHE_LMISS, Level 1 instruction cache long-latency read miss

If the L1I_CACHE_RD event is implemented, the counter counts each access counted by
L1I_CACHE_RD that incurs additional latency because it returns instructions from outside of the
Level 1 instruction cache of this PE.

If the L1I_CACHE_RD event is not implemented, the counter counts each access counted by
L1I_CACHE that incurs additional latency because it returns instructions from outside the Level 1
instruction cache of this PE.

The event indicates to software that the access missed in the Level 1 instruction cache and might
have a significant performance impact due to the additional latency, compared to the latency of an
access that hits in the Level 1 instruction cache.

This counter does not count:

• Access where the additional latency is unlikely to be significantly performance-impacting.
For example, if the access hits in another cache in the same local cluster, and the additional
latency is small when compared against a miss in all Level 1 caches that the access looks up
in that results in instructions being returned from a Level 2 cache or elsewhere beyond the
Level 1 instruction cache.

• A miss that does not cause a new cache refill but is satisfied from a previous miss.

An implementation is not required to measure the latency, nor to track the access to determine
whether the additional latency caused a performance impact. An implementation can extend the
definition of this event with additional scenarios where an access might have a significant
performance impact due to additional latency for the access.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions
are counted.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted.

See also Attributability on page D7-2857.

0x4009, L2D_CACHE_LMISS_RD, Level 2 data cache long-latency read miss

The counter counts each memory read access counted by L2D_CACHE that incurs additional
latency because it returns data from outside the Level 2 data or unified cache of this PE.
D7-2900 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted. It is IMPLEMENTATION DEFINED whether accesses that result from cache
maintenance instructions are counted.

The event indicates to software that the access missed in the Level 2 data or unified cache and might
have a significant performance impact compared to the latency of an access that hits in the Level 2
data or unified cache.

This counter does not count:

• Access where the additional latency is unlikely to be significantly performance-impacting.
For example, if the access hits in another cache in the same local cluster, and the additional
latency is small when compared against a miss in all Level 2 caches that the access looks up
in that results in an access being made to a Level 3 cache or elsewhere beyond the Level 2
data and unified cache. This might be counted as a Level 1 cache miss.

• A miss that does not cause a new cache refill but is satisfied from a previous miss.

An implementation is not required to measure the latency nor to track the access to determine
whether the additional latency had a performance impact. An implementation can extend the
definition of this event with additional scenarios where a memory read access counted by
L2D_CACHE might have a significant performance impact due to additional latency for the
address.

See also Attributability on page D7-2857.

0x400A, L2I_CACHE_LMISS, Level 2 instruction cache long-latency read miss

If the L2I_CACHE_RD event is implemented, the counter counts each access counted by
L2I_CACHE_RD that incurs additional latency because it returns instructions from outside of the
Level 1 to Level 2 instruction cache of this PE.

If the L2I_CACHE_RD event is not implemented, the counter counts each access counted by
L2I_CACHE that incurs additional latency because it returns instructions from outside the Level 1
to Level 2 instruction cache of this PE.

The event indicates to software that the access missed in the Level 2 instruction cache and might
have a significant performance impact due to the additional latency, compared to the latency of an
access that hits in the Level 2 instruction cache.

This counter does not count:

• Access where the additional latency is unlikely to be significantly performance-impacting.
For example, if the access hits in another cache in the same local cluster, and the additional
latency is small when compared against a miss in all Level 2 caches that the access looks up
in that results in instructions being returned from a Level 3 cache or elsewhere beyond the
Level 2 instruction cache. This might be counted as a Level 1 cache miss.

• A miss that does not cause a new cache refill but is satisfied from a previous miss.

An implementation is not required to measure the latency nor to track the access to determine
whether the additional latency caused a performance impact. An implementation can extend the
definition of this event with additional scenarios where an access might have a significant
performance impact due to additional latency for the access.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions
are counted.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted.

See also Attributability on page D7-2857.

0x400B, L3D_CACHE_LMISS_RD, Level 3 data cache long-latency read miss

The counter counts each memory read access counted by L3D_CACHE that incurs additional
latency because it returns data from outside the Level 3 data or unified cache of this PE.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted. It is IMPLEMENTATION DEFINED whether accesses that result from cache
maintenance instructions are counted.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2901
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
The event indicates to software that the access missed in the Level 3 data or unified cache and might
have a significant performance impact compared to the latency of an access that hits in the Level 3
data or unified cache.

This counter does not count:

• Access where the additional latency is unlikely to be significantly performance-impacting.
For example, if the access hits in another cache in the same local cluster, and the additional
latency is small when compared against a miss in all Level 3 caches that the access looks up
in that results in an access being made to a Level 4 cache or elsewhere beyond the Level 3
data and unified cache. This might be counted as a Level 2 cache miss.

• A miss that does not cause a new cache refill but is satisfied from a previous miss.

An implementation is not required to measure the latency nor to track the access to determine
whether the additional latency had a performance impact. An implementation can extend the
definition of this event with additional scenarios where a memory read access counted by
L3D_CACHE might have a significant performance impact due to additional latency for the
address.

See also Attributability on page D7-2857.

0x4020, LDST_ALIGN_LAT, Access with additional latency from alignment

The counter counts each access counted by MEM_ACCESS that, due to the alignment of the
address and size of data being accessed, incurred additional latency.

0x4021, LD_ALIGN_LAT, Load with additional latency from alignment

The counter counts each memory-read access counted by LDST_ALIGN_LAT.

0x4022, ST_ALIGN_LAT, Store with additional latency from alignment

The counter counts each memory-write access counted by LDST_ALIGN_LAT.

0x4024, MEM_ACCESS_CHECKED, Checked data memory access

The counter counts each memory access counted by MEM_ACCESS that is Tag Checked by the
Memory Tagging Extension. For more information see Chapter D6 Memory Tagging Extension.

It is IMPLEMENTATION DEFINED whether the counter increments on a Tag Checked access made
when Tag Check Faults are configured to be ignored by SCTLR_ELx.TCF or SCTLR_ELx.TCF0.

0x4025, MEM_ACCESS_CHECKED_RD, Checked data memory access, read

The counter counts each memory-read access counted by MEM_ACCESS_CHECKED.

It is IMPLEMENTATION DEFINED whether the counter increments on a Tag Checked access made
when Tag Check Faults are configured to be ignored by SCTLR_ELx.TCF or SCTLR_ELx.TCF0.

0x4026, MEM_ACCESS_CHECKED_WR, Checked data memory access, write

The counter counts each memory-write access counted by MEM_ACCESS_CHECKED.

It is IMPLEMENTATION DEFINED whether the counter increments on a Tag Checked access made
when Tag Check Faults are configured to be ignored by SCTLR_ELx.TCF or SCTLR_ELx.TCF0.

0x8004, SIMD_INST_SPEC, SIMD Instructions, Operations speculatively executed

The counter counts speculatively executed operations due to the following SIMD instructions:

• SVE instructions, but not non-SIMD SVE instructions.

• Advanced SIMD instructions, but not Advanced SIMD scalar instructions.

0x8005, ASE_INST_SPEC, Advanced SIMD Instructions, Operations speculatively executed

The counter counts speculatively executed operations due to Advanced SIMD instructions. It is
IMPLEMENTATION DEFINED whether this event counts operations due to Advanced SIMD scalar
instructions.
D7-2902 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x8006, SVE_INST_SPEC, SVE Operations speculatively executed

The counter counts speculatively executed operations due to SVE instructions. It is
IMPLEMENTATION DEFINED whether this event counts operations due to non-SIMD SVE instructions

0x8007, ASE_SVE_INST_SPEC, Advanced SIMD and SVE Operations speculatively executed

The counter counts speculatively executed operations that would be counted by ASE_INST_SPEC
or SVE_INST_SPEC.

0x8008, UOP_SPEC, Microarchitectural operation, Operations speculatively executed

The counter counts all speculatively executed microarchitectural operations, irrespective of the
IMPLEMENTATION DEFINED interpretation of Operations speculatively executed.

0x8009, ASE_UOP_SPEC, Advanced SIMD Microarchitectural operation, Operations speculatively executed

The counter counts all speculatively executed microarchitectural operations due to Advanced SIMD
instructions, irrespective of the IMPLEMENTATION DEFINED interpretation of Operations
speculatively executed. It is IMPLEMENTATION DEFINED whether this event counts
microarchitectural operations due to Advanced SIMD scalar instructions.

0x800A, SVE_UOP_SPEC, SVE micro-operation, Speculatively executed

The counter counts all speculatively executed microarchitectural operations due to SVE
instructions, irrespective of the IMPLEMENTATION DEFINED interpretation of Operations
speculatively executed. It is IMPLEMENTATION DEFINED whether this event counts
microarchitectural operations due to non-SIMD SVE instructions.

0x800B, ASE_SVE_UOP_SPEC, Advanced SIMD and SVE Microarchitectural operation, Operations
speculatively executed

The counter counts all speculatively executed microarchitectural operations that are counted by
SVE_UOP_SPEC or ASE_UOP_SPEC.

0x800C, SIMD_UOP_SPEC, SIMD micro-operation, Speculatively executed

The counter counts the following speculatively executed microarchitectural operations, irrespective
of the IMPLEMENTATION DEFINED interpretation of Operations speculatively executed, due to:

• SVE instructions, but not non-SIMD SVE instructions.

• Advanced SIMD instructions, but not Advanced SIMD scalar instructions.

0x800E, SVE_MATH_SPEC, SVE Math accelerator Operations speculatively executed

The counter counts speculatively executed math function operations due to the SVE FTSMUL, FTMAD,
FTSSEL, and FEXPA instructions.

0x8010, FP_SPEC, Floating-point Operations speculatively executed

The counter counts speculatively executed operations due to scalar, Advanced SIMD, and SVE
floating-point instructions. These instructions are in the floating point instructions category and
optionally the floating-point conversions instructions category and the floating-point or integer
instructions category listed in the Arm® Architecture Reference Manual Supplement, The Scalable
Vector Extension (SVE), for Armv8-A.

Note

The IMPLEMENTATION DEFINED event counter VFP_SPEC is similar to this event counter, but does
not count SIMD operations.

0x8011, ASE_FP_SPEC, Advanced SIMD floating-point Operations speculatively executed

The counter counts speculatively executed operations due to Advanced SIMD floating-point
instructions. These instructions are in the floating point instructions category and optionally the
floating-point conversions instructions category and the floating-point or integer instructions
category listed in the Arm® Architecture Reference Manual Supplement, The Scalable Vector
Extension (SVE), for Armv8-A.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2903
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x8012, SVE_FP_SPEC, SVE floating-point Operations speculatively executed

The counter counts speculatively executed operations due to SVE floating-point instructions. These
instructions are in the floating point instructions category and optionally the floating-point
conversions instructions category and the floating-point or integer instructions category listed in the
Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for
Armv8-A.

0x8013, ASE_SVE_FP_SPEC, Advanced SIMD and SVE floating-point Operations speculatively executed

The counter counts speculatively executed operations due to Advanced SIMD and SVE
floating-point instructions. These instructions are in the floating point instructions category and
optionally the floating-point conversions instructions category and the floating-point or integer
instructions category listed in the Arm® Architecture Reference Manual Supplement, The Scalable
Vector Extension (SVE), for Armv8-A.

0x8014, FP_HP_SPEC, Half-precision floating-point Operations speculatively executed

The counter counts speculatively executed operations due to scalar, Advanced SIMD, and SVE
floating-point instructions, where the largest type is half-precision. These instructions are in the
floating point instructions category and optionally the floating-point conversions instructions
category and the floating-point or integer instructions category listed in the Arm® Architecture
Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x8015, ASE_FP_HP_SPEC, Advanced SIMD, Half-precision floating-point Operations speculatively
executed

The counter counts speculatively executed operations due to Advanced SIMD floating-point
instructions, where the largest type is half-precision. These instructions are in the floating point
instructions category and optionally the floating-point conversions instructions category and the
floating-point or integer instructions category listed in the Arm® Architecture Reference Manual
Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x8016, SVE_FP_HP_SPEC, SVE Half-precision floating-point Operations speculatively executed

The counter counts speculatively executed operations due to SVE floating-point instructions, where
the largest type is half-precision. These instructions are in the floating point instructions category
and optionally the floating-point conversions instructions category and the floating-point or integer
instructions category listed in the Arm® Architecture Reference Manual Supplement, The Scalable
Vector Extension (SVE), for Armv8-A.

0x8017, ASE_SVE_FP_HP_SPEC, Advanced SIMD and SVE Half-precision floating-point Operations
speculatively executed

The counter counts speculatively executed operations due to Advanced SIMD and SVE
instructions, where the largest type is half-precision. These instructions are in the floating point
instructions category and optionally the floating-point conversions instructions category and the
floating-point or integer instructions category listed in the Arm® Architecture Reference Manual
Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x8018, FP_SP_SPEC, Single-precision floating-point Operations speculatively executed

The counter counts speculatively executed operations due to scalar, Advanced SIMD, and SVE
floating-point instructions, where the largest type is single-precision. These instructions are in the
floating point instructions category and optionally the floating-point conversions instructions
category and the floating-point or integer instructions category listed in the Arm® Architecture
Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x8019, ASE FP_SP_SPEC, Advanced SIMD Single-precision floating-point Operations speculatively
executed

The counter counts speculatively executed operations due to Advanced SIMD floating-point
instructions, where the largest type is single-precision. These instructions are in the floating point
instructions category and optionally the floating-point conversions instructions category and the
floating-point or integer instructions category listed in the Arm® Architecture Reference Manual
Supplement, The Scalable Vector Extension (SVE), for Armv8-A.
D7-2904 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x801A, SVE FP_SP_SPEC, SVE Single-precision floating-point operations, Operations speculatively
executed

The counter counts speculatively executed operations due to SVE floating-point instructions, where
the largest type is single-precision. These instructions are in the floating point instructions category
and optionally the floating-point conversions instructions category and the floating-point or integer
instructions category listed in the Arm® Architecture Reference Manual Supplement, The Scalable
Vector Extension (SVE), for Armv8-A.

0x801B, ASE_SVE FP_SP_SPEC, Advanced SIMD and SVE Single-precision floating-point Operations
speculatively executed

The counter counts speculatively executed operations due to Advanced SIMD and SVE
instructions., where the largest type is single-precision. These instructions are in the floating point
instructions category and optionally the floating-point conversions instructions category and the
floating-point or integer instructions category listed in the Arm® Architecture Reference Manual
Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x801C, FP_DP_SPEC, Double-precision floating-point Operations speculatively executed

The counter counts speculatively executed operations due to scalar, Advanced SIMD, and SVE
floating-point instructions, where the largest type is double-precision. These instructions are in the
floating point instructions category and optionally the floating-point conversions instructions
category and the floating-point or integer instructions category listed in the Arm® Architecture
Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x801D, ASE_FP_DP_SPEC, Advanced SIMD Double-precision floating-point Operations speculatively
executed

The counter counts speculatively executed operations due to Advanced SIMD floating-point
instructions, where the largest type is double-precision. These instructions are in the floating point
instructions category and optionally the floating-point conversions instructions category and the
floating-point or integer instructions category listed in the Arm® Architecture Reference Manual
Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x801E, SVE_FP_DP_SPEC, SVE Double-precision floating-point Operations speculatively executed

The counter counts speculatively executed operations due to SVE floating-point instructions, where
the largest type is double-precision. These instructions are in the floating point instructions category
and optionally the floating-point conversions instructions category and the floating-point or integer
instructions category listed in the Arm® Architecture Reference Manual Supplement, The Scalable
Vector Extension (SVE), for Armv8-A.

0x801F, ASE_SVE_FP_DP_SPEC, Advanced SIMD and SVE Double-precision floating-point Operations
speculatively executed

The counter counts speculatively executed operations due to Advanced SIMD and SVE
floating-point instructions, where the largest type is double-precision. These instructions are in the
floating point instructions category and optionally the floating-point conversions instructions
category and the floating-point or integer instructions category listed in the Arm® Architecture
Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x8020, FP_DIV_SPEC, Floating-point divide Operations speculatively executed

The counter counts speculatively executed floating-point divide operations.

0x8021, ASE_FP_DIV_SPEC, Advanced SIMD Floating-point divide Operations speculatively executed

The counter counts speculatively executed Advanced SIMD floating point divide operations.

0x8022, SVE_FP_DIV_SPEC, SVE Floating-point divide Operations speculatively executed

The counter counts speculatively executed SVE floating-point divide operations.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2905
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x8023, ASE_SVE_FP_DIV_SPEC, Advanced SIMD and SVE Floating-point divide Operations speculatively
executed

The counter counts speculatively executed Advanced SIMD and SVE floating-point divide
operations.

0x8024, FP_SQRT_SPEC, Floating-point square-root Operations speculatively executed

The counter counts speculatively executed floating-point square-root operations.

0x8025, ASE_FP_SQRT_SPEC, Advanced SIMD Floating-point square-root Operations speculatively
executed

The counter counts speculatively executed Advanced SIMD floating-point square-root operations.

0x8026, SVE_FP_SQRT_SPEC, SVE Floating-point square-root Operations speculatively executed

The counter counts speculatively executed SVE floating-point square-root operations.

0x8027, ASE_SVE_FP_SQRT_SPEC, Advanced SIMD and SVE Floating-point square root Operations
speculatively executed

The counter counts speculatively executed Advanced SIMD and SVE floating point square-root
operations.

0x8028, FP_FMA_SPEC, Floating-point FMA Operations speculatively executed

The counter counts speculatively executed floating point fused multiply-add and multiply-subtract
operations due to the following instructions:

• Scalar: FMADD, FMSUB, FNMADD, FNMSUB.

• Advanced SIMD: FCMLA, FMLA, FMLS.

• SVE: FCMLA, FMAD, FMLA, FMLS, FMSB, FNMAD, FNMLA, FNMLS, FNMSB, FTMAD.

0x8029, ASE_FP_FMA_SPEC, Advanced SIMD Floating-point FMA Operations speculatively executed

The counter counts speculatively executed floating point multiply-add and multiply-subtract
operations due to the Advanced SIMD FCMLA, FMLA, and FMLS instructions.

0x802A, SVE_FP_FMA_SPEC, SVE Floating-point FMA Operations speculatively executed

The counter counts speculatively executed floating point multiply-add and multiply-subtract
operations due to the SVE FCMLA, FMAD, FMLA, FMLS, FMSB, FNMAD, FNMLA, FNMLS, FNMSB, FTMAD instructions.

0x802B, ASE_SVE_FP_FMA_SPEC, Advanced SIMD and SVE Floating-point FMA Operations
speculatively executed

The counter counts speculatively executed floating-point fused multiply-add and multiply-subtract
operations due to the following instructions:

• Advanced SIMD: FCMLA, FMLA, FMLS.

• SVE: FCMLA, FMAD, FMLA, FMLS, FMSB, FNMAD, FNMLA, FNMLS, FNMSB, FTMAD.

0x802C, FP_MUL_SPEC, Floating-point multiply Operations speculatively executed

The counter counts speculatively executed floating-point multiply operations due to the scalar,
Advanced SIMD, and SVE FMUL and FMULX instructions, and the SVE FTSMUL instruction.

0x802D, ASE_FP_MUL_SPEC, Advanced SIMD Floating-point multiply Operations speculatively executed

The counter counts speculatively executed floating-point multiply operations due to the scalar
Advanced SIMD FMUL and FMULX instructions.

0x802E, SVE_FP_MUL_SPEC, SVE Floating-point multiply Operations speculatively executed

The counter counts speculatively executed floating-point multiply operations due to SVE
FMUL,FMULX, and FTSMUL instructions.
D7-2906 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x802F, ASE_SVE_FP_MUL_SPEC, Advanced SIMD and SVE Floating-point multiply Operations
speculatively executed

The counter counts speculatively executed floating-point multiply operations due to the Advanced
SIMD and SVE FMUL and FMULX instructions and the SVE FTSMUL instruction.

0x8030, FP_ADDSUB_SPEC, floating-point add or subtract Operations speculatively executed

The counter counts speculatively executed floating-point add and subtract operations due to the
scalar, Advanced SIMD, and SVE FADD and FSUB instructions, and the Advanced SIMD and SVE
FABD instructions.

0x8031, ASE_FP_ADDSUB_SPEC, Advanced SIMD floating-point add or subtract Operations speculatively
executed

The counter counts speculatively executed floating-point add and subtract operations due to the
Advanced SIMD FABD, FADD, and FSUB instructions.

0x8032, SVE_FP_ADDSUB_SPEC, SVE floating-point add or subtract Operations speculatively executed

The counter counts speculatively executed floating-point add and subtract operations due to the
SVE FABD, FADD, and FSUB instructions.

0x8033, ASE_SVE_FP_ADDSUB_SPEC, Advanced SIMD and SVE floating-point add and subtract
Operations speculatively executed

The counter counts speculatively executed floating-point add and subtract operations due to the
Advanced SIMD and SVE FABD, FADD, and FSUB instructions.

0x8034, FP_RECPE_SPEC, Floating-point reciprocal estimate Operations speculatively executed

The counter counts speculatively executed floating-point reciprocal estimate operations due to the
Advanced SIMD scalar, Advanced SIMD vector, and SVE FRECPE and FRSQRTE instructions.

0x8035, ASE_FP_RECPE_SPEC, Advanced SIMD floating-point reciprocal estimate Operations
speculatively executed

The counter counts speculatively executed floating-point reciprocal estimate operations due to the
Advanced SIMD vector FRECPE and FRSQRTE instructions.

0x8036, SVE_FP_RECPE_SPEC, SVE floating-point reciprocal estimate Operations speculatively executed

The counter counts speculatively executed floating-point reciprocal estimate operations due to the
SVE FRECPE and FRSQRTE instructions.

0x8037, ASE_SVE_FP_RECPE_SPEC, Advanced SIMD and SVE floating-point reciprocal estimate
Operations speculatively executed

The counter counts speculatively executed floating-point reciprocal estimate operations due to
Advanced SIMD vector and SVE FRECPE and FRSQRTE instructions.

0x8038, FP_CVT_SPEC, floating-point convert Operations speculatively executed

The counter counts speculatively executed floating-point convert operations due to the scalar,
Advanced SIMD, and SVE floating-point conversion instructions. The instructions in the
Floating-point conversions category are listed in the Arm® Architecture Reference Manual
Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x8039, ASE_FP_CVT_SPEC, Advanced SIMD floating-point convert Operations speculatively executed

The counter counts speculatively executed floating-point convert operations due to the Advanced
SIMD floating-point conversion instructions. The instructions in the Floating-point conversions
category are listed in the Arm® Architecture Reference Manual Supplement, The Scalable Vector
Extension (SVE), for Armv8-A.

0x803A, SVE_FP_CVT_SPEC, SVE floating-point convert Operations speculatively executed
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2907
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
The counter counts speculatively executed floating-point convert operations due to the SVE
floating-point conversion instructions. The instructions in the Floating-point conversions category
are listed in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension
(SVE), for Armv8-A.

0x803B, ASE_SVE_FP_CVT_SPEC, Advanced SIMD and SVE floating-point convert Operations
speculatively executed

The counter counts speculatively executed floating-point convert operations due to the Advanced
SIMD and SVE floating-point conversion instructions. The instructions in the Floating-point
conversions category are listed in the Arm® Architecture Reference Manual Supplement, The
Scalable Vector Extension (SVE), for Armv8-A.

0x803C, SVE_FP_AREDUCE_SPEC, SVE floating-point accumulating reduction Operations speculatively
executed

The counter counts speculatively executed floating-point accumulating reduction operations due to
the SVE FADDA instruction.

0x803D, ASE_FP_PREDUCE_SPEC, Advanced SIMD floating-point pairwise add step Operations
speculatively executed

The counter counts speculatively executed floating-point pairwise add operations due to the
Advanced SIMD FADDP instruction.

0x803E, SVE_FP_VREDUCE_SPEC, SVE floating-point vector reduction Operations speculatively executed

The counter counts speculatively executed floating-point treewise reduction operations due to the
SVE FADDV, FMAXNMV, FMAXV, FMINNMV, and FMINV instructions.

0x803F, ASE_SVE_FP_VREDUCE_SPEC, Advanced SIMD and SVE floating-point vector reduction
Operations speculatively executed

The counter counts speculatively executed floating-point reduction operations due to the Advanced
SIMD and SVE FMAXNMV, FMAXV, FMINNMV, and FMINV instructions, the Advanced SIMD FADDP
instruction, and the SVE FADDV instruction.

0x8040, INT_SPEC, integer Operations speculatively executed

The counter counts speculatively executed integer arithmetic operations due to scalar, Advanced
SIMD, and SVE data-processing instructions. These instructions are listed in the integer instructions
category and optionally the floating-point conversions category and the floating-point or integer
category in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension
(SVE), for Armv8-A.

0x8041, ASE_INT_SPEC, Advanced SIMD integer Operations speculatively executed

The counter counts speculatively executed integer arithmetic operations due to Advanced SIMD
data-processing instructions. These instructions are listed in the integer instructions category and
optionally the floating-point conversions category and the floating-point or integer category in the
Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for
Armv8-A.

0x8042, SVE_INT_SPEC, SVE integer Operations speculatively executed

The counter counts speculatively executed integer arithmetic operations due to SVE
data-processing instructions. These instructions are listed in the integer instructions category and
optionally the floating-point conversions category and the floating-point or integer category in the
Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for
Armv8-A.

0x8043, ASE_SVE_INT_SPEC, Advanced SIMD and SVE integer Operations speculatively executed

The counter counts speculatively executed integer arithmetic operations due to Advanced SIMD
and SVE data-processing instructions. These instructions are listed in the integer instructions
category and optionally the floating-point conversions category and the floating-point or integer
category in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension
(SVE), for Armv8-A.
D7-2908 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x8044, INT_DIV_SPEC, integer divide Operations speculatively executed

The counter counts speculatively executed scalar and SVE integer divide operations due to the SDIV
and UDIV instructions.

0x8045, INT_DIV64_SPEC, 64-bit integer divide Operations speculatively executed

The counter counts speculatively executed scalar and SVE integer divide operations due to the SDIV
and UDIV instructions with 64-bit operands or vector elements.

0x8046, SVE_INT_DIV_SPEC, SVE integer divide Operations speculatively executed

The counter counts speculatively executed SVE integer divide operations due to the SVE SDIV and
UDIV instructions.

0x8047, SVE_INT_DIV64_SPEC, SVE 64-bit integer divide Operations speculatively executed

The counter counts speculatively executed SVE integer divide operations due to the SVE SDIV and
UDIV instructions with 64-bit vector elements.

0x8048, INT_MUL_SPEC, integer multiply Operations speculatively executed

The counter counts speculatively executed integer multiply operations due to the following
instructions:

• Scalar: MADD, MSUB, MUL, SMADDL, SMULH, UMADDL, UMULH.

• Advanced SIMD: MLA, MLS, MUL, PMUL, PMULL, SMLAL, SMLS, SMULL, SQMLAL, SQDMLSL, SQDMULH,
SQDMULL, SQRDMLAH, SQRDMLSH, SQRDMULH, UMLAL, UMLSL, UMULL.

• SVE: MAD, MLA, MLS, MSB, MUL, SMULH, UMULH.

0x8049, ASE_INT_MUL_SPEC, Advanced SIMD integer multiply Operations speculatively executed

The counter counts speculatively executed integer multiply operations due to the following
Advanced SIMD instructions: MLA, MLS, MUL, PMUL, PMULL, SMLAL, SMLSL, SMULL, SQDMLAL, SQDMLSL,
SQDMULH, SQDMULL, SQRDMLAH, SQRDMLSH, SQRDMULH, UMLAL, UMLSL, UMULL.

0x804A, SVE_INT_MUL_SPEC, SVE integer multiply Operations speculatively executed

The counter counts speculatively executed integer multiply operations due to the following SVE
instructions: MAD, MLA, MLS, MSB, MUL, SMULH, UMULH.

0x804B, ASE_SVE_INT_MUL_SPEC, Advanced SIMD and SVE integer multiply Operations speculatively
executed

The counter counts speculatively executed integer multiply operations due to the following
instructions:

• Advanced SIMD: MLA, MLS, MUL, PMUL, PMULL, SMLAL, SMLSL, SMULL, SQDMLAL, SQDMLSL, SQDMULH,
SQDMULL, SQRDMLAH, SQRDMLSH, SQRDMULH, UMLAL, UMLSL, UMULL.

• SVE: MAD, MLA, MLS, MSB, MUL, SMULH, UMULH.

0x804C, INT_MUL64_SPEC, integer 64x64 multiply Operations speculatively executed

The counter counts speculatively executed integer multiply operations returning a 64-bit result for
the following instructions:

• Scalar: MADD, MSUB, MUL, SMADDL, SMULH, UMADDL, UMULH.

• SVE: MAD, MLS, MLA, MSB, MUL, SMULH, UMULH.

0x804D, SVE_INT_MUL64_SPEC, SVE integer 64-bit multiply Operations speculatively executed

The counter counts speculatively executed integer multiply operations returning a 64-bit result for
the following SVE instructions: MAD, MLA, MLS, MSB, MUL, SMULH, UMULH.

0x804E, INT_MULH64_SPEC, integer 64-bit multiply returning high part Operations speculatively executed

The counter counts speculatively executed widening integer multiply operations returning a 64-bit
result for the scalar and SVE SMULH and UMULH instructions.

0x804F, SVE_INT_MULH64_SPEC, SVE integer 64-bit multiply high part Operations speculatively executed
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2909
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
The counter counts speculatively executed widening integer multiply operations returning a 64-bit
result for the SVE SMULH and UMULH instructions.

0x8058, NONFP_SPEC, Non floating-point Operations speculatively executed

The counter counts speculatively executed operations due to the following instructions:

• Scalar instructions that would be counted by the DP_SPEC event.

• Advanced SIMD data processing instructions defined in Data processing - SIMD and
floating-point on page C3-255 that would not be counted by FP_SPEC.

• SVE instructions with vector source or destination registers that would not be counted by
FP_SPEC.

0x8059, ASE_NONFP_SPEC, Advanced SIMD non-floating-point Operations speculatively executed

The counter counts speculatively executed operations due to Advanced SIMD data processing
instructions defined in the section titled Data processing - SIMD and floating-point on page C3-255
that would not be counted by ASE_FP_SPEC.

0x805A, SVE_NONFP_SPEC, SVE non-floating-point Operations speculatively executed

The counter counts speculatively executed operations due to SVE instructions with vector source or
destination registers that would not be counted by SVE_FP_SPEC.

0x805B, ASE_SVE_NONFP_SPEC, Advanced SIMD and SVE non-floating-point Operations speculatively
executed

The counter counts speculatively executed operations due to the following instructions:

• Advanced SIMD data-processing instructions defined in Data processing - SIMD and
floating-point on page C3-255 that would not be counted by ASE_SVE_FP_SPEC.

• SVE instructions with vector source or destination registers that would not be counted by
ASE_SVE_FP_SPEC.

0x805D, ASE_INT_VREDUCE_SPEC, Advanced SIMD integer reduction Operations speculatively executed

The counter counts speculatively executed across-vector and pairwise integer reduction operations
due to the Advanced SIMD SADDLP, SADDLV, SMAXP, SMAXV, SMINP, SMINV, UADDVL, UMAXV, and UMINV
instructions.

0x805E, SVE_INT_VREDUCE_SPEC, SVE integer reduction Operations speculatively executed

The counter counts speculatively executed across-vector integer reduction operations due to the
following SVE instructions: ANDV, EORV, ORV, SADDV, SMAXV, SMINV, UADDV, UMAXV, and UMINV instructions.

0x805F, ASE_SVE_INT_VREDUCE_SPEC, Advanced SIMD and SVE integer reduction Operations
speculatively executed

The counter counts speculatively executed across-vector and pairwise integer reduction operations
due to the following instructions:

• Advanced SIMD: SADDLP, SADDLV, SMAXP, SMAXV, SMINP, SMINV, UADDLV, UMAXV, and UMINV.

• SVE: ANDV, EORV, ORV, SADDV, SMAXV, SMINV, UADDV, UMAXV, UMINV.

0x8060, SVE_PERM_SPEC, SVE permute Operations speculatively executed

The counter counts speculatively executed vector or predicate permute operations due to the
following SVE instructions: CLASTA, CLASTB, CPY, COMPACT, DUP, EXT, INSR, LASTA, LASTB, PUNPKHI,
PUNPKLO, REV, REV16, REV32, REV64, SPLICE, SUNPKHI, SUNPKLO, TBL, TRN1, TRN2, UUNPKHI, UUNPKLO, UZP1,
UZP2, ZIP1, and ZIP2.

0x8061, SVE_PERM_IGRANULE_SPEC, SVE intra-granule permute Operations speculatively executed

The counter counts speculatively executed vector or predicate permute operations within a 128-bit
vector granule or 16-bit predicate granule for the following SVE instructions: REV16, REV32, REV64,
TRN1, TRN2.

0x8062, SVE_PERM_XGRANULE_SPEC, SVE cross-granule permute Operations speculatively executed
D7-2910 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
The counter counts speculatively executed vector or predicate permute operations that can cross
between 128-bit vector granules or 16-bit predicate granules for the following SVE instructions:
CLASTA, CLASTB, CPY, COMPACT, DUP, EXT, INSR, LASTA, LASTB, PUNPKHI, PUNPKLO, REV, SPLICE, SUNPKHI,
SUNPKLO, TBL, UNPKHI, UNPKLO, UZP1, UZP2, ZIP1, and ZIP2.

0x8063, SVE_PERM_VARIABLE_SPEC, SVE programmable permute Operations speculatively executed

The counter counts speculatively executed variable vector permute operations due to the following
SVE instructions: CLASTA, CLASTB, COMPACT, LASTA, LASTB, SPLICE, and TBL.

0x8064, SVE_XPIPE_SPEC, SVE cross-pipe Operations speculatively executed

The counter counts speculatively executed cross-pipeline transfer operations due to the following
SVE instructions: CLASTA (scalar), CLASTB (scalar), CNTP, CPY (scalar), DECP (scalar), DUP (scalar), INCP
(scalar), INDEX (immediate, scalar), INDEX (scalar, immediate), INDEX (scalar, scalar), INSR (scalar),
LASTA (scalar), LASTB (scalar), SQDECP (scalar), SQINCP (scalar), UQDECP (scalar), UQDECP (scalar),
WHILE<cc>.

0x8065, SVE_XPIPE_Z2R_SPEC, SVE vector to scalar cross-pipe Operations speculatively executed

The counter counts speculatively executed vector to general-purpose scalar cross-pipeline transfer
operations due to the following SVE instructions: CLASTA (scalar), CLASTB (scalar), CNTP, DECP (scalar),
INCP (scalar), LASTA (scalar), LASTB (scalar), SQDECP (scalar), SQINCP (scalar), UQDECP (scalar), UQDECP
(scalar).

0x8066, SVE_XPIPE_R2Z_SPEC, SVE scalar to vector cross-pipe Operations speculatively executed

The counter counts speculatively executed general-purpose scalar to vector cross-pipeline transfer
operations due to the following SVE instructions: CPY (scalar), DUP (scalar), INDEX (immediate,
scalar), INDEX (scalar, immediate), INDEX (scalar, scalar), INSR (scalar), WHILE<cc>.

0x8067, SVE_PGEN_NVEC_SPEC, SVE predicate-only Operations speculatively executed

The counter counts speculatively executed predicate-generating operations that do not read vector
registers due to the following SVE instructions: AND (predicates), ANDS, BIC (predicates), BICS, BRKA,
BRKAS, BRKB, BRKBS, BRKN, BRKNS, BRKPA, BRKPAS, BRKPB, BRKPBS, EOR (predicates), EORS, NAND, NANDS, NOR,
NORS, ORN (predicates), ORNS, ORR (predicates), ORRS, PFALSE, PFIRST, PNEXT, PTRUE, PTRUES, PUNPKHI,
PUNPKLO, RDFFR, RDFFRS, REV (predicate), SEL (predicates), TRN1 (predicates), TRN2 (predicates), UZP1
(predicates), UZP2 (predicates), WHILE<cc>, ZIP1 (predicates), ZIP2 (predicates).

0x8068, SVE_PGEN_SPEC, SVE predicate generating Operations speculatively executed

The counter counts speculatively executed predicate-generating operations due to the following
SVE instructions: AND (predicates), ANDS, BIC (predicates), BICS, BRKA, BRKAS, BRKB, BRKBS, BRKN, BRKNS,
BRKPA, BRKPAS, BRKPB, BRKPBS, CMP<cc>, EOR (predicates), EORS, FAC<cc>, FCM<cc>, NAND, NANDS, NOR, NORS,
ORN (predicates), ORNS, ORR (predicates), ORRS, PFALSE, PFIRST, PNEXT, PTRUE, PTRUES, PUNPKHI, PUNPKLO,
RDFFR, RDFFRS, REV (predicate), SEL (predicates), TRN1 (predicates), TRN2 (predicates), UZP1
(predicates), UZP2 (predicates), WHILE<cc>, ZIP1 (predicates), ZIP2 (predicates).

0x8069, SVE_PGEN_FLG_SPEC, SVE predicate flag setting Operations speculatively executed

The counter counts speculatively executed predicate-generating operations that set condition flags,
due to the following SVE instructions: ANDS, BICS, BRKAS, BRKBS, BRKNS, BRKPAS, BRKPBS, CMP<cc>, EORS,
NANDS, NORS, ORNS, ORRS, PFIRST, PNEXT, PTRUES, RDFFRS, WHILE<cc>.

0x806A, SVE_PGEN_CMP_SPEC, SVE vector compare Operations speculatively executed

The counter counts speculatively executed vector compare operations due to the following SVE
instructions: CMP<cc>, FAC<cc>, FCM<cc>.

0x806B, SVE_PGEN_FCM_SPEC, SVE floating-point vector compare Operations speculatively executed

The counter counts speculatively executed vector floating-point compare operations, due to the
following SVE instructions: FAC<cc>, FCM<cc>.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2911
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x806C, SVE_PGEN_LOGIC_SPEC, SVE predicate logical Operations speculatively executed

The counter counts speculatively executed predicate logical operations due to the following SVE
instructions: AND (predicates), ANDS, BIC (predicates), BICS, EOR (predicates), EORS, NAND, NANDS, NOR,
NORS, ORN (predicates), ORNS, ORR (predicates), ORRS.

0x806D, SVE_PPERM_SPEC, SVE predicate permute Operations speculatively executed

The counter counts speculatively executed predicate permute operations, due to the following SVE
instructions: PUNPKHI, PUNPKLO, REV (predicate), TRN1 (predicates), TRN2 (predicates), UZP1 (predicates),
UZP2 (predicates), ZIP1 (predicates), ZIP2 (predicates).

0x806E, SVE_PSCAN_SPEC, SVE predicate scan Operations speculatively executed

The counter counts speculatively executed predicate scanning and generation operations, due to the
following SVE instructions: BRKA, BRKAS, BRKB, BRKBS, BRKN, BRKNS, BRKPA, BRKPAS, BRKPB, BRKPBS,
PFIRST, PNEXT.

0x806F, SVE_PCNT_SPEC, SVE predicate count Operations speculatively executed

The counter counts speculatively executed predicate population count operations, due to the
following SVE instructions: CNTP, DECP, INCP, SQDECP, SQINCP, UQDECP, UQINCP.

0x8070, SVE_PLOOP_WHILE_SPEC, SVE predicate loop while Operations speculatively executed

The counter counts speculatively executed counted predicate generation operations, due to the
following SVE instructions: WHILELE, WHILELO, WHILELS, WHILELT.

0x8071, SVE_PLOOP_TEST_SPEC, SVE predicate loop test Operations speculatively executed

The counter counts speculatively executed loop predicate test operations, due to the following SVE
instructions: BRKAS, BRKBS, BRKNS, BRKPAS, BRKPBS, WHILELE, WHILELO, WHILELS, WHILELT.

0x8072, SVE_PLOOP_ELTS_SPEC, SVE predicate loop elements Operations speculatively executed

The counter counts speculatively executed loop predicate generation operations, due to the
following SVE instructions: WHILELE, WHILELO, WHILELS, WHILELT. This event increments the counter
by (128 ÷ CSIZE).

Note

This counter must be multiplied by (VL ÷ 128) to determine the number of vector elements
speculatively processed by while loops.

0x8073, SVE_PLOOP_TERM_SPEC, SVE predicate loop termination, Operations speculatively executed

The counter counts speculatively executed loop-terminating predicate generation operations due to
the following SVE instructions:

• WHILELE, WHILELO, WHILELS, WHILELT, which set PSTATE.N to 0.

• BRKAS, BRKBS, BRKNS, BRKPAS, BRKPBS, which set PSTATE.C to 1.

• CTERMEQ and CTERMNE, which set PSTATE.N to 1 and PSTATE.V to 0.

0x8074, SVE_PRED_SPEC, SVE predicated Operations speculatively executed

The counter counts speculatively executed SIMD data-processing and load and store operations due
to SVE instructions with a Governing predicate operand that determines the Active elements.

0x8075, SVE_PRED_EMPTY_SPEC, SVE predicated operations with no active predicates, Operations
speculatively executed

The counter counts speculatively executed SIMD data-processing and load and store operations due
to SVE instructions with a Governing predicate in which all elements are FALSE.

0x8076, SVE_PRED_FULL_SPEC, SVE predicated operations with all active predicates, Operations
speculatively executed

The counter counts speculatively executed SIMD data-processing and load and store operations due
to SVE instructions with a Governing predicate in which all elements are TRUE.
D7-2912 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x8077, SVE_PRED_PARTIAL_SPEC, SVE predicated operations with partially active predicates,
Operations speculatively executed

The counter counts speculatively executed SIMD data-processing and load and store operations due
to SVE instructions with a Governing predicate in which elements are neither all TRUE nor all
FALSE.

0x8078, SVE_UNPRED_SPEC, SVE unpredicated Operations speculatively executed

The counter counts speculatively executed SIMD data-processing and load/store operations due to
SVE instructions without a Governing predicate.

0x8079, SVE_PRED_NOT_FULL_SPEC, SVE predicated operations with empty or partially active
predicates, Operations speculatively executed

The counter counts speculatively executed SIMD data-processing and load and store operations due
to SVE instructions with a Governing predicate in which elements are not all TRUE, but may be all
FALSE.

0x807C, SVE_MOVPRFX_SPEC, SVE MOVPRFX Operations speculatively executed

The counter counts speculatively executed operations due to MOVPRFX instructions, whether or not
they were fused with the prefixed instruction.

0x807D, SVE_MOVPRFX_Z_SPEC, SVE MOVPRFX zeroing predication Operations speculatively executed

The counter counts speculatively executed operations due to MOVPRFX instructions using zeroing
predication, whether or not they were fused with the prefixed instruction.

0x807E, SVE_MOVPRFX_M_SPEC, SVE MOVPRFX merging predication Operations speculatively
executed

The counter counts speculatively executed operations due to MOVPRFX instructions using merging
predication, whether or not they were fused with the prefixed instruction.

0x807F, SVE_MOVPRFX_U_SPEC, SVE MOVPRFX unfused Operations speculatively executed

The counter counts speculatively executed operations due to MOVPRFX instructions that were not fused
with the prefixed instruction.

0x8080, SVE_LDST_SPEC, SVE load, store, and prefetch Operations speculatively executed

The counter counts speculatively executed operations that read from, write to, or prefetch memory
due to SVE instructions.

0x8081, SVE_LD_SPEC, SVE load Operations speculatively executed

The counter counts speculatively executed operations that read from memory due to SVE load
instructions.

0x8082, SVE_ST_SPEC, SVE store Operations speculatively executed

The counter counts speculatively executed operations that write to memory due to SVE store
instructions.

0x8083, SVE_PRF_SPEC, SVE prefetch Operations speculatively executed

The counter counts speculatively executed operations that prefetch memory due to SVE prefetch
instructions.

0x8084, ASE_SVE_LDST_SPEC, Advanced SIMD and SVE, load and store Operations speculatively
executed

The counter counts speculatively executed operations that read from or write to memory due to SVE
and Advanced SIMD instructions, or any instructions that prefetch memory.

0x8085, ASE_SVE_LD_SPEC, Advanced SIMD and SVE load Operations speculatively executed

The counter counts speculatively executed operations that read from memory due to SVE and
Advanced SIMD load instructions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2913
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x8086, ASE_SVE_ST_SPEC, Advanced SIMD and SVE store Operations speculatively executed

The counter counts speculatively executed operations that write to memory due to SVE and
Advanced SIMD store instructions.

0x8087, PRF_SPEC, Prefetch Operations speculatively executed

The counter counts speculatively executed prefetch operations due to scalar PRFM and SVE PRF
instructions.

0x8088, BASE_LDST_REG_SPEC, General-purpose register load, store and prefetch Operations
speculatively executed

The counter counts speculatively executed operations that read from memory to a general-purpose
register, write a general-purpose register to memory, or prefetch memory due to the PRFM instruction.
It is IMPLEMENTATION DEFINED whether operations due to the DC ZVA instruction are counted.

0x8089, BASE_LD_REG_SPEC, General-purpose register load Operations speculatively executed

The counter counts speculatively executed operations that read from memory due to an instruction
that loads a general-purpose register.

0x808A, BASE_ST_REG_SPEC, General-purpose register store Operations speculatively executed

The counter counts speculatively executed operations that write to memory due to an instruction that
stores a general-purpose register. It is IMPLEMENTATION DEFINED whether operations due to the DC
ZVA instruction are counted.

0x808B, BASE_PRF_SPEC, General-purpose register prefetch Operations speculatively executed

The counter counts speculatively executed operations that prefetch memory due to the PRFM
instruction.

0x808C, FPASE_LDST_REG_SPEC, Advanced SIMD and floating-point register load and store Operations
speculatively executed

The counter counts speculatively executed operations that read from or write to memory, due to
scalar SIMD&FP LDR, LDP, STR, and STP instructions or Advanced SIMD LD1, LD1R, and ST1
instructions.

0x808D, FPASE_LD_REG_SPEC, Advanced SIMD and floating-point register load Operations speculatively
executed

The counter counts speculatively executed operations that read from memory, due to scalar
SIMD&FP LDR and LDP instructions or Advanced SIMD LD1 and LD1R instructions.

0x808E, FPASE_ST_REG_SPEC, Advanced SIMD and floating-point register store Operations speculatively
executed

The counter counts speculatively executed operations that write to memory, due to scalar SIMD&FP
STR and STP instructions or Advanced SIMD ST1 instructions.

0x8090, SVE_LDST_REG_SPEC, SVE unpredicated load and store register Operations speculatively
executed

The counter counts speculatively executed operations that read from memory or write to memory
due to SVE LDR and STR instructions.

0x8091, SVE_LDR_REG_SPEC, SVE unpredicated load register Operations speculatively executed

The counter counts speculatively executed operations that read from memory due to an SVE LDR
instruction.

0x8092, SVE_STR_REG_SPEC, SVE unpredicated store register Operations speculatively executed

The counter counts speculatively executed operations that write to memory due to an SVE STR
instruction.

0x8094, SVE_LDST_PREG_SPEC, SVE load and store predicate register Operations speculatively executed
D7-2914 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
The counter counts speculatively executed operations that read from memory or write to memory
due to SVE LDR (predicate) and STR (predicate) instructions.

0x8095, SVE_LDR_PREG_SPEC, SVE load predicate register Operations speculatively executed

The counter counts speculatively executed operations that read from memory due to an SVE LDR
(predicate) instruction.

0x8096, SVE_STR_PREG_SPEC, SVE store predicate register Operations speculatively executed

The counter counts speculatively executed operations that write to memory due to an SVE STR
(predicate) instruction.

0x8098, SVE_LDST_ZREG_SPEC, SVE load and store vector register Operations speculatively executed

The counter counts speculatively executed operations that read from memory or write to memory
due to SVE LDR (vector) and STR (vector) instructions.

0x8099, SVE_LDR_ZREG_SPEC, SVE load vector register Operations speculatively executed

The counter counts speculatively executed operations that read from memory due to an SVE LDR
(vector) instruction.

0x809A, SVE_STR_ZREG_SPEC, SVE store vector register Operations speculatively executed

The counter counts speculatively executed operations that write to memory due to an SVE STR
(vector) instruction.

0x809C, SVE_LDST_CONTIG_SPEC, SVE contiguous load, store, and prefetch element Operations
speculatively executed

The counter counts speculatively executed operations that read from, write to, or prefetch memory
due to an SVE predicated single vector contiguous element load, store, or prefetch instruction.
Operations due to SVE load and replicate LD1R and LD1RQ instructions are also counted.

0x809D, SVE_LD_CONTIG_SPEC, SVE contiguous load element Operations speculatively executed

The counter counts speculatively executed operations that read from memory due to SVE predicated
single vector contiguous element load instructions. Operations due to SVE load and replicate LD1R
and LD1RQ instructions are also counted.

0x809E, SVE_ST_CONTIG_SPEC, SVE contiguous store element Operations speculatively executed

The counter counts speculatively executed operations that write to memory due to SVE predicated
single vector contiguous element store instructions.

0x809F, SVE_PRF_CONTIG_SPEC, SVE contiguous prefetch element Operations speculatively executed

The counter counts speculatively executed operations that prefetch memory due to an SVE
predicated single contiguous element prefetch instruction.

0x80A0, SVE_LDSTNT_CONTIG_SPEC, SVE non-temporal contiguous load and store element Operations
speculatively executed

The counter counts speculatively executed operations that read from memory or write to memory
with a non-temporal hint due to an SVE non-temporal contiguous element load or store instruction.

0x80A1, SVE_LDNT_CONTIG_SPEC, SVE non-temporal contiguous load element Operations speculatively
executed

The counter counts speculatively executed operations that read from memory with a non-temporal
hint due to an SVE non-temporal contiguous element load instruction.

0x80A2, SVE_STNT_CONTIG_SPEC, SVE non-temporal contiguous store element Operations speculatively
executed

The counter counts speculatively executed operations that write to memory with a non-temporal
hint due to an SVE non-temporal contiguous element store instruction.

0x80A4, ASE_SVE_LDST_MULTI_SPEC, Advanced SIMD and SVE contiguous load and store multiple
vector Operations speculatively executed
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2915
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
The counter counts speculatively executed operations that read from memory or write to memory
due to an SVE or Advanced SIMD multiple vector contiguous structure load and store instruction.

0x80A5, ASE_SVE_LD_MULTI_SPEC, Advanced SIMD and SVE contiguous load multiple vector
Operations speculatively executed

The counter counts speculatively executed operations that read from memory due to SVE and
Advanced SIMD multiple vector contiguous structure load instructions.

0x80A6, ASE_SVE_ST_MULTI_SPEC, Advanced SIMD and SVE contiguous store multiple vector
Operations speculatively executed

The counter counts speculatively executed operations that write to memory due to SVE and
Advanced SIMD multiple vector contiguous structure store instructions.

0x80A8, SVE_LDST_MULTI_SPEC, SVE contiguous load and store multiple vector Operations speculatively
executed

The counter counts speculatively executed operations that read from memory or write to memory
due to SVE multiple vector contiguous structure load and store instructions.

0x80A9, SVE_LD_MULTI_SPEC, SVE contiguous load multiple vector Operations speculatively executed

The counter counts speculatively executed operations that read from memory due to SVE multiple
vector contiguous structure load instructions.

0x80AA, SVE_ST_MULTI_SPEC, SVE contiguous store multiple vector Operations speculatively executed

The counter counts speculatively executed operations that write to memory due to SVE multiple
vector contiguous structure store instructions.

0x80AC, SVE_LDST_NONCONTIG_SPEC, SVE non-contiguous load, store, and prefetch Operations
speculatively executed

The counter counts speculatively executed operations that read from, write to, or prefetch memory
due to SVE non-contiguous gather-load, scatter-store, and gather-prefetch instructions.

0x80AD, SVE_LD_GATHER_SPEC, SVE gather-load Operations speculatively executed

The counter counts speculatively executed operations that read from memory due to SVE
non-contiguous gather-load instructions.

0x80AE, SVE_ST_SCATTER_SPEC, SVE scatter-store Operations speculatively executed

The counter counts speculatively executed operations that write to memory due to SVE
non-contiguous scatter-store instructions.

0x80AF, SVE_PRF_GATHER_SPEC, SVE gather-prefetch Operations speculatively executed

The counter counts speculatively executed operations that prefetch memory due to SVE
non-contiguous gather-prefetch instructions.

0x80B0, SVE_LDST64_NONCONTIG_SPEC, SVE 64-bit non-contiguous load, store, and prefetch
Operations speculatively executed

The counter counts speculatively executed operations that read from, write to, or prefetch memory
due to SVE non-contiguous gather-load, scatter-store, and gather-prefetch instructions with 64-bit
vector elements in the address.

0x80B1, SVE_LD64_GATHER_SPEC, SVE 64-bit gather-load Operations speculatively executed

The counter counts speculatively executed operations that read from memory due to SVE
non-contiguous gather-load instructions with 64-bit vector elements in the address.

0x80B2, SVE_ST64_SCATTER_SPEC, SVE 64-bit scatter-store Operations speculatively executed

The counter counts speculatively executed operations that write to memory due to SVE
non-contiguous scatter-store instructions with 64-bit vector elements in the address.
D7-2916 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x80B3, SVE_PRF64_GATHER_SPEC, SVE 64-bit gather-prefetch Operations speculatively executed

The counter counts speculatively executed operations that prefetch memory due to SVE
non-contiguous gather-prefetch instructions with 64-bit vector elements in the address.

0x80B4, ASE_SVE_UNALIGNED_LDST_SPEC, Advanced SIMD and SVE unaligned accesses

The counter counts memory read and write accesses due to SVE and Advanced SIMD load and store
instructions where:

• A contiguous vector address is not aligned to the minimum of the in-memory size of the
vector and the cache line size, in bytes.

• A gather, scatter, or single element address is not aligned to the memory element access size,
in bytes.

The counter also counts unaligned accesses if they are subsequently converted into multiple aligned
accesses.

0x80B5, ASE_SVE_UNALIGNED_LD_SPEC, Advanced SIMD and SVE unaligned read accesses

The counter counts memory read and write accesses due to SVE and Advanced SIMD load
instructions where:

• A contiguous vector address is not aligned to the minimum of the in-memory size of the
vector and the cache line size, in bytes.

• A gather, scatter or single element address is not aligned to the memory element access size,
in bytes.

The counter also counts unaligned accesses if they are subsequently converted into multiple aligned
accesses.

0x80B6, ASE_SVE_UNALIGNED_ST_SPEC, Advanced SIMD and SVE unaligned write accesses

The counter counts memory read and write accesses due to SVE and Advanced SIMD store
instructions where:

• A contiguous vector address is not aligned to the minimum of the in-memory size of the
vector and the cache line size, in bytes.

• A gather. scatter or single element address is not aligned to the memory element access size,
in bytes.

The counter also counts unaligned accesses if they are subsequently converted into multiple aligned
accesses.

0x80B8, ASE_SVE_UNALIGNED_CONTIG_LDST_SPEC, Advanced SIMD and SVE unaligned contiguous
accesses

The counter counts memory read and write accesses due to SVE and Advanced SIMD contiguous
load and store instructions where the address is not aligned to the minimum of the in-memory size
of the vector and the cache line size, in bytes.

The counter also counts unaligned accesses if they are subsequently converted into multiple aligned
accesses.

0x80B9, ASE_SVE_UNALIGNED_CONTIG_LD_SPEC, Advanced SIMD and SVE unaligned contiguous
read accesses

The counter counts memory read accesses due to SVE and Advanced SIMD contiguous load
instructions where the address is not aligned to the minimum of the in-memory size of the vector
and the cache line size, in bytes.

The counter also counts unaligned accesses if they are subsequently converted into multiple aligned
accesses.

0x80BA, ASE_SVE_UNALIGNED_CONTIG_ST_SPEC, Advanced SIMD and SVE unaligned contiguous
write accesses

The counter counts memory write accesses due to SVE and Advanced SIMD contiguous store
instructions where the address is not aligned to the minimum of the in-memory size of the vector
and the cache line size, in bytes.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2917
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
The counter also counts unaligned accesses if they are subsequently converted into multiple aligned
accesses.

0x80BC, SVE_LDFF_SPEC, SVE First-fault load Operations speculatively executed

The counter counts speculatively executed memory read operations due to SVE First-fault and
Non-fault load instructions.

0x80BD, SVE_LDFF_FAULT_SPEC, SVE First-fault load operations which set FFR bit to 0, Operations
speculatively executed

The counter counts speculatively executed memory read operations due to SVE First-fault and
Non-fault load instructions that write 0 to at least one bit in FFR.

0x80C0, FP_SCALE_OPS_SPEC, Scalable floating-point element ALU operation counts Speculatively
executed

The counter counts the number of ALU operation counts generated for speculatively executed
operations that would be counted by SVE_FP_SPEC, except that it is IMPLEMENTATION DEFINED
whether this includes operations due to instructions other than those listed in the Floating-point
arithmetic (SVE) category in the Arm® Architecture Reference Manual Supplement, The Scalable
Vector Extension (SVE), for Armv8-A.
 See ALU operation counts on page D7-2869 for information on the counter increment for different
types of instruction.

0x80C1, FP_FIXED_OPS_SPEC, Non-scalable floating-point element ALU operation counts Speculatively
executed

The counter counts the number of ALU operation counts generated for speculatively executed
operations that would be counted by FP_SPEC but not by SVE_FP_SPEC. It does not count
operations that are counted by the FP_SCALE_OPS_SPEC event. It is IMPLEMENTATION DEFINED
whether this includes operations due to instructions other than those listed in the Floating-point
arithmetic (scalar) category and the Floating-point arithmetic (Advanced SIMD) category in Arm®
Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.
See ALU operation counts on page D7-2869 for information on the counter increment for different
types of instruction.

0x80C2, FP_HP_SCALE_OPS_SPEC, Scalable half-precision floating-point element ALU operation counts
Speculatively executed

The counter counts the number of ALU operation counts generated for speculatively executed
operations that would be counted by SVE_FP_HP_SPEC, except that is IMPLEMENTATION DEFINED
whether this includes operations due to instructions other than those listed in the Floating-point
arithmetic (SVE) category in Arm® Architecture Reference Manual Supplement, The Scalable
Vector Extension (SVE), for Armv8-A. See ALU operation counts on page D7-2869 for information
on the counter increment for different types of instruction.

0x80C3, FP_HP_FIXED_OPS_SPEC, Non-scalable half-precision floating-point element ALU operation
counts Speculatively executed

The counter counts the number of ALU operation counts generated for speculatively executed
operations that would be counted by FP_HP_SPEC but not by SVE_FP_HP_SPEC. It does not
count operations that are counted by the FP_HP_SCALE_OPS_SPEC event. It is IMPLEMENTATION
DEFINED whether this includes operations due to instructions other than those listed in the
Floating-point arithmetic (scalar) category and the Floating-point arithmetic (Advanced SIMD)
category in Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension
(SVE), for Armv8-A. See ALU operation counts on page D7-2869 for information on the counter
increment for different types of instruction.

0x80C4, FP_SP_SCALE_OPS_SPEC, Scalable single-precision floating-point element ALU operation counts
Speculatively executed

The counter counts the number of ALU operation counts generated for speculatively executed
operations that would be counted by SVE FP_SP_SPEC, except that is IMPLEMENTATION DEFINED
whether this includes operations other than those listed in the Floating-point arithmetic (SVE)
D7-2918 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
category in Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension
(SVE), for Armv8-A. See ALU operation counts on page D7-2869 for information on the counter
increment for different types of instruction.

0x80C5, FP_SP_FIXED_OPS_SPEC, Non-scalable single-precision floating-point element ALU operation
counts Speculatively executed

The counter counts the number of ALU operation counts generated for speculatively executed
operations that would be counted by FP_SP_SPEC but not by SVE FP_SP_SPEC. It does not count
operations that are counted by the FP_SP_SCALE_OPS_SPEC event. It is IMPLEMENTATION
DEFINED whether this includes operations due to instructions other than those listed in the
Floating-point arithmetic (scalar) category and the Floating-point arithmetic (Advanced SIMD)
category in Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension
(SVE), for Armv8-A. See ALU operation counts on page D7-2869 for information on the counter
increment for different types of instruction.

0x80C6, FP_DP_SCALE_OPS_SPEC, Scalable double-precision floating-point element ALU operation
counts Speculatively executed

The counter counts the number of ALU operation counts generated for speculatively executed
operations that would be counted by SVE_FP_DP_SPEC, except that is IMPLEMENTATION DEFINED
whether this includes operations due to instructions other than those listed in the Floating-point
arithmetic (SVE) category in Arm® Architecture Reference Manual Supplement, The Scalable
Vector Extension (SVE), for Armv8-A. See ALU operation counts on page D7-2869 for information
on the counter increment for different types of instruction.

0x80C7, FP_DP_FIXED_OPS_SPEC, Non-scalable double-precision floating-point element ALU operation
counts Speculatively executed

The counter counts the number of ALU operation counts generated for speculatively executed
operations that would be counted by FP_DP_SPEC but not by SVE_FP_DP_SPEC. It does not
count operations that are counted by the FP_DP_SCALE_OPS_SPEC event. It is IMPLEMENTATION
DEFINED whether this includes operations due to instructions other than those listed in the
Floating-point arithmetic (scalar) category in Arm® Architecture Reference Manual Supplement,
The Scalable Vector Extension (SVE), for Armv8-A. See ALU operation counts on page D7-2869 for
information on the counter increment for different types of instruction.

0x80C8, INT_SCALE_OPS_SPEC, Scalable integer element ALU operation counts Speculatively executed

The counter counts the number of ALU operation counts generated for speculatively executed
operations that would be counted by SVE_INT_SPEC. See ALU operation counts on page D7-2869
for information on the counter increment for different types of instruction.

0x80C9, INT_FIXED_OPS_SPEC, Non-scalable integer element ALU operation counts Speculatively
executed

The counter counts the number of ALU operation counts generated for speculatively executed
operations that would be counted by INT_SPEC but not by SVE_INT_SPEC. It does not count the
operations that are counted by the INT_SCALE_OPS_SPEC event.

See ALU operation counts on page D7-2869 for information on the counter increment for different
types of instruction.

0x80CA, LDST_SCALE_OPS_SPEC, Scalable load and store element ALU operation counts Speculatively
executed

The counter counts the number of ALU operation counts generated for speculatively executed
memory-read and write operations, due to the SVE predicated vector load and store instructions,
excluding the replicating LD1R and LD1RQ instructions. See ALU operation counts on page D7-2869
for information on the counter increment for different types of instruction.

This event counter does not count tag loads or tag stores.

0x80CB, LDST_FIXED_OPS_SPEC, Non-scalable load and store element ALU operation counts Speculatively
executed
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2919
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
The counter counts the number of ALU operation counts generated for speculatively executed
memory-read and write operations, due to all non-SVE load, store and atomic operations, all SVE
non-vector load and store operations, and SVE replicating LD1R and LD1RQ instructions. See ALU
operation counts on page D7-2869 for information on the counter increment for different types of
instruction.

0x80CC, LD_SCALE_OPS_SPEC, Scalable load element ALU operation counts Speculatively executed

The counter counts the number of ALU operation counts generated for speculatively executed
memory read operations, due to SVE predicated vector load instructions, excluding the replicating
LD1R and LD1RQ instructions. See ALU operation counts on page D7-2869 for information on the
counter increment for different types of instruction.

This event counter does not count tag loads or tag stores.

0x80CD, LD_FIXED_OPS_SPEC, Non-scalable load element ALU operation counts Speculatively executed

The counter counts the number of ALU operation counts generated for speculatively executed
Memory-read operations due to all non-SVE load and atomic operations, all SVE non-vector load
operations, and SVE replicating LD1R and LD1RQ instructions. See ALU operation counts on
page D7-2869 for information on the counter increment for different types of instruction.

0x80CE, ST_SCALE_OPS_SPEC, Scalable store element ALU operation counts Speculatively executed

The counter counts the number of ALU operation counts generated for speculatively executed
Memory-write operations, due to SVE predicated vector store instructions. See ALU operation
counts on page D7-2869 for information on the counter increment for different types of instruction.

This event counter does not count tag loads or tag stores.

0x80CF, ST_FIXED_OPS_SPEC, Non-scalable store element ALU operation counts Speculatively executed

The counter counts the number of ALU operation counts generated for speculatively executed
Memory-write operations due to all non-SVE store and atomic operations, and all SVE non-vector
store operations. See ALU operation counts on page D7-2869 for information on the counter
increment for different types of instruction.

0x80DA, LDST_SCALE_BYTES_SPEC, Scalable load and store bytes, Speculatively executed

The counter counts bytes speculatively read or written due to SVE vector load and store instructions,
excluding the replicating LD1R and LD1RQ instructions. See ALU operation counts on page D7-2869
for information on the counter increment for different types of instruction.

This event counter does not count tag loads or tag stores.

0x80DB, LDST_FIXED_BYTES_SPEC, Non-scalable load and store bytes, Speculatively executed

The counter counts bytes speculatively read or written due to all non-SVE load, store and atomic
operations, all SVE non-vector load and store operations, and SVE replicating LD1R and LD1RQ
instructions.

• SVE and Advanced SIMD LD1R instructions increment the counter by (MSIZE ÷ 8).

• SVE LD1RQ instructions increment the counter by 16.

• Advanced SIMD LD[1-4] and ST[1-4] instructions increment the counter by the number of
transferred per register multiplied by the number of transferred.

See ALU operation counts on page D7-2869 for information on the counter increment for different
types of instruction.

0x80DC, LD_SCALE_BYTES_SPEC, Scalable load bytes, Speculatively executed

The counter counts bytes speculatively read due to SVE vector load instructions, excluding the
replicating LD1R and LD1RQ instructions. See ALU operation counts on page D7-2869 for information
on the counter increment for different types of instruction.

This event counter does not count tag loads or tag stores.

0x80DD, LD_FIXED_BYTES_SPEC, Non-scalable load bytes, Speculatively executed
D7-2920 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
The counter counts bytes speculatively read due to all non-SVE load and atomic operations, all SVE
non-vector load operations, and SVE replicating LD1R and LD1RQ instructions. See ALU operation
counts on page D7-2869 for information on the counter increment for different types of instruction.

0x80DE, ST_SCALE_BYTES_SPEC, Scalable store bytes, Speculatively executed

The counter counts bytes speculatively written due to SVE vector store instructions. See ALU
operation counts on page D7-2869 for information on the counter increment for different types of
instruction.

This event counter does not count tag loads or tag stores.

0x80DF, ST_FIXED_BYTES_SPEC, Non-scalable store bytes, Speculatively executed

The counter counts bytes written due to all non-SVE store and atomic operations, and all SVE
non-vector store operations. See ALU operation counts on page D7-2869 for information on the
counter increment for different types of instruction.

0x80E1, ASE_INT8_SPEC, Advanced SIMD 8-bit integer Operations speculatively executed

The counter counts each operation counted by ASE_SVE_INT8_SPEC where the operation is an
Advanced SIMD operation.

0x80E2, SVE_INT8_SPEC, SVE 8-bit integer Operations speculatively executed

The counter counts each operation counted by ASE_SVE_INT8_SPEC where the operation is an
SVE operation.

0x80E3, ASE_SVE_INT8_SPEC, Advanced SIMD and SVE 8-bit integer Operations speculatively executed

The counter counts each operation counted by ASE_SVE_INT_SPEC where the largest type is an
8-bit integer.

0x80E5, ASE_INT16_SPEC, Advanced SIMD 16-bit integer Operations speculatively executed

The counter counts each operation counted by ASE_SVE_INT16_SPEC where the operation is an
Advanced SIMD operation.

0x80E6, SVE_INT16_SPEC, SVE 16-bit integer Operations speculatively executed

The counter counts each operation counted by ASE_SVE_INT16_SPEC where the operation is an
SVE operation.

0x80E7, ASE_SVE_INT16_SPEC, Advanced SIMD and SVE 16-bit integer Operations speculatively executed

The counter counts each operation counted by ASE_SVE_INT_SPEC where the largest type is an
16-bit integer.

0x80E9, ASE_INT32_SPEC, Advanced SIMD 32-bit integer Operations speculatively executed

The counter counts each operation counted by ASE_SVE_INT32_SPEC where the operation is an
Advanced SIMD operation.

0x80EA, SVE_INT32_SPEC, SVE 32-bit integer Operations speculatively executed

The counter counts each operation counted by ASE_SVE_INT32_SPEC where the operation is an
SVE operation.

0x80EB, ASE_SVE_INT32_SPEC, Advanced SIMD and SVE 32-bit integer Operations speculatively executed

The counter counts each operation counted by ASE_SVE_INT_SPEC where the largest type is an
32-bit integer.

0x80ED, ASE_INT64_SPEC, Advanced SIMD 64-bit integer Operations speculatively executed

The counter counts each operation counted by ASE_SVE_INT64_SPEC where the operation is an
Advanced SIMD operation.

0x80EE, SVE_INT64_SPEC, SVE 64-bit integer Operations speculatively executed

The counter counts each operation counted by ASE_SVE_INT64_SPEC where the operation is an
SVE operation.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2921
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x80EF, ASE_SVE_INT64_SPEC, Advanced SIMD and SVE 64-bit integer Operations speculatively executed

The counter counts each operation counted by ASE_SVE_INT_SPEC where the largest type is an
64-bit integer.

0x80F1, ASE_FP_DOT_SPEC, Advanced SIMD floating-point dot-product Operations speculatively
executed

The counter counts each operation counted by ASE_SVE_FP_DOT_SPEC where the operation is
an Advanced SIMD dot-product operation.

0x80F2, SVE_FP_DOT_SPEC, SVE floating-point dot-product Operations speculatively executed

The counter counts each operation counted by ASE_SVE_FP_DOT_SPEC where the operation is
an SVE dot-product operation.

0x80F3, ASE_SVE_FP_DOT_SPEC, Advanced SIMD and SVE floating-point dot-product Operations
speculatively executed

The counter counts each operation counted by FP_SPEC where the operation is an Advanced SIMD
or SVE dot-product operation.

0x80F5, ASE_FP_MMLA_SPEC, Advanced SIMD floating-point matrix multiply Operations speculatively
executed

The counter counts each operation counted by ASE_SVE_FP_MMLA_SPEC where the operation
is an Advanced SIMD matrix multiply operation.

0x80F6, SVE_FP_MMLA_SPEC, SVE floating-point matrix multiply Operations speculatively executed

The counter counts each operation counted by ASE_SVE_FP_MMLA_SPEC where the operation
is an SVE matrix multiply operation.

0x80F7, ASE_SVE_FP_MMLA_SPEC, Advanced SIMD and SVE floating-point matrix multiply Operations
speculatively executed

The counter counts each operation counted by FP_SPEC where the operation is an Advanced SIMD
or SVE matrix multiply operation.

0x80F9, ASE_INT_DOT_SPEC, Advanced SIMD integer dot-product Operations speculatively executed

The counter counts each operation counted by ASE_SVE_INT_DOT_SPEC where the operation is
an Advanced SIMD dot-product operation.

0x80FA, SVE_INT_DOT_SPEC, SVE integer dot-product Operations speculatively executed

The counter counts each operation counted by ASE_SVE_INT_DOT_SPEC where the operation is
an SVE dot-product operation.

0x80FB, ASE_SVE_INT_DOT_SPEC, Advanced SIMD and SVE integer dot-product Operations
speculatively executed

The counter counts each operation counted by INT_SPEC where the operation is an Advanced
SIMD or SVE dot-product operation.

0x80FD, ASE_INT_MMLA_SPEC, Advanced SIMD integer matrix multiply Operations speculatively
executed

The counter counts each operation counted by ASE_SVE_INT_MMLA_SPEC where the operation
is an Advanced SIMD matrix multiply operation.

0x80FE, SVE_INT_MMLA_SPEC, SVE integer matrix multiply Operations speculatively executed

The counter counts each operation counted by ASE_SVE_INT_MMLA_SPEC where the operation
is an SVE matrix multiply operation.

0x80FF, ASE_SVE_INT_MMLA_SPEC, Advanced SIMD and SVE integer matrix multiply Operations
speculatively executed

The counter counts each operation counted by INT_SPEC where the operation is an Advanced
SIMD or SVE matrix multiply operation.
D7-2922 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x8110, BR_IMMED_PRED_RETIRED, Instruction architecturally executed, predicted immediate branch

The counter counts the instructions on the architecturally executed path counted by both
BR_IMMED_RETIRED and BR_PRED_RETIRED. These are all immediate branch instructions
where the branch was correctly predicted.

0x8111, BR_IMMED_MIS_PRED_RETIRED, Instruction architecturally executed, mispredicted immediate
branch

The counter counts the instructions on the architecturally executed path, counted by both
BR_IMMED_RETIRED and BR_MIS_PRED_RETIRED. These are all immediate branch
instructions where the branch was mispredicted.

0x8112, BR_IND_PRED_RETIRED, Instruction architecturally executed, predicted indirect branch

The counter counts the instructions on the architecturally executed path counted by both
BR_IND_RETIRED and BR_PRED_RETIRED. These are branch instructions where the branch
was correctly predicted, but does not include immediate instructions.

0x8113, BR_IND_MIS_PRED_RETIRED, Instruction architecturally executed, mispredicted indirect
branch

The counter counts the instructions on the architecturally executed path counted by both
BR_IND_RETIRED and BR_MIS_PRED_RETIRED. These are branch instructions where the
branch was mispredicted, but does not include immediate instructions.

0x8114, BR_RETURN_PRED_RETIRED, Instruction architecturally executed, predicted procedure return

The counter counts the instructions on the architecturally executed path counted by
BR_IND_PRED_RETIRED where, if taken, the branch would be counted by
BR_RETURN_RETIRED. These are branch return instructions, where the branch was correctly
predicted.

0x8115, BR_RETURN_MIS_PRED_RETIRED, Instruction architecturally executed, mispredicted
procedure return

The counter counts the instructions on the architecturally executed path counted by
BR_IND_MIS_PRED_RETIRED where, if taken, the branch would also be counted by
BR_RETURN_RETIRED. These are branch return instructions where the branch was mispredicted.

0x8116, BR_INDNR_PRED_RETIRED, Instruction architecturally executed, predicted indirect branch,
excluding return

The counter counts the instructions on the architecturally executed path counted by
BR_IND_PRED_RETIRED where, if taken, the branch would not be counted by
BR_RETURN_RETIRED. These are branch instructions where the branch was correctly predicted,
but does not include immediate or return instructions.

0x8117, BR_INDNR_MIS_PRED_RETIRED, Instruction architecturally executed, mispredicted indirect
branch, excluding return

The counter counts the instructions on the architecturally executed path counted by
BR_IND_MIS_PRED_RETIRED where, if taken, the branch would not be counted by
BR_RETURN_RETIRED. These are branch instructions where the branch was mispredicted, but
does not include immediate or return instructions.

0x8118, BR_TAKEN_PRED_RETIRED, Instruction architecturally executed, predicted branch, taken

The counter counts the instructions on the architecturally executed path counted by both
PC_WRITE_RETIRED and BR_PRED_RETIRED. These are branch instructions, where the
branch was correctly predicted and taken.

0x8119, BR_TAKEN_MIS_PRED_RETIRED, Instruction architecturally executed, mispredicted branch,
taken

The counter counts the instructions on the architecturally executed path counted by both
PC_WRITE_RETIRED and BR_MIS_PRED_RETIRED. These are branch instructions where the
branch was mispredicted and taken.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2923
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x811A, BR_SKIP_PRED_RETIRED, Instruction architecturally executed, predicted branch, not taken

The counter counts the instructions on the architecturally executed path counted by both
BR_SKIP_RETIRED and BR_PRED_RETIRED. These are branch instructions, where the branch
was correctly predicted and not taken.

0x811B, BR_SKIP_MIS_PRED_RETIRED, Instruction architecturally executed, mispredicted branch, not
taken

The counter counts the instructions on the architecturally executed path counted by both
BR_SKIP_RETIRED and BR_MIS_PRED_RETIRED. These are branch instructions where the
branch was mispredicted and not taken.

0x811C, BR_PRED_RETIRED, Instruction architecturally executed, predicted branch

The counter counts the instructions on the architecturally executed path counted by BR_RETIRED
that are not counted by BR_MIS_PRED_RETIRED. These are branch instructions, where the
branch was correctly predicted.

0x8120, INST_FETCH_PERCYC, Event in progress, INST_FETCH

The counter counts by the number of INST_FETCH events in progress on each Processor cycle.

If this event is implemented, the INST_FETCH event must be implemented.

See also Meaningful ratios between common microarchitectural events on page D7-2937.

0x8121, MEM_ACCESS_RD_PERCYC, Event in progress, MEM_ACCESS_RD

The counter counts by the number of MEM_ACCESS_RD events in progress on each Processor
cycle.

If this event is implemented, the MEM_ACCESS_RD event must be implemented.

See also Meaningful ratios between common microarchitectural events on page D7-2937.

0x8122, MEM_ACCESS_WR_PERCYC, Event in progress, MEM_ACCESS_WR

The counter counts by the number of MEM_ACCESS_WR events in progress on each Processor
cycle.

If this event is implemented, the MEM_ACCESS_WR event must be implemented.

See also Meaningful ratios between common microarchitectural events on page D7-2937.

0x8123, MEM_ACCESS_PERCYC, Event in progress, MEM_ACCESS

The counter counts by the number of MEM_ACCESS events in progress on each Processor cycle.

If this event is implemented, the MEM_ACCESS event must be implemented.

See also Meaningful ratios between common microarchitectural events on page D7-2937.

0x8124, INST_FETCH, Instruction memory access

The counter counts each Instruction memory access that the PE makes. The counter increments
whether the access is to a Level 1 instruction cache, a Level 2 instruction, data or unified cache, or
none of these.

The counter does not increment as a result of:

• Data memory accesses.

• Translation table walks.

• Cache refills.

• Cache maintenance instructions.

0x8128, DTLB_WALK_PERCYC, Event in progress, DTLB_WALK

The counter counts by the number of DTLB_WALK events in progress on each Processor cycle.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

If this event is implemented, the DTLB_WALK event must be implemented.
D7-2924 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
See also:

• Attributability on page D7-2857.

• Meaningful ratios between common microarchitectural events on page D7-2937.

0x8129, ITLB_WALK_PERCYC, Event in progress, ITLB_WALK

The counter counts by the number of ITLB_WALK events in progress on each Processor cycle.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

If this event is implemented, the ITLB_WALK event must be implemented.

See also:

• Attributability on page D7-2857.

• Meaningful ratios between common microarchitectural events on page D7-2937.

0x812A, SAMPLE_FEED_BR, Statistical Profiling sample taken, branch

The counter counts each sample counted by SAMPLE_FEED that are branch operations.

The values of PMSFCR_EL1.{B, FT} are ignored when generating this event.

Samples that are removed by filtering, or discarded, and not written to the Profiling Buffer are
counted.

0x812B, SAMPLE_FEED_LD, Statistical Profiling sample taken, load

The counter counts each sample counted by SAMPLE_FEED that are load or load atomic
operations.

The values of PMSFCR_EL1.{LD, FT} are ignored when generating this event.

Samples that are removed by filtering, or discarded, and not written to the Profiling Buffer are
counted.

0x812C, SAMPLE_FEED_ST, Statistical Profiling sample taken, store

The counter counts each sample counted by SAMPLE_FEED that are store or atomic operations,
including load atomic operations.

The values of PMSFCR_EL1.{ST, FT} are ignored when generating this event.

Samples that are removed by filtering, or discarded, and not written to the Profiling Buffer are
counted.

0x812D, SAMPLE_FEED_OP, Statistical Profiling sample taken, matching operation type

The counter counts each sample counted by SAMPLE_FEED that meets one of the following
operation type filter constraints:

• The operation is a branch and PMSFCR_EL1.B is 1.

• The operation is a load or load atomic, and PMSFCR_EL1.LD is 1.

• The operation is a store or atomic operation, and PMSFCR_EL1.ST is 1.

The value of PMSFCR_EL1.FT is ignored when generating this event.

Samples that are removed by filtering, or discarded, and not written to the Profiling Buffer are
counted.

0x812E, SAMPLE_FEED_EVENT, Statistical Profiling sample taken, matching events

The counter counts each sample counted by SAMPLE_FEED that meets the Events packet filter
constraints defined by PMSEVFR_EL1 and, if implemented, PMSNEVFR_EL1.

The values of PMSFCR_EL1.{FnE, FE} are ignored when generating this event.

Samples that are removed by filtering, or discarded, and not written to the Profiling Buffer are
counted.

0x812F, SAMPLE_FEED_LAT, Statistical Profiling sample taken, exceeding minimum latency

The counter counts each sample counted by SAMPLE_FEED with a total latency greater than or
equal to the minimum latency defined by PMSLATFR_EL1.MINLAT.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2925
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
The value of PMSFCR_EL1.FL is ignored when generating this event.

Samples that are removed by filtering, or discarded, and not written to the Profiling Buffer are
counted.

0x8130, L1D_TLB_RW, Level 1 data or unified TLB demand access

The counter counts each access counted by L1D_TLB that is not counted by L1D_TLB_PRFM.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

If this event is implemented, the L1D_TLB event must be implemented.

See also Attributability on page D7-2857.

0x8131, L1I_TLB_RD, Level 1 instruction TLB demand access

The counter counts each access counted by L1I_TLB that is not counted by L1I_TLB_PRFM.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

If this event is implemented, the L1I_TLB event must be implemented.

See also Attributability on page D7-2857.

0x8132, L1D_TLB_PRFM, Level 1 data or unified TLB preload or prefetch

The counter counts each access counted by L1D_TLB that is due to a preload or prefetch instruction.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

If this event is implemented, the L1D_TLB event must be implemented.

See also Attributability on page D7-2857.

0x8133, L1I_TLB_PRFM, Level 1 instruction TLB preload or prefetch

The counter counts each access counted by L1I_TLB that is due to a preload or prefetch instruction.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

If this event is implemented, the L1I_TLB event must be implemented.

See also Attributability on page D7-2857.

0x8134, DTLB_HWUPD, Data TLB hardware update of translation table

The counter counts each access counted by L1D_TLB that causes a hardware update of a translation
table entry.

The counter does not count if any of the following are true:

• The access is an unprivileged access that generates a Translation fault because the applicable
TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

If this event is implemented, the L1D_TLB event must be implemented.

This event can only be implemented if FEAT_E0PD is implemented.

See also Attributability on page D7-2857.

0x8135, ITLB_HWUPD, Instruction TLB hardware update of translation table

The counter counts each access counted by L1I_TLB that causes a hardware update of a translation
table entry.
D7-2926 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
The counter does not count if any of the following are true:

• The access is an unprivileged access that generates a Translation fault because the applicable
TCR_ELx.E0PDy bit is 1.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

If this event is implemented, the L1D_TLB event must be implemented.

This event can only be implemented if FEAT_E0PD is implemented.

See also Attributability on page D7-2857.

0x8136, DTLB_STEP, Data TLB translation table walk, step

The counter counts each translation table walk access made by a refill of the data or unified TLB.

The event is Attributable to the access that missed in the TLB and caused the walk, not to the owner
of the translation tables being accessed. For example, this means that if an EL0 access causes a
translation table walk consisting of accesses to both stage 1 and stage 2 translation tables, all
accesses are counted if event counting is allowed at EL0, regardless of whether event counting is
allowed at EL1 or EL2.

The counter does not count if any of the following are true:

• The access that caused the walk is an unprivileged access that generates a Translation fault
because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access that caused the walk is a non-fault access that fails
because the applicable TCR_ELx.NFDy bit is 1.

• The access that caused the walk generates a Translation fault because the applicable
TCR_ELx.EPDy bit is 1.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

If this event is implemented, the DTLB_WALK event must be implemented.

This event can only be implemented if FEAT_E0PD is implemented.

See also Attributability on page D7-2857.

0x8137, ITLB_STEP, Instruction TLB translation table walk, step

The counter counts each translation table walk access made by a refill of an instruction TLB.

The event is Attributable to the access that missed in the TLB and caused the walk, not to the owner
of the translation tables being accessed. For example, this means that if an EL0 access causes a
translation table walk consisting of accesses to both stage 1 and stage 2 translation tables, all
accesses are counted if event counting is allowed at EL0, regardless of whether event counting is
allowed at EL1 or EL2.

The counter does not count if any of the following are true:

• The access that caused the walk is an unprivileged access that generates a Translation fault
because the applicable TCR_ELx.E0PDy bit is 1.

• The access that caused the walk generates a Translation fault because the applicable
TCR_ELx.EPDy bit is 1.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

If this event is implemented, the ITLB_WALK event must be implemented.

This event can only be implemented if FEAT_E0PD is implemented.

See also Attributability on page D7-2857.

0x8138, DTLB_WALK_LARGE, Data TLB large page translation table walk

The counter counts each translation table walk counted by DTLB_WALK where the result of the
walk yields a large page size.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2927
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
The set of large page sizes is the complement of the set of small page sizes defined by the
DTLB_WALK_SMALL event. For example, these translations might be cached by dedicated TLB
resources. This set is IMPLEMENTATION DEFINED and might differ between instruction and data
TLBs.

The counter does not count each translation table walk when the access generates a Translation fault.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

If this event is implemented, the DTLB_WALK and DTLB_WALK_SMALL events must be
implemented.

If this event is implemented then FEAT_E0PD must be implemented.

See also Attributability on page D7-2857.

0x8139, ITLB_WALK_LARGE, Instruction TLB large page translation table walk

The counter counts each translation table walk counted by ITLB_WALK where the result of the
walk yields a large page size.

The set of large page sizes is the complement of the set of small page sizes defined by the
ITLB_WALK_SMALL event. For example, these translations might be cached by dedicated TLB
resources. This set is IMPLEMENTATION DEFINED and might differ between instruction and data
TLBs.

The counter does not count each translation table walk when the access generates a Translation fault.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

If this event is implemented, the ITLB_WALK and ITLB_WALK_SMALL events must be
implemented.

If this event is implemented then FEAT_E0PD must be implemented.

See also Attributability on page D7-2857.

0x813A, DTLB_WALK_SMALL, Data TLB small page translation table walk

The counter counts each translation table walk counted by DTLB_WALK where the result of the
walk yields a small page size.

The set of small page sizes is the complement of the set of large page sizes defined by the
DTLB_WALK_LARGE event. For example, these translations might be cached by dedicated TLB
resources. This set is IMPLEMENTATION DEFINED and might differ between instruction and data
TLBs.

The counter does not count each translation table walk when the access generates a Translation fault.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

If this event is implemented, the DTLB_WALK and DTLB_WALK_LARGE events must be
implemented.

If this event is implemented then FEAT_E0PD must be implemented.

See also Attributability on page D7-2857.

0x813B, ITLB_WALK_SMALL, Instruction TLB small page translation table walk

The counter counts each translation table walk counted by ITLB_WALK where the result of the
walk yields a small page size.

The set of small page sizes is the complement of the set of large page sizes defined by the
ITLB_WALK_LARGE event. For example, these translations might be cached by dedicated TLB
resources. This set is IMPLEMENTATION DEFINED and might differ between instruction and data
TLBs.

The counter does not count each translation table walk when the access generates a Translation fault.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.
D7-2928 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
If this event is implemented, the ITLB_WALK and ITLB_WALK_LARGE events must be
implemented.

If this event is implemented then FEAT_E0PD must be implemented.

See also Attributability on page D7-2857.

0x813C, DTLB_WALK_RW, Data TLB demand access with at least one translation table walk

The counter counts each access counted by L1D_TLB_RW that causes a refill or update of a data
or unified TLB involving at least one translation table walk access.

The counter does not count each access in the following cases:

• The access is due to a TLB maintenance instruction.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

If this event is implemented, the following events must be implemented:

• DTLB_WALK.

• L1D_TLB_RW.

See also Attributability on page D7-2857.

0x813D, ITLB_WALK_RD, Instruction TLB demand access with at least one translation table walk

The counter counts each access counted by L1I_TLB_RD that causes a refill or update of an
instruction TLB involving at least one translation table walk access.

The counter does not count TLB maintenance instructions.

The counter does not count each access in the following cases:

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

If this event is implemented, the following events must be implemented:

• ITLB_WALK.

• L1I_TLB_RD.

See also Attributability on page D7-2857.

0x813E, DTLB_WALK_PRFM, Data TLB preload or prefetch with at least one translation table walk

The counter counts each access counted by L1D_TLB_PRFM that causes a refill or update of a data
or unified TLB involving at least one translation table walk access.

The counter does not count each access in the following cases:

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

If this event is implemented, the following events must be implemented:

• DTLB_WALK.

• L1D_TLB_PRFM.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2929
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
See also Attributability on page D7-2857.

0x813F, ITLB_WALK_PRFM, Instruction TLB preload or prefetch with at least one translation table walk

The counter counts each access counted by L1I_TLB_PRFM that causes a refill or update of an
instruction TLB involving at least one translation table walk access.

The counter does not count each access in the following cases:

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

If this event is implemented, the following events must be implemented:

• ITLB_WALK.

• L1I_TLB_PRFM.

See also Attributability on page D7-2857.

0x8140, L1D_CACHE_RW, Level 1 data or unified cache demand access

The counter counts each access counted by L1D_CACHE that is not counted by
L1D_CACHE_PRFM.

If this event is implemented, the following events must be implemented:

• L1D_CACHE.

• L1D_CACHE_RD.

• L1D_CACHE_WR.

0x8141, L1I_CACHE_RD, Level 1 instruction cache demand access

The counter counts each access counted by L1I_CACHE that is not counted by
L1I_CACHE_PRFM.

If this event is implemented, the L1I_CACHE event must be implemented.

0x8142, L1D_CACHE_PRFM, Level 1 data or unified cache preload or prefetch

The counter counts each access counted by L1D_CACHE that is due to a preload or prefetch
instruction.

If this event is implemented, the L1D_CACHE event must be implemented.

0x8143, L1I_CACHE_PRFM, Level 1 instruction cache preload or prefetch

The counter counts each access counted by L1I_CACHE that is due to a preload or prefetch
instruction.

If this event is implemented, the L1I_CACHE event must be implemented.

0x8144, L1D_CACHE_MISS, Level 1 data or unified cache demand access miss

The counter counts each demand access counted by L1D_CACHE_RW that misses in the Level 1
data or unified cache, causing an access outside the Level 1 data or unified cache of this PE.

If this event is implemented, the L1D_CACHE_RW event must be implemented.

0x8145, L1I_CACHE_HWPRF, Level 1 instruction cache hardware prefetch

The counter counts each cache line fetched to the Level 1 instruction cache from outside of the Level
1 instruction cache of this PE that is not counted by L1I_CACHE_REFILL. The cache line fetch
can be due to a hardware prefetcher but not due to a cache access.

0x8146, L1D_CACHE_REFILL_PRFM, Level 1 data or unified cache refill, preload or prefetch

The counter counts each preload or prefetch access counted by L1D_CACHE_PRFM that causes a
refill of the Level 1 data or unified cache from outside the Level 1 data or unified cache of this PE.

If this event is implemented, the L1D_CACHE_PRFM event must be implemented.
D7-2930 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x8147, L1I_CACHE_REFILL_PRFM, Level 1 instruction cache refill, preload or prefetch

The counter counts each preload or prefetch access counted by L1I_CACHE_PRFM that causes a
refill of the Level 1 instruction cache from outside the Level 1 instruction cache of this PE.

If this event is implemented, the L1I_CACHE_PRFM event must be implemented.

0x8148, L2D_CACHE_RW, Level 2 data or unified cache demand access

The counter counts each access counted by L2D_CACHE that is not counted by
L2D_CACHE_PRFM.

It is IMPLEMENTATION DEFINED whether an access to the Level 2 data or unified cache due to a
prefetch to another cache is counted by L2D_CACHE_RW or L2D_CACHE_PRFM.

0x8149, L2I_CACHE_RD, Level 2 instruction cache demand access

The counter counts each access counted by L2I_CACHE that is not counted by
L2I_CACHE_PRFM.

If this event is implemented, the L2I_CACHE event must be implemented.

0x814A, L2D_CACHE_PRFM, Level 2 data or unified cache preload or prefetch

The counter counts each access counted by L2D_CACHE that is due to a preload or prefetch
instruction, or a prefetch to another cache.

It is IMPLEMENTATION DEFINED whether a prefetch to another cache is counted by
L2D_CACHE_RW or L2D_CACHE_PRFM.

If this event is implemented, the L2D_CACHE event must be implemented.

0x814B, L2I_CACHE_PRFM, Level 2 instruction cache preload or prefetch

The counter counts each access counted by L2I_CACHE that is due to a preload or prefetch
instruction, or a prefetch to another cache.

It is IMPLEMENTATION DEFINED whether a prefetch to another cache is counted by L2I_CACHE_RD
or L2I_CACHE_PRFM.

If this event is implemented, the L2I_CACHE event must be implemented.

0x814C, L2D_CACHE_MISS, Level 2 data or unified cache demand access miss

The counter counts each demand access counted by L2D_CACHE_RW that misses in the Level 1
to Level 2 data or unified caches, causing an access outside the Level 1 to Level 2 data or unified
caches of this PE.

If this event is implemented, the L2D_CACHE_RW event must be implemented.

0x814D, L2I_CACHE_HWPRF, Level 2 instruction cache hardware prefetch

The counter counts each cache line fetched to the Level 2 instruction cache from outside of the Level
1 to Level 2 instruction cache of this PE that is not counted by L2I_CACHE_REFILL. The cache
line fetch can be due to a hardware prefetcher but not due to a cache access.

0x814E, L2D_CACHE_REFILL_PRFM, Level 2 data or unified cache refill, preload or prefetch

The counter counts each preload or prefetch access counted by L2D_CACHE_PRFM that causes a
refill of any of the Level 1 to Level 2 data or unified caches from outside the Level 1 to Level 2 data
or unified caches of this PE.

If this event is implemented, the L2D_CACHE_PRFM event must be implemented.

0x814F, L2I_CACHE_REFILL_PRFM, Level 2 instruction cache refill, preload or prefetch

The counter counts each preload or prefetch access counted by L2I_CACHE_PRFM that causes a
refill of the Level 1 to Level 2 instruction caches from outside the Level 1 to Level 2 instruction
caches of this PE.

If this event is implemented, the L2I_CACHE_PRFM event must be implemented.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2931
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x8150, L3D_CACHE_RW, Level 3 data or unified cache demand access

The counter counts each access counted by L3D_CACHE that is not counted by
L3D_CACHE_PRFM.

It is IMPLEMENTATION DEFINED whether an access to the Level 2 data or unified cache due to a
prefetch to another cache is counted by L3D_CACHE_RW or L3D_CACHE_PRFM.

If this event is implemented, the following events must be implemented:

• L3D_CACHE.

• L3D_CACHE_RD.

• L3D_CACHE_WR.

0x8151, L3D_CACHE_PRFM, Level 3 data or unified cache preload or prefetch

The counter counts each access counted by L3D_CACHE that is due to a preload or prefetch
instruction, or a prefetch to another cache.

It is IMPLEMENTATION DEFINED whether a prefetch to another cache is counted by
L3D_CACHE_RW or L3D_CACHE_PRFM.

If this event is implemented, the L3D_CACHE event must be implemented.

0x8152, L3D_CACHE_MISS, Level 3 data or unified cache demand access miss

The counter counts each demand access counted by L3D_CACHE_RW that misses in the Level 1
to Level 3 data or unified caches, causing an access outside the Level 1 to Level 3 data or unified
caches of this PE.

If this event is implemented, the L3D_CACHE_RW event must be implemented.

0x8153, L3D_CACHE_REFILL_PRFM, Level 3 data or unified cache refill, preload or prefetch

The counter counts each preload or prefetch access counted by L3D_CACHE_PRFM that causes a
refill of any of the Level 1 to Level 3 data or unified caches from outside the Level 1 to Level 3 data
or unified caches of this PE.

If this event is implemented, the L3D_CACHE_PRFM event must be implemented.

0x8154, L1D_CACHE_HWPRF, Level 1 data cache hardware prefetch

The counter counts each cache line fetched to the Level 1 data or unified cache from outside of the
Level 1 data or unified cache of this PE that is not counted by L1D_CACHE_REFILL. The cache
line fetch can be due to a hardware prefetcher but not due to a cache access.

Note
L1D_CACHE_ALLOCATE also does not count these fetches.

0x8155, L2D_CACHE_HWPRF, Level 2 data cache hardware prefetch

The counter counts each cache line fetched to the Level 2 data or unified cache from outside of the
Level 1 to Level 2 data or unified cache of this PE that is not counted by L2D_CACHE_REFILL.
The cache line fetch can be due to a hardware prefetcher but not due to a cache access.

Note

L2D_CACHE_ALLOCATE also does not count these fetches.

0x8156, L3D_CACHE_HWPRF, Level 3 data cache hardware prefetch

The counter counts each cache line fetched to the Level 3 data or unified cache from outside of the
Level 1 to Level 3 data or unified cache of this PE that is not counted by L3D_CACHE_REFILL.
The cache line fetch can be due to a hardware prefetcher but not due to a cache access.

Note

L3D_CACHE_ALLOCATE also does not count these fetches.
D7-2932 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x8158, STALL_FRONTEND_MEMBOUND, Frontend stall cycles, memory bound

The counter counts each cycle counted by STALL_FRONTEND when no instructions are delivered
from the memory system.

The counter counts stalls that occur when the frontend interface to memory is busy or stalled. This
includes the stalls counted by STALL_FRONTEND_L1I, STALL_FRONTEND_L2I,
STALL_FRONTEND_MEM, STALL_FRONTEND_TLB, and any other IMPLEMENTATION
DEFINED memory stalls.

It does not include stalls that are counted by STALL_FRONTEND_CPUBOUND. However both
events will count the same cycle counted by STALL_FRONTEND if there are both memory and
processor-resource stall conditions active.

If this event is implemented, the following events must be implemented:

• STALL_FRONTEND.

• STALL_FRONTEND_CPUBOUND.

0x8159, STALL_FRONTEND_L1I, Frontend stall cycles, level 1 instruction cache

The counter counts each cycle counted by STALL_FRONTEND_MEMBOUND when there is a
demand miss in the first level instruction cache.

If the first level instruction cache is the last level of instruction cache within the PE clock domain
then this event is an alias for STALL_FRONTEND_MEM and also counts stalls when there is a
non-cacheable access in progress.

0x815A, STALL_FRONTEND_L2I, Frontend stall cycles, level 2 instruction or unified cache

The counter counts each cycle counted by STALL_FRONTEND_MEMBOUND when there is a
demand miss in the second level instruction or unified cache.

If the second level instruction or unified cache is the last level of instruction or unified cache within
the PE clock domain then this event is an alias for STALL_FRONTEND_MEM and also counts
stalls when there is a non-cacheable access in progress.

0x815B, STALL_FRONTEND_MEM, Frontend stall cycles, last level PE cache or memory

The counter counts each cycle counted by STALL_FRONTEND_MEMBOUND when there is a
demand miss in the last level of cache within the PE clock domain or a non-cacheable access in
progress.

0x815C, STALL_FRONTEND_TLB, Frontend stall cycles, TLB

The counter counts each cycle counted by STALL_FRONTEND_MEMBOUND when there is an
instruction or unified TLB demand miss.

If this event is implemented, the STALL_FRONTEND_MEMBOUND event must be implemented.

0x8160, STALL_FRONTEND_CPUBOUND, Frontend stall cycles, processor bound

The counter counts each cycle counted by STALL_FRONTEND when the frontend is stalled on a
frontend processor resource, not including memory.

The counter counts stalls that occur when a frontend processor resource is busy. This includes the
stalls counted by STALL_FRONTEND_FLOW, STALL_FRONTEND_FLUSH, and
STALL_FRONTEND_RENAME, and any other IMPLEMENTATION DEFINED processor resource
stalls.

It does not include stalls that are counted by STALL_FRONTEND_MEMBOUND. However both
events will count the same cycle counted by STALL_FRONTEND if there are both memory and
processor-resource stall conditions active.

If this event is implemented, the STALL_FRONTEND event must be implemented.

If this event is implemented, the following events must be implemented:

• STALL_FRONTEND.

• STALL_FRONTEND_MEMBOUND.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2933
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x8161, STALL_FRONTEND_FLOW, Frontend stall cycles, flow control

The counter counts each cycle counted by STALL_FRONTEND_CPUBOUND when the frontend
is stalled on unavailability of prediction flow resources.

Note
This event is not counting stalls due to mispredictions, but rather stalls when the frontend is unable
to make a prediction.

If this event is implemented, the STALL_FRONTEND_CPUBOUND event must be implemented.

0x8162, STALL_FRONTEND_FLUSH, Frontend stall cycles, flush recovery

The counter counts each cycle counted by STALL_FRONTEND_CPUBOUND when the frontend
is recovering from a flush or resteer.

The situations when the frontend is flushed are IMPLEMENTATION DEFINED. For example, the
frontend might be flushed on a branch misprediction or on a Context synchronization event.

If this event is implemented, the STALL_FRONTEND_CPUBOUND event must be implemented.

0x8163, STALL_FRONTEND_RENAME, Frontend stall cycles, rename full

The counter counts each cycle counted by STALL_FRONTEND_CPUBOUND when operations
are available from the frontend but at least one is not ready to be sent to the backend because no
rename register is available.

If this event is implemented and counts such stalls then the STALL_BACKEND_RENAME event
counts as zero.

If this event is implemented, the STALL_FRONTEND_CPUBOUND event must be implemented.

0x8164, STALL_BACKEND_MEMBOUND, Backend stall cycles, memory bound

The counter counts each cycle counted by STALL_BACKEND when the backend is waiting for a
memory access to complete.

The counter counts stalls that occur when a backend memory interface is busy or stalled. This
includes the stalls counted by STALL_BACKEND_L1D, STALL_BACKEND_L2D,
STALL_BACKEND_ST, STALL_BACKEND_TLB, and any other IMPLEMENTATION DEFINED
memory stalls.

It does not include stalls that are counted by STALL_BACKEND_CPUBOUND, although both
events might count on the same cycle counted by STALL_BACKEND if there are both memory and
processor resource stall conditions active.

If this event is implemented, the following events must be implemented:

• STALL_BACKEND.

• STALL_BACKEND_CPUBOUND.

0x8165, STALL_BACKEND_L1D, Backend stall cycles, level 1 data cache

The counter counts each cycle counted by STALL_BACKEND_MEMBOUND when there is a
demand miss in the first level data cache.

If the first level data cache is the last level of cache within the PE clock domain then this event is an
alias for STALL_BACKEND_MEM and also counts stalls when there is a non-cacheable access in
progress.

If this event is implemented, the STALL_BACKEND_MEMBOUND event must be implemented.

0x8166, STALL_BACKEND_L2D, Backend stall cycles, level 2 data or unified cache

The counter counts each cycle counted by STALL_BACKEND_MEMBOUND when there is a
demand miss in the second level data or unified cache.

If the second level data or unified cache is the last level of cache within the PE clock domain then
this event is an alias for STALL_BACKEND_MEM and also counts stalls when there is a
non-cacheable access in progress.

If this event is implemented, the STALL_BACKEND_MEMBOUND event must be implemented.
D7-2934 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
0x8167, STALL_BACKEND_TLB, Backend stall cycles, TLB

The counter counts each cycle counted by STALL_BACKEND_MEMBOUND when there is a data
or unified TLB demand miss.

If this event is implemented, the STALL_BACKEND_MEMBOUND event must be implemented.

0x8168, STALL_BACKEND_ST, Backend stall cycles, store

The counter counts each cycle counted by STALL_BACKEND_MEMBOUND when the backend
is stalled waiting for a store.

If this event is implemented, the STALL_BACKEND_MEMBOUND event must be implemented.

0x816A, STALL_BACKEND_CPUBOUND, Backend stall cycles, processor bound

The counter counts each cycle counted by STALL_BACKEND when the backend is stalled on a
processor resource, not including memory.

The counter counts stalls that occur when a backend processor resource is busy. This includes the
stalls counted by STALL_BACKEND_RENAME and any other IMPLEMENTATION DEFINED
processor resource stalls.

It does not include stalls that are counted by STALL_BACKEND_MEMBOUND, although both
events might count on the same cycle counted by STALL_BACKEND if there are both memory and
processor resource stall conditions active.

If this event is implemented, the following events must be implemented:

• STALL_BACKEND.

• STALL_BACKEND_MEMBOUND.

0x816B, STALL_BACKEND_BUSY, Backend stall cycles, backend busy

The counter counts each cycle counted by STALL_BACKEND when operations are available from
the frontend but the backend is not able to accept an operation because an execution unit is busy.

For example, a complex operation unit such as a divider might be executing a previous operation
and cannot accept a new operation.

If this event is implemented, the STALL_BACKEND event must be implemented.

0x816C, STALL_BACKEND_ILOCK, Backend stall cycles, input dependency

The counter counts each cycle counted by STALL_BACKEND when operations are available from
the frontend but at least one is not ready to be sent to the backend due to an input dependency.

If this event is implemented, the STALL_BACKEND event must be implemented.

0x816D, STALL_BACKEND_RENAME, Backend stall cycles, rename full

The counter counts each cycle counted by STALL_BACKEND when operations are available from
the frontend but at least one is not ready to be sent to the backend because no rename register is
available.

If this event is implemented and counts such stalls then the STALL_FRONTEND_RENAME event
counts as zero.

If this event is implemented, the STALL_BACKEND_CPUBOUND event must be implemented.

D7.10.4 Cycle event counting

The CPU_CYCLES event and the cycle counter, PMCCNTR, count cycles. The duration of a cycle is subject to any
changes in clock frequency, including clock stopping caused by the WFI and WFE instructions.

It is implementation specific whether CPU_CYCLES and PMCCNTR count when the PE is in WFI or WFE state,
even if the clocks are not stopped.

In addition, events such as STALL, STALL_FRONTEND and STALL_BACKEND that are defined to only count
cycles that are counted by the CPU_CYCLES event have the same limitation.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2935
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
Multithreaded implementations

Multithreaded implementations can have various forms, some examples of these are:

• Simultaneous Multithreading (SMT), where every PE thread is active on every Processor cycle.

• Fine-grained Multithreading (FGMT), also known as a Barrel processor, where one PE thread is active on
each Processor cycle, and this changes regularly.

• Switch on Event Multithreading (SoEMT), also known as Coarse-grained Multithreading (CGMT), where
high latency events cause the processor to switch the active PE thread.

In the above examples, active means that the PE might execute the instructions. A PE can be active but not executing
instructions when no instruction is available or because of limited execution resources.

It is implementation specific whether a thread is active when the thread is in WFE or WFI state. This applies for all
forms of multithreaded implementation.

When the PMU implementation supports multithreading, and the Effective value of PMEVTYPER<n>_EL0.MT bit
is 0, the CPU_CYCLES event does not count Processor cycles on which the thread was not active. For the example
multithreaded implementations, this means that, if the event counter is enabled, event counting is not prohibited,
and the thread is not in WFE or WFI state:

• For an SMT implementation, the CPU_CYCLES event counts every Processor cycle.

• For a particular FGMT implementation, that alternates between two threads on each Processor cycle, the
CPU_CYCLES event counts every other Processor cycle.

• For a particular SoEMT implementation, that is waiting for a long latency operation, the CPU_CYCLES
event does not count Processor cycles, as the PE thread is not active.

If the Effective value of PMEVTYPER<n>_EL0.MT bit is 1, the CPU_CYCLES event counts each Processor cycle,
and can only count a maximum of one each Processor cycle.

Events that only count cycles that are counted by the CPU_CYCLES event have the same limitation. For example,
in an SMT implementation, if a PE thread cannot issue an instruction because of contention with other PE threads,
these are counted as STALL_BACKEND cycles.

If the Effective value of PMEVTYPER<n>_EL0.MT bit is 1, the PE only counts cycles on which no operation is
issued from any thread.

Note

The cycle counter, PMCCNTR, is not affected by whether the thread is active or inactive. When enabled,
PMCCNTR counts every processor cycle.

See Multithreaded implementations on page D7-2863, MDCR_EL3.MTPME, SDCR.MTPME,
MDCR_EL2.MTPME, and HDCR.MTPME for more information about when the Effective value of
PMEVTYPER<n>_EL0.MT is 0.

D7.10.5 Meaningful ratios between common microarchitectural events

The architecture highlights some meaningful ratios that can be derived from the common microarchitectural events.
Table D7-7 on page D7-2937 lists the highlighted ratios.

Table D7-7 REFILL events and associated access events

Numerator Denominator Ratio

0x0001 L1I_CACHE_REFILL 0x0014 L1I_CACHE Attributable Level 1 instruction cache refill rate

0x0002 L1I_TLB_REFILL 0x0026 L1I_TLB Attributable Level 1 instruction TLB refill rate

0x0003 L1D_CACHE_REFILL 0x0004 L1D_CACHE Attributable Level 1 data or unified cache refill rate
D7-2936 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
D7.10.6 Required events

FEAT_PMUv3 requires that an implementation includes the following common events:

• 0x0000, SW_INCR, Instruction architecturally executed, Condition code check pass, software increment.

• 0x0003, L1D_CACHE_REFILL, Level 1 data cache refill.

Note
Event 0x0003 is only required if the implementation includes a Level 1 data or unified cache.

• 0x0004, L1D_CACHE, Level 1 data cache access.

Note
Event 0x0004 is only required if the implementation includes a Level 1 data or unified cache.

• 0x0010, BR_MIS_PRED, Mispredicted or not predicted branch Speculatively executed.

0x0005 L1D_TLB_REFILL 0x0025 L1D_TLB Attributable Level 1 data or unified TLB refill rate

0x0017 L2D_CACHE_REFILL 0x0016 L2D_CACHE Attributable Level 2 data or unified cache refill rate

0x0028 L2I_CACHE_REFILL 0x0027 L2I_CACHE Attributable Level 2 instruction cache refill rate

0x002A L3D_CACHE_REFILL 0x002B L3D_CACHE Attributable Level 3 data or unified cache refill rate

0x002D L2D_TLB_REFILL 0x002F L2D_TLB Attributable Level 2 data or unified TLB refill rate

0x002E L2I_TLB_REFILL 0x0030 L2I_TLB Attributable Level 2 instruction TLB refill rate

0x0019 BUS_ACCESS 0x001D BUS_CYCLES Attributable Bus accesses per cycle

0x0033 LL_CACHE_MISS 0x0032 LL_CACHE Attributable Last Level data or unified cache refill rate

0x0034 DTLB_WALK 0x0025 L1D_TLB Attributable data TLB miss rate

0x0035 ITLB_WALK 0x0026 L1I_TLB Attributable instruction TLB miss rate

0x0037 LL_CACHE_MISS_RD 0x0036 LL_CACHE_RD Attributable memory read operation miss rate

0x0038 REMOTE_ACCESS_RD 0x0031
REMOTE_ACCESS

Attributable read accesses to another socket in a multi-socket
system

0x8120 INST_FETCH_PERCYC 0x8124 INST_FETCH Mean duration of instruction fetch events in processor cycles

0x8121
MEM_ACCESS_RD_PERCYC

0x0066
MEM_ACCESS_RD

Mean duration of memory read access events in processor cycles

0x8122
MEM_ACCESS_WR_PERCYC

0x0067
MEM_ACCESS_WR

Mean duration of memory write access events in processor
cycles

0x8123 MEM_ACCESS_PERCYC 0x0013 MEM_ACCESS Mean duration of memory access events in processor cycles

0x8128 DTLB_WALK_PERCYC 0x0034 DTLB_WALK Mean duration of data or unified TLB walk events in processor
cycles

0x8129 ITLB_WALK_PERCYC 0x0035 ITLB_WALK Mean duration of instruction TLB walk events in processor
cycles

Table D7-7 REFILL events and associated access events (continued)

Numerator Denominator Ratio
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2937
ID072021 Non-Confidential

The Performance Monitors Extension
D7.10 PMU events and event numbers
Note
Event 0x0010 is only required if the implementation includes program-flow prediction. However, Arm
strongly recommends that the event is implemented as described in Common microarchitectural events on
page D7-2884.

• 0x0011, CPU_CYCLES, Cycle.

• 0x0012, BR_PRED, Predictable branch Speculatively executed.

Note
Event 0x0012 is only required if the implementation includes program-flow prediction. However, Arm
recommends that the event is implemented as described in Common microarchitectural events on
page D7-2884.

• At least one of:

— 0x0008, INST_RETIRED, Instruction architecturally executed.

— 0x001B, INST_SPEC, Operation Speculatively executed.

Note
Arm strongly recommends that event 0x008 is implemented.

• When FEAT_PMUv3p1 is implemented:

— 0x0023, STALL_FRONTEND, No operation issued due to the frontend.

— 0x0024, STALL_BACKEND, No operation issued due to the backend.

• When The Scalable Vector Extension (SVE) is implemented, at least one of:

— 0x8002, SVE_INST_RETIRED, SVE instruction architecturally retired.

— 0x8006, SVE_INST_SPEC, SVE operation speculatively executed.

• When FEAT_SPE is implemented:

— 0x4000, SAMPLE_POP, Statistical Profiling sample population.

— 0x4001, SAMPLE_FEED, Statistical Profiling sample taken.

— 0x4002, SAMPLE_FILTRATE, Statistical Profiling sample filtered.

— 0x4003, SAMPLE_COLLISION, Statistical Profiling sample collision.

• When FEAT_PMUv3p4 is implemented:

— 0x003C, STALL, No operation sent for execution.

— 0x0039, L1D_CACHE_LMISS_RD, Level 1 data cache long-latency read miss.

— 0x4006, L1I_CACHE_LMISS, Level 1 instruction cache long-latency miss.

— 0x0040, L1D_CACHE_RD, Level 1 data cache read.

• When FEAT_SPEv1p2 is implemented:

— 0x812A, SAMPLE_FEED_BR, Statistical Profiling sample taken, branch.

— 0x812B, SAMPLE_FEED_LD, Statistical Profiling sample taken, load.

— 0x812C, SAMPLE_FEED_ST, Statistical Profiling sample taken, store.

— 0x812D, SAMPLE_FEED_OP, Statistical Profiling sample taken, matching operation type.

— 0x812E, SAMPLE_FEED_EVENT, Statistical Profiling sample taken, matching events.

— 0x812F, SAMPLE_FEED_LAT, Statistical Profiling sample taken, exceeding minimum latency.

When any of the following common events are implemented, all three of them are implemented:

• 0x003D, STALL_SLOT_BACKEND, No operation sent for execution on a Slot due to the backend,

• 0x003E, STALL_SLOT_FRONTEND, No operation sent for execution on a Slot due to the frontend.

• 0x003F, STALL_SLOT, No operation sent for execution on a Slot.

Arm strongly recommends that the following events are implemented:

• 0x0021, BR_RETIRED.

• 0x0022, BR_MIS_PRED_RETIRED.

• 0x003A, OP_RETIRED.

• 0x003B, OP_SPEC.
D7-2938 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Performance Monitors Extension
D7.10 PMU events and event numbers
• 0x003D, STALL_SLOT_BACKEND.

• 0x003E, STALL_SLOT_FRONTEND.

• 0x003F, STALL_SLOT.

D7.10.7 IMPLEMENTATION DEFINED event numbers

Arm recommends that implementers establish a standardized numbering scheme for their IMPLEMENTATION
DEFINED events, with common definitions, and common event numbers, applied to all of their implementations. In
general, the recommended approach is for standardization across implementations with common features. However,
Arm recognizes that attempting to standardize the encoding of microarchitectural features across too wide a range
of implementations is not productive.

The Arm architecture guarantees not to define any event prefixed with IMP_ as part of the standard Arm
architecture.

Arm strongly recommends that at least the following classes of event are identified in the IMPLEMENTATION
DEFINED events:

• Separating each of the STALL_FRONTEND and STALL_SLOT_FRONTEND events to count holes in
instruction availability.

• Separating each of the STALL_BACKEND and STALL_SLOT_BACKEND events, to count, for example,
cumulative duration of stalls, unavailability of execution resources, or missed superscalar issue opportunities.

• Miss rates for additional levels of caches and TLBs.

• Any external events passed to the PE through an IMPLEMENTATION DEFINED mechanism.

• Cumulative duration of a PSTATE.{A, I, F} interrupt mask set to 1.

• Cumulative occupancy for resource queues, such as data access queues, and entry/exit counts, so that average
latencies can be determined, separating out counts for key resources that might exist. An implementation
might also provide registers in the IMPLEMENTATION DEFINED space to further extend such counts, for
example by specifying a minimum latency for an event to be counted.

• Any other microarchitectural features that the implementer considers are valuable to count.

The range of possible IMPLEMENTATION DEFINED event numbers is described in The PMU event number space and
common events on page D7-2875. Appendix K3 Recommendations for Performance Monitors Event Numbers for
IMPLEMENTATION DEFINED Events lists the Arm recommended standardized numbering scheme for these
events.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D7-2939
ID072021 Non-Confidential

The Performance Monitors Extension
D7.11 Performance Monitors Extension registers
D7.11 Performance Monitors Extension registers

Further information on the Performance Monitors Extension Registers can be found in the following sections:

• Table K15-2 on page K15-8604 lists the Performance Monitors register names for AArch32 and AArch64
states.

• Performance monitors registers on page K15-8627 summarizes the Performance Monitors Extension
registers in AArch64 state.

• Performance monitors registers on page K15-8652 summarizes the Performance Monitors Extension
registers in AArch32 state.
D7-2940 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter D8
The Activity Monitors Extension

This chapter describes the Armv8 implementation of version 1 of the Activity Monitor Unit (AMU) architecture,
AMUv1, an optional non-invasive component. It contains the following sections:

• About the Activity Monitors Extension on page D8-2942.

• Properties and behavior of the activity monitors on page D8-2943.

• AMU events and event numbers on page D8-2945.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D8-2941
ID072021 Non-Confidential

The Activity Monitors Extension
D8.1 About the Activity Monitors Extension
D8.1 About the Activity Monitors Extension

The Activity Monitors Extension is an OPTIONAL extension to the Armv8.4 architecture.

The Activity Monitors Extension implements version 1 of the Activity Monitors architecture, AMUv1, and
interfaces to the registers defined by AMUv1, the Activity Monitors registers.

Version 1 of the Activity Monitors architecture implements:

• A counter group of four architected 64-bit event counters. The events counted by the architected event
counter are fixed and architecturally defined.

Note
The Activity Monitors architecture provides space for up to 16 architected event counters. Future versions of
the Activity Monitors architecture may use this space to implement additional architected event counters.

• A counter group of up to 16 auxiliary 64-bit event counters. The event counted for each auxiliary event
counter may be fixed or programmable, and whether it is fixed or programmable is IMPLEMENTATION
DEFINED. When the event counted by an auxiliary event counter is fixed, this event is IMPLEMENTATION
DEFINED.

• Controls for enabling and disabling counters.

• When the event counted by an auxiliary event counter is programmable, controls for assigning an event to
the counter.

• Controls that determine whether the activity monitor counters continue to count while the PE is halted in
Debug state.

The read-only registers AMCFGR and AMCGCR provide information about features supported by the Activity
Monitors Extension, the number of counter groups implemented, the total number of counters implemented, the
number of counters implemented within each group, and the size of the counters.

The Activity Monitors Extension provides:

• A mandatory System register interface to the Activity Monitors registers, for both AArch64 and AArch32
states.

Base system registers on page K15-8635 lists the AArch64 Activity Monitors registers, and Base system
registers on page K15-8660 lists the AArch32 Activity Monitors registers. Table K15-3 on page K15-8605
shows the relationship between the AArch64 and the AArch32 Activity Monitors register.

• Controls that allow software to enable or disable access by software running at lower Exception levels to the
Activity Monitors registers.

• When FEAT_AMUv1p1 is implemented, and the hypervisor is using AArch64, offset registers that support
virtualization of the Activity Monitor event counters.

• An optional external interface providing read-only memory-mapped access to the Activity Monitors
registers.

Alphabetical index of memory-mapped registers on page K15-8662 lists the Activity Monitors
memory-mapped registers. For more information on the recommended external interface, see Chapter I4
Recommended External Interface to the Activity Monitors.
D8-2942 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Activity Monitors Extension
D8.2 Properties and behavior of the activity monitors
D8.2 Properties and behavior of the activity monitors

D8.2.1 Basic characteristics of the activity monitor event counters

Every activity monitor event counter is a 64-bit wrapping counter. When an activity monitor event counter wraps,
the counter overflows.

Note

The Activity Monitor architecture does not provide support for overflow status indication or interrupts.

The state of the authentication signals do not affect counting.

Any change in clock frequency, including when a WFI and WFE instruction stops the clock, can affect any counter.

If FEAT_AMUv1p1 is implemented, for the architected event counters 0, 2 and 3, and each auxiliary event counter
configured to use an offset, there is an offset register which is used to virtualize the count on a read from EL1 or
EL0. At EL2, EL3 or from the memory-mapped view, permitted accesses to the counters use the physical view
without any offset. See Virtualization on page D8-2944

D8.2.2 Counter configuration and controls

For each architected event counter AMEVCNTR0<n>, there is a corresponding event type register
AMEVTYPER0<n> which provides information on the event counted by that counter. The event type registers
AMEVTYPER0<n> are read-only.

For each auxiliary event counter AMEVCNTR1<n>, there is a corresponding event type register
AMEVTYPER1<n> which provides information on the event counted by that counter. When the event counted by
an auxiliary event counter is fixed, the corresponding event type register AMEVTYPER1<n> is read-only. When
the event counted by an auxiliary event counter is programmable, the corresponding event type register
AMEVTYPER1<n> is read/write.

For each counter group, there is a pair of separate controls to enable and disable the counters in that counter group.
AMCNTENCLR0 and AMCNTENSET0 are used to disable and enable the architected event counters.
AMCNTENCLR1 and AMCNTENSET1 are used to disable and enable the auxiliary event counters.

While the PE is halted in Debug state, AMCR.HDBG controls whether activity monitor counting is halted.

AMUSERENR.EN controls access from EL0 to the Activity Monitor Extension System registers. CPTR_EL2.TAM
and HCPTR.TAM control access from EL0 and EL1 to the Activity Monitor Extension System registers.
CPTR_EL3.TAM control access from EL0, EL1, and EL2 to the Activity Monitor Extension System registers.

Note

These controls obey the priority order described in Synchronous exception prioritization for exceptions taken to
AArch64 state on page D1-2490 and Synchronous exception prioritization for exceptions taken to AArch32 state on
page G1-6047.

AMUSERENR.EN is configurable at EL1, EL2, and EL3. All other controls, as well as the value of the counters,
are configurable only at the highest implemented Exception level.

If FEAT_AMUv1p1 is implemented, AMCG1IDR_EL0 defines which auxiliary counters are implemented, and if
virtual offsets are enabled, indicates which of the implemented auxiliary counters have a virtual offset when read
from EL0 and EL1.

If FEAT_AMUv1p1 is implemented, AMCR.CG1RZ controls whether the auxiliary event counters read as zero if
they are accessed at an Exception level lower than the highest implemented Exception level.

D8.2.3 Power and reset domains

The power domain of the Activity Monitoring Unit is IMPLEMENTATION DEFINED and named the AMU domain.

The reset domain of the Activity Monitoring Unit is IMPLEMENTATION DEFINED and named the AMU reset.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D8-2943
ID072021 Non-Confidential

The Activity Monitors Extension
D8.2 Properties and behavior of the activity monitors
The AMU power domain may be the Core power domain.

When an AMU reset of the AMU power domain occurs, the Activity Monitoring Unit is reset and the counters are
reset to zero.

When the PE is not in reset, the Activity Monitoring Unit is available

D8.2.4 Accuracy and non-invasive behavior

The activity monitors are a non-invasive component which must provide broadly accurate and statistically useful
count information.

The implementation of an architecturally required event might create a conflict between the requirement to be
non-invasive and the requirement to present an accurate value of the count under normal operating conditions. An
implementation might provide an IMPLEMENTATION DEFINED control that disables accurate count of the event to
restore performance and document the impact on performance of accurate counting. The expectations for
non-invasive behavior and the degree of inaccuracy of the activity monitors are otherwise as described for the
Performance Monitors architecture.

Note

For information on the expectations for non-invasive behavior and the degree of inaccuracy of the Performance
Monitors, see Non-invasive behavior on page D7-2853 and A reasonable degree of inaccuracy on page D7-2853.

D8.2.5 Virtualization

FEAT_AMUv1p1 supports virtualized access to the Activity Monitors event counters at EL1 and EL0.

The fields HCR_EL2.AMVOFFEN and SCR_EL3.AMVOFFEN enable and disable virtualization. When enabled,
the architected event counters 0, 2 and 3 have counter offsets. Architected event counter 1 does not have an offset.
The register AMCG1IDR_EL0 indicates which of the implemented auxiliary event counters has implemented
counter offsets. An implemented event counter that does not have a defined offset has an effective offset of zero.
The offset registers can be accessed only at EL2 or EL3, and affect views of the event counters at EL1 and EL0 from
the System register interfaces only.

The AMEVCNTVOFF0<n>_EL2 registers hold the offsets for the implemented and enabled architected event
counters.

The AMEVCNTVOFF1<n>_EL2 registers hold the offsets for the implemented and enabled auxiliary event
counters.
D8-2944 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Activity Monitors Extension
D8.3 AMU events and event numbers
D8.3 AMU events and event numbers

The Activity Monitors architecture uses the event number space defined by the Performance Monitors architecture
to identify events.

The Activity Monitors architecture defines additional events and adds them to the event number space defined by
the Performance Monitors architecture for common events.

If the event is counting an IMPLEMENTATION DEFINED event, it must use an event number from the IMPLEMENTATION
DEFINED event space.

When an implementation supports monitoring of an event that is assigned a common architectural or
microarchitectural event number, Arm strongly recommends that it uses that number for the event.

When a common event is available to both the Performance Monitors architecture and the Activity Monitors
architecture within one implementation, both architectures use the same event number.

D8.3.1 Architected event counters

Version 1 of the Activity Monitors architecture, AMUv1, requires four events to be counted by the architected
activity monitor event counters.

The events required to be counted are:

0x0011, CPU_CYCLES, Processor frequency cycles

The counter increments on every cycle when the PE is not in WFI or WFE state. When the PE is in
WFI or WFE state, this counter does not increment.

This event is counted by AMEVCNTR0<n>, where n is 0.

0x4004, CNT_CYCLES, Constant frequency cycles

The counter increments at a constant frequency when the PE is not in WFI or WFE state, equal to
the rate of increment of the System counter, CNTPCT_EL0. When the PE is in WFI or WFE state,
this counter does not increment.

This event is counted by AMEVCNTR0<n>, where n is 1.

0x0008, INST_RETIRED, Instructions retired

This event is defined identically to INST_RETIRED in the FEAT_PMUv3 architecture.

This event is counted by AMEVCNTR0<n>, where n is 2.

0x4005, STALL_BACKEND_MEM, Memory stall cycles

The counter counts cycles in which the PE is unable to dispatch instructions from the frontend to
the backend of the PE due to a backend stall caused by a miss in the last level of cache within the
PE clock domain or, if Armv8.7 is implemented, non-cacheable access in progress.

If Armv8.7 is not implemented, it is IMPLEMENTATION DEFINED whether the counter counts backend
stall cycles when a non-cacheable access is in progress.

This event is counted by AMEVCNTR0<n>, where n is 3.

D8.3.2 Auxiliary event counters

Auxiliary event counters can count events defined by the Performance Monitors architecture and IMPLEMENTATION
DEFINED events defined specifically for activity monitoring.

Implementations must not reuse an IMPLEMENTATION DEFINED event number for different hardware events across
the Performance Monitors architecture and the Activity Monitors architecture.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D8-2945
ID072021 Non-Confidential

The Activity Monitors Extension
D8.3 AMU events and event numbers
D8-2946 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter D9
The Statistical Profiling Extension

This chapter describes the Statistical Profiling Extension. It contains the following sections:

• About the Statistical Profiling Extension on page D9-2948.

• Defining the sample population on page D9-2950.

• Controlling when an operation is sampled on page D9-2951.

• Enabling profiling on page D9-2954.

• Filtering sample records on page D9-2956.

• The profiling data on page D9-2958.

• The Profiling Buffer on page D9-2968.

• Profiling Buffer management on page D9-2973.

• Synchronization and Statistical Profiling on page D9-2977.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D9-2947
ID072021 Non-Confidential

The Statistical Profiling Extension
D9.1 About the Statistical Profiling Extension
D9.1 About the Statistical Profiling Extension

When the Statistical Profiling Extension is implemented, the PE includes a Statistical Profiling Unit (SPU). When
profiling is enabled, the SPU does the following:

1. Chooses an operation from a sample population, that can be restricted by Exception level, at a programmable
interval that might have some random, or pseudorandom, perturbation.

2. Takes a trace of the sampled operation. This includes the PC, events, timings, and data addresses, related to
the sampled operation. This is the profiling operation.

3. If defined, filters out potential sample records generated by the profiling operation by reference to any or all
of the following:

a. The type of operation.

b. Events.

c. Latency.

4. Creates a record that contains the traced information. Sample records that meet the criteria of the filter are
written to and stored in a memory buffer. These sample records can be processed by software when the
memory buffer is full.

D9.1.1 Non-invasive behavior

Statistical Profiling is a non-invasive debug operation:

• While profiling is enabled, the operation and performance of the processing element (PE) must not be
significantly impacted between sampled operations, that is, other than for writing out sample records and
processing Profiling Buffer management interrupts.

• The performance of the sampled operation and the performance of the PE in general must not be significantly
impacted. The sample records are not written to memory until after the sampled operation has finished
execution. However, this does not apply if the sample records are physical addresses for data access
operations. In this case, the impact is IMPLEMENTATION DEFINED.

• The profiling operation to write sample records must not be excessively impactful on the performance of the
sampled operation or the performance of the PE generally.

D9.1.2 PMU extensions

If the Statistical Profiling and Performance Monitors Extensions are implemented, then the following PMU events
must be implemented:

• SAMPLE_POP.

• SAMPLE_FEED.

• SAMPLE_FILTRATE.

• SAMPLE_COLLISION.

Note

These events are discoverable through a read of PMCEID0_EL0[35:32].

If FEAT_SPEv1p2 is implemented, the following PMU events must be implemented:

• SAMPLE_FEED_BR.

• SAMPLE_FEED_LD.

• SAMPLE_FEED_ST.

• SAMPLE_FEED_OP.

• SAMPLE_FEED_EVENT.

• SAMPLE_FEED_LAT.
D9-2948 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Statistical Profiling Extension
D9.1 About the Statistical Profiling Extension
D9.1.3 Multithreaded implementations

In a multithreaded implementation:

• Statistical Profiling is implemented per-thread.

• The sample interval counter counts only operations for the thread that is being profiled.

• Latency and other cycle counters count each cycle for the PE for which the thread was active and could issue
an operation.

The architecture does not define features for inter-thread profiling and does not support sharing the Profiling Buffer
between threads.

Note

An implementation is described as multithreaded when the lowest level of affinity consists of logical processors that
are implemented using a multi-threading type approach. That is, the performance of processors at the lowest affinity
level is very interdependent.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D9-2949
ID072021 Non-Confidential

The Statistical Profiling Extension
D9.2 Defining the sample population
D9.2 Defining the sample population

All samples are taken from a population of operations. The population is dynamic rather than static. That is, if a
program executes the same operation multiple times (for example, because of loops and subroutines) then that
operation appears multiple times in the population.

The operations are an IMPLEMENTATION DEFINED choice between:

• Architecture instructions.

• IMPLEMENTATION DEFINED microarchitectural operations (micro-ops).

Architecture instruction means a single instruction that is defined by the Armv8 instruction set architecture in
AArch64 state.

An architecture instruction might create one or more micro-ops at any point in the execution pipeline. The definition
of a micro-op is implementation specific. An architecture instruction might create more than one micro-op for each
instruction. A micro-op might also be removed or merged with another micro-op in the execution stream, so an
architecture instruction might create no micro-ops for an instruction.

Any arbitrary translation of architecture instructions to an equivalent sequence of micro-ops is permitted. In some
implementations, the relationship between architecture instructions and micro-ops might vary over time.

Note

Sampling from architecture instructions does not require that the instruction is architecturally executed.

D9.2.1 Operations that might be excluded from the sample population

It is IMPLEMENTATION DEFINED whether each of the following operations is part of the sample population:

• Operations on misspeculated paths.

• Operations (specifically micro-ops) that do not relate to any architecture instruction.

• Operations that generate non-architectural exceptions.

If the operation is not part of the sample population, the operation does not cause the sample interval counter to
decrement, is not counted by the SAMPLE_POP event and therefore is never sampled.

If the operation is part of the sample population, the operation causes the sample interval counter to decrement, is
counted by the SAMPLE_POP event, and might be sampled and counted by the SAMPLE_FEED event. However,
it is IMPLEMENTATION DEFINED whether the sample record for such a sampled operation is captured in the Profiling
Buffer. For more information, see Sample operation records for misspeculated and non-architectural operations on
page D9-2965 and Non-architectural exceptions on page D9-2967.

If such a sample record is not captured into the Profiling Buffer, then no packets are output and the sample is not
counted by the SAMPLE_FILTRATE event.

Note

If the owning Exception level passes this data to less privileged software for processing, it can set
PMSFCR_EL1.FE to 1 and PMSEVFR_EL1[1] to 1 to prevent speculative instructions from being recorded in the
Profiling Buffer.
D9-2950 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Statistical Profiling Extension
D9.3 Controlling when an operation is sampled
D9.3 Controlling when an operation is sampled

The sample interval counter, PMSICR_EL1.COUNT controls when an operation is selected for sampling. In some
implementations, a secondary sample interval counter, PMSICR_EL1.ECOUNT, is also used.

The following sections describe the operation of the sample interval counters.

Details of the random or pseudorandom number generator used when PMSIRR_EL1.RND is set to 1 are
IMPLEMENTATION DEFINED. See Generating random numbers for sampling on page D9-2951.

D9.3.1 Operation sampling

A sample operation is as follows:

1. A sampling interval is written to PMSICR_EL1.COUNT by software. The interval is measured in operations.

2. The sample interval counter is decremented by hardware for each operation when sampling is enabled.

3. When the sample interval counter reaches zero, then:

a. If random perturbation is enabled, the PE continues to count for a random number of further operations
while sampling is enabled.

b. An operation is chosen for profiling. The choice of operation around the sampling point is
implementation-specific, but does not introduce sampling bias.

4. The sample interval counter is reloaded and the process loops to step 2. It is IMPLEMENTATION DEFINED
whether the sample interval counter is reloaded before step 3.a) or at step 3.b). That is, before or after
counting the random number of further operations.

5. The chosen operation is marked as the sampled operation. The PE collects information about the sampled
operation as it executes by a profiling operation.

6. The sample record is created when the sampled operation has finished execution.

D9.3.2 Generating random numbers for sampling

The random number generator is IMPLEMENTATION DEFINED. Implementations might use a pseudorandom number.
The random number generator must be reset into a useable state. An implementation might include
IMPLEMENTATION DEFINED registers to further configure the random number generator.

It is IMPLEMENTATION DEFINED whether the PE adds the random number to the sample interval counter prior to
counting down the interval, or after the counter reaches zero and the counter has been reloaded.

D9.3.3 Initializing the sample interval counters

When the PE moves from a state where profiling is disabled to a state where profiling is enabled:

• If PMSICR_EL1 is nonzero, then sampling restarts from the current values in PMSICR_EL1.

• If PMSICR_EL1 is zero, then it is loaded with an initial value. The behavior depends on PMSIRR_EL1.RND
and an IMPLEMENTATION DEFINED choice discoverable by a read of PMSIDR_EL1.ERnd.

— If PMSIRR_EL1.RND is 0:

— PMSICR_EL1.COUNT[31:8] is set to PMSIRR_EL1.INTERVAL.

— PMSICR_EL1.COUNT[7:0] is set to 0x00.

— If PMSIRR_EL1.RND is 1 and PMSIDR_EL1.ERnd is 0:

— PMSICR_EL1.COUNT[31:8] is set to PMSIRR_EL1.INTERVAL.

— PMSICR_EL1.COUNT[7:0] is set to a random or pseudorandom value in the range 0x00 to
0xFF.

— If PMSIRR_EL1.RND is 1 and PMSIDR_EL1.ERnd is 1:

— PMSICR_EL1.COUNT[[31:8] is set to PMSIRR_EL1.INTERVAL.

— PMSICR_EL1.COUNT[7:0] is set to a random or pseudorandom value in the range 0x00 to
0xFF.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D9-2951
ID072021 Non-Confidential

The Statistical Profiling Extension
D9.3 Controlling when an operation is sampled
D9.3.4 Behavior of the sample interval counter while profiling is enabled

While profiling is enabled, the counters control when an operation is selected for sampling. The behavior depends
on PMSIRR_EL1.RND and an IMPLEMENTATION DEFINED choice discoverable in PMSIDR_EL1.ERnd.

If PMSIRR_EL1.RND is 0:

While nonzero, the sample interval counter decrements by 1 for each member of the sample population. When the
counter reaches zero:

• A member of the sampling population is selected for sampling.

• The counter is set as follows:

— PMSICR_EL1.COUNT[31:8] is set to PMSIRR_EL1.INTERVAL.

— PMSICR_EL1.COUNT[7:0] is set to 0x00.

Note

Because the counter counts down to zero, when PMSIRR_EL1.RND is 0 the interval between operations being
selected for sampling is (INTERVAL×256+1).

If PMSIRR_EL1.RND is 1 and PMSIDR_EL1.ERnd is 0

While nonzero, the sample interval counter decrements by 1 for each member of the sample population. When the
counter reaches zero:

• A member of the sampling population is selected for sampling.

• The counter is set as follows:

— PMSICR_EL1.COUNT[31:8] is set to PMSIRR_EL1.INTERVAL.

— PMSICR_EL1.COUNT[7:0] is set to a random or pseudorandom value in the range 0x00 to 0xFF.

Note

When PMSIRR_EL1.RND is 1 and PMSIDR_EL1.ERnd is 0, the mean interval between operations being selected
for sampling is (INTERVAL×256+128), if the random number generator is uniform.

If PMSIRR_EL1.RND is 1 and PMSIDR_EL1.ERnd is 1

While nonzero, the primary sample interval counter decrements by 1 for each member of the sample population.
When the primary counter reaches zero:

• The primary sample interval counter is set as follows:

— PMSICR_EL1.COUNT[31:8] is set to PMSIRR_EL1.INTERVAL.

— PMSICR_EL1.COUNT[7:0] is set to 0x00.

• The secondary sample interval counter, PMSICR_EL1.ECOUNT, is set to a random or pseudorandom value
in the range 0x00 to 0xFF.

While the secondary sample interval counter is nonzero, the secondary sample interval counter decrements by 1 for
each member of the sample population. The primary sample interval counter also continues to decrement because
it is also nonzero.

When the secondary sample interval counter reaches zero, an operation is selected for sampling.

Note

When PMSIRR_EL1.RND is set to 1 and PMSIDR_EL1.ERnd is 1, the mean interval between operations being
selected for sampling is (INTERVAL×256+1), if the random number generator is uniform.
D9-2952 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Statistical Profiling Extension
D9.3 Controlling when an operation is sampled
D9.3.5 Behavior of the sample interval counter while profiling is disabled

When profiling is disabled:

• No operations are selected for sampling.

• No sample records are collected.

• The sample interval counters retain their values and do not decrement.

D9.3.6 Where operations are sampled

The exact point in the sampled lifespan of operations at which operations are chosen for profiling is
IMPLEMENTATION DEFINED.

Note

Arm recommends that the point at which operations are sampled is linked to the definition of the Performance
Monitors Extension (PMU) STALL_FRONTEND and STALL_BACKEND events, so that sampling records
information for STALL_BACKEND stalls.

D9.3.7 Sample collisions

The maximum number of sampled operations that a PE can support simultaneously is IMPLEMENTATION DEFINED.
If the maximum number of simultaneous sampled operations has been reached at the point when a new operation
must be sampled, the new sample is said to have collided with a previous sampled operation.

The PE records the fact that a sampled operation has collided with another sampled operation. Software can also
count the number of collisions and gauge the impact of the collisions.

On a sample collision:

• The PMU event SAMPLE_COLLISION is generated.

• PMBSR_EL1.COLL is set to 1.

• The new operation is not sampled.

Following a context synchronization event an indirect write to PMBSR_EL1.COLL is guaranteed to be visible to
instructions in program order after the sampled operation that collided. There is no guarantee of visibility without
a context synchronization event. For more information, see Synchronization and Statistical Profiling on
page D9-2977.

Note

This means that following a context synchronization event PMBSR_EL1.COLL will not change on entry to a state
where profiling is disabled.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D9-2953
ID072021 Non-Confidential

The Statistical Profiling Extension
D9.4 Enabling profiling
D9.4 Enabling profiling

Profiling is enabled when all of the following are true:

• The PE is in AArch64 state.

• PMBLIMITR_EL1.E is 1 and PMBSR_EL1.S is 0.

• The PE is executing at either the Profiling Buffer owning Exception level or any lower Exception level.

• The PE is executing in the Security state of the Profiling Buffer owning Exception level.

• The PE is in Non-debug state.

• PMSCR_EL1.{E1SPE, E0SPE} and PMSCR_EL2.{E2SPE, E0HSPE} enable profiling at the current
Exception level.

Note

The owning Exception level is controlled by MDCR_EL3.NSPB and MDCR_EL2.E2PB. See The owning
Exception level on page D9-2969.

PMSCR_EL1.{E1SPE, E0SPE} and PMSCR_EL2.{E2SPE, E0HSPE} enable sampling by Exception level:

• In a guest operating system or Secure state, PMSCR_EL1.E1SPE enables profiling at EL1 and
PMSCR_EL1.E0SPE at EL0.

• In a hypervisor or host operating system, PMSCR_EL2.E2SPE enables profiling at EL2 and
PMSCR_EL2.E0HSPE at EL0.

• Sampling is always disabled at EL3.

Table D9-1 on page D9-2954 defines the valid combinations of the Effective values of SCR_EL3.NS,
SCR_EL3.EEL2, MDCR_EL3.NSPB, MDCR_EL2.E2PB, and HCR_EL2.TGE that define when sampling is
enabled.

In Table D9-1 on page D9-2954:

D Disabled.

E2SPE Enabled if PMSCR_EL2.E2SPE == 1, disabled otherwise.

E1SPE Enabled if PMSCR_EL1.E1SPE == 1, disabled otherwise.

E0HSPE Enabled if PMSCR_EL2.E0HSPE == 1, disabled otherwise.

E0SPE Enabled if PMSCR_EL1.E0SPE == 1, disabled otherwise.

Table D9-1 Enabling by Exception level and Security state (for all Exception levels using AArch64
state)

Controls Sampling enabled at

NS NSPB E2PB EEL2 TGE EL3 EL2 EL1 EL0

1 0b0X X X X D D D D

0b1X 0b1X X 0 D D E1SPE E0SPE

0b1X X 1 D D n/a D

0b00 X 0 D E2SPE E1SPE E0SPE

0b00 X 1 D E2SPE n/a E0HSPE
D9-2954 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Statistical Profiling Extension
D9.4 Enabling profiling
This is described in the pseudocode function StatisticalProfilingEnabled().

0 0b1X X X X D D D D

0b0X X 0 X D n/a E1SPE E0SPE

0b1X 1 0 D D E1SPE E0SPE

0b1X 1 1 D D n/a D

0b00 1 0 D E2SPE E1SPE E0SPE

0b00 1 1 D E2SPE n/a E0HSPE

Table D9-1 Enabling by Exception level and Security state (for all Exception levels using AArch64
state) (continued)

Controls Sampling enabled at

NS NSPB E2PB EEL2 TGE EL3 EL2 EL1 EL0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D9-2955
ID072021 Non-Confidential

The Statistical Profiling Extension
D9.5 Filtering sample records
D9.5 Filtering sample records

PMSFCR_EL1.FT enables filtering by operation type. When enabled PMSFCR_EL1.{ST, LD, B} define the
collected types:

• ST enables collection of store sampled operations, including all atomic operations.

• LD enables collection of load sampled operations, including atomic operations that return a value to a
register.

• B enables collection of branch sampled operations, including direct and indirect branches and exception
returns.

Note

When micro-op sampling is implemented, filtering is based on the micro-op type.

Table D9-2 on page D9-2956 summarizes the controls for filtering by operation type. In this table:

Load Atomic Refers to atomic operations which return a value to a general-purpose register. Other atomic
operations are classed as Store.

D Indicates that the operation is discarded.

C Indicates that the operation is collected.

C/D Indicates it is CONSTRAINED UNPREDICTABLE whether the operation is collected or discarded.

PMSFCR_EL1.FE enables filtering by a set of events that are defined by PMSEVFR_EL1. When enabled, only
sampled operations with all the events in the filter set are recorded and written to the Profiling Buffer.

If FEAT_SPEv1p2 is implemented, PMSFCR_EL1.FnE enables filtering by a set of events that are defined by
PMSNEVFR_EL1. When enabled, only sampled operations with all the events in the filter clear are recorded and
written to the Profiling Buffer.

PMSFCR_EL1.FL enables filtering by total latency. PMSLATFR_EL1.MINLAT defines the minimum latency.
When enabled, only sampled operations with a total latency greater than or equal to the minimum latency are
recorded and written to the Profiling Buffer.

These controls combine together as a logical AND.

Table D9-2 Filtering by Operation type

PMSFCR_EL1 field Operation type

FT LD ST B Load Load Atomic Store Branch Other

0 X X X C C C C C

1 0 0 0 C/D C/D C/D C/D C/D

1 D D D C D

1 0 D C C D D

1 D C C C D

1 0 0 C C D D D

1 C C D C D

1 0 C C C D D

1 C C C C D
D9-2956 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Statistical Profiling Extension
D9.5 Filtering sample records
Example D9-1 Collection of sampled operations

If PMSFCR_EL1.FE is 1, PMSFCR_EL1.FnE is 0, PMSFCR_EL1.FT is 1, and PMSFCR_EL1.FL is 1, then only
sampled operations that meet all of the following criteria are recorded and written to the Profiling Buffer:

• The sampled operation is one of the selected operation types.

• The operation has all of the events in the filter set.

• The total latency is equal to or greater than the minimum latency.

This is described in the pseudocode function SPECollectRecord().

D9.5.1 Discard mode

FEAT_SPEv1p2 adds an operating mode, Discard mode, that allows all sampled operations to be discarded and not
written to the Profiling Buffer. Discard mode is enabled when PMBLIMITR_EL1.FM is 0b10, and has all of the
following effects:

• All profiling data is discarded after filtering.

• The PMBLIMITR_EL1.LIMIT and PMBPTR_EL1 fields are ignored. PMBPTR_EL1 does not increment
for each sampled operation.

• The restrictions on setting PMBLIMITR_EL1.LIMIT and PMBPTR_EL1 do not apply, see Restrictions on
the current write pointer on page D9-2968.

• Buffer management events are not generated.

Other profiling behaviors are unchanged, including:

• The discarding of profiling data logically occurs after SAMPLE_FILTRATE and other PMU events are
counted.

• Sample collisions will still set PMBSR_EL1.COLL to 1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D9-2957
ID072021 Non-Confidential

The Statistical Profiling Extension
D9.6 The profiling data
D9.6 The profiling data

Unless otherwise stated, all sample records that are generated by a profiling operation contain:

• A timestamp, if enabled. This is one of:

— The physical counter, CNTPCT_EL0.

— The offset physical counter, CNTPCT_EL0 - CNTPOFF_EL2. When any of the following are true,
the Effective value of CNTPOFF_EL2 is 0 for all profiling purposes:

— EL3 is using AArch32.

— EL2 is not implemented.

— FEAT_ECV is not implemented.

— The Effective value of SCR_EL3.{NS,RW} is {1,0}.

— CNTHCTL_EL2.ECV is 0.

— SCR_EL3.ECVEn is 0.

— The virtual counter, CNTVCT_EL0.

It is IMPLEMENTATION DEFINED how this timestamp relates to the sampled operation. It might be the time
when the sampled operation was taken or any later time during the lifetime of the sampled operation, that is,
up to the time when the sampled operation finishes execution.

If the Generic Timer system counter is disabled and timestamps are enabled, then it is IMPLEMENTATION
DEFINED whether:

— The SPU behaves as if timestamps are disabled.

— The timestamp that is collected in the sample record is UNKNOWN.

Note
This behavior describes when CNTCR.EN is 0, the Generic Timer system counter is disabled. This behavior
does not apply when the Generic Timer system counter is enabled but not accessible at the current Exception
level.

• The context, if enabled, which is one or more of:

— CONTEXTIDR_EL1.

— CONTEXTIDR_EL2.

— The Exception level.

— The Security state.

• Information about whether the sampled operation generated an exception:

— The target address for an exception generating operation is not collected.

• Information about whether the sampled operation was Architecturally executed.

If the sampled operation is Architecturally executed and does not generate an exception, the sample record also
contains:

• The PC virtual address for the sampled operation.

• Information about whether the sampled operation is a branch, a load, a load atomic, a store, or other.

• Information about whether the sampled operation is conditional, conditional select, or not.

• The total latency, a cycle count from the start of the sampled operation up to the point where the operation
has finished execution and is no longer capable of stalling any instruction that consumes its output.

• The issue latency, a cycle count from the start of the sampled operation up to the point when at least one part
of the sampled operation starts executing. A sampled operation might be delayed, for example, because the
input operands were not available.

If the sampled operation is not Architecturally executed or generates an exception, it is UNPREDICTABLE whether the
record contains all or any of this information and the other information about the operation listed in this section and
the following subsections. For information on exceptions being taken in sampled operations, see Exceptions on
page D9-2967.
D9-2958 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Statistical Profiling Extension
D9.6 The profiling data
The architecture defines a set of additional data that is collected in the sample record for each sampled operation.
This is described in the following subsections, and comprises:

• Events, which are required to be implemented consistently with PMU Events. For more information, see
Chapter D10 Statistical Profiling Extension Sample Record Specification and Chapter D7 The Performance
Monitors Extension.

• Cycle counters. Cycle count values as described in this architecture, which, for a particular implementation,
are fixed with an IMPLEMENTATION DEFINED value, might be omitted from the sample record.

• Addresses.

In addition, the architecture permits IMPLEMENTATION DEFINED events, counters, and addresses to be collected.

D9.6.1 Information collected for micro-ops

Because architectural instructions might create zero, one, or more micro-ops, micro-ops might have different
characteristics from the architectural instructions they are created from. The data collected for each micro-op is
IMPLEMENTATION DEFINED. Implementations should collect the subset of data appropriate to the micro-op.

Example D9-2 Sampling of micro-ops

If an architectural load instruction is split into an address generation micro-op and a load micro-op, then when
generating the sample record and filtering based on operation type:

• If the address generation micro-op is sampled, the sampled operation is treated as other.

• If the load micro-op is sampled, the sampled operation is treated as a load.

D9.6.2 Additional information for each profiled branch or exception return

For an Architecturally executed sampled branch or exception return operation that finishes execution, the profiling
operation records:

• The sampled operation type as an unconditional branch or a conditional branch. Sampled exception returns
are treated as unconditional branches by the Statistical Profiling Extension.

• If the branch is taken, the target virtual address of the branch. The target virtual address of the branch includes
the Exception level and Security state of the target. The target virtual address includes the Exception level
and Security state of the target. If the sampled operation is an illegal exception return, it is CONSTRAINED
UNPREDICTABLE whether the context information recorded in the target virtual address is the actual target
context, or the target context that is described by the SPSR.

• If the PE implements branch prediction, whether the branch was correctly predicted or mispredicted.

• Whether the branch was taken or not taken.

• Whether the branch was direct or indirect.

• If the branch is not taken, a target virtual address might be recorded. Software must treat this value if present
as UNKNOWN.

• If the optional behavior in FEAT_SPEv1p2 is implemented, the target address of the most recently executed
sampled branch that was taken and retired in program order before the sampled operation.

Note

A sampled operation that generates an exception is not treated as a branch.

Last branch target

If FEAT_SPEv1p2 is implemented, PMSIDR_EL1.PBT optionally adds the capability to record a packet for each
event that provides the target address of the previous taken branch.

If enabled, the profiling operation records the target address of the most recently sampled branch that was taken and
retired in program order before the sampled operation.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D9-2959
ID072021 Non-Confidential

The Statistical Profiling Extension
D9.6 The profiling data
It is IMPLEMENTATION DEFINED whether or not the profiling operation records the target address of the most recently
taken branch instruction in the following cases:

• The sampled operation is not a sampled retired taken branch operation.

• The most recently taken branch instruction was a Context synchronization operation, exception-generating
instruction, or exception return.

• No branch instruction has been retired, prior to the sampled operation, since the most recent Context
synchronization operation or taken exception.

The profiling operation does not record the target address of the most recently taken branch instruction in the
following cases:

• The most recently taken branch instruction was executed when profiling was disabled or prohibited.

• Either the most recently taken branch instruction or the sampled operation is still speculative.

D9.6.3 Additional information for each profiled memory access operation

For an Architecturally executed sampled load, store, or atomic operation that does not generate an exception, the
profiling operation records:

• The data virtual and, if enabled, physical addresses being accessed.

— If the applicable Top Byte Ignore (TBI) bit is set to one, the virtual address includes any top-byte tag.

— The physical address is the address the PE accesses in the physical address space, and so includes the
Secure address space identifier.

• The sampled operation type, which includes:

— Whether the sampled operation is a load, store, or atomic.

— Whether the sampled operation is Load-Exclusive, Store-Exclusive or Load-acquire, Store-release.

— Whether the sampled operation accesses the general-purpose or SIMD&FP registers.

• The translation latency. Cycle count from a virtual address being passed to the MMU for translation to the
result of the translation being available.

• Whether the sampled operation accessed the Level 1 data cache and the result.

• Whether the sampled operation accessed the data TLB and the result.

• An optional record of whether the sampled operation accessed Last Level data cache and the result.

• An optional record of whether the sampled operation accessed another socket in a multi-socket system.

• An optional, IMPLEMENTATION DEFINED, indicator of the data source for a load. If the sampled operation
makes multiple accesses, it is IMPLEMENTATION DEFINED whether this indicator combines information for all
parts of the load or applies only for a chosen part of the load.

• If FEAT_SPEv1p1 is implemented, an optional indication that the sampled memory operation is non-optimal
for the access size. For more information, see Data Alignment Flag on page D9-2962.

For each of the cache and another socket indicators, it is IMPLEMENTATION DEFINED and might be UNPREDICTABLE
whether this information is present for store accesses. The Last level cache and another socket indicators are
optional and might not be present.

For more information, see Events packet on page D10-2993.

Note

A store might be marked as not accessing a cache or another socket because it microarchitecturally finished before
doing so. For example, the write was placed into a write buffer. This behavior is IMPLEMENTATION DEFINED and
might change from time to time, and such events must be interpreted with care.

If FEAT_MTE2 is implemented, an instruction which loads or stores an Allocation Tag or multiple Allocation Tags
will be treated as a load or store if profiling is enabled. Each Allocation Tag covers multiple locations in a Tag
Granule. It is IMPLEMENTATION DEFINED whether the implementation treats each Allocation Tag access as an access
to the data location addressed in the operation, or the whole Tag Granule. That is, whether the data virtual address
associated with the sampled access or chosen part of the access is the address of the location being accessed, or the
lowest address covered by the same Allocation Tag or Allocation Tags. For more information, see Chapter D6
Memory Tagging Extension.
D9-2960 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Statistical Profiling Extension
D9.6 The profiling data
If the sampled load, store, or atomic operation performs multiple accesses, it is IMPLEMENTATION DEFINED whether
the implementation chooses to profile all of the access or a chosen part of that access.

If the implementation chooses to profile a chosen part of the access:

• It is IMPLEMENTATION DEFINED how the PE chooses the part of the access. The choice does not introduce any
systematic bias.

Note
For an example of inadvertent systematic bias, consider an implementation where a multiple-register load
operation is split into multiple accesses. If the PE systematically chooses the first operation at the lower
address for sampling translation latency and data source indicator, and the operation is executed in a loop
with an incrementing address, then the first access has better spatial locality with preceding accesses than
later accesses and is more likely to both:

— Hit in the TLB, giving a shorter translation latency.

— Return data from the Level 1 data cache.

In this case, or if the PE systematically chooses the last access at the higher address, then sampling would be
biased.

• If the accesses are architecturally contiguous, it is further IMPLEMENTATION DEFINED whether the recorded
data virtual address is the lowest virtual address that is accessed by the sampled operation or applies to the
chosen part of the access.

• If the accesses are not architecturally contiguous, the recorded data virtual address applies for the chosen part
of the access.

• It is IMPLEMENTATION DEFINED whether the events and total operation latency apply to the whole operation
or the chosen part of the operation.

• The translation latency applies to the chosen part of the operation, and is the count of cycles for which the
chosen part of the operation is waiting for the MMU to complete an address translation.

Arm recommends that if the implementation chooses to profile a chosen part of the access, then the recorded
addresses, events, and total operation latency apply to the chosen access. That is, the PE behaves as if the chosen
part of the access is the sampled operation.

If the sampled load, store, or atomic operation performs a single access, or the implementation chooses to profile
all parts of a multiple access:

• If the accesses are architecturally contiguous, the recorded data virtual addresses is the lowest virtual address
that is accessed by the sampled operation.

• If the accesses are not architecturally contiguous, the recorded data virtual addresses apply for the chosen part
of the access.

• The events and total operation latency apply to the whole operation. For example, when recording whether
the sampled operation accessed the Level 1 data cache, the PE records whether any part of the access accessed
the Level 1 data cache, and the result, and the total operation latency applies from the issue of the operation
to the completion of all parts of the operation.

• The translation latency is an IMPLEMENTATION DEFINED choice between:

— The count of cycles for which at least one part of the operation is waiting for the MMU to complete
an address translation, and no part of the operation is accessing memory.

— The count of cycles for which at least one part of the operation is waiting for the MMU to complete
an address translation.

If FEAT_MTE2 is implemented and the operation is an access to an Allocation Tag or multiple Allocation Tags, it
is IMPLEMENTATION DEFINED whether the sampled data physical address is the address generated from translating
the sampled data virtual address or the address generated from translating the lowest address covered by the same
Allocation Tag or Allocation Tags, when these differ. Otherwise, the sampled data physical address is the address
generated from translating the sampled data virtual address. The sampled data physical address packet is not output
if any of the following are true:

• The PE does not translate the address, for example because it does not perform the access or the address
translation generates a Translation fault.

• The sampled data virtual address packet is not output.

• Prohibited by System register controls.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D9-2961
ID072021 Non-Confidential

The Statistical Profiling Extension
D9.6 The profiling data
If a sampled virtual address packet is not output:

• It is IMPLEMENTATION DEFINED whether the Translation latency Counter packet for the load or store is either
not recorded, or recorded with a value of zero.

• It is IMPLEMENTATION DEFINED whether the bits corresponding to the access in the Events packet are
recorded or always zero. If access does not occur, these bits are zero.

When the sampled operation is a System register access transformed into a memory access by the mechanism
described in Enhanced support for nested virtualization on page D5-2795, the operation is recorded as a load/store
operation. If Statistical Profiling is disabled at EL2, the virtual address for the memory access is not recorded.

Data Alignment Flag

If FEAT_SPEv1p1 is implemented Events packet.E[11] is set to 1 for a sampled memory operation if the address
alignment is non-optimal for the access size.

Address alignment is defined as non-optimal if that access incurs an additional performance penalty only because
of the address alignment, and is unrelated to whether the access is architecturally misaligned for the access size.

Example D9-3 Data Alignment Flag operation

• A 32-bit word access that is not word aligned is architecturally misaligned, but (if Alignment faults are
disabled) might not incur an additional penalty because of this alignment unless the word also happens to
span a cache-line boundary.

• A contiguous load operation that loads a vector that is the length of two cache lines is optimally aligned if it
has cache-line alignment, even though the operation makes two cache line accesses.

• A non-contiguous SVE load operation that makes a sequence of access is optimal only if all of the access are
optimal.

The definition of non-optimal is IMPLEMENTATION DEFINED and support for the Alignment Flag is OPTIONAL.

D9.6.4 Additional information for each profiled conditional instruction

For an Architecturally executed sampled conditional select, conditional move, or conditional increment operation
finishes execution, the profiling operation records:

• That the sampled operation was conditional.

• Whether the condition passed or failed.

For conditional branches, see Additional information for each profiled branch or exception return on page D9-2959.

D9.6.5 Additional information for each profiled Scalable Vector Extension operation

When FEAT_SPEv1p1 and The Scalable Vector Extension (SVE) are implemented, SVE operations are sampled as
described in this section.

In this section the following terms are used:

Maximum implemented vector length

Means the implemented width of the vector registers. This value is IMPLEMENTATION DEFINED.

Accessible vector length

Means the accessible width of the SVE vector registers at the current Exception level, as constrained
by the ZCR_EL1, ZCR_EL2 or ZCR_EL3 System registers. The Accessible vector length is always
less-than-or-equal-to the Maximum implemented vector length.
D9-2962 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Statistical Profiling Extension
D9.6 The profiling data
Sampled SVE operation

Means an instruction or micro-operation defined by the Arm Architecture Reference Manual
Supplement: The Scalable Vector Extension (SVE), for Armv8-A and sampled by the SPU that has a
vector or a predicate as an input or output. This includes instructions with scalar outputs, but
excludes the Non-SIMD SVE instructions.

If an implementation samples micro-operations, then it is IMPLEMENTATION DEFINED, and might
vary between operation types, whether an operation for which all the following are true is treated as
a Sampled SVE operation or the equivalent Advanced SIMD operation:

• The Accessible vector length is 128 bits.

• The operation is unpredicated, and does not have a predicate register as an input or output.

• The operation has an equivalent Advanced SIMD operation.

This includes SVE load and store operations where an equivalent Advanced SIMD operation is
defined.

Sampled operation vector

Means the portion of the accessible vector operated on by the Sampled SVE operation.

Effective vector length

Is the length of the Sampled operation vector. The Effective vector length is always
less-than-or-equal-to the Accessible vector length.

Note

The Accessible vector length is always quantized into multiples of 128-bits. However, the Sampled
operation vector can be any size down to the element size of the operation.

Sampled predicated SVE operation

Means a Sampled SVE operation that is one of:

• An SVE operation that writes to a vector destination register under a Governing predicate
using either zeroing or merging predication.

• A predicated store of a vector register or registers.

For an implementation that samples micro-operations, an SVE instruction might be split up into one
or more micro-operations, some of which are predicated and some of which are not predicated.

Note

Sampled predicated SVE operation excludes operations that do not write a vector register, or do so but not using
zeroing or merging predication, and applies to machine instructions rather than aliases. For example, the following
instructions are not predicated SVE instructions under this definition:

• CNTP, LASTA, and PTRUE do not write to vector registers.

• FADDV, and SMAXV write scalar values to SIMD&FP registers.

• COMPACT and SEL (vectors) write to vector registers, and have a predicate operand, but do not use that
predicate as a Governing predicate for zeroing or merging predication.

• MOV (vector, predicated) appears to be a predicated SVE instruction because it specifies merging predication
through the <PG>/M operand, but it is actually an alias for the SEL (vectors) instruction.

If an implementation samples micro-operations, it is IMPLEMENTATION DEFINED whether individual elements, or
groups of elements, are treated as single micro-operations.

The division of instructions into micro-operations must be fixed prior to sampling to guarantee consistently accurate
statistical sampling.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D9-2963
ID072021 Non-Confidential

The Statistical Profiling Extension
D9.6 The profiling data
Example D9-4 Vector length

For example, to support a vector length of 1024 bits, an implementation might split all instructions into four
micro-operations on 256-bit vector paths. The implementation must, however, implement 1024-bit wide vector
registers.

This behavior might vary based on operation type. For example, an implementation that has a full-width data-path
for most operations might choose to break certain complex operations, such as non-contiguous load or stores, into
shorter vectors.

Example D9-5 Accessible vector length less-than the Maximum implemented

To support an Accessible vector length less-than the Maximum implemented vector length, an implementation
might choose to do all operations at the Maximum implemented vector length and discard the results above the
Accessible vector length. Discarded results, arising from difference between Maximum implemented vector length
and Accessible vector length, do not form part of the sampled operation and the Effective vector length must not
include any discarded portions of the vector.

Results discarded because of predication are part of the sampled operation.

For a sampled SVE cache prefetch operation:

• The profiling operation captures an IMPLEMENTATION DEFINED subset of the information captured for an SVE
load instruction.

• The profiling operation treats the operation type as Other when generating the sample records and filtering
based on operation.

• It is IMPLEMENTATION DEFINED whether the operation is treated as a Sampled SVE operation:

— If treated as a Sampled SVE operation, the Operation Type packet payload format is the Operation
Type packet on page D10-2998.

— If not treated as a Sampled SVE operation, the Operation Type packet format is the Operation Type
packet payload (Other) on page D10-2998.

For a Sampled SVE operation, the Operation Type packet is one of:

• The SVE operation format.

• The SVE load or store format.

For a Sampled SVE operation, the Operation Type packet.EVL field records an upper bound on the Effective vector
length. The value recorded in the Operation Type packet.EVL field is the Effective vector length rounded up to a
power-of-two value.

For a Sampled SVE operation that is a Sampled predicated SVE operation;

• Operation Type packet.PRED, Predicated SVE operation, is set to 1.

• If any elements in the Sampled operation vector are Inactive elements, then Events packet.E[17], Partial
predicate, is set to 1.

• If all elements in the Sampled operation vector are Inactive elements, then Events packet.E[18],Empty
predicate, is set to 1 and Events packet.E[17] (Partial predicate) is set to 1.

• If all elements in the Sampled operation vector are Active elements then Events packet.E[18:17] is set to 0b00.

For a Sampled SVE operation that is not a Sampled predicated SVE operation:

• Operation Type packet.PRED, Predicated SVE operation, is set to 0.

• Events packet.E[18:17] is set to 0b00.

For a sampled non-contiguous SVE load or store operation that makes multiple memory accesses, the sampled data
virtual address is the address accessed by a random one of the load or store operations chosen from the Sampled
operation vector. If the chosen load or store operation is for an Inactive element, the data virtual address packet is
not output.
D9-2964 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Statistical Profiling Extension
D9.6 The profiling data
For more information on memory access operations, see Additional information for each profiled memory access
operation on page D9-2960.

For a sampled contiguous SVE load or store operation that makes multiple memory accesses, the sampled data
virtual address is an IMPLEMENTATION DEFINED choice of:

• The address accessed for the lowest element in the Sampled operation vector.

• The address used for the access containing the lowest Active element in the Sampled operation vector.

If the corresponding element is an Inactive element, it is IMPLEMENTATION DEFINED whether the data virtual address
packet is output.

D9.6.6 Sample operation records for misspeculated and non-architectural operations

It is IMPLEMENTATION DEFINED whether each of the following operations is part of the sample population:

• Operations on misspeculated paths.

• Operations that do not relate to any architecture instruction.

If the operation is part of the sample population, it is further IMPLEMENTATION DEFINED whether the sample record
for the sampled operation is captured in the Profiling Buffer. For more information, see Operations that might be
excluded from the sample population on page D9-2950.

If such an operation is part of the sample population and the sample record is captured in the Profiling Buffer, then
some information for the operation might not be present. However, the Events packet and either the End packet or
the Timestamp packet is always output. Neither event 0 (generated exception) nor event 1 (architecturally retired)
will be set in the Events packet.

The record must not contain information that cannot be accessed by privileged software of the owning Exception
level.

D9.6.7 Additional information for other operations

For cache maintenance operations by virtual address, cache prefetch, other than SVE cache prefetch, or address
translation instructions, the profiling operation:

• Captures an IMPLEMENTATION DEFINED subset of the information captured for a load instruction.

• Treats the operation type as other when generating the sample record and filtering based on operation type.

See Filtering sample records on page D9-2956, Operation Type packet and Additional information for each profiled
Scalable Vector Extension operation on page D9-2962.

D9.6.8 Controlling the data that is collected

Certain data in sample records is collected only if permitted by one or both of EL1 and EL2. This is to restrict
exposure of data to a lower Exception level or to Non-secure state.

CONTEXTIDR_EL1 is collected only if PMSCR_EL1.CX is set to 1, the PE is executing at EL1 or EL0 and any
of the following are true when an operation is sampled:

• EL2 is not implemented.

• FEAT_SEL2 is implemented and EL2 is disabled for the current Security state.

• The Effective value of HCR_EL2.TGE is 0.

CONTEXTIDR_EL2 is collected only if the Effective value of PMSCR_EL2.CX is 1 and EL2 is implemented and
enabled for the current Security state.

This is described in the pseudocode functions CollectContextIDR1() and CollectContextIDR2().

Timestamps are collected only if one of the following is true:

• PMSCR_EL1.TS is set to 1 and the Profiling Buffer is owned by EL1.

• PMSCR_EL2.TS is set to 1 and the Profiling Buffer is owned by EL2.

The timestamp is a choice between:

• Physical time, which is defined by the value of CNTPCT_EL0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D9-2965
ID072021 Non-Confidential

The Statistical Profiling Extension
D9.6 The profiling data
• If FEAT_ECVis implemented and enabled, offset physical time, as defined by the value of (CNTPCT_EL0
- CNTPOFF_EL2). That is, the physical time minus the physical offset, CNTPOFF_EL2.

• Virtual time, as defined by the value of CNTVCT_EL0. That is, the physical time minus the virtual offset,
CNTVOFF_EL2. However, the virtual offset is treated as zero if a read of CNTVCT_EL0 at the current
Exception level would treat the virtual offset as zero.

Table D9-3 on page D9-2966 summarizes the choice of value for the Timestamp packet when FEAT_ECV is
implemented and StatisticalProfilingEnabled() is TRUE. In Table D9-3 on page D9-2966:

Owning EL This is the Exception level that owns the Profiling Buffer. This is returned by the function
ProfilingBufferOwner(). If EL2 is disabled in the current Security state, this is always EL1.

EL2 enabled This is TRUE when EL2 is enabled in the current Security state. When EL2 is disabled in the current
Security state, this is FALSE.

Virtual This means the timestamp is offset physical time, as returned by a direct read of CNTVCT_EL0 at
the Exception level the sampled operation is executed at.

Physical This means the timestamp is physical time, given by the value of CNTPCT_EL0 at the Exception
level the sampled operation is executed at.

Offset physical This means the timestamp is offset physical time, as returned by (CNTPCT_EL0 -
CNTPOFF_EL2) at the Exception level the sampled operation is executed at. That is, the physical
time minus the physical offset. When any of the following are true, the Effective value of
CNTPOFF_EL2 is 0 for all profiling purposes:

• EL2 is not implemented.

• FEAT_ECV is not implemented.

• CNTHCTL_EL2.ECV is 0.

• SCR_EL3.ECVEn is 0.

If EL2 is not implemented, see the register descriptions of PMSCR_EL1.PCT and PMSCR_EL2.PCT for details of
their behavior. This behavior is described by the pseudocode function CollectTimeStamp().

Physical data addresses are collected only if one of the following is true:

• PMSCR_EL1.PA is set to 1 and the Profiling Buffer is owned by Secure EL1, and Secure EL2 is disabled or
is not implemented.

• PMSCR_EL2.PA is set to 1 and the Profiling Buffer is owned by Secure or Non-secure EL2.

Table D9-3 Recorded timestamp when FEAT_ECV is implemented

EL2 enabled Owning EL
PMSCR_EL2 PMSCR_EL1

Recorded timestamp
PCT[1:0] TS PCT[1:0] TS

x EL1 xx x xx 0 None

0b00 1 Virtual

FALSE EL1 xx x 0b01 1 Physical

0b11 1 Offset physical

TRUE EL1 0b00 x xx 1 Virtual

0b01 x 0b01 1 Physical

0b11 1 Offset physical

0b11 x 0b01 1 Offset physical

0b11 1 Offset physical

EL2 xx 0 xx x None

0b00 1 xx x Virtual

0b01 1 xx x Physical

0b11 1 xx x Offset physical
D9-2966 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Statistical Profiling Extension
D9.6 The profiling data
• PMSCR_EL1.PA is set to 1 and PMSCR_EL2.PA is set to 1 and either the Profiling Buffer is owned by
Non-secure EL1, or the Profiling Buffer is owned by Secure EL1 and Secure EL2 is implemented and
enabled.

If EL2 is not implemented or is disabled for the current Security state, the PE behaves as if PMSCR_EL2.PA is set
to 1, other than for a direct read of the register.

Physical data address collection is described by the pseudocode function CollectPhysicalAddress().

Enabling collection of the physical data addresses has an IMPLEMENTATION DEFINED impact on the sampled
operation.

D9.6.9 Exceptions

All sample records written to the Profiling Buffer contain the Events packet and either the End packet or the
Timestamp packet.

If the sampled operation generates an exception condition, it is UNPREDICTABLE whether the sample record contains
any other information. This includes operations that generate faults or other exception conditions but do not
generate exceptions. For example:

• An instruction on a misspeculated path.

• A load operation that is part of a Non-fault load instruction or is not the First active element of a First-fault
load instruction that generates an MMU fault or watchpoint.

• An address translation operation or prefetch instruction that generates an MMU fault.

Where a sampled operation generates an exception and the type of exception means that a particular item is not
computed by the sampled operation, that information is not collected by the profiling operation. For more
information, see Synchronization and Statistical Profiling on page D9-2977.

Example D9-6 Translation Faults

If a sampled operation generates a Translation Fault, the physical address for the sampled operation was not
generated by the MMU and cannot be recorded.

Non-architectural exceptions

It is IMPLEMENTATION DEFINED whether operations that generate non-architectural exceptions are part of the sample
population. If such an operation is part of the sample population, it is further IMPLEMENTATION DEFINED whether
the sample record for a sampled operation that generates a non-architectural exception is captured in the Profiling
Buffer. For more information, see Operations that might be excluded from the sample population on page D9-2950.

If such an operation is part of the sample population and the sample record is captured in the Profiling Buffer, then
the sample might record handling of the non-architectural exception. If the sample record does not record handling
of the non-architectural exception, then the sampled operation is not Architecturally executed because of the
non-architectural exception and it is recorded using E[1] == 0 (operation is not architecturally executed) in the
Events packet. Bit E[0] (operation generated an exception) might be used to indicate the operation did not complete
because of the non-architectural exception.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D9-2967
ID072021 Non-Confidential

The Statistical Profiling Extension
D9.7 The Profiling Buffer
D9.7 The Profiling Buffer

The profile data is collected in a memory Profiling Buffer. The Profiling Buffer is defined by:

• PMBPTR_EL1, the current write pointer.

• PMBLIMITR_EL1, the write limit pointer.

The Profiling Buffer starts at the current write pointer and extends to the current limit pointer minus one. The write
limit pointer must be aligned to the smallest implemented translation granule size. The alignment of the current
write pointer is IMPLEMENTATION DEFINED.

PMBLIMITR_EL1 and PMBPTR_EL1 are virtual addresses in the stage 1 translation regime of the owning
Exception level. This is called the owning translation regime.

Note

The translation of virtual addresses to physical addresses is identical to that for any other virtual address in the
owning Exception level. For example, PMBPTR_EL1[63:56] are ignored by address translation if the respective
TBI bit is set to 1.

D9.7.1 Restrictions on the current write pointer

This section describes the software rules on setting the current write pointer, PMBPTR_EL1. If these rules are not
followed, the value returned for a direct read of PMBPTR_EL1 is UNKNOWN, the behavior is UNPREDICTABLE, and
the PE might do any of the following at any point after profiling is enabled:

• Write sample records to any writeable address in memory that is writable at the owning Exception level.

• Generate a Profiling Buffer management event, with or without indicating data loss, for one of the following
reasons:

— The Profiling Buffer is full.

— Any MMU Fault.

When profiling becomes enabled, all the following must be true:

• The current write pointer must be at least one sample record below the write limit pointer. That is:

UInt(PMBPTR_EL1.PTR) <= UInt(PMBLIMITR_EL1.LIMIT :Zeros(12)) - 2PMSIDR_EL1.MaxSize.

• PMBPTR_EL1.PTR[63:56] must equal PMBLIMITR_EL1.LIMIT[63:56].

When the Profiling Buffer is first configured, PMBPTR_EL1.PTR must be aligned to PMBIDR_EL1.Align. That
is, if PMBIDR_EL1.Align is nonzero, PMBPTR_EL1.PTR [UInt(PMBIDR_EL1.Align)-1:0] must be all zeros.

However, the current write pointer can usually be restored to the saved write pointer value it had when profiling was
disabled, providing a PSB CSYNC and a context synchronization event were executed before reading PMBPTR_EL1:

• If no Profiling Buffer management event was signaled then profiling can be restarted from the saved write
pointer. In this case, the saved write pointer points within one sample record of the write limit pointer.

• If a Profiling Buffer management event was signaled then:

— If PMBSR_EL1.S is restored to 1, then profiling is not being enabled, and there are no constraints on
the value written to PMBPTR_EL1.

— If PMBSR_EL1.S is restored to 0, and the Profiling Buffer management event was caused by an MMU
fault, profiling can be restarted from the saved write pointer; if PMBSR_EL1.{EA, DL} did not also
indicate an External abort or data loss, and the saved write pointer is at least one sample record below
the write limit pointer.

Note
If a signaled MMU fault has not been corrected, the SPU generates a new MMU fault Profiling Buffer
management event when it next tries to write a sample record.

— If PMBSR_EL1.S is restored to 0, and the Profiling Buffer management event was caused by a buffer
full event, the Profiling Buffer can be extended and profiling restarted from the saved write pointer; if
PMBSR_EL1.{EA, DL} did not also indicate an External abort or data loss and the saved write pointer
is at least one sample record below the extended write limit pointer.
D9-2968 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Statistical Profiling Extension
D9.7 The Profiling Buffer
The current write pointer must not be restored from the saved write pointer following a Profiling Buffer
management event if PMBSR_EL1.DL was set to 1.

The saved write pointer might not be aligned to 2PMBIDR_EL1.Align and might point to within one sample record of
the write limit pointer.

For more information, see Synchronization and Statistical Profiling on page D9-2977.

D9.7.2 The owning Exception level

The owning Exception level is:

• Non-secure EL1, if all of the following are true:

— Either EL3 is not implemented and the PE is executing in Non-Secure state, or MDCR_EL3.NSPB is
either 0b10 or 0b11.

— Either EL2 is not implemented, or MDCR_EL2.E2PB is either 0b10 or 0b11.

• Non-secure EL2, if all of the following are true:

— EL2 is implemented.

— Either EL3 is not implemented and the PE is executing in Non-secure state, or MDCR_EL3.NSPB is
either 0b10 or 0b11.

— MDCR_EL2.E2PB is 0b00.

• Secure EL1, if all of the following are true:

— Either EL3 is not implemented and the PE is executing in Secure state, or MDCR_EL3.NSPB is either
0b00 or 0b01.

— Either Secure EL2 is not implemented or is disabled, or MDCR_EL2.E2PB is either 0b10 or 0b11.

• Secure EL2, if all of the following are true:

— Secure EL2 is implemented and enabled.

— Either EL3 is not implemented and the PE is executing in Secure state, or MDCR_EL3.NSPB is either
0b00 or 0b01.

— MDCR_EL2.E2PB is 0b00.

When the owning Exception level is Non-secure EL1

The Profiling Buffer addresses are in the Non-secure EL1&0 translation regime using the current
ASID from TTBRx_EL1. This is a two-stage translation using the current VMID if EL2 is
implemented and HCR_EL2.VM is 1.

If EL3 is implemented, then profiling is disabled in Secure state.

If EL2 is implemented, then profiling is disabled at EL2 and at Non-secure EL0 when
HCR_EL2.TGE is 1.

When the owning Exception level is Non-secure EL2

The Profiling Buffer addresses are in the Non-secure EL2 translation regime. If HCR_EL2.E2H is
1, this is an EL2&0 translation regime using the current EL2&0 translation regime ASID from
TTBRx_EL2.

If EL3 is implemented, then profiling is disabled in Secure state.

Note

If either HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, and the PE is executing at EL1 or EL0, the
EL2 translation regime is not the current stage 1 translation regime because the current stage 1
translation regime is EL1&0.

When the owning Exception level is Secure EL1

The Profiling Buffer addresses are in the Secure EL1&0 translation regime using the current ASID
from TTBRx_EL1. This is a two-stage translation using the current VMID if Secure EL2 is
implemented and enabled and HCR_EL2.VM is 1.

If EL3 is implemented, then profiling is disabled in Non-secure state.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D9-2969
ID072021 Non-Confidential

The Statistical Profiling Extension
D9.7 The Profiling Buffer
If Secure EL2 is implemented and enabled, then profiling is disabled at EL2 and at Secure EL0
when HCR_EL2.TGE is 1.

When the owning Exception level is Secure EL2

The Profiling Buffer addresses are in the Secure EL2 translation regime. If HCR_EL2.E2H is 1, this
is an EL2&0 translation regime using the current EL2&0 translation regime ASID from
TTBRx_EL2.

If EL3 is implemented, then profiling is disabled in Non-secure state.

Summary of the owning translation regime

Profiling is disabled if any of the following are true:

• The owning Exception level is using AArch32 state.

• PMBLIMITR_EL1.E is 0.

Table D9-4 on page D9-2970 summarizes the owning translation regime.

D9.7.3 Memory access types and coherency

The SPU acts as a separate observer in the system and is subject to the rules regarding coherency.

Writes to any Device memory type by the SPU occur once.

The memory type and attributes that are used for a write by the SPU to the Profiling Buffer is taken from the
translation table entries for the virtual address being written to. That is:

• The writes are treated as coming from an observer that is coherent with all observers in the Shareability
domain that is defined by the translation tables.

• There is no requirement to manage coherency for observers in the same Shareability domain but coherency
for other observers in the system might require explicit management.

For more information, see Synchronization and Statistical Profiling on page D9-2977.

If FEAT_MTE2 is implemented, a PE will generate a Tag Unchecked access for each access to the Profiling Buffer
as part of writing a sample record.

Table D9-4 Summary of owning translation regime (for all Exception levels using AArch64 state)

PMBLIMITR_EL1.E SCR_EL3.NS SCR_EL3.EEL2 MDCR_EL3.NSPB MDCR_EL2.E2PB
Owning
translation
regime

0 X X X X Disabled

1 1 X 0b1x 0b1x Non-secure
EL1&0

0b00 Non-secure EL2
or
EL2&0a

0b0x X Disabled

0 0 0b0x X Secure EL1&0

0 1 0b0x 0b1x Secure EL1&0

0b00 Secure EL2 or
EL2&0a

X 0b1x X Disabled

a. Depending on the values of HCR_EL2.{E2H,TGE}.
D9-2970 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Statistical Profiling Extension
D9.7 The Profiling Buffer
For more information on FEAT_MTE2, see Chapter D6 Memory Tagging Extension.

Writes to the Profiling Buffer are made as privileged writes within the owning translation regime. However, the
value of PSTATE.PAN is ignored for these writes and treated as zero, see Faults and watchpoints on page D9-2974.

This means that if FEAT_E0PD is implemented, the values of TCR_ELx.E0PDy, where ELx is the owning
Exception level, do not apply to accesses to the Profiling Buffer made by the SPU.

D9.7.4 Memory access and crossing page boundaries

A memory access from the SPU that crosses a page boundary to a memory location that has a different memory type
or Shareability attribute results in CONSTRAINED UNPREDICTABLE behavior. In this case, the implementation
performs one of the following behaviors:

• Each memory access generated by the SPU uses the memory type and Shareability attribute associated with
its own address.

• The access generates an Alignment fault caused by the memory type:

— If only the stage 1 translation generated the mismatch, or there is only one stage of translation in the
owning translation regime, the resulting Buffer Management event is a stage 1 Data Abort.

— If only the stage 2 translation generated the mismatch, the resulting Buffer Management event is a
stage 2 Data Abort.

— If both stages of translation generate the mismatch, the resulting Buffer Management event is either a
stage 1 Data Abort or a stage 2 Data Abort.

• Some or all of the data is discarded. The write pointer is either updated by the amount of data written not
including the discarded data or the amount of data written including the discarded data.

A memory access from the SPU to Device memory that crosses a boundary corresponding to the smallest translation
granule size of the implementation causes CONSTRAINED UNPREDICTABLE behavior. In this case, the implementation
performs one of the following behaviors:

• All memory accesses generated by the SPU are performed as if the boundary has no effect on the memory
accesses.

• All memory accesses generated by the SPU are performed as if the boundary has no effect on the memory
accesses except that there is no guarantee of ordering between memory accesses.

• The access generates an Alignment fault caused by the memory type:

— If only the stage 1 translation causes the boundary to be crossed, or there is only one stage of
translation in the owning translation regime, the resulting Buffer Management event is a stage 1 Data
Abort.

— If only the stage 2 translation causes the boundary to be crossed, the resulting Buffer Management
event is a stage 2 Data Abort.

— If both stages of translation cause the boundary to be crossed, the resulting Buffer Management event
is either a stage 1 Data Abort or a stage 2 Data Abort.

• Some or all of the data is discarded. The write pointer is either updated by the amount of data written not
including the discarded data or the amount of data written including the discarded data.

Note

The boundary referred to is between two Device memory regions that are both:

• Of the size of the smallest implemented translation granule.

• Aligned to the size of the smallest implemented translation granule.

If PMSIDR_EL1.MaxSize indicates the same value as PMBIDR_EL1.Align, then records are a fixed power-of-two
size and never cross a page boundary.

D9.7.5 Cache and TLB operations

TLB maintenance operations that affect the TLB of the PE also affect any TLB caching translations for the SPU of
that PE.

Cache maintenance operations that affect the caches of the PE also affect data caching by the SPU of that PE.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D9-2971
ID072021 Non-Confidential

The Statistical Profiling Extension
D9.7 The Profiling Buffer
This means that the completion of any cache or TLB maintenance instruction includes its completion on all SPUs
for PEs that are affected by both the instruction and the DSB operation that is required to guarantee visibility of the
maintenance instruction. See Completion and endpoint ordering on page B2-141.

Although the SPU acts as another observer in the system, for determining the Shareability domain of this DSB, or
cache, or TLB maintenance operation, the writes of sample records are treated as coming from the PE that is being
profiled.

D9.7.6 Effect on the exclusive monitors

If a Load-exclusive instruction or an operation between Load-exclusive and Store-exclusive instructions is sampled,
and the sample record is written to an unrelated address, then to avoid a probe effect, Arm recommends that the
Store-exclusive does not systematically fail on account of the sampled operation.

If a Store-exclusive instruction is sampled, and the sample record is written to an unrelated address, then the
Store-exclusive must not systematically fail on account of the instruction having been sampled.
D9-2972 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Statistical Profiling Extension
D9.8 Profiling Buffer management
D9.8 Profiling Buffer management

A Profiling Buffer management event occurs:

• On a fault, see Faults and watchpoints on page D9-2974.

• On an External abort, see External aborts on page D9-2976.

• When the Profiling Buffer fills, see Buffer full event on page D9-2974.

On a Profiling Buffer management event:

• The service bit, PMBSR_EL1.S, is set to 1.

• The data loss bit, PMBSR_EL1.DL, is set as described in the event description.

• The Profiling Buffer management interrupt request signal, PMBIRQ, is asserted:

— PMBIRQ is a level-sensitive interrupt request driven by PMBSR_EL1.S. This means that a direct
write that sets PMBSR_EL1.S to 1 causes the interrupt to be asserted, and PMBIRQ remains
asserted until software clears PMBSR_EL1.S to 0.

— If a Generic Interrupt Controller (GIC) is implemented, PMBIRQ must be configured as a Private
Peripheral Interrupt (PPI) in a multiprocessor system. PMBIRQ is signaled by the PE that implements
the SPU.

Note
A standard PPI number is allocated by the Arm® Base System Architecture (BSA).

• Additional syndrome for the event is written to PMBSR_EL1.MSS. Unless otherwise stated in the event
description, other PMBSR_EL1 fields are unchanged.

While PMBSR_EL1.S is set to 1:

• The buffer is disabled and profiling is disabled.

• All remaining buffered sample records are discarded.

• The values in PMBPTR_EL1 are retained and PMSICR_EL1 does not decrement.

Buffer full events and MMU fault Profiling Buffer management events are reported synchronously.

Note

Reported synchronously means that profiling is disabled before the SPU samples further operations. The interrupt
exception resulting from asserting the Profiling Buffer interrupt request is an asynchronous exception.

It is IMPLEMENTATION DEFINED whether External aborts are reported to the SPU synchronously or asynchronously.
If External aborts are reported as asynchronous:

• The External abort might not be received until after a first Profiling Buffer management event has set
PMBSR_EL1.S to 1.

• Writes to the buffer might generate a second Profiling Buffer management event after the External abort has
set PMBSR_EL1.S to 1.

The architecture does not require that a sample record is written sequentially by the SPU, only that:

• The SPU never writes past the PMBLIMITR_EL1 limit pointer.

• On a Profiling Buffer management interrupt, PMBSR_EL1.DL indicates whether PMBPTR_EL1 points to
the first byte after the last complete sample record.

• On an MMU fault or synchronous External abort, PMBPTR_EL1 serves as a Fault Address Register.

Note

• This means that it must not be assumed that:

— There is ever any valid data beyond the current PMBPTR_EL1 write pointer.

— The PE has not written a valid sample record between the current PMBPTR_EL1 write pointer and the
PMBLIMITR_EL1 limit pointer.

— If PMBSR_EL1.DL is set to 1 on a Profiling Buffer management interrupt, that there is any valid data
between the end of the last complete sample record and the current PMBPTR_EL1 write pointer.

— Any valid data has been written to the Profiling Buffer if an External abort is reported asynchronously
to the SPU.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D9-2973
ID072021 Non-Confidential

The Statistical Profiling Extension
D9.8 Profiling Buffer management
• The last complete sample record must end at most 2(PMSIDR_EL1.MaxSize) bytes below PMBPTR_EL1.

D9.8.1 Prioritization of Profiling Buffer management events

Where multiple synchronous Profiling Buffer management events occur on writing a sample record, the PE
prioritizes them as follows (from highest to lowest priority):

1. Synchronous fault.

2. Synchronous External abort.

3. Buffer full event.

Asynchronous External aborts are not prioritized with respect to other events.

Note

Prioritization of Profiling Buffer management interrupt requests is managed by the interrupt controller. Profiling
Buffer management events are prioritized internally by the PE.

D9.8.2 Buffer full event

If, after writing a sample record, there is not sufficient space in the Profiling Buffer for a sample record of the size
indicated by PMSIDR_EL1.MaxSize, and PMBSR_EL1.S is 0, a Profiling Buffer management event is generated:

• PMBSR_EL1.EC is set to 0b000000, other buffer management event.

• The BSC field of PMBSR_EL1.MSS is set as follows:

— PMBSR_EL1.BSC is set to 0b000001, buffer filled.

• PMBPTR_EL1 is set to the first byte after the last complete sample record. PMBSR_EL1.DL is unchanged.

• The other PMBSR_EL1 fields are unchanged.

• PMBSR_EL1.S is set to 1.

That is, the Profiling Buffer management event is generated when the PE writes past the write limit pointer minus
2(PMSIDR_EL1.MaxSize). The SPU never writes beyond the write limit pointer.

For more information, see Restrictions on the current write pointer on page D9-2968.

D9.8.3 Faults and watchpoints

Table D9-5 on page D9-2974 lists the faults that might be generated by a write to the Profiling Buffer by the SPU.

Writes to the Profiling Buffer never generate watchpoints.

Table D9-5 Faults

Fault Conditions

Translation The translation of a virtual address to a physical address might generate a Translation fault.

Address Size The translation of a virtual address to a physical address might generate an Address Size
fault.

Alignment If PMBPTR_EL1 is not aligned to an IMPLEMENTATION DEFINED minimum alignment, the
behavior is UNPREDICTABLE and a write to the Profiling Buffer by the SPU might generate
an Alignment fault. For more information, see Restrictions on the current write pointer on
page D9-2968.
D9-2974 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Statistical Profiling Extension
D9.8 Profiling Buffer management
If a write to the Profiling Buffer generates a fault and PMBSR_EL1.S is 0, then a Profiling Buffer management
event is generated:

• PMBSR_EL1.S is set to 1.

• PMBSR_EL1.EC is set to one of:

— 0b100100, stage 1 Data Abort on write to the Profiling Buffer.

— 0b100101, stage 2 Data Abort on write to the Profiling Buffer.

• The FSC field of PMBSR_EL1.MSS is set as follows:

— PMBSR_EL1.FSC is set to indicate the type of the fault.

• PMBPTR_EL1 is set to the address that generated the fault.

• If PMBPTR_EL1 is not the address of the first byte after the last complete sample record written by the SPU,
then PMBSR_EL1.DL is set to 1. Otherwise, PMBSR_EL1.DL is unchanged.

• The other PMBSR_EL1 fields are unchanged.

Note

Each of these faults gives rise to a Profiling Buffer management interrupt, not an actual MMU fault exception. The
ESR and FAR registers are unchanged.

For more information, see The MMU fault-checking sequence on page D5-2803.

Hardware management of dirty state and the Access flag by the Statistical Profiling
Extension

It is IMPLEMENTATION DEFINED whether address translations performed by the SPU manage dirty state and the
Access flag. This is discoverable by software using PMBIDR_EL1.F. See Hardware management of dirty state on
page D5-2768 and Hardware management of the Access flag on page D5-2767.

If hardware management of dirty state by the SPU is implemented, and hardware management of dirty state is
enabled for the owning translation regime, then the SPU can speculatively update the Translation Table descriptor
for any Page or Block in the Statistical Profiling buffer before writing data to it, if the write is otherwise permitted.
This includes the case where a buffer management event means the SPU stops writing data before the page or block
is written to. For more information, see The Profiling Buffer on page D9-2968.

Permission Writes to the Profiling Buffer are made as privileged writes. If the write does not have write
permission, a Permission fault is generated. The value of PSTATE.PAN is ignored and
treated as zero. If the SPU does not manage the dirty state in translation tables, then
accesses ignore the Dirty Bit Modifier bit in Page and Block descriptors and an access
might as a result generate a Permission fault. For more information, see The dirty state on
page D5-2766.a

Access flag If the SPU does not manage the Access flag in translation tables or hardware management
of the Access flag state is disabled for the owning translation regime, then any access to a
Page or Block with the Access Flag bit set to 0 in a descriptor will generate an Access Flag
fault. For more information, see The Access flag on page D5-2765.a

TLB Conflict fault IMPLEMENTATION DEFINED.

Unsupported atomic hardware update
fault

 If hardware update of the translation tables is not guaranteed atomic in regard to other
agents that access the memory, the translation of a virtual address to a physical address
might generate an Unsupported atomic hardware update fault.

a. PMBIDR_EL1.F defines whether the SPU manages the Access flag and dirty state in the translation tables.

Table D9-5 Faults (continued)

Fault Conditions
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D9-2975
ID072021 Non-Confidential

The Statistical Profiling Extension
D9.8 Profiling Buffer management
D9.8.4 External aborts

A write to the Profiling Buffer might generate an External abort, including an External abort on a translation table
walk or translation table update. It is an IMPLEMENTATION DEFINED choice whether such an External abort:

• Is reported to the SPU and treated as a Profiling Buffer management event.

• Generates an SError interrupt exception.

If a write to the Profiling Buffer generates an External abort that is reported to the SPU:

• The External abort bit, PMBSR_EL1.EA, is set to 1.

• The SPU stops writing sample records to the Profiling Buffer. It is implementation defined whether an
External abort on a write to the Profiling Buffer is reported as synchronous or asynchronous:

— The External abort is reported as synchronous if PMBPTR_EL1 is set to the address that was
externally aborted.

— The External abort is reported as asynchronous if PMBPTR_EL1 is not guaranteed to be set to the
address that was externally aborted.

• If the External abort is reported as asynchronous or PMBPTR_EL1 is not the address of the first byte of the
sample record being written by the SPU, then PMBSR_EL1.DL is set to 1. Otherwise, PMBSR_EL1.DL is
unchanged.

Note
Following an External abort reported asynchronously to the SPU, software must not assume that any valid
data has been written to the Profiling Buffer.

• The other PMBSR_EL1 fields are unchanged.

• If PMBSR_EL1.S == 0, a buffer management event is generated:

— PMBSR_EL1.S is set to 1.

— PMBSR_EL1.EC is set to one of:

— 0b100100, stage 1 data abort on write to buffer.

— 0b100101, stage 2 data abort on write to buffer.

— PMBSR_EL1.MSS is set as follows:

— PMBSR_EL1.FSC is set to indicate a synchronous or asynchronous external abort.

If a write to the Profiling Buffer generates an External abort that is taken as an SError interrupt exception, the PE
takes the SError interrupt exception as normal, and PMBSR_EL1 fields are unchanged.

Note

Treating the External abort as a Profiling Buffer management event:

• Sets PMBSR_EL1.S to 1 and so disables the SPU.

• Allows error recovery software to isolate the event to the actions of the SPU.

Taking an SError interrupt:

• Means that the SPU will be disabled only if the SError interrupt is taken to an Exception level where the SPU
is disabled.

• Might not allow error recovery software to isolate the event and error containment.
D9-2976 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Statistical Profiling Extension
D9.9 Synchronization and Statistical Profiling
D9.9 Synchronization and Statistical Profiling

The profiling operation of the SPU:

• Makes indirect reads and indirect writes of System registers.

• Writes to memory.

• Makes further indirect writes to PMBPTR_EL1 as a result of an External abort on a write to memory.

The indirect reads of the PMSCR_EL1.{E1SPE, E0SPE} and PMSCR_EL2.{E2SPE, E0HSPE} controls when
determining whether to select an operation for profiling are treated as indirect reads made by the instruction being
executed, and subject to the standard requirements for synchronization.

Otherwise, although the profiling operation is generated by a sampled operation, the profiling operation executes
independently of the instructions that are executed on the PE, and acts as a separate memory observer from the PE
in the system.

A DSB instruction guarantees that all memory transactions that are made by the PE are observable by writes made
by a profiling operation relating to a sampled operation in program order after the DSB instruction.

A Context synchronization event guarantees that a direct write to a System register made by the PE in program order
before the context synchronization event are observable by indirect reads and indirect writes of the same System
register made by a profiling operation relating to a sampled operation in program order after the context
synchronization event.

To synchronize previous profiling operations, software must execute a PSB CSYNC Buffer Synchronization
instruction.

Note

The PSB CSYNC instruction is not defined in the AArch32 instruction set architecture.

Following a context synchronization event, a PSB CSYNC instruction is guaranteed to synchronize the profiling
operations for all instructions that are executed in program order before the context synchronization event.

Synchronized by the PSB CSYNC instruction means:

• A direct read of a System register in program order following a PSB CSYNC instruction requires explicit
synchronization to observe an indirect write to the same System register made by a profiling operation
synchronized by the PSB CSYNC instruction.

• An indirect write to a System register made by a profiling operation synchronized by a PSB CSYNC instruction
does not affect a direct write to the same System register made in program order following the PSB CSYNC
instruction.

• A direct write to a System register in program order following a PSB CSYNC instruction is not allowed to affect
an indirect read of the same System register made by a profiling operation synchronized by the PSB CSYNC
instruction.

• A DSB instruction in program order following a PSB CSYNC instruction does not complete before the writes to
the Profiling Buffer of sample records for profiling operations synchronized by the PSB CSYNC instruction have
completed. The DSB instruction must apply to both loads and stores.

For the indirect write to PMBSR_EL1 that is made as a result of an External abort on a write of a sample record to
memory, the synchronization rules apply only after the write has completed.

Although the SPU acts as another observer in the system, for determining the Shareability domain of the DSB
instructions, the writes of sample records are treated as coming from the PE that is being profiled.

Note

If profiling is not disabled when the context synchronization event occurs, further profiling operations might be
generated that are not guaranteed to be synchronized by the PSB CSYNC instruction.

If the PE takes an exception to an Exception level where profiling is disabled, no new operations are selected for
sampling. Profiling is always disabled if the owning Exception level is a lower Exception level than the current
Exception level.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D9-2977
ID072021 Non-Confidential

The Statistical Profiling Extension
D9.9 Synchronization and Statistical Profiling
In the absence of a context synchronization event, a PSB CSYNC instruction is not required to execute in program order
with respect to sampled operations.

D9.9.1 UNPREDICTABLE behavior

In the absence of correct context synchronization events, it is UNPREDICTABLE whether an indirect read of a System
register made by a profiling operation will return the old or the new values.

If the indirect reads mean that ProfilingBufferEnabled() returns FALSE when a sample record or records are about
to be written to memory, then it is further UNPREDICTABLE whether the sample record or records:

• Are written to memory.

• Are silently discarded and not written to memory.

• Are discarded and not written to memory, and a Profiling Buffer management event is generated:

— PMBSR_EL1.DL is set to 1.

— PMBSR_EL1.EC is set to 0x00.

— PMBSR_EL1.BSC is set to 0x00 to indicate that the buffer is not full.

If SCR_EL3.NS does not match the Security state of the owning translation regime, it is UNPREDICTABLE whether
an address translation made by the PE writing a sample record to memory uses the value of SCR_EL3.NS or the
identity of the owning translation regime.

This means that software must execute a PSB CSYNC instruction to force any sample records to be written to the
Profiling Buffer before changing context.
D9-2978 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter D10
Statistical Profiling Extension Sample Record
Specification

This chapter describes the sample records generated by the Statistical Profiling Extension. It contains the following
sections:

• About the Statistical Profiling Extension Sample Records on page D10-2980.

• Alphabetical list of Statistical Profiling Extension packets on page D10-2983.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D10-2979
ID072021 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D10.1 About the Statistical Profiling Extension Sample Records
D10.1 About the Statistical Profiling Extension Sample Records

The Statistical Profiling Extension sample record format version is identified by PMSIDR_EL1.Format. The
architecture currently defines only version 0.

Note

Armv8.7 defines the SPE sample record format version, allowing future architecture updates to extend or change
the record format. PMSIDR_EL1.Format was previously a RES0 field in a read-only register. Software that reads
and checks PMSIDR_EL1.Format on any implementation prior to Armv8.7 that includes SPE will read a value
indicating format version 0 is supported.

The sample record format version 0 is self-describing and extensible. This format allows software to parse profile
data even when that profile data contains extended information.

The Statistical Profiling Extension writes a series of sample records to memory, each record consisting of a sequence
of packets, and each packet consisting of:

• One or two header bytes.

• Zero, 1, 2, 4 or 8 payload bytes.

D10.1.1 Headers

The first header byte encodes the number of payload bytes:

0x00-0x1F Single byte header, no payload.

0x20-0x3F First byte of extended header. Second byte encodes the payload length.

0x40-0x4F, 0x80-0x8F, 0xC0-0xCF

Header with an 8-bit payload.

0x50-0x5F, 0x90-0x9F, 0xD0-0xDF

Header with a 16-bit payload.

0x60-0x6F, 0xA0-0xAF, 0xE0-0xEF

Header with a 32-bit payload.

0x70-0x7F, 0xB0-0xBF, 0xF0-0xFF

Header with a 64-bit payload.

D10.1.2 Records

A record consists of multiple packets. A record comprises, in ascending address order:

• A sequence of headers, each followed by their payload byte or bytes.

• Either:

— An End packet header.

— A Timestamp packet.

Figures in this chapter show each packet as a sequence of bytes. Figure D10-1 on page D10-2981 shows how bytes
are stored in memory in increasing addresses from left to right.
D10-2980 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Statistical Profiling Extension Sample Record Specification
D10.1 About the Statistical Profiling Extension Sample Records
Figure D10-1 Convention for packet descriptions

In some sections, the figures are split into separate figures for the header byte and payload bytes. For instance, where
the number of payload bytes varies according to a field in the header.

The header bytes and payload bytes are described in ascending memory address order. Within a payload value,
values are in little-endian byte order.

The size of the access granule for writes to the Profiling Buffer by the Statistical Profiling Unit is IMPLEMENTATION
DEFINED, up to a maximum of 2KB. The size of the access granule can vary from time to time.

D10.1.3 Protocol framing packets and forwards compatibility

The padding header, alignment command, timestamp packet, and end packet are protocol framing packets that
frame the records created by the Statistical Profiling Unit. Only padding headers and alignment commands are
permitted between records.

Note

PMBIDR_EL1.Align defines a minimum alignment for records. However, implementations must nevertheless
create a valid protocol stream that can be parsed without knowledge of the minimum alignment.

The packet types are described in the following sections. Software must ignore unknown packets, using the size
field encoded in the header. This includes packets containing reserved values in fields.

The following sections give an overview of the Statistical Profiling Unit packets output to a memory-mapped
Profiling Buffer or Device memory:

• Statistical Profiling Extension protocol packet headers on page D10-2981

D10.1.4 Statistical Profiling Extension protocol packet headers

8-bit headers

For Address packets and Counter packets, the 8-bit header format is described as the short format.

First byte 1 2 3 4 Last Byte

Header
(16-bit data) LSB MSB

Header
(8-bit data) Data 0x01

End Packet
Data

1 2 3

LSB MSB
Header

(8-bit data)

4

Data

5

0x71
Timestamp

Packet

6

TS [7:0]

... 12 Last Byte

... TS [55:48] TS [63:56]

First Byte

Header
(16-bit
data)

Data

Table D10-1 8-bit header encodings

[7] [6] [5] [4] [3] [2] [1] [0] Description

0 0 0 0 0 0 0 0 Padding on page D10-3003

0 0 0 0 0 0 0 1 End packet on page D10-2992

0 1 1 1 0 0 0 1 Timestamp packet on page D10-3004

0 1 x x 0 0 1 0 Events packet on page D10-2993
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D10-2981
ID072021 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D10.1 About the Statistical Profiling Extension Sample Records
16-bit headers

For Address packets and Counter packets, the 16-bit header format is described as the extended format.

0 1 x x 0 0 1 1 Data Source packet on page D10-2991

0 1 1 0 0 1 x x Context packet on page D10-2987

0 1 0 0 1 0 x x Operation Type packet on page D10-2998

1 0 1 1 0 x x x Address packet on page D10-2983 (Short format)

1 0 0 1 1 x x x Counter packet on page D10-2988 (Short format)

Table D10-1 8-bit header encodings (continued)

[7] [6] [5] [4] [3] [2] [1] [0] Description

Table D10-2 16-bit header encodings

Byte 0 Byte 1
Description

[7] [6] [5] [4] [3] [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0]

0 0 1 0 0 0 x x 1 0 1 1 0 x x x Address packet on
page D10-2983

0 0 1 0 0 0 x x 1 0 0 1 1 x x x Counter packet on
page D10-2988
D10-2982 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
D10.2 Alphabetical list of Statistical Profiling Extension packets

D10.2.1 Address packet

The Address packet characteristics are:

Purpose Provides an address value for the record. Addresses are always 64 bits.

Attributes Multi-part packet comprising:

• 8 or 16-bit header.

• 64-bit payload.

Address packet header

When Extended format is used, the Address packet header bit assignments are:

When Short format is used, the Address packet header bit assignments are:

Byte 1 bits [7:6], when Extended format, Byte 0 bits [7:6], when Short format

This field reads as 0b10.

SZ, byte 1 bits [5:4], when Extended format, SZ, byte 0 bits [5:4], when Short format

Payload size. The defined values of this field are:

0b11 Doubleword.

This field reads as 0b11.

Byte 1 bit [3], when Extended format, Byte 0 bit [3], when Short format

This bit reads as 0b0.

Byte 0 bits [7:5], when Extended format

This field reads as 0b001.

Byte 0 bits [4:2], when Extended format

This field reads-as-zero.

INDEX, byte 0 bits [1:0], byte 1 bits [2:0], when Extended format, INDEX, byte 0 bits [2:0], when Short
format

The defined values of this field are:

0b00000 Issued instruction virtual address (PC). Included for all operations.

0b00001 Branch target address:

• It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether this
address is included for an Exception Return to an Exception level where profiling
is disabled.

• Included for all other branch and exception return instructions.

01234567

INDEX[4:3]0 0 00 0 1 Byte 0

INDEX[2:0]0
1 1

SZ
1 0 Byte 1

01234567

INDEX0
1 1

SZ
1 0 Byte 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D10-2983
ID072021 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
0b00010 Data access virtual address. Included for all load, store and atomic operations.

0b00011 Data access physical address:

• It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether this
address included for accesses that generate Permission or Access Flag faults.

• Not included for all other accesses that generate an abort, or if disabled by
CollectPhysicalAddress.

• Included for all other load, store and atomic operations.

0b00100 Previous branch target address. The target virtual address of the most recently taken
branch operation in program order before the sampled operation. This value is defined
when FEAT_SPEv1p2 is implemented and reserved otherwise.

0b0011x IMPLEMENTATION DEFINED address.

0b1xxxx IMPLEMENTATION DEFINED address.

All other values are reserved.

In the Short format header, bits [4:3] are zero.

Address packet payload

When Data access physical address, the Address packet payload bit assignments are:

01234567

ADDR[7:0] Byte 0

ADDR[15:8] Byte 1

ADDR[23:16] Byte 2

ADDR[31:24] Byte 3

ADDR[39:32] Byte 4

ADDR[47:40] Byte 5

ADDR[55:48] Byte 6

PAT0 0CHNS Byte 7
D10-2984 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
When Data access virtual address, the Address packet payload bit assignments are:

When Instruction virtual address, the Address packet payload bit assignments are:

TAG byte <7>, when Data access virtual address

Top-byte tag.

If the value of the applicable TBI bit is one, a data access virtual address includes the top-byte tag.
If the applicable TBI bit is zero, it is IMPLEMENTATION DEFINED whether this field reads as zero or
holds the address tag of the applicable address.

01234567

ADDR[7:0] Byte 0

ADDR[15:8] Byte 1

ADDR[23:16] Byte 2

ADDR[31:24] Byte 3

ADDR[39:32] Byte 4

ADDR[47:40] Byte 5

ADDR[55:48] Byte 6

TAG Byte 7

01234567

ADDR[7:0] Byte 0

ADDR[15:8] Byte 1

ADDR[23:16] Byte 2

ADDR[31:24] Byte 3

ADDR[39:32] Byte 4

ADDR[47:40] Byte 5

ADDR[55:48] Byte 6

0 0 0 0 0ELNS Byte 7
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D10-2985
ID072021 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
NS, byte 7 bit [7], when Instruction virtual address

Non-secure state. The Security state associated with the address. For an issued instruction virtual
address (PC) this is the Security state the instruction was executed in. For a branch target address,
this is the Security state at the target of the branch. The defined values of this bit are:

0 Secure state.

1 Non-secure state.

NS, byte 7 bit [7], when Data access physical address

Physical address space identifier. The Security attribute for the physical address. The defined values
of this bit are:

0 Secure physical address space.

1 Non-secure physical address space.

CH, byte 7 bit[6], when Data access physical address

When FEAT_MTE2 is implemented, Checked access identifier. Checked or Unchecked access. The
defined values of this bit are:

0 Tag Unchecked access.

1 Tag Checked access.

For more information see Chapter D6 Memory Tagging Extension.

If FEAT_MTE2 is not implemented this bit is RAZ.

When Tag Check Faults are configured to be ignored by SCTLR_ELx.TCF or SCTLR_ELx.TCF0,
it is IMPLEMENTATION DEFINED whether this bit is 1 or 0 on a Tag Checked access.

EL, byte 7 bits [6:5], when Instruction virtual address

Exception level. The Exception level associated with the address. For an issued instruction virtual
address (PC) this is the Exception level the instruction was executed in. For a branch target address,
this is the Exception level at the target of the branch. The defined values of this field are:

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

Note

For an Exception Return, the Exception level at the target of the branch might be different to the
Exception level the instruction was executed in.

Byte 7 bits [5:4], when Data access physical address

This field reads as 0b00.

PAT, Byte 7 bits [3:0], when Data access physical address

When FEAT_MTE2 is implemented, this field provides the Physical Address Tag for a Tag Checked
access. If the access is Unchecked this field reads as an IMPLEMENTATION DEFINED choice between
0b0000 and the Physical Address Tag used to perform the access.

For more information see Chapter D6 Memory Tagging Extension.

If FEAT_MTE2 is not implemented this field is RAZ.

Byte 7 bits [4:0], when Instruction virtual address

This field reads as 0b00000.

ADDR, bytes <6:0>

Address. Bits [55:0] of the address.
D10-2986 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
D10.2.2 Context packet

The Context packet characteristics are:

Purpose Provides context information for the record.

Attributes Multi-part packet comprising:

• 8-bit header.

• 32-bit payload.

Context packet header

The Context packet header bit assignments are:

Byte 0 bits [7:6]

This field reads as 0b01.

SZ, byte 0 bits [5:4]

Payload size. The defined values of this field are:

0b10 Word.

This field reads as 0b10.

Byte 0 bits [3:2]

This field reads as 0b01.

INDEX, byte 0 bits [1:0]

Identifies the context value. The defined values of this field are:

0b00 CONTEXTIDR_EL1. Included for all operations if enabled by CollectContextIDR1.

0b01 CONTEXTIDR_EL2. Included for all operations if enabled by CollectContextIDR2.

All other values are reserved.

Context packet payload

The Context packet payload bit assignments are:

CONTEXT, bytes <3:0>

The context value.

01234567

INDEX0 1
1 0

SZ
0 1 Byte 0

01234567

CONTEXT[7:0] Byte 0

CONTEXT[15:8] Byte 1

CONTEXT[23:16] Byte 2

CONTEXT[31:24] Byte 3
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D10-2987
ID072021 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
D10.2.3 Counter packet

The Counter packet characteristics are:

Purpose Count of cycles the operation spent performing all or part of its behavior. The counter value
occupies the least significant bits of the payload. The remaining bits are set to zero.

Attributes Multi-part packet comprising:

• 8 or 16-bit header.

• 16-bit payload.

Counter packet header

When Extended format, the Counter packet header bit assignments are:

When Short format, the Counter packet header bit assignments are:

Byte 1 bits [7:6], when Extended format, Byte 0 bits [7:6], when Short format

This field reads as 0b10.

SZ, byte 1 bits [5:4], when Extended format, SZ, byte 0 bits [5:4], when Short format

Payload size. The defined values of this field are:

0b01 Halfword.

This field reads as 0b01.

Byte 1 bit [3], when Extended format, Byte 0 bit [3], when Short format

This bit reads as 0b1.

Byte 0 bits [7:5], when Extended format

This field reads as 0b001.

Byte 0 bits [4:2], when Extended format

This field reads-as-zero.

INDEX, byte 0 bits [1:0], byte 1 bits [2:0], when Extended format, INDEX, byte 0 bits [2:0], when Short
format

The defined values of this field are:

0b00000 Total latency. Cycle count from the operation being dispatched for issue to the operation
being microarchitecturally-finished. Included for all operations.

0b00001 Issue latency. Cycle count from the operation being dispatched for issue to the operation
being issued for execution. This counts any delay in waiting the operation being ready
to issue. Included for all operations.

0b00010 Translation latency. Cycle count from a virtual address being passed to the MMU for
translation to the result of the translation being available. Included for all load, store and
atomic operations.

0b0011x IMPLEMENTATION DEFINED counter value.

01234567

INDEX[4:3]0 0 00 0 1 Byte 0

INDEX[2:0]1
0 1

SZ
1 0 Byte 1

01234567

INDEX1
0 1

SZ
1 0 Byte 0
D10-2988 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
0b1xxxx IMPLEMENTATION DEFINED counter value.

All other values are reserved.

In the Short format header, bits [4:3] are zero.

For the purposes of defining these counter values:

• Dispatched for issue means:

— The operation has been decoded.

— The operation might not be ready to start execution because it is waiting for input
values. The operation might be put into a queue.

• Issued for execution means the operation is ready to start executing:

— For example, for a memory operation, this should be indicative of the cycle count from
memory operation being dispatched for issue to access being initiated (virtual
address).

• Microarchitecturally-finished means:

— The operation has completed execution and is no longer capable of stalling any
instruction that consumes its output. The results of the operation are not required to be
coherent or observable by other PEs.

— It is IMPLEMENTATION DEFINED whether the operation is speculative, or has committed
its results to the architectural state of the PE.

— For example:

— For an arithmetic, floating-point, or SIMD operation with variable timing, such
as divide, the results of the operation are available.

— For load and atomic operations that return data, all data have been returned from
memory.

— For store and atomic operations that do not return data, it is not required that the
store is complete for other observers.

— For branch operations, the branch has been resolved as taken or not taken.

— For barrier operations, the barrier has completed.

For WFE and WFI operations, it is IMPLEMENTATION DEFINED whether:

• The instruction is complete before the PE enters a low-power state or when the PE wakes
from the low-power state.

• Counters count in the low power state.

• Sampling an operation is itself a wake-up event.

Counter packet payload

The Counter packet payload bit assignments are:

Byte 1 bits [7:4]

This field reads-as-zero.

 COUNT, byte 1 bits [3:0], byte <0>, when a 12-bit counter is implemented

The counter value occupies the least significant bits of the payload. The remaining bits are set to
zero. The counters are:

• Unsigned numbers.

01234567

COUNT[7:0] Byte 0

COUNT[11:8]0 0 0 0 Byte 1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D10-2989
ID072021 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
• 12 bits.

• Saturating.

The value 0xFFF indicates the count has saturated.
D10-2990 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
D10.2.4 Data Source packet

The Data Source packet characteristics are:

Purpose If the implementation includes support for indicating the loaded data source, the Data
Source packet indicates where the data returned for a load operation was sourced. It might
also include other information, such as the state of the data at the source. It is
IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether this is included for load
and atomic operations that generate an External abort. It is IMPLEMENTATION DEFINED
whether this is included for atomic operations that do not return data to a PE register.
Included for all other load and atomic operations.

Attributes Multi-part packet comprising:

• 8-bit header.

• 8 or 16-bit payload.

Data Source packet header

The Data Source packet header bit assignments are:

Byte 0 bits [7:6]

This field reads as 0b01.

 SZ, byte 0 bits [5:4]

Payload size. The defined values of this field are:

0b00 Byte.

0b01 Halfword.

Byte 0 bits [3:0]

This field reads as 0b0011.

Data Source packet payload

When SZ == 0b00, the Data Source packet payload bit assignments are:

When SZ == 0b01, the Data Source packet payload bit assignments are:

SOURCE, byte <0>, when SZ == 0b00, SOURCE, bytes <1:0>, when SZ == 0b01

Because the list of data sources varies from system to system, the definition of this field is
IMPLEMENTATION DEFINED. If a sampled operation generated multiple data accesses, it is
IMPLEMENTATION DEFINED how the data source information is combined.

01234567

0 0 1 1SZ0 1 Byte 0

01234567

SOURCE Byte 0

01234567

SOURCE[7:0] Byte 0

SOURCE[15:8] Byte 1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D10-2991
ID072021 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
D10.2.5 End packet

The End packet characteristics are:

Purpose Defines the end of a record if a Timestamp packet is not present.

Attributes 8-bit packet.

Field descriptions

The End packet bit assignments are:

Byte <0>

This field reads as 0b00000001.

01234567

0 0 0 0 0 0 0 1 Byte 0
D10-2992 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
D10.2.6 Events packet

The Events packet characteristics are:

Purpose Indicates up to 64 events generated by the sampled operation. If FEAT_PMUv3p1 is
implemented and an event counter is configured to count PMU events, then a sampled
operation that causes the event counter to be incremented has the event recorded as one, and
conversely a sampled operation that does not cause the counter to be incremented is
recorded as zero.

Note

Arm recommends that the Performance Monitors Extension implements the Events.

Attributes Multi-part packet comprising:

• 8-bit header.

• 8, 16, 32, or 64-bit payload.

Events packet header

The Events packet header bit assignments are:

Byte 0 bits [7:6]

This field reads as 0b01.

SZ, byte 0 bits [5:4]

Payload size. The defined values of this field are:

0b00 Byte.

0b01 Halfword.

0b10 Word.

0b11 Doubleword.

Software must treat bits that are not output as zero.

Byte 0 bits [3:0]

This field reads as 0b0010.

Events packet payload

When SZ == 0b00, the Events packet payload bit assignments are:

When SZ == 0b01, the Events packet payload bit assignments are:

01234567

0 0 1 0SZ0 1 Byte 0

01234567

E[0]E[1]E[2]E[3]E[4]E[5]E[6]E[7] Byte 0

01234567

E[0]E[1]E[2]E[3]E[4]E[5]E[6]E[7] Byte 0

E[8]E[9]E[10]E[11]E[15:12] Byte 1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D10-2993
ID072021 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
When SZ == 0b10, the Events packet payload bit assignments are:

When SZ == 0b11, the Events packet payload bit assignments are:

E[63:48], bytes <7:6>, when SZ == 0b11

Events 63 to 48. IMPLEMENTATION DEFINED.

Bytes <5:4,2>, byte 1 bit [3], when SZ == 0b11

This field reads-as-zero.

E[31:24], byte <3>, when SZ == 0b10, or when SZ == 0b11

Events 31 to 24. IMPLEMENTATION DEFINED.

E[18], byte 2 bit [18], when SZ == 0b10, or SZ == 0b11

Empty predicate.

When The Scalable Vector Extension (SVE) and FEAT_SPEv1p1 are implemented the defined
values of this bit are:

0 Operation was not an SVE operation, was unpredicated or executed with all elements
Active.

1 SVE operation executed with all elements Inactive.

Otherwise this bit reads-as-zero.

01234567

E[0]E[1]E[2]E[3]E[4]E[5]E[6]E[7] Byte 0

E[8]E[9]E[10]E[11]E[15:12] Byte 1

E[16]E[17]E[18]0 0 0 0 0 Byte 2

E[31:24] Byte 3

01234567

E[0]E[1]E[2]E[3]E[4]E[5]E[6]E[7] Byte 0

E[8]E[9]E[10]E[11]E[15:12] Byte 1

E[16]E[17]E[18]0 0 0 0 0 Byte 2

E[31:24] Byte 3

0 0 0 0 0 0 0 0 Byte 4

0 0 0 0 0 0 0 0 Byte 5

E[55:48] Byte 6

E[63:56] Byte 7
D10-2994 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
If FEAT_PMUv3 and FEAT_SVE are implemented this Event is required to be implemented
consistently with SVE_PRED_EMPTY_SPEC in the Arm Architecture Reference Manual
Supplement, the Scalable Vector Extension, for v8-A.

E[17], byte 2 bit [17], when SZ == 0b10, or SZ == 0b11

Partial predicate.

When The Scalable Vector Extension (SVE) and FEAT_SPEv1p1 are implemented the defined
values of this bit are:

0 Operation was not an SVE operation, was unpredicated, or executed with all elements
Active.

1 Predicated SVE operation executed with at least one Inactive element.

Otherwise this bit reads-as-zero.

If FEAT_PMUv3 and FEAT_SVE are implemented this Event is required to be implemented
consistently with SVE_PRED_EMPTY_SPEC and SVE_PRED_PARTIAL_SPEC in the Arm
Architecture Reference Manual Supplement, the Scalable Vector Extension, for v8-A.

E[15:12], byte 1 bits [7:4], when SZ == 0b01, when SZ == 0b10, or when SZ == 0b11

Events 15 to 12. IMPLEMENTATION DEFINED.

E[11], byte 1 bit [3], when SZ == 0b01, when SZ == 0b10, or when SZ == 0b11

Alignment.

When FEAT_SPEv1p1 is implemented the defined values of this bit are:

0 Load/store operation that was optimally aligned for the size of data being accessed.

1 Load/store operation that, due to the alignment of the address and size of data being
accessed, incurred additional latency.

Otherwise this bit reads-as-zero.

If FEAT_PMUv3 is implemented this Event is required to be implemented consistently with
LDST_ALIGN_LAT.

E[10], byte 1 bit [2], when SZ == 0b01, when SZ == 0b10, or when SZ == 0b11

Remote access. The defined values of this bit are:

0 Did not cause access to another socket.

1 Load/store operation caused an access to another socket in a multi-socket system. This
includes each data memory access that accesses another socket in a multi-socket system,
including those that do not return data.

This event is optional. When this event is implemented, it is further IMPLEMENTATION DEFINED and
might be UNPREDICTABLE whether a store can finish execution before this event is generated,
meaning this event is never recorded for stores.

If this event and FEAT_PMUv3 are both implemented, this event is required to be implemented
consistently with REMOTE_ACCESS or REMOTE_ACCESS_RD.

E[9], byte 1 bit [1], when SZ == 0b01, when SZ == 0b10, or when SZ == 0b11

Last Level cache miss. The defined values of this bit are:

0 Did not miss Last Level cache.

1 Load/store operation caused an access to at least the Last Level cache but is not
completed by the Last Level cache. That is, each:

• Load operation that does not return data from the Last Level cache.

• Store operation that does not update the Last Level cache.

The event is not set for operations that are completed by a cache above the Last Level
cache.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D10-2995
ID072021 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
This event is optional. When this event is implemented, it is further IMPLEMENTATION DEFINED and
might be UNPREDICTABLE whether a store can finish execution before this event is generated,
meaning this event is never recorded for stores.

If this event and FEAT_PMUv3 are both implemented, this event is required to be implemented
consistently with LL_CACHE_MISS or LL_CACHE_MISS_RD.

E[8], byte 1 bit [0], when SZ == 0b01, when SZ == 0b10, or when SZ == 0b11

Last Level cache access. The defined values of this bit are:

0 Did not access Last Level data or unified cache.

1 Load/store operation caused a cache access to at least the Last Level data or unified
cache.

Note

The architecture does not define the Last Level cache. The Last Level cache is typically the largest
cache on this device shared by all PEs in the Inner or Outer Shareable domain of this PE. In a
multi-socket system, it is IMPLEMENTATION DEFINED whether this includes caches on other sockets.

This event is optional. When this event is implemented, it is further IMPLEMENTATION DEFINED and
might be UNPREDICTABLE whether a store can finish execution before this event is generated,
meaning this event is never recorded for stores.

If this event and FEAT_PMUv3 are both implemented, this event is required to be implemented
consistently with LL_CACHE or LL_CACHE_RD.

E[7], byte 0 bit [7]

Mispredicted. The defined values of this bit are:

0 Did not cause correction to the predicted program flow.

1 A branch that caused a correction to the predicted program flow.

If FEAT_PMUv3 is implemented this Event is required to be implemented consistently with either
BR_MIS_PRED or BR_MIS_PRED_RETIRED.

E[6], byte 0 bit [6]

Not taken. The defined values of this bit are:

0 Did not fail condition code check.

1 A conditional instruction that failed its condition code check. This includes conditional
branches, compare-and-branch, conditional select, and conditional compares:

• For a conditional branch or compare-and-branch instruction, this means the
branch was not taken.

• For a conditional select, this means the second operand was written to the result.

• For a condition compare, this means the condition flags were set to the immediate
value and not the result of the compare.

Note

This Event includes branches, selects, CCMP (register), and CCMP (immediate).

E[5], byte 0 bit [5]

TLB walk. The defined values of this bit are:

0 Did not generate TLB walk.

1 Load/store operation that causes a refill of a data or unified TLB, involving at least one
translation table walk access. This includes each complete or partial translation table
walk that causes an access to memory, including to data or translation table walk caches.

If FEAT_PMUv3 is implemented this Event is required to be implemented consistently with
DTLB_WALK.
D10-2996 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
E[4], byte 0 bit [4]

TLB access. The defined values of this bit are:

0 Did not access TLB.

1 Load/store operation caused an access to at least the first level of data or unified TLB.

If FEAT_PMUv3 is implemented this Event is required to be implemented consistently with
L1D_TLB.

E[3], byte 0 bit [3]

Level 1 Data cache refill. The defined values of this bit are:

0 Did not cause level 1 data cache refill.

1 Load/store operation caused a refill of at least the first level of data or unified cache.
This includes each data memory access that causes a refill from outside the cache. It
excludes accesses that do not cause a new cache refill but are satisfied from refilling data
of a previous miss.

It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether a store can finish execution
before this event is generated, meaning this event is never recorded for stores.

If FEAT_PMUv3 is implemented this event is required to be implemented consistently with
L1D_CACHE_REFILL or L1D_CACHE_REFILL_RD.

E[2], byte 0 bit [2]

Level 1 Data cache access. The defined values of this bit are:

0 Did not access level 1 data cache.

1 Load/store operation caused a cache access to at least the first level of data or unified
cache.

It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether a store can finish execution
before this event is generated, meaning this event is never recorded for stores.

If FEAT_PMUv3 is implemented this event is required to be implemented consistently with
L1D_CACHE or L1D_CACHE_RD.

E[1], byte 0 bit [1]

Architecturally executed. The defined values of this bit are:

0 Did not retire.

1 Committed its results to the architectural state of the PE, or completed with a
synchronous architectural exception.

Note
A conditional instruction can retire even if it fails its condition code check.

If FEAT_PMUv3 is implemented this Event is required to be implemented consistently with
INST_RETIRED.

E[0], byte 0 bit [0]

Generated exception. The defined values of this bit are:

0 Did not generate an exception.

1 Completed with a synchronous exception.

If E[1] in the same Events packet is set to 0, then the meaning of this bit is IMPLEMENTATION
DEFINED.

If FEAT_PMUv3 is implemented this Event is required to be implemented consistently with
EXC_TAKEN.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D10-2997
ID072021 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
D10.2.7 Operation Type packet

The Operation Type packet characteristics are:

Purpose Defines the type of operation sampled. Included for all operations.

Attributes Multi-part packet comprising:

• 8-bit header.

• 8-bit payload.

Operation Type packet header

The Operation Type packet header bit assignments are:

Byte 0 bits [7:6]

This field reads as 0b01.

SZ, byte 0 bits [5:4]

Payload size. The defined values of this field are:

0b00 Byte.

This field reads as 0b00.

Byte 0 bits [3:2]

This field reads as 0b10.

CLASS, byte 0 bits [1:0]

Top-level instruction class. The defined values of this field are:

0b00 Other.

0b01 Load, store, or atomic.

0b10 Branch or exception return.

All other values are reserved.

Operation Type packet payload (Other)

When Other operation, the Operation Type packet payload (Other) bit assignments are:

01234567

CLASS1 0
0 0

SZ
0 1 Byte 0

01234567

0 0 0 0 0 0 0 COND Byte 0

SUBCLASS
D10-2998 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
When an SVE operation, the Operation Type packet payload (Other) bit assignments are:

SUBCLASS, byte<0>

Second-level instruction class. Defines the type of instruction. The defined values of this field are:

0b0000000x Other operation.

0b0xxx1xx0 SVE operation. If FEAT_SVE is implemented, and if FEAT_SPE is implemented, bits
[6:4:2:1] are further defined as the EVL, PRED, and FP fields.

Otherwise this value is reserved.

EVL, byte 0 bits [6:4], when SVE operation

Effective Vector Length. Defines the sampled operation vector length, rounded up to a power of two.
That is, the length of vector operated on by the sampled operation. The defined values of this field
are:

0b000 32 bits.

0b001 64 bits.

0b010 128 bits.

0b011 256 bits.

0b100 512 bits.

0b101 1024 bits.

0b110 2048 bits.

All other values reserved.

The accessible vector length is always quantized into multiples of 128 bits. However, the effective
vector length can be any size down to the smallest element size.

If the effective vector length is not a power of two, or is less than 32 bits, the value is rounded up
before it is encoded in this field.

PRED, byte 0 bit[2], when SVE operation

Predicated SVE operation. The defined values of this bit are:

0 Not predicated.

1 Predicated SVE operation. The operation is an SVE operation that writes to a vector
destination register under a Governing predicate using either zeroing or merging
predication.

FP, byte 0 bits [6:4], when SVE operation

Floating-point operation. The defined values of this bit are:

0 Integer.

1 Floating-point.

COND, byte 0 bit [0], when Other operation

Conditional. The defined values of this bit are:

0 Unconditional operation.

1 Conditional operation or select.

01234567

0 1 0FPPREDEVL Byte 0

SUBCLASS
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D10-2999
ID072021 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
Operation Type packet payload (Branch)

The Operation Type packet payload (Branch) bit assignments are:

SUBCLASS, byte <0>

Second-level instruction class. Describes the branch type. The defined values of this field are:

0b0000000x Direct branch.

0b0000001x Indirect branch.

All other values are reserved.

COND, byte 0 bit [0]

Conditional. The defined values of this bit are:

0 Unconditional branch.

1 Conditional branch.

Operation Type packet payload (load/store)

When the FEAT_NV2 transformed System register access, the Operation Type packet payload (load/store) bit
assignments are:

When Extended load/store, the Operation Type packet payload (load/store) bit assignments are:

When General-purpose load/store, the Operation Type packet payload (load/store) bit assignments are:

When SIMD&FP load/store, the Operation Type packet payload (load/store) bit assignments are:

01234567

COND Byte 0

SUBCLASS

01234567

0 0 1 1 0 0 0 LDST Byte 0

SUBCLASS

01234567

0 0 0 1 LDSTATEXCLAR Byte 0

SUBCLASS

01234567

0 0 0 0 0 0 0 LDST Byte 0

SUBCLASS

01234567

0 0 0 0 0 1 0 LDST Byte 0

SUBCLASS
D10-3000 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
When SVE load/store, the Operation Type packet payload (load/store) bit assignments are:

When Unspecified load/store the Operation type packet payload (load/store) bit assignments are:

SUBCLASS, byte <0>

Second-level instruction class. Indicates the load/store type. The defined values of this field are:

0b0000000x A load/store targeting the general-purpose registers, other than an atomic operation,
load-acquire, store-release or exclusive.

0b000xxx1x An atomic operation, load-acquire, store-release or exclusive. Bits [4:2] are further
subdivided as described by the AR, EXCL and AT fields.

0b0000010x A load/store targeting the SIMD&FP registers.

0bxxxx1x0x A load/store targeting the SVE registers. Bits [7:4,2] are further defined as SG, EVL and
PRED fields.

This value is defined only if both The Scalable Vector Extension (SVE) and
FEAT_SPEv1p1 are implemented.

This value is reserved otherwise.

0b0001000x A load/store targeting unspecified registers.

This value is defined only if FEAT_SPEv1p1 is implemented

This value is reserved otherwise.

0b0011000x An MRS or MSR operation at EL1 transformed to a load/store when HCR_EL2.NV2 is 1.

This value is defined only if FEAT_NV2 is implemented and reserved otherwise.

All other values are reserved.

SG, byte 0 bit [7], when SVE load/store

Gather/scatter load/store. The defined values of this bit are:

0 Not gather load or scatter store.

1 Gather load or scatter store.

EVL, byte 0 bits [6:4], when SVE load/store

Effective Vector Length. Defines the sampled operation vector length, rounded up to a power of two.
That is, the length of vector operated on by the sampled operation. The defined values of this field
are:

0b000 32 bits.

0b001 64 bits.

0b010 128 bits.

0b011 256 bits.

0b100 512 bits.

0b101 1024 bits.

0b110 2048 bits.

All other values reserved.

01234567

1 0 LDSTPREDEVLSG Byte 0

SUBCLASS

01234567

0 0 0 1 0 0 0 LDST Byte 0

SUBCLASS
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D10-3001
ID072021 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
The accessible vector length is always quantized into multiples of 128 bits. However, the effective
vector length can be any size down to the smallest element size.

If the effective vector length is not a power of two, or is less than 32 bits, the value is rounded up
before it is encoded in this field.

AR, byte 0 bit [4], when Extended load/store

Acquire/Release. The defined values of this bit are:

0 Load/store/atomic without Acquire or Release semantics.

1 Load/store/atomic with Acquire or Release semantics.

EXCL, byte 0 bit [3], when Extended load/store

Exclusive. The defined values of this bit are:

0 Load/store/atomic without Exclusive.

1 Load/store with Exclusive.

This bit is RES0 if AT == 1.

PRED, byte 0 bit[2], when SVE load/store

Predicated SVE operation. The defined values of this bit are:

0 Not predicated.

1 Predicated SVE operation. The operation is an SVE operation that writes to a vector
destination register under a Governing predicate using either zeroing or merging
predication.

AT, byte 0 bit [2], when Extended load/store

Atomic load/store. The defined values of this bit are:

0 Not atomic.

1 Atomic.

LDST, byte 0 bit [0]

Store not load. The defined values of this bit are:

0 Load or swap.

1 Store.
D10-3002 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
D10.2.8 Padding

The Padding characteristics are:

Purpose Allows the PE to create alignment in the protocol buffer.

Attributes 8-bit packet.

Field descriptions

The Padding bit assignments are:

Byte <0>

This field reads as 0b00000000.

01234567

0 0 0 0 0 0 0 0 Byte 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D10-3003
ID072021 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
D10.2.9 Timestamp packet

The Timestamp packet characteristics are:

Purpose The 64-bit timestamp value when the operation was sampled. The Timestamp packet must
come at the end of the record. If the Timestamp packet is not present, an End packet must
come at the end of the record.

Attributes Multi-part packet comprising:

• 8-bit header.

• 64-bit payload.

Timestamp packet header

The Timestamp packet header bit assignments are:

Byte 0 bits [7:6]

This field reads as 0b01.

SZ, byte 0 bits [5:4]

Payload size. The defined values of this field are:

0b11 Doubleword.

This field reads as 0b11.

Byte 0 bits [3:0]

This field reads as 0b0001.

01234567

0 0 0 1
1 1

SZ
0 1 Byte 0
D10-3004 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
Timestamp packet payload

The Timestamp packet payload bit assignments are:

TS, bytes <7:0>

Timestamp value when the operation was sampled. The value depends on the result of
CollectTimeStamp():

• If TimeStamp_Virtual, this is the virtual timestamp, CNTVCT_EL0.

• If TimeStamp_Physical, this is the physical timestamp, CNTPCT_EL0.

• If TimeStamp_OffsetPhysical, this is the offset physical timestamp, CNTPCT_EL0 -
CNTPOFF_EL2.

• If TimeStamp_None, the timestamp packet is not included and an End packet must come at
the end of the record.

However, if the Generic Timer System counter is disabled and CollectTimeStamp() returns a value
other than TimeStamp_None, then it is IMPLEMENTATION DEFINED whether:

• The Statistical Profiling Unit behaves as if CollectTimeStamp() returns the value
TimeStamp_None.

• The value of this field in the record is UNKNOWN.

Note

This relaxation refers to when the actual System counter is disabled, that is, CNTEN.EN == 0. It
does not apply when the System counter is enabled but not accessible at the current Exception level.

01234567

TS[7:0] Byte 0

TS[15:8] Byte 1

TS[23:16] Byte 2

TS[31:24] Byte 3

TS[39:32] Byte 4

TS[47:40] Byte 5

TS[55:48] Byte 6

TS[63:56] Byte 7
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D10-3005
ID072021 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D10.2 Alphabetical list of Statistical Profiling Extension packets
D10-3006 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter D11
The Generic Timer in AArch64 state

This chapter describes the implementation of the Arm Generic Timer. It includes an overview of the AArch64
System register interface to an Arm Generic Timer.

It contains the following sections:

• About the Generic Timer on page D11-3008.

• The AArch64 view of the Generic Timer on page D11-3012.

Chapter G6 The Generic Timer in AArch32 state describes the AArch32 view of the Generic Timer, and Chapter I2
System Level Implementation of the Generic Timer describes the system level implementation of the Generic Timer.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D11-3007
ID072021 Non-Confidential

The Generic Timer in AArch64 state
D11.1 About the Generic Timer
D11.1 About the Generic Timer

Figure D11-1 on page D11-3008 shows an example system-on-chip that uses the Generic Timer as a system timer.
In this figure:

• This manual defines the architecture of the individual PEs in the multiprocessor blocks.

• The ARM Generic Interrupt Controller Architecture Specification defines a possible architecture for the
interrupt controllers.

• Generic Timer functionality is distributed across multiple components.

Figure D11-1 Generic Timer example

The Generic Timer:

• Provides a system counter that measures the passing of time in real-time.

Note
The Generic Timer can also provide other components at a system level, but Figure D11-1 on page D11-3008
does not show any such components.

• Supports virtual counters that measure the passing of virtual-time. That is, a virtual counter can measure the
passing of time on a particular virtual machine.

• Can trigger events after a period of time has passed. The timers:

— Can be used as count-up or as count-down timers.

— Can operate in real-time or in virtual-time.

This chapter describes an instance of the Generic Timer component that Figure D11-1 on page D11-3008 shows as
Timer_0 or Timer_1 within the Multiprocessor A or Multiprocessor B block. This component can be accessed from
AArch64 state or AArch32 state, and this chapter describes access from AArch64 state. Chapter G6 The Generic
Timer in AArch32 state describes access to this component from AArch32 state.

A Generic Timer implementation must also include a memory-mapped system component. This component:

• Must provide the System counter shown in Figure D11-1 on page D11-3008.

• Optionally, can provide timer components for use at a system level.

System
counter

Always-powered
domain

Power
controller

System Timer Bus

APB

Counter interface

Interrupt
Controller

Timer_0

PE_0

Timer_1

PE_1

Shared cache

Memory interconnect and memory controller

Counter interface

Interrupt
Controller

Timer_0

PE_0

Timer_1

PE_1

Shared cache

System
eventsnFIQ,

nIRQ
nFIQ,
nIRQ

Cache Cache Cache Cache

Multiprocessor A Multiprocessor B
D11-3008 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Generic Timer in AArch64 state
D11.1 About the Generic Timer
Chapter I2 System Level Implementation of the Generic Timer describes this memory-mapped component.

D11.1.1 The full set of Generic Timer components

Within a system that might include multiple PEs, a full set of Generic Timer components is as follows:

The system counter

This provides a uniform view of system time, see The system counter on page D11-3010. Because
this must be implemented at the system level, it is accessed through The system level
memory-mapped implementation of the Generic Timer on page D11-3009. However, during
initialization, a status register in each implemented timer in the system must be programmed with
the frequency of the system counter, so that software can read this frequency.

PE implementations of the Generic Timer

Each PE implementation of the Generic Timer provides the following components:

• A physical counter, that gives access to the count value of the system counter. When
FEAT_ECV is implemented, the CNTPOFF_EL2 register allows offsetting of physical
timers and counters.

• A virtual counter, that gives access to virtual time. In AArch64 state, the CNTVOFF_EL2
register defines the offset between physical time, as defined by the value of the system
counter, and virtual time.

• A number of timers. In an implementation where all Exception levels are implemented and
can use AArch64 state, the timers that are accessible from AArch64 state are:

— An EL1 physical timer.

— A Non-secure EL2 physical timer.

— An EL3 physical timer.

— An EL1 virtual timer.

— A Non-secure EL2 virtual timer.

— A Secure EL2 virtual timer.

— A Secure EL2 physical timer.

The Non-secure EL2 virtual timer is available only when FEAT_VHE is implemented.

The Secure EL2 timers are available only when FEAT_SEL2 is implemented.

The AArch64 view of the Generic Timer on page D11-3012 describes these components.

The system level memory-mapped implementation of the Generic Timer

The memory-mapped registers that control the components of the system level implementation of
the Generic Timer are grouped into frames. The Generic Timer architecture defines the offset of
each register within its frame, but the base address of each frame is IMPLEMENTATION DEFINED, and
defined by the system.

Each system level component has one or two register frames. The possible system level components
are:

The memory-mapped counter module, required

This module controls the system counter. It has two frames:

• A control frame, CNTControlBase.

• A status frame, CNTReadBase.

The memory-mapped timer control module, required

The system level implementation of the Generic Timer can provide up to eight timers,
and the memory-mapped timer control module identifies:

• Which timers are implemented.

• The features of each implemented timer.

This module has a single frame, CNTCTLBase.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D11-3009
ID072021 Non-Confidential

The Generic Timer in AArch64 state
D11.1 About the Generic Timer
Memory-mapped timers, optional

An implemented memory-mapped timer:

• Must provide a privileged view of the timer, in the CNTBaseN frame.

• Optionally. provides an unprivileged view of the timer in the CNTEL0BaseN
frame.

N is the timer number, and the corresponding frame number, in the range 0-7.

Chapter I2 System Level Implementation of the Generic Timer describes these components.

D11.1.2 The system counter

The Generic Timer provides a system counter with the following specification:

Width From Armv8.0 to Armv8.5 inclusive, at least 56 bits wide. The value returned by any 64-bit read of
the counter is zero-extended to 64 bits.

From Armv8.6, must be 64 bits wide.

Frequency From Armv8.0 to Armv8.5 inclusive, increments at a fixed frequency, typically in the range
1-50MHz. It can support one or more alternative operating modes in which it increments by larger
amounts at a lower frequency, typically for power-saving.

From Armv8.6, increments at a fixed frequency of 1GHz.

Roll-over Roll-over time of not less than 40 years.

Accuracy Arm does not specify a required accuracy, but recommends that the counter does not gain or lose
more than ten seconds in a 24-hour period.

Use of lower-frequency modes must not affect the implemented accuracy.

Start-up Starts operating from zero.

The system counter, once configured and running, must provide a uniform view of system time. More precisely, it
must be impossible for the following sequence of events to show system time going backwards:

1. Device A reads the time from the system counter.

2. Device A communicates with another agent in the system, Device B.

3. After recognizing the communication from Device A, Device B reads the time from the system counter.

The system counter must be implemented in an always-on power domain.

To support lower-power operating modes in architectures from Armv8.0 to Armv8.5, the counter can increment by
larger amounts at a lower frequency. For example, a 10MHz system counter might either increment:

• By 1 at 10MHz.

• By 500 at 20kHz, when the system lowers the clock frequency, to reduce power consumption.

In this case, the counter must support transitions between high-frequency, high-precision operation, and
lower-frequency, lower-precision operation, without any impact on the required accuracy of the counter.

From Armv8.6 the counter operates at a higher fixed frequency of 1GHz.

Note

Though each unit of the counter is set to 1ns, this does not require that the counter is incremented every 1ns. A step
in the counter might be more than a single bit increment. It is recommended that the count is not incremented at a
rate that is less than 50MHz in normal running operation.

The CNTFRQ_EL0 register is intended to hold a copy of the current clock frequency to allow fast reference to this
frequency by software running on the PE. For more information, see Initializing and reading the system counter
frequency on page D11-3011.

The mechanism by which the count from the system counter is distributed to system components is
IMPLEMENTATION DEFINED, but each PE with a System register interface to the system counter must have a counter
input that can capture each increment of the counter.
D11-3010 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Generic Timer in AArch64 state
D11.1 About the Generic Timer
Note

So that the system counter can be clocked independently from the PE hardware, the count value might be distributed
using a Gray code sequence. Gray-count scheme for timer distribution scheme on page K5-8470 gives more
information about this possibility.

Initializing and reading the system counter frequency

The CNTFRQ_EL0 register must be programmed to the clock frequency of the system counter. Typically, this is
done only during the system boot process, by using the System register interface to write the system counter
frequency to the CNTFRQ_EL0 register. Only software executing at the highest implemented Exception level can
write to CNTFRQ_EL0.

Note

The CNTFRQ_EL0 register is UNKNOWN at reset, and therefore the counter frequency must be set as part of the
system boot process.

Software can read the CNTFRQ_EL0 register, to determine the current system counter frequency, in the following
states:

• Secure and Non-secure EL2.

• Secure and Non-secure EL1.

• When CNTKCTL_EL1.{EL0PCTEN, EL0VCTEN} is not {0,0} and CNTHCTL_EL2.{EL0PCTEN,
EL0VCTEN} is not {0,0}, Secure and Non-secure EL0.

Memory-mapped controls of the system counter

Some system counter controls are accessible only through the memory-mapped interface to the system counter.
These controls are:

• Enabling and disabling the counter.

• Setting the counter value.

• Changing the operating mode, to change the update frequency and increment value.

• Enabling Halt-on-debug, that a debugger can then use to suspend counting.

For descriptions of these controls, see Chapter I2 System Level Implementation of the Generic Timer.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D11-3011
ID072021 Non-Confidential

The Generic Timer in AArch64 state
D11.2 The AArch64 view of the Generic Timer
D11.2 The AArch64 view of the Generic Timer

The following sections describe the components and features of a PE implementation of the Generic Timer, as seen
from AArch64 state:

• The physical counter on page D11-3012.

• The virtual counter on page D11-3013.

• Event streams on page D11-3015.

• Timers on page D11-3016.

D11.2.1 The physical counter

The PE includes a physical counter that contains the count value of the system counter. The CNTPCT_EL0 register
holds the current physical counter value. When FEAT_ECV is implemented, the CNTPOFF_EL2 register holds the
optional physical offset that can be applied at EL0 and EL1 whether EL0 and EL1 are using AArch64 state or
AArch32 state. For more information, see The physical offset register on page D11-3013.

Reads of CNTPCT_EL0 can occur speculatively and out of order relative to other instructions executed on the same
PE.

The self-synchronized view of the physical counter

When FEAT_ECV is implemented, an alternative way to read the physical counter is supported. The
CNTPCTSS_EL0 register is a non-speculative view of the physical counter, as seen from the Exception level that
CNTPCTSS_EL0 is read from.

Accesses to the CNTPCTSS_EL0 are subject to the same traps as accesses to the CNTPCT_EL0.

Reads of CNTPCT_EL0 occur in program order relative to reads of CNTPCT_EL0 or CNTPCTSS_EL0.

Reads of CNTPCTSS_EL0 occur in program order relative to reads of CNTPCT_EL0 or CNTPCTSS_EL0.

Example D11-1 Ensuring reads of the physical counter occur after signal read from memory

If a read from memory is used to obtain a signal from another agent that indicates that CNTPCT_EL0 must be read,
an ISB is used to ensure that the read of CNTPCT_EL0 occurs after the signal has been read from memory, as shown
in the following code sequence:

loop ; polling for some communication to indicate a requirement to read the timer
 LDR X1, [X2]
 CMP X1, #1 ; has had the value 1 written to it
 B.NE loop
 ISB ; without this the CNTPCT_EL0 could be read before the memory location in [X2]

MRS X1, CNTPCT_EL0

When FEAT_ECV is implemented, an access to CNTPCTSS_EL0 can be used in place of the CNTPCT_EL0 which,
because it cannot be accessed speculatively, allows the ISB to be removed. This means that the following code
sequence can be used:

loop ; polling for some communication to indicate a requirement to read the timer
LDR X1, [X2]
CMP X1, #1 ; has had the value 1 written to it
B.NE loop
MRS X1, CNTPCTSS_EL0

Similarly where a read of the physical counter is required to take place after the completion of all loads and stores
appearing in program order before the read of the counter, then the following code sequences can be used:

... ; earlier loads and stores
DSB ; completes the earlier loads and stores
ISB ; without this the CNTPCT_EL0 could be read before the completion of the earlier

; loads and stores
MRS X1, CNTPCT_EL0
D11-3012 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Generic Timer in AArch64 state
D11.2 The AArch64 view of the Generic Timer
Or, if FEAT_ECV is implemented:

... ; earlier loads and stores
DSB ; completes earlier loads and stores
MRS X1, CNTPCTSS_EL0

Neither view of the physical counter ensures that:

• Context changes occurring in program order before the read of the counter have been synchronized.

• Accesses to memory appearing in program order after the read of the counter are executed before the counter
has been read.

Example D11-2 Ensuring reads of the physical counter occur after previous memory accesses

To ensure that all previous memory accesses have completed and all previous context changes have been
synchronized before the read of the counter, the following sequence should be used:

DSB
ISB
MRS Xn, CNTPCT{SS}_EL0 ; either view of the physical counter has the same effect in this example

To ensure that a memory access only occurs after a read of the counter, the following sequence should be used:

MRS Xn, CNTPCT{SS}_EL0 ; either view of the physical counter has the same effect in this example
ISB
LDR Xa, [Xb] ; this load will be executed after the timer has been read

The physical offset register

When FEAT_ECV is implemented, the CNTPOFF_EL2 register allows an offset to be applied to the physical
counter, as viewed from EL1 and EL0, and to the EL1 physical timer. The functionality of this 64-bit register is
affected by CNTHCTL_EL2.ECV.

When CNTHCTL_EL2.ECV is 1, an MRS to CNTPCT_EL0 or CNTPCTSS_EL0 from either EL0 or EL1 that is
not trapped will return the value (PCount<63:0> - CNTPOFF_EL2<63:0>). For information on how the EL1 physical
timer interrupt is triggered when CNTHCTL_EL2.ECV is 1, see Operation of the CompareValue views of the timers
on page D11-3017.

When EL2 is not enabled for the current Security state, or when CNTHCTL_EL2.ECV is 0, then:

• An MRS to CNTPCT_EL0 from either EL0 or EL1 that is not trapped will return the value PCount<63:0>.

• The physical offset is treated as zero for all timer and counter calculations involving the physical offset.

When EL2 is not enabled for the current Security state, or when CNTHCTL_EL2.ECV is 0, then the behavior of
the counters and timers is as described for Armv8.5 and the optional physical offset is not used.

When SCR_EL3.ECVEn is 0, all values of CNTPOFF_EL2 are treated as 0 for all purposes other than direct reads
or writes to the register from EL3.

D11.2.2 The virtual counter

An implementation of the Generic Timer always includes a virtual counter, that indicates virtual time.

The virtual counter contains the value of the physical counter minus a 64-bit virtual offset. When executing at EL1
or EL0, the virtual offset value relates to the current virtual machine.

The CNTVOFF_EL2 register contains the virtual offset, see The virtual offset register on page D11-3015.

The CNTVCT_EL0 register holds the current virtual counter value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D11-3013
ID072021 Non-Confidential

The Generic Timer in AArch64 state
D11.2 The AArch64 view of the Generic Timer
Reads of CNTVCT_EL0 can occur speculatively and out of order relative to other instructions executed on the same
PE.

The self-synchronized view of the virtual counter

When FEAT_ECV is implemented, an alternative way to read the virtual counter is supported. The
CNTVCTSS_EL0 register is a non-speculative view of the virtual counter, as seen from the Exception level that
CNTVCTSS_EL0 is read from.

Accesses to the CNTVCTSS_EL0 are subject to the same traps as accesses to the CNTVCT_EL0.

Reads of CNTVCT_EL0 occur in program order relative to reads of CNTVCT_EL0 or CNTVCTSS_EL0.

Reads of CNTVCTSS_EL0 occur in program order relative to reads of CNTVCT_EL0 or CNTVCTSS_EL0.

Example D11-3 Ensuring reads of the virtual counter occur after signal read from memory

If a read from memory is used to obtain a signal from another agent that indicates that CNTVCT_EL0 must be read,
an ISB is used to ensure that the read of CNTVCT_EL0 occurs after the signal has been read from memory, as shown
in the following code sequence:

loop ; polling for some communication to indicate a requirement to read the timer
 LDR X1, [X2]
 CMP X1, #1 ; has had the value 1 written to it
 B.NE loop
 ISB ; without this the CNTVCT_EL0 could be read before the memory location in [X2]
 MRS X1, CNTVCT_EL0

When FEAT_ECV is implemented, an access to CNTVCTSS_EL0 can be used in place of the CNTVCT_EL0,
which, because it cannot be accessed speculatively, allows the ISB to be removed. This means that the following
code sequence can be used:

loop ; polling for some communication to indicate a requirement to read the timer
LDR X1, [X2]
CMP X1, #1 ; has had the value 1 written to it
B.NE loop
MRS X1, CNTVCTSS_EL0

Similarly where a read of the virtual counter is required to take place after the completion of all loads and stores
appearing in program order before the read of the counter, then the following two sequences can be used:

... ; earlier loads and stores
DSB ; completes earlier loads and stores
ISB ; without this CNTPCT_EL0 could be read before the completion of the earlier

; loads and stores
MRS X1, CNTVCT_EL0

Or, if FEAT_ECV is implemented:

... ; earlier loads and stores
DSB ; completes earlier loads and stores
MRS X1, CNTVCTSS_EL0

Neither view of the virtual counter ensures that:

• Context changes occurring in program order before the read of the counter have been synchronized.

• Accesses to memory appearing in program order after the read of the counter are executed before the counter
has been read.
D11-3014 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Generic Timer in AArch64 state
D11.2 The AArch64 view of the Generic Timer
Example D11-4 Ensuring reads of the virtual counter occur after previous memory accesses

To ensure that all previous memory accesses have completed and all previous context changes have been
synchronized before the read of the counter, the following sequence should be used:

DSB
ISB
MRS Xn, CNTVCT{SS}_EL0 ; either view of the virtual counter has the same effect in this example

To ensure that a memory access only occurs after a read of the counter, the following sequence should be used:

MRS Xn, CNTVCT{SS}_EL0 ; either view of the virtual counter has the same effect in this example
ISB
LDR Xa, [Xb] ; this load will be executed after the timer has been read

The virtual offset register

The virtual counter is a counter that has a virtual offset relative to the physical counter as viewed from EL2 and EL3.
This virtual offset is held in the register CNTVOFF_EL2. The virtual counter value is the count compared by the
EL1 virtual timer.

If EL2 is not implemented and enabled, then the virtual counter uses a fixed offset of zero.

D11.2.3 Event streams

An implementation that includes the Generic Timer can use the system counter to generate one or more event
streams, to generate periodic wake-up events as part of the mechanism described in Wait for Event mechanism and
Send event on page D1-2536.

Note

An event stream might be used:

• To impose a time-out on a Wait For Event polling loop.

• To safeguard against any programming error that means an expected event is not generated.

The CNTKCTL_EL1.{EVNTEN, EVNTDIR, EVNTI, EVNTIS} fields define an event stream that is generated
from the virtual counter.

In all implementations, the CNTHCTL_EL2.{EVNTEN, EVNTDIR, EVNTI, EVNTIS} fields define an event
stream that is generated from the physical counter.

The event stream is configured as follows:

• EVNTI selects the counter bit that triggers the event.

• If FEAT_ECV is not implemented, EVNTI selects between bits[0:15].

• If FEAT_ECV is implemented, EVNTIS selects whether ENVTI selects between bits[0:15] or bits[8:23].

• EVNTDIR selects whether the event is generated on each 0 to 1 transition, or each 1 to 0 transition, of the
selected counter bit.

Note

If the event stream is configured to produce events from the low order bits of the counter when the counter frequency
is very high (for example 1GHz), then the practical update rate of the counter might mean that the event stream is
not generated as the low order bit might not change. Software can rely on an event stream rate of at least 1MHz in
normal operation.

The operation of an event stream is as follows:

• The pseudocode variables PreviousCNTVCT and PreviousCNTPCT are initialized as:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D11-3015
ID072021 Non-Confidential

The Generic Timer in AArch64 state
D11.2 The AArch64 view of the Generic Timer
// Variables used for generation of the timer event stream.
bits(64) PreviousCNTVCT = bits(64) UNKNOWN;
bits(64) PreviousCNTPCT = bits(64) UNKNOWN;

• The pseudocode functions TestEventCNTV() and TestEventCNTP() are called on each cycle of the PE clock.

• The TestEventCNTx() pseudocode template defines the functions TestEventCNTV() and TestEventCNTP():

// TestEventCNTx()
// ===============

// Template for the TestEventCNTV() and TestEventCNTP() functions
// Describes operation when all Exception levels are using AArch64:
// CNTxCT_EL0 is CNTVCT_EL0 or CNTPCT_EL0 64-bit count value
// CNTxCTL_ELx is CNTKCTL_EL1 or CNTHCTL_EL2 Control register
// PreviousCNTxCT_EL0 is PreviousCNTVCT_EL0 or PreviousCNTPCT_EL0

TestEventCNTx()
 if CNTxCTL_ELx.EVNTEN == '1' then
 n = UInt(CNTxCTL_ELx.EVNTI);

if CNTxCTL_ELx.EVNTIS == ’1’ then
n = n + 8;

SampleBit = CNTxCT_EL0<n>;
 PreviousBit = PreviousCNTxCT_ELx<n>;

 if CNTxCTL_ELx.EVNTDIR == '0' then
 if PreviousBit == '0' && SampleBit == '1' then EventRegisterSet();
 else
 if PreviousBit == '1' && SampleBit == '0' then EventRegisterSet();

 PreviousCNTxCT_EL0 = CNTxCT_EL0;

 return;

D11.2.4 Timers

In an implementation of the Generic Timer that includes EL3, if EL3 can use AArch64, the following timers are
implemented:

• An EL1 physical timer, that:

— In Secure state, can be accessed from EL1.

— In Non-secure state, can be accessed from EL1 unless those accesses are trapped to EL2.

When this timer can be accessed from EL1, an EL1 control determines whether it can be accessed from EL0.

• A Non-secure EL2 physical timer.

• A Secure EL3 physical timer. An EL3 control determines whether this register is accessible from Secure EL1.

• An EL1 virtual timer.

• When FEAT_VHE is implemented, a Non-secure EL2 virtual timer.

• When FEAT_SEL2 is implemented, a Secure EL2 physical timer.

• When FEAT_SEL2 is implemented, a Secure EL2 virtual timer.

The output of each implemented timer:

• Provides an output signal to the system.

• If the PE interfaces to a Generic Interrupt Controller (GIC), signals a Private Peripheral Interrupt (PPI) to
that GIC. In a multiprocessor implementation, each PE must use the same interrupt number for each timer.

Each timer:

• Is based around a 64-bit CompareValue that provides a 64-bit unsigned upcounter.

• Provides an alternative view of the CompareValue, called the TimerValue, that appears to operate as a 32-bit
downcounter.
D11-3016 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Generic Timer in AArch64 state
D11.2 The AArch64 view of the Generic Timer
• Has, in addition, a 32-bit Control register.

Operation of the CompareValue views of the timers

The CompareValue view of a timer operates as a 64-bit upcounter. The timer condition is met when the appropriate
counter reaches the value programmed into its CompareValue register. When the timer condition is met, an interrupt
is generated if the interrupt is not masked in the corresponding timer control register, CNTP_CTL_EL0,
CNTHP_CTL_EL2, CNTHPS_CTL_EL2, CNTPS_CTL_EL1, CNTV_CTL_EL0, CNTHV_CTL_EL2 or
CNTHVS_CTL_EL2. For CNTP_CTL_EL0, the asserted interrupt is the same as the interrupt asserted by the
Non-secure instance of the AArch32 register CNTP_CTL.

The operation of this view of a timer is:

TimerConditionMet = (((Counter[63:0] – Offset[63:0])[63:0] - CompareValue[63:0]) >= 0)

Where:

TimerConditionMet Is TRUE if the timer condition for this counter is met, and FALSE otherwise.

Counter The physical counter value, that can be read from the CNTPCT_EL0 register.

Offset For the EL1 physical timer, if ID_AA64MMFR0_EL1.ECV is 0b10 and
CNTHCTL_EL2.ECV is 0b1, then the offset value is held in the CNTPOFF_EL2 register.
Otherwise the offset value of the EL1 physical timer is zero.

For the EL1 virtual timer, the offset value is held in the CNTVOFF_EL2 register.

For the EL2 physical and virtual timers, the offset value is zero.

CompareValue The value of the appropriate CompareValue register, CNTP_CVAL_EL0,
CNTHP_CVAL_EL2, CNTPS_CVAL_EL1, CNTHPS_CVAL_EL2, CNTV_CVAL_EL0,
CNTHV_CVAL_EL2, or CNTHVS_CVAL_EL2.

In this view of a timer, Counter, Offset, and CompareValue are all 64-bit unsigned values.

Table D11-1 Physical timer registers summary for the Generic Timer

Timera
register

a. In this column, CV indicates the CompareValue register, and TV indicates the TimerValue register.

EL1
physical timer

EL2
physical timer

Secure EL2
physical timerb

b. Only present when the implementation includes FEAT_SEL2.

EL3 physical timer

CV CNTP_CVAL_EL0 CNTHP_CVAL_EL2 CNTHPS_CVAL_EL2 CNTPS_CVAL_EL1

TV CNTP_TVAL_EL0 CNTHP_TVAL_EL2 CNTHPS_TVAL_EL2 CNTPS_TVAL_EL1

Control CNTP_CTL_EL0 CNTHP_CTL_EL2 CNTHPS_CTL_EL2 CNTPS_CTL_EL1

Table D11-2 Virtual timer register summary for the Generic Timer

Timera
register

a. In this column, CV indicates the CompareValue register, and TV indicates the TimerValue register.

EL1
virtual timer

EL2
virtual timerb

b. Only when the implementation includes FEAT_VHE.

Secure EL2
virtual timerc

c. Only present when the implementation includes FEAT_SEL2.

CV CNTV_CVAL_EL0 CNTHV_CVAL_EL2 CNTHVS_CVAL_EL2

TV CNTV_TVAL_EL0 CNTHV_TVAL_EL2 CNTHVS_TVAL_EL2

Control CNTV_CTL_EL0 CNTHV_CTL_EL2 CNTHVS_CTL_EL2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D11-3017
ID072021 Non-Confidential

The Generic Timer in AArch64 state
D11.2 The AArch64 view of the Generic Timer
Note

This means that a timer with a CompareValue of, or close to, 0xFFFF_FFFF_FFFF_FFFF might never meet its timer
condition. However, there is no practical requirement to use values close to the counter wrap value.

Software can observe the counter value by the offset in some situations by reading CNTVCT_EL0.

Operation of the TimerValue views of the timers

The TimerValue view of a timer appears to operate as a signed 32-bit downcounter. A TimerValue register is
programmed with a count value. This value decrements on each increment of the appropriate counter, and the timer
condition is met when the value reaches zero. When the timer condition is met, an interrupt is generated if the
interrupt is not masked in the corresponding timer control register, CNTP_CTL_EL0, CNTHP_CTL_EL2,
CNTHPS_CTL_EL2, CNTPS_CTL_EL1, CNTV_CTL_EL0, CNTHV_CTL_EL2, or CNTHVS_CTL_EL2.

This view of a timer depends on the following behavior of accesses to TimerValue registers:

Reads TimerValue = (CompareValue – (Counter - Offset))[31:0]

Writes CompareValue = ((Counter - Offset)[63:0] + SignExtend(TimerValue))[63:0]

Where the arguments other than TimerValue have the definitions used in Operation of the CompareValue views of
the timers on page D11-3017, and in addition:

TimerValue The value of a TimerValue register, CNTP_TVAL_EL0, CNTHP_TVAL_EL2,
CNTHPS_TVAL_EL2, CNTPS_TVAL_EL1, CNTV_TVAL_EL0, CNTHV_TVAL_EL2, or
CNTHVS_TVAL_EL2.

In this view of a timer, values are signed in standard two’s complement form.

A read of a TimerValue register after the timer condition has been met indicates the time since the timer condition
was met.

Note

• Operation of the CompareValue views of the timers on page D11-3017 gives a strict definition of
TimerConditionMet. However, provided that the TimerValue is not expected to wrap as a 32-bit signed value
when decremented from 0x80000000, the TimerValue view can be used as giving an effect equivalent to:

TimerConditionMet = (TimerValue  0)

• Programming TimerValue to a negative number with magnitude greater than (Counter–Offset) can lead to
an arithmetic overflow that causes the CompareValue to be an extremely large positive value. This potentially
delays meeting the timer condition for an extremely long period of time.
D11-3018 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter D12
AArch64 System Register Encoding

This chapter describes the AArch64 System register encoding space. It contains the following sections:

• The System register encoding space on page D12-3020.

• op0==0b10, Moves to and from debug and trace System registers on page D12-3021.

• op0==0b11, Moves to and from non-debug System registers, Special-purpose registers on page D12-3023.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D12-3019
ID072021 Non-Confidential

AArch64 System Register Encoding
D12.1 The System register encoding space
D12.1 The System register encoding space

The A64 instruction set includes instructions that access the System register encoding space. These instructions
provide:

• Access to System registers, including the debug registers, that provide system control, and system status
information.

• Access to Special-purpose registers such as SPSR_ELx, ELR_ELx, and the equivalent fields of the Process
State.

• The cache and TLB maintenance instructions and address translation instructions.

• Barriers and the CLREX instruction.

• Architectural hint instructions.

This section describes the parts of the System register encoding space that provides access to the System registers
described in Chapter D13 AArch64 System Register Descriptions.

Note

• See Fixed values in AArch64 instruction and System register descriptions on page C2-211 for information
about abbreviations used in the System instruction descriptions.

• In AArch32 state much of this functionality is provided through the System register interface described in
The AArch32 System register interface on page G1-6109. In AArch64 state, the parameters used to
characterize the System register encoding space are {op0, op1, CRn, CRm, op2}. These are based on the
parameters that characterize the AArch32 System register encoding space, which reflect the original
implementation of these registers, as described in Background to the System register interface on
page G1-6110. In Armv8, there is no particular significance to the naming of these parameters, and no
functional distinction between the opn parameters and the CRx parameters.

Principles of the System instruction class encoding on page C5-394 describes some general properties of these
encodings. System instruction class encoding overview on page C5-395 then describes the top-level encoding of
these instructions, identifying that:

• Entries in the encoding space are characterized by the parameter set {op0, op1, CRn, CRm, op2}.

• op0 is the most significant parameter for determining allocations in this space.

Much of this encoding space is used for System instructions, as described in Chapter C5 The A64 System Instruction
Class. This chapter describes only the part of the encoding space that is used for System registers, in the following
sections:

• op0==0b10, Moves to and from debug and trace System registers on page D12-3021.

• op0==0b11, Moves to and from non-debug System registers, Special-purpose registers on page D12-3023.
D12-3020 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Encoding
D12.2 op0==0b10, Moves to and from debug and trace System registers
D12.2 op0==0b10, Moves to and from debug and trace System registers

The instructions that move data to and from the debug, Execution environment, and trace System registers are
encoded with op0==0b10. This means the encoding of these instructions is:

Note

• The section describes the use of all of the op0==0b10 region of the System register encoding space.

• These encodings access the registers that are equivalent to the AArch32 System registers in the
(coproc==0b1110) encoding space.

The value of op1 provides the next level of decode of these instructions, as follows:

op1 == {0, 3, 4}

Debug. See Instructions for accessing debug System registers on page D12-3021

Note

The standard encoding of debug registers is op0==0b10, op1=={0, 3, 4}. The registers in the
op0==0b11 encoding space that are classified as debug registers are DLR_EL0, DSPSR_EL0,
MDCR_EL2, MDCR_EL3, and SDER32_EL3. See Instructions for accessing non-debug System
registers on page D12-3023 for the encodings of these registers.

op1 == 1 Trace. See the appropriate trace architecture specification.

D12.2.1 Instructions for accessing debug System registers

The instructions for accessing debug System registers are:

MSR <System register>, Xt ; Write to System register
MRS Xt, <System register> ; Read from System register

Where <System_register> is the register name, for example MDCCSR_EL0.

This section includes only the System register access encodings for which both:

• op0 is 0b10.

• The value of op1 is one of {0, 3, 4}.

Note

These encodings access the registers that are equivalent to the AArch32 System registers in the (coproc==0b1110)
encoding space.

Rt1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 L op1 CRn CRm op2

op0

1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D12-3021
ID072021 Non-Confidential

AArch64 System Register Encoding
D12.2 op0==0b10, Moves to and from debug and trace System registers
Table D12-1 on page D12-3022 shows the mapping of the System register encodings for debug System register
access.

For more information, see Mapping of the System registers between the Execution states on page D1-2548.

Table D12-1 Instruction encodings for debug System register access

Register
Access instruction encoding

Permitted accesses
op0 op1 CRn CRm op2

OSDTRRX_EL1 2 0 0 0 2 RW

MDCCINT_EL1 2 0 RW

MDSCR_EL1 2 RW

OSDTRTX_EL1 3 2 RW

OSECCR_EL1 6 2 RW

DBGBVR<n>_EL1 0-15a

a. Accesses to not implemented breakpoint and watchpoint register access instructions are
UNDEFINED. CRm encodes <n>, the breakpoint or watchpoint number.

4 RW

DBGBCR<n>_EL1 0-15a 5 RW

DBGWVR<n>_EL1 0-15a 6 RW

DBGWCR<n>_EL1 0-15a 7 RW

MDRAR_EL1 2 0 1 0 0 RO

OSLAR_EL1 4 WO

OSLSR_EL1 1 4 RO

OSDLR_EL1 3 4 RW

DBGPRCR_EL1 4 4 RW

DBGCLAIMSET_EL1 7 8 6 RW

DBGCLAIMCLR_EL1 9 6 RW

DBGAUTHSTATUS_EL1 14 6 RO

MDCCSR_EL0 3 0 1 0 RO

DBGDTR_EL0 4 0 RW

DBGDTRRX_EL0 5 0 RO

DBGDTRTX_EL0 WO

DBGVCR32_EL2 4 0 7 0 RW
D12-3022 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Encoding
D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose registers
D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose
registers

The instructions that move data to and from non-debug System registers are encoded with op0==0b11, except that
some of this encoding space is reserved for IMPLEMENTATION DEFINED functionality. The encoding of these
instructions is:

The value of CRn provides the next level of decode of these instructions, as follows:

CRn=={0, 1, 2, 3, 5, 6, 7, 9, 10, 12, 13, 14}

See Instructions for accessing non-debug System registers on page D12-3023.

CRn==4 See Instructions for accessing Special-purpose registers on page C5-405.

CRn=={11, 15} See Reserved encodings for IMPLEMENTATION DEFINED registers on page D12-3038.

D12.3.1 Instructions for accessing non-debug System registers

The A64 instructions for accessing System registers are:

MSR <System register>, Xt ; Write to System register
MRS Xt, <System register> ; Read from System register

Where <System_register> is the register name, for example MIDR_EL1.

This section includes only the System register access encodings for which both:

• op0 is 0b11.

• The value of CRn is one of {0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14}.

Note

• These encodings access the registers that are equivalent to the AArch32 System registers in the
(coproc==0b1111) encoding space.

• While this group is described as accessing the non-debug System registers, its correct characterization is by
the {op0, CRn} values given in this subsection, and the group includes the debug registers DLR_EL0,
DSPSR_EL0, MDCR_EL2, MDCR_EL3, and SDER32_EL3, that are described in Debug registers on
page D13-3810. These registers are exceptions to the standard encoding of debug registers, that has
op0==0b10, see Instructions for accessing debug System registers on page D12-3021.

The instruction encoding for these accesses is:

Table D12-2 on page D12-3024 shows the encodings of the register access instructions. In the Notes on
page D12-3024 column of the table:

Config-RO Means it is configurable whether read accesses are permitted. Write accesses are UNDEFINED.

Config-WO Means it is configurable whether write accesses are permitted. Read accesses are UNDEFINED.

Config-RW Means it is configurable whether accesses are permitted. Either read and write accesses are
permitted, or read and write accesses are UNDEFINED.

Rt1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 L op1 CRn CRm op2

op0

1 1

Rt1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 L op1 CRn CRm op2

op0

1 1

See text for permitted values of CRn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D12-3023
ID072021 Non-Confidential

AArch64 System Register Encoding
D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose registers
See the register descriptions for information about the control that determines whether these accesses are permitted.

Table D12-2 Instruction encodings for non-Debug System register accesses

Register accessed
Access instruction encoding

Source Notes
op0 op1 CRn CRm op2

MIDR_EL1 3 0 0 0 0 v8.0 RO.

MPIDR_EL1 5 v8.0 RO.

REVIDR_EL1 6 v8.0 RO.

ID_PFR0_EL1 1 0 v8.0 RO, but UNKNOWN if
AArch32 is not
implemented.ID_PFR1_EL1 1 v8.0

ID_DFR0_EL1 2 v8.0

ID_AFR0_EL1 3 v8.0

ID_MMFR0_EL1 4 v8.0

ID_MMFR1_EL1 5 v8.0

ID_MMFR2_EL1 6 v8.0

ID_MMFR3_EL1 7 v8.0

ID_ISAR0_EL1 2 0 v8.0 RO, but UNKNOWN if
AArch32 is not
implemented.ID_ISAR1_EL1 1 v8.0

ID_ISAR2_EL1 2 v8.0

ID_ISAR3_EL1 3 v8.0

ID_ISAR4_EL1 4 v8.0

ID_ISAR5_EL1 5 v8.0

ID_MMFR4_EL1 6 v8.0

ID_ISAR6_EL1 7 v8.0

MVFR0_EL1 3 0 v8.0 RO, but UNKNOWN if
AArch32 is not
implemented.MVFR1_EL1 1 v8.0

MVFR2_EL1 2 v8.0

ID_PFR2_EL1 4 v8.0

ID_DFR1_EL1 5 v8.6

ID_MMFR5_EL1 6 v8.0

Reserved, RAZ n - RO, for n={3, 7}.

ID_AA64PFR0_EL1 4 0 v8.0 RO.

ID_AA64PFR1_EL1 1 v8.0 RO.

ID_AA64ZFR0_EL1 4 SVEa RO, but RAZ if SVE is not
implemented.
D12-3024 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Encoding
D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose registers
Reserved, RAZ 3 0 0 4 n - RO, for n={2, 3, 5, 6, 7}.

ID_AA64DFR0_EL1 5 0 v8.0 RO.

ID_AA64DFR1_EL1 1 v8.0 RO.

ID_AA64AFR0_EL1 4 v8.0 RO.

ID_AA64AFR1_EL1 5 v8.0 RO.

Reserved, RAZ n - RO, for n={2, 3, 6, 7}.

ID_AA64ISAR0_EL1 6 0 v8.0 RO.

ID_AA64ISAR1_EL1 1 v8.0 RO.

ID_AA64ISAR2_EL1 2 v8.7 RO.

Reserved, RAZ n - RO, for n=3-7.

ID_AA64MMFR0_EL1 7 0 v8.0 RO.

ID_AA64MMFR1_EL1 1 v8.0 RO.

ID_AA64MMFR2_EL1 2 v8.2 RO.

Reserved, RAZ n - RO, for n=3-7.

SCTLR_EL1 1 0 0 v8.0 RW.

ACTLR_EL1 1 v8.0 RW, contents
IMPLEMENTATION
DEFINED.

CPACR_EL1 2 v8.0 RW.

RGSR_EL1 5 v8.5 RW.

GCR_EL1 6 v8.5 RW.

ZCR_EL1 2 0 SVEa RW.

TRFCR_EL1 1 v8.4 RW.

TTBR0_EL1 2 0 0 v8.0 RW.

TTBR1_EL1 1 v8.0 RW.

TCR_EL1 2 v8.0 RW.

APIAKeyLo_EL1 1 0 v8.3 RW.

APIAKeyHi_EL1 1 v8.3 RW.

APIBKeyLo_EL1 2 v8.3 RW.

APIBKeyHi_EL1 3 v8.3 RW.

APDAKeyLo_EL1 2 0 v8.3 RW.

Table D12-2 Instruction encodings for non-Debug System register accesses (continued)

Register accessed
Access instruction encoding

Source Notes
op0 op1 CRn CRm op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D12-3025
ID072021 Non-Confidential

AArch64 System Register Encoding
D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose registers
APDAKeyHi_EL1 3 0 2 2 1 v8.3 RW.

APDBKeyLo_EL1 2 v8.3 RW.

APDBKeyHi_EL1 3 v8.3 RW.

APGAKeyLo_EL1 3 0 v8.3 RW.

APGAKeyHi_EL1 1 v8.3 RW.

ICC_PMR_EL1

ICV_PMR_EL1

4 6 0 GICb RW.

AFSR0_EL1 5 1 0 v8.0 RW, contents
IMPLEMENTATION
DEFINED.

AFSR1_EL1 1 v8.0 RW, contents
IMPLEMENTATION
DEFINED.

ESR_EL1 2 0 v8.0 RW.

ERRIDR_EL1 3 0 RASc RO.

ERRSELR_EL1 1 RASc RW.

ERXFR_EL1 4 0 RASc RO.

ERXCTLR_EL1 1 RASc RW.

ERXSTATUS_EL1 2 RASc RW.

ERXADDR_EL1 3 RASc RW.

ERXPFGF_EL1 4 RASc RO.

ERXPFGCTL_EL1 5 RASc RW.

ERXPFGCDN_EL1 6 RASc RW.

ERXMISC0_EL1 5 0 RASc RW.

ERXMISC1_EL1 1 RASc RW.

ERXMISC2_EL1 2 RASc RW.

ERXMISC3_EL1 3 RASc RW.

TFSR_EL1 6 0 v8.5 RW.

TFSRE0_EL1 1 v8.5 RW.

FAR_EL1 6 0 0 v8.0 RW.

PAR_EL1 7 4 0 v8.0 RW.

PMSCR_EL1 9 9 0 SPEd RW.

Table D12-2 Instruction encodings for non-Debug System register accesses (continued)

Register accessed
Access instruction encoding

Source Notes
op0 op1 CRn CRm op2
D12-3026 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Encoding
D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose registers
PMSNEVFR_EL1 3 0 9 9 1 SPEd RW.

PMSICR_EL1 2 SPEd RW.

PMSIRR_EL1 3 SPEd RW.

PMSFCR_EL1 4 SPEd RW.

PMSEVFR_EL1 5 SPEd RW.

PMSLATFR_EL1 6 SPEd RW.

PMSIDR_EL1 7 SPEd RO.

PMBLIMITR_EL1 10 0 SPEd RW.

PMBPTR_EL1 1 SPEd RW.

PMBSR_EL1 3 SPEd RW.

PMBIDR_EL1 7 SPEd RO.

PMINTENSET_EL1 14 1 v8.0e RW.

PMINTENCLR_EL1 2 v8.0e RW.

PMMIR_EL1 6 v8.4 RO.

MAIR_EL1 10 2 0 v8.0 RW.

AMAIR_EL1 3 0 v8.0 RW, contents
IMPLEMENTATION
DEFINED.

LORSA_EL1 4 0 v8.1 RW.

LOREA_EL1 1 v8.1 RW.

LORN_EL1 2 v8.1 RW.

LORC_EL1 3 v8.1 RW.

MPAMIDR_EL1 4 MPAMf RO.

LORID_EL1 7 v8.1 RO.

MPAM1_EL1 5 0 MPAMf RW.

MPAM0_EL1 1 MPAMf RW.

VBAR_EL1 12 0 0 v8.0 RW.

RVBAR_EL1 1 v8.0 RO. Implemented only if
EL2 and EL3 are not
implemented.

RMR_EL1 2 v8.0 RW. Implemented only if
EL2 and EL3 are not
implemented.g

Table D12-2 Instruction encodings for non-Debug System register accesses (continued)

Register accessed
Access instruction encoding

Source Notes
op0 op1 CRn CRm op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D12-3027
ID072021 Non-Confidential

AArch64 System Register Encoding
D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose registers
ISR_EL1 3 0 12 1 0 v8.0 RO.

DISR_EL1 1 RASc RW.

ICC_IAR0_EL1

ICV_IAR0_EL1

8 0 GICb RO.

ICC_EOIR0_EL1

ICV_EOIR0_EL1

1 GICb WO.

ICC_HPPIR0_EL1

ICV_HPPIR0_EL1

2 GICb RO.

ICC_BPR0_EL1

ICV_BPR0_EL1

3 GICb RW.

ICC_AP0R<n>_EL1

ICV_AP0R<n>_EL1

{4-7} GICb RW, <n> = op2-4.

ICC_AP1R<n>_EL1

ICV_AP1R<n>_EL1

9 {0-3} GICb RW, <n> = op2.

ICC_DIR_EL1

ICV_DIR_EL1

11 1 GICb WO.

ICC_RPR_EL1

ICV_RPR_EL1

3 GICb RO.

ICC_SGI1R_EL1 5 GICb WO.

ICC_ASGI1R_EL1 6 GICb WO.

ICC_SGI0R_EL1 7 GICb WO.

ICC_IAR1_EL1

ICV_IAR1_EL1

12 0 GICb RO.

ICC_EOIR1_EL1

ICV_EOIR1_EL1

1 GICb WO.

ICC_HPPIR1_EL1

ICV_HPPIR1_EL1

2 GICb RO.

ICC_BPR1_EL1

ICV_BPR1_EL1

3 GICb RW.

ICC_CTLR_EL1

ICV_CTLR_EL1

4 GICb RW.

ICC_SRE_EL1 5 GICb RW.

ICC_IGRPEN0_EL1

ICV_IGRPEN0_EL1

6 GICb RW.

Table D12-2 Instruction encodings for non-Debug System register accesses (continued)

Register accessed
Access instruction encoding

Source Notes
op0 op1 CRn CRm op2
D12-3028 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Encoding
D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose registers
ICC_IGRPEN1_EL1

ICV_IGRPEN1_EL1

3 0 12 12 7 GICb RW.

CONTEXTIDR_EL1 13 0 1 v8.0 RW.

TPIDR_EL1 4 v8.0 RW.

ACCDATA_EL1 5 v8.7 RW.

SCXTNUM_EL1 7 v8.0 RW.

CNTKCTL_EL1 14 1 0 v8.0h RW.

CCSIDR_EL1 1 0 0 0 v8.0i RO.

v8.3i RO.

CLIDR_EL1 1 v8.0 RO.

CCSIDR2_EL1 2 v8.3j RO, but IMPLEMENTATION
DEFINEDk if AArch32 is
not implemented.

GMID_EL1 4 v8.5 RO.

AIDR_EL1 7 v8.0 RO.

CSSELR_EL1 2 0 0 0 v8.0 RW.

CTR_EL0 3 0 0 1 v8.0 Config-RO at EL0,
otherwise RO.

DCZID_EL0 7 v8.0 RO.

RNDR 2 4 0 v8.5 RO.

RNDRRS 1 v8.5 RO.

PMCR_EL0 9 12 0 v8.0e Config-RW at EL0,
otherwise RW.

PMCNTENSET_EL0 1 v8.0e

PMCNTENCLR_EL0 2 v8.0e

PMOVSCLR_EL0 3 v8.0e

PMSWINC_EL0 4 v8.0e Config-WO at EL0,
otherwise WO.

PMSELR_EL0 5 v8.0e Config-RW at EL0,
otherwise RW.

PMCEID0_EL0 6 v8.0e Config-RO at EL0,
otherwise RO.

PMCEID1_EL0 7 v8.0e

Table D12-2 Instruction encodings for non-Debug System register accesses (continued)

Register accessed
Access instruction encoding

Source Notes
op0 op1 CRn CRm op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D12-3029
ID072021 Non-Confidential

AArch64 System Register Encoding
D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose registers
PMCCNTR_EL0 3 3 9 13 0 v8.0e Config-RW at EL0,
otherwise RW.

PMXEVTYPER_EL0 1 v8.0e

PMXEVCNTR_EL0 2 v8.0e

PMUSERENR_EL0 14 0 v8.0e RO at EL0, otherwise RW.

PMOVSSET_EL0 3 v8.0e Config-RW at EL0,
otherwise RW.

TPIDR_EL0 13 0 2 v8.0 RW.

TPIDRRO_EL0 3 v8.0 RW.

SCXTNUM_EL0 7 v8.0 RW.

AMCR_EL0 2 0 AMUl Config-RO at EL0, RW at
the highest implemented
Exception level, otherwise
RO.

AMCFGR_EL0 1 AMUl Config-RO at EL0,
otherwise RO.

AMCGCR_EL0 2 AMUl Config-RO at EL0,
otherwise RO.

AMUSERENR_EL0 3 AMUl RO at EL0, otherwise RW.

AMCNTENCLR0_EL0 4 AMUl Config-RO at EL0, RW at
the highest implemented
Exception level, otherwise
RO.

AMCNTENSET0_EL0 5 AMUl Config-RO at EL0, RW at
the highest implemented
Exception level, otherwise
RO.

AMCG1IDR_EL0 6 v8.6 RO.

AMCNTENCLR1_EL0 3 0 AMUl Config-RO at EL0, RW at
the highest implemented
Exception level, otherwise
RO.

AMCNTENSET1_EL0 1 AMUl Config-RO at EL0, RW at
the highest implemented
Exception level, otherwise
RO.

Table D12-2 Instruction encodings for non-Debug System register accesses (continued)

Register accessed
Access instruction encoding

Source Notes
op0 op1 CRn CRm op2
D12-3030 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Encoding
D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose registers
AMEVCNTR0<n>_EL0 3 3 13 {4-5} {0-7} AMUl Config-RO at EL0, RW at
the highest implemented
Exception level, otherwise
RO.

CRm and op2 encode <n>,
the counter number:

• For CRm==4,
<n>=op2.

• For CRm==5,
<n>=op2+8.

AMEVTYPER0<n>_EL0 {6-7} {0-7} AMUl Config-RO at EL0,
otherwise RO.

CRm and op2 encode <n>,
the counter number:

• For CRm==6,
<n>=op2.

• For CRm==7,
<n>=op2+8.

AMEVCNTR1<n>_EL0 {12-13} {0-7} AMUl Config-RO at EL0, RW at
the highest implemented
Exception level, otherwise
RO.

CRm and op2 encode <n>,
the counter number:

• For CRm==12,
<n>=op2.

• For CRm==13,
<n>=op2+8.

AMEVTYPER1<n>_EL0 {14-15} {0-7} AMUl Config-RO at EL0, RW at
the highest implemented
Exception level, otherwise
RO.

CRm and op2 encode <n>,
the counter number:

• For CRm==14,
<n>=op2.

• For CRm==15,
<n>=op2+8.

CNTFRQ_EL0 14 0 0 v8.0h Config-RO at EL0, RW at
the highest implemented
Exception level, otherwise
RO.

CNTPCT_EL0 1 v8.0h Config-RO at EL0,
otherwise RO.

CNTVCT_EL0 2 v8.0h

CNTPCTSS_EL0 5 v8.6 RO.

Table D12-2 Instruction encodings for non-Debug System register accesses (continued)

Register accessed
Access instruction encoding

Source Notes
op0 op1 CRn CRm op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D12-3031
ID072021 Non-Confidential

AArch64 System Register Encoding
D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose registers
CNTVCTSS_EL0 3 3 14 0 6 v8.6 RO.

CNTP_TVAL_EL0 2 0 v8.0h Config-RW at EL0 and
Non-secure EL1,
otherwise RW.

CNTP_CTL_EL0 1 v8.0h

CNTP_CVAL_EL0 2 v8.0h

CNTV_TVAL_EL0 3 0 v8.0h Config-RW at EL0,
otherwise RW.

CNTV_CTL_EL0 1 v8.0h

CNTV_CVAL_EL0 2 v8.0h

PMEVCNTR<n>_EL0 {8-10} {0-7} v8.0e Config-RW at EL0,
otherwise RW. CRm and op2
encode <n>, the counter
number:

• For CRm=={8, 12},
<n>=op2.

• For CRm=={9, 13},
<n>=op2+8.

• For CRm=={10, 14},
<n>=op2+16.

• For CRm=={11, 15},
<n>=op2+24.

11 {0-6} v8.0e

PMEVTYPER<n>_EL0 {12-14} {0-7} v8.0e

15 {0-6} v8.0e

PMCCFILTR_EL0 7 v8.0e Config-RW at EL0,
otherwise RW.

VPIDR_EL2 4 0 0 0 v8.0 RW.

VMPIDR_EL2 5 v8.0 RW.

SCTLR_EL2 1 0 0 v8.0 RW.

ACTLR_EL2 1 v8.0 RW, contents
IMPLEMENTATION
DEFINED.

HCR_EL2 1 0 v8.0 RW.

MDCR_EL2 1 v8.0 RW.m

CPTR_EL2 2 v8.0 RW.

Table D12-2 Instruction encodings for non-Debug System register accesses (continued)

Register accessed
Access instruction encoding

Source Notes
op0 op1 CRn CRm op2
D12-3032 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Encoding
D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose registers
HSTR_EL2 3 4 1 1 3 v8.0 RW.

HFGRTR_EL2 4 v8.6 RW.

HFGWTR_EL2 5 v8.6 RW.

HFGITR_EL2 6 v8.6 RW.

HACR_EL2 7 v8.0 RW, contents
IMPLEMENTATION
DEFINED.

ZCR_EL2 2 0 SVEa RW.

TRFCR_EL2 1 v8.4 RW.

HCRX_EL2 2 v8.7 RW.

SDER32_EL2 3 1 v8.4 RW.

TTBR0_EL2 2 0 0 v8.0 RW.

TTBR1_EL2 1 v8.1 RW.

TCR_EL2 2 v8.0 RW.

VTTBR_EL2 1 0 v8.0 RW.

VTCR_EL2 2 v8.0 RW.

VNCR_EL2 2 0 v8.4 RW.

VSTTBR_EL2 6 0 v8.4 RW.

VSTCR_EL2 2 v8.4 RW.

DACR32_EL2 3 0 0 v8.0 RW if EL1 can use
AArch32, otherwise
UNDEFINED.n

HDFGRTR_EL2 1 4 v8.6 RW.

HDFGWTR_EL2 5 v8.6 RW.

HAFGRTR_EL2 6 v8.6l RW.

IFSR32_EL2 5 0 1 v8.0 RW if EL1 can use
AArch32, otherwise
UNDEFINED.n

AFSR0_EL2 1 0 v8.0 RW, contents
IMPLEMENTATION
DEFINED.

AFSR1_EL2 1 v8.0 RW, contents
IMPLEMENTATION
DEFINED.

Table D12-2 Instruction encodings for non-Debug System register accesses (continued)

Register accessed
Access instruction encoding

Source Notes
op0 op1 CRn CRm op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D12-3033
ID072021 Non-Confidential

AArch64 System Register Encoding
D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose registers
ESR_EL2 3 4 5 2 0 v8.0 RW.

VSESR_EL2 3 RASc RW.

FPEXC32_EL2 3 0 v8.0 RW if EL1 can use
AArch32, otherwise
UNDEFINED.n

TFSR_EL2 6 0 v8.5 RW.

FAR_EL2 6 0 0 v8.0 RW.

HPFAR_EL2 4 v8.0 RW.

PMSCR_EL2 9 9 0 SPEd RW.

MAIR_EL2 10 2 0 v8.0 RW.

AMAIR_EL2 3 0 v8.0 RW, contents
IMPLEMENTATION
DEFINED.

MPAMHCR_EL2 4 0 MPAMf RW.

MPAMVPMV_EL2 1 MPAMf RW.

MPAM2_EL2 5 0 MPAMf RW.

MPAMVPM0_EL2 6 0 MPAMf RW.

MPAMVPM1_EL2 1 MPAMf RW.

MPAMVPM2_EL2 2 MPAMf RW.

MPAMVPM3_EL2 3 MPAMf RW.

MPAMVPM4_EL2 4 MPAMf RW.

MPAMVPM5_EL2 5 MPAMf RW.

MPAMVPM6_EL2 6 MPAMf RW.

MPAMVPM7_EL2 7 MPAMf RW.

VBAR_EL2 12 0 0 v8.0 RW.

RVBAR_EL2 1 v8.0 RO. Implemented only if
EL3 is not implemented.

RMR_EL2 2 v8.0 RW. Implemented only if
EL2 is implemented and
EL3 is not implemented.g

VDISR_EL2 1 1 RASc RW.

ICH_AP0R<n>_EL2 8 {0-3} GICb RW, <n>=op2.

Table D12-2 Instruction encodings for non-Debug System register accesses (continued)

Register accessed
Access instruction encoding

Source Notes
op0 op1 CRn CRm op2
D12-3034 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Encoding
D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose registers
ICH_AP1R<n>_EL2 3 4 12 9 {0-3} GICb RW, <n>=op2.

ICC_SRE_EL2 5 GICb RW.

ICH_HCR_EL2 11 0 GICb RW.

ICH_VTR_EL2 1 GICb RO.

ICH_MISR_EL2 2 GICb RO.

ICH_EISR_EL2 3 GICb RO.

ICH_ELRSR_EL2 5 GICb RO.

ICH_VMCR_EL2 7 GICb RW.

ICH_LR<n>_EL2 {12,13} {0-7} GICb RW:

• For CRm==12,
<n>=op2.

• For CRm==13,
<n>=op2+8.

CONTEXTIDR_EL2 13 0 1 v8.1 RW.

TPIDR_EL2 2 v8.0 RW.

SCXTNUM_EL2 7 v8.0 RW.

AMEVCNTVOFF0<n>_EL2 {8-9} {0-7} v8.6 RW.

AMEVCNTVOFF1<n>_EL2 {10-11} {0-7} v8.6 RW.

CNTVOFF_EL2 14 0 3 v8.0h RW.

CNTPOFF_EL2 6 v8.6 RW.

CNTHCTL_EL2 1 0 v8.0h RW.

CNTHP_TVAL_EL2 2 0 v8.0h RW.

CNTHP_CTL_EL2 1 v8.0h RW.

CNTHP_CVAL_EL2 2 v8.0h RW.

CNTHV_TVAL_EL2 3 0 v8.1 RW.

CNTHV_CTL_EL2 1 v8.1 RW.

CNTHV_CVAL_EL2 2 v8.1 RW.

CNTHVS_TVAL_EL2 4 0 v8.4 RW.

CNTHVS_CTL_EL2 1 v8.4 RW.

CNTHVS_CVAL_EL2 2 v8.4 RW.

Table D12-2 Instruction encodings for non-Debug System register accesses (continued)

Register accessed
Access instruction encoding

Source Notes
op0 op1 CRn CRm op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D12-3035
ID072021 Non-Confidential

AArch64 System Register Encoding
D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose registers
CNTHPS_TVAL_EL2 3 4 14 5 0 v8.4 RW.

CNTHPS_CTL_EL2 1 v8.4 RW.

CNTHPS_CVAL_EL2 2 v8.4 RW.

*_EL02

*_EL12

5 {0- 15} {0-15} {0-7} v8.1 Reserved for EL2 aliases
of EL0 and EL1 registers,
see Table D5-48 on
page D5-2791.

SCTLR_EL3 6 1 0 0 v8.0 RW.

ACTLR_EL3[63:0] 1 v8.0 RW, contents
IMPLEMENTATION
DEFINED.

SCR_EL3 1 0 v8.0 RW.

SDER32_EL3 1 v8.0 RW if EL1 can use
AArch32, otherwise
UNDEFINED.m, n

CPTR_EL3 2 v8.0 RW.

ZCR_EL3 2 0 SVEa RW.

MDCR_EL3 3 1 v8.0 RW.m

TTBR0_EL3 2 0 0 v8.0 RW.

TCR_EL3 2 v8.0 RW.

AFSR0_EL3 5 1 0 v8.0 RW, contents
IMPLEMENTATION
DEFINED.

AFSR1_EL3 1 v8.0 RW, contents
IMPLEMENTATION
DEFINED.

ESR_EL3 2 0 v8.0 RW.

TFSR_EL3 6 0 v8.5 RW.

FAR_EL3 6 0 0 v8.0 RW.

MAIR_EL3 10 2 0 v8.0 RW.

AMAIR_EL3 3 0 v8.0 RW, contents
IMPLEMENTATION
DEFINED.

MPAM3_EL3 5 0 MPAMf RW.

VBAR_EL3 12 0 0 v8.0 RW.

RVBAR_EL3 1 v8.0 RO.

Table D12-2 Instruction encodings for non-Debug System register accesses (continued)

Register accessed
Access instruction encoding

Source Notes
op0 op1 CRn CRm op2
D12-3036 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Encoding
D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose registers
About the GIC System registers

From version 3.0 of the GIC architecture specification, the specification defines three groups of System registers,
identified by the prefix of the register name:

ICC_ GIC physical CPU interface System registers.

ICH_ GIC virtual interface control System registers.

ICV_ GIC Virtual CPU interface System registers.

Note

These registers are in addition to the GIC memory-mapped register groups GICC_, GICD_, GICH_, GICR_,
GICV_, and GITS_.

When implemented, the GIC System registers form part of an Arm processor implementation, and therefore these
registers are included in the register summaries. However, the registers are defined only in the GIC Architecture
Specification.

RMR_EL3 3 6 12 0 2 v8.0 RW. Implemented only if
EL3 is implementedg.

ICC_CTLR_EL3 12 4 GICb RW.

ICC_SRE_EL3 5 GICb RW.

ICC_IGRPEN1_EL3 7 GICb RW.

TPIDR_EL3 13 0 2 v8.0 RW.

SCXTNUM_EL3 7 v8.0 RW.

CNTPS_TVAL_EL1 7 14 2 0 v8.0h RW at EL3, Config-RW at
Secure EL1.

CNTPS_CTL_EL1 1 v8.0h

CNTPS_CVAL_EL1 2 v8.0h

a. Scalable Vector Extension System register, see The Scalable Vector Extension (SVE) on page A2-110.

b. GIC System register, see About the GIC System registers on page D12-3037 As that subsection describes, each ICV_*
register uses the same encoding as the corresponding ICC_* register.

c. RAS Extension System registers, see The Reliability, Availability, and Serviceability Extension on page A2-108.

d. Statistical Profiling Extension System registers, see The Statistical Profiling Extension (SPE) on page A2-109.

e. Performance Monitors Extension System register, see Performance Monitors registers on page D13-3929.

f. Memory Partitioning and Monitoring Extension System register, see The Memory Partitioning and Monitoring (MPAM)
Extension on page A2-112.

g. Required if the highest implemented Exception level can use both AArch32 and AArch64. If the highest implemented
Exception level can use only AArch64, then it is IMPLEMENTATION DEFINED whether this register is implemented.

h. Generic Timer System register, see Generic Timer registers on page D13-4139.

i. When FEAT_CCIDX is implemented, CCSIDR_EL1 is a 64-bit register. Otherwise, it is a 32-bit register.

j. CCSIDR2_EL1 is implemented only when FEAT_CCIDX is implemented.

k. When AArch32 is not implemented, it is IMPLEMENTATION DEFINED whether CCSIDR2_EL1 is UNDEFINED or UNKNOWN.

l. Activity Monitors System register, see Activity Monitors registers on page D13-4001.

m. Debug register in the op0==3 encoding space, see Debug registers on page D13-3810.

n. Defined to allow access from AArch64 state to registers that are only used in AArch32 state.

Table D12-2 Instruction encodings for non-Debug System register accesses (continued)

Register accessed
Access instruction encoding

Source Notes
op0 op1 CRn CRm op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D12-3037
ID072021 Non-Confidential

AArch64 System Register Encoding
D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose registers
As Table D12-2 on page D12-3024 shows, the ICV_* registers have the same {op0, op1, CRn, CRm, op2} encodings as
the corresponding ICC_* registers. For these encodings, GIC register configuration fields determine which register
is accessed.

For more information, see the ARM® Generic Interrupt Controller Architecture Specification, GIC architecture
version 3.0 and version 4.0 (ARM IHI 0069).

D12.3.2 Reserved encodings for IMPLEMENTATION DEFINED registers

The System register encoding space with op0==0b11 reserves the following encodings for IMPLEMENTATION
DEFINED registers:

The value of L defines the access type and the use of Rt as follows:

0 Write the value in Rt to the IMPLEMENTATION DEFINED register.

1 Read the value of the IMPLEMENTATION DEFINED register to Rt.

For more information about these encodings, see S3_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION
DEFINED registers on page D13-3606. As that section describes, any IMPLEMENTATION DEFINED registers are
accessed in a similar way to architecturally-defined System registers, using MRS and MSR instructions, see:

• MRS on page C6-1236.

• MSR (immediate) on page C6-1237.

• MSR (register) on page C6-1240.

The Arm architecture guarantees not to define any register name prefixed with IMP_ as part of the standard Arm
architecture.

Note

Arm strongly recommends that any register names created in the IMPLEMENTATION DEFINED register spaces be
prefixed with IMP_ and postfixed with _ELx, where appropriate.

Rt1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 4 0

1 0 1 0 1 0 1 0 0 L 1 1 1 x 1 1
11 5

op1

op0 CRn

CRm op2
8 7
D12-3038 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter D13
AArch64 System Register Descriptions

This chapter defines the AArch64 System registers. It contains the following sections:

• About the AArch64 System registers on page D13-3040.

• General system control registers on page D13-3049.

• Debug registers on page D13-3810.

• Performance Monitors registers on page D13-3929.

• Activity Monitors registers on page D13-4001.

• Statistical Profiling Extension registers on page D13-4042.

• RAS registers on page D13-4091.

• Generic Timer registers on page D13-4139.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3039
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.1 About the AArch64 System registers
D13.1 About the AArch64 System registers

The following sections describe common features of the AArch64 registers:

• Fixed values in the System register descriptions on page D13-3040.

• General behavior of accesses to the AArch64 System registers on page D13-3040.

• Principles of the ID scheme for fields in ID registers on page D13-3045.

D13.1.1 Fixed values in the System register descriptions

See Fixed values in AArch64 instruction and System register descriptions on page C2-211. This section defines how
the glossary terms RAZ, RES0, RAO, and RES1 can be represented in the System register descriptions.

D13.1.2 General behavior of accesses to the AArch64 System registers

The following subsections give general information about the behavior of accesses to the System registers:

• Reset behavior of AArch64 System registers on page D13-3040.

• Synchronization requirements for AArch64 System registers on page D13-3041.

Reset behavior of AArch64 System registers

Reset values apply only to RW registers and fields, however:

• Some RO registers or fields, including feature ID registers and some status registers or register fields, always
return a known value.

• Some RW and RO registers or register fields return status information about the PE. Unless the register
description indicates that the value is UNKNOWN on reset, a read of the register immediately after a reset
returns valid information.

• Some RW and RO registers and fields are aliases of other registers or fields. In these cases, the reset behavior
of the aliased register or field determines the value returned by a read of the register immediately after a reset.

• WO registers that only have an effect on writes do not have meaningful reset values. However, an access to
a WO register might affect underlying state, and that state might have a defined reset value.

• IMPLEMENTATION DEFINED registers have IMPLEMENTATION DEFINED reset behavior.

After a reset, only a limited subset of the PE state is guaranteed to be set to defined values. Also, for debug and trace
System registers, reset requirements must take account of different levels of reset. For more information about the
reset behavior of System registers when the PE resets into an Exception level that is using AArch64, see:

• PE state on reset to AArch64 state on page D1-2472.

• The appropriate Trace architecture specification, for the Trace System registers.

For a PE reset into an Exception level that is using AArch64, the architecture defines which AArch64 System
registers have a defined reset value, and when that defined reset value applies. The register descriptions include this
information, and PE state on reset to AArch64 state on page D1-2472 summarizes these architectural requirements.
Otherwise, RW registers that have a meaningful reset value reset to an architecturally UNKNOWN value.

Note

When the PE resets into an Exception level that is using AArch32, no PE state that relates to execution in AArch64
state is accessible until another reset causes the Execution state to change to AArch64. Therefore, on a reset into
AArch32 state, PE state that relates only to execution in AArch64 state cannot have a meaningful reset value.

Pseudocode description of resetting System registers

The AArch64.ResetSystemRegisters() pseudocode function resets all System registers, and register fields, that have
defined reset values, as described in this section and PE state on reset to AArch64 state on page D1-2472.
D13-3040 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.1 About the AArch64 System registers
Note

For debug and trace System registers, this function resets registers as defined for the appropriate level of reset.

Synchronization requirements for AArch64 System registers

Reads of the System registers can occur out of order with respect to earlier instructions executed on the same PE,
provided that both:

• Any data dependencies between the instructions, including read-after-read dependencies, are respected.

• The reads to the register do not occur earlier than the most recent Context synchronization event to its
architectural position in the instruction stream.

Note

In particular, the values read from System registers that hold self-incrementing counts, such as the Performance
Monitors counters or the Generic Timer counter or timers, could be accessed from any time after the previous
Context synchronization event. For example, where a memory access is used to communicate a read of such a
counter, an ISB must be inserted between the read of the memory location that is known to have returned its data,
either as a result of a condition on that data or of the read having completed, and the read of the counter, if it is
necessary that the counter returns a count value after the memory communication.

Direct writes using the instructions in Table D12-2 on page D12-3024 require synchronization before software can
rely on the effects of changes to the System registers to affect instructions appearing in program order after the direct
write to the System register. Direct writes to these registers are not allowed to affect any instructions appearing in
program order before the direct write. The only exceptions are:

• All direct writes to the same register, that use the same encoding for that register, are guaranteed to occur in
program order relative to each other

• All direct writes to a register occur in program order with respect to all direct reads to the same register using
the same encoding.

• Any System register access that an Arm Architecture Specification or equivalent specification defines as not
requiring synchronization.

Explicit synchronization occurs as a result of a Context synchronization event, which is one of the following events:

• Execution of an ISB instruction.

• Exception entry, if FEAT_ExS is not implemented, or if FEAT_ExS is implemented and defines that
exception entries to this Exception level are context synchronization events.

• Exception return, if FEAT_ExS is not implemented, or if FEAT_ExS is implemented and defines that
exception returns from this Exception level are context synchronization events.

• Execution of a DCPS instruction in Debug state.

• Execution of a DRPS instruction in Debug state.

• Exit from Debug state.

Note

The ISB and exception entry events are applicable both in Debug state and in Non-debug state.

Conceptually, explicit synchronization occurs as the first step of each of these events, so that if the event uses state
that has previously been changed but was not synchronized by the time of the event, the event is guaranteed to use
the state as if it had been synchronized.

Note

This explicit synchronization applies as the first step of the execution of the events, and does not apply to any effect
of System registers that apply to the fetch and decode of the instructions that cause these events, such as breakpoints
or changes to the translation table.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3041
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.1 About the AArch64 System registers
In addition, any system instructions that cause a write to a System register must be synchronized before the result
is guaranteed to be visible to subsequent direct reads of that System register.

Direct reads to any one of the following registers, using the same encoding, occur in program order relative to each
other:

• ISR_EL1.

• The Generic Timer registers, that is, CNTPCT_EL0 and CNTVCT_EL0, and the Counter registers
CNTP_TVAL_EL0, CNTV_TVAL_EL0, CNTHP_TVAL_EL2, and CNTPS_TVAL_EL1.

• DBGCLAIMCLR_EL1.

• The PMU Counters, that is, PMCCNTR_EL0, PMEVCNTR<n>_EL0, PMXEVCNTR_EL0,
PMOVSCLR_EL0, and PMOVSSET_EL0.

• The Debug Communications Channel registers, that is, DBGDTRRX_EL0, DBGDTR_EL0, and
MDCCSR_EL0.

All other direct reads of System registers can occur in any order if synchronization has not been performed.

Table D13-1 on page D13-3042 describes the synchronization requirements between two successive read or write
accesses to the same register, where the ordering of the read or write accesses is:

1. Program order, in the event that both the reads or writes are caused by an instruction executed on this PE,
other than one caused by a memory access by this PE.

2. The order of arrival of asynchronous reads and writes at the PE relative to the execution of instructions that
cause reads or writes.

3. The order of arrival of asynchronous reads and writes at the PE relative to each other.

Table D13-1 Synchronization requirements

First read-write Second read-write Synchronization requirement

Direct read Direct read None

Direct write None

Indirect read None

Indirect write None, see Notes on page D13-3043

Direct write Direct read None

Direct write None

Indirect read Required

Indirect write None, see Notes on page D13-3043

Indirect read Direct read None

Direct write None

Indirect read None

Indirect write None
D13-3042 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.1 About the AArch64 System registers
Notes

The terms Direct read, Direct write, Indirect read, and Indirect write, as used in Table D13-1 on page D13-3042, are
defined as follows:

Direct read Where software uses an MRS system register access instruction to read that register into a general
purpose register.

Where a direct read of a register has a side-effect that changes the contents of a register, the effect
of a direct read on that register is defined to be an indirect write. In this case, the indirect write is
only guaranteed to have occurred, and be visible to subsequent direct or indirect reads or writes, if
synchronization is performed after the direct read.

Direct write Where software uses an MSR (register) access instruction to write to that register from a general
purpose register.

Where a direct write to a register has an effect on the register that means that the value in the register
is not always the last value that is written (as is the case with set and clear registers), the effect of a
direct write on that register is defined to be an indirect write. In this case, the indirect write is only
guaranteed to be visible to subsequent direct or indirect reads or writes if synchronization is
performed after the direct write and before the subsequent direct or indirect reads or writes.

Indirect read Where an instruction uses a System register to establish operating conditions for the instruction, for
example, the TTBR_ELx address or whether memory accesses are forced to be Non-cacheable. This
includes situations where the contents of one System register selects what value is read or written
using a different register. Indirect reads also include reads of the System register by external agents
such as debuggers. Where an indirect read of a register has a side-effect that changes the contents
of that register, that is defined to be an indirect write.

Indirect write Where a System register is written as the consequence of some other instruction, exception,
operation, or by the asynchronous operation of an external agent, including the passage of time as
seen in counters, timers, or performance counters, the assertion of interrupts, or writes from an
external debugger.

Note

Since an exception is context synchronizing, registers such as the Exception Syndrome registers that
are indirectly written as part of exception entry do not require additional synchronization.

Where a direct read or write to a register is followed by an indirect write caused by an external agent, autonomous
asynchronous event, or as a result of memory mapped write, synchronization is required to guarantee the order of
those two accesses.

Where an indirect write caused by a direct write is followed by an indirect write caused by an external agent,
autonomous asynchronous event, or as a result of memory mapped write, synchronization is required to guarantee
the order of those two indirect accesses.

Indirect write Direct read Required, see Notes on
page D13-3043

Direct write None, see Notes on page D13-3043

Indirect read Required, see Notes on
page D13-3043

Indirect write None, see Notes on page D13-3043

Table D13-1 Synchronization requirements (continued)

First read-write Second read-write Synchronization requirement
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3043
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.1 About the AArch64 System registers
Where a direct read to one register causes a bit or field in a different register (or the same register using a different
encoding) to be updated, the change to the different register (or same register using a different encoding) is defined
to be an indirect write. In this case, the indirect write is only guaranteed to be visible to subsequent direct or indirect
reads or writes if synchronization is performed after the direct read and before the subsequent direct or indirect reads
or writes.

Where a direct write to one register causes a bit or field in a different register (or the same register using a different
encoding) to be updated as a side-effect of that direct write (as opposed to simply being a direct write to the different
encoding), the change to the different register (or same register using a different encoding) is defined to be an
indirect write. In this case, the indirect write is only guaranteed to be visible to subsequent direct or indirect reads
or writes if synchronization is performed after the direct write and before the subsequent direct or indirect reads or
writes.

Where indirect writes are caused by the actions of external agents such as debuggers, or by memory-mapped reads
or writes by the PE, then an indirect write by that agent and mechanism to a register, followed by an indirect read
by that agent and mechanism to the same register using the same address, does not require synchronization.

Where an indirect write occurs as a side-effect of an access, this happens atomically with the access, meaning no
other accesses are allowed between the register access and its side-effect.

Indirect writes caused by external agents, autonomous asynchronous events, or as a result of memory-mapped
writes, to the registers shown in Table D13-2 on page D13-3044, are required to be observable to:

• Direct reads in finite time without explicit synchronization.

• Subsequent indirect reads without explicit synchronization.

Without explicit synchronization to guarantee the order of the accesses, where the same register is accessed by two
or more of a System register access instruction, and external agent, and autonomous asynchronous event, or as a
result of a memory-mapped access, the behavior must be as if the accesses occurred atomically and in any order.
This applies even if the accesses occur simultaneously.

In addition to the requirements shown in Table D13-2 on page D13-3044:

• Indirect writes to the following registers as a result of memory-mapped writes, including accesses by external
agents, are required to be observable to the indirect read made in determining the response to a subsequent
memory-mapped access without explicit synchronization:

— OSLAR_EL1. OSLAR_EL1 is indirectly read to determine whether the subsequent access is
permitted.

— EDLAR, if implemented. EDLAR is indirectly read to determine whether a subsequent write or
side-effect of an access is ignored.

Table D13-2 Registers with a guarantee of observability, VMSAv8-64

Registers Notes

ISR_EL1 Interrupt Status Register

DBGCLAIMCLR_EL1, DBGCLAIMSET_EL1 Debug CLAIM registers

CNTPCT_EL0, CNTVCT_EL0, CNTP_TVAL_EL0, CNTV_TVAL_EL0,
CNTHP_TVAL_EL2, CNTPS_TVAL_EL1

Generic Timer registers

PMCCNTR_EL0, PMEVCNTR<n>_EL0, PMXEVCNTR_EL0,
PMOVSCLR_EL0, PMOVSSET_EL0

PMU Counters

DBGDTRTX_EL0, DBGDTRRX_EL0, DBGDTR_EL0, and the DCC flags in
MDCCSR_EL0 and EDSCR

Debug Communication Channel registers

EDSCR.PipeAdv External Debug Status and Control Register
PipeAdv field
D13-3044 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.1 About the AArch64 System registers
Note

This requirement is stricter than the general requirement for the observability of indirect writes.

• The requirement that an indirect write to the registers in Table D13-2 on page D13-3044 is observable to
direct reads in finite time does not imply that all observers will observe the indirect write at the same time.

For example, an increment of the system counter is an autonomous asynchronous event that performs an
indirect write to the counter. This asynchronous event might generate a timer interrupt request, resulting in a
Context synchronization event. When a GIC is used, the timer interrupt might arrive at the GIC after the PE
has taken an interrupt request from another source, but before software reads the current interrupt ID from
the GIC. This means that the GIC might identify the timer interrupt as the current interrupt. Software must
not assume that a subsequent direct read of the counter register is guaranteed to observe the updated value of
that register.

Although this example uses the counter-timer registers, it applies equally to other registers that might be
linked to interrupt requests, including the PMU and Statistical Profiling status registers.

• When the PE is in Debug state, there are synchronization requirements for the Debug Communication
Channel and Instruction Transfer registers. See DCC and ITR access in Debug state on page H4-7417.

Note

• The provision of explicit synchronization requirements to System registers is provided to allow the direct
access to these registers to be implemented in a small number of cycles, and that updates to multiple registers
can be performed quickly with the synchronization penalty being paid only when the updates have occurred.

• Since toolkits might use registers such as the thread-local storage registers within compiled code, it is
recommended that access to these registers is implemented to take a small number of cycles.

• While no synchronization is required between a direct write and a direct read, or between a direct read and
an indirect write, this does not imply that a direct read causes synchronization of a previous direct write. That
is, the sequence direct write → direct read → indirect read, with no intervening context synchronization,
does not guarantee that the indirect read observes the result of the direct write.

• If FEAT_MTE2 is implemented, a DSB instruction over the Non-shareable domain or an exception entry to
ELy with SCTLR_ELy.ITFSB = 0b1 is required between an indirect write to TFSRE0_EL1, or any
TFSR_ELx accessible at ELy, and a direct read or direct write of that register.

D13.1.3 Principles of the ID scheme for fields in ID registers

The Arm architecture specifies a number of ID registers that are characterized as comprising a set of 4-bit ID fields,
Each ID field identifies the presence, and possibly the level of support for, a particular feature in an implementation
of the architecture. These fields follow an architectural model that aids their use by software and provides future
compatibility. This section describes that model. ID registers to which this scheme applies on page D13-3047
identifies the set of ID registers.

A small number of ID fields do not follow the scheme described in this section. In these cases, the field description
states that it does not follow this scheme.

Note

• The ID fields described here are distinct from register fields that enumerate the number of resources, such as
the number of breakpoints, watchpoints, or performance monitors, or the amount of memory.

• ID fields that do not follow this scheme include the ID_AA64DFR0_EL1.PMUVer,
ID_DFR0_EL1.PerfMon, ID_DFR0.PerfMon and EDDFR.PMUVer fields, see Alternative ID scheme used
for the Performance Monitors Extension version on page D13-3047.

• The presence of an ID field for a feature does not imply that the feature is optional.

To provide forward compatibility, software can rely on the features of these fields that are described in this section.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3045
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.1 About the AArch64 System registers
The ID fields, which are either signed or unsigned, use increasing numerical values to indicate increases in
functionality. Therefore, if a value of 0x1 indicates the presence of some instructions, then the value 0x2 will indicate
the presence of those instructions plus some additional instructions or functionality. This means software can be
written in the form:

if (value >= number) {
// do something that relies on the value of the feature

}

For ID fields where the value 0x0 defines that a feature is not present, the field holds an unsigned value. This covers
the vast majority of such fields.

In a few cases, the architecture has been changed to permit implementations to exclude a feature that has previously
been required and for which no ID field has been defined. In these cases, a new ID field is defined and:

• The field holds a signed value.

• The field value 0xF indicates that the feature is not implemented.

• The field value 0x0 indicates that the feature is implemented.

• Software that depends on the feature can use the test:
if value >= 0 {

// Software features that depend on the presence of the hardware feature
}

In some cases, it has been decided retrospectively that the increase in functionality between two consecutive
numerical values is too great, and it is desirable to permit an intermediate degree of functionality, and the means to
discover this. This is done by the introduction of a fractional field that both:

• Is referred to in the definition of the original field.

• Applies only when the original field is at the lower value of the step.

In principle, a fractional field can be used for two different fractional steps, with different meanings associated with
each of these steps. For this reason, a fractional field must be interpreted in the context of the field to which it relates
and the value of that field. Example D13-1 on page D13-3046 shows the use of such a field.

Example D13-1 Example of the use of a fractional field

For a field describing some class of functionality:

• The value 0x1 was defined as indicating that item A is present.

• The value 0x2 was defined as indicating that items B and C are present, in addition to item A.

Subsequently, it might be necessary to introduce a second ID field to indicate that A and B only are present. This
new field is a fractional field, and might be defined as having the value 0x1 when A and B only are present. This
fractional field is valid only when the original ID field has the value 0x1.

This approach means that:

• Software that depends on the test if (value >= 0x2) can rely on features A, B, and C being present,

• Software that depends on the test if (value >= 0x1) can rely on feature A being present.

• If new software needs to check only that features A and B are present, then it can test:
if (value >= 0x2 || (value == 0x1 && fractional_value >= 0x1)) {

// Software features that depend on A and B only
}

A fractional field uses the same approach of increasing numerical values indicating increasing functionality, and the
fractional approach can also be applied recursively to fractional fields.

Unused ID fields, and fractional fields that are not applicable, are RES0 to allow their future use when features, or
fractional implementation options, are added.
D13-3046 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.1 About the AArch64 System registers
ID registers to which this scheme applies

This scheme applies to the following registers:

AArch64 System registers

• The AArch64 views of the AArch32 feature ID registers given by:

— The AArch32 Auxiliary Feature register ID_AFR0_EL1.

— The AArch32 Processor Feature registers ID_PFR0_EL1 and ID_PFR1_EL1.

— The AArch32 Debug Feature register ID_DFR0_EL1.

— The AArch32 Memory Model Feature registers ID_MMFR0_EL1,
ID_MMFR1_EL1, ID_MMFR2_EL1, ID_MMFR3_EL1, and ID_MMFR4_EL1.

— The AArch32 Instruction Set Attribute registers ID_ISAR0_EL1, ID_ISAR1_EL1,
ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, and ID_ISAR5_EL1.

— The AArch32 Media and VFP Feature registers MVFR0_EL1, MVFR1_EL1, and
MVFR2_EL1.

• The AArch64 Auxiliary Feature registers ID_AA64AFR0_EL1 and ID_AA64AFR1_EL1.

• The AArch64 Processor Feature registers ID_AA64PFR0_EL1 and ID_AA64PFR1_EL1.

• The AArch64 Debug Feature registers ID_AA64DFR0_EL1 and ID_AA64DFR1_EL1.

• The AArch64 Memory Model Feature registers ID_AA64MMFR0_EL1,
ID_AA64MMFR1_EL1, and ID_AA64MMFR2_EL1.

• The AArch64 Instruction Set Attribute registers ID_AA64ISAR0_EL1 and
ID_AA64ISAR1_EL1.

AArch32 System registers

• The AArch32 Auxiliary Feature register ID_AFR0.

• The AArch32 Processor Feature registers ID_PFR0 and ID_PFR1.

• The AArch32 Debug Feature register ID_DFR0.

• The AArch32 Memory Model Feature registers ID_MMFR0, ID_MMFR1, ID_MMFR2,
ID_MMFR3, and ID_MMFR4.

• The AArch32 Instruction Set Attribute registers ID_ISAR0, ID_ISAR1, ID_ISAR2,
ID_ISAR3, ID_ISAR4, and ID_ISAR5.

• The AArch32 Media and FP Feature registers MVFR0, MVFR1, and MVFR2.

Memory-mapped registers

• The External Debug Processor Feature register EDPFR.

• The External Debug Feature register EDDFR.

Alternative ID scheme used for the Performance Monitors Extension version

The ID_AA64DFR0_EL1.PMUVer, ID_DFR0_EL1.PerfMon, ID_DFR0.PerfMon and EDDFR.PMUVer fields,
that identify the version of the Performance Monitors Extension, do not follow the standard ID scheme. Software
must treat these fields as follows:

• The value 0xF indicates that the Arm-architected Performance Monitors Extension is not implemented.

• If the field value is not 0xF the field is treated as an unsigned value, as described for the standard ID scheme.

This means that software that depends on the implementation of a particular version of the Arm Performance
Monitors Extension must be written in the form:

if (value != 0xF and value >= number) {
// do something that relies on version 'number' of the feature

}

For these fields, Arm deprecates use of the value 0xF in new implementations.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3047
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.1 About the AArch64 System registers
Alternative ID scheme used for ID_AA64MMFR0_EL1 stage 2 granule sizes

The ID_AA64MMFR0_EL1.TGran4_2, ID_AA64MMFR0_EL1.TGran16_2 and
ID_AA64MMFR0_EL1.TGran64_2 fields that identify the memory translation stage 2 granule size, do not follow
the standard ID scheme. Software must treat these fields as follows:

• The value 0x0 indicates that support is identified by another field.

• If the field value is not 0x0, the value indicates the level of support provided.

This means that software should use a test of the form:

if (field !=0 and field > value) {
// do something that relies on the value of the feature

}

D13-3048 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2 General system control registers

This section lists the System registers in AArch64 that are not part of one of the other listed groups.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3049
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.1 ACCDATA_EL1, Accelerator Data

The ACCDATA_EL1 characteristics are:

Purpose

Holds the lower 32 bits of the data that is stored by an ST64BV0, Single-copy atomic 64-byte EL0
store instruction.

Configurations

This register is present only when FEAT_LS64_ACCDATA is implemented. Otherwise, direct
accesses to ACCDATA_EL1 are UNDEFINED.

Attributes

ACCDATA_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

ACCDATA, bits [31:0]

Accelerator Data field. Holds bits[31:0] of the data that is stored by an ST64BV0 instruction.

Accessing ACCDATA_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ACCDATA_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ADEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.nACCDATA_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ADEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ACCDATA_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ADEn == '0' then

RES0

63 32

ACCDATA

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b101
D13-3050 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ADEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ACCDATA_EL1;
elsif PSTATE.EL == EL3 then
 return ACCDATA_EL1;

MSR ACCDATA_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ADEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.nACCDATA_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ADEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ACCDATA_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ADEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ADEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ACCDATA_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 ACCDATA_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3051
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.2 ACTLR_EL1, Auxiliary Control Register (EL1)

The ACTLR_EL1 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED configuration and control options for execution at EL1 and
EL0.

Note

Arm recommends the contents of this register have no effect on the PE when HCR_EL2.{E2H,
TGE} is {1, 1}, and instead the configuration and control fields are provided by the ACTLR_EL2
register. This avoids the need for software to manage the contents of these register when switching
between a Guest OS and a Host OS.

Configurations

AArch64 System register ACTLR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register ACTLR[31:0].

AArch64 System register ACTLR_EL1 bits [63:32] are architecturally mapped to AArch32 System
register ACTLR2[31:0].

Attributes

ACTLR_EL1 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ACTLR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ACTLR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TACR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
 return NVMem[0x118];

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b001
D13-3052 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 else
 return ACTLR_EL1;
elsif PSTATE.EL == EL2 then
 return ACTLR_EL1;
elsif PSTATE.EL == EL3 then
 return ACTLR_EL1;

MSR ACTLR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TACR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
 NVMem[0x118] = X[t];
 else
 ACTLR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 ACTLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 ACTLR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3053
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.3 ACTLR_EL2, Auxiliary Control Register (EL2)

The ACTLR_EL2 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED configuration and control options for EL2.

Note
Arm recommends the contents of this register are updated to apply to EL0 when HCR_EL2.{E2H,
TGE} is {1, 1}, gaining configuration and control fields from the ACTLR_EL1. This avoids the
need for software to manage the contents of these register when switching between a Guest OS and
a Host OS.

Configurations

AArch64 System register ACTLR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HACTLR[31:0].

AArch64 System register ACTLR_EL2 bits [63:32] are architecturally mapped to AArch32 System
register HACTLR2[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

ACTLR_EL2 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ACTLR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ACTLR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0000 0b001
D13-3054 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return ACTLR_EL2;
elsif PSTATE.EL == EL3 then
 return ACTLR_EL2;

MSR ACTLR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 ACTLR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 ACTLR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3055
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.4 ACTLR_EL3, Auxiliary Control Register (EL3)

The ACTLR_EL3 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED configuration and control options for EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to ACTLR_EL3
are UNDEFINED.

Attributes

ACTLR_EL3 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ACTLR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ACTLR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return ACTLR_EL3;

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0000 0b001
D13-3056 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MSR ACTLR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 ACTLR_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3057
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.5 AFSR0_EL1, Auxiliary Fault Status Register 0 (EL1)

The AFSR0_EL1 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL1.

Configurations

AArch64 System register AFSR0_EL1 bits [31:0] are architecturally mapped to AArch32 System
register ADFSR[31:0].

Attributes

AFSR0_EL1 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AFSR0_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic AFSR0_EL1 or
AFSR0_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AFSR0_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.AFSR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x128];
 else
 return AFSR0_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return AFSR0_EL2;
 else
 return AFSR0_EL1;

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0001 0b000
D13-3058 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
elsif PSTATE.EL == EL3 then
 return AFSR0_EL1;

MSR AFSR0_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.AFSR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x128] = X[t];
 else
 AFSR0_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AFSR0_EL2 = X[t];
 else
 AFSR0_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 AFSR0_EL1 = X[t];

MRS <Xt>, AFSR0_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x128];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return AFSR0_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return AFSR0_EL1;
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0001 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b0101 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3059
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MSR AFSR0_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x128] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AFSR0_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 AFSR0_EL1 = X[t];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0101 0b0001 0b000
D13-3060 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.6 AFSR0_EL2, Auxiliary Fault Status Register 0 (EL2)

The AFSR0_EL2 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL2.

Configurations

AArch64 System register AFSR0_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HADFSR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

AFSR0_EL2 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AFSR0_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic AFSR0_EL2 or
AFSR0_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AFSR0_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return AFSR0_EL2;
elsif PSTATE.EL == EL3 then
 return AFSR0_EL2;

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3061
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MSR AFSR0_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AFSR0_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 AFSR0_EL2 = X[t];

MRS <Xt>, AFSR0_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.AFSR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x128];
 else
 return AFSR0_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return AFSR0_EL2;
 else
 return AFSR0_EL1;
elsif PSTATE.EL == EL3 then
 return AFSR0_EL1;

MSR AFSR0_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.AFSR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0001 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0001 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0001 0b000
D13-3062 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 NVMem[0x128] = X[t];
 else
 AFSR0_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AFSR0_EL2 = X[t];
 else
 AFSR0_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 AFSR0_EL1 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3063
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.7 AFSR0_EL3, Auxiliary Fault Status Register 0 (EL3)

The AFSR0_EL3 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to AFSR0_EL3
are UNDEFINED.

Attributes

AFSR0_EL3 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AFSR0_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AFSR0_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return AFSR0_EL3;

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b110 0b0101 0b0001 0b000
D13-3064 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MSR AFSR0_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AFSR0_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b0101 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3065
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.8 AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)

The AFSR1_EL1 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL1.

Configurations

AArch64 System register AFSR1_EL1 bits [31:0] are architecturally mapped to AArch32 System
register AIFSR[31:0].

Attributes

AFSR1_EL1 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AFSR1_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic AFSR1_EL1 or
AFSR1_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AFSR1_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.AFSR1_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x130];
 else
 return AFSR1_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return AFSR1_EL2;
 else
 return AFSR1_EL1;

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0001 0b001
D13-3066 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
elsif PSTATE.EL == EL3 then
 return AFSR1_EL1;

MSR AFSR1_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.AFSR1_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x130] = X[t];
 else
 AFSR1_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AFSR1_EL2 = X[t];
 else
 AFSR1_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 AFSR1_EL1 = X[t];

MRS <Xt>, AFSR1_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x130];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return AFSR1_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return AFSR1_EL1;
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b101 0b0101 0b0001 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3067
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MSR AFSR1_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x130] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AFSR1_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 AFSR1_EL1 = X[t];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0101 0b0001 0b001
D13-3068 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.9 AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)

The AFSR1_EL2 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL2.

Configurations

AArch64 System register AFSR1_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HAIFSR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

AFSR1_EL2 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AFSR1_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic AFSR1_EL2 or
AFSR1_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AFSR1_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return AFSR1_EL2;
elsif PSTATE.EL == EL3 then
 return AFSR1_EL2;

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0001 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3069
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MSR AFSR1_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AFSR1_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 AFSR1_EL2 = X[t];

MRS <Xt>, AFSR1_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.AFSR1_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x130];
 else
 return AFSR1_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return AFSR1_EL2;
 else
 return AFSR1_EL1;
elsif PSTATE.EL == EL3 then
 return AFSR1_EL1;

MSR AFSR1_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.AFSR1_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0001 0b001
D13-3070 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 NVMem[0x130] = X[t];
 else
 AFSR1_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AFSR1_EL2 = X[t];
 else
 AFSR1_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 AFSR1_EL1 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3071
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.10 AFSR1_EL3, Auxiliary Fault Status Register 1 (EL3)

The AFSR1_EL3 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to AFSR1_EL3
are UNDEFINED.

Attributes

AFSR1_EL3 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AFSR1_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AFSR1_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return AFSR1_EL3;

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b110 0b0101 0b0001 0b001
D13-3072 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MSR AFSR1_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AFSR1_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b0101 0b0001 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3073
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.11 AIDR_EL1, Auxiliary ID Register

The AIDR_EL1 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED identification information.

The value of this register must be interpreted in conjunction with the value of MIDR_EL1.

Configurations

AArch64 System register AIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register AIDR[31:0].

Attributes

AIDR_EL1 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing AIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AIDR_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.AIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return AIDR_EL1;
elsif PSTATE.EL == EL2 then
 return AIDR_EL1;
elsif PSTATE.EL == EL3 then
 return AIDR_EL1;

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b001 0b0000 0b0000 0b111
D13-3074 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.12 AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1)

The AMAIR_EL1 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by
MAIR_EL1.

Configurations

AArch64 System register AMAIR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register AMAIR0[31:0].

AArch64 System register AMAIR_EL1 bits [63:32] are architecturally mapped to AArch32 System
register AMAIR1[31:0].

Attributes

AMAIR_EL1 is a 64-bit register.

Field descriptions

AMAIR_EL1 is permitted to be cached in a TLB.

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AMAIR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic AMAIR_EL1
or AMAIR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMAIR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.AMAIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x148];
 else

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3075
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 return AMAIR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return AMAIR_EL2;
 else
 return AMAIR_EL1;
elsif PSTATE.EL == EL3 then
 return AMAIR_EL1;

MSR AMAIR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.AMAIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x148] = X[t];
 else
 AMAIR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AMAIR_EL2 = X[t];
 else
 AMAIR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 AMAIR_EL1 = X[t];

MRS <Xt>, AMAIR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x148];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return AMAIR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return AMAIR_EL1;
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0011 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0011 0b000
D13-3076 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MSR AMAIR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x148] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AMAIR_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 AMAIR_EL1 = X[t];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3077
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.13 AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2)

The AMAIR_EL2 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by
MAIR_EL2.

Configurations

AArch64 System register AMAIR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HAMAIR0[31:0].

AArch64 System register AMAIR_EL2 bits [63:32] are architecturally mapped to AArch32 System
register HAMAIR1[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

AMAIR_EL2 is a 64-bit register.

Field descriptions

AMAIR_EL2 is permitted to be cached in a TLB.

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AMAIR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic AMAIR_EL2
or AMAIR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMAIR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0011 0b000
D13-3078 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
elsif PSTATE.EL == EL2 then
 return AMAIR_EL2;
elsif PSTATE.EL == EL3 then
 return AMAIR_EL2;

MSR AMAIR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AMAIR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 AMAIR_EL2 = X[t];

MRS <Xt>, AMAIR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.AMAIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x148];
 else
 return AMAIR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return AMAIR_EL2;
 else
 return AMAIR_EL1;
elsif PSTATE.EL == EL3 then
 return AMAIR_EL1;

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0011 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3079
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MSR AMAIR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.AMAIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x148] = X[t];
 else
 AMAIR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AMAIR_EL2 = X[t];
 else
 AMAIR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 AMAIR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0011 0b000
D13-3080 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.14 AMAIR_EL3, Auxiliary Memory Attribute Indirection Register (EL3)

The AMAIR_EL3 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by
MAIR_EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to AMAIR_EL3
are UNDEFINED.

Attributes

AMAIR_EL3 is a 64-bit register.

Field descriptions

AMAIR_EL3 is permitted to be cached in a TLB.

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AMAIR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMAIR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return AMAIR_EL3;

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3081
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MSR AMAIR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AMAIR_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b0011 0b000
D13-3082 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.15 APDAKeyHi_EL1, Pointer Authentication Key A for Data (bits[127:64])

The APDAKeyHi_EL1 characteristics are:

Purpose

Holds bits[127:64] of key A used for authentication of data pointer values.

Note
The term APDAKey_EL1 is used to describe the concatenation of APDAKeyHi_EL1:
APDAKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to
APDAKeyHi_EL1 are UNDEFINED.

Attributes

APDAKeyHi_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

64 bit value, bits[127:64] of the 128 bit pointer authentication key value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APDAKeyHi_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, APDAKeyHi_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.APDAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

63 32

64 bit value, bits[127:64] of the 128 bit
pointer authentication key value

31 0

64 bit value, bits[127:64] of the 128 bit
pointer authentication key value

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3083
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APDAKeyHi_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APDAKeyHi_EL1;
elsif PSTATE.EL == EL3 then
 return APDAKeyHi_EL1;

MSR APDAKeyHi_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.APDAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APDAKeyHi_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APDAKeyHi_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 APDAKeyHi_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0010 0b001
D13-3084 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.16 APDAKeyLo_EL1, Pointer Authentication Key A for Data (bits[63:0])

The APDAKeyLo_EL1 characteristics are:

Purpose

Holds bits[63:0] of key A used for authentication of data pointer values.

Note
The term APDAKey_EL1 is used to describe the concatenation of APDAKeyHi_EL1:
APDAKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to
APDAKeyLo_EL1 are UNDEFINED.

Attributes

APDAKeyLo_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

64 bit value, bits[63:0] of the 128 bit pointer authentication key value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APDAKeyLo_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, APDAKeyLo_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.APDAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

63 32

64 bit value, bits[63:0] of the 128 bit
pointer authentication key value

31 0

64 bit value, bits[63:0] of the 128 bit
pointer authentication key value

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3085
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APDAKeyLo_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APDAKeyLo_EL1;
elsif PSTATE.EL == EL3 then
 return APDAKeyLo_EL1;

MSR APDAKeyLo_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.APDAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APDAKeyLo_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APDAKeyLo_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 APDAKeyLo_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0010 0b000
D13-3086 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.17 APDBKeyHi_EL1, Pointer Authentication Key B for Data (bits[127:64])

The APDBKeyHi_EL1 characteristics are:

Purpose

Holds bits[127:64] of key B used for authentication of data pointer values.

Note
The term APDBKey_EL1 is used to describe the concatenation of APDBKeyHi_EL1:
APDBKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to
APDBKeyHi_EL1 are UNDEFINED.

Attributes

APDBKeyHi_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

64 bit value, bits[127:64] of the 128 bit pointer authentication key value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APDBKeyHi_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, APDBKeyHi_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.APDBKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

63 32

64 bit value, bits[127:64] of the 128 bit
pointer authentication key value

31 0

64 bit value, bits[127:64] of the 128 bit
pointer authentication key value

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0010 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3087
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APDBKeyHi_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APDBKeyHi_EL1;
elsif PSTATE.EL == EL3 then
 return APDBKeyHi_EL1;

MSR APDBKeyHi_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.APDBKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APDBKeyHi_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APDBKeyHi_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 APDBKeyHi_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0010 0b011
D13-3088 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.18 APDBKeyLo_EL1, Pointer Authentication Key B for Data (bits[63:0])

The APDBKeyLo_EL1 characteristics are:

Purpose

Holds bits[63:0] of key B used for authentication of data pointer values.

Note
The term APDBKey_EL1 is used to describe the concatenation of APDBKeyHi_EL1:
APDBKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to
APDBKeyLo_EL1 are UNDEFINED.

Attributes

APDBKeyLo_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

64 bit value, bits[63:0] of the 128 bit pointer authentication key value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APDBKeyLo_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, APDBKeyLo_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.APDBKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

63 32

64 bit value, bits[63:0] of the 128 bit
pointer authentication key value

31 0

64 bit value, bits[63:0] of the 128 bit
pointer authentication key value

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0010 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3089
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APDBKeyLo_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APDBKeyLo_EL1;
elsif PSTATE.EL == EL3 then
 return APDBKeyLo_EL1;

MSR APDBKeyLo_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.APDBKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APDBKeyLo_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APDBKeyLo_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 APDBKeyLo_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0010 0b010
D13-3090 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.19 APGAKeyHi_EL1, Pointer Authentication Key A for Code (bits[127:64])

The APGAKeyHi_EL1 characteristics are:

Purpose

Holds bits[127:64] of key used for generic pointer authentication code.

Note
The term APGAKey_EL1 is used to describe the concatenation of APGAKeyHi_EL1:
APGAKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to
APGAKeyHi_EL1 are UNDEFINED.

Attributes

APGAKeyHi_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

64 bit value, bits[127:64] of the 128 bit pointer authentication key value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APGAKeyHi_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, APGAKeyHi_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.APGAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

63 32

64 bit value, bits[127:64] of the 128 bit
pointer authentication key value

31 0

64 bit value, bits[127:64] of the 128 bit
pointer authentication key value

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0011 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3091
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APGAKeyHi_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APGAKeyHi_EL1;
elsif PSTATE.EL == EL3 then
 return APGAKeyHi_EL1;

MSR APGAKeyHi_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.APGAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APGAKeyHi_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APGAKeyHi_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 APGAKeyHi_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0011 0b001
D13-3092 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.20 APGAKeyLo_EL1, Pointer Authentication Key A for Code (bits[63:0])

The APGAKeyLo_EL1 characteristics are:

Purpose

Holds bits[63:0] of key used for generic pointer authentication code.

Note
The term APGAKey_EL1 is used to describe the concatenation of APGAKeyHi_EL1:
APGAKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to
APGAKeyLo_EL1 are UNDEFINED.

Attributes

APGAKeyLo_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

64 bit value, bits[63:0] of the 128 bit pointer authentication key value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APGAKeyLo_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, APGAKeyLo_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.APGAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

63 32

64 bit value, bits[63:0] of the 128 bit
pointer authentication key value

31 0

64 bit value, bits[63:0] of the 128 bit
pointer authentication key value

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3093
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APGAKeyLo_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APGAKeyLo_EL1;
elsif PSTATE.EL == EL3 then
 return APGAKeyLo_EL1;

MSR APGAKeyLo_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.APGAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APGAKeyLo_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APGAKeyLo_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 APGAKeyLo_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0011 0b000
D13-3094 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.21 APIAKeyHi_EL1, Pointer Authentication Key A for Instruction (bits[127:64])

The APIAKeyHi_EL1 characteristics are:

Purpose

Holds bits[127:64] of key A used for authentication of instruction pointer values.

Note
The term APIAKey_EL1 is used to describe the concatenation of APIAKeyHi_EL1:
APIAKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to
APIAKeyHi_EL1 are UNDEFINED.

Attributes

APIAKeyHi_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

64 bit value, bits[127:64] of the 128 bit pointer authentication key value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APIAKeyHi_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, APIAKeyHi_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.APIAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

63 32

64 bit value, bits[127:64] of the 128 bit
pointer authentication key value

31 0

64 bit value, bits[127:64] of the 128 bit
pointer authentication key value

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0001 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3095
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APIAKeyHi_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APIAKeyHi_EL1;
elsif PSTATE.EL == EL3 then
 return APIAKeyHi_EL1;

MSR APIAKeyHi_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.APIAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APIAKeyHi_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APIAKeyHi_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 APIAKeyHi_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0001 0b001
D13-3096 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.22 APIAKeyLo_EL1, Pointer Authentication Key A for Instruction (bits[63:0])

The APIAKeyLo_EL1 characteristics are:

Purpose

Holds bits[63:0] of key A used for authentication of instruction pointer values.

Note
The term APIAKey_EL1 is used to describe the concatenation of APIAKeyHi_EL1:
APIAKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to
APIAKeyLo_EL1 are UNDEFINED.

Attributes

APIAKeyLo_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

64 bit value, bits[63:0] of the 128 bit pointer authentication key value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APIAKeyLo_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, APIAKeyLo_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.APIAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

63 32

64 bit value, bits[63:0] of the 128 bit
pointer authentication key value

31 0

64 bit value, bits[63:0] of the 128 bit
pointer authentication key value

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3097
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APIAKeyLo_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APIAKeyLo_EL1;
elsif PSTATE.EL == EL3 then
 return APIAKeyLo_EL1;

MSR APIAKeyLo_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.APIAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APIAKeyLo_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APIAKeyLo_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 APIAKeyLo_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0001 0b000
D13-3098 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.23 APIBKeyHi_EL1, Pointer Authentication Key B for Instruction (bits[127:64])

The APIBKeyHi_EL1 characteristics are:

Purpose

Holds bits[127:64] of key B used for authentication of instruction pointer values.

Note
The term APIBKey_EL1 is used to describe the concatenation of APIBKeyHi_EL1:
APIBKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to
APIBKeyHi_EL1 are UNDEFINED.

Attributes

APIBKeyHi_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

64 bit value, bits[127:64] of the 128 bit pointer authentication key value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APIBKeyHi_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, APIBKeyHi_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.APIBKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

63 32

64 bit value, bits[127:64] of the 128 bit
pointer authentication key value

31 0

64 bit value, bits[127:64] of the 128 bit
pointer authentication key value

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0001 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3099
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APIBKeyHi_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APIBKeyHi_EL1;
elsif PSTATE.EL == EL3 then
 return APIBKeyHi_EL1;

MSR APIBKeyHi_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.APIBKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APIBKeyHi_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APIBKeyHi_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 APIBKeyHi_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0001 0b011
D13-3100 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.24 APIBKeyLo_EL1, Pointer Authentication Key B for Instruction (bits[63:0])

The APIBKeyLo_EL1 characteristics are:

Purpose

Holds bits[63:0] of key B used for authentication of instruction pointer values.

Note
The term APIBKey_EL1 is used to describe the concatenation of APIBKeyHi_EL1:
APIBKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to
APIBKeyLo_EL1 are UNDEFINED.

Attributes

APIBKeyLo_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

64 bit value, bits[63:0] of the 128 bit pointer authentication key value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APIBKeyLo_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, APIBKeyLo_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.APIBKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

63 32

64 bit value, bits[63:0] of the 128 bit
pointer authentication key value

31 0

64 bit value, bits[63:0] of the 128 bit
pointer authentication key value

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0001 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3101
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APIBKeyLo_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APIBKeyLo_EL1;
elsif PSTATE.EL == EL3 then
 return APIBKeyLo_EL1;

MSR APIBKeyLo_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.APIBKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APIBKeyLo_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APIBKeyLo_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 APIBKeyLo_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0001 0b010
D13-3102 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.25 CCSIDR2_EL1, Current Cache Size ID Register 2

The CCSIDR2_EL1 characteristics are:

Purpose

Provides the information about the architecture of the currently selected cache from bits[63:32] of
CCSIDR_EL1.

Configurations

AArch64 System register CCSIDR2_EL1 bits [31:0] are architecturally mapped to AArch32
System register CCSIDR2[31:0].

This register is present only when FEAT_CCIDX is implemented. Otherwise, direct accesses to
CCSIDR2_EL1 are UNDEFINED.

In an implementation which does not support AArch32 at EL1, it is IMPLEMENTATION DEFINED
whether reading this register gives an UNKNOWN value or is UNDEFINED.

The implementation includes one CCSIDR2_EL1 for each cache that it can access. CSSELR_EL1
selects which Cache Size ID Register is accessible.

Attributes

CCSIDR2_EL1 is a 64-bit register.

Field descriptions

Bits [63:24]

Reserved, RES0.

NumSets, bits [23:0]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets
does not have to be a power of 2.

Accessing CCSIDR2_EL1

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then on a read of the
CCSIDR2_EL1 the behavior is CONSTRAINED UNPREDICTABLE, and can be one of the following:

• The CCSIDR2_EL1 read is treated as NOP.

• The CCSIDR2_EL1 read is UNDEFINED.

• The CCSIDR2_EL1 read returns an UNKNOWN value.

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

RES0

31 24

NumSets

23 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3103
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, CCSIDR2_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID2 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TID4 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CCSIDR2_EL1;
elsif PSTATE.EL == EL2 then
 return CCSIDR2_EL1;
elsif PSTATE.EL == EL3 then
 return CCSIDR2_EL1;

op0 op1 CRn CRm op2

0b11 0b001 0b0000 0b0000 0b010
D13-3104 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.26 CCSIDR_EL1, Current Cache Size ID Register

The CCSIDR_EL1 characteristics are:

Purpose

Provides information about the architecture of the currently selected cache.

Configurations

AArch64 System register CCSIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register CCSIDR[31:0].

AArch64 System register CCSIDR_EL1 bits [63:32] are architecturally mapped to AArch32
System register CCSIDR2[31:0].

The implementation includes one CCSIDR_EL1 for each cache that it can access. CSSELR_EL1
selects which Cache Size ID Register is accessible.

Attributes

CCSIDR_EL1 is a 64-bit register.

Field descriptions

When FEAT_CCIDX is implemented:

Note

The parameters NumSets, Associativity, and LineSize in these registers define the architecturally visible parameters
that are required for the cache maintenance by Set/Way instructions. They are not guaranteed to represent the actual
microarchitectural features of a design. You cannot make any inference about the actual sizes of caches based on
these parameters.

Bits [63:56]

Reserved, RES0.

NumSets, bits [55:32]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets
does not have to be a power of 2.

Bits [31:24]

Reserved, RES0.

Associativity, bits [23:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity
does not have to be a power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

• For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line
length.

• For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

RES0

63 56

NumSets

55 32

RES0

31 24

Associativity

23 3 2 0

LineSize
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3105
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
When FEAT_MTE is implemented and enabled, where a cache only holds Allocation tags, this field
is RES0.

Otherwise:

Note

The parameters NumSets, Associativity, and LineSize in these registers define the architecturally visible parameters
that are required for the cache maintenance by Set/Way instructions. They are not guaranteed to represent the actual
microarchitectural features of a design. You cannot make any inference about the actual sizes of caches based on
these parameters.

Bits [63:32]

Reserved, RES0.

Bits [31:28]

Reserved, UNKNOWN.

NumSets, bits [27:13]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets
does not have to be a power of 2.

Associativity, bits [12:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity
does not have to be a power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

• For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line
length.

• For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

Accessing CCSIDR_EL1

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then on a read of the CCSIDR_EL1
the behavior is CONSTRAINED UNPREDICTABLE, and can be one of the following:

• The CCSIDR_EL1 read is treated as NOP.

• The CCSIDR_EL1 read is UNDEFINED.

• The CCSIDR_EL1 read returns an UNKNOWN value.

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

UNKNOWN

31 28

NumSets

27 13

Associativity

12 3 2 0

LineSize
D13-3106 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, CCSIDR_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID2 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TID4 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CCSIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CCSIDR_EL1;
elsif PSTATE.EL == EL2 then
 return CCSIDR_EL1;
elsif PSTATE.EL == EL3 then
 return CCSIDR_EL1;

op0 op1 CRn CRm op2

0b11 0b001 0b0000 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3107
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.27 CLIDR_EL1, Cache Level ID Register

The CLIDR_EL1 characteristics are:

Purpose

Identifies the type of cache, or caches, that are implemented at each level and can be managed using
the architected cache maintenance instructions that operate by set/way, up to a maximum of seven
levels. Also identifies the Level of Coherence (LoC) and Level of Unification (LoU) for the cache
hierarchy.

Configurations

AArch64 System register CLIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register CLIDR[31:0].

Attributes

CLIDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:47]

Reserved, RES0.

Ttype<n>, bits [2(n-1)+34:2(n-1)+33], for n = 7 to 1

When FEAT_MTE2 is implemented:

Ttype<n>

Tag cache type. Indicate the type of cache that is implemented and can be managed using the
architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to
a maximum of seven levels of cache hierarchy.

0b00 No Tag Cache.

0b01 Separate Allocation Tag Cache.

0b10 Unified Allocation Tag and Data cache, Allocation Tags and Data in unified lines.

0b11 Unified Allocation Tag and Data cache, Allocation Tags and Data in separate lines.

Otherwise:

Reserved, RES0.

ICB, bits [32:30]

Inner cache boundary. This field indicates the boundary for caching Inner Cacheable memory
regions.

The possible values are:

0b000 Not disclosed by this mechanism.

0b001 L1 cache is the highest Inner Cacheable level.

0b010 L2 cache is the highest Inner Cacheable level.

0b011 L3 cache is the highest Inner Cacheable level.

RES0

63 47

Ttype<n>

46 33 3232

ICB

ICB

31 30

LoUU

29 27

LoC

26 24

LoUIS

23 21

Ctype7

20 18

Ctype6

17 15

Ctype5

14 12

Ctype4

11 9

Ctype3

8 6

Ctype2

5 3

Ctype1

2 0
D13-3108 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b100 L4 cache is the highest Inner Cacheable level.

0b101 L5 cache is the highest Inner Cacheable level.

0b110 L6 cache is the highest Inner Cacheable level.

0b111 L7 cache is the highest Inner Cacheable level.

LoUU, bits [29:27]

Level of Unification Uniprocessor for the cache hierarchy.

Note

When FEAT_S2FWB is implemented, the architecture requires that this field is zero so that no
levels of data cache need to be cleaned in order to manage coherency with instruction fetches.

LoC, bits [26:24]

Level of Coherence for the cache hierarchy.

LoUIS, bits [23:21]

Level of Unification Inner Shareable for the cache hierarchy.

Note

When FEAT_S2FWB is implemented, the architecture requires that this field is zero so that no
levels of data cache need to be cleaned in order to manage coherency with instruction fetches.

Ctype<n>, bits [3(n-1)+2:3(n-1)], for n = 7 to 1

Cache Type fields. Indicate the type of cache that is implemented and can be managed using the
architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to
a maximum of seven levels of cache hierarchy. Possible values of each field are:

0b000 No cache.

0b001 Instruction cache only.

0b010 Data cache only.

0b011 Separate instruction and data caches.

0b100 Unified cache.

All other values are reserved.

If software reads the Cache Type fields from Ctype1 upwards, once it has seen a value of 000, no
caches that can be managed using the architected cache maintenance instructions that operate by
set/way exist at further-out levels of the hierarchy. So, for example, if Ctype3 is the first Cache Type
field with a value of 000, the values of Ctype4 to Ctype7 must be ignored.

Accessing CLIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CLIDR_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b001 0b0000 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3109
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID2 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TID4 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CLIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CLIDR_EL1;
elsif PSTATE.EL == EL2 then
 return CLIDR_EL1;
elsif PSTATE.EL == EL3 then
 return CLIDR_EL1;

D13-3110 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.28 CONTEXTIDR_EL1, Context ID Register (EL1)

The CONTEXTIDR_EL1 characteristics are:

Purpose

Identifies the current Process Identifier.

The value of the whole of this register is called the Context ID and is used by:

• The debug logic, for Linked and Unlinked Context ID matching.

• The trace logic, to identify the current process.

The significance of this register is for debug and trace use only.

Configurations

AArch64 System register CONTEXTIDR_EL1 bits [31:0] are architecturally mapped to AArch32
System register CONTEXTIDR[31:0].

Attributes

CONTEXTIDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

PROCID, bits [31:0]

Process Identifier. This field must be programmed with a unique value that identifies the current
process.

Note

In AArch32 state, when TTBCR.EAE is set to 0, CONTEXTIDR.ASID holds the ASID.

In AArch64 state, CONTEXTIDR_EL1 is independent of the ASID, and for the EL1&0 translation
regime either TTBR0_EL1 or TTBR1_EL1 holds the ASID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CONTEXTIDR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic
CONTEXTIDR_EL1 or CONTEXTIDR_EL12 are not guaranteed to be ordered with respect to accesses using the
other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

PROCID

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3111
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, CONTEXTIDR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CONTEXTIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x108];
 else
 return CONTEXTIDR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return CONTEXTIDR_EL2;
 else
 return CONTEXTIDR_EL1;
elsif PSTATE.EL == EL3 then
 return CONTEXTIDR_EL1;

MSR CONTEXTIDR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.CONTEXTIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x108] = X[t];
 else
 CONTEXTIDR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 CONTEXTIDR_EL2 = X[t];
 else
 CONTEXTIDR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 CONTEXTIDR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b001
D13-3112 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, CONTEXTIDR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x108];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return CONTEXTIDR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CONTEXTIDR_EL1;
 else
 UNDEFINED;

MSR CONTEXTIDR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x108] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 CONTEXTIDR_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 CONTEXTIDR_EL1 = X[t];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1101 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b101 0b1101 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3113
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.29 CONTEXTIDR_EL2, Context ID Register (EL2)

The CONTEXTIDR_EL2 characteristics are:

Purpose

Identifies the current Process Identifier for EL2.

The value of the whole of this register is called the Context ID and is used by:

• The debug logic, for Linked and Unlinked Context ID matching.

• The trace logic, to identify the current process.

The significance of this register is for debug and trace use only.

Configurations

This register is present only when FEAT_VHE is implemented or FEAT_Debugv8p2 is
implemented. Otherwise, direct accesses to CONTEXTIDR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

CONTEXTIDR_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

PROCID, bits [31:0]

Process Identifier. This field must be programmed with a unique value that identifies the current
process.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CONTEXTIDR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic
CONTEXTIDR_EL2 or CONTEXTIDR_EL1 are not guaranteed to be ordered with respect to accesses using the
other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

PROCID

31 0
D13-3114 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, CONTEXTIDR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return CONTEXTIDR_EL2;
elsif PSTATE.EL == EL3 then
 return CONTEXTIDR_EL2;

MSR CONTEXTIDR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CONTEXTIDR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 CONTEXTIDR_EL2 = X[t];

MRS <Xt>, CONTEXTIDR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CONTEXTIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x108];
 else
 return CONTEXTIDR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return CONTEXTIDR_EL2;
 else

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3115
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 return CONTEXTIDR_EL1;
elsif PSTATE.EL == EL3 then
 return CONTEXTIDR_EL1;

MSR CONTEXTIDR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.CONTEXTIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x108] = X[t];
 else
 CONTEXTIDR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 CONTEXTIDR_EL2 = X[t];
 else
 CONTEXTIDR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 CONTEXTIDR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b001
D13-3116 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.30 CPACR_EL1, Architectural Feature Access Control Register

The CPACR_EL1 characteristics are:

Purpose

Controls access to trace, SVE, and Advanced SIMD and floating-point functionality.

Configurations

AArch64 System register CPACR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register CPACR[31:0].

When EL2 is implemented and enabled in the current Security state and HCR_EL2.{E2H, TGE}
== {1, 1}, the fields in this register have no effect on execution at EL0 and EL1. In this case, the
controls provided by CPTR_EL2 are used.

Attributes

CPACR_EL1 is a 64-bit register.

Field descriptions

Bits [63:29]

Reserved, RES0.

TTA, bit [28]

Traps EL0 and EL1 System register accesses to all implemented trace registers from both Execution
states to EL1, or to EL2 when it is implemented and enabled in the current Security state and
HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to trace registers are trapped, reported using ESR_ELx.EC value
0x18.

• In AArch32 state, MRC and MCR accesses to trace registers are trapped, reported using
ESR_ELx.EC value 0x05.

• In AArch32 state, MRRC and MCRR accesses to trace registers are trapped, reported using
ESR_ELx.EC value 0x0C.

0b0 This control does not cause any instructions to be trapped.

0b1 This control causes EL0 and EL1 System register accesses to all implemented trace
registers to be trapped.

Note

• The ETMv4 architecture does not permit EL0 to access the trace registers. If the PE trace unit
implements FEAT_ETMv4, EL0 accesses to the trace registers are UNDEFINED, and any
resulting exception is higher priority than an exception that would be generated because the
value of CPACR_EL1.TTA is 1.

• The Armv8-A architecture does not provide traps on trace register accesses through the
optional memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access
is trapped, any side-effects that are normally associated with the access do not occur before the
exception is taken.

RES0

63 32

RES0

31 29 28

RES0

27 22

FPEN

21 20

RES0

19 18

ZEN

17 16

RES0

15 0

TTA
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3117
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
If System register access to the trace functionality is not implemented, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:22]

Reserved, RES0.

FPEN, bits [21:20]

Traps execution at EL1 and EL0 of instructions that access the Advanced SIMD and floating-point
registers from both Execution states to EL1, reported using ESR_ELx.EC value 0x07, or to EL2
reported using ESR_ELx.EC value 0x00 when EL2 is implemented and enabled in the current
Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to FPCR, FPSR, any of the SIMD and floating-point registers
V0-V31, including their views as D0-D31 registers or S0-31 registers.

• In AArch32 state, FPSCR, and any of the SIMD and floating-point registers Q0-15, including
their views as D0-D31 registers or S0-31 registers.

Traps execution at EL1 and EL0 of SVE instructions to EL1, or to EL2 when EL2 is implemented
and enabled for the current Security state and HCR_EL2.TGE is 1. The exception is reported using
ESR_ELx.EC value 0x07.

A trap taken as a result of CPACR_EL1.ZEN has precedence over a trap taken as a result of
CPACR_EL1.FPEN.

0b00 This control causes execution of these instructions at EL1 and EL0 to be trapped.

0b01 This control causes execution of these instructions at EL0 to be trapped, but does not
cause execution of any instructions at EL1 to be trapped.

0b10 This control causes execution of these instructions at EL1 and EL0 to be trapped.

0b11 This control does not cause execution of any instructions to be trapped.

Writes to MVFR0, MVFR1, and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE
and whether these accesses can be trapped by this control depends on implemented CONSTRAINED
UNPREDICTABLE behavior.

Note
• Attempts to write to the FPSID count as use of the registers for accesses from EL1 or higher.

• Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are UNDEFINED, and
any resulting exception is higher priority than an exception that would be generated because
the value of CPACR_EL1.FPEN is not 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:18]

Reserved, RES0.

ZEN, bits [17:16]

When FEAT_SVE is implemented:

ZEN

Traps execution at EL1 and EL0 of SVE instructions and instructions that directly access the
ZCR_EL1 System register to EL1, or to EL2 when EL2 is implemented and enabled in the current
Security state and HCR_EL2.TGE is 1.

The exception is reported using ESR_ELx.EC value 0x19.

A trap taken as a result of CPACR_EL1.ZEN has precedence over a trap taken as a result of
CPACR_EL1.FPEN.

0b00 This control causes execution of these instructions at EL1 and EL0 to be trapped.
D13-3118 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b01 This control causes execution of these instructions at EL0 to be trapped, but does not
cause execution of any instructions at EL1 to be trapped.

0b10 This control causes execution of these instructions at EL1 and EL0 to be trapped.

0b11 This control does not cause execution of any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [15:0]

Reserved, RES0.

Accessing CPACR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CPACR_EL1
or CPACR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CPACR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CPACR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x100];
 else
 return CPACR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 return CPTR_EL2;
 else
 return CPACR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3119
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
elsif PSTATE.EL == EL3 then
 return CPACR_EL1;

MSR CPACR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.CPACR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x100] = X[t];
 else
 CPACR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 CPTR_EL2 = X[t];
 else
 CPACR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 CPACR_EL1 = X[t];

MRS <Xt>, CPACR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x100];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0000 0b010
D13-3120 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 if HCR_EL2.E2H == '1' then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return CPACR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CPACR_EL1;
 else
 UNDEFINED;

MSR CPACR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x100] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 CPACR_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 CPACR_EL1 = X[t];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0000 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3121
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.31 CPTR_EL2, Architectural Feature Trap Register (EL2)

The CPTR_EL2 characteristics are:

Purpose

Controls trapping to EL2 of accesses to CPACR, CPACR_EL1, trace, Activity Monitor, SVE, and
Advanced SIMD and floating-point functionality.

Configurations

AArch64 System register CPTR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HCPTR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

CPTR_EL2 is a 64-bit register.

Field descriptions

When FEAT_VHE is implemented and HCR_EL2.E2H == 1:

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

In AArch64 state, traps accesses to CPACR_EL1 from EL1 to EL2, when EL2 is enabled in the
current Security state. The exception is reported using ESR_ELx.EC value 0x18.

In AArch32 state, traps accesses to CPACR from EL1 to EL2, when EL2 is enabled in the current
Security state. The exception is reported using ESR_ELx.EC value 0x03.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to CPACR_EL1 and CPACR are trapped to EL2, when EL2 is enabled in
the current Security state.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

Note

CPACR_EL1 and CPACR are not accessible at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TAM, bit [30]

When FEAT_AMUv1 is implemented:

TAM

RES0

63 32

31 30 29 28

RES0

27 22

FPEN

21 20

RES0

19 18

ZEN

17 16

RES0

15 0

TCPAC
TAM

TTA
RES0
D13-3122 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Trap Activity Monitor access. Traps EL1 and EL0 accesses to all Activity Monitor registers to EL2,
as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using
ESR_ELx.EC value 0x18:

— AMUSERENR_EL0, AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0,
AMCNTENCLR1_EL0, AMCNTENSET0_EL0, AMCNTENSET1_EL0,
AMCR_EL0, AMEVCNTR0<n>_EL0, AMEVCNTR1<n>_EL0,
AMEVTYPER0<n>_EL0, and AMEVTYPER1<n>_EL0.

• In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2 and
reported using ESR_ELx.EC value 0x03:

— AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1,
AMCNTENSET0, AMCNTENSET1, AMCR, AMEVTYPER0<n>, and
AMEVTYPER1<n>.

• In AArch32 state, MRRC or MCRR accesses to AMEVCNTR0<n> and AMEVCNTR1<n>,
are trapped to EL2, reported using ESR_ELx.EC value 0x04.

0b0 Accesses from EL1 and EL0 to Activity Monitor registers are not trapped.

0b1 Accesses from EL1 and EL0 to Activity Monitor registers are trapped to EL2, when
EL2 is enabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [29]

Reserved, RES0.

TTA, bit [28]

Traps System register accesses to all implemented trace registers from both Execution states to EL2,
when EL2 is enabled in the current Security state, as follows:

• In AArch64 state, accesses to trace registers with op0=2, op1=1, and CRn<0b1000 are trapped
to EL2, reported using EC syndrome value 0x18.

• In AArch32 state, MRC or MCR accesses to trace registers with cpnum=14, opc1=1, and
CRn<0b1000 are trapped to EL2, reported using EC syndrome value 0x05.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt at EL0, EL1 or EL2, to execute a System register access to an implemented
trace register is trapped to EL2, when EL2 is enabled in the current Security state, unless
HCR_EL2.TGE is 0 and it is trapped by CPACR.NSTRCDIS or CPACR_EL1.TTA.

When HCR_EL2.TGE is 1, any attempt at EL0 or EL2 to execute a System register
access to an implemented trace register is trapped to EL2, when EL2 is enabled in the
current Security state.

Note

The ETMv4 architecture does not permit EL0 to access the trace registers. If the PE trace unit
implements FEAT_ETMv4, EL0 accesses to the trace registers are UNDEFINED, and any resulting
exception is higher priority than this trap exception that would be generated because the value of
CPTR_EL2.TTA is 1.

EL2 does not provide traps on trace register accesses through the optional Memory-mapped
interface.

System register accesses to the trace registers can have side-effects. When a System register access
is trapped, any side-effects that are normally associated with the access do not occur before the
exception is taken.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3123
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
If System register access to the trace functionality is not supported, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:22]

Reserved, RES0.

FPEN, bits [21:20]

Traps execution at EL2, EL1, and EL0 of instructions that access the Advanced SIMD and
floating-point registers from both Execution states to EL2, when EL2 is enabled in the current
Security state. The exception is reported using ESR_ELx.EC value 0x07.

Traps execution at EL2, EL1, and EL0 of SVE instructions to EL2, when EL2 is enabled in the
current Security state. The exception is reported using ESR_ELx.EC value 0x07.

A trap taken as a result of CPTR_EL2.ZEN has precedence over a trap taken as a result of
CPTR_EL2.FPEN.

0b00 This control causes execution of these instructions at EL2, EL1, and EL0 to be trapped.

0b01 When HCR_EL2.TGE is 0, this control does not cause execution of any instructions to
be trapped.

When HCR_EL2.TGE is 1, this control causes execution of these instructions at EL0 to
be trapped, but does not cause execution of any instructions at EL2 to be trapped.

0b10 This control causes execution of these instructions at EL2, EL1, and EL0 to be trapped.

0b11 This control does not cause execution of any instructions to be trapped.

Writes to MVFR0, MVFR1, and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE
and whether these accesses can be trapped by this control depends on implemented CONSTRAINED
UNPREDICTABLE behavior.

Note

• Attempts to write to the FPSID count as use of the registers for accesses from EL1 or higher.

• Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are UNDEFINED, and
any resulting exception is higher priority than an exception that would be generated because
the value of CPTR_EL2.FPEN is not 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:18]

Reserved, RES0.

ZEN, bits [17:16]

When FEAT_SVE is implemented:

ZEN

Traps execution at EL2, EL1, and EL0 of SVE instructions, and instructions that directly access the
ZCR_EL1 or ZCR_EL2 System registers to EL2, when EL2 is enabled in the current Security state.

The exception is reported using ESR_ELx.EC value 0x19.

A trap taken as a result of CPTR_EL2.ZEN has precedence over a trap taken as a result of
CPTR_EL2.FPEN.

0b00 This control causes execution of these instructions at EL2, EL1, and EL0 to be trapped.

0b01 When HCR_EL2.TGE is 0, this control does not cause execution of any instructions to
be trapped.

When HCR_EL2.TGE is 1, this control causes execution of these instructions at EL0 to
be trapped, but does not cause execution of any instructions at EL2 to be trapped.

0b10 This control causes execution of these instructions at EL2, EL1, and EL0 to be trapped.
D13-3124 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b11 This control does not cause execution of any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [15:0]

Reserved, RES0.

Otherwise:

This format applies in all Armv8.0 implementations.

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

In AArch64 state, traps accesses to CPACR_EL1 from EL1 to EL2, when EL2 is enabled in the
current Security state. The exception is reported using ESR_ELx.EC value 0x18.

In AArch32 state, traps accesses to CPACR from EL1 to EL2, when EL2 is enabled in the current
Security state. The exception is reported using ESR_ELx.EC value 0x03.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to CPACR_EL1 and CPACR are trapped to EL2, when EL2 is enabled in
the current Security state.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

Note
CPACR_EL1 and CPACR are not accessible at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TAM, bit [30]

When FEAT_AMUv1 is implemented:

TAM

Trap Activity Monitor access. Traps EL1 and EL0 accesses to all Activity Monitor registers to EL2,
as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using
ESR_ELx.EC value 0x18:

— AMUSERENR_EL0, AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0,
AMCNTENCLR1_EL0, AMCNTENSET0_EL0, AMCNTENSET1_EL0,
AMCR_EL0, AMEVCNTR0<n>_EL0, AMEVCNTR1<n>_EL0,
AMEVTYPER0<n>_EL0, and AMEVTYPER1<n>_EL0.

RES0

63 32

31 30

RES0

29 21 20

RES0

19 14

RES1

13 12 11 10 9

TZ

8

RES1

7 0

TCPAC TAM TTA RES0 RES1
TFP
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3125
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
• In AArch32 state, MCR or MRC accesses to the following registers are trapped to EL2 and
reported using ESR_ELx.EC value 0x03:

— AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1,
AMCNTENSET0, AMCNTENSET1, AMCR, AMEVTYPER0<n>, and
AMEVTYPER1<n>.

• In AArch32 state, MCRR or MRRC accesses to AMEVCNTR0<n> and AMEVCNTR1<n>,
are trapped to EL2, reported using ESR_ELx.EC value 0x04.

0b0 Accesses from EL1 and EL0 to Activity Monitor registers are not trapped.

0b1 Accesses from EL1 and EL0 to Activity Monitor registers are trapped to EL2, when
EL2 is enabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:21]

Reserved, RES0.

TTA, bit [20]

Traps System register accesses to all implemented trace registers from both Execution states to EL2,
when EL2 is enabled in the current Security state, as follows:

• In AArch64 state, accesses to trace registers with op0=2, op1=1, and CRn<0b1000 are trapped
to EL2, reported using EC syndrome value 0x18.

• In AArch32 state, MRC or MCR accesses to trace registers with cpnum=14, opc1=1, and
CRn<0b1000 are trapped to EL2, reported using EC syndrome value 0x05.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt at EL0, EL1, or EL2, to execute a System register access to an
implemented trace register is trapped to EL2, when EL2 is enabled in the current
Security state, unless it is trapped by CPACR.TRCDIS or CPACR_EL1.TTA.

Note

• The ETMv4 architecture does not permit EL0 to access the trace registers. If the PE trace unit
implements FEAT_ETMv4, EL0 accesses to the trace registers are UNDEFINED, and any
resulting exception is higher priority than an exception that would be generated because the
value of CPTR_EL2.TTA is 1.

• EL2 does not provide traps on trace register accesses through the optional memory-mapped
interface.

System register accesses to the trace registers can have side-effects. When a System register access
is trapped, any side-effects that are normally associated with the access do not occur before the
exception is taken.

If System register access to the trace functionality is not supported, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:14]

Reserved, RES0.

Bits [13:12]

Reserved, RES1.
D13-3126 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Bit [11]

Reserved, RES0.

TFP, bit [10]

Traps execution of instructions which access the Advanced SIMD and floating-point functionality,
from both Execution states to EL2, when EL2 is enabled in the current Security state, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using
ESR_ELx.EC value 0x07:

— FPCR, FPSR, FPEXC32_EL2, any of the SIMD and floating-point registers V0-V31,
including their views as D0-D31 registers or S0-31 registers.

• In AArch32 state, accesses to the following registers are trapped to EL2, reported using
ESR_ELx.EC value 0x07:

— MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point
registers Q0-15, including their views as D0-D31 registers or S0-31 registers. For the
purposes of this trap, the architecture defines a VMSR access to FPSID from EL1 or
higher as an access to a SIMD and floating-point register. Otherwise, permitted VMSR
accesses to FPSID are ignored.

Traps execution at the same Exception levels of SVE instructions to EL2, when EL2 is enabled in
the current Security state. The exception is reported using ESR_ELx.EC value 0x07.

A trap taken as a result of CPTR_EL2.TZ has precedence over a trap taken as a result of
CPTR_EL2.TFP.

0b0 This control does not cause execution of any instructions to be trapped.

0b1 This control causes execution of these instructions at EL2, EL1, and EL0 to be trapped.

Note

FPEXC32_EL2 is not accessible from EL0 using AArch64.

FPSID, MVFR0, MVFR1, and FPEXC are not accessible from EL0 using AArch32.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES1.

TZ, bit [8]

When FEAT_SVE is implemented:

TZ

Traps execution at EL2, EL1, and EL0 of SVE instructions and instructions that directly access the
ZCR_EL2 or ZCR_EL1 System registers to EL2, when EL2 is enabled in the current Security state.

The exception is reported using ESR_ELx.EC value 0x19.

A trap taken as a result of CPTR_EL2.TZ has precedence over a trap taken as a result of
CPTR_EL2.TFP.

0b0 This control does not cause execution of any instructions to be trapped.

0b1 This control causes execution of these instructions at EL2, EL1, and EL0 to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3127
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Bits [7:0]

Reserved, RES1.

Accessing CPTR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CPTR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return CPTR_EL2;
elsif PSTATE.EL == EL3 then
 return CPTR_EL2;

MSR CPTR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 CPTR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b010

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b010
D13-3128 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
elsif PSTATE.EL == EL3 then
 CPTR_EL2 = X[t];

MRS <Xt>, CPACR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CPACR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x100];
 else
 return CPACR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 return CPTR_EL2;
 else
 return CPACR_EL1;
elsif PSTATE.EL == EL3 then
 return CPACR_EL1;

MSR CPACR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.CPACR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3129
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x100] = X[t];
 else
 CPACR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 CPTR_EL2 = X[t];
 else
 CPACR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 CPACR_EL1 = X[t];

D13-3130 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.32 CPTR_EL3, Architectural Feature Trap Register (EL3)

The CPTR_EL3 characteristics are:

Purpose

Controls trapping to EL3 of accesses to CPACR, CPACR_EL1, HCPTR, CPTR_EL2, trace,
Activity Monitor, SVE, and Advanced SIMD and floating-point functionality.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to CPTR_EL3
are UNDEFINED.

Attributes

CPTR_EL3 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

Traps all of the following to EL3, from both Security states and both Execution states.

• EL2 accesses to CPTR_EL2, reported using ESR_ELx.EC value 0x18, or HCPTR, reported
using ESR_ELx.EC value 0x03.

• EL2 and EL1 accesses to CPACR_EL1 reported using ESR_ELx.EC value 0x18, or CPACR
reported using ESR_ELx.EC value 0x03.

When CPTR_EL3.TCPAC is:

0b0 This control does not cause any instructions to be trapped.

0b1 EL2 accesses to the CPTR_EL2 or HCPTR, and EL2 and EL1 accesses to the
CPACR_EL1 or CPACR, are trapped to EL3, unless they are trapped by
CPTR_EL2.TCPAC.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TAM, bit [30]

When FEAT_AMUv1 is implemented:

TAM

Trap Activity Monitor access. Traps EL2, EL1, and EL0 accesses to all Activity Monitor registers
to EL3.

RES0

63 32

31 30

RES0

29 21 20

RES0

19 11 10 9

EZ

8

RES0

7 0

TCPAC TAM TTA TFP RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3131
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Accesses to the Activity Monitors registers are trapped as follows:

• In AArch64 state, the following registers are trapped to EL3 and reported with ESR_ELx.EC
value 0x18:

— AMUSERENR_EL0, AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0,
AMCNTENCLR1_EL0, AMCNTENSET0_EL0, AMCNTENSET1_EL0,
AMCR_EL0, AMEVCNTR0<n>_EL0, AMEVCNTR1<n>_EL0,
AMEVTYPER0<n>_EL0, and AMEVTYPER1<n>_EL0.

• In AArch32 state, accesses with MRC or MCR to the following registers reported with
ESR_ELx.EC value 0x03:

— AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1,
AMCNTENSET0, AMCNTENSET1, AMCR, AMEVTYPER0<n>, and
AMEVTYPER1<n>.

• In AArch32 state, accesses with MRRC or MCRR to the following registers, reported with
ESR_ELx.EC value 0x04:

— AMEVCNTR0<n>, AMEVCNTR1<n>.

0b0 Accesses from EL2, EL1, and EL0 to Activity Monitor registers are not trapped.

0b1 Accesses from EL2, EL1, and EL0 to Activity Monitor registers are trapped to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:21]

Reserved, RES0.

TTA, bit [20]

Traps System register accesses. Accesses to the trace registers, from all Exception levels, both
Security states, and both Execution states are trapped to EL3 as follows:

• In AArch64 state, Trace registers with op0=2, op1=1, and CRn<0b1000 are trapped to EL3
and reported using EC syndrome value 0x18.

• In AArch32 state, accesses using MCR or MRC to the Trace registers with cpnum=14,
opc1=1, and CRn<0b1000 are reported using EC syndrome value 0x05.

0b0 This control does not cause any instructions to be trapped.

0b1 Any System register access to the trace registers is trapped to EL3, unless it is trapped
by CPACR.TRCDIS, CPACR_EL1.TTA, or CPTR_EL2.TTA.

If System register access to trace functionality is not supported, this bit is RES0.

Note

The ETMv4 architecture does not permit EL0 to access the trace registers. If the PE trace unit
implements FEAT_ETMv4, EL0 accesses to the trace registers are UNDEFINED, and any resulting
exception is higher priority than this trap exception.

EL3 does not provide traps on trace register accesses through the Memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access
is trapped, no side-effects occur before the exception is taken, see Traps on instructions on
page D1-2511.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
D13-3132 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Bits [19:11]

Reserved, RES0.

TFP, bit [10]

Traps execution of instructions which access the Advanced SIMD and floating-point functionality,
from all Exception levels, both Security states, and both Execution states, to EL3.

This includes the following registers, all reported using ESR_ELx.EC value 0x07:

• FPCR, FPSR, FPEXC32_EL2, and any of the SIMD and floating-point registers V0-V31,
including their views as D0-D31 registers or S0-S31 registers.

• MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point
registers Q0-Q15, including their views as D0-D31 registers or S0-S31 registers.

• VMSR accesses to FPSID.

Permitted VMSR accesses to FPSID are ignored, but for the purposes of this trap the architecture
defines a VMSR access to the FPSID from EL1 or higher as an access to a SIMD and floating-point
register.

Traps execution at all Exception levels of SVE instructions to EL3 from any Security state. The
exception is reported using ESR_ELx.EC value 0x07.

A trap taken as a result of CPTR_EL3.EZ has precedence over a trap taken as a result of
CPTR_EL3.TFP.

Defined values are:

0b0 This control does not cause execution of any instructions to be trapped.

0b1 This control causes execution of these instructions at all Exception levels to be trapped.

Note

FPEXC32_EL2 is not accessible from EL0 using AArch64.

FPSID, MVFR0, MVFR1, and FPEXC are not accessible from EL0 using AArch32.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES0.

EZ, bit [8]

When FEAT_SVE is implemented:

EZ

Traps execution of SVE instructions and instructions that directly access the ZCR_EL3, ZCR_EL2,
or ZCR_EL1 System registers, from all Exception levels and both Security states, to EL3.

The exception is reported using ESR_ELx.EC value 0x19.

A trap taken as a result of CPTR_EL3.EZ has precedence over a trap taken as a result of
CPTR_EL3.TFP.

0b0 This control causes execution of these instructions at all Exception levels to be trapped.

0b1 This control does not cause execution of any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3133
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Bits [7:0]

Reserved, RES0.

Accessing CPTR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CPTR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return CPTR_EL3;

MSR CPTR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 CPTR_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b010

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b010
D13-3134 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.33 CSSELR_EL1, Cache Size Selection Register

The CSSELR_EL1 characteristics are:

Purpose

Selects the current Cache Size ID Register, CCSIDR_EL1, by specifying the required cache level
and the cache type (either instruction or data cache).

Configurations

AArch64 System register CSSELR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register CSSELR[31:0].

Attributes

CSSELR_EL1 is a 64-bit register.

Field descriptions

Bits [63:5]

Reserved, RES0.

TnD, bit [4]

When FEAT_MTE2 is implemented:

TnD

Allocation Tag not Data bit.

0b0 Data, Instruction or Unified cache.

0b1 Separate Allocation Tag cache.

When CSSELR_EL1.InD == 1, this bit is RES0.

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then the value for
this field on a read of CSSELR_EL1 is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Level, bits [3:1]

Cache level of required cache.

0b000 Level 1 cache.

0b001 Level 2 cache.

0b010 Level 3 cache.

0b011 Level 4 cache.

0b100 Level 5 cache.

0b101 Level 6 cache.

RES0

63 32

RES0

31 5 4

Level

3 1 0

TnD InD
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3135
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b110 Level 7 cache.

All other values are reserved.

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then the value for
this field on a read of CSSELR_EL1 is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

InD, bit [0]

Instruction not Data bit.

0b0 Data or unified cache.

0b1 Instruction cache.

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then a read of
CSSELR_EL1 is CONSTRAINED UNPREDICTABLE, and returns UNKNOWN values for
CSSELR_EL1.{Level, InD}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CSSELR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CSSELR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID2 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TID4 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CSSELR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CSSELR_EL1;
elsif PSTATE.EL == EL2 then
 return CSSELR_EL1;
elsif PSTATE.EL == EL3 then
 return CSSELR_EL1;

MSR CSSELR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID2 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b010 0b0000 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b010 0b0000 0b0000 0b000
D13-3136 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 elsif EL2Enabled() && HCR_EL2.TID4 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.CSSELR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CSSELR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 CSSELR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 CSSELR_EL1 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3137
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.34 CTR_EL0, Cache Type Register

The CTR_EL0 characteristics are:

Purpose

Provides information about the architecture of the caches.

Configurations

AArch64 System register CTR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register CTR[31:0].

Attributes

CTR_EL0 is a 64-bit register.

Field descriptions

Bits [63:38]

Reserved, RES0.

TminLine, bits [37:32]

When FEAT_MTE2 is implemented:

TminLine

Tag minimum Line. Log2 of the number of words covered by Allocation Tags in the smallest cache
line of all caches which can contain Allocation tags that are controlled by the PE.

Note

• For an implementation with cache lines containing 64 bytes of data and 4 Allocation Tags,
this will be log2(64/4) = 4.

• For an implementation with Allocations Tags in separate cache lines of 128 Allocation Tags
per line, this will be log2(128*16/4) = 9.

Otherwise:

Reserved, RES0.

Bit [31]

Reserved, RES1.

Bit [30]

Reserved, RES0.

DIC, bit [29]

Instruction cache invalidation requirements for data to instruction coherence.

0b0 Instruction cache invalidation to the Point of Unification is required for data to
instruction coherence.

RES0

63 38

TminLine

37 32

31 30 29 28

CWG

27 24

ERG

23 20

DminLine

19 16

L1Ip

15 14

RES0

13 4

IminLine

3 0

RES1
RES0

IDC
DIC
D13-3138 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 Instruction cache invalidation to the Point of Unification is not required for data to
instruction coherence.

IDC, bit [28]

Data cache clean requirements for instruction to data coherence. The meaning of this bit is:

0b0 Data cache clean to the Point of Unification is required for instruction to data coherence,
unless CLIDR_EL1.LoC == 0b000 or (CLIDR_EL1.LoUIS == 0b000 &&
CLIDR_EL1.LoUU == 0b000).

0b1 Data cache clean to the Point of Unification is not required for instruction to data
coherence.

CWG, bits [27:24]

Cache writeback granule. Log2 of the number of words of the maximum size of memory that can be
overwritten as a result of the eviction of a cache entry that has had a memory location in it modified.

A value of 0b0000 indicates that this register does not provide Cache writeback granule information
and either:

• The architectural maximum of 512 words (2KB) must be assumed.

• The Cache writeback granule can be determined from maximum cache line size encoded in
the Cache Size ID Registers.

Values greater than 0b1001 are reserved.

Arm recommends that an implementation that does not support cache write-back implements this
field as 0b0001. This applies, for example, to an implementation that supports only write-through
caches.

ERG, bits [23:20]

Exclusives reservation granule. Log2 of the number of words of the maximum size of the reservation
granule that has been implemented for the Load-Exclusive and Store-Exclusive instructions.

The use of the value 0b0000 is deprecated.

The value 0b0001 and values greater than 0b1001 are reserved.

DminLine, bits [19:16]

Log2 of the number of words in the smallest cache line of all the data caches and unified caches that
are controlled by the PE.

L1Ip, bits [15:14]

Level 1 instruction cache policy. Indicates the indexing and tagging policy for the L1 instruction
cache. Possible values of this field are:

0b00 When FEAT_VPIPT is implemented:

VMID aware Physical Index, Physical tag (VPIPT).

0b01 ASID-tagged Virtual Index, Virtual Tag (AIVIVT).

0b10 Virtual Index, Physical Tag (VIPT).

0b11 Physical Index, Physical Tag (PIPT).

The value 0b01 is reserved in Armv8.

The value 0b00 is permitted only in an implementation that includes FEAT_VPIPT, otherwise the
value is reserved.

Bits [13:4]

Reserved, RES0.

IminLine, bits [3:0]

Log2 of the number of words in the smallest cache line of all the instruction caches that are
controlled by the PE.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3139
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Accessing CTR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CTR_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCT == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TID2 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGRTR_EL2.CTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCT == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CTR_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID2 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CTR_EL0;
elsif PSTATE.EL == EL2 then
 return CTR_EL0;
elsif PSTATE.EL == EL3 then
 return CTR_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b0000 0b0000 0b001
D13-3140 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.35 DACR32_EL2, Domain Access Control Register

The DACR32_EL2 characteristics are:

Purpose

Allows access to the AArch32 DACR register from AArch64 state only. Its value has no effect on
execution in AArch64 state.

Configurations

AArch64 System register DACR32_EL2 bits [31:0] are architecturally mapped to AArch32 System
register DACR[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DACR32_EL2 are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this
register is not RES0.

Attributes

DACR32_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

D<n>, bits [2n+1:2n], for n = 15 to 0

Domain n access permission, where n = 0 to 15. Permitted values are:

0b00 No access. Any access to the domain generates a Domain fault.

0b01 Client. Accesses are checked against the permission bits in the translation tables.

0b11 Manager. Accesses are not checked against the permission bits in the translation tables.

The value 0b10 is reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing DACR32_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DACR32_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

RES0

63 32

D15

31 30

D14

29 28

D13

27 26

D12

25 24

D11

23 22

D10

21 20

D9

19 18

D8

17 16

D7

15 14

D6

13 12

D5

11 10

D4

9 8

D3

7 6

D2

5 4

D1

3 2

D0

1 0

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3141
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return DACR32_EL2;
elsif PSTATE.EL == EL3 then
 return DACR32_EL2;

MSR DACR32_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 DACR32_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 DACR32_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0000 0b000
D13-3142 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.36 DCZID_EL0, Data Cache Zero ID register

The DCZID_EL0 characteristics are:

Purpose

Indicates the block size that is written with byte values of 0 by the DC ZVA (Data Cache Zero by
Address) System instruction.

If FEAT_MTE is implemented, this register also indicates the granularity at which the DC GVA and
DC GZVA instructions write.

Configurations

There are no configuration notes.

Attributes

DCZID_EL0 is a 64-bit register.

Field descriptions

Bits [63:5]

Reserved, RES0.

DZP, bit [4]

Data Zero Prohibited. This field indicates whether use of DC ZVA instructions is permitted or
prohibited.

If FEAT_MTE is implemented, this field also indicates whether use of the DC GVA and DC GZVA
instructions are permitted or prohibited.

0b0 Instructions are permitted.

0b1 Instructions are prohibited.

The value read from this field is governed by the access state and the values of the HCR_EL2.TDZ
and SCTLR_EL1.DZE bits.

BS, bits [3:0]

Log2 of the block size in words. The maximum size supported is 2KB (value == 9).

Accessing DCZID_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DCZID_EL0

if PSTATE.EL == EL0 then
 if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

RES0

63 32

RES0

31 5 4

BS

3 0

DZP

op0 op1 CRn CRm op2

0b11 0b011 0b0000 0b0000 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3143
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
HFGRTR_EL2.DCZID_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return DCZID_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.DCZID_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return DCZID_EL0;
elsif PSTATE.EL == EL2 then
 return DCZID_EL0;
elsif PSTATE.EL == EL3 then
 return DCZID_EL0;

D13-3144 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.37 ESR_EL1, Exception Syndrome Register (EL1)

The ESR_EL1 characteristics are:

Purpose

Holds syndrome information for an exception taken to EL1.

Configurations

AArch64 System register ESR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DFSR[31:0].

Attributes

ESR_EL1 is a 64-bit register.

Field descriptions

ESR_EL1 is made UNKNOWN as a result of an exception return from EL1.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL1, the value of
ESR_EL1 is UNKNOWN. The value written to ESR_EL1 must be consistent with a value that could be created as a
result of an exception from the same Exception level that generated the exception as a result of a situation that is
not UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:37]

Reserved, RES0.

ISS2, bits [36:32]

When FEAT_LS64 is implemented:

ISS2

If a memory access generated by an ST64BV or ST64BV0 instruction generates a Data Abort for a
Translation fault, Access flag fault, or Permission fault, then this field holds register specifier, Xs.

For any other Data Abort, this field is RES0.

Otherwise:

Reserved, RES0.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.

• The encoding of the associated ISS.

Possible values of the EC field are:

EC == 0b000000

Unknown reason.

See ISS encoding for exceptions with an unknown reason.

RES0

63 37

ISS2

36 32

EC

31 26

IL

25

ISS

24 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3145
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
EC == 0b000001

Trapped WF* instruction execution.

Conditional WF* instructions that fail their condition code check do not cause an
exception.

See ISS encoding for an exception from a WF* instruction.

EC == 0b000011

When AArch32 is supported at EL0:

Trapped MCR or MRC access with (coproc==0b1111) that is not reported using EC
0b000000.

See ISS encoding for an exception from an MCR or MRC access.

EC == 0b000100

When AArch32 is supported at EL0:

Trapped MCRR or MRRC access with (coproc==0b1111) that is not reported using EC
0b000000.

See ISS encoding for an exception from an MCRR or MRRC access.

EC == 0b000101

When AArch32 is supported at EL0:

Trapped MCR or MRC access with (coproc==0b1110).

See ISS encoding for an exception from an MCR or MRC access.

EC == 0b000110

When AArch32 is supported at EL0:

Trapped LDC or STC access.

The only architected uses of these instruction are:

• An STC to write data to memory from DBGDTRRXint.

• An LDC to read data from memory to DBGDTRTXint.

See ISS encoding for an exception from an LDC or STC instruction.

EC == 0b000111

Access to SVE, Advanced SIMD or floating-point functionality trapped by
CPACR_EL1.FPEN, CPTR_EL2.FPEN, CPTR_EL2.TFP, or CPTR_EL3.TFP control.

Excludes exceptions resulting from CPACR_EL1 when the value of HCR_EL2.TGE is
1, or because SVE or Advanced SIMD and floating-point are not implemented. These
are reported with EC value 0b000000 as described in The EC used to report an exception
routed to EL2 because HCR_EL2.TGE is 1 on page D1-2483.

See ISS encoding for an exception from an access to SVE, Advanced SIMD or
floating-point functionality, resulting from the FPEN and TFP traps.

EC == 0b001010

When FEAT_LS64 is implemented:

Trapped execution of an LD64B, ST64B, ST64BV, or ST64BV0 instruction.

See ISS encoding for an exception from an LD64B or ST64B* instruction.

EC == 0b001100

When AArch32 is supported at EL0:

Trapped MRRC access with (coproc==0b1110).

See ISS encoding for an exception from an MCRR or MRRC access.

EC == 0b001101

When FEAT_BTI is implemented:

Branch Target Exception.

See ISS encoding for an exception from Branch Target Identification instruction.

EC == 0b001110

Illegal Execution state.
D13-3146 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
See ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault.

EC == 0b010001

When AArch32 is supported at EL0:

SVC instruction execution in AArch32 state.

See ISS encoding for an exception from HVC or SVC instruction execution.

EC == 0b010101

When AArch64 is supported at the highest implemented Exception level:

SVC instruction execution in AArch64 state.

See ISS encoding for an exception from HVC or SVC instruction execution.

EC == 0b011000

When AArch64 is supported at the highest implemented Exception level:

Trapped MSR, MRS or System instruction execution in AArch64 state, that is not
reported using EC 0b000000, 0b000001, or 0b000111.

This includes all instructions that cause exceptions that are part of the encoding space
defined in System instruction class encoding overview on page C5-395, except for those
exceptions reported using EC values 0b000000, 0b000001, or 0b000111.

See ISS encoding for an exception from MSR, MRS, or System instruction execution in
AArch64 state.

EC == 0b011001

When FEAT_SVE is implemented:

Access to SVE functionality trapped as a result of CPACR_EL1.ZEN,
CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ, that is not reported using EC
0b000000.

See ISS encoding for an exception from an access to SVE functionality, resulting from
CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ.

EC == 0b011100

When FEAT_FPAC is implemented:

Exception from a Pointer Authentication instruction authentication failure

See ISS encoding for an exception from a Pointer Authentication instruction
authentication failure.

EC == 0b100000

Instruction Abort from a lower Exception level.

Used for MMU faults generated by instruction accesses and synchronous External
aborts, including synchronous parity or ECC errors. Not used for debug-related
exceptions.

See ISS encoding for an exception from an Instruction Abort.

EC == 0b100001

Instruction Abort taken without a change in Exception level.

Used for MMU faults generated by instruction accesses and synchronous External
aborts, including synchronous parity or ECC errors. Not used for debug-related
exceptions.

See ISS encoding for an exception from an Instruction Abort.

EC == 0b100010

PC alignment fault exception.

See ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault.

EC == 0b100100

Data Abort from a lower Exception level.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3147
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Used for MMU faults generated by data accesses, alignment faults other than those
caused by Stack Pointer misalignment, and synchronous External aborts, including
synchronous parity or ECC errors. Not used for debug-related exceptions.

See ISS encoding for an exception from a Data Abort.

EC == 0b100101

Data Abort taken without a change in Exception level.

Used for MMU faults generated by data accesses, alignment faults other than those
caused by Stack Pointer misalignment, and synchronous External aborts, including
synchronous parity or ECC errors. Not used for debug-related exceptions.

See ISS encoding for an exception from a Data Abort.

EC == 0b100110

SP alignment fault exception.

See ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault.

EC == 0b101000

When AArch32 is supported at EL0:

Trapped floating-point exception taken from AArch32 state.

This EC value is valid if the implementation supports trapping of floating-point
exceptions, otherwise it is reserved. Whether a floating-point implementation supports
trapping of floating-point exceptions is IMPLEMENTATION DEFINED.

See ISS encoding for an exception from a trapped floating-point exception.

EC == 0b101100

When AArch64 is supported at the highest implemented Exception level:

Trapped floating-point exception taken from AArch64 state.

This EC value is valid if the implementation supports trapping of floating-point
exceptions, otherwise it is reserved. Whether a floating-point implementation supports
trapping of floating-point exceptions is IMPLEMENTATION DEFINED.

See ISS encoding for an exception from a trapped floating-point exception.

EC == 0b101111

SError interrupt.

See ISS encoding for an SError interrupt.

EC == 0b110000

Breakpoint exception from a lower Exception level.

See ISS encoding for an exception from a Breakpoint or Vector Catch debug exception.

EC == 0b110001

Breakpoint exception taken without a change in Exception level.

See ISS encoding for an exception from a Breakpoint or Vector Catch debug exception.

EC == 0b110010

Software Step exception from a lower Exception level.

See ISS encoding for an exception from a Software Step exception.

EC == 0b110011

Software Step exception taken without a change in Exception level.

See ISS encoding for an exception from a Software Step exception.

EC == 0b110100

Watchpoint exception from a lower Exception level.

See ISS encoding for an exception from a Watchpoint exception.

EC == 0b110101

Watchpoint exception taken without a change in Exception level.

See ISS encoding for an exception from a Watchpoint exception.
D13-3148 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
EC == 0b111000

When AArch32 is supported at EL0:

BKPT instruction execution in AArch32 state.

See ISS encoding for an exception from execution of a Breakpoint instruction.

EC == 0b111100

When AArch64 is supported at the highest implemented Exception level:

BRK instruction execution in AArch64 state.

See ISS encoding for an exception from execution of a Breakpoint instruction.

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for
synchronous exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and
might be used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED
UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

0b0 16-bit instruction trapped.

0b1 32-bit instruction trapped. This value is also used when the exception is one of the
following:

• An SError interrupt.

• An Instruction Abort exception.

• A PC alignment fault exception.

• An SP alignment fault exception.

• A Data Abort exception for which the value of the ISV bit is 0.

• An Illegal Execution state exception.

• Any debug exception except for Breakpoint instruction exceptions. For
Breakpoint instruction exceptions, this bit has its standard meaning:

— 0b0: 16-bit T32 BKPT instruction.

— 0b1: 32-bit A32 BKPT instruction or A64 BRK instruction.

• An exception reported using EC value 0b000000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each
defined Exception class. However, in practice, some ISS encodings are used for more than one
Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number,
the value returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, see Mapping of the general-purpose registers between
the Execution states on page D1-2546.

If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the
value 0b11111.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3149
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
• If the instruction that generated the exception was UNPREDICTABLE, the field takes an
UNKNOWN value that must be either:

— The AArch64 view of the register number of a register that might have been used at
the Exception level from which the exception was taken.

— The value 0b11111.

ISS encoding for exceptions with an unknown reason

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions that
are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not accessible
at the current Exception level and Security state, including:

— A read access using a System register pattern that is not allocated for reads or that does not permit reads
at the current Exception level and Security state.

— A write access using a System register pattern that is not allocated for writes or that does not permit
writes at the current Exception level and Security state.

— Instruction encodings that are unallocated.

— Instruction encodings for instructions or System registers that are not implemented in the
implementation.

• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug state.

• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-debug
state.

• In AArch32 state, attempted execution of a short vector floating-point instruction.

• In an implementation that does not include Advanced SIMD and floating-point functionality, an attempted
access to Advanced SIMD or floating-point functionality under conditions where that access would be
permitted if that functionality was present. This includes the attempted execution of an Advanced SIMD or
floating-point instruction, and attempted accesses to Advanced SIMD and floating-point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control bits.

• Attempted execution of:

— An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.

— An SMC instruction when disabled by SCR_EL3.SMD.

— An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.

• Attempted execution of an MSR or MRS instruction using a _EL12 register name when HCR_EL2.E2H ==
0.

• Attempted execution, in Debug state, of:

— A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not implemented
in the current Security state.

RES0

24 0
D13-3150 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
— A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the current
Security state.

— A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.

• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using R13_mon.
See Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32 on page D1-2530.

• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an
instruction that is configured to trap to EL3.

• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)
instruction to SPSR_mon, SP_mon, or LR_mon.

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of
HCR_EL2.TGE was 0 would have been reported with an ESR_ELx.EC value of 0b000111.

ISS encoding for an exception from a WF* instruction

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

CV

24

COND

23 20

RES0

19 10

RN

9 5

RES0

4 3

RV

2

TI

1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3151
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:10]

Reserved, RES0.

RN, bits [9:5]

When FEAT_WFxT2 is implemented:

RN

Indicates the Register Number supplied for a WFET or WFIT instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [4:3]

Reserved, RES0.

RV, bit [2]

When FEAT_WFxT2 is implemented:

RV

Register field Valid.

If TI[1] == 1, then this field indicates whether RN holds a valid register number for the register
argument to the trapped WFET or WFIT instruction.

0b0 Register field invalid.

0b1 Register field valid.

If TI[1] == 0, then this field is RES0.

When FEAT_WFxT2 is implemented, RV is set to 1 on a trap on WFET or WFIT.

When FEAT_WFxT2 is not implemented, RV is set to 0 on a trap on WFET or WFIT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TI, bits [1:0]

Trapped instruction. Possible values of this bit are:

0b00 WFI trapped.

0b01 WFE trapped.

0b10 When FEAT_WFxT is implemented:

WFIT trapped.

0b11 When FEAT_WFxT is implemented:

WFET trapped.

When FEAT_WFxT is implemented, this is a two bit field as shown. Otherwise, bit[1] is RES0.
D13-3152 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• SCTLR_EL1.{nTWE, nTWI}.

• HCR_EL2.{TWE, TWI}.

• SCR_EL3.{TWE, TWI}.

ISS encoding for an exception from an MCR or MRC access

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

CV

24

COND

23 20

Opc2

19 17

Opc1

16 14

CRn

13 10

Rt

9 5

CRm

4 1 0

Direction
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3153
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states on page D1-2546.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to System register space. MCR instruction.

0b1 Read from System register space. MRC or VMRS instruction.
D13-3154 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b000011:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions at EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or MRC
access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access
(coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCR or MRC access (coproc ==
0b1111) trapped to EL2.

• CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL3.

• For information on other traps using EC value 0b000011, see Traps to EL3 of Secure monitor functionality
from Secure EL1 using AArch32 on page D1-2530.

• If FEAT_FGT is implemented, MCR or MRC access to some registers at EL0, trapped to EL2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3155
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The following fields describe configuration settings for generating exceptions that are reported using EC value
0b000101:

• CPACR_EL1.TTA for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to EL1
or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and EL1
using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2 trapped to
EL3.

• HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using AArch32, MRC
access (coproc == 0b1110) trapped to EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc == 0b1110)
trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR using AArch32,
MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC
access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, MCR or MRC access (coproc
== 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc == 0b1110)
trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, MCR or MRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL3.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b001000:

• HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32 state, VMRS access
trapped to EL2.

• HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS
access trapped to EL2.

ISS encoding for an exception from an LD64B or ST64B* instruction

ISS, bits [24:0]

0b0000000000000000000000000 ST64BV instruction trapped.

0b0000000000000000000000001 ST64BV0 instruction trapped.

0b0000000000000000000000010 LD64B or ST64B instruction trapped.

All other values are reserved.

ISS

24 0
D13-3156 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
ISS encoding for an exception from an MCRR or MRRC access

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CV

24

COND

23 20

Opc1

19 16 15

Rt2

14 10

Rt

9 5

CRm

4 1 0

RES0 Direction
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3157
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer.

If the Rt2 value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt2 value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states on page D1-2546.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states on page D1-2546.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to System register space. MCRR instruction.

0b1 Read from System register space. MRRC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b000100:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or
EL2.
D13-3158 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to
EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32 state,
MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCRR or MRRC access (coproc
== 0b1111) trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers from EL0 and EL1
using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers AMEVCNTR0<n> and AMEVCNTR1<n>
from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state,
MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• If FEAT_FGT is implemented, HDFGRTR_EL2.PMCCNTR_EL0 for MRRC access and
HDFGWTR_EL2.PMCCNTR_EL0 for MCRR access to PMCCNTR at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b001100:

• MDSCR_EL1.TDCC, for accesses to the Debug ROM registers DBGDSAR and DBGDRAR at EL0 using
AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR using AArch32,
MCRR or MRRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

• CPACR_EL1.TTA for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL1 or EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110)
trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110)
trapped to EL3.

Note

If the Armv8-A architecture is implemented with an ETMv4 implementation, MCRR and MRRC accesses to trace
registers are UNDEFINED and the resulting exception is higher priority than an exception due to these traps.

ISS encoding for an exception from an LDC or STC instruction

CV

24

COND

23 20

imm8

19 12

RES0

11 10

Rn

9 5 4

AM

3 1 0

Offset Direction
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3159
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer.
D13-3160 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
If the Rn value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rn value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states on page D1-2546.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC
instruction. When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

0b0 Subtract offset.

0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

0b000 Immediate unindexed.

0b001 Immediate post-indexed.

0b010 Immediate offset.

0b011 Immediate pre-indexed.

0b100 For a trapped STC instruction or a trapped T32 LDC instruction this encoding is
reserved.

0b110 For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is
that behavior is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and
memory-mapped registers and translation table entries on page K1-8423.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to memory. STC instruction.

0b1 Read from memory. LDC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3161
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The following fields describe the configuration settings for the traps that are reported using EC value 0b000110:

• MDSCR_EL1.TDCC, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint trapped to EL1 or EL2.

• MDCR_EL2.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL2.

• MDCR_EL3.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL3.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for LDC and STC accesses to the DCC registers at EL0
and EL1 trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.

ISS encoding for an exception from an access to SVE, Advanced SIMD or floating-point
functionality, resulting from the FPEN and TFP traps

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.

• Accesses to the Advanced SIMD and floating-point System registers.

For an implementation that does not include either SVE or support for Advanced SIMD and floating-point, the
exception is reported using the EC value 0b000000.

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

CV

24

COND

23 20

RES0

19 0
D13-3162 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value 0b000111:

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.

• CPTR_EL2.FPEN and CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL2.

• CPTR_EL3.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

ISS encoding for an exception from an access to SVE functionality, resulting from
CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ

The accesses covered by this trap include:

• Execution of SVE instructions.

• Accesses to the SVE System registers, ZCR_ELx.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

Bits [24:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value 0b011001:

• CPACR_EL1.ZEN, for execution of SVE instructions and accesses to SVE registers at EL0 or EL1, trapped
to EL1.

• CPTR_EL2.ZEN and CPTR_EL2.TZ, for execution of SVE instructions and accesses to SVE registers at
EL0, EL1, or EL2, trapped to EL2.

• CPTR_EL3.EZ, for execution of SVE instructions and accesses to SVE registers from all Exception levels,
trapped to EL3.

ISS encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault

RES0

24 0

RES0

24 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3163
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about these exceptions, see The Illegal Execution state exception on
page D1-2488 and PC alignment checking on page D1-2469.

SP alignment checking on page D1-2469 describes the configuration settings for generating SP alignment fault
exceptions.

ISS encoding for an exception from HVC or SVC instruction execution

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the
issued instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:

— For the T32 instruction, this field is zero-extended from the imm8 field of the
instruction.

— For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the
instruction.

• If the instruction is conditional, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an exception
only if it passes its condition code check. Therefore, the syndrome information for these exceptions does not require
conditionality information.

For T32 and A32 instructions, see SVC and HVC.

For A64 instructions, see SVC and HVC.

If FEAT_FGT is implemented, HFGITR_EL2.{SVC_EL1, SVC_EL0} control fine-grained traps on SVC
execution.

ISS encoding for an exception from SMC instruction execution in AArch32 state

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS encoding
is RES0.

RES0

24 16

imm16

15 0

CV

24

COND

23 20 19

RES0

18 0

CCKNOWNPASS
D13-3164 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is as shown
in the diagram.

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

0b0 The instruction was unconditional, or was conditional and passed its condition code
check.

0b1 The instruction was conditional, and might have failed its condition code check.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3165
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Note

In an implementation in which an SMC instruction that fails it code check is not trapped, this field
can always return the value 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.

System calls on page D1-2535 describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from SMC instruction execution in AArch64 state

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from EL1 modes.

• When an SMC instruction is not trapped, so completes normally and generates an exception that is taken to
EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

System calls on page D1-2535 describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from MSR, MRS, or System instruction execution in AArch64 state

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

RES0

24 16

imm16

15 0

RES0

24 22

Op0

21 20

Op2

19 17

Op1

16 14

CRn

13 10

Rt

9 5

CRm

4 1 0

Direction
D13-3166 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write access, including MSR instructions.

0b1 Read access, including MRS instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see System instructions on page C4-294 for the encoding values
returned by an instruction.

The following fields describe configuration settings for generating the exception that is reported using EC value
0b011000:

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1 or
EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.

• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped to
EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using AArch64
state, MSR or MRS access trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2 trapped to
EL3.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3167
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer
registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to the Performance Monitor registers using AArch64
state, MSR or MRS access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped
to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter control register, TRFCR_EL1, using AArch64 state, MSR
or MRS access trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS access
trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64
state, MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state, MSR or
MRS access trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.APK, for accesses to Pointer authentication key registers. using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS access,
trapped to EL2.

• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access, trapped to
EL2.
D13-3168 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access,
trapped to EL2.

• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state, MSR
or MRS access trapped to EL3.

• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access trapped
to EL3.

• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TTRF, for accesses to the trace filter control registers, TRFCR_EL1 and TRFCR_EL2, using
AArch64 state, MSR or MRS access trapped to EL3.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,
trapped to EL3.

• If FEAT_EVT is implemented, the following registers control traps for EL1 and EL0 Cache controls that use
this EC value:

— HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4}.

— HCR2.{TTLBIS, TICAB, TOCU, TID4}.

• If FEAT_FGT is implemented:

— SCR_EL3.FGTEn, for accesses to the fine-grained trap registers, MSR or MRS access at EL2 trapped
to EL3.

— HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, MSR or
MRS access at EL0 and EL1 trapped to EL2.

— HFGITR_EL2 for execution of system instructions, MSR or MRS access trapped to EL2

— HDFGRTR_EL2 for reads and HDFGWTR_EL2 for writes of registers, using AArch64 state, MSR
or MRS access at EL0 and EL1 state trapped to EL2.

— HAFGRTR_EL2 for reads of Activity Monitor counters, using AArch64 state, MRS access at EL0 and
EL1 trapped to EL2.

ISS encoding for an IMPLEMENTATION DEFINED exception to EL3

IMPLEMENTATION DEFINED, bits [24:0]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED

24 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3169
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from an Instruction Abort

Bits [24:13]

Reserved, RES0.

SET, bits [12:11]

When FEAT_RAS is implemented:

SET

Synchronous Error Type. When IFSC is 0b010000, describes the PE error state after taking the
Instruction Abort exception.

0b00 Recoverable state (UER).

0b10 Uncontainable (UC).

0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery might be possible. Taking a
synchronous External Abort exception might result in a PE state that is not recoverable.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 FAR is valid.

0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External
aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

24 13

SET

12 11 10

EA

9 8 7 6

IFSC

5 0

FnV
RES0

RES0
S1PTW
D13-3170 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

0b000000 Address size fault, level 0 of translation or translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001000 When FEAT_LPA2 is implemented:

Access flag fault, level 0.

0b001100 When FEAT_LPA2 is implemented:

Permission fault, level 0.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk or hardware update of
translation table.

0b010011 When FEAT_LPA2 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -1.

0b010100 Synchronous External abort on translation table walk or hardware update of translation
table, level 0.

0b010101 Synchronous External abort on translation table walk or hardware update of translation
table, level 1.

0b010110 Synchronous External abort on translation table walk or hardware update of translation
table, level 2.

0b010111 Synchronous External abort on translation table walk or hardware update of translation
table, level 3.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3171
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011011 When FEAT_LPA2 is implemented and FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level -1.

0b011100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 0.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 3.

0b101001 When FEAT_LPA2 is implemented:

Address size fault, level -1.

0b101011 When FEAT_LPA2 is implemented:

Translation fault, level -1.

0b110000 TLB conflict abort.

0b110001 When FEAT_HAFDBS is implemented:

Unsupported atomic hardware update fault.

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on page D5-2806.

Note
Because Access flag faults and Permission faults can result only from a Block or Page translation
table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a Data Abort

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV or ST64BV0 instruction generates
a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this ISS encoding includes ISS2,
bits[36:32].

ISV, bit [24]

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

0b0 No valid instruction syndrome. ISS[23:14] are RES0.

24

SAS

23 22 21

SRT

20 16

SF

15

AR

14 13

SET

12 11 10

EA

9

CM

8 7 6

DFSC

5 0

ISV SSE VNCR
FnV

WnR
S1PTW
D13-3172 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 ISS[23:14] hold a valid instruction syndrome.

In ESR_EL2, ISV is 1 when FEAT_LS64 is implemented and a memory access generated by an
ST64BV, ST64BV0, ST64B, or LD64B instruction generates a Data Abort for a Translation fault,
Access flag fault, or Permission fault.

For other faults reported in ESR_EL2, ISV is 0 except for the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register
specified with 0b11111, including those with Acquire/Release semantics, but excluding Load
Exclusive or Store Exclusive and excluding those with writeback).

• AArch32 instructions where the instruction:

— Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB,
LDRSBT, LDRB, LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB,
STLB, or STRBT instruction.

— Is not performing register writeback.

— Is not using R15 as a source or destination register.

For these stage 2 aborts, ISV is UNKNOWN if the exception was generated in Debug state in memory
access mode, and otherwise indicates whether ISS[23:14] hold a valid syndrome.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64 is implemented and a
memory access generated by an ST64BV, ST64BV0, ST64B, or LD64B instruction generates a
Data Abort for a Translation fault, Access flag fault, or Permission fault. ISV is 0 for all other faults
reported in ESR_EL1 or ESR_EL3.

When FEAT_RAS is implemented, ISV is 0 for any synchronous External abort.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid
instruction syndrome, and therefore ISV is 0 for these aborts.

When FEAT_RAS is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0
on a synchronous External abort on a stage 2 translation table walk.

When FEAT_MTE is implemented, for a synchronous Tag Check Fault abort taken to ELx,
ESR_ELx.FNV is 0 and FAR_ELx is valid.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]

When ISV == 1:

SAS

Syndrome Access Size. Indicates the size of the access attempted by the faulting operation.

0b00 Byte

0b01 Halfword

0b10 Word

0b11 Doubleword

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0,
ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault, then this field is 0b11.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3173
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
SSE, bit [21]

When ISV == 1:

SSE

Syndrome Sign Extend. For a byte, halfword, or word load operation, indicates whether the data
item must be sign extended.

0b0 Sign-extension not required.

0b1 Data item must be sign-extended.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0,
ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault, then this field is 0.

For all other operations, this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SRT, bits [20:16]

When ISV == 1:

SRT

Syndrome Register Transfer. The register number of the Wt/Xt/Rt operand of the faulting
instruction.

If the exception was taken from an Exception level that is using AArch32, then this is the AArch64
view of the register. See Mapping of the general-purpose registers between the Execution states on
page D1-2546.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SF, bit [15]

When ISV == 1:

SF

Width of the register accessed by the instruction is Sixty-Four.

0b0 Instruction loads/stores a 32-bit wide register.

0b1 Instruction loads/stores a 64-bit wide register.

Note

This field specifies the register width identified by the instruction, not the Execution state.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0,
ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault, then this field is 1.

This field is UNKNOWN when the value of ISV is UNKNOWN.
D13-3174 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AR, bit [14]

When ISV == 1:

AR

Acquire/Release.

0b0 Instruction did not have acquire/release semantics.

0b1 Instruction did have acquire/release semantics.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0,
ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault, then this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VNCR, bit [13]

When FEAT_NV2 is implemented:

VNCR

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

0b0 The fault was not generated by the use of VNCR_EL2, by an MRS or MSR instruction
executed at EL1.

0b1 The fault was generated by the use of VNCR_EL2, by an MRS or MSR instruction
executed at EL1.

This field is 0 in ESR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits[12:11]

When FEAT_RAS is implemented and FEAT_LS64 is not implemented:

SET

Synchronous Error Type. When DFSC is 0b010000, describes the PE error state after taking the Data
Abort exception.

0b00 Recoverable state (UER).

0b10 Uncontainable (UC).

0b11 Restartable state (UEO).

All other values are reserved.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3175
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Note

Software can use this information to determine what recovery might be possible. Taking a
synchronous External Abort exception might result in a PE state that is not recoverable.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LS64 is implemented:

LST

Load/Store Type. Used when an LD64B, ST64B, ST64BV, or ST64BV0 instruction generates a
Data Abort for a Translation fault, Access flag fault, or Permission fault.

0b01 An ST64BV instruction generated the Data Abort.

0b10 An LD64B or ST64B instruction generated the Data Abort.

0b11 An ST64BV0 instruction generated the Data Abort.

All other values are reserved.

This field is valid only if the DFSC code is 0b110101. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 FAR is valid.

0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External
aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address
translation instruction:

0b0 The Data Abort was not generated by the execution of one of the System instructions
identified in the description of value 1.

0b1 The Data Abort was generated by either the execution of a cache maintenance
instruction or by a synchronous fault on the execution of an address translation
instruction. The DC ZVA, DC GVA, and DC GZVA instructions are not classified as
cache maintenance instructions, and therefore their execution cannot cause this field to
be set to 1.
D13-3176 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

0b0 Abort caused by an instruction reading from a memory location.

0b1 Abort caused by an instruction writing to a memory location.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is
set to 0 if a read of the address specified by the instruction would have generated the fault which is
being reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation
of this requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic
instructions, the WnR bit is always 0.

This field is UNKNOWN for:

• An External abort on an Atomic access.

• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported
Exclusive or atomic access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

0b000000 Address size fault, level 0 of translation or translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001000 When FEAT_LPA2 is implemented:

Access flag fault, level 0.

0b001100 When FEAT_LPA2 is implemented:

Permission fault, level 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3177
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk or hardware update of
translation table.

0b010001 When FEAT_MTE2 is implemented:

Synchronous Tag Check Fault.

0b010011 When FEAT_LPA2 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -1.

0b010100 Synchronous External abort on translation table walk or hardware update of translation
table, level 0.

0b010101 Synchronous External abort on translation table walk or hardware update of translation
table, level 1.

0b010110 Synchronous External abort on translation table walk or hardware update of translation
table, level 2.

0b010111 Synchronous External abort on translation table walk or hardware update of translation
table, level 3.

0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011011 When FEAT_LPA2 is implemented and FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level -1.

0b011100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 0.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 3.

0b100001 Alignment fault.

0b101001 When FEAT_LPA2 is implemented:

Address size fault, level -1.

0b101011 When FEAT_LPA2 is implemented:

Translation fault, level -1.

0b110000 TLB conflict abort.

0b110001 When FEAT_HAFDBS is implemented:

Unsupported atomic hardware update fault.

0b110100 IMPLEMENTATION DEFINED fault (Lockdown).

0b110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive or Atomic access).

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on page D5-2806.
D13-3178 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Note

Because Access flag faults and Permission faults can result only from a Block or Page translation
table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a trapped floating-point exception

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid
information about trapped floating-point exceptions.

0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold valid information about trapped
floating-point exceptions and are UNKNOWN.

0b1 One or more floating-point exceptions occurred during an operation performed while
executing the reported instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits indicate
trapped floating-point exceptions that occurred. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped
floating-point exception from an instruction that is performing floating-point operations on more
than one lane of a vector.

Note

This is not a requirement. Implementations can set this field to 1 on a trapped floating-point
exception from an instruction and return valid information in the {IDF, IXF, UFF, OFF, DZF, IOF}
fields.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is
RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

24 23

RES0

22 11

VECITR

10 8 7

RES0

6 5 4 3 2 1 0

RES0 TFV IDF
IXF

UFF

IOF
DZF

OFF
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3179
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Input denormal floating-point exception has not occurred.

0b1 Input denormal floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

0b0 Inexact floating-point exception has not occurred.

0b1 Inexact floating-point exception occurred during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Underflow floating-point exception has not occurred.

0b1 Underflow floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

0b0 Overflow floating-point exception has not occurred.

0b1 Overflow floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Divide by Zero floating-point exception has not occurred.

0b1 Divide by Zero floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Invalid Operation floating-point exception has not occurred.
D13-3180 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 Invalid Operation floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of
the floating-point exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of
the floating-point exception traps.

ISS encoding for an SError interrupt

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome.

0b0 Bits [23:0] of the ISS field holds the fields described in this encoding.

Note
If FEAT_RAS is not implemented, bits [23:0] of the ISS field are RES0.

0b1 Bits [23:0] of the ISS field holds IMPLEMENTATION DEFINED syndrome information that
can be used to provide additional information about the SError interrupt.

Note

This field was previously called ISV.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:14]

Reserved, RES0.

IESB, bit [13]

When FEAT_IESB is implemented:

IESB

Implicit error synchronization event.

0b0 The SError interrupt was either not synchronized by the implicit error synchronization
event or not taken immediately.

0b1 The SError interrupt was synchronized by the implicit error synchronization event and
taken immediately.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

24

RES0

23 14 13

AET

12 10

EA

9

RES0

8 6

DFSC

5 0

IDS IESB
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3181
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
AET, bits [12:10]

When FEAT_RAS is implemented:

AET

Asynchronous Error Type.

When DFSC is 0b010001, describes the PE error state after taking the SError interrupt exception.

0b000 Uncontainable (UC).

0b001 Unrecoverable state (UEU).

0b010 Restartable state (UEO).

0b011 Recoverable state (UER).

0b110 Corrected (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall PE error state is
reported.

Note

Software can use this information to determine what recovery might be possible. The recovery
software must also examine any implemented fault records to determine the location and extent of
the error.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EA, bit [9]

When FEAT_RAS is implemented:

EA

External abort type. When DFSC is 0b010001, provides an IMPLEMENTATION DEFINED classification
of External aborts.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]

When FEAT_RAS is implemented:

DFSC

Data Fault Status Code.

0b000000 Uncategorized error.

0b010001 Asynchronous SError interrupt.

All other values are reserved.
D13-3182 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ISS encoding for an exception from a Breakpoint or Vector Catch debug exception

Bits [24:6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions:

• For exceptions from AArch64, see Breakpoint exceptions on page D2-2579.

• For exceptions from AArch32, see Breakpoint exceptions on page G2-6170 and Vector Catch exceptions on
page G2-6209.

ISS encoding for an exception from a Software Step exception

ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

0b0 EX bit is RES0.

0b1 EX bit is valid.

See the EX bit description for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:7]

Reserved, RES0.

EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction
was stepped.

0b0 An instruction other than a Load-Exclusive instruction was stepped.

0b1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

RES0

24 6

IFSC

5 0

24

RES0

23 7

EX

6

IFSC

5 0

ISV
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3183
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IFSC, bits [5:0]

Instruction Fault Status Code.

0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see Software Step exceptions on page D2-2613.

ISS encoding for an exception from a Watchpoint exception

Bits [24:15]

Reserved, RES0.

Bit [14]

Reserved, RES0.

VNCR, bit [13]

When FEAT_NV2 is implemented:

VNCR

Indicates that the watchpoint came from use of VNCR_EL2 register by EL1 code.

0b0 The watchpoint was not generated by the use of VNCR_EL2 by EL1 code.

0b1 The watchpoint was generated by the use of VNCR_EL2 by EL1 code.

This field is 0 in ESR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [12:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance
or address translation instruction:

0b0 The Watchpoint exception was not generated by the execution of one of the System
instructions identified in the description of value 1.

0b1 The Watchpoint exception was generated by either the execution of a cache
maintenance instruction or by a synchronous Watchpoint exception on the execution of
an address translation instruction. The DC ZVA, DC GVA, and DC GZVA instructions
are not classified as a cache maintenance instructions, and therefore their execution
cannot cause this field to be set to 1.

RES0

24 15 14 13

RES0

12 9

CM

8 7 6

DFSC

5 0

RES0 VNCR RES0 WnR
D13-3184 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing
to a memory location, or by an instruction reading from a memory location.

0b0 Watchpoint exception caused by an instruction reading from a memory location.

0b1 Watchpoint exception caused by an instruction writing to a memory location.

For Watchpoint exceptions on cache maintenance and address translation instructions, this bit
always returns a value of 1.

For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location
would have generated the Watchpoint exception, otherwise it is set to 1.

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates
the Watchpoint exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see Watchpoint exceptions on page D2-2598.

ISS encoding for an exception from execution of a Breakpoint instruction

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary.

For the AArch32 BKPT instructions, the comment field is described as the immediate field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see Breakpoint Instruction exceptions on page D2-2577.

ISS encoding for an exception from an ERET, ERETAA, or ERETAB instruction

RES0

24 16

Comment

15 0

RES0

24 2 1 0

ERET ERETA
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3185
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
This EC value applies when FEAT_FGT is implemented, or when HCR_EL2.NV is 1.

Bits [24:2]

Reserved, RES0.

ERET, bit [1]

Indicates whether an ERET or ERETA* instruction was trapped to EL2.

0b0 ERET instruction trapped to EL2.

0b1 ERETAA or ERETAB instruction trapped to EL2.

If this bit is 0, the ERETA field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ERETA, bit [0]

Indicates whether an ERETAA or ERETAB instruction was trapped to EL2.

0b0 ERETAA instruction trapped to EL2.

0b1 ERETAB instruction trapped to EL2.

When the ERET field is 0, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see HCR_EL2.NV.

If FEAT_FGT is implemented, HFGITR_EL2.ERET controls fine-grained trap exceptions from ERET, ERETAA
and ERETAB execution.

ISS encoding for an exception from Branch Target Identification instruction

Bits [24:2]

Reserved, RES0.

BTYPE, bits [1:0]

This field is set to the PSTATE.BTYPE value that generated the Branch Target Exception.

For more information about generating these exceptions, see Chapter B1 The AArch64 Application Level
Programmers’ Model.

ISS encoding for an exception from a Pointer Authentication instruction when HCR_EL2.API == 0
|| SCR_EL3.API == 0

Bits [24:0]

Reserved, RES0.

RES0

24 2 1 0

BTYPE

RES0

24 0
D13-3186 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
For more information about generating these exceptions, see:

• HCR_EL2.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to
EL2.

• SCR_EL3.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to EL3.

ISS encoding for an exception from a Pointer Authentication instruction authentication failure

Bits [24:2]

Reserved, RES0.

Bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

0b0 Instruction Key.

0b1 Data Key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

0b0 A key.

0b1 B key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTIASP, AUTIAZ, AUTIA1716.

• AUTIBSP, AUTIBZ, AUTIB1716.

• AUTIA, AUTDA, AUTIB, AUTDB.

• AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the
authorization failure, rather than changing the address in a way that will generate a Translation fault when the
address is accessed:

• RETAA, RETAB.

• BRAA, BRAB, BLRAA, BLRAB.

• BRAAZ, BRABZ, BLRAAZ, BLRABZ.

• ERETAA, ERETAB.

• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

RES0

24 2 1 0

Exception as a result of an Instruction key or a Data key Exception
as a
result of
an A key
or a B
key
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3187
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Accessing ESR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic ESR_EL1 or
ESR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ESR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ESR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x138];
 else
 return ESR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return ESR_EL2;
 else
 return ESR_EL1;
elsif PSTATE.EL == EL3 then
 return ESR_EL1;

MSR ESR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ESR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x138] = X[t];
 else
 ESR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 ESR_EL2 = X[t];
 else
 ESR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 ESR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0010 0b000
D13-3188 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, ESR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x138];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return ESR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return ESR_EL1;
 else
 UNDEFINED;

MSR ESR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x138] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 ESR_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 ESR_EL1 = X[t];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0101 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b0101 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3189
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, ESR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return ESR_EL1;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return ESR_EL2;
elsif PSTATE.EL == EL3 then
 return ESR_EL2;

MSR ESR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 ESR_EL1 = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 ESR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 ESR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0010 0b000
D13-3190 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.38 ESR_EL2, Exception Syndrome Register (EL2)

The ESR_EL2 characteristics are:

Purpose

Holds syndrome information for an exception taken to EL2.

Configurations

AArch64 System register ESR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HSR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

ESR_EL2 is a 64-bit register.

Field descriptions

ESR_EL2 is made UNKNOWN as a result of an exception return from EL2.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL2, the value of
ESR_EL2 is UNKNOWN. The value written to ESR_EL2 must be consistent with a value that could be created as a
result of an exception from the same Exception level that generated the exception as a result of a situation that is
not UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:37]

Reserved, RES0.

ISS2, bits [36:32]

When FEAT_LS64 is implemented:

ISS2

If a memory access generated by an ST64BV or ST64BV0 instruction generates a Data Abort for a
Translation fault, Access flag fault, or Permission fault, then this field holds register specifier, Xs.

For any other Data Abort, this field is RES0.

Otherwise:

Reserved, RES0.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.

• The encoding of the associated ISS.

Possible values of the EC field are:

EC == 0b000000

Unknown reason.

RES0

63 37

ISS2

36 32

EC

31 26

IL

25

ISS

24 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3191
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
See ISS encoding for exceptions with an unknown reason.

EC == 0b000001

Trapped WF* instruction execution.

Conditional WF* instructions that fail their condition code check do not cause an
exception.

See ISS encoding for an exception from a WF* instruction.

EC == 0b000011

When AArch32 is supported at EL0:

Trapped MCR or MRC access with (coproc==0b1111) that is not reported using EC
0b000000.

See ISS encoding for an exception from an MCR or MRC access.

EC == 0b000100

When AArch32 is supported at EL0:

Trapped MCRR or MRRC access with (coproc==0b1111) that is not reported using EC
0b000000.

See ISS encoding for an exception from an MCRR or MRRC access.

EC == 0b000101

When AArch32 is supported at EL0:

Trapped MCR or MRC access with (coproc==0b1110).

See ISS encoding for an exception from an MCR or MRC access.

EC == 0b000110

When AArch32 is supported at EL0:

Trapped LDC or STC access.

The only architected uses of these instruction are:

• An STC to write data to memory from DBGDTRRXint.

• An LDC to read data from memory to DBGDTRTXint.

See ISS encoding for an exception from an LDC or STC instruction.

EC == 0b000111

Access to SVE, Advanced SIMD or floating-point functionality trapped by
CPACR_EL1.FPEN, CPTR_EL2.FPEN, CPTR_EL2.TFP, or CPTR_EL3.TFP control.

Excludes exceptions resulting from CPACR_EL1 when the value of HCR_EL2.TGE is
1, or because SVE or Advanced SIMD and floating-point are not implemented. These
are reported with EC value 0b000000 as described in The EC used to report an exception
routed to EL2 because HCR_EL2.TGE is 1 on page D1-2483.

See ISS encoding for an exception from an access to SVE, Advanced SIMD or
floating-point functionality, resulting from the FPEN and TFP traps.

EC == 0b001000

When AArch32 is supported at EL0:

Trapped VMRS access, from ID group trap, that is not reported using EC 0b000111.

See ISS encoding for an exception from an MCR or MRC access.

EC == 0b001001

When FEAT_PAuth is implemented:

Trapped use of a Pointer authentication instruction because HCR_EL2.API == 0 ||
SCR_EL3.API == 0.

See ISS encoding for an exception from a Pointer Authentication instruction when
HCR_EL2.API == 0 || SCR_EL3.API == 0.

EC == 0b001010

When FEAT_LS64 is implemented:

Trapped execution of an LD64B, ST64B, ST64BV, or ST64BV0 instruction.

See ISS encoding for an exception from an LD64B or ST64B* instruction.
D13-3192 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
EC == 0b001100

When AArch32 is supported at EL0:

Trapped MRRC access with (coproc==0b1110).

See ISS encoding for an exception from an MCRR or MRRC access.

EC == 0b001101

When FEAT_BTI is implemented:

Branch Target Exception.

See ISS encoding for an exception from Branch Target Identification instruction.

EC == 0b001110

Illegal Execution state.

See ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault.

EC == 0b010001

When AArch32 is supported at EL0:

SVC instruction execution in AArch32 state.

This is reported in ESR_EL2 only when the exception is generated because the value of
HCR_EL2.TGE is 1.

See ISS encoding for an exception from HVC or SVC instruction execution.

EC == 0b010010

When AArch32 is supported at EL0:

HVC instruction execution in AArch32 state, when HVC is not disabled.

See ISS encoding for an exception from HVC or SVC instruction execution.

EC == 0b010011

When AArch32 is supported at EL0:

SMC instruction execution in AArch32 state, when SMC is not disabled.

This is reported in ESR_EL2 only when the exception is generated because the value of
HCR_EL2.TSC is 1.

See ISS encoding for an exception from SMC instruction execution in AArch32 state.

EC == 0b010101

When AArch64 is supported at the highest implemented Exception level:

SVC instruction execution in AArch64 state.

See ISS encoding for an exception from HVC or SVC instruction execution.

EC == 0b010110

When AArch64 is supported at the highest implemented Exception level:

HVC instruction execution in AArch64 state, when HVC is not disabled.

See ISS encoding for an exception from HVC or SVC instruction execution.

EC == 0b010111

When AArch64 is supported at the highest implemented Exception level:

SMC instruction execution in AArch64 state, when SMC is not disabled.

This is reported in ESR_EL2 only when the exception is generated because the value of
HCR_EL2.TSC is 1.

See ISS encoding for an exception from SMC instruction execution in AArch64 state.

EC == 0b011000

When AArch64 is supported at the highest implemented Exception level:

Trapped MSR, MRS or System instruction execution in AArch64 state, that is not
reported using EC 0b000000, 0b000001 or 0b000111.

This includes all instructions that cause exceptions that are part of the encoding space
defined in System instruction class encoding overview on page C5-395, except for those
exceptions reported using EC values 0b000000, 0b000001, or 0b000111.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3193
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
See ISS encoding for an exception from MSR, MRS, or System instruction execution in
AArch64 state.

EC == 0b011001

When FEAT_SVE is implemented:

Access to SVE functionality trapped as a result of CPACR_EL1.ZEN,
CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ, that is not reported using EC
0b000000.

See ISS encoding for an exception from an access to SVE functionality, resulting from
CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ.

EC == 0b011010

When FEAT_PAuth is implemented and FEAT_NV is implemented:

Trapped ERET, ERETAA, or ERETAB instruction execution.

See ISS encoding for an exception from an ERET, ERETAA, or ERETAB instruction.

EC == 0b011100

When FEAT_FPAC is implemented:

Exception from a Pointer Authentication instruction authentication failure

See ISS encoding for an exception from a Pointer Authentication instruction
authentication failure.

EC == 0b100000

Instruction Abort from a lower Exception level.

Used for MMU faults generated by instruction accesses and synchronous External
aborts, including synchronous parity or ECC errors. Not used for debug-related
exceptions.

See ISS encoding for an exception from an Instruction Abort.

EC == 0b100001

Instruction Abort taken without a change in Exception level.

Used for MMU faults generated by instruction accesses and synchronous External
aborts, including synchronous parity or ECC errors. Not used for debug-related
exceptions.

See ISS encoding for an exception from an Instruction Abort.

EC == 0b100010

PC alignment fault exception.

See ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault.

EC == 0b100100

Data Abort from a lower Exception level, excluding Data Aborts taken to EL2 as a result
of accesses generated associated with VNCR_EL2 as part of nested virtualization
support.

These Data Aborts might be generated from Exception levels in any Execution state.

Used for MMU faults generated by data accesses, alignment faults other than those
caused by Stack Pointer misalignment, and synchronous External aborts, including
synchronous parity or ECC errors. Not used for debug-related exceptions.

See ISS encoding for an exception from a Data Abort.

EC == 0b100101

Data Abort without a change in Exception level, or Data Aborts taken to EL2 as a result
of accesses generated associated with VNCR_EL2 as part of nested virtualization
support.

Used for MMU faults generated by data accesses, alignment faults other than those
caused by Stack Pointer misalignment, and synchronous External aborts, including
synchronous parity or ECC errors. Not used for debug-related exceptions.

See ISS encoding for an exception from a Data Abort.
D13-3194 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
EC == 0b100110

SP alignment fault exception.

See ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault.

EC == 0b101000

When AArch32 is supported at EL0:

Trapped floating-point exception taken from AArch32 state.

This EC value is valid if the implementation supports trapping of floating-point
exceptions, otherwise it is reserved. Whether a floating-point implementation supports
trapping of floating-point exceptions is IMPLEMENTATION DEFINED.

See ISS encoding for an exception from a trapped floating-point exception.

EC == 0b101100

When AArch64 is supported at the highest implemented Exception level:

Trapped floating-point exception taken from AArch64 state.

This EC value is valid if the implementation supports trapping of floating-point
exceptions, otherwise it is reserved. Whether a floating-point implementation supports
trapping of floating-point exceptions is IMPLEMENTATION DEFINED.

See ISS encoding for an exception from a trapped floating-point exception.

EC == 0b101111

SError interrupt.

See ISS encoding for an SError interrupt.

EC == 0b110000

Breakpoint exception from a lower Exception level.

See ISS encoding for an exception from a Breakpoint or Vector Catch debug exception.

EC == 0b110001

Breakpoint exception taken without a change in Exception level.

See ISS encoding for an exception from a Breakpoint or Vector Catch debug exception.

EC == 0b110010

Software Step exception from a lower Exception level.

See ISS encoding for an exception from a Software Step exception.

EC == 0b110011

Software Step exception taken without a change in Exception level.

See ISS encoding for an exception from a Software Step exception.

EC == 0b110100

Watchpoint from a lower Exception level, excluding Watchpoint Exceptions taken to
EL2 as a result of accesses generated associated with VNCR_EL2 as part of nested
virtualization support.

These Watchpoint Exceptions might be generated from Exception levels using any
Execution state.

See ISS encoding for an exception from a Watchpoint exception.

EC == 0b110101

Watchpoint exceptions without a change in Exception level, or Watchpoint exceptions
taken to EL2 as a result of accesses generated associated with VNCR_EL2 as part of
nested virtualization support.

See ISS encoding for an exception from a Watchpoint exception.

EC == 0b111000

When AArch32 is supported at EL0:

BKPT instruction execution in AArch32 state.

See ISS encoding for an exception from execution of a Breakpoint instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3195
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
EC == 0b111010

When AArch32 is supported at EL0:

Vector Catch exception from AArch32 state.

The only case where a Vector Catch exception is taken to an Exception level that is using
AArch64 is when the exception is routed to EL2 and EL2 is using AArch64.

See ISS encoding for an exception from a Breakpoint or Vector Catch debug exception.

EC == 0b111100

When AArch64 is supported at the highest implemented Exception level:

BRK instruction execution in AArch64 state.

See ISS encoding for an exception from execution of a Breakpoint instruction.

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for
synchronous exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and
might be used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED
UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

0b0 16-bit instruction trapped.

0b1 32-bit instruction trapped. This value is also used when the exception is one of the
following:

• An SError interrupt.

• An Instruction Abort exception.

• A PC alignment fault exception.

• An SP alignment fault exception.

• A Data Abort exception for which the value of the ISV bit is 0.

• An Illegal Execution state exception.

• Any debug exception except for Breakpoint instruction exceptions. For
Breakpoint instruction exceptions, this bit has its standard meaning:

— 0b0: 16-bit T32 BKPT instruction.

— 0b1: 32-bit A32 BKPT instruction or A64 BRK instruction.

• An exception reported using EC value 0b000000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each
defined Exception class. However, in practice, some ISS encodings are used for more than one
Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number,
the value returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, see Mapping of the general-purpose registers between
the Execution states on page D1-2546.
D13-3196 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the
value 0b11111.

• If the instruction that generated the exception was UNPREDICTABLE, the field takes an
UNKNOWN value that must be either:

— The AArch64 view of the register number of a register that might have been used at
the Exception level from which the exception was taken.

— The value 0b11111.

ISS encoding for exceptions with an unknown reason

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions that
are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not accessible
at the current Exception level and Security state, including:

— A read access using a System register pattern that is not allocated for reads or that does not permit reads
at the current Exception level and Security state.

— A write access using a System register pattern that is not allocated for writes or that does not permit
writes at the current Exception level and Security state.

— Instruction encodings that are unallocated.

— Instruction encodings for instructions or System registers that are not implemented in the
implementation.

• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug state.

• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-debug
state.

• In AArch32 state, attempted execution of a short vector floating-point instruction.

• In an implementation that does not include Advanced SIMD and floating-point functionality, an attempted
access to Advanced SIMD or floating-point functionality under conditions where that access would be
permitted if that functionality was present. This includes the attempted execution of an Advanced SIMD or
floating-point instruction, and attempted accesses to Advanced SIMD and floating-point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control bits.

• Attempted execution of:

— An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.

— An SMC instruction when disabled by SCR_EL3.SMD.

— An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.

• Attempted execution of an MSR or MRS instruction using a _EL12 register name when HCR_EL2.E2H ==
0.

RES0

24 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3197
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
• Attempted execution, in Debug state, of:

— A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not implemented
in the current Security state.

— A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the current
Security state.

— A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.

• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using R13_mon.
See Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32 on page D1-2530.

• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an
instruction that is configured to trap to EL3.

• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)
instruction to SPSR_mon, SP_mon, or LR_mon.

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of
HCR_EL2.TGE was 0 would have been reported with an ESR_ELx.EC value of 0b000111.

ISS encoding for an exception from a WF* instruction

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

CV

24

COND

23 20

RES0

19 10

RN

9 5

RES0

4 3

RV

2

TI

1 0
D13-3198 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:10]

Reserved, RES0.

RN, bits [9:5]

When FEAT_WFxT2 is implemented:

RN

Indicates the Register Number supplied for a WFET or WFIT instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [4:3]

Reserved, RES0.

RV, bit [2]

When FEAT_WFxT2 is implemented:

RV

Register field Valid.

If TI[1] == 1, then this field indicates whether RN holds a valid register number for the register
argument to the trapped WFET or WFIT instruction.

0b0 Register field invalid.

0b1 Register field valid.

If TI[1] == 0, then this field is RES0.

When FEAT_WFxT2 is implemented, RV is set to 1 on a trap on WFET or WFIT.

When FEAT_WFxT2 is not implemented, RV is set to 0 on a trap on WFET or WFIT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TI, bits [1:0]

Trapped instruction. Possible values of this bit are:

0b00 WFI trapped.

0b01 WFE trapped.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3199
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b10 When FEAT_WFxT is implemented:

WFIT trapped.

0b11 When FEAT_WFxT is implemented:

WFET trapped.

When FEAT_WFxT is implemented, this is a two bit field as shown. Otherwise, bit[1] is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• SCTLR_EL1.{nTWE, nTWI}.

• HCR_EL2.{TWE, TWI}.

• SCR_EL3.{TWE, TWI}.

ISS encoding for an exception from an MCR or MRC access

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

CV

24

COND

23 20

Opc2

19 17

Opc1

16 14

CRn

13 10

Rt

9 5

CRm

4 1 0

Direction
D13-3200 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states on page D1-2546.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3201
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to System register space. MCR instruction.

0b1 Read from System register space. MRC or VMRS instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b000011:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions at EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or MRC
access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access
(coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCR or MRC access (coproc ==
0b1111) trapped to EL2.

• CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL3.

• For information on other traps using EC value 0b000011, see Traps to EL3 of Secure monitor functionality
from Secure EL1 using AArch32 on page D1-2530.
D13-3202 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
• If FEAT_FGT is implemented, MCR or MRC access to some registers at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b000101:

• CPACR_EL1.TTA for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to EL1
or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and EL1
using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2 trapped to
EL3.

• HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using AArch32, MRC
access (coproc == 0b1110) trapped to EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc == 0b1110)
trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR using AArch32,
MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC
access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, MCR or MRC access (coproc
== 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc == 0b1110)
trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, MCR or MRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL3.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b001000:

• HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32 state, VMRS access
trapped to EL2.

• HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS
access trapped to EL2.

ISS encoding for an exception from an LD64B or ST64B* instruction

ISS, bits [24:0]

0b0000000000000000000000000 ST64BV instruction trapped.

0b0000000000000000000000001 ST64BV0 instruction trapped.

0b0000000000000000000000010 LD64B or ST64B instruction trapped.

All other values are reserved.

ISS

24 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3203
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
ISS encoding for an exception from an MCRR or MRRC access

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CV

24

COND

23 20

Opc1

19 16 15

Rt2

14 10

Rt

9 5

CRm

4 1 0

RES0 Direction
D13-3204 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer.

If the Rt2 value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt2 value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states on page D1-2546.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states on page D1-2546.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to System register space. MCRR instruction.

0b1 Read from System register space. MRRC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b000100:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or
EL2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3205
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to
EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32 state,
MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCRR or MRRC access (coproc
== 0b1111) trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers from EL0 and EL1
using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers AMEVCNTR0<n> and AMEVCNTR1<n>
from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state,
MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• If FEAT_FGT is implemented, HDFGRTR_EL2.PMCCNTR_EL0 for MRRC access and
HDFGWTR_EL2.PMCCNTR_EL0 for MCRR access to PMCCNTR at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b001100:

• MDSCR_EL1.TDCC, for accesses to the Debug ROM registers DBGDSAR and DBGDRAR at EL0 using
AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR using AArch32,
MCRR or MRRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

• CPACR_EL1.TTA for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL1 or EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110)
trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110)
trapped to EL3.

Note

If the Armv8-A architecture is implemented with an ETMv4 implementation, MCRR and MRRC accesses to trace
registers are UNDEFINED and the resulting exception is higher priority than an exception due to these traps.

ISS encoding for an exception from an LDC or STC instruction

CV

24

COND

23 20

imm8

19 12

RES0

11 10

Rn

9 5 4

AM

3 1 0

Offset Direction
D13-3206 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3207
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
If the Rn value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rn value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states on page D1-2546.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC
instruction. When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

0b0 Subtract offset.

0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

0b000 Immediate unindexed.

0b001 Immediate post-indexed.

0b010 Immediate offset.

0b011 Immediate pre-indexed.

0b100 For a trapped STC instruction or a trapped T32 LDC instruction this encoding is
reserved.

0b110 For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is
that behavior is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and
memory-mapped registers and translation table entries on page K1-8423.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to memory. STC instruction.

0b1 Read from memory. LDC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
D13-3208 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The following fields describe the configuration settings for the traps that are reported using EC value 0b000110:

• MDSCR_EL1.TDCC, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint trapped to EL1 or EL2.

• MDCR_EL2.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL2.

• MDCR_EL3.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL3.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for LDC and STC accesses to the DCC registers at EL0
and EL1 trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.

ISS encoding for an exception from an access to SVE, Advanced SIMD or floating-point
functionality, resulting from the FPEN and TFP traps

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.

• Accesses to the Advanced SIMD and floating-point System registers.

For an implementation that does not include either SVE or support for Advanced SIMD and floating-point, the
exception is reported using the EC value 0b000000.

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

CV

24

COND

23 20

RES0

19 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3209
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value 0b000111:

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.

• CPTR_EL2.FPEN and CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL2.

• CPTR_EL3.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

ISS encoding for an exception from an access to SVE functionality, resulting from
CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ

The accesses covered by this trap include:

• Execution of SVE instructions.

• Accesses to the SVE System registers, ZCR_ELx.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

Bits [24:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value 0b011001:

• CPACR_EL1.ZEN, for execution of SVE instructions and accesses to SVE registers at EL0 or EL1, trapped
to EL1.

• CPTR_EL2.ZEN and CPTR_EL2.TZ, for execution of SVE instructions and accesses to SVE registers at
EL0, EL1, or EL2, trapped to EL2.

• CPTR_EL3.EZ, for execution of SVE instructions and accesses to SVE registers from all Exception levels,
trapped to EL3.

ISS encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault

RES0

24 0

RES0

24 0
D13-3210 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about these exceptions, see The Illegal Execution state exception on
page D1-2488 and PC alignment checking on page D1-2469.

SP alignment checking on page D1-2469 describes the configuration settings for generating SP alignment fault
exceptions.

ISS encoding for an exception from HVC or SVC instruction execution

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the
issued instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:

— For the T32 instruction, this field is zero-extended from the imm8 field of the
instruction.

— For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the
instruction.

• If the instruction is conditional, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an exception
only if it passes its condition code check. Therefore, the syndrome information for these exceptions does not require
conditionality information.

For T32 and A32 instructions, see SVC and HVC.

For A64 instructions, see SVC and HVC.

If FEAT_FGT is implemented, HFGITR_EL2.{SVC_EL1, SVC_EL0} control fine-grained traps on SVC
execution.

ISS encoding for an exception from SMC instruction execution in AArch32 state

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS encoding
is RES0.

RES0

24 16

imm16

15 0

CV

24

COND

23 20 19

RES0

18 0

CCKNOWNPASS
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3211
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is as shown
in the diagram.

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

0b0 The instruction was unconditional, or was conditional and passed its condition code
check.

0b1 The instruction was conditional, and might have failed its condition code check.
D13-3212 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Note

In an implementation in which an SMC instruction that fails it code check is not trapped, this field
can always return the value 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.

System calls on page D1-2535 describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from SMC instruction execution in AArch64 state

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from EL1 modes.

• When an SMC instruction is not trapped, so completes normally and generates an exception that is taken to
EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

System calls on page D1-2535 describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from MSR, MRS, or System instruction execution in AArch64 state

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

RES0

24 16

imm16

15 0

RES0

24 22

Op0

21 20

Op2

19 17

Op1

16 14

CRn

13 10

Rt

9 5

CRm

4 1 0

Direction
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3213
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write access, including MSR instructions.

0b1 Read access, including MRS instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see System instructions on page C4-294 for the encoding values
returned by an instruction.

The following fields describe configuration settings for generating the exception that is reported using EC value
0b011000:

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1 or
EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.

• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped to
EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using AArch64
state, MSR or MRS access trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2 trapped to
EL3.
D13-3214 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer
registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to the Performance Monitor registers using AArch64
state, MSR or MRS access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped
to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter control register, TRFCR_EL1, using AArch64 state, MSR
or MRS access trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS access
trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64
state, MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state, MSR or
MRS access trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.APK, for accesses to Pointer authentication key registers. using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS access,
trapped to EL2.

• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access, trapped to
EL2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3215
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access,
trapped to EL2.

• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state, MSR
or MRS access trapped to EL3.

• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access trapped
to EL3.

• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TTRF, for accesses to the trace filter control registers, TRFCR_EL1 and TRFCR_EL2, using
AArch64 state, MSR or MRS access trapped to EL3.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,
trapped to EL3.

• If FEAT_EVT is implemented, the following registers control traps for EL1 and EL0 Cache controls that use
this EC value:

— HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4}.

— HCR2.{TTLBIS, TICAB, TOCU, TID4}.

• If FEAT_FGT is implemented:

— SCR_EL3.FGTEn, for accesses to the fine-grained trap registers, MSR or MRS access at EL2 trapped
to EL3.

— HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, MSR or
MRS access at EL0 and EL1 trapped to EL2.

— HFGITR_EL2 for execution of system instructions, MSR or MRS access trapped to EL2

— HDFGRTR_EL2 for reads and HDFGWTR_EL2 for writes of registers, using AArch64 state, MSR
or MRS access at EL0 and EL1 state trapped to EL2.

— HAFGRTR_EL2 for reads of Activity Monitor counters, using AArch64 state, MRS access at EL0 and
EL1 trapped to EL2.

ISS encoding for an IMPLEMENTATION DEFINED exception to EL3

IMPLEMENTATION DEFINED, bits [24:0]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED

24 0
D13-3216 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from an Instruction Abort

Bits [24:13]

Reserved, RES0.

SET, bits [12:11]

When FEAT_RAS is implemented:

SET

Synchronous Error Type. When IFSC is 0b010000, describes the PE error state after taking the
Instruction Abort exception.

0b00 Recoverable state (UER).

0b10 Uncontainable (UC).

0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery might be possible. Taking a
synchronous External Abort exception might result in a PE state that is not recoverable.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 FAR is valid.

0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External
aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

24 13

SET

12 11 10

EA

9 8 7 6

IFSC

5 0

FnV
RES0

RES0
S1PTW
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3217
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

0b000000 Address size fault, level 0 of translation or translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001000 When FEAT_LPA2 is implemented:

Access flag fault, level 0.

0b001100 When FEAT_LPA2 is implemented:

Permission fault, level 0.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk or hardware update of
translation table.

0b010011 When FEAT_LPA2 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -1.

0b010100 Synchronous External abort on translation table walk or hardware update of translation
table, level 0.

0b010101 Synchronous External abort on translation table walk or hardware update of translation
table, level 1.

0b010110 Synchronous External abort on translation table walk or hardware update of translation
table, level 2.

0b010111 Synchronous External abort on translation table walk or hardware update of translation
table, level 3.
D13-3218 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011011 When FEAT_LPA2 is implemented and FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level -1.

0b011100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 0.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 3.

0b101001 When FEAT_LPA2 is implemented:

Address size fault, level -1.

0b101011 When FEAT_LPA2 is implemented:

Translation fault, level -1.

0b110000 TLB conflict abort.

0b110001 When FEAT_HAFDBS is implemented:

Unsupported atomic hardware update fault.

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on page D5-2806.

Note
Because Access flag faults and Permission faults can result only from a Block or Page translation
table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a Data Abort

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV or ST64BV0 instruction generates
a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this ISS encoding includes ISS2,
bits[36:32].

ISV, bit [24]

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

0b0 No valid instruction syndrome. ISS[23:14] are RES0.

24

SAS

23 22 21

SRT

20 16

SF

15

AR

14 13

SET

12 11 10

EA

9

CM

8 7 6

DFSC

5 0

ISV SSE VNCR
FnV

WnR
S1PTW
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3219
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 ISS[23:14] hold a valid instruction syndrome.

In ESR_EL2, ISV is 1 when FEAT_LS64 is implemented and a memory access generated by an
ST64BV, ST64BV0, ST64B, or LD64B instruction generates a Data Abort for a Translation fault,
Access flag fault, or Permission fault.

For other faults reported in ESR_EL2, ISV is 0 except for the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register
specified with 0b11111, including those with Acquire/Release semantics, but excluding Load
Exclusive or Store Exclusive and excluding those with writeback).

• AArch32 instructions where the instruction:

— Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB,
LDRSBT, LDRB, LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB,
STLB, or STRBT instruction.

— Is not performing register writeback.

— Is not using R15 as a source or destination register.

For these stage 2 aborts, ISV is UNKNOWN if the exception was generated in Debug state in memory
access mode, and otherwise indicates whether ISS[23:14] hold a valid syndrome.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64 is implemented and a
memory access generated by an ST64BV, ST64BV0, ST64B, or LD64B instruction generates a
Data Abort for a Translation fault, Access flag fault, or Permission fault. ISV is 0 for all other faults
reported in ESR_EL1 or ESR_EL3.

When FEAT_RAS is implemented, ISV is 0 for any synchronous External abort.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid
instruction syndrome, and therefore ISV is 0 for these aborts.

When FEAT_RAS is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0
on a synchronous External abort on a stage 2 translation table walk.

When FEAT_MTE is implemented, for a synchronous Tag Check Fault abort taken to ELx,
ESR_ELx.FNV is 0 and FAR_ELx is valid.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]

When ISV == 1:

SAS

Syndrome Access Size. Indicates the size of the access attempted by the faulting operation.

0b00 Byte

0b01 Halfword

0b10 Word

0b11 Doubleword

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0,
ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault, then this field is 0b11.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
D13-3220 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
SSE, bit [21]

When ISV == 1:

SSE

Syndrome Sign Extend. For a byte, halfword, or word load operation, indicates whether the data
item must be sign extended.

0b0 Sign-extension not required.

0b1 Data item must be sign-extended.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0,
ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault, then this field is 0.

For all other operations, this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SRT, bits [20:16]

When ISV == 1:

SRT

Syndrome Register Transfer. The register number of the Wt/Xt/Rt operand of the faulting
instruction.

If the exception was taken from an Exception level that is using AArch32, then this is the AArch64
view of the register. See Mapping of the general-purpose registers between the Execution states on
page D1-2546.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SF, bit [15]

When ISV == 1:

SF

Width of the register accessed by the instruction is Sixty-Four.

0b0 Instruction loads/stores a 32-bit wide register.

0b1 Instruction loads/stores a 64-bit wide register.

Note

This field specifies the register width identified by the instruction, not the Execution state.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0,
ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault, then this field is 1.

This field is UNKNOWN when the value of ISV is UNKNOWN.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3221
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AR, bit [14]

When ISV == 1:

AR

Acquire/Release.

0b0 Instruction did not have acquire/release semantics.

0b1 Instruction did have acquire/release semantics.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0,
ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault, then this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VNCR, bit [13]

When FEAT_NV2 is implemented:

VNCR

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

0b0 The fault was not generated by the use of VNCR_EL2, by an MRS or MSR instruction
executed at EL1.

0b1 The fault was generated by the use of VNCR_EL2, by an MRS or MSR instruction
executed at EL1.

This field is 0 in ESR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits[12:11]

When FEAT_RAS is implemented and FEAT_LS64 is not implemented:

SET

Synchronous Error Type. When DFSC is 0b010000, describes the PE error state after taking the Data
Abort exception.

0b00 Recoverable state (UER).

0b10 Uncontainable (UC).

0b11 Restartable state (UEO).

All other values are reserved.
D13-3222 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Note

Software can use this information to determine what recovery might be possible. Taking a
synchronous External Abort exception might result in a PE state that is not recoverable.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LS64 is implemented:

LST

Load/Store Type. Used when an LD64B, ST64B, ST64BV, or ST64BV0 instruction generates a
Data Abort for a Translation fault, Access flag fault, or Permission fault.

0b01 An ST64BV instruction generated the Data Abort.

0b10 An LD64B or ST64B instruction generated the Data Abort.

0b11 An ST64BV0 instruction generated the Data Abort.

All other values are reserved.

This field is valid only if the DFSC code is 0b110101. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 FAR is valid.

0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External
aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address
translation instruction:

0b0 The Data Abort was not generated by the execution of one of the System instructions
identified in the description of value 1.

0b1 The Data Abort was generated by either the execution of a cache maintenance
instruction or by a synchronous fault on the execution of an address translation
instruction. The DC ZVA, DC GVA, and DC GZVA instructions are not classified as
cache maintenance instructions, and therefore their execution cannot cause this field to
be set to 1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3223
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

0b0 Abort caused by an instruction reading from a memory location.

0b1 Abort caused by an instruction writing to a memory location.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is
set to 0 if a read of the address specified by the instruction would have generated the fault which is
being reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation
of this requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic
instructions, the WnR bit is always 0.

This field is UNKNOWN for:

• An External abort on an Atomic access.

• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported
Exclusive or atomic access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

0b000000 Address size fault, level 0 of translation or translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001000 When FEAT_LPA2 is implemented:

Access flag fault, level 0.

0b001100 When FEAT_LPA2 is implemented:

Permission fault, level 0.
D13-3224 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk or hardware update of
translation table.

0b010001 When FEAT_MTE2 is implemented:

Synchronous Tag Check Fault.

0b010011 When FEAT_LPA2 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -1.

0b010100 Synchronous External abort on translation table walk or hardware update of translation
table, level 0.

0b010101 Synchronous External abort on translation table walk or hardware update of translation
table, level 1.

0b010110 Synchronous External abort on translation table walk or hardware update of translation
table, level 2.

0b010111 Synchronous External abort on translation table walk or hardware update of translation
table, level 3.

0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011011 When FEAT_LPA2 is implemented and FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level -1.

0b011100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 0.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 3.

0b100001 Alignment fault.

0b101001 When FEAT_LPA2 is implemented:

Address size fault, level -1.

0b101011 When FEAT_LPA2 is implemented:

Translation fault, level -1.

0b110000 TLB conflict abort.

0b110001 When FEAT_HAFDBS is implemented:

Unsupported atomic hardware update fault.

0b110100 IMPLEMENTATION DEFINED fault (Lockdown).

0b110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive or Atomic access).

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on page D5-2806.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3225
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Note

Because Access flag faults and Permission faults can result only from a Block or Page translation
table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a trapped floating-point exception

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid
information about trapped floating-point exceptions.

0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold valid information about trapped
floating-point exceptions and are UNKNOWN.

0b1 One or more floating-point exceptions occurred during an operation performed while
executing the reported instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits indicate
trapped floating-point exceptions that occurred. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped
floating-point exception from an instruction that is performing floating-point operations on more
than one lane of a vector.

Note

This is not a requirement. Implementations can set this field to 1 on a trapped floating-point
exception from an instruction and return valid information in the {IDF, IXF, UFF, OFF, DZF, IOF}
fields.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is
RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

24 23

RES0

22 11

VECITR

10 8 7

RES0

6 5 4 3 2 1 0

RES0 TFV IDF
IXF

UFF

IOF
DZF

OFF
D13-3226 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Input denormal floating-point exception has not occurred.

0b1 Input denormal floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

0b0 Inexact floating-point exception has not occurred.

0b1 Inexact floating-point exception occurred during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Underflow floating-point exception has not occurred.

0b1 Underflow floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

0b0 Overflow floating-point exception has not occurred.

0b1 Overflow floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Divide by Zero floating-point exception has not occurred.

0b1 Divide by Zero floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Invalid Operation floating-point exception has not occurred.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3227
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 Invalid Operation floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of
the floating-point exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of
the floating-point exception traps.

ISS encoding for an SError interrupt

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome.

0b0 Bits [23:0] of the ISS field holds the fields described in this encoding.

Note
If FEAT_RAS is not implemented, bits [23:0] of the ISS field are RES0.

0b1 Bits [23:0] of the ISS field holds IMPLEMENTATION DEFINED syndrome information that
can be used to provide additional information about the SError interrupt.

Note

This field was previously called ISV.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:14]

Reserved, RES0.

IESB, bit [13]

When FEAT_IESB is implemented:

IESB

Implicit error synchronization event.

0b0 The SError interrupt was either not synchronized by the implicit error synchronization
event or not taken immediately.

0b1 The SError interrupt was synchronized by the implicit error synchronization event and
taken immediately.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

24

RES0

23 14 13

AET

12 10

EA

9

RES0

8 6

DFSC

5 0

IDS IESB
D13-3228 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
AET, bits [12:10]

When FEAT_RAS is implemented:

AET

Asynchronous Error Type.

When DFSC is 0b010001, describes the PE error state after taking the SError interrupt exception.

0b000 Uncontainable (UC).

0b001 Unrecoverable state (UEU).

0b010 Restartable state (UEO).

0b011 Recoverable state (UER).

0b110 Corrected (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall PE error state is
reported.

Note

Software can use this information to determine what recovery might be possible. The recovery
software must also examine any implemented fault records to determine the location and extent of
the error.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EA, bit [9]

When FEAT_RAS is implemented:

EA

External abort type. When DFSC is 0b010001, provides an IMPLEMENTATION DEFINED classification
of External aborts.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]

When FEAT_RAS is implemented:

DFSC

Data Fault Status Code.

0b000000 Uncategorized error.

0b010001 Asynchronous SError interrupt.

All other values are reserved.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3229
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ISS encoding for an exception from a Breakpoint or Vector Catch debug exception

Bits [24:6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions:

• For exceptions from AArch64, see Breakpoint exceptions on page D2-2579.

• For exceptions from AArch32, see Breakpoint exceptions on page G2-6170 and Vector Catch exceptions on
page G2-6209.

ISS encoding for an exception from a Software Step exception

ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

0b0 EX bit is RES0.

0b1 EX bit is valid.

See the EX bit description for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:7]

Reserved, RES0.

EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction
was stepped.

0b0 An instruction other than a Load-Exclusive instruction was stepped.

0b1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

RES0

24 6

IFSC

5 0

24

RES0

23 7

EX

6

IFSC

5 0

ISV
D13-3230 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IFSC, bits [5:0]

Instruction Fault Status Code.

0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see Software Step exceptions on page D2-2613.

ISS encoding for an exception from a Watchpoint exception

Bits [24:15]

Reserved, RES0.

Bit [14]

Reserved, RES0.

VNCR, bit [13]

When FEAT_NV2 is implemented:

VNCR

Indicates that the watchpoint came from use of VNCR_EL2 register by EL1 code.

0b0 The watchpoint was not generated by the use of VNCR_EL2 by EL1 code.

0b1 The watchpoint was generated by the use of VNCR_EL2 by EL1 code.

This field is 0 in ESR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [12:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance
or address translation instruction:

0b0 The Watchpoint exception was not generated by the execution of one of the System
instructions identified in the description of value 1.

0b1 The Watchpoint exception was generated by either the execution of a cache
maintenance instruction or by a synchronous Watchpoint exception on the execution of
an address translation instruction. The DC ZVA, DC GVA, and DC GZVA instructions
are not classified as a cache maintenance instructions, and therefore their execution
cannot cause this field to be set to 1.

RES0

24 15 14 13

RES0

12 9

CM

8 7 6

DFSC

5 0

RES0 VNCR RES0 WnR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3231
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing
to a memory location, or by an instruction reading from a memory location.

0b0 Watchpoint exception caused by an instruction reading from a memory location.

0b1 Watchpoint exception caused by an instruction writing to a memory location.

For Watchpoint exceptions on cache maintenance and address translation instructions, this bit
always returns a value of 1.

For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location
would have generated the Watchpoint exception, otherwise it is set to 1.

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates
the Watchpoint exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see Watchpoint exceptions on page D2-2598.

ISS encoding for an exception from execution of a Breakpoint instruction

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary.

For the AArch32 BKPT instructions, the comment field is described as the immediate field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see Breakpoint Instruction exceptions on page D2-2577.

ISS encoding for an exception from an ERET, ERETAA, or ERETAB instruction

RES0

24 16

Comment

15 0

RES0

24 2 1 0

ERET ERETA
D13-3232 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
This EC value applies when FEAT_FGT is implemented, or when HCR_EL2.NV is 1.

Bits [24:2]

Reserved, RES0.

ERET, bit [1]

Indicates whether an ERET or ERETA* instruction was trapped to EL2.

0b0 ERET instruction trapped to EL2.

0b1 ERETAA or ERETAB instruction trapped to EL2.

If this bit is 0, the ERETA field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ERETA, bit [0]

Indicates whether an ERETAA or ERETAB instruction was trapped to EL2.

0b0 ERETAA instruction trapped to EL2.

0b1 ERETAB instruction trapped to EL2.

When the ERET field is 0, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see HCR_EL2.NV.

If FEAT_FGT is implemented, HFGITR_EL2.ERET controls fine-grained trap exceptions from ERET, ERETAA
and ERETAB execution.

ISS encoding for an exception from Branch Target Identification instruction

Bits [24:2]

Reserved, RES0.

BTYPE, bits [1:0]

This field is set to the PSTATE.BTYPE value that generated the Branch Target Exception.

For more information about generating these exceptions, see Chapter B1 The AArch64 Application Level
Programmers’ Model.

ISS encoding for an exception from a Pointer Authentication instruction when HCR_EL2.API == 0
|| SCR_EL3.API == 0

Bits [24:0]

Reserved, RES0.

RES0

24 2 1 0

BTYPE

RES0

24 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3233
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
For more information about generating these exceptions, see:

• HCR_EL2.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to
EL2.

• SCR_EL3.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to EL3.

ISS encoding for an exception from a Pointer Authentication instruction authentication failure

Bits [24:2]

Reserved, RES0.

Bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

0b0 Instruction Key.

0b1 Data Key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

0b0 A key.

0b1 B key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTIASP, AUTIAZ, AUTIA1716.

• AUTIBSP, AUTIBZ, AUTIB1716.

• AUTIA, AUTDA, AUTIB, AUTDB.

• AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the
authorization failure, rather than changing the address in a way that will generate a Translation fault when the
address is accessed:

• RETAA, RETAB.

• BRAA, BRAB, BLRAA, BLRAB.

• BRAAZ, BRABZ, BLRAAZ, BLRABZ.

• ERETAA, ERETAB.

• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

RES0

24 2 1 0

Exception as a result of an Instruction key or a Data key Exception
as a
result of
an A key
or a B
key
D13-3234 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Accessing ESR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic ESR_EL2 or
ESR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ESR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return ESR_EL1;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return ESR_EL2;
elsif PSTATE.EL == EL3 then
 return ESR_EL2;

MSR ESR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 ESR_EL1 = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 ESR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 ESR_EL2 = X[t];

MRS <Xt>, ESR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3235
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ESR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x138];
 else
 return ESR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return ESR_EL2;
 else
 return ESR_EL1;
elsif PSTATE.EL == EL3 then
 return ESR_EL1;

MSR ESR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ESR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x138] = X[t];
 else
 ESR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 ESR_EL2 = X[t];
 else
 ESR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 ESR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0010 0b000
D13-3236 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.39 ESR_EL3, Exception Syndrome Register (EL3)

The ESR_EL3 characteristics are:

Purpose

Holds syndrome information for an exception taken to EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to ESR_EL3 are
UNDEFINED.

Attributes

ESR_EL3 is a 64-bit register.

Field descriptions

ESR_EL3 is made UNKNOWN as a result of an exception return from EL3.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL3, the value of
ESR_EL3 is UNKNOWN. The value written to ESR_EL3 must be consistent with a value that could be created as a
result of an exception from the same Exception level that generated the exception as a result of a situation that is
not UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:37]

Reserved, RES0.

ISS2, bits [36:32]

When FEAT_LS64 is implemented:

ISS2

If a memory access generated by an ST64BV or ST64BV0 instruction generates a Data Abort for a
Translation fault, Access flag fault, or Permission fault, then this field holds register specifier, Xs.

For any other Data Abort, this field is RES0.

Otherwise:

Reserved, RES0.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.

• The encoding of the associated ISS.

Possible values of the EC field are:

EC == 0b000000

Unknown reason.

See ISS encoding for exceptions with an unknown reason.

RES0

63 37

ISS2

36 32

EC

31 26

IL

25

ISS

24 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3237
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
EC == 0b000001

Trapped WF* instruction execution.

Conditional WF* instructions that fail their condition code check do not cause an
exception.

See ISS encoding for an exception from a WF* instruction.

EC == 0b000011

When AArch32 is supported at EL0:

Trapped MCR or MRC access with (coproc==0b1111) that is not reported using EC
0b000000.

See ISS encoding for an exception from an MCR or MRC access.

EC == 0b000100

When AArch32 is supported at EL0:

Trapped MCRR or MRRC access with (coproc==0b1111) that is not reported using EC
0b000000.

See ISS encoding for an exception from an MCRR or MRRC access.

EC == 0b000101

When AArch32 is supported at EL0:

Trapped MCR or MRC access with (coproc==0b1110).

See ISS encoding for an exception from an MCR or MRC access.

EC == 0b000110

When AArch32 is supported at EL0:

Trapped LDC or STC access.

The only architected uses of these instruction are:

• An STC to write data to memory from DBGDTRRXint.

• An LDC to read data from memory to DBGDTRTXint.

See ISS encoding for an exception from an LDC or STC instruction.

EC == 0b000111

Access to SVE, Advanced SIMD or floating-point functionality trapped by
CPACR_EL1.FPEN, CPTR_EL2.FPEN, CPTR_EL2.TFP, or CPTR_EL3.TFP control.

Excludes exceptions resulting from CPACR_EL1 when the value of HCR_EL2.TGE is
1, or because SVE or Advanced SIMD and floating-point are not implemented. These
are reported with EC value 0b000000 as described in The EC used to report an exception
routed to EL2 because HCR_EL2.TGE is 1 on page D1-2483.

See ISS encoding for an exception from an access to SVE, Advanced SIMD or
floating-point functionality, resulting from the FPEN and TFP traps.

EC == 0b001001

When FEAT_PAuth is implemented:

Trapped use of a Pointer authentication instruction because HCR_EL2.API == 0 ||
SCR_EL3.API == 0.

See ISS encoding for an exception from a Pointer Authentication instruction when
HCR_EL2.API == 0 || SCR_EL3.API == 0.

EC == 0b001010

When FEAT_LS64 is implemented:

Trapped execution of an LD64B, ST64B, ST64BV, or ST64BV0 instruction.

See ISS encoding for an exception from an LD64B or ST64B* instruction.

EC == 0b001100

When AArch32 is supported at EL0:

Trapped MRRC access with (coproc==0b1110).

See ISS encoding for an exception from an MCRR or MRRC access.
D13-3238 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
EC == 0b001101

When FEAT_BTI is implemented:

Branch Target Exception.

See ISS encoding for an exception from Branch Target Identification instruction.

EC == 0b001110

Illegal Execution state.

See ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault.

EC == 0b010011

When AArch32 is supported at EL0:

SMC instruction execution in AArch32 state, when SMC is not disabled.

See ISS encoding for an exception from SMC instruction execution in AArch32 state.

EC == 0b010101

When AArch64 is supported at the highest implemented Exception level:

SVC instruction execution in AArch64 state.

See ISS encoding for an exception from HVC or SVC instruction execution.

EC == 0b010110

When AArch64 is supported at the highest implemented Exception level:

HVC instruction execution in AArch64 state, when HVC is not disabled.

See ISS encoding for an exception from HVC or SVC instruction execution.

EC == 0b010111

When AArch64 is supported at the highest implemented Exception level:

SMC instruction execution in AArch64 state, when SMC is not disabled.

See ISS encoding for an exception from SMC instruction execution in AArch64 state.

EC == 0b011000

When AArch64 is supported at the highest implemented Exception level:

Trapped MSR, MRS or System instruction execution in AArch64 state, that is not
reported using EC 0b000000, 0b000001 or 0b000111.

This includes all instructions that cause exceptions that are part of the encoding space
defined in System instruction class encoding overview on page C5-395, except for those
exceptions reported using EC values 0b000000, 0b000001, or 0b000111.

See ISS encoding for an exception from MSR, MRS, or System instruction execution in
AArch64 state.

EC == 0b011001

When FEAT_SVE is implemented:

Access to SVE functionality trapped as a result of CPACR_EL1.ZEN,
CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ, that is not reported using EC
0b000000.

See ISS encoding for an exception from an access to SVE functionality, resulting from
CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ.

EC == 0b011100

When FEAT_FPAC is implemented:

Exception from a Pointer Authentication instruction authentication failure

See ISS encoding for an exception from a Pointer Authentication instruction
authentication failure.

EC == 0b011111

IMPLEMENTATION DEFINED exception to EL3.

See ISS encoding for an IMPLEMENTATION DEFINED exception to EL3.

EC == 0b100000

Instruction Abort from a lower Exception level.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3239
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Used for MMU faults generated by instruction accesses and synchronous External
aborts, including synchronous parity or ECC errors. Not used for debug-related
exceptions.

See ISS encoding for an exception from an Instruction Abort.

EC == 0b100001

Instruction Abort taken without a change in Exception level.

Used for MMU faults generated by instruction accesses and synchronous External
aborts, including synchronous parity or ECC errors. Not used for debug-related
exceptions.

See ISS encoding for an exception from an Instruction Abort.

EC == 0b100010

PC alignment fault exception.

See ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault.

EC == 0b100100

Data Abort from a lower Exception level.

Used for MMU faults generated by data accesses, alignment faults other than those
caused by Stack Pointer misalignment, and synchronous External aborts, including
synchronous parity or ECC errors. Not used for debug-related exceptions.

See ISS encoding for an exception from a Data Abort.

EC == 0b100101

Data Abort taken without a change in Exception level.

Used for MMU faults generated by data accesses, alignment faults other than those
caused by Stack Pointer misalignment, and synchronous External aborts, including
synchronous parity or ECC errors. Not used for debug-related exceptions.

See ISS encoding for an exception from a Data Abort.

EC == 0b100110

SP alignment fault exception.

See ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault.

EC == 0b101100

When AArch64 is supported at the highest implemented Exception level:

Trapped floating-point exception taken from AArch64 state.

This EC value is valid if the implementation supports trapping of floating-point
exceptions, otherwise it is reserved. Whether a floating-point implementation supports
trapping of floating-point exceptions is IMPLEMENTATION DEFINED.

See ISS encoding for an exception from a trapped floating-point exception.

EC == 0b101111

SError interrupt.

See ISS encoding for an SError interrupt.

EC == 0b111100

When AArch64 is supported at the highest implemented Exception level:

BRK instruction execution in AArch64 state.

This is reported in ESR_EL3 only if a BRK instruction is executed in EL3. This is the
only debug exception that can be taken to EL3 when EL3 is using AArch64.

See ISS encoding for an exception from execution of a Breakpoint instruction.

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for
synchronous exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and
might be used for synchronous or asynchronous exceptions.
D13-3240 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The effect of programming this field to a reserved value is that behavior is CONSTRAINED
UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

0b0 16-bit instruction trapped.

0b1 32-bit instruction trapped. This value is also used when the exception is one of the
following:

• An SError interrupt.

• An Instruction Abort exception.

• A PC alignment fault exception.

• An SP alignment fault exception.

• A Data Abort exception for which the value of the ISV bit is 0.

• An Illegal Execution state exception.

• Any debug exception except for Breakpoint instruction exceptions.

• An exception reported using EC value 0b000000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each
defined Exception class. However, in practice, some ISS encodings are used for more than one
Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number,
the value returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, see Mapping of the general-purpose registers between
the Execution states on page D1-2546.

If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the
value 0b11111.

• If the instruction that generated the exception was UNPREDICTABLE, the field takes an
UNKNOWN value that must be either:

— The AArch64 view of the register number of a register that might have been used at
the Exception level from which the exception was taken.

— The value 0b11111.

ISS encoding for exceptions with an unknown reason

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

RES0

24 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3241
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions that
are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not accessible
at the current Exception level and Security state, including:

— A read access using a System register pattern that is not allocated for reads or that does not permit reads
at the current Exception level and Security state.

— A write access using a System register pattern that is not allocated for writes or that does not permit
writes at the current Exception level and Security state.

— Instruction encodings that are unallocated.

— Instruction encodings for instructions or System registers that are not implemented in the
implementation.

• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug state.

• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-debug
state.

• In AArch32 state, attempted execution of a short vector floating-point instruction.

• In an implementation that does not include Advanced SIMD and floating-point functionality, an attempted
access to Advanced SIMD or floating-point functionality under conditions where that access would be
permitted if that functionality was present. This includes the attempted execution of an Advanced SIMD or
floating-point instruction, and attempted accesses to Advanced SIMD and floating-point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control bits.

• Attempted execution of:

— An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.

— An SMC instruction when disabled by SCR_EL3.SMD.

— An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.

• Attempted execution of an MSR or MRS instruction using a _EL12 register name when HCR_EL2.E2H ==
0.

• Attempted execution, in Debug state, of:

— A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not implemented
in the current Security state.

— A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the current
Security state.

— A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.

• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using R13_mon.
See Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32 on page D1-2530.

• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an
instruction that is configured to trap to EL3.

• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)
instruction to SPSR_mon, SP_mon, or LR_mon.

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of
HCR_EL2.TGE was 0 would have been reported with an ESR_ELx.EC value of 0b000111.
D13-3242 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
ISS encoding for an exception from a WF* instruction

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:10]

Reserved, RES0.

RN, bits [9:5]

When FEAT_WFxT2 is implemented:

RN

CV

24

COND

23 20

RES0

19 10

RN

9 5

RES0

4 3

RV

2

TI

1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3243
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Indicates the Register Number supplied for a WFET or WFIT instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [4:3]

Reserved, RES0.

RV, bit [2]

When FEAT_WFxT2 is implemented:

RV

Register field Valid.

If TI[1] == 1, then this field indicates whether RN holds a valid register number for the register
argument to the trapped WFET or WFIT instruction.

0b0 Register field invalid.

0b1 Register field valid.

If TI[1] == 0, then this field is RES0.

When FEAT_WFxT2 is implemented, RV is set to 1 on a trap on WFET or WFIT.

When FEAT_WFxT2 is not implemented, RV is set to 0 on a trap on WFET or WFIT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TI, bits [1:0]

Trapped instruction. Possible values of this bit are:

0b00 WFI trapped.

0b01 WFE trapped.

0b10 When FEAT_WFxT is implemented:

WFIT trapped.

0b11 When FEAT_WFxT is implemented:

WFET trapped.

When FEAT_WFxT is implemented, this is a two bit field as shown. Otherwise, bit[1] is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• SCTLR_EL1.{nTWE, nTWI}.

• HCR_EL2.{TWE, TWI}.

• SCR_EL3.{TWE, TWI}.
D13-3244 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
ISS encoding for an exception from an MCR or MRC access

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CV

24

COND

23 20

Opc2

19 17

Opc1

16 14

CRn

13 10

Rt

9 5

CRm

4 1 0

Direction
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3245
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states on page D1-2546.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to System register space. MCR instruction.

0b1 Read from System register space. MRC or VMRS instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b000011:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL1 or EL2.
D13-3246 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions at EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or MRC
access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access
(coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCR or MRC access (coproc ==
0b1111) trapped to EL2.

• CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL3.

• For information on other traps using EC value 0b000011, see Traps to EL3 of Secure monitor functionality
from Secure EL1 using AArch32 on page D1-2530.

• If FEAT_FGT is implemented, MCR or MRC access to some registers at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b000101:

• CPACR_EL1.TTA for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to EL1
or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and EL1
using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2 trapped to
EL3.

• HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using AArch32, MRC
access (coproc == 0b1110) trapped to EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc == 0b1110)
trapped to EL2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3247
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR using AArch32,
MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC
access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, MCR or MRC access (coproc
== 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc == 0b1110)
trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, MCR or MRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL3.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b001000:

• HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32 state, VMRS access
trapped to EL2.

• HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS
access trapped to EL2.

ISS encoding for an exception from an LD64B or ST64B* instruction

ISS, bits [24:0]

0b0000000000000000000000000 ST64BV instruction trapped.

0b0000000000000000000000001 ST64BV0 instruction trapped.

0b0000000000000000000000010 LD64B or ST64B instruction trapped.

All other values are reserved.

ISS encoding for an exception from an MCRR or MRRC access

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

ISS

24 0

CV

24

COND

23 20

Opc1

19 16 15

Rt2

14 10

Rt

9 5

CRm

4 1 0

RES0 Direction
D13-3248 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer.

If the Rt2 value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt2 value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states on page D1-2546.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3249
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states on page D1-2546.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to System register space. MCRR instruction.

0b1 Read from System register space. MRRC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b000100:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or
EL2.

• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to
EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32 state,
MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCRR or MRRC access (coproc
== 0b1111) trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers from EL0 and EL1
using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers AMEVCNTR0<n> and AMEVCNTR1<n>
from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.
D13-3250 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state,
MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• If FEAT_FGT is implemented, HDFGRTR_EL2.PMCCNTR_EL0 for MRRC access and
HDFGWTR_EL2.PMCCNTR_EL0 for MCRR access to PMCCNTR at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b001100:

• MDSCR_EL1.TDCC, for accesses to the Debug ROM registers DBGDSAR and DBGDRAR at EL0 using
AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR using AArch32,
MCRR or MRRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

• CPACR_EL1.TTA for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL1 or EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110)
trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110)
trapped to EL3.

Note

If the Armv8-A architecture is implemented with an ETMv4 implementation, MCRR and MRRC accesses to trace
registers are UNDEFINED and the resulting exception is higher priority than an exception due to these traps.

ISS encoding for an exception from an LDC or STC instruction

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

CV

24

COND

23 20

imm8

19 12

RES0

11 10

Rn

9 5 4

AM

3 1 0

Offset Direction
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3251
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer.

If the Rn value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rn value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states on page D1-2546.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC
instruction. When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
D13-3252 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Offset, bit [4]

Indicates whether the offset is added or subtracted:

0b0 Subtract offset.

0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

0b000 Immediate unindexed.

0b001 Immediate post-indexed.

0b010 Immediate offset.

0b011 Immediate pre-indexed.

0b100 For a trapped STC instruction or a trapped T32 LDC instruction this encoding is
reserved.

0b110 For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is
that behavior is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and
memory-mapped registers and translation table entries on page K1-8423.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to memory. STC instruction.

0b1 Read from memory. LDC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings for the traps that are reported using EC value 0b000110:

• MDSCR_EL1.TDCC, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint trapped to EL1 or EL2.

• MDCR_EL2.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL2.

• MDCR_EL3.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL3.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for LDC and STC accesses to the DCC registers at EL0
and EL1 trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3253
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
ISS encoding for an exception from an access to SVE, Advanced SIMD or floating-point
functionality, resulting from the FPEN and TFP traps

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.

• Accesses to the Advanced SIMD and floating-point System registers.

For an implementation that does not include either SVE or support for Advanced SIMD and floating-point, the
exception is reported using the EC value 0b000000.

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

CV

24

COND

23 20

RES0

19 0
D13-3254 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value 0b000111:

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.

• CPTR_EL2.FPEN and CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL2.

• CPTR_EL3.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

ISS encoding for an exception from an access to SVE functionality, resulting from
CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ

The accesses covered by this trap include:

• Execution of SVE instructions.

• Accesses to the SVE System registers, ZCR_ELx.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

Bits [24:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value 0b011001:

• CPACR_EL1.ZEN, for execution of SVE instructions and accesses to SVE registers at EL0 or EL1, trapped
to EL1.

• CPTR_EL2.ZEN and CPTR_EL2.TZ, for execution of SVE instructions and accesses to SVE registers at
EL0, EL1, or EL2, trapped to EL2.

• CPTR_EL3.EZ, for execution of SVE instructions and accesses to SVE registers from all Exception levels,
trapped to EL3.

ISS encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault

Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about these exceptions, see The Illegal Execution state exception on
page D1-2488 and PC alignment checking on page D1-2469.

SP alignment checking on page D1-2469 describes the configuration settings for generating SP alignment fault
exceptions.

RES0

24 0

RES0

24 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3255
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
ISS encoding for an exception from HVC or SVC instruction execution

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the
issued instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:

— For the T32 instruction, this field is zero-extended from the imm8 field of the
instruction.

— For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the
instruction.

• If the instruction is conditional, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an exception
only if it passes its condition code check. Therefore, the syndrome information for these exceptions does not require
conditionality information.

For T32 and A32 instructions, see SVC and HVC.

For A64 instructions, see SVC and HVC.

If FEAT_FGT is implemented, HFGITR_EL2.{SVC_EL1, SVC_EL0} control fine-grained traps on SVC
execution.

ISS encoding for an exception from SMC instruction execution in AArch32 state

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS encoding
is RES0.

For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is as shown
in the diagram.

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

RES0

24 16

imm16

15 0

CV

24

COND

23 20 19

RES0

18 0

CCKNOWNPASS
D13-3256 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

0b0 The instruction was unconditional, or was conditional and passed its condition code
check.

0b1 The instruction was conditional, and might have failed its condition code check.

Note

In an implementation in which an SMC instruction that fails it code check is not trapped, this field
can always return the value 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.

System calls on page D1-2535 describes the case where these exceptions are trapped to EL3.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3257
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
ISS encoding for an exception from SMC instruction execution in AArch64 state

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from EL1 modes.

• When an SMC instruction is not trapped, so completes normally and generates an exception that is taken to
EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

System calls on page D1-2535 describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from MSR, MRS, or System instruction execution in AArch64 state

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

24 16

imm16

15 0

RES0

24 22

Op0

21 20

Op2

19 17

Op1

16 14

CRn

13 10

Rt

9 5

CRm

4 1 0

Direction
D13-3258 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write access, including MSR instructions.

0b1 Read access, including MRS instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see System instructions on page C4-294 for the encoding values
returned by an instruction.

The following fields describe configuration settings for generating the exception that is reported using EC value
0b011000:

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1 or
EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.

• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped to
EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using AArch64
state, MSR or MRS access trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2 trapped to
EL3.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer
registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to the Performance Monitor registers using AArch64
state, MSR or MRS access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped
to EL2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3259
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter control register, TRFCR_EL1, using AArch64 state, MSR
or MRS access trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS access
trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64
state, MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state, MSR or
MRS access trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.APK, for accesses to Pointer authentication key registers. using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS access,
trapped to EL2.

• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access, trapped to
EL2.

• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access,
trapped to EL2.

• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state, MSR
or MRS access trapped to EL3.

• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access trapped
to EL3.

• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS
access trapped to EL3.
D13-3260 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TTRF, for accesses to the trace filter control registers, TRFCR_EL1 and TRFCR_EL2, using
AArch64 state, MSR or MRS access trapped to EL3.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,
trapped to EL3.

• If FEAT_EVT is implemented, the following registers control traps for EL1 and EL0 Cache controls that use
this EC value:

— HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4}.

— HCR2.{TTLBIS, TICAB, TOCU, TID4}.

• If FEAT_FGT is implemented:

— SCR_EL3.FGTEn, for accesses to the fine-grained trap registers, MSR or MRS access at EL2 trapped
to EL3.

— HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, MSR or
MRS access at EL0 and EL1 trapped to EL2.

— HFGITR_EL2 for execution of system instructions, MSR or MRS access trapped to EL2

— HDFGRTR_EL2 for reads and HDFGWTR_EL2 for writes of registers, using AArch64 state, MSR
or MRS access at EL0 and EL1 state trapped to EL2.

— HAFGRTR_EL2 for reads of Activity Monitor counters, using AArch64 state, MRS access at EL0 and
EL1 trapped to EL2.

ISS encoding for an IMPLEMENTATION DEFINED exception to EL3

IMPLEMENTATION DEFINED, bits [24:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from an Instruction Abort

Bits [24:13]

Reserved, RES0.

IMPLEMENTATION DEFINED

24 0

RES0

24 13

SET

12 11 10

EA

9 8 7 6

IFSC

5 0

FnV
RES0

RES0
S1PTW
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3261
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
SET, bits [12:11]

When FEAT_RAS is implemented:

SET

Synchronous Error Type. When IFSC is 0b010000, describes the PE error state after taking the
Instruction Abort exception.

0b00 Recoverable state (UER).

0b10 Uncontainable (UC).

0b11 Restartable state (UEO).

All other values are reserved.

Note
Software can use this information to determine what recovery might be possible. Taking a
synchronous External Abort exception might result in a PE state that is not recoverable.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 FAR is valid.

0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External
aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
D13-3262 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

0b000000 Address size fault, level 0 of translation or translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001000 When FEAT_LPA2 is implemented:

Access flag fault, level 0.

0b001100 When FEAT_LPA2 is implemented:

Permission fault, level 0.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk or hardware update of
translation table.

0b010011 When FEAT_LPA2 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -1.

0b010100 Synchronous External abort on translation table walk or hardware update of translation
table, level 0.

0b010101 Synchronous External abort on translation table walk or hardware update of translation
table, level 1.

0b010110 Synchronous External abort on translation table walk or hardware update of translation
table, level 2.

0b010111 Synchronous External abort on translation table walk or hardware update of translation
table, level 3.

0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011011 When FEAT_LPA2 is implemented and FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level -1.

0b011100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 0.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 1.

0b011110 When FEAT_RAS is not implemented:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3263
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 3.

0b101001 When FEAT_LPA2 is implemented:

Address size fault, level -1.

0b101011 When FEAT_LPA2 is implemented:

Translation fault, level -1.

0b110000 TLB conflict abort.

0b110001 When FEAT_HAFDBS is implemented:

Unsupported atomic hardware update fault.

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on page D5-2806.

Note

Because Access flag faults and Permission faults can result only from a Block or Page translation
table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a Data Abort

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV or ST64BV0 instruction generates
a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this ISS encoding includes ISS2,
bits[36:32].

ISV, bit [24]

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

0b0 No valid instruction syndrome. ISS[23:14] are RES0.

0b1 ISS[23:14] hold a valid instruction syndrome.

In ESR_EL2, ISV is 1 when FEAT_LS64 is implemented and a memory access generated by an
ST64BV, ST64BV0, ST64B, or LD64B instruction generates a Data Abort for a Translation fault,
Access flag fault, or Permission fault.

For other faults reported in ESR_EL2, ISV is 0 except for the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register
specified with 0b11111, including those with Acquire/Release semantics, but excluding Load
Exclusive or Store Exclusive and excluding those with writeback).

• AArch32 instructions where the instruction:

— Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB,
LDRSBT, LDRB, LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB,
STLB, or STRBT instruction.

24

SAS

23 22 21

SRT

20 16

SF

15

AR

14 13

SET

12 11 10

EA

9

CM

8 7 6

DFSC

5 0

ISV SSE VNCR
FnV

WnR
S1PTW
D13-3264 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
— Is not performing register writeback.

— Is not using R15 as a source or destination register.

For these stage 2 aborts, ISV is UNKNOWN if the exception was generated in Debug state in memory
access mode, and otherwise indicates whether ISS[23:14] hold a valid syndrome.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64 is implemented and a
memory access generated by an ST64BV, ST64BV0, ST64B, or LD64B instruction generates a
Data Abort for a Translation fault, Access flag fault, or Permission fault. ISV is 0 for all other faults
reported in ESR_EL1 or ESR_EL3.

When FEAT_RAS is implemented, ISV is 0 for any synchronous External abort.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid
instruction syndrome, and therefore ISV is 0 for these aborts.

When FEAT_RAS is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0
on a synchronous External abort on a stage 2 translation table walk.

When FEAT_MTE is implemented, for a synchronous Tag Check Fault abort taken to ELx,
ESR_ELx.FNV is 0 and FAR_ELx is valid.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]

When ISV == 1:

SAS

Syndrome Access Size. Indicates the size of the access attempted by the faulting operation.

0b00 Byte

0b01 Halfword

0b10 Word

0b11 Doubleword

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0,
ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault, then this field is 0b11.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSE, bit [21]

When ISV == 1:

SSE

Syndrome Sign Extend. For a byte, halfword, or word load operation, indicates whether the data
item must be sign extended.

0b0 Sign-extension not required.

0b1 Data item must be sign-extended.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0,
ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault, then this field is 0.

For all other operations, this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3265
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SRT, bits [20:16]

When ISV == 1:

SRT

Syndrome Register Transfer. The register number of the Wt/Xt/Rt operand of the faulting
instruction.

If the exception was taken from an Exception level that is using AArch32, then this is the AArch64
view of the register. See Mapping of the general-purpose registers between the Execution states on
page D1-2546.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SF, bit [15]

When ISV == 1:

SF

Width of the register accessed by the instruction is Sixty-Four.

0b0 Instruction loads/stores a 32-bit wide register.

0b1 Instruction loads/stores a 64-bit wide register.

Note

This field specifies the register width identified by the instruction, not the Execution state.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0,
ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault, then this field is 1.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AR, bit [14]

When ISV == 1:

AR

Acquire/Release.

0b0 Instruction did not have acquire/release semantics.

0b1 Instruction did have acquire/release semantics.
D13-3266 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0,
ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault, then this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VNCR, bit [13]

When FEAT_NV2 is implemented:

VNCR

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

0b0 The fault was not generated by the use of VNCR_EL2, by an MRS or MSR instruction
executed at EL1.

0b1 The fault was generated by the use of VNCR_EL2, by an MRS or MSR instruction
executed at EL1.

This field is 0 in ESR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits[12:11]

When FEAT_RAS is implemented and FEAT_LS64 is not implemented:

SET

Synchronous Error Type. When DFSC is 0b010000, describes the PE error state after taking the Data
Abort exception.

0b00 Recoverable state (UER).

0b10 Uncontainable (UC).

0b11 Restartable state (UEO).

All other values are reserved.

Note
Software can use this information to determine what recovery might be possible. Taking a
synchronous External Abort exception might result in a PE state that is not recoverable.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LS64 is implemented:

LST

Load/Store Type. Used when an LD64B, ST64B, ST64BV, or ST64BV0 instruction generates a
Data Abort for a Translation fault, Access flag fault, or Permission fault.

0b01 An ST64BV instruction generated the Data Abort.

0b10 An LD64B or ST64B instruction generated the Data Abort.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3267
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b11 An ST64BV0 instruction generated the Data Abort.

All other values are reserved.

This field is valid only if the DFSC code is 0b110101. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 FAR is valid.

0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External
aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address
translation instruction:

0b0 The Data Abort was not generated by the execution of one of the System instructions
identified in the description of value 1.

0b1 The Data Abort was generated by either the execution of a cache maintenance
instruction or by a synchronous fault on the execution of an address translation
instruction. The DC ZVA, DC GVA, and DC GZVA instructions are not classified as
cache maintenance instructions, and therefore their execution cannot cause this field to
be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
D13-3268 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

0b0 Abort caused by an instruction reading from a memory location.

0b1 Abort caused by an instruction writing to a memory location.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is
set to 0 if a read of the address specified by the instruction would have generated the fault which is
being reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation
of this requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic
instructions, the WnR bit is always 0.

This field is UNKNOWN for:

• An External abort on an Atomic access.

• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported
Exclusive or atomic access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

0b000000 Address size fault, level 0 of translation or translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001000 When FEAT_LPA2 is implemented:

Access flag fault, level 0.

0b001100 When FEAT_LPA2 is implemented:

Permission fault, level 0.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk or hardware update of
translation table.

0b010001 When FEAT_MTE2 is implemented:

Synchronous Tag Check Fault.

0b010011 When FEAT_LPA2 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -1.

0b010100 Synchronous External abort on translation table walk or hardware update of translation
table, level 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3269
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b010101 Synchronous External abort on translation table walk or hardware update of translation
table, level 1.

0b010110 Synchronous External abort on translation table walk or hardware update of translation
table, level 2.

0b010111 Synchronous External abort on translation table walk or hardware update of translation
table, level 3.

0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011011 When FEAT_LPA2 is implemented and FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level -1.

0b011100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 0.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 3.

0b100001 Alignment fault.

0b101001 When FEAT_LPA2 is implemented:

Address size fault, level -1.

0b101011 When FEAT_LPA2 is implemented:

Translation fault, level -1.

0b110000 TLB conflict abort.

0b110001 When FEAT_HAFDBS is implemented:

Unsupported atomic hardware update fault.

0b110100 IMPLEMENTATION DEFINED fault (Lockdown).

0b110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive or Atomic access).

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on page D5-2806.

Note
Because Access flag faults and Permission faults can result only from a Block or Page translation
table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
D13-3270 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
ISS encoding for an exception from a trapped floating-point exception

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid
information about trapped floating-point exceptions.

0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold valid information about trapped
floating-point exceptions and are UNKNOWN.

0b1 One or more floating-point exceptions occurred during an operation performed while
executing the reported instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits indicate
trapped floating-point exceptions that occurred. For more information, see
Floating-point exceptions and exception traps on page D1-2495.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped
floating-point exception from an instruction that is performing floating-point operations on more
than one lane of a vector.

Note

This is not a requirement. Implementations can set this field to 1 on a trapped floating-point
exception from an instruction and return valid information in the {IDF, IXF, UFF, OFF, DZF, IOF}
fields.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is
RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Input denormal floating-point exception has not occurred.

0b1 Input denormal floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

24 23

RES0

22 11

VECITR

10 8 7

RES0

6 5 4 3 2 1 0

RES0 TFV IDF
IXF

UFF

IOF
DZF

OFF
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3271
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

0b0 Inexact floating-point exception has not occurred.

0b1 Inexact floating-point exception occurred during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Underflow floating-point exception has not occurred.

0b1 Underflow floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

0b0 Overflow floating-point exception has not occurred.

0b1 Overflow floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Divide by Zero floating-point exception has not occurred.

0b1 Divide by Zero floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Invalid Operation floating-point exception has not occurred.

0b1 Invalid Operation floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of
the floating-point exception traps.
D13-3272 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of
the floating-point exception traps.

ISS encoding for an SError interrupt

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome.

0b0 Bits [23:0] of the ISS field holds the fields described in this encoding.

Note
If FEAT_RAS is not implemented, bits [23:0] of the ISS field are RES0.

0b1 Bits [23:0] of the ISS field holds IMPLEMENTATION DEFINED syndrome information that
can be used to provide additional information about the SError interrupt.

Note

This field was previously called ISV.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:14]

Reserved, RES0.

IESB, bit [13]

When FEAT_IESB is implemented:

IESB

Implicit error synchronization event.

0b0 The SError interrupt was either not synchronized by the implicit error synchronization
event or not taken immediately.

0b1 The SError interrupt was synchronized by the implicit error synchronization event and
taken immediately.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AET, bits [12:10]

When FEAT_RAS is implemented:

AET

Asynchronous Error Type.

When DFSC is 0b010001, describes the PE error state after taking the SError interrupt exception.

0b000 Uncontainable (UC).

0b001 Unrecoverable state (UEU).

24

RES0

23 14 13

AET

12 10

EA

9

RES0

8 6

DFSC

5 0

IDS IESB
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3273
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b010 Restartable state (UEO).

0b011 Recoverable state (UER).

0b110 Corrected (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall PE error state is
reported.

Note
Software can use this information to determine what recovery might be possible. The recovery
software must also examine any implemented fault records to determine the location and extent of
the error.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EA, bit [9]

When FEAT_RAS is implemented:

EA

External abort type. When DFSC is 0b010001, provides an IMPLEMENTATION DEFINED classification
of External aborts.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]

When FEAT_RAS is implemented:

DFSC

Data Fault Status Code.

0b000000 Uncategorized error.

0b010001 Asynchronous SError interrupt.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
D13-3274 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
ISS encoding for an exception from a Breakpoint or Vector Catch debug exception

Bits [24:6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions:

• For exceptions from AArch64, see Breakpoint exceptions on page D2-2579.

• For exceptions from AArch32, see Breakpoint exceptions on page G2-6170 and Vector Catch exceptions on
page G2-6209.

ISS encoding for an exception from a Software Step exception

ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

0b0 EX bit is RES0.

0b1 EX bit is valid.

See the EX bit description for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:7]

Reserved, RES0.

EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction
was stepped.

0b0 An instruction other than a Load-Exclusive instruction was stepped.

0b1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IFSC, bits [5:0]

Instruction Fault Status Code.

0b100010 Debug exception.

RES0

24 6

IFSC

5 0

24

RES0

23 7

EX

6

IFSC

5 0

ISV
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3275
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see Software Step exceptions on page D2-2613.

ISS encoding for an exception from a Watchpoint exception

Bits [24:15]

Reserved, RES0.

Bit [14]

Reserved, RES0.

VNCR, bit [13]

When FEAT_NV2 is implemented:

VNCR

Indicates that the watchpoint came from use of VNCR_EL2 register by EL1 code.

0b0 The watchpoint was not generated by the use of VNCR_EL2 by EL1 code.

0b1 The watchpoint was generated by the use of VNCR_EL2 by EL1 code.

This field is 0 in ESR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [12:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance
or address translation instruction:

0b0 The Watchpoint exception was not generated by the execution of one of the System
instructions identified in the description of value 1.

0b1 The Watchpoint exception was generated by either the execution of a cache
maintenance instruction or by a synchronous Watchpoint exception on the execution of
an address translation instruction. The DC ZVA, DC GVA, and DC GZVA instructions
are not classified as a cache maintenance instructions, and therefore their execution
cannot cause this field to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

RES0

24 15 14 13

RES0

12 9

CM

8 7 6

DFSC

5 0

RES0 VNCR RES0 WnR
D13-3276 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
WnR, bit [6]

Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing
to a memory location, or by an instruction reading from a memory location.

0b0 Watchpoint exception caused by an instruction reading from a memory location.

0b1 Watchpoint exception caused by an instruction writing to a memory location.

For Watchpoint exceptions on cache maintenance and address translation instructions, this bit
always returns a value of 1.

For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location
would have generated the Watchpoint exception, otherwise it is set to 1.

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates
the Watchpoint exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see Watchpoint exceptions on page D2-2598.

ISS encoding for an exception from execution of a Breakpoint instruction

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary.

For the AArch32 BKPT instructions, the comment field is described as the immediate field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see Breakpoint Instruction exceptions on page D2-2577.

ISS encoding for an exception from an ERET, ERETAA, or ERETAB instruction

This EC value applies when FEAT_FGT is implemented, or when HCR_EL2.NV is 1.

Bits [24:2]

Reserved, RES0.

RES0

24 16

Comment

15 0

RES0

24 2 1 0

ERET ERETA
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3277
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
ERET, bit [1]

Indicates whether an ERET or ERETA* instruction was trapped to EL2.

0b0 ERET instruction trapped to EL2.

0b1 ERETAA or ERETAB instruction trapped to EL2.

If this bit is 0, the ERETA field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ERETA, bit [0]

Indicates whether an ERETAA or ERETAB instruction was trapped to EL2.

0b0 ERETAA instruction trapped to EL2.

0b1 ERETAB instruction trapped to EL2.

When the ERET field is 0, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see HCR_EL2.NV.

If FEAT_FGT is implemented, HFGITR_EL2.ERET controls fine-grained trap exceptions from ERET, ERETAA
and ERETAB execution.

ISS encoding for an exception from Branch Target Identification instruction

Bits [24:2]

Reserved, RES0.

BTYPE, bits [1:0]

This field is set to the PSTATE.BTYPE value that generated the Branch Target Exception.

For more information about generating these exceptions, see Chapter B1 The AArch64 Application Level
Programmers’ Model.

ISS encoding for an exception from a Pointer Authentication instruction when HCR_EL2.API == 0
|| SCR_EL3.API == 0

Bits [24:0]

Reserved, RES0.

For more information about generating these exceptions, see:

• HCR_EL2.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to
EL2.

• SCR_EL3.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to EL3.

RES0

24 2 1 0

BTYPE

RES0

24 0
D13-3278 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
ISS encoding for an exception from a Pointer Authentication instruction authentication failure

Bits [24:2]

Reserved, RES0.

Bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

0b0 Instruction Key.

0b1 Data Key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

0b0 A key.

0b1 B key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTIASP, AUTIAZ, AUTIA1716.

• AUTIBSP, AUTIBZ, AUTIB1716.

• AUTIA, AUTDA, AUTIB, AUTDB.

• AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the
authorization failure, rather than changing the address in a way that will generate a Translation fault when the
address is accessed:

• RETAA, RETAB.

• BRAA, BRAB, BLRAA, BLRAB.

• BRAAZ, BRABZ, BLRAAZ, BLRABZ.

• ERETAA, ERETAB.

• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

Accessing ESR_EL3

Accesses to this register use the following encodings in the System register encoding space:

RES0

24 2 1 0

Exception as a result of an Instruction key or a Data key Exception
as a
result of
an A key
or a B
key
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3279
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, ESR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return ESR_EL3;

MSR ESR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 ESR_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b0101 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b0101 0b0010 0b000
D13-3280 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.40 FAR_EL1, Fault Address Register (EL1)

The FAR_EL1 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction or Data Abort, PC alignment fault
and Watchpoint exceptions that are taken to EL1.

Configurations

AArch64 System register FAR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DFAR[31:0] (NS).

AArch64 System register FAR_EL1 bits [63:32] are architecturally mapped to AArch32 System
register IFAR[31:0] (NS).

Attributes

FAR_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL1. Exceptions that set the
FAR_EL1 are Instruction Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), PC alignment
faults (EC 0x22), and Watchpoints (EC 0x34 or 0x35). ESR_EL1.EC holds the EC value for the
exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for
which TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated,
then the top eight bits of FAR_EL1 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table
walk, this field is valid only if ESR_EL1.FnV is 0, and the FAR_EL1 is UNKNOWN if ESR_EL1.FnV
is 1.

For all other exceptions taken to EL1, the FAR_EL1 is UNKNOWN.

If a memory fault that sets FAR_EL1, other than a Tag Check Fault, is generated from a data cache
maintenance or other DC instruction, this field holds the address specified in the register argument
of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC
instruction, the address held in FAR_EL1 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.

• The address specified in the register argument of the instruction as generated by MMU faults
caused by DC ZVA.

If the exception that updates FAR_EL1 is taken from an Exception level that is using AArch32, the
top 32 bits are all zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx
are 0x00000001:

• The faulting address was generated by a load or store instruction that sequentially
incremented from address 0xFFFFFFFF. Such a load or store is CONSTRAINED UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

Faulting Virtual Address for synchronous exceptions taken to EL1

63 32

Faulting Virtual Address for synchronous exceptions taken to EL1

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3281
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by
the data access that caused the exception, then this field includes the tag. For more information
about address tagging, see Address tagging in AArch64 state on page D5-2676.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL0 makes FAR_EL1 become UNKNOWN.

Note

The address held in this field is an address accessed by the instruction fetch or data access that
caused the exception that gave rise to the instruction or data abort. It is the lower address that gave
rise to the fault. Where different faults from different addresses arise from the same instruction, such
as for an instruction that loads or stores a mis-aligned address that crosses a page boundary, the
architecture does not prioritize between those different faults.

FAR_EL1 is made UNKNOWN on an exception return from EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing FAR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic FAR_EL1 or
FAR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FAR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.FAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x220];
 else
 return FAR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return FAR_EL2;
 else
 return FAR_EL1;
elsif PSTATE.EL == EL3 then
 return FAR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b000
D13-3282 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MSR FAR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.FAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x220] = X[t];
 else
 FAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 FAR_EL2 = X[t];
 else
 FAR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 FAR_EL1 = X[t];

MRS <Xt>, FAR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x220];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return FAR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return FAR_EL1;
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b0110 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3283
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MSR FAR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x220] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 FAR_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 FAR_EL1 = X[t];
 else
 UNDEFINED;

MRS <Xt>, FAR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return FAR_EL1;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return FAR_EL2;
elsif PSTATE.EL == EL3 then
 return FAR_EL2;

MSR FAR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 FAR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b101 0b0110 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b000
D13-3284 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 FAR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 FAR_EL2 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3285
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.41 FAR_EL2, Fault Address Register (EL2)

The FAR_EL2 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction or Data Abort, PC alignment fault
and Watchpoint exceptions that are taken to EL2.

Configurations

AArch64 System register FAR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HDFAR[31:0].

AArch64 System register FAR_EL2 bits [63:32] are architecturally mapped to AArch32 System
register HIFAR[31:0].

AArch64 System register FAR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register DFAR[31:0] (S) when EL2 is implemented.

AArch64 System register FAR_EL2 bits [63:32] are architecturally mapped to AArch32 System
register IFAR[31:0] (S) when EL2 is implemented.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

FAR_EL2 is a 64-bit register.

Field descriptions

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL2. Exceptions that set the
FAR_EL2 are Instruction Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), PC alignment
faults (EC 0x22), and Watchpoints (EC 0x34 or 0x35). ESR_EL2.EC holds the EC value for the
exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for
which TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated,
then the top eight bits of FAR_EL2 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table
walk, this field is valid only if ESR_EL2.FnV is 0, and the FAR_EL2 is UNKNOWN if ESR_EL2.FnV
is 1.

For all other exceptions taken to EL2, the FAR_EL2 is UNKNOWN.

If a memory fault that sets FAR_EL2, other than a Tag Check Fault, is generated from a data cache
maintenance or other DC instruction, this field holds the address specified in the register argument
of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC
instruction, the address held in FAR_EL2 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.

• The address specified in the register argument of the instruction as generated by MMU faults
caused by DC ZVA.

Faulting Virtual Address for synchronous exceptions taken to EL2

63 32

Faulting Virtual Address for synchronous exceptions taken to EL2

31 0
D13-3286 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
If the exception that updates FAR_EL2 is taken from an Exception level that is using AArch32, the
top 32 bits are all zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx
are 0x00000001:

• The faulting address was generated by a load or store instruction that sequentially
incremented from address 0xFFFFFFFF. Such a load or store instruction is CONSTRAINED
UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by
the data access that caused the exception, then this field includes the tag. For more information
about address tagging, see Address tagging in AArch64 state on page D5-2676.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL1 or EL0 makes FAR_EL2 become UNKNOWN.

Note

The address held in this field is an address accessed by the instruction fetch or data access that
caused the exception that gave rise to the instruction or data abort. It is the lower address that gave
rise to the fault. Where different faults from different addresses arise from the same instruction, such
as for an instruction that loads or stores a mis-aligned address that crosses a page boundary, the
architecture does not prioritize between those different faults.

FAR_EL2 is made UNKNOWN on an exception return from EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing FAR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic FAR_EL2 or
FAR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FAR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return FAR_EL1;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return FAR_EL2;
elsif PSTATE.EL == EL3 then
 return FAR_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3287
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MSR FAR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 FAR_EL1 = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 FAR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 FAR_EL2 = X[t];

MRS <Xt>, FAR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.FAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x220];
 else
 return FAR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return FAR_EL2;
 else
 return FAR_EL1;
elsif PSTATE.EL == EL3 then
 return FAR_EL1;

MSR FAR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.FAR_EL1 == '1' then

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b000
D13-3288 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x220] = X[t];
 else
 FAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 FAR_EL2 = X[t];
 else
 FAR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 FAR_EL1 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3289
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.42 FAR_EL3, Fault Address Register (EL3)

The FAR_EL3 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction or Data Abort and PC alignment
fault exceptions that are taken to EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to FAR_EL3 are
UNDEFINED.

Attributes

FAR_EL3 is a 64-bit register.

Field descriptions

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL3. Exceptions that set the
FAR_EL3 are Instruction Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), and PC
alignment faults (EC 0x22). ESR_EL3.EC holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for
which TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated,
then the top eight bits of FAR_EL3 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table
walk, this field is valid only if ESR_EL3.FnV is 0, and the FAR_EL3 is UNKNOWN if ESR_EL3.FnV
is 1.

For all other exceptions taken to EL3, the FAR_EL3 is UNKNOWN.

If a memory fault that sets FAR_EL3, other than a Tag Check Fault, is generated from a data cache
maintenance or other DC instruction, this field holds the address specified in the register argument
of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC
instruction, the address held in FAR_EL3 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.

• The address specified in the register argument of the instruction as generated by MMU faults
caused by DC ZVA.

If the exception that updates FAR_EL3 is taken from an Exception level using AArch32, the top 32
bits are all zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are
0x00000001:

• The faulting address was generated by a load or store instruction that sequentially
incremented from address 0xFFFFFFFF. Such a load or store instruction is CONSTRAINED
UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by
the data access that caused the exception, then this field includes the tag. For more information
about address tagging, see Address tagging in AArch64 state on page D5-2676.

Faulting Virtual Address for synchronous exceptions taken to EL3

63 32

Faulting Virtual Address for synchronous exceptions taken to EL3

31 0
D13-3290 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL2, EL1 or EL0 makes FAR_EL3 become UNKNOWN.

Note

The address held in this register is an address accessed by the instruction fetch or data access that
caused the exception that actually gave rise to the instruction or data abort. It is the lowest address
that gave rise to the fault. Where different faults from different addresses arise from the same
instruction, such as for an instruction that loads or stores a mis-aligned address that crosses a page
boundary, the architecture does not prioritize between those different faults.

FAR_EL3 is made UNKNOWN on an exception return from EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing FAR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FAR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return FAR_EL3;

MSR FAR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 FAR_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b0110 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b0110 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3291
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.43 FPEXC32_EL2, Floating-Point Exception Control register

The FPEXC32_EL2 characteristics are:

Purpose

Allows access to the AArch32 register FPEXC from AArch64 state only. Its value has no effect on
execution in AArch64 state.

Configurations

AArch64 System register FPEXC32_EL2 bits [31:0] are architecturally mapped to AArch32
System register FPEXC[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
FPEXC32_EL2 are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this
register is not RES0.

Implemented only if the implementation includes the Advanced SIMD and floating-point
functionality.

Attributes

FPEXC32_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

EX, bit [31]

Exception bit. From Armv8, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EN, bit [30]

Enables access to the Advanced SIMD and floating-point functionality from all Exception levels,
except that setting this field to 0 does not disable the following:

• VMSR accesses to the FPEXC or FPSID.

• VMRS accesses from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2.

0b0 Accesses to the FPSCR, and any of the SIMD and floating-point registers Q0-Q15,
including their views as D0-D31 registers or S0-S31 registers, are UNDEFINED at all
Exception levels.

0b1 This control permits access to the Advanced SIMD and floating-point functionality at
all Exception levels.

Execution of Advanced SIMD and floating-point instructions in AArch32 state can be disabled or
trapped by the following controls:

• CPACR.cp10, or, if executing at EL0, CPACR_EL1.FPEN.

RES0

63 32

EX

31

EN

30 29 28

VV

27 26

RES0

25 11

VECITR

10 8 7

RES0

6 5 4 3 2 1 0

DEX TFV
FP2V

IDF
IXF

UFF

IOF
DZF

OFF
D13-3292 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
• FPEXC.EN.

• If executing in Non-secure state:

— HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.

— NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.

• For Advanced SIMD instructions only:

— CPACR.ASEDIS.

— If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

See the descriptions of the controls for more information.

Note

When executing at EL0 using AArch32:

• If EL1 is using AArch64, then the Effective value of FPEXC.EN is 1.

• If EL2 is using AArch64 and is enabled in the current Security state, HCR_EL2.TGE is 1,
and the Effective value of HCR_EL2.RW is 1, then the Effective value of FPEXC.EN is 1.
However, Arm deprecates using the value of FPEXC32_EL2.EN to determine behavior.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DEX, bit [29]

Defined synchronous exception on floating-point execution.

This field identifies whether a synchronous exception generated by the attempted execution of an
instruction was generated by an unallocated encoding. The instruction must be in the encoding space
that is identified by the pseudocode function ExecutingCP10or11Instr() returning TRUE. This field
also indicates whether the FPEXC32_EL2.TFV field is valid.

The meaning of this bit is:

0b0 The exception was generated by the attempted execution of an unallocated instruction
in the encoding space that is identified by the pseudocode function
ExecutingCP10or11Instr(). If FPEXC32_EL2.TFV is RW then it is invalid and
UNKNOWN. If FPEXC32_EL2.{IDF, IXF, UFF, OFF, DZF, IOF} are RW then they are
invalid and UNKNOWN.

0b1 The exception was generated during the execution of an allocated encoding.
FPEXC32_EL2.TFV is valid and indicates the cause of the exception.

On an exception that sets this bit to 1 the exception-handling routine must clear this bit to 0.

On an implementation that both does not support trapping of floating-point exceptions and
implements the AArch32 FPSCR.{Stride, Len} fields as RAZ, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FP2V, bit [28]

FPINST2 instruction valid bit. From Armv8, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VV, bit [27]

VECITR valid bit. From Armv8, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3293
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
TFV, bit [26]

Trapped Fault Valid bit. Valid only when the value of FPEXC.DEX is 1. When valid, it indicates the
cause of the exception and therefore whether the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} bits are
valid.

0b0 The exception was caused by the execution of a floating-point VABS, VADD, VDIV,
VFMA, VFMS, VFNMA, VFNMS, VMLA, VMLS, VMOV, VMUL, VNEG,
VNMLA, VNMLS, VNMUL, VSQRT, or VSUB instruction when one or both of
FPSCR.{Stride, Len} was non-zero. If the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF}
bits are RW then they are invalid and UNKNOWN.

0b1 FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} indicate the presence of trapped
floating-point exceptions that had occurred at the time of the exception. Bits are set for
all trapped exceptions that had occurred at the time of the exception.

This bit returns a status value and ignores writes.

When the value of FPEXC.DEX is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is
RAZ/WI.

On an implementation that supports the trapping of floating-point exceptions and implements
FPSCR.{Stride, Len} as RAZ, this bit is RAO/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [25:11]

Reserved, RES0.

VECITR, bits [10:8]

Vector iteration count. From Armv8, this field is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid,
it indicates whether an Input Denormal exception occurred while FPSCR.IDE was 1:

0b0 Input Denormal exception has not occurred.

0b1 Input Denormal exception has occurred.

Input Denormal exceptions can occur only when FPSCR.FZ is 1.

Note

A half-precision floating-point value that is flushed to zero because the value of FPSCR.FZ16 is 1
does not generate an Input Denormal exception.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC32_EL2.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is
RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.
D13-3294 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
IXF, bit [4]

Inexact trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it
indicates whether an Inexact exception occurred while FPSCR.IXE was 1:

0b0 Inexact exception has not occurred.

0b1 Inexact exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is
RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it
indicates whether an Underflow exception occurred while FPSCR.UFE was 1:

0b0 Underflow exception has not occurred.

0b1 Underflow exception has occurred.

Underflow trapped exceptions can occur:

• On half-precision data-processing instructions only when FPSCR.FZ16 is 0.

• Otherwise only when FPSCR.FZ is 0.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC32_EL2.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is
RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it
indicates whether an Overflow exception occurred while FPSCR.OFE was 1:

0b0 Overflow exception has not occurred.

0b1 Overflow exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is
RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid,
it indicates whether a Divide by Zero exception occurred while FPSCR.DZE was 1:

0b0 Divide by Zero exception has not occurred.

0b1 Divide by Zero exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is
RAZ/WI.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3295
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid,
it indicates whether an Invalid Operation exception occurred while FPSCR.IOE was 1:

0b0 Invalid Operation exception has not occurred.

0b1 Invalid Operation exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is
RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing FPEXC32_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FPEXC32_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 return FPEXC32_EL2;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TFP == '1' then
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 return FPEXC32_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0011 0b000
D13-3296 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MSR FPEXC32_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 FPEXC32_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TFP == '1' then
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 FPEXC32_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3297
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.44 GCR_EL1, Tag Control Register.

The GCR_EL1 characteristics are:

Purpose

Tag Control Register.

Configurations

This register is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
GCR_EL1 are UNDEFINED.

Attributes

GCR_EL1 is a 64-bit register.

Field descriptions

Bits [63:17]

Reserved, RES0.

RRND, bit [16]

Controls generation of tag values by the IRG instruction.

0b0 IRG generates a tag value as defined by RandomTag().

0b1 IRG generates an implementation-specific tag value with a distribution of tag values no
worse than generated with GCR_EL1.RRND == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Exclude, bits [15:0]

Allocation Tag values excluded from selection by ChooseNonExcludedTag().

If all bits of GCR_EL1.Exclude are 1, then the Allocation Tag value 0 will be used.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing GCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, GCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;

RES0

63 32

RES0

31 17 16

Exclude

15 0

RRND

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b110
D13-3298 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return GCR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return GCR_EL1;
elsif PSTATE.EL == EL3 then
 return GCR_EL1;

MSR GCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 GCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 GCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 GCR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3299
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.45 GMID_EL1, Multiple tag transfer ID register

The GMID_EL1 characteristics are:

Purpose

Indicates the block size that is accessed by the LDGM and STGM System instructions.

Configurations

This register is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
GMID_EL1 are UNDEFINED.

Attributes

GMID_EL1 is a 64-bit register.

Field descriptions

Bits [63:4]

Reserved, RES0.

BS, bits [3:0]

Log2 of the block size in words. The minimum supported size is 16B (value == 2) and the maximum
is 256B (value == 6).

Accessing GMID_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, GMID_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID5 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return GMID_EL1;
elsif PSTATE.EL == EL2 then
 return GMID_EL1;
elsif PSTATE.EL == EL3 then
 return GMID_EL1;

RES0

63 32

RES0

31 4

BS

3 0

CRn op0 op1 op2 CRm

0b0000 0b11 0b001 0b100 0b0000
D13-3300 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.46 HACR_EL2, Hypervisor Auxiliary Control Register

The HACR_EL2 characteristics are:

Purpose

Controls trapping to EL2 of IMPLEMENTATION DEFINED aspects of EL1 or EL0 operation.

Note
Arm recommends that the values in this register do not cause unnecessary traps to EL2 when
HCR_EL2.{E2H, TGE} == {1, 1}.

Configurations

AArch64 System register HACR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HACR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

HACR_EL2 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HACR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HACR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HACR_EL2;

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3301
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
elsif PSTATE.EL == EL3 then
 return HACR_EL2;

MSR HACR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HACR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 HACR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b111
D13-3302 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.47 HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

The HAFGRTR_EL2 characteristics are:

Purpose

Provides controls for traps of MRS reads of Activity Monitors System registers.

Configurations

This register is present only when FEAT_AMUv1 is implemented and FEAT_FGT is implemented.
Otherwise, direct accesses to HAFGRTR_EL2 are UNDEFINED.

Attributes

HAFGRTR_EL2 is a 64-bit register.

Field descriptions

Bits [63:50]

Reserved, RES0.

AMEVTYPER1<x>_EL0, bit [19+2x], for x = 15 to 0

When AMEVTYPER1<x> is implemented:

AMEVTYPER1<x>_EL0

Trap MRS reads of AMEVTYPER1<n>_EL0 at EL1 and EL0 using AArch64 and MRC reads of
AMEVTYPER1<n> at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of AMEVTYPER1<n>_EL0 at EL1 and EL0 using AArch64 and MRC reads of
AMEVTYPER1<n> at EL0 using AArch32 are not trapped by this mechanism.

RES0

63 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

AMEVTYPER1<x>_EL0[15]
AMEVCNTR1<x>_EL0[15]
AMEVTYPER1<x>_EL0[14]

AMEVCNTR1<x>_EL0[14]
AMEVTYPER1<x>_EL0[13]

AMEVCNTR1<x>_EL0[13]
AMEVTYPER1<x>_EL0[12]

AMEVCNTR1<x>_EL0[12]
AMEVTYPER1<x>_EL0[11]

AMEVCNTR1<x>_EL0[7]
AMEVTYPER1<x>_EL0[7]

AMEVCNTR1<x>_EL0[8]
AMEVTYPER1<x>_EL0[8]

AMEVCNTR1<x>_EL0[9]
AMEVTYPER1<x>_EL0[9]

AMEVCNTR1<x>_EL0[10]
AMEVTYPER1<x>_EL0[10]

AMEVCNTR1<x>_EL0[11]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

RES0

16 5 4 3 2 1 0

AMEVTYPER1<x>_EL0[6]
AMEVCNTR1<x>_EL0[6]
AMEVTYPER1<x>_EL0[5]

AMEVCNTR1<x>_EL0[5]
AMEVTYPER1<x>_EL0[4]

AMEVCNTR1<x>_EL0[4]
AMEVTYPER1<x>_EL0[3]

AMCNTEN1
AMEVCNTR1<x>_EL0[0]

AMEVTYPER1<x>_EL0[0]
AMEVCNTR1<x>_EL0[1]

AMEVTYPER1<x>_EL0[1]
AMEVCNTR1<x>_EL0[2]

AMEVTYPER1<x>_EL0[2]
AMEVCNTR1<x>_EL0[3]

AMEVCNTR03_EL0
AMEVCNTR02_EL0

AMCNTEN0
AMEVCNTR00_EL0

AMEVCNTR01_EL0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3303
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads of AMEVTYPER1<n>_EL0 at EL1 and EL0 using AArch64 are
trapped to EL2 and reported with EC syndrome value 0x18.

• MRC reads of AMEVTYPER1<n> at EL0 using AArch32 are trapped to EL2 and
reported with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

AMEVCNTR1<x>_EL0, bit [18+2x], for x = 15 to 0

When AMEVCNTR1<x> is implemented:

AMEVCNTR1<x>_EL0

Trap MRS reads of AMEVCNTR1<n>_EL0 at EL1 and EL0 using AArch64 and MRC reads of
AMEVCNTR1<n> at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of AMEVCNTR1<n>_EL0 at EL1 and EL0 using AArch64 and MRC reads of
AMEVCNTR1<n> at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads of AMEVCNTR1<n>_EL0 at EL1 and EL0 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR1<n> at EL0 using AArch32 are trapped to EL2 and
reported with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

AMCNTEN<x>, bit [17x], for x = 1 to 0

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of AMCNTENCLR<x>_EL0 and
AMCNTENSET<x>_EL0.

• At EL0 using AArch32 when EL1 is using AArch64: MRC reads of AMCNTENCLR<x> and
AMCNTENSET<x>.

0b0 The operations listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads at EL1 and EL0 using AArch64 of AMCNTENCLR<x>_EL0 and
AMCNTENSET<x>_EL0 are trapped to EL2 and reported with EC syndrome
value 0x18.

• MRC reads at EL0 using AArch32 of AMCNTENCLR<x> and
AMCNTENSET<x> are trapped to EL2 and reported with EC syndrome value
0x03.
D13-3304 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bits [16:5]

Reserved, RES0.

AMEVCNTR0<x>_EL0, bit [x+1], for x = 3 to 0

Trap MRS reads of AMEVCNTR0<n>_EL0 at EL1 and EL0 using AArch64 and MRC reads of
AMEVCNTR0<n> at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of AMEVCNTR0<n>_EL0 at EL1 and EL0 using AArch64 and MRC reads of
AMEVCNTR0<n> at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads of AMEVCNTR0<n>_EL0 at EL1 and EL0 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR0<n> at EL0 using AArch32 are trapped to EL2 and
reported with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing HAFGRTR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HAFGRTR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x1E8];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return HAFGRTR_EL2;
elsif PSTATE.EL == EL3 then
 return HAFGRTR_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3305
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MSR HAFGRTR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x1E8] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 HAFGRTR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 HAFGRTR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b110
D13-3306 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.48 HCR_EL2, Hypervisor Configuration Register

The HCR_EL2 characteristics are:

Purpose

Provides configuration controls for virtualization, including defining whether various operations are
trapped to EL2.

Configurations

AArch64 System register HCR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HCR[31:0].

AArch64 System register HCR_EL2 bits [63:32] are architecturally mapped to AArch32 System
register HCR2[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

The bits in this register behave as if they are 0 for all purposes other than direct reads of the register
if EL2 is not enabled in the current Security state.

Attributes

HCR_EL2 is a 64-bit register.

Field descriptions

TWEDEL, bits [63:60]

When FEAT_TWED is implemented:

TWEDEL

TWE Delay. A 4-bit unsigned number that, when HCR_EL2.TWEDEn is 1, encodes the minimum
delay in taking a trap of WFE* caused by HCR_EL2.TWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TWEDEL

63 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45

AT

44 43

NV

42 41 40 39 38 37 36 35 34

ID

33

CD

32

TWEDEn
TID5

DCT
ATA
TTLBOS

TTLBIS
EnSCXT

TOCU
AMVOFFEN

TICAB
TID4

RES0

E2H
TLOR

TERR
TEA

MIOCNCE
RES0

APK
API

NV1
NV2

FWB
FIEN

RW

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

DC

12

BSU

11 10

FB

9 8

VI

7

VF

6 5 4 3 2 1

VM

0

TRVM
HCD

TDZ
TGE

TVM
TTLB

TPU
TPCP

TSW

TWI
TWE

TID0
TID1

TID2
TID3

TSC
TIDCP

TACR

VSE
AMO

IMO

SWIO
PTW

FMO
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3307
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Reserved, RES0.

TWEDEn, bit [59]

When FEAT_TWED is implemented:

TWEDEn

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by
HCR_EL2.TWE.

0b0 The delay for taking the trap is IMPLEMENTATION DEFINED.

0b1 The delay for taking the trap is at least the number of cycles defined in
HCR_EL2.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TID5, bit [58]

When FEAT_MTE2 is implemented:

TID5

Trap ID group 5. Traps the following register accesses to EL2, when EL2 is enabled in the current
Security state:

AArch64:

• GMID_EL1.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified EL1 and EL0 accesses to ID group 5 registers are trapped to EL2.

When the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field has an Effective value of 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DCT, bit [57]

When FEAT_MTE2 is implemented:

DCT

Default Cacheability Tagging. When HCR_EL2.DC is in effect, controls whether stage 1
translations are treated as Tagged or Untagged.

0b0 Stage 1 translations are treated as Untagged.

0b1 Stage 1 translations are treated as Tagged.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
D13-3308 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
ATA, bit [56]

When FEAT_MTE2 is implemented:

ATA

Allocation Tag Access. When HCR_EL2.{E2H,TGE} != {1,1}, controls EL1 and EL0 access to
Allocation Tags.

0b0 Access to Allocation Tags is prevented. Accesses at EL1 to GCR_EL1, RGSR_EL1,
TFSR_EL1, TFSR_EL2, or TFSRE0_EL1 that are not UNDEFINED are trapped to EL2.

0b1 This control does not prevent access to Allocation Tags.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TTLBOS, bit [55]

When FEAT_EVT is implemented:

TTLBOS

Trap TLB maintenance instructions that operate on the Outer Shareable domain. Traps execution of
those TLB maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security
state. This applies to the following instructions:

TLBI VMALLE1OS, TLBI VMALLE1OSNXS, TLBI VAE1OS, TLBI VAE1OSNXS, TLBI
ASIDE1OS, TLBI ASIDE1OSNXS,TLBI VAAE1OS, TLBI VAAE1OSNXS, TLBI VALE1OS,
TLBI VALE1OSNXS, TLBI VAALE1OS, TLBI VAALE1OSNXS,TLBI RVAE1OS, TLBI
RVAE1OSNXS, TLBI RVAAE1OS, TLBI RVAAE1OSNXS,TLBI RVALE1OS, TLBI
RVALE1OSNXS, TLBI RVAALE1OS, TLBI RVAALE1OSNXS.

0b0 This control does not cause any instructions to be trapped.

0b1 Execution of the specified instructions are trapped to EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TTLBIS, bit [54]

When FEAT_EVT is implemented:

TTLBIS

Trap TLB maintenance instructions that operate on the Inner Shareable domain. Traps execution of
those TLB maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security
state. This applies to the following instructions:

• When EL1 is using AArch64, TLBI VMALLE1IS, TLBI VMALLE1ISNXS, TLBI VAE1IS,
TLBI VAE1ISNXS, TLBI ASIDE1IS, TLBI ASIDE1ISNXS, TLBI VAAE1IS, TLBI
VAAE1ISNXS, TLBI VALE1IS, TLBI VALE1ISNXS, TLBI VAALE1IS, TLBI
VAALE1ISNXS, TLBI RVAE1IS, TLBI RVAE1ISNXS, TLBI RVAAE1IS, TLBI
RVAAE1ISNXS, TLBI RVALE1IS, TLBI RVALE1ISNXS, TLBI RVAALE1IS, TLBI
RVAALE1ISNXS.

• When EL1 is using AArch32, TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS,
TLBIMVALIS, and TLBIMVAALIS.

0b0 This control does not cause any instructions to be trapped.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3309
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 Execution of the specified instructions are trapped to EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnSCXT, bit [53]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

EnSCXT

Enable Access to the SCXTNUM_EL1 and SCXTNUM_EL0 registers. The defined values are:

0b0 When HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, and EL2 is enabled in the current
Security state, EL1 and EL0 access to SCXTNUM_EL0 and EL1 access to
SCXTNUM_EL1 is disabled by this mechanism, causing an exception to EL2, and the
values of these registers to be treated as 0.

When HCR_EL2.{E2H, TGE} is {1, 1} and EL2 is enabled in the current Security state,
EL0 access to SCXTNUM_EL0 is disabled by this mechanism, causing an exception to
EL2, and the value of this register to be treated as 0.

0b1 This control does not cause accesses to SCXTNUM_EL0 or SCXTNUM_EL1 to be
trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TOCU, bit [52]

When FEAT_EVT is implemented:

TOCU

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of
those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state. This
applies to the following instructions:

• When SCTLR_EL1.UCI is 1, HCR_EL2.{TGE, E2H} is not {1, 1}, and EL0 is using
AArch64, IC IVAU, DC CVAU.

• When EL1 is using AArch64, IC IVAU, IC IALLU, DC CVAU.

• When EL1 is using AArch32, ICIMVAU, ICIALLU, DCCMVAU.

Note

An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this trap
to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using AArch64.

• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always UNDEFINED at EL0 using
AArch32.

0b0 This control does not cause any instructions to be trapped.

0b1 Execution of the specified instructions are trapped to EL2.
D13-3310 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean by VA to the Point of Unification instruction can
be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate to the Point of Unification instruction can
be trapped when the value of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AMVOFFEN, bit [51]

When FEAT_AMUv1p1 is implemented:

AMVOFFEN

Activity Monitors Virtual Offsets Enable.

0b0 Virtualization of the Activity Monitors is disabled. Indirect reads of the virtual offset
registers are zero.

0b1 Virtualization of the Activity Monitors is enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TICAB, bit [50]

When FEAT_EVT is implemented:

TICAB

Trap ICIALLUIS/IC IALLUIS cache maintenance instructions. Traps execution of those cache
maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state. This
applies to the following instructions:

• When EL1 is using AArch64, IC IALLUIS.

• When EL1 is using AArch32, ICIALLUIS.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 execution of the specified instructions is trapped to EL2.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate to the Point of Unification instruction can
be trapped when the value of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3311
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
TID4, bit [49]

When FEAT_EVT is implemented:

TID4

Trap ID group 4. Traps the following register accesses to EL2, when EL2 is enabled in the current
Security state:

AArch64:

• EL1 reads of CCSIDR_EL1, CCSIDR2_EL1, CLIDR_EL1, and CSSELR_EL1.

• EL1 writes to CSSELR_EL1.

AArch32:

• EL1 reads of CCSIDR, CCSIDR2, CLIDR, and CSSELR.

• EL1 writes to CSSELR.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified EL1 and EL0 accesses to ID group 4 registers are trapped to EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [48]

Reserved, RES0.

FIEN, bit [47]

When FEAT_RASv1p1 is implemented:

FIEN

Fault Injection Enable. Unless this bit is set to 1, accesses to the ERXPFGCDN_EL1,
ERXPFGCTL_EL1, and ERXPFGF_EL1 registers from EL1 generate a Trap exception to EL2,
when EL2 is enabled in the current Security state, reported using EC syndrome value 0x18.

0b0 Accesses to the specified registers from EL1 are trapped to EL2, when EL2 is enabled
in the current Security state.

0b1 This control does not cause any instructions to be trapped.

If EL2 is disabled in the current Security state, the Effective value of HCR_EL2.FIEN is 0b1.

If ERRIDR_EL1.NUM is zero, meaning no error records are implemented, or no error record
accessible using System registers is owned by a node that implements the RAS Common Fault
Injection Model Extension, then this bit might be RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FWB, bit [46]

When FEAT_S2FWB is implemented:

FWB

Forced Write-Back. Defines the combined cacheability attributes in a 2 stage translation regime.
D13-3312 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Note

When FEAT_MTE is implemented, if the stage 1 page or block descriptor specifies the Tagged
attribute, the final memory type is Tagged only if the final cacheable memory type is Inner and Outer
Write-back cacheable and the final allocation hints are Read-Allocate, Write-Allocate.

0b0 When this bit is 0, then:

• The combination of stage 1 and stage 2 translations on memory type and
cacheability attributes are as described in the Armv8.0 architecture. For more
information, see Combining the stage 1 and stage 2 attributes, EL1&0
translation regime on page D5-2783.

• The encoding of the stage 2 memory type and cacheability attributes in bits[5:2]
of the stage 2 page or block descriptors are as described in the Armv8.0
architecture.

0b1 When this bit is 1, then:

• Bit[5] of stage 2 page or block descriptor is RES0.

• When bit[4] of stage 2 page or block descriptor is 1 and when:

— Bits[3:2] of stage 2 page or block descriptor are 0b11, the resultant memory
type and inner or outer cacheability attribute is the same as the stage 1
memory type and inner or outer cacheability attribute.

— Bits[3:2] of stage 2 page or block descriptor are 0b10, the resultant memory
type and attribute is Normal Write-Back.

— Bits[3:2] of stage 2 page or block descriptor are 0b0x, the resultant memory
type will be Normal Non-cacheable except where the stage 1 memory type
was Device-<attr> the resultant memory type will be Device-<attr>

• When bit[4] of stage 2 page or block descriptor is 0 the memory type is Device,
and when:

— Bits[3:2] of stage 2 page or block descriptor are 0b00, the stage 2 memory
type is Device-nGnRnE.

— Bits[3:2] of stage 2 page or block descriptor are 0b01, the stage 2 memory
type is Device-nGnRE.

— Bits[3:2] of stage 2 page or block descriptor are 0b10, the stage 2 memory
type is Device-nGRE.

— Bits[3:2] of stage 2 page or block descriptor are 0b11, the stage 2 memory
type is Device-GRE.

• If the stage 1 translation specifies a cacheable memory type, then the stage 1
cache allocation hint is applied to the final cache allocation hint where the final
memory type is cacheable.

• If the stage 1 translation does not specify a cacheable memory type, then if the
final memory type is cacheable, it is treated as read allocate, write allocate.

The stage 1 and stage 2 memory types are combined in the manner described in
Combining the stage 1 and stage 2 attributes, EL1&0 translation regime on
page D5-2783.

In Secure state, this bit applies to both the Secure stage 2 translation and the Non-secure stage 2
translation.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3313
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
NV2, bit [45]

When FEAT_NV2 is implemented:

NV2

Nested Virtualization. Changes the behaviors of HCR_EL2.{NV1, NV} to provide a mechanism for
hardware to transform reads and writes from System registers into reads and writes from memory.

0b0 This bit has no effect on the behavior of HCR_EL2.{NV1, NV}. The behavior of
HCR_EL2.{NV1, NV} is as defined for FEAT_NV.

0b1 Redefines behavior of HCR_EL2{NV1, NV} to enable:

• Transformation of read/writes to registers into read/writes to memory.

• Redirection of EL2 registers to EL1 registers.

Any exception taken from EL1 and taken to EL1 causes SPSR_EL1.M[3:2] to be set to
0b10 and not 0b01.

When HCR_EL2.NV is 0, the Effective value of this field is 0 and this field is treated as 0 for all
purposes other than direct reads and writes of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AT, bit [44]

When FEAT_NV is implemented:

AT

Address Translation. EL1 execution of the following address translation instructions is trapped to
EL2, when EL2 is enabled in the current Security state, reported using EC syndrome value 0x18:

• AT S1E0R, AT S1E0W, AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 execution of the specified instructions is trapped to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NV1, bit [43]

When FEAT_NV2 is implemented:

NV1

Nested Virtualization.

0b0 If HCR_EL2.{NV2, NV} are both 1, accesses executed from EL1 to implemented
EL12, EL02, or EL2 registers are transformed to loads and stores.

If HCR_EL2.NV2 is 0 or HCR_EL2.{NV2, NV} == {1, 0}, this control does not cause
any instructions to be trapped.

0b1 If HCR_EL2.NV2 is 1, accesses executed from EL1 to implemented EL2 registers are
transformed to loads and stores.

If HCR_EL2.NV2 is 0, EL1 accesses to VBAR_EL1, ELR_EL1, SPSR_EL1, and,
when FEAT_CSV2_2 or FEAT_CSV2_1p2 is implemented, SCXTNUM_EL1, are
trapped to EL2, when EL2 is enabled in the current Security state, and are reported using
EC syndrome value 0x18.
D13-3314 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
If HCR_EL2.NV2 is 1, the value of HCR_EL2.NV1 defines which EL1 register accesses are
transformed to loads and stores. These transformed accesses have priority over the trapping of
registers.

The trapping of EL1 registers caused by other control bits has priority over the transformation of
these accesses.

If a register is specified that is not implemented by an implementation, then access to that register
are UNDEFINED.

For the list of registers affected, see Enhanced support for nested virtualization on page D5-2795.

If HCR_EL2.{NV1, NV} is {0, 1}, any exception taken from EL1, and taken to EL1, causes the
SPSR_EL1.M[3:2] to be set to 0b10, and not 0b01.

If HCR_EL2.{NV1, NV} is {1, 1}, then:

• The EL1 translation table Block and Page descriptors:

— Bit[54] holds the PXN instead of the UXN.

— Bit[53] is RES0.

— Bit[6] is treated as 0 regardless of the actual value.

• If Hierarchical Permissions are enabled, the EL1 translation table Table descriptors are as
follows:

— Bit[61] is treated as 0 regardless of the actual value.

— Bit[60] holds the PXNTable instead of the UXNTable.

— Bit[59] is RES0.

• When executing at EL1, the PSTATE.PAN bit is treated as zero for all purposes except
reading the value of the bit.

• When executing at EL1, the LDTR* instructions are treated as the equivalent LDR*
instructions, and the STTR* instructions are treated as the equivalent STR* instructions.

If HCR_EL2.{NV1, NV} are {1, 0}, then the behavior is a CONSTRAINED UNPREDICTABLE choice
of:

• Behaving as if HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1 for all purposes other than
reading back the value of the HCR_EL2.NV bit.

• Behaving as if HCR_EL2.NV is 0 and HCR_EL2.NV1 is 0 for all purposes other than
reading back the value of the HCR_EL2.NV1 bit.

• Behaving with regard to the HCR_EL2.NV and HCR_EL2.NV1 bits behavior as defined in
the rest of this description.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_NV is implemented:

NV1

Nested Virtualization. EL1 accesses to certain registers are trapped to EL2, when EL2 is enabled in
the current Security state.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to VBAR_EL1, ELR_EL1, SPSR_EL1, and, when FEAT_CSV2_2 or
FEAT_CSV2_1p2 is implemented, SCXTNUM_EL1, are trapped to EL2, when EL2 is
enabled in the current Security state, and are reported using EC syndrome value 0x18.

If HCR_EL2.NV is 1 and HCR_EL2.NV1 is 0, then the following effects also apply:

• Any exception taken from EL1, and taken to EL1, causes the SPSR_EL1.M[3:2] to be set to
0b10, and not 0b01.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3315
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
If HCR_EL2.NV and HCR_EL2.NV1 are both set to 1, then the following effects also apply:

• The EL1 translation table Block and Page descriptors:

— Bit[54] holds the PXN instead of the UXN.

— Bit[53] is RES0.

— Bit[6] is treated as 0 regardless of the actual value.

• If Hierarchical Permissions are enabled, the EL1 translation table Table descriptors are as
follows:

— Bit[61] is treated as 0 regardless of the actual value.

— Bit[60] holds the PXNTable instead of the UXNTable.

— Bit[59] is RES0.

• When executing at EL1, the PSTATE.PAN bit is treated as zero for all purposes except
reading the value of the bit.

• When executing at EL1, the LDTR* instructions are treated as the equivalent LDR*
instructions, and the STTR* instructions are treated as the equivalent STR* instructions.

If HCR_EL2.NV is 0 and HCR_EL2.NV1 is 1, then the behavior is a CONSTRAINED
UNPREDICTABLE choice of:

• Behaving as if HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1 for all purposes other than
reading back the value of the HCR_EL2.NV bit.

• Behaving as if HCR_EL2.NV is 0 and HCR_EL2.NV1 is 0 for all purposes other than
reading back the value of the HCR_EL2.NV1 bit.

• Behaving with regard to the HCR_EL2.NV and HCR_EL2.NV1 bits behavior as defined in
the rest of this description.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NV, bit [42]

When FEAT_NV2 is implemented:

NV

Nested Virtualization.

When HCR_EL2.NV2 is 1, redefines register accesses so that:

• Instructions accessing the Special purpose registers SPSR_EL2 and ELR_EL2 instead access
SPSR_EL1 and ELR_EL1 respectively.

• Instructions accessing the System registers ESR_EL2 and FAR_EL2 instead access
ESR_EL1 and FAR_EL1.

When HCR_EL2.NV2 is 0, or if FEAT_NV2 is not implemented, traps functionality that is
permitted at EL2 and would be UNDEFINED at EL1 if this field was 0, when EL2 is enabled in the
current Security state. This applies to the following operations:

• EL1 accesses to Special-purpose registers that are not UNDEFINED at EL2.

• EL1 accesses to System registers that are not UNDEFINED at EL2.

• Execution of EL1 or EL2 translation regime address translation and TLB maintenance
instructions for EL2 and above.

0b0 When this bit is set to 0, then the PE behaves as if HCR_EL2.NV2 is 0 for all purposes
other than reading this register. This control does not cause any instructions to be
trapped.
D13-3316 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
When HCR_EL2.NV2 is 1, no FEAT_NV2 functionality is implemented.

0b1 When HCR_EL2.NV2 is 0, or if FEAT_NV2 is not implemented, EL1 accesses to the
specified registers or the execution of the specified instructions are trapped to EL2,
when EL2 is enabled in the current Security state. EL1 read accesses to the CurrentEL
register return a value of 0x2.

When HCR_EL2.NV2 is 1, this control redefines EL1 register accesses so that
instructions accessing SPSR_EL2, ELR_EL2, ESR_EL2, and FAR_EL2 instead access
SPSR_EL1, ELR_EL1, ESR_EL1, and FAR_EL1 respectively.

When HCR_EL2.NV2 is 0, or if FEAT_NV2 is not implemented, then:

• The System or Special-purpose registers for which accesses are trapped and reported using
EC syndrome value 0x18 are as follows:

— Registers accessed using MRS or MSR with a name ending in _EL2, except SP_EL2.

— Registers accessed using MRS or MSR with a name ending in _EL12.

— Registers accessed using MRS or MSR with a name ending in _EL02.

— Special-purpose registers SPSR_irq, SPSR_abt, SPSR_und and SPSR_fiq, accessed
using MRS or MSR.

— Special-purpose register SP_EL1 accessed using the dedicated MRS or MSR
instruction.

• The instructions for which the execution is trapped and reported using EC syndrome value
0x18 are as follows:

— EL2 translation regime Address Translation instructions and TLB maintenance
instructions.

— EL1 translation regime Address Translation instructions and TLB maintenance
instructions that are accessible only from EL2 and EL3.

• The instructions for which the execution is trapped as follows:

— SMC in an implementation that does not include EL3 and when HCR_EL2.TSC is 1.
HCR_EL2.TSC bit is not RES0 in this case. This is reported using EC syndrome value
0x17.

— The ERET, ERETAA, and ERETAB instructions, reported using EC syndrome value
0x1A.

Note

The priority of this trap is higher than the priority of the HCR_EL2.API trap. If both of these bits
are set so that EL1 execution of an ERETAA or ERETAB instruction is trapped to EL2, then the
syndrome reported is 0x1A.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_NV is implemented:

NV

Nested Virtualization. Traps functionality that is permitted at EL2 and would be UNDEFINED at EL1
if this field was 0, when EL2 is enabled in the current Security state. This applies to the following
operations:

• EL1 accesses to Special-purpose registers that are not UNDEFINED at EL2.

• EL1 accesses to System registers that are not UNDEFINED at EL2.

• Execution of EL1 or EL2 translation regime address translation and TLB maintenance
instructions for EL2 and above.

The possible values are:

0b0 This control does not cause any instructions to be trapped.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3317
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 EL1 accesses to the specified registers or the execution of the specified instructions are
trapped to EL2, when EL2 is enabled in the current Security state. EL1 read accesses to
the CurrentEL register return a value of 0x2.

The System or Special-purpose registers for which accesses are trapped and reported using EC
syndrome value 0x18 are as follows:

• Registers accessed using MRS or MSR with a name ending in _EL2, except SP_EL2.

• Registers accessed using MRS or MSR with a name ending in _EL12.

• Registers accessed using MRS or MSR with a name ending in _EL02.

• Special-purpose registers SPSR_irq, SPSR_abt, SPSR_und and SPSR_fiq, accessed using
MRS or MSR.

• Special-purpose register SP_EL1 accessed using the dedicated MRS or MSR instruction.

The instructions for which the execution is trapped and reported using EC syndrome value 0x18 are
as follows:

• EL2 translation regime Address Translation instructions and TLB maintenance instructions.

• EL1 translation regime Address Translation instructions and TLB maintenance instructions
that are accessible only from EL2 and EL3.

The execution of the ERET, ERETAA, and ERETAB instructions are trapped and reported using EC
syndrome value 0x1A.

Note

The priority of this trap is higher than the priority of the HCR_EL2.API trap. If both of these bits
are set so that EL1 execution of an ERETAA or ERETAB instruction is trapped to EL2, then the
syndrome reported is 0x1A.

The execution of the SMC instructions in an implementation that does not include EL3 and when
HCR_EL2.TSC is 1 are trapped and reported using EC syndrome value 0x17. HCR_EL2.TSC bit is
not RES0 in this case.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

API, bit [41]

When FEAT_PAuth is implemented:

API

Controls the use of instructions related to Pointer Authentication:

• In EL0, when HCR_EL2.TGE==0 or HCR_EL2.E2H==0, and the associated
SCTLR_EL1.En<N><M>==1.

• In EL1, the associated SCTLR_EL1.En<N><M>==1.

Traps are reported using EC syndrome value 0x09. The Pointer Authentication instructions trapped
are:

• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ,
AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZA, AUTIZB.

• PACGA, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ,
PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZB.

• RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ,
BLRABZ.
D13-3318 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
• ERETAA, ERETAB, LDRAA, and LDRAB.

0b0 The instructions related to Pointer Authentication are trapped to EL2, when EL2 is
enabled in the current Security state and the instructions are enabled for the EL1&0
translation regime, from:

• EL0 when HCR_EL2.TGE==0 or HCR_EL2.E2H==0.

• EL1.

If HCR_EL2.NV is 1, the HCR_EL2.NV trap takes precedence over the HCR_EL2.API
trap for the ERETAA and ERETAB instructions.

If EL2 is implemented and enabled in the current Security state and
HFGITR_EL2.ERET == 1, execution at EL1 using AArch64 of ERETAA or ERETAB
instructions is reported with EC syndrome value 0x1A with its associated ISS field, as
the fine-grained trap has higher priority than the HCR_EL2.API == 0.

0b1 This control does not cause any instructions to be trapped.

If FEAT_PAuth is implemented but EL2 is not implemented or disabled in the current Security state,
the system behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

APK, bit [40]

When FEAT_PAuth is implemented:

APK

Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following
registers from EL1 to EL2, when EL2 is enabled in the current Security state, reported using EC
syndrome value 0x18:

• APIAKeyLo_EL1, APIAKeyHi_EL1, APIBKeyLo_EL1, APIBKeyHi_EL1,
APDAKeyLo_EL1, APDAKeyHi_EL1, APDBKeyLo_EL1, APDBKeyHi_EL1,
APGAKeyLo_EL1, and APGAKeyHi_EL1.

0b0 Access to the registers holding "key" values for pointer authentication from EL1 are
trapped to EL2, when EL2 is enabled in the current Security state.

0b1 This control does not cause any instructions to be trapped.

Note
If FEAT_PAuth is implemented but EL2 is not implemented or is disabled in the current Security
state, the system behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [39]

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3319
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MIOCNCE, bit [38]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the EL1&0 translation regimes.

0b0 For the EL1&0 translation regimes, for permitted accesses to a memory location that use
a common definition of the Shareability and Cacheability of the location, there must be
no loss of coherency if the Inner Cacheability attribute for those accesses differs from
the Outer Cacheability attribute.

0b1 For the EL1&0 translation regimes, for permitted accesses to a memory location that use
a common definition of the Shareability and Cacheability of the location, there might be
a loss of coherency if the Inner Cacheability attribute for those accesses differs from the
Outer Cacheability attribute.

For more information, see Mismatched memory attributes on page B2-176.

This field can be implemented as RAZ/WI.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE
ignores the value of this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TEA, bit [37]

When FEAT_RAS is implemented:

TEA

Route synchronous External abort exceptions to EL2.

0b0 This control does not cause exceptions to be routed from EL0 and EL1 to EL2.

0b1 Route synchronous External abort exceptions from EL0 and EL1 to EL2, when EL2 is
enabled in the current Security state, if not routed to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TERR, bit [36]

When FEAT_RAS is implemented:

TERR

Trap Error record accesses. Trap accesses to the RAS error registers from EL1 to EL2 as follows:

• If EL1 is using AArch64 state, accesses to the following registers are trapped to EL2,
reported using EC syndrome value 0x18:

— ERRIDR_EL1, ERRSELR_EL1, ERXADDR_EL1, ERXCTLR_EL1, ERXFR_EL1,
ERXMISC0_EL1, ERXMISC1_EL1, and ERXSTATUS_EL1.

— When FEAT_RASv1p1 is implemented, ERXMISC2_EL1, and ERXMISC3_EL1.

• If EL1 is using AArch32 state, MCR or MRC accesses are trapped to EL2, reported using EC
syndrome value 0x03, MCRR or MRRC accesses are trapped to EL2, reported using EC
syndrome value 0x04:

— ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR,
ERXFR2, ERXMISC0, ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS.

— When FEAT_RASv1p1 is implemented, ERXMISC4, ERXMISC5, ERXMISC6, and
ERXMISC7.

0b0 This control does not cause any instructions to be trapped.

0b1 Accesses to the specified registers from EL1 generate a Trap exception to EL2, when
EL2 is enabled in the current Security state.
D13-3320 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLOR, bit [35]

When FEAT_LOR is implemented:

TLOR

Trap LOR registers. Traps Non-secure EL1 accesses to LORSA_EL1, LOREA_EL1, LORN_EL1,
LORC_EL1, and LORID_EL1 registers to EL2.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 accesses to the LOR registers are trapped to EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E2H, bit [34]

When FEAT_VHE is implemented:

E2H

EL2 Host. Enables a configuration where a Host Operating System is running in EL2, and the Host
Operating System's applications are running in EL0.

0b0 The facilities to support a Host Operating System at EL2 are disabled.

0b1 The facilities to support a Host Operating System at EL2 are enabled.

For information on the behavior of this bit see Behavior of HCR_EL2.E2H on page D5-2787.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ID, bit [33]

Stage 2 Instruction access cacheability disable. For the EL1&0 translation regime, when EL2 is
enabled in the current Security state and HCR_EL2.VM==1, this control forces all stage 2
translations for instruction accesses to Normal memory to be Non-cacheable.

0b0 This control has no effect on stage 2 of the EL1&0 translation regime.

0b1 Forces all stage 2 translations for instruction accesses to Normal memory to be
Non-cacheable.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE
ignores the value of this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3321
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
CD, bit [32]

Stage 2 Data access cacheability disable. For the EL1&0 translation regime, when EL2 is enabled
in the current Security state and HCR_EL2.VM==1, this control forces all stage 2 translations for
data accesses and translation table walks to Normal memory to be Non-cacheable.

0b0 This control has no effect on stage 2 of the EL1&0 translation regime for data accesses
and translation table walks.

0b1 Forces all stage 2 translations for data accesses and translation table walks to Normal
memory to be Non-cacheable.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE
ignores the value of this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RW, bit [31]

When EL1 is capable of using AArch32:

RW

Execution state control for lower Exception levels:

0b0 Lower levels are all AArch32.

0b1 The Execution state for EL1 is AArch64. The Execution state for EL0 is determined by
the current value of PSTATE.nRW when executing at EL0.

In an implementation that includes EL3, when EL2 is not enabled in Secure state, the PE behaves
as if this bit has the same value as the SCR_EL3.RW bit for all purposes other than a direct read or
write access of HCR_EL2.

The RW bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 1 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAO/WI.

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps EL1 reads of the virtual memory control registers to
EL2, when EL2 is enabled in the current Security state, as follows:

• If EL1 is using AArch64 state, the following registers are trapped to EL2 and reported using
EC syndrome value 0x18.

— SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1,
AFSR0_EL1, AFSR1_EL1, MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

• If EL1 is using AArch32 state, accesses using MRC to the following registers are trapped to
EL2 and reported using EC syndrome value 0x03, accesses using MRRC are trapped to EL2
and reported using EC syndrome value 0x04:

— SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR,
ADFSR, AIFSR, PRRR, NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1,
CONTEXTIDR.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 read accesses to the specified Virtual Memory controls are trapped to EL2, when
EL2 is enabled in the current Security state.
D13-3322 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

Note
EL2 provides a second stage of address translation, that a hypervisor can use to remap the address
map defined by a Guest OS. In addition, a hypervisor can trap attempts by a Guest OS to write to
the registers that control the memory system. A hypervisor might use this trap as part of its
virtualization of memory management.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCD, bit [29]

When EL3 is not implemented:

HCD

HVC instruction disable. Disables EL1 execution of HVC instructions, from both Execution states,
when EL2 is enabled in the current Security state, reported using EC syndrome value 0x00.

0b0 HVC instruction execution is enabled at EL2 and EL1.

0b1 HVC instructions are UNDEFINED at EL2 and EL1. Any resulting exception is taken to
the Exception level at which the HVC instruction is executed.

Note

HVC instructions are always UNDEFINED at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TDZ, bit [28]

Trap DC ZVA instructions. Traps EL0 and EL1 execution of DC ZVA instructions to EL2, when
EL2 is enabled in the current Security state, from AArch64 state only, reported using EC syndrome
value 0x18.

If FEAT_MTE is implemented, this trap also applies to DC GVA and DC GZVA.

0b0 This control does not cause any instructions to be trapped.

0b1 In AArch64 state, any attempt to execute an instruction this trap applies to at EL1, or at
EL0 when the instruction is not UNDEFINED at EL0, is trapped to EL2 when EL2 is
enabled in the current Security state.

Reading the DCZID_EL0 returns a value that indicates that the instructions this trap
applies to are not supported.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TGE, bit [27]

Trap General Exceptions, from EL0.

0b0 This control has no effect on execution at EL0.

0b1 When EL2 is not enabled in the current Security state, this control has no effect on
execution at EL0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3323
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
When EL2 is enabled in the current Security state, in all cases:

• All exceptions that would be routed to EL1 are routed to EL2.

• If EL1 is using AArch64, the SCTLR_EL1.M field is treated as being 0 for all
purposes other than returning the result of a direct read of SCTLR_EL1.

• If EL1 is using AArch32, the SCTLR.M field is treated as being 0 for all purposes
other than returning the result of a direct read of SCTLR.

• All virtual interrupts are disabled.

• Any IMPLEMENTATION DEFINED mechanisms for signaling virtual interrupts are
disabled.

• An exception return to EL1 is treated as an illegal exception return.

• The MDCR_EL2.{TDRA, TDOSA, TDA, TDE} fields are treated as being 1 for
all purposes other than returning the result of a direct read of MDCR_EL2.

In addition, when EL2 is enabled in the current Security state, if:

• HCR_EL2.E2H is 0, the Effective values of the HCR_EL2.{FMO, IMO, AMO}
fields are 1.

• HCR_EL2.E2H is 1, the Effective values of the HCR_EL2.{FMO, IMO, AMO}
fields are 0.

For further information on the behavior of this bit when E2H is 1, see Behavior of
HCR_EL2.E2H on page D5-2787.

HCR_EL2.TGE must not be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TVM, bit [26]

Trap Virtual Memory controls. Traps EL1 writes to the virtual memory control registers to EL2,
when EL2 is enabled in the current Security state, as follows:

• If EL1 is using AArch64 state, the following registers are trapped to EL2 and reported using
EC syndrome value 0x18:

— SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1,
AFSR0_EL1, AFSR1_EL1, MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

• If EL1 is using AArch32 state, accesses using MCR to the following registers are trapped to
EL2 and reported using EC syndrome value 0x03, accesses using MCRR are trapped to EL2
and reported using EC syndrome value 0x04:

— SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR,
ADFSR, AIFSR, PRRR, NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1,
CONTEXTIDR.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 write accesses to the specified EL1 virtual memory control registers are trapped to
EL2, when EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
D13-3324 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
TTLB, bit [25]

Trap TLB maintenance instructions. Traps EL1 execution of TLB maintenance instructions to EL2,
when EL2 is enabled in the current Security state, as follows:

• When EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported
using EC syndrome value 0x18:

— TLBI VMALLE1, TLBI VMALLE1NXS, TLBI VAE1, TLBI VAE1NXS, TLBI
ASIDE1, TLBI ASIDE1NXS, TLBI VAAE1, TLBI VAAE1NXS, TLBI VALE1,
TLBI VALE1NXS, TLBI VAALE1, TLBI VAALE1NXS.

— TLBI VMALLE1IS, TLBI VMALLE1ISNXS, TLBI VAE1IS, TLBI VAE1ISNXS,
TLBI ASIDE1IS, TLBI ASIDE1ISNXS, TLBI VAAE1IS, TLBI VAAE1ISNXS,
TLBI VALE1IS, TLBI VALE1ISNXS, TLBI VAALE1IS, TLBI VAALE1ISNXS.

— If FEAT_TLBIOS is implemented, this trap applies to TLBI VMALLE1OS, TLBI
VMALLE1OSNXS, TLBI VAE1OS, TLBI VAE1OSNXS, TLBI ASIDE1OS, TLBI
ASIDE1OSNXS, TLBI VAAE1OS, TLBI VAAE1OSNXS, TLBI VALE1OS, TLBI
VALE1OSNXS, TLBI VAALE1OS, TLBI VAALE1OSNXS.

— If FEAT_TLBIRANGE is implemented, this trap applies to TLBI RVAE1, TLBI
RVAE1NXS, TLBI RVAAE1, TLBI RVAAE1NXS, TLBI RVALE1, TLBI
RVALE1NXS, TLBI RVAALE1, TLBI RVAALE1NXS, TLBI RVAE1IS, TLBI
RVAE1ISNXS, TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLBI RVALE1IS, TLBI
RVALE1ISNXS, TLBI RVAALE1IS, TLBI RVAALE1ISNXS.

— If FEAT_TLBIOS and FEAT_TLBIRANGE are implemented, this trap applies to
TLBI RVAE1OS, TLBI RVAE1OSNXS, TLBI RVAAE1OS, TLBI RVAAE1OSNXS,
TLBI RVALE1OS, TLBI RVALE1OSNXS, TLBI RVAALE1OS, TLBI
RVAALE1OSNXS.

• When EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported
using EC syndrome value 0x03:

— TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS,
TLBIMVAALIS.

— TLBIALL, TLBIMVA, TLBIASID, TLBIMVAA, TLBIMVAL, TLBIMVAAL

— ITLBIALL, ITLBIMVA, ITLBIASID.

— DTLBIALL, DTLBIMVA, DTLBIASID.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 execution of the specified TLB maintenance instructions are trapped to EL2, when
EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

Note

The TLB maintenance instructions are UNDEFINED at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of
those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state as
follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, the following
instructions are trapped to EL2 and reported with EC syndrome value 0x18:

— IC IVAU, DC CVAU. If the value of SCTLR_EL1.UCI is 0 these instructions are
UNDEFINED at EL0 and any resulting exception is higher priority than this trap to EL2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3325
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
• If EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported
with EC syndrome value 0x18:

— IC IVAU, IC IALLU, IC IALLUIS, DC CVAU.

• If EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported
with EC syndrome value 0x18:

— ICIMVAU, ICIALLU, ICIALLUIS, DCCMVAU.

Note

An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this trap
to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using AArch64.

• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always UNDEFINED at EL0 using
AArch32.

0b0 This control does not cause any instructions to be trapped.

0b1 Execution of the specified instructions is trapped to EL2, when EL2 is enabled in the
current Security state.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean by VA to the Point of Unification instruction can
be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate to the Point of Unification instruction can
be trapped when the value of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TPCP, bit [23]

When FEAT_DPB is implemented:

TPCP

Trap data or unified cache maintenance instructions that operate to the Point of Coherency or
Persistence. Traps execution of those cache maintenance instructions to EL2, when EL2 is enabled
in the current Security state as follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, the following
instructions are trapped to EL2 and reported using EC syndrome value 0x18:

— DC CIVAC, DC CVAC, DC CVAP. If the value of SCTLR_EL1.UCI is 0 these
instructions are UNDEFINED at EL0 and any resulting exception is higher priority than
this trap to EL2.

• If EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported
using EC syndrome value 0x18:

— DC IVAC, DC CIVAC, DC CVAC, DC CVAP.

• If EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported
using EC syndrome value 0x03:

— DCIMVAC, DCCIMVAC, DCCMVAC.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTE is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC IGVAC,
DC IGDVAC, DC CGVAC, DC CGDVAC, DC CGVAP and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to DC CGVADP and DC
CGDVADP.
D13-3326 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Note

• An exception generated because an instruction is UNDEFINED at EL0 is higher priority than
this trap to EL2. In addition:

— AArch64 instructions which invalidate by VA to the Point of Coherency are always
UNDEFINED at EL0 using AArch64.

— DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED at EL0 using
AArch32.

• In Armv8.0 and Armv8.1, this field is named TPC. From Armv8.2, it is named TPCP.

0b0 This control does not cause any instructions to be trapped.

0b1 Execution of the specified instructions is trapped to EL2, when EL2 is enabled in the
current Security state.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean, invalidate, or clean and invalidate instruction that
operates by VA to the point of coherency can be trapped when the value of this control is 1.

If HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other than a direct
read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

TPC

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps
execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current
Security state as follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, accesses to the
following registers are trapped and reported using EC syndrome value 0x18:

— DC CIVAC, DC CVAC. However, if the value of SCTLR_EL1.UCI is 0 these
instructions are UNDEFINED at EL0 and any resulting exception is higher priority than
this trap to EL2.

• If EL1 is using AArch64 state, accesses to DC IVAC, DC CIVAC, DC CVAC are trapped and
reported using EC syndrome value 0x18.

• When EL1 is using AArch32, accesses to DCIMVAC, DCCIMVAC, and DCCMVAC are
trapped and reported using EC syndrome value 0x03.

Note
• An exception generated because an instruction is UNDEFINED at EL0 is higher priority than

this trap to EL2. In addition:

— AArch64 instructions which invalidate by VA to the Point of Coherency are always
UNDEFINED at EL0 using AArch64.

— DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED at EL0 using
AArch32.

• In Armv8.0 and Armv8.1, this field is named TPC. From Armv8.2, it is named TPCP.

0b0 This control does not cause any instructions to be trapped.

0b1 Execution of the specified instructions is trapped to EL2, when EL2 is enabled in the
current Security state.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean, invalidate, or clean and invalidate instruction that
operates by VA to the point of coherency can be trapped when the value of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3327
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps execution of
those cache maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security
state as follows:

• If EL1 is using AArch64 state, accesses to DC ISW, DC CSW, DC CISW are trapped to EL2,
reported using EC syndrome value 0x18.

• If EL1 is using AArch32 state, accesses to DCISW, DCCSW, DCCISW are trapped to EL2,
reported using EC syndrome value 0x03.

If FEAT_MTE is implemented, this trap also applies to DC IGSW, DC IGDSW, DC CGSW, DC
CGDSW, DC CIGSW, and DC CIGDSW.

Note

An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this trap
to EL2, and these instructions are always UNDEFINED at EL0.

0b0 This control does not cause any instructions to be trapped.

0b1 Execution of the specified instructions is trapped to EL2, when EL2 is enabled in the
current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TACR, bit [21]

Trap Auxiliary Control Registers. Traps EL1 accesses to the Auxiliary Control Registers to EL2,
when EL2 is enabled in the current Security state, as follows:

• If EL1 is using AArch64 state, accesses to ACTLR_EL1 to EL2, are trapped to EL2 and
reported using EC syndrome value 0x18.

• If EL1 is using AArch32 state, accesses to ACTLR and, if implemented, ACTLR2 are
trapped to EL2 and reported using EC syndrome value 0x03.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to the specified registers are trapped to EL2, when EL2 is enabled in the
current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

Note
ACTLR_EL1 is not accessible at EL0.

ACTLR and ACTLR2 are not accessible at EL0.

The Auxiliary Control Registers are IMPLEMENTATION DEFINED registers that might implement
global control bits for the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
D13-3328 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
TIDCP, bit [20]

Trap IMPLEMENTATION DEFINED functionality. Traps EL1 accesses to the encodings reserved for
IMPLEMENTATION DEFINED functionality to EL2, when EL2 is enabled in the current Security state
as follows:

• In AArch64 state, access to any of the encodings in the following reserved encoding spaces
are trapped and reported using EC syndrome 0x18:

— IMPLEMENTATION DEFINED System instructions, which are accessed using SYS and
SYSL, with CRn == {11, 15}.

— IMPLEMENTATION DEFINED System registers, which are accessed using MRS and MSR
with the S3_<op1>_<Cn>_<Cm>_<op2> register name.

• In AArch32 state, MCR and MRC access to instructions with the following encodings are
trapped and reported using EC syndrome 0x03:

— All coproc==p15, CRn==c9, opc1 == {0-7}, CRm == {c0-c2, c5-c8}, opc2 == {0-7}.

— All coproc==p15, CRn==c10, opc1 =={0-7}, CRm == {c0, c1, c4, c8}, opc2 ==
{0-7}.

— All coproc==p15, CRn==c11, opc1=={0-7}, CRm == {c0-c8, c15}, opc2 == {0-7}.

When the value of HCR_EL2.TIDCP is 1, it is IMPLEMENTATION DEFINED whether any of this
functionality accessed from EL0 is trapped to EL2. If it is not, then it is UNDEFINED, and any attempt
to access it from EL0 generates an exception that is taken to EL1.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to or execution of the specified encodings reserved for IMPLEMENTATION
DEFINED functionality are trapped to EL2, when EL2 is enabled in the current Security
state.

An implementation can also include IMPLEMENTATION DEFINED registers that provide additional
controls, to give finer-grained control of the trapping of IMPLEMENTATION DEFINED features.

Note

Arm expects the trapping of EL0 accesses to these functions to EL2 to be unusual, and used only
when the hypervisor is virtualizing EL0 operation. Arm strongly recommends that unless the
hypervisor must virtualize EL0 operation, an EL0 access to any of these functions is UNDEFINED, as
it would be if the implementation did not include EL2. The PE then takes any resulting exception
to EL1.

The trapping of accesses to these registers from EL1 is higher priority than an exception resulting
from the register access being UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TSC, bit [19]

Trap SMC instructions. Traps EL1 execution of SMC instructions to EL2, when EL2 is enabled in the
current Security state.

If execution is in AArch64 state, the trap is reported using EC syndrome value 0x17.

If execution is in AArch32 state, the trap is reported using EC syndrome value 0x13.

Note
HCR_EL2.TSC traps execution of the SMC instruction. It is not a routing control for the SMC
exception. Trap exceptions and SMC exceptions have different preferred return addresses.

0b0 This control does not cause any instructions to be trapped.

0b1 If EL3 is implemented, then any attempt to execute an SMC instruction at EL1 is trapped
to EL2, when EL2 is enabled in the current Security state, regardless of the value of
SCR_EL3.SMD.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3329
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
If EL3 is not implemented, FEAT_NV is implemented, and HCR_EL2.NV is 1, then
any attempt to execute an SMC instruction at EL1 using AArch64 is trapped to EL2,
when EL2 is enabled in the current Security state.

If EL3 is not implemented, and either FEAT_NV is not implemented or HCR_EL2.NV
is 0, then it is IMPLEMENTATION DEFINED whether:

• Any attempt to execute an SMC instruction at EL1 is trapped to EL2, when EL2
is enabled in the current Security state.

• Any attempt to execute an SMC instruction is UNDEFINED.

In AArch32 state, the Armv8-A architecture permits, but does not require, this trap to apply to
conditional SMC instructions that fail their condition code check, in the same way as with traps on
other conditional instructions.

SMC instructions are UNDEFINED at EL0.

If EL3 is not implemented, and either FEAT_NV is not implemented or HCR_EL2.NV is 0, then it
is IMPLEMENTATION DEFINED whether this bit is:

• RES0.

• Implemented with the functionality as described in HCR_EL2.TSC.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TID3, bit [18]

Trap ID group 3. Traps EL1 reads of group 3 ID registers to EL2, when EL2 is enabled in the current
Security state, as follows:

In AArch64 state:

• Reads of the following registers are trapped to EL2, reported using EC syndrome value 0x18:

— ID_PFR0_EL1, ID_PFR1_EL1, ID_PFR2_EL1, ID_DFR0_EL1, ID_AFR0_EL1,
ID_MMFR0_EL1, ID_MMFR1_EL1, ID_MMFR2_EL1, ID_MMFR3_EL1,
ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1,
ID_ISAR4_EL1, ID_ISAR5_EL1, MVFR0_EL1, MVFR1_EL1, MVFR2_EL1.

— ID_AA64PFR0_EL1, ID_AA64PFR1_EL1, ID_AA64DFR0_EL1,
ID_AA64DFR1_EL1, ID_AA64ISAR0_EL1, ID_AA64ISAR1_EL1,
ID_AA64MMFR0_EL1, ID_AA64MMFR1_EL1, ID_AA64AFR0_EL1,
ID_AA64AFR1_EL1.

— If FEAT_FGT is implemented:

— ID_MMFR4_EL1 and ID_MMFR5_EL1 are trapped to EL2.

— ID_AA64MMFR2_EL1 and ID_ISAR6_EL1 are trapped to EL2.

— ID_DFR1_EL1 is trapped to EL2.

— ID_AA64ZFR0_EL1 is trapped to EL2.

— ID_AA64ISAR2_EL1 is trapped to EL2.

— This field traps all MRS accesses to registers in the following range that are not
already mentioned in this field description: Op0 == 3, op1 == 0, CRn == c0,
CRm == {c1-c7}, op2 == {0-7}.

— If FEAT_FGT is not implemented:

— ID_MMFR4_EL1 and ID_MMFR5_EL1 are trapped to EL2, unless
implemented as RAZ, when it is IMPLEMENTATION DEFINED whether accesses
to ID_MMFR4_EL1 or ID_MMFR5_EL1 are trapped to EL2.

— ID_AA64MMFR2_EL1 and ID_ISAR6_EL1 are trapped to EL2, unless
implemented as RAZ, when it is IMPLEMENTATION DEFINED whether accesses
to ID_AA64MMFR2_EL1 or ID_ISAR6_EL1 are trapped to EL2.
D13-3330 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
— ID_DFR1_EL1 is trapped to EL2, unless implemented as RAZ, when it is
IMPLEMENTATION DEFINED whether accesses to ID_DFR1_EL1 are trapped to
EL2.

— ID_AA64ZFR0_EL1 is trapped to EL2, unless implemented as RAZ then it is
IMPLEMENTATION DEFINED whether accesses to ID_AA64ZFR0_EL1 are
trapped to EL2.

— ID_AA64ISAR2_EL1 is trapped to EL2, unless implemented as RAZ then it is
IMPLEMENTATION DEFINED whether accesses to ID_AA64ISAR2_EL1 are
trapped to EL2.

— Otherwise, it is IMPLEMENTATION DEFINED whether this bit traps MRS accesses
to registers in the following range that are not already mentioned in this field
description: Op0 == 3, op1 == 0, CRn == c0, CRm == {c1-c7}, op2 == {0-7}.

In AArch32 state:

• VMRS access to MVFR0, MVFR1, and MVFR2, are trapped to EL2, reported using EC
syndrome value 0x08, unless access is also trapped by HCPTR which takes priority.

• MRC access to the following registers are trapped to EL2, reported using EC syndrome value
0x03:

— ID_PFR0, ID_PFR1, ID_PFR2, ID_DFR0, ID_AFR0, ID_MMFR0, ID_MMFR1,
ID_MMFR2, ID_MMFR3, ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3,
ID_ISAR4, ID_ISAR5.

— If FEAT_FGT is implemented:

— ID_MMFR4 and ID_MMFR5 are trapped to EL2.

— ID_ISAR6 is trapped to EL2.

— ID_DFR1 is trapped to EL2.

— This field traps all MRC accesses to encodings in the following range that are
not already mentioned in this field description: coproc == p15, opc1 == 0, CRn
== c0, CRm == {c2-c7}, opc2 == {0-7}.

— If FEAT_FGT is not implemented:

— ID_MMFR4 and ID_MMFR5 are trapped to EL2, unless implemented as RAZ,
when it is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4 or
ID_MMFR5 are trapped.

— ID_ISAR6 is trapped to EL2, unless implemented as RAZ, when it is
IMPLEMENTATION DEFINED whether accesses to ID_ISAR6 are trapped to EL2.

— ID_DFR1 is trapped to EL2, unless implemented as RAZ, when it is
IMPLEMENTATION DEFINED whether accesses to ID_DFR1 are trapped to EL2.

— Otherwise, it is IMPLEMENTATION DEFINED whether this bit traps all MRC
accesses to registers in the following range not already mentioned in this field
description with coproc == p15, opc1 == 0, CRn == c0, CRm == {c2-c7}, opc2
== {0-7}.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified EL1 read accesses to ID group 3 registers are trapped to EL2, when EL2
is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3331
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
TID2, bit [17]

Trap ID group 2. Traps the following register accesses to EL2, when EL2 is enabled in the current
Security state, as follows:

• If EL1 is using AArch64, reads of CTR_EL0, CCSIDR_EL1, CCSIDR2_EL1, CLIDR_EL1,
and CSSELR_EL1 are trapped to EL2, reported using EC syndrome value 0x18.

• If EL0 is using AArch64 and the value of SCTLR_EL1.UCT is not 0, reads of CTR_EL0 are
trapped to EL2, reported using EC syndrome value 0x18. If the value of SCTLR_EL1.UCT
is 0, then EL0 reads of CTR_EL0 are trapped to EL1 and the resulting exception takes
precedence over this trap.

• If EL1 is using AArch64, writes to CSSELR_EL1 are trapped to EL2, reported using EC
syndrome value 0x18.

• If EL1 is using AArch32, reads of CTR, CCSIDR, CCSIDR2, CLIDR, and CSSELR are
trapped to EL2, reported using EC syndrome value 0x03.

• If EL1 is using AArch32, writes to CSSELR are trapped to EL2, reported using EC syndrome
value 0x03.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified EL1 and EL0 accesses to ID group 2 registers are trapped to EL2, when
EL2 is enabled in the current Security state.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TID1, bit [16]

Trap ID group 1. Traps EL1 reads of the following registers to EL2, when EL2 is enabled in the
current Security state as follows:

• In AArch64 state, accesses of REVIDR_EL1, AIDR_EL1, reported using EC syndrome
value 0x18.

• In AArch32 state, accesses of TCMTR, TLBTR, REVIDR, AIDR, reported using EC
syndrome value 0x03.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified EL1 read accesses to ID group 1 registers are trapped to EL2, when EL2
is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TID0, bit [15]

When AArch32 is supported at EL0:

TID0

Trap ID group 0. Traps the following register accesses to EL2:

• EL1 reads of the JIDR, reported using EC syndrome value 0x05.

• If the JIDR is RAZ from EL0, EL0 reads of the JIDR, reported using EC syndrome value
0x05.

• EL1 accesses using VMRS of the FPSID, reported using EC syndrome value 0x08.

Note

• It is IMPLEMENTATION DEFINED whether the JIDR is RAZ or UNDEFINED at EL0. If it is
UNDEFINED at EL0, then any resulting exception takes precedence over this trap.

• The FPSID is not accessible at EL0 using AArch32.
D13-3332 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
• Writes to the FPSID are ignored, and not trapped by this control.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified EL1 read accesses to ID group 0 registers are trapped to EL2, when EL2
is enabled in the current Security state.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWE, bit [14]

Traps EL0 and EL1 execution of WFE instructions to EL2, when EL2 is enabled in the current
Security state, from both Execution states, reported using EC syndrome value 0x01.

When FEAT_WFxT or FEAT_WFxT2 is implemented, this trap also applies to the WFET
instruction.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute a WFE instruction at EL0 or EL1 is trapped to EL2, when EL2
is enabled in the current Security state, if the instruction would otherwise have caused
the PE to enter a low-power state and it is not trapped by SCTLR.nTWE or
SCTLR_EL1.nTWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is trapped only if the
instruction passes its condition code check.

Note
Since a WFE can complete at any time, even without a Wakeup event, the traps on WFE are not
guaranteed to be taken, even if the WFE is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event,
the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

For more information about when WFE instructions can cause the PE to enter a low-power state,
see Wait for Event mechanism and Send event on page D1-2536.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TWI, bit [13]

Traps EL0 and EL1 execution of WFI instructions to EL2, when EL2 is enabled in the current
Security state, from both Execution states, reported using EC syndrome value 0x01.

When FEAT_WFxT or FEAT_WFxT2 is implemented, this trap also applies to the WFIT
instruction.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute a WFI instruction at EL0 or EL1 is trapped to EL2, when EL2
is enabled in the current Security state, if the instruction would otherwise have caused
the PE to enter a low-power state and it is not trapped by SCTLR.nTWI or
SCTLR_EL1.nTWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is trapped only if the
instruction passes its condition code check.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3333
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Note

Since a WFI can complete at any time, even without a Wakeup event, the traps on WFI are not
guaranteed to be taken, even if the WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event,
the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

For more information about when WFI instructions can cause the PE to enter a low-power state, see
Wait For Interrupt on page D1-2540.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DC, bit [12]

Default Cacheability.

0b0 This control has no effect on the EL1&0 translation regime.

0b1 In both Security states:

• When EL1 is using AArch64, the PE behaves as if the value of the
SCTLR_EL1.M field is 0 for all purposes other than returning the value of a
direct read of SCTLR_EL1.

• When EL1 is using AArch32, the PE behaves as if the value of the SCTLR.M
field is 0 for all purposes other than returning the value of a direct read of SCTLR.

• The PE behaves as if the value of the HCR_EL2.VM field is 1 for all purposes
other than returning the value of a direct read of HCR_EL2.

• The memory type produced by stage 1 of the EL1&0 translation regime is
Normal Non-Shareable, Inner Write-Back Read-Allocate Write-Allocate, Outer
Write-Back Read-Allocate Write-Allocate.

This field has no effect on the EL2, EL2&0, and EL3 translation regimes.

This field is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied
to any barrier instruction executed from EL1 or EL0:

0b00 No effect.

0b01 Inner Shareable.

0b10 Outer Shareable.

0b11 Full system.

This value is combined with the specified level of the barrier held in its instruction, using the same
principles as combining the shareability attributes from two stages of address translation.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0b00 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
D13-3334 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable
domain when executed from EL1:

AArch32: BPIALL, TLBIALL, TLBIMVA, TLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID,
ITLBIALL, ITLBIMVA, ITLBIASID, TLBIMVAA, ICIALLU, TLBIMVAL, TLBIMVAAL.

AArch64: TLBI VMALLE1, TLBI VMALLE1NXS, TLBI VAE1, TLBI VAE1NXS, TLBI
ASIDE1, TLBI ASIDE1NXS, TLBI VAAE1, TLBI VAAE1NXS, TLBI VALE1, TLBI
VALE1NXS, TLBI VAALE1, TLBI VAALE1NXS, IC IALLU, TLBI RVAE1, TLBI RVAE1NXS,
TLBI RVAAE1, TLBI RVAAE1NXS, TLBI RVALE1, TLBI RVALE1NXS, TLBI RVAALE1,
TLBI RVAALE1NXS.

0b0 This field has no effect on the operation of the specified instructions.

0b1 When one of the specified instruction is executed at EL1, the instruction is broadcast
within the Inner Shareable shareability domain.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VSE, bit [8]

Virtual SError interrupt.

0b0 This mechanism is not making a virtual SError interrupt pending.

0b1 A virtual SError interrupt is pending because of this mechanism.

The virtual SError interrupt is enabled only when the value of HCR_EL2.{TGE, AMO} is {0, 1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VI, bit [7]

Virtual IRQ Interrupt.

0b0 This mechanism is not making a virtual IRQ pending.

0b1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is enabled only when the value of HCR_EL2.{TGE, IMO} is {0, 1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VF, bit [6]

Virtual FIQ Interrupt.

0b0 This mechanism is not making a virtual FIQ pending.

0b1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR_EL2.{TGE, FMO} is {0, 1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AMO, bit [5]

Physical SError interrupt routing.

0b0 When executing at Exception levels below EL2, and EL2 is enabled in the current
Security state:

• When the value of HCR_EL2.TGE is 0, Physical SError interrupts are not taken
to EL2.

• When the value of HCR_EL2.TGE is 1, Physical SError interrupts are taken to
EL2 unless they are routed to EL3.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3335
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
• Virtual SError interrupts are disabled.

0b1 When executing at any Exception level, and EL2 is enabled in the current Security state:

• Physical SError interrupts are taken to EL2, unless they are routed to EL3.

• When the value of HCR_EL2.TGE is 0, then virtual SError interrupts are
enabled.

If EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1:

• Regardless of the value of the AMO bit physical asynchronous External aborts and SError
interrupts target EL2 unless they are routed to EL3.

• When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for
all purposes other than a direct read of the value of this bit.

• When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

For more information, see Asynchronous exception routing on page D1-2501.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMO, bit [4]

Physical IRQ Routing.

0b0 When executing at Exception levels below EL2, and EL2 is enabled in the current
Security state:

• When the value of HCR_EL2.TGE is 0, Physical IRQ interrupts are not taken to
EL2.

• When the value of HCR_EL2.TGE is 1, Physical IRQ interrupts are taken to EL2
unless they are routed to EL3.

• Virtual IRQ interrupts are disabled.

0b1 When executing at any Exception level, and EL2 is enabled in the current Security state:

• Physical IRQ interrupts are taken to EL2, unless they are routed to EL3.

• When the value of HCR_EL2.TGE is 0, then Virtual IRQ interrupts are enabled.

If EL2 is enabled in the current Security state, and the value of HCR_EL2.TGE is 1:

• Regardless of the value of the IMO bit, physical IRQ Interrupts target EL2 unless they are
routed to EL3.

• When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for
all purposes other than a direct read of the value of this bit.

• When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

For more information, see Asynchronous exception routing on page D1-2501.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FMO, bit [3]

Physical FIQ Routing.

0b0 When executing at Exception levels below EL2, and EL2 is enabled in the current
Security state:

• When the value of HCR_EL2.TGE is 0, Physical FIQ interrupts are not taken to
EL2.

• When the value of HCR_EL2.TGE is 1, Physical FIQ interrupts are taken to EL2
unless they are routed to EL3.

• Virtual FIQ interrupts are disabled.
D13-3336 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 When executing at any Exception level, and EL2 is enabled in the current Security state:

• Physical FIQ interrupts are taken to EL2, unless they are routed to EL3.

• When HCR_EL2.TGE is 0, then Virtual FIQ interrupts are enabled.

If EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1:

• Regardless of the value of the FMO bit, physical FIQ Interrupts target EL2 unless they are
routed to EL3.

• When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for
all purposes other than a direct read of the value of this bit.

• When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

For more information, see Asynchronous exception routing on page D1-2501.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PTW, bit [2]

Protected Table Walk. In the EL1&0 translation regime, a translation table access made as part of a
stage 1 translation table walk is subject to a stage 2 translation. The combining of the memory type
attributes from the two stages of translation means the access might be made to a type of Device
memory. If this occurs, then the value of this bit determines the behavior:

0b0 The translation table walk occurs as if it is to Normal Non-cacheable memory. This
means it can be made speculatively.

0b1 The memory access generates a stage 2 Permission fault.

This field is permitted to be cached in a TLB.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SWIO, bit [1]

Set/Way Invalidation Override. Causes EL1 execution of the data cache invalidate by set/way
instructions to perform a data cache clean and invalidate by set/way:

0b0 This control has no effect on the operation of data cache invalidate by set/way
instructions.

0b1 Data cache invalidate by set/way instructions perform a data cache clean and invalidate
by set/way.

When the value of this bit is 1:

AArch32: DCISW performs the same invalidation as a DCCISW instruction.

AArch64: DC ISW performs the same invalidation as a DC CISW instruction.

This bit can be implemented as RES1.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VM, bit [0]

Virtualization enable. Enables stage 2 address translation for the EL1&0 translation regime, when
EL2 is enabled in the current Security state.

0b0 EL1&0 stage 2 address translation disabled.

0b1 EL1&0 stage 2 address translation enabled.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3337
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
When the value of this bit is 1, data cache invalidate instructions executed at EL1 perform a data
cache clean and invalidate. For the invalidate by set/way instruction this behavior applies regardless
of the value of the HCR_EL2.SWIO bit.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HCR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x078];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HCR_EL2;
elsif PSTATE.EL == EL3 then
 return HCR_EL2;

MSR HCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x078] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 HCR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b000
D13-3338 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.49 HCRX_EL2, Extended Hypervisor Configuration Register

The HCRX_EL2 characteristics are:

Purpose

Provides configuration controls for virtualization, including defining whether various operations are
trapped to EL2.

Configurations

This register is present only when FEAT_HCX is implemented. Otherwise, direct accesses to
HCRX_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

The bits in this register behave as if they are 0 for all purposes other than direct reads of the register
if:

• EL2 is not enabled in the current Security state.

• SCR_EL3.HXEn is 0.

Attributes

HCRX_EL2 is a 64-bit register.

Field descriptions

Bits [63:5]

Reserved, RES0.

FGTnXS, bit [4]

When FEAT_XS is implemented:

FGTnXS

Determines if the fine-grained traps in HFGITR_EL2 that apply to each of the TLBI maintenance
instructions that are accessible at EL1 also apply to the corresponding TLBI maintenance
instructions with the nXS qualifier.

0b0 The fine-grained trap in the HFGITR_EL2 that applies to a TLBI maintenance
instruction at EL1 also applies to the corresponding TLBI instruction with the nXS
qualifier at EL1.

0b1 The fine-grained trap in the HFGITR_EL2 that applies to a TLBI maintenance
instruction at EL1 does not apply to the corresponding TLBI instruction with the nXS
qualifier at EL1.

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to
0.

Otherwise:

Reserved, RES0.

RES0

63 32

RES0

31 5 4 3 2 1 0

FGTnXS
FnXS

EnAS0
EnALS

EnASR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3339
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
FnXS, bit [3]

When FEAT_XS is implemented:

FnXS

Determines the behavior of TLBI instructions affected by the XS attribute.

This control bit also determines whether an AArch64 DSB instruction behaves as a DSB instruction
with an nXS qualifier when executed at EL0 and EL1.

0b0 This control does not have any effect on the behavior of the TLBI maintenance
instructions.

0b1 A TLBI maintenance instruction without the nXS qualifier executed at EL1 behaves in
the same way as the corresponding TLBI maintenance instruction with the nXS
qualifier.

An AArch64 DSB instruction executed at EL1 or EL0 behaves in the same way as the
corresponding DSB instruction with the nXS qualifier executed at EL1 or EL0.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to
0.

Otherwise:

Reserved, RES0.

EnASR, bit [2]

When FEAT_LS64 is implemented:

EnASR

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV instruction at EL0 or EL1
to EL2.

0b0 Execution of an ST64BV instruction at EL0 is trapped to EL2 if the execution is not
trapped by SCTLR_EL1.EnASR.

Execution of an ST64BV instruction at EL1 is trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code
of 0x0000000.

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to
0.

Otherwise:

Reserved, RES0.

EnALS, bit [1]

When FEAT_LS64 is implemented:

EnALS

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an LD64B or ST64B instruction at EL0
or EL1 to EL2.

0b0 Execution of an LD64B or ST64B instruction at EL0 is trapped to EL2 if the execution
is not trapped by SCTLR_EL1.EnALS.

Execution of an LD64B or ST64B instruction at EL1 is trapped to EL2.

0b1 This control does not cause any instructions to be trapped.
D13-3340 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of 0x0A, with an
ISS code of 0x0000002.

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to
0.

Otherwise:

Reserved, RES0.

EnAS0, bit [0]

When FEAT_LS64 is implemented:

EnAS0

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV0 instruction at EL0 or EL1
to EL2.

0b0 Execution of an ST64BV0 instruction at EL0 is trapped to EL2 if the execution is not
trapped by SCTLR_EL1.EnAS0.

Execution of an ST64BV0 instruction at EL1 is trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code
of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to
0.

Otherwise:

Reserved, RES0.

Accessing HCRX_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HCRX_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0xA0];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.HXEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.HXEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3341
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return HCRX_EL2;
elsif PSTATE.EL == EL3 then
 return HCRX_EL2;

MSR HCRX_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0xA0] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.HXEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.HXEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 HCRX_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 HCRX_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b010
D13-3342 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.50 HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

The HDFGRTR_EL2 characteristics are:

Purpose

Provides controls for traps of MRS and MRC reads of debug, trace, PMU, and Statistical Profiling
System registers.

Configurations

This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to
HDFGRTR_EL2 are UNDEFINED.

Attributes

HDFGRTR_EL2 is a 64-bit register.

Field descriptions

PMBIDR_EL1, bit [63]

When FEAT_SPE is implemented:

PMBIDR_EL1

Trap MRS reads of PMBIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMBIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMBIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

63 62

RES0

61 59 58 57

RES0

56 49 48 47 46 45 44 43 42 41 40

RES0

39 38 37 36 35 34 33 32

PMBIDR_EL1
nPMSNEVFR_EL1

PMCEIDn_EL0
PMUSERENR_EL0

TRCVICTLR
TRCSTATR
TRCSSCSRn

TRCSEQSTR
TRCPRGCTLR

PMSLATFR_EL1
TRC

TRCAUTHSTATUS
TRCAUXCTLR

TRCCLAIM
TRCCNTVRn

TRCID
TRCIMSPECn

RES0
TRCOSLSR

31 30 29 28 27 26 25 24 23 22

RES0

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PMSIRR_EL1
PMSIDR_EL1

PMSICR_EL1
PMSFCR_EL1
PMSEVFR_EL1

PMSCR_EL1
PMBSR_EL1
PMBPTR_EL1
PMBLIMITR_EL1

PMMIR_EL1
PMSELR_EL0

PMOVS
PMINTEN

PMCNTEN
PMCCNTR_EL0

DBGBCRn_EL1
DBGBVRn_EL1

DBGWCRn_EL1
DBGWVRn_EL1

MDSCR_EL1
DBGCLAIM

DBGAUTHSTATUS_EL1
DBGPRCR_EL1

RES0
OSLSR_EL1

OSECCR_EL1
OSDLR_EL1

PMEVCNTRn_EL0
PMEVTYPERn_EL0

PMCCFILTR_EL0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3343
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

nPMSNEVFR_EL1, bit [62]

When FEAT_SPEv1p2 is implemented:

nPMSNEVFR_EL1

Trap MRS reads of PMSNEVFR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMSNEVFR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

0b1 MRS reads of PMSNEVFR_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [61:59]

Reserved, RES0.

PMCEIDn_EL0, bit [58]

When FEAT_PMUv3 is implemented:

PMCEIDn_EL0

Trap MRS reads of PMCEID<n>_EL0 at EL1 and EL0 using AArch64 and MRC reads of PMCEID<n>
at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of PMCEID<n>_EL0 at EL1 and EL0 using AArch64 and MRC reads of
PMCEID<n> at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads of PMCEID<n>_EL0 at EL1 and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18.

• MRC reads of PMCEID<n> at EL0 using AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMUSERENR_EL0, bit [57]

When FEAT_PMUv3 is implemented:

PMUSERENR_EL0
D13-3344 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Trap MRS reads of PMUSERENR_EL0 at EL1 and EL0 using AArch64 and MRC reads of
PMUSERENR at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of PMUSERENR_EL0 at EL1 and EL0 using AArch64 and MRC reads of
PMUSERENR at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads of PMUSERENR_EL0 at EL1 and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18.

• MRC reads of PMUSERENR at EL0 using AArch32 are trapped to EL2 and
reported with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [56:49]

Reserved, RES0.

TRCVICTLR, bit [48]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is
implemented:

TRCVICTLR

Trap MRS reads of TRCVICTLR at EL1 using AArch64 to EL2.

0b0 MRS reads of TRCVICTLR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRCVICTLR at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCSTATR, bit [47]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is
implemented:

TRCSTATR

Trap MRS reads of TRCSTATR at EL1 using AArch64 to EL2.

0b0 MRS reads of TRCSTATR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRCSTATR at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3345
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Reserved, RES0.

TRCSSCSRn, bit [46]

When FEAT_ETMv4 is implemented, TRCSSCSR<n> are implemented and System register access
to the PE Trace Unit registers is implemented:

TRCSSCSRn

Trap MRS reads of TRCSSCSR<n> at EL1 using AArch64 to EL2.

0b0 MRS reads of TRCSSCSR<n> are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRCSSCSR<n> at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

If Single-shot Comparator n is not implementented, a read of TRCSSCSR<n> is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCSEQSTR, bit [45]

When FEAT_ETMv4 is implemented, TRCSEQSTR is implemented and System register access to the
PE Trace Unit registers is implemented:

TRCSEQSTR

Trap MRS reads of TRCSEQSTR at EL1 using AArch64 to EL2.

0b0 MRS reads of TRCSEQSTR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRCSEQSTR at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCPRGCTLR, bit [44]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is
implemented:

TRCPRGCTLR

Trap MRS reads of TRCPRGCTLR at EL1 using AArch64 to EL2.

0b0 MRS reads of TRCPRGCTLR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRCPRGCTLR at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:
D13-3346 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Reserved, RES0.

TRCOSLSR, bit [43]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is
implemented:

TRCOSLSR

Trap MRS reads of TRCOSLSR at EL1 using AArch64 to EL2.

0b0 MRS reads of TRCOSLSR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRCOSLSR at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [42]

Reserved, RES0.

TRCIMSPECn, bit [41]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is
implemented:

TRCIMSPECn

Trap MRS reads of TRCIMSPEC<n>at EL1 using AArch64 to EL2.

0b0 MRS reads of TRCIMSPEC<n> are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRCIMSPEC<n> at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

TRCIMSPEC<1-7> are optional. If TRCIMSPEC<n> is not implemented, a read of
TRCIMSPEC<n> is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCID, bit [40]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is
implemented:

TRCID

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• TRCDEVARCH.

• TRCDEVID.

• TRCIDR<n>.

0b0 MRS reads of the System registers listed above are not trapped by this mechanism.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3347
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [39:38]

Reserved, RES0.

TRCCNTVRn, bit [37]

When FEAT_ETMv4 is implemented, TRCCNTVR<n> are implemented and System register access
to the PE Trace Unit registers is implemented:

TRCCNTVRn

Trap MRS reads of TRCCNTVR<n> at EL1 using AArch64 to EL2.

0b0 MRS reads of TRCCNTVR<n> are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRCCNTVR<n> at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

If Counter n is not implemented, a read of TRCCNTVR<n> is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCCLAIM, bit [36]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is
implemented:

TRCCLAIM

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• TRCCLAIMCLR.

• TRCCLAIMSET.

0b0 MRS reads of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.
D13-3348 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
TRCAUXCTLR, bit [35]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is
implemented:

TRCAUXCTLR

Trap MRS reads of TRCAUXCTLR at EL1 using AArch64 to EL2.

0b0 MRS reads of TRCAUXCTLR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRCAUXCTLR at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCAUTHSTATUS, bit [34]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is
implemented:

TRCAUTHSTATUS

Trap MRS reads of TRCAUTHSTATUS at EL1 using AArch64 to EL2.

0b0 MRS reads of TRCAUTHSTATUS are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRCAUTHSTATUS at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRC, bit [33]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is
implemented:

TRC

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• TRCACATR<n>.

• TRCACVR<n>.

• TRCBBCTLR.

• TRCCCCTLR.

• TRCCIDCCTLR0.

• TRCCIDCCTLR1.

• TRCCIDCVR<n>.

• TRCCNTCTLR<n>.

• TRCCNTRLDVR<n>.

• TRCCONFIGR.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3349
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
• TRCEVENTCTL0R.

• TRCEVENTCTL1R.

• TRCEXTINSELR.

• TRCQCTLR.

• TRCRSCTLR<n>.

• TRCSEQEVR<n>.

• TRCSEQRSTEVR.

• TRCSSCCR<n>.

• TRCSSPCICR<n>.

• TRCSTALLCTLR.

• TRCSYNCPR.

• TRCTRACEIDR.

• TRCTSCTLR.

• TRCVIIECTLR.

• TRCVIPCSSCTLR.

• TRCVISSCTLR.

• TRCVMIDCCTLR0.

• TRCVMIDCCTLR1.

• TRCVMIDCVR<n>.

0b0 MRS reads of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

A read of an unimplemented register is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSLATFR_EL1, bit [32]

When FEAT_SPE is implemented:

PMSLATFR_EL1

Trap MRS reads of PMSLATFR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMSLATFR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMSLATFR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.
D13-3350 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
PMSIRR_EL1, bit [31]

When FEAT_SPE is implemented:

PMSIRR_EL1

Trap MRS reads of PMSIRR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMSIRR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMSIRR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSIDR_EL1, bit [30]

When FEAT_SPE is implemented:

PMSIDR_EL1

Trap MRS reads of PMSIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMSIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMSIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSICR_EL1, bit [29]

When FEAT_SPE is implemented:

PMSICR_EL1

Trap MRS reads of PMSICR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMSICR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMSICR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSFCR_EL1, bit [28]

When FEAT_SPE is implemented:

PMSFCR_EL1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3351
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Trap MRS reads of PMSFCR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMSFCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMSFCR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSEVFR_EL1, bit [27]

When FEAT_SPE is implemented:

PMSEVFR_EL1

Trap MRS reads of PMSEVFR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMSEVFR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMSEVFR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSCR_EL1, bit [26]

When FEAT_SPE is implemented:

PMSCR_EL1

Trap MRS reads of PMSCR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMSCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMSCR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMBSR_EL1, bit [25]

When FEAT_SPE is implemented:

PMBSR_EL1

Trap MRS reads of PMBSR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMBSR_EL1 are not trapped by this mechanism.
D13-3352 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMBSR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMBPTR_EL1, bit [24]

When FEAT_SPE is implemented:

PMBPTR_EL1

Trap MRS reads of PMBPTR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMBPTR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMBPTR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMBLIMITR_EL1, bit [23]

When FEAT_SPE is implemented:

PMBLIMITR_EL1

Trap MRS reads of PMBLIMITR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMBLIMITR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMBLIMITR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMMIR_EL1, bit [22]

When FEAT_PMUv3 is implemented:

PMMIR_EL1

Trap MRS reads of PMMIR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMMIR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMMIR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3353
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [21:20]

Reserved, RES0.

PMSELR_EL0, bit [19]

When FEAT_PMUv3 is implemented:

PMSELR_EL0

Trap MRS reads of PMSELR_EL0 at EL1 and EL0 using AArch64 and MRC reads of PMSELR at EL0
using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of PMSELR_EL0 at EL1 and EL0 using AArch64 and MRC reads of PMSELR
at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads of PMSELR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC reads of PMSELR at EL0 using AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMOVS, bit [18]

When FEAT_PMUv3 is implemented:

PMOVS

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of PMOVSCLR_EL0 and PMOVSSET_EL0.

• At EL0 using AArch32 when EL1 is using AArch64: MRC reads of PMOVSR and
PMOVSSET.

0b0 The operations listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads at EL1 and EL0 using AArch64 of PMOVSCLR_EL0 and
PMOVSSET_EL0 are trapped to EL2 and reported with EC syndrome value
0x18.

• MRC reads at EL0 using AArch32 of PMOVSR and PMOVSSET are trapped to
EL2 and reported with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.
D13-3354 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Reserved, RES0.

PMINTEN, bit [17]

When FEAT_PMUv3 is implemented:

PMINTEN

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• PMINTENCLR_EL1.

• PMINTENSET_EL1.

0b0 MRS reads of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMCNTEN, bit [16]

When FEAT_PMUv3 is implemented:

PMCNTEN

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of PMCNTENCLR_EL0 and
PMCNTENSET_EL0.

• At EL0 using AArch32 when EL1 is using AArch64: MRC reads of PMCNTENCLR and
PMCNTENSET.

0b0 The operations listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads at EL1 and EL0 using AArch64 of PMCNTENCLR_EL0 and
PMCNTENSET_EL0 are trapped to EL2 and reported with EC syndrome value
0x18.

• MRC reads at EL0 using AArch32 of PMCNTENCLR and PMCNTENSET are
trapped to EL2 and reported with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMCCNTR_EL0, bit [15]

When FEAT_PMUv3 is implemented:

PMCCNTR_EL0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3355
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Trap MRS reads of PMCCNTR_EL0 at EL1 and EL0 using AArch64 and MRC and MRRC reads of
PMCCNTR at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of PMCCNTR_EL0 at EL1 and EL0 using AArch64 and MRC and MRRC reads
of PMCCNTR at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads of PMCCNTR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC and MRRC reads of PMCCNTR at EL0 using AArch32 are trapped to EL2 and
reported with EC syndrome value 0x03 (for MRC) or 0x04 (for MRRC).

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMCCFILTR_EL0, bit [14]

When FEAT_PMUv3 is implemented:

PMCCFILTR_EL0

Trap MRS reads of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 and MRC reads of PMCCFILTR
at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 and MRC reads of
PMCCFILTR at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18.

• MRC reads of PMCCFILTR at EL0 using AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

PMCCFILTR_EL0 can also be accessed in AArch64 state using PMXEVTYPER_EL0 when
PMSELR_EL0.SEL == 31, and PMCCFILTR can also be accessed in AArch32 state using
PMXEVTYPER when PMSELR.SEL == 31.

Setting this field to 1 has no effect on accesses to PMXEVTYPER_EL0 and PMXEVTYPER,
regardless of the value of PMSELR_EL0.SEL or PMSELR.SEL.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMEVTYPERn_EL0, bit [13]

When FEAT_PMUv3 is implemented:

PMEVTYPERn_EL0

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of PMEVTYPER<n>_EL0 and
PMXEVTYPER_EL0.
D13-3356 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
• At EL0 using AArch32 when EL1 is using AArch64: MRC reads of PMEVTYPER<n> and
PMXEVTYPER.

0b0 The operations listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads at EL1 and EL0 using AArch64 of PMEVTYPER<n>_EL0 and
PMXEVTYPER_EL0 are trapped to EL2 and reported with EC syndrome value
0x18.

• MRC reads at EL0 using AArch32 of PMEVTYPER<n> and PMXEVTYPER are
trapped to EL2 and reported with EC syndrome value 0x03.

Regardless of the value of this field, for each value n:

• If event counter n is not implemented, the following accesses are UNDEFINED:

— In AArch64 state, a read of PMEVTYPER<n>_EL0, or, if n is not 31, a read of
PMXEVTYPER_EL0 when PMSELR_EL0.SEL == n.

— In AArch32 state, a read of PMEVTYPER<n>, or, if n is not 31, a read of
PMXEVTYPER when PMSELR.SEL == n.

• If event counter n is implemented, n is greater-than-or-equal-to MDCR_EL2.HPMN, and
EL2 is implemented and enabled in the current Security state, the following generate a Trap
exception to EL2 from EL0 or EL1:

— In AArch64 state, a read of PMEVTYPER<n>_EL0, or a read of
PMXEVTYPER_EL0 when PMSELR_EL0.SEL == n, reported with EC syndrome
value 0x18.

— In AArch32 state, a read of PMEVTYPER<n>, or a read of PMXEVTYPER when
PMSELR.SEL == n, reported with EC syndrome value 0x03.

See also HDFGRTR_EL2.PMCCFILTR_EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMEVCNTRn_EL0, bit [12]

When FEAT_PMUv3 is implemented:

PMEVCNTRn_EL0

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of PMEVCNTR<n>_EL0 and
PMXEVCNTR_EL0.

• At EL0 using AArch32 when EL1 is using AArch64: MRC reads of PMEVCNTR<n> and
PMXEVCNTR.

0b0 The operations listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads at EL1 and EL0 using AArch64 of PMEVCNTR<n>_EL0 and
PMXEVCNTR_EL0 are trapped to EL2 and reported with EC syndrome value
0x18.

• MRC reads at EL0 using AArch32 of PMEVCNTR<n> and PMXEVCNTR are
trapped to EL2 and reported with EC syndrome value 0x03.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3357
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Regardless of the value of this field, for each value n:

• If event counter n is not implemented, the following accesses are UNDEFINED:

— In AArch64 state, a read of PMEVCNTR<n>_EL0, or a read of PMXEVCNTR_EL0
when PMSELR_EL0.SEL == n.

— In AArch32 state, a read of PMEVCNTR<n> , or a read of PMXEVCNTR when
PMSELR.SEL == n.

• If event counter n is implemented, n is greater-than-or-equal-to MDCR_EL2.HPMN, and
EL2 is implemented and enabled in the current Security state, the following generate a Trap
exception to EL2 from EL0 or EL1:

— In AArch64 state, a read of PMEVCNTR<n>_EL0, or a read of PMXEVCNTR_EL0
when PMSELR_EL0.SEL == n, reported with EC syndrome value 0x18.

— In AArch32 state, a read of PMEVCNTR<n>, or a read of PMXEVCNTR when
PMSELR.SEL == n, reported with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

OSDLR_EL1, bit [11]

When FEAT_DoubleLock is implemented:

OSDLR_EL1

Trap MRS reads of OSDLR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of OSDLR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of OSDLR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

OSECCR_EL1, bit [10]

Trap MRS reads of OSECCR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of OSECCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of OSECCR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

OSLSR_EL1, bit [9]

Trap MRS reads of OSLSR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of OSLSR_EL1 are not trapped by this mechanism.
D13-3358 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of OSLSR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bit [8]

Reserved, RES0.

DBGPRCR_EL1, bit [7]

Trap MRS reads of DBGPRCR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of DBGPRCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of DBGPRCR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DBGAUTHSTATUS_EL1, bit [6]

Trap MRS reads of DBGAUTHSTATUS_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of DBGAUTHSTATUS_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of DBGAUTHSTATUS_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DBGCLAIM, bit [5]

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• DBGCLAIMCLR_EL1.

• DBGCLAIMSET_EL1.

0b0 MRS reads of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

MDSCR_EL1, bit [4]

Trap MRS reads of MDSCR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of MDSCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of MDSCR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3359
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
DBGWVRn_EL1, bit [3]

Trap MRS reads of DBGWVR<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of DBGWVR<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of DBGWVR<n>_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

If watchpoint n is not implemented, a read of DBGWVR<n>_EL1 is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DBGWCRn_EL1, bit [2]

Trap MRS reads of DBGWCR<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of DBGWCR<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of DBGWCR<n>_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

If watchpoint n is not implemented, a read of DBGWCR<n>_EL1 is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DBGBVRn_EL1, bit [1]

Trap MRS reads of DBGBVR<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of DBGBVR<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of DBGBVR<n>_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

If breakpoint n is not implemented, a read of DBGBVR<n>_EL1 is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DBGBCRn_EL1, bit [0]

Trap MRS reads of DBGBCR<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of DBGBCR<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of DBGBCR<n>_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

If breakpoint n is not implemented, a read of DBGBCR<n>_EL1 is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing HDFGRTR_EL2

Accesses to this register use the following encodings in the System register encoding space:
D13-3360 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, HDFGRTR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x1D0];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return HDFGRTR_EL2;
elsif PSTATE.EL == EL3 then
 return HDFGRTR_EL2;

MSR HDFGRTR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x1D0] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 HDFGRTR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 HDFGRTR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b100

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3361
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.51 HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

The HDFGWTR_EL2 characteristics are:

Purpose

Provides controls for traps of MSR and MCR writes of debug, trace, PMU, and Statistical Profiling
System registers.

Configurations

This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to
HDFGWTR_EL2 are UNDEFINED.

Attributes

HDFGWTR_EL2 is a 64-bit register.

Field descriptions

Bit [63]

Reserved, RES0.

nPMSNEVFR_EL1, bit [62]

When FEAT_SPEv1p2 is implemented:

nPMSNEVFR_EL1

63 62

RES0

61 58 57

RES0

56 50 49 48 47 46 45 44 43 42 41

RES0

40 38 37 36 35 34 33 32

RES0
nPMSNEVFR_EL1

PMUSERENR_EL0
TRFCR_EL1

TRCVICTLR
RES0

TRCSSCSRn
TRCSEQSTR
TRCPRGCTLR

PMSLATFR_EL1
TRC

RES0
TRCAUXCTLR

TRCCLAIM
TRCCNTVRn

TRCIMSPECn
TRCOSLAR

RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PMSIRR_EL1
RES0

PMSICR_EL1
PMSFCR_EL1
PMSEVFR_EL1

PMSCR_EL1
PMBSR_EL1
PMBPTR_EL1
PMBLIMITR_EL1

RES0
PMCR_EL0
PMSWINC_EL0

PMSELR_EL0
PMOVS
PMINTEN

PMCNTEN

DBGBCRn_EL1
DBGBVRn_EL1

DBGWCRn_EL1
DBGWVRn_EL1

MDSCR_EL1
DBGCLAIM

RES0
DBGPRCR_EL1

OSLAR_EL1
RES0

OSECCR_EL1
OSDLR_EL1

PMEVCNTRn_EL0
PMEVTYPERn_EL0

PMCCFILTR_EL0
PMCCNTR_EL0
D13-3362 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Trap MSR writes of PMSNEVFR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMSNEVFR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

0b1 MSR writes of PMSNEVFR_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [61:58]

Reserved, RES0.

PMUSERENR_EL0, bit [57]

When FEAT_PMUv3 is implemented:

PMUSERENR_EL0

Trap MSR writes of PMUSERENR_EL0 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMUSERENR_EL0 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMUSERENR_EL0 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [56:50]

Reserved, RES0.

TRFCR_EL1, bit [49]

When FEAT_TRF is implemented:

TRFCR_EL1

Trap MSR writes of TRFCR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of TRFCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRFCR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3363
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
TRCVICTLR, bit [48]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is
implemented:

TRCVICTLR

Trap MSR writes of TRCVICTLR at EL1 using AArch64 to EL2.

0b0 MSR writes of TRCVICTLR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRCVICTLR at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [47]

Reserved, RES0.

TRCSSCSRn, bit [46]

When FEAT_ETMv4 is implemented, TRCSSCSR<n> are implemented and System register access
to the PE Trace Unit registers is implemented:

TRCSSCSRn

Trap MSR writes of TRCSSCSR<n> at EL1 using AArch64 to EL2.

0b0 MSR writes of TRCSSCSR<n> are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRCSSCSR<n> at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

If Single-shot Comparator n is not implementented, a write of TRCSSCSR<n> is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCSEQSTR, bit [45]

When FEAT_ETMv4 is implemented, TRCSEQSTR is implemented and System register access to the
PE Trace Unit registers is implemented:

TRCSEQSTR

Trap MSR writes of TRCSEQSTR at EL1 using AArch64 to EL2.

0b0 MSR writes of TRCSEQSTR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRCSEQSTR at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.
D13-3364 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Reserved, RES0.

TRCPRGCTLR, bit [44]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is
implemented:

TRCPRGCTLR

Trap MSR writes of TRCPRGCTLR at EL1 using AArch64 to EL2.

0b0 MSR writes of TRCPRGCTLR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRCPRGCTLR at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [43]

Reserved, RES0.

TRCOSLAR, bit [42]

When System register access to the PE Trace Unit registers is implemented and FEAT_ETMv4 is
implemented:

TRCOSLAR

Trap MSR writes of TRCOSLAR at EL1 using AArch64 to EL2.

0b0 MSR writes of TRCOSLAR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRCOSLAR at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCIMSPECn, bit [41]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is
implemented:

TRCIMSPECn

Trap MSR writes of TRCIMSPEC<n> at EL1 using AArch64 to EL2.

0b0 MSR writes of TRCIMSPEC<n> are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRCIMSPEC<n> at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3365
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
TRCIMSPEC<1-7> are optional. If TRCIMSPEC<n> is not implemented, a write of
TRCIMSPEC<n> is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [40:38]

Reserved, RES0.

TRCCNTVRn, bit [37]

When FEAT_ETMv4 is implemented, TRCCNTVR<n> are implemented and System register access
to the PE Trace Unit registers is implemented:

TRCCNTVRn

Trap MSR writes of TRCCNTVR<n> at EL1 using AArch64 to EL2.

0b0 MSR writes of TRCCNTVR<n> are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRCCNTVR<n> at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

If Counter n is not implemented, a write of TRCCNTVR<n> is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCCLAIM, bit [36]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is
implemented:

TRCCLAIM

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• TRCCLAIMCLR.

• TRCCLAIMSET.

0b0 MSR writes of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.
D13-3366 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
TRCAUXCTLR, bit [35]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is
implemented:

TRCAUXCTLR

Trap MSR writes of TRCAUXCTLR at EL1 using AArch64 to EL2.

0b0 MSR writes of TRCAUXCTLR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRCAUXCTLR at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [34]

Reserved, RES0.

TRC, bit [33]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is
implemented:

TRC

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• TRCACATR<n>.

• TRCACVR<n>.

• TRCBBCTLR.

• TRCCCCTLR.

• TRCCIDCCTLR0.

• TRCCIDCCTLR1.

• TRCCIDCVR<n>.

• TRCCNTCTLR<n>.

• TRCCNTRLDVR<n>.

• TRCCONFIGR.

• TRCEVENTCTL0R.

• TRCEVENTCTL1R.

• TRCEXTINSELR.

• TRCQCTLR.

• TRCRSCTLR<n>.

• TRCSEQEVR<n>.

• TRCSEQRSTEVR.

• TRCSSCCR<n>.

• TRCSSPCICR<n>.

• TRCSTALLCTLR.

• TRCSYNCPR.

• TRCTRACEIDR.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3367
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
• TRCTSCTLR

• TRCVIIECTLR.

• TRCVIPCSSCTLR.

• TRCVISSCTLR.

• TRCVMIDCCTLR0.

• TRCVMIDCCTLR1.

• TRCVMIDCVR<n>.

0b0 MSR writes of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

A write of an unimplemented register is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSLATFR_EL1, bit [32]

When FEAT_SPE is implemented:

PMSLATFR_EL1

Trap MSR writes of PMSLATFR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMSLATFR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMSLATFR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSIRR_EL1, bit [31]

When FEAT_SPE is implemented:

PMSIRR_EL1

Trap MSR writes of PMSIRR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMSIRR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMSIRR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.
D13-3368 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Bit [30]

Reserved, RES0.

PMSICR_EL1, bit [29]

When FEAT_SPE is implemented:

PMSICR_EL1

Trap MSR writes of PMSICR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMSICR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMSICR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSFCR_EL1, bit [28]

When FEAT_SPE is implemented:

PMSFCR_EL1

Trap MSR writes of PMSFCR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMSFCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMSFCR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSEVFR_EL1, bit [27]

When FEAT_SPE is implemented:

PMSEVFR_EL1

Trap MSR writes of PMSEVFR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMSEVFR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMSEVFR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3369
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
PMSCR_EL1, bit [26]

When FEAT_SPE is implemented:

PMSCR_EL1

Trap MSR writes of PMSCR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMSCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMSCR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMBSR_EL1, bit [25]

When FEAT_SPE is implemented:

PMBSR_EL1

Trap MSR writes of PMBSR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMBSR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMBSR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMBPTR_EL1, bit [24]

When FEAT_SPE is implemented:

PMBPTR_EL1

Trap MSR writes of PMBPTR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMBPTR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMBPTR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMBLIMITR_EL1, bit [23]

When FEAT_SPE is implemented:

PMBLIMITR_EL1
D13-3370 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Trap MSR writes of PMBLIMITR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMBLIMITR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMBLIMITR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [22]

Reserved, RES0.

PMCR_EL0, bit [21]

When FEAT_PMUv3 is implemented:

PMCR_EL0

Trap MSR writes of PMCR_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMCR at EL0
using AArch32 when EL1 is using AArch64 to EL2.

0b0 MSR writes of PMCR_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMCR at
EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the write generates a higher priority exception:

• MSR writes of PMCR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MCR writes of PMCR at EL0 using AArch32 are trapped to EL2 and reported with
EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSWINC_EL0, bit [20]

When FEAT_PMUv3 is implemented:

PMSWINC_EL0

Trap MSR writes of PMSWINC_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMSWINC
at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MSR writes of PMSWINC_EL0 at EL1 and EL0 using AArch64 and MCR writes of
PMSWINC at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the write generates a higher priority exception:

• MSR writes of PMSWINC_EL0 at EL1 and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18.

• MCR writes of PMSWINC at EL0 using AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3371
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSELR_EL0, bit [19]

When FEAT_PMUv3 is implemented:

PMSELR_EL0

Trap MSR writes of PMSELR_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMSELR at
EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MSR writes of PMSELR_EL0 at EL1 and EL0 using AArch64 and MCR writes of
PMSELR at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the write generates a higher priority exception:

• MSR writes of PMSELR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MCR writes of PMSELR at EL0 using AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMOVS, bit [18]

When FEAT_PMUv3 is implemented:

PMOVS

Trap MSR writes and MCR writes of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MSR writes of PMOVSCLR_EL0 and PMOVSSET_EL0.

• At EL0 using AArch32 when EL1 is using AArch64: MCR writes of PMOVSR and
PMOVSSET.

0b0 The operations listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the write generates a higher priority exception:

• MSR writes at EL1 and EL0 using AArch64 of PMOVSCLR_EL0 and
PMOVSSET_EL0 are trapped to EL2 and reported with EC syndrome value
0x18.

• MCR writes at EL0 using AArch32 of PMOVSR and PMOVSSET are trapped to
EL2 and reported with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.
D13-3372 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
PMINTEN, bit [17]

When FEAT_PMUv3 is implemented:

PMINTEN

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• PMINTENCLR_EL1.

• PMINTENSET_EL1.

0b0 MSR writes of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMCNTEN, bit [16]

When FEAT_PMUv3 is implemented:

PMCNTEN

Trap MSR writes and MCR writes of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MSR writes of PMCNTENCLR_EL0 and
PMCNTENSET_EL0.

• At EL0 using AArch32 when EL1 is using AArch64: MCR writes of PMCNTENCLR and
PMCNTENSET.

0b0 The operations listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the write generates a higher priority exception:

• MSR writes at EL1 and EL0 using AArch64 of PMCNTENCLR_EL0 and
PMCNTENSET_EL0 are trapped to EL2 and reported with EC syndrome value
0x18.

• MCR writes at EL0 using AArch32 of PMCNTENCLR and PMCNTENSET are
trapped to EL2 and reported with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMCCNTR_EL0, bit [15]

When FEAT_PMUv3 is implemented:

PMCCNTR_EL0

Trap MSR writes of PMCCNTR_EL0 at EL1 and EL0 using AArch64 and MCR and MCRR writes of
PMCCNTR at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MSR writes of PMCCNTR_EL0 at EL1 and EL0 using AArch64 and MCR and MCRR writes
of PMCCNTR at EL0 using AArch32 are not trapped by this mechanism.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3373
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the write generates a higher priority exception:

• MSR writes of PMCCNTR_EL0 at EL1 and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18.

• MCR and MCRR writes of PMCCNTR at EL0 using AArch32 are trapped to EL2 and
reported with EC syndrome value 0x03 (for MCR) or 0x04 (for MCRR).

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMCCFILTR_EL0, bit [14]

When FEAT_PMUv3 is implemented:

PMCCFILTR_EL0

Trap MSR writes of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 and MCR writes of
PMCCFILTR at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MSR writes of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 and MCR writes of
PMCCFILTR at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the write generates a higher priority exception:

• MSR writes of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18.

• MCR writes of PMCCFILTR at EL0 using AArch32 are trapped to EL2 and
reported with EC syndrome value 0x03.

PMCCFILTR_EL0 can also be accessed in AArch64 state using PMXEVTYPER_EL0 when
PMSELR_EL0.SEL == 31, and PMCCFILTR can also be accessed in AArch32 state using
PMXEVTYPER when PMSELR.SEL == 31.

Setting this field to 1 has no effect on accesses to PMXEVTYPER_EL0 and PMXEVTYPER,
regardless of the value of PMSELR_EL0.SEL or PMSELR.SEL.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMEVTYPERn_EL0, bit [13]

When FEAT_PMUv3 is implemented:

PMEVTYPERn_EL0

Trap MSR writes and MCR writes of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MSR writes of PMEVTYPER<n>_EL0 and
PMXEVTYPER_EL0.

• At EL0 using AArch32 when EL1 is using AArch64: MCR writes of PMEVTYPER<n> and
PMXEVTYPER.

0b0 The operations listed above are not trapped by this mechanism.
D13-3374 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the write generates a higher priority exception:

• MSR writes at EL1 and EL0 using AArch64 of PMEVTYPER<n>_EL0 and
PMXEVTYPER_EL0 are trapped to EL2 and reported with EC syndrome value
0x18.

• MCR writes at EL0 using AArch32 of PMEVTYPER<n> and PMXEVTYPER are
trapped to EL2 and reported with EC syndrome value 0x03.

Regardless of the value of this field, for each value n:

• If event counter n is not implemented, the following accesses are UNDEFINED:

— In AArch64 state, a write of PMEVTYPER<n>_EL0, or, if n is not 31, a write of
PMXEVTYPER_EL0 when PMSELR_EL0.SEL == n.

— In AArch32 state, a write of PMEVTYPER<n>, or, if n is not 31, a write of
PMXEVTYPER when PMSELR.SEL == n.

• If event counter n is implemented, n is greater-than-or-equal-to MDCR_EL2.HPMN, and
EL2 is implemented and enabled in the current Security state, the following generate a Trap
exception to EL2 from EL0 or EL1:

— In AArch64 state, a write of PMEVTYPER<n>_EL0, or a write of
PMXEVTYPER_EL0 when PMSELR_EL0.SEL == n, reported with EC syndrome
value 0x18.

— In AArch32 state, a write of PMEVTYPER<n>, or a write of PMXEVTYPER when
PMSELR.SEL == n, reported with EC syndrome value 0x03.

See also HDFGWTR_EL2.PMCCFILTR_EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMEVCNTRn_EL0, bit [12]

When FEAT_PMUv3 is implemented:

PMEVCNTRn_EL0

Trap MSR writes and MCR writes of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MSR writes of PMEVCNTR<n>_EL0 and
PMXEVCNTR_EL0.

• At EL0 using AArch32 when EL1 is using AArch64: MCR writes of PMEVCNTR<n> and
PMXEVCNTR.

0b0 The operations listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the write generates a higher priority exception:

• MSR writes at EL1 and EL0 using AArch64 of PMEVCNTR<n>_EL0 and
PMXEVCNTR_EL0 are trapped to EL2 and reported with EC syndrome value
0x18.

• MCR writes at EL0 using AArch32 of PMEVCNTR<n> and PMXEVCNTR are
trapped to EL2 and reported with EC syndrome value 0x03.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3375
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Regardless of the value of this field, for each value n:

• If event counter n is not implemented, the following accesses are UNDEFINED:

— In AArch64 state, a write of PMEVCNTR<n>_EL0, or a write of
PMXEVCNTR_EL0 when PMSELR_EL0.SEL == n.

— In AArch32 state, a write of PMEVCNTR<n> , or a write of PMXEVCNTR when
PMSELR.SEL == n.

• If event counter n is implemented, n is greater-than-or-equal-to MDCR_EL2.HPMN, and
EL2 is implemented and enabled in the current Security state, the following generate a Trap
exception to EL2 from EL0 or EL1:

— In AArch64 state, a write of PMEVCNTR<n>_EL0, or a write of
PMXEVCNTR_EL0 when PMSELR_EL0.SEL == n, reported with EC syndrome
value 0x18.

— In AArch32 state, a write of PMEVCNTR<n>, or a write of PMXEVCNTR when
PMSELR.SEL == n, reported with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

OSDLR_EL1, bit [11]

When FEAT_DoubleLock is implemented:

OSDLR_EL1

Trap MSR writes of OSDLR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of OSDLR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of OSDLR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

OSECCR_EL1, bit [10]

Trap MSR writes of OSECCR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of OSECCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of OSECCR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bit [9]

Reserved, RES0.
D13-3376 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
OSLAR_EL1, bit [8]

Trap MSR writes of OSLAR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of OSLAR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of OSLAR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DBGPRCR_EL1, bit [7]

Trap MSR writes of DBGPRCR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of DBGPRCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of DBGPRCR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bit [6]

Reserved, RES0.

DBGCLAIM, bit [5]

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• DBGCLAIMCLR_EL1.

• DBGCLAIMSET_EL1.

0b0 MSR writes of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

MDSCR_EL1, bit [4]

Trap MSR writes of MDSCR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of MDSCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of MDSCR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DBGWVRn_EL1, bit [3]

Trap MSR writes of DBGWVR<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of DBGWVR<n>_EL1 are not trapped by this mechanism.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3377
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of DBGWVR<n>_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

If watchpoint n is not implemented, a write of DBGWVR<n>_EL1 is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DBGWCRn_EL1, bit [2]

Trap MSR writes of DBGWCR<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of DBGWCR<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of DBGWCR<n>_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

If watchpoint n is not implemented, a write of DBGWCR<n>_EL1 is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DBGBVRn_EL1, bit [1]

Trap MSR writes of DBGBVR<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of DBGBVR<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of DBGBVR<n>_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

If breakpoint n is not implemented, a write of DBGBVR<n>_EL1 is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DBGBCRn_EL1, bit [0]

Trap MSR writes of DBGBCR<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of DBGBCR<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of DBGBCR<n>_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

If breakpoint n is not implemented, a write of DBGBCR<n>_EL1 is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing HDFGWTR_EL2

Accesses to this register use the following encodings in the System register encoding space:
D13-3378 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, HDFGWTR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x1D8];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return HDFGWTR_EL2;
elsif PSTATE.EL == EL3 then
 return HDFGWTR_EL2;

MSR HDFGWTR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x1D8] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 HDFGWTR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 HDFGWTR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b101

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3379
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.52 HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

The HFGITR_EL2 characteristics are:

Purpose

Provides instruction trap controls.

Configurations

This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to
HFGITR_EL2 are UNDEFINED.

Attributes

HFGITR_EL2 is a 64-bit register.

Field descriptions

Bits [63:55]

Reserved, RES0.

DCCVAC, bit [54]

Trap execution of multiple instructions. Enables a trap on execution at EL1 and EL0 using AArch64
of any of the following AArch64 instructions to EL2:

• DC CVAC.

RES0

63 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

DCCVAC
SVC_EL1

SVC_EL0
ERET
CPPRCTX

DVPRCTX
CFPRCTX
TLBIVAALE1

TLBIVALE1
TLBIVAAE1
TLBIASIDE1

TLBIVALE1IS
TLBIVAALE1IS

TLBIRVAE1IS
TLBIRVAAE1IS

TLBIRVALE1IS
TLBIRVAALE1IS

TLBIRVAE1
TLBIRVAAE1

TLBIRVALE1
TLBIRVAALE1

TLBIVMALLE1
TLBIVAE1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLBIVAAE1IS
TLBIASIDE1IS

TLBIVAE1IS
TLBIVMALLE1IS

TLBIRVAALE1OS
TLBIRVALE1OS

TLBIRVAAE1OS
TLBIRVAE1OS
TLBIVAALE1OS

TLBIVALE1OS
TLBIVAAE1OS
TLBIASIDE1OS

TLBIVAE1OS
TLBIVMALLE1OS

ATS1E1WP
ATS1E1RP

ICIALLUIS
ICIALLU

ICIVAU
DCIVAC

DCISW
DCCSW

DCCISW
DCCVAU

DCCVAP
DCCVADP

DCCIVAC
DCZVA

ATS1E1R
ATS1E1W

ATS1E0R
ATS1E0W
D13-3380 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
• DC CGVAC, if FEAT_MTE is implemented.

• DC CGDVAC, if FEAT_MTE is implemented.

0b0 Execution of the instructions listed above is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then
execution at EL1 and EL0 using AArch64 of any of the instructions listed above is
trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

SVC_EL1, bit [53]

Trap execution of SVC at EL1 using AArch64 to EL2.

0b0 Execution of SVC is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of SVC at EL1 using AArch64
is trapped to EL2 and reported with EC syndrome value 0x15, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

SVC_EL0, bit [52]

Trap execution of SVC at EL0 using AArch64 and execution of SVC at EL0 using AArch32 when EL1
is using AArch64 to EL2.

0b0 Execution of SVC at EL0 using AArch64 and execution of SVC at EL0 using AArch32 is
not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the instruction generates a higher priority
exception:

• Execution of SVC at EL0 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x15.

• Execution of SVC at EL0 using AArch32 is trapped to EL2 and reported with EC
syndrome value 0x11.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ERET, bit [51]

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any
of the following AArch64 instructions to EL2:

• ERET.

• ERETAA, if FEAT_PAuth is implemented.

• ERETAB, if FEAT_PAuth is implemented.

0b0 Execution of the instructions listed above is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution at EL1 using AArch64 of any
of the instructions listed above is trapped to EL2 and reported with EC syndrome value
0x1A, unless the instruction generates a higher priority exception.

If EL2 is implemented and enabled in the current Security state, HCR_EL2.API == 0, and this field
enables a fine-grained trap on the instruction, then execution at EL1 using AArch64 of ERETAA or
ERETAB instructions is trapped to EL2 and reported with EC syndrome value 0x1A with its associated
ISS field, as the fine-grained trap has higher priority than the trap enabled by HCR_EL2.API == 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3381
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

CPPRCTX, bit [50]

When FEAT_SPECRES is implemented:

CPPRCTX

Trap execution of CPP RCTX at EL1 and EL0 using AArch64 and execution of CPPRCTX at EL0
using AArch32 when EL1 is using AArch64 to EL2.

0b0 Execution of CPP RCTX at EL1 and EL0 using AArch64 and execution of CPPRCTX
at EL0 using AArch32 is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the instruction generates a higher priority
exception:

• Execution of CPP RCTX at EL1 and EL0 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18.

• Execution of CPPRCTX at EL0 using AArch32 is trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

DVPRCTX, bit [49]

When FEAT_SPECRES is implemented:

DVPRCTX

Trap execution of DVP RCTX at EL1 and EL0 using AArch64 and execution of DVPRCTX at EL0
using AArch32 when EL1 is using AArch64 to EL2.

0b0 Execution of DVP RCTX at EL1 and EL0 using AArch64 and execution of DVPRCTX
at EL0 using AArch32 is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the instruction generates a higher priority
exception:

• Execution of DVP RCTX at EL1 and EL0 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18.

• Execution of DVPRCTX at EL0 using AArch32 is trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

CFPRCTX, bit [48]

When FEAT_SPECRES is implemented:

CFPRCTX
D13-3382 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Trap execution of CFP RCTX at EL1 and EL0 using AArch64 and execution of CFPRCTX at EL0
using AArch32 when EL1 is using AArch64 to EL2.

0b0 Execution of CFP RCTX at EL1 and EL0 using AArch64 and execution of CFPRCTX
at EL0 using AArch32 is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the instruction generates a higher priority
exception:

• Execution of CFP RCTX at EL1 and EL0 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18.

• Execution of CFPRCTX at EL0 using AArch32 is trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVAALE1, bit [47]

Trap execution of TLBI VAALE1, TLBI VAALE1NXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VAALE1NXS.

0b0 Execution of TLBI VAALE1, TLBI VAALE1NXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VAALE1, TLBI
VAALE1NXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVALE1, bit [46]

Trap execution of TLBI VALE1, TLBI VALE1NXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VALE1NXS.

0b0 Execution of TLBI VALE1, TLBI VALE1NXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VALE1, TLBI
VALE1NXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVAAE1, bit [45]

Trap execution of TLBI VAAE1, TLBI VAAE1NXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VAAE1NXS.

0b0 Execution of TLBI VAAE1, TLBI VAAE1NXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VAAE1, TLBI
VAAE1NXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3383
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIASIDE1, bit [44]

Trap execution of TLBI ASIDE1, TLBI ASIDE1NXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
ASIDE1NXS.

0b0 Execution of TLBI ASIDE1, TLBI ASIDE1NXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI ASIDE1, TLBI
ASIDE1NXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVAE1, bit [43]

Trap execution of TLBI VAE1, TLBI VAE1NXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VAE1NXS.

0b0 Execution of TLBI VAE1, TLBI VAE1NXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VAE1, TLBI
VAE1NXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVMALLE1, bit [42]

Trap execution of TLBI VMALLE1, TLBI VMALLE1NXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VMALLE1NXS.

0b0 Execution of TLBI VMALLE1, TLBI VMALLE1NXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VMALLE1, TLBI
VMALLE1NXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIRVAALE1, bit [41]

When FEAT_TLBIRANGE is implemented:

TLBIRVAALE1

Trap execution of TLBI RVAALE1, TLBI RVAALE1NXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVAALE1NXS.

0b0 Execution of TLBI RVAALE1, TLBI RVAALE1NXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVAALE1, TLBI
RVAALE1NXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.
D13-3384 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVALE1, bit [40]

When FEAT_TLBIRANGE is implemented:

TLBIRVALE1

Trap execution of TLBI RVALE1, TLBI RVALE1NXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVALE1NXS.

0b0 Execution of TLBI RVALE1, TLBI RVALE1NXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVALE1, TLBI
RVALE1NXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAAE1, bit [39]

When FEAT_TLBIRANGE is implemented:

TLBIRVAAE1

Trap execution of TLBI RVAAE1, TLBI RVAAE1NXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVAAE1NXS.

0b0 Execution of TLBI RVAAE1, TLBI RVAAE1NXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVAAE1, TLBI
RVAAE1NXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAE1, bit [38]

When FEAT_TLBIRANGE is implemented:

TLBIRVAE1

Trap execution of TLBI RVAE1, TLBI RVAE1NXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVAE1NXS.

0b0 Execution of TLBI RVAE1, TLBI RVAE1NXS is not trapped by this mechanism.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3385
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVAE1, TLBI
RVAE1NXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAALE1IS, bit [37]

When FEAT_TLBIRANGE is implemented:

TLBIRVAALE1IS

Trap execution of TLBI RVAALE1IS, TLBI RVAALE1ISNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVAALE1ISNXS.

0b0 Execution of TLBI RVAALE1IS, TLBI RVAALE1ISNXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVAALE1IS, TLBI
RVAALE1ISNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVALE1IS, bit [36]

When FEAT_TLBIRANGE is implemented:

TLBIRVALE1IS

Trap execution of TLBI RVALE1IS, TLBI RVALE1ISNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVALE1ISNXS.

0b0 Execution of TLBI RVALE1IS, TLBI RVALE1ISNXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVALE1IS, TLBI
RVALE1ISNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAAE1IS, bit [35]

When FEAT_TLBIRANGE is implemented:

TLBIRVAAE1IS
D13-3386 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Trap execution of TLBI RVAAE1IS, TLBI RVAAE1ISNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVAAE1ISNXS.

0b0 Execution of TLBI RVAAE1IS, TLBI RVAAE1ISNXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVAAE1IS, TLBI
RVAAE1ISNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAE1IS, bit [34]

When FEAT_TLBIRANGE is implemented:

TLBIRVAE1IS

Trap execution of TLBI RVAE1IS, TLBI RVAE1ISNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVAE1ISNXS.

0b0 Execution of TLBI RVAE1IS, TLBI RVAE1ISNXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVAE1IS, TLBI
RVAE1ISNXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVAALE1IS, bit [33]

Trap execution of TLBI VAALE1IS, TLBI VAALE1ISNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VAALE1ISNXS.

0b0 Execution of TLBI VAALE1IS, TLBI VAALE1ISNXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VAALE1IS, TLBI
VAALE1ISNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVALE1IS, bit [32]

Trap execution of TLBI VALE1IS, TLBI VALE1ISNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VALE1ISNXS.

0b0 Execution of TLBI VALE1IS, TLBI VALE1ISNXS is not trapped by this mechanism.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3387
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VALE1IS, TLBI
VALE1ISNXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVAAE1IS, bit [31]

Trap execution of TLBI VAAE1IS, TLBI VAAE1ISNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VAAE1ISNXS.

0b0 Execution of TLBI VAAE1IS, TLBI VAAE1ISNXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VAAE1IS, TLBI
VAAE1ISNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIASIDE1IS, bit [30]

Trap execution of TLBI ASIDE1IS, TLBI ASIDE1ISNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
ASIDE1ISNXS.

0b0 Execution of TLBI ASIDE1IS, TLBI ASIDE1ISNXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI ASIDE1IS, TLBI
ASIDE1ISNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVAE1IS, bit [29]

Trap execution of TLBI VAE1IS, TLBI VAE1ISNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VAE1ISNXS.

0b0 Execution of TLBI VAE1IS, TLBI VAE1ISNXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VAE1IS, TLBI
VAE1ISNXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVMALLE1IS, bit [28]

Trap execution of TLBI VMALLE1IS, TLBI VMALLE1ISNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VMALLE1ISNXS.

0b0 Execution of TLBI VMALLE1IS, TLBI VMALLE1ISNXS is not trapped by this
mechanism.
D13-3388 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VMALLE1IS, TLBI
VMALLE1ISNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIRVAALE1OS, bit [27]

When FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented:

TLBIRVAALE1OS

Trap execution of TLBI RVAALE1OS, TLBI RVAALE1OSNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVAALE1OSNXS.

0b0 Execution of TLBI RVAALE1OS, TLBI RVAALE1OSNXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVAALE1OS, TLBI
RVAALE1OSNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVALE1OS, bit [26]

When FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented:

TLBIRVALE1OS

Trap execution of TLBI RVALE1OS, TLBI RVALE1OSNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVALE1OSNXS.

0b0 Execution of TLBI RVALE1OS, TLBI RVALE1OSNXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVALE1OS, TLBI
RVALE1OSNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAAE1OS, bit [25]

When FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented:

TLBIRVAAE1OS

Trap execution of TLBI RVAAE1OS, TLBI RVAAE1OSNXS at EL1 using AArch64 to EL2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3389
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVAAE1OSNXS.

0b0 Execution of TLBI RVAAE1OS, TLBI RVAAE1OSNXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVAAE1OS, TLBI
RVAAE1OSNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAE1OS, bit [24]

When FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented:

TLBIRVAE1OS

Trap execution of TLBI RVAE1OS, TLBI RVAE1OSNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVAE1OSNXS.

0b0 Execution of TLBI RVAE1OS, TLBI RVAE1OSNXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVAE1OS, TLBI
RVAE1OSNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVAALE1OS, bit [23]

When FEAT_TLBIOS is implemented:

TLBIVAALE1OS

Trap execution of TLBI VAALE1OS, TLBI VAALE1OSNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VAALE1OSNXS.

0b0 Execution of TLBI VAALE1OS, TLBI VAALE1OSNXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VAALE1OS, TLBI
VAALE1OSNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.
D13-3390 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
TLBIVALE1OS, bit [22]

When FEAT_TLBIOS is implemented:

TLBIVALE1OS

Trap execution of TLBI VALE1OS, TLBI VALE1OSNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VALE1OSNXS.

0b0 Execution of TLBI VALE1OS, TLBI VALE1OSNXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VALE1OS, TLBI
VALE1OSNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVAAE1OS, bit [21]

When FEAT_TLBIOS is implemented:

TLBIVAAE1OS

Trap execution of TLBI VAAE1OS, TLBI VAAE1OSNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VAAE1OSNXS.

0b0 Execution of TLBI VAAE1OS, TLBI VAAE1OSNXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VAAE1OS, TLBI
VAAE1OSNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIASIDE1OS, bit [20]

When FEAT_TLBIOS is implemented:

TLBIASIDE1OS

Trap execution of TLBI ASIDE1OS, TLBI ASIDE1OSNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
ASIDE1OSNXS.

0b0 Execution of TLBI ASIDE1OS, TLBI ASIDE1OSNXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI ASIDE1OS, TLBI
ASIDE1OSNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3391
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Reserved, RES0.

TLBIVAE1OS, bit [19]

When FEAT_TLBIOS is implemented:

TLBIVAE1OS

Trap execution of TLBI VAE1OS, TLBI VAE1OSNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VAE1OSNXS.

0b0 Execution of TLBI VAE1OS, TLBI VAE1OSNXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VAE1OS, TLBI
VAE1OSNXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVMALLE1OS, bit [18]

When FEAT_TLBIOS is implemented:

TLBIVMALLE1OS

Trap execution of TLBI VMALLE1OS, TLBI VMALLE1OSNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VMALLE1OSNXS.

0b0 Execution of TLBI VMALLE1OS, TLBI VMALLE1OSNXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VMALLE1OS, TLBI
VMALLE1OSNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ATS1E1WP, bit [17]

When FEAT_PAN2 is implemented:

ATS1E1WP

Trap execution of AT S1E1WP at EL1 using AArch64 to EL2.

0b0 Execution of AT S1E1WP is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of AT S1E1WP at EL1 using
AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.
D13-3392 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ATS1E1RP, bit [16]

When FEAT_PAN2 is implemented:

ATS1E1RP

Trap execution of AT S1E1RP at EL1 using AArch64 to EL2.

0b0 Execution of AT S1E1RP is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of AT S1E1RP at EL1 using
AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ATS1E0W, bit [15]

Trap execution of AT S1E0W at EL1 using AArch64 to EL2.

0b0 Execution of AT S1E0W is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of AT S1E0W at EL1 using
AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ATS1E0R, bit [14]

Trap execution of AT S1E0R at EL1 using AArch64 to EL2.

0b0 Execution of AT S1E0R is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of AT S1E0R at EL1 using
AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ATS1E1W, bit [13]

Trap execution of AT S1E1W at EL1 using AArch64 to EL2.

0b0 Execution of AT S1E1W is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of AT S1E1W at EL1 using
AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3393
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
ATS1E1R, bit [12]

Trap execution of AT S1E1R at EL1 using AArch64 to EL2.

0b0 Execution of AT S1E1R is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of AT S1E1R at EL1 using
AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCZVA, bit [11]

Trap execution of multiple instructions. Enables a trap on execution at EL1 and EL0 using AArch64
of any of the following AArch64 instructions to EL2:

• DC ZVA.

• DC GVA, if FEAT_MTE is implemented.

• DC GZVA, if FEAT_MTE is implemented.

Note

Unlike HCR_EL2.TDZ, this field has no effect on DCZID_EL0.DZP.

0b0 Execution of the instructions listed above is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then
execution at EL1 and EL0 using AArch64 of any of the instructions listed above is
trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCCIVAC, bit [10]

Trap execution of multiple instructions. Enables a trap on execution at EL1 and EL0 using AArch64
of any of the following AArch64 instructions to EL2:

• DC CIVAC.

• DC CIGVAC, if FEAT_MTE is implemented.

• DC CIGDVAC, if FEAT_MTE is implemented.

0b0 Execution of the instructions listed above is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then
execution at EL1 and EL0 using AArch64 of any of the instructions listed above is
trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCCVADP, bit [9]

When FEAT_DPB2 is implemented:

DCCVADP

Trap execution of multiple instructions. Enables a trap on execution at EL1 and EL0 using AArch64
of any of the following AArch64 instructions to EL2:

• DC CVADP.

• DC CGVADP, if FEAT_MTE is implemented.
D13-3394 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
• DC CGDVADP, if FEAT_MTE is implemented.

0b0 Execution of the instructions listed above is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then
execution at EL1 and EL0 using AArch64 of any of the instructions listed above is
trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

DCCVAP, bit [8]

Trap execution of multiple instructions. Enables a trap on execution at EL1 and EL0 using AArch64
of any of the following AArch64 instructions to EL2:

• DC CVAP.

• DC CGVAP, if FEAT_MTE is implemented.

• DC CGDVAP, if FEAT_MTE is implemented.

0b0 Execution of the instructions listed above is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then
execution at EL1 and EL0 using AArch64 of any of the instructions listed above is
trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCCVAU, bit [7]

Trap execution of DC CVAU at EL1 and EL0 using AArch64 to EL2.

0b0 Execution of DC CVAU is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then
execution of DC CVAU at EL1 and EL0 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction generates a higher priority
exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCCISW, bit [6]

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any
of the following AArch64 instructions to EL2:

• DC CISW.

• DC CIGSW, if FEAT_MTE is implemented.

• DC CIGDSW, if FEAT_MTE is implemented.

0b0 Execution of the instructions listed above is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution at EL1 using AArch64 of any
of the instructions listed above is trapped to EL2 and reported with EC syndrome value
0x18, unless the instruction generates a higher priority exception.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3395
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCCSW, bit [5]

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any
of the following AArch64 instructions to EL2:

• DC CSW.

• DC CGSW, if FEAT_MTE is implemented.

• DC CGDSW, if FEAT_MTE is implemented.

0b0 Execution of the instructions listed above is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution at EL1 using AArch64 of any
of the instructions listed above is trapped to EL2 and reported with EC syndrome value
0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCISW, bit [4]

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any
of the following AArch64 instructions to EL2:

• DC ISW.

• DC IGSW, if FEAT_MTE is implemented.

• DC IGDSW, if FEAT_MTE is implemented.

0b0 Execution of the instructions listed above is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution at EL1 using AArch64 of any
of the instructions listed above is trapped to EL2 and reported with EC syndrome value
0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCIVAC, bit [3]

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any
of the following AArch64 instructions to EL2:

• DC IVAC.

• DC IGVAC, if FEAT_MTE is implemented.

• DC IGDVAC, if FEAT_MTE is implemented.

0b0 Execution of the instructions listed above is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution at EL1 using AArch64 of any
of the instructions listed above is trapped to EL2 and reported with EC syndrome value
0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ICIVAU, bit [2]

Trap execution of IC IVAU at EL1 and EL0 using AArch64 to EL2.

0b0 Execution of IC IVAU is not trapped by this mechanism.
D13-3396 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then
execution of IC IVAU at EL1 and EL0 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction generates a higher priority
exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ICIALLU, bit [1]

Trap execution of IC IALLU at EL1 using AArch64 to EL2.

0b0 Execution of IC IALLU is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of IC IALLU at EL1 using
AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ICIALLUIS, bit [0]

Trap execution of IC IALLUIS at EL1 using AArch64 to EL2.

0b0 Execution of IC IALLUIS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of IC IALLUIS at EL1 using
AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing HFGITR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HFGITR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x1C8];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3397
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 else
 return HFGITR_EL2;
elsif PSTATE.EL == EL3 then
 return HFGITR_EL2;

MSR HFGITR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x1C8] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 HFGITR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 HFGITR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b110
D13-3398 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.53 HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

The HFGRTR_EL2 characteristics are:

Purpose

Provides controls for traps of MRS and MRC reads of System registers.

Configurations

This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to
HFGRTR_EL2 are UNDEFINED.

Attributes

HFGRTR_EL2 is a 64-bit register.

Field descriptions

Bits [63:51]

Reserved, RES0.

nACCDATA_EL1, bit [50]

When FEAT_LS64 is implemented:

nACCDATA_EL1

Trap MRS reads of ACCDATA_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ACCDATA_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

RES0

63 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

nACCDATA_EL1
ERXADDR_EL1
ERXPFGCDN_EL1

ERXPFGCTL_EL1
ERXPFGF_EL1
ERXMISCn_EL1
ERXSTATUS_EL1

ERXCTLR_EL1
ERXFR_EL1

TCR_EL1
TPIDR_EL1

TPIDRRO_EL0
TPIDR_EL0

TTBR0_EL1
TTBR1_EL1

VBAR_EL1
ICC_IGRPENn_EL1

ERRIDR_EL1
ERRSELR_EL1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SCXTNUM_EL0
SCXTNUM_EL1

SCTLR_EL1
REVIDR_EL1

PAR_EL1
MPIDR_EL1

MIDR_EL1
MAIR_EL1
LORSA_EL1

LORN_EL1
LORID_EL1

LOREA_EL1
LORC_EL1

ISR_EL1
FAR_EL1

ESR_EL1

AFSR0_EL1
AFSR1_EL1

AIDR_EL1
AMAIR_EL1

APDAKey
APDBKey

APGAKey
APIAKey

APIBKey
CCSIDR_EL1

CLIDR_EL1
CONTEXTIDR_EL1

CPACR_EL1
CSSELR_EL1

CTR_EL0
DCZID_EL0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3399
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 MRS reads of ACCDATA_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXADDR_EL1, bit [49]

When FEAT_RAS is implemented:

ERXADDR_EL1

Trap MRS reads of ERXADDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ERXADDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXADDR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXPFGCDN_EL1, bit [48]

When FEAT_RASv1p1 is implemented:

ERXPFGCDN_EL1

Trap MRS reads of ERXPFGCDN_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ERXPFGCDN_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXPFGCDN_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXPFGCTL_EL1, bit [47]

When FEAT_RASv1p1 is implemented:

ERXPFGCTL_EL1

Trap MRS reads of ERXPFGCTL_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ERXPFGCTL_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXPFGCTL_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.
D13-3400 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Reserved, RES0.

ERXPFGF_EL1, bit [46]

When FEAT_RAS is implemented:

ERXPFGF_EL1

Trap MRS reads of ERXPFGF_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ERXPFGF_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXPFGF_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXMISCn_EL1, bit [45]

When FEAT_RAS is implemented:

ERXMISCn_EL1

Trap MRS reads of ERXMISC<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ERXMISC<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXMISC<n>_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXSTATUS_EL1, bit [44]

When FEAT_RAS is implemented:

ERXSTATUS_EL1

Trap MRS reads of ERXSTATUS_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ERXSTATUS_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXSTATUS_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3401
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
ERXCTLR_EL1, bit [43]

When FEAT_RAS is implemented:

ERXCTLR_EL1

Trap MRS reads of ERXCTLR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ERXCTLR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXCTLR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXFR_EL1, bit [42]

When FEAT_RAS is implemented:

ERXFR_EL1

Trap MRS reads of ERXFR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ERXFR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXFR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERRSELR_EL1, bit [41]

When FEAT_RAS is implemented:

ERRSELR_EL1

Trap MRS reads of ERRSELR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ERRSELR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERRSELR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERRIDR_EL1, bit [40]

When FEAT_RAS is implemented:

ERRIDR_EL1
D13-3402 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Trap MRS reads of ERRIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ERRIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERRIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ICC_IGRPENn_EL1, bit [39]

When FEAT_GICv3 is implemented:

ICC_IGRPENn_EL1

Trap MRS reads of ICC_IGRPEN<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ICC_IGRPEN<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ICC_IGRPEN<n>_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

VBAR_EL1, bit [38]

Trap MRS reads of VBAR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of VBAR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of VBAR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TTBR1_EL1, bit [37]

Trap MRS reads of TTBR1_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of TTBR1_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TTBR1_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TTBR0_EL1, bit [36]

Trap MRS reads of TTBR0_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of TTBR0_EL1 are not trapped by this mechanism.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3403
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TTBR0_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TPIDR_EL0, bit [35]

Trap MRS reads of TPIDR_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDRURW at EL0
using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of TPIDR_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDRURW
at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads of TPIDR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MRC reads of TPIDRURW at EL0 using AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TPIDRRO_EL0, bit [34]

Trap MRS reads of TPIDRRO_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDRURO at
EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of TPIDRRO_EL0 at EL1 and EL0 using AArch64 and MRC reads of
TPIDRURO at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads of TPIDRRO_EL0 at EL1 and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC reads of TPIDRURO at EL0 using AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TPIDR_EL1, bit [33]

Trap MRS reads of TPIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of TPIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TPIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TCR_EL1, bit [32]

Trap MRS reads of TCR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of TCR_EL1 are not trapped by this mechanism.
D13-3404 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TCR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

SCXTNUM_EL0, bit [31]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

SCXTNUM_EL0

Trap MRS reads of SCXTNUM_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 MRS reads of SCXTNUM_EL0 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS
reads of SCXTNUM_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18, unless the read generates a higher priority
exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

SCXTNUM_EL1, bit [30]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

SCXTNUM_EL1

Trap MRS reads of SCXTNUM_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of SCXTNUM_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of SCXTNUM_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

SCTLR_EL1, bit [29]

Trap MRS reads of SCTLR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of SCTLR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of SCTLR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3405
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
REVIDR_EL1, bit [28]

Trap MRS reads of REVIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of REVIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of REVIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

PAR_EL1, bit [27]

Trap MRS reads of PAR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PAR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PAR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

MPIDR_EL1, bit [26]

Trap MRS reads of MPIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of MPIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of MPIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

MIDR_EL1, bit [25]

Trap MRS reads of MIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of MIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of MIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

MAIR_EL1, bit [24]

Trap MRS reads of MAIR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of MAIR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of MAIR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.
D13-3406 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
LORSA_EL1, bit [23]

When FEAT_LOR is implemented:

LORSA_EL1

Trap MRS reads of LORSA_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of LORSA_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of LORSA_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

LORN_EL1, bit [22]

When FEAT_LOR is implemented:

LORN_EL1

Trap MRS reads of LORN_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of LORN_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of LORN_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

LORID_EL1, bit [21]

When FEAT_LOR is implemented:

LORID_EL1

Trap MRS reads of LORID_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of LORID_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of LORID_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

LOREA_EL1, bit [20]

When FEAT_LOR is implemented:

LOREA_EL1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3407
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Trap MRS reads of LOREA_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of LOREA_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of LOREA_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

LORC_EL1, bit [19]

When FEAT_LOR is implemented:

LORC_EL1

Trap MRS reads of LORC_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of LORC_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of LORC_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ISR_EL1, bit [18]

Trap MRS reads of ISR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ISR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ISR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

FAR_EL1, bit [17]

Trap MRS reads of FAR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of FAR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of FAR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ESR_EL1, bit [16]

Trap MRS reads of ESR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ESR_EL1 are not trapped by this mechanism.
D13-3408 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ESR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCZID_EL0, bit [15]

Trap MRS reads of DCZID_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 MRS reads of DCZID_EL0 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS
reads of DCZID_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

CTR_EL0, bit [14]

Trap MRS reads of CTR_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 MRS reads of CTR_EL0 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS
reads of CTR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

CSSELR_EL1, bit [13]

Trap MRS reads of CSSELR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of CSSELR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of CSSELR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

CPACR_EL1, bit [12]

Trap MRS reads of CPACR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of CPACR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of CPACR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

CONTEXTIDR_EL1, bit [11]

Trap MRS reads of CONTEXTIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of CONTEXTIDR_EL1 are not trapped by this mechanism.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3409
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of CONTEXTIDR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

CLIDR_EL1, bit [10]

Trap MRS reads of CLIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of CLIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of CLIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

CCSIDR_EL1, bit [9]

Trap MRS reads of CCSIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of CCSIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of CCSIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

APIBKey, bit [8]

When FEAT_PAuth is implemented:

APIBKey

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• APIBKeyHi_EL1.

• APIBKeyLo_EL1.

0b0 MRS reads of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APIAKey, bit [7]

When FEAT_PAuth is implemented:

APIAKey
D13-3410 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• APIAKeyHi_EL1.

• APIAKeyLo_EL1.

0b0 MRS reads of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APGAKey, bit [6]

When FEAT_PAuth is implemented:

APGAKey

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• APGAKeyHi_EL1.

• APGAKeyLo_EL1.

0b0 MRS reads of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APDBKey, bit [5]

When FEAT_PAuth is implemented:

APDBKey

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• APDBKeyHi_EL1.

• APDBKeyLo_EL1.

0b0 MRS reads of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3411
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Reserved, RES0.

APDAKey, bit [4]

When FEAT_PAuth is implemented:

APDAKey

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• APDAKeyHi_EL1.

• APDAKeyLo_EL1.

0b0 MRS reads of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

AMAIR_EL1, bit [3]

Trap MRS reads of AMAIR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of AMAIR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of AMAIR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

AIDR_EL1, bit [2]

Trap MRS reads of AIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of AIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of AIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

AFSR1_EL1, bit [1]

Trap MRS reads of AFSR1_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of AFSR1_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of AFSR1_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.
D13-3412 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

AFSR0_EL1, bit [0]

Trap MRS reads of AFSR0_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of AFSR0_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of AFSR0_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing HFGRTR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HFGRTR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x1B8];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return HFGRTR_EL2;
elsif PSTATE.EL == EL3 then
 return HFGRTR_EL2;

MSR HFGRTR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b100

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3413
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 NVMem[0x1B8] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 HFGRTR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 HFGRTR_EL2 = X[t];

D13-3414 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.54 HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

The HFGWTR_EL2 characteristics are:

Purpose

Provides controls for traps of MSR and MCR writes of System registers.

Configurations

This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to
HFGWTR_EL2 are UNDEFINED.

Attributes

HFGWTR_EL2 is a 64-bit register.

Field descriptions

Bits [63:51]

Reserved, RES0.

nACCDATA_EL1, bit [50]

When FEAT_LS64 is implemented:

nACCDATA_EL1

Trap MSR writes of ACCDATA_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of ACCDATA_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

0b1 MSR writes of ACCDATA_EL1 are not trapped by this mechanism.

RES0

63 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

nACCDATA_EL1
ERXADDR_EL1
ERXPFGCDN_EL1

ERXPFGCTL_EL1
RES0

ERXMISCn_EL1
ERXSTATUS_EL1

ERXCTLR_EL1
RES0

TCR_EL1
TPIDR_EL1

TPIDRRO_EL0
TPIDR_EL0

TTBR0_EL1
TTBR1_EL1

VBAR_EL1
ICC_IGRPENn_EL1

RES0
ERRSELR_EL1

31 30 29 28 27

RES0

26 25 24 23 22 21 20 19 18 17 16

RES0

15 14 13 12 11

RES0

10 9 8 7 6 5 4 3 2 1 0

SCXTNUM_EL0
SCXTNUM_EL1

SCTLR_EL1
RES0
PAR_EL1

MAIR_EL1
LORSA_EL1

LORN_EL1
RES0

LOREA_EL1
LORC_EL1

RES0
FAR_EL1

AFSR0_EL1
AFSR1_EL1

RES0
AMAIR_EL1

APDAKey
APDBKey

APGAKey
APIAKey

APIBKey
CONTEXTIDR_EL1

CPACR_EL1
CSSELR_EL1

ESR_EL1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3415
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXADDR_EL1, bit [49]

When FEAT_RAS is implemented:

ERXADDR_EL1

Trap MSR writes of ERXADDR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of ERXADDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of ERXADDR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXPFGCDN_EL1, bit [48]

When FEAT_RASv1p1 is implemented:

ERXPFGCDN_EL1

Trap MSR writes of ERXPFGCDN_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of ERXPFGCDN_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of ERXPFGCDN_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXPFGCTL_EL1, bit [47]

When FEAT_RASv1p1 is implemented:

ERXPFGCTL_EL1

Trap MSR writes of ERXPFGCTL_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of ERXPFGCTL_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of ERXPFGCTL_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.
D13-3416 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Reserved, RES0.

Bit [46]

Reserved, RES0.

ERXMISCn_EL1, bit [45]

When FEAT_RAS is implemented:

ERXMISCn_EL1

Trap MSR writes of ERXMISC<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of ERXMISC<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of ERXMISC<n>_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXSTATUS_EL1, bit [44]

When FEAT_RAS is implemented:

ERXSTATUS_EL1

Trap MSR writes of ERXSTATUS_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of ERXSTATUS_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of ERXSTATUS_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXCTLR_EL1, bit [43]

When FEAT_RAS is implemented:

ERXCTLR_EL1

Trap MSR writes of ERXCTLR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of ERXCTLR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of ERXCTLR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3417
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Reserved, RES0.

Bit [42]

Reserved, RES0.

ERRSELR_EL1, bit [41]

When FEAT_RAS is implemented:

ERRSELR_EL1

Trap MSR writes of ERRSELR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of ERRSELR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of ERRSELR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [40]

Reserved, RES0.

ICC_IGRPENn_EL1, bit [39]

When FEAT_GICv3 is implemented:

ICC_IGRPENn_EL1

Trap MSR writes of ICC_IGRPEN<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of ICC_IGRPEN<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of ICC_IGRPEN<n>_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

VBAR_EL1, bit [38]

Trap MSR writes of VBAR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of VBAR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of VBAR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.
D13-3418 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
TTBR1_EL1, bit [37]

Trap MSR writes of TTBR1_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of TTBR1_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TTBR1_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TTBR0_EL1, bit [36]

Trap MSR writes of TTBR0_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of TTBR0_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TTBR0_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TPIDR_EL0, bit [35]

Trap MSR writes of TPIDR_EL0 at EL1 and EL0 using AArch64 and MCR writes of TPIDRURW at
EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MSR writes of TPIDR_EL0 at EL1 and EL0 using AArch64 and MCR writes of
TPIDRURW at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the write generates a higher priority exception:

• MSR writes of TPIDR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MCR writes of TPIDRURW at EL0 using AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TPIDRRO_EL0, bit [34]

Trap MSR writes of TPIDRRO_EL0 at EL1 using AArch64 to EL2.

0b0 MSR writes of TPIDRRO_EL0 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TPIDRRO_EL0 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TPIDR_EL1, bit [33]

Trap MSR writes of TPIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of TPIDR_EL1 are not trapped by this mechanism.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3419
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TPIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TCR_EL1, bit [32]

Trap MSR writes of TCR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of TCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TCR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

SCXTNUM_EL0, bit [31]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

SCXTNUM_EL0

Trap MSR writes of SCXTNUM_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 MSR writes of SCXTNUM_EL0 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MSR
writes of SCXTNUM_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18, unless the write generates a higher priority
exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

SCXTNUM_EL1, bit [30]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

SCXTNUM_EL1

Trap MSR writes of SCXTNUM_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of SCXTNUM_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of SCXTNUM_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.
D13-3420 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
SCTLR_EL1, bit [29]

Trap MSR writes of SCTLR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of SCTLR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of SCTLR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bit [28]

Reserved, RES0.

PAR_EL1, bit [27]

Trap MSR writes of PAR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PAR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PAR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bits [26:25]

Reserved, RES0.

MAIR_EL1, bit [24]

Trap MSR writes of MAIR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of MAIR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of MAIR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

LORSA_EL1, bit [23]

When FEAT_LOR is implemented:

LORSA_EL1

Trap MSR writes of LORSA_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of LORSA_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of LORSA_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3421
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
LORN_EL1, bit [22]

When FEAT_LOR is implemented:

LORN_EL1

Trap MSR writes of LORN_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of LORN_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of LORN_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [21]

Reserved, RES0.

LOREA_EL1, bit [20]

When FEAT_LOR is implemented:

LOREA_EL1

Trap MSR writes of LOREA_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of LOREA_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of LOREA_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

LORC_EL1, bit [19]

When FEAT_LOR is implemented:

LORC_EL1

Trap MSR writes of LORC_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of LORC_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of LORC_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.
D13-3422 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Bit [18]

Reserved, RES0.

FAR_EL1, bit [17]

Trap MSR writes of FAR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of FAR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of FAR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ESR_EL1, bit [16]

Trap MSR writes of ESR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of ESR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of ESR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bits [15:14]

Reserved, RES0.

CSSELR_EL1, bit [13]

Trap MSR writes of CSSELR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of CSSELR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of CSSELR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

CPACR_EL1, bit [12]

Trap MSR writes of CPACR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of CPACR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of CPACR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

CONTEXTIDR_EL1, bit [11]

Trap MSR writes of CONTEXTIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of CONTEXTIDR_EL1 are not trapped by this mechanism.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3423
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of CONTEXTIDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bits [10:9]

Reserved, RES0.

APIBKey, bit [8]

When FEAT_PAuth is implemented:

APIBKey

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• APIBKeyHi_EL1.

• APIBKeyLo_EL1.

0b0 MSR writes of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APIAKey, bit [7]

When FEAT_PAuth is implemented:

APIAKey

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• APIAKeyHi_EL1.

• APIAKeyLo_EL1.

0b0 MSR writes of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APGAKey, bit [6]

When FEAT_PAuth is implemented:

APGAKey
D13-3424 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• APGAKeyHi_EL1.

• APGAKeyLo_EL1.

0b0 MSR writes of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APDBKey, bit [5]

When FEAT_PAuth is implemented:

APDBKey

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• APDBKeyHi_EL1.

• APDBKeyLo_EL1.

0b0 MSR writes of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APDAKey, bit [4]

When FEAT_PAuth is implemented:

APDAKey

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• APDAKeyHi_EL1.

• APDAKeyLo_EL1.

0b0 MSR writes of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3425
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Reserved, RES0.

AMAIR_EL1, bit [3]

Trap MSR writes of AMAIR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of AMAIR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of AMAIR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bit [2]

Reserved, RES0.

AFSR1_EL1, bit [1]

Trap MSR writes of AFSR1_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of AFSR1_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of AFSR1_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

AFSR0_EL1, bit [0]

Trap MSR writes of AFSR0_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of AFSR0_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of AFSR0_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing HFGWTR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HFGWTR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x1C0];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b101
D13-3426 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return HFGWTR_EL2;
elsif PSTATE.EL == EL3 then
 return HFGWTR_EL2;

MSR HFGWTR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x1C0] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 HFGWTR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 HFGWTR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3427
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.55 HPFAR_EL2, Hypervisor IPA Fault Address Register

The HPFAR_EL2 characteristics are:

Purpose

Holds the faulting IPA for some aborts on a stage 2 translation taken to EL2.

Configurations

AArch64 System register HPFAR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HPFAR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

The HPFAR_EL2 is written for:

• Translation or Access faults in the second stage of translation.

• An abort in the second stage of translation performed during the translation table walk of a
first stage translation, caused by a Translation fault, an Access flag fault, or a Permission
fault.

• A stage 2 Address size fault.

For all other exceptions taken to EL2, this register is UNKNOWN.

Note

The address held in this register is an address accessed by the instruction fetch or data access that
caused the exception that gave rise to the instruction or data abort. It is the lowest address that gave
rise to the fault. Where different faults from different addresses arise from the same instruction, such
as for an instruction that loads or stores a mis-aligned address that crosses a page boundary, the
architecture does not prioritize between those different faults.

Attributes

HPFAR_EL2 is a 64-bit register.

Field descriptions

Execution at EL1 or EL0 makes HPFAR_EL2 become UNKNOWN.

NS, bit [63]

When FEAT_SEL2 is implemented:

NS

Faulting IPA address space.

0b0 Faulting IPA is from the Secure IPA space.

0b1 Faulting IPA is from the Non-secure IPA space.

For Data Aborts or Instruction Aborts taken to Non-secure EL2, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NS

63

RES0

62 44

FIPA

43 32

FIPA

31 4

RES0

3 0
D13-3428 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Reserved, RES0.

Bits [62:44]

Reserved, RES0.

FIPA, bits [43:4]

When FEAT_LPA is implemented:

FIPA, bits [38:0]

Faulting Intermediate Physical Address.

When 52-bit addresses are in use for stage 1 translation, FIPA[38:35] forms the upper
part of the address value.

When 52-bit addresses are not in use for stage 1 translation, FIPA[38:35] is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LPA is not implemented:

Bits [38:35]

Reserved, RES0.

FIPA, bits [34:0]

Faulting Intermediate Physical Address.

For implementations with fewer than 48 physical address bits, the corresponding upper
bits in this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [3:0]

Reserved, RES0.

Accessing HPFAR_EL2

Accesses to this register use the following encodings in the System register encoding space:

FIPA

38 32

FIPA

31 0

RES0

38 35

FIPA

34 32

FIPA

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3429
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, HPFAR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HPFAR_EL2;
elsif PSTATE.EL == EL3 then
 return HPFAR_EL2;

MSR HPFAR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HPFAR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 HPFAR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b100

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b100
D13-3430 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.56 HSTR_EL2, Hypervisor System Trap Register

The HSTR_EL2 characteristics are:

Purpose

Controls trapping to EL2 of EL1 or lower AArch32 accesses to the System register in the coproc ==
0b1111 encoding space, by the CRn value used to access the register using MCR or MRC instruction.
When the register is accessible using an MCRR or MRRC instruction, this is the CRm value used
to access the register.

Configurations

AArch64 System register HSTR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HSTR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

HSTR_EL2 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:16, 14, 4]

Reserved, RES0.

T<n>, bit [n], for n = 15, 13 to 5, 3 to 0

The remaining fields control whether EL0 and EL1 accesses, using MCR, MRC, MCRR, and
MRRC instructions, to the System registers in the coproc == 0b1111 encoding space, are trapped to
EL2 as follows:

• MCR or MRC accesses to these registers that are trapped to EL2 are reported using EC
syndrome value 0x03, unless the access is UNDEFINED.

• MCRR or MRRC accesses to these registers that are trapped to EL2 are reported using EC
syndrome value 0x04, unless the access is UNDEFINED.

0b0 This control has no effect on EL0 or EL1 accesses to System registers.

0b1 System registers in the coproc == 0b1111 encoding space and CRn == <n> or CRm == <n>
where T<n> is the name of this field, are trapped as follows:

• An EL1 MCR or MRC access is trapped to EL2.

• An EL0 MCR or MRC access is trapped to EL2, if the access is not UNDEFINED
when the value of this field is 0.

• An EL1 MCRR or MRRC access is trapped to EL2.

• An EL0 MCRR or MRRC access is trapped to EL2, if the access is not
UNDEFINED when the value of this field is 0.

RES0

63 32

RES0

31 16 15 14 13 12 11 10

T9

9

T8

8

T7

7

T6

6

T5

5 4

T3

3

T2

2

T1

1

T0

0

T15
RES0

T13

T10
T11

T12

RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3431
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
It is IMPLEMENTATION DEFINED whether an EL0 access using AArch32 is trapped to
EL2, or is UNDEFINED.

If the access is UNDEFINED, and generates an exception that is taken to EL1 or EL2 using
AArch64, this is reported with EC syndrome value 0x00.

Note
Arm expects that trapping to EL2 of EL0 accesses to these registers is unusual and used
only when the hypervisor must virtualize EL0 operation. Arm recommends that,
whenever possible, EL0 accesses to these registers behave as they would if the
implementation did not include EL2. This means that, if the architecture does not
support the EL0 access, then the register access instruction is treated as UNDEFINED and
generates an exception that is taken to EL1.

For example, when HSTR_EL2.T7 is 1, for instructions executed at EL1:

• An MCR or MRC instruction with coproc set to 0b1111 and <CRn> set to c7 is trapped to EL2.

• An MCRR or MRRC instruction with coproc set to 0b1111 and <CRm> set to c7 is trapped to
EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Bits [63:0]

Reserved, RES0.

Accessing HSTR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HSTR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x080];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HSTR_EL2;

RES0

63 32

RES0

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b011
D13-3432 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
elsif PSTATE.EL == EL3 then
 return HSTR_EL2;

MSR HSTR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x080] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HSTR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 HSTR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3433
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.57 ID_AA64AFR0_EL1, AArch64 Auxiliary Feature Register 0

The ID_AA64AFR0_EL1 characteristics are:

Purpose

Provides information about the IMPLEMENTATION DEFINED features of the PE in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

There are no configuration notes.

Attributes

ID_AA64AFR0_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [31:28]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [27:24]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [23:20]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [19:16]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [15:12]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [11:8]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [7:4]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [3:0]

IMPLEMENTATION DEFINED.

RES0

63 32

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

IMPLEMENTATI
ON DEFINED

IMPLEMENTATION
DEFINED

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

IMPLEMENTATI
ON DEFINED

IMPLEMENTATION
DEFINED

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED
D13-3434 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Accessing ID_AA64AFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64AFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64AFR0_EL1;
elsif PSTATE.EL == EL2 then
 return ID_AA64AFR0_EL1;
elsif PSTATE.EL == EL3 then
 return ID_AA64AFR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0101 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3435
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.58 ID_AA64AFR1_EL1, AArch64 Auxiliary Feature Register 1

The ID_AA64AFR1_EL1 characteristics are:

Purpose

Reserved for future expansion of information about the IMPLEMENTATION DEFINED features of the
PE in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

There are no configuration notes.

Attributes

ID_AA64AFR1_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

Reserved, RES0.

Accessing ID_AA64AFR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64AFR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64AFR1_EL1;
elsif PSTATE.EL == EL2 then
 return ID_AA64AFR1_EL1;
elsif PSTATE.EL == EL3 then
 return ID_AA64AFR1_EL1;

RES0

63 32

RES0

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0101 0b101
D13-3436 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.59 ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

The ID_AA64DFR0_EL1 characteristics are:

Purpose

Provides top level information about the debug system in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

The external register EDDFR gives information from this register.

Attributes

ID_AA64DFR0_EL1 is a 64-bit register.

Field descriptions

Bits [63:52]

Reserved, RES0.

MTPMU, bits [51:48]

Multi-threaded PMU extension. Defined values are:

0b0000 FEAT_MTPMU not implemented. If FEAT_PMUv3 is implemented, it is
IMPLEMENTATION DEFINED whether PMEVTYPER<n>_EL0.MT and
PMEVTYPER<n>.MT are read/write or RES0.

0b0001 FEAT_MTPMU and FEAT_PMUv3 implemented. PMEVTYPER<n>_EL0.MT and
PMEVTYPER<n>.MT are read/write. When FEAT_MTPMU is disabled, the Effective
values of PMEVTYPER<n>_EL0.MT and PMEVTYPER<n>.MT are 0.

0b1111 FEAT_MTPMU not implemented. If FEAT_PMUv3 is implemented,
PMEVTYPER<n>_EL0.MT and PMEVTYPER<n>.MT are RES0.

All other values are reserved.

FEAT_MTPMU implements the functionality identified by the value 0b0001.

From Armv8.6, in an implementation that includes FEAT_PMUv3, the value 0b0000 is not
permitted.

In an implementation that does not include FEAT_PMUv3, the value 0b0001 is not permitted.

Bits [47:44]

Reserved, RES0.

TraceFilt, bits [43:40]

Armv8.4 Self-hosted Trace Extension version. Defined values are:

0b0000 Armv8.4 Self-hosted Trace Extension not implemented.

0b0001 Armv8.4 Self-hosted Trace Extension implemented.

All other values are reserved.

FEAT_TRF implements the functionality identified by the value 0b0001.

RES0

63 52

MTPMU

51 48

RES0

47 44 43 40 39 36

PMSVer

35 32

TraceFilt DoubleLock

CTX_CMPs

31 28

RES0

27 24

WRPs

23 20

RES0

19 16

BRPs

15 12

PMUVer

11 8

TraceVer

7 4

DebugVer

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3437
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
From Armv8.4, if an Embedded Trace Macrocell Architecture PE Trace Unit is implemented, the
value 0b0000 is not permitted.

DoubleLock, bits [39:36]

OS Double Lock implemented. Defined values are:

0b0000 OS Double Lock implemented. OSDLR_EL1 is RW.

0b1111 OS Double Lock not implemented. OSDLR_EL1 is RAZ/WI.

All other values are reserved.

FEAT_DoubleLock implements the functionality identified by the value 0b0000.

In Armv8.0, the only permitted value is 0b0000.

If FEAT_Debugv8p2 is implemented and FEAT_DoPD is not implemented, the permitted values
are 0b0000 and 0b1111.

If FEAT_DoPD is implemented, the only permitted value is 0b1111.

PMSVer, bits [35:32]

Statistical Profiling Extension version. Defined values are:

0b0000 Statistical Profiling Extension not implemented.

0b0001 Statistical Profiling Extension implemented.

0b0010 As 0b0001, and adds:

• Support for the Event packet Alignment flag.

• If FEAT_SVE is implemented, support for the Scalable Vector extensions to
Statistical Profiling.

0b0011 As 0b0010, and adds:

• Discard mode.

• Extended event filtering, including the PMSNEVFR_EL1 System register.

• Support for the OPTIONAL previous branch target Address packet.

• If FEAT_PMUv3 is implemented, controls to freeze the PMU event counters
after an SPE buffer management event occurs.

• If FEAT_PMUv3 is implemented, the SAMPLE_FEED_BR,
SAMPLE_FEED_EVENT, SAMPLE_FEED_LAT, SAMPLE_FEED_LD,
SAMPLE_FEED_OP, and SAMPLE_FEED_ST PMU events.

All other values are reserved.

FEAT_SPE implements the functionality identified by the value 0b0001.

FEAT_SPEv1p1 implements the functionality identified by the value 0b0010.

FEAT_SPEv1p2 implements the functionality identified by the value 0b0011.

In Armv8.5, if FEAT_SPE is implemented, the value 0b0001 is not permitted.

From Armv8.7, if FEAT_SPE is implemented, the value 0b0010 is not permitted.

CTX_CMPs, bits [31:28]

Number of breakpoints that are context-aware, minus 1. These are the highest numbered
breakpoints.

Bits [27:24]

Reserved, RES0.

WRPs, bits [23:20]

Number of watchpoints, minus 1. The value of 0b0000 is reserved.

Bits [19:16]

Reserved, RES0.
D13-3438 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
BRPs, bits [15:12]

Number of breakpoints, minus 1. The value of 0b0000 is reserved.

PMUVer, bits [11:8]

Performance Monitors Extension version.

This field does not follow the standard ID scheme, but uses the alternative ID scheme described in
Alternative ID scheme used for the Performance Monitors Extension version on page D13-3047

Defined values are:

0b0000 Performance Monitors Extension not implemented.

0b0001 Performance Monitors Extension, PMUv3 implemented.

0b0100 PMUv3 for Armv8.1. As 0b0001, and also includes support for:

• Extended 16-bit PMEVTYPER<n>_EL0.evtCount field.

• If EL2 is implemented, the MDCR_EL2.HPMD control bit.

0b0101 PMUv3 for Armv8.4. As 0b0100, and also includes support for the PMMIR_EL1
register.

0b0110 PMUv3 for Armv8.5. As 0b0101, and also includes support for:

• 64-bit event counters.

• If EL2 is implemented, the MDCR_EL2.HCCD control bit.

• If EL3 is implemented, the MDCR_EL3.SCCD control bit.

0b0111 PMUv3 for Armv8.7. As 0b0110, and also includes support for:

• The PMCR_EL0.FZO and, if EL2 is implemented, MDCR_EL2.HPMFZO
control bits.

• If EL3 is implemented, the MDCR_EL3.{MPMX,MCCD} control bits.

0b1111 IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3 not
supported. Arm does not recommend this value for new implementations.

All other values are reserved.

FEAT_PMUv3 implements the functionality identified by the value 0b0001.

FEAT_PMUv3p1 implements the functionality identified by the value 0b0100.

FEAT_PMUv3p4 implements the functionality identified by the value 0b0101.

FEAT_PMUv3p5 implements the functionality identified by the value 0b0110.

FEAT_PMUv3p7 implements the functionality identified by the value 0b0111.

In Armv8.1, if FEAT_PMUv3 is implemented, the value 0b0001 is not permitted.

In Armv8.4, if FEAT_PMUv3 is implemented, the value 0b0100 is not permitted.

In Armv8.5, if FEAT_PMUv3 is implemented, the value 0b0101 is not permitted.

From Armv8.7, if FEAT_PMUv3 is implemented, the value 0b0110 is not permitted.

TraceVer, bits [7:4]

Trace support. Indicates whether System register interface to a PE trace unit is implemented.
Defined values are:

0b0000 PE trace unit System registers not implemented.

0b0001 PE trace unit System registers implemented.

All other values are reserved.

See the ETM Architecture Specification for more information.

A value of 0b0000 only indicates that no System register interface to a PE trace unit is implemented.
A PE trace unit might nevertheless be implemented without a System register interface.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3439
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
DebugVer, bits [3:0]

Debug architecture version. Indicates presence of Armv8 debug architecture. Defined values are:

0b0110 Armv8 debug architecture.

0b0111 Armv8 debug architecture with Virtualization Host Extensions.

0b1000 Armv8.2 debug architecture.

0b1001 Armv8.4 debug architecture.

All other values are reserved.

FEAT_Debugv8p2 adds the functionality identified by the value 0b1000.

FEAT_Debugv8p4 adds the functionality identified by the value 0b1001.

In Armv8.1, the value 0b0110 is not permitted.

In Armv8.2, the value 0b0111 is not permitted.

From Armv8.4, the value 0b1000 is not permitted.

Accessing ID_AA64DFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64DFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64DFR0_EL1;
elsif PSTATE.EL == EL2 then
 return ID_AA64DFR0_EL1;
elsif PSTATE.EL == EL3 then
 return ID_AA64DFR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0101 0b000
D13-3440 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.60 ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1

The ID_AA64DFR1_EL1 characteristics are:

Purpose

Reserved for future expansion of top level information about the debug system in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

There are no configuration notes.

Attributes

ID_AA64DFR1_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

Reserved, RES0.

Accessing ID_AA64DFR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64DFR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64DFR1_EL1;
elsif PSTATE.EL == EL2 then
 return ID_AA64DFR1_EL1;
elsif PSTATE.EL == EL3 then
 return ID_AA64DFR1_EL1;

RES0

63 32

RES0

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0101 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3441
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.61 ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

The ID_AA64ISAR0_EL1 characteristics are:

Purpose

Provides information about the instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

There are no configuration notes.

Attributes

ID_AA64ISAR0_EL1 is a 64-bit register.

Field descriptions

RNDR, bits [63:60]

Indicates support for Random Number instructions in AArch64 state.

Defined values are:

0b0000 No Random Number instructions are implemented.

0b0001 RNDR and RNDRRS registers are implemented.

All other values are reserved.

FEAT_RNG implements the functionality identified by the value 0b0001.

From Armv8.5, the permitted values are 0b0000 and 0b0001.

TLB, bits [59:56]

Indicates support for Outer shareable and TLB range maintenance instructions. Defined values are:

0b0000 Outer shareable and TLB range maintenance instructions are not implemented.

0b0001 Outer shareable TLB maintenance instructions are implemented.

0b0010 Outer shareable and TLB range maintenance instructions are implemented.

All other values are reserved.

FEAT_TLBIOS implements the functionality identified by the values 0b0001 and 0b0010.

FEAT_TLBIRANGE implements the functionality identified by the value 0b0010.

From Armv8.4, the only permitted value is 0b0010.

TS, bits [55:52]

Indicates support for flag manipulation instructions. Defined values are:

0b0000 No flag manipulation instructions are implemented.

0b0001 CFINV, RMIF, SETF16, and SETF8 instructions are implemented.

0b0010 CFINV, RMIF, SETF16, SETF8, AXFLAG, and XAFLAG instructions are
implemented.

All other values are reserved.

RNDR

63 60

TLB

59 56

TS

55 52

FHM

51 48

DP

47 44

SM4

43 40

SM3

39 36

SHA3

35 32

RDM

31 28

RES0

27 24

Atomic

23 20

CRC32

19 16

SHA2

15 12

SHA1

11 8

AES

7 4

RES0

3 0
D13-3442 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
FEAT_FlagM implements the functionality identified by the value 0b0001.

FEAT_FlagM2 implements the functionality identified by the value 0b0010.

In Armv8.2, the permitted values are 0b0000 and 0b0001.

In Armv8.4, the only permitted value is 0b0001.

From Armv8.5, the only permitted value is 0b0010.

FHM, bits [51:48]

Indicates support for FMLAL and FMLSL instructions. Defined values are:

0b0000 FMLAL and FMLSL instructions are not implemented.

0b0001 FMLAL and FMLSL instructions are implemented.

All other values are reserved.

FEAT_FHM implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

DP, bits [47:44]

Indicates support for Dot Product instructions in AArch64 state. Defined values are:

0b0000 No Dot Product instructions implemented.

0b0001 UDOT and SDOT instructions implemented.

All other values are reserved.

FEAT_DotProd implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

SM4, bits [43:40]

Indicates support for SM4 instructions in AArch64 state. Defined values are:

0b0000 No SM4 instructions implemented.

0b0001 SM4E and SM4EKEY instructions implemented.

All other values are reserved.

If FEAT_SM4 is not implemented, the value 0b0001 is reserved.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

This field must have the same value as ID_AA64ISAR0_EL1.SM3.

SM3, bits [39:36]

Indicates support for SM3 instructions in AArch64 state. Defined values are:

0b0000 No SM3 instructions implemented.

0b0001 SM3SS1, SM3TT1A, SM3TT1B, SM3TT2A, SM3TT2B, SM3PARTW1, and
SM3PARTW2 instructions implemented.

All other values are reserved.

If FEAT_SM3 is not implemented, the value 0b0001 is reserved.

FEAT_SM3 implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

This field must have the same value as ID_AA64ISAR0_EL1.SM4.

SHA3, bits [35:32]

Indicates support for SHA3 instructions in AArch64 state. Defined values are:

0b0000 No SHA3 instructions implemented.

0b0001 EOR3, RAX1, XAR, and BCAX instructions implemented.

All other values are reserved.

If FEAT_SHA3 is not implemented, the value 0b0001 is reserved.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3443
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
FEAT_SHA3 implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR0_EL1.SHA1 is 0b0000, this field must have the value 0b0000.

If the value of this field is 0b0001, ID_AA64ISAR0_EL1.SHA2 must have the value 0b0010.

RDM, bits [31:28]

Indicates support for SQRDMLAH and SQRDMLSH instructions in AArch64 state. Defined values
are:

0b0000 No RDMA instructions implemented.

0b0001 SQRDMLAH and SQRDMLSH instructions implemented.

All other values are reserved.

FEAT_RDM implements the functionality identified by the value 0b0001.

From Armv8.1, the only permitted value is 0b0001.

Bits [27:24]

Reserved, RES0.

Atomic, bits [23:20]

Indicates support for Atomic instructions in AArch64 state. Defined values are:

0b0000 No Atomic instructions implemented.

0b0010 LDADD, LDCLR, LDEOR, LDSET, LDSMAX, LDSMIN, LDUMAX, LDUMIN,
CAS, CASP, and SWP instructions implemented.

All other values are reserved.

FEAT_LSE implements the functionality identified by the value 0b0010.

From Armv8.1, the only permitted value is 0b0010.

CRC32, bits [19:16]

Indicates support for CRC32 instructions in AArch64 state. Defined values are:

0b0000 No CRC32 instructions implemented.

0b0001 CRC32B, CRC32H, CRC32W, CRC32X, CRC32CB, CRC32CH, CRC32CW, and
CRC32CX instructions implemented.

All other values are reserved.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.1, the only permitted value is 0b0001.

SHA2, bits [15:12]

Indicates support for SHA2 instructions in AArch64 state. Defined values are:

0b0000 No SHA2 instructions implemented.

0b0001 Implements instructions: SHA256H, SHA256H2, SHA256SU0, and SHA256SU1.

0b0010 Implements instructions:

• SHA256H, SHA256H2, SHA256SU0, and SHA256SU1.

• SHA512H, SHA512H2, SHA512SU0, and SHA512SU1.

All other values are reserved.

FEAT_SHA256 implements the functionality identified by the value 0b0001.

FEAT_SHA512 implements the functionality identified by the value 0b0010.

In Armv8, the permitted values are 0b0000 and 0b0001.

From Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

If the value of ID_AA64ISAR0_EL1.SHA1 is 0b0000, this field must have the value 0b0000.
D13-3444 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
If the value of this field is 0b0010, ID_AA64ISAR0_EL1.SHA3 must have the value 0b0001.

SHA1, bits [11:8]

Indicates support for SHA1 instructions in AArch64 state. Defined values are:

0b0000 No SHA1 instructions implemented.

0b0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1 instructions
implemented.

All other values are reserved.

FEAT_SHA1 implements the functionality identified by the value 0b0001.

From Armv8, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR0_EL1.SHA2 is 0b0000, this field must have the value 0b0000.

AES, bits [7:4]

Indicates support for AES instructions in AArch64 state. Defined values are:

0b0000 No AES instructions implemented.

0b0001 AESE, AESD, AESMC, and AESIMC instructions implemented.

0b0010 As for 0b0001, plus PMULL/PMULL2 instructions operating on 64-bit data quantities.

FEAT_AES implements the functionality identified by the value 0b0001.

FEAT_PMULL implements the functionality identified by the value 0b0010.

All other values are reserved.

From Armv8, the permitted values are 0b0000 and 0b0010.

Bits [3:0]

Reserved, RES0.

Accessing ID_AA64ISAR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64ISAR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64ISAR0_EL1;
elsif PSTATE.EL == EL2 then
 return ID_AA64ISAR0_EL1;
elsif PSTATE.EL == EL3 then
 return ID_AA64ISAR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0110 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3445
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.62 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

The ID_AA64ISAR1_EL1 characteristics are:

Purpose

Provides information about the features and instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

If ID_AA64ISAR1_EL1.{API, APA} == {0000, 0000}, then:

• The TCR_EL1.{TBID,TBID0}, TCR_EL2.{TBID0,TBID1}, TCR_EL2.TBID and
TCR_EL3.TBID bits are RES0.

• APIAKeyHi_EL1, APIAKeyLo_EL1, APIBKeyHi_EL1, APIBKeyLo_EL1,
APDAKeyHi_EL1, APDAKeyLo_EL1, APDBKeyHi_EL1, APDBKeyLo_EL1 are not
allocated.

• SCTLR_ELx.EnIA, SCTLR_ELx.EnIB, SCTLR_ELx.EnDA, SCTLR_ELx.EnDB are all
RES0.

If ID_AA64ISAR1_EL1.{GPI, GPA, API, APA} == {0000, 0000, 0000, 0000}, then:

• HCR_EL2.APK and HCR_EL2.API are RES0.

• SCR_EL3.APK and SCR_EL3.API are RES0.

Attributes

ID_AA64ISAR1_EL1 is a 64-bit register.

Field descriptions

LS64, bits [63:60]

Indicates support for LD64B and ST64B* instructions, and the ACCDATA_EL1 register. Defined
values of this field are:

0b0000 The LD64B and ST64B* instructions, the ACCDATA_EL1 register, and associated
traps are not supported.

0b0001 The LD64B and ST64B instructions are supported.

0b0010 The LD64B, ST64B, and ST64BV instructions, and their associated traps are supported.

0b0011 The LD64 and ST64B* instructions, the ACCDATA_EL1 register, and their associated
traps are supported.

All other values are reserved.

FEAT_LS64 implements the functionality identified by 0b0001.

FEAT_LS64_V implements the functionality identified by 0b0010.

FEAT_LS64_ACCDATA implements the functionality identified by 0b0011.

From Armv8.7, the permitted values are 0b0000, 0b0001, 0b0010, and 0b0011.

LS64

63 60

XS

59 56

I8MM

55 52

DGH

51 48

BF16

47 44

SPECRES

43 40

SB

39 36

FRINTTS

35 32

GPI

31 28

GPA

27 24

LRCPC

23 20

FCMA

19 16

JSCVT

15 12

API

11 8

APA

7 4

DPB

3 0
D13-3446 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
XS, bits [59:56]

Indicates support for the XS attribute, the TLBI and DSB instructions with the nXS qualifier, and
the HCRX_EL2.{FGTnXS, FnXS} fields in AArch64 state. Defined values are:

0b0000 The XS attribute, the TLBI and DSB instructions with the nXS qualifier, and the
HCRX_EL2.{FGTnXS, FnXS} fields are not supported.

0b0001 The XS attribute, the TLBI and DSB instructions with the nXS qualifier, and the
HCRX_EL2.{FGTnXS, FnXS} fields are supported.

All other values are reserved.

FEAT_XS implements the functionality identified by 0b0001.

From Armv8.7, the only permitted value is 0b0001.

I8MM, bits [55:52]

Indicates support for Advanced SIMD and Floating-point Int8 matrix multiplication instructions in
AArch64 state. Defined values are:

0b0000 Int8 matrix multiplication instructions are not implemented.

0b0001 SMMLA, SUDOT, UMMLA, USMMLA, and USDOT instructions are implemented.

All other values are reserved.

FEAT_I8MM implements the functionality identified by 0b0001.

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ZFR0_EL1.I8MM.

From Armv8.6, the only permitted value is 0b0001.

DGH, bits [51:48]

Indicates support for the Data Gathering Hint instruction. Defined values are:

0b0000 Data Gathering Hint is not implemented.

0b0001 Data Gathering Hint is implemented.

All other values are reserved.

FEAT_DGH implements the functionality identified by 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

If the DGH instruction has no effect in preventing the merging of memory accesses, the value of this
field is 0b0000.

BF16, bits [47:44]

Indicates support for Advanced SIMD and Floating-point BFloat16 instructions in AArch64 state.
Defined values are:

0b0000 BFloat16 instructions are not implemented.

0b0001 BFCVT, BFCVTN, BFCVTN2, BFDOT, BFMLALB, BFMLALT, and BFMMLA
instructions are implemented.

All other values are reserved.

FEAT_BF16 implements the functionality identified by 0b0001.

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ZFR0_EL1.BF16.

From Armv8.6, the only permitted value is 0b0001.

SPECRES, bits [43:40]

Indicates support for prediction invalidation instructions in AArch64 state. Defined values are:

0b0000 CFP RCTX, DVP RCTX, and CPP RCTX instructions are not implemented.

0b0001 CFP RCTX, DVP RCTX, and CPP RCTX instructions are implemented.

All other values are reserved.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3447
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
FEAT_SPECRES implements the functionality identified by 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

SB, bits [39:36]

Indicates support for SB instruction in AArch64 state. Defined values are:

0b0000 SB instruction is not implemented.

0b0001 SB instruction is implemented.

All other values are reserved.

FEAT_SB implements the functionality identified by 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

FRINTTS, bits [35:32]

Indicates support for the FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X instructions are
implemented. Defined values are:

0b0000 FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X instructions are not implemented.

0b0001 FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X instructions are implemented.

All other values are reserved.

FEAT_FRINTTS implements the functionality identified by 0b0001.

From Armv8.5, the only permitted value is 0b0001.

GPI, bits [31:28]

Indicates support for an IMPLEMENTATION DEFINED algorithm is implemented in the PE for generic
code authentication in AArch64 state. Defined values are:

0b0000 Generic Authentication using an IMPLEMENTATION DEFINED algorithm is not
implemented.

0b0001 Generic Authentication using an IMPLEMENTATION DEFINED algorithm is implemented.
This includes the PACGA instruction.

All other values are reserved.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR1_EL1.GPA is non-zero, this field must have the value 0b0000.

GPA, bits [27:24]

Indicates whether the QARMA5 algorithm is implemented in the PE for generic code authentication
in AArch64 state. Defined values are:

0b0000 Generic Authentication using the QARMA5 algorithm is not implemented.

0b0001 Generic Authentication using the QARMA5 algorithm is implemented. This includes
the PACGA instruction.

All other values are reserved.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR1_EL1.GPI is non-zero, this field must have the value 0b0000.

LRCPC, bits [23:20]

Indicates support for weaker release consistency, RCpc, based model. Defined values are:

0b0000 The LDAPR*, LDAPUR*, and STLUR* instructions are not implemented.

0b0001 The LDAPR* instructions are implemented.

The LDAPUR*, and STLUR* instructions are not implemented.

0b0010 The LDAPR*, LDAPUR*, and STLUR* instructions are implemented.
D13-3448 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
All other values are reserved.

FEAT_LRCPC implements the functionality identified by the value 0b0001.

FEAT_LRCPC2 implements the functionality identified by the value 0b0010.

In Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

In Armv8.3, the permitted values are 0b0001 and 0b0010.

From Armv8.4, the only permitted value is 0b0010.

FCMA, bits [19:16]

Indicates support for complex number addition and multiplication, where numbers are stored in
vectors. Defined values are:

0b0000 The FCMLA and FCADD instructions are not implemented.

0b0001 The FCMLA and FCADD instructions are implemented.

All other values are reserved.

FEAT_FCMA implements the functionality identified by the value 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is
0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value
is 0b0000.

JSCVT, bits [15:12]

Indicates support for JavaScript conversion from double precision floating point values to integers
in AArch64 state. Defined values are:

0b0000 The FJCVTZS instruction is not implemented.

0b0001 The FJCVTZS instruction is implemented.

All other values are reserved.

FEAT_JSCVT implements the functionality identified by 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is
0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value
is 0b0000.

API, bits [11:8]

Indicates whether an IMPLEMENTATION DEFINED algorithm is implemented in the PE for address
authentication, in AArch64 state. This applies to all Pointer Authentication instructions other than
the PACGA instruction. Defined values are:

0b0000 Address Authentication using an IMPLEMENTATION DEFINED algorithm is not
implemented.

0b0001 Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented,
with the HaveEnhancedPAC() and HaveEnhancedPAC2() functions returning FALSE.

0b0010 Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented,
with the HaveEnhancedPAC() function returning TRUE, and the HaveEnhancedPAC2()
function returning FALSE.

0b0011 Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented,
with the HaveEnhancedPAC2() function returning TRUE, and the HaveEnhancedPAC()
function returning FALSE.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3449
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b0100 Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented,
with the HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function
returning TRUE, the HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0101 Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented,
with the HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function
returning TRUE, the HaveFPACCombined() function returning TRUE, and the
HaveEnhancedPAC() function returning FALSE.

All other values are reserved.

FEAT_PAuth implements the functionality added by the values 0b0000, 0b0001, and 0b0010.

FEAT_PAuth2 implements the functionality added by the value 0b0011.

FEAT_FPAC implements the functionality added by the values 0b0100 and 0b0101.

From Armv8.6, the permitted values are 0b0011, 0b0100, and 0b0101.

If the value of ID_AA64ISAR1_EL1.APA is non-zero, this field must have the value 0b0000.

APA, bits [7:4]

Indicates whether the QARMA5 algorithm is implemented in the PE for address authentication, in
AArch64 state. This applies to all Pointer Authentication instructions other than the PACGA
instruction. Defined values are:

0b0000 Address Authentication using the QARMA5 algorithm is not implemented.

0b0001 Address Authentication using the QARMA5 algorithm is implemented, with the
HaveEnhancedPAC() and HaveEnhancedPAC2() functions returning FALSE.

0b0010 Address Authentication using the QARMA5 algorithm is implemented, with the
HaveEnhancedPAC() function returning TRUE and the HaveEnhancedPAC2() function
returning FALSE.

0b0011 Address Authentication using the QARMA5 algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning
FALSE, the HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0100 Address Authentication using the QARMA5 algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning
TRUE, the HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0101 Address Authentication using the QARMA5 algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning
TRUE, the HaveFPACCombined() function returning TRUE, and the
HaveEnhancedPAC() function returning FALSE.

All other values are reserved.

FEAT_PAuth implements the functionality added by the values 0b0000, 0b0001, and 0b0010.

FEAT_PAuth2 implements the functionality added by the value 0b0011.

FEAT_FPAC implements the functionality added by the values 0b0100 and 0b0101.

From Armv8.6, the permitted values are 0b0011, 0b0100, and 0b0101.

If the value of ID_AA64ISAR1_EL1.API is non-zero, this field must have the value 0b0000.

DPB, bits [3:0]

Data Persistence writeback. Indicates support for the DC CVAP and DC CVADP instructions in
AArch64 state. Defined values are:

0b0000 DC CVAP not supported.

0b0001 DC CVAP supported.

0b0010 DC CVAP and DC CVADP supported.

All other values are reserved.
D13-3450 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
FEAT_DPB implements the functionality identified by the value 0b0001.

FEAT_DPB2 implements the functionality identified by the value 0b0010.

In Armv8.2, the permitted values are 0b0001 and 0b0010.

From Armv8.5, the only permitted value is 0b0010.

Accessing ID_AA64ISAR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64ISAR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64ISAR1_EL1;
elsif PSTATE.EL == EL2 then
 return ID_AA64ISAR1_EL1;
elsif PSTATE.EL == EL3 then
 return ID_AA64ISAR1_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0110 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3451
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.63 ID_AA64ISAR2_EL1, AArch64 Instruction Set Attribute Register 2

The ID_AA64ISAR2_EL1 characteristics are:

Purpose

Provides information about the features and instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

Note
Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_AA64ISAR2_EL1 is a 64-bit register.

Field descriptions

Bits [63:8]

Reserved, RES0.

RPRES, bits [7:4]

When FPCR.AH is 1, indicates support for 12 bits of mantissa in reciprocal and reciprocal square
root instructions in AArch64 state. Defined values are:

0b0000 Reciprocal and reciprocal square root estimates give 8 bits of mantissa.

0b0001 Reciprocal and reciprocal square root estimates give 12 bits of mantissa.

All other values are reserved.

FEAT_RPRES implements the functionality identified by the value 0b0001.

From Armv8.7, if Advanced SIMD and floating-point is implemented, the only permitted value is
0b0001.

WFxT, bits [3:0]

Indicates support for the WFET and WFIT instructions in AArch64 state. Defined values are:

0b0000 WFET and WFIT are not supported.

0b0001 WFET and WFIT are supported, but the register number is not reported in the ESR_ELx on
exceptions.

0b0010 WFET and WFIT are supported, and the register number is reported in the ESR_ELx on
exceptions.

All other values are reserved.

FEAT_WFxT implements the functionality identified by the value 0b0001.

FEAT_WFxT2 implements the functionality identified by the value 0b0010.

From Armv8.7, the permitted values are 0b0001 and 0b0010.

RES0

63 32

RES0

31 8

RPRES

7 4

WFxT

3 0
D13-3452 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Note

Arm deprecates not implementing FEAT_WFxT2.

Accessing ID_AA64ISAR2_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64ISAR2_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64ISAR2_EL1;
elsif PSTATE.EL == EL2 then
 return ID_AA64ISAR2_EL1;
elsif PSTATE.EL == EL3 then
 return ID_AA64ISAR2_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0110 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3453
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.64 ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0

The ID_AA64MMFR0_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

There are no configuration notes.

Attributes

ID_AA64MMFR0_EL1 is a 64-bit register.

Field descriptions

ECV, bits [63:60]

Indicates presence of Enhanced Counter Virtualization. Defined values are:

0b0000 Enhanced Counter Virtualization is not implemented.

0b0001 Enhanced Counter Virtualization is implemented. Supports
CNTHCTL_EL2.{EL1TVT, EL1TVCT, EL1NVPCT, EL1NVVCT, EVNTIS},
CNTKCTL_EL1.EVNTIS, CNTPCTSS_EL0 counter views, and CNTVCTSS_EL0
counter views. Extends the PMSCR_EL1.PCT, PMSCR_EL2.PCT, TRFCR_EL1.TS,
and TRFCR_EL2.TS fields.

0b0010 As 0b0001, and also includes support for CNTHCTL_EL2.ECV and CNTPOFF_EL2.

All other values are reserved.

FEAT_ECV implements the functionality identified by the values 0b0001 and 0b0010.

From Armv8.6, the only permitted values are 0b0001 and 0b0010.

FGT, bits [59:56]

Indicates presence of the Fine-Grained Trap controls:

• If EL2 is implemented, the HAFGRTR_EL2, HDFGRTR_EL2, HDFGWTR_EL2,
HFGRTR_EL2, HFGITR_EL2 and HFGWTR_EL2 registers, and their associated traps.

• If EL2 is implemented, MDCR_EL2.TDCC.

• If EL3 is implemented, MDCR_EL3.TDCC.

• If both EL2 and EL3 are implemented, SCR_EL3.FGTEn.

Defined values are:

0b0000 The fine-grained trap controls are not implemented.

0b0001 The fine-grained trap controls are implemented.

All other values are reserved.

FEAT_FGT implements the functionality identified by the value 0b0001.

ECV

63 60

FGT

59 56

RES0

55 48

ExS

47 44

TGran4_2

43 40 39 36 35 32

TGran64_2 TGran16_2

TGran4

31 28

TGran64

27 24

TGran16

23 20 19 16

SNSMem

15 12

BigEnd

11 8

ASIDBits

7 4

PARange

3 0

BigEndEL0
D13-3454 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
From Armv8.6, the only permitted value is 0b0001.

Bits [55:48]

Reserved, RES0.

ExS, bits [47:44]

Indicates support for disabling context synchronizing exception entry and exit. Defined values are:

0b0000 All exception entries and exits are context synchronization events.

0b0001 Non-context synchronizing exception entry and exit are supported.

All other values are reserved.

FEAT_ExS implements the functionality identified by the value 0b0001.

TGran4_2, bits [43:40]

Indicates support for 4KB memory granule size at stage 2. Defined values are:

0b0000 Support for 4KB granule at stage 2 is identified in the ID_AA64MMFR0_EL1.TGran4
field.

0b0001 4KB granule not supported at stage 2.

0b0010 4KB granule supported at stage 2.

0b0011 When FEAT_LPA2 is implemented:

4KB granule at stage 2 supports 52-bit input and output addresses.

All other values are reserved.

The 0b0000 value is deprecated.

Note

This field does not follow the standard ID scheme. See Alternative ID scheme used for
ID_AA64MMFR0_EL1 stage 2 granule sizes on page D13-3048 for more information.

TGran64_2, bits [39:36]

Indicates support for 64KB memory granule size at stage 2. Defined values are:

0b0000 Support for 64KB granule at stage 2 is identified in the
ID_AA64MMFR0_EL1.TGran64 field.

0b0001 64KB granule not supported at stage 2.

0b0010 64KB granule supported at stage 2.

All other values are reserved.

The 0b0000 value is deprecated.

Note

This field does not follow the standard ID scheme. See Alternative ID scheme used for
ID_AA64MMFR0_EL1 stage 2 granule sizes on page D13-3048 for more information.

TGran16_2, bits [35:32]

Indicates support for 16KB memory granule size at stage 2. Defined values are:

0b0000 Support for 16KB granule at stage 2 is identified in the
ID_AA64MMFR0_EL1.TGran16 field.

0b0001 16KB granule not supported at stage 2.

0b0010 16KB granule supported at stage 2.

0b0011 When FEAT_LPA2 is implemented:

16KB granule at stage 2 supports 52-bit input and output addresses.

All other values are reserved.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3455
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The 0b0000 value is deprecated.

Note

This field does not follow the standard ID scheme. See Alternative ID scheme used for
ID_AA64MMFR0_EL1 stage 2 granule sizes on page D13-3048 for more information.

TGran4, bits [31:28]

Indicates support for 4KB memory translation granule size. Defined values are:

0b0000 4KB granule supported.

0b0001 When FEAT_LPA2 is implemented:

4KB granule supports 52-bit input and output addresses.

0b1111 4KB granule not supported.

All other values are reserved.

TGran64, bits [27:24]

Indicates support for 64KB memory translation granule size. Defined values are:

0b0000 64KB granule supported.

0b1111 64KB granule not supported.

All other values are reserved.

TGran16, bits [23:20]

Indicates support for 16KB memory translation granule size. Defined values are:

0b0000 16KB granule not supported.

0b0001 16KB granule supported.

0b0010 When FEAT_LPA2 is implemented:

16KB granule supports 52-bit input and output addresses.

All other values are reserved.

BigEndEL0, bits [19:16]

Indicates support for mixed-endian at EL0 only. Defined values are:

0b0000 No mixed-endian support at EL0. The SCTLR_EL1.E0E bit has a fixed value.

0b0001 Mixed-endian support at EL0. The SCTLR_EL1.E0E bit can be configured.

All other values are reserved.

This field is invalid and is RES0 if ID_AA64MMFR0_EL1.BigEnd is not 0b0000.

SNSMem, bits [15:12]

Indicates support for a distinction between Secure and Non-secure Memory. Defined values are:

0b0000 Does not support a distinction between Secure and Non-secure Memory.

0b0001 Does support a distinction between Secure and Non-secure Memory.

Note

If EL3 is implemented, the value 0b0000 is not permitted.

All other values are reserved.

BigEnd, bits [11:8]

Indicates support for mixed-endian configuration. Defined values are:

0b0000 No mixed-endian support. The SCTLR_ELx.EE bits have a fixed value. See the
BigEndEL0 field, bits[19:16], for whether EL0 supports mixed-endian.
D13-3456 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b0001 Mixed-endian support. The SCTLR_ELx.EE and SCTLR_EL1.E0E bits can be
configured.

All other values are reserved.

ASIDBits, bits [7:4]

Number of ASID bits. Defined values are:

0b0000 8 bits.

0b0010 16 bits.

All other values are reserved.

PARange, bits [3:0]

Physical Address range supported. Defined values are:

0b0000 32 bits, 4GB.

0b0001 36 bits, 64GB.

0b0010 40 bits, 1TB.

0b0011 42 bits, 4TB.

0b0100 44 bits, 16TB.

0b0101 48 bits, 256TB.

0b0110 52 bits, 4PB.

All other values are reserved.

The value 0b0110 is permitted only if the implementation includes FEAT_LPA, otherwise it is
reserved.

Accessing ID_AA64MMFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64MMFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64MMFR0_EL1;
elsif PSTATE.EL == EL2 then
 return ID_AA64MMFR0_EL1;
elsif PSTATE.EL == EL3 then
 return ID_AA64MMFR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0111 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3457
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.65 ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

The ID_AA64MMFR1_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

There are no configuration notes.

Attributes

ID_AA64MMFR1_EL1 is a 64-bit register.

Field descriptions

Bits [63:52]

Reserved, RES0.

nTLBPA, bits [51:48]

Indicates support for intermediate caching of translation table walks. Defined values are:

0b0000 The intermediate caching of translation table walks might include non-coherent caches
of previous valid translation table entries since the last completed relevant TLBI
applicable to the PE where either:

• The caching is indexed by the physical address of the location holding the
translation table entry.

• The caching is used for stage 1 translations and is indexed by the intermediate
physical address of the location holding the translation table entry.

0b0001 The intermediate caching of translation table walks does not include non-coherent
caches of previous valid translation table entries since the last completed TLBI
applicable to the PE where either:

• The caching is indexed by the physical address of the location holding the
translation table entry.

• The caching is used for stage 1 translations and is indexed by the intermediate
physical address of the location holding the translation table entry.

All other values are reserved.

FEAT_nTLBPA implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

AFP, bits [47:44]

Indicates support for FPCR.{AH, FIZ, NEP}. Defined values are:

0b0000 The FPCR.{AH, FIZ, NEP} fields are not supported.

0b0001 The FPCR.{AH, FIZ, NEP} fields are supported.

All other values are reserved.

RES0

63 52

nTLBPA

51 48

AFP

47 44

HCX

43 40

ETS

39 36

TWED

35 32

XNX

31 28

SpecSEI

27 24

PAN

23 20

LO

19 16

HPDS

15 12

VH

11 8

VMIDBits

7 4

HAFDBS

3 0
D13-3458 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
FEAT_AFP implements the functionality identified by the value 0b0001.

From Armv8.7, if Advanced SIMD and floating-point is implemented, the only permitted value is
0b0001.

HCX, bits [43:40]

Indicates support for HCRX_EL2 and its associated EL3 trap. Defined values are:

0b0000 HCRX_EL2 and its associated EL3 trap are not supported.

0b0001 HCRX_EL2 and its associated EL3 trap are supported.

All other values are reserved.

FEAT_HCX implements the functionality identified by the value 0b0001.

From Armv8.7, if EL2 is implemented, the only permitted value is 0b0001.

ETS, bits [39:36]

Indicates support for Enhanced Translation Synchronization. Defined values are:

0b0000 Enhanced Translation Synchronization is not supported.

0b0001 Enhanced Translation Synchronization is supported.

All other values are reserved.

FEAT_ETS implements the functionality identified by the value 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.7, the only permitted value is 0b0001.

TWED, bits [35:32]

Indicates support for the configurable delayed trapping of WFE. Defined values are:

0b0000 Configurable delayed trapping of WFE is not supported.

0b0001 Configurable delayed trapping of WFE is supported.

All other values are reserved.

FEAT_TWED implements the functionality identified by the value 0b0001.

From Armv8.6, the permitted values are 0b0000 and 0b0001.

XNX, bits [31:28]

Indicates support for execute-never control distinction by Exception level at stage 2. Defined values
are:

0b0000 Distinction between EL0 and EL1 execute-never control at stage 2 not supported.

0b0001 Distinction between EL0 and EL1 execute-never control at stage 2 supported.

All other values are reserved.

FEAT_XNX implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

SpecSEI, bits [27:24]

Describes whether the PE can generate SError interrupt exceptions from speculative reads of
memory, including speculative instruction fetches. The defined values of this field are:

0b0000 The PE never generates an SError interrupt due to an External abort on a speculative
read.

0b0001 The PE might generate an SError interrupt due to an External abort on a speculative
read.

All other values are reserved.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3459
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
PAN, bits [23:20]

Privileged Access Never. Indicates support for the PAN bit in PSTATE, SPSR_EL1, SPSR_EL2,
SPSR_EL3, and DSPSR_EL0. Defined values are:

0b0000 PAN not supported.

0b0001 PAN supported.

0b0010 PAN supported and AT S1E1RP and AT S1E1WP instructions supported.

0b0011 PAN supported, AT S1E1RP and AT S1E1WP instructions supported, and
SCTLR_EL1.EPAN and SCTLR_EL2.EPAN bits supported.

All other values are reserved.

FEAT_PAN implements the functionality identified by the value 0b0001.

FEAT_PAN2 implements the functionality added by the value 0b0010.

FEAT_PAN3 implements the functionality added by the value 0b0011.

In Armv8.1, the permitted values are 0b0001, 0b0010, and 0b0011.

From Armv8.2, the permitted values are 0b0010 and 0b0011.

From Armv8.7, the only permitted value is 0b0011.

LO, bits [19:16]

LORegions. Indicates support for LORegions. Defined values are:

0b0000 LORegions not supported.

0b0001 LORegions supported.

All other values are reserved.

FEAT_LOR implements the functionality identified by the value 0b0001.

From Armv8.1, the only permitted value is 0b0001.

HPDS, bits [15:12]

Hierarchical Permission Disables. Indicates support for disabling hierarchical controls in translation
tables. Defined values are:

0b0000 Disabling of hierarchical controls not supported.

0b0001 Disabling of hierarchical controls supported with the TCR_EL1.{HPD1, HPD0},
TCR_EL2.HPD or TCR_EL2.{HPD1, HPD0}, and TCR_EL3.HPD bits.

0b0010 As for value 0b0001, and adds possible hardware allocation of bits[62:59] of the
translation table descriptors from the final lookup level for IMPLEMENTATION DEFINED
use.

All other values are reserved.

FEAT_HPDS implements the functionality identified by the value 0b0001.

FEAT_HPDS2 implements the functionality identified by the value 0b0010.

From Armv8.1, the value 0b0000 is not permitted.

VH, bits [11:8]

Virtualization Host Extensions. Defined values are:

0b0000 Virtualization Host Extensions not supported.

0b0001 Virtualization Host Extensions supported.

All other values are reserved.

FEAT_VHE implements the functionality identified by the value 0b0001.

From Armv8.1, the only permitted value is 0b0001.
D13-3460 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
VMIDBits, bits [7:4]

Number of VMID bits. Defined values are:

0b0000 8 bits

0b0010 16 bits

All other values are reserved.

FEAT_VMID16 implements the functionality identified by the value 0b0010.

From Armv8.1, the permitted values are 0b0000 and 0b0010.

HAFDBS, bits [3:0]

Hardware updates to Access flag and Dirty state in translation tables. Defined values are:

0b0000 Hardware update of the Access flag and dirty state are not supported.

0b0001 Hardware update of the Access flag is supported.

0b0010 Hardware update of both the Access flag and dirty state is supported.

All other values are reserved.

FEAT_HAFDBS implements the functionality identified by the values 0b0001 and 0b0010.

From Armv8.1, the permitted values are 0b0000, 0b0001, and 0b0010.

Accessing ID_AA64MMFR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64MMFR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64MMFR1_EL1;
elsif PSTATE.EL == EL2 then
 return ID_AA64MMFR1_EL1;
elsif PSTATE.EL == EL3 then
 return ID_AA64MMFR1_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0111 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3461
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.66 ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

The ID_AA64MMFR2_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

Note

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_AA64MMFR2_EL1 is a 64-bit register.

Field descriptions

E0PD, bits [63:60]

Indicates support for the E0PD mechanism. Defined values are:

0b0000 E0PDx mechanism is not implemented.

0b0001 E0PDx mechanism is implemented.

All other values are reserved.

FEAT_E0PD implements the functionality identified by the value 0b0001.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

If FEAT_E0PD is implemented, FEAT_CSV3 must be implemented.

EVT, bits [59:56]

Enhanced Virtualization Traps. If EL2 is implemented, indicates support for the
HCR_EL2.{TTLBOS, TTLBIS, TOCU, TICAB, TID4} traps. Defined values are:

0b0000 HCR_EL2.{TTLBOS, TTLBIS, TOCU, TICAB, TID4} traps are not supported.

0b0001 HCR_EL2.{TOCU, TICAB, TID4} traps are supported. HCR_EL2.{TTLBOS,
TTLBIS} traps are not supported.

0b0010 HCR_EL2.{TTLBOS, TTLBIS, TOCU, TICAB, TID4} traps are supported.

All other values are reserved.

FEAT_EVT implements the functionality identified by the values 0b0001 and 0b0010.

If EL2 is not implemented, the only permitted value is 0b0000.

In Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

From Armv8.5, the permitted values are:

• 0b0000 when EL2 is not implemented.

E0PD

63 60

EVT

59 56

BBM

55 52

TTL

51 48

RES0

47 44

FWB

43 40

IDS

39 36

AT

35 32

ST

31 28

NV

27 24

CCIDX

23 20

VARange

19 16

IESB

15 12

LSM

11 8

UAO

7 4

CnP

3 0
D13-3462 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
• 0b0010 when EL2 is implemented.

BBM, bits [55:52]

Allows identification of the requirements of the hardware to have break-before-make sequences
when changing block size for a translation.

0b0000 Level 0 support for changing block size is supported.

0b0001 Level 1 support for changing block size is supported.

0b0010 Level 2 support for changing block size is supported.

All other values are reserved.

FEAT_BBM implements the functionality identified by the values 0b0000, 0b0001, and 0b0010.

From Armv8.4, the permitted values are 0b0000, 0b0001, and 0b0010.

TTL, bits [51:48]

Indicates support for TTL field in address operations. Defined values are:

0b0000 TLB maintenance instructions by address have bits[47:44] as RES0.

0b0001 TLB maintenance instructions by address have bits[47:44] holding the TTL field.

All other values are reserved.

FEAT_TTL implements the functionality identified by the value 0b0001.

This field affects TLBI IPAS2E1, TLBI IPAS2E1NXS, TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS,
TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS, TLBI IPAS2LE1, TLBI IPAS2LE1NXS, TLBI
IPAS2LE1IS, TLBI IPAS2LE1ISNXS, TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS, TLBI
VAAE1, TLBI VAAE1NXS, TLBI VAAE1IS, TLBI VAAE1ISNXS, TLBI VAAE1OS, TLBI
VAAE1OSNXS, TLBI VAALE1, TLBI VAALE1NXS, TLBI VAALE1IS, TLBI VAALE1ISNXS,
TLBI VAALE1OS, TLBI VAALE1OSNXS, TLBI VAE1, TLBI VAE1NXS, TLBI VAE1IS, TLBI
VAE1ISNXS, TLBI VAE1OS, TLBI VAE1OSNXS, TLBI VAE2, TLBI VAE2NXS, TLBI VAE2IS,
TLBI VAE2ISNXS, TLBI VAE2OS, TLBI VAE2OSNXS, TLBI VAE3, TLBI VAE3NXS, TLBI
VAE3IS, TLBI VAE3ISNXS, TLBI VAE3OS, TLBI VAE3OSNXS,TLBI VALE1, TLBI
VALE1NXS, TLBI VALE1IS, TLBI VALE1ISNXS, TLBI VALE1OS, TLBI VALE1OSNXS,
TLBI VALE2, TLBI VALE2NXS, TLBI VALE2IS, TLBI VALE2ISNXS, TLBI VALE2OS, TLBI
VALE2OSNXS, TLBI VALE3, TLBI VALE3NXS, TLBI VALE3IS, TLBI VALE3ISNXS, TLBI
VALE3OS, TLBI VALE3OSNXS.

From Armv8.4, the only permitted value is 0b0001.

Bits [47:44]

Reserved, RES0.

FWB, bits [43:40]

Indicates support for HCR_EL2.FWB. Defined values are:

0b0000 HCR_EL2.FWB bit is not supported.

0b0001 HCR_EL2.FWB is supported.

All other values reserved.

FEAT_S2FWB implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

IDS, bits [39:36]

Indicates the value of ESR_ELx.EC that reports an exception generated by a read access to the
feature ID space. Defined values are:

0b0000 An exception which is generated by a read access to the feature ID space, other than a
trap caused by HCR_EL2.TIDx, SCTLR_EL1.UCT, or SCTLR_EL2.UCT, is reported
by ESR_ELx.EC == 0x0.

0b0001 All exceptions generated by an AArch64 read access to the feature ID space are reported
by ESR_ELx.EC == 0x18.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3463
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
All other values are reserved.

The Feature ID space is defined as the System register space in AArch64 with op0==3, op1=={0,
1, 3}, CRn==0, CRm=={0-7}, op2=={0-7}.

FEAT_IDST implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

AT, bits [35:32]

Identifies support for unaligned single-copy atomicity and atomic functions. Defined values are:

0b0000 Unaligned single-copy atomicity and atomic functions are not supported.

0b0001 Unaligned single-copy atomicity and atomic functions with a 16-byte address range
aligned to 16-bytes are supported.

All other values are reserved.

FEAT_LSE2 implements the functionality identified by the value 0b0001.

In Armv8.2, the permitted values are 0b0000 and 0b0001.

From Armv8.4, the only permitted value is 0b0001.

ST, bits [31:28]

Identifies support for small translation tables. Defined values are:

0b0000 The maximum value of the TCR_ELx.{T0SZ,T1SZ} and VTCR_EL2.T0SZ fields is
39.

0b0001 The maximum value of the TCR_ELx.{T0SZ,T1SZ} and VTCR_EL2.T0SZ fields is 48
for 4KB and 16KB granules, and 47 for 64KB granules.

All other values are reserved.

FEAT_TTST implements the functionality identified by the value 0b0001.

If FEAT_SEL2 is implemented, the only permitted value is 0b0001.

In an implementation which does not support FEAT_SEL2, the permitted values are 0b0000 and
0b0001.

NV, bits [27:24]

Nested Virtualization. If EL2 is implemented, indicates support for the use of nested virtualization.
Defined values are:

0b0000 Nested virtualization is not supported.

0b0001 The HCR_EL2.{AT, NV1, NV} bits are implemented.

0b0010 The VNCR_EL2 register and the HCR_EL2.{NV2, AT, NV1, NV} bits are
implemented.

All other values are reserved.

If EL2 is not implemented, the only permitted value is 0b0000.

FEAT_NV implements the functionality identified by the value 0b0001.

FEAT_NV2 implements the functionality identified by the value 0b0010.

In Armv8.3, if EL2 is implemented, the permitted values are 0b0000 and 0b0001.

From Armv8.4, if EL2 is implemented, the permitted values are 0b0000, 0b0001, and 0b0010.

CCIDX, bits [23:20]

Support for the use of revised CCSIDR_EL1 register format. Defined values are:

0b0000 32-bit format implemented for all levels of the CCSIDR_EL1.

0b0001 64-bit format implemented for all levels of the CCSIDR_EL1.

All other values are reserved.

FEAT_CCIDX implements the functionality identified by the value 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.
D13-3464 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
VARange, bits [19:16]

Indicates support for a larger virtual address. Defined values are:

0b0000 VMSAv8-64 supports 48-bit VAs.

0b0001 VMSAv8-64 supports 52-bit VAs when using the 64KB translation granule. The size for
other translation granules is not defined by this field.

All other values are reserved.

FEAT_LVA implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

IESB, bits [15:12]

Indicates support for the IESB bit in the SCTLR_ELx registers. Defined values are:

0b0000 IESB bit in the SCTLR_ELx registers is not supported.

0b0001 IESB bit in the SCTLR_ELx registers is supported.

All other values are reserved.

FEAT_IESB implements the functionality identified by the value 0b0001.

LSM, bits [11:8]

Indicates support for LSMAOE and nTLSMD bits in SCTLR_EL1 and SCTLR_EL2. Defined
values are:

0b0000 LSMAOE and nTLSMD bits not supported.

0b0001 LSMAOE and nTLSMD bits supported.

All other values are reserved.

FEAT_LSMAOC implements the functionality identified by the value 0b0001.

UAO, bits [7:4]

User Access Override. Defined values are:

0b0000 UAO not supported.

0b0001 UAO supported.

All other values are reserved.

FEAT_UAO implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

CnP, bits [3:0]

Indicates support for Common not Private translations. Defined values are:

0b0000 Common not Private translations not supported.

0b0001 Common not Private translations supported.

All other values are reserved.

FEAT_TTCNP implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

Accessing ID_AA64MMFR2_EL1

Accesses to this register use the following encodings in the System register encoding space:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3465
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, ID_AA64MMFR2_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!IsZero(ID_AA64MMFR2_EL1) || boolean IMPLEMENTATION_DEFINED "ID_AA64MMFR2 trapped
by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64MMFR2_EL1;
elsif PSTATE.EL == EL2 then
 return ID_AA64MMFR2_EL1;
elsif PSTATE.EL == EL3 then
 return ID_AA64MMFR2_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0111 0b010
D13-3466 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.67 ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

The ID_AA64PFR0_EL1 characteristics are:

Purpose

Provides additional information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

The external register EDPFR gives information from this register.

Attributes

ID_AA64PFR0_EL1 is a 64-bit register.

Field descriptions

CSV3, bits [63:60]

Speculative use of faulting data. Defined values are:

0b0000 This PE does not disclose whether data loaded under speculation with a permission or
domain fault can be used to form an address or generate condition codes or SVE
predicate values to be used by other instructions in the speculative sequence.

0b0001 Data loaded under speculation with a permission or domain fault cannot be used to form
an address or generate condition codes or SVE predicate values to be used by other
instructions in the speculative sequence.

All other values are reserved.

FEAT_CSV3 implements the functionality identified by the value 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

If FEAT_E0PD is implemented, FEAT_CSV3 must be implemented.

CSV2, bits [59:56]

Speculative use of out of context branch targets. Defined values are:

0b0000 This PE does not disclose whether branch targets trained in one hardware-described
context can exploitatively control speculative execution in a different
hardware-described context.

0b0001 Branch targets trained in one hardware-described context can exploitatively control
speculative execution in a different hardware-described context only in a
hard-to-determine way. Contexts do not include the SCXTNUM_ELx register contexts.
Support for the SCXTNUM_ELx registers is defined in
ID_AA64PFR1_EL1.CSV2_frac.

0b0010 Branch targets trained in one hardware-described context can exploitatively control
speculative execution in a different hardware-described context only in a
hard-to-determine way. The SCXTNUM_ELx registers are supported and the contexts
include the SCXTNUM_ELx register contexts.

All other values are reserved.

CSV3

63 60

CSV2

59 56

RES0

55 52

DIT

51 48

AMU

47 44

MPAM

43 40

SEL2

39 36

SVE

35 32

RAS

31 28

GIC

27 24

AdvSIMD

23 20

FP

19 16

EL3

15 12

EL2

11 8

EL1

7 4

EL0

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3467
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
FEAT_CSV2 implements the functionality identified by the value 0b0001.

FEAT_CSV2_2 implements the functionality identified by the value 0b0010.

In Armv8.0, the permitted values are 0b0000, 0b0001, and 0b0010.

From Armv8.5, the permitted values are 0b0001 and 0b0010.

Bits [55:52]

Reserved, RES0.

DIT, bits [51:48]

Data Independent Timing. Defined values are:

0b0000 AArch64 does not guarantee constant execution time of any instructions.

0b0001 AArch64 provides the PSTATE.DIT mechanism to guarantee constant execution time
of certain instructions.

All other values are reserved.

FEAT_DIT implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

AMU, bits [47:44]

Indicates support for Activity Monitors Extension. Defined values are:

0b0000 Activity Monitors Extension is not implemented.

0b0001 FEAT_AMUv1 is implemented.

0b0010 FEAT_AMUv1p1 is implemented. As 0b0001 and adds support for virtualization of the
activity monitor event counters.

All other values are reserved.

FEAT_AMUv1 implements the functionality identified by the value 0b0001.

FEAT_AMUv1p1 implements the functionality identified by the value 0b0010.

In Armv8.0, the only permitted value is 0b0000.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.6, the permitted values are 0b0000, 0b0001, and 0b0010.

MPAM, bits [43:40]

Indicates support for MPAM Extension. Defined values are:

0b0000 If ID_AA64PFR1_EL1.MPAM_frac == 0b0000, MPAM Extension is not implemented.

If ID_AA64PFR1_EL1.MPAM_frac == 0b0001, MPAM Extension version 0.1 is
implemented.

0b0001 If ID_AA64PFR1_EL1.MPAM_frac == 0b0000, MPAM Extension version 1.0 is
implemented.

If ID_AA64PFR1_EL1.MPAM_frac == 0b0001, MPAM Extension version 1.1 is
implemented.

All other values are reserved.

SEL2, bits [39:36]

Secure EL2. Defined values are:

0b0000 Secure EL2 is not implemented.

0b0001 Secure EL2 is implemented.

All other values are reserved.

FEAT_SEL2 implements the functionality identified by the value 0b0001.
D13-3468 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
SVE, bits [35:32]

Scalable Vector Extension. Defined values are:

0b0000 SVE architectural state and programmers' model are not implemented.

0b0001 SVE architectural state and programmers' model are implemented.

All other values are reserved.

If implemented, refer to ID_AA64ZFR0_EL1 for information about which SVE instructions are
available.

RAS, bits [31:28]

RAS Extension version. Defined values are:

0b0000 No RAS Extension.

0b0001 RAS Extension implemented.

0b0010 FEAT_RASv1p1 implemented and, if EL3 is implemented, FEAT_DoubleFault
implemented. As 0b0001, and adds support for:

• If EL3 is implemented, FEAT_DoubleFault.

• Additional ERXMISC<m>_EL1 System registers.

• Additional System registers ERXPFGCDN_EL1, ERXPFGCTL_EL1, and
ERXPFGF_EL1, and the SCR_EL3.FIEN and HCR_EL2.FIEN trap controls, to
support the optional RAS Common Fault Injection Model Extension.

Error records accessed through System registers conform to RAS System Architecture
v1.1, which includes simplifications to ERR<n>STATUS and support for the optional
RAS Timestamp and RAS Common Fault Injection Model Extensions.

All other values are reserved.

FEAT_RAS implements the functionality identified by the value 0b0001.

FEAT_RASv1p1 and FEAT_DoubleFault implement the functionality identified by the value
0b0010.

In Armv8.0 and Armv8.1, the permitted values are 0b0000 and 0b0001.

In Armv8.2, the only permitted value is 0b0001.

From Armv8.4, if FEAT_DoubleFault is implemented, the only permitted value is 0b0010.

From Armv8.4, when FEAT_DoubleFault is not implemented, and ERRIDR_EL1 is 0, the
permitted values are IMPLEMENTATION DEFINED 0b0001 or 0b0010.

Note
When the value of this field is 0b0001, ID_AA64PFR1_EL1.RAS_frac indicates whether
FEAT_RASv1p1 is implemented.

GIC, bits [27:24]

System register GIC CPU interface. Defined values are:

0b0000 GIC CPU interface system registers not implemented.

0b0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is supported.

0b0011 System register interface to version 4.1 of the GIC CPU interface is supported.

All other values are reserved.

AdvSIMD, bits [23:20]

Advanced SIMD. Defined values are:

0b0000 Advanced SIMD is implemented, including support for the following SISD and SIMD
operations:

• Integer byte, halfword, word and doubleword element operations.

• Single-precision and double-precision floating-point arithmetic.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3469
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
• Conversions between single-precision and half-precision data types, and
double-precision and half-precision data types.

0b0001 As for 0b0000, and also includes support for half-precision floating-point arithmetic.

0b1111 Advanced SIMD is not implemented.

All other values are reserved.

This field must have the same value as the FP field.

The permitted values are:

• 0b0000 in an implementation with Advanced SIMD support that does not include the
FEAT_FP16 extension.

• 0b0001 in an implementation with Advanced SIMD support that includes the FEAT_FP16
extension.

• 0b1111 in an implementation without Advanced SIMD support.

FP, bits [19:16]

Floating-point. Defined values are:

0b0000 Floating-point is implemented, and includes support for:

• Single-precision and double-precision floating-point types.

• Conversions between single-precision and half-precision data types, and
double-precision and half-precision data types.

0b0001 As for 0b0000, and also includes support for half-precision floating-point arithmetic.

0b1111 Floating-point is not implemented.

All other values are reserved.

This field must have the same value as the AdvSIMD field.

The permitted values are:

• 0b0000 in an implementation with floating-point support that does not include the
FEAT_FP16 extension.

• 0b0001 in an implementation with floating-point support that includes the FEAT_FP16
extension.

• 0b1111 in an implementation without floating-point support.

EL3, bits [15:12]

EL3 Exception level handling. Defined values are:

0b0000 EL3 is not implemented.

0b0001 EL3 can be executed in AArch64 state only.

0b0010 EL3 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL2, bits [11:8]

EL2 Exception level handling. Defined values are:

0b0000 EL2 is not implemented.

0b0001 EL2 can be executed in AArch64 state only.

0b0010 EL2 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL1, bits [7:4]

EL1 Exception level handling. Defined values are:

0b0001 EL1 can be executed in AArch64 state only.

0b0010 EL1 can be executed in either AArch64 or AArch32 state.
D13-3470 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
All other values are reserved.

EL0, bits [3:0]

EL0 Exception level handling. Defined values are:

0b0001 EL0 can be executed in AArch64 state only.

0b0010 EL0 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

Accessing ID_AA64PFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64PFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64PFR0_EL1;
elsif PSTATE.EL == EL2 then
 return ID_AA64PFR0_EL1;
elsif PSTATE.EL == EL3 then
 return ID_AA64PFR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0100 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3471
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.68 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

The ID_AA64PFR1_EL1 characteristics are:

Purpose

Reserved for future expansion of information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

There are no configuration notes.

Attributes

ID_AA64PFR1_EL1 is a 64-bit register.

Field descriptions

Bits [63:36]

Reserved, RES0.

CSV2_frac, bits [35:32]

CSV2 fractional field. Defined values are:

0b0000 This PE does not disclose whether branch targets trained in one hardware-described
context can exploitatively control speculative execution in a different
hardware-described context. The SCXTNUM_ELx registers are not supported.

0b0001 If ID_AA64PFR0_EL1.CSV2 is 0b0001, branch targets trained in one
hardware-described context can exploitatively control speculative execution in a
different hardware-described context only in a hard-to-determine way. Within a
hardware-described context, branch targets trained for branches situated at one address
can control speculative execution of branches situated at different addresses only in a
hard-to-determine way. The SCXTNUM_ELx registers are not supported and the
contexts do not include the SCXTNUM_ELx register contexts.

0b0010 If ID_AA64PFR0_EL1.CSV2 is 0b0001, branch targets trained in one
hardware-described context can exploitatively control speculative execution in a
different hardware-described context only in a hard-to-determine way. Within a
hardware-described context, branch targets trained for branches situated at one address
can control speculative execution of branches situated at different addresses only in a
hard-to-determine way. The SCXTNUM_ELx registers are supported, but the contexts
do not include the SCXTNUM_ELx register contexts.

All other values are reserved.

FEAT_CSV2_1p1 implements the functionality identified by the value 0b0001.

FEAT_CSV2_1p2 implements the functionality identified by the value 0b0010.

From Armv8.0, the permitted values are 0b0000, 0b0001, and 0b0010.

This field is valid only if ID_AA64PFR0_EL1.CSV2 is 0b0001.

RES0

63 36 35 32

CSV2_frac

RES0

31 20 19 16

RAS_frac

15 12

MTE

11 8

SSBS

7 4

BT

3 0

MPAM_frac
D13-3472 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Bits [31:20]

Reserved, RES0.

MPAM_frac, bits [19:16]

MPAM Extension fractional field. Defined values are:

0b0000 If ID_AA64PFR0_EL1.MPAM == 0b0000, MPAM Extension not implemented.

If ID_AA64PFR0_EL1.MPAM == 0b0001, MPAM Extension v1.0 is implemented.

0b0001 If ID_AA64PFR0_EL1.MPAM == 0b0000, implements MPAM v0.1, which is like v1.1
but reduces support for Secure PARTIDs.

If ID_AA64PFR0_EL1.MPAM == 0b0001, implements MPAM v1.1 and adds support
for MPAM2_EL2.TIDR to provide trapping of MPAMIDR_EL1 when
MPAMHCR_EL2 is not present.

All other values are reserved.

RAS_frac, bits [15:12]

RAS Extension fractional field. Defined values are:

0b0000 If ID_AA64PFR0_EL1.RAS == 0b0001, RAS Extension implemented.

0b0001 If ID_AA64PFR0_EL1.RAS == 0b0001, as 0b0000 and adds support for:

• Additional ERXMISC<m>_EL1 System registers.

• Additional System registers ERXPFGCDN_EL1, ERXPFGCTL_EL1, and
ERXPFGF_EL1, and the SCR_EL3.FIEN and HCR_EL2.FIEN trap controls, to
support the optional RAS Common Fault Injection Model Extension.

Error records accessed through System registers conform to RAS System Architecture
v1.1, which includes simplifications to ERR<n>STATUS, and support for the optional
RAS Timestamp and RAS Common Fault Injection Model Extensions.

All other values are reserved.

FEAT_RASv1p1 implements the functionality identified by the value 0b0001.

This field is valid only if ID_AA64PFR0_EL1.RAS == 0b0001.

MTE, bits [11:8]

Support for the Memory Tagging Extension. Defined values are:

0b0000 Memory Tagging Extension is not implemented.

0b0001 Instruction-only Memory Tagging Extension is implemented.

0b0010 Full Memory Tagging Extension is implemented.

0b0011 Memory Tagging Extension is implemented with support for asymmetric Tag Check
Fault handling.

All other values are reserved.

FEAT_MTE implements the functionality identified by the value 0b0001.

FEAT_MTE2 implements the functionality identified by the value 0b0010.

FEAT_MTE3 implements the functionality identified by the value 0b0011.

In Armv8.5, the permitted values are 0b0000, 0b0001 and 0b0010.

From Armv8.7, the value 0b0001 is not permitted.

SSBS, bits [7:4]

Speculative Store Bypassing controls in AArch64 state. Defined values are:

0b0000 AArch64 provides no mechanism to control the use of Speculative Store Bypassing.

0b0001 AArch64 provides the PSTATE.SSBS mechanism to mark regions that are Speculative
Store Bypass Safe.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3473
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b0010 AArch64 provides the PSTATE.SSBS mechanism to mark regions that are Speculative
Store Bypassing Safe, and the MSR and MRS instructions to directly read and write the
PSTATE.SSBS field.

All other values are reserved.

FEAT_SSBS implements the functionality identified by the value 0b0001.

FEAT_SSBS implements the functionality identified by the value 0b0010.

BT, bits [3:0]

Branch Target Identification mechanism support in AArch64 state. Defined values are:

0b0000 The Branch Target Identification mechanism is not implemented.

0b0001 The Branch Target Identification mechanism is implemented.

All other values are reserved.

FEAT_BTI implements the functionality identified by the value 0b0001.

From Armv8.5, the only permitted value is 0b0001.

Accessing ID_AA64PFR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64PFR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64PFR1_EL1;
elsif PSTATE.EL == EL2 then
 return ID_AA64PFR1_EL1;
elsif PSTATE.EL == EL3 then
 return ID_AA64PFR1_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0100 0b001
D13-3474 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.69 ID_AFR0_EL1, AArch32 Auxiliary Feature Register 0

The ID_AFR0_EL1 characteristics are:

Purpose

Provides information about the IMPLEMENTATION DEFINED features of the PE in AArch32 state.

Must be interpreted with the Main ID Register, MIDR_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register ID_AFR0_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_AFR0[31:0].

Attributes

ID_AFR0_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:16]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [15:12]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [11:8]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [7:4]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [3:0]

IMPLEMENTATION DEFINED.

Otherwise:

RES0

63 32

RES0

31 16 15 12 11 8 7 4 3 0

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

IMPLEMENTATI
ON DEFINED

IMPLEMENTATION
DEFINED

UNKNOWN

63 32

UNKNOWN

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3475
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_AFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AFR0_EL1;
elsif PSTATE.EL == EL2 then
 return ID_AFR0_EL1;
elsif PSTATE.EL == EL3 then
 return ID_AFR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0001 0b011
D13-3476 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.70 ID_DFR0_EL1, AArch32 Debug Feature Register 0

The ID_DFR0_EL1 characteristics are:

Purpose

Provides top level information about the debug system in AArch32 state.

Must be interpreted with the Main ID Register, MIDR_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register ID_DFR0_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_DFR0[31:0].

Attributes

ID_DFR0_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:32]

Reserved, RES0.

TraceFilt, bits [31:28]

Armv8.4 Self-hosted Trace Extension version. Defined values are:

0b0000 Armv8.4 Self-hosted Trace Extension not implemented.

0b0001 Armv8.4 Self-hosted Trace Extension implemented.

All other values are reserved.

FEAT_TRF implements the functionality added by the value 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

PerfMon, bits [27:24]

Performance Monitors Extension version.

This field does not follow the standard ID scheme, but uses the alternative ID scheme described in
Alternative ID scheme used for the Performance Monitors Extension version on page D13-3047

Defined values are:

0b0000 Performance Monitors Extension not implemented.

0b0001 Performance Monitors Extension, PMUv1 implemented.

0b0010 Performance Monitors Extension, PMUv2 implemented.

0b0011 Performance Monitors Extension, PMUv3 implemented.

0b0100 PMUv3 for Armv8.1. As 0b0011, and also includes support for:

• Extended 16-bit PMEVTYPER<n>.evtCount field.

• If EL2 is implemented, the HDCR.HPMD control bit.

RES0

63 32

31 28

PerfMon

27 24

MProfDbg

23 20

MMapTrc

19 16

CopTrc

15 12

MMapDbg

11 8

CopSDbg

7 4

CopDbg

3 0

TraceFilt
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3477
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b0101 PMUv3 for Armv8.4. As 0b0100, and also includes support for the PMMIR register.

0b0110 PMUv3 for Armv8.5. As 0b0101, and also includes support for:

• 64-bit event counters.

• If EL2 is implemented, the HDCR.HCCD control bit.

• If EL3 is implemented, the MDCR_EL3.SCCD control bit.

0b0111 PMUv3 for Armv8.7. As 0b0110, and also includes support for:

• The PMCR.FZO and, if EL2 is implemented, HDCR.HPMFZO control bits.

• If EL3 is implemented, the MDCR_EL3.{MPMX,MCCD} control bits.

0b1111 IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3 not
supported. Arm does not recommend this value for new implementations.

All other values are reserved.

FEAT_PMUv3 implements the functionality identified by the value 0b0011.

FEAT_PMUv3p1 implements the functionality identified by the value 0b0100.

FEAT_PMUv3p4 implements the functionality identified by the value 0b0101.

FEAT_PMUv3p5 implements the functionality identified by the value 0b0110.

FEAT_PMUv3p7 implements the functionality identified by the value 0b0111.

In any Armv8 implementation, the values 0b0001 and 0b0010 are not permitted.

From Armv8.1, if FEAT_PMUv3 is implemented, the value 0b0011 is not permitted.

From Armv8.4, if FEAT_PMUv3 is implemented, the value 0b0100 is not permitted.

From Armv8.5, if FEAT_PMUv3 is implemented, the value 0b0101 is not permitted.

From Armv8.7, if FEAT_PMUv3 is implemented, the value 0b0110 is not permitted.

Note

In Armv7, the value 0b0000 can mean that PMUv1 is implemented. PMUv1 is not permitted in an
Armv8 implementation.

MProfDbg, bits [23:20]

M-profile Debug. Support for memory-mapped debug model for M-profile processors. Defined
values are:

0b0000 Not supported.

0b0001 Support for M-profile Debug architecture, with memory-mapped access.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

MMapTrc, bits [19:16]

Memory-mapped Trace. Support for memory-mapped trace model. Defined values are:

0b0000 Not supported.

0b0001 Support for Arm trace architecture, with memory-mapped access.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

For more information, see the ARM® Embedded Trace Macrocell Architecture Specification,
ETMv4 (ARM IHI 0064).

CopTrc, bits [15:12]

Support for System registers-based trace model, using registers in the coproc == 0b1110 encoding
space. Defined values are:

0b0000 Not supported.
D13-3478 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b0001 Support for Arm trace architecture, with System registers access.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

For more information, see the ARM® Embedded Trace Macrocell Architecture Specification,
ETMv4 (ARM IHI 0064).

MMapDbg, bits [11:8]

Memory-mapped Debug. Support for Armv7 memory-mapped debug model for A and R-profile
processors. Defined values are:

0b0000 Not supported.

0b0100 Support for Armv7, v7 Debug architecture, with memory-mapped access.

0b0101 Support for Armv7, v7.1 Debug architecture, with memory-mapped access.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

The optional memory map defined by Armv8 is not compatible with Armv7.

CopSDbg, bits [7:4]

Support for a System registers-based Secure debug model, using registers in the coproc = 0b1110
encoding space, for an A-profile processor that includes EL3.

If EL3 is not implemented and the implemented Security state is Non-secure state, this field is RES0.
Otherwise, this field reads the same as bits [3:0].

CopDbg, bits [3:0]

Support for System registers-based debug model, using registers in the coproc == 0b1110 encoding
space, for A and R-profile processors. Defined values are:

0b0000 Not supported.

0b0010 Support for Armv6, v6 Debug architecture, with System registers access.

0b0011 Support for Armv6, v6.1 Debug architecture, with System registers access.

0b0100 Support for Armv7, v7 Debug architecture, with System registers access.

0b0101 Support for Armv7, v7.1 Debug architecture, with System registers access.

0b0110 Support for Armv8 debug architecture, with System registers access.

0b0111 Support for Armv8 debug architecture, with System registers access, and Virtualization
Host Extensions.

0b1000 Support for Armv8.2 debug architecture.

0b1001 Support for Armv8.4 debug architecture.

All other values are reserved.

FEAT_Debugv8p2 adds the functionality identified by the value 0b1000.

FEAT_Debugv8p4 adds the functionality identified by the value 0b1001.

In Armv8.0, the only permitted value is 0b0110.

In Armv8.1, the only permitted value is 0b0111.

In Armv8.2, the only permitted value is 0b1000.

From Armv8.4, the only permitted value is 0b1001.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3479
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_DFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_DFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_DFR0_EL1;
elsif PSTATE.EL == EL2 then
 return ID_DFR0_EL1;
elsif PSTATE.EL == EL3 then
 return ID_DFR0_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0001 0b010
D13-3480 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.71 ID_DFR1_EL1, Debug Feature Register 1

The ID_DFR1_EL1 characteristics are:

Purpose

Provides top level information about the debug system in AArch32.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register ID_DFR1_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_DFR1[31:0].

Note

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_DFR1_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:4]

Reserved, RES0.

MTPMU, bits [3:0]

Multi-threaded PMU extension. Defined values are:

0b0000 FEAT_MTPMU not implemented. If FEAT_PMUv3 is implemented, it is
IMPLEMENTATION DEFINED whether PMEVTYPER<n>.MT are read/write or RES0.

0b0001 FEAT_MTPMU and FEAT_PMUv3 implemented. PMEVTYPER<n>.MT are
read/write. When FEAT_MTPMU is disabled, the Effective values of
PMEVTYPER<n>.MT are 0.

0b1111 FEAT_MTPMU not implemented. If FEAT_PMUv3 is implemented,
PMEVTYPER<n>.MT are RES0.

All other values are reserved.

FEAT_MTPMU implements the functionality identified by the value 0b0001.

From Armv8.6, in an implementation that includes FEAT_PMUv3, the value 0b0000 is not
permitted.

In an implementation that does not include FEAT_PMUv3, the value 0b0001 is not permitted.

RES0

63 32

RES0

31 4

MTPMU

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3481
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_DFR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_DFR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!IsZero(ID_DFR1_EL1) || boolean IMPLEMENTATION_DEFINED "ID_DFR1 trapped by
HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_DFR1_EL1;
elsif PSTATE.EL == EL2 then
 return ID_DFR1_EL1;
elsif PSTATE.EL == EL3 then
 return ID_DFR1_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0011 0b101
D13-3482 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.72 ID_ISAR0_EL1, AArch32 Instruction Set Attribute Register 0

The ID_ISAR0_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, and
ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register ID_ISAR0_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_ISAR0[31:0].

Attributes

ID_ISAR0_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:28]

Reserved, RES0.

Divide, bits [27:24]

Indicates the implemented Divide instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds SDIV and UDIV in the T32 instruction set.

0b0010 As for 0b0001, and adds SDIV and UDIV in the A32 instruction set.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Debug, bits [23:20]

Indicates the implemented Debug instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds BKPT.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Coproc, bits [19:16]

Indicates the implemented System register access instructions. Defined values are:

0b0000 None implemented, except for instructions separately attributed by the architecture to
provide access to AArch32 System registers and System instructions.

0b0001 Adds generic CDP, LDC, MCR, MRC, and STC.

RES0

63 32

RES0

31 28

Divide

27 24

Debug

23 20

Coproc

19 16 15 12

BitField

11 8

BitCount

7 4

Swap

3 0

CmpBranch
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3483
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b0010 As for 0b0001, and adds generic CDP2, LDC2, MCR2, MRC2, and STC2.

0b0011 As for 0b0010, and adds generic MCRR and MRRC.

0b0100 As for 0b0011, and adds generic MCRR2 and MRRC2.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

CmpBranch, bits [15:12]

Indicates the implemented combined Compare and Branch instructions in the T32 instruction set.
Defined values are:

0b0000 None implemented.

0b0001 Adds CBNZ and CBZ.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

BitField, bits [11:8]

Indicates the implemented BitField instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds BFC, BFI, SBFX, and UBFX.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

BitCount, bits [7:4]

Indicates the implemented Bit Counting instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds CLZ.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Swap, bits [3:0]

Indicates the implemented Swap instructions in the A32 instruction set. Defined values are:

0b0000 None implemented.

0b0001 Adds SWP and SWPB.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_ISAR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

UNKNOWN

63 32

UNKNOWN

31 0
D13-3484 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, ID_ISAR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_ISAR0_EL1;
elsif PSTATE.EL == EL2 then
 return ID_ISAR0_EL1;
elsif PSTATE.EL == EL3 then
 return ID_ISAR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3485
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.73 ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1

The ID_ISAR1_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, and
ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register ID_ISAR1_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_ISAR1[31:0].

Attributes

ID_ISAR1_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:32]

Reserved, RES0.

Jazelle, bits [31:28]

Indicates the implemented Jazelle extension instructions. Defined values are:

0b0000 No support for Jazelle.

0b0001 Adds the BXJ instruction and the J bit in the PSR. This setting might indicate a trivial
implementation of the Jazelle extension.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Interwork, bits [27:24]

Indicates the implemented Interworking instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds the BX instruction, and the T bit in the PSR.

0b0010 As for 0b0001, and adds the BLX instruction. PC loads have BX-like behavior.

0b0011 As for 0b0010, and guarantees that data-processing instructions in the A32 instruction
set with the PC as the destination and the S bit clear have BX-like behavior.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0011.

RES0

63 32

Jazelle

31 28 27 24 23 20

IfThen

19 16

Extend

15 12 11 8

Except

7 4

Endian

3 0

Interwork Immediate Except_AR
D13-3486 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Immediate, bits [23:20]

Indicates the implemented data-processing instructions with long immediates. Defined values are:

0b0000 None implemented.

0b0001 Adds:

• The MOVT instruction.

• The MOV instruction encodings with zero-extended 16-bit immediates.

• The T32 ADD and SUB instruction encodings with zero-extended 12-bit
immediates, and the other ADD, ADR, and SUB encodings cross-referenced by
the pseudocode for those encodings.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

IfThen, bits [19:16]

Indicates the implemented If-Then instructions in the T32 instruction set. Defined values are:

0b0000 None implemented.

0b0001 Adds the IT instructions, and the IT bits in the PSRs.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Extend, bits [15:12]

Indicates the implemented Extend instructions. Defined values are:

0b0000 No scalar sign-extend or zero-extend instructions are implemented, where scalar
instructions means non-Advanced SIMD instructions.

0b0001 Adds the SXTB, SXTH, UXTB, and UXTH instructions.

0b0010 As for 0b0001, and adds the SXTB16, SXTAB, SXTAB16, SXTAH, UXTB16, UXTAB,
UXTAB16, and UXTAH instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Except_AR, bits [11:8]

Indicates the implemented A and R-profile exception-handling instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds the SRS and RFE instructions, and the A and R-profile forms of the CPS
instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Except, bits [7:4]

Indicates the implemented exception-handling instructions in the A32 instruction set. Defined
values are:

0b0000 Not implemented. This indicates that the User bank and Exception return forms of the
LDM and STM instructions are not implemented.

0b0001 Adds the LDM (exception return), LDM (user registers), and STM (user registers)
instruction versions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Endian, bits [3:0]

Indicates the implemented Endian instructions. Defined values are:

0b0000 None implemented.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3487
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b0001 Adds the SETEND instruction, and the E bit in the PSRs.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_ISAR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_ISAR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_ISAR1_EL1;
elsif PSTATE.EL == EL2 then
 return ID_ISAR1_EL1;
elsif PSTATE.EL == EL3 then
 return ID_ISAR1_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0010 0b001
D13-3488 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.74 ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2

The ID_ISAR2_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, and
ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register ID_ISAR2_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_ISAR2[31:0].

Attributes

ID_ISAR2_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:32]

Reserved, RES0.

Reversal, bits [31:28]

Indicates the implemented Reversal instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds the REV, REV16, and REVSH instructions.

0b0010 As for 0b0001, and adds the RBIT instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

PSR_AR, bits [27:24]

Indicates the implemented A and R-profile instructions to manipulate the PSR. Defined values are:

0b0000 None implemented.

0b0001 Adds the MRS and MSR instructions, and the exception return forms of data-processing
instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

The exception return forms of the data-processing instructions are:

• In the A32 instruction set, data-processing instructions with the PC as the destination and the
S bit set. These instructions might be affected by the WithShifts attribute.

• In the T32 instruction set, the SUBS PC,LR,#N instruction.

RES0

63 32

Reversal

31 28

PSR_AR

27 24

MultU

23 20

MultS

19 16

Mult

15 12 11 8

MemHint

7 4 3 0

MultiAccessInt LoadStore
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3489
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MultU, bits [23:20]

Indicates the implemented advanced unsigned Multiply instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds the UMULL and UMLAL instructions.

0b0010 As for 0b0001, and adds the UMAAL instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

MultS, bits [19:16]

Indicates the implemented advanced signed Multiply instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds the SMULL and SMLAL instructions.

0b0010 As for 0b0001, and adds the SMLABB, SMLABT, SMLALBB, SMLALBT,
SMLALTB, SMLALTT, SMLATB, SMLATT, SMLAWB, SMLAWT, SMULBB,
SMULBT, SMULTB, SMULTT, SMULWB, and SMULWT instructions. Also adds the
Q bit in the PSRs.

0b0011 As for 0b0010, and adds the SMLAD, SMLADX, SMLALD, SMLALDX, SMLSD,
SMLSDX, SMLSLD, SMLSLDX, SMMLA, SMMLAR, SMMLS, SMMLSR,
SMMUL, SMMULR, SMUAD, SMUADX, SMUSD, and SMUSDX instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0011.

Mult, bits [15:12]

Indicates the implemented additional Multiply instructions. Defined values are:

0b0000 No additional instructions implemented. This means only MUL is implemented.

0b0001 Adds the MLA instruction.

0b0010 As for 0b0001, and adds the MLS instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

MultiAccessInt, bits [11:8]

Indicates the support for interruptible multi-access instructions. Defined values are:

0b0000 No support. This means the LDM and STM instructions are not interruptible.

0b0001 LDM and STM instructions are restartable.

0b0010 LDM and STM instructions are continuable.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

MemHint, bits [7:4]

Indicates the implemented Memory Hint instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds the PLD instruction.

0b0010 Adds the PLD instruction. (0b0001 and 0b0010 have identical effects.)

0b0011 As for 0b0001 (or 0b0010), and adds the PLI instruction.

0b0100 As for 0b0011, and adds the PLDW instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0100.
D13-3490 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
LoadStore, bits [3:0]

Indicates the implemented additional load/store instructions. Defined values are:

0b0000 No additional load/store instructions implemented.

0b0001 Adds the LDRD and STRD instructions.

0b0010 As for 0b0001, and adds the Load Acquire (LDAB, LDAH, LDA, LDAEXB, LDAEXH,
LDAEX, LDAEXD) and Store Release (STLB, STLH, STL, STLEXB, STLEXH,
STLEX, STLEXD) instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_ISAR2_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_ISAR2_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_ISAR2_EL1;
elsif PSTATE.EL == EL2 then
 return ID_ISAR2_EL1;
elsif PSTATE.EL == EL3 then
 return ID_ISAR2_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0010 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3491
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.75 ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3

The ID_ISAR3_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR4_EL1, and
ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register ID_ISAR3_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_ISAR3[31:0].

Attributes

ID_ISAR3_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:32]

Reserved, RES0.

T32EE, bits [31:28]

Indicates the implemented T32EE instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds the ENTERX and LEAVEX instructions, and modifies the load behavior to
include null checking.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

TrueNOP, bits [27:24]

Indicates the implemented true NOP instructions. Defined values are:

0b0000 None implemented. This means there are no NOP instructions that do not have any
register dependencies.

0b0001 Adds true NOP instructions in both the T32 and A32 instruction sets. This also permits
additional NOP-compatible hints.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

RES0

63 32

T32EE

31 28

TrueNOP

27 24

T32Copy

23 20 19 16 15 12

SVC

11 8

SIMD

7 4

Saturate

3 0

TabBranch SynchPrim
D13-3492 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
T32Copy, bits [23:20]

Indicates the support for T32 non flag-setting MOV instructions. Defined values are:

0b0000 Not supported. This means that in the T32 instruction set, encoding T1 of the MOV
(register) instruction does not support a copy from a low register to a low register.

0b0001 Adds support for T32 instruction set encoding T1 of the MOV (register) instruction,
copying from a low register to a low register.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

TabBranch, bits [19:16]

Indicates the implemented Table Branch instructions in the T32 instruction set. Defined values are:

0b0000 None implemented.

0b0001 Adds the TBB and TBH instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

SynchPrim, bits [15:12]

Used in conjunction with ID_ISAR4.SynchPrim_frac to indicate the implemented Synchronization
Primitive instructions. Defined values are:

0b0000 If SynchPrim_frac == 0b0000, no Synchronization Primitives implemented.

0b0001 If SynchPrim_frac == 0b0000, adds the LDREX and STREX instructions.

If SynchPrim_frac == 0b0011, also adds the CLREX, LDREXB, STREXB, and
STREXH instructions.

0b0010 If SynchPrim_frac == 0b0000, as for [0b0001, 0b0011] and also adds the LDREXD and
STREXD instructions.

All other combinations of SynchPrim and SynchPrim_frac are reserved.

In Armv8-A, the only permitted value is 0b0010.

SVC, bits [11:8]

Indicates the implemented SVC instructions. Defined values are:

0b0000 Not implemented.

0b0001 Adds the SVC instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

SIMD, bits [7:4]

Indicates the implemented SIMD instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds the SSAT and USAT instructions, and the Q bit in the PSRs.

0b0011 As for 0b0001, and adds the PKHBT, PKHTB, QADD16, QADD8, QASX, QSUB16,
QSUB8, QSAX, SADD16, SADD8, SASX, SEL, SHADD16, SHADD8, SHASX,
SHSUB16, SHSUB8, SHSAX, SSAT16, SSUB16, SSUB8, SSAX, SXTAB16,
SXTB16, UADD16, UADD8, UASX, UHADD16, UHADD8, UHASX, UHSUB16,
UHSUB8, UHSAX, UQADD16, UQADD8, UQASX, UQSUB16, UQSUB8, UQSAX,
USAD8, USADA8, USAT16, USUB16, USUB8, USAX, UXTAB16, and UXTB16
instructions. Also adds support for the GE[3:0] bits in the PSRs.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0011.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3493
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The SIMD field relates only to implemented instructions that perform SIMD operations on the
general-purpose registers. In an implementation that supports Advanced SIMD and floating-point
instructions, MVFR0, MVFR1, and MVFR2 give information about the implemented Advanced
SIMD instructions.

Saturate, bits [3:0]

Indicates the implemented Saturate instructions. Defined values are:

0b0000 None implemented. This means no non-Advanced SIMD saturate instructions are
implemented.

0b0001 Adds the QADD, QDADD, QDSUB, and QSUB instructions, and the Q bit in the PSRs.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_ISAR3_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_ISAR3_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_ISAR3_EL1;
elsif PSTATE.EL == EL2 then
 return ID_ISAR3_EL1;
elsif PSTATE.EL == EL3 then
 return ID_ISAR3_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0010 0b011
D13-3494 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.76 ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4

The ID_ISAR4_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, and
ID_ISAR5_EL1.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register ID_ISAR4_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_ISAR4[31:0].

Attributes

ID_ISAR4_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:32]

Reserved, RES0.

SWP_frac, bits [31:28]

Indicates support for the memory system locking the bus for SWP or SWPB instructions. Defined
values are:

0b0000 SWP or SWPB instructions not implemented.

0b0001 SWP or SWPB implemented but only in a uniprocessor context. SWP and SWPB do not
guarantee whether memory accesses from other Requesters can come between the load
memory access and the store memory access of the SWP or SWPB.

All other values are reserved. This field is valid only if ID_ISAR0.Swap is 0b0000.

In Armv8-A, the only permitted value is 0b0000.

PSR_M, bits [27:24]

Indicates the implemented M-profile instructions to modify the PSRs. Defined values are:

0b0000 None implemented.

0b0001 Adds the M-profile forms of the CPS, MRS, and MSR instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

RES0

63 32

SWP_frac

31 28

PSR_M

27 24 23 20

Barrier

19 16

SMC

15 12 11 8 7 4

Unpriv

3 0

SynchPrim_frac WithShifts
Writeback
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3495
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
SynchPrim_frac, bits [23:20]

Used in conjunction with ID_ISAR3.SynchPrim to indicate the implemented Synchronization
Primitive instructions. Possible values are:

0b0000 If SynchPrim == 0b0000, no Synchronization Primitives implemented. If SynchPrim ==
0b0001, adds the LDREX and STREX instructions. If SynchPrim == 0b0010, also adds
the CLREX, LDREXB, LDREXH, STREXB, STREXH, LDREXD, and STREXD
instructions.

0b0011 If SynchPrim == 0b0001, adds the LDREX, STREX, CLREX, LDREXB, LDREXH,
STREXB, and STREXH instructions.

All other combinations of SynchPrim and SynchPrim_frac are reserved.

In Armv8-A, the only permitted value is 0b0000.

Barrier, bits [19:16]

Indicates the implemented Barrier instructions in the A32 and T32 instruction sets. Defined values
are:

0b0000 None implemented. Barrier operations are provided only as System instructions in the
(coproc==0b1111) encoding space.

0b0001 Adds the DMB, DSB, and ISB barrier instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

SMC, bits [15:12]

Indicates the implemented SMC instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds the SMC instruction.

All other values are reserved.

In Armv8-A, the permitted values are:

• If EL3 is implemented and EL1 can use AArch32, the only permitted value is 0b0001.

• If neither EL3 nor EL2 is implemented, the only permitted value is 0b0000.

If EL1 cannot use AArch32, this field has the value 0b0000.

Writeback, bits [11:8]

Indicates the support for Writeback addressing modes. Defined values are:

0b0000 Basic support. Only the LDM, STM, PUSH, POP, SRS, and RFE instructions support
writeback addressing modes. These instructions support all of their writeback
addressing modes.

0b0001 Adds support for all of the writeback addressing modes.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

WithShifts, bits [7:4]

Indicates the support for instructions with shifts. Defined values are:

0b0000 Nonzero shifts supported only in MOV and shift instructions.

0b0001 Adds support for shifts of loads and stores over the range LSL 0-3.

0b0011 As for 0b0001, and adds support for other constant shift options, both on load/store and
other instructions.

0b0100 As for 0b0011, and adds support for register-controlled shift options.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0100.
D13-3496 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Unpriv, bits [3:0]

Indicates the implemented unprivileged instructions. Defined values are:

0b0000 None implemented. No T variant instructions are implemented.

0b0001 Adds the LDRBT, LDRT, STRBT, and STRT instructions.

0b0010 As for 0b0001, and adds the LDRHT, LDRSBT, LDRSHT, and STRHT instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_ISAR4_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_ISAR4_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_ISAR4_EL1;
elsif PSTATE.EL == EL2 then
 return ID_ISAR4_EL1;
elsif PSTATE.EL == EL3 then
 return ID_ISAR4_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0010 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3497
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.77 ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5

The ID_ISAR5_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, and
ID_ISAR4_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register ID_ISAR5_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_ISAR5[31:0].

Attributes

ID_ISAR5_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:32]

Reserved, RES0.

VCMA, bits [31:28]

Indicates AArch32 support for complex number addition and multiplication where numbers are
stored in vectors. Defined values are:

0b0000 The VCMLA and VCADD instructions are not implemented in AArch32.

0b0001 The VCMLA and VCADD instructions are implemented in AArch32.

All other values are reserved.

FEAT_FCMA implements the functionality identified by 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, the only permitted value is 0b0001.

RDM, bits [27:24]

Indicates whether the VQRDMLAH and VQRDMLSH instructions are implemented in AArch32
state. Defined values are:

0b0000 No VQRDMLAH and VQRDMLSH instructions implemented.

0b0001 VQRDMLAH and VQRDMLSH instructions implemented.

All other values are reserved.

FEAT_RDM implements the functionality identified by the value 0b0001.

In Armv8.0, the only permitted value is 0b0000.

From Armv8.1, the only permitted value is 0b0001.

RES0

63 32

VCMA

31 28

RDM

27 24

RES0

23 20

CRC32

19 16

SHA2

15 12

SHA1

11 8

AES

7 4

SEVL

3 0
D13-3498 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Bits [23:20]

Reserved, RES0.

CRC32, bits [19:16]

Indicates whether the CRC32 instructions are implemented in AArch32 state.

0b0000 No CRC32 instructions implemented.

0b0001 CRC32B, CRC32H, CRC32W, CRC32CB, CRC32CH, and CRC32CW instructions
implemented.

All other values are reserved.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.1, the only permitted value is 0b0001.

SHA2, bits [15:12]

Indicates whether the SHA2 instructions are implemented in AArch32 state.

0b0000 No SHA2 instructions implemented.

0b0001 SHA256H, SHA256H2, SHA256SU0, and SHA256SU1 implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

SHA1, bits [11:8]

Indicates whether the SHA1 instructions are implemented in AArch32 state.

0b0000 No SHA1 instructions implemented.

0b0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1 implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

AES, bits [7:4]

Indicates whether the AES instructions are implemented in AArch32 state.

0b0000 No AES instructions implemented.

0b0001 AESE, AESD, AESMC, and AESIMC implemented.

0b0010 As for 0b0001, plus VMULL (polynomial) instructions operating on 64-bit data
quantities.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0010.

SEVL, bits [3:0]

Indicates whether the SEVL instruction is implemented in AArch32 state.

0b0000 SEVL is implemented as a NOP.

0b0001 SEVL is implemented as Send Event Local.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3499
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_ISAR5_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_ISAR5_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_ISAR5_EL1;
elsif PSTATE.EL == EL2 then
 return ID_ISAR5_EL1;
elsif PSTATE.EL == EL3 then
 return ID_ISAR5_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0010 0b101
D13-3500 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.78 ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6

The ID_ISAR6_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1,
ID_ISAR4_EL1 and ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register ID_ISAR6_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_ISAR6[31:0].

Note

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_ISAR6_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:28]

Reserved, RES0.

I8MM, bits [27:24]

Indicates support for Advanced SIMD and floating-point Int8 matrix multiplication instructions in
AArch32 state. Defined values of this field are:

0b0000 Int8 matrix multiplication instructions are not implemented.

0b0001 VSMMLA, VSUDOT, VUMMLA, VUSMMLA, and VUSDOT instructions are
implemented.

All other values are reserved.

FEAT_AA32I8MM implements the functionality identified by 0b0001.

BF16, bits [23:20]

Indicates support for Advanced SIMD and floating-point BFloat16 instructions in AArch32 state.
Defined values are:

0b0000 BFloat16 instructions are not implemented.

0b0001 VCVT, VCVTB, VCVTT, VDOT, VFMAB, VFMAT, and VMMLA instructions with
BF16 operand or result types are implemented.

All other values are reserved.

FEAT_AA32BF16 implements the functionality identified by 0b0001.

RES0

63 32

RES0

31 28

I8MM

27 24

BF16

23 20

SPECRES

19 16

SB

15 12

FHM

11 8

DP

7 4

JSCVT

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3501
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
SPECRES, bits [19:16]

Indicates support for Speculation invalidation instructions in AArch32 state. Defined values are:

0b0000 Prediction invalidation instructions are not implemented.

0b0001 CFPRCTX, DVPRCTX, and CPPRCTX instructions are implemented.

All other values are reserved.

FEAT_SPECRES implements the functionality identified by 0b0001.

From Armv8.5, the only permitted value is 0b0001.

SB, bits [15:12]

Indicates support for the SB instruction in AArch32 state. Defined values are:

0b0000 SB instruction is not implemented.

0b0001 SB instruction is implemented.

All other values are reserved.

FEAT_SB implements the functionality identified by 0b0001.

From Armv8.5, the only permitted value is 0b0001.

FHM, bits [11:8]

Indicates support for Advanced SIMD and floating-point VFMAL and VFMSL instructions in
AArch32 state. Defined values are:

0b0000 VFMAL and VMFSL instructions are not implemented.

0b0001 VFMAL and VMFSL instructions are implemented.

All other values are reserved.

FEAT_FHM implements the functionality identified by 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

DP, bits [7:4]

Indicates support for dot product instructions in AArch32 state. Defined values are:

0b0000 Dot product instructions are not implemented.

0b0001 VUDOT and VSDOT instructions are implemented.

All other values are reserved.

FEAT_DotProd implements the functionality identified by 0b0001.

In Armv8.2, the permitted values are 0b0000 and 0b0001.

From Armv8.4, the only permitted value is 0b0001.

JSCVT, bits [3:0]

Indicates support for the VJCVT instruction in AArch32 state. Defined values are:

0b0000 The VJCVT instruction is not implemented.

0b0001 The VJCVT instruction is implemented.

All other values are reserved.

FEAT_JSCVT implements the functionality identified by 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is
0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value
is 0b0000.
D13-3502 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_ISAR6_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_ISAR6_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!IsZero(ID_ISAR6_EL1) || boolean IMPLEMENTATION_DEFINED "ID_ISAR6_EL1 trapped by
HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_ISAR6_EL1;
elsif PSTATE.EL == EL2 then
 return ID_ISAR6_EL1;
elsif PSTATE.EL == EL3 then
 return ID_ISAR6_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0010 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3503
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.79 ID_MMFR0_EL1, AArch32 Memory Model Feature Register 0

The ID_MMFR0_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register ID_MMFR0_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_MMFR0[31:0].

Attributes

ID_MMFR0_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:32]

Reserved, RES0.

InnerShr, bits [31:28]

Innermost Shareability. Indicates the innermost shareability domain implemented. Defined values
are:

0b0000 Implemented as Non-cacheable.

0b0001 Implemented with hardware coherency support.

0b1111 Shareability ignored.

All other values are reserved.

From Armv8 the permitted values are 0b0000, 0b0001, and 0b1111.

This field is valid only if the implementation supports two levels of shareability, as indicated by
ID_MMFR0_EL1.ShareLvl having the value 0b0001.

When ID_MMFR0_EL1.ShareLvl is zero, this field is UNKNOWN.

FCSE, bits [27:24]

Indicates whether the implementation includes the FCSE. Defined values are:

0b0000 Not supported.

0b0001 Support for FCSE.

All other values are reserved.

From Armv8 the only permitted value is 0b0000.

AuxReg, bits [23:20]

Auxiliary Registers. Indicates support for Auxiliary registers. Defined values are:

0b0000 None supported.

RES0

63 32

InnerShr

31 28

FCSE

27 24

AuxReg

23 20

TCM

19 16

ShareLvl

15 12

OuterShr

11 8

PMSA

7 4

VMSA

3 0
D13-3504 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b0001 Support for Auxiliary Control Register only.

0b0010 Support for Auxiliary Fault Status Registers (AIFSR and ADFSR) and Auxiliary
Control Register.

All other values are reserved.

From Armv8 the only permitted value is 0b0010.

Note
Accesses to unimplemented Auxiliary registers are UNDEFINED.

TCM, bits [19:16]

Indicates support for TCMs and associated DMAs. Defined values are:

0b0000 Not supported.

0b0001 Support is IMPLEMENTATION DEFINED. Armv7 requires this setting.

0b0010 Support for TCM only, Armv6 implementation.

0b0011 Support for TCM and DMA, Armv6 implementation.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

ShareLvl, bits [15:12]

Shareability Levels. Indicates the number of shareability levels implemented. Defined values are:

0b0000 One level of shareability implemented.

0b0001 Two levels of shareability implemented.

All other values are reserved.

From Armv8 the only permitted value is 0b0001.

OuterShr, bits [11:8]

Outermost Shareability. Indicates the outermost shareability domain implemented. Defined values
are:

0b0000 Implemented as Non-cacheable.

0b0001 Implemented with hardware coherency support.

0b1111 Shareability ignored.

All other values are reserved.

From Armv8 the permitted values are 0b0000, 0b0001, and 0b1111.

PMSA, bits [7:4]

Indicates support for a PMSA. Defined values are:

0b0000 Not supported.

0b0001 Support for IMPLEMENTATION DEFINED PMSA.

0b0010 Support for PMSAv6, with a Cache Type Register implemented.

0b0011 Support for PMSAv7, with support for memory subsections. Armv7-R profile.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

VMSA, bits [3:0]

Indicates support for a VMSA. Defined values are:

0b0000 Not supported.

0b0001 Support for IMPLEMENTATION DEFINED VMSA.

0b0010 Support for VMSAv6, with Cache and TLB Type Registers implemented.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3505
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b0011 Support for VMSAv7, with support for remapping and the Access flag. Armv7-A
profile.

0b0100 As for 0b0011, and adds support for the PXN bit in the Short-descriptor translation table
format descriptors.

0b0101 As for 0b0100, and adds support for the Long-descriptor translation table format.

All other values are reserved.

In Armv8-A the only permitted value is 0b0101.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_MMFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_MMFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_MMFR0_EL1;
elsif PSTATE.EL == EL2 then
 return ID_MMFR0_EL1;
elsif PSTATE.EL == EL3 then
 return ID_MMFR0_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0001 0b100
D13-3506 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.80 ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1

The ID_MMFR1_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register ID_MMFR1_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_MMFR1[31:0].

Attributes

ID_MMFR1_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:32]

Reserved, RES0.

BPred, bits [31:28]

Branch Predictor. Indicates branch predictor management requirements. Defined values are:

0b0000 No branch predictor, or no MMU present. Implies a fixed MPU configuration.

0b0001 Branch predictor requires flushing on:

• Enabling or disabling a stage of address translation.

• Writing new data to instruction locations.

• Writing new mappings to the translation tables.

• Changes to the TTBR0, TTBR1, or TTBCR registers.

• Changes to the ContextID or ASID, or to the FCSE ProcessID if this is supported.

0b0010 Branch predictor requires flushing on:

• Enabling or disabling a stage of address translation.

• Writing new data to instruction locations.

• Writing new mappings to the translation tables.

• Any change to the TTBR0, TTBR1, or TTBCR registers without a change to the
corresponding ContextID or ASID, or FCSE ProcessID if this is supported.

0b0011 Branch predictor requires flushing only on writing new data to instruction locations.

0b0100 For execution correctness, branch predictor requires no flushing at any time.

All other values are reserved.

RES0

63 32

BPred

31 28

L1TstCln

27 24

L1Uni

23 20

L1Hvd

19 16

L1UniSW

15 12

L1HvdSW

11 8

L1UniVA

7 4

L1HvdVA

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3507
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
In Armv8-A, the permitted values are 0b0010, 0b0011, and 0b0100. For values other than 0b0000 and
0b0100 the Arm Architecture Reference Manual, or the product documentation, might give more
information about the required maintenance.

L1TstCln, bits [27:24]

Level 1 cache Test and Clean. Indicates the supported Level 1 data cache test and clean operations,
for Harvard or unified cache implementations. Defined values are:

0b0000 None supported.

0b0001 Supported Level 1 data cache test and clean operations are:

• Test and clean data cache.

0b0010 As for 0b0001, and adds:

• Test, clean, and invalidate data cache.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

L1Uni, bits [23:20]

Level 1 Unified cache. Indicates the supported entire Level 1 cache maintenance operations for a
unified cache implementation. Defined values are:

0b0000 None supported.

0b0001 Supported entire Level 1 cache operations are:

• Invalidate cache, including branch predictor if appropriate.

• Invalidate branch predictor, if appropriate.

0b0010 As for 0b0001, and adds:

• Clean cache, using a recursive model that uses the cache dirty status bit.

• Clean and invalidate cache, using a recursive model that uses the cache dirty
status bit.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

L1Hvd, bits [19:16]

Level 1 Harvard cache. Indicates the supported entire Level 1 cache maintenance operations for a
Harvard cache implementation. Defined values are:

0b0000 None supported.

0b0001 Supported entire Level 1 cache operations are:

• Invalidate instruction cache, including branch predictor if appropriate.

• Invalidate branch predictor, if appropriate.

0b0010 As for 0b0001, and adds:

• Invalidate data cache.

• Invalidate data cache and instruction cache, including branch predictor if
appropriate.

0b0011 As for 0b0010, and adds:

• Clean data cache, using a recursive model that uses the cache dirty status bit.

• Clean and invalidate data cache, using a recursive model that uses the cache dirty
status bit.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.
D13-3508 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
L1UniSW, bits [15:12]

Level 1 Unified cache by Set/Way. Indicates the supported Level 1 cache line maintenance
operations by set/way, for a unified cache implementation. Defined values are:

0b0000 None supported.

0b0001 Supported Level 1 unified cache line maintenance operations by set/way are:

• Clean cache line by set/way.

0b0010 As for 0b0001, and adds:

• Clean and invalidate cache line by set/way.

0b0011 As for 0b0010, and adds:

• Invalidate cache line by set/way.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

L1HvdSW, bits [11:8]

Level 1 Harvard cache by Set/Way. Indicates the supported Level 1 cache line maintenance
operations by set/way, for a Harvard cache implementation. Defined values are:

0b0000 None supported.

0b0001 Supported Level 1 Harvard cache line maintenance operations by set/way are:

• Clean data cache line by set/way.

• Clean and invalidate data cache line by set/way.

0b0010 As for 0b0001, and adds:

• Invalidate data cache line by set/way.

0b0011 As for 0b0010, and adds:

• Invalidate instruction cache line by set/way.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

L1UniVA, bits [7:4]

Level 1 Unified cache by Virtual Address. Indicates the supported Level 1 cache line maintenance
operations by VA, for a unified cache implementation. Defined values are:

0b0000 None supported.

0b0001 Supported Level 1 unified cache line maintenance operations by VA are:

• Clean cache line by VA.

• Invalidate cache line by VA.

• Clean and invalidate cache line by VA.

0b0010 As for 0b0001, and adds:

• Invalidate branch predictor by VA, if branch predictor is implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

L1HvdVA, bits [3:0]

Level 1 Harvard cache by Virtual Address. Indicates the supported Level 1 cache line maintenance
operations by VA, for a Harvard cache implementation. Defined values are:

0b0000 None supported.

0b0001 Supported Level 1 Harvard cache line maintenance operations by VA are:

• Clean data cache line by VA.

• Invalidate data cache line by VA.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3509
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
• Clean and invalidate data cache line by VA.

• Clean instruction cache line by VA.

0b0010 As for 0b0001, and adds:

• Invalidate branch predictor by VA, if branch predictor is implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_MMFR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_MMFR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_MMFR1_EL1;
elsif PSTATE.EL == EL2 then
 return ID_MMFR1_EL1;
elsif PSTATE.EL == EL3 then
 return ID_MMFR1_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0001 0b101
D13-3510 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.81 ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2

The ID_MMFR2_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register ID_MMFR2_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_MMFR2[31:0].

Attributes

ID_MMFR2_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:32]

Reserved, RES0.

HWAccFlg, bits [31:28]

Hardware Access Flag. In earlier versions of the Arm Architecture, this field indicates support for
a Hardware Access flag, as part of the VMSAv7 implementation. Defined values are:

0b0000 Not supported.

0b0001 Support for VMSAv7 Access flag, updated in hardware.

All other values are reserved.

From Armv8, the only permitted value is 0b0000.

WFIStall, bits [27:24]

Wait For Interrupt Stall. Indicates the support for Wait For Interrupt (WFI) stalling. Defined values
are:

0b0000 Not supported.

0b0001 Support for WFI stalling.

All other values are reserved.

From Armv8, the permitted values are 0b0000 and 0b0001.

MemBarr, bits [23:20]

Memory Barrier. Indicates the supported memory barrier System instructions in the
(coproc==0b1111) encoding space:

0b0000 None supported.

0b0001 Supported memory barrier System instructions are:

• Data Synchronization Barrier (DSB).

RES0

63 32

HWAccFlg

31 28

WFIStall

27 24

MemBarr

23 20

UniTLB

19 16

HvdTLB

15 12

L1HvdRng

11 8

L1HvdBG

7 4

L1HvdFG

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3511
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b0010 As for 0b0001, and adds:

• Instruction Synchronization Barrier (ISB).

• Data Memory Barrier (DMB).

All other values are reserved.

From Armv8, the only permitted value is 0b0010.

Arm deprecates the use of these operations. ID_ISAR4.Barrier_instrs indicates the level of support
for the preferred barrier instructions.

UniTLB, bits [19:16]

Unified TLB. Indicates the supported TLB maintenance operations, for a unified TLB
implementation. Defined values are:

0b0000 Not supported.

0b0001 Supported unified TLB maintenance operations are:

• Invalidate all entries in the TLB.

• Invalidate TLB entry by VA.

0b0010 As for 0b0001, and adds:

• Invalidate TLB entries by ASID match.

0b0011 As for 0b0010, and adds:

• Invalidate instruction TLB and data TLB entries by VA All ASID. This is a
shared unified TLB operation.

0b0100 As for 0b0011, and adds:

• Invalidate Hyp mode unified TLB entry by VA.

• Invalidate entire Non-secure PL1&0 unified TLB.

• Invalidate entire Hyp mode unified TLB.

0b0101 As for 0b0100, and adds the following operations: TLBIMVALIS, TLBIMVAALIS,
TLBIMVALHIS, TLBIMVAL, TLBIMVAAL, TLBIMVALH.

0b0110 As for 0b0101, and adds the following operations: TLBIIPAS2IS, TLBIIPAS2LIS,
TLBIIPAS2, TLBIIPAS2L.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0110.

HvdTLB, bits [15:12]

If the Unified TLB field (UniTLB, bits [19:16]) is not 0000, then the meaning of this field is
IMPLEMENTATION DEFINED. Arm deprecates the use of this field by software.

L1HvdRng, bits [11:8]

Level 1 Harvard cache Range. Indicates the supported Level 1 cache maintenance range operations,
for a Harvard cache implementation. Defined values are:

0b0000 Not supported.

0b0001 Supported Level 1 Harvard cache maintenance range operations are:

• Invalidate data cache range by VA.

• Invalidate instruction cache range by VA.

• Clean data cache range by VA.

• Clean and invalidate data cache range by VA.

All other values are reserved.

From Armv8, the only permitted value is 0b0000.
D13-3512 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
L1HvdBG, bits [7:4]

Level 1 Harvard cache Background fetch. Indicates the supported Level 1 cache background fetch
operations, for a Harvard cache implementation. When supported, background fetch operations are
non-blocking operations. Defined values are:

0b0000 Not supported.

0b0001 Supported Level 1 Harvard cache background fetch operations are:

• Fetch instruction cache range by VA.

• Fetch data cache range by VA.

All other values are reserved.

From Armv8, the only permitted value is 0b0000.

L1HvdFG, bits [3:0]

Level 1 Harvard cache Foreground fetch. Indicates the supported Level 1 cache foreground fetch
operations, for a Harvard cache implementation. When supported, foreground fetch operations are
blocking operations. Defined values are:

0b0000 Not supported.

0b0001 Supported Level 1 Harvard cache foreground fetch operations are:

• Fetch instruction cache range by VA.

• Fetch data cache range by VA.

All other values are reserved.

From Armv8, the only permitted value is 0b0000.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_MMFR2_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_MMFR2_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0001 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3513
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_MMFR2_EL1;
elsif PSTATE.EL == EL2 then
 return ID_MMFR2_EL1;
elsif PSTATE.EL == EL3 then
 return ID_MMFR2_EL1;

D13-3514 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.82 ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3

The ID_MMFR3_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register ID_MMFR3_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_MMFR3[31:0].

Attributes

ID_MMFR3_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:32]

Reserved, RES0.

Supersec, bits [31:28]

Supersections. On a VMSA implementation, indicates whether Supersections are supported.
Defined values are:

0b0000 Supersections supported.

0b1111 Supersections not supported.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b1111.

CMemSz, bits [27:24]

Cached Memory Size. Indicates the physical memory size supported by the caches. Defined values
are:

0b0000 4GB, corresponding to a 32-bit physical address range.

0b0001 64GB, corresponding to a 36-bit physical address range.

0b0010 1TB or more, corresponding to a 40-bit or larger physical address range.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000, 0b0001, and 0b0010.

RES0

63 32

Supersec

31 28

CMemSz

27 24

CohWalk

23 20

PAN

19 16 15 12

BPMaint

11 8

CMaintSW

7 4

CMaintVA

3 0

MaintBcst
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3515
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
CohWalk, bits [23:20]

Coherent Walk. Indicates whether Translation table updates require a clean to the Point of
Unification. Defined values are:

0b0000 Updates to the translation tables require a clean to the Point of Unification to ensure
visibility by subsequent translation table walks.

0b0001 Updates to the translation tables do not require a clean to the Point of Unification to
ensure visibility by subsequent translation table walks.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

PAN, bits [19:16]

Privileged Access Never. Indicates support for the PAN bit in CPSR, SPSR, and DSPSR in AArch32
state. Defined values are:

0b0000 PAN not supported.

0b0001 PAN supported.

0b0010 PAN supported and ATS1CPRP and ATS1CPWP instructions supported.

All other values are reserved.

FEAT_PAN implements the functionality identified by the value 0b0001.

FEAT_PAN2 implements the functionality added by the value 0b0010.

In Armv8.1, the value 0b0000 is not permitted.

From Armv8.2, the only permitted value is 0b0010.

MaintBcst, bits [15:12]

Maintenance Broadcast. Indicates whether Cache, TLB, and branch predictor operations are
broadcast. Defined values are:

0b0000 Cache, TLB, and branch predictor operations only affect local structures.

0b0001 Cache and branch predictor operations affect structures according to shareability and
defined behavior of instructions. TLB operations only affect local structures.

0b0010 Cache, TLB, and branch predictor operations affect structures according to shareability
and defined behavior of instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

BPMaint, bits [11:8]

Branch Predictor Maintenance. Indicates the supported branch predictor maintenance operations in
an implementation with hierarchical cache maintenance operations. Defined values are:

0b0000 None supported.

0b0001 Supported branch predictor maintenance operations are:

• Invalidate all branch predictors.

0b0010 As for 0b0001, and adds:

• Invalidate branch predictors by VA.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

CMaintSW, bits [7:4]

Cache Maintenance by Set/Way. Indicates the supported cache maintenance operations by set/way,
in an implementation with hierarchical caches. Defined values are:

0b0000 None supported.
D13-3516 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b0001 Supported hierarchical cache maintenance instructions by set/way are:

• Invalidate data cache by set/way.

• Clean data cache by set/way.

• Clean and invalidate data cache by set/way.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

In a unified cache implementation, the data cache maintenance operations apply to the unified
caches.

CMaintVA, bits [3:0]

Cache Maintenance by Virtual Address. Indicates the supported cache maintenance operations by
VA, in an implementation with hierarchical caches. Defined values are:

0b0000 None supported.

0b0001 Supported hierarchical cache maintenance operations by VA are:

• Invalidate data cache by VA.

• Clean data cache by VA.

• Clean and invalidate data cache by VA.

• Invalidate instruction cache by VA.

• Invalidate all instruction cache entries.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

In a unified cache implementation, data cache maintenance operations apply to the unified caches,
and the instruction cache maintenance instructions are not implemented.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_MMFR3_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_MMFR3_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0001 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3517
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_MMFR3_EL1;
elsif PSTATE.EL == EL2 then
 return ID_MMFR3_EL1;
elsif PSTATE.EL == EL3 then
 return ID_MMFR3_EL1;

D13-3518 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.83 ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4

The ID_MMFR4_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register ID_MMFR4_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_MMFR4[31:0].

Attributes

ID_MMFR4_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:32]

Reserved, RES0.

EVT, bits [31:28]

Enhanced Virtualization Traps. If EL2 is implemented, indicates support for the HCR2.{TTLBIS,
TOCU, TICAB, TID4} traps. Defined values are:

0b0000 HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are not supported.

0b0001 HCR2.{TOCU, TICAB, TID4} traps are supported. HCR2.TTLBIS trap is not
supported.

0b0010 HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are supported.

All other values are reserved.

FEAT_EVT implements the functionality identified by the values 0b0001 and 0b0010.

If EL2 is not implemented supporting AArch32, the only permitted value is 0b0000.

In Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

From Armv8.5, the permitted values are:

• 0b0000 when EL2 is not implemented or does not support AArch32.

• 0b0010 when EL2 is implemented and supports AArch32.

CCIDX, bits [27:24]

Support for use of the revised CCSIDR format and the presence of the CCSIDR2 is indicated.
Defined values are:

0b0000 32-bit format implemented for all levels of the CCSIDR, and the CCSIDR2 register is
not implemented.

0b0001 64-bit format implemented for all levels of the CCSIDR, and the CCSIDR2 register is
implemented.

RES0

63 32

EVT

31 28

CCIDX

27 24

LSM

23 20

HPDS

19 16

CnP

15 12

XNX

11 8

AC2

7 4

SpecSEI

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3519
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
All other values are reserved.

FEAT_CCIDX implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

LSM, bits [23:20]

Indicates support for LSMAOE and nTLSMD bits in HSCTLR and SCTLR. Defined values are:

0b0000 LSMAOE and nTLSMD bits not supported.

0b0001 LSMAOE and nTLSMD bits supported.

All other values are reserved.

FEAT_LSMAOC implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

HPDS, bits [19:16]

Hierarchical permission disables bits in translation tables. Defined values are:

0b0000 Disabling of hierarchical controls not supported.

0b0001 Supports disabling of hierarchical controls using the TTBCR2.HPD0, TTBCR2.HPD1,
and HTCR.HPD bits.

0b0010 As for value 0b0001, and adds possible hardware allocation of bits[62:59] of the
translation table descriptors from the final lookup level for IMPLEMENTATION DEFINED
use.

All other values are reserved.

FEAT_AA32HPD implements the functionality identified by the value 0b0001.

FEAT_HPDS2 implements the functionality added by the value 0b0010.

Note

The value 0b0000 implies that the encoding for TTBCR2 is UNDEFINED.

CnP, bits [15:12]

Common not Private translations. Defined values are:

0b0000 Common not Private translations not supported.

0b0001 Common not Private translations supported.

All other values are reserved.

FEAT_TTCNP implements the functionality identified by the value 0b0001.

From Armv8.2 the only permitted value is 0b0001.

XNX, bits [11:8]

Support for execute-never control distinction by Exception level at stage 2. Defined values are:

0b0000 Distinction between EL0 and EL1 execute-never control at stage 2 not supported.

0b0001 Distinction between EL0 and EL1 execute-never control at stage 2 supported.

All other values are reserved.

FEAT_XNX implements the functionality identified by the value 0b0001.

When FEAT_XNX is implemented:

• If all of the following conditions are true, it is IMPLEMENTATION DEFINED whether the value
of ID_MMFR4_EL1.XNX is 0b0000 or 0b0001:

— ID_AA64MMFR1_EL1.XNX ==1.

— EL2 cannot use AArch32.

— EL1 can use AArch32.

• If EL2 can use AArch32 then the only permitted value is 0b0001.
D13-3520 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
AC2, bits [7:4]

Indicates the extension of the ACTLR and HACTLR registers using ACTLR2 and HACTLR2.
Defined values are:

0b0000 ACTLR2 and HACTLR2 are not implemented.

0b0001 ACTLR2 and HACTLR2 are implemented.

All other values are reserved.

In Armv8.0 and Armv8.1 the permitted values are 0b0000 and 0b0001.

From Armv8.2, the only permitted value is 0b0001.

SpecSEI, bits [3:0]

Describes whether the PE can generate SError interrupt exceptions from speculative reads of
memory, including speculative instruction fetches. The defined values of this field are:

0b0000 The PE never generates an SError interrupt due to an External abort on a speculative
read.

0b0001 The PE might generate an SError interrupt due to an External abort on a speculative
read.

All other values are reserved.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_MMFR4_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_MMFR4_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!IsZero(ID_MMFR4_EL1) || boolean IMPLEMENTATION_DEFINED "ID_MMFR4_EL1 trapped by
HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_MMFR4_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0010 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3521
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
elsif PSTATE.EL == EL2 then
 return ID_MMFR4_EL1;
elsif PSTATE.EL == EL3 then
 return ID_MMFR4_EL1;

D13-3522 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.84 ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5

The ID_MMFR5_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register ID_MMFR5_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_MMFR5[31:0].

Attributes

ID_MMFR5_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:8]

Reserved, RES0.

nTLBPA, bits [7:4]

Indicates support for intermediate caching of translation table walks. Defined values are:

0b0000 The intermediate caching of translation table walks might include non-coherent caches
of previous valid translation table entries since the last completed relevant TLBI
applicable to the PE where either:

• The caching is indexed by the physical address of the location holding the
translation table entry.

• The caching is used for stage 1 translations and is indexed by the intermediate
physical address of the location holding the translation table entry.

0b0001 The intermediate caching of translation table walks does not include non-coherent
caches of previous valid translation table entries since the last completed TLBI
applicable to the PE where either:

• The caching is indexed by the physical address of the location holding the
translation table entry.

• The caching is used for stage 1 translations and is indexed by the intermediate
physical address of the location holding the translation table entry.

All other values are reserved.

FEAT_nTLBPA implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

RES0

63 32

RES0

31 8

nTLBPA

7 4

ETS

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3523
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
ETS, bits [3:0]

Indicates support for Enhanced Translation Synchronization. Defined values are:

0b0000 Enhanced Translation Synchronization is not supported.

0b0001 Enhanced Translation Synchronization is supported.

All other values are reserved.

FEAT_ETS implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.7, the only permitted value is 0b0001.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_MMFR5_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_MMFR5_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!IsZero(ID_MMFR5_EL1) || boolean IMPLEMENTATION_DEFINED "ID_MMFR5_EL1 trapped by
HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_MMFR5_EL1;
elsif PSTATE.EL == EL2 then
 return ID_MMFR5_EL1;
elsif PSTATE.EL == EL3 then
 return ID_MMFR5_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0011 0b110
D13-3524 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.85 ID_PFR0_EL1, AArch32 Processor Feature Register 0

The ID_PFR0_EL1 characteristics are:

Purpose

Gives top-level information about the instruction sets supported by the PE in AArch32 state.

Must be interpreted with ID_PFR1_EL1.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register ID_PFR0_EL1 bits [31:0] are architecturally mapped to AArch32 System
register ID_PFR0[31:0].

Attributes

ID_PFR0_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:32]

Reserved, RES0.

RAS, bits [31:28]

RAS Extension version. Defined values are:

0b0000 No RAS Extension.

0b0001 RAS Extension implemented.

0b0010 FEAT_RASv1p1 implemented. As 0b0001, and adds support for additional
ERXMISC<m> System registers.

Error records accessed through System registers conform to RAS System Architecture
v1.1, which includes simplifications to ERR<n>STATUS and support for the optional
RAS Timestamp Extension.

All other values are reserved.

FEAT_RAS implements the functionality identified by the value 0b0001.

FEAT_RASv1p1 implements the functionality identified by the value 0b0010.

In Armv8.0 and Armv8.1, the permitted values are 0b0000 and 0b0001.

In Armv8.2, the only permitted value is 0b0001.

From Armv8.4, if FEAT_DoubleFault is implemented, the only permitted value is 0b0010.

From Armv8.4, when FEAT_DoubleFault is not implemented, and ERRIDR_EL1.NUM is 0, the
permitted values are IMPLEMENTATION DEFINED 0b0001 or 0b0010.

Note
When the value of this field is 0b0001, ID_PFR2_EL1.RAS_frac indicates whether FEAT_RASv1p1
is implemented.

RES0

63 32

RAS

31 28

DIT

27 24

AMU

23 20

CSV2

19 16

State3

15 12

State2

11 8

State1

7 4

State0

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3525
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
DIT, bits [27:24]

Data Independent Timing. Defined values are:

0b0000 AArch32 does not guarantee constant execution time of any instructions.

0b0001 AArch32 provides the PSTATE.DIT mechanism to guarantee constant execution time
of certain instructions.

All other values are reserved.

FEAT_DIT implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

AMU, bits [23:20]

Indicates support for Activity Monitors Extension. Defined values are:

0b0000 Activity Monitors Extension is not implemented.

0b0001 FEAT_AMUv1 is implemented.

0b0010 FEAT_AMUv1p1 is implemented. As 0b0001 and adds support for virtualization of the
activity monitor event counters.

All other values are reserved.

FEAT_AMUv1 implements the functionality identified by the value 0b0001.

FEAT_AMUv1p1 implements the functionality identified by the value 0b0010.

In Armv8.0, the only permitted value is 0b0000.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.6, the permitted values are 0b0000, 0b0001, and 0b0010.

CSV2, bits [19:16]

Speculative use of out of context branch targets. Defined values are:

0b0000 This PE does not disclose whether branch targets trained in one hardware-described
context can exploitatively control speculative execution in a different
hardware-described context.

0b0001 Branch targets trained in one hardware-described context can exploitatively control
speculative execution in a different hardware-described context only in a
hard-to-determine way.

0b0010 Branch targets trained in one hardware-described context can exploitatively control
speculative execution in a different hardware-described context only in a
hard-to-determine way. Within a hardware-described context, branch targets trained for
branches situated at one address can control speculative execution of branches situated
at different addresses only in a hard-to-determine way.

All other values are reserved.

FEAT_CSV2 implements the functionality identified by the values 0b0001 and 0b0010.

From Armv8.5, the permitted values are 0b0001 and 0b0010.

State3, bits [15:12]

T32EE instruction set support. Defined values are:

0b0000 Not implemented.

0b0001 T32EE instruction set implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

State2, bits [11:8]

Jazelle extension support. Defined values are:

0b0000 Not implemented.
D13-3526 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b0001 Jazelle extension implemented, without clearing of JOSCR.CV on exception entry.

0b0010 Jazelle extension implemented, with clearing of JOSCR.CV on exception entry.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

State1, bits [7:4]

T32 instruction set support. Defined values are:

0b0000 T32 instruction set not implemented.

0b0001 T32 encodings before the introduction of Thumb-2 technology implemented:

• All instructions are 16-bit.

• A BL or BLX is a pair of 16-bit instructions.

• 32-bit instructions other than BL and BLX cannot be encoded.

0b0011 T32 encodings after the introduction of Thumb-2 technology implemented, for all
16-bit and 32-bit T32 basic instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0011.

State0, bits [3:0]

A32 instruction set support. Defined values are:

0b0000 A32 instruction set not implemented.

0b0001 A32 instruction set implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_PFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_PFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3527
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_PFR0_EL1;
elsif PSTATE.EL == EL2 then
 return ID_PFR0_EL1;
elsif PSTATE.EL == EL3 then
 return ID_PFR0_EL1;

D13-3528 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.86 ID_PFR1_EL1, AArch32 Processor Feature Register 1

The ID_PFR1_EL1 characteristics are:

Purpose

Gives information about the AArch32 programmers' model.

Must be interpreted with ID_PFR0_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register ID_PFR1_EL1 bits [31:0] are architecturally mapped to AArch32 System
register ID_PFR1[31:0].

Attributes

ID_PFR1_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:32]

Reserved, RES0.

GIC, bits [31:28]

System register GIC CPU interface. Defined values are:

0b0000 GIC CPU interface system registers not implemented.

0b0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is supported.

0b0011 System register interface to version 4.1 of the GIC CPU interface is supported.

All other values are reserved.

Virt_frac, bits [27:24]

Virtualization fractional field. When the Virtualization field is 0b0000, determines the support for
Virtualization Extensions. Defined values are:

0b0000 No Virtualization Extensions are implemented.

0b0001 The following Virtualization Extensions are implemented:

• The SCR.SIF bit, if EL3 is implemented.

• The modifications to the SCR.AW and SCR.FW bits described in the
Virtualization Extensions, if EL3 is implemented.

• The MSR (banked register) and MRS (banked register) instructions.

• The ERET instruction.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL2 is implemented.

RES0

63 32

GIC

31 28 27 24

Sec_frac

23 20

GenTimer

19 16 15 12

MProgMod

11 8

Security

7 4

ProgMod

3 0

Virt_frac Virtualization
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3529
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
• 0b0001 when EL2 is not implemented.

This field is only valid when the value of ID_PFR1_EL1.Virtualization is 0, otherwise it holds the
value 0b0000.

Note
The ID_ISAR registers do not identify whether the instructions added by the Virtualization
Extensions are implemented.

Sec_frac, bits [23:20]

Security fractional field. When the Security field is 0b0000, determines the support for Security
Extensions. Defined values are:

0b0000 No Security Extensions are implemented.

0b0001 The following Security Extensions are implemented:

• The VBAR register.

• The TTBCR.PD0 and TTBCR.PD1 bits.

0b0010 As for 0b0001, plus the ability to access Secure or Non-secure physical memory is
supported.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL3 is implemented.

• 0b0001 or 0b0010 when EL3 is not implemented.

This field is only valid when the value of ID_PFR1_EL1.Security is 0, otherwise it holds the value
0b0000.

GenTimer, bits [19:16]

Generic Timer support. Defined values are:

0b0000 Generic Timer is not implemented.

0b0001 Generic Timer is implemented.

0b0010 Generic Timer is implemented, and also includes support for CNTHCTL.EVNTIS and
CNTKCTL.EVNTIS fields, and CNTPCTSS and CNTVCTSS counter views.

All other values are reserved.

FEAT_ECV implements the functionality identified by the value 0b0010.

In Armv8.0, the only permitted value is 0b0001.

From Armv8.6, the only permitted value is 0b0010.

Virtualization, bits [15:12]

Virtualization support. Defined values are:

0b0000 EL2, Hyp mode, and the HVC instruction not implemented.

0b0001 EL2, Hyp mode, the HVC instruction, and all the features described by Virt_frac ==
0b0001 implemented.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL2 is not implemented.

• 0b0001 when EL2 is implemented.

In an implementation that includes EL2, if EL2 cannot use AArch32 but EL1 can use AArch32 then
this field has the value 0b0001.

If EL1 cannot use AArch32 then this field has the value 0b0000.
D13-3530 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Note

The ID_ISARs do not identify whether the HVC instruction is implemented.

MProgMod, bits [11:8]

M-profile programmers' model support. Defined values are:

0b0000 Not supported.

0b0010 Support for two-stack programmers' model.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

Security, bits [7:4]

Security support. Defined values are:

0b0000 EL3, Monitor mode, and the SMC instruction not implemented.

0b0001 EL3, Monitor mode, the SMC instruction, and all the features described by Sec_frac ==
0b0001 implemented.

0b0010 As for 0b0001, and adds the ability to set the NSACR.RFR bit. Not permitted in Armv8
as the NSACR.RFR bit is RES0.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL3 is not implemented.

• 0b0001 when EL3 is implemented.

In an implementation that includes EL3, if EL3 cannot use AArch32 but EL1 can use AArch32 then
this field has the value 0b0001.

If EL1 cannot use AArch32 then this field has the value 0b0000.

ProgMod, bits [3:0]

Support for the standard programmers' model for Armv4 and later. Model must support User, FIQ,
IRQ, Supervisor, Abort, Undefined, and System modes. Defined values are:

0b0000 Not supported.

0b0001 Supported.

All other values are reserved.

In Armv8-A, the permitted values are 0b0001 and 0b0000.

If EL1 cannot use AArch32 then this field has the value 0b0000.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_PFR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

UNKNOWN

63 32

UNKNOWN

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3531
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, ID_PFR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_PFR1_EL1;
elsif PSTATE.EL == EL2 then
 return ID_PFR1_EL1;
elsif PSTATE.EL == EL3 then
 return ID_PFR1_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0001 0b001
D13-3532 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.87 ID_PFR2_EL1, AArch32 Processor Feature Register 2

The ID_PFR2_EL1 characteristics are:

Purpose

Gives information about the AArch32 programmers' model.

Must be interpreted with ID_PFR0_EL1 and ID_PFR1_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register ID_PFR2_EL1 bits [31:0] are architecturally mapped to AArch32 System
register ID_PFR2[31:0].

Attributes

ID_PFR2_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:12]

Reserved, RES0.

RAS_frac, bits [11:8]

RAS Extension fractional field. Defined values are:

0b0000 If ID_PFR0_EL1.RAS == 0b0001, RAS Extension implemented.

0b0001 If ID_PFR0_EL1.RAS == 0b0001, as 0b0000 and adds support for additional
ERXMISC<m> System registers.

Error records accessed through System registers conform to RAS System Architecture
v1.1, which includes simplifications to ERR<n>STATUS and support for the optional
RAS Timestamp Extension.

All other values are reserved.

This field is valid only if ID_PFR0_EL1.RAS == 0b0001.

SSBS, bits [7:4]

Speculative Store Bypassing controls in AArch64 state. Defined values are:

0b0000 AArch32 provides no mechanism to control the use of Speculative Store Bypassing.

0b0001 AArch32 provides the PSTATE.SSBS mechanism to mark regions that are Speculative
Store Bypass Safe.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

All other values are reserved.

RES0

63 32

RES0

31 12

RAS_frac

11 8

SSBS

7 4

CSV3

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3533
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
CSV3, bits [3:0]

Speculative use of faulting data. Defined values are:

0b0000 This PE does not disclose whether data loaded under speculation with a permission or
domain fault can be used to form an address or generate condition codes or SVE
predicate values to be used by other instructions in the speculative sequence.

0b0001 Data loaded under speculation with a permission or domain fault cannot be used to form
an address or generate condition codes or SVE predicate values to be used by other
instructions in the speculative sequence.

All other values are reserved.

FEAT_CSV3 implements the functionality identified by the value 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

If FEAT_E0PD is implemented, FEAT_CSV3 must be implemented.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_PFR2_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_PFR2_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_PFR2_EL1;
elsif PSTATE.EL == EL2 then
 return ID_PFR2_EL1;
elsif PSTATE.EL == EL3 then
 return ID_PFR2_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0011 0b100
D13-3534 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.88 IFSR32_EL2, Instruction Fault Status Register (EL2)

The IFSR32_EL2 characteristics are:

Purpose

Allows access to the AArch32 IFSR register from AArch64 state only. Its value has no effect on
execution in AArch64 state.

Configurations

AArch64 System register IFSR32_EL2 bits [31:0] are architecturally mapped to AArch32 System
register IFSR[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
IFSR32_EL2 are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this
register is not RES0.

Attributes

IFSR32_EL2 is a 64-bit register.

Field descriptions

When TTBCR.EAE == 0:

Bits [63:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 IFAR is valid.

0b1 IFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a synchronous External abort other than a synchronous External abort on
a translation table walk. It is RES0 for all other Prefetch Abort exceptions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:13]

Reserved, RES0.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of
External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

RES0

63 32

RES0

31 17 16

RES0

15 13 12 11 10 9

RES0

8 4

FS[3:0]

3 0

FnV
ExT

LPAE
FS[4]

RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3535
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [11]

Reserved, RES0.

FS, bits [10, 3:0]

Fault Status bits. Bits [10] and [3:0] are interpreted together.

0b00001 PC alignment fault.

0b00010 Debug exception.

0b00011 Access flag fault, level 1.

0b00101 Translation fault, level 1.

0b00110 Access flag fault, level 2.

0b00111 Translation fault, level 2.

0b01000 Synchronous External abort, not on translation table walk.

0b01001 Domain fault, level 1.

0b01011 Domain fault, level 2.

0b01100 Synchronous External abort, on translation table walk, level 1.

0b01101 Permission fault, level 1.

0b01110 Synchronous External abort, on translation table walk, level 2.

0b01111 Permission fault, level 2.

0b10000 TLB conflict abort.

0b10100 IMPLEMENTATION DEFINED fault (Lockdown fault).

0b11001 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b11100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on translation table walk, level 1.

0b11110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on translation table walk, level 2.

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on a Short-descriptor translation table lookup on page G5-6373.

The FS field is split as follows:

• FS[4] is IFSR32_EL2[10].

• FS[3:0] is IFSR32_EL2[3:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

0b0 Using the Short-descriptor translation table formats.

0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore
software can set this bit to 0 or 1 without affecting operation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
D13-3536 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Bits [8:4]

Reserved, RES0.

When TTBCR.EAE == 1:

Bits [63:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 IFAR is valid.

0b1 IFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a synchronous External abort other than a synchronous External abort on
a translation table walk. It is RES0 for all other Prefetch Abort exceptions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:13]

Reserved, RES0.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of
External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

0b0 Using the Short-descriptor translation table formats.

0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore
software can set this bit to 0 or 1 without affecting operation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

RES0

63 32

RES0

31 17 16

RES0

15 13 12

RES0

11 10 9

RES0

8 6

STATUS

5 0

FnV LPAE
ExT
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3537
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
STATUS, bits [5:0]

Fault status bits. Possible values of this field are:

0b000000 Address size fault in translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk.

0b010101 Synchronous External abort on translation table walk, level 1.

0b010110 Synchronous External abort on translation table walk, level 2.

0b010111 Synchronous External abort on translation table walk, level 3.

0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 3.

0b100001 PC alignment fault.

0b100010 Debug exception.

0b110000 TLB conflict abort.

All other values are reserved.

When FEAT_RAS is implemented, 0b011000, 0b011101, 0b011110, and 0b011111 are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on a Long-descriptor translation table lookup on page G5-6375.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing IFSR32_EL2

Accesses to this register use the following encodings in the System register encoding space:
D13-3538 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, IFSR32_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return IFSR32_EL2;
elsif PSTATE.EL == EL3 then
 return IFSR32_EL2;

MSR IFSR32_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 IFSR32_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 IFSR32_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3539
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.89 ISR_EL1, Interrupt Status Register

The ISR_EL1 characteristics are:

Purpose

Shows the pending status of the IRQ, FIQ, or SError interrupt.

When executing at EL2, EL3 or Secure EL1 when SCR_EL3.EEL2 == 0b0, this shows the pending
status of the physical IRQ, FIQ, or SError interrupts.

When executing at either Non-secure EL1 or at Secure EL1 when SCR_EL3.EEL2 == 0b1:

• If the HCR_EL2.{IMO,FMO,AMO} bit has a value of 1, the corresponding
ISR_EL1.{I,F,A} bit shows the pending status of the virtual IRQ, FIQ, or SError.

• If the HCR_EL2.{IMO,FMO,AMO} bit has a value of 0, the corresponding
ISR_EL1.{I,F,A} bit shows the pending status of the physical IRQ, FIQ, or SError.

Configurations

AArch64 System register ISR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register ISR[31:0].

Attributes

ISR_EL1 is a 64-bit register.

Field descriptions

Bits [63:9]

Reserved, RES0.

A, bit [8]

SError interrupt pending bit. Indicates whether an SError interrupt is pending.

0b0 No pending SError.

0b1 An SError interrupt is pending.

If the SError interrupt is edge-triggered, this field is cleared to zero when the physical SError
interrupt is taken.

I, bit [7]

IRQ pending bit. Indicates whether an IRQ interrupt is pending.

0b0 No pending IRQ.

0b1 An IRQ interrupt is pending.

F, bit [6]

FIQ pending bit. Indicates whether an FIQ interrupt is pending.

0b0 No pending FIQ.

0b1 An FIQ interrupt is pending.

Bits [5:0]

Reserved, RES0.

RES0

63 32

RES0

31 9

A

8

I

7

F

6

RES0

5 0
D13-3540 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Accessing ISR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ISR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ISR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ISR_EL1;
elsif PSTATE.EL == EL2 then
 return ISR_EL1;
elsif PSTATE.EL == EL3 then
 return ISR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3541
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.90 LORC_EL1, LORegion Control (EL1)

The LORC_EL1 characteristics are:

Purpose

Enables and disables LORegions, and selects the current LORegion descriptor.

Configurations

This register is present only when FEAT_LOR is implemented. Otherwise, direct accesses to
LORC_EL1 are UNDEFINED.

If no LORegion descriptors are supported by the PE, then this register is RES0.

Attributes

LORC_EL1 is a 64-bit register.

Field descriptions

Bits [63:10]

Reserved, RES0.

DS, bits [9:2]

Descriptor Select. Selects the current LORegion descriptor accessed by LORSA_EL1,
LOREA_EL1, and LORN_EL1.

The number of LORegion descriptors in IMPLEMENTATION DEFINED. The maximum number of
LORegion descriptors supported is 256. If the number is less than 256, then bits[63:M+2] are RES0,
where M is Log2(Number of LORegion descriptors supported by the implementation).

If this field points to an LORegion descriptor that is not supported by an implementation, then the
registers LORN_EL1, LOREA_EL1, and LORSA_EL1 are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [1]

Reserved, RES0.

EN, bit [0]

Enable. Indicates whether LORegions are enabled.

0b0 Disabled. Memory accesses do not match any LORegions.

0b1 Enabled. Memory accesses may match a LORegion.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing LORC_EL1

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

RES0

31 10

DS

9 2 1

EN

0

RES0
D13-3542 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, LORC_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.LORC_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return LORC_EL1;
elsif PSTATE.EL == EL2 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return LORC_EL1;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 else
 return LORC_EL1;

MSR LORC_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.LORC_EL1 == '1' then

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0100 0b011

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0100 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3543
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 LORC_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 LORC_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 else
 LORC_EL1 = X[t];

D13-3544 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.91 LOREA_EL1, LORegion End Address (EL1)

The LOREA_EL1 characteristics are:

Purpose

Holds the physical address of the end of the LORegion described in the current LORegion descriptor
selected by LORC_EL1.DS.

Configurations

This register is present only when FEAT_LOR is implemented. Otherwise, direct accesses to
LOREA_EL1 are UNDEFINED.

This register is RES0 if any of the following apply:

• No LORegion descriptors are supported by the PE.

• LORC_EL1.DS points to a LORegion that is not supported by the PE.

Attributes

LOREA_EL1 is a 64-bit register.

Field descriptions

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:52]

Reserved, RES0.

EA[51:48], bits [51:48]

When FEAT_LPA is implemented:

EA[51:48]

Extension to EA[47:16]. For more information, see EA[47:16].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EA[47:16], bits [47:16]

Bits [47:16] of the end physical address of an LORegion described in the current LORegion
descriptor selected by LORC_EL1.DS. Bits[15:0] of this address are defined to be 0xFFFF. For
implementations with fewer than 48 bits, the upper bits of this field are RES0.

When FEAT_LPA is implemented and 52-bit addresses are in use, EA[51:48] forms the upper part
of the address value. Otherwise, when 52-bit addresses are not in use, EA[51:48] is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 52 51 48

EA[47:16]

47 32

EA[51:48]

EA[47:16]

31 16

RES0

15 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3545
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Bits [15:0]

Reserved, RES0.

Accessing LOREA_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, LOREA_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.LOREA_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return LOREA_EL1;
elsif PSTATE.EL == EL2 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return LOREA_EL1;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 else
 return LOREA_EL1;

MSR LOREA_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0100 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0100 0b001
D13-3546 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.LOREA_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 LOREA_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 LOREA_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 else
 LOREA_EL1 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3547
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.92 LORID_EL1, LORegionID (EL1)

The LORID_EL1 characteristics are:

Purpose

Indicates the number of LORegions and LORegion descriptors supported by the PE.

Configurations

This register is present only when FEAT_LOR is implemented. Otherwise, direct accesses to
LORID_EL1 are UNDEFINED.

If no LORegion descriptors are implemented, then the registers LORC_EL1, LORN_EL1,
LOREA_EL1, and LORSA_EL1 are RES0.

Attributes

LORID_EL1 is a 64-bit register.

Field descriptions

Bits [63:24]

Reserved, RES0.

LD, bits [23:16]

Number of LORegion descriptors supported by the PE. This is an 8-bit binary number.

Bits [15:8]

Reserved, RES0.

LR, bits [7:0]

Number of LORegions supported by the PE. This is an 8-bit binary number.

Note

If LORID_EL1 indicates that no LORegions are implemented, then LoadLOAcquire and
StoreLORelease will behave as LoadAcquire and StoreRelease.

Accessing LORID_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, LORID_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

RES0

63 32

RES0

31 24

LD

23 16

RES0

15 8

LR

7 0

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0100 0b111
D13-3548 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.LORID_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return LORID_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return LORID_EL1;
elsif PSTATE.EL == EL3 then
 return LORID_EL1;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3549
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.93 LORN_EL1, LORegion Number (EL1)

The LORN_EL1 characteristics are:

Purpose

Holds the number of the LORegion described in the current LORegion descriptor selected by
LORC_EL1.DS.

Configurations

This register is present only when FEAT_LOR is implemented. Otherwise, direct accesses to
LORN_EL1 are UNDEFINED.

This register is RES0 if any of the following apply:

• No LORegion descriptors are supported by the PE.

• LORC_EL1.DS points to a LORegion that is not supported by the PE.

Attributes

LORN_EL1 is a 64-bit register.

Field descriptions

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:8]

Reserved, RES0.

Num, bits [7:0]

Number of the LORegion described in the current LORegion descriptor selected by
LORC_EL1.DS.

The maximum number of LORegions supported by the PE is 256. If the maximum number is less
than 256, then bits[8:N] are RES0, where N is (Log2(Number of LORegions supported by the PE)).

If this field points to a LORegion that is not supported by the PE, then the current LORegion
descriptor does not match any LORegion.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing LORN_EL1

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

RES0

31 8

Num

7 0
D13-3550 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, LORN_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.LORN_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return LORN_EL1;
elsif PSTATE.EL == EL2 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return LORN_EL1;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 else
 return LORN_EL1;

MSR LORN_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.LORN_EL1 == '1' then

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0100 0b010

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0100 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3551
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 LORN_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 LORN_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 else
 LORN_EL1 = X[t];

D13-3552 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.94 LORSA_EL1, LORegion Start Address (EL1)

The LORSA_EL1 characteristics are:

Purpose

Indicates whether the current LORegion descriptor selected by LORC_EL1.DS is enabled, and
holds the physical address of the start of the LORegion.

Configurations

This register is present only when FEAT_LOR is implemented. Otherwise, direct accesses to
LORSA_EL1 are UNDEFINED.

This register is RES0 if any of the following apply:

• No LORegion descriptors are supported by the PE.

• LORC_EL1.DS points to a LORegion that is not supported by the PE.

Attributes

LORSA_EL1 is a 64-bit register.

Field descriptions

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:52]

Reserved, RES0.

SA, bits [51:16]

When FEAT_LPA is implemented:

SA, bits [35:0]

The start physical address of the LORegion described in the current LORegion
descriptor selected by LORC_EL1.DS.

Bits[15:0] of this address are defined to be 0x0000.

When 52-bit addresses are in use, SA[35:32] forms the upper part of the address value.

When 52-bit addresses are not in use, SA[35:32] is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 52

SA

51 32

SA

31 16

RES0

15 1 0

Valid

SA

35 32

SA

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3553
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
When FEAT_LPA is not implemented:

Bits [35:32]

Reserved, RES0.

SA, bits [31:0]

The start physical address of the LORegion described in the current LORegion
descriptor selected by LORC_EL1.DS.

Bits[15:0] of this address are defined to be 0x0000.

For implementations with fewer than 48 bits, the upper bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:1]

Reserved, RES0.

Valid, bit [0]

Indicates whether the current LORegion descriptor is enabled.

0b0 LORegion descriptor is disabled.

0b1 LORegion descriptor is enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing LORSA_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, LORSA_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.LORSA_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

RES0

35 32

SA

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0100 0b000
D13-3554 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 else
 return LORSA_EL1;
elsif PSTATE.EL == EL2 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return LORSA_EL1;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 else
 return LORSA_EL1;

MSR LORSA_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.LORSA_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 LORSA_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 LORSA_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0100 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3555
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 else
 LORSA_EL1 = X[t];

D13-3556 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.95 MAIR_EL1, Memory Attribute Indirection Register (EL1)

The MAIR_EL1 characteristics are:

Purpose

Provides the memory attribute encodings corresponding to the possible AttrIndx values in a
Long-descriptor format translation table entry for stage 1 translations at EL1.

Configurations

AArch64 System register MAIR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register PRRR[31:0] when TTBCR.EAE == 0.

AArch64 System register MAIR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register MAIR0[31:0] when TTBCR.EAE == 1.

AArch64 System register MAIR_EL1 bits [63:32] are architecturally mapped to AArch32 System
register NMRR[31:0] when TTBCR.EAE == 0.

AArch64 System register MAIR_EL1 bits [63:32] are architecturally mapped to AArch32 System
register MAIR1[31:0] when TTBCR.EAE == 1.

Attributes

MAIR_EL1 is a 64-bit register.

Field descriptions

MAIR_EL1 is permitted to be cached in a TLB.

Attr<n>, bits [8n+7:8n], for n = 7 to 0

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation
table entry, where AttrIndx[2:0] gives the value of <n> in Attr<n>.

Attr is encoded as follows:

Attr7

63 56

Attr6

55 48

Attr5

47 40

Attr4

39 32

Attr3

31 24

Attr2

23 16

Attr1

15 8

Attr0

7 0

Attr Meaning

0b0000dd00 Device memory. See encoding of 'dd' for the type of Device memory.

0b0000dd01 If FEAT_XS is implemented: Device memory with the XS attribute set to 0.
See encoding of 'dd' for the type of Device memory.
Otherwise, UNPREDICTABLE.

0b0000dd1x UNPREDICTABLE.

0booooiiii, (oooo != 0000 and iiii != 0000) Normal memory. See encoding of 'oooo' and 'iiii' for the type of Normal
Memory.

0b01000000 If FEAT_XS is implemented: Normal Inner Non-cacheable, Outer
Non-cacheable memory with the XS attribute set to 0.
Otherwise, UNPREDICTABLE.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3557
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
'dd' is encoded as follows:

'oooo' is encoded as follows:

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

0b10100000 If FEAT_XS is implemented: Normal Inner Write-through Cacheable,
Outer Write-through Cacheable, Read-Allocate, No-Write Allocate,
Non-transient memory with the XS attribute set to 0.
Otherwise, UNPREDICTABLE.

0b11110000 If FEAT_MTE2 is implemented: Tagged Normal Inner Write-Back, Outer
Write-Back, Read-Allocate, Write-Allocate Non-transient memory.
Otherwise, UNPREDICTABLE.

0bxxxx0000, (xxxx != 0000, xxxx != 0100, xxxx != 1010,
xxxx != 1111)

UNPREDICTABLE.

Attr Meaning

dd Meaning

0b00 Device-nGnRnE memory

0b01 Device-nGnRE memory

0b10 Device-nGRE memory

0b11 Device-GRE memory

'oooo' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Outer Write-Through Transient

0b0100 Normal memory, Outer Non-cacheable

0b01RW, RW not 0b00 Normal memory, Outer Write-Back Transient

0b10RW Normal memory, Outer Write-Through Non-transient

0b11RW Normal memory, Outer Write-Back Non-transient

'iiii' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Inner Write-Through Transient

0b0100 Normal memory, Inner Non-cacheable

0b01RW, RW not 0b00 Normal memory, Inner Write-Back Transient

0b10RW Normal memory, Inner Write-Through Non-transient

0b11RW Normal memory, Inner Write-Back Non-transient
D13-3558 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back
Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MAIR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic MAIR_EL1 or
MAIR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MAIR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.MAIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x140];
 else
 return MAIR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return MAIR_EL2;
 else
 return MAIR_EL1;
elsif PSTATE.EL == EL3 then
 return MAIR_EL1;

MSR MAIR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then

R or W Meaning

0b0 No Allocate

0b1 Allocate

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3559
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.MAIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x140] = X[t];
 else
 MAIR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 MAIR_EL2 = X[t];
 else
 MAIR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 MAIR_EL1 = X[t];

MRS <Xt>, MAIR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x140];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return MAIR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return MAIR_EL1;
 else
 UNDEFINED;

MSR MAIR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x140] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 MAIR_EL1 = X[t];
 else

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0010 0b000
D13-3560 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 MAIR_EL1 = X[t];
 else
 UNDEFINED;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3561
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.96 MAIR_EL2, Memory Attribute Indirection Register (EL2)

The MAIR_EL2 characteristics are:

Purpose

Provides the memory attribute encodings corresponding to the possible AttrIndx values in a
Long-descriptor format translation table entry for stage 1 translations at EL2.

Configurations

AArch64 System register MAIR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HMAIR0[31:0].

AArch64 System register MAIR_EL2 bits [63:32] are architecturally mapped to AArch32 System
register HMAIR1[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MAIR_EL2 is a 64-bit register.

Field descriptions

MAIR_EL2 is permitted to be cached in a TLB.

Attr<n>, bits [8n+7:8n], for n = 7 to 0

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation
table entry, where AttrIndx[2:0] gives the value of <n> in Attr<n>.

Attr is encoded as follows:

Attr7

63 56

Attr6

55 48

Attr5

47 40

Attr4

39 32

Attr3

31 24

Attr2

23 16

Attr1

15 8

Attr0

7 0

Attr Meaning

0b0000dd00 Device memory. See encoding of 'dd' for the type of Device memory.

0b0000dd01 If FEAT_XS is implemented: Device memory with the XS attribute set to 0.
See encoding of 'dd' for the type of Device memory.
Otherwise, UNPREDICTABLE.

0b0000dd1x UNPREDICTABLE.

0booooiiii, (oooo != 0000 and iiii != 0000) Normal memory. See encoding of 'oooo' and 'iiii' for the type of Normal
Memory.

0b01000000 If FEAT_XS is implemented: Normal Inner Non-cacheable, Outer
Non-cacheable memory with the XS attribute set to 0.
Otherwise, UNPREDICTABLE.
D13-3562 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
'dd' is encoded as follows:

'oooo' is encoded as follows:

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

0b10100000 If FEAT_XS is implemented: Normal Inner Write-through Cacheable,
Outer Write-through Cacheable, Read-Allocate, No-Write Allocate,
Non-transient memory with the XS attribute set to 0.
Otherwise, UNPREDICTABLE.

0b11110000 If FEAT_MTE2 is implemented: Tagged Normal Inner Write-Back, Outer
Write-Back, Read-Allocate, Write-Allocate Non-transient memory.
Otherwise, UNPREDICTABLE.

0bxxxx0000, (xxxx != 0000, xxxx != 0100, xxxx != 1010,
xxxx != 1111)

UNPREDICTABLE.

Attr Meaning

dd Meaning

0b00 Device-nGnRnE memory

0b01 Device-nGnRE memory

0b10 Device-nGRE memory

0b11 Device-GRE memory

'oooo' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Outer Write-Through Transient

0b0100 Normal memory, Outer Non-cacheable

0b01RW, RW not 0b00 Normal memory, Outer Write-Back Transient

0b10RW Normal memory, Outer Write-Through Non-transient

0b11RW Normal memory, Outer Write-Back Non-transient

'iiii' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Inner Write-Through Transient

0b0100 Normal memory, Inner Non-cacheable

0b01RW, RW not 0b00 Normal memory, Inner Write-Back Transient

0b10RW Normal memory, Inner Write-Through Non-transient

0b11RW Normal memory, Inner Write-Back Non-transient
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3563
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back
Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MAIR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic MAIR_EL2 or
MAIR_EL1 is not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MAIR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return MAIR_EL2;
elsif PSTATE.EL == EL3 then
 return MAIR_EL2;

MSR MAIR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 MAIR_EL2 = X[t];

R or W Meaning

0b0 No Allocate

0b1 Allocate

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0010 0b000
D13-3564 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
elsif PSTATE.EL == EL3 then
 MAIR_EL2 = X[t];

MRS <Xt>, MAIR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.MAIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x140];
 else
 return MAIR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return MAIR_EL2;
 else
 return MAIR_EL1;
elsif PSTATE.EL == EL3 then
 return MAIR_EL1;

MSR MAIR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.MAIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x140] = X[t];
 else
 MAIR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 MAIR_EL2 = X[t];
 else
 MAIR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 MAIR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3565
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.97 MAIR_EL3, Memory Attribute Indirection Register (EL3)

The MAIR_EL3 characteristics are:

Purpose

Provides the memory attribute encodings corresponding to the possible AttrIndx values in a
Long-descriptor format translation table entry for stage 1 translations at EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to MAIR_EL3
are UNDEFINED.

Attributes

MAIR_EL3 is a 64-bit register.

Field descriptions

MAIR_EL3 is permitted to be cached in a TLB.

Attr<n>, bits [8n+7:8n], for n = 7 to 0

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation
table entry, where AttrIndx[2:0] gives the value of <n> in Attr<n>.

Attr is encoded as follows:

Attr7

63 56

Attr6

55 48

Attr5

47 40

Attr4

39 32

Attr3

31 24

Attr2

23 16

Attr1

15 8

Attr0

7 0

Attr Meaning

0b0000dd00 Device memory. See encoding of 'dd' for the type of Device memory.

0b0000dd01 If FEAT_XS is implemented: Device memory with the XS attribute set to 0.
See encoding of 'dd' for the type of Device memory.
Otherwise, UNPREDICTABLE.

0b0000dd1x UNPREDICTABLE.

0booooiiii, (oooo != 0000 and iiii != 0000) Normal memory. See encoding of 'oooo' and 'iiii' for the type of Normal
Memory.

0b01000000 If FEAT_XS is implemented: Normal Inner Non-cacheable, Outer
Non-cacheable memory with the XS attribute set to 0.
Otherwise, UNPREDICTABLE.

0b10100000 If FEAT_XS is implemented: Normal Inner Write-through Cacheable,
Outer Write-through Cacheable, Read-Allocate, No-Write Allocate,
Non-transient memory with the XS attribute set to 0.
Otherwise, UNPREDICTABLE.

0b11110000 If FEAT_MTE2 is implemented: Tagged Normal Inner Write-Back, Outer
Write-Back, Read-Allocate, Write-Allocate Non-transient memory.
Otherwise, UNPREDICTABLE.

0bxxxx0000, (xxxx != 0000, xxxx != 0100, xxxx != 1010,
xxxx != 1111)

UNPREDICTABLE.
D13-3566 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
'dd' is encoded as follows:

'oooo' is encoded as follows:

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back
Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

dd Meaning

0b00 Device-nGnRnE memory

0b01 Device-nGnRE memory

0b10 Device-nGRE memory

0b11 Device-GRE memory

'oooo' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Outer Write-Through Transient

0b0100 Normal memory, Outer Non-cacheable

0b01RW, RW not 0b00 Normal memory, Outer Write-Back Transient

0b10RW Normal memory, Outer Write-Through Non-transient

0b11RW Normal memory, Outer Write-Back Non-transient

'iiii' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Inner Write-Through Transient

0b0100 Normal memory, Inner Non-cacheable

0b01RW, RW not 0b00 Normal memory, Inner Write-Back Transient

0b10RW Normal memory, Inner Write-Through Non-transient

0b11RW Normal memory, Inner Write-Back Non-transient

R or W Meaning

0b0 No Allocate

0b1 Allocate
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3567
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Accessing MAIR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MAIR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return MAIR_EL3;

MSR MAIR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 MAIR_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b0010 0b000
D13-3568 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.98 MIDR_EL1, Main ID Register

The MIDR_EL1 characteristics are:

Purpose

Provides identification information for the PE, including an implementer code for the device and a
device ID number.

Configurations

AArch64 System register MIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register MIDR[31:0].

AArch64 System register MIDR_EL1 bits [31:0] are architecturally mapped to External register
MIDR_EL1[31:0].

Attributes

MIDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm.
Assigned codes include the following:

0x00 Reserved for software use.

0x41 Arm Limited.

0x42 Broadcom Corporation.

0x43 Cavium Inc.

0x44 Digital Equipment Corporation.

0x46 Fujitsu Ltd.

0x49 Infineon Technologies AG.

0x4D Motorola or Freescale Semiconductor Inc.

0x4E NVIDIA Corporation.

0x50 Applied Micro Circuits Corporation.

0x51 Qualcomm Inc.

0x56 Marvell International Ltd.

0x69 Intel Corporation.

0xC0 Ampere Computing.

Arm can assign codes that are not published in this manual. All values not assigned by Arm are
reserved and must not be used.

Access to this field is RO.

RES0

63 32

Implementer

31 24

Variant

23 20 19 16

PartNum

15 4

Revision

3 0

Architecture
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3569
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Variant, bits [23:20]

Variant number. Typically, this field is used to distinguish between different product variants, or
major revisions of a product.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Architecture, bits [19:16]

Architecture version. Defined values are:

0b0001 Armv4.

0b0010 Armv4T.

0b0011 Armv5 (obsolete).

0b0100 Armv5T.

0b0101 Armv5TE.

0b0110 Armv5TEJ.

0b0111 Armv6.

0b1111 Architectural features are individually identified in the ID_* registers.

All other values are reserved.

Access to this field is RO.

PartNum, bits [15:4]

Primary Part Number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7,
the variant and architecture are encoded differently.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [3:0]

Revision number for the device.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing MIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MIDR_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.MIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0000 0b000
D13-3570 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 elsif EL2Enabled() then
 return VPIDR_EL2;
 else
 return MIDR_EL1;
elsif PSTATE.EL == EL2 then
 return MIDR_EL1;
elsif PSTATE.EL == EL3 then
 return MIDR_EL1;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3571
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.99 MPIDR_EL1, Multiprocessor Affinity Register

The MPIDR_EL1 characteristics are:

Purpose

In a multiprocessor system, provides an additional PE identification mechanism for scheduling
purposes.

Configurations

AArch64 System register MPIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register MPIDR[31:0].

In a uniprocessor system, Arm recommends that each Aff<n> field of this register returns a value
of 0.

Attributes

MPIDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

Affinity level 3. See the description of Aff0 for more information.

Aff3 is not supported in AArch32 state.

Bit [31]

Reserved, RES1.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system.

0b0 Processor is part of a multiprocessor system.

0b1 Processor is part of a uniprocessor system.

Bits [29:25]

Reserved, RES0.

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a
multithreading type approach. See the description of Aff0 for more information about affinity
levels.

0b0 Performance of PEs with different affinity level 0 values, and the same values for
affinity level 1 and higher, is largely independent.

0b1 Performance of PEs with different affinity level 0 values, and the same values for
affinity level 1 and higher, is very interdependent.

RES0

63 40

Aff3

39 32

31

U

30

RES0

29 25

MT

24

Aff2

23 16

Aff1

15 8

Aff0

7 0

RES1
D13-3572 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Aff2, bits [23:16]

Affinity level 2. See the description of Aff0 for more information.

Aff1, bits [15:8]

Affinity level 1. See the description of Aff0 for more information.

Aff0, bits [7:0]

Affinity level 0. This is the affinity level that is most significant for determining PE behavior. Higher
affinity levels are increasingly less significant in determining PE behavior. The assigned value of
the MPIDR.{Aff2, Aff1, Aff0} or MPIDR_EL1.{Aff3, Aff2, Aff1, Aff0} set of fields of each PE
must be unique within the system as a whole.

Accessing MPIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPIDR_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.MPIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() then
 return VMPIDR_EL2;
 else
 return MPIDR_EL1;
elsif PSTATE.EL == EL2 then
 return MPIDR_EL1;
elsif PSTATE.EL == EL3 then
 return MPIDR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0000 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3573
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.100 MVFR0_EL1, AArch32 Media and VFP Feature Register 0

The MVFR0_EL1 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point
implementation.

Must be interpreted with MVFR1_EL1 and MVFR2_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register MVFR0_EL1 bits [31:0] are architecturally mapped to AArch32 System
register MVFR0[31:0].

In an implementation where at least one Exception level supports execution in AArch32 state, but
there is no support for Advanced SIMD and floating-point operation, this register is RAZ.

Attributes

MVFR0_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:32]

Reserved, RES0.

FPRound, bits [31:28]

Floating-Point Rounding modes. Indicates whether the floating-point implementation provides
support for rounding modes. Defined values are:

0b0000 Not implemented, or only Round to Nearest mode supported, except that Round towards
Zero mode is supported for VCVT instructions that always use that rounding mode
regardless of the FPSCR setting.

0b0001 All rounding modes supported.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0001.

FPShVec, bits [27:24]

Short Vectors. Indicates whether the floating-point implementation provides support for the use of
short vectors. Defined values are:

0b0000 Short vectors not supported.

0b0001 Short vector operation supported.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

RES0

63 32

FPRound

31 28

FPShVec

27 24

FPSqrt

23 20

FPDivide

19 16

FPTrap

15 12

FPDP

11 8

FPSP

7 4

SIMDReg

3 0
D13-3574 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
FPSqrt, bits [23:20]

Square Root. Indicates whether the floating-point implementation provides support for the ARMv6
VFP square root operations. Defined values are:

0b0000 Not supported in hardware.

0b0001 Supported.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0001.

The VSQRT.F32 instruction also requires the single-precision floating-point attribute, bits [7:4],
and the VSQRT.F64 instruction also requires the double-precision floating-point attribute, bits
[11:8].

FPDivide, bits [19:16]

Indicates whether the floating-point implementation provides support for VFP divide operations.
Defined values are:

0b0000 Not supported in hardware.

0b0001 Supported.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0001.

The VDIV.F32 instruction also requires the single-precision floating-point attribute, bits [7:4], and
the VDIV.F64 instruction also requires the double-precision floating-point attribute, bits [11:8].

FPTrap, bits [15:12]

Floating Point Exception Trapping. Indicates whether the floating-point implementation provides
support for exception trapping. Defined values are:

0b0000 Not supported.

0b0001 Supported.

All other values are reserved.

A value of 0b0001 indicates that, when the corresponding trap is enabled, a floating-point exception
generates an exception.

FPDP, bits [11:8]

Double Precision. Indicates whether the floating-point implementation provides support for
double-precision operations. Defined values are:

0b0000 Not supported in hardware.

0b0001 Supported, VFPv2.

0b0010 Supported, VFPv3, VFPv4, or Armv8. VFPv3 and Armv8 add an instruction to load a
double-precision floating-point constant, and conversions between double-precision
and fixed-point values.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0010.

A value of 0b0001 or 0b0010 indicates support for all VFP double-precision instructions in the
supported version of VFP, except that, in addition to this field being nonzero:

• VSQRT.F64 is only available if the Square root field is 0b0001.

• VDIV.F64 is only available if the Divide field is 0b0001.

• Conversion between double-precision and single-precision is only available if the
single-precision field is nonzero.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3575
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
FPSP, bits [7:4]

Single Precision. Indicates whether the floating-point implementation provides support for
single-precision operations. Defined values are:

0b0000 Not supported in hardware.

0b0001 Supported, VFPv2.

0b0010 Supported, VFPv3 or VFPv4. VFPv3 adds an instruction to load a single-precision
floating-point constant, and conversions between single-precision and fixed-point
values.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0010.

A value of 0b0001 or 0b0010 indicates support for all VFP single-precision instructions in the
supported version of VFP, except that, in addition to this field being nonzero:

• VSQRT.F32 is only available if the Square root field is 0b0001.

• VDIV.F32 is only available if the Divide field is 0b0001.

• Conversion between double-precision and single-precision is only available if the
double-precision field is nonzero.

SIMDReg, bits [3:0]

Advanced SIMD registers. Indicates whether the Advanced SIMD and floating-point
implementation provides support for the Advanced SIMD and floating-point register bank. Defined
values are:

0b0000 The implementation has no Advanced SIMD and floating-point support.

0b0001 The implementation includes floating-point support with 16 x 64-bit registers.

0b0010 The implementation includes Advanced SIMD and floating-point support with 32 x
64-bit registers.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0010.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing MVFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

UNKNOWN

63 32

UNKNOWN

31 0
D13-3576 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, MVFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return MVFR0_EL1;
elsif PSTATE.EL == EL2 then
 return MVFR0_EL1;
elsif PSTATE.EL == EL3 then
 return MVFR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3577
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.101 MVFR1_EL1, AArch32 Media and VFP Feature Register 1

The MVFR1_EL1 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point
implementation.

Must be interpreted with MVFR0_EL1 and MVFR2_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register MVFR1_EL1 bits [31:0] are architecturally mapped to AArch32 System
register MVFR1[31:0].

In an implementation where at least one Exception level supports execution in AArch32 state, but
there is no support for Advanced SIMD and floating-point operation, this register is RAZ.

Attributes

MVFR1_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:32]

Reserved, RES0.

SIMDFMAC, bits [31:28]

Advanced SIMD Fused Multiply-Accumulate. Indicates whether the Advanced SIMD
implementation provides fused multiply accumulate instructions. Defined values are:

0b0000 Not implemented.

0b0001 Implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

The Advanced SIMD and floating-point implementations must provide the same level of support
for these instructions.

FPHP, bits [27:24]

Floating Point Half Precision. Indicates the level of half-precision floating-point support. Defined
values are:

0b0000 Not supported.

0b0001 Floating-point half-precision conversion instructions are supported for conversion
between single-precision and half-precision.

0b0010 As for 0b0001, and adds instructions for conversion between double-precision and
half-precision.

0b0011 As for 0b0010, and adds support for half-precision floating-point arithmetic.

RES0

63 32

SIMDFMAC

31 28

FPHP

27 24

SIMDHP

23 20

SIMDSP

19 16

SIMDInt

15 12

SIMDLS

11 8

FPDNaN

7 4

FPFtZ

3 0
D13-3578 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 in an implementation without floating-point support.

• 0b0010 in an implementation with floating-point support that does not include the
FEAT_FP16 extension.

• 0b0011 in an implementation with floating-point support that includes the FEAT_FP16
extension.

The level of support indicated by this field must be equivalent to the level of support indicated by
the SIMDHP field, meaning the permitted values are:

SIMDHP, bits [23:20]

Advanced SIMD Half Precision. Indicates the level of half-precision floating-point support.
Defined values are:

0b0000 Not supported.

0b0001 SIMD half-precision conversion instructions are supported for conversion between
single-precision and half-precision.

0b0010 As for 0b0001, and adds support for half-precision floating-point arithmetic.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 in an implementation without SIMD floating-point support.

• 0b0001 in an implementation with SIMD floating-point support that does not include the
FEAT_FP16 extension.

• 0b0010 in an implementation with SIMD floating-point support that includes the FEAT_FP16
extension.

The level of support indicated by this field must be equivalent to the level of support indicated by
the FPHP field, meaning the permitted values are:

SIMDSP, bits [19:16]

Advanced SIMD Single Precision. Indicates whether the Advanced SIMD and floating-point
implementation provides single-precision floating-point instructions. Defined values are:

0b0000 Not implemented.

0b0001 Implemented. This value is permitted only if the SIMDInt field is 0b0001.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

Half Precision instructions supported FPHP SIMDHP

No support 0b0000 0b0000

Conversions only 0b0010 0b0001

Conversions and arithmetic 0b0011 0b0010

Half Precision instructions supported FPHP SIMDHP

No support 0b0000 0b0000

Conversions only 0b0010 0b0001

Conversions and arithmetic 0b0011 0b0010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3579
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
SIMDInt, bits [15:12]

Advanced SIMD Integer. Indicates whether the Advanced SIMD and floating-point implementation
provides integer instructions. Defined values are:

0b0000 Not implemented.

0b0001 Implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

SIMDLS, bits [11:8]

Advanced SIMD Load/Store. Indicates whether the Advanced SIMD and floating-point
implementation provides load/store instructions. Defined values are:

0b0000 Not implemented.

0b0001 Implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

FPDNaN, bits [7:4]

Default NaN mode. Indicates whether the floating-point implementation provides support only for
the Default NaN mode. Defined values are:

0b0000 Not implemented, or hardware supports only the Default NaN mode.

0b0001 Hardware supports propagation of NaN values.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

FPFtZ, bits [3:0]

Flush to Zero mode. Indicates whether the floating-point implementation provides support only for
the Flush-to-Zero mode of operation. Defined values are:

0b0000 Not implemented, or hardware supports only the Flush-to-Zero mode of operation.

0b0001 Hardware supports full denormalized number arithmetic.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing MVFR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

UNKNOWN

63 32

UNKNOWN

31 0
D13-3580 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, MVFR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return MVFR1_EL1;
elsif PSTATE.EL == EL2 then
 return MVFR1_EL1;
elsif PSTATE.EL == EL3 then
 return MVFR1_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0011 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3581
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.102 MVFR2_EL1, AArch32 Media and VFP Feature Register 2

The MVFR2_EL1 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point
implementation.

Must be interpreted with MVFR0_EL1 and MVFR1_EL1.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

AArch64 System register MVFR2_EL1 bits [31:0] are architecturally mapped to AArch32 System
register MVFR2[31:0].

In an implementation where at least one Exception level supports execution in AArch32 state, but
there is no support for Advanced SIMD and floating-point operation, this register is RAZ.

Attributes

MVFR2_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0:

Bits [63:8]

Reserved, RES0.

FPMisc, bits [7:4]

Indicates whether the floating-point implementation provides support for miscellaneous VFP
features.

0b0000 Not implemented, or no support for miscellaneous features.

0b0001 Support for Floating-point selection.

0b0010 As 0b0001, and Floating-point Conversion to Integer with Directed Rounding modes.

0b0011 As 0b0010, and Floating-point Round to Integer Floating-point.

0b0100 As 0b0011, and Floating-point MaxNum and MinNum.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0100.

SIMDMisc, bits [3:0]

Indicates whether the Advanced SIMD implementation provides support for miscellaneous
Advanced SIMD features.

0b0000 Not implemented, or no support for miscellaneous features.

0b0001 Floating-point Conversion to Integer with Directed Rounding modes.

0b0010 As 0b0001, and Floating-point Round to Integer Floating-point.

0b0011 As 0b0010, and Floating-point MaxNum and MinNum.

RES0

63 32

RES0

31 8

FPMisc

7 4

SIMDMisc

3 0
D13-3582 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0011.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing MVFR2_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MVFR2_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return MVFR2_EL1;
elsif PSTATE.EL == EL2 then
 return MVFR2_EL1;
elsif PSTATE.EL == EL3 then
 return MVFR2_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0011 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3583
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.103 PAR_EL1, Physical Address Register

The PAR_EL1 characteristics are:

Purpose

Returns the output address (OA) from an Address translation instruction that executed successfully,
or fault information if the instruction did not execute successfully.

Configurations

AArch64 System register PAR_EL1 bits [63:0] are architecturally mapped to AArch32 System
register PAR[63:0].

Attributes

PAR_EL1 is a 64-bit register.

Field descriptions

When PAR_EL1.F == 0:

This section describes the register value returned by the successful execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of
the PE.

On a successful conversion, the PAR_EL1 can return a value that indicates the resulting attributes, rather than the
values that appear in the translation table descriptors. More precisely:

• The PAR_EL1.{ATTR, SH} fields are permitted to report the resulting attributes, as determined by any
permitted implementation choices and any applicable configuration bits, instead of reporting the values that
appear in the translation table descriptors.

• See the PAR_EL1.NS bit description for constraints on the value it returns.

ATTR, bits [63:56]

Memory attributes for the returned output address. This field uses the same encoding as the Attr<n>
fields in MAIR_EL1, MAIR_EL2, and MAIR_EL3.

The value returned in this field can be the resulting attribute, as determined by any permitted
implementation choices and any applicable configuration bits, instead of the value that appears in
the translation table descriptor.

Note

The attributes presented are consistent with the stages of translation applied in the address
translation instruction. If the instruction performed a stage 1 translation only, the attributes are from
the stage 1 translation. If the instruction performed a stage 1 and stage 2 translation, the attributes
are from the combined stage 1 and stage 2 translation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ATTR

63 56

RES0

55 52 51 48

PA[47:12]

47 32

PA[51:48]

PA[47:12]

31 12 11 10

NS

9

SH

8 7

RES0

6 1

F

0

RES1 IMPLEMENTATION DEFINED
D13-3584 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Bits [55:52]

Reserved, RES0.

PA[51:48], bits [51:48]

When FEAT_LPA is implemented:

PA[51:48]

Extension to PA[47:12]. For more information, see PA[47:12].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PA[47:12], bits [47:12]

Output address. The output address (OA) corresponding to the supplied input address. This field
returns address bits[47:12].

When FEAT_LPA is implemented and 52-bit addresses are in use, PA[51:48] forms the upper part
of the address value. Otherwise, when 52-bit addresses are not in use, PA[51:48] is RES0.

For implementations with fewer than 48 physical address bits, the corresponding upper bits in this
field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [11]

Reserved, RES1.

IMPLEMENTATION DEFINED, bit [10]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NS, bit [9]

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, when SCR_EL3.EEL2 is 1, this bit reflects the
Security state of the intermediate physical address space of the translation for the instructions:

• In AArch64 state: AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP, AT S1E0R, and AT
S1E0W.

• In AArch32 state: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP, ATS1CUR, and
ATS1CUW.

Otherwise, this bit reflects the Security state of the physical address space of the translation. This
means it reflects the effect of the NSTable bits of earlier levels of the translation table walk if those
NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH, bits [8:7]

Shareability attribute, for the returned output address.

0b00 Non-shareable.

0b10 Outer Shareable.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3585
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b11 Inner Shareable.

The value 0b01 is reserved.

Note

This field returns the value 0b10 for:

• Any type of Device memory.

• Normal memory with both Inner Non-cacheable and Outer Non-cacheable attributes.

The value returned in this field can be the resulting attribute, as determined by any permitted
implementation choices and any applicable configuration bits, instead of the value that appears in
the translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:1]

Reserved, RES0.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

0b0 Address translation completed successfully.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When PAR_EL1.F == 1:

This section describes the register value returned by a fault on the execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of
the PE.

IMPLEMENTATION DEFINED, bits [63:56]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [55:52]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [51:48]

IMPLEMENTATION DEFINED.

63 56 55 52 51 48

RES0

47 32

IMPLEMENTATION
DEFINED

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

RES0

31 12 11 10

S

9 8 7

FST

6 1

F

0

RES1
RES0

RES0
PTW
D13-3586 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [47:12]

Reserved, RES0.

Bit [11]

Reserved, RES1.

Bit [10]

Reserved, RES0.

S, bit [9]

Indicates the translation stage at which the translation aborted:

0b0 Translation aborted because of a fault in the stage 1 translation.

0b1 Translation aborted because of a fault in the stage 2 translation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PTW, bit [8]

If this bit is set to 1, it indicates the translation aborted because of a stage 2 fault during a stage 1
translation table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

FST, bits [6:1]

Fault status code, as shown in the Data Abort ESR encoding.

0b000000 Address size fault, level 0 of translation or translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001000 When FEAT_LPA2 is implemented:

Access flag fault, level 0.

0b001100 When FEAT_LPA2 is implemented:

Permission fault, level 0.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010011 When FEAT_LPA2 is implemented:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3587
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Synchronous External abort on translation table walk or hardware update of translation
table, level -1.

0b010100 Synchronous External abort on translation table walk or hardware update of translation
table, level 0.

0b010101 Synchronous External abort on translation table walk or hardware update of translation
table, level 1.

0b010110 Synchronous External abort on translation table walk or hardware update of translation
table, level 2.

0b010111 Synchronous External abort on translation table walk or hardware update of translation
table, level 3.

0b011011 When FEAT_LPA2 is implemented and FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level -1.

0b011100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 0.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 3.

0b101001 When FEAT_LPA2 is implemented:

Address size fault, level -1.

0b101011 When FEAT_LPA2 is implemented:

Translation fault, level -1.

0b110000 TLB conflict abort.

0b110001 When FEAT_HAFDBS is implemented:

Unsupported atomic hardware update fault.

0b111101 When EL1 is capable of using AArch32:

Section Domain fault, from an AArch32 stage 1 EL1&0 translation regime using
Short-descriptor translation table format.

0b111110 When EL1 is capable of using AArch32:

Page Domain fault, from an AArch32 stage 1 EL1&0 translation regime using
Short-descriptor translation table format.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

0b1 Address translation aborted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PAR_EL1

Accesses to this register use the following encodings in the System register encoding space:
D13-3588 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, PAR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.PAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return PAR_EL1;
elsif PSTATE.EL == EL2 then
 return PAR_EL1;
elsif PSTATE.EL == EL3 then
 return PAR_EL1;

MSR PAR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.PAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 PAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 PAR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 PAR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0111 0b0100 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0111 0b0100 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3589
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.104 REVIDR_EL1, Revision ID Register

The REVIDR_EL1 characteristics are:

Purpose

Provides implementation-specific minor revision information.

Configurations

AArch64 System register REVIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register REVIDR[31:0].

If REVIDR_EL1 has the same value as MIDR_EL1, then its contents have no significance.

Attributes

REVIDR_EL1 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing REVIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, REVIDR_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.REVIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return REVIDR_EL1;
elsif PSTATE.EL == EL2 then
 return REVIDR_EL1;
elsif PSTATE.EL == EL3 then
 return REVIDR_EL1;

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0000 0b110
D13-3590 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.105 RGSR_EL1, Random Allocation Tag Seed Register.

The RGSR_EL1 characteristics are:

Purpose

Random Allocation Tag Seed Register.

Configurations

This register is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
RGSR_EL1 are UNDEFINED.

When GCR_EL1.RRND==0b1, updates to RGSR_EL1 are implementation-specific.

Attributes

RGSR_EL1 is a 64-bit register.

Field descriptions

Bits [63:24]

Reserved, RES0.

SEED, bits [23:8]

Seed register used for generating values returned by RandomAllocationTag().

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:4]

Reserved, RES0.

TAG, bits [3:0]

Tag generated by the most recent IRG instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing RGSR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RGSR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

RES0

63 32

RES0

31 24

SEED

23 8

RES0

7 4

TAG

3 0

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3591
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return RGSR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return RGSR_EL1;
elsif PSTATE.EL == EL3 then
 return RGSR_EL1;

MSR RGSR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 RGSR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 RGSR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 RGSR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b101
D13-3592 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.106 RMR_EL1, Reset Management Register (EL1)

The RMR_EL1 characteristics are:

Purpose

When this register is implemented:

• A write to the register at EL1 can request a Warm reset.

• If EL1 can use all Execution states, this register specifies the Execution state that the PE boots
into on a Warm reset.

Configurations

AArch64 System register RMR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register RMR[31:0] when the highest implemented Exception level is EL1.

This register is present only when the highest implemented Exception level is EL1. Otherwise,
direct accesses to RMR_EL1 are UNDEFINED.

When EL1 is the highest implemented Exception level:

• If EL1 can use all Execution states then this register must be implemented.

• If EL1 cannot use AArch32 then it is IMPLEMENTATION DEFINED whether the register is
implemented.

Attributes

RMR_EL1 is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

AA64, bit [0]

When EL1 is capable of using AArch32:

AA64

When EL1 can use AArch32, determines which Execution state the PE boots into after a Warm
reset:

0b0 AArch32.

0b1 AArch64.

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector
address of the specified Execution state.

If EL1 can only use AArch64 state, this bit is RAO/WI.

RES0

63 32

RES0

31 2

RR

1 0

AA64
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3593
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• When implemented as a RW field, this field resets to 1 on a Cold reset.

Otherwise:

Reserved, RAO/WI.

Accessing RMR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RMR_EL1

if PSTATE.EL == EL1 && IsHighestEL(EL1) then
 return RMR_EL1;
else
 UNDEFINED;

MSR RMR_EL1, <Xt>

if PSTATE.EL == EL1 && IsHighestEL(EL1) then
 RMR_EL1 = X[t];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b010
D13-3594 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.107 RMR_EL2, Reset Management Register (EL2)

The RMR_EL2 characteristics are:

Purpose

When this register is implemented:

• A write to the register at EL2 can request a Warm reset.

• If EL2 can use all Execution states, this register specifies the Execution state that the PE boots
into on a Warm reset.

Configurations

AArch64 System register RMR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HRMR[31:0] when the highest implemented Exception level is EL2.

This register is present only when the highest implemented Exception level is EL2. Otherwise,
direct accesses to RMR_EL2 are UNDEFINED.

When EL2 is the highest implemented Exception level:

• If EL2 can use all Execution states then this register must be implemented.

• If EL2 cannot use AArch32 then it is IMPLEMENTATION DEFINED whether the register is
implemented.

Attributes

RMR_EL2 is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

AA64, bit [0]

When EL2 is capable of using AArch32:

AA64

When EL2 can use AArch32, determines which Execution state the PE boots into after a Warm
reset:

0b0 AArch32.

0b1 AArch64.

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector
address of the specified Execution state.

If EL2 can only use AArch64 state, this bit is RAO/WI.

RES0

63 32

RES0

31 2

RR

1 0

AA64
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3595
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• When implemented as a RW field, this field resets to 1 on a Cold reset.

Otherwise:

Reserved, RAO/WI.

Accessing RMR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RMR_EL2

if PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif PSTATE.EL == EL2 && IsHighestEL(EL2) then
 return RMR_EL2;
else
 UNDEFINED;

MSR RMR_EL2, <Xt>

if PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif PSTATE.EL == EL2 && IsHighestEL(EL2) then
 RMR_EL2 = X[t];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b0000 0b010
D13-3596 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.108 RMR_EL3, Reset Management Register (EL3)

The RMR_EL3 characteristics are:

Purpose

If EL3 is the implemented and this register is implemented:

• A write to the register at EL3 can request a Warm reset.

• If EL3 can use all Execution states, this register specifies the Execution state that the PE boots
into on a Warm reset.

Configurations

AArch64 System register RMR_EL3 bits [31:0] are architecturally mapped to AArch32 System
register RMR[31:0] when EL3 is implemented.

This register is present only when EL3 is implemented. Otherwise, direct accesses to RMR_EL3 are
UNDEFINED.

When EL3 is implemented:

• If EL3 can use all Execution states then this register must be implemented.

• If EL3 cannot use AArch32, then it is IMPLEMENTATION DEFINED whether the register is
implemented.

Otherwise, direct accesses to RMR_EL3 are UNDEFINED.

Attributes

RMR_EL3 is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

AA64, bit [0]

When EL3 is capable of using AArch32:

AA64

When EL3 can use AArch32, determines which Execution state the PE boots into after a Warm
reset:

0b0 AArch32.

0b1 AArch64.

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector
address of the specified Execution state.

If EL3 can only use AArch64 state, this bit is RAO/WI.

RES0

63 32

RES0

31 2

RR

1 0

AA64
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3597
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• When implemented as a RW field, this field resets to 1 on a Cold reset.

Otherwise:

Reserved, RAO/WI.

Accessing RMR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RMR_EL3

if PSTATE.EL == EL3 && IsHighestEL(EL3) then
 return RMR_EL3;
else
 UNDEFINED;

MSR RMR_EL3, <Xt>

if PSTATE.EL == EL3 && IsHighestEL(EL3) then
 RMR_EL3 = X[t];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b0000 0b010
D13-3598 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.109 RNDR, Random Number

The RNDR characteristics are:

Purpose

Random Number. Returns a 64-bit random number which is reseeded from the True Random
Number source at an IMPLEMENTATION DEFINED rate.

If the hardware returns a genuine random number, PSTATE.NZCV is set to 0b0000.

If the instruction cannot return a genuine random number in a reasonable period of time,
PSTATE.NZCV is set to 0b0100 and the data value returned is 0.

Configurations

This register is present only when FEAT_RNG is implemented. Otherwise, direct accesses to
RNDR are UNDEFINED.

Attributes

RNDR is a 64-bit register.

Field descriptions

RNDR, bits [63:0]

Random Number. Returns a 64-bit Random Number which is reseeded from the True Random
Number source at an IMPLEMENTATION DEFINED rate.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing RNDR

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RNDR

if PSTATE.EL == EL0 then
 if !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;
 else
 return RNDR;
elsif PSTATE.EL == EL1 then
 if !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;
 else
 return RNDR;
elsif PSTATE.EL == EL2 then
 if !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;

RNDR

63 32

RNDR

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b0010 0b0100 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3599
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 else
 return RNDR;
elsif PSTATE.EL == EL3 then
 if !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;
 else
 return RNDR;

D13-3600 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.110 RNDRRS, Reseeded Random Number

The RNDRRS characteristics are:

Purpose

Reseeded Random Number. Returns a 64-bit random number which is reseeded from the True
Random Number source immediately before the read of the random number.

If the hardware returns a genuine random number, PSTATE.NZCV is set to 0b0000.

If the instruction cannot return a genuine random number in a reasonable period of time,
PSTATE.NZCV is set to 0b0100 and the data value returned is 0.

Configurations

This register is present only when FEAT_RNG is implemented. Otherwise, direct accesses to
RNDRRS are UNDEFINED.

Attributes

RNDRRS is a 64-bit register.

Field descriptions

RNDRRS, bits [63:0]

Reseeded Random Number. Returns a 64-bit Random Number which is reseeded from the True
Random Number source immediately before this read.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing RNDRRS

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RNDRRS

if PSTATE.EL == EL0 then
 if !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;
 else
 return RNDRRS;
elsif PSTATE.EL == EL1 then
 if !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;
 else
 return RNDRRS;
elsif PSTATE.EL == EL2 then
 if !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;

RNDRRS

63 32

RNDRRS

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b0010 0b0100 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3601
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 else
 return RNDRRS;
elsif PSTATE.EL == EL3 then
 if !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;
 else
 return RNDRRS;

D13-3602 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.111 RVBAR_EL1, Reset Vector Base Address Register (if EL2 and EL3 not implemented)

The RVBAR_EL1 characteristics are:

Purpose

If EL1 is the highest Exception level implemented, contains the IMPLEMENTATION DEFINED address
that execution starts from after reset when executing in AArch64 state.

Configurations

This register is present only when the highest implemented Exception level is EL1. Otherwise,
direct accesses to RVBAR_EL1 are UNDEFINED.

Attributes

RVBAR_EL1 is a 64-bit register.

Field descriptions

ResetAddress, bits [63:0]

The IMPLEMENTATION DEFINED address that execution starts from after reset when executing in
64-bit state. Bits[1:0] of this register are 00, as this address must be aligned, and the address must
be within the physical address size supported by the PE.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing RVBAR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RVBAR_EL1

if PSTATE.EL == EL1 && IsHighestEL(EL1) then
 return RVBAR_EL1;
else
 UNDEFINED;

ResetAddress

63 32

ResetAddress

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3603
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.112 RVBAR_EL2, Reset Vector Base Address Register (if EL3 not implemented)

The RVBAR_EL2 characteristics are:

Purpose

If EL2 is the highest Exception level implemented, contains the IMPLEMENTATION DEFINED address
that execution starts from after reset when executing in AArch64 state.

Configurations

This register is present only when the highest implemented Exception level is EL2. Otherwise,
direct accesses to RVBAR_EL2 are UNDEFINED.

Attributes

RVBAR_EL2 is a 64-bit register.

Field descriptions

ResetAddress, bits [63:0]

The IMPLEMENTATION DEFINED address that execution starts from after reset when executing in
64-bit state. Bits[1:0] of this register are 00, as this address must be aligned, and the address must
be within the physical address size supported by the PE.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing RVBAR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RVBAR_EL2

if PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif PSTATE.EL == EL2 && IsHighestEL(EL2) then
 return RVBAR_EL2;
else
 UNDEFINED;

ResetAddress

63 32

ResetAddress

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b0000 0b001
D13-3604 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.113 RVBAR_EL3, Reset Vector Base Address Register (if EL3 implemented)

The RVBAR_EL3 characteristics are:

Purpose

If EL3 is the highest Exception level implemented, contains the IMPLEMENTATION DEFINED address
that execution starts from after reset when executing in AArch64 state.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to RVBAR_EL3
are UNDEFINED.

Only implemented if the highest Exception level implemented is EL3.

Attributes

RVBAR_EL3 is a 64-bit register.

Field descriptions

ResetAddress, bits [63:0]

The IMPLEMENTATION DEFINED address that execution starts from after reset when executing in
64-bit state. Bits[1:0] of this register are 00, as this address must be aligned, and the address must
be within the physical address size supported by the PE.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing RVBAR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RVBAR_EL3

if PSTATE.EL == EL3 && IsHighestEL(EL3) then
 return RVBAR_EL3;
else
 UNDEFINED;

ResetAddress

63 32

ResetAddress

31 0

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3605
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.114 S3_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED registers

The S3_<op1>_<Cn>_<Cm>_<op2> characteristics are:

Purpose

This area of the instruction set space is reserved for IMPLEMENTATION DEFINED registers.

Configurations

There are no configuration notes.

Attributes

S3_<op1>_<Cn>_<Cm>_<op2> is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing S3_<op1>_<Cn>_<Cm>_<op2>

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, S3_<op1>_C<Cn>_C<Cm>_<op2>

if PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TIDCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 IMPLEMENTATION_DEFINED "S3";
else
 IMPLEMENTATION_DEFINED "S3";

MSR S3_<op1>_C<Cn>_C<Cm>_<op2>, <Xt>

if PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TIDCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 IMPLEMENTATION_DEFINED "S3";

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 op1[2:0] 0b1x11 Cm[3:0] op2[2:0]

op0 op1 CRn CRm op2

0b11 op1[2:0] 0b1x11 Cm[3:0] op2[2:0]
D13-3606 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
else
 IMPLEMENTATION_DEFINED "S3";

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3607
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.115 SCR_EL3, Secure Configuration Register

The SCR_EL3 characteristics are:

Purpose

Defines the configuration of the current Security state. It specifies:

• The Security state of EL0, EL1, and EL2. The Security state is either Secure or Non-secure.

• The Execution state at lower Exception levels.

• Whether IRQ, FIQ, SError interrupts, and External abort exceptions are taken to EL3.

• Whether various operations are trapped to EL3.

Configurations

AArch64 System register SCR_EL3 bits [31:0] can be mapped to AArch32 System register
SCR[31:0], but this is not architecturally mandated.

This register is present only when EL3 is implemented. Otherwise, direct accesses to SCR_EL3 are
UNDEFINED.

Attributes

SCR_EL3 is a 64-bit register.

Field descriptions

Bits [63:39]

Reserved, RES0.

HXEn, bit [38]

When FEAT_HCX is implemented:

HXEn

Enables access to the HCRX_EL2 register at EL2 from EL3.

0b0 Accesses at EL2 to HCRX_EL2 are trapped to EL3. Indirect reads of HCRX_EL2
return 0.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 39 38 37 36 35 34 33 32

HXEn
ADEn
EnAS0

TWEDEL
RES0

AMVOFFEN
31 30 29 28 27 26 25

RES0

24 22 21 20 19 18 17 16 15 14 13 12

ST

11

RW

10 9 8 7 6

RES1

5 4

EA

3 2 1

NS

0

TWEDEL
TWEDEn

ECVEn
FGTEn

ATA
EnSCXT

FIEN
NMEA

EASE
EEL2

API

IRQ
FIQ

RES0
SMD

HCE
SIF

TWI
TWE

TLOR
TERR

APK
D13-3608 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Reserved, RES0.

ADEn, bit [37]

When FEAT_LS64 is implemented:

ADEn

Enables access to the ACCDATA_EL1 register at EL1 and EL2.

0b0 Accesses to ACCDATA_EL1 at EL1 and EL2 are trapped to EL3, unless the accesses
are trapped to EL2 by the EL2 fine-grained trap.

0b1 This control does not cause accesses to ACCDATA_EL1 to be trapped.

If the HFGWTR_EL2.nACCDATA_EL1 or HFGRTR_EL2.nACCDATA_EL1 traps are enabled,
they take priority over this trap.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnAS0, bit [36]

When FEAT_LS64 is implemented:

EnAS0

Traps execution of an ST64BV0 instruction at EL0, EL1, or EL2 to EL3.

0b0 EL0 execution of an ST64BV0 instruction is trapped to EL3, unless it is trapped to EL1
by SCTLR_EL1.EnAS0, or to EL2 by either HCRX_EL2.EnAS0 or
SCTLR_EL2.EnAS0.

EL1 execution of an ST64BV0 instruction is trapped to EL3, unless it is trapped to EL2
by HCRX_EL2.EnAS0.

EL2 execution of an ST64BV0 instruction is trapped to EL3.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code
of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AMVOFFEN, bit [35]

When FEAT_AMUv1p1 is implemented:

AMVOFFEN

Activity Monitors Virtual Offsets Enable.

0b0 Accesses to AMEVCNTVOFF0<n>_EL2 and AMEVCNTVOFF1<n>_EL2 at EL2 are
trapped to EL3. Indirect reads of the virtual offset registers are zero.

0b1 Accesses to AMEVCNTVOFF0<n>_EL2 and AMEVCNTVOFF1<n>_EL2 are not
affected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3609
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Reserved, RES0.

Bit [34]

Reserved, RES0.

TWEDEL, bits [33:30]

When FEAT_TWED is implemented:

TWEDEL

TWE Delay. A 4-bit unsigned number that, when SCR_EL3.TWEDEn is 1, encodes the minimum
delay in taking a trap of WFE* caused by SCR_EL3.TWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEn, bit [29]

When FEAT_TWED is implemented:

TWEDEn

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by
SCR_EL3.TWE.

Traps are reported using an ESR_ELx.EC value of 0x01.

0b0 The delay for taking the trap is IMPLEMENTATION DEFINED.

0b1 The delay for taking the trap is at least the number of cycles defined in
SCR_EL3.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ECVEn, bit [28]

When FEAT_ECV is implemented:

ECVEn

ECV Enable. Enables access to the CNTPOFF_EL2 register.

0b0 EL2 accesses to CNTPOFF_EL2 are trapped to EL3, and the value of CNTPOFF_EL2
is treated as 0 for all purposes other than direct reads or writes to the register from EL3.

0b1 EL2 accesses to CNTPOFF_EL2 are not trapped to EL3 by this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
D13-3610 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
FGTEn, bit [27]

When FEAT_FGT is implemented:

FGTEn

Fine-Grained Traps Enable. When EL2 is implemented, enables the traps to EL2 controlled by
HAFGRTR_EL2, HDFGRTR_EL2, HDFGWTR_EL2, HFGRTR_EL2, HFGITR_EL2, and
HFGWTR_EL2, and controls access to those registers.

Note

If EL2 is not implemented but EL3 is implemented, FEAT_FGT implements the
MDCR_EL3.TDCC traps.

0b0 EL2 accesses to HAFGRTR_EL2, HDFGRTR_EL2, HDFGWTR_EL2,
HFGRTR_EL2, HFGITR_EL2 and HFGWTR_EL2 registers are trapped to EL3, and
the traps to EL2 controlled by those registers are disabled.

0b1 EL2 accesses to HAFGRTR_EL2, HDFGRTR_EL2, HDFGWTR_EL2,
HFGRTR_EL2, HFGITR_EL2 and HFGWTR_EL2 registers are not trapped to EL3 by
this mechanism.

Traps caused by accesses to the fine-grained trap registers are reported using an ESR_ELx.EC value
of 0x18 and its associated ISS.

Otherwise:

Reserved, RES0.

ATA, bit [26]

When FEAT_MTE2 is implemented:

ATA

Allocation Tag Access. Controls access at EL2, EL1 and EL0 to Allocation Tags.

0b0 Access to Allocation Tags is prevented. Accesses at EL1 and EL2 to GCR_EL1,
RGSR_EL1, TFSR_EL1, TFSR_EL2 or TFSRE0_EL1 that are not UNDEFINED or
trapped to a lower Exception level are trapped to EL3. Accesses at EL2 to TFSR_EL1
that are not UNDEFINED are trapped to EL3.

0b1 This control does not prevent access to Allocation Tags.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnSCXT, bit [25]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

EnSCXT

Enable access to the SCXTNUM_EL2, SCXTNUM_EL1, and SCXTNUM_EL0 registers.

0b0 Accesses at EL0, EL1 and EL2 to SCXTNUM_EL0, SCXTNUM_EL1, or
SCXTNUM_EL2 registers are trapped to EL3 if they are not trapped by a higher priority
exception, and the values of these registers are treated as 0.

0b1 This control does not cause any accesses to be trapped, or register values to be treated
as 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3611
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Reserved, RES0.

Bits [24:22]

Reserved, RES0.

FIEN, bit [21]

When FEAT_RASv1p1 is implemented:

FIEN

Fault Injection enable. Trap accesses to the registers ERXPFGCDN_EL1, ERXPFGCTL_EL1, and
ERXPFGF_EL1 from EL1 and EL2 to EL3, reported using an ESR_ELx.EC value of 0x18.

0b0 Accesses to the specified registers from EL1 and EL2 generate a Trap exception to EL3.

0b1 This control does not cause any instructions to be trapped.

If EL3 is not implemented, the Effective value of SCR_EL3.FIEN is 0b1.

If ERRIDR_EL1.NUM is zero, meaning no error records are implemented, or no error record
accessible using System registers is owned by a node that implements the RAS Common Fault
Injection Model Extension, then this bit might be RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NMEA, bit [20]

When FEAT_DoubleFault is implemented:

NMEA

Non-maskable External Aborts. When SCR_EL3.EA == 1, controls whether PSTATE.A masks
SError interrupts at EL3.

0b0 If SCR_EL3.EA == 1, asserted SError interrupts are not taken at EL3 if PSTATE.A ==
1.

0b1 If SCR_EL3.EA == 1, asserted SError interrupts are taken at EL3 regardless of the value
of PSTATE.A.

When SCR_EL3.EA == 0:

• Asserted SError interrupts are not taken at EL3 regardless of the value of PSTATE.A and this
field.

• This field is ignored and its Effective value is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EASE, bit [19]

When FEAT_DoubleFault is implemented:

EASE

External aborts to SError interrupt vector.

0b0 Synchronous External abort exceptions taken to EL3 are taken to the appropriate
synchronous exception vector offset from VBAR_EL3.
D13-3612 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 Synchronous External abort exceptions taken to EL3 are taken to the appropriate SError
interrupt vector offset from VBAR_EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EEL2, bit [18]

When FEAT_SEL2 is implemented:

EEL2

Secure EL2 Enable.

0b0 All behaviors associated with Secure EL2 are disabled. All registers, including timer
registers, defined by FEAT_SEL2 are UNDEFINED, and those timers are disabled.

0b1 All behaviors associated with Secure EL2 are enabled.

When the value of this bit is 1, then:

• When SCR_EL3.NS == 0, the SCR_EL3.RW bit is treated as 1 for all purposes other than
reading or writing the register.

• If Secure EL1 is using AArch32, then any of the following operations, executed in Secure
EL1, is trapped to Secure EL2, using the EC value of ESR_EL2.EC== 0x3 :

— A read or write of the SCR.

— A read or write of the NSACR.

— A read or write of the MVBAR.

— A read or write of the SDCR.

— Execution of an ATS12NSO** instruction.

• If Secure EL1 is using AArch32, then any of the following operations, executed in Secure
EL1, is trapped to Secure EL2 using the EC value of ESR_EL2.EC== 0x0 :

— Execution of an SRS instruction that uses R13_mon.

— Execution of an MRS (Banked register) or MSR (Banked register) instruction that
would access SPSR_mon, R13_mon, or R14_mon.

Note

If the Effective value of SCR_EL3.EEL2 is 0, then these operations executed in Secure EL1 using
AArch32 are trapped to EL3.

A Secure only implementation that does not implement EL3 but implements EL2, behaves as if
SCR_EL3.EEL2 == 1.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

API, bit [17]

When FEAT_SEL2 is implemented and FEAT_PAuth is implemented:

API
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3613
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Controls the use of the following instructions related to Pointer Authentication. Traps are reported
using an ESR_ELx.EC value of 0x09:

• PACGA, which is always enabled.

• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ,
AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZA, AUTIZB, PACDA, PACDB,
PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB, PACIB1716,
PACIBSP, PACIBZ, PACIZA, PACIZB, RETAA, RETAB, BRAA, BRAB, BLRAA,
BLRAB, BRAAZ, BRABZ, BLRAAZ, BLRABZ, ERETAA, ERETAB, LDRAA and
LDRAB when:

— In EL0, when HCR_EL2.TGE == 0 or HCR_EL2.E2H == 0, and the associated
SCTLR_EL1.En<N><M> == 1.

— In EL0, when HCR_EL2.TGE == 1 and HCR_EL2.E2H == 1, and the associated
SCTLR_EL2.En<N><M> == 1.

— In EL1, when the associated SCTLR_EL1.En<N><M> == 1.

— In EL2, when the associated SCTLR_EL2.En<N><M> == 1.

0b0 The use of any instruction related to pointer authentication in any Exception level
except EL3 when the instructions are enabled are trapped to EL3 unless they are trapped
to EL2 as a result of the HCR_EL2.API bit.

0b1 This control does not cause any instructions to be trapped.

An instruction is trapped only if Pointer Authentication is enabled for that instruction, for more
information, see System register control of pointer authentication on page D5-2681.

Note

If FEAT_PAuth is implemented but EL3 is not implemented, the system behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_SEL2 is not implemented and FEAT_PAuth is implemented:

API

Controls the use of instructions related to Pointer Authentication:

• PACGA.

• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ,
AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZA, AUTIZB, PACDA, PACDB,
PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB, PACIB1716,
PACIBSP, PACIBZ, PACIZA, PACIZ, RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB,
BRAAZ, BRABZ, BLRAAZ, BLRABZ, ERETAA, ERETAB, LDRAA and LDRAB when:

— In Non-secure EL0, when HCR_EL2.TGE == 0 or HCR_EL2.E2H == 0, and the
associated SCTLR_EL1.En<N><M>== 1.

— In Non-secure EL0, when HCR_EL2.TGE == 1 and HCR_EL2.E2H == 1, and the
associated SCTLR_EL2.En<N><M> == 1.

— In Secure EL0, when the associated SCTLR_EL1.En<N><M> == 1.

— In Secure or Non-secure EL1, when the associated SCTLR_EL1.En<N><M> == 1.

— In EL2, when the associated SCTLR_EL2.En<N><M> == 1.

0b0 The use of any instruction related to pointer authentication in any Exception level
except EL3 when the instructions are enabled are trapped to EL3 unless they are trapped
to EL2 as a result of the HCR_EL2.API bit.

0b1 This control does not cause any instructions to be trapped.

Note

If FEAT_PAuth is implemented but EL3 is not implemented, the system behaves as if this bit is 1.
D13-3614 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

APK, bit [16]

When FEAT_PAuth is implemented:

APK

Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following
registers, using an ESR_ELx.EC value of 0x18, from EL1 or EL2 to EL3 unless they are trapped to
EL2 as a result of the HCR_EL2.APK bit or other traps:

• APIAKeyLo_EL1, APIAKeyHi_EL1, APIBKeyLo_EL1, APIBKeyHi_EL1.

• APDAKeyLo_EL1, APDAKeyHi_EL1, APDBKeyLo_EL1, APDBKeyHi_EL1.

• APGAKeyLo_EL1, and APGAKeyHi_EL1.

0b0 Access to the registers holding "key" values for pointer authentication from EL1 or EL2
are trapped to EL3 unless they are trapped to EL2 as a result of the HCR_EL2.APK bit
or other traps.

0b1 This control does not cause any instructions to be trapped.

For more information, see System register control of pointer authentication on page D5-2681.

Note

If FEAT_PAuth is implemented but EL3 is not implemented, the system behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TERR, bit [15]

When FEAT_RAS is implemented:

TERR

Trap Error record accesses. Accesses to the RAS ERR* and RAS ERX* registers from EL1 and EL2
to EL3 are trapped as follows:

• Accesses from EL1 and EL2 using AArch64 to the following registers are trapped and
reported using an ESR_ELx.EC value of 0x18:

— ERRIDR_EL1, ERRSELR_EL1, ERXADDR_EL1, ERXCTLR_EL1, ERXFR_EL1,
ERXMISC0_EL1, ERXMISC1_EL1, and ERXSTATUS_EL1.

• If FEAT_RASv1p1 is implemented, accesses from EL1 and EL2 using AArch64 to
ERXMISC2_EL1, and ERXMISC3_EL1, are trapped and reported using an ESR_ELx.EC
value of 0x18.

• Accesses from EL1 and EL2 using AArch32, to the following registers are trapped and
reported using an ESR_ELx.EC value of 0x03:

— ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR,
ERXFR2, ERXMISC0, ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS.

• If FEAT_RASv1p1 is implemented, accesses from EL1 and EL2 using AArch32 to the
following registers are trapped and reported using an ESR_ELx.EC value of 0x03:

— ERXMISC4, ERXMISC5, ERXMISC6, and ERXMISC7.

0b0 This control does not cause any instructions to be trapped.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3615
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 Accesses to the specified registers from EL1 and EL2 generate a Trap exception to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLOR, bit [14]

When FEAT_LOR is implemented:

TLOR

Trap LOR registers. Traps accesses to the LORSA_EL1, LOREA_EL1, LORN_EL1, LORC_EL1,
and LORID_EL1 registers from EL1 and EL2 to EL3, unless the access has been trapped to EL2.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 and EL2 accesses to the LOR registers that are not UNDEFINED are trapped to EL3,
unless it is trapped HCR_EL2.TLOR.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWE, bit [13]

Traps EL2, EL1, and EL0 execution of WFE instructions to EL3, from both Security states and both
Execution states, reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT or FEAT_WFxT2 is implemented, this trap also applies to the WFET
instruction.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute a WFE instruction at any Exception level lower than EL3 is
trapped to EL3, if the instruction would otherwise have caused the PE to enter a
low-power state and it is not trapped by SCTLR.nTWE, HCR.TWE,
SCTLR_EL1.nTWE, SCTLR_EL2.nTWE, or HCR_EL2.TWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the
instruction passes its condition code check.

Note
Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

For more information about when WFE instructions can cause the PE to enter a low-power state,
see Wait for Event mechanism and Send event on page D1-2536.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TWI, bit [12]

Traps EL2, EL1, and EL0 execution of WFI instructions to EL3, from both Security states and both
Execution states, reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT or FEAT_WFxT2 is implemented, this trap also applies to the WFIT
instruction.

0b0 This control does not cause any instructions to be trapped.
D13-3616 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 Any attempt to execute a WFI instruction at any Exception level lower than EL3 is
trapped to EL3, if the instruction would otherwise have caused the PE to enter a
low-power state and it is not trapped by SCTLR.nTWI, HCR.TWI, SCTLR_EL1.nTWI,
SCTLR_EL2.nTWI, or HCR_EL2.TWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the
instruction passes its condition code check.

Note
Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

For more information about when WFI instructions can cause the PE to enter a low-power state, see
Wait For Interrupt on page D1-2540.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ST, bit [11]

Traps Secure EL1 accesses to the Counter-timer Physical Secure timer registers to EL3, from
AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

0b0 Secure EL1 using AArch64 accesses to the CNTPS_TVAL_EL1, CNTPS_CTL_EL1,
and CNTPS_CVAL_EL1 are trapped to EL3 when Secure EL2 is disabled. If Secure
EL2 is enabled, the behavior is as if the value of this field was 0b1.

0b1 This control does not cause any instructions to be trapped.

Note

Accesses to the Counter-timer Physical Secure timer registers are always enabled at EL3. These
registers are not accessible at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RW, bit [10]

When EL1 is capable of using AArch32 or EL2 is capable of using AArch32:

RW

Execution state control for lower Exception levels.

0b0 Lower levels are all AArch32.

0b1 The next lower level is AArch64.

If EL2 is present:

• EL2 is AArch64.

• EL2 controls EL1 and EL0 behaviors.

If EL2 is not present:

• EL1 is AArch64.

• EL0 is determined by the Execution state described in the current process state
when executing at EL0.

If AArch32 state is supported by the implementation at EL1, SCR_EL3.NS == 1 and AArch32 state
is not supported by the implementation at EL2, the Effective value of this bit is 1.

If AArch32 state is supported by the implementation at EL1, FEAT_SEL2 is implemented and
SCR_EL3.{EEL2, NS} == {1, 0}, the Effective value of this bit is 1.

This bit is permitted to be cached in a TLB.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3617
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAO/WI.

SIF, bit [9]

When FEAT_SEL2 is implemented:

SIF

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from
memory marked in the first stage of translation as being Non-secure. The possible values for this bit
are:

0b0 Secure state instruction fetches from memory marked in the first stage of translation as
being Non-secure are permitted.

0b1 Secure state instruction fetches from memory marked in the first stage of translation as
being Non-secure are not permitted.

When FEAT_PAN3 is implemented, it is IMPLEMENTATION DEFINED whether SCR_EL3.SIF is also
used to determine instruction access permission for the purpose of PAN.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

SIF

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from
Non-secure memory.

0b0 Secure state instruction fetches from Non-secure memory are permitted.

0b1 Secure state instruction fetches from Non-secure memory are not permitted.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCE, bit [8]

Hypervisor Call instruction enable. Enables HVC instructions at EL3 and, if EL2 is enabled in the
current Security state, at EL2 and EL1, in both Execution states, reported using an ESR_ELx.EC
value of 0x00.

0b0 HVC instructions are UNDEFINED.

0b1 HVC instructions are enabled at EL3, EL2, and EL1.

Note
HVC instructions are always UNDEFINED at EL0 and, if Secure EL2 is disabled, at Secure EL1. Any
resulting exception is taken from the current Exception level to the current Exception level.

If EL2 is not implemented, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SMD, bit [7]

Secure Monitor Call disable. Disables SMC instructions at EL1 and above, from both Security states
and both Execution states, reported using an ESR_ELx.EC value of 0x00.

0b0 SMC instructions are enabled at EL3, EL2 and EL1.
D13-3618 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 SMC instructions are UNDEFINED.

Note

SMC instructions are always UNDEFINED at EL0. Any resulting exception is taken from the current
Exception level to the current Exception level.

If HCR_EL2.TSC or HCR.TSC traps attempted EL1 execution of SMC instructions to EL2, that trap
has priority over this disable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

EA, bit [3]

External Abort and SError interrupt routing.

0b0 When executing at Exception levels below EL3, External aborts and SError interrupts
are not taken to EL3.

In addition, when executing at EL3:

• SError interrupts are not taken.

• External aborts are taken to EL3.

0b1 When executing at any Exception level, External aborts and SError interrupts are taken
to EL3.

For more information, see Asynchronous exception routing on page D1-2501.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FIQ, bit [2]

Physical FIQ Routing.

0b0 When executing at Exception levels below EL3, physical FIQ interrupts are not taken
to EL3.

When executing at EL3, physical FIQ interrupts are not taken.

0b1 When executing at any Exception level, physical FIQ interrupts are taken to EL3.

For more information, see Asynchronous exception routing on page D1-2501.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRQ, bit [1]

Physical IRQ Routing.

0b0 When executing at Exception levels below EL3, physical IRQ interrupts are not taken
to EL3.

When executing at EL3, physical IRQ interrupts are not taken.

0b1 When executing at any Exception level, physical IRQ interrupts are taken to EL3.

For more information, see Asynchronous exception routing on page D1-2501.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3619
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
NS, bit [0]

Non-secure bit.

0b0 Indicates that EL0 and EL1 are in Secure state.

0b1 Indicates that Exception levels lower than EL3 are in Non-secure state, so memory
accesses from those Exception levels cannot access Secure memory.

When SCR_EL3.{EEL2, NS} == {1, 0}, then EL2 is using AArch64 and in Secure state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SCR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return SCR_EL3;

MSR SCR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SCR_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b000
D13-3620 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.116 SCTLR_EL1, System Control Register (EL1)

The SCTLR_EL1 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL1 and EL0.

Configurations

AArch64 System register SCTLR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register SCTLR[31:0].

Attributes

SCTLR_EL1 is a 64-bit register.

Field descriptions

Bits [63:58]

Reserved, RES0.

EPAN, bit [57]

When FEAT_PAN3 is implemented:

EPAN

Enhanced Privileged Access Never. When PSTATE.PAN is 1, determines whether an EL1 data
access to a page with stage 1 EL0 instruction access permission generates a Permission fault as a
result of the Privileged Access Never mechanism.

0b0 No additional Permission faults are generated by this mechanism.

0b1 An EL1 data access to a page with stage 1 EL0 data access permission or stage 1 EL0
instruction access permission generates a Permission fault.

Any speculative data accesses that would generate a Permission fault if the accesses
were not speculative will not cause an allocation into a cache.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

RES0

63 58 57 56 55 54

RES0

53 50

TWEDEL

49 46 45 44 43 42

TCF

41 40

TCF0

39 38 37 36 35

RES0

34 32

EPAN
EnALS

EnASR
EnAS0

TWEDEn
DSSBS

ATA

BT0
BT1

ITFSB
ATA0

31 30 29 28 27 26

EE

25 24 23 22 21 20 19 18 17 16 15 14 13

I

12 11 10 9 8 7 6 5 4

SA

3

C

2

A

1

M

0

EnIA
EnIB
LSMAOE

nTLSMD
EnDA

UCI
E0E
SPAN

EIS
IESB
TSCXT

WXN
nTWE

SA0
CP15BEN

nAA
ITD

SED
UMA

EnRCTX
EOS

EnDB
DZE

UCT
nTWI

RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3621
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Reserved, RES0.

EnALS, bit [56]

When FEAT_LS64 is implemented:

EnALS

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an LD64B or ST64B instruction at EL0
to EL1.

0b0 Execution of an LD64B or ST64B instruction at EL0 is trapped to EL1.

0b1 This control does not cause any instructions to be trapped.

A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of 0x0A, with an
ISS code of 0x0000002.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnAS0, bit [55]

When FEAT_LS64 is implemented:

EnAS0

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV0 instruction at EL0 to EL1.

0b0 Execution of an ST64BV0 instruction at EL0 is trapped to EL1.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code
of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnASR, bit [54]

When FEAT_LS64 is implemented:

EnASR

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV instruction at EL0 to EL1.

0b0 Execution of an ST64BV instruction at EL0 is trapped to EL1.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code
of 0x0000000.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:
D13-3622 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Reserved, RES0.

Bits [53:50]

Reserved, RES0.

TWEDEL, bits [49:46]

When FEAT_TWED is implemented:

TWEDEL

TWE Delay. A 4-bit unsigned number that, when SCTLR_EL1.TWEDEn is 1, encodes the
minimum delay in taking a trap of WFE* caused by SCTLR_EL1.nTWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEn, bit [45]

When FEAT_TWED is implemented:

TWEDEn

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by
SCTLR_EL1.nTWE.

0b0 The delay for taking the trap is IMPLEMENTATION DEFINED.

0b1 The delay for taking the trap is at least the number of cycles defined in
SCTLR_EL1.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DSSBS, bit [44]

When FEAT_SSBS is implemented:

DSSBS

Default PSTATE.SSBS value on Exception Entry.

0b0 PSTATE.SSBS is set to 0 on an exception to EL1.

0b1 PSTATE.SSBS is set to 1 on an exception to EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

ATA, bit [43]

When FEAT_MTE2 is implemented:

ATA
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3623
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Allocation Tag Access in EL1. When SCR_EL3.ATA=1 and HCR_EL2.ATA=1, controls EL1
access to Allocation Tags.

0b0 Access to Allocation Tags is prevented.

0b1 This control does not prevent access to Allocation Tags.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ATA0, bit [42]

When FEAT_MTE2 is implemented:

ATA0

Allocation Tag Access in EL0. When SCR_EL3.ATA=1, HCR_EL2.ATA=1, and HCR_EL2.{E2H,
TGE} != {1, 1}, controls EL0 access to Allocation Tags.

0b0 Access to Allocation Tags is prevented.

0b1 This control does not prevent access to Allocation Tags.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCF, bits [41:40]

When FEAT_MTE2 is implemented:

TCF

Tag Check Fault in EL1. Controls the effect of Tag Check Faults due to Loads and Stores in EL1.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

0b00 Tag Check Faults have no effect on the PE.

0b01 Tag Check Faults cause a synchronous exception.

0b10 Tag Check Faults are asynchronously accumulated.

0b11 When FEAT_MTE3 is implemented:

Tag Check Faults cause a synchronous exception on reads, and are asynchronously
accumulated on writes.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
D13-3624 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
TCF0, bits [39:38]

When FEAT_MTE2 is implemented:

TCF0

Tag Check Fault in EL0. When HCR_EL2.{E2H,TGE} != {1,1}, controls the effect of Tag Check
Faults due to Loads and Stores in EL0.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

Note
Software may change this control bit on a context switch.

0b00 Tag Check Faults have no effect on the PE.

0b01 Tag Check Faults cause a synchronous exception.

0b10 Tag Check Faults are asynchronously accumulated.

0b11 When FEAT_MTE3 is implemented:

Tag Check Faults cause a synchronous exception on reads, and are asynchronously
accumulated on writes.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ITFSB, bit [37]

When FEAT_MTE2 is implemented:

ITFSB

When synchronous exceptions are not being generated by Tag Check Faults, this field controls
whether on exception entry into EL1, all Tag Check Faults due to instructions executed before
exception entry, that are reported asynchronously, are synchronized into TFSRE0_EL1 and
TFSR_EL1 registers.

0b0 Tag Check Faults are not synchronized on entry to EL1.

0b1 Tag Check Faults are synchronized on entry to EL1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BT1, bit [36]

When FEAT_BTI is implemented:

BT1

PAC Branch Type compatibility at EL1.

0b0 When the PE is executing at EL1, PACIASP and PACIBSP are compatible with
PSTATE.BTYPE == 0b11.

0b1 When the PE is executing at EL1, PACIASP and PACIBSP are not compatible with
PSTATE.BTYPE == 0b11.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3625
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BT0, bit [35]

When FEAT_BTI is implemented:

BT0

PAC Branch Type compatibility at EL0.

0b0 When the PE is executing at EL0, PACIASP and PACIBSP are compatible with
PSTATE.BTYPE == 0b11.

0b1 When the PE is executing at EL0, PACIASP and PACIBSP are not compatible with
PSTATE.BTYPE == 0b11.

When the value of HCR_EL2.{E2H, TGE} is {1, 1}, the value of SCTLR_EL1.BT0 has no effect
on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [34:32]

Reserved, RES0.

EnIA, bit [31]

When FEAT_PAuth is implemented:

EnIA

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses
in the EL1&0 translation regime.

For more information, see System register control of pointer authentication on page D5-2681.

0b0 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is not
enabled.

0b1 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is
enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions. Specifically,
when the field is 1, AddPACIA returns a copy of a pointer to which a pointer authentication code
has been added, and AuthIA returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
D13-3626 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
EnIB, bit [30]

When FEAT_PAuth is implemented:

EnIB

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses
in the EL1&0 translation regime.

For more information, see System register control of pointer authentication on page D5-2681.

0b0 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is not
enabled.

0b1 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is
enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions. Specifically,
when the field is 1, AddPACIB returns a copy of a pointer to which a pointer authentication code
has been added, and AuthIB returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LSMAOE, bit [29]

When FEAT_LSMAOC is implemented:

LSMAOE

Load Multiple and Store Multiple Atomicity and Ordering Enable.

0b0 For all memory accesses at EL0, A32 and T32 Load Multiple and Store Multiple can
have an interrupt taken during the sequence memory accesses, and the memory accesses
are not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load Multiple and Store Multiple
at EL0 is as defined for Armv8.0.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

nTLSMD, bit [28]

When FEAT_LSMAOC is implemented:

nTLSMD
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3627
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE
memory.

0b0 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0 that are
marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
trapped and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0 that are
marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory are not
trapped.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

EnDA, bit [27]

When FEAT_PAuth is implemented:

EnDA

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses
in the EL1&0 translation regime.

For more information, see System register control of pointer authentication on page D5-2681.

0b0 Pointer authentication (using the APDAKey_EL1 key) of data addresses is not enabled.

0b1 Pointer authentication (using the APDAKey_EL1 key) of data addresses is enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically,
when the field is 1, AddPACDA returns a copy of a pointer to which a pointer authentication code
has been added, and AuthDA returns an authenticated copy of a pointer. When the field is 0, both
of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UCI, bit [26]

Traps EL0 execution of cache maintenance instructions, to EL1, or to EL2 when it is implemented
and enabled for the current Security state and HCR_EL2.TGE is 1, from AArch64 state only,
reported using an ESR_ELx.EC value of 0x18.

This applies to DC CVAU, DC CIVAC, DC CVAC, DC CVAP, and IC IVAU.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTE is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC CGVAC,
DC CGDVAC, DC CGVAP, and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to DC CGVADP and DC
CGDVADP.

0b0 Execution of the specified instructions at EL0 using AArch64 is trapped.
D13-3628 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean, or clean and invalidate instruction that operates by
VA to the point of coherency can be trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean by VA to the Point of Unification instruction can
be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate by VA to the Point of Unification
instruction can be trapped when the value of this control is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

EE, bit [25]

Endianness of data accesses at EL1, and stage 1 translation table walks in the EL1&0 translation
regime.

The possible values of this bit are:

0b0 Explicit data accesses at EL1, and stage 1 translation table walks in the EL1&0
translation regime are little-endian.

0b1 Explicit data accesses at EL1, and stage 1 translation table walks in the EL1&0
translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than EL0, this
bit is RES0.

If an implementation does not provide Little-endian support at Exception levels higher than EL0,
this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

E0E, bit [24]

Endianness of data accesses at EL0.

The possible values of this bit are:

0b0 Explicit data accesses at EL0 are little-endian.

0b1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0, then this bit is RES0. This option
is not permitted when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0, then this bit is RES1. This option is
not permitted when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions
executed at EL1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3629
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
SPAN, bit [23]

When FEAT_PAN is implemented:

SPAN

Set Privileged Access Never, on taking an exception to EL1.

0b0 PSTATE.PAN is set to 1 on taking an exception to EL1.

0b1 The value of PSTATE.PAN is left unchanged on taking an exception to EL1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

EIS, bit [22]

When FEAT_ExS is implemented:

EIS

Exception Entry is Context Synchronizing.

0b0 The taking of an exception to EL1 is not a context synchronizing event.

0b1 The taking of an exception to EL1 is a context synchronizing event.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has
no effect on execution at EL0.

If SCTLR_EL1.EIS is set to 0b0:

• Indirect writes to ESR_EL1, FAR_EL1, SPSR_EL1, ELR_EL1 are synchronized on
exception entry to EL1, so that a direct read of the register after exception entry sees the
indirectly written value caused by the exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the
translation resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.

• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL1.EIS:

• Changes to the PSTATE information on entry to EL1.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for
loads, stores and data processing instructions.

• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

IESB, bit [21]

When FEAT_IESB is implemented:

IESB
D13-3630 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Implicit Error Synchronization event enable. Possible values are:

0b0 Disabled.

0b1 An implicit error synchronization event is added:

• At each exception taken to EL1.

• Before the operational pseudocode of each ERET instruction executed at EL1.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its
Effective value might be 0 or 1 regardless of the value of the field. If the Effective value of the field
is 1, then an implicit error synchronization event is added after each DCPSx instruction taken to EL1
and before each DRPS instruction executed at EL1, in addition to the other cases where it is added.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TSCXT, bit [20]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

TSCXT

Trap EL0 Access to the SCXTNUM_EL0 register, when EL0 is using AArch64.

0b0 EL0 access to SCXTNUM_EL0 is not disabled by this mechanism.

0b1 EL0 access to SCXTNUM_EL0 is disabled, causing an exception to EL1, or to EL2
when it is implemented and enabled for the current Security state and HCR_EL2.TGE
is 1.

The value of SCXTNUM_EL0 is treated as 0.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL1&0 translation regime, this bit can force
all memory regions that are writable to be treated as XN. The possible values of this bit are:

0b0 This control has no effect on memory access permissions.

0b1 Any region that is writable in the EL1&0 translation regime is forced to XN for accesses
from software executing at EL1 or EL0.

This bit applies only when SCTLR_EL1.M bit is set.

The WXN bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on the PE.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3631
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
nTWE, bit [18]

Traps EL0 execution of WFE instructions to EL1, or to EL2 when it is implemented and enabled for
the current Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an
ESR_ELx.EC value of 0x01.

When FEAT_WFxT or FEAT_WFxT2 is implemented, this trap also applies to the WFET
instruction.

0b0 Any attempt to execute a WFE instruction at EL0 is trapped, if the instruction would
otherwise have caused the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the
instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to EL1, or to EL2 when it is implemented and enabled for
the current Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an
ESR_ELx.EC value of 0x01.

When FEAT_WFxT or FEAT_WFxT2 is implemented, this trap also applies to the WFIT
instruction.

0b0 Any attempt to execute a WFI instruction at EL0 is trapped, if the instruction would
otherwise have caused the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the
instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.
D13-3632 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
UCT, bit [15]

Traps EL0 accesses to the CTR_EL0 to EL1, or to EL2 when it is implemented and enabled for the
current Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an
ESR_ELx.EC value of 0x18.

0b0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

DZE, bit [14]

Traps EL0 execution of DC ZVA instructions to EL1, or to EL2 when it is implemented and enabled
for the current Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an
ESR_ELx.EC value of 0x18.

If FEAT_MTE is implemented, this trap also applies to DC GVA and DC GZVA.

0b0 Any attempt to execute an instruction that this trap applies to at EL0 using AArch64 is
trapped.

Reading DCZID_EL0.DZP from EL0 returns 1, indicating that the instructions this trap
applies to are not supported.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

EnDB, bit [13]

When FEAT_PAuth is implemented:

EnDB

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses
in the EL1&0 translation regime.

For more information, see System register control of pointer authentication on page D5-2681.

0b0 Pointer authentication (using the APDBKey_EL1 key) of data addresses is not enabled.

0b1 Pointer authentication (using the APDBKey_EL1 key) of data addresses is enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically,
when the field is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code
has been added, and AuthDB returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3633
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
I, bit [12]

Stage 1 instruction access Cacheability control, for accesses at EL0 and EL1:

0b0 All instruction access to Stage 1 Normal memory from EL0 and EL1 are Stage 1
Non-cacheable.

If the value of SCTLR_EL1.M is 0, instruction accesses from stage 1 of the EL1&0
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer
Non-cacheable memory.

0b1 This control has no effect on the Stage 1 Cacheability of instruction access to Stage 1
Normal memory from EL0 and EL1.

If the value of SCTLR_EL1.M is 0, instruction accesses from stage 1 of the EL1&0
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer
Write-Through memory.

When the value of the HCR_EL2.DC bit is 1, then instruction access to Normal memory from EL0
and EL1 are Cacheable regardless of the value of the SCTLR_EL1.I bit.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on the PE.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to 0.

EOS, bit [11]

When FEAT_ExS is implemented:

EOS

Exception Exit is Context Synchronizing.

0b0 An exception return from EL1 is not a context synchronizing event

0b1 An exception return from EL1 is a context synchronizing event

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has
no effect on execution at EL0.

If SCTLR_EL1.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the
translation resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.

• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL1.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL1 and ELR_EL1 on
exception return is synchronized.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for
loads, stores and data processing instructions.

• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

EnRCTX, bit [10]

When FEAT_SPECRES is implemented:

EnRCTX
D13-3634 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Enable EL0 Access to the following instructions:

• AArch32 CFPRCTX, DVPRCTX and CPPRCTX instructions.

• AArch64 CFP RCTX, DVP RCT and CPP RCTX instructions.

0b0 EL0 access to these instructions is disabled, and these instructions are trapped to EL1,
or to EL2 when it is implemented and enabled for the current Security state and
HCR_EL2.TGE is 1.

0b1 EL0 access to these instructions is enabled.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UMA, bit [9]

User Mask Access. Traps EL0 execution of MSR and MRS instructions that access the PSTATE.{D,
A, I, F} masks to EL1, or to EL2 when it is implemented and enabled for the current Security state
and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

0b0 Any attempt at EL0 using AArch64 to execute an MRS, MSR(register), or MSR(immediate)
instruction that accesses the DAIF is trapped.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

SED, bit [8]

When EL0 is capable of using AArch32:

SED

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

0b0 SETEND instruction execution is enabled at EL0 using AArch32.

0b1 SETEND instructions are UNDEFINED at EL0 using AArch32 and any attempt at EL0 to
access a SETEND instruction generates an exception to EL1, or to EL2 when it is
implemented and enabled for the current Security state and HCR_EL2.TGE is 1,
reported using an ESR_ELx.EC value of 0x00.

If the implementation does not support mixed-endian operation at any Exception level, this bit is
RES1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3635
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
ITD, bit [7]

When EL0 is capable of using AArch32:

ITD

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

0b0 All IT instruction functionality is enabled at EL0 using AArch32.

0b1 Any attempt at EL0 using AArch32 to execute any of the following is UNDEFINED and
generates an exception, reported using an ESR_ELx.EC value of 0x00, to EL1 or to EL2
when it is implemented and enabled for the current Security state and HCR_EL2.TGE
is 1:

• All encodings of the IT instruction with hw1[3:0]!=1000.

• All encodings of the subsequent instruction with the following values for hw1:

— 0b11xxxxxxxxxxxxxx: All 32-bit instructions, and the 16-bit instructions B,
UDF, SVC, LDM, and STM.

— 0b1011xxxxxxxxxxxx: All instructions in 'Miscellaneous 16-bit instructions'
in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section F3.2.5.

— 0b10100xxxxxxxxxxx: ADD Rd, PC, #imm

— 0b01001xxxxxxxxxxx: LDR Rd, [PC, #imm]

— 0b0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC;
BLX PC.

— 0b010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This
pattern also covers unpredictable cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or fail
the condition code check that applies to them as a result of being in an IT block.

It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.

• The first half of a 32-bit instruction.

This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.

An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then
behavior is CONSTRAINED UNPREDICTABLE. For more information, see Changes to an ITD control
by an instruction in an IT block on page E1-4258.

ITD is optional, but if it is implemented in the SCTLR_EL1 then it must also be implemented in the
SCTLR_EL2, HSCTLR, and SCTLR.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

When an implementation does not implement ITD, access to this field is RAZ/WI.

Otherwise:

Reserved, RES1.

nAA, bit [6]

When FEAT_LSE2 is implemented:

nAA
D13-3636 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Non-aligned access. This bit controls generation of Alignment faults at EL1 and EL0 under certain
conditions.

0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR,
LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, and
STLURH generate an Alignment fault if all bytes being accessed are not within a single
16-byte quantity, aligned to 16 bytes for accesses.

0b1 This control bit does not cause LDAPR, LDAPRH, LDAPUR, LDAPURH,
LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR, LDLARH, STLLR, STLLRH,
STLR, STLRH, STLUR, or STLURH to generate an Alignment fault if all bytes being
accessed are not within a single 16-byte quantity, aligned to 16 bytes.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CP15BEN, bit [5]

When EL0 is capable of using AArch32:

CP15BEN

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System
instructions in the (coproc==0b1111) encoding space from EL0:

0b0 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and CP15ISB
instructions is UNDEFINED and generates an exception to EL1, or to EL2 when it is
implemented and enabled for the current Security state and HCR_EL2.TGE is 1. The
exception is reported using an ESR_ELx.EC value of 0x00.

0b1 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and CP15ISB
instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR_EL1 then it must also be implemented
in the SCTLR_EL2, HSCTLR, and SCTLR.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

When an implementation does not implement CP15BEN, access to this field is RAO/WI.

Otherwise:

Reserved, RES0.

SA0, bit [4]

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0
uses the SP as the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment
fault exception is generated. For more information, see SP alignment checking on page D1-2469.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3637
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL1 uses the
SP as the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault
exception is generated. For more information, see SP alignment checking on page D1-2469.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on the PE.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

C, bit [2]

Stage 1 Cacheability control, for data accesses.

0b0 All data access to Stage 1 Normal memory from EL0 and EL1, and all Normal memory
accesses from unified cache to the EL1&0 Stage 1 translation tables, are treated as Stage
1 Non-cacheable.

0b1 This control has no effect on the Stage 1 Cacheability of:

• Data access to Normal memory from EL0 and EL1.

• Normal memory accesses to the EL1&0 Stage 1 translation tables.

When the value of the HCR_EL2.DC bit is 1, the PE ignores SCTLR.C. This means that Non-secure
EL0 and Non-secure EL1 data accesses to Normal memory are Cacheable.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on the PE.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL1 and EL0.

0b0 Alignment fault checking disabled when executing at EL1 or EL0.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL1 or EL0.

All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless
of the value of the A bit.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL1&0 stage 1 address translation.

0b0 EL1&0 stage 1 address translation disabled.

See the SCTLR_EL1.I field for the behavior of instruction accesses to Normal memory.

0b1 EL1&0 stage 1 address translation enabled.

If the value of HCR_EL2.{DC, TGE} is not {0, 0} then in Non-secure state the PE behaves as if the
value of the SCTLR_EL1.M field is 0 for all purposes other than returning the value of a direct read
of the field.
D13-3638 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on the PE.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to 0.

Accessing SCTLR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SCTLR_EL1
or SCTLR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCTLR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCTLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x110];
 else
 return SCTLR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return SCTLR_EL2;
 else
 return SCTLR_EL1;
elsif PSTATE.EL == EL3 then
 return SCTLR_EL1;

MSR SCTLR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCTLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x110] = X[t];
 else
 SCTLR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 SCTLR_EL2 = X[t];
 else

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3639
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 SCTLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 SCTLR_EL1 = X[t];

MRS <Xt>, SCTLR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x110];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return SCTLR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return SCTLR_EL1;
 else
 UNDEFINED;

MSR SCTLR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x110] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 SCTLR_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 SCTLR_EL1 = X[t];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0000 0b000
D13-3640 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.117 SCTLR_EL2, System Control Register (EL2)

The SCTLR_EL2 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, these
controls apply also to execution at EL0.

Configurations

AArch64 System register SCTLR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HSCTLR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

SCTLR_EL2 is a 64-bit register.

Field descriptions

Bits [63:58]

Reserved, RES0.

EPAN, bit [57]

When FEAT_PAN3 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

EPAN

Enhanced Privileged Access Never. When PSTATE.PAN is 1, determines whether an EL2 data
access to a page with EL0 instruction access permission generates a Permission fault as a result of
the Privileged Access Never mechanism.

0b0 No additional Permission faults are generated by this mechanism.

0b1 An EL2 data access to a page with stage 1 EL0 data access permission or stage 1 EL0
instruction access permission generates a Permission fault.

Any speculative data accesses that would generate a Permission fault if the accesses
were not speculative will not cause an allocation into a cache.

RES0

63 58 57 56 55 54

RES0

53 50

TWEDEL

49 46 45 44 43 42

TCF

41 40

TCF0

39 38 37

BT

36 35

RES0

34 32

EPAN
EnALS

EnASR
EnAS0

TWEDEn
DSSBS

ATA

BT0
ITFSB

ATA0
31 30 29 28 27 26

EE

25 24 23 22 21 20 19 18 17 16 15 14 13

I

12 11 10 9 8 7 6 5 4

SA

3

C

2

A

1

M

0

EnIA
EnIB
LSMAOE

nTLSMD
EnDA

UCI
E0E
SPAN

EIS
IESB
TSCXT

WXN
nTWE

SA0
CP15BEN

nAA
ITD

SED
RES0

EnRCTX
EOS

EnDB
DZE

UCT
nTWI

RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3641
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnALS, bit [56]

When FEAT_LS64 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

EnALS

Traps execution of an LD64B or ST64B instruction at EL0 to EL2.

0b0 Execution of an LD64B or ST64B instruction at EL0 is trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of 0x0A, with an
ISS code of 0x0000002.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnAS0, bit [55]

When FEAT_LS64 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

EnAS0

Traps execution of an ST64BV0 instruction at EL0 to EL2.

0b0 Execution of an ST64BV0 instruction at EL0 is trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code
of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnASR, bit [54]

When FEAT_LS64 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

EnASR

Traps execution of an ST64BV instruction at EL0 to EL2.

0b0 Execution of an ST64BV instruction at EL0 is trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code
of 0x0000000.
D13-3642 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [53:50]

Reserved, RES0.

TWEDEL, bits [49:46]

When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

TWEDEL

TWE Delay. A 4-bit unsigned number that, when SCTLR_EL2.TWEDEn is 1, encodes the
minimum delay in taking a trap of WFE caused by SCTLR_EL2.nTWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEn, bit [45]

When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

TWEDEn

TWE Delay Enable. Enables a configurable delayed trap of the WFE instruction caused by
SCTLR_EL2.nTWE.

0b0 The delay for taking a WFE trap is IMPLEMENTATION DEFINED.

0b1 The delay for taking a WFE trap is at least the number of cycles defined in
SCTLR_EL2.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DSSBS, bit [44]

When FEAT_SSBS is implemented:

DSSBS

Default PSTATE.SSBS value on Exception Entry.

0b0 PSTATE.SSBS is set to 0 on an exception to EL2.

0b1 PSTATE.SSBS is set to 1 on an exception to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3643
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
ATA, bit [43]

When FEAT_MTE2 is implemented:

ATA

Allocation Tag Access in EL2. When SCR_EL3.ATA is 1, controls EL2 access to Allocation Tags.

0b0 Access to Allocation Tags is prevented.

0b1 This control does not prevent access to Allocation Tags.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ATA0, bit [42]

When FEAT_MTE2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

ATA0

Allocation Tag Access in EL0. When SCR_EL3.ATA is 1, controls EL0 access to Allocation Tags.

0b0 Access to Allocation Tags is prevented.

0b1 This control does not prevent access to Allocation Tags.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCF, bits [41:40]

When FEAT_MTE2 is implemented:

TCF

Tag Check Fault in EL2. Controls the effect of Tag Check Faults due to Loads and Stores in EL2.

0b00 Tag Check Faults have no effect on the PE.

0b01 Tag Check Faults cause a synchronous exception.

0b10 Tag Check Faults are asynchronously accumulated.

0b11 When FEAT_MTE3 is implemented:

Tag Check Faults cause a synchronous exception on reads, and are asynchronously
accumulated on writes.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
D13-3644 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
TCF0, bits [39:38]

When FEAT_MTE2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

TCF0

Tag Check Fault in EL0. Controls the effect of Tag Check Faults due to Loads and Stores in EL0.

0b00 Tag Check Faults have no effect on the PE.

0b01 Tag Check Faults cause a synchronous exception.

0b10 Tag Check Faults are asynchronously accumulated.

0b11 When FEAT_MTE3 is implemented:

Tag Check Faults cause a synchronous exception on reads, and are asynchronously
accumulated on writes.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ITFSB, bit [37]

When FEAT_MTE2 is implemented:

ITFSB

When synchronous exceptions are not being generated by Tag Check Faults, this field controls
whether on exception entry into EL2, all Tag Check Faults due to instructions executed before
exception entry, that are reported asynchronously, are synchronized into TFSRE0_EL1, TFSR_EL1
and TFSR_EL2 registers.

0b0 Tag Check Faults are not synchronized on entry to EL2.

0b1 Tag Check Faults are synchronized on entry to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BT, bit [36]

When FEAT_BTI is implemented:

BT

PAC Branch Type compatibility at EL2.

When HCR_EL2.{E2H, TGE} == {1, 1}, this bit is named BT1.

0b0 When the PE is executing at EL2, PACIASP and PACIBSP are compatible with
PSTATE.BTYPE == 0b11.

0b1 When the PE is executing at EL2, PACIASP and PACIBSP are not compatible with
PSTATE.BTYPE == 0b11.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3645
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BT0, bit [35]

When FEAT_BTI is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

BT0

PAC Branch Type compatibility at EL0.

0b0 When the PE is executing at EL0, PACIASP and PACIBSP are compatible with
PSTATE.BTYPE == 0b11.

0b1 When the PE is executing at EL0, PACIASP and PACIBSP are not compatible with
PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [34:32]

Reserved, RES0.

EnIA, bit [31]

When FEAT_PAuth is implemented:

EnIA

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses
in the EL2 or EL2&0 translation regime.

For more information, see System register control of pointer authentication on page D5-2681.

0b0 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is not
enabled.

0b1 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is
enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions. Specifically,
when the field is 1, AddPACIA returns a copy of a pointer to which a pointer authentication code
has been added, and AuthIA returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
D13-3646 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
EnIB, bit [30]

When FEAT_PAuth is implemented:

EnIB

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses
in the EL2 or EL2&0 translation regime.

For more information, see System register control of pointer authentication on page D5-2681.

0b0 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is not
enabled.

0b1 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is
enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions. Specifically,
when the field is 1, AddPACIB returns a copy of a pointer to which a pointer authentication code
has been added, and AuthIB returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LSMAOE, bit [29]

When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

LSMAOE

Load Multiple and Store Multiple Atomicity and Ordering Enable.

0b0 For all memory accesses at EL0, A32 and T32 Load Multiple and Store Multiple can
have an interrupt taken during the sequence memory accesses, and the memory accesses
are not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load Multiple and Store Multiple
at EL0 is as defined for Armv8.0.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

nTLSMD, bit [28]

When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

nTLSMD

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE
memory.

0b0 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0 that are
marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
trapped and generate a stage 1 Alignment fault.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3647
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0 that are
marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory are not
trapped.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

EnDA, bit [27]

When FEAT_PAuth is implemented:

EnDA

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses
in the EL2 or EL2&0 translation regime.

For more information, see System register control of pointer authentication on page D5-2681.

0b0 Pointer authentication (using the APDAKey_EL1 key) of data addresses is not enabled.

0b1 Pointer authentication (using the APDAKey_EL1 key) of data addresses is enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically,
when the field is 1, AddPACDA returns a copy of a pointer to which a pointer authentication code
has been added, and AuthDA returns an authenticated copy of a pointer. When the field is 0, both
of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UCI, bit [26]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

UCI

Traps execution of cache maintenance instructions at EL0 to EL2, from AArch64 state only. This
applies to DC CVAU, DC CIVAC, DC CVAC, DC CVAP, and IC IVAU.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTE is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC CGVAC,
DC CGDVAC, DC CGVAP, and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to DC CGVADP and DC
CGDVADP.

0b0 Any attempt to execute an instruction that this trap applies to at EL0 using AArch64 is
trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean, or clean and invalidate instruction that operates by
VA to the point of coherency can be trapped when the value of this control is 1.
D13-3648 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean by VA to the Point of Unification instruction can
be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate by VA to the Point of Unification
instruction can be trapped when the value of this control is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EE, bit [25]

Endianness of data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation
regime, and stage 2 translation table walks in the EL1&0 translation regime.

0b0 Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0
translation regime, and stage 2 translation table walks in the EL1&0 translation regime
are little-endian.

0b1 Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0
translation regime, and stage 2 translation table walks in the EL1&0 translation regime
are big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than EL0, this
bit is RES0.

If an implementation does not provide Little-endian support at Exception levels higher than EL0,
this bit is RES1.

The EE bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

E0E, bit [24]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

E0E

Endianness of data accesses at EL0.

0b0 Explicit data accesses at EL0 are little-endian.

0b1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0, then this bit is RES0. This option
is not permitted when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0, then this bit is RES1. This option is
not permitted when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions
executed at EL1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3649
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
SPAN, bit [23]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

SPAN

Set Privileged Access Never, on taking an exception to EL2.

0b0 PSTATE.PAN is set to 1 on taking an exception to EL2.

0b1 The value of PSTATE.PAN is left unchanged on taking an exception to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

EIS, bit [22]

When FEAT_ExS is implemented:

EIS

Exception entry is a context synchronization event.

0b0 The taking of an exception to EL2 is not a context synchronization event.

0b1 The taking of an exception to EL2 is a context synchronization event.

If SCTLR_EL2.EIS is set to 0b0:

• Indirect writes to ESR_EL2, FAR_EL2, SPSR_EL2, ELR_EL2, and HPFAR_EL2 are
synchronized on exception entry to EL2, so that a direct read of the register after exception
entry sees the indirectly written value caused by the exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the
translation resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.

• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EIS:

• Changes to the PSTATE information on entry to EL2.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for
loads, stores, and data processing instructions.

• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

IESB, bit [21]

When FEAT_IESB is implemented:

IESB

Implicit Error Synchronization event enable.

0b0 Disabled.

0b1 An implicit error synchronization event is added:

• At each exception taken to EL2.

• Before the operational pseudocode of each ERET instruction executed at EL2.
D13-3650 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its
Effective value might be 0 or 1 regardless of the value of the field. If the Effective value of the field
is 1, then an implicit error synchronization event is added after each DCPSx instruction taken to EL2
and before each DRPS instruction executed at EL2, in addition to the other cases where it is added.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TSCXT, bit [20]

When (FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented), HCR_EL2.E2H == 1
and HCR_EL2.TGE == 1:

TSCXT

Trap EL0 Access to the SCXTNUM_EL0 register, when EL0 is using AArch64.

0b0 EL0 access to SCXTNUM_EL0 is not disabled by this mechanism.

0b1 EL0 access to SCXTNUM_EL0 is disabled, causing an exception to EL2, and the
SCXTNUM_EL0 value is treated as 0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

When FEAT_CSV2_2 is not implemented, FEAT_CSV2_1p2 is not implemented, HCR_EL2.E2H ==
1 and HCR_EL2.TGE == 1:

Reserved, RES1.

Otherwise:

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit
can force all memory regions that are writable to be treated as XN.

0b0 This control has no effect on memory access permissions.

0b1 Any region that is writable in the EL2 or EL2&0 translation regime is forced to XN for
accesses from software executing at EL2.

This bit applies only when SCTLR_EL2.M bit is set.

The WXN bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

nTWE, bit [18]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

nTWE

Traps execution of WFE instructions at EL0 to EL2, from both Execution states.

0b0 Any attempt to execute a WFE instruction at EL0 is trapped to EL2, if the instruction
would otherwise have caused the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3651
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the
instruction passes its condition code check.

Note
Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

nTWI

Traps execution of WFI instructions at EL0 to EL2, from both Execution states.

0b0 Any attempt to execute a WFI instruction at EL0 is trapped EL2, if the instruction would
otherwise have caused the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the
instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

UCT, bit [15]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

UCT

Traps EL0 accesses to the CTR_EL0 to EL2, from AArch64 state only.

0b0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.
D13-3652 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Reserved, RES0.

DZE, bit [14]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

DZE

Traps execution of DC ZVA instructions at EL0 to EL2, from AArch64 state only.

If FEAT_MTE is implemented, this trap also applies to DC GVA and DC GZVA.

0b0 Any attempt to execute an instruction that this trap applies to at EL0 using AArch64 is
trapped to EL2. Reading DCZID_EL0.DZP from EL0 returns 1, indicating that the
instructions that this trap applies to are not supported.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnDB, bit [13]

When FEAT_PAuth is implemented:

EnDB

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses
in the EL2 or EL2&0 translation regime.

For more information, see System register control of pointer authentication on page D5-2681.

0b0 Pointer authentication (using the APDBKey_EL1 key) of data addresses is not enabled.

0b1 Pointer authentication (using the APDBKey_EL1 key) of data addresses is enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically,
when the field is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code
has been added, and AuthDB returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2 and, when EL2 is enabled in the current
Security state and HCR_EL2.{E2H,TGE} == {1,1}, EL0.

0b0 All instruction accesses to Normal memory from EL2 are Non-cacheable for all levels
of instruction and unified cache.

When EL2 is enabled in the current Security state and HCR_EL2.{E2H, TGE} == {1,
1}, all instruction accesses to Normal memory from EL0 are Non-cacheable for all
levels of instruction and unified cache.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3653
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
If SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2 or EL2&0
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer
Non-cacheable memory.

0b1 This control has no effect on the Cacheability of instruction access to Normal memory
from EL2 and, when EL2 is enabled in the current Security state and HCR_EL2.{E2H,
TGE} == {1, 1}, instruction access to Normal memory from EL0.

If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2 or
EL2&0 translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer
Write-Through memory.

This bit has no effect on the EL3 translation regime.

When EL2 is disabled in the current Security state or HCR_EL2.{E2H,TGE} != {1,1}, this bit has
no effect on the EL1&0 translation regime.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

EOS, bit [11]

When FEAT_ExS is implemented:

EOS

Exception exit is a context synchronization event.

0b0 An exception return from EL2 is not a context synchronization event.

0b1 An exception return from EL2 is a context synchronization event.

If SCTLR_EL2.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the
translation resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.

• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL2 and ELR_EL2 on
exception return is synchronized.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for
loads, stores, and data processing instructions.

• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

EnRCTX, bit [10]

When FEAT_SPECRES is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

EnRCTX

Enable EL0 Access to the following instructions:

• AArch32 CFPRCTX, DVPRCTX and CPPRCTX instructions.

• AArch64 CFP RCTX, DVP RCT and CPP RCTX instructions.

0b0 EL0 access to these instructions is disabled, and these instructions are trapped to EL1.

0b1 EL0 access to these instructions is enabled.
D13-3654 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [9]

Reserved, RES0.

SED, bit [8]

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

SED

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

0b0 SETEND instruction execution is enabled at EL0 using AArch32.

0b1 SETEND instructions are UNDEFINED at EL0 using AArch32.

If the implementation does not support mixed-endian operation at any Exception level, this bit is
RES1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

When EL0 can only use AArch64, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Reserved, RES1.

Otherwise:

Reserved, RES0.

ITD, bit [7]

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

ITD

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

0b0 All IT instruction functionality is enabled at EL0 using AArch32.

0b1 Any attempt at EL0 using AArch32 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.

• All encodings of the subsequent instruction with the following values for hw1:

— 0b11xxxxxxxxxxxxxx: All 32-bit instructions, and the 16-bit instructions B,
UDF, SVC, LDM, and STM.

— 0b1011xxxxxxxxxxxx: All instructions in 'Miscellaneous 16-bit instructions'
in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section F3.2.5.

— 0b10100xxxxxxxxxxx: ADD Rd, PC, #imm

— 0b01001xxxxxxxxxxx: LDR Rd, [PC, #imm]

— 0b0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC;
BLX PC.

— 0b010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This
pattern also covers UNPREDICTABLE cases with BLX Rn.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3655
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
These instructions are always UNDEFINED, regardless of whether they would pass or fail
the condition code check that applies to them as a result of being in an IT block.

It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.

• The first half of a 32-bit instruction.

This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.

An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then
behavior is CONSTRAINED UNPREDICTABLE. For more information see Changes to an ITD control by
an instruction in an IT block on page E1-4258.

ITD is optional, but if it is implemented in the SCTLR_EL2 then it must also be implemented in the
SCTLR_EL1, HSCTLR, and SCTLR.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

When an implementation does not implement ITD, access to this field is RAZ/WI.

When EL0 can only use AArch64, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Reserved, RES1.

Otherwise:

Reserved, RES0.

nAA, bit [6]

When FEAT_LSE2 is implemented:

nAA

Non-aligned access. This bit controls generation of Alignment faults under certain conditions at
EL2, and, when EL2 is enabled in the current Security state and HCR_EL2.{E2H, TGE} == {1, 1},
EL0.

0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR,
LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, and
STLURH generate an Alignment fault if all bytes being accessed are not within a single
16-byte quantity, aligned to 16 bytes for accesses.

0b1 This control bit does not cause LDAPR, LDAPRH, LDAPUR, LDAPURH,
LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR, LDLARH, STLLR, STLLRH,
STLR, STLRH, STLUR, or STLURH to generate an Alignment fault if all bytes being
accessed are not within a single 16-byte quantity, aligned to 16 bytes.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CP15BEN, bit [5]

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

CP15BEN
D13-3656 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System
instructions in the (coproc==0b1111) encoding space from EL0:

0b0 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and CP15ISB
instructions is UNDEFINED.

0b1 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and CP15ISB
instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR_EL2 then it must also be implemented
in the SCTLR_EL1, HSCTLR, and SCTLR.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

When an implementation does not implement CP15BEN, access to this field is RAO/WI.

When EL0 can only use AArch64, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Reserved, RES0.

Otherwise:

Reserved, RES1.

SA0, bit [4]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

SA0

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0
uses the SP as the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment
fault exception is generated. For more information, see SP alignment checking on page D1-2469.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the
SP as the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault
exception is generated. For more information, see SP alignment checking on page D1-2469.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

C, bit [2]

Data access Cacheability control, for accesses at EL2 and, when EL2 is enabled in the current
Security state and HCR_EL2.{E2H, TGE} == {1, 1}, EL0

0b0 The following are Non-cacheable for all levels of data and unified cache:

• Data accesses to Normal memory from EL2.

• When HCR_EL2.{E2H, TGE} != {1, 1}, Normal memory accesses to the EL2
translation tables.

• When EL2 is enabled in the current Security state and HCR_EL2.{E2H, TGE}
== {1, 1}:

— Data accesses to Normal memory from EL0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3657
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
— Normal memory accesses to the EL2&0 translation tables.

0b1 This control has no effect on the Cacheability of:

• Data access to Normal memory from EL2.

• When HCR_EL2.{E2H, TGE} != {1, 1}, Normal memory accesses to the EL2
translation tables.

• When EL2 is enabled in the current Security state and HCR_EL2.{E2H, TGE}
== {1, 1}:

— Data accesses to Normal memory from EL0.

— Normal memory accesses to the EL2&0 translation tables.

This bit has no effect on the EL3 translation regime.

When EL2 is disabled in the current Security state or HCR_EL2.{E2H, TGE} != {1, 1}, this bit has
no effect on the EL1&0 translation regime.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2 and, when EL2
is enabled in the current Security state and HCR_EL2.{E2H, TGE} == {1, 1}, EL0.

0b0 Alignment fault checking disabled when executing at EL2.

When EL2 is enabled in the current Security state and HCR_EL2.{E2H, TGE} == {1,
1}, alignment fault checking disabled when executing at EL0.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL2.

When EL2 is enabled in the current Security state and HCR_EL2.{E2H, TGE} == {1,
1}, alignment fault checking enabled when executing at EL0.

All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless
of the value of the A bit.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL2 or EL2&0 stage 1 address translation.

0b0 When HCR_EL2.{E2H, TGE} != {1, 1}, EL2 stage 1 address translation disabled.

When HCR_EL2.{E2H, TGE} == {1, 1}, EL2&0 stage 1 address translation disabled.

See the SCTLR_EL2.I field for the behavior of instruction accesses to Normal memory.

0b1 When HCR_EL2.{E2H, TGE} != {1, 1}, EL2 stage 1 address translation enabled.

When HCR_EL2.{E2H, TGE} == {1, 1}, EL2&0 stage 1 address translation enabled.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing SCTLR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SCTLR_EL2
or SCTLR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.
D13-3658 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCTLR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return SCTLR_EL2;
elsif PSTATE.EL == EL3 then
 return SCTLR_EL2;

MSR SCTLR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 SCTLR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 SCTLR_EL2 = X[t];

MRS <Xt>, SCTLR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCTLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x110];
 else
 return SCTLR_EL1;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3659
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 if HCR_EL2.E2H == '1' then
 return SCTLR_EL2;
 else
 return SCTLR_EL1;
elsif PSTATE.EL == EL3 then
 return SCTLR_EL1;

MSR SCTLR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCTLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x110] = X[t];
 else
 SCTLR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 SCTLR_EL2 = X[t];
 else
 SCTLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 SCTLR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b000
D13-3660 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.118 SCTLR_EL3, System Control Register (EL3)

The SCTLR_EL3 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to SCTLR_EL3
are UNDEFINED.

Attributes

SCTLR_EL3 is a 64-bit register.

Field descriptions

Bits [63:45]

Reserved, RES0.

DSSBS, bit [44]

When FEAT_SSBS is implemented:

DSSBS

Default PSTATE.SSBS value on Exception Entry.

0b0 PSTATE.SSBS is set to 0 on an exception to EL3.

0b1 PSTATE.SSBS is set to 1 on an exception to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

ATA, bit [43]

When FEAT_MTE2 is implemented:

ATA

Allocation Tag Access in EL3. Controls EL3 access to Allocation Tags.

0b0 Access to Allocation Tags is prevented.

0b1 This control does not prevent access to Allocation Tags.

RES0

63 45 44 43 42

TCF

41 40

RES0

39 38 37

BT

36

RES0

35 32

DSSBS
ATA

ITFSB
RES0

31 30

RES1

29 28 27 26

EE

25 24 23 22 21 20 19 18 17 16

RES0

15 14 13

I

12 11

RES0

10 7 6

RES1

5 4

SA

3

C

2

A

1

M

0

EnIA
EnIB

EnDA
RES0

RES0
RES1

EIS

EOS
EnDB

RES1
RES0

RES1
WXN

RES0
IESB

nAA
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3661
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [42]

Reserved, RES0.

TCF, bits [41:40]

When FEAT_MTE2 is implemented:

TCF

Tag Check Fault in EL3. Controls the effect of Tag Check Faults due to Loads and Stores in EL3.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

0b00 Tag Check Faults have no effect on the PE.

0b01 Tag Check Faults cause a synchronous exception.

0b10 Tag Check Faults are asynchronously accumulated.

0b11 When FEAT_MTE3 is implemented:

Tag Check Faults cause a synchronous exception on reads, and are asynchronously
accumulated on writes.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [39:38]

Reserved, RES0.

ITFSB, bit [37]

When FEAT_MTE2 is implemented:

ITFSB

When synchronous exceptions are not being generated by Tag Check Faults, this field controls
whether on exception entry into EL3, all Tag Check Faults due to instructions executed before
exception entry, that are reported asynchronously, are synchronized into TFSRE0_EL1 and
TFSR_ELx registers.

0b0 Tag Check Faults are not synchronized on entry to EL3.

0b1 Tag Check Faults are synchronized on entry to EL3.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
D13-3662 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
BT, bit [36]

When FEAT_BTI is implemented:

BT

PAC Branch Type compatibility at EL3.

0b0 When the PE is executing at EL3, PACIASP and PACIBSP are compatible with
PSTATE.BTYPE == 0b11.

0b1 When the PE is executing at EL3, PACIASP and PACIBSP are not compatible with
PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [35:32]

Reserved, RES0.

EnIA, bit [31]

When FEAT_PAuth is implemented:

EnIA

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses
in the EL3 translation regime.

Possible values of this bit are:

0b0 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is not
enabled.

0b1 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is
enabled.

For more information, see System register control of pointer authentication on page D5-2681.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions. Specifically,
when the field is 1, AddPACIA returns a copy of a pointer to which a pointer authentication code
has been added, and AuthIA returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnIB, bit [30]

When FEAT_PAuth is implemented:

EnIB

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses
in the EL3 translation regime.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3663
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Possible values of this bit are:

0b0 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is not
enabled.

0b1 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is
enabled.

For more information, see System register control of pointer authentication on page D5-2681.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions. Specifically,
when the field is 1, AddPACIB returns a copy of a pointer to which a pointer authentication code
has been added, and AuthIB returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:28]

Reserved, RES1.

EnDA, bit [27]

When FEAT_PAuth is implemented:

EnDA

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses
in the EL3 translation regime.

0b0 Pointer authentication (using the APDAKey_EL1 key) of data addresses is not enabled.

0b1 Pointer authentication (using the APDAKey_EL1 key) of data addresses is enabled.

For more information, see System register control of pointer authentication on page D5-2681.

Note
This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically,
when the field is 1, AddPACDA returns a copy of a pointer to which a pointer authentication code
has been added, and AuthDA returns an authenticated copy of a pointer. When the field is 0, both
of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [26]

Reserved, RES0.
D13-3664 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
EE, bit [25]

Endianness of data accesses at EL3, and stage 1 translation table walks in the EL3 translation
regime.

0b0 Explicit data accesses at EL3, and stage 1 translation table walks in the EL3 translation
regime are little-endian.

0b1 Explicit data accesses at EL3, and stage 1 translation table walks in the EL3 translation
regime are big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than EL0, this
bit is RES0.

If an implementation does not provide Little-endian support at Exception levels higher than EL0,
this bit is RES1.

The EE bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Bit [24]

Reserved, RES0.

Bit [23]

Reserved, RES1.

EIS, bit [22]

When FEAT_ExS is implemented:

EIS

Exception Entry is Context Synchronizing.

0b0 The taking of an exception to EL3 is not a context synchronizing event.

0b1 The taking of an exception to EL3 is a context synchronizing event.

If SCTLR_EL3.EIS is set to 0b0:

• Indirect writes to ESR_EL3, FAR_EL3, SPSR_EL3, ELR_EL3 are synchronized on
exception entry to EL3, so that a direct read of the register after exception entry sees the
indirectly written value caused by the exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the
translation resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.

• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL3.EIS:

• Changes to the PSTATE information on entry to EL3.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for
loads, stores and data processing instructions.

• Debug state exit.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3665
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
IESB, bit [21]

When FEAT_IESB is implemented:

IESB

Implicit Error Synchronization event enable.

0b0 Disabled.

0b1 An implicit error synchronization event is added:

• At each exception taken to EL3.

• Before the operational pseudocode of each ERET instruction executed at EL3.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its
Effective value might be 0 or 1 regardless of the value of the field and, if implemented,
SCR_EL3.NMEA. If the Effective value of the field is 1, then an implicit error synchronization
event is added after each DCPSx instruction taken to EL3 and before each DRPS instruction executed
at EL3, in addition to the other cases where it is added.

When FEAT_DoubleFault is implemented, the PE is in Non-debug state, and the Effective value of
SCR_EL3.NMEA is 1, this field is ignored and its Effective value is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL3 translation regime, this bit can force all
memory regions that are writable to be treated as XN. The possible values of this bit are:

0b0 This control has no effect on memory access permissions.

0b1 Any region that is writable in the EL3 translation regime is forced to XN for accesses
from software executing at EL3.

This bit applies only when SCTLR_EL3.M bit is set.

The WXN bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Bit [18]

Reserved, RES1.

Bit [17]

Reserved, RES0.

Bit [16]

Reserved, RES1.

Bits [15:14]

Reserved, RES0.
D13-3666 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
EnDB, bit [13]

When FEAT_PAuth is implemented:

EnDB

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses
in the EL3 translation regime.

0b0 Pointer authentication (using the APDBKey_EL1 key) of data addresses is not enabled.

0b1 Pointer authentication (using the APDBKey_EL1 key) of data addresses is enabled.

For more information, see System register control of pointer authentication on page D5-2681.

Note
This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically,
when the field is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code
has been added, and AuthDB returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL3:

0b0 All instruction access to Normal memory from EL3 are Non-cacheable for all levels of
instruction and unified cache.

If the value of SCTLR_EL3.M is 0, instruction accesses from stage 1 of the EL3
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer
Non-cacheable memory.

0b1 This control has no effect on the Cacheability of instruction access to Normal memory
from EL3.

If the value of SCTLR_EL3.M is 0, instruction accesses from stage 1 of the EL3
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer
Write-Through memory.

This bit has no effect on the EL1&0, EL2, or EL2&0 translation regimes.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

EOS, bit [11]

When FEAT_ExS is implemented:

EOS

Exception Exit is Context Synchronizing.

0b0 An exception return from EL3 is not a context synchronizing event

0b1 An exception return from EL3 is a context synchronizing event

If SCTLR_EL3.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the
translation resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.

• DCPS* and DRPS instructions are context synchronization events.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3667
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The following are not affected by the value of SCTLR_EL3.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL3 and ELR_EL3 on
exception return is synchronized.

• If the PE enters Debug state before the first instruction after an Exception return from EL3
to Non-secure state, any pending Halting debug event completes execution.

• The GIC behavior that allocates interrupts to FIQ or IRQ changes simultaneously with
leaving the EL3 Exception level.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for
loads, stores and data processing instructions.

• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bits [10:7]

Reserved, RES0.

nAA, bit [6]

When FEAT_LSE2 is implemented:

nAA

Non-aligned access. This bit controls generation of Alignment faults at EL3 under certain
conditions.

0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR,
LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, and
STLURH generate an Alignment fault if all bytes being accessed are not within a single
16-byte quantity, aligned to 16 bytes for accesses.

0b1 This control bit does not cause LDAPR, LDAPRH, LDAPUR, LDAPURH,
LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR, LDLARH, STLLR, STLLRH,
STLR, STLRH, STLUR, or STLURH to generate an Alignment fault if all bytes being
accessed are not within a single 16-byte quantity, aligned to 16 bytes.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL3 uses the
SP as the base address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault
exception is generated. For more information, see SP alignment checking on page D1-2469.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.
D13-3668 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
C, bit [2]

Cacheability control, for data accesses.

0b0 All data access to Normal memory from EL3, and all Normal memory accesses to the
EL3 translation tables, are Non-cacheable for all levels of data and unified cache.

0b1 This control has no effect on the Cacheability of:

• Data access to Normal memory from EL3.

• Normal memory accesses to the EL3 translation tables.

This bit has no effect on the EL1&0, EL2, or EL2&0 translation regimes.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL3.

0b0 Alignment fault checking disabled when executing at EL3.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL3.

All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless
of the value of the A bit.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL3 stage 1 address translation. Possible values of this bit are:

0b0 EL3 stage 1 address translation disabled.

See the SCTLR_EL3.I field for the behavior of instruction accesses to Normal memory.

0b1 EL3 stage 1 address translation enabled.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Accessing SCTLR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCTLR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3669
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
elsif PSTATE.EL == EL3 then
 return SCTLR_EL3;

MSR SCTLR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SCTLR_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0000 0b000
D13-3670 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.119 SCXTNUM_EL0, EL0 Read/Write Software Context Number

The SCXTNUM_EL0 characteristics are:

Purpose

Provides a number that can be used to separate out different context numbers with the EL0 exception
level, for the purpose of protecting against side-channels using branch prediction and similar
resources.

Configurations

This register is present only when FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is
implemented. Otherwise, direct accesses to SCXTNUM_EL0 are UNDEFINED.

Attributes

SCXTNUM_EL0 is a 64-bit register.

Field descriptions

Bits [63:0]

Software Context Number. A number to identify the context within the EL0 exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SCXTNUM_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCXTNUM_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.TSCXT == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.EnSCXT == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGRTR_EL2.SCXTNUM_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.TSCXT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then

Software Context Number

63 32

Software Context Number

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3671
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return SCXTNUM_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCXTNUM_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return SCXTNUM_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return SCXTNUM_EL0;
elsif PSTATE.EL == EL3 then
 return SCXTNUM_EL0;

MSR SCXTNUM_EL0, <Xt>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.TSCXT == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.EnSCXT == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGWTR_EL2.SCXTNUM_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.TSCXT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SCXTNUM_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b111
D13-3672 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCXTNUM_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SCXTNUM_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SCXTNUM_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 SCXTNUM_EL0 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3673
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.120 SCXTNUM_EL1, EL1 Read/Write Software Context Number

The SCXTNUM_EL1 characteristics are:

Purpose

Provides a number that can be used to separate out different context numbers with the EL1 exception
level, for the purpose of protecting against side-channels using branch prediction and similar
resources.

Configurations

This register is present only when FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is
implemented. Otherwise, direct accesses to SCXTNUM_EL1 are UNDEFINED.

Attributes

SCXTNUM_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

Software Context Number. A number to identify the context within the EL1 exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SCXTNUM_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCXTNUM_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCXTNUM_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

Software Context Number

63 32

Software Context Number

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b111
D13-3674 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x188];
 else
 return SCXTNUM_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 return SCXTNUM_EL2;
 else
 return SCXTNUM_EL1;
elsif PSTATE.EL == EL3 then
 return SCXTNUM_EL1;

MSR SCXTNUM_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCXTNUM_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x188] = X[t];
 else
 SCXTNUM_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 SCXTNUM_EL2 = X[t];
 else
 SCXTNUM_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 SCXTNUM_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3675
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, SCXTNUM_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x188];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return SCXTNUM_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return SCXTNUM_EL1;
 else
 UNDEFINED;

MSR SCXTNUM_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x188] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b101 0b1101 0b0000 0b111

op0 op1 CRn CRm op2

0b11 0b101 0b1101 0b0000 0b111
D13-3676 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 SCXTNUM_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 SCXTNUM_EL1 = X[t];
 else
 UNDEFINED;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3677
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.121 SCXTNUM_EL2, EL2 Read/Write Software Context Number

The SCXTNUM_EL2 characteristics are:

Purpose

Provides a number that can be used to separate out different context numbers with the EL2 exception
level, for the purpose of protecting against side-channels using branch prediction and similar
resources.

Configurations

This register is present only when FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is
implemented. Otherwise, direct accesses to SCXTNUM_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

SCXTNUM_EL2 is a 64-bit register.

Field descriptions

Bits [63:0]

Software Context Number. A number to identify the context within the EL2 exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SCXTNUM_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic
SCXTNUM_EL2 or SCXTNUM_EL1 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCXTNUM_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;

Software Context Number

63 32

Software Context Number

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b0000 0b111
D13-3678 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return SCXTNUM_EL2;
elsif PSTATE.EL == EL3 then
 return SCXTNUM_EL2;

MSR SCXTNUM_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SCXTNUM_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 SCXTNUM_EL2 = X[t];

MRS <Xt>, SCXTNUM_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCXTNUM_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b0000 0b111

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3679
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x188];
 else
 return SCXTNUM_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 return SCXTNUM_EL2;
 else
 return SCXTNUM_EL1;
elsif PSTATE.EL == EL3 then
 return SCXTNUM_EL1;

MSR SCXTNUM_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCXTNUM_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x188] = X[t];
 else
 SCXTNUM_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 SCXTNUM_EL2 = X[t];
 else
 SCXTNUM_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 SCXTNUM_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b111
D13-3680 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.122 SCXTNUM_EL3, EL3 Read/Write Software Context Number

The SCXTNUM_EL3 characteristics are:

Purpose

Provides a number that can be used to separate out different context numbers with the EL3 exception
level, for the purpose of protecting against side-channels using branch prediction and similar
resources.

Configurations

This register is present only when EL3 is implemented and (FEAT_CSV2_2 is implemented or
FEAT_CSV2_1p2 is implemented). Otherwise, direct accesses to SCXTNUM_EL3 are
UNDEFINED.

Attributes

SCXTNUM_EL3 is a 64-bit register.

Field descriptions

Bits [63:0]

Software Context Number. A number to identify the context within the EL3 exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SCXTNUM_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCXTNUM_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return SCXTNUM_EL3;

Software Context Number

63 32

Software Context Number

31 0

op0 op1 CRn CRm op2

0b11 0b110 0b1101 0b0000 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3681
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MSR SCXTNUM_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SCXTNUM_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b1101 0b0000 0b111
D13-3682 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.123 TCR_EL1, Translation Control Register (EL1)

The TCR_EL1 characteristics are:

Purpose

The control register for stage 1 of the EL1&0 translation regime.

Configurations

AArch64 System register TCR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register TTBCR[31:0].

AArch64 System register TCR_EL1 bits [63:32] are architecturally mapped to AArch32 System
register TTBCR2[31:0].

Attributes

TCR_EL1 is a 64-bit register.

Field descriptions

Any of the bits in TCR_EL1, other than the A1 bit and the EPDx bits when they have the value 1, are permitted to
be cached in a TLB.

Bits [63:60]

Reserved, RES0.

DS, bit [59]

When FEAT_LPA2 is implemented:

DS

This field affects 52-bit output addressing when using 4KB and 16KB translation granules in stage
1 of the EL1&0 translation regime.

0b0 Bits[49:48] of translation descriptors are RES0.

Bits[9:8] in block and page descriptors encode shareability information in the SH[1:0]
field. Bits[9:8] in table descriptors are ignored by hardware.

The minimum value of the TCR_EL1.{T0SZ, T1SZ} fields is 16. Any memory access
using a smaller value generates a stage 1 level 0 translation table fault.

Output address[51:48] is 0b0000.

0b1 Bits[49:48] of translation descriptors hold output address[49:48].

Bits[9:8] of translation table descriptors hold output address[51:50].

RES0

63 60

DS

59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41

HD

40

HA

39 38 37

AS

36 35

IPS

34 32

TCMA1
TCMA0

E0PD1
E0PD0

NFD1
NFD0
TBID1

TBID0
HWU162

HWU161

RES0
TBI0

TBI1
HPD0

HPD1
HWU059

HWU060
HWU061

HWU062
HWU159

HWU160

TG1

31 30

SH1

29 28 27 26 25 24 23

A1

22

T1SZ

21 16

TG0

15 14

SH0

13 12 11 10 9 8 7 6

T0SZ

5 0

ORGN1 EPD1
IRGN1

ORGN0
IRGN0

RES0
EPD0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3683
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The shareability information of block and page descriptors for cacheable locations is
determined by:

• TCR_EL1.SH0 if the VA is translated using tables pointed to by TTBR0_EL1.

• TCR_EL1.SH1 if the VA is translated using tables pointed to by TTBR1_EL1.

The minimum value of the TCR_EL1.{T0SZ, T1SZ} fields is 12. Any memory access
using a smaller value generates a stage 1 level 0 translation table fault.

All calculations of the stage 1 base address are modified for tables of fewer than 8
entries so that the table is aligned to 64 bytes.

Bits[5:2] of TTBR0_EL1 or TTBR1_EL1 are used to hold bits[51:48] of the output
address in all cases.

Note
As FEAT_LVA must be implemented if TCR_EL1.DS == 1, the minimum value of the
TCR_EL1.{T0SZ, T1SZ} fields is 12, as determined by that extension.

For the TLBI Range instructions affecting VA, the format of the argument is changed so
that bits[36:0] hold BaseADDR[52:16]. For the 4KB translation granule, bits[15:12] of
BaseADDR are treated as 0b0000. For the 16KB translation granule, bits[15:14] of
BaseADDR are treated as 0b00.

Note
This forces alignment of the ranges used by the TLBI range instructions.

This field is RES0 for a 64KB translation granule.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCMA1, bit [58]

When FEAT_MTE2 is implemented:

TCMA1

Controls the generation of Unchecked accesses at EL1, and at EL0 if
HCR_EL2.{E2H,TGE}!={1,1}, when address[59:55] = 0b11111.

0b0 This control has no effect on the generation of Unchecked accesses at EL1 or EL0.

0b1 All accesses at EL1 and EL0 are Unchecked.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCMA0, bit [57]

When FEAT_MTE2 is implemented:

TCMA0
D13-3684 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Controls the generation of Unchecked accesses at EL1, and at EL0 if
HCR_EL2.{E2H,TGE}!={1,1}, when address[59:55] = 0b00000.

0b0 This control has no effect on the generation of Unchecked accesses at EL1 or EL0.

0b1 All accesses at EL1 and EL0 are Unchecked.

Note
Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E0PD1, bit [56]

When FEAT_E0PD is implemented:

E0PD1

Faulting control for Unprivileged access to any address translated by TTBR1_EL1.

0b0 Unprivileged access to any address translated by TTBR1_EL1 will not generate a fault
by this mechanism.

0b1 Unprivileged access to any address translated by TTBR1_EL1 will generate a level 0
Translation fault.

Level 0 Translation faults generated as a result of this field are not counted as TLB misses for
performance monitoring. The fault should take the same time to generate, whether the address is
present in the TLB or not, to mitigate attacks that use fault timing.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E0PD0, bit [55]

When FEAT_E0PD is implemented:

E0PD0

Faulting control for Unprivileged access to any address translated by TTBR0_EL1.

0b0 Unprivileged access to any address translated by TTBR0_EL1 will not generate a fault
by this mechanism.

0b1 Unprivileged access to any address translated by TTBR0_EL1 will generate a level 0
Translation fault.

Level 0 Translation faults generated as a result of this field are not counted as TLB misses for
performance monitoring. The fault should take the same time to generate, whether the address is
present in the TLB or not, to mitigate attacks that use fault timing.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3685
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
NFD1, bit [54]

When FEAT_SVE is implemented:

NFD1

Non-fault translation table walk disable for stage 1 translations using TTBR1_EL1.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault
unprivileged access for a virtual address that is translated using TTBR1_EL1.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.

• Accesses due to an SVE first-fault gather load instruction that are not for the First active
element. Accesses due to an SVE first-fault contiguous load instruction are not affected.

• Accesses due to prefetch instructions might be affected, but the effect is not architecturally
visible.

For more information, see FEAT_SVE.

0b0 Does not disable stage 1 translation table walks using TTBR1_EL1.

0b1 A TLB miss on a virtual address that is translated using TTBR1_EL1 due to the
specified access types causes the access to fail without taking an exception. No stage 1
translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NFD0, bit [53]

When FEAT_SVE is implemented:

NFD0

Non-fault translation table walk disable for stage 1 translations using TTBR0_EL1.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault
unprivileged access for a virtual address that is translated using TTBR0_EL1.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.

• Accesses due to an SVE first-fault gather load instruction that are not for the First active
element. Accesses due to an SVE first-fault contiguous load instruction are not affected.

• Accesses due to prefetch instructions might be affected, but the effect is not architecturally
visible.

For more information, see FEAT_SVE.

0b0 Does not disable stage 1 translation table walks using TTBR0_EL1.

0b1 A TLB miss on a virtual address that is translated using TTBR0_EL1 due to the
specified access types causes the access to fail without taking an exception. No stage 1
translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
D13-3686 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
TBID1, bit [52]

When FEAT_PAuth is implemented:

TBID1

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform
address translation are treated as data accesses.

For more information, see Address tagging in AArch64 state on page D5-2676.

0b0 TCR_EL1.TBI1 applies to Instruction and Data accesses.

0b1 TCR_EL1.TBI1 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR1_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBID0, bit [51]

When FEAT_PAuth is implemented:

TBID0

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform
address translation are treated as data accesses.

For more information, see Address tagging in AArch64 state on page D5-2676.

0b0 TCR_EL1.TBI0 applies to Instruction and Data accesses.

0b1 TCR_EL1.TBI0 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU162, bit [50]

When FEAT_HPDS2 is implemented:

HWU162

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL1.

0b0 For translations using TTBR1_EL1, bit[62] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[62] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3687
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Reserved, RAZ/WI.

HWU161, bit [49]

When FEAT_HPDS2 is implemented:

HWU161

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL1.

0b0 For translations using TTBR1_EL1, bit[61] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[61] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU160, bit [48]

When FEAT_HPDS2 is implemented:

HWU160

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL1.

0b0 For translations using TTBR1_EL1, bit[60] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[60] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU159, bit [47]

When FEAT_HPDS2 is implemented:

HWU159

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL1.

0b0 For translations using TTBR1_EL1, bit[59] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[59] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
D13-3688 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Reserved, RAZ/WI.

HWU062, bit [46]

When FEAT_HPDS2 is implemented:

HWU062

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU061, bit [45]

When FEAT_HPDS2 is implemented:

HWU061

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU060, bit [44]

When FEAT_HPDS2 is implemented:

HWU060

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[60] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[60] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3689
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU059, bit [43]

When FEAT_HPDS2 is implemented:

HWU059

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[59] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[59] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HPD1, bit [42]

When FEAT_HPDS is implemented:

HPD1

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR1_EL1.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD0, bit [41]

When FEAT_HPDS is implemented:

HPD0

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR0_EL1.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
D13-3690 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Reserved, RES0.

HD, bit [40]

When FEAT_HAFDBS is implemented:

HD

Hardware management of dirty state in stage 1 translations from EL0 and EL1.

0b0 Stage 1 hardware management of dirty state disabled.

0b1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HA, bit [39]

When FEAT_HAFDBS is implemented:

HA

Hardware Access flag update in stage 1 translations from EL0 and EL1.

0b0 Stage 1 Access flag update disabled.

0b1 Stage 1 Access flag update enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBI1, bit [38]

Top Byte ignored. Indicates whether the top byte of an address is used for address match for the
TTBR1_EL1 region, or ignored and used for tagged addresses.

0b0 Top Byte used in the address calculation.

0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL1 using AArch64 where the address would be
translated by tables pointed to by TTBR1_EL1. It has an effect whether the EL1&0 translation
regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL1.TBID1 is 1, then this field only applies to Data
accesses.

Otherwise, if the value of TBI1 is 1 and bit [55] of the target address to be stored to the PC is 1, then
bits[63:56] of that target address are also set to 1 before the address is stored in the PC, in the
following cases:

• A branch or procedure return within EL0 or EL1.

• An exception taken to EL1.

• An exception return to EL0 or EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3691
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
TBI0, bit [37]

Top Byte ignored. Indicates whether the top byte of an address is used for address match for the
TTBR0_EL1 region, or ignored and used for tagged addresses.

0b0 Top Byte used in the address calculation.

0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL1 using AArch64 where the address would be
translated by tables pointed to by TTBR0_EL1. It has an effect whether the EL1&0 translation
regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL1.TBID0 is 1, then this field only applies to Data
accesses.

Otherwise, if the value of TBI0 is 1 and bit [55] of the target address to be stored to the PC is 0, then
bits[63:56] of that target address are also set to 0 before the address is stored in the PC, in the
following cases:

• A branch or procedure return within EL0 or EL1.

• An exception taken to EL1.

• An exception return to EL0 or EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AS, bit [36]

ASID Size.

0b0 8 bit - the upper 8 bits of TTBR0_EL1 and TTBR1_EL1 are ignored by hardware for
every purpose except reading back the register, and are treated as if they are all zeros for
when used for allocation and matching entries in the TLB.

0b1 16 bit - the upper 16 bits of TTBR0_EL1 and TTBR1_EL1 are used for allocation and
matching in the TLB.

If the implementation has only 8 bits of ASID, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [35]

Reserved, RES0.

IPS, bits [34:32]

Intermediate Physical Address Size.

0b000 32 bits, 4GB.

0b001 36 bits, 64GB.

0b010 40 bits, 1TB.

0b011 42 bits, 4TB.

0b100 44 bits, 16TB.

0b101 48 bits, 256TB.

0b110 52 bits, 4PB.

All other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not
rely on this property as the behavior of the reserved values might change in a future revision of the
architecture.

If the translation granule is not 64KB and FEAT_LPA2 is not implemented, the value 0b110 is
treated as reserved.
D13-3692 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT_LPA
supports setting the value of 0b110 for the 64KB translation granule size or whether setting this value
behaves as the 0b101 encoding.

In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated
as 0b110, then bits[51:48] of every translation table base address for the stage of translation
controlled by TCR_EL1 are 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TG1, bits [31:30]

Granule size for the TTBR1_EL1.

0b01 16KB.

0b10 4KB.

0b11 64KB.

Other values are reserved.

If the value is programmed to either a reserved value or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using TTBR1_EL1.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using TTBR1_EL1.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using TTBR1_EL1.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3693
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EPD1, bit [23]

Translation table walk disable for translations using TTBR1_EL1. This bit controls whether a
translation table walk is performed on a TLB miss, for an address that is translated using
TTBR1_EL1. The encoding of this bit is:

0b0 Perform translation table walks using TTBR1_EL1.

0b1 A TLB miss on an address that is translated using TTBR1_EL1 generates a Translation
fault. No translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A1, bit [22]

Selects whether TTBR0_EL1 or TTBR1_EL1 defines the ASID. The encoding of this bit is:

0b0 TTBR0_EL1.ASID defines the ASID.

0b1 TTBR1_EL1.ASID defines the ASID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T1SZ, bits [21:16]

The size offset of the memory region addressed by TTBR1_EL1. The region size is 2(64-T1SZ) bytes.

The maximum and minimum possible values for T1SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

Note
For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is less than 16, the
translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field is less than 17, the
translation table walk begins with a level 0 initial lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TG0, bits [15:14]

Granule size for the TTBR0_EL1.

0b00 4KB

0b01 64KB

0b10 16KB

Other values are reserved.

If the value is programmed to either a reserved value or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
D13-3694 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL1.

0b00 Non-shareable

0b10 Outer Shareable

0b11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL1.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL1.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EPD0, bit [7]

Translation table walk disable for translations using TTBR0_EL1. This bit controls whether a
translation table walk is performed on a TLB miss, for an address that is translated using
TTBR0_EL1. The encoding of this bit is:

0b0 Perform translation table walks using TTBR0_EL1.

0b1 A TLB miss on an address that is translated using TTBR0_EL1 generates a Translation
fault. No translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL1. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

Note
For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is less than 16, the
translation table walk begins with a level -1 initial lookup.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3695
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
For the 16KB translation granule, if FEAT_LPA2 is implemented and this field is less than 17, the
translation table walk begins with a level 0 initial lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TCR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic TCR_EL1 or
TCR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x120];
 else
 return TCR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return TCR_EL2;
 else
 return TCR_EL1;
elsif PSTATE.EL == EL3 then
 return TCR_EL1;

MSR TCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x120] = X[t];
 else
 TCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 TCR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b010
D13-3696 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 else
 TCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 TCR_EL1 = X[t];

MRS <Xt>, TCR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x120];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return TCR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return TCR_EL1;
 else
 UNDEFINED;

MSR TCR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x120] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 TCR_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 TCR_EL1 = X[t];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0000 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3697
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.124 TCR_EL2, Translation Control Register (EL2)

The TCR_EL2 characteristics are:

Purpose

The control register for stage 1 of the EL2, or EL2&0, translation regime:

• When the Effective value of HCR_EL2.E2H is 0, this register controls stage 1 of the EL2
translation regime, that supports a single VA range, translated using TTBR0_EL2.

• When the value of HCR_EL2.E2H is 1, this register controls stage 1 of the EL2&0 translation
regime, that supports both:

— A lower VA range, translated using TTBR0_EL2.

— A higher VA range, translated using TTBR1_EL2.

Configurations

AArch64 System register TCR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HTCR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

TCR_EL2 is a 64-bit register.

Field descriptions

When HCR_EL2.E2H == 0:

Any of the bits in TCR_EL2, other than the A1 bit and the EPDx bits when they have the value 1, are permitted to
be cached in a TLB.

Bits [63:33]

Reserved, RES0.

DS, bit [32]

When FEAT_LPA2 is implemented:

DS

This field affects 52-bit output addressing when using 4KB and 16KB translation granules in stage
1 of the EL2 translation regime.

0b0 Bits[49:48] of translation descriptors are RES0.

Bits[9:8] in block and page descriptors encode shareability information in the SH[1:0]
field. Bits[9:8] in table descriptors are ignored by hardware.

The minimum value of TCR_EL2.T0SZ is 16. Any memory access using a smaller
value generates a stage 1 level 0 translation table fault.

RES0

63 33

DS

32

31 30 29 28 27 26 25 24 23

HD

22

HA

21 20 19

PS

18 16

TG0

15 14

SH0

13 12 11 10 9 8

RES0

7 6

T0SZ

5 0

RES1
TCMA

TBID
HWU62

HWU61

RES0
TBI

RES1
HPD

HWU59
HWU60

ORGN0 IRGN0
D13-3698 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Output address[51:48] is 0b0000.

0b1 Bits[49:48] of translation descriptors hold output address[49:48].

Bits[9:8] of translation table descriptors hold output address[51:50].

The shareability information of block and page descriptors for cacheable locations is
determined by TCR_EL2.SH0.

The minimum value of TCR_EL2.T0SZ is 12. Any memory access using a smaller
value generates a stage 1 level 0 translation table fault.

All calculations of the stage 1 base address are modified for tables of fewer than 8
entries so that the table is aligned to 64 bytes.

Bits[5:2] of TTBR0_EL2 are used to hold bits[51:48] of the output address in all cases.

Note
As FEAT_LVA must be implemented if TCR_EL2.DS == 1, the minimum value of the
TCR_EL2.T0SZ field is 12, as determined by that extension.

For the TLBI Range instructions affecting VA, the format of the argument is changed so
that bits[36:0] hold BaseADDR[52:16]. For the 4KB translation granule, bits[15:12] of
BaseADDR are treated as 0b0000. For the 16KB translation granule, bits[15:14] of
BaseADDR are treated as 0b00.

Note
This forces alignment of the ranges used by the TLBI range instructions.

This field is RES0 for a 64KB translation granule.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [31]

Reserved, RES1.

TCMA, bit [30]

When FEAT_MTE2 is implemented:

TCMA

Controls the generation of Unchecked accesses at EL2 when address [59:56] = 0b0000.

0b0 This control has no effect on the generation of Unchecked accesses.

0b1 All accesses are Unchecked.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBID, bit [29]

When FEAT_PAuth is implemented:

TBID

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform
address translation are treated as data accesses.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3699
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
For more information, see Address tagging in AArch64 state on page D5-2676.

0b0 TCR_EL2.TBI applies to Instruction and Data accesses.

0b1 TCR_EL2.TBI applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU62, bit [28]

When FEAT_HPDS2 is implemented:

HWU62

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry.

0b0 Bit[62] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[62] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU61, bit [27]

When FEAT_HPDS2 is implemented:

HWU61

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry.

0b0 Bit[61] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[61] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU60, bit [26]

When FEAT_HPDS2 is implemented:

HWU60
D13-3700 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry.

0b0 Bit[60] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[60] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU59, bit [25]

When FEAT_HPDS2 is implemented:

HWU59

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry.

0b0 Bit[59] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[59] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HPD, bit [24]

When FEAT_HPDS is implemented:

HPD

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR0_EL2.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled.

Note
In this case, bit[61] (APTable[0]) and bit[59] (PXNTable) of the next level descriptor
attributes are required to be ignored by the PE and are no longer reserved, allowing them
to be used by software.

When disabled, the permissions are treated as if the bits are zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3701
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Bit [23]

Reserved, RES1.

HD, bit [22]

When FEAT_HAFDBS is implemented:

HD

Hardware management of dirty state in stage 1 translations from EL2.

0b0 Stage 1 hardware management of dirty state disabled.

0b1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HA, bit [21]

When FEAT_HAFDBS is implemented:

HA

Hardware Access flag update in stage 1 translations from EL2.

0b0 Stage 1 Access flag update disabled.

0b1 Stage 1 Access flag update enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBI, bit [20]

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the
TTBR0_EL2 region, or ignored and used for tagged addresses.

For more information, see Address tagging in AArch64 state on page D5-2676.

0b0 Top Byte used in the address calculation.

0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL2 using AArch64 where the address would be translated by
tables pointed to by TTBR0_EL2. It has an effect whether the EL2, or EL2&0, translation regime
is enabled or not.

If FEAT_PAuth is implemented and TCR_EL2.TBID is 1, then this field only applies to Data
accesses.

If the value of TBI is 1, then bits[63:56] of that target address are also set to 0 before the address is
stored in the PC, in the following cases:

• A branch or procedure return within EL2.

• An exception taken to EL2.

• An exception return to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [19]

Reserved, RES0.
D13-3702 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
PS, bits [18:16]

Physical Address Size.

0b000 32 bits, 4GB.

0b001 36 bits, 64GB.

0b010 40 bits, 1TB.

0b011 42 bits, 4TB.

0b100 44 bits, 16TB.

0b101 48 bits, 256TB.

0b110 52 bits, 4PB.

All other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not
rely on this property as the behavior of the reserved values might change in a future revision of the
architecture.

If the translation granule is not 64KB and FEAT_LPA2 is not implemented, the value 0b110 is
treated as reserved.

It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT_LPA
supports setting the value of 0b110 for the 64KB translation granule size or whether setting this value
behaves as the 0b101 encoding.

In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated
as 0b110, then bits[51:48] of every translation table base address for the stage of translation
controlled by TCR_EL2 are 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TG0, bits [15:14]

Granule size for the TTBR0_EL2.

0b00 4KB.

0b01 64KB.

0b10 16KB.

Other values are reserved.

If the value is programmed to either a reserved value or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL2.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3703
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

Note
For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is less than 16, the
translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field is less than 17, the
translation table walk begins with a level 0 initial lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
D13-3704 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
When FEAT_VHE is implemented and HCR_EL2.E2H == 1:

This view of the register is only valid from Armv8.1 when HCR_EL2.E2H is 1.

Any of the bits in TCR_EL2 are permitted to be cached in a TLB.

Bits [63:60]

Reserved, RES0.

DS, bit [59]

When FEAT_LPA2 is implemented:

DS

This field affects 52-bit output addressing when using 4KB and 16KB translation granules in stage
1 of the EL2&0 translation regime.

0b0 Bits[49:48] of translation descriptors are RES0.

Bits[9:8] in block and page descriptors encode shareability information in the SH[1:0]
field. Bits[9:8] in table descriptors are ignored by hardware.

The minimum value of the TCR_EL2.{T0SZ, T1SZ} fields is 16. Any memory access
using a smaller value generates a stage 1 level 0 translation table fault.

Output address[51:48] is 0b0000.

0b1 Bits[49:48] of translation descriptors hold output address[49:48].

Bits[9:8] of translation table descriptors hold output address[51:50].

The shareability information of block and page descriptors for cacheable locations is
determined by:

• TCR_EL2.SH0 if the VA is an address that is translated using tables pointed to
by TTBR0_EL2.

• TCR_EL2.SH1 if the VA is an address that is translated using tables pointed to
by TTBR1_EL2.

The minimum value of the TCR_EL2.{T0SZ, T1SZ} fields is 12. Any memory access
using a smaller value generates a stage 1 level 0 translation table fault.

All calculations of the stage 1 base address are modified for tables of fewer than 16
entries so that the table is aligned to 64 bytes.

Bits[5:2] of TTBR0_EL2 or TTBR1_EL2 are used to hold bits[51:48] of the output
address in all cases.

RES0

63 60

DS

59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41

HD

40

HA

39 38 37

AS

36 35

IPS

34 32

TCMA1
TCMA0

E0PD1
E0PD0

NFD1
NFD0
TBID1

TBID0
HWU162

HWU161

RES0
TBI0

TBI1
HPD0

HPD1
HWU059

HWU060
HWU061

HWU062
HWU159

HWU160

TG1

31 30

SH1

29 28 27 26 25 24 23

A1

22

T1SZ

21 16

TG0

15 14

SH0

13 12 11 10 9 8 7 6

T0SZ

5 0

ORGN1 EPD1
IRGN1

ORGN0
IRGN0

RES0
EPD0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3705
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Note
As FEAT_LVA must be implemented if TCR_EL2.DS == 1, the minimum value of the
TCR_EL2.{T0SZ, T1SZ} fields is 12, as determined by that extension.

For the TLBI Range instructions affecting VA, the format of the argument is changed so
that bits[36:0] hold BaseADDR[52:16]. For the 4KB translation granule, bits[15:12] of
BaseADDR are treated as 0b0000. For the 16KB translation granule, bits[15:14] of
BaseADDR are treated as 0b00.

Note
This forces alignment of the ranges used by the TLBI range instructions.

This field is RES0 for a 64KB translation granule.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCMA1, bit [58]

When FEAT_MTE2 is implemented:

TCMA1

Controls the generation of Unchecked accesses at EL2, and at EL0 if HCR_EL2.TGE=1, when
address[59:55] = 0b11111.

0b0 This control has no effect on the generation of Unchecked accesses at EL2 or EL0.

0b1 All accesses are Unchecked.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCMA0, bit [57]

When FEAT_MTE2 is implemented:

TCMA0

Controls the generation of Unchecked accesses at EL2, and at EL0 if HCR_EL2.TGE=1, when
address[59:55] = 0b00000.

0b0 This control has no effect on the generation of Unchecked accesses at EL2 or EL0.

0b1 All accesses are Unchecked.

Note
Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
D13-3706 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Reserved, RES0.

E0PD1, bit [56]

When FEAT_E0PD is implemented:

E0PD1

Faulting control for Unprivileged access to any address translated by TTBR1_EL2.

0b0 Unprivileged access to any address translated by TTBR1_EL2 will not generate a fault
by this mechanism.

0b1 Unprivileged access to any address translated by TTBR1_EL2 will generate a level 0
Translation fault.

Level 0 Translation faults generated as a result of this field are not counted as TLB misses for
performance monitoring. The fault should take the same time to generate, whether the address is
present in the TLB or not, to mitigate attacks that use fault timing.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E0PD0, bit [55]

When FEAT_E0PD is implemented:

E0PD0

Faulting control for Unprivileged access to any address translated by TTBR0_EL2.

0b0 Unprivileged access to any address translated by TTBR0_EL2 will not generate a fault
by this mechanism.

0b1 Unprivileged access to any address translated by TTBR0_EL2 will generate a level 0
Translation fault.

Level 0 Translation faults generated as a result of this field are not counted as TLB misses for
performance monitoring. The fault should take the same time to generate, whether the address is
present in the TLB or not, to mitigate attacks that use fault timing.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NFD1, bit [54]

When FEAT_SVE is implemented:

NFD1

Non-fault translation table walk disable for stage 1 translations using TTBR1_EL2.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault
unprivileged access for a virtual address that is translated using TTBR1_EL2.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.

• Accesses due to an SVE first-fault gather load instruction that are not for the First active
element. Accesses due to an SVE first-fault contiguous load instruction are not affected.

• Accesses due to prefetch instructions might be affected, but the effect is not architecturally
visible.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3707
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
For more information, see FEAT_SVE.

0b0 Does not disable stage 1 translation table walks using TTBR1_EL2.

0b1 A TLB miss on a virtual address that is translated using TTBR1_EL2 due to the
specified access types causes the access to fail without taking an exception. No stage 1
translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NFD0, bit [53]

When FEAT_SVE is implemented:

NFD0

Non-fault translation table walk disable for stage 1 translations using TTBR0_EL2.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault
unprivileged access for a virtual address that is translated using TTBR0_EL2.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.

• Accesses due to an SVE first-fault gather load instruction that are not for the First active
element. Accesses due to an SVE first-fault contiguous load instruction are not affected.

• Accesses due to prefetch instructions might be affected, but the effect is not architecturally
visible.

For more information, see FEAT_SVE.

0b0 Does not disable stage 1 translation table walks using TTBR0_EL2.

0b1 A TLB miss on a virtual address that is translated using TTBR0_EL2 due to the
specified access types causes the access to fail without taking an exception. No stage 1
translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBID1, bit [52]

When FEAT_PAuth is implemented:

TBID1

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform
address translation are treated as data accesses.

For more information, see Address tagging in AArch64 state on page D5-2676.

0b0 TCR_EL2.TBI1 applies to Instruction and Data accesses.

0b1 TCR_EL2.TBI1 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR1_EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
D13-3708 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Reserved, RES0.

TBID0, bit [51]

When FEAT_PAuth is implemented:

TBID0

Controls the use of the top byte of instruction addresses for address matching.

For more information, see Address tagging in AArch64 state on page D5-2676.

0b0 TCR_EL2.TBI0 applies to Instruction and Data accesses.

0b1 TCR_EL2.TBI0 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU162, bit [50]

When FEAT_HPDS2 is implemented:

HWU162

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL2.

0b0 For translations using TTBR1_EL2, bit[62] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL2, bit[62] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU161, bit [49]

When FEAT_HPDS2 is implemented:

HWU161

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL2.

0b0 For translations using TTBR1_EL2, bit[61] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL2, bit[61] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3709
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Reserved, RAZ/WI.

HWU160, bit [48]

When FEAT_HPDS2 is implemented:

HWU160

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL2.

0b0 For translations using TTBR1_EL2, bit[60] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL2, bit[60] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU159, bit [47]

When FEAT_HPDS2 is implemented:

HWU159

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL2.

0b0 For translations using TTBR1_EL2, bit[59] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL2, bit[59] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU062, bit [46]

When FEAT_HPDS2 is implemented:

HWU062

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.
D13-3710 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU061, bit [45]

When FEAT_HPDS2 is implemented:

HWU061

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU060, bit [44]

When FEAT_HPDS2 is implemented:

HWU060

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[60] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[60] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU059, bit [43]

When FEAT_HPDS2 is implemented:

HWU059

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[59] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3711
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 For translations using TTBR0_EL1, bit[59] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HPD1, bit [42]

When FEAT_HPDS is implemented:

HPD1

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR1_EL2.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD0, bit [41]

When FEAT_HPDS is implemented:

HPD0

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR0_EL2.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HD, bit [40]

When FEAT_HAFDBS is implemented:

HD

Hardware management of dirty state in stage 1 translations from EL2.

0b0 Stage 1 hardware management of dirty state disabled.

0b1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
D13-3712 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Otherwise:

Reserved, RES0.

HA, bit [39]

When FEAT_HAFDBS is implemented:

HA

Hardware Access flag update in stage 1 translations from EL2.

0b0 Stage 1 Access flag update disabled.

0b1 Stage 1 Access flag update enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBI1, bit [38]

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the
TTBR1_EL2 region, or ignored and used for tagged addresses.

For more information, see Address tagging in AArch64 state on page D5-2676.

0b0 Top Byte used in the address calculation.

0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL2 using AArch64 where the address would be
translated by tables pointed to by TTBR1_EL2. It has an effect whether the EL2, or EL2&0,
translation regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL2.TBID1 is 1, then this field only applies to Data
accesses.

If the value of TBI1 is 1 and bit [55] of the target address to be stored to the PC is 1, then bits[63:56]
of that target address are also set to 1 before the address is stored in the PC, in the following cases:

• A branch or procedure return within EL0 or EL1.

• An exception taken to EL1.

• An exception return to EL0 or EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TBI0, bit [37]

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the
TTBR0_EL2 region, or ignored and used for tagged addresses.

For more information, see Address tagging in AArch64 state on page D5-2676.

0b0 Top Byte used in the address calculation.

0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL2 using AArch64 where the address would be
translated by tables pointed to by TTBR0_EL2. It has an effect whether the EL2, or EL2&0,
translation regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL2.TBID0 is 1, then this field only applies to Data
accesses.

If the value of TBI0 is 1 and bit [55] of the target address to be stored to the PC is 0, then bits[63:56]
of that target address are also set to 0 before the address is stored in the PC, in the following cases:

• A branch or procedure return within EL0 or EL1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3713
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
• An exception taken to EL1.

• An exception return to EL0 or EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AS, bit [36]

ASID Size.

0b0 8 bit - the upper 8 bits of TTBR0_EL2 and TTBR1_EL2 are ignored by hardware for
every purpose except reading back the register, and are treated as if they are all zeros for
when used for allocation and matching entries in the TLB.

0b1 16 bit - the upper 16 bits of TTBR0_EL2 and TTBR1_EL2 are used for allocation and
matching in the TLB.

If the implementation has only 8 bits of ASID, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [35]

Reserved, RES0.

IPS, bits [34:32]

Intermediate Physical Address Size.

0b000 32 bits, 4GB.

0b001 36 bits, 64GB.

0b010 40 bits, 1TB.

0b011 42 bits, 4TB.

0b100 44 bits, 16TB.

0b101 48 bits, 256TB.

0b110 When FEAT_LPA is implemented:

52 bits, 4PB.

All other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not
rely on this property as the behavior of the reserved values might change in a future revision of the
architecture.

If the translation granule is not 64KB, the value 0b110 is treated as reserved.

It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT_LPA
supports setting the value of 0b110 for the 64KB translation granule size or whether setting this value
behaves as the 0b101 encoding.

In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated
as 0b110, then bits[51:48] of every translation table base address for the stage of translation
controlled by TCR_EL2 are 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TG1, bits [31:30]

Granule size for the TTBR1_EL2.

0b01 16KB.

0b10 4KB.

0b11 64KB.

Other values are reserved.
D13-3714 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
If the value is programmed to either a reserved value, or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using TTBR1_EL2.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using TTBR1_EL2.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using TTBR1_EL2.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EPD1, bit [23]

Translation table walk disable for translations using TTBR1_EL2. This bit controls whether a
translation table walk is performed on a TLB miss, for an address that is translated using
TTBR1_EL2. The encoding of this bit is:

0b0 Perform translation table walks using TTBR1_EL2.

0b1 A TLB miss on an address that is translated using TTBR1_EL2 generates a Translation
fault. No translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A1, bit [22]

Selects whether TTBR0_EL2 or TTBR1_EL2 defines the ASID. The encoding of this bit is:

0b0 TTBR0_EL2.ASID defines the ASID.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3715
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 TTBR1_EL2.ASID defines the ASID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T1SZ, bits [21:16]

The size offset of the memory region addressed by TTBR1_EL2. The region size is 2(64-T1SZ) bytes.

The maximum and minimum possible values for T1SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is less than 16, the
translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field is less than 17, the
translation table walk begins with a level 0 initial lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TG0, bits [15:14]

Granule size for the TTBR0_EL2.

0b00 4KB.

0b01 64KB.

0b10 16KB.

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL2.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.
D13-3716 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EPD0, bit [7]

Translation table walk disable for translations using TTBR0_EL2. This bit controls whether a
translation table walk is performed on a TLB miss, for an address that is translated using
TTBR0_EL2. The encoding of this bit is:

0b0 Perform translation table walks using TTBR0_EL2.

0b1 A TLB miss on an address that is translated using TTBR0_EL2 generates a Translation
fault. No translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is less than 16, the
translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field is less than 17, the
translation table walk begins with a level 0 initial lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TCR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TCR_EL2 or
TCR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3717
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, TCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return TCR_EL2;
elsif PSTATE.EL == EL3 then
 return TCR_EL2;

MSR TCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 TCR_EL2 = X[t];

MRS <Xt>, TCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x120];
 else
 return TCR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return TCR_EL2;
 else

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b010
D13-3718 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 return TCR_EL1;
elsif PSTATE.EL == EL3 then
 return TCR_EL1;

MSR TCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x120] = X[t];
 else
 TCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 TCR_EL2 = X[t];
 else
 TCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 TCR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3719
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.125 TCR_EL3, Translation Control Register (EL3)

The TCR_EL3 characteristics are:

Purpose

The control register for stage 1 of the EL3 translation regime.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to TCR_EL3 are
UNDEFINED.

Attributes

TCR_EL3 is a 64-bit register.

Field descriptions

Any of the bits in TCR_EL3 are permitted to be cached in a TLB.

Bits [63:33]

Reserved, RES0.

DS, bit [32]

When FEAT_LPA2 is implemented:

DS

This field affects 52-bit output addressing when using 4KB and 16KB translation granules in stage
1 of the EL3 translation regime.

0b0 Bits[49:48] of translation descriptors are RES0.

Bits[9:8] in block and page descriptors encode shareability information in the SH[1:0]
field. Bits[9:8] in table descriptors are ignored by hardware.

The minimum value of TCR_EL3.T0SZ is 16. Any memory access using a smaller
value generates a stage 1 level 0 translation table fault.

Output address[51:48] is 0b0000.

0b1 Bits[49:48] of translation descriptors hold output address[49:48].

Bits[9:8] of table translation descriptors hold output address[51:50].

The shareability information of block and page descriptors for cacheable locations is
determined by TCR_EL3.SH0.

The minimum value of TCR_EL3.T0SZ is 12. Any memory access using a smaller
value generates a stage 1 level 0 translation table fault.

All calculations of the stage 1 base address are modified for tables of fewer than 8
entries so that the table is aligned to 64 bytes.

Bits[5:2] of TTBR0_EL3 are used to hold bits[51:48] of the output address in all cases.

RES0

63 33

DS

32

31 30 29 28 27 26 25 24 23

HD

22

HA

21 20 19

PS

18 16

TG0

15 14

SH0

13 12 11 10 9 8

RES0

7 6

T0SZ

5 0

RES1
TCMA

TBID
HWU62

HWU61

RES0
TBI

RES1
HPD

HWU59
HWU60

ORGN0 IRGN0
D13-3720 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Note
As FEAT_LVA must be implemented if TCR_EL3.DS == 1, the minimum value of the
TCR_EL3.T0SZ field is 12, as determined by that extension.

For the TLBI Range instructions affecting VA, the format of the argument is changed so
that bits[36:0] hold BaseADDR[52:16]. For the 4KB translation granule, bits[15:12] of
BaseADDR are treated as 0b0000. For the 16KB translation granule, bits[15:14] of
BaseADDR are treated as 0b00.

Note
This forces alignment of the ranges used by the TLBI range instructions.

This field is RES0 for a 64KB translation granule.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [31]

Reserved, RES1.

TCMA, bit [30]

When FEAT_MTE2 is implemented:

TCMA

Controls the generation of Unchecked accesses at EL3 when address [59:56] = 0b0000.

0b0 This control has no effect on the generation of Unchecked accesses.

0b1 All accesses are Unchecked.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBID, bit [29]

When FEAT_PAuth is implemented:

TBID

Controls the use of the top byte of instruction addresses for address matching.

0b0 TCR_EL3.TBI applies to Instruction and Data accesses.

0b1 TCR_EL3.TBI applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL3.

For the purpose of this field, all cache maintenance and address translation instructions that perform
address translation are treated as data accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3721
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
HWU62, bit [28]

When FEAT_HPDS2 is implemented:

HWU62

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry.

0b0 Bit[62] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[62] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL3.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU61, bit [27]

When FEAT_HPDS2 is implemented:

HWU61

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry.

0b0 Bit[61] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[61] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL3.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU60, bit [26]

When FEAT_HPDS2 is implemented:

HWU60

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry.

0b0 Bit[60] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[60] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL3.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.
D13-3722 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
HWU59, bit [25]

When FEAT_HPDS2 is implemented:

HWU59

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry.

0b0 Bit[59] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[59] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL3.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HPD, bit [24]

When FEAT_HPDS is implemented:

HPD

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR0_EL3.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled.

Note
In this case, bit[61] (APTable[0]) and bit[59] (PXNTable) of the next level descriptor
attributes are required to be ignored by the PE, and are no longer reserved, allowing
them to be used by software.

When disabled, the permissions are treated as if the bits are zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [23]

Reserved, RES1.

HD, bit [22]

When FEAT_HAFDBS is implemented:

HD

Hardware management of dirty state in stage 1 translations from EL3.

0b0 Stage 1 hardware management of dirty state disabled.

0b1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3723
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Reserved, RES0.

HA, bit [21]

When FEAT_HAFDBS is implemented:

HA

Hardware Access flag update in stage 1 translations from EL3.

0b0 Stage 1 Access flag update disabled.

0b1 Stage 1 Access flag update enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBI, bit [20]

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the
TTBR0_EL3 region, or ignored and used for tagged addresses.

0b0 Top Byte used in the address calculation.

0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL3 using AArch64 where the address would be translated by
tables pointed to by TTBR0_EL3. It has an effect whether the EL3 translation regime is enabled or
not.

If FEAT_PAuth is implemented and TCR_EL3.TBID is 1, then this field only applies to Data
accesses.

Otherwise, if the value of TBI is 1, then bits[63:56] of that target address are also set to 0 before the
address is stored in the PC, in the following cases:

• A branch or procedure return within EL3.

• A exception taken to EL3.

• An exception return to EL3.

For more information, see Address tagging in AArch64 state on page D5-2676.

Note
This control detrmines the scope of address tagging. It never causes an exception to be generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [19]

Reserved, RES0.

PS, bits [18:16]

Physical Address Size.

0b000 32 bits, 4GB.

0b001 36 bits, 64GB.

0b010 40 bits, 1TB.

0b011 42 bits, 4TB.

0b100 44 bits, 16TB.

0b101 48 bits, 256TB.

0b110 52 bits, 4PB.
D13-3724 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
All other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not
rely on this property as the behavior of the reserved values might change in a future revision of the
architecture.

If the translation granule is not 64KB and FEAT_LPA2 is not implemented, the value 0b110 is
treated as reserved.

It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT_LPA
supports setting the value of 0b110 for the 64KB translation granule size or whether setting this value
behaves as the 0b101 encoding.

In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated
as 0b110, then bits[51:48] of every translation table base address for the stage of translation
controlled by TCR_EL3 are 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TG0, bits [15:14]

Granule size for the TTBR0_EL3.

0b00 4KB.

0b01 64KB.

0b10 16KB.

Other values are reserved.

If the value is programmed to either a reserved value or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL3.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL3.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3725
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL3.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL3. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is less than 16, the
translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field is less than 17, the
translation table walk begins with a level 0 initial lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TCR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TCR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return TCR_EL3;

op0 op1 CRn CRm op2

0b11 0b110 0b0010 0b0000 0b010
D13-3726 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MSR TCR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 TCR_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b0010 0b0000 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3727
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.126 TFSRE0_EL1, Tag Fault Status Register (EL0).

The TFSRE0_EL1 characteristics are:

Purpose

Holds accumulated Tag Check Faults occurring in EL0 that are not taken precisely.

Configurations

This register is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
TFSRE0_EL1 are UNDEFINED.

Attributes

TFSRE0_EL1 is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

TF1, bit [1]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with
bit[55] == 0b1 occurs.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TF0, bit [0]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with
bit[55] == 0b0 occurs.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TFSRE0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TFSRE0_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;

RES0

63 32

RES0

31 2 1 0

TF1 TF0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0110 0b001
D13-3728 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return TFSRE0_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return TFSRE0_EL1;
elsif PSTATE.EL == EL3 then
 return TFSRE0_EL1;

MSR TFSRE0_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TFSRE0_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TFSRE0_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 TFSRE0_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0110 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3729
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.127 TFSR_EL1, Tag Fault Status Register (EL1)

The TFSR_EL1 characteristics are:

Purpose

Holds accumulated Tag Check Faults occurring in EL1 that are not taken precisely.

Configurations

This register is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
TFSR_EL1 are UNDEFINED.

Attributes

TFSR_EL1 is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

TF1, bit [1]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with
bit[55] == 0b1 occurs.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TF0, bit [0]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with
bit[55] == 0b0 occurs.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TFSR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TFSR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;

RES0

63 32

RES0

31 2 1 0

TF1 TF0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0110 0b000
D13-3730 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x190];
 else
 return TFSR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 return TFSR_EL2;
 else
 return TFSR_EL1;
elsif PSTATE.EL == EL3 then
 return TFSR_EL1;

MSR TFSR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x190] = X[t];
 else
 TFSR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0110 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3731
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 TFSR_EL2 = X[t];
 else
 TFSR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 TFSR_EL1 = X[t];

MRS <Xt>, TFSR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x190];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return TFSR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return TFSR_EL1;
 else
 UNDEFINED;

MSR TFSR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x190] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.ATA == '0' then

op0 op1 CRn CRm op2

0b11 0b101 0b0101 0b0110 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b0101 0b0110 0b000
D13-3732 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TFSR_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 TFSR_EL1 = X[t];
 else
 UNDEFINED;

MRS <Xt>, TFSR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return TFSR_EL1;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return TFSR_EL2;
elsif PSTATE.EL == EL3 then
 return TFSR_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0110 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3733
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MSR TFSR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TFSR_EL1 = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TFSR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 TFSR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0110 0b000
D13-3734 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.128 TFSR_EL2, Tag Fault Status Register (EL2)

The TFSR_EL2 characteristics are:

Purpose

Holds accumulated Tag Check Faults occurring in EL2 that are not taken precisely.

Configurations

This register is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
TFSR_EL2 are UNDEFINED.

Attributes

TFSR_EL2 is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

TF1, bit [1]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with
bit[55] == 0b1 occurs.

When HCR_EL2.E2H==0b0, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TF0, bit [0]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with
bit[55] == 0b0 occurs.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TFSR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TFSR_EL2 or
TFSR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

RES0

31 2 1 0

TF1 TF0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3735
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, TFSR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return TFSR_EL1;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return TFSR_EL2;
elsif PSTATE.EL == EL3 then
 return TFSR_EL2;

MSR TFSR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0110 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0110 0b000
D13-3736 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 TFSR_EL1 = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TFSR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 TFSR_EL2 = X[t];

MRS <Xt>, TFSR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x190];
 else
 return TFSR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 return TFSR_EL2;
 else
 return TFSR_EL1;
elsif PSTATE.EL == EL3 then
 return TFSR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0110 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3737
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MSR TFSR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x190] = X[t];
 else
 TFSR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 TFSR_EL2 = X[t];
 else
 TFSR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 TFSR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0110 0b000
D13-3738 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.129 TFSR_EL3, Tag Fault Status Register (EL3)

The TFSR_EL3 characteristics are:

Purpose

Holds accumulated Tag Check Faults occurring in EL3 that are not taken precisely.

Configurations

This register is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
TFSR_EL3 are UNDEFINED.

Attributes

TFSR_EL3 is a 64-bit register.

Field descriptions

Bits [63:1]

Reserved, RES0.

TF0, bit [0]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with
bit[55] == 0b0 occurs.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TFSR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TFSR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return TFSR_EL3;

RES0

63 32

RES0

31 1 0

TF0

op0 op1 CRn CRm op2

0b11 0b110 0b0101 0b0110 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3739
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MSR TFSR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 TFSR_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b0101 0b0110 0b000
D13-3740 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.130 TPIDR_EL0, EL0 Read/Write Software Thread ID Register

The TPIDR_EL0 characteristics are:

Purpose

Provides a location where software executing at EL0 can store thread identifying information, for
OS management purposes.

The PE makes no use of this register.

Configurations

AArch64 System register TPIDR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register TPIDRURW[31:0].

Attributes

TPIDR_EL0 is a 64-bit register.

Field descriptions

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TPIDR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TPIDR_EL0

if PSTATE.EL == EL0 then
 if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGRTR_EL2.TPIDR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return TPIDR_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TPIDR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return TPIDR_EL0;
elsif PSTATE.EL == EL2 then
 return TPIDR_EL0;
elsif PSTATE.EL == EL3 then
 return TPIDR_EL0;

Thread ID

63 32

Thread ID

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3741
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MSR TPIDR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGWTR_EL2.TPIDR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TPIDR_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TPIDR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TPIDR_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 TPIDR_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 TPIDR_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b010
D13-3742 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.131 TPIDR_EL1, EL1 Software Thread ID Register

The TPIDR_EL1 characteristics are:

Purpose

Provides a location where software executing at EL1 can store thread identifying information, for
OS management purposes.

The PE makes no use of this register.

Configurations

AArch64 System register TPIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register TPIDRPRW[31:0].

Attributes

TPIDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TPIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TPIDR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TPIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return TPIDR_EL1;
elsif PSTATE.EL == EL2 then
 return TPIDR_EL1;
elsif PSTATE.EL == EL3 then
 return TPIDR_EL1;

Thread ID

63 32

Thread ID

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3743
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MSR TPIDR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TPIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TPIDR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 TPIDR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 TPIDR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b100
D13-3744 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.132 TPIDR_EL2, EL2 Software Thread ID Register

The TPIDR_EL2 characteristics are:

Purpose

Provides a location where software executing at EL2 can store thread identifying information, for
OS management purposes.

The PE makes no use of this register.

Configurations

AArch64 System register TPIDR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HTPIDR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

TPIDR_EL2 is a 64-bit register.

Field descriptions

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TPIDR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TPIDR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x090];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return TPIDR_EL2;

Thread ID

63 32

Thread ID

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b0000 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3745
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
elsif PSTATE.EL == EL3 then
 return TPIDR_EL2;

MSR TPIDR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x090] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TPIDR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 TPIDR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b0000 0b010
D13-3746 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.133 TPIDR_EL3, EL3 Software Thread ID Register

The TPIDR_EL3 characteristics are:

Purpose

Provides a location where software executing at EL3 can store thread identifying information, for
OS management purposes.

The PE makes no use of this register.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to TPIDR_EL3
are UNDEFINED.

Attributes

TPIDR_EL3 is a 64-bit register.

Field descriptions

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TPIDR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TPIDR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return TPIDR_EL3;

Thread ID

63 32

Thread ID

31 0

op0 op1 CRn CRm op2

0b11 0b110 0b1101 0b0000 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3747
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MSR TPIDR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 TPIDR_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b1101 0b0000 0b010
D13-3748 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.134 TPIDRRO_EL0, EL0 Read-Only Software Thread ID Register

The TPIDRRO_EL0 characteristics are:

Purpose

Provides a location where software executing at EL1 or higher can store thread identifying
information that is visible to software executing at EL0, for OS management purposes.

The PE makes no use of this register.

Configurations

AArch64 System register TPIDRRO_EL0 bits [31:0] are architecturally mapped to AArch32
System register TPIDRURO[31:0].

Attributes

TPIDRRO_EL0 is a 64-bit register.

Field descriptions

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

Accessing TPIDRRO_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TPIDRRO_EL0

if PSTATE.EL == EL0 then
 if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGRTR_EL2.TPIDRRO_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return TPIDRRO_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TPIDRRO_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return TPIDRRO_EL0;
elsif PSTATE.EL == EL2 then
 return TPIDRRO_EL0;
elsif PSTATE.EL == EL3 then
 return TPIDRRO_EL0;

Thread ID

63 32

Thread ID

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3749
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MSR TPIDRRO_EL0, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TPIDRRO_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TPIDRRO_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 TPIDRRO_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 TPIDRRO_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b011
D13-3750 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.135 TTBR0_EL1, Translation Table Base Register 0 (EL1)

The TTBR0_EL1 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of the translation of
an address from the lower VA range in the EL1&0 translation regime, and other information for this
translation regime.

Configurations

AArch64 System register TTBR0_EL1 bits [63:0] are architecturally mapped to AArch32 System
register TTBR0[63:0].

Attributes

TTBR0_EL1 is a 64-bit register.

Field descriptions

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL1.A1 field selects either
TTBR0_EL1.ASID or TTBR1_EL1.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BADDR[47:1], bits [47:1]

Translation table base address:

• Bits A[47:x] of the stage 1 translation table base address bits are in register bits[47:x].

• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the
table. The smallest permitted value of x is 6. The AArch64 Virtual Memory System Architecture
chapter describes how x is calculated based on the value of TCR_EL1.T0SZ, the translation stage,
and the translation granule size.

Note

A translation table is required to be aligned to the size of the table. If a table contains fewer than
eight entries, it must be aligned on a 64 byte address boundary.

If the value of TCR_EL1.IPS is not 0b110, then:

• Register bits[(x-1):1] are RES0.

• If the implementation supports 52-bit PAs and IPAs, then bits A[51:48] of the stage 1
translation table base address are 0b0000.

If FEAT_LPA is implemented and the value of TCR_EL1.IPS is 0b110, then:

• Bits A[51:48] of the stage 1 translation table base address bits are in register bits[5:2].

• Register bit[1] is RES0.

ASID

63 48

BADDR[47:1]

47 32

BADDR[47:1]

31 1 0

CnP
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3751
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
• When x>6, register bits[(x-1):6] are RES0.

Note

TCR_EL1.IPS==0b110 is permitted when:

• FEAT_LPA is implemented and the 64KB translation granule is used.

• FEAT_LPA2 is implemented and the 4KB or 16KB translation granule is used.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not
support a 52 bit PA size, if a translation table lookup uses this register when the Effective value of
TCR_EL1.IPS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is
generated.

If any register bit[47:1] that is defined as RES0 has the value 1 when a translation table walk is done
using TTBR0_EL1, then the translation table base address might be misaligned, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits A[(x-1):0] of the stage 1 translation table base address are treated as if all the bits are
zero. The value read back from the corresponding register bits is either the value written to
the register or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

CnP

Common not Private. This bit indicates whether each entry that is pointed to by TTBR0_EL1 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of TTBR0_EL1.CnP is 1.

0b0 The translation table entries pointed to by TTBR0_EL1, for the current translation
regime and ASID, are permitted to differ from corresponding entries for TTBR0_EL1
for other PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR0_EL1.CnP on those other PEs.

• The value of the current ASID.

• If EL2 is implemented and enabled in the current Security state, the value of the
current VMID.

0b1 The translation table entries pointed to by TTBR0_EL1 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
TTBR0_EL1.CnP is 1 and all of the following apply:

• The translation table entries are pointed to by TTBR0_EL1.

• The translation tables relate to the same translation regime.

• The ASID is the same as the current ASID.

• If EL2 is implemented and enabled in the current Security state, the value of the
current VMID.

This field is permitted to be cached in a TLB.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry,
that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1
and stage 2.
D13-3752 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Note

If the value of the TTBR0_EL1.CnP bit is 1 on multiple PEs in the same Inner Shareable domain
and those TTBR0_EL1s do not point to the same translation table entries when the other conditions
specified for the case when the value of CnP is 1 apply, then the results of translations are
CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching
of control or data values on page K1-8409.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TTBR0_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic TTBR0_EL1
or TTBR0_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TTBR0_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TTBR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x200];
 else
 return TTBR0_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return TTBR0_EL2;
 else
 return TTBR0_EL1;
elsif PSTATE.EL == EL3 then
 return TTBR0_EL1;

MSR TTBR0_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3753
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TTBR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x200] = X[t];
 else
 TTBR0_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 TTBR0_EL2 = X[t];
 else
 TTBR0_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 TTBR0_EL1 = X[t];

MRS <Xt>, TTBR0_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x200];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return TTBR0_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return TTBR0_EL1;
 else
 UNDEFINED;

MSR TTBR0_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x200] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 TTBR0_EL1 = X[t];
 else

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0000 0b000
D13-3754 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 TTBR0_EL1 = X[t];
 else
 UNDEFINED;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3755
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.136 TTBR0_EL2, Translation Table Base Register 0 (EL2)

The TTBR0_EL2 characteristics are:

Purpose

When HCR_EL2.E2H is 0, holds the base address of the translation table for the initial lookup for
stage 1 of an address translation in the EL2 translation regime, and other information for this
translation regime.

When HCR_EL2.E2H is 1, holds the base address of the translation table for the initial lookup for
stage 1 of the translation of an address from the lower VA range in the EL2&0 translation regime,
and other information for this translation regime.

Configurations

AArch64 System register TTBR0_EL2 bits [47:1] are architecturally mapped to AArch32 System
register HTTBR[47:1].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

TTBR0_EL2 is a 64-bit register.

Field descriptions

ASID, bits [63:48]

When FEAT_VHE is implemented:

ASID

When HCR_EL2.E2H is 0, this field is RES0.

When HCR_EL2.E2H is 1, it holds an ASID for the translation table base address. The
TCR_EL2.A1 field selects either TTBR0_EL2.ASID or TTBR1_EL2.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BADDR[47:1], bits [47:1]

Translation table base address:

• Bits A[47:x] of the stage 1 translation table base address bits are in register bits[47:x].

• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the
table. The smallest permitted value of x is 6. The AArch64 Virtual Memory System Architecture
chapter describes how x is calculated based on the value of TCR_EL2.T0SZ, the translation stage,
and the translation granule size.

ASID

63 48

BADDR[47:1]

47 32

BADDR[47:1]

31 1 0

CnP
D13-3756 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Note

A translation table is required to be aligned to the size of the table. If a table contains fewer than
eight entries, it must be aligned on a 64 byte address boundary.

If the value of TCR_EL2.{I}PS is not 0b110, then:

• Register bits[(x-1):1] are RES0.

• If the implementation supports 52-bit PAs and IPAs, then bits A[51:48] of the stage 1
translation table base address are 0b0000.

If FEAT_LPA is implemented and the value of TCR_EL2.{I}PS is 0b110, then:

• Bits A[51:48] of the stage 1 translation table base address bits are in register bits[5:2].

• Register bit[1] is RES0.

• When x>6, register bits[(x-1):6] are RES0.

Note

The OA size specified by TCR_EL2.{I}PS is determined as follows:

• The value of TCR_EL2.PS when the value of HCR_EL2.E2H is 0.

• The value of TCR_EL2.IPS when the value of HCR_EL2.E2H is 1.

TCR_EL2.{I}PS==0b110 is permitted when:

• FEAT_LPA is implemented and the 64KB translation granule is used.

• FEAT_LPA2 is implemented and the 4KB or 16KB translation granule is used.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not
support a 52 bit PA size, if a translation table lookup uses this register when the Effective value of
TCR_EL2.{I}PS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is
generated.

If any register bit[47:1] that is defined as RES0 has the value 1 when a translation table walk is done
using TTBR0_EL2, then the translation table base address might be misaligned, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits A[(x-1):0] of the stage 1 translation table base address are treated as if all the bits are
zero. The value read back from the corresponding register bits is either the value written to
the register or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

CnP

Common not Private. This bit indicates whether each entry that is pointed to by TTBR0_EL2 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of TTBR0_EL2.CnP is 1.

0b0 The translation table entries pointed to by TTBR0_EL2 for the current translation
regime, and ASID if applicable, are permitted to differ from corresponding entries for
TTBR0_EL2 for other PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR0_EL2.CnP on those other PEs.

• When the current translation regime is the EL2&0 regime, the value of the
current ASID.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3757
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b1 The translation table entries pointed to by TTBR0_EL2 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
TTBR0_EL2.CnP is 1 and all of the following apply:

• The translation table entries are pointed to by TTBR0_EL2.

• The translation tables relate to the same translation regime.

• If that translation regime is the EL2&0 regime, the ASID is the same as the
current ASID.

This field is permitted to be cached in a TLB.

Note

If the value of the TTBR0_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable domain
and those TTBR0_EL2s do not point to the same translation table entries when the other conditions
specified for the case when the value of CnP is 1 apply, then the results of translations are
CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching
of control or data values on page K1-8409.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TTBR0_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TTBR0_EL2
or TTBR0_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TTBR0_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return TTBR0_EL2;
elsif PSTATE.EL == EL3 then
 return TTBR0_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b000
D13-3758 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MSR TTBR0_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TTBR0_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 TTBR0_EL2 = X[t];

MRS <Xt>, TTBR0_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TTBR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x200];
 else
 return TTBR0_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return TTBR0_EL2;
 else
 return TTBR0_EL1;
elsif PSTATE.EL == EL3 then
 return TTBR0_EL1;

MSR TTBR0_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TTBR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3759
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 NVMem[0x200] = X[t];
 else
 TTBR0_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 TTBR0_EL2 = X[t];
 else
 TTBR0_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 TTBR0_EL1 = X[t];

D13-3760 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.137 TTBR0_EL3, Translation Table Base Register 0 (EL3)

The TTBR0_EL3 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of an address
translation in the EL3 translation regime, and other information for this translation regime.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to TTBR0_EL3
are UNDEFINED.

Attributes

TTBR0_EL3 is a 64-bit register.

Field descriptions

Bits [63:48]

Reserved, RES0.

BADDR[47:1], bits [47:1]

Translation table base address:

• Bits A[47:x] of the stage 1 translation table base address bits are in register bits[47:x].

• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the
table. The smallest permitted value of x is 6. The AArch64 Virtual Memory System Architecture
chapter describes how x is calculated based on the value of TCR_EL3.T0SZ, the translation stage,
and the translation granule size.

Note
A translation table is required to be aligned to the size of the table. If a table contains fewer than
eight entries, it must be aligned on a 64 byte address boundary.

If the value of TCR_EL3.PS is not 0b110, then:

• Register bits[(x-1):1] are RES0.

• If the implementation supports 52-bit PAs and IPAs, then bits A[51:48] of the stage 1
translation table base address are 0b0000.

If FEAT_LPA is implemented and the value of TCR_EL3.PS is 0b110, then:

• Bits A[51:48] of the stage 1 translation table base address bits are in register bits[5:2].

• Register bit[1] is RES0.

• When x>6, register bits[(x-1):6] are RES0.

Note
TCR_EL3.PS==0b110 is permitted when:

• FEAT_LPA is implemented and the 64KB translation granule is used.

RES0

63 48

BADDR[47:1]

47 32

BADDR[47:1]

31 1 0

CnP
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3761
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
• FEAT_LPA2 is implemented and the 4KB or 16KB translation granule is used.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not
support a 52 bit PA size, if a translation table lookup uses this register when the Effective value of
TCR_EL3.PS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is
generated.

If any register bit[47:1] that is defined as RES0 has the value 1 when a translation table walk is done
using TTBR0_EL3, then the translation table base address might be misaligned, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits A[(x-1):0] of the stage 1 translation table base address are treated as if all the bits are
zero. The value read back from the corresponding register bits is either the value written to
the register or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

CnP

Common not Private. This bit indicates whether each entry that is pointed to by TTBR0_EL3 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of TTBR0_EL3.CnP is 1.

0b0 The translation table entries pointed to by TTBR0_EL3, for the current translation
regime, are permitted to differ from corresponding entries for TTBR0_EL3 for other
PEs in the Inner Shareable domain. This is not affected by the value of
TTBR0_EL3.CnP on those other PEs.

0b1 The translation table entries pointed to by TTBR0_EL3 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
TTBR0_EL3.CnP is 1 and the translation table entries are pointed to by TTBR0_EL3.

This field is permitted to be cached in a TLB.

Note

If the value of the TTBR0_EL3.CnP bit is 1 on multiple PEs in the same Inner Shareable domain
and those TTBR0_EL3s do not point to the same translation table entries the results of translations
using TTBR0_EL3 are CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE
behaviors due to caching of control or data values on page K1-8409.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TTBR0_EL3

Accesses to this register use the following encodings in the System register encoding space:
D13-3762 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, TTBR0_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return TTBR0_EL3;

MSR TTBR0_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 TTBR0_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b0010 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b0010 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3763
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.138 TTBR1_EL1, Translation Table Base Register 1 (EL1)

The TTBR1_EL1 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of the translation of
an address from the higher VA range in the EL1&0 stage 1 translation regime, and other information
for this translation regime.

Configurations

AArch64 System register TTBR1_EL1 bits [63:0] are architecturally mapped to AArch32 System
register TTBR1[63:0].

Attributes

TTBR1_EL1 is a 64-bit register.

Field descriptions

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL1.A1 field selects either
TTBR0_EL1.ASID or TTBR1_EL1.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BADDR[47:1], bits [47:1]

Translation table base address:

• Bits A[47:x] of the stage 1 translation table base address bits are in register bits[47:x].

• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the
table. The smallest permitted value of x is 6. The AArch64 Virtual Memory System Architecture
chapter describes how x is calculated based on the value of TCR_EL1.T1SZ, the translation stage,
and the translation granule size.

Note

A translation table is required to be aligned to the size of the table. If a table contains fewer than
eight entries, it must be aligned on a 64 byte address boundary.

If the value of TCR_EL1.IPS is not 0b110, then:

• Register bits[(x-1):1] are RES0.

• If the implementation supports 52-bit PAs and IPAs, then bits A[51:48] of the stage 1
translation table base address are 0b0000.

If FEAT_LPA is implemented and the value of TCR_EL1.IPS is 0b110, then:

• Bits A[51:48] of the stage 1 translation table base address bits are in register bits[5:2].

• Register bit[1] is RES0.

ASID

63 48

BADDR[47:1]

47 32

BADDR[47:1]

31 1 0

CnP
D13-3764 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
• When x>6, register bits[(x-1):6] are RES0.

Note

TCR_EL1.IPS==0b110 is permitted when:

• FEAT_LPA is implemented and the 64KB translation granule is used.

• FEAT_LPA2 is implemented and the 4KB or 16KB translation granule is used.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not
support a 52 bit PA size, if a translation table lookup uses this register when the Effective value of
TCR_EL1.IPS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is
generated.

If any register bit[47:1] that is defined as RES0 has the value 1 when a translation table walk is done
using TTBR1_EL1, then the translation table base address might be misaligned, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits A[(x-1):0] of the stage 1 translation table base address are treated as if all the bits are
zero. The value read back from the corresponding register bits is either the value written to
the register or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

CnP

Common not Private. This bit indicates whether each entry that is pointed to by TBR1_EL1 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of TTBR1_EL1.CnP is 1.

0b0 The translation table entries pointed to by TTBR1_EL1, for the current translation
regime and ASID, are permitted to differ from corresponding entries for TTBR1_EL1
for other PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR1_EL1.CnP on those other PEs.

• The value of the current ASID.

• If EL2 is implemented and enabled in the current Security state, the value of the
current VMID.

0b1 The translation table entries pointed to by TTBR1_EL1 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
TTBR1_EL1.CnP is 1 and all of the following apply:

• The translation table entries are pointed to by TTBR1_EL1.

• The translation tables relate to the same translation regime.

• The ASID is the same as the current ASID.

• If EL2 is implemented and enabled in the current Security state, the value of the
current VMID.

This field is permitted to be cached in a TLB.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry,
that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1
and stage 2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3765
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Note

If the value of the TTBR1_EL1.CnP bit is 1 on multiple PEs in the same Inner Shareable domain
and those TTBR1_EL1s do not point to the same translation table entries when the other conditions
specified for the case when the value of CnP is 1 apply, then the results of translations are
CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching
of control or data values on page K1-8409.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TTBR1_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic TTBR1_EL1
or TTBR1_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TTBR1_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TTBR1_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x210];
 else
 return TTBR1_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return TTBR1_EL2;
 else
 return TTBR1_EL1;
elsif PSTATE.EL == EL3 then
 return TTBR1_EL1;

MSR TTBR1_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b001
D13-3766 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TTBR1_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x210] = X[t];
 else
 TTBR1_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 TTBR1_EL2 = X[t];
 else
 TTBR1_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 TTBR1_EL1 = X[t];

MRS <Xt>, TTBR1_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x210];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return TTBR1_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return TTBR1_EL1;
 else
 UNDEFINED;

MSR TTBR1_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x210] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 TTBR1_EL1 = X[t];
 else

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3767
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 TTBR1_EL1 = X[t];
 else
 UNDEFINED;

D13-3768 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.139 TTBR1_EL2, Translation Table Base Register 1 (EL2)

The TTBR1_EL2 characteristics are:

Purpose

When HCR_EL2.E2H is 1, holds the base address of the translation table for the initial lookup for
stage 1 of the translation of an address from the higher VA range in the EL2&0 translation regime,
and other information for this translation regime.

Note

When HCR_EL2.E2H is 0, the contents of this register are ignored by the PE, except for a direct
read or write of the register.

Configurations

This register is present only when FEAT_VHE is implemented. Otherwise, direct accesses to
TTBR1_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

TTBR1_EL2 is a 64-bit register.

Field descriptions

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL2.A1 field selects either
TTBR0_EL2.ASID or TTBR1_EL2.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BADDR[47:1], bits [47:1]

Translation table base address:

• Bits A[47:x] of the stage 1 translation table base address bits are in register bits[47:x].

• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the
table. The smallest permitted value of x is 6. The AArch64 Virtual Memory System Architecture
chapter describes how x is calculated based on the value of TCR_EL2.T1SZ, the translation stage,
and the translation granule size.

Note

A translation table is required to be aligned to the size of the table. If a table contains fewer than
eight entries, it must be aligned on a 64 byte address boundary.

ASID

63 48

BADDR[47:1]

47 32

BADDR[47:1]

31 1 0

CnP
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3769
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
If the value of TCR_EL2.{I}PS is not 0b110, then:

• Register bits[(x-1):1] are RES0.

• If the implementation supports 52-bit PAs and IPAs, then bits A[51:48] of the stage 1
translation table base address are 0b0000.

If FEAT_LPA is implemented and the value of TCR_EL2.{I}PS is 0b110, then:

• Bits A[51:48] of the stage 1 translation table base address bits are in register bits[5:2].

• Register bit[1] is RES0.

• When x>6, register bits[(x-1):6] are RES0.

Note
The OA size specified by TCR_EL2.{I}PS is determined as follows:

• The value of TCR_EL2.PS when the value of HCR_EL2.E2H is 0.

• The value of TCR_EL2.IPS when the value of HCR_EL2.E2H is 1.

TCR_EL2.{I}PS==0b110 is permitted when:

• FEAT_LPA is implemented and the 64KB translation granule is used.

• FEAT_LPA2 is implemented and the 4KB or 16KB translation granule is used.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not
support a 52 bit PA size, if a translation table lookup uses this register when the Effective value of
TCR_EL2.{I}PS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is
generated.

If any register bit[47:1] that is defined as RES0 has the value 1 when a translation table walk is done
using TTBR1_EL2, then the translation table base address might be misaligned, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits A[(x-1):0] of the stage 1 translation table base address are treated as if all the bits are
zero. The value read back from the corresponding register bits is either the value written to
the register or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

CnP

Common not Private. This bit indicates whether each entry that is pointed to by TBR1_EL2 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of TTBR1_EL2.CnP is 1.

0b0 The translation table entries pointed to by TTBR1_EL2 for the current ASID are
permitted to differ from corresponding entries for TTBR1_EL2 for other PEs in the
Inner Shareable domain. This is not affected by:

• The value of TTBR1_EL2.CnP on those other PEs.

• The value of the current ASID.

0b1 The translation table entries pointed to by TTBR1_EL2 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
TTBR1_EL2.CnP is 1 and all of the following apply:

• The translation table entries are pointed to by TTBR1_EL2.

• The ASID is the same as the current ASID.

This field is permitted to be cached in a TLB.
D13-3770 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Note

• TTBR1_EL2 is accessible only when the value of HCR_EL2.E2H is 1, meaning the current
translation regime is the EL2&0 regime.

• If the value of the TTBR1_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable
domain and those TTBR1_EL2s do not point to the same translation table entries when the
other conditions specified for the case when the value of CnP is 1 apply, then the results of
translations are CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE
behaviors due to caching of control or data values on page K1-8409.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TTBR1_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TTBR1_EL2
or TTBR1_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TTBR1_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return TTBR1_EL2;
elsif PSTATE.EL == EL3 then
 return TTBR1_EL2;

MSR TTBR1_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TTBR1_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3771
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
elsif PSTATE.EL == EL3 then
 TTBR1_EL2 = X[t];

MRS <Xt>, TTBR1_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TTBR1_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x210];
 else
 return TTBR1_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return TTBR1_EL2;
 else
 return TTBR1_EL1;
elsif PSTATE.EL == EL3 then
 return TTBR1_EL1;

MSR TTBR1_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TTBR1_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x210] = X[t];
 else
 TTBR1_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 TTBR1_EL2 = X[t];
 else
 TTBR1_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 TTBR1_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b001
D13-3772 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.140 VBAR_EL1, Vector Base Address Register (EL1)

The VBAR_EL1 characteristics are:

Purpose

Holds the vector base address for any exception that is taken to EL1.

Configurations

AArch64 System register VBAR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register VBAR[31:0].

Attributes

VBAR_EL1 is a 64-bit register.

Field descriptions

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL1.

Note
If the implementation does not support FEAT_LVA, then:

• If tagged addresses are being used, bits [55:48] of VBAR_EL1 must be the same or else the
use of the vector address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:48] of VBAR_EL1 must be the same or else
the use of the vector address will result in a recursive exception.

If the implementation supports FEAT_LVA, then:

• If tagged addresses are being used, bits [55:52] of VBAR_EL1 must be the same or else the
use of the vector address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:52] of VBAR_EL1 must be the same or else
the use of the vector address will result in a recursive exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [10:0]

Reserved, RES0.

Accessing VBAR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic VBAR_EL1 or
VBAR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

Vector Base Address

63 32

Vector Base Address

31 11

RES0

10 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3773
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, VBAR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.VBAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x250];
 else
 return VBAR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return VBAR_EL2;
 else
 return VBAR_EL1;
elsif PSTATE.EL == EL3 then
 return VBAR_EL1;

MSR VBAR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.VBAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x250] = X[t];
 else
 VBAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 VBAR_EL2 = X[t];
 else
 VBAR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 VBAR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b000
D13-3774 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, VBAR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x250];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return VBAR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return VBAR_EL1;
 else
 UNDEFINED;

MSR VBAR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x250] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 VBAR_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 VBAR_EL1 = X[t];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b1100 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3775
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.141 VBAR_EL2, Vector Base Address Register (EL2)

The VBAR_EL2 characteristics are:

Purpose

Holds the vector base address for any exception that is taken to EL2.

Configurations

AArch64 System register VBAR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HVBAR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VBAR_EL2 is a 64-bit register.

Field descriptions

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL2.

Note
If FEAT_LVA is implemented:

• If HCR_EL2.E2H == 0b1:

— If tagged addresses are being used, bits [55:52] of VBAR_EL2 must be the same or
else the use of the vector address will result in a recursive exception.

— If tagged addresses are not being used, bits [63:52] of VBAR_EL2 must be the same
or else the use of the vector address will result in a recursive exception.

• If HCR_EL2.E2H == 0b0:

— If tagged addresses are being used, bits [55:52] of VBAR_EL2 must be 0 or else the
use of the vector address will result in a recursive exception.

— If tagged addresses are not being used, bits [63:52] of VBAR_EL2 must be 0 or else
the use of the vector address will result in a recursive exception.

If FEAT_LVA is not implemented:

• If HCR_EL2.E2H == 0b1:

— If tagged addresses are being used, bits [55:48] of VBAR_EL2 must be the same or
else the use of the vector address will result in a recursive exception.

— If tagged addresses are not being used, bits [63:48] of VBAR_EL2 must be the same
or else the use of the vector address will result in a recursive exception.

• If HCR_EL2.E2H == 0b0:

— If tagged addresses are being used, bits [55:48] of VBAR_EL2 must be 0 or else the
use of the vector address will result in a recursive exception.

— If tagged addresses are not being used, bits [63:48] of VBAR_EL2 must be 0 or else
the use of the vector address will result in a recursive exception.

Vector Base Address

63 32

Vector Base Address

31 11

RES0

10 0
D13-3776 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [10:0]

Reserved, RES0.

Accessing VBAR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic VBAR_EL2 or
VBAR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VBAR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return VBAR_EL2;
elsif PSTATE.EL == EL3 then
 return VBAR_EL2;

MSR VBAR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VBAR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 VBAR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3777
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, VBAR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.VBAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x250];
 else
 return VBAR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return VBAR_EL2;
 else
 return VBAR_EL1;
elsif PSTATE.EL == EL3 then
 return VBAR_EL1;

MSR VBAR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.VBAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x250] = X[t];
 else
 VBAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 VBAR_EL2 = X[t];
 else
 VBAR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 VBAR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b000
D13-3778 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.142 VBAR_EL3, Vector Base Address Register (EL3)

The VBAR_EL3 characteristics are:

Purpose

Holds the vector base address for any exception that is taken to EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to VBAR_EL3
are UNDEFINED.

Attributes

VBAR_EL3 is a 64-bit register.

Field descriptions

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL3.

Note
If the implementation does not support FEAT_LVA, then:

• If tagged addresses are being used, bits [55:48] of VBAR_EL3 must be 0 or else the use of
the vector address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:48] of VBAR_EL3 must be 0 or else the use
of the vector address will result in a recursive exception.

If the implementation supports FEAT_LVA, then:

• If tagged addresses are being used, bits [55:52] of VBAR_EL3 must be 0 or else the use of
the vector address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:52] of VBAR_EL3 must be 0 or else the use
of the vector address will result in a recursive exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [10:0]

Reserved, RES0.

Accessing VBAR_EL3

Accesses to this register use the following encodings in the System register encoding space:

Vector Base Address

63 32

Vector Base Address

31 11

RES0

10 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3779
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, VBAR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return VBAR_EL3;

MSR VBAR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 VBAR_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b0000 0b000
D13-3780 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.143 VMPIDR_EL2, Virtualization Multiprocessor ID Register

The VMPIDR_EL2 characteristics are:

Purpose

Holds the value of the Virtualization Multiprocessor ID. This is the value returned by EL1 reads of
MPIDR_EL1.

Configurations

AArch64 System register VMPIDR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register VMPIDR[31:0].

If EL2 is not implemented, reads of this register return the value of the MPIDR_EL1 and writes to
the register are ignored.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VMPIDR_EL2 is a 64-bit register.

Field descriptions

Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

Affinity level 3. See the description of VMPIDR_EL2.Aff0 for more information.

Aff3 is not supported in AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [31]

Reserved, RES1.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system.

0b0 Processor is part of a multiprocessor system.

0b1 Processor is part of a uniprocessor system.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [29:25]

Reserved, RES0.

RES0

63 40

Aff3

39 32

31

U

30

RES0

29 25

MT

24

Aff2

23 16

Aff1

15 8

Aff0

7 0

RES1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3781
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a
multithreading type approach. See the description of VMPIDR_EL2.Aff0 for more information
about affinity levels.

0b0 Performance of PEs at the lowest affinity level is largely independent.

0b1 Performance of PEs at the lowest affinity level is very interdependent.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Aff2, bits [23:16]

Affinity level 2. See the description of VMPIDR_EL2.Aff0 for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Aff1, bits [15:8]

Affinity level 1. See the description of VMPIDR_EL2.Aff0 for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Aff0, bits [7:0]

Affinity level 0. This is the affinity level that is most significant for determining PE behavior. Higher
affinity levels are increasingly less significant in determining PE behavior. The assigned value of
the MPIDR.{Aff2, Aff1, Aff0} or MPIDR_EL1.{Aff3, Aff2, Aff1, Aff0} set of fields of each PE
must be unique within the system as a whole.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VMPIDR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VMPIDR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x050];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return VMPIDR_EL2;
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 return MPIDR_EL1;
 else
 return VMPIDR_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0000 0b0000 0b101
D13-3782 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MSR VMPIDR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x050] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VMPIDR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 //no operation
 else
 VMPIDR_EL2 = X[t];

MRS <Xt>, MPIDR_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.MPIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() then
 return VMPIDR_EL2;
 else
 return MPIDR_EL1;
elsif PSTATE.EL == EL2 then
 return MPIDR_EL1;
elsif PSTATE.EL == EL3 then
 return MPIDR_EL1;

op0 op1 CRn CRm op2

0b11 0b100 0b0000 0b0000 0b101

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0000 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3783
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.144 VNCR_EL2, Virtual Nested Control Register

The VNCR_EL2 characteristics are:

Purpose

When FEAT_NV2 is implemented, holds the base address that is used to define the memory location
that is accessed by transformed reads and writes of System registers.

Configurations

This register is present only when FEAT_NV2 is implemented. Otherwise, direct accesses to
VNCR_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VNCR_EL2 is a 64-bit register.

Field descriptions

RESS, bits [63:53]

Reserved, Sign extended. If the bits marked as RESS do not all have the same value, then there is a
CONSTRAINED UNPREDICTABLE choice between:

• Generating an EL2 translation regime Translation abort on use of the VNCR_EL2 register.

• Bits[63:49] of VNCR_EL2 are treated as the same value as bit[48] for all purposes other than
reading back the register.

• Bits[63:49] of VNCR_EL2 are treated as the same value as bit[48] for all purposes.

• If the virtual address space for EL2 supports more than 48 bits, bits[63:53] of VNCR_EL2
are treated as the same value as bit[52] for all purposes other than reading back the register.

• If the virtual address space for EL2 supports more than 48 bits, bits[63:53] of VNCR_EL2
are treated as the same value as bit[52].

Where the EL2 translation regime has upper and lower address ranges, bit[52] is used to select
between those address ranges to determine if the address space supports more than 48 bits.

BADDR, bits [52:12]

Base Address. If the virtual address space for EL2 does not support more than 48 bits, then bits
[52:49] are RESS.

When a register read/write is transformed to be a Load or Store, the address of the load/store is to
SignOffset(VNCR_EL2.BADDR:Offset<11:0>, 64).

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:0]

Reserved, RES0.

Accessing VNCR_EL2

Accesses to this register use the following encodings in the System register encoding space:

RESS

63 53

BADDR

52 32

BADDR

31 12

RES0

11 0
D13-3784 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, VNCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x0B0];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return VNCR_EL2;
elsif PSTATE.EL == EL3 then
 return VNCR_EL2;

MSR VNCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x0B0] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VNCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 VNCR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3785
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.145 VPIDR_EL2, Virtualization Processor ID Register

The VPIDR_EL2 characteristics are:

Purpose

Holds the value of the Virtualization Processor ID. This is the value returned by EL1 reads of
MIDR_EL1.

Configurations

AArch64 System register VPIDR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register VPIDR[31:0].

If EL2 is not implemented, reads of this register return the value of the MIDR_EL1 and writes to
the register are ignored.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VPIDR_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm.
Assigned codes include the following:

0x00 Reserved for software use.

0x41 Arm Limited.

0x42 Broadcom Corporation.

0x43 Cavium Inc.

0x44 Digital Equipment Corporation.

0x46 Fujitsu Ltd.

0x49 Infineon Technologies AG.

0x4D Motorola or Freescale Semiconductor Inc.

0x4E NVIDIA Corporation.

0x50 Applied Micro Circuits Corporation.

0x51 Qualcomm Inc.

0x56 Marvell International Ltd.

0x69 Intel Corporation.

0xC0 Ampere Computing.

Arm can assign codes that are not published in this manual. All values not assigned by Arm are
reserved and must not be used.

RES0

63 32

Implementer

31 24

Variant

23 20 19 16

PartNum

15 4

Revision

3 0

Architecture
D13-3786 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between
different product variants, or major revisions of a product.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Architecture, bits [19:16]

Architecture version. Defined values are:

0b0001 Armv4.

0b0010 Armv4T.

0b0011 Armv5 (obsolete).

0b0100 Armv5T.

0b0101 Armv5TE.

0b0110 Armv5TEJ.

0b0111 Armv6.

0b1111 Architectural features are individually identified in the ID_* registers.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7,
the variant and architecture are encoded differently.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VPIDR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VPIDR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x088];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then

op0 op1 CRn CRm op2

0b11 0b100 0b0000 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3787
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return VPIDR_EL2;
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 return MIDR_EL1;
 else
 return VPIDR_EL2;

MSR VPIDR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x088] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VPIDR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 //no operation
 else
 VPIDR_EL2 = X[t];

MRS <Xt>, MIDR_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.MIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() then
 return VPIDR_EL2;
 else
 return MIDR_EL1;
elsif PSTATE.EL == EL2 then
 return MIDR_EL1;
elsif PSTATE.EL == EL3 then
 return MIDR_EL1;

op0 op1 CRn CRm op2

0b11 0b100 0b0000 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0000 0b000
D13-3788 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.146 VSTCR_EL2, Virtualization Secure Translation Control Register

The VSTCR_EL2 characteristics are:

Purpose

The control register for stage 2 of the Secure EL1&0 translation regime.

Configurations

This register is present only when FEAT_SEL2 is implemented. Otherwise, direct accesses to
VSTCR_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VSTCR_EL2 is a 64-bit register.

Field descriptions

Any of the bits in VSTCR_EL2 are permitted to be cached in a TLB.

Bits [63:34]

Reserved, RES0.

SL2, bit [33]

When FEAT_LPA2 is implemented:

SL2

Starting level of the Secure stage 2 translation lookup controlled by VSTCR_EL2.

If VTCR_EL2.DS == 1, then VSTCR_EL2.SL2, in combination with VSTCR_EL2.SL0, gives
encodings for the Secure stage 2 translation table walk initial lookup level.

If VTCR_EL2.DS == 0, then VSTCR_EL2.SL2 is RES0.

If the translation granule size is not 4KB, then this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [32]

Reserved, RES0.

Bit [31]

Reserved, RES1.

RES0

63 34 33 32

SL2 RES0
31

SA

30

SW

29

RES0

28 16

TG0

15 14

RES0

13 8

SL0

7 6

T0SZ

5 0

RES1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3789
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
SA, bit [30]

Secure stage 2 translation output address space.

0b0 All stage 2 translations for the Secure IPA space access the Secure PA space.

0b1 All stage 2 translations for the Secure IPA space access the Non-secure PA space.

When the value of VSTCR_EL2.SW is 1, this bit behaves as 1 for all purposes other than reading
back the value of the bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SW, bit [29]

Secure stage 2 translation address space.

0b0 All stage 2 translation table walks for the Secure IPA space are to the Secure PA space.

0b1 All stage 2 translation table walks for the Secure IPA space are to the Non-secure PA
space.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [28:16]

Reserved, RES0.

TG0, bits [15:14]

Secure stage 2 granule size for VSTTBR_EL2.

0b00 4KB.

0b01 64KB.

0b10 16KB.

Other values are reserved.

If FEAT_GTG is implemented, ID_AA64MMFR0_EL1.{TGran4_2, TGran16_2, TGran64_2}
indicate which granule sizes are supported for stage 2 translation.

If FEAT_GTG is not implemented, ID_AA64MMFR0_EL1.{TGran4, TGran16, TGran64}
indicate which granule sizes are supported.

If the value is programmed to either a reserved value, or a size that has not been implemented, then
for all purposes other than read back from this register, the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [13:8]

Reserved, RES0.

SL0, bits [7:6]

When FEAT_TTST is implemented:

SL0

Starting level of the Secure stage 2 translation lookup, controlled by VSTCR_EL2. The meaning of
this field depends on the value of VSTCR_EL2.TG0.

0b00 If VSTCR_EL2.TG0 is 0b00 (4KB granule):

• If FEAT_LPA2 is not implemented, start at level 2.

• If FEAT_LPA2 is implemented and VSTCR_EL2.SL2 is 0b0, start at level 2.

• If FEAT_LPA2 is implemented and VSTCR_EL2.SL2 is 0b1, start at level -1.
D13-3790 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
If VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule), start at level 3.

0b01 If VSTCR_EL2.TG0 is 0b00 (4KB granule):

• If FEAT_LPA2 is not implemented, start at level 1.

• If FEAT_LPA2 is implemented and VSTCR_EL2.SL2 is 0b0, start at level 1.

• If FEAT_LPA2 is implemented, the combination of VSTCR_EL2.SL0 == 01 and
VSTCR_EL2.SL2 == 1 is reserved.

If VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule), start at level 2.

0b10 If VSTCR_EL2.TG0 is 0b00 (4KB granule):

• If FEAT_LPA2 is not implemented, start at level 0.

• If FEAT_LPA2 is implemented and VSTCR_EL2.SL2 is 0b0, start at level 0.

• If FEAT_LPA2 is implemented, the combination of VSTCR_EL2.SL0 == 10 and
VSTCR_EL2.SL2 == 1 is reserved.

If VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule), start at level 1.

0b11 If VSTCR_EL2.TG0 is 0b00 (4KB granule):

• If FEAT_LPA2 is not implemented, start at level 3.

• If FEAT_LPA2 is implemented and VSTCR_EL2.SL2 is 0b0, start at level 3.

• If FEAT_LPA2 is implemented, the combination of VSTCR_EL2.SL0 == 11 and
VSTCR_EL2.SL2 == 1 is reserved.

If VSTCR_EL2.TG0 is 0b10 (16KB granule) and FEAT_LPA2 is implemented, start at
level 0.

If this field is programmed to a value that is not consistent with the programming of
VSTCR_EL2.T0SZ, then a stage 2 level 0 Translation fault is generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

SL0

Starting level of the Secure stage 2 translation lookup, controlled by VSTCR_EL2. The meaning of
this field depends on the value of VSTCR_EL2.TG0.

0b00 If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 2. If VSTCR_EL2.TG0 is 0b10
(16KB granule) or 0b01 (64KB granule), start at level 3.

0b01 If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 1. If VSTCR_EL2.TG0 is 0b10
(16KB granule) or 0b01 (64KB granule), start at level 2.

0b10 If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 0. If VSTCR_EL2.TG0 is 0b10
(16KB granule) or 0b01 (64KB granule), start at level 1.

All other values are reserved. If this field is programmed to a reserved value, or to a value that is not
consistent with the programming of VSTCR_EL2.T0SZ, then a stage 2 level 0 Translation fault is
generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T0SZ, bits [5:0]

The size offset of the memory region addressed by VSTTBR_EL2. The region size is 2(64-T0SZ)
bytes.

The maximum and minimum possible values for this field depend on the level of translation table
and the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

If this field is programmed to a value that is not consistent with the programming of SL0, then a
stage 2 level 0 Translation fault is generated.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3791
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is less than 16, the
translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field is less than 17, the
translation table walk begins with a level 0 initial lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VSTCR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VSTCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x048];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then
 UNDEFINED;
 else
 return VSTCR_EL2;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 return VSTCR_EL2;

MSR VSTCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x048] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0110 0b010

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0110 0b010
D13-3792 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then
 UNDEFINED;
 else
 VSTCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 VSTCR_EL2 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3793
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.147 VSTTBR_EL2, Virtualization Secure Translation Table Base Register

The VSTTBR_EL2 characteristics are:

Purpose

The base register for stage 2 of the Secure EL1&0 translation regime. Holds the base address of the
translation table for the initial lookup for stage 2 of an address translation in the Secure EL1&0
translation regime, and other information for this translation stage.

Configurations

This register is present only when FEAT_SEL2 is implemented. Otherwise, direct accesses to
VSTTBR_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VSTTBR_EL2 is a 64-bit register.

Field descriptions

Bits [63:48]

Reserved, RES0.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x].

Note

A translation table must be aligned to the size of the table, except that when using a translation table
base address larger than 48 bits the minimum alignment of a table containing fewer than eight
entries is 64 bytes.

If the value of VTCR_EL2.PS is 0b110, then:

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is
determined as follows:

— If x >= 6 then z=x.

— Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.

• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base
address are zero.

• When x>6 register bits[(x-1):6] are RES0.

• Register bit[1] is RES0.

• Bits[5:2] of the stage 1 translation table base address are zero.

RES0

63 48

BADDR

47 32

BADDR

31 1 0

CnP
D13-3794 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
Note

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not
support a 52-bit PA size, if a translation table lookup uses this register with the 64KB translation
granule when the Effective value of VTCR_EL2.PS is 0b110 and the value of register bits[5:2] is
nonzero, an Address size fault is generated.

If the Effective value of VTCR_EL2.PS is not 0b110, then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.

• Register bits[(x-1):1] are RES0.

• If the implementation supports 52-bit PAs and IPAs then bits[51:48] of the translation table
base addresses used in this stage of translation are 0b0000.

If any VSTTBR_EL2[47:1] bit that is defined as RES0 has the value 1 when a translation table walk
is performed using VSTTBR_EL2, then the translation table base address might be misaligned, with
effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value
read back from the corresponding register bits is either the value written to the register or
zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on
the value of VSTCR_EL2.T0SZ, the stage of translation, and the translation granule size.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

Common not Private, for stage 2 of the Secure EL1&0 translation regime. In an implementation that
includes FEAT_TTCNP, indicates whether each entry that is pointed to by VSTTBR_EL2 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of VSTTBR_EL2.CnP is 1.

0b0 The translation table entries pointed to by VSTTBR_EL2 are permitted to differ from
the entries for VSTTBR_EL2 for other PEs in the Inner Shareable domain. This is not
affected by the value of the current VMID.

0b1 The translation table entries pointed to by VSTTBR_EL2 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
VSTTBR_EL2.CnP is 1 and the VMID is the same as the current VMID.

This field is permitted to be cached in a TLB.

Note

If the value of VSTTBR_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
those VSTTBR_EL2s do not point to the same translation table entries when using the current
VMID, then the results of translations using VSTTBR_EL2 are CONSTRAINED UNPREDICTABLE, see
CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on
page K1-8409.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VSTTBR_EL2

Accesses to this register use the following encodings in the System register encoding space:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3795
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
MRS <Xt>, VSTTBR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x030];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then
 UNDEFINED;
 else
 return VSTTBR_EL2;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 return VSTTBR_EL2;

MSR VSTTBR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x030] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then
 UNDEFINED;
 else
 VSTTBR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 VSTTBR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0110 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0110 0b000
D13-3796 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.148 VTCR_EL2, Virtualization Translation Control Register

The VTCR_EL2 characteristics are:

Purpose

The control register for stage 2 of the EL1&0 translation regime.

Configurations

AArch64 System register VTCR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register VTCR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VTCR_EL2 is a 64-bit register.

Field descriptions

Any of the bits in VTCR_EL2 are permitted to be cached in a TLB.

Bits [63:34]

Reserved, RES0.

SL2, bit [33]

When FEAT_LPA2 is implemented:

SL2

Starting level of the stage 2 translation lookup controlled by VTCR_EL2.

If VTCR_EL2.DS == 1, then VTCR_EL2.SL2, in combination with VTCR_EL2.SL0, gives
encodings for the stage 2 translation table walk initial lookup level.

If VTCR_EL2.DS == 0, then VTCR_EL2.SL2 is RES0.

If the translation granule size is not 4KB, then this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DS, bit [32]

When FEAT_LPA2 is implemented:

DS

RES0

63 34 33

DS

32

SL2
31 30 29 28 27 26 25

RES0

24 23

HD

22

HA

21 20

VS

19

PS

18 16

TG0

15 14

SH0

13 12 11 10 9 8

SL0

7 6

T0SZ

5 0

RES1
NSA

NSW
HWU62

RES0
HWU59

HWU60
HWU61

ORGN0 IRGN0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3797
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
This field affects 52-bit output addressing when using 4KB and 16KB translation granules in stage
2 of the EL1&0 translation regime.

0b0 Bits[49:48] of translation descriptors are RES0.

Bits[9:8] in block and page descriptors encode shareability information in the SH[1:0]
field. Bits[9:8] in table descriptors are ignored by hardware.

The minimum value of VTCR_EL2.T0SZ is 16. Any memory access using a smaller
value generates a stage 2 level 0 translation table fault.

The minimum value of VSTCR_EL2.T0SZ is 16. Any memory access using a smaller
value generates a stage 2 level 0 translation table fault.

Output address[51:48] is 0000.

0b1 Bits[49:48] of translation descriptors hold output address[49:48].

Bits[9:8] in translation descriptors hold output address[51:50].

The shareability information of block and page descriptors for cacheable locations is
determined by VTCR_EL2.SH0.

The minimum value of VTCR_EL2.T0SZ is 12. Any memory access using a smaller
value generates a stage 2 level 0 translation table fault.

The minimum value of VSTCR_EL2.T0SZ is 12. Any memory access using a smaller
value generates a stage 2 level 0 translation table fault.

Note
As FEAT_LPA must be implemented if VTCR_EL2.DS == 1, the minimum values of
VTCR_EL2.T0SZ and VSTCR_EL2.T0SZ are 12, as determined by that extension.

For the TLBI range instructions affecting IPA, the format of the argument is changed so
that bits[36:0] hold BaseADDR[52:16]. For the 4KB translation granule, bits[15:12] of
BaseADDR are treated as 0000. For the 16KB translation granule, bits[15:14] of
BaseADDR are treated as 00.

Note
This forces alignment of the ranges used by the TLBI range instructions.

This field is RES0 for a 64KB translation granule.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [31]

Reserved, RES1.

NSA, bit [30]

When FEAT_SEL2 is implemented:

NSA

Non-secure stage 2 translation output address space for the Secure EL1&0 translation regime.

0b0 All stage 2 translations for the Non-secure IPA space of the Secure EL1&0 translation
regime access the Secure PA space.

0b1 All stage 2 translations for the Non-secure IPA space of the Secure EL1&0 translation
regime access the Non-secure PA space.

This bit behaves as 1 for all purposes other than reading back the value of the bit when one of the
following is true:

• The value of VTCR_EL2.NSW is 1.

• The value of VSTCR_EL2.SA is 1.
D13-3798 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSW, bit [29]

When FEAT_SEL2 is implemented:

NSW

Non-secure stage 2 translation table address space for the Secure EL1&0 translation regime.

0b0 All stage 2 translation table walks for the Non-secure IPA space of the Secure EL1&0
translation regime are to the Secure PA space.

0b1 All stage 2 translation table walks for the Non-secure IPA space of the Secure EL1&0
translation regime are to the Non-secure PA space.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU62, bit [28]

When FEAT_HPDS2 is implemented:

HWU62

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 2
translation table Block or Page entry.

0b0 Bit[62] of each stage 2 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[62] of each stage 2 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU61, bit [27]

When FEAT_HPDS2 is implemented:

HWU61

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 2
translation table Block or Page entry.

0b0 Bit[61] of each stage 2 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[61] of each stage 2 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3799
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
Reserved, RAZ/WI.

HWU60, bit [26]

When FEAT_HPDS2 is implemented:

HWU60

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 2
translation table Block or Page entry.

0b0 Bit[60] of each stage 2 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[60] of each stage 2 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU59, bit [25]

When FEAT_HPDS2 is implemented:

HWU59

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 2
translation table Block or Page entry.

0b0 Bit[59] of each stage 2 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[59] of each stage 2 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

Bits [24:23]

Reserved, RES0.

HD, bit [22]

When FEAT_HAFDBS is implemented:

HD

Hardware management of dirty state in stage 2 translations when EL2 is enabled in the current
Security state.

0b0 Stage 2 hardware management of dirty state disabled.

0b1 Stage 2 hardware management of dirty state enabled, only if the VTCR_EL2.HA bit is
also set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
D13-3800 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
HA, bit [21]

When FEAT_HAFDBS is implemented:

HA

Hardware Access flag update in stage 2 translations when EL2 is enabled in the current Security
state.

0b0 Stage 2 Access flag update disabled.

0b1 Stage 2 Access flag update enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [20]

Reserved, RES0.

VS, bit [19]

When FEAT_VMID16 is implemented:

VS

VMID Size.

0b0 8-bit VMID. The upper 8 bits of VTTBR_EL2 are ignored by the hardware, and treated
as if they are all zeros, for every purpose except when reading back the register.

0b1 16-bit VMID. The upper 8 bits of VTTBR_EL2 are used for allocation and matching in
the TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PS, bits [18:16]

Physical address Size for the second stage of translation.

0b000 32 bits, 4GB.

0b001 36 bits, 64GB.

0b010 40 bits, 1TB.

0b011 42 bits, 4TB.

0b100 44 bits, 16TB.

0b101 48 bits, 256TB.

0b110 52 bits, 4PB.

All other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not
rely on this property as the behavior of the reserved values might change in a future revision of the
architecture.

If the translation granule is not 64KB and FEAT_LPA2 is not implemented, the value 0b110 is
treated as reserved.

It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT_LPA
supports setting the value of 0b110 for the 64KB translation granule size or whether setting this value
behaves as the 0b101 encoding.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3801
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated
as 0b110, then bits[51:48] of every translation table base address for the stage of translation
controlled by VTCR_EL2 are 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TG0, bits [15:14]

Granule size for the VTTBR_EL2.

0b00 4KB.

0b01 64KB.

0b10 16KB.

Other values are reserved.

If FEAT_GTG is implemented, ID_AA64MMFR0_EL1.{TGran4_2, TGran16_2, TGran64_2}
indicate which granule sizes are supported for stage 2 translation.

If FEAT_GTG is not implemented, ID_AA64MMFR0_EL1.{TGran4, TGran16, TGran64}
indicate which granule sizes are supported.

If the value is programmed to either a reserved value or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using VTTBR_EL2 or
VSTTBR_EL2.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using VTTBR_EL2
or VSTTBR_EL2.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using VTTBR_EL2
or VSTTBR_EL2.

0b00 Normal memory, Inner Non-cacheable.
D13-3802 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SL0, bits [7:6]

When FEAT_TTST is implemented:

SL0

Starting level of the stage 2 translation lookup, controlled by VTCR_EL2. The meaning of this field
depends on the value of VTCR_EL2.TG0.

0b00 If VTCR_EL2.TG0 is 0b00 (4KB granule):

• If FEAT_LPA2 is not implemented, start at level 2.

• If FEAT_LPA2 is implemented and VTCR_EL2.SL2 is 0b0, start at level 2.

• If FEAT_LPA2 is implemented and VTCR_EL2.SL2 is 0b1, start at level -1.

If VTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule), start at level 3.

0b01 If VTCR_EL2.TG0 is 0b00 (4KB granule):

• If FEAT_LPA2 is not implemented, start at level 1.

• If FEAT_LPA2 is implemented and VTCR_EL2.SL2 is 0b0, start at level 1.

• If FEAT_LPA2 is implemented, the combination of VTCR_EL2.SL0 == 01 and
VTCR_EL2.SL2 == 1 is reserved.

If VTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule), start at level 2.

0b10 If VTCR_EL2.TG0 is 0b00 (4KB granule):

• If FEAT_LPA2 is not implemented, start at level 0.

• If FEAT_LPA2 is implemented and VTCR_EL2.SL2 is 0b0, start at level 0.

• If FEAT_LPA2 is implemented, the combination of VTCR_EL2.SL0 == 10 and
VTCR_EL2.SL2 == 1 is reserved.

If VTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule), start at level 1.

0b11 If VTCR_EL2.TG0 is 0b00 (4KB granule):

• If FEAT_LPA2 is not implemented, start at level 3.

• If FEAT_LPA2 is implemented and VTCR_EL2.SL2 is 0b0, start at level 3.

• If FEAT_LPA2 is implemented, the combination of VTCR_EL2.SL0 == 11 and
VTCR_EL2.SL2 == 1 is reserved.

If VTCR_EL2.TG0 is 0b10 (16KB granule) and FEAT_LPA2 is implemented, start at
level 0.

If this field is programmed to a value that is not consistent with the programming of
VTCR_EL2.T0SZ, then a stage 2 level 0 Translation fault is generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

SL0

Starting level of the stage 2 translation lookup, controlled by VTCR_EL2. The meaning of this field
depends on the value of VTCR_EL2.TG0.

0b00 If VTCR_EL2.TG0 is 0b00 (4KB granule), start at level 2. If VTCR_EL2.TG0 is 0b10
(16KB granule) or 0b01 (64KB granule), start at level 3.

0b01 If VTCR_EL2.TG0 is 0b00 (4KB granule), start at level 1. If VTCR_EL2.TG0 is 0b10
(16KB granule) or 0b01 (64KB granule), start at level 2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3803
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
0b10 If VTCR_EL2.TG0 is 0b00 (4KB granule), start at level 0. If VTCR_EL2.TG0 is 0b10
(16KB granule) or 0b01 (64KB granule), start at level 1.

All other values are reserved. If this field is programmed to a reserved value, or to a value that is not
consistent with the programming of VTCR_EL2.T0SZ, then a stage 2 level 0 Translation fault is
generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T0SZ, bits [5:0]

The size offset of the memory region addressed by VTTBR_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and
the memory translation granule size, as described in Chapter D5 The AArch64 Virtual Memory
System Architecture.

If this field is programmed to a value that is not consistent with the programming of SL0, then a
stage 2 level 0 Translation fault is generated.

Note
For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is less than 16, the
translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field is less than 17, the
translation table walk begins with a level 0 initial lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VTCR_EL2

Any of the bits in VTCR_EL2 are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VTCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x040];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return VTCR_EL2;
elsif PSTATE.EL == EL3 then
 return VTCR_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0001 0b010
D13-3804 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MSR VTCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x040] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VTCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 VTCR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0001 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3805
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
D13.2.149 VTTBR_EL2, Virtualization Translation Table Base Register

The VTTBR_EL2 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 2 of an address
translation in the EL1&0 translation regime, and other information for this translation regime.

Configurations

AArch64 System register VTTBR_EL2 bits [63:0] are architecturally mapped to AArch32 System
register VTTBR[63:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VTTBR_EL2 is a 64-bit register.

Field descriptions

VMID, bits [63:48]

When FEAT_VMID16 is implemented or (VTCR_EL2.VS == 1 or AArch32 is supported at EL0):

VMID, bits [15:0]

The VMID for the translation table.

If EL2 is using AArch32, or if the implementation has an 8-bit VMID, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_VMID16 is not implemented or (VTCR_EL2.VS == 0 or the implementation only
supports execution in AArch64 state):

Bits [15:8]

Reserved, RES0.

VMID, bits [7:0]

The VMID for the translation table.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.

• The VTCR_EL2.VS is 0.

VMID

63 48

BADDR

47 32

BADDR

31 1 0

CnP

VMID

15 0

RES0

15 8

VMID

7 0
D13-3806 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
• FEAT_VMID16 is not implemented.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x], bits[47:1].

Note
A translation table must be aligned to the size of the table, except that when using a translation table
base address larger than 48 bits the minimum alignment of a table containing fewer than eight
entries is 64 bytes.

In an implementation that includes FEAT_LPA, if the value of VTCR_EL2.PS is 0b110, then:

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is
determined as follows:

— If x >= 6 then z=x.

— Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.

• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base
address are zero.

• When x>6 register bits[(x-1):6] are RES0.

• Register bit[1] is RES0.

• Bits[5:2] of the stage 1 translation table base address are zero.

• In an implementation that includes FEAT_TTCNP, bit[0] of the stage 1 translation table base
address is zero.

Note

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not
support a 52 bit PA size, if a translation table lookup uses this register when the Effective value of
VTCR_EL2.PS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is
generated.

If the Effective value of VTCR_EL2.PS is not 0b110 then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.

• Register bits[(x-1):1] are RES0.

• If the implementation supports 52-bit PAs and IPAs then bits[51:48] of the translation table
base addresses used in this stage of translation are 0b0000.

If any VTTBR_EL2[47:0] bit that is defined as RES0 has the value 1 when a translation table walk
is performed using VTTBR_EL2, then the translation table base address might be misaligned, with
effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value
read back from the corresponding register bits is either the value written to the register or
zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on
the value of VTCR_EL2.T0SZ, the stage of translation, and the translation granule size.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3807
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers
CnP, bit [0]

When FEAT_TTCNP is implemented:

CnP

Common not Private. This bit indicates whether each entry that is pointed to by VTTBR_EL2 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of VTTBR_EL2.CnP is 1.

0b0 The translation table entries pointed to by VTTBR_EL2 are permitted to differ from the
entries for VTTBR_EL2 for other PEs in the Inner Shareable domain. This is not
affected by the value of the current VMID.

0b1 The translation table entries pointed to by VTTBR_EL2 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
VTTBR_EL2.CnP is 1 and the VMID is the same as the current VMID.

This field is permitted to be cached in a TLB.

Note

If the value of VTTBR_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
those VTTBR_EL2s do not point to the same translation table entries when using the current VMID
then the results of translations using VTTBR_EL2 are CONSTRAINED UNPREDICTABLE, see
CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on
page K1-8409.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing VTTBR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VTTBR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x020];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return VTTBR_EL2;
elsif PSTATE.EL == EL3 then
 return VTTBR_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0001 0b000
D13-3808 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.2 General system control registers
MSR VTTBR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x020] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VTTBR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 VTTBR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3809
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3 Debug registers

This section lists the Debug System registers in AArch64 state, in alphabetic order:

• The principal encoding space for debug registers is op0==0b10, op1=={0, 3, 4}. Instructions for accessing
debug System registers on page D12-3021 summarizes the registers in this encoding space and lists them in
order of their encodings.

• In addition, the following registers in the op0==0b11 encoding space are classified as Debug registers:

— DLR_EL0.

— DSPSR_EL0.

— MDCR_EL2.

— MDCR_EL3.

— SDER32_EL3.

D13-3810 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.1 DBGAUTHSTATUS_EL1, Debug Authentication Status register

The DBGAUTHSTATUS_EL1 characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for
debug.

Configurations

AArch64 System register DBGAUTHSTATUS_EL1 bits [31:0] are architecturally mapped to
AArch32 System register DBGAUTHSTATUS[31:0].

AArch64 System register DBGAUTHSTATUS_EL1 bits [31:0] are architecturally mapped to
External register DBGAUTHSTATUS_EL1[31:0].

Attributes

DBGAUTHSTATUS_EL1 is a 64-bit register.

Field descriptions

Bits [63:8]

Reserved, RES0.

SNID, bits [7:6]

When FEAT_Debugv8p4 is implemented:

SNID

Secure non-invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.SID.

Otherwise:

SNID

Secure non-invasive debug.

0b00 Not implemented. EL3 is not implemented and the Effective value of SCR_EL3.NS is 1.

0b10 Implemented and disabled. ExternalSecureNoninvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalSecureNoninvasiveDebugEnabled() == TRUE.

All other values are reserved.

SID, bits [5:4]

Secure invasive debug.

0b00 Not implemented. EL3 is not implemented and the Effective value of SCR_EL3.NS is 1.

0b10 Implemented and disabled. ExternalSecureInvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalSecureInvasiveDebugEnabled() == TRUE.

All other values are reserved.

RES0

63 32

RES0

31 8

SNID

7 6

SID

5 4 3 2

NSID

1 0

NSNID
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3811
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
NSNID, bits [3:2]

When FEAT_Debugv8p4 is implemented:

NSNID

Non-secure non-invasive debug.

0b00 Not implemented. EL3 is not implemented and the Effective value of SCR_EL3.NS is 0.

0b11 Implemented and enabled. EL3 is implemented or the Effective value of SCR_EL3.NS
is 1.

All other values are reserved.

Otherwise:

NSNID

Non-secure non-invasive debug.

0b00 Not implemented. EL3 is not implemented and the Effective value of SCR_EL3.NS is 0.

0b10 Implemented and disabled. ExternalNoninvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalNoninvasiveDebugEnabled() == TRUE.

All other values are reserved.

NSID, bits [1:0]

Non-secure invasive debug.

0b00 Not implemented. EL3 is not implemented and the Effective value of SCR_EL3.NS is 0.

0b10 Implemented and disabled. ExternalInvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalInvasiveDebugEnabled() == TRUE.

All other values are reserved.

Accessing DBGAUTHSTATUS_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGAUTHSTATUS_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGAUTHSTATUS_EL1 == '1'
then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return DBGAUTHSTATUS_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then

op0 op1 CRn CRm op2

0b10 0b000 0b0111 0b1110 0b110
D13-3812 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return DBGAUTHSTATUS_EL1;
elsif PSTATE.EL == EL3 then
 return DBGAUTHSTATUS_EL1;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3813
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

The DBGBCR<n>_EL1 characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register
DBGBVR<n>_EL1.

Configurations

AArch64 System register DBGBCR<n>_EL1 bits [31:0] are architecturally mapped to AArch32
System register DBGBCR<n>[31:0].

AArch64 System register DBGBCR<n>_EL1 bits [31:0] are architecturally mapped to External
register DBGBCR<n>_EL1[31:0].

If breakpoint n is not implemented, accesses to this register are UNDEFINED.

Attributes

DBGBCR<n>_EL1 is a 64-bit register.

Field descriptions

Bits [63:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

0b0000 Unlinked instruction address match. DBGBVR<n>_EL1 is the address of an
instruction.

0b0001 As 0b0000, but linked to a Context matching breakpoint.

0b0010 Unlinked Context ID match. When FEAT_VHE is implemented, EL2 is using
AArch64, and the Effective value of HCR_EL2.E2H is 1, if either the PE is executing
at EL0 with HCR_EL2.TGE set to 1 or the PE is executing at EL2, then
DBGBVR<n>_EL1.ContextID must match the CONTEXTIDR_EL2 value. Otherwise,
DBGBVR<n>_EL1.ContextID must match the CONTEXTIDR_EL1 value

0b0011 As 0b0010, with linking enabled.

0b0110 Unlinked CONTEXTIDR_EL1 match. DBGBVR<n>_EL1.ContextID is a Context ID
compared against CONTEXTIDR_EL1.

0b0111 As 0b0110, with linking enabled.

0b1000 Unlinked VMID match. DBGBVR<n>_EL1.VMID is a VMID compared against
VTTBR_EL2.VMID.

0b1001 As 0b1000, with linking enabled.

0b1010 Unlinked VMID and Context ID match. DBGBVR<n>_EL1.ContextID is a Context ID
compared against CONTEXTIDR_EL1, and DBGBVR<n>_EL1.VMID is a VMID
compared against VTTBR_EL2.VMID.

0b1011 As 0b1010, with linking enabled.

RES0

63 32

RES0

31 24

BT

23 20

LBN

19 16

SSC

15 14 13

RES0

12 9

BAS

8 5

RES0

4 3

PMC

2 1

E

0

HMC
D13-3814 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
0b1100 Unlinked CONTEXTIDR_EL2 match. DBGBVR<n>_EL1.ContextID2 is a Context ID
compared against CONTEXTIDR_EL2.

0b1101 As 0b1100, with linking enabled.

0b1110 Unlinked Full Context ID match. DBGBVR<n>_EL1.ContextID is compared against
CONTEXTIDR_EL1, and DBGBVR<n>_EL1.ContextID2 is compared against
CONTEXTIDR_EL2.

0b1111 As 0b1110, with linking enabled.

All other values are reserved. Constraints on breakpoint programming mean other values are
reserved under some conditions.

The fields that indicate when the breakpoint can be generated are: HMC, PMC, and SSC. These
fields must be considered in combination, and the values that are permitted for these fields are
constrained.

For more information on the operation of these fields, see Execution conditions for which a
breakpoint generates Breakpoint exceptions on page D2-2589.

For more information on the effect of programming the fields to a reserved value, see Reserved
DBGBCR<n>_EL1.BT values on page D2-2594.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the
Context-matching breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN
value.

This field is ignored when the value of DBGBCR<n>_EL1.E is 0.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for
breakpoint n is generated.

The fields that indicate when the breakpoint can be generated are: HMC, PMC, and SSC. These
fields must be considered in combination, and the values that are permitted for these fields are
constrained.

For more information on the operation of these fields, see Execution conditions for which a
breakpoint generates Breakpoint exceptions on page D2-2589.

For more information on the effect of programming the fields to a reserved set of values, see
Reserved DBGBCR<n>_EL1.{SSC, HMC, PMC} values on page D2-2594.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug
event for breakpoint n is generated.

The fields that indicate when the breakpoint can be generated are: HMC, PMC, and SSC. These
fields must be considered in combination, and the values that are permitted for these fields are
constrained.

For more information on the operation of these fields, see Execution conditions for which a
breakpoint generates Breakpoint exceptions on page D2-2589.

For more information, see DBGBCR<n>_EL1.SSC.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3815
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [12:9]

Reserved, RES0.

BAS, bits [8:5]

When AArch32 is supported at EL0:

BAS

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless
of the instruction set and Execution state.

The permitted values depend on the breakpoint type.

For Address match breakpoints, the permitted values are:

All other values are reserved. For more information, see Reserved DBGBCR<n>_EL1.BAS values
on page D2-2595.

For more information on using the BAS field in address match breakpoints, see Using the BAS field
in Address Match breakpoints on page G2-6183.

For Context matching breakpoints, this field is RES1 and ignored.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bits [4:3]

Reserved, RES0.

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event
for breakpoint n is generated.

The fields that indicate when the breakpoint can be generated are: HMC, PMC, and SSC. These
fields must be considered in combination, and the values that are permitted for these fields are
constrained.

For more information on the operation of these fields, see Execution conditions for which a
breakpoint generates Breakpoint exceptions on page D2-2589.

For more information, see DBGBCR<n>_EL1.SSC.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

E, bit [0]

Enable breakpoint DBGBVR<n>_EL1.

0b0 Breakpoint disabled.

0b1 Breakpoint enabled.

BAS Match instruction at Constraint for debuggers

0b0011 DBGBVR<n>_EL1 Use for T32 instructions

0b1100 DBGBVR<n>_EL1 + 2 Use for T32 instructions

0b1111 DBGBVR<n>_EL1 Use for A64 and A32 instructions
D13-3816 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGBCR<n>_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGBCR<n>_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGBCRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBCR_EL1[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBCR_EL1[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBCR_EL1[UInt(CRm<3:0>)];

MSR DBGBCR<n>_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b10 0b000 0b0000 n[3:0] 0b101

op0 op1 CRn CRm op2

0b10 0b000 0b0000 n[3:0] 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3817
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.DBGBCRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBCR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBCR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBCR_EL1[UInt(CRm<3:0>)] = X[t];

D13-3818 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.3 DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

The DBGBVR<n>_EL1 characteristics are:

Purpose

Holds a virtual address, or a VMID and/or a context ID, for use in breakpoint matching. Forms
breakpoint n together with control register DBGBCR<n>_EL1.

Configurations

AArch64 System register DBGBVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32
System register DBGBVR<n>[31:0].

If the breakpoint is context-aware and EL2 is implemented then AArch64 System register
DBGBVR<n>_EL1[63:32] is architecturally mapped to AArch32 System register DBGBXVR<n>.
Otherwise there is no System register access to DBGBVR<n>_EL1[63:32] from AArch32 state.

AArch64 System register DBGBVR<n>_EL1 bits [63:0] are architecturally mapped to External
register DBGBVR<n>_EL1[63:0].

How this register is interpreted depends on the value of DBGBCR<n>_EL1.BT.

• When DBGBCR<n>_EL1.BT is 0b000x, this register holds a virtual address.

• When DBGBCR<n>_EL1.BT is 0b001x, 0b011x, or 0b110x, this register holds a Context ID.

• When DBGBCR<n>_EL1.BT is 0b100x, this register holds a VMID.

• When DBGBCR<n>_EL1.BT is 0b101x, this register holds a VMID and a Context ID.

• When DBGBCR<n>_EL1.BT is 0b111x, this register holds two Context ID values.

For other values of DBGBCR<n>_EL1.BT, this register is RES0.

If breakpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes

DBGBVR<n>_EL1 is a 64-bit register.

Field descriptions

When DBGBCR<n>_EL1.BT == 0b000x:

RESS[14:4], bits [63:53]

Reserved, Sign extended. Software must set all bits in this field to the same value as the most
significant bit of the VA field. If all bits in this field are not the same value as the most significant
bit of the VA field, then all of the following apply:

• It is CONSTRAINED UNPREDICTABLE whether the PE ignores this field when comparing an
address.

• If the breakpoint is not context-aware, it is IMPLEMENTATION DEFINED whether the value read
back in each bit of this field is a copy of the most significant bit of the VA field or the value
written.

Bits[52:49]

When FEAT_LVA is implemented:

VA[52:49]

RESS[14:4]

63 53 52 49

VA[48:2]

48 32

VA[52:49]

VA[48:2]

31 2

RES0

1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3819
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
Extension to VA[48:2]. For more information, see VA[48:2].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RESS[3:0]

Extension to RESS[14:4]. For more information, see RESS[14:4].

VA[48:2], bits [48:2]

Bits[48:2] of the address value for comparison.

When FEAT_LVA is implemented, VA[52:49] forms the upper part of the address value. Otherwise,
bits [52:49] are part of the RESS field.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT == 0b001x:

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison.

The value is compared against CONTEXTIDR_EL2 when (FEAT_VHE is implemented or
FEAT_Debugv8p2 is implemented), HCR_EL2.E2H is 1, and either:

• The PE is executing at EL2.

• HCR_EL2.TGE is 1, the PE is executing at EL0, and EL2 is enabled in the current Security
state.

Otherwise, the value is compared against CONTEXTIDR_EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>_EL1.BT == 0b011x:

Bits [63:32]

Reserved, RES0.

RES0

63 32

ContextID

31 0

RES0

63 32

ContextID

31 0
D13-3820 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>_EL1.BT == 0b100x and EL2 is implemented:

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]

When FEAT_VMID16 is implemented, VTCR_EL2.VS == 1 and EL2 is using AArch64:

VMID[15:8]

Extension to VMID[7:0]. For more information, see DBGBVR<n>_EL1.VMID[7:0].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.

• VTCR_EL2.VS is 0.

• FEAT_VMID16 is not implemented.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT == 0b101x and EL2 is implemented:

Bits [63:48]

Reserved, RES0.

RES0

63 48

VMID[15:8]

47 40

VMID[7:0]

39 32

RES0

31 0

RES0

63 48

VMID[15:8]

47 40

VMID[7:0]

39 32

ContextID

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3821
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
VMID[15:8], bits [47:40]

When FEAT_VMID16 is implemented, VTCR_EL2.VS == 1 and EL2 is using AArch64:

VMID[15:8]

Extension to VMID[7:0]. For more information, see DBGBVR<n>_EL1.VMID[7:0].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.

• VTCR_EL2.VS is 0.

• FEAT_VMID16 is not implemented.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>_EL1.BT == 0b110x, EL2 is implemented and (FEAT_VHE is implemented or
FEAT_Debugv8p2 is implemented):

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

Reserved, RES0.

ContextID2

63 32

RES0

31 0
D13-3822 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
When DBGBCR<n>_EL1.BT == 0b111x, EL2 is implemented and (FEAT_VHE is implemented or
FEAT_Debugv8p2 is implemented):

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGBVR<n>_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGBVR<n>_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGBVRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBVR_EL1[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

ContextID2

63 32

ContextID

31 0

op0 op1 CRn CRm op2

0b10 0b000 0b0000 n[3:0] 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3823
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBVR_EL1[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBVR_EL1[UInt(CRm<3:0>)];

MSR DBGBVR<n>_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.DBGBVRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBVR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBVR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBVR_EL1[UInt(CRm<3:0>)] = X[t];

op0 op1 CRn CRm op2

0b10 0b000 0b0000 n[3:0] 0b100
D13-3824 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.4 DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register

The DBGCLAIMCLR_EL1 characteristics are:

Purpose

Used by software to read the values of the CLAIM tag bits, and to clear CLAIM tag bits to 0.

The architecture does not define any functionality for the CLAIM tag bits.

Note
CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMSET_EL1 register.

Configurations

AArch64 System register DBGCLAIMCLR_EL1 bits [31:0] are architecturally mapped to
AArch32 System register DBGCLAIMCLR[31:0].

AArch64 System register DBGCLAIMCLR_EL1 bits [31:0] are architecturally mapped to External
register DBGCLAIMCLR_EL1[31:0].

An implementation must include eight CLAIM tag bits.

Attributes

DBGCLAIMCLR_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

Bits [31:8]

Reserved, RAZ/WI.

CLAIM, bits [7:0]

Read or clear CLAIM tag bits. Reading this field returns the current value of the CLAIM tag bits.

Writing a 1 to one of these bits clears the corresponding CLAIM tag bit to 0. This is an indirect write
to the CLAIM tag bits. A single write operation can clear multiple CLAIM tag bits to 0.

Writing 0 to one of these bits has no effect.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing DBGCLAIMCLR_EL1

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

RAZ/WI

31 8

CLAIM

7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3825
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
MRS <Xt>, DBGCLAIMCLR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGCLAIM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return DBGCLAIMCLR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return DBGCLAIMCLR_EL1;
elsif PSTATE.EL == EL3 then
 return DBGCLAIMCLR_EL1;

MSR DBGCLAIMCLR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.DBGCLAIM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGCLAIMCLR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b10 0b000 0b0111 0b1001 0b110

op0 op1 CRn CRm op2

0b10 0b000 0b0111 0b1001 0b110
D13-3826 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGCLAIMCLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 DBGCLAIMCLR_EL1 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3827
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.5 DBGCLAIMSET_EL1, Debug CLAIM Tag Set register

The DBGCLAIMSET_EL1 characteristics are:

Purpose

Used by software to set the CLAIM tag bits to 1.

The architecture does not define any functionality for the CLAIM tag bits.

Note
CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMCLR_EL1 register.

Configurations

AArch64 System register DBGCLAIMSET_EL1 bits [31:0] are architecturally mapped to AArch32
System register DBGCLAIMSET[31:0].

AArch64 System register DBGCLAIMSET_EL1 bits [31:0] are architecturally mapped to External
register DBGCLAIMSET_EL1[31:0].

An implementation must include eight CLAIM tag bits.

Attributes

DBGCLAIMSET_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

Bits [31:8]

Reserved, RAZ/WI.

CLAIM, bits [7:0]

Set CLAIM tag bits.

This field is RAO.

Writing a 1 to one of these bits sets the corresponding CLAIM tag bit to 1. This is an indirect write
to the CLAIM tag bits. A single write operation can set multiple CLAIM tag bits to 1.

Writing 0 to one of these bits has no effect.

Accessing DBGCLAIMSET_EL1

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

RAZ/WI

31 8

CLAIM

7 0
D13-3828 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
MRS <Xt>, DBGCLAIMSET_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGCLAIM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return DBGCLAIMSET_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return DBGCLAIMSET_EL1;
elsif PSTATE.EL == EL3 then
 return DBGCLAIMSET_EL1;

MSR DBGCLAIMSET_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.DBGCLAIM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGCLAIMSET_EL1 = X[t];
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b10 0b000 0b0111 0b1000 0b110

op0 op1 CRn CRm op2

0b10 0b000 0b0111 0b1000 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3829
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGCLAIMSET_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 DBGCLAIMSET_EL1 = X[t];

D13-3830 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.6 DBGDTR_EL0, Debug Data Transfer Register, half-duplex

The DBGDTR_EL0 characteristics are:

Purpose

Transfers 64 bits of data between the PE and an external debugger. Can transfer both ways using
only a single register.

Configurations

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to AArch32
System register DBGDTRRXint[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to External
register DBGDTRRX_EL0[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to AArch64
System register DBGDTRRX_EL0[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to AArch32
System register DBGDTRTXint[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to External register
DBGDTRTX_EL0[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to AArch64
System register DBGDTRTX_EL0[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to AArch32
System register DBGDTRTXint[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to External
register DBGDTRTX_EL0[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to AArch64
System register DBGDTRTX_EL0[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to AArch32
System register DBGDTRRXint[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to External register
DBGDTRRX_EL0[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to AArch64
System register DBGDTRRX_EL0[31:0] when read.

Attributes

DBGDTR_EL0 is a 64-bit register.

Field descriptions

HighWord, bits [63:32]

Writes to this register set DTRRX to the value in this field and do not change RXfull.

Reads of this register:

• If RXfull is set to 1, return the last value written to DTRTX.

• If RXfull is set to 0, return an UNKNOWN value.

After the read, RXfull is cleared to 0.

HighWord

63 32

LowWord

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3831
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
LowWord, bits [31:0]

Writes to this register set DTRTX to the value in this field and set TXfull to 1.

Reads of this register:

• If RXfull is set to 1, return the last value written to DTRRX.

• If RXfull is set to 0, return an UNKNOWN value.

After the read, RXfull is cleared to 0.

Accessing DBGDTR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGDTR_EL0

if Halted() then
 return DBGDTR_EL0;
elsif PSTATE.EL == EL0 then
 if MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return DBGDTR_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return DBGDTR_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return DBGDTR_EL0;
elsif PSTATE.EL == EL3 then
 return DBGDTR_EL0;

op0 op1 CRn CRm op2

0b10 0b011 0b0000 0b0100 0b000
D13-3832 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
MSR DBGDTR_EL0, <Xt>

if Halted() then
 DBGDTR_EL0 = X[t];
elsif PSTATE.EL == EL0 then
 if MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGDTR_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGDTR_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGDTR_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 DBGDTR_EL0 = X[t];

op0 op1 CRn CRm op2

0b10 0b011 0b0000 0b0100 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3833
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.7 DBGDTRRX_EL0, Debug Data Transfer Register, Receive

The DBGDTRRX_EL0 characteristics are:

Purpose

Transfers data from an external debugger to the PE. For example, it is used by a debugger
transferring commands and data to a debug target. See DBGDTR_EL0 for additional architectural
mappings. It is a component of the Debug Communications Channel.

Configurations

AArch64 System register DBGDTRRX_EL0 bits [31:0] are architecturally mapped to AArch32
System register DBGDTRRXint[31:0].

AArch64 System register DBGDTRRX_EL0 bits [31:0] are architecturally mapped to External
register DBGDTRRX_EL0[31:0].

Attributes

DBGDTRRX_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Update DTRRX.

Reads of this register:

• If RXfull is set to 1, return the last value written to DTRRX.

• If RXfull is set to 0, return an UNKNOWN value.

After the read, RXfull is cleared to 0.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGDTRRX_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGDTRRX_EL0

if Halted() then
 return DBGDTRRX_EL0;

RES0

63 32

Update DTRRX

31 0

op0 op1 CRn CRm op2

0b10 0b011 0b0000 0b0101 0b000
D13-3834 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
elsif PSTATE.EL == EL0 then
 if MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return DBGDTRRX_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return DBGDTRRX_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return DBGDTRRX_EL0;
elsif PSTATE.EL == EL3 then
 return DBGDTRRX_EL0;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3835
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.8 DBGDTRTX_EL0, Debug Data Transfer Register, Transmit

The DBGDTRTX_EL0 characteristics are:

Purpose

Transfers data from the PE to an external debugger. For example, it is used by a debug target to
transfer data to the debugger. See DBGDTR_EL0 for additional architectural mappings. It is a
component of the Debug Communication Channel.

Configurations

AArch64 System register DBGDTRTX_EL0 bits [31:0] are architecturally mapped to AArch32
System register DBGDTRTXint[31:0].

AArch64 System register DBGDTRTX_EL0 bits [31:0] are architecturally mapped to External
register DBGDTRTX_EL0[31:0].

Attributes

DBGDTRTX_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Return DTRTX.

Writes to this register:

• If TXfull is set to 1, set DTRRX and DTRTX to UNKNOWN.

• If TXfull is set to 0, update the value in DTRTX.

After the write, TXfull is set to 1.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGDTRTX_EL0

Accesses to this register use the following encodings in the System register encoding space:

MSR DBGDTRTX_EL0, <Xt>

if Halted() then
 DBGDTRTX_EL0 = X[t];

RES0

63 32

Return DTRTX

31 0

op0 op1 CRn CRm op2

0b10 0b011 0b0000 0b0101 0b000
D13-3836 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
elsif PSTATE.EL == EL0 then
 if MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGDTRTX_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGDTRTX_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGDTRTX_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 DBGDTRTX_EL0 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3837
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.9 DBGPRCR_EL1, Debug Power Control Register

The DBGPRCR_EL1 characteristics are:

Purpose

Controls behavior of the PE on powerdown request.

Configurations

AArch64 System register DBGPRCR_EL1 bits [31:0] are architecturally mapped to AArch32
System register DBGPRCR[31:0].

Bit [0] of this register is mapped to EDPRCR.CORENPDRQ, bit [0] of the external view of this
register.

The other bits in these registers are not mapped to each other.

Attributes

DBGPRCR_EL1 is a 64-bit register.

Field descriptions

Bits [63:1]

Reserved, RES0.

CORENPDRQ, bit [0]

When FEAT_DoPD is implemented:

CORENPDRQ

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request
causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power
controller must not allow the Core power domain to switch off while this bit is 1.

0b0 If the system responds to a powerdown request, it powers down Core power domain.

0b1 If the system responds to a powerdown request, it does not powerdown the Core power
domain, but instead emulates a powerdown of that domain.

In an implementation that includes the recommended external debug interface, this bit drives the
DBGNOPWRDWN signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to its Cold reset value on exit from an
IMPLEMENTATION DEFINED software-visible retention state. For more information about retention
states see Core power domain power states on page H6-7440.

Note
Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This
means that a debugger can request emulation of powerdown regardless of whether invasive debug
is permitted.

RES0

63 32

RES0

31 1 0

CORENPDRQ
D13-3838 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
The reset behavior of this field is:

• On a Cold reset, if the powerup request is implemented and the powerup request has been
asserted, this field is set to an IMPLEMENTATION DEFINED choice of 0 or 1. If the powerup
request is not asserted, this field is set to 0.

Otherwise:

CORENPDRQ

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request
causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power
controller must not allow the Core power domain to switch off while this bit is 1.

0b0 If the system responds to a powerdown request, it powers down Core power domain.

0b1 If the system responds to a powerdown request, it does not powerdown the Core power
domain, but instead emulates a powerdown of that domain.

In an implementation that includes the recommended external debug interface, this bit drives the
DBGNOPWRDWN signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to the value of EDPRCR.COREPURQ on
exit from an IMPLEMENTATION DEFINED software-visible retention state. For more information
about retention states see Core power domain power states on page H6-7440.

Note

Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This
means that a debugger can request emulation of powerdown regardless of whether invasive debug
is permitted.

The reset behavior of this field is:

• On a Cold reset, this field resets to the value in EDPRCR.COREPURQ.

Accessing DBGPRCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGPRCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGPRCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDOSA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return DBGPRCR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

op0 op1 CRn CRm op2

0b10 0b000 0b0001 0b0100 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3839
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
when SDD == '1'" && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return DBGPRCR_EL1;
elsif PSTATE.EL == EL3 then
 return DBGPRCR_EL1;

MSR DBGPRCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.DBGPRCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDOSA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGPRCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGPRCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 DBGPRCR_EL1 = X[t];

op0 op1 CRn CRm op2

0b10 0b000 0b0001 0b0100 0b100
D13-3840 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.10 DBGVCR32_EL2, Debug Vector Catch Register

The DBGVCR32_EL2 characteristics are:

Purpose

Allows access to the AArch32 register DBGVCR from AArch64 state only. Its value has no effect
on execution in AArch64 state.

Configurations

AArch64 System register DBGVCR32_EL2 bits [31:0] are architecturally mapped to AArch32
System register DBGVCR[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGVCR32_EL2 are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this
register is not RES0.

Attributes

DBGVCR32_EL2 is a 64-bit register.

Field descriptions

When EL3 is implemented:

Bits [63:32]

Reserved, RES0.

NSF, bit [31]

FIQ vector catch enable in Non-secure state.

The exception vector offset is 0x1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSI, bit [30]

IRQ vector catch enable in Non-secure state.

The exception vector offset is 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [29]

Reserved, RES0.

NSD, bit [28]

Data Abort vector catch enable in Non-secure state.

The exception vector offset is 0x10.

RES0

63 32

31 30 29 28 27 26 25

RES0

24 8

SF

7

SI

6 5

SD

4

SP

3

SS

2

SU

1 0

NSF
NSI
RES0

NSU
NSS

NSP
NSD

RES0 RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3841
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSP, bit [27]

Prefetch Abort vector catch enable in Non-secure state.

The exception vector offset is 0x0C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSS, bit [26]

Supervisor Call (SVC) vector catch enable in Non-secure state.

The exception vector offset is 0x08.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSU, bit [25]

Undefined Instruction vector catch enable in Non-secure state.

The exception vector offset is 0x04.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [24:8]

Reserved, RES0.

SF, bit [7]

FIQ vector catch enable in Secure state.

The exception vector offset is 0x1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SI, bit [6]

IRQ vector catch enable in Secure state.

The exception vector offset is 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

SD, bit [4]

Data Abort vector catch enable in Secure state.

The exception vector offset is 0x10.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SP, bit [3]

Prefetch Abort vector catch enable in Secure state.

The exception vector offset is 0x0C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
D13-3842 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
SS, bit [2]

Supervisor Call (SVC) vector catch enable in Secure state.

The exception vector offset is 0x08.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SU, bit [1]

Undefined Instruction vector catch enable in Secure state.

The exception vector offset is 0x04.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.

When EL3 is not implemented:

Bits [63:8]

Reserved, RES0.

F, bit [7]

FIQ vector catch enable.

The exception vector offset is 0x1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [6]

IRQ vector catch enable.

The exception vector offset is 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

D, bit [4]

Data Abort vector catch enable.

The exception vector offset is 0x10.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P, bit [3]

Prefetch Abort vector catch enable.

RES0

63 32

RES0

31 8

F

7

I

6 5

D

4

P

3

S

2

U

1 0

RES0 RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3843
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
The exception vector offset 0x0C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S, bit [2]

Supervisor Call (SVC) vector catch enable.

The exception vector offset is 0x08.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [1]

Undefined Instruction vector catch enable.

The exception vector offset is 0x04.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.

Accessing DBGVCR32_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGVCR32_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return DBGVCR32_EL2;
elsif PSTATE.EL == EL3 then
 return DBGVCR32_EL2;

op0 op1 CRn CRm op2

0b10 0b100 0b0000 0b0111 0b000
D13-3844 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
MSR DBGVCR32_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGVCR32_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 DBGVCR32_EL2 = X[t];

op0 op1 CRn CRm op2

0b10 0b100 0b0000 0b0111 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3845
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

The DBGWCR<n>_EL1 characteristics are:

Purpose

Holds control information for a watchpoint. Forms watchpoint n together with value register
DBGWVR<n>_EL1.

Configurations

AArch64 System register DBGWCR<n>_EL1 bits [31:0] are architecturally mapped to AArch32
System register DBGWCR<n>[31:0].

AArch64 System register DBGWCR<n>_EL1 bits [31:0] are architecturally mapped to External
register DBGWCR<n>_EL1[31:0].

If watchpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes

DBGWCR<n>_EL1 is a 64-bit register.

Field descriptions

Bits [63:29]

Reserved, RES0.

MASK, bits [28:24]

Address mask. Only objects up to 2GB can be watched using a single mask.

0b00000 No mask.

0b00001 Reserved.

0b00010 Reserved.

If programmed with a reserved value, a watchpoint must behave as if either:

• MASK has been programmed with a defined value, which might be 0 (no mask), other than
for a direct read of DBGWCRn_EL1.

• The watchpoint is disabled.

Software must not rely on this property because the behavior of reserved values might change in a
future revision of the architecture.

Other values mask the corresponding number of address bits, from 0b00011 masking 3 address bits
(0x00000007 mask for address) to 0b11111 masking 31 address bits (0x7FFFFFFF mask for address).

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [23:21]

Reserved, RES0.

WT, bit [20]

Watchpoint type. Possible values are:

0b0 Unlinked data address match.

RES0

63 32

RES0

31 29

MASK

28 24

RES0

23 21

WT

20

LBN

19 16

SSC

15 14 13

BAS

12 5

LSC

4 3

PAC

2 1

E

0

HMC
D13-3846 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
0b1 Linked data address match.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

LBN, bits [19:16]

Linked breakpoint number. For Linked data address watchpoints, this specifies the index of the
Context-matching breakpoint linked to.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Watchpoint debug event for
watchpoint n is generated.

The fields that indicate when the watchpoint can be generated are: HMC, PAC, and SSC. These
fields must be considered in combination, and the values that are permitted for these fields are
constrained.

For more information on the operation of these fields, see Execution conditions for which a
watchpoint generates Watchpoint exceptions on page D2-2600.

For more information on the effect of programming the fields to a reserved value, see Reserved
DBGWCR<n>_EL1.{SSC, HMC, PAC} values on page D2-2608.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Watchpoint debug
event for watchpoint n is generated.

The fields that indicate when the watchpoint can be generated are: HMC, PAC, and SSC. These
fields must be considered in combination, and the values that are permitted for these fields are
constrained.

For more information on the operation of these fields, see Execution conditions for which a
watchpoint generates Watchpoint exceptions on page D2-2600.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

BAS, bits [12:5]

Byte address select. Each bit of this field selects whether a byte from within the word or
double-word addressed by DBGWVR<n>_EL1 is being watched.

BAS Description

xxxxxxx1 Match byte at DBGWVR<n>_EL1

xxxxxx1x Match byte at DBGWVR<n>_EL1 + 1

xxxxx1xx Match byte at DBGWVR<n>_EL1 + 2

xxxx1xxx Match byte at DBGWVR<n>_EL1 + 3
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3847
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
In cases where DBGWVR<n>_EL1 addresses a double-word:

If DBGWVR<n>_EL1[2] == 1, only BAS[3:0] are used and BAS[7:4] are ignored. Arm deprecates
setting DBGWVR<n>_EL1[2] == 1.

The valid values for BAS are non-zero binary numbers all of whose set bits are contiguous. All other
values are reserved and must not be used by software. See Reserved DBGWCR<n>_EL1.BAS
values on page D2-2609.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

LSC, bits [4:3]

Load/store control. This field enables watchpoint matching on the type of access being made.
Possible values of this field are:

0b01 Match instructions that load from a watchpointed address.

0b10 Match instructions that store to a watchpointed address.

0b11 Match instructions that load from or store to a watchpointed address.

All other values are reserved, but must behave as if the watchpoint is disabled. Software must not
rely on this property as the behavior of reserved values might change in a future revision of the
architecture.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

PAC, bits [2:1]

Privilege of access control. Determines the Exception level or levels at which a Watchpoint debug
event for watchpoint n is generated.

The fields that indicate when the watchpoint can be generated are: HMC, PAC, and SSC. These
fields must be considered in combination, and the values that are permitted for these fields are
constrained.

For more information on the operation of these fields, see Execution conditions for which a
watchpoint generates Watchpoint exceptions on page D2-2600.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

E, bit [0]

Enable watchpoint n. Possible values are:

0b0 Watchpoint disabled.

0b1 Watchpoint enabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGWCR<n>_EL1

Accesses to this register use the following encodings in the System register encoding space:

BAS Description, if DBGWVR<n>_EL1[2] == 0

xxx1xxxx Match byte at DBGWVR<n>_EL1 + 4

xx1xxxxx Match byte at DBGWVR<n>_EL1 + 5

x1xxxxxx Match byte at DBGWVR<n>_EL1 + 6

1xxxxxxx Match byte at DBGWVR<n>_EL1 + 7
D13-3848 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
MRS <Xt>, DBGWCR<n>_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGWCRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGWCR_EL1[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGWCR_EL1[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGWCR_EL1[UInt(CRm<3:0>)];

MSR DBGWCR<n>_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.DBGWCRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

op0 op1 CRn CRm op2

0b10 0b000 0b0000 n[3:0] 0b111

op0 op1 CRn CRm op2

0b10 0b000 0b0000 n[3:0] 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3849
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGWCR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGWCR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGWCR_EL1[UInt(CRm<3:0>)] = X[t];

D13-3850 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.12 DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

The DBGWVR<n>_EL1 characteristics are:

Purpose

Holds a data address value for use in watchpoint matching. Forms watchpoint n together with
control register DBGWCR<n>_EL1.

Configurations

AArch64 System register DBGWVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32
System register DBGWVR<n>[31:0].

AArch64 System register DBGWVR<n>_EL1 bits [63:0] are architecturally mapped to External
register DBGWVR<n>_EL1[63:0].

If watchpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes

DBGWVR<n>_EL1 is a 64-bit register.

Field descriptions

RESS[14:4], bits [63:53]

Reserved, Sign extended. Software must set all bits in this field to the same value as the most
significant bit of the VA field. If all bits in this field are not the same value as the most significant
bit of the VA field, then all of the following apply:

• It is CONSTRAINED UNPREDICTABLE whether the PE ignores this field when comparing an
address.

• It is IMPLEMENTATION DEFINED whether the value read back in each bit of this field is a copy
of the most significant bit of the VA field or the value written.

VA[52:49], bits [52:49]

When FEAT_LVA is implemented:

VA[52:49]

Extension to VA[48:2]. For more information, see VA[48:2].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RESS[3:0]

Extension to RESS[14:4]. For more information, see RESS[14:4].

VA[48:2], bits [48:2]

Bits[48:2] of the address value for comparison.

When FEAT_LVA is implemented, VA[52:49] forms the upper part of the address value. Otherwise,
bits [52:49] are part of the RESS field.

Arm deprecates setting DBGWVR<n>_EL1[2] == 1.

RESS[14:4]

63 53 52 49

VA[48:2]

48 32

VA[52:49]

VA[48:2]

31 2

RES0

1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3851
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

Accessing DBGWVR<n>_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGWVR<n>_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGWVRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGWVR_EL1[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGWVR_EL1[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGWVR_EL1[UInt(CRm<3:0>)];

op0 op1 CRn CRm op2

0b10 0b000 0b0000 n[3:0] 0b110
D13-3852 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
MSR DBGWVR<n>_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.DBGWVRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGWVR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGWVR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGWVR_EL1[UInt(CRm<3:0>)] = X[t];

op0 op1 CRn CRm op2

0b10 0b000 0b0000 n[3:0] 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3853
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.13 DLR_EL0, Debug Link Register

The DLR_EL0 characteristics are:

Purpose

In Debug state, holds the address to restart from.

Configurations

AArch64 System register DLR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register DLR[31:0].

Attributes

DLR_EL0 is a 64-bit register.

Field descriptions

Bits [63:0]

Restart address.

Accessing DLR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DLR_EL0

if !Halted() then
 UNDEFINED;
else
 return DLR_EL0;

MSR DLR_EL0, <Xt>

if !Halted() then
 UNDEFINED;
else
 DLR_EL0 = X[t];

Restart address

63 32

Restart address

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0101 0b001

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0101 0b001
D13-3854 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.14 DSPSR_EL0, Debug Saved Program Status Register

The DSPSR_EL0 characteristics are:

Purpose

Holds the saved process state for Debug state. On entering Debug state, PSTATE information is
written to this register. On exiting Debug state, values are copied from this register to PSTATE.

Configurations

AArch64 System register DSPSR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register DSPSR[31:0].

Attributes

DSPSR_EL0 is a 64-bit register.

Field descriptions

When AArch32 is supported at EL0 and exiting Debug state to AArch32 state:

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Copied to PSTATE.N on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Copied to PSTATE.Z on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Copied to PSTATE.C on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Copied to PSTATE.V on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Copied to PSTATE.Q on exiting Debug state.

RES0

63 32

N

31

Z

30

C

29

V

28

Q

27 26 25 24 23 22

SS

21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
DIT

PAN
SSBS

M[4]
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3855
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Copied to PSTATE.IT on exiting Debug state.

DSPSR_EL0.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is DSPSR_EL0[26:25].

• IT[7:2] is DSPSR_EL0[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Copied to PSTATE.DIT on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Copied to PSTATE.SSBS on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Copied to PSTATE.PAN on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Copied to PSTATE.SS on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
D13-3856 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
IL, bit [20]

Illegal Execution state. Copied to PSTATE.IL on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Copied to PSTATE.GE on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Copied to PSTATE.E on exiting Debug state.

If the implementation does not support big-endian operation, DSPSR_EL0.E is RES0. If the
implementation does not support little-endian operation, DSPSR_EL0.E is RES1. On exiting Debug
state, if the implementation does not support big-endian operation at the Exception level being
returned to, DSPSR_EL0.E is RES0, and if the implementation does not support little-endian
operation at the Exception level being returned to, DSPSR_EL0.E is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Copied to PSTATE.A on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Copied to PSTATE.I on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Copied to PSTATE.F on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Copied to PSTATE.T on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Copied to PSTATE.nRW on exiting Debug state.

0b1 AArch32 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Copied to PSTATE.M[3:0] on exiting Debug state.

0b0000 User.

0b0001 FIQ.

0b0010 IRQ.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3857
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
0b0011 Supervisor.

0b0110 Monitor.

0b0111 Abort.

0b1010 Hyp.

0b1011 Undefined.

0b1111 System.

Other values are reserved. If DSPSR_EL0.M[3:0] has a Reserved value, or a value for an
unimplemented Exception level, exiting Debug state is an illegal return event, as described in Illegal
return events from AArch64 state on page D1-2486.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When AArch64 is supported at the highest implemented Exception level and entering or exiting
Debug state from or to AArch64 state:

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on entering Debug state, and copied to
PSTATE.N on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on entering Debug state, and copied to
PSTATE.Z on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on entering Debug state, and copied to
PSTATE.C on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on entering Debug state, and copied to
PSTATE.V on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

N

31

Z

30

C

29

V

28

RES0

27 26 25 24 23 22

SS

21

IL

20

RES0

19 13 12 11 10

D

9

A

8

I

7

F

6 5 4

M[3:0]

3 0

TCO
DIT

PAN
UAO

SSBS
BTYPE

M[4]
RES0
D13-3858 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
Bits [27:26]

Reserved, RES0.

TCO, bit [25]

When FEAT_MTE is implemented:

TCO

Tag Check Override. Set to the value of PSTATE.TCO on entering Debug state, and copied to
PSTATE.TCO on exiting Debug state.

When FEAT_MTE is not implemented, it is CONSTRAINED UNPREDICTABLE whether this field is
RES0 or behaves as if FEAT_MTE is implemented.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Set to the value of PSTATE.DIT on entering Debug state, and copied to
PSTATE.DIT on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UAO, bit [23]

When FEAT_UAO is implemented:

UAO

User Access Override. Set to the value of PSTATE.UAO on entering Debug state, and copied to
PSTATE.UAO on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Set to the value of PSTATE.PAN on entering Debug state, and copied to
PSTATE.PAN on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3859
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
SS, bit [21]

Software Step. Set to the value of PSTATE.SS on entering Debug state, and conditionally copied to
PSTATE.SS on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on entering Debug state, and copied to
PSTATE.IL on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

SSBS, bit [12]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Set to the value of PSTATE.SSBS on entering Debug state, and copied to
PSTATE.SSBS on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BTYPE, bits [11:10]

When FEAT_BTI is implemented:

BTYPE

Branch Type Indicator. Set to the value of PSTATE.BTYPE on entering Debug state, and copied to
PSTATE.BTYPE on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on entering Debug state, and copied to
PSTATE.D on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on entering Debug state, and copied to
PSTATE.A on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
D13-3860 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on entering Debug state, and copied to PSTATE.I
on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on entering Debug state, and copied to PSTATE.F
on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on entering Debug state from AArch64 state,
and copied to PSTATE.nRW on exiting Debug state.

0b0 AArch64 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

0b0000 EL0t.

0b0100 EL1t.

0b0101 EL1h.

0b1000 EL2t.

0b1001 EL2h.

0b1100 EL3t.

0b1101 EL3h.

Other values are reserved. If DSPSR_EL0.M[3:0] has a Reserved value, or a value for an
unimplemented Exception level, exiting Debug state is an illegal return event, as described in Illegal
return events from AArch64 state on page D1-2486.

The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on entering Debug state and copied to PSTATE.EL
on exiting Debug state.

• M[1] is unused and is 0 for all non-reserved values.

• M[0] is set to the value of PSTATE.SP on entering Debug state and copied to PSTATE.SP on
exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing DSPSR_EL0

Accesses to this register use the following encodings in the System register encoding space:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3861
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
MRS <Xt>, DSPSR_EL0

if !Halted() then
 UNDEFINED;
else
 return DSPSR_EL0;

MSR DSPSR_EL0, <Xt>

if !Halted() then
 UNDEFINED;
else
 DSPSR_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0101 0b000

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0101 0b000
D13-3862 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.15 MDCCINT_EL1, Monitor DCC Interrupt Enable Register

The MDCCINT_EL1 characteristics are:

Purpose

Enables interrupt requests to be signaled based on the DCC status flags.

Configurations

AArch64 System register MDCCINT_EL1 bits [31:0] are architecturally mapped to AArch32
System register DBGDCCINT[31:0].

Attributes

MDCCINT_EL1 is a 64-bit register.

Field descriptions

Bits [63:31]

Reserved, RES0.

RX, bit [30]

DCC interrupt request enable control for DTRRX. Enables a common COMMIRQ interrupt
request to be signaled based on the DCC status flags.

0b0 No interrupt request generated by DTRRX.

0b1 Interrupt request will be generated on RXfull == 1.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the
value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

TX, bit [29]

DCC interrupt request enable control for DTRTX. Enables a common COMMIRQ interrupt
request to be signaled based on the DCC status flags.

0b0 No interrupt request generated by DTRTX.

0b1 Interrupt request will be generated on TXfull == 0.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the
value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [28:0]

Reserved, RES0.

Accessing MDCCINT_EL1

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

3131

RX

30

TX

29

RES0

28 0

RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3863
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
MRS <Xt>, MDCCINT_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 return MDCCINT_EL1;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MDCCINT_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MDCCINT_EL1;
elsif PSTATE.EL == EL3 then
 return MDCCINT_EL1;

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0010 0b000
D13-3864 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
MSR MDCCINT_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 MDCCINT_EL1 = X[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MDCCINT_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MDCCINT_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 MDCCINT_EL1 = X[t];

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3865
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.16 MDCCSR_EL0, Monitor DCC Status Register

The MDCCSR_EL0 characteristics are:

Purpose

Read-only register containing control status flags for the DCC.

Configurations

AArch64 System register MDCCSR_EL0 bits [30:29] are architecturally mapped to External
register EDSCR[30:29].

AArch64 System register MDCCSR_EL0 bits [30:29] are architecturally mapped to AArch32
System register DBGDSCRint[30:29].

Attributes

MDCCSR_EL0 is a 64-bit register.

Field descriptions

Bits [63:31]

Reserved, RES0.

RXfull, bit [30]

DTRRX full. Read-only view of the equivalent bit in the EDSCR.

TXfull, bit [29]

DTRTX full. Read-only view of the equivalent bit in the EDSCR.

Bits [28:19]

Reserved, RES0.

Bits [18:15]

Reserved, RAZ.

Bits [14:13]

Reserved, RES0.

Bit [12]

Reserved, RAZ.

Bits [11:6]

Reserved, RES0.

Bits [5:2]

Reserved, RAZ.

Bits [1:0]

Reserved, RES0.

RES0

63 32

3131 30 29

RES0

28 19

RAZ

18 15

RES0

14 13 12

RES0

11 6

RAZ

5 2

RES0

1 0

RES0 TXfull
RXfull

RAZ
D13-3866 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
Accessing MDCCSR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDCCSR_EL0

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 return MDCCSR_EL0;
elsif PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MDCCSR_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MDCCSR_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

op0 op1 CRn CRm op2

0b10 0b011 0b0000 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3867
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MDCCSR_EL0;
elsif PSTATE.EL == EL3 then
 return MDCCSR_EL0;

D13-3868 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.17 MDCR_EL2, Monitor Debug Configuration Register (EL2)

The MDCR_EL2 characteristics are:

Purpose

Provides EL2 configuration options for self-hosted debug and the Performance Monitors Extension.

Configurations

AArch64 System register MDCR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HDCR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MDCR_EL2 is a 64-bit register.

Field descriptions

Bits [63:37]

Reserved, RES0.

HPMFZS, bit [36]

When FEAT_SPEv1p2 is implemented:

HPMFZS

Hyp Performance Monitors Freeze-on-SPE event. Stop counters when PMBLIMITR_EL1.{PMFZ,
E} == {1, 1} and PMBSR_EL1.S == 1.

0b0 Do not freeze on Statistical Profiling Buffer Management event.

0b1 Event counters do not count following a Statistical Profiling Buffer Management event.

If MDCR_EL2.HPMN is less than PMCR_EL0.N, this field affects the operation of event counters
in the range [MDCR_EL2.HPMN .. (PMCR_EL0.N-1)].

If MDCR_EL2.HPMN is equal to PMCR_EL0.N, this field has no effect.

This field does not affect the operation of event counters in the range [0 .. (MDCR_EL2.HPMN-1)]
and PMCCNTR_EL0.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

63 37 36

RES0

35 32

HPMFZS

RES0

31 30 29 28 27 26

RES0

25 24 23

RES0

22 20 19 18 17

RES0

16 15 14

E2PB

13 12 11 10 9 8 7 6 5

HPMN

4 0

HPMFZO
MTPME

TDCC
HLP

HCCD
TTRF

RES0
HPMD

TPMCR
TPM

HPME
TDE

TDA
TDOSA

TDRA
TPMS
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3869
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
Reserved, RES0.

Bits [35:30]

Reserved, RES0.

HPMFZO, bit [29]

When FEAT_PMUv3p7 is implemented:

HPMFZO

Hyp Performance Monitors Freeze-on-overflow. Stop event counters on overflow.

0b0 Do not freeze on overflow.

0b1 Event counters do not count when
PMOVSCLR_EL0[(PMCR_EL0.N-1):MDCR_EL2.HPMN] is nonzero.

If MDCR_EL2.HPMN is less than PMCR_EL0.N, this field affects the operation of event counters
in the range [MDCR_EL2.HPMN .. (PMCR_EL0.N-1)].

If MDCR_EL2.HPMN is equal to PMCR_EL0.N, this field has no effect.

This field does not affect the operation of event counters in the range [0 .. (MDCR_EL2.HPMN-1)]
and PMCCNTR_EL0.

The operation of this field ignores the values of PMOVSCLR_EL0[(MDCR_EL2.HPMN-1):0].

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MTPME, bit [28]

When FEAT_MTPMU is implemented and EL3 is not implemented:

MTPME

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>_EL0.MT bits.

0b0 FEAT_MTPMU is disabled. The Effective value of PMEVTYPER<n>_EL0.MT is
zero.

0b1 PMEVTYPER<n>_EL0.MT bits not affected by this field.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as
the PE, it is IMPLEMENTATION DEFINED whether the PE behaves as if this field is 0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 1.

Otherwise:

Reserved, RES0.

TDCC, bit [27]

When FEAT_FGT is implemented:

TDCC

Trap DCC. Traps use of the Debug Comms Channel at EL1 and EL0 to EL2.

0b0 This control does not cause any register accesses to be trapped.

0b1 If EL2 is implemented and enabled in the current Security state, accesses to the DCC
registers at EL1 and EL0 generate a Trap exception to EL2, unless the access also
generates a higher priority exception.

Traps on the DCC data transfer registers are ignored when the PE is in Debug state.
D13-3870 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
The DCC registers trapped by this control are:

AArch64: OSDTRRX_EL1, OSDTRTX_EL1, MDCCSR_EL0, MDCCINT_EL1, and, when the
PE is in Non-debug state, DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is
in Non-debug state, DBGDTRRXint and DBGDTRTXint.

The traps are reported with EC syndrome value:

• 0x05 for trapped AArch32 MRC and MCR accesses with coproc == 0b1110.

• 0x06 for trapped AArch32 LDC to DBGDTRTXint and STC from DBGDTRRXint.

• 0x18 for trapped AArch64 MRS and MSR accesses.

When the PE is in Debug state, MDCR_EL2.TDCC does not trap any accesses to:

AArch64: DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXint and DBGDTRTXint.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HLP, bit [26]

When FEAT_PMUv3p5 is implemented:

HLP

Hypervisor Long event counter enable. Determines when unsigned overflow is recorded by an event
counter overflow bit.

0b0 Event counter overflow on increment that causes unsigned overflow of
PMEVCNTR<n>_EL0[31:0].

0b1 Event counter overflow on increment that causes unsigned overflow of
PMEVCNTR<n>_EL0[63:0].

If MDCR_EL2.HPMN is less than PMCR_EL0.N or PMCR.N, this bit affects the operation of
event counters in the range [MDCR_EL2.HPMN..(PMCR_EL0.N-1)] or
[MDCR_EL2.HPMN..(PMCR.N-1)]. Otherwise this bit has no effect on the operation of the event
counters.

Note

The effect of MDCR_EL2.HPMN on the operation of this bit always applies if EL2 is implemented,
at all Exception levels including EL2 and EL3, and regardless of whether EL2 is enabled in the
current Security state.

For more information see the description of the MDCR_EL2.HPMN field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [25:24]

Reserved, RES0.

HCCD, bit [23]

When FEAT_PMUv3p5 is implemented:

HCCD
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3871
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
Hypervisor Cycle Counter Disable. Prohibits PMCCNTR_EL0 from counting at EL2.

0b0 Cycle counting by PMCCNTR_EL0 is not affected by this mechanism.

0b1 Cycle counting by PMCCNTR_EL0 is prohibited at EL2.

This field does not affect the CPU_CYCLES event or any other event that counts cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [22:20]

Reserved, RES0.

TTRF, bit [19]

When FEAT_TRF is implemented:

TTRF

Traps use of the Trace Filter Control registers at EL1 to EL2, as follows:

• Access to TRFCR_EL1 is trapped to EL2, reported using EC syndrome value 0x18.

• Access to TRFCR is trapped to EL2, reported using EC syndrome value 0x03.

0b0 Accesses to TRFCR_EL1 and TRFCR at EL1 are not affected by this control.

0b1 Accesses to TRFCR_EL1 and TRFCR at EL1 generate a trap exception to EL2 when
EL2 is enabled in the current Security state.

Otherwise:

Reserved, RES0.

Bit [18]

Reserved, RES0.

HPMD, bit [17]

When FEAT_PMUv3p1 is implemented and FEAT_Debugv8p2 is implemented:

HPMD

Guest Performance Monitors Disable. Controls event counting by some event counters at EL2.

0b0 Event counting and PMCCNTR_EL0 are not affected by this mechanism.

0b1 Event counting by some event counters is prohibited at EL2. If PMCR_EL0.DP is 1,
PMCCNTR_EL0 is disabled at EL2. Otherwise, PMCCNTR_EL0 is not affected by
this mechanism.

This field applies only to:

• The event counters in the range [0 .. (MDCR_EL2.HPMN-1)].

• If PMCR_EL0.DP is 1, PMCCNTR_EL0.

The other event counters are not affected. When PMCR_EL0.DP is 0, PMCCNTR_EL0 is not
affected.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_PMUv3p1 is implemented:

HPMD

Guest Performance Monitors Disable. Controls event counting by some event counters at EL2.

0b0 Event counting and PMCCNTR_EL0 are not affected by this mechanism.
D13-3872 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
0b1 If ExternalSecureNoninvasiveDebugEnabled () is FALSE, event counting by some event
counters is prohibited at EL2, and if PMCR_EL0.DP is 1, PMCCNTR_EL0 is disabled
at EL2.

If ExternalSecureNoninvasiveDebugEnabled () is TRUE, the event counters and PMCCNTR_EL0 are
not affected by this field.

Otherwise, this field applies only to:

• The event counters in the range [0 .. (MDCR_EL2.HPMN-1)].

• If PMCR_EL0.DP is 1, PMCCNTR_EL0.

The other event counters are not affected. When PMCR_EL0.DP is 0, PMCCNTR_EL0 is not
affected.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [16:15]

Reserved, RES0.

TPMS, bit [14]

When FEAT_SPE is implemented:

TPMS

Trap Performance Monitor Sampling. If EL2 is implemented and enabled in the current Security
state, controls access to Statistical Profiling control registers from EL1.

0b0 Do not trap Statistical Profiling controls to EL2.

0b1 If EL2 is implemented and enabled in the current Security state, accesses to Statistical
Profiling control registers at EL1 generate a Trap exception to EL2.

The Statistical Profiling control registers trapped by this control are:

• PMSCR_EL1, PMSEVFR_EL1, PMSFCR_EL1, PMSICR_EL1, PMSIDR_EL1,
PMSIRR_EL1, and PMSLATFR_EL1.

• If FEAT_SPEv1p2 is implemented, PMSNEVFR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E2PB, bits [13:12]

When FEAT_SPE is implemented:

E2PB

EL2 Profiling Buffer. If EL2 is implemented and enabled in the Profiling Buffer owning Security
state, this field controls the owning translation regime. If EL2 is implemented and enabled in the
current Security state, this field controls access to Profiling Buffer control registers from EL1.

0b00 If EL2 is implemented and enabled in the Profiling Buffer owning Security state, the
Profiling Buffer uses the EL2 or EL2&0 stage 1 translation regime. Otherwise the
Profiling Buffer uses the EL1&0 stage 1 translation regime.

If EL2 is implemented and enabled in the current Security state, accesses to Profiling
Buffer control registers at EL1 generate a Trap exception to EL2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3873
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
0b10 Profiling Buffer uses the EL1&0 stage 1 translation regime. If EL2 is implemented and
enabled in the current Security state, accesses to Profiling Buffer control registers at
EL1 generate a Trap exception to EL2.

0b11 Profiling Buffer uses the EL1&0 stage 1 translation regime. Accesses to Profiling
Buffer control registers at EL1 are not trapped to EL2.

All other values are reserved.

The Profiling Buffer control registers trapped by this control are: PMBLIMITR_EL1,
PMBPTR_EL1, and PMBSR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TDRA, bit [11]

Trap Debug ROM Address register access. Traps System register accesses to the Debug ROM
registers to EL2 when EL2 is enabled in the current Security state as follows:

• If EL1 is using AArch64 state, accesses to MDRAR_EL1 are trapped to EL2, reported using
EC syndrome value 0x18.

• If EL0 or EL1 is using AArch32 state, MRC or MCR accesses to the following registers are
trapped to EL2, reported using EC syndrome value 0x05 and MRRC or MCRR accesses are
trapped to EL2, reported using EC syndrome value 0x0C:

— DBGDRAR, DBGDSAR.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 and EL1 System register accesses to the Debug ROM registers are trapped to EL2
when EL2 is enabled in the current Security state, unless it is trapped by
DBGDSCRext.UDCCdis or MDSCR_EL1.TDCC.

This field is treated as being 1 for all purposes other than a direct read when one or more of the
following are true:

• MDCR_EL2.TDE == 1.

• HCR_EL2.TGE == 1.

Note

EL2 does not provide traps on debug register accesses through the optional memory-mapped
external debug interfaces.

System register accesses to the debug registers might have side-effects. When a System register
access is trapped to EL2, no side-effects occur before the exception is taken to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDOSA, bit [10]

When FEAT_DoubleLock is implemented:

TDOSA

Trap debug OS-related register access. Traps EL1 System register accesses to the powerdown debug
registers to EL2, from both Execution states as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x18:

— OSLAR_EL1, OSLSR_EL1, OSDLR_EL1, and DBGPRCR_EL1.

— Any IMPLEMENTATION DEFINED register with similar functionality that the
implementation specifies as trapped by this bit.
D13-3874 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
• In AArch32 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x05:

— DBGOSLSR, DBGOSLAR, DBGOSDLR, and DBGPRCR.

— Any IMPLEMENTATION DEFINED register with similar functionality that the
implementation specifies as trapped by this bit.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 System register accesses to the powerdown debug registers are trapped to EL2
when EL2 is enabled in the current Security state.

Note

These registers are not accessible at EL0.

This field is treated as being 1 for all purposes other than a direct read when one or more of the
following are true:

• MDCR_EL2.TDE == 1.

• HCR_EL2.TGE == 1.

System register accesses to the debug registers might have side-effects. When a System register
access is trapped to EL2, no side-effects occur before the exception is taken to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

TDOSA

Trap debug OS-related register access. Traps EL1 System register accesses to the powerdown debug
registers to EL2, from both Execution states as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x18:

— OSLAR_EL1, OSLSR_EL1, and DBGPRCR_EL1.

— Any IMPLEMENTATION DEFINED register with similar functionality that the
implementation specifies as trapped by this bit.

• In AArch32 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x05:

— DBGOSLSR, DBGOSLAR, and DBGPRCR.

— Any IMPLEMENTATION DEFINED register with similar functionality that the
implementation specifies as trapped by this bit.

It is IMPLEMENTATION DEFINED whether accesses to OSDLR_EL1 are trapped.

It is IMPLEMENTATION DEFINED whether accesses to DBGOSDLR are trapped.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 System register accesses to the powerdown debug registers are trapped to EL2
when EL2 is enabled in the current Security state.

Note
These registers are not accessible at EL0.

This field is treated as being 1 for all purposes other than a direct read when one or more of the
following are true:

• MDCR_EL2.TDE == 1.

• HCR_EL2.TGE == 1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3875
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
Note

EL2 does not provide traps on debug register accesses through the optional memory-mapped
external debug interfaces.

System register accesses to the debug registers might have side-effects. When a System register
access is trapped to EL2, no side-effects occur before the exception is taken to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDA, bit [9]

Trap Debug Access. Traps EL0 and EL1 System register accesses to debug System registers that are
not trapped by MDCR_EL2.TDRA or MDCR_EL2.TDOSA, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2 reported using EC
syndrome value 0x18:

— MDCCSR_EL0, MDCCINT_EL1, OSDTRRX_EL1, MDSCR_EL1,
OSDTRTX_EL1, OSECCR_EL1, DBGBVR<n>_EL1, DBGBCR<n>_EL1,
DBGWVR<n>_EL1, DBGWCR<n>_EL1, DBGCLAIMSET_EL1,
DBGCLAIMCLR_EL1, DBGAUTHSTATUS_EL1.

— When not in Debug state, DBGDTR_EL0, DBGDTRRX_EL0, DBGDTRTX_EL0.

• In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2,
reported using EC syndrome value 0x05.

— DBGDIDR, DBGDSCRint, DBGDCCINT, DBGWFAR, DBGVCR, DBGDSCRext,
DBGDTRTXext, DBGDTRRXext, DBGBVR<n>, DBGBCR<n>, DBGBXVR<n>,
DBGWCR<n>, DBGWVR<n>, DBGCLAIMSET, DBGCLAIMCLR,
DBGAUTHSTATUS, DBGDEVID, DBGDEVID1, DBGDEVID2, DBGOSECCR.

— When not in Debug state, DBGDTRRXint and DBGDTRTXint.

• In AArch32 state, STC accesses to DBGDTRRXint and LDC accesses to DBGDTRTXint are
trapped to EL2, reported using EC syndrome value 0x06.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 or EL1 System register accesses to the debug registers are trapped from both
Execution states to EL2 when EL2 is enabled in the current Security state, unless the
access generates a higher priority exception.

Traps of AArch32 accesses to DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

Traps of AArch64 accesses to DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0 are
ignored in Debug state.

This field is treated as being 1 for all purposes other than a direct read when one or more of the
following are true:

• MDCR_EL2.TDE == 1

• HCR_EL2.TGE == 1

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDE, bit [8]

Trap Debug Exceptions. Controls routing of Debug exceptions, and defines the debug target
Exception level, ELD.

0b0 The debug target Exception level is EL1.

0b1 If EL2 is enabled for the current Effective value of SCR_EL3.NS, the debug target
Exception level is EL2, otherwise the debug target Exception level is EL1.

The MDCR_EL2.{TDRA, TDOSA, TDA} fields are treated as being 1 for all purposes
other than returning the result of a direct read of the register.
D13-3876 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
For more information, see Routing debug exceptions on page D2-2569.

This field is treated as being 1 for all purposes other than a direct read when HCR_EL2.TGE == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HPME, bit [7]

When FEAT_PMUv3 is implemented:

HPME

[MDCR_EL2.HPMN..(N-1)] event counters enable.

0b0 Event counters in the range [MDCR_EL2.HPMN..(PMCR_EL0.N-1)] are disabled.

0b1 Event counters in the range [MDCR_EL2.HPMN..(PMCR_EL0.N-1)] are enabled by
PMCNTENSET_EL0.

If MDCR_EL2.HPMN is less than PMCR_EL0.N or PMCR.N, the event counters in the range
[MDCR_EL2.HPMN..(PMCR_EL0.N-1)] or [HDCR.HPMN..(PMCR.N-1)], are enabled and
disabled by this bit. Otherwise this bit has no effect on the operation of the event counters.

Note

The effect of MDCR_EL2.HPMN on the operation of this bit applies regardless of whether EL2 is
enabled in the current Security state.

For more information see the description of the HPMN field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TPM, bit [6]

When FEAT_PMUv3 is implemented:

TPM

Trap Performance Monitors accesses. Traps EL0 and EL1 accesses to all Performance Monitor
registers to EL2 when EL2 is enabled in the current Security state, from both Execution states, as
follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x18:

— PMCR_EL0, PMCNTENSET_EL0, PMCNTENCLR_EL0, PMOVSCLR_EL0,
PMSWINC_EL0, PMSELR_EL0, PMCEID0_EL0, PMCEID1_EL0,
PMCCNTR_EL0, PMXEVTYPER_EL0, PMXEVCNTR_EL0, PMUSERENR_EL0,
PMINTENSET_EL1, PMINTENCLR_EL1, PMOVSSET_EL0,
PMEVCNTR<n>_EL0, PMEVTYPER<n>_EL0, PMCCFILTR_EL0.

— If FEAT_PMUv3p4 is implemented, PMMIR_EL1

• In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2 and
reported using EC syndrome value 0x03, MRRC or MCRR accesses are trapped to EL2 and
reported using EC syndrome value 0x04:

— PMCR, PMCNTENSET, PMCNTENCLR, PMOVSR, PMSWINC, PMSELR,
PMCEID0, PMCEID1, PMCCNTR, PMXEVTYPER, PMXEVCNTR,
PMUSERENR, PMINTENSET, PMINTENCLR, PMOVSSET, PMEVCNTR<n>,
PMEVTYPER<n>, PMCCFILTR.

— If FEAT_PMUv3p1 is implemented, PMCEID2, and PMCEID3.

— If FEAT_PMUv3p4 is implemented, PMMIR.

0b0 This control does not cause any instructions to be trapped.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3877
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
0b1 EL0 and EL1 accesses to all Performance Monitor registers are trapped to EL2 when
EL2 is enabled in the current Security state.

Note
EL2 does not provide traps on Performance Monitor register accesses through the optional
memory-mapped external debug interface.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TPMCR, bit [5]

When FEAT_PMUv3 is implemented:

TPMCR

Trap PMCR_EL0 or PMCR accesses. Traps EL0 and EL1 accesses to EL2, when EL2 is enabled in
the current Security state, as follows:

• In AArch64 state, accesses to PMCR_EL0 are trapped to EL2, reported using EC syndrome
value 0x18.

• In AArch32 state, accesses to PMCR are trapped to EL2, reported using EC syndrome value
0x03.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 and EL1 accesses to the PMCR_EL0 or PMCR are trapped to EL2 when EL2 is
enabled in the current Security state, unless it is trapped by PMUSERENR.EN or
PMUSERENR_EL0.EN.

Note

EL2 does not provide traps on Performance Monitor register accesses through the optional
memory-mapped external debug interface.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPMN, bits [4:0]

When FEAT_PMUv3 is implemented:

HPMN

Defines the number of event counters that are accessible from EL3, EL2, EL1, and from EL0 if
permitted.

If HPMN is less than PMCR_EL0.N, HPMN divides the Performance Monitors into two ranges:
[0..(HPMN-1)] and [HPMN..(PMCR_EL0.N-1)].

For an event counter in the range [0..(HPMN-1)]:

• The counter is accessible from EL3, EL2, and EL1, and from EL0 if permitted by
PMUSERENR_EL0 or PMUSERENR.

• If FEAT_PMUv3p5 is implemented, PMCR_EL0.LP or PMCR.LP determines whether the
counter overflow flag is set on unsigned overflow of PMEVCNTR<n>_EL0[31:0] or
PMEVCNTR<n>_EL0[63:0].

• The counter is enabled by PMCR_EL0.E or PMCR.E and bit <n> of PMCNTENSET_EL0.
D13-3878 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
Note

If HPMN is equal to PMCR_EL0.N, this applies to all event counters.

If HPMN is less than PMCR_EL0.N, for an event counter in the range [HPMN..(PMCR_EL0.N-1)]:

• The counter is accessible from EL2 and EL3.

• If FEAT_SEL2 is disabled or is not implemented, the counter is also accessible from Secure
EL1, and from Secure EL0 if permitted by PMUSERENR_EL0.

• If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP or HDCR.HLP determines whether
the counter overflow flag is set on unsigned overflow of PMEVCNTR<n>_EL0[31:0] or
PMEVCNTR<n>_EL0[63:0].

• The counter is enabled by MDCR_EL2.HPME or HDCR.HPME and bit <n> of
PMCNTENSET_EL0.

If this field is set to 0, or to a value larger than PMCR_EL0.N, then the following CONSTRAINED
UNPREDICTABLE behaviors apply:

• The value returned by a direct read of MDCR_EL2.HPMN is UNKNOWN.

• Either:

— An UNKNOWN number of counters are reserved for EL2 and EL3 use. That is, the PE
behaves as if MDCR_EL2.HPMN is set to an UNKNOWN non-zero value less than or
equal to PMCR_EL0.N.

— All counters are reserved for EL2 and EL3 use, meaning no counters are accessible
from EL1 and EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to the value in PMCR_EL0.N.

Otherwise:

Reserved, RES0.

Accessing MDCR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3879
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
 else
 return MDCR_EL2;
elsif PSTATE.EL == EL3 then
 return MDCR_EL2;

MSR MDCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MDCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 MDCR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b001
D13-3880 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.18 MDCR_EL3, Monitor Debug Configuration Register (EL3)

The MDCR_EL3 characteristics are:

Purpose

Provides EL3 configuration options for self-hosted debug and the Performance Monitors Extension.

Configurations

AArch64 System register MDCR_EL3 bits [31:0] can be mapped to AArch32 System register
SDCR[31:0], but this is not architecturally mandated.

This register is present only when EL3 is implemented. Otherwise, direct accesses to MDCR_EL3
are UNDEFINED.

Attributes

MDCR_EL3 is a 64-bit register.

Field descriptions

Bits [63:37]

Reserved, RES0.

EnPMSN, bit [36]

When FEAT_SPEv1p2 is implemented:

EnPMSN

Trap accesses to PMSNEVFR_EL1. Controls access to Statistical Profiling PMSNEVFR_EL1
System register from EL2 and EL1.

0b0 Accesses to PMSNEVFR_EL1 at EL2 and EL1 generate a Trap exception to EL3.

0b1 Do not trap PMSNEVFR_EL1 to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MPMX, bit [35]

When FEAT_PMUv3p7 is implemented:

MPMX

RES0

63 37 36 35 34

RES0

33 32

EnPMSN MCCD
MPMX

RES0

31 29 28 27

RES0

26 24 23 22 21 20 19 18 17 16 15 14

NSPB

13 12 11 10 9

RES0

8 7 6

RES0

5 0

MTPME
TDCC

SCCD
RES0
EPMAD

EDAD
TTRF

TPM
TDA

TDOSA
RES0

SPD32
SDD

SPME
STE
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3881
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
Monitor Performance Monitors Extended control. In conjunction with MDCR_EL3.SPME,
controls when event counters are enabled at EL3 and in other Secure Exception levels.

0b0 Event counting and PMCCNTR_EL0 are not affected by this mechanism.

0b1 Event counting by some or all event counters is prohibited at EL3. If PMCR_EL0.DP
is 1, PMCCNTR_EL0 is disabled at EL3. Otherwise, PMCCNTR_EL0 is not affected
by this mechanism.

If EL2 is implemented, MDCR_EL3.SPME == 1, and MDCR_EL2.HPMN is less than
PMCR_EL0.N then all the following are true:

• This field affects the operation of event counters in the range [0 .. (MDCR_EL2.HPMN-1)]
at EL3, and if PMCR_EL0.DP is 1, the operation of PMCCNTR_EL0 at EL3.

• This field does not affect the operation of event counters in the range [MDCR_EL2.HPMN
.. (PMCR_EL0.N-1)].

• This applies even when EL2 is disabled in Secure state.

If EL2 is not implemented, MDCR_EL3.SPME == 0, or MDCR_EL2.HPMN is equal to
PMCR_EL0.N then this field affects the operation of all event counters at EL3, and if
PMCR_EL0.DP is 1, the operation of PMCCNTR_EL0 at EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

MCCD, bit [34]

When FEAT_PMUv3p7 is implemented:

MCCD

Monitor Cycle Counter Disable. Prohibits the Cycle Counter, PMCCNTR_EL0, from counting at
EL3.

0b0 Cycle counting by PMCCNTR_EL0 is not affected by this mechanism.

0b1 Cycle counting by PMCCNTR_EL0 is prohibited at EL3.

This field does not affect the CPU_CYCLES event or any other event that counts cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [33:29]

Reserved, RES0.

MTPME, bit [28]

When FEAT_MTPMU is implemented:

MTPME

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>_EL0.MT bits.

0b0 FEAT_MTPMU is disabled. The Effective value of PMEVTYPER<n>_EL0.MT is
zero.

0b1 PMEVTYPER<n>_EL0.MT bits not affected by this field.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as
the PE, it is IMPLEMENTATION DEFINED whether the PE behaves as if this field is 0.
D13-3882 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
The reset behavior of this field is:

• On a Cold reset, this field resets to 1.

Otherwise:

Reserved, RES0.

TDCC, bit [27]

When FEAT_FGT is implemented:

TDCC

Trap DCC. Traps use of the Debug Comms Channel at EL2, EL1, and EL0 to EL3.

0b0 This control does not cause any register accesses to be trapped.

0b1 Accesses to the DCC registers at EL2, EL1, and EL0 generate a Trap exception to EL3,
unless the access also generates a higher priority exception.

Traps on the DCC data transfer registers are ignored when the PE is in Debug state.

The DCC registers trapped by this control are:

AArch64: OSDTRRX_EL1, OSDTRTX_EL1, MDCCSR_EL0, MDCCINT_EL1, and, when the
PE is in Non-debug state, DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is
in Non-debug state, DBGDTRRXint and DBGDTRTXint.

The traps are reported with EC syndrome value:

• 0x05 for trapped AArch32 MRC and MCR accesses with coproc == 0b1110.

• 0x06 for trapped AArch32 LDC to DBGDTRTXint and STC from DBGDTRRXint.

• 0x18 for trapped AArch64 MRS and MSR accesses.

When the PE is in Debug state, MDCR_EL3.TDCC does not trap any accesses to:

AArch64: DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXint and DBGDTRTXint.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [26:24]

Reserved, RES0.

SCCD, bit [23]

When FEAT_PMUv3p5 is implemented:

SCCD

Secure Cycle Counter Disable. Prohibits PMCCNTR_EL0 from counting in Secure state.

0b0 Cycle counting by PMCCNTR_EL0 is not affected by this mechanism.

0b1 Cycle counting by PMCCNTR_EL0 is prohibited in Secure state.

This field does not affect the CPU_CYCLES event or any other event that counts cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3883
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
Bit [22]

Reserved, RES0.

EPMAD, bit [21]

When FEAT_Debugv8p4 is implemented, FEAT_PMUv3 is implemented and the Performance
Monitors Extension supports external debug interface accesses:

EPMAD

External Performance Monitors Non-secure Access Disable. Controls Non-secure access to
Performance Monitor registers by an external debugger.

0b0 Non-secure access to Performance Monitor registers from external debugger is
permitted.

0b1 Non-secure access to Performance Monitor registers from external debugger is not
permitted.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value
of this bit is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_PMUv3 is implemented and the Performance Monitors Extension supports external
debug interface accesses:

EPMAD

External Performance Monitors Access Disable. Controls access to Performance Monitor registers
by an external debugger.

0b0 Access to Performance Monitor registers from external debugger is permitted.

0b1 Access to Performance Monitor registers from external debugger is not permitted,
unless overridden by the IMPLEMENTATION DEFINED authentication interface.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value
of this bit is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EDAD, bit [20]

When FEAT_Debugv8p4 is implemented:

EDAD

External Debug Non-secure Access Disable. Controls Non-secure access to breakpoint, watchpoint,
and OSLAR_EL1 registers by an external debugger.

0b0 Non-secure access to debug registers from external debugger is permitted.

0b1 Non-secure access to breakpoint and watchpoint registers, and OSLAR_EL1 from
external debugger is not permitted.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value
of this field is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_Debugv8p2 is implemented:

EDAD
D13-3884 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
External Debug Access Disable. Controls access to breakpoint, watchpoint, and OSLAR_EL1
registers by an external debugger.

0b0 Access to debug registers, and to OSLAR_EL1 from external debugger is permitted.

0b1 Access to breakpoint and watchpoint registers, and to OSLAR_EL1 from external
debugger is not permitted, unless overridden by the IMPLEMENTATION DEFINED
authentication interface.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value
of this field is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

EDAD

External Debug Access disable. Controls access to breakpoint, watchpoint, and optionally
OSLAR_EL1 registers by an external debugger.

0b0 Access to debug registers from external debugger is permitted.

0b1 Access to breakpoint and watchpoint registers from an external debugger is not
permitted, unless overridden by the IMPLEMENTATION DEFINED authentication interface.

It is IMPLEMENTATION DEFINED whether access to the OSLAR_EL1 register from an
external debugger is permitted or not permitted.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value
of this field is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

TTRF, bit [19]

When FEAT_TRF is implemented:

TTRF

Trap Trace Filter controls. Traps use of the Trace Filter control registers at EL2 and EL1 to EL3.

The Trace Filter registers trapped by this control are:

• TRFCR_EL2, TRFCR_EL12, TRFCR_EL1, reported using EC syndrome value 0x18.

• HTRFCR and TRFCR, reported using EC syndrome value 0x03.

0b0 Accesses to Trace Filter registers at EL2 and EL1 are not affected by this bit.

0b1 Accesses to Trace Filter registers at EL2 and EL1 generate a Trap exception to EL3,
unless the access generates a higher priority exception.

Otherwise:

Reserved, RES0.

STE, bit [18]

When FEAT_TRF is implemented:

STE

Secure Trace enable. Enables tracing in Secure state.

0b0 Trace prohibited in Secure state unless overridden by the IMPLEMENTATION DEFINED
authentication interface.

0b1 Trace in Secure state is not affected by this bit.

This bit also controls the level of authentication required by an external debugger to enable external
tracing. See Register controls to enable self-hosted trace on page D3-2628.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, the Effective value of
this bit is 0b1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3885
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SPME, bit [17]

When FEAT_PMUv3 is implemented and FEAT_PMUv3p7 is implemented:

SPME

Secure Performance Monitors Enable. Controls event counting in Secure state and EL3.

0b0 When MDCR_EL3.MPMX == 0: Event counting is prohibited in Secure state. If
PMCR_EL0.DP is 1, PMCCNTR_EL0 is disabled in Secure state. Otherwise,
PMCCNTR_EL0 is not affected by this mechanism.

0b1 When MDCR_EL3.MPMX == 0: Event counting and PMCCNTR_EL0 are not affected
by this mechanism.

When MDCR_EL3.MPMX is 0, this field affects the operation of all event counters in Secure state,
and if PMCR_EL0.DP is 1, the operation of PMCCNTR_EL0 in Secure state.

When MDCR_EL3.MPMX is 1, this field affects the operation of event counters at EL3 only, and
if PMCR_EL0.DP is 1, the operation of PMCCNTR_EL0 at EL3 only. See MDCR_EL3.MPMX for
more information.

When PMCR_EL0.DP is 0, PMCCNTR_EL0 is not affected by this field.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of
this field is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_PMUv3 is implemented and FEAT_Debugv8p2 is implemented:

SPME

Secure Performance Monitors Enable. Controls event counting in Secure state.

0b0 Event counting is prohibited in Secure state. If PMCR_EL0.DP is 1, PMCCNTR_EL0
is disabled in Secure state. Otherwise, PMCCNTR_EL0 is not affected by this
mechanism.

0b1 Event counting and PMCCNTR_EL0 are not affected by this mechanism.

This field affects the operation of all event counters in Secure state, and if PMCR_EL0.DP is 1, the
operation of PMCCNTR_EL0 in Secure state. When PMCR_EL0.DP is 0, PMCCNTR_EL0 is not
affected by this field.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of
this field is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_PMUv3 is implemented:

SPME

Secure Performance Monitors Enable. Controls event counting in Secure state.

0b0 If ExternalSecureNoninvasiveDebugEnabled () is FALSE, event counting is prohibited in
Secure state, and if PMCR_EL0.DP is 1, PMCCNTR_EL0 is disabled in Secure state.

0b1 Event counting and PMCCNTR_EL0 are not affected by this mechanism.

If ExternalSecureNoninvasiveDebugEnabled () is TRUE, the event counters and PMCCNTR_EL0 are
not affected by this field.
D13-3886 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
Otherwise, this field affects the operation of all event counters in Secure state, and if
PMCR_EL0.DP is 1, the operation of PMCCNTR_EL0 in Secure state. When PMCR_EL0.DP is
0, PMCCNTR_EL0 is not affected by this field.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of
this field is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SDD, bit [16]

AArch64 Secure Self-hosted invasive debug disable. Disables Software debug exceptions in Secure
state, other than Breakpoint Instruction exceptions.

0b0 Debug exceptions in Secure state are not affected by this bit.

0b1 Debug exceptions, other than Breakpoint Instruction exceptions, are disabled from all
Exception levels in Secure state.

The SDD bit is ignored unless both of the following are true:

• The PE is in Secure state.

• The Effective value of SCR_EL3.RW is 0b1.

If Secure EL2 is implemented and enabled, and Secure EL1 is using AArch32, then:

• If debug exceptions from Secure EL1 are enabled, debug exceptions from Secure EL0 are
also enabled.

• Otherwise, debug exceptions from Secure EL0 are enabled only if the value of
SDER32_EL3.SUIDEN is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPD32, bits [15:14]

When EL1 is capable of using AArch32:

SPD32

AArch32 Secure self-hosted privileged debug. Enables or disables debug exceptions from Secure
EL1 using AArch32, other than Breakpoint Instruction exceptions.

0b00 Legacy mode. Debug exceptions from Secure EL1 are enabled by the IMPLEMENTATION
DEFINED authentication interface.

0b10 Secure privileged debug disabled. Debug exceptions from Secure EL1 are disabled.

0b11 Secure privileged debug enabled. Debug exceptions from Secure EL1 are enabled.

Other values are reserved, and have the CONSTRAINED UNPREDICTABLE behavior that they must
have the same behavior as 0b00. Software must not rely on this property as the behavior of reserved
values might change in a future revision of the architecture.

This field has no effect on Breakpoint Instruction exceptions. These are always enabled.

This field is ignored unless both of the following are true:

• The PE is in Secure state.

• The Effective value of SCR_EL3.RW is 0b0.

If Secure EL1 is using AArch32, then:

• If debug exceptions from Secure EL1 are enabled, then debug exceptions from Secure EL0
are also enabled.

• Otherwise, debug exceptions from Secure EL0 are enabled only if the value of
SDER32_EL3.SUIDEN is 0b1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3887
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value
of this field is 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSPB, bits [13:12]

When FEAT_SPE is implemented:

NSPB

Non-secure Profiling Buffer. Controls the owning translation regime and accesses to Statistical
Profiling and Profiling Buffer control registers.

0b00 Profiling Buffer uses Secure Virtual Addresses. Statistical Profiling enabled in Secure
state and disabled in Non-secure state. Accesses to Statistical Profiling and Profiling
Buffer control registers at EL2 and EL1 in Non-secure and Secure states generate Trap
exceptions to EL3.

0b01 Profiling Buffer uses Secure Virtual Addresses. Statistical Profiling enabled in Secure
state and disabled in Non-secure state. Accesses to Statistical Profiling and Profiling
Buffer control registers at EL2 and EL1 in Non-secure state generate Trap exceptions to
EL3.

0b10 Profiling Buffer uses Non-secure Virtual Addresses. Statistical Profiling enabled in
Non-secure state and disabled in Secure state. Accesses to Statistical Profiling and
Profiling Buffer control registers at EL2 and EL1 in Non-secure and Secure states
generate Trap exceptions to EL3.

0b11 Profiling Buffer uses Non-secure Virtual Addresses. Statistical Profiling enabled in
Non-secure state and disabled in Secure state. Accesses to Statistical Profiling and
Profiling Buffer control registers at EL2 and EL1 in Secure state generate Trap
exceptions to EL3.

The Statistical Profiling and Profiling Buffer control registers trapped by this control are:

• PMBLIMITR_EL1, PMBPTR_EL1, PMBSR_EL1, PMSCR_EL1, PMSCR_EL2,
PMSCR_EL12, PMSEVFR_EL1, PMSFCR_EL1, PMSICR_EL1, PMSIDR_EL1,
PMSIRR_EL1, and PMSLATFR_EL1.

• If FEAT_SPEv1p2 is implemented, PMSNEVFR_EL1.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 1, then the Effective value of
this field is 0b11.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of
this field is 0b01.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [11]

Reserved, RES0.

TDOSA, bit [10]

When FEAT_DoubleLock is implemented:

TDOSA
D13-3888 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
Trap debug OS-related register access. Traps EL2 and EL1 System register accesses to the
powerdown debug registers to EL3.

Accesses to the registers are trapped as follows:

• Accesses from AArch64 state, OSLAR_EL1, OSLSR_EL1, OSDLR_EL1,
DBGPRCR_EL1, and any IMPLEMENTATION DEFINED register with similar functionality that
the implementation specifies as trapped by this bit, are trapped to EL3 and reported using EC
syndrome value 0x18.

• Accesses using MCR or MRC to DBGOSLAR, DBGOSLSR, DBGOSDLR, and
DBGPRCR, are trapped to EL3 and reported using EC syndrome value 0x05.

• Accesses to any IMPLEMENTATION DEFINED register with similar functionality that the
implementation specifies as trapped by this bit.

0b0 This control does not cause any instructions to be trapped.

0b1 EL2 and EL1 System register accesses to the powerdown debug registers are trapped to
EL3, unless it is trapped by HDCR.TDOSA or MDCR_EL2.TDOSA.

Note

The powerdown debug registers are not accessible at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

TDOSA

Trap debug OS-related register access. Traps EL2 and EL1 System register accesses to the
powerdown debug registers to EL3.

The following registers are affected by this trap:

• AArch64: OSLAR_EL1, OSLSR_EL1, and DBGPRCR_EL1.

• AArch32: DBGOSLAR, DBGOSLSR, and DBGPRCR.

• AArch64 and AArch32: Any IMPLEMENTATION DEFINED register with similar functionality
that the implementation specifies as trapped by this bit.

• It is IMPLEMENTATION DEFINED whether accesses to OSDLR_EL1 and DBGOSDLR are
trapped.

0b0 This control does not cause any instructions to be trapped.

0b1 EL2 and EL1 System register accesses to the powerdown debug registers are trapped to
EL3, unless it is trapped by HDCR.TDOSA or MDCR_EL2.TDOSA.

Note
The powerdown debug registers are not accessible at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDA, bit [9]

Trap Debug Access. Traps EL2, EL1, and EL0 System register accesses to those debug System
registers that cannot be trapped using the MDCR_EL3.TDOSA field.

Accesses to the debug registers are trapped as follows:

• In AArch64 state, the following registers are trapped to EL3 and reported using EC syndrome
value 0x18:

— DBGBVR<n>_EL1, DBGBCR<n>_EL1, DBGWVR<n>_EL1, DBGWCR<n>_EL1,
DBGCLAIMSET_EL1, DBGCLAIMCLR_EL1, DBGAUTHSTATUS_EL1,
DBGVCR32_EL2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3889
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
— AArch64: MDCR_EL2, MDRAR_EL1, MDCCSR_EL0, MDCCINT_EL1,
MDSCR_EL1, OSDTRRX_EL1, OSDTRTX_EL1, OSECCR_EL1.

• In AArch32 state, SDER is trapped to EL3 and reported using EC syndrome value 0x03.

• In AArch32 state, accesses using MCR or MRC to the following registers are reported using
EC syndrome value 0x05, accesses using MCRR or MRRC are reported using EC syndrome
value 0x0C:

— HDCR, DBGDRAR, DBGDSAR, DBGDIDR, DBGDCCINT, DBGWFAR,
DBGVCR, DBGBVR<n>, DBGBCR<n>, DBGBXVR<n>, DBGWCR<n>,
DBGWVR<n>.

— DBGCLAIMSET, DBGCLAIMCLR, DBGAUTHSTATUS, DBGDEVID,
DBGDEVID1, DBGDEVID2, DBGOSECCR.

• In AArch32 state, STC accesses to DBGDTRRXint and LDC accesses to DBGDTRTXint are
reported using EC syndrome value 0x06.

• When not in Debug state, the following registers are also trapped to EL3:

— AArch64 accesses to DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0,
reported using EC syndrome value 0x18.

— AArch32 accesses using MCR or MRC to DBGDTRRXint and DBGDTRTXint,
reported using EC syndrome value 0x05.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0, EL1, and EL2 accesses to the debug registers, other than the registers that can be
trapped by MDCR_EL3.TDOSA, are trapped to EL3, from both Security states and
both Execution states, unless it is trapped by DBGDSCRext.UDCCdis,
MDSCR_EL1.TDCC, HDCR.TDA or MDCR_EL2.TDA.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:7]

Reserved, RES0.

TPM, bit [6]

When FEAT_PMUv3 is implemented:

TPM

Trap Performance Monitor register accesses. Accesses to all Performance Monitor registers from
EL0, EL1, and EL2 to EL3, from both Security states and both Execution states are trapped as
follows:

• In AArch64 state, accesses to the following registers are trapped to EL3 and are reported
using EC syndrome value 0x18:

— PMCR_EL0, PMCNTENSET_EL0, PMCNTENCLR_EL0, PMOVSCLR_EL0,
PMSWINC_EL0, PMSELR_EL0, PMCEID0_EL0, PMCEID1_EL0,
PMCCNTR_EL0, PMXEVTYPER_EL0, PMXEVCNTR_EL0, PMUSERENR_EL0,
PMINTENSET_EL1, PMINTENCLR_EL1, PMOVSSET_EL0,
PMEVCNTR<n>_EL0, PMEVTYPER<n>_EL0, PMCCFILTR_EL0.

— If FEAT_PMUv3p4 is implemented, PMMIR_EL1.

• In AArch32 state, accesses using MCR or MRC to the following registers are reported using
EC syndrome value 0x03, accesses using MCRR or MRRC are reported using EC syndrome
value 0x04:

— PMCR, PMCNTENSET, PMCNTENCLR, PMOVSR, PMSWINC, PMSELR,
PMCEID0, PMCEID1, PMCCNTR, PMXEVTYPER, PMXEVCNTR,
PMUSERENR, PMINTENSET, PMINTENCLR, PMOVSSET, PMEVCNTR<n>,
PMEVTYPER<n>, PMCCFILTR.

— If FEAT_PMUv3p1 is implemented, PMCEID2, and PMCEID3.
D13-3890 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
— If FEAT_PMUv3p4 is implemented, PMMIR.

0b0 This control does not cause any instructions to be trapped.

0b1 EL2, EL1, and EL0 System register accesses to all Performance Monitor registers are
trapped to EL3, unless it is trapped by HDCR.TPM or MDCR_EL2.TPM.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [5:0]

Reserved, RES0.

Accessing MDCR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDCR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return MDCR_EL3;

MSR MDCR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 MDCR_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0011 0b001

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0011 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3891
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.19 MDRAR_EL1, Monitor Debug ROM Address Register

The MDRAR_EL1 characteristics are:

Purpose

Defines the base physical address of a 4KB-aligned memory-mapped debug component, usually a
ROM table that locates and describes the memory-mapped debug components in the system. Armv8
deprecates any use of this register.

Configurations

AArch64 System register MDRAR_EL1 bits [63:0] are architecturally mapped to AArch32 System
register DBGDRAR[63:0].

Attributes

MDRAR_EL1 is a 64-bit register.

Field descriptions

Bits [63:52]

Reserved, RES0.

ROMADDR, bits [51:12]

When FEAT_LPA is implemented:

ROMADDR, bits [39:0]

The ROM table physical address.

Bits [11:0] of the ROM table physical address are defined to be zero.

In an implementation that includes EL3, ROMADDR is an address in Non-secure
memory. It is IMPLEMENTATION DEFINED whether the ROM table is also accessible in
Secure memory.

Arm strongly recommends that bits ROMADDR[(PAsize-1):32] are zero in any system
that supports AArch32 at the highest implemented Exception level.

If MDRAR_EL1.Valid == 0b00, then this field is UNKNOWN.

The upper part of the address value.

If the physical address size in bits (PAsize) is less than 52, then the register bits
corresponding to ROMADDR [39:PAsize] are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 52

ROMADDR

51 32

ROMADDR

31 12

RES0

11 2 1 0

Valid

ROMADDR

39 32

ROMADDR

31 0
D13-3892 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
When FEAT_LPA is not implemented or AArch32 is supported at EL0:

Bits [39:36]

Reserved, RES0.

ROMADDR, bits [35:0]

The ROM table physical address.

Bits [11:0] of the ROM table physical address are defined to be zero.

In an implementation that includes EL3, ROMADDR is an address in Non-secure
memory. It is IMPLEMENTATION DEFINED whether the ROM table is also accessible in
Secure memory.

Arm strongly recommends that bits ROMADDR[(PAsize-1):32] are zero in any system
that supports AArch32 at the highest implemented Exception level.

If MDRAR_EL1.Valid == 0b00, then this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:2]

Reserved, RES0.

Valid, bits [1:0]

This field indicates whether the ROM Table address is valid.

0b00 ROM Table address is not valid. Software must ignore ROMADDR.

0b11 ROM Table address is valid.

Other values are reserved.

Arm recommends implementations set this field to zero.

Accessing MDRAR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDRAR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDRA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else

RES0

39 36

ROMADDR

35 32

ROMADDR

31 0

op0 op1 CRn CRm op2

0b10 0b000 0b0001 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3893
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MDRAR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MDRAR_EL1;
elsif PSTATE.EL == EL3 then
 return MDRAR_EL1;

D13-3894 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.20 MDSCR_EL1, Monitor Debug System Control Register

The MDSCR_EL1 characteristics are:

Purpose

Main control register for the debug implementation.

Configurations

AArch64 System register MDSCR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DBGDSCRext[31:0].

AArch64 System register MDSCR_EL1 bit [15] is architecturally mapped to AArch32 System
register DBGDSCRint[15].

AArch64 System register MDSCR_EL1 bit [12] is architecturally mapped to AArch32 System
register DBGDSCRint[12].

AArch64 System register MDSCR_EL1 bits [5:2] are architecturally mapped to AArch32 System
register DBGDSCRint[5:2].

Attributes

MDSCR_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TFO, bit [31]

When FEAT_TRF is implemented:

TFO

Trace Filter override. Used for save/restore of EDSCR.TFO.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TFO. Reads and writes of this
bit are indirect accesses to EDSCR.TFO.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Otherwise:

Reserved, RES0.

RES0

63 32

31 30 29 28 27 26

RES0

25 24 23 22 21 20 19

RAZ/WI

18 16 15 14 13 12

RES0

11 7 6

RES0

5 1

SS

0

TFO
RXfull

TXfull
RES0

RXO
TXU

INTdis

TDCC
KDE

HDE
MDE

SC2
RES0

TDA

ERR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3895
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
RXfull, bit [30]

Used for save/restore of EDSCR.RXfull.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.RXfull. Reads and writes of this
bit are indirect accesses to EDSCR.RXfull.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

TXfull, bit [29]

Used for save/restore of EDSCR.TXfull.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TXfull. Reads and writes of this
bit are indirect accesses to EDSCR.TXfull.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bit [28]

Reserved, RES0.

RXO, bit [27]

Used for save/restore of EDSCR.RXO.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.RXO. Reads and writes of this
bit are indirect accesses to EDSCR.RXO.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

TXU, bit [26]

Used for save/restore of EDSCR.TXU.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TXU. Reads and writes of this
bit are indirect accesses to EDSCR.TXU.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bits [25:24]

Reserved, RES0.
D13-3896 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
INTdis, bits [23:22]

Used for save/restore of EDSCR.INTdis.

When OSLSR_EL1.OSLK == 0, and software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this field holds the value of EDSCR.INTdis. Reads and writes of
this field are indirect accesses to EDSCR.INTdis.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

TDA, bit [21]

Used for save/restore of EDSCR.TDA.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TDA. Reads and writes of this
bit are indirect accesses to EDSCR.TDA.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bit [20]

Reserved, RES0.

SC2, bit [19]

When FEAT_PCSRv8 is implemented, FEAT_VHE is implemented and FEAT_PCSRv8p2 is not
implemented:

SC2

Used for save/restore of EDSCR.SC2.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.SC2. Reads and writes of this
bit are indirect accesses to EDSCR.SC2.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [18:16]

Reserved, RAZ/WI.

Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as
zero, and must use a read-modify-write sequence to write to the register.

MDE, bit [15]

Monitor debug events. Enable Breakpoint, Watchpoint, and Vector Catch exceptions.

0b0 Breakpoint, Watchpoint, and Vector Catch exceptions disabled.

0b1 Breakpoint, Watchpoint, and Vector Catch exceptions enabled.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3897
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HDE, bit [14]

Used for save/restore of EDSCR.HDE.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.HDE. Reads and writes of this
bit are indirect accesses to EDSCR.HDE.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

KDE, bit [13]

Local (kernel) debug enable. If ELD is using AArch64, enable debug exceptions within ELD.
Permitted values are:

0b0 Debug exceptions, other than Breakpoint Instruction exceptions, disabled within ELD.

0b1 All debug exceptions enabled within ELD.

RES0 if ELD is using AArch32.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDCC, bit [12]

Traps EL0 accesses to the Debug Communication Channel (DCC) registers to EL1, or to EL2 when
it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from both
Execution states, as follows:

• In AArch64 state, MRS or MSR accesses to the following DCC registers are trapped,
reported using EC syndrome value 0x18:

— MDCCSR_EL0.

— If not in Debug state, DBGDTR_EL0, DBGDTRTX_EL0, and DBGDTRRX_EL0.

• In AArch32 state, MRC or MCR accesses to the following registers are trapped, reported
using EC syndrome value 0x05.

— DBGDSCRint, DBGDIDR, DBGDSAR, DBGDRAR.

— If not in Debug state, DBGDTRRXint, and DBGDTRTXint.

• In AArch32 state, LDC access to DBGDTRRXint and STC access to DBGDTRTXint are
trapped, reported using EC syndrome value 0x06.

• In AArch32 state, MRRC accesses to DBGDSAR and DBGDRAR are trapped, reported
using EC syndrome value 0x0C.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 using AArch64: EL0 accesses to the AArch64 DCC registers are trapped.

EL0 using AArch32: EL0 accesses to the AArch32 DCC registers are trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:7]

Reserved, RES0.

ERR, bit [6]

Used for save/restore of EDSCR.ERR.
D13-3898 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.ERR. Reads and writes of this
bit are indirect accesses to EDSCR.ERR.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bits [5:1]

Reserved, RES0.

SS, bit [0]

Software step control bit. If ELD is using AArch64, enable Software step. Permitted values are:

0b0 Software step disabled

0b1 Software step enabled.

RES0 if ELD is using AArch32.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MDSCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDSCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.MDSCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
 return NVMem[0x158];
 else
 return MDSCR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0010 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3899
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MDSCR_EL1;
elsif PSTATE.EL == EL3 then
 return MDSCR_EL1;

MSR MDSCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.MDSCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
 NVMem[0x158] = X[t];
 else
 MDSCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MDSCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 MDSCR_EL1 = X[t];

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0010 0b010
D13-3900 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.21 OSDLR_EL1, OS Double Lock Register

The OSDLR_EL1 characteristics are:

Purpose

Used to control the OS Double Lock.

Configurations

AArch64 System register OSDLR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DBGOSDLR[31:0].

Attributes

OSDLR_EL1 is a 64-bit register.

Field descriptions

Bits [63:1]

Reserved, RES0.

DLK, bit [0]

When FEAT_DoubleLock is implemented:

DLK

OS Double Lock control bit.

0b0 OS Double Lock unlocked.

0b1 OS Double Lock locked, if DBGPRCR_EL1.CORENPDRQ (Core no powerdown
request) bit is set to 0 and the PE is in Non-debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RAZ/WI.

Accessing OSDLR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, OSDLR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

RES0

63 32

RES0

31 1 0

DLK

op0 op1 CRn CRm op2

0b10 0b000 0b0001 0b0011 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3901
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDOSA == '1' && (IsFeatureImplemented(FEAT_DoubleLock) || boolean
IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA") then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_DoubleLock)
&& HDFGRTR_EL2.OSDLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDOSA> != '00' && (IsFeatureImplemented(FEAT_DoubleLock) ||
boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL2.TDOSA") then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' && (IsFeatureImplemented(FEAT_DoubleLock) || boolean
IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA") then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return OSDLR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDOSA == '1' && (IsFeatureImplemented(FEAT_DoubleLock) || boolean
IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA") then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' && (IsFeatureImplemented(FEAT_DoubleLock) || boolean
IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA") then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return OSDLR_EL1;
elsif PSTATE.EL == EL3 then
 return OSDLR_EL1;

MSR OSDLR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDOSA == '1' && (IsFeatureImplemented(FEAT_DoubleLock) || boolean
IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA") then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_DoubleLock)
&& HDFGWTR_EL2.OSDLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDOSA> != '00' && (IsFeatureImplemented(FEAT_DoubleLock) ||
boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL2.TDOSA") then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' && (IsFeatureImplemented(FEAT_DoubleLock) || boolean
IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA") then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 OSDLR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDOSA == '1' && (IsFeatureImplemented(FEAT_DoubleLock) || boolean

op0 op1 CRn CRm op2

0b10 0b000 0b0001 0b0011 0b100
D13-3902 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA") then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' && (IsFeatureImplemented(FEAT_DoubleLock) || boolean
IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA") then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 OSDLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 OSDLR_EL1 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3903
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.22 OSDTRRX_EL1, OS Lock Data Transfer Register, Receive

The OSDTRRX_EL1 characteristics are:

Purpose

Used for save and restore of DBGDTRRX_EL0. It is a component of the Debug Communications
Channel.

Configurations

AArch64 System register OSDTRRX_EL1 bits [31:0] are architecturally mapped to AArch32
System register DBGDTRRXext[31:0].

Attributes

OSDTRRX_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Update DTRRX without side-effect.

Writes to this register update the value in DTRRX and do not change RXfull.

Reads of this register return the last value written to DTRRX and do not change RXfull.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

Accessing OSDTRRX_EL1

Arm deprecates reads and writes of OSDTRRX_EL1 when the OS Lock is unlocked.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, OSDTRRX_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 return OSDTRRX_EL1;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then

RES0

63 32

Update DTRRX without side-effect

31 0

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0000 0b010
D13-3904 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return OSDTRRX_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return OSDTRRX_EL1;
elsif PSTATE.EL == EL3 then
 return OSDTRRX_EL1;

MSR OSDTRRX_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 OSDTRRX_EL1 = X[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0000 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3905
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 OSDTRRX_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 OSDTRRX_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 OSDTRRX_EL1 = X[t];

D13-3906 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.23 OSDTRTX_EL1, OS Lock Data Transfer Register, Transmit

The OSDTRTX_EL1 characteristics are:

Purpose

Used for save/restore of DBGDTRTX_EL0. It is a component of the Debug Communications
Channel.

Configurations

AArch64 System register OSDTRTX_EL1 bits [31:0] are architecturally mapped to AArch32
System register DBGDTRTXext[31:0].

Attributes

OSDTRTX_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Return DTRTX without side-effect.

Reads of this register return the value in DTRTX and do not change TXfull.

Writes of this register update the value in DTRTX and do not change TXfull.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

Accessing OSDTRTX_EL1

Arm deprecates reads and writes of OSDTRTX_EL1 when the OS Lock is unlocked.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, OSDTRTX_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 return OSDTRTX_EL1;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then

RES0

63 32

Return DTRTX without side-effect

31 0

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0011 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3907
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return OSDTRTX_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return OSDTRTX_EL1;
elsif PSTATE.EL == EL3 then
 return OSDTRTX_EL1;

MSR OSDTRTX_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 OSDTRTX_EL1 = X[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0011 0b010
D13-3908 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 OSDTRTX_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 OSDTRTX_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 OSDTRTX_EL1 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3909
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.24 OSECCR_EL1, OS Lock Exception Catch Control Register

The OSECCR_EL1 characteristics are:

Purpose

Provides a mechanism for an operating system to access the contents of EDECCR that are otherwise
invisible to software, so it can save/restore the contents of EDECCR over powerdown on behalf of
the external debugger.

Configurations

AArch64 System register OSECCR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DBGOSECCR[31:0].

AArch64 System register OSECCR_EL1 bits [31:0] are architecturally mapped to External register
EDECCR[31:0].

If OSLSR_EL1.OSLK == 0, then OSECCR_EL1 returns an UNKNOWN value on reads and ignores
writes.

Attributes

OSECCR_EL1 is a 64-bit register.

Field descriptions

When OSLSR_EL1.OSLK == 1:

Bits [63:32]

Reserved, RES0.

EDECCR, bits [31:0]

Used for save/restore to EDECCR over powerdown.

Reads or writes to this field are indirect accesses to EDECCR.

Accessing OSECCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, OSECCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.OSECCR_EL1 == '1' then

RES0

63 32

EDECCR

31 0

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0110 0b010
D13-3910 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' then
 return bits(64) UNKNOWN;
 else
 return OSECCR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' then
 return bits(64) UNKNOWN;
 else
 return OSECCR_EL1;
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' then
 return bits(64) UNKNOWN;
 else
 return OSECCR_EL1;

MSR OSECCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.OSECCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' then
 //no operation
 else
 OSECCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0110 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3911
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' then
 //no operation
 else
 OSECCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' then
 //no operation
 else
 OSECCR_EL1 = X[t];

D13-3912 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.25 OSLAR_EL1, OS Lock Access Register

The OSLAR_EL1 characteristics are:

Purpose

Used to lock or unlock the OS Lock.

Configurations

AArch64 System register OSLAR_EL1 bits [31:0] are architecturally mapped to External register
OSLAR_EL1[31:0].

The OS Lock can also be locked or unlocked using DBGOSLAR.

Attributes

OSLAR_EL1 is a 64-bit register.

Field descriptions

Bits [63:1]

Reserved, RES0.

OSLK, bit [0]

On writes to OSLAR_EL1, bit[0] is copied to the OS Lock.

Use OSLSR_EL1.OSLK to check the current status of the lock.

Accessing OSLAR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MSR OSLAR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.OSLAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDOSA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

RES0

63 32

RES0

31 1 0

OSLK

op0 op1 CRn CRm op2

0b10 0b000 0b0001 0b0000 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3913
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
 else
 OSLAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 OSLAR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 OSLAR_EL1 = X[t];

D13-3914 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.26 OSLSR_EL1, OS Lock Status Register

The OSLSR_EL1 characteristics are:

Purpose

Provides the status of the OS Lock.

Configurations

AArch64 System register OSLSR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DBGOSLSR[31:0].

Attributes

OSLSR_EL1 is a 64-bit register.

Field descriptions

Bits [63:4]

Reserved, RES0.

OSLM, bits [3, 0]

OS Lock model implemented. Identifies the form of OS save and restore mechanism implemented.

0b00 OS Lock not implemented.

0b10 OS Lock implemented.

All other values are reserved. In an Armv8 implementation the value 0b00 is not permitted.

The OSLM field is split as follows:

• OSLM[1] is OSLSR_EL1[3].

• OSLM[0] is OSLSR_EL1[0].

nTT, bit [2]

Not 32-bit access. This bit is always RAZ. It indicates that a 32-bit access is needed to write the key
to the OS Lock Access Register.

OSLK, bit [1]

OS Lock Status.

0b0 OS Lock unlocked.

0b1 OS Lock locked.

The OS Lock is locked and unlocked by writing to the OS Lock Access Register.

The reset behavior of this field is:

• On a Cold reset, this field resets to 1.

Accessing OSLSR_EL1

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

RES0

31 4 3 2 1 0

OSLM[1]
nTT

OSLM[0]
OSLK
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3915
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
MRS <Xt>, OSLSR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.OSLSR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDOSA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return OSLSR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return OSLSR_EL1;
elsif PSTATE.EL == EL3 then
 return OSLSR_EL1;

op0 op1 CRn CRm op2

0b10 0b000 0b0001 0b0001 0b100
D13-3916 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.27 SDER32_EL2, AArch32 Secure Debug Enable Register

The SDER32_EL2 characteristics are:

Purpose

Allows access to the AArch32 register SDER from Secure EL2 and EL3 only.

Configurations

AArch64 System register SDER32_EL2 bits [63:0] are architecturally mapped to AArch64 System
register SDER32_EL3[63:0] when EL3 is implemented.

AArch64 System register SDER32_EL2 bits [31:0] are architecturally mapped to AArch32 System
register SDER[31:0].

This register is present only when EL2 is implemented, FEAT_SEL2 is implemented and EL1 is
capable of using AArch32. Otherwise, direct accesses to SDER32_EL2 are UNDEFINED.

This register is ignored by the PE when one or more of the following are true:

• The PE is in Non-secure state.

• EL1 is using AArch64.

Attributes

SDER32_EL2 is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

SUNIDEN, bit [1]

Secure User Non-Invasive Debug Enable.

0b0 This bit does not affect Performance Monitors event counting at Secure EL0.

0b1 If EL1 is using AArch32, Performance Monitors event counting is allowed in Secure
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SUIDEN, bit [0]

Secure User Invasive Debug Enable.

0b0 This bit does not affect the generation of debug exceptions at Secure EL0.

0b1 If EL1 is using AArch32, debug exceptions from Secure EL0 are enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SDER32_EL2

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

RES0

31 2 1 0

SUNIDEN SUIDEN
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3917
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
MRS <Xt>, SDER32_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return SDER32_EL2;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 return SDER32_EL2;

MSR SDER32_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SDER32_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 SDER32_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0011 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0011 0b001
D13-3918 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.28 SDER32_EL3, AArch32 Secure Debug Enable Register

The SDER32_EL3 characteristics are:

Purpose

Allows access to the AArch32 register SDER from AArch64 state only. Its value has no effect on
execution in AArch64 state.

Configurations

AArch64 System register SDER32_EL3 bits [63:0] are architecturally mapped to AArch64 System
register SDER32_EL2[63:0] when EL2 is implemented and FEAT_SEL2 is implemented.

AArch64 System register SDER32_EL3 bits [31:0] are architecturally mapped to AArch32 System
register SDER[31:0].

This register is present only when EL3 is implemented and EL1 is capable of using AArch32.
Otherwise, direct accesses to SDER32_EL3 are UNDEFINED.

This register is ignored by the PE when one or more of the following are true:

• The PE is in Non-secure state.

• EL1 is using AArch64.

Attributes

SDER32_EL3 is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

SUNIDEN, bit [1]

Secure User Non-Invasive Debug Enable.

0b0 This bit does not affect Performance Monitors event counting at Secure EL0.

0b1 If EL1 is using AArch32, Performance Monitors event counting is allowed in Secure
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SUIDEN, bit [0]

Secure User Invasive Debug Enable.

0b0 This bit does not affect the generation of debug exceptions at Secure EL0.

0b1 If EL1 is using AArch32, debug exceptions from Secure EL0 are enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SDER32_EL3

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

RES0

31 2 1 0

SUNIDEN SUIDEN
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3919
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
MRS <Xt>, SDER32_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return SDER32_EL3;

MSR SDER32_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SDER32_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b001
D13-3920 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.29 TRFCR_EL1, Trace Filter Control Register (EL1)

The TRFCR_EL1 characteristics are:

Purpose

Provides EL1 controls for Trace.

Configurations

AArch64 System register TRFCR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register TRFCR[31:0].

This register is present only when FEAT_TRF is implemented. Otherwise, direct accesses to
TRFCR_EL1 are UNDEFINED.

Attributes

TRFCR_EL1 is a 64-bit register.

Field descriptions

Bits [63:7]

Reserved, RES0.

TS, bits [6:5]

Timestamp Control. Controls which timebase is used for trace timestamps.

0b01 Virtual timestamp. The traced timestamp is the physical counter value minus the value
of CNTVOFF_EL2.

0b10 When FEAT_ECV is implemented:

Guest physical timestamp. The traced timestamp is the physical counter value minus a
physical offset. If any of the following are true, the physical offset is zero, otherwise the
physical offset is the value of CNTPOFF_EL2:

• SCR_EL3.ECVEn == 0.

• CNTHCTL_EL2.ECV == 0.

0b11 Physical timestamp. The traced timestamp is the physical counter value.

All other values are reserved.

This field is ignored by the PE when any of the following are true:

• EL2 is implemented and TRFCR_EL2.TS != 0b00.

• SelfHostedTraceEnabled () == FALSE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [4:2]

Reserved, RES0.

RES0

63 32

RES0

31 7

TS

6 5

RES0

4 2 1 0

E1TRE E0TRE
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3921
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
E1TRE, bit [1]

EL1 Trace Enable.

0b0 Trace is prohibited at EL1.

0b1 Trace is allowed at EL1.

This field is ignored if SelfHostedTraceEnabled() == FALSE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

E0TRE, bit [0]

EL0 Trace Enable.

0b0 Trace is prohibited at EL0.

0b1 Trace is allowed at EL0.

This field is ignored if any of the following are true:

• SelfHostedTraceEnabled() == FALSE.

• EL2 is implemented and enabled in the current Security state and HCR_EL2.TGE == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing TRFCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRFCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TTRF == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x880];
 else
 return TRFCR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 return TRFCR_EL2;

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b001
D13-3922 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
 else
 return TRFCR_EL1;
elsif PSTATE.EL == EL3 then
 return TRFCR_EL1;

MSR TRFCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.TRFCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TTRF == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x880] = X[t];
 else
 TRFCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 TRFCR_EL2 = X[t];
 else
 TRFCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 TRFCR_EL1 = X[t];

MRS <Xt>, TRFCR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x880];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b001

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3923
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return TRFCR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return TRFCR_EL1;
 else
 UNDEFINED;

MSR TRFCR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x880] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TRFCR_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 TRFCR_EL1 = X[t];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0010 0b001
D13-3924 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
D13.3.30 TRFCR_EL2, Trace Filter Control Register (EL2)

The TRFCR_EL2 characteristics are:

Purpose

Provides EL2 controls for Trace.

Configurations

AArch64 System register TRFCR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HTRFCR[31:0].

This register is present only when FEAT_TRF is implemented. Otherwise, direct accesses to
TRFCR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

TRFCR_EL2 is a 64-bit register.

Field descriptions

Bits [63:7]

Reserved, RES0.

TS, bits [6:5]

Timestamp Control. Controls which timebase is used for trace timestamps.

0b00 Timestamp controlled by TRFCR_EL1.TS or TRFCR.TS.

0b01 Virtual timestamp. The traced timestamp is the physical counter value minus the value
of CNTVOFF_EL2.

0b10 When FEAT_ECV is implemented:

Guest physical timestamp. The traced timestamp is the physical counter value minus a
physical offset. If any of the following are true, the physical offset is zero, otherwise the
physical offset is the value of CNTPOFF_EL2:

• SCR_EL3.ECVEn == 0.

• CNTHCTL_EL2.ECV == 0.

0b11 Physical timestamp. The traced timestamp is the physical counter value.

This field is ignored by the PE when SelfHostedTraceEnabled () == FALSE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bit [4]

Reserved, RES0.

CX, bit [3]

CONTEXTIDR_EL2 and VMID trace enable.

0b0 CONTEXTIDR_EL2 and VMID trace prohibited.

RES0

63 32

RES0

31 7

TS

6 5 4

CX

3 2 1 0

RES0
RES0

E0HTRE
E2TRE
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3925
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
0b1 CONTEXTIDR_EL2 and VMID trace allowed.

This field is ignored if SelfHostedTraceEnabled() == FALSE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bit [2]

Reserved, RES0.

E2TRE, bit [1]

EL2 Trace Enable.

0b0 Trace is prohibited at EL2.

0b1 Trace is allowed at EL2.

This field is ignored if SelfHostedTraceEnabled() == FALSE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

E0HTRE, bit [0]

EL0 Trace Enable.

0b0 Trace is prohibited at EL0 when HCR_EL2.TGE == 1.

0b1 Trace is allowed at EL0 when HCR_EL2.TGE == 1.

This field is ignored if any of the following are true:

• SelfHostedTraceEnabled() == FALSE.

• EL2 is disabled in the current security state.

• HCR_EL2.TGE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing TRFCR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRFCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b001
D13-3926 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.3 Debug registers
 else
 return TRFCR_EL2;
elsif PSTATE.EL == EL3 then
 return TRFCR_EL2;

MSR TRFCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TRFCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 TRFCR_EL2 = X[t];

MRS <Xt>, TRFCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TTRF == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x880];
 else
 return TRFCR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3927
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.3 Debug registers
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 return TRFCR_EL2;
 else
 return TRFCR_EL1;
elsif PSTATE.EL == EL3 then
 return TRFCR_EL1;

MSR TRFCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.TRFCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TTRF == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x880] = X[t];
 else
 TRFCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 TRFCR_EL2 = X[t];
 else
 TRFCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 TRFCR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b001
D13-3928 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
D13.4 Performance Monitors registers

This section lists the Performance Monitoring registers in AArch64.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3929
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
D13.4.1 PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register

The PMCCFILTR_EL0 characteristics are:

Purpose

Determines the modes in which the Cycle Counter, PMCCNTR_EL0, increments.

Configurations

AArch64 System register PMCCFILTR_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMCCFILTR[31:0].

AArch64 System register PMCCFILTR_EL0 bits [31:0] are architecturally mapped to External
register PMCCFILTR_EL0[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMCCFILTR_EL0 are UNDEFINED.

Attributes

PMCCFILTR_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the
PMCCFILTR_EL0.NSK bit.

0b0 Count cycles in EL1.

0b1 Do not count cycles in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

User filtering bit. Controls counting in EL0.

If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the
PMCCFILTR_EL0.NSU bit.

0b0 Count cycles in EL0.

0b1 Do not count cycles in EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]

When EL3 is implemented:

NSK

RES0

63 32

P

31

U

30 29 28 27

M

26 25

SH

24

RES0

23 0

NSK
NSU

RES0
NSH
D13-3930 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

If the value of this bit is equal to the value of the PMCCFILTR_EL0.P bit, cycles in Non-secure EL1
are counted.

Otherwise, cycles in Non-secure EL1 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

NSU

Non-secure EL0 (Unprivileged) filtering bit. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of the PMCCFILTR_EL0.U bit, cycles in Non-secure
EL0 are counted.

Otherwise, cycles in Non-secure EL0 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

NSH

EL2 (Hypervisor) filtering bit. Controls counting in EL2.

If Secure EL2 is implemented, and EL3 is implemented, counting in Secure EL2 is further
controlled by the PMCCFILTR_EL0.SH bit.

0b0 Do not count cycles in EL2.

0b1 Count cycles in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M, bit [26]

When EL3 is implemented:

M

Secure EL3 filtering bit.

If the value of this bit is equal to the value of the PMCCFILTR_EL0.P bit, cycles in Secure EL3 are
counted.

Otherwise, cycles in Secure EL3 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3931
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
Otherwise:

Reserved, RES0.

Bit [25]

Reserved, RES0.

SH, bit [24]

When FEAT_SEL2 is implemented and EL3 is implemented:

SH

Secure EL2 filtering.

If the value of this bit is not equal to the value of the PMCCFILTR_EL0.NSH bit, cycles in Secure
EL2 are counted.

Otherwise, cycles in Secure EL2 are not counted.

If Secure EL2 is disabled, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [23:0]

Reserved, RES0.

Accessing PMCCFILTR_EL0

PMCCFILTR_EL0 can also be accessed by using PMXEVTYPER_EL0 with PMSELR_EL0.SEL set to 0b11111.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMCCFILTR_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMCCFILTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b1111 0b111
D13-3932 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
 return PMCCFILTR_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCCFILTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCCFILTR_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCCFILTR_EL0;
elsif PSTATE.EL == EL3 then
 return PMCCFILTR_EL0;

MSR PMCCFILTR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMCCFILTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCCFILTR_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCCFILTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b1111 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3933
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCCFILTR_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCCFILTR_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 PMCCFILTR_EL0 = X[t];

D13-3934 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
D13.4.2 PMCCNTR_EL0, Performance Monitors Cycle Count Register

The PMCCNTR_EL0 characteristics are:

Purpose

Holds the value of the processor Cycle Counter, CCNT, that counts processor clock cycles. See Time
as measured by the Performance Monitors cycle counter on page D7-2852 for more information.

PMCCFILTR_EL0 determines the modes and states in which the PMCCNTR_EL0 can increment.

Configurations

AArch64 System register PMCCNTR_EL0 bits [63:0] are architecturally mapped to AArch32
System register PMCCNTR[63:0].

AArch64 System register PMCCNTR_EL0 bits [63:0] are architecturally mapped to External
register PMCCNTR_EL0[63:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMCCNTR_EL0 are UNDEFINED.

All counters are subject to any changes in clock frequency, including clock stopping caused by the
WFI and WFE instructions. This means that it is CONSTRAINED UNPREDICTABLE whether or not
PMCCNTR_EL0 continues to increment when clocks are stopped by WFI and WFE instructions.

Attributes

PMCCNTR_EL0 is a 64-bit register.

Field descriptions

CCNT, bits [63:0]

Cycle count. Depending on the values of PMCR_EL0.{LC,D}, this field increments in one of the
following ways:

• Every processor clock cycle.

• Every 64th processor clock cycle.

Writing 1 to PMCR_EL0.C sets this field to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMCCNTR_EL0

Accesses to this register use the following encodings in the System register encoding space:

CCNT

63 32

CCNT

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3935
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
MRS <Xt>, PMCCNTR_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.<CR,EN> == '00' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCCNTR_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCCNTR_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCCNTR_EL0;
elsif PSTATE.EL == EL3 then
 return PMCCNTR_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1101 0b000
D13-3936 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
MSR PMCCNTR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCCNTR_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCCNTR_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCCNTR_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 PMCCNTR_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1101 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3937
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
D13.4.3 PMCEID0_EL0, Performance Monitors Common Event Identification register 0

The PMCEID0_EL0 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are
implemented, or counted, using PMU events in the ranges 0x0000 to 0x001F and 0x4000 to 0x401F.

For more information about the common events and the use of the PMCEID<n>_EL0 registers see
The PMU event number space and common events on page D7-2875.

Configurations

AArch64 System register PMCEID0_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMCEID0[31:0].

AArch64 System register PMCEID0_EL0 bits [63:32] are architecturally mapped to AArch32
System register PMCEID2[31:0].

AArch64 System register PMCEID0_EL0 bits [31:0] are architecturally mapped to External
register PMCEID0[31:0].

AArch64 System register PMCEID0_EL0 bits [63:32] are architecturally mapped to External
register PMCEID2[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMCEID0_EL0 are UNDEFINED.

Attributes

PMCEID0_EL0 is a 64-bit register.

Field descriptions

IDhi<n>, bit [n+32], for n = 31 to 0

When FEAT_PMUv3p1 is implemented:

IDhi<n>

IDhi[n] corresponds to common event (0x4000 + n).

For each bit:

0b0 The common event is not implemented, or not counted.

0b1 The common event is implemented.

IDhi<n>

63 32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID31
ID30

ID29
ID28

ID27
ID26

ID25
ID24

ID23
ID22

ID21
ID20

ID19
ID18

ID17
ID16

ID0
ID1

ID2
ID3

ID4
ID5

ID6
ID7

ID8
ID9

ID10
ID11

ID12
ID13

ID14
ID15
D13-3938 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
When the value of a bit in the field is 1, the corresponding common event is implemented and
counted.

Note
Arm recommends that if a common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n>_EL0 registers of that earlier version of the PMU architecture.

Otherwise:

Reserved, RES0.

ID<n>, bit [n], for n = 31 to 0

ID[n] corresponds to common event n.

For each bit:

0b0 The common event is not implemented, or not counted.

0b1 The common event is implemented.

When the value of a bit in the field is 1, the corresponding common event is implemented and
counted.

Note

Arm recommends that if a common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n>_EL0 registers of that earlier version of the PMU architecture.

Accessing PMCEID0_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMCEID0_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3939
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCEID0_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCEID0_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCEID0_EL0;
elsif PSTATE.EL == EL3 then
 return PMCEID0_EL0;

D13-3940 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
D13.4.4 PMCEID1_EL0, Performance Monitors Common Event Identification register 1

The PMCEID1_EL0 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are
implemented, or counted, using PMU events in the ranges 0x0020 to 0x003F and 0x4020 to 0x403F.

For more information about the common events and the use of the PMCEID<n>_EL0 registers see
The PMU event number space and common events on page D7-2875.

Configurations

AArch64 System register PMCEID1_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMCEID1[31:0].

AArch64 System register PMCEID1_EL0 bits [63:32] are architecturally mapped to AArch32
System register PMCEID3[31:0].

AArch64 System register PMCEID1_EL0 bits [31:0] are architecturally mapped to External
register PMCEID1[31:0].

AArch64 System register PMCEID1_EL0 bits [63:32] are architecturally mapped to External
register PMCEID3[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMCEID1_EL0 are UNDEFINED.

Attributes

PMCEID1_EL0 is a 64-bit register.

Field descriptions

IDhi<n>, bit [n+32], for n = 31 to 0

When FEAT_PMUv3p1 is implemented:

IDhi<n>

IDhi[n] corresponds to common event (0x4020 + n).

For each bit:

0b0 The common event is not implemented, or not counted.

0b1 The common event is implemented.

IDhi<n>

63 32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID31
ID30

ID29
ID28

ID27
ID26

ID25
ID24

ID23
ID22

ID21
ID20

ID19
ID18

ID17
ID16

ID0
ID1

ID2
ID3

ID4
ID5

ID6
ID7

ID8
ID9

ID10
ID11

ID12
ID13

ID14
ID15
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3941
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
When the value of a bit in the field is 1, the corresponding common event is implemented and
counted.

Note
Arm recommends that if a common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n>_EL0 registers of that earlier version of the PMU architecture.

Otherwise:

Reserved, RES0.

ID<n>, bit [n], for n = 31 to 0

ID[n] corresponds to common event (0x0020 + n).

For each bit:

0b0 The common event is not implemented, or not counted.

0b1 The common event is implemented.

When the value of a bit in the field is 1, the corresponding common event is implemented and
counted.

Note

Arm recommends that if a common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n>_EL0 registers of that earlier version of the PMU architecture.

Accessing PMCEID1_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMCEID1_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b111
D13-3942 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCEID1_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCEID1_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCEID1_EL0;
elsif PSTATE.EL == EL3 then
 return PMCEID1_EL0;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3943
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
D13.4.5 PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register

The PMCNTENCLR_EL0 characteristics are:

Purpose

Disables the Cycle Count Register, PMCCNTR_EL0, and any implemented event counters
PMEVCNTR<n>. Reading this register shows which counters are enabled.

Configurations

AArch64 System register PMCNTENCLR_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMCNTENCLR[31:0].

AArch64 System register PMCNTENCLR_EL0 bits [31:0] are architecturally mapped to External
register PMCNTENCLR_EL0[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMCNTENCLR_EL0 are UNDEFINED.

Attributes

PMCNTENCLR_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

C, bit [31]

PMCCNTR_EL0 disable bit. Disables the cycle counter register. Possible values are:

0b0 When read, means the cycle counter is disabled. When written, has no effect.

0b1 When read, means the cycle counter is enabled. When written, disables the cycle
counter.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 30 to 0

Event counter disable bit for PMEVCNTR<n>_EL0.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the
current Security state, in EL1 and EL0, N is the value in MDCR_EL2.HPMN. Otherwise, N is the
value in PMCR_EL0.N.

0b0 When read, means that PMEVCNTR<n>_EL0 is disabled. When written, has no effect.

RES0

63 32

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
D13-3944 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
0b1 When read, means that PMEVCNTR<n>_EL0 is enabled. When written, disables
PMEVCNTR<n>_EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMCNTENCLR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMCNTENCLR_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMCNTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCNTENCLR_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCNTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCNTENCLR_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCNTENCLR_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3945
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
elsif PSTATE.EL == EL3 then
 return PMCNTENCLR_EL0;

MSR PMCNTENCLR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMCNTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCNTENCLR_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCNTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCNTENCLR_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCNTENCLR_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 PMCNTENCLR_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b010
D13-3946 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
D13.4.6 PMCNTENSET_EL0, Performance Monitors Count Enable Set register

The PMCNTENSET_EL0 characteristics are:

Purpose

Enables the Cycle Count Register, PMCCNTR_EL0, and any implemented event counters
PMEVCNTR<n>. Reading this register shows which counters are enabled.

Configurations

AArch64 System register PMCNTENSET_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMCNTENSET[31:0].

AArch64 System register PMCNTENSET_EL0 bits [31:0] are architecturally mapped to External
register PMCNTENSET_EL0[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMCNTENSET_EL0 are UNDEFINED.

Attributes

PMCNTENSET_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

C, bit [31]

PMCCNTR_EL0 enable bit. Enables the cycle counter register. Possible values are:

0b0 When read, means the cycle counter is disabled. When written, has no effect.

0b1 When read, means the cycle counter is enabled. When written, enables the cycle
counter.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 30 to 0

Event counter enable bit for PMEVCNTR<n>_EL0.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the
current Security state, in EL1 and EL0, N is the value in MDCR_EL2.HPMN. Otherwise, N is the
value in PMCR_EL0.N.

0b0 When read, means that PMEVCNTR<n>_EL0 is disabled. When written, has no effect.

RES0

63 32

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3947
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
0b1 When read, means that PMEVCNTR<n>_EL0 event counter is enabled. When written,
enables PMEVCNTR<n>_EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMCNTENSET_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMCNTENSET_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMCNTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCNTENSET_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCNTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCNTENSET_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCNTENSET_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b001
D13-3948 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
elsif PSTATE.EL == EL3 then
 return PMCNTENSET_EL0;

MSR PMCNTENSET_EL0, <Xt>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMCNTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCNTENSET_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCNTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCNTENSET_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCNTENSET_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 PMCNTENSET_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3949
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
D13.4.7 PMCR_EL0, Performance Monitors Control Register

The PMCR_EL0 characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters
implemented, and configures and controls the counters.

Configurations

AArch64 System register PMCR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMCR[31:0].

AArch64 System register PMCR_EL0 bits [7:0] are architecturally mapped to External register
PMCR_EL0[7:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMCR_EL0 are UNDEFINED.

Attributes

PMCR_EL0 is a 64-bit register.

Field descriptions

Bits [63:33]

Reserved, RES0.

FZS, bit [32]

When FEAT_SPEv1p2 is implemented:

FZS

Freeze-on-SPE event. Stop counters when PMBLIMITR_EL1.{PMFZ,E} == {1,1} and
PMBSR_EL1.S == 1.

0b0 Do not freeze on Statistical Profiling Buffer Management event.

0b1 Event counters do not count following a Statistical Profiling Buffer Management event.

If EL2 is implemented, then:

• This field affects the operation of event counters in the range [0 .. (MDCR_EL2.HPMN-1)].

• If MDCR_EL2.HPMN is less than PMCR_EL0.N:

— This field does not affect the operation of event counters in the range
[MDCR_EL2.HPMN .. (PMCR_EL0.N-1)].

• This applies even when EL2 is disabled in the current Security state.

This field does not affect the operation of PMCCNTR_EL0.

The reset behavior of this field is:

• On a Warm reset:

— When AArch32 is supported at EL0, this field resets to 0.

RES0

63 33 32

FZS

IMP

31 24

IDCODE

23 16

N

15 11 10 9 8

LP

7

LC

6

DP

5

X

4

D

3

C

2

P

1

E

0

RES0 RES0
FZO
D13-3950 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
— When the implementation only supports execution in AArch64 state, this field resets
to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IMP, bits [31:24]

When FEAT_PMUv3p7 is not implemented:

IMP

Implementer code.

If this field is zero, then PMCR_EL0.IDCODE is RES0 and software must use MIDR_EL1 to
identify the PE.

Otherwise, this field and PMCR_EL0.IDCODE identify the PMU implementation to software. The
implementer codes are allocated by Arm. A non-zero value has the same interpretation as
MIDR_EL1.Implementer.

Use of this field is deprecated.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RAZ.

IDCODE, bits [23:16]

When PMCR_EL0.IMP != 0x00:

IDCODE

Identification code. Use of this field is deprecated. This field has an IMPLEMENTATION DEFINED
value.

Each implementer must maintain a list of identification codes that are specific to the implementer.
A specific implementation is identified by the combination of the implementer code and the
identification code.

Access to this field is RO.

Otherwise:

Reserved, RES0.

N, bits [15:11]

Indicates the number of event counters implemented. This value is in the range of 0b00000-0b11111.
If the value is 0b00000 then only PMCCNTR_EL0 is implemented. If the value is 0b11111
PMCCNTR_EL0 and 31 event counters are implemented.

When EL2 is implemented and enabled for the current Security state, reads of this field from EL1
and EL0 return the value of MDCR_EL2.HPMN.

Access to this field is RO.

Bit [10]

Reserved, RES0.

FZO, bit [9]

When FEAT_PMUv3p7 is implemented:

FZO
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3951
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
Freeze-on-overflow. Stop event counters on overflow.

0b0 Do not freeze on overflow.

0b1 Event counters do not count when PMOVSCLR_EL0[(N-1):0] is nonzero, where N is
the value of MDCR_EL2.HPMN if EL2 is implemented, and PMCR_EL0.N otherwise.

If EL2 is implemented, then:

• This field affects the operation of event counters in the range [0 .. (MDCR_EL2.HPMN-1)].

• If MDCR_EL2.HPMN is less than PMCR_EL0.N:

— This field does not affect the operation of event counters in the range
[MDCR_EL2.HPMN .. (PMCR_EL0.N-1)].

— The operation of this field ignores the values of
PMOVSCLR_EL0[(PMCR_EL0.N-1):MDCR_EL2.HPMN].

• This applies even when EL2 is disabled in the current Security state.

This field does not affect the operation of PMCCNTR_EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [8]

Reserved, RES0.

LP, bit [7]

When FEAT_PMUv3p5 is implemented:

LP

Long event counter enable. Determines when unsigned overflow is recorded by an event counter
overflow bit.

0b0 Event counter overflow on increment that causes unsigned overflow of
PMEVCNTR<n>_EL0[31:0].

0b1 Event counter overflow on increment that causes unsigned overflow of
PMEVCNTR<n>_EL0[63:0].

If EL2 is implemented and MDCR_EL2.HPMN or HDCR.HPMN is less than PMCR_EL0.N, this
bit does not affect the operation of event counters in the range [HDCR.HPMN..(PMCR_EL0.N-1)]
or [MDCR_EL2.HPMN..(PMCR_EL0.N-1)].

Note
The effect of MDCR_EL2.HPMN or HDCR.HPMN on the operation of this bit always applies if
EL2 is implemented, at all Exception levels including EL2 and EL3, and regardless of whether EL2
is enabled in the current Security state. For more information, see the description of
MDCR_EL2.HPMN or HDCR.HPMN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LC, bit [6]

When AArch32 is supported at EL0:

LC
D13-3952 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter
overflow bit.

0b0 Cycle counter overflow on increment that causes unsigned overflow of
PMCCNTR_EL0[31:0].

0b1 Cycle counter overflow on increment that causes unsigned overflow of
PMCCNTR_EL0[63:0].

Arm deprecates use of PMCR_EL0.LC = 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

DP, bit [5]

When EL3 is implemented or (FEAT_PMUv3p1 is implemented and EL2 is implemented):

DP

Disable cycle counter when event counting is prohibited.

0b0 Cycle counting by PMCCNTR_EL0 is not affected by this bit.

0b1 When event counting for counters in the range [0..(MDCR_EL2.HPMN-1)] is
prohibited, cycle counting by PMCCNTR_EL0 is disabled.

For more information see Controlling the PMU counters on page D7-2859.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

X, bit [4]

When the implementation includes a PMU event export bus:

X

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

0b0 Do not export events.

0b1 Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus
to another device, for example to an OPTIONAL PE trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or
signaling to a cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

D, bit [3]

When AArch32 is supported at EL0:

D

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3953
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
Clock divider.

0b0 When enabled, PMCCNTR_EL0 counts every clock cycle.

0b1 When enabled, PMCCNTR_EL0 counts once every 64 clock cycles.

If PMCR_EL0.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR_EL0.D = 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

0b0 No action.

0b1 Reset PMCCNTR_EL0 to zero.

Note

Resetting PMCCNTR_EL0 does not change the cycle counter overflow bit. If FEAT_PMUv3p5 is
implemented, the value of PMCR_EL0.LC is ignored, and bits [63:0] of the cycle counter are reset.

Access to this field is WO/RAZ.

P, bit [1]

Event counter reset. The effects of writing to this bit are:

0b0 No action.

0b1 Reset all event counters accessible in the current Exception level, not including
PMCCNTR_EL0, to zero.

In EL0 and EL1:

• If EL2 is implemented and enabled in the current Security state, and MDCR_EL2.HPMN is
less than PMCR_EL0.N, a write of 1 to this bit does not reset event counters in the range
[MDCR_EL2.HPMN..(PMCR_EL0.N-1)].

• If EL2 is not implemented, EL2 is disabled in the current Security state, or
MDCR_EL2.HPMN equals PMCR_EL0.N, a write of 1 to this bit resets all the event
counters.

In EL2 and EL3, a write of 1 to this bit resets all the event counters.

Note

Resetting the event counters does not change the event counter overflow bits. If FEAT_PMUv3p5
is implemented, the values of MDCR_EL2.HLP and PMCR_EL0.LP are ignored, and bits [63:0] of
all affected event counters are reset.

Access to this field is WO/RAZ.

E, bit [0]

Enable.

0b0 All event counters in the range [0..(PMN-1)] and PMCCNTR_EL0, are disabled.

0b1 All event counters in the range [0..(PMN-1)] and PMCCNTR_EL0, are enabled by
PMCNTENSET_EL0.

If EL2 is implemented, then:

• If EL2 is using AArch32, PMN is HDCR.HPMN.

• If EL2 is using AArch64, PMN is MDCR_EL2.HPMN.
D13-3954 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
• If PMN is less than PMCR_EL0.N, this bit does not affect the operation of event counters in
the range [PMN..(PMCR_EL0.N-1)].

If EL2 is not implemented, PMN is PMCR_EL0.N.

Note
The effect of MDCR_EL2.HPMN or HDCR.HPMN on the operation of this bit always applies if
EL2 is implemented, at all Exception levels including EL2 and EL3, and regardless of whether EL2
is enabled in the current Security state. For more information, see the description of
MDCR_EL2.HPMN or HDCR.HPMN.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing PMCR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMCR_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCR_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCR_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3955
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCR_EL0;
elsif PSTATE.EL == EL3 then
 return PMCR_EL0;

MSR PMCR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMCR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCR_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCR_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b000
D13-3956 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCR_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 PMCR_EL0 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3957
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
D13.4.8 PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

The PMEVCNTR<n>_EL0 characteristics are:

Purpose

Holds event counter n, which counts events, where n is 0 to 30.

Configurations

AArch64 System register PMEVCNTR<n>_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMEVCNTR<n>[31:0].

AArch64 System register PMEVCNTR<n>_EL0 bits [31:0] are architecturally mapped to External
register PMEVCNTR<n>_EL0[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMEVCNTR<n>_EL0 are UNDEFINED.

Attributes

PMEVCNTR<n>_EL0 is a 64-bit register.

Field descriptions

When FEAT_PMUv3p5 is implemented:

Bits [63:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number
from 0 to 30.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number
from 0 to 30.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Event counter n

63 32

Event counter n

31 0

RES0

63 32

Event counter n

31 0
D13-3958 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
Accessing PMEVCNTR<n>_EL0

PMEVCNTR<n>_EL0 can also be accessed by using PMXEVCNTR_EL0 with PMSELR_EL0.SEL set to the
value of <n>.

If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible event counters, then the
behavior of permitted reads and writes of PMEVCNTR<n>_EL0 is as follows:

• If <n> is an unimplemented event counter, the access is UNDEFINED.

• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible event counters, then
reads and writes of PMEVCNTR<n>_EL0 are CONSTRAINED UNPREDICTABLE, and the following behaviors are
permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of
implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.{ER,EN}.

If EL2 is implemented and enabled in the current Security state, in EL1 and EL0, MDCR_EL2.HPMN identifies
the number of accessible event counters. Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, see MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMEVCNTR<n>_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.<ER,EN> == '00' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b10:n[4:3] n[2:0]
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3959
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];
elsif PSTATE.EL == EL3 then
 return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];

MSR PMEVCNTR<n>_EL0, <Xt>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b10:n[4:3] n[2:0]
D13-3960 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL3 then
 PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3961
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
D13.4.9 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

The PMEVTYPER<n>_EL0 characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

Configurations

AArch64 System register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to
AArch32 System register PMEVTYPER<n>[31:0].

AArch64 System register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to
External register PMEVTYPER<n>_EL0[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMEVTYPER<n>_EL0 are UNDEFINED.

Attributes

PMEVTYPER<n>_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the
PMEVTYPER<n>_EL0.NSK bit.

0b0 Count events in EL1.

0b1 Do not count events in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

User filtering bit. Controls counting in EL0.

If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the
PMEVTYPER<n>_EL0.NSU bit.

0b0 Count events in EL0.

0b1 Do not count events in EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]

When EL3 is implemented:

NSK

RES0

63 32

P

31

U

30 29 28 27

M

26

MT

25

SH

24

RES0

23 16 15 10

evtCount[9:0]

9 0

NSK NSH
NSU

evtCount[15:10]
D13-3962 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in
Non-secure EL1 are counted.

Otherwise, events in Non-secure EL1 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

NSU

Non-secure EL0 (Unprivileged) filtering bit. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.U bit, events in
Non-secure EL0 are counted.

Otherwise, events in Non-secure EL0 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

NSH

EL2 (Hypervisor) filtering bit. Controls counting in EL2.

If Secure EL2 is implemented, and EL3 is implemented, counting in Secure EL2 is further
controlled by the PMEVTYPER<n>_EL0.SH bit.

0b0 Do not count events in EL2.

0b1 Count events in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M, bit [26]

When EL3 is implemented:

M

EL3 filtering bit.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in EL3 are
counted.

Otherwise, events in EL3 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3963
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
Otherwise:

Reserved, RES0.

MT, bit [25]

When FEAT_MTPMU is implemented or an IMPLEMENTATION DEFINED multi-threaded PMU
extension is implemented:

MT

Multithreading.

0b0 Count events only on controlling PE.

0b1 Count events from any PE with the same affinity at level 1 and above as this PE.

From Armv8.6, the IMPLEMENTATION DEFINED multi-threaded PMU extension is not permitted,
meaning if FEAT_MTPMU is not implemented, this field is RES0. See
ID_AA64DFR0_EL1.MTPMU.

This field is ignored by the PE and treated as zero when FEAT_MTPMU is implemented and
Disabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SH, bit [24]

When FEAT_SEL2 is implemented and EL3 is implemented:

SH

Secure EL2 filtering.

If the value of this bit is not equal to the value of the PMEVTYPER<n>_EL0.NSH bit, events in
Secure EL2 are counted.

Otherwise, events in Secure EL2 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [23:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]

When FEAT_PMUv3p1 is implemented:

evtCount[15:10]

Extension to evtCount[9:0]. For more information, see evtCount[9:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
D13-3964 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter
PMEVCNTR<n>_EL0.

Software must program this field with an event that is supported by the PE being programmed.

The ranges of event numbers allocated to each type of event are shown in Table D7-6 on
page D7-2875.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior
depends on the value written:

• For the range 0x0000 to 0x003F, no events are counted, and the value returned by a direct or
external read of the evtCount field is the value written to the field.

• If FEAT_PMUv3p1 is implemented, for the range 0x4000 to 0x403F, no events are counted,
and the value returned by a direct or external read of the evtCount field is the value written
to the field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted,
and the value returned by a direct or external read of the evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

Arm recommends that the behavior across a family of implementations is defined such that if a
given implementation does not include an event from a set of common IMPLEMENTATION DEFINED
events, then no event is counted and the value read back on evtCount is the value written.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMEVTYPER<n>_EL0

PMEVTYPER<n>_EL0 can also be accessed by using PMXEVTYPER_EL0 with PMSELR_EL0.SEL set to n.

If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible event counters, then the
behavior of permitted reads and writes of PMEVTYPER<n>_EL0 is as follows:

• If <n> is an unimplemented event counter, the access is UNDEFINED.

• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible event counters, then
reads and writes of PMEVTYPER<n>_EL0 are CONSTRAINED UNPREDICTABLE, and the following behaviors are
permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of
implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, in EL1 and EL0, MDCR_EL2.HPMN identifies
the number of accessible event counters. Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, see MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3965
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
MRS <Xt>, PMEVTYPER<n>_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 == '1'
then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];
elsif PSTATE.EL == EL3 then
 return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b11:n[4:3] n[2:0]
D13-3966 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
MSR PMEVTYPER<n>_EL0, <Xt>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1'
then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL3 then
 PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b11:n[4:3] n[2:0]
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3967
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
D13.4.10 PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register

The PMINTENCLR_EL1 characteristics are:

Purpose

Disables the generation of interrupt requests on overflows from the Cycle Count Register,
PMCCNTR_EL0, and the event counters PMEVCNTR<n>_EL0. Reading the register shows which
overflow interrupt requests are enabled.

Configurations

AArch64 System register PMINTENCLR_EL1 bits [31:0] are architecturally mapped to AArch32
System register PMINTENCLR[31:0].

AArch64 System register PMINTENCLR_EL1 bits [31:0] are architecturally mapped to External
register PMINTENCLR_EL1[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMINTENCLR_EL1 are UNDEFINED.

Attributes

PMINTENCLR_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

C, bit [31]

PMCCNTR_EL0 overflow interrupt request disable bit. Possible values are:

0b0 When read, means the cycle counter overflow interrupt request is disabled. When
written, has no effect.

0b1 When read, means the cycle counter overflow interrupt request is enabled. When
written, disables the cycle count overflow interrupt request.

P<n>, bit [n], for n = 30 to 0

Event counter overflow interrupt request disable bit for PMEVCNTR<n>_EL0.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the
current Security state, in EL1, N is the value in MDCR_EL2.HPMN. Otherwise, N is the value in
PMCR_EL0.N.

0b0 When read, means that the PMEVCNTR<n>_EL0 event counter interrupt request is
disabled. When written, has no effect.

RES0

63 32

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
D13-3968 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
0b1 When read, means that the PMEVCNTR<n>_EL0 event counter interrupt request is
enabled. When written, disables the PMEVCNTR<n>_EL0 interrupt request.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMINTENCLR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMINTENCLR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMINTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMINTENCLR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMINTENCLR_EL1;
elsif PSTATE.EL == EL3 then
 return PMINTENCLR_EL1;

MSR PMINTENCLR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1110 0b010

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1110 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3969
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMINTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMINTENCLR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMINTENCLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 PMINTENCLR_EL1 = X[t];

D13-3970 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
D13.4.11 PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register

The PMINTENSET_EL1 characteristics are:

Purpose

Enables the generation of interrupt requests on overflows from the Cycle Count Register,
PMCCNTR_EL0, and the event counters PMEVCNTR<n>_EL0. Reading the register shows which
overflow interrupt requests are enabled.

Configurations

AArch64 System register PMINTENSET_EL1 bits [31:0] are architecturally mapped to AArch32
System register PMINTENSET[31:0].

AArch64 System register PMINTENSET_EL1 bits [31:0] are architecturally mapped to External
register PMINTENSET_EL1[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMINTENSET_EL1 are UNDEFINED.

Attributes

PMINTENSET_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

C, bit [31]

PMCCNTR_EL0 overflow interrupt request enable bit. Possible values are:

0b0 When read, means the cycle counter overflow interrupt request is disabled. When
written, has no effect.

0b1 When read, means the cycle counter overflow interrupt request is enabled. When
written, enables the cycle count overflow interrupt request.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 30 to 0

Event counter overflow interrupt request enable bit for PMEVCNTR<n>_EL0.

RES0

63 32

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3971
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the
current Security state, in EL1, N is the value in MDCR_EL2.HPMN. Otherwise, N is the value in
PMCR_EL0.N.

0b0 When read, means that the PMEVCNTR<n>_EL0 event counter interrupt request is
disabled. When written, has no effect.

0b1 When read, means that the PMEVCNTR<n>_EL0 event counter interrupt request is
enabled. When written, enables the PMEVCNTR<n>_EL0 interrupt request.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMINTENSET_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMINTENSET_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMINTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMINTENSET_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMINTENSET_EL1;
elsif PSTATE.EL == EL3 then
 return PMINTENSET_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1110 0b001
D13-3972 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
MSR PMINTENSET_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMINTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMINTENSET_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMINTENSET_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 PMINTENSET_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1110 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3973
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
D13.4.12 PMMIR_EL1, Performance Monitors Machine Identification Register

The PMMIR_EL1 characteristics are:

Purpose

Describes Performance Monitors parameters specific to the implementation to software.

Configurations

This register is present only when FEAT_PMUv3p4 is implemented. Otherwise, direct accesses to
PMMIR_EL1 are UNDEFINED.

Attributes

PMMIR_EL1 is a 64-bit register.

Field descriptions

Bits [63:20]

Reserved, RES0.

BUS_WIDTH, bits [19:16]

Bus width. Indicates the number of bytes each BUS_ACCESS event relates to. Encoded as
Log2(number of bytes), plus one. Defined values are:

0b0000 The information is not available.

0b0011 Four bytes.

0b0100 8 bytes.

0b0101 16 bytes.

0b0110 32 bytes.

0b0111 64 bytes.

0b1000 128 bytes.

0b1001 256 bytes.

0b1010 512 bytes.

0b1011 1024 bytes.

0b1100 2048 bytes.

All other values are reserved.

Each transfer is up to this number of bytes. An access might be smaller than the bus width.

When this field is nonzero, each access counted by BUS_ACCESS is at most BUS_WIDTH bytes.
An implementation might treat a wide bus as multiple narrower buses, such that a wide access on
the bus increments the BUS_ACCESS counter by more than one.

BUS_SLOTS, bits [15:8]

Bus count. The largest value by which the BUS_ACCESS event might increment in a single
BUS_CYCLES cycle.

When this field is nonzero, the largest value by which the BUS_ACCESS event might increment in
a single BUS_CYCLES cycle is BUS_SLOTS.

RES0

63 32

RES0

31 20 19 16

BUS_SLOTS

15 8

SLOTS

7 0

BUS_WIDTH
D13-3974 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
SLOTS, bits [7:0]

Operation width. The largest value by which the STALL_SLOT event might increment in a single
cycle. If the STALL_SLOT event is not implemented, this field might be RAZ.

Accessing PMMIR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMMIR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMMIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMMIR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMMIR_EL1;
elsif PSTATE.EL == EL3 then
 return PMMIR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1110 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3975
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
D13.4.13 PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear Register

The PMOVSCLR_EL0 characteristics are:

Purpose

Contains the state of the overflow bit for the Cycle Count Register, PMCCNTR_EL0, and each of
the implemented event counters PMEVCNTR<n>. Writing to this register clears these bits.

Configurations

AArch64 System register PMOVSCLR_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMOVSR[31:0].

AArch64 System register PMOVSCLR_EL0 bits [31:0] are architecturally mapped to External
register PMOVSCLR_EL0[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMOVSCLR_EL0 are UNDEFINED.

Attributes

PMOVSCLR_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

C, bit [31]

Cycle counter overflow clear bit.

0b0 When read, means the cycle counter has not overflowed since this bit was last cleared.
When written, has no effect.

0b1 When read, means the cycle counter has overflowed since this bit was last cleared.
When written, clears the cycle counter overflow bit to 0.

PMCR_EL0.LC controls whether an overflow is detected from unsigned overflow of
PMCCNTR_EL0[31:0] or unsigned overflow of PMCCNTR_EL0[63:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 30 to 0

Event counter overflow clear bit for PMEVCNTR<n>_EL0.

RES0

63 32

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
D13-3976 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the
current Security state, in EL1 and EL0, N is the value in MDCR_EL2.HPMN. Otherwise, N is the
value in PMCR_EL0.N.

0b0 When read, means that PMEVCNTR<n>_EL0 has not overflowed since this bit was last
cleared. When written, has no effect.

0b1 When read, means that PMEVCNTR<n>_EL0 has overflowed since this bit was last
cleared. When written, clears the PMEVCNTR<n>_EL0 overflow bit to 0.

If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP and PMCR_EL0.LP control whether an
overflow is detected from unsigned overflow of PMEVCNTR<n>_EL0[31:0] or unsigned overflow
of PMEVCNTR<n>_EL0[63:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMOVSCLR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMOVSCLR_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMOVS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMOVSCLR_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMOVS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMOVSCLR_EL0;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3977
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMOVSCLR_EL0;
elsif PSTATE.EL == EL3 then
 return PMOVSCLR_EL0;

MSR PMOVSCLR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMOVS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMOVSCLR_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMOVS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMOVSCLR_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b011
D13-3978 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
 else
 PMOVSCLR_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 PMOVSCLR_EL0 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3979
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
D13.4.14 PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register

The PMOVSSET_EL0 characteristics are:

Purpose

Sets the state of the overflow bit for the Cycle Count Register, PMCCNTR_EL0, and each of the
implemented event counters PMEVCNTR<n>.

Configurations

AArch64 System register PMOVSSET_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMOVSSET[31:0].

AArch64 System register PMOVSSET_EL0 bits [31:0] are architecturally mapped to External
register PMOVSSET_EL0[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMOVSSET_EL0 are UNDEFINED.

Attributes

PMOVSSET_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

C, bit [31]

Cycle counter overflow set bit.

0b0 When read, means the cycle counter has not overflowed since this bit was last cleared.
When written, has no effect.

0b1 When read, means the cycle counter has overflowed since this bit was last cleared.
When written, sets the cycle counter overflow bit to 1.

PMCR_EL0.LC controls whether an overflow is detected from unsigned overflow of
PMCCNTR_EL0[31:0] or unsigned overflow of PMCCNTR_EL0[63:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 30 to 0

Event counter overflow set bit for PMEVCNTR<n>_EL0.

RES0

63 32

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
D13-3980 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the
current Security state, in EL1 and EL0, N is the value in MDCR_EL2.HPMN. Otherwise, N is the
value in PMCR_EL0.N.

0b0 When read, means that PMEVCNTR<n>_EL0 has not overflowed since this bit was last
cleared. When written, has no effect.

0b1 When read, means that PMEVCNTR<n>_EL0 has overflowed since this bit was last
cleared. When written, sets the PMEVCNTR<n>_EL0 overflow bit to 1.

If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP and PMCR_EL0.LP control whether an
overflow is detected from unsigned overflow of PMEVCNTR<n>_EL0[31:0] or unsigned overflow
of PMEVCNTR<n>_EL0[63:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMOVSSET_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMOVSSET_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMOVS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMOVSSET_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMOVS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMOVSSET_EL0;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1110 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3981
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMOVSSET_EL0;
elsif PSTATE.EL == EL3 then
 return PMOVSSET_EL0;

MSR PMOVSSET_EL0, <Xt>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMOVS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMOVSSET_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMOVS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMOVSSET_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1110 0b011
D13-3982 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
 else
 PMOVSSET_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 PMOVSSET_EL0 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3983
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
D13.4.15 PMSELR_EL0, Performance Monitors Event Counter Selection Register

The PMSELR_EL0 characteristics are:

Purpose

Selects the current event counter PMEVCNTR<n>_EL0 or the cycle counter, CCNT.

PMSELR_EL0 is used in conjunction with PMXEVTYPER_EL0 to determine the event that
increments a selected event counter, and the modes and states in which the selected counter
increments.

It is also used in conjunction with PMXEVCNTR_EL0, to determine the value of a selected event
counter.

Configurations

AArch64 System register PMSELR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMSELR[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMSELR_EL0 are UNDEFINED.

Attributes

PMSELR_EL0 is a 64-bit register.

Field descriptions

Bits [63:5]

Reserved, RES0.

SEL, bits [4:0]

Selects event counter, PMEVCNTR<n>_EL0, where n is the value held in this field. This value
identifies which event counter is accessed when a subsequent access to PMXEVTYPER_EL0 or
PMXEVCNTR_EL0 occurs.

This field can take any value from 0 (0b00000) to (PMCR.N)-1, or 31 (0b11111).

When PMSELR_EL0.SEL is 0b11111, it selects the cycle counter and:

• A read of the PMXEVTYPER_EL0 returns the value of PMCCFILTR_EL0.

• A write of the PMXEVTYPER_EL0 writes to PMCCFILTR_EL0.

• A read or write of PMXEVCNTR_EL0 has CONSTRAINED UNPREDICTABLE effects. For more
information, see PMXEVCNTR_EL0.

For more information about the results of accesses to the event counters, see PMXEVTYPER_EL0
and PMXEVCNTR_EL0.

For more information about the number of counters accessible at each Exception level, see
MDCR_EL2.HPMN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMSELR_EL0

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

RES0

31 5

SEL

4 0
D13-3984 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
MRS <Xt>, PMSELR_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.<ER,EN> == '00' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMSELR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMSELR_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSELR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMSELR_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMSELR_EL0;
elsif PSTATE.EL == EL3 then
 return PMSELR_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3985
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
MSR PMSELR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.<ER,EN> == '00' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMSELR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSELR_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSELR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSELR_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSELR_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 PMSELR_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b101
D13-3986 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
D13.4.16 PMSWINC_EL0, Performance Monitors Software Increment register

The PMSWINC_EL0 characteristics are:

Purpose

Increments a counter that is configured to count the Software increment event, event 0x00. For more
information, see SW_INCR.

Configurations

AArch64 System register PMSWINC_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMSWINC[31:0].

AArch64 System register PMSWINC_EL0 bits [31:0] are architecturally mapped to External
register PMSWINC_EL0[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMSWINC_EL0 are UNDEFINED.

Attributes

PMSWINC_EL0 is a 64-bit register.

Field descriptions

Bits [63:31]

Reserved, RES0.

P<n>, bit [n], for n = 30 to 0

Event counter software increment bit for PMEVCNTR<n>_EL0.

If N is less than 31, then bits [30:N] are WI. When EL2 is implemented and enabled in the current
Security state, in EL1 and EL0, N is the value in MDCR_EL2.HPMN. Otherwise, N is the value in
PMCR_EL0.N.

0b0 No action. The write to this bit is ignored.

0b1 If PMEVCNTR<n>_EL0 is enabled and configured to count the software increment
event, increments PMEVCNTR<n>_EL0 by 1. If PMEVCNTR<n>_EL0 is disabled, or
not configured to count the software increment event, the write to this bit is ignored.

Accessing PMSWINC_EL0

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

3131 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

RES0
P30

P29
P28

P27
P26

P25
P24

P23
P22

P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3987
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
MSR PMSWINC_EL0, <Xt>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.<SW,EN> == '00' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMSWINC_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSWINC_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSWINC_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSWINC_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSWINC_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 PMSWINC_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b100
D13-3988 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
D13.4.17 PMUSERENR_EL0, Performance Monitors User Enable Register

The PMUSERENR_EL0 characteristics are:

Purpose

Enables or disables EL0 access to the Performance Monitors.

Configurations

AArch64 System register PMUSERENR_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMUSERENR[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMUSERENR_EL0 are UNDEFINED.

Attributes

PMUSERENR_EL0 is a 64-bit register.

Field descriptions

Bits [63:4]

Reserved, RES0.

ER, bit [3]

Event counter Read. Traps EL0 access to event counters to EL1, or to EL2 when it is implemented
and enabled for the current Security state and HCR_EL2.TGE is 1.

In AArch64 state, trapped accesses are reported using EC syndrome value 0x18.

In AArch32 state, trapped accesses are reported using EC syndrome value 0x03.

0b0 EL0 using AArch64: EL0 reads of the PMXEVCNTR_EL0 and
PMEVCNTR<n>_EL0, and EL0 read/write accesses to the PMSELR_EL0, are trapped
if PMUSERENR_EL0.EN is also 0.

EL0 using AArch32: EL0 reads of the PMXEVCNTR and PMEVCNTR<n>, and EL0
read/write accesses to the PMSELR, are trapped if PMUSERENR_EL0.EN is also 0.

0b1 Overrides PMUSERENR_EL0.EN and enables:

• RO access to PMXEVCNTR_EL0 and PMEVCNTR<n>_EL0 at EL0.

• RW access to PMSELR_EL0 at EL0.

• RW access to PMSELR at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CR, bit [2]

Cycle counter Read. Traps EL0 access to cycle counter reads to EL1, or to EL2 when it is
implemented and enabled for the current Security state and HCR_EL2.TGE is 1.

In AArch64 state, trapped accesses are reported using EC syndrome value 0x18.

RES0

63 32

RES0

31 4

ER

3

CR

2

SW

1

EN

0

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3989
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
In AArch32 state, trapped MRC accesses are reported using EC syndrome value 0x03, trapped
MRRC accesses are reported using EC syndrome value 0x04.

0b0 EL0 using AArch64: EL0 read accesses to the PMCCNTR_EL0 are trapped if
PMUSERENR_EL0.EN is also 0.

EL0 using AArch32: EL0 read accesses to the PMCCNTR are trapped if
PMUSERENR_EL0.EN is also 0.

0b1 Overrides PMUSERENR_EL0.EN and enables access to:

• PMCCNTR_EL0 at EL0.

• PMCCNTR at EL0.

SW, bit [1]

Traps Software Increment writes to EL1, or to EL2 when it is implemented and enabled for the
current Security state and HCR_EL2.TGE is 1.

In AArch64 state, trapped accesses are reported using EC syndrome value 0x18.

In AArch32 state, trapped accesses are reported using EC syndrome value 0x03.

0b0 EL0 using AArch64: EL0 writes to the PMSWINC_EL0 are trapped if
PMUSERENR_EL0.EN is also 0.

EL0 using AArch32: EL0 writes to the PMSWINC are trapped if
PMUSERENR_EL0.EN is also 0.

0b1 Overrides PMUSERENR_EL0.EN and enables access to:

• PMSWINC_EL0 at EL0.

• PMSWINC at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EN, bit [0]

Traps EL0 accesses to the Performance Monitor registers to EL1, or to EL2 when it is implemented
and enabled for the current Security state and HCR_EL2.TGE is 1, from both Execution states as
follows:

• In AArch64 state, MRS or MSR accesses to the following registers are reported using EC
syndrome value 0x18:

— PMCR_EL0, PMOVSCLR_EL0, PMSELR_EL0, PMCEID0_EL0, PMCEID1_EL0,
PMCCNTR_EL0, PMXEVTYPER_EL0, PMXEVCNTR_EL0,
PMCNTENSET_EL0, PMCNTENCLR_EL0, PMOVSSET_EL0,
PMEVCNTR<n>_EL0, PMEVTYPER<n>_EL0, PMCCFILTR_EL0,
PMSWINC_EL0.

— If FEAT_PMUv3p4 is implemented, PMMIR_EL1.

• In AArch32 state, MRC or MCR accesses to the following registers are reported using EC
syndrome value 0x03:

— PMCR, PMOVSR, PMSELR, PMCEID0, PMCEID1, PMCCNTR, PMXEVTYPER,
PMXEVCNTR, PMCNTENSET, PMCNTENCLR, PMOVSSET, PMEVCNTR<n>,
PMEVTYPER<n>, PMCCFILTR, PMSWINC.

— If FEAT_PMUv3p4 is implemented, PMMIR.

— If FEAT_PMUv3p1 is implemented, in AArch32 state, PMCEID2, and PMCEID3.

• In AArch32 state, MRRC or MCRR accesses to PMCCNTR are reported using EC syndrome
value 0x04.

0b0 While at EL0, accesses to the specified registers at EL0 are trapped, unless overridden
by one of PMUSERENR_EL0.{ER, CR, SW}.

0b1 While at EL0, software can access all of the specified registers.
D13-3990 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMUSERENR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMUSERENR_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMUSERENR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMUSERENR_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMUSERENR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMUSERENR_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMUSERENR_EL0;
elsif PSTATE.EL == EL3 then
 return PMUSERENR_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1110 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3991
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
MSR PMUSERENR_EL0, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMUSERENR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMUSERENR_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMUSERENR_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 PMUSERENR_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1110 0b000
D13-3992 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
D13.4.18 PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register

The PMXEVCNTR_EL0 characteristics are:

Purpose

Reads or writes the value of the selected event counter, PMEVCNTR<n>_EL0.
PMSELR_EL0.SEL determines which event counter is selected.

Configurations

AArch64 System register PMXEVCNTR_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMXEVCNTR[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMXEVCNTR_EL0 are UNDEFINED.

Attributes

PMXEVCNTR_EL0 is a 64-bit register.

Field descriptions

When FEAT_PMUv3p5 is implemented:

PMEVCNTR<n>, bits [63:0]

Value of the selected event counter, PMEVCNTR<n>_EL0, where n is the value stored in
PMSELR_EL0.SEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Bits [63:32]

Reserved, RES0.

PMEVCNTR<n>, bits [31:0]

Value of the selected event counter, PMEVCNTR<n>_EL0, where n is the value stored in
PMSELR_EL0.SEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMEVCNTR<n>

63 32

PMEVCNTR<n>

31 0

RES0

63 32

PMEVCNTR<n>

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3993
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
Accessing PMXEVCNTR_EL0

If FEAT_FGT is implemented and PMSELR_EL0.SEL is greater than or equal to the number of accessible event
counters, then the behavior of permitted reads and writes of PMXEVCNTR_EL0 is as follows:

• If PMSELR_EL0.SEL selects an unimplemented event counter, the access is UNDEFINED.

• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and PMSELR_EL0.SEL is greater than or equal to the number of accessible event
counters, then reads and writes of PMXEVCNTR_EL0 are CONSTRAINED UNPREDICTABLE, and the following
behaviors are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP

• Accesses to the register behave as if PMSELR_EL0.SEL has an UNKNOWN value less than the number of
counters accessible at the current Exception level and Security state.

• If EL2 is implemented and enabled in the current Security state, and PMSELR_EL0.SEL is less than the
number of implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to
EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.{ER,EN}.

If EL2 is implemented and enabled in the current Security state, in EL1 and EL0, MDCR_EL2.HPMN identifies
the number of accessible event counters. Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, see MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMXEVCNTR_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.<ER,EN> == '00' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMXEVCNTR_EL0;
elsif PSTATE.EL == EL1 then

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1101 0b010
D13-3994 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMXEVCNTR_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMXEVCNTR_EL0;
elsif PSTATE.EL == EL3 then
 return PMXEVCNTR_EL0;

MSR PMXEVCNTR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMXEVCNTR_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1101 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3995
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMXEVCNTR_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMXEVCNTR_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 PMXEVCNTR_EL0 = X[t];

D13-3996 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
D13.4.19 PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register

The PMXEVTYPER_EL0 characteristics are:

Purpose

When PMSELR_EL0.SEL selects an event counter, this accesses a PMEVTYPER<n>_EL0
register. When PMSELR_EL0.SEL selects the cycle counter, this accesses PMCCFILTR_EL0.

Configurations

AArch64 System register PMXEVTYPER_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMXEVTYPER[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMXEVTYPER_EL0 are UNDEFINED.

Attributes

PMXEVTYPER_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

Bits [31:0]

When PMSELR_EL0.SEL == 31, this register accesses PMCCFILTR_EL0.

Otherwise, this register accesses PMEVTYPER<n>_EL0 where n is the value in
PMSELR_EL0.SEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMXEVTYPER_EL0

If FEAT_FGT is implemented, and PMSELR_EL0.SEL is not 31 and is greater than or equal to the number of
accessible event counters, then the behavior of permitted reads and writes of PMXEVTYPER_EL0 is as follows:

• If PMSELR_EL0.SEL selects an unimplemented event counter, the access is UNDEFINED.

• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented, and PMSELR_EL0.SEL is not 31 and is greater than or equal to the number of
accessible event counters, then reads and writes of PMXEVTYPER_EL0 are CONSTRAINED UNPREDICTABLE, and
the following behaviors are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

• Accesses to the register behave as if PMSELR_EL0.SEL has an UNKNOWN value less than the number of
event counters accessible at the current Exception level and Security state.

RES0

63 32

Event type register or PMCCFILTR_EL0

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3997
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
• Accesses to the register behave as if PMSELR_EL0.SEL is 31.

• If EL2 is implemented and enabled in the current Security state, PMSELR_EL0 is less than the number of
implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, in EL1 and EL0, MDCR_EL2.HPMN identifies
the number of accessible event counters. Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, see MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMXEVTYPER_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMXEVTYPER_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 == '1'
then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMXEVTYPER_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1101 0b001
D13-3998 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMXEVTYPER_EL0;
elsif PSTATE.EL == EL3 then
 return PMXEVTYPER_EL0;

MSR PMXEVTYPER_EL0, <Xt>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMXEVTYPER_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1'
then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMXEVTYPER_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMXEVTYPER_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1101 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-3999
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.4 Performance Monitors registers
elsif PSTATE.EL == EL3 then
 PMXEVTYPER_EL0 = X[t];

D13-4000 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
D13.5 Activity Monitors registers

This section lists the Activity Monitors registers in AArch64.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4001
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
D13.5.1 AMCFGR_EL0, Activity Monitors Configuration Register

The AMCFGR_EL0 characteristics are:

Purpose

Global configuration register for the activity monitors.

Provides information on supported features, the number of counter groups implemented, the total
number of activity monitor event counters implemented, and the size of the counters.
AMCFGR_EL0 is applicable to both the architected and the auxiliary counter groups.

Configurations

AArch64 System register AMCFGR_EL0 bits [31:0] are architecturally mapped to AArch32
System register AMCFGR[31:0].

AArch64 System register AMCFGR_EL0 bits [31:0] are architecturally mapped to External register
AMCFGR[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCFGR_EL0 are UNDEFINED.

Attributes

AMCFGR_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

NCG, bits [31:28]

Defines the number of counter groups.

The number of implemented counter groups is [AMCFGR_EL0.NCG + 1].

If the number of implemented auxiliary activity monitor event counters is zero, this field has a value
of 0b0000. Otherwise, this field has a value of 0b0001.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [27:25]

Reserved, RES0.

HDBG, bit [24]

Halt-on-debug supported.

This feature must be supported, and so this bit is 0b1.

0b0 AMCR_EL0.HDBG is RES0.

0b1 AMCR_EL0.HDBG is read/write.

Access to this field is RO.

RES0

63 32

NCG

31 28

RES0

27 25 24

RAZ

23 14

1 1 1 1 1 1

13 8

N

7 0

HDBG SIZE
D13-4002 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
Bits [23:14]

Reserved, RAZ.

SIZE, bits [13:8]

Defines the size of activity monitor event counters.

The size of the activity monitor event counters implemented by the activity monitors Extension is
[AMCFGR_EL0.SIZE + 1].

Note

Software also uses this field to determine the spacing of counters in the memory-map. From Armv8,
the counters are at doubleword-aligned addresses.

Reads as 0b111111.

Access to this field is RO.

N, bits [7:0]

Defines the number of activity monitor event counters.

The total number of counters implemented in all groups by the Activity Monitors Extension is
[AMCFGR_EL0.N + 1].

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing AMCFGR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMCFGR_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCFGR_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4003
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCFGR_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCFGR_EL0;
elsif PSTATE.EL == EL3 then
 return AMCFGR_EL0;

D13-4004 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
D13.5.2 AMCG1IDR_EL0, Activity Monitors Counter Group 1 Identification Register

The AMCG1IDR_EL0 characteristics are:

Purpose

Defines which auxiliary counters are implemented, and which of them have a corresponding virtual
offset register, AMEVCNTVOFF1<n>_EL2 implemented.

Configurations

This register is present only when FEAT_AMUv1p1 is implemented. Otherwise, direct accesses to
AMCG1IDR_EL0 are UNDEFINED.

Attributes

AMCG1IDR_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

AMEVCNTOFF1<n>_EL2, bit [n+16], for n = 15 to 0

Indicates which implemented auxiliary counters have a corresponding virtual offset register,
AMEVCNTVOFF1<n>_EL2 implemented.

0b0 When read, mean that AMEVCNTR1<n>_EL0 does not have an offset, or is not
implemented.

0b1 When read, means the offset AMEVCNTVOFF1<n>_EL2 is implemented for
AMEVCNTR1<n>_EL0.

AMEVCNTR1<n>_EL0, bit [n], for n = 15 to 0

Indicates which auxiliary counters AMEVCNTR1<n>_EL0 are implemented.

0b0 When read, means that AMEVCNTR1<n>_EL0 is not implemented.

0b1 When read, means that AMEVCNTR1<n>_EL0 is implemented.

RES0

63 32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AMEVCNTOFF115_EL2
AMEVCNTOFF114_EL2

AMEVCNTOFF113_EL2
AMEVCNTOFF112_EL2

AMEVCNTOFF111_EL2
AMEVCNTOFF110_EL2

AMEVCNTOFF19_EL2
AMEVCNTOFF18_EL2

AMEVCNTOFF17_EL2
AMEVCNTOFF16_EL2

AMEVCNTOFF15_EL2
AMEVCNTOFF14_EL2

AMEVCNTOFF13_EL2
AMEVCNTOFF12_EL2

AMEVCNTOFF11_EL2
AMEVCNTOFF10_EL2

AMEVCNTR10_EL0
AMEVCNTR11_EL0

AMEVCNTR12_EL0
AMEVCNTR13_EL0

AMEVCNTR14_EL0
AMEVCNTR15_EL0

AMEVCNTR16_EL0
AMEVCNTR17_EL0

AMEVCNTR18_EL0
AMEVCNTR19_EL0

AMEVCNTR110_EL0
AMEVCNTR111_EL0

AMEVCNTR112_EL0
AMEVCNTR113_EL0

AMEVCNTR114_EL0
AMEVCNTR115_EL0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4005
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
Accessing AMCG1IDR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMCG1IDR_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCG1IDR_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCG1IDR_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCG1IDR_EL0;
elsif PSTATE.EL == EL3 then
 return AMCG1IDR_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b110
D13-4006 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
D13.5.3 AMCGCR_EL0, Activity Monitors Counter Group Configuration Register

The AMCGCR_EL0 characteristics are:

Purpose

Provides information on the number of activity monitor event counters implemented within each
counter group.

Configurations

AArch64 System register AMCGCR_EL0 bits [31:0] are architecturally mapped to AArch32
System register AMCGCR[31:0].

AArch64 System register AMCGCR_EL0 bits [31:0] are architecturally mapped to External
register AMCGCR[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCGCR_EL0 are UNDEFINED.

Attributes

AMCGCR_EL0 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

CG1NC, bits [15:8]

Counter Group 1 Number of Counters. The number of counters in the auxiliary counter group.

In an implementation that includes FEAT_AMUv1, the permitted range of values is 0x0 to 0x10.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CG0NC, bits [7:0]

Counter Group 0 Number of Counters. The number of counters in the architected counter group.

Reads as 0x04.

Access to this field is RO.

Accessing AMCGCR_EL0

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

RES0

31 16

CG1NC

15 8

100

7 0

CG0NC
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4007
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
MRS <Xt>, AMCGCR_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCGCR_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCGCR_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCGCR_EL0;
elsif PSTATE.EL == EL3 then
 return AMCGCR_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b010
D13-4008 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
D13.5.4 AMCNTENCLR0_EL0, Activity Monitors Count Enable Clear Register 0

The AMCNTENCLR0_EL0 characteristics are:

Purpose

Disable control bits for the architected activity monitors event counters, AMEVCNTR0<n>_EL0.

Configurations

AArch64 System register AMCNTENCLR0_EL0 bits [31:0] are architecturally mapped to
AArch32 System register AMCNTENCLR0[31:0].

AArch64 System register AMCNTENCLR0_EL0 bits [31:0] are architecturally mapped to External
register AMCNTENCLR0[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENCLR0_EL0 are UNDEFINED.

Attributes

AMCNTENCLR0_EL0 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

Bits [15:4]

Reserved, RAZ/WI.

This field is reserved for additional architected activity monitor event counters, which Arm might
define in a future version of the Activity Monitors architecture.

P<n>, bit [n], for n = 3 to 0

Activity monitor event counter disable bit for AMEVCNTR0<n>_EL0.

Note

AMCGCR_EL0.CG0NC identifies the number of architected activity monitor event counters. In an
implementation that includes FEAT_AMUv1, the number of architected activity monitor event
counters is 4.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR0<n>_EL0 is disabled. When written, has no
effect.

0b1 When read, means that AMEVCNTR0<n>_EL0 is enabled. When written, disables
AMEVCNTR0<n>_EL0.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMCNTENCLR0_EL0

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

RES0

31 16

RAZ/WI

15 4

P3

3

P2

2

P1

1

P0

0

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4009
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
MRS <Xt>, AMCNTENCLR0_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMCNTEN0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCNTENCLR0_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCNTENCLR0_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCNTENCLR0_EL0;
elsif PSTATE.EL == EL3 then
 return AMCNTENCLR0_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b100
D13-4010 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
MSR AMCNTENCLR0_EL0, <Xt>

if IsHighestEL(PSTATE.EL) then
 AMCNTENCLR0_EL0 = X[t];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4011
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
D13.5.5 AMCNTENCLR1_EL0, Activity Monitors Count Enable Clear Register 1

The AMCNTENCLR1_EL0 characteristics are:

Purpose

Disable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>_EL0.

Configurations

AArch64 System register AMCNTENCLR1_EL0 bits [31:0] are architecturally mapped to
AArch32 System register AMCNTENCLR1[31:0].

AArch64 System register AMCNTENCLR1_EL0 bits [31:0] are architecturally mapped to External
register AMCNTENCLR1[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENCLR1_EL0 are UNDEFINED.

Attributes

AMCNTENCLR1_EL0 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

P<n>, bit [n], for n = 15 to 0

Activity monitor event counter disable bit for AMEVCNTR1<n>_EL0.

When N is less than 16, bits [15:N] are RAZ/WI, where N is the value in AMCGCR_EL0.CG1NC.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR1<n>_EL0 is disabled. When written, has no
effect.

0b1 When read, means that AMEVCNTR1<n>_EL0 is enabled. When written, disables
AMEVCNTR1<n>_EL0.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMCNTENCLR1_EL0

If the number of auxiliary activity monitor event counters implemented is zero, reads and writes of
AMCNTENCLR1_EL0 are UNDEFINED.

Note

The number of auxiliary activity monitor event counters implemented is zero exactly when AMCFGR_EL0.NCG
== 0b0000.

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

RES0

31 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P15
P14

P13

P10
P11

P12
D13-4012 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
MRS <Xt>, AMCNTENCLR1_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMCNTEN1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCNTENCLR1_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCNTENCLR1_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCNTENCLR1_EL0;
elsif PSTATE.EL == EL3 then
 return AMCNTENCLR1_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4013
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
MSR AMCNTENCLR1_EL0, <Xt>

if IsHighestEL(PSTATE.EL) then
 AMCNTENCLR1_EL0 = X[t];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0011 0b000
D13-4014 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
D13.5.6 AMCNTENSET0_EL0, Activity Monitors Count Enable Set Register 0

The AMCNTENSET0_EL0 characteristics are:

Purpose

Enable control bits for the architected activity monitors event counters, AMEVCNTR0<n>_EL0.

Configurations

AArch64 System register AMCNTENSET0_EL0 bits [31:0] are architecturally mapped to
AArch32 System register AMCNTENSET0[31:0].

AArch64 System register AMCNTENSET0_EL0 bits [31:0] are architecturally mapped to External
register AMCNTENSET0[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENSET0_EL0 are UNDEFINED.

Attributes

AMCNTENSET0_EL0 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

Bits [15:4]

Reserved, RAZ/WI.

This field is reserved for additional architected activity monitor event counters, which Arm might
define in a future version of the Activity Monitors architecture.

P<n>, bit [n], for n = 3 to 0

Activity monitor event counter enable bit for AMEVCNTR0<n>_EL0.

Note

AMCGCR_EL0.CG0NC identifies the number of architected activity monitor event counters. In an
implementation that includes FEAT_AMUv1, the number of architected activity monitor event
counters is 4.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR0<n>_EL0 is disabled. When written, has no
effect.

0b1 When read, means that AMEVCNTR0<n>_EL0 is enabled. When written, enables
AMEVCNTR0<n>_EL0.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMCNTENSET0_EL0

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

RES0

31 16

RAZ/WI

15 4

P3

3

P2

2

P1

1

P0

0

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4015
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
MRS <Xt>, AMCNTENSET0_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMCNTEN0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCNTENSET0_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCNTENSET0_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCNTENSET0_EL0;
elsif PSTATE.EL == EL3 then
 return AMCNTENSET0_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b101
D13-4016 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
MSR AMCNTENSET0_EL0, <Xt>

if IsHighestEL(PSTATE.EL) then
 AMCNTENSET0_EL0 = X[t];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4017
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
D13.5.7 AMCNTENSET1_EL0, Activity Monitors Count Enable Set Register 1

The AMCNTENSET1_EL0 characteristics are:

Purpose

Enable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>_EL0.

Configurations

AArch64 System register AMCNTENSET1_EL0 bits [31:0] are architecturally mapped to
AArch32 System register AMCNTENSET1[31:0].

AArch64 System register AMCNTENSET1_EL0 bits [31:0] are architecturally mapped to External
register AMCNTENSET1[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENSET1_EL0 are UNDEFINED.

Attributes

AMCNTENSET1_EL0 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

P<n>, bit [n], for n = 15 to 0

Activity monitor event counter enable bit for AMEVCNTR1<n>_EL0.

When N is less than 16, bits [15:N] are RAZ/WI, where N is the value in AMCGCR_EL0.CG1NC.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR1<n>_EL0 is disabled. When written, has no
effect.

0b1 When read, means that AMEVCNTR1<n>_EL0 is enabled. When written, enables
AMEVCNTR1<n>_EL0.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMCNTENSET1_EL0

If the number of auxiliary activity monitor event counters implemented is zero, reads and writes of
AMCNTENSET1_EL0 are UNDEFINED.

Note

The number of auxiliary activity monitor counters implemented is zero when AMCFGR_EL0.NCG == 0b0000.

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

RES0

31 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P15
P14

P13

P10
P11

P12
D13-4018 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
MRS <Xt>, AMCNTENSET1_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMCNTEN1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCNTENSET1_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCNTENSET1_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCNTENSET1_EL0;
elsif PSTATE.EL == EL3 then
 return AMCNTENSET1_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0011 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4019
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
MSR AMCNTENSET1_EL0, <Xt>

if IsHighestEL(PSTATE.EL) then
 AMCNTENSET1_EL0 = X[t];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0011 0b001
D13-4020 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
D13.5.8 AMCR_EL0, Activity Monitors Control Register

The AMCR_EL0 characteristics are:

Purpose

Global control register for the activity monitors implementation. AMCR_EL0 is applicable to both
the architected and the auxiliary counter groups.

Configurations

AArch64 System register AMCR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register AMCR[31:0].

AArch64 System register AMCR_EL0 bits [31:0] are architecturally mapped to External register
AMCR[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCR_EL0 are UNDEFINED.

Attributes

AMCR_EL0 is a 64-bit register.

Field descriptions

Bits [63:18]

Reserved, RES0.

CG1RZ, bit [17]

When FEAT_AMUv1p1 is implemented:

CG1RZ

Counter Group 1 Read Zero.

0b0 System register reads of AMEVCNTR1<n>_EL0 return the event count at all
implemented and enabled Exception levels.

0b1 If the current Exception level is the highest implemented Exception level, system
register reads of AMEVCNTR1<n>_EL0 return the event count. Otherwise, reads of
AMEVCNTR1<n>_EL0 return a zero value.

Note

Reads from the memory-mapped view are unaffected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [16:11]

Reserved, RES0.

RES0

63 32

RES0

31 18 17

RES0

16 11 10

RES0

9 0

CG1RZ HDBG
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4021
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
HDBG, bit [10]

This bit controls whether activity monitor counting is halted when the PE is halted in Debug state.

0b0 Activity monitors do not halt counting when the PE is halted in Debug state.

0b1 Activity monitors halt counting when the PE is halted in Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [9:0]

Reserved, RES0.

Accessing AMCR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMCR_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCR_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCR_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b000
D13-4022 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
 return AMCR_EL0;
elsif PSTATE.EL == EL3 then
 return AMCR_EL0;

MSR AMCR_EL0, <Xt>

if IsHighestEL(PSTATE.EL) then
 AMCR_EL0 = X[t];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4023
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
D13.5.9 AMEVCNTR0<n>_EL0, Activity Monitors Event Counter Registers 0, n = 0 - 3

The AMEVCNTR0<n>_EL0 characteristics are:

Purpose

Provides access to the architected activity monitor event counters.

Configurations

AArch64 System register AMEVCNTR0<n>_EL0 bits [63:0] are architecturally mapped to
AArch32 System register AMEVCNTR0<n>[63:0].

AArch64 System register AMEVCNTR0<n>_EL0 bits [63:0] are architecturally mapped to
External register AMEVCNTR0<n>[63:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVCNTR0<n>_EL0 are UNDEFINED.

Attributes

AMEVCNTR0<n>_EL0 is a 64-bit register.

Field descriptions

ACNT, bits [63:0]

Architected activity monitor event counter n.

Value of architected activity monitor event counter n, where n is the number of this register and is
a number from 0 to 3.

If FEAT_AMUv1p1 is implemented, HCR_EL2.AMVOFFEN is 1, SCR_EL3.AMVOFFEN is 1,
HCR_EL2.{E2H, TGE} is not {1,1}, and EL2 is implemented in the current Security state, access
to these registers at EL0 or EL1 return (PCount<63:0> - AMEVCNTVOFF0<n>_EL2<63:0>).

PCount is the physical count returned when AMEVCNTR0<n>_EL0 is read from EL2 or EL3.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMEVCNTR0<n>_EL0

If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of
AMEVCNTR0<n>_EL0 are UNDEFINED.

Note

AMCGCR_EL0.CG0NC identifies the number of architected activity monitor event counters.

Accesses to this register use the following encodings in the System register encoding space:

ACNT

63 32

ACNT

31 0
D13-4024 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
MRS <Xt>, AMEVCNTR0<n>_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMEVCNTR0<n>_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMEVCNTR0_EL0[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVCNTR0<n>_EL0 == '1'
then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMEVCNTR0_EL0[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMEVCNTR0_EL0[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL3 then
 return AMEVCNTR0_EL0[UInt(CRm<0>:op2<2:0>)];

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b010:n[3] n[2:0]
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4025
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
MSR AMEVCNTR0<n>_EL0, <Xt>

if IsHighestEL(PSTATE.EL) then
 AMEVCNTR0_EL0[UInt(CRm<0>:op2<2:0>)] = X[t];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b010:n[3] n[2:0]
D13-4026 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
D13.5.10 AMEVCNTR1<n>_EL0, Activity Monitors Event Counter Registers 1, n = 0 - 15

The AMEVCNTR1<n>_EL0 characteristics are:

Purpose

Provides access to the auxiliary activity monitor event counters.

Configurations

AArch64 System register AMEVCNTR1<n>_EL0 bits [63:0] are architecturally mapped to
AArch32 System register AMEVCNTR1<n>[63:0].

AArch64 System register AMEVCNTR1<n>_EL0 bits [63:0] are architecturally mapped to
External register AMEVCNTR1<n>[63:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVCNTR1<n>_EL0 are UNDEFINED.

Attributes

AMEVCNTR1<n>_EL0 is a 64-bit register.

Field descriptions

ACNT, bits [63:0]

Auxiliary activity monitor event counter n.

Value of auxiliary activity monitor event counter n, where n is the number of this register and is a
number from 0 to 15.

If FEAT_AMUv1p1 is implemented, HCR_EL2.AMVOFFEN is 1, SCR_EL3.AMVOFFEN is 1,
HCR_EL2.{E2H, TGE} is not {1,1}, EL2 is implemented in the current Security state, and
AMCR_EL0.CG1RZ is 0, reads to these registers at EL0 or EL1 return (PCount<63:0> -
AMEVCNTVOFF1<n>_EL2<63:0>).

PCount is the physical count returned when AMEVCNTR1<n>_EL0 is read from EL2 or EL3.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMEVCNTR1<n>_EL0

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of
AMEVCNTR1<n>_EL0 are UNDEFINED.

Note

AMCGCR_EL0.CG1NC identifies the number of auxiliary activity monitor event counters.

Accesses to this register use the following encodings in the System register encoding space:

ACNT

63 32

ACNT

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4027
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
MRS <Xt>, AMEVCNTR1<n>_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMEVCNTR1<n>_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif AMCR_EL0.CG1RZ == '1' then
 return Zeros();
 else
 return AMEVCNTR1_EL0[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVCNTR1<n>_EL0 == '1'
then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsHighestEL(PSTATE.EL) && AMCR_EL0.CG1RZ == '1' then
 return Zeros();
 else
 return AMEVCNTR1_EL0[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsHighestEL(PSTATE.EL) && AMCR_EL0.CG1RZ == '1' then
 return Zeros();
 else
 return AMEVCNTR1_EL0[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL3 then
 return AMEVCNTR1_EL0[UInt(CRm<0>:op2<2:0>)];

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b110:n[3] n[2:0]
D13-4028 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
MSR AMEVCNTR1<n>_EL0, <Xt>

if IsHighestEL(PSTATE.EL) then
 AMEVCNTR1_EL0[UInt(CRm<0>:op2<2:0>)] = X[t];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b110:n[3] n[2:0]
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4029
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
D13.5.11 AMEVCNTVOFF0<n>_EL2, Activity Monitors Event Counter Virtual Offset Registers 0, n = 0 -
15

The AMEVCNTVOFF0<n>_EL2 characteristics are:

Purpose

Holds the 64-bit virtual offset for architected activity monitor events.

Configurations

This register is present only when FEAT_AMUv1p1 is implemented. Otherwise, direct accesses to
AMEVCNTVOFF0<n>_EL2 are UNDEFINED.

Attributes

AMEVCNTVOFF0<n>_EL2 is a 64-bit register.

Field descriptions

Bits [63:0]

Virtual offset.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AMEVCNTVOFF0<n>_EL2

If <n> is not 0, 2 or 3, reads and writes of AMEVCNTVOFF0<n>_EL2 are UNDEFINED.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMEVCNTVOFF0<n>_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0xA00+8*UInt(CRm<0>:op2<2:0>)];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.AMVOFFEN == '0' then
 UNDEFINED;

Virtual offset

63 32

Virtual offset

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b100:n[3] n[2:0]
D13-4030 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
 elsif HaveEL(EL3) && SCR_EL3.AMVOFFEN == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMEVCNTVOFF0_EL2[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL3 then
 return AMEVCNTVOFF0_EL2[UInt(CRm<0>:op2<2:0>)];

MSR AMEVCNTVOFF0<n>_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0xA00+8*UInt(CRm<0>:op2<2:0>)] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.AMVOFFEN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AMVOFFEN == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AMEVCNTVOFF0_EL2[UInt(CRm<0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL3 then
 AMEVCNTVOFF0_EL2[UInt(CRm<0>:op2<2:0>)] = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b100:n[3] n[2:0]
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4031
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
D13.5.12 AMEVCNTVOFF1<n>_EL2, Activity Monitors Event Counter Virtual Offset Registers 1, n = 0 -
15

The AMEVCNTVOFF1<n>_EL2 characteristics are:

Purpose

Holds the 64-bit virtual offset for auxiliary activity monitor events.

Configurations

This register is present only when FEAT_AMUv1p1 is implemented. Otherwise, direct accesses to
AMEVCNTVOFF1<n>_EL2 are UNDEFINED.

Attributes

AMEVCNTVOFF1<n>_EL2 is a 64-bit register.

Field descriptions

Bits [63:0]

Virtual offset.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AMEVCNTVOFF1<n>_EL2

Note

AMCG1IDR_EL0 identifies which auxiliary activity monitor event counters have a corresponding virtual offset
implemented.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMEVCNTVOFF1<n>_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0xA80+8*UInt(CRm<0>:op2<2:0>)];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then

Virtual offset

63 32

Virtual offset

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b101:n[3] n[2:0]
D13-4032 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.AMVOFFEN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AMVOFFEN == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMEVCNTVOFF1_EL2[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL3 then
 return AMEVCNTVOFF1_EL2[UInt(CRm<0>:op2<2:0>)];

MSR AMEVCNTVOFF1<n>_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0xA80+8*UInt(CRm<0>:op2<2:0>)] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.AMVOFFEN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AMVOFFEN == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AMEVCNTVOFF1_EL2[UInt(CRm<0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL3 then
 AMEVCNTVOFF1_EL2[UInt(CRm<0>:op2<2:0>)] = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b101:n[3] n[2:0]
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4033
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
D13.5.13 AMEVTYPER0<n>_EL0, Activity Monitors Event Type Registers 0, n = 0 - 3

The AMEVTYPER0<n>_EL0 characteristics are:

Purpose

Provides information on the events that an architected activity monitor event counter
AMEVCNTR0<n>_EL0 counts.

Configurations

AArch64 System register AMEVTYPER0<n>_EL0 bits [31:0] are architecturally mapped to
AArch32 System register AMEVTYPER0<n>[31:0].

AArch64 System register AMEVTYPER0<n>_EL0 bits [31:0] are architecturally mapped to
External register AMEVTYPER0<n>[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVTYPER0<n>_EL0 are UNDEFINED.

Attributes

AMEVTYPER0<n>_EL0 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the architected activity monitor
event counter AMEVCNTR0<n>_EL0. The value of this field is architecturally mandated for each
architected counter.

The following table shows the mapping between required event numbers and the corresponding
counters:

0x0011 When n == 0:

Processor frequency cycles

0x4004 When n == 1:

Constant frequency cycles

0x0008 When n == 2:

Instructions retired

0x4005 When n == 3:

Memory stall cycles

Accessing AMEVTYPER0<n>_EL0

If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of
AMEVTYPER0<n>_EL0 are UNDEFINED.

Note

AMCGCR_EL0.CG0NC identifies the number of architected activity monitor event counters.

RES0

63 32

RES0

31 16

evtCount

15 0
D13-4034 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMEVTYPER0<n>_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMEVTYPER0_EL0[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMEVTYPER0_EL0[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMEVTYPER0_EL0[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL3 then
 return AMEVTYPER0_EL0[UInt(CRm<0>:op2<2:0>)];

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b011:n[3] n[2:0]
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4035
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
D13.5.14 AMEVTYPER1<n>_EL0, Activity Monitors Event Type Registers 1, n = 0 - 15

The AMEVTYPER1<n>_EL0 characteristics are:

Purpose

Provides information on the events that an auxiliary activity monitor event counter
AMEVCNTR1<n>_EL0 counts.

Configurations

AArch64 System register AMEVTYPER1<n>_EL0 bits [31:0] are architecturally mapped to
AArch32 System register AMEVTYPER1<n>[31:0].

AArch64 System register AMEVTYPER1<n>_EL0 bits [31:0] are architecturally mapped to
External register AMEVTYPER1<n>[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVTYPER1<n>_EL0 are UNDEFINED.

Attributes

AMEVTYPER1<n>_EL0 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the auxiliary activity monitor event
counter AMEVCNTR1<n>_EL0.

It is IMPLEMENTATION DEFINED what values are supported by each counter.

If software writes a value to this field which is not supported by the corresponding counter
AMEVCNTR1<n>_EL0, then:

• It is UNPREDICTABLE which event will be counted.

• The value read back is UNKNOWN.

The event counted by AMEVCNTR1<n>_EL0 might be fixed at implementation. In this case, the
field is read-only and writes are UNDEFINED.

If the corresponding counter AMEVCNTR1<n>_EL0 is enabled, writes to this register have
UNPREDICTABLE results.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AMEVTYPER1<n>_EL0

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of
AMEVTYPER1<n>_EL0 are UNDEFINED.

Note

AMCGCR_EL0.CG1NC identifies the number of auxiliary activity monitor event counters.

RES0

63 32

RES0

31 16

evtCount

15 0
D13-4036 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMEVTYPER1<n>_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMEVTYPER1<n>_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMEVTYPER1_EL0[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVTYPER1<n>_EL0 == '1'
then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMEVTYPER1_EL0[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMEVTYPER1_EL0[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL3 then
 return AMEVTYPER1_EL0[UInt(CRm<0>:op2<2:0>)];

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b111:n[3] n[2:0]
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4037
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
MSR AMEVTYPER1<n>_EL0, <Xt>

if IsHighestEL(PSTATE.EL) && !boolean IMPLEMENTATION_DEFINED "AMEVCNTR1<n>_EL0 is fixed" then
 AMEVTYPER1_EL0[UInt(CRm<0>:op2<2:0>)] = X[t];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b111:n[3] n[2:0]
D13-4038 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
D13.5.15 AMUSERENR_EL0, Activity Monitors User Enable Register

The AMUSERENR_EL0 characteristics are:

Purpose

Global user enable register for the activity monitors. Enables or disables EL0 access to the activity
monitors. AMUSERENR_EL0 is applicable to both the architected and the auxiliary counter
groups.

Configurations

AArch64 System register AMUSERENR_EL0 bits [31:0] are architecturally mapped to AArch32
System register AMUSERENR[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMUSERENR_EL0 are UNDEFINED.

Attributes

AMUSERENR_EL0 is a 64-bit register.

Field descriptions

Bits [63:1]

Reserved, RES0.

EN, bit [0]

Traps EL0 accesses to the activity monitors registers to EL1, or to EL2 when it is implemented and
enabled for the current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to the following registers are trapped, reported using EC
syndrome value 0x18:

— AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0, AMCNTENCLR1_EL0,
AMCNTENSET0_EL0, AMCNTENSET1_EL0, AMCR_EL0,
AMEVCNTR0<n>_EL0, AMEVCNTR1<n>_EL0, AMEVTYPER0<n>_EL0, and
AMEVTYPER1<n>_EL0.

• In AArch32 state, MRC and MCR accesses to the following registers are trapped and
reported using EC syndrome value 0x03, MRRC and MCRR accesses are trapped and
reported using EC syndrome value 0x04:

— AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0,
AMCNTENSET1, AMCR, AMEVCNTR0<n>, AMEVCNTR1<n>,
AMEVTYPER0<n>, and AMEVTYPER1<n>.

0b0 EL0 accesses to the activity monitors registers are trapped.

0b1 This control does not cause any instructions to be trapped. Software can access all
activity monitor registers at EL0.

Note

• AMUSERENR_EL0 can always be read at EL0 and is not governed by this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 1

EN

0

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4039
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
Accessing AMUSERENR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMUSERENR_EL0

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMUSERENR_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMUSERENR_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMUSERENR_EL0;
elsif PSTATE.EL == EL3 then
 return AMUSERENR_EL0;

MSR AMUSERENR_EL0, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b011

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b011
D13-4040 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.5 Activity Monitors registers
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AMUSERENR_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AMUSERENR_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 AMUSERENR_EL0 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4041
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
D13.6 Statistical Profiling Extension registers

This section lists the Statistical Profiling Extension registers in AArch64.
D13-4042 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
D13.6.1 PMBIDR_EL1, Profiling Buffer ID Register

The PMBIDR_EL1 characteristics are:

Purpose

Provides information to software as to whether the buffer can be programmed at the current
Exception level.

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMBIDR_EL1 are UNDEFINED.

Attributes

PMBIDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:6]

Reserved, RES0.

F, bit [5]

Flag updates. Defines whether the address translation performed by the Profiling Buffer manages
the Access Flag and dirty state. Defined values are:

0b0 Hardware management of the Access Flag and dirty state for accesses made by the
Statistical Profiling Extension is always disabled for all translation stages.

0b1 Hardware management for the Access Flag and dirty state for accesses made by the
Statistical Profiling Extension is controlled in the same way as explicit memory
accesses in the owning translation regime.

If hardware management of the Access Flag is disabled for a stage of translation, an access to Page
or Block with the Access flag bit not set in the descriptor will generate an Access Flag fault.

If hardware management of the dirty state is disabled for a stage of translation, an access to a Page
or Block will ignore the Dirty Bit Modifier in the descriptor might generate a Permission fault,
depending on the values of the access permission bits in the descriptor.

P, bit [4]

Programming not allowed. When read at EL3, this field reads as zero. Otherwise, indicates that the
Profiling Buffer is owned by a higher Exception level or another Security state. Defined values are:

0b0 Programming is allowed.

0b1 Programming not allowed.

The value read from this field depends on the current Exception level and the Effective values of
MDCR_EL3.NSPB and MDCR_EL2.E2PB:

• If EL3 is implemented, and the owning Security state is Secure state, this field reads as one
from:

— Non-secure EL1 and Non-secure EL2.

— If Secure EL2 is implemented and enabled, and MDCR_EL2.E2PB is 0b00, Secure
EL1.

RES0

63 32

RES0

31 6

F

5

P

4

Align

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4043
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
• If EL3 is implemented, and the owning Security state is Non-secure state, this field reads as
one from:

— Secure EL1.

— If Secure EL2 is implemented, Secure EL2.

— If EL2 is implemented and MDCR_EL2.E2PB is 0b00, Non-secure EL1.

• If EL3 is not implemented, EL2 is implemented, and MDCR_EL2.E2PB is 0b00, this field
reads as one from EL1.

• Otherwise, this field reads as zero.

Align, bits [3:0]

Defines the minimum alignment constraint for PMBPTR_EL1. If this field is non-zero, then the PE
must pad every record up to a multiple of this size. Defined values are:

0b0000 Byte

0b0001 Halfword.

0b0010 Word.

0b0011 Doubleword.

0b0100 16 Bytes.

0b0101 32 Bytes.

0b0110 64 Bytes.

0b0111 128 Bytes.

0b1000 256 Bytes.

0b1001 512 Bytes.

0b1010 1KB.

0b1011 2KB.

For more information, see Restrictions on the current write pointer on page D9-2968.

Accessing PMBIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMBIDR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMBIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return PMBIDR_EL1;
elsif PSTATE.EL == EL2 then
 return PMBIDR_EL1;
elsif PSTATE.EL == EL3 then
 return PMBIDR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1010 0b111
D13-4044 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
D13.6.2 PMBLIMITR_EL1, Profiling Buffer Limit Address Register

The PMBLIMITR_EL1 characteristics are:

Purpose

Defines the upper limit for the profiling buffer, and enables the profiling buffer

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMBLIMITR_EL1 are UNDEFINED.

Attributes

PMBLIMITR_EL1 is a 64-bit register.

Field descriptions

LIMIT, bits [63:12]

Limit address. PMBLIMITR_EL1.LIMIT:Zeros(12) is the address of the first byte in memory after
the last byte in the profiling buffer. If the smallest implemented translation granule is not 4KB, then
bits[N-1:12] are RES0, where N is the IMPLEMENTATION DEFINED value, Log2(smallest implemented
translation granule).

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:6]

Reserved, RES0.

PMFZ, bit [5]

When FEAT_SPEv1p2 is implemented:

PMFZ

Freeze PMU on SPE event. Stop PMU event counters when PMBSR_EL1.S == 1.

0b0 Do not freeze PMU event counters on Statistical Profiling Buffer Management event.

0b1 Freeze PMU event counters on Statistical Profiling Buffer Management event.

The PMU event counters affected by this control is controlled by PMCR_EL0.FZS and, if EL2 is
implemented, MDCR_EL2.HPMFZS. See the descriptions of these control bits for more
information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [4:3]

Reserved, RES0.

LIMIT

63 32

LIMIT

31 12

RES0

11 6 5

RES0

4 3

FM

2 1

E

0

PMFZ
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4045
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
FM, bits [2:1]

Fill mode.

0b00 Fill mode. Stop collection and raise maintenance interrupt on buffer fill.

0b10 When FEAT_SPEv1p2 is implemented:

Discard mode. All output is discarded.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [0]

Profiling Buffer enable

0b0 All output is discarded.

0b1 Profiling buffer enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing PMBLIMITR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMBLIMITR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMBLIMITR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
 return NVMem[0x800];
 else
 return PMBLIMITR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMBLIMITR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1010 0b000
D13-4046 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
elsif PSTATE.EL == EL3 then
 return PMBLIMITR_EL1;

MSR PMBLIMITR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMBLIMITR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
 NVMem[0x800] = X[t];
 else
 PMBLIMITR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMBLIMITR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 PMBLIMITR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4047
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
D13.6.3 PMBPTR_EL1, Profiling Buffer Write Pointer Register

The PMBPTR_EL1 characteristics are:

Purpose

Defines the current write pointer for the profiling buffer.

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMBPTR_EL1 are UNDEFINED.

Attributes

PMBPTR_EL1 is a 64-bit register.

Field descriptions

PTR, bits [63:0]

Current write address. Defines the virtual address of the next entry to be written to the buffer.

The architecture places restrictions on the values software can write to the pointer. For more
information see Restrictions on the current write pointer on page D9-2968.

Note

As a result, an implementation might treat some of bits[M:0], where M is defined by
PMBIDR_EL1.Align, as RES0.

On a management interrupt, PMBPTR_EL1 is frozen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMBPTR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMBPTR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMBPTR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then

PTR

63 32

PTR

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1010 0b001
D13-4048 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
 return NVMem[0x810];
 else
 return PMBPTR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMBPTR_EL1;
elsif PSTATE.EL == EL3 then
 return PMBPTR_EL1;

MSR PMBPTR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMBPTR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
 NVMem[0x810] = X[t];
 else
 PMBPTR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMBPTR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 PMBPTR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4049
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
D13.6.4 PMBSR_EL1, Profiling Buffer Status/syndrome Register

The PMBSR_EL1 characteristics are:

Purpose

Provides syndrome information to software when the buffer is disabled because the management
interrupt has been raised.

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMBSR_EL1 are UNDEFINED.

Attributes

PMBSR_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

EC, bits [31:26]

Exception class

Top-level description of the cause of the buffer management event

EC == 0b000000

Other buffer management event. All buffer management events other than those
described by other defined Exception class codes.

See MSS encoding for other buffer management events.

EC == 0b011111

Buffer management event for an IMPLEMENTATION DEFINED reason.

See MSS encoding for a buffer management event for an IMPLEMENTATION
DEFINED reason.

EC == 0b100100

Stage 1 Data Abort on write to Profiling Buffer.

See MSS encoding for stage 1 or stage 2 Data Aborts on write to buffer.

EC == 0b100101

Stage 2 Data Abort on write to Profiling Buffer.

See MSS encoding for stage 1 or stage 2 Data Aborts on write to buffer.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

Writing a reserved value to this field will make the value of this field UNKNOWN. Values that are not
supported act as reserved values when writing to this register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

EC

31 26

RES0

25 20

DL

19

EA

18

S

17 16

MSS

15 0

COLL
D13-4050 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
Bits [25:20]

Reserved, RES0.

DL, bit [19]

Partial record lost.

Following a buffer management event other than an asynchronous External abort, indicates whether
the last record written to the Profiling Buffer is complete.

0b0 PMBPTR_EL1 points to the first byte after the last complete record written to the
Profiling Buffer.

0b1 Part of a record was lost because of a buffer management event or synchronous External
abort. PMBPTR_EL1 might not point to the first byte after the last complete record
written to the buffer, and so restarting collection might result in a data record stream that
software cannot parse. All records prior to the last record have been written to the buffer.

When the buffer management event was because of an asynchronous External abort, this bit is set
to 1 and software must not assume that any valid data has been written to the Profiling Buffer.

This bit is RES0 if the PE never sets this bit as a result of a buffer management event caused by an
asynchronous External abort.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [18]

External abort.

0b0 An External abort has not been asserted.

0b1 An External abort has been asserted and detected by the Statistical Profiling Extension.

This bit is RES0 if the PE never sets this bit as the result of an External abort.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S, bit [17]

Service

0b0 PMBIRQ is not asserted.

0b1 PMBIRQ is asserted. All profiling data has either been written to the buffer or
discarded.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COLL, bit [16]

Collision detected.

0b0 No collision events detected.

0b1 At least one collision event was recorded.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MSS, bits [15:0]

Management Event Specific Syndrome.

Contains syndrome specific to the management event.

The syndrome contents for each management event are described in the following sections.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4051
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
MSS encoding for stage 1 or stage 2 Data Aborts on write to buffer

Bits [15:6]

Reserved, RES0.

FSC, bits [5:0]

Fault status code

0b000000 Address size fault, level 0 of translation or translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001000 When FEAT_LPA2 is implemented:

Access flag fault, level 0.

0b001100 When FEAT_LPA2 is implemented:

Permission fault, level 0.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk or hardware update of
translation table.

0b010001 Asynchronous External abort.

0b010011 When FEAT_LPA2 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -1.

0b010100 Synchronous External abort on translation table walk or hardware update of translation
table, level 0.

0b010101 Synchronous External abort on translation table walk or hardware update of translation
table, level 1.

0b010110 Synchronous External abort on translation table walk or hardware update of translation
table, level 2.

0b010111 Synchronous External abort on translation table walk or hardware update of translation
table, level 3.

0b011011 When FEAT_LPA2 is implemented and FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level -1.

0b100001 Alignment fault.

0b101001 When FEAT_LPA2 is implemented:

RES0

15 6

FSC

5 0
D13-4052 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
Address size fault, level -1.

0b101011 When FEAT_LPA2 is implemented:

Translation fault, level -1.

0b110000 TLB conflict abort.

0b110001 When FEAT_HAFDBS is implemented:

Unsupported atomic hardware update fault.

All other values are reserved.

It is IMPLEMENTATION DEFINED whether each of the Access Flag fault, asynchronous External abort
and synchronous External abort, Alignment fault, and TLB Conflict abort values can be generated
by the PE. For more information see Faults and watchpoints on page D9-2974.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MSS encoding for other buffer management events

Bits [15:6]

Reserved, RES0.

BSC, bits [5:0]

Buffer status code

0b000000 Buffer not filled

0b000001 Buffer filled

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

Writing a reserved value to this field will make the value of this field UNKNOWN. Values that are not
supported act as reserved values when writing to this register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MSS encoding for a buffer management event for an IMPLEMENTATION DEFINED reason

IMPLEMENTATION DEFINED, bits [15:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMBSR_EL1

Accesses to this register use the following encodings in the System register encoding space:

RES0

15 6

BSC

5 0

IMPLEMENTATION DEFINED

15 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4053
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
MRS <Xt>, PMBSR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMBSR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
 return NVMem[0x820];
 else
 return PMBSR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMBSR_EL1;
elsif PSTATE.EL == EL3 then
 return PMBSR_EL1;

MSR PMBSR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMBSR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1010 0b011

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1010 0b011
D13-4054 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
 NVMem[0x820] = X[t];
 else
 PMBSR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMBSR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 PMBSR_EL1 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4055
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
D13.6.5 PMSCR_EL1, Statistical Profiling Control Register (EL1)

The PMSCR_EL1 characteristics are:

Purpose

Provides EL1 controls for Statistical Profiling.

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMSCR_EL1 are UNDEFINED.

Attributes

PMSCR_EL1 is a 64-bit register.

Field descriptions

Bits [63:8]

Reserved, RES0.

PCT, bits [7:6]

When EL2 is implemented:

PCT

Physical Timestamp. If timestamp sampling is enabled and the Profiling Buffer is owned by EL1,
requests which timestamp counter value is collected.

If FEAT_ECV is implemented, this is a two-bit field as shown. Otherwise, bit[7] is RES0.

0b00 Virtual timestamp. The collected timestamp is the physical counter minus the value of
CNTVOFF_EL2.

0b01 Physical timestamp. The collected timestamp is the physical counter.

0b11 When FEAT_ECV is implemented:

Guest physical timestamp. The collected timestamp is the physical counter minus a
physical offset. If any of the following are true, the physical offset is zero, otherwise the
physical offset is the value of CNTPOFF_EL2:

• SCR_EL3.ECVEn == 0.

• CNTHCTL_EL2.ECV == 0.

If EL2 is enabled in the current Security state, then the value of PMSCR_EL2.PCT might override
or modify the meaning of this field.

This field is ignored by the PE when the Profiling Buffer owning Exception level is EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

PCT

Physical Timestamp. Reserved. This field reads as 0b01 and ignores writes. Software should treat
this field as UNK/SBZP.

RES0

63 32

RES0

31 8

PCT

7 6

TS

5

PA

4

CX

3 2 1 0

RES0 E0SPE
E1SPE
D13-4056 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
When EL2 is not implemented, the Effective values of CNTVOFF_EL2 and CNTPOFF_EL2 are
zero, meaning the virtual counter and physical counter have the same value.

TS, bit [5]

Timestamp enable.

0b0 Timestamp sampling disabled.

0b1 Timestamp sampling enabled.

This bit is ignored by the PE if EL2 is implemented and the Profiling Buffer is owned by EL2. For
more information, see Controlling the data that is collected on page D9-2965.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PA, bit [4]

Physical Address sample enable.

0b0 Physical addresses are not collected.

0b1 Physical addresses are collected.

If EL2 is implemented:

• If the Profiling Buffer is owned by EL1, this bit is combined with PMSCR_EL2.PA to
determine which address is collected. For more information, see Controlling the data that is
collected on page D9-2965.

• If the Profiling Buffer is owned by EL2, this bit is ignored by the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CX, bit [3]

CONTEXTIDR_EL1 sample enable.

0b0 CONTEXTIDR_EL1 is not collected.

0b1 CONTEXTIDR_EL1 is collected.

If EL2 is implemented and enabled in the current Security state when an operation is sampled:

• If the PE is at EL2, this bit is ignored by the PE.

• If HCR_EL2.TGE == 1, this bit is ignored by the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [2]

Reserved, RES0.

E1SPE, bit [1]

EL1 Statistical Profiling Enable.

0b0 Sampling disabled at EL1.

0b1 Sampling enabled at EL1.

If EL2 is implemented and enabled in the current Security state, this bit is ignored by the PE when
HCR_EL2.TGE == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E0SPE, bit [0]

EL0 Statistical Profiling Enable. Controls sampling at EL0 when HCR_EL2.TGE == 0 or if EL2 is
disabled or not implemented.

0b0 Sampling disabled at EL0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4057
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
0b1 Sampling enabled at EL0.

If EL2 is implemented and enabled in the current Security state, this bit is ignored by the PE when
HCR_EL2.TGE == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMSCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x828];
 else
 return PMSCR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 return PMSCR_EL2;
 else
 return PMSCR_EL1;
elsif PSTATE.EL == EL3 then
 return PMSCR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b000
D13-4058 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
MSR PMSCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x828] = X[t];
 else
 PMSCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 PMSCR_EL2 = X[t];
 else
 PMSCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 PMSCR_EL1 = X[t];

MRS <Xt>, PMSCR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x828];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b1001 0b1001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4059
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMSCR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return PMSCR_EL1;
 else
 UNDEFINED;

MSR PMSCR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x828] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSCR_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 PMSCR_EL1 = X[t];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1001 0b1001 0b000
D13-4060 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
D13.6.6 PMSCR_EL2, Statistical Profiling Control Register (EL2)

The PMSCR_EL2 characteristics are:

Purpose

Provides EL2 controls for Statistical Profiling.

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMSCR_EL2 are UNDEFINED.

Attributes

PMSCR_EL2 is a 64-bit register.

Field descriptions

Bits [63:8]

Reserved, RES0.

PCT, bits [7:6]

Physical Timestamp. If timestamp sampling is enabled, determines which counter is collected. The
behavior depends on the Profiling Buffer owning Exception level.

If FEAT_ECV is implemented, this is a two-bit field as shown. Otherwise, bit[7] is RES0.

0b00 Virtual timestamp. The collected timestamp is the physical counter minus a virtual
offset. If any of the following are true, the virtual offset is zero, otherwise the virtual
offset is the value of CNTVOFF_EL2:

• The sampled operation executed at EL2 and HCR_EL2.E2H == 1.

• The sampled operation executed at EL0 and HCR_EL2.{E2H,TGE} == {1,1}.

Note
If the Profiling Buffer owning Exception level is EL1, the virtual offset is always
CNTVOFF_EL2.

0b01 If the Profiling Buffer owning Exception level is EL1, then the timestamp value is
selected by PMSCR_EL1.PCT.

Otherwise, physical timestamp. The collected timestamp is the physical counter.

0b11 When FEAT_ECV is implemented:

If the Profiling Buffer owning Exception level is EL1 and PMSCR_EL1.PCT == 0b00,
then guest virtual timestamp. The collected timestamp is the physical counter minus the
value of CNTVOFF_EL2.

Otherwise, guest physical timestamp. The collected timestamp is the physical counter
minus a physical offset. If any of the following are true, the physical offset is zero,
otherwise the physical offset is the value of CNTPOFF_EL2:

• SCR_EL3.ECVEn == 0.

• CNTHCTL_EL2.ECV == 0.

RES0

63 32

RES0

31 8

PCT

7 6

TS

5

PA

4

CX

3 2 1 0

RES0 E0HSPE
E2SPE
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4061
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
All other values are reserved.

If EL2 is not implemented or EL2 is disabled in the current Security state, then the Effective value
of this field is 0b01, other than for a direct read of the register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TS, bit [5]

Timestamp Enable.

0b0 Timestamp sampling disabled.

0b1 Timestamp sampling enabled.

This bit is ignored by the PE when any of the following are true:

• The Profiling Buffer owning Exception level is EL1.

• In Secure state, and either FEAT_SEL2 is not implemented or Secure EL2 is disabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PA, bit [4]

Physical Address Sample Enable.

0b0 Physical addresses are not collected.

0b1 Physical addresses are collected.

If the Profiling Buffer owning Exception level is EL1, and EL2 is enabled in the current Security
state, this bit is combined with PMSCR_EL1.PA to determine which address is collected.

If EL2 is not implemented or EL2 is disabled in the current Security state, the PE ignores the value
of this bit and behaves as if this bit is set to 1, other than for a direct read of the register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CX, bit [3]

CONTEXTIDR_EL2 Sample Enable.

0b0 CONTEXTIDR_EL2 is not collected.

0b1 CONTEXTIDR_EL2 is collected.

If EL2 is not implemented or EL2 is disabled in the current Security state, the PE ignores the value
of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [2]

Reserved, RES0.

E2SPE, bit [1]

EL2 Statistical Profiling Enable.

0b0 Sampling disabled at EL2.

0b1 Sampling enabled at EL2.

This bit is RES0 if MDCR_EL2.E2PB != 0b00.

If EL2 is disabled in the current Security state, this bit is ignored by the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
D13-4062 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
E0HSPE, bit [0]

EL0 Statistical Profiling Enable.

0b0 Sampling disabled at EL0.

0b1 Sampling enabled at EL0.

If MDCR_EL2.E2PB != 0b00, this bit is RES0.

If EL2 is implemented and enabled in the current Security state, this bit is ignored by the PE when
HCR_EL2.TGE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMSCR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMSCR_EL2;
elsif PSTATE.EL == EL3 then
 return PMSCR_EL2;

MSR PMSCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

op0 op1 CRn CRm op2

0b11 0b100 0b1001 0b1001 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b1001 0b1001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4063
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 PMSCR_EL2 = X[t];

MRS <Xt>, PMSCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x828];
 else
 return PMSCR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 return PMSCR_EL2;
 else
 return PMSCR_EL1;
elsif PSTATE.EL == EL3 then
 return PMSCR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b000
D13-4064 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
MSR PMSCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x828] = X[t];
 else
 PMSCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 PMSCR_EL2 = X[t];
 else
 PMSCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 PMSCR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4065
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
D13.6.7 PMSEVFR_EL1, Sampling Event Filter Register

The PMSEVFR_EL1 characteristics are:

Purpose

Controls sample filtering by events. The overall filter is the logical AND of these filters. For
example, if E[3] and E[5] are both set to 1, only samples that have both event 3 (Level 1 unified or
data cache refill) and event 5 set (TLB walk) are recorded.

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMSEVFR_EL1 are UNDEFINED.

Attributes

PMSEVFR_EL1 is a 64-bit register.

Field descriptions

E[<x>], bit [x], for x = 63 to 48, 31 to 24, 15 to 12

E[<x>] is the event filter for event <x>. If event <x> is not implemented, or filtering on event <x>
is not supported, the corresponding bit is RAZ/WI.

0b0 Event <x> is ignored.

0b1 Do not record samples that have event <x> == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [47:32]

Reserved, RAZ/WI.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

RAZ/WI

47 32

E[63]
E[62]

E[61]
E[60]

E[59]
E[58]

E[57]
E[56]

E[48]
E[49]

E[50]
E[51]

E[52]
E[53]

E[54]
E[55]

31 30 29 28 27 26 25 24

RAZ/WI

23 19 18 17 16 15 14 13 12 11

RAZ/WI

10 8 7 6 5 4 3 2 1 0

E[31]
E[30]

E[29]
E[28]

E[27]
E[26]

E[25]
E[24]

E[18]
E[17]
RAZ/WI

E[15]

RAZ/WI
E[1]

RAZ/WI
E[3]

RAZ/WI
E[5]

E[6]
E[7]

E[11]
E[12]

E[13]
E[14]
D13-4066 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
Bits [23:19]

Reserved, RAZ/WI.

E[18], bit [18]

When FEAT_SPEv1p1 is implemented and FEAT_SVE is implemented:

E[18]

Empty predicate.

0b0 Empty predicate event is ignored.

0b1 Do not record samples that have the Empty predicate event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[17], bit [17]

When FEAT_SPEv1p1 is implemented and FEAT_SVE is implemented:

E[17]

Partial predicate.

0b0 Partial predicate event is ignored.

0b1 Do not record samples that have the Partial predicate event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

Bit [16]

Reserved, RAZ/WI.

E[11], bit [11]

When FEAT_SPEv1p1 is implemented:

E[11]

Alignment.

0b0 Alignment event is ignored.

0b1 Do not record samples that have the Alignment event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

Bits [10:8]

Reserved, RAZ/WI.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4067
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
E[7], bit [7]

Mispredicted.

0b0 Mispredicted event is ignored.

0b1 Do not record samples that have the Mispredicted event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[6], bit [6]

When FEAT_SPEv1p2 is implemented:

E[6]

Not taken.

0b0 Not taken event is ignored.

0b1 Do not record samples that have the Not taken event == 0.

This field is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[5], bit [5]

TLB walk.

0b0 TLB walk event is ignored.

0b1 Do not record samples that have the TLB walk event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [4]

Reserved, RAZ/WI.

E[3], bit [3]

Level 1 data or unified cache refill.

0b0 Level 1 data or unified cache refill event is ignored.

0b1 Do not record samples that have the Level 1 data or unified cache refill event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [2]

Reserved, RAZ/WI.

E[1], bit [1]

When the PE supports sampling of speculative instructions:

E[1]

Architecturally executed.
D13-4068 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
When the PE supports sampling of speculative instructions:

0b0 Architecturally executed event is ignored.

0b1 Do not record samples that have the Architecturally executed event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

If the PE does not support the sampling of speculative instructions, or always discards the sample
record for speculative instructions, this bit reads as an UNKNOWN value and the PE ignores its value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, UNKNOWN.

Bit [0]

Reserved, RAZ/WI.

Accessing PMSEVFR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSEVFR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSEVFR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
 return NVMem[0x830];
 else
 return PMSEVFR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMSEVFR_EL1;
elsif PSTATE.EL == EL3 then
 return PMSEVFR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4069
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
MSR PMSEVFR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSEVFR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
 NVMem[0x830] = X[t];
 else
 PMSEVFR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSEVFR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 PMSEVFR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b101
D13-4070 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
D13.6.8 PMSFCR_EL1, Sampling Filter Control Register

The PMSFCR_EL1 characteristics are:

Purpose

Controls sample filtering. The filter is the logical AND of the FL, FT and FE bits. For example, if
FE == 1 and FT == 1 only samples including the selected operation types and the selected events
will be recorded

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMSFCR_EL1 are UNDEFINED.

Attributes

PMSFCR_EL1 is a 64-bit register.

Field descriptions

Bits [63:19]

Reserved, RES0.

ST, bit [18]

Store filter enable

0b0 Do not record store operations

0b1 Record all store operations, including vector stores and all atomic operations

This bit is ignored by the PE when PMSFCR_EL1.FT == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

LD, bit [17]

Load filter enable

0b0 Do not record load operations

0b1 Record all load operations, including vector loads and atomic operations that return data

This bit is ignored by the PE when PMSFCR_EL1.FT == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

B, bit [16]

Branch filter enable

0b0 Do not record branch and exception return operations

0b1 Record all branch and exception return operations

This bit is ignored by the PE when PMSFCR_EL1.FT == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 19

ST

18

LD

17

B

16

RES0

15 4 3

FL

2

FT

1

FE

0

FnE
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4071
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
Bits [15:4]

Reserved, RES0.

FnE, bit [3]

When FEAT_SPEv1p2 is implemented:

FnE

Filter by event, inverted.

0b0 Inverted event filtering disabled.

0b1 Inverted event filtering enabled. Samples including the events selected by
PMSNEVFR_EL1 will not be recorded.

If any of the following are true, it is CONSTRAINED UNPREDICTABLE whether no samples are
recorded or the PE behaves as if PMSFCR_EL1.FnE == 0:

• PMSFCR_EL1.FnE == 1 and PMSNEVFR_EL1 is zero.

• PMSFCR_EL1.FnE == 1, PMSFCR_EL1.FE == 1, and there exists a value x such that
PMSEVFR_EL1.E[x] == 1 and PMSNEVFR_EL1.E[x] == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FL, bit [2]

Filter by latency

0b0 Latency filtering disabled

0b1 Latency filtering enabled. Samples with a total latency less than
PMSLATFR_EL1.MINLAT will not be recorded

If this field is set to 1 and PMSLATFR_EL1.MINLAT is set to zero, it is CONSTRAINED
UNPREDICTABLE whether no samples are recorded or the PE behaves as if PMSFCR_EL1.FL is set
to 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FT, bit [1]

Filter by operation type. The filter is the logical OR of the ST, LD and B bits. For example, if LD
and ST are both set, both load and store operations are recorded

0b0 Type filtering disabled

0b1 Type filtering enabled. Samples not one of the selected operation types will not be
recorded

If this field is set to 1 and the PMSFCR_EL1.{ST, LD, B} bits are all set to zero, it is CONSTRAINED
UNPREDICTABLE whether no samples are recorded or the PE behaves as if PMSFCR_EL1.FT is set
to 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FE, bit [0]

Filter by event.

0b0 Event filtering disabled.

0b1 Event filtering enabled. Samples not including the events selected by PMSEVFR_EL1
will not be recorded.
D13-4072 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
If any of the following are true, it is CONSTRAINED UNPREDICTABLE whether no samples are
recorded or the PE behaves as if PMSFCR_EL1.FE == 0:

• PMSFCR_EL1.FE == 1 and PMSEVFR_EL1 is zero.

• FEAT_SPEv1p2 is implemented, PMSFCR_EL1.FnE == 1, PMSFCR_EL1.FE == 1, and
there exists a value x such that PMSEVFR_EL1.E[x] == 1 and PMSNEVFR_EL1.E[x] == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMSFCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSFCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSFCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMSFCR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMSFCR_EL1;
elsif PSTATE.EL == EL3 then
 return PMSFCR_EL1;

MSR PMSFCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b100

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4073
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSFCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSFCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSFCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 PMSFCR_EL1 = X[t];

D13-4074 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
D13.6.9 PMSICR_EL1, Sampling Interval Counter Register

The PMSICR_EL1 characteristics are:

Purpose

Software must write zero to PMSICR_EL1 before enabling sample profiling for a sampling session.
Software must then treat PMSICR_EL1 as an opaque, 64-bit, read/write register used for context
switches only.

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMSICR_EL1 are UNDEFINED.

The value of PMSICR_EL1 does not change whilst profiling is disabled.

Attributes

PMSICR_EL1 is a 64-bit register.

Field descriptions

ECOUNT, bits [63:56]

When PMSIDR_EL1.ERnd == 1:

ECOUNT

Secondary sample interval counter.

This field provides the secondary counter used after the primary counter reaches zero. Whilst the
secondary counter is nonzero and profiling is enabled, the secondary counter decrements by 1 for
each member of the sample population. The primary counter also continues to decrement since it is
also nonzero. When the secondary counter reaches zero, a member of the sampling population is
selected for sampling.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [55:32]

Reserved, RES0.

COUNT, bits [31:0]

Primary sample interval counter

Provides the primary counter used for sampling.

The primary counter is reloaded when the value of this register is zero and the PE moves from a state
or Exception level where profiling is disabled to a state or Exception level where profiling is enabled

Whilst the primary counter is nonzero and sampling is enabled, the primary counter decrements by
1 for each member of the sample population

ECOUNT

63 56

RES0

55 32

COUNT

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4075
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
When the counter reaches zero, the behavior depends on the values of PMSIDR_EL1.ERnd and
PMSIRR_EL1.RND

• If PMSIRR_EL1.RND == 0 or PMSIDR_EL1.ERnd == 0:

— A member of the sampling population is selected for sampling

— The primary counter is reloaded

• If PMSIRR_EL1.RND == 1 and PMSIDR_EL1.ERnd == 1:

— The secondary counter is set to a random or pseudorandom value in the range 0x00 to
0xFF

— The primary counter is reloaded

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMSICR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSICR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSICR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
 return NVMem[0x838];
 else
 return PMSICR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMSICR_EL1;
elsif PSTATE.EL == EL3 then
 return PMSICR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b010
D13-4076 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
MSR PMSICR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSICR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
 NVMem[0x838] = X[t];
 else
 PMSICR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSICR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 PMSICR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4077
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
D13.6.10 PMSIDR_EL1, Sampling Profiling ID Register

The PMSIDR_EL1 characteristics are:

Purpose

Describes the Statistical Profiling implementation to software

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMSIDR_EL1 are UNDEFINED.

Attributes

PMSIDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:25]

Reserved, RES0.

PBT, bit [24]

Previous branch target Address packet. Defined values are:

0b0 Previous branch target Address packet not supported.

0b1 Previous branch target Address packet support implemented.

FEAT_SPEv1p2 adds the OPTIONAL functionality identified by the value 1.

Format, bits [23:20]

From Armv8.7:

Format

Defines the format of the sample records. Defined values are:

0b0000 Format 0.

All other values are reserved.

Otherwise:

Reserved, RAZ.

CountSize, bits [19:16]

Defines the size of the counters. Defined values are:

0b0010 12-bit saturating counters.

All other values are reserved.

RES0

63 32

RES0

31 25 24

Format

23 20 19 16

MaxSize

15 12

Interval

11 8 7 6 5 4 3

FL

2

FT

1

FE

0

PBT CountSize RES0
FnE

ArchInst
LDS

ERnd
D13-4078 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
MaxSize, bits [15:12]

Defines the largest size for a single record, rounded up to a power-of-two. If this is the same as the
minimum alignment (PMBIDR_EL1.Align), then each record is exactly this size. Defined values
are:

0b0100 16 bytes

0b0101 32 bytes

0b0110 64 bytes

0b0111 128 bytes

0b1000 256 bytes

0b1001 512 bytes

0b1010 1024 bytes

0b1011 2KB

All other values are reserved.

The values 0b0100 and 0b0101 are not permitted for an implementation.

Interval, bits [11:8]

Recommended minimum sampling interval. This provides guidance from the implementer to the
smallest minimum sampling interval, N. Defined values are:

0b0000 256

0b0010 512

0b0011 768

0b0100 1,024

0b0101 1,536

0b0110 2,048

0b0111 3,072

0b1000 4,096

All other values are reserved.

Bit [7]

Reserved, RES0.

FnE, bit [6]

Filtering by events, inverted. Defined values are:

0b0 PMSNEVFR_EL1 is not implemented and PMSFCR_EL1.FnE is RES0.

0b1 PMSNEVFR_EL1 and PMSFCR_EL1.FnE are implemented.

The value 1 indicates support for the FEAT_SPEv1p2 feature.

ERnd, bit [5]

Defines how the random number generator is used in determining the interval between samples,
when enabled by PMSIRR_EL1.RND. Defined values are:

0b0 The random number is added at the start of the interval, and the sample is taken and a
new interval started when the combined interval expires.

0b1 The random number is added and the new interval started after the interval programmed
in PMSIRR_EL1.INTERVAL expires, and the sample is taken when the random
interval expires.

LDS, bit [4]

Data source indicator for sampled load instructions. Defined values are:

0b0 Loaded data source not implemented.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4079
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
0b1 Loaded data source implemented.

ArchInst, bit [3]

Architectural instruction profiling. Defined values are:

0b0 Micro-op sampling implemented.

0b1 Architecture instruction sampling implemented.

FL, bit [2]

Filtering by latency. This bit is RAO.

FT, bit [1]

Filtering by operation type. This bit is RAO.

FE, bit [0]

Filtering by events. This bit is RAO.

Accessing PMSIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSIDR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMSIDR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMSIDR_EL1;
elsif PSTATE.EL == EL3 then
 return PMSIDR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b111
D13-4080 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
D13.6.11 PMSIRR_EL1, Sampling Interval Reload Register

The PMSIRR_EL1 characteristics are:

Purpose

Defines the interval between samples.

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMSIRR_EL1 are UNDEFINED.

Attributes

PMSIRR_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

INTERVAL, bits [31:8]

Bits [31:8] of the PMSICR_EL1 interval counter reload value. Software must set this to a non-zero
value. If software sets this to zero, an UNKNOWN sampling interval is used. Software should set this
to a value greater than the minimum indicated by PMSIDR_EL1.Interval.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:1]

Reserved, RES0.

RND, bit [0]

Controls randomization of the sampling interval.

0b0 Disable randomization of sampling interval.

0b1 Add (pseudo-)random jitter to sampling interval.

The random number generator is not architected.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMSIRR_EL1

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

INTERVAL

31 8

RES0

7 1 0

RND
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4081
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
MRS <Xt>, PMSIRR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSIRR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
 return NVMem[0x840];
 else
 return PMSIRR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMSIRR_EL1;
elsif PSTATE.EL == EL3 then
 return PMSIRR_EL1;

MSR PMSIRR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSIRR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b011

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b011
D13-4082 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
 NVMem[0x840] = X[t];
 else
 PMSIRR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSIRR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 PMSIRR_EL1 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4083
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
D13.6.12 PMSLATFR_EL1, Sampling Latency Filter Register

The PMSLATFR_EL1 characteristics are:

Purpose

Controls sample filtering by latency

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMSLATFR_EL1 are UNDEFINED.

Attributes

PMSLATFR_EL1 is a 64-bit register.

Field descriptions

Bits [63:12]

Reserved, RES0.

MINLAT, bits [11:0]

Minimum latency. When PMSFCR_EL1.FL == 1, defines the minimum total latency for filtered
operations. Samples with a total latency less than MINLAT will not be recorded

This field is ignored by the PE when PMSFCR_EL1.FL == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMSLATFR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSLATFR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSLATFR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;

RES0

63 32

RES0

31 12

MINLAT

11 0

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b110
D13-4084 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
 return NVMem[0x848];
 else
 return PMSLATFR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMSLATFR_EL1;
elsif PSTATE.EL == EL3 then
 return PMSLATFR_EL1;

MSR PMSLATFR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSLATFR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
 NVMem[0x848] = X[t];
 else
 PMSLATFR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSLATFR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 PMSLATFR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4085
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
D13.6.13 PMSNEVFR_EL1, Sampling Inverted Event Filter Register

The PMSNEVFR_EL1 characteristics are:

Purpose

Controls sample filtering by events. The overall filter is the logical AND of these filters. For
example, if E[3] and E[5] are both set to 1, only samples that have both event 3 (Level 1 unified or
data cache refill) and event 5 (TLB walk) clear are recorded.

Configurations

This register is present only when FEAT_SPEv1p2 is implemented. Otherwise, direct accesses to
PMSNEVFR_EL1 are UNDEFINED.

Attributes

PMSNEVFR_EL1 is a 64-bit register.

Field descriptions

E[<x>], bit [x], for x = 63 to 48, 31 to 24, 15 to 12

E[<x>] is the event filter for IMPLEMENTATION DEFINED event <x>.

0b0 Event <x> is ignored.

0b1 Do not record samples that have event <x> == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This bit is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When event <x> is not implemented, or filtering on event <x> is not supported, access to this field
is RAZ/WI.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

RAZ/WI

47 32

E[63]
E[62]

E[61]
E[60]

E[59]
E[58]

E[57]
E[56]

E[48]
E[49]

E[50]
E[51]

E[52]
E[53]

E[54]
E[55]

31 30 29 28 27 26 25 24

RAZ/WI

23 19 18 17 16 15 14 13 12 11

RAZ/WI

10 8 7 6 5 4 3 2 1 0

E[31]
E[30]

E[29]
E[28]

E[27]
E[26]

E[25]
E[24]

E[18]
E[17]
RAZ/WI

E[15]

RAZ/WI
E[1]

RAZ/WI
E[3]

RAZ/WI
E[5]

E[6]
E[7]

E[11]
E[12]

E[13]
E[14]
D13-4086 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
Bits [47:32]

Reserved, RAZ/WI.

Bits [23:19]

Reserved, RAZ/WI.

E[18], bit [18]

When FEAT_SVE is implemented and FEAT_SPEv1p1 is implemented:

E[18]

Not empty predicate.

0b0 Empty predicate event is ignored.

0b1 Do not record samples that have the Empty predicate event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[17], bit [17]

When FEAT_SVE is implemented and FEAT_SPEv1p1 is implemented:

E[17]

Not partial predicate.

0b0 Partial predicate event is ignored.

0b1 Do not record samples that have the Partial predicate event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

Bit [16]

Reserved, RAZ/WI.

E[11], bit [11]

When FEAT_SPEv1p1 is implemented:

E[11]

Aligned.

0b0 Misalignment event is ignored.

0b1 Do not record samples that have the Misalignment event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4087
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
Bits [10:8]

Reserved, RAZ/WI.

E[7], bit [7]

Correctly predicted.

0b0 Mispredicted event is ignored.

0b1 Do not record samples that have the Mispredicted event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[6], bit [6]

Taken.

0b0 Not taken event is ignored.

0b1 Do not record samples that have the Not taken event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[5], bit [5]

TLB hit.

0b0 TLB walk event is ignored.

0b1 Do not record samples that have the TLB walk event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [4]

Reserved, RAZ/WI.

E[3], bit [3]

Level 1 data or unified cache hit.

0b0 Level 1 data or unified cache refill event is ignored.

0b1 Do not record samples that have the Level 1 data or unified cache refill event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [2]

Reserved, RAZ/WI.

E[1], bit [1]

When the PE supports sampling of speculative instructions:

E[1]

Speculative.

0b0 Architecturally executed event is ignored.

0b1 Do not record samples that have the Architecturally executed event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.
D13-4088 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

Bit [0]

Reserved, RAZ/WI.

Accessing PMSNEVFR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSNEVFR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.EnPMSN == '0' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.nPMSNEVFR_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPMSN == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
 return NVMem[0x850];
 else
 return PMSNEVFR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.EnPMSN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPMSN == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4089
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMSNEVFR_EL1;
elsif PSTATE.EL == EL3 then
 return PMSNEVFR_EL1;

MSR PMSNEVFR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.EnPMSN == '0' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.nPMSNEVFR_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPMSN == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
 NVMem[0x850] = X[t];
 else
 PMSNEVFR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.EnPMSN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS) then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPMSN == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSNEVFR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 PMSNEVFR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b001
D13-4090 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
D13.7 RAS registers

This section lists The Reliability, Availability, and Serviceability Extension registers in AArch64.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4091
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
D13.7.1 DISR_EL1, Deferred Interrupt Status Register

The DISR_EL1 characteristics are:

Purpose

Records that an SError interrupt has been consumed by an ESB instruction.

Configurations

AArch64 System register DISR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DISR[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
DISR_EL1 are UNDEFINED.

Attributes

DISR_EL1 is a 64-bit register.

Field descriptions

When DISR_EL1.IDS == 0:

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError interrupt. If the implementation does
not include any sources of SError interrupt that can be synchronized by an Error Synchronization
Barrier, then this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:25]

Reserved, RES0.

IDS, bit [24]

Indicates the deferred SError interrupt type.

0b0 Deferred error uses architecturally-defined format.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:13]

Reserved, RES0.

AET, bits [12:10]

Asynchronous Error Type. See the description of ESR_ELx.AET for an SError interrupt.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

A

31

RES0

30 25 24

RES0

23 13

AET

12 10

EA

9

RES0

8 6

DFSC

5 0

IDS
D13-4092 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
EA, bit [9]

External abort Type. See the description of ESR_ELx.EA for an SError interrupt.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]

Fault Status Code. See the description of ESR_ELx.DFSC for an SError interrupt.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When DISR_EL1.IDS == 1:

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError interrupt. If the implementation does
not include any sources of SError interrupt that can be synchronized by an Error Synchronization
Barrier, then this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:25]

Reserved, RES0.

IDS, bit [24]

Indicates the deferred SError interrupt type.

0b1 Deferred error uses IMPLEMENTATION DEFINED format.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [23:0]

IMPLEMENTATION DEFINED syndrome. See the description of ESR_ELx[23:0] for an SError
interrupt.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing DISR_EL1

An indirect write to DISR_EL1 made by an ESB instruction does not require an explicit synchronization operation
for the value that is written to be observed by a direct read of DISR_EL1 occurring in program order after the ESB
instruction.

RES0

63 32

A

31

RES0

30 25 24

ISS

23 0

IDS
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4093
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
DISR_EL1 is RAZ/WI if EL3 is implemented, the PE is in Non-debug state, SCR_EL3.EA == 1, and any of the
following apply:

• At EL2.

• At EL1 and ((SCR_EL3.NS == 0 && SCR_EL3.EEL2 == 0) || HCR_EL2.AMO == 0).

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DISR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.AMO == '1' then
 return VDISR_EL2;
 elsif HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then
 return Zeros();
 else
 return DISR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then
 return Zeros();
 else
 return DISR_EL1;
elsif PSTATE.EL == EL3 then
 return DISR_EL1;

MSR DISR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.AMO == '1' then
 VDISR_EL2 = X[t];
 elsif HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then
 //no operation
 else
 DISR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then
 //no operation
 else
 DISR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 DISR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0001 0b001
D13-4094 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
D13.7.2 ERRIDR_EL1, Error Record ID Register

The ERRIDR_EL1 characteristics are:

Purpose

Defines the highest numbered index of the error records that can be accessed through the Error
Record System registers.

Configurations

AArch64 System register ERRIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register ERRIDR[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERRIDR_EL1 are UNDEFINED.

Attributes

ERRIDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

NUM, bits [15:0]

Highest numbered index of the records that can be accessed through the Error Record System
registers plus one. Zero indicates no records can be accessed through the Error Record System
registers.

Each implemented record is owned by a node. A node might own multiple records.

Accessing ERRIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ERRIDR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ERRIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then

RES0

63 32

RES0

31 16

NUM

15 0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4095
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERRIDR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERRIDR_EL1;
elsif PSTATE.EL == EL3 then
 return ERRIDR_EL1;

D13-4096 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
D13.7.3 ERRSELR_EL1, Error Record Select Register

The ERRSELR_EL1 characteristics are:

Purpose

Selects an error record to be accessed through the Error Record System registers.

Configurations

AArch64 System register ERRSELR_EL1 bits [31:0] are architecturally mapped to AArch32
System register ERRSELR[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERRSELR_EL1 are UNDEFINED.

If ERRIDR_EL1 indicates that zero error records are implemented, then it is IMPLEMENTATION
DEFINED whether ERRSELR_EL1 is UNDEFINED or RES0.

Attributes

ERRSELR_EL1 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

SEL, bits [15:0]

Selects the error record accessed through the ERX registers.

For example, if ERRSELR_EL1.SEL is 0x0004, then direct reads and writes of ERXSTATUS_EL1
access ERR4STATUS.

If ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then all of the following
apply:

• The value read back from ERRSELR_EL1.SEL is UNKNOWN.

• One of the following occurs:

— An UNKNOWN error record is selected.

— The ERX*_EL1 registers are RAZ/WI.

— ERX*_EL1 register reads and writes are NOPs.

— ERX*_EL1 register reads and writes are UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ERRSELR_EL1

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

RES0

31 16

SEL

15 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4097
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
MRS <Xt>, ERRSELR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ERRSELR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERRSELR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERRSELR_EL1;
elsif PSTATE.EL == EL3 then
 return ERRSELR_EL1;

MSR ERRSELR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ERRSELR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERRSELR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0011 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0011 0b001
D13-4098 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERRSELR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 ERRSELR_EL1 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4099
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
D13.7.4 ERXADDR_EL1, Selected Error Record Address Register

The ERXADDR_EL1 characteristics are:

Purpose

Accesses ERR<n>ADDR for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch64 System register ERXADDR_EL1 bits [31:0] are architecturally mapped to AArch32
System register ERXADDR[31:0].

AArch64 System register ERXADDR_EL1 bits [63:32] are architecturally mapped to AArch32
System register ERXADDR2[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXADDR_EL1 are UNDEFINED.

Attributes

ERXADDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXADDR_EL1 accesses ERR<n>ADDR, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXADDR_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXADDR_EL1 is RAZ/WI.

• Direct reads and writes of ERXADDR_EL1 are NOPs.

• Direct reads and writes of ERXADDR_EL1 are UNDEFINED.

ERR<n>ADDR describes additional constraints that also apply when ERR<n>ADDR is accessed through
ERXADDR_EL1.

Accesses to this register use the following encodings in the System register encoding space:

ERR<n>ADDR

63 32

ERR<n>ADDR

31 0
D13-4100 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
MRS <Xt>, ERXADDR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ERXADDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXADDR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXADDR_EL1;
elsif PSTATE.EL == EL3 then
 return ERXADDR_EL1;

MSR ERXADDR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ERXADDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXADDR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b011

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4101
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXADDR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 ERXADDR_EL1 = X[t];

D13-4102 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
D13.7.5 ERXCTLR_EL1, Selected Error Record Control Register

The ERXCTLR_EL1 characteristics are:

Purpose

Accesses ERR<n>CTLR for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch64 System register ERXCTLR_EL1 bits [31:0] are architecturally mapped to AArch32
System register ERXCTLR[31:0].

AArch64 System register ERXCTLR_EL1 bits [63:32] are architecturally mapped to AArch32
System register ERXCTLR2[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXCTLR_EL1 are UNDEFINED.

Attributes

ERXCTLR_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXCTLR_EL1 accesses ERR<n>CTLR, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXCTLR_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXCTLR_EL1 is RAZ/WI.

• Direct reads and writes of ERXCTLR_EL1 are NOPs.

• Direct reads and writes of ERXCTLR_EL1 are UNDEFINED.

If ERRSELR_EL1.SEL is not the index of the first error record owned by a node, then ERR<n>CTLR is not present,
meaning reads and writes of ERXCTLR_EL1 are RES0.

Accesses to this register use the following encodings in the System register encoding space:

ERR<n>CTLR

63 32

ERR<n>CTLR

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4103
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
MRS <Xt>, ERXCTLR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ERXCTLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXCTLR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXCTLR_EL1;
elsif PSTATE.EL == EL3 then
 return ERXCTLR_EL1;

MSR ERXCTLR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ERXCTLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXCTLR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b001
D13-4104 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXCTLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 ERXCTLR_EL1 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4105
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
D13.7.6 ERXFR_EL1, Selected Error Record Feature Register

The ERXFR_EL1 characteristics are:

Purpose

Accesses ERR<n>FR for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch64 System register ERXFR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register ERXFR[31:0].

AArch64 System register ERXFR_EL1 bits [63:32] are architecturally mapped to AArch32 System
register ERXFR2[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXFR_EL1 are UNDEFINED.

Attributes

ERXFR_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXFR_EL1 accesses ERR<n>FR, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXFR_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXFR_EL1 is RAZ.

• Direct reads of ERXFR_EL1 are NOPs.

• Direct reads of ERXFR_EL1 are UNDEFINED.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ERXFR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

ERR<n>FR

63 32

ERR<n>FR

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b000
D13-4106 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ERXFR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXFR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXFR_EL1;
elsif PSTATE.EL == EL3 then
 return ERXFR_EL1;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4107
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
D13.7.7 ERXMISC0_EL1, Selected Error Record Miscellaneous Register 0

The ERXMISC0_EL1 characteristics are:

Purpose

Accesses ERR<n>MISC0 for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch64 System register ERXMISC0_EL1 bits [31:0] are architecturally mapped to AArch32
System register ERXMISC0[31:0].

AArch64 System register ERXMISC0_EL1 bits [63:32] are architecturally mapped to AArch32
System register ERXMISC1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXMISC0_EL1 are UNDEFINED.

Attributes

ERXMISC0_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXMISC0_EL1 accesses ERR<n>MISC0, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXMISC0_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXMISC0_EL1 is RAZ/WI.

• Direct reads and writes of ERXMISC0_EL1 are NOPs.

• Direct reads and writes of ERXMISC0_EL1 are UNDEFINED.

ERR<n>MISC0 describes additional constraints that also apply when ERR<n>MISC0 is accessed through
ERXMISC0_EL1.

Accesses to this register use the following encodings in the System register encoding space:

ERR<n>MISC0

63 32

ERR<n>MISC0

31 0
D13-4108 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
MRS <Xt>, ERXMISC0_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ERXMISCn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXMISC0_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXMISC0_EL1;
elsif PSTATE.EL == EL3 then
 return ERXMISC0_EL1;

MSR ERXMISC0_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ERXMISCn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXMISC0_EL1 = X[t];
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0101 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0101 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4109
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXMISC0_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 ERXMISC0_EL1 = X[t];

D13-4110 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
D13.7.8 ERXMISC1_EL1, Selected Error Record Miscellaneous Register 1

The ERXMISC1_EL1 characteristics are:

Purpose

Accesses ERR<n>MISC1 for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch64 System register ERXMISC1_EL1 bits [31:0] are architecturally mapped to AArch32
System register ERXMISC2[31:0].

AArch64 System register ERXMISC1_EL1 bits [63:32] are architecturally mapped to AArch32
System register ERXMISC3[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXMISC1_EL1 are UNDEFINED.

Attributes

ERXMISC1_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXMISC1_EL1 accesses ERR<n>MISC1, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXMISC1_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXMISC1_EL1 is RAZ/WI.

• Direct reads and writes of ERXMISC1_EL1 are NOPs.

• Direct reads and writes of ERXMISC1_EL1 are UNDEFINED.

ERR<n>MISC1 describes additional constraints that also apply when ERR<n>MISC1 is accessed through
ERXMISC1_EL1.

Accesses to this register use the following encodings in the System register encoding space:

ERR<n>MISC1

63 32

ERR<n>MISC1

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4111
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
MRS <Xt>, ERXMISC1_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ERXMISCn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXMISC1_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXMISC1_EL1;
elsif PSTATE.EL == EL3 then
 return ERXMISC1_EL1;

MSR ERXMISC1_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ERXMISCn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXMISC1_EL1 = X[t];
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0101 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0101 0b001
D13-4112 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXMISC1_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 ERXMISC1_EL1 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4113
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
D13.7.9 ERXMISC2_EL1, Selected Error Record Miscellaneous Register 2

The ERXMISC2_EL1 characteristics are:

Purpose

Accesses ERR<n>MISC2 for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch64 System register ERXMISC2_EL1 bits [31:0] are architecturally mapped to AArch32
System register ERXMISC4[31:0].

AArch64 System register ERXMISC2_EL1 bits [63:32] are architecturally mapped to AArch32
System register ERXMISC5[31:0].

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to
ERXMISC2_EL1 are UNDEFINED.

Attributes

ERXMISC2_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXMISC2_EL1 accesses ERR<n>MISC2, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXMISC2_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXMISC2_EL1 is RAZ/WI.

• Direct reads and writes of ERXMISC2_EL1 are NOPs.

• Direct reads and writes of ERXMISC2_EL1 are UNDEFINED.

ERR<n>MISC2 describes additional constraints that also apply when ERR<n>MISC2 is accessed through
ERXMISC2_EL1.

Accesses to this register use the following encodings in the System register encoding space:

ERR<n>MISC2

63 32

ERR<n>MISC2

31 0
D13-4114 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
MRS <Xt>, ERXMISC2_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ERXMISCn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXMISC2_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXMISC2_EL1;
elsif PSTATE.EL == EL3 then
 return ERXMISC2_EL1;

MSR ERXMISC2_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ERXMISCn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXMISC2_EL1 = X[t];
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0101 0b010

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0101 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4115
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXMISC2_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 ERXMISC2_EL1 = X[t];

D13-4116 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
D13.7.10 ERXMISC3_EL1, Selected Error Record Miscellaneous Register 3

The ERXMISC3_EL1 characteristics are:

Purpose

Accesses ERR<n>MISC3 for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch64 System register ERXMISC3_EL1 bits [31:0] are architecturally mapped to AArch32
System register ERXMISC6[31:0].

AArch64 System register ERXMISC3_EL1 bits [63:32] are architecturally mapped to AArch32
System register ERXMISC7[31:0].

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to
ERXMISC3_EL1 are UNDEFINED.

Attributes

ERXMISC3_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXMISC3_EL1 accesses ERR<n>MISC3, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXMISC3_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXMISC3_EL1 is RAZ/WI.

• Direct reads and writes of ERXMISC3_EL1 are NOPs.

• Direct reads and writes of ERXMISC3_EL1 are UNDEFINED.

ERR<n>MISC3 describes additional constraints that also apply when ERR<n>MISC3 is accessed through
ERXMISC3_EL1.

Accesses to this register use the following encodings in the System register encoding space:

ERR<n>MISC3

63 32

ERR<n>MISC3

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4117
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
MRS <Xt>, ERXMISC3_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ERXMISCn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXMISC3_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXMISC3_EL1;
elsif PSTATE.EL == EL3 then
 return ERXMISC3_EL1;

MSR ERXMISC3_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ERXMISCn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXMISC3_EL1 = X[t];
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0101 0b011

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0101 0b011
D13-4118 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXMISC3_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 ERXMISC3_EL1 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4119
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
D13.7.11 ERXPFGCDN_EL1, Selected Pseudo-fault Generation Countdown register

The ERXPFGCDN_EL1 characteristics are:

Purpose

Accesses ERR<n>PFGCDN for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to
ERXPFGCDN_EL1 are UNDEFINED.

Attributes

ERXPFGCDN_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXPFGCDN_EL1 accesses ERR<n>PFGCDN, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXPFGCDN_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXPFGCDN_EL1 is RAZ/WI.

• Direct reads and writes of ERXPFGCDN_EL1 are NOPs.

• Direct reads and writes of ERXPFGCDN_EL1 are UNDEFINED.

If ERRSELR_EL1.SEL selects an error record owned by a node that does not implement the Common Fault
Injection Model Extension, then one of the following occurs:

• ERXPFGCDN_EL1 is RAZ/WI.

• Direct reads and writes of ERXPFGCDN_EL1 are NOPs.

• Direct reads and writes of ERXPFGCDN_EL1 are UNDEFINED.

Note

A node does not implement the Common Fault Injection Model Extension if ERR<n>FR.INJ reads as 0b00. <q> is
the index of the first error record owned by the same node as error record <n>, where <n> is the value in
ERRSELR_EL1.SEL. If the node owns a single record, then q = n.

If ERRSELR_EL1.SEL is not the index of the first error record owned by a node, then ERR<n>PFGCDN is not
present, meaning reads and writes of ERXPFGCDN_EL1 are RES0.

ERR<n>PFGCDN

63 32

ERR<n>PFGCDN

31 0
D13-4120 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
ERR<n>PFGCDN describes additional constraints that also apply when ERR<n>PFGCDN is accessed through
ERXPFGCDN_EL1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ERXPFGCDN_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FIEN == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.FIEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ERXPFGCDN_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXPFGCDN_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FIEN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXPFGCDN_EL1;
elsif PSTATE.EL == EL3 then
 return ERXPFGCDN_EL1;

MSR ERXPFGCDN_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FIEN == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.FIEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ERXPFGCDN_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
 if Halted() && EDSCR.SDD == '1' then

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b110

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4121
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXPFGCDN_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FIEN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXPFGCDN_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 ERXPFGCDN_EL1 = X[t];

D13-4122 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
D13.7.12 ERXPFGCTL_EL1, Selected Pseudo-fault Generation Control register

The ERXPFGCTL_EL1 characteristics are:

Purpose

Accesses ERR<n>PFGCTL for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to
ERXPFGCTL_EL1 are UNDEFINED.

Attributes

ERXPFGCTL_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXPFGCTL_EL1 accesses ERR<n>PFGCTL, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXPFGCTL_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXPFGCTL_EL1 is RAZ/WI.

• Direct reads and writes of ERXPFGCTL_EL1 are NOPs.

• Direct reads and writes of ERXPFGCTL_EL1 are UNDEFINED.

If ERRSELR_EL1.SEL selects an error record owned by a node that does not implement the Common Fault
Injection Model Extension, then one of the following occurs:

• ERXPFGCTL_EL1 is RAZ/WI.

• Direct reads and writes of ERXPFGCTL_EL1 are NOPs.

• Direct reads and writes of ERXPFGCTL_EL1 are UNDEFINED.

Note

A node does not implement the Common Fault Injection Model Extension if ERR<n>FR.INJ reads as 0b00. <q> is
the index of the first error record owned by the same node as error record <n>, where <n> is the value in
ERRSELR_EL1.SEL. If the node owns a single record, then q = n.

If ERRSELR_EL1.SEL is not the index of the first error record owned by a node, then ERR<n>PFGCTL is not
present, meaning reads and writes of ERXPFGCTL_EL1 are RES0.

ERR<n>PFGCTL

63 32

ERR<n>PFGCTL

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4123
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
ERR<n>PFGCTL describes additional constraints that also apply when ERR<n>PFGCTL is accessed through
ERXPFGCTL_EL1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ERXPFGCTL_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FIEN == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.FIEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ERXPFGCTL_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXPFGCTL_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FIEN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXPFGCTL_EL1;
elsif PSTATE.EL == EL3 then
 return ERXPFGCTL_EL1;

MSR ERXPFGCTL_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FIEN == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.FIEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ERXPFGCTL_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
 if Halted() && EDSCR.SDD == '1' then

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b101

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b101
D13-4124 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXPFGCTL_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FIEN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXPFGCTL_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 ERXPFGCTL_EL1 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4125
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
D13.7.13 ERXPFGF_EL1, Selected Pseudo-fault Generation Feature register

The ERXPFGF_EL1 characteristics are:

Purpose

Accesses ERR<n>PFGF for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to
ERXPFGF_EL1 are UNDEFINED.

Attributes

ERXPFGF_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXPFGF_EL1 accesses ERR<n>PFGF, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXPFGF_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXPFGF_EL1 is RAZ.

• Direct reads of ERXPFGF_EL1 are NOPs.

• Direct reads of ERXPFGF_EL1 are UNDEFINED.

If ERRSELR_EL1.SEL selects an error record owned by a node that does not implement the Common Fault
Injection Model Extension, then one of the following occurs:

• ERXPFGF_EL1 is RAZ.

• Direct reads of ERXPFGF_EL1 are NOPs.

• Direct reads of ERXPFGF_EL1 are UNDEFINED.

Note

A node does not implement the Common Fault Injection Model Extension if ERR<n>FR.INJ reads as 0b00. <q> is
the index of the first error record owned by the same node as error record <n>, where <n> is the value in
ERRSELR_EL1.SEL. If the node owns a single record, then q = n.

If ERRSELR_EL1.SEL is not the index of the first error record owned by a node, then ERR<n>PFGF is not present,
meaning reads of ERXPFGF_EL1 are RES0.

ERR<n>PFGF

63 32

ERR<n>PFGF

31 0
D13-4126 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
ERR<n>PFGF describes additional constraints that also apply when ERR<n>PFGF is accessed through
ERXPFGF_EL1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ERXPFGF_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FIEN == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.FIEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ERXPFGF_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXPFGF_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FIEN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXPFGF_EL1;
elsif PSTATE.EL == EL3 then
 return ERXPFGF_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4127
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
D13.7.14 ERXSTATUS_EL1, Selected Error Record Primary Status Register

The ERXSTATUS_EL1 characteristics are:

Purpose

Accesses ERR<n>STATUS for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch64 System register ERXSTATUS_EL1 bits [31:0] are architecturally mapped to AArch32
System register ERXSTATUS[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXSTATUS_EL1 are UNDEFINED.

Attributes

ERXSTATUS_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXSTATUS_EL1 accesses ERR<n>STATUS, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXSTATUS_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXSTATUS_EL1 is RAZ/WI.

• Direct reads and writes of ERXSTATUS_EL1 are NOPs.

• Direct reads and writes of ERXSTATUS_EL1 are UNDEFINED.

ERR<n>STATUS describes additional constraints that also apply when ERR<n>STATUS is accessed through
ERXSTATUS_EL1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ERXSTATUS_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

ERR<n>STATUS

63 32

ERR<n>STATUS

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b010
D13-4128 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ERXSTATUS_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXSTATUS_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return ERXSTATUS_EL1;
elsif PSTATE.EL == EL3 then
 return ERXSTATUS_EL1;

MSR ERXSTATUS_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ERXSTATUS_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXSTATUS_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXSTATUS_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4129
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
elsif PSTATE.EL == EL3 then
 ERXSTATUS_EL1 = X[t];

D13-4130 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
D13.7.15 VDISR_EL2, Virtual Deferred Interrupt Status Register

The VDISR_EL2 characteristics are:

Purpose

Records that a virtual SError interrupt has been consumed by an ESB instruction executed at EL1.

An indirect write to VDISR_EL2 made by an ESB instruction does not require an explicit
synchronization operation for the value written to be observed by a direct read of DISR_EL1 or
DISR occurring in program order after the ESB instruction.

Configurations

AArch64 System register VDISR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register VDISR[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
VDISR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VDISR_EL2 is a 64-bit register.

Field descriptions

When EL1 is using AArch64:

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError interrupt.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:25]

Reserved, RES0.

IDS, bit [24]

The value copied from VSESR_EL2.IDS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [23:0]

The value copied from VSESR_EL2.ISS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

A

31

RES0

30 25 24

ISS

23 0

IDS
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4131
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
When EL1 is using AArch32 and VDISR_EL2.LPAE == 0:

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError interrupt.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

The value copied from VSESR_EL2.AET.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

The value copied from VSESR_EL2.ExT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [11]

Reserved, RES0.

FS, bits [10, 3:0]

Fault status code. Set to 0b10110 when an ESB instruction defers a virtual SError interrupt.

0b10110 Asynchronous SError interrupt.

All other values are reserved.

The FS field is split as follows:

• FS[4] is VDISR_EL2[10].

• FS[3:0] is VDISR_EL2[3:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

Format.

RES0

63 32

A

31

RES0

30 16

AET

15 14 13 12 11 10 9

RES0

8 4

FS[3:0]

3 0

RES0
ExT

LPAE
FS[4]

RES0
D13-4132 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
Set to TTBCR.EAE when an ESB instruction defers a virtual SError interrupt.

0b0 Using the Short-descriptor translation table format.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:4]

Reserved, RES0.

When EL1 is using AArch32 and VDISR_EL2.LPAE == 1:

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError interrupt.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

The value copied from VSESR_EL2.AET.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

The value copied from VSESR_EL2.ExT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

LPAE, bit [9]

Format.

Set to TTBCR.EAE when an ESB instruction defers a virtual SError interrupt.

0b1 Using the Long-descriptor translation table format.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

A

31

RES0

30 16

AET

15 14 13 12

RES0

11 10 9

RES0

8 6

STATUS

5 0

RES0 LPAE
ExT
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4133
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault status code. Set to 0b010001 when an ESB instruction defers a virtual SError interrupt.

0b010001 Asynchronous SError interrupt.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VDISR_EL2

An indirect write to VDISR_EL2 made by an ESB instruction does not require an explicit synchronization operation
for the value that is written to be observed by a direct read of DISR_EL1 or DISR occurring in program order after
the ESB instruction.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VDISR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x500];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return VDISR_EL2;
elsif PSTATE.EL == EL3 then
 return VDISR_EL2;

MSR VDISR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x500] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VDISR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b0001 0b001
D13-4134 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
elsif PSTATE.EL == EL3 then
 VDISR_EL2 = X[t];

MRS <Xt>, DISR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.AMO == '1' then
 return VDISR_EL2;
 elsif HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then
 return Zeros();
 else
 return DISR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then
 return Zeros();
 else
 return DISR_EL1;
elsif PSTATE.EL == EL3 then
 return DISR_EL1;

MSR DISR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.AMO == '1' then
 VDISR_EL2 = X[t];
 elsif HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then
 //no operation
 else
 DISR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then
 //no operation
 else
 DISR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 DISR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0001 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4135
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
D13.7.16 VSESR_EL2, Virtual SError Exception Syndrome Register

The VSESR_EL2 characteristics are:

Purpose

Provides the syndrome value reported to software on taking a virtual SError interrupt exception to
EL1, or on executing an ESB instruction at EL1.

When the virtual SError interrupt injected using HCR_EL2.VSE is taken to EL1 using AArch64,
then the syndrome value is reported in ESR_EL1.

When the virtual SError interrupt injected using HCR_EL2.VSE is taken to EL1 using AArch32,
then the syndrome value is reported in DFSR.{AET, ExT} and the remainder of DFSR is set as
defined by VMSAv8-32. For more information, see Chapter G5 The AArch32 Virtual Memory
System Architecture.

When the virtual SError interrupt injected using HCR_EL2.VSE is deferred by an ESB instruction,
then the syndrome value is written to VDISR_EL2.

Configurations

AArch64 System register VSESR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register VDFSR[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
VSESR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VSESR_EL2 is a 64-bit register.

Field descriptions

When EL1 is using AArch32:

Bits [63:16]

Reserved, RES0.

AET, bits [15:14]

When a virtual SError interrupt is taken to EL1 using AArch32, DFSR[15:4] is set to
VSESR_EL2.AET.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR_EL2[15:4] is set to
VSESR_EL2.AET.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

RES0

63 32

RES0

31 16

AET

15 14 13 12

RES0

11 0

RES0 ExT
D13-4136 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.7 RAS registers
ExT, bit [12]

When a virtual SError interrupt is taken to EL1 using AArch32, DFSR[12] is set to
VSESR_EL2.ExT.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR_EL2[12] is set to
VSESR_EL2.ExT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:0]

Reserved, RES0.

When EL1 is using AArch64:

Bits [63:25]

Reserved, RES0.

IDS, bit [24]

When a virtual SError interrupt is taken to EL1 using AArch64, ESR_EL1[24] is set to
VSESR_EL2.IDS.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR_EL2[24] is set to
VSESR_EL2.IDS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [23:0]

When a virtual SError interrupt is taken to EL1 using AArch64, ESR_EL1[23:0] is set to
VSESR_EL2.ISS.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR_EL2[23:0] is set to
VSESR_EL2.ISS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VSESR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VSESR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

RES0

63 32

RES0

31 25 24

ISS

23 0

IDS

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0010 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4137
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.7 RAS registers
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x508];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return VSESR_EL2;
elsif PSTATE.EL == EL3 then
 return VSESR_EL2;

MSR VSESR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x508] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VSESR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 VSESR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0010 0b011
D13-4138 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8 Generic Timer registers

This section lists the Generic Timer registers in AArch64.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4139
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.1 CNTFRQ_EL0, Counter-timer Frequency register

The CNTFRQ_EL0 characteristics are:

Purpose

This register is provided so that software can discover the frequency of the system counter. It must
be programmed with this value as part of system initialization. The value of the register is not
interpreted by hardware.

Configurations

AArch64 System register CNTFRQ_EL0 bits [31:0] are architecturally mapped to AArch32 System
register CNTFRQ[31:0].

Attributes

CNTFRQ_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Clock frequency. Indicates the system counter clock frequency, in Hz.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTFRQ_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTFRQ_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.<EL0PCTEN,EL0VCTEN> == '00' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.<EL0PCTEN,EL0VCTEN> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CNTFRQ_EL0;
elsif PSTATE.EL == EL1 then
 return CNTFRQ_EL0;
elsif PSTATE.EL == EL2 then

RES0

63 32

Clock frequency

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0000 0b000
D13-4140 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 return CNTFRQ_EL0;
elsif PSTATE.EL == EL3 then
 return CNTFRQ_EL0;

MSR CNTFRQ_EL0, <Xt>

if IsHighestEL(PSTATE.EL) then
 CNTFRQ_EL0 = X[t];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4141
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.2 CNTHCTL_EL2, Counter-timer Hypervisor Control register

The CNTHCTL_EL2 characteristics are:

Purpose

Controls the generation of an event stream from the physical counter, and access from EL1 to the
physical counter and the EL1 physical timer.

Configurations

AArch64 System register CNTHCTL_EL2 bits [31:0] are architecturally mapped to AArch32
System register CNTHCTL[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

CNTHCTL_EL2 is a 64-bit register.

Field descriptions

When FEAT_VHE is implemented and HCR_EL2.E2H == 1:

Bits [63:18]

Reserved, RES0.

EVNTIS, bit [17]

When FEAT_ECV is implemented:

EVNTIS

Controls the scale of the generation of the event stream.

0b0 The CNTHCTL_EL2.EVNTI field applies to CNTPCT_EL0[15:0].

0b1 The CNTHCTL_EL2.EVNTI field applies to CNTPCT_EL0[23:8].

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1NVVCT, bit [16]

When FEAT_ECV is implemented:

EL1NVVCT

RES0

63 32

RES0

31 18 17 16 15 14 13 12 11 10 9 8

EVNTI

7 4 3 2 1 0

EVNTIS
EL1NVVCT

EL1NVPCT
EL1TVCT

EL1TVT
ECV

EL1PTEN

EL0PCTEN
EL0VCTEN

EVNTEN
EVNTDIR

EL0VTEN
EL0PTEN

EL1PCTEN
D13-4142 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
Traps EL1 accesses to the specified EL1 virtual timer registers using the EL02 descriptors to EL2,
when EL2 is enabled for the current Security state.

0b0 This control does not cause any instructions to be trapped.

0b1 If ((HCR_EL2.E2H==1 && HCR_EL2.TGE==1) || HCR_EL2.NV2==0 ||
HCR_EL2.NV1==1 || HCR_EL2.NV==0), this control does not cause any instructions
to be trapped.

If ((HCR_EL2.E2H==0 || HCR_EL2.TGE==0) && HCR_EL2.NV2==1 &&
HCR_EL2.NV1==0 && HCR_EL2.NV==1), then EL1 accesses to CNTV_CTL_EL02
and CNTV_CVAL_EL02 are trapped to EL2.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the
purpose of a direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1NVPCT, bit [15]

When FEAT_ECV is implemented:

EL1NVPCT

Traps EL1 accesses to the specified EL1 physical timer registers using the EL02 descriptors to EL2,
when EL2 is enabled for the current Security state.

0b0 This control does not cause any instructions to be trapped.

0b1 If ((HCR_EL2.E2H==1 && HCR_EL2.TGE==1) || HCR_EL2.NV2==0 ||
HCR_EL2.NV1==1 || HCR_EL2.NV==0), this control does not cause any instructions
to be trapped.

If (HCR_EL2.E2H==0 || HCR_EL2.TGE==0) && HCR_EL2.NV2==1 &&
HCR_EL2.NV1==0 && HCR_EL2.NV==1, then EL1 accesses to CNTP_CTL_EL02
and CNTP_CVAL_EL02, are trapped to EL2.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the
purpose of a direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1TVCT, bit [14]

When FEAT_ECV is implemented:

EL1TVCT

Traps EL0 and EL1 accesses to the EL1 virtual counter registers to EL2, when EL2 is enabled for
the current Security state.

0b0 This control does not cause any instructions to be trapped.

0b1 If HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions to be
trapped.

If HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, then:

• In AArch64 state, traps EL0 and EL1 accesses to CNTVCT_EL0 to EL2, unless
they are trapped by CNTKCTL_EL1.EL0VCTEN.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4143
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
• In AArch32 state, traps EL0 and EL1 accesses to CNTVCT to EL2, unless they
are trapped by CNTKCTL_EL1.EL0VCTEN or CNTKCTL.PL0VCTEN.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the
purpose of a direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1TVT, bit [13]

When FEAT_ECV is implemented:

EL1TVT

Traps EL0 and EL1 accesses to the EL1 virtual timer registers to EL2, when EL2 is enabled for the
current Security state.

0b0 This control does not cause any instructions to be trapped.

0b1 If HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions to be
trapped.

If HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, then:

• In AArch64 state, traps EL0 and EL1 accesses to CNTV_CTL_EL0,
CNTV_CVAL_EL0, and CNTV_TVAL_EL0 to EL2, unless they are trapped by
CNTKCTL_EL1.EL0VTEN.

• In AArch32 state, traps EL0 and EL1 accesses to CNTV_CTL, CNTV_CVAL,
and CNTV_TVAL to EL2, unless they are trapped by
CNTKCTL_EL1.EL0VTEN or CNTKCTL.PL0VTEN.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the
purpose of a direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ECV, bit [12]

When FEAT_ECV is implemented:

ECV

Enables the Enhanced Counter Virtualization functionality registers.

0b0 Enhanced Counter Virtualization functionality is disabled.

0b1 When HCR_EL2.{E2H, TGE} == {1, 1} or SCR_EL3.{NS, EEL2} == {0, 0}, then
Enhanced Counter Virtualization functionality is disabled.

When SCR_EL3.NS or SCR_EL3.EEL2 are 1, and HCR_EL2.E2H or HCR_EL2.TGE
are 0, then Enhanced Counter Virtualziation functionality is enabled when EL2 is
enabled for the current Security state. This means that:

• An MRS to CNTPCT_EL0 from either EL0 or EL1 that is not trapped will return
the value (PCount<63:0> - CNTPOFF_EL2<63:0>).
D13-4144 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
• The EL1 physical timer interrupt is triggered when ((PCount<63:0> -
CNTPOFF_EL2<63:0>) - PCVal<63:0>) is greater than or equal to 0.
PCount<63:0> is the physical count returned when CNTPCT_EL0 is read from
EL2 or EL3. PCVal<63:0> is the EL1 physical timer compare value for this timer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1PTEN, bit [11]

When HCR_EL2.TGE is 0, traps EL0 and EL1 accesses to the E1 physical timer registers to EL2
when EL2 is enabled in the current Security state.

0b0 From AArch64 state: EL0 and EL1 accesses to the CNTP_CTL_EL0,
CNTP_CVAL_EL0, and CNTP_TVAL_EL0 are trapped to EL2 when EL2 is enabled
in the current Security state, unless they are trapped by CNTKCTL_EL1.EL0PTEN.

From AArch32 state: EL0 and EL1 accesses to the CNTP_CTL, CNTP_CVAL, and
CNTP_TVAL are trapped to EL2 when EL2 is enabled in the current Security state,
unless they are trapped by CNTKCTL_EL1.EL0PTEN or CNTKCTL.PL0PTEN.

0b1 This control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL1PCTEN, bit [10]

When HCR_EL2.TGE is 0, traps EL0 and EL1 accesses to the EL1 physical counter register to EL2
when EL2 is enabled in the current Security state, as follows:

• In AArch64 state, accesses to CNTPCT_EL0 are trapped to EL2, reported using EC
syndrome value 0x18.

• In AArch32 state, MRRC or MCRR accesses to CNTPCT are trapped to EL2, reported using
EC syndrome value 0x04.

0b0 From AArch64 state: EL0 and EL1 accesses to the CNTPCT_EL0 are trapped to EL2
when EL2 is enabled in the current Security state, unless they are trapped by
CNTKCTL_EL1.EL0PCTEN.

From AArch32 state: EL0 and EL1 accesses to the CNTPCT are trapped to EL2 when
EL2 is enabled in the current Security state, unless they are trapped by
CNTKCTL_EL1.EL0PCTEN or CNTKCTL.PL0PCTEN.

0b1 This control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0PTEN, bit [9]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the physical timer registers to EL2.

0b0 EL0 using AArch64: EL0 accesses to the CNTP_CTL_EL0, CNTP_CVAL_EL0, and
CNTP_TVAL_EL0 registers are trapped to EL2.

EL0 using AArch32: EL0 accesses to the CNTP_CTL, CNTP_CVAL and
CNTP_TVAL registers are trapped to EL2.

0b1 This control does not cause any instructions to be trapped.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4145
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0VTEN, bit [8]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the virtual timer registers to EL2.

0b0 EL0 using AArch64: EL0 accesses to the CNTV_CTL_EL0, CNTV_CVAL_EL0, and
CNTV_TVAL_EL0 registers are trapped to EL2.

EL0 using AArch32: EL0 accesses to the CNTV_CTL, CNTV_CVAL, and
CNTV_TVAL registers are trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTI, bits [7:4]

Selects which bit of the counter register CNTPCT_EL0 is the trigger for the event stream generated
from that counter, when that stream is enabled.

If FEAT_ECV is implemented, and CNTHCTL_EL2.EVNTIS is 1, this field selects a trigger bit in
the range 8 to 23 of the counter register CNTPCT_EL0.

Otherwise, this field selects a trigger bit in the range 0 to 15 of the counter register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTPCT_EL0 trigger bit, defined by EVNTI,
generates an event when the event stream is enabled.

0b0 A 0 to 1 transition of the trigger bit triggers an event.

0b1 A 1 to 0 transition of the trigger bit triggers an event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTPCT_EL0.

0b0 Disables the event stream.

0b1 Enables the event stream.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0VCTEN, bit [1]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the frequency register and virtual counter register
to EL2.

0b0 EL0 using AArch64: EL0 accesses to the CNTVCT_EL0 are trapped to EL2.

EL0 using AArch64: EL0 accesses to the CNTFRQ_EL0 register are trapped to EL2, if
CNTHCTL_EL2.EL0PCTEN is also 0.

EL0 using AArch32: EL0 accesses to the CNTVCT are trapped to EL2.

EL0 using AArch32: EL0 accesses to the CNTFRQ register are trapped to EL2, if
CNTHCTL.EL0PCTEN is also 0.

0b1 This control does not cause any instructions to be trapped.
D13-4146 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0PCTEN, bit [0]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the frequency register and physical counter
register to EL2.

0b0 EL0 using AArch64: EL0 accesses to the CNTPCT_EL0 are trapped to EL2.

EL0 using AArch64: EL0 accesses to the CNTFRQ_EL0 register are trapped to EL2, if
CNTHCTL_EL2.EL0VCTEN is also 0.

EL0 using AArch32: EL0 accesses to the CNTPCT are trapped to EL2.

EL0 using AArch32: EL0 accesses to the CNTFRQ and register are trapped to EL2, if
CNTHCTL_EL2.EL0VCTEN is also 0.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

This format applies in all Armv8.0 implementations, and it also contains a description of the behavior when EL3 is
implemented and EL2 is not implemented.

Bits [63:18]

Reserved, RES0.

EVNTIS, bit [17]

When FEAT_ECV is implemented:

EVNTIS

Controls the scale of the generation of the event stream.

0b0 The CNTHCTL_EL2.EVNTI field applies to CNTPCT_EL0[15:0].

0b1 The CNTHCTL_EL2.EVNTI field applies to CNTPCT_EL0[23:8].

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1NVVCT, bit [16]

When FEAT_ECV is implemented:

EL1NVVCT

RES0

63 32

RES0

31 18 17 16 15 14 13 12

RES0

11 8

EVNTI

7 4 3 2 1 0

EVNTIS
EL1NVVCT

EL1NVPCT

ECV
EL1TVT

EL1TVCT

EVNTDIR
EVNTEN

EL1PCTEN
EL1PCEN
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4147
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
Traps EL1 accesses to the specified EL1 virtual timer registers using the EL02 descriptors to EL2,
when EL2 is enabled for the current Security state.

0b0 This control does not cause any instructions to be trapped.

0b1 If ((HCR_EL2.E2H==1 && HCR_EL2.TGE==1) || HCR_EL2.NV2==0 ||
HCR_EL2.NV1==1 || HCR_EL2.NV==0), this control does not cause any instructions
to be trapped.

If ((HCR_EL2.E2H==0 || HCR_EL2.TGE==0) && HCR_EL2.NV2==1 &&
HCR_EL2.NV1==0 && HCR_EL2.NV==1), then EL1 accesses to CNTV_CTL_EL02
and CNTV_CVAL_EL02 are trapped to EL2.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the
purpose of a direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1NVPCT, bit [15]

When FEAT_ECV is implemented:

EL1NVPCT

Traps EL1 accesses to the specified EL1 physical timer registers using the EL02 descriptors to EL2,
when EL2 is enabled for the current Security state.

0b0 This control does not cause any instructions to be trapped.

0b1 If ((HCR_EL2.E2H==1 && HCR_EL2.TGE==1) || HCR_EL2.NV2==0 ||
HCR_EL2.NV1==1 || HCR_EL2.NV==0), this control does not cause any instructions
to be trapped.

If (HCR_EL2.E2H==0 || HCR_EL2.TGE==0) && HCR_EL2.NV2==1 &&
HCR_EL2.NV1==0 && HCR_EL2.NV==1, then EL1 accesses to CNTP_CTL_EL02
and CNTP_CVAL_EL02, are trapped to EL2.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the
purpose of a direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1TVCT, bit [14]

When FEAT_ECV is implemented:

EL1TVCT

Traps EL0 and EL1 accesses to the EL1 virtual counter registers to EL2, when EL2 is enabled for
the current Security state.

0b0 This control does not cause any instructions to be trapped.

0b1 If HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions to be
trapped.

If HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, then:
D13-4148 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
In AArch64 state, traps EL0 and EL1 accesses to CNTVCT_EL0 to EL2, unless they
are trapped by CNTKCTL_EL1.EL0VCTEN. In AArch32 state, traps EL0 and EL1
accesses to CNTVCT to EL2, unless they are trapped by CNTKCTL_EL1.EL0VCTEN
or CNTKCTL.PL0VCTEN.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the
purpose of a direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1TVT, bit [13]

When FEAT_ECV is implemented:

EL1TVT

Traps EL0 and EL1 accesses to the EL1 virtual timer registers to EL2, when EL2 is enabled for the
current Security state.

0b0 This control does not cause any instructions to be trapped.

0b1 If HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions to be
trapped.

If HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, then:

• In AArch64 state, traps EL0 and EL1 accesses to CNTV_CTL_EL0,
CNTV_CVAL_EL0, and CNTV_TVAL_EL0 to EL2, unless they are trapped by
CNTKCTL_EL1.EL0VTEN.

• In AArch32 state, traps EL0 and EL1 accesses to CNTV_CTL, CNTV_CVAL,
and CNTV_TVAL to EL2, unless they are trapped by
CNTKCTL_EL1.EL0VTEN or CNTKCTL.PL0VTEN.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the
purpose of a direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ECV, bit [12]

When FEAT_ECV is implemented:

ECV

Enables the Enhanced Counter Virtualization functionality registers.

0b0 Enhanced Counter Virtualization functionality is disabled.

0b1 When HCR_EL2.{E2H, TGE} == {1, 1} or SCR_EL3.{NS, EEL2} == {0, 0}, then
Enhanced Counter Virtualization functionality is disabled.

When SCR_EL3.NS or SCR_EL3.EEL2 are 1, and HCR_EL2.E2H or HCR_EL2.TGE
are 0, then Enhanced Counter Virtualziation functionality is enabled when EL2 is
enabled for the current Security state. This means that:

• An MRS to CNTPCT_EL0 from either EL0 or EL1 that is not trapped will return
the value (PCount<63:0> - CNTPOFF_EL2<63:0>).
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4149
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
• The EL1 physical timer interrupt is triggered when ((PCount<63:0> -
CNTPOFF_EL2<63:0>) - PCVal<63:0>) is greater than or equal to 0. PCount is
the physical count returned when CNTPCT_EL0 is read from EL2 or EL3.
PCVal<63:0> is the EL1 physical timer compare value for this timer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [11:8]

Reserved, RES0.

EVNTI, bits [7:4]

Selects which bit of the counter register CNTPCT_EL0 is the trigger for the event stream generated
from that counter, when that stream is enabled.

If FEAT_ECV is implemented, and CNTHCTL_EL2.EVNTIS is 1, this field selects a trigger bit in
the range 8 to 23 of the counter register CNTPCT_EL0.

Otherwise, this field selects a trigger bit in the range 0 to 15 of the counter register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTPCT_EL0 trigger bit, defined by EVNTI,
generates an event when the event stream is enabled.

0b0 A 0 to 1 transition of the trigger bit triggers an event.

0b1 A 1 to 0 transition of the trigger bit triggers an event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTPCT_EL0.

0b0 Disables the event stream.

0b1 Enables the event stream.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL1PCEN, bit [1]

Traps EL0 and EL1 accesses to the EL1 physical timer registers to EL2 when EL2 is enabled in the
current Security state, as follows:

• In AArch64 state, accesses to CNTP_CTL_EL0, CNTP_CVAL_EL0, CNTP_TVAL_EL0
are trapped to EL2, reported using EC syndrome value 0x18.

• In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2
reported using EC syndrome value 0x3 and MRRC and MCRR accesses are trapped to EL2,
reported using EC syndrome value 0x04:

— CNTP_CTL, CNTP_CVAL, CNTP_TVAL.

0b0 From AArch64 state: EL0 and EL1 accesses to the CNTP_CTL_EL0,
CNTP_CVAL_EL0, and CNTP_TVAL_EL0 are trapped to EL2 when EL2 is enabled
in the current Security state, unless they are trapped by CNTKCTL_EL1.EL0PTEN.
D13-4150 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
From AArch32 state: EL0 and EL1 accesses to the CNTP_CTL, CNTP_CVAL, and
CNTP_TVAL are trapped to EL2 when EL2 is enabled in the current Security state,
unless they are trapped by CNTKCTL_EL1.EL0PTEN or CNTKCTL.PL0PTEN.

0b1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the
purpose of a direct read.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL1PCTEN, bit [0]

Traps EL0 and EL1 accesses to the EL1 physical counter register to EL2 when EL2 is enabled in
the current Security state, as follows:

• In AArch64 state, accesses to CNTPCT_EL0 are trapped to EL2, reported using EC
syndrome value 0x18.

• In AArch32 state, MRRC or MCRR accesses to CNTPCT are trapped to EL2, reported using
EC syndrome value 0x04.

0b0 From AArch64 state: EL0 and EL1 accesses to the CNTPCT_EL0 are trapped to EL2
when EL2 is enabled in the current Security state, unless they are trapped by
CNTKCTL_EL1.EL0PCTEN.

From AArch32 state: EL0 and EL1 accesses to the CNTPCT are trapped to EL2 when
EL2 is enabled in the current Security state, unless they are trapped by
CNTKCTL_EL1.EL0PCTEN or CNTKCTL.PL0PCTEN.

0b1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the
purpose of a direct read.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHCTL_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic
CNTHCTL_EL2 or CNTKCTL_EL1 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHCTL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return CNTHCTL_EL2;
elsif PSTATE.EL == EL3 then
 return CNTHCTL_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4151
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
MSR CNTHCTL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHCTL_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 CNTHCTL_EL2 = X[t];

MRS <Xt>, CNTKCTL_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 return CNTKCTL_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return CNTHCTL_EL2;
 else
 return CNTKCTL_EL1;
elsif PSTATE.EL == EL3 then
 return CNTKCTL_EL1;

MSR CNTKCTL_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 CNTKCTL_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 CNTHCTL_EL2 = X[t];
 else
 CNTKCTL_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 CNTKCTL_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0001 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1110 0b0001 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1110 0b0001 0b000
D13-4152 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.3 CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register

The CNTHP_CTL_EL2 characteristics are:

Purpose

Control register for the EL2 physical timer.

Configurations

AArch64 System register CNTHP_CTL_EL2 bits [31:0] are architecturally mapped to AArch32
System register CNTHP_CTL[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHP_CTL_EL2 is a 64-bit register.

Field descriptions

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

RES0

63 32

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4153
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTHP_TVAL_EL2 continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHP_CTL_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic
CNTHP_CTL_EL2 or CNTP_CTL_EL0 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHP_CTL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return CNTHP_CTL_EL2;
elsif PSTATE.EL == EL3 then
 return CNTHP_CTL_EL2;

MSR CNTHP_CTL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHP_CTL_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 CNTHP_CTL_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0010 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0010 0b001
D13-4154 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
MRS <Xt>, CNTP_CTL_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_CTL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_CTL_EL2;
 else
 return CNTP_CTL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x180];
 else
 return CNTP_CTL_EL0;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_CTL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHP_CTL_EL2;
 else
 return CNTP_CTL_EL0;
elsif PSTATE.EL == EL3 then
 return CNTP_CTL_EL0;

MSR CNTP_CTL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b001

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4155
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CTL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = X[t];
 else
 CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x180] = X[t];
 else
 CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CTL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = X[t];
 else
 CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 CNTP_CTL_EL0 = X[t];

D13-4156 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.4 CNTHP_CVAL_EL2, Counter-timer Physical Timer CompareValue register (EL2)

The CNTHP_CVAL_EL2 characteristics are:

Purpose

Holds the compare value for the EL2 physical timer.

Configurations

AArch64 System register CNTHP_CVAL_EL2 bits [63:0] are architecturally mapped to AArch32
System register CNTHP_CVAL[63:0].

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHP_CVAL_EL2 is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHP_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 -
CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit
upcounter timer. When the timer condition is met:

• CNTHP_CTL_EL2.ISTATUS is set to 1.

• If CNTHP_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHP_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0
continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHP_CVAL_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic
CNTHP_CVAL_EL2 or CNTP_CVAL_EL0 are not guaranteed to be ordered with respect to accesses using the
other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

CompareValue

63 32

CompareValue

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4157
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
MRS <Xt>, CNTHP_CVAL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return CNTHP_CVAL_EL2;
elsif PSTATE.EL == EL3 then
 return CNTHP_CVAL_EL2;

MSR CNTHP_CVAL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHP_CVAL_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 CNTHP_CVAL_EL2 = X[t];

MRS <Xt>, CNTP_CVAL_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_CVAL_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0010 0b010

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0010 0b010

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b010
D13-4158 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_CVAL_EL2;
 else
 return CNTP_CVAL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x178];
 else
 return CNTP_CVAL_EL0;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_CVAL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHP_CVAL_EL2;
 else
 return CNTP_CVAL_EL0;
elsif PSTATE.EL == EL3 then
 return CNTP_CVAL_EL0;

MSR CNTP_CVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = X[t];
 else
 CNTP_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x178] = X[t];
 else
 CNTP_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = X[t];
 else
 CNTP_CVAL_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4159
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
elsif PSTATE.EL == EL3 then
 CNTP_CVAL_EL0 = X[t];

D13-4160 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.5 CNTHP_TVAL_EL2, Counter-timer Physical Timer TimerValue register (EL2)

The CNTHP_TVAL_EL2 characteristics are:

Purpose

Holds the timer value for the EL2 physical timer.

Configurations

AArch64 System register CNTHP_TVAL_EL2 bits [31:0] are architecturally mapped to AArch32
System register CNTHP_TVAL[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHP_TVAL_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHP_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.

• If CNTHP_CTL_EL2.ENABLE is 1, the value returned is (CNTHP_CVAL_EL2 -
CNTPCT_EL0).

On a write of this register, CNTHP_CVAL_EL2 is set to (CNTPCT_EL0 + TimerValue), where
TimerValue is treated as a signed 32-bit integer.

When CNTHP_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 -
CNTHP_CVAL_EL2) is greater than or equal to zero. This means that TimerValue acts like a 32-bit
downcounter timer. When the timer condition is met:

• CNTHP_CTL_EL2.ISTATUS is set to 1.

• If CNTHP_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHP_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0
continues to count, so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHP_TVAL_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic
CNTHP_TVAL_EL2 or CNTP_TVAL_EL0 are not guaranteed to be ordered with respect to accesses using the
other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

TimerValue

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4161
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
MRS <Xt>, CNTHP_TVAL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return CNTHP_TVAL_EL2;
elsif PSTATE.EL == EL3 then
 return CNTHP_TVAL_EL2;

MSR CNTHP_TVAL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHP_TVAL_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 CNTHP_TVAL_EL2 = X[t];

MRS <Xt>, CNTP_TVAL_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_TVAL_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b000
D13-4162 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_TVAL_EL2;
 else
 return CNTP_TVAL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CNTP_TVAL_EL0;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_TVAL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHP_TVAL_EL2;
 else
 return CNTP_TVAL_EL0;
elsif PSTATE.EL == EL3 then
 return CNTP_TVAL_EL0;

MSR CNTP_TVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_TVAL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_TVAL_EL2 = X[t];
 else
 CNTP_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CNTP_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_TVAL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHP_TVAL_EL2 = X[t];
 else
 CNTP_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 CNTP_TVAL_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4163
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.6 CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2)

The CNTHPS_CTL_EL2 characteristics are:

Purpose

Control register for the Secure EL2 physical timer.

Configurations

AArch64 System register CNTHPS_CTL_EL2 bits [31:0] are architecturally mapped to AArch32
System register CNTHPS_CTL[31:0].

This register is present only when FEAT_SEL2 is implemented. Otherwise, direct accesses to
CNTHPS_CTL_EL2 are UNDEFINED.

Attributes

CNTHPS_CTL_EL2 is a 64-bit register.

Field descriptions

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the CNTHPS_CTL_EL2.ENABLE bit is 1, ISTATUS indicates whether the timer
condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS
is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the CNTHPS_CTL_EL2.ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
D13-4164 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTHPS_TVAL_EL2 continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHPS_CTL_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHPS_CTL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then
 UNDEFINED;
 else
 return CNTHPS_CTL_EL2;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 return CNTHPS_CTL_EL2;

MSR CNTHPS_CTL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0101 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0101 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4165
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then
 UNDEFINED;
 else
 CNTHPS_CTL_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 CNTHPS_CTL_EL2 = X[t];

MRS <Xt>, CNTP_CTL_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_CTL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_CTL_EL2;
 else
 return CNTP_CTL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x180];
 else
 return CNTP_CTL_EL0;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_CTL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHP_CTL_EL2;
 else
 return CNTP_CTL_EL0;
elsif PSTATE.EL == EL3 then
 return CNTP_CTL_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b001
D13-4166 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
MSR CNTP_CTL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CTL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = X[t];
 else
 CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x180] = X[t];
 else
 CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CTL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = X[t];
 else
 CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 CNTP_CTL_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4167
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.7 CNTHPS_CVAL_EL2, Counter-timer Secure Physical Timer CompareValue register (EL2)

The CNTHPS_CVAL_EL2 characteristics are:

Purpose

Holds the compare value for the Secure EL2 physical timer.

Configurations

AArch64 System register CNTHPS_CVAL_EL2 bits [31:0] are architecturally mapped to AArch32
System register CNTHPS_CVAL[31:0].

This register is present only when EL2 is implemented and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHPS_CVAL_EL2 are UNDEFINED.

Attributes

CNTHPS_CVAL_EL2 is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHPS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 -
CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit
upcounter timer. When the timer condition is met:

• CNTHPS_CTL_EL2.ISTATUS is set to 1.

• If CNTHPS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHPS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0
continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHPS_CVAL_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHPS_CVAL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

CompareValue

63 32

CompareValue

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0101 0b010
D13-4168 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 if !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then
 UNDEFINED;
 else
 return CNTHPS_CVAL_EL2;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 return CNTHPS_CVAL_EL2;

MSR CNTHPS_CVAL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then
 UNDEFINED;
 else
 CNTHPS_CVAL_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 CNTHPS_CVAL_EL2 = X[t];

MRS <Xt>, CNTP_CVAL_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0101 0b010

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4169
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_CVAL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_CVAL_EL2;
 else
 return CNTP_CVAL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x178];
 else
 return CNTP_CVAL_EL0;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_CVAL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHP_CVAL_EL2;
 else
 return CNTP_CVAL_EL0;
elsif PSTATE.EL == EL3 then
 return CNTP_CVAL_EL0;

MSR CNTP_CVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = X[t];
 else
 CNTP_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x178] = X[t];
 else
 CNTP_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b010
D13-4170 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = X[t];
 else
 CNTP_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 CNTP_CVAL_EL0 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4171
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.8 CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2)

The CNTHPS_TVAL_EL2 characteristics are:

Purpose

Holds the timer value for the Secure EL2 physical timer.

Configurations

AArch64 System register CNTHPS_TVAL_EL2 bits [31:0] are architecturally mapped to AArch32
System register CNTHPS_TVAL[31:0].

This register is present only when EL2 is implemented and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHPS_TVAL_EL2 are UNDEFINED.

Attributes

CNTHPS_TVAL_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHPS_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.

• If CNTHPS_CTL_EL2.ENABLE is 1, the value returned is (CNTHPS_CVAL_EL2 -
CNTPCT_EL0).

On a write of this register, CNTHPS_CVAL_EL2 is set to (CNTPCT_EL0 + TimerValue), where
TimerValue is treated as a signed 32-bit integer.

When CNTHPS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 -
CNTHPS_CVAL_EL2) is greater than or equal to zero. This means that TimerValue acts like a
32-bit downcounter timer. When the timer condition is met:

• CNTHPS_CTL_EL2.ISTATUS is set to 1.

• If CNTHPS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHPS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0
continues to count, so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHPS_TVAL_EL2

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

TimerValue

31 0
D13-4172 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
MRS <Xt>, CNTHPS_TVAL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then
 UNDEFINED;
 else
 return CNTHPS_TVAL_EL2;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 return CNTHPS_TVAL_EL2;

MSR CNTHPS_TVAL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then
 UNDEFINED;
 else
 CNTHPS_TVAL_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 CNTHPS_TVAL_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0101 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0101 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4173
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
MRS <Xt>, CNTP_TVAL_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_TVAL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_TVAL_EL2;
 else
 return CNTP_TVAL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CNTP_TVAL_EL0;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_TVAL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHP_TVAL_EL2;
 else
 return CNTP_TVAL_EL0;
elsif PSTATE.EL == EL3 then
 return CNTP_TVAL_EL0;

MSR CNTP_TVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b000
D13-4174 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_TVAL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_TVAL_EL2 = X[t];
 else
 CNTP_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CNTP_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_TVAL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHP_TVAL_EL2 = X[t];
 else
 CNTP_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 CNTP_TVAL_EL0 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4175
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.9 CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)

The CNTHV_CTL_EL2 characteristics are:

Purpose

Control register for the EL2 virtual timer.

Configurations

AArch64 System register CNTHV_CTL_EL2 bits [31:0] are architecturally mapped to AArch32
System register CNTHV_CTL[31:0].

This register is present only when FEAT_VHE is implemented. Otherwise, direct accesses to
CNTHV_CTL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHV_CTL_EL2 is a 64-bit register.

Field descriptions

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
D13-4176 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTHV_TVAL_EL2 continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHV_CTL_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic
CNTHV_CTL_EL2 or CNTV_CTL_EL0 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHV_CTL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return CNTHV_CTL_EL2;
elsif PSTATE.EL == EL3 then
 return CNTHV_CTL_EL2;

MSR CNTHV_CTL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHV_CTL_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0011 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0011 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4177
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
elsif PSTATE.EL == EL3 then
 CNTHV_CTL_EL2 = X[t];

MRS <Xt>, CNTV_CTL_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_CTL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_CTL_EL2;
 else
 return CNTV_CTL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x170];
 else
 return CNTV_CTL_EL0;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_CTL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHV_CTL_EL2;
 else
 return CNTV_CTL_EL0;
elsif PSTATE.EL == EL3 then
 return CNTV_CTL_EL0;

MSR CNTV_CTL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b001

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b001
D13-4178 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CTL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = X[t];
 else
 CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x170] = X[t];
 else
 CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CTL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = X[t];
 else
 CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 CNTV_CTL_EL0 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4179
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.10 CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)

The CNTHV_CVAL_EL2 characteristics are:

Purpose

Holds the compare value for the EL2 virtual timer.

Configurations

AArch64 System register CNTHV_CVAL_EL2 bits [63:0] are architecturally mapped to AArch32
System register CNTHV_CVAL[63:0].

This register is present only when FEAT_VHE is implemented. Otherwise, direct accesses to
CNTHV_CVAL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHV_CVAL_EL2 is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL2 virtual timer CompareValue.

When CNTHV_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 -
CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit
upcounter timer. When the timer condition is met:

• CNTHV_CTL_EL2.ISTATUS is set to 1.

• If CNTHV_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHV_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0
continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHV_CVAL_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic
CNTHV_CVAL_EL2 or CNTV_CVAL_EL0 are not guaranteed to be ordered with respect to accesses using the
other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

CompareValue

63 32

CompareValue

31 0
D13-4180 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
MRS <Xt>, CNTHV_CVAL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return CNTHV_CVAL_EL2;
elsif PSTATE.EL == EL3 then
 return CNTHV_CVAL_EL2;

MSR CNTHV_CVAL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHV_CVAL_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 CNTHV_CVAL_EL2 = X[t];

MRS <Xt>, CNTV_CVAL_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_CVAL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_CVAL_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0011 0b010

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0011 0b010

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4181
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 else
 return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x168];
 else
 return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_CVAL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHV_CVAL_EL2;
 else
 return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL3 then
 return CNTV_CVAL_EL0;

MSR CNTV_CVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = X[t];
 else
 CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x168] = X[t];
 else
 CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = X[t];
 else
 CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 CNTV_CVAL_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b010
D13-4182 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.11 CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue Register (EL2)

The CNTHV_TVAL_EL2 characteristics are:

Purpose

Holds the timer value for the EL2 virtual timer.

Configurations

AArch64 System register CNTHV_TVAL_EL2 bits [31:0] are architecturally mapped to AArch32
System register CNTHV_TVAL[31:0].

This register is present only when FEAT_VHE is implemented. Otherwise, direct accesses to
CNTHV_TVAL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHV_TVAL_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHV_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.

• If CNTHV_CTL_EL2.ENABLE is 1, the value returned is (CNTHV_CVAL_EL2 -
CNTVCT_EL0).

On a write of this register, CNTHV_CVAL_EL2 is set to (CNTVCT_EL0 + TimerValue), where
TimerValue is treated as a signed 32-bit integer.

When CNTHV_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 -
CNTHV_CVAL_EL2) is greater than or equal to zero. This means that TimerValue acts like a 32-bit
downcounter timer. When the timer condition is met:

• CNTHV_CTL_EL2.ISTATUS is set to 1.

• If CNTHV_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHV_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0
continues to count, so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHV_TVAL_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic
CNTHV_TVAL_EL2 or CNTV_TVAL_EL0 are not guaranteed to be ordered with respect to accesses using the
other mnemonic.

RES0

63 32

TimerValue

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4183
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHV_TVAL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return CNTHV_TVAL_EL2;
elsif PSTATE.EL == EL3 then
 return CNTHV_TVAL_EL2;

MSR CNTHV_TVAL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHV_TVAL_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 CNTHV_TVAL_EL2 = X[t];

MRS <Xt>, CNTV_TVAL_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0011 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0011 0b000

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b000
D13-4184 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 return CNTHVS_TVAL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_TVAL_EL2;
 else
 return CNTV_TVAL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CNTV_TVAL_EL0;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_TVAL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHV_TVAL_EL2;
 else
 return CNTV_TVAL_EL0;
elsif PSTATE.EL == EL3 then
 return CNTV_TVAL_EL0;

MSR CNTV_TVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_TVAL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_TVAL_EL2 = X[t];
 else
 CNTV_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CNTV_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_TVAL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHV_TVAL_EL2 = X[t];
 else
 CNTV_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 CNTV_TVAL_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4185
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.12 CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)

The CNTHVS_CTL_EL2 characteristics are:

Purpose

Control register for the Secure EL2 virtual timer.

Configurations

AArch64 System register CNTHVS_CTL_EL2 bits [31:0] are architecturally mapped to AArch32
System register CNTHVS_CTL[31:0].

This register is present only when EL2 is implemented and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHVS_CTL_EL2 are UNDEFINED.

Attributes

CNTHVS_CTL_EL2 is a 64-bit register.

Field descriptions

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the CNTHVS_CTL_EL2.ENABLE bit is 1, ISTATUS indicates whether the
timer condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of
ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the CNTHVS_CTL_EL2.ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
D13-4186 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTHVS_TVAL_EL2 continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHVS_CTL_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHVS_CTL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then
 UNDEFINED;
 else
 return CNTHVS_CTL_EL2;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 return CNTHVS_CTL_EL2;

MSR CNTHVS_CTL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0100 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0100 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4187
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then
 UNDEFINED;
 else
 CNTHVS_CTL_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 CNTHVS_CTL_EL2 = X[t];

MRS <Xt>, CNTV_CTL_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_CTL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_CTL_EL2;
 else
 return CNTV_CTL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x170];
 else
 return CNTV_CTL_EL0;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_CTL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHV_CTL_EL2;
 else
 return CNTV_CTL_EL0;
elsif PSTATE.EL == EL3 then
 return CNTV_CTL_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b001
D13-4188 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
MSR CNTV_CTL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CTL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = X[t];
 else
 CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x170] = X[t];
 else
 CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CTL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = X[t];
 else
 CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 CNTV_CTL_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4189
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.13 CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register (EL2)

The CNTHVS_CVAL_EL2 characteristics are:

Purpose

Holds the compare value for the Secure EL2 virtual timer.

Configurations

AArch64 System register CNTHVS_CVAL_EL2 bits [63:0] are architecturally mapped to AArch32
System register CNTHVS_CVAL[63:0].

This register is present only when EL2 is implemented and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHVS_CVAL_EL2 are UNDEFINED.

Attributes

CNTHVS_CVAL_EL2 is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the Secure EL2 virtual timer CompareValue.

When CNTHVS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 -
CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit
upcounter timer. When the timer condition is met:

• CNTHVS_CTL_EL2.ISTATUS is set to 1.

• If CNTHVS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHVS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0
continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHVS_CVAL_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHVS_CVAL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

CompareValue

63 32

CompareValue

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0100 0b010
D13-4190 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 if !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then
 UNDEFINED;
 else
 return CNTHVS_CVAL_EL2;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 return CNTHVS_CVAL_EL2;

MSR CNTHVS_CVAL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then
 UNDEFINED;
 else
 CNTHVS_CVAL_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 CNTHVS_CVAL_EL2 = X[t];

MRS <Xt>, CNTV_CVAL_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0100 0b010

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4191
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_CVAL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_CVAL_EL2;
 else
 return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x168];
 else
 return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_CVAL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHV_CVAL_EL2;
 else
 return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL3 then
 return CNTV_CVAL_EL0;

MSR CNTV_CVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = X[t];
 else
 CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x168] = X[t];
 else
 CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = X[t];
 else
 CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 CNTV_CVAL_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b010
D13-4192 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.14 CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2)

The CNTHVS_TVAL_EL2 characteristics are:

Purpose

Holds the timer value for the Secure EL2 virtual timer.

Configurations

AArch64 System register CNTHVS_TVAL_EL2 bits [31:0] are architecturally mapped to AArch32
System register CNTHVS_TVAL[31:0].

This register is present only when EL2 is implemented and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHVS_TVAL_EL2 are UNDEFINED.

Attributes

CNTHVS_TVAL_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHVS_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.

• If CNTHVS_CTL_EL2.ENABLE is 1, the value returned is (CNTHVS_CVAL_EL2 -
CNTVCT_EL0).

On a write of this register, CNTHVS_CVAL_EL2 is set to (CNTVCT_EL0 + TimerValue), where
TimerValue is treated as a signed 32-bit integer.

When CNTHVS_CTL_EL2.ENABLE is 1, the timer condition is met when ((CNTVCT_EL0 -
CNTHVS_CVAL_EL2) is greater than or equal to zero. This means that TimerValue acts like a
32-bit downcounter timer. When the timer condition is met:

• CNTHVS_CTL_EL2.ISTATUS is set to 1.

• If CNTHVS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHVS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0
continues to count, so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHVS_TVAL_EL2

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

TimerValue

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4193
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
MRS <Xt>, CNTHVS_TVAL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then
 UNDEFINED;
 else
 return CNTHVS_TVAL_EL2;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 return CNTHVS_TVAL_EL2;

MSR CNTHVS_TVAL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then
 UNDEFINED;
 else
 CNTHVS_TVAL_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 CNTHVS_TVAL_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0100 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0100 0b000
D13-4194 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
MRS <Xt>, CNTV_TVAL_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_TVAL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_TVAL_EL2;
 else
 return CNTV_TVAL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CNTV_TVAL_EL0;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_TVAL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHV_TVAL_EL2;
 else
 return CNTV_TVAL_EL0;
elsif PSTATE.EL == EL3 then
 return CNTV_TVAL_EL0;

MSR CNTV_TVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_TVAL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_TVAL_EL2 = X[t];
 else
 CNTV_TVAL_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b000

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4195
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CNTV_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_TVAL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHV_TVAL_EL2 = X[t];
 else
 CNTV_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 CNTV_TVAL_EL0 = X[t];

D13-4196 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.15 CNTKCTL_EL1, Counter-timer Kernel Control register

The CNTKCTL_EL1 characteristics are:

Purpose

When FEAT_VHE is not implemented, or when HCR_EL2.{E2H, TGE} is not {1, 1}, this register
controls the generation of an event stream from the virtual counter, and access from EL0 to the
physical counter, virtual counter, EL1 physical timers, and the virtual timer.

When FEAT_VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this register does not
cause any event stream from the virtual counter to be generated, and does not control access to the
counters and timers. The access to counters and timers at EL0 is controlled by CNTHCTL_EL2.

Configurations

AArch64 System register CNTKCTL_EL1 bits [31:0] are architecturally mapped to AArch32
System register CNTKCTL[31:0].

Attributes

CNTKCTL_EL1 is a 64-bit register.

Field descriptions

Bits [63:18]

Reserved, RES0.

EVNTIS, bit [17]

When FEAT_ECV is implemented:

EVNTIS

Controls the scale of the generation of the event stream.

0b0 The CNTKCTL_EL1.EVNTI field applies to CNTVCT_EL0[15:0].

0b1 The CNTKCTL_EL1.EVNTI field applies to CNTVCT_EL0[23:8].

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [16:10]

Reserved, RES0.

RES0

63 32

RES0

31 18 17

RES0

16 10 9 8

EVNTI

7 4 3 2 1 0

EVNTIS EL0PTEN
EL0VTEN

EVNTDIR

EL0PCTEN
EL0VCTEN

EVNTEN
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4197
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
EL0PTEN, bit [9]

Traps EL0 accesses to the physical timer registers to EL1, or to EL2 when it is implemented and
enabled for the current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, the following registers are trapped, reported using EC syndrome value
0x18:

— CNTP_CTL_EL0, CNTP_CVAL_EL0, and CNTP_TVAL_EL0.

• In AArch32 state, MRC and MCR accesses to the following registers are trapped, reported
using EC syndrome value 0x03, MRRC and MCRR accesses are trapped, reported using EC
syndrome value 0x04:

— CNTP_CTL, CNTP_CVAL, CNTP_TVAL.

0b0 EL0 accesses to the physical timer registers are trapped to EL1.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not
cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0VTEN, bit [8]

Traps EL0 accesses to the virtual timer registers to EL1, or to EL2 when it is implemented and
enabled for the current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to the following registers are trapped, reported using EC
syndrome value 0x18:

— CNTV_CTL_EL0, CNTV_CVAL_EL0, and CNTV_TVAL_EL0.

• In AArch32 state, MRC and MCR accesses to the following registers are trapped and
reported using EC syndrome value 0x03, MRRC and MCRR accesses are trapped using EC
syndrome value 0x04:

— CNTV_CTL, CNTV_CVAL, and CNTV_TVAL.

0b0 EL0 accesses to the virtual timer registers are trapped.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not
cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTI, bits [7:4]

Selects which bit of the counter register CNTVCT_EL0 is the trigger for the event stream generated
from that counter, when that stream is enabled.

If FEAT_ECV is implemented, and CNTKCTL_EL1.EVNTIS is 1, this field selects a trigger bit in
the range 8 to 23 of the counter register CNTVCT_EL0.

Otherwise, this field selects a trigger bit in the range 0 to 15 of the counter register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTVCT_EL0 trigger bit, defined by EVNTI,
generates an event when the event stream is enabled.

0b0 A 0 to 1 transition of the trigger bit triggers an event.

0b1 A 1 to 0 transition of the trigger bit triggers an event.
D13-4198 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTEN, bit [2]

When FEAT_VHE is not implemented, or when HCR_EL2.{E2H, TGE} is not {1, 1}, enables the
generation of an event stream from the counter register CNTVCT_EL0.

0b0 Disables the event stream.

0b1 Enables the event stream.

When FEAT_VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not
enable the event stream.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0VCTEN, bit [1]

Traps EL0 accesses to the frequency register and virtual counter register to EL1, or to EL2 when it
is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to the following registers are trapped and reported using EC
syndrome value 0x18:

— CNTVCT_EL0 and if CNTKCTL_EL1.EL0PCTEN is 0, CNTFRQ_EL0.

• In AArch32 state, MRC and MCR accesses to the following registers are trapped and
reported using EC syndrome value 0x03, MRRC and MCRR accesses are trapped and
reported using EC syndrome value 0x04:

— CNTVCT and if CNTKCTL_EL1.EL0PCTEN is 0, CNTFRQ.

0b0 EL0 accesses to the frequency register and virtual counter registers are trapped.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not
cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0PCTEN, bit [0]

Traps EL0 accesses to the frequency register and physical counter register to EL1, or to EL2 when
it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, the following registers are trapped, reported using EC syndrome value
0x18:

— CNTPCT_EL0 and if CNTKCTL_EL1.EL0VCTEN is 0, CNTFRQ_EL0.

• In AArch32 state, MCR or MRC accesses the following registers are trapped, reported using
EC syndrome value 0x03, MCRR or MRRC accesses are trapped and reported using EC
syndrome value 0x04:

— CNTPCT and if CNTKCTL_EL1.EL0VCTEN is 0, CNTFRQ.

0b0 EL0 accesses to the frequency register and physical counter register are trapped.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not
cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4199
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
Accessing CNTKCTL_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic
CNTKCTL_EL1 or CNTKCTL_EL12 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTKCTL_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 return CNTKCTL_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return CNTHCTL_EL2;
 else
 return CNTKCTL_EL1;
elsif PSTATE.EL == EL3 then
 return CNTKCTL_EL1;

MSR CNTKCTL_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 CNTKCTL_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 CNTHCTL_EL2 = X[t];
 else
 CNTKCTL_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 CNTKCTL_EL1 = X[t];

MRS <Xt>, CNTKCTL_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b000 0b1110 0b0001 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1110 0b0001 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0001 0b000
D13-4200 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return CNTKCTL_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTKCTL_EL1;
 else
 UNDEFINED;

MSR CNTKCTL_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 CNTKCTL_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 CNTKCTL_EL1 = X[t];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4201
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.16 CNTP_CTL_EL0, Counter-timer Physical Timer Control register

The CNTP_CTL_EL0 characteristics are:

Purpose

Control register for the EL1 physical timer.

Configurations

AArch64 System register CNTP_CTL_EL0 bits [31:0] are architecturally mapped to AArch32
System register CNTP_CTL[31:0].

Attributes

CNTP_CTL_EL0 is a 64-bit register.

Field descriptions

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

RES0

63 32

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
D13-4202 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTP_TVAL_EL0 continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTP_CTL_EL0

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic
CNTP_CTL_EL0 or CNTP_CTL_EL02 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTP_CTL_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_CTL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_CTL_EL2;
 else
 return CNTP_CTL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x180];
 else
 return CNTP_CTL_EL0;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_CTL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHP_CTL_EL2;
 else
 return CNTP_CTL_EL0;
elsif PSTATE.EL == EL3 then
 return CNTP_CTL_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4203
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
MSR CNTP_CTL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CTL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = X[t];
 else
 CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x180] = X[t];
 else
 CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CTL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = X[t];
 else
 CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 CNTP_CTL_EL0 = X[t];

MRS <Xt>, CNTP_CTL_EL02

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVPCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return NVMem[0x180];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b001

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0010 0b001
D13-4204 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return CNTP_CTL_EL0;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTP_CTL_EL0;
 else
 UNDEFINED;

MSR CNTP_CTL_EL02, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVPCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 NVMem[0x180] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 CNTP_CTL_EL0 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 CNTP_CTL_EL0 = X[t];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4205
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.17 CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue register

The CNTP_CVAL_EL0 characteristics are:

Purpose

Holds the compare value for the EL1 physical timer.

Configurations

AArch64 System register CNTP_CVAL_EL0 bits [63:0] are architecturally mapped to AArch32
System register CNTP_CVAL[63:0].

Attributes

CNTP_CVAL_EL0 is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL1 physical timer CompareValue.

When CNTP_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 -
CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit
upcounter timer. When the timer condition is met:

• CNTP_CTL_EL0.ISTATUS is set to 1.

• If CNTP_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTP_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues
to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTP_CVAL_EL0

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic
CNTP_CVAL_EL0 or CNTP_CVAL_EL02 are not guaranteed to be ordered with respect to accesses using the
other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

CompareValue

63 32

CompareValue

31 0
D13-4206 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
MRS <Xt>, CNTP_CVAL_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_CVAL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_CVAL_EL2;
 else
 return CNTP_CVAL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x178];
 else
 return CNTP_CVAL_EL0;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_CVAL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHP_CVAL_EL2;
 else
 return CNTP_CVAL_EL0;
elsif PSTATE.EL == EL3 then
 return CNTP_CVAL_EL0;

MSR CNTP_CVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b010

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4207
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = X[t];
 else
 CNTP_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x178] = X[t];
 else
 CNTP_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = X[t];
 else
 CNTP_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 CNTP_CVAL_EL0 = X[t];

MRS <Xt>, CNTP_CVAL_EL02

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVPCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return NVMem[0x178];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return CNTP_CVAL_EL0;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTP_CVAL_EL0;
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0010 0b010
D13-4208 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
MSR CNTP_CVAL_EL02, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVPCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 NVMem[0x178] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 CNTP_CVAL_EL0 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 CNTP_CVAL_EL0 = X[t];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0010 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4209
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.18 CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register

The CNTP_TVAL_EL0 characteristics are:

Purpose

Holds the timer value for the EL1 physical timer.

Configurations

AArch64 System register CNTP_TVAL_EL0 bits [31:0] are architecturally mapped to AArch32
System register CNTP_TVAL[31:0].

Attributes

CNTP_TVAL_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.

On a read of this register:

• If CNTP_CTL_EL0.ENABLE is 0, the value returned is UNKNOWN.

• If CNTP_CTL_EL0.ENABLE is 1, the value returned is (CNTP_CVAL_EL0 -
CNTPCT_EL0).

On a write of this register, CNTP_CVAL_EL0 is set to (CNTPCT_EL0 + TimerValue), where
TimerValue is treated as a signed 32-bit integer.

When CNTP_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 -
CNTP_CVAL_EL0) is greater than or equal to zero. This means that TimerValue acts like a 32-bit
downcounter timer. When the timer condition is met:

• CNTP_CTL_EL0.ISTATUS is set to 1.

• If CNTP_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTP_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues
to count, so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTP_TVAL_EL0

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic
CNTP_TVAL_EL0 or CNTP_TVAL_EL02 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

TimerValue

31 0
D13-4210 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
MRS <Xt>, CNTP_TVAL_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_TVAL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_TVAL_EL2;
 else
 return CNTP_TVAL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CNTP_TVAL_EL0;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_TVAL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHP_TVAL_EL2;
 else
 return CNTP_TVAL_EL0;
elsif PSTATE.EL == EL3 then
 return CNTP_TVAL_EL0;

MSR CNTP_TVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4211
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_TVAL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_TVAL_EL2 = X[t];
 else
 CNTP_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CNTP_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_TVAL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHP_TVAL_EL2 = X[t];
 else
 CNTP_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 CNTP_TVAL_EL0 = X[t];

MRS <Xt>, CNTP_TVAL_EL02

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return CNTP_TVAL_EL0;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTP_TVAL_EL0;
 else
 UNDEFINED;

MSR CNTP_TVAL_EL02, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0010 0b000
D13-4212 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 CNTP_TVAL_EL0 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 CNTP_TVAL_EL0 = X[t];
 else
 UNDEFINED;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4213
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.19 CNTPCTSS_EL0, Counter-timer Self-Synchronized Physical Count register

The CNTPCTSS_EL0 characteristics are:

Purpose

Holds the self-synchronized view of the 64-bit physical count value.

Configurations

AArch64 System register CNTPCTSS_EL0 bits [63:0] are architecturally mapped to AArch32
System register CNTPCTSS[63:0].

This register is present only when FEAT_ECV is implemented. Otherwise, direct accesses to
CNTPCTSS_EL0 are UNDEFINED.

All reads to the CNTPCTSS_EL0 occur in program order relative to reads to CNTPCT_EL0 or
CNTPCTSS_EL0.

This register is a self-synchronised view of the CNTPCT_EL0 counter, and cannot be read
speculatively.

Attributes

CNTPCTSS_EL0 is a 64-bit register.

Field descriptions

Bits [63:0]

Self-synchronized physical count value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTPCTSS_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTPCTSS_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PCTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PCTEN == '0' then

Self-synchronized physical count value

63 32

Self-synchronized physical count value

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0000 0b101
D13-4214 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV ==
'1' && HCR_EL2.<E2H,TGE> != '11' then
 return PhysicalCountInt() - CNTPOFF_EL2;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV ==
'1' then
 return PhysicalCountInt() - CNTPOFF_EL2;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 return PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 return PhysicalCountInt();

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4215
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.20 CNTPCT_EL0, Counter-timer Physical Count register

The CNTPCT_EL0 characteristics are:

Purpose

Holds the 64-bit physical count value.

Configurations

AArch64 System register CNTPCT_EL0 bits [63:0] are architecturally mapped to AArch32 System
register CNTPCT[63:0].

All reads to the CNTPCT_EL0 occur in program order relative to reads to CNTPCTSS_EL0 or
CNTPCT_EL0.

Attributes

CNTPCT_EL0 is a 64-bit register.

Field descriptions

Bits [63:0]

Physical count value.

Reads of CNTPCT_EL0 from EL0 or EL1 return (PhysicalCountInt<63:0> -
CNTPOFF_EL2<63:0>) if the access is not trapped, and all of the following are true:

• CNTHCTL_EL2.ECV is 1.

• HCR_EL2.{E2H, TGE} is not {1, 1}.

Where PhysicalCountInt<63:0> is the physical count returned when CNTPCT_EL0 is read from
EL2 or EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTPCT_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTPCT_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PCTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);

Physical count value

63 32

Physical count value

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0000 0b001
D13-4216 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV ==
'1' && HCR_EL2.<E2H,TGE> != '11' then
 return PhysicalCountInt() - CNTPOFF_EL2;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV ==
'1' then
 return PhysicalCountInt() - CNTPOFF_EL2;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 return PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 return PhysicalCountInt();

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4217
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.21 CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control register

The CNTPS_CTL_EL1 characteristics are:

Purpose

Control register for the secure physical timer, usually accessible at EL3 but configurably accessible
at EL1 in Secure state.

Configurations

There are no configuration notes.

Attributes

CNTPS_CTL_EL1 is a 64-bit register.

Field descriptions

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

RES0

63 32

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
D13-4218 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTPS_TVAL_EL1 continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTPS_CTL_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTPS_CTL_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '0' then
 if SCR_EL3.EEL2 == '1' then
 UNDEFINED;
 elsif SCR_EL3.ST == '0' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return CNTPS_CTL_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return CNTPS_CTL_EL1;

MSR CNTPS_CTL_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '0' then
 if SCR_EL3.EEL2 == '1' then
 UNDEFINED;
 elsif SCR_EL3.ST == '0' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 CNTPS_CTL_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b111 0b1110 0b0010 0b001

op0 op1 CRn CRm op2

0b11 0b111 0b1110 0b0010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4219
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
elsif PSTATE.EL == EL3 then
 CNTPS_CTL_EL1 = X[t];

D13-4220 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.22 CNTPOFF_EL2, Counter-timer Physical Offset register

The CNTPOFF_EL2 characteristics are:

Purpose

Holds the 64-bit physical offset. This is the offset for the AArch64 physical timers and counters
when Enhanced Counter Virtualization is enabled.

Configurations

This register is present only when FEAT_ECV is implemented. Otherwise, direct accesses to
CNTPOFF_EL2 are UNDEFINED.

The CNTPOFF_EL2 offset applies to:

• Direct reads of the physical counter from EL0 or EL1.

• Indirect reads of the physical counter by the EL1 physical timer.

When EL2 is implemented and enabled in the current Security state, the physical counter uses a
fixed physical offset of zero if any of the following are true:

• CNTHCTL_EL2.ECV is 0.

• SCR_EL3.ECVEn is 0.

• HCR_EL2.{E2H, TGE} is {1, 1}.

Attributes

CNTPOFF_EL2 is a 64-bit register.

Field descriptions

Bits [63:0]

Physical offset.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTPOFF_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTPOFF_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x1A8];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then

Physical offset

63 32

Physical offset

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0000 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4221
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ECVEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ECVEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return CNTPOFF_EL2;
elsif PSTATE.EL == EL3 then
 return CNTPOFF_EL2;

MSR CNTPOFF_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x1A8] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.ECVEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ECVEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 CNTPOFF_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 CNTPOFF_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0000 0b110
D13-4222 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.23 CNTPS_CVAL_EL1, Counter-timer Physical Secure Timer CompareValue register

The CNTPS_CVAL_EL1 characteristics are:

Purpose

Holds the compare value for the secure physical timer, usually accessible at EL3 but configurably
accessible at EL1 in Secure state.

Configurations

There are no configuration notes.

Attributes

CNTPS_CVAL_EL1 is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the secure physical timer CompareValue.

When CNTPS_CTL_EL1.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 -
CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit
upcounter timer. When the timer condition is met:

• CNTPS_CTL_EL1.ISTATUS is set to 1.

• If CNTPS_CTL_EL1.IMASK is 0, an interrupt is generated.

When CNTPS_CTL_EL1.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0
continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTPS_CVAL_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTPS_CVAL_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '0' then
 if SCR_EL3.EEL2 == '1' then

CompareValue

63 32

CompareValue

31 0

op0 op1 CRn CRm op2

0b11 0b111 0b1110 0b0010 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4223
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 UNDEFINED;
 elsif SCR_EL3.ST == '0' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return CNTPS_CVAL_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return CNTPS_CVAL_EL1;

MSR CNTPS_CVAL_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '0' then
 if SCR_EL3.EEL2 == '1' then
 UNDEFINED;
 elsif SCR_EL3.ST == '0' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 CNTPS_CVAL_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 CNTPS_CVAL_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b111 0b1110 0b0010 0b010
D13-4224 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.24 CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue register

The CNTPS_TVAL_EL1 characteristics are:

Purpose

Holds the timer value for the secure physical timer, usually accessible at EL3 but configurably
accessible at EL1 in Secure state.

Configurations

There are no configuration notes.

Attributes

CNTPS_TVAL_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the secure physical timer.

On a read of this register:

• If CNTPS_CTL_EL1.ENABLE is 0, the value returned is UNKNOWN.

• If CNTPS_CTL_EL1.ENABLE is 1, the value returned is (CNTPS_CVAL_EL1 -
CNTPCT_EL0).

On a write of this register, CNTPS_CVAL_EL1 is set to (CNTPCT_EL0 + TimerValue), where
TimerValue is treated as a signed 32-bit integer.

When CNTPS_CTL_EL1.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 -
CNTPS_CVAL_EL1) is greater than or equal to zero. This means that TimerValue acts like a 32-bit
downcounter timer. When the timer condition is met:

• CNTPS_CTL_EL1.ISTATUS is set to 1.

• If CNTPS_CTL_EL1.IMASK is 0, an interrupt is generated.

When CNTPS_CTL_EL1.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0
continues to count, so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTPS_TVAL_EL1

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

TimerValue

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4225
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
MRS <Xt>, CNTPS_TVAL_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '0' then
 if SCR_EL3.EEL2 == '1' then
 UNDEFINED;
 elsif SCR_EL3.ST == '0' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return CNTPS_TVAL_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return CNTPS_TVAL_EL1;

MSR CNTPS_TVAL_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '0' then
 if SCR_EL3.EEL2 == '1' then
 UNDEFINED;
 elsif SCR_EL3.ST == '0' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 CNTPS_TVAL_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 CNTPS_TVAL_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b111 0b1110 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b111 0b1110 0b0010 0b000
D13-4226 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.25 CNTV_CTL_EL0, Counter-timer Virtual Timer Control register

The CNTV_CTL_EL0 characteristics are:

Purpose

Control register for the virtual timer.

Configurations

AArch64 System register CNTV_CTL_EL0 bits [31:0] are architecturally mapped to AArch32
System register CNTV_CTL[31:0].

Attributes

CNTV_CTL_EL0 is a 64-bit register.

Field descriptions

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

RES0

63 32

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4227
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTV_TVAL_EL0 continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTV_CTL_EL0

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic
CNTV_CTL_EL0 or CNTV_CTL_EL02 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTV_CTL_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_CTL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_CTL_EL2;
 else
 return CNTV_CTL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x170];
 else
 return CNTV_CTL_EL0;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_CTL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHV_CTL_EL2;
 else
 return CNTV_CTL_EL0;
elsif PSTATE.EL == EL3 then
 return CNTV_CTL_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b001
D13-4228 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
MSR CNTV_CTL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CTL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = X[t];
 else
 CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x170] = X[t];
 else
 CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CTL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = X[t];
 else
 CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 CNTV_CTL_EL0 = X[t];

MRS <Xt>, CNTV_CTL_EL02

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVVCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return NVMem[0x170];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return CNTV_CTL_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b001

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0011 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4229
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTV_CTL_EL0;
 else
 UNDEFINED;

MSR CNTV_CTL_EL02, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVVCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 NVMem[0x170] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 CNTV_CTL_EL0 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 CNTV_CTL_EL0 = X[t];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0011 0b001
D13-4230 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.26 CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue register

The CNTV_CVAL_EL0 characteristics are:

Purpose

Holds the compare value for the virtual timer.

Configurations

AArch64 System register CNTV_CVAL_EL0 bits [63:0] are architecturally mapped to AArch32
System register CNTV_CVAL[63:0].

Attributes

CNTV_CVAL_EL0 is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL1 virtual timer CompareValue.

When CNTV_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 -
CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit
upcounter timer. When the timer condition is met:

• CNTV_CTL_EL0.ISTATUS is set to 1.

• If CNTV_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTV_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0
continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTV_CVAL_EL0

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic
CNTV_CVAL_EL0 or CNTV_CVAL_EL02 are not guaranteed to be ordered with respect to accesses using the
other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

CompareValue

63 32

CompareValue

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4231
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
MRS <Xt>, CNTV_CVAL_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_CVAL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_CVAL_EL2;
 else
 return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x168];
 else
 return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_CVAL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHV_CVAL_EL2;
 else
 return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL3 then
 return CNTV_CVAL_EL0;

MSR CNTV_CVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b010

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b010
D13-4232 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 else
 CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x168] = X[t];
 else
 CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = X[t];
 else
 CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 CNTV_CVAL_EL0 = X[t];

MRS <Xt>, CNTV_CVAL_EL02

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVVCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return NVMem[0x168];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return CNTV_CVAL_EL0;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTV_CVAL_EL0;
 else
 UNDEFINED;

MSR CNTV_CVAL_EL02, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVVCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0011 0b010

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0011 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4233
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 else
 NVMem[0x168] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 CNTV_CVAL_EL0 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 CNTV_CVAL_EL0 = X[t];
 else
 UNDEFINED;

D13-4234 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.27 CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register

The CNTV_TVAL_EL0 characteristics are:

Purpose

Holds the timer value for the EL1 virtual timer.

Configurations

AArch64 System register CNTV_TVAL_EL0 bits [31:0] are architecturally mapped to AArch32
System register CNTV_TVAL[31:0].

Attributes

CNTV_TVAL_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL1 virtual timer.

On a read of this register:

• If CNTV_CTL_EL0.ENABLE is 0, the value returned is UNKNOWN.

• If CNTV_CTL_EL0.ENABLE is 1, the value returned is (CNTV_CVAL_EL0 -
CNTVCT_EL0).

On a write of this register, CNTV_CVAL_EL0 is set to (CNTVCT_EL0 + TimerValue), where
TimerValue is treated as a signed 32-bit integer.

When CNTV_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 -
CNTV_CVAL_EL0) is greater than or equal to zero. This means that TimerValue acts like a 32-bit
downcounter timer. When the timer condition is met:

• CNTV_CTL_EL0.ISTATUS is set to 1.

• If CNTV_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTV_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0
continues to count, so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTV_TVAL_EL0

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic
CNTV_TVAL_EL0 or CNTV_TVAL_EL02 are not guaranteed to be ordered with respect to accesses using the
other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

TimerValue

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4235
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
MRS <Xt>, CNTV_TVAL_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_TVAL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_TVAL_EL2;
 else
 return CNTV_TVAL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CNTV_TVAL_EL0;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_TVAL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHV_TVAL_EL2;
 else
 return CNTV_TVAL_EL0;
elsif PSTATE.EL == EL3 then
 return CNTV_TVAL_EL0;

MSR CNTV_TVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_TVAL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_TVAL_EL2 = X[t];
 else
 CNTV_TVAL_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b000

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b000
D13-4236 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CNTV_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_TVAL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHV_TVAL_EL2 = X[t];
 else
 CNTV_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 CNTV_TVAL_EL0 = X[t];

MRS <Xt>, CNTV_TVAL_EL02

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return CNTV_TVAL_EL0;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTV_TVAL_EL0;
 else
 UNDEFINED;

MSR CNTV_TVAL_EL02, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 CNTV_TVAL_EL0 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 CNTV_TVAL_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0011 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4237
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 else
 UNDEFINED;

D13-4238 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.28 CNTVCTSS_EL0, Counter-timer Self-Synchronized Virtual Count register

The CNTVCTSS_EL0 characteristics are:

Purpose

Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value
visible in CNTPCT_EL0 minus the virtual offset visible in CNTVOFF_EL2.

Configurations

AArch64 System register CNTVCTSS_EL0 bits [63:0] are architecturally mapped to AArch32
System register CNTVCTSS[63:0].

This register is present only when FEAT_ECV is implemented. Otherwise, direct accesses to
CNTVCTSS_EL0 are UNDEFINED.

All reads to the CNTVCTSS_EL0 occur in program order relative to reads to CNTVCT_EL0 or
CNTVCTSS_EL0.

This register is a self-synchronised view of the CNTVCT_EL0 counter, and cannot be read
speculatively.

Attributes

CNTVCTSS_EL0 is a 64-bit register.

Field descriptions

Bits [63:0]

Self-synchronized virtual count value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTVCTSS_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTVCTSS_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VCTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

Self-synchronized virtual count value

63 32

Self-synchronized virtual count value

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0000 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4239
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 else
 if HaveEL(EL2) && (!EL2Enabled() || HCR_EL2.<E2H,TGE> != '11') then
 return PhysicalCountInt() - CNTVOFF_EL2;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if HaveEL(EL2) then
 return PhysicalCountInt() - CNTVOFF_EL2;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '0' then
 return PhysicalCountInt() - CNTVOFF_EL2;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if HaveEL(EL2) && !ELUsingAArch32(EL2) then
 return PhysicalCountInt() - CNTVOFF_EL2;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 return PhysicalCountInt() - CNTVOFF;
 else
 return PhysicalCountInt();

D13-4240 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.29 CNTVCT_EL0, Counter-timer Virtual Count register

The CNTVCT_EL0 characteristics are:

Purpose

Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value
minus the virtual offset visible in CNTVOFF_EL2.

Configurations

AArch64 System register CNTVCT_EL0 bits [63:0] are architecturally mapped to AArch32
System register CNTVCT[63:0].

The value of this register is the same as the value of CNTPCT_EL0 in the following conditions:

• When EL2 is not implemented.

• When EL2 is implemented, HCR_EL2.E2H is 1, and this register is read from EL2.

• When EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H, TGE}
is {1, 1}, and this register is read from EL0 or EL2.

All reads to the CNTVCT_EL0 occur in program order relative to reads to CNTVCTSS_EL0 or
CNTVCT_EL0.

Attributes

CNTVCT_EL0 is a 64-bit register.

Field descriptions

Bits [63:0]

Virtual count value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTVCT_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTVCT_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VCTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);

Virtual count value

63 32

Virtual count value

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0000 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4241
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if HaveEL(EL2) && (!EL2Enabled() || HCR_EL2.<E2H,TGE> != '11') then
 return PhysicalCountInt() - CNTVOFF_EL2;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if HaveEL(EL2) then
 return PhysicalCountInt() - CNTVOFF_EL2;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '0' then
 return PhysicalCountInt() - CNTVOFF_EL2;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if HaveEL(EL2) && !ELUsingAArch32(EL2) then
 return PhysicalCountInt() - CNTVOFF_EL2;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 return PhysicalCountInt() - CNTVOFF;
 else
 return PhysicalCountInt();

D13-4242 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch64 System Register Descriptions
D13.8 Generic Timer registers
D13.8.30 CNTVOFF_EL2, Counter-timer Virtual Offset register

The CNTVOFF_EL2 characteristics are:

Purpose

Holds the 64-bit virtual offset. This is the offset between the physical count value visible in
CNTPCT_EL0 and the virtual count value visible in CNTVCT_EL0.

Configurations

AArch64 System register CNTVOFF_EL2 bits [63:0] are architecturally mapped to AArch32
System register CNTVOFF[63:0].

If EL2 is not implemented, this register is RES0 from EL3 and the virtual counter uses a fixed virtual
offset of zero.

Note

When EL2 is implemented and enabled in the current Security state, and is using AArch64, the
virtual counter uses a fixed virtual offset of zero in the following situations:

• HCR_EL2.E2H is 1, and CNTVCT_EL0 is read from EL2.

• HCR_EL2.{E2H, TGE} is {1, 1}, and either:

— CNTVCT_EL0 is read from EL0 or EL2.

— CNTVCT is read from EL0.

Attributes

CNTVOFF_EL2 is a 64-bit register.

Field descriptions

Bits [63:0]

Virtual offset.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTVOFF_EL2

Accesses to this register use the following encodings in the System register encoding space:

Virtual offset

63 32

Virtual offset

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. D13-4243
ID072021 Non-Confidential

AArch64 System Register Descriptions
D13.8 Generic Timer registers
MRS <Xt>, CNTVOFF_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x060];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return CNTVOFF_EL2;
elsif PSTATE.EL == EL3 then
 return CNTVOFF_EL2;

MSR CNTVOFF_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x060] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTVOFF_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 CNTVOFF_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0000 0b011

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0000 0b011
D13-4244 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Part E
The AArch32 Application Level Architecture

Chapter E1
The AArch32 Application Level Programmers’ Model

This chapter gives an Application level description of the programmers’ model for software executing in AArch32
state. This means it describes execution in EL0 when EL0 is using AArch32. It contains the following sections:

• About the Application level programmers’ model on page E1-4248.

• The Application level programmers’ model in AArch32 state on page E1-4249.

• Advanced SIMD and floating-point instructions on page E1-4260.

• About the AArch32 System register interface on page E1-4278.

• Exceptions on page E1-4279.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E1-4247
ID072021 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.1 About the Application level programmers’ model
E1.1 About the Application level programmers’ model

This chapter contains the programmers’ model information required for the development of applications that will
execute in AArch32 state.

The information in this chapter is distinct from the system information required to service and support application
execution under an operating system, or higher level of system software. However, some knowledge of that system
information is needed to put the Application level programmers' model into context.

Depending on the implementation, the architecture supports multiple levels of execution privilege. These privilege
levels are indicated by different Exception levels that number upwards from EL0, where EL0 corresponds to the
lowest privilege level and is often described as unprivileged. The Application level programmers’ model is the
programmers’ model for software executing at EL0. For more information, see Armv8 architectural concepts on
page A1-37.

System software determines the Exception level, and therefore the level of privilege, at which application software
runs. When an operating system supports execution at both EL1 and EL0, an application usually runs unprivileged.
This has the following effects:

• It means that the operating system can allocate system resources to an application in a unique or shared
manner.

• It provides a degree of protection from other processes, and so helps protect the operating system from
malfunctioning software.

This chapter indicates where some System level understanding is helpful, and if appropriate it gives a reference to
the System level description.

Application level software is generally unaware of its Security state, and of any virtualization. For more
information, see The Armv8-A security model on page G1-6019 and The effect of implementing EL2 on the
Exception model on page G1-6024.

Note

• When an implementation includes EL3, application and operating system software normally executes in
Non-secure state.

• Older documentation, describing implementations or architecture versions that support only two privilege
levels, often refers to execution at EL1 as privileged execution.

• In this manual, the terms CONSTRAINED UNPREDICTABLE, IMPLEMENTATION DEFINED.
OPTIONAL, RES0, RES1, UNDEFINED, UNKNOWN, and UNPREDICTABLE have Arm-specific
meanings, as defined in the Glossary. In body text, these terms are shown in SMALL CAPS, for example
IMPLEMENTATION DEFINED.
E1-4248 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
E1.2 The Application level programmers’ model in AArch32 state

The following sections give more information about the application level programmers’ model in AArch32 state:

• Instruction sets, arithmetic operations, and register files on page E1-4249.

• Core data types and arithmetic in AArch32 state on page E1-4249.

• The general-purpose registers, and the PC, in AArch32 state on page E1-4251.

• Process state, PSTATE on page E1-4253.

• Jazelle support on page E1-4259.

E1.2.1 Instruction sets, arithmetic operations, and register files

The A32 and T32 instruction sets both provide a wide range of integer arithmetic and logical operations, that operate
on a register file of sixteen 32-bit registers, that are comprised of the AArch32 general-purpose registers and the
PC. As described in The general-purpose registers, and the PC, in AArch32 state on page E1-4251, these registers
include the registers SP (R13) and LR (R14), which have specialized uses. Core data types and arithmetic in
AArch32 state on page E1-4249 gives more information about these operations.

In addition, an implementation that implements the T32 and A32 instruction sets includes both:

• Scalar floating-point instructions.

• The Advanced SIMD vector instructions.

Floating-point and vector instructions operate on a separate common register file, described in The SIMD and
floating-point register file on page E1-4260. Advanced SIMD and floating-point instructions on page E1-4260 gives
more information about these instructions.

E1.2.2 Core data types and arithmetic in AArch32 state

When executing in AArch32 state, a PE supports the following data types in memory:

Byte 8 bits.

Halfword 16 bits.

Word 32 bits.

Doubleword 64 bits.

PE registers are 32 bits in size. The instruction sets provide instructions that use the following data types for data
held in registers:

• 32-bit pointers.

• Unsigned or signed 32-bit integers.

• Unsigned 16-bit or 8-bit integers, held in zero-extended form.

• Signed 16-bit or 8-bit integers, held in sign-extended form.

• Two 16-bit integers packed into a register.

• Four 8-bit integers packed into a register.

• Unsigned or signed 64-bit integers held in two registers.

Load and store operations can transfer bytes, halfwords, or words to and from memory. Loads of bytes or halfwords
zero-extend or sign-extend the data as it is loaded, as specified in the appropriate load instruction.

The instruction sets include load and store operations that transfer two or more words to and from memory. Software
can load and store doublewords using these instructions.

Note

For information about the atomicity of memory accesses see Atomicity in the Arm architecture on page E2-4284.

When any of the data types is described as unsigned, the N-bit data value represents a non-negative integer in the
range 0 to 2N-1, using normal binary format.

When any of these types is described as signed, the N-bit data value represents an integer in the range -2(N-1) to
+2(N-1)-1, using two's complement format.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E1-4249
ID072021 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
The instructions that operate on packed halfwords or bytes include some multiply instructions that use only one of
two halfwords, and SIMD instructions that perform parallel addition or subtraction on all of the halfwords or bytes.

Note

These SIMD instructions operate on values held in the general-purpose registers, and must not be confused with the
Advanced SIMD instructions that operate on a separate register file that provides registers of up to 128 bits.

Direct instruction support for 64-bit integers is limited, and most 64-bit operations require sequences of two or more
instructions to synthesize them.

Integer arithmetic

The instruction set provides a wide range of operations on the values in registers, including bitwise logical
operations, shifts, additions, subtractions, multiplications, and divisions. The pseudocode described in
Appendix K14 Arm Pseudocode Definition defines these operations, usually in one of three ways:

• By direct use of the pseudocode operators and built-in functions defined in Operators on page K14-8582.

• By use of pseudocode helper functions defined in the main text.

• By a sequence of the form:

1. Use of the SInt(), UInt(), and Int() built-in functions defined in Converting bitstrings to integers on
page K14-8594 to convert the bitstring contents of the instruction operands to the unbounded integers
that they represent as two's complement or unsigned integers.

2. Use of mathematical operators, built-in functions and helper functions on those unbounded integers to
calculate other such integers.

3. Use of either the bitstring extraction operator defined in Bitstring concatenation and slicing on
page K14-8583 or of the saturation helper functions described in Pseudocode description of saturation
on page E1-4251 to convert an unbounded integer result into a bitstring result that can be written to a
register.

Shift and rotate operations

The following types of shift and rotate operations are used in instructions:

Logical Shift Left

The LSL() pseudocode function moves each bit of a bitstring left by a specified number of bits. Zeros
are shifted in at the right end of the bitstring. Bits that are shifted off the left end of the bitstring are
discarded, except that the last such bit can be produced as a carry output.

Logical Shift Right

The LSR() pseudocode function moves each bit of a bitstring right by a specified number of bits.
Zeros are shifted in at the left end of the bitstring. Bits that are shifted off the right end of the
bitstring are discarded, except that the last such bit can be produced as a carry output.

Arithmetic Shift Right

The ASR() pseudocode function moves each bit of a bitstring right by a specified number of bits.
Copies of the leftmost bit are shifted in at the left end of the bitstring. Bits that are shifted off the
right end of the bitstring are discarded, except that the last such bit can be produced as a carry output.

Rotate Right The ROR() pseudocode function moves each bit of a bitstring right by a specified number of bits.
Each bit that is shifted off the right end of the bitstring is re-introduced at the left end. The last bit
shifted off the right end of the bitstring can be produced as a carry output.

Rotate Right with Extend

The RRX() pseudocode function moves each bit of a bitstring right by one bit. A carry input is shifted
in at the left end of the bitstring. The bit shifted off the right end of the bitstring can be produced as
a carry output.
E1-4250 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
Pseudocode description of addition and subtraction

In pseudocode, addition and subtraction can be performed on any combination of unbounded integers and bitstrings,
provided that if they are performed on two bitstrings, the bitstrings must be identical in length. The result is another
unbounded integer if both operands are unbounded integers, and a bitstring of the same length as the bitstring
operand or operands otherwise. For the definition of these operations, see Addition and subtraction on
page K14-8584.

The main addition and subtraction instructions can produce status information about both unsigned carry and signed
overflow conditions. When necessary, multi-word additions and subtractions can be synthesized from this status
information. In pseudocode the AddWithCarry() function provides an addition with a carry input and a set of output
Condition flags including carry output and overflow:

An important property of the AddWithCarry() function is that if:

(result, nzcv) = AddWithCarry(x, NOT(y), carry_in)

Then:

• If carry_in == ‘1’, then result == x-y with:

— nzcv<0> == ‘1’ if signed overflow occurred during the subtraction.

— nzcv<1> == ‘1’ if unsigned borrow did not occur during the subtraction, that is, if xy.

• If carry_in == ‘0’, then result == x-y-1 with:

— nzcv<0> == ‘1’ if signed overflow occurred during the subtraction.

— nzcv<1> == ‘1’ if unsigned borrow did not occur during the subtraction, that is, if xy.

Taken together, this means that the carry_in and nzcv<1> output in AddWithCarry() calls can act as NOT borrow flags
for subtractions as well as carry flags for additions.

Pseudocode description of saturation

Some instructions perform saturating arithmetic, that is, if the result of the arithmetic overflows the destination
signed or unsigned N-bit integer range, the result produced is the largest or smallest value in that range, rather than
wrapping around modulo 2N. This is supported in pseudocode by:

• The SignedSatQ() and UnsignedSatQ() functions when an operation requires, in addition to the saturated
result, a Boolean argument that indicates whether saturation occurred.

• The SignedSat() and UnsignedSat() functions when only the saturated result is required.

SatQ(i, N, unsigned) returns either UnsignedSatQ(i, N) or SignedSatQ(i, N) depending on the value of its third
argument, and Sat(i, N, unsigned) returns either UnsignedSat(i, N) or SignedSat(i, N) depending on the value of
its third argument.

E1.2.3 The general-purpose registers, and the PC, in AArch32 state

In the AArch32 Application level view, a PE has:

• Fifteen general-purpose 32-bit registers, R0 to R14, of which R13 and R14 have alternative names reflecting
how they are, or can be, used:

— R13 is usually identified as SP.

— R14 is usually identified as LR.

• The PC (program counter), that can be described as R15.

The specialized uses of the SP (R13), LR (R14), and PC (R15) are:

SP, the stack pointer

The PE uses SP as a pointer to the active stack.

In the T32 instruction set, some instructions cannot access SP. Instructions that can access SP can
use SP as a general-purpose register.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E1-4251
ID072021 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
The A32 instruction set provides more general access to SP, and it can be used as a general-purpose
register.

Note
Using SP for any purpose other than as a stack pointer might break the requirements of operating
systems, debuggers, and other software systems, causing them to malfunction.

Software can refer to SP as R13.

LR, the link register

The link register can be used to hold return link information, and some cases described in this
manual require this use of the LR. When software does not require the LR for linking, it can use it
for other purposes. Software can refer to LR as R14.

PC, the program counter

• When executing an A32 instruction, PC reads as the address of the current instruction plus 8.

• When executing a T32 instruction, PC reads as the address of the current instruction plus 4.

• Writing an address to PC causes a branch to that address.

Most T32 instructions cannot access PC.

The A32 instruction set provides more general access to the PC, and many A32 instructions can use
the PC as a general-purpose register. However, Arm deprecates the use of PC for any purpose other
than as the program counter. See Writing to the PC on page E1-4252 for more information.

Software can refer to PC as R15.

See AArch32 general-purpose registers, the PC, and the Special-purpose registers on page G1-6031 for the system
level view of these registers.

Note

In general, Arm strongly recommends using the names SP, LR, and PC instead of R13, R14 and R15. However,
sometimes it is simpler to use the R13-R15 names when referring to a group of registers. For example, it is simpler
to refer to registers R8 to R15, rather than to registers R8 to R12, the SP, LR, and PC. These two descriptions of the
group of registers have exactly the same meaning.

Writing to the PC

In the A32 and T32 instruction sets, many data-processing instructions can write to the PC. Writes to the PC are
handled as follows:

• In T32 state, the following 16-bit T32 instruction encodings branch to the value written to the PC:

— Encoding T2 of ADD, ADDS (register) on page F5-4578.

— Encoding T1 of MOV, MOVS (register) on page F5-4841.

The value written to the PC is forced to be halfword-aligned by ignoring its least significant bit, treating that
bit as being 0.

• The B, BL, CBNZ, CBZ, CHKA, HB, HBL, HBLP, HBP, TBB, and TBH instructions remain in the same instruction set state
and branch to the value written to the PC.

The definition of each of these instructions ensures that the value written to the PC is correctly aligned for
the current instruction set state.

• The BLX (immediate) instruction switches between A32 and T32 states and branches to the value written to
the PC. Its definition ensures that the value written to the PC is correctly aligned for the new instruction set
state.

• The following instructions write a value to the PC, treating that value as an interworking address to branch
to, with low-order bits that determine the new instruction set state:

— BLX (register), BX, and BXJ.
E1-4252 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
— LDR instructions with <Rt> equal to the PC.

— POP and all forms of LDM except LDM (exception return), when the register list includes the PC.

— In A32 state only, ADC, ADD, ADR, AND, ASR (immediate), BIC, EOR, LSL (immediate), LSR (immediate), MOV,
MVN, ORR, ROR (immediate), RRX, RSB, RSC, SBC, and SUB instructions with <Rd> equal to the PC and without
flag-setting specified.

For details of how an interworking address specifies the new instruction set state and instruction address, see
Pseudocode description of operations on the AArch32 general-purpose registers and the PC on
page E1-4253.

Note
The register-shifted register instructions, that are available only in the A32 instruction set and are
summarized in Data-processing register (register shift) on page F4-4506, are CONSTRAINED UNPREDICTABLE
if they attempt to write to the PC, see Using R15 by instruction on page K1-8387.

• Some instructions are treated as exception return instructions, and write both the PC and the CPSR. For more
information, including which instructions are exception return instructions, see Exception return to an
Exception level using AArch32 on page G1-6065.

• Some instructions cause an exception, and the exception handler address is written to the PC as part of the
exception entry.

Pseudocode description of operations on the AArch32 general-purpose registers and
the PC

In pseudocode, the uses of the R[] function, with an index parameter n, are:

• Reading or writing R0-R12, SP, and LR, using n = 0-12, 13, and 14 respectively.

• Reading the PC, using n = 15.

Pseudocode description of general-purpose register and PC operations on page G1-6033 describes accesses to
these registers.

Descriptions of A32 store instructions that store the PC value use the PCStoreValue() pseudocode function to specify
the PC value stored by the instruction.

Writing an address to the PC causes either a simple branch to that address or an interworking branch that also selects
the instruction set to execute after the branch. A simple branch is performed by the BranchWritePC() function.

An interworking branch is performed by the BXWritePC() function.

The LoadWritePC() and ALUWritePC() functions are used for two cases where the behavior was systematically
modified between architecture versions.

E1.2.4 Process state, PSTATE

Process state or PSTATE is an abstraction of process state information. All of the instruction sets provide
instructions that operate on elements of PSTATE.

Note

In this chapter, references to PSTATE link to the more appropriate of:

• The Application-level view of PSTATE given in this section.

• The System-level description in Process state, PSTATE on page G1-6035.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E1-4253
ID072021 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
The following PSTATE information is accessible at EL0:

The Condition flags

Flag-setting instructions set these. They are:

N Negative Condition flag. If the result of the instruction is regarded as a two's
complement signed integer, the PE sets this to:

• 1 if the result is negative.

• 0 if the result is positive or zero.

Z Zero Condition flag. Set to:

• 1 if the result of the instruction is zero.

• 0 otherwise.

A result of zero often indicates an equal result from a comparison.

C Carry Condition flag. Set to:

• 1 if the instruction results in a carry condition, for example an unsigned overflow
that is the result of an addition.

• 0 otherwise.

V Overflow Condition flag. Set to:

• 1 if the instruction results in an overflow condition, for example a signed
overflow that is the result of an addition.

• 0 otherwise.

Conditional instructions test the N, Z, C, and V Condition flags, combining them with the Condition
code for the instruction, to determine whether the instruction must be executed. In this way,
execution of the instruction is conditional on the result of a previous operation. For more
information about conditional execution, see Conditional execution on page F1-4349.

The overflow or saturation flag

Q Some instructions can set this. For those instructions that can, the PE:

• Sets it to 1 if the instruction indicates overflow or saturation.

• Leaves it unchanged otherwise.

For more information, see Pseudocode description of saturation on page E1-4251.

The greater than or equal flags

GE[3:0] The instructions described in Parallel addition and subtraction instructions on
page F2-4386 update these to indicate the results from individual bytes or halfwords of
the operation. These flags can control a later SEL instruction. For more information, see
SEL on page F5-5002.

PSTATE also contains PE state controls. There is no direct access to these from application level instructions, but
they can be changed by side-effects of application level instructions. They are:

Instruction set state

J, T The current instruction set state, as shown in Table E1-1 on page E1-4254. In Armv8,
the J bit is RES0, see the Note in this section.

A32 The PE is executing the A32 instruction set, summarized in Chapter F4 A32
Instruction Set Encoding.

Table E1-1 PSTATE.{J, T} encoding

J T Instruction set state

0 0 A32

0 1 T32
E1-4254 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
T32 The PE is executing the T32 instruction set, summarized in Chapter F3 T32
Instruction Set Encoding.

Note

Encoding with J==1 before Armv8, Jazelle, and T32EE states

In previous versions of the Arm architecture, the encoding {1, 0} selected
Jazelle state, and encoding {1, 1} selected T32EE state. Armv8 does not
support either of these states, and these are encodings for unimplemented
instruction set states, see Unimplemented instruction sets on page G1-6041.

Armv8 AArch32 state requires a Trivial Jazelle implementation, see Trivial
implementation of the Jazelle extension on page G1-6041.

The IT block state

IT[7:0] The If-Then controls for the T32 IT instruction, that applies to the IT block of
instructions that immediately follow the IT instruction. See IT on page F5-4702 for a
description of the IT instruction and its associated IT block.

For more information about the use of PSTATE.IT, see Use of PSTATE.IT on
page E1-4257.

Endianness mapping

E For data accesses, controls the endianness:

0 Little-endian.

1 Big-endian.

If an implementation does not provide:

• Big-endian support for data accesses, this bit is RES0.

• Little-endian support for data accesses, this bit is RES1.

Instruction fetches are always little-endian, and ignore PSTATE.E.

Timing control bits

DIT Data Independent Timing (DIT) bit. For more information, see About the DIT bit on
page E1-4259.

This bit is implemented only when FEAT_DIT is implemented.

On a reset to AArch32 state, this bit is set to 0.

Accessing PSTATE fields at EL0

The following sections describe which PSTATE fields can be directly accessed at EL0, and how they can be
accessed:

• The Application Program Status Register, APSR on page E1-4255.

• The SETEND instruction on page E1-4256.

The Application Program Status Register, APSR

At EL0, some PSTATE fields can be accessed using the Special-purpose Application Program Status Register
(APSR). The APSR can be directly read using the MRS instruction, and directly written using the MSR (register)
and MSR (immediate) instructions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E1-4255
ID072021 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
The APSR bit assignments are:

N, Z, C, V, bits [31:28]

The PSTATE Condition flags.

Q, bit [27] The PSTATE overflow or saturation flag.

Bits[26:24] Reserved, RES0. Software can use MSR instructions that write the top byte of the APSR without using
a read-modify-write sequence. If it does this, it must write zeros to bits[26:24].

Bits[23:20, 15:0]

Reserved bits that are allocated to system features, or are available for future expansion.
Unprivileged execution ignores writes to fields that are accessible only at EL1 or higher. However,
application level software that writes to the APSR must treat reserved bits as Do-Not-Modify
(DNM) bits. For more information about the reserved bits, see The Current Program Status Register,
CPSR on page G1-6037.

These bits are UNKNOWN on a Read, and it is permitted that, on a read of APSR:

• Bit[22] returns the value of PSTATE.PAN.

• Bit[9] returns the value of PSTATE.E.

• Bits[8:6] return the value of PSTATE.{A,I,F}, the mask bits.

• Bits[4:0] return the value of PSTATE.M[4:0]. Bit[4] is RES1 indicating that the PE is in
AArch32 state.

Note

This is an exception to the general rule that an UNKNOWN field must not return information that
cannot be obtained, at the current Privilege level, by an architected mechanism.

GE[3:0], bits [19:16]

The PSTATE greater than or equal flags.

The other PSTATE fields cannot be accessed by using the APSR.

The system level alias for the APSR is the CPSR. The CPSR is a superset of the APSR. See The Current Program
Status Register, CPSR on page G1-6037.

Writes to the PSTATE fields have side-effects on various aspects of PE operation. All of these side-effects, except
side-effects on memory accesses associated with fetching instructions, are synchronous to the APSR write. This
means they are guaranteed:

• Not to be visible to earlier instructions in the execution stream.

• To be visible to later instructions in the execution stream.

The SETEND instruction

The A32 and T32 instruction sets both include an instruction to manipulate PSTATE.E:

SETEND BE Sets PSTATE.E to 1, for big-endian operation.

SETEND LE Sets PSTATE.E to 0, for little-endian operation.

The SETEND instruction is unconditional. For more information, see SETEND on page F5-5004. Arm deprecates use
of the SETEND instruction.

N

31 30 29 28 27 26 24 23 20 19 16 15 0

Z C V Q GE[3:0]RES0

Condition flags

4

RES1

RES0RES0 RES0

35
E1-4256 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
Use of PSTATE.IT

PSTATE.IT provides the If-Then controls for the T32 IT instruction, that applies to the IT block of instructions that
immediately follow the IT instruction.

PSTATE.IT divides into two subfields:

IT[7:5] Holds the base condition for the current IT block. The base condition is the top three bits of the
Condition code specified by the <firstcond> field of the IT instruction.

IT[4:0] Encodes:

• Implicitly, the size of the IT block. This is the number of instructions that are to be
conditionally executed. The size of the block is indicated by the position of the least
significant 1 in this field, as shown in Table E1-2 on page E1-4257.

• For each instruction in the IT block, the least significant bit of the Condition code. This is
encoded in the IT block entries that Table E1-2 on page E1-4257 shows as Nx.

Note
Changing the least significant bit of a Condition code from 0 to 1 has the effect of inverting
the Condition code.

Both subfields are all zeros when no IT block is active.

When an IT instruction is executed, PSTATE.IT is set according to the <firstcond> field of the instruction and the
Then and Else (T and E) parameters in the instruction, see IT on page F5-4702. This means that, on executing an IT
instruction, the initial state of PSTATE.IT depends on the number of instructions in the IT block, as Table E1-2 on
page E1-4257 shows:

In Table E1-2 on page E1-4257, N1 refers to the first instruction in the IT block, and N2, N3, and N4 refer to the
second, third, and fourth instructions in the IT block if they are present,

When permitted, an instruction in an IT block is conditional, see Conditional instructions on page F2-4377 and
Conditional execution on page F1-4349. The Condition code used is the current value of IT[7:4]. When an
instruction in an IT block completes its execution normally, PSTATE.IT[4:0] is left-shifted by one bit, so that
PSTATE[4] always relates to the next instruction to be executed.

Table E1-2 Initial state of PSTATE.IT on executing an IT instruction

Number of instructions in IT block
PSTATE.IT bitsa

a. Combinations of the IT bits not shown in this table are reserved.

Notes
[7:5] [4] [3] [2] [1] [0]

4 cond_base N1 N2 N3 N4 1 -

3 cond_base N1 N2 N3 1 0 -

2 cond_base N1 N2 1 0 0 -

1 cond_base N1 1 0 0 0 -

Not executing an IT instruction 000 0 0 0 0 0 No IT block is active
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E1-4257
ID072021 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
Table E1-3 on page E1-4258 shows how PSTATE.IT during the execution of an IT instruction with four instructions
in the IT block.

A few instructions, for example BKPT, cannot be conditional and therefore are always executed ignoring the current
value of PSTATE.IT.

For details of what happens if an instruction in an IT block takes an exception, see Overview of exception entry on
page G1-6050.

An instruction that might complete its normal execution by branching is only permitted in an IT block as the last
instruction in the block. This means that normal execution of the instruction always results in PSTATE.IT advancing
to execution where no IT block is active.

Implementations can provide a set of ITD control fields, SCTLR.ITD, SCTLR_EL1.ITD, and HSCTLR.ITD, to
disable use of IT for some instructions, making them UNDEFINED. When an implementation includes ITD control
fields, Changes to an ITD control by an instruction in an IT block on page E1-4258 describes the permitted
CONSTRAINED UNPREDICTABLE behaviors if an instruction in an IT block changes the value of an ITD control to
disable the use of the IT instruction.

On a branch or an exception return, if PSTATE.IT is set to a value that is not consistent with the instruction stream
being branched to or returned to, then instruction execution is CONSTRAINED UNPREDICTABLE.

PSTATE.IT affects instruction execution only in T32 state. In A32 state, PSTATE.IT must be 0b00000000, otherwise
the behavior is CONSTRAINED UNPREDICTABLE.

For more information, see CONSTRAINED UNPREDICTABLE behavior associated with IT instructions and
PSTATE.IT on page K1-8388.

Changes to an ITD control by an instruction in an IT block

In an implementation that includes SCTLR.ITD, SCTLR_EL1.ITD, and HSCTLR.ITD controls, if an instruction in
an IT block changes an ITD control so that the IT instruction using the IT block would be disabled, then one of the
following behaviors applies:

• The change to the ITD field, once synchronized, has no effect on the execution of instructions in the current
IT block, but applies only to any subsequent execution of an IT instruction to which the control applies.

• Synchronizing the change to the ITD field guarantees that all bits of PSTATE.IT are cleared to 0.

In addition, after the change to the ITD field has been synchronized, any remaining instructions in the IT block that
would be made UNDEFINED by the new value of ITD are either:

• Executed normally.

• Treated as UNDEFINED.

The choice between the options described in this section is determined by the implementation, and any choice can
vary between different changes to an ITD control by an instruction in an IT block.

Table E1-3 Updates to PSTATE.IT when executing an IT instruction with a four-instruction IT
block

IT block instruction being executed
PSTATE.IT bits

Notes
[7:5] [4] [3] [2] [1] [0]

First cond_base N1 N2 N3 N4 1 -

Second cond_base N2 N3 N4 1 0 -

Third cond_base N3 N4 1 0 0 -

Fourth cond_base N4 1 0 0 0 -

Not executing an IT instruction 000 0 0 0 0 0 No IT block is active
E1-4258 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
Pseudocode description of PSTATE PE state fields

The pseudocode function CurrentInstrSet() returns the current instruction set. The pseudocode function
SelectInstrSet() selects a new instruction set.

PSTATE.IT advances after normal execution of an IT block instruction. This is described by the
AArch32.ITAdvance() pseudocode function.

The pseudocode function InITBlock() tests whether the current instruction is in an IT block. The pseudocode
function LastInITBlock() tests whether the current instruction is the last instruction in an IT block.

The BigEndian() pseudocode function tests whether big-endian data memory accesses are currently selected.

E1.2.5 About the DIT bit

When the value of CPSR.DIT is 1:

• The instructions listed in CPSR are required to have;

— Timing which is independent of the values of the data supplied in any of its registers, and the values
of the NZCV flags.

— Responses to asynchronous exceptions which do not vary based on the values supplied in any of their
registers, or the values of the NZCV flags.

• All loads and stores have their timing insensitive to the value of the data being loaded or stored.

Note

When the value of CPSR.DIT is 0, the architecture makes no statement about the timing properties of any
instructions.

A corresponding DIT bit is added to PSTATE in AArch64 state, and to CPSR in AArch32 state.

When an exception is taken from AArch32 state to AArch32 state, CPSR.DIT is copied to SPSR.DIT.

When an exception is taken from AArch32 state to AArch64 state, CPSR.DIT is copied to SPSR_ELx.DIT.

When an exception returns to AArch32 state from AArch32 state, SPSR.DIT is copied to CPSR.DIT.

When an exception returns to AArch32 state from AArch64 state, SPSR_ELx.DIT is copied to CPSR.DIT.

CPSR.DIT bit can be written using an MSR instruction at any Exception Level in AArch32 state, and read using an
MRS instruction at any Exception Level.

E1.2.6 Jazelle support

Armv8 requires AArch32 state to include a trivial implementation of the Jazelle extension, as described in Trivial
implementation of the Jazelle extension on page G1-6041.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E1-4259
ID072021 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
E1.3 Advanced SIMD and floating-point instructions

In general, Armv8 requires implementation of Advanced SIMD and floating-point instructions in the T32 and A32
instruction sets, but see Implications of not including Advanced SIMD and floating-point support on page E1-4273.

The Advanced SIMD instructions perform packed Single Instruction Multiple Data (SIMD) operations, either
integer or single-precision floating-point. The floating-point instructions perform single-precision or
double-precision scalar floating-point operations. When FEAT_FP16 is implemented, half-precision floating-point
can also be used for data processing.

These instructions permit floating-point exceptions, such as Overflow or Divide by Zero, to be handled without
trapping. When handled in this way, a floating-point exception causes a cumulative status register bit to be set to 1
and a default result to be produced by the operation. Armv8 also optionally supports the trapping of floating-point
exceptions. For more information about floating-point exceptions, see Floating-point exceptions and exception
traps on page E1-4268.

The Advanced SIMD and floating-point instructions also provide the following conversion functions:

• Between half-precision floating-point and single-precision floating point, in both directions.

• From double-precision, floating-point to single-precision floating point or integer.

• When FEAT_AA32BF16 is implemented, between single-precision floating-point and BFloat16
floating-point.

Some Advanced SIMD instructions support polynomial arithmetic over {0, 1}, as described in Polynomial
arithmetic over {0, 1} on page A1-50.

For system level information about the Advanced SIMD and Floating-point implementation see Advanced SIMD
and floating-point support on page G1-6112.

The following sections give more information about the Advanced SIMD and floating-point instructions:

• Floating-point standards, and terminology on page A1-53.

• The SIMD and floating-point register file on page E1-4260.

• Data types supported by the Advanced SIMD implementation on page E1-4262.

• Advanced SIMD and floating-point System registers on page E1-4262.

• Floating-point data types and arithmetic on page E1-4262.

• Flushing denormalized numbers to zero on page E1-4263.

• Floating-point exceptions and exception traps on page E1-4268.

• Controls of Advanced SIMD operation that do not apply to floating-point operation on page E1-4273.

• Implications of not including Advanced SIMD and floating-point support on page E1-4273.

• Pseudocode description of floating-point operations on page E1-4273.

E1.3.1 The SIMD and floating-point register file

The Advanced SIMD and floating-point instructions use the same register file, that comprises 32 registers. This is
distinct from the register file that holds the general-purpose registers and the PC.

The Advanced SIMD and floating-point views of the register file are different. The following sections describe these
different views. Figure E1-1 on page E1-4261 shows the views of the register file, and the way the word,
doubleword, and quadword registers overlap.

Advanced SIMD views of the register file

Advanced SIMD can view this register file as:

• Sixteen 128-bit quadword registers, Q0-Q15.

• Thirty-two 64-bit doubleword registers, D0-D31.

These views can be used simultaneously. For example, a program might hold 64-bit vectors in D0 and D1 and a
128-bit vector in Q1.
E1-4260 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
Floating-point views of the register file

The Advanced SIMD and floating-point register file consists of thirty-two doubleword registers, that can be viewed
as:

• Thirty-two 64-bit doubleword registers, D0-D31. This view is also available to Advanced SIMD instructions.

• Thirty-two 32-bit single word registers, S0-S31. Only half of the set is accessible in this view.

Note

In AArch32 state, half-precision floating point values are always represented using the bottom 16 bits of a single
word register, S0-S31. When a half-precision value is written to a single word register, the top 16 bits of that register
are set to 0.

The two views can be used simultaneously.

SIMD and Floating-point register file mapping onto registers

Figure E1-1 on page E1-4261 shows the different views of the SIMD and floating-point register file, and the
relationship between them.

Figure E1-1 SIMD and floating-point register file, AArch32 operation

The mapping between the registers is as follows:

• S<2n> maps to the least significant half of D<n>.

• S<2n+1> maps to the most significant half of D<n>.

• D<2n> maps to the least significant half of Q<n>.

• D<2n+1> maps to the most significant half of Q<n>.

For example, software can access the least significant half of the elements of a vector in Q6 by referring to D12, and
the most significant half of the elements by referring to D13.

Floating-point or
Advanced SIMD

D0

D1

D2

D3

D14

D15

D30

D31

D17

D16

Advanced SIMD
only

Q0

Q1

Q7

Q8

Q15

D0-D31 Q0-Q15

S0
S1
S2
S3
S4
S5
S6
S7

S28
S29
S30
S31

Floating-point
only

S0-S31
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E1-4261
ID072021 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
Pseudocode description of the SIMD and Floating-point register file

The functions _Dclone, S[], and D[] provide the S0-S31, D0-D31, and Q0-Q15 views of the Advanced SIMD and
floating-point registers:

The Din[] function returns a doubleword register from the _Dclone[] copy of the SIMD and Floating-point register
file, and the Qin[] function returns a quadword register from that register file.

Note

The CheckAdvSIMDEnabled() function copies the D[] register file to _Dclone[], see Pseudocode description of
enabling SIMD and floating-point functionality on page G1-6151.

E1.3.2 Data types supported by the Advanced SIMD implementation

Advanced SIMD instructions can operate on integer and floating-point data, and the implementation defines a set
of data types that support the required data formats. Vector formats in AArch32 state on page A1-42 describes these
formats.

Advanced SIMD vectors

In an implementation that includes support for Advanced SIMD operation, a register can hold one or more packed
elements, all of the same size and type. The combination of a register and a data type describes a vector of elements.
The vector is considered to be an array of elements of the data type specified in the instruction. The number of
elements in the vector is implied by the size of the data elements and the size of the register.

Vector indices are in the range 0 to (number of elements – 1). An index of 0 refers to the least significant end of the
vector. In Vector formats in AArch32 state on page A1-42, Figure A1-3 on page A1-44 shows the Advanced SIMD
vector formats.

Pseudocode description of Advanced SIMD vectors

The pseudocode function Elem[] accesses the element of a specified index and size in a vector.

E1.3.3 Advanced SIMD and floating-point System registers

The Advanced SIMD and floating-point instructions have a shared register space for System registers. The only
register in this space that is accessible at the Application level is the FPSCR.

Writes to the FPSCR can have side-effects on various aspects of PE operation. All of these side-effects are
synchronous to the FPSCR write. This means they are guaranteed not to be visible to earlier instructions in the
execution stream, and they are guaranteed to be visible to later instructions in the execution stream.

See Advanced SIMD and floating-point System registers on page G1-6114 for the system level view of the registers.

These registers can be described as the SIMD and floating-point System registers.

E1.3.4 Floating-point data types and arithmetic

The T32 and A32 floating-point instructions support single-precision (32-bit) and double-precision (64-bit) data
types and arithmetic as defined by the IEEE 754 floating-point standard. They also support the half-precision
(16-bit) floating-point data type for data storage, by supporting conversions between single-precision and
half-precision data types. When FEAT_FP16 is implemented, it also supports the half-precision floating-point data
type for data processing operations. When FEAT_AA32BF16 is implemented, it also supports the BFloat16
floating-point storage format.

Arm standard floating-point arithmetic means IEEE 754 floating-point arithmetic with the restrictions described in
Advanced SIMD and floating-point support on page A1-52, including supporting only the input and output values
described in Arm standard floating-point input and output values on page A1-54.

The AArch32 Advanced SIMD instructions support single-precision and, when FEAT_FP16 is implemented,
half-precision Arm standard floating-point arithmetic.
E1-4262 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
The following sections describe the Advanced SIMD and floating-point formats:

• Half-precision floating-point formats on page A1-44.

• Single-precision floating-point format on page A1-46.

• Double-precision floating-point format on page A1-47.

• BFloat16 floating-point format on page A1-48.

The following sections describe features of Advanced SIMD and floating-point processing:

• Flushing denormalized numbers to zero on page E1-4263.

• NaN handling and the Default NaN on page A1-57.

E1.3.5 Flushing denormalized numbers to zero

Calculations involving denormalized numbers and Underflow exceptions can reduce the performance of
floating-point processing. For many algorithms, replacing the denormalized operands and Intermediate results with
zeros can recover this performance, without significantly affecting the accuracy of the final result. Arm
floating-point implementations allow denormalized numbers to be flushed to zero to permit this optimization. If a
number satisfies the condition 0 < Abs(result) < MinNorm, it is treated as a denormalized number.

MinNorm is defined as follows:

• For half-precision numbers, MinNorm is 2-14.

• For single-precision and BFloat16 numbers, MinNorm is 2-126.

• For double-precision numbers, MinNorm is 2-1022.

Flushing denormals to zero is incompatible with the IEEE 754 standard, and must not be used when IEEE 754
compatibility is a requirement. Enabling flushing of denormals to zero must be done with care. Although it can
improve performance on some algorithms, there are significant limitations on its use. These are
application-dependent:

• On many algorithms, it has no noticeable effect, because the algorithm does not usually process denormalized
numbers.

• On other algorithms, it can cause exceptions to occur and can seriously reduce the accuracy of the results of
the algorithm.

Flushing denormalized inputs to zero
If flushing denormalized inputs to zero is enabled for an instruction and a data type, and an input to that instruction
is a denormalized number of that data type, the input operand is flushed to zero, and its sign bit is not changed.
If a floating-point operation has an input denormalized number that is flushed to zero, for all purposes within the
instruction other than calculating Input Denormal floating-point exceptions, all inputs that are denormalized
numbers are treated as though they were zero with the same sign as the input.

For Advanced SIMD and floating-point instructions, other than FABS and FNEG, that process half-precision inputs,
flushing denormalized inputs to zero can be controlled as follows:

• If FPSCR.FZ16 is 0, denormalized half-precision inputs are not flushed to zero.

• If FPSCR .FZ16 is 1, flushing denormalized inputs to zero occurs as follows:

— If an instruction does not convert a half-precision input to a higher precision output, all input
denormalized numbers are flushed to zero.

— If an instruction converts a half-precision input to a higher precision output, input denormalized
numbers are not flushed to zero.

For Advanced SIMD and scalar floating-point instructions, other than FABS and FNEG, that process single-precision,
or double-precision inputs, flushing denormalized inputs to zero can be controlled as follows:

• If FPSCR.FZ is 0, flushing denormalized inputs to zero occurs as follows:

— For Advanced SIMD floating-point instructions, all single-precision and double-precision inputs that
are denormalized numbers are flushed to zero.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E1-4263
ID072021 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
— For scalar floating-point instructions, single-precision and double-precision inputs that are
denormalized numbers are not flushed to zero.

• If FPSCR.FZ is 1, for all A32, and T32 instructions, single-precision, and double-precision inputs that are
denormalized numbers are flushed to zero.

If FEAT_AA32BF16 is implemented, for Advanced SIMD and scalar floating-point instructions, other than FABS
and FNEG, that process BF16 inputs, flushing denormalized inputs to zero is treated as follows:

• Instructions that convert from single-precision floating-point values to BF16 format flush denormalized
inputs to zero.

• For any value of FPSCR.FZ, VDOT (vector), VDOT (by element), and VMMLA instructions flush all BF16
inputs that are denormalized numbers to zero.

Flushing to zero of denormalized numbers as Intermediate results of some BF16
instructions

BF16 arithmetic instructions VDOT (by element), VDOT (vector), and VMMLA, convert BF16 input values to
IEEE single-precision format, and calculate N-way dot-products, accumulating the products in single-precision
accumulators.

If FEAT_AA32BF16 is implemented, for Advanced SIMD and floating-point instructions, if a BF16 arithmetic
instruction processes an Intermediate result that is a single-precision denormalized number, the Intermediate result
is unconditionally flushed to zero.

Flushing denormalized outputs to zero
If flushing denormalized outputs to zero is enabled for an instruction and a data type, and an output from that
instruction is a denormalized number of that data type, the output operand is flushed to zero, and its sign bit is not
changed.
If a floating-point operation has an output denormalized number that is flushed to zero, for all purposes within the
instruction other than calculating floating-point exceptions, all outputs that are denormalized numbers are treated
as though they were zero with the same sign as the output.

For Advanced SIMD and floating-point instructions, other than FABS and FNEG, that generate half-precision outputs,
flushing denormalized outputs to zero can be controlled as follows:

• If FPSCR.FZ16 is 0, denormalized half-precision outputs are not flushed to zero.

• If FPSCR.FZ16 is 1, flushing denormalized outputs to zero occurs as follows:

— If the instruction does not convert a half-precision input to a higher precision output, all output
denormalized numbers are flushed to zero.

— If the instruction converts a half-precision input to a higher precision output, output denormalized
numbers are not flushed to zero.

For Advanced SIMD and scalar floating-point instructions, other than FABS and FNEG, that process single-precision,
or double-precision inputs, flushing denormalized outputs to zero can be controlled as follows:

• If FPSCR.FZ is 0, flushing denormalized outputs to zero occurs as follows:

— For Advanced SIMD floating-point instructions, all single-precision and double-precision outputs that
are denormalized numbers are flushed to zero.

— For scalar floating-point instructions, single-precision and double-precision outputs that are
denormalized numbers are not flushed to zero.

• If FPSCR.FZ is 1, for all A32, and T32 instructions, single-precision, and double-precision outputs that are
denormalized numbers are flushed to zero.

If FEAT_AA32BF16 is implemented, for Advanced SIMD and scalar floating-point instructions, other than FABS
and FNEG, that generate BF16 outputs, flushing denormalized outputs to zero can be controlled as follows:

• BF16 arithmetic instructions flush denormalized outputs to zero.
E1-4264 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
• If FPSCR.FZnstructions that convert from single-precision floating-point values to BF16 format flush
denormalized outputs to zero.

• VDOT (vector), VDOT (by element), and VMMLA instructions flush all BF16 outputs that are denormalized
numbers to zero regardless of the value of FPSCR.FZ.

E1.3.6 NaN handling and the Default NaN

The IEEE 754 standard defines a NaN as a number with all exponent bits set to 1 and a nonzero number in the
mantissa. The Arm architecture also defines a Default NaN which does not follow this format.

The IEEE 754 standard specifies that the sign bit of a NaN has no significance.

For a quiet NaN output derived from a signaling NaN operand, the most significant fraction bit is set to 1.

The Default NaN

The Default NaN is encoded as described inTable E1-4 on page E1-4265.

If FPSCR.DN is 1, for Advanced SIMD and floating-point instructions other than FABS, FMAX*, FMIN* and FNEG, if any
input to a floating-point operation performed by the instruction is a NaN, the output of the floating-point operation
is the Default NaN.

For FABS, FNEG, FMAX*, and FMIN*, Default NaN behavior is explained in the instruction description.

If FPSCR.DN is 0, for floating-point processing the Default NaN is not used for NaN propagation.

If VDOT (vector), VDOT (by element), and VMMLA instructions generate a NaN, the NaN is the default NaN.
regardless of the setting of FPSCR.DN.

If a floating-point instruction performs a floating-point operation, and that instruction generates an untrapped
Invalid Operation floating-point exception for a reason other than one of the inputs being a signaling NaN, the
output is the Default NaN.

NaN handling

The IEE 754 standard does not specify which input NaN is used as the output NaN. Therefore, where the Arm
architecture specifies which input NaN to use, this is an addition to the requirements in the IEEE 754 standard.

Depending on the operation, the exact value of a derived quiet NaN output might have both a different sign and a
different number of fraction bits from its source. See instruction descriptions for details.

NaN propagation

If an output NaN is derived from one of the operands, how the input NaN propagates to the output depends on the
instruction and the number of operands.

Table E1-4 Default NaN encoding

Half-precision,

 IEEE format
Single-precision Double-precision BFloat16

Sign bit 0 0 0 0

Exponent 0x1F 0xFF 0x7FF 0xFF

Fraction Bit[9] == 1,

bits[8:0] == 0

Bit[22] == 1,

bits[21:0] == 0

Bit[51] == 1,

bits[50:0] == 0

Bit[6] == 1,

bits[5:0] == 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E1-4265
ID072021 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
If an output NaN is derived from an input NaN and if the size of the output format is the same as the input format,
then all of the following apply:

• If the input NaN is a quiet NaN, the output NaN is the same as the input NaN.

• If the input NaN is a signaling NaN, the output NaN is derived as follows:

— If the handling of a signaling NaN by the instruction generates an Invalid Operation exception, the
output NaN is the quieted version of the input NaN.

— If the handling of a signaling NaN by the instruction does not generate an Invalid Operation exception,
the output NaN is the same as the input NaN. This case applies for FABS, FNEG, and FTSSEL
instructions.

If an output NaN is derived from an input NaN and if the size of the output format is larger than the input format,
all of the following apply:

• If the input NaN is a quiet NaN, the output NaN is the same as the input NaN except that the mantissa is
zero-extended in the low-order bit to fit the output format, and the exponent field is set to all ones.

• If the input NaN is a signaling NaN, the output NaN is the quieted version of the input NaN, except that the
mantissa is zero-extended in the low-order bits and the exponent field is set to all ones.

If an output NaN is derived from an input NaN and if the size of the output format is smaller than the input format,
all of the following apply:

• If the input NaN is a quiet NaN, the output NaN is the same as the input NaN except that the mantissa is
truncated in the lower-order bits to fit the output format, and the exponent field is set to all ones.

• If the input NaN is a signaling NaN, the output NaN is the quieted version of the input NaN except that the
mantissa is truncated in the lower-order bits to fit the output format, and the exponent field is set to all ones.

For the following descriptions, when an operand is described as first this relates to the left-to-right ordering of the
arguments of the pseudocode function that describes the operation.

If FPSCR.DN is 0, for Advanced SIMD, floating-point, or BF16 instructions that perform a floating-point operation,
other than FABS, FNEG, FMAX*, and FMIN*, NaN outputs that derive from NaN inputs are derived as follows:

• If all of the following apply, an instruction outputs a quiet NaN derived from the first signaling NaN operand:

— At least one operand is a signaling NaN.

— The instruction is not trapped.

• If all of the following apply, an instruction outputs a quiet NaN derived from the first NaN operand:

— At least one operand is a NaN, but none of the operands is a signaling NaN.

— The instruction is not trapped.

If an output NaN is derived from an input NaN, the pseudocode functions FPAbs(), and FPNeg() can change the sign
of the NaN,

E1.3.7 Rounding

The rounding mode specifies how the exact result of a floating-point operation is rounded to a value in the
destination format.

The rounding mode is either determined by the rounding mode control field FPSCR.RMode or by the instruction.

The rounding mode control field FPSCR.RMode can select the following rounding modes:

• Round to Nearest (RN) mode.

• Round towards Plus Infinity (RP) mode.

• Round towards Minus Infinity (RM) mode.

• Round towards Zero (RZ) mode.
E1-4266 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
The following two additional rounding modes are not selected by FPSCR.RMode, but are used by some
instructions:

• Round to Odd mode.

• Round to Nearest with ties to away mode.

Round to Nearest mode

Round to Nearest rounding mode rounds the exact result of a floating-point operation to a value that is representable
in the destination format as follows:

• If the value before rounding has an absolute value that is too large to represent in the output format, the
rounded value is an Infinity. The sign of the rounded value is the same as the sign of the value before
rounding.

• If the value before rounding has an absolute value that is not too large to represent in the output format, the
result is calculated as follows:

— If the two nearest floating-point numbers bracketing the value before rounding are equally near, the
result is the number with an even least significant digit.

— If the two nearest floating-point numbers bracketing the value before rounding are not equally near,
the result is the floating-point number nearest to the value before rounding.

Advanced SIMD arithmetic always uses the Round to Nearest setting, regardless of the value of the RMode bits.

Round towards Plus Infinity mode

Round towards Plus Infinity rounding mode rounds the exact result of a floating-point operation to a value that is
representable in the destination format. The result is the floating-point number in the output format that is closest to
and not less than the value before rounding. The result can be plus infinity.

Round towards Minus Infinity mode

Round towards Minus Infinity rounding mode rounds the exact result of a floating-point operation to a value that is
representable in the destination format. The result is the number in the output format that is closest to and not greater
than the value before rounding. The result can be minus infinity.

Round towards Zero mode

Round towards Zero rounding mode rounds the exact result of a floating-point operation to a value that is
representable in the destination format. The result is the floating-point number in the output format that is closest to
and not greater in absolute value than the value before rounding.

Round to Nearest with Ties to Away

Round to Nearest with Ties to Away rounding mode is used by the VCVTA (Advanced SIMD), VCVTA
(floating-point), VRINTA (Advanced SIMD), and VRINTA (floating-point) instructions.

Round to Nearest with Ties to Away rounding mode rounds the exact result of a floating-point operation to a value
that is representable in the destination format as follows:

• If the value before rounding has an absolute value that is too large to represent in the output format, the
rounded value is an Infinity, the sign of the rounded value is the same as the sign of the value before rounding.

• If the value before rounding has an absolute value that is not too large to represent in the output format, the
result is calculated as follows:

— If the two nearest floating-point numbers bracketing the value before rounding are equally near, the
result is the larger number.

— If the two nearest floating-point numbers bracketing the value before rounding are not equally near,
the result is the floating-point number nearest to the value before rounding.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E1-4267
ID072021 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
Round to Odd mode

Round to Odd mode is not defined by IEEE 754.

For BF16 instructions, if an intermediate format has at least two more bits of precision than the result format, Round
to Odd mode is used and operates as follows:

• If the rounded value is inexact, the least significant bit of the fraction is set to 1.

• If the value is too large to represent in the single-precision format, the rounded value is a single-precision
Infinity, the sign of the rounded value is the same as the sign of the value before rounding.

E1.3.8 Floating-point exceptions and exception traps

Execution of a floating-point instruction, or execution of an Advanced SIMD instruction that performs
floating-point operations, can generate an exceptional condition, called a floating-point exception.

Note

An Advanced SIMD instruction that operates on floating-point values can perform multiple floating-point
operations. Therefore, this section describes the handling of a floating-point exception on an operation, rather than
on an instruction.

The Armv8-A architecture does not support asynchronous reporting of floating-point exceptions.

For each of the following floating-point exceptions, it is IMPLEMENTATION DEFINED whether an implementation
includes synchronous exception generation:

• Input Denormal.

• Inexact.

• Underflow.

• Overflow.

• Divide by Zero.

• Invalid Operation.

If an implementation does not support synchronous exception generation from a floating-point exception, then that
synchronous exception is never generated, and all statements about synchronous exception generation from that
floating-point exception do not apply to the implementation.

If an implementation supports synchronous exception generation for a floating-point exception, then the registers
that are presented to the exception handler are consistent with the state of the PE immediately before the instruction
that caused the exception.

On return from a synchronous floating-point exception, software might not restore the cumulative exception flags.

Trapped floating-point exceptions are taken to the following levels:

• If a trapped floating-point exception occurs at EL0, the exception level it is taken to is as follows:

— If EL2 is using AArch32 and HCR.TGE is 1, the exception is taken to EL2.

— If EL2 is using AArch64 and HCR_EL2.TGE is 1, the exception is taken to EL2

— Otherwise, the exception is taken to EL1

• If a trapped floating-point exception occurs at EL1, it is taken to EL1.

• If a trapped floating-point exception occurs at EL2, it is taken to EL2.

• If a trapped floating-point exception occurs at EL3, it is taken to EL3.

If a trapped floating-point exception is taken to an Exception level that is using AArch64, then it is reported in the
ELR_ELx for the target Exception level, as described in Exception entry on page D1-2475.
E1-4268 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
If the exception is taken to an Exception level that is using AArch32, then it is taken as an Undefined Instruction
exception, see Undefined Instruction exception on page G1-6078. The FPEXC identifies the floating-point
exceptions that occurred since the corresponding status bits in that register were last set to 0.

Input Denormal exceptions

The cumulative floating-point exception bit FPSCR.IDC, and the trap enable bit FPSCR.IDE both relate to Input
Denormal exceptions.

If a single-precision or double-precision floating-point input is flushed to zero, an Input Denormal exception is
generated.

If a half-precision floating-point value is flushed to zero, an Input Denormal exception is not generated.

Inexact exceptions

The cumulative floating-point exception bit FPSCR.IXC, and the trap enable bit FPSCR.IXE both relate to Inexact
exceptions.

If a denormalized output is flushed to zero, an Inexact exception is not generated.

If a result is not flushed to zero, and the result does not equal the result computed with unbounded exponent range
and unbounded precision, then an Inexact exception is generated.

Underflow exceptions

The cumulative floating-point exception bit FPSR.UFC, and the trap enable bit FPSCR.UFE both relate to
Underflow exceptions.

For the purpose of underflow floating-point exception generation, a denormalized number is detected before
rounding is applied.

If the result of a floating-point operation is a denormalized number that is not flushed to zero, then the underflow
exception is generated as follows:

• If FPSCR.UFE is 0, and the result is inexact, then the underflow floating-point exception is generated.

• If FPSCR.UFE is 1, for both exact and inexact results, the underflow floating-point exception is generated.

If the result of a floating-point operation is a denormalized number that is flushed to zero, then the Underflow
floating-point exception is generated. The Underflow exception is not trapped regardless of the value of
FPSCR.UFE.

Overflow exceptions

The cumulative floating-point exception bit FPSCR.OFC, and the trap enable bit FPSCR.OFE both relate to
Overflow exceptions.

If the output of an instruction rounded with an unbounded exponent is greater than the maximum normalized
number for the output precision, an overflow exception is generated.

If an untrapped Overflow exception is generated, the result is determined by the rounding mode and the sign of the
result before rounding as follows:

• Round to Nearest carries all overflows to infinity with the sign of the result before rounding.

• Round towards Plus Infinity carries negative overflows to the most negative finite number of the output
precision, and carries positive overflows to plus infinity.

• Round towards Minus Infinity carries positive overflows to the largest finite number of the output precision,
and carries negative overflows to minus infinity.

• Round towards Zero carries all overflows to the output precision’s largest finite number with the sign of the
result before rounding.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E1-4269
ID072021 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
Divide by Zero exceptions

The cumulative floating-point exception bit FPSCR.DZC, and the trap enable bit FPSCR.DZE both relate to Divide
by Zero exceptions.

If a floating-point operation divides a finite nonzero number by zero, a Divide by Zero exception is generated.

For the purpose of Divide by Zero exception generation, testing for zero occurs after flushing of denormalized
numbers to zero.

A denormalized dividend that is flushed to zero is treated as zero and prevents Divide by Zero from occurring.

If the dividend is a finite nonzero, normalized number, and the divisor is a denormalized number, the divisor is
treated as zero and causes Divide by Zero to occur.

For the reciprocal and reciprocal square root estimate functions, the dividend is assumed to be +1.0. This means that
a zero or denormalized operand to these functions causes generation of a Divide by Zero floating-point exception.

If a floating-point operation divides a finite nonzero number by zero, and the Divide by Zero exception is untrapped,
the result is a correctly signed infinity.

Invalid Operation exceptions

The cumulative floating-point exception bit FPSCR.IOC, and the trap enable bit FPSCR.IOE both relate to Invalid
Operation exceptions.

For any floating-point instruction that performs a floating-point operation, if any of the following apply, the
instruction generates an Invalid Operation exception:

• At least one operand is a signaling NaN, and the instruction is not FABS or FNEG.

• Magnitude subtraction of infinities.

• Multiplying a zero by an infinity.

• Dividing a zero by a zero.

• Dividing an infinity by an infinity.

• Square root of an operand that is less than zero.

For the purpose of Invalid Operation Exception generation, testing for zero occurs after flushing of denormalized
numbers to zero. So a denormalized input that is flushed to zero is treated as zero.

If the input is one of: a quiet NaN, an infinity, or a number that overflows the values that can be represented in the
output format, and if another exception is not generated to signal the condition, then a conversion from
floating-point to either integer or fixed-point format, generates an Invalid Operation exception.

For the signaling compare instructions FCMPE and FCCMPE, if either of the source operands is any type of NaN,
the instruction generates an Invalid Operation floating-point exception.

Floating-point exception traps

For Advanced SIMD instructions, and for floating-point instructions when floating-point exception trapping is not
supported, these are non-trapping exceptions and the data-processing instructions do not generate any trapped
exceptions.

For floating-point instructions when floating-point exception trapping is supported:

• The floating-point exceptions can be trapped, by setting trap enable bits in the FPSCR, see Floating-point
exceptions and exception traps on page E1-4268, and:

— When a trap is not enabled the corresponding floating-point exception updates the corresponding
FPSCR cumulative bit, but does not generate an exception.

— When a trap is enabled the corresponding floating-point exception does not update the FPSCR, but
generates an exception. In this case, bits in the FPEXC indicate which floating-point exceptions have
occurred.
E1-4270 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
• The definition of the Underflow floating-point exception is different in the trapped and cumulative exception
cases. In the trapped case, the definition is:

— The trapped Underflow floating-point exception occurs if the absolute value of the result of an
operation, produced before rounding, is less than the minimum positive normalized number for the
destination precision, regardless of whether the rounded result is inexact.

• As with cumulative exceptions, higher priority trapped exceptions can prevent lower priority exceptions from
occurring, as described in Combinations of floating-point exceptions on page E1-4271.

• For Invalid Operation floating-point exceptions, for details of which quiet NaN is produced as the default
result see NaN handling and the Default NaN on page A1-57.

• For Overflow floating-point exceptions, the sign bit of the default result is determined normally for the
overflowing operation.

• For Divide by Zero floating-point exceptions, the sign bit of the default result is determined normally for a
division. This means it is the exclusive OR of the sign bits of the two operands.

Table E1-5 on page E1-4271 shows the results of untrapped floating-point exceptions. That table uses the following
abbreviations:

MaxNorm The maximum normalized number of the destination precision.

RM Round towards Minus Infinity mode, as defined in the IEEE 754 standard.

RN Round to Nearest mode, as defined in the IEEE 754 standard.

RP Round towards Plus Infinity mode, as defined in the IEEE 754 standard.

RZ Round towards Zero mode, as defined in the IEEE 754 standard.

For more information about the IEEE 754 descriptions of the rounding modes, see Floating-point standards, and
terminology on page A1-53.

Combinations of floating-point exceptions

Many pseudocode functions perform floating-point operations, including FixedToFP(), FPAdd(), FPCompare(),
FPCompareEQ(), FPCompareGE(), FPCompareGT(), FPDiv(), FPMax(), FPMin(), FPMul(), FPMulAdd(), FPRecipEstimate(),
FPRecipStep(), FPRSqrtEstimate(), FPRSqrtStep(), FPSqrt(), FPSub(), and FPToFixed(). All of these operations can
generate floating-point exceptions.

Note

FPAbs() and FPNeg() are not classified as floating-point operations because:

• They cannot generate floating-point exceptions.

• The floating-point operation behavior described in the following sections does not apply to them:

— Flushing denormalized numbers to zero on page A1-54.

— NaN handling and the Default NaN on page A1-57.

Table E1-5 Results of untrapped floating-point exceptions

Exception type Default result for positive sign Default result for negative sign

IOC, Invalid Operation Quiet NaN Quiet NaN

DZC, Divide by Zero +infinity -infinity

OFC, Overflow RN, RP:

RM, RZ:

+infinity

+MaxNorm

RN, RM:

RP, RZ:

-infinity

-MaxNorm

UFC, Underflow Normal rounded result Normal rounded result

IXC, Inexact Normal rounded result Normal rounded result

IDC, Input Denormal Normal rounded result Normal rounded result
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E1-4271
ID072021 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
More than one exception can occur on the same operation. The only combinations of floating-point exceptions that
can occur are:

• Overflow with Inexact.

• Underflow with Inexact.

• Input Denormal with other floating-point exceptions.

The priority order of these floating-point exceptions is that the Inexact exception is treated as lowest priority, and
the Input Denormal exception is treated as highest priority.

When none of the floating-point exceptions caused by an operation is trapped, any floating-point exception that
occurs causes the associated cumulative bit in the FPSCR to be set.

When one or more floating-point exceptions caused by an operation is trapped, the behavior of the instruction
depends on the priority of the exceptions:

• If the higher priority floating-point exception is trapped, its trap handler is called. It is IMPLEMENTATION
DEFINED whether any information about the lower priority floating-point exception is provided.

Note

Information about the lower priority floating-point exception might be provided in:

— The FPEXC, if the exception generated by the trap is taken to an Exception level that is using
AArch32.

— The ESR_ELx.ISS field, if the exception generated by the trap is taken to an Exception level that is
using AArch64.

However, information might be provided in another IMPLEMENTATION DEFINED way, for example using an
IMPLEMENTATION DEFINED register.

Apart from this, the lower priority floating-point exception is ignored in this case.

• If the higher priority floating-point exception is untrapped, its cumulative bit is set to 1 and its default result
is evaluated. Then the lower priority floating-point exception is handled normally, using this default result.

Some floating-point instructions specify more than one floating-point operation, as indicated by the pseudocode
descriptions of the instruction. In such cases, a floating-point exception on one operation is treated as higher priority
than a floating-point exception on another operation if the occurrence of the second floating-point exception
depends on the result of the first operation. Otherwise, it is CONSTRAINED UNPREDICTABLE which floating-point
exception is treated as higher priority.

For example, a VMLA.F32 instruction specifies a floating-point multiplication followed by a floating-point addition.
The addition can generate Overflow, Underflow and Inexact floating-point exceptions, all of which depend on both
operands to the addition and so are treated as lower priority than any floating-point exception on the multiplication.
The same applies to Invalid Operation floating-point exceptions on the addition caused by adding opposite-signed
infinities. The addition can also generate an Input Denormal floating-point exception, caused by the addend being
a denormalized number while in Flush-to-zero mode. It is CONSTRAINED UNPREDICTABLE which of an Input
Denormal floating-point exception on the addition and a floating-point exception on the multiplication is treated as
higher priority, because the occurrence of the Input Denormal floating-point exception does not depend on the result
of the multiplication. The same applies to an Invalid Operation floating-point exception on the addition caused by
the addend being a signaling NaN.

Note

The VFMA instruction performs a vector addition and a vector multiplication as a single operation. The VFMS
instruction performs a vector subtraction and a vector multiplication as a single operation.
E1-4272 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
E1.3.9 Controls of Advanced SIMD operation that do not apply to floating-point operation

Armv7 permitted implementation of either, both, or neither of the Advanced SIMD and floating-point additions to
the base instruction set, and provided some controls that applied to the Advanced SIMD functionality but not to the
floating-point functionality. In Armv8, Advanced SIMD functionality cannot be separated from floating-point
functionality, but in AArch32 state these controls function as they did in Armv7. This means they apply only to the
following instructions and instruction encodings:

• All instructions with encodings defined in:

— Advanced SIMD data-processing on page F3-4434, for the T32 instruction set.

— Advanced SIMD data-processing on page F4-4543, for the A32 instruction set.

• All instructions with encodings defined in:

— Advanced SIMD element or structure load/store on page F3-4470, for the T32 instruction set.

— Advanced SIMD element or structure load/store on page F4-4555, for the A32 instruction set.

• The form of the VDUP instruction described in VDUP (general-purpose register) on page F6-5489.

• The byte and halfword forms of the VMOV instructions described in each of:

— VMOV (general-purpose register to scalar) on page F6-5669.

— VMOV (scalar to general-purpose register) on page F6-5673.

The controls of this functionality are:

• The CPACR.ASEDIS field.

• The HCPTR.TASE field.

In an implementation that supports Advanced SIMD functionality, support for each of these controls is optional:

• If the CPACR.ASEDIS control is not supported then the CPACR.ASEDIS field is RAZ/WI. This is
equivalent to the control permitting the execution of Advanced SIMD instructions at EL1 and EL0.

• If the HCPTR.TASE control is not supported then the HCPTR.TASE field is RAZ/WI. This means the
HCPTR does not provide a control that can trap Non-secure execution of Advanced SIMD instructions to
Hyp mode.

E1.3.10 Implications of not including Advanced SIMD and floating-point support

In general, Armv8 requires the inclusion of the Advanced SIMD and floating-point instructions in all instruction
sets. Exceptionally, for implementation targeting specialized markets, Arm might produce or license an Armv8-A
implementation that does not provide any support for Advanced SIMD and floating-point instructions. In such an
implementation, in AArch32 state:

• Each of the CPACR.{cp10, cp11} fields is RES0.

• The CPACR.ASEDIS bit is RES0.

• Each of the HCPTR.{TASE, TCP10, TCP11} fields is RES1.

• Each of the NSACR.{NSASEDIS, cp10, cp11} fields is RES0.

• The FPEXC register is UNDEFINED.

E1.3.11 Pseudocode description of floating-point operations

The following subsections contain pseudocode definitions of the floating-point functionality supported by the
Armv8 architecture:

• Generation of specific floating-point values on page E1-4274.

• Floating-point negation and absolute value on page E1-4274.

• Floating-point value unpacking on page E1-4274.

• Floating-point exception and NaN handling on page E1-4274.

• Floating-point rounding on page E1-4274.

• Selection of Arm standard floating-point arithmetic on page E1-4274.

• Floating-point comparisons on page E1-4275.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E1-4273
ID072021 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
• Floating-point maximum and minimum on page E1-4275.

• Floating-point addition and subtraction on page E1-4275.

• Floating-point multiplication and division on page E1-4275.

• Floating-point fused multiply-add on page E1-4275.

• Floating-point reciprocal estimate and step on page E1-4275.

• Floating-point square root on page E1-4276.

• Floating-point reciprocal square root estimate and step on page E1-4276.

• Floating-point conversions on page E1-4277.

Generation of specific floating-point values

The following pseudocode functions generate specific floating-point values. The sign argument is '0' for the
positive version and '1' for the negative version:

• FPInfinity().

• FPMaxNormal().

• FPZero().

• FPTwo().

• FPThree().

• FPDefaultNaN().

Floating-point negation and absolute value

The floating-point negation and absolute value operations only affect the sign bit. They do not treat NaN operands
specially, nor denormalized number operands when flush-to-zero is selected.

The floating-point negation operation is described by the pseudocode function FPNeg(). The floating-point absolute
value operation is described by the pseudocode function FPAbs().

Floating-point value unpacking

The FPUnpack() function determines the type of a floating-point number, defined by FPType{}, and its numerical
value. It also does flush-to-zero processing on input operands.

Floating-point exception and NaN handling

The FPProcessException() procedure checks whether a floating-point exception is trapped, and handles it
accordingly. The floating-point exception types are defined by FPExc{}.

The FPProcessNaN() function processes a NaN operand, producing the correct result value and generating an Invalid
Operation floating-point exception if necessary. The FPProcessNaNs() function performs the standard NaN
processing for a two-operand operation. The FPProcessNaNs3() function performs the standard NaN processing for
a three-operand operation.

Floating-point rounding

The FPRound() function rounds and encodes a floating-point result to a specified destination format. This includes
processing Overflow, Underflow and Inexact floating-point exceptions and performing flush-to-zero processing on
result values.

Selection of Arm standard floating-point arithmetic

The StandardFPSCRValue() function returns the FPSCR value that selects Arm standard floating-point arithmetic.
Most of the arithmetic functions have a Boolean fpscr_controlled argument that is TRUE for Floating-point
operations and FALSE for Advanced SIMD operations, and that selects between using the real FPSCR value and this
value.
E1-4274 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
Floating-point comparisons

The FPCompare() function compares two floating-point numbers, producing a {N, Z, C, V} Condition flags result as
shown in Table E1-6 on page E1-4275:

This result defines the operation of the VCMP floating-point instruction. The VCMP instruction writes these flag values
in the FPSCR. After using a VMRS instruction to transfer them to the APSR, they can control conditional execution
as shown in Table F1-1 on page F1-4349.

The FPCompareEQ(), FPCompareGE(), and FPCompareGT() functions describe the operation of Advanced SIMD
instructions that perform floating-point comparisons.

Floating-point maximum and minimum

The FPMax() function returns the maximum of two floating-point numbers. The FPMin() function returns the
minimum of two floating-point numbers.

Floating-point addition and subtraction

The FPAdd() function adds two floating-point numbers. The FPSub() function subtracts one floating-point number
from another floating-point number.

Floating-point multiplication and division

The FPMul() function multiplies two floating-point numbers. The FPDiv() function divides one floating-point
number by another floating-point number.

Floating-point fused multiply-add

The FPMulAdd() function performs a floating-point fused multiply-add.

Floating-point reciprocal estimate and step

The Advanced SIMD implementation includes instructions that support Newton-Raphson calculation of the
reciprocal of a number.

The VRECPE instruction produces the initial estimate of the reciprocal. It uses the pseudocode functions:

• FPRecipEstimate().

• UnsignedRecipEstimate().

Table E1-6 Effect of a Floating-point comparison on the Condition flags

Comparison result N Z C V

Equal 0 1 1 0

Less than 1 0 0 0

Greater than 0 0 1 0

Unordered 0 0 1 1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E1-4275
ID072021 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
Table E1-7 on page E1-4276 shows the results where input values are out of range.

The Newton-Raphson iteration:

xn+1 = xn(2-dxn)

converges to (1/d) if x0 is the result of VRECPE applied to d.

The VRECPS instruction performs a (2 - op1×op2) calculation and can be used with a multiplication to perform a step
of this iteration. The functionality of this instruction is defined by the FPRecipStep() pseudocode function.

Table E1-8 on page E1-4276 shows the results where input values are out of range.

Floating-point square root

The FPSqrt() function returns the square root of a floating-point number.

Floating-point reciprocal square root estimate and step

The Advanced SIMD implementation includes instructions that support Newton-Raphson calculation of the
reciprocal of the square root of a number.

The VRSQRTE instruction produces the initial estimate of the reciprocal of the square root. It uses the pseudocode
functions:

• FPRSqrtEstimate().

• UnsignedRSqrtEstimate().

Table E1-7 VRECPE results for out of range inputs

Number type Input Vm[i] Result Vd[i]

Integer <= 0x7FFFFFFF 0xFFFFFFFF

Floating-point NaN Default NaN

Floating-point ±0 or denormalized number ±infinity a

a. FPSCR.DZC is set to 1

Floating-point ±infinity ±0

Floating-point Absolute value >= 2126 ±0

Table E1-8 VRECPS results for out of range inputs

Input Vn[i] Input Vm[i] Result Vd[i]

Any NaN - Default NaN

- Any NaN Default NaN

±0.0 or denormalized number ±infinity 2.0

±infinity ±0.0 or denormalized number 2.0
E1-4276 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
Table E1-9 on page E1-4277 shows the results where input values are out of range.

The Newton-Raphson iteration:

xn+1 = xn(3-dxn2)/2

converges to (1/√d) if x0 is the result of VRSQRTE applied to d.

The VRSQRTS instruction performs a (3 – op1×op2)/2 calculation and can be used with two multiplications to perform
a step of this iteration. The functionality of this instruction is defined by the FPRSqrtStep() pseudocode function.

Table E1-10 on page E1-4277 shows the results where input values are out of range.

FPRSqrtStep() calls the FPHalvedSub() pseudocode function.

Floating-point conversions

The FPConvert() pseudocode function performs conversions between half-precision, single-precision, and
double-precision floating-point numbers.

The FPToFixed() and FixedToFP() functions perform conversions between floating-point numbers and integers or
fixed-point numbers.

Table E1-9 VRSQRTE results for out of range inputs

Number type Input Vm[i] Result Vd[i]

Integer <= 0x3FFFFFFF 0xFFFFFFFF

Floating-point NaN, –(normalized number), –infinity Default NaN

Floating-point –0 or –(denormalized number) – infinity a

a. FPSCR.DZC is set to 1.

Floating-point +0 or +(denormalized number) +infinity a

Floating-point +infinity +0

Table E1-10 VRSQRTS results for out of range inputs

Input Vn[i] Input Vm[i] Result Vd[i]

Any NaN - Default NaN

- Any NaN Default NaN

±0.0 or denormalized number ±infinity 1.5

±infinity ±0.0 or denormalized number 1.5
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E1-4277
ID072021 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.4 About the AArch32 System register interface
E1.4 About the AArch32 System register interface

AArch32 state provides a System register encoding space, that is indexed by the parameter set {coproc, opc1, CRn,
CRm, opc2}, and a set of System register access instructions. This encoding space is used for:

• System registers.

• System instructions, for:

— Cache and branch predictor maintenance.

— Address translation.

— TLB maintenance.

In Armv8, this encoding space uses only the coproc values 0b111x.

Note

The encoding space with coproc values 0b101x is redefined to provide Advanced SIMD and floating-point
functionality.

In Armv8:

• The (coproc==0b1111) encodings provide system control functionality, by providing access to System
registers and System instructions. This includes architecture and feature identification, as well as control,
status information and configuration support.

The following sections give a general description of these encodings:

— About the System registers for VMSAv8-32 on page G5-6396.

— VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space on page G7-6420.

— Functional grouping of VMSAv8-32 System registers on page G5-6401.

These encodings also provide:

— The Performance Monitor registers. For more information, see Chapter D7 The Performance Monitors
Extension.

The Activity Monitor registers. For more information, see Chapter D8 The Activity Monitors
Extension.

• The (coproc==0b1110) encodings provide access to additional registers, that support:

— Debug, see Chapter G2 AArch32 Self-hosted Debug.

— The Jazelle identification registers, see Jazelle support on page E1-4259.

UNPREDICTABLE, CONSTRAINED UNPREDICTABLE, and UNDEFINED behavior for AArch32 System
register accesses on page G8-6439 gives information more information about permitted accesses to the System
registers in AArch32 state.

Most functionality in the (coproc==0b111x) encoding space cannot be accessed by software executing at EL0. This
manual clearly identifies those functions that can be accessed at EL0.

For more information:

• About this encoding space, including the naming of the parameters that index the space, see The AArch32
System register interface on page G1-6109.

• About the System interface access instructions, see System register access instructions on page F2-4397.
E1-4278 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Programmers’ Model
E1.5 Exceptions
E1.5 Exceptions

The Arm architecture uses the following terms to describe various types of exceptional condition:

Exceptions In the Arm architecture, an exception causes entry to EL1, EL2, or EL3. If the Exception level that
is entered is using AArch32, it also causes entry to the PE mode in which the exception must be
taken. A software handler for the exception is then executed.

Note
The term floating-point exception does not use this meaning of exception. This term is described
later in this list.

Exceptions include:

• Reset.

• Interrupts.

• Memory system aborts.

• Undefined instructions.

• Supervisor calls (SVCs), Secure Monitor calls (SMCs), and Hypervisor calls (HVCs).

• Debug exceptions.

Most details of exception handling are not visible to application level software, and are described in
Handling exceptions that are taken to an Exception level using AArch32 on page G1-6043. In an
Armv8 implementation that includes all the Exception levels, aspects that are visible to application
level software are:

• The SVC instruction causes a Supervisor Call exception. This provides a mechanism for
unprivileged software to make a call to the operating system, or other system component that
is accessible only at EL1.

• The SMC instruction causes a Secure Monitor Call exception, but only if software execution is
at EL1 or higher. Unprivileged software can only cause a Secure Monitor Call exception by
methods defined by the operating system, or by another component of the software system
that executes at EL1 or higher.

• The HVC instruction causes a Hypervisor Call exception, but only if software execution is at
EL1 or higher. Unprivileged software can only cause a Hypervisor Call exception by methods
defined by the hypervisor, or by another component of the software system that executes at
EL1 or higher.

• The BKPT instruction causes a Breakpoint Instruction exception, that is taken as a Prefetch
Abort exception. This provides a mechanism for a debugger to insert breakpoints into
unprivileged software, or for unprivileged software to make a call into a debugger that is
accessible at EL1.

• The WFI (Wait for Interrupt) instruction provides a hint that nothing needs to be done until an
interrupt or another WFI wakeup event occurs, see Wait For Interrupt on page G1-6107. This
means the hardware might enter a low-power state until the wakeup event occurs.

• The WFE (Wait for Event) instruction provides a hint that nothing needs to be done until either
an SEV instruction generates an event, or another WFE wakeup event occurs, see Wait For
Event and Send Event on page G1-6104. This means the hardware might enter a low-power
state until the wakeup event occurs.

Floating-point exceptions

These relate to exceptional conditions encountered during floating-point arithmetic, such as Divide
by Zero or Overflow. For more information, see:

• Floating-point exceptions and exception traps on page E1-4268.

• The FPEXC and FPSCR register descriptions.

• ANSI/IEEE Std. 754, IEEE Standard for Binary Floating-Point Arithmetic.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E1-4279
ID072021 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.5 Exceptions
E1-4280 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter E2
The AArch32 Application Level Memory Model

This chapter gives an application level description of the memory model for software executing in AArch32 state.
This means it describes the memory model for execution in EL0 when EL0 is using AArch32 in the following
sections:

• About the Arm memory model on page E2-4282.

• Atomicity in the Arm architecture on page E2-4284.

• Definition of the Armv8 memory model on page E2-4288.

• Ordering of translation table walks on page E2-4306.

• Caches and memory hierarchy on page E2-4307.

• Alignment support on page E2-4312.

• Endian support on page E2-4314.

• Memory types and attributes on page E2-4318.

• Mismatched memory attributes on page E2-4328.

• Synchronization and semaphores on page E2-4331

Note

In this chapter, System register names usually link to the description of the register in Chapter G8 AArch32 System
Register Descriptions, for example SCTLR.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4281
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.1 About the Arm memory model
E2.1 About the Arm memory model

The Arm architecture is a weakly ordered memory architecture that permits the observation and completion of
memory accesses in a different order from the program order. The following sections of this chapter provide the
complete definition of the Armv8 memory model, this introduction is not intended to contradict the definition found
in those sections. In general, the basic principles of the Armv8 memory model are:

• To provide a memory model that has similar weaknesses to those found in the memory models used by
high-level programming languages such as C or Java. For example, by permitting independent memory
accesses to be reordered as seen by other observers.

• To avoid the requirement for multi-copy atomicity in the majority of memory types.

• The provision of instructions and memory barriers to compensate for the lack of multi-copy atomicity in the
cases where it would be needed.

• The use of address, data, and control dependencies in the creation of order so as to avoid having excessive
numbers of barriers or other explicit instructions in common situations where some order is required by the
programmer or the compiler.

This section contains:

• Address space on page E2-4282.

• Memory type overview on page E2-4282.

E2.1.1 Address space

Address calculations are performed using 32-bit registers. Supervisory software determines the valid address range.

Attempting to access an address that is not valid generates an MMU fault.

Address calculations are performed modulo 232.

The result of an address calculation is UNKNOWN if it overflows or underflows the 32-bit address range A[31:0].

Memory accesses use the MemA[], MemO[], MemU[], and MemU_unpriv[] pseudocode functions:

• The MemA[] function makes an aligned access of the required type.

• The MemO[] function makes an ordered access of the required type.

• The MemU[] function makes an unaligned access of the required type

• The MemU_unpriv[] function makes an unaligned, unprivileged access of the required type.

Each of these functions calls Mem_with_type[] function, that specifies the required access. This calls
AArch32.MemSingle[], which performs an atomic, little-endian read of size bytes.

The AccType enumeration defines the different access types.

Note

• Chapter G4 The AArch32 System Level Memory Model and Chapter G5 The AArch32 Virtual Memory System
Architecture include descriptions of memory system features that are transparent to the application, including
memory access, address translation, memory maintenance instructions, and alignment checking and the
associated fault handling. These chapters also reference pseudocode descriptions of these operations.

• For references to the pseudocode that relates to memory accesses, see Basic memory access on
page G4-6258, Unaligned memory access on page G4-6258, and Aligned memory access on page G4-6258.

E2.1.2 Memory type overview

Armv8 provides the following mutually-exclusive memory types:

Normal This is generally used for bulk memory operations, both read/write and read-only operations.
E2-4282 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.1 About the Arm memory model
Device The Arm architecture forbids speculative reads of any type of Device memory. This means Device
memory types are suitable attributes for read-sensitive locations.

Locations of the memory map that are assigned to peripherals are usually assigned the Device
memory attribute.

Device memory has additional attributes that have the following effects:

• They prevent aggregation of reads and writes, maintaining the number and size of the
specified memory accesses. See Gathering on page E2-4324.

• They preserve the access order and synchronization requirements, both for accesses to a
single peripheral and where there is a synchronization requirement on the observability of
one or more memory write and read accesses. See Reordering on page E2-4325

• They indicate whether a write can be acknowledged other than at the end point. See Early
Write Acknowledgement on page E2-4326.

For more information on Normal memory and Device memory, see Memory types and attributes on page E2-4318.

Note

Earlier versions of the Arm architecture defined a single Device memory type and a Strongly-ordered memory type.
A Note in Device memory on page E2-4322 describes how these memory types map onto the Armv8 memory types.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4283
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.2 Atomicity in the Arm architecture
E2.2 Atomicity in the Arm architecture

Atomicity is a feature of memory accesses, described as atomic accesses. The Arm architecture description refers to
two types of atomicity, single-copy atomicity and multi-copy atomicity. In the Armv8 architecture, the atomicity
requirements for memory accesses depend on the memory type, and whether the access is explicit or implicit. For
more information, see:

• Requirements for single-copy atomicity on page E2-4284.

• Properties of single-copy atomic accesses on page E2-4285.

• Multi-copy atomicity on page E2-4285.

• Requirements for multi-copy atomicity on page E2-4286.

• Concurrent modification and execution of instructions on page E2-4286.

For more information about the memory types, see Memory type overview on page E2-4282.

E2.2.1 Requirements for single-copy atomicity

In AArch32 state, the single-copy atomic PE accesses are:

• All byte accesses.

• All halfword accesses to halfword-aligned locations.

• All word accesses to word-aligned locations.

• Memory accesses caused by LDREXD and STREXD instructions to doubleword-aligned locations.

LDM, LDC, LDRD, STM, STC, STRD, PUSH, POP, RFE, SRS, VLDM, VLDR, VSTM, and VSTR instructions are executed as a sequence
of word-aligned word accesses. Each 32-bit word access is guaranteed to be single-copy atomic. The architecture
does not require subsequences of two or more word accesses from the sequence to be single-copy atomic.

LDRD and STRD accesses to 64-bit aligned locations are 64-bit single-copy atomic as seen by translation table walks
and accesses to translation tables.

Note

This requirement has been added to avoid the need for complex measures to avoid atomicity issues when changing
translation table entries, without creating a requirement that all locations in the memory system are 64-bit
single-copy atomic. This addition means:

• The system designer must ensure that all writable memory locations that might be used to hold translations,
such as bulk SDRAM, can be accessed with 64-bit single-copy atomicity.

• Software must ensure that translation tables are not held in memory locations that cannot meet this atomicity
requirement, such as peripherals that are typically accessed using a narrow bus.

This requirement places no burden on read-only memory locations for which reads have no side effects, since it is
impossible to detect the size of memory accesses to such locations.

Advanced SIMD element and structure loads and stores are executed as a sequence of accesses of the element or
structure size. The architecture requires the element accesses to be single-copy atomic if and only if both:

• The element size is 32 bits, or smaller.

• The elements are naturally-aligned.

Accesses to 64-bit elements or structures that are 32-bit aligned are executed as a sequence of 32-bit accesses, each
of which is single-copy atomic. The architecture does not require subsequences of two or more 32-bit accesses from
the sequence to be single-copy atomic.

When an access is not single-copy atomic by the rules described in this section, it is executed as a sequence of one
or more accesses that aggregate to the size of the original access. Each of the accesses in this sequence is single-copy
atomic, at least at the byte level.
E2-4284 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.2 Atomicity in the Arm architecture
Note

In this section, the terms before the write operation and after the write operation mean before or after the write
operation has had its effect on the coherence order of the bytes of the memory location accessed by the write
operation.

If, according to these rules, an instruction is executed as a sequence of accesses, a synchronous Data Abort exception
or Debug state entry can be taken during that sequence. This causes execution of the instruction to be abandoned.
See Data Abort exception on page G1-6089 and, when FEAT_LSMAOC is implemented, Taking an interrupt or
other exception during a multiple-register load or store on page G1-6077.

If the synchronous Data Abort exception is returned from using the preferred return address, the instruction that
generated the sequence of accesses is re-executed and so any access that was performed before the exception was
taken is repeated. This also applies to an exit from Debug state.

Note

The exception behavior for these multiple access instructions means they are not suitable for use for writes to
memory for the purpose of software synchronization.

For implicit accesses:

• Cache linefills and evictions have no effect on the single-copy atomicity of explicit transactions or instruction
fetches.

• Instruction fetches are single-copy atomic:

— At 32-bit granularity in A32 state.

— At 16-bit granularity in T32 state.

Concurrent modification and execution of instructions on page E2-4286 describes additional constraints on
the behavior of instruction fetches.

• Translation table walks are performed using accesses that are single-copy atomic:

— At 32-bit granularity when using Short-descriptor format translation tables.

— At 64-bit granularity when using Long-descriptor format translation tables.

E2.2.2 Properties of single-copy atomic accesses

A memory access instruction that is single-copy atomic has the following properties:

1. For a pair of overlapping single-copy atomic store instructions, all of the overlapping writes generated by one
of the stores are Coherence-after the corresponding overlapping writes generated by the other store.

2. For a single-copy atomic load instruction L1 that overlaps a single-copy atomic store instruction S2, if one of
the overlapping reads generated by L1 Reads-from one of the overlapping writes generated by S2, then none
of the overlapping writes generated by S2 are Coherence-after the corresponding overlapping reads generated
by L1.

For more information, see Definition of the Armv8 memory model on page E2-4288.

E2.2.3 Multi-copy atomicity

In a multiprocessing system, writes to a memory location are multi-copy atomic if the following conditions are both
true:

• All writes to the same location are serialized, meaning they are observed in the same order by all observers,
although some observers might not observe all of the writes.

• A read of a location does not return the value of a write until all observers observe that write.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4285
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.2 Atomicity in the Arm architecture
Note

Writes that are not coherent are not multi-copy atomic.

E2.2.4 Requirements for multi-copy atomicity

For Normal memory, writes are not required to be multi-copy atomic.

For Device memory, writes are not required to be multi-copy atomic.

The Armv8 memory model is Other-multi-copy atomic. For more information, see Ordering constraints on
page E2-4293.

E2.2.5 Concurrent modification and execution of instructions

The Armv8 architecture limits the set of instructions that can be executed by one thread of execution as they are
being modified by another thread of execution without requiring explicit synchronization.

Concurrent modification and execution of instructions can lead to the resulting instruction performing any behavior
that can be achieved by executing any sequence of instructions that can be executed from the same Exception level,
except where the instruction before modification and the instruction after modification are:

• When executing the A32 instruction set, a B, BKPT, BL, HVC, ISB, NOP, SMC, or SVC instruction.

• When executing the T32 instruction set. a 16-bit B, BKPT, BLX, BX, NOP, or SVC instruction.

In addition, for the 32-bit T32 instructions, for which Instruction encodings on page F1-4344 describes the meaning
of {hw1, hw2}:

• hw1 of a 32-bit BL (immediate) instruction can be concurrently modified to hw1 of another BL (immediate)
instruction:

— This means that some of the most significant bits of the immediate value can be modified.

• hw1 of a 32-bit BLX (immediate) instruction can be concurrently modified to hw1 of another BLX immediate
instruction:

— This means that some of the most significant bits of the immediate value can be modified.

• hw1 of a 32-bit BL (immediate) or BLX (immediate) instruction can be concurrently modified to a T32 16-bit B,
BX, BLX, BKPT, or SVC instruction. This modification also works in reverse.

• hw2 of a 32-bit BL (immediate) instruction can be concurrently modified to hw2 of another BL (immediate)
instruction with a different immediate:

— This means that some bits of the immediate value, including the least significant bits, can be modified.

• hw2 of a 32-bit BLX (immediate) instruction can be concurrently modified to hw2 of another BLX (immediate)
instruction with a different immediate:

— This means that some bits of the immediate value, including the least significant bits, can be modified.

• hw2 of a 32-bit B (immediate) instruction with a condition field can be concurrently modified to hw2 of another
32-bit B (immediate) instruction with a condition field with a different immediate:

— This means that some bits of the immediate value, including the least significant bits, can be modified.

• hw2 of a 32-bit B (immediate) instruction without a condition field can be concurrently modified to hw2 of
another 32-bit B (immediate) instruction without a condition field:

— This means that some bits of the immediate value, including the least significant bits, can be modified.

Note

• In the T32 instruction set:

— The only encodings of BKPT and SVC are 16-bit.

— The only encoding of BL is 32-bit.
E2-4286 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.2 Atomicity in the Arm architecture
• The ISB instruction can be concurrently modified and executed in the A32 and A64 instruction sets, but not
in the T32 instruction set.

For the instructions explicitly identified in this section, the architecture guarantees that, after modification of the
instruction, behavior is consistent with execution of either:

• The instruction originally fetched.

• A fetch of the modified instruction.

The instructions to which this applies are the B, BL, NOP, BKPT, SVC, HVC, and SMC instructions.

For both instruction sets, if one thread of execution changes a conditional branch instruction to another conditional
branch instruction, and the change affects both the condition field and the branch target, execution of the changed
instruction by another thread of execution before the change is synchronized can lead to either:

• The old condition being associated with the new target address.

• The new condition being associated with the old target address.

These possibilities apply regardless of whether the condition, either before or after the change to the branch
instruction, is the always condition.

For all other instructions, to avoid UNPREDICTABLE or CONSTRAINED UNPREDICTABLE behavior, instruction
modifications must be explicitly synchronized before they are executed. The required synchronization is as follows:

1. No PE must be executing an instruction when another PE is modifying that instruction.

2. To ensure that the modified instructions are observable, a PE that is writing the instructions must issue the
following sequence of instructions and operations:

; Coherency example for self-modifying code
; Enter this code with <Rt> containing a new 32-bit instruction,
; to be held in Cacheable space at a location pointed to by Rn. Use STRH in the first
; line instead of STR for a 16-bit instruction.
STR <Rt>, [Rn]
DCCMVAU Rn ; Clean data cache by MVA to point of unification (PoU)
DSB ; Ensure visibility of the data stored
ICIMVAU Rn ; Invalidate instruction cache by VA to PoU
BPIMVA Rn ; Invalidate branch predictor by MVA to PoU
DSB

Note
• The DCCMVAU operation is not required if the area of memory is either Non-cacheable or Write-Through

Cacheable.

• If the contents of physical memory differ between the mappings, changing the mapping of VAs to PAs
can cause the instructions to be concurrently modified by one PE and executed by another PE. If the
modifications affect instructions other than those listed as being acceptable for modification,
synchronization must be used to avoid UNPREDICTABLE or CONSTRAINED UNPREDICTABLE behavior.

3. In a multiprocessor system, the ICIMVAU and BPIMVA are broadcast to all PEs within the Inner Shareable domain
of the PE running this sequence. However, once the modified instructions are observable, each PE that is
executing the modified instructions must issue the following instruction to ensure execution of the modified
instructions:

 ISB ; Synchronize fetched instruction stream

For more information about the required synchronization operation, see Synchronization and coherency issues
between data and instruction accesses on page E2-4309.

For information about memory accesses caused by instruction fetches, see Ordering constraints on page E2-4293.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4287
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the Armv8 memory model
E2.3 Definition of the Armv8 memory model

This section describes observation and ordering in the Armv8 memory model. It contains the following subsections:

• Basic definitions on page E2-4288.

• Dependency definitions on page E2-4290.

• Ordering relations on page E2-4291.

• Ordering constraints on page E2-4293.

• Internal visibility requirement on page E2-4293.

• External ordering constraints on page E2-4293.

• Completion and endpoint ordering on page E2-4295.

• Ordering of instruction fetches on page E2-4297.

• Restrictions on the effects of speculation on page E2-4297.

• Memory barriers on page E2-4299.

For more information on endpoint ordering of memory accesses, see Reordering on page E2-4325.

In the Armv8 memory model, the Shareability memory attribute indicates the degree to which hardware must ensure
memory coherency between a set of observers, see Memory types and attributes on page E2-4318.

The Armv8 architecture defines additional memory attributes and associated behaviors, which are defined in the
system level section of this manual. See:

• Chapter G4 The AArch32 System Level Memory Model.

• Chapter G5 The AArch32 Virtual Memory System Architecture.

See also Mismatched memory attributes on page E2-4328.

E2.3.1 Basic definitions

The Armv8 memory model provides a set of definitions that are used to construct conditions on the permitted
sequences of accesses to memory.

Observer

An Observer refers to a processing element or mechanism in the system, such as a peripheral device,
that can generate reads from, or writes to, memory.

Common Shareability Domain

For the purpose of this section, all Observers are assumed to belong to a Common Shareability
Domain. All read and write effects access only Normal memory locations in a Common Shareability
Domain, and exudes the situations described in Mismatched memory attributes on page E2-4328.

Location

A Location is a byte that is associated with an address in the physical address space.

Note

It is expected that an operating system will present the illusion to the application programmer that
is consistent with a location also being considered as a byte that is associated with an address in the
virtual address space.

Effects

The Effects of an instruction can be:

• Register effects.

• Memory effects.

• Barrier effects.

• Branching effects.
E2-4288 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.3 Definition of the Armv8 memory model
The effects of an instruction I1 are said to appear in program order before the effects of an instruction
I2 if and only if I1 occurs before I2 in the order specified by the program. Each effect generated by
an instruction has a unique identifier, which characterizes it amongst the events generated by the
same instruction.

Register effect

The Register effects of an instruction are register reads or register writes of that instruction. For an
instruction that accesses registers, a register read effect is generated for each register read by the
instruction and a register write effect is generated for each register written by the instruction. An
instruction may generate both read and write register Register effects.

Memory effect

The Memory effects of an instruction are the memory reads or writes generated by that instruction.
For an instruction that accesses memory, a memory read effect is generated for each Location read
by the instruction and a memory write effect is generated for each Location written by the
instruction. An instruction may generate both read and write Memory effects.

Branching effect

The Branching effects of an instruction are effects which correspond to a branching decision being
taken.

Note

Conditional and compare-and-swap instructions do not create Branching effects.

Intrinsic order

There is a per-instruction Intrinsic order relation that provides a partial order over the effects of that
instruction, according to the operation of that instruction.

The operation of an instruction is defined by the pseudocode in Chapter F5 T32 and A32 Base
Instruction Set Instruction Descriptions.

Reads-from-register

The Reads-from-register relation couples register read and write effects to the same register such
that each register read effect is paired with exactly one register write effect in the execution of a
program. A register read effect R2 Reads-from-register a register write effect W1 to the same register
if and only if R2 takes its data from W1. By construction W1 must be in program order before R2
and there must be no intervening write to the same register in program order between W1 and R2.

Reads-from

The Reads-from relation couples memory read and write effects to the same Location such that each
memory read effect is paired with exactly one memory write effect in the execution of a program.
A memory read effect R2 from a Location Reads-from a memory write effect W1 to the same
Location if and only if R2 takes its data from W1.

Coherence order

There is a per-location Coherence order relation that provides a total order over all memory write
effects from all coherent Observers to that Location, starting with a notional memory write effect of
the initial value. The Coherence order of a Location represents the order in which memory write
effects to the Location arrive at memory.

Local read successor

A memory read effect R2 of a Location is the Local read successor of a memory write effect W1
from the same Observer to the same Location if and only if W1 appears in program order before R2
and there is not a memory write effect W3 from the same Observer to the same Location appearing
in program order between W1 and R2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4289
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the Armv8 memory model
Local write successor

A memory write effect W2 of a Location is a Local write successor of a memory read or write effect
RW1 from the same Observer to the same Location if and only if RW1 appears in program order
before W2.

Coherence-after

A memory write effect W2 to a Location is Coherence-after another memory write effect W1 to the
same Location if and only if W2 is sequenced after W1 in the Coherence order of the Location.

A memory write effect W2 to a Location is Coherence-after a memory read effect R1 of the same
location if and only if R1 Reads-from a memory write effect W3 to the same Location and W2 is
Coherence-after W3.

Observed-by

A memory read or write effect RW1 from an Observer is Observed-by a memory write effect W2
from a different Observer if and only if W2 is coherence-after RW1.

A memory write effect W1 from an Observer is Observed-by a memory read effect R2 from a
different Observer if and only if R2 Reads-from W1.

Note

The Observed-by relation only relates Memory effects generated by different Observers.

Overlapping accesses

Two Memory effects overlap if and only if they access the same Location. Two instructions overlap
if and only if one or more of their generated Memory effects overlap.

Single-copy-atomic-ordered-before

A memory read effect R1 is Single-copy-atomic-ordered-before another memory read effect R2 if
and only if all of the following statements are true:

• R1 and R2 are memory read effects generated by the same instruction.

• R1 is not a Local read successor of a memory write effect.

• R2 is a Local read successor of a memory write effect.

DMB FULL

A DMB FULL is a DMB with neither the LD or the ST qualifier.

Where this section refers to DMB without any qualification, then it is referring to all types of DMB.
Unless a specific shareability domain is defined, a DMB applies to the Common Shareability Domain.

All properties that apply to DMB also apply to the corresponding DSB.

Context synchronization instruction

A Context synchronization instruction is one of the following:

• An ISB instruction.

• An instruction that generates a synchronous exception.

• An exception return instruction.

• A DCPS or DRPS instruction.

E2.3.2 Dependency definitions

Dependency through registers

A Dependency through registers from a first effect E1 to a second effect E2 exists within a PE if and
only if at least one of the following applies:

• E1 is a register write effect W1 which has not been generated by a Store Exclusive, E2 is a
register read effect R2 and R2 Reads-from-register W1.
E2-4290 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.3 Definition of the Armv8 memory model
• E1 and E2 have been generated by the same instruction and E1 is before E2 in the Intrinsic
order of that instruction.

• There is a Dependency through registers from E1 to a third effect E3, and there is a
Dependency through registers from E3 to E2.

Address dependency

An Address dependency from a memory read effect R1 to a Memory effect RW2 exists if and only if
there is a Dependency through registers from R1 to a Register effect E3 generated by RW2, and E3
affects the address part of RW2, and either:

• RW2 is a memory write effect W2.

• RW2 is a memory read effect R2 and there is no Branching effect D4 such that there is a
Dependency through registers from R1 to D4 and from D4 to R2.

Data dependency

A Data dependency from a memory read effect R1 to a memory write effect W2 exists if and only if
there is a Dependency through registers from R1 to a Register effect E3 generated by W2, and E3
affects the data part of W2.

Control dependency

A Control dependency from a memory read effect R1 to a subsequent Memory effect RW2 exists if
and only if either:

• There is a Dependency through registers from R1 to a Branching effect B3 and B3 is in
program order before RW2.

• There is a Dependency through registers from R1 to the determination of a synchronous
exception on an instruction generating an effect RW3, and RW2 appears in program order
after RW3.

Note

This notion is under review. Arm’s intent is that a branch instruction between a read and a write,
where the branch condition is dependent on the read, will provide order, regardless of whether the
branch is taken. This only applies to branch instructions and not to conditional selection or other
conditional data processing instructions. A formal definition of this change will be issued soon as
an erratum to the Armv8 Architecture Reference Manual.

E2.3.3 Ordering relations

Dependency-ordered-before

A dependency creates externally-visible order between a memory read effect and another Memory
effect generated by the same Observer. A memory read effect R1 is Dependency-ordered-before a
memory read or write effect RW2 from the same Observer if and only if R1 appears in program order
before RW2 and any of the following cases apply:

• There is an Address dependency or a Data dependency from R1 to RW2.

• RW2 is a memory write effect W2 and there is a Control dependency from R1 to W2.

• RW2 is a memory read effect R2 generated by an instruction appearing in program order after
an instruction that generates a Context synchronization event E3, and there is a Control
dependency from R1 to E3.

• RW2 is a memory write effect W2 appearing in program order after a memory read or write
effect RW3 and there is an Address dependency from R1 to RW3.

• RW2 is a Local read successor R2 of a memory write effect W3 and there is an Address
dependency or a Data dependency from R1 to W3.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4291
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the Armv8 memory model
Atomic-ordered-before

Load-Exclusive and Store-Exclusive instructions provide some ordering guarantees, even in the
absence of dependencies. A memory read or write effect RW1 is Atomic-ordered-before a memory
read or write effect RW2 from the same Observer if and only if RW1 appears in program order before
RW2 and either of the following cases apply:

• RW1 is a memory read effect R1 and RW2 is a memory write effect W2 such that R1 and W2
are generated by an atomic instruction or a successful Load-Exclusive/Store-Exclusive
instruction pair to the same Location.

• RW1 is a memory write effect W1 generated by an atomic instruction or a successful
Store-Exclusive instruction and RW2 is a memory read effect R2 generated by an instruction
with Acquire semantics such that R2 is a Local read successor of W1.

For more information, see Synchronization and semaphores on page E2-4331.

Barrier-ordered-before

Barrier instructions order prior Memory effects before subsequent Memory effects generated by the
same Observer. A memory read or write effect RW1 is Barrier-ordered-before a memory read or
write effect RW2 from the same Observer if and only if RW1 appears in program order before RW2
and any of the following cases apply:

• RW1 appears in program order before a DMB FULL that appears in program order before RW2.

• RW1 is a memory write effect W1 and is generated by an atomic instruction with both Acquire
and Release semantics.

• RW1 is a memory write effect W1 generated by an instruction with Release semantics and
RW2 is a memory read effect R2 generated by an instruction with Acquire semantics.

• RW1 is a memory read effect R1 and appears in program order before a DMB LD that appears
in program order before RW2.

• RW1 is a memory read effect R1 and is generated by an instruction with Acquire or
AcquirePC semantics.

• RW1 is a memory write effect W1 and RW2 is a memory write effect W2 appearing in
program order before a DMB ST that appears in program order before W2.

• RW2 is a memory write effect W2 and is generated by an instruction with Release semantics.

Locally-ordered-before

Dependencies, Local write successor, load/store-exclusive, atomic and barrier instructions can be
composed within an Observer to create externally-visible order. A memory read or write effect RW1
is Locally-ordered-before a memory read or write effect RW2 from the same Observer if and only if
any of the following apply:

• RW1 is a memory write effect W1 and RW2 is a memory write effect W2 that is equal to or
generated by the same instruction as a Local write successor of RW1.

• RW1 is Dependency-ordered-before RW2.

• RW1 is Atomic-ordered-before RW2.

• RW1 is Barrier-ordered-before RW2.

• RW1 is Locally-ordered-before a memory read or write effect that is Locally-ordered-before
RW2.
E2-4292 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.3 Definition of the Armv8 memory model
E2.3.4 Ordering constraints

The Armv8 memory model is described as being Other-multi-copy atomic. The definition of Other-multi-copy
atomic is as follows:

Other-multi-copy atomic

In an Other-multi-copy atomic system, it is required that a memory write effect from an Observer,
if observed by a different Observer, is then observed by all other Observers that access the Location
coherently. It is, however, permitted for an Observer to observe its own writes prior to making them
visible to other observers in the system.

The Other-multi-copy atomic property of the Armv8 memory model is enforced by placing constraints on the
possible executions of a program. Those executions that meet the constraints given by the ordering model are said
to be Architecturally well-formed. An implementation that is executing a program is only permitted to exhibit
behavior consistent with an Architecturally well-formed execution.

Architecturally well-formed

An Architecturally well-formed execution must satisfy both the Internal visibility requirement and
any of the three alternative External ordering constraints.

E2.3.5 Internal visibility requirement

For a memory read or write effect RW1 that appears in program order before a memory read or write effect RW2 to
the same Location, the Internal visibility requirement requires that exactly one of the following statements is true:

• RW2 is a memory write effect W2 that is Coherence-after RW1.

• RW1 is a memory write effect W1, RW2 is a memory read effect R2 and either:

— R2 Reads-from W1.

— R2 Reads-from a memory write effect that is Coherence-after W1.

• RW1 and RW2 are both reads R1, R2, R1 Reads-from a memory write effect W3 and either:

— R2 Reads-from W3.

— R2 Reads-from a memory write effect that is Coherence-after W3.

Informally, if a Memory effect M1 from an Observer appears in program order before a Memory effect M2 from the
same Observer, then M1 will be seen to occur before M2 by that Observer.

E2.3.6 External ordering constraints

The Armv8 memory model offers the following three alternative representations of the External ordering
constraint:

• External visibility requirement.

• External completion requirement.

• External global completion requirement.

An Architecturally well-formed execution must satisfy both the Internal visibility requirement and one of the three
alternative representations in the External ordering constraints.

External visibility requirement

Ordered-before

An arbitrary pair of Memory effects is ordered if it can be linked by a chain of ordered accesses
consistent with external observation. A memory read or write effect RW1 is Ordered-before a
memory read or write effect RW2 if and only if any of the following cases apply:

• RW1 is Observed-by a memory read or write effect RW3 that is generated by the same
instruction as RW2.

• RW1 is Locally-ordered-before RW2.

• RW1 is Ordered-before a memory read or write effect that is Ordered-before RW2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4293
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the Armv8 memory model
For a memory read or write effect RW1 from an Observer that is Ordered-before a memory read or write effect RW2
from a different Observer, the External visibility requirement requires that RW2 is not Observed-by RW1. This
means that an Architecturally well-formed execution must not exhibit a cycle in the Ordered-before relation.

Informally, if a Memory effect M1 from an Observer is Ordered-before another Memory effect M2 from a different
Observer, then M1 will be seen to occur before M2 by all Observers in the system.

Completes-before order

The Completes-before order is a total order that corresponds to the order in which Memory effects complete within
the system. The following effects constitute a single entry in the Completes-before order:

• Writes from the same instruction.

• Reads from the same instruction which read from external writes.

• Reads from the same instruction which read from the same internal write.

All other reads constitute distinct entries in the Completes-before order.

Completes-before

A memory read or write effect RW1 Completes-before a memory read or write effect RW2 if and
only if RW1 appears in the Completes-before order before RW2.

Deriving Reads-from and Coherence order from the Completes-before order

The Completes-before order can be used to resolve the Reads-from and Coherence order relations
for every memory access in the system as follows:

• For a memory read effect R1 of a memory location by an Observer, then:

— If there is a memory write effect W2 to the same Location from the same Observer and
all of the following are true:

— W2 appears in program order before R1.

— R1 Completes-before W2.

— There are no writes to the Location appearing in program order between W2 and
R1 then R1 Reads-from W2.

— Otherwise, R1 Reads-from its closest preceding write in the Completes-before order to
the same Location. If no such write exists, then R1 Reads-from the initial value of the
memory location.

• The Coherence order of writes to a memory location is the order in which those writes appear
in the Completes-before order. The final value of each memory location is therefore
determined by the final write to each Location in the Completes-before order. If no such write
exists for a given Location, the final value is the initial value of that Location.

External completion requirement

A memory read or write effect RW1 Globally-completes-before a memory read or write effect RW2
if and only if any of the following statements are true:

• RW1 is Locally-ordered-before RW2.

• RW1 is a memory read effect R1 and RW2 is a memory read effect R2 and R1 is
Single-copy-atomic-ordered-before R2.

Globally-completes-before order

The Globally-completes-before order is a total order that corresponds to the order in which Memory effects
globally-complete within the system. The following effects constitute a single entry in the
Globally-completes-before order:

• Writes from the same instruction.

• Reads from the same instruction which read from external writes.

• Reads from the same instruction which read from the same internal write.
E2-4294 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.3 Definition of the Armv8 memory model
All other reads constitute distinct entries in the Globally-completes-before order.

Globally-completes-before

A memory read or write effect RW1 globally-completes-before a memory read or write effect RW2
if and only if RW1 appears in the Globally-completes-before order before RW2.

Deriving Reads-from and Coherence order from the Globally-completes-before order

The Globally-completes-before order can be used to resolve the Reads-from and Coherence order
relations for every memory access in the system as follows:

• A memory read effect R1 of a memory location by an Observer Reads-from its closest
preceding write in the Globally-completes-before order to the same Location. If no such write
exists, then R1 Reads-from the initial value of the memory location.

• The Coherence order of writes to a memory location is the order in which those writes appear
in the Globally-completes-before order. The final value of each memory location is therefore
determined by the final write to each Location in the Globally-completes-before order. If no
such write exists for a given Location, the final value is the initial value of that Location.

External global completion requirement

The External global completion requirement requires that a memory read or write effect RW1
Globally-completes-before a memory read or write effect RW2 if and only if any of the following
statements are true:

• RW1 is Locally-ordered-before RW2 and either:

— RW1 is a memory write effect.

— RW1 is a memory read effect R1 and either:

— R1 is not a Local read successor of a memory write effect.

— R1 is a Local read successor of a memory write effect that is
Locally-ordered-before RW2.

• RW1 is a memory read effect R1 and RW2 is a memory read effect R2 and R1 is
Single-copy-atomic-ordered-before R2.

E2.3.7 Completion and endpoint ordering

Interaction between Observers in a system is not restricted to communication via shared variables in coherent
memory. For example, an Observer could configure an interrupt controller to raise an interrupt on another Observer
as a form of message passing. These interactions typically involve an additional agent, which defines the instruction
sequence that is required to establish communication links between different Observers. When these forms of
interaction are used in conjunction with shared variables, a DSB instruction can be used to enforce ordering between
them.

For all memory, the completion rules are defined as:

• A memory read effect R1 to a Location is complete for a shareability domain when all of the following are
true:

— Any write to the same Location by an Observer within the shareability domain will be Coherence-after
R1.

— Any translation table walks associated with R1 are complete for that shareability domain.

• A memory write effect W1 to a Location is complete for a shareability domain when all of the following are
true:

— Any write to the same Location by an Observer within the shareability domain will be Coherence-after
W1.

— Any read to the same Location by an Observer within the shareability domain will either Reads-from
W1 or Reads-from a memory write effect that is Coherence-after W1.

— Any translation table walks associated with the write are complete for that shareability domain.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4295
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the Armv8 memory model
• A translation table walk is complete for a shareability domain when the memory accesses, including the
updates to translation table entries, associated with the translation table walk are complete for that
shareability domain, and the TLB is updated.

• A cache or branch predictor maintenance instruction is complete for a shareability domain when the memory
effects of the instruction are complete for that shareability domain, and any translation table walks that arise
from the instruction are complete for that shareability domain.

• A TLB invalidate instruction is complete when all memory accesses using the TLB entries that have been
invalidated are complete.

The completion of any cache, branch predictor, or TLB maintenance instruction includes its completion on all PEs
that are affected by both the instruction and the DSB operation that is required to guarantee visibility of the
maintenance instruction.

Note

These completion rules mean that, for example, a cache maintenance instruction that operates by VA to the PoC
completes only after memory at the PoC has been updated.

Additionally, for Device-nGnRnE memory, a read or write of a Location in a Memory-mapped peripheral that
exhibits side-effects is complete only when the read or write both:

• Can begin to affect the state of the Memory-mapped peripheral.

• Can trigger all associated side-effects, whether they affect other peripheral devices, PEs, or memory.

Note

This requirement for Device-nGnRnE memory is consistent with the memory access having reached the peripheral
endpoint.

Peripherals

This section defines a Memory-mapped peripheral and the total order of reads and write to a peripheral which is
defined as the Peripheral coherence order:

Memory-mapped peripheral

A Memory-mapped peripheral occupies a memory region of IMPLEMENTATION DEFINED size and
can be accessed using load and store instructions. Memory effects to a Memory-mapped peripheral
can have side-effects, such as causing the peripheral to perform an action. Values that are read from
addresses within a Memory-mapped peripheral might not correspond to the last data value written
to those addresses. As such, Memory effects to a Memory-mapped peripheral might not appear in
the Reads-from or Coherence order relations.

Peripheral coherence order

The Peripheral coherence order of a Memory-mapped peripheral is a total order on all reads and
writes to that peripheral.

Note

The Peripheral coherence order for a Memory-mapped peripheral signifies the order in which
accesses arrive at the endpoint.

For a memory read or write effect RW1 and a memory read or write effect RW2 to the same
peripheral, then RW1 will appear in the Peripheral coherence order for the peripheral before RW2 if
either of the following cases apply:

• RW1 and RW2 are accesses using Non-cacheable or Device attributes and RW1 is
Ordered-before RW2.

• RW1 and RW2 are accesses using Device-nGnRE or Device-nGnRnE attributes and RW1
appears in program order before RW2.
E2-4296 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.3 Definition of the Armv8 memory model
Out-of-band-ordered-before

A memory read or write effect RW1 is Out-of-band-ordered-before a memory read or write effect
RW2 if and only if either of the following cases apply:

• RW1 appears in program order before a DSB instruction that begins an IMPLEMENTATION
DEFINED instruction sequence indirectly leading to the generation of RW2.

• RW1 is Ordered-before a memory read or write effect RW3 and RW3 is
Out-of-band-ordered-before RW2.

If a Memory effect M1 is Out-of-band-ordered-before a memory read or write effect M2, then M1 is
seen to occur before M2 by all Observers.

E2.3.8 Ordering of instruction fetches

For two memory locations A and B, if A has been written to and been made coherent with the instruction fetches of
the shareability domain, before an update to B by an observer in the same shareability domain, then the instruction
stream of each observer in the shareability domain will not see the updated value of B without also seeing the
updated value of A.

A write has been made coherent with an instruction fetch of a shareability domain when:

CTR.{DIC, IDC} == {0, 0}

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and
that clean is complete for the shareability domain. Subsequently the location has been invalidated
to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for
the shareability domain.

CTR.{DIC, IDC} == {1, 0}

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and
that clean is complete for the shareability domain.

CTR.{DIC, IDC} == {0, 1}

The write is complete for the shareability domain. Subsequently the location has been invalidated
to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for
the shareability domain.

CTR.{DIC, IDC} == {1, 1}

The write is complete for the shareability domain.

Note

Microarchitecturally, this means that these situations cannot both be true in an implementation:

• After delays in fetching from memory, the instruction queue can have entries written into it out of order.

• For an implementation:

— When CTR.DIC == 0, if there is an outstanding entry in the instruction queue, then later entries in the
instruction queue are not impacted by the ICIMVAU instructions of a different core.

— When CTR.DIC == 1, if there is a write to the location that is held in the queue when there is an
outstanding entry in the instruction queue for an older entry, then the instruction queue does not have
entries invalidated from it.

E2.3.9 Restrictions on the effects of speculation

This section covers restrictions on speculation effects, including:

• Restrictions on the effects of speculation on page E2-4298.

• Speculative Store Bypass Safe (SSBS) on page E2-4298.

• Further restrictions on the effects of speculation from Armv8.5 on page E2-4299.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4297
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the Armv8 memory model
Restrictions on the effects of speculation

The Arm architecture places certain restrictions on the effects of speculation. These are:

• Each load from a location using a particular VA after an exception return that is a Context synchronization
event will not speculatively read an entry from earlier in the coherence order for the location being loaded
from than the entry generated by the latest store to that location using the same VA before the exception exit.

• Each load from a location using a particular VA after an exception entry that is a Context synchronization
event will not speculatively read an entry from earlier in the coherence order for the location being loaded
from than the entry generated by the latest store to that location using the same VA before the exception entry.

• Any load from a location using a particular VA before an exception entry that is a Context synchronization
event will not speculatively read data from a store to the same location using the same VA after the exception
entry.

• Any load from a location using a particular VA before an exception return that is a Context synchronization
event will not speculatively read data from a store to the same location using the same VA after the exception
exit.

• When data is loaded under speculation with a Translation fault, it cannot be used to form an address or
generate condition codes to be used by other instructions in the speculative sequence.

• When data is loaded under speculation from a location without a translation for the translation regime being
speculated in, the data cannot be used to form an address or generate condition codes to be used by other
instructions in the speculative sequence.

• Changes to System registers must not occur speculatively in a way that can affect a speculative memory
access that can cause a change to the micro-architectural state.

• Changes to Special-purpose registers can occur speculatively.

• Execute-never controls apply to speculative instruction fetching. See Access permissions for instruction
execution on page G5-6312.

Note

The prohibition of using data loaded under speculation with faults to form addresses, condition codes or SVE
predicate values does not prohibit the use of value predicted data from such locations for such purposes, so long as
the training of the data value prediction was from the hardware defined context that is using the prediction. A
consequence of this is that training of value prediction cannot be based on data loaded under speculation with a
translation or Permission fault.

Speculative Store Bypass Safe (SSBS)

When FEAT_SSBS is implemented, CPSR.SSBS is a control that can be set by software to indicate whether
hardware is use, in a manner that is potentially speculatively exploitable, a speculative value in a register that has
been loaded from memory using a load instruction that speculatively read an entry for the location being loaded
from, where the entry that is speculatively read is from earlier in the coherence order than the entry generated by
the latest store to that location using the same virtual address as the load instruction.

A speculative value in a register is used in a potentially speculatively exploitable manner if it is used to form an
address, generate condition codes, or generate SVE predicate values to be used by other instructions in the
speculative sequence or if the execution timing of any other instructions in the speculative sequence is a function of
the data loaded under speculation.

When the value of CPSR.SSBS is 0, hardware is not permitted to use speculative register values in a potentially
speculatively exploitable manner if the speculative read that loads the register is from earlier in the coherence order
than the entry generated by the latest store to that location using the same virtual address as the load instruction.

When the value of CPSR.SSBS is 1, hardware is permitted to use speculative register values in a potentially
speculatively exploitable manner if the speculative read that loads the register is from earlier in the coherence order
than the entry generated by the latest store to that location using the same virtual address as the load instruction.
E2-4298 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.3 Definition of the Armv8 memory model
Note

• If speculation is permitted, then cache timing side channels can lead to addresses being derived using reads
of address values that have been speculatively loaded from memory to a register.

• Software written for architectures from Armv8.0 to Armv8.4 will set SPSR.SSBS to 0. This means that
CPSR.SSBS will not set, so hardware will not be permitted to use speculative loads with outstanding memory
disambiguation issues for any subsequent speculative memory accesses if there is any possibility of those
subsequent memory accesses creating a cache timing side channel.

Further restrictions on the effects of speculation from Armv8.5

From Armv8.5, there are some further restrictions on the effects of speculation in addition to those in Armv8.0:

• Data loaded under speculation with a permission or domain fault cannot be used to form an address or to
generate condition codes to be used by other instructions in the speculative sequence.

• Any System register read under speculation to a register that is not architecturally accessible from the current
Exception level cannot be used to form an address or to generate condition codes to be used by other
instructions in the speculative sequence.

Note

As the effects of speculation are not architecturally visible, this restriction level requires that the effect of any
speculation cannot give rise to side channels that will leak the values of memory locations, System registers,
or Special-purpose registers to a level of privilege that would otherwise not be able to determine those values.

• For all execution prediction resources that predict address or register values, speculative execution at one
hardware defined context should be separated in a hard-to-determine manner from control by a different
hardware defined context. In the case of this definition, the hardware defined context is determined by:

— The Exception level.

— The Security state.

— When executing at EL1 and when EL2 is enabled in the current Security state, the VMID.

— When executing at EL0 and using the EL1&0 translation regime, the ASID and, when EL2 is enabled
in the current Security state, the VMID.

— When executing at EL0 and using the EL2&0 translation regime, the ASID.

Note
— The definition of “hard-to-determine manner” is left open to implementations. Examples could include

the complete separation of prediction resources, or the isolation of the predictions using a
cryptographic or pseudo-random mechanism to separate each context.

— The architecture does not require that prediction resources that simply predict the direction of a branch
are separated in this way.

• Changes to System registers must not occur speculatively in a way that can affect a speculative memory
access that can cause a change to the micro-architectural state.

• Changes to Special-purpose registers can occur speculatively.

E2.3.10 Memory barriers

The Arm architecture is a weakly ordered memory architecture that supports out of order completion. Memory
barrier is the general term applied to an instruction, or sequence of instructions, that forces synchronization events
by a PE with respect to retiring load/store instructions. The memory barriers defined by the Armv8 architecture
provide a range of functionality, including:

• Ordering of load/store instructions.

• Completion of load/store instructions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4299
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the Armv8 memory model
• Context synchronization.

The following subsections describe the Armv8 memory barrier instructions:

• Instruction Synchronization Barrier (ISB) on page E2-4300.

• Data Memory Barrier (DMB) on page E2-4300.

• Data Synchronization Barrier (DSB) on page E2-4301.

• Speculation Barrier (SB) on page E2-4301.

• Consumption of Speculative Data Barrier (CSDB) on page E2-4302.

• Speculative Store Bypass Barrier (SSBB) on page E2-4302.

• Physical Speculative Store Bypass Barrier (PSSBB) on page E2-4303.

• Trace Synchronization Barrier (TSB CSYNC) on page E2-4303.

• Shareability and access limitations on the data barrier operations on page E2-4304.

• Load-Acquire, Store-Release on page E2-4305.

Note

Depending on the required synchronization, a program might use memory barriers on their own, or it might use them
in conjunction with cache maintenance and memory management instructions that in general are only available
when software execution is at EL1 or higher.

The DMB and DSB memory barriers affect reads and writes to the memory system generated by load/store instructions
and data or unified cache maintenance instructions being executed by the PE.

AArch32 state also supports the legacy barrier instructions CP15DMB, CP15DSB, and CP15ISB. These
instructions are executed as MCRs using the appropriate encoding, and are accessible from EL0. However, for
performance reasons Arm deprecates any use of these operations, and strongly recommends that software uses the
DMB, DSB, and ISB instructions described in this section instead. Optionally, an implementation can support a
CP15BEN control that supervisory software can use to disable use of these instructions, meaning the corresponding
MCR encodings are UNDEFINED. When the CP15BEN control is supported, setting one of the following CP15BEN
fields to 0 makes execution of CP15DMB, CP15DSB, and CP15ISB UNDEFINED:

• SCTLR_EL1.CP15BEN, for execution of these instructions at EL0 using AArch32 when EL1 is using
AArch64.

• SCTLR.CP15BEN, for execution of these instructions at EL0 or EL1 when EL1 is using AArch32.

• HSCTLR.CP15BEN, for execution of these instructions at EL2 when EL2 is using AArch32.

Instruction Synchronization Barrier (ISB)

An ISB instruction ensures that all instructions that come after the ISB instruction in program order are fetched from
the cache or memory after the ISB instruction has completed. Using an ISB ensures that the effects of
context-changing operations executed before the ISB are visible to the instructions fetched after the ISB instruction.
Examples of context-changing operations that require the insertion of an ISB instruction to ensure the effects of the
operation are visible to instructions fetched after the ISB instruction are:

• Completed cache and TLB maintenance instructions.

• Changes to System registers.

Any context-changing operations appearing in program order after the ISB instruction only take effect after the ISB
has been executed.

The pseudocode function for the operation of an ISB is InstructionSynchronizationBarrier().

See also Memory barriers on page G4-6260.

Data Memory Barrier (DMB)

The DMB instruction is a memory barrier instruction that ensures the relative order of memory accesses before the
barrier with memory accesses after the barrier. The DMB instruction does not ensure the completion of any of the
memory accesses for which it ensures relative order.
E2-4300 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.3 Definition of the Armv8 memory model
The full definition of the DMB instruction is covered formally in the Definition of the Armv8 memory model on
page E2-4288 and this introduction to the DMB instruction is not intended to contradict that section.

The basic principle of a DMB instruction is to introduce order between memory accesses that are specified to be
affected by the DMB options supplied as arguments to the DMB instruction. The DMB instruction ensures that all
affected memory accesses by the PE executing the DMB instruction that appear in program order before the DMB
instruction and those which originate from a different PE, to the extent required by the DMB options, which have
been Observed-by the PE before the DMB instruction is executed, are Observed-by each PE, to the extent required by
the DMB options, before any affected memory accesses that appear in program order after the DMB instruction are
Observed-by that PE.

The use of a DMB instruction creates order between the Memory effects of instructions as described in the definition
of Barrier-ordered-before.

The pseudocode function for the operation of a DMB instruction is DataMemoryBarrier().

Data Synchronization Barrier (DSB)

A DSB instruction is a memory barrier that ensures that memory accesses that occur before the DSB instruction have
completed before the completion of the DSB instruction. In doing this, it acts as a stronger barrier than a DMB and
all ordering that is created by a DMB with specific options is also generated by a DSB with the same options.

Execution of a DSB at EL2 ensures that any memory accesses caused by speculative translation table walks from the
Non-secure PL1&0 translation regime have been observed.

For more information, see Use of out-of-context translation regimes on page G5-6268.

A DSB executed by a PE, PEe, completes when all of the following apply:

• All explicit memory effects of the required access types appearing in program order before the DSB are
complete for the set of observers in the required shareability domain.

• If the required access types of the DSB is reads and writes, the following instructions issued by PEe before the
DSB are complete for the required shareability domain:

— All cache maintenance instructions.

— All AArch32 TLB maintenance instructions.

— All PSB CYNC instructions.

• If the required access types of the DSB is reads and writes, completion of a DSB instruction executed by PEe
ensures that:

— All previous TLB maintenance operations generated by AArch32 TLB maintenance instructions
executed at EL1 by PEe when HCRX_EL2.FnXS is 1 are finished for all PEs in the shareability
domain of the DSB instruction.

— All previous TLB maintenance operations generated by AArch32 TLB maintenance instructions are
finished for all PEs in the shareability domain of the DSB instruction.

In addition, no instruction that appears in program order after the DSB instruction can alter any state of the system
or perform any part of its functionality until the DSB completes, other than:

• Being fetched from memory and decoded.

• Reading the general-purpose, SIMD and floating-point, Special-purpose, or System registers that are directly
or indirectly read without causing side-effects.

The pseudocode function for the operation of a DSB is DataSynchronizationBarrier().

See also Memory barrier instructions on page G4-6257 and Memory barriers on page G4-6260.

Speculation Barrier (SB)

An SB is a memory barrier that prevents speculative execution of instructions until after the barrier has completed
when those instructions could be observed through side-channels.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4301
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the Armv8 memory model
Until the barrier completes, the speculative execution of any instruction appearing later in the program order than
the barrier:

• Cannot be performed to the extent that such speculation can be observed through side-channels as a result of
control flow speculation or data value speculation.

• Can be performed when predicting that a instruction that could generate an exception does not generate an
exception.

Speculative execution of an SB instruction:

• Cannot be as a result of control flow speculation.

• Cannot be as a result of data value speculation.

• Can be as a result of predicting that an instruction that could generate an exception does not generate an
exception.

An SB instruction can complete when:

• It is known that it is not speculative.

• All the predicted data values generated by instructions appearing in program order before the SB instruction
have their predicted values confirmed.

Note

The SB instruction has no effect on the use of prediction resources to predict the instruction stream that is being
fetched, so long as the prediction of the instruction stream is not informed by data taken from the register outputs
of the speculative execution of instructions appearing in program order after an uncompleted SB instruction.

Consumption of Speculative Data Barrier (CSDB)

The CSDB instruction is a memory barrier instruction that controls speculative execution and data value prediction.
This includes:

• Data value predictions of any instructions.

• PSTATE.{N,Z,C,V} predictions of any instructions other than conditional branch instructions appearing in
program order before the CSDB that have not been architecturally resolved.

• Predictions of SVE prediction state for any SVE instructions.

For purposes of the definition of CSDB, PSTATE.{N,Z,C,V} is not considered a data value. This definition permits:

• Control flow speculation before and after the CSDB.

• Speculative execution of conditional data processing instructions after the CSDB, unless they use the results
of data value or PSTATE.{N,Z,C,V} predictions of instructions appearing in program order before the CSDB
that have not been architecturally resolved.

Speculative Store Bypass Barrier (SSBB)

The SSBB instruction is a memory barrier that prevents speculative loads from bypassing earlier stores to the same
virtual address under certain conditions.

The semantics of the Speculative Store Bypass Barrier are:

• When a load to a location appears in program order after the SSBB, then the load does not speculatively read
an entry earlier in the coherence order for that location than the entry generated by the latest store satisfying
all of the following conditions:

— The store is to the same location as the load.

— The store uses the same virtual address as the load.

— The store appears in program order before the SSBB instruction.
E2-4302 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.3 Definition of the Armv8 memory model
• When a load to a location appears in program order before the SSBB, then the load does not speculatively read
data from any store satisfying all of the following conditions:

— The store is to the same location as the load.

— The store uses the same virtual address as the load.

— The store appears in program order after the SSBB instruction.

Physical Speculative Store Bypass Barrier (PSSBB)

The PSSBB instruction is a memory barrier that prevents speculative loads from bypassing earlier stores to the same
physical address under certain conditions.

The semantics of the Speculative Store Bypass Barrier are:

• When a load to a location appears in program order after the PSSBB, then the load does not speculatively read
an entry earlier in the coherence order for that location than the entry generated by the latest store satisfying
all of the following conditions:

— The store is to the same location as the load.

— The store appears in program order before the PSSBB instruction.

• When a load to a location appears in program order before the PSSBB, then the load does not speculatively read
data from any store satisfying all of the following conditions:

— The store is to the same location as the load.

— The store appears in program order after the PSSBB instruction.

Note

The effect of this barrier applies to accesses to the same location even if they are accessed with different virtual
addresses and from different Exception levels.

Trace Synchronization Barrier (TSB CSYNC)

The TSB CSYNC is a memory barrier instruction that preserves the relative order of memory accesses to System
registers due to trace operations and other memory accesses to the same registers.

A trace operation is an operation of the PE Trace Unit generating trace for an instruction when FEAT_TRF is
implemented and enabled.

A TSB CSYNC is not required to execute in program order with respect to other instructions. This includes being
reordered with respect to other trace instructions. One or more Context synchronization events are required to
ensure that TSB CSYNC is executed in the necessary order.

If trace is generated between a Context synchronization event and a TSB CSYNC operation, these trace operations may
be reordered with respect to the TSB CSYNC operation, and therefore may not be synchronized.

The following situations are synchronized using a TSB CSYNC:

• A direct write B to a System register is ordered after an indirect read or indirect write of the same register by
a trace operation of a traced instruction A, if all of the following are true:

— A is executed in program order before a Context synchronization event C.

— C is in program order before a TSB CSYNC operation T.

— B is executed in program order after T.

• A direct read B of a System register is ordered after an indirect write to the same register by a trace operation
of a traced instruction A if all the following are true:

— A is executed in program order before a Context synchronization event C1.

— C1 is in program order before TSB CSYNC operation T.

— T is executed in program order before a second Context synchronization event C2.

— B is executed in program order after C2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4303
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the Armv8 memory model
A TSB CSYNC is not needed when a direct write B to a System register is ordered before an indirect read or indirect
write of the same register by a trace operation of a traced instruction A, if all the following are true:

• A is executed in program order after a Context synchronization event C.

• B is executed in program order before C.

The pseudocode function for the operation of a TSB CSYNC is TraceSynchronizationBarrier().

Shareability and access limitations on the data barrier operations

The DMB and DSB instructions can each take an optional limitation argument that specifies:

• The shareability domain over which the instruction must operate. This is one of:

— Full system.

— Outer Shareable.

— Inner Shareable.

— Non-shareable.

Full system applies to all the observers in the system and, as such, encompasses the Inner and Outer Shareable
domains of the processor.

Note
The distinction between Full system and Outer Shareable is only applicable for Normal Non-cacheable
memory accesses and Device memory accesses.

• The accesses for which the instruction operates. This is one of:

— Read and write accesses, both before and after the barrier instruction.

— Write accesses only, before and after the barrier instruction.

— Read accesses before the barrier instruction, and read and write accesses after the barrier instruction.

Note
This form of a DMB or DSB instruction can be described as a load-load/store barrier.

For more information on whether an access is before or after a barrier instruction, see Data Memory Barrier (DMB)
on page E2-4300 or Data Synchronization Barrier (DSB) on page E2-4301.

Table E2-1 on page E2-4304 shows how these options are encoded in the <option> field of the instruction.

If no <option> is specified then the instruction operates for read and write accesses, over the full system, meaning
the operation is the same as for the SY option. See the instruction descriptions for more information:

• DMB on page F5-4677.

• DSB on page F5-4680.

Note

ISB also supports an optional limitation argument that can only contain one value that corresponds to full system
operation, see ISB on page F5-4700.

Table E2-1 Encoding of the DMB and DSB <option> parameter

Accesses Shareability domain

Before the barrier After the barrier Full system Outer Shareable Inner Shareable Non-shareable

Reads and writes Reads and writes SY OSH ISH NSH

Writes Writes ST OSHST ISHST NSHST

Reads Reads and writes LD OSHLD ISHLD NSHLD
E2-4304 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.3 Definition of the Armv8 memory model
Load-Acquire, Store-Release

Armv8 provides a set of instructions with Acquire semantics for loads, and Release semantics for stores.

The full definition of the Load-Acquire instruction is covered formally in the Definition of the Armv8 memory model
on page E2-4288 and this introduction to the Load-Acquire instruction is not intended to contradict that section.

The basic principle of a Load-Acquire instruction is to introduce order between the memory access generated by the
Load-Acquire instruction and the memory accesses appearing in program order after the Load-Acquire instruction,
such that the memory access generated by the Load-Acquire instruction is Observed-by each PE, to the extent that
PE is required to observe the access coherently, before any of the memory accesses appearing in program order after
the Load-Acquire instruction are Observed-by that PE, to the extent that the PE is required to observe the accesses
coherently.

The use of a Load-Acquire instruction creates order between the Memory effects of instructions as described in the
definition of Barrier-ordered-before.

The full definition of the Store-Release instruction is covered formally in the Definition of the Armv8 memory model
on page E2-4288 and this introduction to the Store-Release instruction is not intended to contradict that section.

The basic principle of a Store-Release instruction is to introduce order between the memory accesses generated by
the PEe executing the Store-Release instruction, together with those which originate from a different PE, to the
extent that the PEe is required to observe them coherently, Observed-by the PEe before executing the Store-release.

The use of a Store-Release instruction creates order between the Memory effects of instructions as described in the
definition of Barrier-ordered-before.

In addition, the use of a Load-Acquire or a Store-Release instruction on accesses to a Memory-mapped peripheral
introduces order between the Memory effects of the instructions that access that peripheral, as described in the
definition of Peripheral coherence order.

Load-Acquire and Store-Release, other than LDAEXD and STLEXD, access only a single data element. This access is
single-copy atomic. The address of the data object must be aligned to the size of the data element being accessed,
otherwise the access generates an Alignment fault.

LDAEXD and STLEXD access two data elements. The address supplied to the instructions must be doubleword-aligned,
otherwise the access generates an Alignment fault.

A Store-Release Exclusive instruction only has the release semantics if the store is successful.

Note

• Each Load-Acquire Exclusive and Store-Release Exclusive instruction is essentially a variant of the
equivalent Load-Exclusive or Store-Exclusive instruction. All usage restrictions and single-copy atomicity
properties:

— That apply to the Load-Exclusive instructions also apply to the Load-Acquire Exclusive instructions.

— That apply to the Store-Exclusive instructions also apply to the Store-Release Exclusive instructions.

• The Load-Acquire/Store-Release instructions can remove the requirement to use the explicit DMB memory
barrier instruction.

Table E2-2 on page E2-4305 summarizes the Load-Acquire/Store-release instructions.

Table E2-2 Load-Acquire/Store-Release instructions

Data type Load-Acquire Store-Release Load-Acquire Exclusive Store-Release Exclusive

32-bit word LDA STL LDAEX STLEX

16-bit halfword LDAH STLH LDAEXH STLEXH

8-bit byte LDAB STLB LDAEXB STLEXB

64-bit doubleword - - LDAEXD STLEXD
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4305
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.4 Ordering of translation table walks
E2.4 Ordering of translation table walks

If FEAT_ETS is implemented, and a memory access RW1 is Ordered-before a second memory access RW2, then
RW1 is also Ordered-before any translation table walk generated by RW2 that generates any of the following:

• A Translation fault.

• An Address size fault.

• An Access flag fault.
E2-4306 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.5 Caches and memory hierarchy
E2.5 Caches and memory hierarchy

The implementation of a memory system depends heavily on the microarchitecture and therefore many details of
the memory system are IMPLEMENTATION DEFINED. Armv8 defines the application level interface to the memory
system, including a hierarchical memory system with multiple levels of cache. This section describes an application
level view of this system. It contains the subsections:

• Introduction to caches on page E2-4307.

• Memory hierarchy on page E2-4307.

• Implication of caches for the application programmer on page E2-4308.

• Preloading caches on page E2-4310.

E2.5.1 Introduction to caches

A cache is a block of high-speed memory that contains a number of entries, each consisting of:

• Main memory address information, commonly known as a tag.

• The associated data.

Caches increase the average speed of a memory access and take account of two principles of locality:

Spatial locality

An access to one location is likely to be followed by accesses to adjacent locations. Examples of this
principle are:

• Sequential instruction execution.

• Accessing a data structure.

Temporal locality

An access to an area of memory is likely to be repeated in a short time period. An example of this
principle is the execution of a software loop.

To minimize the quantity of control information stored, the spatial locality property groups several locations
together under the same tag. This logical block is commonly known as a cache line. When data is loaded into a
cache, access times for subsequent loads and stores are reduced, resulting in overall performance benefits. An access
to information already in a cache is known as a cache hit, and other accesses are called cache misses.

Normally, caches are self-managing, with the updates occurring automatically. Whenever the PE accesses a
cacheable memory location, the cache is checked. If the access is a cache hit, the access occurs in the cache.
Otherwise, the access is made to memory. Typically, when making this access, a cache location is allocated and the
cache line loaded from memory. Armv8 permits different cache topologies and access policies, provided they
comply with the memory coherency model described in this manual.

Caches introduce a number of potential problems, mainly because:

• Memory accesses can occur at times other than when the programmer would expect them.

• A data item can be held in multiple physical locations.

E2.5.2 Memory hierarchy

Typically memory close to a PE has very low latency, but is limited in size and expensive to implement. Further
from the PE it is common to implement larger blocks of memory but these have increased latency. To optimize
overall performance, an Armv8 memory system can include multiple levels of cache in a hierarchical memory
system that exploits this trade-off between size and latency. Figure E2-1 on page E2-4308 shows an example of such
a system in an Armv8-A system that supports virtual addressing.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4307
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.5 Caches and memory hierarchy
Figure E2-1 Multiple levels of cache in a memory hierarchy

Note

In this manual, in a hierarchical memory system, Level 1 refers to the level closest to the PE, as shown in
Figure E2-1 on page E2-4308.

Instructions and data can be held in separate caches or in a unified cache. A cache hierarchy can have one or more
levels of separate instruction and data caches, with one or more unified caches located at the levels closest to the
main memory. Memory coherency for cache topologies can be defined using the conceptual points Point of
Unification (PoU) and Point of Coherency (PoC). For more information, including the definitions of PoU and PoC,
see About cache maintenance in AArch32 state on page G4-6235.

Note

Armv8 FEAT_DPB adds architectural support for an additional conceptual point, Point of Persistence, but this
support is provided only in AArch64 state. For more information, see About cache maintenance in AArch64 state
on page D4-2644.

The Cacheability and Shareability memory attributes

Cacheability and Shareability are two attributes that describe the memory hierarchy in a multiprocessing system:

Cacheability This term defines whether memory locations are allowed to be allocated into a cache or not.
Cacheability is defined independently for Inner and Outer Cacheability locations.

Shareability This term defines whether memory locations are shareable between different agents in a system.
Marking a memory location as shareable for a particular domain requires hardware to ensure that
the location is coherent for all agents in that domain. Shareability is defined independently for Inner
and Outer Shareability domains.

For more information about the Cacheability and Shareability attributes, see Memory types and attributes on
page E2-4318.

E2.5.3 Implication of caches for the application programmer

In normal operation, the caches are largely invisible to the application programmer. However they can become
visible when there is a breakdown in the coherency of the caches. Such a breakdown can occur:

• When memory locations are updated by other agents in the system that do not use hardware management of
coherency.

• When memory updates made from the application software must be made visible to other agents in the
system, without the use of hardware management of coherency.

Device

PE,
AArch32 state

Instruction
fetch
Data

Level 1
Cache

Level 2
Cache

Level 3
Cache

DRAM, SRAM,
Storage-class

memory

Level 4
for example,

memory card,
disk

Address
translation

System configuration
and control

R15

R0

Physical address

Virtual
address
E2-4308 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.5 Caches and memory hierarchy
For example:

• In the absence of hardware management of coherency of DMA accesses, in a system with a DMA controller
that reads memory locations that are held in the data cache of a PE, a breakdown of coherency occurs when
the PE has written new data in the data cache, but the DMA controller reads the old data held in memory.

• In a Harvard cache implementation, where there are separate instruction and data caches, a breakdown of
coherency occurs when new instruction data has been written into the data cache, but the instruction cache
still contains the old instruction data.

Data coherency issues

Software can ensure the data coherency of caches in the following ways:

• By not using the caches in situations where coherency issues can arise. This can be achieved by:

— Using Non-cacheable or, in some cases, Write-Through Cacheable memory.

— Not enabling caches in the system.

• By using system calls to functions using cache maintenance instructions that execute at a higher Exception
level.

• By using hardware coherency mechanisms to ensure the coherency of data accesses to memory for cacheable
locations by observers within the different shareability domains, see Non-shareable Normal memory on
page E2-4320 and Shareable, Inner Shareable, and Outer Shareable Normal memory on page E2-4319.

Note

The performance of these hardware coherency mechanisms is highly implementation-specific. In some
implementations the mechanism suppresses the ability to cache shareable locations. In other
implementations, cache coherency hardware can hold data in caches while managing coherency between
observers within the shareability domains.

Synchronization and coherency issues between data and instruction accesses

How far ahead of the current point of execution instructions are fetched from is IMPLEMENTATION DEFINED. Such
prefetching can be either a fixed or a dynamically varying number of instructions, and can follow any or all possible
future execution paths. For all types of memory:

• The PE might have fetched the instructions from memory at any time since the last Context synchronization
event on that PE.

• Any instructions fetched in this way might be executed multiple times, if this is required by the execution of
the program, without being re-fetched from memory.

The Arm architecture does not require the hardware to ensure coherency between instruction caches and memory,
even for locations of shared memory.

If software requires coherency between instruction execution and memory, it must manage this coherency using
Context synchronization events and cache maintenance instructions. These can only be accessed from an Exception
level that is higher than EL0, and therefore require a system call, see Exception-generating and exception-handling
instructions on page F2-4395. The following code sequence can be used for this purpose:

; Coherency example for data and instruction accesses within the same Inner Shareable domain.
; Enter this code with <Rt> containing a new 32-bit instruction,
; to be held in Cacheable space at a location pointed to by Rn. Use STRH in the first line
; instead of STR for a 16-bit instruction.
 STR Rt, [Rn]
 DCCMVAU Rn ; Clean data cache by MVA to point of unification (PoU)
 DSB ; Ensure visibility of the data cleaned from cache
 ICIMVAU Rn ; Invalidate instruction cache by MVA to PoU
 BPIMVA Rn ; Invalidate branch predictor by MVA to PoU
 DSB ; Ensure completion of the invalidations
 ISB ; Synchronize the fetched instruction stream
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4309
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.5 Caches and memory hierarchy
A write has been made coherent with an instruction fetch of a shareability domain when:

CTR.{DIC, IDC} == {0, 0}

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and
that clean is complete for the shareability domain. Subsequently the location has been invalidated
to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for
the shareability domain.

CTR.{DIC, IDC} == {1, 0}

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and
that clean is complete for the shareability domain.

CTR.{DIC, IDC} == {0, 1}

The write is complete for the shareability domain. Subsequently the location has been invalidated
to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for
the shareability domain.

CTR.{DIC, IDC} == {1, 1}

The write is complete for the shareability domain.

Note

• For accesses that are Non-cacheable or Write-Through, the clean data cache instruction is not required. For
accesses that are Non-cacheable, the invalidate instruction cache is not required, because in AArch32 state
these accesses are not permitted to be held in an instruction cache.

• This code can be used when the thread of execution modifying the code is the same thread of execution that
is executing the code. The Armv8 architecture limits the set of instructions that can be executed by one thread
of execution as they are being modified by another thread of execution without requiring explicit
synchronization. See Concurrent modification and execution of instructions on page E2-4286.

E2.5.4 Preloading caches

The Arm architecture provides the memory system hints PLD (Preload Data), PLDW (Preload Data With Intent To
Write) and PLI (Preload Instruction) that software can use to communicate the expected use of memory locations to
the hardware. The memory system can respond by taking actions that are expected to speed up the memory accesses
if they occur. The effect of these memory system hints is IMPLEMENTATION DEFINED. Typically, implementations
use this information to bring data or instruction locations into caches.

The Preload instructions are hints, and so implementations can treat them as NOPs without affecting the functional
behavior of the device. The instructions cannot generate synchronous Data Abort exceptions, but the resulting
memory system operations might, under exceptional circumstances, generate an asynchronous External abort,
which is reported using an SError interrupt and taken using an asynchronous Data Abort exception. For more
information, see Data Abort exception on page G1-6089.

A PLD, PLDW, or PLI instruction can only cause allocation to software-visible caching structures such caches or TLBs
for memory locations that can be accessed, according to the permissions defined by the current translation regime
or a translation regime for a higher Exception level in the current Security state, by any of:

• Reads.

• Writes.

• Instruction fetches.

A PLD, PLDW, or PLI instruction can access any memory location in Normal memory that can be accessed, according
to the permissions defined by the current translation regime or a translation regime for a higher Exception level in
the current Security state, by any of:

• Reads.

• Writes.

• Instruction fetches.
E2-4310 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.5 Caches and memory hierarchy
Note

In each case, the entire list applies to each of PLD, PLDW, and PLI.

A PLD, PLDW, or PLI instruction is guaranteed not to access any type of Device memory.

A PLI instruction must not perform any access that cannot be performed by a speculative instruction fetch by the
processor. Therefore in a VMSA implementation, if all associated MMUs are disabled, a PLI instruction cannot
access any memory location that cannot be accessed by instruction fetches.

The pseudocode enumeration PrefetchHint defines the prefetch hint types.

The Hint_Prefetch() pseudocode function signals to the memory system that memory accesses of the type hint to
or from the specified address are likely to occur in the near future. The memory system might take some action to
speed up the memory accesses when they do occur, such as preloading the specified address into one or more caches
as indicated by the innermost cache level target and non-temporal hint stream.

For more information on PLD, PLI, and PLDW, see:

• PLD, PLDW (immediate) on page F5-4898.

• PLD (literal) on page F5-4901.

• PLD, PLDW (register) on page F5-4903.

• PLI (immediate, literal) on page F5-4906.

• PLI (register) on page F5-4909.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4311
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.6 Alignment support
E2.6 Alignment support

This section describes alignment support. It contains the following subsections:

• Instruction alignment on page E2-4312.

• Unaligned data access on page E2-4312.

• Cases where unaligned accesses are CONSTRAINED UNPREDICTABLE on page E2-4313.

• Unaligned data access restrictions on page E2-4313.

• Generation of Alignment faults by load/store multiple accesses to Device memory on page E2-4313.

For more information about Alignment faults, see Alignment faults on page G5-6363.

E2.6.1 Instruction alignment

A32 instructions are word-aligned.

T32 instructions are halfword-aligned.

E2.6.2 Unaligned data access

An Armv8 implementation must support unaligned data accesses to Normal memory by some load and store
instructions. As Table E2-3 on page E2-4312 shows, software can control whether a misaligned access to Normal
memory by one of these instructions causes an Alignment fault Data Abort exception:

• By setting SCTLR.A, for unaligned accesses from any mode other than Hyp mode.

• By setting HSCTLR.A, for unaligned accesses from Hyp mode.

Table E2-3 Alignment requirements of load/store instructions

Instructions
Alignment
check

Result if check fails when:

SCTLR.A or
HSCTLR.A
is 0

SCTLR.A or
HSCTLR.A is
1

LDRB, LDREXB, LDRBT, LDRSB, LDRSBT, STRB, STREXB, STRBT, TBB None - -

LDRH, LDRHT, LDRSH, LDRSHT, STRH, STRHT, TBH Halfword Unaligned
access

Alignment fault

LDREXH, STREXH, LDAH, STLH, LDAEXH, STLEXH Halfword Alignment fault Alignment fault

LDR, LDRT, STR, STRT

PUSH, encodings T3 and A2 only

POP, encodings T3 and A2 only

Word Unaligned
access

Alignment fault

LDREX, STREX, LDA, STL, LDAEX, STLEX Word Alignment fault Alignment fault

LDREXD, STREXD, LDAEXD, STLEXD Doubleword Alignment fault Alignment fault

All forms of LDM and STM, LDRD, RFE, SRS, STRD Word Alignment fault Alignment fault

LDC, STC Word Alignment fault Alignment fault

VLDM, VPOP, VPUSH, VSTM Word Alignment fault Alignment fault

VLDR, VSTR - single-precision scalar and double-precision scalar Word Alignment fault Alignment fault
E2-4312 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.6 Alignment support
Note

Any unaligned access to any type of Device memory generates an Alignment fault, see Alignment faults on
page G5-6363.

E2.6.3 Cases where unaligned accesses are CONSTRAINED UNPREDICTABLE

Any load instruction that is not faulted by the alignment restrictions shown in Table E2-3 on page E2-4312 and that
loads the PC has CONSTRAINED UNPREDICTABLE behavior if the address it loads from is not word-aligned, see Loads
and Stores to unaligned locations on page K1-8388. This overrules any permitted load/store behavior shown in
Table E2-3 on page E2-4312.

E2.6.4 Unaligned data access restrictions

The following points apply to unaligned data accesses in Armv8:

• Accesses are not guaranteed to be single-copy atomic except at the byte access level, see Atomicity in the Arm
architecture on page E2-4284.

• Unaligned accesses typically take a number of additional cycles to complete compared to a naturally-aligned
access.

• An operation that performs an unaligned access can abort on any memory access that it makes, and can abort
on more than one access. This means that an unaligned access that occurs across a page boundary can
generate an abort on either side of the boundary.

E2.6.5 Generation of Alignment faults by load/store multiple accesses to Device memory

When FEAT_LSMAOC is implemented and the value of the applicable nTLSMD field is 0, any memory access by
an AArch32 Load Multiple or Store Multiple instruction to an address that the stage 1 translation assigns as
Device-nGRE, Device-nGnRE, or Device-nGnRnE generates an Alignment fault.

The applicable nTLSMD field is the field in the SCTLR_EL1, SCTLR_EL2, HSCTLR, or SCTLR register that
applies to the Exception level and Security state at which the LDM or STM instruction is executed.

VLDR, VSTR - half-precision scalar Halfword Alignment fault Alignment fault

VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4, all with standard
alignment

Element size Unaligned
access

Alignment fault

VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4, all with :<align>
specifieda

As specified by :<align> Alignment fault Alignment fault

a. Previous versions of this manual used @<align> to specify alignment. Both forms are supported, see Chapter F6 T32 and A32 Advanced
SIMD and Floating-point Instruction Descriptionsfor more information.

Table E2-3 Alignment requirements of load/store instructions (continued)

Instructions
Alignment
check

Result if check fails when:

SCTLR.A or
HSCTLR.A
is 0

SCTLR.A or
HSCTLR.A is
1

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4313
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.7 Endian support
E2.7 Endian support

General description of endianness in the Arm architecture on page E2-4314 describes the relationship between
endianness and memory addressing in the Arm architecture.

The following subsections then describe the endianness schemes supported by the architecture:

• Instruction endianness on page E2-4314.

• Data endianness on page E2-4315.

• Endianness of memory-mapped peripherals on page E2-4316.

E2.7.1 General description of endianness in the Arm architecture

This section only describes memory addressing and the effects of endianness for data elements up to doubleword
of 64 bits. However, this description can be extended to apply to larger data elements.

For an address A, Figure E2-2 on page E2-4314 shows, for big-endian and little-endian memory systems, the
relationship between:

• The doubleword at address A.

• The words at addresses A and A+4.

• The halfwords at addresses A, A+2, A+4, and A+6.

• The bytes at addresses A, A+1, A+2, A+3, A+4, A+5, A+6, and A+7.

The terms in Figure E2-2 on page E2-4314 have the following definitions:

MSByte Most significant byte.

LSByte Least significant byte.

Figure E2-2 Endianness relationships in AArch32 state

E2.7.2 Instruction endianness

In Armv8-A, the mapping of instruction memory is always little-endian.

In this figure, Byte, A+1 is an abbreviation for Byte at address A+1

Byte, A+7 Byte, AByte, A+1Byte, A+2Byte, A+3Byte, A+4Byte, A+5Byte, A+6

Halfword at address AHalfword at address A+2Halfword at address A+4Halfword at address A+6

Word at address AWord at address A+4

Doubleword at address A

Byte, A Byte, A+1 Byte, A+2 Byte, A+3 Byte, A+4 Byte, A+5 Byte, A+6 Byte, A+7

Halfword at address A Halfword at address A+2 Halfword at address A+4 Halfword at address A+6

Word at address A Word at address A+4

Doubleword at address A

Big-endian memory system

Incrementing byte addressMSByte LSByte

Little-endian memory system

Incrementing byte addressMSByte LSByte
E2-4314 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.7 Endian support
E2.7.3 Data endianness

The size of the data value that is loaded or stored is the size that is used for the purpose of endian conversion for
floating-point, Advanced SIMD, and general-purpose register loads and stores.

Table E2-4 on page E2-4315 shows the element sizes of all the load/store instructions, for all instruction sets.

CPSR.E determines the data endianness.

The data size used for endianness conversions:

• Is the size of the data value that is loaded or stored for Advanced SIMD and floating-point register and
general-purpose register loads and stores.

• Is the size of the data element that is loaded or stored for Advanced SIMD element and data structure loads
and stores. For more information, see Endianness in Advanced SIMD on page E2-4316.

Instructions to reverse bytes in registers

An application or device driver might have to interface to memory-mapped peripheral registers or shared memory
structures that are not the same endianness as the internal data structures. Similarly, the endianness of the operating
system might not match that of the peripheral registers or shared memory. In these cases, the PE requires an efficient
method to transform explicitly the endianness of the data.

Table E2-5 on page E2-4315 shows the instructions that provide this functionality in the A32 and T32 instruction
sets.

Table E2-4 Element size of load/store instructions

Instructions Element size

LDRB, LDREXB, LDRBT, LDRSB, LDRSBT, STRB, STREXB, STRBT, TBB Byte

LDRH, LDREXH, LDRHT, LDRSH, LDRSHT, STRH, STREXH, STRHT, TBH Halfword

LDR, LDRT, LDREX, STR, STRT, STREX Word

LDRD, LDREXD, STRD, STREXD Word

All forms of LDM, PUSH, POP, RFE, SRS, all forms of STM, Word

LDC, STC Word

Forms of VLDM, VLDR, VPOP, VPUSH, VSTM, VSTR that transfer 32-bit Si registers Word

Forms of VLDM, VLDR, VPOP, VPUSH, VSTM, VSTR that transfer 64-bit Di registers Doubleword

VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4 Element size of the Advanced SIMD access

Table E2-5 Byte reversal instructions

Function
T32 / A32
instruction

Notes

Reverse bytes in whole register REV For use with general purpose registers.

Reverse bytes in 16-bit halfwords REV16 For use with general purpose registers.

Reverse bytes in halfword and
sign-extend

REVSH For use with general purpose registers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4315
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.7 Endian support
Endianness in Advanced SIMD

Advanced SIMD element load/store instructions transfer vectors of elements between memory and the SIMD and
floating-point register file. An instruction specifies both the length of the transfer and the size of the data elements
being transferred. This information is used by the PE to load and store data correctly in both big-endian and
little-endian systems.

Consider, for example, the A32 or T32 instruction:

VLD1.16 {D0}, [R1]

This loads a 64-bit register with four 16-bit values. The four elements appear in the register in array order, with the
lowest indexed element fetched from the lowest address. The order of bytes in the elements depends on the
endianness configuration, as shown in Figure E2-3 on page E2-4316. Therefore, the order of the elements in the
registers is the same regardless of the endianness configuration.

Figure E2-3 Advanced SIMD byte order example for AArch32 state

For information about the alignment of Advanced SIMD instructions, see Alignment support on page E2-4312.

The BigEndian() pseudocode function determines the current endianness of the data.

The BigEndianReverse() pseudocode function reverses the endianness of a bitstring.

The BigEndian() and BigEndianReverse() functions are defined in Chapter J1 Armv8 Pseudocode.

E2.7.4 Endianness of memory-mapped peripherals

All memory-mapped peripherals defined in the Arm architecture must be little-endian.

Reverse elements in doublewords, vector VREV64 For use with registers in the SIMD and floating-point register
file

Reverse elements in words, vector VREV32 For use with registers in the SIMD and floating-point register
file

Reverse elements in halfwords, vector VREV16 For use with registers in the SIMD and floating-point register
file

Table E2-5 Byte reversal instructions (continued)

Function
T32 / A32
instruction

Notes

D[15:8] D[7:0] C[15:8] C[7:0] B[15:8] B[7:0] A[15:8] A[7:0]

64-bit register containing four 16-bit elements

0
1
2
3
4
5
6 D[7:0]

C[15:8]
C[7:0]
B[15:8]
B[7:0]
A[15:8]
A[7:0] 0

1
2
3
4
5
6

D[7:0]
D[15:8]
C[7:0]
C[15:8]
B[7:0]
B[15:8]
A[7:0]
A[15:8]

Memory system with
little-endian addressing (LE)

Memory system with
big-endian addressing (BE)

VLD1.16 {D0}, [R1] VLD1.16 {D0}, [R1]

77 D[15:8]
E2-4316 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.7 Endian support
Peripherals to which this requirement applies include:

• Memory-mapped register interfaces to a debugger, or to a cross-trigger interface, see Chapter H8 About the
External Debug Registers.

• The memory-mapped register interface to the system level implementation of the Generic Timer, see
Chapter I2 System Level Implementation of the Generic Timer.

• A memory-mapped register interface to the Performance Monitors, see Chapter I3 Recommended External
Interface to the Performance Monitors.

• A memory-mapped register interface to the Activity Monitors, see Chapter I4 Recommended External
Interface to the Activity Monitors.

• Memory-mapped register interfaces to an Arm Generic Interface Controller, see the ARM® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3.0 and version 4.0.

• The memory-mapped register interface to an Arm trace component. See, for example, the ARM® Embedded
Trace Macrocell Architecture Specification, ETMv4.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4317
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
E2.8 Memory types and attributes

In Armv8 the ordering of accesses for addresses in memory, referred to as the memory order model, is defined by
the memory attributes. The following sections describe this model:

• Normal memory on page E2-4318.

• Device memory on page E2-4322.

• Memory access restrictions on page E2-4327.

E2.8.1 Normal memory

The Normal memory type attribute applies to most memory in a system. It indicates that the hardware is permitted
by the architecture to perform Speculative data read accesses to these locations, regardless of the access permissions
for these locations.

The Normal memory type has the following properties:

• A write to a memory location with the Normal attribute completes in finite time.

• Writes to a memory location with the Normal memory type that is either Non-cacheable or Write-Through
cacheable for both the Inner and Outer cacheability must reach the endpoint for that location in the memory
system in finite time. Two writes to the same location, where at least one is using the Normal memory type,
might be merged before they reach the endpoint unless there is an ordered-before relationship between the
two writes.

• Unaligned memory accesses can access Normal memory if the system is configured to generate such
accesses.

• There is no requirement for the memory system beyond the PE to be able to identify the elements accessed
by multi-register load/store instructions. See Multi-register loads and stores that access Normal memory on
page E2-4322.

Note

• The Normal memory attribute is appropriate for locations of memory that are idempotent, meaning that they
exhibit all of the following properties:

— Read accesses can be repeated with no side-effects.

— Repeated read accesses return the last value written to the resource being read.

— Read accesses can fetch additional memory locations with no side-effects.

— Write accesses can be repeated with no side-effects if the contents of the location accessed are
unchanged between the repeated writes or as the result of an exception, as described in this section.

— Unaligned accesses can be supported.

— Accesses can be merged before accessing the target memory system.

• Normal memory allows speculative reads and may be affected by intermediate buffering and forwarding of
data. If non-idempotent memory locations are mapped as Normal memory, the following may occur:

— Memory accesses return UNKNOWN values.

— UNPREDICTABLE effects on memory-mapped peripherals.

• An instruction that generates a sequence of accesses as described in Atomicity in the Arm architecture on
page E2-4284 might be abandoned as a result of an exception being taken during the sequence of accesses.
On return from the exception the instruction is restarted, and therefore one or more of the memory locations
might be accessed multiple times. This can result in repeated write accesses to a location that has been
changed between the write accesses.

The following sections describe the other attributes for Normal memory:

• Shareable Normal memory on page E2-4319.

• Non-shareable Normal memory on page E2-4320.

• Cacheability attributes for Normal memory on page E2-4320.
E2-4318 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
See also:

• Multi-register loads and stores that access Normal memory on page E2-4322.

• Atomicity in the Arm architecture on page E2-4284.

• Memory barriers on page E2-4299. For accesses to Normal memory, a DMB instruction is required to ensure
the required ordering.

• Concurrent modification and execution of instructions on page E2-4286.

Shareable Normal memory

A Normal memory location has a Shareability attribute that is defined as one of:

• Inner Shareable.

• Outer Shareable.

• Non-shareable.

The shareability attributes define the data coherency requirements of the location, that hardware must enforce. They
do not affect the coherency requirements of instruction fetches, see Synchronization and coherency issues between
data and instruction accesses on page E2-4309.

Note

• System designers can use the Shareability attribute to specify the locations in Normal memory for which
coherency must be maintained. However, software developers must not assume that specifying a memory
location as Non-shareable permits software to make assumptions about the incoherency of the location
between different PEs in a shared memory system. Such assumptions are not portable between different
multiprocessing implementations that might use the Shareability attribute. Any multiprocessing
implementation might implement caches that are shared, inherently, between different PEs.

• This architecture assumes that all PEs that use the same operating system or hypervisor are in the same Inner
Shareable shareability domain.

Shareable, Inner Shareable, and Outer Shareable Normal memory

The Arm architecture abstracts the system as a series of Inner and Outer Shareability domains.

Each Inner Shareability domain contains a set of observers that are data coherent for each member of that set for
data accesses with the Inner Shareable attribute made by any member of that set.

Each Outer Shareability domain contains a set of observers that are data coherent for each member of that set for
data accesses with the Outer Shareable attribute made by any member of that set.

The following properties also hold:

• Each observer is only a member of a single Inner Shareability domain.

• Each observer is only a member of a single Outer Shareability domain.

• All observers in an Inner Shareability domain are always members of the same Outer Shareability domain.
This means that an Inner Shareability domain is a subset of an Outer Shareability domain, although it is not
required to be a proper subset.

Note

• Because all data accesses to Non-cacheable locations are data coherent to all observers, Non-cacheable
locations are always treated as Outer Shareable.

• The Inner Shareable domain is expected to be the set of PEs controlled by a single hypervisor or operating
system.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4319
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
The details of the use of the Shareability attributes are system-specific. Example E2-1 on page E2-4320 shows how
they might be used.

Example E2-1 Use of shareability attributes

In an implementation, a particular subsystem with two clusters of PEs has the requirement that:

• In each cluster, the data caches or unified caches of the PEs in the cluster are transparent for all data accesses
to memory locations with the Inner Shareable attribute.

• However, between the two clusters, the caches:

— Are not required to be coherent for data accesses that have only the Inner Shareable attribute.

— Are coherent for data accesses that have the Outer Shareable attribute.

In this system, each cluster is in a different Shareability domain for the Inner Shareable attribute, but all components
of the subsystem are in the same Shareability domain for the Outer Shareable attribute.

A system might implement two such subsystems. If the data caches or unified caches of one subsystem are not
transparent to the accesses from the other subsystem, this system has two Outer Shareable Shareability domains.

Having two levels of shareability means system designers can reduce the performance and power overhead for
shared memory locations that do not need to be part of the Outer Shareable Shareability domain.

For Shareable Normal memory, the Load-Exclusive and Store-Exclusive synchronization primitives take account
of the possibility of accesses by more than one observer in the same Shareability domain.

Non-shareable Normal memory

For Normal memory locations, the Non-shareable attribute identifies Normal memory that is likely to be accessed
only by a single PE.

A location in Normal memory with the Non-shareable attribute does not require the hardware to make data accesses
by different observers coherent, unless the memory is Non-cacheable. For a Non-shareable location, if other
observers share the memory system, software must use cache maintenance instructions, if the presence of caches
might lead to coherency issues when communicating between the observers. This cache maintenance requirement
is in addition to the barrier operations that are required to ensure memory ordering.

For Non-shareable Normal memory, it is IMPLEMENTATION DEFINED whether the Load-Exclusive and
Store-Exclusive synchronization primitives take account of the possibility of accesses by more than one observer.

Cacheability attributes for Normal memory

In addition to being Outer Shareable, Inner Shareable or Non-shareable, each region of Normal memory is assigned
a Cacheability attribute that is one of:

• Write-Through Cacheable.

• Write-Back Cacheable.

• Non-cacheable.

Also, for Write-Through Cacheable and Write-Back Cacheable Normal memory regions:

• A region might be assigned cache allocation hints for read and write accesses.

• It is IMPLEMENTATION DEFINED whether the cache allocation hints can have an additional attribute of
Transient or Non-transient.

For more information, see Cacheability, cache allocation hints, and cache transient hints on page G4-6232.
E2-4320 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
A memory location can be marked as having different cacheability attributes, for example when using aliases in a
VA to PA mapping:

• If the attributes differ only in the cache allocation hint this does not affect the behavior of accesses to that
location.

• For other cases, see Mismatched memory attributes on page E2-4328.

The cacheability attributes provide a mechanism of coherency control with observers that lie outside the
Shareability domain of a region of memory. In some cases, the use of Write-Through Cacheable or Non-cacheable
regions of memory might provide a better mechanism for controlling coherency than the use of hardware coherency
mechanisms or the use of cache maintenance routines. To this end, the architecture requires the following properties
for Non-cacheable or Write-Through Cacheable memory:

• A completed write to a memory location that is Non-cacheable or Write-Through Cacheable for a level of
cache made by an observer accessing the memory system inside the level of cache is visible to all observers
accessing the memory system outside the level of cache without the need of explicit cache maintenance.

• A completed write to a memory location that is Non-cacheable for a level of cache made by an observer
accessing the memory system outside the level of cache is visible to all observers accessing the memory
system inside the level of cache without the need of explicit cache maintenance.

Note

Implementations can use the cache allocation hints to indicate a probable performance benefit of caching. For
example, a programmer might know that a piece of memory is not going to be accessed again and would be better
treated as Non-cacheable. The distinction between memory regions with attributes that differ only in the cache
allocation hints exists only as a hint for performance.

For Normal memory, the Arm architecture provides cacheability attributes that are defined independently for each
of two conceptual levels of cache, the inner and the outer cache. The relationship between these conceptual levels
of cache and the implemented physical levels of cache is IMPLEMENTATION DEFINED, and can differ from the
boundaries between the Inner and Outer Shareability domains. However:

• Inner refers to the innermost caches, meaning the caches that are closest to the PE, and always includes the
lowest level of cache.

• No cache that is controlled by the Inner cacheability attributes can lie outside a cache that is controlled by the
Outer cacheability attributes.

• An implementation might not have any outer cache.

Example E2-2 on page E2-4321, Example E2-3 on page E2-4322, and Example E2-4 on page E2-4322 describe the
possible ways of implementing a system with three levels of cache, level 1 (L1) to level 3 (L3).

Note

• L1 cache is the level closest to the PE, see Memory hierarchy on page E2-4307.

• When managing coherency, system designs must consider both the inner and outer cacheability attributes, as
well as the Shareability attributes. This is because hardware might have to manage the coherency of caches
at one conceptual level, even when another conceptual level has the Non-cacheable attribute.

Example E2-2 Implementation with two inner and one outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:

• The Inner cacheability attribute applied to L1 and L2 cache.

• The Outer cacheability attribute applied to L3 cache.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4321
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
Example E2-3 Implementation with three inner and no outer cache levels

Implement the three levels of cache in the system, L1 to L3, with the Inner cacheability attribute applied to L1, L2,
and L3 cache. Do not use the Outer cacheability attribute.

Example E2-4 Implementation with one inner and two outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:

• The Inner cacheability attribute applied to L1 cache.

• The Outer cacheability attribute applied to L2 and L3 cache.

Multi-register loads and stores that access Normal memory

For all instructions that load or store more than one general-purpose register from an Exception level there is no
requirement for the memory system beyond the PE to be able to identify the size of the elements accessed by these
load or store instructions.

For all instructions that load or store more than one general-purpose register from an Exception level the order in
which the registers are accessed is not defined by the architecture.

For all instructions that load or store one or more registers from the SIMD and floating-point register file from an
Exception level there is no requirement for the memory system beyond the PE to be able to identify the size of the
element accessed by these load or store instructions.

E2.8.2 Device memory

The Device memory type attributes define memory locations where an access to the location can cause side-effects,
or where the value returned for a load can vary depending on the number of loads performed. Typically, the Device
memory attributes are used for memory-mapped peripherals and similar locations.

The attributes for Armv8 Device memory are:

Gathering Identified as G or nG, see Gathering on page E2-4324.

Reordering Identified as R or nR, see Reordering on page E2-4325.

Early Write Acknowledgement

Identified as E or nE, see Early Write Acknowledgement on page E2-4326.

The Armv8 Device memory types are:

Device-nGnRnE Device non-Gathering, non-Reordering, No Early Write Acknowledgement.

Equivalent to the Strongly-ordered memory type in earlier versions of the architecture.

Device-nGnRE Device non-Gathering, non-Reordering, Early Write Acknowledgement.

Equivalent to the Device memory type in earlier versions of the architecture.

Device-nGRE Device non-Gathering, Reordering, Early Write Acknowledgement.

Armv8 adds this memory type to the translation table formats found in earlier versions of
the architecture. The use of barriers is required to order accesses to Device-nGRE memory.

The Device-nGRE memory type is introduced into the AArch32 translation table formats
when the PE is using the Long Descriptor Translation Table format.

Device-GRE Device Gathering, Reordering, Early Write Acknowledgement.
E2-4322 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
Armv8 adds this memory type to the translation table formats found in earlier versions of
the architecture. Device-GRE memory has the fewest constraints. It behaves similar to
Normal memory, with the restriction that speculative accesses to Device-GRE memory is
forbidden.

The Device-GRE memory type is introduced into the AArch32 translation table formats
when the PE is using the Long Descriptor Translation Table format.

Collectively these are referred to as any Device memory type. Going down the list, the memory types are described
as getting weaker; conversely the going up the list the memory types are described as getting stronger.

Note

• As the list of types shows, these additional attributes are hierarchical. For example, a memory location that
permits Gathering must also permit Reordering and Early Write Acknowledgement.

• The architecture does not require an implementation to distinguish between each of these memory types and
Arm recognizes that not all implementations will do so. The subsection that describes each of the attributes,
describes the implementation rules for the attribute.

• Earlier versions of the Arm architecture defined the following memory types:

— Strongly-ordered memory. This is the equivalent of the Device-nGnRnE memory type.

— Device memory. This is the equivalent of the Device-nGnRE memory type.

All of these memory types have the following properties:

• Speculative data accesses are not permitted to any memory location with any Device memory attribute. This
means that each memory access to any Device memory type must be one that would be generated by a simple
sequential execution of the program.

An exception to this applies:

— Reads generated by the Advanced SIMD and floating-point instructions can access bytes that are not
explicitly accessed by the instruction if the bytes accessed are in a 16-byte window, aligned to
16-bytes, that contains at least one byte that is explicitly accessed by the instruction.

Note

— An instruction that generates a sequence of accesses as described in Atomicity in the Arm architecture
on page E2-4284 might be abandoned as a result of an exception being taken during the sequence of
accesses. On return from the exception the instruction is restarted, and therefore one or more of the
memory locations might be accessed multiple times. This can result in repeated accesses to a location
where the program only defines a single access. For this reason, Arm strongly recommends that no
accesses to Device memory are performed from a single instruction that spans the boundary of a
translation granule or which in some other way could lead to some of the accesses being aborted.

— Write speculation that is visible to other observers is prohibited for all memory types.

• A write to a memory location with any Device memory type completes in finite time.

• If a value that would be returned from a read of a memory location with the Device memory type changes
without an explicit memory write effect by an observer, this change must also be globally observed for all
observers in the system in finite time. Such a change might occur in a peripheral location that holds status
information.

• Data accesses to memory locations are coherent for all observers in the system, and correspondingly are
treated as being Outer Shareable.

• A memory location with any Device memory attribute cannot be allocated into a cache.

• Writes to a memory location with any Device memory attribute must reach the endpoint for that address in
the memory system in finite time. Two writes of Device memory type to the same location might be merged
before they reach the endpoint, unless both writes have the non-Gathering attribute or there is an
ordered-before relationship between the two writes.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4323
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
• If a memory location is not capable of supporting unaligned memory accesses, then an unaligned access to
that memory location generates an Alignment fault at the first stage of translation that defined the location as
being Device.

• If a memory location is capable of supporting unaligned memory accesses, and such a memory location is
marked as Device, then it is IMPLEMENTATION DEFINED whether an unaligned access to that memory location
generates an Alignment fault at the first stage of translation that defined the location as being Device.

• Hardware does not prevent speculative instruction fetches from a memory location with any of the Device
memory attributes unless the memory location is also marked as execute-never for all Exception levels.

Note

This means that to prevent speculative instruction fetches from memory locations with Device memory
attributes, any location that is assigned any Device memory type must also be marked as execute-never for
all Exception levels. Failure to mark a memory location with any Device memory attribute as execute-never
for all Exception levels is a programming error.

Note

In the Non-secure PL1&0 translation regime in systems where HCR.TGE==1 and HCR.DC==0, any Alignment
fault that results from the fact that all locations are treated as Device is a fault at the first stage of translation. This
causes the value of HSR.ISS.[24] to be 0.

See also Memory access restrictions on page E2-4327.

The memory types for translation table walks cannot be defined as any Device memory type within the TCR. For
the Non-secure EL1&0 translation regime, the memory accesses made during a stage 1 translation table walk are
subject to a stage 2 translation, and as a result of this second stage of translation, the accesses from the first stage
translation table walk might be made to memory locations with any Device memory type. These accesses might be
made speculatively. When the value of the HCR.PTW bit is 1, a stage 2 Permission fault is generated if a first stage
translation table walk is made to any Device memory type.

For an instruction fetch from a memory location with the Device attribute that is not marked as execute-never for
the current Exception level, an implementation can either:

• Treat the instruction fetch as if it were to a memory location with the Normal Non-cacheable attribute.

• Take a Permission fault.

Gathering

In the Device memory attribute:

G Indicates that the location has the Gathering attribute.

nG Indicates that the location does not have the Gathering attribute, meaning it is non-Gathering.

The Gathering attribute determines whether it is permissible for either:

• Multiple memory accesses of the same type, read or write, to the same memory location to be merged into a
single transaction.

• Multiple memory accesses of the same type, read or write, to different memory locations to be merged into
a single memory transaction on an interconnect.

For memory types with the Gathering attribute, either of these behaviors is permitted, provided that the ordering and
coherency rules of the memory location are followed.

For memory types with the non-Gathering attribute, neither of these behaviors is permitted. As a result:

• The number of memory accesses that are made corresponds to the number that would be generated by a
simple sequential execution of the program.
E2-4324 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
• All access occur at their programmed size, except that there is no requirement for the memory system beyond
the PE to be able to identify the elements accessed by multi-register load/store instructions. See
Multi-register loads and stores that access Device memory on page E2-4326.

Gathering between memory accesses separated by a memory barrier that affects those memory accesses is not
permitted.

Gathering between two memory accesses generated by a Load-Acquire/Store-Release is not permitted.

A read from a memory location with the non-Gathering attribute cannot come from a cache or a buffer, but must
come from the endpoint for that address in the memory system. Typically this is a peripheral or physical memory.

Note

• A read from a memory location with the Gathering attribute can come from intermediate buffering of a
previous write, provided that:

— The accesses are not separated by a DMB or DSB barrier that affects both of the accesses.

— The accesses are not separated by other ordering constructions that require that the accesses are in
order. Such a construction might be a combination of Load-Acquire and Store-Release.

— The accesses are not generated by a Store-Release instruction.

• The Arm architecture only defines programmer visible behavior. Therefore, gathering can be performed if a
programmer cannot tell whether gathering has occurred.

An implementation is permitted to perform an access with the Gathering attribute in a manner consistent with the
requirements specified by the non-Gathering attribute.

An implementation is not permitted to perform an access with the non-Gathering attribute in a manner consistent
with the relaxations allowed by the Gathering attribute.

Reordering

In the Device memory attribute:

R Indicates that the location has the Reordering attribute.

nR Indicates that the location does not have the Reordering attribute, meaning it is non-Reordering.

For all memory types with the non-Reordering attribute, the order of memory accesses arriving at a single peripheral
of IMPLEMENTATION DEFINED size, as defined by the peripheral, must be the same order that occurs in a simple
sequential execution of the program. That is, the accesses appear in program order. This ordering applies to all
accesses using any of the memory types with the non-Reordering attribute. As a result, if there is a mixture of
Device-nGnRE and Device-nGnRnE accesses to the same peripheral, these occur in program order. If the memory
accesses are not to a peripheral, then this attribute imposes no restrictions.

Note

• The IMPLEMENTATION DEFINED size of the single peripheral is the same as applies for the ordering guarantee
provided by the DMB instruction.

• The Arm architecture only defines programmer visible behavior. Therefore, reordering can be performed if
a programmer cannot tell whether reordering has occurred.

An implementation is permitted to perform an access with the Reordering attribute in a manner consistent with the
requirements specified by the non-Reordering attribute.

An additional relaxation is that an implementation is not permitted to perform an access with the non-Reordering
attribute in a manner consistent with the relaxations allowed by the Reordering attribute.

The non-Reordering attribute does not require any additional ordering, other than that which applies to Normal
memory, between:

• Accesses to one physical address with the non-Reordering attribute and accesses to a different physical
address with the Reordering attribute.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4325
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
• Access to one physical address with the non-Reordering attribute and access to a different physical address
to Normal memory.

• Accesses with the non-Reordering attribute and accesses to different peripherals of IMPLEMENTATION
DEFINED size.

Early Write Acknowledgement

In the Device memory attribute:

E Indicates that the location has the Early Write Acknowledgement attribute.

nE Indicates that the location has the No Early Write Acknowledgement attribute.

If the No Early Write Acknowledgement attribute is assigned for a Device memory location:

• For memory system endpoints where the system architecture in which the PE is operating requires that
acknowledgement of a write comes from the endpoint, it is guaranteed that:

— Only the endpoint of the write access returns a write acknowledgement of the access.

— No earlier point in the memory system returns a write acknowledgement.

• For memory system endpoints where the system architecture in which the PE is operating does not require
that acknowledgement of a write comes from the endpoint, the acknowledgement of a write is not required
to come from the endpoint.

Note

A write with the No Early Write Acknowledgement attribute assigned for a Device memory location is not expected
to generate an abort in any situation where the equivalent write to the same location without the No Early Write
Acknowledgement attribute assigned does not generate an abort.

This means that a DSB barrier instruction, executed by the PE that performed the write to the No Early Write
Acknowledgement Location, completes only after the write has reached its endpoint in the memory system.

Peripherals are an example of system endpoints that require that the acknowledgment of a write comes from the
endpoint.

Note

• The Early Write Acknowledgement attribute only affects where the endpoint acknowledgment is returned
from, and does not affect the ordering of arrival at the endpoint between accesses, which is determined by
either the Device Reordering attribute, or the use of barriers to create order.

• The areas of the physical memory map for which write acknowledgment from the endpoint is required is
outside the scope of the Arm Architecture definition and must be defined as part of the system architecture
in which the PE is operating. In particular, regions of memory handled as PCIe configuration writes are
expected to support write acknowledgment from the endpoint.

• Arm recognizes that not all areas of a physical memory map will be capable of supporting write
acknowledgment from the endpoint. In particular, Arm expects that regions of memory handled as posted
writes under PCIe will not support write acknowledgment from the endpoint.

• For maximum software compatibility, Arm strongly recommends that all peripherals for which standard
software drivers expect that the use of a DSB instruction will determine that a write has reached its endpoint
are placed in areas of the physical memory map that support write acknowledgment from the endpoint.

Multi-register loads and stores that access Device memory

For all instructions that load or store more than one general-purpose register there is no requirement for the memory
system beyond the PE to be able to identify the size of the elements accessed by these load and store instructions.

For all instructions that load or store one or more registers from the SIMD and floating-point register file there is
no requirement for the memory system beyond the PE to be able to identify the size of the element accessed by these
load and store instructions.
E2-4326 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
For an LDRD, STRD, or LDM instruction with a register list that includes the PC, or an STM instruction with a register list
that includes the PC, the order in which the registers are accessed is not defined by the architecture.

For a load or store of an Advanced SIMD element or structure, the order in which the registers are accessed is not
defined by the architecture.

For a VLDM and VSTM instruction with a register list that does not include the PC, all registers are accessed in ascending
address order for accesses to Device memory with the non-Reordering attribute.

For a LDM or STM instruction with a register list that does not include the PC:

• When FEAT_LSMAOC is not implemented, and when FEAT_LSMAOC is implemented and the value of
the applicable LSMAOE field is 1, all registers are accessed in ascending address order for accesses to Device
memory with the non-Reordering attribute.

• When FEAT_LSMAOC is implemented and the value of the applicable LSMAOE field is 0, no memory
accesses are required to be ordered.

• When FEAT_LSMAOC is implemented and the value of the applicable nTLSMD field is 0, any memory
access to an address that the stage 1 translation assigns as Device-nGRE, Device-nGnRE, or Device-nGnRnE
generates an Alignment fault.

The applicable LSMAOE or nTLSMD field is the field in the SCTLR_EL1, SCTLR_EL2, HSCTLR, or SCTLR
register that applies to the Exception level and Security state at which the LDM or STM instruction is executed.

Armv8.2 deprecates software relying on accesses to Device memory made by a single LDM or STM instruction not
being reordered.

E2.8.3 Memory access restrictions

The following restrictions apply to memory accesses:

• For two explicit memory reads to any two adjacent bytes in memory, p and p+1, generated by the same
instruction, and for two explicit writes to any two adjacent bytes in memory, p and p+1, that are generated
by the same instruction:

— The bytes p and p+1 must have the same memory type and Shareability attributes. otherwise the
results are CONSTRAINED UNPREDICTABLE. For example, an LDC, LDM, LDRD STC, STM or STRD instruction,
or an unaligned load or store that spans the boundary between Normal memory and Device memory
is CONSTRAINED UNPREDICTABLE.

— Except for possible differences in the cache allocation hints, Arm deprecates having different
cacheability attributes for bytes p and p+1.

For the permitted CONSTRAINED UNPREDICTABLE behavior, see Crossing a page boundary with different
memory types or Shareability attributes on page K1-8397.

• If the accesses of an instruction that causes multiple accesses to any type of Device memory cross a 4KB
address boundary then behavior is CONSTRAINED UNPREDICTABLE and Crossing a 4KB boundary with a
Device access on page K1-8397 describes the permitted behaviors.

Note

— The boundary referred to is between two Device memory regions that are both of 4KB and aligned to
4KB.

— This restriction means it is important that an access to a volatile memory device is not made using a
single instruction that crosses a 4KB address boundary.

— Arm expects this restriction to constrain the placing of volatile memory devices in the system memory
map, rather than expecting a compiler to be aware of the alignment of memory accesses.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4327
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.9 Mismatched memory attributes
E2.9 Mismatched memory attributes

In the Armv8 architecture mismatched memory attributes are controlled by privileged software. For more
information, see Chapter G5 The AArch32 Virtual Memory System Architecture.

Physical memory Locations are accessed with mismatched attributes if all accesses to the Location do not use a
common definition of all of the following attributes of that Location:

• Memory type: Device-nGnRnE, Device-nGnRE, Device-nGRE, Device-GRE or Normal.

• Shareability.

• Cacheability, for the same level of the inner or outer cache, but excluding any cache allocation hints.

Collectively these are referred to as memory attributes.

Note

In this document, the terms location and memory location refer to any byte within the current coherency granule
and are used interchangeably.

When a memory Location is accessed with mismatched attributes the only software visible effects are one or more
of the following:

• Uniprocessor semantics for reads and writes to that memory Location might be lost. This means:

— A read of the memory Location by one agent might not return the value most recently written to that
memory Location by the same agent.

— Multiple writes to the memory Location by one agent with different memory attributes might not be
ordered in program order.

• There might be a loss of coherency when multiple agents attempt to access a memory Location.

• There might be a loss of properties derived from the memory type, as described in later bullets in this section.

• If all Load-Exclusive/Store-Exclusive instructions executed across all threads to access a given memory
Location do not use consistent memory attributes, the Exclusives monitor state becomes UNKNOWN.

• Bytes written without the Write-Back cacheable attribute within the same Write-Back granule as bytes
written with the Write-Back cacheable attribute might have their values reverted to the old values as a result
of cache Write-Back.

The loss of properties associated with mismatched memory type attributes refers only to the following properties of
Device memory that are additional to the properties of Normal memory:

• Prohibition of speculative read accesses.

• Prohibition on Gathering.

• Prohibition on Reordering.

For the following situations, when a physical memory Location is accessed with mismatched attributes, a more
restrictive set of behaviors applies. The description of each situation also describes the behaviors that apply:

1. Any agent that reads that memory Location using the same common definition of the Memory type,
Shareability and Cacheability attributes is guaranteed to access it coherently, to the extent required by that
common definition of the memory attributes, only if all the following conditions are met:

• All writes are performed to an alias of the memory Location that uses the same definition of the
Memory type, Shareability and Cacheability attributes.

• Either:

— In the Non-secure PL1&0 translation regime, HCR2.MIOCNCE has a value of 0.

— All aliases with write permission have the Inner Cacheability attribute the same as the Outer
Cacheability attribute.

• Either:

— All writes are performed to an alias of the memory Location that has Inner Cacheability and
Outer Cacheability attributes both as Non-cacheable.
E2-4328 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.9 Mismatched memory attributes
— All aliases to a memory Location use a definition of the Shareability attributes that encompasses
all the agents with permission to access the Location.

2. The possible software-visible effects caused by mismatched attributes for a memory Location are defined
more precisely if all of the mismatched attributes define the memory Location as one of:

• Any Device memory type.

• Normal Inner Non-cacheable, Outer Non-cacheable memory.

In these cases, the only permitted software-visible effects of the mismatched attributes are one or more of the
following:

• Possible loss of properties derived from the memory type when multiple agents attempt to access the
memory Location.

• Possible reordering of memory transactions to the same memory Location with different memory
attributes, potentially leading to a loss of coherency or uniprocessor semantics. Any possible loss of
coherency or uniprocessor semantics can be avoided by inserting DMB barrier instructions between
accesses to the same memory Location that might use different attributes.

Where there is a loss of the uniprocessor semantics, ordering, or coherency, the following approaches can be used:

1. If the mismatched attributes for a memory Location all assign the same Shareability attribute to a Location
that has a cacheable attribute, any loss of uniprocessor semantics, ordering, or coherency within a
Shareability domain can be avoided by use of software cache management. To do so, software must use the
techniques that are required for the software management of the ordering or coherency of cacheable
Locations between agents in different shareability domains. This means:

• Before writing to a cacheable Location not using the Write-Back attribute, software must invalidate,
or clean, a Location from the caches if any agent might have written to the Location with the
Write-Back attribute. This avoids the possibility of overwriting the Location with stale data.

• After writing to a cacheable Location with the Write-Back attribute, software must clean the Location
from the caches, to make the write visible to external memory.

• Before reading the Location with a cacheable attribute, software must invalidate, or clean and
invalidate, the Location from the caches, to ensure that any value held in the caches reflects the last
value made visible in external memory.

• Executing a DMB barrier instruction, with scope that applies to the common Shareability of the accesses,
between any accesses to the same cacheable Location that use different attributes.

Note

In AArch32 state, cache maintenance instructions can only be accessed from an Exception level that is higher
than EL0, and therefore require a system call. For information on system calls, see Exception-generating and
exception-handling instructions on page F2-4395. For information about the AArch32 cache maintenance
instructions, see AArch32 cache and branch predictor support on page G4-6229.

In all cases:

• Location refers to any byte within the current coherency granule.

• A clean and invalidate instruction can be used instead of a clean instruction, or instead of an invalidate
instruction.

• In the sequences outlined in this section, all cache maintenance instructions and memory transactions
must be completed, or ordered by the use of barrier operations, if they are not naturally ordered by the
use of a common address, see Ordering of cache and branch predictor maintenance instructions on
page G4-6248.

Note
With software management of coherency, race conditions can cause loss of data. A race condition occurs
when different agents write simultaneously to bytes that are in the same Location, and the invalidate, write,
clean sequence of one agent overlaps with the equivalent sequence of another agent. A race condition also
occurs if the first operation of either sequence is a clean, rather than an invalidate.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4329
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.9 Mismatched memory attributes
2. If the mismatched attributes for a Location mean that multiple cacheable accesses to the Location might be
made with different Shareability attributes, then ordering and coherency are guaranteed only if:

• Software running on a PE cleans and invalidates a Location from cache before and after each read or
write to that Location by that PE.

• A DMB barrier with scope that covers the full Shareability of the accesses is placed between any accesses
to the same memory Location that use different attributes.

Note

The Note in rule 1 of this list, about possible race conditions, also applies to this rule.

In addition, if multiple agents attempt to use Load-Exclusive or Store-Exclusive instructions to access a Location,
and the accesses from the different agents have different memory attributes associated with the Location, the
Exclusives monitor state becomes UNKNOWN.

Arm strongly recommends that software does not use mismatched attributes for aliases of the same Location. An
implementation might not optimize the performance of a system that uses mismatched aliases.

Note

As described in Non-cacheable accesses and instruction caches on page D4-2643, a non-cacheable access is
permitted to be cached in an instruction cache, despite the fact that a non-cacheable access is not permitted to be
cached in a unified cache. Despite this, when cacheable and non-cacheable aliases exist for memory which is
executable, these must be treated as mismatched aliases to avoid coherency issues from the data or unified caches
that might hold entries that will be brought into the instruction caches.
E2-4330 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
E2.10 Synchronization and semaphores

Armv8 provides non-blocking synchronization of shared memory, using synchronization primitives. The
information in this section about memory accesses by synchronization primitives applies to accesses to both Normal
and Device memory.

Note

Use of the Armv8 synchronization primitives scales for multiprocessing system designs.

Table E2-6 on page E2-4331 shows the synchronization primitives and the associated CLREX instruction.

Except for the row showing the CLREX instruction, the two instructions in a single row are a
Load-Exclusive/Store-Exclusive instruction pair. The model for the use of a Load-Exclusive/Store-Exclusive
instruction pair accessing a non-aborting memory address x is:

• The Load-Exclusive instruction reads a value from memory address x.

• The corresponding Store-Exclusive instruction succeeds in writing back to memory address x only if no other
observer, process, or thread has performed a more recent store to address x. The Store-Exclusive instruction
returns a status bit that indicates whether the memory write succeeded.

A Load-Exclusive instruction marks a small block of memory for exclusive access. The size of the marked block is
IMPLEMENTATION DEFINED, see Marking and the size of the marked memory block on page E2-4337. A
Store-Exclusive instruction to any address in the marked block clears the marking.

Note

In this section, the term PE includes any observer that can generate a Load-Exclusive or a Store-Exclusive
instruction.

The following sections give more information:

• Exclusive access instructions and Non-shareable memory locations on page E2-4332.

• Exclusive access instructions and shareable memory locations on page E2-4333.

• Marking and the size of the marked memory block on page E2-4337.

• Context switch support on page E2-4337.

• Load-Exclusive and Store-Exclusive instruction usage restrictions on page E2-4337.

• Use of WFE and SEV instructions by spin-locks on page E2-4340.

Table E2-6 Synchronization primitives and associated instruction, T32 and A32 instruction sets

Transaction size Additional semantics Load-Exclusivea

a. Instruction in the T32 and A32 instruction sets.

Store-Exclusivea Othera

Byte - LDREXB STREXB -

Load-Acquire/Store-Release LDAEXB STLEXB -

Halfword - LDREXH STREXH -

Load-Acquire/Store-Release LDAEXH STLEXH -

Word - LDREX STREX -

Load-Acquire/Store-Release LDAEX STLEX -

Doubleword - LDREXD STREXD -

Load-Acquire/Store-Release LDAEXD STLEXD -

None Clear-Exclusive - - CLREX
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4331
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
E2.10.1 Exclusive access instructions and Non-shareable memory locations

For memory locations for which the Shareability attribute is Non-shareable, the exclusive access instructions rely
on a local Exclusives monitor, or local monitor, that marks any address from which the PE executes a
Load-Exclusive instruction. Any non-aborted attempt by the same PE to use a Store-Exclusive instruction to modify
any address is guaranteed to clear the marking.

A Load-Exclusive instruction performs a load from memory, and:

• The executing PE marks the physical memory address for exclusive access.

• The local monitor of the executing PE transitions to the Exclusive Access state.

A Store-Exclusive instruction performs a conditional store to memory that depends on the state of the local monitor:

If the local monitor is in the Exclusive Access state

• If the address of the Store-Exclusive instruction is the same as the address that has been
marked in the monitor by an earlier Load-Exclusive instruction, then the store occurs.
Otherwise, it is IMPLEMENTATION DEFINED whether the store occurs.

• A status value is returned to a register:

— If the store took place the status value is 0.

— Otherwise, the status value is 1.

• The local monitor of the executing PE transitions to the Open Access state.

When an Exclusives monitor is in the Exclusive Access state the monitor is set.

If the local monitor is in the Open Access state

• No store takes place.

• A status value of 1 is returned to a register.

• The local monitor remains in the Open Access state.

When an Exclusives monitor is in the Exclusive Access state the monitor is clear.

The Store-Exclusive instruction defines the register to which the status value is returned.

When a PE writes using any instruction other than a Store-Exclusive instruction:

• If the write is to a PA that is not marked as Exclusive Access by its local monitor and that local monitor is in
the Exclusive Access state it is IMPLEMENTATION DEFINED whether the write affects the state of the local
monitor.

• If the write is to a PA that is marked as Exclusive Access by its local monitor it is IMPLEMENTATION DEFINED
whether the write affects the state of the local monitor.

It is IMPLEMENTATION DEFINED whether a store to a marked PA causes a mark in the local monitor to be cleared if
that store is by an observer other than the one that caused the PA to be marked.

Figure E2-4 on page E2-4333 shows the state machine for the local monitor and the effect of each of the operations
shown in the figure.
E2-4332 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
Figure E2-4 Local monitor state machine diagram

For more information about marking, see Marking and the size of the marked memory block on page E2-4337.

Note

For the local monitor state machine, as shown in Figure E2-4 on page E2-4333:

• The IMPLEMENTATION DEFINED options for the local monitor are consistent with the local monitor being
constructed so that it does not hold any PA, but instead treats any access as matching the address of the
previous Load-Exclusive instruction.

• A local monitor implementation can be unaware of Load-Exclusive and Store-Exclusive instructions from
other PEs.

• The architecture does not require a load instruction, by another PE, that is not a Load-Exclusive instruction,
to have any effect on the local monitor.

• It is IMPLEMENTATION DEFINED whether the transition from Exclusive Access to Open Access state occurs
when the Store or StoreExcl is from another observer.

Changes to the local monitor state resulting from speculative execution

The architecture permits a local monitor to transition to the Open Access state as a result of speculation, or from
some other cause. This is in addition to the transitions to Open Access state caused by the architectural execution
of an operation shown in Figure E2-4 on page E2-4333.

An implementation must ensure that:

• The local monitor cannot be seen to transition to the Exclusive Access state except as a result of the
architectural execution of one of the operations shown in Figure E2-4 on page E2-4333.

• Any transition of the local monitor to the Open Access state not caused by the architectural execution of an
operation shown in Figure E2-4 on page E2-4333 must not indefinitely delay forward progress of execution.

E2.10.2 Exclusive access instructions and shareable memory locations

In the context of this section, a shareable memory location is a memory location that has, or is treated as if it has, a
Shareability attribute of Inner Shareable or Outer Shareable.

Open
Access

Exclusive
Access

LoadExcl(x) LoadExcl(x)

CLREX

StoreExcl(x)

Store(x)

CLREX

Store(!Marked_address)*

Store(Marked_address)*

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.

Store(Marked_address)*

StoreExcl(Marked_address)

StoreExcl(!Marked_address)

Store(!Marked_address)*

In the diagram: LoadExcl represents any Load-Exclusive instruction
StoreExcl represents any Store-Exclusive instruction
Store represents any other store instruction.

Any LoadExcl operation updates the marked address to the most significant bits of the address x used for the operation.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4333
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
For shareable memory locations, exclusive access instructions rely on:

• A local monitor for each PE in the system, that marks any address from which the PE executes a
Load-Exclusive. The local monitor operates as described in Exclusive access instructions and Non-shareable
memory locations on page E2-4332, except that for shareable memory any Store-Exclusive is then subject to
checking by the global monitor if it is described in that section as doing at least one of the following:

— Updating memory.

— Returning a status value of 0.

The local monitor can ignore accesses from other PEs in the system.

• A global monitor that marks a PA as exclusive access for a particular PE. This marking is used later to
determine whether a Store-Exclusive to that address that has not been failed by the local monitor can occur.
Any successful write to the marked block by any other observer in the Shareability domain of the memory
location is guaranteed to clear the marking. For each PE in the system, the global monitor:

— Can hold at least one marked block.

— Maintains a state machine for each marked block it can hold.

Note

For each PE, the architecture only requires global monitor support for a single marked address. Any situation
that might benefit from the use of multiple marked addresses on a single PE is CONSTRAINED
UNPREDICTABLE, see Load-Exclusive and Store-Exclusive instruction usage restrictions on page E2-4337.

Note

The global monitor can either reside in a block that is part of the hardware on which the PE executes or exist as a
secondary monitor at the memory interfaces. The IMPLEMENTATION DEFINED aspects of the monitors mean that the
global monitor and local monitor can be combined into a single unit, provided that the unit performs the global
monitor and local monitor functions defined in this manual.

For shareable memory locations, in some implementations and for some memory types, the properties of the global
monitor require functionality outside the PE. Some system implementations might not implement this functionality
for all locations of memory. In particular, this can apply to:

• Any type of memory in the system implementation that does not support hardware cache coherency.

• Non-cacheable memory, or memory treated as Non-cacheable, in an implementation that does support
hardware cache coherency.

In such a system, it is defined by the system:

• Whether the global monitor is implemented.

• If the global monitor is implemented, which address ranges or memory types it monitors.

Note

To support the use of the Load-Exclusive/Store-Exclusive mechanism when address translation is disabled, a system
might define at least one location of memory, of at least the size of the translation granule, in the system memory
map to support the global monitor for all PEs within a common Inner Shareable domain. However, this is not an
architectural requirement. Therefore, architecturally-compliant software that requires mutual exclusion must not
rely on using the Load-Exclusive/Store-Exclusive mechanism, and must instead use a software algorithm such as
Lamport’s Bakery algorithm to achieve mutual exclusion.

Because implementations can choose which memory types are treated as Non-cacheable, the only memory types for
which it is architecturally guaranteed that a global Exclusives monitor is implemented are:

• Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hint and Write
allocation hint and not transient.

• Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hint and Write
allocation hints and not transient.
E2-4334 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
If the global monitor is not implemented for an address range or memory type, then performing a
Load-Exclusive/Store-Exclusive instruction to such a location has one or more of the following effects:

• The instruction generates an External abort.

• The instruction generates an IMPLEMENTATION DEFINED MMU fault. This is reported using the Fault status
code of:

— DFSR.STATUS = 0b110101 when using the Long-descriptor translation table format. The fault can also
be reported in the HSR.ISS[5:0] field for exceptions to Hyp mode.

— DFSR.FS = 0b10101 when using the Short-descriptor translation table format.

If the IMPLEMENTATION DEFINED MMU fault is generated for the Non-secure PL1&0 translation regime then:

— If the fault is generated because of the memory type defined in the first stage of translation, or if the
second stage of translation is disabled, then this is a first stage fault and the exception is taken to EL1.

— Otherwise, the fault is a second stage fault and the exception is taken to EL2.

The priority of this fault is IMPLEMENTATION DEFINED.

• The instruction is treated as a NOP.

• The Load-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the
local monitor becomes UNKNOWN.

• The Store-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the
local monitor becomes UNKNOWN.

• The value held in the result register of the Store-Exclusive instruction becomes UNKNOWN.

In addition, for write transactions generated by non-PE observers that do not implement exclusive accesses or other
atomic access mechanisms, the effect that writes have on the global and local monitors used by an Arm PE is
IMPLEMENTATION DEFINED. The writes might not clear the global monitors of other PEs for:

• Some address ranges.

• Some memory types.

Operation of the global Exclusives monitor

A Load-Exclusive instruction from shareable memory performs a load from memory, and causes the PA of the
access to be marked as exclusive access for the requesting PE. This access can also cause the exclusive access mark
to be removed from any other PA that has been marked by the requesting PE.

Note

The global monitor only supports a single outstanding exclusive access to shareable memory for each PE.

A Load-Exclusive instruction by one PE has no effect on the global monitor state for any other PE.

A Store-Exclusive instruction performs a conditional store to memory:

• The store is guaranteed to succeed only if the PA accessed is marked as exclusive access for the requesting
PE and both the local monitor and the global monitor state machines for the requesting PE are in the
Exclusive Access state. In this case:

— A status value of 0 is returned to a register to acknowledge the successful store.

— The final state of the global monitor state machine for the requesting PE is IMPLEMENTATION DEFINED.

— If the address accessed is marked for exclusive access in the global monitor state machine for any other
PE then that state machine transitions to Open Access state.

• If no address is marked as exclusive access for the requesting PE, the store does not succeed:

— A status value of 1 is returned to a register to indicate that the store failed.

— The global monitor is not affected and remains in Open Access state for the requesting PE.

• If a different PA is marked as exclusive access for the requesting PE, it is IMPLEMENTATION DEFINED whether
the store succeeds or not:

— If the store succeeds a status value of 0 is returned to a register, otherwise a value of 1 is returned.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4335
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
— If the global monitor state machine for the PE was in the Exclusive Access state before the
Store-Exclusive instruction it is IMPLEMENTATION DEFINED whether that state machine transitions to
the Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.

In a shared memory system, the global monitor implements a separate state machine for each PE in the system. The
state machine for accesses to shareable memory by PE(n) can respond to all the shareable memory accesses visible
to it. This means it responds to:

• Accesses generated by PE(n).

• Accesses generated by the other observers in the Shareability domain of the memory location. These accesses
are identified as (!n).

In a shared memory system, the global monitor implements a separate state machine for each observer that can
generate a Load-Exclusive or a Store-Exclusive instruction in the system.

A global monitor:

• In the Exclusive Access state is set.

• In the Open Access state is clear.

Clear global monitor event

Whenever the global monitor state for a PE changes from Exclusive access to Open access, an event is generated
and held in the Event register for that PE. This register is used by the Wait for Event mechanism, see Wait For Event
and Send Event on page G1-6104.

Figure E2-5 on page E2-4336 shows the state machine for PE(n) in a global monitor.

Figure E2-5 Global monitor state machine diagram for PE(n) in a multiprocessor system

For more information about marking, see Marking and the size of the marked memory block on page E2-4337.

Note

For the global monitor state machine, as shown in Figure E2-5 on page E2-4336:

• The architecture does not require a load instruction by another PE, that is not a Load-Exclusive instruction,
to have any effect on the global monitor.

Any LoadExcl operation updates the marked address to the most significant bits of the address x used for the operation.

Open
Access

Exclusive
Access

LoadExcl(x,n) LoadExcl(x,n)

CLREX(n)

StoreExcl(x,n)

CLREX(n)*

StoreExcl(Marked_address,!n)‡
Store(Marked_address,!n)

StoreExcl(Marked_address,n)*

Store(!Marked_address,n)

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.
In the diagram: LoadExcl represents any Load-Exclusive instruction

StoreExcl represents any Store-Exclusive instruction
Store represents any other store instruction.

LoadExcl(x,!n)

StoreExcl(x,!n)

Store(x,n)

StoreExcl(!Marked_address,n)*

Store(Marked_address,n)*

StoreExcl(Marked_address,!n)‡

StoreExcl(Marked_address,n)*

StoreExcl(!Marked_address,n)*

Store(Marked_address,n)*

CLREX(n)*

StoreExcl(!Marked_address,!n)

Store(!Marked_address,!n)

CLREX(!n)

‡StoreExcl(Marked_address,!n) clears the monitor only if the StoreExcl updates memory

Store(x,!n)

CLREX(!n)
E2-4336 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
• Whether a Store-Exclusive instruction successfully updates memory or not depends on whether the address
accessed matches the marked shareable memory address for the PE issuing the Store-Exclusive instruction,
and whether the local and global monitors are in the exclusive state. For this reason, Figure E2-5 on
page E2-4336 only shows how the operations by (!n) cause state transitions of the state machine for PE(n).

• A Load-Exclusive instruction can only update the marked shareable memory address for the PE issuing the
Load-Exclusive instruction.

• When the global monitor is in the Exclusive Access state, it is IMPLEMENTATION DEFINED whether a CLREX
instruction causes the global monitor to transition from Exclusive Access to Open Access state.

• It is IMPLEMENTATION DEFINED:

— Whether a modification to a Non-shareable memory location can cause a global monitor to transition
from Exclusive Access to Open Access state.

— Whether a Load-Exclusive instruction to a Non-shareable memory location can cause a global monitor
to transition from Open Access to Exclusive Access state.

E2.10.3 Marking and the size of the marked memory block

When a Load-Exclusive instruction is executed, the resulting marked block ignores the least significant bits of the
64-bit memory address.

When a Load-Exclusive instruction is executed, a marked block of size 2a bytes is created by ignoring the least
significant bits of the memory address. A marked address is any address within this marked block. The size of the
marked memory block is called the Exclusives reservation granule. The Exclusives reservation granule is
IMPLEMENTATION DEFINED in the range 4 - 512 words.

Note

This definition means that the Exclusives reservation granule is:

• 4 words in an implementation where a is 4.

• 512 words in an implementation where a is 11.

For example, in an implementation where a is 4, a successful LDREXB of address 0x341B4 defines a marked block
using bits[47:4] of the address. This means that the four words of memory from 0x341B0 to 0x341BF are marked for
exclusive access.

In some implementations the CTR identifies the Exclusives reservation granule, see CTR. Otherwise, software must
assume that the maximum Exclusives reservation granule, 512 words, is implemented.

E2.10.4 Context switch support

An exception return clears the local monitor. As a result, performing a CLREX instruction as part of a context switch
is not required in most situations.

Note

Context switching is not an application level operation. However, this information is included here to complete the
description of the exclusive operations.

E2.10.5 Load-Exclusive and Store-Exclusive instruction usage restrictions

The Load-Exclusive and Store-Exclusive instructions are intended to work together as a pair, for example a
LDREX/STREX pair or a LDREXB/STREXB pair. To support different implementations of these functions, software must
follow the notes and restrictions given in this subsection.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4337
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
The following notes describe use of a Load-Exclusive/ Store-Exclusive instruction pair, LoadExcl/StoreExcl, to
indicate the use of any of the Load-Exclusive/Store-Exclusive instruction pairs shown in Table E2-6 on
page E2-4331. In this context, a LoadExcl/StoreExcl pair comprises two instructions in the same thread of execution:

• The exclusives support a single outstanding exclusive access for each PE thread that is executed. The
architecture makes use of this by not requiring an address or size check as part of the IsExclusiveLocal()
function. If the target VA of a StoreExcl is different from the VA of the preceding LoadExcl instruction in the
same thread of execution, behavior can be CONSTRAINED UNPREDICTABLE with the following behavior:

— The StoreExcl either passes or fails, the status value returned by the StoreExcl is UNKNOWN, and the
states of the local and global monitors for that PE are UNKNOWN.

Note
This means the StoreExcl might pass for some instances of a LoadExcl/StoreExcl pair with mismatched
addresses, and fail for other instances of a LoadExcl/StoreExcl pair with mismatched addresses.

— The data at the address accessed by the LoadExcl, and at the address accessed by the StoreExcl, is
UNKNOWN.

This means software can rely on a LoadExcl/StoreExcl pair to eventually succeed only if the LoadExcl and the
StoreExcl are executed with the same VA.

• An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any thread of
execution, the transaction size of a StoreExcl instruction is the same as the transaction size of the preceding
LoadExcl instruction executed in that thread. If the transaction size of a StoreExcl instruction is different from
the preceding LoadExcl instruction in the same thread of execution, behavior can be CONSTRAINED
UNPREDICTABLE with the following behavior:

— The StoreExcl either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.

Note
This means the StoreExcl might pass for some instances of a LoadExcl/StoreExcl pair with mismatched
transaction sizes, and fail for other instances of a LoadExcl/StoreExcl pair with mismatched transaction
sizes.

— The block of data of the size of the larger of the transaction sizes used by the LoadExcl/StoreExcl pair
at the address accessed by the LoadExcl/StoreExcl pair, is UNKNOWN.

This means software can rely on a LoadExcl/StoreExcl pair to eventually succeed only if the LoadExcl and the
StoreExcl have the same transaction size.

• LoadExcl/StoreExcl loops are guaranteed to make forward progress only if, for any LoadExcl/StoreExcl loop
within a single thread of execution, the software meets all of the following conditions:

1 Between the Load-Exclusive and the Store-Exclusive, there are no explicit memory effects,
preloads, direct or indirect System register writes, address translation instructions, cache or TLB
maintenance instructions, exception generating instructions, exception returns, or indirect
branches.

2 Between the Store-Exclusive returning a failing result and the retry of the corresponding
Load-Exclusive:

• There are no stores or PLDW instructions to any address within the Exclusives reservation
granule accessed by the Store-Exclusive.

• There are no loads or preloads to any address within the Exclusives reservation granule
accessed by the Store-Exclusive that use a different VA alias to that address.

• There are no direct or indirect System register writes, other than changes to the flag fields
in the CPSR or FPSCR, caused by data processing or comparison instructions.

• There are no direct or indirect address translation instructions, cache or TLB maintenance
instructions, exception generating instructions, exception returns, or indirect branches.

• All loads and stores are to a block of contiguous virtual memory of not more than 512
bytes in size.
E2-4338 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
The Exclusives monitor can be cleared at any time without an application-related cause, provided that such
clearing is not systematically repeated so as to prevent the forward progress in finite time of at least one of
the threads that is accessing the Exclusives monitor. However, it is permissible for the LoadExcl/StoreExcl
loop not to make forward progress if a different thread is repeatedly doing any of the following in a tight loop:

— Performing stores to a PA covered by the Exclusives monitor.

— Prefetching with intent to write to a PA covered by the Exclusives monitor.

— Executing data cache clean, data cache invalidate, or data cache clean and invalidate instructions to a
PA covered by the Exclusives monitor.

— Executing instruction cache invalidate all instructions.

— Executing instruction cache invalidate by VA instructions to a PA covered by the Exclusives monitor.

• Implementations can benefit from keeping the LoadExcl and StoreExcl operations close together in a single
thread of execution. This minimizes the likelihood of the Exclusives monitor state being cleared between the
LoadExcl instruction and the StoreExcl instruction. Therefore, for best performance, Arm strongly
recommends a limit of 128 bytes between LoadExcl and StoreExcl instructions in a single thread of execution.

• The architecture sets an upper limit of 2048 bytes on the Exclusives reservation granule that can be marked
as exclusive. For performance reasons, Arm recommends that objects that are accessed by exclusive accesses
are separated by the size of the Exclusives reservation granule. This is a performance guideline rather than a
functional requirement.

• After taking a Data Abort exception, the state of the Exclusives monitors is UNKNOWN.

• For the memory location accessed by a LoadExcl/StoreExcl pair, if the memory attributes for a StoreExcl
instruction are different from the memory attributes for the preceding LoadExcl instruction in the same thread
of execution, behavior is CONSTRAINED UNPREDICTABLE. Where this occurs because the translation of the
accessed address changes between the LoadExcl instruction and the StoreExcl instruction, the CONSTRAINED
UNPREDICTABLE behavior is as follows:

— The StoreExcl either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.

Note
This means the StoreExcl might pass for some instances of a LoadExcl/StoreExcl pair with changed
memory attributes, and fail for other instances of a LoadExcl/StoreExcl pair with changed memory
attributes.

— The data at the address accessed by the StoreExcl is UNKNOWN.

Note

Another bullet point in this list covers the case where the memory attributes of a LoadExcl/StoreExcl pair
differ as a result of using different VAs with different attributes that point to the same PA.

• The effect of a data or unified cache invalidate, clean, or clean and invalidate instruction on a local or global
Exclusives monitor that is in the Exclusive Access state is CONSTRAINED UNPREDICTABLE, and the instruction
might clear the monitor, or it might leave it in the Exclusive Access state. For address-based maintenance
instructions, this also applies to the monitors of other PEs in the same Shareability domain as the PE
executing the cache maintenance instruction, as determined by the Shareability domain of the address being
maintained.

Note

Arm strongly recommends that implementations ensure that the use of such maintenance instructions by a
PE in the Non-secure state cannot cause a denial of service on a PE in the Secure state.

• If the mapping of the VA to PA is changed between the LoadExcl instruction and the StoreExcl instruction,
and the change is performed using a break-before-make sequence as described in Using break-before-make
when updating translation table entries on page G5-6337, if the StoreExcl is performed after another write
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. E2-4339
ID072021 Non-Confidential

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
to the same PA as the StoreExcl, and that other write was performed after the old translation was properly
invalidated and that invalidation was properly synchronized, then the StoreExcl will not pass its monitor
check.

Note

Arm expects that, in many implementations, either:

— The TLB invalidation will clear either the local or global monitor.

— The PA will be checked between the LoadExcl and StoreExcl.

• The Exclusive Access state for an address accessed by a PE can be lost as a result of a PLDW instruction to the
same PA executed by another PE. This means that a very high rate of repeated PLDW accesses to a memory
location might impede the forward progress of another PE.

Note

In the event of repeatedly-contending LoadExcl/StoreExcl instruction sequences from multiple PEs, an
implementation must ensure that forward progress is made by at least one PE.

E2.10.6 Use of WFE and SEV instructions by spin-locks

Armv8 provides Wait For Event, Send Event, and Send Event Local instructions, WFE, SEV, SEVL, that can assist with
reducing power consumption and bus contention caused by PEs repeatedly attempting to obtain a spin-lock. These
instructions can be used at the application level, but a complete understanding of what they do depends on a system
level understanding of exceptions. They are described in Wait For Event and Send Event on page G1-6104.
However, in Armv8, when the global monitor for a PE changes from Exclusive Access state to Open Access state,
an event is generated.

Note

This is equivalent to issuing an SEVL instruction on the PE for which the monitor state has changed. It removes the
need for spinlock code to include an SEV instruction after clearing a spinlock.
E2-4340 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Part F
The AArch32 Instruction Sets

Chapter F1
About the T32 and A32 Instruction Descriptions

This chapter describes each instruction. It contains the following sections:

• Format of instruction descriptions on page F1-4344.

• Standard assembler syntax fields on page F1-4348.

• Conditional execution on page F1-4349.

• Shifts applied to a register on page F1-4351.

• Memory accesses on page F1-4353.

• Encoding of lists of general-purpose registers and the PC on page F1-4354.

• General information about the T32 and A32 instruction descriptions on page F1-4355.

• Additional pseudocode support for instruction descriptions on page F1-4368.

• Additional information about Advanced SIMD and floating-point instructions on page F1-4369.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F1-4343
ID072021 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.1 Format of instruction descriptions
F1.1 Format of instruction descriptions

The instruction descriptions in Chapter F5 T32 and A32 Base Instruction Set Instruction Descriptions and
Chapter F6 T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions normally use the following
format:

• Instruction section title.

• Introduction to the instruction.

• A description of each encoding of the instruction.

• Assembler syntax.

• Pseudocode describing how the instruction operates.

• Notes, if applicable.

Each of these items is described in more detail in the following subsections.

F1.1.1 Instruction section title

The instruction section title gives the base mnemonic for the instruction or instructions described in the section.
When one mnemonic has multiple forms described in separate instruction sections, this is followed by a short
description of the form in parentheses. The most common use of this is to distinguish between forms of an
instruction in which one of the operands is an immediate value and forms in which it is a register.

F1.1.2 Introduction to the instruction

The introduction to the instruction briefly describes the main features of the instruction. This description is not
necessarily complete and is not definitive. If there is any conflict between it and the more detailed information that
follows, the latter takes priority.

F1.1.3 Instruction encodings

This is a list of one or more instruction encodings. Each instruction encoding is labeled as:

• A1, A2, A3 … for the first, second, third, and any additional A32 encodings.

• T1, T2, T3 … for the first, second, third, and any additional T32 encodings.

Each instruction encoding description consists of:

• An assembly syntax that ensures that the assembler selects the encoding in preference to any other encoding.
Sometimes, multiple syntax variants are given. These are written in a typewriter font using the conventions
described in Assembler syntax prototype line conventions on page F1-4346. The correct one to use can be
indicated by:

— A subheading that identifies the encodings that correspond to the syntax. See, for example, the
subheading Flag setting, rotate right with extend variant in the description of the A1 encoding of the
ADC, ADCS (register) instructions in A1 on page F5-4568.

— An annotation to the syntax, such as Inside IT block or Outside IT block. See, for example, the syntax
descriptions of the T1 encoding of the ADC, ADCS (register) instructions in T1 on page F5-4569.

In other cases, the correct one to use can be determined by looking at the assembler syntax description and
using it to determine which syntax corresponds to the instruction being disassembled.

There is usually more than one syntax variant that ensures re-assembly to any particular encoding, and the
exact set of syntaxes that do so usually depends on the register numbers, immediate constants, and other
operands to the instruction. For example, when assembling to the T32 instruction set, the syntax AND R0, R0,
R8 ensures selection of a 32-bit encoding but AND R0, R0, R1 selects a 16-bit encoding.

F1-4344 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the T32 and A32 Instruction Descriptions
F1.1 Format of instruction descriptions
For each instruction encoding belonging to a target instruction set, an assembler can use this information to
determine whether it can use that encoding to encode the instruction requested by the UAL source. If multiple
encodings can encode the instruction, then:

— If both a 16-bit encoding and a 32-bit encoding can encode the instruction, the architecture prefers the
16-bit encoding. This means the assembler must use the 16-bit encoding rather than the 32-bit
encoding.

Software can use the .W and .N qualifiers to specify the required encoding width, see Standard
assembler syntax fields on page F1-4348.

— If multiple encodings of the same length can encode the instruction, the Assembler syntax subsection
says which encoding is preferred, and how software can, instead, select the other encodings.

Each encoding also documents UAL syntax that selects it in preference to any other encoding.

If no encodings of the target instruction set can encode the instruction requested by the UAL source, normally
the assembler generates an error saying that the instruction is not available in that instruction set.

Note

In some cases, an instruction is available in one instruction set but not in another. The Assembler syntax
subsection identifies many of these cases. For example, the A32 instructions with bits<31:28> == 0b1111
described in Branch, branch with link, and block data transfer on page F4-4521, System register access,
Advanced SIMD, floating-point, and Supervisor call on page F4-4523, and Unconditional instructions on
page F4-4541 cannot have a Condition code, but the equivalent T32 instructions often can, and this usually
appears in the Assembler syntax subsection as a statement that the A32 instruction cannot be conditional.

However, some such cases are too complex to describe in the available space, so the definitive test of whether
an instruction is available in a given instruction set is whether there is an available encoding for it in that
instruction set.

The assembly syntax given for an encoding is therefore a suitable one for a disassembler to disassemble that
encoding to. However, disassemblers might wish to use simpler syntaxes when they are suitable for the
operand combination, to produce more readable disassembled code.

• An encoding diagram, where:

— For a 32-bit A32 encoding diagram, the bits are numbered from 31-0.

— For a 16-bit T32 encoding diagram, the bits are numbered from 15-0.

This halfword can be described as hw1 of the instruction.

— For a 32-bit T32 encoding diagram, the bits are numbered from 15-0 for each halfword, as a reminder
that a 32-bit T32 instruction consists of two consecutive halfwords rather than a word.

In this case, the left-hand halfword in the diagram is identified as hw1, and the right-hand halfword is
identified as hw2.

Where instructions are stored using the standard little-endian instruction endianness:

— The encoding diagram for an A32 instruction at address A shows, from left to right, the bytes at
addresses A+3, A+2, A+1, A.

— The encoding diagram for a 32-bit T32 instruction shows bytes in the order A+1, A for hw1, followed
by bytes A+3, A+2 for hw2.

• Encoding-specific pseudocode. This is pseudocode that translates the encoding-specific instruction fields
into inputs to the encoding-independent pseudocode in the Operation subsection, and that picks out any
special cases in the encoding. For a detailed description of the pseudocode used and of the relationship
between the encoding diagram, the encoding-specific pseudocode and the encoding-independent
pseudocode, see Appendix K14 Arm Pseudocode Definition.

F1.1.4 Assembler symbols

The Assembly symbols describe the standard UAL syntax for the instruction.

Each syntax description consists of the following elements:

• Descriptions of all variable or optional fields of the syntax.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F1-4345
ID072021 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.1 Format of instruction descriptions
Some syntax fields are standardized across all or most instructions. Standard assembler syntax fields on
page F1-4348 describes these fields.

By default, syntax fields that specify registers, such as <Rd>, <Rn>, or <Rt>, can be any of R0-R12 or LR in
T32 instructions, and any of R0-R12, SP, or LR in A32 instructions. These require that the encoding-specific
pseudocode set the corresponding integer variable (such as d, n, or t) to the corresponding register number,
using 0-12 for R0-R12, 13 for SP, or 14 for LR:

— Normally, software can do this by setting the corresponding field in the instruction, typically named
Rd, Rn, Rt, to the binary encoding of that number.

— In the case of 16-bit T32 encodings, the field is normally of length 3, and so the encoding is only
available when the assembler syntax specifies one of R0-R7. Such encodings often use a register field
name like Rdn. This indicates that the encoding is only available if <Rd> and <Rn> specify the same
register, and that the register number of that register is encoded in the field if they do.

The description of a syntax field that specifies a register sometimes extends or restricts the permitted range
of registers or documents other differences from the default rules for such fields. Examples of extensions are
permitting the use of the SP in a T32 instruction, or permitting the use of the PC, identified using register
number 15.

• Where appropriate, text that briefly describes changes from the pre-UAL assembler syntax. Where present,
this usually consists of an alternative pre-UAL form of the assembler mnemonic. The pre-UAL assembler
syntax does not conflict with UAL. Arm recommends that it is supported, as an optional extension to UAL,
so that pre-UAL assembler source files can be assembled.

Assembler syntax prototype line conventions

The following conventions are used in assembler syntax prototype lines and their subfields:

< > Any item bracketed by < and > is a short description of a type of value to be supplied by the user in
that position. A longer description of the item is normally supplied by subsequent text. Such items
often correspond to a similarly named field in an encoding diagram for an instruction. When the
correspondence only requires the binary encoding of an integer value or register number to be
substituted into the instruction encoding, it is not described explicitly. For example, if the assembler
syntax for an instruction contains an item <Rn> and the instruction encoding diagram contains a 4-bit
field named Rn, the number of the register specified in the assembler syntax is encoded in binary in
the instruction field.

If the correspondence between the assembler syntax item and the instruction encoding is more
complex than simple binary encoding of an integer or register number, the item description indicates
how it is encoded. This is often done by specifying a required output from the encoding-specific
pseudocode, such as add = TRUE. The assembler must only use encodings that produce that output.

{ } Any item bracketed by { and } is optional. A description of the item and of how its presence or
absence is encoded in the instruction is normally supplied by subsequent text.

Many instructions have an optional destination register. Unless otherwise stated, if such a
destination register is omitted, it is the same as the immediately following source register in the
instruction syntax.

In the assembler syntax, numeric constants are normally preceded by a #. Some UAL instruction
syntax descriptions explicitly show this # as optional. Any UAL assembler:

• Must treat the # as optional where an instruction syntax description shows it as optional.

• Can treat the # either as mandatory or as optional where an instruction syntax description does
not show it as optional.

Note
Arm recommends that UAL assemblers treat all uses of # shown in this manual as optional.

spaces Single spaces are used for clarity, to separate items. When a space is obligatory in the assembler
syntax, two or more consecutive spaces are used.
F1-4346 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the T32 and A32 Instruction Descriptions
F1.1 Format of instruction descriptions
+/- This indicates an optional + or - sign. If neither is coded, + is assumed.

All other characters must be encoded precisely as they appear in the assembler syntax. Apart from { and }, the
special characters described above do not appear in the basic forms of assembler instructions documented in this
manual. In a few places, the { and } characters must be encoded as part of a variable item. When this happens, the
long description of the variable item indicates how they must be used.

F1.1.5 Pseudocode describing how the instruction operates

The Operation for all classes subsection contains encoding-independent pseudocode that describes the main
operation of the instruction. For a detailed description of the pseudocode used and of the relationship between the
encoding diagram, the encoding-specific pseudocode and the encoding-independent pseudocode, see
Appendix K14 Arm Pseudocode Definition.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F1-4347
ID072021 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.2 Standard assembler syntax fields
F1.2 Standard assembler syntax fields

The following assembler syntax fields are standard across all or most instructions:

<c> Is an optional field. It specifies the condition under which the instruction is executed. See
Conditional execution on page F1-4349 for the range of available conditions and their encoding. If
<c> is omitted, it defaults to always (AL).

<q> Specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

.N Meaning narrow, specifies that the assembler must select a 16-bit encoding for the
instruction. If this is not possible, an assembler error is produced.

.W Meaning wide, specifies that the assembler must select a 32-bit encoding for the
instruction. If this is not possible, an assembler error is produced.

If neither .W nor .N is specified, the assembler can select either 16-bit or 32-bit encodings. If both
are available, it must select a 16-bit encoding. In a few cases, more than one encoding of the same
length can be available for an instruction. The rules for selecting between such encodings are
instruction-specific and are part of the instruction description. The assembler syntax includes a
mandatory .W qualifier, along with a note describing the cases in which it applies, where this
qualifier is required to select a particular encoding for an instruction. Additional assembler syntax
will describe the syntax when the conditions are not met.

Note

When assembling to the A32 instruction set, the .N qualifier produces an assembler error and the .W
qualifier has no effect.
F1-4348 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the T32 and A32 Instruction Descriptions
F1.3 Conditional execution
F1.3 Conditional execution

Most T32 and A32 instructions can be executed conditionally, based on the values of the APSR Condition flags.
Table F1-1 on page F1-4349 lists the available conditions.

In T32 instructions, the condition, if it is not AL, is normally encoded in a preceding IT instruction. For more
information, see Conditional instructions on page F2-4377 and IT on page F5-4702. Some conditional branch
instructions do not require a preceding IT instruction, because they include a Condition code in their encoding.

Implementations can provide a set of ITD control fields, SCTLR.ITD, SCTLR_EL1.ITD, and HSCTLR.ITD, to
disable use of IT for some instructions, making them UNDEFINED. For more information, see:

• Disabling or enabling PL0 and PL1 use of AArch32 optional functionality on page G1-6120.

• Disabling or enabling EL2 use of AArch32 optional functionality on page G1-6129.

In A32 instructions, bits[31:28] of the instruction contain either:

• The Condition code, see The Condition code field in A32 instruction encodings on page F1-4349.

• 0b1111 for some A32 instructions that can only be executed unconditionally.

F1.3.1 The Condition code field in A32 instruction encodings

Every conditional A32 instruction contains a 4-bit Condition code field, the cond field, in bits 31-28:

Table F1-1 Condition codes

cond Mnemonic extension Meaning (integer) Meaning (floating-point) a Condition flags

0000 EQ Equal Equal Z == 1

0001 NE Not equal Not equal, or unordered Z == 0

0010 CS b Carry set Greater than, equal, or unordered C == 1

0011 CC c Carry clear Less than C == 0

0100 MI Minus, negative Less than N == 1

0101 PL Plus, positive or zero Greater than, equal, or unordered N == 0

0110 VS Overflow Unordered V == 1

0111 VC No overflow Not unordered V == 0

1000 HI Unsigned higher Greater than, or unordered C == 1 and Z == 0

1001 LS Unsigned lower or same Less than or equal C == 0 or Z == 1

1010 GE Signed greater than or equal Greater than or equal N == V

1011 LT Signed less than Less than, or unordered N != V

1100 GT Signed greater than Greater than Z == 0 and N == V

1101 LE Signed less than or equal Less than, equal, or unordered Z == 1 or N != V

1110 None (AL) d Always (unconditional) Always (unconditional) Any

a. Unordered means at least one NaN operand.

b. HS (unsigned higher or same) is a synonym for CS.

c. LO (unsigned lower) is a synonym for CC.

d. AL is an optional mnemonic extension for always, except in IT instructions. For details, see IT on page F5-4702.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F1-4349
ID072021 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.3 Conditional execution
This field contains one of the values 0b0000-0b1110, as shown in Table F1-1 on page F1-4349. Most instruction
mnemonics can be extended with the letters defined in the Mnemonic extension on page F1-4349 column of that
table.

If the always (AL) condition is specified, the instruction is executed irrespective of the value of the Condition flags.
The absence of a Condition code on an instruction mnemonic implies the AL Condition code.

F1.3.2 Pseudocode description of conditional execution

The AArch32.CurrentCond() function returns a 4-bit condition specifier as follows:

• For A32 instructions, it returns bits[31:28] of the instruction.

• For the T1 and T3 encodings of the Branch instruction (see B on page F5-4613), it returns the 4-bit cond field
of the encoding.

• For all other T32 instructions:

— If PSTATE.IT<3:0> != '0000' it returns PSTATE.IT<7:4>.

— If PSTATE.IT<7:0> == '00000000' it returns '1110'.

— Otherwise, execution of the instruction is CONSTRAINED UNPREDICTABLE.

For more information, see Process state, PSTATE on page E1-4253.

The ConditionPassed() function uses this condition specifier and the Condition flags to determine whether the
instruction must be executed, by calling the ConditionHolds() function.

Chapter J1 Armv8 Pseudocode includes the definitions of these functions.

Undefined Instruction exception on page G1-6078 describes the handling of conditional instructions that are
UNDEFINED, UNPREDICTABLE, or CONSTRAINED UNPREDICTABLE. The pseudocode in the manual, as a sequential
description of the instructions, has limitations in this respect. For more information, see Limitations of the
instruction pseudocode on page K14-8576.
F1-4350 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the T32 and A32 Instruction Descriptions
F1.4 Shifts applied to a register
F1.4 Shifts applied to a register

A32 register offset load/store word and unsigned byte instructions can apply a wide range of different constant shifts
to the offset register. Both T32 and A32 data-processing instructions can apply the same range of different constant
shifts to the second operand register. For details, see Constant shifts on page F1-4351.

A32 data-processing instructions can apply a register-controlled shift to the second operand register.

F1.4.1 Constant shifts

These are the same in T32 and A32 instructions, except that the input bits come from different positions.

<shift> is an optional shift to be applied to <Rm>. It can be any one of:

(omitted) No shift.

LSL #<n> Logical shift left <n> bits. 1 <= <n> <= 31.

LSR #<n> Logical shift right <n> bits. 1 <= <n> <= 32.

ASR #<n> Arithmetic shift right <n> bits. 1 <= <n> <= 32.

ROR #<n> Rotate right <n> bits. 1 <= <n> <= 31.

RRX Rotate right one bit, with extend. Bit[0] is written to shifter_carry_out, bits[31:1] are shifted right
one bit, and the Carry flag is shifted into bit[31].

Note

Assemblers can permit the use of some or all of ASR #0, LSL #0, LSR #0, and ROR #0 to specify that no shift is to be
performed. This is not standard UAL, and the encoding selected for T32 instructions might vary between UAL
assemblers if it is used. To ensure disassembled code assembles to the original instructions, disassemblers must omit
the shift specifier when the instruction specifies no shift.

Similarly, assemblers can permit the use of #0 in the immediate forms of ASR, LSL, LSR, and ROR instructions to specify
that no shift is to be performed, that is, that a MOV (register) instruction is wanted. Again, this is not standard UAL,
and the encoding selected for T32 instructions might vary between UAL assemblers if it is used. To ensure
disassembled code assembles to the original instructions, disassemblers must use the MOV (register) syntax when the
instruction specifies no shift.

Encoding

The assembler encodes <shift> into two type bits and five immediate bits, as follows:

(omitted) type = 0b00, immediate = 0.

LSL #<n> type = 0b00, immediate = <n>.

LSR #<n> type = 0b01.

If <n> < 32, immediate = <n>.

If <n> == 32, immediate = 0.

ASR #<n> type = 0b10.

If <n> < 32, immediate = <n>.

If <n> == 32, immediate = 0.

ROR #<n> type = 0b11, immediate = <n>.

RRX type = 0b11, immediate = 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F1-4351
ID072021 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.4 Shifts applied to a register
F1.4.2 Register controlled shifts

These are only available in A32 instructions.

<type> is the type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10.

LSL Logical shift left, encoded as type = 0b00.

LSR Logical shift right, encoded as type = 0b01.

ROR Rotate right, encoded as type = 0b11.

The bottom byte of <Rs> contains the shift amount.

F1.4.3 Pseudocode description of instruction-specified shifts and rotates

The pseudocode enumeration SRType{} defines the shift types. Shift and rotate instruction decode is described by
the pseudocode function:

• DecodeImmShift() for a constant shift.

• DecodeRegShift() for a register controlled shift.

Shift and rotate operations are made by the pseudocode function Shift().
F1-4352 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the T32 and A32 Instruction Descriptions
F1.5 Memory accesses
F1.5 Memory accesses

Commonly, the following addressing modes are permitted for memory access instructions:

Offset addressing

The offset value is applied to an address obtained from the base register. The result is used as the
address for the memory access. The value of the base register is unchanged.

The assembly language syntax for this mode is:

[<Rn>, <offset>]

Pre-indexed addressing

The offset value is applied to an address obtained from the base register. The result is used as the
address for the memory access, and written back into the base register.

The assembly language syntax for this mode is:

[<Rn>, <offset>]!

Post-indexed addressing

The address obtained from the base register is used, unchanged, as the address for the memory
access. The offset value is applied to the address, and written back into the base register

The assembly language syntax for this mode is:

[<Rn>], <offset>

In each case, <Rn> is the base register. <offset> can be:

• An immediate constant, such as <imm8> or <imm12>.

• An index register, <Rm>.

• A shifted index register, such as <Rm>, LSL #<shift>.

For information about unaligned access, endianness, and exclusive access, see:

• Alignment support on page E2-4312.

• Endian support on page E2-4314.

• Synchronization and semaphores on page E2-4331.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F1-4353
ID072021 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.6 Encoding of lists of general-purpose registers and the PC
F1.6 Encoding of lists of general-purpose registers and the PC

A number of instructions operate on lists of general-purpose registers. For some load instructions, the list of
registers to be loaded can include the PC. For these instructions, the assembler syntax includes a <registers> field,
that provides a list of the registers to be operated on, with list entries separated by commas.

The registers list is encoded in the instruction encoding. Most often, this is done using an 8-bit, 13-bit, or 16-bit
register_list field. This section gives more information about these and other possible register list encodings.

In a register_list field, each bit corresponds to a single register, and if the <registers> field of the assembler
instruction includes Rt then register_list<t> is set to 1, otherwise it is set to 0.

The full rules for the encoding of lists of general-purpose registers, and possibly the PC, are:

• Except for the cases listed here, 16-bit T32 encodings use an 8-bit register list, and can access only registers
R0-R7.

The exceptions to this rule are:

— The T1 encoding of POP uses an 8-bit register list, and an additional bit, P, that corresponds to the PC.
This means it can access any of R0-R7 and the PC.

— The T1 encoding of PUSH uses an 8-bit register list, and an additional bit, M, that corresponds to the LR.
This means it can access any of R0-R7 and the LR.

• 32-bit T32 encodings of load operations use a 13-bit register list, and two additional bits, M, corresponding to
the LR, and P, corresponding to the PC. This means these instructions can access any of R0-R12 and the LR
and PC.

• 32-bit T32 encodings of store operations use a 13-bit register list, and one additional bit, M, corresponding to
the LR. This means these instructions can access any of R0-R12 and the LR.

• Except for the case listed here, A32 encodings use a 16-bit register list. This means these instructions can
access any of R0-R12 and the SP, LR, and PC.

The exception to this rule is:

— The System instructions LDM (exception return) and LDM (User registers) use a 15-bit register list. This
means these instructions can access any of R0-R12 and the SP and LR.

• The T3 and A2 encodings of POP, and the T3 and A2 encodings of PUSH, access a single register from the set
of registers {R0-R12, LR, PC} and encode the register number in the Rt field.

Note

POP is a load operation, and PUSH is a store operation.

In every case, the encoding-specific pseudocode converts the register list into a 32-bit variable, registers, with a
bit corresponding to each of the registers R0-R12, SP, LR, and PC.

Note

Some Advanced SIMD and floating-point instructions operate on lists of SIMD and floating-point registers. The
assembler syntax of these instructions includes a <list> field that specifies the registers to be operated on, and the
description of the instruction in Alphabetical list of T32 and A32 base instruction set instructions on page F5-4564
defines the use and encoding of this field.
F1-4354 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
F1.7 General information about the T32 and A32 instruction descriptions

Chapter F3 T32 Instruction Set Encoding describes the T32 instruction encodings, and Chapter F4 A32 Instruction
Set Encoding describes the A32 instruction encodings. The following subsections give more information about the
descriptions of these instructions and their encodings:

• Execution of instructions in debug state on page F1-4355.

• Fixed values in AArch32 instruction and System register descriptions on page F1-4355.

• UNDEFINED, UNPREDICTABLE, and CONSTRAINED UNPREDICTABLE instruction set space on
page F1-4356.

• T32 and A32 Advanced SIMD and floating-point instruction encodings on page F1-4357.

• The PC and the use of 0b1111 as a register specifier in T32 and A32 instructions on page F1-4361.

• The SP and the use of 0b1101 as a register specifier in T32 and A32 instructions on page F1-4362.

• Modified immediate constants in T32 and A32 instructions on page F1-4362.

F1.7.1 Execution of instructions in debug state

In general, except for the instructions described in Debug state on page F2-4396, the T32 instruction descriptions
do not indicate any differences in the behavior of the instruction if it is executed in Debug state. For this information,
see Executing instructions in Debug state on page H2-7349.

Note

• A32 instructions cannot be executed in Debug state.

• For many T32 instructions, execution is unchanged in Debug state. Executing instructions in Debug state on
page H2-7349 identifies these instructions.

F1.7.2 Fixed values in AArch32 instruction and System register descriptions

This section summarizes the terms used to describe fixed values in AArch64 register and instruction descriptions.
The Glossary gives full descriptions of these terms, and each entry in this section includes a link to the
corresponding Glossary entry.

Note

In register descriptions, the meaning of some bits depends on the PE state. This affects the definitions of RES0 and
RES1, as shown in the Glossary.

The following terms are used to describe bits or fields with fixed values:

RAZ Read-As-Zero. See Read-As-Zero (RAZ).

In diagrams, a RAZ bit can be shown as 0.

(0), RES0 Reserved, Should-Be-Zero (SBZ) or RES0.

In instruction encoding diagrams, and sometimes in other descriptions, (0) indicates an SBZ bit. If
the bit is set to 1, behavior is CONSTRAINED UNPREDICTABLE, and must be one of the following:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if the value of the bit was 0.

• Any destination registers of the instruction become UNKNOWN.

This notation can be expanded for fields, so a three-bit field can be shown as either (0)(0)(0) or as
(000).

In register diagrams, but not in the A64 encoding and instruction descriptions, bits or fields can be
shown as RES0. For more information, see the Glossary definition of RES0.

Note
Some of the System instruction descriptions in this chapter are based on the field description of the
input value for the instruction. These are register descriptions and therefore can include RES0 fields,
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F1-4355
ID072021 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
The (0) and RES0 descriptions can be applied to bits or bitfields that are read-only, or are write-only.
The Glossary definitions cover these cases.

RAO Read-As-One. See Read-As-One (RAO).

In diagrams, a RAO bit can be shown as 1.

(1), RES1 Reserved, Should-Be-One (SBO) or RES1.

In instruction encoding diagrams, and sometimes in other descriptions, (1) indicates an SBO bit. If
the bit is set to 0, behavior is CONSTRAINED UNPREDICTABLE, and must be one of the following:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if the value of the bit was 1.

• Any destination registers of the instruction become UNKNOWN.

This notation can be expanded for fields, so a three-bit field can be shown as either (1)(1)(1) or as
(111).

In register diagrams, but not in the A64 encoding and instruction descriptions, bits or fields can be
shown as RES1. For more information, see the Glossary definition of RES1.

Note
Some of the System instruction descriptions in this chapter are based on the field description of the
input value for the instruction. These are register descriptions and therefore can include RES1 fields,

The (1) and RES1 descriptions can be applied to bits or bitfields that are read-only, or are write-only.
The Glossary definitions cover these cases.

Note

In register diagrams, (0) is a synonym for RES0, and (1) is a synonym for RES1, where RES0 and RES1 are defined in
the Glossary. However, when used in an instruction encoding diagram, (0) and (1) have the narrower definition that
behavior is UNPREDICTABLE or CONSTRAINED UNPREDICTABLE if either:

• A bit marked as (0) has the value 1.

• A bit marked as (1) has the value 0.

F1.7.3 UNDEFINED, UNPREDICTABLE, and CONSTRAINED UNPREDICTABLE instruction set space

An attempt to execute an unallocated instruction results in either:

• Unpredictable behavior. The instruction is described as UNPREDICTABLE or CONSTRAINED UNPREDICTABLE.

Armv8-A greatly reduces the architecturally UNPREDICTABLE behavior in AArch32 state. Most cases that
earlier versions of the architecture describe as UNPREDICTABLE become either:

— CONSTRAINED UNPREDICTABLE, meaning the architecture defines a limited range of permitted
behaviors.

— Fully predictable.

For more information, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

• An Undefined Instruction exception. The instruction is described as UNDEFINED.

An instruction is UNDEFINED if it is declared as UNDEFINED in an instruction description, or in Chapter F3 T32
Instruction Set Encoding or Chapter F4 A32 Instruction Set Encoding.

An instruction is UNPREDICTABLE only if:

• It is declared as UNPREDICTABLE in an instruction description or in Chapter F3 or Chapter F4, and
Appendix K1 does not redefine the behavior as CONSTRAINED UNPREDICTABLE.

• The pseudocode for that encoding does not indicate that a different special case applies, and a bit marked (0)
or (1) in the encoding diagram of an instruction is not 0 or 1 respectively. In most cases, Armv8 makes these
cases CONSTRAINED UNPREDICTABLE, as described in SBZ or SBO fields T32 and A32 in instructions on
page K1-8390.
F1-4356 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
Unless otherwise specified, T32 and A32 instructions provided as part of an architectural extension, or by an
optional feature of the architecture, are UNDEFINED in an implementation that does not include that extension or
feature.

Note

Examples of where this rule applies are:

• The instructions provided by the Cryptographic Extension.

• The System instructions that provide access to the System registers of the OPTIONAL Performance Monitors
Extension.

• The Advanced SIMD and floating-point instructions.

For more information about UNDEFINED, UNPREDICTABLE, and CONSTRAINED UNPREDICTABLE instruction behavior,
see Undefined Instruction exception on page G1-6078.

F1.7.4 T32 and A32 Advanced SIMD and floating-point instruction encodings

The T32 and A32 encodings of Advanced SIMD and floating-point instructions that are described in Chapter F3
T32 Instruction Set Encoding and in Chapter F4 A32 Instruction Set Encoding are common to the T32 and A32
instruction sets. This means:

• The instruction groups, and the set of instructions in each group, are identical for T32 and A32.

• For each instruction:

— Each T32 encoding is exactly equivalent to an A32 encoding.

— There is no T32 encoding without an equivalent A32 encoding, and no A32 encoding without an
equivalent T32 encoding.

Note

• In the T32 instruction sets, the Advanced SIMD and floating-point instructions have 32-bit encodings.

• In the base instruction sets, some instructions are common to the T32 and A32 instruction sets, whereas other
instructions have equivalent but not identical functionality in the two instruction sets.

32-bit T32 encodings are described as two contiguous halfwords, {hw1:hw2}, as described in Instruction encodings
on page F1-4344. In general:

• hw1 of a T32 encoding maps onto bits[31:16] of an equivalent A32 encoding.

• hw2 of a T32 encoding maps onto bits[15:0] of an equivalent A32 encoding.

However, the different structures of the T32 instruction encoding space and the A32 instruction encoding space
mean that:

• For a given Advanced SIMD and floating-point instruction group:

— The positions of the fields that identify the instruction, or instruction encoding, within the instruction
group might differ between the T32 encodings and the A32 encodings.

— However, the field values that identify the instruction of instruction encoding are identical for the T32
encoding and the A32 encoding.

The remainder of this section describes the equivalence of the T32 and A32 encodings for each of the Advanced
SIMD and floating-point instruction groups.

Advanced SIMD data-processing

The T32 encoding of the Advanced SIMD data-processing group is:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F1-4357
ID072021 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
The A32 encoding of the Advanced SIMD data-processing group is:

The encodings in this group are identified by:

• hw1[15:13] of the T32 encoding is equivalent to bits[27:25] of the A32 encoding, and:

— Has the value 0b111 in the T32 encoding.

— Has the value 0b001 in the A32 encoding.

• hw1[11:8] of the T32 encoding is equivalent to bits[31:28] of the A32 encoding, and has the value 0b111.

This table shows the equivalence of the fields that identify the instructions, or instruction encodings, within this
group:

Advanced SIMD element or structure load/store

The T32 encoding of the Advanced SIMD element or structure load/store group is:

The A32 encoding of the Advanced SIMD element or structure load/store group is:

The encodings in this group are identified by:

• hw1[15:12] of the T32 encoding is equivalent to bits[31:28] of the A32 encoding, and has the value 0b1111.

T32 encoding A32 encoding Field size

op0:op1 op0 2 bits

op2 op1 15 bits

op3 op2 1 bit

op4 op3 1 bit

111 1111
15 13 12 11 8 7 6 5 4 3 00 15

op0 op1

1111001
31 25 24 23 22 5 4 3 0

op0 op1

11111001 0 op1
15 8 7 6 5 4 3 12 11 10 9 00 15

op0

11110100 0 op1
31 24 23 22 21 20 19 12 11 10 9 0

op0
F1-4358 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
• hw1[11:8] of the T32 encoding is equivalent to bits[27:24] of the A32 encoding, and:

— Has the value 0b1001 in the T32 encoding.

— Has the value 0b0100 in the A32 encoding.

• hw1[4] of the T32 encoding is equivalent to bit[20] of the A32 encoding, and has the value 0b0.

op0, op1, and op2 are the fields that identify the instructions, or instruction encodings, within this group, and they are
in equivalent positions in the T32 and A32 encodings.

Advanced SIMD and floating-point load/store and 64-bit register moves

The T32 encoding of the Advanced SIMD and floating-point load/store and 64-bit register moves group is:

The A32 encoding of the Advanced SIMD and floating-point load/store and 64-bit register moves group is:

The encodings in the group are identified by:

• hw1[15:12] of the T32 encoding is equivalent to bits[31:28] of the A32 encoding, and:

— Has the value 0b1110 in the T32 encoding.

— Can have any value other than 0b1111 in the A32 encoding.

This range of values is required because A32 instructions in this group can be executed conditionally,
see Conditional execution on page F1-4349.

• hw1[11:9] of the T32 encoding is equivalent to bits[27:25] of the A32 encoding, and has the value 0b110.

• hw2[11:9] of the T32 encoding is equivalent to bits[11:9] of the A32 encoding, and has the value 0b101.

op0 is the field that identifies the instructions, or instruction encodings, within this group, and is in equivalent
positions in the T32 and A32 encodings.

Advanced SIMD and floating-point 32-bit register moves

The T32 encoding of the Advanced SIMD and floating-point 32-bit register moves group is:

The A32 encoding of the Advanced SIMD 32-bit register moves group is:

1110110 op0 101
15 8 5 4 12 11 8 00 15

!=1111 110 op0 101
31 27 24 21 20 12 11 8 0

11101110 op0 101 1
15 7 5 4 12 11 8 7 5 4 00 15

op1

!=1111 1110 op0 101 1
31 27 23 21 20 12 11 8 7 5 4 0

op1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F1-4359
ID072021 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
The encodings in this group are identified by:

• hw1[15:12] of the T32 encoding is equivalent to bits[31:28] of the A32 encoding, and:

— Has the value 0b1110 in the T32 encoding.

— Can have any value other than 0b1111 in the A32 encoding.

This range of values is required because A32 instructions in this group can be executed conditionally,
see Conditional execution on page F1-4349.

• hw1[11:8] of the T32 encoding is equivalent to bits[27:24] of the A32 encoding, and has the value 0b1110.

• hw2[11:9] of the T32 encoding is equivalent to bits[11:9] of the A32 encoding, and has the value 0b101.

• hw2[4] of the T32 encoding is equivalent to bit[4] of the A32 encoding, and has the value 0b1.

op0 is the field that identifies the instructions, or instruction encodings, within this group, and is in equivalent
positions in the T32 and A32 encodings.

Floating-point data-processing

The T32 encoding of the Floating-point data-processing group is:

The A32 encoding of the Floating-point data-processing group is:

The encodings in this group are identified by:

• hw1[15:12] of the T32 encoding is equivalent to bits[31:28] of the A32 encoding, and:

— In the T32 encoding, hw1[15:13] has the value 0b111, and hw1[12] is the op0 parameter used in
identifying instruction encodings within this group.

— In the A32 encoding, is the cond field and also implies the value of bit[28] of some A32 instruction
encodings within this group, as the following table shows:

The range of cond values other than 0b1111 is required because A32 instructions in this group can be
executed conditionally, see Conditional execution on page F1-4349.

• hw1[11:8] of the T32 encoding is equivalent to bits[27:24] of the A32 encoding, and has the value 0b1110.

• hw2[11:9] of the T32 encoding is equivalent to bits[11:9] of the A32 encoding, and has the value 0b101.

• hw2[4] of the T32 encoding is equivalent to bit[4] of the A32 encoding, and has the value 0b0.

cond Significance of bit[28] in A32 encodings

!= 0b1111 Part of the cond field.

0b1111 Has fixed value of 1.

11101110 op0 10 0
15 8 7 4 3 12 11 10 9 7 6 5 4 3 00 15

op1

!=1111 1110 op0 10 0
31 28 27 24 23 20 19 12 11 10 9 7 6 5 4 3 0

op1
F1-4360 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
This table shows the equivalence of the fields that identify the instructions, or instruction encodings, within this
group:

F1.7.5 The PC and the use of 0b1111 as a register specifier in T32 and A32 instructions

Restrictions on the use of PC or 0b1111 as a register specifier differ between the T32 and the A32 instruction sets,
as described in:

• T32 restrictions on the use of the PC, and use of 0b1111 as a register specifier on page F1-4361.

• A32 restrictions on the use of PC or 0b1111 as a register specifier on page F1-4362.

T32 restrictions on the use of the PC, and use of 0b1111 as a register specifier

The use of 0b1111 as a register specifier is not normally permitted in T32 instructions. When a value of 0b1111 is
permitted, a variety of meanings is possible. For register reads, these meanings include:

• Read the PC value, that is, the address of the current instruction + 4. The base register of the table branch
instructions TBB and TBH can be the PC. This means branch tables can be placed in memory immediately after
the instruction.

Note

Arm deprecates use of the PC as the base register in the STC instruction.

• Read the word-aligned PC value, that is, the address of the current instruction + 4, with bits[1:0] forced to
zero. The base register of LDC, LDR, LDRB, LDRD (pre-indexed, no writeback), LDRH, LDRSB, and LDRSH instructions
can be the word-aligned PC. This provides PC-relative data addressing. In addition, some encodings of the
ADD and SUB instructions permit their source registers to be 0b1111 for the same purpose.

• Read zero. This is done in some cases when one instruction is a special case of another, more general
instruction, but with one operand zero. In these cases, the instructions are listed on separate pages, with a
special case in the pseudocode for the more general instruction cross-referencing the other page.

For register writes, these meanings include:

• The PC can be specified as the destination register of an LDR instruction. This is done by encoding Rt as
0b1111. The loaded value is treated as an address, and the effect of execution is a branch to that address. Bit[0]
of the loaded value selects whether to execute A32 or T32 instructions after the branch.

• Some other instructions write the PC in similar ways. An instruction can specify that the PC is written:

— Implicitly, for example, branch instructions.

— Explicitly by a register specifier of 0b1111, for example 16-bit MOV (register) instructions.

— Explicitly by using a register mask, for example LDM instructions.

The address to branch to can be:

— A loaded value, for example, RFE.

— A register value, for example, BX.

— The result of a calculation, for example, TBB or TBH.

T32 encoding A32 encoding

op0 Bit[28] of the instruction encoding is 1 when cond is 0b1111.

op1 op0

op2 op1

op3 op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F1-4361
ID072021 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
The method of choosing the instruction set used after the branch can be:

— Similar to the LDR case, for example, LDM or BX.

— A fixed instruction set other than the one currently being used, for example, the immediate form of BLX.

— Unchanged, for example, branch instructions or 16-bit MOV (register) instructions.

— Set from the SPSR.T bit, for RFE and SUBS PC, LR, #imm8.

• Discard the result of a calculation. This is done in some cases when one instruction is a special case of
another, more general instruction, but with the result discarded. In these cases, the instructions are listed on
separate pages, with a special case in the pseudocode for the more general instruction cross-referencing the
other page.

• If the destination register specifier of an LDRB, LDRH, LDRSB, or LDRSH instruction is 0b1111, the instruction is a
memory hint instead of a load operation.

• If the destination register specifier of an MRC instruction is 0b1111, bits[31:28] of the value transferred from
the System register are written to the N, Z, C, and V condition flags in the APSR, and bits[27:0] are discarded.

A32 restrictions on the use of PC or 0b1111 as a register specifier

In A32 instructions, the use of 0b1111 as a register specifier specifies the PC.

Many instructions are CONSTRAINED UNPREDICTABLE if they use 0b1111 as a register specifier. This is specified by
pseudocode in the instruction description. Armv8-A constrains the resulting CONSTRAINED UNPREDICTABLE
behavior, see Using R15 by instruction on page K1-8387.

Note

Arm deprecates use of the PC as the base register in any store instruction.

F1.7.6 The SP and the use of 0b1101 as a register specifier in T32 and A32 instructions

In the T32 and A32 instruction sets, Arm recommends that the use of 0b1101 as a register specifier specifies the SP.

Note

• The recommendation that the register specifier 0b1101 is only used to specify the SP applies to both the T32
and the A32 instruction sets.

• Despite this recommendation, T32 instructions that can access R13, or the SP, behave predictably in Armv8.
This differs from Armv7, where many uses of R13 are defined as UNPREDICTABLE. For more information
about these cases, see the ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

F1.7.7 Modified immediate constants in T32 and A32 instructions

The following sections describe the encoding of modified immediate constants:

• Modified immediate constants in T32 instructions on page F1-4362.

• Modified immediate constants in A32 instructions on page F1-4364.

• Modified immediate constants in T32 and A32 Advanced SIMD instructions on page F1-4365.

• Modified immediate constants in T32 and A32 floating-point instructions on page F1-4366.

Modified immediate constants in T32 instructions

The encoding of a modified immediate constant in a 32-bit T32 instruction is:

i imm3 a b c d e f g h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F1-4362 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
Table F1-2 on page F1-4363 shows the range of modified immediate constants available in T32 data-processing
instructions, and their encoding in the a, b, c, d, e, f, g, h, and i bits, and the imm3 field, in the instruction.

Note

As the footnotes to Table F1-2 on page F1-4363 show, the range of values available in T32 modified immediate
constants is slightly different from the range of values available in A32 instructions. See Modified immediate
constants in A32 instructions on page F1-4364 for the A32 values.

Carry out

A logical instruction with i:imm3:a == '00xxx' does not affect the Carry flag. Otherwise, a logical flag-setting
instruction sets the Carry flag to the value of bit[31] of the modified immediate constant.

Operation of modified immediate constants, T32 instructions

For a T32 data-processing instruction, the T32ExpandImm() pseudocode function returns the value of the 32-bit
immediate constant, calling T32ExpandImm_C() to evaluate the constant.

Table F1-2 Encoding of modified immediates in T32 data-processing instructions

i:imm3:a <const> a

a. This table shows the immediate constant value in
binary form, to relate abcdefgh to the encoding
diagram. In assembly syntax, the immediate value
is specified in the usual way (a decimal number by
default).

0000x 00000000 00000000 00000000 abcdefgh

0001x 00000000 abcdefgh 00000000 abcdefgh b

b. Arm deprecates using a modified immediate with
abcdefgh == 00000000, and these cases are
CONSTRAINED UNPREDICTABLE, see
UNPREDICTABLE cases in immediate constants
in T32 data-processing instructions on
page K1-8390.

0010x abcdefgh 00000000 abcdefgh 00000000 b

0011x abcdefgh abcdefgh abcdefgh abcdefgh b

01000 1bcdefgh 00000000 00000000 00000000

01001 01bcdefg h0000000 00000000 00000000 c

01010 001bcdef gh000000 00000000 00000000

01011 0001bcde fgh00000 00000000 00000000 c

.

.

.

.

.

.

8-bit values shifted to other positions

11101 00000000 00000000 000001bc defgh000 c

11110 00000000 00000000 0000001b cdefgh00

11111 00000000 00000000 00000001 bcdefgh0 c

c. Not available in A32 instructions if h == 1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F1-4363
ID072021 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
Modified immediate constants in A32 instructions

The encoding of a modified immediate constant in an A32 instruction is:

Table F1-3 on page F1-4364 shows the range of modified immediate constants available in A32 data-processing
instructions, and their encoding in the a, b, c, d, e, f, g, and h bits and the rotation field in the instruction.

Note

The range of values available in A32 modified immediate constants is slightly different from the range of values
available in 32-bit T32 instructions. See Modified immediate constants in T32 instructions on page F1-4362.

Carry out

A logical instruction with the rotation field set to 0b0000 does not affect APSR.C. Otherwise, a logical flag-setting
instruction sets APSR.C to the value of bit[31] of the modified immediate constant.

Constants with multiple encodings

Some constant values have multiple possible encodings. In this case, a UAL assembler must select the encoding
with the lowest unsigned value of the rotation field. This is the encoding that appears first in Table F1-3 on
page F1-4364. For example, the constant #3 must be encoded with (rotation, abcdefgh) == (0b0000, 0b00000011), not
(0b0001, 0b00001100), (0b0010, 0b00110000), or (0b0011, 0b11000000).

Table F1-3 Encoding of modified immediates in A32 processing instructions

rotation <const> a

a. This table shows the immediate constant value in binary form, to
relate abcdefgh to the encoding diagram. In assembly syntax, the
immediate value is specified in the usual way (a decimal number by
default).

0000 00000000 00000000 00000000 abcdefgh

0001 gh000000 00000000 00000000 00abcdef

0010 efgh0000 00000000 00000000 0000abcd

0011 cdefgh00 00000000 00000000 000000ab

0100 abcdefgh 00000000 00000000 00000000

.

.

.

.

.

.

8-bit values shifted to other even-numbered positions

1001 00000000 00abcdef gh000000 00000000

.

.

.

.

.

.

8-bit values shifted to other even-numbered positions

1110 00000000 00000000 0000abcd efgh0000

1111 00000000 00000000 000000ab cdefgh00

rotation a b c d e f g h
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F1-4364 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
In particular, this means that all constants in the range 0-255 are encoded with rotation == 0b0000, and permitted
constants outside that range are encoded with rotation != 0b0000. A flag-setting logical instruction with a modified
immediate constant therefore leaves APSR.C unchanged if the constant is in the range 0-255 and sets it to the most
significant bit of the constant otherwise. This matches the behavior of T32 modified immediate constants for all
constants that are permitted in both the A32 and T32 instruction sets.

An alternative syntax is available for a modified immediate constant that permits the programmer to specify the
encoding directly. In this syntax, #<const> is instead written as #<byte>, #<rot>, where:

<byte> Is the numeric value of abcdefgh, in the range 0-255.

<rot> Is twice the numeric value of rotation, an even number in the range 0-30.

This syntax permits all A32 data-processing instructions with modified immediate constants to be disassembled to
assembler syntax that assembles to the original instruction.

This syntax also makes it possible to write variants of some flag-setting logical instructions that have different
effects on APSR.C to those obtained with the normal #<const> syntax. For example, ANDS R1, R2, #12, #2 has the
same behavior as ANDS R1, R2, #3 except that it sets APSR.C to 0 instead of leaving it unchanged. Such variants of
flag-setting logical instructions do not have equivalents in the T32 instruction set, and Arm deprecates their use.

Operation of modified immediate constants, A32 instructions

For an A32 data-processing instruction, the A32ExpandImm() pseudocode function returns the value of the 32-bit
immediate constant, calling A32ExpandImm_C() to evaluate the constant.

Modified immediate constants in T32 and A32 Advanced SIMD instructions

Table F1-4 on page F1-4365 shows the modified immediate constants available with Advanced SIMD instructions,
and how they are encoded.

Table F1-4 Modified immediate values for Advanced SIMD instructions

op cmode Constanta <dt>b Notes

- 000x 00000000 00000000 00000000 abcdefgh 00000000 00000000 00000000 abcdefgh I32 c

001x 00000000 00000000 abcdefgh 00000000 00000000 00000000 abcdefgh 00000000 I32 c, d

010x 00000000 abcdefgh 00000000 00000000 00000000 abcdefgh 00000000 00000000 I32 c, d

011x abcdefgh 00000000 00000000 00000000 abcdefgh 00000000 00000000 00000000 I32 c, d

100x 00000000 abcdefgh 00000000 abcdefgh 00000000 abcdefgh 00000000 abcdefgh I16 c

101x abcdefgh 00000000 abcdefgh 00000000 abcdefgh 00000000 abcdefgh 00000000 I16 c, d

1100 00000000 00000000 abcdefgh 11111111 00000000 00000000 abcdefgh 11111111 I32 d, e

1101 00000000 abcdefgh 11111111 11111111 00000000 abcdefgh 11111111 11111111 I32 d, e

0 1110 abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh I8 f

1111 aBbbbbbc defgh000 00000000 00000000 aBbbbbbc defgh000 00000000 00000000 F32 f, g

1 1110 aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh I64 f

1111 UNDEFINED - -

a. In this table, the immediate value is shown in binary form, to relate abcdefgh to the encoding diagram. In assembler
syntax, the constant is specified by a data type and a value of that type. That value is specified in the normal way (a
decimal number by default) and is replicated enough times to fill the 64-bit immediate. For example, a data type of I32
and a value of 10 specify the 64-bit constant 0x0000000A0000000A.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F1-4365
ID072021 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
Operation of modified immediate constants, Advanced SIMD instructions

For a T32 or A32 Advanced SIMD instruction that uses a modified immediate constant, the operation described by
the AdvSIMDExpandImm() pseudocode function returns the value of the 64-bit immediate constant.

Modified immediate constants in T32 and A32 floating-point instructions

Table F1-5 on page F1-4366 shows the immediate constants available in the VMOV (immediate) floating-point
instruction, and Table F1-6 on page F1-4366 shows the resulting floating-point values.

b. This specifies the data type used when the instruction is disassembled. On assembly, the data type must be matched in
the table if possible. Other data types are permitted as pseudo-instructions when a program is assembled, provided the
64-bit constant specified by the data type and value is available for the instruction. If a constant is available in more
than one way, the first entry in this table that can produce it is used. For example, VMOV.I64 D0, #0x8000000080000000
does not specify a 64-bit constant that is available from the I64 line of the table, but does specify one that is available
from the fourth I32 line or the F32 line. It is assembled to the first of these, and therefore is disassembled as
VMOV.I32 D0, #0x80000000.

c. This constant is available for the VBIC, VMOV, VMVN, and VORR instructions.

d. CONSTRAINED UNPREDICTABLE if abcdefgh == 0b00000000, see UNPREDICTABLE cases in immediate constants in
Advanced SIMD instructions on page K1-8390. The required behavior is that these encodings produce an immediate
constant of zero.

e. This constant is available for the VMOV and VMVN instructions only.

f. This constant is available for the VMOV instruction only.

g. In this entry, B = NOT(b). The bit pattern represents the floating-point number (–1)S × 2exp × mantissa, where
S = UInt(a), exp = UInt(NOT(b):c:d)-3 and mantissa = (16+UInt(e:f:g:h))/16.

Table F1-5 Floating-point modified immediate constants

Data type imm4H imm4L Constant a

F16 abcd efgh aBbbcdef gh000000

F32 abcd efgh aBbbbbbc defgh000 00000000 00000000

F64 abcd efgh aBbbbbbb bbcdefgh 00000000 00000000 00000000 00000000 00000000 00000000

a. In this column, B = NOT(b). The bit pattern represents the floating-point number (–1)S × 2exp × mantissa, where
S = UInt(a), exp = UInt(NOT(b):c:d)-3 and mantissa = (16+UInt(e:f:g:h))/16.

Table F1-6 Floating-point constant values

efgh
bcd

000 001 010 011 100 101 110 111

0000 2.0 4.0 8.0 16.0 0.125 0.25 0.5 1.0

0001 2.125 4.25 8.5 17.0 0.1328125 0.265625 0.53125 1.0625

0010 2.25 4.5 9.0 18.0 0.140625 0.28125 0.5625 1.125

0011 2.375 4.75 9.5 19.0 0.1484375 0.296875 0.59375 1.1875

0100 2.5 5.0 10.0 20.0 0.15625 0.3125 0.625 1.25

0101 2.625 5.25 10.5 21.0 0.1640625 0.328125 0.65625 1.3125

0110 2.75 5.5 11.0 22.0 0.171875 0.34375 0.6875 1.375

0111 2.875 5.75 11.5 23.0 0.1796875 0.359375 0.71875 1.4375

1000 3.0 6.0 12.0 24.0 0.1875 0.375 0.75 1.5
F1-4366 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
Operation of modified immediate constants, floating-point instructions

For a T32 or A32 floating-point instruction that uses a modified immediate constant, the operation described by the
VFPExpandImm() pseudocode function returns the value of the immediate constant.

1001 3.125 6.25 12.5 25.0 0.1953125 0.390625 0.78125 1.5625

1010 3.25 6.5 13.0 26.0 0.203125 0.40625 0.8125 1.625

1011 3.375 6.75 13.5 27.0 0.2109375 0.421875 0.84375 1.6875

1100 3.5 7.0 14.0 28.0 0.21875 0.4375 0.875 1.75

1101 3.625 7.25 14.5 29.0 0.2265625 0.453125 0.90625 1.8125

1110 3.75 7.5 15.0 30.0 0.234375 0.46875 0.9375 1.875

1111 3.875 7.75 15.5 31.0 0.2421875 0.484375 0.96875 1.9375

Table F1-6 Floating-point constant values (continued)

efgh
bcd

000 001 010 011 100 101 110 111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F1-4367
ID072021 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.8 Additional pseudocode support for instruction descriptions
F1.8 Additional pseudocode support for instruction descriptions

Earlier sections of this chapter include pseudocode that describes features of the execution of A32 and T32
instructions, see:

• Pseudocode description of conditional execution on page F1-4350.

• Pseudocode description of instruction-specified shifts and rotates on page F1-4352

The following subsection gives additional pseudocode support functions for some of the instructions described in
Alphabetical list of T32 and A32 base instruction set instructions on page F5-4564. See also Pseudocode support
for the banked register transfer instructions on page F5-5285.

F1.8.1 Pseudocode description of operations for System register access instructions

The AArch32.SysRegRead() function obtains the word for an MRC instruction from the System register.

The AArch32.SysRegRead64() function obtains the two words for an MRRC instruction from the System register.

Note

The relative significance of the two words returned is IMPLEMENTATION DEFINED, but all uses within this manual
present the two words in the order (most significant, least significant).

The AArch32.SysRegWrite() procedure sends the word for an MCR instruction to the System register.

The AArch32.SysRegWrite64() procedure sends the two words for an MCRR instruction to the System register.

Note

The relative significance of word2 and word1 is IMPLEMENTATION DEFINED, but all uses within this manual treat word2
as more significant than word1.

F1.8.2 Pseudocode details of system calls

The AArch32.CallSupervisor() pseudocode function generates a Supervisor Call exception. Valid execution of the
SVC instruction calls this function.

The AArch32.CallHypervisor() pseudocode function generates an HVC exception. Valid execution of the HVC
instruction calls this function.
F1-4368 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the T32 and A32 Instruction Descriptions
F1.9 Additional information about Advanced SIMD and floating-point instructions
F1.9 Additional information about Advanced SIMD and floating-point instructions

The following subsections give additional information about the Advanced SIMD and floating-point instructions:

• Advanced SIMD and floating-point instruction syntax on page F1-4369.

• The Advanced SIMD addressing mode on page F1-4369.

• Advanced SIMD instruction modifiers on page F1-4370.

• Advanced SIMD operand shapes on page F1-4370.

• Data type specifiers on page F1-4371.

• Register specifiers on page F1-4372.

• Register lists on page F1-4373.

• Register encoding on page F1-4373.

• Advanced SIMD scalars on page F1-4374.

Note

The Advanced SIMD architecture, its associated implementations, and supporting software, are commonly referred
to as NEON™ technology.

F1.9.1 Advanced SIMD and floating-point instruction syntax

Advanced SIMD and floating-point instructions use the general conventions of the T32 and A32 instruction sets.

Advanced SIMD and floating-point data-processing instructions use the following general format:

V{<modifier>}<operation>{<shape>}{<c>}{<q>}{.<dt>} {<dest>,} <src1>, <src2>

All Advanced SIMD and floating-point instructions begin with a V. This distinguishes Advanced SIMD vector and
floating-point instructions from scalar instructions.

The main operation is specified in the <operation> field. It is usually a three letter mnemonic the same as or similar
to the corresponding scalar integer instruction.

The <c> and <q> fields are standard assembler syntax fields. For details, see Standard assembler syntax fields on
page F1-4348.

F1.9.2 The Advanced SIMD addressing mode

All the element and structure load/store instructions use this addressing mode. There is a choice of three formats:

[<Rn>{:<align>}] The address is contained in general-purpose register Rn.

Rn is not updated by this instruction.

Encoded as Rm = 0b1111.

If Rn is encoded as 0b1111, the instruction is CONSTRAINED UNPREDICTABLE.

[<Rn>{:<align>}]! The address is contained in general-purpose register Rn.

Rn is updated by this instruction: Rn = Rn + transfer_size

Encoded as Rm = 0b1101.

transfer_size is the number of bytes transferred by the instruction. This means that, after
the instruction is executed, Rn points to the address in memory immediately following the
last address loaded from or stored to.

If Rn is encoded as 0b1111, the instruction is CONSTRAINED UNPREDICTABLE.

This addressing mode can also be written as:

[<Rn>{:align}], #<transfer_size>

However, disassembly produces the [<Rn>{:align}]! form.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F1-4369
ID072021 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.9 Additional information about Advanced SIMD and floating-point instructions
[<Rn>{:<align>}], <Rm>

The address is contained in general-purpose register <Rn>.

Rn is updated by this instruction: Rn = Rn + Rm

Encoded as Rm = Rm. Rm must not be encoded as 0b1111 or 0b1101, the PC or the SP.

If Rn is encoded as 0b1111, the instruction is CONSTRAINED UNPREDICTABLE.

The CONSTRAINED UNPREDICTABLE behavior of encodings where Rn is 0b1111 is described in the section: Using
R15 by instruction on page K1-8387.

In all cases, <align> specifies an alignment, as specified by the individual instruction descriptions.

Previous versions of the manual used the @ character for alignment. So, for example, the first format in this section
was shown as [<Rn>{@<align>}]. Both @ and : are supported. However, to ensure portability of code to assemblers
that treat @ as a comment character, : is preferred.

F1.9.3 Advanced SIMD instruction modifiers

The <modifier> field provides additional variants of some instructions. Table F1-7 on page F1-4370 provides
definitions of the modifiers. Modifiers are not available for every instruction.

F1.9.4 Advanced SIMD operand shapes

The <shape> field provides additional variants of some instructions. Table F1-8 on page F1-4370 provides
definitions of the shapes. Operand shapes are not available for every instruction.

Note

• Some assemblers support a Q shape specifier, that requires all operands to be Q registers. An example of
using this specifier is VADDQ.S32 q0, q1, q2. This is not standard UAL, and Arm recommends that
programmers do not use a Q shape specifier.

• A disassembler must not generate any shape specifier not shown in Table F1-8 on page F1-4370.

Table F1-7 Advanced SIMD instruction modifiers

<modifier> Meaning

Q The operation uses saturating arithmetic.

R The operation performs rounding.

D The operation doubles the result (before accumulation, if any).

H The operation halves the result.

Table F1-8 Advanced SIMD operand shapes

<shape> Meaning Typical register shape

(none) The operands and result are all the same width. Dd, Dn, Dm Qd, Qn, Qm

L Long operation - result is twice the width of both operands Qd, Dn, Dm

N Narrow operation - result is half the width of both operands Dd, Qn, Qm

W Wide operation - result and first operand are twice the width of the second operand Qd, Qn, Dm
F1-4370 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the T32 and A32 Instruction Descriptions
F1.9 Additional information about Advanced SIMD and floating-point instructions
F1.9.5 Data type specifiers

The <dt> field normally contains one data type specifier. Unless the assembler syntax description for the instruction
indicates otherwise, this indicates the data type contained in:

• The second operand, if any.

• The operand, if there is no second operand.

• The result, if there are no operand registers.

The data types of the other operand and result are implied by the <dt> field combined with the instruction shape. For
information about data type formats, see Data types supported by the Advanced SIMD implementation on
page E1-4262.

In the instruction syntax descriptions in Chapter F1 About the T32 and A32 Instruction Descriptions, the <dt> field
is usually specified as a single field. However, where more convenient, it is sometimes specified as a concatenation
of two fields, <type><size>.

Syntax flexibility

There is some flexibility in the data type specifier syntax:

• Software can specify three data types, specifying the result and both operand data types. For example:

VSUBW.I16.I16.S8 Q3, Q5, D0 instead of VSUBW.S8 Q3, Q5, D0

• Software can specify two data types, specifying the data types of the two operands. The data type of the result
is implied by the instruction shape. For example:

VSUBW.I16.S8 Q3, Q5, D0 instead of VSUBW.S8 Q3, Q5, D0

• Software can specify two data types, specifying the data types of the single operand and the result. For
example:

VMOVN.I16.I32 D0, Q1 instead of VMOVN.I32 D0, Q1

• Where an instruction requires a less specific data type, software can instead specify a more specific type, as
shown in Table F1-9 on page F1-4371.

• Where an instruction does not require a data type, software can provide one.

• The F32 data type can be abbreviated to F.

• The F64 data type can be abbreviated to D.

In all cases, if software provides additional information, the additional information must match the instruction
shape. Disassembly does not regenerate this additional information.

Table F1-9 Data type specification flexibility

Specified data type Permitted more specific data types

None Any

.I<size> - .S<size> .U<size> - -

.8 .I8 .S8 .U8 .P8 -

.16 .I16 .S16 .U16 .P16 .F16

.32 .I32 .S32 .U32 - .F32 or .F

.64 .I64 .S64 .U64 - .F64 or .D
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F1-4371
ID072021 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.9 Additional information about Advanced SIMD and floating-point instructions
F1.9.6 Register specifiers

The <dest>, <src1>, and <src2> fields contain register specifiers, or in some cases scalar specifiers or register lists.
Table F1-10 on page F1-4372 shows the register and scalar specifier formats that appear in the instruction
descriptions.

If <dest> is omitted, it is the same as <src1>.

Table F1-10 Advanced SIMD and floating-point register specifier formats

<specifier> Usual meaning a

a. In some instructions the roles of registers are different.

Used in

<Qd> A quadword destination register for the result vector. Advanced SIMD

<Qn> A quadword source register for the first operand vector. Advanced SIMD

<Qm> A quadword source register for the second operand vector. Advanced SIMD

<Dd> A doubleword destination register for the result vector. Both

<Dn> A doubleword source register for the first operand vector. Both

<Dm> A doubleword source register for the second operand vector. Both

<Sd> A singleword destination register for the result vector. Floating-point

<Sn> A singleword source register for the first operand vector. Floating-point

<Sm> A singleword source register for the second operand vector. Floating-point

<Dd[x]> A destination scalar for the result. Element x of vector <Dd>. Advanced SIMD

<Dn[x]> A source scalar for the first operand. Element x of vector <Dn>. Bothb

b. In the floating-point instructions, <Dn[x]> is used only in VMOV (scalar to general-purpose register), see VMOV
(scalar to general-purpose register) on page F6-5673.

<Dm[x]> A source scalar for the second operand. Element x of vector <Dm>. Advanced SIMD

<Rt> A general-purpose register, used for a source or destination address. Both

<Rt2> A general-purpose register, used for a source or destination address. Both

<Rn> A general-purpose register, used as a load or store base address. Both

<Rm> A general-purpose register, used as a post-indexed address source. Both
F1-4372 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the T32 and A32 Instruction Descriptions
F1.9 Additional information about Advanced SIMD and floating-point instructions
F1.9.7 Register lists

A register list is a list of register specifiers separated by commas and enclosed in brackets { and }. There are
restrictions on what registers can appear in a register list. These restrictions are described in the individual
instruction descriptions. Table F1-11 on page F1-4373 shows some register list formats, with examples of actual
register lists corresponding to those formats.

Note

Register lists must not wrap around the end of the register bank.

Syntax flexibility

There is some flexibility in the register list syntax:

• Where a register list contains consecutive registers, they can be specified as a range, instead of listing every
register, for example {D0-D3} instead of {D0, D1, D2, D3}.

• Where a register list contains an even number of consecutive doubleword registers starting with an
even-numbered register, it can be written as a list of quadword registers instead, for example {Q1, Q2} instead
of {D2-D5}.

• Where a register list contains only one register, the enclosing braces can be omitted, for example
VLD1.8 D0, [R0] instead of VLD1.8 {D0}, [R0].

F1.9.8 Register encoding

An Advanced SIMD register is either:

• Quadword, meaning it is 128 bits wide.

• Doubleword, meaning it is 64 bits wide.

Some instructions have options for either doubleword or quadword registers. This is normally encoded in Q, bit[6],
as Q = 0 for doubleword operations, or Q = 1 for quadword operations.

A floating-point register is either:

• Double-precision, meaning it is 64 bits wide.

• Single-precision, meaning it is 32 bits wide.

This is encoded in the sz field, bit[8], as sz = 1 for double-precision operations, or sz = 0 for single-precision
operations.

The T32 instruction encoding of Advanced SIMD or floating-point registers is:

The A32 instruction encoding of Advanced SIMD or floating-point registers is:

Table F1-11 Example register lists

Format Example Alternative

{<Dd>} {D3} D3

{<Dd>, <Dd+1>, <Dd+2>} {D3, D4, D5} {D3-D5}

{<Dd[x]>, <Dd+2[x]} {D0[3], D2[3]} -

{<Dd[]>} {D7[]} D7[]

D Vn Vd sz N Q M Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D Vn Vd sz N Q M Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F1-4373
ID072021 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.9 Additional information about Advanced SIMD and floating-point instructions
Some instructions use only one or two registers, and use the unused register fields as additional opcode bits.

Table F1-12 on page F1-4374 shows the encodings for the registers.

F1.9.9 Advanced SIMD scalars

Advanced SIMD scalars can be 8-bit, 16-bit, 32-bit, or 64-bit. Instructions other than multiply instructions can
access any element in the register set. The instruction syntax refers to the scalars using an index into a doubleword
vector. The descriptions of the individual instructions contain details of the encodings.

Table F1-13 on page F1-4374 shows the form of encoding for scalars used in multiply instructions. These
instructions cannot access scalars in some registers. The descriptions of the individual instructions contain cross
references to this section where appropriate.

32-bit Advanced SIMD scalars, when used as single-precision floating-point numbers, are equivalent to
Floating-point single-precision registers. That is, Dm[x] in a 32-bit context (0 <= m <= 15, 0 <= x <=1) is equivalent
to S[2m + x].

Table F1-12 Encoding of register numbers

Register
mnemonic

Usual usage
Register number encoded
ina Notesa Used in

<Qd> Destination (quadword) D, Vd (bits[22, 15:13]) bit[12] == 0
b

Advanced
SIMD

<Qn> First operand (quadword) N, Vn (bits[7, 19:17]) bit[16] == 0
b

Advanced
SIMD

<Qm> Second operand (quadword) M, Vm (bits[5, 3:1]) bit[0] == 0b Advanced
SIMD

<Dd> Destination (doubleword) D, Vd (bits[22, 15:12]) - Both

<Dn> First operand (doubleword) N, Vn (bits[7, 19:16]) - Both

<Dm> Second operand (doubleword) M, Vm (bits[5, 3:0]) - Both

<Sd> Destination (single-precision) Vd, D (bits[15:12, 22]) - Floating-point

<Sn> First operand (single-precision) Vn, N (bits[19:16, 7]) - Floating-point

<Sm> Second operand
(single-precision)

Vm, M (bits[3:0, 5]) - Floating-point

a. Bit numbers given for the A32 instruction encoding. See the figures in this section for the equivalent bits in the T32 encoding.

b. If this bit is 1, the instruction is UNDEFINED.

Table F1-13 Encoding of scalars in multiply instructions

Scalar mnemonic Usual usage Scalar size Register specifier Index specifier Accessible registers

<Dm[x]> Second operand 16-bit Vm[2:0] M, Vm[3] D0-D7

32-bit Vm[3:0] M D0-D15
F1-4374 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter F2
The AArch32 Instruction Sets Overview

This chapter describes the T32 and A32 instruction sets. It contains the following sections:

• Support for instructions in different versions of the Arm architecture on page F2-4376.

• Unified Assembler Language on page F2-4377.

• Branch instructions on page F2-4379.

• Data-processing instructions on page F2-4380.

• PSTATE and banked register access instructions on page F2-4388.

• Load/store instructions on page F2-4389.

• Load/store multiple instructions on page F2-4392.

• Miscellaneous instructions on page F2-4393.

• Exception-generating and exception-handling instructions on page F2-4395.

• System register access instructions on page F2-4397.

• Advanced SIMD and floating-point load/store instructions on page F2-4398.

• Advanced SIMD and floating-point register transfer instructions on page F2-4400.

• Advanced SIMD data-processing instructions on page F2-4401.

• Floating-point data-processing instructions on page F2-4412.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F2-4375
ID072021 Non-Confidential

The AArch32 Instruction Sets Overview
F2.1 Support for instructions in different versions of the Arm architecture
F2.1 Support for instructions in different versions of the Arm architecture

This manual describes the T32 and A32 instruction sets for the Armv8 architecture. Therefore, it indicates how any
options or extensions in the Armv8 architecture affect the available instructions.
F2-4376 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Instruction Sets Overview
F2.2 Unified Assembler Language
F2.2 Unified Assembler Language

This manual uses the Arm Unified Assembler Language (UAL). This assembly language syntax provides a
canonical form for all T32 and A32 instructions.

UAL describes the syntax for the mnemonic and the operands of each instruction. In addition, it assumes that
instructions and data items can be given labels. It does not specify the syntax to be used for labels, nor what
assembler directives and options are available. See your assembler documentation for these details.

Most earlier Arm assembly language mnemonics are still supported as synonyms, as described in the instruction
details.

Note

Most earlier T32 assembly language mnemonics are not supported.

UAL includes instruction selection rules that specify which instruction encoding is selected when more than one
can provide the required functionality. For example, both 16-bit and 32-bit encodings exist for an ADD R0, R1, R2
instruction. The most common instruction selection rule is that when both a 16-bit encoding and a 32-bit encoding
are available, the 16-bit encoding is selected, to optimize code density.

Syntax options exist to override the normal instruction selection rules and ensure that a particular encoding is
selected. These are useful when disassembling code, to ensure that subsequent assembly produces the original code,
and in some other situations.

F2.2.1 Conditional instructions

For maximum portability of UAL assembly language between the T32 and A32 instruction sets, Arm recommends
that:

• IT instructions are written before conditional instructions in the correct way for the T32 instruction set.

• When assembling to the A32 instruction set, assemblers check that any IT instructions are correct, but do not
generate any code for them.

Although other T32 instructions are unconditional, all instructions that are made conditional by an IT instruction
must be written with a condition. These conditions must match the conditions imposed by the IT instruction. For
example, an ITTEE EQ instruction imposes the EQ condition on the first two following instructions, and the NE
condition on the next two. Those four instructions must be written with EQ, EQ, NE and NE conditions respectively.

Some instructions cannot be made conditional by an IT instruction. Some instructions can be conditional if they are
the last instruction in the IT block, but not otherwise.

The branch instruction encodings that include a Condition code field cannot be made conditional by an IT
instruction. If the assembler syntax indicates a conditional branch that correctly matches a preceding IT instruction,
it is assembled using a branch instruction encoding that does not include a Condition code field.

F2.2.2 Use of labels in UAL instruction syntax

The UAL syntax for some instructions includes the label of an instruction or a literal data item that is at a fixed offset
from the instruction being specified. The assembler must:

1. Calculate the PC or Align(PC, 4) value of the instruction. The PC value of an instruction is its address plus 4
for a T32 instruction, or plus 8 for an A32 instruction. The Align(PC, 4) value of an instruction is its PC value
ANDed with 0xFFFFFFFC to force it to be word-aligned. There is no difference between the PC and
Align(PC, 4) values for an A32 instruction, but there can be for a T32 instruction.

2. Calculate the offset from the PC or Align(PC, 4) value of the instruction to the address of the labeled
instruction or literal data item.

3. Assemble a PC-relative encoding of the instruction, that is, one that reads its PC or Align(PC, 4) value and
adds the calculated offset to form the required address.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F2-4377
ID072021 Non-Confidential

The AArch32 Instruction Sets Overview
F2.2 Unified Assembler Language
Note

For instructions that can encode a subtraction operation, if the instruction cannot encode the calculated offset
but can encode minus the calculated offset, the instruction encoding specifies a subtraction of minus the
calculated offset.

The syntax of the following instructions includes a label:

• B, BL, and BLX (immediate). The assembler syntax for these instructions always specifies the label of the
instruction that they branch to. Their encodings specify a sign-extended immediate offset that is added to the
PC value of the instruction to form the target address of the branch.

• CBNZ and CBZ. The assembler syntax for these instructions always specifies the label of the instruction that they
branch to. Their encodings specify a zero-extended immediate offset that is added to the PC value of the
instruction to form the target address of the branch. They do not support backward branches.

• LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLDW, PLI, and VLDR. The normal assembler syntax of these load
instructions can specify the label of a literal data item that is to be loaded. The encodings of these instructions
specify a zero-extended immediate offset that is either added to or subtracted from the Align(PC, 4) value of
the instruction to form the address of the data item. A few such encodings perform a fixed addition or a fixed
subtraction and must only be used when that operation is required, but most contain a bit that specifies
whether the offset is to be added or subtracted.

When the assembler calculates an offset of 0 for the normal syntax of these instructions, it must assemble an
encoding that adds 0 to the Align(PC, 4) value of the instruction. Encodings that subtract 0 from the Align(PC,
4) value cannot be specified by the normal syntax.

There is an alternative syntax for these instructions that specifies the addition or subtraction and the
immediate offset explicitly. In this syntax, the label is replaced by [PC, #+/-<imm>], where:

+/- Is + or omitted to specify that the immediate offset is to be added to the Align(PC, 4) value, or -
if it is to be subtracted.

<imm> Is the immediate offset.

This alternative syntax makes it possible to assemble the encodings that subtract 0 from the Align(PC, 4)
value, and to disassemble them to a syntax that can be re-assembled correctly.

• ADR. The normal assembler syntax for this instruction can specify the label of an instruction or literal data item
whose address is to be calculated. Its encoding specifies a zero-extended immediate offset that is either added
to or subtracted from the Align(PC, 4) value of the instruction to form the address of the data item, and some
opcode bits that determine whether it is an addition or subtraction.

When the assembler calculates an offset of 0 for the normal syntax of this instruction, it must assemble the
encoding that adds 0 to the Align(PC, 4) value of the instruction. The encoding that subtracts 0 from the
Align(PC, 4) value cannot be specified by the normal syntax.

There is an alternative syntax for this instruction that specifies the addition or subtraction and the immediate
value explicitly, by writing them as additions ADD <Rd>, PC, #<imm> or subtractions SUB <Rd>, PC, #<imm>.
This alternative syntax makes it possible to assemble the encoding that subtracts 0 from the Align(PC, 4)
value, and to disassemble it to a syntax that can be re-assembled correctly.

Note

Arm recommends that where possible, software avoids using:

• The alternative syntax for the ADR, LDC, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLI, PLDW, and VLDR instructions.

• The encodings of these instructions that subtract 0 from the Align(PC, 4) value.
F2-4378 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Instruction Sets Overview
F2.3 Branch instructions
F2.3 Branch instructions

Table F2-1 on page F2-4379 summarizes the branch instructions in the T32 and A32 instruction sets. In addition to
providing for changes in the flow of execution, some branch instructions can change instruction set.

Branches to loaded and calculated addresses can be performed by LDR, LDM and data-processing instructions. For
details, see Load/store instructions on page F2-4389, Load/store multiple instructions on page F2-4392, Standard
data-processing instructions on page F2-4380, and Shift instructions on page F2-4382.

In addition to the branch instructions shown in Table F2-1 on page F2-4379:

• In the A32 instruction set, a data-processing instruction that targets the PC behaves as a branch instruction.
For more information, see Data-processing instructions on page F2-4380.

• In the T32 and A32 instruction sets, a load instruction that targets the PC behaves as a branch instruction. For
more information, see Load/store instructions on page F2-4389.

Table F2-1 Branch instructions

Instruction See Range, T32 Range, A32

Branch to target address B on page F5-4613 ±16MB ±32MB

Compare and Branch on Nonzero
Compare and Branch on Zero

CBNZ, CBZ on page F5-4639 0-126 bytes -a

Call a subroutine

Call a subroutine, change instruction setb
BL, BLX (immediate) on page F5-4631 ±16MB

±16MB

±32MB

±32MB

Call a subroutine, optionally change instruction set BLX (register) on page F5-4634 Any Any

Branch to target address, change instruction set BX on page F5-4636 Any Any

Change to Jazelle state BXJ on page F5-4638 - -

Table Branch (byte offsets)

Table Branch (halfword offsets)

TBB, TBH on page F5-5191 0-510 bytes

0-131070 bytes
-a

a. These instructions do not exist in the A32 instruction set.

b. The range is determined by the instruction set of the BLX instruction, not of the instruction it branches to.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F2-4379
ID072021 Non-Confidential

The AArch32 Instruction Sets Overview
F2.4 Data-processing instructions
F2.4 Data-processing instructions

Core data-processing instructions belong to one of the following groups:

• Standard data-processing instructions on page F2-4380.

• Shift instructions on page F2-4382.

• Multiply instructions on page F2-4382.

• Saturating instructions on page F2-4384.

• Saturating addition and subtraction instructions on page F2-4384.

• Packing and unpacking instructions on page F2-4385.

• Parallel addition and subtraction instructions on page F2-4386.

• Divide instructions on page F2-4387.

• Miscellaneous data-processing instructions on page F2-4387.

For related Advanced SIMD and floating-point instructions see Advanced SIMD data-processing instructions on
page F2-4401 and Floating-point data-processing instructions on page F2-4412.

F2.4.1 Standard data-processing instructions

These instructions perform basic data-processing operations, and share a common format with some variations.

These instructions generally have a destination register Rd, a first operand register Rn, and a second operand. The
second operand can be another register Rm, or an immediate constant.

If the second operand is an immediate constant, it can be:

• Encoded directly in the instruction.

• A modified immediate constant that uses 12 bits of the instruction to encode a range of constants. T32 and
A32 instructions have slightly different ranges of modified immediate constants. For more information, see
Modified immediate constants in T32 instructions on page F1-4362 and Modified immediate constants in A32
instructions on page F1-4364.

If the second operand is another register, it can optionally be shifted in any of the following ways:

LSL Logical Shift Left by 1-31 bits.

LSR Logical Shift Right by 1-32 bits.

ASR Arithmetic Shift Right by 1-32 bits.

ROR Rotate Right by 1-31 bits.

RRX Rotate Right with Extend. For details, see Shift and rotate operations on page E1-4250.

In T32 code, the amount to shift by is always a constant encoded in the instruction. In A32 code, the amount to shift
by is either a constant encoded in the instruction, or the value of a register, Rs.

For instructions other than CMN, CMP, TEQ, and TST, the result of the data-processing operation is placed in the
destination register. In the A32 instruction set, the destination register can be the PC, causing the result to be treated
as a branch address. In the T32 instruction set, this is only permitted for some 16-bit forms of the ADD and MOV
instructions.

These instructions can optionally set the Condition flags, according to the result of the operation. If they do not set
the flags, existing flag settings from a previous instruction are preserved.

Table F2-2 on page F2-4381 summarizes the main data-processing instructions in the T32 and A32 instruction sets.
Generally, each of these instructions is described in three sections in Chapter F1 About the T32 and A32 Instruction
Descriptions, one section for each of the following:

• INSTRUCTION (immediate) where the second operand is a modified immediate constant.

• INSTRUCTION (register) where the second operand is a register, or a register shifted by a constant.

• INSTRUCTION (register-shifted register) where the second operand is a register shifted by a value obtained from
another register. These are only available in the A32 instruction set.
F2-4380 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Instruction Sets Overview
F2.4 Data-processing instructions
Table F2-2 Standard data-processing instructions

Instruction Mnemonic Notes

Add with Carry ADC -

Add ADD T32 instruction set permits use of a modified immediate constant or a zero-extended
12-bit immediate constant.

Form PC-relative Address ADR First operand is the PC. Second operand is an immediate constant. T32 instruction set
uses a zero-extended 12-bit immediate constant. Operation is an addition or a
subtraction.

Bitwise AND AND -

Bitwise Bit Clear BIC -

Compare Negative CMN Sets flags. Like ADD but with no destination register.

Compare CMP Sets flags. Like SUB but with no destination register.

Bitwise Exclusive OR EOR -

Copy operand to destination MOV Has only one operand, with the same options as the second operand in most of these
instructions. If the operand is a shifted register, the instruction is an LSL, LSR, ASR, or
ROR instruction instead. For details, see Shift instructions on page F2-4382.

The T32 and A32 instruction sets permit use of a modified immediate constant or a
zero-extended 16-bit immediate constant.

Bitwise NOT MVN Has only one operand, with the same options as the second operand in most of these
instructions.

Bitwise OR NOT ORN Not available in the A32 instruction set.

Bitwise OR ORR -

Reverse Subtract RSB Subtracts first operand from second operand. This permits subtraction from constants
and shifted registers.

Reverse Subtract with Carry RSC Not available in the T32 instruction set.

Subtract with Carry SBC -

Subtract SUB T32 instruction set permits use of a modified immediate constant or a zero-extended
12-bit immediate constant.

Test Equivalence TEQ Sets flags. Like EOR but with no destination register.

Test TST Sets flags. Like AND but with no destination register.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F2-4381
ID072021 Non-Confidential

The AArch32 Instruction Sets Overview
F2.4 Data-processing instructions
F2.4.2 Shift instructions

Table F2-3 on page F2-4382 lists the shift instructions in the T32 and A32 instruction sets.

In the A32 instruction set only, the destination register of these instructions can be the PC, causing the result to be
treated as an address to branch to.

F2.4.3 Multiply instructions

These instructions can operate on signed or unsigned quantities. In some types of operation, the results are the same
whether the operands are signed or unsigned.

• Table F2-4 on page F2-4382 summarizes the multiply instructions where there is no distinction between
signed and unsigned quantities.

The least significant 32 bits of the result are used. More significant bits are discarded.

• Table F2-5 on page F2-4383 summarizes the signed multiply instructions.

• Table F2-6 on page F2-4383 summarizes the unsigned multiply instructions.

Table F2-3 Shift instructions

Instruction See

Arithmetic Shift Right ASR (immediate) on page F5-4605

ASR (register) on page F5-4607

ASRS (immediate) on page F5-4609

ASRS (register) on page F5-4611

Logical Shift Left LSL (immediate) on page F5-4813

LSL (register) on page F5-4815

LSLS (immediate) on page F5-4817

LSLS (register) on page F5-4819

Logical Shift Right LSR (immediate) on page F5-4821

LSR (register) on page F5-4823

LSRS (immediate) on page F5-4825

LSRS (register) on page F5-4827

Rotate Right ROR (immediate) on page F5-4955

ROR (register) on page F5-4957

RORS (immediate) on page F5-4959

RORS (register) on page F5-4961

Rotate Right with Extend RRX on page F5-4963

RRXS on page F5-4965

Table F2-4 General multiply instructions

Instruction See Operation (number of bits)

Multiply Accumulate MLA, MLAS on page F5-4833 32 = 32 + 32 × 32

Multiply and Subtract MLS on page F5-4835 32 = 32 – 32 × 32

Multiply MUL, MULS on page F5-4871 32 = 32 × 32
F2-4382 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Instruction Sets Overview
F2.4 Data-processing instructions
Table F2-5 Signed multiply instructions

Instruction See Operation (number of bits)

Signed Multiply Accumulate (halfwords) SMLABB, SMLABT, SMLATB, SMLATT
on page F5-5024

32 = 32 + 16 × 16

Signed Multiply Accumulate Dual SMLAD, SMLADX on page F5-5026 32 = 32 + 16 × 16 + 16 × 16

Signed Multiply Accumulate Long SMLAL, SMLALS on page F5-5028 64 = 64 + 32 × 32

Signed Multiply Accumulate Long (halfwords) SMLALBB, SMLALBT, SMLALTB,
SMLALTT on page F5-5030

64 = 64 + 16 × 16

Signed Multiply Accumulate Long Dual SMLALD, SMLALDX on page F5-5033 64 = 64 + 16 × 16 + 16 × 16

Signed Multiply Accumulate (word by halfword) SMLAWB, SMLAWT on page F5-5036 32 = 32 + 32 × 16 a

Signed Multiply Subtract Dual SMLSD, SMLSDX on page F5-5038 32 = 32 + 16 × 16 – 16 × 16

Signed Multiply Subtract Long Dual SMLSLD, SMLSLDX on page F5-5040 64 = 64 + 16 × 16 – 16 × 16

Signed Most Significant Word Multiply Accumulate SMMLA, SMMLAR on page F5-5042 32 = 32 + 32 × 32 b

Signed Most Significant Word Multiply Subtract SMMLS, SMMLSR on page F5-5044 32 = 32 – 32 × 32 b

Signed Most Significant Word Multiply SMMUL, SMMULR on page F5-5046 32 = 32 × 32 b

Signed Dual Multiply Add SMUAD, SMUADX on page F5-5048 32 = 16 × 16 + 16 × 16

Signed Multiply (halfwords) SMULBB, SMULBT, SMULTB, SMULTT
on page F5-5050

32 = 16 × 16

Signed Multiply Long SMULL, SMULLS on page F5-5052 64 = 32 × 32

Signed Multiply (word by halfword) SMULWB, SMULWT on page F5-5054 32 = 32 × 16 a

Signed Dual Multiply Subtract SMUSD, SMUSDX on page F5-5056 32 = 16 × 16 – 16 × 16

a. The most significant 32 bits of the 48-bit product are used. Less significant bits are discarded.

b. The most significant 32 bits of the 64-bit product are used. Less significant bits are discarded.

Table F2-6 Unsigned multiply instructions

Instruction See Operation (number of bits)

Unsigned Multiply Accumulate Accumulate Long UMAAL on page F5-5232 64 = 32 + 32 + 32 × 32

Unsigned Multiply Accumulate Long UMLAL, UMLALS on page F5-5234 64 = 64 + 32 × 32

Unsigned Multiply Long UMULL, UMULLS on page F5-5236 64 = 32 × 32
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F2-4383
ID072021 Non-Confidential

The AArch32 Instruction Sets Overview
F2.4 Data-processing instructions
F2.4.4 Saturating instructions

Table F2-7 on page F2-4384 lists the saturating instructions in the T32 and A32 instruction sets. For more
information, see Pseudocode description of saturation on page E1-4251.

F2.4.5 Saturating addition and subtraction instructions

Table F2-8 on page F2-4384 lists the saturating addition and subtraction instructions in the T32 and A32 instruction
sets. For more information, see Pseudocode description of saturation on page E1-4251.

Table F2-7 Saturating instructions

Instruction See Operation

Signed Saturate SSAT on page F5-5062 Saturates optionally shifted 32-bit value to selected range

Signed Saturate 16 SSAT16 on page F5-5064 Saturates two 16-bit values to selected range

Unsigned Saturate USAT on page F5-5254 Saturates optionally shifted 32-bit value to selected range

Unsigned Saturate 16 USAT16 on page F5-5256 Saturates two 16-bit values to selected range

Table F2-8 Saturating addition and subtraction instructions

Instruction See Operation

Saturating Add QADD on page F5-4924 Add, saturating result to the 32-bit signed integer range

Saturating Subtract QSUB on page F5-4938 Subtract, saturating result to the 32-bit signed integer range

Saturating Double and Add QADD on page F5-4924 Doubles one value and adds a second value, saturating the doubling
and the addition to the 32-bit signed integer range

Saturating Double and Subtract QDSUB on page F5-4934 Doubles one value and subtracts the result from a second value,
saturating the doubling and the subtraction to the 32-bit signed integer
range
F2-4384 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Instruction Sets Overview
F2.4 Data-processing instructions
F2.4.6 Packing and unpacking instructions

Table F2-9 on page F2-4385 lists the packing and unpacking instructions in the T32 and A32 instruction sets.

Table F2-9 Packing and unpacking instructions

Instruction See Operation

Pack Halfword PKHBT, PKHTB on page F5-4895 Combine halfwords

Signed Extend and Add Byte SXTAB on page F5-5179 Extend 8 bits to 32 and add

Signed Extend and Add Byte 16 SXTAB16 on page F5-5181 Dual extend 8 bits to 16 and add

Signed Extend and Add Halfword SXTAH on page F5-5183 Extend 16 bits to 32 and add

Signed Extend Byte SXTB on page F5-5185 Extend 8 bits to 32

Signed Extend Byte 16 SXTB16 on page F5-5187 Dual extend 8 bits to 16

Signed Extend Halfword SXTH on page F5-5189 Extend 16 bits to 32

Unsigned Extend and Add Byte UXTAB on page F5-5264 Extend 8 bits to 32 and add

Unsigned Extend and Add Byte 16 UXTAB16 on page F5-5266 Dual extend 8 bits to 16 and add

Unsigned Extend and Add Halfword UXTAH on page F5-5268 Extend 16 bits to 32 and add

Unsigned Extend Byte UXTB on page F5-5270 Extend 8 bits to 32

Unsigned Extend Byte 16 UXTB16 on page F5-5272 Dual extend 8 bits to 16

Unsigned Extend Halfword UXTH on page F5-5274 Extend 16 bits to 32
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F2-4385
ID072021 Non-Confidential

The AArch32 Instruction Sets Overview
F2.4 Data-processing instructions
F2.4.7 Parallel addition and subtraction instructions

These instructions perform additions and subtractions on the values of two registers and write the result to a
destination register, treating the register values as sets of two halfwords or four bytes. That is, they perform SIMD
additions or subtractions on the general-purpose registers.

These instructions consist of a prefix followed by a main instruction mnemonic. The prefixes are as follows:

S Signed arithmetic modulo 28 or 216.

Q Signed saturating arithmetic.

SH Signed arithmetic, halving the results.

U Unsigned arithmetic modulo 28 or 216.

UQ Unsigned saturating arithmetic.

UH Unsigned arithmetic, halving the results.

The main instruction mnemonics are as follows:

ADD16 Adds the top halfwords of two operands to form the top halfword of the result, and the bottom
halfwords of the same two operands to form the bottom halfword of the result.

ASX Exchanges halfwords of the second operand, and then adds top halfwords and subtracts bottom
halfwords.

SAX Exchanges halfwords of the second operand, and then subtracts top halfwords and adds bottom
halfwords.

SUB16 Subtracts each halfword of the second operand from the corresponding halfword of the first operand
to form the corresponding halfword of the result.

ADD8 Adds each byte of the second operand to the corresponding byte of the first operand to form the
corresponding byte of the result.

SUB8 Subtracts each byte of the second operand from the corresponding byte of the first operand to form
the corresponding byte of the result.

The instruction set permits all 36 combinations of prefix and main instruction operand, as Table F2-10 on
page F2-4386 shows.

See also Advanced SIMD parallel addition and subtraction on page F2-4402.

Table F2-10 Parallel addition and subtraction instructions

Main instruction Signed Saturating
Signed
halving

Unsigned
Unsigned
saturating

Unsigned
halving

ADD16, add, two halfwords SADD16 QADD16 SHADD16 UADD16 UQADD16 UHADD16

ASX, add and subtract with exchange SASX QASX SHASX UASX UQASX UHASX

SAX, subtract and add with exchange SSAX QSAX SHSAX USAX UQSAX UHSAX

SUB16, subtract, two halfwords SSUB16 QSUB16 SHSUB16 USUB16 UQSUB16 UHSUB16

ADD8, add, four bytes SADD8 QADD8 SHADD8 UADD8 UQADD8 UHADD8

SUB8, subtract, four bytes SSUB8 QSUB8 SHSUB8 USUB8 UQSUB8 UHSUB8
F2-4386 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Instruction Sets Overview
F2.4 Data-processing instructions
F2.4.8 Divide instructions

In Armv8, signed and unsigned integer divide instructions are included in both the T32 instruction set and the A32
instruction set.

For descriptions of the instructions see:

• SDIV on page F5-5000.

• UDIV on page F5-5218.

For the SDIV and UDIV instructions, division by zero always returns a zero result.

The ID_ISAR0.Divide_instrs field indicates the level of support for these instructions. The field value of 0b0010
indicates they are implemented in both the T32 and A32 instruction sets.

F2.4.9 Miscellaneous data-processing instructions

Table F2-11 on page F2-4387 lists the miscellaneous data-processing instructions in the T32 and A32 instruction
sets. Immediate values in these instructions are simple binary numbers.

Table F2-11 Miscellaneous data-processing instructions

Instruction See Notes

BitField Clear BFC on page F5-4616 -

BitField Insert BFI on page F5-4618 -

Count Leading Zeros CLZ on page F5-4641 -

Move Top MOVT on page F5-4850 Moves 16-bit immediate value to top
halfword. Bottom halfword unchanged.

Reverse Bits RBIT on page F5-4944 -

Byte-Reverse Word REV on page F5-4946 -

Byte-Reverse Packed Halfword REV16 on page F5-4948 -

Byte-Reverse Signed Halfword REVSH on page F5-4950 -

Signed BitField Extract SBFX on page F5-4998 -

Select Bytes using GE flags SEL on page F5-5002 -

Unsigned BitField Extract UBFX on page F5-5214 -

Unsigned Sum of Absolute Differences USAD8 on page F5-5250 -

Unsigned Sum of Absolute Differences and Accumulate USADA8 on page F5-5252 -
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F2-4387
ID072021 Non-Confidential

The AArch32 Instruction Sets Overview
F2.5 PSTATE and banked register access instructions
F2.5 PSTATE and banked register access instructions

These instructions transfer PE state information to or from a general-purpose register.

F2.5.1 PSTATE access instructions

PSTATE holds process state information, see Process state, PSTATE on page E1-4253. In AArch32 state:

• At EL1 or higher, PSTATE is accessible using the Current Program Status Register (CPSR).

• At EL0, a subset of the CPSR is accessible as the Application Program Status Register (APSR).

• On taking an exception, the contents of the CPSR are copied to the Saved Program Status Register (SPSR)
of the mode from which the exception is taken.

The MRS and MSR instructions move the contents of the CPSR, APSR, or the SPSR of the current mode to or from a
general-purpose register, see:

• MRS on page F5-4856.

• MSR (immediate) on page F5-4866.

• MSR (register) on page F5-4868.

When executed at EL0, MRS and MSR instructions can only access the APSR.

The PSTATE Condition flags, PSTATE.{N, Z, C, V} are set by the execution of data-processing instructions, and
can control the execution of conditional instructions. However, software can set the Condition flags explicitly using
the MSR instruction, and can read the current state of the Condition flags explicitly using the MRS instruction.

In addition, at EL1 or higher, software can use the CPS instruction to change the PSTATE.M field and the
PSTATE.{A, I, F} interrupt mask bits, see CPS, CPSID, CPSIE on page F5-4657.

F2.5.2 Banked register access instructions

At EL1 or higher, the MRS (banked register) and MSR (banked register) instructions move the contents of a banked
general-purpose register, the SPSR, or the ELR_hyp, to or from a general-purpose register. See:

• MRS (Banked register) on page F5-4858.

• MSR (Banked register) on page F5-4862.
F2-4388 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Instruction Sets Overview
F2.6 Load/store instructions
F2.6 Load/store instructions

Table F2-12 on page F2-4389 summarizes the general-purpose register load/store instructions in the T32 and A32
instruction sets. Some of these instructions can also operate on the PC. See also:

• Load/store multiple instructions on page F2-4392.

• Synchronization and semaphores on page E2-4331, for more information about the Load-Exclusive and
Store-Exclusive instructions.

• Load-Acquire, Store-Release on page E2-4305, for more information about the Load-Acquire/Store-Release
and Load-Acquire Exclusive/Store-Release Exclusive instructions.

• Advanced SIMD and floating-point load/store instructions on page F2-4398.

Load/store instructions have several options for addressing memory. For more information, see Addressing modes
on page F2-4390.

F2.6.1 Loads to the PC

The LDR instruction can load a value into the PC. The value loaded is treated as an interworking address, as described
by the LoadWritePC() pseudocode function in Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

F2.6.2 Halfword and byte loads and stores

Halfword and byte stores store the least significant halfword or byte from the register, to 16 or 8 bits of memory
respectively. There is no distinction between signed and unsigned stores.

Halfword and byte loads load 16 or 8 bits from memory into the least significant halfword or byte of a register.
Unsigned loads zero-extend the loaded value to 32 bits, and signed loads sign-extend the value to 32 bits.

Table F2-12 Load/store instructions

Data type Load Store

Unprivileged Exclusive
Load-
Acquire

Store-
Release

Exclusive

Load Store Load Store
Load-
Acquire

Store-
Release

32-bit word LDR STR LDRT STRT LDREX STREX LDA STL LDAEX STLEX

16-bit halfword - STRH - STRHT - STREXH LDAH STLH LDAEXH STLEXH

16-bit unsigned
halfword

LDRH - LDRHT - LDREXH - - - - -

16-bit signed
halfword

LDRSH - LDRSHT - - - - - - -

8-bit byte - STRB - STRBT - STREXB LDAB STLB LDAEXB STLEXB

8-bit unsigned
byte

LDRB - LDRBT - LDREXB - - - - -

8-bit signed
byte

LDRSB - LDRSBT - - - - - - -

Two 32-bit
words

LDRD STRD - - - - - - - -

64-bit
doubleword

- - - - LDREXD STREXD - - LDAEXD STLEXD
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F2-4389
ID072021 Non-Confidential

The AArch32 Instruction Sets Overview
F2.6 Load/store instructions
F2.6.3 Load unprivileged and Store unprivileged

When executing at EL0, a Load unprivileged or Store unprivileged instruction operates in exactly the same way as
the corresponding ordinary load or store instruction. For example, an LDRT instruction executes in exactly the same
way as the equivalent LDR instruction. When executed at PL1, Load unprivileged and Store unprivileged instructions
behave as they would if they were executed at EL0. For example, an LDRT instruction executes in exactly the way
that the equivalent LDR instruction would execute at EL0. In particular, the instructions make unprivileged memory
accesses.

Note

As described in Security state, Exception levels, and AArch32 execution privilege on page G1-6022, execution at
PL1 describes all of the following:

• Execution at Non-secure EL1 using AArch32.

• Execution at Secure EL1 using AArch32 when EL3 is not implemented.

• Execution at Secure EL1 using AArch32 when EL3 is implemented and is using AArch64.

• Execution at Secure EL3 when EL3 is implemented and is using AArch32.

The Load unprivileged and Store unprivileged instructions are CONSTRAINED UNPREDICTABLE if executed at EL2.

For more information about execution privilege, see About access permissions on page G5-6308.

F2.6.4 Load-Exclusive and Store-Exclusive

Load-Exclusive and Store-Exclusive instructions provide shared memory synchronization. For more information,
see Synchronization and semaphores on page E2-4331.

F2.6.5 Load-Acquire and Store-Release

Load-Acquire and Store-Release instructions provide memory barriers. Load-Acquire Exclusive and Store-Release
Exclusive instructions provide memory barriers with shared memory synchronization. For more information, see
Load-Acquire, Store-Release on page E2-4305.

F2.6.6 Addressing modes

The address for a load or store is formed from two parts: a value from a base register, and an offset.

The base register can be any one of the general-purpose registers R0-R12, SP, or LR.

For loads, the base register can be the PC. This provides PC-relative addressing for position-independent code.
Instructions marked (literal) in their title in Chapter F1 About the T32 and A32 Instruction Descriptions are
PC-relative loads.

The offset takes one of three formats:

Immediate The offset is an unsigned number that can be added to or subtracted from the base register
value. Immediate offset addressing is useful for accessing data elements that are a fixed
distance from the start of the data object, such as structure fields, stack offsets, and
input/output registers.

Register The offset is a value from a general-purpose register. The value can be added to, or
subtracted from, the base register value. Register offsets are useful for accessing arrays or
blocks of data.

Scaled register The offset is a general-purpose register, shifted by an immediate value, then added to or
subtracted from the base register. This means an array index can be scaled by the size of each
array element.

The offset and base register can be used in three different ways to form the memory address. The addressing modes
are described as follows:

Offset The offset is added to or subtracted from the base register to form the memory address.
F2-4390 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Instruction Sets Overview
F2.6 Load/store instructions
Pre-indexed The offset is added to or subtracted from the base register to form the memory address. The
base register is then updated with this new address, to permit automatic indexing through an
array or memory block.

Post-indexed The value of the base register alone is used as the memory address. The offset is then added
to or subtracted from the base register. The result is stored back in the base register, to permit
automatic indexing through an array or memory block.

Note

Not every variant is available for every instruction, and the range of permitted immediate values and the options for
scaled registers vary from instruction to instruction. See Chapter F1 About the T32 and A32 Instruction Descriptions
for full details for each instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F2-4391
ID072021 Non-Confidential

The AArch32 Instruction Sets Overview
F2.7 Load/store multiple instructions
F2.7 Load/store multiple instructions

Load Multiple instructions load from memory a subset, or possibly all, of the general-purpose registers and the PC.

Store Multiple instructions store to memory a subset, or possibly all, of the general-purpose registers.

The memory locations are consecutive word-aligned words. The addresses used are obtained from a base register,
and can be either above or below the value in the base register. The base register can optionally be updated by the
total size of the data transferred.

Table F2-13 on page F2-4392 summarizes the load/store multiple instructions in the T32 and A32 instruction sets.

When executing at EL1, variants of the LDM and STM instructions load and store User mode registers. Another
system level variant of the LDM instruction performs an exception return.

F2.7.1 Loads to the PC

The LDM, LDMDA, LDMDB, LDMIB, and POP instructions can load a value into the PC. The value loaded is treated as an
interworking address, as described by the LoadWritePC() pseudocode function in Pseudocode description of
operations on the AArch32 general-purpose registers and the PC on page E1-4253.

Table F2-13 Load/store multiple instructions

Instruction See

Load Multiple, Increment After or Full Descending LDM, LDMIA, LDMFD on page F5-4722

Load Multiple, Decrement After or Full Ascending a

a. Not available in the T32 instruction set.

LDMDA, LDMFA on page F5-4730

Load Multiple, Decrement Before or Empty Ascending LDMDB, LDMEA on page F5-4732

Load Multiple, Increment Before or Empty Descending a LDMIB, LDMED on page F5-4735

Pop multiple registers off the stack b

b. This instruction is equivalent to an LDM instruction with the SP as base register, and base register updating.

POP on page F5-4911

Push multiple registers onto the stack c

c. This instruction is equivalent to an STMDB instruction with the SP as base register, and base register
updating.

PUSH on page F5-4919

Store Multiple, Increment After or Empty Ascending STM, STMIA, STMEA on page F5-5094

Store Multiple, Decrement After or Empty Descending a STMDA, STMED on page F5-5100

Store Multiple, Decrement Before or Full Descending STMDB, STMFD on page F5-5102

Store Multiple, Increment Before or Full Ascending a STMIB, STMFA on page F5-5105
F2-4392 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Instruction Sets Overview
F2.8 Miscellaneous instructions
F2.8 Miscellaneous instructions

Table F2-14 on page F2-4393 summarizes the miscellaneous instructions in the T32 and A32 instruction sets.

Note

Previous versions of the architecture defined the DBG instruction, that could provide a hint to the debug system, in
this group. In Armv8, this instruction executes as a NOP. Arm deprecates any use of the DBG instruction.

F2.8.1 The Yield instruction

In a Symmetric Multithreading (SMT) design, a thread can use the YIELD instruction to give a hint to the PE that it
is running on. The YIELD hint indicates that whatever the thread is currently doing is of low importance, and so could
yield. For example, the thread might be sitting in a spin-lock. A similar use might be in modifying the arbitration
priority of the snoop bus in a multiprocessor (MP) system. Defining such an instruction permits binary compatibility
between SMT and SMP systems.

AArch32 state defines a YIELD instruction as a specific NOP (No Operation) hint instruction.

Table F2-14 Miscellaneous instructions

Instruction See

Clear-Exclusive CLREX on page F5-4640

Data Memory Barrier DMB on page F5-4677

Data Synchronization Barrier DSB on page F5-4680

Error Synchronization Barrier ESB on page F5-4694

Instruction Synchronization Barrier ISB on page F5-4700

If-Then IT on page F5-4702

No Operation NOP on page F5-4880

Preload Data PLD, PLDW (immediate) on page F5-4898

PLD (literal) on page F5-4901

PLD, PLDW (register) on page F5-4903

Preload Instruction PLI (immediate, literal) on page F5-4906

PLI (register) on page F5-4909

Speculation Barrier SB on page F5-4987

Set Endianness SETEND on page F5-5004a

a. Arm deprecates any use of the SETEND instruction.

Set Privileged Access Never SETPAN on page F5-5005

Send Event SEV on page F5-5006

Send Event Local SEVL on page F5-5008

Wait For Event WFE on page F5-5276

Wait For Interrupt WFI on page F5-5278

Yield YIELD on page F5-5280b

b. See also The Yield instruction on page F2-4393.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F2-4393
ID072021 Non-Confidential

The AArch32 Instruction Sets Overview
F2.8 Miscellaneous instructions
The YIELD instruction has no effect in a single-threaded system, but developers of such systems can use the
instruction to flag its intended use on migration to a multiprocessor or multithreading system. Operating systems
can use YIELD in places where a yield hint is wanted, knowing that it will be treated as a NOP if there is no
implementation benefit.
F2-4394 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Instruction Sets Overview
F2.9 Exception-generating and exception-handling instructions
F2.9 Exception-generating and exception-handling instructions

The following instructions are intended specifically to cause a synchronous exception to occur:

• The SVC instruction generates a Supervisor Call exception. For more information, see Supervisor Call (SVC)
exception on page G1-6082.

• The Breakpoint instruction BKPT provides software breakpoints. For more information, see Breakpoint
Instruction exceptions on page G2-6167.

• In an implementation that includes EL3 the SMC instruction generates a Secure Monitor Call exception. For
more information, see Secure Monitor Call (SMC) exception on page G1-6083.

• In an implementation that includes EL2 the HVC instruction generates a Hypervisor Call exception. For more
information, see Hypervisor Call (HVC) exception on page G1-6084.

Debug state on page F2-4396 summarizes the Debug state instructions.

For an exception taken to an EL1 mode:

• The system level variants of the SUBS and LDM instructions can perform a return from an exception.

Note

The variants of SUBS include MOVS. See the references to Subtract (exception return) on page F2-4395, Move
(exception return) on page F2-4395, and Load Multiple (exception return) on page F2-4395 in Table F2-15
on page F2-4395 for more information.

• The SRS instruction can be used near the start of the handler, to store return information. The RFE instruction
can then perform a return from the exception using the stored return information.

In an implementation that includes EL2, the ERET instruction performs a return from an exception taken to Hyp
mode.

For more information, see Exception return to an Exception level using AArch32 on page G1-6065.

Table F2-15 on page F2-4395 summarizes the instructions, in the T32 and A32 instruction sets, for generating or
handling an exception. Except for BKPT and SVC, these are system level instructions.

Table F2-15 Exception-generating and exception-handling instructions

Instruction See

Supervisor Call SVC on page F5-5177

Breakpoint BKPT on page F5-4629

Secure Monitor Call SMC on page F5-5022

Return From Exception RFE, RFEDA, RFEDB, RFEIA, RFEIB on page F5-4952

Subtract (exception return)a

a. The A32 instruction set includes other instruction forms that can be used for an exception
return, that have previously been described as variants of SUBS PC, LR. Arm deprecates any use
of these instruction forms.

SUB, SUBS (immediate) on page F5-5161a

Move (exception return)a MOV, MOVS (register) on page F5-4841a

Hypervisor Call HVC on page F5-4698

Exception Return ERET on page F5-4692

Load Multiple (exception return) LDM (exception return) on page F5-4726

Store Return State SRS, SRSDA, SRSDB, SRSIA, SRSIB on page F5-5058
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F2-4395
ID072021 Non-Confidential

The AArch32 Instruction Sets Overview
F2.9 Exception-generating and exception-handling instructions
F2.9.1 Debug state

Table F2-16 on page F2-4396 shows the Debug state instructions that are implemented in the T32 instruction set:

Table F2-16 T32 Debug state instructions

Mnemo
nic

Instruction See Note

DCPSn Debug switch to ELn DCPS1 on page F5-4671
DCPS2 on page F5-4673
DCPS3 on page F5-4675

-

ERET Debug restore PE state (DRPS) ERET on page F5-4692 When executed in Debug state, the T1 encoding
of ERET performs the DRPS operation
F2-4396 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Instruction Sets Overview
F2.10 System register access instructions
F2.10 System register access instructions

The System register encoding space is indexed using the parameters {coproc, opc1, CRn, CRm, opc2}, see The AArch32
System register interface on page G1-6109. This encoding space provides System registers and System instructions.
In Armv8, the only permitted values of coproc are 0b1110 and 0b1111, and the following instructions give access to
this encoding space:

• Instructions that transfer data between general-purpose registers and System registers. See:

— MCR on page F5-4829.

— MCRR on page F5-4831.

— MRC on page F5-4852.

— MRRC on page F5-4854.

• Instructions that load or store from memory to a System register. See:

— LDC (immediate) on page F5-4718.

— LDC (literal) on page F5-4720.

— STC on page F5-5074.

Note

The System register encoding space with coproc==0b101x is redefined to provide some of the Advanced SIMD and
floating-point functionality. That is, to:

• Initiate a floating-point data-processing operation, see Floating-point data-processing instructions on
page F2-4412.

• Transfer data between general-purpose registers and the Advanced SIMD and floating-point registers, see
Advanced SIMD and floating-point register transfer instructions on page F2-4400.

• Load or store data to the Advanced SIMD and floating-point registers, see Advanced SIMD and floating-point
load/store instructions on page F2-4398.

System register access instructions are part of the instruction stream executed by the PE, and therefore any System
register access instruction that cannot be executed by the implementation causes an Undefined Instruction
exception. In Armv8-A and Armv8-R, the instruction encodings in the System register access instruction encoding
space are unallocated, and generate Undefined Instruction exceptions, except for:

• The instructions summarized in this section that access the coproc==0b111x encoding space.

• The instructions in the coproc==0b101x encoding space that are redefined to provide Advanced SIMD and
floating-point functionality, as summarized in the Note in this section.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F2-4397
ID072021 Non-Confidential

The AArch32 Instruction Sets Overview
F2.11 Advanced SIMD and floating-point load/store instructions
F2.11 Advanced SIMD and floating-point load/store instructions

Table F2-17 on page F2-4398 summarizes the SIMD and floating-point register file load/store instructions in the
Advanced SIMD and floating-point instruction sets.

Advanced SIMD also provides instructions for loading and storing multiple elements, or structures of elements, see
Element and structure load/store instructions on page F2-4398.

F2.11.1 Element and structure load/store instructions

Table F2-18 on page F2-4398 shows the element and structure load/store instructions available in the Advanced
SIMD instruction set. Loading and storing structures of more than one element automatically de-interleaves or
interleaves the elements, see Figure F2-1 on page F2-4399 for an example of de-interleaving. Interleaving is the
inverse process.

Table F2-17 SIMD and floating-point register file load/store instructions

Instruction See Operation

Vector Load Multiple VLDM, VLDMDB, VLDMIA on page F6-5593 Load 1-16 consecutive 64-bit registers, Advanced SIMD
and floating-point.

Load 1-16 consecutive 32-bit registers, floating-point only.

Vector Load Register VLDR (immediate) on page F6-5598

VLDR (literal) on page F6-5601

Load one 64-bit register, Advanced SIMD and
floating-point.

Load one 32-bit register, floating-point only.

Vector Store Multiple VSTM, VSTMDB, VSTMIA on page F6-5956 Store 1-16 consecutive 64-bit registers, Advanced SIMD
and floating-point.

Store 1-16 consecutive 32-bit registers, floating-point only.

Vector Store Register VSTR on page F6-5961 Store one 64-bit register, Advanced SIMD and
floating-point.

Store one 32-bit register, floating-point only.

Table F2-18 Element and structure load/store instructions

Instruction See

Load single element

Multiple elements VLD1 (multiple single elements) on page F6-5548

To one lane VLD1 (single element to one lane) on page F6-5540

To all lanes VLD1 (single element to all lanes) on page F6-5545

Load 2-element structure

Multiple structures VLD2 (multiple 2-element structures) on page F6-5564

To one lane VLD2 (single 2-element structure to one lane) on page F6-5555

To all lanes VLD2 (single 2-element structure to all lanes) on page F6-5561

Load 3-element structure

Multiple structures VLD3 (multiple 3-element structures) on page F6-5578

To one lane VLD3 (single 3-element structure to one lane) on page F6-5569

To all lanes VLD3 (single 3-element structure to all lanes) on page F6-5575
F2-4398 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Instruction Sets Overview
F2.11 Advanced SIMD and floating-point load/store instructions
Figure F2-1 on page F2-4399 shows the de-interleaving of a VLD3.16 (multiple 3-element structures) instruction:

Figure F2-1 De-interleaving an array of 3-element structures

Figure F2-1 on page F2-4399 shows the VLD3.16 instruction operating to three 64-bit registers that comprise four
16-bit elements:

• Different instructions in this group would produce similar figures, but operate on different numbers of
registers. For example, VLD4 and VST4 instructions operate on four registers.

• Different element sizes would produce similar figures but with 8-bit or 32-bit elements.

• These instructions operate only on doubleword (64-bit) registers.

Load 4-element structure

Multiple structures VLD4 (multiple 4-element structures) on page F6-5590

To one lane VLD4 (single 4-element structure to one lane) on page F6-5581

To all lanes VLD4 (single 4-element structure to all lanes) on page F6-5587

Store single element

Multiple elements VST1 (multiple single elements) on page F6-5919

From one lane VST1 (single element from one lane) on page F6-5914

Store 2-element structure

Multiple structures VST2 (multiple 2-element structures) on page F6-5932

From one lane VST2 (single 2-element structure from one lane) on page F6-5926

Store 3-element structure

Multiple structures VST3 (multiple 3-element structures) on page F6-5943

From one lane VST3 (single 3-element structure from one lane) on page F6-5937

Store 4-element structure

Multiple structures VST4 (multiple 4-element structures) on page F6-5953

From one lane VST4 (single 4-element structure from one lane) on page F6-5946

Table F2-18 Element and structure load/store instructions (continued)

Instruction See

A[0].x
A[0].y
A[0].z
A[1].x
A[1].y
A[1].z
A[2].x
A[2].y
A[2].z
A[3].x
A[3].y
A[3].z

Memory

Z3 Z2 Z1 Z0 D2
Y3 Y1 D1

X3 X2 X1 D0
Y2 Y0

X0

Registers

A is a packed array of
3-element structures.
Each element is a 16-bit
halfword.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F2-4399
ID072021 Non-Confidential

The AArch32 Instruction Sets Overview
F2.12 Advanced SIMD and floating-point register transfer instructions
F2.12 Advanced SIMD and floating-point register transfer instructions

Table F2-19 on page F2-4400 summarizes the SIMD and floating-point register file transfer instructions in the
Advanced SIMD and floating-point instruction sets. These instructions transfer data between the general-purpose
registers and the registers in the SIMD and floating-point register file.

Advanced SIMD vectors, and single-precision and double-precision floating-point registers, are all views of the
same register file. For details, see The SIMD and floating-point register file on page E1-4260.

Table F2-19 SIMD and floating-point register file transfer instructions

Instruction See

Copy element from general-purpose register to every element of
an Advanced SIMD vector

VDUP (general-purpose register) on page F6-5489

Copy byte, halfword, or word from general-purpose register to a
register in the SIMD and floating-point register file

VMOV (general-purpose register to scalar) on page F6-5669

Copy byte, halfword, or word from a register in the SIMD and
floating-point register file to a general-purpose register

VMOV (scalar to general-purpose register) on page F6-5673

Copy from half-precision floating-point register to
general-purpose register, or from general-purpose register to
half-precision floating-point register

Only supported if FEAT_FP16 is implemented

VMOV (between general-purpose register and half-precision) on
page F6-5656

Copy from single-precision floating-point register to
general-purpose register, or from general-purpose register to
single-precision floating-point register

VMOV (between general-purpose register and single-precision)
on page F6-5671

Copy two words from general-purpose registers to consecutive
single-precision floating-point registers, or from consecutive
single-precision floating-point registers to general-purpose
registers

VMOV (between two general-purpose registers and two
single-precision registers) on page F6-5675

Copy two words from general-purpose registers to a doubleword
register in the SIMD and floating-point register file, or from a
doubleword register in the SIMD and floating-point register file to
general-purpose registers

VMOV (between two general-purpose registers and a doubleword
floating-point register) on page F6-5654

Copy from an Advanced SIMD and floating-point System
Register to a general-purpose register

VMRS on page F6-5684

Copy from a general-purpose register to an Advanced SIMD and
floating-point System Register

VMSR on page F6-5687
F2-4400 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
F2.13 Advanced SIMD data-processing instructions

Advanced SIMD data-processing instructions process registers containing vectors of elements of the same type
packed together, enabling the same operation to be performed on multiple items in parallel.

Instructions operate on vectors held in 64-bit or 128-bit registers. Figure F2-2 on page F2-4401 shows an operation
on two 64-bit operand vectors, generating a 64-bit vector result.

Note

Figure F2-2 on page F2-4401 and other similar figures show 64-bit vectors that consist of four 16-bit elements, and
128-bit vectors that consist of four 32-bit elements. Other element sizes produce similar figures, but with 1, 2, 8, or
16 operations performed in parallel instead of 4.

Figure F2-2 Advanced SIMD instruction operating on 64-bit registers

Many Advanced SIMD instructions have variants that produce vectors of elements double the size of the inputs. In
this case, the number of elements in the result vector is the same as the number of elements in the operand vectors,
but each element, and the whole vector, is double the size.

Figure F2-3 on page F2-4401 shows an example of an Advanced SIMD instruction operating on 64-bit registers,
and generating a 128-bit result.

Figure F2-3 Advanced SIMD instruction producing wider result

There are also Advanced SIMD instructions that have variants that produce vectors containing elements half the
size of the inputs. Figure F2-4 on page F2-4402 shows an example of an Advanced SIMD instruction operating on
one 128-bit register, and generating a 64-bit result.

Op Op Op Op

Dd

Dm

Dn

Op Op Op Op

Qd

Dm

Dn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F2-4401
ID072021 Non-Confidential

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
Figure F2-4 Advanced SIMD instruction producing narrower result

Some Advanced SIMD instructions do not conform to these standard patterns. Their operation patterns are
described in the individual instruction descriptions.

Advanced SIMD instructions that perform floating-point arithmetic use the Arm standard floating-point arithmetic
defined in Advanced SIMD and floating-point support on page A1-52.

The following sections summarize the Advanced SIMD data-processing instructions:

• Advanced SIMD parallel addition and subtraction on page F2-4402.

• Bitwise Advanced SIMD data-processing instructions on page F2-4403.

• Advanced SIMD comparison instructions on page F2-4404.

• Advanced SIMD shift instructions on page F2-4405.

• Advanced SIMD multiply instructions on page F2-4406.

• Advanced SIMD dot product instructions on page F2-4407.

• Miscellaneous Advanced SIMD data-processing instructions on page F2-4409.

• Advanced SIMD BFloat16 instructions on page F2-4408.

• Advanced SIMD matrix multiply instructions on page F2-4408.

• The Cryptographic Extension in AArch32 state on page F2-4410.

F2.13.1 Advanced SIMD parallel addition and subtraction

Table F2-20 on page F2-4402 shows the Advanced SIMD parallel add and subtract instructions.

Op Op Op Op

Qn

Dd

Table F2-20 Advanced SIMD parallel add and subtract instructions

Instruction See

Vector Add VADD (integer) on page F6-5351

VADD (floating-point) on page F6-5347

Vector Add and Narrow, returning High Half VADDHN on page F6-5353

Vector Add Long VADDL on page F6-5355

Vector Add Wide VADDW on page F6-5357

Vector Halving Add VHADD on page F6-5530

Vector Halving Subtract VHSUB on page F6-5533

Vector Pairwise Add and Accumulate Long VPADAL on page F6-5734

Vector Pairwise Add VPADD (integer) on page F6-5739

VPADD (floating-point) on page F6-5737

Vector Pairwise Add Long VPADDL on page F6-5741

Vector Rounding Add and Narrow, returning High Half VRADDHN on page F6-5810
F2-4402 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
F2.13.2 Bitwise Advanced SIMD data-processing instructions

Table F2-21 on page F2-4403 shows bitwise Advanced SIMD data-processing instructions. These operate on the
doubleword (64-bit) or quadword (128-bit) registers in the SIMD and floating-point register file, and there is no
division into vector elements.

Vector Rounding Halving Add VRHADD on page F6-5825

Vector Rounding Subtract and Narrow, returning High Half VRSUBHN on page F6-5873

Vector Saturating Add VQADD on page F6-5758

Vector Saturating Subtract VQSUB on page F6-5808

Vector Subtract VSUB (integer) on page F6-5968

VSUB (floating-point) on page F6-5964

Vector Subtract and Narrow, returning High Half VSUBHN on page F6-5970

Vector Subtract Long VSUBL on page F6-5972

Vector Subtract Wide VSUBW on page F6-5974

Table F2-20 Advanced SIMD parallel add and subtract instructions (continued)

Instruction See

Table F2-21 Bitwise Advanced SIMD data-processing instructions

Instruction See

Vector Bitwise AND VAND (register) on page F6-5362

Vector Bitwise Bit Clear (AND complement) VBIC (immediate) on page F6-5364

VBIC (register) on page F6-5367

Vector Bitwise Exclusive OR VEOR on page F6-5493

Vector Bitwise Insert if False VBIF on page F6-5369

Vector Bitwise Insert if True VBIT on page F6-5371

Vector Bitwise Move VMOV (immediate) on page F6-5658

VMOV (register) on page F6-5665

Vector Bitwise NOT VMVN (immediate) on page F6-5705

VMVN (register) on page F6-5709

Vector Bitwise OR VORR (immediate) on page F6-5729

VORR (register) on page F6-5732

Vector Bitwise OR NOT VORN (register) on page F6-5727

Vector Bitwise Select VBSL on page F6-5373
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F2-4403
ID072021 Non-Confidential

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
F2.13.3 Advanced SIMD comparison instructions

Table F2-22 on page F2-4404 shows Advanced SIMD comparison instructions.

Table F2-22 Advanced SIMD comparison instructions

Instruction See

Vector Absolute Compare Greater Than or Equal VACGE on page F6-5339

Vector Absolute Compare Greater Than VACGT on page F6-5343

Vector Compare Equal VCEQ (register) on page F6-5380

Vector Compare Equal to Zero VCEQ (immediate #0) on page F6-5378

Vector Compare Greater Than or Equal VCGE (register) on page F6-5386

Vector Compare Greater Than or Equal to Zero VCGE (immediate #0) on page F6-5383

Vector Compare Greater Than VCGT (register) on page F6-5393

Vector Compare Greater Than Zero VCGT (immediate #0) on page F6-5390

Vector Compare Less Than or Equal to Zero VCLE (immediate #0) on page F6-5397

Vector Compare Less Than Zero VCLT (immediate #0) on page F6-5405

Vector Test Bits VTST on page F6-5986
F2-4404 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
F2.13.4 Advanced SIMD shift instructions

Table F2-23 on page F2-4405 lists the shift instructions in the Advanced SIMD instruction set.

Table F2-23 Advanced SIMD shift instructions

Instruction See

Vector Saturating Rounding Shift Left VQRSHL on page F6-5787

Vector Saturating Rounding Shift Right and Narrow VQRSHRN, VQRSHRUN on page F6-5791

Vector Saturating Shift Left VQSHL (register) on page F6-5799

VQSHL, VQSHLU (immediate) on page F6-5796

Vector Saturating Shift Right and Narrow VQSHRN, VQSHRUN on page F6-5803

Vector Rounding Shift Left VRSHL on page F6-5854

Vector Rounding Shift Right VRSHR on page F6-5857

Vector Rounding Shift Right and Accumulate VRSRA on page F6-5870

Vector Rounding Shift Right and Narrow VRSHRN on page F6-5862

Vector Shift Left VSHL (immediate) on page F6-5883

VSHL (register) on page F6-5886

Vector Shift Left Long VSHLL on page F6-5889

Vector Shift Right VSHR on page F6-5892

Vector Shift Right and Narrow VSHRN on page F6-5897

Vector Shift Left and Insert VSLI on page F6-5901

Vector Shift Right and Accumulate VSRA on page F6-5908

Vector Shift Right and Insert VSRI on page F6-5911
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F2-4405
ID072021 Non-Confidential

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
F2.13.5 Advanced SIMD multiply instructions

Table F2-24 on page F2-4406 shows the Advanced SIMD multiply instructions.

Advanced SIMD multiply instructions can operate on vectors of:

• 8-bit, 16-bit, or 32-bit unsigned integers.

• 8-bit, 16-bit, or 32-bit signed integers.

• 8-bit polynomials over {0, 1}. VMUL and VMULL are the only instructions that operate on polynomials. VMULL
produces a 16-bit polynomial over {0, 1}.

• Single-precision (32-bit) or half-precision (16-bit) floating-point numbers.

Table F2-24 Advanced SIMD multiply instructions

Instruction See

Vector Multiply Accumulate VMLA (integer) on page F6-5628

VMLA (floating-point) on page F6-5624

VMLA (by scalar) on page F6-5631

Vector Multiply Accumulate Long VMLAL (integer) on page F6-5634

VMLAL (by scalar) on page F6-5636

Vector Multiply Subtract VMLS (integer) on page F6-5642

VMLS (floating-point) on page F6-5638

VMLS (by scalar) on page F6-5645

Vector Multiply Subtract Long VMLSL (integer) on page F6-5648

VMLSL (by scalar) on page F6-5650

Vector Multiply VMUL (integer and polynomial) on page F6-5694

VMUL (floating-point) on page F6-5690

VMUL (by scalar) on page F6-5697

Vector Multiply Long VMULL (integer and polynomial) on
page F6-5700

VMULL (by scalar) on page F6-5703

Vector Fused Multiply Accumulate VFMA on page F6-5500

Vector Floating-Point Multiply-Add Long VFMAL (vector) on page F6-5508

VFMAL (by scalar) on page F6-5511

Vector Fused Multiply Subtract VFMS on page F6-5514

Vector Floating-Point Multiply-Subtract Long VFMSL (vector) on page F6-5518

VFMSL (by scalar) on page F6-5521

Vector Saturating Doubling Multiply Accumulate Long VQDMLAL on page F6-5760

Vector Saturating Doubling Multiply Subtract Long VQDMLSL on page F6-5763

Vector Saturating Doubling Multiply Returning High Half VQDMULH on page F6-5766

Vector Saturating Doubling Multiply Long VQDMULL on page F6-5769

Vector Saturating Rounding Doubling Multiply Accumulate Returning High
Half

VQRDMLAH on page F6-5776

Vector Saturating Rounding Doubling Multiply Subtract Returning High Half VQRDMLSH on page F6-5780

Vector Saturating Rounding Doubling Multiply Returning High Half VQRDMULH on page F6-5784
F2-4406 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
They can also act on one vector and one scalar.

Long instructions have doubleword (64-bit) operands, and produce quadword (128-bit) results. Other Advanced
SIMD multiply instructions can have either doubleword or quadword operands, and produce results of the same
size.

Floating-point multiply instructions can operate on:

• Half-precision (16-bit) floating-point numbers.

• Single-precision (32-bit) floating-point numbers.

• Double-precision (64-bit) floating-point numbers.

F2.13.6 Advanced SIMD dot product instructions

FEAT_DotProd provides SIMD instructions that perform the dot product of the four 8-bit subelements of the 32-bit
elements of one vector with the four 8-bit subelements of a second vector. It provides two forms of the instructions,
each with signed and unsigned versions:

Vector form The dot product is calculated for each element of the first vector with the corresponding element of
the second vector.

Indexed form The dot product is calculated for each element of the first vector with the element of the second
vector that is indicated by the index argument to the instruction.

Note

That is, a single element from the second vector is used, and the dot product is calculated between
each element of the first vector and this single element from the second vector.

Table F2-25 on page F2-4407 shows the Advanced SIMD dot product instructions.

F2.13.7 Advanced SIMD complex number arithmetic instructions

FEAT_FCMA provides AArch32 Advanced SIMD instructions that perform arithmetic on complex numbers held
in element pairs in vector registers, where the less significant element of the pair contains the real component and
the more significant element contains the imaginary component.

These instructions provide single-precision versions. If FEAT_FP16 is implemented they also provide
half-precision versions, otherwise the half-precision encodings are UNDEFINED.

Table F2-25 Advanced SIMD dot product instructions

Mnemonic Instruction See

VSDOT Signed dot product (vector form) VSDOT (vector) on page F6-5877

VUDOT Unsigned dot product (vector form) VUDOT (vector) on page F6-5990

VSDOT Signed dot product (indexed form) VSDOT (by element) on page F6-5875

VSUDOT Mixed sign integer dot product by indexed quadrupleta

a. This instruction is only supported when FEAT_AA32I8MM is implemented.

VSUDOT (by element) on page F6-5976

VUDOT Unsigned dot product (indexed form) VUDOT (by element) on page F6-5988

VUSDOT Mixed sign integer dot product (vector format)a VUSDOT (vector) on page F6-5996

Mixed sign integer dot product by indexed quadrupleta VUSDOT (by element) on page F6-5994
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F2-4407
ID072021 Non-Confidential

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
Table F2-26 on page F2-4408 shows the FEAT_FCMA AArch32 Advanced SIMD instructions.

A pair of VCMLA instructions can be used to perform a complex number multiplication. In Complex multiplication on
page K10-8512, this is demonstrated for the similar AArch64 instruction FCMLA. The usage of VCMLA in this manner
is identical.

F2.13.8 Advanced SIMD BFloat16 instructions

When FEAT_AA32BF16 is implemented, BFloat16 instructions are available in AArch32 state.

Table F2-27 on page F2-4408 shows the Advanced SIMD BFloat16 instructions.

F2.13.9 Advanced SIMD matrix multiply instructions

When FEAT_AA32I8MM is implemented, these instructions are available in AArch32 state. They include integer
and mixed sign dot product instructions.

The matrix multiply-accumulate instructions delimit source and destination vectors into segments. Within each
segment:

• The first source vector matrix is organized in row-by-row order.

• The second source vector matrix elements are organized in a column-by-column order.

• The destination vector matrix is organized in row-by-row order.

One matrix multiplication is performed per segment.

Table F2-28 on page F2-4408 shows the Advanced SIMD matrix multiply instructions.

Table F2-26 Advanced SIMD complex number arithmetic instructions

Mnemonic Instruction See

VCADD Floating-point complex add VCADD on page F6-5375

VCMLA Floating-point complex multiply accumulate (vector form) VCMLA on page F6-5413

VCMLA Floating-point complex multiply accumulate (indexed form) VCMLA (by element) on page F6-5416

Table F2-27 BFloat16 Advanced SIMD instructions

Mnemonic Instruction See

VDOT BFloat16 floating-point vector dot product (vector and by
scalar formats)

VDOT (vector) on page F6-5485
VDOT (by element) on page F6-5487

VMMLA BFloat16 floating-point matrix multiply-accumulate VMMLA on page F6-5652

VFMAB, VFMAT BFloat16 floating-point widening multiply-add long
(vector and by scalar formats)

VFMAB, VFMAT (BFloat16, vector) on page F6-5504
VFMAB, VFMAT (BFloat16, by scalar) on page F6-5506

VCVT BFloat16 convert from single-precision to BF16 format VCVT (from single-precision to BFloat16, Advanced
SIMD) on page F6-5429

Table F2-28 Matrix multiply Advanced SIMD instructions

Mnemonic Instruction See

VSMMLA Widening 8-bit signed integer matrix multiply-accumulate into 2x2 matrix VSMMLA on page F6-5904

VUMMLA Widening 8-bit unsigned integer matrix multiply-accumulate into 2x2 matrix VUMMLA on page F6-5992

VUSMMLA Widening 8-bit mixed sign integer matrix multiply-accumulate into 2x2 matrix VUSMMLA on page F6-5998
F2-4408 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
F2.13.10 Miscellaneous Advanced SIMD data-processing instructions

Table F2-29 on page F2-4409 shows miscellaneous Advanced SIMD data-processing instructions.

Table F2-29 Miscellaneous Advanced SIMD data-processing instructions

Instruction See

Vector Absolute Difference and Accumulate VABA on page F6-5323

Vector Absolute Difference and Accumulate Long VABAL on page F6-5326

Vector Absolute Difference VABD (integer) on page F6-5330

VABD (floating-point) on page F6-5328

Vector Absolute Difference Long VABDL (integer) on page F6-5333

Vector Absolute VABS on page F6-5335

Vector Convert between floating-point and fixed
point

VCVT (between floating-point and fixed-point, Advanced SIMD) on
page F6-5445

Vector Convert between floating-point and integer VCVT (between floating-point and integer, Advanced SIMD) on page F6-5435

Vector Convert between half-precision and
single-precision

VCVT (between half-precision and single-precision, Advanced SIMD) on
page F6-5433

Vector Count Leading Sign Bits VCLS on page F6-5403

Vector Count Leading Zeros VCLZ on page F6-5411

Vector Count Set Bits VCNT on page F6-5427

Vector Duplicate scalar VDUP (scalar) on page F6-5491

Vector Extract VEXT (byte elements) on page F6-5495

Vector move Insertion VINS on page F6-5536

Vector Move and Narrow VMOVN on page F6-5680

Vector Move Long VMOVL on page F6-5678

Vector Move extraction VMOVX on page F6-5682

Vector Maximum VMAX (integer) on page F6-5607

VMAX (floating-point) on page F6-5604

Vector Minimum VMIN (integer) on page F6-5617

VMIN (floating-point) on page F6-5614

Vector Negate VNEG on page F6-5711

Vector Pairwise Maximum VPMAX (integer) on page F6-5746

VPMAX (floating-point) on page F6-5744

Vector Pairwise Minimum VPMIN (integer) on page F6-5750

VPMIN (floating-point) on page F6-5748

Vector Reciprocal Estimate VRECPE on page F6-5812

Vector Reciprocal Step VRECPS on page F6-5814

Vector Reciprocal Square Root Estimate VRSQRTE on page F6-5866
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F2-4409
ID072021 Non-Confidential

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
F2.13.11 The Cryptographic Extension in AArch32 state

The instructions provided by the optional Cryptographic Extension use the Advanced SIMD and floating-point
register file. For more information about the functions they provide see:

• Announcing the Advanced Encryption Standard.

• The Galois/Counter Mode of Operation.

• Announcing the Secure Hash Standard.

Table F2-30 on page F2-4410 shows the AArch32 Cryptographic Extension instructions.

Vector Reciprocal Square Root Step VRSQRTS on page F6-5868

Vector Reverse in halfwords VREV16 on page F6-5816

Vector Reverse in words VREV32 on page F6-5819

Vector Reverse in doublewords VREV64 on page F6-5822

Vector Saturating Absolute VQABS on page F6-5756

Vector Saturating Move and Narrow VQMOVN, VQMOVUN on page F6-5772

Vector Saturating Negate VQNEG on page F6-5774

Vector Swap VSWP on page F6-5978

Vector Table Lookup VTBL, VTBX on page F6-5980

Vector Transpose VTRN on page F6-5983

Vector Unzip VUZP on page F6-6000

Vector Zip VZIP on page F6-6004

Table F2-29 Miscellaneous Advanced SIMD data-processing instructions (continued)

Instruction See

Table F2-30 AArch32 Cryptographic Extension instructions

Mnemonic Instruction See

AESD AES single round decryption AESD on page F6-5289

AESE AES single round encryption AESE on page F6-5291

AESIMC AES inverse mix columns AESIMC on page F6-5293

AESMC AES mix columns AESMC on page F6-5295

VMULL Polynomial multiply long VMULL (integer and polynomial) on page F6-5700a

SHA1C SHA1 hash update (choose) SHA1C on page F6-5303

SHA1H SHA1 fixed rotate SHA1H on page F6-5305

SHA1M SHA1 hash update (majority) SHA1M on page F6-5307

SHA1P SHA1 hash update (parity) SHA1P on page F6-5309

SHA1SU0 SHA1 schedule update 0 SHA1SU0 on page F6-5311

SHA1SU1 SHA1 schedule update 1 SHA1SU1 on page F6-5313

SHA256H SHA256 hash update (part 1) SHA256H on page F6-5315
F2-4410 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
See The Armv8 Cryptographic Extension on page A2-72 for information about the permitted implementation
options for the Cryptographic Extension.

SHA256H2 SHA256 hash update (part 2) SHA256H2 on page F6-5317

SHA256SU0 SHA256 schedule update 0 SHA256SU0 on page F6-5319

SHA256SU1 SHA256 schedule update 1 SHA256SU1 on page F6-5321

a. The Cryptographic Extension adds the variant of the instruction that operates on two 64-bit polynomials.

Table F2-30 AArch32 Cryptographic Extension instructions (continued)

Mnemonic Instruction See
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F2-4411
ID072021 Non-Confidential

The AArch32 Instruction Sets Overview
F2.14 Floating-point data-processing instructions
F2.14 Floating-point data-processing instructions

Table F2-31 on page F2-4412 summarizes the data-processing instructions in the floating-point instruction set. In
this table, floating-point register means a register in the SIMD and floating-point register file. The BFloat16
floating-point instructions are provided by FEAT_AA32BF16.

For details of the floating-point arithmetic used by floating-point instructions, see Advanced SIMD and
floating-point support on page A1-52.

Table F2-31 Floating-point data-processing instructions

Instruction See

BFloat16 convert from single-precision to BF16 format writing to
bottom half of single-precision register

VCVTB (BFloat16) on page F6-5459

BFloat16 convert from single-precision to BF16 format writing to top
half of single-precision register

VCVTT (BFloat16) on page F6-5480

Convert between double-precision and single-precision VCVT (between double-precision and single-precision) on
page F6-5431

Convert between floating-point and fixed-point VCVT (between floating-point and fixed-point,
floating-point) on page F6-5448

Convert between half-precision and single-precision, writing to bottom
half of single-precision register

VCVTB on page F6-5456

Convert between half-precision and single-precision, writing to top half
of single-precision register

VCVTT on page F6-5477

Convert from floating-point to integer VCVT (floating-point to integer, floating-point) on
page F6-5438

Convert from floating-point to integer using FPSCR rounding mode VCVTR on page F6-5473

Convert from integer to floating-point VCVT (integer to floating-point, floating-point) on
page F6-5442

Floating-point Javascript convert to signed fixed-point, rounding toward
zero

VJCVT on page F6-5538

Copy from one floating-point register to another VMOV (register) on page F6-5665

Divide VDIV on page F6-5482

Move immediate value to a floating-point register VMOV (immediate) on page F6-5658

Square Root VSQRT on page F6-5906

Vector Absolute value VABS on page F6-5335

Vector Add VADD (floating-point) on page F6-5347

Vector Compare with exceptions disabled VCMPE on page F6-5423

Vector Compare with exceptions enabled VCMP on page F6-5419

Vector Fused Multiply Accumulate VFMA on page F6-5500

Vector Fused Multiply Subtract VFMS on page F6-5514

Vector Fused Negate Multiply Accumulate VFNMA on page F6-5524

Vector Fused Negate Multiply Subtract VFNMS on page F6-5527
F2-4412 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Instruction Sets Overview
F2.14 Floating-point data-processing instructions
Vector Multiply VMUL (floating-point) on page F6-5690

Vector Multiply Accumulate VMLA (floating-point) on page F6-5624

Vector Multiply Subtract VMLS (floating-point) on page F6-5638

Vector Negate Multiply VNMUL on page F6-5721

Vector Negate Multiply Accumulate VNMLA on page F6-5715

Vector Negate Multiply Subtract VNMLS on page F6-5718

Vector Negate, by inverting the sign bit VNEG on page F6-5711

Vector Subtract VSUB (floating-point) on page F6-5964

Table F2-31 Floating-point data-processing instructions (continued)

Instruction See
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F2-4413
ID072021 Non-Confidential

The AArch32 Instruction Sets Overview
F2.14 Floating-point data-processing instructions
F2-4414 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter F3
T32 Instruction Set Encoding

This chapter describes the encoding of the T32 instruction set. It contains the following sections:

• T32 instruction set encoding on page F3-4416.

• About the T32 Advanced SIMD and floating-point instructions and their encoding on page F3-4491.

In this chapter:

• In the decode tables, an entry of - for a field value means the value of the field does not affect the decoding.

• In the decode diagrams, a shaded field indicates that the bits in that field are not used in that level of decode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4415
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1 T32 instruction set encoding

The T32 instruction stream is a sequence of halfword-aligned halfwords. Each T32 instruction is either a single
16-bit halfword in that stream, or a 32-bit instruction consisting of two consecutive halfwords in that stream.

If the value of bits[15:11] of the halfword being decoded is one of the following, the halfword is the first halfword
of a 32-bit instruction:

• 0b11101.

• 0b11110.

• 0b11111.

Otherwise, the halfword is a 16-bit instruction.

The T32 instruction encoding is:

F3.1.1 16-bit

This section describes the encoding of the 16-bit group. The encodings in this section are decoded from T32
instruction set encoding on page F3-4416.

This decode also imposes the constraint:

• op0<5:3> != 111.

Table F3-1 Main encoding table for the T32 instruction set

Decode fields
Decode group or instruction page

op0 op1

 != 111 - 16-bit on page F3-4416

 111 00 B - T2 variant

 111 != 00 32-bit on page F3-4427

op0 op1
15 13 12 11 10 00 15

Table F3-2 Encoding table for the 16-bit group

Decode fields
Decode group or instruction page

op0

 00xxxx Shift (immediate), add, subtract, move, and compare on page F3-4420

 010000 Data-processing (two low registers) on page F3-4417

 010001 Special data instructions and branch and exchange on page F3-4422

 01001x LDR (literal) - T1 variant

 0101xx Load/store (register offset) on page F3-4418

op0
15 10 9 0
F3-4416 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Data-processing (two low registers)

This section describes the encoding of the Data-processing (two low registers) instruction class. The encodings in
this section are decoded from 16-bit on page F3-4416.

 011xxx Load/store word/byte (immediate offset) on page F3-4418

 1000xx Load/store halfword (immediate offset) on page F3-4419

 1001xx Load/store (SP-relative) on page F3-4419

 1010xx Add PC/SP (immediate) on page F3-4419

 1011xx Miscellaneous 16-bit instructions on page F3-4423

 1100xx Load/store multiple on page F3-4420

 1101xx Conditional branch, and Supervisor Call on page F3-4426

Decode fields
Instruction page

op

 0000 AND, ANDS (register)

 0001 EOR, EORS (register)

 0010 MOV, MOVS (register-shifted register) - Logical shift left variant

 0011 MOV, MOVS (register-shifted register) - Logical shift right variant

 0100 MOV, MOVS (register-shifted register) - Arithmetic shift right variant

 0101 ADC, ADCS (register)

 0110 SBC, SBCS (register)

 0111 MOV, MOVS (register-shifted register) - Rotate right variant

 1000 TST (register)

 1001 RSB, RSBS (immediate)

 1010 CMP (register)

 1011 CMN (register)

 1100 ORR, ORRS (register)

Table F3-2 Encoding table for the 16-bit group (continued)

Decode fields
Decode group or instruction page

op0

0 1 0 0 0 0 op Rs Rd
15 14 13 12 11 10 9 6 5 3 2 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4417
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Load/store (register offset)

This section describes the encoding of the Load/store (register offset) instruction class. The encodings in this section
are decoded from 16-bit on page F3-4416.

Load/store word/byte (immediate offset)

This section describes the encoding of the Load/store word/byte (immediate offset) instruction class. The encodings
in this section are decoded from 16-bit on page F3-4416.

 1101 MUL, MULS

 1110 BIC, BICS (register)

 1111 MVN, MVNS (register)

Decode fields
Instruction page

L B H

 0 0 0 STR (register)

 0 0 1 STRH (register)

 0 1 0 STRB (register)

 0 1 1 LDRSB (register)

 1 0 0 LDR (register)

 1 0 1 LDRH (register)

 1 1 0 LDRB (register)

 1 1 1 LDRSH (register)

Decode fields
Instruction page

B L

 0 0 STR (immediate)

Decode fields
Instruction page

op

0 1 0 1 L B H Rm Rn Rt
15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 1 B L imm5 Rn Rt
15 14 13 12 11 10 6 5 3 2 0
F3-4418 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Load/store halfword (immediate offset)

This section describes the encoding of the Load/store halfword (immediate offset) instruction class. The encodings
in this section are decoded from 16-bit on page F3-4416.

Load/store (SP-relative)

This section describes the encoding of the Load/store (SP-relative) instruction class. The encodings in this section
are decoded from 16-bit on page F3-4416.

Add PC/SP (immediate)

This section describes the encoding of the Add PC/SP (immediate) instruction class. The encodings in this section
are decoded from 16-bit on page F3-4416.

 0 1 LDR (immediate)

 1 0 STRB (immediate)

 1 1 LDRB (immediate)

Decode fields
Instruction page

L

 0 STRH (immediate)

 1 LDRH (immediate)

Decode fields
Instruction page

L

 0 STR (immediate)

 1 LDR (immediate)

Decode fields
Instruction page

B L

1 0 0 0 L imm5 Rn Rt
15 14 13 12 11 10 6 5 3 2 0

1 0 0 1 L Rt imm8
15 14 13 12 11 10 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4419
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Load/store multiple

This section describes the encoding of the Load/store multiple instruction class. The encodings in this section are
decoded from 16-bit on page F3-4416.

F3.1.2 Shift (immediate), add, subtract, move, and compare

This section describes the encoding of the Shift (immediate), add, subtract, move, and compare group. The
encodings in this section are decoded from 16-bit on page F3-4416.

Decode fields
Instruction page

SP

 0 ADR

 1 ADD, ADDS (SP plus immediate)

Decode fields
Instruction page

L

 0 STM, STMIA, STMEA

 1 LDM, LDMIA, LDMFD

1 0 1 0 SP Rd imm8
15 14 13 12 11 10 8 7 0

1 1 0 0 L Rn register_list
15 14 13 12 11 10 8 7 0

Table F3-3 Encoding table for the Shift (immediate), add, subtract, move, and compare group

Decode fields
Decode group or instruction page

op0 op1 op2

 0 11 0 Add, subtract (three low registers) on page F3-4421

 0 11 1 Add, subtract (two low registers and immediate) on page F3-4421

 0 != 11 - MOV, MOVS (register) - T2 variant

 1 - - Add, subtract, compare, move (one low register and immediate) on page F3-4421

00 op1
15 14 13 12 11 10 9 0

op0
op2
F3-4420 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Add, subtract (three low registers)

This section describes the encoding of the Add, subtract (three low registers) instruction class. The encodings in this
section are decoded from Shift (immediate), add, subtract, move, and compare on page F3-4420.

Add, subtract (two low registers and immediate)

This section describes the encoding of the Add, subtract (two low registers and immediate) instruction class. The
encodings in this section are decoded from Shift (immediate), add, subtract, move, and compare on page F3-4420.

Add, subtract, compare, move (one low register and immediate)

This section describes the encoding of the Add, subtract, compare, move (one low register and immediate)
instruction class. The encodings in this section are decoded from Shift (immediate), add, subtract, move, and
compare on page F3-4420.

Decode fields
Instruction page

S

 0 ADD, ADDS (register)

 1 SUB, SUBS (register)

Decode fields
Instruction page

S

 0 ADD, ADDS (immediate)

 1 SUB, SUBS (immediate)

Decode fields
Instruction page

op

 00 MOV, MOVS (immediate)

0 0 0 1 1 0 S Rm Rn Rd
15 14 13 12 11 10 9 8 6 5 3 2 0

0 0 0 1 1 1 S imm3 Rn Rd
15 14 13 12 11 10 9 8 6 5 3 2 0

0 0 1 op Rd imm8
15 14 13 12 11 10 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4421
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.3 Special data instructions and branch and exchange

This section describes the encoding of the Special data instructions and branch and exchange group. The encodings
in this section are decoded from 16-bit on page F3-4416.

Branch and exchange

This section describes the encoding of the Branch and exchange instruction class. The encodings in this section are
decoded from Special data instructions and branch and exchange.

Add, subtract, compare, move (two high registers)

This section describes the encoding of the Add, subtract, compare, move (two high registers) instruction class. The
encodings in this section are decoded from Special data instructions and branch and exchange.

 01 CMP (immediate)

 10 ADD, ADDS (immediate)

 11 SUB, SUBS (immediate)

Decode fields
Instruction page

op

Table F3-4 Encoding table for the Special data instructions and branch and exchange group

Decode fields
Decode group or instruction page

op0

 11 Branch and exchange on page F3-4422

 != 11 Add, subtract, compare, move (two high registers) on page F3-4422

Decode fields
Instruction page

L

 0 BX

 1 BLX (register)

010001 op0
15 10 9 8 7 0

0 1 0 0 0 1 1 1 L Rm (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 3 2 1 0
F3-4422 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.4 Miscellaneous 16-bit instructions

This section describes the encoding of the Miscellaneous 16-bit instructions group. The encodings in this section
are decoded from 16-bit on page F3-4416.

Decode fields
Instruction page

op D:Rd Rs

 00 != 1101 != 1101 ADD, ADDS (register)

 00 - 1101 ADD, ADDS (SP plus register) - T1 on page F5-4588

 00 1101 != 1101 ADD, ADDS (SP plus register) - T2 on page F5-4588

 01 - - CMP (register)

 10 - - MOV, MOVS (register)

0 1 0 0 0 1 !=11 D Rs Rd
15 14 13 12 11 10 9 8 7 6 3 2 0

op

Table F3-5 Encoding table for the Miscellaneous 16-bit instructions group

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3

 0000 - - - Adjust SP (immediate) on page F3-4424 -

 0010 - - - Extend on page F3-4424 -

 0110 00 0 - SETPAN FEAT_PAN

 0110 00 1 - Unallocated. -

 0110 01 - - Change Processor State on page F3-4424 -

 0110 1x - - Unallocated. -

 0111 - - - Unallocated. -

 1000 - - - Unallocated. -

 1010 10 - - HLT -

 1010 != 10 - - Reverse bytes on page F3-4425 -

 1110 - - - BKPT -

 1111 - - 0000 Hints on page F3-4425 -

1011 op0 op1 op3
15 12 11 8 7 6 5 4 3 0

op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4423
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Adjust SP (immediate)

This section describes the encoding of the Adjust SP (immediate) instruction class. The encodings in this section
are decoded from Miscellaneous 16-bit instructions on page F3-4423.

Extend

This section describes the encoding of the Extend instruction class. The encodings in this section are decoded from
Miscellaneous 16-bit instructions on page F3-4423.

Change Processor State

This section describes the encoding of the Change Processor State instruction class. The encodings in this section
are decoded from Miscellaneous 16-bit instructions on page F3-4423.

 1111 - - != 0000 IT -

 x0x1 - - - CBNZ, CBZ -

 x10x - - - Push and Pop on page F3-4426 -

Decode fields
Instruction page

S

 0 ADD, ADDS (SP plus immediate)

 1 SUB, SUBS (SP minus immediate)

Decode fields
Instruction page

U B

 0 0 SXTH

 0 1 SXTB

 1 0 UXTH

 1 1 UXTB

Table F3-5 Encoding table for the Miscellaneous 16-bit instructions group (continued)

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3

1 0 1 1 0 0 0 0 S imm7
15 14 13 12 11 10 9 8 7 6 0

1 0 1 1 0 0 1 0 U B Rm Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0
F3-4424 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Reverse bytes

This section describes the encoding of the Reverse bytes instruction class. The encodings in this section are decoded
from Miscellaneous 16-bit instructions on page F3-4423.

Hints

This section describes the encoding of the Hints instruction class. The encodings in this section are decoded from
Miscellaneous 16-bit instructions on page F3-4423.

Decode fields
Instruction page

op flags

 0 - SETEND

 1 0xxxx CPS, CPSID, CPSIE - Interrupt enable variant

 1 1xxxx CPS, CPSID, CPSIE - Interrupt disable variant

Decode fields
Instruction page

op

 00 REV

 01 REV16

 11 REVSH

Decode fields
Instruction page

hint

 0000 NOP

 0001 YIELD

 0010 WFE

 0011 WFI

1 0 1 1 0 1 1 0 0 1 op flags
15 14 13 12 11 10 9 8 7 6 5 4 0

1 0 1 1 1 0 1 0 !=10 Rm Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0

op

1 0 1 1 1 1 1 1 hint 0 0 0 0
15 14 13 12 11 10 9 8 7 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4425
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Push and Pop

This section describes the encoding of the Push and Pop instruction class. The encodings in this section are decoded
from Miscellaneous 16-bit instructions on page F3-4423.

F3.1.5 Conditional branch, and Supervisor Call

This section describes the encoding of the Conditional branch, and Supervisor Call group. The encodings in this
section are decoded from 16-bit on page F3-4416.

Exception generation

This section describes the encoding of the Exception generation instruction class. The encodings in this section are
decoded from Conditional branch, and Supervisor Call.

 0100 SEV

 0101 SEVL

 011x Reserved hint, behaves as NOP.

 1xxx Reserved hint, behaves as NOP.

Decode fields
Instruction page

L

 0 PUSH

 1 POP

Decode fields
Instruction page

hint

1 0 1 1 L 1 0 P register_list
15 14 13 12 11 10 9 8 7 0

Table F3-6 Encoding table for the Conditional branch, and Supervisor Call group

Decode fields
Decode group or instruction page

op0

 111x Exception generation on page F3-4426

 != 111x B - T1 variant

1101 op0
15 12 11 8 7 0
F3-4426 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.6 32-bit

This section describes the encoding of the 32-bit group. The encodings in this section are decoded from T32
instruction set encoding on page F3-4416.

This decode also imposes the constraint:

• op0<3:2> != 00.

Decode fields
Instruction page

S

 0 UDF

 1 SVC

1 1 0 1 1 1 1 S imm8
15 14 13 12 11 10 9 8 7 0

111 op0 op1
15 13 12 9 8 4 3 0 15 14 0

op3

Table F3-7 Encoding table for the 32-bit group

Decode fields
Decode group or instruction page

op0 op1 op3

 x11x - - System register access, Advanced SIMD, and floating-point on page F3-4433

 0100 xx0xx - Load/store multiple on page F3-4428

 0100 xx1xx - Load/store dual, load/store exclusive, load-acquire/store-release, and table branch on
page F3-4460

 0101 - - Data-processing (shifted register) on page F3-4428

 10xx - 1 Branches and miscellaneous control on page F3-4464

 10x0 - 0 Data-processing (modified immediate) on page F3-4431

 10x1 xxxx0 0 Data-processing (plain binary immediate) on page F3-4468

 10x1 xxxx1 0 Unallocated.

 1100 1xxx0 - Advanced SIMD element or structure load/store on page F3-4470

 1100 != 1xxx0 - Load/store single on page F3-4476

 1101 0xxxx - Data-processing (register) on page F3-4485

 1101 10xxx - Multiply, multiply accumulate, and absolute difference on page F3-4489

 1101 11xxx - Long multiply and divide on page F3-4432
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4427
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Load/store multiple

This section describes the encoding of the Load/store multiple instruction class. The encodings in this section are
decoded from 32-bit on page F3-4427.

Data-processing (shifted register)

This section describes the encoding of the Data-processing (shifted register) instruction class. The encodings in this
section are decoded from 32-bit on page F3-4427.

Decode fields
Instruction page

opc L

 00 0 SRS, SRSDA, SRSDB, SRSIA, SRSIB - T1 on page F5-5059

 00 1 RFE, RFEDA, RFEDB, RFEIA, RFEIB - T1 on page F5-4952

 01 0 STM, STMIA, STMEA

 01 1 LDM, LDMIA, LDMFD

 10 0 STMDB, STMFD

 10 1 LDMDB, LDMEA

 11 0 SRS, SRSDA, SRSDB, SRSIA, SRSIB - T2 on page F5-5059

 11 1 RFE, RFEDA, RFEDB, RFEIA, RFEIB - T2 on page F5-4953

1 1 1 0 1 0 0 opc 0 W L Rn P M register_list
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 0

1 1 1 0 1 0 1 op1 S Rn (0) imm3 Rd imm2 stype Rm
15 14 13 12 11 10 9 8 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0

Decode fields
Instruction page

op1 S Rn imm3:imm2:stype Rd

 0000 0 - != 0000011 - AND, ANDS (register) - AND, shift or rotate by value variant

 0000 0 - 0000011 - AND, ANDS (register) - AND, rotate right with extend variant

 0000 1 - != 0000011 != 1111 AND, ANDS (register) - ANDS, shift or rotate by value variant

 0000 1 - != 0000011 1111 TST (register) - Shift or rotate by value variant

 0000 1 - 0000011 != 1111 AND, ANDS (register) - ANDS, rotate right with extend variant

 0000 1 - 0000011 1111 TST (register) - Rotate right with extend variant

 0001 - - != 0000011 - BIC, BICS (register) - BICS, shift or rotate by value variant

 0001 - - 0000011 - BIC, BICS (register) - BICS, rotate right with extend variant

 0010 0 != 1111 != 0000011 - ORR, ORRS (register) - ORR, shift or rotate by value variant
F3-4428 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
 0010 0 != 1111 0000011 - ORR, ORRS (register) - ORR, rotate right with extend variant

 0010 0 1111 != 0000011 - MOV, MOVS (register) - MOV, shift or rotate by value variant

 0010 0 1111 0000011 - MOV, MOVS (register) - MOV, rotate right with extend variant

 0010 1 != 1111 != 0000011 - ORR, ORRS (register) - ORRS, shift or rotate by value variant

 0010 1 != 1111 0000011 - ORR, ORRS (register) - ORRS, rotate right with extend variant

 0010 1 1111 != 0000011 - MOV, MOVS (register) - MOVS, shift or rotate by value variant

 0010 1 1111 0000011 - MOV, MOVS (register) - MOVS, rotate right with extend variant

 0011 0 != 1111 != 0000011 - ORN, ORNS (register) - ORN, shift or rotate by value variant

 0011 0 != 1111 0000011 - ORN, ORNS (register) - ORN, rotate right with extend variant

 0011 0 1111 != 0000011 - MVN, MVNS (register) - MVN, shift or rotate by value variant

 0011 0 1111 0000011 - MVN, MVNS (register) - MVN, rotate right with extend variant

 0011 1 != 1111 != 0000011 - ORN, ORNS (register) - ORNS, shift or rotate by value variant

 0011 1 != 1111 0000011 - ORN, ORNS (register) - ORNS, rotate right with extend variant

 0011 1 1111 != 0000011 - MVN, MVNS (register) - MVNS, shift or rotate by value variant

 0011 1 1111 0000011 - MVN, MVNS (register) - MVNS, rotate right with extend variant

 0100 0 - != 0000011 - EOR, EORS (register) - EOR, shift or rotate by value variant

 0100 0 - 0000011 - EOR, EORS (register) - EOR, rotate right with extend variant

 0100 1 - != 0000011 != 1111 EOR, EORS (register) - EORS, shift or rotate by value variant

 0100 1 - != 0000011 1111 TEQ (register) - Shift or rotate by value variant

 0100 1 - 0000011 != 1111 EOR, EORS (register) - EORS, rotate right with extend variant

 0100 1 - 0000011 1111 TEQ (register) - Rotate right with extend variant

 0101 - - - - Unallocated.

 0110 0 - xxxxx00 - PKHBT, PKHTB - PKHBT variant

 0110 0 - xxxxx01 - Unallocated.

 0110 0 - xxxxx10 - PKHBT, PKHTB - PKHTB variant

 0110 0 - xxxxx11 - Unallocated.

 0111 - - - - Unallocated.

 1000 0 != 1101 != 0000011 - ADD, ADDS (register) - ADD, shift or rotate by value variant

 1000 0 != 1101 0000011 - ADD, ADDS (register) - ADD, rotate right with extend variant

 1000 0 1101 != 0000011 - ADD, ADDS (SP plus register) - ADD, shift or rotate by value variant

 1000 0 1101 0000011 - ADD, ADDS (SP plus register) - ADD, rotate right with extend variant

 1000 1 - != 0000011 1111 CMN (register) - Shift or rotate by value variant

Decode fields
Instruction page

op1 S Rn imm3:imm2:stype Rd
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4429
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
 1000 1 != 1101 != 0000011 != 1111 ADD, ADDS (register) - ADDS, shift or rotate by value variant

 1000 1 != 1101 0000011 != 1111 ADD, ADDS (register) - ADDS, rotate right with extend variant

 1000 1 - 0000011 1111 CMN (register) - Rotate right with extend variant

 1000 1 1101 != 0000011 != 1111 ADD, ADDS (SP plus register) - ADDS, shift or rotate by value variant

 1000 1 1101 0000011 != 1111 ADD, ADDS (SP plus register) - ADDS, rotate right with extend
variant

 1001 - - - - Unallocated.

 1010 - - != 0000011 - ADC, ADCS (register) - ADCS, shift or rotate by value variant

 1010 - - 0000011 - ADC, ADCS (register) - ADCS, rotate right with extend variant

 1011 - - != 0000011 - SBC, SBCS (register) - SBCS, shift or rotate by value variant

 1011 - - 0000011 - SBC, SBCS (register) - SBCS, rotate right with extend variant

 1100 - - - - Unallocated.

 1101 0 != 1101 != 0000011 - SUB, SUBS (register) - SUB, shift or rotate by value variant

 1101 0 != 1101 0000011 - SUB, SUBS (register) - SUB, rotate right with extend variant

 1101 0 1101 != 0000011 - SUB, SUBS (SP minus register) - SUB, shift or rotate by value variant

 1101 0 1101 0000011 - SUB, SUBS (SP minus register) - SUB, rotate right with extend variant

 1101 1 - != 0000011 1111 CMP (register) - Shift or rotate by value variant

 1101 1 != 1101 != 0000011 != 1111 SUB, SUBS (register) - SUBS, shift or rotate by value variant

 1101 1 != 1101 0000011 != 1111 SUB, SUBS (register) - SUBS, rotate right with extend variant

 1101 1 - 0000011 1111 CMP (register) - Rotate right with extend variant

 1101 1 1101 != 0000011 != 1111 SUB, SUBS (SP minus register) - SUBS, shift or rotate by value variant

 1101 1 1101 0000011 != 1111 SUB, SUBS (SP minus register) - SUBS, rotate right with extend
variant

 1110 - - != 0000011 - RSB, RSBS (register) - RSBS, shift or rotate by value variant

 1110 - - 0000011 - RSB, RSBS (register) - RSBS, rotate right with extend variant

 1111 - - - - Unallocated.

Decode fields
Instruction page

op1 S Rn imm3:imm2:stype Rd
F3-4430 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Data-processing (modified immediate)

This section describes the encoding of the Data-processing (modified immediate) instruction class. The encodings
in this section are decoded from 32-bit on page F3-4427.

Decode fields
Instruction page

op1 S Rn Rd

 0000 0 - - AND, ANDS (immediate) - AND variant

 0000 1 - != 1111 AND, ANDS (immediate) - ANDS variant

 0000 1 - 1111 TST (immediate)

 0001 - - - BIC, BICS (immediate)

 0010 0 != 1111 - ORR, ORRS (immediate) - ORR variant

 0010 0 1111 - MOV, MOVS (immediate) - MOV variant

 0010 1 != 1111 - ORR, ORRS (immediate) - ORRS variant

 0010 1 1111 - MOV, MOVS (immediate) - MOVS variant

 0011 0 != 1111 - ORN, ORNS (immediate) - Not flag setting variant

 0011 0 1111 - MVN, MVNS (immediate) - MVN variant

 0011 1 != 1111 - ORN, ORNS (immediate) - Flag setting variant

 0011 1 1111 - MVN, MVNS (immediate) - MVNS variant

 0100 0 - - EOR, EORS (immediate) - EOR variant

 0100 1 - != 1111 EOR, EORS (immediate) - EORS variant

 0100 1 - 1111 TEQ (immediate)

 0101 - - - Unallocated.

 011x - - - Unallocated.

 1000 0 != 1101 - ADD, ADDS (immediate) - ADD variant

 1000 0 1101 - ADD, ADDS (SP plus immediate) - ADD variant

 1000 1 != 1101 != 1111 ADD, ADDS (immediate) - ADDS variant

 1000 1 1101 != 1111 ADD, ADDS (SP plus immediate) - ADDS variant

 1000 1 - 1111 CMN (immediate)

 1001 - - - Unallocated.

 1010 - - - ADC, ADCS (immediate)

 1011 - - - SBC, SBCS (immediate)

 1100 - - - Unallocated.

1 1 1 1 0 i 0 op1 S Rn 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 5 4 3 0 15 14 12 11 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4431
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Long multiply and divide

This section describes the encoding of the Long multiply and divide instruction class. The encodings in this section
are decoded from 32-bit on page F3-4427.

 1101 0 != 1101 - SUB, SUBS (immediate) - SUB variant

 1101 0 1101 - SUB, SUBS (SP minus immediate) - SUB variant

 1101 1 != 1101 != 1111 SUB, SUBS (immediate) - SUBS variant

 1101 1 1101 != 1111 SUB, SUBS (SP minus immediate) - SUBS variant

 1101 1 - 1111 CMP (immediate)

 1110 - - - RSB, RSBS (immediate)

 1111 - - - Unallocated.

Decode fields
Instruction page

op1 op2

 000 != 0000 Unallocated.

 000 0000 SMULL, SMULLS

 001 != 1111 Unallocated.

 001 1111 SDIV

 010 != 0000 Unallocated.

 010 0000 UMULL, UMULLS

 011 != 1111 Unallocated.

 011 1111 UDIV

 100 0000 SMLAL, SMLALS

 100 0001 Unallocated.

 100 001x Unallocated.

 100 01xx Unallocated.

 100 1000 SMLALBB, SMLALBT, SMLALTB, SMLALTT - SMLALBB variant

 100 1001 SMLALBB, SMLALBT, SMLALTB, SMLALTT - SMLALBT variant

 100 1010 SMLALBB, SMLALBT, SMLALTB, SMLALTT - SMLALTB variant

 100 1011 SMLALBB, SMLALBT, SMLALTB, SMLALTT - SMLALTT variant

Decode fields
Instruction page

op1 S Rn Rd

1 1 1 1 1 0 1 1 1 op1 Rn RdLo RdHi op2 Rm
15 14 13 12 11 10 9 8 7 6 4 3 0 15 12 11 8 7 4 3 0
F3-4432 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.7 System register access, Advanced SIMD, and floating-point

This section describes the encoding of the System register access, Advanced SIMD, and floating-point group. The
encodings in this section are decoded from 32-bit on page F3-4427.

 100 1100 SMLALD, SMLALDX - SMLALD variant

 100 1101 SMLALD, SMLALDX - SMLALDX variant

 100 111x Unallocated.

 101 0xxx Unallocated.

 101 10xx Unallocated.

 101 1100 SMLSLD, SMLSLDX - SMLSLD variant

 101 1101 SMLSLD, SMLSLDX - SMLSLDX variant

 101 111x Unallocated.

 110 0000 UMLAL, UMLALS

 110 0001 Unallocated.

 110 001x Unallocated.

 110 010x Unallocated.

 110 0110 UMAAL

 110 0111 Unallocated.

 110 1xxx Unallocated.

 111 - Unallocated.

Decode fields
Instruction page

op1 op2

111 11 op1 op2
15 13 12 11 10 9 8 7 12 11 10 9 5 4 3 00 15

op0 op3

Table F3-8 Encoding table for the System register access, Advanced SIMD, and floating-point group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 - 0x 0x - Unallocated.

 - 10 0x - Unallocated.

 - 11 - - Advanced SIMD data-processing on page F3-4434

 0 0x 1x - Advanced SIMD and System register load/store and 64-bit move on page F3-4444

 0 10 1x 1 Advanced SIMD and System register 32-bit move on page F3-4447
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4433
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.8 Advanced SIMD data-processing

This section describes the encoding of the Advanced SIMD data-processing group. The encodings in this section
are decoded from System register access, Advanced SIMD, and floating-point on page F3-4433.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the
encodings of this group, see About the T32 Advanced SIMD and floating-point instructions and their encoding on
page F3-4491

Advanced SIMD three registers of the same length

This section describes the encoding of the Advanced SIMD three registers of the same length instruction class. The
encodings in this section are decoded from Advanced SIMD data-processing on page F3-4434.

 0 10 10 0 Floating-point data-processing on page F3-4449

 0 10 11 0 Unallocated.

 1 != 11 1x - Additional Advanced SIMD and floating-point instructions on page F3-4454

Table F3-8 Encoding table for the System register access, Advanced SIMD, and floating-point group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2 op3

Table F3-9 Encoding table for the Advanced SIMD data-processing group

Decode fields
Decode group or instruction page

op0 op1

 0 - Advanced SIMD three registers of the same length on page F3-4434

 1 0 Advanced SIMD two registers, or three registers of different lengths on page F3-4437

 1 1 Advanced SIMD shifts and immediate generation on page F3-4442

Decode fields
Instruction page Feature

U size opc Q o1

 0 0x 1100 - 1 VFMA -

 0 0x 1101 - 0 VADD (floating-point) -

 0 0x 1101 - 1 VMLA (floating-point) -

111 1111
15 13 12 11 8 7 6 5 4 3 00 15

op0 op1

1 1 1 U 1 1 1 1 0 D size Vn Vd opc N Q M o1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
F3-4434 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
 0 0x 1110 - 0 VCEQ (register) - T2 on page F6-5381 -

 0 0x 1111 - 0 VMAX (floating-point) -

 0 0x 1111 - 1 VRECPS -

 - - 0000 - 0 VHADD -

 0 00 0001 - 1 VAND (register) -

 - - 0000 - 1 VQADD -

 - - 0001 - 0 VRHADD -

 0 00 1100 - 0 SHA1C -

 - - 0010 - 0 VHSUB -

 0 01 0001 - 1 VBIC (register) -

 - - 0010 - 1 VQSUB -

 - - 0011 - 0 VCGT (register) - T1 on page F6-5394 -

 - - 0011 - 1 VCGE (register) - T1 on page F6-5387 -

 0 01 1100 - 0 SHA1P -

 0 1x 1100 - 1 VFMS -

 0 1x 1101 - 0 VSUB (floating-point) -

 0 1x 1101 - 1 VMLS (floating-point) -

 0 1x 1110 - 0 Unallocated. -

 0 1x 1111 - 0 VMIN (floating-point) -

 0 1x 1111 - 1 VRSQRTS -

 - - 0100 - 0 VSHL (register) -

 0 - 1000 - 0 VADD (integer) -

 0 10 0001 - 1 VORR (register) -

 0 - 1000 - 1 VTST -

 - - 0100 - 1 VQSHL (register) -

 0 - 1001 - 0 VMLA (integer) -

 - - 0101 - 0 VRSHL -

 - - 0101 - 1 VQRSHL -

 0 - 1011 - 0 VQDMULH -

 0 10 1100 - 0 SHA1M -

 0 - 1011 - 1 VPADD (integer) -

 - - 0110 - 0 VMAX (integer) -

Decode fields
Instruction page Feature

U size opc Q o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4435
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
 0 11 0001 - 1 VORN (register) -

 - - 0110 - 1 VMIN (integer) -

 - - 0111 - 0 VABD (integer) -

 - - 0111 - 1 VABA -

 0 11 1100 - 0 SHA1SU0 -

 1 0x 1101 - 0 VPADD (floating-point) -

 1 0x 1101 - 1 VMUL (floating-point) -

 1 0x 1110 - 0 VCGE (register) - T2 on page F6-5387 -

 1 0x 1110 - 1 VACGE -

 1 0x 1111 0 0 VPMAX (floating-point) -

 1 0x 1111 - 1 VMAXNM -

 1 00 0001 - 1 VEOR -

 - - 1001 - 1 VMUL (integer and polynomial) -

 1 00 1100 - 0 SHA256H -

 - - 1010 0 0 VPMAX (integer) -

 1 01 0001 - 1 VBSL -

 - - 1010 0 1 VPMIN (integer) -

 - - 1010 1 - Unallocated. -

 1 01 1100 - 0 SHA256H2 -

 1 1x 1101 - 0 VABD (floating-point) -

 1 1x 1110 - 0 VCGT (register) - T2 on page F6-5394 -

 1 1x 1110 - 1 VACGT -

 1 1x 1111 0 0 VPMIN (floating-point) -

 1 1x 1111 - 1 VMINNM -

 1 - 1000 - 0 VSUB (integer) -

 1 10 0001 - 1 VBIT -

 1 - 1000 - 1 VCEQ (register) - T1 on page F6-5381 -

 1 - 1001 - 0 VMLS (integer) -

 1 - 1011 - 0 VQRDMULH -

 1 10 1100 - 0 SHA256SU1 -

 1 - 1011 - 1 VQRDMLAH FEAT_RDM

Decode fields
Instruction page Feature

U size opc Q o1
F3-4436 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.9 Advanced SIMD two registers, or three registers of different lengths

This section describes the encoding of the Advanced SIMD two registers, or three registers of different lengths
group. The encodings in this section are decoded from Advanced SIMD data-processing on page F3-4434.

Advanced SIMD two registers misc

This section describes the encoding of the Advanced SIMD two registers misc instruction class. The encodings in
this section are decoded from Advanced SIMD two registers, or three registers of different lengths on page F3-4437.

 1 11 0001 - 1 VBIF -

 1 - 1100 - 1 VQRDMLSH FEAT_RDM

 1 - 1111 1 0 Unallocated. -

Decode fields
Instruction page Feature

U size opc Q o1

Table F3-10 Encoding table for the Advanced SIMD two registers, or three registers of different
lengths group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 0 11 - - VEXT (byte elements)

 1 11 0x - Advanced SIMD two registers misc on page F3-4437

 1 11 10 - VTBL, VTBX

 1 11 11 - Advanced SIMD duplicate (scalar) on page F3-4440

 - != 11 - 0 Advanced SIMD three registers of different lengths on page F3-4440

 - != 11 - 1 Advanced SIMD two registers and a scalar on page F3-4441

111 11111 op1 op2 0
15 13 12 11 7 6 5 4 3 12 11 10 9 7 6 5 4 3 00 15

op0 op3

1 1 1 1 1 1 1 1 1 D 1 1 size opc1 Vd 0 opc2 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 7 6 5 4 3 0

Decode fields
Instruction page Feature

size opc1 opc2 Q

 - 00 0000 - VREV64 -

 - 00 0001 - VREV32 -

 - 00 0010 - VREV16 -
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4437
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
 - 00 0011 - Unallocated. -

 - 00 010x - VPADDL -

 - 00 0110 0 AESE -

 - 00 0110 1 AESD -

 - 00 0111 0 AESMC -

 - 00 0111 1 AESIMC -

 - 00 1000 - VCLS -

 00 10 0000 - VSWP -

 - 00 1001 - VCLZ -

 - 00 1010 - VCNT -

 - 00 1011 - VMVN (register) -

 00 10 1100 1 Unallocated. -

 - 00 110x - VPADAL -

 - 00 1110 - VQABS -

 - 00 1111 - VQNEG -

 - 01 x000 - VCGT (immediate #0) -

 - 01 x001 - VCGE (immediate #0) -

 - 01 x010 - VCEQ (immediate #0) -

 - 01 x011 - VCLE (immediate #0) -

 - 01 x100 - VCLT (immediate #0) -

 - 01 x110 - VABS -

 - 01 x111 - VNEG -

 - 01 0101 1 SHA1H -

 01 10 1100 1 VCVT (from single-precision to BFloat16, Advanced SIMD) FEAT_AA32BF16

 - 10 0001 - VTRN -

 - 10 0010 - VUZP -

 - 10 0011 - VZIP -

 - 10 0100 0 VMOVN -

 - 10 0100 1 VQMOVN, VQMOVUN - Unsigned result variant -

 - 10 0101 - VQMOVN, VQMOVUN - Signed result variant -

 - 10 0110 0 VSHLL -

 - 10 0111 0 SHA1SU1 -

Decode fields
Instruction page Feature

size opc1 opc2 Q
F3-4438 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
 - 10 0111 1 SHA256SU0 -

 - 10 1000 - VRINTN (Advanced SIMD) -

 - 10 1001 - VRINTX (Advanced SIMD) -

 - 10 1010 - VRINTA (Advanced SIMD) -

 - 10 1011 - VRINTZ (Advanced SIMD) -

 10 10 1100 1 Unallocated. -

 - 10 1100 0 VCVT (between half-precision and single-precision, Advanced SIMD) -
Single-precision to half-precision variant

-

 - 10 1101 - VRINTM (Advanced SIMD) -

 - 10 1110 0 VCVT (between half-precision and single-precision, Advanced SIMD) -
Half-precision to single-precision variant

-

 - 10 1110 1 Unallocated. -

 - 10 1111 - VRINTP (Advanced SIMD) -

 - 11 000x - VCVTA (Advanced SIMD) -

 - 11 001x - VCVTN (Advanced SIMD) -

 - 11 010x - VCVTP (Advanced SIMD) -

 - 11 011x - VCVTM (Advanced SIMD) -

 - 11 10x0 - VRECPE -

 - 11 10x1 - VRSQRTE -

 11 10 1100 1 Unallocated. -

 - 11 11xx - VCVT (between floating-point and integer, Advanced SIMD) -

Decode fields
Instruction page Feature

size opc1 opc2 Q
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4439
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Advanced SIMD duplicate (scalar)

This section describes the encoding of the Advanced SIMD duplicate (scalar) instruction class. The encodings in
this section are decoded from Advanced SIMD two registers, or three registers of different lengths on page F3-4437.

Advanced SIMD three registers of different lengths

This section describes the encoding of the Advanced SIMD three registers of different lengths instruction class. The
encodings in this section are decoded from Advanced SIMD two registers, or three registers of different lengths on
page F3-4437.

Decode fields
Instruction page

opc

 000 VDUP (scalar)

 001 Unallocated.

 01x Unallocated.

 1xx Unallocated.

Decode fields
Instruction page

U opc

 - 0000 VADDL

 - 0001 VADDW

 - 0010 VSUBL

 0 0100 VADDHN

 - 0011 VSUBW

 0 0110 VSUBHN

 0 1001 VQDMLAL

 - 0101 VABAL

 0 1011 VQDMLSL

 0 1101 VQDMULL

 - 0111 VABDL (integer)

 - 1000 VMLAL (integer)

1 1 1 1 1 1 1 1 1 D 1 1 imm4 Vd 1 1 opc Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 7 6 5 4 3 0

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd opc N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

size
F3-4440 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Advanced SIMD two registers and a scalar

This section describes the encoding of the Advanced SIMD two registers and a scalar instruction class. The
encodings in this section are decoded from Advanced SIMD two registers, or three registers of different lengths on
page F3-4437.

 - 1010 VMLSL (integer)

 1 0100 VRADDHN

 1 0110 VRSUBHN

 - 11x0 VMULL (integer and polynomial)

 1 1001 Unallocated.

 1 1011 Unallocated.

 1 1101 Unallocated.

 - 1111 Unallocated.

Decode fields
Instruction page Feature

Q opc

 - 000x VMLA (by scalar) -

 0 0011 VQDMLAL -

 - 0010 VMLAL (by scalar) -

 0 0111 VQDMLSL -

 - 010x VMLS (by scalar) -

 0 1011 VQDMULL -

 - 0110 VMLSL (by scalar) -

 - 100x VMUL (by scalar) -

 1 0011 Unallocated. -

 - 1010 VMULL (by scalar) -

 1 0111 Unallocated. -

 - 1100 VQDMULH -

 - 1101 VQRDMULH -

Decode fields
Instruction page

U opc

1 1 1 Q 1 1 1 1 1 D !=11 Vn Vd opc N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4441
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.10 Advanced SIMD shifts and immediate generation

This section describes the encoding of the Advanced SIMD shifts and immediate generation group. The encodings
in this section are decoded from Advanced SIMD data-processing on page F3-4434.

Advanced SIMD one register and modified immediate

This section describes the encoding of the Advanced SIMD one register and modified immediate instruction class.
The encodings in this section are decoded from Advanced SIMD shifts and immediate generation on page F3-4442.

 1 1011 Unallocated. -

 - 1110 VQRDMLAH FEAT_RDM

 - 1111 VQRDMLSH FEAT_RDM

Decode fields
Instruction page Feature

Q opc

Table F3-11 Encoding table for the Advanced SIMD shifts and immediate generation group

Decode fields
Decode group or instruction page

op0

 000xxxxxxxxxxx0 Advanced SIMD one register and modified immediate on page F3-4442

 != 000xxxxxxxxxxx0 Advanced SIMD two registers and shift amount on page F3-4443

Decode fields
Instruction page

cmode op

 0xx0 0 VMOV (immediate) - T1 on page F6-5660

 0xx0 1 VMVN (immediate) - T1 on page F6-5706

 0xx1 0 VORR (immediate) - T1 on page F6-5730

 0xx1 1 VBIC (immediate) - T1 on page F6-5365

 10x0 0 VMOV (immediate) - T3 on page F6-5662

 10x0 1 VMVN (immediate) - T2 on page F6-5706

 10x1 0 VORR (immediate) - T2 on page F6-5730

 10x1 1 VBIC (immediate) - T2 on page F6-5365

111 11111 op0 1
15 13 12 11 7 6 5 7 6 5 4 3 00 15

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd cmode 0 Q op 1 imm4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0
F3-4442 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Advanced SIMD two registers and shift amount

This section describes the encoding of the Advanced SIMD two registers and shift amount instruction class. The
encodings in this section are decoded from Advanced SIMD shifts and immediate generation on page F3-4442.

This decode also imposes the constraint:

• imm3H:L != != 0000.

 11xx 0 VMOV (immediate) - T4 on page F6-5662

 110x 1 VMVN (immediate) - T3 on page F6-5707

 1110 1 VMOV (immediate) - T5 on page F6-5662

 1111 1 Unallocated.

Decode fields
Instruction page

U imm3L opc L Q

 - - 0000 - - VSHR

 - - 0001 - - VSRA

 - - 0010 - - VRSHR

 - - 0011 - - VRSRA

 - - 0111 - - VQSHL, VQSHLU (immediate) - VQSHL,quad,signed-result variant

 - - 1001 0 0 VQSHRN, VQSHRUN - Signed result variant

 - - 1001 0 1 VQRSHRN, VQRSHRUN - Signed result variant

 - - 1010 0 0 VSHLL

 - - 11xx 0 - VCVT (between floating-point and fixed-point, Advanced SIMD)

 - 000 1010 0 0 VMOVL

 0 - 0101 - - VSHL (immediate)

 0 - 1000 0 0 VSHRN

 0 - 1000 0 1 VRSHRN

 1 - 0100 - - VSRI

 1 - 0101 - - VSLI

Decode fields
Instruction page

cmode op

1 1 1 U 1 1 1 1 1 D imm3H imm3L Vd opc L Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 3 2 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4443
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.11 Advanced SIMD and System register load/store and 64-bit move

This section describes the encoding of the Advanced SIMD and System register load/store and 64-bit move group.
The encodings in this section are decoded from System register access, Advanced SIMD, and floating-point on
page F3-4433.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the
encodings of this group, see About the T32 Advanced SIMD and floating-point instructions and their encoding on
page F3-4491

Advanced SIMD and floating-point 64-bit move

This section describes the encoding of the Advanced SIMD and floating-point 64-bit move instruction class. The
encodings in this section are decoded from Advanced SIMD and System register load/store and 64-bit move.

 1 - 0110 - - VQSHL, VQSHLU (immediate) - VQSHLU,quad,unsigned-result variant

 1 - 1000 0 0 VQSHRN, VQSHRUN - Unsigned result variant

 1 - 1000 0 1 VQRSHRN, VQRSHRUN - Unsigned result variant

Decode fields
Instruction page

U imm3L opc L Q

Table F3-12 Encoding table for the Advanced SIMD and System register load/store and 64-bit
move group

Decode fields
Decode group or instruction page

op0 op1

 00x0 0x Advanced SIMD and floating-point 64-bit move on page F3-4444

 00x0 11 System register 64-bit move on page F3-4445

 != 00x0 0x Advanced SIMD and floating-point load/store on page F3-4445

 != 00x0 11 System register Load/Store on page F3-4447

 - 10 Unallocated.

1110110 op0 1 op1
15 9 8 5 4 12 11 10 9 8 00 15
F3-4444 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
System register 64-bit move

This section describes the encoding of the System register 64-bit move instruction class. The encodings in this
section are decoded from Advanced SIMD and System register load/store and 64-bit move on page F3-4444.

Advanced SIMD and floating-point load/store

This section describes the encoding of the Advanced SIMD and floating-point load/store instruction class. The
encodings in this section are decoded from Advanced SIMD and System register load/store and 64-bit move on
page F3-4444.

1 1 1 0 1 1 0 0 0 D 0 op Rt2 Rt 1 0 size opc2 M o3 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Decode fields
Instruction page

D op size opc2 o3

 0 - - - - Unallocated.

 1 - - - 0 Unallocated.

 1 - 0x 00 1 Unallocated.

 1 - - 01 - Unallocated.

 1 0 10 00 1 VMOV (between two general-purpose registers and two single-precision registers) - From
general-purpose registers variant

 1 0 11 00 1 VMOV (between two general-purpose registers and a doubleword floating-point register) - From
general-purpose registers variant

 1 - - 1x - Unallocated.

 1 1 10 00 1 VMOV (between two general-purpose registers and two single-precision registers) - To
general-purpose registers variant

 1 1 11 00 1 VMOV (between two general-purpose registers and a doubleword floating-point register) - To
general-purpose registers variant

Decode fields
Instruction page

D L

 0 - Unallocated.

 1 0 MCRR

 1 1 MRRC

1 1 1 0 1 1 0 0 0 D 0 L Rt2 Rt 1 1 1 opc1 CRm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

cp15
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4445
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
1 1 1 0 1 1 0 P U D W L Rn Vd 1 0 size imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Decode fields
Instruction page Feature

P U W L Rn size imm8

 0 0 1 - - - - Unallocated. -

 0 1 - - - 0x - Unallocated. -

 0 1 - 0 - 10 - VSTM, VSTMDB, VSTMIA - Increment After variant -

 0 1 - 0 - 11 xxxxxxx0 VSTM, VSTMDB, VSTMIA - Increment After variant -

 0 1 - 0 - 11 xxxxxxx1 FSTMDBX, FSTMIAX - Increment After variant -

 0 1 - 1 - 10 - VLDM, VLDMDB, VLDMIA - Increment After variant -

 0 1 - 1 - 11 xxxxxxx0 VLDM, VLDMDB, VLDMIA - Increment After variant -

 0 1 - 1 - 11 xxxxxxx1 FLDM*X (FLDMDBX, FLDMIAX) - Increment After variant -

 1 - 0 0 - 01 - VSTR - Half-precision scalar variant FEAT_FP16

 1 - 0 0 - 10 - VSTR - Single-precision scalar variant -

 1 - 0 0 - 11 - VSTR - Double-precision scalar variant -

 1 - 0 1 != 1111 01 - VLDR (immediate) - Half-precision scalar variant FEAT_FP16

 1 - 0 1 != 1111 10 - VLDR (immediate) - Single-precision scalar variant -

 1 - 0 1 != 1111 11 - VLDR (immediate) - Double-precision scalar variant -

 1 0 1 - - 0x - Unallocated. -

 1 0 1 0 - 10 - VSTM, VSTMDB, VSTMIA - Decrement Before variant -

 1 0 1 0 - 11 xxxxxxx0 VSTM, VSTMDB, VSTMIA - Decrement Before variant -

 1 0 1 0 - 11 xxxxxxx1 FSTMDBX, FSTMIAX - Decrement Before variant -

 1 0 1 1 - 10 - VLDM, VLDMDB, VLDMIA - Decrement Before variant -

 1 0 1 1 - 11 xxxxxxx0 VLDM, VLDMDB, VLDMIA - Decrement Before variant -

 1 0 1 1 - 11 xxxxxxx1 FLDM*X (FLDMDBX, FLDMIAX) - Decrement Before
variant

-

 1 - 0 1 1111 01 - VLDR (literal) - Half-precision scalar variant FEAT_FP16

 1 - 0 1 1111 10 - VLDR (literal) - Single-precision scalar variant -

 1 - 0 1 1111 11 - VLDR (literal) - Double-precision scalar variant -

 1 1 1 - - - - Unallocated. -
F3-4446 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
System register Load/Store

This section describes the encoding of the System register Load/Store instruction class. The encodings in this
section are decoded from Advanced SIMD and System register load/store and 64-bit move on page F3-4444.

F3.1.12 Advanced SIMD and System register 32-bit move

This section describes the encoding of the Advanced SIMD and System register 32-bit move group. The encodings
in this section are decoded from System register access, Advanced SIMD, and floating-point on page F3-4433.

Decode fields
Instruction page

P:U:W D L Rn CRd cp15

 != 000 - - - != 0101 0 Unallocated.

 != 000 0 1 1111 0101 0 LDC (literal)

 != 000 - - - - 1 Unallocated.

 != 000 1 - - 0101 0 Unallocated.

 0x1 0 0 - 0101 0 STC - Post-indexed variant

 0x1 0 1 != 1111 0101 0 LDC (immediate) - Post-indexed variant

 010 0 0 - 0101 0 STC - Unindexed variant

 010 0 1 != 1111 0101 0 LDC (immediate) - Unindexed variant

 1x0 0 0 - 0101 0 STC - Offset variant

 1x0 0 1 != 1111 0101 0 LDC (immediate) - Offset variant

 1x1 0 0 - 0101 0 STC - Pre-indexed variant

 1x1 0 1 != 1111 0101 0 LDC (immediate) - Pre-indexed variant

1 1 1 0 1 1 0 P U D W L Rn CRd 1 1 1 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

cp15

Table F3-13 Encoding table for the Advanced SIMD and System register 32-bit move group

Decode fields
Decode group or instruction page Feature

op0 op1

 000 000 Unallocated. -

 000 001 VMOV (between general-purpose register and half-precision) FEAT_FP16

 000 010 VMOV (between general-purpose register and single-precision) -

 001 010 Unallocated. -

11101110 op0 1 op1 1
15 8 7 5 4 12 11 10 8 7 5 4 3 00 15
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4447
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Floating-point move special register

This section describes the encoding of the Floating-point move special register instruction class. The encodings in
this section are decoded from Advanced SIMD and System register 32-bit move on page F3-4447.

Advanced SIMD 8/16/32-bit element move/duplicate

This section describes the encoding of the Advanced SIMD 8/16/32-bit element move/duplicate instruction class.
The encodings in this section are decoded from Advanced SIMD and System register 32-bit move on page F3-4447.

 01x 010 Unallocated. -

 10x 010 Unallocated. -

 110 010 Unallocated. -

 111 010 Floating-point move special register on page F3-4448 -

 - 011 Advanced SIMD 8/16/32-bit element move/duplicate on page F3-4448 -

 - 10x Unallocated. -

 - 11x System register 32-bit move on page F3-4449 -

Decode fields
Instruction page

L

 0 VMSR

 1 VMRS

Decode fields
Instruction page

opc1 L opc2

 0xx 0 - VMOV (general-purpose register to scalar)

 - 1 - VMOV (scalar to general-purpose register)

 1xx 0 0x VDUP (general-purpose register)

 1xx 0 1x Unallocated.

Table F3-13 Encoding table for the Advanced SIMD and System register 32-bit move group

Decode fields
Decode group or instruction page Feature

op0 op1

1 1 1 0 1 1 1 0 1 1 1 L reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 L Vn Rt 1 0 1 1 N opc2 1 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
F3-4448 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
System register 32-bit move

This section describes the encoding of the System register 32-bit move instruction class. The encodings in this
section are decoded from Advanced SIMD and System register 32-bit move on page F3-4447.

F3.1.13 Floating-point data-processing

This section describes the encoding of the Floating-point data-processing group. The encodings in this section are
decoded from System register access, Advanced SIMD, and floating-point on page F3-4433.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the
encodings of this group, see About the T32 Advanced SIMD and floating-point instructions and their encoding on
page F3-4491

Decode fields
Instruction page

L

 0 MCR

 1 MRC

1 1 1 0 1 1 1 0 opc1 L CRn Rt 1 1 1 opc2 1 CRm
15 14 13 12 11 10 9 8 7 5 4 3 0 15 12 11 10 9 8 7 5 4 3 0

cp15

Table F3-14 Encoding table for the Floating-point data-processing group

Decode fields
Decode group or instruction page

op0 op1

 1x11 1 Floating-point data-processing (two registers) on page F3-4450

 1x11 0 Floating-point move immediate on page F3-4452

 != 1x11 - Floating-point data-processing (three registers) on page F3-4453

11101110 op0 10 0
15 8 7 4 3 12 11 10 9 7 6 5 4 3 00 15

op1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4449
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Floating-point data-processing (two registers)

This section describes the encoding of the Floating-point data-processing (two registers) instruction class. The
encodings in this section are decoded from Floating-point data-processing on page F3-4449.

1 1 1 0 1 1 1 0 1 D 1 1 o1 opc2 Vd 1 0 size o3 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 10 9 8 7 6 5 4 3 0

Decode fields
Instruction page Feature

o1 opc2 size o3

 - - 00 - Unallocated. -

 0 000 01 0 Unallocated. -

 0 000 01 1 VABS - Half-precision scalar variant FEAT_FP16

 0 000 10 0 VMOV (register) - Single-precision scalar variant -

 0 000 10 1 VABS - Single-precision scalar variant -

 0 000 11 0 VMOV (register) - Double-precision scalar variant -

 0 000 11 1 VABS - Double-precision scalar variant -

 0 001 01 0 VNEG - Half-precision scalar variant FEAT_FP16

 0 001 01 1 VSQRT - Half-precision scalar variant FEAT_FP16

 0 001 10 0 VNEG - Single-precision scalar variant -

 0 001 10 1 VSQRT - Single-precision scalar variant -

 0 001 11 0 VNEG - Double-precision scalar variant -

 0 001 11 1 VSQRT - Double-precision scalar variant -

 0 010 01 - Unallocated. -

 0 010 10 0 VCVTB - Half-precision to single-precision variant -

 0 010 10 1 VCVTT - Half-precision to single-precision variant -

 0 010 11 0 VCVTB - Half-precision to double-precision variant -

 0 010 11 1 VCVTT - Half-precision to double-precision variant -

 0 011 01 0 VCVTB (BFloat16) FEAT_AA32BF16

 0 011 01 1 VCVTT (BFloat16) FEAT_AA32BF16

 0 011 10 0 VCVTB - Single-precision to half-precision variant -

 0 011 10 1 VCVTT - Single-precision to half-precision variant -

 0 011 11 0 VCVTB - Double-precision to half-precision variant -

 0 011 11 1 VCVTT - Double-precision to half-precision variant -

 0 100 01 0 VCMP FEAT_FP16

 0 100 01 1 VCMPE FEAT_FP16
F3-4450 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
 0 100 10 0 VCMP -

 0 100 10 1 VCMPE -

 0 100 11 0 VCMP -

 0 100 11 1 VCMPE -

 0 101 01 0 VCMP FEAT_FP16

 0 101 01 1 VCMPE FEAT_FP16

 0 101 10 0 VCMP -

 0 101 10 1 VCMPE -

 0 101 11 0 VCMP -

 0 101 11 1 VCMPE -

 0 110 01 0 VRINTR - Half-precision scalar variant FEAT_FP16

 0 110 01 1 VRINTZ (floating-point) - Half-precision scalar variant FEAT_FP16

 0 110 10 0 VRINTR - Single-precision scalar variant -

 0 110 10 1 VRINTZ (floating-point) - Single-precision scalar variant -

 0 110 11 0 VRINTR - Double-precision scalar variant -

 0 110 11 1 VRINTZ (floating-point) - Double-precision scalar variant -

 0 111 01 0 VRINTX (floating-point) - Half-precision scalar variant FEAT_FP16

 0 111 01 1 Unallocated. -

 0 111 10 0 VRINTX (floating-point) - Single-precision scalar variant -

 0 111 10 1 VCVT (between double-precision and single-precision) - Single-precision to
double-precision variant

-

 0 111 11 0 VRINTX (floating-point) - Double-precision scalar variant -

 0 111 11 1 VCVT (between double-precision and single-precision) - Double-precision to
single-precision variant

-

 1 000 01 - VCVT (integer to floating-point, floating-point) - Half-precision scalar variant FEAT_FP16

 1 000 10 - VCVT (integer to floating-point, floating-point) - Single-precision scalar variant -

 1 000 11 - VCVT (integer to floating-point, floating-point) - Double-precision scalar
variant

-

 1 001 01 - Unallocated. -

 1 001 10 - Unallocated. -

 1 001 11 0 Unallocated. -

 1 001 11 1 VJCVT FEAT_JSCVT

 1 01x 01 - VCVT (between floating-point and fixed-point, floating-point) FEAT_FP16

Decode fields
Instruction page Feature

o1 opc2 size o3
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4451
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Floating-point move immediate

This section describes the encoding of the Floating-point move immediate instruction class. The encodings in this
section are decoded from Floating-point data-processing on page F3-4449.

 1 01x 10 - VCVT (between floating-point and fixed-point, floating-point) -

 1 01x 11 - VCVT (between floating-point and fixed-point, floating-point) -

 1 100 01 0 VCVTR FEAT_FP16

 1 100 01 1 VCVT (floating-point to integer, floating-point) FEAT_FP16

 1 100 10 0 VCVTR -

 1 100 10 1 VCVT (floating-point to integer, floating-point) -

 1 100 11 0 VCVTR -

 1 100 11 1 VCVT (floating-point to integer, floating-point) -

 1 101 01 0 VCVTR FEAT_FP16

 1 101 01 1 VCVT (floating-point to integer, floating-point) FEAT_FP16

 1 101 10 0 VCVTR -

 1 101 10 1 VCVT (floating-point to integer, floating-point) -

 1 101 11 0 VCVTR -

 1 101 11 1 VCVT (floating-point to integer, floating-point) -

 1 11x 01 - VCVT (between floating-point and fixed-point, floating-point) FEAT_FP16

 1 11x 10 - VCVT (between floating-point and fixed-point, floating-point) -

 1 11x 11 - VCVT (between floating-point and fixed-point, floating-point) -

Decode fields
Instruction page Feature

o1 opc2 size o3

Decode fields
Instruction page Feature

size

 00 Unallocated. -

 01 VMOV (immediate) - Half-precision scalar variant FEAT_FP16

 10 VMOV (immediate) - Single-precision scalar variant -

 11 VMOV (immediate) - Double-precision scalar variant -

1 1 1 0 1 1 1 0 1 D 1 1 imm4H Vd 1 0 size (0) 0 (0) 0 imm4L
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F3-4452 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Floating-point data-processing (three registers)

This section describes the encoding of the Floating-point data-processing (three registers) instruction class. The
encodings in this section are decoded from Floating-point data-processing on page F3-4449.

Decode fields
Instruction page Feature

o0:o1 size o2

 != 111 00 - Unallocated. -

 000 01 0 VMLA (floating-point) - Half-precision scalar variant FEAT_FP16

 000 01 1 VMLS (floating-point) - Half-precision scalar variant FEAT_FP16

 000 10 0 VMLA (floating-point) - Single-precision scalar variant -

 000 10 1 VMLS (floating-point) - Single-precision scalar variant -

 000 11 0 VMLA (floating-point) - Double-precision scalar variant -

 000 11 1 VMLS (floating-point) - Double-precision scalar variant -

 001 01 0 VNMLS - Half-precision scalar variant FEAT_FP16

 001 01 1 VNMLA - Half-precision scalar variant FEAT_FP16

 001 10 0 VNMLS - Single-precision scalar variant -

 001 10 1 VNMLA - Single-precision scalar variant -

 001 11 0 VNMLS - Double-precision scalar variant -

 001 11 1 VNMLA - Double-precision scalar variant -

 010 01 0 VMUL (floating-point) - Half-precision scalar variant FEAT_FP16

 010 01 1 VNMUL - Half-precision scalar variant FEAT_FP16

 010 10 0 VMUL (floating-point) - Single-precision scalar variant -

 010 10 1 VNMUL - Single-precision scalar variant -

 010 11 0 VMUL (floating-point) - Double-precision scalar variant -

 010 11 1 VNMUL - Double-precision scalar variant -

 011 01 0 VADD (floating-point) - Half-precision scalar variant FEAT_FP16

 011 01 1 VSUB (floating-point) - Half-precision scalar variant FEAT_FP16

 011 10 0 VADD (floating-point) - Single-precision scalar variant -

 011 10 1 VSUB (floating-point) - Single-precision scalar variant -

 011 11 0 VADD (floating-point) - Double-precision scalar variant -

 011 11 1 VSUB (floating-point) - Double-precision scalar variant -

 100 01 0 VDIV - Half-precision scalar variant FEAT_FP16

1 1 1 0 1 1 1 0 o0 D o1 Vn Vd 1 0 size N o2 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4453
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.14 Additional Advanced SIMD and floating-point instructions

This section describes the encoding of the Additional Advanced SIMD and floating-point instructions group. The
encodings in this section are decoded from System register access, Advanced SIMD, and floating-point on
page F3-4433.

This decode also imposes the constraint:

• op0<2:1> != 11.

 100 10 0 VDIV - Single-precision scalar variant -

 100 11 0 VDIV - Double-precision scalar variant -

 101 01 0 VFNMS - Half-precision scalar variant FEAT_FP16

 101 01 1 VFNMA - Half-precision scalar variant FEAT_FP16

 101 10 0 VFNMS - Single-precision scalar variant -

 101 10 1 VFNMA - Single-precision scalar variant -

 101 11 0 VFNMS - Double-precision scalar variant -

 101 11 1 VFNMA - Double-precision scalar variant -

 110 01 0 VFMA - Half-precision scalar variant FEAT_FP16

 110 01 1 VFMS - Half-precision scalar variant FEAT_FP16

 110 10 0 VFMA - Single-precision scalar variant -

 110 10 1 VFMS - Single-precision scalar variant -

 110 11 0 VFMA - Double-precision scalar variant -

 110 11 1 VFMS - Double-precision scalar variant -

Decode fields
Instruction page Feature

o0:o1 size o2

111111 op0 op1 1 op3
15 10 9 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0

op5
op4
op2

Table F3-15 Encoding table for the Additional Advanced SIMD and floating-point instructions group

Decode fields
Decode group or instruction page

op0 op1 op2 op3 op4 op5

 0xx - - 0x - - Advanced SIMD three registers of the same length extension on page F3-4455

 100 - 0 != 00 0 0 Floating-point conditional select on page F3-4457

 101 00xxxx 0 != 00 - 0 Floating-point minNum/maxNum on page F3-4457
F3-4454 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Advanced SIMD three registers of the same length extension

This section describes the encoding of the Advanced SIMD three registers of the same length extension instruction
class. The encodings in this section are decoded from Additional Advanced SIMD and floating-point instructions
on page F3-4454.

 101 110000 0 != 00 1 0 Floating-point extraction and insertion on page F3-4458

 101 111xxx 0 != 00 1 0 Floating-point directed convert to integer on page F3-4458

 10x - 0 00 - - Advanced SIMD and floating-point multiply with accumulate on page F3-4459

 10x - 1 0x - - Advanced SIMD and floating-point dot product on page F3-4460

Table F3-15 Encoding table for the Additional Advanced SIMD and floating-point instructions group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2 op3 op4 op5

1 1 1 1 1 1 0 op1 D op2 Vn Vd 1 0 N Q M U Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op4
op3

Decode fields
Instruction page Feature

op1 op2 op3 op4 Q U

 x1 0x 0 0 0 0 VCADD - 64-bit SIMD vector variant FEAT_FCMA

 x1 0x 0 0 0 1 Unallocated. -

 x1 0x 0 0 1 0 VCADD - 128-bit SIMD vector variant FEAT_FCMA

 x1 0x 0 0 1 1 Unallocated. -

 00 0x 0 0 - - Unallocated. -

 00 0x 0 1 - - Unallocated. -

 00 00 1 0 0 0 Unallocated. -

 00 00 1 0 0 1 Unallocated. -

 00 00 1 0 1 0 VMMLA FEAT_AA32BF16

 00 00 1 0 1 1 Unallocated. -

 00 00 1 1 0 0 VDOT (vector) - 64-bit SIMD vector variant FEAT_AA32BF16

 00 00 1 1 0 1 Unallocated. -

 00 00 1 1 1 0 VDOT (vector) - 128-bit SIMD vector variant FEAT_AA32BF16

 00 00 1 1 1 1 Unallocated. -

 00 01 1 0 - - Unallocated. -

 00 01 1 1 - - Unallocated. -
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4455
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
 00 10 0 0 - 1 VFMAL (vector) FEAT_FHM

 00 10 0 1 - - Unallocated. -

 00 10 1 0 0 - Unallocated. -

 00 10 1 0 1 0 VSMMLA FEAT_AA32I8MM

 00 10 1 0 1 1 VUMMLA FEAT_AA32I8MM

 00 10 1 1 0 0 VSDOT (vector) - 64-bit SIMD vector variant FEAT_DotProd

 00 10 1 1 0 1 VUDOT (vector) - 64-bit SIMD vector variant FEAT_DotProd

 00 10 1 1 1 0 VSDOT (vector) - 128-bit SIMD vector variant FEAT_DotProd

 00 10 1 1 1 1 VUDOT (vector) - 128-bit SIMD vector variant FEAT_DotProd

 00 11 0 0 - 1 VFMAB, VFMAT (BFloat16, vector) FEAT_AA32BF16

 00 11 0 1 - - Unallocated. -

 00 11 1 0 - - Unallocated. -

 00 11 1 1 - - Unallocated. -

 01 10 0 0 - 1 VFMSL (vector) FEAT_FHM

 01 10 0 1 - - Unallocated. -

 01 10 1 0 0 - Unallocated. -

 01 10 1 0 1 0 VUSMMLA FEAT_AA32I8MM

 01 10 1 0 1 1 Unallocated. -

 01 10 1 1 0 0 VUSDOT (vector) - 64-bit SIMD vector variant FEAT_AA32I8MM

 01 10 1 1 - 1 Unallocated. -

 01 10 1 1 1 0 VUSDOT (vector) - 128-bit SIMD vector variant FEAT_AA32I8MM

 01 11 0 1 - - Unallocated. -

 01 11 1 0 - - Unallocated. -

 01 11 1 1 - - Unallocated. -

 - 1x 0 0 - 0 VCMLA FEAT_FCMA

 10 11 0 1 - - Unallocated. -

 10 11 1 0 - - Unallocated. -

 10 11 1 1 - - Unallocated. -

 11 11 0 1 - - Unallocated. -

 11 11 1 0 - - Unallocated. -

 11 11 1 1 - - Unallocated. -

Decode fields
Instruction page Feature

op1 op2 op3 op4 Q U
F3-4456 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Floating-point conditional select

This section describes the encoding of the Floating-point conditional select instruction class. The encodings in this
section are decoded from Additional Advanced SIMD and floating-point instructions on page F3-4454.

Floating-point minNum/maxNum

This section describes the encoding of the Floating-point minNum/maxNum instruction class. The encodings in this
section are decoded from Additional Advanced SIMD and floating-point instructions on page F3-4454.

Decode fields
Instruction page Feature

size

 01 VSELEQ, VSELGE, VSELGT, VSELVS - VSELGT,halfprec variant FEAT_FP16

 10 VSELEQ, VSELGE, VSELGT, VSELVS - VSELGT,singleprec variant -

 11 VSELEQ, VSELGE, VSELGT, VSELVS - VSELGT,doubleprec variant -

Decode fields
Instruction page Feature

size op

 01 0 VMAXNM - Half-precision scalar variant FEAT_FP16

 01 1 VMINNM - Half-precision scalar variant FEAT_FP16

 10 0 VMAXNM - Single-precision scalar variant -

 10 1 VMINNM - Single-precision scalar variant -

 11 0 VMAXNM - Double-precision scalar variant -

 11 1 VMINNM - Double-precision scalar variant -

1 1 1 1 1 1 1 0 0 D cc Vn Vd 1 0 !=00 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 !=00 N op M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4457
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Floating-point extraction and insertion

This section describes the encoding of the Floating-point extraction and insertion instruction class. The encodings
in this section are decoded from Additional Advanced SIMD and floating-point instructions on page F3-4454.

Floating-point directed convert to integer

This section describes the encoding of the Floating-point directed convert to integer instruction class. The encodings
in this section are decoded from Additional Advanced SIMD and floating-point instructions on page F3-4454.

Decode fields
Instruction page Feature

size op

 01 - Unallocated. -

 10 0 VMOVX FEAT_FP16

 10 1 VINS FEAT_FP16

 11 - Unallocated. -

Decode fields
Instruction page Feature

o1 RM size op

 0 - != 00 1 Unallocated. -

 0 00 01 0 VRINTA (floating-point) - Half-precision scalar variant FEAT_FP16

 0 00 10 0 VRINTA (floating-point) - Single-precision scalar variant -

 0 00 11 0 VRINTA (floating-point) - Double-precision scalar variant -

 0 01 01 0 VRINTN (floating-point) - Half-precision scalar variant FEAT_FP16

 0 01 10 0 VRINTN (floating-point) - Single-precision scalar variant -

 0 01 11 0 VRINTN (floating-point) - Double-precision scalar variant -

 0 10 01 0 VRINTP (floating-point) - Half-precision scalar variant FEAT_FP16

 0 10 10 0 VRINTP (floating-point) - Single-precision scalar variant -

 0 10 11 0 VRINTP (floating-point) - Double-precision scalar variant -

 0 11 01 0 VRINTM (floating-point) - Half-precision scalar variant FEAT_FP16

 0 11 10 0 VRINTM (floating-point) - Single-precision scalar variant -

 0 11 11 0 VRINTM (floating-point) - Double-precision scalar variant -

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 !=00 op 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 1 1 1 1 0 1 D 1 1 1 o1 RM Vd 1 0 !=00 op 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

size
F3-4458 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Advanced SIMD and floating-point multiply with accumulate

This section describes the encoding of the Advanced SIMD and floating-point multiply with accumulate instruction
class. The encodings in this section are decoded from Additional Advanced SIMD and floating-point instructions
on page F3-4454.

 1 00 01 - VCVTA (floating-point) - Half-precision scalar variant FEAT_FP16

 1 00 10 - VCVTA (floating-point) - Single-precision scalar variant -

 1 00 11 - VCVTA (floating-point) - Double-precision scalar variant -

 1 01 01 - VCVTN (floating-point) - Half-precision scalar variant FEAT_FP16

 1 01 10 - VCVTN (floating-point) - Single-precision scalar variant -

 1 01 11 - VCVTN (floating-point) - Double-precision scalar variant -

 1 10 01 - VCVTP (floating-point) - Half-precision scalar variant FEAT_FP16

 1 10 10 - VCVTP (floating-point) - Single-precision scalar variant -

 1 10 11 - VCVTP (floating-point) - Double-precision scalar variant -

 1 11 01 - VCVTM (floating-point) - Half-precision scalar variant FEAT_FP16

 1 11 10 - VCVTM (floating-point) - Single-precision scalar variant -

 1 11 11 - VCVTM (floating-point) - Double-precision scalar variant -

Decode fields
Instruction page Feature

o1 RM size op

1 1 1 1 1 1 1 0 D op2 Vn Vd 1 0 0 0 N Q M U Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op1

Decode fields
Instruction page Feature

op1 op2 Q U

 0 - - 0 VCMLA (by element) - 128-bit SIMD vector of half-precision floating-point variant FEAT_FCMA

 0 00 - 1 VFMAL (by scalar) FEAT_FHM

 0 01 - 1 VFMSL (by scalar) FEAT_FHM

 0 10 - 1 Unallocated. -

 0 11 - 1 VFMAB, VFMAT (BFloat16, by scalar) FEAT_AA32BF16

 1 - 0 0 VCMLA (by element) - 64-bit SIMD vector of single-precision floating-point variant FEAT_FCMA

 1 - - 1 Unallocated. -

 1 - 1 0 VCMLA (by element) - 128-bit SIMD vector of single-precision floating-point
variant

FEAT_FCMA
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4459
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Advanced SIMD and floating-point dot product

This section describes the encoding of the Advanced SIMD and floating-point dot product instruction class. The
encodings in this section are decoded from Additional Advanced SIMD and floating-point instructions on
page F3-4454.

F3.1.15 Load/store dual, load/store exclusive, load-acquire/store-release, and table branch

This section describes the encoding of the Load/store dual, load/store exclusive, load-acquire/store-release, and
table branch group. The encodings in this section are decoded from 32-bit on page F3-4427.

Decode fields
Instruction page Feature

op1 op2 op4 Q U

 0 00 0 - - Unallocated. -

 0 00 1 0 0 VDOT (by element) - 64-bit SIMD vector variant FEAT_AA32BF16

 0 00 1 - 1 Unallocated. -

 0 00 1 1 0 VDOT (by element) - 128-bit SIMD vector variant FEAT_AA32BF16

 0 01 0 - - Unallocated. -

 0 10 0 - - Unallocated. -

 0 10 1 0 0 VSDOT (by element) - 64-bit SIMD vector variant FEAT_DotProd

 0 10 1 0 1 VUDOT (by element) - 64-bit SIMD vector variant FEAT_DotProd

 0 10 1 1 0 VSDOT (by element) - 128-bit SIMD vector variant FEAT_DotProd

 0 10 1 1 1 VUDOT (by element) - 128-bit SIMD vector variant FEAT_DotProd

 0 11 - - - Unallocated. -

 1 - 0 - - Unallocated. -

 1 00 1 0 0 VUSDOT (by element) - 64-bit SIMD vector variant FEAT_AA32I8MM

 1 00 1 0 1 VSUDOT (by element) - 64-bit SIMD vector variant FEAT_AA32I8MM

 1 00 1 1 0 VUSDOT (by element) - 128-bit SIMD vector variant FEAT_AA32I8MM

 1 00 1 1 1 VSUDOT (by element) - 128-bit SIMD vector variant FEAT_AA32I8MM

 1 01 1 - - Unallocated. -

 1 1x 1 - - Unallocated. -

1 1 1 1 1 1 1 0 D op2 Vn Vd 1 1 0 N Q M U Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op1 op4

1110100 op0 op2 op3
15 9 8 5 4 3 0 15 8 7 5 4 0

op1
F3-4460 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
This decode also imposes the constraint:

• op0<1> == 1.

Load/store exclusive

This section describes the encoding of the Load/store exclusive instruction class. The encodings in this section are
decoded from Load/store dual, load/store exclusive, load-acquire/store-release, and table branch on page F3-4460.

Table F3-16 Encoding table for the Load/store dual, load/store exclusive,
load-acquire/store-release, and table branch group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 0010 - - - Load/store exclusive on page F3-4461

 0110 0 - 000 Unallocated.

 0110 1 - 000 TBB, TBH

 0110 - - 01x Load/store exclusive byte/half/dual on page F3-4462

 0110 - - 1xx Load-acquire / Store-release on page F3-4462

 0x11 - != 1111 - Load/store dual (immediate, post-indexed) on page F3-4463

 1x10 - != 1111 - Load/store dual (immediate) on page F3-4463

 1x11 - != 1111 - Load/store dual (immediate, pre-indexed) on page F3-4464

 != 0xx0 - 1111 - LDRD (literal)

Decode fields
Instruction page

L

 0 STREX

 1 LDREX

1 1 1 0 1 0 0 0 0 1 0 L Rn Rt Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4461
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Load/store exclusive byte/half/dual

This section describes the encoding of the Load/store exclusive byte/half/dual instruction class. The encodings in
this section are decoded from Load/store dual, load/store exclusive, load-acquire/store-release, and table branch
on page F3-4460.

Load-acquire / Store-release

This section describes the encoding of the Load-acquire / Store-release instruction class. The encodings in this
section are decoded from Load/store dual, load/store exclusive, load-acquire/store-release, and table branch on
page F3-4460.

Decode fields
Instruction page

L sz

 0 00 STREXB

 0 01 STREXH

 0 10 Unallocated.

 0 11 STREXD

 1 00 LDREXB

 1 01 LDREXH

 1 10 Unallocated.

 1 11 LDREXD

Decode fields
Instruction page

L op sz

 0 0 00 STLB

 0 0 01 STLH

 0 0 10 STL

 0 0 11 Unallocated.

 0 1 00 STLEXB

 0 1 01 STLEXH

 0 1 10 STLEX

 0 1 11 STLEXD

1 1 1 0 1 0 0 0 1 1 0 L Rn Rt Rt2 0 1 sz Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

1 1 1 0 1 0 0 0 1 1 0 L Rn Rt Rt2 1 op sz Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
F3-4462 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Load/store dual (immediate, post-indexed)

This section describes the encoding of the Load/store dual (immediate, post-indexed) instruction class. The
encodings in this section are decoded from Load/store dual, load/store exclusive, load-acquire/store-release, and
table branch on page F3-4460.

Load/store dual (immediate)

This section describes the encoding of the Load/store dual (immediate) instruction class. The encodings in this
section are decoded from Load/store dual, load/store exclusive, load-acquire/store-release, and table branch on
page F3-4460.

 1 0 00 LDAB

 1 0 01 LDAH

 1 0 10 LDA

 1 0 11 Unallocated.

 1 1 00 LDAEXB

 1 1 01 LDAEXH

 1 1 10 LDAEX

 1 1 11 LDAEXD

Decode fields
Instruction page

L

 0 STRD (immediate)

 1 LDRD (immediate)

Decode fields
Instruction page

L

 0 STRD (immediate)

 1 LDRD (immediate)

Decode fields
Instruction page

L op sz

1 1 1 0 1 0 0 0 U 1 1 L !=1111 Rt Rt2 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

Rn

1 1 1 0 1 0 0 1 U 1 0 L !=1111 Rt Rt2 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4463
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Load/store dual (immediate, pre-indexed)

This section describes the encoding of the Load/store dual (immediate, pre-indexed) instruction class. The
encodings in this section are decoded from Load/store dual, load/store exclusive, load-acquire/store-release, and
table branch on page F3-4460.

F3.1.16 Branches and miscellaneous control

This section describes the encoding of the Branches and miscellaneous control group. The encodings in this section
are decoded from 32-bit on page F3-4427.

Decode fields
Instruction page

L

 0 STRD (immediate)

 1 LDRD (immediate)

1 1 1 0 1 0 0 1 U 1 1 L !=1111 Rt Rt2 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

Rn

Table F3-17 Encoding table for the Branches and miscellaneous control group

Decode fields
Decode group or instruction page

op0 op1 op2 op3 op4 op5

 0 1110 0x 0x0 - 0 MSR (register)

 0 1110 0x 0x0 - 1 MSR (Banked register)

 0 1110 10 0x0 000 - Hints on page F3-4465

 0 1110 10 0x0 != 000 - Change processor state on page F3-4466

 0 1110 11 0x0 - - Miscellaneous system on page F3-4466

 0 1111 00 0x0 - - BXJ

 0 1111 01 0x0 - - Exception return on page F3-4467

 0 1111 1x 0x0 - 0 MRS

 0 1111 1x 0x0 - 1 MRS (Banked register)

 1 1110 00 000 - - DCPS on page F3-4467

 1 1110 00 010 - - Unallocated.

 1 1110 01 0x0 - - Unallocated.

 1 1110 1x 0x0 - - Unallocated.

11110 op1 op2 1 op3 op4
15 11 10 9 6 5 4 3 0 15 14 12 11 10 8 7 6 5 4 0

op0 op5
F3-4464 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Hints

This section describes the encoding of the Hints instruction class. The encodings in this section are decoded from
Branches and miscellaneous control on page F3-4464.

 1 1111 0x 0x0 - - Unallocated.

 1 1111 1x 0x0 - - Exception generation on page F3-4468

 - != 111x - 0x0 - - B - T3 variant

 - - - 0x1 - - B - T4 variant

 - - - 1x0 - - BL, BLX (immediate) - T2 variant

 - - - 1x1 - - BL, BLX (immediate) - T1 variant

Decode fields
Instruction page Feature

hint option

 0000 0000 NOP -

 0000 0001 YIELD -

 0000 0010 WFE -

 0000 0011 WFI -

 0000 0100 SEV -

 0000 0101 SEVL -

 0000 011x Reserved hint, behaves as NOP. -

 0000 1xxx Reserved hint, behaves as NOP. -

 0001 0000 ESB FEAT_RAS

 0001 0001 Reserved hint, behaves as NOP. -

 0001 0010 TSB CSYNC FEAT_TRF

 0001 0011 Reserved hint, behaves as NOP. -

 0001 0100 CSDB -

 0001 0101 Reserved hint, behaves as NOP. -

 0001 011x Reserved hint, behaves as NOP. -

 0001 1xxx Reserved hint, behaves as NOP. -

Table F3-17 Encoding table for the Branches and miscellaneous control group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2 op3 op4 op5

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 hint option
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4465
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Change processor state

This section describes the encoding of the Change processor state instruction class. The encodings in this section
are decoded from Branches and miscellaneous control on page F3-4464.

Miscellaneous system

This section describes the encoding of the Miscellaneous system instruction class. The encodings in this section are
decoded from Branches and miscellaneous control on page F3-4464.

 001x - Reserved hint, behaves as NOP. -

 01xx - Reserved hint, behaves as NOP. -

 10xx - Reserved hint, behaves as NOP. -

 110x - Reserved hint, behaves as NOP. -

 1110 - Reserved hint, behaves as NOP. -

 1111 - DBG -

Decode fields
Instruction page

imod M

 00 1 CPS, CPSID, CPSIE - Change mode variant

 01 - Unallocated.

 10 - CPS, CPSID, CPSIE - Interrupt enable and change mode variant

 11 - CPS, CPSID, CPSIE - Interrupt disable and change mode variant

Decode fields
Instruction page

opc option

 000x - Unallocated.

 0010 - CLREX

 0011 - Unallocated.

 0100 != 0x00 DSB

Decode fields
Instruction page Feature

hint option

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) imod M A I F mode
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) opc option
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 4 3 0
F3-4466 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Exception return

This section describes the encoding of the Exception return instruction class. The encodings in this section are
decoded from Branches and miscellaneous control on page F3-4464.

DCPS

This section describes the encoding of the DCPS instruction class. The encodings in this section are decoded from
Branches and miscellaneous control on page F3-4464.

 0100 0000 SSBB

 0100 0100 PSSBB

 0101 - DMB

 0110 - ISB

 0111 - SB

 1xxx - Unallocated.

Decode fields
Instruction page

Rn:imm8

 != 111000000000 SUB, SUBS (immediate)

 111000000000 ERET

Decode fields
Instruction page

imm4 imm10 opt

 != 1111 - - Unallocated.

 1111 != 0000000000 - Unallocated.

 1111 0000000000 00 Unallocated.

 1111 0000000000 01 DCPS1

 1111 0000000000 10 DCPS2

 1111 0000000000 11 DCPS3

Decode fields
Instruction page

opc option

1 1 1 1 0 0 1 1 1 1 0 1 Rn 1 0 (0) 0 (1) (1) (1) (1) imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 0

1 1 1 1 0 1 1 1 1 0 0 0 imm4 1 0 0 0 imm10 opt
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4467
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Exception generation

This section describes the encoding of the Exception generation instruction class. The encodings in this section are
decoded from Branches and miscellaneous control on page F3-4464.

F3.1.17 Data-processing (plain binary immediate)

This section describes the encoding of the Data-processing (plain binary immediate) group. The encodings in this
section are decoded from 32-bit on page F3-4427.

Decode fields
Instruction page

o1 o2

 0 0 HVC

 0 1 Unallocated.

 1 0 SMC

 1 1 UDF

1 1 1 1 0 1 1 1 1 1 1 o1 imm4 1 0 o2 0 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 0

Table F3-18 Encoding table for the Data-processing (plain binary immediate) group

Decode fields
Decode group or instruction page

op0 op1

 0 0x Data-processing (simple immediate) on page F3-4469

 0 10 Move Wide (16-bit immediate) on page F3-4469

 0 11 Unallocated.

 1 - Saturate, Bitfield on page F3-4470

11110 1 op1 0 0
15 11 10 9 8 7 6 5 4 3 0 15 14 0

op0
F3-4468 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Data-processing (simple immediate)

This section describes the encoding of the Data-processing (simple immediate) instruction class. The encodings in
this section are decoded from Data-processing (plain binary immediate) on page F3-4468.

Move Wide (16-bit immediate)

This section describes the encoding of the Move Wide (16-bit immediate) instruction class. The encodings in this
section are decoded from Data-processing (plain binary immediate) on page F3-4468.

Decode fields
Instruction page

o1 o2 Rn

 0 0 != 11x1 ADD, ADDS (immediate)

 0 0 1101 ADD, ADDS (SP plus immediate)

 0 0 1111 ADR - T3 on page F5-4594

 0 1 - Unallocated.

 1 0 - Unallocated.

 1 1 != 11x1 SUB, SUBS (immediate)

 1 1 1101 SUB, SUBS (SP minus immediate)

 1 1 1111 ADR - T2 on page F5-4594

Decode fields
Instruction page

o1

 0 MOV, MOVS (immediate)

 1 MOVT

1 1 1 1 0 i 1 0 o1 0 o2 0 Rn 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

1 1 1 1 0 i 1 0 o1 1 0 0 imm4 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4469
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Saturate, Bitfield

This section describes the encoding of the Saturate, Bitfield instruction class. The encodings in this section are
decoded from Data-processing (plain binary immediate) on page F3-4468.

F3.1.18 Advanced SIMD element or structure load/store

This section describes the encoding of the Advanced SIMD element or structure load/store group. The encodings in
this section are decoded from 32-bit on page F3-4427.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the
encodings of this group, see About the T32 Advanced SIMD and floating-point instructions and their encoding on
page F3-4491

Decode fields
Instruction page

op1 Rn imm3:imm2

 000 - - SSAT - Logical shift left variant

 001 - != 00000 SSAT - Arithmetic shift right variant

 001 - 00000 SSAT16

 010 - - SBFX

 011 != 1111 - BFI

 011 1111 - BFC

 100 - - USAT - Logical shift left variant

 101 - != 00000 USAT - Arithmetic shift right variant

 101 - 00000 USAT16

 110 - - UBFX

 111 - - Unallocated.

1 1 1 1 0 (0) 1 1 op1 0 Rn 0 imm3 Rd imm2 (0) widthm1
15 14 13 12 11 10 9 8 7 5 4 3 0 15 14 12 11 8 7 6 5 4 0
F3-4470 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Advanced SIMD load/store multiple structures

This section describes the encoding of the Advanced SIMD load/store multiple structures instruction class. The
encodings in this section are decoded from Advanced SIMD element or structure load/store on page F3-4470.

Table F3-19 Encoding table for the Advanced SIMD element or structure load/store group

Decode fields
Decode group or instruction page

op0 op1

 0 - Advanced SIMD load/store multiple structures on page F3-4471

 1 11 Advanced SIMD load single structure to all lanes on page F3-4473

 1 != 11 Advanced SIMD load/store single structure to one lane on page F3-4474

Decode fields
Instruction page

L itype Rm

 0 000x != 11x1 VST4 (multiple 4-element structures)

 0 000x 1101 VST4 (multiple 4-element structures)

 0 000x 1111 VST4 (multiple 4-element structures)

 0 0010 != 11x1 VST1 (multiple single elements)

 0 0010 1101 VST1 (multiple single elements)

 0 0010 1111 VST1 (multiple single elements)

 0 0011 != 11x1 VST2 (multiple 2-element structures)

 0 0011 1101 VST2 (multiple 2-element structures)

 0 0011 1111 VST2 (multiple 2-element structures)

 0 010x != 11x1 VST3 (multiple 3-element structures)

 0 010x 1101 VST3 (multiple 3-element structures)

 0 010x 1111 VST3 (multiple 3-element structures)

 0 0110 != 11x1 VST1 (multiple single elements)

 0 0110 1101 VST1 (multiple single elements)

 0 0110 1111 VST1 (multiple single elements)

11111001 0 op1
15 8 7 6 5 4 3 12 11 10 9 00 15

op0

1 1 1 1 1 0 0 1 0 D L 0 Rn Vd itype size align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4471
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
 0 0111 != 11x1 VST1 (multiple single elements)

 0 0111 1101 VST1 (multiple single elements)

 0 0111 1111 VST1 (multiple single elements)

 0 100x != 11x1 VST2 (multiple 2-element structures)

 0 100x 1101 VST2 (multiple 2-element structures)

 0 100x 1111 VST2 (multiple 2-element structures)

 0 1010 != 11x1 VST1 (multiple single elements)

 0 1010 1101 VST1 (multiple single elements)

 0 1010 1111 VST1 (multiple single elements)

 1 000x != 11x1 VLD4 (multiple 4-element structures)

 1 000x 1101 VLD4 (multiple 4-element structures)

 1 000x 1111 VLD4 (multiple 4-element structures)

 1 0010 != 11x1 VLD1 (multiple single elements)

 1 0010 1101 VLD1 (multiple single elements)

 1 0010 1111 VLD1 (multiple single elements)

 1 0011 != 11x1 VLD2 (multiple 2-element structures)

 1 0011 1101 VLD2 (multiple 2-element structures)

 1 0011 1111 VLD2 (multiple 2-element structures)

 1 010x != 11x1 VLD3 (multiple 3-element structures)

 1 010x 1101 VLD3 (multiple 3-element structures)

 1 010x 1111 VLD3 (multiple 3-element structures)

 - 1011 - Unallocated.

 1 0110 != 11x1 VLD1 (multiple single elements)

 1 0110 1101 VLD1 (multiple single elements)

 1 0110 1111 VLD1 (multiple single elements)

 1 0111 != 11x1 VLD1 (multiple single elements)

 1 0111 1101 VLD1 (multiple single elements)

 1 0111 1111 VLD1 (multiple single elements)

 - 11xx - Unallocated.

 1 100x != 11x1 VLD2 (multiple 2-element structures)

 1 100x 1101 VLD2 (multiple 2-element structures)

 1 100x 1111 VLD2 (multiple 2-element structures)

Decode fields
Instruction page

L itype Rm
F3-4472 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Advanced SIMD load single structure to all lanes

This section describes the encoding of the Advanced SIMD load single structure to all lanes instruction class. The
encodings in this section are decoded from Advanced SIMD element or structure load/store on page F3-4470.

 1 1010 != 11x1 VLD1 (multiple single elements)

 1 1010 1101 VLD1 (multiple single elements)

 1 1010 1111 VLD1 (multiple single elements)

Decode fields
Instruction page

L N a Rm

 0 - - - Unallocated.

 1 00 - != 11x1 VLD1 (single element to all lanes)

 1 00 - 1101 VLD1 (single element to all lanes)

 1 00 - 1111 VLD1 (single element to all lanes)

 1 01 - != 11x1 VLD2 (single 2-element structure to all lanes)

 1 01 - 1101 VLD2 (single 2-element structure to all lanes)

 1 01 - 1111 VLD2 (single 2-element structure to all lanes)

 1 10 0 != 11x1 VLD3 (single 3-element structure to all lanes)

 1 10 0 1101 VLD3 (single 3-element structure to all lanes)

 1 10 0 1111 VLD3 (single 3-element structure to all lanes)

 1 10 1 - Unallocated.

 1 11 - != 11x1 VLD4 (single 4-element structure to all lanes)

 1 11 - 1101 VLD4 (single 4-element structure to all lanes)

 1 11 - 1111 VLD4 (single 4-element structure to all lanes)

Decode fields
Instruction page

L itype Rm

1 1 1 1 1 0 0 1 1 D L 0 Rn Vd 1 1 N size T a Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4473
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Advanced SIMD load/store single structure to one lane

This section describes the encoding of the Advanced SIMD load/store single structure to one lane instruction class.
The encodings in this section are decoded from Advanced SIMD element or structure load/store on page F3-4470.

Decode fields
Instruction page

L size N Rm

 0 00 00 != 11x1 VST1 (single element from one lane)

 0 00 00 1101 VST1 (single element from one lane)

 0 00 00 1111 VST1 (single element from one lane)

 0 00 01 != 11x1 VST2 (single 2-element structure from one lane)

 0 00 01 1101 VST2 (single 2-element structure from one lane)

 0 00 01 1111 VST2 (single 2-element structure from one lane)

 0 00 10 != 11x1 VST3 (single 3-element structure from one lane)

 0 00 10 1101 VST3 (single 3-element structure from one lane)

 0 00 10 1111 VST3 (single 3-element structure from one lane)

 0 00 11 != 11x1 VST4 (single 4-element structure from one lane)

 0 00 11 1101 VST4 (single 4-element structure from one lane)

 0 00 11 1111 VST4 (single 4-element structure from one lane)

 0 01 00 != 11x1 VST1 (single element from one lane)

 0 01 00 1101 VST1 (single element from one lane)

 0 01 00 1111 VST1 (single element from one lane)

 0 01 01 != 11x1 VST2 (single 2-element structure from one lane)

 0 01 01 1101 VST2 (single 2-element structure from one lane)

 0 01 01 1111 VST2 (single 2-element structure from one lane)

 0 01 10 != 11x1 VST3 (single 3-element structure from one lane)

 0 01 10 1101 VST3 (single 3-element structure from one lane)

 0 01 10 1111 VST3 (single 3-element structure from one lane)

 0 01 11 != 11x1 VST4 (single 4-element structure from one lane)

 0 01 11 1101 VST4 (single 4-element structure from one lane)

 0 01 11 1111 VST4 (single 4-element structure from one lane)

 0 10 00 != 11x1 VST1 (single element from one lane)

 0 10 00 1101 VST1 (single element from one lane)

1 1 1 1 1 0 0 1 1 D L 0 Rn Vd !=11 N index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
F3-4474 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
 0 10 00 1111 VST1 (single element from one lane)

 0 10 01 != 11x1 VST2 (single 2-element structure from one lane)

 0 10 01 1101 VST2 (single 2-element structure from one lane)

 0 10 01 1111 VST2 (single 2-element structure from one lane)

 0 10 10 != 11x1 VST3 (single 3-element structure from one lane)

 0 10 10 1101 VST3 (single 3-element structure from one lane)

 0 10 10 1111 VST3 (single 3-element structure from one lane)

 0 10 11 != 11x1 VST4 (single 4-element structure from one lane)

 0 10 11 1101 VST4 (single 4-element structure from one lane)

 0 10 11 1111 VST4 (single 4-element structure from one lane)

 1 00 00 != 11x1 VLD1 (single element to one lane)

 1 00 00 1101 VLD1 (single element to one lane)

 1 00 00 1111 VLD1 (single element to one lane)

 1 00 01 != 11x1 VLD2 (single 2-element structure to one lane)

 1 00 01 1101 VLD2 (single 2-element structure to one lane)

 1 00 01 1111 VLD2 (single 2-element structure to one lane)

 1 00 10 != 11x1 VLD3 (single 3-element structure to one lane)

 1 00 10 1101 VLD3 (single 3-element structure to one lane)

 1 00 10 1111 VLD3 (single 3-element structure to one lane)

 1 00 11 != 11x1 VLD4 (single 4-element structure to one lane)

 1 00 11 1101 VLD4 (single 4-element structure to one lane)

 1 00 11 1111 VLD4 (single 4-element structure to one lane)

 1 01 00 != 11x1 VLD1 (single element to one lane)

 1 01 00 1101 VLD1 (single element to one lane)

 1 01 00 1111 VLD1 (single element to one lane)

 1 01 01 != 11x1 VLD2 (single 2-element structure to one lane)

 1 01 01 1101 VLD2 (single 2-element structure to one lane)

 1 01 01 1111 VLD2 (single 2-element structure to one lane)

 1 01 10 != 11x1 VLD3 (single 3-element structure to one lane)

 1 01 10 1101 VLD3 (single 3-element structure to one lane)

 1 01 10 1111 VLD3 (single 3-element structure to one lane)

 1 01 11 != 11x1 VLD4 (single 4-element structure to one lane)

Decode fields
Instruction page

L size N Rm
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4475
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.19 Load/store single

This section describes the encoding of the Load/store single group. The encodings in this section are decoded from
32-bit on page F3-4427.

This decode also imposes the constraint:

• op0<1>:op1 != 10.

 1 01 11 1101 VLD4 (single 4-element structure to one lane)

 1 01 11 1111 VLD4 (single 4-element structure to one lane)

 1 10 00 != 11x1 VLD1 (single element to one lane)

 1 10 00 1101 VLD1 (single element to one lane)

 1 10 00 1111 VLD1 (single element to one lane)

 1 10 01 != 11x1 VLD2 (single 2-element structure to one lane)

 1 10 01 1101 VLD2 (single 2-element structure to one lane)

 1 10 01 1111 VLD2 (single 2-element structure to one lane)

 1 10 10 != 11x1 VLD3 (single 3-element structure to one lane)

 1 10 10 1101 VLD3 (single 3-element structure to one lane)

 1 10 10 1111 VLD3 (single 3-element structure to one lane)

 1 10 11 != 11x1 VLD4 (single 4-element structure to one lane)

 1 10 11 1101 VLD4 (single 4-element structure to one lane)

 1 10 11 1111 VLD4 (single 4-element structure to one lane)

Decode fields
Instruction page

L size N Rm

Table F3-20 Encoding table for the Load/store single group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 00 - != 1111 000000 Load/store, unsigned (register offset) on page F3-4478

 00 - != 1111 000001 Unallocated.

 00 - != 1111 00001x Unallocated.

 00 - != 1111 0001xx Unallocated.

 00 - != 1111 001xxx Unallocated.

1111100 op0 op2 op3
15 9 8 7 6 5 4 3 0 15 12 11 6 5 0

op1
F3-4476 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
 00 - != 1111 01xxxx Unallocated.

 00 - != 1111 10x0xx Unallocated.

 00 - != 1111 10x1xx Load/store, unsigned (immediate, post-indexed) on page F3-4478

 00 - != 1111 1100xx Load/store, unsigned (negative immediate) on page F3-4479

 00 - != 1111 1110xx Load/store, unsigned (unprivileged) on page F3-4479

 00 - != 1111 11x1xx Load/store, unsigned (immediate, pre-indexed) on page F3-4480

 01 - != 1111 - Load/store, unsigned (positive immediate) on page F3-4480

 0x - 1111 - Load, unsigned (literal) on page F3-4481

 10 1 != 1111 000000 Load/store, signed (register offset) on page F3-4481

 10 1 != 1111 000001 Unallocated.

 10 1 != 1111 00001x Unallocated.

 10 1 != 1111 0001xx Unallocated.

 10 1 != 1111 001xxx Unallocated.

 10 1 != 1111 01xxxx Unallocated.

 10 1 != 1111 10x0xx Unallocated.

 10 1 != 1111 10x1xx Load/store, signed (immediate, post-indexed) on page F3-4482

 10 1 != 1111 1100xx Load/store, signed (negative immediate) on page F3-4482

 10 1 != 1111 1110xx Load/store, signed (unprivileged) on page F3-4483

 10 1 != 1111 11x1xx Load/store, signed (immediate, pre-indexed) on page F3-4483

 11 1 != 1111 - Load/store, signed (positive immediate) on page F3-4484

 1x 1 1111 - Load, signed (literal) on page F3-4484

Table F3-20 Encoding table for the Load/store single group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2 op3
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4477
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Load/store, unsigned (register offset)

This section describes the encoding of the Load/store, unsigned (register offset) instruction class. The encodings in
this section are decoded from Load/store single on page F3-4476.

Load/store, unsigned (immediate, post-indexed)

This section describes the encoding of the Load/store, unsigned (immediate, post-indexed) instruction class. The
encodings in this section are decoded from Load/store single on page F3-4476.

Decode fields
Instruction page

size L Rt

 00 0 - STRB (register)

 00 1 != 1111 LDRB (register)

 00 1 1111 PLD, PLDW (register) - Preload read variant

 01 0 - STRH (register)

 01 1 != 1111 LDRH (register)

 01 1 1111 PLD, PLDW (register) - Preload write variant

 10 0 - STR (register)

 10 1 - LDR (register)

 11 - - Unallocated.

Decode fields
Instruction page

size L

 00 0 STRB (immediate)

 00 1 LDRB (immediate)

 01 0 STRH (immediate)

 01 1 LDRH (immediate)

 10 0 STR (immediate)

 10 1 LDR (immediate)

 11 - Unallocated.

1 1 1 1 1 0 0 0 0 size L !=1111 Rt 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn

1 1 1 1 1 0 0 0 0 size L !=1111 Rt 1 0 U 1 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
F3-4478 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Load/store, unsigned (negative immediate)

This section describes the encoding of the Load/store, unsigned (negative immediate) instruction class. The
encodings in this section are decoded from Load/store single on page F3-4476.

Load/store, unsigned (unprivileged)

This section describes the encoding of the Load/store, unsigned (unprivileged) instruction class. The encodings in
this section are decoded from Load/store single on page F3-4476.

Decode fields
Instruction page

size L Rt

 00 0 - STRB (immediate)

 00 1 != 1111 LDRB (immediate)

 00 1 1111 PLD, PLDW (immediate) - Preload read variant

 01 0 - STRH (immediate)

 01 1 != 1111 LDRH (immediate)

 01 1 1111 PLD, PLDW (immediate) - Preload write variant

 10 0 - STR (immediate)

 10 1 - LDR (immediate)

 11 - - Unallocated.

Decode fields
Instruction page

size L

 00 0 STRBT

 00 1 LDRBT

 01 0 STRHT

 01 1 LDRHT

 10 0 STRT

 10 1 LDRT

 11 - Unallocated.

1 1 1 1 1 0 0 0 0 size L !=1111 Rt 1 1 0 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn

1 1 1 1 1 0 0 0 0 size L !=1111 Rt 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4479
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Load/store, unsigned (immediate, pre-indexed)

This section describes the encoding of the Load/store, unsigned (immediate, pre-indexed) instruction class. The
encodings in this section are decoded from Load/store single on page F3-4476.

Load/store, unsigned (positive immediate)

This section describes the encoding of the Load/store, unsigned (positive immediate) instruction class. The
encodings in this section are decoded from Load/store single on page F3-4476.

Decode fields
Instruction page

size L

 00 0 STRB (immediate)

 00 1 LDRB (immediate)

 01 0 STRH (immediate)

 01 1 LDRH (immediate)

 10 0 STR (immediate)

 10 1 LDR (immediate)

 11 - Unallocated.

Decode fields
Instruction page

size L Rt

 00 0 - STRB (immediate)

 00 1 != 1111 LDRB (immediate)

 00 1 1111 PLD, PLDW (immediate) - Preload read variant

 01 0 - STRH (immediate)

 01 1 != 1111 LDRH (immediate)

 01 1 1111 PLD, PLDW (immediate) - Preload write variant

 10 0 - STR (immediate)

 10 1 - LDR (immediate)

1 1 1 1 1 0 0 0 0 size L !=1111 Rt 1 1 U 1 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn

1 1 1 1 1 0 0 0 1 size L !=1111 Rt imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn
F3-4480 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Load, unsigned (literal)

This section describes the encoding of the Load, unsigned (literal) instruction class. The encodings in this section
are decoded from Load/store single on page F3-4476.

Load/store, signed (register offset)

This section describes the encoding of the Load/store, signed (register offset) instruction class. The encodings in
this section are decoded from Load/store single on page F3-4476.

Decode fields
Instruction page

size L Rt

 0x 1 1111 PLD (literal)

 00 1 != 1111 LDRB (literal)

 01 1 != 1111 LDRH (literal)

 10 1 - LDR (literal)

 11 - - Unallocated.

Decode fields
Instruction page

size Rt

 00 != 1111 LDRSB (register)

 00 1111 PLI (register)

 01 != 1111 LDRSH (register)

 01 1111 Reserved hint, behaves as NOP.

 1x - Unallocated.

1 1 1 1 1 0 0 0 U size L 1 1 1 1 Rt imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 0

1 1 1 1 1 0 0 1 0 size 1 !=1111 Rt 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4481
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Load/store, signed (immediate, post-indexed)

This section describes the encoding of the Load/store, signed (immediate, post-indexed) instruction class. The
encodings in this section are decoded from Load/store single on page F3-4476.

Load/store, signed (negative immediate)

This section describes the encoding of the Load/store, signed (negative immediate) instruction class. The encodings
in this section are decoded from Load/store single on page F3-4476.

Decode fields
Instruction page

size

 00 LDRSB (immediate)

 01 LDRSH (immediate)

 1x Unallocated.

Decode fields
Instruction page

size Rt

 00 != 1111 LDRSB (immediate)

 00 1111 PLI (immediate, literal)

 01 != 1111 LDRSH (immediate)

 01 1111 Reserved hint, behaves as NOP.

 1x - Unallocated.

1 1 1 1 1 0 0 1 0 size 1 !=1111 Rt 1 0 U 1 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn

1 1 1 1 1 0 0 1 0 size 1 !=1111 Rt 1 1 0 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
F3-4482 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Load/store, signed (unprivileged)

This section describes the encoding of the Load/store, signed (unprivileged) instruction class. The encodings in this
section are decoded from Load/store single on page F3-4476.

Load/store, signed (immediate, pre-indexed)

This section describes the encoding of the Load/store, signed (immediate, pre-indexed) instruction class. The
encodings in this section are decoded from Load/store single on page F3-4476.

Decode fields
Instruction page

size

 00 LDRSBT

 01 LDRSHT

 1x Unallocated.

Decode fields
Instruction page

size

 00 LDRSB (immediate)

 01 LDRSH (immediate)

 1x Unallocated.

1 1 1 1 1 0 0 1 0 size 1 !=1111 Rt 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn

1 1 1 1 1 0 0 1 0 size 1 !=1111 Rt 1 1 U 1 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4483
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Load/store, signed (positive immediate)

This section describes the encoding of the Load/store, signed (positive immediate) instruction class. The encodings
in this section are decoded from Load/store single on page F3-4476.

Load, signed (literal)

This section describes the encoding of the Load, signed (literal) instruction class. The encodings in this section are
decoded from Load/store single on page F3-4476.

Decode fields
Instruction page

size Rt

 00 != 1111 LDRSB (immediate)

 00 1111 PLI (immediate, literal)

 01 != 1111 LDRSH (immediate)

 01 1111 Reserved hint, behaves as NOP.

Decode fields
Instruction page

size Rt

 00 != 1111 LDRSB (literal)

 00 1111 PLI (immediate, literal)

 01 != 1111 LDRSH (literal)

 01 1111 Reserved hint, behaves as NOP.

 1x - Unallocated.

1 1 1 1 1 0 0 1 1 size 1 !=1111 Rt imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn

1 1 1 1 1 0 0 1 U size 1 1 1 1 1 Rt imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 0
F3-4484 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.20 Data-processing (register)

This section describes the encoding of the Data-processing (register) group. The encodings in this section are
decoded from 32-bit on page F3-4427.

Register extends

This section describes the encoding of the Register extends instruction class. The encodings in this section are
decoded from Data-processing (register) on page F3-4485.

Table F3-21 Encoding table for the Data-processing (register) group

Decode fields
Decode group or instruction page

op0 op1 op2

 0 1111 0000 MOV, MOVS (register-shifted register) - Flag setting variant

 0 1111 0001 Unallocated.

 0 1111 001x Unallocated.

 0 1111 01xx Unallocated.

 0 1111 1xxx Register extends on page F3-4485

 1 1111 0xxx Parallel add-subtract on page F3-4486

 1 1111 10xx Data-processing (two source registers) on page F3-4488

 1 1111 11xx Unallocated.

 - != 1111 - Unallocated.

Decode fields
Instruction page

op1 U Rn

 00 0 != 1111 SXTAH

 00 0 1111 SXTH

 00 1 != 1111 UXTAH

 00 1 1111 UXTH

 01 0 != 1111 SXTAB16

 01 0 1111 SXTB16

 01 1 != 1111 UXTAB16

11111010 op1 op2
15 8 7 6 0 15 12 11 8 7 4 3 0

op0

1 1 1 1 1 0 1 0 0 op1 U Rn 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4485
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Parallel add-subtract

This section describes the encoding of the Parallel add-subtract instruction class. The encodings in this section are
decoded from Data-processing (register) on page F3-4485.

 01 1 1111 UXTB16

 10 0 != 1111 SXTAB

 10 0 1111 SXTB

 10 1 != 1111 UXTAB

 10 1 1111 UXTB

 11 - - Unallocated.

Decode fields
Instruction page

op1 U H S

 000 0 0 0 SADD8

 000 0 0 1 QADD8

 000 0 1 0 SHADD8

 000 0 1 1 Unallocated.

 000 1 0 0 UADD8

 000 1 0 1 UQADD8

 000 1 1 0 UHADD8

 000 1 1 1 Unallocated.

 001 0 0 0 SADD16

 001 0 0 1 QADD16

 001 0 1 0 SHADD16

 001 0 1 1 Unallocated.

 001 1 0 0 UADD16

 001 1 0 1 UQADD16

 001 1 1 0 UHADD16

 001 1 1 1 Unallocated.

 010 0 0 0 SASX

Decode fields
Instruction page

op1 U Rn

1 1 1 1 1 0 1 0 1 op1 Rn 1 1 1 1 Rd 0 U H S Rm
15 14 13 12 11 10 9 8 7 6 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F3-4486 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
 010 0 0 1 QASX

 010 0 1 0 SHASX

 010 0 1 1 Unallocated.

 010 1 0 0 UASX

 010 1 0 1 UQASX

 010 1 1 0 UHASX

 010 1 1 1 Unallocated.

 100 0 0 0 SSUB8

 100 0 0 1 QSUB8

 100 0 1 0 SHSUB8

 100 0 1 1 Unallocated.

 100 1 0 0 USUB8

 100 1 0 1 UQSUB8

 100 1 1 0 UHSUB8

 100 1 1 1 Unallocated.

 101 0 0 0 SSUB16

 101 0 0 1 QSUB16

 101 0 1 0 SHSUB16

 101 0 1 1 Unallocated.

 101 1 0 0 USUB16

 101 1 0 1 UQSUB16

 101 1 1 0 UHSUB16

 101 1 1 1 Unallocated.

 110 0 0 0 SSAX

 110 0 0 1 QSAX

 110 0 1 0 SHSAX

 110 0 1 1 Unallocated.

 110 1 0 0 USAX

 110 1 0 1 UQSAX

 110 1 1 0 UHSAX

 110 1 1 1 Unallocated.

 111 - - - Unallocated.

Decode fields
Instruction page

op1 U H S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4487
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Data-processing (two source registers)

This section describes the encoding of the Data-processing (two source registers) instruction class. The encodings
in this section are decoded from Data-processing (register) on page F3-4485.

The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in CONSTRAINED
UNPREDICTABLE behavior for A32 and T32 instruction encodings on page K1-8398.

Decode fields
Instruction page

op1 op2

 000 00 QADD

 000 01 QDADD

 000 10 QSUB

 000 11 QDSUB

 001 00 REV

 001 01 REV16

 001 10 RBIT

 001 11 REVSH

 010 00 SEL

 010 01 Unallocated.

 010 1x Unallocated.

 011 00 CLZ

 011 01 Unallocated.

 011 1x Unallocated.

 100 00 CRC32 - CRC32B variant

 100 01 CRC32 - CRC32H variant

 100 10 CRC32 - CRC32W variant

 100 11 CONSTRAINED UNPREDICTABLE

 101 00 CRC32C - CRC32CB variant

 101 01 CRC32C - CRC32CH variant

 101 10 CRC32C - CRC32CW variant

 101 11 CONSTRAINED UNPREDICTABLE

 11x - Unallocated.

1 1 1 1 1 0 1 0 1 op1 Rn 1 1 1 1 Rd 1 0 op2 Rm
15 14 13 12 11 10 9 8 7 6 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F3-4488 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.21 Multiply, multiply accumulate, and absolute difference

This section describes the encoding of the Multiply, multiply accumulate, and absolute difference group. The
encodings in this section are decoded from 32-bit on page F3-4427.

Multiply and absolute difference

This section describes the encoding of the Multiply and absolute difference instruction class. The encodings in this
section are decoded from Multiply, multiply accumulate, and absolute difference.

Table F3-22 Encoding table for the Multiply, multiply accumulate, and absolute difference group

Decode fields
Decode group or instruction page

op0

 00 Multiply and absolute difference on page F3-4489

 01 Unallocated.

 1x Unallocated.

Decode fields
Instruction page

op1 Ra op2

 000 != 1111 00 MLA, MLAS

 000 - 01 MLS

 000 - 1x Unallocated.

 000 1111 00 MUL, MULS

 001 != 1111 00 SMLABB, SMLABT, SMLATB, SMLATT - SMLABB variant

 001 != 1111 01 SMLABB, SMLABT, SMLATB, SMLATT - SMLABT variant

 001 != 1111 10 SMLABB, SMLABT, SMLATB, SMLATT - SMLATB variant

 001 != 1111 11 SMLABB, SMLABT, SMLATB, SMLATT - SMLATT variant

 001 1111 00 SMULBB, SMULBT, SMULTB, SMULTT - SMULBB variant

 001 1111 01 SMULBB, SMULBT, SMULTB, SMULTT - SMULBT variant

 001 1111 10 SMULBB, SMULBT, SMULTB, SMULTT - SMULTB variant

 001 1111 11 SMULBB, SMULBT, SMULTB, SMULTT - SMULTT variant

 010 != 1111 00 SMLAD, SMLADX - SMLAD variant

111110110 op0
15 7 6 8 7 6 5 00 15

1 1 1 1 1 0 1 1 0 op1 Rn Ra Rd 0 0 op2 Rm
15 14 13 12 11 10 9 8 7 6 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4489
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
 010 != 1111 01 SMLAD, SMLADX - SMLADX variant

 010 - 1x Unallocated.

 010 1111 00 SMUAD, SMUADX - SMUAD variant

 010 1111 01 SMUAD, SMUADX - SMUADX variant

 011 != 1111 00 SMLAWB, SMLAWT - SMLAWB variant

 011 != 1111 01 SMLAWB, SMLAWT - SMLAWT variant

 011 - 1x Unallocated.

 011 1111 00 SMULWB, SMULWT - SMULWB variant

 011 1111 01 SMULWB, SMULWT - SMULWT variant

 100 != 1111 00 SMLSD, SMLSDX - SMLSD variant

 100 != 1111 01 SMLSD, SMLSDX - SMLSDX variant

 100 - 1x Unallocated.

 100 1111 00 SMUSD, SMUSDX - SMUSD variant

 100 1111 01 SMUSD, SMUSDX - SMUSDX variant

 101 != 1111 00 SMMLA, SMMLAR - SMMLA variant

 101 != 1111 01 SMMLA, SMMLAR - SMMLAR variant

 101 - 1x Unallocated.

 101 1111 00 SMMUL, SMMULR - SMMUL variant

 101 1111 01 SMMUL, SMMULR - SMMULR variant

 110 - 00 SMMLS, SMMLSR - SMMLS variant

 110 - 01 SMMLS, SMMLSR - SMMLSR variant

 110 - 1x Unallocated.

 111 != 1111 00 USADA8

 111 - 01 Unallocated.

 111 - 1x Unallocated.

 111 1111 00 USAD8

Decode fields
Instruction page

op1 Ra op2
F3-4490 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 Instruction Set Encoding
F3.2 About the T32 Advanced SIMD and floating-point instructions and their encoding
F3.2 About the T32 Advanced SIMD and floating-point instructions and their
encoding

The Advanced SIMD and floating-point instructions are common to the T32 and A32 instruction sets. These
instructions perform Advanced SIMD and floating-point operations on a common register file, the SIMD&FP
register file. This means:

• In general, the instructions that load or store registers in this file, or move data between general-purpose
registers and this register file, are common to the Advanced SIMD and floating-point instructions.

• There are distinct Advanced SIMD data-processing instructions and floating-point data-processing
instructions.

All T32 Advanced SIMD and floating-point instructions have 32-bit encodings. Different groups of these
instructions are decoded from different points in the 32-bit T32 instruction decode structure. Table F3-23 on
page F3-4491 shows these instruction groups, and where each group is decoded from the overall T32 decode
structure:

Table F3-23 Advanced SIMD and floating-point instructions in the T32 decode structure

Advanced SIMD and floating-point instruction group T32 decode is from

 Advanced SIMD and System register load/store and 64-bit move on
page F3-4444

 System register access, Advanced SIMD, and floating-point on
page F3-4433

 Floating-point data-processing on page F3-4449 System register access, Advanced SIMD, and floating-point on
page F3-4433

 Advanced SIMD and System register 32-bit move on page F3-4447 System register access, Advanced SIMD, and floating-point on
page F3-4433

 Advanced SIMD data-processing on page F3-4434 System register access, Advanced SIMD, and floating-point on
page F3-4433

 Advanced SIMD element or structure load/store on page F3-4470 32-bit on page F3-4427
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F3-4491
ID072021 Non-Confidential

T32 Instruction Set Encoding
F3.2 About the T32 Advanced SIMD and floating-point instructions and their encoding
F3-4492 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter F4
A32 Instruction Set Encoding

This chapter describes the encoding of the A32 instruction set. It contains the following sections:

• A32 instruction set encoding on page F4-4494.

• About the A32 Advanced SIMD and floating-point instructions and their encoding on page F4-4562.

In this chapter:

• In the decode tables, an entry of - for a field value means the value of the field does not affect the decoding.

• In the decode diagrams, a shaded field indicates that the bits in that field are not used in that level of decode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4493
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1 A32 instruction set encoding

The A32 instruction stream is a sequence of word-aligned words. Each A32 instruction is either a single 32-bit word
in that stream.

Most A32 instructions can be conditional, with a condition determined by bits[31:28] of the instruction, the cond
field. For more information see The Condition code field in A32 instruction encodings on page F1-4349. This
applies to all instructions except those with the cond field equal to 0b111.

The behavior of an attempt to execute an unallocated instruction is described in UNDEFINED, UNPREDICTABLE,
and CONSTRAINED UNPREDICTABLE instruction set space on page F1-4356.

For more information on A32 instruction encodings see Chapter F1 About the T32 and A32 Instruction
Descriptions.

The A32 instruction encoding is:

F4.1.1 Data-processing and miscellaneous instructions

This section describes the encoding of the Data-processing and miscellaneous instructions group. The encodings in
this section are decoded from A32 instruction set encoding on page F4-4494.

cond op0
31 28 27 25 24 5 4 3 0

op1

Table F4-1 Main encoding table for the A32 instruction set

Decode fields
Decode group or instruction page

cond op0 op1

 != 1111 00x - Data-processing and miscellaneous instructions on page F4-4494

 != 1111 010 - Load/Store Word, Unsigned Byte (immediate, literal) on page F4-4512

 != 1111 011 0 Load/Store Word, Unsigned Byte (register) on page F4-4513

 != 1111 011 1 Media instructions on page F4-4514

 - 10x - Branch, branch with link, and block data transfer on page F4-4521

 - 11x - System register access, Advanced SIMD, floating-point, and Supervisor call on page F4-4523

 1111 0xx - Unconditional instructions on page F4-4541
F4-4494 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Multiply and Accumulate

This section describes the encoding of the Multiply and Accumulate instruction class. The encodings in this section
are decoded from Data-processing and miscellaneous instructions on page F4-4494.

!=1111 00 op1 op3
31 28 27 26 25 24 20 19 8 7 6 5 4 3 0

op0 op4
op2

Table F4-2 Encoding table for the Data-processing and miscellaneous instructions group

Decode fields
Decode group or instruction page

op0 op1 op2 op3 op4

 0 - 1 != 00 1 Extra load/store on page F4-4496

 0 0xxxx 1 00 1 Multiply and Accumulate on page F4-4495

 0 1xxxx 1 00 1 Synchronization primitives and Load-Acquire/Store-Release on page F4-4499

 0 10xx0 0 - - Miscellaneous on page F4-4501

 0 10xx0 1 - 0 Halfword Multiply and Accumulate on page F4-4496

 0 != 10xx0 - - 0 Data-processing register (immediate shift) on page F4-4504

 0 != 10xx0 0 - 1 Data-processing register (register shift) on page F4-4506

 1 - - - - Data-processing immediate on page F4-4509

Decode fields
Instruction page

opc S

 000 - MUL, MULS

 001 - MLA, MLAS

 010 0 UMAAL

 010 1 Unallocated.

 011 0 MLS

 011 1 Unallocated.

 100 - UMULL, UMULLS

!=1111 0 0 0 0 opc S RdHi RdLo Rm 1 0 0 1 Rn
31 28 27 26 25 24 23 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4495
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Halfword Multiply and Accumulate

This section describes the encoding of the Halfword Multiply and Accumulate instruction class. The encodings in
this section are decoded from Data-processing and miscellaneous instructions on page F4-4494.

F4.1.2 Extra load/store

This section describes the encoding of the Extra load/store group. The encodings in this section are decoded from
Data-processing and miscellaneous instructions on page F4-4494.

 101 - UMLAL, UMLALS

 110 - SMULL, SMULLS

 111 - SMLAL, SMLALS

Decode fields
Instruction page

opc M N

 00 - - SMLABB, SMLABT, SMLATB, SMLATT

 01 0 0 SMLAWB, SMLAWT - SMLAWB variant

 01 0 1 SMULWB, SMULWT - SMULWB variant

 01 1 0 SMLAWB, SMLAWT - SMLAWT variant

 01 1 1 SMULWB, SMULWT - SMULWT variant

 10 - - SMLALBB, SMLALBT, SMLALTB, SMLALTT

 11 - - SMULBB, SMULBT, SMULTB, SMULTT

Decode fields
Instruction page

opc S

!=1111 0 0 0 1 0 opc 0 Rd Ra Rm 1 M N 0 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

Table F4-3 Encoding table for the Extra load/store group

Decode fields
Decode group or instruction page

op0

 0 Load/Store Dual, Half, Signed Byte (register) on page F4-4497

 1 Load/Store Dual, Half, Signed Byte (immediate, literal) on page F4-4498

!=1111 000 1 !=00 1
31 28 27 25 24 23 22 21 8 7 6 5 4 3 0

op0
F4-4496 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Load/Store Dual, Half, Signed Byte (register)

This section describes the encoding of the Load/Store Dual, Half, Signed Byte (register) instruction class. The
encodings in this section are decoded from Extra load/store on page F4-4496.

Decode fields
Instruction page

P W o1 op2

 0 0 0 01 STRH (register) - Post-indexed variant

 0 0 0 10 LDRD (register) - Post-indexed variant

 0 0 0 11 STRD (register) - Post-indexed variant

 0 0 1 01 LDRH (register) - Post-indexed variant

 0 0 1 10 LDRSB (register) - Post-indexed variant

 0 0 1 11 LDRSH (register) - Post-indexed variant

 0 1 0 01 STRHT

 0 1 0 10 Unallocated.

 0 1 0 11 Unallocated.

 0 1 1 01 LDRHT

 0 1 1 10 LDRSBT

 0 1 1 11 LDRSHT

 1 - 0 01 STRH (register) - Pre-indexed variant

 1 - 0 10 LDRD (register) - Pre-indexed variant

 1 - 0 11 STRD (register) - Pre-indexed variant

 1 - 1 01 LDRH (register) - Pre-indexed variant

 1 - 1 10 LDRSB (register) - Pre-indexed variant

 1 - 1 11 LDRSH (register) - Pre-indexed variant

!=1111 0 0 0 P U 0 W o1 Rn Rt (0) (0) (0) (0) 1 !=00 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4497
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Load/Store Dual, Half, Signed Byte (immediate, literal)

This section describes the encoding of the Load/Store Dual, Half, Signed Byte (immediate, literal) instruction class.
The encodings in this section are decoded from Extra load/store on page F4-4496.

Decode fields
Instruction page

P:W o1 Rn op2

 - 0 1111 10 LDRD (literal)

 != 01 1 1111 01 LDRH (literal)

 != 01 1 1111 10 LDRSB (literal)

 != 01 1 1111 11 LDRSH (literal)

 00 0 != 1111 10 LDRD (immediate) - Post-indexed variant

 00 0 - 01 STRH (immediate) - Post-indexed variant

 00 0 - 11 STRD (immediate) - Post-indexed variant

 00 1 != 1111 01 LDRH (immediate) - Post-indexed variant

 00 1 != 1111 10 LDRSB (immediate) - Post-indexed variant

 00 1 != 1111 11 LDRSH (immediate) - Post-indexed variant

 01 0 != 1111 10 Unallocated.

 01 0 - 01 STRHT

 01 0 - 11 Unallocated.

 01 1 - 01 LDRHT

 01 1 - 10 LDRSBT

 01 1 - 11 LDRSHT

 10 0 != 1111 10 LDRD (immediate) - Offset variant

 10 0 - 01 STRH (immediate) - Offset variant

 10 0 - 11 STRD (immediate) - Offset variant

 10 1 != 1111 01 LDRH (immediate) - Offset variant

 10 1 != 1111 10 LDRSB (immediate) - Offset variant

 10 1 != 1111 11 LDRSH (immediate) - Offset variant

 11 0 != 1111 10 LDRD (immediate) - Pre-indexed variant

 11 0 - 01 STRH (immediate) - Pre-indexed variant

 11 0 - 11 STRD (immediate) - Pre-indexed variant

!=1111 0 0 0 P U 1 W o1 Rn Rt imm4H 1 !=00 1 imm4L
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond op2
F4-4498 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.3 Synchronization primitives and Load-Acquire/Store-Release

This section describes the encoding of the Synchronization primitives and Load-Acquire/Store-Release group. The
encodings in this section are decoded from Data-processing and miscellaneous instructions on page F4-4494.

Load/Store Exclusive and Load-Acquire/Store-Release

This section describes the encoding of the Load/Store Exclusive and Load-Acquire/Store-Release instruction class.
The encodings in this section are decoded from Synchronization primitives and Load-Acquire/Store-Release.

 11 1 != 1111 01 LDRH (immediate) - Pre-indexed variant

 11 1 != 1111 10 LDRSB (immediate) - Pre-indexed variant

 11 1 != 1111 11 LDRSH (immediate) - Pre-indexed variant

Decode fields
Instruction page

P:W o1 Rn op2

Table F4-4 Encoding table for the Synchronization primitives and Load-Acquire/Store-Release
group

Decode fields
Decode group or instruction page

op0

 0 Unallocated.

 1 Load/Store Exclusive and Load-Acquire/Store-Release on page F4-4499

Decode fields
Instruction page

size L ex ord

 00 0 0 0 STL

 00 0 0 1 Unallocated.

 00 0 1 0 STLEX

 00 0 1 1 STREX

 00 1 0 0 LDA

 00 1 0 1 Unallocated.

 00 1 1 0 LDAEX

!=1111 0001 11 1001
31 28 27 24 23 22 12 11 10 9 8 7 4 3 0

op0

!=1111 0 0 0 1 1 size L Rn xRd (1) (1) ex ord 1 0 0 1 xRt
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4499
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
 00 1 1 1 LDREX

 01 0 0 - Unallocated.

 01 0 1 0 STLEXD

 01 0 1 1 STREXD

 01 1 0 - Unallocated.

 01 1 1 0 LDAEXD

 01 1 1 1 LDREXD

 10 0 0 0 STLB

 10 0 0 1 Unallocated.

 10 0 1 0 STLEXB

 10 0 1 1 STREXB

 10 1 0 0 LDAB

 10 1 0 1 Unallocated.

 10 1 1 0 LDAEXB

 10 1 1 1 LDREXB

 11 0 0 0 STLH

 11 0 0 1 Unallocated.

 11 0 1 0 STLEXH

 11 0 1 1 STREXH

 11 1 0 0 LDAH

 11 1 0 1 Unallocated.

 11 1 1 0 LDAEXH

 11 1 1 1 LDREXH

Decode fields
Instruction page

size L ex ord
F4-4500 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.4 Miscellaneous

This section describes the encoding of the Miscellaneous group. The encodings in this section are decoded from
Data-processing and miscellaneous instructions on page F4-4494.

Table F4-5 Encoding table for the Miscellaneous group

Decode fields
Decode group or instruction page

op0 op1

 00 001 Unallocated.

 00 010 Unallocated.

 00 011 Unallocated.

 00 110 Unallocated.

 01 001 BX

 01 010 BXJ

 01 011 BLX (register)

 01 110 Unallocated.

 10 001 Unallocated.

 10 010 Unallocated.

 10 011 Unallocated.

 10 110 Unallocated.

 11 001 CLZ

 11 010 Unallocated.

 11 011 Unallocated.

 11 110 ERET

 - 111 Exception Generation on page F4-4502

 - 000 Move special register (register) on page F4-4502

 - 100 Cyclic Redundancy Check on page F4-4503

 - 101 Integer Saturating Arithmetic on page F4-4503

!=1111 00010 op0 0 0 op1
31 28 27 23 22 21 20 19 8 7 6 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4501
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Exception Generation

This section describes the encoding of the Exception Generation instruction class. The encodings in this section are
decoded from Miscellaneous on page F4-4501.

Move special register (register)

This section describes the encoding of the Move special register (register) instruction class. The encodings in this
section are decoded from Miscellaneous on page F4-4501.

Decode fields
Instruction page

opc

 00 HLT

 01 BKPT

 10 HVC

 11 SMC

Decode fields
Instruction page

opc B

 x0 0 MRS

 x0 1 MRS (Banked register)

 x1 0 MSR (register)

 x1 1 MSR (Banked register)

!=1111 0 0 0 1 0 opc 0 imm12 0 1 1 1 imm4
31 28 27 26 25 24 23 22 21 20 19 8 7 6 5 4 3 0

cond

!=1111 0 0 0 1 0 opc 0 mask Rd (0) (0) B m 0 0 0 0 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
F4-4502 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Cyclic Redundancy Check

This section describes the encoding of the Cyclic Redundancy Check instruction class. The encodings in this section
are decoded from Miscellaneous on page F4-4501.

The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in CONSTRAINED
UNPREDICTABLE behavior for A32 and T32 instruction encodings on page K1-8398.

Integer Saturating Arithmetic

This section describes the encoding of the Integer Saturating Arithmetic instruction class. The encodings in this
section are decoded from Miscellaneous on page F4-4501.

Decode fields
Instruction page

sz C

 00 0 CRC32 - CRC32B variant

 00 1 CRC32C - CRC32CB variant

 01 0 CRC32 - CRC32H variant

 01 1 CRC32C - CRC32CH variant

 10 0 CRC32 - CRC32W variant

 10 1 CRC32C - CRC32CW variant

 11 - CONSTRAINED UNPREDICTABLE

Decode fields
Instruction page

opc

 00 QADD

 01 QSUB

 10 QDADD

 11 QDSUB

!=1111 0 0 0 1 0 sz 0 Rn Rd (0) (0) C (0) 0 1 0 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

!=1111 0 0 0 1 0 opc 0 Rn Rd (0) (0) (0) (0) 0 1 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4503
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.5 Data-processing register (immediate shift)

This section describes the encoding of the Data-processing register (immediate shift) group. The encodings in this
section are decoded from Data-processing and miscellaneous instructions on page F4-4494.

This decode also imposes the constraint:

• op0:op1 != 100.

Integer Data Processing (three register, immediate shift)

This section describes the encoding of the Integer Data Processing (three register, immediate shift) instruction class.
The encodings in this section are decoded from Data-processing register (immediate shift) on page F4-4504.

Table F4-6 Encoding table for the Data-processing register (immediate shift) group

Decode fields
Decode group or instruction page

op0 op1

 0x - Integer Data Processing (three register, immediate shift) on page F4-4504

 10 1 Integer Test and Compare (two register, immediate shift) on page F4-4505

 11 - Logical Arithmetic (three register, immediate shift) on page F4-4506

!=1111 000 op0 0
31 28 27 25 24 23 22 21 20 19 5 4 3 0

op1

!=1111 0 0 0 0 opc S Rn Rd imm5 stype 0 Rm
31 28 27 26 25 24 23 21 20 19 16 15 12 11 7 6 5 4 3 0

cond

Decode fields
Instruction page

opc S Rn imm5:stype

 000 - - != 0000011 AND, ANDS (register) - ANDS, shift or rotate by value variant

 000 - - 0000011 AND, ANDS (register) - ANDS, rotate right with extend variant

 001 - - != 0000011 EOR, EORS (register) - EORS, shift or rotate by value variant

 001 - - 0000011 EOR, EORS (register) - EORS, rotate right with extend variant

 010 0 != 1101 != 0000011 SUB, SUBS (register) - SUB, shift or rotate by value variant

 010 0 != 1101 0000011 SUB, SUBS (register) - SUB, rotate right with extend variant

 010 0 1101 != 0000011 SUB, SUBS (SP minus register) - SUB, shift or rotate by value variant

 010 0 1101 0000011 SUB, SUBS (SP minus register) - SUB, rotate right with extend variant

 010 1 != 1101 != 0000011 SUB, SUBS (register) - SUBS, shift or rotate by value variant

 010 1 != 1101 0000011 SUB, SUBS (register) - SUBS, rotate right with extend variant

 010 1 1101 != 0000011 SUB, SUBS (SP minus register) - SUBS, shift or rotate by value variant
F4-4504 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Integer Test and Compare (two register, immediate shift)

This section describes the encoding of the Integer Test and Compare (two register, immediate shift) instruction class.
The encodings in this section are decoded from Data-processing register (immediate shift) on page F4-4504.

 010 1 1101 0000011 SUB, SUBS (SP minus register) - SUBS, rotate right with extend variant

 011 - - != 0000011 RSB, RSBS (register) - RSBS, shift or rotate by value variant

 011 - - 0000011 RSB, RSBS (register) - RSBS, rotate right with extend variant

 100 0 != 1101 != 0000011 ADD, ADDS (register) - ADD, shift or rotate by value variant

 100 0 != 1101 0000011 ADD, ADDS (register) - ADD, rotate right with extend variant

 100 0 1101 != 0000011 ADD, ADDS (SP plus register) - ADD, shift or rotate by value variant

 100 0 1101 0000011 ADD, ADDS (SP plus register) - ADD, rotate right with extend variant

 100 1 != 1101 != 0000011 ADD, ADDS (register) - ADDS, shift or rotate by value variant

 100 1 != 1101 0000011 ADD, ADDS (register) - ADDS, rotate right with extend variant

 100 1 1101 != 0000011 ADD, ADDS (SP plus register) - ADDS, shift or rotate by value variant

 100 1 1101 0000011 ADD, ADDS (SP plus register) - ADDS, rotate right with extend variant

 101 - - != 0000011 ADC, ADCS (register) - ADCS, shift or rotate by value variant

 101 - - 0000011 ADC, ADCS (register) - ADCS, rotate right with extend variant

 110 - - != 0000011 SBC, SBCS (register) - SBCS, shift or rotate by value variant

 110 - - 0000011 SBC, SBCS (register) - SBCS, rotate right with extend variant

 111 - - != 0000011 RSC, RSCS (register) - RSCS, shift or rotate by value variant

 111 - - 0000011 RSC, RSCS (register) - RSCS, rotate right with extend variant

Decode fields
Instruction page

opc S Rn imm5:stype

Decode fields
Instruction page

opc imm5:stype

 00 != 0000011 TST (register) - Shift or rotate by value variant

 00 0000011 TST (register) - Rotate right with extend variant

 01 != 0000011 TEQ (register) - Shift or rotate by value variant

 01 0000011 TEQ (register) - Rotate right with extend variant

 10 != 0000011 CMP (register) - Shift or rotate by value variant

!=1111 0 0 0 1 0 opc 1 Rn (0) (0) (0) (0) imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4505
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Logical Arithmetic (three register, immediate shift)

This section describes the encoding of the Logical Arithmetic (three register, immediate shift) instruction class. The
encodings in this section are decoded from Data-processing register (immediate shift) on page F4-4504.

F4.1.6 Data-processing register (register shift)

This section describes the encoding of the Data-processing register (register shift) group. The encodings in this
section are decoded from Data-processing and miscellaneous instructions on page F4-4494.

 10 0000011 CMP (register) - Rotate right with extend variant

 11 != 0000011 CMN (register) - Shift or rotate by value variant

 11 0000011 CMN (register) - Rotate right with extend variant

Decode fields
Instruction page

opc imm5:stype

 00 != 0000011 ORR, ORRS (register) - ORRS, shift or rotate by value variant

 00 0000011 ORR, ORRS (register) - ORRS, rotate right with extend variant

 01 != 0000011 MOV, MOVS (register) - MOVS, shift or rotate by value variant

 01 0000011 MOV, MOVS (register) - MOVS, rotate right with extend variant

 10 != 0000011 BIC, BICS (register) - BICS, shift or rotate by value variant

 10 0000011 BIC, BICS (register) - BICS, rotate right with extend variant

 11 != 0000011 MVN, MVNS (register) - MVNS, shift or rotate by value variant

 11 0000011 MVN, MVNS (register) - MVNS, rotate right with extend variant

Decode fields
Instruction page

opc imm5:stype

!=1111 0 0 0 1 1 opc S Rn Rd imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond

!=1111 000 op0 0 1
31 28 27 25 24 23 22 21 20 19 8 7 6 5 4 3 0

op1
F4-4506 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
This decode also imposes the constraint:

• op0:op1 != 100.

Integer Data Processing (three register, register shift)

This section describes the encoding of the Integer Data Processing (three register, register shift) instruction class.
The encodings in this section are decoded from Data-processing register (register shift) on page F4-4506.

Table F4-7 Encoding table for the Data-processing register (register shift) group

Decode fields
Decode group or instruction page

op0 op1

 0x - Integer Data Processing (three register, register shift) on page F4-4507

 10 1 Integer Test and Compare (two register, register shift) on page F4-4508

 11 - Logical Arithmetic (three register, register shift) on page F4-4508

Decode fields
Instruction page

opc

 000 AND, ANDS (register-shifted register)

 001 EOR, EORS (register-shifted register)

 010 SUB, SUBS (register-shifted register)

 011 RSB, RSBS (register-shifted register)

 100 ADD, ADDS (register-shifted register)

 101 ADC, ADCS (register-shifted register)

 110 SBC, SBCS (register-shifted register)

 111 RSC, RSCS (register-shifted register)

!=1111 0 0 0 0 opc S Rn Rd Rs 0 stype 1 Rm
31 28 27 26 25 24 23 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4507
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Integer Test and Compare (two register, register shift)

This section describes the encoding of the Integer Test and Compare (two register, register shift) instruction class.
The encodings in this section are decoded from Data-processing register (register shift) on page F4-4506.

Logical Arithmetic (three register, register shift)

This section describes the encoding of the Logical Arithmetic (three register, register shift) instruction class. The
encodings in this section are decoded from Data-processing register (register shift) on page F4-4506.

Decode fields
Instruction page

opc

 00 TST (register-shifted register)

 01 TEQ (register-shifted register)

 10 CMP (register-shifted register)

 11 CMN (register-shifted register)

Decode fields
Instruction page

opc

 00 ORR, ORRS (register-shifted register)

 01 MOV, MOVS (register-shifted register)

 10 BIC, BICS (register-shifted register)

 11 MVN, MVNS (register-shifted register)

!=1111 0 0 0 1 0 opc 1 Rn (0) (0) (0) (0) Rs 0 stype 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond

!=1111 0 0 0 1 1 opc S Rn Rd Rs 0 stype 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
F4-4508 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.7 Data-processing immediate

This section describes the encoding of the Data-processing immediate group. The encodings in this section are
decoded from Data-processing and miscellaneous instructions on page F4-4494.

Integer Data Processing (two register and immediate)

This section describes the encoding of the Integer Data Processing (two register and immediate) instruction class.
The encodings in this section are decoded from Data-processing immediate on page F4-4509.

Table F4-8 Encoding table for the Data-processing immediate group

Decode fields
Decode group or instruction page

op0 op1

 0x - Integer Data Processing (two register and immediate) on page F4-4509

 10 00 Move Halfword (immediate) on page F4-4510

 10 10 Move Special Register and Hints (immediate) on page F4-4510

 10 x1 Integer Test and Compare (one register and immediate) on page F4-4511

 11 - Logical Arithmetic (two register and immediate) on page F4-4512

Decode fields
Instruction page

opc S Rn

 000 - - AND, ANDS (immediate)

 001 - - EOR, EORS (immediate)

 010 0 != 11x1 SUB, SUBS (immediate) - SUB variant

 010 0 1101 SUB, SUBS (SP minus immediate) - SUB variant

 010 0 1111 ADR - A2 on page F5-4593

 010 1 != 1101 SUB, SUBS (immediate) - SUBS variant

 010 1 1101 SUB, SUBS (SP minus immediate) - SUBS variant

 011 - - RSB, RSBS (immediate)

 100 0 != 11x1 ADD, ADDS (immediate) - ADD variant

 100 0 1101 ADD, ADDS (SP plus immediate) - ADD variant

 100 0 1111 ADR - A1 on page F5-4593

!=1111 001 op0 op1
31 28 27 25 24 23 22 21 20 19 0

!=1111 0 0 1 0 opc S Rn Rd imm12
31 28 27 26 25 24 23 21 20 19 16 15 12 11 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4509
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Move Halfword (immediate)

This section describes the encoding of the Move Halfword (immediate) instruction class. The encodings in this
section are decoded from Data-processing immediate on page F4-4509.

Move Special Register and Hints (immediate)

This section describes the encoding of the Move Special Register and Hints (immediate) instruction class. The
encodings in this section are decoded from Data-processing immediate on page F4-4509.

 100 1 != 1101 ADD, ADDS (immediate) - ADDS variant

 100 1 1101 ADD, ADDS (SP plus immediate) - ADDS variant

 101 - - ADC, ADCS (immediate)

 110 - - SBC, SBCS (immediate)

 111 - - RSC, RSCS (immediate)

Decode fields
Instruction page

H

 0 MOV, MOVS (immediate)

 1 MOVT

Decode fields
Instruction page Feature

R:imm4 imm12

 != 00000 - MSR (immediate) -

 00000 xxxx00000000 NOP -

 00000 xxxx00000001 YIELD -

 00000 xxxx00000010 WFE -

 00000 xxxx00000011 WFI -

 00000 xxxx00000100 SEV -

 00000 xxxx00000101 SEVL -

Decode fields
Instruction page

opc S Rn

!=1111 0 0 1 1 0 H 0 0 imm4 Rd imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

!=1111 0 0 1 1 0 R 1 0 imm4 (1) (1) (1) (1) imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0

cond
F4-4510 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Integer Test and Compare (one register and immediate)

This section describes the encoding of the Integer Test and Compare (one register and immediate) instruction class.
The encodings in this section are decoded from Data-processing immediate on page F4-4509.

 00000 xxxx0000011x Reserved hint, behaves as NOP. -

 00000 xxxx00001xxx Reserved hint, behaves as NOP. -

 00000 xxxx00010000 ESB FEAT_RAS

 00000 xxxx00010001 Reserved hint, behaves as NOP. -

 00000 xxxx00010010 TSB CSYNC FEAT_TRF

 00000 xxxx00010011 Reserved hint, behaves as NOP. -

 00000 xxxx00010100 CSDB -

 00000 xxxx00010101 Reserved hint, behaves as NOP. -

 00000 xxxx0001011x Reserved hint, behaves as NOP. -

 00000 xxxx00011xxx Reserved hint, behaves as NOP. -

 00000 xxxx001xxxxx Reserved hint, behaves as NOP. -

 00000 xxxx01xxxxxx Reserved hint, behaves as NOP. -

 00000 xxxx10xxxxxx Reserved hint, behaves as NOP. -

 00000 xxxx110xxxxx Reserved hint, behaves as NOP. -

 00000 xxxx1110xxxx Reserved hint, behaves as NOP. -

 00000 xxxx1111xxxx DBG -

Decode fields
Instruction page

opc

 00 TST (immediate)

 01 TEQ (immediate)

 10 CMP (immediate)

 11 CMN (immediate)

Decode fields
Instruction page Feature

R:imm4 imm12

!=1111 0 0 1 1 0 opc 1 Rn (0) (0) (0) (0) imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4511
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Logical Arithmetic (two register and immediate)

This section describes the encoding of the Logical Arithmetic (two register and immediate) instruction class. The
encodings in this section are decoded from Data-processing immediate on page F4-4509.

F4.1.8 Load/Store Word, Unsigned Byte (immediate, literal)

This section describes the encoding of the Load/Store Word, Unsigned Byte (immediate, literal) instruction class.
The encodings in this section are decoded from A32 instruction set encoding on page F4-4494.

Decode fields
Instruction page

opc

 00 ORR, ORRS (immediate)

 01 MOV, MOVS (immediate)

 10 BIC, BICS (immediate)

 11 MVN, MVNS (immediate)

!=1111 0 0 1 1 1 opc S Rn Rd imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

Decode fields
Instruction page

P:W o2 o1 Rn

 != 01 0 1 1111 LDR (literal)

 != 01 1 1 1111 LDRB (literal)

 00 0 0 - STR (immediate) - Post-indexed variant

 00 0 1 != 1111 LDR (immediate) - Post-indexed variant

 00 1 0 - STRB (immediate) - Post-indexed variant

 00 1 1 != 1111 LDRB (immediate) - Post-indexed variant

 01 0 0 - STRT

 01 0 1 - LDRT

 01 1 0 - STRBT

 01 1 1 - LDRBT

 10 0 0 - STR (immediate) - Offset variant

 10 0 1 != 1111 LDR (immediate) - Offset variant

 10 1 0 - STRB (immediate) - Offset variant

!=1111 0 1 0 P U o2 W o1 Rn Rt imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond
F4-4512 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.9 Load/Store Word, Unsigned Byte (register)

This section describes the encoding of the Load/Store Word, Unsigned Byte (register) instruction class. The
encodings in this section are decoded from A32 instruction set encoding on page F4-4494.

 10 1 1 != 1111 LDRB (immediate) - Offset variant

 11 0 0 - STR (immediate) - Pre-indexed variant

 11 0 1 != 1111 LDR (immediate) - Pre-indexed variant

 11 1 0 - STRB (immediate) - Pre-indexed variant

 11 1 1 != 1111 LDRB (immediate) - Pre-indexed variant

Decode fields
Instruction page

P:W o2 o1 Rn

Decode fields
Instruction page

P o2 W o1

 0 0 0 0 STR (register) - Post-indexed variant

 0 0 0 1 LDR (register) - Post-indexed variant

 0 0 1 0 STRT

 0 0 1 1 LDRT

 0 1 0 0 STRB (register) - Post-indexed variant

 0 1 0 1 LDRB (register) - Post-indexed variant

 0 1 1 0 STRBT

 0 1 1 1 LDRBT

 1 0 - 0 STR (register) - Pre-indexed variant

 1 0 - 1 LDR (register) - Pre-indexed variant

 1 1 - 0 STRB (register) - Pre-indexed variant

 1 1 - 1 LDRB (register) - Pre-indexed variant

!=1111 0 1 1 P U o2 W o1 Rn Rt imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4513
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.10 Media instructions

This section describes the encoding of the Media instructions group. The encodings in this section are decoded from
A32 instruction set encoding on page F4-4494.

Table F4-9 Encoding table for the Media instructions group

Decode fields
Decode group or instruction page

op0 op1

 00xxx - Parallel Arithmetic on page F4-4515

 01000 101 SEL

 01000 001 Unallocated.

 01000 xx0 PKHBT, PKHTB

 01001 x01 Unallocated.

 01001 xx0 Unallocated.

 0110x x01 Unallocated.

 0110x xx0 Unallocated.

 01x10 001 Saturate 16-bit on page F4-4517

 01x10 101 Unallocated.

 01x11 x01 Reverse Bit/Byte on page F4-4517

 01x1x xx0 Saturate 32-bit on page F4-4517

 01xxx 111 Unallocated.

 01xxx 011 Extend and Add on page F4-4518

 10xxx - Signed multiply, Divide on page F4-4518

 11000 000 Unsigned Sum of Absolute Differences on page F4-4520

 11000 100 Unallocated.

 11001 x00 Unallocated.

 1101x x00 Unallocated.

 110xx 111 Unallocated.

 1110x 111 Unallocated.

 1110x x00 Bitfield Insert on page F4-4520

 11110 111 Unallocated.

 11111 111 Permanently UNDEFINED on page F4-4520

 1111x x00 Unallocated.

!=1111 011 op0 op1 1
31 28 27 25 24 20 19 8 7 5 4 3 0
F4-4514 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Parallel Arithmetic

This section describes the encoding of the Parallel Arithmetic instruction class. The encodings in this section are
decoded from Media instructions on page F4-4514.

 11x0x x10 Unallocated.

 11x1x x10 Bitfield Extract on page F4-4521

 11xxx 011 Unallocated.

 11xxx x01 Unallocated.

Decode fields
Instruction page

op1 B op2

 000 - - Unallocated.

 001 0 00 SADD16

 001 0 01 SASX

 001 0 10 SSAX

 001 0 11 SSUB16

 001 1 00 SADD8

 001 1 01 Unallocated.

 001 1 10 Unallocated.

 001 1 11 SSUB8

 010 0 00 QADD16

 010 0 01 QASX

 010 0 10 QSAX

 010 0 11 QSUB16

 010 1 00 QADD8

 010 1 01 Unallocated.

 010 1 10 Unallocated.

 010 1 11 QSUB8

 011 0 00 SHADD16

Table F4-9 Encoding table for the Media instructions group (continued)

Decode fields
Decode group or instruction page

op0 op1

!=1111 0 1 1 0 0 op1 Rn Rd (1) (1) (1) (1) B op2 1 Rm
31 28 27 26 25 24 23 22 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4515
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
 011 0 01 SHASX

 011 0 10 SHSAX

 011 0 11 SHSUB16

 011 1 00 SHADD8

 011 1 01 Unallocated.

 011 1 10 Unallocated.

 011 1 11 SHSUB8

 100 - - Unallocated.

 101 0 00 UADD16

 101 0 01 UASX

 101 0 10 USAX

 101 0 11 USUB16

 101 1 00 UADD8

 101 1 01 Unallocated.

 101 1 10 Unallocated.

 101 1 11 USUB8

 110 0 00 UQADD16

 110 0 01 UQASX

 110 0 10 UQSAX

 110 0 11 UQSUB16

 110 1 00 UQADD8

 110 1 01 Unallocated.

 110 1 10 Unallocated.

 110 1 11 UQSUB8

 111 0 00 UHADD16

 111 0 01 UHASX

 111 0 10 UHSAX

 111 0 11 UHSUB16

 111 1 00 UHADD8

 111 1 01 Unallocated.

 111 1 10 Unallocated.

 111 1 11 UHSUB8

Decode fields
Instruction page

op1 B op2
F4-4516 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Saturate 16-bit

This section describes the encoding of the Saturate 16-bit instruction class. The encodings in this section are
decoded from Media instructions on page F4-4514.

Reverse Bit/Byte

This section describes the encoding of the Reverse Bit/Byte instruction class. The encodings in this section are
decoded from Media instructions on page F4-4514.

Saturate 32-bit

This section describes the encoding of the Saturate 32-bit instruction class. The encodings in this section are
decoded from Media instructions on page F4-4514.

Decode fields
Instruction page

U

 0 SSAT16

 1 USAT16

Decode fields
Instruction page

o1 o2

 0 0 REV

 0 1 REV16

 1 0 RBIT

 1 1 REVSH

Decode fields
Instruction page

U

 0 SSAT

 1 USAT

!=1111 0 1 1 0 1 U 1 0 sat_imm Rd (1) (1) (1) (1) 0 0 1 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

!=1111 0 1 1 0 1 o1 1 1 (1) (1) (1) (1) Rd (1) (1) (1) (1) o2 0 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

!=1111 0 1 1 0 1 U 1 sat_imm Rd imm5 sh 0 1 Rn
31 28 27 26 25 24 23 22 21 20 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4517
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Extend and Add

This section describes the encoding of the Extend and Add instruction class. The encodings in this section are
decoded from Media instructions on page F4-4514.

Signed multiply, Divide

This section describes the encoding of the Signed multiply, Divide instruction class. The encodings in this section
are decoded from Media instructions on page F4-4514.

Decode fields
Instruction page

U op Rn

 0 00 != 1111 SXTAB16

 0 00 1111 SXTB16

 0 10 != 1111 SXTAB

 0 10 1111 SXTB

 0 11 != 1111 SXTAH

 0 11 1111 SXTH

 1 00 != 1111 UXTAB16

 1 00 1111 UXTB16

 1 10 != 1111 UXTAB

 1 10 1111 UXTB

 1 11 != 1111 UXTAH

 1 11 1111 UXTH

Decode fields
Instruction page

op1 Ra op2

 000 != 1111 000 SMLAD, SMLADX - SMLAD variant

 000 != 1111 001 SMLAD, SMLADX - SMLADX variant

 000 != 1111 010 SMLSD, SMLSDX - SMLSD variant

 000 != 1111 011 SMLSD, SMLSDX - SMLSDX variant

 000 - 1xx Unallocated.

!=1111 0 1 1 0 1 U op Rn Rd rotate (0) (0) 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

!=1111 0 1 1 1 0 op1 Rd Ra Rm op2 1 Rn
31 28 27 26 25 24 23 22 20 19 16 15 12 11 8 7 5 4 3 0

cond
F4-4518 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
 000 1111 000 SMUAD, SMUADX - SMUAD variant

 000 1111 001 SMUAD, SMUADX - SMUADX variant

 000 1111 010 SMUSD, SMUSDX - SMUSD variant

 000 1111 011 SMUSD, SMUSDX - SMUSDX variant

 001 - 000 SDIV

 001 - != 000 Unallocated.

 010 - - Unallocated.

 011 - 000 UDIV

 011 - != 000 Unallocated.

 100 - 000 SMLALD, SMLALDX - SMLALD variant

 100 - 001 SMLALD, SMLALDX - SMLALDX variant

 100 - 010 SMLSLD, SMLSLDX - SMLSLD variant

 100 - 011 SMLSLD, SMLSLDX - SMLSLDX variant

 100 - 1xx Unallocated.

 101 != 1111 000 SMMLA, SMMLAR - SMMLA variant

 101 != 1111 001 SMMLA, SMMLAR - SMMLAR variant

 101 - 01x Unallocated.

 101 - 10x Unallocated.

 101 - 110 SMMLS, SMMLSR - SMMLS variant

 101 - 111 SMMLS, SMMLSR - SMMLSR variant

 101 1111 000 SMMUL, SMMULR - SMMUL variant

 101 1111 001 SMMUL, SMMULR - SMMULR variant

 11x - - Unallocated.

Decode fields
Instruction page

op1 Ra op2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4519
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Unsigned Sum of Absolute Differences

This section describes the encoding of the Unsigned Sum of Absolute Differences instruction class. The encodings
in this section are decoded from Media instructions on page F4-4514.

Bitfield Insert

This section describes the encoding of the Bitfield Insert instruction class. The encodings in this section are decoded
from Media instructions on page F4-4514.

Permanently UNDEFINED

This section describes the encoding of the Permanently UNDEFINED instruction class. The encodings in this
section are decoded from Media instructions on page F4-4514.

Decode fields
Instruction page

Ra

 != 1111 USADA8

 1111 USAD8

Decode fields
Instruction page

Rn

 != 1111 BFI

 1111 BFC

Decode fields
Instruction page

cond

 0xxx Unallocated.

 10xx Unallocated.

 110x Unallocated.

 1110 UDF

!=1111 0 1 1 1 1 0 0 0 Rd Ra Rm 0 0 0 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

!=1111 0 1 1 1 1 1 0 msb Rd lsb 0 0 1 Rn
31 28 27 26 25 24 23 22 21 20 16 15 12 11 7 6 5 4 3 0

cond

!=1111 0 1 1 1 1 1 1 1 imm12 1 1 1 1 imm4
31 28 27 26 25 24 23 22 21 20 19 8 7 6 5 4 3 0

cond
F4-4520 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Bitfield Extract

This section describes the encoding of the Bitfield Extract instruction class. The encodings in this section are
decoded from Media instructions on page F4-4514.

F4.1.11 Branch, branch with link, and block data transfer

This section describes the encoding of the Branch, branch with link, and block data transfer group. The encodings
in this section are decoded from A32 instruction set encoding on page F4-4494.

Decode fields
Instruction page

U

 0 SBFX

 1 UBFX

!=1111 0 1 1 1 1 U 1 widthm1 Rd lsb 1 0 1 Rn
31 28 27 26 25 24 23 22 21 20 16 15 12 11 7 6 5 4 3 0

cond

Table F4-10 Encoding table for the Branch, branch with link, and block data transfer group

Decode fields
Decode group or instruction page

cond op0

 1111 0 Exception Save/Restore on page F4-4522

 != 1111 0 Load/Store Multiple on page F4-4522

 - 1 Branch (immediate) on page F4-4523

cond 10
31 28 27 26 25 24 0

op0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4521
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Exception Save/Restore

This section describes the encoding of the Exception Save/Restore instruction class. The encodings in this section
are decoded from Branch, branch with link, and block data transfer on page F4-4521.

Load/Store Multiple

This section describes the encoding of the Load/Store Multiple instruction class. The encodings in this section are
decoded from Branch, branch with link, and block data transfer on page F4-4521.

Decode fields
Instruction page

P U S L

 - - 0 0 Unallocated.

 0 0 0 1 RFE, RFEDA, RFEDB, RFEIA, RFEIB - Decrement After variant

 0 0 1 0 SRS, SRSDA, SRSDB, SRSIA, SRSIB - Decrement After variant

 0 1 0 1 RFE, RFEDA, RFEDB, RFEIA, RFEIB - Increment After variant

 0 1 1 0 SRS, SRSDA, SRSDB, SRSIA, SRSIB - Increment After variant

 1 0 0 1 RFE, RFEDA, RFEDB, RFEIA, RFEIB - Decrement Before variant

 1 0 1 0 SRS, SRSDA, SRSDB, SRSIA, SRSIB - Decrement Before variant

 - - 1 1 Unallocated.

 1 1 0 1 RFE, RFEDA, RFEDB, RFEIA, RFEIB - Increment Before variant

 1 1 1 0 SRS, SRSDA, SRSDB, SRSIA, SRSIB - Increment Before variant

Decode fields
Instruction page

P U op L register_list

 0 0 0 0 - STMDA, STMED

 0 0 0 1 - LDMDA, LDMFA

 0 1 0 0 - STM, STMIA, STMEA

 0 1 0 1 - LDM, LDMIA, LDMFD

 - - 1 0 - STM (User registers)

 1 0 0 0 - STMDB, STMFD

 1 0 0 1 - LDMDB, LDMEA

1 1 1 1 1 0 0 P U S W L Rn op mode
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 5 4 0

!=1111 1 0 0 P U op W L Rn register_list
31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond
F4-4522 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Branch (immediate)

This section describes the encoding of the Branch (immediate) instruction class. The encodings in this section are
decoded from Branch, branch with link, and block data transfer on page F4-4521.

F4.1.12 System register access, Advanced SIMD, floating-point, and Supervisor call

This section describes the encoding of the System register access, Advanced SIMD, floating-point, and Supervisor
call group. The encodings in this section are decoded from A32 instruction set encoding on page F4-4494.

 - - 1 1 0xxxxxxxxxxxxxxx LDM (User registers)

 1 1 0 0 - STMIB, STMFA

 1 1 0 1 - LDMIB, LDMED

 - - 1 1 1xxxxxxxxxxxxxxx LDM (exception return)

Decode fields
Instruction page

cond H

 != 1111 0 B

 != 1111 1 BL, BLX (immediate) - A1 on page F5-4631

 1111 - BL, BLX (immediate) - A2 on page F5-4631

Decode fields
Instruction page

P U op L register_list

cond 1 0 1 H imm24
31 28 27 26 25 24 23 0

cond 11 op0 op1
31 28 27 26 25 24 23 12 11 10 9 5 4 3 0

op2

Table F4-11 Encoding table for the System register access, Advanced SIMD, floating-point, and Supervisor call
group

Decode fields
Decode group or instruction page

cond op0 op1 op2

 - 0x 0x - Unallocated.

 - 10 0x - Unallocated.

 - 11 - - Supervisor call on page F4-4524

 1111 != 11 1x - Unconditional Advanced SIMD and floating-point instructions on page F4-4524

 != 1111 0x 1x - Advanced SIMD and System register load/store and 64-bit move on page F4-4530
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4523
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.13 Supervisor call

This section describes the encoding of the Supervisor call group. The encodings in this section are decoded from
System register access, Advanced SIMD, floating-point, and Supervisor call on page F4-4523.

F4.1.14 Unconditional Advanced SIMD and floating-point instructions

This section describes the encoding of the Unconditional Advanced SIMD and floating-point instructions group.
The encodings in this section are decoded from System register access, Advanced SIMD, floating-point, and
Supervisor call on page F4-4523.

 != 1111 10 1x 1 Advanced SIMD and System register 32-bit move on page F4-4534

 != 1111 10 10 0 Floating-point data-processing on page F4-4536

 != 1111 10 11 0 Unallocated.

Table F4-11 Encoding table for the System register access, Advanced SIMD, floating-point, and Supervisor call group
(continued)

Decode fields
Decode group or instruction page

cond op0 op1 op2

Table F4-12 Encoding table for the Supervisor call group

Decode fields
Decode group or instruction page

cond

 1111 Unallocated.

 != 1111 SVC

cond 1111
31 28 27 24 23 0

111111 op0 op1 1 op3
31 26 25 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

op5
op4
op2
F4-4524 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
This decode also imposes the constraint:

• op0<2:1> != 11.

Advanced SIMD three registers of the same length extension

This section describes the encoding of the Advanced SIMD three registers of the same length extension instruction
class. The encodings in this section are decoded from Unconditional Advanced SIMD and floating-point
instructions on page F4-4524.

Table F4-13 Encoding table for the Unconditional Advanced SIMD and floating-point instructions group

Decode fields
Decode group or instruction page

op0 op1 op2 op3 op4 op5

 0xx - - 0x - - Advanced SIMD three registers of the same length extension on page F4-4525

 100 - 0 != 00 0 0 Floating-point conditional select on page F4-4527

 101 00xxxx 0 != 00 - 0 Floating-point minNum/maxNum on page F4-4527

 101 110000 0 != 00 1 0 Floating-point extraction and insertion on page F4-4528

 101 111xxx 0 != 00 1 0 Floating-point directed convert to integer on page F4-4528

 10x - 0 00 - - Advanced SIMD and floating-point multiply with accumulate on page F4-4529

 10x - 1 0x - - Advanced SIMD and floating-point dot product on page F4-4530

1 1 1 1 1 1 0 op1 D op2 Vn Vd 1 0 N Q M U Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op4
op3

Decode fields
Instruction page Feature

op1 op2 op3 op4 Q U

 x1 0x 0 0 0 0 VCADD - 64-bit SIMD vector variant FEAT_FCMA

 x1 0x 0 0 0 1 Unallocated. -

 x1 0x 0 0 1 0 VCADD - 128-bit SIMD vector variant FEAT_FCMA

 x1 0x 0 0 1 1 Unallocated. -

 00 0x 0 0 - - Unallocated. -

 00 0x 0 1 - - Unallocated. -

 00 00 1 0 0 0 Unallocated. -

 00 00 1 0 0 1 Unallocated. -

 00 00 1 0 1 0 VMMLA FEAT_AA32BF16

 00 00 1 0 1 1 Unallocated. -

 00 00 1 1 0 0 VDOT (vector) - 64-bit SIMD vector variant FEAT_AA32BF16
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4525
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
 00 00 1 1 0 1 Unallocated. -

 00 00 1 1 1 0 VDOT (vector) - 128-bit SIMD vector variant FEAT_AA32BF16

 00 00 1 1 1 1 Unallocated. -

 00 01 1 0 - - Unallocated. -

 00 01 1 1 - - Unallocated. -

 00 10 0 0 - 1 VFMAL (vector) FEAT_FHM

 00 10 0 1 - - Unallocated. -

 00 10 1 0 0 - Unallocated. -

 00 10 1 0 1 0 VSMMLA FEAT_AA32I8MM

 00 10 1 0 1 1 VUMMLA FEAT_AA32I8MM

 00 10 1 1 0 0 VSDOT (vector) - 64-bit SIMD vector variant FEAT_DotProd

 00 10 1 1 0 1 VUDOT (vector) - 64-bit SIMD vector variant FEAT_DotProd

 00 10 1 1 1 0 VSDOT (vector) - 128-bit SIMD vector variant FEAT_DotProd

 00 10 1 1 1 1 VUDOT (vector) - 128-bit SIMD vector variant FEAT_DotProd

 00 11 0 0 - 1 VFMAB, VFMAT (BFloat16, vector) FEAT_AA32BF16

 00 11 0 1 - - Unallocated. -

 00 11 1 0 - - Unallocated. -

 00 11 1 1 - - Unallocated. -

 01 10 0 0 - 1 VFMSL (vector) FEAT_FHM

 01 10 0 1 - - Unallocated. -

 01 10 1 0 0 - Unallocated. -

 01 10 1 0 1 0 VUSMMLA FEAT_AA32I8MM

 01 10 1 0 1 1 Unallocated. -

 01 10 1 1 0 0 VUSDOT (vector) - 64-bit SIMD vector variant FEAT_AA32I8MM

 01 10 1 1 - 1 Unallocated. -

 01 10 1 1 1 0 VUSDOT (vector) - 128-bit SIMD vector variant FEAT_AA32I8MM

 01 11 0 1 - - Unallocated. -

 01 11 1 0 - - Unallocated. -

 01 11 1 1 - - Unallocated. -

 - 1x 0 0 - 0 VCMLA FEAT_FCMA

 10 11 0 1 - - Unallocated. -

 10 11 1 0 - - Unallocated. -

Decode fields
Instruction page Feature

op1 op2 op3 op4 Q U
F4-4526 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Floating-point conditional select

This section describes the encoding of the Floating-point conditional select instruction class. The encodings in this
section are decoded from Unconditional Advanced SIMD and floating-point instructions on page F4-4524.

Floating-point minNum/maxNum

This section describes the encoding of the Floating-point minNum/maxNum instruction class. The encodings in this
section are decoded from Unconditional Advanced SIMD and floating-point instructions on page F4-4524.

 10 11 1 1 - - Unallocated. -

 11 11 0 1 - - Unallocated. -

 11 11 1 0 - - Unallocated. -

 11 11 1 1 - - Unallocated. -

Decode fields
Instruction page Feature

op1 op2 op3 op4 Q U

Decode fields
Instruction page Feature

size

 01 VSELEQ, VSELGE, VSELGT, VSELVS - VSELGT,halfprec variant FEAT_FP16

 10 VSELEQ, VSELGE, VSELGT, VSELVS - VSELGT,singleprec variant -

 11 VSELEQ, VSELGE, VSELGT, VSELVS - VSELGT,doubleprec variant -

Decode fields
Instruction page Feature

size op

 01 0 VMAXNM - Half-precision scalar variant FEAT_FP16

 01 1 VMINNM - Half-precision scalar variant FEAT_FP16

 10 0 VMAXNM - Single-precision scalar variant -

 10 1 VMINNM - Single-precision scalar variant -

 11 0 VMAXNM - Double-precision scalar variant -

 11 1 VMINNM - Double-precision scalar variant -

1 1 1 1 1 1 1 0 0 D cc Vn Vd 1 0 !=00 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 !=00 N op M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4527
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Floating-point extraction and insertion

This section describes the encoding of the Floating-point extraction and insertion instruction class. The encodings
in this section are decoded from Unconditional Advanced SIMD and floating-point instructions on page F4-4524.

Floating-point directed convert to integer

This section describes the encoding of the Floating-point directed convert to integer instruction class. The encodings
in this section are decoded from Unconditional Advanced SIMD and floating-point instructions on page F4-4524.

Decode fields
Instruction page Feature

size op

 01 - Unallocated. -

 10 0 VMOVX FEAT_FP16

 10 1 VINS FEAT_FP16

 11 - Unallocated. -

Decode fields
Instruction page Feature

o1 RM size op

 0 - != 00 1 Unallocated. -

 0 00 01 0 VRINTA (floating-point) - Half-precision scalar variant FEAT_FP16

 0 00 10 0 VRINTA (floating-point) - Single-precision scalar variant -

 0 00 11 0 VRINTA (floating-point) - Double-precision scalar variant -

 0 01 01 0 VRINTN (floating-point) - Half-precision scalar variant FEAT_FP16

 0 01 10 0 VRINTN (floating-point) - Single-precision scalar variant -

 0 01 11 0 VRINTN (floating-point) - Double-precision scalar variant -

 0 10 01 0 VRINTP (floating-point) - Half-precision scalar variant FEAT_FP16

 0 10 10 0 VRINTP (floating-point) - Single-precision scalar variant -

 0 10 11 0 VRINTP (floating-point) - Double-precision scalar variant -

 0 11 01 0 VRINTM (floating-point) - Half-precision scalar variant FEAT_FP16

 0 11 10 0 VRINTM (floating-point) - Single-precision scalar variant -

 0 11 11 0 VRINTM (floating-point) - Double-precision scalar variant -

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 !=00 op 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 1 1 1 1 0 1 D 1 1 1 o1 RM Vd 1 0 !=00 op 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

size
F4-4528 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Advanced SIMD and floating-point multiply with accumulate

This section describes the encoding of the Advanced SIMD and floating-point multiply with accumulate instruction
class. The encodings in this section are decoded from Unconditional Advanced SIMD and floating-point
instructions on page F4-4524.

 1 00 01 - VCVTA (floating-point) - Half-precision scalar variant FEAT_FP16

 1 00 10 - VCVTA (floating-point) - Single-precision scalar variant -

 1 00 11 - VCVTA (floating-point) - Double-precision scalar variant -

 1 01 01 - VCVTN (floating-point) - Half-precision scalar variant FEAT_FP16

 1 01 10 - VCVTN (floating-point) - Single-precision scalar variant -

 1 01 11 - VCVTN (floating-point) - Double-precision scalar variant -

 1 10 01 - VCVTP (floating-point) - Half-precision scalar variant FEAT_FP16

 1 10 10 - VCVTP (floating-point) - Single-precision scalar variant -

 1 10 11 - VCVTP (floating-point) - Double-precision scalar variant -

 1 11 01 - VCVTM (floating-point) - Half-precision scalar variant FEAT_FP16

 1 11 10 - VCVTM (floating-point) - Single-precision scalar variant -

 1 11 11 - VCVTM (floating-point) - Double-precision scalar variant -

Decode fields
Instruction page Feature

o1 RM size op

1 1 1 1 1 1 1 0 D op2 Vn Vd 1 0 0 0 N Q M U Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op1

Decode fields
Instruction page Feature

op1 op2 Q U

 0 - - 0 VCMLA (by element) - 128-bit SIMD vector of half-precision floating-point variant FEAT_FCMA

 0 00 - 1 VFMAL (by scalar) FEAT_FHM

 0 01 - 1 VFMSL (by scalar) FEAT_FHM

 0 10 - 1 Unallocated. -

 0 11 - 1 VFMAB, VFMAT (BFloat16, by scalar) FEAT_AA32BF16

 1 - 0 0 VCMLA (by element) - 64-bit SIMD vector of single-precision floating-point variant FEAT_FCMA

 1 - - 1 Unallocated. -

 1 - 1 0 VCMLA (by element) - 128-bit SIMD vector of single-precision floating-point
variant

FEAT_FCMA
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4529
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Advanced SIMD and floating-point dot product

This section describes the encoding of the Advanced SIMD and floating-point dot product instruction class. The
encodings in this section are decoded from Unconditional Advanced SIMD and floating-point instructions on
page F4-4524.

F4.1.15 Advanced SIMD and System register load/store and 64-bit move

This section describes the encoding of the Advanced SIMD and System register load/store and 64-bit move group.
The encodings in this section are decoded from System register access, Advanced SIMD, floating-point, and
Supervisor call on page F4-4523.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the
encodings of this group, see About the A32 Advanced SIMD and floating-point instructions and their encoding on
page F4-4562

Decode fields
Instruction page Feature

op1 op2 op4 Q U

 0 00 0 - - Unallocated. -

 0 00 1 0 0 VDOT (by element) - 64-bit SIMD vector variant FEAT_AA32BF16

 0 00 1 - 1 Unallocated. -

 0 00 1 1 0 VDOT (by element) - 128-bit SIMD vector variant FEAT_AA32BF16

 0 01 0 - - Unallocated. -

 0 10 0 - - Unallocated. -

 0 10 1 0 0 VSDOT (by element) - 64-bit SIMD vector variant FEAT_DotProd

 0 10 1 0 1 VUDOT (by element) - 64-bit SIMD vector variant FEAT_DotProd

 0 10 1 1 0 VSDOT (by element) - 128-bit SIMD vector variant FEAT_DotProd

 0 10 1 1 1 VUDOT (by element) - 128-bit SIMD vector variant FEAT_DotProd

 0 11 - - - Unallocated. -

 1 - 0 - - Unallocated. -

 1 00 1 0 0 VUSDOT (by element) - 64-bit SIMD vector variant FEAT_AA32I8MM

 1 00 1 0 1 VSUDOT (by element) - 64-bit SIMD vector variant FEAT_AA32I8MM

 1 00 1 1 0 VUSDOT (by element) - 128-bit SIMD vector variant FEAT_AA32I8MM

 1 00 1 1 1 VSUDOT (by element) - 128-bit SIMD vector variant FEAT_AA32I8MM

 1 01 1 - - Unallocated. -

 1 1x 1 - - Unallocated. -

1 1 1 1 1 1 1 0 D op2 Vn Vd 1 1 0 N Q M U Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op1 op4
F4-4530 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Advanced SIMD and floating-point 64-bit move

This section describes the encoding of the Advanced SIMD and floating-point 64-bit move instruction class. The
encodings in this section are decoded from Advanced SIMD and System register load/store and 64-bit move on
page F4-4530.

Table F4-14 Encoding table for the Advanced SIMD and System register load/store and 64-bit
move group

Decode fields
Decode group or instruction page

op0 op1

 00x0 0x Advanced SIMD and floating-point 64-bit move on page F4-4531

 00x0 11 System register 64-bit move on page F4-4532

 != 00x0 0x Advanced SIMD and floating-point load/store on page F4-4532

 != 00x0 11 System register load/store on page F4-4533

 - 10 Unallocated.

!=1111 110 op0 1 op1
31 28 27 25 24 21 20 12 11 10 9 8 0

!=1111 1 1 0 0 0 D 0 op Rt2 Rt 1 0 size opc2 M o3 Vm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

Decode fields
Instruction page

D op size opc2 o3

 0 - - - - Unallocated.

 1 - - - 0 Unallocated.

 1 - 0x 00 1 Unallocated.

 1 - - 01 - Unallocated.

 1 0 10 00 1 VMOV (between two general-purpose registers and two single-precision registers) - From
general-purpose registers variant

 1 0 11 00 1 VMOV (between two general-purpose registers and a doubleword floating-point register) - From
general-purpose registers variant

 1 - - 1x - Unallocated.

 1 1 10 00 1 VMOV (between two general-purpose registers and two single-precision registers) - To
general-purpose registers variant

 1 1 11 00 1 VMOV (between two general-purpose registers and a doubleword floating-point register) - To
general-purpose registers variant
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4531
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
System register 64-bit move

This section describes the encoding of the System register 64-bit move instruction class. The encodings in this
section are decoded from Advanced SIMD and System register load/store and 64-bit move on page F4-4530.

Advanced SIMD and floating-point load/store

This section describes the encoding of the Advanced SIMD and floating-point load/store instruction class. The
encodings in this section are decoded from Advanced SIMD and System register load/store and 64-bit move on
page F4-4530.

Decode fields
Instruction page

D L

 0 - Unallocated.

 1 0 MCRR

 1 1 MRRC

!=1111 1 1 0 0 0 D 0 L Rt2 Rt 1 1 1 opc1 CRm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

cond
cp15

!=1111 1 1 0 P U D W L Rn Vd 1 0 size imm8
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

cond

Decode fields
Instruction page Feature

P U W L Rn size imm8

 0 0 1 - - - - Unallocated. -

 0 1 - - - 0x - Unallocated. -

 0 1 - 0 - 10 - VSTM, VSTMDB, VSTMIA - Increment After variant -

 0 1 - 0 - 11 xxxxxxx0 VSTM, VSTMDB, VSTMIA - Increment After variant -

 0 1 - 0 - 11 xxxxxxx1 FSTMDBX, FSTMIAX - Increment After variant -

 0 1 - 1 - 10 - VLDM, VLDMDB, VLDMIA - Increment After variant -

 0 1 - 1 - 11 xxxxxxx0 VLDM, VLDMDB, VLDMIA - Increment After variant -

 0 1 - 1 - 11 xxxxxxx1 FLDM*X (FLDMDBX, FLDMIAX) - Increment After variant -

 1 - 0 0 - 01 - VSTR - Half-precision scalar variant FEAT_FP16

 1 - 0 0 - 10 - VSTR - Single-precision scalar variant -

 1 - 0 0 - 11 - VSTR - Double-precision scalar variant -

 1 - 0 1 != 1111 01 - VLDR (immediate) - Half-precision scalar variant FEAT_FP16

 1 - 0 1 != 1111 10 - VLDR (immediate) - Single-precision scalar variant -
F4-4532 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
System register load/store

This section describes the encoding of the System register load/store instruction class. The encodings in this section
are decoded from Advanced SIMD and System register load/store and 64-bit move on page F4-4530.

 1 - 0 1 != 1111 11 - VLDR (immediate) - Double-precision scalar variant -

 1 0 1 - - 0x - Unallocated. -

 1 0 1 0 - 10 - VSTM, VSTMDB, VSTMIA - Decrement Before variant -

 1 0 1 0 - 11 xxxxxxx0 VSTM, VSTMDB, VSTMIA - Decrement Before variant -

 1 0 1 0 - 11 xxxxxxx1 FSTMDBX, FSTMIAX - Decrement Before variant -

 1 0 1 1 - 10 - VLDM, VLDMDB, VLDMIA - Decrement Before variant -

 1 0 1 1 - 11 xxxxxxx0 VLDM, VLDMDB, VLDMIA - Decrement Before variant -

 1 0 1 1 - 11 xxxxxxx1 FLDM*X (FLDMDBX, FLDMIAX) - Decrement Before
variant

-

 1 - 0 1 1111 01 - VLDR (literal) - Half-precision scalar variant FEAT_FP16

 1 - 0 1 1111 10 - VLDR (literal) - Single-precision scalar variant -

 1 - 0 1 1111 11 - VLDR (literal) - Double-precision scalar variant -

 1 1 1 - - - - Unallocated. -

Decode fields
Instruction page Feature

P U W L Rn size imm8

Decode fields
Instruction page

P:U:W D L Rn CRd cp15

 != 000 0 - - != 0101 0 Unallocated.

 != 000 0 1 1111 0101 0 LDC (literal)

 != 000 - - - - 1 Unallocated.

 != 000 1 - - 0101 0 Unallocated.

 0x1 0 0 - 0101 0 STC - Post-indexed variant

 0x1 0 1 != 1111 0101 0 LDC (immediate) - Post-indexed variant

 010 0 0 - 0101 0 STC - Unindexed variant

 010 0 1 != 1111 0101 0 LDC (immediate) - Unindexed variant

 1x0 0 0 - 0101 0 STC - Offset variant

!=1111 1 1 0 P U D W L Rn CRd 1 1 1 imm8
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

cond
cp15
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4533
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.16 Advanced SIMD and System register 32-bit move

This section describes the encoding of the Advanced SIMD and System register 32-bit move group. The encodings
in this section are decoded from System register access, Advanced SIMD, floating-point, and Supervisor call on
page F4-4523.

 1x0 0 1 != 1111 0101 0 LDC (immediate) - Offset variant

 1x1 0 0 - 0101 0 STC - Pre-indexed variant

 1x1 0 1 != 1111 0101 0 LDC (immediate) - Pre-indexed variant

Decode fields
Instruction page

P:U:W D L Rn CRd cp15

Table F4-15 Encoding table for the Advanced SIMD and System register 32-bit move group

Decode fields
Decode group or instruction page Feature

op0 op1

 000 000 Unallocated. -

 000 001 VMOV (between general-purpose register and half-precision) FEAT_FP16

 000 010 VMOV (between general-purpose register and single-precision) -

 001 010 Unallocated. -

 01x 010 Unallocated. -

 10x 010 Unallocated. -

 110 010 Unallocated. -

 111 010 Floating-point move special register on page F4-4535 -

 - 011 Advanced SIMD 8/16/32-bit element move/duplicate on page F4-4535 -

 - 10x Unallocated. -

 - 11x System register 32-bit move on page F4-4535 -

!=1111 1110 op0 1 op1 1
31 28 27 24 23 21 20 12 11 10 8 7 5 4 3 0
F4-4534 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Floating-point move special register

This section describes the encoding of the Floating-point move special register instruction class. The encodings in
this section are decoded from Advanced SIMD and System register 32-bit move on page F4-4534.

Advanced SIMD 8/16/32-bit element move/duplicate

This section describes the encoding of the Advanced SIMD 8/16/32-bit element move/duplicate instruction class.
The encodings in this section are decoded from Advanced SIMD and System register 32-bit move on page F4-4534.

System register 32-bit move

This section describes the encoding of the System register 32-bit move instruction class. The encodings in this
section are decoded from Advanced SIMD and System register 32-bit move on page F4-4534.

Decode fields
Instruction page

L

 0 VMSR

 1 VMRS

Decode fields
Instruction page

opc1 L opc2

 0xx 0 - VMOV (general-purpose register to scalar)

 - 1 - VMOV (scalar to general-purpose register)

 1xx 0 0x VDUP (general-purpose register)

 1xx 0 1x Unallocated.

!=1111 1 1 1 0 1 1 1 L reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

!=1111 1 1 1 0 opc1 L Vn Rt 1 0 1 1 N opc2 1 (0) (0) (0) (0)
31 28 27 26 25 24 23 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4535
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.17 Floating-point data-processing

This section describes the encoding of the Floating-point data-processing group. The encodings in this section are
decoded from System register access, Advanced SIMD, floating-point, and Supervisor call on page F4-4523.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the
encodings of this group, see About the A32 Advanced SIMD and floating-point instructions and their encoding on
page F4-4562

Decode fields
Instruction page

L

 0 MCR

 1 MRC

!=1111 1 1 1 0 opc1 L CRn Rt 1 1 1 opc2 1 CRm
31 28 27 26 25 24 23 21 20 19 16 15 12 11 10 9 8 7 5 4 3 0

cond
cp15

Table F4-16 Encoding table for the Floating-point data-processing group

Decode fields
Decode group or instruction page

op0 op1

 1x11 1 Floating-point data-processing (two registers) on page F4-4537

 1x11 0 Floating-point move immediate on page F4-4539

 != 1x11 - Floating-point data-processing (three registers) on page F4-4540

!=1111 1110 op0 10 0
31 28 27 24 23 20 19 12 11 10 9 7 6 5 4 3 0

op1
F4-4536 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Floating-point data-processing (two registers)

This section describes the encoding of the Floating-point data-processing (two registers) instruction class. The
encodings in this section are decoded from Floating-point data-processing on page F4-4536.

!=1111 1 1 1 0 1 D 1 1 o1 opc2 Vd 1 0 size o3 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

Decode fields
Instruction page Feature

o1 opc2 size o3

 - - 00 - Unallocated. -

 0 000 01 0 Unallocated. -

 0 000 01 1 VABS - Half-precision scalar variant FEAT_FP16

 0 000 10 0 VMOV (register) - Single-precision scalar variant -

 0 000 10 1 VABS - Single-precision scalar variant -

 0 000 11 0 VMOV (register) - Double-precision scalar variant -

 0 000 11 1 VABS - Double-precision scalar variant -

 0 001 01 0 VNEG - Half-precision scalar variant FEAT_FP16

 0 001 01 1 VSQRT - Half-precision scalar variant FEAT_FP16

 0 001 10 0 VNEG - Single-precision scalar variant -

 0 001 10 1 VSQRT - Single-precision scalar variant -

 0 001 11 0 VNEG - Double-precision scalar variant -

 0 001 11 1 VSQRT - Double-precision scalar variant -

 0 010 01 - Unallocated. -

 0 010 10 0 VCVTB - Half-precision to single-precision variant -

 0 010 10 1 VCVTT - Half-precision to single-precision variant -

 0 010 11 0 VCVTB - Half-precision to double-precision variant -

 0 010 11 1 VCVTT - Half-precision to double-precision variant -

 0 011 01 0 VCVTB (BFloat16) FEAT_AA32BF16

 0 011 01 1 VCVTT (BFloat16) FEAT_AA32BF16

 0 011 10 0 VCVTB - Single-precision to half-precision variant -

 0 011 10 1 VCVTT - Single-precision to half-precision variant -

 0 011 11 0 VCVTB - Double-precision to half-precision variant -

 0 011 11 1 VCVTT - Double-precision to half-precision variant -

 0 100 01 0 VCMP FEAT_FP16

 0 100 01 1 VCMPE FEAT_FP16
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4537
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
 0 100 10 0 VCMP -

 0 100 10 1 VCMPE -

 0 100 11 0 VCMP -

 0 100 11 1 VCMPE -

 0 101 01 0 VCMP FEAT_FP16

 0 101 01 1 VCMPE FEAT_FP16

 0 101 10 0 VCMP -

 0 101 10 1 VCMPE -

 0 101 11 0 VCMP -

 0 101 11 1 VCMPE -

 0 110 01 0 VRINTR - Half-precision scalar variant FEAT_FP16

 0 110 01 1 VRINTZ (floating-point) - Half-precision scalar variant FEAT_FP16

 0 110 10 0 VRINTR - Single-precision scalar variant -

 0 110 10 1 VRINTZ (floating-point) - Single-precision scalar variant -

 0 110 11 0 VRINTR - Double-precision scalar variant -

 0 110 11 1 VRINTZ (floating-point) - Double-precision scalar variant -

 0 111 01 0 VRINTX (floating-point) - Half-precision scalar variant FEAT_FP16

 0 111 01 1 Unallocated. -

 0 111 10 0 VRINTX (floating-point) - Single-precision scalar variant -

 0 111 10 1 VCVT (between double-precision and single-precision) - Single-precision to
double-precision variant

-

 0 111 11 0 VRINTX (floating-point) - Double-precision scalar variant -

 0 111 11 1 VCVT (between double-precision and single-precision) - Double-precision to
single-precision variant

-

 1 000 01 - VCVT (integer to floating-point, floating-point) - Half-precision scalar variant FEAT_FP16

 1 000 10 - VCVT (integer to floating-point, floating-point) - Single-precision scalar variant -

 1 000 11 - VCVT (integer to floating-point, floating-point) - Double-precision scalar variant -

 1 001 01 - Unallocated. -

 1 001 10 - Unallocated. -

 1 001 11 0 Unallocated. -

 1 001 11 1 VJCVT FEAT_JSCVT

 1 01x 01 - VCVT (between floating-point and fixed-point, floating-point) FEAT_FP16

 1 01x 10 - VCVT (between floating-point and fixed-point, floating-point) -

Decode fields
Instruction page Feature

o1 opc2 size o3
F4-4538 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Floating-point move immediate

This section describes the encoding of the Floating-point move immediate instruction class. The encodings in this
section are decoded from Floating-point data-processing on page F4-4536.

 1 01x 11 - VCVT (between floating-point and fixed-point, floating-point) -

 1 100 01 0 VCVTR FEAT_FP16

 1 100 01 1 VCVT (floating-point to integer, floating-point) FEAT_FP16

 1 100 10 0 VCVTR -

 1 100 10 1 VCVT (floating-point to integer, floating-point) -

 1 100 11 0 VCVTR -

 1 100 11 1 VCVT (floating-point to integer, floating-point) -

 1 101 01 0 VCVTR FEAT_FP16

 1 101 01 1 VCVT (floating-point to integer, floating-point) FEAT_FP16

 1 101 10 0 VCVTR -

 1 101 10 1 VCVT (floating-point to integer, floating-point) -

 1 101 11 0 VCVTR -

 1 101 11 1 VCVT (floating-point to integer, floating-point) -

 1 11x 01 - VCVT (between floating-point and fixed-point, floating-point) FEAT_FP16

 1 11x 10 - VCVT (between floating-point and fixed-point, floating-point) -

 1 11x 11 - VCVT (between floating-point and fixed-point, floating-point) -

Decode fields
Instruction page Feature

o1 opc2 size o3

Decode fields
Instruction page Feature

size

 00 Unallocated. -

 01 VMOV (immediate) - Half-precision scalar variant FEAT_FP16

 10 VMOV (immediate) - Single-precision scalar variant -

 11 VMOV (immediate) - Double-precision scalar variant -

!=1111 1 1 1 0 1 D 1 1 imm4H Vd 1 0 size (0) 0 (0) 0 imm4L
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4539
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Floating-point data-processing (three registers)

This section describes the encoding of the Floating-point data-processing (three registers) instruction class. The
encodings in this section are decoded from Floating-point data-processing on page F4-4536.

Decode fields
Instruction page Feature

o0:o1 size o2

 != 111 00 - Unallocated. -

 000 01 0 VMLA (floating-point) - Half-precision scalar variant FEAT_FP16

 000 01 1 VMLS (floating-point) - Half-precision scalar variant FEAT_FP16

 000 10 0 VMLA (floating-point) - Single-precision scalar variant -

 000 10 1 VMLS (floating-point) - Single-precision scalar variant -

 000 11 0 VMLA (floating-point) - Double-precision scalar variant -

 000 11 1 VMLS (floating-point) - Double-precision scalar variant -

 001 01 0 VNMLS - Half-precision scalar variant FEAT_FP16

 001 01 1 VNMLA - Half-precision scalar variant FEAT_FP16

 001 10 0 VNMLS - Single-precision scalar variant -

 001 10 1 VNMLA - Single-precision scalar variant -

 001 11 0 VNMLS - Double-precision scalar variant -

 001 11 1 VNMLA - Double-precision scalar variant -

 010 01 0 VMUL (floating-point) - Half-precision scalar variant FEAT_FP16

 010 01 1 VNMUL - Half-precision scalar variant FEAT_FP16

 010 10 0 VMUL (floating-point) - Single-precision scalar variant -

 010 10 1 VNMUL - Single-precision scalar variant -

 010 11 0 VMUL (floating-point) - Double-precision scalar variant -

 010 11 1 VNMUL - Double-precision scalar variant -

 011 01 0 VADD (floating-point) - Half-precision scalar variant FEAT_FP16

 011 01 1 VSUB (floating-point) - Half-precision scalar variant FEAT_FP16

 011 10 0 VADD (floating-point) - Single-precision scalar variant -

 011 10 1 VSUB (floating-point) - Single-precision scalar variant -

 011 11 0 VADD (floating-point) - Double-precision scalar variant -

 011 11 1 VSUB (floating-point) - Double-precision scalar variant -

 100 01 0 VDIV - Half-precision scalar variant FEAT_FP16

!=1111 1 1 1 0 o0 D o1 Vn Vd 1 0 size N o2 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
F4-4540 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.18 Unconditional instructions

This section describes the encoding of the Unconditional instructions group. The encodings in this section are
decoded from A32 instruction set encoding on page F4-4494.

 100 10 0 VDIV - Single-precision scalar variant -

 100 11 0 VDIV - Double-precision scalar variant -

 101 01 0 VFNMS - Half-precision scalar variant FEAT_FP16

 101 01 1 VFNMA - Half-precision scalar variant FEAT_FP16

 101 10 0 VFNMS - Single-precision scalar variant -

 101 10 1 VFNMA - Single-precision scalar variant -

 101 11 0 VFNMS - Double-precision scalar variant -

 101 11 1 VFNMA - Double-precision scalar variant -

 110 01 0 VFMA - Half-precision scalar variant FEAT_FP16

 110 01 1 VFMS - Half-precision scalar variant FEAT_FP16

 110 10 0 VFMA - Single-precision scalar variant -

 110 10 1 VFMS - Single-precision scalar variant -

 110 11 0 VFMA - Double-precision scalar variant -

 110 11 1 VFMS - Double-precision scalar variant -

Decode fields
Instruction page Feature

o0:o1 size o2

Table F4-17 Encoding table for the Unconditional instructions group

Decode fields
Decode group or instruction page

op0 op1

 00x - Miscellaneous on page F4-4542

 01x - Advanced SIMD data-processing on page F4-4543

 1xx 1 Memory hints and barriers on page F4-4553

 100 0 Advanced SIMD element or structure load/store on page F4-4555

 101 0 Unallocated.

 11x 0 Unallocated.

11110 op0
31 27 26 24 23 21 20 19 0

op1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4541
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.19 Miscellaneous

This section describes the encoding of the Miscellaneous group. The encodings in this section are decoded from
Unconditional instructions on page F4-4541.

The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in CONSTRAINED
UNPREDICTABLE behavior for A32 and T32 instruction encodings on page K1-8398.

Table F4-18 Encoding table for the Miscellaneous group

Decode fields
Decode group or instruction page Feature

op0 op1

 0xxxx - Unallocated. -

 10000 xx0x Change Process State on page F4-4543 -

 10001 1000 Unallocated. -

 10001 x100 Unallocated. -

 10001 xx01 Unallocated. -

 10001 0000 SETPAN FEAT_PAN

 1000x 0111 Unallocated. -

 10010 0111 CONSTRAINED UNPREDICTABLE -

 10011 0111 Unallocated. -

 1001x xx0x Unallocated. -

 100xx 0011 Unallocated. -

 100xx 0x10 Unallocated. -

 100xx 1x1x Unallocated. -

 101xx - Unallocated. -

 11xxx - Unallocated. -

1111000 op0 op1
31 25 24 20 19 8 7 4 3 0
F4-4542 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Change Process State

This section describes the encoding of the Change Process State instruction class. The encodings in this section are
decoded from Miscellaneous on page F4-4542.

F4.1.20 Advanced SIMD data-processing

This section describes the encoding of the Advanced SIMD data-processing group. The encodings in this section
are decoded from Unconditional instructions on page F4-4541.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the
encodings of this group, see About the A32 Advanced SIMD and floating-point instructions and their encoding on
page F4-4562

Decode fields
Instruction page

imod M op I F mode

 - - 1 0 0 0xxxx SETEND

 00 1 0 - - - CPS, CPSID, CPSIE - Change mode variant

 10 - 0 - - - CPS, CPSID, CPSIE - Interrupt enable and change mode variant

 - - 1 0 0 1xxxx Unallocated.

 - - 1 0 1 - Unallocated.

 - - 1 1 - - Unallocated.

 11 - 0 - - - CPS, CPSID, CPSIE - Interrupt disable and change mode variant

1 1 1 1 0 0 0 1 0 0 0 0 imod M op (0) (0) (0) (0) (0) (0) E A I F 0 mode
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0

Table F4-19 Encoding table for the Advanced SIMD data-processing group

Decode fields
Decode group or instruction page

op0 op1

 0 - Advanced SIMD three registers of the same length on page F4-4544

 1 0 Advanced SIMD two registers, or three registers of different lengths on page F4-4546

 1 1 Advanced SIMD shifts and immediate generation on page F4-4551

1111001
31 25 24 23 22 5 4 3 0

op0 op1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4543
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Advanced SIMD three registers of the same length

This section describes the encoding of the Advanced SIMD three registers of the same length instruction class. The
encodings in this section are decoded from Advanced SIMD data-processing on page F4-4543.

Decode fields
Instruction page Feature

U size opc Q o1

 0 0x 1100 - 1 VFMA -

 0 0x 1101 - 0 VADD (floating-point) -

 0 0x 1101 - 1 VMLA (floating-point) -

 0 0x 1110 - 0 VCEQ (register) - A2 on page F6-5380 -

 0 0x 1111 - 0 VMAX (floating-point) -

 0 0x 1111 - 1 VRECPS -

 - - 0000 - 0 VHADD -

 0 00 0001 - 1 VAND (register) -

 - - 0000 - 1 VQADD -

 - - 0001 - 0 VRHADD -

 0 00 1100 - 0 SHA1C -

 - - 0010 - 0 VHSUB -

 0 01 0001 - 1 VBIC (register) -

 - - 0010 - 1 VQSUB -

 - - 0011 - 0 VCGT (register) - A1 on page F6-5393 -

 - - 0011 - 1 VCGE (register) - A1 on page F6-5386 -

 0 01 1100 - 0 SHA1P -

 0 1x 1100 - 1 VFMS -

 0 1x 1101 - 0 VSUB (floating-point) -

 0 1x 1101 - 1 VMLS (floating-point) -

 0 1x 1110 - 0 Unallocated. -

 0 1x 1111 - 0 VMIN (floating-point) -

 0 1x 1111 - 1 VRSQRTS -

 - - 0100 - 0 VSHL (register) -

 0 - 1000 - 0 VADD (integer) -

 0 10 0001 - 1 VORR (register) -

1 1 1 1 0 0 1 U 0 D size Vn Vd opc N Q M o1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
F4-4544 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
 0 - 1000 - 1 VTST -

 - - 0100 - 1 VQSHL (register) -

 0 - 1001 - 0 VMLA (integer) -

 - - 0101 - 0 VRSHL -

 - - 0101 - 1 VQRSHL -

 0 - 1011 - 0 VQDMULH -

 0 10 1100 - 0 SHA1M -

 0 - 1011 - 1 VPADD (integer) -

 - - 0110 - 0 VMAX (integer) -

 0 11 0001 - 1 VORN (register) -

 - - 0110 - 1 VMIN (integer) -

 - - 0111 - 0 VABD (integer) -

 - - 0111 - 1 VABA -

 0 11 1100 - 0 SHA1SU0 -

 1 0x 1101 - 0 VPADD (floating-point) -

 1 0x 1101 - 1 VMUL (floating-point) -

 1 0x 1110 - 0 VCGE (register) - A2 on page F6-5386 -

 1 0x 1110 - 1 VACGE -

 1 0x 1111 0 0 VPMAX (floating-point) -

 1 0x 1111 - 1 VMAXNM -

 1 00 0001 - 1 VEOR -

 - - 1001 - 1 VMUL (integer and polynomial) -

 1 00 1100 - 0 SHA256H -

 - - 1010 0 0 VPMAX (integer) -

 1 01 0001 - 1 VBSL -

 - - 1010 0 1 VPMIN (integer) -

 - - 1010 1 - Unallocated. -

 1 01 1100 - 0 SHA256H2 -

 1 1x 1101 - 0 VABD (floating-point) -

 1 1x 1110 - 0 VCGT (register) - A2 on page F6-5393 -

 1 1x 1110 - 1 VACGT -

 1 1x 1111 0 0 VPMIN (floating-point) -

Decode fields
Instruction page Feature

U size opc Q o1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4545
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.21 Advanced SIMD two registers, or three registers of different lengths

This section describes the encoding of the Advanced SIMD two registers, or three registers of different lengths
group. The encodings in this section are decoded from Advanced SIMD data-processing on page F4-4543.

 1 1x 1111 - 1 VMINNM -

 1 - 1000 - 0 VSUB (integer) -

 1 10 0001 - 1 VBIT -

 1 - 1000 - 1 VCEQ (register) - A1 on page F6-5380 -

 1 - 1001 - 0 VMLS (integer) -

 1 - 1011 - 0 VQRDMULH -

 1 10 1100 - 0 SHA256SU1 -

 1 - 1011 - 1 VQRDMLAH FEAT_RDM

 1 11 0001 - 1 VBIF -

 1 - 1100 - 1 VQRDMLSH FEAT_RDM

 1 - 1111 1 0 Unallocated. -

Decode fields
Instruction page Feature

U size opc Q o1

Table F4-20 Encoding table for the Advanced SIMD two registers, or three registers of different
lengths group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 0 11 - - VEXT (byte elements)

 1 11 0x - Advanced SIMD two registers misc on page F4-4547

 1 11 10 - VTBL, VTBX

 1 11 11 - Advanced SIMD duplicate (scalar) on page F4-4549

 - != 11 - 0 Advanced SIMD three registers of different lengths on page F4-4549

 - != 11 - 1 Advanced SIMD two registers and a scalar on page F4-4550

1111001 1 op1 op2 0
31 25 24 23 22 21 20 19 12 11 10 9 7 6 5 4 3 0

op0 op3
F4-4546 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Advanced SIMD two registers misc

This section describes the encoding of the Advanced SIMD two registers misc instruction class. The encodings in
this section are decoded from Advanced SIMD two registers, or three registers of different lengths on page F4-4546.

1 1 1 1 0 0 1 1 1 D 1 1 size opc1 Vd 0 opc2 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 7 6 5 4 3 0

Decode fields
Instruction page Feature

size opc1 opc2 Q

 - 00 0000 - VREV64 -

 - 00 0001 - VREV32 -

 - 00 0010 - VREV16 -

 - 00 0011 - Unallocated. -

 - 00 010x - VPADDL -

 - 00 0110 0 AESE -

 - 00 0110 1 AESD -

 - 00 0111 0 AESMC -

 - 00 0111 1 AESIMC -

 - 00 1000 - VCLS -

 00 10 0000 - VSWP -

 - 00 1001 - VCLZ -

 - 00 1010 - VCNT -

 - 00 1011 - VMVN (register) -

 00 10 1100 1 Unallocated. -

 - 00 110x - VPADAL -

 - 00 1110 - VQABS -

 - 00 1111 - VQNEG -

 - 01 x000 - VCGT (immediate #0) -

 - 01 x001 - VCGE (immediate #0) -

 - 01 x010 - VCEQ (immediate #0) -

 - 01 x011 - VCLE (immediate #0) -

 - 01 x100 - VCLT (immediate #0) -

 - 01 x110 - VABS -

 - 01 x111 - VNEG -

 - 01 0101 1 SHA1H -
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4547
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
 01 10 1100 1 VCVT (from single-precision to BFloat16, Advanced SIMD) FEAT_AA32BF16

 - 10 0001 - VTRN -

 - 10 0010 - VUZP -

 - 10 0011 - VZIP -

 - 10 0100 0 VMOVN -

 - 10 0100 1 VQMOVN, VQMOVUN - Unsigned result variant -

 - 10 0101 - VQMOVN, VQMOVUN - Signed result variant -

 - 10 0110 0 VSHLL -

 - 10 0111 0 SHA1SU1 -

 - 10 0111 1 SHA256SU0 -

 - 10 1000 - VRINTN (Advanced SIMD) -

 - 10 1001 - VRINTX (Advanced SIMD) -

 - 10 1010 - VRINTA (Advanced SIMD) -

 - 10 1011 - VRINTZ (Advanced SIMD) -

 10 10 1100 1 Unallocated. -

 - 10 1100 0 VCVT (between half-precision and single-precision, Advanced SIMD) -
Single-precision to half-precision variant

-

 - 10 1101 - VRINTM (Advanced SIMD) -

 - 10 1110 0 VCVT (between half-precision and single-precision, Advanced SIMD) -
Half-precision to single-precision variant

-

 - 10 1110 1 Unallocated. -

 - 10 1111 - VRINTP (Advanced SIMD) -

 - 11 000x - VCVTA (Advanced SIMD) -

 - 11 001x - VCVTN (Advanced SIMD) -

 - 11 010x - VCVTP (Advanced SIMD) -

 - 11 011x - VCVTM (Advanced SIMD) -

 - 11 10x0 - VRECPE -

 - 11 10x1 - VRSQRTE -

 11 10 1100 1 Unallocated. -

 - 11 11xx - VCVT (between floating-point and integer, Advanced SIMD) -

Decode fields
Instruction page Feature

size opc1 opc2 Q
F4-4548 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Advanced SIMD duplicate (scalar)

This section describes the encoding of the Advanced SIMD duplicate (scalar) instruction class. The encodings in
this section are decoded from Advanced SIMD two registers, or three registers of different lengths on page F4-4546.

Advanced SIMD three registers of different lengths

This section describes the encoding of the Advanced SIMD three registers of different lengths instruction class. The
encodings in this section are decoded from Advanced SIMD two registers, or three registers of different lengths on
page F4-4546.

Decode fields
Instruction page

opc

 000 VDUP (scalar)

 001 Unallocated.

 01x Unallocated.

 1xx Unallocated.

Decode fields
Instruction page

U opc

 - 0000 VADDL

 - 0001 VADDW

 - 0010 VSUBL

 0 0100 VADDHN

 - 0011 VSUBW

 0 0110 VSUBHN

 0 1001 VQDMLAL

 - 0101 VABAL

 0 1011 VQDMLSL

 0 1101 VQDMULL

 - 0111 VABDL (integer)

 - 1000 VMLAL (integer)

1 1 1 1 0 0 1 1 1 D 1 1 imm4 Vd 1 1 opc Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 7 6 5 4 3 0

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd opc N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4549
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Advanced SIMD two registers and a scalar

This section describes the encoding of the Advanced SIMD two registers and a scalar instruction class. The
encodings in this section are decoded from Advanced SIMD two registers, or three registers of different lengths on
page F4-4546.

 - 1010 VMLSL (integer)

 1 0100 VRADDHN

 1 0110 VRSUBHN

 - 11x0 VMULL (integer and polynomial)

 1 1001 Unallocated.

 1 1011 Unallocated.

 1 1101 Unallocated.

 - 1111 Unallocated.

Decode fields
Instruction page Feature

Q opc

 - 000x VMLA (by scalar) -

 0 0011 VQDMLAL -

 - 0010 VMLAL (by scalar) -

 0 0111 VQDMLSL -

 - 010x VMLS (by scalar) -

 0 1011 VQDMULL -

 - 0110 VMLSL (by scalar) -

 - 100x VMUL (by scalar) -

 1 0011 Unallocated. -

 - 1010 VMULL (by scalar) -

 1 0111 Unallocated. -

 - 1100 VQDMULH -

 - 1101 VQRDMULH -

Decode fields
Instruction page

U opc

1 1 1 1 0 0 1 Q 1 D !=11 Vn Vd opc N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

size
F4-4550 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.22 Advanced SIMD shifts and immediate generation

This section describes the encoding of the Advanced SIMD shifts and immediate generation group. The encodings
in this section are decoded from Advanced SIMD data-processing on page F4-4543.

Advanced SIMD one register and modified immediate

This section describes the encoding of the Advanced SIMD one register and modified immediate instruction class.
The encodings in this section are decoded from Advanced SIMD shifts and immediate generation on page F4-4551.

 1 1011 Unallocated. -

 - 1110 VQRDMLAH FEAT_RDM

 - 1111 VQRDMLSH FEAT_RDM

Decode fields
Instruction page Feature

Q opc

Table F4-21 Encoding table for the Advanced SIMD shifts and immediate generation group

Decode fields
Decode group or instruction page

op0

 000xxxxxxxxxxx0 Advanced SIMD one register and modified immediate on page F4-4551

 != 000xxxxxxxxxxx0 Advanced SIMD two registers and shift amount on page F4-4552

Decode fields
Instruction page

cmode op

 0xx0 0 VMOV (immediate) - A1 on page F6-5658

 0xx0 1 VMVN (immediate) - A1 on page F6-5705

 0xx1 0 VORR (immediate) - A1 on page F6-5729

 0xx1 1 VBIC (immediate) - A1 on page F6-5364

 10x0 0 VMOV (immediate) - A3 on page F6-5659

 10x0 1 VMVN (immediate) - A2 on page F6-5705

 10x1 0 VORR (immediate) - A2 on page F6-5729

 10x1 1 VBIC (immediate) - A2 on page F6-5364

1111001 1 op0 1
31 25 24 23 22 21 7 6 5 4 3 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd cmode 0 Q op 1 imm4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4551
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Advanced SIMD two registers and shift amount

This section describes the encoding of the Advanced SIMD two registers and shift amount instruction class. The
encodings in this section are decoded from Advanced SIMD shifts and immediate generation on page F4-4551.

This decode also imposes the constraint:

• imm3H:L != != 0000.

 11xx 0 VMOV (immediate) - A4 on page F6-5659

 110x 1 VMVN (immediate) - A3 on page F6-5706

 1110 1 VMOV (immediate) - A5 on page F6-5660

 1111 1 Unallocated.

Decode fields
Instruction page

U imm3L opc L Q

 - - 0000 - - VSHR

 - - 0001 - - VSRA

 - - 0010 - - VRSHR

 - - 0011 - - VRSRA

 - - 0111 - - VQSHL, VQSHLU (immediate) - VQSHL,quad,signed-result variant

 - - 1001 0 0 VQSHRN, VQSHRUN - Signed result variant

 - - 1001 0 1 VQRSHRN, VQRSHRUN - Signed result variant

 - - 1010 0 0 VSHLL

 - - 11xx 0 - VCVT (between floating-point and fixed-point, Advanced SIMD)

 - 000 1010 0 0 VMOVL

 0 - 0101 - - VSHL (immediate)

 0 - 1000 0 0 VSHRN

 0 - 1000 0 1 VRSHRN

 1 - 0100 - - VSRI

 1 - 0101 - - VSLI

Decode fields
Instruction page

cmode op

1 1 1 1 0 0 1 U 1 D imm3H imm3L Vd opc L Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 19 18 16 15 12 11 8 7 6 5 4 3 0
F4-4552 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.23 Memory hints and barriers

This section describes the encoding of the Memory hints and barriers group. The encodings in this section are
decoded from Unconditional instructions on page F4-4541.

The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in CONSTRAINED
UNPREDICTABLE behavior for A32 and T32 instruction encodings on page K1-8398.

Barriers

This section describes the encoding of the Barriers instruction class. The encodings in this section are decoded from
Memory hints and barriers on page F4-4553.

 1 - 0110 - - VQSHL, VQSHLU (immediate) - VQSHLU,quad,unsigned-result variant

 1 - 1000 0 0 VQSHRN, VQSHRUN - Unsigned result variant

 1 - 1000 0 1 VQRSHRN, VQRSHRUN - Unsigned result variant

Decode fields
Instruction page

U imm3L opc L Q

Table F4-22 Encoding table for the Memory hints and barriers group

Decode fields
Decode group or instruction page

op0 op1

 00xx1 - CONSTRAINED UNPREDICTABLE

 01001 - CONSTRAINED UNPREDICTABLE

 01011 - Barriers on page F4-4553

 011x1 - CONSTRAINED UNPREDICTABLE

 0xxx0 - Preload (immediate) on page F4-4554

 1xxx0 0 Preload (register) on page F4-4554

 1xxx1 0 CONSTRAINED UNPREDICTABLE

 1xxxx 1 Unallocated.

111101 op0 1
31 26 25 21 20 19 5 4 3 0

op1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4553
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in CONSTRAINED
UNPREDICTABLE behavior for A32 and T32 instruction encodings on page K1-8398.

Preload (immediate)

This section describes the encoding of the Preload (immediate) instruction class. The encodings in this section are
decoded from Memory hints and barriers on page F4-4553.

Preload (register)

This section describes the encoding of the Preload (register) instruction class. The encodings in this section are
decoded from Memory hints and barriers on page F4-4553.

Decode fields
Instruction page

opcode option

 0000 - CONSTRAINED UNPREDICTABLE

 0001 - CLREX

 001x - CONSTRAINED UNPREDICTABLE

 0100 != 0x00 DSB

 0100 0000 SSBB

 0100 0100 PSSBB

 0101 - DMB

 0110 - ISB

 0111 - SB

 1xxx - CONSTRAINED UNPREDICTABLE

Decode fields
Instruction page

D R Rn

 0 0 - Reserved hint, behaves as NOP.

 0 1 - PLI (immediate, literal)

 1 - 1111 PLD (literal)

 1 0 != 1111 PLD, PLDW (immediate) - Preload write variant

 1 1 != 1111 PLD, PLDW (immediate) - Preload read variant

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) opcode option
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 4 3 0

1 1 1 1 0 1 0 D U R 0 1 Rn (1) (1) (1) (1) imm12
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0
F4-4554 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.24 Advanced SIMD element or structure load/store

This section describes the encoding of the Advanced SIMD element or structure load/store group. The encodings in
this section are decoded from Unconditional instructions on page F4-4541.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the
encodings of this group, see About the A32 Advanced SIMD and floating-point instructions and their encoding on
page F4-4562

Advanced SIMD load/store multiple structures

This section describes the encoding of the Advanced SIMD load/store multiple structures instruction class. The
encodings in this section are decoded from Advanced SIMD element or structure load/store on page F4-4555.

Decode fields
Instruction page

D o2 imm5:stype

 0 0 - Reserved hint, behaves as NOP.

 0 1 != 0000011 PLI (register) - Shift or rotate by value variant

 0 1 0000011 PLI (register) - Rotate right with extend variant

 1 0 != 0000011 PLD, PLDW (register) - Preload write, optional shift or rotate variant

 1 0 0000011 PLD, PLDW (register) - Preload write, rotate right with extend variant

 1 1 != 0000011 PLD, PLDW (register) - Preload read, optional shift or rotate variant

 1 1 0000011 PLD, PLDW (register) - Preload read, rotate right with extend variant

1 1 1 1 0 1 1 D U o2 0 1 Rn (1) (1) (1) (1) imm5 stype 0 Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 7 6 5 4 3 0

Table F4-23 Encoding table for the Advanced SIMD element or structure load/store group

Decode fields
Decode group or instruction page

op0 op1

 0 - Advanced SIMD load/store multiple structures on page F4-4555

 1 11 Advanced SIMD load single structure to all lanes on page F4-4557

 1 != 11 Advanced SIMD load/store single structure to one lane on page F4-4558

11110100 0 op1
31 24 23 22 21 20 19 12 11 10 9 0

op0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4555
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Decode fields
Instruction page

L itype Rm

 0 000x != 11x1 VST4 (multiple 4-element structures)

 0 000x 1101 VST4 (multiple 4-element structures)

 0 000x 1111 VST4 (multiple 4-element structures)

 0 0010 != 11x1 VST1 (multiple single elements)

 0 0010 1101 VST1 (multiple single elements)

 0 0010 1111 VST1 (multiple single elements)

 0 0011 != 11x1 VST2 (multiple 2-element structures)

 0 0011 1101 VST2 (multiple 2-element structures)

 0 0011 1111 VST2 (multiple 2-element structures)

 0 010x != 11x1 VST3 (multiple 3-element structures)

 0 010x 1101 VST3 (multiple 3-element structures)

 0 010x 1111 VST3 (multiple 3-element structures)

 0 0110 != 11x1 VST1 (multiple single elements)

 0 0110 1101 VST1 (multiple single elements)

 0 0110 1111 VST1 (multiple single elements)

 0 0111 != 11x1 VST1 (multiple single elements)

 0 0111 1101 VST1 (multiple single elements)

 0 0111 1111 VST1 (multiple single elements)

 0 100x != 11x1 VST2 (multiple 2-element structures)

 0 100x 1101 VST2 (multiple 2-element structures)

 0 100x 1111 VST2 (multiple 2-element structures)

 0 1010 != 11x1 VST1 (multiple single elements)

 0 1010 1101 VST1 (multiple single elements)

 0 1010 1111 VST1 (multiple single elements)

 1 000x != 11x1 VLD4 (multiple 4-element structures)

 1 000x 1101 VLD4 (multiple 4-element structures)

 1 000x 1111 VLD4 (multiple 4-element structures)

 1 0010 != 11x1 VLD1 (multiple single elements)

1 1 1 1 0 1 0 0 0 D L 0 Rn Vd itype size align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
F4-4556 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Advanced SIMD load single structure to all lanes

This section describes the encoding of the Advanced SIMD load single structure to all lanes instruction class. The
encodings in this section are decoded from Advanced SIMD element or structure load/store on page F4-4555.

 1 0010 1101 VLD1 (multiple single elements)

 1 0010 1111 VLD1 (multiple single elements)

 1 0011 != 11x1 VLD2 (multiple 2-element structures)

 1 0011 1101 VLD2 (multiple 2-element structures)

 1 0011 1111 VLD2 (multiple 2-element structures)

 1 010x != 11x1 VLD3 (multiple 3-element structures)

 1 010x 1101 VLD3 (multiple 3-element structures)

 1 010x 1111 VLD3 (multiple 3-element structures)

 - 1011 - Unallocated.

 1 0110 != 11x1 VLD1 (multiple single elements)

 1 0110 1101 VLD1 (multiple single elements)

 1 0110 1111 VLD1 (multiple single elements)

 1 0111 != 11x1 VLD1 (multiple single elements)

 1 0111 1101 VLD1 (multiple single elements)

 1 0111 1111 VLD1 (multiple single elements)

 - 11xx - Unallocated.

 1 100x != 11x1 VLD2 (multiple 2-element structures)

 1 100x 1101 VLD2 (multiple 2-element structures)

 1 100x 1111 VLD2 (multiple 2-element structures)

 1 1010 != 11x1 VLD1 (multiple single elements)

 1 1010 1101 VLD1 (multiple single elements)

 1 1010 1111 VLD1 (multiple single elements)

Decode fields
Instruction page

L itype Rm
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4557
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Advanced SIMD load/store single structure to one lane

This section describes the encoding of the Advanced SIMD load/store single structure to one lane instruction class.
The encodings in this section are decoded from Advanced SIMD element or structure load/store on page F4-4555.

Decode fields
Instruction page

L N a Rm

 0 - - - Unallocated.

 1 00 - != 11x1 VLD1 (single element to all lanes)

 1 00 - 1101 VLD1 (single element to all lanes)

 1 00 - 1111 VLD1 (single element to all lanes)

 1 01 - != 11x1 VLD2 (single 2-element structure to all lanes)

 1 01 - 1101 VLD2 (single 2-element structure to all lanes)

 1 01 - 1111 VLD2 (single 2-element structure to all lanes)

 1 10 0 != 11x1 VLD3 (single 3-element structure to all lanes)

 1 10 0 1101 VLD3 (single 3-element structure to all lanes)

 1 10 0 1111 VLD3 (single 3-element structure to all lanes)

 1 10 1 - Unallocated.

 1 11 - != 11x1 VLD4 (single 4-element structure to all lanes)

 1 11 - 1101 VLD4 (single 4-element structure to all lanes)

 1 11 - 1111 VLD4 (single 4-element structure to all lanes)

Decode fields
Instruction page

L size N Rm

 0 00 00 != 11x1 VST1 (single element from one lane)

 0 00 00 1101 VST1 (single element from one lane)

 0 00 00 1111 VST1 (single element from one lane)

 0 00 01 != 11x1 VST2 (single 2-element structure from one lane)

 0 00 01 1101 VST2 (single 2-element structure from one lane)

1 1 1 1 0 1 0 0 1 D L 0 Rn Vd 1 1 N size T a Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 1 0 0 1 D L 0 Rn Vd !=11 N index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
F4-4558 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
 0 00 01 1111 VST2 (single 2-element structure from one lane)

 0 00 10 != 11x1 VST3 (single 3-element structure from one lane)

 0 00 10 1101 VST3 (single 3-element structure from one lane)

 0 00 10 1111 VST3 (single 3-element structure from one lane)

 0 00 11 != 11x1 VST4 (single 4-element structure from one lane)

 0 00 11 1101 VST4 (single 4-element structure from one lane)

 0 00 11 1111 VST4 (single 4-element structure from one lane)

 0 01 00 != 11x1 VST1 (single element from one lane)

 0 01 00 1101 VST1 (single element from one lane)

 0 01 00 1111 VST1 (single element from one lane)

 0 01 01 != 11x1 VST2 (single 2-element structure from one lane)

 0 01 01 1101 VST2 (single 2-element structure from one lane)

 0 01 01 1111 VST2 (single 2-element structure from one lane)

 0 01 10 != 11x1 VST3 (single 3-element structure from one lane)

 0 01 10 1101 VST3 (single 3-element structure from one lane)

 0 01 10 1111 VST3 (single 3-element structure from one lane)

 0 01 11 != 11x1 VST4 (single 4-element structure from one lane)

 0 01 11 1101 VST4 (single 4-element structure from one lane)

 0 01 11 1111 VST4 (single 4-element structure from one lane)

 0 10 00 != 11x1 VST1 (single element from one lane)

 0 10 00 1101 VST1 (single element from one lane)

 0 10 00 1111 VST1 (single element from one lane)

 0 10 01 != 11x1 VST2 (single 2-element structure from one lane)

 0 10 01 1101 VST2 (single 2-element structure from one lane)

 0 10 01 1111 VST2 (single 2-element structure from one lane)

 0 10 10 != 11x1 VST3 (single 3-element structure from one lane)

 0 10 10 1101 VST3 (single 3-element structure from one lane)

 0 10 10 1111 VST3 (single 3-element structure from one lane)

 0 10 11 != 11x1 VST4 (single 4-element structure from one lane)

 0 10 11 1101 VST4 (single 4-element structure from one lane)

 0 10 11 1111 VST4 (single 4-element structure from one lane)

 1 00 00 != 11x1 VLD1 (single element to one lane)

Decode fields
Instruction page

L size N Rm
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4559
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
 1 00 00 1101 VLD1 (single element to one lane)

 1 00 00 1111 VLD1 (single element to one lane)

 1 00 01 != 11x1 VLD2 (single 2-element structure to one lane)

 1 00 01 1101 VLD2 (single 2-element structure to one lane)

 1 00 01 1111 VLD2 (single 2-element structure to one lane)

 1 00 10 != 11x1 VLD3 (single 3-element structure to one lane)

 1 00 10 1101 VLD3 (single 3-element structure to one lane)

 1 00 10 1111 VLD3 (single 3-element structure to one lane)

 1 00 11 != 11x1 VLD4 (single 4-element structure to one lane)

 1 00 11 1101 VLD4 (single 4-element structure to one lane)

 1 00 11 1111 VLD4 (single 4-element structure to one lane)

 1 01 00 != 11x1 VLD1 (single element to one lane)

 1 01 00 1101 VLD1 (single element to one lane)

 1 01 00 1111 VLD1 (single element to one lane)

 1 01 01 != 11x1 VLD2 (single 2-element structure to one lane)

 1 01 01 1101 VLD2 (single 2-element structure to one lane)

 1 01 01 1111 VLD2 (single 2-element structure to one lane)

 1 01 10 != 11x1 VLD3 (single 3-element structure to one lane)

 1 01 10 1101 VLD3 (single 3-element structure to one lane)

 1 01 10 1111 VLD3 (single 3-element structure to one lane)

 1 01 11 != 11x1 VLD4 (single 4-element structure to one lane)

 1 01 11 1101 VLD4 (single 4-element structure to one lane)

 1 01 11 1111 VLD4 (single 4-element structure to one lane)

 1 10 00 != 11x1 VLD1 (single element to one lane)

 1 10 00 1101 VLD1 (single element to one lane)

 1 10 00 1111 VLD1 (single element to one lane)

 1 10 01 != 11x1 VLD2 (single 2-element structure to one lane)

 1 10 01 1101 VLD2 (single 2-element structure to one lane)

 1 10 01 1111 VLD2 (single 2-element structure to one lane)

 1 10 10 != 11x1 VLD3 (single 3-element structure to one lane)

 1 10 10 1101 VLD3 (single 3-element structure to one lane)

 1 10 10 1111 VLD3 (single 3-element structure to one lane)

Decode fields
Instruction page

L size N Rm
F4-4560 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
 1 10 11 != 11x1 VLD4 (single 4-element structure to one lane)

 1 10 11 1101 VLD4 (single 4-element structure to one lane)

 1 10 11 1111 VLD4 (single 4-element structure to one lane)

Decode fields
Instruction page

L size N Rm
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F4-4561
ID072021 Non-Confidential

A32 Instruction Set Encoding
F4.2 About the A32 Advanced SIMD and floating-point instructions and their encoding
F4.2 About the A32 Advanced SIMD and floating-point instructions and their
encoding

The Advanced SIMD and floating-point instructions are common to the T32 and A32 instruction sets. These
instructions perform Advanced SIMD and floating-point operations on a common register file, the SIMD&FP
register file. This means:

• In general, the instructions that load or store registers in this file, or move data between general-purpose
registers and this register file, are common to the Advanced SIMD and floating-point instructions.

• There are distinct Advanced SIMD data-processing instructions and floating-point data-processing
instructions.

All A32 Advanced SIMD and floating-point instructions have 32-bit encodings. Different groups of these
instructions are decoded from different points in the 32-bit A32 instruction decode structure. Table F4-24 on
page F4-4562 shows these instruction groups, and where each group is decoded from the overall A32 decode
structure:

Table F4-24 Advanced SIMD and floating-point instructions in the A32 decode structure

Advanced SIMD and floating-point instruction
group

A32 decode is from

 Advanced SIMD and System register load/store and 64-bit
move on page F4-4530

 System register access, Advanced SIMD, floating-point, and
Supervisor call on page F4-4523

 Floating-point data-processing on page F4-4536 System register access, Advanced SIMD, floating-point, and
Supervisor call on page F4-4523

 Advanced SIMD and System register 32-bit move on
page F4-4534

 System register access, Advanced SIMD, floating-point, and
Supervisor call on page F4-4523

 Advanced SIMD data-processing on page F4-4543 Unconditional instructions on page F4-4541

 Advanced SIMD element or structure load/store on
page F4-4555

 Unconditional instructions on page F4-4541
F4-4562 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter F5
T32 and A32 Base Instruction Set Instruction
Descriptions

This chapter describes each instruction. It contains the following sections:

• Alphabetical list of T32 and A32 base instruction set instructions on page F5-4564.

• Encoding and use of banked register transfer instructions on page F5-5282.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4563
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions

This section lists every instruction in the T32 and A32 base instruction sets. For details of the format used see
Format of instruction descriptions on page F1-4344.

This section is formatted so that each instruction description starts on a new page.
F5-4564 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.1 ADC, ADCS (immediate)

Add with Carry (immediate) adds an immediate value and the Carry flag value to a register value, and writes the
result to the destination register.

If the destination register is not the PC, the ADCS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The ADC variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The ADCS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

ADC variant

Applies when S == 0.

ADC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ADCS variant

Applies when S == 1.

ADCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

ADC variant

Applies when S == 0.

ADC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ADCS variant

Applies when S == 1.

!=1111 0 0 1 0 1 0 1 S Rn Rd imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

1 1 1 1 0 i 0 1 0 1 0 S Rn 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4565
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
ADCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
 if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the ADC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the ADCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on
page F1-4364 for the range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions on
page F1-4362 for the range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(R[n], imm32, PSTATE.C);
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;
F5-4566 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4567
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.2 ADC, ADCS (register)

Add with Carry (register) adds a register value, the Carry flag value, and an optionally-shifted register value, and
writes the result to the destination register.

If the destination register is not the PC, the ADCS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The ADC variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The ADCS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

ADC, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADC, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADCS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADCS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 0 1 0 1 S Rn Rd imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
F5-4568 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

ADC<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
ADCS{<q>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

ADC, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADC, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

ADC<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADCS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && stype == 11.

ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADCS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11).

ADCS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

0 1 0 0 0 0 0 1 0 1 Rm Rdn
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 1 0 1 0 S Rn (0) imm3 Rd imm2 stype Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4569
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the ADC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the ADCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

In T32 assembly:

• Outside an IT block, if ADCS <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled
using encoding T1 as though ADCS <Rd>, <Rn> had been written.

• Inside an IT block, if ADC<c> <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled
using encoding T1 as though ADC<c> <Rd>, <Rn> had been written.

To prevent either of these happening, use the .W qualifier.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], shifted, PSTATE.C);
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
F5-4570 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4571
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.3 ADC, ADCS (register-shifted register)

Add with Carry (register-shifted register) adds a register value, the Carry flag value, and a register-shifted register
value. It writes the result to the destination register, and can optionally update the condition flags based on the result.

A1

Flag setting variant

Applies when S == 1.

ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

!=1111 0 0 0 0 1 0 1 S Rn Rd Rs 0 stype 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
F5-4572 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], shifted, PSTATE.C);
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4573
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.4 ADD, ADDS (immediate)

Add (immediate) adds an immediate value to a register value, and writes the result to the destination register.

If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:

• The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The ADDS variant of the instruction performs an exception return without the use of the stack. Arm
deprecates use of this instruction. However, in this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

ADD variant

Applies when S == 0 && Rn != 11x1.

ADD{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ADDS variant

Applies when S == 1 && Rn != 1101.

ADDS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 if Rn == '1111' && S == '0' then SEE "ADR";
 if Rn == '1101' then SEE "ADD (SP plus immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

T1 variant

ADD<c>{<q>} <Rd>, <Rn>, #<imm3> // Inside IT block
ADDS{<q>} <Rd>, <Rn>, #<imm3> // Outside IT block

!=1111 0 0 1 0 1 0 0 S Rn Rd imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

0 0 0 1 1 1 0 imm3 Rn Rd
15 14 13 12 11 10 9 8 6 5 3 2 0
F5-4574 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);

T2

T2 variant

ADD<c>{<q>} <Rdn>, #<imm8> // Inside IT block, and <Rdn>, <imm8> can be represented in T1
ADD<c>{<q>} {<Rdn>,} <Rdn>, #<imm8> // Inside IT block, and <Rdn>, <imm8> cannot be represented in T1
ADDS{<q>} <Rdn>, #<imm8> // Outside IT block, and <Rdn>, <imm8> can be represented in T1
ADDS{<q>} {<Rdn>,} <Rdn>, #<imm8> // Outside IT block, and <Rdn>, <imm8> cannot be represented in T1

Decode for this encoding

 d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);

T3

ADD variant

Applies when S == 0.

ADD<c>.W {<Rd>,} <Rn>, #<const> // Inside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or
T2
ADD{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ADDS variant

Applies when S == 1 && Rd != 1111.

ADDS.W {<Rd>,} <Rn>, #<const> // Outside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2
ADDS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "CMN (immediate)";
 if Rn == '1101' then SEE "ADD (SP plus immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
 if (d == 15 && !setflags) || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T4

0 0 1 1 0 Rdn imm8
15 14 13 12 11 10 8 7 0

1 1 1 1 0 i 0 1 0 0 0 S !=1101 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

Rn

1 1 1 1 0 i 1 0 0 0 0 0 !=11x1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4575
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T4 variant

ADD{<c>}{<q>} {<Rd>,} <Rn>, #<imm12> // <imm12> cannot be represented in T1, T2, or T3
ADDW{<c>}{<q>} {<Rd>,} <Rn>, #<imm12> // <imm12> can be represented in T1, T2, or T3

Decode for this encoding

 if Rn == '1111' then SEE "ADR";
 if Rn == '1101' then SEE "ADD (SP plus immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rdn> Is the general-purpose source and destination register, encoded in the "Rdn" field.

<imm8> Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. If the PC is used:

• For the ADD variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the ADDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>. Arm deprecates use of this instruction.

For encoding T1, T3 and T4: is the general-purpose destination register, encoded in the "Rd" field.
If omitted, this register is the same as <Rn>.

<Rn> For encoding A1 and T4: is the general-purpose source register, encoded in the "Rn" field. If the SP
is used, see ADD, ADDS (SP plus immediate). If the PC is used, see ADR.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

For encoding T3: is the general-purpose source register, encoded in the "Rn" field. If the SP is used,
see ADD, ADDS (SP plus immediate).

<imm3> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "imm3" field.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on
page F1-4364 for the range of values.

For encoding T3: an immediate value. See Modified immediate constants in T32 instructions on
page F1-4362 for the range of values.

When multiple encodings of the same length are available for an instruction, encoding T3 is preferred to encoding
T4 (if encoding T4 is required, use the ADDW syntax). Encoding T1 is preferred to encoding T2 if <Rd> is specified
and encoding T2 is preferred to encoding T1 if <Rd> is omitted.
F5-4576 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(R[n], imm32, '0');
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(R[n], imm32, '0');
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4577
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.5 ADD, ADDS (register)

Add (register) adds a register value and an optionally-shifted register value, and writes the result to the destination
register.

If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:

• The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The ADDS variant of the instruction performs an exception return without the use of the stack. Arm
deprecates use of this instruction. However, in this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

ADD, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADD, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADDS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 if Rn == '1101' then SEE "ADD (SP plus register)";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 0 1 0 0 S !=1101 Rd imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond Rn
F5-4578 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

ADD<c>{<q>} <Rd>, <Rn>, <Rm> // Inside IT block
ADDS{<q>} {<Rd>,} <Rn>, <Rm> // Outside IT block

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

T2 variant

Applies when !(DN == 1 && Rdn == 101).

ADD<c>{<q>} <Rdn>, <Rm> // Preferred syntax, Inside IT block
ADD{<c>}{<q>} {<Rdn>,} <Rdn>, <Rm>

Decode for this encoding

 if (DN:Rdn) == '1101' || Rm == '1101' then SEE "ADD (SP plus register)";
 d = UInt(DN:Rdn); n = d; m = UInt(Rm); setflags = FALSE; (shift_t, shift_n) = (SRType_LSL, 0);
 if n == 15 && m == 15 then UNPREDICTABLE;
 if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T3

ADD, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADD, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

ADD<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ADD{<c>}.W {<Rd>,} <Rn>, <Rm> // <Rd> == <Rn>, and <Rd>, <Rn>, <Rm> can be represented in T2
ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

0 0 0 1 1 0 0 Rm Rn Rd
15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 0 0 1 0 0 !=1101 Rdn
15 14 13 12 11 10 9 8 7 6 3 2 0

Rm
DN

1 1 1 0 1 0 1 1 0 0 0 S !=1101 (0) imm3 Rd imm2 stype Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4579
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
ADDS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11.

ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADDS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111.

ADDS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1 or T2
ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "CMN (register)";
 if Rn == '1101' then SEE "ADD (SP plus register)";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if (d == 15 && !setflags) || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rdn> Is the general-purpose source and destination register, encoded in the "DN:Rdn" field. If the PC is
used, the instruction is a branch to the address calculated by the operation. This is a simple branch,
see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on
page E1-4253.

The assembler language allows <Rdn> to be specified once or twice in the assembler syntax. When
used inside an IT block, and <Rdn> and <Rm> are in the range R0 to R7, <Rdn> must be specified once
so that encoding T2 is preferred to encoding T1. In all other cases there is no difference in behavior
when <Rdn> is specified once or twice.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. If the PC is used:

• For the ADD variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the ADDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>. Arm deprecates use of this instruction.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.

When used inside an IT block, <Rd> must be specified. When used outside an IT block, <Rd> is
optional, and:

• If omitted, this register is the same as <Rn>.

• If present, encoding T1 is preferred to encoding T2.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used. If the SP is used, see ADD, ADDS (SP plus register).
F5-4580 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.

For encoding T3: is the first general-purpose source register, encoded in the "Rn" field. If the SP is
used, see ADD, ADDS (SP plus register).

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1 and T3: is the second general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Inside an IT block, if ADD<c> <Rd>, <Rn>, <Rd> cannot be assembled using encoding T1, it is assembled using
encoding T2 as though ADD<c> <Rd>, <Rn> had been written. To prevent this happening, use the .W qualifier.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], shifted, '0');
 if d == 15 then
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4581
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.6 ADD, ADDS (register-shifted register)

Add (register-shifted register) adds a register value and a register-shifted register value. It writes the result to the
destination register, and can optionally update the condition flags based on the result.

A1

Flag setting variant

Applies when S == 1.

ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

!=1111 0 0 0 0 1 0 0 S Rn Rd Rs 0 stype 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
F5-4582 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], shifted, '0');
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4583
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.7 ADD, ADDS (SP plus immediate)

Add to SP (immediate) adds an immediate value to the SP value, and writes the result to the destination register.

If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. However,
when the destination register is the PC:

• The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The ADDS variant of the instruction performs an exception return without the use of the stack. Arm
deprecates use of this instruction. However, in this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

ADD variant

Applies when S == 0.

ADD{<c>}{<q>} {<Rd>,} SP, #<const>

ADDS variant

Applies when S == 1.

ADDS{<c>}{<q>} {<Rd>,} SP, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

T1 variant

ADD{<c>}{<q>} <Rd>, SP, #<imm8>

Decode for this encoding

 d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm8:'00', 32);

!=1111 0 0 1 0 1 0 0 S 1 1 0 1 Rd imm12
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 0

cond

1 0 1 0 1 Rd imm8
15 14 13 12 11 10 8 7 0
F5-4584 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T2

T2 variant

ADD{<c>}{<q>} {SP,} SP, #<imm7>

Decode for this encoding

 d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:'00', 32);

T3

ADD variant

Applies when S == 0.

ADD{<c>}.W {<Rd>,} SP, #<const> // <Rd>, <const> can be represented in T1 or T2
ADD{<c>}{<q>} {<Rd>,} SP, #<const>

ADDS variant

Applies when S == 1 && Rd != 1111.

ADDS{<c>}{<q>} {<Rd>,} SP, #<const>

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "CMN (immediate)";
 d = UInt(Rd); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
 if d == 15 && !setflags then UNPREDICTABLE;

T4

T4 variant

ADD{<c>}{<q>} {<Rd>,} SP, #<imm12> // <imm12> cannot be represented in T1, T2, or T3
ADDW{<c>}{<q>} {<Rd>,} SP, #<imm12> // <imm12> can be represented in T1, T2, or T3

Decode for this encoding

 d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
 if d == 15 then UNPREDICTABLE;

1 0 1 1 0 0 0 0 0 imm7
15 14 13 12 11 10 9 8 7 6 0

1 1 1 1 0 i 0 1 0 0 0 S 1 1 0 1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 0 1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4585
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

SP, Is the stack pointer.

<imm7> Is the unsigned immediate, a multiple of 4, in the range 0 to 508, encoded in the "imm7" field as
<imm7>/4.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the SP. Arm deprecates using the PC as the destination register, but if the PC is used:

• For the ADD variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the ADDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.

For encoding T3 and T4: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the SP.

<imm8> Is an unsigned immediate, a multiple of 4, in the range 0 to 1020, encoded in the "imm8" field as
<imm8>/4.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on
page F1-4364 for the range of values.

For encoding T3: an immediate value. See Modified immediate constants in T32 instructions on
page F1-4362 for the range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(SP, imm32, '0');
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;
F5-4586 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.8 ADD, ADDS (SP plus register)

Add to SP (register) adds an optionally-shifted register value to the SP value, and writes the result to the destination
register.

If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The ADDS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

ADD, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

ADD{<c>}{<q>} {<Rd>,} SP, <Rm> , RRX

ADD, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

ADD{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

ADDS{<c>}{<q>} {<Rd>,} SP, <Rm> , RRX

ADDS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

ADDS{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 0 1 0 0 S 1 1 0 1 Rd imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4587
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

ADD{<c>}{<q>} {<Rdm>,} SP, <Rdm>

Decode for this encoding

 d = UInt(DM:Rdm); m = UInt(DM:Rdm); setflags = FALSE;
 (shift_t, shift_n) = (SRType_LSL, 0);
 if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T2

T2 variant

ADD{<c>}{<q>} {SP,} SP, <Rm>

Decode for this encoding

 if Rm == '1101' then SEE "encoding T1";
 d = 13; m = UInt(Rm); setflags = FALSE;
 (shift_t, shift_n) = (SRType_LSL, 0);

T3

ADD, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

ADD{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

ADD, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

ADD{<c>}.W {<Rd>,} SP, <Rm> // <Rd>, <Rm> can be represented in T1 or T2
ADD{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11.

ADDS{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

0 1 0 0 0 1 0 0 1 1 0 1 Rdm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

DM

0 1 0 0 0 1 0 0 1 !=1101 1 0 1
15 14 13 12 11 10 9 8 7 6 3 2 1 0

Rm

1 1 1 0 1 0 1 1 0 0 0 S 1 1 0 1 (0) imm3 Rd imm2 stype Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0
F5-4588 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
ADDS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111.

ADDS{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "CMN (register)";
 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if (d == 15 && !setflags) || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

SP, Is the stack pointer.

<Rdm> Is the general-purpose destination and second source register, encoded in the "Rdm" field. If
omitted, this register is the SP. Arm deprecates using the PC as the destination register, but if the PC
is used, the instruction is a branch to the address calculated by the operation. This is a simple branch,
see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on
page E1-4253.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the SP. Arm deprecates using the PC as the destination register, but if the PC is used:

• For the ADD variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the ADDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the SP.

<Rm> For encoding A1 and T2: is the second general-purpose source register, encoded in the "Rm" field.
The PC can be used, but this is deprecated.

For encoding T3: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4589
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(SP, shifted, '0');
 if d == 15 then
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;
F5-4590 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.9 ADD (immediate, to PC)

Add to PC adds an immediate value to the Align(PC, 4) value to form a PC-relative address, and writes the result
to the destination register. Arm recommends that, where possible, software avoids using this alias

This instruction is a pseudo-instruction of the ADR instruction. This means that:

• The encodings in this description are named to match the encodings of ADR.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of ADR gives the operational pseudocode for this instruction.

A1

A1 variant

ADD{<c>}{<q>} <Rd>, PC, #<const>

 is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is never the preferred disassembly.

T1

T1 variant

ADD{<c>}{<q>} <Rd>, PC, #<imm8>

 is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is never the preferred disassembly.

T3

T3 variant

ADDW{<c>}{<q>} <Rd>, PC, #<imm12> // <Rd>, <imm12> can be represented in T1

 is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is never the preferred disassembly.

!=1111 0 0 1 0 1 0 0 0 1 1 1 1 Rd imm12
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 0

cond

1 0 1 0 0 Rd imm8
15 14 13 12 11 10 8 7 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 1 1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4591
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
ADD{<c>}{<q>} <Rd>, PC, #<imm12>

 is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is never the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If the PC is
used, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC on page E1-4253.

For encoding T1 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<label> For encoding A1: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the
ADR instruction to this label.

If the offset is zero or positive, encoding A1 is used, with imm32 equal to the offset.

If the offset is negative, encoding A2 is used, with imm32 equal to the size of the offset. That is, the
use of encoding A2 indicates that the required offset is minus the value of imm32.

Permitted values of the size of the offset are any of the constants described in Modified immediate
constants in A32 instructions on page F1-4364.

For encoding T1: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the
ADR instruction to this label. Permitted values of the size of the offset are multiples of 4 in the range
0 to 1020.

For encoding T3: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the
ADR instruction to this label.

If the offset is zero or positive, encoding T3 is used, with imm32 equal to the offset.

If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset. That is, the
use of encoding T2 indicates that the required offset is minus the value of imm32.

Permitted values of the size of the offset are 0-4095.

<imm8> Is an unsigned immediate, a multiple of 4, in the range 0 to 1020, encoded in the "imm8" field as
<imm8>/4.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> An immediate value. See Modified immediate constants in A32 instructions on page F1-4364 for the
range of values.

Operation for all encodings

The description of ADR gives the operational pseudocode for this instruction.
F5-4592 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.10 ADR

Form PC-relative address adds an immediate value to the PC value to form a PC-relative address, and writes the
result to the destination register.

This instruction is used by the pseudo-instructions ADD (immediate, to PC) and SUB (immediate, from PC). The
pseudo-instruction is never the preferred disassembly.

A1

A1 variant

ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding

 d = UInt(Rd); imm32 = A32ExpandImm(imm12); add = TRUE;

A2

A2 variant

ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding

 d = UInt(Rd); imm32 = A32ExpandImm(imm12); add = FALSE;

T1

T1 variant

ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding

 d = UInt(Rd); imm32 = ZeroExtend(imm8:'00', 32); add = TRUE;

!=1111 0 0 1 0 1 0 0 0 1 1 1 1 Rd imm12
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 0

cond

!=1111 0 0 1 0 0 1 0 0 1 1 1 1 Rd imm12
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 0

cond

1 0 1 0 0 Rd imm8
15 14 13 12 11 10 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4593
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T2

T2 variant

ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding

 d = UInt(Rd); imm32 = ZeroExtend(i:imm3:imm8, 32); add = FALSE;
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T3

T3 variant

ADR{<c>}.W <Rd>, <label> // <Rd>, <label> can be presented in T1
ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding

 d = UInt(Rd); imm32 = ZeroExtend(i:imm3:imm8, 32); add = TRUE;
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Alias conditions

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1 and A2: is the general-purpose destination register, encoded in the "Rd" field. If
the PC is used, the instruction is a branch to the address calculated by the operation. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC on page E1-4253.

Alias or pseudo-instruction of variant is preferred when

 ADD (immediate, to PC) - Never

 SUB (immediate, from PC) T2 i:imm3:imm8 == '000000000000'

 SUB (immediate, from PC) A2 imm12 == '000000000000'

1 1 1 1 0 i 1 0 1 0 1 0 1 1 1 1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 1 1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0
F5-4594 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
For encoding T1, T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<label> For encoding A1 and A2: the label of an instruction or literal data item whose address is to be loaded
into <Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of
the ADR instruction to this label.

If the offset is zero or positive, encoding A1 is used, with imm32 equal to the offset.

If the offset is negative, encoding A2 is used, with imm32 equal to the size of the offset. That is, the
use of encoding A2 indicates that the required offset is minus the value of imm32.

Permitted values of the size of the offset are any of the constants described in Modified immediate
constants in A32 instructions on page F1-4364.

For encoding T1: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the
ADR instruction to this label. Permitted values of the size of the offset are multiples of 4 in the range
0 to 1020.

For encoding T2 and T3: the label of an instruction or literal data item whose address is to be loaded
into <Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of
the ADR instruction to this label.

If the offset is zero or positive, encoding T3 is used, with imm32 equal to the offset.

If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset. That is, the
use of encoding T2 indicates that the required offset is minus the value of imm32.

Permitted values of the size of the offset are 0-4095.

The instruction aliases permit the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax on page F2-4377.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
 if d == 15 then // Can only occur for A32 encodings
 ALUWritePC(result);
 else
 R[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4595
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.11 AND, ANDS (immediate)

Bitwise AND (immediate) performs a bitwise AND of a register value and an immediate value, and writes the result
to the destination register.

If the destination register is not the PC, the ANDS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The AND variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The ANDS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

AND variant

Applies when S == 0.

AND{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ANDS variant

Applies when S == 1.

ANDS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
 (imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

AND variant

Applies when S == 0.

AND{<c>}{<q>} {<Rd>,} <Rn>, #<const>

!=1111 0 0 1 0 0 0 0 S Rn Rd imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

1 1 1 1 0 i 0 0 0 0 0 S Rn 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
F5-4596 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
ANDS variant

Applies when S == 1 && Rd != 1111.

ANDS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "TST (immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
 if (d == 15 && !setflags) || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the AND variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the ANDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on
page F1-4364 for the range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions on
page F1-4362 for the range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] AND imm32;
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4597
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4598 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.12 AND, ANDS (register)

Bitwise AND (register) performs a bitwise AND of a register value and an optionally-shifted register value, and
writes the result to the destination register.

If the destination register is not the PC, the ANDS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The AND variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The ANDS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

AND, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

AND, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ANDS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ANDS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 0 0 0 0 S Rn Rd imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4599
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

AND<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
ANDS{<q>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

AND, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

AND, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

AND<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ANDS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11.

ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ANDS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111.

ANDS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "TST (register)";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if (d == 15 && !setflags) || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

0 1 0 0 0 0 0 0 0 0 Rm Rdn
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 0 0 0 0 S Rn (0) imm3 Rd imm2 stype Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0
F5-4600 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the AND variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the ANDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

In T32 assembly:

• Outside an IT block, if ANDS <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled
using encoding T1 as though ANDS <Rd>, <Rn> had been written.

• Inside an IT block, if AND<c> <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled
using encoding T1 as though AND<c> <Rd>, <Rn> had been written.

To prevent either of these happening, use the .W qualifier.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] AND shifted;
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4601
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4602 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.13 AND, ANDS (register-shifted register)

Bitwise AND (register-shifted register) performs a bitwise AND of a register value and a register-shifted register
value. It writes the result to the destination register, and can optionally update the condition flags based on the result.

A1

Flag setting variant

Applies when S == 1.

ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

!=1111 0 0 0 0 0 0 0 S Rn Rd Rs 0 stype 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4603
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] AND shifted;
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4604 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.14 ASR (immediate)

Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in copies
of its sign bit, and writes the result to the destination register.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).

• The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

A1

MOV, shift or rotate by value variant

ASR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

T2

T2 variant

ASR<c>{<q>} {<Rd>,} <Rm>, #<imm> // Inside IT block

 is equivalent to

MOV<c>{<q>} <Rd>, <Rm>, ASR #<imm>

and is the preferred disassembly when InITBlock().

T3

MOV, shift or rotate by value variant

ASR<c>.W {<Rd>,} <Rm>, #<imm> // Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

ASR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

!=1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd imm5 1 0 0 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond S stype

0 0 0 1 0 imm5 Rm Rd
15 14 13 12 11 10 6 5 3 2 0

op

1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 (0) imm3 Rd imm2 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S stype
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4605
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction is a branch
to the address calculated by the operation. This is an interworking branch, see Pseudocode
description of operations on the AArch32 general-purpose registers and the PC on page E1-4253.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1 and T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as
<imm> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as
<imm> modulo 32.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.
F5-4606 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.15 ASR (register)

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in copies of its
sign bit, and writes the result to the destination register. The variable number of bits is read from the bottom byte of
a register

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

A1

Not flag setting variant

ASR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

T1

Arithmetic shift right variant

ASR<c>{<q>} {<Rdm>,} <Rdm>, <Rs> // Inside IT block

 is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, ASR <Rs>

and is the preferred disassembly when InITBlock().

T2

Not flag setting variant

ASR<c>.W {<Rd>,} <Rm>, <Rs> // Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

!=1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd Rs 0 1 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond S stype

0 1 0 0 0 0 0 1 0 0 Rs Rdm
15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 1 0 0 Rm 1 1 1 1 Rd 0 0 0 0 Rs
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

stype S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4607
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
and is always the preferred disassembly.

ASR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
F5-4608 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.16 ASRS (immediate)

Arithmetic Shift Right, setting flags (immediate) shifts a register value right by an immediate number of bits,
shifting in copies of its sign bit, and writes the result to the destination register.

If the destination register is not the PC, this instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

• The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32
state on page G1-6066.

• The instruction is UNDEFINED in Hyp mode.

• The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).

• The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

A1

MOVS, shift or rotate by value variant

ASRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

T2

T2 variant

ASRS{<q>} {<Rd>,} <Rm>, #<imm> // Outside IT block

 is equivalent to

MOVS{<q>} <Rd>, <Rm>, ASR #<imm>

and is the preferred disassembly when !InITBlock().

!=1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd imm5 1 0 0 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond S stype

0 0 0 1 0 imm5 Rm Rd
15 14 13 12 11 10 6 5 3 2 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4609
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T3

MOVS, shift or rotate by value variant

ASRS.W {<Rd>,} <Rm>, #<imm> // Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

ASRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction performs an
exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1 and T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as
<imm> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as
<imm> modulo 32.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 (0) imm3 Rd imm2 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S stype
F5-4610 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.17 ASRS (register)

Arithmetic Shift Right, setting flags (register) shifts a register value right by a variable number of bits, shifting in
copies of its sign bit, writes the result to the destination register, and updates the condition flags based on the result.
The variable number of bits is read from the bottom byte of a register

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

A1

Flag setting variant

ASRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

T1

Arithmetic shift right variant

ASRS{<q>} {<Rdm>,} <Rdm>, <Rs> // Outside IT block

 is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, ASR <Rs>

and is the preferred disassembly when !InITBlock().

T2

Flag setting variant

ASRS.W {<Rd>,} <Rm>, <Rs> // Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

!=1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd Rs 0 1 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond S stype

0 1 0 0 0 0 0 1 0 0 Rs Rdm
15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 1 0 1 Rm 1 1 1 1 Rd 0 0 0 0 Rs
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

stype S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4611
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
and is always the preferred disassembly.

ASRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
F5-4612 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.18 B

Branch causes a branch to a target address.

A1

A1 variant

B{<c>}{<q>} <label>

Decode for this encoding

 imm32 = SignExtend(imm24:'00', 32);

T1

T1 variant

B<c>{<q>} <label> // Not permitted in IT block

Decode for this encoding

 if cond == '1110' then SEE "UDF";
 if cond == '1111' then SEE "SVC";
 imm32 = SignExtend(imm8:'0', 32);
 if InITBlock() then UNPREDICTABLE;

T2

T2 variant

B{<c>}{<q>} <label> // Outside or last in IT block

Decode for this encoding

 imm32 = SignExtend(imm11:'0', 32);
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

!=1111 1 0 1 0 imm24
31 28 27 26 25 24 23 0

cond

1 1 0 1 !=111x imm8
15 14 13 12 11 8 7 0

cond

1 1 1 0 0 imm11
15 14 13 12 11 10 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4613
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T3

T3 variant

B<c>.W <label> // Not permitted in IT block, and <label> can be represented in T1
B<c>{<q>} <label> // Not permitted in IT block

Decode for this encoding

 if cond<3:1> == '111' then SEE "Related encodings";
 imm32 = SignExtend(S:J2:J1:imm6:imm11:'0', 32);
 if InITBlock() then UNPREDICTABLE;

T4

T4 variant

B{<c>}.W <label> // <label> can be represented in T2
B{<c>}{<q>} <label>

Decode for this encoding

 I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imm10:imm11:'0', 32);
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Related encodings: Branches and miscellaneous control on page F3-4464.

Assembler symbols

<c> For encoding A1, T2 and T4: see Standard assembler syntax fields on page F1-4348.

For encoding T1: see Standard assembler syntax fields on page F1-4348. Must not be AL or omitted.

For encoding T3: see Standard assembler syntax fields on page F1-4348. <c> must not be AL or
omitted.

<q> See Standard assembler syntax fields on page F1-4348.

<label> For encoding A1: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset.

Permitted offsets are multiples of 4 in the range –33554432 to 33554428.

For encoding T1: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range –256 to 254.

1 1 1 1 0 S !=111x imm6 1 0 J1 0 J2 imm11
15 14 13 12 11 10 9 6 5 0 15 14 13 12 11 10 0

cond

1 1 1 1 0 S imm10 1 0 J1 1 J2 imm11
15 14 13 12 11 10 9 0 15 14 13 12 11 10 0
F5-4614 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
For encoding T2: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range –2048 to
2046.

For encoding T3: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset.

Permitted offsets are even numbers in the range –1048576 to 1048574.

For encoding T4: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset.

Permitted offsets are even numbers in the range –16777216 to 16777214.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 BranchWritePC(PC + imm32, BranchType_DIR);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4615
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.19 BFC

Bit Field Clear clears any number of adjacent bits at any position in a register, without affecting the other bits in the
register.

A1

A1 variant

BFC{<c>}{<q>} <Rd>, #<lsb>, #<width>

Decode for this encoding

 d = UInt(Rd); msbit = UInt(msb); lsbit = UInt(lsb);
 if d == 15 then UNPREDICTABLE;

T1

T1 variant

BFC{<c>}{<q>} <Rd>, #<lsb>, #<width>

Decode for this encoding

 d = UInt(Rd); msbit = UInt(msb); lsbit = UInt(imm3:imm2);
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<lsb> For encoding A1: is the least significant bit to be cleared, in the range 0 to 31, encoded in the "lsb"
field.

For encoding T1: is the least significant bit that is to be cleared, in the range 0 to 31, encoded in the
"imm3:imm2" field.

<width> Is the number of bits to be cleared, in the range 1 to 32-<lsb>, encoded in the "msb" field as
<lsb>+<width>-1.

!=1111 0 1 1 1 1 1 0 msb Rd lsb 0 0 1 1 1 1 1
31 28 27 26 25 24 23 22 21 20 16 15 12 11 7 6 5 4 3 2 1 0

cond

1 1 1 1 0 (0) 1 1 0 1 1 0 1 1 1 1 0 imm3 Rd imm2 (0) msb
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 0
F5-4616 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if msbit >= lsbit then
 R[d]<msbit:lsbit> = Replicate('0', msbit-lsbit+1);
 // Other bits of R[d] are unchanged
 else
 UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit < lsbit, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4617
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.20 BFI

Bit Field Insert copies any number of low order bits from a register into the same number of adjacent bits at any
position in the destination register.

A1

A1 variant

BFI{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding

 if Rn == '1111' then SEE "BFC";
 d = UInt(Rd); n = UInt(Rn); msbit = UInt(msb); lsbit = UInt(lsb);
 if d == 15 then UNPREDICTABLE;

T1

T1 variant

BFI{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding

 if Rn == '1111' then SEE "BFC";
 d = UInt(Rd); n = UInt(Rn); msbit = UInt(msb); lsbit = UInt(imm3:imm2);
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<lsb> For encoding A1: is the least significant destination bit, in the range 0 to 31, encoded in the "lsb"
field.

For encoding T1: is the least significant destination bit, in the range 0 to 31, encoded in the
"imm3:imm2" field.

!=1111 0 1 1 1 1 1 0 msb Rd lsb 0 0 1 !=1111
31 28 27 26 25 24 23 22 21 20 16 15 12 11 7 6 5 4 3 0

cond Rn

1 1 1 1 0 (0) 1 1 0 1 1 0 !=1111 0 imm3 Rd imm2 (0) msb
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 0

Rn
F5-4618 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<width> Is the number of bits to be copied, in the range 1 to 32-<lsb>, encoded in the "msb" field as
<lsb>+<width>-1.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if msbit >= lsbit then
 R[d]<msbit:lsbit> = R[n]<(msbit-lsbit):0>;
 // Other bits of R[d] are unchanged
 else
 UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit < lsbit, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4619
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.21 BIC, BICS (immediate)

Bitwise Bit Clear (immediate) performs a bitwise AND of a register value and the complement of an immediate
value, and writes the result to the destination register.

If the destination register is not the PC, the BICS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The BIC variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The BICS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

BIC variant

Applies when S == 0.

BIC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

BICS variant

Applies when S == 1.

BICS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
 (imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

BIC variant

Applies when S == 0.

BIC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

!=1111 0 0 1 1 1 1 0 S Rn Rd imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

1 1 1 1 0 i 0 0 0 0 1 S Rn 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
F5-4620 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
BICS variant

Applies when S == 1.

BICS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
 if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the BIC variant, the instruction is a branch to the address calculated by the operation. This
is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the BICS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on
page F1-4364 for the range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions on
page F1-4362 for the range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] AND NOT(imm32);
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4621
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4622 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.22 BIC, BICS (register)

Bitwise Bit Clear (register) performs a bitwise AND of a register value and the complement of an optionally-shifted
register value, and writes the result to the destination register.

If the destination register is not the PC, the BICS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The BIC variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The BICS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

BIC, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

BIC, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

BICS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

BICS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 1 1 1 0 S Rn Rd imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4623
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

BIC<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
BICS{<q>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

BIC, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

BIC, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

BIC<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

BICS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && stype == 11.

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

BICS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11).

BICS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

0 1 0 0 0 0 1 1 1 0 Rm Rdn
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 0 0 0 1 S Rn (0) imm3 Rd imm2 stype Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0
F5-4624 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the BIC variant, the instruction is a branch to the address calculated by the operation. This
is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the BICS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] AND NOT(shifted);
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4625
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4626 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.23 BIC, BICS (register-shifted register)

Bitwise Bit Clear (register-shifted register) performs a bitwise AND of a register value and the complement of a
register-shifted register value. It writes the result to the destination register, and can optionally update the condition
flags based on the result.

A1

Flag setting variant

Applies when S == 1.

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs"
field.

!=1111 0 0 0 1 1 1 0 S Rn Rd Rs 0 stype 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4627
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] AND NOT(shifted);
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4628 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.24 BKPT

Breakpoint causes a Breakpoint Instruction exception.

Breakpoint is always unconditional, even when inside an IT block.

A1

A1 variant

BKPT{<q>} {#}<imm>

Decode for this encoding

 imm16 = imm12:imm4;
 if cond != '1110' then UNPREDICTABLE; // BKPT must be encoded with AL condition

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

T1

T1 variant

BKPT{<q>} {#}<imm>

Decode for this encoding

 imm16 = ZeroExtend(imm8, 16);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348. An BKPT instruction must be unconditional.

!=1111 0 0 0 1 0 0 1 0 imm12 0 1 1 1 imm4
31 28 27 26 25 24 23 22 21 20 19 8 7 6 5 4 3 0

cond

1 0 1 1 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4629
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<imm> For encoding A1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm12:imm4" field. This value:

• Is recorded in the Comment field of ESR_ELx.ISS if the Software Breakpoint Instruction
exception is taken to an exception level that is using AArch64.

• Is ignored otherwise.

For encoding T1: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
This value:

• Is recorded in the Comment field of ESR_ELx.ISS if the Software Breakpoint Instruction
exception is taken to an exception level that is using AArch64.

• Is ignored otherwise.

Operation for all encodings

 EncodingSpecificOperations();
 AArch32.SoftwareBreakpoint(imm16);
F5-4630 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.25 BL, BLX (immediate)

Branch with Link calls a subroutine at a PC-relative address, and setting LR to the return address.

Branch with Link and Exchange Instruction Sets (immediate) calls a subroutine at a PC-relative address, setting LR
to the return address, and changes the instruction set from A32 to T32, or from T32 to A32.

A1

A1 variant

BL{<c>}{<q>} <label>

Decode for this encoding

 imm32 = SignExtend(imm24:'00', 32); targetInstrSet = InstrSet_A32;

A2

A2 variant

BLX{<c>}{<q>} <label>

Decode for this encoding

 imm32 = SignExtend(imm24:H:'0', 32); targetInstrSet = InstrSet_T32;

T1

T1 variant

BL{<c>}{<q>} <label>

Decode for this encoding

 I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imm10:imm11:'0', 32);
 targetInstrSet = InstrSet_T32;
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

!=1111 1 0 1 1 imm24
31 28 27 26 25 24 23 0

cond

1 1 1 1 1 0 1 H imm24
31 28 27 26 25 24 23 0

cond

1 1 1 1 0 S imm10 1 1 J1 1 J2 imm11
15 14 13 12 11 10 9 0 15 14 13 12 11 10 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4631
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T2

T2 variant

BLX{<c>}{<q>} <label>

Decode for this encoding

 if H == '1' then UNDEFINED;
 I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imm10H:imm10L:'00', 32);
 targetInstrSet = InstrSet_A32;
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1, T1 and T2: see Standard assembler syntax fields on page F1-4348.

For encoding A2: see Standard assembler syntax fields on page F1-4348. <c> must be AL or omitted.

<q> See Standard assembler syntax fields on page F1-4348.

<label> For encoding A1: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the BL instruction to this label, then selects an
encoding that sets imm32 to that offset.

Permitted offsets are multiples of 4 in the range –33554432 to 33554428.

For encoding A2: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the BLX instruction to this label, then selects an
encoding with imm32 set to that offset.

Permitted offsets are even numbers in the range –33554432 to 33554430.

For encoding T1: the label of the instruction that is to be branched to.

The assembler calculates the required value of the offset from the PC value of the BL instruction to
this label, then selects an encoding with imm32 set to that offset.

Permitted offsets are even numbers in the range –16777216 to 16777214.

For encoding T2: the label of the instruction that is to be branched to.

The assembler calculates the required value of the offset from the Align(PC, 4) value of the BLX
instruction to this label, then selects an encoding with imm32 set to that offset.

Permitted offsets are multiples of 4 in the range –16777216 to 16777212.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if CurrentInstrSet() == InstrSet_A32 then
 LR = PC - 4;
 else
 LR = PC<31:1> : '1';
 if targetInstrSet == InstrSet_A32 then
 targetAddress = Align(PC,4) + imm32;

1 1 1 1 0 S imm10H 1 1 J1 0 J2 imm10L H
15 14 13 12 11 10 9 0 15 14 13 12 11 10 1 0
F5-4632 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 else
 targetAddress = PC + imm32;
 SelectInstrSet(targetInstrSet);
 BranchWritePC(targetAddress, BranchType_DIRCALL);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4633
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.26 BLX (register)

Branch with Link and Exchange (register) calls a subroutine at an address specified in the register, and if necessary
changes to the instruction set indicated by bit[0] of the register value. If the value in bit[0] is 0, the instruction set
after the branch will be A32. If the value in bit[0] is 1, the instruction set after the branch will be T32.

A1

A1 variant

BLX{<c>}{<q>} <Rm>

Decode for this encoding

 m = UInt(Rm);
 if m == 15 then UNPREDICTABLE;

T1

T1 variant

BLX{<c>}{<q>} <Rm>

Decode for this encoding

 m = UInt(Rm);
 if m == 15 then UNPREDICTABLE;
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rm> Is the general-purpose register holding the address to be branched to, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 target = R[m];
 if CurrentInstrSet() == InstrSet_A32 then
 next_instr_addr = PC - 4;

!=1111 0 0 0 1 0 0 1 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) 0 0 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

cond

0 1 0 0 0 1 1 1 1 Rm (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 3 2 1 0
F5-4634 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 LR = next_instr_addr;
 else
 next_instr_addr = PC - 2;
 LR = next_instr_addr<31:1> : '1';
 BXWritePC(target, BranchType_INDCALL);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4635
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.27 BX

Branch and Exchange causes a branch to an address and instruction set specified by a register.

A1

A1 variant

BX{<c>}{<q>} <Rm>

Decode for this encoding

 m = UInt(Rm);

T1

T1 variant

BX{<c>}{<q>} <Rm>

Decode for this encoding

 m = UInt(Rm);
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rm> For encoding A1: is the general-purpose register holding the address to be branched to, encoded in
the "Rm" field. The PC can be used.

For encoding T1: is the general-purpose register holding the address to be branched to, encoded in
the "Rm" field. The PC can be used.

Note
If <Rm> is the PC at a non word-aligned address, it results in UNPREDICTABLE behavior because the
address passed to the BXWritePC() pseudocode function has bits<1:0> = '10'.

!=1111 0 0 0 1 0 0 1 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) 0 0 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

cond

0 1 0 0 0 1 1 1 0 Rm (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 3 2 1 0
F5-4636 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 BXWritePC(R[m], BranchType_INDIR);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4637
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.28 BXJ

Branch and Exchange, previously Branch and Exchange Jazelle.

In Armv8, BXJ behaves as a BX instruction, see BX. This means it causes a branch to an address and instruction set
specified by a register.

A1

A1 variant

BXJ{<c>}{<q>} <Rm>

Decode for this encoding

 m = UInt(Rm);
 if m == 15 then UNPREDICTABLE;

T1

T1 variant

BXJ{<c>}{<q>} <Rm>

Decode for this encoding

 m = UInt(Rm);
 if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rm> Is the general-purpose register holding the address to be branched to, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 BXWritePC(R[m], BranchType_INDIR);

!=1111 0 0 0 1 0 0 1 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) 0 0 1 0 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 0 0 1 1 1 1 0 0 Rm 1 0 (0) 0 (1) (1) (1) (1) (0) (0) (0) (0) (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-4638 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.29 CBNZ, CBZ

Compare and Branch on Nonzero and Compare and Branch on Zero compare the value in a register with zero, and
conditionally branch forward a constant value. They do not affect the condition flags.

T1

CBNZ variant

Applies when op == 1.

CBNZ{<q>} <Rn>, <label>

CBZ variant

Applies when op == 0.

CBZ{<q>} <Rn>, <label>

Decode for all variants of this encoding

 n = UInt(Rn); imm32 = ZeroExtend(i:imm5:'0', 32); nonzero = (op == '1');
 if InITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> Is the general-purpose register to be tested, encoded in the "Rn" field.

<label> Is the program label to be conditionally branched to. Its offset from the PC, a multiple of 2 and in
the range 0 to 126, is encoded as "i:imm5" times 2.

Operation

 EncodingSpecificOperations();
 if nonzero != IsZero(R[n]) then
 CBWritePC(PC + imm32);

1 0 1 1 op 0 i 1 imm5 Rn
15 14 13 12 11 10 9 8 7 3 2 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4639
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.30 CLREX

Clear-Exclusive clears the local monitor of the executing PE.

A1

A1 variant

CLREX{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

CLREX{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 ClearExclusiveLocal(ProcessorID());

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 1 (1) (1) (1) (1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 0 1 0 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-4640 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.31 CLZ

Count Leading Zeros returns the number of binary zero bits before the first binary one bit in a value.

A1

A1 variant

CLZ{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm);
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

CLZ{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); n = UInt(Rn);
 if m != n || d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If m != n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction executes with the additional decode: m = UInt(Rn);.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

!=1111 0 0 0 1 0 1 1 0 (1) (1) (1) (1) Rd (1) (1) (1) (1) 0 0 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 1 1 Rn 1 1 1 1 Rd 1 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4641
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T1: is the general-purpose source register, encoded in the "Rm" field. It must be
encoded with an identical value in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = CountLeadingZeroBits(R[m]);
 R[d] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4642 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.32 CMN (immediate)

Compare Negative (immediate) adds a register value and an immediate value. It updates the condition flags based
on the result, and discards the result.

A1

A1 variant

CMN{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

 n = UInt(Rn); imm32 = A32ExpandImm(imm12);

T1

T1 variant

CMN{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

 n = UInt(Rn); imm32 = T32ExpandImm(i:imm3:imm8);
 if n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on
page F1-4364 for the range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions on
page F1-4362 for the range of values.

!=1111 0 0 1 1 0 1 1 1 Rn (0) (0) (0) (0) imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0

cond

1 1 1 1 0 i 0 1 0 0 0 1 Rn 0 imm3 1 1 1 1 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4643
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(R[n], imm32, '0');
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4644 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.33 CMN (register)

Compare Negative (register) adds a register value and an optionally-shifted register value. It updates the condition
flags based on the result, and discards the result.

A1

Rotate right with extend variant

Applies when imm5 == 00000 && stype == 11.

CMN{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm5 == 00000 && stype == 11).

CMN{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

T1 variant

CMN{<c>}{<q>} <Rn>, <Rm>

Decode for this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && stype == 11.

CMN{<c>}{<q>} <Rn>, <Rm>, RRX

!=1111 0 0 0 1 0 1 1 1 Rn (0) (0) (0) (0) imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 7 6 5 4 3 0

cond

0 1 0 0 0 0 1 0 1 1 Rm Rn
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 1 0 0 0 1 Rn (0) imm3 1 1 1 1 imm2 stype Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4645
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && stype == 11).

CMN{<c>}.W <Rn>, <Rm> // <Rn>, <Rm> can be represented in T1
CMN{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

For encoding T1 and T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], shifted, '0');
 PSTATE.<N,Z,C,V> = nzcv;
F5-4646 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4647
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.34 CMN (register-shifted register)

Compare Negative (register-shifted register) adds a register value and a register-shifted register value. It updates the
condition flags based on the result, and discards the result.

A1

A1 variant

CMN{<c>}{<q>} <Rn>, <Rm>, <type> <Rs>

Decode for this encoding

 n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 shift_t = DecodeRegShift(stype);
 if n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<type> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], shifted, '0');
 PSTATE.<N,Z,C,V> = nzcv;

!=1111 0 0 0 1 0 1 1 1 Rn (0) (0) (0) (0) Rs 0 stype 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond
F5-4648 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4649
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.35 CMP (immediate)

Compare (immediate) subtracts an immediate value from a register value. It updates the condition flags based on
the result, and discards the result.

A1

A1 variant

CMP{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

 n = UInt(Rn); imm32 = A32ExpandImm(imm12);

T1

T1 variant

CMP{<c>}{<q>} <Rn>, #<imm8>

Decode for this encoding

 n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);

T2

T2 variant

CMP{<c>}.W <Rn>, #<const> // <Rd>, <const> can be represented in T1
CMP{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

 n = UInt(Rn); imm32 = T32ExpandImm(i:imm3:imm8);
 if n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

!=1111 0 0 1 1 0 1 0 1 Rn (0) (0) (0) (0) imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0

cond

0 0 1 0 1 Rn imm8
15 14 13 12 11 10 8 7 0

1 1 1 1 0 i 0 1 1 0 1 1 Rn 0 imm3 1 1 1 1 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 0
F5-4650 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is a general-purpose source register, encoded in the "Rn" field.

For encoding T2: is the general-purpose source register, encoded in the "Rn" field.

<imm8> Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on
page F1-4364 for the range of values.

For encoding T2: an immediate value. See Modified immediate constants in T32 instructions on
page F1-4362 for the range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(R[n], NOT(imm32), '1');
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4651
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.36 CMP (register)

Compare (register) subtracts an optionally-shifted register value from a register value. It updates the condition flags
based on the result, and discards the result.

A1

Rotate right with extend variant

Applies when imm5 == 00000 && stype == 11.

CMP{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm5 == 00000 && stype == 11).

CMP{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

T1 variant

CMP{<c>}{<q>} <Rn>, <Rm> // <Rn> and <Rm> both from R0-R7

Decode for this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

T2 variant

CMP{<c>}{<q>} <Rn>, <Rm> // <Rn> and <Rm> not both from R0-R7

!=1111 0 0 0 1 0 1 0 1 Rn (0) (0) (0) (0) imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 7 6 5 4 3 0

cond

0 1 0 0 0 0 1 0 1 0 Rm Rn
15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 1 0 1 N Rm Rn
15 14 13 12 11 10 9 8 7 6 3 2 0
F5-4652 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 n = UInt(N:Rn); m = UInt(Rm);
 (shift_t, shift_n) = (SRType_LSL, 0);
 if n < 8 && m < 8 then UNPREDICTABLE;
 if n == 15 || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n < 8 && m < 8, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The condition flags become UNKNOWN.

T3

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && stype == 11.

CMP{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && stype == 11).

CMP{<c>}.W <Rn>, <Rm> // <Rn>, <Rm> can be represented in T1 or T2
CMP{<c>}{<q>} <Rn>, <Rm>, <shift> #<amount>

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

For encoding T1 and T3: is the first general-purpose source register, encoded in the "Rn" field.

For encoding T2: is the first general-purpose source register, encoded in the "N:Rn" field.

1 1 1 0 1 0 1 1 1 0 1 1 Rn (0) imm3 1 1 1 1 imm2 stype Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4653
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1, T2 and T3: is the second general-purpose source register, encoded in the "Rm"
field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], NOT(shifted), '1');
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4654 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.37 CMP (register-shifted register)

Compare (register-shifted register) subtracts a register-shifted register value from a register value. It updates the
condition flags based on the result, and discards the result.

A1

A1 variant

CMP{<c>}{<q>} <Rn>, <Rm>, <type> <Rs>

Decode for this encoding

 n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 shift_t = DecodeRegShift(stype);
 if n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<type> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], NOT(shifted), '1');
 PSTATE.<N,Z,C,V> = nzcv;

!=1111 0 0 0 1 0 1 0 1 Rn (0) (0) (0) (0) Rs 0 stype 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4655
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4656 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.38 CPS, CPSID, CPSIE

Change PE State changes one or more of the PSTATE.{A, I, F} interrupt mask bits and, optionally, the PSTATE.M
mode field, without changing any other PSTATE bits.

CPS is treated as NOP if executed in User mode unless it is defined as being CONSTRAINED UNPREDICTABLE elsewhere
in this section.

The PE checks whether the value being written to PSTATE.M is legal. See Illegal changes to PSTATE.M on
page G1-6039.

A1

Change mode variant

Applies when imod == 00 && M == 1.

CPS{<q>} #<mode> // Cannot be conditional

Interrupt disable variant

Applies when imod == 11 && M == 0.

CPSID{<q>} <iflags> // Cannot be conditional

Interrupt disable and change mode variant

Applies when imod == 11 && M == 1.

CPSID{<q>} <iflags> , #<mode> // Cannot be conditional

Interrupt enable variant

Applies when imod == 10 && M == 0.

CPSIE{<q>} <iflags> // Cannot be conditional

Interrupt enable and change mode variant

Applies when imod == 10 && M == 1.

CPSIE{<q>} <iflags> , #<mode> // Cannot be conditional

Decode for all variants of this encoding

 if mode != '00000' && M == '0' then UNPREDICTABLE;
 if (imod<1> == '1' && A:I:F == '000') || (imod<1> == '0' && A:I:F != '000') then UNPREDICTABLE;
 enable = (imod == '10'); disable = (imod == '11'); changemode = (M == '1');
 affectA = (A == '1'); affectI = (I == '1'); affectF = (F == '1');
 if (imod == '00' && M == '0') || imod == '01' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If imod == '01', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

1 1 1 1 0 0 0 1 0 0 0 0 imod M 0 (0) (0) (0) (0) (0) (0) (0) A I F 0 mode
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4657
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
If imod == '00' && M == '0', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

If mode != '00000' && M == '0', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: changemode = TRUE.

• The instruction executes as described, and the value specified by mode is ignored. There are no additional
side-effects.

If imod<1> == '1' && A:I:F == '000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction behaves as if imod<1> == '0'.

• The instruction behaves as if A:I:F has an UNKNOWN nonzero value.

If imod<1> == '0' && A:I:F != '000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction behaves as if imod<1> == '1'.

• The instruction behaves as if A:I:F == '000'.

T1

Interrupt disable variant

Applies when im == 1.

CPSID{<q>} <iflags> // Not permitted in IT block

Interrupt enable variant

Applies when im == 0.

CPSIE{<q>} <iflags> // Not permitted in IT block

Decode for all variants of this encoding

 if A:I:F == '000' then UNPREDICTABLE;
 enable = (im == '0'); disable = (im == '1'); changemode = FALSE;
 affectA = (A == '1'); affectI = (I == '1'); affectF = (F == '1');
 if InITBlock() then UNPREDICTABLE;

1 0 1 1 0 1 1 0 0 1 1 im (0) A I F
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-4658 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If A:I:F == '000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

T2

Change mode variant

Applies when imod == 00 && M == 1.

CPS{<q>} #<mode> // Not permitted in IT block

Interrupt disable variant

Applies when imod == 11 && M == 0.

CPSID.W <iflags> // Not permitted in IT block

Interrupt disable and change mode variant

Applies when imod == 11 && M == 1.

CPSID{<q>} <iflags>, #<mode> // Not permitted in IT block

Interrupt enable variant

Applies when imod == 10 && M == 0.

CPSIE.W <iflags> // Not permitted in IT block

Interrupt enable and change mode variant

Applies when imod == 10 && M == 1.

CPSIE{<q>} <iflags>, #<mode> // Not permitted in IT block

Decode for all variants of this encoding

 if imod == '00' && M == '0' then SEE "Hint instructions";
 if mode != '00000' && M == '0' then UNPREDICTABLE;
 if (imod<1> == '1' && A:I:F == '000') || (imod<1> == '0' && A:I:F != '000') then UNPREDICTABLE;
 enable = (imod == '10'); disable = (imod == '11'); changemode = (M == '1');
 affectA = (A == '1'); affectI = (I == '1'); affectF = (F == '1');
 if imod == '01' || InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If imod == '01', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

If mode != '00000' && M == '0', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) imod M A I F mode
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4659
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.

• The instruction executes with the additional decode: changemode = TRUE.

• The instruction executes as described, and the value specified by mode is ignored. There are no additional
side-effects.

If imod<1> == '1' && A:I:F == '000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction behaves as if imod<1> == '0'.

• The instruction behaves as if A:I:F has an UNKNOWN nonzero value.

If imod<1> == '0' && A:I:F != '000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction behaves as if imod<1> == '1'.

• The instruction behaves as if A:I:F == '000'.

Notes for all encodings

Hint instructions: In encoding T2, if the imod field is 00 and the M bit is 0, a hint instruction is encoded. To determine
which hint instruction, see Branches and miscellaneous control on page F3-4464.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<iflags> Is a sequence of one or more of the following, specifying which interrupt mask bits are affected:

a Sets the A bit in the instruction, causing the specified effect on PSTATE.A, the SError
interrupt mask bit.

i Sets the I bit in the instruction, causing the specified effect on PSTATE.I, the IRQ
interrupt mask bit.

f Sets the F bit in the instruction, causing the specified effect on PSTATE.F, the FIQ
interrupt mask bit.

<mode> Is the number of the mode to change to, in the range 0 to 31, encoded in the "mode" field.

Operation for all encodings

 if CurrentInstrSet() == InstrSet_A32 then
 EncodingSpecificOperations();
 if PSTATE.EL != EL0 then
 if enable then
 if affectA then PSTATE.A = '0';
 if affectI then PSTATE.I = '0';
 if affectF then PSTATE.F = '0';
 if disable then
 if affectA then PSTATE.A = '1';
 if affectI then PSTATE.I = '1';
 if affectF then PSTATE.F = '1';
 if changemode then
 // AArch32.WriteModeByInstr() sets PSTATE.IL to 1 if this is an illegal mode change.
F5-4660 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 AArch32.WriteModeByInstr(mode);
 else
 EncodingSpecificOperations();
 if PSTATE.EL != EL0 then
 if enable then
 if affectA then PSTATE.A = '0';
 if affectI then PSTATE.I = '0';
 if affectF then PSTATE.F = '0';
 if disable then
 if affectA then PSTATE.A = '1';
 if affectI then PSTATE.I = '1';
 if affectF then PSTATE.F = '1';
 if changemode then
 // AArch32.WriteModeByInstr() sets PSTATE.IL to 1 if this is an illegal mode change.
 AArch32.WriteModeByInstr(mode);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4661
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.39 CRC32

CRC32 performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register. It takes
an input CRC value in the first source operand, performs a CRC on the input value in the second source operand,
and returns the output CRC value. The second source operand can be 8, 16, or 32 bits. To align with common usage,
the bit order of the values is reversed as part of the operation, and the polynomial 0x04C11DB7 is used for the CRC
calculation.

In Armv8-A, this is an OPTIONAL instruction, and in Armv8.1 it is mandatory for all implementations to implement
it.

Note

ID_ISAR5.CRC32 indicates whether this instruction is supported in the T32 and A32 instruction sets.

A1

CRC32B variant

Applies when sz == 00.

CRC32B{<q>} <Rd>, <Rn>, <Rm>

CRC32H variant

Applies when sz == 01.

CRC32H{<q>} <Rd>, <Rn>, <Rm>

CRC32W variant

Applies when sz == 10.

CRC32W{<q>} <Rd>, <Rn>, <Rm>

Decode for all variants of this encoding

 if ! HaveCRCExt() then UNDEFINED;
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 size = 8 << UInt(sz);
 crc32c = (C == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if size == 64 then UNPREDICTABLE;
 if cond != '1110' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == 64, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: size = 32;.

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

!=1111 0 0 0 1 0 sz 0 Rn Rd (0) (0) 0 (0) 0 1 0 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond C
F5-4662 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

T1

CRC32B variant

Applies when sz == 00.

CRC32B{<q>} <Rd>, <Rn>, <Rm>

CRC32H variant

Applies when sz == 01.

CRC32H{<q>} <Rd>, <Rn>, <Rm>

CRC32W variant

Applies when sz == 10.

CRC32W{<q>} <Rd>, <Rn>, <Rm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if ! HaveCRCExt() then UNDEFINED;
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 size = 8 << UInt(sz);
 crc32c = (C == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if size == 64 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == 64, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: size = 32;.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348. An CRC32 instruction must be unconditional.

<Rd> Is the general-purpose accumulator output register, encoded in the "Rd" field.

<Rn> Is the general-purpose accumulator input register, encoded in the "Rn" field.

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 1 0 sz Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

C

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4663
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rm> Is the general-purpose data source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();

 acc = R[n]; // accumulator
 val = R[m]<size-1:0>; // input value
 poly = (if crc32c then 0x1EDC6F41 else 0x04C11DB7)<31:0>;
 tempacc = BitReverse(acc):Zeros(size);
 tempval = BitReverse(val):Zeros(32);
 // Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
 R[d] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4664 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.40 CRC32C

CRC32C performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register. It takes
an input CRC value in the first source operand, performs a CRC on the input value in the second source operand,
and returns the output CRC value. The second source operand can be 8, 16, or 32 bits. To align with common usage,
the bit order of the values is reversed as part of the operation, and the polynomial 0x1EDC6F41 is used for the CRC
calculation.

In Armv8-A, this is an OPTIONAL instruction, and in Armv8.1 it is mandatory for all implementations to implement
it.

Note

ID_ISAR5.CRC32 indicates whether this instruction is supported in the T32 and A32 instruction sets.

A1

CRC32CB variant

Applies when sz == 00.

CRC32CB{<q>} <Rd>, <Rn>, <Rm>

CRC32CH variant

Applies when sz == 01.

CRC32CH{<q>} <Rd>, <Rn>, <Rm>

CRC32CW variant

Applies when sz == 10.

CRC32CW{<q>} <Rd>, <Rn>, <Rm>

Decode for all variants of this encoding

 if ! HaveCRCExt() then UNDEFINED;
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 size = 8 << UInt(sz);
 crc32c = (C == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if size == 64 then UNPREDICTABLE;
 if cond != '1110' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == 64, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: size = 32;.

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

!=1111 0 0 0 1 0 sz 0 Rn Rd (0) (0) 1 (0) 0 1 0 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond C
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4665
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

T1

CRC32CB variant

Applies when sz == 00.

CRC32CB{<q>} <Rd>, <Rn>, <Rm>

CRC32CH variant

Applies when sz == 01.

CRC32CH{<q>} <Rd>, <Rn>, <Rm>

CRC32CW variant

Applies when sz == 10.

CRC32CW{<q>} <Rd>, <Rn>, <Rm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if ! HaveCRCExt() then UNDEFINED;
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 size = 8 << UInt(sz);
 crc32c = (C == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if size == 64 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == 64, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: size = 32;.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348. An CRC32C instruction must be
unconditional.

<Rd> Is the general-purpose accumulator output register, encoded in the "Rd" field.

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 1 0 sz Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

C

F5-4666 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rn> Is the general-purpose accumulator input register, encoded in the "Rn" field.

<Rm> Is the general-purpose data source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();

 acc = R[n]; // accumulator
 val = R[m]<size-1:0>; // input value
 poly = (if crc32c then 0x1EDC6F41 else 0x04C11DB7)<31:0>;
 tempacc = BitReverse(acc):Zeros(size);
 tempval = BitReverse(val):Zeros(32);
 // Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
 R[d] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4667
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.41 CSDB

Consumption of Speculative Data Barrier is a memory barrier that controls speculative execution and data value
prediction.

No instruction other than branch instructions and instructions that write to the PC appearing in program order after
the CSDB can be speculatively executed using the results of any:

• Data value predictions of any instructions.

• PSTATE.{N,Z,C,V} predictions of any instructions other than conditional branch instructions and
conditional instructions that write to the PC appearing in program order before the CSDB that have not been
architecturally resolved.

Note

For purposes of the definition of CSDB, PSTATE.{N,Z,C,V} is not considered a data value. This definition permits:

• Control flow speculation before and after the CSDB.

• Speculative execution of conditional data processing instructions after the CSDB, unless they use the results
of data value or PSTATE.{N,Z,C,V} predictions of instructions appearing in program order before the CSDB
that have not been architecturally resolved.

A1

A1 variant

CSDB{<c>}{<q>}

Decode for this encoding

 if cond != '1110' then UNPREDICTABLE; // CSDB must be encoded with AL condition

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

T1

T1 variant

CSDB{<c>}{<q>}

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 1 0 1 0 0
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 1 0 1 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-4668 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();

 ConsumptionOfSpeculativeDataBarrier();
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4669
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.42 DBG

In Armv8, DBG executes as a NOP. Arm deprecates any use of the DBG instruction.

A1

A1 variant

DBG{<c>}{<q>} #<option>

Decode for this encoding

 // DBG executes as a NOP. The 'option' field is ignored

T1

T1 variant

DBG{<c>}{<q>} #<option>

Decode for this encoding

 // DBG executes as a NOP. The 'option' field is ignored

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<option> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "option" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 1 1 1 1 option
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 1 1 1 1 option
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0
F5-4670 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.43 DCPS1

Debug Change PE State to EL1 allows the debugger to move the PE into EL1 from EL0 or to a specific mode at the
current Exception level.

DCPS1 is UNDEFINED if any of:

• The PE is in Non-debug state.

• EL2 is implemented, EL2 is implemented and enabled in the current Security state, and any of:

— EL2 is using AArch32 and HCR.TGE is set to 1.

— EL2 is using AArch64 and HCR_EL2.TGE is set to 1.

When the PE executes DCPS1 at EL0, EL1 or EL3:

• If EL3 or EL1 is using AArch32, the PE enters SVC mode and LR_svc, SPSR_svc, DLR, and DSPSR
become UNKNOWN. If DCPS1 is executed in Monitor mode, SCR.NS is cleared to 0.

• If EL1 is using AArch64, the PE enters EL1 using AArch64, selects SP_EL1, and ELR_EL1, ESR_EL1,
SPSR_EL1, DLR_EL0 and DSPSR_EL0 become UNKNOWN.

When the PE executes DCPS1 at EL2 the PE does not change mode, and ELR_hyp, HSR, SPSR_hyp, DLR and
DSPSR become UNKNOWN.

For more information on the operation of this instruction, see DCPS<n> on page H2-7366.

T1

T1 variant

DCPS1

Decode for this encoding

 // No additional decoding required.

Operation

 if !Halted() then UNDEFINED;

 if EL2Enabled() && PSTATE.EL == EL0 then
 tge = if ELUsingAArch32(EL2) then HCR.TGE else HCR_EL2.TGE;
 if tge == '1' then UNDEFINED;

 if PSTATE.EL != EL0 || ELUsingAArch32(EL1) then
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 if PSTATE.EL != EL2 then
 AArch32.WriteMode(M32_Svc);
 PSTATE.E = SCTLR.EE;
 if HavePANExt() && SCTLR.SPAN == '0' then PSTATE.PAN = '1';
 LR_svc = bits(32) UNKNOWN;
 SPSR_svc = bits(32) UNKNOWN;
 else
 PSTATE.E = HSCTLR.EE;
 ELR_hyp = bits(32) UNKNOWN;
 HSR = bits(32) UNKNOWN;
 SPSR_hyp = bits(32) UNKNOWN;

1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4671
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;
 else // Targeting EL1 using AArch64
 AArch64.MaybeZeroRegisterUppers();
 MaybeZeroSVEUppers(EL1);
 PSTATE.nRW = '0';
 PSTATE.SP = '1';
 PSTATE.EL = EL1;
 if HavePANExt() && SCTLR_EL1.SPAN == '0' then PSTATE.PAN = '1';
 if HaveUAOExt() then PSTATE.UAO = '0';

 ELR_EL1 = bits(64) UNKNOWN;
 ESR_EL1 = bits(64) UNKNOWN;
 SPSR_EL1 = bits(64) UNKNOWN;

 DLR_EL0 = bits(64) UNKNOWN;
 DSPSR_EL0 = bits(64) UNKNOWN;

 // SCTLR_EL1.IESB might be ignored in Debug state.
 if HaveIESB() && SCTLR_EL1.IESB == '1' && !ConstrainUnpredictableBool(Unpreductable_IESBinDebug)
then
 SynchronizeErrors();

 UpdateEDSCRFields(); // Update EDSCR PE state flags
F5-4672 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.44 DCPS2

Debug Change PE State to EL2 allows the debugger to move the PE into EL2 from a lower Exception level.

DCPS2 is UNDEFINED if any of:

• The PE is in Non-debug state.

• EL2 is not implemented.

• The PE is in Secure state and any of:

— Secure EL2 is not implemented.

— Secure EL2 is implemented and Secure EL2 is disabled.

When the PE executes DCPS2:

• If EL2 is using AArch32, the PE enters Hyp mode and ELR_hyp, HSR, SPSR_hyp, DLR and DSPSR
become UNKNOWN.

• If EL2 is using AArch64, the PE enters EL2 using AArch64, selects SP_EL2, and ELR_EL2, ESR_EL2,
SPSR_EL2, DLR_EL0 and DSPSR_EL0 become UNKNOWN.

For more information on the operation of this instruction, see DCPS<n> on page H2-7366.

T1

T1 variant

DCPS2

Decode for this encoding

 if !HaveEL(EL2) then UNDEFINED;

Operation

 if !Halted() || IsSecure() then UNDEFINED;

 if ELUsingAArch32(EL2) then
 AArch32.WriteMode(M32_Hyp);
 PSTATE.E = HSCTLR.EE;

 ELR_hyp = bits(32) UNKNOWN;
 HSR = bits(32) UNKNOWN;
 SPSR_hyp = bits(32) UNKNOWN;

 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;
 else // Targeting EL2 using AArch64
 AArch64.MaybeZeroRegisterUppers();
 MaybeZeroSVEUppers(EL2);
 PSTATE.nRW = '0';
 PSTATE.SP = '1';
 PSTATE.EL = EL2;
 if HavePANExt() && SCTLR_EL2.SPAN == '0' && HCR_EL2.E2H == '1' && HCR_EL2.TGE == '1' then
 PSTATE.PAN = '1';
 if HaveUAOExt() then PSTATE.UAO = '0';

1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4673
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 ELR_EL2 = bits(64) UNKNOWN;
 ESR_EL2 = bits(64) UNKNOWN;
 SPSR_EL2 = bits(64) UNKNOWN;

 DLR_EL0 = bits(64) UNKNOWN;
 DSPSR_EL0 = bits(64) UNKNOWN;

 // SCTLR_EL2.IESB might be ignored in Debug state.
 if HaveIESB() && SCTLR_EL2.IESB == '1' && !ConstrainUnpredictableBool(Unpreductable_IESBinDebug)
then
 SynchronizeErrors();

 UpdateEDSCRFields(); // Update EDSCR PE state flags
F5-4674 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.45 DCPS3

Debug Change PE State to EL3 allows the debugger to move the PE into EL3 from a lower Exception level or to a
specific mode at the current Exception level.

DCPS3 is UNDEFINED if any of:

• The PE is in Non-debug state.

• EL3 is not implemented.

• EDSCR.SDD is set to 1.

When the PE executes DCPS3:

• If EL3 is using AArch32, the PE enters Monitor mode and LR_mon, SPSR_mon, DLR and DSPSR become
UNKNOWN. If DCPS3 is executed in Monitor mode, SCR.NS is cleared to 0.

• If EL3 is using AArch64, the PE enters EL3 using AArch64, selects SP_EL3, and ELR_EL3, ESR_EL3,
SPSR_EL3, DLR_EL0 and DSPSR_EL0 become UNKNOWN.

For more information on the operation of this instruction, see DCPS<n> on page H2-7366.

T1

T1 variant

DCPS3

Decode for this encoding

 if !HaveEL(EL3) then UNDEFINED;

Operation

 if !Halted() || EDSCR.SDD == '1' then UNDEFINED;

 if ELUsingAArch32(EL3) then
 from_secure = IsSecure();
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 AArch32.WriteMode(M32_Monitor);
 if HavePANExt() then
 if !from_secure then
 PSTATE.PAN = '0';
 elsif SCTLR.SPAN == '0' then
 PSTATE.PAN = '1';
 PSTATE.E = SCTLR.EE;

 LR_mon = bits(32) UNKNOWN;
 SPSR_mon = bits(32) UNKNOWN;

 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;
 else // Targeting EL3 using AArch64
 AArch64.MaybeZeroRegisterUppers();
 MaybeZeroSVEUppers(EL3);
 PSTATE.nRW = '0';
 PSTATE.SP = '1';
 PSTATE.EL = EL3;

1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4675
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 if HaveUAOExt() then PSTATE.UAO = '0';

 ELR_EL3 = bits(64) UNKNOWN;
 ESR_EL3 = bits(64) UNKNOWN;
 SPSR_EL3 = bits(64) UNKNOWN;

 DLR_EL0 = bits(64) UNKNOWN;
 DSPSR_EL0 = bits(64) UNKNOWN;

 sync_errors = HaveIESB() && SCTLR_EL3.IESB == '1';
 if HaveDoubleFaultExt() && SCR_EL3.EA == '1' && SCR_EL3.NMEA == '1' then
 sync_errors = TRUE;
 // SCTLR_EL3.IESB might be ignored in Debug state.
 if !ConstrainUnpredictableBool(Unpreductable_IESBinDebug) then
 sync_errors = FALSE;
 if sync_errors then SynchronizeErrors();

 UpdateEDSCRFields(); // Update EDSCR PE state flags
F5-4676 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.46 DMB

Data Memory Barrier is a memory barrier that ensures the ordering of observations of memory accesses, see Data
Memory Barrier (DMB) on page E2-4300.

A1

A1 variant

DMB{<c>}{<q>} {<option>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

DMB{<c>}{<q>} {<option>}

Decode for this encoding

 // No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<option> Specifies an optional limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Can be omitted. This option is
referred to as the full system barrier. Encoded as option = 0b1111.

ST Full system is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. SYST is a synonym for ST. Encoded as option =
0b1110.

LD Full system is the required shareability domain, reads are the required access type before
the barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as option = 0b1101.

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 0 1 option
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 1 option
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4677
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
ISH Inner Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as option = 0b1011.

ISHST Inner Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as option = 0b1010.

ISHLD Inner Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as option = 0b1001.

NSH Non-shareable is the required shareability domain, reads and writes are the required
access, both before and after the barrier instruction. Encoded as option = 0b0111.

NSHST Non-shareable is the required shareability domain, writes are the required access type
both before and after the barrier instruction. Encoded as option = 0b0110.

NSHLD Non-shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as option = 0b0101.

OSH Outer Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as option = 0b0011.

OSHST Outer Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as option = 0b0010.

OSHLD Outer Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as option = 0b0001.

For more information on whether an access is before or after a barrier instruction, see Data Memory
Barrier (DMB) on page E2-4300. All other encodings of option are reserved. All unsupported and
reserved options must execute as a full system DMB operation, but software must not rely on this
behavior.

Note

The instruction supports the following alternative <option> values, but Arm recommends that
software does not use these alternative values:

• SH as an alias for ISH.

• SHST as an alias for ISHST.

• UN as an alias for NSH.

• UNST as an alias for NSHST.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 case option of
 when '0001' domain = MBReqDomain_OuterShareable; types = MBReqTypes_Reads;
 when '0010' domain = MBReqDomain_OuterShareable; types = MBReqTypes_Writes;
 when '0011' domain = MBReqDomain_OuterShareable; types = MBReqTypes_All;
 when '0101' domain = MBReqDomain_Nonshareable; types = MBReqTypes_Reads;
 when '0110' domain = MBReqDomain_Nonshareable; types = MBReqTypes_Writes;
 when '0111' domain = MBReqDomain_Nonshareable; types = MBReqTypes_All;
 when '1001' domain = MBReqDomain_InnerShareable; types = MBReqTypes_Reads;
 when '1010' domain = MBReqDomain_InnerShareable; types = MBReqTypes_Writes;
 when '1011' domain = MBReqDomain_InnerShareable; types = MBReqTypes_All;
 when '1101' domain = MBReqDomain_FullSystem; types = MBReqTypes_Reads;
 when '1110' domain = MBReqDomain_FullSystem; types = MBReqTypes_Writes;
 otherwise domain = MBReqDomain_FullSystem; types = MBReqTypes_All;

 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
 if HCR.BSU == '11' then
 domain = MBReqDomain_FullSystem;
 if HCR.BSU == '10' && domain != MBReqDomain_FullSystem then
F5-4678 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 domain = MBReqDomain_OuterShareable;
 if HCR.BSU == '01' && domain == MBReqDomain_Nonshareable then
 domain = MBReqDomain_InnerShareable;

 DataMemoryBarrier(domain, types);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4679
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.47 DSB

Data Synchronization Barrier is a memory barrier that ensures the completion of memory accesses, see Data
Synchronization Barrier (DSB) on page E2-4301.

An AArch32 DSB instruction does not require the completion of any AArch64 TLB maintenance instructions,
regardless of the nXS qualifier, appearing in program order before the AArch32 DSB.

A1

A1 variant

DSB{<c>}{<q>} {<option>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

DSB{<c>}{<q>} {<option>}

Decode for this encoding

 // No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<option> Specifies an optional limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Can be omitted. This option is
referred to as the full system barrier. Encoded as option = 0b1111.

ST Full system is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. SYST is a synonym for ST. Encoded as option =
0b1110.

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 0 0 !=0x00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

option

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 0 !=0x00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0

option
F5-4680 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
LD Full system is the required shareability domain, reads are the required access type before
the barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as option = 0b1101.

ISH Inner Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as option = 0b1011.

ISHST Inner Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as option = 0b1010.

ISHLD Inner Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as option = 0b1001.

NSH Non-shareable is the required shareability domain, reads and writes are the required
access, both before and after the barrier instruction. Encoded as option = 0b0111.

NSHST Non-shareable is the required shareability domain, writes are the required access type
both before and after the barrier instruction. Encoded as option = 0b0110.

NSHLD Non-shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as option = 0b0101.

OSH Outer Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as option = 0b0011.

OSHST Outer Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as option = 0b0010.

OSHLD Outer Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as option = 0b0001.

For more information on whether an access is before or after a barrier instruction, see Data
Synchronization Barrier (DSB) on page E2-4301. All other encodings of option are reserved, other
than the values 0b0000 and 0b0100. All unsupported and reserved options must execute as a full
system DSB operation, but software must not rely on this behavior.

Note

The value 0b0000 is used to encode SSBB and the value 0b0100 is used to encode PSSBB.

The instruction supports the following alternative <option> values, but Arm recommends that
software does not use these alternative values:

• SH as an alias for ISH.

• SHST as an alias for ISHST.

• UN as an alias for NSH.

• UNST as an alias for NSHST.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();

 if HaveFeatXS() && HaveFeatHCX() then
 nXS = (PSTATE.EL IN {EL0, EL1} && !ELUsingAArch32(EL2) &&
 IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1');
 else
 nXS = FALSE;

 case option of
 when '0001' domain = MBReqDomain_OuterShareable; types = MBReqTypes_Reads;
 when '0010' domain = MBReqDomain_OuterShareable; types = MBReqTypes_Writes;
 when '0011' domain = MBReqDomain_OuterShareable; types = MBReqTypes_All;
 when '0101' domain = MBReqDomain_Nonshareable; types = MBReqTypes_Reads;
 when '0110' domain = MBReqDomain_Nonshareable; types = MBReqTypes_Writes;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4681
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 when '0111' domain = MBReqDomain_Nonshareable; types = MBReqTypes_All;
 when '1001' domain = MBReqDomain_InnerShareable; types = MBReqTypes_Reads;
 when '1010' domain = MBReqDomain_InnerShareable; types = MBReqTypes_Writes;
 when '1011' domain = MBReqDomain_InnerShareable; types = MBReqTypes_All;
 when '1101' domain = MBReqDomain_FullSystem; types = MBReqTypes_Reads;
 when '1110' domain = MBReqDomain_FullSystem; types = MBReqTypes_Writes;
 otherwise
 if option == '0000' then SEE "SSBB";
 elsif option == '0100' then SEE "PSSBB";
 else domain = MBReqDomain_FullSystem; types = MBReqTypes_All;

 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
 if HCR.BSU == '11' then
 domain = MBReqDomain_FullSystem;
 if HCR.BSU == '10' && domain != MBReqDomain_FullSystem then
 domain = MBReqDomain_OuterShareable;
 if HCR.BSU == '01' && domain == MBReqDomain_Nonshareable then
 domain = MBReqDomain_InnerShareable;

 DataSynchronizationBarrier(domain, types, nXS);
F5-4682 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.48 EOR, EORS (immediate)

Bitwise Exclusive OR (immediate) performs a bitwise Exclusive OR of a register value and an immediate value,
and writes the result to the destination register.

If the destination register is not the PC, the EORS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The EOR variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The EORS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

EOR variant

Applies when S == 0.

EOR{<c>}{<q>} {<Rd>,} <Rn>, #<const>

EORS variant

Applies when S == 1.

EORS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
 (imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

EOR variant

Applies when S == 0.

EOR{<c>}{<q>} {<Rd>,} <Rn>, #<const>

!=1111 0 0 1 0 0 0 1 S Rn Rd imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

1 1 1 1 0 i 0 0 1 0 0 S Rn 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4683
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
EORS variant

Applies when S == 1 && Rd != 1111.

EORS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "TEQ (immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
 if (d == 15 && !setflags) || n == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the EOR variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the EORS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on
page F1-4364 for the range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions on
page F1-4362 for the range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] EOR imm32;
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
F5-4684 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4685
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.49 EOR, EORS (register)

Bitwise Exclusive OR (register) performs a bitwise Exclusive OR of a register value and an optionally-shifted
register value, and writes the result to the destination register.

If the destination register is not the PC, the EORS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The EOR variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The EORS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

EOR, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

EOR, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

EORS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

EORS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 0 0 0 1 S Rn Rd imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
F5-4686 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

EOR<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
EORS{<q>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

EOR, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

EOR, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

EOR<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

EORS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11.

EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

EORS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111.

EORS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "TEQ (register)";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if (d == 15 && !setflags) || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

0 1 0 0 0 0 0 0 0 1 Rm Rdn
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 0 1 0 0 S Rn (0) imm3 Rd imm2 stype Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4687
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the EOR variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the EORS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

In T32 assembly:

• Outside an IT block, if EORS <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled
using encoding T1 as though EORS <Rd>, <Rn> had been written

• Inside an IT block, if EOR<c> <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled
using encoding T1 as though EOR<c> <Rd>, <Rn> had been written.

To prevent either of these happening, use the .W qualifier.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] EOR shifted;
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
F5-4688 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4689
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.50 EOR, EORS (register-shifted register)

Bitwise Exclusive OR (register-shifted register) performs a bitwise Exclusive OR of a register value and a
register-shifted register value. It writes the result to the destination register, and can optionally update the condition
flags based on the result.

A1

Flag setting variant

Applies when S == 1.

EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

!=1111 0 0 0 0 0 0 1 S Rn Rd Rs 0 stype 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
F5-4690 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] EOR shifted;
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4691
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.51 ERET

Exception Return.

The PE branches to the address held in the register holding the preferred return address, and restores PSTATE from
SPSR_<current_mode>.

The register holding the preferred return address is:

• ELR_hyp, when executing in Hyp mode.

• LR, when executing in a mode other than Hyp mode, User mode, or System mode.

The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on
page G1-6066.

Exception Return is CONSTRAINED UNPREDICTABLE in User mode and System mode.

In Debug state, the T1 encoding of ERET executes the DRPS operation.

A1

A1 variant

ERET{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

ERET{<c>}{<q>}

Decode for this encoding

 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

!=1111 0 0 0 1 0 1 1 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 0 1 1 0 (1) (1) (1) (0)
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 (0) 0 (1) (1) (1) (1) 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-4692 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if !Halted() then
 if PSTATE.M IN {M32_User,M32_System} then
 UNPREDICTABLE; // UNDEFINED or NOP
 else
 new_pc_value = if PSTATE.EL == EL2 then ELR_hyp else R[14];
 AArch32.ExceptionReturn(new_pc_value, SPSR[]);
 else // Perform DRPS operation in Debug state
 if PSTATE.M == M32_User then
 UNDEFINED;
 elsif PSTATE.M == M32_System then
 UNPREDICTABLE; // UNDEFINED or NOP
 else
 SynchronizeContext();
 bits(32) spsr = SPSR[];
 SetPSTATEFromPSR(spsr);
 // PSTATE.{N,Z,C,V,Q,GE,SS,A,I,F} are not observable and ignored in Debug state, so
 // behave as if UNKNOWN.
 PSTATE.<N,Z,C,V,Q,GE,SS,A,I,F> = bits(13) UNKNOWN;
 // In AArch32 Debug state, all instructions are T32 and unconditional.
 PSTATE.IT = '00000000'; PSTATE.T = '1'; // PSTATE.J is RES0
 DLR = bits(32) UNKNOWN; DSPSR = bits(32) UNKNOWN;
 UpdateEDSCRFields(); // Update EDSCR PE state flags

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4693
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.52 ESB

Error Synchronization Barrier is an error synchronization event that might also update DISR and VDISR. This
instruction can be used at all Exception levels and in Debug state.

In Debug state, this instruction behaves as if SError interrupts are masked at all Exception levels. See Error
Synchronization Barrier in the ARM(R) Reliability, Availability, and Serviceability (RAS) Specification, Armv8,
for Armv8-A architecture profile.

If the RAS Extension is not implemented, this instruction executes as a NOP.

A1

(FEAT_RAS)

A1 variant

ESB{<c>}{<q>}

Decode for this encoding

 if !HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
 if cond != '1110' then UNPREDICTABLE; // ESB must be encoded with AL condition

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

T1

(FEAT_RAS)

T1 variant

ESB{<c>}{<q>}

Decode for this encoding

 if !HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
 if InITBlock() then UNPREDICTABLE;

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 1 0 0 0 0
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 1 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-4694 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();

 SynchronizeErrors();
 AArch32.ESBOperation();
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch32.vESBOperation();
 TakeUnmaskedSErrorInterrupts();
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4695
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.53 HLT

Halting breakpoint causes a software breakpoint to occur.

Halting breakpoint is always unconditional, even inside an IT block.

A1

A1 variant

HLT{<q>} {#}<imm>

Decode for this encoding

 if EDSCR.HDE == '0' || !HaltingAllowed() then UNDEFINED;
 if cond != '1110' then UNPREDICTABLE; // HLT must be encoded with AL condition

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

T1

T1 variant

HLT{<q>} {#}<imm>

Decode for this encoding

 if EDSCR.HDE == '0' || !HaltingAllowed() then UNDEFINED;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348. An HLT instruction must be unconditional.

!=1111 0 0 0 1 0 0 0 0 imm12 0 1 1 1 imm4
31 28 27 26 25 24 23 22 21 20 19 8 7 6 5 4 3 0

cond

1 0 1 1 1 0 1 0 1 0 imm6
15 14 13 12 11 10 9 8 7 6 5 0
F5-4696 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<imm> For encoding A1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm12:imm4" field. This value is for assembly and disassembly only. It is ignored by the PE, but
can be used by a debugger to store more information about the halting breakpoint.

For encoding T1: is a 6-bit unsigned immediate, in the range 0 to 63, encoded in the "imm6" field.
This value is for assembly and disassembly only. It is ignored by the PE, but can be used by a
debugger to store more information about the halting breakpoint.

Operation for all encodings

 EncodingSpecificOperations();
 Halt(DebugHalt_HaltInstruction);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4697
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.54 HVC

Hypervisor Call causes a Hypervisor Call exception. For more information, see Hypervisor Call (HVC) exception
on page G1-6084. Software executing at EL1 can use this instruction to call the hypervisor to request a service.

The HVC instruction is UNDEFINED:

• When EL3 is implemented and using AArch64, and SCR_EL3.HCE is set to 0.

• In Non-secure EL1 modes when EL3 is implemented and using AArch32, and SCR.HCE is set to 0.

• When EL3 is not implemented and either HCR_EL2.HCD is set to 1 or HCR.HCD is set to 1.

• When EL2 is not implemented.

• In Secure state, if EL2 is not enabled in the current Security state.

• In User mode.

The HVC instruction is CONSTRAINED UNPREDICTABLE in Hyp mode when EL3 is implemented and using AArch32,
and SCR.HCE is set to 0.

On executing an HVC instruction, the HSR reports the exception as a Hypervisor Call exception, using the EC value
0x12, and captures the value of the immediate argument, see Use of the HSR on page G5-6381.

A1

A1 variant

HVC{<q>} {#}<imm16>

Decode for this encoding

 if cond != '1110' then UNPREDICTABLE;
 imm16 = imm12:imm4;

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

T1

T1 variant

HVC{<q>} {#}<imm16>

!=1111 0 0 0 1 0 1 0 0 imm12 0 1 1 1 imm4
31 28 27 26 25 24 23 22 21 20 19 8 7 6 5 4 3 0

cond

1 1 1 1 0 1 1 1 1 1 1 0 imm4 1 0 0 0 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 0
F5-4698 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 imm16 = imm4:imm12;
 if InITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348. An HVC instruction must be unconditional.

<imm16> For encoding A1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm12:imm4" field. This value is for assembly and disassembly only. It is reported in the HSR but
otherwise is ignored by hardware. An HVC handler might interpret imm16, for example to
determine the required service.

For encoding T1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:imm12" field. This value is for assembly and disassembly only. It is reported in the HSR but
otherwise is ignored by hardware. An HVC handler might interpret imm16, for example to
determine the required service.

Operation for all encodings

 EncodingSpecificOperations();
 if !HaveEL(EL2) || PSTATE.EL == EL0 || (IsSecure() && !IsSecureEL2Enabled()) then
 UNDEFINED;

 if HaveEL(EL3) then
 if ELUsingAArch32(EL3) && SCR.HCE == '0' && PSTATE.EL == EL2 then
 UNPREDICTABLE;
 else
 hvc_enable = SCR_GEN[].HCE;
 else
 hvc_enable = if ELUsingAArch32(EL2) then NOT(HCR.HCD) else NOT(HCR_EL2.HCD);

 if hvc_enable == '0' then
 UNDEFINED;
 else
 AArch32.CallHypervisor(imm16);

CONSTRAINED UNPREDICTABLE behavior

If ELUsingAArch32(EL3) && SCR.HCE == '0' && PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4699
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.55 ISB

Instruction Synchronization Barrier flushes the pipeline in the PE and is a context synchronization event. For more
information, see Instruction Synchronization Barrier (ISB) on page E2-4300.

A1

A1 variant

ISB{<c>}{<q>} {<option>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

ISB{<c>}{<q>} {<option>}

Decode for this encoding

 // No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<option> Specifies an optional limitation on the barrier operation. Values are:

SY Full system barrier operation, encoded as option = 0b1111. Can be omitted.

All other encodings of option are reserved. The corresponding instructions execute as full system
barrier operations, but must not be relied upon by software.

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 1 0 option
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 1 0 option
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0
F5-4700 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 InstructionSynchronizationBarrier();
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4701
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.56 IT

If-Then makes up to four following instructions (the IT block) conditional. The conditions for the instructions in the
IT block are the same as, or the inverse of, the condition the IT instruction specifies for the first instruction in the
block.

The IT instruction itself does not affect the condition flags, but the execution of the instructions in the IT block can
change the condition flags.

16-bit instructions in the IT block, other than CMP, CMN and TST, do not set the condition flags. An IT instruction with
the AL condition can change the behavior without conditional execution.

The architecture permits exception return to an instruction in the IT block only if the restoration of the CPSR
restores PSTATE.IT to a state consistent with the conditions specified by the IT instruction. Any other exception
return to an instruction in an IT block is UNPREDICTABLE. Any branch to a target instruction in an IT block is not
permitted, and if such a branch is made it is UNPREDICTABLE what condition is used when executing that target
instruction and any subsequent instruction in the IT block.

Many uses of the IT instruction are deprecated for performance reasons, and an implementation might include ITD
controls that can disable those uses of IT, making them UNDEFINED.

For more information see Conditional execution on page F1-4349 and Conditional instructions on page F2-4377.
The first of these sections includes more information about the ITD controls.

T1

T1 variant

IT{<x>{<y>{<z>}}}{<q>} <cond>

Decode for this encoding

 if mask == '0000' then SEE "Related encodings";
 if firstcond == '1111' || (firstcond == '1110' && BitCount(mask) != 1) then UNPREDICTABLE;
 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If firstcond == '1111' || (firstcond == '1110' && BitCount(mask) != 1), then one of the following behaviors must
occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The '1111' condition is treated as being the same as the '1110' condition, meaning always, and the ITSTATE
state machine is progressed in the same way as for any other cond_base value.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: Miscellaneous 16-bit instructions on page F3-4423.

1 0 1 1 1 1 1 1 firstcond !=0000
15 14 13 12 11 10 9 8 7 4 3 0

mask
F5-4702 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<x> The condition for the second instruction in the IT block. If omitted, the "mask" field is set to 0b1000.
If present it is encoded in the "mask[3]" field:

T firstcond[0]

E NOT firstcond[0]

<y> The condition for the third instruction in the IT block. If omitted and <x> is present, the "mask[2:0]"
field is set to 0b100. If <y> is present it is encoded in the "mask[2]" field:

T firstcond[0]

E NOT firstcond[0]

<z> The condition for the fourth instruction in the IT block. If omitted and <y> is present, the "mask[1:0]"
field is set to 0b10. If <z> is present, the "mask[0]" field is set to 1, and it is encoded in the "mask[1]"
field:

T firstcond[0]

E NOT firstcond[0]

<q> See Standard assembler syntax fields on page F1-4348.

<cond> The condition for the first instruction in the IT block, encoded in the "firstcond" field. See
Table F1-1 on page F1-4349 for the range of conditions available, and the encodings.

The conditions specified in an IT instruction must match those specified in the syntax of the instructions in its IT
block. When assembling to A32 code, assemblers check IT instruction syntax for validity but do not generate
assembled instructions for them. See Conditional instructions on page F2-4377.

Operation

 EncodingSpecificOperations();
 AArch32.CheckITEnabled(mask);
 PSTATE.IT<7:0> = firstcond:mask;
 ShouldAdvanceIT = FALSE;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4703
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.57 LDA

Load-Acquire Word loads a word from memory and writes it to a register. The instruction also has memory ordering
semantics as described in Load-Acquire, Store-Release on page E2-4305

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

LDA{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

LDA{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 0 0 0 1 1 0 0 1 Rn Rt (1) (1) 0 0 1 0 0 1 (1) (1) (1) (1)
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 0 1 0 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-4704 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 R[t] = MemO[address, 4];

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4705
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.58 LDAB

Load-Acquire Byte loads a byte from memory, zero-extends it to form a 32-bit word and writes it to a register. The
instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page E2-4305.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

LDAB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

LDAB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 0 0 0 1 1 1 0 1 Rn Rt (1) (1) 0 0 1 0 0 1 (1) (1) (1) (1)
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 0 0 0 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-4706 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 R[t] = ZeroExtend(MemO[address, 1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4707
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.59 LDAEX

Load-Acquire Exclusive Word loads a word from memory, writes it to a register and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page E2-4305.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

LDAEX{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

LDAEX{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 0 0 0 1 1 0 0 1 Rn Rt (1) (1) 1 0 1 0 0 1 (1) (1) (1) (1)
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 1 1 0 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-4708 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 AArch32.SetExclusiveMonitors(address, 4);
 R[t] = MemO[address, 4];

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4709
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.60 LDAEXB

Load-Acquire Exclusive Byte loads a byte from memory, zero-extends it to form a 32-bit word, writes it to a register
and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page E2-4305.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

LDAEXB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

LDAEXB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

!=1111 0 0 0 1 1 1 0 1 Rn Rt (1) (1) 1 0 1 0 0 1 (1) (1) (1) (1)
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 1 0 0 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-4710 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 AArch32.SetExclusiveMonitors(address, 1);
 R[t] = ZeroExtend(MemO[address, 1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4711
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.61 LDAEXD

Load-Acquire Exclusive Doubleword loads a doubleword from memory, writes it to two registers and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor

• Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also acts as a barrier instruction with the ordering requirements described in Load-Acquire,
Store-Release on page E2-4305.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

LDAEXD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); t2 = t + 1; n = UInt(Rn);
 if Rt<0> == '1' || t2 == 15 || n == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: t<0> = '0'.

• The instruction executes with the additional decode: t2 = t.

• The instruction executes as described, with no change to its behavior and no additional side effects.

If Rt == '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction is handled as described in Using R15 by instruction on page K1-8387.

T1

T1 variant

LDAEXD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>]

!=1111 0 0 0 1 1 0 1 1 Rn Rt (1) (1) 1 0 1 0 0 1 (1) (1) (1) (1)
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt Rt2 1 1 1 1 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 2 1 0
F5-4712 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn);
 if t == 15 || t2 == 15 || t == t2 || n == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The load instruction executes but the destination register takes an UNKNOWN value.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt> must be even-numbered and not R14.

For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. <Rt2> must be <R(t+1)>.

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 AArch32.SetExclusiveMonitors(address, 8);
 value = MemO[address, 8];
 // Extract words from 64-bit loaded value such that R[t] is
 // loaded from address and R[t2] from address+4.
 R[t] = if BigEndian(AccType_ORDERED) then value<63:32> else value<31:0>;
 R[t2] = if BigEndian(AccType_ORDERED) then value<31:0> else value<63:32>;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4713
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.62 LDAEXH

Load-Acquire Exclusive Halfword loads a halfword from memory, zero-extends it to form a 32-bit word, writes it
to a register and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page E2-4305.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

LDAEXH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

LDAEXH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

!=1111 0 0 0 1 1 1 1 1 Rn Rt (1) (1) 1 0 1 0 0 1 (1) (1) (1) (1)
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 1 0 1 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-4714 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 AArch32.SetExclusiveMonitors(address, 2);
 R[t] = ZeroExtend(MemO[address, 2], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4715
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.63 LDAH

Load-Acquire Halfword loads a halfword from memory, zero-extends it to form a 32-bit word and writes it to a
register. The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on
page E2-4305.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

LDAH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

LDAH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 0 0 0 1 1 1 1 1 Rn Rt (1) (1) 0 0 1 0 0 1 (1) (1) (1) (1)
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 0 0 1 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-4716 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 R[t] = ZeroExtend(MemO[address, 2], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4717
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.64 LDC (immediate)

Load data to System register (immediate) calculates an address from a base register value and an immediate offset,
loads a word from memory, and writes it to the DBGDTRTXint System register. It can use offset, post-indexed,
pre-indexed, or unindexed addressing. For information about memory accesses see Memory accesses on
page F1-4353.

In an implementation that includes EL2, the permitted LDC access to DBGDTRTXint can be trapped to Hyp mode,
meaning that an attempt to execute an LDC instruction in a Non-secure mode other than Hyp mode, that would be
permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see
Trapping general Non-secure System register accesses to debug registers on page G1-6143.

For simplicity, the LDC pseudocode does not show this possible trap to Hyp mode.

A1

Offset variant

Applies when P == 1 && W == 0.

LDC{<c>}{<q>} p14, c5, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDC{<c>}{<q>} p14, c5, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDC{<c>}{<q>} p14, c5, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

LDC{<c>}{<q>} p14, c5, [<Rn>], <option>

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDC (literal)";
 if P == '0' && U == '0' && W == '0' then UNDEFINED;
 n = UInt(Rn); cp = 14;
 imm32 = ZeroExtend(imm8:'00', 32); index = (P == '1'); add = (U == '1'); wback = (W == '1');

T1

Offset variant

Applies when P == 1 && W == 0.

!=1111 1 1 0 P U 0 W 1 !=1111 0 1 0 1 1 1 1 0 imm8
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

cond Rn

1 1 1 0 1 1 0 P U 0 W 1 !=1111 0 1 0 1 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 0

Rn
F5-4718 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
LDC{<c>}{<q>} p14, c5, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDC{<c>}{<q>} p14, c5, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDC{<c>}{<q>} p14, c5, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

LDC{<c>}{<q>} p14, c5, [<Rn>], <option>

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDC (literal)";
 if P == '0' && U == '0' && W == '0' then UNDEFINED;
 n = UInt(Rn); cp = 14;
 imm32 = ZeroExtend(imm8:'00', 32); index = (P == '1'); add = (U == '1'); wback = (W == '1');

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. If the PC is used, see LDC (literal).

<option> Is an 8-bit immediate, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field. The value
of this field is ignored when executing this instruction.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting
to 0 and encoded in the "imm8" field, as <imm>/4.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];

 // System register write to DBGDTRTXint.
 AArch32.SysRegWriteM(cp, ThisInstr(), address);

 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4719
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.65 LDC (literal)

Load data to System register (literal) calculates an address from the PC value and an immediate offset, loads a word
from memory, and writes it to the DBGDTRTXint System register. For information about memory accesses see
Memory accesses on page F1-4353.

In an implementation that includes EL2, the permitted LDC access to DBGDTRTXint can be trapped to Hyp mode,
meaning that an attempt to execute an LDC instruction in a Non-secure mode other than Hyp mode, that would be
permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see
Trapping general Non-secure System register accesses to debug registers on page G1-6143.

For simplicity, the LDC pseudocode does not show this possible trap to Hyp mode.

A1

A1 variant

Applies when !(P == 0 && U == 0 && W == 0).

LDC{<c>}{<q>} p14, c5, <label>
LDC{<c>}{<q>} p14, c5, [PC, #{+/-}<imm>]
LDC{<c>}{<q>} p14, c5, [PC], <option>

Decode for this encoding

 if P == '0' && U == '0' && W == '0' then UNDEFINED;
 index = (P == '1'); add = (U == '1'); cp = 14; imm32 = ZeroExtend(imm8:'00', 32);
 if W == '1' || (P == '0' && CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

T1 variant

Applies when !(P == 0 && U == 0 && W == 0).

LDC{<c>}{<q>} p14, c5, <label>
LDC{<c>}{<q>} p14, c5, [PC, #{+/-}<imm>]

!=1111 1 1 0 P U 0 W 1 1 1 1 1 0 1 0 1 1 1 1 0 imm8
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 0

cond

1 1 1 0 1 1 0 P U 0 W 1 1 1 1 1 0 1 0 1 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 0
F5-4720 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 if P == '0' && U == '0' && W == '0' then UNDEFINED;
 index = (P == '1'); add = (U == '1'); cp = 14; imm32 = ZeroExtend(imm8:'00', 32);
 if W == '1' || (P == '0' && CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If W == '1' || P == '0', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction executes as LDC (immediate) with writeback to the PC. The instruction is handled as described
in Using R15 by instruction on page K1-8387.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<option> Is an 8-bit immediate, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field. The value
of this field is ignored when executing this instruction.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of
the offset are multiples of 4 in the range -1020 to 1020.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE (encoded as U == 1).

If the offset is negative, imm32 is equal to minus the offset and add == FALSE (encoded as U == 0).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting
to 0 and encoded in the "imm8" field, as <imm>/4.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax on page F2-4377.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
 address = if index then offset_addr else Align(PC,4);

 // System register write to DBGDTRTXint.
 AArch32.SysRegWriteM(cp, ThisInstr(), address);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4721
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.66 LDM, LDMIA, LDMFD

Load Multiple (Increment After, Full Descending) loads multiple registers from consecutive memory locations
using an address from a base register. The consecutive memory locations start at this address, and the address just
above the highest of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC on
page F1-4354.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC. The registers loaded can include the PC, causing a branch to a loaded address. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC on page E1-4253. Related system instructions are LDM (User registers) and LDM (exception return).

This instruction is used by the alias POP (multiple registers). See Alias conditions on page F5-4724 for details of
when each alias is preferred.

A1

A1 variant

LDM{IA}{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
LDMFD{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Descending stack

Decode for this encoding

 n = UInt(Rn); registers = register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
 if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

!=1111 1 0 0 0 1 0 W 1 Rn register_list
31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond
F5-4722 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

LDM{IA}{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
LDMFD{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Descending stack

Decode for this encoding

 n = UInt(Rn); registers = '00000000':register_list; wback = (registers<n> == '0');
 if BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

T2

T2 variant

LDM{IA}{<c>}.W <Rn>{!}, <registers> // Preferred syntax, if <Rn>, '!' and <registers> can be represented
in T1
LDMFD{<c>}.W <Rn>{!}, <registers> // Alternate syntax, Full Descending stack, if <Rn>, '!' and
<registers> can be represented in T1
LDM{IA}{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
LDMFD{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Descending stack

Decode for this encoding

 n = UInt(Rn); registers = P:M:register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
 if wback && registers<n> == '1' then UNPREDICTABLE;
 if registers<13> == '1' then UNPREDICTABLE;
 if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

1 1 0 0 1 Rn register_list
15 14 13 12 11 10 8 7 0

1 1 1 0 1 0 0 0 1 0 W 1 Rn P M register_list
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4723
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If BitCount(registers) == 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction loads a single register using the specified addressing modes.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

If registers<13> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode, but R13 is UNKNOWN.

If P == '1' && M == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction loads the register list and either R14 or R15, both R14 and R15, or neither of these registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Alias conditions

Assembler symbols

IA Is an optional suffix for the Increment After form.

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Alias of variant is preferred when

 POP (multiple registers) T2 W == '1' && Rn == '1101' && BitCount(P:M:register_list) > 1

 POP (multiple registers) A1 W == '1' && Rn == '1101' && BitCount(register_list) > 1
F5-4724 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
! For encoding A1 and T2: the address adjusted by the size of the data loaded is written back to the
base register. If specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.

For encoding T1: the address adjusted by the size of the data loaded is written back to the base
register. It is omitted if <Rn> is included in <registers>, otherwise it must be present.

<registers> For encoding A1: is a list of one or more registers to be loaded, separated by commas and
surrounded by { and }.

The PC can be in the list.

Arm deprecates using these instructions with both the LR and the PC in the list.

For encoding T1: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R7, encoded in the "register_list" field.

For encoding T2: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R12, encoded in the "register_list" field,
and can optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1,
otherwise it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to 0.

If the PC is in the list:

• The LR must not be in the list.

• The instruction must be either outside any IT block, or the last instruction in an IT block.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 for i = 0 to 14
 if registers<i> == '1' then
 R[i] = MemS[address,4]; address = address + 4;
 if registers<15> == '1' then
 LoadWritePC(MemS[address,4]);
 if wback && registers<n> == '0' then R[n] = R[n] + 4*BitCount(registers);
 if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4725
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.67 LDM (exception return)

Load Multiple (exception return) loads multiple registers from consecutive memory locations using an address from
a base register. The SPSR of the current mode is copied to the CPSR. An address adjusted by the size of the data
loaded can optionally be written back to the base register.

The registers loaded include the PC. The word loaded for the PC is treated as an address and a branch occurs to that
address.

The PE checks the encoding that is copied to the CPSR for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

Load Multiple (exception return) is:

• UNDEFINED in Hyp mode.

• UNPREDICTABLE in debug state, and in User mode and System mode.

A1

A1 variant

LDM{<amode>}{<c>}{<q>} <Rn>{!}, <registers_with_pc>^

Decode for this encoding

 n = UInt(Rn); registers = register_list;
 wback = (W == '1'); increment = (U == '1'); wordhigher = (P == U);
 if n == 15 then UNPREDICTABLE;
 if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all the loads using the specified addressing mode and the content of the register
being written back is UNKNOWN. In addition, if an exception occurs during the execution of this instruction,
the base address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<amode> is one of:

DA Decrement After. The consecutive memory addresses end at the address in the base
register. Encoded as P = 0, U = 0.

FA Full Ascending. For this instruction, a synonym for DA.

DB Decrement Before. The consecutive memory addresses end one word below the address
in the base register. Encoded as P = 1, U = 0.

!=1111 1 0 0 P U 1 W 1 Rn 1 register_list
31 28 27 26 25 24 23 22 21 20 19 16 15 14 0

cond
F5-4726 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
EA Empty Ascending. For this instruction, a synonym for DB.

IA Increment After. The consecutive memory addresses start at the address in the base
register. This is the default. Encoded as P = 0, U = 1.

FD Full Descending. For this instruction, a synonym for IA.

IB Increment Before. The consecutive memory addresses start one word above the address
in the base register. Encoded as P = 1, U = 1.

ED Empty Descending. For this instruction, a synonym for IB.

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers_with_pc> Is a list of one or more registers, separated by commas and surrounded by { and }. It specifies
the set of registers to be loaded. The registers are loaded with the lowest-numbered register from the
lowest memory address, through to the highest-numbered register from the highest memory address.
The PC must be specified in the register list, and the instruction causes a branch to the address (data)
loaded into the PC. See also Encoding of lists of general-purpose registers and the PC on
page F1-4354.

Instructions with similar syntax but without the PC included in the registers list are described in LDM (User
registers).

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then
 UNDEFINED;
 elsif PSTATE.M IN {M32_User,M32_System} then
 UNPREDICTABLE; // UNDEFINED or NOP
 else
 length = 4*BitCount(registers) + 4;
 address = if increment then R[n] else R[n]-length;
 if wordhigher then address = address+4;

 for i = 0 to 14
 if registers<i> == '1' then
 R[i] = MemS[address,4]; address = address + 4;
 new_pc_value = MemS[address,4];

 if wback && registers<n> == '0' then R[n] = if increment then R[n]+length else R[n]-length;
 if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;

 AArch32.ExceptionReturn(new_pc_value, SPSR[]);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4727
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.68 LDM (User registers)

In an EL1 mode other than System mode, Load Multiple (User registers) loads multiple User mode registers from
consecutive memory locations using an address from a base register. The registers loaded cannot include the PC.
The PE reads the base register value normally, using the current mode to determine the correct Banked version of
the register. This instruction cannot writeback to the base register.

Load Multiple (User registers) is UNDEFINED in Hyp mode, and UNPREDICTABLE in User and System modes.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC.

A1

A1 variant

LDM{<amode>}{<c>}{<q>} <Rn>, <registers_without_pc>^

Decode for this encoding

 n = UInt(Rn); registers = register_list; increment = (U == '1'); wordhigher = (P == U);
 if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<amode> is one of:

DA Decrement After. The consecutive memory addresses end at the address in the base
register. Encoded as P = 0, U = 0.

FA Full Ascending. For this instruction, a synonym for DA.

DB Decrement Before. The consecutive memory addresses end one word below the address
in the base register. Encoded as P = 1, U = 0.

EA Empty Ascending. For this instruction, a synonym for DB.

IA Increment After. The consecutive memory addresses start at the address in the base
register. This is the default. Encoded as P = 0, U = 1.

FD Full Descending. For this instruction, a synonym for IA.

IB Increment Before. The consecutive memory addresses start one word above the address
in the base register. Encoded as P = 1, U = 1.

!=1111 1 0 0 P U 1 (0) 1 Rn 0 register_list
31 28 27 26 25 24 23 22 21 20 19 16 15 14 0

cond
F5-4728 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
ED Empty Descending. For this instruction, a synonym for IB.

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<registers_without_pc>

Is a list of one or more registers, separated by commas and surrounded by { and }. It specifies the
set of registers to be loaded by the LDM instruction. The registers are loaded with the
lowest-numbered register from the lowest memory address, through to the highest-numbered
register from the highest memory address. The PC must not be in the register list. See also Encoding
of lists of general-purpose registers and the PC on page F1-4354.

Instructions with similar syntax but with the PC included in <registers_without_pc> are described in LDM
(exception return).

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then UNDEFINED;
 elsif PSTATE.M IN {M32_User,M32_System} then UNPREDICTABLE;
 else
 length = 4*BitCount(registers);
 address = if increment then R[n] else R[n]-length;
 if wordhigher then address = address+4;
 for i = 0 to 14
 if registers<i> == '1' then // Load User mode register
 Rmode[i, M32_User] = MemS[address,4]; address = address + 4;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4729
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.69 LDMDA, LDMFA

Load Multiple Decrement After (Full Ascending) loads multiple registers from consecutive memory locations using
an address from a base register. The consecutive memory locations end at this address, and the address just below
the lowest of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC on
page F1-4354.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC. The registers loaded can include the PC, causing a branch to a loaded address. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC on page E1-4253. Related system instructions are LDM (User registers) and LDM (exception return).

A1

A1 variant

LDMDA{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
LDMFA{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Ascending stack

Decode for this encoding

 n = UInt(Rn); registers = register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
 if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 1 0 0 0 0 0 W 1 Rn register_list
31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond
F5-4730 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.

The PC can be in the list.

Arm deprecates using these instructions with both the LR and the PC in the list.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] - 4*BitCount(registers) + 4;
 for i = 0 to 14
 if registers<i> == '1' then
 R[i] = MemS[address,4]; address = address + 4;
 if registers<15> == '1' then
 LoadWritePC(MemS[address,4]);
 if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
 if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4731
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.70 LDMDB, LDMEA

Load Multiple Decrement Before (Empty Ascending) loads multiple registers from consecutive memory locations
using an address from a base register. The consecutive memory locations end just below this address, and the
address of the lowest of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC on
page F1-4354.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC. The registers loaded can include the PC, causing a branch to a loaded address. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC on page E1-4253. Related system instructions are LDM (User registers) and LDM (exception return).

A1

A1 variant

LDMDB{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
LDMEA{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Empty Ascending stack

Decode for this encoding

 n = UInt(Rn); registers = register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
 if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

T1

!=1111 1 0 0 1 0 0 W 1 Rn register_list
31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond

1 1 1 0 1 0 0 1 0 0 W 1 Rn P M register_list
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 0
F5-4732 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1 variant

LDMDB{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
LDMEA{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Empty Ascending stack

Decode for this encoding

 n = UInt(Rn); registers = P:M:register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
 if wback && registers<n> == '1' then UNPREDICTABLE;
 if registers<13> == '1' then UNPREDICTABLE;
 if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

If BitCount(registers) == 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction loads a single register using the specified addressing modes.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

If registers<13> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode, but R13 is UNKNOWN.

If P == '1' && M == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction loads the register list and either R14 or R15, both R14 and R15, or neither of these registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4733
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> For encoding A1: is a list of one or more registers to be loaded, separated by commas and
surrounded by { and }.

The PC can be in the list.

Arm deprecates using these instructions with both the LR and the PC in the list.

For encoding T1: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R12, encoded in the "register_list" field,
and can optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1,
otherwise it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to 0.

If the PC is in the list:

• The LR must not be in the list.

• The instruction must be either outside any IT block, or the last instruction in an IT block.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] - 4*BitCount(registers);
 for i = 0 to 14
 if registers<i> == '1' then
 R[i] = MemS[address,4]; address = address + 4;
 if registers<15> == '1' then
 LoadWritePC(MemS[address,4]);
 if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
 if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-4734 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.71 LDMIB, LDMED

Load Multiple Increment Before (Empty Descending) loads multiple registers from consecutive memory locations
using an address from a base register. The consecutive memory locations start just above this address, and the
address of the last of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC on
page F1-4354.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC. The registers loaded can include the PC, causing a branch to a loaded address. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC on page E1-4253. Related system instructions are LDM (User registers) and LDM (exception return).

A1

A1 variant

LDMIB{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
LDMED{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Empty Descending stack

Decode for this encoding

 n = UInt(Rn); registers = register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
 if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 1 0 0 1 1 0 W 1 Rn register_list
31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4735
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.

The PC can be in the list.

Arm deprecates using these instructions with both the LR and the PC in the list.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + 4;
 for i = 0 to 14
 if registers<i> == '1' then
 R[i] = MemS[address,4]; address = address + 4;
 if registers<15> == '1' then
 LoadWritePC(MemS[address,4]);
 if wback && registers<n> == '0' then R[n] = R[n] + 4*BitCount(registers);
 if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-4736 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.72 LDR (immediate)

Load Register (immediate) calculates an address from a base register value and an immediate offset, loads a word
from memory, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing. For information
about memory accesses see Memory accesses on page F1-4353.

This instruction is used by the alias POP (single register). See Alias conditions on page F5-4739 for details of when
each alias is preferred.

A1

Offset variant

Applies when P == 1 && W == 0.

LDR{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.

LDR{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDR{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDR (literal)";
 if P == '0' && W == '1' then SEE "LDRT";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if wback && n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

!=1111 0 1 0 P U 0 W 1 !=1111 Rt imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond Rn

0 1 1 0 1 imm5 Rn Rt
15 14 13 12 11 10 6 5 3 2 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4737
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1 variant

LDR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'00', 32);
 index = TRUE; add = TRUE; wback = FALSE;

T2

T2 variant

LDR{<c>}{<q>} <Rt>, [SP{, #{+}<imm>}]

Decode for this encoding

 t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:'00', 32);
 index = TRUE; add = TRUE; wback = FALSE;

T3

T3 variant

LDR{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1 or T2
LDR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "LDR (literal)";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); index = TRUE; add = TRUE;
 wback = FALSE; if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T4

Offset variant

Applies when P == 1 && U == 0 && W == 0.

LDR{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

1 0 0 1 1 Rt imm8
15 14 13 12 11 10 8 7 0

1 1 1 1 1 0 0 0 1 1 0 1 !=1111 Rt imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn

1 1 1 1 1 0 0 0 0 1 0 1 !=1111 Rt 1 P U W imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
F5-4738 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
LDR{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDR{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDR (literal)";
 if P == '1' && U == '1' && W == '0' then SEE "LDRT";
 if P == '0' && W == '0' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn);
 imm32 = ZeroExtend(imm8, 32); index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if (wback && n == t) || (t == 15 && InITBlock() && !LastInITBlock()) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Alias conditions

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used. If the PC is used, the instruction branches to the address (data) loaded to the PC. This
is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

For encoding T1 and T2: is the general-purpose register to be transferred, encoded in the "Rt" field.

For encoding T3 and T4: is the general-purpose register to be transferred, encoded in the "Rt" field.
The PC can be used, provided the instruction is either outside an IT block or the last instruction of
an IT block. If the PC is used, the instruction branches to the address (data) loaded to the PC. This
is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

Alias of variant is preferred when

 POP (single register) A1 (post-indexed) P == '0' && U == '1' && W == '0' && Rn == '1101' && imm12 == '000000000100'

 POP (single register) T4 (post-indexed) Rn == '1101' && P == '0' && U == '1' && W == '1' && imm8 == '00000100'
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4739
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rn> For encoding A1, T3 and T4: is the general-purpose base register, encoded in the "Rn" field. For PC
use see LDR (literal).

For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to
0 if omitted, and encoded in the "imm12" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 4, in the
range 0 to 124, defaulting to 0 and encoded in the "imm5" field as <imm>/4.

For encoding T2: is the optional positive unsigned immediate byte offset, a multiple of 4, in the
range 0 to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.

For encoding T3: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T4: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm8" field.

Operation for all encodings

 if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,4];
 if wback then R[n] = offset_addr;
 if t == 15 then
 if address<1:0> == '00' then
 LoadWritePC(data);
 else
 UNPREDICTABLE;
 else
 R[t] = data;
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,4];
 if wback then R[n] = offset_addr;
 if t == 15 then
 if address<1:0> == '00' then
 LoadWritePC(data);
 else
 UNPREDICTABLE;
 else
 R[t] = data;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-4740 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.73 LDR (literal)

Load Register (literal) calculates an address from the PC value and an immediate offset, loads a word from memory,
and writes it to a register. For information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

Applies when !(P == 0 && W == 1).

LDR{<c>}{<q>} <Rt>, <label> // Normal form
LDR{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

 if P == '0' && W == '1' then SEE "LDRT";
 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32);
 add = (U == '1'); wback = (P == '0') || (W == '1');
 if wback then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: wback = FALSE;.

• The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing
mode as described in LDR (immediate). The instruction uses post-indexed addressing when P == '0' and uses
pre-indexed addressing otherwise. The instruction is handled as described in Using R15 by instruction on
page K1-8387.

T1

T1 variant

LDR{<c>}{<q>} <Rt>, <label> // Normal form

Decode for this encoding

 t = UInt(Rt); imm32 = ZeroExtend(imm8:'00', 32); add = TRUE;

!=1111 0 1 0 P U 0 W 1 1 1 1 1 Rt imm12
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 0

cond

0 1 0 0 1 Rt imm8
15 14 13 12 11 10 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4741
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T2

T2 variant

LDR{<c>}.W <Rt>, <label> // Preferred syntax, and <Rt>, <label> can be represented in T1
LDR{<c>}{<q>} <Rt>, <label> // Preferred syntax
LDR{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
 if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used. If the PC is used, the instruction branches to the address (data) loaded to the PC. This
is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

For encoding T2: is the general-purpose register to be transferred, encoded in the "Rt" field. The SP
can be used. The PC can be used, provided the instruction is either outside an IT block or the last
instruction of an IT block. If the PC is used, the instruction branches to the address (data) loaded to
the PC. This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

<label> For encoding A1 and T2: the label of the literal data item that is to be loaded into <Rt>. The
assembler calculates the required value of the offset from the Align(PC, 4) value of the instruction
to this label. Permitted values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are Multiples of four in the range 0 to 1020.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to
0 if omitted, and encoded in the "imm12" field.

1 1 1 1 1 0 0 0 U 1 0 1 1 1 1 1 Rt imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 0
F5-4742 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
For encoding T2: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax on page F2-4377.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 data = MemU[address,4];
 if t == 15 then
 if address<1:0> == '00' then
 LoadWritePC(data);
 else
 UNPREDICTABLE;
 else
 R[t] = data;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4743
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.74 LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads a word
from memory, and writes it to a register. The offset register value can optionally be shifted. For information about
memory accesses, see Memory accesses on page F1-4353.

The T32 form of LDR (register) does not support register writeback.

A1

Offset variant

Applies when P == 1 && W == 0.

LDR{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]

Post-indexed variant

Applies when P == 0 && W == 0.

LDR{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Pre-indexed variant

Applies when P == 1 && W == 1.

LDR{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "LDRT";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);
 if m == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

!=1111 0 1 1 P U 0 W 1 Rn Rt imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond

0 1 0 1 1 0 0 Rm Rn Rt
15 14 13 12 11 10 9 8 6 5 3 2 0
F5-4744 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1 variant

LDR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

T2 variant

LDR{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "LDR (literal)";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
 if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used. If the PC is used, the instruction branches to the address (data) loaded to the PC. This
branch is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

For encoding T2: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, provided the instruction is either outside an IT block or the last instruction of an IT
block. If the PC is used, the instruction branches to the address (data) loaded to the PC. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC on page E1-4253.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

1 1 1 1 1 0 0 0 0 1 0 1 !=1111 Rt 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4745
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register on page F1-4351.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

 if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 data = MemU[address,4];
 if wback then R[n] = offset_addr;
 if t == 15 then
 if address<1:0> == '00' then
 LoadWritePC(data);
 else
 UNPREDICTABLE;
 else
 R[t] = data;
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = (R[n] + offset);
 address = offset_addr;
 data = MemU[address,4];
 if t == 15 then
 if address<1:0> == '00' then
 LoadWritePC(data);
 else
 UNPREDICTABLE;
 else
 R[t] = data;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-4746 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.75 LDRB (immediate)

Load Register Byte (immediate) calculates an address from a base register value and an immediate offset, loads a
byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-indexed,
or pre-indexed addressing. For information about memory accesses see Memory accesses on page F1-4353.

A1

Offset variant

Applies when P == 1 && W == 0.

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.

LDRB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDRB (literal)";
 if P == '0' && W == '1' then SEE "LDRBT";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if t == 15 || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

!=1111 0 1 0 P U 1 W 1 !=1111 Rt imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond Rn

0 1 1 1 1 imm5 Rn Rt
15 14 13 12 11 10 6 5 3 2 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4747
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
 index = TRUE; add = TRUE; wback = FALSE;

T2

T2 variant

LDRB{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1
LDRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rt == '1111' then SEE "PLD";
 if Rn == '1111' then SEE "LDRB (literal)";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = TRUE; add = TRUE; wback = FALSE;
 // Armv8-A removes UNPREDICTABLE for R13

T3

Offset variant

Applies when Rt != 1111 && P == 1 && U == 0 && W == 0.

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDRB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "PLD, PLDW (immediate)";
 if Rn == '1111' then SEE "LDRB (literal)";
 if P == '1' && U == '1' && W == '0' then SEE "LDRBT";
 if P == '0' && W == '0' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
 index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

1 1 1 1 1 0 0 0 1 0 0 1 !=1111 !=1111 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn Rt

1 1 1 1 1 0 0 0 0 0 0 1 !=1111 Rt 1 P U W imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
F5-4748 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1, T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For PC
use see LDRB (literal).

For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to
0 if omitted, and encoded in the "imm12" field.

For encoding T1: is an optional 5-bit unsigned immediate byte offset, in the range 0 to 31, defaulting
to 0 and encoded in the "imm5" field.

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm8" field.

Operation for all encodings

 if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 R[t] = ZeroExtend(MemU[address,1], 32);
 if wback then R[n] = offset_addr;
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4749
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 R[t] = ZeroExtend(MemU[address,1], 32);
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-4750 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.76 LDRB (literal)

Load Register Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte from
memory, zero-extends it to form a 32-bit word, and writes it to a register. For information about memory accesses
see Memory accesses on page F1-4353.

A1

A1 variant

Applies when !(P == 0 && W == 1).

LDRB{<c>}{<q>} <Rt>, <label> // Normal form
LDRB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

 if P == '0' && W == '1' then SEE "LDRBT";
 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32);
 add = (U == '1'); wback = (P == '0') || (W == '1');
 if t == 15 || wback then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: wback = FALSE;.

• The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing
mode as described in LDRB (immediate). The instruction uses post-indexed addressing when P == '0' and
uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15 by instruction
on page K1-8387.

T1

T1 variant

LDRB{<c>}{<q>} <Rt>, <label> // Preferred syntax
LDRB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

 if Rt == '1111' then SEE "PLD";
 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
 // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 1 0 P U 1 W 1 1 1 1 1 Rt imm12
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 0

cond

1 1 1 1 1 0 0 0 U 0 0 1 1 1 1 1 !=1111 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 0

Rt
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4751
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of
the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to
0 if omitted, and encoded in the "imm12" field.

For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax on page F2-4377.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 R[t] = ZeroExtend(MemU[address,1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-4752 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.77 LDRB (register)

Load Register Byte (register) calculates an address from a base register value and an offset register value, loads a
byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset register value can
optionally be shifted. For information about memory accesses see Memory accesses on page F1-4353.

A1

Offset variant

Applies when P == 1 && W == 0.

LDRB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]

Post-indexed variant

Applies when P == 0 && W == 0.

LDRB{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "LDRBT";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);
 if t == 15 || m == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

!=1111 0 1 1 P U 1 W 1 Rn Rt imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond

0 1 0 1 1 1 0 Rm Rn Rt
15 14 13 12 11 10 9 8 6 5 3 2 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4753
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

T2 variant

LDRB{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

 if Rt == '1111' then SEE "PLD";
 if Rn == '1111' then SEE "LDRB (literal)";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
 if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register on page F1-4351.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

1 1 1 1 1 0 0 0 0 0 0 1 !=1111 !=1111 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn Rt
F5-4754 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 R[t] = ZeroExtend(MemU[address,1],32);
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4755
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.78 LDRBT

Load Register Byte Unprivileged loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to
a register. For information about memory accesses see Memory accesses on page F1-4353.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is
actually running in User mode.

LDRBT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or an optionally-shifted register value.

A1

A1 variant

LDRBT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
 register_form = FALSE; imm32 = ZeroExtend(imm12, 32);
 if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction on page K1-8387.

• The instruction uses immediate offset addressing with the base register as PC, without writeback.

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

!=1111 0 1 0 0 U 1 1 1 Rn Rt imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond
F5-4756 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
A2

A2 variant

LDRBT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
 register_form = TRUE; (shift_t, shift_n) = DecodeImmShift(stype, imm5);
 if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRBT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "LDRB (literal)";
 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, but this is deprecated.

!=1111 0 1 1 0 U 1 1 1 Rn Rt imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond

1 1 1 1 1 0 0 0 0 0 0 1 !=1111 Rt 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4757
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
For encoding A2 and T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to
+ if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register on page F1-4351.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to
0 if omitted, and encoded in the "imm12" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

 if ConditionPassed() then
 if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
 EncodingSpecificOperations();
 offset = if register_form then Shift(R[m], shift_t, shift_n, PSTATE.C) else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 R[t] = ZeroExtend(MemU_unpriv[address,1],32);
 if postindex then R[n] = offset_addr;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDRB (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-4758 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.79 LDRD (immediate)

Load Register Dual (immediate) calculates an address from a base register value and an immediate offset, loads two
words from memory, and writes them to two registers. It can use offset, post-indexed, or pre-indexed addressing.
For information about memory accesses see Memory accesses on page F1-4353.

A1

Offset variant

Applies when P == 1 && W == 0.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDRD (literal)";
 if Rt<0> == '1' then UNPREDICTABLE;
 t = UInt(Rt); t2 = t+1; n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if P == '0' && W == '1' then UNPREDICTABLE;
 if wback && (n == t || n == t2) then UNPREDICTABLE;
 if t2 == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If P == '0' && W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as an LDRD using one of offset, post-indexed, or pre-indexed addressing.

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

!=1111 0 0 0 P U 1 W 0 !=1111 Rt imm4H 1 1 0 1 imm4L
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4759
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.

• The instruction executes with the additional decode: t<0> = '0'.

• The instruction executes with the additional decode: t2 = t.

• The instruction executes as described, with no change to its behavior and no additional side-effects. This does
not apply when Rt == '1111'.

T1

Offset variant

Applies when P == 1 && W == 0.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if P == '0' && W == '0' then SEE "Related encodings";
 if Rn == '1111' then SEE "LDRD (literal)";
 t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if wback && (n == t || n == t2) then UNPREDICTABLE;
 if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The load instruction executes but the destination register takes an UNKNOWN value.

1 1 1 0 1 0 0 P U 1 W 1 !=1111 Rt Rt2 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

Rn
F5-4760 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: Load/store dual, load/store exclusive, load-acquire/store-release, and table branch on
page F3-4460.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field.
This register must be even-numbered and not R14.

For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. This register must be
<R(t+1)>.

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRD (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is the unsigned immediate byte offset, a multiple of 4, in the range 0 to 1020,
defaulting to 0 if omitted, and encoded in the "imm8" field as <imm>/4.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 if address == Align(address, 8) then
 data = MemA[address,8];
 if BigEndian(AccType_ATOMIC) then
 R[t] = data<63:32>;
 R[t2] = data<31:0>;
 else
 R[t] = data<31:0>;
 R[t2] = data<63:32>;
 else
 R[t] = MemA[address,4];
 R[t2] = MemA[address+4,4];
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4761
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.80 LDRD (literal)

Load Register Dual (literal) calculates an address from the PC value and an immediate offset, loads two words from
memory, and writes them to two registers. For information about memory accesses see Memory accesses on
page F1-4353.

A1

A1 variant

LDRD{<c>}{<q>} <Rt>, <Rt2>, <label> // Normal form
LDRD{<c>}{<q>} <Rt>, <Rt2>, [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

 if Rt<0> == '1' then UNPREDICTABLE;
 t = UInt(Rt); t2 = t+1; imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == '1');
 if t2 == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: t<0> = '0';.

• The instruction executes with the additional decode: t2 = t;.

• The instruction executes as described, with no change to its behavior and no additional side-effects. This does
not apply when Rt == '1111'.

If P == '0' || W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as if P == 1 and W == 0.'

T1

T1 variant

Applies when !(P == 0 && W == 0).

LDRD{<c>}{<q>} <Rt>, <Rt2>, <label> // Normal form
LDRD{<c>}{<q>} <Rt>, <Rt2>, [PC, #{+/-}<imm>] // Alternative form

!=1111 0 0 0 (1) U 1 (0) 0 1 1 1 1 Rt imm4H 1 1 0 1 imm4L
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 0 1 0 0 P U 1 W 1 1 1 1 1 Rt Rt2 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 8 7 0
F5-4762 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 if P == '0' && W == '0' then SEE "Related encodings";
 t = UInt(Rt); t2 = UInt(Rt2);
 imm32 = ZeroExtend(imm8:'00', 32); add = (U == '1');
 if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if W == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The load instruction executes but the destination register takes an UNKNOWN value.

If W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction uses post-indexed addressing when P == '0' and uses pre-indexed addressing otherwise. The
instruction is handled as described in Using R15 by instruction on page K1-8387.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: Load/store dual, load/store exclusive, load-acquire/store-release, and table branch on
page F3-4460.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field.
This register must be even-numbered and not R14.

For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. This register must be
<R(t+1)>.

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<label> For encoding A1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Any value in the range -255 to 255 is permitted.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If
the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are multiples of 4 in the range -1020 to 1020.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4763
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is the optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax on page F2-4377.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
 if address == Align(address, 8) then
 data = MemA[address,8];
 if BigEndian(AccType_ATOMIC) then
 R[t] = data<63:32>;
 R[t2] = data<31:0>;
 else
 R[t] = data<31:0>;
 R[t2] = data<63:32>;
 else
 R[t] = MemA[address,4];
 R[t2] = MemA[address+4,4];

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-4764 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.81 LDRD (register)

Load Register Dual (register) calculates an address from a base register value and a register offset, loads two words
from memory, and writes them to two registers. It can use offset, post-indexed, or pre-indexed addressing. For
information about memory accesses see Memory accesses on page F1-4353.

A1

Offset variant

Applies when P == 1 && W == 0.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, {+/-}<Rm>]

Post-indexed variant

Applies when P == 0 && W == 0.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], {+/-}<Rm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, {+/-}<Rm>]!

Decode for all variants of this encoding

 if Rt<0> == '1' then UNPREDICTABLE;
 t = UInt(Rt); t2 = t+1; n = UInt(Rn); m = UInt(Rm);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if P == '0' && W == '1' then UNPREDICTABLE;
 if t2 == 15 || m == 15 || m == t || m == t2 then UNPREDICTABLE;
 if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If P == '0' && W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as an LDRD using one of offset, post-indexed, or pre-indexed addressing.

If m == t || m == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

!=1111 0 0 0 P U 0 W 0 Rn Rt (0) (0) (0) (0) 1 1 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4765
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction loads register Rm with an UNKNOWN value.

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: t<0> = '0'.

• The instruction executes with the additional decode: t2 = t.

• The instruction executes as described, with no change to its behavior and no additional side-effects. This does
not apply when Rt == '1111'.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field. This register must
be even-numbered and not R14.

<Rt2> Is the second general-purpose register to be transferred. This register must be <R(t+1)>.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset
variant.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
 address = if index then offset_addr else R[n];
 if address == Align(address, 8) then
 data = MemA[address,8];
 if BigEndian(AccType_ATOMIC) then
 R[t] = data<63:32>;
 R[t2] = data<31:0>;
 else
 R[t] = data<31:0>;
 R[t2] = data<63:32>;
 else
 R[t] = MemA[address,4];
 R[t2] = MemA[address+4,4];

 if wback then R[n] = offset_addr;
F5-4766 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4767
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.82 LDREX

Load Register Exclusive calculates an address from a base register value and an immediate offset, loads a word from
memory, writes it to a register and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

LDREX{<c>}{<q>} <Rt>, [<Rn> {, {#}<imm>}]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); imm32 = Zeros(32); // Zero offset
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

LDREX{<c>}{<q>} <Rt>, [<Rn> {, #<imm>}]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 if t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 0 0 0 1 1 0 0 1 Rn Rt (1) (1) 1 1 1 0 0 1 (1) (1) (1) (1)
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 0 1 0 1 Rn Rt (1) (1) (1) (1) imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0
F5-4768 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<imm> For encoding A1: the immediate offset added to the value of <Rn> to calculate the address. <imm> can
only be 0 or omitted.

For encoding T1: the immediate offset added to the value of <Rn> to calculate the address. <imm> can
be omitted, meaning an offset of 0. Values are multiples of 4 in the range 0-1020.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 AArch32.SetExclusiveMonitors(address,4);
 R[t] = MemA[address,4];

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4769
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.83 LDREXB

Load Register Exclusive Byte derives an address from a base register value, loads a byte from memory, zero-extends
it to form a 32-bit word, writes it to a register and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

LDREXB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

LDREXB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 0 0 0 1 1 1 0 1 Rn Rt (1) (1) 1 1 1 0 0 1 (1) (1) (1) (1)
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 0 1 0 0 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-4770 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 AArch32.SetExclusiveMonitors(address,1);
 R[t] = ZeroExtend(MemA[address,1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4771
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.84 LDREXD

Load Register Exclusive Doubleword derives an address from a base register value, loads a 64-bit doubleword from
memory, writes it to two registers and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

LDREXD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); t2 = t + 1; n = UInt(Rn);
 if Rt<0> == '1' || t2 == 15 || n == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: t<0> = '0'.

• The instruction executes with the additional decode: t2 = t.

• The instruction executes as described, with no change to its behavior and no additional side effects.

If Rt == '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction is handled as described in Using R15 by instruction on page K1-8387.

T1

T1 variant

LDREXD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>]

!=1111 0 0 0 1 1 0 1 1 Rn Rt (1) (1) 1 1 1 0 0 1 (1) (1) (1) (1)
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt Rt2 0 1 1 1 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 2 1 0
F5-4772 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn);
 if t == 15 || t2 == 15 || t == t2 || n == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The load instruction executes but the destination register takes an UNKNOWN value.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt> must be even-numbered and not R14.

For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. <Rt2> must be <R(t+1)>.

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 AArch32.SetExclusiveMonitors(address,8);
 value = MemA[address,8];
 // Extract words from 64-bit loaded value such that R[t] is
 // loaded from address and R[t2] from address+4.
 R[t] = if BigEndian(AccType_ATOMIC) then value<63:32> else value<31:0>;
 R[t2] = if BigEndian(AccType_ATOMIC) then value<31:0> else value<63:32>;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4773
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.85 LDREXH

Load Register Exclusive Halfword derives an address from a base register value, loads a halfword from memory,
zero-extends it to form a 32-bit word, writes it to a register and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

LDREXH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

LDREXH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 0 0 0 1 1 1 1 1 Rn Rt (1) (1) 1 1 1 0 0 1 (1) (1) (1) (1)
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 0 1 0 1 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-4774 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 AArch32.SetExclusiveMonitors(address,2);
 R[t] = ZeroExtend(MemA[address,2], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4775
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.86 LDRH (immediate)

Load Register Halfword (immediate) calculates an address from a base register value and an immediate offset, loads
a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset,
post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses on
page F1-4353.

A1

Offset variant

Applies when P == 1 && W == 0.

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.

LDRH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDRH (literal)";
 if P == '0' && W == '1' then SEE "LDRHT";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if t == 15 || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

!=1111 0 0 0 P U 1 W 1 !=1111 Rt imm4H 1 0 1 1 imm4L
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond Rn

1 0 0 0 1 imm5 Rn Rt
15 14 13 12 11 10 6 5 3 2 0
F5-4776 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'0', 32);
 index = TRUE; add = TRUE; wback = FALSE;

T2

T2 variant

LDRH{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1
LDRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rt == '1111' then SEE "PLD (immediate)";
 if Rn == '1111' then SEE "LDRH (literal)";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = TRUE; add = TRUE; wback = FALSE;
 // Armv8-A removes UNPREDICTABLE for R13

T3

Offset variant

Applies when Rt != 1111 && P == 1 && U == 0 && W == 0.

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDRH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDRH (literal)";
 if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "PLDW (immediate)";
 if P == '1' && U == '1' && W == '0' then SEE "LDRHT";
 if P == '0' && W == '0' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
 index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

1 1 1 1 1 0 0 0 1 0 1 1 !=1111 !=1111 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn Rt

1 1 1 1 1 0 0 0 0 0 1 1 !=1111 Rt 1 P U W imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4777
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1, T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For PC
use see LDRH (literal).

For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 2, in the
range 0 to 62, defaulting to 0 and encoded in the "imm5" field as <imm>/2.

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm8" field.

Operation for all encodings

 if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 R[t] = ZeroExtend(data, 32);
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
F5-4778 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 if wback then R[n] = offset_addr;
 R[t] = ZeroExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4779
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.87 LDRH (literal)

Load Register Halfword (literal) calculates an address from the PC value and an immediate offset, loads a halfword
from memory, zero-extends it to form a 32-bit word, and writes it to a register. For information about memory
accesses see Memory accesses on page F1-4353.

A1

A1 variant

Applies when !(P == 0 && W == 1).

LDRH{<c>}{<q>} <Rt>, <label> // Normal form
LDRH{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

 if P == '0' && W == '1' then SEE "LDRHT";
 t = UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32);
 add = (U == '1'); wback = (P == '0') || (W == '1');
 if t == 15 || wback then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: wback = FALSE;.

• The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing
mode as described in LDRH (immediate). The instruction uses post-indexed addressing when P == '0' and
uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15 by instruction
on page K1-8387.

T1

T1 variant

LDRH{<c>}{<q>} <Rt>, <label> // Preferred syntax
LDRH{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

 if Rt == '1111' then SEE "PLD (literal)";
 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
 // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 0 0 P U 1 W 1 1 1 1 1 Rt imm4H 1 0 1 1 imm4L
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 0 0 U 0 1 1 1 1 1 1 !=1111 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 0

Rt
F5-4780 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label> For encoding A1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Any value in the range -255 to 255 is permitted.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If
the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax on page F2-4377.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 data = MemU[address,2];
 R[t] = ZeroExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4781
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.88 LDRH (register)

Load Register Halfword (register) calculates an address from a base register value and an offset register value, loads
a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset register value
can be shifted left by 0, 1, 2, or 3 bits. For information about memory accesses see Memory accesses on
page F1-4353.

A1

Offset variant

Applies when P == 1 && W == 0.

LDRH{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]

Post-indexed variant

Applies when P == 0 && W == 0.

LDRH{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRH{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "LDRHT";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 (shift_t, shift_n) = (SRType_LSL, 0);
 if t == 15 || m == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

!=1111 0 0 0 P U 0 W 1 Rn Rt (0) (0) (0) (0) 1 0 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

0 1 0 1 1 0 1 Rm Rn Rt
15 14 13 12 11 10 9 8 6 5 3 2 0
F5-4782 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1 variant

LDRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

T2 variant

LDRH{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "LDRH (literal)";
 if Rt == '1111' then SEE "PLDW (register)";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
 if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

1 1 1 1 1 0 0 0 0 0 1 1 !=1111 !=1111 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn Rt
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4783
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 R[t] = ZeroExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-4784 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.89 LDRHT

Load Register Halfword Unprivileged loads a halfword from memory, zero-extends it to form a 32-bit word, and
writes it to a register. For information about memory accesses see Memory accesses on page F1-4353.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is
actually running in User mode.

LDRHT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or a register value.

A1

A1 variant

LDRHT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
 register_form = FALSE; imm32 = ZeroExtend(imm4H:imm4L, 32);
 if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction on page K1-8387.

• The instruction is treated as if bit[24] == '1' and bit[21] == '0'. The instruction uses immediate offset
addressing with the base register as PC, without writeback.

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

!=1111 0 0 0 0 U 1 1 1 Rn Rt imm4H 1 0 1 1 imm4L
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4785
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
A2

A2 variant

LDRHT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
 register_form = TRUE;
 if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRHT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "LDRH (literal)";
 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

!=1111 0 0 0 0 U 0 1 1 Rn Rt (0) (0) (0) (0) 1 0 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 0 0 0 0 1 1 !=1111 Rt 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
F5-4786 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to
+ if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

 if ConditionPassed() then
 if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
 EncodingSpecificOperations();
 offset = if register_form then R[m] else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 data = MemU_unpriv[address,2];
 if postindex then R[n] = offset_addr;
 R[t] = ZeroExtend(data, 32);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDRH (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4787
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.90 LDRSB (immediate)

Load Register Signed Byte (immediate) calculates an address from a base register value and an immediate offset,
loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use offset,
post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses on
page F1-4353.

A1

Offset variant

Applies when P == 1 && W == 0.

LDRSB{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.

LDRSB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRSB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDRSB (literal)";
 if P == '0' && W == '1' then SEE "LDRSBT";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if t == 15 || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRSB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

!=1111 0 0 0 P U 1 W 1 !=1111 Rt imm4H 1 1 0 1 imm4L
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond Rn

1 1 1 1 1 0 0 1 1 0 0 1 !=1111 !=1111 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn Rt
F5-4788 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 if Rt == '1111' then SEE "PLI";
 if Rn == '1111' then SEE "LDRSB (literal)";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = TRUE; add = TRUE; wback = FALSE;
 // Armv8-A removes UNPREDICTABLE for R13

T2

Offset variant

Applies when Rt != 1111 && P == 1 && U == 0 && W == 0.

LDRSB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDRSB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRSB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "PLI";
 if Rn == '1111' then SEE "LDRSB (literal)";
 if P == '1' && U == '1' && W == '0' then SEE "LDRSBT";
 if P == '0' && W == '0' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
 index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

1 1 1 1 1 0 0 1 0 0 0 1 !=1111 Rt 1 P U W imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4789
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRSB (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm8" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 R[t] = SignExtend(MemU[address,1], 32);
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-4790 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.91 LDRSB (literal)

Load Register Signed Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte
from memory, sign-extends it to form a 32-bit word, and writes it to a register. For information about memory
accesses see Memory accesses on page F1-4353.

A1

A1 variant

Applies when !(P == 0 && W == 1).

LDRSB{<c>}{<q>} <Rt>, <label> // Normal form
LDRSB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

 if P == '0' && W == '1' then SEE "LDRSBT";
 t = UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32);
 add = (U == '1'); wback = (P == '0') || (W == '1');
 if t == 15 || wback then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: wback = FALSE;.

• The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing
mode as described in LDRSB (immediate). The instruction uses post-indexed addressing when P == '0' and
uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15 by instruction
on page K1-8387.

T1

T1 variant

LDRSB{<c>}{<q>} <Rt>, <label> // Preferred syntax
LDRSB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

 if Rt == '1111' then SEE "PLI";
 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
 // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 0 0 P U 1 W 1 1 1 1 1 Rt imm4H 1 1 0 1 imm4L
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 0 1 U 0 0 1 1 1 1 1 !=1111 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 0

Rt
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4791
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label> For encoding A1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Any value in the range -255 to 255 is permitted.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If
the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax on page F2-4377.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 R[t] = SignExtend(MemU[address,1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-4792 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.92 LDRSB (register)

Load Register Signed Byte (register) calculates an address from a base register value and an offset register value,
loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset register value
can be shifted left by 0, 1, 2, or 3 bits. For information about memory accesses see Memory accesses on
page F1-4353.

A1

Offset variant

Applies when P == 1 && W == 0.

LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]

Post-indexed variant

Applies when P == 0 && W == 0.

LDRSB{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "LDRSBT";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 (shift_t, shift_n) = (SRType_LSL, 0);
 if t == 15 || m == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

!=1111 0 0 0 P U 0 W 1 Rn Rt (0) (0) (0) (0) 1 1 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

0 1 0 1 0 1 1 Rm Rn Rt
15 14 13 12 11 10 9 8 6 5 3 2 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4793
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1 variant

LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

T2 variant

LDRSB{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

 if Rt == '1111' then SEE "PLI";
 if Rn == '1111' then SEE "LDRSB (literal)";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
 if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

1 1 1 1 1 0 0 1 0 0 0 1 !=1111 !=1111 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn Rt
F5-4794 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 R[t] = SignExtend(MemU[address,1], 32);
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4795
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.93 LDRSBT

Load Register Signed Byte Unprivileged loads a byte from memory, sign-extends it to form a 32-bit word, and
writes it to a register. For information about memory accesses see Memory accesses on page F1-4353.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is
actually running in User mode.

LDRSBT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or a register value.

A1

A1 variant

LDRSBT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
 register_form = FALSE; imm32 = ZeroExtend(imm4H:imm4L, 32);
 if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction on page K1-8387.

• The instruction is treated as if bit[24] == '1' and bit[21] == '0'. The instruction uses immediate offset
addressing with the base register as PC, without writeback.

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

!=1111 0 0 0 0 U 1 1 1 Rn Rt imm4H 1 1 0 1 imm4L
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
F5-4796 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
A2

A2 variant

LDRSBT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
 register_form = TRUE;
 if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRSBT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "LDRSB (literal)";
 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

!=1111 0 0 0 0 U 0 1 1 Rn Rt (0) (0) (0) (0) 1 1 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 0 1 0 0 0 1 !=1111 Rt 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4797
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to
+ if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

 if ConditionPassed() then
 if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
 EncodingSpecificOperations();
 offset = if register_form then R[m] else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 R[t] = SignExtend(MemU_unpriv[address,1], 32);
 if postindex then R[n] = offset_addr;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDRSB (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-4798 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.94 LDRSH (immediate)

Load Register Signed Halfword (immediate) calculates an address from a base register value and an immediate
offset, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use
offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses on
page F1-4353.

A1

Offset variant

Applies when P == 1 && W == 0.

LDRSH{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.

LDRSH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRSH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDRSH (literal)";
 if P == '0' && W == '1' then SEE "LDRSHT";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if t == 15 || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRSH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

!=1111 0 0 0 P U 1 W 1 !=1111 Rt imm4H 1 1 1 1 imm4L
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond Rn

1 1 1 1 1 0 0 1 1 0 1 1 !=1111 !=1111 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn Rt
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4799
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 if Rn == '1111' then SEE "LDRSH (literal)";
 if Rt == '1111' then SEE "Related instructions";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = TRUE; add = TRUE; wback = FALSE;
 // Armv8-A removes UNPREDICTABLE for R13

T2

Offset variant

Applies when Rt != 1111 && P == 1 && U == 0 && W == 0.

LDRSH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDRSH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRSH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDRSH (literal)";
 if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "Related instructions";
 if P == '1' && U == '1' && W == '0' then SEE "LDRSHT";
 if P == '0' && W == '0' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
 index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related instructions: Load/store single on page F3-4476.

1 1 1 1 1 0 0 1 0 0 1 1 !=1111 Rt 1 P U W imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
F5-4800 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRSH (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm8" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 R[t] = SignExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4801
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.95 LDRSH (literal)

Load Register Signed Halfword (literal) calculates an address from the PC value and an immediate offset, loads a
halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. For information about
memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

Applies when !(P == 0 && W == 1).

LDRSH{<c>}{<q>} <Rt>, <label> // Normal form
LDRSH{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

 if P == '0' && W == '1' then SEE "LDRSHT";
 t = UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32);
 add = (U == '1'); wback = (P == '0') || (W == '1');
 if t == 15 || wback then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: wback = FALSE;.

• The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing
mode as described in LDRSH (immediate). The instruction uses post-indexed addressing when P == '0' and
uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15 by instruction
on page K1-8387.

T1

T1 variant

LDRSH{<c>}{<q>} <Rt>, <label> // Preferred syntax
LDRSH{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

 if Rt == '1111' then SEE "Related instructions";
 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
 // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 0 0 P U 1 W 1 1 1 1 1 Rt imm4H 1 1 1 1 imm4L
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 0 1 U 0 1 1 1 1 1 1 !=1111 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 0

Rt
F5-4802 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related instructions: Load, signed (literal) on page F3-4484.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label> For encoding A1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Any value in the range -255 to 255 is permitted.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If
the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax on page F2-4377.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 data = MemU[address,2];
 R[t] = SignExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4803
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.96 LDRSH (register)

Load Register Signed Halfword (register) calculates an address from a base register value and an offset register
value, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset
register value can be shifted left by 0, 1, 2, or 3 bits. For information about memory accesses see Memory accesses
on page F1-4353.

A1

Offset variant

Applies when P == 1 && W == 0.

LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]

Post-indexed variant

Applies when P == 0 && W == 0.

LDRSH{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "LDRSHT";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 (shift_t, shift_n) = (SRType_LSL, 0);
 if t == 15 || m == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is <arm-defined-word>unknown</arm-defined-word>. In addition, if an exception
occurs during such as instruction, the base address might be corrupted so that the instruction cannot be
repeated.

T1

!=1111 0 0 0 P U 0 W 1 Rn Rt (0) (0) (0) (0) 1 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

0 1 0 1 1 1 1 Rm Rn Rt
15 14 13 12 11 10 9 8 6 5 3 2 0
F5-4804 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1 variant

LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

T2 variant

LDRSH{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "LDRSH (literal)";
 if Rt == '1111' then SEE "Related instructions";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
 if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related instructions: Load/store, signed (register offset) on page F3-4481.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

1 1 1 1 1 0 0 1 0 0 1 1 !=1111 !=1111 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn Rt
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4805
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 R[t] = SignExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-4806 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.97 LDRSHT

Load Register Signed Halfword Unprivileged loads a halfword from memory, sign-extends it to form a 32-bit word,
and writes it to a register. For information about memory accesses see Memory accesses on page F1-4353.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is
actually running in User mode.

LDRSHT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or a register value.

A1

A1 variant

LDRSHT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
 register_form = FALSE; imm32 = ZeroExtend(imm4H:imm4L, 32);
 if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction on page K1-8387.

• The instruction is treated as if bit[24] == '1' and bit[21] == '0'. The instruction uses immediate offset
addressing with the base register as PC, without writeback.

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

!=1111 0 0 0 0 U 1 1 1 Rn Rt imm4H 1 1 1 1 imm4L
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4807
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
A2

A2 variant

LDRSHT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
 register_form = TRUE;
 if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRSHT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "LDRSH (literal)";
 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

!=1111 0 0 0 0 U 0 1 1 Rn Rt (0) (0) (0) (0) 1 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 0 1 0 0 1 1 !=1111 Rt 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
F5-4808 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to
+ if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

 if ConditionPassed() then
 if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
 EncodingSpecificOperations();
 offset = if register_form then R[m] else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 data = MemU_unpriv[address,2];
 if postindex then R[n] = offset_addr;
 R[t] = SignExtend(data, 32);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDRSH (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4809
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.98 LDRT

Load Register Unprivileged loads a word from memory, and writes it to a register. For information about memory
accesses see Memory accesses on page F1-4353.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is
actually running in User mode.

LDRT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or an optionally-shifted register value.

A1

A1 variant

LDRT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
 register_form = FALSE; imm32 = ZeroExtend(imm12, 32);
 if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction on page K1-8387.

• The instruction is treated as if bit[24] == '1' and bit[21] == '0'. The instruction uses immediate offset
addressing with the base register as PC, without writeback.

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

!=1111 0 1 0 0 U 0 1 1 Rn Rt imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond
F5-4810 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
A2

A2 variant

LDRT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
 register_form = TRUE; (shift_t, shift_n) = DecodeImmShift(stype, imm5);
 if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "LDR (literal)";
 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, but this is deprecated.

!=1111 0 1 1 0 U 0 1 1 Rn Rt imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond

1 1 1 1 1 0 0 0 0 1 0 1 !=1111 Rt 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4811
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
For encoding A2 and T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to
+ if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register on page F1-4351.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to
0 if omitted, and encoded in the "imm12" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

 if ConditionPassed() then
 if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
 EncodingSpecificOperations();
 offset = if register_form then Shift(R[m], shift_t, shift_n, PSTATE.C) else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 data = MemU_unpriv[address,4];
 if postindex then R[n] = offset_addr;
 R[t] = data;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDR (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-4812 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.99 LSL (immediate)

Logical Shift Left (immediate) shifts a register value left by an immediate number of bits, shifting in zeros, and
writes the result to the destination register.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).

• The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

A1

MOV, shift or rotate by value variant

LSL{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

T2

T2 variant

LSL<c>{<q>} {<Rd>,} <Rm>, #<imm> // Inside IT block

 is equivalent to

MOV<c>{<q>} <Rd>, <Rm>, LSL #<imm>

and is the preferred disassembly when InITBlock().

T3

MOV, shift or rotate by value variant

LSL<c>.W {<Rd>,} <Rm>, #<imm> // Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

LSL{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

!=1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd !=00000 0 0 0 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond S imm5 stype

0 0 0 0 0 !=00000 Rm Rd
15 14 13 12 11 10 6 5 3 2 0

op imm5

1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 (0) imm3 Rd imm2 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S stype
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4813
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction is a branch
to the address calculated by the operation. This is an interworking branch, see Pseudocode
description of operations on the AArch32 general-purpose registers and the PC on page E1-4253.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1: is the shift amount, in the range 0 to 31, encoded in the "imm5" field as <imm>
modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31, encoded in the "imm5" field as <amount>
modulo 32.

For encoding T3: is the shift amount, in the range 0 to 31, encoded in the "imm3:imm2" field as
<imm> modulo 32.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.
F5-4814 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.100 LSL (register)

Logical Shift Left (register) shifts a register value left by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The variable number of bits is read from the bottom byte of a register

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

A1

Not flag setting variant

LSL{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

T1

Logical shift left variant

LSL<c>{<q>} {<Rdm>,} <Rdm>, <Rs> // Inside IT block

 is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, LSL <Rs>

and is the preferred disassembly when InITBlock().

T2

Not flag setting variant

LSL<c>.W {<Rd>,} <Rm>, <Rs> // Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

!=1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd Rs 0 0 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond S stype

0 1 0 0 0 0 0 0 1 0 Rs Rdm
15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 0 0 0 Rm 1 1 1 1 Rd 0 0 0 0 Rs
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

stype S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4815
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
LSL{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
F5-4816 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.101 LSLS (immediate)

Logical Shift Left, setting flags (immediate) shifts a register value left by an immediate number of bits, shifting in
zeros, and writes the result to the destination register.

If the destination register is not the PC, this instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

• The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32
state on page G1-6066.

• The instruction is UNDEFINED in Hyp mode.

• The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).

• The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

A1

MOVS, shift or rotate by value variant

LSLS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

T2

T2 variant

LSLS{<q>} {<Rd>,} <Rm>, #<imm> // Outside IT block

 is equivalent to

MOVS{<q>} <Rd>, <Rm>, LSL #<imm>

and is the preferred disassembly when !InITBlock().

!=1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd !=00000 0 0 0 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond S imm5 stype

0 0 0 0 0 !=00000 Rm Rd
15 14 13 12 11 10 6 5 3 2 0

op imm5
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4817
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T3

MOVS, shift or rotate by value variant

LSLS.W {<Rd>,} <Rm>, #<imm> // Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

LSLS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction performs an
exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1: is the shift amount, in the range 0 to 31, encoded in the "imm5" field as <imm>
modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31, encoded in the "imm5" field as <amount>
modulo 32.

For encoding T3: is the shift amount, in the range 0 to 31, encoded in the "imm3:imm2" field as
<imm> modulo 32.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 (0) imm3 Rd imm2 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S stype
F5-4818 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.102 LSLS (register)

Logical Shift Left, setting flags (register) shifts a register value left by a variable number of bits, shifting in zeros,
writes the result to the destination register, and updates the condition flags based on the result. The variable number
of bits is read from the bottom byte of a register

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

A1

Flag setting variant

LSLS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

T1

Logical shift left variant

LSLS{<q>} {<Rdm>,} <Rdm>, <Rs> // Outside IT block

 is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, LSL <Rs>

and is the preferred disassembly when !InITBlock().

T2

Flag setting variant

LSLS.W {<Rd>,} <Rm>, <Rs> // Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

!=1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd Rs 0 0 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond S stype

0 1 0 0 0 0 0 0 1 0 Rs Rdm
15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 0 0 1 Rm 1 1 1 1 Rd 0 0 0 0 Rs
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

stype S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4819
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
and is always the preferred disassembly.

LSLS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
F5-4820 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.103 LSR (immediate)

Logical Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in zeros, and
writes the result to the destination register.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).

• The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

A1

MOV, shift or rotate by value variant

LSR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

T2

T2 variant

LSR<c>{<q>} {<Rd>,} <Rm>, #<imm> // Inside IT block

 is equivalent to

MOV<c>{<q>} <Rd>, <Rm>, LSR #<imm>

and is the preferred disassembly when InITBlock().

T3

MOV, shift or rotate by value variant

LSR<c>.W {<Rd>,} <Rm>, #<imm> // Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

LSR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

!=1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd imm5 0 1 0 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond S stype

0 0 0 0 1 imm5 Rm Rd
15 14 13 12 11 10 6 5 3 2 0

op

1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 (0) imm3 Rd imm2 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S stype
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4821
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction is a branch
to the address calculated by the operation. This is an interworking branch, see Pseudocode
description of operations on the AArch32 general-purpose registers and the PC on page E1-4253.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1 and T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as
<imm> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as
<imm> modulo 32.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.
F5-4822 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.104 LSR (register)

Logical Shift Right (register) shifts a register value right by a variable number of bits, shifting in zeros, and writes
the result to the destination register. The variable number of bits is read from the bottom byte of a register

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

A1

Not flag setting variant

LSR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

T1

Logical shift right variant

LSR<c>{<q>} {<Rdm>,} <Rdm>, <Rs> // Inside IT block

 is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, LSR <Rs>

and is the preferred disassembly when InITBlock().

T2

Not flag setting variant

LSR<c>.W {<Rd>,} <Rm>, <Rs> // Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

!=1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd Rs 0 0 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond S stype

0 1 0 0 0 0 0 0 1 1 Rs Rdm
15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 0 1 0 Rm 1 1 1 1 Rd 0 0 0 0 Rs
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

stype S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4823
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
LSR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
F5-4824 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.105 LSRS (immediate)

Logical Shift Right, setting flags (immediate) shifts a register value right by an immediate number of bits, shifting
in zeros, and writes the result to the destination register.

If the destination register is not the PC, this instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

• The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32
state on page G1-6066.

• The instruction is UNDEFINED in Hyp mode.

• The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).

• The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

A1

MOVS, shift or rotate by value variant

LSRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

T2

T2 variant

LSRS{<q>} {<Rd>,} <Rm>, #<imm> // Outside IT block

 is equivalent to

MOVS{<q>} <Rd>, <Rm>, LSR #<imm>

and is the preferred disassembly when !InITBlock().

!=1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd imm5 0 1 0 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond S stype

0 0 0 0 1 imm5 Rm Rd
15 14 13 12 11 10 6 5 3 2 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4825
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T3

MOVS, shift or rotate by value variant

LSRS.W {<Rd>,} <Rm>, #<imm> // Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

LSRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction performs an
exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1 and T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as
<imm> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as
<imm> modulo 32.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 (0) imm3 Rd imm2 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S stype
F5-4826 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.106 LSRS (register)

Logical Shift Right, setting flags (register) shifts a register value right by an immediate number of bits, shifting in
zeros, writes the result to the destination register, and updates the condition flags based on the result. The variable
number of bits is read from the bottom byte of a register

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

A1

Flag setting variant

LSRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

T1

Logical shift right variant

LSRS{<q>} {<Rdm>,} <Rdm>, <Rs> // Outside IT block

 is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, LSR <Rs>

and is the preferred disassembly when !InITBlock().

T2

Flag setting variant

LSRS.W {<Rd>,} <Rm>, <Rs> // Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

!=1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd Rs 0 0 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond S stype

0 1 0 0 0 0 0 0 1 1 Rs Rdm
15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 0 1 1 Rm 1 1 1 1 Rd 0 0 0 0 Rs
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

stype S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4827
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
and is always the preferred disassembly.

LSRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
F5-4828 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.107 MCR

Move to System register from general-purpose register or execute a System instruction. This instruction copies the
value of a general-purpose register to a System register, or executes a System instruction.

The System register and System instruction descriptions identify valid encodings for this instruction. Other
encodings are UNDEFINED. For more information see About the AArch32 System register interface on page E1-4278
and General behavior of System registers on page G8-6438.

In an implementation that includes EL2, MCR accesses to System registers can be trapped to Hyp mode, meaning that
an attempt to execute an MCR instruction in a Non-secure mode other than Hyp mode, that would be permitted in the
absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see EL2 configurable
controls on page G1-6126.

Because of the range of possible traps to Hyp mode, the MCR pseudocode does not show these possible traps.

A1

A1 variant

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding

 t = UInt(Rt); cp = if coproc<0> == '0' then 14 else 15;
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1

T1 variant

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding

 t = UInt(Rt); cp = if coproc<0> == '0' then 14 else 15;
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

!=1111 1 1 1 0 opc1 0 CRn Rt 1 1 1 opc2 1 CRm
31 28 27 26 25 24 23 21 20 19 16 15 12 11 9 8 7 5 4 3 0

cond coproc<3:1>
coproc<0>

1 1 1 0 1 1 1 0 opc1 0 CRn Rt 1 1 1 opc2 1 CRm
15 14 13 12 11 10 9 8 7 5 4 3 0 15 12 11 9 8 7 5 4 3 0

coproc<3:1>
coproc<0>
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4829
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<q> See Standard assembler syntax fields on page F1-4348.

<coproc> Is the System register encoding space, encoded in the "coproc<0>" field. It can have the following
values:

p14 when coproc<0> = 0

p15 when coproc<0> = 1

<opc1> Is the opc1 parameter within the System register encoding space, in the range 0 to7, encoded in the
"opc1" field.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<CRn> Is the CRn parameter within the System register encoding space, in the range c0 to c15, encoded in
the "CRn" field.

<CRm> Is the CRm parameter within the System register encoding space, in the range c0 to c15, encoded in
the "CRm" field.

<opc2> Is the opc2 parameter within the System register encoding space, in the range 0 to7, encoded in the
"opc2" field.

The possible values of { <coproc>, <opc1>, <CRn>, <CRm>, <opc2> } encode the entire System register and System
instruction encoding space. Not all of this space is allocated, and the System register and System instruction
descriptions identify the allocated encodings.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 AArch32.SysRegWrite(cp, ThisInstr(), R[t]);
F5-4830 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.108 MCRR

Move to System register from two general-purpose registers. This instruction copies the values of two
general-purpose registers to a System register.

The System register descriptions identify valid encodings for this instruction. Other encodings are UNDEFINED. For
more information see About the AArch32 System register interface on page E1-4278 and General behavior of
System registers on page G8-6438.

In an implementation that includes EL2, MCRR accesses to System registers can be trapped to Hyp mode, meaning
that an attempt to execute an MCRR instruction in a Non-secure mode other than Hyp mode, that would be permitted
in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see EL2
configurable controls on page G1-6126.

Because of the range of possible traps to Hyp mode, the MCRR pseudocode does not show these possible traps.

A1

A1 variant

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding

 t = UInt(Rt); t2 = UInt(Rt2); cp = if coproc<0> == '0' then 14 else 15;
 if t == 15 || t2 == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

T1

T1 variant

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding

 t = UInt(Rt); t2 = UInt(Rt2); cp = if coproc<0> == '0' then 14 else 15;
 if t == 15 || t2 == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 1 1 0 0 0 1 0 0 Rt2 Rt 1 1 1 opc1 CRm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 9 8 7 4 3 0

cond coproc<3:1>
coproc<0>

1 1 1 0 1 1 0 0 0 1 0 0 Rt2 Rt 1 1 1 opc1 CRm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 9 8 7 4 3 0

coproc<3:1>
coproc<0>
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4831
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<coproc> Is the System register encoding space, encoded in the "coproc<0>" field. It can have the following
values:

p14 when coproc<0> = 0

p15 when coproc<0> = 1

<opc1> Is the opc1 parameter within the System register encoding space, in the range 0 to 15, encoded in
the "opc1" field.

<Rt> Is the first general-purpose register that is transferred into, encoded in the "Rt" field.

<Rt2> Is the second general-purpose register that is transferred into, encoded in the "Rt2" field.

<CRm> Is the CRm parameter within the System register encoding space, in the range c0 to c15, encoded in
the "CRm" field.

The possible values of { <coproc>, <opc1>, <CRm> } encode the entire System register encoding space. Not all of this
space is allocated, and the System register descriptions identify the allocated encodings.

For the permitted uses of these instructions, as described in this manual, <Rt2> transfers bits[63:32] of the selected
System register, while <Rt> transfers bits[31:0].

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 value = R[t2]:R[t];
 AArch32.SysRegWrite64(cp, ThisInstr(), value);
F5-4832 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.109 MLA, MLAS

Multiply Accumulate multiplies two register values, and adds a third register value. The least significant 32 bits of
the result are written to the destination register. These 32 bits do not depend on whether the source register values
are considered to be signed values or unsigned values.

In an A32 instruction, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many implementations.

A1

Flag setting variant

Applies when S == 1.

MLAS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Not flag setting variant

Applies when S == 0.

MLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); setflags = (S == '1');
 if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

T1

T1 variant

MLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding

 if Ra == '1111' then SEE "MUL";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); setflags = FALSE;
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

!=1111 0 0 0 0 0 0 1 S Rd Ra Rm 1 0 0 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 0 0 0 Rn !=1111 Rd 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4833
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
 addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
 result = operand1 * operand2 + addend;
 R[d] = result<31:0>;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result<31:0>);
 // PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4834 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.110 MLS

Multiply and Subtract multiplies two register values, and subtracts the product from a third register value. The least
significant 32 bits of the result are written to the destination register. These 32 bits do not depend on whether the
source register values are considered to be signed values or unsigned values.

A1

A1 variant

MLS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

T1

T1 variant

MLS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the minuend, encoded in the "Ra" field.

!=1111 0 0 0 0 0 1 1 0 Rd Ra Rm 1 0 0 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 0 0 0 Rn Ra Rd 0 0 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4835
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
 addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
 result = addend - operand1 * operand2;
 R[d] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4836 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.111 MOV, MOVS (immediate)

Move (immediate) writes an immediate value to the destination register.

If the destination register is not the PC, the MOVS variant of the instruction updates the condition flags based on
the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The MOV variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The MOVS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

MOV variant

Applies when S == 0.

MOV{<c>}{<q>} <Rd>, #<const>

MOVS variant

Applies when S == 1.

MOVS{<c>}{<q>} <Rd>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); setflags = (S == '1'); (imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

A2

A2 variant

MOV{<c>}{<q>} <Rd>, #<imm16> // <imm16> can not be represented in A1
MOVW{<c>}{<q>} <Rd>, #<imm16> // <imm16> can be represented in A1

Decode for this encoding

 d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:imm12, 32);
 if d == 15 then UNPREDICTABLE;

!=1111 0 0 1 1 1 0 1 S (0) (0) (0) (0) Rd imm12
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 0

cond

!=1111 0 0 1 1 0 0 0 0 imm4 Rd imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4837
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

MOV<c>{<q>} <Rd>, #<imm8> // Inside IT block
MOVS{<q>} <Rd>, #<imm8> // Outside IT block

Decode for this encoding

 d = UInt(Rd); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32); carry = PSTATE.C;

T2

MOV variant

Applies when S == 0.

MOV<c>.W <Rd>, #<const> // Inside IT block, and <Rd>, <const> can be represented in T1
MOV{<c>}{<q>} <Rd>, #<const>

MOVS variant

Applies when S == 1.

MOVS.W <Rd>, #<const> // Outside IT block, and <Rd>, <const> can be represented in T1
MOVS{<c>}{<q>} <Rd>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); setflags = (S == '1'); (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T3

T3 variant

MOV{<c>}{<q>} <Rd>, #<imm16> // <imm16> cannot be represented in T1 or T2
MOVW{<c>}{<q>} <Rd>, #<imm16> // <imm16> can be represented in T1 or T2

Decode for this encoding

 d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:i:imm3:imm8, 32);
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

0 0 1 0 0 Rd imm8
15 14 13 12 11 10 8 7 0

1 1 1 1 0 i 0 0 0 1 0 S 1 1 1 1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0

1 1 1 1 0 i 1 0 0 1 0 0 imm4 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
F5-4838 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used:

• For the MOV variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the MOVS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding A2, T1, T2 and T3: is the general-purpose destination register, encoded in the "Rd"
field.

<imm8> Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

<imm16> For encoding A2: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:imm12" field.

For encoding T3: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:i:imm3:imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on
page F1-4364 for the range of values.

For encoding T2: an immediate value. See Modified immediate constants in T32 instructions on
page F1-4362 for the range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = imm32;
 if d == 15 then // Can only occur for encoding A1
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4839
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4840 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.112 MOV, MOVS (register)

Move (register) copies a value from a register to the destination register.

If the destination register is not the PC, the MOVS variant of the instruction updates the condition flags based on
the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:

• The MOV variant of the instruction is a branch. In the T32 instruction set (encoding T1) this is a simple
branch, and in the A32 instruction set it is an interworking branch, see Pseudocode description of operations
on the AArch32 general-purpose registers and the PC on page E1-4253.

• The MOVS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This instruction is used by the aliases ASRS (immediate), ASR (immediate), LSLS (immediate), LSL (immediate),
LSRS (immediate), LSR (immediate), RORS (immediate), ROR (immediate), RRXS, and RRX. See Alias
conditions on page F5-4843 for details of when each alias is preferred.

A1

MOV, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

MOV{<c>}{<q>} <Rd>, <Rm>, RRX

MOV, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

MOV{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MOVS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

MOVS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

MOVS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 1 1 0 1 S (0) (0) (0) (0) Rd imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4841
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

MOV{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(D:Rd); m = UInt(Rm); setflags = FALSE;
 (shift_t, shift_n) = (SRType_LSL, 0);
 if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T2

T2 variant

MOV<c>{<q>} <Rd>, <Rm> {, <shift> #<amount>} // Inside IT block
MOVS{<q>} <Rd>, <Rm> {, <shift> #<amount>} // Outside IT block

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
 (shift_t, shift_n) = DecodeImmShift(op, imm5);
 if op == '00' && imm5 == '00000' && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If op == '00' && imm5 == '00000' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passed its condition code check.

• The instruction executes as NOP, as if it failed its condition code check.

• The instruction executes as MOV Rd, Rm.

T3

MOV, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

MOV{<c>}{<q>} <Rd>, <Rm>, RRX

0 1 0 0 0 1 1 0 D Rm Rd
15 14 13 12 11 10 9 8 7 6 3 2 0

0 0 0 !=11 imm5 Rm Rd
15 14 13 12 11 10 6 5 3 2 0

op

1 1 1 0 1 0 1 0 0 1 0 S 1 1 1 1 (0) imm3 Rd imm2 stype Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0
F5-4842 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
MOV, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

MOV{<c>}.W <Rd>, <Rm> {, LSL #0} // <Rd>, <Rm> can be represented in T1
MOV<c>.W <Rd>, <Rm> {, <shift> #<amount>} // Inside IT block, and <Rd>, <Rm>, <shift>, <amount> can be
represented in T2
MOV{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MOVS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && stype == 11.

MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

MOVS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11).

MOVS.W <Rd>, <Rm> {, <shift> #<amount>} // Outside IT block, and <Rd>, <Rm>, <shift>, <amount> can be
represented in T1 or T2
MOVS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Alias conditions

Alias of variant is preferred when

 ASRS (immediate) T3 (MOVS, shift or rotate by value), A1 (MOVS, shift
or rotate by value)

S == '1' && stype == '10'

 ASRS (immediate) T2 op == '10' && !InITBlock()

 ASR (immediate) T3 (MOV, shift or rotate by value), A1 (MOV, shift or
rotate by value)

S == '0' && stype == '10'

 ASR (immediate) T2 op == '10' && InITBlock()

 LSLS (immediate) T3 (MOVS, shift or rotate by value) S == '1' && imm3:Rd:imm2 != '000xxxx00' &&
stype == '00'

 LSLS (immediate) A1 (MOVS, shift or rotate by value) S == '1' && imm5 != '00000' && stype == '00'

 LSLS (immediate) T2 op == '00' && imm5 != '00000' && !InITBlock()

 LSL (immediate) T3 (MOV, shift or rotate by value) S == '0' && imm3:Rd:imm2 != '000xxxx00' &&
stype == '00'

 LSL (immediate) A1 (MOV, shift or rotate by value) S == '0' && imm5 != '00000' && stype == '00'

 LSL (immediate) T2 op == '00' && imm5 != '00000' && InITBlock()

 LSRS (immediate) T3 (MOVS, shift or rotate by value), A1 (MOVS, shift
or rotate by value)

S == '1' && stype == '01'
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4843
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If the PC is
used:

• For the MOV variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253. Arm deprecates use of the
instruction if <Rn> is the PC.

• For the MOVS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>. Arm deprecates use of the instruction if <Rn> is not the LR,
or if the optional shift or RRX argument is specified.

For encoding T1: is the general-purpose destination register, encoded in the "D:Rd" field. If the PC
is used:

• The instruction causes a branch to the address moved to the PC. This is a simple branch, see
Pseudocode description of operations on the AArch32 general-purpose registers and the PC
on page E1-4253.

• The instruction must either be outside an IT block or the last instruction of an IT block.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1 and T1: is the general-purpose source register, encoded in the "Rm" field. The PC
can be used. Arm deprecates use of the instruction if <Rd> is the PC.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<shift> For encoding A1 and T3: is the type of shift to be applied to the source register, encoded in the
"stype" field. It can have the following values:

LSL when stype = 00

LSR when stype = 01

 LSRS (immediate) T2 op == '01' && !InITBlock()

 LSR (immediate) T3 (MOV, shift or rotate by value), A1 (MOV, shift or
rotate by value)

S == '0' && stype == '01'

 LSR (immediate) T2 op == '01' && InITBlock()

 RORS (immediate) T3 (MOVS, shift or rotate by value) S == '1' && imm3:Rd:imm2 != '000xxxx00' &&
stype == '11'

 RORS (immediate) A1 (MOVS, shift or rotate by value) S == '1' && imm5 != '00000' && stype == '11'

 ROR (immediate) T3 (MOV, shift or rotate by value) S == '0' && imm3:Rd:imm2 != '000xxxx00' &&
stype == '11'

 ROR (immediate) A1 (MOV, shift or rotate by value) S == '0' && imm5 != '00000' && stype == '11'

 RRXS T3 (MOVS, rotate right with extend) S == '1' && imm3 == '000' && imm2 == '00' &&
stype == '11'

 RRXS A1 (MOVS, rotate right with extend) S == '1' && imm5 == '00000' && stype == '11'

 RRX T3 (MOV, rotate right with extend) S == '0' && imm3 == '000' && imm2 == '00' &&
stype == '11'

 RRX A1 (MOV, rotate right with extend) S == '0' && imm5 == '00000' && stype == '11'

Alias of variant is preferred when
F5-4844 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
ASR when stype = 10

ROR when stype = 11

For encoding T2: is the type of shift to be applied to the source register, encoded in the "op" field.
It can have the following values:

LSL when op = 00

LSR when op = 01

ASR when op = 10

<amount> For encoding A1: is the shift amount, in the range 0 to 31 (when <shift> = LSL), or 1 to 31 (when
<shift> = ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm5" field as <amount>
modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm5" field as <amount> modulo 32.

For encoding T3: is the shift amount, in the range 0 to 31 (when <shift> = LSL) or 1 to 31 (when
<shift> = ROR), or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as
<amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = shifted;
 if d == 15 then
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4845
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.113 MOV, MOVS (register-shifted register)

Move (register-shifted register) copies a register-shifted register value to the destination register. It can optionally
update the condition flags based on the value.

This instruction is used by the aliases ASRS (register), ASR (register), LSLS (register), LSL (register), LSRS
(register), LSR (register), RORS (register), and ROR (register). See Alias conditions on page F5-4848 for details of
when each alias is preferred.

A1

Flag setting variant

Applies when S == 1.

MOVS{<c>}{<q>} <Rd>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

MOV{<c>}{<q>} <Rd>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || m == 15 || s == 15 then UNPREDICTABLE;

T1

Arithmetic shift right variant

Applies when op == 0100.

MOV<c>{<q>} <Rdm>, <Rdm>, ASR <Rs> // Inside IT block
MOVS{<q>} <Rdm>, <Rdm>, ASR <Rs> // Outside IT block

Logical shift left variant

Applies when op == 0010.

MOV<c>{<q>} <Rdm>, <Rdm>, LSL <Rs> // Inside IT block
MOVS{<q>} <Rdm>, <Rdm>, LSL <Rs> // Outside IT block

Logical shift right variant

Applies when op == 0011.

MOV<c>{<q>} <Rdm>, <Rdm>, LSR <Rs> // Inside IT block
MOVS{<q>} <Rdm>, <Rdm>, LSR <Rs> // Outside IT block

!=1111 0 0 0 1 1 0 1 S (0) (0) (0) (0) Rd Rs 0 stype 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond

0 1 0 0 0 0 0 x x x Rs Rdm
15 14 13 12 11 10 9 6 5 3 2 0

op
F5-4846 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Rotate right variant

Applies when op == 0111.

MOV<c>{<q>} <Rdm>, <Rdm>, ROR <Rs> // Inside IT block
MOVS{<q>} <Rdm>, <Rdm>, ROR <Rs> // Outside IT block

Decode for all variants of this encoding

 if !(op IN {'0010', '0011', '0100', '0111'}) then SEE "Related encodings";
 d = UInt(Rdm); m = UInt(Rdm); s = UInt(Rs);
 setflags = !InITBlock(); shift_t = DecodeRegShift(op<2>:op<0>);

T2

Flag setting variant

Applies when S == 1.

MOVS.W <Rd>, <Rm>, <shift> <Rs> // Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in
T1
MOVS{<c>}{<q>} <Rd>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

MOV<c>.W <Rd>, <Rm>, <shift> <Rs> // Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in
T1
MOV{<c>}{<q>} <Rd>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || m == 15 || s == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

Related encodings: In encoding T1, for an op field value that is not described above, see Data-processing (two low
registers) on page F3-4417.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

1 1 1 1 1 0 1 0 0 stype S Rm 1 1 1 1 Rd 0 0 0 0 Rs
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4847
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Alias conditions

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rdm> Is the general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

Alias of variant is preferred when

 ASRS (register) A1 (flag setting) S == '1' && stype == '10'

 ASRS (register) T1 (arithmetic shift right) op == '0100' && !InITBlock()

 ASRS (register) T2 (flag setting) stype == '10' && S == '1'

 ASR (register) A1 (not flag setting) S == '0' && stype == '10'

 ASR (register) T1 (arithmetic shift right) op == '0100' && InITBlock()

 ASR (register) T2 (not flag setting) stype == '10' && S == '0'

 LSLS (register) A1 (flag setting) S == '1' && stype == '00'

 LSLS (register) T1 (logical shift left) op == '0010' && !InITBlock()

 LSLS (register) T2 (flag setting) stype == '00' && S == '1'

 LSL (register) A1 (not flag setting) S == '0' && stype == '00'

 LSL (register) T1 (logical shift left) op == '0010' && InITBlock()

 LSL (register) T2 (not flag setting) stype == '00' && S == '0'

 LSRS (register) A1 (flag setting) S == '1' && stype == '01'

 LSRS (register) T1 (logical shift right) op == '0011' && !InITBlock()

 LSRS (register) T2 (flag setting) stype == '01' && S == '1'

 LSR (register) A1 (not flag setting) S == '0' && stype == '01'

 LSR (register) T1 (logical shift right) op == '0011' && InITBlock()

 LSR (register) T2 (not flag setting) stype == '01' && S == '0'

 RORS (register) A1 (flag setting) S == '1' && stype == '11'

 RORS (register) T1 (rotate right) op == '0111' && !InITBlock()

 RORS (register) T2 (flag setting) stype == '11' && S == '1'

 ROR (register) A1 (not flag setting) S == '0' && stype == '11'

 ROR (register) T1 (rotate right) op == '0111' && InITBlock()

 ROR (register) T2 (not flag setting) stype == '11' && S == '0'
F5-4848 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs"
field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (result, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4849
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.114 MOVT

Move Top writes an immediate value to the top halfword of the destination register. It does not affect the contents
of the bottom halfword.

A1

A1 variant

MOVT{<c>}{<q>} <Rd>, #<imm16>

Decode for this encoding

 d = UInt(Rd); imm16 = imm4:imm12;
 if d == 15 then UNPREDICTABLE;

T1

T1 variant

MOVT{<c>}{<q>} <Rd>, #<imm16>

Decode for this encoding

 d = UInt(Rd); imm16 = imm4:i:imm3:imm8;
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm16> For encoding A1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:imm12" field.

For encoding T1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:i:imm3:imm8" field.

!=1111 0 0 1 1 0 1 0 0 imm4 Rd imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

1 1 1 1 0 i 1 0 1 1 0 0 imm4 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
F5-4850 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 R[d]<31:16> = imm16;
 // R[d]<15:0> unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4851
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.115 MRC

Move to general-purpose register from System register. This instruction copies the value of a System register to a
general-purpose register.

The System register descriptions identify valid encodings for this instruction. Other encodings are UNDEFINED. For
more information see About the AArch32 System register interface on page E1-4278 and General behavior of
System registers on page G8-6438.

In an implementation that includes EL2, MRC accesses to system control registers can be trapped to Hyp mode,
meaning that an attempt to execute an MRC instruction in a Non-secure mode other than Hyp mode, that would be
permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see EL2
configurable controls on page G1-6126.

Because of the range of possible traps to Hyp mode, the MRC pseudocode does not show these possible traps.

A1

A1 variant

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding

 t = UInt(Rt); cp = if coproc<0> == '0' then 14 else 15;
 // Armv8-A removes UNPREDICTABLE for R13

T1

T1 variant

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding

 t = UInt(Rt); cp = if coproc<0> == '0' then 14 else 15;
 // Armv8-A removes UNPREDICTABLE for R13

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<coproc> Is the System register encoding space, encoded in the "coproc<0>" field. It can have the following
values:

p14 when coproc<0> = 0

!=1111 1 1 1 0 opc1 1 CRn Rt 1 1 1 opc2 1 CRm
31 28 27 26 25 24 23 21 20 19 16 15 12 11 9 8 7 5 4 3 0

cond coproc<3:1>
coproc<0>

1 1 1 0 1 1 1 0 opc1 1 CRn Rt 1 1 1 opc2 1 CRm
15 14 13 12 11 10 9 8 7 5 4 3 0 15 12 11 9 8 7 5 4 3 0

coproc<3:1>
coproc<0>
F5-4852 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
p15 when coproc<0> = 1

<opc1> Is the opc1 parameter within the System register encoding space, in the range 0 to7, encoded in the
"opc1" field.

<Rt> Is the general-purpose register to be transferred or APSR_nzcv (encoded as 0b1111), encoded in the
"Rt" field. If APSR_nzcv is used, bits [31:28] of the transferred value are written to the PSTATE
condition flags.

<CRn> Is the CRn parameter within the System register encoding space, in the range c0 to c15, encoded in
the "CRn" field.

<CRm> Is the CRm parameter within the System register encoding space, in the range c0 to c15, encoded in
the "CRm" field.

<opc2> Is the opc2 parameter within the System register encoding space, in the range 0 to7, encoded in the
"opc2" field.

The possible values of { <coproc>, <opc1>, <CRn>, <CRm>, <opc2> } encode the entire System register and System
instruction encoding space. Not all of this space is allocated, and the System register and System instruction
descriptions identify the allocated encodings.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) value = AArch32.SysRegRead(cp, ThisInstr());
 if t != 15 then
 R[t] = value;
 elsif AArch32.SysRegReadCanWriteAPSR(cp, ThisInstr()) then
 PSTATE.<N,Z,C,V> = value<31:28>;
 // value<27:0> are not used.
 else
 UNPREDICTABLE;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4853
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.116 MRRC

Move to two general-purpose registers from System register. This instruction copies the value of a System register
to two general-purpose registers.

The System register descriptions identify valid encodings for this instruction. Other encodings are UNDEFINED. For
more information see About the AArch32 System register interface on page E1-4278 and General behavior of
System registers on page G8-6438.

In an implementation that includes EL2, MRRC accesses to System registers can be trapped to Hyp mode, meaning
that an attempt to execute an MRRC instruction in a Non-secure mode other than Hyp mode, that would be permitted
in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see EL2
configurable controls on page G1-6126.

Because of the range of possible traps to Hyp mode, the MRRC pseudocode does not show these possible traps.

A1

A1 variant

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding

 t = UInt(Rt); t2 = UInt(Rt2); cp = if coproc<0> == '0' then 14 else 15;
 if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

T1 variant

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding

 t = UInt(Rt); t2 = UInt(Rt2); cp = if coproc<0> == '0' then 14 else 15;
 if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 1 1 0 0 0 1 0 1 Rt2 Rt 1 1 1 opc1 CRm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 9 8 7 4 3 0

cond coproc<3:1>
coproc<0>

1 1 1 0 1 1 0 0 0 1 0 1 Rt2 Rt 1 1 1 opc1 CRm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 9 8 7 4 3 0

coproc<3:1>
coproc<0>
F5-4854 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<coproc> Is the System register encoding space, encoded in the "coproc<0>" field. It can have the following
values:

p14 when coproc<0> = 0

p15 when coproc<0> = 1

<opc1> Is the opc1 parameter within the System register encoding space, in the range 0 to 15, encoded in
the "opc1" field.

<Rt> Is the first general-purpose register that is transferred into, encoded in the "Rt" field.

<Rt2> Is the second general-purpose register that is transferred into, encoded in the "Rt2" field.

<CRm> Is the CRm parameter within the System register encoding space, in the range c0 to c15, encoded in
the "CRm" field.

The possible values of { <coproc>, <opc1>, <CRm> } encode the entire System register encoding space. Not all of this
space is allocated, and the System register descriptions identify the allocated encodings.

For the permitted uses of these instructions, as described in this manual, <Rt2> transfers bits[63:32] of the selected
System register, while <Rt> transfers bits[31:0].

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 value = AArch32.SysRegRead64(cp, ThisInstr());
 R[t] = value<31:0>;
 R[t2] = value<63:32>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4855
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.117 MRS

Move Special register to general-purpose register moves the value of the The Application Program Status Register,
APSR on page E1-4255, CPSR, or SPSR_<current_mode> into a general-purpose register.

Arm recommends the APSR form when only the N, Z, C, V, Q, and GE[3:0] bits are being written. For more
information, see The Application Program Status Register, APSR on page E1-4255.

An MRS that accesses the SPSR is UNPREDICTABLE if executed in User mode or System mode.

An MRS that is executed in User mode and accesses the CPSR returns an UNKNOWN value for the CPSR.{E, A, I, F,
M} fields.

A1

A1 variant

MRS{<c>}{<q>} <Rd>, <spec_reg>

Decode for this encoding

 d = UInt(Rd); read_spsr = (R == '1');
 if d == 15 then UNPREDICTABLE;

T1

T1 variant

MRS{<c>}{<q>} <Rd>, <spec_reg>

Decode for this encoding

 d = UInt(Rd); read_spsr = (R == '1');
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

!=1111 0 0 0 1 0 R 0 0 (1) (1) (1) (1) Rd (0) (0) 0 (0) 0 0 0 0 (0) (0) (0) (0)
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 1 0 0 1 1 1 1 1 R (1) (1) (1) (1) 1 0 (0) 0 Rd (0) (0) 0 (0) (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 2 1 0
F5-4856 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<spec_reg> Is the special register to be accessed, encoded in the "R" field. It can have the following values:

CPSR|APSR when R = 0

SPSR when R = 1

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if read_spsr then
 if PSTATE.M IN {M32_User,M32_System} then
 UNPREDICTABLE;
 else
 R[d] = SPSR[];
 else
 // CPSR has same bit assignments as SPSR, but with the IT, J, SS, IL, and T bits masked out.
 bits(32) mask = '11111000 11101111 00000011 11011111';
 psr_val = GetPSRFromPSTATE(AArch32_NonDebugState) AND mask;
 if PSTATE.EL == EL0 then
 // If accessed from User mode return UNKNOWN values for E, A, I, F bits, bits<9:6>,
 // and for the M field, bits<4:0>
 psr_val<22> = bits(1) UNKNOWN;
 psr_val<9:6> = bits(4) UNKNOWN;
 psr_val<4:0> = bits(5) UNKNOWN;
 R[d] = psr_val;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User, M32_System} && read_spsr, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4857
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.118 MRS (Banked register)

Move to Register from Banked or Special register moves the value from the Banked general-purpose register or
SPSR of the specified mode, or the value of ELR_hyp on page G1-6034, to a general-purpose register.

MRS (Banked register) is UNPREDICTABLE if executed in User mode.

When EL3 is using AArch64, if an MRS (Banked register) instruction that is executed in a Secure EL1 mode would
access SPSR_mon, SP_mon, or LR_mon, it is trapped to EL3.

The effect of using an MRS (Banked register) instruction with a register argument that is not valid for the current mode
is UNPREDICTABLE. For more information see Usage restrictions on the banked register transfer instructions on
page F5-5283.

A1

A1 variant

MRS{<c>}{<q>} <Rd>, <banked_reg>

Decode for this encoding

 d = UInt(Rd); read_spsr = (R == '1');
 if d == 15 then UNPREDICTABLE;
 SYSm = M:M1;

T1

T1 variant

MRS{<c>}{<q>} <Rd>, <banked_reg>

Decode for this encoding

 d = UInt(Rd); read_spsr = (R == '1');
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 SYSm = M:M1;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

!=1111 0 0 0 1 0 R 0 0 M1 Rd (0) (0) 1 M 0 0 0 0 (0) (0) (0) (0)
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 1 0 0 1 1 1 1 1 R M1 1 0 (0) 0 Rd (0) (0) 1 M (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 2 1 0
F5-4858 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<banked_reg> Is the name of the banked register to be transferred to or from, encoded in the "R:M:M1" field. It
can have the following values:

R8_usr when R = 0, M = 0, M1 = 0000

R9_usr when R = 0, M = 0, M1 = 0001

R10_usr when R = 0, M = 0, M1 = 0010

R11_usr when R = 0, M = 0, M1 = 0011

R12_usr when R = 0, M = 0, M1 = 0100

SP_usr when R = 0, M = 0, M1 = 0101

LR_usr when R = 0, M = 0, M1 = 0110

R8_fiq when R = 0, M = 0, M1 = 1000

R9_fiq when R = 0, M = 0, M1 = 1001

R10_fiq when R = 0, M = 0, M1 = 1010

R11_fiq when R = 0, M = 0, M1 = 1011

R12_fiq when R = 0, M = 0, M1 = 1100

SP_fiq when R = 0, M = 0, M1 = 1101

LR_fiq when R = 0, M = 0, M1 = 1110

LR_irq when R = 0, M = 1, M1 = 0000

SP_irq when R = 0, M = 1, M1 = 0001

LR_svc when R = 0, M = 1, M1 = 0010

SP_svc when R = 0, M = 1, M1 = 0011

LR_abt when R = 0, M = 1, M1 = 0100

SP_abt when R = 0, M = 1, M1 = 0101

LR_und when R = 0, M = 1, M1 = 0110

SP_und when R = 0, M = 1, M1 = 0111

LR_mon when R = 0, M = 1, M1 = 1100

SP_mon when R = 0, M = 1, M1 = 1101

ELR_hyp when R = 0, M = 1, M1 = 1110

SP_hyp when R = 0, M = 1, M1 = 1111

SPSR_fiq when R = 1, M = 0, M1 = 1110

SPSR_irq when R = 1, M = 1, M1 = 0000

SPSR_svc when R = 1, M = 1, M1 = 0010

SPSR_abt when R = 1, M = 1, M1 = 0100

SPSR_und when R = 1, M = 1, M1 = 0110

SPSR_mon when R = 1, M = 1, M1 = 1100

SPSR_hyp when R = 1, M = 1, M1 = 1110

The following encodings are UNPREDICTABLE:

• R = 0, M = 0, M1 = 0111.

• R = 0, M = 0, M1 = 1111.

• R = 0, M = 1, M1 = 10xx.

• R = 1, M = 0, M1 = 0xxx.

• R = 1, M = 0, M1 = 10xx.

• R = 1, M = 0, M1 = 110x.

• R = 1, M = 0, M1 = 1111.

• R = 1, M = 1, M1 = 0001.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4859
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• R = 1, M = 1, M1 = 0011.

• R = 1, M = 1, M1 = 0101.

• R = 1, M = 1, M1 = 0111.

• R = 1, M = 1, M1 = 10xx.

• R = 1, M = 1, M1 = 1101.

• R = 1, M = 1, M1 = 1111.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL0 then
 UNPREDICTABLE;
 else
 mode = PSTATE.M;
 if read_spsr then
 SPSRaccessValid(SYSm, mode); // Check for UNPREDICTABLE cases
 case SYSm of
 when '01110' R[d] = SPSR_fiq<31:0>;
 when '10000' R[d] = SPSR_irq<31:0>;
 when '10010' R[d] = SPSR_svc<31:0>;
 when '10100' R[d] = SPSR_abt<31:0>;
 when '10110' R[d] = SPSR_und<31:0>;
 when '11100'
 if !ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
 R[d] = SPSR_mon;
 when '11110' R[d] = SPSR_hyp<31:0>;
 else
 BankedRegisterAccessValid(SYSm, mode); // Check for UNPREDICTABLE cases
 case SYSm of
 when '00xxx' // Access the User mode registers
 m = UInt(SYSm<2:0>) + 8;
 R[d] = Rmode[m,M32_User];
 when '01xxx' // Access the FIQ mode registers
 m = UInt(SYSm<2:0>) + 8;
 R[d] = Rmode[m,M32_FIQ];
 when '1000x' // Access the IRQ mode registers
 m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
 R[d] = Rmode[m,M32_IRQ];
 when '1001x' // Access the Supervisor mode registers
 m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
 R[d] = Rmode[m,M32_Svc];
 when '1010x' // Access the Abort mode registers
 m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
 R[d] = Rmode[m,M32_Abort];
 when '1011x' // Access the Undefined mode registers
 m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
 R[d] = Rmode[m,M32_Undef];
 when '1110x' // Access Monitor registers
 if !ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
 m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
 R[d] = Rmode[m,M32_Monitor];
 when '11110' // Access ELR_hyp register
 R[d] = ELR_hyp;
 when '11111' // Access SP_hyp register
 R[d] = Rmode[13,M32_Hyp];

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
F5-4860 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4861
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.119 MSR (Banked register)

Move to Banked or Special register from general-purpose register moves the value of a general-purpose register to
the Banked general-purpose register or SPSR of the specified mode, or to ELR_hyp on page G1-6034.

MSR (Banked register) is UNPREDICTABLE if executed in User mode.

When EL3 is using AArch64, if an MSR (Banked register) instruction that is executed in a Secure EL1 mode would
access SPSR_mon, SP_mon, or LR_mon, it is trapped to EL3.

The effect of using an MSR (Banked register) instruction with a register argument that is not valid for the current mode
is UNPREDICTABLE. For more information see Usage restrictions on the banked register transfer instructions on
page F5-5283.

A1

A1 variant

MSR{<c>}{<q>} <banked_reg>, <Rn>

Decode for this encoding

 n = UInt(Rn); write_spsr = (R == '1');
 if n == 15 then UNPREDICTABLE;
 SYSm = M:M1;

T1

T1 variant

MSR{<c>}{<q>} <banked_reg>, <Rn>

Decode for this encoding

 n = UInt(Rn); write_spsr = (R == '1');
 if n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 SYSm = M:M1;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

!=1111 0 0 0 1 0 R 1 0 M1 (1) (1) (1) (1) (0) (0) 1 M 0 0 0 0 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 0 0 1 1 1 0 0 R Rn 1 0 (0) 0 M1 (0) (0) 1 M (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 2 1 0
F5-4862 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<banked_reg> Is the name of the banked register to be transferred to or from, encoded in the "R:M:M1" field. It
can have the following values:

R8_usr when R = 0, M = 0, M1 = 0000

R9_usr when R = 0, M = 0, M1 = 0001

R10_usr when R = 0, M = 0, M1 = 0010

R11_usr when R = 0, M = 0, M1 = 0011

R12_usr when R = 0, M = 0, M1 = 0100

SP_usr when R = 0, M = 0, M1 = 0101

LR_usr when R = 0, M = 0, M1 = 0110

R8_fiq when R = 0, M = 0, M1 = 1000

R9_fiq when R = 0, M = 0, M1 = 1001

R10_fiq when R = 0, M = 0, M1 = 1010

R11_fiq when R = 0, M = 0, M1 = 1011

R12_fiq when R = 0, M = 0, M1 = 1100

SP_fiq when R = 0, M = 0, M1 = 1101

LR_fiq when R = 0, M = 0, M1 = 1110

LR_irq when R = 0, M = 1, M1 = 0000

SP_irq when R = 0, M = 1, M1 = 0001

LR_svc when R = 0, M = 1, M1 = 0010

SP_svc when R = 0, M = 1, M1 = 0011

LR_abt when R = 0, M = 1, M1 = 0100

SP_abt when R = 0, M = 1, M1 = 0101

LR_und when R = 0, M = 1, M1 = 0110

SP_und when R = 0, M = 1, M1 = 0111

LR_mon when R = 0, M = 1, M1 = 1100

SP_mon when R = 0, M = 1, M1 = 1101

ELR_hyp when R = 0, M = 1, M1 = 1110

SP_hyp when R = 0, M = 1, M1 = 1111

SPSR_fiq when R = 1, M = 0, M1 = 1110

SPSR_irq when R = 1, M = 1, M1 = 0000

SPSR_svc when R = 1, M = 1, M1 = 0010

SPSR_abt when R = 1, M = 1, M1 = 0100

SPSR_und when R = 1, M = 1, M1 = 0110

SPSR_mon when R = 1, M = 1, M1 = 1100

SPSR_hyp when R = 1, M = 1, M1 = 1110

The following encodings are UNPREDICTABLE:

• R = 0, M = 0, M1 = 0111.

• R = 0, M = 0, M1 = 1111.

• R = 0, M = 1, M1 = 10xx.

• R = 1, M = 0, M1 = 0xxx.

• R = 1, M = 0, M1 = 10xx.

• R = 1, M = 0, M1 = 110x.

• R = 1, M = 0, M1 = 1111.

• R = 1, M = 1, M1 = 0001.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4863
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• R = 1, M = 1, M1 = 0011.

• R = 1, M = 1, M1 = 0101.

• R = 1, M = 1, M1 = 0111.

• R = 1, M = 1, M1 = 10xx.

• R = 1, M = 1, M1 = 1101.

• R = 1, M = 1, M1 = 1111.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL0 then
 UNPREDICTABLE;
 else
 mode = PSTATE.M;
 if write_spsr then
 SPSRaccessValid(SYSm, mode); // Check for UNPREDICTABLE cases
 case SYSm of
 when '01110' SPSR_fiq = ZeroExtend(R[n]);
 when '10000' SPSR_irq = ZeroExtend(R[n]);
 when '10010' SPSR_svc = ZeroExtend(R[n]);
 when '10100' SPSR_abt = ZeroExtend(R[n]);
 when '10110' SPSR_und = ZeroExtend(R[n]);
 when '11100'
 if !ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
 SPSR_mon = R[n];
 when '11110' SPSR_hyp = R[n];
 else
 BankedRegisterAccessValid(SYSm, mode); // Check for UNPREDICTABLE cases
 case SYSm of
 when '00xxx' // Access the User mode registers
 m = UInt(SYSm<2:0>) + 8;
 Rmode[m,M32_User] = R[n];
 when '01xxx' // Access the FIQ mode registers
 m = UInt(SYSm<2:0>) + 8;
 Rmode[m,M32_FIQ] = R[n];
 when '1000x' // Access the IRQ mode registers
 m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
 Rmode[m,M32_IRQ] = R[n];
 when '1001x' // Access the Supervisor mode registers
 m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
 Rmode[m,M32_Svc] = R[n];
 when '1010x' // Access the Abort mode registers
 m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
 Rmode[m,M32_Abort] = R[n];
 when '1011x' // Access the Undefined mode registers
 m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
 Rmode[m,M32_Undef] = R[n];
 when '1110x' // Access Monitor registers
 if !ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
 m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
 Rmode[m,M32_Monitor] = R[n];
 when '11110' // Access ELR_hyp register
 ELR_hyp = R[n];
 when '11111' // Access SP_hyp register
 Rmode[13,M32_Hyp] = R[n];
F5-4864 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4865
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.120 MSR (immediate)

Move immediate value to Special register moves selected bits of an immediate value to the corresponding bits in
the The Application Program Status Register, APSR on page E1-4255, CPSR, or SPSR_<current_mode>.

Because of the Do-Not-Modify nature of its reserved bits, the immediate form of MSR is normally only useful at the
Application level for writing to APSR_nzcvq (CPSR_f).

If an MSR (immediate) moves selected bits of an immediate value to the CPSR, the PE checks whether the value being
written to PSTATE.M is legal. See Illegal changes to PSTATE.M on page G1-6039.

An MSR (immediate) executed in User mode:

• Is CONSTRAINED UNPREDICTABLE if it attempts to update the SPSR.

• Otherwise, does not update any CPSR field that is accessible only at EL1 or higher,

An MSR (immediate) executed in System mode is CONSTRAINED UNPREDICTABLE if it attempts to update the SPSR.

The CPSR.E bit is writable from any mode using an MSR instruction. Arm deprecates using this to change its value.

A1

A1 variant

Applies when !(R == 0 && mask == 0000).

MSR{<c>}{<q>} <spec_reg>, #<imm>

Decode for this encoding

 if mask == '0000' && R == '0' then SEE "Related encodings";
 imm32 = A32ExpandImm(imm12); write_spsr = (R == '1');
 if mask == '0000' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If mask == '0000' && R == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: Move Special Register and Hints (immediate) on page F4-4510.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<spec_reg> Is one of:

• APSR_<bits>.

!=1111 0 0 1 1 0 R 1 0 mask (1) (1) (1) (1) imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0

cond
F5-4866 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• CPSR_<fields>.

• SPSR_<fields>.

For CPSR and SPSR, <fields> is a sequence of one or more of the following:

c mask<0> = '1' to enable writing of bits<7:0> of the destination PSR.

x mask<1> = '1' to enable writing of bits<15:8> of the destination PSR.

s mask<2> = '1' to enable writing of bits<23:16> of the destination PSR.

f mask<3> = '1' to enable writing of bits<31:24> of the destination PSR.

For APSR, <bits> is one of nzcvq, g, or nzcvqg. These map to the following CPSR_<fields> values:

• APSR_nzcvq is the same as CPSR_f (mask== '1000').

• APSR_g is the same as CPSR_s (mask == '0100').

• APSR_nzcvqg is the same as CPSR_fs (mask == '1100').

Arm recommends the APSR_<bits> forms when only the N, Z, C, V, Q, and GE[3:0] bits are being
written. For more information, see The Application Program Status Register, APSR on
page E1-4255.

<imm> Is an immediate value. See Modified immediate constants in A32 instructions on page F1-4364 for
the range of values.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 if write_spsr then
 if PSTATE.M IN {M32_User,M32_System} then
 UNPREDICTABLE;
 else
 SPSRWriteByInstr(imm32, mask);
 else
 // Attempts to change to an illegal mode will invoke the Illegal Execution state mechanism
 CPSRWriteByInstr(imm32, mask);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User,M32_System} && write_spsr, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4867
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.121 MSR (register)

Move general-purpose register to Special register moves selected bits of a general-purpose register to the The
Application Program Status Register, APSR on page E1-4255, CPSR or SPSR_<current_mode>.

Because of the Do-Not-Modify nature of its reserved bits, a read-modify-write sequence is normally required when
the MSR instruction is being used at Application level and its destination is not APSR_nzcvq (CPSR_f).

If an MSR (register) moves selected bits of an immediate value to the CPSR, the PE checks whether the value being
written to PSTATE.M is legal. See Illegal changes to PSTATE.M on page G1-6039.

An MSR (register) executed in User mode:

• Is UNPREDICTABLE if it attempts to update the SPSR.

• Otherwise, does not update any CPSR field that is accessible only at EL1 or higher.

An MSR (register) executed in System mode is UNPREDICTABLE if it attempts to update the SPSR.

The CPSR.E bit is writable from any mode using an MSR instruction. Arm deprecates using this to change its value.

A1

A1 variant

MSR{<c>}{<q>} <spec_reg>, <Rn>

Decode for this encoding

 n = UInt(Rn); write_spsr = (R == '1');
 if mask == '0000' then UNPREDICTABLE;
 if n == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If mask == '0000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

T1

T1 variant

MSR{<c>}{<q>} <spec_reg>, <Rn>

Decode for this encoding

 n = UInt(Rn); write_spsr = (R == '1');
 if mask == '0000' then UNPREDICTABLE;
 if n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 0 0 1 0 R 1 0 mask (1) (1) (1) (1) (0) (0) 0 (0) 0 0 0 0 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 0 0 1 1 1 0 0 R Rn 1 0 (0) 0 mask (0) (0) 0 (0) (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 2 1 0
F5-4868 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If mask == '0000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<spec_reg> Is one of:

• APSR_<bits>.

• CPSR_<fields>.

• SPSR_<fields>.

For CPSR and SPSR, <fields> is a sequence of one or more of the following:

c mask<0> = '1' to enable writing of bits<7:0> of the destination PSR.

x mask<1> = '1' to enable writing of bits<15:8> of the destination PSR.

s mask<2> = '1' to enable writing of bits<23:16> of the destination PSR.

f mask<3> = '1' to enable writing of bits<31:24> of the destination PSR.

For APSR, <bits> is one of nzcvq, g, or nzcvqg. These map to the following CPSR_<fields> values:

• APSR_nzcvq is the same as CPSR_f (mask== '1000').

• APSR_g is the same as CPSR_s (mask == '0100').

• APSR_nzcvqg is the same as CPSR_fs (mask == '1100').

Arm recommends the APSR_<bits> forms when only the N, Z, C, V, Q, and GE[3:0] bits are being
written. For more information, see The Application Program Status Register, APSR on
page E1-4255.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if write_spsr then
 if PSTATE.M IN {M32_User,M32_System} then
 UNPREDICTABLE;
 else
 SPSRWriteByInstr(R[n], mask);
 else
 // Attempts to change to an illegal mode will invoke the Illegal Execution state mechanism
 CPSRWriteByInstr(R[n], mask);

CONSTRAINED UNPREDICTABLE behavior

If write_spsr && PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4869
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.
F5-4870 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.122 MUL, MULS

Multiply multiplies two register values. The least significant 32 bits of the result are written to the destination
register. These 32 bits do not depend on whether the source register values are considered to be signed values or
unsigned values.

Optionally, it can update the condition flags based on the result. In the T32 instruction set, this option is limited to
only a few forms of the instruction. Use of this option adversely affects performance on many implementations.

A1

Flag setting variant

Applies when S == 1.

MULS{<c>}{<q>} <Rd>, <Rn>{, <Rm>}

Not flag setting variant

Applies when S == 0.

MUL{<c>}{<q>} <Rd>, <Rn>{, <Rm>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

MUL<c>{<q>} <Rdm>, <Rn>{, <Rdm>} // Inside IT block
MULS{<q>} <Rdm>, <Rn>{, <Rdm>} // Outside IT block

Decode for this encoding

 d = UInt(Rdm); n = UInt(Rn); m = UInt(Rdm); setflags = !InITBlock();

T2

T2 variant

MUL<c>.W <Rd>, <Rn>{, <Rm>} // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
MUL{<c>}{<q>} <Rd>, <Rn>{, <Rm>}

!=1111 0 0 0 0 0 0 0 S Rd (0) (0) (0) (0) Rm 1 0 0 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond

0 1 0 0 0 0 1 1 0 1 Rn Rdm
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 1 0 0 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4871
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rdm> Is the second general-purpose source register holding the multiplier and the destination register,
encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field. If
omitted, <Rd> is used.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
 result = operand1 * operand2;
 R[d] = result<31:0>;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result<31:0>);
 // PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4872 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.123 MVN, MVNS (immediate)

Bitwise NOT (immediate) writes the bitwise inverse of an immediate value to the destination register.

If the destination register is not the PC, the MVNS variant of the instruction updates the condition flags based on
the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The MVN variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The MVNS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

MVN variant

Applies when S == 0.

MVN{<c>}{<q>} <Rd>, #<const>

MVNS variant

Applies when S == 1.

MVNS{<c>}{<q>} <Rd>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); setflags = (S == '1');
 (imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

MVN variant

Applies when S == 0.

MVN{<c>}{<q>} <Rd>, #<const>

MVNS variant

Applies when S == 1.

!=1111 0 0 1 1 1 1 1 S (0) (0) (0) (0) Rd imm12
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 0

cond

1 1 1 1 0 i 0 0 0 1 1 S 1 1 1 1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4873
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
MVNS{<c>}{<q>} <Rd>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); setflags = (S == '1');
 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used:

• For the MVN variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the MVNS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on
page F1-4364 for the range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions on
page F1-4362 for the range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = NOT(imm32);
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged
F5-4874 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.124 MVN, MVNS (register)

Bitwise NOT (register) writes the bitwise inverse of a register value to the destination register.

If the destination register is not the PC, the MVNS variant of the instruction updates the condition flags based on
the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The MVN variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The MVNS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

MVN, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

MVN{<c>}{<q>} <Rd>, <Rm>, RRX

MVN, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

MVN{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MVNS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

MVNS{<c>}{<q>} <Rd>, <Rm>, RRX

MVNS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

MVNS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 1 1 1 1 S (0) (0) (0) (0) Rd imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4875
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

MVN<c>{<q>} <Rd>, <Rm> // Inside IT block
MVNS{<q>} <Rd>, <Rm> // Outside IT block

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

MVN, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

MVN{<c>}{<q>} <Rd>, <Rm>, RRX

MVN, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

MVN<c>.W <Rd>, <Rm> // Inside IT block, and <Rd>, <Rm> can be represented in T1
MVN{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MVNS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && stype == 11.

MVNS{<c>}{<q>} <Rd>, <Rm>, RRX

MVNS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11).

MVNS.W <Rd>, <Rm> // Outside IT block, and <Rd>, <Rm> can be represented in T1
MVNS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

0 1 0 0 0 0 1 1 1 1 Rm Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 0 0 1 1 S 1 1 1 1 (0) imm3 Rd imm2 stype Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0
F5-4876 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used:

• For the MVN variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the MVNS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1 and T2: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T1 and T2: is the general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the source register, encoded in the "stype" field. It can have the
following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = NOT(shifted);
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4877
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.125 MVN, MVNS (register-shifted register)

Bitwise NOT (register-shifted register) writes the bitwise inverse of a register-shifted register value to the
destination register. It can optionally update the condition flags based on the result.

A1

Flag setting variant

Applies when S == 1.

MVNS{<c>}{<q>} <Rd>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

MVN{<c>}{<q>} <Rd>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs"
field.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);

!=1111 0 0 0 1 1 1 1 S (0) (0) (0) (0) Rd Rs 0 stype 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond
F5-4878 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = NOT(shifted);
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4879
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.126 NOP

No Operation does nothing. This instruction can be used for instruction alignment purposes.

Note

The timing effects of including a NOP instruction in a program are not guaranteed. It can increase execution time,
leave it unchanged, or even reduce it. Therefore, NOP instructions are not suitable for timing loops.

A1

A1 variant

NOP{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

NOP{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T2

T2 variant

NOP{<c>}.W

Decode for this encoding

 // No additional decoding required

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 0 0 0
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-4880 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 // Do nothing

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4881
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.127 ORN, ORNS (immediate)

Bitwise OR NOT (immediate) performs a bitwise (inclusive) OR of a register value and the complement of an
immediate value, and writes the result to the destination register. It can optionally update the condition flags based
on the result.

T1

Flag setting variant

Applies when S == 1.

ORNS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Not flag setting variant

Applies when S == 0.

ORN{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 if Rn == '1111' then SEE "MVN (immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<const> An immediate value. See Modified immediate constants in T32 instructions on page F1-4362 for the
range of values.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] OR NOT(imm32);
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);

1 1 1 1 0 i 0 0 0 1 1 S !=1111 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

Rn
F5-4882 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4883
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.128 ORN, ORNS (register)

Bitwise OR NOT (register) performs a bitwise (inclusive) OR of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

T1

ORN, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

ORN{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORN, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

ORN{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ORNS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && stype == 11.

ORNS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORNS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11).

ORNS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 if Rn == '1111' then SEE "MVN (register)";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

1 1 1 0 1 0 1 0 0 1 1 S !=1111 (0) imm3 Rd imm2 stype Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0

Rn
F5-4884 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] OR NOT(shifted);
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4885
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.129 ORR, ORRS (immediate)

Bitwise OR (immediate) performs a bitwise (inclusive) OR of a register value and an immediate value, and writes
the result to the destination register.

If the destination register is not the PC, the ORRS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The ORR variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The ORRS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

ORR variant

Applies when S == 0.

ORR{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ORRS variant

Applies when S == 1.

ORRS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
 (imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

ORR variant

Applies when S == 0.

ORR{<c>}{<q>} {<Rd>,} <Rn>, #<const>

!=1111 0 0 1 1 1 0 0 S Rn Rd imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

1 1 1 1 0 i 0 0 0 1 0 S !=1111 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

Rn
F5-4886 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
ORRS variant

Applies when S == 1.

ORRS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 if Rn == '1111' then SEE "MOV (immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the ORR variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the ORRS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on
page F1-4364 for the range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions on
page F1-4362 for the range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] OR imm32;
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4887
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4888 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.130 ORR, ORRS (register)

Bitwise OR (register) performs a bitwise (inclusive) OR of a register value and an optionally-shifted register value,
and writes the result to the destination register.

If the destination register is not the PC, the ORRS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The ORR variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The ORRS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

ORR, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORR, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ORRS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORRS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 1 1 0 0 S Rn Rd imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4889
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

ORR<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
ORRS{<q>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

ORR, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORR, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

ORR<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ORRS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && stype == 11.

ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORRS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11).

ORRS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 if Rn == '1111' then SEE "Related encodings";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

0 1 0 0 0 0 1 1 0 0 Rm Rdn
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 0 0 1 0 S !=1111 (0) imm3 Rd imm2 stype Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0

Rn
F5-4890 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Related encodings: Data-processing (shifted register) on page F3-4428

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the ORR variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the ORRS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

In T32 assembly:

• Outside an IT block, if ORRS <Rd>, <Rn>, <Rd> is written with <Rd> and <Rn> both in the range R0-R7, it is
assembled using encoding T1 as though ORRS <Rd>, <Rn> had been written.

• Inside an IT block, if ORR<c> <Rd>, <Rn>, <Rd> is written with <Rd> and <Rn> both in the range R0-R7, it is
assembled using encoding T1 as though ORR<c> <Rd>, <Rn> had been written.

To prevent either of these happening, use the .W qualifier.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] OR shifted;
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4891
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4892 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.131 ORR, ORRS (register-shifted register)

Bitwise OR (register-shifted register) performs a bitwise (inclusive) OR of a register value and a register-shifted
register value, and writes the result to the destination register. It can optionally update the condition flags based on
the result.

A1

Flag setting variant

Applies when S == 1.

ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs"
field.

!=1111 0 0 0 1 1 0 0 S Rn Rd Rs 0 stype 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4893
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] OR shifted;
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4894 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.132 PKHBT, PKHTB

Pack Halfword combines one halfword of its first operand with the other halfword of its shifted second operand.

A1

PKHBT variant

Applies when tb == 0.

PKHBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, LSL #<imm>}

PKHTB variant

Applies when tb == 1.

PKHTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ASR #<imm>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); tbform = (tb == '1');
 (shift_t, shift_n) = DecodeImmShift(tb:'0', imm5);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

PKHBT variant

Applies when tb == 0.

PKHBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, LSL #<imm>} // tbform == FALSE

PKHTB variant

Applies when tb == 1.

PKHTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ASR #<imm>} // tbform == TRUE

Decode for all variants of this encoding

 if S == '1' || T == '1' then UNDEFINED;
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); tbform = (tb == '1');
 (shift_t, shift_n) = DecodeImmShift(tb:'0', imm3:imm2);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 1 1 0 1 0 0 0 Rn Rd imm5 tb 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond

1 1 1 0 1 0 1 0 1 1 0 0 Rn (0) imm3 Rd imm2 tb 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0

S T
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4895
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1: the shift to apply to the value read from <Rm>, encoded in the "imm5" field.

For PKHBT, it is one of:

omitted No shift, encoded as 0b00000.

1-31 Left shift by specified number of bits, encoded as a binary number.

For PKHTB, it is one of:

omitted Instruction is a pseudo-instruction and is assembled as though PKHBT{<c>}{<q>} <Rd>,
<Rm>, <Rn> had been written.

1-32 Arithmetic right shift by specified number of bits. A shift by 32 bits is encoded as
0b00000. Other shift amounts are encoded as binary numbers.

Note

An assembler can permit <imm> = 0 to mean the same thing as omitting the shift, but this is not
standard UAL and must not be used for disassembly.

For encoding T1: the shift to apply to the value read from <Rm>, encoded in the "imm3:imm2" field.

For PKHBT, it is one of:

omitted No shift, encoded as 0b00000.

1-31 Left shift by specified number of bits, encoded as a binary number.

For PKHTB, it is one of:

omitted Instruction is a pseudo-instruction and is assembled as though PKHBT{<c>}{<q>} <Rd>,
<Rm>, <Rn> had been written.

1-32 Arithmetic right shift by specified number of bits. A shift by 32 bits is encoded as
0b00000. Other shift amounts are encoded as binary numbers.

Note

An assembler can permit <imm> = 0 to mean the same thing as omitting the shift, but this is not
standard UAL and must not be used for disassembly.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = Shift(R[m], shift_t, shift_n, PSTATE.C); // PSTATE.C ignored
 R[d]<15:0> = if tbform then operand2<15:0> else R[n]<15:0>;
 R[d]<31:16> = if tbform then R[n]<31:16> else operand2<31:16>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
F5-4896 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4897
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.133 PLD, PLDW (immediate)

Preload Data (immediate) signals the memory system that data memory accesses from a specified address are likely
in the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as preloading the cache line containing the specified address into the data cache.

The PLD instruction signals that the likely memory access is a read, and the PLDW instruction signals that it is a write.

The effect of a PLD or PLDW instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches
on page E2-4310.

A1

Preload read variant

Applies when R == 1.

PLD{<c>}{<q>} [<Rn> {, #{+/-}<imm>}]

Preload write variant

Applies when R == 0.

PLDW{<c>}{<q>} [<Rn> {, #{+/-}<imm>}]

Decode for all variants of this encoding

 if Rn == '1111' then SEE "PLD (literal)";
 n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = (U == '1'); is_pldw = (R == '0');

T1

Preload read variant

Applies when W == 0.

PLD{<c>}{<q>} [<Rn> {, #{+}<imm>}]

Preload write variant

Applies when W == 1.

PLDW{<c>}{<q>} [<Rn> {, #{+}<imm>}]

Decode for all variants of this encoding

 if Rn == '1111' then SEE "PLD (literal)";
 n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = TRUE; is_pldw = (W == '1');

1 1 1 1 0 1 0 1 U R 0 1 !=1111 (1) (1) (1) (1) imm12
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0

Rn

1 1 1 1 1 0 0 0 1 0 W 1 !=1111 1 1 1 1 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 0

Rn
F5-4898 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T2

Preload read variant

Applies when W == 0.

PLD{<c>}{<q>} [<Rn> {, #-<imm>}]

Preload write variant

Applies when W == 1.

PLDW{<c>}{<q>} [<Rn> {, #-<imm>}]

Decode for all variants of this encoding

 if Rn == '1111' then SEE "PLD (literal)";
 n = UInt(Rn); imm32 = ZeroExtend(imm8, 32); add = FALSE; is_pldw = (W == '1');

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. Must be AL or omitted.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. If the PC is used, see PLD (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm8" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = if add then (R[n] + imm32) else (R[n] - imm32);
 if is_pldw then
 Hint_PreloadDataForWrite(address);

1 1 1 1 1 0 0 0 0 0 W 1 !=1111 1 1 1 1 1 1 0 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4899
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 else
 Hint_PreloadData(address);
F5-4900 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.134 PLD (literal)

Preload Data (literal) signals the memory system that data memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as preloading the cache line containing the specified address into the data cache.

The effect of a PLD instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches on
page E2-4310.

A1

A1 variant

PLD{<c>}{<q>} <label> // Normal form
PLD{<c>}{<q>} [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

 imm32 = ZeroExtend(imm12, 32); add = (U == '1');

T1

T1 variant

PLD{<c>}{<q>} <label> // Preferred syntax
PLD{<c>}{<q>} [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

 imm32 = ZeroExtend(imm12, 32); add = (U == '1');

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<label> The label of the literal data item that is likely to be accessed in the near future. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
The offset must be in the range –4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

1 1 1 1 0 1 0 1 U (1) 0 1 1 1 1 1 (1) (1) (1) (1) imm12
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 0

1 1 1 1 1 0 0 0 U 0 (0) 1 1 1 1 1 1 1 1 1 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4901
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in
the "imm12" field.

For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax on page F2-4377.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
 Hint_PreloadData(address);
F5-4902 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.135 PLD, PLDW (register)

Preload Data (register) signals the memory system that data memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as preloading the cache line containing the specified address into the data cache.

The PLD instruction signals that the likely memory access is a read, and the PLDW instruction signals that it is a write.

The effect of a PLD or PLDW instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches
on page E2-4310.

A1

Preload read, optional shift or rotate variant

Applies when R == 1 && !(imm5 == 00000 && stype == 11).

PLD{<c>}{<q>} [<Rn>, {+/-}<Rm> {, <shift> #<amount>}]

Preload read, rotate right with extend variant

Applies when R == 1 && imm5 == 00000 && stype == 11.

PLD{<c>}{<q>} [<Rn>, {+/-}<Rm> , RRX]

Preload write, optional shift or rotate variant

Applies when R == 0 && !(imm5 == 00000 && stype == 11).

PLDW{<c>}{<q>} [<Rn>, {+/-}<Rm> {, <shift> #<amount>}]

Preload write, rotate right with extend variant

Applies when R == 0 && imm5 == 00000 && stype == 11.

PLDW{<c>}{<q>} [<Rn>, {+/-}<Rm> , RRX]

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm); add = (U == '1'); is_pldw = (R == '0');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);
 if m == 15 || (n == 15 && is_pldw) then UNPREDICTABLE;

T1

Preload read variant

Applies when W == 0.

PLD{<c>}{<q>} [<Rn>, {+}<Rm> {, LSL #<amount>}]

1 1 1 1 0 1 1 1 U R 0 1 Rn (1) (1) (1) (1) imm5 stype 0 Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 7 6 5 4 3 0

1 1 1 1 1 0 0 0 0 0 W 1 !=1111 1 1 1 1 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4903
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Preload write variant

Applies when W == 1.

PLDW{<c>}{<q>} [<Rn>, {+}<Rm> {, LSL #<amount>}]

Decode for all variants of this encoding

 if Rn == '1111' then SEE "PLD (literal)";
 n = UInt(Rn); m = UInt(Rm); add = TRUE; is_pldw = (W == '1');
 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
 if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. <c> must be AL or omitted.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be
used.

For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the index register, encoded in the "stype" field. It can have the
following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T1: is the shift amount, in the range 0 to 3, defaulting to 0 and encoded in the "imm2"
field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 address = if add then (R[n] + offset) else (R[n] - offset);
 if is_pldw then
 Hint_PreloadDataForWrite(address);
F5-4904 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 else
 Hint_PreloadData(address);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4905
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.136 PLI (immediate, literal)

Preload Instruction signals the memory system that instruction memory accesses from a specified address are likely
in the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as pre-loading the cache line containing the specified address into the instruction
cache.

The effect of a PLI instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches on
page E2-4310.

A1

A1 variant

PLI{<c>}{<q>} [<Rn> {, #{+/-}<imm>}]
PLI{<c>}{<q>} <label> // Normal form
PLI{<c>}{<q>} [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

 n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = (U == '1');

T1

T1 variant

PLI{<c>}{<q>} [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "encoding T3";
 n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = TRUE;

T2

T2 variant

PLI{<c>}{<q>} [<Rn> {, #-<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "encoding T3";
 n = UInt(Rn); imm32 = ZeroExtend(imm8, 32); add = FALSE;

1 1 1 1 0 1 0 0 U 1 0 1 Rn (1) (1) (1) (1) imm12
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0

1 1 1 1 1 0 0 1 1 0 0 1 !=1111 1 1 1 1 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 0

Rn

1 1 1 1 1 0 0 1 0 0 0 1 !=1111 1 1 1 1 1 1 0 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 0

Rn
F5-4906 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T3

T3 variant

PLI{<c>}{<q>} <label> // Preferred syntax
PLI{<c>}{<q>} [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

 n = 15; imm32 = ZeroExtend(imm12, 32); add = (U == '1');

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. Must be AL or omitted.

For encoding T1, T2 and T3: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<label> The label of the instruction that is likely to be accessed in the near future. The assembler calculates
the required value of the offset from the Align(PC, 4) value of the instruction to this label. The offset
must be in the range –4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm8" field.

For encoding T3: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

For the literal forms of the instruction, encoding T3 is used, or Rn is encoded as 0b1111 in encoding A1, to indicate
that the PC is the base register.

The alternative literal syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax on page F2-4377.

1 1 1 1 1 0 0 1 U 0 0 1 1 1 1 1 1 1 1 1 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4907
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 base = if n == 15 then Align(PC,4) else R[n];
 address = if add then (base + imm32) else (base - imm32);
 Hint_PreloadInstr(address);
F5-4908 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.137 PLI (register)

Preload Instruction signals the memory system that instruction memory accesses from a specified address are likely
in the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as pre-loading the cache line containing the specified address into the instruction
cache.

The effect of a PLI instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches on
page E2-4310.

A1

Rotate right with extend variant

Applies when imm5 == 00000 && stype == 11.

PLI{<c>}{<q>} [<Rn>, {+/-}<Rm> , RRX]

Shift or rotate by value variant

Applies when !(imm5 == 00000 && stype == 11).

PLI{<c>}{<q>} [<Rn>, {+/-}<Rm> {, <shift> #<amount>}]

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm); add = (U == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);
 if m == 15 then UNPREDICTABLE;

T1

T1 variant

PLI{<c>}{<q>} [<Rn>, {+}<Rm> {, LSL #<amount>}]

Decode for this encoding

 if Rn == '1111' then SEE "PLI (immediate, literal)";
 n = UInt(Rn); m = UInt(Rm); add = TRUE;
 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
 if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

1 1 1 1 0 1 1 0 U 1 0 1 Rn (1) (1) (1) (1) imm5 stype 0 Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 7 6 5 4 3 0

1 1 1 1 1 0 0 1 0 0 0 1 !=1111 1 1 1 1 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4909
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. <c> must be AL or omitted.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the index register, encoded in the "stype" field. It can have the
following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T1: is the shift amount, in the range 0 to 3, defaulting to 0 and encoded in the "imm2"
field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 address = if add then (R[n] + offset) else (R[n] - offset);
 Hint_PreloadInstr(address);
F5-4910 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.138 POP

Pop Multiple Registers from Stack loads multiple general-purpose registers from the stack, loading from
consecutive memory locations starting at the address in SP, and updates SP to point just above the loaded data.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC on
page F1-4354.

The registers loaded can include the PC, causing a branch to a loaded address. This is an interworking branch, see
Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-4253.

T1

T1 variant

POP{<c>}{<q>} <registers> // Preferred syntax
LDM{<c>}{<q>} SP!, <registers> // Alternate syntax

Decode for this encoding

 registers = P:'0000000':register_list; UnalignedAllowed = FALSE;
 if BitCount(registers) < 1 then UNPREDICTABLE;
 if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction targets an unspecified set of registers. These registers might include R15. If the instruction
specifies writeback, the modification to the base address on writeback might differ from the number of
registers loaded.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.

The registers in the list must be in the range R0-R7, encoded in the "register_list" field, and can
optionally include the PC. If the PC is in the list, the "P" field is set to 1, otherwise this field defaults
to 0.

If the PC is in the list, the instruction must be either outside any IT block, or the last instruction in
an IT block.

1 0 1 1 1 1 0 P register_list
15 14 13 12 11 10 9 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4911
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = SP;
 for i = 0 to 14
 if registers<i> == '1' then
 R[i] = if UnalignedAllowed then MemU[address,4] else MemA[address,4];
 address = address + 4;
 if registers<15> == '1' then
 if UnalignedAllowed then
 if address<1:0> == '00' then
 LoadWritePC(MemU[address,4]);
 else
 UNPREDICTABLE;
 else
 LoadWritePC(MemA[address,4]);
 if registers<13> == '0' then SP = SP + 4*BitCount(registers);
 if registers<13> == '1' then SP = bits(32) UNKNOWN;
F5-4912 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.139 POP (multiple registers)

Pop Multiple Registers from Stack loads multiple general-purpose registers from the stack, loading from
consecutive memory locations starting at the address in SP, and updates SP to point just above the loaded data

This instruction is an alias of the LDM, LDMIA, LDMFD instruction. This means that:

• The encodings in this description are named to match the encodings of LDM, LDMIA, LDMFD.

• The description of LDM, LDMIA, LDMFD gives the operational pseudocode for this instruction.

A1

A1 variant

POP{<c>}{<q>} <registers>

 is equivalent to

LDM{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(register_list) > 1.

T2

T2 variant

POP{<c>}.W <registers> // All registers in R0-R7, PC

 is equivalent to

LDM{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(P:M:register_list) > 1.

POP{<c>}{<q>} <registers>

 is equivalent to

LDM{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(P:M:register_list) > 1.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<registers> For encoding A1: is a list of two or more registers to be loaded, separated by commas and
surrounded by { and }. The lowest-numbered register is loaded from the lowest memory address,
through to the highest-numbered register from the highest memory address. See also Encoding of
lists of general-purpose registers and the PC on page F1-4354.

If the SP is in the list, the value of the SP after such an instruction is UNKNOWN.

!=1111 1 0 0 0 1 0 1 1 1 1 0 1 register_list
31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond W Rn

1 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 P M register_list
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 0

W Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4913
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
The PC can be in the list. If it is, the instruction branches to the address loaded to the PC. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC on page E1-4253.

Arm deprecates the use of this instruction with both the LR and the PC in the list.

For encoding T2: is a list of two or more registers to be loaded, separated by commas and
surrounded by { and }. The lowest-numbered register is loaded from the lowest memory address,
through to the highest-numbered register from the highest memory address. See also Encoding of
lists of general-purpose registers and the PC on page F1-4354.

The registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can
optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1, otherwise
it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to 0.

The PC can be in the list. If it is, the instruction branches to the address loaded to the PC. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC on page E1-4253. If the PC is in the list:

• The LR must not be in the list.

• The instruction must be either outside any IT block, or the last instruction in an IT block.

Operation for all encodings

The description of LDM, LDMIA, LDMFD gives the operational pseudocode for this instruction.
F5-4914 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.140 POP (single register)

Pop Single Register from Stack loads a single general-purpose register from the stack, loading from the address in
SP, and updates SP to point just above the loaded data

This instruction is an alias of the LDR (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of LDR (immediate).

• The description of LDR (immediate) gives the operational pseudocode for this instruction.

A1

Post-indexed variant

POP{<c>}{<q>} <single_register_list>

 is equivalent to

LDR{<c>}{<q>} <Rt>, [SP], #4

and is always the preferred disassembly.

T4

Post-indexed variant

POP{<c>}{<q>} <single_register_list>

 is equivalent to

LDR{<c>}{<q>} <Rt>, [SP], #4

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<single_register_list>

Is the general-purpose register <Rt> to be loaded surrounded by { and }.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used. If the PC is used, the instruction branches to the address (data) loaded to the PC. This
is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

!=1111 0 1 0 0 1 0 0 1 1 1 0 1 Rt 0 0 0 0 0 0 0 0 0 1 0 0
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond P U W Rn imm12

1 1 1 1 1 0 0 0 0 1 0 1 1 1 0 1 Rt 1 0 1 1 0 0 0 0 0 1 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn P U W imm8
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4915
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
For encoding T4: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, provided the instruction is either outside an IT block or the last instruction of an IT
block. If the PC is used, the instruction branches to the address (data) loaded to the PC. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC on page E1-4253.

Operation for all encodings

The description of LDR (immediate) gives the operational pseudocode for this instruction.
F5-4916 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.141 PSSBB

Physical Speculative Store Bypass Barrier is a memory barrier which prevents speculative loads from bypassing
earlier stores to the same physical address.

The semantics of the Physical Speculative Store Bypass Barrier are:

• When a load to a location appears in program order after the PSSBB, then the load does not speculatively
read an entry earlier in the coherence order for that location than the entry generated by the latest store
satisfying all of the following conditions:

— The store is to the same location as the load.

— The store appears in program order before the PSSBB.

• When a load to a location appears in program order before the PSSBB, then the load does not speculatively
read data from any store satisfying all of the following conditions:

— The store is to the same location as the load.

— The store appears in program order after the PSSBB.

A1

A1 variant

PSSBB{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

PSSBB{<q>}

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 0 0 0 1 0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 0 0 1 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4917
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 SpeculativeStoreBypassBarrierToPA();
F5-4918 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.142 PUSH

Push Multiple Registers to Stack stores multiple general-purpose registers to the stack, storing to consecutive
memory locations ending just below the address in SP, and updates SP to point to the start of the stored data.

The lowest-numbered register is stored to the lowest memory address, through to the highest-numbered register to
the highest memory address. See also Encoding of lists of general-purpose registers and the PC on page F1-4354.

T1

T1 variant

PUSH{<c>}{<q>} <registers> // Preferred syntax
STMDB{<c>}{<q>} SP!, <registers> // Alternate syntax

Decode for this encoding

 registers = '0':M:'000000':register_list; UnalignedAllowed = FALSE;
 if BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction targets an unspecified set of registers. These registers might include R15. If the instruction
specifies writeback, the modification to the base address on writeback might differ from the number of
registers loaded.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<registers> Is a list of one or more registers to be stored, separated by commas and surrounded by { and }.

The registers in the list must be in the range R0-R7, encoded in the "register_list" field, and can
optionally include the LR. If the LR is in the list, the "M" field is set to 1, otherwise this field defaults
to 0.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = SP - 4*BitCount(registers);
 for i = 0 to 14
 if registers<i> == '1' then
 if i == 13 && i != LowestSetBit(registers) then // Only possible for encoding A1

1 0 1 1 0 1 0 M register_list
15 14 13 12 11 10 9 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4919
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 MemA[address,4] = bits(32) UNKNOWN;
 else
 if UnalignedAllowed then
 MemU[address,4] = R[i];
 else
 MemA[address,4] = R[i];
 address = address + 4;
 if registers<15> == '1' then // Only possible for encoding A1 or A2
 if UnalignedAllowed then
 MemU[address,4] = PCStoreValue();
 else
 MemA[address,4] = PCStoreValue();
 SP = SP - 4*BitCount(registers);
F5-4920 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.143 PUSH (multiple registers)

Push multiple registers to Stack stores multiple general-purpose registers to the stack, storing to consecutive
memory locations ending just below the address in SP, and updates SP to point to the start of the stored data

This instruction is an alias of the STMDB, STMFD instruction. This means that:

• The encodings in this description are named to match the encodings of STMDB, STMFD.

• The description of STMDB, STMFD gives the operational pseudocode for this instruction.

A1

A1 variant

PUSH{<c>}{<q>} <registers>

 is equivalent to

STMDB{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(register_list) > 1.

T1

T1 variant

PUSH{<c>}.W <registers> // All registers in R0-R7, LR

 is equivalent to

STMDB{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(M:register_list) > 1.

PUSH{<c>}{<q>} <registers>

 is equivalent to

STMDB{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(M:register_list) > 1.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<registers> For encoding A1: is a list of two or more registers to be stored, separated by commas and surrounded
by { and }. The lowest-numbered register is stored to the lowest memory address, through to the
highest-numbered register to the highest memory address. See also Encoding of lists of
general-purpose registers and the PC on page F1-4354.

!=1111 1 0 0 1 0 0 1 0 1 1 0 1 register_list
31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond W Rn

1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 (0) M register_list
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 0

W Rn P
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4921
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
The SP and PC can be in the list. However:

• Arm deprecates the use of instructions that include the PC in the list.

• If the SP is in the list, and it is not the lowest-numbered register in the list, the instruction
stores an UNKNOWN value for the SP.

For encoding T1: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }. The lowest-numbered register is stored to the lowest memory address, through to the
highest-numbered register to the highest memory address. See also Encoding of lists of
general-purpose registers and the PC on page F1-4354.

The registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can
optionally contain the LR. If the LR is in the list, the "M" field is set to 1, otherwise it defaults to 0.

Operation for all encodings

The description of STMDB, STMFD gives the operational pseudocode for this instruction.
F5-4922 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.144 PUSH (single register)

Push Single Register to Stack stores a single general-purpose register to the stack, storing to the 32-bit word below
the address in SP, and updates SP to point to the start of the stored data

This instruction is an alias of the STR (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of STR (immediate).

• The description of STR (immediate) gives the operational pseudocode for this instruction.

A1

Pre-indexed variant

PUSH{<c>}{<q>} <single_register_list>

 is equivalent to

STR{<c>}{<q>} <Rt>, [SP, #-4]!

and is always the preferred disassembly.

T4

Pre-indexed variant

PUSH{<c>}{<q>} <single_register_list> // Standard syntax

 is equivalent to

STR{<c>}{<q>} <Rt>, [SP, #-4]!

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<single_register_list>

Is the general-purpose register <Rt> to be stored surrounded by { and }.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, but this is deprecated.

For encoding T4: is the general-purpose register to be transferred, encoded in the "Rt" field.

Operation for all encodings

The description of STR (immediate) gives the operational pseudocode for this instruction.

!=1111 0 1 0 1 0 0 1 0 1 1 0 1 Rt 0 0 0 0 0 0 0 0 0 1 0 0
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond P U W Rn imm12

1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 Rt 1 1 0 1 0 0 0 0 0 1 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn P U W imm8
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4923
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.145 QADD

Saturating Add adds two register values, saturates the result to the 32-bit signed integer range -231 to (231 - 1), and
writes the result to the destination register. If saturation occurs, it sets PSTATE.Q to 1.

A1

A1 variant

QADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

QADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (R[d], sat) = SignedSatQ(SInt(R[m]) + SInt(R[n]), 32);

!=1111 0 0 0 1 0 0 0 0 Rn Rd (0) (0) (0) (0) 0 1 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-4924 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 if sat then
 PSTATE.Q = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4925
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.146 QADD16

Saturating Add 16 performs two 16-bit integer additions, saturates the results to the 16-bit signed integer range -215
<= x <= 215 - 1, and writes the results to the destination register.

A1

A1 variant

QADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

QADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);

!=1111 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-4926 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
 R[d]<15:0> = SignedSat(sum1, 16);
 R[d]<31:16> = SignedSat(sum2, 16);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4927
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.147 QADD8

Saturating Add 8 performs four 8-bit integer additions, saturates the results to the 8-bit signed integer range -27 <=
x <= 27 - 1, and writes the results to the destination register.

A1

A1 variant

QADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

QADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);

!=1111 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-4928 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
 sum3 = SInt(R[n]<23:16>) + SInt(R[m]<23:16>);
 sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
 R[d]<7:0> = SignedSat(sum1, 8);
 R[d]<15:8> = SignedSat(sum2, 8);
 R[d]<23:16> = SignedSat(sum3, 8);
 R[d]<31:24> = SignedSat(sum4, 8);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4929
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.148 QASX

Saturating Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one
16-bit integer addition and one 16-bit subtraction, saturates the results to the 16-bit signed integer range -215 <= x
<= 215 - 1, and writes the results to the destination register.

A1

A1 variant

QASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

QASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-4930 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
 sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
 R[d]<15:0> = SignedSat(diff, 16);
 R[d]<31:16> = SignedSat(sum, 16);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4931
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.149 QDADD

Saturating Double and Add adds a doubled register value to another register value, and writes the result to the
destination register. Both the doubling and the addition have their results saturated to the 32-bit signed integer range
-231 <= x <= 231 - 1. If saturation occurs in either operation, it sets PSTATE.Q to 1.

A1

A1 variant

QDADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

QDADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

!=1111 0 0 0 1 0 1 0 0 Rn Rd (0) (0) (0) (0) 0 1 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-4932 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (doubled, sat1) = SignedSatQ(2 * SInt(R[n]), 32);
 (R[d], sat2) = SignedSatQ(SInt(R[m]) + SInt(doubled), 32);
 if sat1 || sat2 then
 PSTATE.Q = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4933
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.150 QDSUB

Saturating Double and Subtract subtracts a doubled register value from another register value, and writes the result
to the destination register. Both the doubling and the subtraction have their results saturated to the 32-bit signed
integer range -231 <= x <= 231 - 1. If saturation occurs in either operation, it sets PSTATE.Q to 1.

A1

A1 variant

QDSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

QDSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

!=1111 0 0 0 1 0 1 1 0 Rn Rd (0) (0) (0) (0) 0 1 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 1 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-4934 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (doubled, sat1) = SignedSatQ(2 * SInt(R[n]), 32);
 (R[d], sat2) = SignedSatQ(SInt(R[m]) - SInt(doubled), 32);
 if sat1 || sat2 then
 PSTATE.Q = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4935
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.151 QSAX

Saturating Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one
16-bit integer subtraction and one 16-bit addition, saturates the results to the 16-bit signed integer range -215 <= x
<= 215 - 1, and writes the results to the destination register.

A1

A1 variant

QSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

QSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-4936 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum = SInt(R[n]<15:0>) + SInt(R[m]<31:16>);
 diff = SInt(R[n]<31:16>) - SInt(R[m]<15:0>);
 R[d]<15:0> = SignedSat(sum, 16);
 R[d]<31:16> = SignedSat(diff, 16);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4937
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.152 QSUB

Saturating Subtract subtracts one register value from another register value, saturates the result to the 32-bit signed
integer range -231 <= x <= 231 - 1, and writes the result to the destination register. If saturation occurs, it sets
PSTATE.Q to 1.

A1

A1 variant

QSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

QSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

!=1111 0 0 0 1 0 0 1 0 Rn Rd (0) (0) (0) (0) 0 1 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-4938 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (R[d], sat) = SignedSatQ(SInt(R[m]) - SInt(R[n]), 32);
 if sat then
 PSTATE.Q = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4939
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.153 QSUB16

Saturating Subtract 16 performs two 16-bit integer subtractions, saturates the results to the 16-bit signed integer
range -215 <= x <= 215 - 1, and writes the results to the destination register.

A1

A1 variant

QSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

QSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);

!=1111 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-4940 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
 R[d]<15:0> = SignedSat(diff1, 16);
 R[d]<31:16> = SignedSat(diff2, 16);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4941
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.154 QSUB8

Saturating Subtract 8 performs four 8-bit integer subtractions, saturates the results to the 8-bit signed integer range
-27 <= x <= 27 - 1, and writes the results to the destination register.

A1

A1 variant

QSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

QSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<7:0>) - SInt(R[m]<7:0>);

!=1111 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-4942 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
 diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
 diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
 R[d]<7:0> = SignedSat(diff1, 8);
 R[d]<15:8> = SignedSat(diff2, 8);
 R[d]<23:16> = SignedSat(diff3, 8);
 R[d]<31:24> = SignedSat(diff4, 8);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4943
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.155 RBIT

Reverse Bits reverses the bit order in a 32-bit register.

A1

A1 variant

RBIT{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm);
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

RBIT{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); n = UInt(Rn);
 if m != n || d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If m != n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: m = UInt(Rn);.

• The instruction executes with the additional decode: m = UInt(Rm);.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

!=1111 0 1 1 0 1 1 1 1 (1) (1) (1) (1) Rd (1) (1) (1) (1) 0 0 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 1 0 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-4944 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T1: is the general-purpose source register, encoded in the "Rm" field. It must be
encoded with an identical value in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 for i = 0 to 31
 result<31-i> = R[m]<i>;
 R[d] = result;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4945
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.156 REV

Byte-Reverse Word reverses the byte order in a 32-bit register.

A1

A1 variant

REV{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm);
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

REV{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm);

T2

T2 variant

REV{<c>}.W <Rd>, <Rm> // <Rd>, <Rm> can be represented in T1
REV{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); n = UInt(Rn);
 if m != n || d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If m != n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

!=1111 0 1 1 0 1 0 1 1 (1) (1) (1) (1) Rd (1) (1) (1) (1) 0 0 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 0 1 1 1 0 1 0 0 0 Rm Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 1 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-4946 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.

• The instruction executes with the additional decode: m = UInt(Rn);.

• The instruction executes with the additional decode: m = UInt(Rm);.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1 and T1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the general-purpose source register, encoded in the "Rm" field. It must be
encoded with an identical value in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 result<31:24> = R[m]<7:0>;
 result<23:16> = R[m]<15:8>;
 result<15:8> = R[m]<23:16>;
 result<7:0> = R[m]<31:24>;
 R[d] = result;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4947
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.157 REV16

Byte-Reverse Packed Halfword reverses the byte order in each16-bit halfword of a 32-bit register.

A1

A1 variant

REV16{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm);
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

REV16{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm);

T2

T2 variant

REV16{<c>}.W <Rd>, <Rm> // <Rd>, <Rm> can be represented in T1
REV16{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); n = UInt(Rn);
 if m != n || d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If m != n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

!=1111 0 1 1 0 1 0 1 1 (1) (1) (1) (1) Rd (1) (1) (1) (1) 1 0 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 0 1 1 1 0 1 0 0 1 Rm Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 1 0 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-4948 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.

• The instruction executes with the additional decode: m = UInt(Rn);.

• The instruction executes with the additional decode: m = UInt(Rm);.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1 and T1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the general-purpose source register, encoded in the "Rm" field. It must be
encoded with an identical value in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 result<31:24> = R[m]<23:16>;
 result<23:16> = R[m]<31:24>;
 result<15:8> = R[m]<7:0>;
 result<7:0> = R[m]<15:8>;
 R[d] = result;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4949
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.158 REVSH

Byte-Reverse Signed Halfword reverses the byte order in the lower 16-bit halfword of a 32-bit register, and
sign-extends the result to 32 bits.

A1

A1 variant

REVSH{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm);
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

REVSH{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm);

T2

T2 variant

REVSH{<c>}.W <Rd>, <Rm> // <Rd>, <Rm> can be represented in T1
REVSH{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); n = UInt(Rn);
 if m != n || d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If m != n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

!=1111 0 1 1 0 1 1 1 1 (1) (1) (1) (1) Rd (1) (1) (1) (1) 1 0 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 0 1 1 1 0 1 0 1 1 Rm Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 1 0 1 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-4950 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.

• The instruction executes with the additional decode: m = UInt(Rn);.

• The instruction executes with the additional decode: m = UInt(Rm);.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1 and T1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the general-purpose source register, encoded in the "Rm" field. It must be
encoded with an identical value in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 result<31:8> = SignExtend(R[m]<7:0>, 24);
 result<7:0> = R[m]<15:8>;
 R[d] = result;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4951
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.159 RFE, RFEDA, RFEDB, RFEIA, RFEIB

Return From Exception loads two consecutive memory locations using an address in a base register:

• The word loaded from the lower address is treated as an instruction address. The PE branches to it.

• The word loaded from the higher address is used to restore PSTATE. This word must be in the format of an
SPSR.

An address adjusted by the size of the data loaded can optionally be written back to the base register.

The PE checks the value of the word loaded from the higher address for an illegal return event. See Illegal return
events from AArch32 state on page G1-6066.

RFE is UNDEFINED in Hyp mode and CONSTRAINED UNPREDICTABLE in User mode.

A1

Decrement After variant

Applies when P == 0 && U == 0.

RFEDA{<c>}{<q>} <Rn>{!} // Preferred syntax
RFEFA{<c>}{<q>} <Rn>{!} // Alternate syntax, Full Ascending stack

Decrement Before variant

Applies when P == 1 && U == 0.

RFEDB{<c>}{<q>} <Rn>{!} // Preferred syntax
RFEEA{<c>}{<q>} <Rn>{!} // Alternate syntax, Empty Ascending stack

Increment After variant

Applies when P == 0 && U == 1.

RFE{IA}{<c>}{<q>} <Rn>{!} // Preferred syntax
RFEFD{<c>}{<q>} <Rn>{!} // Alternate syntax, Full Descending stack

Increment Before variant

Applies when P == 1 && U == 1.

RFEIB{<c>}{<q>} <Rn>{!} // Preferred syntax
RFEED{<c>}{<q>} <Rn>{!} // Alternate syntax, Empty Descending stack

Decode for all variants of this encoding

 n = UInt(Rn);
 wback = (W == '1'); increment = (U == '1'); wordhigher = (P == U);
 if n == 15 then UNPREDICTABLE;

T1

1 1 1 1 1 0 0 P U 0 W 1 Rn (0) (0) (0) (0) (1) (0) (1) (0) (0) (0) (0) (0) (0) (0) (0) (0)
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 0 W 1 Rn (1) (1) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-4952 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1 variant

RFEDB{<c>}{<q>} <Rn>{!} // Outside or last in IT block, preferred syntax
RFEFA{<c>}{<q>} <Rn>{!} // Outside or last in IT block, alternate syntax, Full Ascending stack

Decode for this encoding

 n = UInt(Rn); wback = (W == '1'); increment = FALSE; wordhigher = FALSE;
 if n == 15 then UNPREDICTABLE;
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T2

T2 variant

RFE{IA}{<c>}{<q>} <Rn>{!} // Outside or last in IT block, preferred syntax
RFEFD{<c>}{<q>} <Rn>{!} // Outside or last in IT block, alternate syntax, Full Descending stack

Decode for this encoding

 n = UInt(Rn); wback = (W == '1'); increment = TRUE; wordhigher = FALSE;
 if n == 15 then UNPREDICTABLE;
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

IA For encoding A1: is an optional suffix to indicate the Increment After variant.

For encoding T2: is an optional suffix for the Increment After form.

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. <c> must be AL or omitted.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

RFEFA, RFEEA, RFEFD, and RFEED are pseudo-instructions for RFEDA, RFEDB, RFEIA, and RFEIB respectively, referring to
their use for popping data from Full Ascending, Empty Ascending, Full Descending, and Empty Descending stacks.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then
 UNDEFINED;
 elsif PSTATE.EL == EL0 then
 UNPREDICTABLE; // UNDEFINED or NOP

1 1 1 0 1 0 0 1 1 0 W 1 Rn (1) (1) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4953
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 else
 address = if increment then R[n] else R[n]-8;
 if wordhigher then address = address+4;
 new_pc_value = MemA[address,4];
 spsr = MemA[address+4,4];
 if wback then R[n] = if increment then R[n]+8 else R[n]-8;
 AArch32.ExceptionReturn(new_pc_value, spsr);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.
F5-4954 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.160 ROR (immediate)

Rotate Right (immediate) provides the value of the contents of a register rotated by a constant value. The bits that
are rotated off the right end are inserted into the vacated bit positions on the left.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).

• The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

A1

MOV, shift or rotate by value variant

ROR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

T3

MOV, shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00).

ROR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction is a branch
to the address calculated by the operation. This is an interworking branch, see Pseudocode
description of operations on the AArch32 general-purpose registers and the PC on page E1-4253.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T3: is the general-purpose source register, encoded in the "Rm" field.

!=1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd !=00000 1 1 0 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond S imm5 stype

1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 (0) imm3 Rd imm2 1 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S stype
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4955
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<imm> For encoding A1: is the shift amount, in the range 1 to 31, encoded in the "imm5" field.

For encoding T3: is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.
F5-4956 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.161 ROR (register)

Rotate Right (register) provides the value of the contents of a register rotated by a variable number of bits. The bits
that are rotated off the right end are inserted into the vacated bit positions on the left. The variable number of bits is
read from the bottom byte of a register

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

A1

Not flag setting variant

ROR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

T1

Rotate right variant

ROR<c>{<q>} {<Rdm>,} <Rdm>, <Rs> // Inside IT block

 is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, ROR <Rs>

and is the preferred disassembly when InITBlock().

T2

Not flag setting variant

ROR<c>.W {<Rd>,} <Rm>, <Rs> // Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

!=1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd Rs 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond S stype

0 1 0 0 0 0 0 1 1 1 Rs Rdm
15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 1 1 0 Rm 1 1 1 1 Rd 0 0 0 0 Rs
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

stype S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4957
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
and is always the preferred disassembly.

ROR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a rotate amount in its bottom 8 bits, encoded
in the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
F5-4958 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.162 RORS (immediate)

Rotate Right, setting flags (immediate) provides the value of the contents of a register rotated by a constant value.
The bits that are rotated off the right end are inserted into the vacated bit positions on the left.

If the destination register is not the PC, this instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

• The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32
state on page G1-6066.

• The instruction is UNDEFINED in Hyp mode.

• The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).

• The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

A1

MOVS, shift or rotate by value variant

RORS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

T3

MOVS, shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00).

RORS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

!=1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd !=00000 1 1 0 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond S imm5 stype

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 (0) imm3 Rd imm2 1 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S stype
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4959
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction performs an
exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1: is the shift amount, in the range 1 to 31, encoded in the "imm5" field.

For encoding T3: is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.
F5-4960 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.163 RORS (register)

Rotate Right, setting flags (register) provides the value of the contents of a register rotated by a variable number of
bits, and updates the condition flags based on the result. The bits that are rotated off the right end are inserted into
the vacated bit positions on the left. The variable number of bits is read from the bottom byte of a register

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

A1

Flag setting variant

RORS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

T1

Rotate right variant

RORS{<q>} {<Rdm>,} <Rdm>, <Rs> // Outside IT block

 is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, ROR <Rs>

and is the preferred disassembly when !InITBlock().

T2

Flag setting variant

RORS.W {<Rd>,} <Rm>, <Rs> // Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

!=1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd Rs 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond S stype

0 1 0 0 0 0 0 1 1 1 Rs Rdm
15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 1 1 1 Rm 1 1 1 1 Rd 0 0 0 0 Rs
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

stype S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4961
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
and is always the preferred disassembly.

RORS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a rotate amount in its bottom 8 bits, encoded
in the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
F5-4962 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.164 RRX

Rotate Right with Extend provides the value of the contents of a register shifted right by one place, with the Carry
flag shifted into bit[31].

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).

• The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

A1

MOV, rotate right with extend variant

RRX{<c>}{<q>} {<Rd>,} <Rm>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

T3

MOV, rotate right with extend variant

RRX{<c>}{<q>} {<Rd>,} <Rm>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction is a branch
to the address calculated by the operation. This is an interworking branch, see Pseudocode
description of operations on the AArch32 general-purpose registers and the PC on page E1-4253.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T3: is the general-purpose source register, encoded in the "Rm" field.

!=1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd 0 0 0 0 0 1 1 0 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond S imm5 stype

1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 (0) 0 0 0 Rd 0 0 1 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S imm3 imm2 stype
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4963
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.
F5-4964 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.165 RRXS

Rotate Right with Extend, setting flags provides the value of the contents of a register shifted right by one place,
with the Carry flag shifted into bit[31].

If the destination register is not the PC, this instruction updates the condition flags based on the result, and bit[0] is
shifted into the Carry flag.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

• The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32
state on page G1-6066.

• The instruction is UNDEFINED in Hyp mode.

• The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).

• The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

A1

MOVS, rotate right with extend variant

RRXS{<c>}{<q>} {<Rd>,} <Rm>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

T3

MOVS, rotate right with extend variant

RRXS{<c>}{<q>} {<Rd>,} <Rm>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

!=1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd 0 0 0 0 0 1 1 0 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond S imm5 stype

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 (0) 0 0 0 Rd 0 0 1 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S imm3 imm2 stype
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4965
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction performs an
exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T3: is the general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.
F5-4966 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.166 RSB, RSBS (immediate)

Reverse Subtract (immediate) subtracts a register value from an immediate value, and writes the result to the
destination register.

If the destination register is not the PC, the RSBS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The RSB variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The RSBS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

RSB variant

Applies when S == 0.

RSB{<c>}{<q>} {<Rd>,} <Rn>, #<const>

RSBS variant

Applies when S == 1.

RSBS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

T1 variant

RSB<c>{<q>} {<Rd>, }<Rn>, #0 // Inside IT block
RSBS{<q>} {<Rd>, }<Rn>, #0 // Outside IT block

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = Zeros(32); // immediate = #0

!=1111 0 0 1 0 0 1 1 S Rn Rd imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

0 1 0 0 0 0 1 0 0 1 Rn Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4967
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T2

RSB variant

Applies when S == 0.

RSB<c>.W {<Rd>,} <Rn>, #0 // Inside IT block
RSB{<c>}{<q>} {<Rd>,} <Rn>, #<const>

RSBS variant

Applies when S == 1.

RSBS.W {<Rd>,} <Rn>, #0 // Outside IT block
RSBS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
 if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the RSB variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the RSBS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1 and T2: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1 and T2: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on
page F1-4364 for the range of values.

For encoding T2: an immediate value. See Modified immediate constants in T32 instructions on
page F1-4362 for the range of values.

1 1 1 1 0 i 0 1 1 1 0 S Rn 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
F5-4968 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(NOT(R[n]), imm32, '1');
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4969
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.167 RSB, RSBS (register)

Reverse Subtract (register) subtracts a register value from an optionally-shifted register value, and writes the result
to the destination register.

If the destination register is not the PC, the RSBS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The RSB variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The RSBS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

RSB, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSB, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

RSBS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSBS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 0 0 1 1 S Rn Rd imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
F5-4970 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

RSB, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSB, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

RSBS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && stype == 11.

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSBS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11).

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the RSB variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the RSBS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

1 1 1 0 1 0 1 1 1 1 0 S Rn (0) imm3 Rd imm2 stype Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4971
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(NOT(R[n]), shifted, '1');
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4972 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.168 RSB, RSBS (register-shifted register)

Reverse Subtract (register-shifted register) subtracts a register value from a register-shifted register value, and
writes the result to the destination register. It can optionally update the condition flags based on the result.

A1

Flag setting variant

Applies when S == 1.

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

!=1111 0 0 0 0 0 1 1 S Rn Rd Rs 0 stype 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4973
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(NOT(R[n]), shifted, '1');
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4974 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.169 RSC, RSCS (immediate)

Reverse Subtract with Carry (immediate) subtracts a register value and the value of NOT (Carry flag) from an
immediate value, and writes the result to the destination register.

If the destination register is not the PC, the RSCS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The RSC variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The RSCS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

RSC variant

Applies when S == 0.

RSC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

RSCS variant

Applies when S == 1.

RSCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is used:

• For the RSC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the RSCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

<Rn> Is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is
deprecated.

!=1111 0 0 1 0 1 1 1 S Rn Rd imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4975
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<const> An immediate value. See Modified immediate constants in A32 instructions on page F1-4364 for the
range of values.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(NOT(R[n]), imm32, PSTATE.C);
 if d == 15 then
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4976 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.170 RSC, RSCS (register)

Reverse Subtract with Carry (register) subtracts a register value and the value of NOT (Carry flag) from an
optionally-shifted register value, and writes the result to the destination register.

If the destination register is not the PC, the RSCS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The RSC variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The RSCS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

RSC, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

RSC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSC, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

RSC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

RSCS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

RSCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSCS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

RSCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

!=1111 0 0 0 0 1 1 1 S Rn Rd imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4977
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is used:

• For the RSC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the RSCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this
is deprecated.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but
this is deprecated.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(NOT(R[n]), shifted, PSTATE.C);
 if d == 15 then
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4978 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.171 RSC, RSCS (register-shifted register)

Reverse Subtract (register-shifted register) subtracts a register value and the value of NOT (Carry flag) from a
register-shifted register value, and writes the result to the destination register. It can optionally update the condition
flags based on the result.

A1

Flag setting variant

Applies when S == 1.

RSCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

RSC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

!=1111 0 0 0 0 1 1 1 S Rn Rd Rs 0 stype 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4979
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(NOT(R[n]), shifted, PSTATE.C);
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4980 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.172 SADD16

Signed Add 16 performs two 16-bit signed integer additions, and writes the results to the destination register. It sets
PSTATE.GE according to the results of the additions.

A1

A1 variant

SADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);

!=1111 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4981
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
 R[d]<15:0> = sum1<15:0>;
 R[d]<31:16> = sum2<15:0>;
 PSTATE.GE<1:0> = if sum1 >= 0 then '11' else '00';
 PSTATE.GE<3:2> = if sum2 >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4982 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.173 SADD8

Signed Add 8 performs four 8-bit signed integer additions, and writes the results to the destination register. It sets
PSTATE.GE according to the results of the additions.

A1

A1 variant

SADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);

!=1111 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4983
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
 sum3 = SInt(R[n]<23:16>) + SInt(R[m]<23:16>);
 sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
 R[d]<7:0> = sum1<7:0>;
 R[d]<15:8> = sum2<7:0>;
 R[d]<23:16> = sum3<7:0>;
 R[d]<31:24> = sum4<7:0>;
 PSTATE.GE<0> = if sum1 >= 0 then '1' else '0';
 PSTATE.GE<1> = if sum2 >= 0 then '1' else '0';
 PSTATE.GE<2> = if sum3 >= 0 then '1' else '0';
 PSTATE.GE<3> = if sum4 >= 0 then '1' else '0';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4984 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.174 SASX

Signed Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one 16-bit
integer addition and one 16-bit subtraction, and writes the results to the destination register. It sets PSTATE.GE
according to the results.

A1

A1 variant

SASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4985
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
 sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
 R[d]<15:0> = diff<15:0>;
 R[d]<31:16> = sum<15:0>;
 PSTATE.GE<1:0> = if diff >= 0 then '11' else '00';
 PSTATE.GE<3:2> = if sum >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-4986 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.175 SB

Speculation Barrier is a barrier that controls speculation.

The semantics of the Speculation Barrier are that the execution, until the barrier completes, of any instruction that
appears later in the program order than the barrier:

• Cannot be performed speculatively to the extent that such speculation can be observed through side-channels
as a result of control flow speculation or data value speculation.

• Can be speculatively executed as a result of predicting that a potentially exception generating instruction has
not generated an exception.

In particular, any instruction that appears later in the program order than the barrier cannot cause a speculative
allocation into any caching structure where the allocation of that entry could be indicative of any data value present
in memory or in the registers.

The SB instruction:

• Cannot be speculatively executed as a result of control flow speculation or data value speculation.

• Can be speculatively executed as a result of predicting that a potentially exception generating instruction has
not generated an exception. The potentially exception generating instruction can complete once it is known
not to be speculative, and all data values generated by instructions appearing in program order before the SB
instruction have their predicted values confirmed.

When the prediction of the instruction stream is not informed by data taken from the register outputs of the
speculative execution of instructions appearing in program order after an uncompleted SB instruction, the SB
instruction has no effect on the use of prediction resources to predict the instruction stream that is being fetched.

A1

A1 variant

SB{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

SB{<q>}

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 1 1 (0) (0) (0) (0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 1 1 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4987
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 SpeculationBarrier();
F5-4988 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.176 SBC, SBCS (immediate)

Subtract with Carry (immediate) subtracts an immediate value and the value of NOT (Carry flag) from a register
value, and writes the result to the destination register.

If the destination register is not the PC, the SBCS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The SBC variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The SBCS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

SBC variant

Applies when S == 0.

SBC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

SBCS variant

Applies when S == 1.

SBCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

SBC variant

Applies when S == 0.

SBC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

SBCS variant

Applies when S == 1.

!=1111 0 0 1 0 1 1 0 S Rn Rd imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

1 1 1 1 0 i 0 1 0 1 1 S Rn 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4989
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
SBCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
 if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the SBC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the SBCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on
page F1-4364 for the range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions on
page F1-4362 for the range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(R[n], NOT(imm32), PSTATE.C);
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;
F5-4990 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4991
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.177 SBC, SBCS (register)

Subtract with Carry (register) subtracts an optionally-shifted register value and the value of NOT (Carry flag) from
a register value, and writes the result to the destination register.

If the destination register is not the PC, the SBCS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The SBC variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The SBCS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

SBC, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SBC, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SBCS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SBCS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 0 1 1 0 S Rn Rd imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
F5-4992 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

SBC<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
SBCS{<q>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

SBC, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SBC, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

SBC<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SBCS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && stype == 11.

SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SBCS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11).

SBCS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

0 1 0 0 0 0 0 1 1 0 Rm Rdn
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 1 0 1 1 S Rn (0) imm3 Rd imm2 stype Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4993
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the SBC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the SBCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], NOT(shifted), PSTATE.C);
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;
F5-4994 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4995
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.178 SBC, SBCS (register-shifted register)

Subtract with Carry (register-shifted register) subtracts a register-shifted register value and the value of NOT (Carry
flag) from a register value, and writes the result to the destination register. It can optionally update the condition
flags based on the result.

A1

Flag setting variant

Applies when S == 1.

SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

!=1111 0 0 0 0 1 1 0 S Rn Rd Rs 0 stype 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
F5-4996 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], NOT(shifted), PSTATE.C);
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4997
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.179 SBFX

Signed Bit Field Extract extracts any number of adjacent bits at any position from a register, sign-extends them to
32 bits, and writes the result to the destination register.

A1

A1 variant

SBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn);
 lsbit = UInt(lsb); widthminus1 = UInt(widthm1);
 if d == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

SBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn);
 lsbit = UInt(imm3:imm2); widthminus1 = UInt(widthm1);
 if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<lsb> For encoding A1: is the bit number of the least significant bit in the field, in the range 0 to 31,
encoded in the "lsb" field.

For encoding T1: is the bit number of the least significant bit in the field, in the range 0 to 31,
encoded in the "imm3:imm2" field.

!=1111 0 1 1 1 1 0 1 widthm1 Rd lsb 1 0 1 Rn
31 28 27 26 25 24 23 22 21 20 16 15 12 11 7 6 5 4 3 0

cond

1 1 1 1 0 (0) 1 1 0 1 0 0 Rn 0 imm3 Rd imm2 (0) widthm1
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 0
F5-4998 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<width> Is the width of the field, in the range 1 to 32-<lsb>, encoded in the "widthm1" field as <width>-1.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 msbit = lsbit + widthminus1;
 if msbit <= 31 then
 R[d] = SignExtend(R[n]<msbit:lsbit>, 32);
 else
 UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-4999
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.180 SDIV

Signed Divide divides a 32-bit signed integer register value by a 32-bit signed integer register value, and writes the
result to the destination register. The condition flags are not affected.

A1

A1 variant

SDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 if d == 15 || n == 15 || m == 15 || a != 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Ra != '1111', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction executes as described, and the register specified by Ra becomes UNKNOWN.

T1

T1 variant

SDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 if d == 15 || n == 15 || m == 15 || a != 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If Ra != '1111', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction executes as described, and the register specified by Ra becomes UNKNOWN.

!=1111 0 1 1 1 0 0 0 1 Rd (1) (1) (1) (1) Rm 0 0 0 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond Ra

1 1 1 1 1 0 1 1 1 0 0 1 Rn (1) (1) (1) (1) Rd 1 1 1 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
F5-5000 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the dividend, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the divisor, encoded in the "Rm" field.

Overflow

If the signed integer division 0x80000000 / 0xFFFFFFFF is performed, the pseudocode produces the intermediate
integer result +231, that overflows the 32-bit signed integer range. No indication of this overflow case is produced,
and the 32-bit result written to <Rd> must be the bottom 32 bits of the binary representation of +231. So the result of
the division is 0x80000000.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if SInt(R[m]) == 0 then
 result = 0;
 else
 result = RoundTowardsZero(Real(SInt(R[n])) / Real(SInt(R[m])));
 R[d] = result<31:0>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5001
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.181 SEL

Select Bytes selects each byte of its result from either its first operand or its second operand, according to the values
of the PSTATE.GE flags.

A1

A1 variant

SEL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SEL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 R[d]<7:0> = if PSTATE.GE<0> == '1' then R[n]<7:0> else R[m]<7:0>;

!=1111 0 1 1 0 1 0 0 0 Rn Rd (1) (1) (1) (1) 1 0 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 1 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5002 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 R[d]<15:8> = if PSTATE.GE<1> == '1' then R[n]<15:8> else R[m]<15:8>;
 R[d]<23:16> = if PSTATE.GE<2> == '1' then R[n]<23:16> else R[m]<23:16>;
 R[d]<31:24> = if PSTATE.GE<3> == '1' then R[n]<31:24> else R[m]<31:24>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5003
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.182 SETEND

Set Endianness writes a new value to PSTATE.E.

A1

A1 variant

SETEND{<q>} <endian_specifier> // Cannot be conditional

Decode for this encoding

 set_bigend = (E == '1');

T1

T1 variant

SETEND{<q>} <endian_specifier> // Not permitted in IT block

Decode for this encoding

 set_bigend = (E == '1');
 if InITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<endian_specifier> Is the endianness to be selected, and the value to be set in PSTATE.E, encoded in the "E" field.
It can have the following values:

LE when E = 0

BE when E = 1

Operation for all encodings

 EncodingSpecificOperations();
 AArch32.CheckSETENDEnabled();
 PSTATE.E = if set_bigend then '1' else '0';

1 1 1 1 0 0 0 1 0 0 0 0 (0) (0) (0) 1 (0) (0) (0) (0) (0) (0) E (0) 0 0 0 0 (0) (0) (0) (0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 1 0 0 1 0 (1) E (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-5004 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.183 SETPAN

Set Privileged Access Never writes a new value to PSTATE.PAN.

This instruction is available only in privileged mode and it is a NOP when executed in User mode.

A1

(FEAT_PAN)

A1 variant

SETPAN{<q>} #<imm> // Cannot be conditional

Decode for this encoding

 if !HavePANExt() then UNDEFINED;
 value = imm1;

T1

(FEAT_PAN)

T1 variant

SETPAN{<q>} #<imm> // Not permitted in IT block

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HavePANExt() then UNDEFINED;
 value = imm1;

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<imm> Is the unsigned immediate 0 or 1, encoded in the "imm1" field.

Operation for all encodings

 EncodingSpecificOperations();
 if PSTATE.EL != EL0 then
 PSTATE.PAN = value;

1 1 1 1 0 0 0 1 0 0 0 1 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 0 0 0 0 (0) (0) (0) (0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

imm1

1 0 1 1 0 1 1 0 0 0 0 (1) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

imm1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5005
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.184 SEV

Send Event is a hint instruction. It causes an event to be signaled to all PEs in the multiprocessor system. For more
information, see Wait For Event and Send Event on page G1-6104.

A1

A1 variant

SEV{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

SEV{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T2

T2 variant

SEV{<c>}.W

Decode for this encoding

 // No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 1 0 0
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 1 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-5006 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 SendEvent();
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5007
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.185 SEVL

Send Event Local is a hint instruction that causes an event to be signaled locally without requiring the event to be
signaled to other PEs in the multiprocessor system. It can prime a wait-loop which starts with a WFE instruction.

A1

A1 variant

SEVL{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

SEVL{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T2

T2 variant

SEVL{<c>}.W

Decode for this encoding

 // No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 1 0 1
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 1 0 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-5008 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 SendEventLocal();
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5009
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.186 SHADD16

Signed Halving Add 16 performs two signed 16-bit integer additions, halves the results, and writes the results to the
destination register.

A1

A1 variant

SHADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SHADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);

!=1111 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5010 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
 R[d]<15:0> = sum1<16:1>;
 R[d]<31:16> = sum2<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5011
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.187 SHADD8

Signed Halving Add 8 performs four signed 8-bit integer additions, halves the results, and writes the results to the
destination register.

A1

A1 variant

SHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);

!=1111 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5012 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
 sum3 = SInt(R[n]<23:16>) + SInt(R[m]<23:16>);
 sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
 R[d]<7:0> = sum1<8:1>;
 R[d]<15:8> = sum2<8:1>;
 R[d]<23:16> = sum3<8:1>;
 R[d]<31:24> = sum4<8:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5013
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.188 SHASX

Signed Halving Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one
signed 16-bit integer addition and one signed 16-bit subtraction, halves the results, and writes the results to the
destination register.

A1

A1 variant

SHASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SHASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5014 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
 sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
 R[d]<15:0> = diff<16:1>;
 R[d]<31:16> = sum<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5015
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.189 SHSAX

Signed Halving Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one
signed 16-bit integer subtraction and one signed 16-bit addition, halves the results, and writes the results to the
destination register.

A1

A1 variant

SHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5016 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum = SInt(R[n]<15:0>) + SInt(R[m]<31:16>);
 diff = SInt(R[n]<31:16>) - SInt(R[m]<15:0>);
 R[d]<15:0> = sum<16:1>;
 R[d]<31:16> = diff<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5017
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.190 SHSUB16

Signed Halving Subtract 16 performs two signed 16-bit integer subtractions, halves the results, and writes the results
to the destination register.

A1

A1 variant

SHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);

!=1111 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5018 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
 R[d]<15:0> = diff1<16:1>;
 R[d]<31:16> = diff2<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5019
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.191 SHSUB8

Signed Halving Subtract 8 performs four signed 8-bit integer subtractions, halves the results, and writes the results
to the destination register.

A1

A1 variant

SHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<7:0>) - SInt(R[m]<7:0>);

!=1111 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5020 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
 diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
 diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
 R[d]<7:0> = diff1<8:1>;
 R[d]<15:8> = diff2<8:1>;
 R[d]<23:16> = diff3<8:1>;
 R[d]<31:24> = diff4<8:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5021
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.192 SMC

Secure Monitor Call causes a Secure Monitor Call exception. For more information see Secure Monitor Call (SMC)
exception on page G1-6083.

SMC is available only for software executing at EL1 or higher. It is UNDEFINED in User mode.

If the values of HCR.TSC and SCR.SCD are both 0, execution of an SMC instruction at EL1 or higher generates a
Secure Monitor Call exception that is taken to EL3. When EL3 is using AArch32 this exception is taken to Monitor
mode. When EL3 is using AArch64, it is the SCR_EL3.SMD bit, rather than the SCR.SCD bit, that can change the
effect of executing an SMC instruction.

If the value of HCR.TSC is 1, execution of an SMC instruction in a Non-secure EL1 mode generates an exception that
is taken to EL2, regardless of the value of SCR.SCD. When EL2 is using AArch32, this is a Hyp Trap exception
that is taken to Hyp mode. For more information see Traps to Hyp mode of Non-secure EL1 execution of SMC
instructions on page G1-6133.

If the value of HCR.TSC is 0 and the value of SCR.SCD is 1, the SMC instruction is:

• UNDEFINED in Non-secure state.

• CONSTRAINED UNPREDICTABLE if executed in Secure state at EL1 or higher.

A1

A1 variant

SMC{<c>}{<q>} {#}<imm4>

Decode for this encoding

 // imm4 is for assembly/disassembly only and is ignored by hardware

T1

T1 variant

SMC{<c>}{<q>} {#}<imm4>

Decode for this encoding

 // imm4 is for assembly/disassembly only and is ignored by hardware
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 0 0 1 0 1 1 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 0 1 1 1 imm4
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 0 1 1 1 1 1 1 1 imm4 1 0 0 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-5022 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<imm4> Is a 4-bit unsigned immediate value, in the range 0 to 15, encoded in the "imm4" field. This is
ignored by the PE. The Secure Monitor Call exception handler (Secure Monitor code) can use this
value to determine what service is being requested, but Arm does not recommend this.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();

 AArch32.CheckForSMCUndefOrTrap();

 if !ELUsingAArch32(EL3) then
 if SCR_EL3.SMD == '1' then
 // SMC disabled.
 UNDEFINED;
 else
 if SCR.SCD == '1' then
 // SMC disabled
 if IsSecure() then
 // Executes either as a NOP or UNALLOCATED.
 c = ConstrainUnpredictable(Unpredictable_SMD);
 assert c IN {Constraint_NOP, Constraint_UNDEF};
 if c == Constraint_NOP then EndOfInstruction();
 UNDEFINED;

 if !ELUsingAArch32(EL3) then
 AArch64.CallSecureMonitor(Zeros(16));
 else
 AArch32.TakeSMCException();

CONSTRAINED UNPREDICTABLE behavior

If SCR.SCD == '1' && IsSecure(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5023
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.193 SMLABB, SMLABT, SMLATB, SMLATT

Signed Multiply Accumulate (halfwords) performs a signed multiply accumulate operation. The multiply acts on
two signed 16-bit quantities, taken from either the bottom or the top half of their respective source registers. The
other halves of these source registers are ignored. The 32-bit product is added to a 32-bit accumulate value and the
result is written to the destination register.

If overflow occurs during the addition of the accumulate value, the instruction sets PSTATE.Q to 1. It is not possible
for overflow to occur during the multiplication.

A1

SMLABB variant

Applies when M == 0 && N == 0.

SMLABB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLABT variant

Applies when M == 1 && N == 0.

SMLABT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATB variant

Applies when M == 0 && N == 1.

SMLATB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATT variant

Applies when M == 1 && N == 1.

SMLATT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 n_high = (N == '1'); m_high = (M == '1');
 if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

T1

SMLABB variant

Applies when N == 0 && M == 0.

SMLABB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

!=1111 0 0 0 1 0 0 0 0 Rd Ra Rm 1 M N 0 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 0 0 1 Rn !=1111 Rd 0 0 N M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
F5-5024 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
SMLABT variant

Applies when N == 0 && M == 1.

SMLABT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATB variant

Applies when N == 1 && M == 0.

SMLATB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATT variant

Applies when N == 1 && M == 1.

SMLATT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 if Ra == '1111' then SEE "SMULBB, SMULBT, SMULTB, SMULTT";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 n_high = (N == '1'); m_high = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand in the bottom or top half
(selected by <x>), encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half
(selected by <y>), encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = if n_high then R[n]<31:16> else R[n]<15:0>;
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 result = SInt(operand1) * SInt(operand2) + SInt(R[a]);
 R[d] = result<31:0>;
 if result != SInt(result<31:0>) then // Signed overflow
 PSTATE.Q = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5025
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.194 SMLAD, SMLADX

Signed Multiply Accumulate Dual performs two signed 16 x 16-bit multiplications. It adds the products to a 32-bit
accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

This instruction sets PSTATE.Q to 1 if the accumulate operation overflows. Overflow cannot occur during the
multiplications.

A1

SMLAD variant

Applies when M == 0.

SMLAD{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLADX variant

Applies when M == 1.

SMLADX{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 if Ra == '1111' then SEE "SMUAD";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 m_swap = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

SMLAD variant

Applies when M == 0.

SMLAD{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLADX variant

Applies when M == 1.

SMLADX{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 if Ra == '1111' then SEE "SMUAD";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 m_swap = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 1 1 1 0 0 0 0 Rd !=1111 Rm 0 0 M 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond Ra

1 1 1 1 1 0 1 1 0 0 1 0 Rn !=1111 Rd 0 0 0 M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
F5-5026 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 + product2 + SInt(R[a]);
 R[d] = result<31:0>;
 if result != SInt(result<31:0>) then // Signed overflow
 PSTATE.Q = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5027
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.195 SMLAL, SMLALS

Signed Multiply Accumulate Long multiplies two signed 32-bit values to produce a 64-bit value, and accumulates
this with a 64-bit value.

In A32 instructions, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many implementations.

A1

Flag setting variant

Applies when S == 1.

SMLALS{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Not flag setting variant

Applies when S == 0.

SMLAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

T1 variant

SMLAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13
 if dHi == dLo then UNPREDICTABLE;

!=1111 0 0 0 0 1 1 1 S RdHi RdLo Rm 1 0 0 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
F5-5028 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = SInt(R[n]) * SInt(R[m]) + SInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;
 if setflags then
 PSTATE.N = result<63>;
 PSTATE.Z = IsZeroBit(result<63:0>);
 // PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5029
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.196 SMLALBB, SMLALBT, SMLALTB, SMLALTT

Signed Multiply Accumulate Long (halfwords) multiplies two signed 16-bit values to produce a 32-bit value, and
accumulates this with a 64-bit value. The multiply acts on two signed 16-bit quantities, taken from either the bottom
or the top half of their respective source registers. The other halves of these source registers are ignored. The 32-bit
product is sign-extended and accumulated with a 64-bit accumulate value.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected
if it occurs. Instead, the result wraps around modulo 264.

A1

SMLALBB variant

Applies when M == 0 && N == 0.

SMLALBB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALBT variant

Applies when M == 1 && N == 0.

SMLALBT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTB variant

Applies when M == 0 && N == 1.

SMLALTB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTT variant

Applies when M == 1 && N == 1.

SMLALTT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
 n_high = (N == '1'); m_high = (M == '1');
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

!=1111 0 0 0 1 0 1 0 0 RdHi RdLo Rm 1 M N 0 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
F5-5030 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

SMLALBB variant

Applies when N == 0 && M == 0.

SMLALBB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALBT variant

Applies when N == 0 && M == 1.

SMLALBT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTB variant

Applies when N == 1 && M == 0.

SMLALTB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTT variant

Applies when N == 1 && M == 1.

SMLALTT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
 n_high = (N == '1'); m_high = (M == '1');
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 1 0 N M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5031
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> For encoding A1: is the first general-purpose source register holding the multiplicand in the bottom
or top half (selected by <x>), encoded in the "Rn" field.

For encoding T1: is the first general-purpose source register holding the multiplicand in the bottom
or top half (selected by <x>), encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register holding the multiplier in the bottom
or top half (selected by <y>), encoded in the "Rm" field.

For encoding T1: is the second general-purpose source register holding the multiplier in the bottom
or top half (selected by <x>), encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = if n_high then R[n]<31:16> else R[n]<15:0>;
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 result = SInt(operand1) * SInt(operand2) + SInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-5032 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.197 SMLALD, SMLALDX

Signed Multiply Accumulate Long Dual performs two signed 16 x 16-bit multiplications. It adds the products to a
64-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected
if it occurs. Instead, the result wraps around modulo 264.

A1

SMLALD variant

Applies when M == 0.

SMLALD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALDX variant

Applies when M == 1.

SMLALDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

SMLALD variant

Applies when M == 0.

SMLALD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALDX variant

Applies when M == 1.

!=1111 0 1 1 1 0 1 0 0 RdHi RdLo Rm 0 0 M 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 1 1 0 M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5033
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
SMLALDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 + product2 + SInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-5034 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5035
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.198 SMLAWB, SMLAWT

Signed Multiply Accumulate (word by halfword) performs a signed multiply accumulate operation. The multiply
acts on a signed 32-bit quantity and a signed 16-bit quantity. The signed 16-bit quantity is taken from either the
bottom or the top half of its source register. The other half of the second source register is ignored. The top 32 bits
of the 48-bit product are added to a 32-bit accumulate value and the result is written to the destination register. The
bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets PSTATE.Q to 1. No overflow
can occur during the multiplication.

A1

SMLAWB variant

Applies when M == 0.

SMLAWB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLAWT variant

Applies when M == 1.

SMLAWT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_high = (M == '1');
 if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

T1

SMLAWB variant

Applies when M == 0.

SMLAWB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLAWT variant

Applies when M == 1.

SMLAWT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 if Ra == '1111' then SEE "SMULWB, SMULWT";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_high = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 0 0 1 0 0 1 0 Rd Ra Rm 1 M 0 0 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 0 1 1 Rn !=1111 Rd 0 0 0 M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
F5-5036 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half
(selected by <y>), encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 result = SInt(R[n]) * SInt(operand2) + (SInt(R[a]) << 16);
 R[d] = result<47:16>;
 if (result >> 16) != SInt(R[d]) then // Signed overflow
 PSTATE.Q = '1';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5037
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.199 SMLSD, SMLSDX

Signed Multiply Subtract Dual performs two signed 16 x 16-bit multiplications. It adds the difference of the
products to a 32-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

This instruction sets PSTATE.Q to 1 if the accumulate operation overflows. Overflow cannot occur during the
multiplications or subtraction.

A1

SMLSD variant

Applies when M == 0.

SMLSD{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLSDX variant

Applies when M == 1.

SMLSDX{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 if Ra == '1111' then SEE "SMUSD";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_swap = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

SMLSD variant

Applies when M == 0.

SMLSD{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLSDX variant

Applies when M == 1.

SMLSDX{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 if Ra == '1111' then SEE "SMUSD";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_swap = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 1 1 1 0 0 0 0 Rd !=1111 Rm 0 1 M 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond Ra

1 1 1 1 1 0 1 1 0 1 0 0 Rn !=1111 Rd 0 0 0 M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
F5-5038 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 - product2 + SInt(R[a]);
 R[d] = result<31:0>;
 if result != SInt(result<31:0>) then // Signed overflow
 PSTATE.Q = '1';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5039
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.200 SMLSLD, SMLSLDX

Signed Multiply Subtract Long Dual performs two signed 16 x 16-bit multiplications. It adds the difference of the
products to a 64-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected
if it occurs. Instead, the result wraps around modulo 264.

A1

SMLSLD variant

Applies when M == 0.

SMLSLD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLSLDX variant

Applies when M == 1.

SMLSLDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

SMLSLD variant

Applies when M == 0.

SMLSLD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLSLDX variant

Applies when M == 1.

!=1111 0 1 1 1 0 1 0 0 RdHi RdLo Rm 0 1 M 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 1 1 0 1 Rn RdLo RdHi 1 1 0 M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
F5-5040 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
SMLSLDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UPREDICTABLE for R13
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 - product2 + SInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5041
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.201 SMMLA, SMMLAR

Signed Most Significant Word Multiply Accumulate multiplies two signed 32-bit values, extracts the most
significant 32 bits of the result, and adds an accumulate value.

Optionally, the instruction can specify that the result is rounded instead of being truncated. In this case, the constant
0x80000000 is added to the product before the high word is extracted.

A1

SMMLA variant

Applies when R == 0.

SMMLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLAR variant

Applies when R == 1.

SMMLAR{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 if Ra == '1111' then SEE "SMMUL";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

SMMLA variant

Applies when R == 0.

SMMLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLAR variant

Applies when R == 1.

SMMLAR{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 if Ra == '1111' then SEE "SMMUL";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 1 1 1 0 1 0 1 Rd !=1111 Rm 0 0 R 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond Ra

1 1 1 1 1 0 1 1 0 1 0 1 Rn !=1111 Rd 0 0 0 R Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
F5-5042 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = (SInt(R[a]) << 32) + SInt(R[n]) * SInt(R[m]);
 if round then result = result + 0x80000000;
 R[d] = result<63:32>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5043
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.202 SMMLS, SMMLSR

Signed Most Significant Word Multiply Subtract multiplies two signed 32-bit values, subtracts the result from a
32-bit accumulate value that is shifted left by 32 bits, and extracts the most significant 32 bits of the result of that
subtraction.

Optionally, the instruction can specify that the result of the instruction is rounded instead of being truncated. In this
case, the constant 0x80000000 is added to the result of the subtraction before the high word is extracted.

A1

SMMLS variant

Applies when R == 0.

SMMLS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLSR variant

Applies when R == 1.

SMMLSR{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1');
 if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

T1

SMMLS variant

Applies when R == 0.

SMMLS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLSR variant

Applies when R == 1.

SMMLSR{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1');
 if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 1 1 1 0 1 0 1 Rd Ra Rm 1 1 R 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 1 1 0 Rn Ra Rd 0 0 0 R Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
F5-5044 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = (SInt(R[a]) << 32) - SInt(R[n]) * SInt(R[m]);
 if round then result = result + 0x80000000;
 R[d] = result<63:32>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5045
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.203 SMMUL, SMMULR

Signed Most Significant Word Multiply multiplies two signed 32-bit values, extracts the most significant 32 bits of
the result, and writes those bits to the destination register.

Optionally, the instruction can specify that the result is rounded instead of being truncated. In this case, the constant
0x80000000 is added to the product before the high word is extracted.

A1

SMMUL variant

Applies when R == 0.

SMMUL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMMULR variant

Applies when R == 1.

SMMULR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); round = (R == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

SMMUL variant

Applies when R == 0.

SMMUL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMMULR variant

Applies when R == 1.

SMMULR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); round = (R == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 1 1 1 0 1 0 1 Rd 1 1 1 1 Rm 0 0 R 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 1 0 1 Rn 1 1 1 1 Rd 0 0 0 R Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5046 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = SInt(R[n]) * SInt(R[m]);
 if round then result = result + 0x80000000;
 R[d] = result<63:32>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5047
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.204 SMUAD, SMUADX

Signed Dual Multiply Add performs two signed 16 x 16-bit multiplications. It adds the products together, and writes
the result to the destination register.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

This instruction sets PSTATE.Q to 1 if the addition overflows. The multiplications cannot overflow.

A1

SMUAD variant

Applies when M == 0.

SMUAD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMUADX variant

Applies when M == 1.

SMUADX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

SMUAD variant

Applies when M == 0.

SMUAD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMUADX variant

Applies when M == 1.

SMUADX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 1 1 1 0 0 0 0 Rd 1 1 1 1 Rm 0 0 M 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 0 1 0 Rn 1 1 1 1 Rd 0 0 0 M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5048 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 + product2;
 R[d] = result<31:0>;
 if result != SInt(result<31:0>) then // Signed overflow
 PSTATE.Q = '1';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5049
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.205 SMULBB, SMULBT, SMULTB, SMULTT

Signed Multiply (halfwords) multiplies two signed 16-bit quantities, taken from either the bottom or the top half of
their respective source registers. The other halves of these source registers are ignored. The 32-bit product is written
to the destination register. No overflow is possible during this instruction.

A1

SMULBB variant

Applies when M == 0 && N == 0.

SMULBB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULBT variant

Applies when M == 1 && N == 0.

SMULBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULTB variant

Applies when M == 0 && N == 1.

SMULTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULTT variant

Applies when M == 1 && N == 1.

SMULTT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 n_high = (N == '1'); m_high = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

SMULBB variant

Applies when N == 0 && M == 0.

SMULBB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULBT variant

Applies when N == 0 && M == 1.

SMULBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

!=1111 0 0 0 1 0 1 1 0 Rd (0) (0) (0) (0) Rm 1 M N 0 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 0 0 1 Rn 1 1 1 1 Rd 0 0 N M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5050 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
SMULTB variant

Applies when N == 1 && M == 0.

SMULTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULTT variant

Applies when N == 1 && M == 1.

SMULTT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 n_high = (N == '1'); m_high = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand in the bottom or top half
(selected by <x>), encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half
(selected by <y>), encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = if n_high then R[n]<31:16> else R[n]<15:0>;
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 result = SInt(operand1) * SInt(operand2);
 R[d] = result<31:0>;
 // Signed overflow cannot occur

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5051
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.206 SMULL, SMULLS

Signed Multiply Long multiplies two 32-bit signed values to produce a 64-bit result.

In A32 instructions, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many implementations.

A1

Flag setting variant

Applies when S == 1.

SMULLS{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Not flag setting variant

Applies when S == 0.

SMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

T1 variant

SMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13
 if dHi == dLo then UNPREDICTABLE;

!=1111 0 0 0 0 1 1 0 S RdHi RdLo Rm 1 0 0 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 1 0 0 0 Rn RdLo RdHi 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
F5-5052 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<RdLo> Is the general-purpose destination register for the lower 32 bits of the result, encoded in the "RdLo"
field.

<RdHi> Is the general-purpose destination register for the upper 32 bits of the result, encoded in the "RdHi"
field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = SInt(R[n]) * SInt(R[m]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;
 if setflags then
 PSTATE.N = result<63>;
 PSTATE.Z = IsZeroBit(result<63:0>);
 // PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5053
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.207 SMULWB, SMULWT

Signed Multiply (word by halfword) multiplies a signed 32-bit quantity and a signed 16-bit quantity. The signed
16-bit quantity is taken from either the bottom or the top half of its source register. The other half of the second
source register is ignored. The top 32 bits of the 48-bit product are written to the destination register. The bottom
16 bits of the 48-bit product are ignored. No overflow is possible during this instruction.

A1

SMULWB variant

Applies when M == 0.

SMULWB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULWT variant

Applies when M == 1.

SMULWT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_high = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

SMULWB variant

Applies when M == 0.

SMULWB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULWT variant

Applies when M == 1.

SMULWT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_high = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 0 0 1 0 0 1 0 Rd (0) (0) (0) (0) Rm 1 M 1 0 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 0 1 1 Rn 1 1 1 1 Rd 0 0 0 M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5054 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half
(selected by <y>), encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 product = SInt(R[n]) * SInt(operand2);
 R[d] = product<47:16>;
 // Signed overflow cannot occur

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5055
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.208 SMUSD, SMUSDX

Signed Multiply Subtract Dual performs two signed 16 x 16-bit multiplications. It subtracts one of the products from
the other, and writes the result to the destination register.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

Overflow cannot occur.

A1

SMUSD variant

Applies when M == 0.

SMUSD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMUSDX variant

Applies when M == 1.

SMUSDX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

SMUSD variant

Applies when M == 0.

SMUSD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMUSDX variant

Applies when M == 1.

SMUSDX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 1 1 1 0 0 0 0 Rd 1 1 1 1 Rm 0 1 M 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 1 0 0 Rn 1 1 1 1 Rd 0 0 0 M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5056 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 - product2;
 R[d] = result<31:0>;
 // Signed overflow cannot occur
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5057
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.209 SRS, SRSDA, SRSDB, SRSIA, SRSIB

Store Return State stores the LR_<current_mode> and SPSR_<current_mode> to the stack of a specified mode. For
information about memory accesses see Memory accesses on page F1-4353.

SRS is UNDEFINED in Hyp mode.

SRS is CONSTRAINED UNPREDICTABLE if it is executed in User or System mode, or if the specified mode is any of the
following:

• Not implemented.

• A mode that Table G1-5 on page G1-6026 does not show.

• Hyp mode.

• Monitor mode, if the SRS instruction is executed in Non-secure state.

If EL3 is using AArch64 and an SRS instruction that is executed in a Secure EL1 mode specifies Monitor mode, it
is trapped to EL3.

See Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32 on page D1-2530.

A1

Decrement After variant

Applies when P == 0 && U == 0.

SRSDA{<c>}{<q>} SP{!}, #<mode>

Decrement Before variant

Applies when P == 1 && U == 0.

SRSDB{<c>}{<q>} SP{!}, #<mode>

Increment After variant

Applies when P == 0 && U == 1.

SRS{IA}{<c>}{<q>} SP{!}, #<mode>

Increment Before variant

Applies when P == 1 && U == 1.

SRSIB{<c>}{<q>} SP{!}, #<mode>

Decode for all variants of this encoding

 wback = (W == '1'); increment = (U == '1'); wordhigher = (P == U);

1 1 1 1 1 0 0 P U 1 W 0 (1) (1) (0) (1) (0) (0) (0) (0) (0) (1) (0) (1) (0) (0) (0) mode
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0
F5-5058 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

SRSDB{<c>}{<q>} SP{!}, #<mode>

Decode for this encoding

 wback = (W == '1'); increment = FALSE; wordhigher = FALSE;

T2

T2 variant

SRS{IA}{<c>}{<q>} SP{!}, #<mode>

Decode for this encoding

 wback = (W == '1'); increment = TRUE; wordhigher = FALSE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly SRS (T32) on page K1-8399 and SRS
(A32) on page K1-8399.

Assembler symbols

IA For encoding A1: is an optional suffix to indicate the Increment After variant.

For encoding T2: is an optional suffix for the Increment After form.

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. <c> must be AL or omitted.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<mode> Is the number of the mode whose Banked SP is used as the base register, encoded in the "mode"
field. For details of PE modes and their numbers see AArch32 state PE mode descriptions on
page G1-6026.

SRSFA, SRSEA, SRSFD, and SRSED are pseudo-instructions for SRSIB, SRSIA, SRSDB, and SRSDA respectively, referring to
their use for pushing data onto Full Ascending, Empty Ascending, Full Descending, and Empty Descending stacks.

1 1 1 0 1 0 0 0 0 0 W 0 (1) (1) (0) (1) (1) (1) (0) (0) (0) (0) (0) (0) (0) (0) (0) mode
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 0

1 1 1 0 1 0 0 1 1 0 W 0 (1) (1) (0) (1) (1) (1) (0) (0) (0) (0) (0) (0) (0) (0) (0) mode
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5059
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then // UNDEFINED at EL2
 UNDEFINED;

 // Check for UNPREDICTABLE cases. The definition of UNPREDICTABLE does not permit these
 // to be security holes
 if PSTATE.M IN {M32_User,M32_System} then
 UNPREDICTABLE;
 elsif mode == M32_Hyp then // Check for attempt to access Hyp mode SP
 UNPREDICTABLE;
 elsif mode == M32_Monitor then // Check for attempt to access Monitor mode SP
 if !HaveEL(EL3) || !IsSecure() then
 UNPREDICTABLE;
 elsif !ELUsingAArch32(EL3) then
 AArch64.MonitorModeTrap();
 elsif BadMode(mode) then
 UNPREDICTABLE;

 base = Rmode[13,mode];
 address = if increment then base else base-8;
 if wordhigher then address = address+4;
 MemA[address,4] = LR;
 MemA[address+4,4] = SPSR[];
 if wback then Rmode[13,mode] = if increment then base+8 else base-8;
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then // UNDEFINED at EL2
 UNDEFINED;

 // Check for UNPREDICTABLE cases. The definition of UNPREDICTABLE does not permit these
 // to be security holes
 if PSTATE.M IN {M32_User,M32_System} then
 UNPREDICTABLE;
 elsif mode == M32_Hyp then // Check for attempt to access Hyp mode SP
 UNPREDICTABLE;
 elsif mode == M32_Monitor then // Check for attempt to access Monitor mode SP
 if !HaveEL(EL3) || !IsSecure() then
 UNPREDICTABLE;
 elsif !ELUsingAArch32(EL3) then
 AArch64.MonitorModeTrap();
 elsif BadMode(mode) then
 UNPREDICTABLE;

 base = Rmode[13,mode];
 address = if increment then base else base-8;
 if wordhigher then address = address+4;
 MemA[address,4] = LR;
 MemA[address+4,4] = SPSR[];
 if wback then Rmode[13,mode] = if increment then base+8 else base-8;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

If mode == M32_Hyp, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
F5-5060 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.

If mode == M32_Monitor && (!HaveEL(EL3) || !IsSecure()), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

If BadMode(mode), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction stores to the stack of the mode in which it is executed.

• The instruction stores to an UNKNOWN address, and if the instruction specifies writeback then any
general-purpose register that can be accessed from the current Exception level without a privilege violation
becomes UNKNOWN.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5061
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.210 SSAT

Signed Saturate saturates an optionally-shifted signed value to a selectable signed range.

This instruction sets PSTATE.Q to 1 if the operation saturates.

A1

Arithmetic shift right variant

Applies when sh == 1.

SSAT{<c>}{<q>} <Rd>, #<imm>, <Rn>, ASR #<amount>

Logical shift left variant

Applies when sh == 0.

SSAT{<c>}{<q>} <Rd>, #<imm>, <Rn> {, LSL #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
 (shift_t, shift_n) = DecodeImmShift(sh:'0', imm5);
 if d == 15 || n == 15 then UNPREDICTABLE;

T1

Arithmetic shift right variant

Applies when sh == 1 && !(imm3 == 000 && imm2 == 00).

SSAT{<c>}{<q>} <Rd>, #<imm>, <Rn>, ASR #<amount>

Logical shift left variant

Applies when sh == 0.

SSAT{<c>}{<q>} <Rd>, #<imm>, <Rn> {, LSL #<amount>}

Decode for all variants of this encoding

 if sh == '1' && (imm3:imm2) == '00000' then SEE "SSAT16";
 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
 (shift_t, shift_n) = DecodeImmShift(sh:'0', imm3:imm2);
 if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 1 1 0 1 0 1 sat_imm Rd imm5 sh 0 1 Rn
31 28 27 26 25 24 23 22 21 20 16 15 12 11 7 6 5 4 3 0

cond

1 1 1 1 0 (0) 1 1 0 0 sh 0 Rn 0 imm3 Rd imm2 (0) sat_imm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 0
F5-5062 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the bit position for saturation, in the range 1 to 32, encoded in the "sat_imm" field as <imm>-1.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<amount> For encoding A1: is the optional shift amount, in the range 0 to 31, defaulting to 0 and encoded in
the "imm5" field.

For encoding A1: is the shift amount, in the range 1 to 32 encoded in the "imm5" field as <amount>
modulo 32.

For encoding T1: is the optional shift amount, in the range 0 to 31, defaulting to 0 and encoded in
the "imm3:imm2" field.

For encoding T1: is the shift amount, in the range 1 to 31 encoded in the "imm3:imm2" field as
<amount>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand = Shift(R[n], shift_t, shift_n, PSTATE.C); // PSTATE.C ignored
 (result, sat) = SignedSatQ(SInt(operand), saturate_to);
 R[d] = SignExtend(result, 32);
 if sat then
 PSTATE.Q = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5063
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.211 SSAT16

Signed Saturate 16 saturates two signed 16-bit values to a selected signed range.

This instruction sets PSTATE.Q to 1 if the operation saturates.

A1

A1 variant

SSAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
 if d == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

SSAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
 if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the bit position for saturation, in the range 1 to 16, encoded in the "sat_imm" field as <imm>-1.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

!=1111 0 1 1 0 1 0 1 0 sat_imm Rd (1) (1) (1) (1) 0 0 1 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 0 (0) 1 1 0 0 1 0 Rn 0 0 0 0 Rd 0 0 (0) (0) sat_imm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5064 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result1, sat1) = SignedSatQ(SInt(R[n]<15:0>), saturate_to);
 (result2, sat2) = SignedSatQ(SInt(R[n]<31:16>), saturate_to);
 R[d]<15:0> = SignExtend(result1, 16);
 R[d]<31:16> = SignExtend(result2, 16);
 if sat1 || sat2 then
 PSTATE.Q = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5065
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.212 SSAX

Signed Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one 16-bit
integer subtraction and one 16-bit addition, and writes the results to the destination register. It sets PSTATE.GE
according to the results.

A1

A1 variant

SSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5066 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum = SInt(R[n]<15:0>) + SInt(R[m]<31:16>);
 diff = SInt(R[n]<31:16>) - SInt(R[m]<15:0>);
 R[d]<15:0> = sum<15:0>;
 R[d]<31:16> = diff<15:0>;
 PSTATE.GE<1:0> = if sum >= 0 then '11' else '00';
 PSTATE.GE<3:2> = if diff >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5067
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.213 SSBB

Speculative Store Bypass Barrier is a memory barrier which prevents speculative loads from bypassing earlier stores
to the same virtual address under certain conditions.

The semantics of the Speculative Store Bypass Barrier are:

• When a load to a location appears in program order after the SSBB, then the load does not speculatively read
an entry earlier in the coherence order for that location than the entry generated by the latest store satisfying
all of the following conditions:

— The store is to the same location as the load.

— The store uses the same virtual address as the load.

— The store appears in program order before the SSBB.

• When a load to a location appears in program order before the SSBB, then the load does not speculatively
read data from any store satisfying all of the following conditions:

— The store is to the same location as the load.

— The store uses the same virtual address as the load.

— The store appears in program order after the SSBB.

A1

A1 variant

SSBB{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

SSBB{<q>}

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 0 0 0 0 0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-5068 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 SpeculativeStoreBypassBarrierToVA();
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5069
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.214 SSUB16

Signed Subtract 16 performs two 16-bit signed integer subtractions, and writes the results to the destination register.
It sets PSTATE.GE according to the results of the subtractions.

A1

A1 variant

SSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);

!=1111 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5070 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
 R[d]<15:0> = diff1<15:0>;
 R[d]<31:16> = diff2<15:0>;
 PSTATE.GE<1:0> = if diff1 >= 0 then '11' else '00';
 PSTATE.GE<3:2> = if diff2 >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5071
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.215 SSUB8

Signed Subtract 8 performs four 8-bit signed integer subtractions, and writes the results to the destination register.
It sets PSTATE.GE according to the results of the subtractions.

A1

A1 variant

SSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<7:0>) - SInt(R[m]<7:0>);

!=1111 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5072 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
 diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
 diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
 R[d]<7:0> = diff1<7:0>;
 R[d]<15:8> = diff2<7:0>;
 R[d]<23:16> = diff3<7:0>;
 R[d]<31:24> = diff4<7:0>;
 PSTATE.GE<0> = if diff1 >= 0 then '1' else '0';
 PSTATE.GE<1> = if diff2 >= 0 then '1' else '0';
 PSTATE.GE<2> = if diff3 >= 0 then '1' else '0';
 PSTATE.GE<3> = if diff4 >= 0 then '1' else '0';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5073
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.216 STC

Store data to System register calculates an address from a base register value and an immediate offset, and stores a
word from the DBGDTRRXint System register to memory. It can use offset, post-indexed, pre-indexed, or
unindexed addressing. For information about memory accesses, see Memory accesses on page F1-4353.

In an implementation that includes EL2, the permitted STC access to DBGDTRRXint can be trapped to Hyp mode,
meaning that an attempt to execute an STC instruction in a Non-secure mode other than Hyp mode, that would be
permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see
Trapping general Non-secure System register accesses to debug registers on page G1-6143.

For simplicity, the STC pseudocode does not show this possible trap to Hyp mode.

A1

Offset variant

Applies when P == 1 && W == 0.

STC{<c>}{<q>} p14, c5, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STC{<c>}{<q>} p14, c5, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STC{<c>}{<q>} p14, c5, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

STC{<c>}{<q>} p14, c5, [<Rn>], <option>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then UNDEFINED;
 n = UInt(Rn); cp = 14;
 imm32 = ZeroExtend(imm8:'00', 32); index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15 && wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction executes with writeback to the PC. The instruction is handled as described in Using R15 by
instruction on page K1-8387.

!=1111 1 1 0 P U 0 W 0 Rn 0 1 0 1 1 1 1 0 imm8
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

cond
F5-5074 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

Offset variant

Applies when P == 1 && W == 0.

STC{<c>}{<q>} p14, c5, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STC{<c>}{<q>} p14, c5, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STC{<c>}{<q>} p14, c5, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

STC{<c>}{<q>} p14, c5, [<Rn>], <option>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then UNDEFINED;
 n = UInt(Rn); cp = 14;
 imm32 = ZeroExtend(imm8:'00', 32); index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction executes with writeback to the PC. The instruction is handled as described in Using R15 by
instruction on page K1-8387.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> For the offset or unindexed variant: is the general-purpose base register, encoded in the "Rn" field.
The PC can be used, but this is deprecated.

1 1 1 0 1 1 0 P U 0 W 0 Rn 0 1 0 1 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5075
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
For the offset, post-indexed or pre-indexed variant: is the general-purpose base register, encoded in
the "Rn" field.

<option> Is an 8-bit immediate, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field. The value
of this field is ignored when executing this instruction.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting
to 0 and encoded in the "imm8" field, as <imm>/4.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];

 // System register read from DBGDTRRXint.
 MemA[address,4] = AArch32.SysRegRead(cp, ThisInstr());
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-5076 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.217 STL

Store-Release Word stores a word from a register to memory. The instruction also has memory ordering semantics
as described in Load-Acquire, Store-Release on page E2-4305.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

STL{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

STL{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 0 0 0 1 1 0 0 0 Rn (1) (1) (1) (1) (1) (1) 0 0 1 0 0 1 Rt
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 0 1 0 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5077
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 MemO[address, 4] = R[t];

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-5078 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.218 STLB

Store-Release Byte stores a byte from a register to memory. The instruction also has memory ordering semantics
as described in Load-Acquire, Store-Release on page E2-4305.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

STLB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

STLB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 0 0 0 1 1 1 0 0 Rn (1) (1) (1) (1) (1) (1) 0 0 1 0 0 1 Rt
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 0 0 0 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5079
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 MemO[address, 1] = R[t]<7:0>;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-5080 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.219 STLEX

Store-Release Exclusive Word stores a word from a register to memory if the executing PE has exclusive access to
the memory at that address, and returns a status value of 0 if the store was successful, or of 1 if no store was
performed.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page E2-4305.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

STLEX{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

T1

T1 variant

STLEX{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t then UNPREDICTABLE;

!=1111 0 0 0 1 1 0 0 0 Rn Rd (1) (1) 1 0 1 0 0 1 Rt
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 1 1 0 Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5081
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Rd> is not updated.

A non word-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to
the following rules:

• If AArch32.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 if AArch32.ExclusiveMonitorsPass(address,4) then
 MemO[address, 4] = R[t];
 R[d] = ZeroExtend('0');
F5-5082 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 else
 R[d] = ZeroExtend('1');

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5083
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.220 STLEXB

Store-Release Exclusive Byte stores a byte from a register to memory if the executing PE has exclusive access to
the memory at that address, and returns a status value of 0 if the store was successful, or of 1 if no store was
performed.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page E2-4305.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

STLEXB{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

T1

T1 variant

STLEXB{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t then UNPREDICTABLE;

!=1111 0 0 0 1 1 1 0 0 Rn Rd (1) (1) 1 0 1 0 0 1 Rt
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 1 0 0 Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F5-5084 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Aborts

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Rd> is not updated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 if AArch32.ExclusiveMonitorsPass(address,1) then
 MemO[address, 1] = R[t]<7:0>;
 R[d] = ZeroExtend('0');
 else
 R[d] = ZeroExtend('1');

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5085
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.221 STLEXD

Store-Release Exclusive Doubleword stores a doubleword from two registers to memory if the executing PE has
exclusive access to the memory at that address, and returns a status value of 0 if the store was successful, or of 1 if
no store was performed.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page E2-4305.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

STLEXD{<c>}{<q>} <Rd>, <Rt>, <Rt2>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); t2 = t+1; n = UInt(Rn);
 if d == 15 || Rt<0> == '1' || t2 == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t || d == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: Rt<0> = '0'.

• The instruction executes with the additional decode: t2 = t.

• The instruction executes as described, with no change to its behavior and no additional side effects.

If Rt == '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction is handled as described in Using R15 by instruction on page K1-8387.

!=1111 0 0 0 1 1 0 1 0 Rn Rd (1) (1) 1 0 1 0 0 1 Rt
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
F5-5086 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

STLEXD{<c>}{<q>} <Rd>, <Rt>, <Rt2>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn);
 if d == 15 || t == 15 || t2 == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t || d == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt> must be even-numbered and not R14.

For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. <Rt2> must be <R(t+1)>.

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Aborts and alignment

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt Rt2 1 1 1 1 Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5087
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Rd> is not updated.

A non word-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to
the following rules:

• If AArch32.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 // Create doubleword to store such that R[t] will be stored at address and R[t2] at address+4.
 value = if BigEndian(AccType_ORDERED) then R[t]:R[t2] else R[t2]:R[t];
 if AArch32.ExclusiveMonitorsPass(address, 8) then
 MemO[address, 8] = value;
 R[d] = ZeroExtend('0');
 else
 R[d] = ZeroExtend('1');

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-5088 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.222 STLEXH

Store-Release Exclusive Halfword stores a halfword from a register to memory if the executing PE has exclusive
access to the memory at that address, and returns a status value of 0 if the store was successful, or of 1 if no store
was performed.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page E2-4305.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

STLEXH{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

T1

T1 variant

STLEXH{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t then UNPREDICTABLE;

!=1111 0 0 0 1 1 1 1 0 Rn Rd (1) (1) 1 0 1 0 0 1 Rt
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 1 0 1 Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5089
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated

• <Rd> is not updated.

A non word-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to
the following rules:

• If AArch32.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 if AArch32.ExclusiveMonitorsPass(address,2) then
 MemO[address, 2] = R[t]<15:0>;
 R[d] = ZeroExtend('0');
F5-5090 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 else
 R[d] = ZeroExtend('1');

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5091
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.223 STLH

Store-Release Halfword stores a halfword from a register to memory. The instruction also has memory ordering
semantics as described in Load-Acquire, Store-Release on page E2-4305.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

STLH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

STLH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 0 0 0 1 1 1 1 0 Rn (1) (1) (1) (1) (1) (1) 0 0 1 0 0 1 Rt
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 0 0 1 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-5092 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 MemO[address, 2] = R[t]<15:0>;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5093
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.224 STM, STMIA, STMEA

Store Multiple (Increment After, Empty Ascending) stores multiple registers to consecutive memory locations using
an address from a base register. The consecutive memory locations start at this address, and the address just above
the last of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC on
page F1-4354.

Armv8.2 permits the deprecation of some Store Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC. For details of related system instructions see STM (User registers).

A1

A1 variant

STM{IA}{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STMEA{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Empty Ascending stack

Decode for this encoding

 n = UInt(Rn); registers = register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers stored.

If n == 15 && wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction executes with writeback to the PC. The instruction is handled as described in Using R15 by
instruction on page K1-8387.

T1

!=1111 1 0 0 0 1 0 W 0 Rn register_list
31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond

1 1 0 0 0 Rn register_list
15 14 13 12 11 10 8 7 0
F5-5094 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1 variant

STM{IA}{<c>}{<q>} <Rn>!, <registers> // Preferred syntax
STMEA{<c>}{<q>} <Rn>!, <registers> // Alternate syntax, Empty Ascending stack

Decode for this encoding

 n = UInt(Rn); registers = '00000000':register_list; wback = TRUE;
 if BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers stored.

If n == 15 && wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction executes with writeback to the PC. The instruction is handled as described in Using R15 by
instruction on page K1-8387.

T2

T2 variant

STM{IA}{<c>}.W <Rn>{!}, <registers> // Preferred syntax, if <Rn>, '!' and <registers> can be represented
in T1
STMEA{<c>}.W <Rn>{!}, <registers> // Alternate syntax, Empty Ascending stack, if <Rn>, '!' and
<registers> can be represented in T1
STM{IA}{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STMEA{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Empty Ascending stack

Decode for this encoding

 n = UInt(Rn); registers = P:M:register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
 if wback && registers<n> == '1' then UNPREDICTABLE;
 if registers<13> == '1' then UNPREDICTABLE;
 if registers<15> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

1 1 1 0 1 0 0 0 1 0 W 0 Rn (0) M register_list
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 0

P

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5095
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers stored.

If BitCount(registers) == 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored for the base register is UNKNOWN.

If registers<13> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs all of the stores using the specified addressing mode but the value of R13 is
UNKNOWN.

If registers<15> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs all of the stores using the specified addressing mode but the value of R15 is
UNKNOWN.

If n == 15 && wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction executes with writeback to the PC. The instruction is handled as described in Using R15 by
instruction on page K1-8387.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

IA Is an optional suffix for the Increment After form.

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.
F5-5096 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> For encoding A1: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }.

The PC can be in the list. However, Arm deprecates the use of instructions that include the PC in
the list.

If base register writeback is specified, and the base register is not the lowest-numbered register in
the list, such an instruction stores an UNKNOWN value for the base register.

For encoding T1: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R7, encoded in the "register_list" field.
If the base register is not the lowest-numbered register in the list, such an instruction stores an
UNKNOWN value for the base register.

For encoding T2: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }.

The registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can
optionally contain the LR. If the LR is in the list, the "M" field is set to 1, otherwise it defaults to 0.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 for i = 0 to 14
 if registers<i> == '1' then
 if i == n && wback && i != LowestSetBit(registers) then
 MemS[address,4] = bits(32) UNKNOWN; // Only possible for encodings T1 and A1
 else
 MemS[address,4] = R[i];
 address = address + 4;
 if registers<15> == '1' then // Only possible for encoding A1
 MemS[address,4] = PCStoreValue();
 if wback then R[n] = R[n] + 4*BitCount(registers);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5097
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.225 STM (User registers)

In an EL1 mode other than System mode, Store Multiple (User registers) stores multiple User mode registers to
consecutive memory locations using an address from a base register. The PE reads the base register value normally,
using the current mode to determine the correct Banked version of the register. This instruction cannot writeback to
the base register.

Store Multiple (User registers) is UNDEFINED in Hyp mode, and CONSTRAINED UNPREDICTABLE in User or System
modes.

Armv8.2 permits the deprecation of some Store Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC.

A1

A1 variant

STM{<amode>}{<c>}{<q>} <Rn>, <registers>^

Decode for this encoding

 n = UInt(Rn); registers = register_list; increment = (U == '1'); wordhigher = (P == U);
 if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<amode> is one of:

DA Decrement After. The consecutive memory addresses end at the address in the base
register. Encoded as P = 0, U = 0.

ED Empty Descending. For this instruction, a synonym for DA.

DB Decrement Before. The consecutive memory addresses end one word below the address
in the base register. Encoded as P = 1, U = 0.

FD Full Descending. For this instruction, a synonym for DB.

IA Increment After. The consecutive memory addresses start at the address in the base
register. This is the default. Encoded as P = 0, U = 1.

EA Empty Ascending. For this instruction, a synonym for IA.

!=1111 1 0 0 P U 1 (0) 0 Rn register_list
31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond
F5-5098 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
IB Increment Before. The consecutive memory addresses start one word above the address
in the base register. Encoded as P = 1, U = 1.

FA Full Ascending. For this instruction, a synonym for IB.

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<registers> Is a list of one or more registers, separated by commas and surrounded by { and }. It specifies the
set of registers to be stored by the STM instruction. The registers are stored with the lowest-numbered
register to the lowest memory address, through to the highest-numbered register to the highest
memory address. See also Encoding of lists of general-purpose registers and the PC on
page F1-4354.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then
 UNDEFINED;
 elsif PSTATE.M IN {M32_User,M32_System} then
 UNPREDICTABLE;
 else
 length = 4*BitCount(registers);
 address = if increment then R[n] else R[n]-length;
 if wordhigher then address = address+4;
 for i = 0 to 14
 if registers<i> == '1' then // Store User mode register
 MemS[address,4] = Rmode[i, M32_User];
 address = address + 4;
 if registers<15> == '1' then
 MemS[address,4] = PCStoreValue();

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5099
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.226 STMDA, STMED

Store Multiple Decrement After (Empty Descending) stores multiple registers to consecutive memory locations
using an address from a base register. The consecutive memory locations end at this address, and the address just
below the lowest of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC on
page F1-4354.

Armv8.2 permits the deprecation of some Store Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC. For details of related system instructions see STM (User registers).

A1

A1 variant

STMDA{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STMED{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Empty Descending stack

Decode for this encoding

 n = UInt(Rn); registers = register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction targets an unspecified set of registers. These registers might include R15. If the instruction
specifies writeback, the modification to the base address on writeback might differ from the number of
registers stored.

If n == 15 && wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

!=1111 1 0 0 0 0 0 W 0 Rn register_list
31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond
F5-5100 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> Is a list of one or more registers to be stored, separated by commas and surrounded by { and }.

The PC can be in the list. However, Arm deprecates the use of instructions that include the PC in
the list.

If base register writeback is specified, and the base register is not the lowest-numbered register in
the list, such an instruction stores an UNKNOWN value for the base register.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] - 4*BitCount(registers) + 4;
 for i = 0 to 14
 if registers<i> == '1' then
 if i == n && wback && i != LowestSetBit(registers) then
 MemS[address,4] = bits(32) UNKNOWN;
 else
 MemS[address,4] = R[i];
 address = address + 4;
 if registers<15> == '1' then
 MemS[address,4] = PCStoreValue();
 if wback then R[n] = R[n] - 4*BitCount(registers);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5101
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.227 STMDB, STMFD

Store Multiple Decrement Before (Full Descending) stores multiple registers to consecutive memory locations
using an address from a base register. The consecutive memory locations end just below this address, and the
address of the first of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC on
page F1-4354.

Armv8.2 permits the deprecation of some Store Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC. For details of related system instructions see STM (User registers).

This instruction is used by the alias PUSH (multiple registers). See Alias conditions on page F5-5104 for details of
when each alias is preferred.

A1

A1 variant

STMDB{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STMFD{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Descending stack

Decode for this encoding

 n = UInt(Rn); registers = register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers stored.

T1

T1 variant

STMDB{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STMFD{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Descending stack

Decode for this encoding

 n = UInt(Rn); registers = P:M:register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
 if wback && registers<n> == '1' then UNPREDICTABLE;

!=1111 1 0 0 1 0 0 W 0 Rn register_list
31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond

1 1 1 0 1 0 0 1 0 0 W 0 Rn (0) M register_list
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 0

P

F5-5102 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 if registers<13> == '1' then UNPREDICTABLE;
 if registers<15> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers stored.

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored for the base register is UNKNOWN.

If BitCount(registers) == 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

If registers<13> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The store instruction performs all of the stores using the specified addressing mode but the value of R13 is
UNKNOWN.

If registers<15> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs all of the stores using the specified addressing mode but the value of R15 is
UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5103
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Alias conditions

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> For encoding A1: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }.

The PC can be in the list. However, Arm deprecates the use of instructions that include the PC in
the list.

If base register writeback is specified, and the base register is not the lowest-numbered register in
the list, such an instruction stores an UNKNOWN value for the base register.

For encoding T1: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }.

The registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can
optionally contain the LR. If the LR is in the list, the "M" field is set to 1, otherwise it defaults to 0.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] - 4*BitCount(registers);
 for i = 0 to 14
 if registers<i> == '1' then
 if i == n && wback && i != LowestSetBit(registers) then
 MemS[address,4] = bits(32) UNKNOWN; // Only possible for encoding A1
 else
 MemS[address,4] = R[i];
 address = address + 4;
 if registers<15> == '1' then // Only possible for encoding A1
 MemS[address,4] = PCStoreValue();
 if wback then R[n] = R[n] - 4*BitCount(registers);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias of variant is preferred when

 PUSH (multiple registers) T1 W == '1' && Rn == '1101' && BitCount(M:register_list) > 1

 PUSH (multiple registers) A1 W == '1' && Rn == '1101' && BitCount(register_list) > 1
F5-5104 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.228 STMIB, STMFA

Store Multiple Increment Before (Full Ascending) stores multiple registers to consecutive memory locations using
an address from a base register. The consecutive memory locations start just above this address, and the address of
the last of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC on
page F1-4354.

Armv8.2 permits the deprecation of some Store Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC. For details of related system instructions see STM (User registers).

A1

A1 variant

STMIB{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STMFA{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Ascending stack

Decode for this encoding

 n = UInt(Rn); registers = register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers stored.

If n == 15 && wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

!=1111 1 0 0 1 1 0 W 0 Rn register_list
31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5105
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> Is a list of one or more registers to be stored, separated by commas and surrounded by { and }.

The PC can be in the list. However, Arm deprecates the use of instructions that include the PC in
the list.

If base register writeback is specified, and the base register is not the lowest-numbered register in
the list, such an instruction stores an UNKNOWN value for the base register.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + 4;
 for i = 0 to 14
 if registers<i> == '1' then
 if i == n && wback && i != LowestSetBit(registers) then
 MemS[address,4] = bits(32) UNKNOWN;
 else
 MemS[address,4] = R[i];
 address = address + 4;
 if registers<15> == '1' then
 MemS[address,4] = PCStoreValue();
 if wback then R[n] = R[n] + 4*BitCount(registers);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-5106 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.229 STR (immediate)

Store Register (immediate) calculates an address from a base register value and an immediate offset, and stores a
word from a register to memory. It can use offset, post-indexed, or pre-indexed addressing. For information about
memory accesses see Memory accesses on page F1-4353.

This instruction is used by the alias PUSH (single register). See Alias conditions on page F5-5110 for details of
when each alias is preferred.

A1

Offset variant

Applies when P == 1 && W == 0.

STR{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.

STR{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STR{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "STRT";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

!=1111 0 1 0 P U 0 W 0 Rn Rt imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5107
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

STR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'00', 32);
 index = TRUE; add = TRUE; wback = FALSE;

T2

T2 variant

STR{<c>}{<q>} <Rt>, [SP{, #{+}<imm>}]

Decode for this encoding

 t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:'00', 32);
 index = TRUE; add = TRUE; wback = FALSE;

T3

T3 variant

STR{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1 or T2
STR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = TRUE; add = TRUE; wback = FALSE;
 if t == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

0 1 1 0 0 imm5 Rn Rt
15 14 13 12 11 10 6 5 3 2 0

1 0 0 1 0 Rt imm8
15 14 13 12 11 10 8 7 0

1 1 1 1 1 0 0 0 1 1 0 0 !=1111 Rt imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn
F5-5108 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

T4

Offset variant

Applies when P == 1 && U == 0 && W == 0.

STR{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STR{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STR{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if P == '1' && U == '1' && W == '0' then SEE "STRT";
 if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
 index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if t == 15 || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

1 1 1 1 1 0 0 0 0 1 0 0 !=1111 Rt 1 P U W imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5109
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Alias conditions

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, but this is deprecated.

For encoding T1, T2, T3 and T4: is the general-purpose register to be transferred, encoded in the
"Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant, but this is deprecated.

For encoding T1, T3 and T4: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to
0 if omitted, and encoded in the "imm12" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 4, in the
range 0 to 124, defaulting to 0 and encoded in the "imm5" field as <imm>/4.

For encoding T2: is the optional positive unsigned immediate byte offset, a multiple of 4, in the
range 0 to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.

For encoding T3: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T4: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm8" field.

Operation for all encodings

 if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,4] = if t == 15 then PCStoreValue() else R[t];
 if wback then R[n] = offset_addr;
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,4] = R[t];
 if wback then R[n] = offset_addr;

Alias of variant is preferred when

 PUSH (single register) A1 (pre-indexed) P == '1' && U == '0' && W == '1' && Rn == '1101' && imm12 == '000000000100'

 PUSH (single register) T4 (pre-indexed) Rn == '1101' && P == '1' && U == '0' && W == '1' && imm8 == '00000100'
F5-5110 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5111
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.230 STR (register)

Store Register (register) calculates an address from a base register value and an offset register value, stores a word
from a register to memory. The offset register value can optionally be shifted. For information about memory
accesses see Memory accesses on page F1-4353.

A1

Offset variant

Applies when P == 1 && W == 0.

STR{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]

Post-indexed variant

Applies when P == 0 && W == 0.

STR{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Pre-indexed variant

Applies when P == 1 && W == 1.

STR{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "STRT";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);
 if m == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

!=1111 0 1 1 P U 0 W 0 Rn Rt imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
F5-5112 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

STR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

T2 variant

STR{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
STR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

 if Rn == '1111' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
 if t == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

0 1 0 1 0 0 0 Rm Rn Rt
15 14 13 12 11 10 9 8 6 5 3 2 0

1 1 1 1 1 0 0 0 0 1 0 0 !=1111 Rt 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5113
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, but this is deprecated.

For encoding T1 and T2: is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant, but this is deprecated.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register on page F1-4351.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 if t == 15 then // Only possible for encoding A1
 data = PCStoreValue();
 else
 data = R[t];
 MemU[address,4] = data;
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-5114 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.231 STRB (immediate)

Store Register Byte (immediate) calculates an address from a base register value and an immediate offset, and stores
a byte from a register to memory. It can use offset, post-indexed, or pre-indexed addressing. For information about
memory accesses see Memory accesses on page F1-4353.

A1

Offset variant

Applies when P == 1 && W == 0.

STRB{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.

STRB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "STRBT";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if t == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

!=1111 0 1 0 P U 1 W 0 Rn Rt imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5115
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

T1 variant

STRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
 index = TRUE; add = TRUE; wback = FALSE;

T2

T2 variant

STRB{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1
STRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = TRUE; add = TRUE; wback = FALSE;
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

T3

Offset variant

Applies when P == 1 && U == 0 && W == 0.

STRB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

0 1 1 1 0 imm5 Rn Rt
15 14 13 12 11 10 6 5 3 2 0

1 1 1 1 1 0 0 0 1 0 0 0 !=1111 Rt imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn

1 1 1 1 1 0 0 0 0 0 0 0 !=1111 Rt 1 P U W imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
F5-5116 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Post-indexed variant

Applies when P == 0 && W == 1.

STRB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if P == '1' && U == '1' && W == '0' then SEE "STRBT";
 if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
 index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if t == 15 || (wback && n == t) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant, but this is deprecated.

For encoding T1, T2 and T3: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5117
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to
0 if omitted, and encoded in the "imm12" field.

For encoding T1: is an optional 5-bit unsigned immediate byte offset, in the range 0 to 31, defaulting
to 0 and encoded in the "imm5" field.

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm8" field.

Operation for all encodings

 if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,1] = R[t]<7:0>;
 if wback then R[n] = offset_addr;
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,1] = R[t]<7:0>;
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-5118 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.232 STRB (register)

Store Register Byte (register) calculates an address from a base register value and an offset register value, and stores
a byte from a register to memory. The offset register value can optionally be shifted. For information about memory
accesses see Memory accesses on page F1-4353.

A1

Offset variant

Applies when P == 1 && W == 0.

STRB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]

Post-indexed variant

Applies when P == 0 && W == 0.

STRB{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Pre-indexed variant

Applies when P == 1 && W == 1.

STRB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "STRBT";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);
 if t == 15 || m == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

!=1111 0 1 1 P U 1 W 0 Rn Rt imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5119
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

T1 variant

STRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

T2 variant

STRB{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
STRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

 if Rn == '1111' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
 if t == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

0 1 0 1 0 1 0 Rm Rn Rt
15 14 13 12 11 10 9 8 6 5 3 2 0

1 1 1 1 1 0 0 0 0 0 0 0 !=1111 Rt 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn
F5-5120 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant, but this is deprecated.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register on page F1-4351.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 MemU[address,1] = R[t]<7:0>;
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5121
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.233 STRBT

Store Register Byte Unprivileged stores a byte from a register to memory. For information about memory accesses
see Memory accesses on page F1-4353.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is
actually running in User mode.

STRBT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or an optionally-shifted register value.

A1

A1 variant

STRBT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
 register_form = FALSE; imm32 = ZeroExtend(imm12, 32);
 if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction on page K1-8387.

• The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset addressing
with the base register as PC, without writeback.

!=1111 0 1 0 0 U 1 1 0 Rn Rt imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond
F5-5122 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
A2

A2 variant

STRBT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
 register_form = TRUE; (shift_t, shift_n) = DecodeImmShift(stype, imm5);
 if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction on page K1-8387.

• The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset addressing
with the base register as PC, without writeback.

T1

T1 variant

STRBT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

!=1111 0 1 1 0 U 1 1 0 Rn Rt imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond

1 1 1 1 1 0 0 0 0 0 0 0 !=1111 Rt 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5123
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 if Rn == '1111' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, but this is deprecated.

For encoding A2 and T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to
+ if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register on page F1-4351.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to
0 if omitted, and encoded in the "imm12" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.
F5-5124 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
 EncodingSpecificOperations();
 offset = if register_form then Shift(R[m], shift_t, shift_n, PSTATE.C) else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 MemU_unpriv[address,1] = R[t]<7:0>;
 if postindex then R[n] = offset_addr;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as STRB (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5125
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.234 STRD (immediate)

Store Register Dual (immediate) calculates an address from a base register value and an immediate offset, and stores
two words from two registers to memory. It can use offset, post-indexed, or pre-indexed addressing. For information
about memory accesses see Memory accesses on page F1-4353.

A1

Offset variant

Applies when P == 1 && W == 0.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rt<0> == '1' then UNPREDICTABLE;
 t = UInt(Rt); t2 = t+1; n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if P == '0' && W == '1' then UNPREDICTABLE;
 if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;
 if t2 == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15 || t2 == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

!=1111 0 0 0 P U 1 W 0 Rn Rt imm4H 1 1 1 1 imm4L
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
F5-5126 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: t<0> = '0'.

• The instruction executes with the additional decode: t2 = t.

• The instruction executes as described, with no change to its behavior and no additional side-effects. This does
not apply when Rt == '1111'.

If P == '0' && W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as an LDRD using one of offset, post-indexed, or pre-indexed addressing.

T1

Offset variant

Applies when P == 1 && W == 0.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if P == '0' && W == '0' then SEE "Related encodings";
 t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if wback && (n == t || n == t2) then UNPREDICTABLE;
 if n == 15 || t == 15 || t2 == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15 || t2 == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

1 1 1 0 1 0 0 P U 1 W 0 !=1111 Rt Rt2 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5127
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: Load/store dual, load/store exclusive, load-acquire/store-release, and table branch on
page F3-4460.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field.
This register must be even-numbered and not R14.

For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. This register must be
<R(t+1)>.

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant, but this is deprecated.

For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is the unsigned immediate byte offset, a multiple of 4, in the range 0 to 1020,
defaulting to 0 if omitted, and encoded in the "imm8" field as <imm>/4.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
F5-5128 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 address = if index then offset_addr else R[n];
 if address == Align(address, 8) then
 bits(64) data;
 if BigEndian(AccType_ATOMIC) then
 data<63:32> = R[t];
 data<31:0> = R[t2];
 else
 data<31:0> = R[t];
 data<63:32> = R[t2];
 MemA[address,8] = data;
 else
 MemA[address,4] = R[t];
 MemA[address+4,4] = R[t2];
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5129
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.235 STRD (register)

Store Register Dual (register) calculates an address from a base register value and a register offset, and stores two
words from two registers to memory. It can use offset, post-indexed, or pre-indexed addressing. For information
about memory accesses see Memory accesses on page F1-4353.

A1

Offset variant

Applies when P == 1 && W == 0.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, {+/-}<Rm>]

Post-indexed variant

Applies when P == 0 && W == 0.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], {+/-}<Rm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, {+/-}<Rm>]!

Decode for all variants of this encoding

 if Rt<0> == '1' then UNPREDICTABLE;
 t = UInt(Rt); t2 = t+1; n = UInt(Rn); m = UInt(Rm);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if P == '0' && W == '1' then UNPREDICTABLE;
 if t2 == 15 || m == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15 || t2 == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

!=1111 0 0 0 P U 0 W 0 Rn Rt (0) (0) (0) (0) 1 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
F5-5130 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: t<0> = '0'.

• The instruction executes with the additional decode: t2 = t.

• The instruction executes as described, with no change to its behavior and no additional side-effects. This does
not apply when Rt == '1111'.

If P == '0' && W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: P = '1'; W = '0'.

• The instruction executes with the additional decode: P = '1'; W = '1'.

• The instruction executes with the additional decode: P = '0'; W = '0'.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field. This register must
be even-numbered and not R14.

<Rt2> Is the second general-purpose register to be transferred. This register must be <R(t+1)>.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset
variant, but this is deprecated.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
 address = if index then offset_addr else R[n];
 if address == Align(address, 8) then
 bits(64) data;
 if BigEndian(AccType_ATOMIC) then
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5131
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 data<63:32> = R[t];
 data<31:0> = R[t2];
 else
 data<31:0> = R[t];
 data<63:32> = R[t2];
 MemA[address,8] = data;
 else
 MemA[address,4] = R[t];
 MemA[address+4,4] = R[t2];
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-5132 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.236 STREX

Store Register Exclusive calculates an address from a base register value and an immediate offset, stores a word
from a register to the calculated address if the PE has exclusive access to the memory at that address, and returns a
status value of 0 if the store was successful, or of 1 if no store was performed.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

STREX{<c>}{<q>} <Rd>, <Rt>, [<Rn> {, {#}<imm>}]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn); imm32 = Zeros(32); // Zero offset
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

T1

T1 variant

STREX{<c>}{<q>} <Rd>, <Rt>, [<Rn> {, #<imm>}]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if d == n || d == t then UNPREDICTABLE;

!=1111 0 0 0 1 1 0 0 0 Rn Rd (1) (1) 1 1 1 0 0 1 Rt
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 0 0 0 0 1 0 0 Rn Rt Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5133
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<imm> For encoding A1: the immediate offset added to the value of <Rn> to calculate the address. <imm> can
only be 0 or omitted.

For encoding T1: the immediate offset added to the value of <Rn> to calculate the address. <imm> can
be omitted, meaning an offset of 0. Values are multiples of 4 in the range 0-1020.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Rd> is not updated.

A non word-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to
the following rules:

• If AArch32.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.
F5-5134 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 if AArch32.ExclusiveMonitorsPass(address,4) then
 MemA[address,4] = R[t];
 R[d] = ZeroExtend('0');
 else
 R[d] = ZeroExtend('1');

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5135
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.237 STREXB

Store Register Exclusive Byte derives an address from a base register value, stores a byte from a register to the
derived address if the executing PE has exclusive access to the memory at that address, and returns a status value
of 0 if the store was successful, or of 1 if no store was performed.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

STREXB{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

T1

T1 variant

STREXB{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if d == n || d == t then UNPREDICTABLE;

!=1111 0 0 0 1 1 1 0 0 Rn Rd (1) (1) 1 1 1 0 0 1 Rt
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 0 1 0 0 Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F5-5136 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Aborts

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Rd> is not updated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 if AArch32.ExclusiveMonitorsPass(address,1) then
 MemA[address,1] = R[t]<7:0>;
 R[d] = ZeroExtend('0');
 else
 R[d] = ZeroExtend('1');

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5137
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.238 STREXD

Store Register Exclusive Doubleword derives an address from a base register value, stores a 64-bit doubleword from
two registers to the derived address if the executing PE has exclusive access to the memory at that address, and
returns a status value of 0 if the store was successful, or of 1 if no store was performed.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

STREXD{<c>}{<q>} <Rd>, <Rt>, <Rt2>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); t2 = t+1; n = UInt(Rn);
 if d == 15 || Rt<0> == '1' || t2 == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t || d == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: Rt<0> = '0'.

• The instruction executes with the additional decode: t2 = t.

• The instruction executes as described, with no change to its behavior and no additional side effects.

If Rt == '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction is handled as described in Using R15 by instruction on page K1-8387.

!=1111 0 0 0 1 1 0 1 0 Rn Rd (1) (1) 1 1 1 0 0 1 Rt
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
F5-5138 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

STREXD{<c>}{<q>} <Rd>, <Rt>, <Rt2>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn);
 if d == 15 || t == 15 || t2 == 15 || n == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13
 if d == n || d == t || d == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rd> must not be the same as <Rn>, <Rt>, or <Rt2>.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt> must be even-numbered and not R14.

For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. <Rt2> must be <R(t+1)>.

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt Rt2 0 1 1 1 Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5139
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Rd> is not updated.

A non doubleword-aligned memory address causes an Alignment fault Data Abort exception to be generated,
subject to the following rules:

• If AArch32.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 // Create doubleword to store such that R[t] will be stored at address and R[t2] at address+4.
 value = if BigEndian(AccType_ATOMIC) then R[t]:R[t2] else R[t2]:R[t];
 if AArch32.ExclusiveMonitorsPass(address,8) then
 MemA[address,8] = value; R[d] = ZeroExtend('0');
 else
 R[d] = ZeroExtend('1');

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-5140 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.239 STREXH

Store Register Exclusive Halfword derives an address from a base register value, stores a halfword from a register
to the derived address if the executing PE has exclusive access to the memory at that address, and returns a status
value of 0 if the store was successful, or of 1 if no store was performed.

For more information about support for shared memory see Synchronization and semaphores on page E2-4331. For
information about memory accesses see Memory accesses on page F1-4353.

A1

A1 variant

STREXH{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

T1

T1 variant

STREXH{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if d == n || d == t then UNPREDICTABLE;

!=1111 0 0 0 1 1 1 1 0 Rn Rd (1) (1) 1 1 1 0 0 1 Rt
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 0 1 0 1 Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5141
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Rd> is not updated.

A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject
to the following rules:

• If AArch32.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 if AArch32.ExclusiveMonitorsPass(address,2) then
 MemA[address,2] = R[t]<15:0>;
 R[d] = ZeroExtend('0');
F5-5142 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 else
 R[d] = ZeroExtend('1');

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5143
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.240 STRH (immediate)

Store Register Halfword (immediate) calculates an address from a base register value and an immediate offset, and
stores a halfword from a register to memory. It can use offset, post-indexed, or pre-indexed addressing. For
information about memory accesses see Memory accesses on page F1-4353.

A1

Offset variant

Applies when P == 1 && W == 0.

STRH{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.

STRH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "STRHT";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if t == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

!=1111 0 0 0 P U 1 W 0 Rn Rt imm4H 1 0 1 1 imm4L
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
F5-5144 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

T1 variant

STRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'0', 32);
 index = TRUE; add = TRUE; wback = FALSE;

T2

T2 variant

STRH{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1
STRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = TRUE; add = TRUE; wback = FALSE;
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

T3

Offset variant

Applies when P == 1 && U == 0 && W == 0.

STRH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

1 0 0 0 0 imm5 Rn Rt
15 14 13 12 11 10 6 5 3 2 0

1 1 1 1 1 0 0 0 1 0 1 0 !=1111 Rt imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn

1 1 1 1 1 0 0 0 0 0 1 0 !=1111 Rt 1 P U W imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5145
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Post-indexed variant

Applies when P == 0 && W == 1.

STRH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if P == '1' && U == '1' && W == '0' then SEE "STRHT";
 if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
 index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if t == 15 || (wback && n == t) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant, but this is deprecated.

For encoding A1, T1, T2, T3: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.
F5-5146 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 2, in the
range 0 to 62, defaulting to 0 and encoded in the "imm5" field as <imm>/2.

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm8" field.

Operation for all encodings

 if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,2] = R[t]<15:0>;
 if wback then R[n] = offset_addr;
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,2] = R[t]<15:0>;
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5147
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.241 STRH (register)

Store Register Halfword (register) calculates an address from a base register value and an offset register value, and
stores a halfword from a register to memory. The offset register value can be shifted left by 0, 1, 2, or 3 bits. For
information about memory accesses see Memory accesses on page F1-4353.

A1

Offset variant

Applies when P == 1 && W == 0.

STRH{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]

Post-indexed variant

Applies when P == 0 && W == 0.

STRH{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRH{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "STRHT";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 (shift_t, shift_n) = (SRType_LSL, 0);
 if t == 15 || m == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

!=1111 0 0 0 P U 0 W 0 Rn Rt (0) (0) (0) (0) 1 0 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
F5-5148 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

T1 variant

STRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

T2 variant

STRH{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
STRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

 if Rn == '1111' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
 if t == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

0 1 0 1 0 0 1 Rm Rn Rt
15 14 13 12 11 10 9 8 6 5 3 2 0

1 1 1 1 1 0 0 0 0 0 1 0 !=1111 Rt 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5149
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant, but this is deprecated.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 MemU[address,2] = R[t]<15:0>;
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-5150 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.242 STRHT

Store Register Halfword Unprivileged stores a halfword from a register to memory. For information about memory
accesses see Memory accesses on page F1-4353.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is
actually running in User mode.

STRHT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or a register value.

A1

A1 variant

STRHT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
 register_form = FALSE; imm32 = ZeroExtend(imm4H:imm4L, 32);
 if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction on page K1-8387.

• The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset addressing
with the base register as PC, without writeback.

!=1111 0 0 0 0 U 1 1 0 Rn Rt imm4H 1 0 1 1 imm4L
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5151
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
A2

A2 variant

STRHT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
 register_form = TRUE;
 if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction on page K1-8387.

• The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset addressing
with the base register as PC, without writeback.

T1

T1 variant

STRHT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

!=1111 0 0 0 0 U 0 1 0 Rn Rt (0) (0) (0) (0) 1 0 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 0 0 0 0 1 0 !=1111 Rt 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
F5-5152 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 if Rn == '1111' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to
+ if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

 if ConditionPassed() then
 if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
 EncodingSpecificOperations();
 offset = if register_form then R[m] else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5153
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 MemU_unpriv[address,2] = R[t]<15:0>;
 if postindex then R[n] = offset_addr;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as STRH (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-5154 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.243 STRT

Store Register Unprivileged stores a word from a register to memory. For information about memory accesses see
Memory accesses on page F1-4353.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is
actually running in User mode.

STRT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or an optionally-shifted register value.

A1

A1 variant

STRT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
 register_form = FALSE; imm32 = ZeroExtend(imm12, 32);
 if n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction on page K1-8387.

• The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset addressing
with the base register as PC, without writeback.

A2

!=1111 0 1 0 0 U 0 1 0 Rn Rt imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

!=1111 0 1 1 0 U 0 1 0 Rn Rt imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5155
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
A2 variant

STRT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
 register_form = TRUE; (shift_t, shift_n) = DecodeImmShift(stype, imm5);
 if n == 15 || n == t || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction on page K1-8387.

• The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset addressing
with the base register as PC, without writeback.

T1

T1 variant

STRT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

1 1 1 1 1 0 0 0 0 1 0 0 !=1111 Rt 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
F5-5156 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> For encoding A1 and A2: is the general-purpose register to be transferred, encoded in the "Rt" field.
The PC can be used, but this is deprecated.

For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to
+ if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register on page F1-4351.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to
0 if omitted, and encoded in the "imm12" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

 if ConditionPassed() then
 if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
 EncodingSpecificOperations();
 offset = if register_form then Shift(R[m], shift_t, shift_n, PSTATE.C) else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 if t == 15 then // Only possible for encodings A1 and A2
 data = PCStoreValue();
 else
 data = R[t];
 MemU_unpriv[address,4] = data;
 if postindex then R[n] = offset_addr;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5157
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as STR (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5-5158 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.244 SUB (immediate, from PC)

Subtract from PC subtracts an immediate value from the Align(PC, 4) value to form a PC-relative address, and
writes the result to the destination register. Arm recommends that, where possible, software avoids using this alias

This instruction is an alias of the ADR instruction. This means that:

• The encodings in this description are named to match the encodings of ADR.

• The description of ADR gives the operational pseudocode for this instruction.

A2

A2 variant

SUB{<c>}{<q>} <Rd>, PC, #<const>

 is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is the preferred disassembly when imm12 == '000000000000'.

T2

T2 variant

SUB{<c>}{<q>} <Rd>, PC, #<imm12>

 is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is the preferred disassembly when i:imm3:imm8 == '000000000000'.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A2: is the general-purpose destination register, encoded in the "Rd" field. If the PC is
used, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC on page E1-4253.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field.

<label> For encoding A2: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the
ADR instruction to this label.

If the offset is zero or positive, encoding A1 is used, with imm32 equal to the offset.

!=1111 0 0 1 0 0 1 0 0 1 1 1 1 Rd imm12
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 0

cond

1 1 1 1 0 i 1 0 1 0 1 0 1 1 1 1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5159
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
If the offset is negative, encoding A2 is used, with imm32 equal to the size of the offset. That is, the
use of encoding A2 indicates that the required offset is minus the value of imm32.

Permitted values of the size of the offset are any of the constants described in Modified immediate
constants in A32 instructions on page F1-4364.

For encoding T2: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the
ADR instruction to this label.

If the offset is zero or positive, encoding T3 is used, with imm32 equal to the offset.

If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset. That is, the
use of encoding T2 indicates that the required offset is minus the value of imm32.

Permitted values of the size of the offset are 0-4095.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> An immediate value. See Modified immediate constants in A32 instructions on page F1-4364 for the
range of values.

Operation for all encodings

The description of ADR gives the operational pseudocode for this instruction.
F5-5160 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.245 SUB, SUBS (immediate)

Subtract (immediate) subtracts an immediate value from a register value, and writes the result to the destination
register.

If the destination register is not the PC, the SUBS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:

• The SUB variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The SUBS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode, except for encoding T5 with <imm8> set to zero, which is
the encoding for the ERET instruction, see ERET.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

SUB variant

Applies when S == 0 && Rn != 11x1.

SUB{<c>}{<q>} {<Rd>,} <Rn>, #<const>

SUBS variant

Applies when S == 1 && Rn != 1101.

SUBS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 if Rn == '1111' && S == '0' then SEE "ADR";
 if Rn == '1101' then SEE "SUB (SP minus immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

T1 variant

SUB<c>{<q>} <Rd>, <Rn>, #<imm3> // Inside IT block
SUBS{<q>} <Rd>, <Rn>, #<imm3> // Outside IT block

!=1111 0 0 1 0 0 1 0 S Rn Rd imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

0 0 0 1 1 1 1 imm3 Rn Rd
15 14 13 12 11 10 9 8 6 5 3 2 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5161
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);

T2

T2 variant

SUB<c>{<q>} <Rdn>, #<imm8> // Inside IT block, and <Rdn>, <imm8> can be represented in T1
SUB<c>{<q>} {<Rdn>,} <Rdn>, #<imm8> // Inside IT block, and <Rdn>, <imm8> cannot be represented in T1
SUBS{<q>} <Rdn>, #<imm8> // Outside IT block, and <Rdn>, <imm8> can be represented in T1
SUBS{<q>} {<Rdn>,} <Rdn>, #<imm8> // Outside IT block, and <Rdn>, <imm8> cannot be represented in T1

Decode for this encoding

 d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);

T3

SUB variant

Applies when S == 0.

SUB<c>.W {<Rd>,} <Rn>, #<const> // Inside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or
T2
SUB{<c>}{<q>} {<Rd>,} <Rn>, #<const>

SUBS variant

Applies when S == 1 && Rd != 1111.

SUBS.W {<Rd>,} <Rn>, #<const> // Outside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2
SUBS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "CMP (immediate)";
 if Rn == '1101' then SEE "SUB (SP minus immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
 if (d == 15 && !setflags) || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T4

0 0 1 1 1 Rdn imm8
15 14 13 12 11 10 8 7 0

1 1 1 1 0 i 0 1 1 0 1 S !=1101 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

Rn

1 1 1 1 0 i 1 0 1 0 1 0 !=11x1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

Rn
F5-5162 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T4 variant

SUB{<c>}{<q>} {<Rd>,} <Rn>, #<imm12> // <imm12> cannot be represented in T1, T2, or T3
SUBW{<c>}{<q>} {<Rd>,} <Rn>, #<imm12> // <imm12> can be represented in T1, T2, or T3

Decode for this encoding

 if Rn == '1111' then SEE "ADR";
 if Rn == '1101' then SEE "SUB (SP minus immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T5

T5 variant

Applies when !(Rn == 1110 && imm8 == 00000000).

SUBS{<c>}{<q>} PC, LR, #<imm8>

Decode for this encoding

 if Rn == '1110' && IsZero(imm8) then SEE "ERET";
 d = 15; n = UInt(Rn); setflags = TRUE; imm32 = ZeroExtend(imm8, 32);
 if n != 14 then UNPREDICTABLE;
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly SUBS PC. LR and related instructions
(A32) on page K1-8400 and SUBS PC, LR and related instructions (T32) on page K1-8399.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rdn> Is the general-purpose source and destination register, encoded in the "Rdn" field.

<imm8> For encoding T2: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

For encoding T5: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
If <Rn> is the LR, and zero is used, see ERET.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. If the PC is used:

• For the SUB variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the SUBS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>. Arm deprecates use of this instruction unless <Rn> is the LR.

For encoding T1, T3 and T4: is the general-purpose destination register, encoded in the "Rd" field.
If omitted, this register is the same as <Rn>.

1 1 1 1 0 0 1 1 1 1 0 1 Rn 1 0 (0) 0 (1) (1) (1) (1) imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5163
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rn> For encoding A1 and T4: is the general-purpose source register, encoded in the "Rn" field. If the SP
is used, see SUB, SUBS (SP minus immediate). If the PC is used, see ADR.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

For encoding T3: is the general-purpose source register, encoded in the "Rn" field. If the SP is used,
see SUB, SUBS (SP minus immediate).

<imm3> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "imm3" field.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on
page F1-4364 for the range of values.

For encoding T3: an immediate value. See Modified immediate constants in T32 instructions on
page F1-4362 for the range of values.

In the T32 instruction set, MOVS{<c>}{<q>} PC, LR is a pseudo-instruction for SUBS{<c>}{<q>} PC, LR, #0.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(R[n], NOT(imm32), '1');
 if d == 15 then
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-5164 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.246 SUB, SUBS (register)

Subtract (register) subtracts an optionally-shifted register value from a register value, and writes the result to the
destination register.

If the destination register is not the PC, the SUBS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. However,
when the destination register is the PC:

• The SUB variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The SUBS variant of the instruction performs an exception return without the use of the stack. Arm
deprecates use of this instruction. However, in this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

SUB, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SUB, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SUBS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SUBS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 if Rn == '1101' then SEE "SUB (SP minus register)";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 0 0 1 0 S !=1101 Rd imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5165
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

SUB<c>{<q>} <Rd>, <Rn>, <Rm> // Inside IT block
SUBS{<q>} {<Rd>,} <Rn>, <Rm> // Outside IT block

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

SUB, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SUB, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

SUB<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SUBS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11.

SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SUBS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111.

SUBS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "CMP (register)";
 if Rn == '1101' then SEE "SUB (SP minus register)";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if (d == 15 && !setflags) || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

0 0 0 1 1 0 1 Rm Rn Rd
15 14 13 12 11 10 9 8 6 5 3 2 0

1 1 1 0 1 0 1 1 1 0 1 S !=1101 (0) imm3 Rd imm2 stype Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0

Rn
F5-5166 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the SUB variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the SUBS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1 and T2: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated. If the SP is used, see SUB, SUBS (SP minus register).

For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field. If the SP is
used, see SUB, SUBS (SP minus register).

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], NOT(shifted), '1');
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5167
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-5168 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.247 SUB, SUBS (register-shifted register)

Subtract (register-shifted register) subtracts a register-shifted register value from a register value, and writes the
result to the destination register. It can optionally update the condition flags based on the result.

A1

Flag setting variant

Applies when S == 1.

SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

!=1111 0 0 0 0 0 1 0 S Rn Rd Rs 0 stype 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5169
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], NOT(shifted), '1');
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-5170 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.248 SUB, SUBS (SP minus immediate)

Subtract from SP (immediate) subtracts an immediate value from the SP value, and writes the result to the
destination register.

If the destination register is not the PC, the SUBS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:

• The SUB variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The SUBS variant of the instruction performs an exception return without the use of the stack. Arm
deprecates use of this instruction. However, in this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

SUB variant

Applies when S == 0.

SUB{<c>}{<q>} {<Rd>,} SP, #<const>

SUBS variant

Applies when S == 1.

SUBS{<c>}{<q>} {<Rd>,} SP, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

T1 variant

SUB{<c>}{<q>} {SP,} SP, #<imm7>

Decode for this encoding

 d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:'00', 32);

!=1111 0 0 1 0 0 1 0 S 1 1 0 1 Rd imm12
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 0

cond

1 0 1 1 0 0 0 0 1 imm7
15 14 13 12 11 10 9 8 7 6 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5171
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T2

SUB variant

Applies when S == 0.

SUB{<c>}.W {<Rd>,} SP, #<const> // <Rd>, <const> can be represented in T1
SUB{<c>}{<q>} {<Rd>,} SP, #<const>

SUBS variant

Applies when S == 1 && Rd != 1111.

SUBS{<c>}{<q>} {<Rd>,} SP, #<const>

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "CMP (immediate)";
 d = UInt(Rd); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
 if d == 15 && !setflags then UNPREDICTABLE;

T3

T3 variant

SUB{<c>}{<q>} {<Rd>,} SP, #<imm12> // <imm12> cannot be represented in T1, T2, or T3
SUBW{<c>}{<q>} {<Rd>,} SP, #<imm12> // <imm12> can be represented in T1, T2, or T3

Decode for this encoding

 d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
 if d == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

SP, Is the stack pointer.

<imm7> Is the unsigned immediate, a multiple of 4, in the range 0 to 508, encoded in the "imm7" field as
<imm7>/4.

1 1 1 1 0 i 0 1 1 0 1 S 1 1 0 1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0

1 1 1 1 0 i 1 0 1 0 1 0 1 1 0 1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0
F5-5172 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the SP. If the PC is used:

• For the SUB variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the SUBS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>. Arm deprecates use of this instruction unless <Rn> is the LR.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the SP.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on
page F1-4364 for the range of values.

For encoding T2: an immediate value. See Modified immediate constants in T32 instructions on
page F1-4362 for the range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(SP, NOT(imm32), '1');
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5173
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.249 SUB, SUBS (SP minus register)

Subtract from SP (register) subtracts an optionally-shifted register value from the SP value, and writes the result to
the destination register.

If the destination register is not the PC, the SUBS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:

• The SUB variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC on page E1-4253.

• The SUBS variant of the instruction performs an exception return without the use of the stack. Arm
deprecates use of this instruction. However, in this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state on page G1-6066.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

SUB, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

SUB{<c>}{<q>} {<Rd>,} SP, <Rm> , RRX

SUB, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

SUB{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

SUBS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

SUBS{<c>}{<q>} {<Rd>,} SP, <Rm> , RRX

SUBS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

SUBS{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 0 0 1 0 S 1 1 0 1 Rd imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond
F5-5174 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

SUB, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

SUB{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

SUB, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

SUB{<c>}.W {<Rd>,} SP, <Rm> // <Rd>, <Rm> can be represented in T1 or T2
SUB{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

SUBS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11.

SUBS{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

SUBS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111.

SUBS{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "CMP (register)";
 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if (d == 15 && !setflags) || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the SP. Arm deprecates using the PC as the destination register, but if the PC is used:

• For the SUB variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC on page E1-4253.

• For the SUBS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the SP.

1 1 1 0 1 0 1 1 1 0 1 S 1 1 0 1 (0) imm3 Rd imm2 stype Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5175
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(SP, NOT(shifted), '1');
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;
F5-5176 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.250 SVC

Supervisor Call causes a Supervisor Call exception. For more information, see Supervisor Call (SVC) exception on
page G1-6082.

Note

SVC was previously called SWI, Software Interrupt, and this name is still found in some documentation.

Software can use this instruction as a call to an operating system to provide a service.

In the following cases, the Supervisor Call exception generated by the SVC instruction is taken to Hyp mode:

• If the SVC is executed in Hyp mode.

• If HCR.TGE is set to 1, and the SVC is executed in Non-secure User mode. For more information, see
Supervisor Call exception, when the value of HCR.TGE is 1 on page G1-6059

In these cases, the HSR identifies that the exception entry was caused by a Supervisor Call exception, EC value 0x11,
see Use of the HSR on page G5-6381. The immediate field in the HSR:

• If the SVC is unconditional:

— For the T32 instruction, is the zero-extended value of the imm8 field.

— For the A32 instruction, is the least-significant 16 bits the imm24 field.

• If the SVC is conditional, is UNKNOWN.

A1

A1 variant

SVC{<c>}{<q>} {#}<imm>

Decode for this encoding

 imm32 = ZeroExtend(imm24, 32);

T1

T1 variant

SVC{<c>}{<q>} {#}<imm>

Decode for this encoding

 imm32 = ZeroExtend(imm8, 32);

!=1111 1 1 1 1 imm24
31 28 27 26 25 24 23 0

cond

1 1 0 1 1 1 1 1 imm8
15 14 13 12 11 10 9 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5177
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<imm> For encoding A1: is a 24-bit unsigned immediate, in the range 0 to 16777215, encoded in the
"imm24" field. This value is for assembly and disassembly only. SVC handlers in some systems
interpret imm24 in software, for example to determine the required service.

For encoding T1: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
This value is for assembly and disassembly only. SVC handlers in some systems interpret imm8 in
software, for example to determine the required service.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 AArch32.CheckForSVCTrap(imm32<15:0>);
 AArch32.CallSupervisor(imm32<15:0>);
F5-5178 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.251 SXTAB

Signed Extend and Add Byte extracts an 8-bit value from a register, sign-extends it to 32 bits, adds the result to the
value in another register, and writes the final result to the destination register. The instruction can specify a rotation
by 0, 8, 16, or 24 bits before extracting the 8-bit value.

A1

A1 variant

SXTAB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "SXTB";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SXTAB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "SXTB";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

!=1111 0 1 1 0 1 0 1 0 !=1111 Rd rotate (0) (0) 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond Rn

1 1 1 1 1 0 1 0 0 1 0 0 !=1111 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5179
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = R[n] + SignExtend(rotated<7:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-5180 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.252 SXTAB16

Signed Extend and Add Byte 16 extracts two 8-bit values from a register, sign-extends them to 16 bits each, adds
the results to two 16-bit values from another register, and writes the final results to the destination register. The
instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit values.

A1

A1 variant

SXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "SXTB16";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "SXTB16";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

!=1111 0 1 1 0 1 0 0 0 !=1111 Rd rotate (0) (0) 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond Rn

1 1 1 1 1 0 1 0 0 0 1 0 !=1111 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5181
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d]<15:0> = R[n]<15:0> + SignExtend(rotated<7:0>, 16);
 R[d]<31:16> = R[n]<31:16> + SignExtend(rotated<23:16>, 16);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-5182 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.253 SXTAH

Signed Extend and Add Halfword extracts a 16-bit value from a register, sign-extends it to 32 bits, adds the result
to a value from another register, and writes the final result to the destination register. The instruction can specify a
rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.

A1

A1 variant

SXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "SXTH";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "SXTH";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

!=1111 0 1 1 0 1 0 1 1 !=1111 Rd rotate (0) (0) 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond Rn

1 1 1 1 1 0 1 0 0 0 0 0 !=1111 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5183
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = R[n] + SignExtend(rotated<15:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-5184 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.254 SXTB

Signed Extend Byte extracts an 8-bit value from a register, sign-extends it to 32 bits, and writes the result to the
destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

A1

A1 variant

SXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SXTB{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2

T2 variant

SXTB{<c>}.W {<Rd>,} <Rm> // <Rd>, <Rm> can be represented in T1
SXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 1 1 0 1 0 1 0 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 0 1 1 0 0 1 0 0 1 Rm Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5185
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = SignExtend(rotated<7:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-5186 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.255 SXTB16

Signed Extend Byte 16 extracts two 8-bit values from a register, sign-extends them to 16 bits each, and writes the
results to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the
8-bit values.

A1

A1 variant

SXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

!=1111 0 1 1 0 1 0 0 0 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5187
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d]<15:0> = SignExtend(rotated<7:0>, 16);
 R[d]<31:16> = SignExtend(rotated<23:16>, 16);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-5188 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.256 SXTH

Signed Extend Halfword extracts a 16-bit value from a register, sign-extends it to 32 bits, and writes the result to
the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit
value.

A1

A1 variant

SXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SXTH{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2

T2 variant

SXTH{<c>}.W {<Rd>,} <Rm> // <Rd>, <Rm> can be represented in T1
SXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 1 1 0 1 0 1 1 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 0 1 1 0 0 1 0 0 0 Rm Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5189
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = SignExtend(rotated<15:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-5190 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.257 TBB, TBH

Table Branch Byte or Halfword causes a PC-relative forward branch using a table of single byte or halfword offsets.
A base register provides a pointer to the table, and a second register supplies an index into the table. The branch
length is twice the value returned from the table.

T1

Byte variant

Applies when H == 0.

TBB{<c>}{<q>} [<Rn>, <Rm>] // Outside or last in IT block

Halfword variant

Applies when H == 1.

TBH{<c>}{<q>} [<Rn>, <Rm>, LSL #1] // Outside or last in IT block

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm); is_tbh = (H == '1');
 if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> Is the general-purpose base register holding the address of the table of branch lengths, encoded in
the "Rn" field. The PC can be used. If it is, the table immediately follows this instruction.

<Rm> For the byte variant: is the general-purpose index register, encoded in the "Rm" field. This register
contains an integer pointing to a single byte in the table. The offset in the table is the value of the
index.

For the halfword variant: is the general-purpose index register, encoded in the "Rm" field. This
register contains an integer pointing to a halfword in the table. The offset in the table is twice the
value of the index.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 if is_tbh then
 halfwords = UInt(MemU[R[n]+LSL(R[m],1), 2]);
 else

1 1 1 0 1 0 0 0 1 1 0 1 Rn (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 H Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5191
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 halfwords = UInt(MemU[R[n]+R[m], 1]);
 BranchWritePC(PC + 2*halfwords, BranchType_INDIR);
F5-5192 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.258 TEQ (immediate)

Test Equivalence (immediate) performs a bitwise exclusive OR operation on a register value and an immediate
value. It updates the condition flags based on the result, and discards the result.

A1

A1 variant

TEQ{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

 n = UInt(Rn);
 (imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

T1 variant

TEQ{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

 n = UInt(Rn);
 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
 if n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on
page F1-4364 for the range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions on
page F1-4362 for the range of values.

!=1111 0 0 1 1 0 0 1 1 Rn (0) (0) (0) (0) imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0

cond

1 1 1 1 0 i 0 0 1 0 0 1 Rn 0 imm3 1 1 1 1 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5193
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] EOR imm32;
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-5194 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.259 TEQ (register)

Test Equivalence (register) performs a bitwise exclusive OR operation on a register value and an optionally-shifted
register value. It updates the condition flags based on the result, and discards the result.

A1

Rotate right with extend variant

Applies when imm5 == 00000 && stype == 11.

TEQ{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm5 == 00000 && stype == 11).

TEQ{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && stype == 11.

TEQ{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && stype == 11).

TEQ{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 0 0 1 0 0 1 1 Rn (0) (0) (0) (0) imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 7 6 5 4 3 0

cond

1 1 1 0 1 0 1 0 1 0 0 1 Rn (0) imm3 1 1 1 1 imm2 stype Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5195
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] EOR shifted;
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-5196 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.260 TEQ (register-shifted register)

Test Equivalence (register-shifted register) performs a bitwise exclusive OR operation on a register value and a
register-shifted register value. It updates the condition flags based on the result, and discards the result.

A1

A1 variant

TEQ{<c>}{<q>} <Rn>, <Rm>, <type> <Rs>

Decode for this encoding

 n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 shift_t = DecodeRegShift(stype);
 if n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<type> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] EOR shifted;
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

!=1111 0 0 0 1 0 0 1 1 Rn (0) (0) (0) (0) Rs 0 stype 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5197
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-5198 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.261 TSB CSYNC

Trace Synchronization Barrier. This instruction is a barrier that synchronizes the trace operations of instructions.

If FEAT_TRF is not implemented, this instruction executes as a NOP.

A1

(FEAT_TRF)

A1 variant

TSB{<c>}{<q>} CSYNC

Decode for this encoding

 if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
 if cond != '1110' then UNPREDICTABLE; // ESB must be encoded with AL condition

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

T1

(FEAT_TRF)

T1 variant

TSB{<c>}{<q>} CSYNC

Decode for this encoding

 if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 1 0 0 1 0
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 1 0 0 1 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5199
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes unconditionally.

• The instruction executes conditionally.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 TraceSynchronizationBarrier();
F5-5200 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.262 TST (immediate)

Test (immediate) performs a bitwise AND operation on a register value and an immediate value. It updates the
condition flags based on the result, and discards the result.

A1

A1 variant

TST{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

 n = UInt(Rn);
 (imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

T1 variant

TST{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

 n = UInt(Rn);
 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
 if n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on
page F1-4364 for the range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions on
page F1-4362 for the range of values.

!=1111 0 0 1 1 0 0 0 1 Rn (0) (0) (0) (0) imm12
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0

cond

1 1 1 1 0 i 0 0 0 0 0 1 Rn 0 imm3 1 1 1 1 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5201
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] AND imm32;
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F5-5202 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.263 TST (register)

Test (register) performs a bitwise AND operation on a register value and an optionally-shifted register value. It
updates the condition flags based on the result, and discards the result.

A1

Rotate right with extend variant

Applies when imm5 == 00000 && stype == 11.

TST{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm5 == 00000 && stype == 11).

TST{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

T1 variant

TST{<c>}{<q>} <Rn>, <Rm>

Decode for this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && stype == 11.

TST{<c>}{<q>} <Rn>, <Rm>, RRX

!=1111 0 0 0 1 0 0 0 1 Rn (0) (0) (0) (0) imm5 stype 0 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 7 6 5 4 3 0

cond

0 1 0 0 0 0 1 0 0 0 Rm Rn
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 0 0 0 0 1 Rn (0) imm3 1 1 1 1 imm2 stype Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5203
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && stype == 11).

TST{<c>}.W <Rn>, <Rm> // <Rn>, <Rm> can be represented in T1
TST{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

For encoding T1 and T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] AND shifted;
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged
F5-5204 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5205
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.264 TST (register-shifted register)

Test (register-shifted register) performs a bitwise AND operation on a register value and a register-shifted register
value. It updates the condition flags based on the result, and discards the result.

A1

A1 variant

TST{<c>}{<q>} <Rn>, <Rm>, <type> <Rs>

Decode for this encoding

 n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 shift_t = DecodeRegShift(stype);
 if n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<type> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] AND shifted;
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

!=1111 0 0 0 1 0 0 0 1 Rn (0) (0) (0) (0) Rs 0 stype 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond
F5-5206 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5207
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.265 UADD16

Unsigned Add 16 performs two 16-bit unsigned integer additions, and writes the results to the destination register.
It sets PSTATE.GE according to the results of the additions.

A1

A1 variant

UADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<15:0>) + UInt(R[m]<15:0>);

!=1111 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5208 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = UInt(R[n]<31:16>) + UInt(R[m]<31:16>);
 R[d]<15:0> = sum1<15:0>;
 R[d]<31:16> = sum2<15:0>;
 PSTATE.GE<1:0> = if sum1 >= 0x10000 then '11' else '00';
 PSTATE.GE<3:2> = if sum2 >= 0x10000 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5209
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.266 UADD8

Unsigned Add 8 performs four unsigned 8-bit integer additions, and writes the results to the destination register. It
sets PSTATE.GE according to the results of the additions.

A1

A1 variant

UADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<7:0>) + UInt(R[m]<7:0>);

!=1111 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5210 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = UInt(R[n]<15:8>) + UInt(R[m]<15:8>);
 sum3 = UInt(R[n]<23:16>) + UInt(R[m]<23:16>);
 sum4 = UInt(R[n]<31:24>) + UInt(R[m]<31:24>);
 R[d]<7:0> = sum1<7:0>;
 R[d]<15:8> = sum2<7:0>;
 R[d]<23:16> = sum3<7:0>;
 R[d]<31:24> = sum4<7:0>;
 PSTATE.GE<0> = if sum1 >= 0x100 then '1' else '0';
 PSTATE.GE<1> = if sum2 >= 0x100 then '1' else '0';
 PSTATE.GE<2> = if sum3 >= 0x100 then '1' else '0';
 PSTATE.GE<3> = if sum4 >= 0x100 then '1' else '0';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5211
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.267 UASX

Unsigned Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one
unsigned 16-bit integer addition and one unsigned 16-bit subtraction, and writes the results to the destination
register. It sets PSTATE.GE according to the results.

A1

A1 variant

UASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5212 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff = UInt(R[n]<15:0>) - UInt(R[m]<31:16>);
 sum = UInt(R[n]<31:16>) + UInt(R[m]<15:0>);
 R[d]<15:0> = diff<15:0>;
 R[d]<31:16> = sum<15:0>;
 PSTATE.GE<1:0> = if diff >= 0 then '11' else '00';
 PSTATE.GE<3:2> = if sum >= 0x10000 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5213
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.268 UBFX

Unsigned Bit Field Extract extracts any number of adjacent bits at any position from a register, zero-extends them
to 32 bits, and writes the result to the destination register.

A1

A1 variant

UBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn);
 lsbit = UInt(lsb); widthminus1 = UInt(widthm1);
 if d == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

UBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn);
 lsbit = UInt(imm3:imm2); widthminus1 = UInt(widthm1);
 if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<lsb> For encoding A1: is the bit number of the least significant bit in the field, in the range 0 to 31,
encoded in the "lsb" field.

For encoding T1: is the bit number of the least significant bit in the field, in the range 0 to 31,
encoded in the "imm3:imm2" field.

!=1111 0 1 1 1 1 1 1 widthm1 Rd lsb 1 0 1 Rn
31 28 27 26 25 24 23 22 21 20 16 15 12 11 7 6 5 4 3 0

cond

1 1 1 1 0 (0) 1 1 1 1 0 0 Rn 0 imm3 Rd imm2 (0) widthm1
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 0
F5-5214 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<width> Is the width of the field, in the range 1 to 32-<lsb>, encoded in the "widthm1" field as <width>-1.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 msbit = lsbit + widthminus1;
 if msbit <= 31 then
 R[d] = ZeroExtend(R[n]<msbit:lsbit>, 32);
 else
 UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5215
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.269 UDF

Permanently Undefined generates an Undefined Instruction exception.

The encodings for UDF used in this section are defined as permanently UNDEFINED in the Armv8-A architecture.
However:

• With the T32 instruction set, Arm deprecates using the UDF instruction in an IT block.

• In the A32 instruction set, UDF is not conditional.

A1

A1 variant

UDF{<c>}{<q>} {#}<imm>

Decode for this encoding

 imm32 = ZeroExtend(imm12:imm4, 32);
 // imm32 is for assembly and disassembly only, and is ignored by hardware.

T1

T1 variant

UDF{<c>}{<q>} {#}<imm>

Decode for this encoding

 imm32 = ZeroExtend(imm8, 32);
 // imm32 is for assembly and disassembly only, and is ignored by hardware.

T2

T2 variant

UDF{<c>}.W {#}<imm> // <imm> can be represented in T1
UDF{<c>}{<q>} {#}<imm>

Decode for this encoding

 imm32 = ZeroExtend(imm4:imm12, 32);
 // imm32 is for assembly and disassembly only, and is ignored by hardware.

1 1 1 0 0 1 1 1 1 1 1 1 imm12 1 1 1 1 imm4
31 28 27 26 25 24 23 22 21 20 19 8 7 6 5 4 3 0

cond

1 1 0 1 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 0

1 1 1 1 0 1 1 1 1 1 1 1 imm4 1 0 1 0 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 0
F5-5216 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. <c> must be AL or omitted.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348. Arm deprecates
using any <c> value other than AL.

<q> See Standard assembler syntax fields on page F1-4348.

<imm> For encoding A1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm12:imm4" field. The PE ignores the value of this constant.

For encoding T1: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
The PE ignores the value of this constant.

For encoding T2: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:imm12" field. The PE ignores the value of this constant.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 UNDEFINED;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5217
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.270 UDIV

Unsigned Divide divides a 32-bit unsigned integer register value by a 32-bit unsigned integer register value, and
writes the result to the destination register. The condition flags are not affected.

See Divide instructions on page F2-4387 for more information about this instruction.

A1

A1 variant

UDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 if d == 15 || n == 15 || m == 15 || a != 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Ra != '1111', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction performs a divide and the register specified by Ra becomes UNKNOWN.

T1

T1 variant

UDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 if d == 15 || n == 15 || m == 15 || a != 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If Ra != '1111', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction performs a divide and the register specified by Ra becomes UNKNOWN.

!=1111 0 1 1 1 0 0 1 1 Rd (1) (1) (1) (1) Rm 0 0 0 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond Ra

1 1 1 1 1 0 1 1 1 0 1 1 Rn (1) (1) (1) (1) Rd 1 1 1 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
F5-5218 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the dividend, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the divisor, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if UInt(R[m]) == 0 then
 result = 0;
 else
 result = RoundTowardsZero(Real(UInt(R[n])) / Real(UInt(R[m])));
 R[d] = result<31:0>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5219
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.271 UHADD16

Unsigned Halving Add 16 performs two unsigned 16-bit integer additions, halves the results, and writes the results
to the destination register.

A1

A1 variant

UHADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UHADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<15:0>) + UInt(R[m]<15:0>);

!=1111 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5220 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = UInt(R[n]<31:16>) + UInt(R[m]<31:16>);
 R[d]<15:0> = sum1<16:1>;
 R[d]<31:16> = sum2<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5221
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.272 UHADD8

Unsigned Halving Add 8 performs four unsigned 8-bit integer additions, halves the results, and writes the results to
the destination register.

A1

A1 variant

UHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<7:0>) + UInt(R[m]<7:0>);

!=1111 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5222 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = UInt(R[n]<15:8>) + UInt(R[m]<15:8>);
 sum3 = UInt(R[n]<23:16>) + UInt(R[m]<23:16>);
 sum4 = UInt(R[n]<31:24>) + UInt(R[m]<31:24>);
 R[d]<7:0> = sum1<8:1>;
 R[d]<15:8> = sum2<8:1>;
 R[d]<23:16> = sum3<8:1>;
 R[d]<31:24> = sum4<8:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5223
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.273 UHASX

Unsigned Halving Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs
one unsigned 16-bit integer addition and one unsigned 16-bit subtraction, halves the results, and writes the results
to the destination register.

A1

A1 variant

UHASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UHASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5224 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff = UInt(R[n]<15:0>) - UInt(R[m]<31:16>);
 sum = UInt(R[n]<31:16>) + UInt(R[m]<15:0>);
 R[d]<15:0> = diff<16:1>;
 R[d]<31:16> = sum<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5225
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.274 UHSAX

Unsigned Halving Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs
one unsigned 16-bit integer subtraction and one unsigned 16-bit addition, halves the results, and writes the results
to the destination register.

A1

A1 variant

UHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5226 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum = UInt(R[n]<15:0>) + UInt(R[m]<31:16>);
 diff = UInt(R[n]<31:16>) - UInt(R[m]<15:0>);
 R[d]<15:0> = sum<16:1>;
 R[d]<31:16> = diff<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5227
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.275 UHSUB16

Unsigned Halving Subtract 16 performs two unsigned 16-bit integer subtractions, halves the results, and writes the
results to the destination register.

A1

A1 variant

UHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<15:0>) - UInt(R[m]<15:0>);

!=1111 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5228 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = UInt(R[n]<31:16>) - UInt(R[m]<31:16>);
 R[d]<15:0> = diff1<16:1>;
 R[d]<31:16> = diff2<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5229
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.276 UHSUB8

Unsigned Halving Subtract 8 performs four unsigned 8-bit integer subtractions, halves the results, and writes the
results to the destination register.

A1

A1 variant

UHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<7:0>) - UInt(R[m]<7:0>);

!=1111 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5230 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = UInt(R[n]<15:8>) - UInt(R[m]<15:8>);
 diff3 = UInt(R[n]<23:16>) - UInt(R[m]<23:16>);
 diff4 = UInt(R[n]<31:24>) - UInt(R[m]<31:24>);
 R[d]<7:0> = diff1<8:1>;
 R[d]<15:8> = diff2<8:1>;
 R[d]<23:16> = diff3<8:1>;
 R[d]<31:24> = diff4<8:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5231
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.277 UMAAL

Unsigned Multiply Accumulate Accumulate Long multiplies two unsigned 32-bit values to produce a 64-bit value,
adds two unsigned 32-bit values, and writes the 64-bit result to two registers.

A1

A1 variant

UMAAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

T1 variant

UMAAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

!=1111 0 0 0 0 0 1 0 0 RdHi RdLo Rm 1 0 0 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 1 1 1 0 Rn RdLo RdHi 0 1 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
F5-5232 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<RdLo> Is the general-purpose source register holding the first addend and the destination register for the
lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the second addend and the destination register for the
upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = UInt(R[n]) * UInt(R[m]) + UInt(R[dHi]) + UInt(R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5233
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.278 UMLAL, UMLALS

Unsigned Multiply Accumulate Long multiplies two unsigned 32-bit values to produce a 64-bit value, and
accumulates this with a 64-bit value.

In A32 instructions, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many implementations.

A1

Flag setting variant

Applies when S == 1.

UMLALS{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Not flag setting variant

Applies when S == 0.

UMLAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

T1 variant

UMLAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13
 if dHi == dLo then UNPREDICTABLE;

!=1111 0 0 0 0 1 0 1 S RdHi RdLo Rm 1 0 0 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 1 1 1 0 Rn RdLo RdHi 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
F5-5234 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = UInt(R[n]) * UInt(R[m]) + UInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;
 if setflags then
 PSTATE.N = result<63>;
 PSTATE.Z = IsZeroBit(result<63:0>);
 // PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5235
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.279 UMULL, UMULLS

Unsigned Multiply Long multiplies two 32-bit unsigned values to produce a 64-bit result.

In A32 instructions, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many implementations.

A1

Flag setting variant

Applies when S == 1.

UMULLS{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Not flag setting variant

Applies when S == 0.

UMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

T1 variant

UMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13
 if dHi == dLo then UNPREDICTABLE;

!=1111 0 0 0 0 1 0 0 S RdHi RdLo Rm 1 0 0 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 1 0 1 0 Rn RdLo RdHi 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
F5-5236 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<RdLo> Is the general-purpose destination register for the lower 32 bits of the result, encoded in the "RdLo"
field.

<RdHi> Is the general-purpose destination register for the upper 32 bits of the result, encoded in the "RdHi"
field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = UInt(R[n]) * UInt(R[m]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;
 if setflags then
 PSTATE.N = result<63>;
 PSTATE.Z = IsZeroBit(result<63:0>);
 // PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5237
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.280 UQADD16

Unsigned Saturating Add 16 performs two unsigned 16-bit integer additions, saturates the results to the 16-bit
unsigned integer range 0 <= x <= 216 - 1, and writes the results to the destination register.

A1

A1 variant

UQADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UQADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<15:0>) + UInt(R[m]<15:0>);

!=1111 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5238 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = UInt(R[n]<31:16>) + UInt(R[m]<31:16>);
 R[d]<15:0> = UnsignedSat(sum1, 16);
 R[d]<31:16> = UnsignedSat(sum2, 16);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5239
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.281 UQADD8

Unsigned Saturating Add 8 performs four unsigned 8-bit integer additions, saturates the results to the 8-bit unsigned
integer range 0 <= x <= 28 - 1, and writes the results to the destination register.

A1

A1 variant

UQADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UQADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<7:0>) + UInt(R[m]<7:0>);

!=1111 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5240 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = UInt(R[n]<15:8>) + UInt(R[m]<15:8>);
 sum3 = UInt(R[n]<23:16>) + UInt(R[m]<23:16>);
 sum4 = UInt(R[n]<31:24>) + UInt(R[m]<31:24>);
 R[d]<7:0> = UnsignedSat(sum1, 8);
 R[d]<15:8> = UnsignedSat(sum2, 8);
 R[d]<23:16> = UnsignedSat(sum3, 8);
 R[d]<31:24> = UnsignedSat(sum4, 8);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5241
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.282 UQASX

Unsigned Saturating Add and Subtract with Exchange exchanges the two halfwords of the second operand,
performs one unsigned 16-bit integer addition and one unsigned 16-bit subtraction, saturates the results to the 16-bit
unsigned integer range 0 <= x <= 216 - 1, and writes the results to the destination register.

A1

A1 variant

UQASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UQASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5242 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff = UInt(R[n]<15:0>) - UInt(R[m]<31:16>);
 sum = UInt(R[n]<31:16>) + UInt(R[m]<15:0>);
 R[d]<15:0> = UnsignedSat(diff, 16);
 R[d]<31:16> = UnsignedSat(sum, 16);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5243
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.283 UQSAX

Unsigned Saturating Subtract and Add with Exchange exchanges the two halfwords of the second operand,
performs one unsigned 16-bit integer subtraction and one unsigned 16-bit addition, saturates the results to the 16-bit
unsigned integer range 0 <= x <= 216 - 1, and writes the results to the destination register.

A1

A1 variant

UQSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UQSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5244 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum = UInt(R[n]<15:0>) + UInt(R[m]<31:16>);
 diff = UInt(R[n]<31:16>) - UInt(R[m]<15:0>);
 R[d]<15:0> = UnsignedSat(sum, 16);
 R[d]<31:16> = UnsignedSat(diff, 16);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5245
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.284 UQSUB16

Unsigned Saturating Subtract 16 performs two unsigned 16-bit integer subtractions, saturates the results to the
16-bit unsigned integer range 0 <= x <= 216 - 1, and writes the results to the destination register.

A1

A1 variant

UQSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UQSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<15:0>) - UInt(R[m]<15:0>);

!=1111 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5246 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = UInt(R[n]<31:16>) - UInt(R[m]<31:16>);
 R[d]<15:0> = UnsignedSat(diff1, 16);
 R[d]<31:16> = UnsignedSat(diff2, 16);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5247
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.285 UQSUB8

Unsigned Saturating Subtract 8 performs four unsigned 8-bit integer subtractions, saturates the results to the 8-bit
unsigned integer range 0 <= x <= 28 - 1, and writes the results to the destination register.

A1

A1 variant

UQSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UQSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<7:0>) - UInt(R[m]<7:0>);

!=1111 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5248 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = UInt(R[n]<15:8>) - UInt(R[m]<15:8>);
 diff3 = UInt(R[n]<23:16>) - UInt(R[m]<23:16>);
 diff4 = UInt(R[n]<31:24>) - UInt(R[m]<31:24>);
 R[d]<7:0> = UnsignedSat(diff1, 8);
 R[d]<15:8> = UnsignedSat(diff2, 8);
 R[d]<23:16> = UnsignedSat(diff3, 8);
 R[d]<31:24> = UnsignedSat(diff4, 8);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5249
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.286 USAD8

Unsigned Sum of Absolute Differences performs four unsigned 8-bit subtractions, and adds the absolute values of
the differences together.

A1

A1 variant

USAD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

USAD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 absdiff1 = Abs(UInt(R[n]<7:0>) - UInt(R[m]<7:0>));

!=1111 0 1 1 1 1 0 0 0 Rd 1 1 1 1 Rm 0 0 0 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 1 1 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5250 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 absdiff2 = Abs(UInt(R[n]<15:8>) - UInt(R[m]<15:8>));
 absdiff3 = Abs(UInt(R[n]<23:16>) - UInt(R[m]<23:16>));
 absdiff4 = Abs(UInt(R[n]<31:24>) - UInt(R[m]<31:24>));
 result = absdiff1 + absdiff2 + absdiff3 + absdiff4;
 R[d] = result<31:0>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5251
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.287 USADA8

Unsigned Sum of Absolute Differences and Accumulate performs four unsigned 8-bit subtractions, and adds the
absolute values of the differences to a 32-bit accumulate operand.

A1

A1 variant

USADA8{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding

 if Ra == '1111' then SEE "USAD8";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

USADA8{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding

 if Ra == '1111' then SEE "USAD8";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

!=1111 0 1 1 1 1 0 0 0 Rd !=1111 Rm 0 0 0 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond Ra

1 1 1 1 1 0 1 1 0 1 1 1 Rn !=1111 Rd 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
F5-5252 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 absdiff1 = Abs(UInt(R[n]<7:0>) - UInt(R[m]<7:0>));
 absdiff2 = Abs(UInt(R[n]<15:8>) - UInt(R[m]<15:8>));
 absdiff3 = Abs(UInt(R[n]<23:16>) - UInt(R[m]<23:16>));
 absdiff4 = Abs(UInt(R[n]<31:24>) - UInt(R[m]<31:24>));
 result = UInt(R[a]) + absdiff1 + absdiff2 + absdiff3 + absdiff4;
 R[d] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5253
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.288 USAT

Unsigned Saturate saturates an optionally-shifted signed value to a selected unsigned range.

This instruction sets PSTATE.Q to 1 if the operation saturates.

A1

Arithmetic shift right variant

Applies when sh == 1.

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn>, ASR #<amount>

Logical shift left variant

Applies when sh == 0.

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn> {, LSL #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
 (shift_t, shift_n) = DecodeImmShift(sh:'0', imm5);
 if d == 15 || n == 15 then UNPREDICTABLE;

T1

Arithmetic shift right variant

Applies when sh == 1 && !(imm3 == 000 && imm2 == 00).

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn>, ASR #<amount>

Logical shift left variant

Applies when sh == 0.

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn> {, LSL #<amount>}

Decode for all variants of this encoding

 if sh == '1' && (imm3:imm2) == '00000' then SEE "USAT16";
 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
 (shift_t, shift_n) = DecodeImmShift(sh:'0', imm3:imm2);
 if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 1 1 0 1 1 1 sat_imm Rd imm5 sh 0 1 Rn
31 28 27 26 25 24 23 22 21 20 16 15 12 11 7 6 5 4 3 0

cond

1 1 1 1 0 (0) 1 1 1 0 sh 0 Rn 0 imm3 Rd imm2 (0) sat_imm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 0
F5-5254 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the bit position for saturation, in the range 0 to 31, encoded in the "sat_imm" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<amount> For encoding A1: is the optional shift amount, in the range 0 to 31, defaulting to 0 and encoded in
the "imm5" field.

For encoding A1: is the shift amount, in the range 1 to 32 encoded in the "imm5" field as <amount>
modulo 32.

For encoding T1: is the optional shift amount, in the range 0 to 31, defaulting to 0 and encoded in
the "imm3:imm2" field.

For encoding T1: is the shift amount, in the range 1 to 31 encoded in the "imm3:imm2" field as
<amount>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand = Shift(R[n], shift_t, shift_n, PSTATE.C); // PSTATE.C ignored
 (result, sat) = UnsignedSatQ(SInt(operand), saturate_to);
 R[d] = ZeroExtend(result, 32);
 if sat then
 PSTATE.Q = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5255
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.289 USAT16

Unsigned Saturate 16 saturates two signed 16-bit values to a selected unsigned range.

This instruction sets PSTATE.Q to 1 if the operation saturates.

A1

A1 variant

USAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
 if d == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

USAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
 if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the bit position for saturation, in the range 0 to 15, encoded in the "sat_imm" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

!=1111 0 1 1 0 1 1 1 0 sat_imm Rd (1) (1) (1) (1) 0 0 1 1 Rn
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 0 (0) 1 1 1 0 1 0 Rn 0 0 0 0 Rd 0 0 (0) (0) sat_imm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5256 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result1, sat1) = UnsignedSatQ(SInt(R[n]<15:0>), saturate_to);
 (result2, sat2) = UnsignedSatQ(SInt(R[n]<31:16>), saturate_to);
 R[d]<15:0> = ZeroExtend(result1, 16);
 R[d]<31:16> = ZeroExtend(result2, 16);
 if sat1 || sat2 then
 PSTATE.Q = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5257
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.290 USAX

Unsigned Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one
unsigned 16-bit integer subtraction and one unsigned 16-bit addition, and writes the results to the destination
register. It sets PSTATE.GE according to the results.

A1

A1 variant

USAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

USAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5258 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum = UInt(R[n]<15:0>) + UInt(R[m]<31:16>);
 diff = UInt(R[n]<31:16>) - UInt(R[m]<15:0>);
 R[d]<15:0> = sum<15:0>;
 R[d]<31:16> = diff<15:0>;
 PSTATE.GE<1:0> = if sum >= 0x10000 then '11' else '00';
 PSTATE.GE<3:2> = if diff >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5259
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.291 USUB16

Unsigned Subtract 16 performs two 16-bit unsigned integer subtractions, and writes the results to the destination
register. It sets PSTATE.GE according to the results of the subtractions.

A1

A1 variant

USUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

USUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<15:0>) - UInt(R[m]<15:0>);

!=1111 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5260 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = UInt(R[n]<31:16>) - UInt(R[m]<31:16>);
 R[d]<15:0> = diff1<15:0>;
 R[d]<31:16> = diff2<15:0>;
 PSTATE.GE<1:0> = if diff1 >= 0 then '11' else '00';
 PSTATE.GE<3:2> = if diff2 >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5261
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.292 USUB8

Unsigned Subtract 8 performs four 8-bit unsigned integer subtractions, and writes the results to the destination
register. It sets PSTATE.GE according to the results of the subtractions.

A1

A1 variant

USUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

USUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<7:0>) - UInt(R[m]<7:0>);

!=1111 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5262 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = UInt(R[n]<15:8>) - UInt(R[m]<15:8>);
 diff3 = UInt(R[n]<23:16>) - UInt(R[m]<23:16>);
 diff4 = UInt(R[n]<31:24>) - UInt(R[m]<31:24>);
 R[d]<7:0> = diff1<7:0>;
 R[d]<15:8> = diff2<7:0>;
 R[d]<23:16> = diff3<7:0>;
 R[d]<31:24> = diff4<7:0>;
 PSTATE.GE<0> = if diff1 >= 0 then '1' else '0';
 PSTATE.GE<1> = if diff2 >= 0 then '1' else '0';
 PSTATE.GE<2> = if diff3 >= 0 then '1' else '0';
 PSTATE.GE<3> = if diff4 >= 0 then '1' else '0';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5263
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.293 UXTAB

Unsigned Extend and Add Byte extracts an 8-bit value from a register, zero-extends it to 32 bits, adds the result to
the value in another register, and writes the final result to the destination register. The instruction can specify a
rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

A1

A1 variant

UXTAB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "UXTB";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UXTAB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "UXTB";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

!=1111 0 1 1 0 1 1 1 0 !=1111 Rd rotate (0) (0) 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond Rn

1 1 1 1 1 0 1 0 0 1 0 1 !=1111 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

Rn
F5-5264 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = R[n] + ZeroExtend(rotated<7:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5265
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.294 UXTAB16

Unsigned Extend and Add Byte 16 extracts two 8-bit values from a register, zero-extends them to 16 bits each, adds
the results to two 16-bit values from another register, and writes the final results to the destination register. The
instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit values.

A1

A1 variant

UXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "UXTB16";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "UXTB16";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

!=1111 0 1 1 0 1 1 0 0 !=1111 Rd rotate (0) (0) 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond Rn

1 1 1 1 1 0 1 0 0 0 1 1 !=1111 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

Rn
F5-5266 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d]<15:0> = R[n]<15:0> + ZeroExtend(rotated<7:0>, 16);
 R[d]<31:16> = R[n]<31:16> + ZeroExtend(rotated<23:16>, 16);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5267
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.295 UXTAH

Unsigned Extend and Add Halfword extracts a 16-bit value from a register, zero-extends it to 32 bits, adds the result
to a value from another register, and writes the final result to the destination register. The instruction can specify a
rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.

A1

A1 variant

UXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "UXTH";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "UXTH";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

!=1111 0 1 1 0 1 1 1 1 !=1111 Rd rotate (0) (0) 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond Rn

1 1 1 1 1 0 1 0 0 0 0 1 !=1111 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

Rn
F5-5268 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = R[n] + ZeroExtend(rotated<15:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5269
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.296 UXTB

Unsigned Extend Byte extracts an 8-bit value from a register, zero-extends it to 32 bits, and writes the result to the
destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

A1

A1 variant

UXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UXTB{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2

T2 variant

UXTB{<c>}.W {<Rd>,} <Rm> // <Rd>, <Rm> can be represented in T1
UXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 1 1 0 1 1 1 0 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 0 1 1 0 0 1 0 1 1 Rm Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5270 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = ZeroExtend(rotated<7:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5271
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.297 UXTB16

Unsigned Extend Byte 16 extracts two 8-bit values from a register, zero-extends them to 16 bits each, and writes
the results to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting
the 8-bit values.

A1

A1 variant

UXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T1: is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

!=1111 0 1 1 0 1 1 0 0 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5272 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d]<15:0> = ZeroExtend(rotated<7:0>, 16);
 R[d]<31:16> = ZeroExtend(rotated<23:16>, 16);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5273
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.298 UXTH

Unsigned Extend Halfword extracts a 16-bit value from a register, zero-extends it to 32 bits, and writes the result to
the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit
value.

A1

A1 variant

UXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UXTH{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2

T2 variant

UXTH{<c>}.W {<Rd>,} <Rm> // <Rd>, <Rm> can be represented in T1
UXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 1 1 0 1 1 1 1 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 0 1 1 0 0 1 0 1 0 Rm Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 0
F5-5274 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = ZeroExtend(rotated<15:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5275
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.299 WFE

Wait For Event is a hint instruction that indicates that the PE can enter a low-power state and remain there until a
wakeup event occurs. Wakeup events include the event signaled as a result of executing the SEV instruction on any
PE in the multiprocessor system. For more information, see Wait For Event and Send Event on page G1-6104.

As described in Wait For Event and Send Event on page G1-6104, the execution of a WFE instruction that would
otherwise cause entry to a low-power state can be trapped to a higher Exception level, see:

• Traps to Undefined mode of EL0 execution of WFE and WFI instructions on page G1-6120.

• Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions on page G1-6136.

• Traps to Monitor mode of the execution of WFE and WFI instructions in modes other than Monitor mode on
page G1-6148.

A1

A1 variant

WFE{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

WFE{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T2

T2 variant

WFE{<c>}.W

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 0 1 0
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 1 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-5276 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 // No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if IsEventRegisterSet() then
 ClearEventRegister();
 else
 if PSTATE.EL == EL0 then
 // Check for traps described by the OS.
 AArch32.CheckForWFxTrap(EL1, WFxType_WFE);
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() then
 // Check for traps described by the Hypervisor.
 AArch32.CheckForWFxTrap(EL2, WFxType_WFE);
 if HaveEL(EL3) && PSTATE.M != M32_Monitor then
 // Check for traps described by the Secure Monitor.
 AArch32.CheckForWFxTrap(EL3, WFxType_WFE);
 integer localtimeout = -1; // No local timeout event is generated
 WaitForEvent(localtimeout);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5277
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.300 WFI

Wait For Interrupt is a hint instruction that indicates that the PE can enter a low-power state and remain there until
a wakeup event occurs. For more information, see Wait For Interrupt on page G1-6107.

As described in Wait For Interrupt on page G1-6107, the execution of a WFI instruction that would otherwise cause
entry to a low-power state can be trapped to a higher Exception level, see:

• Traps to Undefined mode of EL0 execution of WFE and WFI instructions on page G1-6120.

• Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions on page G1-6136.

• Traps to Monitor mode of the execution of WFE and WFI instructions in modes other than Monitor mode on
page G1-6148.

A1

A1 variant

WFI{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

WFI{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T2

T2 variant

WFI{<c>}.W

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 0 1 1
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 1 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-5278 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 // No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if !InterruptPending() then
 if PSTATE.EL == EL0 then
 // Check for traps described by the OS.
 AArch32.CheckForWFxTrap(EL1, WFxType_WFI);
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() then
 // Check for traps described by the Hypervisor.
 AArch32.CheckForWFxTrap(EL2, WFxType_WFI);
 if HaveEL(EL3) && PSTATE.M != M32_Monitor then
 // Check for traps described by the Secure Monitor.
 AArch32.CheckForWFxTrap(EL3, WFxType_WFI);
 integer localtimeout = -1; // No local timeout event is generated
 WaitForInterrupt(localtimeout);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5279
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.301 YIELD

YIELD is a hint instruction. Software with a multithreading capability can use a YIELD instruction to indicate to the
PE that it is performing a task, for example a spin-lock, that could be swapped out to improve overall system
performance. The PE can use this hint to suspend and resume multiple software threads if it supports the capability.

For more information about the recommended use of this instruction see The Yield instruction on page F2-4393.

A1

A1 variant

YIELD{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

YIELD{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T2

T2 variant

YIELD{<c>}.W

Decode for this encoding

 // No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 0 0 1
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 0 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F5-5280 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 Hint_Yield();
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5281
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.2 Encoding and use of banked register transfer instructions
F5.2 Encoding and use of banked register transfer instructions

Software executing at EL1 or higher can use the MRS (banked register) and MSR (banked register) instructions to
transfer values between the general-purpose registers and Special-purpose registers. One particular use of these
instructions is for a hypervisor to save or restore the register values of a Guest OS. The following sections give more
information about these instructions:

• Register arguments in the banked register transfer instructions on page F5-5282.

• Usage restrictions on the banked register transfer instructions on page F5-5283.

• Encoding the register argument in the banked register transfer instructions on page F5-5284.

• Pseudocode support for the banked register transfer instructions on page F5-5285.

For descriptions of the instructions see MRS (Banked register) on page F5-4858 and MSR (Banked register) on
page F5-4862.

F5.2.1 Register arguments in the banked register transfer instructions

Figure F5-1 on page F5-5282 shows the banked general-purpose registers and Special-purpose registers:

Figure F5-1 Banking of general-purpose and Special-purpose registers

Figure F5-1 on page F5-5282 is based on Figure G1-2 on page G1-6029, that shows the complete set of
general-purpose registers and Special-purpose registers accessible in each mode.

Note

• System mode uses the same set of registers as User mode. Neither of these modes can access an SPSR, except
that System mode can use the MRS (banked register) and MSR (banked register) instructions to access some
SPSRs, as described in Usage restrictions on the banked register transfer instructions on page F5-5283.

• General-purpose registers R0-R7, that are not banked, cannot be accessed using the MRS (banked register) and
MSR (banked register) instructions.

• In addition to the registers shown in Figure F5-1 on page F5-5282, the DLR and DSPSR are AArch32 System
registers that map onto the AArch64 Special-purpose registers DLR_EL0 and DSPSR_EL0. However, DLR
and DSPSR are not accessible using the MRS (banked register) and MSR (banked register) instructions.

Software using an MRS (banked register) or MSR (banked register) instruction specifies one of these registers using a
name shown in Figure F5-1 on page F5-5282, or an alternative name for SP or LR. These registers can be grouped
as follows:

R8-R12 Each of these registers has two banked copies, _usr and _fiq, for example R8_usr and R8_fiq.

For the general-purpose registers, if no other register is shown, the current mode register is the _usr register.
So, for example, the full set of current mode registers, including the registers that are not banked:
 • For Hyp mode, is {R0_usr - R12_usr, SP_hyp, LR_usr, SPSR_hyp, ELR_hyp}.
 • For Abort mode, is {R0_usr - R12_usr, SP_abt, LR_abt, SPSR_abt}.

General-purpose
registers

Special-purpose
registers

User or
System Supervisor Abort Undefined IRQ FIQ

R8_usr
R9_usr
R10_usr
R11_usr
R12_usr
SP_usr
LR_usr

SPSR_svc SPSR_abt SPSR_irq SPSR_fiq

LR_svc LR_abt LR_irq LR_fiq
SP_svc SP_abt SP_irq SP_fiq

R8_fiq
R9_fiq
R10_fiq
R11_fiq
R12_fiq

LR_und
SP_und

SPSR_und

Monitor

SPSR_mon

LR_mon
SP_mon

Associated PE mode

Hyp

SP_hyp

SPSR_hyp
ELR_hyp
F5-5282 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.2 Encoding and use of banked register transfer instructions
SP There is a banked copy of SP for every mode except System mode. For example, SP_svc is the SP
for Supervisor mode.

LR There is a banked copy of LR for every mode except System mode and Hyp mode. For example,
LR_svc is the LR for Supervisor mode.

SPSR There is a banked copy of SPSR for every mode except System mode and User mode.

ELR_hyp Except for the operations provided by MRS (banked register) and MSR (banked register), ELR_hyp is
accessible only from Hyp mode. It is not banked.

F5.2.2 Usage restrictions on the banked register transfer instructions

MRS (banked register) and MSR (banked register) instructions are CONSTRAINED UNPREDICTABLE if any of the
following applies:

• The instruction is executed in User mode.

• The instruction accesses a banked register that is not implemented, or that either:

— Is not accessible from the current Privilege level and Security state.

— Can be accessed from the current mode by using a different instruction.

MSR (banked register) and MRS (banked register) on page K1-8406 describes the permitted CONSTRAINED
UNPREDICTABLE behavior.

An MRS (banked register) instruction or an MSR (banked register) instruction executed:

• At Non-secure EL1 cannot access any Hyp mode banked registers.

• At Non-secure EL1 or EL2 cannot access any Monitor mode banked registers.

• In a Secure mode other than Monitor mode cannot access any Hyp banked registers.

This means that the banked registers that MRS (banked register) and MSR (banked register) instructions cannot access
are:

From Monitor mode

• The current mode registers R8_usr-R12_usr, SP_mon, LR_mon, and SPSR_mon.

From Hyp mode

• The Monitor mode registers SP_mon, LR_mon, and SPSR_mon.

• The current mode registers R8_usr-R12_usr, SP_hyp, LR_usr, and SPSR_hyp.

Note

MRS (banked register) and MSR (banked register) instructions can access the current mode register
ELR_hyp.

From FIQ mode

• From Non-secure EL1, the Monitor mode registers SP_mon, LR_mon, and SPSR_mon.

• The Hyp mode registers SP_hyp, SPSR_hyp, and ELR_hyp.

• The current mode registers R8_fiq-R12_fiq, SP_fiq, LR_fiq, and SPSR_fiq.

From System mode

• From Non-secure EL1, the Monitor mode registers SP_mon, LR_mon, and SPSR_mon.

• The Hyp mode registers SP_hyp, SPSR_hyp, and ELR_hyp.

• The current mode registers R8_usr-R12_usr, SP_usr, and LR_usr.

From Supervisor mode, Abort mode, Undefined mode, and IRQ mode

• From Non-secure EL1, the Monitor mode registers SP_mon, LR_mon, and SPSR_mon.

• The Hyp mode registers SP_hyp, SPSR_hyp, and ELR_hyp.

• The current mode registers R8_usr-R12_usr, SP_<current_mode>, LR_<current_mode>,
and SPSR_<current_mode>.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5283
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.2 Encoding and use of banked register transfer instructions
If EL3 is using AArch64, all MRS (banked register) and MSR (banked register) accesses to the Monitor mode registers
from Secure EL1 modes are trapped to EL3. See Traps to EL3 of Secure monitor functionality from Secure EL1
using AArch32 on page D1-2530.

For more information, see:

• Encoding the register argument in the banked register transfer instructions on page F5-5284.

• Pseudocode support for the banked register transfer instructions on page F5-5285.

• MRS (Banked register) on page F5-4858.

• MSR (Banked register) on page F5-4862.

Note

CONSTRAINED UNPREDICTABLE behavior must not give access to registers that are not accessible from the current
Privilege level and Security state.

F5.2.3 Encoding the register argument in the banked register transfer instructions

The MRS (banked register) and MSR (banked register) instructions include a 5-bit field, SYSm, and an R bit, that
together encode the register argument for the instruction.

When the R bit is set to 0, the argument is a register other than a banked copy of the SPSR, and Table F5-1 on
page F5-5284 shows how the SYSm field defines the required register argument. In this table, CONST.
UNPREDICTABLE indicates that behavior is CONSTRAINED UNPREDICTABLE.

When the R bit is set to 1, the argument is a banked copy of the SPSR, and Table F5-2 on page F5-5284 shows how
the SYSm field defines the required register argument. In this table, CONST. UNPREDICTABLE indicates that behavior
is CONSTRAINED UNPREDICTABLE.

Table F5-1 Banked register encodings when R==0

SYSm<2:0>
SYSm<4:3>

0b00 0b01 0b10 0b11

0b000 R8_usr R8_fiq LR_irq CONST. UNPREDICTABLE

0b001 R9_usr R9_fiq SP_irq CONST. UNPREDICTABLE

0b010 R10_usr R10_fiq LR_svc CONST. UNPREDICTABLE

0b011 R11_usr R11_fiq SP_svc CONST. UNPREDICTABLE

0b100 R12_usr R12_fiq LR_abt LR_mon

0b101 SP_usr SP_fiq SP_abt SP_mon

0b110 LR_usr LR_fiq LR_und ELR_hyp

0b111 CONST. UNPREDICTABLE CONST. UNPREDICTABLE SP_und SP_hyp

Table F5-2 Banked register encodings when R==1

SYSm<2:0>
SYSm<4:3>

0b00 0b01 0b10 0b11

0b000 CONST. UNPREDICTABLE CONST. UNPREDICTABLE SPSR_irq CONST. UNPREDICTABLE

0b001 CONST. UNPREDICTABLE CONST. UNPREDICTABLE CONST. UNPREDICTABLE CONST. UNPREDICTABLE

0b010 CONST. UNPREDICTABLE CONST. UNPREDICTABLE SPSR_svc CONST. UNPREDICTABLE
F5-5284 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Base Instruction Set Instruction Descriptions
F5.2 Encoding and use of banked register transfer instructions
F5.2.4 Pseudocode support for the banked register transfer instructions

The pseudocode functions BankedRegisterAccessValid() and SPSRaccessValid() check the validity of MRS (banked
register) and MSR (banked register) accesses. That is, they filter the accesses that are CONSTRAINED UNPREDICTABLE
either because:

• They attempt to access a register that Usage restrictions on the banked register transfer instructions on
page F5-5283 shows is not accessible.

• They use an SYSm<4:0> encoding that Encoding the register argument in the banked register transfer
instructions on page F5-5284 shows as CONSTRAINED UNPREDICTABLE.

BankedRegisterAccessValid() applies to accesses to the banked general-purpose registers, or to ELR_hyp, and
SPSRaccessValid() applies to accesses to the SPSRs.

0b011 CONST. UNPREDICTABLE CONST. UNPREDICTABLE CONST. UNPREDICTABLE CONST. UNPREDICTABLE

0b100 CONST. UNPREDICTABLE CONST. UNPREDICTABLE SPSR_abt SPSR_mon

0b101 CONST. UNPREDICTABLE CONST. UNPREDICTABLE CONST. UNPREDICTABLE CONST. UNPREDICTABLE

0b110 CONST. UNPREDICTABLE SPSR_fiq SPSR_und SPSR_hyp

0b111 CONST. UNPREDICTABLE CONST. UNPREDICTABLE CONST. UNPREDICTABLE CONST. UNPREDICTABLE

Table F5-2 Banked register encodings when R==1 (continued)

SYSm<2:0>
SYSm<4:3>

0b00 0b01 0b10 0b11
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F5-5285
ID072021 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.2 Encoding and use of banked register transfer instructions
F5-5286 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter F6
T32 and A32 Advanced SIMD and Floating-point
Instruction Descriptions

This chapter describes each instruction. It contains the following sections:

• Alphabetical list of Advanced SIMD and floating-point instructions on page F6-5288.

Note

Some headings in this chapter use the term floating-point register. This is an abbreviated description, and means a
register in the Advanced SIMD and floating-point register file.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5287
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions

This section lists every Advanced SIMD and floating-point instruction in the T32 and A32 instruction sets. For
details of the format used see Format of instruction descriptions on page F1-4344.

This section is formatted so that each instruction description starts on a new page.
F6-5288 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.1 AESD

AES single round decryption.

A1

A1 variant

AESD.<dt> <Qd>, <Qm>

Decode for this encoding

 if !HaveAESExt() then UNDEFINED;
 if size != '00' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

T1 variant

AESD.<dt> <Qd>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveAESExt() then UNDEFINED;
 if size != '00' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<dt> Is the data type, encoded in the "size" field. It can have the following values:

8 when size = 00

The following encodings are reserved:

• size = 01.

• size = 1x.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 0 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5289
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 op1 = Q[d>>1]; op2 = Q[m>>1];
 Q[d>>1] = AESInvSubBytes(AESInvShiftRows(op1 EOR op2));

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5290 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.2 AESE

AES single round encryption.

A1

A1 variant

AESE.<dt> <Qd>, <Qm>

Decode for this encoding

 if !HaveAESExt() then UNDEFINED;
 if size != '00' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

T1 variant

AESE.<dt> <Qd>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveAESExt() then UNDEFINED;
 if size != '00' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<dt> Is the data type, encoded in the "size" field. It can have the following values:

8 when size = 00

The following encodings are reserved:

• size = 01.

• size = 1x.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 0 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 0 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5291
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 op1 = Q[d>>1]; op2 = Q[m>>1];
 Q[d>>1] = AESSubBytes(AESShiftRows(op1 EOR op2));

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5292 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.3 AESIMC

AES inverse mix columns.

A1

A1 variant

AESIMC.<dt> <Qd>, <Qm>

Decode for this encoding

 if !HaveAESExt() then UNDEFINED;
 if size != '00' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

T1 variant

AESIMC.<dt> <Qd>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveAESExt() then UNDEFINED;
 if size != '00' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

Assembler symbols

<dt> Is the data type, encoded in the "size" field. It can have the following values:

8 when size = 00

The following encodings are reserved:

• size = 01.

• size = 1x.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 1 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 1 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5293
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 Q[d>>1] = AESInvMixColumns(Q[m>>1]);

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5294 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.4 AESMC

AES mix columns.

A1

A1 variant

AESMC.<dt> <Qd>, <Qm>

Decode for this encoding

 if !HaveAESExt() then UNDEFINED;
 if size != '00' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

T1 variant

AESMC.<dt> <Qd>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveAESExt() then UNDEFINED;
 if size != '00' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<dt> Is the data type, encoded in the "size" field. It can have the following values:

8 when size = 00

The following encodings are reserved:

• size = 01.

• size = 1x.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 1 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 1 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5295
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 Q[d>>1] = AESMixColumns(Q[m>>1]);

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5296 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.5 FLDM*X (FLDMDBX, FLDMIAX)

FLDMDBX is the Decrement Before variant of this instruction, and FLDMIAX is the Increment After variant.
FLDM*X loads multiple SIMD&FP registers from consecutive locations in the Advanced SIMD and floating-point
register file using an address from a general-purpose register.

Arm deprecates use of FLDMDBX and FLDMIAX, except for disassembly purposes, and reassembly of
disassembled code.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

FLDMDBX{<c>}{<q>} <Rn>!, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

FLDMIAX{<c>}{<q>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VLDR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = FALSE; add = (U == '1'); wback = (W == '1');
 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FLDM*X".
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
 if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VLDM with the same addressing mode but loads no registers.

If regs > 16 || (d+regs) > 16, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

!=1111 1 1 0 P U D W 1 Rn Vd 1 0 1 1 imm8<7:1> 1
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 1 0

cond imm8<0>
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5297
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

FLDMDBX{<c>}{<q>} <Rn>!, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

FLDMIAX{<c>}{<q>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VLDR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = FALSE; add = (U == '1'); wback = (W == '1');
 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FLDM*X".
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
 if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VLDM with the same addressing mode but loads no registers.

If regs > 16 || (d+regs) > 16, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: See Advanced SIMD and floating-point 64-bit move on page F3-4444 for the T32 instruction
set, or Advanced SIMD and floating-point 64-bit move on page F4-4531 for the A32 instruction set.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

1 1 1 0 1 1 0 P U D W 1 Rn Vd 1 0 1 1 imm8<7:1> 1
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 1 0

imm8<0>
F6-5298 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Rn> Is the general-purpose base register, encoded in the "Rn" field. If writeback is not specified, the PC
can be used.

! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register
in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list plus
one. The list must contain at least one register, all registers must be in the range D0-D15, and must
not contain more than 16 registers.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 address = if add then R[n] else R[n]-imm32;
 for r = 0 to regs-1
 if single_regs then
 S[d+r] = MemA[address,4]; address = address+4;
 else
 word1 = MemA[address,4]; word2 = MemA[address+4,4]; address = address+8;
 // Combine the word-aligned words in the correct order for current endianness.
 D[d+r] = if BigEndian(AccType_ATOMIC) then word1:word2 else word2:word1;
 if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5299
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.6 FSTMDBX, FSTMIAX

FSTMX stores multiple SIMD&FP registers from the Advanced SIMD and floating-point register file to
consecutive locations in using an address from a general-purpose register.

Arm deprecates use of FSTMDBX and FSTMIAX, except for disassembly purposes, and reassembly of
disassembled code.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

FSTMDBX{<c>}{<q>} <Rn>!, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

FSTMIAX{<c>}{<q>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VSTR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = FALSE; add = (U == '1'); wback = (W == '1');
 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FSTDBMX, FSTMIAX".
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
 if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VSTM with the same addressing mode but stores no registers.

If regs > 16 || (d+regs) > 16, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

!=1111 1 1 0 P U D W 0 Rn Vd 1 0 1 1 imm8<7:1> 1
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 1 0

cond imm8<0>
F6-5300 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

FSTMDBX{<c>}{<q>} <Rn>!, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

FSTMIAX{<c>}{<q>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VSTR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = FALSE; add = (U == '1'); wback = (W == '1');
 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FSTDBMX, FSTMIAX".
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
 if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VSTM with the same addressing mode but stores no registers.

If regs > 16 || (d+regs) > 16, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: See Advanced SIMD and floating-point 64-bit move on page F3-4444 for the T32 instruction
set, or Advanced SIMD and floating-point 64-bit move on page F4-4531 for the A32 instruction set.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

1 1 1 0 1 1 0 P U D W 0 Rn Vd 1 0 1 1 imm8<7:1> 1
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 1 0

imm8<0>
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5301
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<q> See Standard assembler syntax fields on page F1-4348.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. If writeback is not specified, the PC
can be used. However, Arm deprecates use of the PC.

! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register
in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list plus
one. The list must contain at least one register, all registers must be in the range D0-D15, and must
not contain more than 16 registers.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 address = if add then R[n] else R[n]-imm32;
 for r = 0 to regs-1
 if single_regs then
 MemA[address,4] = S[d+r]; address = address+4;
 else
 // Store as two word-aligned words in the correct order for current endianness.
 MemA[address,4] = if BigEndian(AccType_ATOMIC) then D[d+r]<63:32> else D[d+r]<31:0>;
 MemA[address+4,4] = if BigEndian(AccType_ATOMIC) then D[d+r]<31:0> else D[d+r]<63:32>;
 address = address+8;
 if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
F6-5302 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.7 SHA1C

SHA1 hash update (choose).

A1

A1 variant

SHA1C.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !HaveSHA1Ext() then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

SHA1C.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveSHA1Ext() then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

1 1 1 1 0 0 1 0 0 D 0 0 Vn Vd 1 1 0 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 0 0 Vn Vd 1 1 0 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5303
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 X = Q[d>>1];
 Y = Q[n>>1]<31:0>; // Note: 32 bits wide
 W = Q[m>>1];
 for e = 0 to 3
 t = SHAchoose(X<63:32>, X<95:64>, X<127:96>);
 Y = Y + ROL(X<31:0>, 5) + t + Elem[W, e, 32];
 X<63:32> = ROL(X<63:32>, 30);
 <Y, X> = ROL(Y:X, 32);
 Q[d>>1] = X;

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5304 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.8 SHA1H

SHA1 fixed rotate.

A1

A1 variant

SHA1H.32 <Qd>, <Qm>

Decode for this encoding

 if !HaveSHA1Ext() then UNDEFINED;
 if size != '10' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

T1 variant

SHA1H.32 <Qd>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveSHA1Ext() then UNDEFINED;
 if size != '10' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 Q[d>>1] = ZeroExtend(ROL(Q[m>>1]<31:0>, 30), 128);

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 0 1 0 1 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 0 1 0 1 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5305
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5306 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.9 SHA1M

SHA1 hash update (majority).

A1

A1 variant

SHA1M.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !HaveSHA1Ext() then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

SHA1M.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveSHA1Ext() then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

1 1 1 1 0 0 1 0 0 D 1 0 Vn Vd 1 1 0 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 1 0 Vn Vd 1 1 0 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5307
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 X = Q[d>>1];
 Y = Q[n>>1]<31:0>; // Note: 32 bits wide
 W = Q[m>>1];
 for e = 0 to 3
 t = SHAmajority(X<63:32>, X<95:64>, X<127:96>);
 Y = Y + ROL(X<31:0>, 5) + t + Elem[W, e, 32];
 X<63:32> = ROL(X<63:32>, 30);
 <Y, X> = ROL(Y:X, 32);
 Q[d>>1] = X;

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5308 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.10 SHA1P

SHA1 hash update (parity).

A1

A1 variant

SHA1P.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !HaveSHA1Ext() then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

SHA1P.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveSHA1Ext() then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

1 1 1 1 0 0 1 0 0 D 0 1 Vn Vd 1 1 0 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 0 1 Vn Vd 1 1 0 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5309
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 X = Q[d>>1];
 Y = Q[n>>1]<31:0>; // Note: 32 bits wide
 W = Q[m>>1];
 for e = 0 to 3
 t = SHAparity(X<63:32>, X<95:64>, X<127:96>);
 Y = Y + ROL(X<31:0>, 5) + t + Elem[W, e, 32];
 X<63:32> = ROL(X<63:32>, 30);
 <Y, X> = ROL(Y:X, 32);
 Q[d>>1] = X;

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5310 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.11 SHA1SU0

SHA1 schedule update 0.

A1

A1 variant

SHA1SU0.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !HaveSHA1Ext() then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

SHA1SU0.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveSHA1Ext() then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

1 1 1 1 0 0 1 0 0 D 1 1 Vn Vd 1 1 0 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 1 1 Vn Vd 1 1 0 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5311
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 op1 = Q[d>>1]; op2 = Q[n>>1]; op3 = Q[m>>1];
 op2 = op2<63:0> : op1<127:64>;
 Q[d>>1] = op1 EOR op2 EOR op3;

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5312 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.12 SHA1SU1

SHA1 schedule update 1.

A1

A1 variant

SHA1SU1.32 <Qd>, <Qm>

Decode for this encoding

 if !HaveSHA1Ext() then UNDEFINED;
 if size != '10' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

T1 variant

SHA1SU1.32 <Qd>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveSHA1Ext() then UNDEFINED;
 if size != '10' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 X = Q[d>>1]; Y = Q[m>>1];
 T = X EOR LSR(Y, 32);
 W0 = ROL(T<31:0>, 1);

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 1 1 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 1 1 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5313
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 W1 = ROL(T<63:32>, 1);
 W2 = ROL(T<95:64>, 1);
 W3 = ROL(T<127:96>, 1) EOR ROL(T<31:0>, 2);
 Q[d>>1] = W3:W2:W1:W0;

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5314 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.13 SHA256H

SHA256 hash update part 1.

A1

A1 variant

SHA256H.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !HaveSHA256Ext() then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

SHA256H.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveSHA256Ext() then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

1 1 1 1 0 0 1 1 0 D 0 0 Vn Vd 1 1 0 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D 0 0 Vn Vd 1 1 0 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5315
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 X = Q[d>>1]; Y = Q[n>>1]; W = Q[m>>1]; part1 = TRUE;
 Q[d>>1] = SHA256hash(X, Y, W, part1);

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5316 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.14 SHA256H2

SHA256 hash update part 2.

A1

A1 variant

SHA256H2.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !HaveSHA256Ext() then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

SHA256H2.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveSHA256Ext() then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

1 1 1 1 0 0 1 1 0 D 0 1 Vn Vd 1 1 0 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D 0 1 Vn Vd 1 1 0 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5317
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 X = Q[n>>1]; Y = Q[d>>1]; W = Q[m>>1]; part1 = FALSE;
 Q[d>>1] = SHA256hash(X, Y, W, part1);

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5318 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.15 SHA256SU0

SHA256 schedule update 0.

A1

A1 variant

SHA256SU0.32 <Qd>, <Qm>

Decode for this encoding

 if !HaveSHA256Ext() then UNDEFINED;
 if size != '10' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

T1 variant

SHA256SU0.32 <Qd>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveSHA256Ext() then UNDEFINED;
 if size != '10' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

 if ConditionPassed() then
 bits(128) result;
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 X = Q[d>>1]; Y = Q[m>>1];
 T = Y<31:0> : X<127:32>;

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 1 1 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 1 1 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5319
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 for e = 0 to 3
 elt = Elem[T, e, 32];
 elt = ROR(elt, 7) EOR ROR(elt, 18) EOR LSR(elt, 3);
 Elem[result, e, 32] = elt + Elem[X, e, 32];
 Q[d>>1] = result;

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5320 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.16 SHA256SU1

SHA256 schedule update 1.

A1

A1 variant

SHA256SU1.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !HaveSHA256Ext() then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

SHA256SU1.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveSHA256Ext() then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

1 1 1 1 0 0 1 1 0 D 1 0 Vn Vd 1 1 0 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D 1 0 Vn Vd 1 1 0 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5321
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 bits(128) result;
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 X = Q[d>>1]; Y = Q[n>>1]; Z = Q[m>>1];
 T0 = Z<31:0> : Y<127:32>;

 T1 = Z<127:64>;
 for e = 0 to 1
 elt = Elem[T1, e, 32];
 elt = ROR(elt, 17) EOR ROR(elt, 19) EOR LSR(elt, 10);
 elt = elt + Elem[X, e, 32] + Elem[T0, e, 32];
 Elem[result, e, 32] = elt;

 T1 = result<63:0>;
 for e = 2 to 3
 elt = Elem[T1, e - 2, 32];
 elt = ROR(elt, 17) EOR ROR(elt, 19) EOR LSR(elt, 10);
 elt = elt + Elem[X, e, 32] + Elem[T0, e, 32];
 Elem[result, e, 32] = elt;

 Q[d>>1] = result;

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5322 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.17 VABA

Vector Absolute Difference and Accumulate subtracts the elements of one vector from the corresponding elements
of another vector, and accumulates the absolute values of the results into the elements of the destination vector.

Operand and result elements are all integers of the same length.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VABA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (U == '1'); long_destination = FALSE;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VABA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (U == '1'); long_destination = FALSE;

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 1 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 1 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5323
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize];
 op2 = Elem[Din[m+r],e,esize];
 absdiff = Abs(Int(op1,unsigned) - Int(op2,unsigned));
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + absdiff;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + absdiff;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
F6-5324 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5325
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.18 VABAL

Vector Absolute Difference and Accumulate Long subtracts the elements of one vector from the corresponding
elements of another vector, and accumulates the absolute values of the results into the elements of the destination
vector.

Operand elements are all integers of the same length, and the result elements are double the length of the operands.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VABAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); long_destination = TRUE;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

T1

T1 variant

VABAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); long_destination = TRUE;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 0 1 0 1 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 0 1 0 1 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
F6-5326 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize];
 op2 = Elem[Din[m+r],e,esize];
 absdiff = Abs(Int(op1,unsigned) - Int(op2,unsigned));
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + absdiff;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + absdiff;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5327
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.19 VABD (floating-point)

Vector Absolute Difference (floating-point) subtracts the elements of one vector from the corresponding elements
of another vector, and places the absolute values of the results in the elements of the destination vector.

Operand and result elements are floating-point numbers of the same size.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VABD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VABD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 0 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 0 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5328 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
 Elem[D[d+r],e,esize] = FPAbs(FPSub(op1,op2,StandardFPSCRValue()));
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5329
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.20 VABD (integer)

Vector Absolute Difference (integer) subtracts the elements of one vector from the corresponding elements of
another vector, and places the absolute values of the results in the elements of the destination vector.

Operand and result elements are all integers of the same length.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VABD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (U == '1'); long_destination = FALSE;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VABD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (U == '1'); long_destination = FALSE;

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 1 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 1 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5330 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize];
 op2 = Elem[Din[m+r],e,esize];
 absdiff = Abs(Int(op1,unsigned) - Int(op2,unsigned));
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = absdiff<2*esize-1:0>;
 else
 Elem[D[d+r],e,esize] = absdiff<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5331
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
— The values of the NZCV flags.
F6-5332 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.21 VABDL (integer)

Vector Absolute Difference Long (integer) subtracts the elements of one vector from the corresponding elements of
another vector, and places the absolute values of the results in the elements of the destination vector.

Operand elements are all integers of the same length, and the result elements are double the length of the operands.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VABDL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); long_destination = TRUE;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

T1

T1 variant

VABDL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); long_destination = TRUE;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 0 1 1 1 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 0 1 1 1 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5333
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize];
 op2 = Elem[Din[m+r],e,esize];
 absdiff = Abs(Int(op1,unsigned) - Int(op2,unsigned));
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = absdiff<2*esize-1:0>;
 else
 Elem[D[d+r],e,esize] = absdiff<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5334 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.22 VABS

Vector Absolute takes the absolute value of each element in a vector, and places the results in a second vector. The
floating-point version only clears the sign bit.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VABS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABS{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 advsimd = TRUE; floating_point = (F == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VABS{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VABS{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VABS{<c>}{<q>}.F64 <Dd>, <Dm>

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 1 1 0 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

!=1111 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 size 1 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5335
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 advsimd = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VABS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABS{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
 if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 advsimd = TRUE; floating_point = (F == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 1 1 0 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5336 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T2

Half-precision scalar variant

Applies when size == 01.

VABS{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VABS{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VABS{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 advsimd = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding A2, T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "F:size" field. It can have the
following values:

S8 when F = 0, size = 00

S16 when F = 0, size = 01

S32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 size 1 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5337
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 Elem[D[d+r],e,esize] = FPAbs(Elem[D[m+r],e,esize]);
 else
 result = Abs(SInt(Elem[D[m+r],e,esize]));
 Elem[D[d+r],e,esize] = result<esize-1:0>;
 else // VFP instruction
 case esize of
 when 16 S[d] = Zeros(16) : FPAbs(S[m]<15:0>);
 when 32 S[d] = FPAbs(S[m]);
 when 64 D[d] = FPAbs(D[m]);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5338 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.23 VACGE

Vector Absolute Compare Greater Than or Equal takes the absolute value of each element in a vector, and compares
it with the absolute value of the corresponding element of a second vector. If the first is greater than or equal to the
second, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operands and result can be quadword or doubleword vectors. They must all be the same size.

The operand vector elements are floating-point numbers. The result vector elements are the same size as the operand
vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

This instruction is used by the pseudo-instruction VACLE. The pseudo-instruction is never the preferred
disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VACGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VACGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 or_equal = (op == '0');
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VACGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5339
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VACGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 or_equal = (op == '0');
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = FPAbs(Elem[D[n+r],e,esize]); op2 = FPAbs(Elem[D[m+r],e,esize]);
 if or_equal then
 test_passed = FPCompareGE(op1, op2, StandardFPSCRValue());
 else
 test_passed = FPCompareGT(op1, op2, StandardFPSCRValue());
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
F6-5340 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.24 VACLE

Vector Absolute Compare Less Than or Equal takes the absolute value of each element in a vector, and compares it
with the absolute value of the corresponding element of a second vector. If the first is less than or equal to the second,
the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

This instruction is a pseudo-instruction of the VACGE instruction. This means that:

• The encodings in this description are named to match the encodings of VACGE.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VACGE gives the operational pseudocode for this instruction.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VACLE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VACGE{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VACLE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VACGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VACLE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VACGE{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5341
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VACLE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VACGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

Assembler symbols

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Operation for all encodings

The description of VACGE gives the operational pseudocode for this instruction.

Operational information

The description of VACGE gives the operational pseudocode for this instruction.
F6-5342 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.25 VACGT

Vector Absolute Compare Greater Than takes the absolute value of each element in a vector, and compares it with
the absolute value of the corresponding element of a second vector. If the first is greater than the second, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operands and result can be quadword or doubleword vectors. They must all be the same size.

The operand vector elements are floating-point numbers. The result vector elements are the same size as the operand
vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

This instruction is used by the pseudo-instruction VACLT. The pseudo-instruction is never the preferred
disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VACGT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VACGT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 or_equal = (op == '0');
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VACGT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5343
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VACGT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 or_equal = (op == '0');
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = FPAbs(Elem[D[n+r],e,esize]); op2 = FPAbs(Elem[D[m+r],e,esize]);
 if or_equal then
 test_passed = FPCompareGE(op1, op2, StandardFPSCRValue());
 else
 test_passed = FPCompareGT(op1, op2, StandardFPSCRValue());
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
F6-5344 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.26 VACLT

Vector Absolute Compare Less Than takes the absolute value of each element in a vector, and compares it with the
absolute value of the corresponding element of a second vector. If the first is less than the second, the corresponding
element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

This instruction is a pseudo-instruction of the VACGT instruction. This means that:

• The encodings in this description are named to match the encodings of VACGT.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VACGT gives the operational pseudocode for this instruction.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VACLT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VACGT{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VACLT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VACGT{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VACLT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VACGT{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5345
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VACLT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VACGT{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

Assembler symbols

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Operation for all encodings

The description of VACGT gives the operational pseudocode for this instruction.

Operational information

The description of VACGT gives the operational pseudocode for this instruction.
F6-5346 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.27 VADD (floating-point)

Vector Add (floating-point) adds corresponding elements in two vectors, and places the results in the destination
vector.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 advsimd = TRUE;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VADD{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VADD{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VADD{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 0 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

!=1111 1 1 1 0 0 D 1 1 Vn Vd 1 0 size N 0 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5347
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 advsimd = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 advsimd = TRUE;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5348 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T2

Half-precision scalar variant

Applies when size == 01.

VADD{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VADD{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VADD{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 advsimd = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding A2, T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

1 1 1 0 1 1 1 0 0 D 1 1 Vn Vd 1 0 size N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5349
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPAdd(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize],
 StandardFPSCRValue());
 else // VFP instruction
 case esize of
 when 16
 S[d] = Zeros(16) : FPAdd(S[n]<15:0>, S[m]<15:0>, FPSCR[]);
 when 32
 S[d] = FPAdd(S[n], S[m], FPSCR[]);
 when 64
 D[d] = FPAdd(D[n], D[m], FPSCR[]);
F6-5350 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.28 VADD (integer)

Vector Add (integer) adds corresponding elements in two vectors, and places the results in the destination vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

1 1 1 1 0 0 1 0 0 D size Vn Vd 1 0 0 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D size Vn Vd 1 0 0 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5351
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

I8 when size = 00

I16 when size = 01

I32 when size = 10

I64 when size = 11

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = Elem[D[n+r],e,esize] + Elem[D[m+r],e,esize];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5352 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.29 VADDHN

Vector Add and Narrow, returning High Half adds corresponding elements in two quadword vectors, and places the
most significant half of each result in a doubleword vector. The results are truncated. For rounded results, see
VRADDHN.

The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned
integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VADDHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VADDHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

1 1 1 1 0 0 1 0 1 D !=11 Vn Vd 0 1 0 0 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 0 1 1 1 1 1 D !=11 Vn Vd 0 1 0 0 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5353
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

I16 when size = 00

I32 when size = 01

I64 when size = 10

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = Elem[Qin[n>>1],e,2*esize] + Elem[Qin[m>>1],e,2*esize];
 Elem[D[d],e,esize] = result<2*esize-1:esize>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5354 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.30 VADDL

Vector Add Long adds corresponding elements in two doubleword vectors, and places the results in a quadword
vector. Before adding, it sign-extends or zero-extends the elements of both operands.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VADDL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize; is_vaddw = (op == '1');
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VADDL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize; is_vaddw = (op == '1');
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 0 0 0 0 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 0 0 0 0 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5355
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<dt> Is the data type for the elements of the second operand vector, encoded in the "U:size" field. It can
have the following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 if is_vaddw then
 op1 = Int(Elem[Qin[n>>1],e,2*esize], unsigned);
 else
 op1 = Int(Elem[Din[n],e,esize], unsigned);
 result = op1 + Int(Elem[Din[m],e,esize],unsigned);
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5356 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.31 VADDW

Vector Add Wide adds corresponding elements in one quadword and one doubleword vector, and places the results
in a quadword vector. Before adding, it sign-extends or zero-extends the elements of the doubleword operand.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VADDW{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize; is_vaddw = (op == '1');
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VADDW{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize; is_vaddw = (op == '1');
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 0 0 0 1 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 0 0 0 1 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5357
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<dt> Is the data type for the elements of the second operand vector, encoded in the "U:size" field. It can
have the following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 if is_vaddw then
 op1 = Int(Elem[Qin[n>>1],e,2*esize], unsigned);
 else
 op1 = Int(Elem[Din[n],e,esize], unsigned);
 result = op1 + Int(Elem[Din[m],e,esize],unsigned);
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5358 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.32 VAND (immediate)

Vector Bitwise AND (immediate) performs a bitwise AND between a register value and an immediate value, and
returns the result into the destination vector

This instruction is a pseudo-instruction of the VBIC (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of VBIC (immediate).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VBIC (immediate) gives the operational pseudocode for this instruction.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VAND{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

 is equivalent to

VBIC{<c>}{<q>}.I16 <Dd>, #~<imm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VAND{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

 is equivalent to

VBIC{<c>}{<q>}.I16 <Qd>, #~<imm>

and is never the preferred disassembly.

A2

64-bit SIMD vector variant

Applies when Q == 0.

VAND{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

 is equivalent to

VBIC{<c>}{<q>}.I32 <Dd>, #~<imm>

and is never the preferred disassembly.

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 1 1 imm4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 1 1 imm4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5359
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VAND{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

 is equivalent to

VBIC{<c>}{<q>}.I32 <Qd>, #~<imm>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VAND{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

 is equivalent to

VBIC{<c>}{<q>}.I16 <Dd>, #~<imm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VAND{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

 is equivalent to

VBIC{<c>}{<q>}.I16 <Qd>, #~<imm>

and is never the preferred disassembly.

T2

64-bit SIMD vector variant

Applies when Q == 0.

VAND{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

 is equivalent to

VBIC{<c>}{<q>}.I32 <Dd>, #~<imm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 1 1 imm4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 1 1 imm4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode
F6-5360 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VAND{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

 is equivalent to

VBIC{<c>}{<q>}.I32 <Qd>, #~<imm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<imm> Is a constant of the specified type that is replicated to fill the destination register. For details of the
range of constants available and the encoding of <imm>, see Modified immediate constants in T32
and A32 Advanced SIMD instructions on page F1-4365.

Operation for all encodings

The description of VBIC (immediate) gives the operational pseudocode for this instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5361
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.33 VAND (register)

Vector Bitwise AND (register) performs a bitwise AND operation between two registers, and places the result in
the destination register.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VAND{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VAND{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VAND{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VAND{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

1 1 1 1 0 0 1 0 0 D 0 0 Vn Vd 0 0 0 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 0 0 Vn Vd 0 0 0 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5362 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[n+r] AND D[m+r];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5363
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.34 VBIC (immediate)

Vector Bitwise Bit Clear (immediate) performs a bitwise AND between a register value and the complement of an
immediate value, and returns the result into the destination vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

This instruction is used by the pseudo-instruction VAND (immediate). The pseudo-instruction is never the preferred
disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VBIC{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIC{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

Decode for all variants of this encoding

 if cmode<0> == '0' || cmode<3:2> == '11' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

A2

64-bit SIMD vector variant

Applies when Q == 0.

VBIC{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIC{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 1 1 imm4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 1 1 imm4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode
F6-5364 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if cmode<0> == '0' || cmode<3:2> == '11' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VBIC{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIC{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

Decode for all variants of this encoding

 if cmode<0> == '0' || cmode<3:2> == '11' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T2

64-bit SIMD vector variant

Applies when Q == 0.

VBIC{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIC{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

Decode for all variants of this encoding

 if cmode<0> == '0' || cmode<3:2> == '11' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 1 1 imm4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 1 1 imm4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5365
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4442 for the T32
instruction set, or Advanced SIMD one register and modified immediate on page F4-4551 for the A32 instruction
set.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<imm> Is a constant of the specified type that is replicated to fill the destination register. For details of the
range of constants available and the encoding of <imm>, see Modified immediate constants in T32
and A32 Advanced SIMD instructions on page F1-4365.

The I8, I64, and F32 data types are permitted as pseudo-instructions, if the immediate can be represented by this
instruction, and are encoded using a permitted encoding of the I16 or I32 data type.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[d+r] AND NOT(imm64);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5366 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.35 VBIC (register)

Vector Bitwise Bit Clear (register) performs a bitwise AND between a register value and the complement of a
register value, and places the result in the destination register.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VBIC{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIC{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VBIC{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIC{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

1 1 1 1 0 0 1 0 0 D 0 1 Vn Vd 0 0 0 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 0 1 Vn Vd 0 0 0 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5367
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[n+r] AND NOT(D[m+r]);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5368 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.36 VBIF

Vector Bitwise Insert if False inserts each bit from the first source register into the destination register if the
corresponding bit of the second source register is 0, otherwise leaves the bit in the destination register unchanged.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VBIF{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIF{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 enumeration VBitOps {VBitOps_VBIF, VBitOps_VBIT, VBitOps_VBSL};

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if op == '00' then SEE "VEOR";
 if op == '01' then operation = VBitOps_VBSL;
 if op == '10' then operation = VBitOps_VBIT;
 if op == '11' then operation = VBitOps_VBIF;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VBIF{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIF{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 enumeration VBitOps {VBitOps_VBIF, VBitOps_VBIT, VBitOps_VBSL};

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;

1 1 1 1 0 0 1 1 0 D 1 1 Vn Vd 0 0 0 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 0 D 1 1 Vn Vd 0 0 0 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5369
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 if op == '00' then SEE "VEOR";
 if op == '01' then operation = VBitOps_VBSL;
 if op == '10' then operation = VBitOps_VBIT;
 if op == '11' then operation = VBitOps_VBIF;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 case operation of
 when VBitOps_VBIF D[d+r] = (D[d+r] AND D[m+r]) OR (D[n+r] AND NOT(D[m+r]));
 when VBitOps_VBIT D[d+r] = (D[n+r] AND D[m+r]) OR (D[d+r] AND NOT(D[m+r]));
 when VBitOps_VBSL D[d+r] = (D[n+r] AND D[d+r]) OR (D[m+r] AND NOT(D[d+r]));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5370 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.37 VBIT

Vector Bitwise Insert if True inserts each bit from the first source register into the destination register if the
corresponding bit of the second source register is 1, otherwise leaves the bit in the destination register unchanged.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VBIT{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIT{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 enumeration VBitOps {VBitOps_VBIF, VBitOps_VBIT, VBitOps_VBSL};

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if op == '00' then SEE "VEOR";
 if op == '01' then operation = VBitOps_VBSL;
 if op == '10' then operation = VBitOps_VBIT;
 if op == '11' then operation = VBitOps_VBIF;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VBIT{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIT{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 enumeration VBitOps {VBitOps_VBIF, VBitOps_VBIT, VBitOps_VBSL};

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;

1 1 1 1 0 0 1 1 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5371
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 if op == '00' then SEE "VEOR";
 if op == '01' then operation = VBitOps_VBSL;
 if op == '10' then operation = VBitOps_VBIT;
 if op == '11' then operation = VBitOps_VBIF;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 case operation of
 when VBitOps_VBIF D[d+r] = (D[d+r] AND D[m+r]) OR (D[n+r] AND NOT(D[m+r]));
 when VBitOps_VBIT D[d+r] = (D[n+r] AND D[m+r]) OR (D[d+r] AND NOT(D[m+r]));
 when VBitOps_VBSL D[d+r] = (D[n+r] AND D[d+r]) OR (D[m+r] AND NOT(D[d+r]));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5372 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.38 VBSL

Vector Bitwise Select sets each bit in the destination to the corresponding bit from the first source operand when the
original destination bit was 1, otherwise from the second source operand.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VBSL{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VBSL{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 enumeration VBitOps {VBitOps_VBIF, VBitOps_VBIT, VBitOps_VBSL};

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if op == '00' then SEE "VEOR";
 if op == '01' then operation = VBitOps_VBSL;
 if op == '10' then operation = VBitOps_VBIT;
 if op == '11' then operation = VBitOps_VBIF;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VBSL{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VBSL{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 enumeration VBitOps {VBitOps_VBIF, VBitOps_VBIT, VBitOps_VBSL};

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;

1 1 1 1 0 0 1 1 0 D 0 1 Vn Vd 0 0 0 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 0 D 0 1 Vn Vd 0 0 0 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5373
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 if op == '00' then SEE "VEOR";
 if op == '01' then operation = VBitOps_VBSL;
 if op == '10' then operation = VBitOps_VBIT;
 if op == '11' then operation = VBitOps_VBIF;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 case operation of
 when VBitOps_VBIF D[d+r] = (D[d+r] AND D[m+r]) OR (D[n+r] AND NOT(D[m+r]));
 when VBitOps_VBIT D[d+r] = (D[n+r] AND D[m+r]) OR (D[d+r] AND NOT(D[m+r]));
 when VBitOps_VBSL D[d+r] = (D[n+r] AND D[d+r]) OR (D[m+r] AND NOT(D[d+r]));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5374 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.39 VCADD

Vector Complex Add.

This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with
the more significant element holding the imaginary part of the number and the less significant element holding the
real part of the number. Each element holds a floating-point value. It performs the following computation on the
corresponding complex number element pairs from the two source registers:

• Considering the complex number from the second source register on an Argand diagram, the number is
rotated counterclockwise by 90 or 270 degrees.

• The rotated complex number is added to the complex number from the first source register.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

(FEAT_FCMA)

64-bit SIMD vector variant

Applies when Q == 0.

VCADD{<q>}.<dt> <Dd>, <Dn>, <Dm>, #<rotate>

128-bit SIMD vector variant

Applies when Q == 1.

VCADD{<q>}.<dt> <Qd>, <Qn>, <Qm>, #<rotate>

Decode for all variants of this encoding

 if !HaveFCADDExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 esize = 16 << UInt(S);
 if !HaveFP16Ext() && esize == 16 then UNDEFINED;
 elements = 64 DIV esize;
 regs = if Q == '0' then 1 else 2;

T1

(FEAT_FCMA)

64-bit SIMD vector variant

Applies when Q == 0.

VCADD{<q>}.<dt> <Dd>, <Dn>, <Dm>, #<rotate>

1 1 1 1 1 1 0 rot 1 D 0 S Vn Vd 1 0 0 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 0 rot 1 D 0 S Vn Vd 1 0 0 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5375
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VCADD{<q>}.<dt> <Qd>, <Qn>, <Qm>, #<rotate>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveFCADDExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 esize = 16 << UInt(S);
 if !HaveFP16Ext() && esize == 16 then UNDEFINED;
 elements = 64 DIV esize;
 regs = if Q == '0' then 1 else 2;

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "S" field. It can have the following
values:

F16 when S = 0

F32 when S = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<rotate> Is the rotation to be applied to elements in the second SIMD&FP source register, encoded in the
"rot" field. It can have the following values:

90 when rot = 0

270 when rot = 1

Operation for all encodings

 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 operand1 = D[n+r];
 operand2 = D[m+r];
 operand3 = D[d+r];
 for e = 0 to (elements DIV 2)-1
 case rot of
 when '0'
 element1 = FPNeg(Elem[operand2,e*2+1,esize]);
 element3 = Elem[operand2,e*2,esize];
 when '1'
 element1 = Elem[operand2,e*2+1,esize];
 element3 = FPNeg(Elem[operand2,e*2,esize]);
 result1 = FPAdd(Elem[operand1,e*2,esize],element1,StandardFPSCRValue());
 result2 = FPAdd(Elem[operand1,e*2+1,esize],element3,StandardFPSCRValue());
F6-5376 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 Elem[D[d+r],e*2,esize] = result1;
 Elem[D[d+r],e*2+1,esize] = result2;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5377
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.40 VCEQ (immediate #0)

Vector Compare Equal to Zero takes each element in a vector, and compares it with zero. If it is equal to zero, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operand vector elements are the same type, and are integers or floating-point numbers. The result vector
elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCEQ{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCEQ{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 floating_point = (F == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCEQ{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCEQ{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 0 1 0 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 0 1 0 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5378 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
 if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 floating_point = (F == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "F:size" field. It can have the
following values:

I8 when F = 0, size = 00

I16 when F = 0, size = 01

I32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 bits(esize) zero = FPZero('0');
 test_passed = FPCompareEQ(Elem[D[m+r],e,esize], zero, StandardFPSCRValue());
 else
 test_passed = (Elem[D[m+r],e,esize] == Zeros(esize));
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5379
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.41 VCEQ (register)

Vector Compare Equal takes each element in a vector, and compares it with the corresponding element of a second
vector. If they are equal, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to
all zeros.

The operand vector elements are the same type, and are integers or floating-point numbers. The result vector
elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCEQ{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCEQ{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 int_operation = TRUE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

64-bit SIMD vector variant

Applies when Q == 0.

VCEQ{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCEQ{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 0 0 0 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
F6-5380 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 int_operation = FALSE;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCEQ{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCEQ{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 int_operation = TRUE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T2

64-bit SIMD vector variant

Applies when Q == 0.

VCEQ{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCEQ{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 int_operation = FALSE;
 case sz of

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 0 0 0 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5381
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> For encoding A1 and T1: is the data type for the elements of the vectors, encoded in the "size" field.
It can have the following values:

I8 when size = 00

I16 when size = 01

I32 when size = 10

For encoding A2 and T2: is the data type for the elements of the vectors, encoded in the "sz" field.
It can have the following values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
 if int_operation then
 test_passed = (op1 == op2);
 else
 test_passed = FPCompareEQ(op1, op2, StandardFPSCRValue());
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
F6-5382 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.42 VCGE (immediate #0)

Vector Compare Greater Than or Equal to Zero takes each element in a vector, and compares it with zero. If it is
greater than or equal to zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is
set to all zeros.

The operand vector elements are the same type, and are signed integers or floating-point numbers. The result vector
elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCGE{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCGE{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 floating_point = (F == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCGE{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCGE{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 0 0 1 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 0 0 1 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5383
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
 if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 floating_point = (F == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "F:size" field. It can have the
following values:

S8 when F = 0, size = 00

S16 when F = 0, size = 01

S32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 bits(esize) zero = FPZero('0');
 test_passed = FPCompareGE(Elem[D[m+r],e,esize], zero, StandardFPSCRValue());
 else
 test_passed = (SInt(Elem[D[m+r],e,esize]) >= 0);
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
F6-5384 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5385
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.43 VCGE (register)

Vector Compare Greater Than or Equal takes each element in a vector, and compares it with the corresponding
element of a second vector. If the first is greater than or equal to the second, the corresponding element in the
destination vector is set to all ones. Otherwise, it is set to all zeros.

The operand vector elements are the same type, and are signed integers, unsigned integers, or floating-point
numbers. The result vector elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

This instruction is used by the pseudo-instruction VCLE (register). The pseudo-instruction is never the preferred
disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 vtype = if U == '1' then VCGEType_unsigned else VCGEType_signed;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

64-bit SIMD vector variant

Applies when Q == 0.

VCGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
F6-5386 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 vtype = VCGEType_fp;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 vtype = if U == '1' then VCGEType_unsigned else VCGEType_signed;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T2

64-bit SIMD vector variant

Applies when Q == 0.

VCGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 vtype = VCGEType_fp;

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5387
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> For encoding A1 and T1: is the data type for the elements of the operands, encoded in the "U:size"
field. It can have the following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

For encoding A2 and T2: is the data type for the elements of the vectors, encoded in the "sz" field.
It can have the following values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
 case vtype of
 when VCGEType_signed test_passed = (SInt(op1) >= SInt(op2));
 when VCGEType_unsigned test_passed = (UInt(op1) >= UInt(op2));
F6-5388 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 when VCGEType_fp test_passed = FPCompareGE(op1, op2, StandardFPSCRValue());
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5389
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.44 VCGT (immediate #0)

Vector Compare Greater Than Zero takes each element in a vector, and compares it with zero. If it is greater than
zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operand vector elements are the same type, and are signed integers or floating-point numbers. The result vector
elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCGT{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCGT{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 floating_point = (F == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCGT{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCGT{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 0 0 0 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 0 0 0 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5390 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
 if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 floating_point = (F == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "F:size" field. It can have the
following values:

S8 when F = 0, size = 00

S16 when F = 0, size = 01

S32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 bits(esize) zero = FPZero('0');
 test_passed = FPCompareGT(Elem[D[m+r],e,esize], zero, StandardFPSCRValue());
 else
 test_passed = (SInt(Elem[D[m+r],e,esize]) > 0);
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5391
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5392 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.45 VCGT (register)

Vector Compare Greater Than takes each element in a vector, and compares it with the corresponding element of a
second vector. If the first is greater than the second, the corresponding element in the destination vector is set to all
ones. Otherwise, it is set to all zeros.

The operand vector elements are the same type, and are signed integers, unsigned integers, or floating-point
numbers. The result vector elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

This instruction is used by the pseudo-instruction VCLT (register). The pseudo-instruction is never the preferred
disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCGT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCGT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 vtype = if U == '1' then VCGTtype_unsigned else VCGTtype_signed;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

64-bit SIMD vector variant

Applies when Q == 0.

VCGT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCGT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5393
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 vtype = VCGTtype_fp;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCGT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCGT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 vtype = if U == '1' then VCGTtype_unsigned else VCGTtype_signed;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T2

64-bit SIMD vector variant

Applies when Q == 0.

VCGT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCGT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 vtype = VCGTtype_fp;

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5394 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> For encoding A1 and T1: is the data type for the elements of the operands, encoded in the "U:size"
field. It can have the following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

For encoding A2 and T2: is the data type for the elements of the vectors, encoded in the "sz" field.
It can have the following values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 enumeration VCGTtype {VCGTtype_signed, VCGTtype_unsigned, VCGTtype_fp};

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
 case vtype of
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5395
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 when VCGTtype_signed test_passed = (SInt(op1) > SInt(op2));
 when VCGTtype_unsigned test_passed = (UInt(op1) > UInt(op2));
 when VCGTtype_fp test_passed = FPCompareGT(op1, op2, StandardFPSCRValue());
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5396 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.46 VCLE (immediate #0)

Vector Compare Less Than or Equal to Zero takes each element in a vector, and compares it with zero. If it is less
than or equal to zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all
zeros.

The operand vector elements are the same type, and are signed integers or floating-point numbers. The result vector
elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCLE{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCLE{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 floating_point = (F == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCLE{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCLE{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 0 1 1 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 0 1 1 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5397
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
 if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 floating_point = (F == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "F:size" field. It can have the
following values:

S8 when F = 0, size = 00

S16 when F = 0, size = 01

S32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 bits(esize) zero = FPZero('0');
 test_passed = FPCompareGE(zero, Elem[D[m+r],e,esize], StandardFPSCRValue());
 else
 test_passed = (SInt(Elem[D[m+r],e,esize]) <= 0);
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
F6-5398 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5399
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.47 VCLE (register)

Vector Compare Less Than or Equal takes each element in a vector, and compares it with the corresponding element
of a second vector. If the first is less than or equal to the second, the corresponding element in the destination vector
is set to all ones. Otherwise, it is set to all zeros.

This instruction is a pseudo-instruction of the VCGE (register) instruction. This means that:

• The encodings in this description are named to match the encodings of VCGE (register).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VCGE (register) gives the operational pseudocode for this instruction.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCLE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VCGE{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VCLE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VCGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

A2

64-bit SIMD vector variant

Applies when Q == 0.

VCLE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VCGE{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
F6-5400 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VCLE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VCGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCLE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VCGE{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VCLE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VCGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

T2

64-bit SIMD vector variant

Applies when Q == 0.

VCLE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VCGE{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5401
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VCLE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VCGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

Assembler symbols

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<c> For encoding A1 and A2: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> For encoding A1 and T1: is the data type for the elements of the operands, encoded in the "U:size"
field. It can have the following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

For encoding A2 and T2: is the data type for the elements of the vectors, encoded in the "sz" field.
It can have the following values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Operation for all encodings

The description of VCGE (register) gives the operational pseudocode for this instruction.

Operational information

The description of VCGE (register) gives the operational pseudocode for this instruction.
F6-5402 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.48 VCLS

Vector Count Leading Sign Bits counts the number of consecutive bits following the topmost bit, that are the same
as the topmost bit, in each element in a vector, and places the results in a second vector. The count does not include
the topmost bit itself.

The operand vector elements can be any one of 8-bit, 16-bit, or 32-bit signed integers.

The result vector elements are the same data type as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCLS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCLS{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCLS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCLS{<c>}{<q>}.<dt> <Qd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 0 0 0 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 0 0 0 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5403
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

S8 when size = 00

S16 when size = 01

S32 when size = 10

The encoding size = 11 is reserved.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = CountLeadingSignBits(Elem[D[m+r],e,esize])<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5404 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.49 VCLT (immediate #0)

Vector Compare Less Than Zero takes each element in a vector, and compares it with zero. If it is less than zero,
the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operand vector elements are the same type, and are signed integers or floating-point numbers. The result vector
elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCLT{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCLT{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 floating_point = (F == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCLT{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCLT{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 1 0 0 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 1 0 0 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5405
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
 if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 floating_point = (F == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "F:size" field. It can have the
following values:

S8 when F = 0, size = 00

S16 when F = 0, size = 01

S32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 bits(esize) zero = FPZero('0');
 test_passed = FPCompareGT(zero, Elem[D[m+r],e,esize], StandardFPSCRValue());
 else
 test_passed = (SInt(Elem[D[m+r],e,esize]) < 0);
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
F6-5406 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5407
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.50 VCLT (register)

Vector Compare Less Than takes each element in a vector, and compares it with the corresponding element of a
second vector. If the first is less than the second, the corresponding element in the destination vector is set to all
ones. Otherwise, it is set to all zeros.

This instruction is a pseudo-instruction of the VCGT (register) instruction. This means that:

• The encodings in this description are named to match the encodings of VCGT (register).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VCGT (register) gives the operational pseudocode for this instruction.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCLT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VCGT{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VCLT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VCGT{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

A2

64-bit SIMD vector variant

Applies when Q == 0.

VCLT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VCGT{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
F6-5408 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VCLT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VCGT{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCLT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VCGT{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VCLT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VCGT{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

T2

64-bit SIMD vector variant

Applies when Q == 0.

VCLT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VCGT{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5409
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VCLT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VCGT{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

Assembler symbols

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<c> For encoding A1 and A2: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> For encoding A1 and T1: is the data type for the elements of the operands, encoded in the "U:size"
field. It can have the following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

For encoding A2 and T2: is the data type for the elements of the vectors, encoded in the "sz" field.
It can have the following values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Operation for all encodings

The description of VCGT (register) gives the operational pseudocode for this instruction.

Operational information

The description of VCGT (register) gives the operational pseudocode for this instruction.
F6-5410 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.51 VCLZ

Vector Count Leading Zeros counts the number of consecutive zeros, starting from the most significant bit, in each
element in a vector, and places the results in a second vector.

The operand vector elements can be any one of 8-bit, 16-bit, or 32-bit integers. There is no distinction between
signed and unsigned integers.

The result vector elements are the same data type as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCLZ{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCLZ{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCLZ{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCLZ{<c>}{<q>}.<dt> <Qd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 0 0 1 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 0 0 1 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5411
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

I8 when size = 00

I16 when size = 01

I32 when size = 10

The encoding size = 11 is reserved.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = CountLeadingZeroBits(Elem[D[m+r],e,esize])<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5412 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.52 VCMLA

Vector Complex Multiply Accumulate.

This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with
the more significant element holding the imaginary part of the number and the less significant element holding the
real part of the number. Each element holds a floating-point value. It performs the following computation on the
corresponding complex number element pairs from the two source registers and the destination register:

• Considering the complex number from the second source register on an Argand diagram, the number is
rotated counterclockwise by 0, 90, 180, or 270 degrees.

• The two elements of the transformed complex number are multiplied by:

— The real element of the complex number from the first source register, if the transformation was a
rotation by 0 or 180 degrees.

— The imaginary element of the complex number from the first source register, if the transformation was
a rotation by 90 or 270 degrees.

• The complex number resulting from that multiplication is added to the complex number from the destination
register.

The multiplication and addition operations are performed as a fused multiply-add, without any intermediate
rounding.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

(FEAT_FCMA)

64-bit SIMD vector variant

Applies when Q == 0.

VCMLA{<q>}.<dt> <Dd>, <Dn>, <Dm>, #<rotate>

128-bit SIMD vector variant

Applies when Q == 1.

VCMLA{<q>}.<dt> <Qd>, <Qn>, <Qm>, #<rotate>

Decode for all variants of this encoding

 if !HaveFCADDExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 esize = 16 << UInt(S);
 if !HaveFP16Ext() && esize == 16 then UNDEFINED;
 elements = 64 DIV esize;
 regs = if Q == '0' then 1 else 2;

T1

(FEAT_FCMA)

1 1 1 1 1 1 0 rot D 1 S Vn Vd 1 0 0 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5413
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
64-bit SIMD vector variant

Applies when Q == 0.

VCMLA{<q>}.<dt> <Dd>, <Dn>, <Dm>, #<rotate>

128-bit SIMD vector variant

Applies when Q == 1.

VCMLA{<q>}.<dt> <Qd>, <Qn>, <Qm>, #<rotate>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveFCADDExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 esize = 16 << UInt(S);
 if !HaveFP16Ext() && esize == 16 then UNDEFINED;
 elements = 64 DIV esize;
 regs = if Q == '0' then 1 else 2;

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "S" field. It can have the following
values:

F16 when S = 0

F32 when S = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<rotate> Is the rotation to be applied to elements in the second SIMD&FP source register, encoded in the
"rot" field. It can have the following values:

0 when rot = 00

90 when rot = 01

180 when rot = 10

270 when rot = 11

1 1 1 1 1 1 0 rot D 1 S Vn Vd 1 0 0 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5414 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 operand1 = D[n+r];
 operand2 = D[m+r];
 operand3 = D[d+r];
 for e = 0 to (elements DIV 2)-1
 case rot of
 when '00'
 element1 = Elem[operand2,e*2,esize];
 element2 = Elem[operand1,e*2,esize];
 element3 = Elem[operand2,e*2+1,esize];
 element4 = Elem[operand1,e*2,esize];
 when '01'
 element1 = FPNeg(Elem[operand2,e*2+1,esize]);
 element2 = Elem[operand1,e*2+1,esize];
 element3 = Elem[operand2,e*2,esize];
 element4 = Elem[operand1,e*2+1,esize];
 when '10'
 element1 = FPNeg(Elem[operand2,e*2,esize]);
 element2 = Elem[operand1,e*2,esize];
 element3 = FPNeg(Elem[operand2,e*2+1,esize]);
 element4 = Elem[operand1,e*2,esize];
 when '11'
 element1 = Elem[operand2,e*2+1,esize];
 element2 = Elem[operand1,e*2+1,esize];
 element3 = FPNeg(Elem[operand2,e*2,esize]);
 element4 = Elem[operand1,e*2+1,esize];
 result1 = FPMulAdd(Elem[operand3,e*2,esize],element2,element1, StandardFPSCRValue());
 result2 = FPMulAdd(Elem[operand3,e*2+1,esize],element4,element3, StandardFPSCRValue());
 Elem[D[d+r],e*2,esize] = result1;
 Elem[D[d+r],e*2+1,esize] = result2;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5415
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.53 VCMLA (by element)

Vector Complex Multiply Accumulate (by element).

This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with
the more significant element holding the imaginary part of the number and the less significant element holding the
real part of the number. Each element holds a floating-point value. It performs the following computation on
complex numbers from the first source register and the destination register with the specified complex number from
the second source register:

• Considering the complex number from the second source register on an Argand diagram, the number is
rotated counterclockwise by 0, 90, 180, or 270 degrees.

• The two elements of the transformed complex number are multiplied by:

— The real element of the complex number from the first source register, if the transformation was a
rotation by 0 or 180 degrees.

— The imaginary element of the complex number from the first source register, if the transformation was
a rotation by 90 or 270 degrees.

• The complex number resulting from that multiplication is added to the complex number from the destination
register.

The multiplication and addition operations are performed as a fused multiply-add, without any intermediate
rounding.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

(FEAT_FCMA)

64-bit SIMD vector of half-precision floating-point variant

Applies when S == 0 && Q == 0.

VCMLA{<q>}.F16 <Dd>, <Dn>, <Dm>[<index>], #<rotate>

64-bit SIMD vector of single-precision floating-point variant

Applies when S == 1 && Q == 0.

VCMLA{<q>}.F32 <Dd>, <Dn>, <Dm>[0], #<rotate>

128-bit SIMD vector of half-precision floating-point variant

Applies when S == 0 && Q == 1.

VCMLA{<q>}.F16 <Qd>, <Qn>, <Dm>[<index>], #<rotate>

128-bit SIMD vector of single-precision floating-point variant

Applies when S == 1 && Q == 1.

VCMLA{<q>}.F32 <Qd>, <Qn>, <Dm>[0], #<rotate>

1 1 1 1 1 1 1 0 S D rot Vn Vd 1 0 0 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
F6-5416 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if !HaveFCADDExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn);
 m = if S=='1' then UInt(M:Vm) else UInt(Vm);
 esize = 16 << UInt(S);
 if !HaveFP16Ext() && esize == 16 then UNDEFINED;
 elements = 64 DIV esize;
 regs = if Q == '0' then 1 else 2;
 index = if S=='1' then 0 else UInt(M);

T1

(FEAT_FCMA)

64-bit SIMD vector of half-precision floating-point variant

Applies when S == 0 && Q == 0.

VCMLA{<q>}.F16 <Dd>, <Dn>, <Dm>[<index>], #<rotate>

64-bit SIMD vector of single-precision floating-point variant

Applies when S == 1 && Q == 0.

VCMLA{<q>}.F32 <Dd>, <Dn>, <Dm>[0], #<rotate>

128-bit SIMD vector of half-precision floating-point variant

Applies when S == 0 && Q == 1.

VCMLA{<q>}.F16 <Qd>, <Qn>, <Dm>[<index>], #<rotate>

128-bit SIMD vector of single-precision floating-point variant

Applies when S == 1 && Q == 1.

VCMLA{<q>}.F32 <Qd>, <Qn>, <Dm>[0], #<rotate>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveFCADDExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn);
 m = if S=='1' then UInt(M:Vm) else UInt(Vm);
 esize = 16 << UInt(S);
 if !HaveFP16Ext() && esize == 16 then UNDEFINED;
 elements = 64 DIV esize;
 regs = if Q == '0' then 1 else 2;
 index = if S=='1' then 0 else UInt(M);

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

1 1 1 1 1 1 1 0 S D rot Vn Vd 1 0 0 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5417
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> For the half-precision scalar variant: is the 64-bit name of the second SIMD&FP source register,
encoded in the "Vm" field.

For the single-precision scalar variant: is the 64-bit name of the second SIMD&FP source register,
encoded in the "M:Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

<rotate> Is the rotation to be applied to elements in the second SIMD&FP source register, encoded in the
"rot" field. It can have the following values:

0 when rot = 00

90 when rot = 01

180 when rot = 10

270 when rot = 11

Operation for all encodings

 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 operand1 = D[n+r];
 operand2 = Din[m];
 operand3 = D[d+r];
 for e = 0 to (elements DIV 2)-1
 case rot of
 when '00'
 element1 = Elem[operand2,index*2,esize];
 element2 = Elem[operand1,e*2,esize];
 element3 = Elem[operand2,index*2+1,esize];
 element4 = Elem[operand1,e*2,esize];
 when '01'
 element1 = FPNeg(Elem[operand2,index*2+1,esize]);
 element2 = Elem[operand1,e*2+1,esize];
 element3 = Elem[operand2,index*2,esize];
 element4 = Elem[operand1,e*2+1,esize];
 when '10'
 element1 = FPNeg(Elem[operand2,index*2,esize]);
 element2 = Elem[operand1,e*2,esize];
 element3 = FPNeg(Elem[operand2,index*2+1,esize]);
 element4 = Elem[operand1,e*2,esize];
 when '11'
 element1 = Elem[operand2,index*2+1,esize];
 element2 = Elem[operand1,e*2+1,esize];
 element3 = FPNeg(Elem[operand2,index*2,esize]);
 element4 = Elem[operand1,e*2+1,esize];
 result1 = FPMulAdd(Elem[operand3,e*2,esize],element2,element1, StandardFPSCRValue());
 result2 = FPMulAdd(Elem[operand3,e*2+1,esize],element4,element3,StandardFPSCRValue());
 Elem[D[d+r],e*2,esize] = result1;
 Elem[D[d+r],e*2+1,esize] = result2;
F6-5418 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.54 VCMP

Vector Compare compares two floating-point registers, or one floating-point register and zero. It writes the result to
the FPSCR flags. These are normally transferred to the PSTATE.{N, Z, C, V} Condition flags by a subsequent VMRS
instruction.

This instruction raises an Invalid Operation floating-point exception if either or both of the operands is a signaling
NaN.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision scalar variant

Applies when size == 01.

VCMP{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCMP{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCMP{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 quiet_nan_exc = (E == '1'); with_zero = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

!=1111 1 1 1 0 1 D 1 1 0 1 0 0 Vd 1 0 size 0 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond E
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5419
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
A2

Half-precision scalar variant

Applies when size == 01.

VCMP{<c>}{<q>}.F16 <Sd>, #0.0

Single-precision scalar variant

Applies when size == 10.

VCMP{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar variant

Applies when size == 11.

VCMP{<c>}{<q>}.F64 <Dd>, #0.0

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 quiet_nan_exc = (E == '1'); with_zero = TRUE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D);
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

Half-precision scalar variant

Applies when size == 01.

VCMP{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCMP{<c>}{<q>}.F32 <Sd>, <Sm>

!=1111 1 1 1 0 1 D 1 1 0 1 0 1 Vd 1 0 size 0 1 (0) 0 (0) (0) (0) (0)
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond E

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 0 Vd 1 0 size 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

E

F6-5420 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when size == 11.

VCMP{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 quiet_nan_exc = (E == '1'); with_zero = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

Half-precision scalar variant

Applies when size == 01.

VCMP{<c>}{<q>}.F16 <Sd>, #0.0

Single-precision scalar variant

Applies when size == 10.

VCMP{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar variant

Applies when size == 11.

VCMP{<c>}{<q>}.F64 <Dd>, #0.0

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 quiet_nan_exc = (E == '1'); with_zero = TRUE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D);
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 1 Vd 1 0 size 0 1 (0) 0 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0

E

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5421
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 bits(4) nzcv;
 case esize of
 when 16
 bits(16) op16 = if with_zero then FPZero('0') else S[m]<15:0>;
 nzcv = FPCompare(S[d]<15:0>, op16, quiet_nan_exc, FPSCR[]);
 when 32
 bits(32) op32 = if with_zero then FPZero('0') else S[m];
 nzcv = FPCompare(S[d], op32, quiet_nan_exc, FPSCR[]);
 when 64
 bits(64) op64 = if with_zero then FPZero('0') else D[m];
 nzcv = FPCompare(D[d], op64, quiet_nan_exc, FPSCR[]);

 FPSCR<31:28> = nzcv; // FPSCR.<N,Z,C,V> set to nzcv

Operational information

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either
or both of the operands is a NaN, they are unordered, and all three of (Operand1 < Operand2), (Operand1 ==
Operand2) and (Operand1 > Operand2) are false. An unordered comparison sets the FPSCR condition flags to N=0,
Z=0, C=1, and V=1.
F6-5422 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.55 VCMPE

Vector Compare, raising Invalid Operation on NaN compares two floating-point registers, or one floating-point
register and zero. It writes the result to the FPSCR flags. These are normally transferred to the PSTATE.{N, Z, C,
V} Condition flags by a subsequent VMRS instruction.

This instruction raises an Invalid Operation floating-point exception if either or both of the operands is any type of
NaN.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision scalar variant

Applies when size == 01.

VCMPE{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCMPE{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCMPE{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 quiet_nan_exc = (E == '1'); with_zero = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

!=1111 1 1 1 0 1 D 1 1 0 1 0 0 Vd 1 0 size 1 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond E
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5423
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
A2

Half-precision scalar variant

Applies when size == 01.

VCMPE{<c>}{<q>}.F16 <Sd>, #0.0

Single-precision scalar variant

Applies when size == 10.

VCMPE{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar variant

Applies when size == 11.

VCMPE{<c>}{<q>}.F64 <Dd>, #0.0

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 quiet_nan_exc = (E == '1'); with_zero = TRUE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D);
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

Half-precision scalar variant

Applies when size == 01.

VCMPE{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCMPE{<c>}{<q>}.F32 <Sd>, <Sm>

!=1111 1 1 1 0 1 D 1 1 0 1 0 1 Vd 1 0 size 1 1 (0) 0 (0) (0) (0) (0)
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond E

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 0 Vd 1 0 size 1 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

E

F6-5424 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when size == 11.

VCMPE{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 quiet_nan_exc = (E == '1'); with_zero = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

Half-precision scalar variant

Applies when size == 01.

VCMPE{<c>}{<q>}.F16 <Sd>, #0.0

Single-precision scalar variant

Applies when size == 10.

VCMPE{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar variant

Applies when size == 11.

VCMPE{<c>}{<q>}.F64 <Dd>, #0.0

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 quiet_nan_exc = (E == '1'); with_zero = TRUE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D);
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 1 Vd 1 0 size 1 1 (0) 0 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0

E

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5425
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 bits(4) nzcv;
 case esize of
 when 16
 bits(16) op16 = if with_zero then FPZero('0') else S[m]<15:0>;
 nzcv = FPCompare(S[d]<15:0>, op16, quiet_nan_exc, FPSCR[]);
 when 32
 bits(32) op32 = if with_zero then FPZero('0') else S[m];
 nzcv = FPCompare(S[d], op32, quiet_nan_exc, FPSCR[]);
 when 64
 bits(64) op64 = if with_zero then FPZero('0') else D[m];
 nzcv = FPCompare(D[d], op64, quiet_nan_exc, FPSCR[]);

 FPSCR<31:28> = nzcv; // FPSCR.<N,Z,C,V> set to nzcv

Operational information

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either
or both of the operands is a NaN, they are unordered, and all three of (Operand1 < Operand2), (Operand1 ==
Operand2) and (Operand1 > Operand2) are false. An unordered comparison sets the FPSCR condition flags to N=0,
Z=0, C=1, and V=1.
F6-5426 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.56 VCNT

Vector Count Set Bits counts the number of bits that are one in each element in a vector, and places the results in a
second vector.

The operand vector elements must be 8-bit fields.

The result vector elements are 8-bit integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCNT{<c>}{<q>}.8 <Dd>, <Dm> // Encoded as Q = 0

128-bit SIMD vector variant

Applies when Q == 1.

VCNT{<c>}{<q>}.8 <Qd>, <Qm> // Encoded as Q = 1

Decode for all variants of this encoding

 if size != '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8; elements = 8;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCNT{<c>}{<q>}.8 <Dd>, <Dm> // Encoded as Q = 0

128-bit SIMD vector variant

Applies when Q == 1.

VCNT{<c>}{<q>}.8 <Qd>, <Qm> // Encoded as Q = 1

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 0 1 0 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 0 1 0 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5427
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size != '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8; elements = 8;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = BitCount(Elem[D[m+r],e,esize])<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5428 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.57 VCVT (from single-precision to BFloat16, Advanced SIMD)

Vector Convert from single-precision to BFloat16 converts each 32-bit element in a vector from single-precision
floating-point to BFloat16 format, and writes the result into a second vector. The result vector elements are half the
width of the source vector elements.

Unlike the BFloat16 multiplication instructions, this instruction uses the Round to Nearest rounding mode, and can
generate a floating-point exception that causes cumulative exception bits in the FPSCR to be set.

A1

(FEAT_AA32BF16)

A1 variant

VCVT{<c>}{<q>}.BF16.F32 <Dd>, <Qm>

Decode for this encoding

 if !HaveAArch32BF16Ext() then UNDEFINED;
 if Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer m = UInt(M:Vm);

T1

(FEAT_AA32BF16)

T1 variant

VCVT{<c>}{<q>}.BF16.F32 <Dd>, <Qm>

Decode for this encoding

 if !HaveAArch32BF16Ext() then UNDEFINED;
 if Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer m = UInt(M:Vm);

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

1 1 1 1 0 0 1 1 1 D 1 1 0 1 1 0 Vd 0 1 1 0 0 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 0 1 1 0 Vd 0 1 1 0 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5429
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 bits(128) operand;
 bits(64) result;

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();

 operand = Q[m>>1];
 for e = 0 to 3
 bits(32) op = Elem[operand, e, 32];
 Elem[result, e, 16] = FPConvertBF(op, StandardFPSCRValue());
 D[d] = result;
F6-5430 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.58 VCVT (between double-precision and single-precision)

Convert between double-precision and single-precision does one of the following:

• Converts the value in a double-precision register to single-precision and writes the result to a single-precision
register.

• Converts the value in a single-precision register to double-precision and writes the result to a
double-precision register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Single-precision to double-precision variant

Applies when size == 10.

VCVT{<c>}{<q>}.F64.F32 <Dd>, <Sm>

Double-precision to single-precision variant

Applies when size == 11.

VCVT{<c>}{<q>}.F32.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 double_to_single = (size == '11');
 d = if double_to_single then UInt(Vd:D) else UInt(D:Vd);
 m = if double_to_single then UInt(M:Vm) else UInt(Vm:M);

T1

Single-precision to double-precision variant

Applies when size == 10.

VCVT{<c>}{<q>}.F64.F32 <Dd>, <Sm>

Double-precision to single-precision variant

Applies when size == 11.

VCVT{<c>}{<q>}.F32.F64 <Sd>, <Dm>

!=1111 1 1 1 0 1 D 1 1 0 1 1 1 Vd 1 0 1 x 1 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond size

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 1 Vd 1 0 1 x 1 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5431
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 double_to_single = (size == '11');
 d = if double_to_single then UInt(Vd:D) else UInt(D:Vd);
 m = if double_to_single then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if double_to_single then
 S[d] = FPConvert(D[m], FPSCR[]);
 else
 D[d] = FPConvert(S[m], FPSCR[]);
F6-5432 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.59 VCVT (between half-precision and single-precision, Advanced SIMD)

Vector Convert between half-precision and single-precision converts each element in a vector from single-precision
to half-precision floating-point, or from half-precision to single-precision, and places the results in a second vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision to single-precision variant

Applies when op == 1.

VCVT{<c>}{<q>}.F32.F16 <Qd>, <Dm> // Encoded as op = 1

Single-precision to half-precision variant

Applies when op == 0.

VCVT{<c>}{<q>}.F16.F32 <Dd>, <Qm> // Encoded as op = 0

Decode for all variants of this encoding

 if size != '01' then UNDEFINED;
 half_to_single = (op == '1');
 if half_to_single && Vd<0> == '1' then UNDEFINED;
 if !half_to_single && Vm<0> == '1' then UNDEFINED;
 esize = 16; elements = 4;
 m = UInt(M:Vm); d = UInt(D:Vd);

T1

Half-precision to single-precision variant

Applies when op == 1.

VCVT{<c>}{<q>}.F32.F16 <Qd>, <Dm> // Encoded as op = 1

Single-precision to half-precision variant

Applies when op == 0.

VCVT{<c>}{<q>}.F16.F32 <Dd>, <Qm> // Encoded as op = 0

Decode for all variants of this encoding

 if size != '01' then UNDEFINED;
 half_to_single = (op == '1');
 if half_to_single && Vd<0> == '1' then UNDEFINED;
 if !half_to_single && Vm<0> == '1' then UNDEFINED;

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 1 op 0 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 1 op 0 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5433
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 esize = 16; elements = 4;
 m = UInt(M:Vm); d = UInt(D:Vd);

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 if half_to_single then
 Elem[Q[d>>1],e,32] = FPConvert(Elem[Din[m],e,16], StandardFPSCRValue());
 else
 Elem[D[d],e,16] = FPConvert(Elem[Qin[m>>1],e,32], StandardFPSCRValue());
F6-5434 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.60 VCVT (between floating-point and integer, Advanced SIMD)

Vector Convert between floating-point and integer converts each element in a vector from floating-point to integer,
or from integer to floating-point, and places the results in a second vector.

The vector elements are the same type, and are floating-point numbers or integers. Signed and unsigned integers are
distinct.

The floating-point to integer operation uses the Round towards Zero rounding mode. The integer to floating-point
operation uses the Round to Nearest rounding mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 to_integer = (op<1> == '1'); unsigned = (op<0> == '1');
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Qd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 1 1 op Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 1 1 op Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5435
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 to_integer = (op<1> == '1'); unsigned = (op<0> == '1');
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt1> Is the data type for the elements of the destination vector, encoded in the "size:op" field. It can have
the following values:

F16 when size = 01, op = 0x

S16 when size = 01, op = 10

U16 when size = 01, op = 11

F32 when size = 10, op = 0x

S32 when size = 10, op = 10

U32 when size = 10, op = 11

<dt2> Is the data type for the elements of the source vector, encoded in the "size:op" field. It can have the
following values:

S16 when size = 01, op = 00

U16 when size = 01, op = 01

F16 when size = 01, op = 1x

S32 when size = 10, op = 00

U32 when size = 10, op = 01

F32 when size = 10, op = 1x

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.
F6-5436 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(esize) result;
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 if to_integer then
 result = FPToFixed(op1, 0, unsigned, StandardFPSCRValue(), FPRounding_ZERO);
 else
 result = FixedToFP(op1, 0, unsigned, StandardFPSCRValue(), FPRounding_TIEEVEN);
 Elem[D[d+r],e,esize] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5437
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.61 VCVT (floating-point to integer, floating-point)

Convert floating-point to integer with Round towards Zero converts a value in a register from floating-point to a
32-bit integer, using the Round towards Zero rounding mode, and places the result in a second register.

VCVT (between floating-point and fixed-point, floating-point) describes conversions between floating-point and
16-bit integers.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision scalar variant

Applies when opc2 == 100 && size == 01.

VCVT{<c>}{<q>}.U32.F16 <Sd>, <Sm>

Half-precision scalar variant

Applies when opc2 == 101 && size == 01.

VCVT{<c>}{<q>}.S32.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when opc2 == 100 && size == 10.

VCVT{<c>}{<q>}.U32.F32 <Sd>, <Sm>

Single-precision scalar variant

Applies when opc2 == 101 && size == 10.

VCVT{<c>}{<q>}.S32.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when opc2 == 100 && size == 11.

VCVT{<c>}{<q>}.U32.F64 <Sd>, <Dm>

Double-precision scalar variant

Applies when opc2 == 101 && size == 11.

VCVT{<c>}{<q>}.S32.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if opc2 != '000' && opc2 != '10x' then SEE "Related encodings";
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 to_integer = (opc2<2> == '1');
 if to_integer then
 unsigned = (opc2<0> == '0');
 rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR[]);
 d = UInt(Vd:D);
 case size of

!=1111 1 1 1 0 1 D 1 1 1 1 0 x Vd 1 0 size 1 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 10 9 8 7 6 5 4 3 0

cond opc2 op
F6-5438 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);
 else
 unsigned = (op == '0');
 rounding = FPRoundingMode(FPSCR[]);
 m = UInt(Vm:M);
 case size of
 when '01' esize = 16; d = UInt(Vd:D);
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

Half-precision scalar variant

Applies when opc2 == 100 && size == 01.

VCVT{<c>}{<q>}.U32.F16 <Sd>, <Sm>

Half-precision scalar variant

Applies when opc2 == 101 && size == 01.

VCVT{<c>}{<q>}.S32.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when opc2 == 100 && size == 10.

VCVT{<c>}{<q>}.U32.F32 <Sd>, <Sm>

Single-precision scalar variant

Applies when opc2 == 101 && size == 10.

VCVT{<c>}{<q>}.S32.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when opc2 == 100 && size == 11.

VCVT{<c>}{<q>}.U32.F64 <Sd>, <Dm>

Double-precision scalar variant

Applies when opc2 == 101 && size == 11.

VCVT{<c>}{<q>}.S32.F64 <Sd>, <Dm>

1 1 1 0 1 1 1 0 1 D 1 1 1 1 0 x Vd 1 0 size 1 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 10 9 8 7 6 5 4 3 0

opc2 op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5439
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if opc2 != '000' && opc2 != '10x' then SEE "Related encodings";
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 to_integer = (opc2<2> == '1');
 if to_integer then
 unsigned = (opc2<0> == '0');
 rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR[]);
 d = UInt(Vd:D);
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);
 else
 unsigned = (op == '0');
 rounding = FPRoundingMode(FPSCR[]);
 m = UInt(Vm:M);
 case size of
 when '01' esize = 16; d = UInt(Vd:D);
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Floating-point data-processing on page F3-4449 for the T32 instruction set, or
Floating-point data-processing on page F4-4536 for the A32 instruction set.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if to_integer then
 case esize of
 when 16
 S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, FPSCR[], rounding);
 when 32
 S[d] = FPToFixed(S[m], 0, unsigned, FPSCR[], rounding);
 when 64
 S[d] = FPToFixed(D[m], 0, unsigned, FPSCR[], rounding);
 else
 case esize of
F6-5440 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 when 16
 bits(16) fp16 = FixedToFP(S[m], 0, unsigned, FPSCR[], rounding);
 S[d] = Zeros(16):fp16;
 when 32
 S[d] = FixedToFP(S[m], 0, unsigned, FPSCR[], rounding);
 when 64
 D[d] = FixedToFP(S[m], 0, unsigned, FPSCR[], rounding);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5441
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.62 VCVT (integer to floating-point, floating-point)

Convert integer to floating-point converts a 32-bit integer to floating-point using the rounding mode specified by
the FPSCR, and places the result in a second register.

VCVT (between floating-point and fixed-point, floating-point) describes conversions between floating-point and
16-bit integers.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision scalar variant

Applies when size == 01.

VCVT{<c>}{<q>}.F16.<dt> <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCVT{<c>}{<q>}.F32.<dt> <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCVT{<c>}{<q>}.F64.<dt> <Dd>, <Sm>

Decode for all variants of this encoding

 if opc2 != '000' && opc2 != '10x' then SEE "Related encodings";
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 to_integer = (opc2<2> == '1');
 if to_integer then
 unsigned = (opc2<0> == '0');
 rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR[]);
 d = UInt(Vd:D);
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);
 else
 unsigned = (op == '0');
 rounding = FPRoundingMode(FPSCR[]);
 m = UInt(Vm:M);
 case size of
 when '01' esize = 16; d = UInt(Vd:D);
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);

!=1111 1 1 1 0 1 D 1 1 1 0 0 0 Vd 1 0 size op 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 10 9 8 7 6 5 4 3 0

cond opc2
F6-5442 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

Half-precision scalar variant

Applies when size == 01.

VCVT{<c>}{<q>}.F16.<dt> <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCVT{<c>}{<q>}.F32.<dt> <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCVT{<c>}{<q>}.F64.<dt> <Dd>, <Sm>

Decode for all variants of this encoding

 if opc2 != '000' && opc2 != '10x' then SEE "Related encodings";
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 to_integer = (opc2<2> == '1');
 if to_integer then
 unsigned = (opc2<0> == '0');
 rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR[]);
 d = UInt(Vd:D);
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);
 else
 unsigned = (op == '0');
 rounding = FPRoundingMode(FPSCR[]);
 m = UInt(Vm:M);
 case size of
 when '01' esize = 16; d = UInt(Vd:D);
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

1 1 1 0 1 1 1 0 1 D 1 1 1 0 0 0 Vd 1 0 size op 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 10 9 8 7 6 5 4 3 0

opc2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5443
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Floating-point data-processing on page F3-4449 for the T32 instruction set, or
Floating-point data-processing on page F4-4536 for the A32 instruction set.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the operand, encoded in the "op" field. It can have the following values:

U32 when op = 0

S32 when op = 1

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if to_integer then
 case esize of
 when 16
 S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, FPSCR[], rounding);
 when 32
 S[d] = FPToFixed(S[m], 0, unsigned, FPSCR[], rounding);
 when 64
 S[d] = FPToFixed(D[m], 0, unsigned, FPSCR[], rounding);
 else
 case esize of
 when 16
 bits(16) fp16 = FixedToFP(S[m], 0, unsigned, FPSCR[], rounding);
 S[d] = Zeros(16):fp16;
 when 32
 S[d] = FixedToFP(S[m], 0, unsigned, FPSCR[], rounding);
 when 64
 D[d] = FixedToFP(S[m], 0, unsigned, FPSCR[], rounding);
F6-5444 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.63 VCVT (between floating-point and fixed-point, Advanced SIMD)

Vector Convert between floating-point and fixed-point converts each element in a vector from floating-point to
fixed-point, or from fixed-point to floating-point, and places the results in a second vector.

The vector elements are the same type, and are floating-point numbers or integers. Signed and unsigned integers are
distinct.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to
floating-point operation uses the Round to Nearest rounding mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when imm6 != 000xxx && Q == 0.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Dd>, <Dm>, #<fbits>

128-bit SIMD vector variant

Applies when imm6 != 000xxx && Q == 1.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Qd>, <Qm>, #<fbits>

Decode for all variants of this encoding

 if imm6 == '000xxx' then SEE "Related encodings";
 if op<1> == '0' && !HaveFP16Ext() then UNDEFINED;
 if op<1> == '0' && imm6 == '10xxxx' then UNDEFINED;
 if imm6 == '0xxxxx' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 to_fixed = (op<0> == '1'); frac_bits = 64 - UInt(imm6);
 unsigned = (U == '1');
 case op<1> of
 when '0' esize = 16; elements = 4;
 when '1' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when imm6 != 000xxx && Q == 0.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Dd>, <Dm>, #<fbits>

1 1 1 1 0 0 1 U 1 D imm6 Vd 1 1 op 0 Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 1 1 op 0 Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5445
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when imm6 != 000xxx && Q == 1.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Qd>, <Qm>, #<fbits>

Decode for all variants of this encoding

 if imm6 == '000xxx' then SEE "Related encodings";
 if op<1> == '0' && !HaveFP16Ext() then UNDEFINED;
 if op<1> == '0' && imm6 == '10xxxx' then UNDEFINED;
 if imm6 == '0xxxxx' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 to_fixed = (op<0> == '1'); frac_bits = 64 - UInt(imm6);
 unsigned = (U == '1');
 case op<1> of
 when '0' esize = 16; elements = 4;
 when '1' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4442 for the T32
instruction set, or Advanced SIMD one register and modified immediate on page F4-4551 for the A32 instruction
set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt1> Is the data type for the elements of the destination vector, encoded in the "op:U" field. It can have
the following values:

F16 when op = 00, U = x

S16 when op = 01, U = 0

U16 when op = 01, U = 1

F32 when op = 10, U = x

S32 when op = 11, U = 0

U32 when op = 11, U = 1

<dt2> Is the data type for the elements of the source vector, encoded in the "op:U" field. It can have the
following values:

S16 when op = 00, U = 0

U16 when op = 00, U = 1

F16 when op = 01, U = x

S32 when op = 10, U = 0

U32 when op = 10, U = 1

F32 when op = 11, U = x

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
F6-5446 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<fbits> The number of fraction bits in the fixed point number, in the range 1 to 32 for 32-bit elements, or in
the range 1 to 16 for 16-bit elements:

• (64 - <fbits>) is encoded in imm6.

An assembler can permit an <fbits> value of 0. This is encoded as floating-point to integer or integer
to floating-point instruction, see VCVT (between floating-point and integer, Advanced SIMD).

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(esize) result;
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 if to_fixed then
 result = FPToFixed(op1, frac_bits, unsigned, StandardFPSCRValue(),
 FPRounding_ZERO);
 else
 result = FixedToFP(op1, frac_bits, unsigned, StandardFPSCRValue(),
 FPRounding_TIEEVEN);
 Elem[D[d+r],e,esize] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5447
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.64 VCVT (between floating-point and fixed-point, floating-point)

Convert between floating-point and fixed-point converts a value in a register from floating-point to fixed-point, or
from fixed-point to floating-point. Software can specify the fixed-point value as either signed or unsigned.

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their operand from the
low-order bits of the source register and ignore any remaining bits. Signed conversions to fixed-point values
sign-extend the result value to the destination register width. Unsigned conversions to fixed-point values
zero-extend the result value to the destination register width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to
floating-point operation uses the Round to Nearest rounding mode.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision scalar variant

Applies when op == 0 && sf == 01.

VCVT{<c>}{<q>}.F16.<dt> <Sdm>, <Sdm>, #<fbits>

Half-precision scalar variant

Applies when op == 1 && sf == 01.

VCVT{<c>}{<q>}.<dt>.F16 <Sdm>, <Sdm>, #<fbits>

Single-precision scalar variant

Applies when op == 0 && sf == 10.

VCVT{<c>}{<q>}.F32.<dt> <Sdm>, <Sdm>, #<fbits>

Single-precision scalar variant

Applies when op == 1 && sf == 10.

VCVT{<c>}{<q>}.<dt>.F32 <Sdm>, <Sdm>, #<fbits>

Double-precision scalar variant

Applies when op == 0 && sf == 11.

VCVT{<c>}{<q>}.F64.<dt> <Ddm>, <Ddm>, #<fbits>

Double-precision scalar variant

Applies when op == 1 && sf == 11.

VCVT{<c>}{<q>}.<dt>.F64 <Ddm>, <Ddm>, #<fbits>

Decode for all variants of this encoding

 if sf == '00' || (sf == '01' && !HaveFP16Ext()) then UNDEFINED;
 if sf == '01' && cond != '1110' then UNPREDICTABLE;
 to_fixed = (op == '1'); unsigned = (U == '1');

!=1111 1 1 1 0 1 D 1 1 1 op 1 U Vd 1 0 sf sx 1 i 0 imm4
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
F6-5448 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 size = if sx == '0' then 16 else 32;
 frac_bits = size - UInt(imm4:i);
 case sf of
 when '01' fp_size = 16; d = UInt(Vd:D);
 when '10' fp_size = 32; d = UInt(Vd:D);
 when '11' fp_size = 64; d = UInt(D:Vd);

 if frac_bits < 0 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If frac_bits < 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

Half-precision scalar variant

Applies when op == 0 && sf == 01.

VCVT{<c>}{<q>}.F16.<dt> <Sdm>, <Sdm>, #<fbits>

Half-precision scalar variant

Applies when op == 1 && sf == 01.

VCVT{<c>}{<q>}.<dt>.F16 <Sdm>, <Sdm>, #<fbits>

Single-precision scalar variant

Applies when op == 0 && sf == 10.

VCVT{<c>}{<q>}.F32.<dt> <Sdm>, <Sdm>, #<fbits>

Single-precision scalar variant

Applies when op == 1 && sf == 10.

VCVT{<c>}{<q>}.<dt>.F32 <Sdm>, <Sdm>, #<fbits>

Double-precision scalar variant

Applies when op == 0 && sf == 11.

VCVT{<c>}{<q>}.F64.<dt> <Ddm>, <Ddm>, #<fbits>

Double-precision scalar variant

Applies when op == 1 && sf == 11.

VCVT{<c>}{<q>}.<dt>.F64 <Ddm>, <Ddm>, #<fbits>

1 1 1 0 1 1 1 0 1 D 1 1 1 op 1 U Vd 1 0 sf sx 1 i 0 imm4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5449
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if sf == '00' || (sf == '01' && !HaveFP16Ext()) then UNDEFINED;
 if sf == '01' && InITBlock() then UNPREDICTABLE;
 to_fixed = (op == '1'); unsigned = (U == '1');
 size = if sx == '0' then 16 else 32;
 frac_bits = size - UInt(imm4:i);
 case sf of
 when '01' fp_size = 16; d = UInt(Vd:D);
 when '10' fp_size = 32; d = UInt(Vd:D);
 when '11' fp_size = 64; d = UInt(D:Vd);

 if frac_bits < 0 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If frac_bits < 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VCVT (between floating-point and
fixed-point) on page K1-8401.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the fixed-point number, encoded in the "U:sx" field. It can have the following
values:

S16 when U = 0, sx = 0

S32 when U = 0, sx = 1

U16 when U = 1, sx = 0

U32 when U = 1, sx = 1

<Sdm> Is the 32-bit name of the SIMD&FP destination and source register, encoded in the "Vd:D" field.

<Ddm> Is the 64-bit name of the SIMD&FP destination and source register, encoded in the "D:Vd" field.

<fbits> The number of fraction bits in the fixed-point number:

• If <dt> is S16 or U16, <fbits> must be in the range 0-16. (16 - <fbits>) is encoded in [imm4, i]

• If <dt> is S32 or U32, <fbits> must be in the range 1-32. (32 - <fbits>) is encoded in [imm4, i].

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if to_fixed then
 bits(size) result;
 case fp_size of
 when 16
 result = FPToFixed(S[d]<15:0>, frac_bits, unsigned, FPSCR[], FPRounding_ZERO);
 S[d] = Extend(result, 32, unsigned);
F6-5450 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 when 32
 result = FPToFixed(S[d], frac_bits, unsigned, FPSCR[], FPRounding_ZERO);
 S[d] = Extend(result, 32, unsigned);
 when 64
 result = FPToFixed(D[d], frac_bits, unsigned, FPSCR[], FPRounding_ZERO);
 D[d] = Extend(result, 64, unsigned);
 else
 case fp_size of
 when 16
 bits(16) fp16 = FixedToFP(S[d]<size-1:0>, frac_bits, unsigned, FPSCR[],
FPRounding_TIEEVEN);
 S[d] = Zeros(16):fp16;
 when 32
 S[d] = FixedToFP(S[d]<size-1:0>, frac_bits, unsigned, FPSCR[], FPRounding_TIEEVEN);
 when 64
 D[d] = FixedToFP(D[d]<size-1:0>, frac_bits, unsigned, FPSCR[], FPRounding_TIEEVEN);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5451
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.65 VCVTA (Advanced SIMD)

Vector Convert floating-point to integer with Round to Nearest with Ties to Away converts each element in a vector
from floating-point to integer using the Round to Nearest with Ties to Away rounding mode, and places the results
in a second vector.

The operand vector elements are floating-point numbers.

The result vector elements are integers, and the same size as the operand vector elements. Signed and unsigned
integers are distinct.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTA{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTA{<q>}.<dt>.<dt2> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '1');
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTA{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTA{<q>}.<dt>.<dt2> <Qd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 0 0 0 op Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 0 0 0 op Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM
F6-5452 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '1');
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the destination, encoded in the "op:size" field. It can have the
following values:

S16 when op = 0, size = 01

S32 when op = 0, size = 10

U16 when op = 1, size = 01

U32 when op = 1, size = 10

<dt2> Is the data type for the elements of the source vector, encoded in the "size" field. It can have the
following values:

F16 when size = 01

F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(esize) result;
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPToFixed(Elem[D[m+r],e,esize], 0, unsigned,
 StandardFPSCRValue(), rounding);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5453
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.66 VCVTA (floating-point)

Convert floating-point to integer with Round to Nearest with Ties to Away converts a value in a register from
floating-point to a 32-bit integer using the Round to Nearest with Ties to Away rounding mode, and places the result
in a second register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision scalar variant

Applies when size == 01.

VCVTA{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCVTA{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCVTA{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '0');
 d = UInt(Vd:D);
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VCVTA{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCVTA{<q>}.<dt>.F32 <Sd>, <Sm>

1 1 1 1 1 1 1 0 1 D 1 1 1 1 0 0 Vd 1 0 !=00 op 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM size

1 1 1 1 1 1 1 0 1 D 1 1 1 1 0 0 Vd 1 0 !=00 op 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM size
F6-5454 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when size == 11.

VCVTA{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '0');
 d = UInt(Vd:D);
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the
following values:

U32 when op = 0

S32 when op = 1

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 case esize of
 when 16
 S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, FPSCR[], rounding);
 when 32
 S[d] = FPToFixed(S[m], 0, unsigned, FPSCR[], rounding);
 when 64
 S[d] = FPToFixed(D[m], 0, unsigned, FPSCR[], rounding);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5455
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.67 VCVTB

Convert to or from a half-precision value in the bottom half of a single-precision register does one of the following:

• Converts the half-precision value in the bottom half of a single-precision register to single-precision and
writes the result to a single-precision register.

• Converts the half-precision value in the bottom half of a single-precision register to double-precision and
writes the result to a double-precision register.

• Converts the single-precision value in a single-precision register to half-precision and writes the result into
the bottom half of a single-precision register, preserving the other half of the destination register.

• Converts the double-precision value in a double-precision register to half-precision and writes the result into
the bottom half of a single-precision register, preserving the other half of the destination register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision to single-precision variant

Applies when op == 0 && sz == 0.

VCVTB{<c>}{<q>}.F32.F16 <Sd>, <Sm>

Half-precision to double-precision variant

Applies when op == 0 && sz == 1.

VCVTB{<c>}{<q>}.F64.F16 <Dd>, <Sm>

Single-precision to half-precision variant

Applies when op == 1 && sz == 0.

VCVTB{<c>}{<q>}.F16.F32 <Sd>, <Sm>

Double-precision to half-precision variant

Applies when op == 1 && sz == 1.

VCVTB{<c>}{<q>}.F16.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 uses_double = (sz == '1'); convert_from_half = (op == '0');
 lowbit = (if T == '1' then 16 else 0);
 if uses_double then
 if convert_from_half then
 d = UInt(D:Vd); m = UInt(Vm:M);
 else
 d = UInt(Vd:D); m = UInt(M:Vm);
 else
 d = UInt(Vd:D); m = UInt(Vm:M);

!=1111 1 1 1 0 1 D 1 1 0 0 1 op Vd 1 0 1 sz 0 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond T
F6-5456 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Half-precision to single-precision variant

Applies when op == 0 && sz == 0.

VCVTB{<c>}{<q>}.F32.F16 <Sd>, <Sm>

Half-precision to double-precision variant

Applies when op == 0 && sz == 1.

VCVTB{<c>}{<q>}.F64.F16 <Dd>, <Sm>

Single-precision to half-precision variant

Applies when op == 1 && sz == 0.

VCVTB{<c>}{<q>}.F16.F32 <Sd>, <Sm>

Double-precision to half-precision variant

Applies when op == 1 && sz == 1.

VCVTB{<c>}{<q>}.F16.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 uses_double = (sz == '1'); convert_from_half = (op == '0');
 lowbit = (if T == '1' then 16 else 0);
 if uses_double then
 if convert_from_half then
 d = UInt(D:Vd); m = UInt(Vm:M);
 else
 d = UInt(Vd:D); m = UInt(M:Vm);
 else
 d = UInt(Vd:D); m = UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 bits(16) hp;
 if convert_from_half then
 hp = S[m]<lowbit+15:lowbit>;

1 1 1 0 1 1 1 0 1 D 1 1 0 0 1 op Vd 1 0 1 sz 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

T

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5457
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 if uses_double then
 D[d] = FPConvert(hp, FPSCR[]);
 else
 S[d] = FPConvert(hp, FPSCR[]);
 else
 if uses_double then
 hp = FPConvert(D[m], FPSCR[]);
 else
 hp = FPConvert(S[m], FPSCR[]);
 S[d]<lowbit+15:lowbit> = hp;
F6-5458 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.68 VCVTB (BFloat16)

Converts the single-precision value in a single-precision register to BFloat16 format and writes the result into the
bottom half of a single precision register, preserving the top 16 bits of the destination register.

Unlike the BFloat16 multiplication instructions, this instruction honors all the control bits in the FPSCR that apply
to single-precision arithmetic, including the rounding mode. This instruction can generate a floating-point exception
which causes a cumulative exception bit in the FPSCR to be set, or a synchronous exception to be taken, depending
on the enable bits in the FPSCR.

A1

(FEAT_AA32BF16)

A1 variant

VCVTB{<c>}{<q>}.BF16.F32 <Sd>, <Sm>

Decode for this encoding

 if !HaveAArch32BF16Ext() then UNDEFINED;
 integer d = UInt(Vd:D);
 integer m = UInt(Vm:M);

T1

(FEAT_AA32BF16)

T1 variant

VCVTB{<c>}{<q>}.BF16.F32 <Sd>, <Sm>

Decode for this encoding

 if !HaveAArch32BF16Ext() then UNDEFINED;
 integer d = UInt(Vd:D);
 integer m = UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

!=1111 1 1 1 0 1 D 1 1 0 0 1 1 Vd 1 0 0 1 0 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 1 1 0 1 D 1 1 0 0 1 1 Vd 1 0 0 1 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5459
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckVFPEnabled(TRUE);

 S[d]<15:0> = FPConvertBF(S[m], FPSCR[]);
F6-5460 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.69 VCVTM (Advanced SIMD)

Vector Convert floating-point to integer with Round towards -Infinity converts each element in a vector from
floating-point to integer using the Round towards -Infinity rounding mode, and places the results in a second vector.

The operand vector elements are floating-point numbers.

The result vector elements are integers, and the same size as the operand vector elements. Signed and unsigned
integers are distinct.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTM{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTM{<q>}.<dt>.<dt2> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '1');
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTM{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTM{<q>}.<dt>.<dt2> <Qd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 0 1 1 op Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 0 1 1 op Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5461
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '1');
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the destination, encoded in the "op:size" field. It can have the
following values:

S16 when op = 0, size = 01

S32 when op = 0, size = 10

U16 when op = 1, size = 01

U32 when op = 1, size = 10

<dt2> Is the data type for the elements of the source vector, encoded in the "size" field. It can have the
following values:

F16 when size = 01

F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(esize) result;
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPToFixed(Elem[D[m+r],e,esize], 0, unsigned,
 StandardFPSCRValue(), rounding);
F6-5462 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.70 VCVTM (floating-point)

Convert floating-point to integer with Round towards -Infinity converts a value in a register from floating-point to
a 32-bit integer using the Round towards -Infinity rounding mode, and places the result in a second register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision scalar variant

Applies when size == 01.

VCVTM{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCVTM{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCVTM{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '0');
 d = UInt(Vd:D);
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VCVTM{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCVTM{<q>}.<dt>.F32 <Sd>, <Sm>

1 1 1 1 1 1 1 0 1 D 1 1 1 1 1 1 Vd 1 0 !=00 op 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM size

1 1 1 1 1 1 1 0 1 D 1 1 1 1 1 1 Vd 1 0 !=00 op 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5463
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when size == 11.

VCVTM{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '0');
 d = UInt(Vd:D);
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the
following values:

U32 when op = 0

S32 when op = 1

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 case esize of
 when 16
 S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, FPSCR[], rounding);
 when 32
 S[d] = FPToFixed(S[m], 0, unsigned, FPSCR[], rounding);
 when 64
 S[d] = FPToFixed(D[m], 0, unsigned, FPSCR[], rounding);
F6-5464 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.71 VCVTN (Advanced SIMD)

Vector Convert floating-point to integer with Round to Nearest converts each element in a vector from floating-point
to integer using the Round to Nearest rounding mode, and places the results in a second vector.

The operand vector elements are floating-point numbers.

The result vector elements are integers, and the same size as the operand vector elements. Signed and unsigned
integers are distinct.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTN{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTN{<q>}.<dt>.<dt2> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '1');
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTN{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTN{<q>}.<dt>.<dt2> <Qd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 0 0 1 op Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 0 0 1 op Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5465
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '1');
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the destination, encoded in the "op:size" field. It can have the
following values:

S16 when op = 0, size = 01

S32 when op = 0, size = 10

U16 when op = 1, size = 01

U32 when op = 1, size = 10

<dt2> Is the data type for the elements of the source vector, encoded in the "size" field. It can have the
following values:

F16 when size = 01

F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(esize) result;
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPToFixed(Elem[D[m+r],e,esize], 0, unsigned,
 StandardFPSCRValue(), rounding);
F6-5466 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.72 VCVTN (floating-point)

Convert floating-point to integer with Round to Nearest converts a value in a register from floating-point to a 32-bit
integer using the Round to Nearest rounding mode, and places the result in a second register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision scalar variant

Applies when size == 01.

VCVTN{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCVTN{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCVTN{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '0');
 d = UInt(Vd:D);
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VCVTN{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCVTN{<q>}.<dt>.F32 <Sd>, <Sm>

1 1 1 1 1 1 1 0 1 D 1 1 1 1 0 1 Vd 1 0 !=00 op 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM size

1 1 1 1 1 1 1 0 1 D 1 1 1 1 0 1 Vd 1 0 !=00 op 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5467
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when size == 11.

VCVTN{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '0');
 d = UInt(Vd:D);
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the
following values:

U32 when op = 0

S32 when op = 1

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 case esize of
 when 16
 S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, FPSCR[], rounding);
 when 32
 S[d] = FPToFixed(S[m], 0, unsigned, FPSCR[], rounding);
 when 64
 S[d] = FPToFixed(D[m], 0, unsigned, FPSCR[], rounding);
F6-5468 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.73 VCVTP (Advanced SIMD)

Vector Convert floating-point to integer with Round towards +Infinity converts each element in a vector from
floating-point to integer using the Round towards +Infinity rounding mode, and places the results in a second vector.

The operand vector elements are floating-point numbers.

The result vector elements are integers, and the same size as the operand vector elements. Signed and unsigned
integers are distinct.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTP{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTP{<q>}.<dt>.<dt2> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '1');
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTP{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTP{<q>}.<dt>.<dt2> <Qd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 0 1 0 op Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 0 1 0 op Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5469
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '1');
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the destination, encoded in the "op:size" field. It can have the
following values:

S16 when op = 0, size = 01

S32 when op = 0, size = 10

U16 when op = 1, size = 01

U32 when op = 1, size = 10

<dt2> Is the data type for the elements of the source vector, encoded in the "size" field. It can have the
following values:

F16 when size = 01

F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(esize) result;
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPToFixed(Elem[D[m+r],e,esize], 0, unsigned,
 StandardFPSCRValue(), rounding);
F6-5470 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.74 VCVTP (floating-point)

Convert floating-point to integer with Round towards +Infinity converts a value in a register from floating-point to
a 32-bit integer using the Round towards +Infinity rounding mode, and places the result in a second register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision scalar variant

Applies when size == 01.

VCVTP{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCVTP{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCVTP{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '0');
 d = UInt(Vd:D);
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VCVTP{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCVTP{<q>}.<dt>.F32 <Sd>, <Sm>

1 1 1 1 1 1 1 0 1 D 1 1 1 1 1 0 Vd 1 0 !=00 op 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM size

1 1 1 1 1 1 1 0 1 D 1 1 1 1 1 0 Vd 1 0 !=00 op 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5471
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when size == 11.

VCVTP{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '0');
 d = UInt(Vd:D);
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the
following values:

U32 when op = 0

S32 when op = 1

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 case esize of
 when 16
 S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, FPSCR[], rounding);
 when 32
 S[d] = FPToFixed(S[m], 0, unsigned, FPSCR[], rounding);
 when 64
 S[d] = FPToFixed(D[m], 0, unsigned, FPSCR[], rounding);
F6-5472 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.75 VCVTR

Convert floating-point to integer converts a value in a register from floating-point to a 32-bit integer, using the
rounding mode specified by the FPSCR and places the result in a second register.

VCVT (between floating-point and fixed-point, floating-point) describes conversions between floating-point and
16-bit integers.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision scalar variant

Applies when opc2 == 100 && size == 01.

VCVTR{<c>}{<q>}.U32.F16 <Sd>, <Sm>

Half-precision scalar variant

Applies when opc2 == 101 && size == 01.

VCVTR{<c>}{<q>}.S32.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when opc2 == 100 && size == 10.

VCVTR{<c>}{<q>}.U32.F32 <Sd>, <Sm>

Single-precision scalar variant

Applies when opc2 == 101 && size == 10.

VCVTR{<c>}{<q>}.S32.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when opc2 == 100 && size == 11.

VCVTR{<c>}{<q>}.U32.F64 <Sd>, <Dm>

Double-precision scalar variant

Applies when opc2 == 101 && size == 11.

VCVTR{<c>}{<q>}.S32.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if opc2 != '000' && opc2 != '10x' then SEE "Related encodings";
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 to_integer = (opc2<2> == '1');
 if to_integer then
 unsigned = (opc2<0> == '0');
 rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR[]);
 d = UInt(Vd:D);
 case size of

!=1111 1 1 1 0 1 D 1 1 1 1 0 x Vd 1 0 size 0 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 10 9 8 7 6 5 4 3 0

cond opc2 op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5473
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);
 else
 unsigned = (op == '0');
 rounding = FPRoundingMode(FPSCR[]);
 m = UInt(Vm:M);
 case size of
 when '01' esize = 16; d = UInt(Vd:D);
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

Half-precision scalar variant

Applies when opc2 == 100 && size == 01.

VCVTR{<c>}{<q>}.U32.F16 <Sd>, <Sm>

Half-precision scalar variant

Applies when opc2 == 101 && size == 01.

VCVTR{<c>}{<q>}.S32.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when opc2 == 100 && size == 10.

VCVTR{<c>}{<q>}.U32.F32 <Sd>, <Sm>

Single-precision scalar variant

Applies when opc2 == 101 && size == 10.

VCVTR{<c>}{<q>}.S32.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when opc2 == 100 && size == 11.

VCVTR{<c>}{<q>}.U32.F64 <Sd>, <Dm>

Double-precision scalar variant

Applies when opc2 == 101 && size == 11.

VCVTR{<c>}{<q>}.S32.F64 <Sd>, <Dm>

1 1 1 0 1 1 1 0 1 D 1 1 1 1 0 x Vd 1 0 size 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 10 9 8 7 6 5 4 3 0

opc2 op
F6-5474 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if opc2 != '000' && opc2 != '10x' then SEE "Related encodings";
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 to_integer = (opc2<2> == '1');
 if to_integer then
 unsigned = (opc2<0> == '0');
 rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR[]);
 d = UInt(Vd:D);
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);
 else
 unsigned = (op == '0');
 rounding = FPRoundingMode(FPSCR[]);
 m = UInt(Vm:M);
 case size of
 when '01' esize = 16; d = UInt(Vd:D);
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Floating-point data-processing on page F3-4449 for the T32 instruction set, or
Floating-point data-processing on page F4-4536 for the A32 instruction set.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if to_integer then
 case esize of
 when 16
 S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, FPSCR[], rounding);
 when 32
 S[d] = FPToFixed(S[m], 0, unsigned, FPSCR[], rounding);
 when 64
 S[d] = FPToFixed(D[m], 0, unsigned, FPSCR[], rounding);
 else
 case esize of
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5475
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 when 16
 bits(16) fp16 = FixedToFP(S[m], 0, unsigned, FPSCR[], rounding);
 S[d] = Zeros(16):fp16;
 when 32
 S[d] = FixedToFP(S[m], 0, unsigned, FPSCR[], rounding);
 when 64
 D[d] = FixedToFP(S[m], 0, unsigned, FPSCR[], rounding);
F6-5476 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.76 VCVTT

Convert to or from a half-precision value in the top half of a single-precision register does one of the following:

• Converts the half-precision value in the top half of a single-precision register to single-precision and writes
the result to a single-precision register.

• Converts the half-precision value in the top half of a single-precision register to double-precision and writes
the result to a double-precision register.

• Converts the single-precision value in a single-precision register to half-precision and writes the result into
the top half of a single-precision register, preserving the other half of the destination register.

• Converts the double-precision value in a double-precision register to half-precision and writes the result into
the top half of a single-precision register, preserving the other half of the destination register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision to single-precision variant

Applies when op == 0 && sz == 0.

VCVTT{<c>}{<q>}.F32.F16 <Sd>, <Sm>

Half-precision to double-precision variant

Applies when op == 0 && sz == 1.

VCVTT{<c>}{<q>}.F64.F16 <Dd>, <Sm>

Single-precision to half-precision variant

Applies when op == 1 && sz == 0.

VCVTT{<c>}{<q>}.F16.F32 <Sd>, <Sm>

Double-precision to half-precision variant

Applies when op == 1 && sz == 1.

VCVTT{<c>}{<q>}.F16.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 uses_double = (sz == '1'); convert_from_half = (op == '0');
 lowbit = (if T == '1' then 16 else 0);
 if uses_double then
 if convert_from_half then
 d = UInt(D:Vd); m = UInt(Vm:M);
 else
 d = UInt(Vd:D); m = UInt(M:Vm);
 else
 d = UInt(Vd:D); m = UInt(Vm:M);

!=1111 1 1 1 0 1 D 1 1 0 0 1 op Vd 1 0 1 sz 1 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond T
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5477
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Half-precision to single-precision variant

Applies when op == 0 && sz == 0.

VCVTT{<c>}{<q>}.F32.F16 <Sd>, <Sm>

Half-precision to double-precision variant

Applies when op == 0 && sz == 1.

VCVTT{<c>}{<q>}.F64.F16 <Dd>, <Sm>

Single-precision to half-precision variant

Applies when op == 1 && sz == 0.

VCVTT{<c>}{<q>}.F16.F32 <Sd>, <Sm>

Double-precision to half-precision variant

Applies when op == 1 && sz == 1.

VCVTT{<c>}{<q>}.F16.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 uses_double = (sz == '1'); convert_from_half = (op == '0');
 lowbit = (if T == '1' then 16 else 0);
 if uses_double then
 if convert_from_half then
 d = UInt(D:Vd); m = UInt(Vm:M);
 else
 d = UInt(Vd:D); m = UInt(M:Vm);
 else
 d = UInt(Vd:D); m = UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 bits(16) hp;
 if convert_from_half then
 hp = S[m]<lowbit+15:lowbit>;

1 1 1 0 1 1 1 0 1 D 1 1 0 0 1 op Vd 1 0 1 sz 1 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

T

F6-5478 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 if uses_double then
 D[d] = FPConvert(hp, FPSCR[]);
 else
 S[d] = FPConvert(hp, FPSCR[]);
 else
 if uses_double then
 hp = FPConvert(D[m], FPSCR[]);
 else
 hp = FPConvert(S[m], FPSCR[]);
 S[d]<lowbit+15:lowbit> = hp;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5479
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.77 VCVTT (BFloat16)

Converts the single-precision value in a single-precision register to BFloat16 format and writes the result in the top
half of a single-precision register, preserving the bottom 16 bits of the register.

Unlike the BFloat16 multiplication instructions, this instruction honors all the control bits in the FPSCR that apply
to single-precision arithmetic, including the rounding mode. This instruction can generate a floating-point exception
which causes a cumulative exception bit in the FPSCR to be set, or a synchronous exception to be taken, depending
on the enable bits in the FPSCR.

A1

(FEAT_AA32BF16)

A1 variant

VCVTT{<c>}{<q>}.BF16.F32 <Sd>, <Sm>

Decode for this encoding

 if !HaveAArch32BF16Ext() then UNDEFINED;
 integer d = UInt(Vd:D);
 integer m = UInt(Vm:M);

T1

(FEAT_AA32BF16)

T1 variant

VCVTT{<c>}{<q>}.BF16.F32 <Sd>, <Sm>

Decode for this encoding

 if !HaveAArch32BF16Ext() then UNDEFINED;
 integer d = UInt(Vd:D);
 integer m = UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

!=1111 1 1 1 0 1 D 1 1 0 0 1 1 Vd 1 0 0 1 1 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 1 1 0 1 D 1 1 0 0 1 1 Vd 1 0 0 1 1 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5480 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckVFPEnabled(TRUE);

 S[d]<31:16> = FPConvertBF(S[m], FPSCR[]);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5481
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.78 VDIV

Divide divides one floating-point value by another floating-point value and writes the result to a third floating-point
register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision scalar variant

Applies when size == 01.

VDIV{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VDIV{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VDIV{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

!=1111 1 1 1 0 1 D 0 0 Vn Vd 1 0 size N 0 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 1 1 0 1 D 0 0 Vn Vd 1 0 size N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5482 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Half-precision scalar variant

Applies when size == 01.

VDIV{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VDIV{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VDIV{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

 if size == '01' && InITBlock() then UNPREDICTABLE;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 case esize of
 when 16
 S[d] = Zeros(16) : FPDiv(S[n]<15:0>, S[m]<15:0>, FPSCR[]);
 when 32
 S[d] = FPDiv(S[n], S[m], FPSCR[]);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5483
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 when 64
 D[d] = FPDiv(D[n], D[m], FPSCR[]);
F6-5484 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.79 VDOT (vector)

BFloat16 floating-point (BF16) dot product (vector). This instruction delimits the source vectors into pairs of 16-bit
BF16 elements. Within each pair, the elements in the first source vector are multiplied by the corresponding
elements in the second source vector. The resulting single-precision products are then summed and added
destructively to the single-precision element in the destination vector which aligns with the pair of BF16 values in
the first source vector. The instruction does not update the FPSCR exception status.

A1

(FEAT_AA32BF16)

64-bit SIMD vector variant

Applies when Q == 0.

VDOT{<q>}.BF16 <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VDOT{<q>}.BF16 <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if !HaveAArch32BF16Ext() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer regs = if Q == '1' then 2 else 1;

T1

(FEAT_AA32BF16)

64-bit SIMD vector variant

Applies when Q == 0.

VDOT{<q>}.BF16 <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VDOT{<q>}.BF16 <Qd>, <Qn>, <Qm>

1 1 1 1 1 1 0 0 0 D 0 0 Vn Vd 1 1 0 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 0 0 0 D 0 0 Vn Vd 1 1 0 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5485
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveAArch32BF16Ext() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 bits(64) operand1;
 bits(64) operand2;
 bits(64) result;

 CheckAdvSIMDEnabled();

 for r = 0 to regs-1
 operand1 = Din[n+r];
 operand2 = Din[m+r];
 result = Din[d+r];
 for e = 0 to 1
 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
 bits(16) elt2_a = Elem[operand2, 2 * e + 0, 16];
 bits(16) elt2_b = Elem[operand2, 2 * e + 1, 16];
 bits(32) sum = BFAdd(BFMul(elt1_a, elt2_a), BFMul(elt1_b, elt2_b));
 Elem[result, e, 32] = BFAdd(Elem[result, e, 32], sum);
 D[d+r] = result;
F6-5486 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.80 VDOT (by element)

BFloat16 floating-point indexed dot product (vector, by element). This instruction delimits the source vectors into
pairs of 16-bit BF16 elements. Each pair of elements in the first source vector is multiplied by the indexed pair of
elements in the second source vector. The resulting single-precision products are then summed and added
destructively to the single-precision element in the destination vector which aligns with the pair of BFloat16 values
in the first source vector. The instruction does not update the FPSCR exception status.

A1

(FEAT_AA32BF16)

64-bit SIMD vector variant

Applies when Q == 0.

VDOT{<q>}.BF16 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VDOT{<q>}.BF16 <Qd>, <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

 if !HaveAArch32BF16Ext() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm);
 integer i = UInt(M);
 integer regs = if Q == '1' then 2 else 1;

T1

(FEAT_AA32BF16)

64-bit SIMD vector variant

Applies when Q == 0.

VDOT{<q>}.BF16 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VDOT{<q>}.BF16 <Qd>, <Qn>, <Dm>[<index>]

1 1 1 1 1 1 1 0 0 D 0 0 Vn Vd 1 1 0 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 0 0 D 0 0 Vn Vd 1 1 0 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5487
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveAArch32BF16Ext() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm);
 integer i = UInt(M);
 integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

Operation for all encodings

 bits(64) operand1;
 bits(64) operand2;
 bits(64) result;

 CheckAdvSIMDEnabled();

 operand2 = Din[m];
 for r = 0 to regs-1
 operand1 = Din[n+r];
 result = Din[d+r];
 for e = 0 to 1
 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
 bits(16) elt2_a = Elem[operand2, 2 * i + 0, 16];
 bits(16) elt2_b = Elem[operand2, 2 * i + 1, 16];
 bits(32) sum = BFAdd(BFMul(elt1_a, elt2_a), BFMul(elt1_b, elt2_b));
 Elem[result, e, 32] = BFAdd(Elem[result, e, 32], sum);
 D[d+r] = result;
F6-5488 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.81 VDUP (general-purpose register)

Duplicate general-purpose register to vector duplicates an element from a general-purpose register into every
element of the destination vector.

The destination vector elements can be 8-bit, 16-bit, or 32-bit fields. The source element is the least significant 8,
16, or 32 bits of the general-purpose register. There is no distinction between data types.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VDUP{<c>}{<q>}.<size> <Qd>, <Rt> // Encoded as Q = 1
VDUP{<c>}{<q>}.<size> <Dd>, <Rt> // Encoded as Q = 0

Decode for this encoding

 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); t = UInt(Rt); regs = if Q == '0' then 1 else 2;
 case B:E of
 when '00' esize = 32; elements = 2;
 when '01' esize = 16; elements = 4;
 when '10' esize = 8; elements = 8;
 when '11' UNDEFINED;
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1

T1 variant

VDUP{<c>}{<q>}.<size> <Qd>, <Rt> // Encoded as Q = 1
VDUP{<c>}{<q>}.<size> <Dd>, <Rt> // Encoded as Q = 0

Decode for this encoding

 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); t = UInt(Rt); regs = if Q == '0' then 1 else 2;
 case B:E of
 when '00' esize = 32; elements = 2;
 when '01' esize = 16; elements = 4;
 when '10' esize = 8; elements = 8;
 when '11' UNDEFINED;
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 1 1 1 0 1 B Q 0 Vd Rt 1 0 1 1 D 0 E 1 (0) (0) (0) (0)
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 1 1 0 1 B Q 0 Vd Rt 1 0 1 1 D 0 E 1 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5489
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348. Arm strongly recommends that any VDUP
instruction is unconditional, see Conditional execution on page F1-4349.

<q> See Standard assembler syntax fields on page F1-4348.

<size> The data size for the elements of the destination vector. It must be one of:

8 Encoded as [b, e] = 0b10.

16 Encoded as [b, e] = 0b01.

32 Encoded as [b, e] = 0b00.

<Qd> The destination vector for a quadword operation.

<Dd> The destination vector for a doubleword operation.

<Rt> The Arm source register.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 scalar = R[t]<esize-1:0>;
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = scalar;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5490 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.82 VDUP (scalar)

Duplicate vector element to vector duplicates a single element of a vector into every element of the destination
vector.

The scalar, and the destination vector elements, can be any one of 8-bit, 16-bit, or 32-bit fields. There is no
distinction between data types.

For more information about scalars see Advanced SIMD scalars on page F1-4374.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Encoding

Applies when Q == 0.

VDUP{<c>}{<q>}.<size> <Dd>, <Dm[x]>

Encoding

Applies when Q == 1.

VDUP{<c>}{<q>}.<size> <Qd>, <Dm[x]>

Decode for all variants of this encoding

 if imm4 == 'x000' then UNDEFINED;
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 case imm4 of
 when 'xxx1' esize = 8; elements = 8; index = UInt(imm4<3:1>);
 when 'xx10' esize = 16; elements = 4; index = UInt(imm4<3:2>);
 when 'x100' esize = 32; elements = 2; index = UInt(imm4<3>);
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

Encoding

Applies when Q == 0.

VDUP{<c>}{<q>}.<size> <Dd>, <Dm[x]>

Encoding

Applies when Q == 1.

VDUP{<c>}{<q>}.<size> <Qd>, <Dm[x]>

1 1 1 1 0 0 1 1 1 D 1 1 imm4 Vd 1 1 0 0 0 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 imm4 Vd 1 1 0 0 0 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5491
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if imm4 == 'x000' then UNDEFINED;
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 case imm4 of
 when 'xxx1' esize = 8; elements = 8; index = UInt(imm4<3:1>);
 when 'xx10' esize = 16; elements = 4; index = UInt(imm4<3:2>);
 when 'x100' esize = 32; elements = 2; index = UInt(imm4<3>);
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> The data size. It must be one of:

8 Encoded as imm4<0> = '1'. imm4<3:1> encodes the index[x] of the scalar.

16 Encoded as imm4<1:0> = '10'. imm4<3:2> encodes the index [x] of the scalar.

32 Encoded as imm4<2:0> = '100'. imm4<3> encodes the index [x] of the scalar.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm[x]> The scalar. For details of how [x] is encoded, see the description of <size>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 scalar = Elem[D[m],index,esize];
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = scalar;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5492 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.83 VEOR

Vector Bitwise Exclusive OR performs a bitwise Exclusive OR operation between two registers, and places the
result in the destination register. The operand and result registers can be quadword or doubleword. They must all be
the same size.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VEOR{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VEOR{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VEOR{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VEOR{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

1 1 1 1 0 0 1 1 0 D 0 0 Vn Vd 0 0 0 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D 0 0 Vn Vd 0 0 0 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5493
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[n+r] EOR D[m+r];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5494 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.84 VEXT (byte elements)

Vector Extract extracts elements from the bottom end of the second operand vector and the top end of the first,
concatenates them and places the result in the destination vector.

The elements of the vectors are treated as being 8-bit fields. There is no distinction between data types.

The following figure shows the operation of VEXT doubleword operation for imm = 3.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

This instruction is used by the pseudo-instruction VEXT (multibyte elements). The pseudo-instruction is never the
preferred disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VEXT{<c>}{<q>}.8 {<Dd>,} <Dn>, <Dm>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VEXT{<c>}{<q>}.8 {<Qd>,} <Qn>, <Qm>, #<imm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if Q == '0' && imm4<3> == '1' then UNDEFINED;
 quadword_operation = (Q == '1'); position = 8 * UInt(imm4);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

64-bit SIMD vector variant

Applies when Q == 0.

7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

Vm Vn

Vd

1 1 1 1 0 0 1 0 1 D 1 1 Vn Vd imm4 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 1 D 1 1 Vn Vd imm4 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5495
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VEXT{<c>}{<q>}.8 {<Dd>,} <Dn>, <Dm>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VEXT{<c>}{<q>}.8 {<Qd>,} <Qn>, <Qm>, #<imm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if Q == '0' && imm4<3> == '1' then UNDEFINED;
 quadword_operation = (Q == '1'); position = 8 * UInt(imm4);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<imm> For the 64-bit SIMD vector variant: is the location of the extracted result in the concatenation of the
operands, as a number of bytes from the least significant end, in the range 0 to 7, encoded in the
"imm4" field.

For the 128-bit SIMD vector variant: is the location of the extracted result in the concatenation of
the operands, as a number of bytes from the least significant end, in the range 0 to 15, encoded in
the "imm4" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if quadword_operation then
 Q[d>>1] = (Q[m>>1]:Q[n>>1])<position+127:position>;
 else
 D[d] = (D[m]:D[n])<position+63:position>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5496 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5497
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.85 VEXT (multibyte elements)

Vector Extract extracts elements from the bottom end of the second operand vector and the top end of the first,
concatenates them and places the result in the destination vector

This instruction is a pseudo-instruction of the VEXT (byte elements) instruction. This means that:

• The encodings in this description are named to match the encodings of VEXT (byte elements).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VEXT (byte elements) gives the operational pseudocode for this instruction.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VEXT{<c>}{<q>}.<size> {<Dd>,} <Dn>, <Dm>, #<imm>

 is equivalent to

VEXT{<c>}{<q>}.8 {<Dd>,} <Dn>, <Dm>, #<imm*(size/8)>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VEXT{<c>}{<q>}.<size> {<Qd>,} <Qn>, <Qm>, #<imm>

 is equivalent to

VEXT{<c>}{<q>}.8 {<Qd>,} <Qn>, <Qm>, #<imm*(size/8)>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VEXT{<c>}{<q>}.<size> {<Dd>,} <Dn>, <Dm>, #<imm>

 is equivalent to

VEXT{<c>}{<q>}.8 {<Dd>,} <Dn>, <Dm>, #<imm*(size/8)>

and is never the preferred disassembly.

1 1 1 1 0 0 1 0 1 D 1 1 Vn Vd imm4 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 1 D 1 1 Vn Vd imm4 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
F6-5498 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VEXT{<c>}{<q>}.<size> {<Qd>,} <Qn>, <Qm>, #<imm>

 is equivalent to

VEXT{<c>}{<q>}.8 {<Qd>,} <Qn>, <Qm>, #<imm*(size/8)>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> For the 64-bit SIMD vector variant: is the size of the operation, and can be one of 16 or 32.

For the 128-bit SIMD vector variant: is the size of the operation, and can be one of 16, 32 or 64.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<imm> For the 64-bit SIMD vector variant: is the location of the extracted result in the concatenation of the
operands, as a number of bytes from the least significant end, in the range 0 to (128/<size>)-1.

For the 128-bit SIMD vector variant: is the location of the extracted result in the concatenation of
the operands, as a number of bytes from the least significant end, in the range 0 to (64/<size>)-1.

Operation for all encodings

The description of VEXT (byte elements) gives the operational pseudocode for this instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5499
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.86 VFMA

Vector Fused Multiply Accumulate multiplies corresponding elements of two vectors, and accumulates the results
into the elements of the destination vector. The instruction does not round the result of the multiply before the
accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VFMA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 advsimd = TRUE; op1_neg = (op == '1');
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VFMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VFMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 0 0 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

!=1111 1 1 1 0 1 D 1 0 Vn Vd 1 0 size N 0 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op
F6-5500 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VFMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 advsimd = FALSE; op1_neg = (op == '1');
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VFMA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 advsimd = TRUE; op1_neg = (op == '1');
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 0 0 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5501
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T2

Half-precision scalar variant

Applies when size == 01.

VFMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VFMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VFMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 advsimd = FALSE; op1_neg = (op == '1');
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding A2, T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

1 1 1 0 1 1 1 0 1 D 1 0 Vn Vd 1 0 size N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5502 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 bits(esize) op1 = Elem[D[n+r],e,esize];
 if op1_neg then op1 = FPNeg(op1);
 Elem[D[d+r],e,esize] = FPMulAdd(Elem[D[d+r],e,esize],
 op1, Elem[D[m+r],e,esize], StandardFPSCRValue());

 else // VFP instruction
 case esize of
 when 16
 op16 = if op1_neg then FPNeg(S[n]<15:0>) else S[n]<15:0>;
 S[d] = Zeros(16) : FPMulAdd(S[d]<15:0>, op16, S[m]<15:0>, FPSCR[]);
 when 32
 op32 = if op1_neg then FPNeg(S[n]) else S[n];
 S[d] = FPMulAdd(S[d], op32, S[m], FPSCR[]);
 when 64
 op64 = if op1_neg then FPNeg(D[n]) else D[n];
 D[d] = FPMulAdd(D[d], op64, D[m], FPSCR[]);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5503
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.87 VFMAB, VFMAT (BFloat16, vector)

The Bfloat16 floating-point widening multiply-add long instruction widens the even-numbered (bottom) or
odd-numbered (top) 16-bit elements in the first and second source vectors from Bfloat16 to single-precision format.
The instruction then multiplies and adds these values to the overlapping single-precision elements of the destination
vector.

Unlike other BFloat16 multiplication instructions, this performs a fused multiply-add, without intermediate
rounding that uses the Round to Nearest rounding mode and can generate a floating-point exception that causes
cumulative exception bits in the FPSCR to be set.

A1

(FEAT_AA32BF16)

A1 variant

VFMA<bt>{<q>}.BF16 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !HaveAArch32BF16Ext() then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer elements = 128 DIV 32;
 integer sel = UInt(Q);

T1

(FEAT_AA32BF16)

T1 variant

VFMA<bt>{<q>}.BF16 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveAArch32BF16Ext() then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer elements = 128 DIV 32;
 integer sel = UInt(Q);

1 1 1 1 1 1 0 0 0 D 1 1 Vn Vd 1 0 0 0 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 0 0 0 D 1 1 Vn Vd 1 0 0 0 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5504 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<bt> Is the bottom or top element specifier, encoded in the "Q" field. It can have the following values:

B when Q = 0

T when Q = 1

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

Operation for all encodings

 CheckAdvSIMDEnabled();
 bits(128) operand1 = Q[n>>1];
 bits(128) operand2 = Q[m>>1];
 bits(128) operand3 = Q[d>>1];
 bits(128) result;

 for e = 0 to elements-1
 bits(32) element1 = Elem[operand1, 2 * e + sel, 16] : Zeros(16);
 bits(32) element2 = Elem[operand2, 2 * e + sel, 16] : Zeros(16);
 bits(32) addend = Elem[operand3, e, 32];
 Elem[result, e, 32] = FPMulAdd(addend, element1, element2,
 StandardFPSCRValue());

 Q[d>>1] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5505
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.88 VFMAB, VFMAT (BFloat16, by scalar)

The BFloat16 floating-point widening multiply-add long instruction widens the even-numbered (bottom) or
odd-numbered (top) 16-bit elements in the first source vector, and an indexed element in the second source vector
from Bfloat16 to single-precision format. The instruction then multiplies and adds these values to the overlapping
single-precision elements of the destination vector.

Unlike other BFloat16 multiplication instructions, this performs a fused multiply-add, without intermediate
rounding that uses the Round to Nearest rounding mode and can generate a floating-point exception that causes
cumulative exception bits in the FPSCR to be set.

A1

(FEAT_AA32BF16)

A1 variant

VFMA<bt>{<q>}.BF16 <Qd>, <Qn>, <Dm>[<index>]

Decode for this encoding

 if !HaveAArch32BF16Ext() then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm<2:0>);
 integer i = UInt(M:Vm<3>);
 integer elements = 128 DIV 32;
 integer sel = UInt(Q);

T1

(FEAT_AA32BF16)

T1 variant

VFMA<bt>{<q>}.BF16 <Qd>, <Qn>, <Dm>[<index>]

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveAArch32BF16Ext() then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm<2:0>);
 integer i = UInt(M:Vm<3>);
 integer elements = 128 DIV 32;
 integer sel = UInt(Q);

1 1 1 1 1 1 1 0 0 D 1 1 Vn Vd 1 0 0 0 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 0 0 D 1 1 Vn Vd 1 0 0 0 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5506 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<bt> Is the bottom or top element specifier, encoded in the "Q" field. It can have the following values:

B when Q = 0

T when Q = 1

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>" field.

<index> Is the element index in the range 0 to 3, encoded in the "M:Vm<3>" field.

Operation for all encodings

 CheckAdvSIMDEnabled();
 bits(128) operand1 = Q[n>>1];
 bits(64) operand2 = D[m];
 bits(128) operand3 = Q[d>>1];
 bits(128) result;

 bits(32) element2 = Elem[operand2, i, 16] : Zeros(16);

 for e = 0 to elements-1
 bits(32) element1 = Elem[operand1, 2 * e + sel, 16] : Zeros(16);
 bits(32) addend = Elem[operand3, e, 32];
 Elem[result, e, 32] = FPMulAdd(addend, element1, element2,
 StandardFPSCRValue());

 Q[d>>1] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5507
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.89 VFMAL (vector)

Vector Floating-point Multiply-Add Long to accumulator (vector). This instruction multiplies corresponding values
in the vectors in the two source SIMD&FP registers, and accumulates the product to the corresponding vector
element of the destination SIMD&FP register. The instruction does not round the result of the multiply before the
accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_ISAR6.FHM indicates whether this instruction is supported.

A1

(FEAT_FHM)

64-bit SIMD vector variant

Applies when Q == 0.

VFMAL{<q>}.F16 <Dd>, <Sn>, <Sm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMAL{<q>}.F16 <Qd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
 if Q == '1' && Vd<0> == '1' then UNDEFINED;

 integer d = UInt(D:Vd);
 integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
 integer m = if Q == '1' then UInt(M:Vm) else UInt(Vm:M);
 integer esize = 32;
 integer regs = if Q=='1' then 2 else 1;
 integer datasize = if Q=='1' then 64 else 32;
 boolean sub_op = S=='1';

T1

(FEAT_FHM)

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 0 0 0 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

S

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 0 0 0 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

S

F6-5508 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
64-bit SIMD vector variant

Applies when Q == 0.

VFMAL{<q>}.F16 <Dd>, <Sn>, <Sm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMAL{<q>}.F16 <Qd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
 if Q == '1' && Vd<0> == '1' then UNDEFINED;

 integer d = UInt(D:Vd);
 integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
 integer m = if Q == '1' then UInt(M:Vm) else UInt(Vm:M);
 integer esize = 32;
 integer regs = if Q=='1' then 2 else 1;
 integer datasize = if Q=='1' then 64 else 32;
 boolean sub_op = S=='1';

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 CheckAdvSIMDEnabled();
 bits(datasize) operand1 ;
 bits(datasize) operand2 ;
 bits(64) operand3;
 bits(64) result;
 bits(esize DIV 2) element1;
 bits(esize DIV 2) element2;

 if Q=='0' then
 operand1 = S[n]<datasize-1:0>;
 operand2 = S[m]<datasize-1:0>;
 else
 operand1 = D[n]<datasize-1:0>;
 operand2 = D[m]<datasize-1:0>;
 for r = 0 to regs-1
 operand3 = D[d+r];
 for e = 0 to 1
 element1 = Elem[operand1, 2*r+e, esize DIV 2];
 element2 = Elem[operand2, 2*r+e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1);
 Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2,
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5509
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
StandardFPSCRValue());
 D[d+r] = result;
F6-5510 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.90 VFMAL (by scalar)

Vector Floating-point Multiply-Add Long to accumulator (by scalar). This instruction multiplies the vector
elements in the first source SIMD&FP register by the specified value in the second source SIMD&FP register, and
accumulates the product to the corresponding vector element of the destination SIMD&FP register. The instruction
does not round the result of the multiply before the accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_ISAR6.FHM indicates whether this instruction is supported.

A1

(FEAT_FHM)

64-bit SIMD vector variant

Applies when Q == 0.

VFMAL{<q>}.F16 <Dd>, <Sn>, <Sm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VFMAL{<q>}.F16 <Qd>, <Dn>, <Dm>[<index>]

Decode for all variants of this encoding

 if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
 if Q == '1' && Vd<0> == '1' then UNDEFINED;

 integer d = UInt(D:Vd);
 integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
 integer m = if Q == '1' then UInt(Vm<2:0>) else UInt(Vm<2:0>:M);

 integer index = if Q == '1' then UInt(M:Vm<3>) else UInt(Vm<3>);
 integer esize = 32;
 integer regs = if Q=='1' then 2 else 1;
 integer datasize = if Q=='1' then 64 else 32;
 boolean sub_op = S=='1';

T1

(FEAT_FHM)

1 1 1 1 1 1 1 0 0 D 0 0 Vn Vd 1 0 0 0 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

S

1 1 1 1 1 1 1 0 0 D 0 0 Vn Vd 1 0 0 0 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

S

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5511
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
64-bit SIMD vector variant

Applies when Q == 0.

VFMAL{<q>}.F16 <Dd>, <Sn>, <Sm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VFMAL{<q>}.F16 <Qd>, <Dn>, <Dm>[<index>]

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
 if Q == '1' && Vd<0> == '1' then UNDEFINED;

 integer d = UInt(D:Vd);
 integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
 integer m = if Q == '1' then UInt(Vm<2:0>) else UInt(Vm<2:0>:M);

 integer index = if Q == '1' then UInt(M:Vm<3>) else UInt(Vm<3>);
 integer esize = 32;
 integer regs = if Q=='1' then 2 else 1;
 integer datasize = if Q=='1' then 64 else 32;
 boolean sub_op = S=='1';

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>:M" field.

<index> For the 64-bit SIMD vector variant: is the element index in the range 0 to 1, encoded in the "Vm<3>"
field.

For the 128-bit SIMD vector variant: is the element index in the range 0 to 3, encoded in the
"M:Vm<3>" field.

Operation for all encodings

 CheckAdvSIMDEnabled();
 bits(datasize) operand1 ;
 bits(datasize) operand2 ;
 bits(64) operand3;
 bits(64) result;
 bits(esize DIV 2) element1;
 bits(esize DIV 2) element2;

 if Q=='0' then
 operand1 = S[n]<datasize-1:0>;
 operand2 = S[m]<datasize-1:0>;
 else
 operand1 = D[n]<datasize-1:0>;
 operand2 = D[m]<datasize-1:0>;
F6-5512 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 element2 = Elem[operand2, index, esize DIV 2];
 for r = 0 to regs-1
 operand3 = D[d+r];
 for e = 0 to 1
 element1 = Elem[operand1, 2*r+e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1);
 Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2,
StandardFPSCRValue());
 D[d+r] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5513
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.91 VFMS

Vector Fused Multiply Subtract negates the elements of one vector and multiplies them with the corresponding
elements of another vector, adds the products to the corresponding elements of the destination vector, and places the
results in the destination vector. The instruction does not round the result of the multiply before the addition.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VFMS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 advsimd = TRUE; op1_neg = (op == '1');
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VFMS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VFMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

1 1 1 1 0 0 1 0 0 D 1 sz Vn Vd 1 1 0 0 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

!=1111 1 1 1 0 1 D 1 0 Vn Vd 1 0 size N 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op
F6-5514 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VFMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 advsimd = FALSE; op1_neg = (op == '1');
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VFMS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 advsimd = TRUE; op1_neg = (op == '1');
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

1 1 1 0 1 1 1 1 0 D 1 sz Vn Vd 1 1 0 0 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5515
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T2

Half-precision scalar variant

Applies when size == 01.

VFMS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VFMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VFMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 advsimd = FALSE; op1_neg = (op == '1');
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding A2, T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

1 1 1 0 1 1 1 0 1 D 1 0 Vn Vd 1 0 size N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5516 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 bits(esize) op1 = Elem[D[n+r],e,esize];
 if op1_neg then op1 = FPNeg(op1);
 Elem[D[d+r],e,esize] = FPMulAdd(Elem[D[d+r],e,esize],
 op1, Elem[D[m+r],e,esize], StandardFPSCRValue());

 else // VFP instruction
 case esize of
 when 16
 op16 = if op1_neg then FPNeg(S[n]<15:0>) else S[n]<15:0>;
 S[d] = Zeros(16) : FPMulAdd(S[d]<15:0>, op16, S[m]<15:0>, FPSCR[]);
 when 32
 op32 = if op1_neg then FPNeg(S[n]) else S[n];
 S[d] = FPMulAdd(S[d], op32, S[m], FPSCR[]);
 when 64
 op64 = if op1_neg then FPNeg(D[n]) else D[n];
 D[d] = FPMulAdd(D[d], op64, D[m], FPSCR[]);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5517
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.92 VFMSL (vector)

Vector Floating-point Multiply-Subtract Long from accumulator (vector). This instruction negates the values in the
vector of one SIMD&FP register, multiplies these with the corresponding values in another vector, and accumulates
the product to the corresponding vector element of the destination SIMD&FP register. The instruction does not
round the result of the multiply before the accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_ISAR6.FHM indicates whether this instruction is supported.

A1

(FEAT_FHM)

64-bit SIMD vector variant

Applies when Q == 0.

VFMSL{<q>}.F16 <Dd>, <Sn>, <Sm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMSL{<q>}.F16 <Qd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
 if Q == '1' && Vd<0> == '1' then UNDEFINED;

 integer d = UInt(D:Vd);
 integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
 integer m = if Q == '1' then UInt(M:Vm) else UInt(Vm:M);
 integer esize = 32;
 integer regs = if Q=='1' then 2 else 1;
 integer datasize = if Q=='1' then 64 else 32;
 boolean sub_op = S=='1';

T1

(FEAT_FHM)

1 1 1 1 1 1 0 0 1 D 1 0 Vn Vd 1 0 0 0 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

S

1 1 1 1 1 1 0 0 1 D 1 0 Vn Vd 1 0 0 0 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

S

F6-5518 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
64-bit SIMD vector variant

Applies when Q == 0.

VFMSL{<q>}.F16 <Dd>, <Sn>, <Sm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMSL{<q>}.F16 <Qd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
 if Q == '1' && Vd<0> == '1' then UNDEFINED;

 integer d = UInt(D:Vd);
 integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
 integer m = if Q == '1' then UInt(M:Vm) else UInt(Vm:M);
 integer esize = 32;
 integer regs = if Q=='1' then 2 else 1;
 integer datasize = if Q=='1' then 64 else 32;
 boolean sub_op = S=='1';

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 CheckAdvSIMDEnabled();
 bits(datasize) operand1 ;
 bits(datasize) operand2 ;
 bits(64) operand3;
 bits(64) result;
 bits(esize DIV 2) element1;
 bits(esize DIV 2) element2;

 if Q=='0' then
 operand1 = S[n]<datasize-1:0>;
 operand2 = S[m]<datasize-1:0>;
 else
 operand1 = D[n]<datasize-1:0>;
 operand2 = D[m]<datasize-1:0>;
 for r = 0 to regs-1
 operand3 = D[d+r];
 for e = 0 to 1
 element1 = Elem[operand1, 2*r+e, esize DIV 2];
 element2 = Elem[operand2, 2*r+e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1);
 Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2,
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5519
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
StandardFPSCRValue());
 D[d+r] = result;
F6-5520 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.93 VFMSL (by scalar)

Vector Floating-point Multiply-Subtract Long from accumulator (by scalar). This instruction multiplies the negated
vector elements in the first source SIMD&FP register by the specified value in the second source SIMD&FP
register, and accumulates the product to the corresponding vector element of the destination SIMD&FP register. The
instruction does not round the result of the multiply before the accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_ISAR6.FHM indicates whether this instruction is supported.

A1

(FEAT_FHM)

64-bit SIMD vector variant

Applies when Q == 0.

VFMSL{<q>}.F16 <Dd>, <Sn>, <Sm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VFMSL{<q>}.F16 <Qd>, <Dn>, <Dm>[<index>]

Decode for all variants of this encoding

 if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
 if Q == '1' && Vd<0> == '1' then UNDEFINED;

 integer d = UInt(D:Vd);
 integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
 integer m = if Q == '1' then UInt(Vm<2:0>) else UInt(Vm<2:0>:M);

 integer index = if Q == '1' then UInt(M:Vm<3>) else UInt(Vm<3>);
 integer esize = 32;
 integer regs = if Q=='1' then 2 else 1;
 integer datasize = if Q=='1' then 64 else 32;
 boolean sub_op = S=='1';

T1

(FEAT_FHM)

1 1 1 1 1 1 1 0 0 D 0 1 Vn Vd 1 0 0 0 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

S

1 1 1 1 1 1 1 0 0 D 0 1 Vn Vd 1 0 0 0 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

S

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5521
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
64-bit SIMD vector variant

Applies when Q == 0.

VFMSL{<q>}.F16 <Dd>, <Sn>, <Sm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VFMSL{<q>}.F16 <Qd>, <Dn>, <Dm>[<index>]

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
 if Q == '1' && Vd<0> == '1' then UNDEFINED;

 integer d = UInt(D:Vd);
 integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
 integer m = if Q == '1' then UInt(Vm<2:0>) else UInt(Vm<2:0>:M);

 integer index = if Q == '1' then UInt(M:Vm<3>) else UInt(Vm<3>);
 integer esize = 32;
 integer regs = if Q=='1' then 2 else 1;
 integer datasize = if Q=='1' then 64 else 32;
 boolean sub_op = S=='1';

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>:M" field.

<index> For the 64-bit SIMD vector variant: is the element index in the range 0 to 1, encoded in the "Vm<3>"
field.

For the 128-bit SIMD vector variant: is the element index in the range 0 to 3, encoded in the
"M:Vm<3>" field.

Operation for all encodings

 CheckAdvSIMDEnabled();
 bits(datasize) operand1 ;
 bits(datasize) operand2 ;
 bits(64) operand3;
 bits(64) result;
 bits(esize DIV 2) element1;
 bits(esize DIV 2) element2;

 if Q=='0' then
 operand1 = S[n]<datasize-1:0>;
 operand2 = S[m]<datasize-1:0>;
 else
 operand1 = D[n]<datasize-1:0>;
 operand2 = D[m]<datasize-1:0>;
F6-5522 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 element2 = Elem[operand2, index, esize DIV 2];
 for r = 0 to regs-1
 operand3 = D[d+r];
 for e = 0 to 1
 element1 = Elem[operand1, 2*r+e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1);
 Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2,
StandardFPSCRValue());
 D[d+r] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5523
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.94 VFNMA

Vector Fused Negate Multiply Accumulate negates one floating-point register value and multiplies it by another
floating-point register value, adds the negation of the floating-point value in the destination register to the product,
and writes the result back to the destination register. The instruction does not round the result of the multiply before
the addition.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision scalar variant

Applies when size == 01.

VFNMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VFNMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VFNMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 op1_neg = (op == '1');
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

!=1111 1 1 1 0 1 D 0 1 Vn Vd 1 0 size N 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op
F6-5524 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Half-precision scalar variant

Applies when size == 01.

VFNMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VFNMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VFNMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 op1_neg = (op == '1');
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

1 1 1 0 1 1 1 0 1 D 0 1 Vn Vd 1 0 size N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5525
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 case esize of
 when 16
 op16 = if op1_neg then FPNeg(S[n]<15:0>) else S[n]<15:0>;
 S[d] = Zeros(16) : FPMulAdd(FPNeg(S[d]<15:0>), op16, S[m]<15:0>, FPSCR[]);
 when 32
 op32 = if op1_neg then FPNeg(S[n]) else S[n];
 S[d] = FPMulAdd(FPNeg(S[d]), op32, S[m], FPSCR[]);
 when 64
 op64 = if op1_neg then FPNeg(D[n]) else D[n];
 D[d] = FPMulAdd(FPNeg(D[d]), op64, D[m], FPSCR[]);
F6-5526 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.95 VFNMS

Vector Fused Negate Multiply Subtract multiplies together two floating-point register values, adds the negation of
the floating-point value in the destination register to the product, and writes the result back to the destination
register. The instruction does not round the result of the multiply before the addition.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision scalar variant

Applies when size == 01.

VFNMS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VFNMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VFNMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 op1_neg = (op == '1');
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

!=1111 1 1 1 0 1 D 0 1 Vn Vd 1 0 size N 0 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op

1 1 1 0 1 1 1 0 1 D 0 1 Vn Vd 1 0 size N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5527
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Half-precision scalar variant

Applies when size == 01.

VFNMS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VFNMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VFNMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 op1_neg = (op == '1');
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 case esize of
 when 16
 op16 = if op1_neg then FPNeg(S[n]<15:0>) else S[n]<15:0>;
 S[d] = Zeros(16) : FPMulAdd(FPNeg(S[d]<15:0>), op16, S[m]<15:0>, FPSCR[]);
 when 32
F6-5528 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 op32 = if op1_neg then FPNeg(S[n]) else S[n];
 S[d] = FPMulAdd(FPNeg(S[d]), op32, S[m], FPSCR[]);
 when 64
 op64 = if op1_neg then FPNeg(D[n]) else D[n];
 D[d] = FPMulAdd(FPNeg(D[d]), op64, D[m], FPSCR[]);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5529
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.96 VHADD

Vector Halving Add adds corresponding elements in two vectors of integers, shifts each result right one bit, and
places the final results in the destination vector. The results of the halving operations are truncated. For rounded
results, see VRHADD).

The operand and result elements are all the same type, and can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers.

• 8-bit, 16-bit, or 32-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VHADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VHADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 add = (op == '0'); unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VHADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VHADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 0 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 0 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5530 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 add = (op == '0'); unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Int(Elem[D[n+r],e,esize], unsigned);
 op2 = Int(Elem[D[m+r],e,esize], unsigned);
 result = if add then op1+op2 else op1-op2;
 Elem[D[d+r],e,esize] = result<esize:1>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5531
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5532 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.97 VHSUB

Vector Halving Subtract subtracts the elements of the second operand from the corresponding elements of the first
operand, shifts each result right one bit, and places the final results in the destination vector. The results of the
halving operations are truncated. There is no rounding version.

The operand and result elements are all the same type, and can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers.

• 8-bit, 16-bit, or 32-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VHSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VHSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 add = (op == '0'); unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VHSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VHSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5533
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 add = (op == '0'); unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Int(Elem[D[n+r],e,esize], unsigned);
 op2 = Int(Elem[D[m+r],e,esize], unsigned);
 result = if add then op1+op2 else op1-op2;
 Elem[D[d+r],e,esize] = result<esize:1>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5534 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5535
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.98 VINS

Vector move Insertion. This instruction copies the lower 16 bits of the 32-bit source SIMD&FP register into the
upper 16 bits of the 32-bit destination SIMD&FP register, while preserving the values in the remaining bits.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

(FEAT_FP16)

A1 variant

VINS{<q>}.F16 <Sd>, <Sm>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 d = UInt(Vd:D); m = UInt(Vm:M);

T1

(FEAT_FP16)

T1 variant

VINS{<q>}.F16 <Sd>, <Sm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveFP16Ext() then UNDEFINED;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 d = UInt(Vd:D); m = UInt(Vm:M);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 0 1 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 0 1 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5536 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 S[d] = S[m]<15:0> : S[d]<15:0>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5537
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.99 VJCVT

Javascript Convert to signed fixed-point, rounding toward Zero. This instruction converts the double-precision
floating-point value in the SIMD&FP source register to a 32-bit signed integer using the Round towards Zero
rounding mode, and writes the result to the SIMD&FP destination register. If the result is too large to be
accommodated as a signed 32-bit integer, then the result is the integer modulo 232, as held in a 32-bit signed integer.

This instruction can generate a floating-point exception. Depending on the settings in FPSCR, the exception results
in either a flag being set or a synchronous exception being generated. For more information, see Floating-point
exceptions and exception traps on page E1-4268.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

(FEAT_JSCVT)

A1 variant

VJCVT{<q>}.S32.F64 <Sd>, <Dm>

Decode for this encoding

 if !HaveFJCVTZSExt() then UNDEFINED;
 if cond != '1110' then UNPREDICTABLE;
 d = UInt(Vd:D); m = UInt(M:Vm);

T1

(FEAT_JSCVT)

T1 variant

VJCVT{<q>}.S32.F64 <Sd>, <Dm>

Decode for this encoding

 if !HaveFJCVTZSExt() then UNDEFINED;
 if InITBlock() then UNPREDICTABLE;
 d = UInt(Vd:D); m = UInt(M:Vm);

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

!=1111 1 1 1 0 1 D 1 1 1 0 0 1 Vd 1 0 1 1 1 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 1 1 0 1 D 1 1 1 0 0 1 Vd 1 0 1 1 1 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5538 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 EncodingSpecificOperations();
 CheckVFPEnabled(TRUE);
 bits(64) fltval = D[m];
 bits(32) intval;
 bit Z;
 (intval, Z) = FPToFixedJS(fltval, FPSCR[], FALSE);
 FPSCR<31:28> = '0':Z:'00';
 S[d] = intval;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5539
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.100 VLD1 (single element to one lane)

Load single 1-element structure to one lane of one register loads one element from memory into one element of a
register. Elements of the register that are not loaded are unchanged. For details of the addressing mode see The
Advanced SIMD addressing mode on page F1-4369.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD1 (single element to all lanes)";
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>); alignment = 1;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

A2

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 0 0 0 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 1 0 0 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
F6-5540 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD1 (single element to all lanes)";
 if index_align<1> != '0' then UNDEFINED;
 ebytes = 2; index = UInt(index_align<3:2>);
 alignment = if index_align<0> == '0' then 1 else 2;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

A3

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD1 (single element to all lanes)";
 if index_align<2> != '0' then UNDEFINED;
 if index_align<1:0> != '00' && index_align<1:0> != '11' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 alignment = if index_align<1:0> == '00' then 1 else 4;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

T1

Offset variant

Applies when Rm == 1111.

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 0 0 0 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 0 0 0 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5541
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD1 (single element to all lanes)";
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>); alignment = 1;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

T2

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD1 (single element to all lanes)";
 if index_align<1> != '0' then UNDEFINED;
 ebytes = 2; index = UInt(index_align<3:2>);
 alignment = if index_align<0> == '0' then 1 else 2;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 1 0 0 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
F6-5542 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T3

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD1 (single element to all lanes)";
 if index_align<2> != '0' then UNDEFINED;
 if index_align<1:0> != '00' && index_align<1:0> != '11' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 alignment = if index_align<1:0> == '00' then 1 else 4;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1, T2 and T3: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

<list> Is a list containing the single 64-bit name of the SIMD&FP register holding the element.

The list must be { <Dd>[<index>] }.

The register <Dd> is encoded in the "D:Vd" field.

The permitted values and encoding of <index> depend on <size>:

<size> == 8<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 0 0 0 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5543
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<size> == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> When <size> == 8, <align> must be omitted, otherwise it is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on
page E2-4312, and the encoding depends on <size>:

<size> == 8Encoded in the "index_align<0>" field as 0.

<size> == 16Encoded in the "index_align<1:0>" field as 0b00.

<size> == 32Encoded in the "index_align<2:0>" field as 0b000.

Whenever <align> is present, the permitted values and encoding depend on <size>:

<size> == 16<align> is 16, meaning 16-bit alignment, encoded in the "index_align<1:0>" field as
0b01.

<size> == 32<align> is 32, meaning 32-bit alignment, encoded in the "index_align<2:0>" field as
0b011.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode on page F1-4369.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on
page F1-4369.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = FALSE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 Elem[D[d],index] = MemU[address,ebytes];
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + ebytes;
F6-5544 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.101 VLD1 (single element to all lanes)

Load single 1-element structure and replicate to all lanes of one register loads one element from memory into every
element of one or two vectors. For details of the addressing mode see The Advanced SIMD addressing mode on
page F1-4369.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}],<Rm>

Decode for all variants of this encoding

 if size == '11' || (size == '00' && a == '1') then UNDEFINED;
 ebytes = 1 << UInt(size); regs = if T == '0' then 1 else 2;
 alignment = if a == '0' then 1 else ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 1 0 0 size T a Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 1 0 0 size T a Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5545
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' || (size == '00' && a == '1') then UNDEFINED;
 ebytes = 1 << UInt(size); regs = if T == '0' then 1 else 2;
 alignment = if a == '0' then 1 else ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD1 (single element to all lanes) on
page K1-8401.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<list> Is a list containing the 64-bit names of the SIMD&FP registers.

The list must be one of:

{ <Dd>[] } Encoded in the "T" field as 0.
F6-5546 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
{ <Dd>[], <Dd+1>[] }Encoded in the "T" field as 1.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> When <size> == 8, <align> must be omitted, otherwise it is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on
page E2-4312, and is encoded in the "a" field as 0.

Whenever <align> is present, the permitted values and encoding depend on <size>:

<size> == 16<align> is 16, meaning 16-bit alignment, encoded in the "a" field as 1.

<size> == 32<align> is 32, meaning 32-bit alignment, encoded in the "a" field as 1.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode on page F1-4369.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on
page F1-4369.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = FALSE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 bits(64) replicated_element = Replicate(MemU[address,ebytes]);
 for r = 0 to regs-1
 D[d+r] = replicated_element;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + ebytes;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5547
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.102 VLD1 (multiple single elements)

Load multiple single 1-element structures to one, two, three, or four registers loads elements from memory into one,
two, three, or four registers, without de-interleaving. Every element of each register is loaded. For details of the
addressing mode see The Advanced SIMD addressing mode on page F1-4369.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 1; if align<1> == '1' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

A2

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 0 1 1 1 size align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 1 0 1 0 size align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
F6-5548 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 2; if align == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A3

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 3; if align<1> == '1' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 0 1 1 0 size align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5549
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A4

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 4;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 0 0 1 0 size align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 0 1 1 1 size align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5550 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 1; if align<1> == '1' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

T2

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 2; if align == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 1 0 1 0 size align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5551
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T3

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 3; if align<1> == '1' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T4

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 0 1 1 0 size align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 0 0 1 0 size align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5552 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 4;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD1 (multiple single elements) on
page K1-8401.

Related encodings: See Advanced SIMD element or structure load/store on page F3-4470 for the T32 instruction
set, or Advanced SIMD element or structure load/store on page F4-4555 for the A32 instruction set.

Assembler symbols

<c> For encoding A1, A2, A3 and A4: see Standard assembler syntax fields on page F1-4348. This
encoding must be unconditional.

For encoding T1, T2, T3 and T4: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

64 when size = 11

<list> Is a list containing the 64-bit names of the SIMD&FP registers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5553
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
The list must be one of:

{ <Dd> } Single register. Selects the A1 and T1 encodings of the instruction.

{ <Dd>, <Dd+1> }Two single-spaced registers. Selects the A2 and T2 encodings of the instruction.

{ <Dd>, <Dd+1>, <Dd+2> }Three single-spaced registers. Selects the A3 and T3 encodings of the
instruction.

{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> }Four single-spaced registers. Selects the A4 and T4 encodings of
the instruction.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on
page E2-4312, and is encoded in the "align" field as 0b00.

Whenever <align> is present, the permitted values are:

64 64-bit alignment, encoded in the "align" field as 0b01.

128 128-bit alignment, encoded in the "align" field as 0b10. Available only if <list> contains
two or four registers.

256 256-bit alignment, encoded in the "align" field as 0b11. Available only if <list> contains
four registers.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode on page F1-4369.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on
page F1-4369.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = FALSE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 for r = 0 to regs-1
 for e = 0 to elements-1
 bits(ebytes*8) data;
 if ebytes != 8 then
 data = MemU[address,ebytes];
 else
 - = AArch32.CheckAlignment(address, ebytes, AccType_NORMAL, iswrite);
 data<31:0> = if BigEndian(AccType_NORMAL) then MemU[address+4,4] else MemU[address,4];
 data<63:32> = if BigEndian(AccType_NORMAL) then MemU[address,4] else MemU[address+4,4];
 Elem[D[d+r],e] = data;
 address = address + ebytes;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 8*regs;
F6-5554 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.103 VLD2 (single 2-element structure to one lane)

Load single 2-element structure to one lane of two registers loads one 2-element structure from memory into
corresponding elements of two registers. Elements of the registers that are not loaded are unchanged. For details of
the addressing mode see The Advanced SIMD addressing mode on page F1-4369.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 alignment = if index_align<0> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A2

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 0 0 1 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 1 0 1 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5555
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 4;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A3

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 0 0 1 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
F6-5556 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
 if index_align<1> != '0' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 8;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 alignment = if index_align<0> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 0 0 1 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5557
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T2

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 4;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T3

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 1 0 1 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 0 0 1 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
F6-5558 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
 if index_align<1> != '0' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 8;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD2 (single 2-element structure to
one lane) on page K1-8401.

Assembler symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1, T2 and T3: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

<list> Is a list containing the 64-bit names of the two SIMD&FP registers holding the element.

The list must be one of:

{ <Dd>[<index>], <Dd+1>[<index>] }Single-spaced registers, encoded as "spacing" = 0.

{ <Dd>[<index>], <Dd+2>[<index>] }Double-spaced registers, encoded as "spacing" = 1. Not
permitted when <size> == 8.

The encoding of "spacing" depends on <size>:

<size> == 16"spacing" is encoded in the "index_align<1>" field.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5559
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<size> == 32"spacing" is encoded in the "index_align<2>" field.

The register <Dd> is encoded in the "D:Vd" field.

The permitted values and encoding of <index> depend on <size>:

<size> == 8<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

<size> == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on
page E2-4312, and the encoding depends on <size>:

<size> == 8Encoded in the "index_align<0>" field as 0.

<size> == 16Encoded in the "index_align<0>" field as 0.

<size> == 32Encoded in the "index_align<1:0>" field as 0b00.

Whenever <align> is present, the permitted values and encoding depend on <size>:

<size> == 8<align> is 16, meaning 16-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 16<align> is 32, meaning 32-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 32<align> is 64, meaning 64-bit alignment, encoded in the "index_align<1:0>" field as
0b01.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode on page F1-4369.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on
page F1-4369.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = FALSE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 Elem[D[d], index] = MemU[address,ebytes];
 Elem[D[d2],index] = MemU[address+ebytes,ebytes];
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 2*ebytes;
F6-5560 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.104 VLD2 (single 2-element structure to all lanes)

Load single 2-element structure and replicate to all lanes of two registers loads one 2-element structure from
memory into all lanes of two registers. For details of the addressing mode see The Advanced SIMD addressing mode
on page F1-4369.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}],<Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 ebytes = 1 << UInt(size);
 alignment = if a == '0' then 1 else 2*ebytes;
 inc = if T == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 1 0 1 size T a Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 1 0 1 size T a Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5561
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 ebytes = 1 << UInt(size);
 alignment = if a == '0' then 1 else 2*ebytes;
 inc = if T == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD2 (single 2-element structure to
all lanes) on page K1-8402.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<list> Is a list containing the 64-bit names of two SIMD&FP registers.
F6-5562 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
The list must be one of:

{ <Dd>[], <Dd+1>[] }Single-spaced registers, encoded in the "T" field as 0.

{ <Dd>[], <Dd+2>[] }Double-spaced registers, encoded in the "T" field as 1.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on
page E2-4312, and is encoded in the "a" field as 0.

Whenever <align> is present, the permitted values and encoding depend on <size>:

<size> == 8<align> is 16, meaning 16-bit alignment, encoded in the "a" field as 1.

<size> == 16<align> is 32, meaning 32-bit alignment, encoded in the "a" field as 1.

<size> == 32<align> is 64, meaning 64-bit alignment, encoded in the "a" field as 1.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode on page F1-4369.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on
page F1-4369.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = FALSE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 D[d] = Replicate(MemU[address,ebytes]);
 D[d2] = Replicate(MemU[address+ebytes,ebytes]);
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 2*ebytes;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5563
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.105 VLD2 (multiple 2-element structures)

Load multiple 2-element structures to two or four registers loads multiple 2-element structures from memory into
two or four registers, with de-interleaving. For more information, see Element and structure load/store instructions
on page F2-4398. Every element of each register is loaded. For details of the addressing mode see The Advanced
SIMD addressing mode on page F1-4369.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 pairs = 1; if align == '11' then UNDEFINED;
 if size == '11' then UNDEFINED;
 inc = if itype == '1001' then 2 else 1;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 1 0 0 x size align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

itype
F6-5564 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
A2

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 pairs = 2; inc = 2;
 if size == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 0 0 1 1 size align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 1 0 0 x size align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

itype
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5565
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 pairs = 1; if align == '11' then UNDEFINED;
 if size == '11' then UNDEFINED;
 inc = if itype == '1001' then 2 else 1;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T2

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 pairs = 2; inc = 2;
 if size == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 0 0 1 1 size align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5566 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD2 (multiple 2-element structures)
on page K1-8401.

Related encodings: See Advanced SIMD element or structure load/store on page F3-4470 for the T32 instruction
set, or Advanced SIMD element or structure load/store on page F4-4555 for the A32 instruction set.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<list> Is a list containing the 64-bit names of the SIMD&FP registers.

The list must be one of:

{ <Dd>, <Dd+1> }Two single-spaced registers. Selects the A1 and T1 encodings of the instruction,
and encoded in the "itype" field as 0b1000.

{ <Dd>, <Dd+2> }Two double-spaced registers. Selects the A1 and T1 encodings of the instruction,
and encoded in the "itype" field as 0b1001.

{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> }Three single-spaced registers. Selects the A2 and T2 encodings
of the instruction.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on
page E2-4312, and is encoded in the "align" field as 0b00.

Whenever <align> is present, the permitted values are:

64 64-bit alignment, encoded in the "align" field as 0b01.

128 128-bit alignment, encoded in the "align" field as 0b10.

256 256-bit alignment, encoded in the "align" field as 0b11. Available only if <list> contains
four registers.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode on page F1-4369.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5567
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on
page F1-4369.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = FALSE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 for r = 0 to pairs-1
 for e = 0 to elements-1
 Elem[D[d+r], e] = MemU[address,ebytes];
 Elem[D[d2+r],e] = MemU[address+ebytes,ebytes];
 address = address + 2*ebytes;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 16*pairs;
F6-5568 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.106 VLD3 (single 3-element structure to one lane)

Load single 3-element structure to one lane of three registers loads one 3-element structure from memory into
corresponding elements of three registers. Elements of the registers that are not loaded are unchanged. For details
of the addressing mode see The Advanced SIMD addressing mode on page F1-4369.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Offset variant

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A2

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 0 1 0 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 1 1 0 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5569
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Offset variant

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A3

Offset variant

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 0 1 0 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
F6-5570 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
 if index_align<1:0> != '00' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

Offset variant

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 0 1 0 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5571
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T2

Offset variant

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T3

Offset variant

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 1 1 0 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 0 1 0 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
F6-5572 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Post-indexed variant

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
 if index_align<1:0> != '00' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD3 (single 3-element structure to
one lane) on page K1-8402.

Assembler symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1, T2 and T3: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

<list> Is a list containing the 64-bit names of the three SIMD&FP registers holding the element.

The list must be one of:

{ <Dd>[<index>], <Dd+1>[<index>], <Dd+2>[<index>] }Single-spaced registers, encoded as
"spacing" = 0.

{ <Dd>[<index>], <Dd+2>[<index>], <Dd+4>[<index>] }Double-spaced registers, encoded as
"spacing" = 1. Not permitted when <size> == 8.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5573
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
The encoding of "spacing" depends on <size>:

<size> == 8"spacing" is encoded in the "index_align<0>" field.

<size> == 16"spacing" is encoded in the "index_align<1>" field, and "index_align<0>" is set to 0.

<size> == 32"spacing" is encoded in the "index_align<2>" field, and "index_align<1:0>" is set to
0b00.

The register <Dd> is encoded in the "D:Vd" field.

The permitted values and encoding of <index> depend on <size>:

<size> == 8<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

<size> == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on
page F1-4369.

Alignment

Standard alignment rules apply, see Alignment support on page B2-160.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n];
 Elem[D[d], index] = MemU[address,ebytes];
 Elem[D[d2],index] = MemU[address+ebytes,ebytes];
 Elem[D[d3],index] = MemU[address+2*ebytes,ebytes];
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 3*ebytes;
F6-5574 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.107 VLD3 (single 3-element structure to all lanes)

Load single 3-element structure and replicate to all lanes of three registers loads one 3-element structure from
memory into all lanes of three registers. For details of the addressing mode see The Advanced SIMD addressing
mode on page F1-4369.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Offset variant

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' || a == '1' then UNDEFINED;
 ebytes = 1 << UInt(size);
 inc = if T == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 1 1 0 size T 0 Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

a

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 1 1 0 size T 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

a

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5575
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Offset variant

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' || a == '1' then UNDEFINED;
 ebytes = 1 << UInt(size);
 inc = if T == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD3 (single 3-element structure to
all lanes) on page K1-8402.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<list> Is a list containing the 64-bit names of three SIMD&FP registers.

The list must be one of:

{ <Dd>[], <Dd+1>[], <Dd+2>[] }Single-spaced registers, encoded in the "T" field as 0.
F6-5576 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
{ <Dd>[], <Dd+2>[], <Dd+4>[] }Double-spaced registers, encoded in the "T" field as 1.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on
page F1-4369.

Alignment

Standard alignment rules apply, see Alignment support on page B2-160.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n];
 D[d] = Replicate(MemU[address,ebytes]);
 D[d2] = Replicate(MemU[address+ebytes,ebytes]);
 D[d3] = Replicate(MemU[address+2*ebytes,ebytes]);
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 3*ebytes;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5577
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.108 VLD3 (multiple 3-element structures)

Load multiple 3-element structures to three registers loads multiple 3-element structures from memory into three
registers, with de-interleaving. For more information, see Element and structure load/store instructions on
page F2-4398. Every element of each register is loaded. For details of the addressing mode see The Advanced SIMD
addressing mode on page F1-4369.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Offset variant

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 case itype of
 when '0100'
 inc = 1;
 when '0101'
 inc = 2;
 otherwise
 SEE "Related encodings";
 if size == '11' || align<1> == '1' then UNDEFINED;
 alignment = if align<0> == '0' then 1 else 8;
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 0 1 0 x size align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

itype
F6-5578 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Offset variant

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 case itype of
 when '0100'
 inc = 1;
 when '0101'
 inc = 2;
 otherwise
 SEE "Related encodings";
 if size == '11' || align<1> == '1' then UNDEFINED;
 alignment = if align<0> == '0' then 1 else 8;
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD3 (multiple 3-element structures)
on page K1-8402.

Related encodings: See Advanced SIMD element or structure load/store on page F3-4470 for the T32 instruction
set, or Advanced SIMD element or structure load/store on page F4-4555 for the A32 instruction set.

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 0 1 0 x size align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

itype
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5579
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<list> Is a list containing the 64-bit names of the SIMD&FP registers.

The list must be one of:

{ <Dd>, <Dd+1>, <Dd+2> }Single-spaced registers, encoded in the "itype" field as 0b0100.

{ <Dd>, <Dd+2>, <Dd+4> }Double-spaced registers, encoded in the "itype" field as 0b0101.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on
page E2-4312, and is encoded in the "align" field as 0b00.

Whenever <align> is present, the only permitted values is 64, meaning 64-bit alignment, encoded in
the "align" field as 0b01.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode on page F1-4369.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about <Rn>, !, and <Rm>, see The Advanced SIMD addressing mode on page F1-4369.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = FALSE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 for e = 0 to elements-1
 Elem[D[d], e] = MemU[address,ebytes];
 Elem[D[d2],e] = MemU[address+ebytes,ebytes];
 Elem[D[d3],e] = MemU[address+2*ebytes,ebytes];
 address = address + 3*ebytes;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 24;
F6-5580 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.109 VLD4 (single 4-element structure to one lane)

Load single 4-element structure to one lane of four registers loads one 4-element structure from memory into
corresponding elements of four registers. Elements of the registers that are not loaded are unchanged. For details of
the addressing mode see The Advanced SIMD addressing mode on page F1-4369.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 alignment = if index_align<0> == '0' then 1 else 4;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A2

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 0 1 1 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 1 1 1 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5581
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 8;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A3

Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 0 1 1 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
F6-5582 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
 if index_align<1:0> == '11' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 alignment = if index_align<1:0> == '00' then 1 else 4 << UInt(index_align<1:0>);
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 alignment = if index_align<0> == '0' then 1 else 4;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 0 1 1 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5583
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T2

Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 8;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T3

Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 1 1 1 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 0 1 1 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
F6-5584 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
 if index_align<1:0> == '11' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 alignment = if index_align<1:0> == '00' then 1 else 4 << UInt(index_align<1:0>);
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD4 (single 4-element structure to
one lane) on page K1-8402.

Assembler symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1, T2 and T3: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

<list> Is a list containing the 64-bit names of the four SIMD&FP registers holding the element.

The list must be one of:

{ <Dd>[<index>], <Dd+1>[<index>], <Dd+2>[<index>], <Dd+3>[<index>] }Single-spaced registers,
encoded as "spacing" = 0.

{ <Dd>[<index>], <Dd+2>[<index>], <Dd+4>[<index>], <Dd+6>[<index>] }Double-spaced registers,
encoded as "spacing" = 1. Not permitted when <size> == 8.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5585
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
The encoding of "spacing" depends on <size>:

<size> == 16"spacing" is encoded in the "index_align<1>" field.

<size> == 32"spacing" is encoded in the "index_align<2>" field.

The register <Dd> is encoded in the "D:Vd" field.

The permitted values and encoding of <index> depend on <size>:

<size> == 8<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

<size> == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on
page E2-4312, and the encoding depends on <size>:

<size> == 8Encoded in the "index_align<0>" field as 0.

<size> == 16Encoded in the "index_align<0>" field as 0.

<size> == 32Encoded in the "index_align<1:0>" field as 0b00.

Whenever <align> is present, the permitted values and encoding depend on <size>:

<size> == 8<align> is 32, meaning 32-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 16<align> is 64, meaning 64-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 32<align> can be 64 or 128. 64-bit alignment is encoded in the "index_align<1:0>" field
as 0b01, and 128-bit alignment is encoded in the "index_align<1:0>" field as 0b10.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode on page F1-4369.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on
page F1-4369.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = FALSE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 Elem[D[d], index] = MemU[address,ebytes];
 Elem[D[d2],index] = MemU[address+ebytes,ebytes];
 Elem[D[d3],index] = MemU[address+2*ebytes,ebytes];
 Elem[D[d4],index] = MemU[address+3*ebytes,ebytes];
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 4*ebytes;
F6-5586 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.110 VLD4 (single 4-element structure to all lanes)

Load single 4-element structure and replicate to all lanes of four registers loads one 4-element structure from
memory into all lanes of four registers. For details of the addressing mode see The Advanced SIMD addressing mode
on page F1-4369.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}],<Rm>

Decode for all variants of this encoding

 if size == '11' && a == '0' then UNDEFINED;
 if size == '11' then
 ebytes = 4; alignment = 16;
 else
 ebytes = 1 << UInt(size);
 if size == '10' then
 alignment = if a == '0' then 1 else 8;
 else
 alignment = if a == '0' then 1 else 4*ebytes;
 inc = if T == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 1 1 1 size T a Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5587
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' && a == '0' then UNDEFINED;
 if size == '11' then
 ebytes = 4; alignment = 16;
 else
 ebytes = 1 << UInt(size);
 if size == '10' then
 alignment = if a == '0' then 1 else 8;
 else
 alignment = if a == '0' then 1 else 4*ebytes;
 inc = if T == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD4 (single 4-element structure to
all lanes) on page K1-8403.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 1 1 1 size T a Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5588 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 1x

<list> Is a list containing the 64-bit names of four SIMD&FP registers.

The list must be one of:

{ <Dd>[], <Dd+1>[], <Dd+2>[], <Dd+3>[] }Single-spaced registers, encoded in the "T" field as 0.

{ <Dd>[], <Dd+2>[], <Dd+4>[], <Dd+6>[] }Double-spaced registers, encoded in the "T" field as 1.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on
page E2-4312, and is encoded in the "a" field as 0.

Whenever <align> is present, the permitted values and encoding depend on <size>:

<size> == 8<align> is 32, meaning 32-bit alignment, encoded in the "a" field as 1.

<size> == 16<align> is 64, meaning 64-bit alignment, encoded in the "a" field as 1.

<size> == 32<align> can be 64 or 128. 64-bit alignment is encoded in the "a:size<0>" field as 0b10,
and 128-bit alignment is encoded in the "a:size<0>" field as 0b11.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode on page F1-4369.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on
page F1-4369.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = FALSE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 D[d] = Replicate(MemU[address,ebytes]);
 D[d2] = Replicate(MemU[address+ebytes,ebytes]);
 D[d3] = Replicate(MemU[address+2*ebytes,ebytes]);
 D[d4] = Replicate(MemU[address+3*ebytes,ebytes]);
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 4*ebytes;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5589
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.111 VLD4 (multiple 4-element structures)

Load multiple 4-element structures to four registers loads multiple 4-element structures from memory into four
registers, with de-interleaving. For more information, see Element and structure load/store instructions on
page F2-4398. Every element of each register is loaded. For details of the addressing mode see The Advanced SIMD
addressing mode on page F1-4369.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 case itype of
 when '0000'
 inc = 1;
 when '0001'
 inc = 2;
 otherwise
 SEE "Related encodings";
 if size == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 0 0 0 x size align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

itype
F6-5590 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 case itype of
 when '0000'
 inc = 1;
 when '0001'
 inc = 2;
 otherwise
 SEE "Related encodings";
 if size == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD4 (multiple 4-element structures)
on page K1-8402.

Related encodings: See Advanced SIMD element or structure load/store on page F3-4470 for the T32 instruction
set, or Advanced SIMD element or structure load/store on page F4-4555 for the A32 instruction set.

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 0 0 0 x size align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

itype
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5591
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<list> Is a list containing the 64-bit names of the SIMD&FP registers.

The list must be one of:

{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> }Single-spaced registers, encoded in the "itype" field as 0b0000.

{ <Dd>, <Dd+2>, <Dd+4>, <Dd+6> }Double-spaced registers, encoded in the "itype" field as 0b0001.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on
page E2-4312, and is encoded in the "align" field as 0b00.

Whenever <align> is present, the permitted values are:

64 64-bit alignment, encoded in the "align" field as 0b01.

128 128-bit alignment, encoded in the "align" field as 0b10.

256 256-bit alignment, encoded in the "align" field as 0b11.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode on page F1-4369.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on
page F1-4369.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = FALSE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 for e = 0 to elements-1
 Elem[D[d], e] = MemU[address,ebytes];
 Elem[D[d2],e] = MemU[address+ebytes,ebytes];
 Elem[D[d3],e] = MemU[address+2*ebytes,ebytes];
 Elem[D[d4],e] = MemU[address+3*ebytes,ebytes];
 address = address + 4*ebytes;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 32;
F6-5592 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.112 VLDM, VLDMDB, VLDMIA

Load Multiple SIMD&FP registers loads multiple registers from consecutive locations in the Advanced SIMD and
floating-point register file using an address from a general-purpose register.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

This instruction is used by the alias VPOP. See Alias conditions on page F6-5596 for details of when each alias is
preferred.

A1

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

VLDM{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>
VLDMIA{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VLDR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = FALSE; add = (U == '1'); wback = (W == '1');
 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FLDM*X".
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
 if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VLDM with the same addressing mode but loads no registers.

If regs > 16 || (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

!=1111 1 1 0 P U D W 1 Rn Vd 1 0 1 1 imm8<7:1> 0
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 1 0

cond imm8<0>
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5593
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
A2

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Increment After variant

Applies when P == 0 && U == 1.

VLDM{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>
VLDMIA{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VLDR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = TRUE; add = (U == '1'); wback = (W == '1'); d = UInt(Vd:D); n = UInt(Rn);
 imm32 = ZeroExtend(imm8:'00', 32); regs = UInt(imm8);
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VLDM with the same addressing mode but loads no registers.

If (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <dreglist>

!=1111 1 1 0 P U D W 1 Rn Vd 1 0 1 0 imm8
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

cond

1 1 1 0 1 1 0 P U D W 1 Rn Vd 1 0 1 1 imm8<7:1> 0
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 1 0

imm8<0>
F6-5594 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Increment After variant

Applies when P == 0 && U == 1.

VLDM{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>
VLDMIA{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VLDR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = FALSE; add = (U == '1'); wback = (W == '1');
 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FLDM*X".
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
 if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VLDM with the same addressing mode but loads no registers.

If regs > 16 || (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T2

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Increment After variant

Applies when P == 0 && U == 1.

VLDM{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>
VLDMIA{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VLDR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)

1 1 1 0 1 1 0 P U D W 1 Rn Vd 1 0 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5595
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 single_regs = TRUE; add = (U == '1'); wback = (W == '1'); d = UInt(Vd:D); n = UInt(Rn);
 imm32 = ZeroExtend(imm8:'00', 32); regs = UInt(imm8);
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VLDM with the same addressing mode but loads no registers.

If (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLDM on page K1-8403.

Related encodings: See Advanced SIMD and floating-point 64-bit move on page F3-4444 for the T32 instruction
set, or Advanced SIMD and floating-point 64-bit move on page F4-4531 for the A32 instruction set.

Alias conditions

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the registers
being transferred.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. If writeback is not specified, the PC
can be used.

! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.

<sreglist> Is the list of consecutively numbered 32-bit SIMD&FP registers to be transferred. The first register
in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the list. The list must
contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register
in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list. The
list must contain at least one register, and must not contain more than 16 registers.

Alias is preferred when

VPOP P == '0' && U == '1' && W == '1' && Rn == '1101'
F6-5596 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 address = if add then R[n] else R[n]-imm32;
 for r = 0 to regs-1
 if single_regs then
 S[d+r] = MemA[address,4]; address = address+4;
 else
 word1 = MemA[address,4]; word2 = MemA[address+4,4]; address = address+8;
 // Combine the word-aligned words in the correct order for current endianness.
 D[d+r] = if BigEndian(AccType_ATOMIC) then word1:word2 else word2:word1;
 if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5597
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.113 VLDR (immediate)

Load SIMD&FP register (immediate) loads a single register from the Advanced SIMD and floating-point register
file, using an address from a general-purpose register, with an optional offset.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision scalar variant

Applies when size == 01.

VLDR{<c>}{<q>}.16 <Sd>, [<Rn> {, #{+/-}<imm>}]

Single-precision scalar variant

Applies when size == 10.

VLDR{<c>}{<q>}{.32} <Sd>, [<Rn> {, #{+/-}<imm>}]

Double-precision scalar variant

Applies when size == 11.

VLDR{<c>}{<q>}{.64} <Dd>, [<Rn> {, #{+/-}<imm>}]

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 esize = 8 << UInt(size); add = (U == '1');
 imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
 case size of
 when '01' d = UInt(Vd:D);
 when '10' d = UInt(Vd:D);
 when '11' d = UInt(D:Vd);
 n = UInt(Rn);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

!=1111 1 1 0 1 U D 0 1 !=1111 Vd 1 0 size imm8
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

cond Rn

1 1 1 0 1 1 0 1 U D 0 1 !=1111 Vd 1 0 size imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
F6-5598 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Half-precision scalar variant

Applies when size == 01.

VLDR{<c>}{<q>}.16 <Sd>, [<Rn> {, #{+/-}<imm>}]

Single-precision scalar variant

Applies when size == 10.

VLDR{<c>}{<q>}{.32} <Sd>, [<Rn> {, #{+/-}<imm>}]

Double-precision scalar variant

Applies when size == 11.

VLDR{<c>}{<q>}{.64} <Dd>, [<Rn> {, #{+/-}<imm>}]

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 esize = 8 << UInt(size); add = (U == '1');
 imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
 case size of
 when '01' d = UInt(Vd:D);
 when '10' d = UInt(Vd:D);
 when '11' d = UInt(D:Vd);
 n = UInt(Rn);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

.64 Is an optional data size specifier for 64-bit memory accesses that can be used in the assembler source
code, but is otherwise ignored.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

.32 Is an optional data size specifier for 32-bit memory accesses that can be used in the assembler source
code, but is otherwise ignored.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5599
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<imm> For the single-precision scalar or double-precision scalar variants: is the optional unsigned
immediate byte offset, a multiple of 4, in the range 0 to 1020, defaulting to 0, and encoded in the
"imm8" field as <imm>/4.

For the half-precision scalar variant: is the optional unsigned immediate byte offset, a multiple of 2,
in the range 0 to 510, defaulting to 0, and encoded in the "imm8" field as <imm>/2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 base = if n == 15 then Align(PC,4) else R[n];
 address = if add then (base + imm32) else (base - imm32);
 case esize of
 when 16
 S[d] = Zeros(16) : MemA[address,2];
 when 32
 S[d] = MemA[address,4];
 when 64
 word1 = MemA[address,4]; word2 = MemA[address+4,4];
 // Combine the word-aligned words in the correct order for current endianness.
 D[d] = if BigEndian(AccType_ATOMIC) then word1:word2 else word2:word1;
F6-5600 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.114 VLDR (literal)

Load SIMD&FP register (literal) loads a single register from the Advanced SIMD and floating-point register file,
using an address from the PC value and an immediate offset.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision scalar variant

Applies when size == 01.

VLDR{<c>}{<q>}.16 <Sd>, <label>
VLDR{<c>}{<q>}.16 <Sd>, [PC, #{+/-}<imm>]

Single-precision scalar variant

Applies when size == 10.

VLDR{<c>}{<q>}{.32} <Sd>, <label>
VLDR{<c>}{<q>}{.32} <Sd>, [PC, #{+/-}<imm>]

Double-precision scalar variant

Applies when size == 11.

VLDR{<c>}{<q>}{.64} <Dd>, <label>
VLDR{<c>}{<q>}{.64} <Dd>, [PC, #{+/-}<imm>]

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 esize = 8 << UInt(size); add = (U == '1');
 imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
 case size of
 when '01' d = UInt(Vd:D);
 when '10' d = UInt(Vd:D);
 when '11' d = UInt(D:Vd);
 n = UInt(Rn);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

!=1111 1 1 0 1 U D 0 1 1 1 1 1 Vd 1 0 size imm8
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

cond Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5601
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Half-precision scalar variant

Applies when size == 01.

VLDR{<c>}{<q>}.16 <Sd>, <label>
VLDR{<c>}{<q>}.16 <Sd>, [PC, #{+/-}<imm>]

Single-precision scalar variant

Applies when size == 10.

VLDR{<c>}{<q>}{.32} <Sd>, <label>
VLDR{<c>}{<q>}{.32} <Sd>, [PC, #{+/-}<imm>]

Double-precision scalar variant

Applies when size == 11.

VLDR{<c>}{<q>}{.64} <Dd>, <label>
VLDR{<c>}{<q>}{.64} <Dd>, [PC, #{+/-}<imm>]

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 esize = 8 << UInt(size); add = (U == '1');
 imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
 case size of
 when '01' d = UInt(Vd:D);
 when '10' d = UInt(Vd:D);
 when '11' d = UInt(D:Vd);
 n = UInt(Rn);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

.64 Is an optional data size specifier for 64-bit memory accesses that can be used in the assembler source
code, but is otherwise ignored.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

.32 Is an optional data size specifier for 32-bit memory accesses that can be used in the assembler source
code, but is otherwise ignored.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

1 1 1 0 1 1 0 1 U D 0 1 1 1 1 1 Vd 1 0 size imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
F6-5602 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<label> The label of the literal data item to be loaded.

For the single-precision scalar or double-precision scalar variants: the assembler calculates the
required value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted
values are multiples of 4 in the range -1020 to 1020.

For the half-precision scalar variant: the assembler calculates the required value of the offset from
the Align(PC, 4) value of the instruction to this label. Permitted values are multiples of 2 in the range
-510 to 510.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For the single-precision scalar or double-precision scalar variants: is the optional unsigned
immediate byte offset, a multiple of 4, in the range 0 to 1020, defaulting to 0, and encoded in the
"imm8" field as <imm>/4.

For the half-precision scalar variant: is the optional unsigned immediate byte offset, a multiple of 2,
in the range 0 to 510, defaulting to 0, and encoded in the "imm8" field as <imm>/2.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax on page F2-4377.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 base = if n == 15 then Align(PC,4) else R[n];
 address = if add then (base + imm32) else (base - imm32);
 case esize of
 when 16
 S[d] = Zeros(16) : MemA[address,2];
 when 32
 S[d] = MemA[address,4];
 when 64
 word1 = MemA[address,4]; word2 = MemA[address+4,4];
 // Combine the word-aligned words in the correct order for current endianness.
 D[d] = if BigEndian(AccType_ATOMIC) then word1:word2 else word2:word1;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5603
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.115 VMAX (floating-point)

Vector Maximum compares corresponding elements in two vectors, and copies the larger of each pair into the
corresponding element in the destination vector.

The operand vector elements are floating-point numbers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMAX{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 maximum = (op == '0');
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMAX{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 1 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5604 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 maximum = (op == '0');
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Floating-point maximum and minimum

• max(+0.0, -0.0) = +0.0

• If any input is a NaN, the corresponding result element is the default NaN.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
 if maximum then
 Elem[D[d+r],e,esize] = FPMax(op1, op2, StandardFPSCRValue());
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5605
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 else
 Elem[D[d+r],e,esize] = FPMin(op1, op2, StandardFPSCRValue());
F6-5606 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.116 VMAX (integer)

Vector Maximum compares corresponding elements in two vectors, and copies the larger of each pair into the
corresponding element in the destination vector.

The operand vector elements can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers.

• 8-bit, 16-bit, or 32-bit unsigned integers.

The result vector elements are the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMAX{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 maximum = (op == '0'); unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMAX{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 1 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 1 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5607
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 maximum = (op == '0'); unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Int(Elem[D[n+r],e,esize], unsigned);
 op2 = Int(Elem[D[m+r],e,esize], unsigned);
 result = if maximum then Max(op1,op2) else Min(op1,op2);
 Elem[D[d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5608 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5609
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.117 VMAXNM

This instruction determines the floating-point maximum number.

It handles NaNs in consistence with the IEEE754-2008 specification. It returns the numerical operand when one
operand is numerical and the other is a quiet NaN, but otherwise the result is identical to floating-point VMAX.

This instruction is not conditional.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMAXNM{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMAXNM{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 maximum = (op == '0');
 advsimd = TRUE;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VMAXNM{<q>}.F16 <Sd>, <Sn>, <Sm> // Cannot be conditional

Single-precision scalar variant

Applies when size == 10.

VMAXNM{<q>}.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional

Double-precision scalar variant

Applies when size == 11.

VMAXNM{<q>}.F64 <Dd>, <Dn>, <Dm> // Cannot be conditional

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 1 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 !=00 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op
F6-5610 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 advsimd = FALSE;
 maximum = (op == '0');
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMAXNM{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMAXNM{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 maximum = (op == '0');
 advsimd = TRUE;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

Half-precision scalar variant

Applies when size == 01.

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 !=00 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5611
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VMAXNM{<q>}.F16 <Sd>, <Sn>, <Sm> // Not permitted in IT block

Single-precision scalar variant

Applies when size == 10.

VMAXNM{<q>}.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block

Double-precision scalar variant

Applies when size == 11.

VMAXNM{<q>}.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 advsimd = FALSE;
 maximum = (op == '0');
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
F6-5612 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r], e, esize]; op2 = Elem[D[m+r], e, esize];
 if maximum then
 Elem[D[d+r], e, esize] = FPMaxNum(op1, op2, StandardFPSCRValue());
 else
 Elem[D[d+r], e, esize] = FPMinNum(op1, op2, StandardFPSCRValue());
 else // VFP instruction
 case esize of
 when 16
 if maximum then
 S[d] = Zeros(16) : FPMaxNum(S[n]<15:0>, S[m]<15:0>, FPSCR[]);
 else
 S[d] = Zeros(16) : FPMinNum(S[n]<15:0>, S[m]<15:0>, FPSCR[]);
 when 32
 if maximum then
 S[d] = FPMaxNum(S[n], S[m], FPSCR[]);
 else
 S[d] = FPMinNum(S[n], S[m], FPSCR[]);
 when 64
 if maximum then
 D[d] = FPMaxNum(D[n], D[m], FPSCR[]);
 else
 D[d] = FPMinNum(D[n], D[m], FPSCR[]);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5613
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.118 VMIN (floating-point)

Vector Minimum compares corresponding elements in two vectors, and copies the smaller of each pair into the
corresponding element in the destination vector.

The operand vector elements are floating-point numbers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMIN{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 maximum = (op == '0');
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMIN{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 0 0 D 1 sz Vn Vd 1 1 1 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 0 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5614 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 maximum = (op == '0');
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Floating-point minimum

• min(+0.0, -0.0) = -0.0

• If any input is a NaN, the corresponding result element is the default NaN.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
 if maximum then
 Elem[D[d+r],e,esize] = FPMax(op1, op2, StandardFPSCRValue());
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5615
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 else
 Elem[D[d+r],e,esize] = FPMin(op1, op2, StandardFPSCRValue());
F6-5616 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.119 VMIN (integer)

Vector Minimum compares corresponding elements in two vectors, and copies the smaller of each pair into the
corresponding element in the destination vector.

The operand vector elements can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers.

• 8-bit, 16-bit, or 32-bit unsigned integers.

The result vector elements are the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMIN{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 maximum = (op == '0'); unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMIN{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 1 0 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 1 0 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5617
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 maximum = (op == '0'); unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Int(Elem[D[n+r],e,esize], unsigned);
 op2 = Int(Elem[D[m+r],e,esize], unsigned);
 result = if maximum then Max(op1,op2) else Min(op1,op2);
 Elem[D[d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5618 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5619
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.120 VMINNM

This instruction determines the floating point minimum number.

It handles NaNs in consistence with the IEEE754-2008 specification. It returns the numerical operand when one
operand is numerical and the other is a quiet NaN, but otherwise the result is identical to floating-point VMIN.

This instruction is not conditional.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMINNM{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMINNM{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 maximum = (op == '0');
 advsimd = TRUE;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VMINNM{<q>}.F16 <Sd>, <Sn>, <Sm> // Cannot be conditional

Single-precision scalar variant

Applies when size == 10.

VMINNM{<q>}.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional

Double-precision scalar variant

Applies when size == 11.

VMINNM{<q>}.F64 <Dd>, <Dn>, <Dm> // Cannot be conditional

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 1 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 !=00 N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op
F6-5620 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 advsimd = FALSE;
 maximum = (op == '0');
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMINNM{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMINNM{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 maximum = (op == '0');
 advsimd = TRUE;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

Half-precision scalar variant

Applies when size == 01.

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 !=00 N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5621
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VMINNM{<q>}.F16 <Sd>, <Sn>, <Sm> // Not permitted in IT block

Single-precision scalar variant

Applies when size == 10.

VMINNM{<q>}.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block

Double-precision scalar variant

Applies when size == 11.

VMINNM{<q>}.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 advsimd = FALSE;
 maximum = (op == '0');
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
F6-5622 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r], e, esize]; op2 = Elem[D[m+r], e, esize];
 if maximum then
 Elem[D[d+r], e, esize] = FPMaxNum(op1, op2, StandardFPSCRValue());
 else
 Elem[D[d+r], e, esize] = FPMinNum(op1, op2, StandardFPSCRValue());
 else // VFP instruction
 case esize of
 when 16
 if maximum then
 S[d] = Zeros(16) : FPMaxNum(S[n]<15:0>, S[m]<15:0>, FPSCR[]);
 else
 S[d] = Zeros(16) : FPMinNum(S[n]<15:0>, S[m]<15:0>, FPSCR[]);
 when 32
 if maximum then
 S[d] = FPMaxNum(S[n], S[m], FPSCR[]);
 else
 S[d] = FPMinNum(S[n], S[m], FPSCR[]);
 when 64
 if maximum then
 D[d] = FPMaxNum(D[n], D[m], FPSCR[]);
 else
 D[d] = FPMinNum(D[n], D[m], FPSCR[]);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5623
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.121 VMLA (floating-point)

Vector Multiply Accumulate multiplies corresponding elements in two vectors, and accumulates the results into the
elements of the destination vector.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMLA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMLA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 advsimd = TRUE; add = (op == '0');
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VMLA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 0 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

!=1111 1 1 1 0 0 D 0 0 Vn Vd 1 0 size N 0 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op
F6-5624 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 advsimd = FALSE; add = (op == '0');
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMLA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMLA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 advsimd = TRUE; add = (op == '0');
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5625
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T2

Half-precision scalar variant

Applies when size == 01.

VMLA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 advsimd = FALSE; add = (op == '0');
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding A2, T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

1 1 1 0 1 1 1 0 0 D 0 0 Vn Vd 1 0 size N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5626 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 product = FPMul(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize], StandardFPSCRValue());
 addend = if add then product else FPNeg(product);
 Elem[D[d+r],e,esize] = FPAdd(Elem[D[d+r],e,esize], addend, StandardFPSCRValue());
 else // VFP instruction
 case esize of
 when 16
 addend16 = if add then FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR[]) else
FPNeg(FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR[]));
 S[d] = Zeros(16) : FPAdd(S[d]<15:0>, addend16, FPSCR[]);
 when 32
 addend32 = if add then FPMul(S[n], S[m], FPSCR[]) else FPNeg(FPMul(S[n], S[m],
FPSCR[]));
 S[d] = FPAdd(S[d], addend32, FPSCR[]);
 when 64
 addend64 = if add then FPMul(D[n], D[m], FPSCR[]) else FPNeg(FPMul(D[n], D[m],
FPSCR[]));
 D[d] = FPAdd(D[d], addend64, FPSCR[]);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5627
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.122 VMLA (integer)

Vector Multiply Accumulate multiplies corresponding elements in two vectors, and adds the products to the
corresponding elements of the destination vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMLA{<c>}{<q>}.<type><size> <Dd>, <Dn>, <Dm> // Encoding T1/A1, encoded as Q = 0

128-bit SIMD vector variant

Applies when Q == 1.

VMLA{<c>}{<q>}.<type><size> <Qd>, <Qn>, <Qm> // Encoding T1/A1, encoded as Q = 1

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 add = (op == '0'); long_destination = FALSE;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMLA{<c>}{<q>}.<type><size> <Dd>, <Dn>, <Dm> // Encoding T1/A1, encoded as Q = 0

128-bit SIMD vector variant

Applies when Q == 1.

VMLA{<c>}{<q>}.<type><size> <Qd>, <Qn>, <Qm> // Encoding T1/A1, encoded as Q = 1

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 add = (op == '0'); long_destination = FALSE;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality

1 1 1 1 0 0 1 0 0 D size Vn Vd 1 0 0 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 0 1 1 1 1 0 D size Vn Vd 1 0 0 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5628 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<type> The data type for the elements of the operands. It must be one of:

S Optional in encoding T1/A1. Encoded as U = 0 in encoding T2/A2.

U Optional in encoding T1/A1. Encoded as U = 1 in encoding T2/A2.

I Available only in encoding T1/A1.

<size> The data size for the elements of the operands. It must be one of:

8 Encoded as size = 0b00.

16 Encoded as size = 0b01.

32 Encoded as size = 0b10.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 product = Int(Elem[Din[n+r],e,esize],unsigned) * Int(Elem[Din[m+r],e,esize],unsigned);
 addend = if add then product else -product;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5629
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
— The values of the NZCV flags.
F6-5630 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.123 VMLA (by scalar)

Vector Multiply Accumulate multiplies elements of a vector by a scalar, and adds the products to corresponding
elements of the destination vector.

For more information about scalars see Advanced SIMD scalars on page F1-4374.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMLA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VMLA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

Decode for all variants of this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || (F == '1' && size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 add = (op == '0'); floating_point = (F == '1'); long_destination = FALSE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMLA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VMLA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

1 1 1 1 0 0 1 Q 1 D !=11 Vn Vd 0 0 0 F N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 Q 1 1 1 1 1 D !=11 Vn Vd 0 0 0 F N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5631
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || (F == '1' && size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 add = (op == '0'); floating_point = (F == '1'); long_destination = FALSE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the scalar and the elements of the operand vector, encoded in the "F:size" field.
It can have the following values:

I16 when F = 0, size = 01

I32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is I16 or F16,
Dm is restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is
I32 or F32, Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
F6-5632 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 if floating_point then
 fp_addend = if add then FPMul(op1,op2,StandardFPSCRValue()) else
FPNeg(FPMul(op1,op2,StandardFPSCRValue()));
 Elem[D[d+r],e,esize] = FPAdd(Elem[Din[d+r],e,esize], fp_addend, StandardFPSCRValue());
 else
 addend = if add then op1val*op2val else -op1val*op2val;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5633
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.124 VMLAL (integer)

Vector Multiply Accumulate Long multiplies corresponding elements in two vectors, and add the products to the
corresponding element of the destination vector. The destination vector element is twice as long as the elements that
are multiplied.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VMLAL{<c>}{<q>}.<type><size> <Qd>, <Dn>, <Dm> // Encoding T2/A2

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' then UNDEFINED;
 add = (op == '0'); long_destination = TRUE; unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

T1

T1 variant

VMLAL{<c>}{<q>}.<type><size> <Qd>, <Dn>, <Dm> // Encoding T2/A2

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' then UNDEFINED;
 add = (op == '0'); long_destination = TRUE; unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 1 0 0 0 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 1 0 0 0 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
F6-5634 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<q> See Standard assembler syntax fields on page F1-4348.

<type> The data type for the elements of the operands. It must be one of:

S Optional in encoding T1/A1. Encoded as U = 0 in encoding T2/A2.

U Optional in encoding T1/A1. Encoded as U = 1 in encoding T2/A2.

I Available only in encoding T1/A1.

<size> The data size for the elements of the operands. It must be one of:

8 Encoded as size = 0b00.

16 Encoded as size = 0b01.

32 Encoded as size = 0b10.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 product = Int(Elem[Din[n+r],e,esize],unsigned) * Int(Elem[Din[m+r],e,esize],unsigned);
 addend = if add then product else -product;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5635
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.125 VMLAL (by scalar)

Vector Multiply Accumulate Long multiplies elements of a vector by a scalar, and adds the products to
corresponding elements of the destination vector. The destination vector elements are twice as long as the elements
that are multiplied.

For more information about scalars see Advanced SIMD scalars on page F1-4374.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); add = (op == '0'); floating_point = FALSE; long_destination = TRUE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

T1 variant

VMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); add = (op == '0'); floating_point = FALSE; long_destination = TRUE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 0 0 1 0 N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 0 0 1 0 N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
F6-5636 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the scalar and the elements of the operand vector, encoded in the "U:size" field.
It can have the following values:

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16 or U16,
Dm is restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is
S32 or U32, Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 if floating_point then
 fp_addend = if add then FPMul(op1,op2,StandardFPSCRValue()) else
FPNeg(FPMul(op1,op2,StandardFPSCRValue()));
 Elem[D[d+r],e,esize] = FPAdd(Elem[Din[d+r],e,esize], fp_addend, StandardFPSCRValue());
 else
 addend = if add then op1val*op2val else -op1val*op2val;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5637
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.126 VMLS (floating-point)

Vector Multiply Subtract multiplies corresponding elements in two vectors, subtracts the products from
corresponding elements of the destination vector, and places the results in the destination vector.

Note

Arm recommends that software does not use the VMLS instruction in the Round towards Plus Infinity and Round
towards Minus Infinity rounding modes, because the rounding of the product and of the sum can change the result
of the instruction in opposite directions, defeating the purpose of these rounding modes.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMLS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMLS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 advsimd = TRUE; add = (op == '0');
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VMLS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VMLS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

1 1 1 1 0 0 1 0 0 D 1 sz Vn Vd 1 1 0 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

!=1111 1 1 1 0 0 D 0 0 Vn Vd 1 0 size N 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op
F6-5638 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when size == 11.

VMLS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 advsimd = FALSE; add = (op == '0');
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMLS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMLS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 advsimd = TRUE; add = (op == '0');
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

1 1 1 0 1 1 1 1 0 D 1 sz Vn Vd 1 1 0 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5639
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

Half-precision scalar variant

Applies when size == 01.

VMLS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VMLS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VMLS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 advsimd = FALSE; add = (op == '0');
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding A2, T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

1 1 1 0 1 1 1 0 0 D 0 0 Vn Vd 1 0 size N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5640 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 product = FPMul(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize], StandardFPSCRValue());
 addend = if add then product else FPNeg(product);
 Elem[D[d+r],e,esize] = FPAdd(Elem[D[d+r],e,esize], addend, StandardFPSCRValue());
 else // VFP instruction
 case esize of
 when 16
 addend16 = if add then FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR[]) else
FPNeg(FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR[]));
 S[d] = Zeros(16) : FPAdd(S[d]<15:0>, addend16, FPSCR[]);
 when 32
 addend32 = if add then FPMul(S[n], S[m], FPSCR[]) else FPNeg(FPMul(S[n], S[m],
FPSCR[]));
 S[d] = FPAdd(S[d], addend32, FPSCR[]);
 when 64
 addend64 = if add then FPMul(D[n], D[m], FPSCR[]) else FPNeg(FPMul(D[n], D[m],
FPSCR[]));
 D[d] = FPAdd(D[d], addend64, FPSCR[]);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5641
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.127 VMLS (integer)

Vector Multiply Subtract multiplies corresponding elements in two vectors, and subtracts the products from the
corresponding elements of the destination vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMLS{<c>}{<q>}.<type><size> <Dd>, <Dn>, <Dm> // Encoding T1/A1, encoded as Q = 0

128-bit SIMD vector variant

Applies when Q == 1.

VMLS{<c>}{<q>}.<type><size> <Qd>, <Qn>, <Qm> // Encoding T1/A1, encoded as Q = 1

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 add = (op == '0'); long_destination = FALSE;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMLS{<c>}{<q>}.<type><size> <Dd>, <Dn>, <Dm> // Encoding T1/A1, encoded as Q = 0

128-bit SIMD vector variant

Applies when Q == 1.

VMLS{<c>}{<q>}.<type><size> <Qd>, <Qn>, <Qm> // Encoding T1/A1, encoded as Q = 1

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 add = (op == '0'); long_destination = FALSE;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 0 0 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 0 0 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5642 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<type> The data type for the elements of the operands. It must be one of:

S Optional in encoding T1/A1. Encoded as U = 0 in encoding T2/A2.

U Optional in encoding T1/A1. Encoded as U = 1 in encoding T2/A2.

I Available only in encoding T1/A1.

<size> The data size for the elements of the operands. It must be one of:

8 Encoded as size = 0b00.

16 Encoded as size = 0b01.

32 Encoded as size = 0b10.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 product = Int(Elem[Din[n+r],e,esize],unsigned) * Int(Elem[Din[m+r],e,esize],unsigned);
 addend = if add then product else -product;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5643
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
— The values of the NZCV flags.
F6-5644 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.128 VMLS (by scalar)

Vector Multiply Subtract multiplies elements of a vector by a scalar, and either subtracts the products from
corresponding elements of the destination vector.

For more information about scalars see Advanced SIMD scalars on page F1-4374.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMLS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VMLS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

Decode for all variants of this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || (F == '1' && size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 add = (op == '0'); floating_point = (F == '1'); long_destination = FALSE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMLS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VMLS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

1 1 1 1 0 0 1 Q 1 D !=11 Vn Vd 0 1 0 F N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 Q 1 1 1 1 1 D !=11 Vn Vd 0 1 0 F N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5645
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || (F == '1' && size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 add = (op == '0'); floating_point = (F == '1'); long_destination = FALSE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the scalar and the elements of the operand vector, encoded in the "F:size" field.
It can have the following values:

I16 when F = 0, size = 01

I32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is I16 or F16,
Dm is restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is
I32 or F32, Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
F6-5646 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 if floating_point then
 fp_addend = if add then FPMul(op1,op2,StandardFPSCRValue()) else
FPNeg(FPMul(op1,op2,StandardFPSCRValue()));
 Elem[D[d+r],e,esize] = FPAdd(Elem[Din[d+r],e,esize], fp_addend, StandardFPSCRValue());
 else
 addend = if add then op1val*op2val else -op1val*op2val;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5647
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.129 VMLSL (integer)

Vector Multiply Subtract Long multiplies corresponding elements in two vectors, and subtract the products from the
corresponding elements of the destination vector. The destination vector element is twice as long as the elements
that are multiplied.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VMLSL{<c>}{<q>}.<type><size> <Qd>, <Dn>, <Dm> // Encoding T2/A2

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' then UNDEFINED;
 add = (op == '0'); long_destination = TRUE; unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

T1

T1 variant

VMLSL{<c>}{<q>}.<type><size> <Qd>, <Dn>, <Dm> // Encoding T2/A2

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' then UNDEFINED;
 add = (op == '0'); long_destination = TRUE; unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 1 0 1 0 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 1 0 1 0 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
F6-5648 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<q> See Standard assembler syntax fields on page F1-4348.

<type> The data type for the elements of the operands. It must be one of:

S Optional in encoding T1/A1. Encoded as U = 0 in encoding T2/A2.

U Optional in encoding T1/A1. Encoded as U = 1 in encoding T2/A2.

I Available only in encoding T1/A1.

<size> The data size for the elements of the operands. It must be one of:

8 Encoded as size = 0b00.

16 Encoded as size = 0b01.

32 Encoded as size = 0b10.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 product = Int(Elem[Din[n+r],e,esize],unsigned) * Int(Elem[Din[m+r],e,esize],unsigned);
 addend = if add then product else -product;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5649
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.130 VMLSL (by scalar)

Vector Multiply Subtract Long multiplies elements of a vector by a scalar, and subtracts the products from
corresponding elements of the destination vector. The destination vector elements are twice as long as the elements
that are multiplied.

For more information about scalars see Advanced SIMD scalars on page F1-4374.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); add = (op == '0'); floating_point = FALSE; long_destination = TRUE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

T1 variant

VMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); add = (op == '0'); floating_point = FALSE; long_destination = TRUE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 0 1 1 0 N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 0 1 1 0 N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
F6-5650 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the scalar and the elements of the operand vector, encoded in the "U:size" field.
It can have the following values:

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16 or U16,
Dm is restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is
S32 or U32, Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 if floating_point then
 fp_addend = if add then FPMul(op1,op2,StandardFPSCRValue()) else
FPNeg(FPMul(op1,op2,StandardFPSCRValue()));
 Elem[D[d+r],e,esize] = FPAdd(Elem[Din[d+r],e,esize], fp_addend, StandardFPSCRValue());
 else
 addend = if add then op1val*op2val else -op1val*op2val;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5651
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.131 VMMLA

BFloat16 floating-point matrix multiply-accumulate. This instruction multiplies the 2x4 matrix of BF16 values in
the first 128-bit source vector by the 4x2 BF16 matrix in the second 128-bit source vector. The resulting 2x2
single-precision matrix product is then added destructively to the 2x2 single-precision matrix in the 128-bit
destination vector. This is equivalent to performing a 4-way dot product per destination element. The instruction
does not update the FPSCR exception status.

Note

Arm expects that the VMMLA instruction will deliver a peak BF16 multiply throughput that is at least as high as
can be achieved using two VDOT instructions, with a goal that it should have significantly higher throughput.

A1

(FEAT_AA32BF16)

A1 variant

VMMLA{<q>}.BF16 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !HaveAArch32BF16Ext() then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer regs = 2;

T1

(FEAT_AA32BF16)

T1 variant

VMMLA{<q>}.BF16 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveAArch32BF16Ext() then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer regs = 2;

1 1 1 1 1 1 0 0 0 D 0 0 Vn Vd 1 1 0 0 N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 0 0 0 D 0 0 Vn Vd 1 1 0 0 N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5652 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

Operation for all encodings

 CheckAdvSIMDEnabled();

 bits(128) op1 = Q[n>>1];
 bits(128) op2 = Q[m>>1];
 bits(128) acc = Q[d>>1];

 Q[d>>1] = BFMatMulAdd(acc, op1, op2);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5653
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.132 VMOV (between two general-purpose registers and a doubleword floating-point register)

Copy two general-purpose registers to or from a SIMD&FP register copies two words from two general-purpose
registers into a doubleword register in the Advanced SIMD and floating-point register file, or from a doubleword
register in the Advanced SIMD and floating-point register file to two general-purpose registers.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

From general-purpose registers variant

Applies when op == 0.

VMOV{<c>}{<q>} <Dm>, <Rt>, <Rt2>

To general-purpose registers variant

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Rt2>, <Dm>

Decode for all variants of this encoding

 to_arm_registers = (op == '1'); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(M:Vm);
 if t == 15 || t2 == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if to_arm_registers && t == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If to_arm_registers && t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

From general-purpose registers variant

Applies when op == 0.

VMOV{<c>}{<q>} <Dm>, <Rt>, <Rt2>

To general-purpose registers variant

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Rt2>, <Dm>

!=1111 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 1 0 0 M 1 Vm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 1 0 0 M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5654 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 to_arm_registers = (op == '1'); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(M:Vm);
 if t == 15 || t2 == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if to_arm_registers && t == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If to_arm_registers && t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VMOV (between two general-purpose
registers and a doubleword floating-point register) on page K1-8403.

Assembler symbols

<Dm> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "M:Vm" field.

<Rt2> Is the second general-purpose register that <Dm>[63:32] will be transferred to or from, encoded in the
"Rt2" field.

<Rt> Is the first general-purpose register that <Dm>[31:0] will be transferred to or from, encoded in the "Rt"
field.

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if to_arm_registers then
 R[t] = D[m]<31:0>;
 R[t2] = D[m]<63:32>;
 else
 D[m]<31:0> = R[t];
 D[m]<63:32> = R[t2];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5655
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.133 VMOV (between general-purpose register and half-precision)

Copy 16 bits of a general-purpose register to or from a 32-bit SIMD&FP register. This instruction transfers the
value held in the bottom 16 bits of a 32-bit SIMD&FP register to the bottom 16 bits of a general-purpose register,
or the value held in the bottom 16 bits of a general-purpose register to the bottom 16 bits of a 32-bit SIMD&FP
register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

(FEAT_FP16)

From general-purpose register variant

Applies when op == 0.

VMOV{<c>}{<q>}.F16 <Sn>, <Rt>

To general-purpose register variant

Applies when op == 1.

VMOV{<c>}{<q>}.F16 <Rt>, <Sn>

Decode for all variants of this encoding

 if !HaveFP16Ext() then UNDEFINED;
 if cond != '1110' then UNPREDICTABLE;
 to_arm_register = (op == '1'); t = UInt(Rt); n = UInt(Vn:N);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

(FEAT_FP16)

From general-purpose register variant

Applies when op == 0.

VMOV{<c>}{<q>}.F16 <Sn>, <Rt>

!=1111 1 1 1 0 0 0 0 op Vn Rt 1 0 0 1 N (0) (0) 1 (0) (0) (0) (0)
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 1 1 0 0 0 0 op Vn Rt 1 0 0 1 N (0) (0) 1 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
F6-5656 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
To general-purpose register variant

Applies when op == 1.

VMOV{<c>}{<q>}.F16 <Rt>, <Sn>

Decode for all variants of this encoding

 if !HaveFP16Ext() then UNDEFINED;
 if InITBlock() then UNPREDICTABLE;
 to_arm_register = (op == '1'); t = UInt(Rt); n = UInt(Vn:N);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Rt> Is the general-purpose register that <Sn> will be transferred to or from, encoded in the "Rt" field.

<Sn> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Vn:N" field.

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if to_arm_register then
 R[t] = Zeros(16) : S[n]<15:0>;
 else
 S[n] = Zeros(16) : R[t]<15:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5657
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.134 VMOV (immediate)

Copy immediate value to a SIMD&FP register places an immediate constant into every element of the destination
register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMOV{<c>}{<q>}.I32 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMOV{<c>}{<q>}.I32 <Qd>, #<imm>

Decode for all variants of this encoding

 if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
 if op == '1' && cmode != '1110' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VMOV{<c>}{<q>}.F16 <Sd>, #<imm>

Single-precision scalar variant

Applies when size == 10.

VMOV{<c>}{<q>}.F32 <Sd>, #<imm>

Double-precision scalar variant

Applies when size == 11.

VMOV{<c>}{<q>}.F64 <Dd>, #<imm>

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 0 x x 0 0 Q 0 1 imm4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode op

!=1111 1 1 1 0 1 D 1 1 imm4H Vd 1 0 size (0) 0 (0) 0 imm4L
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
F6-5658 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 single_register = (size != '11'); advsimd = FALSE;
 bits(16) imm16;
 bits(32) imm32;
 bits(64) imm64;
 case size of
 when '01' d = UInt(Vd:D); imm16 = VFPExpandImm(imm4H:imm4L); imm32 = Zeros(16) : imm16;
 when '10' d = UInt(Vd:D); imm32 = VFPExpandImm(imm4H:imm4L);
 when '11' d = UInt(D:Vd); imm64 = VFPExpandImm(imm4H:imm4L); regs = 1;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

A3

64-bit SIMD vector variant

Applies when Q == 0.

VMOV{<c>}{<q>}.I16 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMOV{<c>}{<q>}.I16 <Qd>, #<imm>

Decode for all variants of this encoding

 if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
 if op == '1' && cmode != '1110' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

A4

64-bit SIMD vector variant

Applies when Q == 0.

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 0 x 0 0 Q 0 1 imm4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode op

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 1 x x 0 Q 0 1 imm4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5659
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VMOV{<c>}{<q>}.<dt> <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMOV{<c>}{<q>}.<dt> <Qd>, #<imm>

Decode for all variants of this encoding

 if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
 if op == '1' && cmode != '1110' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

A5

64-bit SIMD vector variant

Applies when Q == 0.

VMOV{<c>}{<q>}.I64 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMOV{<c>}{<q>}.I64 <Qd>, #<imm>

Decode for all variants of this encoding

 if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
 if op == '1' && cmode != '1110' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMOV{<c>}{<q>}.I32 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMOV{<c>}{<q>}.I32 <Qd>, #<imm>

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 1 1 0 0 Q 1 1 imm4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode op

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 0 x x 0 0 Q 0 1 imm4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode op
F6-5660 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
 if op == '1' && cmode != '1110' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T2

Half-precision scalar variant

Applies when size == 01.

VMOV{<c>}{<q>}.F16 <Sd>, #<imm>

Single-precision scalar variant

Applies when size == 10.

VMOV{<c>}{<q>}.F32 <Sd>, #<imm>

Double-precision scalar variant

Applies when size == 11.

VMOV{<c>}{<q>}.F64 <Dd>, #<imm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 single_register = (size != '11'); advsimd = FALSE;
 bits(16) imm16;
 bits(32) imm32;
 bits(64) imm64;
 case size of
 when '01' d = UInt(Vd:D); imm16 = VFPExpandImm(imm4H:imm4L); imm32 = Zeros(16) : imm16;
 when '10' d = UInt(Vd:D); imm32 = VFPExpandImm(imm4H:imm4L);
 when '11' d = UInt(D:Vd); imm64 = VFPExpandImm(imm4H:imm4L); regs = 1;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

1 1 1 0 1 1 1 0 1 D 1 1 imm4H Vd 1 0 size (0) 0 (0) 0 imm4L
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5661
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T3

64-bit SIMD vector variant

Applies when Q == 0.

VMOV{<c>}{<q>}.I16 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMOV{<c>}{<q>}.I16 <Qd>, #<imm>

Decode for all variants of this encoding

 if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
 if op == '1' && cmode != '1110' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T4

64-bit SIMD vector variant

Applies when Q == 0.

VMOV{<c>}{<q>}.<dt> <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMOV{<c>}{<q>}.<dt> <Qd>, #<imm>

Decode for all variants of this encoding

 if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
 if op == '1' && cmode != '1110' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T5

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 0 x 0 0 Q 0 1 imm4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode op

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 1 x x 0 Q 0 1 imm4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode op

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 1 1 0 0 Q 1 1 imm4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode op
F6-5662 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
64-bit SIMD vector variant

Applies when Q == 0.

VMOV{<c>}{<q>}.I64 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMOV{<c>}{<q>}.I64 <Qd>, #<imm>

Decode for all variants of this encoding

 if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
 if op == '1' && cmode != '1110' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4442 for the T32
instruction set, or Advanced SIMD one register and modified immediate on page F4-4551 for the A32 instruction
set.

Assembler symbols

<c> For encoding A1, A3, A4 and A5: see Standard assembler syntax fields on page F1-4348. This
encoding must be unconditional.

For encoding A2, T1, T2, T3, T4 and T5: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> The data type, encoded in the "cmode" field. It can have the following values:

I32 when cmode = 110x

I8 when cmode = 1110

F32 when cmode = 1111

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<imm> For encoding A1, A3, A4, A5, T1, T3, T4 and T5: is a constant of the specified type that is replicated
to fill the destination register. For details of the range of constants available and the encoding of
<imm>, see Modified immediate constants in T32 and A32 Advanced SIMD instructions on
page F1-4365.

For encoding A2 and T2: is a signed floating-point constant with 3-bit exponent and normalized 4
bits of precision, encoded in "imm4H:imm4L". For details of the range of constants available and
the encoding of <imm>, see Modified immediate constants in T32 and A32 floating-point instructions
on page F1-4366.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if single_register then
 S[d] = imm32;
 else
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5663
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 for r = 0 to regs-1
 D[d+r] = imm64;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5664 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.135 VMOV (register)

Copy between FP registers copies the contents of one FP register to another.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A2

Single-precision scalar variant

Applies when size == 10.

VMOV{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VMOV{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 single_register = (size == '10'); advsimd = FALSE;
 if single_register then
 d = UInt(Vd:D); m = UInt(Vm:M);
 else
 d = UInt(D:Vd); m = UInt(M:Vm); regs = 1;

T2

Single-precision scalar variant

Applies when size == 10.

VMOV{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VMOV{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 single_register = (size == '10'); advsimd = FALSE;
 if single_register then
 d = UInt(Vd:D); m = UInt(Vm:M);

!=1111 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 x 0 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond size

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 x 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5665
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 else
 d = UInt(D:Vd); m = UInt(M:Vm); regs = 1;

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if single_register then
 S[d] = S[m];
 else
 for r = 0 to regs-1
 D[d+r] = D[m+r];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5666 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.136 VMOV (register, SIMD)

Copy between SIMD registers copies the contents of one SIMD register to another

This instruction is an alias of the VORR (register) instruction. This means that:

• The encodings in this description are named to match the encodings of VORR (register).

• The description of VORR (register) gives the operational pseudocode for this instruction.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMOV{<c>}{<q>}{.<dt>} <Dd>, <Dm>

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

and is the preferred disassembly when N:Vn == M:Vm.

128-bit SIMD vector variant

Applies when Q == 1.

VMOV{<c>}{<q>}{.<dt>} <Qd>, <Qm>

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

and is the preferred disassembly when N:Vn == M:Vm.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMOV{<c>}{<q>}{.<dt>} <Dd>, <Dm>

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

and is the preferred disassembly when N:Vn == M:Vm.

128-bit SIMD vector variant

Applies when Q == 1.

VMOV{<c>}{<q>}{.<dt>} <Qd>, <Qm>

1 1 1 1 0 0 1 0 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5667
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

and is the preferred disassembly when N:Vn == M:Vm.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> An optional data type. <dt> must not be F64, but it is otherwise ignored.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field.

Operation for all encodings

The description of VORR (register) gives the operational pseudocode for this instruction.
F6-5668 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.137 VMOV (general-purpose register to scalar)

Copy a general-purpose register to a vector element copies a byte, halfword, or word from a general-purpose register
into an Advanced SIMD scalar.

On a Floating-point-only system, this instruction transfers one word to the upper or lower half of a double-precision
floating-point register from a general-purpose register. This is an identical operation to the Advanced SIMD single
word transfer.

For more information about scalars see Advanced SIMD scalars on page F1-4374.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VMOV{<c>}{<q>}{.<size>} <Dd[x]>, <Rt>

Decode for this encoding

 case opc1:opc2 of
 when '1xxx' advsimd = TRUE; esize = 8; index = UInt(opc1<0>:opc2);
 when '0xx1' advsimd = TRUE; esize = 16; index = UInt(opc1<0>:opc2<1>);
 when '0x00' advsimd = FALSE; esize = 32; index = UInt(opc1<0>);
 when '0x10' UNDEFINED;
 d = UInt(D:Vd); t = UInt(Rt);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1

T1 variant

VMOV{<c>}{<q>}{.<size>} <Dd[x]>, <Rt>

Decode for this encoding

 case opc1:opc2 of
 when '1xxx' advsimd = TRUE; esize = 8; index = UInt(opc1<0>:opc2);
 when '0xx1' advsimd = TRUE; esize = 16; index = UInt(opc1<0>:opc2<1>);
 when '0x00' advsimd = FALSE; esize = 32; index = UInt(opc1<0>);
 when '0x10' UNDEFINED;
 d = UInt(D:Vd); t = UInt(Rt);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 1 1 1 0 0 opc1 0 Vd Rt 1 0 1 1 D opc2 1 (0) (0) (0) (0)
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 1 1 0 0 opc1 0 Vd Rt 1 0 1 1 D opc2 1 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5669
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> The data size. It must be one of:

8 Encoded as opc1<1> = 1. [x] is encoded in opc1<0>, opc2.

16 Encoded as opc1<1> = 0, opc2<0> = 1. [x] is encoded in opc1<0>, opc2<1>.

32 Encoded as opc1<1> = 0, opc2 = 0b00. [x] is encoded in opc1<0>.

omitted Equivalent to 32.

<Dd[x]> The scalar. The register <Dd> is encoded in D:Vd. For details of how [x] is encoded, see the
description of <size>.

<Rt> The source general-purpose register.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 Elem[D[d],index,esize] = R[t]<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5670 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.138 VMOV (between general-purpose register and single-precision)

Copy a general-purpose register to or from a 32-bit SIMD&FP register. This instruction transfers the value held in
a 32-bit SIMD&FP register to a general-purpose register, or the value held in a general-purpose register to a 32-bit
SIMD&FP register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

From general-purpose register variant

Applies when op == 0.

VMOV{<c>}{<q>} <Sn>, <Rt>

To general-purpose register variant

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Sn>

Decode for all variants of this encoding

 to_arm_register = (op == '1'); t = UInt(Rt); n = UInt(Vn:N);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1

From general-purpose register variant

Applies when op == 0.

VMOV{<c>}{<q>} <Sn>, <Rt>

To general-purpose register variant

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Sn>

Decode for all variants of this encoding

 to_arm_register = (op == '1'); t = UInt(Rt); n = UInt(Vn:N);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 1 1 1 0 0 0 0 op Vn Rt 1 0 1 0 N (0) (0) 1 (0) (0) (0) (0)
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 1 1 0 0 0 0 op Vn Rt 1 0 1 0 N (0) (0) 1 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5671
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Rt> Is the general-purpose register that <Sn> will be transferred to or from, encoded in the "Rt" field.

<Sn> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Vn:N" field.

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if to_arm_register then
 R[t] = S[n];
 else
 S[n] = R[t];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5672 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.139 VMOV (scalar to general-purpose register)

Copy a vector element to a general-purpose register with sign or zero extension copies a byte, halfword, or word
from an Advanced SIMD scalar to a general-purpose register. Bytes and halfwords can be either zero-extended or
sign-extended.

On a Floating-point-only system, this instruction transfers one word from the upper or lower half of a
double-precision floating-point register to a general-purpose register. This is an identical operation to the Advanced
SIMD single word transfer.

For more information about scalars see Advanced SIMD scalars on page F1-4374.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VMOV{<c>}{<q>}{.<dt>} <Rt>, <Dn[x]>

Decode for this encoding

 case U:opc1:opc2 of
 when 'x1xxx' advsimd = TRUE; esize = 8; index = UInt(opc1<0>:opc2);
 when 'x0xx1' advsimd = TRUE; esize = 16; index = UInt(opc1<0>:opc2<1>);
 when '00x00' advsimd = FALSE; esize = 32; index = UInt(opc1<0>);
 when '10x00' UNDEFINED;
 when 'x0x10' UNDEFINED;
 t = UInt(Rt); n = UInt(N:Vn); unsigned = (U == '1');
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1

T1 variant

VMOV{<c>}{<q>}{.<dt>} <Rt>, <Dn[x]>

Decode for this encoding

 case U:opc1:opc2 of
 when 'x1xxx' advsimd = TRUE; esize = 8; index = UInt(opc1<0>:opc2);
 when 'x0xx1' advsimd = TRUE; esize = 16; index = UInt(opc1<0>:opc2<1>);
 when '00x00' advsimd = FALSE; esize = 32; index = UInt(opc1<0>);
 when '10x00' UNDEFINED;
 when 'x0x10' UNDEFINED;
 t = UInt(Rt); n = UInt(N:Vn); unsigned = (U == '1');
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 1 1 1 0 U opc1 1 Vn Rt 1 0 1 1 N opc2 1 (0) (0) (0) (0)
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 1 1 0 U opc1 1 Vn Rt 1 0 1 1 N opc2 1 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5673
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> The data type. It must be one of:

S8 Encoded as U = 0, opc1<1> = 1. [x] is encoded in opc1<0>, opc2.

S16 Encoded as U = 0, opc1<1> = 0, opc2<0> = 1. [x] is encoded in opc1<0>, opc2<1>.

U8 Encoded as U = 1, opc1<1> = 1. [x] is encoded in opc1<0>, opc2.

U16 Encoded as U = 1, opc1<1> = 0, opc2<0> = 1. [x] is encoded in opc1<0>, opc2<1>.

32 Encoded as U = 0, opc1<1> = 0, opc2 = 0b00. [x] is encoded in opc1<0>.

omitted Equivalent to 32.

<Rt> The destination general-purpose register.

<Dn[x]> The scalar. For details of how [x] is encoded see the description of <dt>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if unsigned then
 R[t] = ZeroExtend(Elem[D[n],index,esize], 32);
 else
 R[t] = SignExtend(Elem[D[n],index,esize], 32);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5674 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.140 VMOV (between two general-purpose registers and two single-precision registers)

Copy two general-purpose registers to a pair of 32-bit SIMD&FP registers transfers the contents of two
consecutively numbered single-precision Floating-point registers to two general-purpose registers, or the contents
of two general-purpose registers to a pair of single-precision Floating-point registers. The general-purpose registers
do not have to be contiguous.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

From general-purpose registers variant

Applies when op == 0.

VMOV{<c>}{<q>} <Sm>, <Sm1>, <Rt>, <Rt2>

To general-purpose registers variant

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Rt2>, <Sm>, <Sm1>

Decode for all variants of this encoding

 to_arm_registers = (op == '1'); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(Vm:M);
 if t == 15 || t2 == 15 || m == 31 then UNPREDICTABLE;
 if to_arm_registers && t == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If to_arm_registers && t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

If m == 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the single-precision registers become UNKNOWN for a move to the single-precision register.
The general-purpose registers listed in the instruction become UNKNOWN for a move from the
single-precision registers. This behavior does not affect any other general-purpose registers.

T1

!=1111 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 0 0 0 M 1 Vm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 0 0 0 M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5675
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
From general-purpose registers variant

Applies when op == 0.

VMOV{<c>}{<q>} <Sm>, <Sm1>, <Rt>, <Rt2>

To general-purpose registers variant

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Rt2>, <Sm>, <Sm1>

Decode for all variants of this encoding

 to_arm_registers = (op == '1'); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(Vm:M);
 if t == 15 || t2 == 15 || m == 31 then UNPREDICTABLE;
 if to_arm_registers && t == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If to_arm_registers && t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

If m == 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the single-precision registers become UNKNOWN for a move to the single-precision register.
The general-purpose registers listed in the instruction become UNKNOWN for a move from the
single-precision registers. This behavior does not affect any other general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VMOV (between two general-purpose
registers and two single-precision registers) on page K1-8403.

Assembler symbols

<Rt2> Is the second general-purpose register that <Sm1> will be transferred to or from, encoded in the "Rt2"
field.

<Rt> Is the first general-purpose register that <Sm> will be transferred to or from, encoded in the "Rt" field.

<Sm1> Is the 32-bit name of the second SIMD&FP register to be transferred. This is the next SIMD&FP
register after <Sm>.

<Sm> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Vm:M" field.

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.
F6-5676 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if to_arm_registers then
 R[t] = S[m];
 R[t2] = S[m+1];
 else
 S[m] = R[t];
 S[m+1] = R[t2];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5677
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.141 VMOVL

Vector Move Long takes each element in a doubleword vector, sign or zero-extends them to twice their original
length, and places the results in a quadword vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VMOVL{<c>}{<q>}.<dt> <Qd>, <Dm>

Decode for this encoding

 if imm3H == '000' then SEE "Related encodings";
 if imm3H != '001' && imm3H != '010' && imm3H != '100' then SEE "VSHLL";
 if Vd<0> == '1' then UNDEFINED;
 esize = 8 * UInt(imm3H);
 unsigned = (U == '1'); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

T1 variant

VMOVL{<c>}{<q>}.<dt> <Qd>, <Dm>

Decode for this encoding

 if imm3H == '000' then SEE "Related encodings";
 if imm3H != '001' && imm3H != '010' && imm3H != '100' then SEE "VSHLL";
 if Vd<0> == '1' then UNDEFINED;
 esize = 8 * UInt(imm3H);
 unsigned = (U == '1'); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4442 for the T32
instruction set, or Advanced SIMD one register and modified immediate on page F4-4551 for the A32 instruction
set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

1 1 1 1 0 0 1 U 1 D !=000 0 0 0 Vd 1 0 1 0 0 0 M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

imm3H

1 1 1 U 1 1 1 1 1 D !=000 0 0 0 Vd 1 0 1 0 0 0 M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

imm3H
F6-5678 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operand, encoded in the "U:imm3H" field. It can have the
following values:

S8 when U = 0, imm3H = 001

S16 when U = 0, imm3H = 010

S32 when U = 0, imm3H = 100

U8 when U = 1, imm3H = 001

U16 when U = 1, imm3H = 010

U32 when U = 1, imm3H = 100

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = Int(Elem[Din[m],e,esize], unsigned);
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5679
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.142 VMOVN

Vector Move and Narrow copies the least significant half of each element of a quadword vector into the
corresponding elements of a doubleword vector.

The operand vector elements can be any one of 16-bit, 32-bit, or 64-bit integers. There is no distinction between
signed and unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

This instruction is used by the pseudo-instructions VRSHRN (zero) and VSHRN (zero). The pseudo-instruction is
never the preferred disassembly.

A1

A1 variant

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

Decode for this encoding

 if size == '11' then UNDEFINED;
 if Vm<0> == '1' then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

T1 variant

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

Decode for this encoding

 if size == '11' then UNDEFINED;
 if Vm<0> == '1' then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm);

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5680 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<dt> Is the data type for the elements of the operand, encoded in the "size" field. It can have the following
values:

I16 when size = 00

I32 when size = 01

I64 when size = 10

The encoding size = 11 is reserved.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 Elem[D[d],e,esize] = Elem[Qin[m>>1],e,2*esize]<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5681
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.143 VMOVX

Vector Move extraction. This instruction copies the upper 16 bits of the 32-bit source SIMD&FP register into the
lower 16 bits of the 32-bit destination SIMD&FP register, while clearing the remaining bits to zero.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

(FEAT_FP16)

A1 variant

VMOVX{<q>}.F16 <Sd>, <Sm>

Decode for this encoding

 if !HaveFP16Ext() then UNDEFINED;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 d = UInt(Vd:D); m = UInt(Vm:M);

T1

(FEAT_FP16)

T1 variant

VMOVX{<q>}.F16 <Sd>, <Sm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveFP16Ext() then UNDEFINED;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 d = UInt(Vd:D); m = UInt(Vm:M);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 0 0 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 0 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5682 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 S[d] = Zeros(16) : S[m]<31:16>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5683
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.144 VMRS

Move SIMD&FP Special register to general-purpose register moves the value of an Advanced SIMD and
floating-point System register to a general-purpose register. When the specified System register is the FPSCR, a
form of the instruction transfers the FPSCR.{N, Z, C, V} condition flags to the APSR.{N, Z, C, V} condition flags.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

When these settings permit the execution of Advanced SIMD and floating-point instructions, if the specified
floating-point System register is not the FPSCR, the instruction is UNDEFINED if executed in User mode.

In an implementation that includes EL2, when HCR.TID0 is set to 1, any VMRS access to FPSID from a Non-secure
EL1 mode that would be permitted if HCR.TID0 was set to 0 generates a Hyp Trap exception. For more information,
see ID group 0, Primary device identification registers on page G1-6135.

For simplicity, the VMRS pseudocode does not show the possible trap to Hyp mode.

A1

A1 variant

VMRS{<c>}{<q>} <Rt>, <spec_reg>

Decode for this encoding

 t = UInt(Rt);
 if !(reg IN {'000x', '0101', '011x', '1000'}) then UNPREDICTABLE;
 if t == 15 && reg != '0001' then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If !(reg IN {'000x', '0101', '011x', '1000'}), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction transfers an UNKNOWN value to the specified target register. When the Rt field holds the value
0b1111, the specified target register is the APSR.{N, Z, C, V} bits, and these bits become UNKNOWN.
Otherwise, the specified target register is the register specified by the Rt field, R0 - R14.

T1

T1 variant

VMRS{<c>}{<q>} <Rt>, <spec_reg>

!=1111 1 1 1 0 1 1 1 1 reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 1 1 0 1 1 1 1 reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
F6-5684 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for this encoding

 t = UInt(Rt);
 if !(reg IN {'000x', '0101', '011x', '1000'}) then UNPREDICTABLE;
 if t == 15 && reg != '0001' then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If !(reg IN {'000x', '0101', '011x', '1000'}), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction transfers an UNKNOWN value to the specified target register. When the Rt field holds the value
0b1111, the specified target register is the APSR.{N, Z, C, V} bits, and these bits become UNKNOWN.
Otherwise, the specified target register is the register specified by the Rt field, R0 - R14.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Rt> Is the general-purpose destination register, encoded in the "Rt" field. Is one of:

R0-R14 General-purpose register.

APSR_nzcv Permitted only when <spec_reg> is FPSCR. Encoded as 0b1111. The instruction transfers
the FPSCR.{N, Z, C, V} condition flags to the APSR.{N, Z, C, V} condition flags.

<spec_reg> Is the source Advanced SIMD and floating-point System register, encoded in the "reg" field. It can
have the following values:

FPSID when reg = 0000

FPSCR when reg = 0001

MVFR2 when reg = 0101

MVFR1 when reg = 0110

MVFR0 when reg = 0111

FPEXC when reg = 1000

The following encodings are UNPREDICTABLE:

• reg = 001x.

• reg = 0100.

• reg = 1001.

• reg = 101x.

• reg = 11xx.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if reg == '0001' then // FPSCR
 CheckVFPEnabled(TRUE);
 if t == 15 then
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5685
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 PSTATE.<N,Z,C,V> = FPSR.<N,Z,C,V>;
 else
 R[t] = FPSCR;
 elsif PSTATE.EL == EL0 then
 UNDEFINED; // Non-FPSCR registers accessible only at PL1 or above
 else
 CheckVFPEnabled(FALSE); // Non-FPSCR registers are not affected by FPEXC.EN
 AArch32.CheckAdvSIMDOrFPRegisterTraps(reg);
 case reg of
 when '0000' R[t] = FPSID;
 when '0101' R[t] = MVFR2;
 when '0110' R[t] = MVFR1;
 when '0111' R[t] = MVFR0;
 when '1000' R[t] = FPEXC;
 otherwise Unreachable(); // Dealt with above or in encoding-specific pseudocode
F6-5686 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.145 VMSR

Move general-purpose register to SIMD&FP Special register moves the value of a general-purpose register to a
floating-point System register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

When these settings permit the execution of Advanced SIMD and floating-point instructions:

• If the specified floating-point System register is FPSID or FPEXC, the instruction is UNDEFINED if executed
in User mode.

• If the specified floating-point System register is the FPSID and the instruction is executed in a mode other
than User mode, the instruction is ignored.

A1

A1 variant

VMSR{<c>}{<q>} <spec_reg>, <Rt>

Decode for this encoding

 t = UInt(Rt);
 if reg != '000x' && reg != '1000' then
 Constraint c = ConstrainUnpredictable(Unpredictable_VMSR);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF
 UNDEFINED;
 when Constraint_NOP
 EndOfInstruction();
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If reg != '000x' && reg != '1000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction transfers the value in the general-purpose register to one of the allocated registers accessible
using VMSR at the same Exception level.

T1

T1 variant

VMSR{<c>}{<q>} <spec_reg>, <Rt>

!=1111 1 1 1 0 1 1 1 0 reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 1 1 0 1 1 1 0 reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5687
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for this encoding

 t = UInt(Rt);
 if reg != '000x' && reg != '1000' then
 Constraint c = ConstrainUnpredictable(Unpredictable_VMSR);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF
 UNDEFINED;
 when Constraint_NOP
 EndOfInstruction();
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If reg != '000x' && reg != '1000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction transfers the value in the general-purpose register to one of the allocated registers accessible
using VMSR at the same Exception level.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<spec_reg> Is the destination Advanced SIMD and floating-point System register, encoded in the "reg" field. It
can have the following values:

FPSID when reg = 0000

FPSCR when reg = 0001

FPEXC when reg = 1000

The following encodings are UNPREDICTABLE:

• reg = 001x.

• reg = 01xx.

• reg = 1001.

• reg = 101x.

• reg = 11xx.

<Rt> Is the general-purpose source register, encoded in the "Rt" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if reg == '0001' then // FPSCR
 CheckVFPEnabled(TRUE);
 FPSCR = R[t];
 elsif PSTATE.EL == EL0 then
 UNDEFINED; // Non-FPSCR registers accessible only at PL1 or above
 else
F6-5688 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 CheckVFPEnabled(FALSE); // Non-FPSCR registers are not affected by FPEXC.EN
 case reg of
 when '0000' // VMSR access to FPSID is ignored
 when '1000' FPEXC = R[t];
 otherwise Unreachable(); // Dealt with above or in encoding-specific pseudocode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5689
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.146 VMUL (floating-point)

Vector Multiply multiplies corresponding elements in two vectors, and places the results in the destination vector.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMUL{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMUL{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 advsimd = TRUE;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VMUL{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VMUL{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VMUL{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

!=1111 1 1 1 0 0 D 1 0 Vn Vd 1 0 size N 0 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
F6-5690 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 advsimd = FALSE;

 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMUL{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMUL{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if sz == '1' && InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 advsimd = TRUE;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5691
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T2

Half-precision scalar variant

Applies when size == 01.

VMUL{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VMUL{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VMUL{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

 if size == '01' && InITBlock() then UNPREDICTABLE;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 advsimd = FALSE;

 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding A2, T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

1 1 1 0 1 1 1 0 0 D 1 0 Vn Vd 1 0 size N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5692 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPMul(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize],
StandardFPSCRValue());
 else // VFP instruction
 case esize of
 when 16
 S[d] = Zeros(16) : FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR[]);
 when 32
 S[d] = FPMul(S[n], S[m], FPSCR[]);
 when 64
 D[d] = FPMul(D[n], D[m], FPSCR[]);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5693
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.147 VMUL (integer and polynomial)

Vector Multiply multiplies corresponding elements in two vectors.

For information about multiplying polynomials, see Polynomial arithmetic over {0, 1} on page A1-50.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMUL{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMUL{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if size == '11' || (op == '1' && size != '00') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 polynomial = (op == '1'); long_destination = FALSE;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMUL{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMUL{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if size == '11' || (op == '1' && size != '00') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 polynomial = (op == '1'); long_destination = FALSE;

1 1 1 1 0 0 1 op 0 D size Vn Vd 1 0 0 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 op 1 1 1 1 0 D size Vn Vd 1 0 0 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5694 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "op:size" field. It can have the
following values:

I8 when op = 0, size = 00

I16 when op = 0, size = 01

I32 when op = 0, size = 10

P8 when op = 1, size = 00

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 op2 = Elem[Din[m+r],e,esize]; op2val = Int(op2, unsigned);
 if polynomial then
 product = PolynomialMult(op1,op2);
 else
 product = (op1val*op2val)<2*esize-1:0>;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = product;
 else
 Elem[D[d+r],e,esize] = product<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5695
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
— The values of the NZCV flags.
F6-5696 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.148 VMUL (by scalar)

Vector Multiply multiplies each element in a vector by a scalar, and places the results in a second vector.

For more information about scalars see Advanced SIMD scalars on page F1-4374.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMUL{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VMUL{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || (F == '1' && size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 floating_point = (F == '1'); long_destination = FALSE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMUL{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VMUL{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>[<index>]

1 1 1 1 0 0 1 Q 1 D !=11 Vn Vd 1 0 0 F N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 Q 1 1 1 1 1 D !=11 Vn Vd 1 0 0 F N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5697
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then SEE "Related encodings";
 if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
 if size == '00' || (F == '1' && size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 floating_point = (F == '1'); long_destination = FALSE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the scalar and the elements of the operand vector, encoded in the "F:size" field.
It can have the following values:

I16 when F = 0, size = 01

I32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register. When <dt> is I16 or F16, this is encoded
in the "Vm<2:0>" field. Otherwise it is encoded in the "Vm" field.

<index> Is the element index. When <dt> is I16 or F16, this is in the range 0 to 3 and is encoded in the
"M:Vm<3>" field. Otherwise it is in the range 0 to 1 and is encoded in the "M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
F6-5698 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 if floating_point then
 Elem[D[d+r],e,esize] = FPMul(op1, op2, StandardFPSCRValue());
 else
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = (op1val*op2val)<2*esize-1:0>;
 else
 Elem[D[d+r],e,esize] = (op1val*op2val)<esize-1:0>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5699
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.149 VMULL (integer and polynomial)

Vector Multiply Long multiplies corresponding elements in two vectors. The destination vector elements are twice
as long as the elements that are multiplied.

For information about multiplying polynomials see Polynomial arithmetic over {0, 1} on page A1-50.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 unsigned = (U == '1'); polynomial = (op == '1'); long_destination = TRUE;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 if polynomial then
 if U == '1' || size == '01' then UNDEFINED;
 if size == '10' then // .p64
 if !HaveBit128PMULLExt() then UNDEFINED;
 esize = 64; elements = 1;
 if Vd<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

T1

T1 variant

VMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 unsigned = (U == '1'); polynomial = (op == '1'); long_destination = TRUE;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 if polynomial then
 if U == '1' || size == '01' then UNDEFINED;
 if size == '10' then // .p64
 if InITBlock() then UNPREDICTABLE;
 if !HaveBit128PMULLExt() then UNDEFINED;
 esize = 64; elements = 1;
 if Vd<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 1 1 op 0 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 1 1 op 0 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
F6-5700 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
CONSTRAINED UNPREDICTABLE behavior

If op == '1' && size == '10' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "op:U:size" field. It can have the
following values:

S8 when op = 0, U = 0, size = 00

S16 when op = 0, U = 0, size = 01

S32 when op = 0, U = 0, size = 10

U8 when op = 0, U = 1, size = 00

U16 when op = 0, U = 1, size = 01

U32 when op = 0, U = 1, size = 10

P8 when op = 1, U = 0, size = 00

P64 when op = 1, U = 0, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 op2 = Elem[Din[m+r],e,esize]; op2val = Int(op2, unsigned);
 if polynomial then
 product = PolynomialMult(op1,op2);
 else
 product = (op1val*op2val)<2*esize-1:0>;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = product;
 else
 Elem[D[d+r],e,esize] = product<esize-1:0>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5701
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5702 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.150 VMULL (by scalar)

Vector Multiply Long multiplies each element in a vector by a scalar, and places the results in a second vector. The
destination vector elements are twice as long as the elements that are multiplied.

For more information about scalars see Advanced SIMD scalars on page F1-4374.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); long_destination = TRUE; floating_point = FALSE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

T1 variant

VMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); long_destination = TRUE; floating_point = FALSE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 1 0 1 0 N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 1 0 1 0 N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5703
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the scalar and the elements of the operand vector, encoded in the "U:size" field.
It can have the following values:

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>" field when
<dt> is S16 or U16, otherwise the "Vm" field.

<index> Is the element index in the range 0 to 3, encoded in the "M:Vm<3>" field when <dt> is S16 or U16,
otherwise in range 0 to 1, encoded in the "M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 if floating_point then
 Elem[D[d+r],e,esize] = FPMul(op1, op2, StandardFPSCRValue());
 else
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = (op1val*op2val)<2*esize-1:0>;
 else
 Elem[D[d+r],e,esize] = (op1val*op2val)<esize-1:0>;
F6-5704 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.151 VMVN (immediate)

Vector Bitwise NOT (immediate) places the bitwise inverse of an immediate integer constant into every element of
the destination register.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMVN{<c>}{<q>}.I32 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMVN{<c>}{<q>}.I32 <Qd>, #<imm>

Decode for all variants of this encoding

 if (cmode<0> == '1' && cmode<3:2> != '11') || cmode<3:1> == '111' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

A2

64-bit SIMD vector variant

Applies when Q == 0.

VMVN{<c>}{<q>}.I16 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMVN{<c>}{<q>}.I16 <Qd>, #<imm>

Decode for all variants of this encoding

 if (cmode<0> == '1' && cmode<3:2> != '11') || cmode<3:1> == '111' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 0 x x 0 0 Q 1 1 imm4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 0 x 0 0 Q 1 1 imm4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5705
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
A3

64-bit SIMD vector variant

Applies when Q == 0.

VMVN{<c>}{<q>}.I32 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMVN{<c>}{<q>}.I32 <Qd>, #<imm>

Decode for all variants of this encoding

 if (cmode<0> == '1' && cmode<3:2> != '11') || cmode<3:1> == '111' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMVN{<c>}{<q>}.I32 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMVN{<c>}{<q>}.I32 <Qd>, #<imm>

Decode for all variants of this encoding

 if (cmode<0> == '1' && cmode<3:2> != '11') || cmode<3:1> == '111' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T2

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 1 0 x 0 Q 1 1 imm4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 0 x x 0 0 Q 1 1 imm4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 0 x 0 0 Q 1 1 imm4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode
F6-5706 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
64-bit SIMD vector variant

Applies when Q == 0.

VMVN{<c>}{<q>}.I16 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMVN{<c>}{<q>}.I16 <Qd>, #<imm>

Decode for all variants of this encoding

 if (cmode<0> == '1' && cmode<3:2> != '11') || cmode<3:1> == '111' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T3

64-bit SIMD vector variant

Applies when Q == 0.

VMVN{<c>}{<q>}.I32 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMVN{<c>}{<q>}.I32 <Qd>, #<imm>

Decode for all variants of this encoding

 if (cmode<0> == '1' && cmode<3:2> != '11') || cmode<3:1> == '111' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4442 for the T32
instruction set, or Advanced SIMD one register and modified immediate on page F4-4551 for the A32 instruction
set.

Assembler symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1, T2 and T3: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 1 0 x 0 Q 1 1 imm4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5707
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<imm> Is a constant of the specified type that is replicated to fill the destination register. For details of the
range of constants available and the encoding of <imm>, see Modified immediate constants in T32
and A32 Advanced SIMD instructions on page F1-4365.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = NOT(imm64);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5708 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.152 VMVN (register)

Vector Bitwise NOT (register) takes a value from a register, inverts the value of each bit, and places the result in the
destination register. The registers can be either doubleword or quadword.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMVN{<c>}{<q>}{.<dt>} <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMVN{<c>}{<q>}{.<dt>} <Qd>, <Qm>

Decode for all variants of this encoding

 if size != '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMVN{<c>}{<q>}{.<dt>} <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMVN{<c>}{<q>}{.<dt>} <Qd>, <Qm>

Decode for all variants of this encoding

 if size != '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 0 1 1 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 0 1 1 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5709
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = NOT(D[m+r]);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5710 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.153 VNEG

Vector Negate negates each element in a vector, and places the results in a second vector. The floating-point version
only inverts the sign bit.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VNEG{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VNEG{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 advsimd = TRUE; floating_point = (F == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VNEG{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VNEG{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VNEG{<c>}{<q>}.F64 <Dd>, <Dm>

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 1 1 1 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

!=1111 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 size 0 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5711
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 advsimd = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VNEG{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VNEG{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
 if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 advsimd = TRUE; floating_point = (F == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 1 1 1 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5712 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T2

Half-precision scalar variant

Applies when size == 01.

VNEG{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VNEG{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VNEG{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 advsimd = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding A2, T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "F:size" field. It can have the
following values:

S8 when F = 0, size = 00

S16 when F = 0, size = 01

S32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 size 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5713
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 Elem[D[d+r],e,esize] = FPNeg(Elem[D[m+r],e,esize]);
 else
 result = -SInt(Elem[D[m+r],e,esize]);
 Elem[D[d+r],e,esize] = result<esize-1:0>;
 else // VFP instruction
 case esize of
 when 16 S[d] = Zeros(16) : FPNeg(S[m]<15:0>);
 when 32 S[d] = FPNeg(S[m]);
 when 64 D[d] = FPNeg(D[m]);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5714 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.154 VNMLA

Vector Negate Multiply Accumulate multiplies together two floating-point register values, adds the negation of the
floating-point value in the destination register to the negation of the product, and writes the result back to the
destination register.

Note

Arm recommends that software does not use the VNMLA instruction in the Round towards Plus Infinity and Round
towards Minus Infinity rounding modes, because the rounding of the product and of the sum can change the result
of the instruction in opposite directions, defeating the purpose of these rounding modes.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision scalar variant

Applies when size == 01.

VNMLA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VNMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VNMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 vtype = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

!=1111 1 1 1 0 0 D 0 1 Vn Vd 1 0 size N 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5715
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Half-precision scalar variant

Applies when size == 01.

VNMLA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VNMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VNMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 vtype = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

1 1 1 0 1 1 1 0 0 D 0 1 Vn Vd 1 0 size N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5716 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 case esize of
 when 16
 product16 = FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR[]);
 case vtype of
 when VFPNegMul_VNMLA S[d] = Zeros(16) : FPAdd(FPNeg(S[d]<15:0>), FPNeg(product16),
FPSCR[]);
 when VFPNegMul_VNMLS S[d] = Zeros(16) : FPAdd(FPNeg(S[d]<15:0>), product16, FPSCR[]);
 when VFPNegMul_VNMUL S[d] = Zeros(16) : FPNeg(product16);
 when 32
 product32 = FPMul(S[n], S[m], FPSCR[]);
 case vtype of
 when VFPNegMul_VNMLA S[d] = FPAdd(FPNeg(S[d]), FPNeg(product32), FPSCR[]);
 when VFPNegMul_VNMLS S[d] = FPAdd(FPNeg(S[d]), product32, FPSCR[]);
 when VFPNegMul_VNMUL S[d] = FPNeg(product32);
 when 64
 product64 = FPMul(D[n], D[m], FPSCR[]);
 case vtype of
 when VFPNegMul_VNMLA D[d] = FPAdd(FPNeg(D[d]), FPNeg(product64), FPSCR[]);
 when VFPNegMul_VNMLS D[d] = FPAdd(FPNeg(D[d]), product64, FPSCR[]);
 when VFPNegMul_VNMUL D[d] = FPNeg(product64);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5717
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.155 VNMLS

Vector Negate Multiply Subtract multiplies together two floating-point register values, adds the negation of the
floating-point value in the destination register to the product, and writes the result back to the destination register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision scalar variant

Applies when size == 01.

VNMLS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VNMLS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VNMLS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 vtype = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

!=1111 1 1 1 0 0 D 0 1 Vn Vd 1 0 size N 0 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op

1 1 1 0 1 1 1 0 0 D 0 1 Vn Vd 1 0 size N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5718 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Half-precision scalar variant

Applies when size == 01.

VNMLS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VNMLS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VNMLS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 vtype = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 case esize of
 when 16
 product16 = FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR[]);
 case vtype of
 when VFPNegMul_VNMLA S[d] = Zeros(16) : FPAdd(FPNeg(S[d]<15:0>), FPNeg(product16),
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5719
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
FPSCR[]);
 when VFPNegMul_VNMLS S[d] = Zeros(16) : FPAdd(FPNeg(S[d]<15:0>), product16, FPSCR[]);
 when VFPNegMul_VNMUL S[d] = Zeros(16) : FPNeg(product16);
 when 32
 product32 = FPMul(S[n], S[m], FPSCR[]);
 case vtype of
 when VFPNegMul_VNMLA S[d] = FPAdd(FPNeg(S[d]), FPNeg(product32), FPSCR[]);
 when VFPNegMul_VNMLS S[d] = FPAdd(FPNeg(S[d]), product32, FPSCR[]);
 when VFPNegMul_VNMUL S[d] = FPNeg(product32);
 when 64
 product64 = FPMul(D[n], D[m], FPSCR[]);
 case vtype of
 when VFPNegMul_VNMLA D[d] = FPAdd(FPNeg(D[d]), FPNeg(product64), FPSCR[]);
 when VFPNegMul_VNMLS D[d] = FPAdd(FPNeg(D[d]), product64, FPSCR[]);
 when VFPNegMul_VNMUL D[d] = FPNeg(product64);
F6-5720 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.156 VNMUL

Vector Negate Multiply multiplies together two floating-point register values, and writes the negation of the result
to the destination register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision scalar variant

Applies when size == 01.

VNMUL{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VNMUL{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VNMUL{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '01' && !HaveFP16Ext() then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 vtype = VFPNegMul_VNMUL;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

!=1111 1 1 1 0 0 D 1 0 Vn Vd 1 0 size N 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 1 1 0 0 D 1 0 Vn Vd 1 0 size N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5721
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Half-precision scalar variant

Applies when size == 01.

VNMUL{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VNMUL{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VNMUL{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '01' && !HaveFP16Ext() then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 vtype = VFPNegMul_VNMUL;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 case esize of
 when 16
 product16 = FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR[]);
 case vtype of
 when VFPNegMul_VNMLA S[d] = Zeros(16) : FPAdd(FPNeg(S[d]<15:0>), FPNeg(product16),
F6-5722 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
FPSCR[]);
 when VFPNegMul_VNMLS S[d] = Zeros(16) : FPAdd(FPNeg(S[d]<15:0>), product16, FPSCR[]);
 when VFPNegMul_VNMUL S[d] = Zeros(16) : FPNeg(product16);
 when 32
 product32 = FPMul(S[n], S[m], FPSCR[]);
 case vtype of
 when VFPNegMul_VNMLA S[d] = FPAdd(FPNeg(S[d]), FPNeg(product32), FPSCR[]);
 when VFPNegMul_VNMLS S[d] = FPAdd(FPNeg(S[d]), product32, FPSCR[]);
 when VFPNegMul_VNMUL S[d] = FPNeg(product32);
 when 64
 product64 = FPMul(D[n], D[m], FPSCR[]);
 case vtype of
 when VFPNegMul_VNMLA D[d] = FPAdd(FPNeg(D[d]), FPNeg(product64), FPSCR[]);
 when VFPNegMul_VNMLS D[d] = FPAdd(FPNeg(D[d]), product64, FPSCR[]);
 when VFPNegMul_VNMUL D[d] = FPNeg(product64);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5723
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.157 VORN (immediate)

Vector Bitwise OR NOT (immediate) performs a bitwise OR between a register value and the complement of an
immediate value, and returns the result into the destination vector

This instruction is a pseudo-instruction of the VORR (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of VORR (immediate).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VORR (immediate) gives the operational pseudocode for this instruction.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VORN{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

 is equivalent to

VORR{<c>}{<q>}.I16 <Dd>, #~<imm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VORN{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

 is equivalent to

VORR{<c>}{<q>}.I16 <Qd>, #~<imm>

and is never the preferred disassembly.

A2

64-bit SIMD vector variant

Applies when Q == 0.

VORN{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

 is equivalent to

VORR{<c>}{<q>}.I32 <Dd>, #~<imm>

and is never the preferred disassembly.

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 0 1 imm4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 0 1 imm4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode
F6-5724 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VORN{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

 is equivalent to

VORR{<c>}{<q>}.I32 <Qd>, #~<imm>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VORN{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

 is equivalent to

VORR{<c>}{<q>}.I16 <Dd>, #~<imm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VORN{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

 is equivalent to

VORR{<c>}{<q>}.I16 <Qd>, #~<imm>

and is never the preferred disassembly.

T2

64-bit SIMD vector variant

Applies when Q == 0.

VORN{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

 is equivalent to

VORR{<c>}{<q>}.I32 <Dd>, #~<imm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 0 1 imm4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 0 1 imm4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5725
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VORN{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

 is equivalent to

VORR{<c>}{<q>}.I32 <Qd>, #~<imm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<imm> Is a constant of the specified type that is replicated to fill the destination register. For details of the
range of constants available and the encoding of <imm>, see Modified immediate constants in T32
and A32 Advanced SIMD instructions on page F1-4365.

Operation for all encodings

The description of VORR (immediate) gives the operational pseudocode for this instruction.
F6-5726 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.158 VORN (register)

Vector bitwise OR NOT (register) performs a bitwise OR NOT operation between two registers, and places the
result in the destination register. The operand and result registers can be quadword or doubleword. They must all
be the same size.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VORN{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VORN{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VORN{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VORN{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

1 1 1 1 0 0 1 0 0 D 1 1 Vn Vd 0 0 0 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 1 1 Vn Vd 0 0 0 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5727
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[n+r] OR NOT(D[m+r]);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5728 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.159 VORR (immediate)

Vector Bitwise OR (immediate) performs a bitwise OR between a register value and an immediate value, and returns
the result into the destination vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

This instruction is used by the pseudo-instruction VORN (immediate). The pseudo-instruction is never the
preferred disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VORR{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VORR{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

Decode for all variants of this encoding

 if cmode<0> == '0' || cmode<3:2> == '11' then SEE "VMOV (immediate)";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('0', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

A2

64-bit SIMD vector variant

Applies when Q == 0.

VORR{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VORR{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 0 1 imm4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 0 1 imm4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5729
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if cmode<0> == '0' || cmode<3:2> == '11' then SEE "VMOV (immediate)";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('0', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VORR{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VORR{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

Decode for all variants of this encoding

 if cmode<0> == '0' || cmode<3:2> == '11' then SEE "VMOV (immediate)";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('0', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T2

64-bit SIMD vector variant

Applies when Q == 0.

VORR{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VORR{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

Decode for all variants of this encoding

 if cmode<0> == '0' || cmode<3:2> == '11' then SEE "VMOV (immediate)";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('0', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 0 1 imm4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 0 1 imm4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode
F6-5730 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<imm> Is a constant of the specified type that is replicated to fill the destination register. For details of the
range of constants available and the encoding of <imm>, see Modified immediate constants in T32
and A32 Advanced SIMD instructions on page F1-4365.

The I8, I64, and F32 data types are permitted as pseudo-instructions, if the immediate can be represented by this
instruction, and are encoded using a permitted encoding of the I16 or I32 data type.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[d+r] OR imm64;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5731
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.160 VORR (register)

Vector bitwise OR (register) performs a bitwise OR operation between two registers, and places the result in the
destination register. The operand and result registers can be quadword or doubleword. They must all be the same
size.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

This instruction is used by the pseudo-instructions VMOV (register, SIMD), VRSHR (zero), and VSHR (zero). The
pseudo-instruction is never the preferred disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VORR{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VORR{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VORR{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VORR{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

1 1 1 1 0 0 1 0 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5732 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Alias conditions

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[n+r] OR D[m+r];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

Alias or pseudo-instruction is preferred when

VMOV (register, SIMD) N:Vn == M:Vm

VRSHR (zero) Never

VSHR (zero) Never
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5733
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.161 VPADAL

Vector Pairwise Add and Accumulate Long adds adjacent pairs of elements of a vector, and accumulates the results
into the elements of the destination vector.

The vectors can be doubleword or quadword. The operand elements can be 8-bit, 16-bit, or 32-bit integers. The
result elements are twice the length of the operand elements.

The following figure shows the operation of VPADAL doubleword operation for data type S16.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VPADAL{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VPADAL{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (op == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

Dm

Dd

+ +

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 1 0 op Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 1 0 op Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5734 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VPADAL{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VPADAL{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (op == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "op:size" field. It can have the
following values:

S8 when op = 0, size = 00

S16 when op = 0, size = 01

S32 when op = 0, size = 10

U8 when op = 1, size = 00

U16 when op = 1, size = 01

U32 when op = 1, size = 10

The following encodings are reserved:

• op = 0, size = 11.

• op = 1, size = 11.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 h = elements DIV 2;

 for r = 0 to regs-1
 for e = 0 to h-1
 op1 = Elem[D[m+r],2*e,esize]; op2 = Elem[D[m+r],2*e+1,esize];
 result = Int(op1, unsigned) + Int(op2, unsigned);
 Elem[D[d+r],e,2*esize] = Elem[D[d+r],e,2*esize] + result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5735
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5736 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.162 VPADD (floating-point)

Vector Pairwise Add (floating-point) adds adjacent pairs of elements of two vectors, and places the results in the
destination vector.

The operands and result are doubleword vectors.

The operand and result elements are floating-point numbers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VPADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if Q == '1' then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VPADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if Q == '1' then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5737
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) dest;
 h = elements DIV 2;

 for e = 0 to h-1
 Elem[dest,e,esize] = FPAdd(Elem[D[n],2*e,esize], Elem[D[n],2*e+1,esize],
StandardFPSCRValue());
 Elem[dest,e+h,esize] = FPAdd(Elem[D[m],2*e,esize], Elem[D[m],2*e+1,esize],
StandardFPSCRValue());

 D[d] = dest;
F6-5738 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.163 VPADD (integer)

Vector Pairwise Add (integer) adds adjacent pairs of elements of two vectors, and places the results in the destination
vector.

The operands and result are doubleword vectors.

The operand and result elements must all be the same type, and can be 8-bit, 16-bit, or 32-bit integers. There is no
distinction between signed and unsigned integers.

The following figure shows the operation of VPADD doubleword operation for data type I16.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VPADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if size == '11' || Q == '1' then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VPADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if size == '11' || Q == '1' then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Dm

Dd

+ +

Dn

+ +

1 1 1 1 0 0 1 0 0 D size Vn Vd 1 0 1 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D size Vn Vd 1 0 1 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5739
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

I8 when size = 00

I16 when size = 01

I32 when size = 10

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) dest;
 h = elements DIV 2;

 for e = 0 to h-1
 Elem[dest,e,esize] = Elem[D[n],2*e,esize] + Elem[D[n],2*e+1,esize];
 Elem[dest,e+h,esize] = Elem[D[m],2*e,esize] + Elem[D[m],2*e+1,esize];

 D[d] = dest;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5740 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.164 VPADDL

Vector Pairwise Add Long adds adjacent pairs of elements of two vectors, and places the results in the destination
vector.

The vectors can be doubleword or quadword. The operand elements can be 8-bit, 16-bit, or 32-bit integers. The
result elements are twice the length of the operand elements.

The following figure shows the operation of VPADDL doubleword operation for data type S16.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VPADDL{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VPADDL{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (op == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

Dm

Dd

+ +

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 1 0 op Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 1 0 op Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5741
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VPADDL{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VPADDL{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (op == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "op:size" field. It can have the
following values:

S8 when op = 0, size = 00

S16 when op = 0, size = 01

S32 when op = 0, size = 10

U8 when op = 1, size = 00

U16 when op = 1, size = 01

U32 when op = 1, size = 10

The following encodings are reserved:

• op = 0, size = 11.

• op = 1, size = 11.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 h = elements DIV 2;

 for r = 0 to regs-1
 for e = 0 to h-1
 op1 = Elem[D[m+r],2*e,esize]; op2 = Elem[D[m+r],2*e+1,esize];
 result = Int(op1, unsigned) + Int(op2, unsigned);
 Elem[D[d+r],e,2*esize] = result<2*esize-1:0>;
F6-5742 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5743
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.165 VPMAX (floating-point)

Vector Pairwise Maximum compares adjacent pairs of elements in two doubleword vectors, and copies the larger
of each pair into the corresponding element in the destination doubleword vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VPMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 maximum = (op == '0');
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VPMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 maximum = (op == '0');
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 1 1 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 1 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5744 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) dest;
 h = elements DIV 2;

 for e = 0 to h-1
 op1 = Elem[D[n],2*e,esize]; op2 = Elem[D[n],2*e+1,esize];
 Elem[dest,e,esize] = if maximum then FPMax(op1,op2,StandardFPSCRValue()) else
FPMin(op1,op2,StandardFPSCRValue());
 op1 = Elem[D[m],2*e,esize]; op2 = Elem[D[m],2*e+1,esize];
 Elem[dest,e+h,esize] = if maximum then FPMax(op1,op2,StandardFPSCRValue()) else
FPMin(op1,op2,StandardFPSCRValue());

 D[d] = dest;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5745
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.166 VPMAX (integer)

Vector Pairwise Maximum compares adjacent pairs of elements in two doubleword vectors, and copies the larger
of each pair into the corresponding element in the destination doubleword vector.

The following figure shows the operation of VPMAX doubleword operation for data type S16 or U16.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VPMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if size == '11' then UNDEFINED;
 maximum = (op == '0'); unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VPMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if size == '11' then UNDEFINED;
 maximum = (op == '0'); unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Dm

Dd

max max

Dn

max max

1 1 1 1 0 0 1 U 0 D size Vn Vd 1 0 1 0 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 U 1 1 1 1 0 D size Vn Vd 1 0 1 0 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5746 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) dest;
 h = elements DIV 2;

 for e = 0 to h-1
 op1 = Int(Elem[D[n],2*e,esize], unsigned);
 op2 = Int(Elem[D[n],2*e+1,esize], unsigned);
 result = if maximum then Max(op1,op2) else Min(op1,op2);
 Elem[dest,e,esize] = result<esize-1:0>;
 op1 = Int(Elem[D[m],2*e,esize], unsigned);
 op2 = Int(Elem[D[m],2*e+1,esize], unsigned);
 result = if maximum then Max(op1,op2) else Min(op1,op2);
 Elem[dest,e+h,esize] = result<esize-1:0>;

 D[d] = dest;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5747
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.167 VPMIN (floating-point)

Vector Pairwise Minimum compares adjacent pairs of elements in two doubleword vectors, and copies the smaller
of each pair into the corresponding element in the destination doubleword vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VPMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 maximum = (op == '0');
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VPMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 maximum = (op == '0');
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 1 1 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 1 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5748 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) dest;
 h = elements DIV 2;

 for e = 0 to h-1
 op1 = Elem[D[n],2*e,esize]; op2 = Elem[D[n],2*e+1,esize];
 Elem[dest,e,esize] = if maximum then FPMax(op1,op2,StandardFPSCRValue()) else
FPMin(op1,op2,StandardFPSCRValue());
 op1 = Elem[D[m],2*e,esize]; op2 = Elem[D[m],2*e+1,esize];
 Elem[dest,e+h,esize] = if maximum then FPMax(op1,op2,StandardFPSCRValue()) else
FPMin(op1,op2,StandardFPSCRValue());

 D[d] = dest;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5749
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.168 VPMIN (integer)

Vector Pairwise Minimum compares adjacent pairs of elements in two doubleword vectors, and copies the smaller
of each pair into the corresponding element in the destination doubleword vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VPMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if size == '11' then UNDEFINED;
 maximum = (op == '0'); unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VPMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if size == '11' then UNDEFINED;
 maximum = (op == '0'); unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

1 1 1 1 0 0 1 U 0 D size Vn Vd 1 0 1 0 N 0 M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 U 1 1 1 1 0 D size Vn Vd 1 0 1 0 N 0 M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5750 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) dest;
 h = elements DIV 2;

 for e = 0 to h-1
 op1 = Int(Elem[D[n],2*e,esize], unsigned);
 op2 = Int(Elem[D[n],2*e+1,esize], unsigned);
 result = if maximum then Max(op1,op2) else Min(op1,op2);
 Elem[dest,e,esize] = result<esize-1:0>;
 op1 = Int(Elem[D[m],2*e,esize], unsigned);
 op2 = Int(Elem[D[m],2*e+1,esize], unsigned);
 result = if maximum then Max(op1,op2) else Min(op1,op2);
 Elem[dest,e+h,esize] = result<esize-1:0>;

 D[d] = dest;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5751
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.169 VPOP

Pop SIMD&FP registers from Stack loads multiple consecutive Advanced SIMD and floating-point register file
registers from the stack

This instruction is an alias of the VLDM, VLDMDB, VLDMIA instruction. This means that:

• The encodings in this description are named to match the encodings of VLDM, VLDMDB, VLDMIA.

• The description of VLDM, VLDMDB, VLDMIA gives the operational pseudocode for this instruction.

A1

Increment After variant

VPOP{<c>}{<q>}{.<size>} <dreglist>

 is equivalent to

VLDM{<c>}{<q>}{.<size>} SP!, <dreglist>

and is always the preferred disassembly.

A2

Increment After variant

VPOP{<c>}{<q>}{.<size>} <sreglist>

 is equivalent to

VLDM{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

T1

Increment After variant

VPOP{<c>}{<q>}{.<size>} <dreglist>

 is equivalent to

VLDM{<c>}{<q>}{.<size>} SP!, <dreglist>

and is always the preferred disassembly.

!=1111 1 1 0 0 1 D 1 1 1 1 0 1 Vd 1 0 1 1 imm8<7:1> 0
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 1 0

cond P U W Rn imm8<0>

!=1111 1 1 0 0 1 D 1 1 1 1 0 1 Vd 1 0 1 0 imm8
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

cond P U W Rn

1 1 1 0 1 1 0 0 1 D 1 1 1 1 0 1 Vd 1 0 1 1 imm8<7:1> 0
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 1 0

P U W Rn imm8<0>
F6-5752 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T2

Increment After variant

VPOP{<c>}{<q>}{.<size>} <sreglist>

 is equivalent to

VLDM{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the registers
being transferred.

<sreglist> Is the list of consecutively numbered 32-bit SIMD&FP registers to be transferred. The first register
in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the list. The list must
contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register
in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list. The
list must contain at least one register, and must not contain more than 16 registers.

Operation for all encodings

The description of VLDM, VLDMDB, VLDMIA gives the operational pseudocode for this instruction.

1 1 1 0 1 1 0 0 1 D 1 1 1 1 0 1 Vd 1 0 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

P U W Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5753
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.170 VPUSH

Push SIMD&FP registers to Stack stores multiple consecutive registers from the Advanced SIMD and
floating-point register file to the stack

This instruction is an alias of the VSTM, VSTMDB, VSTMIA instruction. This means that:

• The encodings in this description are named to match the encodings of VSTM, VSTMDB, VSTMIA.

• The description of VSTM, VSTMDB, VSTMIA gives the operational pseudocode for this instruction.

A1

Decrement Before variant

VPUSH{<c>}{<q>}{.<size>} <dreglist>

 is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <dreglist>

and is always the preferred disassembly.

A2

Decrement Before variant

VPUSH{<c>}{<q>}{.<size>} <sreglist>

 is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

T1

Decrement Before variant

VPUSH{<c>}{<q>}{.<size>} <dreglist>

 is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <dreglist>

and is always the preferred disassembly.

!=1111 1 1 0 1 0 D 1 0 1 1 0 1 Vd 1 0 1 1 imm8<7:1> 0
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 1 0

cond P U W Rn imm8<0>

!=1111 1 1 0 1 0 D 1 0 1 1 0 1 Vd 1 0 1 0 imm8
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

cond P U W Rn

1 1 1 0 1 1 0 1 0 D 1 0 1 1 0 1 Vd 1 0 1 1 imm8<7:1> 0
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 1 0

P U W Rn imm8<0>
F6-5754 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T2

Decrement Before variant

VPUSH{<c>}{<q>}{.<size>} <sreglist>

 is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the registers
being transferred.

<sreglist> Is the list of consecutively numbered 32-bit SIMD&FP registers to be transferred. The first register
in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the list. The list must
contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register
in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list. The
list must contain at least one register, and must not contain more than 16 registers.

Operation for all encodings

The description of VSTM, VSTMDB, VSTMIA gives the operational pseudocode for this instruction.

1 1 1 0 1 1 0 1 0 D 1 0 1 1 0 1 Vd 1 0 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

P U W Rn
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5755
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.171 VQABS

Vector Saturating Absolute takes the absolute value of each element in a vector, and places the results in the
destination vector.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation on page E1-4251.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VQABS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQABS{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VQABS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQABS{<c>}{<q>}.<dt> <Qd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 1 1 0 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 1 1 0 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5756 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

S8 when size = 00

S16 when size = 01

S32 when size = 10

The encoding size = 11 is reserved.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 result = Abs(SInt(Elem[D[m+r],e,esize]));
 (Elem[D[d+r],e,esize], sat) = SignedSatQ(result, esize);
 if sat then FPSCR.QC = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5757
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.172 VQADD

Vector Saturating Add adds the values of corresponding elements of two vectors, and places the results in the
destination vector.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation on page E1-4251.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VQADD{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQADD{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VQADD{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQADD{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 0 0 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 0 0 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5758 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

S64 when U = 0, size = 11

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

U64 when U = 1, size = 11

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 sum = Int(Elem[D[n+r],e,esize], unsigned) + Int(Elem[D[m+r],e,esize], unsigned);
 (Elem[D[d+r],e,esize], sat) = SatQ(sum, esize, unsigned);
 if sat then FPSCR.QC = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5759
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.173 VQDMLAL

Vector Saturating Doubling Multiply Accumulate Long multiplies corresponding elements in two doubleword
vectors, doubles the products, and accumulates the results into the elements of a quadword vector.

The second operand can be a scalar instead of a vector. For more information about scalars see Advanced SIMD
scalars on page F1-4374.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation on page E1-4251.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VQDMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 add = (op == '0');
 scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 esize = 8 << UInt(size); elements = 64 DIV esize;

A2

A2 variant

VQDMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 add = (op == '0');
 scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

1 1 1 1 0 0 1 0 1 D !=11 Vn Vd 1 0 0 1 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 1 0 0 1 0 1 D !=11 Vn Vd 0 0 1 1 N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op
F6-5760 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

T1 variant

VQDMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 add = (op == '0');
 scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 esize = 8 << UInt(size); elements = 64 DIV esize;

T2

T2 variant

VQDMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 add = (op == '0');
 scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

S16 when size = 01

S32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

1 1 1 0 1 1 1 1 1 D !=11 Vn Vd 1 0 0 1 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 0 1 1 1 1 1 D !=11 Vn Vd 0 0 1 1 N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5761
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> For encoding A1 and T1: is the 64-bit name of the second SIMD&FP source register, encoded in
the "M:Vm" field.

For encoding A2 and T2: is the 64-bit name of the second SIMD&FP source register, encoded in
the "Vm<2:0>" field when <dt> is S16, otherwise the "Vm" field.

<index> Is the element index in the range 0 to 3, encoded in the "M:Vm<3>" field when <dt> is S16,
otherwise in range 0 to 1, encoded in the "M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if scalar_form then op2 = SInt(Elem[Din[m],index,esize]);
 for e = 0 to elements-1
 if !scalar_form then op2 = SInt(Elem[Din[m],e,esize]);
 op1 = SInt(Elem[Din[n],e,esize]);
 // The following only saturates if both op1 and op2 equal -(2^(esize-1))
 (product, sat1) = SignedSatQ(2*op1*op2, 2*esize);
 if add then
 result = SInt(Elem[Qin[d>>1],e,2*esize]) + SInt(product);
 else
 result = SInt(Elem[Qin[d>>1],e,2*esize]) - SInt(product);
 (Elem[Q[d>>1],e,2*esize], sat2) = SignedSatQ(result, 2*esize);
 if sat1 || sat2 then FPSCR.QC = '1';
F6-5762 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.174 VQDMLSL

Vector Saturating Doubling Multiply Subtract Long multiplies corresponding elements in two doubleword vectors,
subtracts double the products from corresponding elements of a quadword vector, and places the results in the same
quadword vector.

The second operand can be a scalar instead of a vector. For more information about scalars see Advanced SIMD
scalars on page F1-4374.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation on page E1-4251.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VQDMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 add = (op == '0');
 scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 esize = 8 << UInt(size); elements = 64 DIV esize;

A2

A2 variant

VQDMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 add = (op == '0');
 scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

1 1 1 1 0 0 1 0 1 D !=11 Vn Vd 1 0 1 1 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 1 0 0 1 0 1 D !=11 Vn Vd 0 1 1 1 N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5763
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

T1 variant

VQDMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 add = (op == '0');
 scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 esize = 8 << UInt(size); elements = 64 DIV esize;

T2

T2 variant

VQDMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 add = (op == '0');
 scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

S16 when size = 01

S32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

1 1 1 0 1 1 1 1 1 D !=11 Vn Vd 1 0 1 1 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 0 1 1 1 1 1 D !=11 Vn Vd 0 1 1 1 N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
F6-5764 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> For encoding A1 and T1: is the 64-bit name of the second SIMD&FP source register, encoded in
the "M:Vm" field.

For encoding A2 and T2: is the 64-bit name of the second SIMD&FP source register, encoded in
the "Vm<2:0>" field when <dt> is S16, otherwise the "Vm" field.

<index> Is the element index in the range 0 to 3, encoded in the "M:Vm<3>" field when <dt> is S16,
otherwise in range 0 to 1, encoded in the "M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if scalar_form then op2 = SInt(Elem[Din[m],index,esize]);
 for e = 0 to elements-1
 if !scalar_form then op2 = SInt(Elem[Din[m],e,esize]);
 op1 = SInt(Elem[Din[n],e,esize]);
 // The following only saturates if both op1 and op2 equal -(2^(esize-1))
 (product, sat1) = SignedSatQ(2*op1*op2, 2*esize);
 if add then
 result = SInt(Elem[Qin[d>>1],e,2*esize]) + SInt(product);
 else
 result = SInt(Elem[Qin[d>>1],e,2*esize]) - SInt(product);
 (Elem[Q[d>>1],e,2*esize], sat2) = SignedSatQ(result, 2*esize);
 if sat1 || sat2 then FPSCR.QC = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5765
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.175 VQDMULH

Vector Saturating Doubling Multiply Returning High Half multiplies corresponding elements in two vectors,
doubles the results, and places the most significant half of the final results in the destination vector. The results are
truncated, for rounded results see VQRDMULH.

The second operand can be a scalar instead of a vector. For more information about scalars see Advanced SIMD
scalars on page F1-4374.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation on page E1-4251.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VQDMULH{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQDMULH{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

64-bit SIMD vector variant

Applies when Q == 0.

VQDMULH{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VQDMULH{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm[x]>

1 1 1 1 0 0 1 0 0 D size Vn Vd 1 0 1 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 Q 1 D !=11 Vn Vd 1 1 0 0 N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size
F6-5766 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

64-bit SIMD vector variant

Applies when Q == 0.

VQDMULH{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQDMULH{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T2

64-bit SIMD vector variant

Applies when Q == 0.

VQDMULH{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VQDMULH{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm[x]>

Decode for all variants of this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

1 1 1 0 1 1 1 1 0 D size Vn Vd 1 0 1 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 Q 1 1 1 1 1 D !=11 Vn Vd 1 1 0 0 N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5767
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

S16 when size = 01

S32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16, Dm is
restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is S32,
Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if scalar_form then op2 = SInt(Elem[D[m],index,esize]);
 for r = 0 to regs-1
 for e = 0 to elements-1
 if !scalar_form then op2 = SInt(Elem[D[m+r],e,esize]);
 op1 = SInt(Elem[D[n+r],e,esize]);
 // The following only saturates if both op1 and op2 equal -(2^(esize-1))
 (result, sat) = SignedSatQ((2*op1*op2) >> esize, esize);
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = '1';
F6-5768 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.176 VQDMULL

Vector Saturating Doubling Multiply Long multiplies corresponding elements in two doubleword vectors, doubles
the products, and places the results in a quadword vector.

The second operand can be a scalar instead of a vector. For more information about scalars see Advanced SIMD
scalars on page F1-4374.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation on page E1-4251.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VQDMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 esize = 8 << UInt(size); elements = 64 DIV esize;

A2

A2 variant

VQDMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

1 1 1 1 0 0 1 0 1 D !=11 Vn Vd 1 1 0 1 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 1 0 0 1 0 1 D !=11 Vn Vd 1 0 1 1 N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 0 1 1 1 1 1 D !=11 Vn Vd 1 1 0 1 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5769
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1 variant

VQDMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 esize = 8 << UInt(size); elements = 64 DIV esize;

T2

T2 variant

VQDMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

S16 when size = 01

S32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16, Dm is
restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is S32,
Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

1 1 1 0 1 1 1 1 1 D !=11 Vn Vd 1 0 1 1 N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
F6-5770 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if scalar_form then op2 = SInt(Elem[Din[m],index,esize]);
 for e = 0 to elements-1
 if !scalar_form then op2 = SInt(Elem[Din[m],e,esize]);
 op1 = SInt(Elem[Din[n],e,esize]);
 // The following only saturates if both op1 and op2 equal -(2^(esize-1))
 (product, sat) = SignedSatQ(2*op1*op2, 2*esize);
 Elem[Q[d>>1],e,2*esize] = product;
 if sat then FPSCR.QC = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5771
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.177 VQMOVN, VQMOVUN

Vector Saturating Move and Narrow copies each element of the operand vector to the corresponding element of the
destination vector.

The operand is a quadword vector. The elements can be any one of:

• 16-bit, 32-bit, or 64-bit signed integers.

• 16-bit, 32-bit, or 64-bit unsigned integers.

The result is a doubleword vector. The elements are half the length of the operand vector elements. If the operand
is unsigned, the results are unsigned. If the operand is signed, the results can be signed or unsigned.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation on page E1-4251.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

This instruction is used by the pseudo-instructions VQRSHRN (zero), VQRSHRUN (zero), VQSHRN (zero), and
VQSHRUN (zero). The pseudo-instruction is never the preferred disassembly.

A1

Signed result variant

Applies when op == 1x.

VQMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

Unsigned result variant

Applies when op == 01.

VQMOVUN{<c>}{<q>}.<dt> <Dd>, <Qm>

Decode for all variants of this encoding

 if op == '00' then SEE "VMOVN";
 if size == '11' || Vm<0> == '1' then UNDEFINED;
 src_unsigned = (op == '11'); dest_unsigned = (op<0> == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

Signed result variant

Applies when op == 1x.

VQMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 op M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 op M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5772 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Unsigned result variant

Applies when op == 01.

VQMOVUN{<c>}{<q>}.<dt> <Dd>, <Qm>

Decode for all variants of this encoding

 if op == '00' then SEE "VMOVN";
 if size == '11' || Vm<0> == '1' then UNDEFINED;
 src_unsigned = (op == '11'); dest_unsigned = (op<0> == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm);

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> For the signed result variant: is the data type for the elements of the operand, encoded in the
"op<0>:size" field. It can have the following values:

S16 when op<0> = 0, size = 00

S32 when op<0> = 0, size = 01

S64 when op<0> = 0, size = 10

U16 when op<0> = 1, size = 00

U32 when op<0> = 1, size = 01

U64 when op<0> = 1, size = 10

The following encodings are reserved:

• op<0> = 0, size = 11.

• op<0> = 1, size = 11.

For the unsigned result variant: is the data type for the elements of the operand, encoded in the "size"
field. It can have the following values:

S16 when size = 00

S32 when size = 01

S64 when size = 10

The encoding size = 11 is reserved.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 operand = Int(Elem[Qin[m>>1],e,2*esize], src_unsigned);
 (Elem[D[d],e,esize], sat) = SatQ(operand, esize, dest_unsigned);
 if sat then FPSCR.QC = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5773
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.178 VQNEG

Vector Saturating Negate negates each element in a vector, and places the results in the destination vector.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation on page E1-4251.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VQNEG{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQNEG{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VQNEG{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQNEG{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 1 1 1 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 1 1 1 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5774 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

S8 when size = 00

S16 when size = 01

S32 when size = 10

The encoding size = 11 is reserved.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 result = -SInt(Elem[D[m+r],e,esize]);
 (Elem[D[d+r],e,esize], sat) = SignedSatQ(result, esize);
 if sat then FPSCR.QC = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5775
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.179 VQRDMLAH

Vector Saturating Rounding Doubling Multiply Accumulate Returning High Half. This instruction multiplies the
vector elements of the first source SIMD&FP register with either the corresponding vector elements of the second
source SIMD&FP register or the value of a vector element of the second source SIMD&FP register, without
saturating the multiply results, doubles the results, and accumulates the most significant half of the final results with
the vector elements of the destination SIMD&FP register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation on page E1-4251.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

(FEAT_RDM)

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLAH{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLAH{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 add = TRUE; scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

(FEAT_RDM)

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLAH{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 0 1 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 Q 1 D !=11 Vn Vd 1 1 1 0 N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size
F6-5776 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VQRDMLAH{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

Decode for all variants of this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;
 if size == '11' then SEE "Related encodings";
 if size == '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 add = TRUE; scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

(FEAT_RDM)

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLAH{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLAH{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;
 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 add = TRUE; scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

(FEAT_RDM)

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 0 1 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 Q 1 1 1 1 1 D !=11 Vn Vd 1 1 1 0 N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5777
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLAH{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLAH{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

Decode for all variants of this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;
 if InITBlock() then UNPREDICTABLE;
 if size == '11' then SEE "Related encodings";
 if size == '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 add = TRUE; scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

S16 when size = 01

S32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16, Dm is
restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is S32,
Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".
F6-5778 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (esize-1);
 if scalar_form then op2 = SInt(Elem[D[m],index,esize]);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = SInt(Elem[D[n+r],e,esize]);
 op3 = SInt(Elem[D[d+r],e,esize]) << esize;
 if !scalar_form then op2 = SInt(Elem[D[m+r],e,esize]);
 (result, sat) = SignedSatQ((op3 + 2*(op1*op2) + round_const) >> esize, esize);
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5779
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.180 VQRDMLSH

Vector Saturating Rounding Doubling Multiply Subtract Returning High Half. This instruction multiplies the vector
elements of the first source SIMD&FP register with either the corresponding vector elements of the second source
SIMD&FP register or the value of a vector element of the second source SIMD&FP register, without saturating the
multiply results, doubles the results, and subtracts the most significant half of the final results from the vector
elements of the destination SIMD&FP register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation on page E1-4251.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

(FEAT_RDM)

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLSH{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLSH{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 add = FALSE; scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

(FEAT_RDM)

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLSH{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 1 0 0 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 Q 1 D !=11 Vn Vd 1 1 1 1 N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size
F6-5780 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VQRDMLSH{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

Decode for all variants of this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;
 if size == '11' then SEE "Related encodings";
 if size == '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 add = FALSE; scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

(FEAT_RDM)

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLSH{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLSH{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;
 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 add = FALSE; scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

(FEAT_RDM)

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 1 0 0 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 Q 1 1 1 1 1 D !=11 Vn Vd 1 1 1 1 N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5781
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLSH{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLSH{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

Decode for all variants of this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;
 if InITBlock() then UNPREDICTABLE;
 if size == '11' then SEE "Related encodings";
 if size == '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 add = FALSE; scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

S16 when size = 01

S32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16, Dm is
restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is S32,
Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".
F6-5782 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (esize-1);
 if scalar_form then op2 = SInt(Elem[D[m],index,esize]);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = SInt(Elem[D[n+r],e,esize]);
 op3 = SInt(Elem[D[d+r],e,esize]) << esize;
 if !scalar_form then op2 = SInt(Elem[D[m+r],e,esize]);
 (result, sat) = SignedSatQ((op3 - 2*(op1*op2) + round_const) >> esize, esize);
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5783
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.181 VQRDMULH

Vector Saturating Rounding Doubling Multiply Returning High Half multiplies corresponding elements in two
vectors, doubles the results, and places the most significant half of the final results in the destination vector. The
results are rounded. For truncated results see VQDMULH.

The second operand can be a scalar instead of a vector. For more information about scalars see Advanced SIMD
scalars on page F1-4374.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation on page E1-4251.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMULH{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMULH{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMULH{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMULH{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm[x]>

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 0 1 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 Q 1 D !=11 Vn Vd 1 1 0 1 N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size
F6-5784 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMULH{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMULH{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T2

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMULH{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMULH{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm[x]>

Decode for all variants of this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 0 1 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 Q 1 1 1 1 1 D !=11 Vn Vd 1 1 0 1 N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5785
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

S16 when size = 01

S32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16, Dm is
restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is S32,
Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (esize-1);
 if scalar_form then op2 = SInt(Elem[D[m],index,esize]);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = SInt(Elem[D[n+r],e,esize]);
 if !scalar_form then op2 = SInt(Elem[D[m+r],e,esize]);
 (result, sat) = SignedSatQ((2*op1*op2 + round_const) >> esize, esize);
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = '1';
F6-5786 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.182 VQRSHL

Vector Saturating Rounding Shift Left takes each element in a vector, shifts them by a value from the least
significant byte of the corresponding element of a second vector, and places the results in the destination vector. If
the shift value is positive, the operation is a left shift. Otherwise, it is a right shift.

For truncated results see VQSHL (register).

The first operand and result elements are the same data type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The second operand is a signed integer of the same size.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation on page E1-4251.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VQRSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector variant

Applies when Q == 1.

VQRSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VQRSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 0 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 0 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5787
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VQRSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

S64 when U = 0, size = 11

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

U64 when U = 1, size = 11

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 shift = SInt(Elem[D[n+r],e,esize]<7:0>);
 round_const = 1 << (-1-shift); // 0 for left shift, 2^(n-1) for right shift
 operand = Int(Elem[D[m+r],e,esize], unsigned);
 (result, sat) = SatQ((operand + round_const) << shift, esize, unsigned);
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = '1';
F6-5788 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.183 VQRSHRN (zero)

Vector Saturating Rounding Shift Right, Narrow takes each element in a quadword vector of integers, right shifts
them by an immediate value, and places the signed rounded results in a doubleword vector

This instruction is a pseudo-instruction of the VQMOVN, VQMOVUN instruction. This means that:

• The encodings in this description are named to match the encodings of VQMOVN, VQMOVUN.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.

A1

Signed result variant

VQRSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VQMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

T1

Signed result variant

VQRSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VQMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operand, encoded in the "op<0>:size" field. It can have the
following values:

S16 when op<0> = 0, size = 00

S32 when op<0> = 0, size = 01

S64 when op<0> = 0, size = 10

U16 when op<0> = 1, size = 00

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 1 x M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 1 x M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5789
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
U32 when op<0> = 1, size = 01

U64 when op<0> = 1, size = 10

The following encodings are reserved:

• op<0> = 0, size = 11.

• op<0> = 1, size = 11.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.
F6-5790 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.184 VQRSHRN, VQRSHRUN

Vector Saturating Rounding Shift Right, Narrow takes each element in a quadword vector of integers, right shifts
them by an immediate value, and places the rounded results in a doubleword vector.

For truncated results, see VQSHL (register).

The operand elements must all be the same size, and can be any one of:

• 16-bit, 32-bit, or 64-bit signed integers.

• 16-bit, 32-bit, or 64-bit unsigned integers.

The result elements are half the width of the operand elements. If the operand elements are signed, the results can
be either signed or unsigned. If the operand elements are unsigned, the result elements must also be unsigned.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation on page E1-4251.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Signed result variant

Applies when !(imm6 == 000xxx) && op == 1.

VQRSHRN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Unsigned result variant

Applies when U == 1 && !(imm6 == 000xxx) && op == 0.

VQRSHRUN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Decode for all variants of this encoding

 if imm6 == '000xxx' then SEE "Related encodings";
 if U == '0' && op == '0' then SEE "VRSHRN";
 if Vm<0> == '1' then UNDEFINED;
 case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 src_unsigned = (U == '1' && op == '1'); dest_unsigned = (U == '1');
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

1 1 1 1 0 0 1 U 1 D imm6 Vd 1 0 0 op 0 1 M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 1 0 0 op 0 1 M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5791
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Signed result variant

Applies when !(imm6 == 000xxx) && op == 1.

VQRSHRN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Unsigned result variant

Applies when U == 1 && !(imm6 == 000xxx) && op == 0.

VQRSHRUN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Decode for all variants of this encoding

 if imm6 == '000xxx' then SEE "Related encodings";
 if U == '0' && op == '0' then SEE "VRSHRN";
 if Vm<0> == '1' then UNDEFINED;
 case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 src_unsigned = (U == '1' && op == '1'); dest_unsigned = (U == '1');
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4442 for the T32
instruction set, or Advanced SIMD one register and modified immediate on page F4-4551 for the A32 instruction
set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<type> For the signed result variant: is the data type for the elements of the vectors, encoded in the "U"
field. It can have the following values:

S when U = 0

U when U = 1

For the unsigned result variant: is the data type for the elements of the vectors, encoded in the "U"
field. It can have the following values:

S when U = 1

<size> Is the data size for the elements of the vectors, encoded in the "imm6<5:3>" field. It can have the
following values:

16 when imm6<5:3> = 001

32 when imm6<5:3> = 01x

64 when imm6<5:3> = 1xx

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<imm> Is an immediate value, in the range 1 to <size>/2, encoded in the "imm6" field as <size>/2 - <imm>.
F6-5792 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (shift_amount - 1);
 for e = 0 to elements-1
 operand = Int(Elem[Qin[m>>1],e,2*esize], src_unsigned);
 (result, sat) = SatQ((operand + round_const) >> shift_amount, esize, dest_unsigned);
 Elem[D[d],e,esize] = result;
 if sat then FPSCR.QC = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5793
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.185 VQRSHRUN (zero)

Vector Saturating Rounding Shift Right, Narrow takes each element in a quadword vector of integers, right shifts
them by an immediate value, and places the unsigned rounded results in a doubleword vector

This instruction is a pseudo-instruction of the VQMOVN, VQMOVUN instruction. This means that:

• The encodings in this description are named to match the encodings of VQMOVN, VQMOVUN.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.

A1

Unsigned result variant

VQRSHRUN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VQMOVUN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

T1

Unsigned result variant

VQRSHRUN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VQMOVUN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operand, encoded in the "size" field. It can have the following
values:

S16 when size = 00

S32 when size = 01

S64 when size = 10

The encoding size = 11 is reserved.

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5794 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5795
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.186 VQSHL, VQSHLU (immediate)

Vector Saturating Shift Left (immediate) takes each element in a vector of integers, left shifts them by an immediate
value, and places the results in a second vector.

The operand elements must all be the same size, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The result elements are the same size as the operand elements. If the operand elements are signed, the results can
be either signed or unsigned. If the operand elements are unsigned, the result elements must also be unsigned.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation on page E1-4251.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

VQSHL,double,signed-result variant

Applies when !(imm6 == 000xxx && L == 0) && op == 1 && Q == 0.

VQSHL{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

VQSHL,quad,signed-result variant

Applies when !(imm6 == 000xxx && L == 0) && op == 1 && Q == 1.

VQSHL{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

VQSHLU,double,unsigned-result variant

Applies when U == 1 && !(imm6 == 000xxx && L == 0) && op == 0 && Q == 0.

VQSHLU{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

VQSHLU,quad,unsigned-result variant

Applies when U == 1 && !(imm6 == 000xxx && L == 0) && op == 0 && Q == 1.

VQSHLU{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) == '0000xxx' then SEE "Related encodings";
 if U == '0' && op == '0' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(imm6);
 src_unsigned = (U == '1' && op == '1'); dest_unsigned = (U == '1');
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

1 1 1 1 0 0 1 U 1 D imm6 Vd 0 1 1 op L Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0
F6-5796 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

VQSHL,double,signed-result variant

Applies when !(imm6 == 000xxx && L == 0) && op == 1 && Q == 0.

VQSHL{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

VQSHL,quad,signed-result variant

Applies when !(imm6 == 000xxx && L == 0) && op == 1 && Q == 1.

VQSHL{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

VQSHLU,double,unsigned-result variant

Applies when U == 1 && !(imm6 == 000xxx && L == 0) && op == 0 && Q == 0.

VQSHLU{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

VQSHLU,quad,unsigned-result variant

Applies when U == 1 && !(imm6 == 000xxx && L == 0) && op == 0 && Q == 1.

VQSHLU{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) == '0000xxx' then SEE "Related encodings";
 if U == '0' && op == '0' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(imm6);
 src_unsigned = (U == '1' && op == '1'); dest_unsigned = (U == '1');
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4442 for the T32
instruction set, or Advanced SIMD one register and modified immediate on page F4-4551 for the A32 instruction
set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<type> Is the data type for the elements of the vectors, encoded in the "U" field. It can have the following
values:

S when U = 0

U when U = 1

1 1 1 U 1 1 1 1 1 D imm6 Vd 0 1 1 op L Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5797
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the
following values:

8 when L = 0, imm6<5:3> = 001

16 when L = 0, imm6<5:3> = 01x

32 when L = 0, imm6<5:3> = 1xx

64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 0 to <size>-1, encoded in the "imm6" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 operand = Int(Elem[D[m+r],e,esize], src_unsigned);
 (result, sat) = SatQ(operand << shift_amount, esize, dest_unsigned);
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = '1';
F6-5798 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.187 VQSHL (register)

Vector Saturating Shift Left (register) takes each element in a vector, shifts them by a value from the least significant
byte of the corresponding element of a second vector, and places the results in the destination vector. If the shift
value is positive, the operation is a left shift. Otherwise, it is a right shift.

The results are truncated. For rounded results, see VQRSHL.

The first operand and result elements are the same data type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The second operand is a signed integer of the same size.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation on page E1-4251.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VQSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector variant

Applies when Q == 1.

VQSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VQSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 0 0 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 0 0 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5799
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VQSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

S64 when U = 0, size = 11

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

U64 when U = 1, size = 11

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 shift = SInt(Elem[D[n+r],e,esize]<7:0>);
 operand = Int(Elem[D[m+r],e,esize], unsigned);
 (result,sat) = SatQ(operand << shift, esize, unsigned);
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = '1';
F6-5800 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.188 VQSHRN (zero)

Vector Saturating Shift Right, Narrow takes each element in a quadword vector of integers, right shifts them by an
immediate value, and places the signed truncated results in a doubleword vector

This instruction is a pseudo-instruction of the VQMOVN, VQMOVUN instruction. This means that:

• The encodings in this description are named to match the encodings of VQMOVN, VQMOVUN.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.

A1

Signed result variant

VQSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VQMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

T1

Signed result variant

VQSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VQMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operand, encoded in the "op<0>:size" field. It can have the
following values:

S16 when op<0> = 0, size = 00

S32 when op<0> = 0, size = 01

S64 when op<0> = 0, size = 10

U16 when op<0> = 1, size = 00

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 1 x M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 1 x M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5801
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
U32 when op<0> = 1, size = 01

U64 when op<0> = 1, size = 10

The following encodings are reserved:

• op<0> = 0, size = 11.

• op<0> = 1, size = 11.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.
F6-5802 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.189 VQSHRN, VQSHRUN

Vector Saturating Shift Right, Narrow takes each element in a quadword vector of integers, right shifts them by an
immediate value, and places the truncated results in a doubleword vector.

For rounded results, see VQRSHRN, VQRSHRUN.

The operand elements must all be the same size, and can be any one of:

• 16-bit, 32-bit, or 64-bit signed integers.

• 16-bit, 32-bit, or 64-bit unsigned integers.

The result elements are half the width of the operand elements. If the operand elements are signed, the results can
be either signed or unsigned. If the operand elements are unsigned, the result elements must also be unsigned.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation on page E1-4251.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Signed result variant

Applies when !(imm6 == 000xxx) && op == 1.

VQSHRN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Unsigned result variant

Applies when U == 1 && !(imm6 == 000xxx) && op == 0.

VQSHRUN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Decode for all variants of this encoding

 if imm6 == '000xxx' then SEE "Related encodings";
 if U == '0' && op == '0' then SEE "VSHRN";
 if Vm<0> == '1' then UNDEFINED;
 case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 src_unsigned = (U == '1' && op == '1'); dest_unsigned = (U == '1');
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

1 1 1 1 0 0 1 U 1 D imm6 Vd 1 0 0 op 0 0 M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 1 0 0 op 0 0 M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5803
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Signed result variant

Applies when !(imm6 == 000xxx) && op == 1.

VQSHRN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Unsigned result variant

Applies when U == 1 && !(imm6 == 000xxx) && op == 0.

VQSHRUN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Decode for all variants of this encoding

 if imm6 == '000xxx' then SEE "Related encodings";
 if U == '0' && op == '0' then SEE "VSHRN";
 if Vm<0> == '1' then UNDEFINED;
 case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 src_unsigned = (U == '1' && op == '1'); dest_unsigned = (U == '1');
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4442 for the T32
instruction set, or Advanced SIMD one register and modified immediate on page F4-4551 for the A32 instruction
set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<type> For the signed result variant: is the data type for the elements of the vectors, encoded in the "U"
field. It can have the following values:

S when U = 0

U when U = 1

For the unsigned result variant: is the data type for the elements of the vectors, encoded in the "U"
field. It can have the following values:

S when U = 1

<size> Is the data size for the elements of the vectors, encoded in the "imm6<5:3>" field. It can have the
following values:

16 when imm6<5:3> = 001

32 when imm6<5:3> = 01x

64 when imm6<5:3> = 1xx

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<imm> Is an immediate value, in the range 1 to <size>/2, encoded in the "imm6" field as <size>/2 - <imm>.
F6-5804 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 operand = Int(Elem[Qin[m>>1],e,2*esize], src_unsigned);
 (result, sat) = SatQ(operand >> shift_amount, esize, dest_unsigned);
 Elem[D[d],e,esize] = result;
 if sat then FPSCR.QC = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5805
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.190 VQSHRUN (zero)

Vector Saturating Shift Right, Narrow takes each element in a quadword vector of integers, right shifts them by an
immediate value, and places the unsigned truncated results in a doubleword vector

This instruction is a pseudo-instruction of the VQMOVN, VQMOVUN instruction. This means that:

• The encodings in this description are named to match the encodings of VQMOVN, VQMOVUN.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.

A1

Unsigned result variant

VQSHRUN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VQMOVUN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

T1

Unsigned result variant

VQSHRUN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VQMOVUN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operand, encoded in the "size" field. It can have the following
values:

S16 when size = 00

S32 when size = 01

S64 when size = 10

The encoding size = 11 is reserved.

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5806 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5807
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.191 VQSUB

Vector Saturating Subtract subtracts the elements of the second operand vector from the corresponding elements of
the first operand vector, and places the results in the destination vector. Signed and unsigned operations are distinct.

The operand and result elements must all be the same type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation on page E1-4251.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VQSUB{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQSUB{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VQSUB{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQSUB{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 0 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 0 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5808 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

S64 when U = 0, size = 11

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

U64 when U = 1, size = 11

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 diff = Int(Elem[D[n+r],e,esize], unsigned) - Int(Elem[D[m+r],e,esize], unsigned);
 (Elem[D[d+r],e,esize], sat) = SatQ(diff, esize, unsigned);
 if sat then FPSCR.QC = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5809
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.192 VRADDHN

Vector Rounding Add and Narrow, returning High Half adds corresponding elements in two quadword vectors, and
places the most significant half of each result in a doubleword vector. The results are rounded. For truncated results,
see VADDHN.

The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned
integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VRADDHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VRADDHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

1 1 1 1 0 0 1 1 1 D !=11 Vn Vd 0 1 0 0 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 1 1 1 1 1 1 D !=11 Vn Vd 0 1 0 0 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
F6-5810 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

I16 when size = 00

I32 when size = 01

I64 when size = 10

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (esize-1);
 for e = 0 to elements-1
 result = Elem[Qin[n>>1],e,2*esize] + Elem[Qin[m>>1],e,2*esize] + round_const;
 Elem[D[d],e,esize] = result<2*esize-1:esize>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5811
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.193 VRECPE

Vector Reciprocal Estimate finds an approximate reciprocal of each element in the operand vector, and places the
results in the destination vector.

The operand and result elements are the same type, and can be floating-point numbers or unsigned integers.

For details of the operation performed by this instruction see Floating-point reciprocal square root estimate and
step on page E1-4276.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRECPE{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRECPE{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && (!HaveFP16Ext() || F == '0')) || size IN {'00', '11'} then UNDEFINED;
 floating_point = (F == '1');
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRECPE{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRECPE{<c>}{<q>}.<dt> <Qd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 1 0 F 0 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 1 0 F 0 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5812 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && (!HaveFP16Ext() || F == '0')) || size IN {'00', '11'} then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 floating_point = (F == '1');
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "F:size" field. It can have the
following values:

U32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Newton-Raphson iteration

For details of the operation performed and how it can be used in a Newton-Raphson iteration to calculate the
reciprocal of a number, see Floating-point reciprocal estimate and step on page E1-4275.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 Elem[D[d+r],e,esize] = FPRecipEstimate(Elem[D[m+r],e,esize], StandardFPSCRValue());
 else
 Elem[D[d+r],e,esize] = UnsignedRecipEstimate(Elem[D[m+r],e,esize]);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5813
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.194 VRECPS

Vector Reciprocal Step multiplies the elements of one vector by the corresponding elements of another vector,
subtracts each of the products from 2.0, and places the results into the elements of the destination vector.

The operand and result elements are floating-point numbers.

For details of the operation performed by this instruction see Floating-point reciprocal estimate and step on
page E1-4275.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRECPS{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRECPS{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRECPS{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRECPS{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 1 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5814 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Newton-Raphson iteration

For details of the operation performed and how it can be used in a Newton-Raphson iteration to calculate the
reciprocal of a number, see Floating-point reciprocal estimate and step on page E1-4275.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPRecipStep(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize]);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5815
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.195 VREV16

Vector Reverse in halfwords reverses the order of 8-bit elements in each halfword of the vector, and places the result
in the corresponding destination vector.

There is no distinction between data types, other than size.

The following figure shows the operation of VREV16 doubleword operation.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VREV16{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VREV16{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if UInt(op)+UInt(size) >= 3 then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

 esize = 8 << UInt(size);
 integer container_size;
 case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;
 integer containers = 64 DIV container_size;
 integer elements_per_container = container_size DIV esize;

 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Dm

Dd

VREV16.8, doubleword

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 0 1 0 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5816 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

64-bit SIMD vector variant

Applies when Q == 0.

VREV16{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VREV16{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if UInt(op)+UInt(size) >= 3 then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

 esize = 8 << UInt(size);
 integer container_size;
 case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;
 integer containers = 64 DIV container_size;
 integer elements_per_container = container_size DIV esize;

 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operand, encoded in the "size" field. It can have the following
values:

8 when size = 00

The following encodings are reserved:

• size = 01.

• size = 1x.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 0 1 0 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5817
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();

 bits(64) result;
 integer element;
 integer rev_element;
 for r = 0 to regs-1
 element = 0;
 for c = 0 to containers-1
 rev_element = element + elements_per_container - 1;
 for e = 0 to elements_per_container-1
 Elem[result, rev_element, esize] = Elem[D[m+r], element, esize];
 element = element + 1;
 rev_element = rev_element - 1;
 D[d+r] = result;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5818 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.196 VREV32

Vector Reverse in words reverses the order of 8-bit or 16-bit elements in each word of the vector, and places the
result in the corresponding destination vector.

There is no distinction between data types, other than size.

The following figure shows the operation of VREV32 doubleword operations.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VREV32{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VREV32{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if UInt(op)+UInt(size) >= 3 then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

 esize = 8 << UInt(size);
 integer container_size;
 case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;
 integer containers = 64 DIV container_size;
 integer elements_per_container = container_size DIV esize;

 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Dm Dm

Dd Dd

VREV32.8, doubleword VREV32.16, doubleword

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 0 0 1 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5819
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

64-bit SIMD vector variant

Applies when Q == 0.

VREV32{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VREV32{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if UInt(op)+UInt(size) >= 3 then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

 esize = 8 << UInt(size);
 integer container_size;
 case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;
 integer containers = 64 DIV container_size;
 integer elements_per_container = container_size DIV esize;

 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operand, encoded in the "size" field. It can have the following
values:

8 when size = 00

16 when size = 01

The encoding size = 1x is reserved.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 0 0 1 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5820 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 bits(64) result;
 integer element;
 integer rev_element;
 for r = 0 to regs-1
 element = 0;
 for c = 0 to containers-1
 rev_element = element + elements_per_container - 1;
 for e = 0 to elements_per_container-1
 Elem[result, rev_element, esize] = Elem[D[m+r], element, esize];
 element = element + 1;
 rev_element = rev_element - 1;
 D[d+r] = result;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5821
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.197 VREV64

Vector Reverse in doublewords reverses the order of 8-bit, 16-bit, or 32-bit elements in each doubleword of the
vector, and places the result in the corresponding destination vector.

There is no distinction between data types, other than size.

The following figure shows the operation of VREV64 doubleword operations.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VREV64{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VREV64{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if UInt(op)+UInt(size) >= 3 then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

 esize = 8 << UInt(size);
 integer container_size;
 case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;
 integer containers = 64 DIV container_size;
 integer elements_per_container = container_size DIV esize;

 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Dm Qm

Dd Qm

VREV64.8, doubleword VREV64.32, quadword

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 0 0 0 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5822 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

64-bit SIMD vector variant

Applies when Q == 0.

VREV64{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VREV64{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if UInt(op)+UInt(size) >= 3 then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

 esize = 8 << UInt(size);
 integer container_size;
 case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;
 integer containers = 64 DIV container_size;
 integer elements_per_container = container_size DIV esize;

 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operand, encoded in the "size" field. It can have the following
values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 0 0 0 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5823
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();

 bits(64) result;
 integer element;
 integer rev_element;
 for r = 0 to regs-1
 element = 0;
 for c = 0 to containers-1
 rev_element = element + elements_per_container - 1;
 for e = 0 to elements_per_container-1
 Elem[result, rev_element, esize] = Elem[D[m+r], element, esize];
 element = element + 1;
 rev_element = rev_element - 1;
 D[d+r] = result;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5824 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.198 VRHADD

Vector Rounding Halving Add adds corresponding elements in two vectors of integers, shifts each result right one
bit, and places the final results in the destination vector.

The operand and result elements are all the same type, and can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers.

• 8-bit, 16-bit, or 32-bit unsigned integers.

The results of the halving operations are rounded. For truncated results, see VHADD.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRHADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRHADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRHADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRHADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 0 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 0 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5825
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Int(Elem[D[n+r],e,esize], unsigned);
 op2 = Int(Elem[D[m+r],e,esize], unsigned);
 result = op1 + op2 + 1;
 Elem[D[d+r],e,esize] = result<esize:1>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5826 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5827
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.199 VRINTA (Advanced SIMD)

Vector Round floating-point to integer towards Nearest with Ties to Away rounds a vector of floating-point values
to integral floating-point values of the same size using the Round to Nearest with Ties to Away rounding mode. A
zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a
NaN is propagated as for normal arithmetic.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTA{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTA{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if op<2> != op<0> then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 // Rounding encoded differently from other VCVT and VRINT instructions
 rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTA{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTA{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if op<2> != op<0> then SEE "Related encodings";
 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 0 1 0 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 0 1 0 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 7 6 5 4 3 0

op
F6-5828 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 // Rounding encoded differently from other VCVT and VRINT instructions
 rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD two registers misc on page F3-4437 for the T32 instruction set, or
Advanced SIMD two registers misc on page F4-4547 for the A32 instruction set.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

F16 when size = 01

F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 result = FPRoundInt(op1, StandardFPSCRValue(), rounding, exact);
 Elem[D[d+r],e,esize] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5829
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.200 VRINTA (floating-point)

Round floating-point to integer to Nearest with Ties to Away rounds a floating-point value to an integral
floating-point value of the same size using the Round to Nearest with Ties to Away rounding mode. A zero input
gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is
propagated as for normal arithmetic.

A1

Half-precision scalar variant

Applies when size == 01.

VRINTA{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTA{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTA{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 rounding = FPDecodeRM(RM); exact = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VRINTA{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTA{<q>}.F32 <Sd>, <Sm>

1 1 1 1 1 1 1 0 1 D 1 1 1 0 0 0 Vd 1 0 !=00 0 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM size

1 1 1 1 1 1 1 0 1 D 1 1 1 0 0 0 Vd 1 0 !=00 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM size
F6-5830 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when size == 11.

VRINTA{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 rounding = FPDecodeRM(RM); exact = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 case esize of
 when 16
 S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, FPSCR[], rounding, exact);
 when 32
 S[d] = FPRoundInt(S[m], FPSCR[], rounding, exact);
 when 64
 D[d] = FPRoundInt(D[m], FPSCR[], rounding, exact);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5831
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.201 VRINTM (Advanced SIMD)

Vector Round floating-point to integer towards -Infinity rounds a vector of floating-point values to integral
floating-point values of the same size, using the Round towards -Infinity rounding mode. A zero input gives a zero
result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as
for normal arithmetic.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTM{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTM{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if op<2> != op<0> then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 // Rounding encoded differently from other VCVT and VRINT instructions
 rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTM{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTM{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if op<2> != op<0> then SEE "Related encodings";
 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 1 0 1 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 1 0 1 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 7 6 5 4 3 0

op
F6-5832 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 // Rounding encoded differently from other VCVT and VRINT instructions
 rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD two registers misc on page F3-4437 for the T32 instruction set, or
Advanced SIMD two registers misc on page F4-4547 for the A32 instruction set.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

F16 when size = 01

F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 result = FPRoundInt(op1, StandardFPSCRValue(), rounding, exact);
 Elem[D[d+r],e,esize] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5833
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.202 VRINTM (floating-point)

Round floating-point to integer towards -Infinity rounds a floating-point value to an integral floating-point value of
the same size using the Round towards -Infinity rounding mode. A zero input gives a zero result with the same sign,
an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

Half-precision scalar variant

Applies when size == 01.

VRINTM{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTM{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTM{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 rounding = FPDecodeRM(RM); exact = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VRINTM{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTM{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

1 1 1 1 1 1 1 0 1 D 1 1 1 0 1 1 Vd 1 0 !=00 0 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM size

1 1 1 1 1 1 1 0 1 D 1 1 1 0 1 1 Vd 1 0 !=00 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM size
F6-5834 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VRINTM{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 rounding = FPDecodeRM(RM); exact = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 case esize of
 when 16
 S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, FPSCR[], rounding, exact);
 when 32
 S[d] = FPRoundInt(S[m], FPSCR[], rounding, exact);
 when 64
 D[d] = FPRoundInt(D[m], FPSCR[], rounding, exact);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5835
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.203 VRINTN (Advanced SIMD)

Vector Round floating-point to integer to Nearest rounds a vector of floating-point values to integral floating-point
values of the same size using the Round to Nearest rounding mode. A zero input gives a zero result with the same
sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTN{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTN{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if op<2> != op<0> then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 // Rounding encoded differently from other VCVT and VRINT instructions
 rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTN{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTN{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if op<2> != op<0> then SEE "Related encodings";
 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 // Rounding encoded differently from other VCVT and VRINT instructions

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 0 0 0 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 0 0 0 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 7 6 5 4 3 0

op
F6-5836 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD two registers misc on page F3-4437 for the T32 instruction set, or
Advanced SIMD two registers misc on page F4-4547 for the A32 instruction set.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

F16 when size = 01

F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 result = FPRoundInt(op1, StandardFPSCRValue(), rounding, exact);
 Elem[D[d+r],e,esize] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5837
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.204 VRINTN (floating-point)

Round floating-point to integer to Nearest rounds a floating-point value to an integral floating-point value of the
same size using the Round to Nearest rounding mode. A zero input gives a zero result with the same sign, an infinite
input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

Half-precision scalar variant

Applies when size == 01.

VRINTN{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTN{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTN{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 rounding = FPDecodeRM(RM); exact = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VRINTN{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTN{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

1 1 1 1 1 1 1 0 1 D 1 1 1 0 0 1 Vd 1 0 !=00 0 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM size

1 1 1 1 1 1 1 0 1 D 1 1 1 0 0 1 Vd 1 0 !=00 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM size
F6-5838 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VRINTN{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 rounding = FPDecodeRM(RM); exact = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 case esize of
 when 16
 S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, FPSCR[], rounding, exact);
 when 32
 S[d] = FPRoundInt(S[m], FPSCR[], rounding, exact);
 when 64
 D[d] = FPRoundInt(D[m], FPSCR[], rounding, exact);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5839
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.205 VRINTP (Advanced SIMD)

Vector Round floating-point to integer towards +Infinity rounds a vector of floating-point values to integral
floating-point values of the same size using the Round towards +Infinity rounding mode. A zero input gives a zero
result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as
for normal arithmetic.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTP{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTP{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if op<2> != op<0> then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 // Rounding encoded differently from other VCVT and VRINT instructions
 rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTP{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTP{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if op<2> != op<0> then SEE "Related encodings";
 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 1 1 1 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 1 1 1 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 7 6 5 4 3 0

op
F6-5840 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 // Rounding encoded differently from other VCVT and VRINT instructions
 rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD two registers misc on page F3-4437 for the T32 instruction set, or
Advanced SIMD two registers misc on page F4-4547 for the A32 instruction set.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

F16 when size = 01

F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 result = FPRoundInt(op1, StandardFPSCRValue(), rounding, exact);
 Elem[D[d+r],e,esize] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5841
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.206 VRINTP (floating-point)

Round floating-point to integer towards +Infinity rounds a floating-point value to an integral floating-point value
of the same size using the Round towards +Infinity rounding mode. A zero input gives a zero result with the same
sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

Half-precision scalar variant

Applies when size == 01.

VRINTP{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTP{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTP{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 rounding = FPDecodeRM(RM); exact = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VRINTP{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTP{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

1 1 1 1 1 1 1 0 1 D 1 1 1 0 1 0 Vd 1 0 !=00 0 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM size

1 1 1 1 1 1 1 0 1 D 1 1 1 0 1 0 Vd 1 0 !=00 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM size
F6-5842 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VRINTP{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 rounding = FPDecodeRM(RM); exact = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 case esize of
 when 16
 S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, FPSCR[], rounding, exact);
 when 32
 S[d] = FPRoundInt(S[m], FPSCR[], rounding, exact);
 when 64
 D[d] = FPRoundInt(D[m], FPSCR[], rounding, exact);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5843
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.207 VRINTR

Round floating-point to integer rounds a floating-point value to an integral floating-point value of the same size
using the rounding mode specified in the FPSCR. A zero input gives a zero result with the same sign, an infinite
input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

Half-precision scalar variant

Applies when size == 01.

VRINTR{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTR{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTR{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR[]);
 exact = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VRINTR{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTR{<c>}{<q>}.F32 <Sd>, <Sm>

!=1111 1 1 1 0 1 D 1 1 0 1 1 0 Vd 1 0 size 0 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 0 Vd 1 0 size 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5844 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when size == 11.

VRINTR{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR[]);
 exact = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 case esize of
 when 16
 S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, FPSCR[], rounding, exact);
 when 32
 S[d] = FPRoundInt(S[m], FPSCR[], rounding, exact);
 when 64
 D[d] = FPRoundInt(D[m], FPSCR[], rounding, exact);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5845
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.208 VRINTX (Advanced SIMD)

Vector round floating-point to integer inexact rounds a vector of floating-point values to integral floating-point
values of the same size, using the Round to Nearest rounding mode, and raises the Inexact exception when the result
value is not numerically equal to the input value. A zero input gives a zero result with the same sign, an infinite input
gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTX{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTX{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPRounding_TIEEVEN; exact = TRUE;
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTX{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTX{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPRounding_TIEEVEN; exact = TRUE;
 case size of
 when '01' esize = 16; elements = 4;

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 0 0 1 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 0 0 1 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5846 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

F16 when size = 01

F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 result = FPRoundInt(op1, StandardFPSCRValue(), rounding, exact);
 Elem[D[d+r],e,esize] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5847
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.209 VRINTX (floating-point)

Round floating-point to integer inexact rounds a floating-point value to an integral floating-point value of the same
size, using the rounding mode specified in the FPSCR, and raises an Inexact exception when the result value is not
numerically equal to the input value. A zero input gives a zero result with the same sign, an infinite input gives an
infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

Half-precision scalar variant

Applies when size == 01.

VRINTX{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTX{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTX{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 exact = TRUE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VRINTX{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTX{<c>}{<q>}.F32 <Sd>, <Sm>

!=1111 1 1 1 0 1 D 1 1 0 1 1 1 Vd 1 0 size 0 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 1 Vd 1 0 size 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5848 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when size == 11.

VRINTX{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 exact = TRUE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 rounding = FPRoundingMode(FPSCR[]);
 case esize of
 when 16
 S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, FPSCR[], rounding, exact);
 when 32
 S[d] = FPRoundInt(S[m], FPSCR[], rounding, exact);
 when 64
 D[d] = FPRoundInt(D[m], FPSCR[], rounding, exact);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5849
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.210 VRINTZ (Advanced SIMD)

Vector round floating-point to integer towards Zero rounds a vector of floating-point values to integral
floating-point values of the same size, using the Round towards Zero rounding mode. A zero input gives a zero result
with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for
normal arithmetic.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTZ{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTZ{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPRounding_ZERO; exact = FALSE;
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTZ{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTZ{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPRounding_ZERO; exact = FALSE;
 case size of
 when '01' esize = 16; elements = 4;

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 0 1 1 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 0 1 1 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5850 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

F16 when size = 01

F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 result = FPRoundInt(op1, StandardFPSCRValue(), rounding, exact);
 Elem[D[d+r],e,esize] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5851
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.211 VRINTZ (floating-point)

Round floating-point to integer towards Zero rounds a floating-point value to an integral floating-point value of the
same size, using the Round towards Zero rounding mode. A zero input gives a zero result with the same sign, an
infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

Half-precision scalar variant

Applies when size == 01.

VRINTZ{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTZ{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTZ{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR[]);
 exact = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VRINTZ{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTZ{<c>}{<q>}.F32 <Sd>, <Sm>

!=1111 1 1 1 0 1 D 1 1 0 1 1 0 Vd 1 0 size 1 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 0 Vd 1 0 size 1 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op
F6-5852 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when size == 11.

VRINTZ{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR[]);
 exact = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 case esize of
 when 16
 S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, FPSCR[], rounding, exact);
 when 32
 S[d] = FPRoundInt(S[m], FPSCR[], rounding, exact);
 when 64
 D[d] = FPRoundInt(D[m], FPSCR[], rounding, exact);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5853
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.212 VRSHL

Vector Rounding Shift Left takes each element in a vector, shifts them by a value from the least significant byte of
the corresponding element of a second vector, and places the results in the destination vector. If the shift value is
positive, the operation is a left shift. If the shift value is negative, it is a rounding right shift. For a truncating shift,
see VSHL.

The first operand and result elements are the same data type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The second operand is always a signed integer of the same size.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector variant

Applies when Q == 1.

VRSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector variant

Applies when Q == 1.

VRSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 0 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 0 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5854 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

S64 when U = 0, size = 11

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

U64 when U = 1, size = 11

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 shift = SInt(Elem[D[n+r],e,esize]<7:0>);
 round_const = 1 << (-shift-1); // 0 for left shift, 2^(n-1) for right shift
 result = (Int(Elem[D[m+r],e,esize], unsigned) + round_const) << shift;
 Elem[D[d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5855
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5856 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.213 VRSHR

Vector Rounding Shift Right takes each element in a vector, right shifts them by an immediate value, and places the
rounded results in the destination vector. For truncated results, see VSHR.

The operand and result elements must be the same size, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VRSHR{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VRSHR{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) == '0000xxx' then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VRSHR{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VRSHR{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

1 1 1 1 0 0 1 U 1 D imm6 Vd 0 0 1 0 L Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 0 0 1 0 L Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5857
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if (L:imm6) == '0000xxx' then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4442 for the T32
instruction set, or Advanced SIMD one register and modified immediate on page F4-4551 for the A32 instruction
set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<type> Is the data type for the elements of the vectors, encoded in the "U" field. It can have the following
values:

S when U = 0

U when U = 1

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the
following values:

8 when L = 0, imm6<5:3> = 001

16 when L = 0, imm6<5:3> = 01x

32 when L = 0, imm6<5:3> = 1xx

64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 1 to <size>, encoded in the "imm6" field as <size> - <imm>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (shift_amount - 1);
 for r = 0 to regs-1
 for e = 0 to elements-1
 result = (Int(Elem[D[m+r],e,esize], unsigned) + round_const) >> shift_amount;
 Elem[D[d+r],e,esize] = result<esize-1:0>;
F6-5858 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5859
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.214 VRSHR (zero)

Vector Rounding Shift Right copies the contents of one SIMD register to another

This instruction is a pseudo-instruction of the VORR (register) instruction. This means that:

• The encodings in this description are named to match the encodings of VORR (register).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VORR (register) gives the operational pseudocode for this instruction.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRSHR{<c>}{<q>}.<dt> <Dd>, <Dm>, #0

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VRSHR{<c>}{<q>}.<dt> <Qd>, <Qm>, #0

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRSHR{<c>}{<q>}.<dt> <Dd>, <Dm>, #0

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

1 1 1 1 0 0 1 0 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5860 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VRSHR{<c>}{<q>}.<dt> <Qd>, <Qm>, #0

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, and must be one of: S8, S16, S32, S64, U8, U16,
U32 or U64.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field.

Operation for all encodings

The description of VORR (register) gives the operational pseudocode for this instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5861
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.215 VRSHRN

Vector Rounding Shift Right and Narrow takes each element in a vector, right shifts them by an immediate value,
and places the rounded results in the destination vector. For truncated results, see VSHRN.

The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned
integers. The destination elements are half the size of the source elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

Applies when imm6 != 000xxx.

VRSHRN{<c>}{<q>}.I<size> <Dd>, <Qm>, #<imm>

Decode for this encoding

 if imm6 == '000xxx' then SEE "Related encodings";
 if Vm<0> == '1' then UNDEFINED;
 case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

T1 variant

Applies when imm6 != 000xxx.

VRSHRN{<c>}{<q>}.I<size> <Dd>, <Qm>, #<imm>

Decode for this encoding

 if imm6 == '000xxx' then SEE "Related encodings";
 if Vm<0> == '1' then UNDEFINED;
 case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm);

1 1 1 1 0 0 1 0 1 D imm6 Vd 1 0 0 0 0 1 M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 1 D imm6 Vd 1 0 0 0 0 1 M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5862 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4442 for the T32
instruction set, or Advanced SIMD one register and modified immediate on page F4-4551 for the A32 instruction
set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size for the elements of the vectors, encoded in the "imm6<5:3>" field. It can have the
following values:

16 when imm6<5:3> = 001

32 when imm6<5:3> = 01x

64 when imm6<5:3> = 1xx

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<imm> Is an immediate value, in the range 1 to <size>/2, encoded in the "imm6" field as <size>/2 - <imm>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (shift_amount-1);
 for e = 0 to elements-1
 result = LSR(Elem[Qin[m>>1],e,2*esize] + round_const, shift_amount);
 Elem[D[d],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5863
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.216 VRSHRN (zero)

Vector Rounding Shift Right and Narrow takes each element in a vector, right shifts them by an immediate value,
and places the rounded results in the destination vector

This instruction is a pseudo-instruction of the VMOVN instruction. This means that:

• The encodings in this description are named to match the encodings of VMOVN.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VMOVN gives the operational pseudocode for this instruction.

A1

A1 variant

VRSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

T1

T1 variant

VRSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operand, encoded in the "size" field. It can have the following
values:

I16 when size = 00

I32 when size = 01

I64 when size = 10

The encoding size = 11 is reserved.

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5864 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

The description of VMOVN gives the operational pseudocode for this instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5865
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.217 VRSQRTE

Vector Reciprocal Square Root Estimate finds an approximate reciprocal square root of each element in a vector,
and places the results in a second vector.

The operand and result elements are the same type, and can be floating-point numbers or unsigned integers.

For details of the operation performed by this instruction see Floating-point reciprocal estimate and step on
page E1-4275.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRSQRTE{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRSQRTE{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && (!HaveFP16Ext() || F == '0')) || size IN {'00', '11'} then UNDEFINED;
 floating_point = (F == '1');
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRSQRTE{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRSQRTE{<c>}{<q>}.<dt> <Qd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 1 0 F 1 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 1 0 F 1 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5866 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && (!HaveFP16Ext() || F == '0')) || size IN {'00', '11'} then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 floating_point = (F == '1');
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "F:size" field. It can have the
following values:

U32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Newton-Raphson iteration

For details of the operation performed and how it can be used in a Newton-Raphson iteration to calculate the
reciprocal of the square root of a number, see Floating-point reciprocal estimate and step on page E1-4275.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 Elem[D[d+r],e,esize] = FPRSqrtEstimate(Elem[D[m+r],e,esize], StandardFPSCRValue());
 else
 Elem[D[d+r],e,esize] = UnsignedRSqrtEstimate(Elem[D[m+r],e,esize]);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5867
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.218 VRSQRTS

Vector Reciprocal Square Root Step multiplies the elements of one vector by the corresponding elements of another
vector, subtracts each of the products from 3.0, divides these results by 2.0, and places the results into the elements
of the destination vector.

The operand and result elements are floating-point numbers.

For details of the operation performed by this instruction see Floating-point reciprocal estimate and step on
page E1-4275.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRSQRTS{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRSQRTS{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRSQRTS{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRSQRTS{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 0 0 D 1 sz Vn Vd 1 1 1 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5868 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Newton-Raphson iteration

For details of the operation performed and how it can be used in a Newton-Raphson iteration to calculate the
reciprocal of the square root of a number, see Floating-point reciprocal estimate and step on page E1-4275.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPRSqrtStep(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize]);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5869
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.219 VRSRA

Vector Rounding Shift Right and Accumulate takes each element in a vector, right shifts them by an immediate
value, and accumulates the rounded results into the destination vector.For truncated results, see VSRA.

The operand and result elements must all be the same type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VRSRA{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VRSRA{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) == '0000xxx' then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VRSRA{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VRSRA{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

1 1 1 1 0 0 1 U 1 D imm6 Vd 0 0 1 1 L Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 0 0 1 1 L Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5870 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if (L:imm6) == '0000xxx' then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4442 for the T32
instruction set, or Advanced SIMD one register and modified immediate on page F4-4551 for the A32 instruction
set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<type> Is the data type for the elements of the vectors, encoded in the "U" field. It can have the following
values:

S when U = 0

U when U = 1

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the
following values:

8 when L = 0, imm6<5:3> = 001

16 when L = 0, imm6<5:3> = 01x

32 when L = 0, imm6<5:3> = 1xx

64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 1 to <size>, encoded in the "imm6" field as <size> - <imm>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (shift_amount - 1);
 for r = 0 to regs-1
 for e = 0 to elements-1
 result = (Int(Elem[D[m+r],e,esize], unsigned) + round_const) >> shift_amount;
 Elem[D[d+r],e,esize] = Elem[D[d+r],e,esize] + result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5871
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5872 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.220 VRSUBHN

Vector Rounding Subtract and Narrow, returning High Half subtracts the elements of one quadword vector from the
corresponding elements of another quadword vector, takes the most significant half of each result, and places the
final results in a doubleword vector. The results are rounded. For truncated results, see VSUBHN.

The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned
integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VRSUBHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VRSUBHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

1 1 1 1 0 0 1 1 1 D !=11 Vn Vd 0 1 1 0 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 1 1 1 1 1 1 D !=11 Vn Vd 0 1 1 0 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5873
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

I16 when size = 00

I32 when size = 01

I64 when size = 10

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (esize-1);
 for e = 0 to elements-1
 result = Elem[Qin[n>>1],e,2*esize] - Elem[Qin[m>>1],e,2*esize] + round_const;
 Elem[D[d],e,esize] = result<2*esize-1:esize>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5874 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.221 VSDOT (by element)

Dot Product index form with signed integers. This instruction performs the dot product of the four 8-bit elements in
each 32-bit element of the first source register with the four 8-bit elements of an indexed 32-bit element in the
second source register, accumulating the result into the corresponding 32-bit element of the destination register.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_ISAR6.DP indicates whether this instruction is supported.

A1

(FEAT_DotProd)

64-bit SIMD vector variant

Applies when Q == 0.

VSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VSDOT{<q>}.S8 <Qd>, <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

 if !HaveDOTPExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 boolean signed = (U=='0');
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm<3:0>);
 integer index = UInt(M);
 integer esize = 32;
 integer regs = if Q == '1' then 2 else 1;

T1

(FEAT_DotProd)

64-bit SIMD vector variant

Applies when Q == 0.

VSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>[<index>]

1 1 1 1 1 1 1 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

U

1 1 1 1 1 1 1 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5875
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VSDOT{<q>}.S8 <Qd>, <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveDOTPExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 boolean signed = (U=='0');
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm<3:0>);
 integer index = UInt(M);
 integer esize = 32;
 integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

Operation for all encodings

 bits(64) operand1;
 bits(64) operand2 = D[m];
 bits(64) result;
 CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 operand1 = D[n+r];
 result = D[d+r];
 integer element1, element2;
 for e = 0 to 1
 integer res = 0;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4 * index + i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4 * index + i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
 D[d+r] = result;
F6-5876 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.222 VSDOT (vector)

Dot Product vector form with signed integers. This instruction performs the dot product of the four 8-bit elements
in each 32-bit element of the first source register with the four 8-bit elements of the corresponding 32-bit element
in the second source register, accumulating the result into the corresponding 32-bit element of the destination
register.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_ISAR6.DP indicates whether this instruction is supported.

A1

(FEAT_DotProd)

64-bit SIMD vector variant

Applies when Q == 0.

VSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSDOT{<q>}.S8 <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if !HaveDOTPExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 boolean signed = U=='0';
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer esize = 32;
 integer regs = if Q == '1' then 2 else 1;

T1

(FEAT_DotProd)

64-bit SIMD vector variant

Applies when Q == 0.

VSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

U

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

U

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5877
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VSDOT{<q>}.S8 <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveDOTPExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 boolean signed = U=='0';
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer esize = 32;
 integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 bits(64) operand1;
 bits(64) operand2;
 bits(64) result;
 CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 operand1 = D[n+r];
 operand2 = D[m+r];
 result = D[d+r];
 integer element1, element2;
 for e = 0 to 1
 integer res = 0;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
 D[d+r] = result;
F6-5878 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.223 VSELEQ, VSELGE, VSELGT, VSELVS

Floating-point conditional select allows the destination register to take the value in either one or the other source
register according to the condition codes in the The Application Program Status Register, APSR on page E1-4255.

A1

VSELEQ,doubleprec variant

Applies when cc == 00 && size == 11.

VSELEQ.F64 <Dd>, <Dn>, <Dm> // Cannot be conditional

VSELEQ,halfprec variant

Applies when cc == 00 && size == 01.

VSELEQ.F16 <Sd>, <Sn>, <Sm> // Cannot be conditional

VSELEQ,singleprec variant

Applies when cc == 00 && size == 10.

VSELEQ.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional

VSELGE,doubleprec variant

Applies when cc == 10 && size == 11.

VSELGE.F64 <Dd>, <Dn>, <Dm> // Cannot be conditional

VSELGE,halfprec variant

Applies when cc == 10 && size == 01.

VSELGE.F16 <Sd>, <Sn>, <Sm> // Cannot be conditional

VSELGE,singleprec variant

Applies when cc == 10 && size == 10.

VSELGE.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional

VSELGT,doubleprec variant

Applies when cc == 11 && size == 11.

VSELGT.F64 <Dd>, <Dn>, <Dm> // Cannot be conditional

VSELGT,halfprec variant

Applies when cc == 11 && size == 01.

VSELGT.F16 <Sd>, <Sn>, <Sm> // Cannot be conditional

VSELGT,singleprec variant

Applies when cc == 11 && size == 10.

VSELGT.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional

1 1 1 1 1 1 1 0 0 D cc Vn Vd 1 0 !=00 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5879
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VSELVS,doubleprec variant

Applies when cc == 01 && size == 11.

VSELVS.F64 <Dd>, <Dn>, <Dm> // Cannot be conditional

VSELVS,halfprec variant

Applies when cc == 01 && size == 01.

VSELVS.F16 <Sd>, <Sn>, <Sm> // Cannot be conditional

VSELVS,singleprec variant

Applies when cc == 01 && size == 10.

VSELVS.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 cond = cc:(cc<1> EOR cc<0>):'0';

T1

VSELEQ,doubleprec variant

Applies when cc == 00 && size == 11.

VSELEQ.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block

VSELEQ,halfprec variant

Applies when cc == 00 && size == 01.

VSELEQ.F16 <Sd>, <Sn>, <Sm> // Not permitted in IT block

VSELEQ,singleprec variant

Applies when cc == 00 && size == 10.

VSELEQ.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block

VSELGE,doubleprec variant

Applies when cc == 10 && size == 11.

VSELGE.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block

VSELGE,halfprec variant

Applies when cc == 10 && size == 01.

VSELGE.F16 <Sd>, <Sn>, <Sm> // Not permitted in IT block

1 1 1 1 1 1 1 0 0 D cc Vn Vd 1 0 !=00 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
F6-5880 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VSELGE,singleprec variant

Applies when cc == 10 && size == 10.

VSELGE.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block

VSELGT,doubleprec variant

Applies when cc == 11 && size == 11.

VSELGT.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block

VSELGT,halfprec variant

Applies when cc == 11 && size == 01.

VSELGT.F16 <Sd>, <Sn>, <Sm> // Not permitted in IT block

VSELGT,singleprec variant

Applies when cc == 11 && size == 10.

VSELGT.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block

VSELVS,doubleprec variant

Applies when cc == 01 && size == 11.

VSELVS.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block

VSELVS,halfprec variant

Applies when cc == 01 && size == 01.

VSELVS.F16 <Sd>, <Sn>, <Sm> // Not permitted in IT block

VSELVS,singleprec variant

Applies when cc == 01 && size == 10.

VSELVS.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 cond = cc:(cc<1> EOR cc<0>):'0';

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5881
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 case esize of
 when 16
 S[d] = Zeros(16) : (if ConditionHolds(cond) then S[n] else S[m])<15:0>;
 when 32
 S[d] = if ConditionHolds(cond) then S[n] else S[m];
 when 64
 D[d] = if ConditionHolds(cond) then D[n] else D[m];
F6-5882 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.224 VSHL (immediate)

Vector Shift Left (immediate) takes each element in a vector of integers, left shifts them by an immediate value, and
places the results in the destination vector.

Bits shifted out of the left of each element are lost.

The elements must all be the same size, and can be 8-bit, 16-bit, 32-bit, or 64-bit integers. There is no distinction
between signed and unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSHL{<c>}{<q>}.I<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSHL{<c>}{<q>}.I<size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if L:imm6 == '0000xxx' then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSHL{<c>}{<q>}.I<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSHL{<c>}{<q>}.I<size> {<Qd>,} <Qm>, #<imm>

1 1 1 1 0 0 1 0 1 D imm6 Vd 0 1 0 1 L Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 1 D imm6 Vd 0 1 0 1 L Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5883
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if L:imm6 == '0000xxx' then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4442 for the T32
instruction set, or Advanced SIMD one register and modified immediate on page F4-4551 for the A32 instruction
set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the
following values:

8 when L = 0, imm6<5:3> = 001

16 when L = 0, imm6<5:3> = 01x

32 when L = 0, imm6<5:3> = 1xx

64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 0 to <size>-1, encoded in the "imm6" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = LSL(Elem[D[m+r],e,esize], shift_amount);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5884 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5885
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.225 VSHL (register)

Vector Shift Left (register) takes each element in a vector, shifts them by a value from the least significant byte of
the corresponding element of a second vector, and places the results in the destination vector. If the shift value is
positive, the operation is a left shift. If the shift value is negative, it is a truncating right shift.

For a rounding shift, see VRSHL.

The first operand and result elements are the same data type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The second operand is always a signed integer of the same size.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector variant

Applies when Q == 1.

VSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector variant

Applies when Q == 1.

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 0 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 0 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5886 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

S64 when U = 0, size = 11

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

U64 when U = 1, size = 11

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 shift = SInt(Elem[D[n+r],e,esize]<7:0>);
 result = Int(Elem[D[m+r],e,esize], unsigned) << shift;
 Elem[D[d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5887
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5888 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.226 VSHLL

Vector Shift Left Long takes each element in a doubleword vector, left shifts them by an immediate value, and places
the results in a quadword vector.

The operand elements can be:

• 8-bit, 16-bit, or 32-bit signed integers.

• 8-bit, 16-bit, or 32-bit unsigned integers.

• 8-bit, 16-bit, or 32-bit untyped integers, maximum shift only.

The result elements are twice the length of the operand elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

Applies when imm6 != 000xxx.

VSHLL{<c>}{<q>}.<type><size> <Qd>, <Dm>, #<imm>

Decode for this encoding

 if imm6 == '000xxx' then SEE "Related encodings";
 if Vd<0> == '1' then UNDEFINED;
 case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when '01xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when '1xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
 if shift_amount == 0 then SEE "VMOVL";
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm);

A2

A2 variant

VSHLL{<c>}{<q>}.<type><size> <Qd>, <Dm>, #<imm>

Decode for this encoding

 if size == '11' || Vd<0> == '1' then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize; shift_amount = esize;
 unsigned = FALSE; // Or TRUE without change of functionality
 d = UInt(D:Vd); m = UInt(M:Vm);

1 1 1 1 0 0 1 U 1 D imm6 Vd 1 0 1 0 0 0 M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 1 0 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5889
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

T1 variant

Applies when imm6 != 000xxx.

VSHLL{<c>}{<q>}.<type><size> <Qd>, <Dm>, #<imm>

Decode for this encoding

 if imm6 == '000xxx' then SEE "Related encodings";
 if Vd<0> == '1' then UNDEFINED;
 case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when '01xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when '1xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
 if shift_amount == 0 then SEE "VMOVL";
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm);

T2

T2 variant

VSHLL{<c>}{<q>}.<type><size> <Qd>, <Dm>, #<imm>

Decode for this encoding

 if size == '11' || Vd<0> == '1' then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize; shift_amount = esize;
 unsigned = FALSE; // Or TRUE without change of functionality
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4442 for the T32
instruction set, or Advanced SIMD one register and modified immediate on page F4-4551 for the A32 instruction
set.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<type> The data type for the elements of the operand. It must be one of:

S Signed. In encoding T1/A1, encoded as U = 0.

U Unsigned. In encoding T1/A1, encoded as U = 1.

1 1 1 U 1 1 1 1 1 D imm6 Vd 1 0 1 0 0 0 M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 1 0 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5890 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
I Untyped integer, Available only in encoding T2/A2.

<size> The data size for the elements of the operand. The following table shows the permitted values and
their encodings:

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> The immediate value. <imm> must lie in the range 1 to <size>, and:

• If <size> == <imm>, the encoding is T2/A2.

• Otherwise, the encoding is T1/A1, and:

— If <size> == 8, <imm> is encoded in imm6<2:0>.

— If <size> == 16, <imm> is encoded in imm6<3:0>.

— If <size> == 32, <imm> is encoded in imm6<4:0>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = Int(Elem[Din[m],e,esize], unsigned) << shift_amount;
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

<size> Encoding T1/A1 Encoding T2/A2

8 Encoded as imm6<5:3> = 0b001 Encoded as size = 0b00

16 Encoded as imm6<5:4> = 0b01 Encoded as size = 0b01

32 Encoded as imm6<5> = 1 Encoded as size = 0b10
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5891
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.227 VSHR

Vector Shift Right takes each element in a vector, right shifts them by an immediate value, and places the truncated
results in the destination vector. For rounded results, see VRSHR.

The operand and result elements must be the same size, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSHR{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSHR{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) == '0000xxx' then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSHR{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSHR{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

1 1 1 1 0 0 1 U 1 D imm6 Vd 0 0 0 0 L Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 0 0 0 0 L Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5892 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if (L:imm6) == '0000xxx' then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4442 for the T32
instruction set, or Advanced SIMD one register and modified immediate on page F4-4551 for the A32 instruction
set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<type> Is the data type for the elements of the vectors, encoded in the "U" field. It can have the following
values:

S when U = 0

U when U = 1

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the
following values:

8 when L = 0, imm6<5:3> = 001

16 when L = 0, imm6<5:3> = 01x

32 when L = 0, imm6<5:3> = 1xx

64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 1 to <size>, encoded in the "imm6" field as <size> - <imm>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 result = Int(Elem[D[m+r],e,esize], unsigned) >> shift_amount;
 Elem[D[d+r],e,esize] = result<esize-1:0>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5893
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5894 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.228 VSHR (zero)

Vector Shift Right copies the contents of one SIMD register to another

This instruction is a pseudo-instruction of the VORR (register) instruction. This means that:

• The encodings in this description are named to match the encodings of VORR (register).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VORR (register) gives the operational pseudocode for this instruction.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VSHR{<c>}{<q>}.<dt> <Dd>, <Dm>, #0

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VSHR{<c>}{<q>}.<dt> <Qd>, <Qm>, #0

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VSHR{<c>}{<q>}.<dt> <Dd>, <Dm>, #0

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

1 1 1 1 0 0 1 0 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5895
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VSHR{<c>}{<q>}.<dt> <Qd>, <Qm>, #0

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, and must be one of: S8, S16, S32, S64, U8, U16,
U32 or U64.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field.

Operation for all encodings

The description of VORR (register) gives the operational pseudocode for this instruction.
F6-5896 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.229 VSHRN

Vector Shift Right Narrow takes each element in a vector, right shifts them by an immediate value, and places the
truncated results in the destination vector. For rounded results, see VRSHRN.

The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned
integers. The destination elements are half the size of the source elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

Applies when imm6 != 000xxx.

VSHRN{<c>}{<q>}.I<size> <Dd>, <Qm>, #<imm>

Decode for this encoding

 if imm6 == '000xxx' then SEE "Related encodings";
 if Vm<0> == '1' then UNDEFINED;
 case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

T1 variant

Applies when imm6 != 000xxx.

VSHRN{<c>}{<q>}.I<size> <Dd>, <Qm>, #<imm>

Decode for this encoding

 if imm6 == '000xxx' then SEE "Related encodings";
 if Vm<0> == '1' then UNDEFINED;
 case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm);

1 1 1 1 0 0 1 0 1 D imm6 Vd 1 0 0 0 0 0 M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 1 D imm6 Vd 1 0 0 0 0 0 M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5897
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4442 for the T32
instruction set, or Advanced SIMD one register and modified immediate on page F4-4551 for the A32 instruction
set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size for the elements of the vectors, encoded in the "imm6<5:3>" field. It can have the
following values:

16 when imm6<5:3> = 001

32 when imm6<5:3> = 01x

64 when imm6<5:3> = 1xx

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<imm> Is an immediate value, in the range 1 to <size>/2, encoded in the "imm6" field as <size>/2 - <imm>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = LSR(Elem[Qin[m>>1],e,2*esize], shift_amount);
 Elem[D[d],e,esize] = result<esize-1:0>;
F6-5898 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.230 VSHRN (zero)

Vector Shift Right Narrow takes each element in a vector, right shifts them by an immediate value, and places the
truncated results in the destination vector

This instruction is a pseudo-instruction of the VMOVN instruction. This means that:

• The encodings in this description are named to match the encodings of VMOVN.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VMOVN gives the operational pseudocode for this instruction.

A1

A1 variant

VSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

T1

T1 variant

VSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operand, encoded in the "size" field. It can have the following
values:

I16 when size = 00

I32 when size = 01

I64 when size = 10

The encoding size = 11 is reserved.

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5899
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

The description of VMOVN gives the operational pseudocode for this instruction.
F6-5900 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.231 VSLI

Vector Shift Left and Insert takes each element in the operand vector, left shifts them by an immediate value, and
inserts the results in the destination vector. Bits shifted out of the left of each element are lost.

The elements must all be the same size, and can be 8-bit, 16-bit, 32-bit, or 64-bit. There is no distinction between
data types.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSLI{<c>}{<q>}.<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSLI{<c>}{<q>}.<size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) == '0000xxx' then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSLI{<c>}{<q>}.<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSLI{<c>}{<q>}.<size> {<Qd>,} <Qm>, #<imm>

1 1 1 1 0 0 1 1 1 D imm6 Vd 0 1 0 1 L Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D imm6 Vd 0 1 0 1 L Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5901
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if (L:imm6) == '0000xxx' then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4442 for the T32
instruction set, or Advanced SIMD one register and modified immediate on page F4-4551 for the A32 instruction
set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the
following values:

8 when L = 0, imm6<5:3> = 001

16 when L = 0, imm6<5:3> = 01x

32 when L = 0, imm6<5:3> = 1xx

64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 0 to <size>-1, encoded in the "imm6" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 mask = LSL(Ones(esize), shift_amount);
 for r = 0 to regs-1
 for e = 0 to elements-1
 shifted_op = LSL(Elem[D[m+r],e,esize], shift_amount);
 Elem[D[d+r],e,esize] = (Elem[D[d+r],e,esize] AND NOT(mask)) OR shifted_op;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5902 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5903
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.232 VSMMLA

The widening integer matrix multiply-accumulate instruction multiplies the 2x8 matrix of signed 8-bit integer
values held in the first source vector by the 8x2 matrix of signed 8-bit integer values in the second source vector.
The resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix accumulator held
in the destination vector. This is equivalent to performing an 8-way dot product per destination element.

From Armv8.2, this is an OPTIONAL instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in
the T32 and A32 instruction sets.

A1

(FEAT_AA32I8MM)

A1 variant

VSMMLA{<q>}.S8 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !HaveAArch32Int8MatMulExt() then UNDEFINED;
 case B:U of
 when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
 when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
 when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
 when '11' UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);

T1

(FEAT_AA32I8MM)

T1 variant

VSMMLA{<q>}.S8 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveAArch32Int8MatMulExt() then UNDEFINED;
 case B:U of
 when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
 when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
 when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
 when '11' UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 0 N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

B U

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 0 N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

B U
F6-5904 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP third source and destination register, encoded in the "D:Vd"
field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

Operation for all encodings

 CheckAdvSIMDEnabled();
 bits(128) operand1 = Q[n>>1];
 bits(128) operand2 = Q[m>>1];
 bits(128) addend = Q[d>>1];

 Q[d>>1] = MatMulAdd(addend, operand1, operand2, op1_unsigned, op2_unsigned);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5905
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.233 VSQRT

Square Root calculates the square root of the value in a floating-point register and writes the result to another
floating-point register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision scalar variant

Applies when size == 01.

VSQRT{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VSQRT{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VSQRT{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

!=1111 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 size 1 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 size 1 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5906 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Half-precision scalar variant

Applies when size == 01.

VSQRT{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VSQRT{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VSQRT{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 case esize of
 when 16 S[d] = Zeros(16) : FPSqrt(S[m]<15:0>, FPSCR[]);
 when 32 S[d] = FPSqrt(S[m], FPSCR[]);
 when 64 D[d] = FPSqrt(D[m], FPSCR[]);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5907
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.234 VSRA

Vector Shift Right and Accumulate takes each element in a vector, right shifts them by an immediate value, and
accumulates the truncated results into the destination vector. For rounded results, see VRSRA.

The operand and result elements must all be the same type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSRA{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSRA{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) == '0000xxx' then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSRA{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSRA{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

1 1 1 1 0 0 1 U 1 D imm6 Vd 0 0 0 1 L Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 0 0 0 1 L Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5908 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if (L:imm6) == '0000xxx' then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4442 for the T32
instruction set, or Advanced SIMD one register and modified immediate on page F4-4551 for the A32 instruction
set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<type> Is the data type for the elements of the vectors, encoded in the "U" field. It can have the following
values:

S when U = 0

U when U = 1

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the
following values:

8 when L = 0, imm6<5:3> = 001

16 when L = 0, imm6<5:3> = 01x

32 when L = 0, imm6<5:3> = 1xx

64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 1 to <size>, encoded in the "imm6" field as <size> - <imm>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 result = Int(Elem[D[m+r],e,esize], unsigned) >> shift_amount;
 Elem[D[d+r],e,esize] = Elem[D[d+r],e,esize] + result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5909
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5910 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.235 VSRI

Vector Shift Right and Insert takes each element in the operand vector, right shifts them by an immediate value, and
inserts the results in the destination vector. Bits shifted out of the right of each element are lost.

The elements must all be the same size, and can be 8-bit, 16-bit, 32-bit, or 64-bit. There is no distinction between
data types.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSRI{<c>}{<q>}.<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSRI{<c>}{<q>}.<size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) == '0000xxx' then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSRI{<c>}{<q>}.<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSRI{<c>}{<q>}.<size> {<Qd>,} <Qm>, #<imm>

1 1 1 1 0 0 1 1 1 D imm6 Vd 0 1 0 0 L Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D imm6 Vd 0 1 0 0 L Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5911
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if (L:imm6) == '0000xxx' then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4442 for the T32
instruction set, or Advanced SIMD one register and modified immediate on page F4-4551 for the A32 instruction
set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the
following values:

8 when L = 0, imm6<5:3> = 001

16 when L = 0, imm6<5:3> = 01x

32 when L = 0, imm6<5:3> = 1xx

64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 1 to <size>, encoded in the "imm6" field as <size> - <imm>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 mask = LSR(Ones(esize), shift_amount);
 for r = 0 to regs-1
 for e = 0 to elements-1
 shifted_op = LSR(Elem[D[m+r],e,esize], shift_amount);
 Elem[D[d+r],e,esize] = (Elem[D[d+r],e,esize] AND NOT(mask)) OR shifted_op;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5912 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5913
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.236 VST1 (single element from one lane)

Store single element from one lane of one register stores one element to memory from one element of a register. For
details of the addressing mode see The Advanced SIMD addressing mode on page F1-4369.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>); alignment = 1;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

A2

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 0 0 0 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 1 0 0 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
F6-5914 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<1> != '0' then UNDEFINED;
 ebytes = 2; index = UInt(index_align<3:2>);
 alignment = if index_align<0> == '0' then 1 else 2;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

A3

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<2> != '0' then UNDEFINED;
 if index_align<1:0> != '00' && index_align<1:0> != '11' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 alignment = if index_align<1:0> == '00' then 1 else 4;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

T1

Offset variant

Applies when Rm == 1111.

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 1 0 0 0 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 0 0 0 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5915
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>); alignment = 1;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

T2

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<1> != '0' then UNDEFINED;
 ebytes = 2; index = UInt(index_align<3:2>);
 alignment = if index_align<0> == '0' then 1 else 2;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 1 0 0 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
F6-5916 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T3

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<2> != '0' then UNDEFINED;
 if index_align<1:0> != '00' && index_align<1:0> != '11' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 alignment = if index_align<1:0> == '00' then 1 else 4;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1, T2 and T3: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

<list> Is a list containing the single 64-bit name of the SIMD&FP register holding the element.

The list must be { <Dd>[<index>] }.

The register <Dd> is encoded in the "D:Vd" field.

The permitted values and encoding of <index> depend on <size>:

<size> == 8<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 1 0 0 0 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5917
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<size> == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> When <size> == 8, <align> must be omitted, otherwise it is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on
page E2-4312, and the encoding depends on <size>:

<size> == 8Encoded in the "index_align<0>" field as 0.

<size> == 16Encoded in the "index_align<1:0>" field as 0b00.

<size> == 32Encoded in the "index_align<2:0>" field as 0b000.

Whenever <align> is present, the permitted values and encoding depend on <size>:

<size> == 16<align> is 16, meaning 16-bit alignment, encoded in the "index_align<1:0>" field as
0b01.

<size> == 32<align> is 32, meaning 32-bit alignment, encoded in the "index_align<2:0>" field as
0b011.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode on page F1-4369.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on
page F1-4369.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = TRUE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 MemU[address,ebytes] = Elem[D[d],index];
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + ebytes;
F6-5918 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.237 VST1 (multiple single elements)

Store multiple single elements from one, two, three, or four registers stores elements to memory from one, two,
three, or four registers, without interleaving. Every element of each register is stored. For details of the addressing
mode see The Advanced SIMD addressing mode on page F1-4369.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 1; if align<1> == '1' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

A2

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 0 1 1 1 size align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 1 0 1 0 size align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5919
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 2; if align == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

A3

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 3; if align<1> == '1' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 0 1 1 0 size align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
F6-5920 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

A4

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 4;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 0 0 1 0 size align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5921
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 1; if align<1> == '1' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

T2

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 2; if align == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 0 1 1 1 size align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 1 0 1 0 size align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5922 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T3

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 3; if align<1> == '1' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 0 1 1 0 size align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5923
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T4

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 4;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VST1 (multiple single elements) on
page K1-8403.

Related encodings: See Advanced SIMD element or structure load/store on page F3-4470 for the T32 instruction
set, or Advanced SIMD element or structure load/store on page F4-4555 for the A32 instruction set.

Assembler symbols

<c> For encoding A1, A2, A3 and A4: see Standard assembler syntax fields on page F1-4348. This
encoding must be unconditional.

For encoding T1, T2, T3 and T4: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 0 0 1 0 size align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5924 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

64 when size = 11

<list> Is a list containing the 64-bit names of the SIMD&FP registers.

The list must be one of:

{ <Dd> } Single register. Selects the A1 and T1 encodings of the instruction.

{ <Dd>, <Dd+1> }Two single-spaced registers. Selects the A2 and T2 encodings of the instruction.

{ <Dd>, <Dd+1>, <Dd+2> }Three single-spaced registers. Selects the A3 and T3 encodings of the
instruction.

{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> }Four single-spaced registers. Selects the A4 and T4 encodings of
the instruction.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on
page E2-4312, and is encoded in the "align" field as 0b00.

Whenever <align> is present, the permitted values are:

64 64-bit alignment, encoded in the "align" field as 0b01.

128 128-bit alignment, encoded in the "align" field as 0b10. Available only if <list> contains
two or four registers.

256 256-bit alignment, encoded in the "align" field as 0b11. Available only if <list> contains
four registers.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode on page F1-4369.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about <Rn>, !, and <Rm>, see The Advanced SIMD addressing mode on page F1-4369.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = TRUE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 for r = 0 to regs-1
 for e = 0 to elements-1
 if ebytes != 8 then
 MemU[address,ebytes] = Elem[D[d+r],e];
 else
 - = AArch32.CheckAlignment(address, ebytes, AccType_NORMAL, iswrite);
 bits(64) data = Elem[D[d+r],e];
 MemU[address,4] = if BigEndian(AccType_NORMAL) then data<63:32> else data<31:0>;
 MemU[address+4,4] = if BigEndian(AccType_NORMAL) then data<31:0> else data<63:32>;
 address = address + ebytes;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 8*regs;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5925
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.238 VST2 (single 2-element structure from one lane)

Store single 2-element structure from one lane of two registers stores one 2-element structure to memory from
corresponding elements of two registers. For details of the addressing mode see The Advanced SIMD addressing
mode on page F1-4369.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Offset variant

Applies when Rm == 1111.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 alignment = if index_align<0> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

A2

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 0 0 1 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 1 0 1 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
F6-5926 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Offset variant

Applies when Rm == 1111.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 4;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

A3

Offset variant

Applies when Rm == 1111.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 1 0 0 1 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5927
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<1> != '0' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 8;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T1

Offset variant

Applies when Rm == 1111.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 alignment = if index_align<0> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 0 0 1 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
F6-5928 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T2

Offset variant

Applies when Rm == 1111.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 4;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T3

Offset variant

Applies when Rm == 1111.

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 1 0 1 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 1 0 0 1 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5929
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<1> != '0' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 8;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VST2 (single 2-element structure from
one lane) on page K1-8404.

Assembler symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1, T2 and T3: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

<list> Is a list containing the 64-bit names of the two SIMD&FP registers holding the element.

The list must be one of:

{ <Dd>[<index>], <Dd+1>[<index>] }Single-spaced registers, encoded as "spacing" = 0.
F6-5930 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
{ <Dd>[<index>], <Dd+2>[<index>] }Double-spaced registers, encoded as "spacing" = 1. Not
permitted when <size> == 8.

The encoding of "spacing" depends on <size>:

<size> == 16"spacing" is encoded in the "index_align<1>" field.

<size> == 32"spacing" is encoded in the "index_align<2>" field.

The register <Dd> is encoded in the "D:Vd" field.

The permitted values and encoding of <index> depend on <size>:

<size> == 8<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

<size> == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on
page E2-4312, and the encoding depends on <size>:

<size> == 8Encoded in the "index_align<0>" field as 0.

<size> == 16Encoded in the "index_align<0>" field as 0.

<size> == 32Encoded in the "index_align<1:0>" field as 0b00.

Whenever <align> is present, the permitted values and encoding depend on <size>:

<size> == 8<align> is 16, meaning 16-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 16<align> is 32, meaning 32-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 32<align> is 64, meaning 64-bit alignment, encoded in the "index_align<1:0>" field as
0b01.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode on page F1-4369.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on
page F1-4369.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = TRUE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 MemU[address, ebytes] = Elem[D[d], index];
 MemU[address+ebytes,ebytes] = Elem[D[d2],index];
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 2*ebytes;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5931
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.239 VST2 (multiple 2-element structures)

Store multiple 2-element structures from two or four registers stores multiple 2-element structures from two or four
registers to memory, with interleaving. For more information, see Element and structure load/store instructions on
page F2-4398. Every element of each register is saved. For details of the addressing mode see The Advanced SIMD
addressing mode on page F1-4369.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Offset variant

Applies when Rm == 1111.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 pairs = 1; if align == '11' then UNDEFINED;
 if size == '11' then UNDEFINED;
 inc = if itype == '1001' then 2 else 1;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 1 0 0 x size align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

itype
F6-5932 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
A2

Offset variant

Applies when Rm == 1111.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 pairs = 2; inc = 2;
 if size == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T1

Offset variant

Applies when Rm == 1111.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 0 0 1 1 size align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 1 0 0 x size align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

itype
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5933
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 pairs = 1; if align == '11' then UNDEFINED;
 if size == '11' then UNDEFINED;
 inc = if itype == '1001' then 2 else 1;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T2

Offset variant

Applies when Rm == 1111.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 pairs = 2; inc = 2;
 if size == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 0 0 1 1 size align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5934 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VST2 (multiple 2-element structures)
on page K1-8403.

Related encodings: See Advanced SIMD element or structure load/store on page F3-4470 for the T32 instruction
set, or Advanced SIMD element or structure load/store on page F4-4555 for the A32 instruction set.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<list> Is a list containing the 64-bit names of the SIMD&FP registers.

The list must be one of:

{ <Dd>, <Dd+1> }Two single-spaced registers. Selects the A1 and T1 encodings of the instruction,
and encoded in the "itype" field as 0b1000.

{ <Dd>, <Dd+2> }Two double-spaced registers. Selects the A1 and T1 encodings of the instruction,
and encoded in the "itype" field as 0b1001.

{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> }Three single-spaced registers. Selects the A2 and T2 encodings
of the instruction.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on
page E2-4312, and is encoded in the "align" field as 0b00.

Whenever <align> is present, the permitted values are:

64 64-bit alignment, encoded in the "align" field as 0b01.

128 128-bit alignment, encoded in the "align" field as 0b10.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5935
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
256 256-bit alignment, encoded in the "align" field as 0b11. Available only if <list> contains
four registers.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode on page F1-4369.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on
page F1-4369.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = TRUE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 for r = 0 to pairs-1
 for e = 0 to elements-1
 MemU[address, ebytes] = Elem[D[d+r], e];
 MemU[address+ebytes,ebytes] = Elem[D[d2+r],e];
 address = address + 2*ebytes;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 16*pairs;
F6-5936 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.240 VST3 (single 3-element structure from one lane)

Store single 3-element structure from one lane of three registers stores one 3-element structure to memory from
corresponding elements of three registers. For details of the addressing mode see The Advanced SIMD addressing
mode on page F1-4369.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Offset variant

Applies when Rm == 1111.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VST3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

A2

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 0 1 0 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 1 1 0 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5937
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Offset variant

Applies when Rm == 1111.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VST3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

A3

Offset variant

Applies when Rm == 1111.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VST3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 1 0 1 0 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
F6-5938 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<1:0> != '00' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T1

Offset variant

Applies when Rm == 1111.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VST3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 0 1 0 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5939
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T2

Offset variant

Applies when Rm == 1111.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VST3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T3

Offset variant

Applies when Rm == 1111.

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 1 1 0 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 1 0 1 0 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
F6-5940 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VST3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VST3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<1:0> != '00' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VST3 (single 3-element structure from
one lane) on page K1-8404.

Assembler symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1, T2 and T3: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

<list> Is a list containing the 64-bit names of the three SIMD&FP registers holding the element.

The list must be one of:

{ <Dd>[<index>], <Dd+1>[<index>], <Dd+2>[<index>] }Single-spaced registers, encoded as
"spacing" = 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5941
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
{ <Dd>[<index>], <Dd+2>[<index>], <Dd+4>[<index>] }Double-spaced registers, encoded as
"spacing" = 1. Not permitted when <size> == 8.

The encoding of "spacing" depends on <size>:

<size> == 8"spacing" is encoded in the "index_align<0>" field.

<size> == 16"spacing" is encoded in the "index_align<1>" field, and "index_align<0>" is set to 0.

<size> == 32"spacing" is encoded in the "index_align<2>" field, and "index_align<1:0>" is set to
0b00.

The register <Dd> is encoded in the "D:Vd" field.

The permitted values and encoding of <index> depend on <size>:

<size> == 8<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

<size> == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on
page F1-4369.

Alignment

Standard alignment rules apply, see Alignment support on page B2-160.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n];
 MemU[address, ebytes] = Elem[D[d], index];
 MemU[address+ebytes, ebytes] = Elem[D[d2],index];
 MemU[address+2*ebytes,ebytes] = Elem[D[d3],index];
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 3*ebytes;
F6-5942 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.241 VST3 (multiple 3-element structures)

Store multiple 3-element structures from three registers stores multiple 3-element structures to memory from three
registers, with interleaving. For more information, see Element and structure load/store instructions on
page F2-4398. Every element of each register is saved. For details of the addressing mode see The Advanced SIMD
addressing mode on page F1-4369.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Offset variant

Applies when Rm == 1111.

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' || align<1> == '1' then UNDEFINED;
 case itype of
 when '0100'
 inc = 1;
 when '0101'
 inc = 2;
 otherwise
 SEE "Related encodings";
 alignment = if align<0> == '0' then 1 else 8;
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 0 1 0 x size align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

itype
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5943
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Offset variant

Applies when Rm == 1111.

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' || align<1> == '1' then UNDEFINED;
 case itype of
 when '0100'
 inc = 1;
 when '0101'
 inc = 2;
 otherwise
 SEE "Related encodings";
 alignment = if align<0> == '0' then 1 else 8;
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VST3 (multiple 3-element structures)
on page K1-8404.

Related encodings: See Advanced SIMD element or structure load/store on page F3-4470 for the T32 instruction
set, or Advanced SIMD element or structure load/store on page F4-4555 for the A32 instruction set.

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 0 1 0 x size align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

itype
F6-5944 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<list> Is a list containing the 64-bit names of the SIMD&FP registers.

The list must be one of:

{ <Dd>, <Dd+1>, <Dd+2> }Single-spaced registers, encoded in the "itype" field as 0b0100.

{ <Dd>, <Dd+2>, <Dd+4> }Double-spaced registers, encoded in the "itype" field as 0b0101.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on
page E2-4312, and is encoded in the "align" field as 0b00.

Whenever <align> is present, the only permitted values is 64, meaning 64-bit alignment, encoded in
the "align" field as 0b01.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode on page F1-4369.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on
page F1-4369.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = TRUE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 for e = 0 to elements-1
 MemU[address, ebytes] = Elem[D[d], e];
 MemU[address+ebytes, ebytes] = Elem[D[d2],e];
 MemU[address+2*ebytes,ebytes] = Elem[D[d3],e];
 address = address + 3*ebytes;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 24;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5945
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.242 VST4 (single 4-element structure from one lane)

Store single 4-element structure from one lane of four registers stores one 4-element structure to memory from
corresponding elements of four registers. For details of the addressing mode see The Advanced SIMD addressing
mode on page F1-4369.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Offset variant

Applies when Rm == 1111.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if size != '00' then SEE "Related encodings";
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 alignment = if index_align<0> == '0' then 1 else 4;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 0 1 1 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
F6-5946 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
A2

Offset variant

Applies when Rm == 1111.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if size != '01' then SEE "Related encodings";
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 8;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

A3

Offset variant

Applies when Rm == 1111.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 1 1 1 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 1 0 1 1 index_align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5947
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Post-indexed variant

Applies when Rm == 1101.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if size != '10' then SEE "Related encodings";
 if index_align<1:0> == '11' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 alignment = if index_align<1:0> == '00' then 1 else 4 << UInt(index_align<1:0>);
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T1

Offset variant

Applies when Rm == 1111.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 0 1 1 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
F6-5948 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if size != '00' then SEE "Related encodings";
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 alignment = if index_align<0> == '0' then 1 else 4;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T2

Offset variant

Applies when Rm == 1111.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if size != '01' then SEE "Related encodings";
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 8;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 1 1 1 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5949
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T3

Offset variant

Applies when Rm == 1111.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm != 11x1.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Post-indexed variant

Applies when Rm == 1101.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if size != '10' then SEE "Related encodings";
 if index_align<1:0> == '11' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 alignment = if index_align<1:0> == '00' then 1 else 4 << UInt(index_align<1:0>);
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VST4 (single 4-element structure from
one lane) on page K1-8404.

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 1 0 1 1 index_align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
F6-5950 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields on page F1-4348. This encoding
must be unconditional.

For encoding T1, T2 and T3: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

<list> Is a list containing the 64-bit names of the four SIMD&FP registers holding the element.

The list must be one of:

{ <Dd>[<index>], <Dd+1>[<index>], <Dd+2>[<index>], <Dd+3>[<index>] }Single-spaced registers,
encoded as "spacing" = 0.

{ <Dd>[<index>], <Dd+2>[<index>], <Dd+4>[<index>], <Dd+6>[<index>] }Double-spaced registers,
encoded as "spacing" = 1. Not permitted when <size> == 8.

The encoding of "spacing" depends on <size>:

<size> == 16"spacing" is encoded in the "index_align<1>" field.

<size> == 32"spacing" is encoded in the "index_align<2>" field.

The register <Dd> is encoded in the "D:Vd" field.

The permitted values and encoding of <index> depend on <size>:

<size> == 8<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

<size> == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on
page E2-4312, and the encoding depends on <size>:

<size> == 8Encoded in the "index_align<0>" field as 0.

<size> == 16Encoded in the "index_align<0>" field as 0.

<size> == 32Encoded in the "index_align<1:0>" field as 0b00.

Whenever <align> is present, the permitted values and encoding depend on <size>:

<size> == 8<align> is 32, meaning 32-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 16<align> is 64, meaning 64-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 32<align> can be 64 or 128. 64-bit alignment is encoded in the "index_align<1:0>" field
as 0b01, and 128-bit alignment is encoded in the "index_align<1:0>" field as 0b10.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode on page F1-4369.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on
page F1-4369.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5951
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = TRUE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 MemU[address, ebytes] = Elem[D[d], index];
 MemU[address+ebytes, ebytes] = Elem[D[d2],index];
 MemU[address+2*ebytes,ebytes] = Elem[D[d3],index];
 MemU[address+3*ebytes,ebytes] = Elem[D[d4],index];
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 4*ebytes;
F6-5952 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.243 VST4 (multiple 4-element structures)

Store multiple 4-element structures from four registers stores multiple 4-element structures to memory from four
registers, with interleaving. For more information, see Element and structure load/store instructions on
page F2-4398. Every element of each register is saved. For details of the addressing mode see The Advanced SIMD
addressing mode on page F1-4369.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Offset variant

Applies when Rm == 1111.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 case itype of
 when '0000'
 inc = 1;
 when '0001'
 inc = 2;
 otherwise
 SEE "Related encodings";
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 0 0 0 x size align Rm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

itype
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5953
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Offset variant

Applies when Rm == 1111.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 case itype of
 when '0000'
 inc = 1;
 when '0001'
 inc = 2;
 otherwise
 SEE "Related encodings";
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VST4 (multiple 4-element structures)
on page K1-8404.

Related encodings: See Advanced SIMD element or structure load/store on page F3-4470 for the T32 instruction
set, or Advanced SIMD element or structure load/store on page F4-4555 for the A32 instruction set.

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 0 0 0 x size align Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

itype
F6-5954 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<list> Is a list containing the 64-bit names of the SIMD&FP registers.

The list must be one of:

{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> }Single-spaced registers, encoded in the "itype" field as 0b0000.

{ <Dd>, <Dd+2>, <Dd+4>, <Dd+6> }Double-spaced registers, encoded in the "itype" field as 0b0001.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on
page E2-4312, and is encoded in the "align" field as 0b00.

Whenever <align> is present, the permitted values are:

64 64-bit alignment, encoded in the "align" field as 0b01.

128 128-bit alignment, encoded in the "align" field as 0b10.

256 256-bit alignment, encoded in the "align" field as 0b11.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode on page F1-4369.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on
page F1-4369.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = TRUE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 for e = 0 to elements-1
 MemU[address, ebytes] = Elem[D[d], e];
 MemU[address+ebytes, ebytes] = Elem[D[d2],e];
 MemU[address+2*ebytes,ebytes] = Elem[D[d3],e];
 MemU[address+3*ebytes,ebytes] = Elem[D[d4],e];
 address = address + 4*ebytes;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 32;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5955
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.244 VSTM, VSTMDB, VSTMIA

Store multiple SIMD&FP registers stores multiple registers from the Advanced SIMD and floating-point register
file to consecutive memory locations using an address from a general-purpose register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

This instruction is used by the alias VPUSH. See Alias conditions on page F6-5959 for details of when each alias is
preferred.

A1

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VSTMDB{<c>}{<q>}{.<size>} <Rn>!, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

VSTM{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>
VSTMIA{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VSTR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = FALSE; add = (U == '1'); wback = (W == '1');
 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FSTDBMX, FSTMIAX".
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
 if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VSTM with the same addressing mode but stores no registers.

If regs > 16 || (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

!=1111 1 1 0 P U D W 0 Rn Vd 1 0 1 1 imm8<7:1> 0
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 1 0

cond imm8<0>
F6-5956 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
A2

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VSTMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Increment After variant

Applies when P == 0 && U == 1.

VSTM{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>
VSTMIA{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VSTR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = TRUE; add = (U == '1'); wback = (W == '1'); d = UInt(Vd:D); n = UInt(Rn);
 imm32 = ZeroExtend(imm8:'00', 32); regs = UInt(imm8);
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VSTM with the same addressing mode but stores no registers.

If (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T1

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VSTMDB{<c>}{<q>}{.<size>} <Rn>!, <dreglist>

!=1111 1 1 0 P U D W 0 Rn Vd 1 0 1 0 imm8
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

cond

1 1 1 0 1 1 0 P U D W 0 Rn Vd 1 0 1 1 imm8<7:1> 0
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 1 0

imm8<0>
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5957
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Increment After variant

Applies when P == 0 && U == 1.

VSTM{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>
VSTMIA{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VSTR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = FALSE; add = (U == '1'); wback = (W == '1');
 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FSTDBMX, FSTMIAX".
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
 if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VSTM with the same addressing mode but stores no registers.

If regs > 16 || (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T2

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VSTMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Increment After variant

Applies when P == 0 && U == 1.

VSTM{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>
VSTMIA{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VSTR";
 if P == U && W == '1' then UNDEFINED;

1 1 1 0 1 1 0 P U D W 0 Rn Vd 1 0 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0
F6-5958 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = TRUE; add = (U == '1'); wback = (W == '1'); d = UInt(Vd:D); n = UInt(Rn);
 imm32 = ZeroExtend(imm8:'00', 32); regs = UInt(imm8);
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VSTM with the same addressing mode but stores no registers.

If (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VSTM on page K1-8404.

Related encodings: See Advanced SIMD and floating-point 64-bit move on page F3-4444 for the T32 instruction
set, or Advanced SIMD and floating-point 64-bit move on page F4-4531 for the A32 instruction set.

Alias conditions

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the registers
being transferred.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. If writeback is not specified, the PC
can be used. However, Arm deprecates use of the PC.

! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.

<sreglist> Is the list of consecutively numbered 32-bit SIMD&FP registers to be transferred. The first register
in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the list. The list must
contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register
in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list. The
list must contain at least one register, and must not contain more than 16 registers.

Alias is preferred when

VPUSH P == '1' && U == '0' && W == '1' && Rn == '1101'
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5959
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 address = if add then R[n] else R[n]-imm32;
 for r = 0 to regs-1
 if single_regs then
 MemA[address,4] = S[d+r]; address = address+4;
 else
 // Store as two word-aligned words in the correct order for current endianness.
 MemA[address,4] = if BigEndian(AccType_ATOMIC) then D[d+r]<63:32> else D[d+r]<31:0>;
 MemA[address+4,4] = if BigEndian(AccType_ATOMIC) then D[d+r]<31:0> else D[d+r]<63:32>;
 address = address+8;
 if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
F6-5960 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.245 VSTR

Store SIMD&FP register stores a single register from the Advanced SIMD and floating-point register file to
memory, using an address from a general-purpose register, with an optional offset.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

Half-precision scalar variant

Applies when size == 01.

VSTR{<c>}{<q>}.16 <Sd>, [<Rn>{, #{+/-}<imm>}]

Single-precision scalar variant

Applies when size == 10.

VSTR{<c>}{<q>}{.32} <Sd>, [<Rn>{, #{+/-}<imm>}]

Double-precision scalar variant

Applies when size == 11.

VSTR{<c>}{<q>}{.64} <Dd>, [<Rn>{, #{+/-}<imm>}]

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 esize = 8 << UInt(size); add = (U == '1');
 imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
 case size of
 when '01' d = UInt(Vd:D);
 when '10' d = UInt(Vd:D);
 when '11' d = UInt(D:Vd);
 n = UInt(Rn);
 if n == 15 && CurrentInstrSet() != InstrSet_A32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

!=1111 1 1 0 1 U D 0 0 Rn Vd 1 0 size imm8
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

cond

1 1 1 0 1 1 0 1 U D 0 0 Rn Vd 1 0 size imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5961
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Half-precision scalar variant

Applies when size == 01.

VSTR{<c>}{<q>}.16 <Sd>, [<Rn>{, #{+/-}<imm>}]

Single-precision scalar variant

Applies when size == 10.

VSTR{<c>}{<q>}{.32} <Sd>, [<Rn>{, #{+/-}<imm>}]

Double-precision scalar variant

Applies when size == 11.

VSTR{<c>}{<q>}{.64} <Dd>, [<Rn>{, #{+/-}<imm>}]

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 esize = 8 << UInt(size); add = (U == '1');
 imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
 case size of
 when '01' d = UInt(Vd:D);
 when '10' d = UInt(Vd:D);
 when '11' d = UInt(D:Vd);
 n = UInt(Rn);
 if n == 15 && CurrentInstrSet() != InstrSet_A32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

.64 Is an optional data size specifier for 64-bit memory accesses that can be used in the assembler source
code, but is otherwise ignored.

<Dd> Is the 64-bit name of the SIMD&FP source register, encoded in the "D:Vd" field.

.32 Is an optional data size specifier for 32-bit memory accesses that can be used in the assembler source
code, but is otherwise ignored.

<Sd> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vd:D" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. The PC can be used, but this is
deprecated.
F6-5962 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For the single-precision scalar or double-precision scalar variants: is the optional unsigned
immediate byte offset, a multiple of 4, in the range 0 to 1020, defaulting to 0, and encoded in the
"imm8" field as <imm>/4.

For the half-precision scalar variant: is the optional unsigned immediate byte offset, a multiple of 2,
in the range 0 to 510, defaulting to 0, and encoded in the "imm8" field as <imm>/2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 address = if add then (R[n] + imm32) else (R[n] - imm32);
 case esize of
 when 16
 MemA[address,2] = S[d]<15:0>;
 when 32
 MemA[address,4] = S[d];
 when 64
 // Store as two word-aligned words in the correct order for current endianness.
 MemA[address,4] = if BigEndian(AccType_ATOMIC) then D[d]<63:32> else D[d]<31:0>;
 MemA[address+4,4] = if BigEndian(AccType_ATOMIC) then D[d]<31:0> else D[d]<63:32>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5963
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.246 VSUB (floating-point)

Vector Subtract (floating-point) subtracts the elements of one vector from the corresponding elements of another
vector, and places the results in the destination vector.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 advsimd = TRUE;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VSUB{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VSUB{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VSUB{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

1 1 1 1 0 0 1 0 0 D 1 sz Vn Vd 1 1 0 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

!=1111 1 1 1 0 0 D 1 1 Vn Vd 1 0 size N 1 M 0 Vm
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
F6-5964 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 advsimd = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !HaveFP16Ext() then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 advsimd = TRUE;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

1 1 1 0 1 1 1 1 0 D 1 sz Vn Vd 1 1 0 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5965
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T2

Half-precision scalar variant

Applies when size == 01.

VSUB{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VSUB{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VSUB{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 advsimd = FALSE;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding A2, T1 and T2: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

1 1 1 0 1 1 1 0 0 D 1 1 Vn Vd 1 0 size N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5966 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPSub(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize],
StandardFPSCRValue());
 else // VFP instruction
 case esize of
 when 16
 S[d] = Zeros(16) : FPSub(S[n]<15:0>, S[m]<15:0>, FPSCR[]);
 when 32
 S[d] = FPSub(S[n], S[m], FPSCR[]);
 when 64
 D[d] = FPSub(D[n], D[m], FPSCR[]);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5967
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.247 VSUB (integer)

Vector Subtract (integer) subtracts the elements of one vector from the corresponding elements of another vector,
and places the results in the destination vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 0 0 0 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 0 0 0 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5968 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

I8 when size = 00

I16 when size = 01

I32 when size = 10

I64 when size = 11

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = Elem[D[n+r],e,esize] - Elem[D[m+r],e,esize];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5969
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.248 VSUBHN

Vector Subtract and Narrow, returning High Half subtracts the elements of one quadword vector from the
corresponding elements of another quadword vector, takes the most significant half of each result, and places the
final results in a doubleword vector. The results are truncated. For rounded results, see VRSUBHN.

There is no distinction between signed and unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VSUBHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VSUBHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

1 1 1 1 0 0 1 0 1 D !=11 Vn Vd 0 1 1 0 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 0 1 1 1 1 1 D !=11 Vn Vd 0 1 1 0 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
F6-5970 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

I16 when size = 00

I32 when size = 01

I64 when size = 10

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = Elem[Qin[n>>1],e,2*esize] - Elem[Qin[m>>1],e,2*esize];
 Elem[D[d],e,esize] = result<2*esize-1:esize>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5971
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.249 VSUBL

Vector Subtract Long subtracts the elements of one doubleword vector from the corresponding elements of another
doubleword vector, and places the results in a quadword vector. Before subtracting, it sign-extends or zero-extends
the elements of both operands.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VSUBL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize; is_vsubw = (op == '1');
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VSUBL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize; is_vsubw = (op == '1');
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 0 0 1 0 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 0 0 1 0 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
F6-5972 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the second operand vector, encoded in the "U:size" field. It can
have the following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 if is_vsubw then
 op1 = Int(Elem[Qin[n>>1],e,2*esize], unsigned);
 else
 op1 = Int(Elem[Din[n],e,esize], unsigned);
 result = op1 - Int(Elem[Din[m],e,esize], unsigned);
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5973
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.250 VSUBW

Vector Subtract Wide subtracts the elements of a doubleword vector from the corresponding elements of a quadword
vector, and places the results in another quadword vector. Before subtracting, it sign-extends or zero-extends the
elements of the doubleword operand.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

A1 variant

VSUBW{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize; is_vsubw = (op == '1');
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VSUBW{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize; is_vsubw = (op == '1');
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4434 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4543 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 0 0 1 1 N 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 0 0 1 1 N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
F6-5974 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the second operand vector, encoded in the "U:size" field. It can
have the following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 if is_vsubw then
 op1 = Int(Elem[Qin[n>>1],e,2*esize], unsigned);
 else
 op1 = Int(Elem[Din[n],e,esize], unsigned);
 result = op1 - Int(Elem[Din[m],e,esize], unsigned);
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5975
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.251 VSUDOT (by element)

Dot Product index form with signed and unsigned integers. This instruction performs the dot product of the four
signed 8-bit integer values in each 32-bit element of the first source register with the four unsigned 8-bit integer
values in an indexed 32-bit element of the second source register, accumulating the result into the corresponding
32-bit element of the destination register.

From Armv8.2, this is an OPTIONAL instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in
the T32 and A32 instruction sets.

A1

(FEAT_AA32I8MM)

64-bit SIMD vector variant

Applies when Q == 0.

VSUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VSUDOT{<q>}.U8 <Qd>, <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

 if !HaveAArch32Int8MatMulExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 boolean op1_unsigned = (U == '0');
 boolean op2_unsigned = (U == '1');
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm);
 integer i = UInt(M);
 integer regs = if Q == '1' then 2 else 1;

T1

(FEAT_AA32I8MM)

64-bit SIMD vector variant

Applies when Q == 0.

VSUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VSUDOT{<q>}.U8 <Qd>, <Qn>, <Dm>[<index>]

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 1 0 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

U

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 1 0 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

U

F6-5976 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveAArch32Int8MatMulExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 boolean op1_unsigned = (U == '0');
 boolean op2_unsigned = (U == '1');
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm);
 integer i = UInt(M);
 integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

Operation for all encodings

 CheckAdvSIMDEnabled();
 bits(64) operand1;
 bits(64) operand2;
 bits(64) result;

 operand2 = Din[m];
 for r = 0 to regs-1
 operand1 = Din[n+r];
 result = Din[d+r];
 for e = 0 to 1
 bits(32) res = Elem[result, e, 32];
 for b = 0 to 3
 element1 = Int(Elem[operand1, 4 * e + b, 8], op1_unsigned);
 element2 = Int(Elem[operand2, 4 * i + b, 8], op2_unsigned);
 res = res + element1 * element2;
 Elem[result, e, 32] = res;
 D[d+r] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5977
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.252 VSWP

Vector Swap exchanges the contents of two vectors. The vectors can be either doubleword or quadword. There is
no distinction between data types.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VSWP{<c>}{<q>}{.<dt>} <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSWP{<c>}{<q>}{.<dt>} <Qd>, <Qm>

Decode for all variants of this encoding

 if size != '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VSWP{<c>}{<q>}{.<dt>} <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSWP{<c>}{<q>}{.<dt>} <Qd>, <Qm>

Decode for all variants of this encoding

 if size != '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

1 1 1 1 0 0 1 1 1 D 1 1 0 0 1 0 Vd 0 0 0 0 0 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 1 1 1 1 1 1 D 1 1 0 0 1 0 Vd 0 0 0 0 0 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

size
F6-5978 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 if d == m then
 D[d+r] = bits(64) UNKNOWN;
 else
 D[d+r] = Din[m+r];
 D[m+r] = Din[d+r];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5979
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.253 VTBL, VTBX

Vector Table Lookup uses byte indexes in a control vector to look up byte values in a table and generate a new
vector. Indexes out of range return 0.

Vector Table Extension works in the same way, except that indexes out of range leave the destination element
unchanged.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

VTBL variant

Applies when op == 0.

VTBL{<c>}{<q>}.8 <Dd>, <list>, <Dm>

VTBX variant

Applies when op == 1.

VTBX{<c>}{<q>}.8 <Dd>, <list>, <Dm>

Decode for all variants of this encoding

 is_vtbl = (op == '0'); length = UInt(len)+1;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 if n+length > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n + length > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. This behavior does not affect any
general-purpose registers.

T1

VTBL variant

Applies when op == 0.

VTBL{<c>}{<q>}.8 <Dd>, <list>, <Dm>

1 1 1 1 0 0 1 1 1 D 1 1 Vn Vd 1 0 len N op M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 Vn Vd 1 0 len N op M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5980 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VTBX variant

Applies when op == 1.

VTBX{<c>}{<q>}.8 <Dd>, <list>, <Dm>

Decode for all variants of this encoding

 is_vtbl = (op == '0'); length = UInt(len)+1;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 if n+length > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n + length > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. This behavior does not affect any
general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<list> The vectors containing the table. It must be one of:

{<Dn>} Encoded as len = 0b00.

{<Dn>, <Dn+1>}Encoded as len = 0b01.

{<Dn>, <Dn+1>, <Dn+2>}Encoded as len = 0b10.

{<Dn>, <Dn+1>, <Dn+2>, <Dn+3>}Encoded as len = 0b11.

<Dm> Is the 64-bit name of the SIMD&FP source register holding the indices, encoded in the "M:Vm"
field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();

 // Create 256-bit = 32-byte table variable, with zeros in entries that will not be used.
 table3 = if length == 4 then D[n+3] else Zeros(64);
 table2 = if length >= 3 then D[n+2] else Zeros(64);
 table1 = if length >= 2 then D[n+1] else Zeros(64);
 table = table3 : table2 : table1 : D[n];

 for i = 0 to 7
 index = UInt(Elem[D[m],i,8]);
 if index < 8*length then
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5981
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 Elem[D[d],i,8] = Elem[table,index,8];
 else
 if is_vtbl then
 Elem[D[d],i,8] = Zeros(8);
 // else Elem[D[d],i,8] unchanged

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-5982 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.254 VTRN

Vector Transpose treats the elements of its operand vectors as elements of 2 x 2 matrices, and transposes the
matrices.

The elements of the vectors can be 8-bit, 16-bit, or 32-bit. There is no distinction between data types.

The following figure shows the operation of VTRN doubleword operations.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

This instruction is used by the pseudo-instructions VUZP (alias) and VZIP (alias). The pseudo-instruction is never
the preferred disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VTRN{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VTRN{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

Dd

Dm

VTRN.16
0123

Dd

Dm

VTRN.32
01

Dd

Dm

VTRN.8
01234567

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 1 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 1 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5983
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
64-bit SIMD vector variant

Applies when Q == 0.

VTRN{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VTRN{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 h = elements DIV 2;

 for r = 0 to regs-1
 if d == m then
 D[d+r] = bits(64) UNKNOWN;
 else
 for e = 0 to h-1
 Elem[D[d+r],2*e+1,esize] = Elem[Din[m+r],2*e,esize];
 Elem[D[m+r],2*e,esize] = Elem[Din[d+r],2*e+1,esize];
F6-5984 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5985
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.255 VTST

Vector Test Bits takes each element in a vector, and bitwise ANDs it with the corresponding element of a second
vector. If the result is not zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is
set to all zeros.

The operand vector elements can be any one of:

• 8-bit, 16-bit, or 32-bit fields.

The result vector elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VTST{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VTST{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VTST{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VTST{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

1 1 1 1 0 0 1 0 0 D size Vn Vd 1 0 0 0 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D size Vn Vd 1 0 0 0 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5986 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

8 when size = 00

16 when size = 01

32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if !IsZero(Elem[D[n+r],e,esize] AND Elem[D[m+r],e,esize]) then
 Elem[D[d+r],e,esize] = Ones(esize);
 else
 Elem[D[d+r],e,esize] = Zeros(esize);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5987
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.256 VUDOT (by element)

Dot Product index form with unsigned integers. This instruction performs the dot product of the four 8-bit elements
in each 32-bit element of the first source register with the four 8-bit elements of an indexed 32-bit element in the
second source register, accumulating the result into the corresponding 32-bit element of the destination register.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_ISAR6.DP indicates whether this instruction is supported.

A1

(FEAT_DotProd)

64-bit SIMD vector variant

Applies when Q == 0.

VUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VUDOT{<q>}.U8 <Qd>, <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

 if !HaveDOTPExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 boolean signed = (U=='0');
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm<3:0>);
 integer index = UInt(M);
 integer esize = 32;
 integer regs = if Q == '1' then 2 else 1;

T1

(FEAT_DotProd)

64-bit SIMD vector variant

Applies when Q == 0.

VUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>[<index>]

1 1 1 1 1 1 1 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

U

1 1 1 1 1 1 1 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

U

F6-5988 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VUDOT{<q>}.U8 <Qd>, <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveDOTPExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 boolean signed = (U=='0');
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm<3:0>);
 integer index = UInt(M);
 integer esize = 32;
 integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

Operation for all encodings

 bits(64) operand1;
 bits(64) operand2 = D[m];
 bits(64) result;
 CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 operand1 = D[n+r];
 result = D[d+r];
 integer element1, element2;
 for e = 0 to 1
 integer res = 0;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4 * index + i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4 * index + i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
 D[d+r] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5989
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.257 VUDOT (vector)

Dot Product vector form with unsigned integers. This instruction performs the dot product of the four 8-bit elements
in each 32-bit element of the first source register with the four 8-bit elements of the corresponding 32-bit element
in the second source register, accumulating the result into the corresponding 32-bit element of the destination
register.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_ISAR6.DP indicates whether this instruction is supported.

A1

(FEAT_DotProd)

64-bit SIMD vector variant

Applies when Q == 0.

VUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VUDOT{<q>}.U8 <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if !HaveDOTPExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 boolean signed = U=='0';
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer esize = 32;
 integer regs = if Q == '1' then 2 else 1;

T1

(FEAT_DotProd)

64-bit SIMD vector variant

Applies when Q == 0.

VUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

U

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

U

F6-5990 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VUDOT{<q>}.U8 <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveDOTPExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 boolean signed = U=='0';
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer esize = 32;
 integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 bits(64) operand1;
 bits(64) operand2;
 bits(64) result;
 CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 operand1 = D[n+r];
 operand2 = D[m+r];
 result = D[d+r];
 integer element1, element2;
 for e = 0 to 1
 integer res = 0;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
 D[d+r] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5991
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.258 VUMMLA

The widening integer matrix multiply-accumulate instruction multiplies the 2x8 matrix of unsigned 8-bit integer
values held in the first source vector by the 8x2 matrix of unsigned 8-bit integer values in the second source vector.
The resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix accumulator held
in the destination vector. This is equivalent to performing an 8-way dot product per destination element.

From Armv8.2, this is an OPTIONAL instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in
the T32 and A32 instruction sets.

A1

(FEAT_AA32I8MM)

A1 variant

VUMMLA{<q>}.U8 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !HaveAArch32Int8MatMulExt() then UNDEFINED;
 case B:U of
 when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
 when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
 when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
 when '11' UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);

T1

(FEAT_AA32I8MM)

T1 variant

VUMMLA{<q>}.U8 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveAArch32Int8MatMulExt() then UNDEFINED;
 case B:U of
 when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
 when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
 when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
 when '11' UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 0 N 1 M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

B U

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 0 N 1 M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

B U
F6-5992 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP third source and destination register, encoded in the "D:Vd"
field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

Operation for all encodings

 CheckAdvSIMDEnabled();
 bits(128) operand1 = Q[n>>1];
 bits(128) operand2 = Q[m>>1];
 bits(128) addend = Q[d>>1];

 Q[d>>1] = MatMulAdd(addend, operand1, operand2, op1_unsigned, op2_unsigned);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5993
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.259 VUSDOT (by element)

Dot Product index form with unsigned and signed integers. This instruction performs the dot product of the four
unsigned 8-bit integer values in each 32-bit element of the first source register with the four signed 8-bit integer
values in an indexed 32-bit element of the second source register, accumulating the result into the corresponding
32-bit element of the destination register.

From Armv8.2, this is an OPTIONAL instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in
the T32 and A32 instruction sets.

A1

(FEAT_AA32I8MM)

64-bit SIMD vector variant

Applies when Q == 0.

VUSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VUSDOT{<q>}.S8 <Qd>, <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

 if !HaveAArch32Int8MatMulExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 boolean op1_unsigned = (U == '0');
 boolean op2_unsigned = (U == '1');
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm);
 integer i = UInt(M);
 integer regs = if Q == '1' then 2 else 1;

T1

(FEAT_AA32I8MM)

64-bit SIMD vector variant

Applies when Q == 0.

VUSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VUSDOT{<q>}.S8 <Qd>, <Qn>, <Dm>[<index>]

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 1 0 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

U

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 1 0 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

U

F6-5994 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveAArch32Int8MatMulExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 boolean op1_unsigned = (U == '0');
 boolean op2_unsigned = (U == '1');
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm);
 integer i = UInt(M);
 integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

Operation for all encodings

 CheckAdvSIMDEnabled();
 bits(64) operand1;
 bits(64) operand2;
 bits(64) result;

 operand2 = Din[m];
 for r = 0 to regs-1
 operand1 = Din[n+r];
 result = Din[d+r];
 for e = 0 to 1
 bits(32) res = Elem[result, e, 32];
 for b = 0 to 3
 element1 = Int(Elem[operand1, 4 * e + b, 8], op1_unsigned);
 element2 = Int(Elem[operand2, 4 * i + b, 8], op2_unsigned);
 res = res + element1 * element2;
 Elem[result, e, 32] = res;
 D[d+r] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5995
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.260 VUSDOT (vector)

Dot Product vector form with mixed-sign integers. This instruction performs the dot product of the four unsigned
8-bit integer values in each 32-bit element of the first source register with the four signed 8-bit integer values in the
corresponding 32-bit element of the second source register, accumulating the result into the corresponding 32-bit
element of the destination register.

From Armv8.2, this is an OPTIONAL instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in
the T32 and A32 instruction sets.

A1

(FEAT_AA32I8MM)

64-bit SIMD vector variant

Applies when Q == 0.

VUSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VUSDOT{<q>}.S8 <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if !HaveAArch32Int8MatMulExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer regs = if Q == '1' then 2 else 1;

T1

(FEAT_AA32I8MM)

64-bit SIMD vector variant

Applies when Q == 0.

VUSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VUSDOT{<q>}.S8 <Qd>, <Qn>, <Qm>

1 1 1 1 1 1 0 0 1 D 1 0 Vn Vd 1 1 0 1 N Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 0 0 1 D 1 0 Vn Vd 1 1 0 1 N Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-5996 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveAArch32Int8MatMulExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP third source and destination register, encoded in the "D:Vd"
field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP third source and destination register, encoded in the "D:Vd"
field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 CheckAdvSIMDEnabled();
 bits(64) operand1;
 bits(64) operand2;
 bits(64) result;

 for r = 0 to regs-1
 operand1 = Din[n+r];
 operand2 = Din[m+r];
 result = Din[d+r];
 for e = 0 to 1
 bits(32) res = Elem[result, e, 32];
 for b = 0 to 3
 element1 = UInt(Elem[operand1, 4 * e + b, 8]);
 element2 = SInt(Elem[operand2, 4 * e + b, 8]);
 res = res + element1 * element2;
 Elem[result, e, 32] = res;
 D[d+r] = result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5997
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.261 VUSMMLA

The widening integer matrix multiply-accumulate instruction multiplies the 2x8 matrix of unsigned 8-bit integer
values held in the first source vector by the 8x2 matrix of signed 8-bit integer values in the second source vector.
The resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix accumulator held
in the destination vector. This is equivalent to performing an 8-way dot product per destination element.

From Armv8.2, this is an OPTIONAL instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in
the T32 and A32 instruction sets.

A1

(FEAT_AA32I8MM)

A1 variant

VUSMMLA{<q>}.S8 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !HaveAArch32Int8MatMulExt() then UNDEFINED;
 case B:U of
 when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
 when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
 when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
 when '11' UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);

T1

(FEAT_AA32I8MM)

T1 variant

VUSMMLA{<q>}.S8 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !HaveAArch32Int8MatMulExt() then UNDEFINED;
 case B:U of
 when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
 when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
 when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
 when '11' UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);

1 1 1 1 1 1 0 0 1 D 1 0 Vn Vd 1 1 0 0 N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

B U

1 1 1 1 1 1 0 0 1 D 1 0 Vn Vd 1 1 0 0 N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

B U
F6-5998 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);

Assembler symbols

<q> See Standard assembler syntax fields on page F1-4348.

<Qd> Is the 128-bit name of the SIMD&FP third source and destination register, encoded in the "D:Vd"
field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

Operation for all encodings

 CheckAdvSIMDEnabled();
 bits(128) operand1 = Q[n>>1];
 bits(128) operand2 = Q[m>>1];
 bits(128) addend = Q[d>>1];

 Q[d>>1] = MatMulAdd(addend, operand1, operand2, op1_unsigned, op2_unsigned);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-5999
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.262 VUZP

Vector Unzip de-interleaves the elements of two vectors.

The elements of the vectors can be 8-bit, 16-bit, or 32-bit. There is no distinction between data types.

The following figure shows the operation of VUZP doubleword operation for data type 8.

The following figure shows the operation of VUZP quadword operation for data type 32.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VUZP{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VUZP{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' || (Q == '0' && size == '10') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 quadword_operation = (Q == '1'); esize = 8 << UInt(size);
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

64-bit SIMD vector variant

Applies when Q == 0.

VUZP{<c>}{<q>}.<dt> <Dd>, <Dm>

A6 A5 A4 A3 A2 A1 A0 B6 B4 B2 B0 A6 A4 A2 A0A7
B6 B5 B4 B3 B2 B1 B0 B7 B5 B3 B1 A7 A5 A3 A1B7

Dd
Dm

Register state before operation Register state after operation
VUZP.8, doubleword

A2 A1 A0 B2 B0 A2 A0A3
B2 B1 B0 B3 B1 A3 A1B3

Qd
Qm

Register state before operation Register state after operation
VUZP.32, quadword

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 0 1 0 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 0 1 0 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-6000 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VUZP{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' || (Q == '0' && size == '10') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 quadword_operation = (Q == '1'); esize = 8 << UInt(size);
 d = UInt(D:Vd); m = UInt(M:Vm);

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> For the 64-bit SIMD vector variant: is the data type for the elements of the vectors, encoded in the
"size" field. It can have the following values:

8 when size = 00

16 when size = 01

The encoding size = 1x is reserved.

For the 128-bit SIMD vector variant: is the data type for the elements of the vectors, encoded in the
"size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if quadword_operation then
 if d == m then
 Q[d>>1] = bits(128) UNKNOWN;
 else
 zipped_q = Q[m>>1]:Q[d>>1];
 for e = 0 to (128 DIV esize) - 1
 Elem[Q[d>>1],e,esize] = Elem[zipped_q,2*e,esize];
 Elem[Q[m>>1],e,esize] = Elem[zipped_q,2*e+1,esize];
 else
 if d == m then
 D[d] = bits(64) UNKNOWN;
 else
 zipped_d = D[m]:D[d];
 for e = 0 to (64 DIV esize) - 1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-6001
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 Elem[D[d],e,esize] = Elem[zipped_d,2*e,esize];
 Elem[D[m],e,esize] = Elem[zipped_d,2*e+1,esize];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-6002 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.263 VUZP (alias)

Vector Unzip de-interleaves the elements of two vectors

This instruction is a pseudo-instruction of the VTRN instruction. This means that:

• The encodings in this description are named to match the encodings of VTRN.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VTRN gives the operational pseudocode for this instruction.

A1

64-bit SIMD vector variant

VUZP{<c>}{<q>}.32 <Dd>, <Dm>

 is equivalent to

VTRN{<c>}{<q>}.32 <Dd>, <Dm>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

VUZP{<c>}{<q>}.32 <Dd>, <Dm>

 is equivalent to

VTRN{<c>}{<q>}.32 <Dd>, <Dm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

The description of VTRN gives the operational pseudocode for this instruction.

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 1 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

Q

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 1 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

Q

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-6003
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.264 VZIP

Vector Zip interleaves the elements of two vectors.

The elements of the vectors can be 8-bit, 16-bit, or 32-bit. There is no distinction between data types.

The following figure shows the operation of VZIP doubleword operation for data type 8.

The following figure shows the operation of VZIP quadword operation for data type 32.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-6112.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VZIP{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VZIP{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' || (Q == '0' && size == '10') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 quadword_operation = (Q == '1'); esize = 8 << UInt(size);
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

64-bit SIMD vector variant

Applies when Q == 0.

VZIP{<c>}{<q>}.<dt> <Dd>, <Dm>

Dd
Register state before operation Register state after operation

Dm
A2

B2

A0

B0

A1

B1

A3

B3

A4

B4

A5

B5

A6

B6

A7

B7

A2B2 A0B0A1B1A3B3

A4B4A5B5A6B6A7B7

VZIP.8, doubleword

A3 A2Qd
Register state before operation

A1 A0

Register state after operation
B1 A1 B0 A0

B3 B2Qm B1 B0 B3 A3 B2 A2

VZIP.32, quadword

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 0 1 1 Q M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 0 1 1 Q M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
F6-6004 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VZIP{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' || (Q == '0' && size == '10') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 quadword_operation = (Q == '1'); esize = 8 << UInt(size);
 d = UInt(D:Vd); m = UInt(M:Vm);

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<dt> For the 64-bit SIMD vector variant: is the data type for the elements of the vectors, encoded in the
"size" field. It can have the following values:

8 when size = 00

16 when size = 01

The encoding size = 1x is reserved.

For the 128-bit SIMD vector variant: is the data type for the elements of the vectors, encoded in the
"size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if quadword_operation then
 if d == m then
 Q[d>>1] = bits(128) UNKNOWN;
 else
 bits(256) zipped_q;
 for e = 0 to (128 DIV esize) - 1
 Elem[zipped_q,2*e,esize] = Elem[Q[d>>1],e,esize];
 Elem[zipped_q,2*e+1,esize] = Elem[Q[m>>1],e,esize];
 Q[d>>1] = zipped_q<127:0>; Q[m>>1] = zipped_q<255:128>;
 else
 if d == m then
 D[d] = bits(64) UNKNOWN;
 else
 bits(128) zipped_d;
 for e = 0 to (64 DIV esize) - 1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-6005
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 Elem[zipped_d,2*e,esize] = Elem[D[d],e,esize];
 Elem[zipped_d,2*e+1,esize] = Elem[D[m],e,esize];
 D[d] = zipped_d<63:0>; D[m] = zipped_d<127:64>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
F6-6006 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.265 VZIP (alias)

Vector Zip interleaves the elements of two vectors

This instruction is a pseudo-instruction of the VTRN instruction. This means that:

• The encodings in this description are named to match the encodings of VTRN.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VTRN gives the operational pseudocode for this instruction.

A1

64-bit SIMD vector variant

VZIP{<c>}{<q>}.32 <Dd>, <Dm>

 is equivalent to

VTRN{<c>}{<q>}.32 <Dd>, <Dm>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

VZIP{<c>}{<q>}.32 <Dd>, <Dm>

 is equivalent to

VTRN{<c>}{<q>}.32 <Dd>, <Dm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F1-4348. This encoding must be
unconditional.

For encoding T1: see Standard assembler syntax fields on page F1-4348.

<q> See Standard assembler syntax fields on page F1-4348.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

The description of VTRN gives the operational pseudocode for this instruction.

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 1 0 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

Q

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 1 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

Q

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. F6-6007
ID072021 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6-6008 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Part G
The AArch32 System Level Architecture

Chapter G1
The AArch32 System Level Programmers’ Model

This chapter gives a system level description of the programmers’ model for execution in AArch32 state. It contains
the following sections:

• About the AArch32 System level programmers’ model on page G1-6012.

• Exception levels on page G1-6013.

• Exception terminology on page G1-6014.

• Execution state on page G1-6016.

• Instruction Set state on page G1-6018.

• Security state on page G1-6019.

• Security state, Exception levels, and AArch32 execution privilege on page G1-6022.

• Virtualization on page G1-6024.

• AArch32 state PE modes, and general-purpose and Special-purpose registers on page G1-6026.

• Process state, PSTATE on page G1-6035.

• Instruction set states on page G1-6041.

• Handling exceptions that are taken to an Exception level using AArch32 on page G1-6043.

• Routing of aborts taken to AArch32 state on page G1-6062.

• Exception return to an Exception level using AArch32 on page G1-6065.

• Asynchronous exception behavior for exceptions taken from AArch32 state on page G1-6070.

• AArch32 state exception descriptions on page G1-6078.

• Reset into AArch32 state on page G1-6100.

• Mechanisms for entering a low-power state on page G1-6104.

• The AArch32 System register interface on page G1-6109.

• Advanced SIMD and floating-point support on page G1-6112.

• Configurable instruction enables and disables, and trap controls on page G1-6117.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6011
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.1 About the AArch32 System level programmers’ model
G1.1 About the AArch32 System level programmers’ model

An application programmer has only a restricted view of the system. The System level programmers’ model
supports this application level view of the system, and includes features that are required for one or both of an
operating system (OS) and a hypervisor to provide the programming environment seen by an application. This
chapter describes the System level programmers’ model when executing at EL1 or higher in an Exception level that
is using AArch32.

The system level programmers’ model includes all of the system features required to support operating systems and
to handle hardware events.

The following sections give a system level introduction to the basic concepts of the Arm architecture AArch32 state,
and the terminology that is used for describing the architecture when executing in this state:

• Exception levels on page G1-6013.

• Exception terminology on page G1-6014.

• Execution state on page G1-6016.

• Instruction Set state on page G1-6018.

• Security state on page G1-6019.

• Virtualization on page G1-6024.

The rest of this chapter describes the system level programmers’ model when executing in AArch32 state.

The other chapters in this part describe:

• The memory system architecture, as seen when executing in an Exception level that is using AArch32:

— Chapter G4 The AArch32 System Level Memory Model describes the general features of the Armv8
memory model, when executing in AArch32 state, that are not visible at the application level.

Note
Chapter E2 The AArch32 Application Level Memory Model describes the application level view of the
memory model.

— Chapter G5 The AArch32 Virtual Memory System Architecture describes the Virtual Memory System
Architecture (VMSA) used in AArch32 state.

• The AArch32 System registers, see Chapter G8 AArch32 System Register Descriptions.

Note

The T32 and A32 instruction sets include instructions that provide system level functionality, such as returning from
an exception. See, for example, ERET on page F5-4692.
G1-6012 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.2 Exception levels
G1.2 Exception levels

The Armv8-A architecture defines a set of Exception levels, EL0 to EL3, where:

• If ELn is the Exception level, increased values of n indicate increased software execution privilege.

• Execution at EL0 is called unprivileged execution.

• EL2 provides support for virtualization.

• EL3 provides support for switching between two Security states, Secure state and Non-secure state.

An implementation might not include all of the Exception levels. All implementations must include EL0 and EL1.
EL2 and EL3 are optional.

Note

A PE is not required to implement a contiguous set of Exception levels. For example, it is permissible for an
implementation to include only EL0, EL1, and EL3.

The effect of implementation choices on the programmers’ model on page D1-2558 provides information on
implementations.

When executing in AArch32 state, execution can move between Exception levels only on taking an exception or on
returning from an exception:

• On taking an exception, the Exception level can only increase or remain the same.

• On returning from an exception, the Exception level can only decrease or remain the same.

The Exception level that execution changes to or remains in on taking an exception is called the target Exception
level of the exception.

Each exception type has a target Exception level that is either:

• Implicit in the nature of the exception.

• Defined by configuration bits in the System registers.

An exception cannot target EL0.

Exception levels exist within Security states. The Armv8-A security model on page G1-6019 describes this. When
executing at an Exception level, the PE can access both of the following:

• The resources that are available for the combination of the current Exception level and the current Security
state.

• The resources that are available at all lower Exception levels, provided that those resources are available to
the current Security state.

This means that if the implementation includes EL3, then because EL3 is only implemented in Secure state,
execution at EL3 can access all resources available at all Exception levels, for both Security states.

Each Exception level other than EL0 has its own translation regime and associated control registers. For information
on the translation regimes, see Chapter G5 The AArch32 Virtual Memory System Architecture.

G1.2.1 Typical Exception level usage model

The architecture does not specify what software uses which Exception level. Such choices are outside the scope of
the architecture. However, the following is a common usage model for the Exception levels:

EL0 Applications.

EL1 OS kernel and associated functions that are typically described as privileged.

EL2 Hypervisor.

EL3 Secure monitor.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6013
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.3 Exception terminology
G1.3 Exception terminology

The following subsections define the terms that are used when describing exceptions:

• Terminology for taking an exception on page G1-6014.

• Terminology for returning from an exception on page G1-6014.

• Exception levels on page G1-6014.

• Definition of a precise exception on page G1-6014.

• Definitions of synchronous and asynchronous exceptions on page G1-6015.

G1.3.1 Terminology for taking an exception

An exception is generated when the PE first responds to an exceptional condition. The PE state at this time is the
state that the exception is taken from. The PE state immediately after taking the exception is the state that the
exception is taken to.

G1.3.2 Terminology for returning from an exception

To return from an exception, the PE must execute an exception return instruction. The PE state when an exception
return instruction is committed for execution is the state the exception returns from. The PE state immediately after
the execution of that instruction is the state that the exception returns to.

G1.3.3 Exception levels

An Exception level, ELn, with a larger value of n than another Exception level, is described as being a higher
Exception level than the other Exception level. For example, EL3 is a higher Exception level than EL1.

An Exception level with a smaller value of n than another Exception level is described as being a lower Exception
level than the other Exception level. For example, EL0 is a lower Exception level than EL1.

An Exception level is described as:

• Using AArch64 when execution in that Exception level is in the AArch64 Execution state.

• Using AArch32 when execution in that Exception level is in the AArch32 Execution state.

G1.3.4 Definition of a precise exception

An exception is described as precise when the exception handler receives the PE state and memory system state that
is consistent with the PE having executed all of the instructions up to but not including the point in the instruction
stream where the exception was taken, and none afterwards.

An exception is described as imprecise if it is not precise.

Other than the SError interrupt all exceptions that are taken to AArch32 state are required to be precise. For each
occurrence of an SError interrupt, whether the interrupt is precise or imprecise is IMPLEMENTATION DEFINED.

The terms precise and imprecise can also apply to Debug entry state. See Imprecise entry to Debug state on
page H2-7342.

Where a synchronous exception that is taken to AArch32 state is generated as part of an instruction that performs
more than one single-copy atomic memory access, the definition of precise permits that the values in registers or
memory affected by those instructions can be UNKNOWN, provided that:

• The accesses affecting those registers or memory locations do not, themselves, generate exceptions.

• The registers are not involved in the calculation of the memory address that is used by the instruction.

In AArch32 state, examples of instructions that perform more than one single-copy atomic memory access are the
LDM and STM instructions.

Note
• For the definition of a single-copy atomic access, see Properties of single-copy atomic accesses on

page E2-4285.
G1-6014 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.3 Exception terminology
• The SError interrupt replaces the Armv7 asynchronous abort.

G1.3.5 Definitions of synchronous and asynchronous exceptions

An exception is described as synchronous if all of the following apply:

• The exception is generated as a result of direct execution or attempted execution of an instruction.

• The return address presented to the exception handler is guaranteed to indicate the instruction that caused the
exception.

• The exception is precise.

An exception is described as asynchronous if any of the following apply:

• The exception is not generated as a result of direct execution or attempted execution of the instruction stream.

• The return address presented to the exception handler is not guaranteed to indicate the instruction that caused
the exception.

• The exception is imprecise.

For more information about exceptions, see Handling exceptions that are taken to an Exception level using AArch32
on page G1-6043.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6015
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.4 Execution state
G1.4 Execution state

The Execution states are:

AArch64 The 64-bit Execution state.

AArch32 The 32-bit Execution state. Operation in this state is compatible with Armv7-A operation.

Execution state on page A1-37 gives more information about them.

Exception levels use Execution states. For example, EL0, EL1 and EL2 might all be using AArch32, under EL3
using AArch64.

This means that:

• Different software layers, such as an application, an operating system kernel, and a hypervisor, executing at
different Exception levels, can execute in different Execution states.

• The PE can change Execution states only either:

— At reset.

— On a change of Exception level.

Note

• Typical Exception level usage model on page G1-6013 shows which Exception levels different software
layers might typically use.

• The effect of implementation choices on the programmers’ model on page D1-2558 gives information on
supported configurations of Exception levels and Execution states.

The interaction between the AArch64 and AArch32 Execution states is called interprocessing. Interprocessing on
page D1-2545 describes this.

G1.4.1 About the AArch32 PE modes

AArch32 state provides a set of PE modes that support normal software execution and handle exceptions. The
current mode determines the set of registers that are available, as described in AArch32 general-purpose registers,
the PC, and the Special-purpose registers on page G1-6031.

The AArch32 modes are:

• Monitor mode. This mode always executes at Secure EL3.

• Hyp mode. This mode always executes at Non-secure EL2.

• System, Supervisor, Abort, Undefined, IRQ, and FIQ modes. The Exception level these modes execute at
depends on the Security state, as described in Security state on page G1-6019.

• User mode. This mode always executes at EL0.

Note

AArch64 state does not support modes. Modes are a concept that is specific to AArch32 state. Modes that execute
at a particular Exception level are only implemented if that Exception level supports using AArch32 state.

For more information on modes, see AArch32 state PE mode descriptions on page G1-6026.

The mode in use immediately before an exception is taken is described as the mode the exception is taken from. The
mode that is used on taking the exception is described as the mode the exception is taken to.

All of the following define the mode that an exception is taken to:

• The type of exception.

• The mode the exception is taken from.

• Configuration settings defined at EL2 and EL3.
G1-6016 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.4 Execution state
Monitor mode and Hyp mode can create system traps that cause exceptions to EL3 or EL2 respectively. There is an
architected hierarchy where EL2 and EL3 configuration settings affect a common condition, for example interrupt
routing. When no traps are enabled for a particular condition, the AArch32 mode an exception is taken to is called
the default mode for that exception.

In AArch32 state, a number of different modes can exist at the same Exception level. All modes at a particular
Exception level have the same execution privilege, meaning they have the same access rights for accesses to
memory and to System registers. However, the mapping of PE modes to Exception levels depends on the Security
state, as described in Security state on page G1-6019. Security state, Exception levels, and AArch32 execution
privilege on page G1-6022 gives more information about the PE modes, their associated execution privilege, and
how this maps onto the Exception levels.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6017
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.5 Instruction Set state
G1.5 Instruction Set state

In AArch32 state, the Instruction Set state determines the instruction set that the PE is executing. In an
implementation that follows the Arm recommendations, the available Instruction Set states are:

T32 state The PE is executing T32 instructions.

A32 state The PE is executing A32 instructions.

Note

In previous versions of the Arm architecture:

• The T32 instruction set was called the Thumb instruction set.

• The A32 instruction set was called the ARM instruction set.

For more information, see Process state, PSTATE on page E1-4253.
G1-6018 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.6 Security state
G1.6 Security state

The Armv8-A architecture provides two Security states, each with an associated physical memory address space,
as follows:

Secure state When in this state, the PE can access both the Secure physical address space and the
Non-secure physical address space.

Non-secure state When in this state, the PE:

• Can access only the Non-secure physical address space.

• Cannot access the Secure system control resources.

For information on how virtual addresses translate onto Secure physical and Non-secure addresses, see About
VMSAv8-32 on page G5-6262.

G1.6.1 The Armv8-A security model

The principles of the Armv8-A security model are defined in The Armv8-A security model on page D1-2458.

The AArch32 security model, and execution privilege

The Exception level hierarchy of four Exception levels, EL0, EL1, EL2, and EL3, applies to execution in both
Execution states. This section describes the mapping between Exception levels, AArch32 modes, and execution
privilege.

The AArch32 modes Monitor, System, Supervisor, Abort, Undefined, IRQ, and FIQ all have the same execution
privilege.

In Secure state:

• Monitor mode executes only at EL3, and is accessible only when EL3 is using AArch32.

• System mode, Supervisor mode, Abort mode, Undefined mode, IRQ mode, and FIQ mode all:

— Execute at EL1 when EL3 is using AArch64.

— Execute at EL3 when EL3 is using AArch32.

This means that there is a difference in the Secure state hierarchy that the PE is using, depending on which Execution
state EL3 is using:

• If EL3 is using AArch64:

— There is no support for Monitor mode.

— If EL1 is using AArch32, System mode, Supervisor mode, Abort mode, Undefined mode, IRQ mode,
and FIQ mode execute at Secure EL1.

• If EL3 is using AArch32:

— Monitor mode is supported, and executes at Secure EL3.

— System mode, Supervisor mode, Abort mode, Undefined mode, IRQ mode, and FIQ mode execute at
Secure EL3.

— There is no support for a Secure EL1 Exception level.

See Security behavior in Exception levels using AArch32 when EL2 or EL3 are using AArch64 on page G1-6054 for
more information about operation in a Secure EL1 mode when EL3 is using AArch64.

In Non-secure state, the PL1 modes System, Supervisor, Abort, Undefined, IRQ, and FIQ always execute at EL1.

User mode always executes at EL0 and has the lowest possible execution privilege.

Hyp mode always executes in Non-secure state at EL2 and has higher execution privilege than all of:

• User mode.

• System mode, Supervisor mode, Abort mode, Undefined mode, IRQ mode, and FIQ mode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6019
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.6 Security state
Limited use of Privilege level in Armv8 AArch32 state on page G1-6023 describes how, in some contexts, the
concept of Privilege levels can be used to represent the execution privilege hierarchy.

For more information about the modes, see About the AArch32 PE modes on page G1-6016.

Figure G1-1 on page G1-6020 shows the security model when EL3 is using AArch32, and shows the expected use
of the different Exception levels, and which modes execute at which Exception levels.

Figure G1-1 Armv8-A Security model when EL3 is using AArch32

Note

For an overview of the Security models when EL3 is using AArch64:

• See Figure G1-2 on page G1-6029 for the case where EL2, EL1, and EL0 are all using AArch32. This figure
shows the implementation of the PE modes.

• See Figure D1-1 on page D1-2459 for an overview of the set of possible implementations.

Figure G1-1 on page G1-6020 shows that when EL3 is using AArch32, the Exception levels and modes available
in each Security state are as follows:

Secure state

EL0 User mode.

EL3 Any mode that is available in Secure state, other than User mode.

Non-secure state

EL0 User mode.

EL1 Any mode that is available in Non-secure state, other than Hyp mode and User mode.

EL2 Hyp mode.

Execution at EL0 is described as unprivileged execution.

Secure App2Secure App1App2App1App2App1

Guest OS1 Guest OS2

Hypervisor
AArch32

EL0

EL1

EL2

EL3

Non-secure state Secure state

Monitor
Modes:

Secure monitor Secure OS

Hyp
Modes:

AArch32

System, FIQ, IRQ,
Supervisor, Abort, Undefined

Modes:

AArch32AArch32

System, FIQ, IRQ,
Supervisor, Abort, Undefined

Modes:

User
Modes:

AArch32

User
Modes:

AArch32

User
Modes:

AArch32

User
Modes:

AArch32

User
Modes:

AArch32

User
Modes:

AArch32

System, FIQ, IRQ,
Supervisor, Abort, Undefined

Modes:
G1-6020 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.6 Security state
A mode associated with a particular Exception level, ELn, is described as an ELn mode.

Note

The Exception level defines the ability to access resources in the current Security state, and does not imply anything
about the ability to access resources in the other Security state.

When EL3 is using AArch32, many AArch32 System registers accessible at PL1 are banked between the Secure
and Non-secure states.

When EL3 is using AArch64 and Secure EL1 is using AArch32, System registers accessible at PL1 are not banked
between the Non-secure and Secure states. Software running at EL3 is expected to switch the content of the
PL1-accessible System registers between the Secure and Non-secure context, in a similar manner to switching the
contents of general purpose registers. For information on the relationship between AArch64 and AArch32 System
registers in an interprocessing environment, see Mapping of the System registers between the Execution states on
page D1-2548.

For more information on the System registers, see The AArch32 System register interface on page G1-6109.

The Secure Monitor Call (SMC) instruction provides software with a system call to EL3. When executing at a
privileged Exception level, SMC instructions generates exceptions. For more information, see Secure Monitor Call
(SMC) exception on page G1-6083 and SMC on page F5-5022.

Note

For more information about the Privilege level terminology, see Security state, Exception levels, and AArch32
execution privilege on page G1-6022.

Changing from Secure state to Non-secure state

Monitor mode is provided to support switching between Secure and Non-secure states. When executing in an
Exception level that is using AArch32, except in Monitor mode and Hyp mode, the Security state is controlled:

• By the SCR.NS bit, when EL3 is using AArch32.

• By the SCR_EL3.NS bit, when EL3 is using AArch64.

The mapping of AArch32 privileged modes to the exception hierarchy means that it is possible when EL3 is using
AArch32 to change from EL3 to Non-secure EL1 without an exception return. This can occur in one of the
following ways:

• Using an MSR or CPS instruction to switch from Monitor mode to another privileged mode while SCR.NS is 1.

• Using an MCR instruction that writes SCR.NS to change from Secure to Non-secure state when in a privileged
mode other than Monitor mode.

Arm strongly recommends that software executing at EL3 using AArch32 does not use either of these mechanisms
to change from EL3 to Non-secure EL1 without an exception return. The use of both of these mechanisms is
deprecated.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6021
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.7 Security state, Exception levels, and AArch32 execution privilege
G1.7 Security state, Exception levels, and AArch32 execution privilege

In Armv8, the hierarchy of software execution privilege, within a particular Security state, is defined by the
Exception levels, with higher Exception level numbers indicating higher privilege. Table G1-1 on page G1-6022
shows this hierarchy for each Security state.

When executing in AArch32 state, within a given Security state, the current PE state, including the execution
privilege, is primarily indicated by the current PE mode. In Secure state, how the PE modes map onto the Exception
levels depends on whether EL3 is using AArch32 or is using AArch64, and:

• Figure G1-1 on page G1-6020 shows this mapping when EL3 is using AArch32.

• Figure G1-2 on page G1-6029 shows this mapping when EL3 is using AArch64.

Table G1-2 on page G1-6022 shows this mapping. In interpreting this table:

• Monitor mode is implemented only in Secure state, and only if EL3 is using AArch32.

• Hyp mode is implemented only in Non-secure state, and only if EL2 is using AArch32.

• System, FIQ, IRQ, Supervisor, Abort, and Undefined modes are implemented:

In Secure state If either:

• EL3 is using AArch32.

• EL3 is using AArch64 and EL1 is using AArch32.

In Non-secure state If EL1 is using AArch32.

• User mode is implemented if EL0 is using AArch32.

Because AArch32 behavior is described in terms of the PE modes, and transitions between PE modes, the Exception
levels are implicit in most of the description of operation in AArch32 state.

Table G1-1 Execution privilege and Exception levels, by Security state

Execution privilege Secure state Non-secure state Typical use

Highest EL3 -a

a. EL3 is never implemented in Non-secure state.

Secure monitor

- EL2b

b. If FEAT_SEL2 is implemented in AArch64 state, EL2 can be enabled in Secure state.

EL2 Hypervisor

- EL1 EL1 Secure or Non-secure OS

Lowest, Unprivileged EL0 EL0 Secure or Non-secure application

Table G1-2 Mapping of AArch32 PE modes to Exception levels

Exception
level

PE modes in the given Security state, and EL3 Execution state

Secure state, EL3 using AArch32
Secure state, EL3 using
AArch64a Non-secure state

EL3 Monitor, System, FIQ, IRQ, Supervisor,
Abort, Undefined

- -

EL2 - - Hyp

EL1 - System, FIQ, IRQ, Supervisor,
Abort, Undefined

System, FIQ, IRQ, Supervisor,
Abort, Undefined

EL0 User User User

a. If FEAT_SEL2 is implemented and enabled in AArch64 State, this column can be applied to EL2.
G1-6022 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.7 Security state, Exception levels, and AArch32 execution privilege
G1.7.1 Limited use of Privilege level in Armv8 AArch32 state

As described in The VMSAv8-32 translation regimes on page G5-6264, a translation regime maps a virtual address
(VA) to the corresponding physical address (PA). The VMSAv8-64 translation regimes are defined by the Exception
levels that use them. However, because the mapping between PE modes and Exception levels in Secure state
depends on whether EL3 is using AArch32 or is using AArch64, as shown in Table G1-2 on page G1-6022, the
VMSAv8-32 translation regimes cannot be described simply in terms of either the Exception levels or the PE modes
that use them.

To provide a consistent description of address translation as seen from AArch32 state, the VMSAv8-32 translation
regimes are described in terms of the Privilege levels originally defined in the Armv7 descriptions of AArch32 state.
Table G1-3 on page G1-6023 shows how the PE modes map to these Privilege levels:

Comparing Table G1-3 on page G1-6023 with Table G1-2 on page G1-6022 shows that:

In Non-secure state

Each privilege level maps to the corresponding Exception level. For example, PL1 maps to EL1.

In Secure state

PL0 maps to EL0.

The mapping of PL1 depends on the Execution state being used by EL3, as follows:

EL3 using AArch64 Secure PL1 maps to Secure EL1. Monitor mode is not implemented.

EL3 using AArch32 Secure PL1 maps to Secure EL3. Monitor mode is implemented as one of
the Secure PL1 modes.

Table G1-3 Mapping of PE modes to AArch32 Privilege levels

Privilege level Secure state Non-secure state

PL2 - Hypa

PL1 Monitorb, System, FIQ, IRQ, Supervisor, Abort, Undefined System, FIQ, IRQ, Supervisor, Abort, Undefined

PL0 User User

a. Implemented only in Non-secure state, and only if EL2 is using AArch32 state.

b. Implemented only in Secure state, and only if EL3 is using AArch32 state.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6023
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.8 Virtualization
G1.8 Virtualization

The support for virtualization described in this section applies only to an implementation that includes EL2. A PE
is in Hyp mode when it is executing at EL2 in the AArch32 state. An exception return from Hyp mode to software
running at EL1 or EL0 is performed using the ERET instruction.

EL2 provides a set of features that support virtualizing the Non-secure state of an Armv8-A implementation. The
basic model of a virtualized system involves:

• A hypervisor, running in EL2, that is responsible for switching between virtual machines. A virtual machine
is comprised of Non-secure EL1 and Non-secure EL0.

• A number of Guest operating systems, that each run in Non-secure EL1, on a virtual machine.

• For each Guest operating system, applications, that usually run in Non-secure EL0, on a virtual machine.

Note

In some systems, a Guest OS is unaware that it is running on a virtual machine, and is unaware of any other Guest
OS. In other systems, a hypervisor makes the Guest OS aware of these facts. The Armv8-A architecture supports
both of these models.

The hypervisor assigns a VMID to each virtual machine.

In AArch32 state, EL2 is implemented only in Non-secure state, to support Guest OS management. EL2 provides
controls to:

• Provide virtual values for the contents of a small number of identification registers. A read of one of these
registers by a Guest OS or the applications for a Guest OS returns the virtual value.

• Trap various operations, including memory management operations and accesses to many other registers. A
trapped operation generates an exception that is taken to EL2.

• Route interrupts to the appropriate one of:

— The current Guest OS.

— A Guest OS that is not currently running.

— The hypervisor.

In Non-secure state:

• The implementation provides an independent translation regime for memory accesses from EL2.

• For the PL1&0 translation regime, address translation occurs in two stages:

— Stage 1 maps the virtual address (VA) to an intermediate physical address (IPA). This is managed at
EL1, usually by a Guest OS. The Guest OS believes that the IPA is the physical address (PA).

— Stage 2 maps the IPA to the PA. This is managed at EL2. The Guest OS might be completely unaware
of this stage.

For more information on the translation regimes, see Chapter G5 The AArch32 Virtual Memory System Architecture.

G1.8.1 The effect of implementing EL2 on the Exception model

An implementation that includes EL2 implements the following exceptions:

• Hypervisor Call (HVC) exception.

• Traps to EL2. EL2 configurable controls on page G1-6126, describes these.

• All of the virtual interrupts:

— Virtual SError.

— Virtual IRQ.

— Virtual FIQ.

HVC exceptions are always taken to EL2. All virtual interrupts are always taken to EL1, and can only be taken from
Non-secure EL1 or EL0.
G1-6024 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.8 Virtualization
Each of the virtual interrupts can be independently enabled using controls at EL2.

Each of the virtual interrupts has a corresponding physical interrupt. See Virtual interrupts on page G1-6025.

When a virtual interrupt is enabled, its corresponding physical exception is taken to EL2, unless EL3 has configured
that physical exception to be taken to EL3. For more information, see Asynchronous exception behavior for
exceptions taken from AArch32 state on page G1-6070.

An implementation that includes EL2 also:

• Provides controls that can be used to route some synchronous exceptions, taken from Non-secure state, to
EL2. For more information, see:

— Routing exceptions from Non-secure EL0 to EL2 on page G1-6058.

— Routing debug exceptions to EL2 using AArch32 on page G1-6060.

— Routing of aborts taken to AArch32 state on page G1-6062

• Provides mechanisms to trap PE operations to EL2. See EL2 configurable controls on page G1-6126.

When an operation is trapped to EL2, the hypervisor typically either:

— Emulates the required operation. The application running in the Guest OS is unaware of the trap.

— Returns an error to the Guest OS.

Virtual interrupts

The virtual interrupts have names that correspond to the physical interrupts, as shown in Table G1-4 on
page G1-6025.

Software executing at EL2 can use virtual interrupts to signal physical interrupts to Non-secure EL1 and Non-secure
EL0. Example G1-1 on page G1-6025 shows a usage model for virtual interrupts.

Example G1-1 Virtual interrupt usage model

A usage model is as follows:

1. Software executing at EL2 routes a physical interrupt to EL2.

2. When a physical interrupt of that type occurs, the exception handler executing in EL2 determines whether
the interrupt can be handled in EL2 or requires routing to a Guest OS in EL1. If the interrupt requires routing
to a Guest OS:

• If the Guest OS is currently running, the hypervisor uses the appropriate virtual interrupt type to signal
the physical interrupt to the Guest OS.

• If the Guest OS is not currently running, the physical interrupt is marked as pending for the guest OS.
When the hypervisor next switches to the virtual machine that is running that Guest OS, the hypervisor
uses the appropriate virtual interrupt type to signal the physical interrupt to the Guest OS.

Non-secure EL1 and Non-secure EL0 modes cannot distinguish a virtual interrupt from the corresponding physical
interrupt.

For more information, see Virtual exceptions when an implementation includes EL2 on page G1-6070.

Table G1-4 The virtual interrupts

Physical interrupt Corresponding virtual interrupt

External SError Virtual SError

IRQ Virtual IRQ

FIQ Virtual FIQ
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6025
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.9 AArch32 state PE modes, and general-purpose and Special-purpose registers
G1.9 AArch32 state PE modes, and general-purpose and Special-purpose registers

The following sections describe the AArch32 PE modes and the general-purpose registers and the PC:

• AArch32 state PE mode descriptions on page G1-6026.

• AArch32 general-purpose registers, the PC, and the Special-purpose registers on page G1-6031.

• Saved Program Status Registers (SPSRs) on page G1-6033.

• ELR_hyp on page G1-6034.

Note

The PC is included in the scope of this section because, in AArch32 state, it is defined as being part of the same
register file as the general-purpose registers. That is, the AArch32 register file R0-R15 comprises:

• The general-purpose registers R0-R14.

• The PC, which can be described as R15.

G1.9.1 AArch32 state PE mode descriptions

Table G1-5 on page G1-6026 shows the PE modes defined by the Arm architecture, for execution in AArch32 state.
In this table:

• The PE mode column gives the name of each mode and the abbreviation used, for example, in the
general-purpose register name suffixes used in AArch32 general-purpose registers, the PC, and the
Special-purpose registers on page G1-6031.

• The Encoding column gives the corresponding PSTATE.M field.

• The Exception level column gives the Exception level at which the mode is implemented, including
dependencies on the current Security state and on whether EL3 is using AArch32, see Exception levels on
page G1-6013.

Table G1-5 AArch32 PE modes

PE mode Encoding Security state Exception level Implemented

User usr 10000 Both EL0 Always

FIQ fiq 10001 Non-secure

Secure

EL1

EL1 or EL3a

Always

IRQ irq 10010 Non-secure

Secure

EL1

EL1 or EL3a

Always

Supervisor svc 10011 Non-secure

Secure

EL1

EL1 or EL3a

Always

Monitor mon 10110 Secure EL3 If EL3 implemented and using AArch32

Abort abt 10111 Non-secure

Secure

EL1

EL1 or EL3a

Always

Hyp hyp 11010 Non-secure EL2 If EL2 implemented and using AArch32

Undefined und 11011 Non-secure

Secure

EL1

EL1 or EL3a

Always

System sys 11111 Non-secure

Secure

EL1

EL1 or EL3a

Always

a. EL3 if EL3 is using AArch32. EL1 if EL3 is using AArch64 and EL1 is using AArch32.
G1-6026 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.9 AArch32 state PE modes, and general-purpose and Special-purpose registers
Note

FEAT_SEL2 is not supported if EL2 is using AArch32.

Mode changes can be made under software control, or can be caused by an external or internal exception.

Notes on the AArch32 PE modes

PE modes are defined only in AArch32 state. Because each mode is implemented as part of a particular Exception
level that is using AArch32, the set of available modes depends on which Exception levels are implemented and
using AArch32, as described in Effect of the EL3 Execution state on the PE modes and Exception levels on
page G1-6028.

This section gives more information about each of the modes, when it is implemented.

User mode Software executing in User mode executes at EL0. Execution in User mode is sometimes described
as unprivileged execution. Application programs normally execute in User mode, and any program
executed in User mode:

• Makes only unprivileged accesses to system resources, meaning it cannot access protected
system resources.

• Makes only unprivileged access to memory.

• Cannot change mode except by causing an exception, see Handling exceptions that are taken
to an Exception level using AArch32 on page G1-6043.

System mode System mode is implemented at EL1 or EL3, see Effect of the EL3 Execution state on the PE modes
and Exception levels on page G1-6028.

System mode has the same registers available as User mode, and is not entered by any exception.

Supervisor mode

Supervisor mode is implemented at EL1 or EL3, see Effect of the EL3 Execution state on the PE
modes and Exception levels on page G1-6028.

Supervisor mode is the default mode to which a Supervisor Call exception is taken. Executing an
SVC (Supervisor Call) instruction generates a Supervisor Call exception.

In an implementation where the highest implemented Exception level is using AArch32, if that
Exception level is EL3 or EL1, a PE enters Supervisor mode on reset.

Abort mode Abort mode is implemented at EL1 or EL3, see Effect of the EL3 Execution state on the PE modes
and Exception levels on page G1-6028.

Abort mode is the default mode to which a Data Abort exception or Prefetch Abort exception is
taken.

Undefined mode

Undefined mode is implemented at EL1 or EL3, see Effect of the EL3 Execution state on the PE
modes and Exception levels on page G1-6028.

Undefined mode is the default mode to which an instruction-related exception, including any
attempt to execute an UNDEFINED instruction, is taken.

FIQ mode FIQ mode is implemented at EL1 or EL3, see Effect of the EL3 Execution state on the PE modes
and Exception levels on page G1-6028.

FIQ mode is the default mode to which an FIQ interrupt is taken.

IRQ mode IRQ mode is implemented at EL1 or EL3, see Effect of the EL3 Execution state on the PE modes
and Exception levels on page G1-6028.

IRQ mode is the default mode to which an IRQ interrupt is taken.

Hyp mode Hyp mode is the Non-secure EL2 mode.

Hyp mode is entered on taking an exception from Non-secure state that must be taken to EL2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6027
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.9 AArch32 state PE modes, and general-purpose and Special-purpose registers
In an implementation where the highest implemented Exception level is EL2 and EL2 uses
AArch32 on reset, a PE enters Hyp mode on reset.

The Hypervisor Call exception and Hyp Trap exception are implemented as part of EL2 and are
always taken to Hyp mode when EL2 is using AArch32.

Executing an HVC (Hypervisor Call) instruction generates a Hypervisor Call exception. See
Hypervisor Call (HVC) exception on page G1-6084.

For more information, see Hyp mode on page G1-6029.

Monitor mode

Monitor mode is the Secure EL3 mode. This means it is always in the Secure state, regardless of the
value of the SCR.NS bit.

Monitor mode is the mode to which a Secure Monitor Call exception is taken. In a Non-secure EL1
mode, or a Secure EL3 mode, executing an SMC (Secure Monitor Call) instruction generates a Secure
Monitor Call exception.

When EL3 is using AArch32, some exceptions that are taken to a different mode by default can be
configured to be taken to EL3, see PE mode for taking exceptions on page G1-6053.

When EL3 is using AArch32, software executing in Monitor mode:

• Has access to both the Secure and Non-secure copies of System registers.

• Can perform an exception return to Secure state, or to Non-secure state.

This means that, when EL3 is using AArch32, Monitor mode provides the only recommended
method of changing between the Secure and Non-secure Security states.

Secure and Non-secure modes

In an implementation that includes EL3, the names of most implemented modes can be qualified as
Secure or Non-secure, to indicate whether the PE is also in Secure state or Non-secure state. For
example:

• If a PE is in Supervisor mode and Secure state, it is in Secure Supervisor mode.

• If a PE is in User mode and Non-secure state, it is in Non-secure User mode.

Note

As indicated in the appropriate Mode descriptions:

• Monitor mode is a Secure mode, meaning it is always in the Secure state.

• Hyp mode is a Non-secure mode, meaning it is accessible only in Non-secure state.

Effect of the EL3 Execution state on the PE modes and Exception levels

Figure G1-1 on page G1-6020 shows the PE modes, Exception levels, and Security states, for an implementation
that includes all of the Exception levels, when EL3 is using AArch32. Figure G1-2 on page G1-6029 shows how
the implemented modes change when EL3 is using AArch64.
G1-6028 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.9 AArch32 state PE modes, and general-purpose and Special-purpose registers
Figure G1-2 Armv8 Exception levels, and PE modes, when EL3 is using AArch64

Comparing Figure G1-1 on page G1-6020 and Figure G1-2 on page G1-6029 shows how, in Secure state only, the
implementation of System, FIQ, IRQ, Supervisor, Abort, and Undefined mode depends on the Execution state that
EL3 is using. That is, these modes are implemented as follows:

Non-secure state

If Non-secure EL1 is using AArch32, then System, FIQ, IRQ, Supervisor, Abort, and Undefined
modes are implemented as part of EL1. Otherwise, these modes are not implemented in Non-secure
state.

Secure state The implementation of these modes depends on the Execution state that EL3 is using, as follows:

EL3 using AArch64 If Secure EL1 is using AArch32, then System, FIQ, IRQ, Supervisor, Abort,
and Undefined modes are implemented as part of EL1. Otherwise, these
modes are not implemented in Secure state.

EL3 using AArch32 In Secure state, System, FIQ, IRQ, Supervisor, Abort, and Undefined modes
are implemented as part of EL3, see Figure G1-1 on page G1-6020.

Hyp mode

Hyp mode is the Non-secure EL2 mode. When EL2 is using AArch32, it provides the usual method of controlling
the virtualization of Non-secure execution at EL1 and EL0.

Note

The alternative method of controlling this functionality is by accessing the EL2 controls from EL3 with the
SCR_EL3.NS or SCR.NS bit set to 1.

Secure App2Secure App1App2App1App2App1

Guest OS1 Guest OS2

Hypervisor
AArch32‡

EL0

EL1

EL2

EL3

Non-secure state Secure state

Secure monitor

Hyp
Modes:

AArch64

System, FIQ, IRQ,
Supervisor, Abort, Undefined

Modes:

AArch32†AArch32†

System, FIQ, IRQ,
Supervisor, Abort, Undefined

Modes:

User
Modes:

AArch32

User
Modes:

AArch32

User
Modes:

AArch32

User
Modes:

AArch32

User
Modes:

AArch32

User
Modes:

AArch32

† When EL1 is using AArch64, System, FIQ, IRQ, Supervisor, Abort, and Undefined modes are not implemented
‡ When EL2 is using AArch64, Hyp mode is not implemented

Secure OS

System, FIQ, IRQ,
Supervisor, Abort, Undefined

Modes:

AArch32†
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6029
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.9 AArch32 state PE modes, and general-purpose and Special-purpose registers
This section summarizes how Hyp mode differs from the other modes, and references where this part of the manual
describes the features of Hyp mode in more detail:

• Software executing in Hyp mode executes at EL2, see Figure G1-1 on page G1-6020.

• Hyp mode is accessible only in Non-secure state. In Secure state, an attempt by a CPS or an MSR instruction to
change PSTATE.M to Hyp mode is an illegal change to PSTATE.M, as described in Illegal changes to
PSTATE.M on page G1-6039.

• In Non-debug state, the only mechanisms for changing to Hyp mode are:

— An exception taken from a Non-secure EL1 or EL0 mode.

— When EL3 is using AArch32, an exception return from Secure Monitor mode.

— When EL3 is using AArch64, an exception return from EL3.

• In Hyp mode, the only exception return is execution of an ERET instruction, see ERET on page F5-4692.

• In Hyp mode, the CPACR has no effect on the execution of;

— System register access instructions.

— Advanced SIMD and floating-point instructions.

The HCPTR controls execution of these instructions in Hyp mode.

• If software running in Hyp mode executes an SVC instruction, the Supervisor Call exception generated by the
instruction is taken to Hyp mode, see SVC on page F5-5177.

• An exception return with restored PSTATE specifying Hyp mode is an illegal return event, as described in
Illegal return events from AArch32 state on page G1-6066, if any of the following applies:

— EL3 is using AArch64 and the value of SCR_EL3.NS is 0.

— EL3 is using AArch32 and the value of SCR.NS is 0.

— The return is from a Non-secure EL1 mode.

• The instructions described in the following sections are UNDEFINED if executed in Hyp mode:

— SRS. See SRS, SRSDA, SRSDB, SRSIA, SRSIB on page F5-5058.

— RFE. See RFE, RFEDA, RFEDB, RFEIA, RFEIB on page F5-4952.

— LDM (exception return) on page F5-4726.

— LDM (User registers) on page F5-4728.

— STM (User registers) on page F5-5098.

— The SUBS PC, LR forms of the instructions described in SUB, SUBS (immediate) on page F5-5161.

Note
In T32 state, ERET is encoded as SUBS PC, LR, #0, and therefore this is a valid instruction.

— The exception return form of the instructions described in MOV, MOVS (register) on page F5-4841.

In addition, deprecated forms of the A32 ADCS, ADDS, ANDS, BICS, EORS, MOVS, MVNS, ORRS, RSBS, RSCS, SBCS, and
SUBS instructions with the PC as the destination register are UNDEFINED if executed in Hyp mode. The
instruction descriptions identify these UNDEFINED cases.

• The Load unprivileged and Store unprivileged instructions LDRT, LDRSHT, LDRHT, LDRBT, STRT, STRHT, and STRBT,
are CONSTRAINED UNPREDICTABLE if executed in Hyp mode.

To permit entry to Hyp mode using the Hypervisor Call exception, Secure software must enable use of the HVC
instruction:

• By setting the SCR_EL3.HCE bit to 1, if EL3 is using AArch64.

• By setting the SCR.HCE bit to 1, if EL3 is using AArch32.

If EL3 is implemented and using AArch32, and SCR.HCE is set to 0, the HVC instruction is UNPREDICTABLE in Hyp
mode. The instruction is either UNDEFINED or executes as a NOP.
G1-6030 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.9 AArch32 state PE modes, and general-purpose and Special-purpose registers
If EL3 is implemented and using AArch64, and SCR_EL3.HCE is set to 0, the HVC instruction is UNDEFINED in Hyp
mode.

If EL3 is not implemented and HCR.HCD is set to 1, the HVC instruction is UNDEFINED in Hyp mode.

Pseudocode description of mode operations

The BadMode() function tests whether a 5-bit mode number corresponds to one of the permitted modes.

The BadMode() function is defined in Chapter J1 Armv8 Pseudocode.

G1.9.2 AArch32 general-purpose registers, the PC, and the Special-purpose registers

The general-purpose registers, and the PC, in AArch32 state on page E1-4251 describes the application level view
of the general-purpose registers, and the PC. This view provides:

• The general-purpose registers R0-R14, of which:

— The preferred name for R13 is SP (stack pointer).

— The preferred name for R14 is LR (link register).

• The PC, which can be described as R15.

These registers are selected from a larger set of registers that includes banked copies of some registers, with the
current register selected by the execution mode. The implementation and banking of the general-purpose registers
depends on whether or not the implementation includes EL2 and EL3, and whether those Exception levels are using
AArch32. Figure G1-3 on page G1-6032 shows the full set of banked general-purpose registers, and the
Special-purpose registers:

• The Program Status Registers CPSR and SPSR.

• ELR_hyp.

Note

The architecture uses system level register names, such as R0_usr, R8_usr, and R8_fiq, when it must identify a
specific register. The application level names refer to the registers for the current mode, and usually are sufficient
to identify a register.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6031
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.9 AArch32 state PE modes, and general-purpose and Special-purpose registers
Figure G1-3 AArch32 general-purpose registers, PC, and Special-purpose registers, showing banking

As described in PE mode for taking exceptions on page G1-6053, on taking an exception the PE changes mode,
unless it is already in the mode to which it must take the exception. Each mode that the PE might enter in this way
has:

• A banked copy of the stack pointer, for example SP_irq and SP_hyp.

• A register that holds a preferred return address for the exception. This is:

— For the EL2 mode, Hyp mode, the Special-purpose register ELR_hyp.

— For the other privileged modes to which exceptions can be taken, a banked copy of the link register,
for example LR_und and LR_mon.

• A saved copy of PSTATE, made on exception entry, for example SPSR_irq and SPSR_hyp.

In addition, FIQ mode has banked copies of the general-purpose registers R8 to R12.

User mode and System mode share the same general-purpose registers.

User mode, System mode, and Hyp mode share the same LR.

For more information about the application level view of the SP, LR, and PC, and the alternative descriptions of
them as R13, R14 and R15, see The general-purpose registers, and the PC, in AArch32 state on page E1-4251.

AArch32 Special-purpose registers

In AArch32 state, the Special-purpose registers are:

• The CPSR and its view as the APSR.

• The SPSR, including the banked copies SPSR_abt, SPSR_fiq, SPSR_hyp, SPSR_irq, SPSR_mon,
SPSR_svc, and SPSR_und.

• The ELR_hyp.

APSR

R12
SP
LR
PC

R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
R0

‡ Part of EL3. Exists only in Secure state, and only when EL3 is using AArch32.

User System Supervisor Abort Undefined IRQ FIQ
R0_usr
R1_usr
R2_usr
R3_usr
R4_usr
R5_usr
R6_usr
R7_usr
R8_usr
R9_usr
R10_usr
R11_usr
R12_usr
SP_usr
LR_usr
PC

CPSR
SPSR_svc SPSR_abt SPSR_irq SPSR_fiq

LR_svc LR_abt LR_irq LR_fiq
SP_svc SP_abt SP_irq SP_fiq

R8_fiq
R9_fiq
R10_fiq
R11_fiq
R12_fiq

LR_und
SP_und

SPSR_und

Monitor ‡

SPSR_mon

LR_mon
SP_mon

Application
level view System level view

Hyp †

SP_hyp

SPSR_hyp

† Part of EL2. Exists only in Non-secure state, and only when EL2 is using AArch32.

ELR_hyp

Cells with no entry indicate that the User mode register is used.
G1-6032 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.9 AArch32 state PE modes, and general-purpose and Special-purpose registers
Pseudocode description of general-purpose register and PC operations

The following pseudocode gives access to the general-purpose registers and the PC. These registers are an array, _R,
indexed by parameter n. This array is common to AArch32 and AArch64 operation and therefore contains 31 64-bit
registers. _PC is the Program Counter, and its definition is common to AArch32 and AArch64 operation and
therefore its size is 64-bit.

LookUpRIndex() looks up the index value, n, for the specified register number and PE mode, using RBankSelect() to
evaluates the result.

_R accesses the specified general-purpose register in the current PE mode, using Rmode[] to access the register,
accessing _R if necessary. SP accesses the stack pointer, LR accesses the link register, and PC accesses the Program
Counter. Each function has a non-assignment form for register reads and an assignment form for register writes,
other than PC, which has only a non-assignment form.

BranchTo() performs a branch to the specified address.

The _R, _PC, LR, SP, LookUpRIndex(), RBankSelect(), Rmode[], and BranchTo() functions are defined in Chapter J1
Armv8 Pseudocode.

G1.9.3 Saved Program Status Registers (SPSRs)

The Saved Program Status Registers (SPSRs) are used to save PE state on taking exceptions. In AArch32 state, there
is an SPSR for every mode that an exception can be taken to, as shown in Figure G1-3 on page G1-6032. For
example, the SPSR for Monitor mode is called SPSR_mon.

Note

Exceptions cannot be taken to EL0.

When the PE takes an exception, PE state is saved from PSTATE in the SPSR for the mode the exception is taken
to. For example, if the PE takes an exception to Monitor mode, PE state is saved in SPSR_mon. For more
information on PSTATE, see Process state, PSTATE on page G1-6035.

Note

All PSTATE fields are saved, including those which have no direct read and write access.

Saving the PSTATE fields means the exception handler can:

• On return from the exception, restore the PE state to the values it had immediately before the exception was
taken. When the PE returns from an exception, PE state is restored to the state stored in the SPSR of the mode
the exception is returning from, if the exception return is made using one of:

— ERET.

— LDM.

— The Exception return form of the instruction described in MOV, MOVS (register) on page F5-4841.

— The Exception return form of the instruction described in SUB, SUBS (immediate) on page F5-5161.

For example, on returning from Monitor mode, PE state is restored to the state stored in SPSR_mon. If the
exception return is made using the RFE instruction, the PE restores the PE state from an SPSR valued read
from memory.

• Examine the value that PSTATE had when the exception was taken, for example to determine the instruction
set state and privilege level in which the instruction that caused an Undefined Instruction exception was
executed.

The SPSRs are UNKNOWN on a Warm reset. Any operation in a Non-secure EL1 or EL0 mode makes SPSR_hyp
unknown.

SPSR bits that are defined as RES0 on an exception taken from AArch32 state are ignored on any exception return
to AArch32 state.

For more information on SPSR, see SPSR, Saved Program Status Register on page G8-6819.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6033
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.9 AArch32 state PE modes, and general-purpose and Special-purpose registers
Pseudocode description of SPSR operations

The following pseudocode gives access to the SPSRs.

The SPSR[] function accesses the current SPSR and is common to AArch32 and AArch64 operation.

The SPSRWriteByInstr() function is used by the MSR (register) and MSR (immediate) instructions to update the
current SPSR.

The SPSR[] and SPSRWriteByInstr() functions are defined in Chapter J1 Armv8 Pseudocode.

G1.9.4 ELR_hyp

Hyp mode does not provide its own banked copy of LR. Instead, on taking an exception to Hyp mode, the preferred
return address is stored in ELR_hyp, a 32-bit Special-purpose register implemented for this purpose.

ELR_hyp can be accessed explicitly only by executing:

• An MRS or MSR instruction that targets ELR_hyp, see:

— MRS (Banked register) on page F5-4858.

— MSR (Banked register) on page F5-4862.

The ERET instruction uses the value in ELR_hyp as the return address for the exception. For more information, see
ERET on page F5-4692.

Software execution in any Non-secure EL1 or EL0 mode makes ELR_hyp UNKNOWN.
G1-6034 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.10 Process state, PSTATE
G1.10 Process state, PSTATE

In the Armv8-A architecture, Process state or PSTATE is an abstraction of process state information. All of the
instruction sets provide instructions that operate on elements of PSTATE.

PSTATE includes all of the following:

• Fields that are meaningful only in AArch32 state.

• Fields that are meaningful only in AArch64 state.

• Fields that are meaningful in both Execution states.

PSTATE is defined in pseudocode as the PSTATE structure, of type ProcState. ProcState is defined in Chapter J1
Armv8 Pseudocode.

The PSTATE fields that are meaningful in AArch32 state are:

The Condition flags

N Negative Condition flag.

Z Zero Condition flag.

C Carry Condition flag.

V Overflow Condition flag.

Process state, PSTATE on page E1-4253 gives more information about these.

The overflow or saturation flag

Q See Process state, PSTATE on page E1-4253.

The greater than or equal flags

GE[3:0] See Process state, PSTATE on page E1-4253.

The PE state controls

J, T Instruction set state. See Process state, PSTATE on page E1-4253. J is RES0. On a Warm
reset to AArch32 state, T is set to an IMPLEMENTATION DEFINED value. On taking an
exception to:

• A PL1 mode using AArch32, T is set to SCTLR.TE.

• EL2 using AArch32, T is set to HSCTLR.TE.

IT[7:0] IT block state bits. See Process state, PSTATE on page E1-4253. On a Warm reset or
taking an exception to AArch32 state, these bits are set to 0.

E Endianness of data accesses. See Process state, PSTATE on page E1-4253. If an
implementation provides both Big-endian and Little-endian support, then:

• On a Warm reset to AArch32 state this bit is set to the IMPLEMENTATION DEFINED
reset value of:

— SCTLR.EE if the highest implemented Exception level is not EL2.

— HSCTLR.EE if the highest implemented Exception level is EL2.

• On taking an exception to:

— A PL1 mode using AArch32, this bit is set to SCTLR.EE.

— EL2 using AArch32, this bit is set to HSCTLR.EE

IL Illegal Execution state bit. See The Illegal Execution state exception on page G1-6068.
On a Warm reset or taking an exception to AArch32 state, this bit is set to 0.

For information on how the J, T, IT[7:0], E, and IL fields can be accessed, see Accessing the PE
state controls and the Execution state bit on page G1-6038.

The asynchronous exception mask bits

A SError interrupt mask bit.

I IRQ interrupt mask bit.

F FIQ interrupt mask bit.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6035
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.10 Process state, PSTATE
For each bit, the values are:

0 Exception not masked.

1 Exception masked.

On a Warm reset to AArch32 state, these bits are set to 1.

On taking an exception to AArch32 state, one or more of these bits are set to 1.

For more information, see both:

• Asynchronous exception masking controls on page G1-6073.

• PE state on exception entry on page G1-6056.

The mode bits

M[4:0] Current mode of the PE. Table G1-5 on page G1-6026 lists the permitted values of this
field. All other values are reserved. Illegal changes to PSTATE.M on page G1-6039
describes the effect of setting M[4:0] to a reserved value.

M[4] is:

M[4], Execution state

The current Execution state:

0 AArch64 state.

1 AArch32 state.

Note
This is consistent with the use of M[4:0] in previous versions of the
architecture.

On a Warm reset to AArch32 state, M[4:0] is set to:

• 0b10011, meaning Supervisor mode, if the highest implemented Exception level
is not EL2.

• 0b11010, meaning Hyp mode, if the highest implemented Exception level is EL2.

On taking an exception to AArch32 state, M[4:0] is set to the target mode for the
exception type.

For more information about the PE modes, see:

• AArch32 state PE mode descriptions on page G1-6026.

• PE state on exception entry on page G1-6056.

Access control bits, from Armv8.1

PAN Privileged Access Never (PAN) state bit, see About the PAN bit on page G5-6311.

Timing control bits

DIT Data Independent Timing (DIT) bit. For more information, see About the DIT bit on
page E1-4259.

This bit is implemented only when FEAT_DIT is implemented.

On a Warm reset to AArch32 state, this bit is set to 0.

Speculation control bits

SSBS Speculative Store Bypass Safe (SSBS) bit. For more information, see Speculative Store
Bypass Safe (SSBS) on page E2-4298.

This bit is implemented only when FEAT_SSBS is implemented.

On a Warm reset to AArch32 state, this bit is set to an IMPLEMENTATION DEFINED value.

G1.10.1 Accessing PSTATE fields

The PSTATE fields can be accessed as described in the following subsections:

• The Current Program Status Register, CPSR on page G1-6037.

• Accessing the PE state controls and the Execution state bit on page G1-6038.

• The CPS instruction on page G1-6038.
G1-6036 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.10 Process state, PSTATE
• The SETEND instruction on page G1-6039.

• The SETPAN instruction on page G1-6039.

The Current Program Status Register, CPSR

Some PSTATE fields can be accessed using the Special-purpose Current Program Status Register (CPSR). The
CPSR can be directly read using the MRS instruction, and directly written using the MSR (register) and MSR
(immediate) instructions.

The CPSR bit assignments are:

N, Z, C, V, bits [31:28]

The PSTATE Condition flags.

Q, bit [27] The PSTATE overflow or saturation flag.

Bits[26:23, 20, 15:10, 5]

Reserved, RES0.

SSBS, bit [23] Speculative Store Bypass Safe (SSBS) bit, see Access permissions for instruction execution on
page G5-6312.

Bit[22] In Armv8.0, Reserved, RES0.

In Armv8.1, Privileged Access Never (PAN) state bit, see About the PAN bit on page G5-6311.

DIT, bit [21] Shows the value of CPSR.DIT immediately before the exception was taken.

GE[3:0], bits [19:16]

The PSTATE greater than or equal flags.

E, bit [9] The PSTATE endianness bit.

A, I, F, bits [8:6]

The PSTATE asynchronous exception mask bits.

M[4:0], bits [4:0]

The PSTATE mode bits.

The other PSTATE fields cannot be accessed by using the CPSR. For information on how to access them, see
Accessing the PE state controls and the Execution state bit on page G1-6038.

The application level alias for the CPSR is the APSR. The APSR is a subset of the CPSR. See The Application
Program Status Register, APSR on page E1-4255.

Writes to the CPSR have side-effects on various aspects of PE operation. All of these side-effects, except
side-effects on memory accesses associated with fetching instructions, are synchronous to the CPSR write. This
means that they are guaranteed:

• Not to be visible to earlier instructions in the execution stream.

• To be visible to later instructions in the execution stream.

RES0 FN

31 30 29 28 27 26 24 23 20 19 16 15 10 9 8 7 6 5 4 0

Z C V Q RES0 GE[3:0] E A I M[4:0]

Condition flags Mask bits

22 21

RES0

PAN, from Armv8.1
DIT, from Armv8.4

25

RES0

SSBS
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6037
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.10 Process state, PSTATE
The privilege level and address space of memory accesses associated with fetching instructions depend on the
current Exception level and Security state. Writes to PSTATE.M can change one or both of the Exception level and
Security state. The effect, on memory accesses associated with fetching instructions, of a change of Exception level
or Security state is:

• Synchronous to the change of Exception level or Security state, if that change is caused by an exception entry
or exception return.

• Guaranteed not to be visible to any memory access caused by fetching an earlier instruction in the execution
stream.

• Guaranteed to be visible to any memory access caused by fetching any instruction after the next Context
synchronization event in the execution stream.

• Might or might not affect memory accesses caused by fetching instructions between the mode change
instruction and the point where the mode change is guaranteed to be visible.

See Exception return to an Exception level using AArch32 on page G1-6065 for the definition of exception return
instructions.

Accessing the PE state controls and the Execution state bit

The PE state controls are the PSTATE.{IL, IT[7:0], J, E, T} fields. Software can read or write these in an SPSR.

In the CPSR:

• The PE state controls, other than PSTATE.E, are RAZ when read by an MRS instruction.

• Writes to the PE state controls, other than PSTATE.E, by MSR (register) or MSR (immediate), are ignored
in all modes.

Instructions other than MRS, MSR (register), or MSR (immediate) that access the PE state controls can read and
write them in any mode.

Unlike the other PSTATE PE state controls, PSTATE.E can be read by an MRS instruction and might be written by
MSR (register) or MSR (immediate). However, Arm deprecates PSTATE.E having a different value from the
equivalent System register EE bit, see Mixed-endian support on page G4-6228.

Note

To determine the current endianness, software can use an LDR instruction to load a word from memory with a known
value that differs if the endianness is reversed. For example, using an LDR instruction to load a word whose four bytes
are 0x01, 0x00, 0x00, and 0x00 in ascending order of memory address loads the destination register with:

• 0x00000001 if the current endianness is little-endian.

• 0x01000000 if the current endianness is big-endian.

The PSTATE.M[4] bit is the Execution state bit. When read by an MRS instruction in AArch32 state, this bit always
reads as 1. When written by an MSR (register) instruction or MSR (immediate) instruction, writing a value other
than 1 is an illegal change to the PSTATE.M field. See Illegal changes to PSTATE.M on page G1-6039.

The CPS instruction

The A32 and T32 instruction sets both include an instruction to manipulate PSTATE.{A, I, F} and PSTATE.M:

CPSIE <iflags> {, #<mode>}

Sets the specified PSTATE. {A, I, F} exception masks to 0, enabling the exception, and optionally
changes to the specified mode.

CPSID <iflags> {, #<mode>}

Sets the specified PSTATE.{A, I, F} exception masks to 1, disabling the exception, and optionally
changes to the specified mode.

CPS #<mode> Changes to the specified mode without affecting the PSTATE.{A, I, F} exception masks.
G1-6038 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.10 Process state, PSTATE
The CPS instruction is unconditional. For more information, see CPS, CPSID, CPSIE on page F5-4657.

The SETEND instruction

The A32 and T32 instruction sets both include an instruction to manipulate PSTATE.E:

SETEND BE Sets PSTATE.E to 1, for big-endian operation.

SETEND LE Sets PSTATE.E to 0, for little-endian operation.

The SETEND instruction is unconditional. For more information, see SETEND on page F5-5004. Arm deprecates use
of the SETEND instruction.

The SETPAN instruction

FEAT_PAN adds the SETPAN instruction to the A32 and T32 instruction sets, to manipulate PSTATE.PAN:

SETPAN #0 Sets PSTATE.PAN to 0, disabling Privileged access-never operation.

SETPAN #1 Sets PSTATE.PAN to 1, enabling Privileged access-never operation.

The SETPAN instruction is unconditional.

• SETPAN on page F5-5005.

• About the PAN bit on page G5-6311.

G1.10.2 The Saved Program Status Registers (SPSRs)

On taking an exception, PSTATE is preserved in the SPSR of the mode to which the exception is taken. The SPSRs
are described in Saved Program Status Registers (SPSRs) on page G1-6033.

G1.10.3 Illegal changes to PSTATE.M

In AArch32 PE modes other than User mode, MSR and CPS instructions can explicitly change PSTATE.M. The
following changes to PSTATE.M by MSR or CPS instructions are illegal:

• A change to an encoding that Table G1-5 on page G1-6026 does not show.

• A change to a mode that is not implemented.

• A change to a mode that is not accessible from the context the MRS or CPS instruction is executed in, as follows:

— A change to a mode that would cause entry to a higher Exception level.

— When executing in Non-secure state, a change to Monitor mode.

— When executing in Secure EL1, a change to Monitor mode when EL3 is using AArch64.

— A change to Hyp mode from any other mode.

— A change from Hyp mode to any other mode.

— When the value of HCR.TGE is 1, attempting to change from Monitor mode to a Non-secure PL1
mode, see Trapping of general exceptions to Hyp mode on page K1-8406.

On executing an instruction that attempts an illegal change to PSTATE.M:

• PSTATE.M is unchanged, and the current mode remains unchanged.

• PSTATE.IL is set to 1.

• All other PSTATE fields are written to as normal.

Note

For the PSTATE fields that MSR and CPS instructions update, see the instruction descriptions:

• MSR (register) on page F5-4868.

• MSR (immediate) on page F5-4866.

• CPS, CPSID, CPSIE on page F5-4657.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6039
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.10 Process state, PSTATE
When the value of PSTATE.IL is 1, any attempt to execute any instruction results in an Illegal Execution state
exception. See The Illegal Execution state exception on page G1-6068.

Note
• The PE ignores writes to PSTATE.M when executing at PL0.

• In Armv7, an instruction that attempts to make an illegal change to PSTATE.M is UNPREDICTABLE.

G1.10.4 Pseudocode description of PSTATE operations

The CPSRWriteByInstr() function is used by the MSR (register) and MSR (immediate) instructions to update
PSTATE.

The SetPSTATEFromPSR() function updates PSTATE from a CPSR or SPSR.

Chapter J1 Armv8 Pseudocode defines these functions.
G1-6040 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.11 Instruction set states
G1.11 Instruction set states

The instruction set states are described in Chapter E2 The AArch32 Application Level Memory Model and
application level operations on them are described there. This section supplies more information about how they
interact with system level functionality, in the sections:

• Exceptions and instruction set state on page G1-6041.

• Unimplemented instruction sets on page G1-6041.

G1.11.1 Exceptions and instruction set state

If an exception is taken to an EL1 mode, the SCTLR.TE bit for the Security state the exception is taken to determines
the instruction set state that handles the exception, and if necessary, the PE changes to this instruction set state on
exception entry.

If the exception is taken to Hyp mode, the HSCTLR.TE bit determines the instruction set state that handles the
exception, and if necessary, the PE changes to this instruction set state on exception entry.

On coming out of reset, if the highest implemented Exception level is using AArch32:

• If the highest implemented Exception level is EL2, the PE starts execution in Hyp mode, in the instruction
set state determined by the reset value of HSCTLR.TE.

• Otherwise, the PE starts execution in Supervisor mode, in the instruction set state determined by the reset
value of SCTLR.TE. If the implementation includes EL3, this execution is in Secure Supervisor mode.

For more information about exception entry, see Overview of exception entry on page G1-6050.

G1.11.2 Unimplemented instruction sets

The PSTATE.T bit defines the current instruction set state, see Process state, PSTATE on page E1-4253.

In the Armv8 architecture, there is no support for the hardware acceleration of Java bytecodes, and the Jazelle
Instruction set state is obsolete. Every AArch32 implementation must support the Trivial Jazelle implementation
described in Trivial implementation of the Jazelle extension on page G1-6041.

Note

In previous versions of the Arm architecture, the PSTATE.{J, T} bits determined the Instruction set state. In Armv8,
PSTATE.J is RES0.

Trivial implementation of the Jazelle extension

Armv8 requires that the implementation of AArch32 state includes the trivial Jazelle implementation.

In a trivial implementation of the Jazelle extension:

• At EL1, EL2, or EL3, if the Exception level is using AArch32:

— The JMCR and JOSCR are RAZ/WI.

— The JIDR is a RAZ read-only register.

• At EL0 when EL0 is using AArch32:

— It is IMPLEMENTATION DEFINED whether the JMCR and JOSCR are RAZ/WI or UNDEFINED.

— It is IMPLEMENTATION DEFINED whether JIDR is RAZ or UNDEFINED.

• The BXJ instruction behaves identically to the BX instruction in all circumstances.

Note

This is consistent with the JMCR.JE bit being RAZ, and means that the A32 and T32 instruction sets do not
provide any mechanism for attempting to enter Jazelle state.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6041
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.11 Instruction set states
• Jazelle state, as defined in previous versions of the Arm architecture, is an unimplemented instruction set
state.

These requirements ensure that operating systems that support an EJVM execute correctly.

A trivial implementation is not required to extend the PC to 32 bits, that is, it can implement PC[0] as RAZ/WI.

Note

This is because the only way that PC[0] is visible in A32 or T32 state is as a result of an exception occurring during
Jazelle state execution, and Jazelle state execution cannot occur on a trivial implementation.
G1-6042 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.12 Handling exceptions that are taken to an Exception level using AArch32
G1.12 Handling exceptions that are taken to an Exception level using AArch32

An exception causes the PE to suspend program execution to handle an event, such as an externally generated
interrupt or an attempt to execute an undefined instruction. Exceptions can be generated by internal and external
sources.

Normally, when an exception is taken the PE state is preserved immediately, before handling the exception. This
means that, when the event has been handled, the original state can be restored and program execution resumed from
the point where the exception was taken.

More than one exception might be generated at the same time, and a new exception can be generated while the PE
is handling an exception.

The following sections describe exception handling:

• Exception vectors and the exception base address on page G1-6043.

• Exception prioritization for exceptions taken to AArch32 state on page G1-6046.

• Overview of exception entry on page G1-6050.

• PE mode for taking exceptions on page G1-6053.

• PE state on exception entry on page G1-6056.

• Routing exceptions from Non-secure EL0 to EL2 on page G1-6058.

• Routing debug exceptions to EL2 using AArch32 on page G1-6060.

See also:

• Routing of aborts taken to AArch32 state on page G1-6062.

• Exception return to an Exception level using AArch32 on page G1-6065.

• Asynchronous exception behavior for exceptions taken from AArch32 state on page G1-6070.

• AArch32 state exception descriptions on page G1-6078.

G1.12.1 Exception vectors and the exception base address

When an exception is taken, PE execution is forced to an address that corresponds to the type of exception. This
address is called the exception vector for that exception. The vectors for the different types of exception form a
vector table.

Note

There are significant differences in the sets of exception vectors for exceptions taken to an Exception level that is
using AArch32 and for exceptions taken to an Exception level that is using AArch64. This part of this manual
describes only how exceptions are taken to an Exception level that is using AArch32.

When an exception is taken to an Exception level that is using AArch64, then the exception is taken as described in
Chapter D1 The AArch64 System Level Programmers’ Model using the exception vectors described in Exception
vectors on page D1-2477.

AArch32 state defines exception vector tables for exceptions taken to EL2 and EL3 when those Exception levels
are using AArch32. Those vector tables are not used when the corresponding Exception levels are using AArch64.

A set of exception vectors for an Exception level that is using AArch32 comprises eight consecutive word-aligned
memory addresses, starting at an exception base address. These eight vectors form an AArch32 vector table.

The number of possible exception base addresses, and therefore the number of vector tables, depends on the
implemented Exception levels, as follows:

Implementation that does not include EL3

Any implementation that does not include EL3 must include the following AArch32 vector table if
EL1 can use AArch32:

• An exception table for exceptions taken to EL1 modes other than System mode. This is the
EL1 vector table, and is in the address space of the PL1&0 translation regime.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6043
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.12 Handling exceptions that are taken to an Exception level using AArch32
Note
Exceptions cannot be taken to System mode.

For this vector table:

— When SCTLR.V == 0, the VBAR holds the exception base address.

— When SCTLR.V == 1, the exception base address is 0xFFFF0000.

Implementation that includes EL2

Any implementation that includes EL2 must include the following additional AArch32 vector table
if EL2 can use AArch32:

• An exception table for exceptions taken to Hyp mode. This is the Hyp vector table, and is in
the address space of the Non-secure PL2 translation regime.

For this vector table, HVBAR holds the exception base address.

Implementation that includes EL3

Any implementation that includes EL3 must include the following AArch32 vector tables:

• If EL3 can use AArch32, a vector table for exceptions taken to Secure Monitor mode. This
is the Monitor vector table, and is in the address space of the Secure PL1&0 translation
regime.

For this vector table, MVBAR holds the exception base address.

• If Secure EL1 can use AArch32, a vector table for exceptions taken to Secure privileged
modes other than Monitor mode and System mode. This is the Secure vector table, and is in
the address space of the Secure PL1&0 translation regime.

— When the Secure instance of SCTLR.V == 0, the Secure instance of VBAR holds the
exception base address.

— When the Secure instance of SCTLR.V == 1, the exception base address is 0xFFFF0000.

• If Non-secure EL1 can use AArch32, a vector table for exceptions taken to Non-secure PL1
modes. This is the Non-secure vector table, and is in the address space of the Non-secure
PL1&0 translation regime.

— When the Non-secure instance of SCTLR.V == 0, the Non-secure instance of VBAR
holds the exception base address.

— When the Non-secure instance of SCTLR.V == 1, the exception base address is
0xFFFF0000.

The following subsections give more information:

• The vector tables and exception offsets on page G1-6044.

• Pseudocode determination of the exception base address on page G1-6046.

The vector tables and exception offsets

Table G1-6 on page G1-6045 defines the AArch32 vector table entries. In this table:

• The Hyp column defines the vector table entries for exceptions taken to Hyp mode.

• The Monitor column defines the vector table entries for exceptions taken to Monitor mode.

• The Secure and Non-secure columns define the Secure and Non-secure vector table entries, that are used for
exceptions taken to modes other than Monitor mode, Hyp mode, System mode, and User mode. Table G1-7
on page G1-6045 shows the mode to which each of these exceptions is taken. Each of these modes is
described as the default mode for taking the corresponding exception.

Note
Exceptions cannot be taken to System mode or User mode.
G1-6044 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.12 Handling exceptions that are taken to an Exception level using AArch32
For more information about determining the mode to which an exception is taken, see PE mode for taking exceptions
on page G1-6053.

When EL2 is using AArch32, it provides a number of additional exceptions, some of which are not shown explicitly
in the vector tables. For more information, see Offsets of AArch32 exceptions provided by EL2 on page G1-6046.

For more information about use of the vector tables, see Overview of exception entry on page G1-6050.

Table G1-6 The AArch32 vector tables

Offset
Vector tables

Hypa Monitorb Securec Non-securec

0x00 Not used Not used Not usedd Not used

0x04 Undefined Instruction, from Hyp mode Monitor Trap Undefined Instruction Undefined Instruction

0x08 Hypervisor Call, from Hyp mode Secure Monitor Call Supervisor Call Supervisor Call

0x0C Prefetch Abort, from Hyp mode Prefetch Abort Prefetch Abort Prefetch Abort

0x10 Data Abort, from Hyp mode Data Abort Data Abort Data Abort

0x14 Hyp Trap, or Hyp mode entrye Not used Not used Not used

0x18 IRQ interrupt IRQ interrupt IRQ interrupt IRQ interrupt

0x1C FIQ interrupt FIQ interrupt FIQ interrupt FIQ interrupt

a. Non-secure state only. Implemented only if the implementation includes EL2 and EL2 can use AArch32.

b. Secure state only. Implemented only if the implementation includes EL3 and EL3 can use AArch32.

c. If the implementation does not include EL3 then there is a single vector table for exceptions taken to EL1 when EL1 is using
AArch32. That table holds the vectors shown in the Secure column of this table

d. In previous versions of the architecture, this entry has been used for the Reset vector, meaning the address at which execution starts
on coming out of reset. In Armv8, the AArch32 Reset vector is IMPLEMENTATION DEFINED. An implementation might use this vector
table entry to hold the Reset vector.

e. See Use of offset 0x14 in the Hyp vector table on page G1-6046.

Table G1-7 Modes for taking the exceptions shown in the Secure or Non-secure vector table

Exception Mode taken to

Undefined Instruction Undefined

Supervisor Call Supervisor

Prefetch Abort Abort

Data Abort Abort

IRQ interrupt IRQ

FIQ interrupt FIQ
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6045
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.12 Handling exceptions that are taken to an Exception level using AArch32
Offsets of AArch32 exceptions provided by EL2

EL2 provides the following exceptions. When EL2 is using AArch32, these exceptions are taken to Hyp mode, and
the PE enters the handlers for these exceptions using the following vector table entries shown in Table G1-6 on
page G1-6045:

Hypervisor Call

If taken from Hyp mode, shown explicitly in the Hyp mode vector table. Otherwise, see Use of offset
0x14 in the Hyp vector table on page G1-6046.

Hyp Trap Shown explicitly in the Hyp mode vector table.

Virtual Abort Entered through the Data Abort vector in the Non-secure vector table.

Virtual IRQ Entered through the IRQ vector in the Non-secure vector table.

Virtual FIQ Entered through the FIQ vector in the Non-secure vector table.

Note

Virtual exceptions when an implementation includes EL2 on page G1-6070 gives more information about the virtual
exceptions.

Use of offset 0x14 in the Hyp vector table

The vector at offset 0x14 in the Hyp vector table is used for all exceptions that cause entry to Hyp mode from
Non-secure EL0 and EL1, except for IRQ and FIQ exceptions.

Note

Virtual exceptions are never taken to Hyp mode.

Pseudocode determination of the exception base address

For an exception taken to a PL1 mode, the ExcVectorBase() function determines the exception base address.

The ExcVectorBase() function is defined in Chapter J1 Armv8 Pseudocode.

Note

The PL1 modes to which exceptions can be taken are Supervisor mode, Undefined mode, Abort mode, IRQ mode,
and FIQ mode. In Non-secure state, and in Secure state when EL3 is using AArch64, these are EL1 modes.
However, in Secure state when EL3 is using AArch32, these are EL3 modes. For more information, see Security
state, Exception levels, and AArch32 execution privilege on page G1-6022.

G1.12.2 Exception prioritization for exceptions taken to AArch32 state

The following sections describe the Armv8 requirements for the prioritization of synchronous exceptions, and the
limits on when asynchronous exceptions can be taken:

• Synchronous exception prioritization for exceptions taken to AArch32 state on page G1-6047.

• Architectural requirements for taking asynchronous exceptions on page G1-6049.

See also:

• AArch32 state prioritization of synchronous aborts from a single stage of address translation on
page G5-6364, for information about:

— The prioritization of aborts on a single memory access in a VMSA implementation.

— The prioritization of exceptions generated during address translation.

• Debug state entry and debug event prioritization on page H2-7341 for information about the relative
prioritization of exceptions and the debug events that cause entry to Debug state.
G1-6046 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.12 Handling exceptions that are taken to an Exception level using AArch32
Synchronous exception prioritization for exceptions taken to AArch32 state

In principle, any single instruction can generate a number of different synchronous exceptions, between the fetching
of the instruction, its decode, and eventual execution. This section describes the prioritization of such exceptions
when they are taken to an Exception level that is using AArch32.

Note

• An exception that is taken to an Exception level that is using AArch32 must have been taken from an
Exception level that is using AArch32.

• The priority numbering in this list correlates with the equivalent AArch64 list in Synchronous exception
prioritization for exceptions taken to AArch64 state on page D1-2490.

For an exception that is taken to an Exception level that is using AArch32, exceptions are prioritized as follows,
where 1 is the highest priority.

1-5 These priority numbers are used by AArch64 exceptions or debug events.

6 PC alignment fault exceptions. A PC alignment fault exception can only be taken to an Exception
level that is using AArch32 as a result of:

• The CONSTRAINED UNPREDICTABLE handling of a branch to an unaligned address, see
Branching to an unaligned PC on page K1-8388.

• Exiting from Debug state to AArch32 specifying an unaligned PC value, see Exiting Debug
state on page H2-7375.

A PC alignment fault exception that is taken to an Exception level that is using AArch32 is reported
as a Prefetch Abort exception, see Prefetch Abort exception reporting a PC alignment fault
exception on page G1-6086.

7 Prefetch Abort exceptions. See Prefetch Abort exception on page G1-6085 and AArch32 state
prioritization of synchronous aborts from a single stage of address translation on page G5-6364.

8 Breakpoint exceptions or Address Matching Vector Catch exceptions. See:

• Breakpoint exceptions on page G2-6170.

• Vector Catch exceptions on page G2-6209.

Note

An Exception Trapping Vector Catch exception is generated on exception entry for an exception that
has been prioritized as described in this section. This means that it does not have its own entry in
this list.

9 Illegal Execution state exceptions. See The Illegal Execution state exception on page G1-6068.

10 Software Breakpoint Exceptions caused by the execution of a BKPT Exception generating instruction.

11 This priority number is used by AArch64 exceptions.

12 Exceptions taken from EL1 to EL2 because of one of the following configuration settings:

• HSTR.Tn.

• HCR.TIDCP.

13 Undefined Instruction exceptions that occur as a result of one or more of the following:

• An attempt to execute an unallocated instruction encoding, including an encoding for an
instruction that is not implemented in the PE implementation.

• An attempt to execute an instruction that is defined never to be accessible at the current
Exception level regardless of any enables or traps.

• Debug state execution of an instruction encoding that is not accessible in Debug state.

• Non-debug state execution of an instruction encoding that is not accessible in Non-debug
state.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6047
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.12 Handling exceptions that are taken to an Exception level using AArch32
• Execution of an HVC instruction when HVC instructions are disabled by SCR.HCE or
HCR.HCD.

• Execution of an HLT instruction when HLT instructions are disabled by EDSCR.HDE or when
halting is prohibited.

• In Debug state:

— Execution of a DCPS1 instruction in Non-secure EL0 when HCR.TGE is 1.

— Execution of a DCPS2 instruction in EL1 or EL0 when SCR.NS is 0 or when EL2 is
disabled or not implemented in the current Security state.

— Execution of a DCPS3 instruction when EDSCR.SDD is 1 or when EL3 is not
implemented.

— When the value of EDSCR.SDD is 1, execution in EL2, EL1, or EL0 of an instruction
that is trapped to EL3.

• Execution of an instruction that is UNDEFINED as a result of any of:

— Being in an IT block when SCTLR.ITD is 1, or when HSCTLR.ITD is 1.

— Executing a SETEND instruction when SCTLR.SED is 1, or when HSCTLR.SED is 1.

— Executing a CP15DMB, CP15DSB, or CP15ISB barrier instruction when
SCTLR.CP15BEN is 0, or when HSCTLR.CP15BEN is 0.

See Disabling or enabling PL0 and PL1 use of AArch32 optional functionality on
page G1-6120 and Disabling or enabling EL2 use of AArch32 optional functionality on
page G1-6129.

• Execution of an instruction that is UNDEFINED because at least one of FPSCR.{Stride, Len}
is nonzero, when programming these bits to nonzero values is supported. See Floating-point
exceptions and exception traps on page E1-4268.

14 Exceptions taken to EL1, or taken to EL2 because the value of HCR.TGE is 1, that are generated
because of configurable access to instructions, and that are not covered by any of priorities 6-13.

15 Exceptions taken from EL0 to EL2 because of one of the following configuration settings:

• HSTR.Tn.

• HCR.TIDCP.

16 Exceptions taken to EL2 because of configuration settings in the HCPTR.

17 Exceptions taken to EL2 because of one of the following configuration settings:

• Any setting in HCR, other than the TIDCP bit.

• Any setting in CNTHCTL.

• Any setting in HDCR.

• If EL1 is using AArch64 state, any of the fine-grained traps in HAFGRTR_EL2,
HDFGRTR_EL2, HDFGWTR_EL2, HFGITR_EL2, HFGRTR_EL2, HFGWTR_EL2.

18 Exceptions taken to EL2 because of configurable access to instructions, and that are not covered by
any of priorities 6-17.

19 Exceptions caused by the SMC instruction being UNDEFINED because the value of SCR.SCD is 1.

20 Exceptions caused by the execution of an Exception generating instruction, SVC, HVC, or SMC.

21-22 These priority numbers are used by AArch64 exceptions.

23 Exceptions taken to EL3 from EL0, EL1, or EL2 because of configuration settings in the SDCR.

24 Exceptions taken to EL3 because of configurable access to instructions, and that are not covered by
any of priorities 6-23.

25 This priority number is used by AArch64 exceptions.
G1-6048 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.12 Handling exceptions that are taken to an Exception level using AArch32
26 Trapped floating-point exceptions, if supported. See Floating-point exceptions and exception traps
on page E1-4268.

27-28 These priority numbers are used by AArch64 exceptions and debug events.

29 Data Abort exceptions other than a Data Abort exception generated by a synchronous External abort
that was not generated by a translation table walk. That is, any Data Abort exception that is not
covered by item 31. See Data Abort exception on page G1-6089 and AArch32 state prioritization of
synchronous aborts from a single stage of address translation on page G5-6364. It is
IMPLEMENTATION DEFINED whether synchronous External aborts are prioritized here or as item 31.

30 Watchpoint exceptions. See Watchpoint exceptions on page G2-6195.

31 Data Abort exception generated by a synchronous External abort that was not generated by a
translation table walk, see External aborts on page G4-6255. It is IMPLEMENTATION DEFINED
whether synchronous External aborts are prioritized here or as item 29.

For items 29-31, if an instruction results in more than one single-copy atomic memory access, the prioritization
between synchronous exceptions generated on each of those different memory accesses is not defined by the
architecture.

Note

Exceptions generated by a translation table walk are reported and prioritized as either a Prefetch Abort exception,
priority 7 in this list, or a Data Abort exception, priority 29 in this list. See also AArch32 state prioritization of
synchronous aborts from a single stage of address translation on page G5-6364.

Architectural requirements for taking asynchronous exceptions

The Arm architecture does not define when asynchronous exceptions are taken. The prioritization of asynchronous
exceptions, including virtual asynchronous exceptions, is IMPLEMENTATION DEFINED.

An asynchronous exception that is pending before a Context synchronization event in the following list, is taken
before the first instruction after the context synchronizing event, provided that the pending asynchronous event is
not masked:

• Execution of an ISB instruction that does not fail its Condition code check.

• Exception entry.

• Exception return.

• Exit from Debug state.

Note

• If the first instruction after the context synchronizing event generates a synchronous exception, then the
architecture does not define the order in which that synchronous exception and the asynchronous exception
are taken.

• The ISR identifies any pending asynchronous exceptions.

• Interrupts are masked when the PE is in Debug state, and therefore this list of context synchronizing events
does not include the DCPS and DRPS instructions.

In the absence of a specific requirement to take an asynchronous exception, the only requirement of the architecture
is that an unmasked asynchronous exception is taken in finite time.

Note

The taking of an unmasked asynchronous exception in finite time must occur with all code sequences, including
with a sequence that consists of unconditional loops.

If an unmasked interrupt was pending but is changed to not pending before it is taken, then the architecture permits
the interrupt to be taken, but does not require this to happen. If the interrupt is taken, then it must be taken before
the first Context synchronization event after the interrupt was changed to not pending.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6049
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.12 Handling exceptions that are taken to an Exception level using AArch32
PSTATE includes a mask bit for each type of asynchronous exception. Setting one of these bits to 1 can prevent the
corresponding asynchronous exception from being taken, although when the PE is in Non-secure state other controls
can modify the effect of these bits. For more information, see Asynchronous exception behavior for exceptions taken
from AArch32 state on page G1-6070.

Taking an exception sets an exception-dependent subset of these mask bits.

Note

In some contexts, the PSTATE.{A, I, F} bits mask the taking of asynchronous exceptions. The way these are set on
exception entry, described in PSTATE.{A, I, F, M} values on exception entry on page G1-6057, can prevent an
exception handler being interrupted by an asynchronous exception.

G1.12.3 Overview of exception entry

There are some significant differences between the handling of exceptions taken to Hyp mode and exceptions taken
to other modes. Because Hyp mode is the EL2 mode, this means that the following descriptions sometimes
distinguish between the EL2 mode and the non-EL2 modes.

On taking an exception to an Exception level that is using AArch32:

1. The hardware determines the mode to which the exception must be taken, see PE mode for taking exceptions
on page G1-6053.

2. A link value, indicating the preferred return address for the exception, is saved. This is a possible return
address for the exception handler, and depends on:

• The exception type.

• Whether the exception is taken to the EL2 mode or to a non-EL2 mode.

• For some exceptions taken to non-EL2 modes, the instruction set state when the exception was taken.

Where the link value is saved depends on whether the exception is taken to the EL2 mode.

For more information, see Link values saved on exception entry on page G1-6051.

3. The value of PSTATE is saved in the SPSR for the mode to which the exception must be taken. The value
saved in SPSR.IT[7:0] is always correct for the preferred return address.

4. In an implementation that includes EL3, when EL3 is using AArch32:

• If the exception is taken from Monitor mode, SCR.NS is cleared to 0.

• Otherwise, taking the exception leaves SCR.NS unchanged.

When EL3 is using AArch64, Monitor mode is not available.

5. PSTATE is updated with new context information for the exception handler. This includes:

• Setting PSTATE.M to the PE mode to which the exception is taken.

• Setting the appropriate PSTATE mask bits. This can disable the corresponding exceptions, preventing
uncontrolled nesting of exception handlers.

• Setting the instruction set state to the state required for exception entry.

• Setting the endianness to the required value for exception entry.

• Clearing the PSTATE.IT[7:0] bits to 0.

For more information, see PE state on exception entry on page G1-6056.

6. The appropriate exception vector is loaded into the PC, see Exception vectors and the exception base address
on page G1-6043.

7. Execution continues from the address held in the PC.

For an exception taken to a non-EL2 mode, on exception entry, the exception handler can use the SRS instruction to
store the return state onto the stack of any mode at the same Exception level and in the same Security state, and can
use the CPS instruction to change mode. For more information about the instructions, see SRS, SRSDA, SRSDB,
SRSIA, SRSIB on page F5-5058 and CPS, CPSID, CPSIE on page F5-4657.
G1-6050 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.12 Handling exceptions that are taken to an Exception level using AArch32
Later sections of this chapter describe each of the possible exceptions, and each of these descriptions includes a
pseudocode description of the PE state changes on taking that exception. Table G1-8 on page G1-6051 gives an
index to these descriptions:

The following sections give more information about the PE state changes, for different architecture
implementations. However, you must refer to the pseudocode for a full description of the state changes:

• PE mode for taking exceptions on page G1-6053.

• PE state on exception entry on page G1-6056.

Link values saved on exception entry

On exception entry, a link value for use on return from the exception, is saved. This link value is based on the
preferred return address for the exception, as shown in Table G1-9 on page G1-6051:

Table G1-8 Pseudocode descriptions of exception entry for exceptions taken to AArch32 state

Exception Description of exception entry

Reset Pseudocode descriptions of reset on page G1-6103

Undefined Instruction Pseudocode description of taking the Undefined Instruction exception on page G1-6080

Hyp Trap Pseudocode description of taking the Hyp Trap exception on page G1-6082

Monitor Trap Pseudocode description of taking the Monitor Trap exception on page G1-6081

Supervisor Call Pseudocode description of taking the Supervisor Call exception on page G1-6083

Secure Monitor Call Pseudocode description of taking the Secure Monitor Call exception on page G1-6084

Hypervisor Call Pseudocode description of taking the Hypervisor Call exception on page G1-6085

Prefetch Abort Pseudocode description of taking the Prefetch Abort exception on page G1-6089

Data Abort Pseudocode description of taking the Data Abort exception on page G1-6092

Virtual Abort Pseudocode description of taking the Virtual SError interrupt exception on page G1-6094

IRQ Pseudocode description of taking the physical IRQ exception on page G1-6095

Virtual IRQ Pseudocode description of taking the Virtual IRQ exception on page G1-6096

FIQ Pseudocode description of taking the FIQ exception on page G1-6098

Virtual FIQ Pseudocode description of taking the Virtual FIQ exception on page G1-6098

Table G1-9 Exception return addresses for exceptions taken to AArch32 state

Exception Preferred return address Taken to a mode at

Undefined Instruction Address of the UNDEFINED instruction Non-EL2a, or EL2c

Hyp Trap Address of the trapped instruction EL2 onlyc

Monitor Trap Address of the trapped instruction EL3 only

Supervisor Call Address of the instruction after the SVC instruction Non-EL2a or EL2c

Secure Monitor Call Address of the instruction after the SMC instruction EL3b, and only in Secure state

Hypervisor Call Address of the instruction after the HVC instruction EL2 onlyc

Prefetch Abort Address of aborted instruction fetch Non-EL2a or EL2c
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6051
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.12 Handling exceptions that are taken to an Exception level using AArch32
Note

• Although Reset is described as an exception, it differs significantly from other exceptions. The architecture
has no concept of a return from a Reset and therefore it is not listed in this section.

• For each exception, the preferred return address is not affected by the Exception level from which the
exception was taken.

The link value saved, and where it is saved, depend on whether the exception is taken to a non-EL2 mode, or to an
EL2 mode, as follows:

Exception taken to a non-EL2 mode

The link value is saved in the LR for the mode to which the exception is taken.

The saved link value is the preferred return address for the exception, plus an offset that depends on
the instruction set state when the exception was taken, as Table G1-10 on page G1-6052 shows:

Exception taken to an EL2 mode

The link value is saved in the ELR_hyp Special-purpose register.

Data Abort Address of instruction that generated the abort Non-EL2a or EL2c

Virtual Abort Address of next instruction to execute EL1, and only in Non-secure state

IRQ or FIQ Address of next instruction to execute Non-EL2a or EL2c

Virtual IRQ or Virtual FIQ Address of next instruction to execute EL1, and only in Non-secure state

a. EL1 if the exception is taken to a Non-secure mode, or is taken to a Secure mode when EL3 is using AArch64. EL3 if the
exception is taken to a Secure mode when EL3 is using AArch64.

b. A Secure Monitor Call exception is taken to EL3, and therefore is taken to AArch32 state only if EL3 is using AArch32,
in which case it is taken to Monitor mode.

c. EL2 is implemented only in Non-secure state when using AArch32 state. Therefore, an exception can be taken to EL2
mode only if it is taken from Non-secure state when using AArch32 state.

Table G1-9 Exception return addresses for exceptions taken to AArch32 state (continued)

Exception Preferred return address Taken to a mode at

Table G1-10 Offsets applied to Link value for exceptions taken to non-EL2 modes

Exception
Offset, for PE state of:

A32 T32

Undefined Instruction +4 +2

Monitor Trap +4 +2

Supervisor Call None None

Secure Monitor Call None None

Prefetch Abort +4 +4

Data Abort +8 +8

Virtual Abort +8 +8

IRQ or FIQ +4 +4

Virtual IRQ or Virtual FIQ +4 +4
G1-6052 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.12 Handling exceptions that are taken to an Exception level using AArch32
The saved link value is the preferred return address for the exception, as shown in Table G1-9 on
page G1-6051, with no offset.

G1.12.4 PE mode for taking exceptions

The following principles determine the Exception level to which an exception is taken, and if that Exception level
is using AArch32, the PE mode to which the exception is taken:

• An exception cannot be taken to the EL0 mode.

• An exception is taken either:

— To the Exception level at which the PE was executing when it took the exception.

— To a higher Exception level.

This means that, in Secure state:

— When EL3 is using AArch32, an exception is always taken to an EL3 mode.

— When EL3 is using AArch64, an exception that is taken to AArch32 state is taken to an EL1 mode.

• Configuration options and other features provided by EL2 and EL3 can determine the mode to which some
exceptions are taken, as follows:

In an implementation that does not include EL2 or EL3

An exception is always taken to the default mode for that exception.

In an implementation that includes EL3

A Secure Monitor Call exception is always taken to EL3. This means:

• If EL3 is using AArch32 the exception is taken to Secure Monitor mode.

• If EL3 is using AArch64, then executing the instruction generates an exception that is
taken to EL3, see Execution of an SMC instruction from a privileged Exception level that
is using AArch32 on page G1-6054.

IRQ, FIQ, and External abort exceptions can be configured to be taken to EL3. Therefore, if EL3
is using AArch32 the exceptions are taken to Secure Monitor mode.

When EL3 is using AArch32, a Monitor Trap exception is taken to Secure Monitor mode.

Any exception taken from Secure state that is not taken to Secure Monitor mode is taken to
Secure state in the default mode for that exception. As described in Security state, Exception
levels, and AArch32 execution privilege on page G1-6022, this means it is taken to:

• An EL3 mode other than Monitor mode if EL3 is using AArch32.

• An EL1 mode if EL3 is using AArch64.

If the implementation does not include EL2, any exception taken from Non-secure state that is
not taken to Secure Monitor mode is taken to Non-secure state to the default mode for that
exception. The default mode will be an EL1 mode.

In an implementation that includes EL2

An exception taken from Non-secure state that is not taken to Secure Monitor mode is taken to
Non-secure state and:

• If the exception is taken from Hyp mode, then it is taken to Hyp mode.

• Otherwise, the exception is either taken to Hyp mode, as described in Exceptions taken to
Hyp mode on page G1-6054, or taken to the default mode for the exception.

Note
• Hyp mode is the EL2 mode. The other modes to which an exception can be taken in

Non-secure state are EL1 modes.

• Hyp mode has no effect on the handling of exceptions taken from Secure state.

Table G1-7 on page G1-6045 shows the default mode to which each exception is taken.

Asynchronous exception routing controls on page G1-6072 describes the exception routing controls provided by
EL2 and EL3.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6053
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.12 Handling exceptions that are taken to an Exception level using AArch32
Routing of aborts taken to AArch32 state on page G1-6062 gives more information about the modes to which
memory aborts are taken.

The possible modes for taking each exception on page G1-6055 shows all modes to which each exception might be
taken, in any implementation. That is, it applies to implementations:

• That include neither EL2 nor EL3.

• That include EL2 but not EL3.

• That do not include EL2 but include EL3.

• That include both EL2 and EL3.

Exceptions taken to Hyp mode

In an implementation that includes EL2 and EL3, when EL2 is using AArch32:

• Any exception taken from Hyp mode that is not routed to EL3 by the controls described in Asynchronous
exception routing controls on page G1-6072 is taken to Hyp mode.

• The following exceptions, if taken from Non-secure state, are taken to Hyp mode:

— An abort that Routing of aborts taken to AArch32 state on page G1-6062 identifies as taken to Hyp
mode.

— A Hyp Trap exception, see EL2 configurable controls on page G1-6126.

— A Hypervisor Call exception. This is generated by executing an HVC instruction in a Non-secure mode.

— An SError interrupt exception, IRQ exception or FIQ exception that is not routed to EL3 but is
explicitly routed to Hyp mode, as described in Asynchronous exception routing controls on
page G1-6072.

— A synchronous External abort, Alignment fault, Undefined Instruction exception, or Supervisor Call
exception taken from the Non-secure EL0 mode and explicitly routed to Hyp mode, as described in
Routing exceptions from Non-secure EL0 to EL2 on page G1-6058.

Note
A synchronous External abort can be routed to Hyp mode only if it is not routed to EL3.

— A debug exception that is explicitly routed to Hyp mode, as described in Routing debug exceptions to
EL2 using AArch32 on page G1-6060.

Note

The virtual exceptions cannot be taken to Hyp mode. They are always taken to a Non-secure EL1 mode.

Security behavior in Exception levels using AArch32 when EL2 or EL3 are using
AArch64

As described in The Armv8-A security model on page G1-6019, when EL3 is using AArch64, lower Exception
levels, in either Security state, can be using AArch32. This means software executing in those Exception levels
might try to access AArch32 security features that are not available. The following subsections describe the
associated behaviors:

• Execution of an SMC instruction from a privileged Exception level that is using AArch32 on page G1-6054

• Non-secure reads of the NSACR on page G1-6055

• Secure EL1 operations when Secure EL1 is using AArch32 state on page G1-6055

Execution of an SMC instruction from a privileged Exception level that is using AArch32

When EL3 is using AArch64, an SMC instruction executed from Secure or Non-secure EL1 using AArch32, or from
Non-secure EL2 using AArch32 when the value of HCR.TSC is 0, generates an exception that is taken to EL3. The
exception syndrome is reported with an EC value of 0x13, SMC instruction executed in AArch32 state, see ISS
encoding for an exception from SMC instruction execution in AArch32 state on page D13-3164.
G1-6054 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.12 Handling exceptions that are taken to an Exception level using AArch32
Non-secure reads of the NSACR

The NSACR is defined as being RO from Non-secure PE modes other than User mode. When EL3 is using
AArch64, a read of the NSACR returns a fixed value of 0x00000C00 in the following cases:

• If the read is from a Non-secure EL1 mode when EL1 is using AArch32.

• If the read is from Hyp mode when EL2 is using AArch32.

Secure EL1 operations when Secure EL1 is using AArch32 state

When Secure EL1 is using AArch32 and if FEAT_SEL2 is implemented and enabled or EL3 is using AArch64:

• Any of the following operations performed in a Secure EL1 mode is trapped to Secure EL3:

— A read or write of any of the SCR, NSACR, MVBAR, and SDCR.

— Executing any of the ATS12NSO** instructions.

— Executing an SRS instruction that would use SP_mon, see SRS, SRSDA, SRSDB, SRSIA, SRSIB on
page F5-5058.

— Executing an MRS (banked register) or MSR (banked register) instruction that would access SPSR_mon,
SP_mon, or LR_mon, see MRS (Banked register) on page F5-4858 and MSR (Banked register) on
page F5-4862.

For more information about these traps, including the associated exception syndromes, see Traps to EL3 of
Secure monitor functionality from Secure EL1 using AArch32 on page D1-2530.

• Any attempt to move into Hypervisor mode, either by an exception return or by executing a CPS or MSR
instruction, is treated as an illegal operation and is handled as described in Illegal return events from AArch32
state on page G1-6066.

• Any attempt to move into Monitor mode, either by an exception return or by executing a CPS or MSR
instruction, is treated as an illegal operation and is handled as described in Illegal return events from AArch32
state on page G1-6066.

Note

This functionality supports a usage model where:

• EL3 uses AArch64.

• Secure software executed in Secure EL1 using AArch32 and Secure EL0 using AArch32.

• The Non-secure state uses AArch64.

The possible modes for taking each exception

Each of the exception descriptions in AArch32 state exception descriptions on page G1-6078 includes a subsection
that describes the modes to which each exception can be taken. Those subsections are:

• The PE mode to which the Undefined Instruction exception is taken on page G1-6079.

• The PE mode to which the Hyp Trap exception is taken on page G1-6082.

• The PE mode to which the Monitor Trap exception is taken on page G1-6081.

• The PE mode to which the Supervisor Call exception is taken on page G1-6082.

• The PE mode to which the Secure Monitor Call exception is taken on page G1-6084.

• The PE mode to which the Hypervisor Call exception is taken on page G1-6085.

• The PE mode to which the Prefetch Abort exception is taken on page G1-6087.

• The PE mode to which the Data Abort exception is taken on page G1-6090.

• The PE mode to which the Virtual SError interrupt exception is taken on page G1-6094.

• The PE mode to which the physical IRQ exception is taken on page G1-6095.

• The PE mode to which the Virtual IRQ exception is taken on page G1-6096.

• The PE mode to which the physical FIQ exception is taken on page G1-6097.

• The PE mode to which the Virtual FIQ exception is taken on page G1-6098.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6055
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.12 Handling exceptions that are taken to an Exception level using AArch32
These descriptions also show the vector offset for the exception entry for each mode. These descriptions assume
that all Exception levels are using AArch32, meaning:

• HCR, rather than HCR_EL2, controls the routing of exceptions to EL2.

• SCR, rather than SCR_EL3, controls the routing of exceptions to EL3.

For more information about:

• Vector offsets, see Exception vectors and the exception base address on page G1-6043.

• The routing of synchronous External aborts or SError, IRQ, and FIQ interrupt exceptions, and the virtual
exceptions, see Asynchronous exception routing controls on page G1-6072.

UNPREDICTABLE cases when the value of HCR.TGE is 1

When the value of HCR.TGE is 1, exceptions that would otherwise be taken to EL1 are, instead, routed to EL2, see
Routing exceptions from Non-secure EL0 to EL2 on page G1-6058. Related to this, when the value of HCR.TGE is
1, execution in a Non-secure EL1 mode is UNPREDICTABLE. Armv8 does not constrain this UNPREDICTABLE
behavior, but in Armv8 software that follows the Arm recommendations cannot get to this state. When following
the Arm recommendations, any attempt to move to a Non-secure EL1 mode when the value of HCR.TGE is 1 is
either:

• An illegal exception return, see Illegal return events from AArch32 state on page G1-6066.

• An illegal PE mode change, see Illegal changes to PSTATE.M on page G1-6039.

G1.12.5 PE state on exception entry

The description of each exception includes a pseudocode description of entry to that exception, as Table G1-8 on
page G1-6051 shows. The following sections describe the PE state changes on entering an exception, for different
implementations and operating states. However, you must always see the exception entry pseudocode for a full
description of the state changes on exception entry:

• Instruction set state on exception entry on page G1-6056.

• PSTATE.E value on exception entry on page G1-6057.

• PSTATE.{A, I, F, M} values on exception entry on page G1-6057.

Note

The descriptions in these sections assume that EL2 and EL3, which control some aspects of the routing of exceptions
taken from EL1 or EL0, are both using AArch32. If this is not the case:

• If EL2 is using AArch64:

— Controls shown as provided by the HSCTLR are provided by the SCTLR_EL2.

— Controls shown as provided by the HCR are provided by the HCR_EL2.

• If EL3 is using AArch64, controls shown as provided by the SCR are provided by the SCR_EL3.

Instruction set state on exception entry

Exception handlers can execute in either T32 state or A32 state. On exception entry, PSTATE.T is set to the required
value, as determined by SCTLR.TE or HSCTLR.TE, depending on the mode the exception is taken to. Table G1-11
on page G1-6056 shows this:

Table G1-11 PSTATE.T bit value on exception entry

Mode to which exception is taken HSCTLR.TE SCTLR.TE PSTATE.T Exception handler state

Not Hyp mode x 0 0 A32

1 1 T32

Hyp mode 0 x 0 A32

1 x 1 T32
G1-6056 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.12 Handling exceptions that are taken to an Exception level using AArch32
When an implementation includes EL3 and EL3 is using AArch32, SCTLR is banked for Secure and Non-secure
states, and therefore the TE bit value might be different for Secure and Non-secure states. For an exception taken to
a PE mode other than Hyp mode, the SCTLR.TE bit for the Security state to which the exception is taken determines
the instruction set state for the exception handler. This means the instruction set state in which an exception handler
might execute depends on the Security state to which the exception is taken.

PSTATE.E value on exception entry

PSTATE.E controls the load and store endianness for data handling. Table G1-12 on page G1-6057 show the value
to which this bit is set on exception entry:

For more information, see the bit description in Saved Program Status Registers (SPSRs) on page G1-6033.

PSTATE.{A, I, F, M} values on exception entry

On exception entry, PSTATE.M is set to the value for the mode to which the exception is taken, as described in PE
mode for taking exceptions on page G1-6053.

Table G1-13 on page G1-6057 shows the cases where PSTATE.{A, I, F} bits are set to 1 on an exception entry, and
how this depends on the mode and Security state to which an exception is taken. If the table entry for a particular
mode and Security state does not define a value for a PSTATE.{A, I, F} bit then that bit is unchanged by the
exception entry. In this table:

• The PE mode exception is taken to column is the mode to which the exception is taken.

• The Non-secure column applies to exceptions taken to Non-secure state in an implementation that includes
EL3 but does not include EL2.

• The Secure column applies to:

— Exceptions taken to Secure state.

— Implementations that do not include the EL3.

— Exceptions taken to Non-secure state in an implementation that includes EL2.

Table G1-12 PSTATE.E value on exception entry

Exception mode HSCTLR.EE SCTLR.EE Endianness for data loads and stores PSTATE.E

Secure or Non-secure EL1 x 0 Little-endian 0

1 Big-endian 1

Hyp 0 x Little-endian 0

1 x Big-endian 1

Table G1-13 PSTATE.{A, I, F} values on exception entry

PE mode exception is taken to
Security state

Non-secure Secure

Hyp If SCR.EA==0 then PSTATE.A is set to 1

If SCR.IRQ==0 then PSTATE.I is set to 1

If SCR.FIQ==0 then PSTATE.F is set to 1

-

Monitor - PSTATE.A is set to 1

PSTATE.I is set to 1

PSTATE.F is set to 1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6057
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.12 Handling exceptions that are taken to an Exception level using AArch32
Asynchronous exception behavior for exceptions taken from AArch32 state on page G1-6070 describes how, in some
situations, the PSTATE.{A, I, F} bits mask the taking of SError interrupts, IRQ interrupts, and FIQ interrupts.

G1.12.6 Routing exceptions from Non-secure EL0 to EL2

Note

The routing control described in this section permits a Non-secure state usage model where applications execute in
User mode under a hypervisor, which executes in Hyp mode, without a Guest OS running at Non-secure EL1. This
control applies when the PE is executing in Non-secure EL0 using AArch32 and EL2 is using AArch32 and the
value of HCR.TGE is 1.

If the PE is in Non-secure User mode, any exception that would otherwise be taken to Non-secure EL1 is taken to
EL2 if either:

• EL2 is using AArch32 and the value of HCR.TGE is 1.

In this case the exception is taken to Hyp mode, instead of to the default Non-secure mode for handling the
exception. For more information, see Exception reporting when HCR.TGE routes an exception to EL2 using
AArch32 on page G1-6059.

• EL2 is using AArch64 and the value of HCR_EL2.TGE is 1.

In this case the exception is taken to EL2 using AArch64, see Exception entry on page D1-2475.

Any exception that is routed to Secure Monitor mode or to EL3 using AArch64 is unaffected by the value of
HCR.TGE or HCR_EL2.TGE.

When the value of HCR.TGE is 1, meaning TGE routing from Non-secure EL0 using AArch32 to EL2 using
AArch32 applies:

• The SCTLR.M bit is treated as 0 for all purposes other than a direct read of the SCTLR register.

• Each of the HCR.{FMO, IMO, AMO} bits is treated as 1 for all purposes other than a direct read of the HCR
register

• Each of the HDCR.{TDE, TDA, TDRA, TDOSA} bits is treated as 1 for all purposes other than a direct read
of the HDCR register.

• An exception return to Non-secure EL1 is treated as an illegal exception return, see Illegal return events from
AArch32 state on page G1-6066.

• All virtual interrupts, including any IMPLEMENTATION DEFINED mechanisms for signaling virtual interrupts,
are disabled.

FIQ PSTATE.A is set to 1

PSTATE.I is set to 1

PSTATE.F is set to 1

PSTATE.A is set to 1

PSTATE.I is set to 1

PSTATE.F is set to 1

IRQ, Abort PSTATE.A is set to 1

PSTATE.I is set to 1

PSTATE.A is set to 1

PSTATE.I is set to 1

Undefined, Supervisor PSTATE.I is set to 1 PSTATE.I is set to 1

Table G1-13 PSTATE.{A, I, F} values on exception entry (continued)

PE mode exception is taken to
Security state

Non-secure Secure
G1-6058 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.12 Handling exceptions that are taken to an Exception level using AArch32
Exception reporting when HCR.TGE routes an exception to EL2 using AArch32

The following sections give more information about the behavior of synchronous exceptions that are routed to Hyp
mode because the value of HCR.TGE is 1:

• Undefined Instruction exception, when the value of HCR.TGE is 1 on page G1-6059.

• Supervisor Call exception, when the value of HCR.TGE is 1 on page G1-6059.

• Abort exceptions, when the value of HCR.TGE is 1 on page G1-6059.

• Reporting of exceptions routed to EL2 using AArch32 because the value of HCR.TGE is 1 on page G1-6060.

Undefined Instruction exception, when the value of HCR.TGE is 1

When HCR.TGE is set to 1, if the PE is executing in Non-secure User mode and attempts to execute an UNDEFINED
instruction, it takes the Hyp Trap exception, instead of an Undefined Instruction exception. On taking the Hyp Trap
exception, the HSR reports an unknown reason for the exception, using the EC value 0x00. For more information,
see Use of the HSR on page G5-6381.

Supervisor Call exception, when the value of HCR.TGE is 1

When HCR.TGE is set to 1, if the PE executes an SVC instruction in Non-secure User mode, the Supervisor Call
exception generated by the instruction is taken to Hyp mode.

The HSR reports that entry to Hyp mode was because of a Supervisor Call exception, and:

• If the SVC is unconditional, takes for the imm16 value in the HSR:

— A zero-extended 8-bit immediate value for the T32 SVC instruction.

Note
The only T32 encoding for SVC is a 16-bit instruction encoding.

— The bottom16 bits of the immediate value for the A32 SVC instruction.

• If the SVC is conditional, the imm16 value in the HSR is UNKNOWN.

If the SVC is conditional, the PE takes the exception only if the instruction passes its Condition code check.

The HSR reports the exception as a Supervisor Call exception taken to Hyp mode, using the EC value 0x11. For
more information, see Use of the HSR on page G5-6381.

Note

The effect of setting HCR.TGE to 1 is to route the Supervisor Call exception to Hyp mode, not to trap the execution
of the SVC instruction. This means that the preferred return address for the exception, when routed to Hyp mode in
this way, is the instruction after the SVC instruction.

Abort exceptions, when the value of HCR.TGE is 1

When the value of HCR.TGE is 1, if the PE is executing in Non-secure User mode then any abort exception that is
not routed to Secure Monitor mode or to EL3 using AArch64 generates an exception that is taken as a Hyp Trap
exception. Where an attempt to execute an instruction causes an abort, on taking the Hyp Trap exception, the HSR
indicates whether a Data Abort exception or a Prefetch Abort exception caused the Hyp Trap exception entry, and
presents a valid syndrome in the HSR.

When SCR.EA is set to 1, External aborts and SError interrupts are routed to EL3, and this routing takes priority
over the HCR.TGE routing. For more information, see Routing of aborts taken to AArch32 state on page G1-6062.

An SError interrupt that is routed to Hyp mode because the value of HCR.TGE is 1 is reported as a Data Abort
exception routed to Hyp mode.

The HSR reports the exception either:

• As a Prefetch Abort exception routed to Hyp mode, using the EC value 0x20.

• As a Data Abort exception routed to Hyp mode, using the EC value 0x24.

For more information about the exception reporting, see Use of the HSR on page G5-6381.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6059
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.12 Handling exceptions that are taken to an Exception level using AArch32
Reporting of exceptions routed to EL2 using AArch32 because the value of HCR.TGE is 1

PL1 configurable controls on page G1-6118 describes controls that, when the value of HCR.TGE is 0, can generate
exceptions that are taken from Non-secure EL0 to EL1. When EL2 is using AArch32 and the value of HCR.TGE
is 1, the exceptions generated by these controls are routed to Hyp mode. Table G1-14 on page G1-6060 shows how
these exceptions are then reported in the HSR.

G1.12.7 Routing debug exceptions to EL2 using AArch32

When the value of HDCR.TDE is 1, if the PE is executing in a Non-secure mode other than Hyp mode, any Debug
exception is routed to Hyp mode. This means it generates a Hyp Trap exception. This applies to:

• Debug exceptions associated with an instruction fetch, that would otherwise generate a Prefetch Abort
exception. These are the Breakpoint, Breakpoint Instruction, and Vector Catch exception, see Chapter G2
AArch32 Self-hosted Debug.

• Watchpoint exceptions associated with data accesses, that would otherwise generate a Data Abort exception.
See Watchpoint exceptions on page G2-6195.

When the value of HDCR.TDE is 1, each of the HDCR.{TDRA, TDOSA, TDA} bits is treated as 1 for all purposes
other than reading the HDCR register.

Note

• A Breakpoint or Watchpoint debug event that generates entry to Debug state cannot be trapped to Hyp mode.
See Breakpoint and Watchpoint debug events on page H2-7340.

• When HDCR.TDE is set to 1, the Hyp Trap exception is generated instead of the Prefetch Abort exception
or Data Abort exception that is otherwise generated by the Debug exception.

• Debug exceptions, other than Breakpoint Instruction exceptions, are never generated in Hyp mode.

When a Hyp Trap exception is generated because the value of HDCR.TDE is 1, The HSR reports the exception
either:

• As a Prefetch Abort exception routed to Hyp mode, using the EC value 0x20.

Table G1-14 Syndrome reporting in HSR from HCR.TGE routing of traps, disables, and enables

Control provided by PL1
Control
typea

a. T indicates a trap control, E indicates an instruction enable, and D indicates an instruction disable. For the
definition of these terms, see the list that begins with Instruction enables and instruction disables on page G1-6117.

Syndrome reporting in HSR

SCTLR.{nTWE, nTWI} T Uses EC value 0x00, Exception for an unknown reason

SCTLR.{SED, ITD} D Uses EC value 0x00, Exception for an unknown reason

SCTLR.CP15BEN E Uses EC value 0x00, Exception for an unknown reason

CPACR.TRCDIS T Uses EC value 0x00, Exception for an unknown reason

CPACR.{cp11, cp10} E Uses EC value 0x00, Exception for an unknown reason

FPEXC.EN E Uses EC value 0x00, Exception for an unknown reason

CPACR.ASEDIS D Uses EC value 0x00, Exception for an unknown reason

DBGDSCRext.UDCCdis T Uses EC value 0x00, Exception for an unknown reason

CNTKCTL.{PL0PTEN, PL0VTEN,
PL0PCTEN, PL0VCTEN}

T Uses EC value 0x00, Exception for an unknown reason

PMUSERENR.{ER, CR, SW, EN} T Uses EC value 0x00, Exception for an unknown reason
G1-6060 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.12 Handling exceptions that are taken to an Exception level using AArch32
• As a Data Abort exception routed to Hyp mode, using the EC value 0x24.

For more information, see Use of the HSR on page G5-6381.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6061
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Routing of aborts taken to AArch32 state
G1.13 Routing of aborts taken to AArch32 state

A memory abort is either a Data Abort exception or a Prefetch Abort exception. When executing in AArch32 state,
depending on the cause of the abort, and possibly on configuration settings, an abort is taken either:

• To the Exception level of the PE mode from which the abort is taken. In this case the abort is taken to
AArch32 state.

• To a higher Exception level. In this case the Exception level to which the abort is taken is either:

— Using AArch32. In this case, this chapter describes how the abort is handled.

— Using AArch64. In this case, Chapter D5 The AArch64 Virtual Memory System Architecture describes
how the abort is handled.

For an abort taken to an Exception level that is using AArch32, the mode to which a memory abort is taken depends
on the reason for the exception, the mode the PE is in when it takes the exception, and configuration settings, as
follows:

Memory aborts taken to Monitor mode

If an implementation includes EL3, when the value of SCR.EA is 1, all External aborts are taken to
EL3, and if EL3 is using AArch32 they are taken to Monitor mode. This applies to aborts taken from
Secure modes and from Non-secure modes.

Memory aborts taken to Secure Abort mode

If an implementation includes EL3, when the PE is executing in Secure state, all memory aborts that
are not routed to EL3 are taken to Secure Abort mode.

Note

The only memory aborts that can be routed to Monitor mode are External aborts.

Memory aborts taken to Hyp mode

If an implementation includes EL2, when the PE is executing in Non-secure state, the following
aborts are taken to EL2. If EL2 is using AArch32 this means they are taken to Hyp mode:

• Alignment faults taken:

— When the PE is in Hyp mode.

— When the PE is in a Non-secure PL1 or EL0 mode and the exception is generated
because the Non-secure PL1&0 stage 2 translation identifies the target of an unaligned
access as any type of Device memory.

— When the PE is in Non-secure User mode and HCR.TGE is set to 1. For more
information, see Abort exceptions, when the value of HCR.TGE is 1 on page G1-6059.

• When the PE is using the Non-secure PL1&0 translation regime:

— MMU faults from stage 2 translations, for which the stage 1 translation did not cause
an MMU fault.

— Any abort taken during the stage 2 translation of an address accessed in a stage 1
translation table walk that is not routed to Secure Monitor mode, see Stage 2 fault on
a stage 1 translation table walk on page G5-6362.

• When the PE is using the Non-secure EL2 translation regime, MMU faults from stage 1
translations.

Note
The Non-secure EL2 translation regime has only one stage of translation.

• External aborts, if SCR.EA is set to 0 and any of the following applies:

— The PE was executing in Hyp mode when it took the exception.
G1-6062 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.13 Routing of aborts taken to AArch32 state
— The PE was executing in a Non-secure PL1 or EL0 mode when it took the exception,
the abort is asynchronous, and HCR.AMO is set to 1. For more information, see
Asynchronous exception routing controls on page G1-6072.

— The PE was executing in the Non-secure User mode when it took the exception, the
abort is synchronous, and HCR.TGE is set to 1. For more information, see Abort
exceptions, when the value of HCR.TGE is 1 on page G1-6059.

— The Reliability, Availability, and Serviceability Extension is implemented, the PE was
executing in a Non-secure PL1 or EL0 mode when it took the exception, the abort is
synchronous, and the value of HCR2.TEA is 1.

— The abort occurred on a stage 2 translation table walk.

• Debug exceptions, if HDCR.TDE is set to 1. For more information, see Routing debug
exceptions to EL2 using AArch32 on page G1-6060.

Memory aborts taken to Non-secure Abort mode

In an implementation that does not include EL3, all memory aborts that are taken to an Exception
level that is using AArch32 are taken to Abort mode.

Otherwise, when the PE is executing in Non-secure state, the following aborts are taken to
Non-secure Abort mode:

• When the PE is in a Non-secure PL1 or EL0 mode, Alignment faults taken for any of the
following reasons:

— SCTLR.A is set to 1.

— An instruction that does not support unaligned accesses is committed for execution,
and the instruction accesses an unaligned address.

— The PL1&0 stage 1 translation identifies the target of an unaligned access as any type
of Device memory.

Note
In an implementation that does not include EL2, this case results in a CONSTRAINED
UNPREDICTABLE memory access, see Cases where unaligned accesses are
CONSTRAINED UNPREDICTABLE on page E2-4313 and Loads and Stores to
unaligned locations on page K1-8388.

If an implementation includes EL2 and the PE is in Non-secure User mode, these exceptions
are taken to Abort mode only if the value of HCR.TGE is 0.

• When the PE is using the Non-secure PL1&0 translation regime, an MMU fault from a stage
1 translation.

• External aborts, if the PE was executing in a Non-secure PL1 or EL0 mode when it took the
exception and both:

— The value of SCR.EA is 0, meaning the abort is not taken to EL3.

— The abort is not taken to EL2 for one of the reasons defined in Memory aborts taken
to Hyp mode.

• Virtual Aborts, see Virtual exceptions when an implementation includes EL2 on
page G1-6070.

• When the value of HDCR.TDE is 0, Debug exceptions. For more information, see Routing
debug exceptions to EL2 using AArch32 on page G1-6060.

Note

If EL0 is using AArch32 and EL1 is using AArch64, then any of these memory aborts taken from
User mode are taken to EL1, as described in Chapter D5 The AArch64 Virtual Memory System
Architecture.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6063
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Routing of aborts taken to AArch32 state
Memory aborts with IMPLEMENTATION DEFINED behavior

In addition, a PE can generate an abort for an IMPLEMENTATION DEFINED reason associated with
lockdown. In an implementation that includes EL2, whether such an abort is taken to Non-secure
Abort mode or is taken to EL2 is IMPLEMENTATION DEFINED, and an implementation might include
a mechanism to select whether the abort is routed to Non-secure Abort mode or to EL2.

When the PE is in a Non-secure mode other than Hyp mode, if multiple factors cause an Alignment fault, the abort
is taken to Non-secure Abort mode if any of the factors require the abort to be taken to Abort mode. For example,
if the SCTLR.A bit is set to 1, and the access is an unaligned access to an address that the stage 2 translation tables
mark as Device-nGnRnE, then the abort is taken to Non-secure Abort mode.

For more information, see Handling exceptions that are taken to an Exception level using AArch32 on
page G1-6043.
G1-6064 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.14 Exception return to an Exception level using AArch32
G1.14 Exception return to an Exception level using AArch32

In the Arm architecture, exception return to an Exception level that is using AArch32 requires the simultaneous
restoration of the PC and PSTATE to values that are consistent with the desired state of execution on returning from
the exception. Typically, exception return involves returning to one of:

• The instruction after the instruction boundary at which an asynchronous exception was taken.

• The instruction following an SVC, SMC, or HMC instruction, for an exception generated by one of those
instructions.

• The instruction that caused the exception, after the reason for the exception has been removed.

• The subsequent instruction, if the instruction that caused the exception has been emulated in the exception
handler.

The Arm architecture defines a preferred return address for each exception other than Reset, see Link values saved
on exception entry on page G1-6051. The values of the SPSR.IT[7:0] bits generated on exception entry are always
correct for this preferred return address, but might require adjustment by the exception handler if returning
elsewhere.

In some cases, to calculate the appropriate preferred return address for a return to an Exception level that is using
AArch32, a subtraction must be performed on the link value saved on taking the exception. The description of each
exception includes any value that must be subtracted from the link value, and other information about the required
exception return.

On an exception return, the PSTATE takes either:

• The value loaded by the RFE instruction.

• If the exception return is not performed by executing an RFE instruction, the value of the current SPSR at the
time of the exception return.

If FEAT_MTE is implemented PSTATE.TCO is not updated on Exception return to AArch32 state.

Illegal return events from AArch32 state on page G1-6066 describes the behavior if the restored PE state would not
be valid for the Exception level, PE mode, and Security state targeted by the exception return.

G1.14.1 Exception return instructions

The instructions that an exception handler can use to return from an exception depend on whether the exception was
taken to an EL1 mode, or in an EL2 mode, see:

• Return from an exception taken to a PE mode other than Hyp mode on page G1-6065.

• Return from an exception taken to Hyp mode on page G1-6066.

Return from an exception taken to a PE mode other than Hyp mode

For an exception taken to a PE mode other than Hyp mode, the Arm AArch32 architecture provides the following
exception return instructions:

• From privileged modes other than System mode, the ERET instruction. After the exception return, execution
resumes from the address held in the LR (R14) for the mode in which ERET is executed. See ERET on
page F5-4692.

• Data-processing instructions with the S bit set and the PC as a destination, see MOV, MOVS (register) on
page F5-4841 and SUB, SUBS (immediate) on page F5-5161.

Note

The A32 instruction set includes other instructions that can be used for an exception return, but Arm
deprecates any use of those instructions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6065
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.14 Exception return to an Exception level using AArch32
Typically:

— A return where no subtraction is required uses SUBS with an operand of 0, or the equivalent MOVS
instruction.

— A return requiring subtraction uses SUBS with a nonzero operand.

• The RFE instruction, see RFE, RFEDA, RFEDB, RFEIA, RFEIB on page F5-4952. If a subtraction is required,
typically it is performed before saving the LR value to memory. After the exception return, execution resumes
from the address held in the memory location indicated by the base register specified by the RFE instruction.

• In A32 state, a form of the LDM instruction in which the PC is one of the registers loaded, see LDM (exception
return) on page F5-4726. If a subtraction is required, typically it is performed before saving the LR value to
memory.

Return from an exception taken to Hyp mode

For an exception taken to Hyp mode, the Arm architecture provides the ERET instruction, see ERET on page F5-4692.
An exception handler executing in Hyp mode must return using the ERET instruction.

Hyp mode is implemented only as part of EL2.

G1.14.2 Alignment of exception returns

The T bit of the value transferred to the PSTATE by an exception return controls the target instruction set of that
return. The behavior of the hardware for exception returns for different values of the T bit is as follows:

T == 0 The target instruction set state is A32 state. Bits[1:0] of the address transferred to the PC are ignored
by the hardware.

T == 1 The target instruction set state is T32 state:

• Bit[0] of the address transferred to the PC is ignored by the hardware.

• Bit[1] of the address transferred to the PC is part of the instruction address.

Note

In previous versions of the Arm architecture, the PSTATE.{J, T} bits determined the Instruction set state. In Armv8,
PSTATE.J is RES0.

Arm deprecates any dependence on the requirements that the hardware ignores bits of the address. Arm
recommends that the address transferred to the PC for an exception return is correctly aligned for the target
instruction set.

After an exception entry other than Reset, the LR value has the correct alignment for the instruction set indicated
by the SPSR.T bit. This means that if exception return instructions are used with the LR and SPSR values produced
by such an exception entry, the only precaution software needs to take to ensure correct alignment is that any
subtraction is of a multiple of four if returning to A32 state, or a multiple of two if returning to T32 state.

G1.14.3 Illegal return events from AArch32 state

Throughout this section:

Return In AArch32 state, refers to any of:

• Execution of any exception return instruction.

• Execution of a DRPS instruction in Debug state.

• Exit from Debug state.

If an exception or debug return from an Exception level using AArch32 triggers an illegal exception
return, then bit[1] of the PC is either:

• Zero.

• The value of bit[1] of the return address for the exception or debug return.
G1-6066 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.14 Exception return to an Exception level using AArch32
The choice between these two alternatives is made by the implementation, and might differ from
instance to instance of an illegal exception return.

Note
This means software must support both alternatives.

Saved process state value
In AArch32 state, refers to any of:

• The value held in the SPSR for any exception return other than an exception return made by
executing an RFE instruction.

• The value read from memory that is to be restored to PSTATE by the execution of an RFE
instruction.

• The value held in the SPSR for the execution of a DRPS instruction in Debug state.

• The value held in the DSPSR for a Debug state exit.

Link address In AArch32 state, refers to any of:

• The address held in the link register for any exception return other than an exception return
made by executing an ERET, LDM, or RFE instruction.

• The address held in ELR_hyp for any exception return made by executing an ERET instruction.

• The address read from memory that is to be restored to the PC by the execution of an LDM or
RFE instruction.

• The address held in the DLR for Debug state exit.

Configured from reset
Indicates the state determined on powerup or reset by a configuration input signal, or by another
IMPLEMENTATION DEFINED mechanism.

The Armv8 architecture has a generic mechanism for handling exception or debug returns to a mode or state that is
illegal. In AArch32 state, this can occur as a result of any of the following situations:

• A return where the Exception level being returned to is higher than the current Exception level.

• A return where the mode being returned to is not implemented. For example:

— A return to Hyp mode when EL2 is not implemented.

— A return to Monitor mode, when EL3 is either not implemented or using AArch64 state.

• A return to EL2 when:

— EL3 is implemented and using AArch64, and the values of SCR_EL3.{NS, EEL2} 0.

— EL3 is implemented and using AArch32, and the value of the SCR.NS bit is 0.

• A return to Non-secure EL1 when:

— EL2 is implemented and using AArch64, and the value of the HCR_EL2.TGE bit is 1.

— EL2 is implemented and using AArch32, and the value of the HCR.TGE bit is 1.

• A return where the value of the saved process state M[4:0] field is not a valid AArch32 PE mode for the
implementation. Table G1-5 on page G1-6026 shows the valid M[4:0] values for AArch32 PE modes.

In these cases:

• PSTATE.IL is set to 1, to indicate an illegal return.

• PSTATE.M is unchanged. This means the PE mode does not change.

• The SS bit is handled in the same way as any other exception or debug return, see Software Step exceptions
on page D2-2613.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6067
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.14 Exception return to an Exception level using AArch32
• The following PSTATE bits are restored from the saved process state value:

— The N, Z, C, V Condition flags.

— The Q Overflow or saturation flag.

— The GE Greater than or Equal flags.

— The E Endianness mapping bit.

— The A, I, F exception mask bits.

— The DIT Data Independent Timing bit.

• The PSTATE.{IT, T} bits are each either:

— Set to 0.

— Copied from the saved process state in the SPSR for the PE mode in which the exception is handled.

The choice between these two options is determined by an implementation, and might vary dynamically
within an implementation. Correspondingly software must regard the value as being an UNKNOWN choice
between the two values.

• The PC is restored from the link address, unless the illegal return is the execution of a DRPS instruction in
Debug state.

When the value of the PSTATE.IL bit is 1, any attempt to execute any instruction results in an Illegal Execution state
exception. See The Illegal Execution state exception on page G1-6068.

All aspects of the illegal return, other than the effects described in this section, are the same as for a legal return.

G1.14.4 Legal returns that set PSTATE.IL to 1

In this section, return, saved process state value, and link address have the meaning that is defined in Illegal return
events from AArch32 state on page G1-6066.

If the IL bit in the saved process state value is 1, then it is copied to PSTATE meaning that PSTATE.IL is set to 1.
In this case, the PSTATE.{IT, T} bits are each either:

• Set to 0.

• Copied from the SPSR, or loaded from memory if the exception return was performed by executing an RFE
instruction.

The choice between these two options is determined by an implementation, and might vary dynamically within the
implementation. This means software must regard each value as being an UNKNOWN choice between the two
permitted values.

Because the return sets the PSTATE.IL bit to 1, any attempt to execute any instruction results in an Illegal Execution
state exception. See The Illegal Execution state exception on page G1-6068.

G1.14.5 The Illegal Execution state exception

When the value of the PSTATE.IL bit is 1, any attempt to execute an instruction generates an Illegal Execution state
exception. In AArch32 state, the PSTATE.IL bit can be set to 1 by one of the following:

• An illegal return, as described in Illegal return events from AArch32 state on page G1-6066.

• An illegal change to PSTATE.M, as described in Illegal changes to PSTATE.M on page G1-6039.

• A legal return that sets PSTATE.IL to 1, as described in Legal returns that set PSTATE.IL to 1 on
page G1-6068.

An Illegal Execution state exception is taken in the same way as an Undefined Instruction exception in the current
Exception level. If the current Exception level is EL2 using AArch32 state, the HSR provides additional syndrome
information for the exception, see Use of the HSR on page G5-6381.
G1-6068 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.14 Exception return to an Exception level using AArch32
An Illegal Execution state exception has priority over any other Undefined Instruction exception that might arise
from instruction execution.

Note

This section only describes the handling of an Illegal Execution state exception that is taken to an Exception level
that is using AArch32 state. The Illegal Execution state exception on page D1-2488 describes the cases where an
Illegal Execution state exception is taken to an Exception level that is using AArch64 state.

On taking any exception to an Exception level that is using AArch32 state:

1. The value of the PSTATE.IL bit is 1 and this is copied to the SPSR.IL bit for the PE mode to which the
exception is taken.

2. The PSTATE.IL bit is cleared to 0.

Note

This means that it is not possible for software to observe the value of PSTATE.IL.

Pseudocode description of exception return

The AArch32.ExceptionReturn() function transfers the return address to the PC and restores PSTATE to its saved
value.

This function uses the function SetPSTATEFromPSR().

The IllegalExceptionReturn() function checks for an Illegal Execution state exception.

Chapter J1 Armv8 Pseudocode includes the definitions of these functions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6069
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.15 Asynchronous exception behavior for exceptions taken from AArch32 state
G1.15 Asynchronous exception behavior for exceptions taken from AArch32 state

In an implementation that does not include EL2 or EL3, the asynchronous exceptions behave as follows when EL1
and EL0 are both using AArch32:

• An SError interrupt is taken to Abort mode.

• An IRQ exception is taken to IRQ mode.

• An FIQ exception is taken to FIQ mode.

These are the default PE modes for taking these exceptions.

Note

The SError interrupt replaces the Armv7 asynchronous abort. The new name better describes the nature of the
exception.

However, the PSTATE.{A, I, F} bits mask the asynchronous exceptions, meaning that when the value of one of these
PSTATE bits is 1, the corresponding exception is not taken.

If a masked asynchronous exception remains signaled, then the exception remains pending unless the value of the
PSTATE bit is changed to 0.

EL2 and EL3 provide controls that affect:

• The routing of these exceptions, see Asynchronous exception routing controls on page G1-6072.

• Masking of these exceptions in Non-secure state, see Asynchronous exception masking controls on
page G1-6073.

Similar register control bits are provided regardless of whether EL2 and EL3 are using AArch32 or AArch64:

• The EL2 controls are provided by the HCR when EL2 is using AArch32, and by the HCR_EL2 when EL2 is
using AArch64.

• The EL3 controls are provided by the SCR when EL3 is using AArch32, and by the SCR_EL3 when EL3 is
using AArch64.

Therefore, most references to the HCR or SCR in this section are to entries in Table K15-1 on page K15-8602,
which disambiguates between AArch32 registers and AArch64 registers. However, the Execution states used by
EL2 and EL3 do affect some aspects of the routing and masking of the asynchronous exceptions, see Asynchronous
exception routing and masking with higher Exception levels using AArch64 on page G1-6075.

G1.15.1 Virtual exceptions when an implementation includes EL2

When implemented, EL2 provides the following virtual exceptions, which correspond to the physical asynchronous
exceptions:

• Virtual SError, which corresponds to a physical external SError interrupt.

• Virtual IRQ, which corresponds to a physical IRQ.

• Virtual FIQ, which corresponds to a physical FIQ.

When the value of HCR.TGE is 0 and the value of an HCR.{AMO, IMO, FMO} routing control bit is 1, the
corresponding virtual interrupt is enabled and a virtual exception is generated either:

• By setting the corresponding virtual interrupt pending bit, HCR.{VA, VI, VF}, to 1.

• For a Virtual IRQ or Virtual FIQ, by an IMPLEMENTATION DEFINED mechanism. This might be a signal from
an interrupt controller. See, for example, the ARM Generic Interrupt Controller Architecture Specification.

When the value of HCR_EL2.TGE is 1 all virtual interrupts are disabled.

When a virtual interrupt is disabled:

• It cannot be taken.

• It cannot be seen in the ISR.
G1-6070 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.15 Asynchronous exception behavior for exceptions taken from AArch32 state
In AArch32 state, a virtual exception is taken only from a Non-secure EL1 or EL0 mode. In any other mode, if the
exception is generated it is not taken.

A virtual exception is taken in Non-secure state to the default mode for the corresponding physical exception. This
means:

• A Virtual SError is taken to Non-secure Abort mode.

• A Virtual IRQ is taken to Non-secure IRQ mode.

• A Virtual FIQ is taken to Non-secure FIQ mode.

Table G1-15 on page G1-6071 summarizes the HCR bits that route asynchronous exceptions to EL2, and the bits
that generate the virtual exceptions.

The HCR.{VA, VI, VF} bits generate a virtual exception only if set to 1 when the value of the corresponding
HCR.{AMO, IMO, FMO} is 1.

Similarly, if the implementation also includes EL3, the HCR.{AMO, IMO, FMO} bits route the corresponding
physical exception to Hyp mode only if the physical exception is not routed to Monitor mode by the SCR.{EA, IRQ,
FIQ} bit. For more information, see Asynchronous exception routing controls on page G1-6072.

When the value of an HCR.{AMO, IMO, FMO} control bit is 1, the corresponding mask bit in PSTATE:

• Does not mask the physical exception.

• Masks the virtual exception when the PE is executing in a Non-secure EL1 or EL0 mode.

Taking a Virtual Abort exception clears HCR.VA to zero. Taking a Virtual IRQ exception or a Virtual FIQ exception
does not affect the value of HCR.VI or HCR.VF.

Note

This means that the exception handler for a Virtual IRQ exception or a Virtual FIQ exception must cause software
that is executing at EL2 or EL3 to update the HCR to clear the appropriate virtual exception bit to 0.

See WFE wake-up events on page G1-6106 and Wait For Interrupt on page G1-6107 for information about how
virtual exceptions affect wake up from power-saving states.

Note

A hypervisor can use virtual exceptions to signal exceptions to the current Guest OS. The Guest OS takes a virtual
exception exactly as it would take the corresponding physical exception, and is unaware of any distinction between
virtual exception and the corresponding physical exception.

Effects of the HCR.{AMO, IMO, FMO} bits

As described in this section, the HCR.{AMO, IMO, FMO} bits are part of the mechanism for enabling the virtual
exceptions. In addition, for exceptions generated in Non-secure state:

• As mentioned in this section, affect the routing of the exceptions. See Asynchronous exception routing
controls on page G1-6072.

• Affect the masking of the exceptions. See Asynchronous exception masking controls on page G1-6073.

Table G1-15 HCR bits controlling asynchronous exceptions

Exception Routing the physical exception to EL2 Generating the virtual exception

SError HCR.AMO HCR.VA

IRQ HCR.IMO HCR.VI

FIQ HCR.FMO HCR.VF
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6071
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.15 Asynchronous exception behavior for exceptions taken from AArch32 state
G1.15.2 Asynchronous exception routing controls

Note

This section describes the behavior when all Exception levels are using AArch32. For the differences when this is
not the case see Asynchronous exception routing and masking with higher Exception levels using AArch64 on
page G1-6075.

In an implementation that includes EL3 the following bits in the SCR control the routing of asynchronous
exceptions:

SCR.EA When the value of this bit is 1, any SError interrupt is taken to EL3.

Note

Although this section describes the asynchronous exception routing controls, SCR.EA also controls
the routing of synchronous External aborts, see Routing of aborts taken to AArch32 state on
page G1-6062.

SCR.FIQ When the value of this bit is 1, any FIQ exception is taken to EL3.

SCR.IRQ When the value of this bit is 1, any IRQ exception is taken to EL3.

When EL3 is using AArch32 and the value of one of the SCR.{EA, FIQ, IRQ} bits is 1, the exception is taken to
Monitor mode.

Only Secure software can change the values of these bits.

In an implementation that includes EL2, the following bits in the HCR route asynchronous exceptions to EL2, for
exceptions that are both:

• Taken from a Non-secure EL1 or EL0 mode.

• If the implementation also includes EL3, not configured, by the SCR.{EA, FIQ, IRQ} controls, to be taken
to EL3.

HCR.AMO When the value of this bit is 1, an SError interrupt exception taken from a Non-secure EL1 or EL0
mode is taken to EL2, instead of to Non-secure Abort mode. If the implementation also includes
EL3, this control applies only if the value of SCR.EA is 0. When the value of SCR.EA is 1, the value
of the AMO bit is ignored.

HCR.FMO When the value of this bit is 1, an FIQ exception taken from a Non-secure EL1 or EL0 mode is taken
to EL2, instead of to Non-secure FIQ mode. If the implementation also includes EL3, this control
applies only if the value of SCR.FIQ is 0. When the value of SCR.FIQ is 1, the value of the FMO
bit is ignored.

HCR.IMO When the value of this bit is 1, an IRQ exception taken from a Non-secure EL1 or EL0 mode is taken
to EL2, instead of to Non-secure IRQ mode. If the implementation also includes EL3, this control
applies only if the value of SCR.IRQ is 0. When the value of SCR.IRQ is 1, the value of the IMO
bit is ignored.

When EL2 is using AArch32 and the value of one of the HCR.{AMO, FMO, IMO} bits is 1, the exception is taken
to Hyp mode.

Only software executing in Hyp mode, or Secure software executing at EL3 with SCR.NS set to 1, can change the
values of these bits. If EL3 is using AArch32, this requires the Secure software to be executing in Monitor mode.

The HCR.{AMO, FMO, IMO} bits also affect the masking of asynchronous exceptions in Non-secure state, as
described in Asynchronous exception masking controls on page G1-6073.

The SCR.{EA, FIQ, IRQ} and HCR.{AMO, FMO, IMO} bits have no effect on the routing of Virtual Abort, Virtual
FIQ, and Virtual IRQ exceptions.
G1-6072 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.15 Asynchronous exception behavior for exceptions taken from AArch32 state
Note

When the PE is in Hyp mode:

• Physical asynchronous exceptions that are not routed to Monitor mode are taken to Hyp mode.

• Virtual exceptions are not signaled to the PE.

See also Asynchronous exception behavior for exceptions taken from AArch32 state on page G1-6070.

G1.15.3 Asynchronous exception masking controls

Note

This section describes the behavior when all Exception levels are using AArch32. For the differences when this is
not the case see Asynchronous exception routing and masking with higher Exception levels using AArch64 on
page G1-6075.

The PSTATE.{A, I, F} bits can mask the taking of the corresponding exceptions from AArch32 state, as follows:

• PSTATE.A can mask SError interrupt exceptions.

• PSTATE.I can mask IRQ exceptions.

• PSTATE.F can mask FIQ exceptions.

In an implementation that does not include either of EL2 and EL3, setting one of these bits to 1 masks the
corresponding exception, meaning the exception cannot be taken.

In an implementation that includes EL2, the HCR.{AMO, IMO, FMO} bits modify the masking of exceptions taken
from Non-secure state.

Similarly, in an implementation that includes EL3, the SCR.{AW, FW} bits modify the masking of exceptions taken
from Non-secure state by the PSTATE.{A, F} bits.

An implementation that includes only EL1 and EL0 does not provide any masking of the PSTATE.{A, I, F} bits.
The following subsections describe the masking of these bits in other implementations:

• Asynchronous exception masking in an implementation that includes EL2 but not EL3 on page G1-6073.

• Asynchronous exception masking in an implementation that includes EL3 but not EL2 on page G1-6073.

• Asynchronous exception masking in an implementation that includes both EL2 and EL3 on page G1-6074.

• Summary of the asynchronous exception masking controls on page G1-6074.

Asynchronous exception masking in an implementation that includes EL2 but not EL3

The HCR.{AMO, IMO, FMO} bits modify the effect of the PSTATE.{A, I, F} bits. When the value of an
HCR.{AMO, IMO, FMO} mask override bit is 1, the value of the corresponding PSTATE.{A, I, F} bit is ignored
when the exception is taken from a Non-secure mode other than Hyp mode.

Asynchronous exception masking in an implementation that includes EL3 but not EL2

The SCR.{AW, FW} bits modify the effect of the PSTATE.{A, F} bits. When the value of one of the
SCR.{AW, FW} bits is 0, the corresponding PSTATE bit is ignored when both of the follow apply:

• The corresponding exception is taken from Non-secure state.

• The value of the corresponding SCR.{EA, FIQ} bit is 1, routing the exception to EL3. This means the
exception is routed to Monitor mode if EL3 is using AArch32.

Note

Whenever the value of PSTATE.I is 1, IRQ exceptions are masked and cannot be taken.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6073
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.15 Asynchronous exception behavior for exceptions taken from AArch32 state
Asynchronous exception masking in an implementation that includes both EL2 and EL3

When the value of an HCR.{AMO, IMO, FMO} mask override bit is 1, the value of the corresponding PSTATE.{A,
I, F} bit is ignored when both of the following apply:

• The exception is taken from Non-secure state.

• Either:

— The corresponding SCR.{EA, IRQ, FIQ} bit routes the exception to Monitor mode.

— The exception is taken from a Non-secure mode other than Hyp mode.

In addition, when the value of an SCR.{AW, FW} bit is 0, the value of the corresponding PSTATE.{A, F} bit is
ignored when all of the following apply:

• The exception is taken from Non-secure state.

• The corresponding SCR.{EA, FIQ} bit routes the exception to Monitor mode.

• The corresponding HCR.{AMO, FMO} mask override bit is set to 0.

Summary of the asynchronous exception masking controls

The tables in this section show the masking controls for each of the PSTATE.{A, I, F} bits. For an implementation
that does not include all of the Exception levels:

If the implementation includes only EL1 and EL0

The PSTATE bits cannot be masked. The behavior is as shown in the Secure row of the tables.

If the implementation includes EL2 but not EL3

The behavior is as shown in the Non-secure table rows when the control bits in the SCR are both 0.

If the implementation includes EL3 but not EL2

The behavior is as shown in the table rows where the control bit in the HCR is 0.

Table G1-16 on page G1-6074 shows the controls of the masking of SError interrupt exceptions by PSTATE.A.

Table G1-16 Control of masking by PSTATE.A

Security state HCR.AMO SCR.EA SCR.AW Mode PSTATE.A

Secure x x x x Masks SError interrupt, when set to 1

Non-secure 0 0 x x Masks SError interrupt, when set to 1

1 0 x Ignored

1 x Masks SError interrupt, when set to 1

1 x x Not Hyp Ignored

0 x Hyp Masks SError interrupt, when set to 1

1 x x Ignored
G1-6074 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.15 Asynchronous exception behavior for exceptions taken from AArch32 state
Table G1-17 on page G1-6075 shows the controls of the masking of IRQ exceptions by PSTATE.I:

Table G1-18 on page G1-6075 shows the controls of the masking of FIQ exceptions by PSTATE.F:

G1.15.4 Asynchronous exception routing and masking with higher Exception levels using AArch64

Asynchronous exception routing controls on page G1-6072 and Asynchronous exception masking controls on
page G1-6073 give full descriptions of the routing and masking of the asynchronous exceptions when all Exception
levels are using AArch32. However, when EL0 and EL1 are using AArch32:

• As already described, the SCR and HCR controls might be from Exception levels that are using AArch64.

• If EL3 is using AArch64, or EL2 is using AArch64, there are some changes to the asynchronous exception
behaviors.

Therefore, the following sections summarize the asynchronous exception behaviors, taking account of the
Execution state being used at EL2 and EL3:

• Summary of physical interrupt routing on page G1-6075.

• Summary of physical interrupt masking on page G1-6076.

Summary of physical interrupt routing

The Table G1-19 on page G1-6076 shows the routing of physical FIQ, IRQ and SError interrupts when the highest
Exception level is using AArch32. If the highest Exception level is using AArch64, see Table D1-8 on
page D1-2501.

In this table:

SCR This is the Effective value of a field in SCR.

HCR This is the Effective value of a field in HCR.

Table G1-17 Control of masking by PSTATE.I

Security state HCR.IMO SCR.IRQ Mode PSTATE.I

Secure x x x Masks IRQs, when set to 1

Non-secure 0 x x Masks IRQs, when set to 1

1 x Not Hyp Ignored

0 Hyp Masks IRQs, when set to 1

1 x Ignored

Table G1-18 Control of masking by PSTATE.F

Security state HCR.FMO SCR.FIQ SCR.FW Mode PSTATE.F

Secure x x x x Masks FIQs, when set to 1

Non-secure 0 0 x x Masks FIQs, when set to 1

1 0 x Ignored

1 x Masks FIQs, when set to 1

1 x x Not Hyp Ignored

0 x Hyp Masks FIQs, when set to 1

1 x x Ignored
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6075
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.15 Asynchronous exception behavior for exceptions taken from AArch32 state
FIQ IRQ EA The Effective value of the field that handles the asynchronous exception type in SCR.

FMO IMO AMO The Effective value of the mask override field for the asynchronous exception type in HCR, if
EL2 is using AArch32 or HCR_EL2 if EL2 is using AArch64.

FIQ IRQ Abt The exception is taken to the FIQ mode, the IRQ mode or the Abort mode according to the type of
asynchronous exception.

Hyp The exception is taken to AArch32 Hyp mode.

Mon The exception is taken to AArch32 Monitor mode.

n/a This field does not exist, or the Exception level is not accessible in this configuration.

Summary of physical interrupt masking

Table G1-20 on page G1-6077 shows the masking of physical FIQ, IRQ and SError interrupts when the highest
Exception level is using AArch32. When the highest Exception level is using AArch64, see Table D1-11 on
page D1-2505.

In this table:

SCR This is the Effective value of a field in SCR.

HCR This is the Effective value of a field in HCR.

FIQ IRQ EA The Effective value of the field that handles the asynchronous exception type in SCR.

FMO IMO AMO The Effective value of the mask override field for the asynchronous exception type in HCR.

FW AW For FIQ interrupts, the SCR.FW field, and for SError interrupts, the SCR.AW field. For IRQ
interrupts, there is no equivalent field, so the Effective value is 0 and rows where this cell is 1 should
be ignored.

A When the interrupt is asserted, it is taken regardless of the value of the PSTATE mask bit.

B When the interrupt is asserted, it is subject to the corresponding PSTATE mask bit. If the value of
the mask is 1, the interrupt is not taken. If the value of the mask is 0, the interrupt is taken.

Table G1-19 Routing of physical asynchronous exceptions

Control bits
Target
when
taken from

EL0

Target
when
taken from
EL1

Target
when
taken from
EL2

Target
when
taken from
EL3

SCR HCR

NS FIQ IRQ EA TGE
FMO IMO
AMO

0 x x x FIQ IRQ Abt n/a n/a FIQ IRQ Abt

1 0 0 0 FIQ IRQ Abt FIQ IRQ Abt Hyp FIQ IRQ Abt

1 Hyp Hyp Hyp FIQ IRQ Abt

1 x Hyp n/a Hyp FIQ IRQ Abt

1 0 x Mon Mon Mon Mon

1 x Mon n/a Mon Mon
G1-6076 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.15 Asynchronous exception behavior for exceptions taken from AArch32 state
n/a This field does not exist, or the Exception level is not accessible in this configuration.

G1.15.5 Taking an interrupt or other exception during a multiple-register load or store

In AArch32 state, an interrupt cannot be taken during a sequence of memory accesses caused by a single load or
store instruction, except that when FEAT_LSMAOC is implemented and the value of the applicable LSMAOE field
is 0, an interrupt can be taken between two memory accesses made by a single AArch32 Load Multiple (LDM) or
Store Multiple (STM) instruction.

The applicable LSMAOE field is the field in the SCTLR_EL1, SCTLR_EL2, HSCTLR, or SCTLR register that
applies to the Exception level and Security state at which the LDM or STM instruction is executed.

When the value of the LSMAOE bit is 0 and an interrupt is taken between two memory accesses made by a single
AArch32 LDM or STM instruction, then:

• For a load, any register being loaded by the instruction other than a register used in the generation of the
address by the instruction or the PC, can contain an UNKNOWN value. Any register used in the generation of
the address is restored to its initial value and the LR is set on the interrupt to a value consistent with returning
to the instruction.

• For a store, any data location being stored to by the instruction can contain an UNKNOWN value.

• For either a load or store, if the instruction specifies writeback of the base address, then that register is
restored to its initial value.

Armv8.2 deprecates software relying on interrupts not being taken during the sequence of memory accesses caused
by a single load or store instruction.

Table G1-20 Masking of physical asynchronous exceptions

Control bits Effect of the interrupt mask when executing at:

SCR HCR

NS FW AW FIQ IRQ EA TGE FMO IMO AMO EL0 EL1 EL2 EL3

0 x x x x B n/a n/a B

1 x 0 0 0 B B B B

1 A A B B

1 x A n/a B B

0 1 0 x A A A B

1 x A n/a A B

1 1 0 0 B B B B

1 A A A B

1 x A n/a A B
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6077
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
G1.16 AArch32 state exception descriptions

Handling exceptions that are taken to an Exception level using AArch32 on page G1-6043 gives general information
about exception handling. This section describes each of the exceptions, in the following subsections:

• Undefined Instruction exception on page G1-6078.

• Monitor Trap exception on page G1-6080.

• Hyp Trap exception on page G1-6081.

• Supervisor Call (SVC) exception on page G1-6082.

• Secure Monitor Call (SMC) exception on page G1-6083.

• Hypervisor Call (HVC) exception on page G1-6084.

• Prefetch Abort exception on page G1-6085.

• Data Abort exception on page G1-6089.

• Virtual SError interrupt exception on page G1-6093.

• IRQ exception on page G1-6094.

• Virtual IRQ exception on page G1-6096.

• FIQ exception on page G1-6096.

• Virtual FIQ exception on page G1-6098.

Additional pseudocode functions for exception handling on page G1-6098 gives additional pseudocode that is used
in the pseudocode descriptions of a number of the exceptions.

G1.16.1 Undefined Instruction exception

An Undefined Instruction exception might be caused by:

• A System register access, floating-point, or Advanced SIMD instruction that is not accessible because of the
settings in one or more of the CPACR, NSACR, HCPTR, and DBGDSCRext.

• A System register access, floating-point, or Advanced SIMD instruction that is not implemented.

• A System register access, floating-point, or Advanced SIMD instruction that causes an exception during
execution. This includes:

— Trapped floating-point exceptions that are taken to AArch32, if an implementation supports these
traps. See Floating-point exceptions and exception traps on page E1-4268.

— Execution of certain floating-point instructions when one or both of the FPSCR.{Stride, Len} fields
in nonzero, in an implementation in which those fields are RW. The description of FPEXC specifies
the instructions to which this applies.

• An instruction that is UNDEFINED.

Note

The Undefined Instruction exception is taken using offset 0x04 in the Hyp, Secure, or Non-secure vector table. In
the Monitor vector table this offset is used for the Monitor Trap exception. See Monitor Trap exception on
page G1-6080 and The vector tables and exception offsets on page G1-6044.

By default, an Undefined Instruction exception is taken to Undefined mode, but an Undefined Instruction exception
can be taken to EL2, meaning it is taken to Hyp mode if EL2 is using AArch32, see The PE mode to which the
Undefined Instruction exception is taken on page G1-6079.

The Undefined Instruction exception can provide:

• Signaling of an illegal instruction execution.

• Lazy context switching of System registers.
G1-6078 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
The preferred return address for an Undefined Instruction exception is the address of the instruction that generated
the exception. For an exception taken to AArch32 state, this return is performed as follows:

• If returning from Secure or Non-secure Undefined mode, the exception return uses the SPSR and LR_und
values generated by the exception entry, as follows:

— If SPSR.T is 0, indicating that the exception occurred in A32 state, the return uses an exception return
instruction with a subtraction of 4.

— If SPSR.T is 1, indicating that the exception occurred in T32 state, the return uses an exception return
instruction with a subtraction of 2.

• If returning from Hyp mode, the exception return is performed by an ERET instruction, using the SPSR and
ELR_hyp values generated by the exception entry.

For more information, see Exception return to an Exception level using AArch32 on page G1-6065.

Note

If handling the Undefined Instruction exception requires instruction emulation, followed by return to the next
instruction after the instruction that caused the exception, the instruction emulator must use the instruction length
to calculate the correct return address, and to calculate the updated values of the IT bits if necessary.

The PE mode to which the Undefined Instruction exception is taken

Figure G1-4 on page G1-6079 shows how the implementation, state, and configuration options determine the PE
mode to which an Undefined Instruction exception is taken, when the exception is taken to an Exception level that
is using AArch32.

Figure G1-4 The PE mode an Undefined Instruction exception is taken to in AArch32 state

See also UNPREDICTABLE cases when the value of HCR.TGE is 1 on page G1-6056.

Undefined Instruction exception

Taken from
Hyp mode

?

HCR.TGE
== 1

?

Non-secure Undefined mode,
vector offset 0x04

Hyp mode,
vector offset 0x04

Hyp mode,
vector offset 0x14

EL1
and EL0

only?

Undefined mode,
vector offset 0x04 Yes

Have
EL2?

YesYes

No

Yes

No

No

From User mode
only, see text.

No

Have
EL3?

No

Yes

No

State is
Secure

?
Yes Secure Undefined mode,

vector offset 0x04
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6079
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
Pseudocode description of taking the Undefined Instruction exception

The AArch32.UndefinedFault() pseudocode procedure determines whether the Undefined Instruction exception is
taken to AArch32 state. If it is taken to AArch32 state, the AArch32.TakeUndefInstrException() pseudocode
procedure describes how the PE takes the exception.

An Undefined Instruction exception is taken to an Exception level using AArch64 if either:

• It is generated in User mode when EL1 is using AArch64.

• It is generated in User mode when EL2 is enabled in the current Security state and is using AArch64 and the
value of HCR_EL2.TGE is 1.

Conditional execution of undefined instructions

The conditional execution rules described in Conditional execution on page F1-4349 apply to all instructions. This
includes undefined instructions and other instructions that would cause entry to the Undefined Instruction
exception.

If such an instruction fails its condition check, the behavior depends on the potential cause of entry to the Undefined
Instruction exception, as follows:

• If the potential cause is the execution of the instruction itself and depends on data values used by the
instruction, the instruction executes as a NOP and does not cause an Undefined Instruction exception.

• In the following cases, it is IMPLEMENTATION DEFINED whether the instruction executes as a NOP or causes an
Undefined Instruction exception:

— The potential cause is the execution of an earlier System register access instruction, floating-point
instruction, or Advanced SIMD instruction.

— The potential cause is the execution of the instruction itself without dependence on the data values
used by the instruction.

An implementation must handle all such cases in the same way.

Note

Before Armv7, all implementations executed any instruction that failed its condition check as a NOP, even if it would
otherwise have caused an Undefined Instruction exception. An Undefined Instruction handler written for these
implementations might assume without checking that the undefined instruction passed its condition check. Such an
Undefined Instruction handler is likely to need rewriting, to check the condition is passed, before it functions
correctly on all AArch32 implementations.

Interaction of UNDEFINED instruction behavior with UNPREDICTABLE or
CONSTRAINED UNPREDICTABLE instruction behavior

If this manual describes an instruction as both:

• UNPREDICTABLE and UNDEFINED then the instruction is UNPREDICTABLE.

• CONSTRAINED UNPREDICTABLE and UNDEFINED then the instruction is CONSTRAINED UNPREDICTABLE.

Note

An example of this is where both:

• An instruction, or instruction class, is made UNDEFINED by some general principle, or by a configuration
field.

• A particular encoding of that instruction or instruction class is specified as CONSTRAINED UNPREDICTABLE.

G1.16.2 Monitor Trap exception

The Monitor Trap exception is implemented only as part of EL3, and can be generated only if EL3 is using
AArch32.
G1-6080 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
Note

The Monitor Trap exception is taken using offset 0x04 in the Monitor vector table. In the other vector tables, this
offset is used for the Undefined Instruction exception. See Undefined Instruction exception on page G1-6078 and
The vector tables and exception offsets on page G1-6044.

A Monitor Trap exception is generated if the PE is running in a mode other than Monitor mode, and commits for
execution a WFI or WFE instruction that would otherwise cause suspension of execution when:

• In the case of the WFI instruction, the value of the SCR.TWI bit is 1.

• In the case of the WFE instruction, the value of the SCR.TWE bit is 1.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed
to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the
instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

The preferred return address for a Monitor Trap exception is the address of the instruction that generated the
exception. The exception return uses the SPSR and LR_mon values generated by the exception entry, as follows:

• If SPSR.T is 0, indicating that the exception occurred in A32 state, the return uses an exception return
instruction with a subtraction of 4.

• If SPSR.T is 1, indicating that the exception occurred in T32 state, the return uses an exception return
instruction with a subtraction of 2.

For more information, see Exception return to an Exception level using AArch32 on page G1-6065.

The PE mode to which the Monitor Trap exception is taken

When EL3 is using AArch32, a Monitor Trap exception is taken to Monitor mode, using a vector offset of 0x04 from
the Monitor exception base address.

Pseudocode description of taking the Monitor Trap exception

The AArch32.TakeMonitorTrapException() pseudocode procedure describes how the PE takes the exception.

G1.16.3 Hyp Trap exception

The Hyp Trap exception provides the standard mechanism for trapping Guest OS functions to the hypervisor.

The Hyp Trap exception is implemented only as part of EL2 and can be generated only if EL2 is using AArch32.

A Hyp Trap exception is generated if the PE is running in a Non-secure mode other than Hyp mode, and commits
for execution an instruction that is trapped to Hyp mode. Instruction traps are enabled by setting bits to 1 in the HCR,
HCPTR, HDCR, or HSTR. For more information, see EL2 configurable controls on page G1-6126.

Traps to Hyp mode never apply in Secure state, regardless of the value of the SCR.NS bit.

The preferred return address for a Hyp Trap exception is the address of the trapped instruction. The exception return
is performed by an ERET instruction, using the SPSR and ELR_hyp values generated by the exception entry.

Note

The SPSR and ELR_hyp values generated on exception entry can be used, without modification, for an exception
return to re-execute the trapped instruction. If the exception handler emulates the trapped instruction, and must
return to the following instruction, the emulation of the instruction must include modifying ELR_hyp, and possibly
updating SPSR_hyp.

When the PE enters the handler for a Hyp Trap exception, the HSR holds syndrome information for the exception.
For more information, see Use of the HSR on page G5-6381.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6081
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
The PE mode to which the Hyp Trap exception is taken

 A Hyp Trap exception is taken to Hyp mode, using a vector offset of 0x14 from the Hyp exception base address.

Pseudocode description of taking the Hyp Trap exception

The AArch32.TakeHypTrapException() pseudocode procedure describes how the PE takes the exception.

G1.16.4 Supervisor Call (SVC) exception

The Supervisor Call instruction, SVC, requests a supervisor function, typically to request an operating system
function. When EL1 is using AArch32, executing an SVC instruction causes the PE to enter Supervisor mode. For
more information, see SVC on page F5-5177.

Note

In an implementation that includes EL2, when EL2 is using AArch32:

• When an SVC instruction is executed in Hyp mode, the Supervisor Call exception is taken to Hyp mode. For
more information, see SVC on page F5-5177.

• When the HCR.TGE bit is set to 1, the Supervisor Call exception generated by execution of an SVC instruction
in Non-secure User mode is routed to Hyp mode. For more information, see Supervisor Call exception, when
the value of HCR.TGE is 1 on page G1-6059.

By default, a Supervisor Call exception that is taken to AArch32 state is taken to Supervisor mode, but a Supervisor
Call exception can be taken to EL2, meaning it is taken to Hyp mode if EL2 is using AArch32, see The PE mode to
which the Supervisor Call exception is taken on page G1-6082.

The preferred return address for a Supervisor Call exception is the address of the next instruction after the SVC
instruction. For an exception taken to AArch32 state, this return is performed as follows:

• If returning from Secure or Non-secure Supervisor mode, the exception return uses the SPSR and LR_svc
values generated by the exception entry, in an exception return instruction without subtraction.

• If returning from Hyp mode, the exception return is performed by an ERET instruction, using the SPSR and
ELR_hyp values generated by the exception entry.

For more information, see Exception return to an Exception level using AArch32 on page G1-6065.

The PE mode to which the Supervisor Call exception is taken

Figure G1-5 on page G1-6083 shows how the implementation, state, and configuration options determine the PE
mode to which a Supervisor Call exception is taken, when the exception is taken to an Exception level that is using
AArch32.
G1-6082 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
Figure G1-5 The PE mode the Supervisor Call exception is taken to in AArch32 state

See also UNPREDICTABLE cases when the value of HCR.TGE is 1 on page G1-6056.

Pseudocode description of taking the Supervisor Call exception

The AArch32.CallSupervisor() pseudocode procedure determines whether the Supervisor Call exception is taken to
AArch32 state. If it is taken to AArch32 state, the AArch32.TakeSVCException() pseudocode procedure describes how
the PE takes the exception.

An Supervisor Call exception is taken to an Exception level using AArch64 if either:

• It is generated by executing an SVC instruction in User mode when EL1 is using AArch64.

• It is generated by executing an SVC instruction in Non-secure User mode when EL2 is using AArch64 and the
value of HCR_EL2.TGE is 1.

G1.16.5 Secure Monitor Call (SMC) exception

The Secure Monitor Call exception is implemented only as part of EL3. When EL3 is using AArch32, the exception
is taken to Monitor mode.

The Secure Monitor Call instruction, SMC, requests a Secure Monitor function. When EL3 is using AArch32,
executing an SMC instruction causes the PE to enter Monitor mode. For more information, see SMC on page F5-5022.

Note

• In an implementation that includes EL2, execution of an SMC instruction in a Non-secure EL1 mode can be
trapped to EL2. When EL2 is using AArch32, this means that when HCR.TSC 1, execution of an SMC
instruction in a Non-secure EL1 mode generates a Hyp Trap Exception that is taken to Hyp mode. For more
information, see Traps to Hyp mode of Non-secure EL1 execution of SMC instructions on page G1-6133.

Supervisor Call exception

State is
Secure

?

Taken from
Hyp mode

?

Yes

HCR.TGE
== 1

?

Non-secure Supervisor mode,
vector offset 0x08

Hyp mode,
vector offset 0x08

Hyp mode,
vector offset 0x14

Supervisor mode,
vector offset 0x08 Yes

Have
EL2?

Yes

No

Secure Supervisor mode,
vector offset 0x08

No

Yes

Yes

No

No

EL1
and EL0

only?

No

Have
EL3?

Yes

No

From User mode
only, see text.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6083
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
• The Operation pseudocode in the description of the AArch32 SMC instruction, in SMC on page F5-5022,
identifies cases where execution of the instruction generates an exception that is taken to EL3 using
AArch64.

The preferred return address for a Secure Monitor Call exception is the address of the next instruction after the SMC
instruction. For an exception taken to AArch32 state, this return is performed using the SPSR and LR_mon values
generated by the exception entry, using an exception return instruction without a subtraction.

For more information, see Exception return to an Exception level using AArch32 on page G1-6065.

Note

For an exception taken to AArch32 state, the exception handler can return to the SMC instruction itself by returning
using a subtraction of 4, without any adjustment to the SPSR.IT[7:0] bits. If it does this, the return occurs, then
asynchronous exceptions might occur and be handled, then the SMC instruction is re-executed and another Secure
Monitor Call exception occurs.

This relies on:

• The SMC instruction being used correctly, either outside an IT block or as the last instruction in an IT block,
so that the SPSR.IT[7:0] bits indicate unconditional execution.

• The Secure Monitor Call handler not changing the result of the original conditional execution test for the SMC
instruction.

The PE mode to which the Secure Monitor Call exception is taken

The Secure Monitor Call exception is supported only as part of EL3. When EL3 is using AArch32, a Secure Monitor
Call exception is taken to Monitor mode, using vector offset 0x08 from the Monitor exception base address.

Note

• An SMC instruction that is trapped to Hyp mode because HCR.TSC is set to 1 generates a Hyp Trap exception,
see The PE mode to which the Hyp Trap exception is taken on page G1-6082.

• If EL3 is using AArch64 then Security behavior in Exception levels using AArch32 when EL2 or EL3 are
using AArch64 on page G1-6054 describes the effect of executing an SMC instruction at an Exception level
that is using EL1.

Pseudocode description of taking the Secure Monitor Call exception

The AArch32.TakeSMCException() pseudocode procedure describes how the PE takes the exception when the
exception is taken to an Exception level that is using AArch32.

G1.16.6 Hypervisor Call (HVC) exception

The Hypervisor Call exception is implemented only as part of EL2.

The Hypervisor Call instruction, HVC, requests a hypervisor function. When EL2 is using AArch32, executing an HVC
instruction generates a Hypervisor Call exception that is taken to Hyp mode. For more information, see HVC on
page F5-4698.

Note

• Execution of HVC instructions is disabled when the value of SCR.HCE is 0. Descriptions of HVC instruction
execution elsewhere in this section assume the Effective value of SCR.HCE is 1.

• When EL2 is using AArch64 an HVC instruction executed in a Non-secure EL1 mode generates an exception
that is taken to EL2 using AArch64. Exception classes and the ESR_ELx syndrome registers on
page D1-2478 describes how this exception is reported in ESR_EL2.
G1-6084 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
The preferred return address for a Hypervisor Call exception is the address of the next instruction after the HVC
instruction. The exception return is performed by an ERET instruction, using the SPSR and ELR_hyp values
generated by the exception entry.

For more information, see Exception return to an Exception level using AArch32 on page G1-6065.

When EL2 is using AArch32, executing an HVC instruction transfers the immediate argument of the instruction to
the HSR. The exception handler retrieves the argument from the HSR, and therefore does not have to access the
original HVC instruction. For more information, see Use of the HSR on page G5-6381.

The PE mode to which the Hypervisor Call exception is taken

The Hypervisor Call exception is supported only as part of EL2. When EL2 is using AArch32, a Hypervisor Call
exception is taken to Hyp mode, using a vector offset that depends on the mode from which the exception is taken,
as Figure G1-6 on page G1-6085 shows. This offset is from the Hyp exception base address.

Figure G1-6 The PE mode the Hypervisor Call exception is taken to in AArch32 state

Pseudocode description of taking the Hypervisor Call exception

The AArch32.CallHypervisor() pseudocode procedure determines whether the valid execution of an HVC instruction
in AArch32 state generates an exception that is taken to EL2 using AArch64, or generates a Hypervisor Call
exception taken to Hyp mode. The AArch32.TakeHVCException() pseudocode procedure describes how the PE takes
a Hypervisor Call exception.

G1.16.7 Prefetch Abort exception

A Prefetch Abort exception can be generated by:

• A synchronous memory abort on an instruction fetch.

Note
Asynchronous External aborts on instruction fetches are reported as SError interrupts using the Data Abort
exception, see Data Abort exception on page G1-6089.

A Prefetch Abort exception entry is synchronous to the instruction whose fetch aborted.

For more information about memory aborts see VMSAv8-32 memory aborts on page G5-6354.

• A Breakpoint, Vector Catch or Breakpoint Instruction exception, see Chapter G2 AArch32 Self-hosted
Debug.

Note

If an implementation fetches instructions speculatively, it must handle a synchronous abort on such an instruction
fetch by:

• Generating a Prefetch Abort exception only if the instruction would be executed in a simple sequential
execution of the program.

• Ignoring the abort if the instruction would not be executed in a simple sequential execution of the program.

Hypervisor Call exception

Hyp mode,
vector offset 0x14

Taken from
Hyp mode

?

Hyp mode,
vector offset 0x08 Yes

No
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6085
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
By default, when EL1 is using AArch32, a Prefetch Abort exception is taken to Abort mode, but a Prefetch Abort
exception can be taken to:

• EL2, meaning it is taken to Hyp mode if EL2 is using AArch32.

• EL3, meaning it is taken to Monitor mode if EL3 is using AArch32.

For more information:

• About cases where the Prefetch Abort exception is taken to an Exception level that is using AArch32, see
The PE mode to which the Prefetch Abort exception is taken on page G1-6087.

• About cases where the Prefetch Abort generates an exception that is taken to an Exception level that is using
AArch64, see Pseudocode description of taking the Prefetch Abort exception on page G1-6089.

The preferred return address for a Prefetch Abort exception is the address of the aborted instruction. For an
exception taken to AArch32 state this return is performed as follows:

• If returning from a mode other than Hyp mode, using the SPSR and LR values generated by the exception
entry, using an exception return instruction with a subtraction of 4. This means using:

— SPSR_abt and LR_abt if returning from Abort mode.

— SPSR_mon and LR_mon if returning from Monitor mode.

• If returning from Hyp mode, using the SPSR_hyp and ELR_hyp values generated by the exception entry,
using an ERET instruction.

For more information about the handling of Prefetch Abort exceptions in AArch32 state see Exception return to an
Exception level using AArch32 on page G1-6065.

Prefetch Abort exception reporting a PC alignment fault exception

A PC alignment fault exception that is taken to an Exception level that is using AArch32 is reported as a Prefetch
Abort exception, and:

If the exception is taken to EL1 using AArch32 or EL3 using AArch32

• The IFSR indicates the cause of the exception:

— If the value of TTBCR.EAE is 0, IFSR.FS takes the value 0b00001.

— If the value of TTBCR.EAE is 1, IFSR.STATUS takes the value 0b100001.

• IFAR holds the value of the address that faulted, including the misaligned low order bit or
bits.

• R14_abt holds the address that faulted, including the misaligned low order bit or bits, with
the standard offset for a Prefetch Abort exception.

If the exception is taken to EL2 using AArch32

• HSR.EC takes the value 0b100010.

• HSR.IL is UNKNOWN.

• HSR.ISS is RES0.

• HIFAR and ELR_hyp each hold the value of the address that faulted, including the
misaligned low order bit or bits.

For a PC alignment fault exception taken to an Exception level that is using AArch32:

• If the exception occurred because of the CONSTRAINED UNPREDICTABLE behavior of a branch to an unaligned
PC value, as described in Branching to an unaligned PC on page K1-8388, then bit[0] of the faulting address
is forced to zero, and therefore the misalignment is because the value of bit[1] of this address is 1.

• If the exception occurred on an exit from Debug state, as described in Exiting Debug state on page H2-7375,
then it is CONSTRAINED UNPREDICTABLE whether bit[0] of the faulting address is forced to zero.
G1-6086 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
The PE mode to which the Prefetch Abort exception is taken

Figure G1-7 on page G1-6088 shows how the implementation, state, and configuration options determine the PE
mode to which a Prefetch Abort exception is taken, when the exception is taken to an Exception level that is using
AArch32.

Note

In this figure, the Effective value of HCR2.TEA is 0 if The Reliability, Availability, and Serviceability Extension is
not implemented.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6087
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
Figure G1-7 The PE mode the Prefetch Abort exception is taken to in AArch32 state

See also UNPREDICTABLE cases when the value of HCR.TGE is 1 on page G1-6056.

External
abort

?

Yes

Hyp mode, vector
offset 0x0C

Monitor mode,
vector offset 0x0C

SCR.EA
== 1

?

Yes

Yes Abort mode,
vector offset 0x0C

State is
Secure

?

Secure Abort mode,
vector offset 0x0C

Taken
from Hyp
mode ?

No

Have
EL2?

Yes

NoNo

YesHCR.TGE
== 1

?

EL1
and EL0

only?

No

Have
EL3?

Yes Yes

Yes

NoNo

No

From User mode
only, see text.

Prefetch Abort
exception

Stage 2
abort

?

On address
translation

No

Yes Hyp mode, vector
offset 0x14 Yes

Yes

Non-secure Abort mode,
vector offset 0x0C

1No

No

Yes

No No

1

Debug
exception

?

HDCR.TDE
== 1

?

External
abort

?

HCR2.TEA
== 1

?

Synchronous

No
G1-6088 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
Pseudocode description of taking the Prefetch Abort exception

The AArch32.Abort() pseudocode function determines whether the Prefetch Abort condition generates an exception
that is taken to an Exception level that is using AArch64, or generates a Prefetch Abort exception that is taken in
AArch32 state. When the exception is taken in AArch32 state, the AArch32.TakePrefetchAbortException()
pseudocode procedure describes how the PE takes the exception.

The exception is taken to an Exception level using AArch64 if one of the following applies:

• The exception is generated in User mode when EL1 is using AArch64.

• The implementation includes EL2, EL2 is using AArch64, and one of the following applies:

— The value of HCR_EL2.TGE is 1 and the exception is generated in Non-secure User mode.

— The value of MDCR_EL2.TDE is 1 and the exception is generated by a Debug exception in a
Non-secure EL1 or Non-secure EL0 mode.

— The exception is generated by a stage 2 fault during a stage 1 translation table walk using the AArch32
Non-secure EL1&0 translation regime.

• The implementation includes EL3, EL3 is using AArch64, the value of SCR_EL3.EA is 1. and the exception
is generated by an External abort in AArch32 state.

G1.16.8 Data Abort exception

In AArch32 state, a Data Abort exception can be generated by:

• A synchronous abort on a data read or write memory access. Exception entry is synchronous to the instruction
that generated the memory access.

• An SError interrupt. The SError interrupt might be caused by an External abort on a memory access, which
can be any of:

— A data read or write access.

— An instruction fetch.

— In a VMSA memory system, a translation table access.

Exception entry occurs asynchronously.

As described in Asynchronous exception masking controls on page G1-6073, SError interrupts can be
masked. When this happens, a generated SError interrupt is not taken until it is not masked.

• A watchpoint, see Watchpoint exceptions on page G2-6195.

By default, when EL1 is using AArch32 a Data Abort exception is taken to Abort mode, but a Data Abort exception
can be taken to:

• EL2, meaning it is taken to Hyp mode if EL2 is using AArch32.

• EL3, meaning it is taken to Monitor mode if EL3 is using AArch32.

For more information:

• About cases where the Data Abort exception is taken to an Exception level that is using AArch32 see The PE
mode to which the Data Abort exception is taken on page G1-6090.

• About memory aborts in AArch32 state see VMSAv8-32 memory aborts on page G5-6354.

• About cases where the Data Abort generates an exception that is taken to an Exception level that is using
AArch64 see Pseudocode description of taking the Data Abort exception on page G1-6092.

The preferred return address for a Data Abort exception is the address of the instruction that generated the aborting
memory access, or the address of the instruction following the instruction boundary at which an SError interrupt
exception was taken. For an exception taken to AArch32 state, this return is performed as follows:

• If returning from a mode other than Hyp mode, using the SPSR and LR values generated by the exception
entry, using an exception return instruction with a subtraction of 8. This means using:

— SPSR_abt and LR_abt if returning from Abort mode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6089
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
— SPSR_mon and LR_mon if returning from Monitor mode.

• If returning from Hyp mode, using the SPSR_hyp and ELR_hyp values generated by the exception entry,
using an ERET instruction.

For more information about the handling of Data Abort exceptions in AArch32 state see Exception return to an
Exception level using AArch32 on page G1-6065.

The PE mode to which the Data Abort exception is taken

Figure G1-8 on page G1-6091 shows the determination of the mode to which a Data Abort exception is taken when
the exception is taken to an Exception level that is using AArch32.

Note

In this figure, the Effective value of HCR2.TEA is 0 if The Reliability, Availability, and Serviceability Extension is
not implemented.
G1-6090 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
Figure G1-8 The PE mode the Data Abort exception is taken to in AArch32 state

See also UNPREDICTABLE cases when the value of HCR.TGE is 1 on page G1-6056.

Data Abort
exception

External
abort

?

Yes

Hyp mode, vector
offset 0x10

Monitor mode,
vector offset 0x10

SCR.EA
== 1

?

Yes

Stage 2
abort

?

On address
translation

Yes Abort mode,
vector offset 0x10

State is
Secure

?

Secure Abort mode,
vector offset 0x10

Have
EL2?

Yes

Yes

Yes

Non-secure Abort mode,
vector offset 0x10

Yes

No

No

Hyp mode, vector
offset 0x14

Yes

No

Yes

1

1

Yes

1

HCR.TGE
== 1

?

No

EL1
and EL0

only?

No

Have
EL3?

Yes

No

Yes

Taken
from Hyp
mode ?

No

No

From User mode
only, see text.

No

No

No

Yes

No

No

Yes

No

Yes

External
abort

?

Synchronous

HCR2.TEA
== 1

?

Debug
exception

?

HDCR.TDE
== 1

?

SError
interrupt

?

HCR.AMO
== 1

?

No
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6091
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
Pseudocode description of taking the Data Abort exception

The AArch32.Abort() pseudocode function determines whether the Data Abort condition generates an exception that
is taken to an Exception level that is using AArch64, or generates a Data Abort exception that is taken in AArch32
state. When the exception is taken in AArch32 state, the AArch32.TakeDataAbortException() pseudocode procedure
describes how the PE takes the exception.

The exception is taken to an Exception level using AArch64 if one of the following applies:

• The exception is generated in User mode when EL1 is using AArch64.

• The implementation includes EL2, EL2 is using AArch64, and one of the following applies:

— The value of HCR_EL2.TGE is 1 and the exception is generated in Non-secure User mode.

— The value of MDCR_EL2.TDE is 1 and the exception is generated by a Debug exception in a
Non-secure EL1 or Non-secure EL0 mode.

— The exception is generated by a stage 2 fault during a stage 1 translation table walk using the AArch32
Non-secure EL1&0 translation regime.

• The implementation includes EL3, EL3 is using AArch64, the value of SCR_EL3.EA is 1. and the exception
is generated by an External abort in AArch32 state.

Effects of data-aborted instructions

An instruction that accesses data memory can modify memory by storing one or more values. If the execution of
such an instruction generates a Data Abort exception, or causes Debug state entry because of a watchpoint set on
the location, the value of each memory location that the instruction stores to is:

• Unchanged for any location for which one of the following applies:

— An Alignment fault is generated.

— An MMU fault is generated.

— A Watchpoint is generated.

— An External abort is generated, if that External abort is taken synchronously.

• UNKNOWN for any location for which no exception and no debug event is generated.

If the access to a memory location generates an External abort that is taken asynchronously, it is outside the scope
of the architecture to define the effect of the store on that memory location, because this depends on the
system-specific nature of the External abort. However, in general, Arm recommends that such locations are
unchanged.

For External aborts and Watchpoints, where in principle faulting could be identified at byte or halfword granularity,
the size of a location in this definition is the size for which a memory access is single-copy atomic.

In AArch32 state, instructions that access data memory can modify registers in the following ways:

• By loading values into one or more of the general-purpose registers. The registers loaded can include the PC.

• By loading values into one or more of the registers in the Advanced SIMD and floating-point register file.

• By specifying base register writeback, in which the base register used in the address calculation has a
modified value written to it. All instructions that support base register writeback have CONSTRAINED
UNPREDICTABLE results if base register writeback is specified with the PC as the base register. Only
general-purpose registers can be modified reliably in this way.

• By a direct transfer to or from the Debug Communication Channel (DCC) register, using the LDC and STC
instructions. For more information, see Chapter H4 The Debug Communication Channel and Instruction
Transfer Register.

If the instruction that accesses the DCC registers is an LDC or STC instruction, UNKNOWN values are left in
the Data Transfer Register and DCC flow-control flags.

• By modifying PSTATE.
G1-6092 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
If the execution of such an instruction generates a synchronous Data Abort exception, the following rules determine
the values left in these registers:

• On entry to the Data Abort exception handler:

— The PC value is the Data Abort vector address, see Exception vectors and the exception base address
on page G1-6043.

— The LR_abt value is determined from the address of the aborted instruction.

Neither value is affected by the results of any load specified by the instruction.

• The base register is restored to its original value if either:

— The aborted instruction is a load and the list of registers to be loaded includes the base register.

— The base register is being written back.

• If the instruction only loads one general-purpose register the value in that register is unchanged.

• If the instruction loads more than one general-purpose register, UNKNOWN values are left in destination
registers other than the PC and the base register of the instruction.

• If the instruction affects any registers in the Advanced SIMD and floating-point register file, UNKNOWN
values are left in the registers that are affected.

• PSTATE bits that are not defined as updated on exception entry retain their current value.

• If the instruction is a STREX, STREXB, STREXH, or STREXD, <Rd> is not updated.

After taking a Data Abort exception, the state of the Exclusives monitors is UNKNOWN. Therefore, Arm strongly
recommends that the abort handler performs a CLREX instruction, or a dummy STREX instruction, to clear the
Exclusives monitor state.

An External abort might signal a data corruption to the PE. For example, a memory location might have been
corrupted. The error that caused the External abort might have been propagated. The RAS Extension provides
mechanisms for software to determine the extent of the corruption and contain propagation of the error. For more
information, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A
architecture profile.

The Arm abort model

The abort model used by an Arm PE is described as a Base Restored Abort Model. This means that if a synchronous
Data Abort exception is generated by executing an instruction that specifies base register writeback, the value in the
base register is unchanged.

The abort model applies uniformly across all instructions.

G1.16.9 Virtual SError interrupt exception

The Virtual SError interrupt exception is implemented only as part of EL2 is enabled in the current Security state.

A Virtual SError interrupt exception is generated in AArch32 state if all of the following apply:

• The PE is in a mode other than Hyp mode.

• The value of PSTATE.A is 0.

• Either:

— EL2 is using AArch32 and the values of the HCR.{TGE, AMO, VA} bits are {0, 1, 1}.

— EL2 is using AArch64 and the values of the HCR_EL2.{TGE, AMO, VA} bits are {0, 1, 1}.

The preferred return address for a Virtual SError interrupt exception is the address of the instruction immediately
after the instruction boundary where the exception was taken. For an exception taken to AArch32 state, this return
is performed using the SPSR and LR_abt values generated by the exception entry, using an exception return
instruction without subtraction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6093
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
The PE mode to which the Virtual SError interrupt exception is taken

The Virtual SError interrupt exception is taken using a vector offset of 0x10 from the Non-secure exception base
address.

The conditions for generating a Virtual SError interrupt exception in AArch32 state mean the exception is:

• Taken from a EL1 or EL0 mode.

• Taken to Abort mode if EL1 is using AArch32.

• Taken to EL1, when EL0 is using AArch32 and EL1 is using AArch64.

For more information, see Virtual exceptions when an implementation includes EL2 on page G1-6070.

Note

Because a Virtual SError interrupt exception taken to AArch32 state is always taken to Abort mode, on exception
entry the preferred return address is always saved to LR_abt.

Pseudocode description of taking the Virtual SError interrupt exception

The AArch32.TakeVirtualSErrorException() pseudocode procedure describes how the PE takes the exception.

G1.16.10 IRQ exception

The IRQ exception is generated by IMPLEMENTATION DEFINED means. Typically this is by asserting an IRQ interrupt
request input to the PE.

When an IRQ exception is taken, exception entry is precise to an instruction boundary.

As described in Asynchronous exception masking controls on page G1-6073, IRQ exceptions can be masked. When
this happens, a generated IRQ exception is not taken until it is not masked.

By default, when EL1 is using AArch32, an IRQ exception is taken to IRQ mode, but an IRQ exception can be taken
to:

• EL2, meaning it is taken to Hyp mode if EL2 is using AArch32.

• EL3, meaning it is taken to Monitor mode if EL3 is using AArch32.

For more information:

• About cases where the exception is taken to an Exception level using AArch32 see The PE mode to which
the physical IRQ exception is taken on page G1-6095.

• About cases where the exception is taken to an Exception level using AArch64 see Pseudocode description
of taking the physical IRQ exception on page G1-6095.

The preferred return address for an IRQ exception is the address of the instruction following the instruction
boundary at which the exception was taken. For an exception taken to AArch32 state this return is performed as
follows:

• If returning from a mode other than Hyp mode, using the SPSR and LR values generated by the exception
entry, using an exception return instruction with a subtraction of 4. This means using:

— SPSR_irq and LR_irq if returning from IRQ mode.

— SPSR_mon and LR_mon if returning from Monitor mode.

• If returning from Hyp mode, using the SPSR_hyp and ELR_hyp values generated by the exception entry,
using an ERET instruction.

For more information, see Exception return to an Exception level using AArch32 on page G1-6065.
G1-6094 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
The PE mode to which the physical IRQ exception is taken

Figure G1-9 on page G1-6095 shows how the implementation, state, and configuration options determine the mode
to which an IRQ exception is taken when the exception is taken to an Exception level that is using AArch32.

Figure G1-9 The PE mode the IRQ exception is taken to in AArch32 state

Pseudocode description of taking the physical IRQ exception

The AArch32.TakePhysicalIRQException() pseudocode procedure describes how the PE takes the exception. This
procedure includes the case where the exception is taken to an Exception level that is using AArch64. This happens
if one of the following applies:

• The exception is taken from User mode and EL1 is using AArch64. The Exception is taken to EL1 using
AArch64.

• The exception is taken from User mode, EL2 is implemented in the current Security state and using AArch64,
and the value of HCR_EL2.TGE is 1. The Exception is taken to EL2 using AArch64.

• The exception is taken from EL0 or EL1 mode, EL2 is implemented in the current Security state and using
AArch64, and the value of HCR_EL2.IMO is 1. The Exception is taken to EL2 using AArch64.

• The exception is taken from a PE mode other than Monitor mode, EL3 is implemented and using AArch64,
and the value of SCR_EL3.IRQ is 1. The Exception is taken to EL3 using AArch64.

State is
Secure

?

IRQ exception

Yes IRQ mode,
vector offset 0x18

Secure IRQ mode,
vector offset 0x18

No

SCR.IRQ
== 1

?

Monitor mode,
vector offset 0x18 Yes

No

Yes

Have
EL2?

Yes

HCR.IMO
== 1

?

No

Hyp mode,
vector offset 0x18

Yes

Non-secure IRQ mode,
vector offset 0x18

No

No

No

EL1
and EL0

only?

Have
EL3?

Taken
from Hyp
mode ?

Yes

No

Yes
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6095
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
G1.16.11 Virtual IRQ exception

The Virtual IRQ exception is implemented only as part of EL2, if EL2 is enabled in the current Security state.

A Virtual IRQ exception is generated in AArch32 state if all of the following apply:

• The PE is in a mode other than Hyp mode.

• The value of PSTATE.I is 0.

• Either:

— EL2 is using AArch32 and the value of HCR.{TGE, IMO} is {0, 1}.

— EL2 is using AArch64 and the value of HCR_EL2.{TGE, IMO} is {0, 1}.

• One of the following applies:

— EL2 is using AArch32 and the value of HCR.VI is 1.

— EL2 is using AArch64 and the value of HCR_EL2.VI is 1.

— A Virtual IRQ exception is generated by an IMPLEMENTATION DEFINED mechanism.

The preferred return address for a Virtual IRQ exception is the address of the instruction immediately after the
instruction boundary where the exception was taken. For an exception taken to AArch32 state this return is
performed using the SPSR and LR_irq values generated by the exception entry, using an exception return instruction
with a subtraction of 4.

The PE mode to which the Virtual IRQ exception is taken

The Virtual IRQ exception uses a vector offset of 0x18.

The conditions for generating a Virtual IRQ exception in AArch32 state mean the exception is:

• Taken from an EL1 or EL0 mode.

• Taken to IRQ mode if EL1 is using AArch32.

• Taken to EL1 if EL0 is using AArch32 and EL1 is using AArch64.

For more information, see Virtual exceptions when an implementation includes EL2 on page G1-6070.

Pseudocode description of taking the Virtual IRQ exception

The AArch32.TakeVirtualIRQException() pseudocode procedure describes how the PE takes the exception.

G1.16.12 FIQ exception

The FIQ exception is generated by IMPLEMENTATION DEFINED means. Typically this is by asserting an FIQ interrupt
request input to the PE.

When an FIQ exception is taken, exception entry is precise to an instruction boundary.

As described in Asynchronous exception masking controls on page G1-6073, FIQ exceptions can be masked. When
this happens, a generated FIQ exception is not taken until it is not masked.

By default, an FIQ exception is taken to FIQ mode, but an FIQ exception can be taken to:

• EL2, meaning it is taken to Hyp mode if EL2 is using AArch32.

• EL3, meaning it is taken to Monitor mode if EL3 is using AArch32.

For more information:

• About cases where the exception is taken to an Exception level using AArch32 see The PE mode to which
the physical FIQ exception is taken on page G1-6097.

• About cases where the exception is taken to an Exception level using AArch64 see Pseudocode description
of taking the FIQ exception on page G1-6098.
G1-6096 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
The preferred return address for an FIQ exception is the address of the instruction following the instruction
boundary at which the exception was taken. For an exception taken to AArch32 state this return is performed as
follows:

• If returning from a mode other than Hyp mode, using the SPSR and LR values generated by the exception
entry, using an exception return instruction with a subtraction of 4. This means using:

— SPSR_fiq and LR_fiq if returning from FIQ mode.

— SPSR_mon and LR_mon if returning from Monitor mode.

• If returning from Hyp mode, using the SPSR_hyp and ELR_hyp values generated by the exception entry,
using an ERET instruction.

For more information, see Exception return to an Exception level using AArch32 on page G1-6065.

The PE mode to which the physical FIQ exception is taken

Figure G1-9 on page G1-6095 shows how the implementation, state, and configuration options determine the PE
mode to which an FIQ exception is taken when the exception is taken to an Exception level that is using AArch32.

Figure G1-10 The PE mode the FIQ exception is taken to in AArch32 state

FIQ exception

FIQ mode,
vector offset 0x1C

Secure FIQ mode,
vector offset 0x1C

Hyp mode,
vector offset 0x1C

Non-secure FIQ mode,
vector offset 0x1C

Monitor mode,
vector offset 0x1C

State is
Secure

?

Yes

No

SCR.FIQ
== 1

?

Yes

No

Yes

Have
EL2?

Yes

HCR.FMO
== 1

?

No

Yes

No

No

No

EL1
and EL0

only?

Have
EL3?

Taken
from Hyp
mode ?

Yes

No

Yes
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6097
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
Pseudocode description of taking the FIQ exception

The AArch32.TakePhysicalFIQException() pseudocode procedure describes how the PE takes the exception. This
procedure includes the case where the exception is taken to an Exception level that is using AArch64. This happens
if one of the following applies:

• The exception is taken from User mode and EL1 is using AArch64. The Exception is taken to EL1 using
AArch64.

• The exception is taken from User mode, EL2 is implemented in the current Security state and using AArch64,
and the value of HCR_EL2.TGE is 1. The Exception is taken to EL2 using AArch64.

• The exception is taken from an EL0 or EL1 mode, EL2 is implemented in the current Security state and using
AArch64, and the value of HCR_EL2.FMO is 1. The Exception is taken to EL2 using AArch64.

• The exception is taken from a PE mode other than Monitor mode, EL3 is implemented and using AArch64,
and the value of SCR_EL3.FIQ is 1. The Exception is taken to EL3 using AArch64.

G1.16.13 Virtual FIQ exception

The Virtual FIQ exception is implemented only as part of EL2, if EL2 is enabled in the current Security state.

A Virtual FIQ exception is generated in AArch32 state if all of the following apply:

• The PE is in a mode other than Hyp mode.

• The value of PSTATE.F is 0.

• Either:

— EL2 is using AArch32 and the value of HCR.{TGE, FMO} is {0, 1}.

— EL2 is using AArch64 and the value of HCR_EL2.{TGE, FMO} is {0, 1}.

• One of the following applies:

— EL2 is using AArch32 and the value of HCR.VF is 1.

— EL2 is using AArch64 and the value of HCR_EL2.VF is 1.

— A Virtual FIQ exception is generated by an IMPLEMENTATION DEFINED mechanism.

The preferred return address for a Virtual FIQ exception is the address of the instruction immediately after the
instruction boundary where the exception was taken. For an exception taken to AArch32 state this return is
performed using the SPSR and LR_irq values generated by the exception entry, using an exception return instruction
with a subtraction of 4.

The PE mode to which the Virtual FIQ exception is taken

The Virtual FIQ exception is taken using a vector offset of 0x1C.

The conditions for generating a Virtual FIQ exception in AArch32 state mean the exception is:

• Taken from EL1 or EL0.

• Taken to FIQ mode if EL1 is using AArch32.

• Taken to EL1 if EL0 is using AArch32 and EL1 is using AArch64.

For more information, see Virtual exceptions when an implementation includes EL2 on page G1-6070.

Pseudocode description of taking the Virtual FIQ exception

The AArch32.TakeVirtualFIQException() pseudocode procedure describes how the PE takes the exception.

G1.16.14 Additional pseudocode functions for exception handling

The AArch32.EnterMonitorMode() pseudocode function changes the PE mode to Monitor mode, with the required
state changes.
G1-6098 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions
The AArch32.EnterHypMode() pseudocode function changes the PE mode to Hyp mode, with the required state
changes.

The AArch32.EnterMode() pseudocode function changes the PE mode to a PL1 mode, with the required state changes.
It is used for all exceptions that are not routed to Hyp mode or Monitor mode.

The AArch32.EnterMonitorMode(), AArch32.EnterHypMode(), and AArch32.EnterMode() functions are described in
Chapter J1 Armv8 Pseudocode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6099
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 Reset into AArch32 state
G1.17 Reset into AArch32 state

Reset on page D1-2471 describes the Armv8 reset model, including the defined levels of reset. When reset is
deasserted, the PE starts executing instructions in the highest implemented Exception level. If that Exception level
is using AArch32, then it starts execution:

• In Secure state, if the implementation includes EL3.

• With interrupts disabled:

— In Hyp mode, if the highest implemented Exception level is EL2.

— In Supervisor mode, otherwise.

Note

• This section describes the architectural requirements for a reset into AArch32 state. It takes no account of
whether Arm licenses any particular combination of Exception levels and Execution state. For more
information about the licensed combinations, see Support for Exception levels and Execution states on
page D1-2559.

• The Execution state in which the highest implemented Execution level starts executing instructions on
coming out of reset might be determined by a configuration input signal.

Reset returns some PE state to architecturally-defined or IMPLEMENTATION DEFINED values, and makes other state
UNKNOWN, as described in PE state on reset into AArch32 state on page G1-6100. For more information about
behavior when resetting into an Exception level using AArch32, see:

• Behavior of caches at reset on page G4-6235.

• Enabling stages of address translation on page G5-6272.

• TLB behavior at reset on page G5-6333.

• Reset and debug on page H6-7452.

When reset is deasserted, if the PE resets into an Exception level that is using AArch32, it is IMPLEMENTATION
DEFINED whether execution starts:

• From an IMPLEMENTATION DEFINED address.

• If reset is into EL3 or EL1, from the low or high reset vector address, as determined by the reset value of the
SCTLR.V bit. This reset value can be determined by an IMPLEMENTATION DEFINED configuration input
signal.

Note

This option might be implemented for compatibility with earlier versions of the architecture.

Software might be able to identify the reset address:

• If reset is into EL3, by reading the reset value of MVBAR. That is, after coming out of reset, by reading
MVBAR before the boot software has updated it. It is IMPLEMENTATION DEFINED whether this discovery
mechanism is supported.

• If reset is into EL2 or EL1, by reading RVBAR. RVBAR can only be implemented at the highest implemented
Exception level, and only if that Exception level is not EL3.

If RVBAR is not implemented, and at all Exception levels other than the highest implemented Exception level, the
encoding for RVBAR is UNDEFINED.

The Arm architecture does not define any way of returning to a previous Execution state from a reset.

G1.17.1 PE state on reset into AArch32 state

Note

See the ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0, and version
4.0 for the reset requirements for GIC System registers.
G1-6100 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.17 Reset into AArch32 state
Immediately after a reset, much of the PE state is UNKNOWN. However, some of the PE state is defined. If the PE
resets to AArch32 state using either a Cold or a Warm reset, the PE state that is defined is as follows:

• The global exclusive monitor and local exclusive monitor for the PE are UNKNOWN.

• If reset is into EL3 using AArch32, then all fields of the SCR reset to zero.

Note

This means SCR.NS correctly indicates that the PE is in Secure state.

• If reset is into EL2 using AArch32, then reset is into Hyp mode and CPSR.M resets to 0b1010, otherwise reset
is into Supervisor mode and CPSR.M resets to 0b0011,

• CPSR.IL resets to 0.

• The CPACR.{cp11, cp10} fields reset to zero, and if CPACR.ASEDIS is implemented as an RW field it resets
to zero.

Note

When CPACR.TRCDIS is an RW field, its reset value is architecturally UNKNOWN.

• PSTATE is reset to the values defined by the AArch32.TakeReset() pseudocode function, see Pseudocode
descriptions of reset on page G1-6103.

• The FPEXC.EN field resets to 0.

• In the SCTLR:

— The {AFE, TRE, UWXN, WXN, I, SED, ITD, C, A, M} fields reset to 0.

— The {nTWE, nTWI, CP15BEN} fields reset to 1.

— The {TE, EE, V} fields reset to IMPLEMENTATION DEFINED values, see the register description for
more information.

When the reset is to EL3 using AArch32 then these reset values apply only to the Secure instance of the
SCTLR, and the reset value of the Non-secure SCTLR is architecturally UNKNOWN.

• All field of the TTBCR reset to 0.

When the reset is to EL3 using AArch32 then:

— All fields of the Secure TTBCR reset to 0.

— In the Non-secure TTBCR, the EAE field resets to 0, and the reset values of all other fields are
architecturally UNKNOWN.

• The VBAR resets to an IMPLEMENTATION DEFINED value.

When the reset is to EL3 using AArch32 then this reset value applies only to the Secure instance of the
register, and the reset value of the Non-secure VBAR is architecturally UNKNOWN.

• All fields of the DBGDCCINT reset to 0.

• The DBGDSCRext.{MDBGen, UDCCdis} fields reset to 0.

• The DBGOSDLR.DLK field resets to 0.

In addition:

If the reset is into EL1 using AArch32

• In the RMR register, the RR field resets to 0 on any warm or cold reset, and the AA64 field
resets to 0 on a Cold reset.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6101
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 Reset into AArch32 state
If the reset is into EL2 using AArch32

• In the HRMR, the RR field resets to 0 on any warm or Cold reset, and the AA64 field resets
to 0 on a Cold reset.

• The HSCTLR.{I, C, M} fields all reset to 0, and the HSCTLR.EE field resets to an
IMPLEMENTATION DEFINED value.

If the reset is into EL2 using AArch32 or into EL3 using AArch32

For a reset into EL3 using AArch32 these reset values apply only if the implementation includes
EL2, see the register descriptions for more information.

• All fields of the HCPTR reset to zero.

• All fields of the HCR reset to zero.

• The HCR2.{ID, CD} fields reset to zero.

• All fields of the HSTR reset to zero.

• The VMPIDR resets to the value of the MPIDR, see the register description for more
information.

• The VPIDR resets to the value of the MIDR, see the register description for more
information.

• The VTTBR.VMID field resets to zero.

• In the HDCR:

— The HPMN field resets to the IMPLEMENTATION DEFINED value of PMCR.N.

— The reset value of the HPME field is architecturally UNKNOWN.

— All other fields reset to 0.

If the reset is into EL3 using AArch32

• The MVBAR resets to an IMPLEMENTATION DEFINED value, see the register description for
more information.

• If the NSACR.{NSTRCDIS, NSASEDIS} fields are RW fields then they reset to 0.

• In the RMR register, the RR field resets to 0 on any warm or Cold reset, and the AA64 field
resets to 0 on a Cold reset.

• All fields of the SCR reset to zero.

• All fields of the SDER reset to 0.

• All fields of the SDCR reset to zero.

For either a warm or a Cold reset

• The EDPRSR.SR field resets to 1.

• The EDESR.{SS, RC, OSUC} fields reset to 0.

For a Cold reset only

• The EDSCR.{RXO, TXU, INTdis, TDA, MA, HDE, ERR, RXfull, TXfull} fields reset to 0.

• The EDECCR.{NSE, SE} fields reset to 0.

• The EDPRSR.{SPMAD, SDAD} fields reset to 0, and the EDPRSR.SPD field resets to 1.

• The DBGOSLSR.OSLK field resets to 1.

• If FEAT_DoPD is not implemented, the DBGPRCR.CORENPDRQ field resets to the value
of EDPRCR.COREPURQ.

Note
An External Debug reset sets EDPRCR.COREPURQ to 0, see External debug register resets
on page H8-7481. If an External Debug reset and a Cold reset coincide, both
DBGPRCR.CORENPDRQ and EDPRCR.COREPURQ are reset to 0.
G1-6102 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.17 Reset into AArch32 state
• If FEAT_DoPD is implemented, DBGPRCR.CORENPDRQ is set to an IMPLEMENTATION
DEFINED choice of 0 or 1 if the powerup request is implemented and asserted, otherwise the
field is set to 0.

• The debug CLAIM bits are reset to 0.

Note
These are the bits that are set to 1 by writing to DBGCLAIMSET.CLAIM, and reset to 0 by
writing to DBGCLAIMCLR.CLAIM.

• Each bit of AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0, and AMCNTENSET1
is set to 0.

• Each of the implemented architected activity monitor counters AMEVCNTR0<n> and each
of the implemented auxiliary activity monitor counters AMEVCNTR1<n> are set to 0.

For more information about resets in AArch32 System registers, see Chapter G8 AArch32 System Register
Descriptions.

G1.17.2 Pseudocode descriptions of reset

The AArch32.TakeReset() pseudocode procedure describes how the PE behaves when reset is deasserted.

The AArch32.ResetGeneralRegisters() pseudocode function resets the general-purpose registers.

The AArch32.ResetSIMDFPRegisters() pseudocode function resets the SIMD and floating-point registers.

The AArch32.ResetSpecialRegisters() pseudocode function resets the Special-purpose registers, and the debug
System registers DLR and DSPSR, which are used for handling Debug exceptions.

The AArch32.ResetSystemRegisters() pseudocode function resets all System registers in the (coproc==0b111x)
encoding space to their reset state as defined in the register descriptions in Chapter G8 AArch32 System Register
Descriptions.

Note

The ResetSystemRegisters() function only resets the System registers. It has no effect on memory-mapped registers.

The ResetExternalDebugRegisters() pseudocode function resets all external debug registers to their reset state as
defined in the register descriptions in Chapter H9 External Debug Register Descriptions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6103
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.18 Mechanisms for entering a low-power state
G1.18 Mechanisms for entering a low-power state

The following sections describe the architectural mechanisms that a PE can use to request entry to a low-power
state:

• Wait For Event and Send Event on page G1-6104.

• Wait For Interrupt on page G1-6107.

G1.18.1 Wait For Event and Send Event

The Wait For Event (WFE) mechanism permits a PE to request entry to a low-power state, and, if the request
succeeds, to remain in that state until an event is generated by a Send Event operation, or another WFE wake-up
event occurs. Example G1-2 on page G1-6104 describes how a spinlock implementation might use this mechanism
to save energy.

Example G1-2 Spinlock as an example of using Wait For Event and Send Event

A multiprocessor operating system requires locking mechanisms to protect data structures from being accessed
simultaneously by multiple PEs. These mechanisms prevent the data structures becoming inconsistent or corrupted
if different PEs try to make conflicting changes. If a lock is busy, because a data structure is being used by one PE,
it might not be practical for another PE to do anything except wait for the lock to be released. For example, if a PE
is handling an interrupt from a device it might need to add data received from the device to a queue. If another PE
is removing data from the queue, it will have locked the memory area that holds the queue. The first PE cannot add
the new data until the queue is in a consistent state and the lock has been released. It cannot return from the interrupt
handler until the data has been added to the queue, so it must wait.

Typically, a spin-lock mechanism is used in these circumstances:

• A PE requiring access to the protected data attempts to obtain the lock using single-copy atomic
synchronization primitives such as the Load-Exclusive and Store-Exclusive operations described in
Synchronization and semaphores on page E2-4331.

• If the PE obtains the lock, it performs its memory operation and releases the lock.

• If the PE cannot obtain the lock, it reads the lock value repeatedly in a tight loop until the lock becomes
available. At this point, it again attempts to obtain the lock.

A spin-lock mechanism is not ideal for all situations:

• In a low-power system, the tight read loop is undesirable because it uses energy to no effect.

• In a multithreaded implementation, the execution of spin-locks by waiting threads can significantly degrade
overall performance.

Using the Wait For Event and Send Event mechanism can improve the energy efficiency of a spinlock. In this
situation, a PE that fails to obtain a lock can execute a Wait For Event instruction, WFE, to request entry to a
low-power state. When a PE releases a lock, it must execute a Send Event instruction, SEV, causing any waiting PEs
to wake up. Then, these PEs can attempt to gain the lock again.

The execution of a WFE instruction can cause suspension of execution only if all of the following are true:

• The instruction does not cause any other exception.

• When the instruction is executed:

— The Event Register is not set.

— There is not a pending WFE wakeup event.

For more information about the trap to EL2, see Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE
and WFI instructions on page G1-6136.

The architecture does not define the exact nature of the low power state entered as a result of executing a WFE
instruction, but the execution of a WFE instruction must not cause a loss of memory coherency.
G1-6104 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.18 Mechanisms for entering a low-power state
Note

Although a complex operating system can contain thousands of distinct locks, the event sent by this mechanism does
not indicate which lock has been released. If the event relates to a different lock, or if another PE acquires the lock
more quickly, the PE fails to acquire the lock and can reenter the low-power state waiting for the next event.

The Wait For Event system relies on hardware and software working together to achieve energy saving:

• The hardware provides the mechanism to enter the Wait For Event low-power state.

• The operating system software is responsible for issuing:

— A Wait For Event instruction, to request entry to the low-power state, used in the example when
waiting for a spin-lock.

— A Send Event instruction, required in the example when releasing a spin-lock.

The mechanism depends on the interaction of:

• WFE wake-up events, see WFE wake-up events on page G1-6106.

• The Event Register, see The Event Register on page G1-6105.

• The Send Event instructions, see The Send Event instructions on page G1-6106.

• The Wait For Event instruction, see The Wait For Event instruction on page G1-6105.

The Event Register

The Event Register is a single bit register for each PE. When set, an event register indicates that an event has
occurred, since the register was last cleared, that might require some action by the PE. Therefore, the PE must not
suspend operation on issuing a WFE instruction.

The reset value of the Event Register is UNKNOWN.

The Event Register for a PE is set by:

• The execution of an SEV instruction on any PE in the multiprocessor system.

• The execution of an SEVL instruction by the PE.

• An exception return.

• An event from a Generic Timer event stream, see Event streams on page G6-6411.

• An event sent by some IMPLEMENTATION DEFINED mechanism.

As shown in this list, the Event Register might be set by IMPLEMENTATION DEFINED mechanisms.

The Event Register is cleared only by a Wait For Event instruction.

Software cannot read or write the value of the Event Register directly.

The Wait For Event instruction

The action of the Wait For Event instruction depends on the state of the Event Register:

• If the Event Register is set, the instruction clears the register and completes immediately. Normally, if this
happens the software makes another attempt to claim the lock.

• If the Event Register is clear the PE can suspend execution, and hardware might enter a low-power state. The
PE can remain suspended until a WFE wake-up event or a reset occurs. When a WFE wake-up event occurs,
or earlier if the implementation chooses, the WFE instruction completes.

The execution in AArch32 state of a WFE instruction that would otherwise cause suspension of execution might be
trapped, see:

• Traps to Undefined mode of EL0 execution of WFE and WFI instructions on page G1-6120.

• Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions on page G1-6136.

• Traps to Monitor mode of the execution of WFE and WFI instructions in modes other than Monitor mode on
page G1-6148.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6105
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.18 Mechanisms for entering a low-power state
The Wait For Event instruction, WFE, is available at all privilege levels, see WFE on page F5-5276.

Software using the Wait For Event mechanism must tolerate spurious wake-up events, including multiple wake ups.

WFE wake-up events

The following events are WFE wake-up events:

• The execution of an SEV instruction on any PE in the system.

• The execution of an SEVL instruction on the PE.

• A physical IRQ interrupt, unless masked by the PSTATE.I bit.

• A physical FIQ interrupt, unless masked by the PSTATE.F bit.

• A physical SError interrupt, unless masked by the PSTATE.A bit.

• In Non-secure state in any mode other than Hyp mode:

— When HCR.IMO is set to 1, a virtual IRQ interrupt, unless masked by the PSTATE.I bit.

— When HCR.FMO is set to 1, a virtual FIQ interrupt, unless masked by the PSTATE.F bit.

— When HCR.AMO is set to 1, a virtual SError interrupt, unless masked by the PSTATE.A bit.

• An asynchronous External Debug Request debug event, if halting is allowed. For the definition of halting is
allowed, see Halting allowed and halting prohibited on page H2-7339.

See also External Debug Request debug event on page H3-7395.

• An event sent by the timer event stream, see Event streams on page D11-3015.

• An event sent by some IMPLEMENTATION DEFINED mechanism.

• An event caused by the clearing of the global monitor associated with the PE.

In addition to the possible masking of WFE wake-up events shown in this list, when invasive debug is enabled and
EDSCR.HDE is set to 1, EDSCR.INTdis can mask interrupts, including masking them acting as WFE wake-up
events. See the register description for more information.

As shown in the list of wake-up events, an implementation can include IMPLEMENTATION DEFINED hardware
mechanisms to generate wake-up events.

Note

For more information about PSTATE masking, see Asynchronous exception masking controls on page G1-6073. If
the configuration of the masking controls provided by EL2 and EL3 mean that a PSTATE mask bit cannot mask the
corresponding exception, then the physical exception is a WFE wake-up event, regardless of the value of the
PSTATE mask bit.

The Send Event instructions

The Send Event instructions are:

SEV, Send Event This causes an event to be signaled to all PEs in the multiprocessor system.

SEVL, Send Event Local

This must set the local Event Register. It might signal an event to other PEs, but is not
required to do so.

The mechanism that signals an event to other PEs is IMPLEMENTATION DEFINED. The PE is not required to guarantee
the ordering of this event with respect to the completion of memory accesses by instructions before the SEV
instruction. Therefore, Arm recommends that software includes a DSB instruction before any SEV instruction.

Note

A DSB instruction ensures that no instruction, including any SEV instruction, that appears in program order after the
DSB instruction, can execute until the DSB instruction has completed. For more information, see Data Synchronization
Barrier (DSB) on page E2-4301.

The SEVL instruction appears to execute in program order relative to any subsequent WFE instruction executed on the
same PE, without the need for any explicit insertion of barrier instructions.
G1-6106 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.18 Mechanisms for entering a low-power state
Execution of the Send Event instruction sets the Event Register.

The Send Event instructions are available at all privilege levels.

Pseudocode description of the Wait For Event mechanism

This section defines pseudocode functions that describe the operation of the Wait For Event mechanism.

The ClearEventRegister() pseudocode procedure clears the Event Register of the current PE.

The IsEventRegisterSet() pseudocode function returns TRUE if the Event Register of the current PE is set and
FALSE if it is clear.

The WaitForEvent() pseudocode procedure optionally suspends execution until a WFE wake-up event or reset
occurs, or until some earlier time if the implementation chooses. It is IMPLEMENTATION DEFINED whether restarting
execution after the period of suspension causes a ClearEventRegister() to occur.

The SendEvent() pseudocode procedure sets the Event Register of every PE in the system.

G1.18.2 Wait For Interrupt

AArch32 state supports Wait For Interrupt through an instruction, WFI, that is provided in the A32 and T32
instruction sets. For more information, see WFI on page F5-5278.

When a PE issues a WFI instruction, its execution can be suspended, and a low-power state can be entered.

The execution in AArch32 state of a WFI instruction that would otherwise cause suspension of execution might be
trapped, see:

• Traps to Undefined mode of EL0 execution of WFE and WFI instructions on page G1-6120.

• Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions on page G1-6136.

• Traps to Monitor mode of the execution of WFE and WFI instructions in modes other than Monitor mode on
page G1-6148.

The execution of a WFI instruction can cause suspension of execution only if both:

• The instruction does not cause any other exception.

• When the instruction is executed, there is not a pending WFI wakeup event.

WFI wake-up events

The PE can remain suspended in its WFI state until it is reset, or one of the following WFI wake-up events occurs:

• A physical IRQ interrupt, regardless of the value of the PSTATE.I bit.

• A physical FIQ interrupt, regardless of the value of the PSTATE.F bit.

• A physical SError interrupt, regardless of the value of the PSTATE.A bit.

• In Non-secure state in any mode other than Hyp mode:

— When HCR.IMO is set to 1, a virtual IRQ interrupt, regardless of the value of the PSTATE.I bit.

— When HCR.FMO is set to 1, a virtual FIQ interrupt, regardless of the value of the PSTATE.F bit.

— When HCR.AMO is set to 1, a virtual SError interrupt, regardless of the value of the PSTATE.A bit.

• An asynchronous External Debug Request debug event, if halting is allowed. For the definition of halting is
allowed, see Halting allowed and halting prohibited on page H2-7339.

See also External Debug Request debug event on page H3-7395.

An implementation can include other IMPLEMENTATION DEFINED hardware mechanisms to generate WFI wake-up
events.

When a WFI wake-up event is detected, or earlier if the implementation chooses, the WFI instruction completes.

WFI wake-up events cannot be masked by the mask bits in the PSTATE.

The architecture does not define the exact nature of the low power state, but the execution of a WFI instruction must
not cause a loss of memory coherency.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6107
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.18 Mechanisms for entering a low-power state
Note

• Because debug events are WFI wake-up events, Arm strongly recommends that Wait For Interrupt is used as
part of an idle loop rather than waiting for a single specific interrupt event to occur and then moving forward.
This ensures the intervention of debug while waiting does not significantly change the function of the
program being debugged.

• In some previous implementations of Wait For Interrupt, the idle loop is followed by exit functions that must
be executed before taking the interrupt. The operation of Wait For Interrupt remains consistent with this
model, and therefore differs from the operation of Wait For Event.

• Some implementations of Wait For Interrupt drain down any pending memory activity before suspending
execution. The Arm architecture does not require this operation, and software must not rely on Wait For
Interrupt operating in this way.

Using WFI to indicate an idle state on bus interfaces

A common implementation practice is to complete any entry into powerdown routines with a WFI instruction.
Typically, the WFI instruction:

1. Forces the completion of execution of any instructions that are in progress, and of all associated bus activity.

2. Suspends the execution of instructions by the PE.

The control logic required to do this tracks the activity of the bus interfaces used by the PE. This means it can signal
to an external power controller when there is no ongoing bus activity.

However, memory-mapped and external debug interface accesses to debug registers must continue to be processed
while the PE is in the WFI state. The indication of idle state to the system normally only applies to the non-debug
functional interfaces used by the PE, not the debug interfaces.

If FEAT_DoubleLock is implemented and the value of DBGOSDLR.DLK, the OS Double Lock status bit, is set to
1, this idle state must not be signaled to the PE unless the system can guarantee, also, that the debug interface is idle.

Note

When separate Core and Debug power domains are implemented, the debug interface referred to in this section is
the interface between the Core and Debug power domains, since the signal to the power controller indicates that the
Core power domain is idle. For more information about the power domains, see Power domains and debug on
page H6-7439.

The exact nature of this interface is IMPLEMENTATION DEFINED, but the use of Wait For Interrupt as the only
architecturally-defined mechanism that completely suspends execution makes it very suitable as the preferred
powerdown entry mechanism.

Pseudocode description of Wait For Interrupt

The WaitForInterrupt() pseudocode function optionally suspends execution until a WFI wake-up event or reset
occurs, or until some earlier time if the implementation chooses.
G1-6108 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.19 The AArch32 System register interface
G1.19 The AArch32 System register interface

In Armv8, most System registers are accessed using the instructions described in System register access instructions
on page F2-4397. The System register interface provides access to those instructions, and:

• These registers are encoded using the parameters {coproc, opc1, CRn, CRm, opc2}, with permitted coproc values
of 0b1110 and 0b1111.

• Some of these encodings provide the AArch32 System instructions.

• To maintain compatibility with previous versions of the Arm architecture, the access controls for the
AArch32 System registers include the access controls for AArch32 Advanced SIMD and floating-point
functionality.

Note
See Background to the System register interface on page G1-6110 for more information.

The following sections give more information about the AArch32 System register interface:

• System registers in the coproc == 0b111x encoding space on page G1-6109.

• Access to System registers on page G1-6109.

• Access controls for Advanced SIMD and floating-point functionality on page G1-6109.

• Background to the System register interface on page G1-6110.

G1.19.1 System registers in the coproc == 0b111x encoding space

In AArch32 state:

• The coproc == 0b1110 encoding space is reserved for the configuration and control of:

— Debug features, see Debug registers on page G8-6945.

— Trace features, see the Embedded Trace Macrocell Architecture Specification.

— Identification registers for the Trivial Jazelle implementation, see Trivial implementation of the Jazelle
extension on page G1-6041.

• The coproc == 0b1111 encoding space is reserved for the control and configuration of the PE, including
architecture and feature identification. This means these encodings provide access to the System registers that
control and return status information for PE operation.

For more information, see Chapter G8 AArch32 System Register Descriptions.

G1.19.2 Access to System registers

Most System registers are accessible only from EL1 or higher. For possible accesses from EL0 the register
descriptions in Chapter G8 AArch32 System Register Descriptions indicate whether a register is accessible from
EL0.

G1.19.3 Access controls for Advanced SIMD and floating-point functionality

In Armv8, the CPACR controls access to Advanced SIMD and floating-point functionality from software executing
at PL1 or EL0 in AArch32 state:

• The {cp10, cp11} fields control access to all Advanced SIMD and floating-point functionality, and can:

— Disable EL0 and PL1 access to this functionality.

— Enable access to this functionality at PL1 only.

— Enable access to this functionality at EL0 and PL1.

• The ASEDIS field controls access to Advanced SIMD instructions that are not also floating-point
instructions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6109
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.19 The AArch32 System register interface
Initially on powerup or reset into AArch32 state, all access to all Advanced SIMD and floating-point functionality
from PL1 and EL0 is disabled.

Note

The CPACR has no effect on accesses from Hyp mode.

If an implementation includes EL3, the NSACR determines whether Advanced SIMD and floating-point
functionality can be accessed from Non-secure state:

• The {cp10, cp11} fields control Non-secure access to all Advanced SIMD and floating-point functionality.

• The NSASEDIS field controls Non-secure access to Advanced SIMD instructions that are not also
floating-point instructions.

If an implementation includes EL2, the HCPTR provides additional controls on Non-secure accesses to Advanced
SIMD and floating-point functionality. For accesses that are otherwise permitted by the CPACR and NSACR
settings, setting HCPTR bits to 1:

• Traps otherwise-permitted accesses from EL1 or EL0 to EL2. When EL2 is using AArch32, these accesses
are trapped to Hyp mode.

• Makes accesses from EL2 mode UNDEFINED. When EL2 is using AArch32, this makes accesses from Hyp
mode UNDEFINED.

In the HCPTR:

• The {TCP10, TCP11} fields control access to all Advanced SIMD and floating-point functionality.

• The TASE field controls access to Advanced SIMD instructions that are not also floating-point instructions.

• The TCPAC field traps Non-secure EL1 accesses to the CPACR to Hyp mode.

For more information, see General trapping to Hyp mode of Non-secure accesses to the SIMD and floating-point
registers on page G1-6137.

Note

Whenever a pair of fields control the access to the Advanced SIMD and floating-point functionality, the values of
each field of the pair must be identical. In Armv8, if these settings are not identical the behavior of the Advanced
SIMD and floating-point functionality is CONSTRAINED UNPREDICTABLE, see Handling of System register control
fields for Advanced SIMD and floating-point operation on page K1-8392.

For more information about Advanced SIMD and floating-point support, see Advanced SIMD and floating-point
support on page G1-6112.

G1.19.4 Background to the System register interface

Note

This section is not part of the Armv8 Architecture specification. It is included only to present the rationale of some
aspects of the System register interface.

The interface to the System registers was originally defined as part of a generic coprocessor interface that gave
access to 15 coprocessors, CP0 - CP15. Of these, CP8 - CP15 were reserved for use by Arm, while CP0 - CP7 were
available for IMPLEMENTATION DEFINED coprocessors.

The coprocessors were accessed using coprocessor instructions. These instructions remain part of the T32 and A32
instruction sets, see System register access instructions on page F2-4397.

In the Arm coprocessor model, a coprocessor included both:

• Primary and secondary coprocessor registers, that form part of the coprocessor interface.

• A number of internal registers.
G1-6110 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.19 The AArch32 System register interface
When accessing a 32-bit internal coprocessor register, using an MCR or MRC instruction, the instruction specified:

• The target coprocessor, specified by the coproc parameter and taking a value between p0 for CP0 and p15 for
CP15.

• The primary coprocessor register, specified by the CRn parameter and taking a value between c0 and c15.

• The secondary coprocessor register, specified by the CRm parameter and taking a value between c0 and c15.

• Up to two additional parameters, opc1 and opc2, taking values between 0 and 7.

Other instructions in the group described in System register access instructions on page F2-4397 take a subset of
these parameters:

• In the Armv7 definitions, LDC and STC instructions take parameters {coproc, CRd}, where CRd is the primary
coprocessor register.

• MCRR and MRRC instructions take parameters {coproc, opc1, CRm}, where CRm is the primary coprocessor register.

To maintain backwards compatibility, the arguments to an MCR or MRC instruction remain {coproc, opc1, CRn, CRm,
opc2}. Correspondingly, the encoding of the AArch64 System registers is described using the parameters {op0, op1,
CRn, CRm, op2}. However:

• The naming of these parameters no longer has any particular significance.

• While the coproc field is a 4-bit field, op0 is a 2-bit field.

Of the coprocessors reserved for use by Arm, in Armv7 and earlier versions of the architecture:

• CP15 provided access to the System registers relating to non-debug operation, and was originally called the
System control coprocessor. In Armv8, these registers are described as being in the coproc == 0b1111
encoding space.

• CP14 provided access to additional System registers, including those relating to debug and trace. In Armv8,
these registers are described as being in the coproc == 0b1110 encoding space.

• CP10 and CP11 were used for Advanced SIMD and floating-point control, and many coprocessor instruction
encodings targeting CP10 and CP11 were used as floating-point instruction encodings:

— Generally Armv8 does not relate these instructions to the coprocessor encoding space, but the naming
of registers and register fields for Advanced SIMD and floating-point control reflects the historic
coprocessor model.

— Because the Advanced SIMD and floating-point functionality used both CP10 and CP11, some System
register controls of this functionality have a pair of fields, for example NSACR.{cp10, cp11}. In these
cases, both fields must be set to the same value. For more information, see Access controls for
Advanced SIMD and floating-point functionality on page G1-6109.

In Armv8:

• The AArch32 System registers include registers that were described as Special registers in Armv7 and earlier
versions of the architecture. This means that the Armv8 System registers include registers that are outside the
earlier coprocessor model.

• The Armv7 AArch32 instruction encodings for LDC, STC, MCR, MRC, MCRR, and MRRC instructions with coproc field
values other than {1010, 1011, 1110, 1111} are available for reuse. Armv8.2 re-uses some encodings in this
way.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6111
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.20 Advanced SIMD and floating-point support
G1.20 Advanced SIMD and floating-point support

Advanced SIMD and floating-point instructions on page E1-4260 introduces:

• The scalar floating-point instructions in the A32 and T32 instruction sets.

• The Advanced SIMD integer and floating-point vector instructions in the A32 and T32 instruction sets.

• The SIMD and floating-point register file, which can be viewed as:

— Singleword registers S0 - S31.

— Doubleword registers D0 - D31.

— Quadword registers Q0 - Q15.

• The Floating-Point Status and Control Register (FPSCR).

• Floating-point exceptions and exception traps on page E1-4268

For more information about the System registers for the Advanced SIMD and floating-point operation, see
Advanced SIMD and floating-point System registers on page G1-6114. Software can interrogate these registers to
discover the implemented Advanced SIMD and floating-point support.

AArch32 implications of not including support for Advanced SIMD and floating-point on page G1-6112 summarizes
the effects of not supporting these instructions, and the following subsections give more information about the
Advanced SIMD and Floating-point support:

• Enabling Advanced SIMD and floating-point support on page G1-6112.

• Advanced SIMD and floating-point System registers on page G1-6114.

• Context switching when using Advanced SIMD and floating-point functionality on page G1-6115.

G1.20.1 AArch32 implications of not including support for Advanced SIMD and floating-point

As stated in Implementations not including Advanced SIMD and floating-point instructions on page D1-2559,
although Armv8-A generally requires the inclusion of the Advanced SIMD and floating-point instructions in all
instruction sets, for implementations targeting specialized markets, Arm might produce or license Armv8-A
implementations that do not provide any support for Advanced SIMD and floating-point instructions. In such an
implementation, in AArch32 state:

• The CPACR.{ASEDIS, cp11, cp10} fields are RES0.

• The NSACR.{NSASEDIS, cp11, cp10} fields are RES0.

• The HCPTR.{TASE, TCP11, TCP10} fields are RES1.

• The FPEXC, FPSCR, FPSID, MVFR0, MVFR1, and MVFR2 registers are not implemented and their
encodings are UNDEFINED.

• Attempted accesses to Advanced SIMD and floating-point functionality are UNDEFINED. This means:

— All Advanced SIMD and floating-point instructions are UNDEFINED.

— Attempts to access the Advanced SIMD and floating-point System registers are UNDEFINED.

G1.20.2 Enabling Advanced SIMD and floating-point support

Software must ensure that the required access to the Advanced SIMD and floating-point features is enabled. Most
of those controls are described in Configurable instruction enables and disables, and trap controls on
page G1-6117, and this section:

• Summarizes those controls.

• Provides additional information in the following subsections:

— FPEXC control of access to Advanced SIMD and floating-point functionality on page G1-6114.

— EL0 access to Advanced SIMD and floating-point functionality on page G1-6114.
G1-6112 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.20 Advanced SIMD and floating-point support
Note

This section shows the controls when the controlling Exception levels are using AArch32. Similar controls are
provided when the Exception levels are using AArch64, and then apply to lower Exception levels that are using
AArch32.

The controls of access to Advanced SIMD and floating-point functionality are:

General {cp10, cp11} or {TCP10, TCP11} controls

This relates to the CPACR.{cp10, cp11}, NSACR.{cp10, cp11}, and HCPTR.{TCP10, TCP11}
controls.

Note
Background to the System register interface on page G1-6110 explains the naming of these controls.

The {cp10, cp11} controls provide general control of the use of Advanced SIMD and floating-point
functionality, as follows:

• CPACR.{cp10, cp11} control access from PE modes other than Hyp mode.

These fields have no effect on accesses to Advanced SIMD and floating-point functionality
from Hyp mode.

• In an implementation that includes EL3, NSACR.{cp10, cp11} control access from
Non-secure state.

• In an implementation that includes EL2, if NSACR.{cp10, cp11} permit Non-secure
accesses, or if EL3 is not implemented, HCPTR.{TCP10, TCP11} provide an additional
control on those accesses.

In each case, the {cp10, cp11} controls must be programmed to the same value, otherwise operation
is CONSTRAINED UNPREDICTABLE. The Armv8 CONSTRAINED UNPREDICTABLE behavior is that, for
all purposes other than reading the value of the register field, behavior is as if the cp11 field has the
same value as the cp10 field. For more information, see Handling of System register control fields
for Advanced SIMD and floating-point operation on page K1-8392.

For more information about these controls, see:

• Enabling PL0 and PL1 accesses to the SIMD and floating-point registers on page G1-6122.

• General trapping to Hyp mode of Non-secure accesses to the SIMD and floating-point
registers on page G1-6137.

• Enabling Non-secure access to SIMD and floating-point functionality on page G1-6150.

Control of accesses to the CPACR from Non-secure PL1 modes

As stated in General {cp10, cp11} or {TCP10, TCP11} controls on page G1-6113, the CPACR
controls access to Advanced SIMD and floating-point functionality from PE modes other than Hyp
mode. Accesses to the CPACR from Non-secure PL1 modes can be trapped to EL2, see Traps to
Hyp mode of Non-secure EL1 accesses to the CPACR on page G1-6139.

Additional controls of Advanced SIMD functionality

• If implemented as an RW field, CPACR.ASEDIS can make all Advanced SIMD instructions
UNDEFINED in all modes other than Hyp mode.

• In an implementation that includes EL3, when CPACR.ASEDIS permits use of the Advanced
SIMD instructions or if the CPACR.ASEDIS control is not implemented,
NSACR.NSASEDIS can make all Advanced SIMD instructions UNDEFINED in Non-secure
state.

• In an implementation that includes EL2, when the CPACR and NSACR settings permit
Non-secure use of the Advanced SIMD instructions, if HCPTR.TASE is implemented as an
RW field it can make these instructions UNDEFINED in Hyp mode, and trap to Hyp mode any
use of these instructions in a Non-secure PL0 or PL1 mode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6113
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.20 Advanced SIMD and floating-point support
For more information about these controls, see:

• Disabling PL0 and PL1 execution of Advanced SIMD instructions on page G1-6123.

• Traps to Hyp mode of Non-secure accesses to Advanced SIMD functionality on
page G1-6138.

• Disabling Non-secure access to Advanced SIMD functionality on page G1-6150.

Pseudocode description of enabling SIMD and floating-point functionality on page G1-6151 provides links to the
pseudocode descriptions of all of these controls.

FPEXC control of access to Advanced SIMD and floating-point functionality

In addition, FPEXC.EN is an enable bit for most Advanced SIMD and floating-point operations. When FPEXC.EN
is 0, all Advanced SIMD and floating-point instructions are treated as UNDEFINED except for:

• A VMSR to the FPEXC or FPSID register.

• A VMRS from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2 register.

These instructions can be executed only at EL1 or higher.

Note

• When the FPSID is accessible, any write access to the FPSID is ignored.

• When FPEXC.EN is 0, these operations are treated as UNDEFINED:

— A VMSR to the FPSCR.

— A VMRS from the FPSCR.

See Enabling access to the SIMD and floating-point registers on page G1-6123 for more information about the
scope of the FPEXC.EN control.

When executing at EL0, the PE behaves as if the value of FPEXC.EN is 1 if either:

• EL1 is using AArch64.

• EL2 is enabled in the current Security state and is using AArch64. and the value of HCR_EL2.TGE is 1.

Note
In Non-secure state, if the value of HCR_EL2.RW is 0 then it is permitted for the value of
FPEXC32_EL2.EN to control whether Advanced SIMD and floating-point functionality is enabled.
However, Arm deprecates using the value of FPEXC32_EL2.EN to determine behavior.

EL0 access to Advanced SIMD and floating-point functionality

When the access controls summarized in this section permit EL0 access to the Advanced SIMD and floating-point
functionality, this applies only to the subset of functionality that is available at EL0. In particular:

• Only Advanced SIMD and Floating-point System register that is accessible is the FPSCR.

• The Advanced SIMD and floating-point instructions are available.

Execution at EL0 corresponds to the application level view of the Advanced SIMD and floating-point functionality,
as described in Advanced SIMD and floating-point System registers on page E1-4262.

G1.20.3 Advanced SIMD and floating-point System registers

AArch32 state provides a common set of System registers for the Advanced SIMD and floating-point functionality.
This section gives general information about this set of registers, and indicates where each register is described in
detail. It contains the following subsections:

• Register map of the Advanced SIMD and floating-point System registers on page G1-6115.

• Accessing the Advanced SIMD and floating-point System registers on page G1-6115.
G1-6114 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.20 Advanced SIMD and floating-point support
Register map of the Advanced SIMD and floating-point System registers

Table G1-21 on page G1-6115 shows the register map of the Advanced SIMD and Floating-point registers. Each
register is 32 bits wide.

In an implementation that includes EL3, the Advanced SIMD and Floating-point registers are common registers,
see Common System registers on page G5-6399.

Accessing the Advanced SIMD and floating-point System registers

Software accesses the Advanced SIMD and floating-point System registers using the VMRS and VMSR instructions, see:

• VMRS on page F6-5684.

• VMSR on page F6-5687.

For example:

VMRS <Rt>, FPSID ; Read Floating-Point System ID Register
VMRS <Rt>, MVFR1 ; Read Media and VFP Feature Register 1
VMSR FPSCR, <Rt> ; Write Floating-Point System Control Register

Software can access the Advanced SIMD and floating-point System registers only if the access controls permit the
access, see Enabling Advanced SIMD and floating-point support on page G1-6112.

Note

All hardware ID information can be accessed only from EL1 or higher. This means:

The FPSID is accessible only from EL1 or higher.

This is a change introduced from VFPv3. Previously, the FPSID register can be accessed in all
modes.

The MVFR registers are accessible only from EL1 or higher.

Unprivileged software must issue a system call to determine what features are supported.

G1.20.4 Context switching when using Advanced SIMD and floating-point functionality

When the Advanced SIMD and floating-point functionality is used by only a subset of processes, the operating
system might implement lazy context switching of the Advanced SIMD and floating-point register file and System
registers.

Table G1-21 Floating-point registers

Name Permitted access

FPEXC RW

FPSCR RW

FPSID RWa

a. When FPSID is
accessible, VMSR accesses
to FPSID are ignored.

MVFR0 RO

MVFR1 RO

MVFR2 RO
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6115
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.20 Advanced SIMD and floating-point support
In the simplest lazy context switch implementation, the primary context switch software uses the
CPACR.{cp10, cp11} controls to disable access to the Advanced SIMD and floating-point functionality, see
Enabling Advanced SIMD and floating-point support on page G1-6112. Subsequently, when a process or thread
attempts to use an Advanced SIMD or floating-point instruction, it triggers an Undefined Instruction exception. The
operating system responds by saving and restoring the Advanced SIMD and floating-point register file and System
registers. Typically, it then re-executes the Advanced SIMD or floating-point instruction that generated the
Undefined Instruction exception.
G1-6116 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
G1.21 Configurable instruction enables and disables, and trap controls

This section describes the controls provided by AArch32 state for enabling, disabling, and trapping particular
instructions. Each control is categorized as an instruction enable, an instruction disable, or a trap control:

Instruction enables and instruction disables

Enable or disable the use of one or more particular instructions at a particular Privilege level and
Security state.

When an instruction is disabled as a result of an instruction enable or disable, it is UNDEFINED.

The exception generated by attempting to execute an UNDEFINED instruction is:

• Taken to EL1 if the UNDEFINED instruction was executed at EL0, unless the instruction was
executed at Non-secure EL0 and is routed to EL2 by the control described in Routing
exceptions from Non-secure EL0 to EL2 on page G1-6058.

When the exception is taken to EL1, it is taken to Undefined mode.

• Otherwise, taken to the Exception level at which the UNDEFINED instruction was executed:

— If the instruction was executed in Hyp mode the exception is taken to Hyp mode.

— Otherwise, the exception is taken to Undefined mode.

Trap controls

Control whether one or more instructions, when executed at a particular Privilege level, are trapped.

Note

AArch32 trap controls are described in terms of Privilege levels, rather than Exception levels,
because the PL1 traps apply at and are controlled from:

EL1 In Non-secure state, and in Secure state when EL3 is using AArch64.

EL3 In Secure state when EL3 is using AArch32.

For more information, see Security state, Exception levels, and AArch32 execution privilege on
page G1-6022.

Trap controls are grouped as:

PL1, excluding Monitor mode

Trapped instructions generate Undefined Instruction exceptions that are taken to
Undefined mode, unless the instruction was executed at Non-secure EL0 and is routed
to EL2 by the control described in Routing exceptions from Non-secure EL0 to EL2 on
page G1-6058.

For more information about these traps, see PL1 configurable controls on
page G1-6118.

Hyp mode (PL2)

These traps apply only to execution in Non-secure state. This section only describes the
traps that apply when EL2 is using AArch32.

Trapped instructions generate:

• Hyp Trap exceptions, taken to Hyp mode, if trapped from a mode other than Hyp
mode.

• Undefined Instruction exceptions taken to Hyp mode, if trapped from Hyp mode.

For more information about these traps, see EL2 configurable controls on
page G1-6126.

See also Routing exceptions from Non-secure EL0 to EL2 on page G1-6058.

Monitor mode (Secure PL1)

This section describes only the traps that apply when EL3 is using AArch32.

Trapped instructions generate Monitor Trap exceptions, that are taken to Monitor mode.

For more information about these traps, see EL3 configurable controls on
page G1-6146.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6117
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
An exception generated as a result of an instruction enable or disable, or a trap control, is only taken if the instruction
does not also generate a higher priority exception. Exception prioritization for exceptions taken to AArch32 state on
page G1-6046 defines the prioritization of different exceptions on the same instruction.

Exceptions generated as a result of these controls are synchronous exceptions.

For exceptions taken to an Exception level that is using AArch32, only exceptions that are taken to Hyp mode are
reported in a syndrome register, the HSR.

Note

• A particular control might have a mnemonic that suggests it is different type of control to the control type it
is categorized as. For example, CPACR.TRCDIS is a trap control even though TRCDIS is a mnemonic for
Trace Disable.

• An implementation might provide additional controls, in IMPLEMENTATION DEFINED registers, to provide
control of trapping of IMPLEMENTATION DEFINED features.

• Configurable instruction enables and disables, and trap controls on page D1-2510 describes controls
provided by AArch64 state for enabling, disabling, and trapping instructions. Generally, where an AArch64
control applies to execution at lower Exception levels, it traps the equivalent functionality when that lower
Exception level is using AArch32. See the AArch64 trap controls for more information.

This section is organized as follows:

• Register access instructions on page G1-6118.

• PL1 configurable controls on page G1-6118.

• EL2 configurable controls on page G1-6126.

• EL3 configurable controls on page G1-6146.

• Pseudocode description of configurable instruction enables, disables, and traps on page G1-6150.

G1.21.1 Register access instructions

When an instruction is disabled or trapped, the exception is taken before execution of the instruction. This means
that if the instruction is a register access instruction:

• No access is made before the exception is taken.

• Side-effects that are normally associated with the access do not occur before the exception is taken.

G1.21.2 PL1 configurable controls

In AArch32 state, each control is associated with a particular System register field that is accessible:

• When EL3 is using AArch64, or when an implementation does not include EL3, from EL1.

• When EL3 is using AArch32:

— In Non-secure state, from EL1.

— In Secure state, from EL3.

This means that the controls are described as PL1 controls, because PL1 is defined as being the Privilege level of
software that is executing:

• At EL3, if the PE is executing in EL3 and EL3 is using AArch32.

• At EL1 under all other conditions.

Where there is an AArch64 control that is equivalent to an AArch32 PL1 control, the AArch64 control is an EL1
control.

Any exception that is generated because of an AArch32 PL1 control is taken to a PL1 mode.

Note

Any exception generated because of an AArch32 PL1 control is taken to AArch32 state.
G1-6118 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
Table G1-22 on page G1-6119 shows the AArch32 System registers that contain these controls.

Table G1-23 on page G1-6119 summarizes these controls.

Table G1-22 System registers that contain instruction enables and disables, and trap controls

Register name Register description

SCTLR System Control Register

FPEXC Floating-point Exception Control Register

CPACR Architectural Feature Access Control Register

DBGDSCRext Monitor System Debug Control Register

PMUSERENR Performance Monitors User Enable Register

AMUSERENR Activity Monitors User Enable Register

Table G1-23 Instruction enables and disables, and trap controls, for exceptions taken to Undefined mode

Control
Control
typea Description

SCTLR.{nTWE, nTWI} T Traps to Undefined mode of EL0 execution of WFE and WFI instructions
on page G1-6120

SCTLR.{SED, ITD}

SCTLR.CP15BEN

D

E

Disabling or enabling PL0 and PL1 use of AArch32 optional functionality
on page G1-6120

CPACR.TRCDIS T Traps to Undefined mode of PL0 and PL1 System register accesses to
trace registers on page G1-6121

CPACR.{cp11, cp10}

FPEXC.EN

CPACR.ASEDIS

E

E

D

Enabling use of Advanced SIMD and floating-point functionality on
page G1-6122

DBGDSCRext.UDCCdis T Traps to Undefined mode of EL0 accesses to the Debug Communications
Channel (DCC) registers on page G1-6123

CNTKCTL.{PL0PTEN, PL0VTEN,
PL0PCTEN, PL0VCTEN}

T Traps to Undefined mode of EL0 accesses to the Generic Timer registers
on page G1-6124

PMUSERENR.{ER, CR, SW, EN} T Traps to Undefined mode of EL0 accesses to Performance Monitors
registers on page G1-6124

AMUSERENR.EN T Traps to Undefined mode of EL0 accesses to Activity Monitors registers
on page G1-6125

a. See Table G1-24 on page G1-6119.

Table G1-24 Control types, for exceptions taken to Undefined mode

Abbreviation Type See

D Disable Instruction enables and instruction disables on page G1-6117

E Enable Instruction enables and instruction disables on page G1-6117

T Trap Trap controls on page G1-6117
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6119
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
When generated in Non-secure User mode, exceptions generated by these controls can be routed to EL2, as
described in Routing exceptions from Non-secure EL0 to EL2 on page G1-6058.

Instructions that fail their Condition code check

See Conditional execution of undefined instructions on page G1-6080.

Trapping to PL1 of instructions that are UNPREDICTABLE

For an instruction that is UNPREDICTABLE or CONSTRAINED UNPREDICTABLE, when the instruction is disabled or
trapped then it is CONSTRAINED UNPREDICTABLE whether execution of the instruction generates an Undefined
Instruction exception.

Traps to Undefined mode of EL0 execution of WFE and WFI instructions

SCTLR.{nTWE, nTWI} trap EL0 execution of WFE and WFI instructions to Undefined mode:

SCTLR.nTWE

1 This control has no effect on the EL0 execution of WFE instructions.

0 Any attempt to execute a WFE instruction at EL0 is trapped to Undefined mode, if the
instruction would otherwise have caused the PE to enter a low-power state.

SCTLR.nTWI

1 This control has no effect on the EL0 execution of WFI instructions.

0 Any attempt to execute a WFI instruction at EL0 is trapped to Undefined mode, if the
instruction would otherwise have caused the PE to enter a low-power state.

The attempted execution of a conditional WFE or WFI instruction is only trapped if the instruction passes its Condition
code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed
to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the
instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

When generated in Non-secure User mode, exceptions generated by these controls can be routed to EL2, as
described in Routing exceptions from Non-secure EL0 to EL2 on page G1-6058.

For more information about these instructions, and when they can cause the PE to enter a low-power state, see:

• Wait For Event and Send Event on page G1-6104.

• Wait For Interrupt on page G1-6107.

Disabling or enabling PL0 and PL1 use of AArch32 optional functionality

Table G1-25 on page G1-6121 shows the optional AArch32 functionality that might have disable controls in the
SCTLR:

• The SED control is implemented if the implementation supports mixed-endian operation at any Exception
level.

• Whether the ITD control is implemented is IMPLEMENTATION DEFINED.

• Whether the CP15BEN control is implemented is IMPLEMENTATION DEFINED.

• If a control is not implemented, then the associated functionality cannot be disabled.

When an instruction is disabled by one of these controls, it is UNDEFINED at PL0 and PL1. This means an attempt
to execute the instruction at PL0 or PL1 generates an Undefined Instruction exception that is taken to Undefined
mode, unless both of the following apply, in which case the attempted execution generates an exception that is taken
to EL2, as described in Routing exceptions from Non-secure EL0 to EL2 on page G1-6058:

• The instruction is executed at Non-secure EL0 using AArch32.
G1-6120 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
• Either:

— EL2 is using AArch32 and the value of HCR.TGE is 1.

— EL2 is using AArch64 and the value of HCR_EL2.TGE is 1.

Note

The uses of the IT instruction, and use of the CP15DMB, CP15DSB, and CP15ISB barrier instructions, are
deprecated for performance reasons.

Traps to Undefined mode of PL0 and PL1 System register accesses to trace registers

If implemented, the CPACR.TRCDIS control traps PL0 and PL1 System register accesses to the trace registers to
Undefined mode, as follows:

1 PL0 and PL1 accesses to the System register interface to the PE Trace Unit are trapped to Undefined
mode

0 This control has no effect on PL0 and PL1 accesses to the System register interface to the PE Trace
Unit.

If the CPACR.TRCDIS control is not implemented, then the CPACR.TRCDIS field is RAZ/WI. This means the
CPACR does not provide a trap to Undefined mode of PL1 and PL0 System register accesses to trace registers. See
the register description for more information.

Note

• System register accesses to the PE Trace Unit use the (coproc==0b1110) encoding space.

• The ETMv4 architecture does not permit EL0 to access the trace registers. If the Armv8-A architecture is
implemented with an ETMv4 implementation, EL0 accesses to the trace System registers are UNDEFINED.

• The Armv8-A architecture does not provide traps on trace register accesses through the optional
memory-mapped external debug interface.

System register accesses to the trace System registers can have side-effects. When a System register access is
trapped, no side-effects occur before the exception is taken, see Register access instructions on page G1-6118.

If EL3 is implemented and is using AArch32, and NSACR.NSTRCDIS is 1, CPACR.TRCDIS behaves as RAO/WI
in Non-secure state. This behavior also applies if the CPACR.TRCDIS control is not implemented.

When generated in Non-secure User mode, an exception generated by this control can be routed to EL2, as described
in Routing exceptions from Non-secure EL0 to EL2 on page G1-6058.

Table G1-25 PL1 controls for disabling and enabling PL0 and PL1 use of AArch32 optional functionality

Optional AArch32 functionality
Instruction enable or
disable in the SCTLRa Disabled instructions

SETEND instructions SEDb SETEND instructions

Some uses of IT instructions ITDc See the SCTLR.ITD description

Accesses to the CP15DMB, CP15DSB, and
CP15ISB barrier instructions

CP15BENd MCR accesses to the CP15DMB, CP15DSB,
and CP15ISB instructions

a. The controls that are implemented in SCTLR are also implemented in SCTLR_EL1, and apply when PL1 is using AArch64 and PL0 is using
AArch32.

b. SETEND instruction disable. SETEND instructions are disabled when the value of this field is 1.

c. IT instruction disable. If this control is implemented, some uses of IT instructions are disabled when the value of this field is 1.

d. System register (coproc==0b1111) memory barrier enable. If this control is implemented, the specified register accesses are disabled when the
value of CP15BEN is 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6121
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
Enabling use of Advanced SIMD and floating-point functionality

Table G1-26 on page G1-6122 summarizes the controls of Advanced SIMD and floating-point functionality.

If any of CPACR.{cp11, cp10}, FPEXC.EN, or for Advanced SIMD instructions, CPACR.ASEDIS, disable a
floating-point or an Advanced SIMD instruction, the instruction is UNDEFINED. Support for the CPACR.ASEDIS
control is optional, and if the control is not implemented behavior is as if the control permits the execution of
Advanced SIMD instructions at PL1 and PL0.

When generated in Non-secure User mode, exceptions generated by these controls can be routed to EL2, as
described in Routing exceptions from Non-secure EL0 to EL2 on page G1-6058.

Enabling PL0 and PL1 accesses to the SIMD and floating-point registers

CPACR.{cp11, cp10} enable PL0 and PL1 accesses to the SIMD and floating-point registers.

When CPACR.cp10 is:

00 PL0 and PL1 accesses to Advanced SIMD and floating-point registers or instructions are
UNDEFINED.

01 PL0 accesses to Advanced SIMD and floating-point registers or instructions are UNDEFINED.

10 Reserved. The effect of programming this field to this value is CONSTRAINED UNPREDICTABLE.

11 This control permits full access to the Advanced SIMD and floating-point functionality from PL0
and PL1.

The value of CPACR.cp11 is ignored. If CPACR.cp11 is programmed with a different value to CPACR.cp10 then
CPACR.cp11 is UNKNOWN on a direct read of the CPACR.

Note

• Software must set CPACR.cp11 and CPACR.cp10 to the same value.

Table G1-27 on page G1-6122 shows the registers for which accesses are enabled.

Table G1-26 Controls of use of Advanced SIMD and floating-point functionality

Control Type Description, see

CPACR.{cp11, cp10} E Enabling PL0 and PL1 accesses to the SIMD and floating-point registers on
page G1-6122

FPEXC.EN E Enabling access to the SIMD and floating-point registers on page G1-6123

CPACR.ASEDIS D Disabling PL0 and PL1 execution of Advanced SIMD instructions on page G1-6123

Table G1-27 Register accesses enabled at PL0 and PL1 by CPACR.{cp11, cp10}

Enabled at Registers

PL0 and PL1, or PL0 onlya FPSCR, FPEXC, FPSID, MVFR0, MVFR1, MVFR2, and any of the SIMD and floating-point
registers Q0-Q15, including their views as D0-D31 registers or S0-S31 registersb

a. Depending on the value of CPACR.{cp11, cp10}. See the register description for details.

b. Permitted VMSR accesses to the FPSID are ignored, but for the purposes of the {cp10, cp11} controls the architecture defines a VMSR
accesses to the FPSID from EL1 or higher is an access to a SIMD and floating-point register.
G1-6122 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
If EL3 is implemented and is using AArch32, and NSACR.{cp11, cp10} are both set to 0, the functionality
described in this section is disabled in Non-secure state, and CPACR.{cp11, cp10} are RAZ/WI in Non-secure state.
See Enabling Non-secure access to SIMD and floating-point functionality on page G1-6150.

For more information about SIMD and floating-point support, see Advanced SIMD and floating-point support on
page G1-6112.

Enabling access to the SIMD and floating-point registers

FPEXC.EN enables accesses to the SIMD and floating-point registers at all Exception levels, but does not control
the following:

• VMSR accesses to the FPEXC or FPSID.

• VMRS accesses from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2.

When FPEXC.EN is:

1 Accesses to the registers shown in Table G1-28 on page G1-6123 are enabled at all Exception
levels.

0 All accesses to the registers shown in Table G1-28 on page G1-6123 are UNDEFINED.

Table G1-28 on page G1-6123 shows the registers for which accesses are enabled, and for an exception taken to
Hyp mode, how the exception is reported in HSR.

For more information, see Advanced SIMD and floating-point support on page G1-6112.

Disabling PL0 and PL1 execution of Advanced SIMD instructions

If implemented as an RW field, CPACR.ASEDIS can disable PL0 and PL1 execution of Advanced SIMD
instructions, as follows:

1 Advanced SIMD instructions are UNDEFINED at PL0 and PL1.

0 Advanced SIMD instruction execution is enabled at PL0 and PL1.

The instructions that CPACR.ASEDIS disables are those described in Controls of Advanced SIMD operation that
do not apply to floating-point operation on page E1-4273.

When the control is not implemented, meaning the CPACR.ASEDIS field is RAZ/WI, behavior is as if the control
permits execution of Advanced SIMD instructions at PL0 and PL1.

If EL3 is implemented and is using AArch32, and NSACR.NSASEDIS is 1, CPACR.ASEDIS is RAO/WI in
Non-secure state. This also applies when the CPACR.ASEDIS control is not implemented.

Traps to Undefined mode of EL0 accesses to the Debug Communications Channel
(DCC) registers

DBGDSCRext.UDCCdis traps EL0 accesses to the DCC registers to Undefined mode:

1 EL0 accesses to the DCC registers are trapped to Undefined mode

0 This control has no effect on EL0 accesses to the DCC registers.

Traps of EL0 accesses to the DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

Table G1-28 Register accesses enabled when FPEXC.EN is 1

Enabled at Registers Syndrome reporting in HSRa

All Exception
levels

FPSCR, and any of the SIMD and floating-point registers Q0-Q15,
including their views as D0-D31 registers or S0-S31 registers.

Exception for an unknown reason, using
EC value 0x00

a. Only for exceptions that are taken to Hyp mode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6123
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
Table G1-29 on page G1-6124 shows the registers for which accesses are trapped.

Note

All accesses to these registers are trapped, including LDC and STC accesses to DBGDTRTXint and DBGDTRRXint,
and MRRC accesses to DBGDSAR and DBGDRAR.

When generated in Non-secure User mode, an exception generated by this control can be routed to EL2, as described
in Routing exceptions from Non-secure EL0 to EL2 on page G1-6058.

Traps to Undefined mode of EL0 accesses to the Generic Timer registers

CNTKCTL.{PL0PTEN, PL0VTEN, PL0PCTEN, PL0VCTEN} trap EL0 accesses to the Generic Timer registers
to Undefined mode, as follows:

• CNTKCTL.PL0PTEN traps EL0 accesses to the physical timer registers.

• CNTKCTL.PL0VTEN traps EL0 accesses to the virtual timer registers.

• CNTKCTL.PL0PCTEN traps EL0 accesses to the frequency register and physical counter register.

• CNTKCTL.PL0VCTEN traps EL0 accesses to the frequency register and virtual counter register.

For all of these controls:

1 This control has no effect on EL0 accesses to the corresponding registers.

0 EL0 accesses to the corresponding registers are trapped to Undefined mode.

Accesses to the frequency register, CNTFRQ, are only trapped if CNTKCTL.PL0PCTEN and
CNTKCTL.PL0VCTEN are both 0.

Table G1-30 on page G1-6124 shows the registers for which accesses are trapped.

When generated in Non-secure User mode, an exception generated by this control can be routed to EL2, as described
in Routing exceptions from Non-secure EL0 to EL2 on page G1-6058.

Traps to Undefined mode of EL0 accesses to Performance Monitors registers

PMUSERENR.{ER, CR, SW, EN} trap EL0 accesses to the Performance Monitors registers to Undefined mode.
For each of these controls:

1 This control has no effect on EL0 accesses to the corresponding registers.

0 EL0 accesses to the corresponding registers are trapped to Undefined mode.

For those Performance Monitors registers that more than one PMUSERENR.{ER, CR, SW, EN} control applies to,
accesses are only trapped if all controls that apply are set to 0.

Table G1-29 Register accesses trapped to Undefined mode when DBGDSCRext.UDCCdis is 1

Traps from Registers

EL0 DBGDSCRint, DBGDTRRXint, DBGDTRTXint, DBGDIDR, DBGDSAR, DBGDRAR

Table G1-30 Register accesses trapped to Undefined mode by CNTKCTL trap controls

Traps from Trap control Registers

EL0 PL0PTEN CNTP_CTL, CNTP_CVAL, CNTP_TVAL

PL0VTEN CNTV_CTL, CNTV_CVAL, CNTV_TVAL

PL0PCTEN CNTFRQ, CNTPCT

PL0VCTEN CNTFRQ, CNTVCT
G1-6124 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
The accesses that these trap controls trap might be reads, writes, or both.

Note

• The architecture does not provide traps on Performance Monitors register accesses through the
memory-mapped external debug interface.

• If the Performance Monitors Extension is not implemented, the Performance Monitors registers, including
PMUSERENR, are reserved.

Table G1-31 on page G1-6125 shows the registers for which EL0 accesses are trapped. For each register, the table
shows the type of access trapped.

When generated in Non-secure User mode, an exception generated by this control can be routed to EL2, as described
in Routing exceptions from Non-secure EL0 to EL2 on page G1-6058.

Traps to Undefined mode of EL0 accesses to Activity Monitors registers

AMUSERENR.EN traps EL0 accesses to the Activity Monitors System registers other than AMUSERENR to
Undefined mode:

1 This control has no effect on EL0 accesses to the corresponding registers.

0 EL0 accesses to the corresponding registers are trapped to Undefined mode.

Note

• The architecture does not provide traps on Activity Monitors register accesses through the memory-mapped
external interface.

• If the Activity Monitors Extension is not implemented, the Activity Monitors registers, including
AMUSERENR, are reserved.

Table G1-31 Register accesses trapped to Undefined mode when disabled from EL0

Traps
from

Trap

control
Registers

Access

type

EL0 ER PMXEVCNTR, PMEVCNTR<n> R

PMSELR RW

CR PMCCNTR, accessed using an MRC R

CR PMCCNTR, accessed using an MRRC R

SW PMSWINC W

EN PMCNTENSET, PMCNTENCLR, PMCR, PMOVSR, PMSWINC, PMSELR, PMCEID0,
PMCEID1, PMCEID2, PMCEID3, PMCCNTR, PMXEVTYPER, PMXEVCNTR,
PMOVSSET, PMEVCNTR<n>, PMEVTYPER<n>, PMCCFILTR

RWa

a. The EL0 access is trapped only if the corresponding EL1 accesses is permitted. For example, the PMSWINC register is WO at EL1, and
therefore, when the value of EN is 0:

• Write accesses to the register from EL0 are trapped.

• Read accesses to the register from EL0 are UNDEFINED, because read accesses to the register from EL1 are UNDEFINED.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6125
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
Table G1-32 on page G1-6126 shows the registers for which EL0 accesses are trapped.

When generated in Non-secure User mode, an exception generated by this control can be routed to EL2, as described
in Routing exceptions from Non-secure EL0 to EL2 on page G1-6058.

G1.21.3 EL2 configurable controls

These controls are ignored in Secure state when using AArch32.

Table G1-33 on page G1-6126 shows the System registers that contain these controls.

Note

• FPEXC.EN is a control that is in a System register provided by PL1. However, some exceptions generated
because the value of FPEXC.EN is 1 are taken to Hyp mode.

• For completeness, Table G1-34 on page G1-6126 includes the HCR.TGE routing control, which is described
in Routing exceptions from Non-secure EL0 to EL2 on page G1-6058.

Table G1-34 on page G1-6126 summarizes the controls.

Table G1-32 Register accesses trapped to Undefined mode when disabled from EL0

Traps from Registers

EL0 AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0,
AMCNTENSET1, AMCR, AMEVTYPER0<n>, AMEVTYPER1<n>, AMEVCNTR0<n> or
AMEVCNTR1<n>.

Table G1-33 System registers that contain instruction enables and disables, and trap controls

Register name Register description

FPEXC Floating-point Exception Control Register

HCR Hypervisor Configuration Register

HSTR Hypervisor System Trap Register

HCPTR Hyp Architectural Feature Trap Register

HDCR Hyp Debug Control Register

Table G1-34 Instruction enables and disables, and trap controls, for exceptions taken to Hyp mode

Control
Control
typea Description

HSCTLR.{SED, ITD}

HSCTLR.CP15BEN

D

E

Disabling or enabling EL2 use of AArch32 optional functionality on page G1-6129

HCR.{TRVM, TVM} T Traps to Hyp mode of Non-secure EL1 accesses to virtual memory control registers
on page G1-6130

HCR.HCD D Disabling Non-secure state execution of HVC instructions on page G1-6130

HCR.TGE R Routing exceptions from Non-secure EL0 to EL2 on page G1-6058

HCR.TTLB T Traps to Hyp mode of Non-secure EL1 execution of TLB maintenance instructions
on page G1-6131
G1-6126 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
HCR.{TSW, TPC, TPU} T Traps to Hyp mode of Non-secure EL1 execution of cache maintenance instructions
on page G1-6131

HCR.TAC T Traps to Hyp mode of Non-secure EL1 accesses to the Auxiliary Control Register
on page G1-6132

HCR.TIDCP T Traps to Hyp mode of Non-secure EL0 and EL1 accesses to lockdown, DMA, and
TCM operations on page G1-6132

HCR.TSC T Traps to Hyp mode of Non-secure EL1 execution of SMC instructions on
page G1-6133

HCR.{TID0, TID1, TID2, TID3} T Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the ID registers on
page G1-6134

HCR.{TWI, TWE} T Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI
instructions on page G1-6136

HCPTR.TAM T Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Activity Monitors
registers on page G1-6137

HCPTR.{TCP11, TCP10} T General trapping to Hyp mode of Non-secure accesses to the SIMD and
floating-point registers on page G1-6137

FPEXC.EN T Enabling access to the SIMD and floating-point registers on page G1-6138

HCPTR.TASE T Traps to Hyp mode of Non-secure accesses to Advanced SIMD functionality on
page G1-6138

HCPTR.TCPAC T Traps to Hyp mode of Non-secure EL1 accesses to the CPACR on page G1-6139

HCPTR.TTA T Traps to Hyp mode of Non-secure System register accesses to trace registers on
page G1-6139

HDCR.TTRF T Traps to Hyp mode of Non-secure System register accesses to trace filter control
registers on page G1-6140

HSTR.{T0-T3, T5-T13, T15} T General trapping to Hyp mode of Non-secure EL0 and EL1 accesses to System
registers in the (coproc==0b1111) encoding space on page G1-6140

HDCR.{TDRA, TDOSA, TDA} T Traps to Hyp mode of Non-secure System register accesses to debug registers on
page G1-6142

CNTHCTL.{PL1PCEN,
PL1PCTEN}

T Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the Generic Timer
registers on page G1-6144

HDCR.{TPM, TPMCR} T Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Performance Monitors
registers on page G1-6145

HCR2.TERR T Traps to Hyp mode of Non-secure EL1 accesses to the RAS error record registers
on page G1-6146

a. See Table G1-35 on page G1-6128.

Table G1-34 Instruction enables and disables, and trap controls, for exceptions taken to Hyp mode (continued)

Control
Control
typea Description
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6127
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
Also see the following:

• Register access instructions on page G1-6118.

• Instructions that fail their Condition code check on page G1-6128.

• Trapping to EL2 of instructions that are UNPREDICTABLE on page G1-6129.

Instructions that fail their Condition code check

For UNDEFINED instructions that fail their Condition code check, see Conditional execution of undefined instructions
on page G1-6080.

For an instruction that has a Hyp trap set that fails its Condition code check:

• Unless the trap description states otherwise, it is IMPLEMENTATION DEFINED whether the instruction:

— Generates a Hyp Trap exception.

— Executes as a NOP.

Any implementation must be consistent in its handling of instructions that fail their Condition code check. This
means that:

• Whenever a Hyp trap is set on an instruction it must either:

— Always generate a Hyp Trap exception.

— Always treat the instruction as a NOP.

• The IMPLEMENTATION DEFINED part of the requirements of Conditional execution of undefined instructions
on page G1-6080 must be consistent with the handling of Hyp traps on instructions that fail their Condition
code check. Table G1-36 on page G1-6128 shows this:

Note

Hyp traps on WFE and WFI instructions generate Hyp Trap exceptions only if the instruction passes its Condition code
check. See Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions on
page G1-6136.

Table G1-35 Control types, for exceptions taken to Hyp mode

Abbreviation Type See

D Disable Instruction enables and instruction disables on page G1-6117

E Enable Instruction enables and instruction disables on page G1-6117

R Routing control Routing exceptions from Non-secure EL0 to EL2 on page G1-6058

T Trap Trap controls on page G1-6117

Table G1-36 Consistent handling of instructions that fail their Condition code check

Behavior of conditional UNDEFINED instructiona Hyp trap on instruction that fails its Condition code checkb

Executes as a NOP Executes as a NOP

Generates an Undefined Instruction exception Generates a Hyp Trap exception

a. As defined in Conditional execution of undefined instructions on page G1-6080. In Non-secure EL0 and EL1 modes, this applies only
if no Hyp trap is set for the instruction, otherwise see the behavior in the other column of the table.

b. For a trapped instruction executed in a Non-secure EL1 or EL0 mode.
G1-6128 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
Trapping to EL2 of instructions that are UNPREDICTABLE

For an instruction that is UNPREDICTABLE or CONSTRAINED UNPREDICTABLE, when the instruction is disabled or
trapped then it is CONSTRAINED UNPREDICTABLE whether execution of the instruction generates a Hyp Trap
exception.

Note

UNPREDICTABLE and CONSTRAINED UNPREDICTABLE behavior must not perform any function that cannot be
performed at the current or lower Exception level using instructions that are not UNPREDICTABLE and are not
CONSTRAINED UNPREDICTABLE. This means that disabling or trapping an instruction changes the set of instructions
that might be executed in Non-secure state at EL1 or EL0. This indirectly affects the permitted behavior of
UNPREDICTABLE and CONSTRAINED UNPREDICTABLE instructions.

If no instructions are trapped, the attempted execution of an UNPREDICTABLE instruction in a Non-secure EL1 or
EL0 mode must not generate a Hyp Trap exception.

Disabling or enabling EL2 use of AArch32 optional functionality

Table G1-37 on page G1-6129 shows the optional AArch32 functionality that might have disable controls in the
HSCTLR:

• The SED control is implemented if the implementation supports mixed-endian operation at EL2.

• Whether the ITD control is implemented is IMPLEMENTATION DEFINED.

• Whether the CP15BEN control is implemented is IMPLEMENTATION DEFINED.

• If a control is not implemented, then the associated functionality cannot be disabled.

These HSCTLR controls apply only to execution at EL2 using AArch32. When an instruction is disabled by one of
these controls, it is UNDEFINED at EL2, meaning it is undefined in Hyp mode.

Note

• These controls have no effect on instructions executed in any mode other than Hyp mode. The SCTLR
provides similar controls that apply to execution in other modes.

• The uses of the IT instruction, and use of the CP15DMB, CP15DSB, and CP15ISB barrier instructions, are
deprecated for performance reasons.

Table G1-37 EL2 controls for disabling and enabling EL2 use of AArch32 optional functionality

Optional AArch32 functionality
Instruction enable or
disable in the HSCTLR

Disabled instructions

SETEND instructions SEDa SETEND instructions

Some uses of IT instructions ITDb See the HSCTLR.IT description

Accesses to the System register (coproc==0b1111) DMB,
DSB, and ISB barrier operations

CP15BENc MCR accesses to the CP15DMB,
CP15DSB, and CP15ISB

a. SETEND instruction disable. SETEND instructions are disabled when the value of this field is 1.

b. IT instruction disable. If this control is implemented, some uses of IT instructions are disabled when the value of this field is 1.

c. System register (coproc==0b1111) memory barrier enable. If this control is implemented, the specified register accesses are disabled when the
value of CP15BEN is 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6129
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
Traps to Hyp mode of Non-secure EL1 accesses to virtual memory control registers

HCR.{TRVM, TVM} trap Non-secure EL1 accesses to the virtual memory control registers to Hyp mode:

HCR.TRVM, for read accesses:

1 Non-secure EL1 reads of the virtual memory control registers are trapped to Hyp mode.

0 This control has no effect on Non-secure EL1 reads of the virtual memory control
registers.

HCR.TVM, for write access:

1 Non-secure EL1 writes to the virtual memory control registers are trapped to Hyp mode.

0 This control has no effect on Non-secure EL1 writes to the virtual memory control
registers.

Table G1-38 on page G1-6130 shows the registers for which:

• Reads are trapped to Hyp mode when HCR.TRVM is 1.

• Writes are trapped to Hyp mode when HCR.TVM is 1.

The table also shows how the exceptions are reported in HSR.

Note

These registers are not accessible at EL0.

Disabling Non-secure state execution of HVC instructions

HCR.HCD disables Non-secure state execution of HVC instructions:

1 HVC instructions are UNDEFINED at EL2 and Non-secure EL1. The Undefined Instruction exception
is taken from the current Exception level to the current Exception level.

0 HVC instruction execution is enabled at EL2 and Non-secure EL1.

Note

HVC instructions are always UNDEFINED at EL0.

HCR.HCD is only implemented if EL3 is not implemented. Otherwise, it is RES0. See the HCR register description.

Table G1-39 on page G1-6130 shows how the exceptions are reported in HSR.

Table G1-38 Register read and write accesses trapped when HCR.{TRVM, TVM} are 1

Traps
from

Registers Syndrome reporting in HSR

Non-secure
EL1

SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR,
IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR, NMRR, MAIR0,
MAIR1, AMAIR0, AMAIR1, CONTEXTIDR

Trapped MCR or MRC access (coproc==0b1111),
using EC value 0x03

Trapped MCRR or MRRC access (coproc==0b1111),
using EC value 0x04

Table G1-39 Instruction that causes exceptions when HCR.HCD is 1

Attempted execution in Disabled instruction Syndrome reporting in HSR

Hyp mode HVC Exception for an unknown reason, using EC value 0x00

Mode other than Hyp mode HVC Not applicable
G1-6130 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
Traps to Hyp mode of Non-secure EL1 execution of TLB maintenance instructions

In the Armv8-A architecture, the System instruction encoding space includes TLB maintenance instructions.

HCR.TTLB traps Non-secure EL1 execution of TLB maintenance instructions to Hyp mode:

1 Any attempt to execute a TLBI instruction at Non-secure EL1 is trapped to Hyp mode.

0 This control has no effect on the Non-secure EL1 execution of TLBI instructions.

Table G1-40 on page G1-6131 shows the instructions that are trapped, and how the exceptions are reported in HSR.

Note

These instructions are always UNDEFINED at EL0.

For more information about these instructions, see The scope of TLB maintenance instructions on page G5-6345.

Traps to Hyp mode of Non-secure EL1 execution of cache maintenance instructions

HCR.{TSW, TPC, TPU} trap cache maintenance instructions to Hyp mode:

0 The control has no effect on the execution of cache maintenance instructions.

1 Any attempt to execute one of the cache maintenance instructions shown in Table G1-42 on
page G1-6131 at Non-secure EL1 is trapped to Hyp mode.

Table G1-42 on page G1-6131 shows the instructions that are trapped to Hyp mode, and how the exceptions are
reported in HSR.

Table G1-40 Instructions trapped to Hyp mode when HCR.TTLB is 1

Traps from Trapped instructions Syndrome reporting in HSR

Non-secure
EL1

TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS,
TLBIMVALIS, TLBIMVAALIS, ITLBIALL, ITLBIMVA,
ITLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, TLBIALL,
TLBIMVA, TLBIASID, TLBIMVAA, TLBIMVAL, TLBIMVAAL.

Trapped MCR or MRC access (coproc==0b1111),
using EC value 0x03

Table G1-41 Controls for trapping cache maintenance instructions to Hyp mode

Trap control Trapped instructions

HCR.TSW Data or unified cache maintenance by set/way

HCR.TPC Data or unified cache maintenance to point of coherency

HCR.TPU Cache maintenance to point of unification

Table G1-42 Instructions trapped to Hyp mode when HCR.{TSW, TPC, TPU} are 1

Traps from
Trap
control

Trapped instructions Syndrome reporting in HSR

Non-secure
EL1

TSW DCISW, DCCSW, DCCISW Trapped MCR or MRC access (coproc==0b1111), using EC
value 0x3

TPC DCIMVAC, DCCIMVAC, DCCMVAC

TPU ICIMVAU, ICIALLU, ICIALLUIS,
DCCMVAU
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6131
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
Note

These instructions are always UNDEFINED at EL0.

For more information about these instructions, see Cache maintenance system instructions on page K15-8657.

Traps to Hyp mode of Non-secure EL1 accesses to the Auxiliary Control Register

HCR.TAC traps Non-secure EL1 accesses to the Auxiliary Control Registers to Hyp mode:

1 Non-secure EL1 accesses to the Auxiliary Control Registers are trapped to Hyp mode.

0 This control has no effect on Non-secure EL1 accesses to the Auxiliary Control Registers.

Table G1-43 on page G1-6132 shows the registers for which accesses are trapped, and how the exceptions are
reported in HSR:

Note

The ACTLR and ACTLR2 are not accessible at EL0.

Traps to Hyp mode of Non-secure EL0 and EL1 accesses to lockdown, DMA, and TCM
operations

The lockdown, DMA, and TCM features of the Armv8-A architecture are IMPLEMENTATION DEFINED. The
architecture reserves the encodings of a number of System registers for control of these features.

HCR.TIDCP traps the execution of System register access instructions that access these registers, as follows:

1 At Non-secure EL1, any attempt to execute an MCR or MRC instruction with a reserved register
encoding shown in Table G1-44 on page G1-6133 is trapped to Hyp mode.

At Non-secure EL0, it is IMPLEMENTATION DEFINED whether attempts to execute MCR or MRC
instructions with reserved register encodings are:

• Trapped to Hyp mode.

• UNDEFINED, and the PE takes the Undefined Instruction exception to Non-secure Undefined
mode.

Any lockdown fault in the memory system caused by the use of these operations in Non-secure state
generates a Data Abort exception that is taken to Hyp mode.

0 This control has no effect on Non-secure EL0 and EL1 System register access instructions with
reserved register encodings shown in Table G1-44 on page G1-6133.

Note

This means that a Hyp Trap exception taken from Non-secure EL1 to Hyp mode, generated because of a
configuration setting in HCR.TIDCP is a higher priority exception than an Undefined Instruction exception
generated because either the System register encoding is unallocated or because the register is never accessible at
EL1. As Synchronous exception prioritization for exceptions taken to AArch32 state on page G1-6047 shows, this
is an exception to the general exception prioritization rules that prioritize most Undefined Instruction exceptions
taken to Undefined mode above traps to EL2.

Table G1-43 Register accesses trapped to Hyp mode when HCR.TAC is 1

Traps from Registers Syndrome reporting in HSR

Non-secure EL1 ACTLR and, if implemented, ACTLR2. Trapped MCR or MRC access (coproc==0b1111) access, using EC value 0x03
G1-6132 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
Table G1-44 on page G1-6133 shows the register encodings for which accesses are trapped to Hyp mode, and how
the exceptions are reported in HSR.

An implementation can also include IMPLEMENTATION DEFINED registers that provide additional controls, to give
finer-grained control of the trapping of IMPLEMENTATION DEFINED features.

Note

Arm expects the trapping of Non-secure User mode accesses to these functions to Hyp mode to be unusual, and used
only when the hypervisor is virtualizing User mode operation. Arm strongly recommends that unless the hypervisor
must virtualize User mode operation, a Non-secure User mode access to any of these functions generates an
Undefined Instruction exception, as it would if the implementation did not include EL2. The PE then takes this
exception to Non-secure Undefined mode.

Traps to Hyp mode of Non-secure EL1 execution of SMC instructions

HCR.TSC traps Non-secure EL1 execution of SMC instructions to Hyp mode:

1 Any attempt to execute an SMC instruction at Non-secure EL1 is trapped to Hyp mode, regardless of
the value of SCR.SCD.

0 This control has no effect on Non-secure EL1 execution of SMC instructions.

Table G1-45 on page G1-6133 shows how the exceptions are reported in HSR:

The Armv8-A architecture permits, but does not require, this trap to apply to conditional SMC instructions that fail
their Condition code check, in the same way as with traps on other conditional instructions.

Note
• This trap is implemented only if the implementation includes EL3.

• SMC instructions are always UNDEFINED at EL0.

• HCR.TSC traps execution of the SMC instruction. It is not a routing control for the SMC exception. Hyp Trap
and SMC exceptions have different preferred return addresses.

For more information about SMC instructions, see SMC on page F5-5022.

Table G1-44 Encodings trapped to Hyp mode when HCR.TIDCP is 1

Traps from Register encodings Syndrome reportingin HSR

Non-secure EL0
and EL1

An access to any of the following encodings:

• CRn==c9, opc1=={0-7}, CRm=={c0-c2, c5-c8},
opc2=={0-7}.

• CRn==c10, opc1=={0-7}, CRm=={c0, c1, c4,
c8}, opc2=={0-7}.

• CRn==c11, opc1=={0-7}, CRm=={c0-c8, c15},
opc2=={0-7}.

Trapped MCR or MRC access (coproc==0b1111), using
EC value 0x03

Table G1-45 SMC Instruction trapped to Hyp mode when HCR.TSC is 1

Traps from Trapped instruction Syndrome reporting in HSR

Non-secure EL1 SMC on page F5-5022 Trapped SMC instruction execution in AArch32 state, using EC value 0x13
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6133
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the ID registers

Other than the MIDR, MPIDR, and PMCR.N, the ID registers are divided into groups, with a trap control in the
HCR for each group.

These controls trap register accesses from Non-secure EL0 or EL1 to Hyp mode, as follows:

HCR.TID0 0 This control has no effect on Non-secure EL1 reads of the ID group 0 registers.

1 Any attempt at Non-secure EL0 or EL1 to read any register in ID group 0 is trapped to
Hyp mode.

HCR.TID1 0 This control has no effect on Non-secure EL1 reads of the ID group 1 registers.

1 Any attempt at Non-secure EL1 to read any register in ID group 1 is trapped to Hyp
mode.

HCR.TID2 0 This control has no effect on Non-secure EL1 and EL0 accesses to the ID group 2
registers.

1 Any attempt at Non-secure EL0 or EL1 to read any register in ID group 2, and any
attempt at Non-secure EL0 or EL1 to write to the CSSELR, is trapped to Hyp mode.

HCR.TID3 0 This control has no effect on Non-secure EL1 reads of the ID group 3 registers.

1 Any attempt at Non-secure EL1 to read any register in ID group 3 is trapped to Hyp
mode.

For the MIDR and MPIDR, and for PMCR.N, the architecture provides read/write aliases. The original register
becomes accessible only from Hyp mode and Secure state, and a Non-secure EL0 or EL1 read of the original register
returns the value of the read/write alias. This substitution is invisible to the EL0 or EL1 software reading the register.

Reads of the MIDR, MPIDR, or PMCR.N from Hyp mode or Secure state are unchanged by the implementation of
EL2, and access the physical registers.

Note

• If the optional Performance Monitors Extension is not implemented, HDCR.HPMN is RES0 and PMCR is
reserved.

• HDCR.HPMN also affects whether a Performance Monitors counter can be accessed from Non-secure EL1
or EL0. See the register description of HDCR for more information.

Table G1-46 ID register groups

Trap control Register group

HCR.TID0 ID group 0, Primary device identification registers on page G1-6135

HCR.TID1 ID group 1, Implementation identification registers on page G1-6135

HCR.TID2 ID group 2, Cache identification registers on page G1-6135

HCR.TID3 ID group 3, Detailed feature identification registers on page G1-6136

Table G1-47 ID register substitution

Register Original Alias, EL2 using AArch32

Main ID MIDR VPIDR

Multiprocessor Affinity MPIDR VMPIDR

Performance Monitors Control Register PMCR.N HDCR.HPMN
G1-6134 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
• PMCR contains other fields that identify the implementation. For more information about trapping accesses
to the PMCR, see Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Performance Monitors
registers on page G1-6145.

A reset into AArch32 state sets VPIDR to the MIDR value, VMPIDR to the MPIDR value, and HDCR.HPMN to
the PMCR.N value.

ID group 0, Primary device identification registers

These registers identify some top-level implementation choices.

Table G1-48 on page G1-6135 shows the registers that are in ID group 0 for traps to Hyp mode, and how the
exceptions are reported in HSR.

Note

The FPSID is not accessible at EL0.

If HCPTR.{TCP11, TCP10} traps accesses to SIMD and floating-point functionality, then for a read of FPSID, that
trap has priority over this trap.

When the FPSID is accessible, a VMSR FPSID, <Rt> instruction is permitted but is ignored. The execution of this VMSR
instruction is not trapped by the ID group 0 trap.

ID group 1, Implementation identification registers

These registers often provide coarse-grained identification mechanisms for implementation-specific features.

Table G1-49 on page G1-6135 shows the registers that are in ID group 1 for traps to Hyp mode, and how the
exceptions are reported in HSR.

ID group 2, Cache identification registers

These registers describe and control the cache implementation.

Table G1-50 on page G1-6135 shows the registers that are in ID group 2 for traps to Hyp mode, and how the
exceptions are reported in HSR.

Table G1-48 ID group 0 registers

Traps from Group 0 registers Syndrome reporting in HSR

Non-secure EL1 FPSID Trapped VMRS access, for ID group traps, using EC value 0x08

Non-secure EL0 and EL1 JIDR Trapped MCR or MRC access (coproc==0b1110), using EC value 0x05

Table G1-49 ID group 1 registers

Traps from Group 1 registers Syndrome reporting in HSR

Non-secure EL1 TCMTR, TLBTR, REVIDR, AIDR Trapped MCR or MRC access (coproc==0b1111), using EC value 0x03

Table G1-50 ID group 2 registers

Traps from Group 2 registers Syndrome reporting in HSR

Non-secure EL0 and
EL1

CTR, CCSIDR, CLIDR, CSSELR, and, if
implemented, CCSIDR2.

Trapped MCR or MRC access (coproc==0b1111), using
EC value 0x03
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6135
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
ID group 3, Detailed feature identification registers

These registers provide detailed information about the features of the implementation.

Note

These registers are called the CPUID registers. There is no requirement for this trap to apply to those registers that
the CPUID Identification Scheme defines as reserved. See The CPUID identification scheme on page G4-4993.

Table G1-51 on page G1-6136 shows the registers that are in ID group 3 for traps to Hyp mode, and how the
exceptions are reported in HSR.

If HCPTR traps accesses to SIMD and floating-point functionality, then for reads of MVFR0, MVFR1, and
MVFR2, that trap has priority over this trap.

Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions

HCR.{TWE, TWI} trap Non-secure EL0 and EL1 execution of WFE and WFI instructions to Hyp mode:

HCR.TWE:

1 Any attempt to execute a WFE instruction at Non-secure EL0 or EL1 is trapped to Hyp
mode, if the instruction would otherwise have caused the PE to enter a low-power state.

0 This control has no effect on Non-secure EL0 or EL1 execution of WFE instructions.

HCR.TWI:

1 Any attempt to execute a WFI instruction at Non-secure EL0 or EL1 is trapped to Hyp
mode, if the instruction would otherwise have caused the PE to enter a low-power state.

0 This control has no effect on Non-secure EL0 or EL1 execution of WFI instructions.

Table G1-52 on page G1-6136 shows how the exceptions are reported in HSR.

Table G1-51 ID group 3 registers

Traps from Group 3 registers Syndrome reporting in HSR

Non-secure
EL1

MVFR0, MVFR1, MVFR2. Trapped VMRS access for ID group traps, using
EC value 0x08

ID_PFR0, ID_PFR1, ID_DFR0, ID_AFR0.

ID_MMFR0, ID_MMFR1, ID_MMFR2, ID_MMFR3.

ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4,
ID_ISAR5.

ID_MMFR4, ID_ISAR6, ID_DFR1 are trapped, unless
implemented as RAZ, when it is IMPLEMENTATION DEFINED
whether HCR.TID3 traps accesses.

It is IMPLEMENTATION DEFINED whether HCR.TID3 traps MRC
accesses to registers with coproc==0b1111 to encodings in the
following range that are not already mentioned in this table CRn ==
c0, opc1 == 0, CRm == {c2-c7}, opc2 == {0-7}.

Trapped MCR or MRC access (coproc==0b1111),
using EC value 0x03

Table G1-52 Instructions trapped to Hyp mode when HCR.{TWE, TWI} are 1

Traps from Trapped instructions Syndrome reporting in HSR

Non-secure EL0 and EL1 WFE Trapped WFI or WFE instruction, using EC value 0x01

WFI
G1-6136 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
The attempted execution of a conditional WFE or WFI instruction is only trapped if the instruction passes its Condition
code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed
to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the
instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

For more information about these instructions, and when they can cause the PE to enter a low-power state, see:

• Wait For Event and Send Event on page G1-6104.

• Wait For Interrupt on page G1-6107.

Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Activity Monitors registers

If the Activity Monitors Extension is implemented, HCPTR.TAM traps Non-secure EL0 and EL1 accesses to the
Activity Monitors registers to Hyp mode:

1 Non-secure EL0 and EL1 accesses to all Activity Monitors registers are trapped to Hyp
mode.

0 This control has no effect on Non-secure EL0 and EL1 accesses to the Activity Monitors
registers.

Note

• EL2 does not provide traps on Activity Monitor register accesses through the optional memory-mapped
external interface.

• If the Activity Monitors Extension is not implemented, HCPTR.TAM is RES0.

Table G1-53 on page G1-6137 shows the registers for which accesses are trapped, and how the exceptions are
reported in HSR.

General trapping to Hyp mode of Non-secure accesses to the SIMD and floating-point
registers

HCPTR.{TCP11, TCP10} trap Non-secure accesses to the SIMD and floating-point registers to Hyp mode:

0b11 All Non-secure accesses to the SIMD and floating-point registers are trapped to Hyp mode. Trapped
instructions generate:

• Hyp Trap exceptions, if the exception is taken from Non-secure EL0 or EL1.

• Undefined Instruction exceptions taken to Hyp mode, if the exception is taken from EL2.

0b00 This control has no effect on Non-secure accesses to the SIMD and floating-point registers.

Table G1-53 Register accesses trapped to Hyp mode when HDCR.{TPM, TPMCR} are 1

Traps from
Trap
control

Registers Syndrome reporting in HSR

Non-secure
EL0 and EL1

TPM AMCFGR, AMCGCR, AMCNTENCLR0,
AMCNTENCLR1, AMCNTENSET0, AMCNTENSET1,
AMCR, AMEVTYPER0<n>, or AMEVTYPER1<n>.

Trapped MCR or MRC access
(coproc==0b1111), using EC value 0x03.

AMEVCNTR0<n>or AMEVCNTR1<n>. Trapped MCRR or MRRC access
(coproc==0b1111), using EC value 0x04.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6137
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
Note

Software must set HCPTR.TCP11 and HCPTR.TCP10 to the same value.

Table G1-54 on page G1-6138 shows the registers for which accesses are trapped, and how the exceptions are
reported in HSR.

If EL3 is implemented and is using AArch32, and NSACR.{cp11, cp10} are both set to 0, then
HCPTR.{TCP11, TCP10} behave as RAO/WI, regardless of their actual value.

For more information about SIMD and floating-point support, see Advanced SIMD and floating-point support on
page G1-6112.

Enabling access to the SIMD and floating-point registers

FPEXC.EN is an instruction enable that enables access to the SIMD and floating-point registers from all Exception
levels, but does not control the following:

• VMSR accesses to the FPEXC or FPSID.

• VMRS accesses from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2.

FPEXC.EN is a PL1 control that also applies at EL2. See Enabling access to the SIMD and floating-point registers
on page G1-6123.

Traps to Hyp mode of Non-secure accesses to Advanced SIMD functionality

If implemented as an RW field, HCPTR.TASE can trap Non-secure execution of Advanced SIMD instructions to
Hyp mode, as follows. This trap applies only when HCPTR.{TCP11, TCP10} are both 0:

1 Any attempt to execute an Advanced SIMD instruction in Non-secure state is trapped to Hyp mode.
Trapped instructions generate:

• Hyp Trap exceptions, if the exception is taken from Non-secure EL0 or EL1.

• Undefined Instruction exceptions taken to Hyp mode, if the exception is taken from EL2.

0 This control has no effect on Non-secure execution of Advanced SIMD instructions.

When the control is not implemented, meaning the HCPTR.TASE field is RAZ/WI, the HCPTR does not provide a
trap to Hyp mode of the Non-secure execution of Advanced SIMD instructions, other than the
HCPTR.{TCP11, TCP10} trap that applies to Non-secure execution of both Advanced SIMD and floating-point
instructions.

Table G1-54 Register accesses trapped to Hyp mode when HCPTR.{TCP11, TCP10} are both 0b11

Traps from Registers Syndrome reporting in HSR

Non-secure
state

FPSID, MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and
any of the SIMD and floating-point registers Q0-Q15,
including their views as D0-D31 registers or S0-S31
registers. See Advanced SIMD and floating-point System
registers on page G1-6114.

Trapped access to SIMD and floating-point register,
resulting from HCPTR, using EC value 0x07a

a. VMSR accesses to the FPSID are ignored, but for the purposes of this trap the architecture defines a VMSR access to the FPSID from EL1 or
higher as an access to a SIMD and floating-point register.
G1-6138 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
Table G1-27 on page G1-6122 shows the instructions that are trapped, and how the exceptions are reported in HSR.

If EL3 is implemented and is using AArch32, and NSACR.NSASEDIS is 1, then HCPTR.TASE behaves as
RAO/WI, regardless of its actual value. This behavior also applies when the HCPTR.TASE control is not
implemented.

Traps to Hyp mode of Non-secure EL1 accesses to the CPACR

HCPTR.TCPAC traps Non-secure EL1 accesses to the CPACR to Hyp mode:

1 Non-secure EL1 accesses to the CPACR are trapped to Hyp mode.

0 This control has no effect on Non-secure EL1 accesses to the CPACR.

Table G1-56 on page G1-6139 shows how the exceptions are reported in HSR:

Note

• The CPACR is not accessible at EL0.

• In Armv7 and earlier versions of the Arm architecture, one use of the CPACR is to identify what coprocessor,
or conceptual coprocessor, functionality is implemented. Legacy software might use this identification
mechanism. A hypervisor can use this trap to emulate this mechanism. See Background to the System register
interface on page G1-6110 for more information about this functionality.

Traps to Hyp mode of Non-secure System register accesses to trace registers

If implemented, the HCPTR.TTA control traps System register accesses to the trace registers from Non-secure state
to Hyp mode, as follows:

1 Non-secure System register accesses to the trace registers are trapped to Hyp mode. Trapped
instructions generate:

• Hyp Trap exceptions, if the exception is taken from Non-secure EL0 or EL1.

• Undefined Instruction exceptions taken to Hyp mode, if the exception is taken from EL2.

0 This control has no effect on Non-secure System register accesses to the trace registers.

If the HCPTR.TTA control is not implemented, then HCPTR.TTA is RAO/WI. See the register description for more
information.

Note

• System register accesses to the trace registers use the System register (coproc==0b1110) encoding space.

Table G1-55 Instructions trapped to Hyp mode when HCPTR.TASE is set to 1

Traps
from

Instructions Syndrome reporting in HSR

Non-secure
state

All Advanced SIMD instructions that are not also
floating-point instructions. For more information, see
Controls of Advanced SIMD operation that do not apply to
floating-point operation on page E1-4273.

Trapped access to SIMD and floating-point register,
resulting from HCPTR, using EC value 0x07

Table G1-56 Register accesses trapped to Hyp mode when HCPTR.TCPAC is 1

Traps from Register Syndrome reporting in HSR

Non-secure EL1 CPACR Trapped MCR or MRC access to System register with coproc==0b1111, using EC value 0x03
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6139
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
• The ETMv4 architecture does not permit EL0 to access the trace registers. If the Armv8-A architecture is
implemented with an ETMv4 implementation, EL0 accesses to the trace registers are UNDEFINED. A resulting
Undefined Instruction exception is higher priority than an HCPTR.TTA Hyp Trap exception.

• EL2 does not provide traps on trace register accesses through the optional memory-mapped external debug
interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, no
side-effects occur before the exception is taken, see Register access instructions on page G1-6118.

Table G1-57 on page G1-6140 shows the registers for which accesses are trapped to Hyp mode when HCPTR.TTA
is 1, and how the exceptions are reported in HSR.

If EL3 is implemented and is using AArch32, and NSACR.NSTRCDIS is 1, then HCPTR.TTA behaves as
RAO/WI, regardless of its actual value. This behavior applies, also, when the HCPTR.TTA control is not
implemented.

Traps to Hyp mode of Non-secure System register accesses to trace filter control
registers

If implemented, the HDCR.TTRF control traps System register accesses to the trace filter control registers from
Non-secure state to Hyp mode, as follows:

1 Non-secure System register accesses at EL1 to the trace filter control registers are trapped to Hyp
mode. Trapped instructions generate Hyp Trap exceptions.

0 This control has no effect on Non-secure System register accesses to the trace registers.

Table G1-58 on page G1-6140 shows the registers for which accesses are trapped to Hyp mode when HDCR.TTRF
is 1, and how the exceptions are reported in HSR.

General trapping to Hyp mode of Non-secure EL0 and EL1 accesses to System registers
in the (coproc==0b1111) encoding space

HSTR.{T0-T3, T5-T13, T15} trap Non-secure EL0 and EL1 accesses, using MCR, MRC, MCRR, or MRRC instructions, to
the System registers in the (coproc==0b1111) encoding space, by:

• The value of the CRn argument to the instruction, for MCR and MRC instructions.

• The value of the CRm argument to the instruction, for MCRR and MRRC instructions.

This applies for the set of CRn, or CRm, values {c0-c3, c5-c13, c15}.

Table G1-57 Register accesses trapped to Hyp mode when HCPTR.TTA is 1

Traps
from

Registers Syndrome reporting in HSR

Non-secure
state

System register accesses to all implemented
trace registers

For accesses using:

• MCR or MRC instructions, trapped MCR or MRC access
(coproc==0b1110), using EC value 0x05.

• MCRR or MRRC instructions, trapped MCRR or MRRC access
(coproc==0b1110), using EC value 0x0C.

Table G1-58 Register accesses trapped to Hyp mode when HDCR.TTRF is 1

Traps from Registers Syndrome reporting in HSR

Non-secure state TRFCR For accesses using MCR or MRC instructions, trapped MCR or MRC access (coproc==0b1111), using EC
value 0x03.
G1-6140 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
When an HSTR.Tn trap control is:

1 Non-secure EL1 accesses to the corresponding System registers in the (coproc==0b1111) encoding
space are trapped to Hyp mode.

EL0 accesses to the corresponding System registers are trapped to Hyp mode if they would not be
UNDEFINED if the bit was zero.

0 This control has no effect on Non-secure EL0 or EL1 accesses to System registers.

Note

This means that a Hyp Trap exception taken from EL1 to EL2, generated because of a configuration setting in
HSTR.Tn, is a higher priority exception than an Undefined Instruction exception generated because either the
System register encoding is unallocated or because a register is never accessible at Non-secure EL1. As
Synchronous exception prioritization for exceptions taken to AArch32 state on page G1-6047 shows, this is an
exception to the general exception prioritization rules that prioritize most Undefined Instruction exceptions taken
to Undefined mode above traps to EL2. This prioritization includes any access from Non-secure EL1 to a
register that is only accessible in Secure state. So, for example, an access to the SCR from Non-secure EL1:

• When the value of HSTR.T1 is 0, generates an Undefined Instruction exception.

• When the value of HSTR.T1 is 1, generates a Hyp Trap exception.

Table G1-59 on page G1-6141 shows the accesses that are trapped, and how the exceptions are reported in HSR.

For example, when HSTR.T7 is 1, considering only accesses from Non-secure EL1:

• Any 32-bit access from a Non-secure PL1 mode using an MRC or MCR instruction with coproc set to 0b1111 and
CRn set to c7, is trapped to Hyp mode.

• Any 64-bit access from a Non-secure PL1 mode using an MRRC or MCRR instructions with coproc set to 0b1111
and CRm set to c7, is trapped to Hyp mode.

Note

• Bits[4,14] of the HSTR are reserved, RES0. Although the Generic Timer control registers are implemented in
the coproc== 0b1111 encoding space with CRn==c14 for an MRC or MCR access, EL2 does not provide a trap
on accesses to the Generic Timer System registers.

• An implementation might provide additional controls, in IMPLEMENTATION DEFINED registers, to provide
finer-grained control of trapping of IMPLEMENTATION DEFINED features.

Table G1-59 Accesses trapped to Hyp mode when an HSTR.Tn trap is enabled

Traps from
Trap
control

Trapped accesses Syndrome reporting in HSR

Non-secure EL0
and EL1a

Tn MCR and MRC instructions, with coproc set to
0b1111 and CRn set to n

Trapped MCR or MRC access (coproc==0b1111),
using EC value 0x03

MCRR and MRRC instructions, with coproc set to
0b1111 and CRm set to n

Trapped MCRR or MRRC access (coproc==0b1111),
using EC value 0x04

a. As described in this section, traps from EL1 apply whenever the value of HSTR.Tn is 1. Traps from EL0 apply only if the value of
HSTR.Tn is 1 and the access would not be UNDEFINED if the value of HSTR.Tn was 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6141
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
System registers in the (coproc==0b1111) encoding space with IMPLEMENTATION DEFINED access
permission from EL0

For a System register in the (coproc==0b1111) encoding space, that is accessed using a CRn or CRm value that can
be trapped by a HSTR.Tn control, if an access to the register from User mode is UNDEFINED when the value of the
corresponding HSTR.Tn trap control is 0, then when that HSTR.Tn trap control is 1, it is IMPLEMENTATION DEFINED
whether an access from Non-secure User mode generates:

• A Hyp Trap exception.

• An Undefined Instruction exception taken to Non-secure Undefined mode.

Note

Arm expects that trapping to Hyp mode of Non-secure User mode accesses to System register in the
(coproc==0b1111) encoding space will be unusual, and used only when the hypervisor must virtualize User mode
operation. Arm recommends that, whenever possible, Non-secure User mode accesses to System register in the
(coproc==0b1111) encoding space behave as they would if the processor did not implement EL2, generating an
Undefined Instruction exception taken to Non-secure Undefined mode if the architecture does not support the User
mode access.

Traps to Hyp mode of Non-secure System register accesses to debug registers

HDCR.{TDRA, TDOSA, TDA} trap Non-secure System register accesses to debug registers to Hyp mode, as
follows:

• HDCR.(TDRA, TDA} trap Non-secure EL0 and EL1 accesses.

• HDCR.TDOSA traps Non-secure EL1 accesses.

Note

EL2 does not provide traps of debug register accesses through the optional memory-mapped external debug
interface.

System register accesses to the debug registers can have side-effects. When a System register access is trapped to
Hyp mode, no side-effects occur before the exception is taken to Hyp mode. See Register access instructions on
page G1-6118.

Table G1-60 on page G1-6142 shows the subsections that list the accesses trapped. The subsections describe how
the traps are reported in HSR.

Note

System register accesses to debug registers use the (coproc==0b1110) encoding space.

Trapping Non-secure System register accesses to Debug ROM registers

HDCR.TDRA traps Non-secure EL0 and EL1 System register accesses to the Debug ROM registers to Hyp mode:

1 Non-secure EL0 or EL1 System register accesses to the Debug ROM registers are trapped to Hyp
mode.

Table G1-60 Traps of Non-secure EL0 and EL1 accesses to debug registers

Trap control Subsection

HDCR.TDRA Trapping Non-secure System register accesses to Debug ROM registers on page G1-6142

HDCR.TDOSA Trapping Non-secure System register accesses to powerdown debug registers on page G1-6143

HDCR.TDA Trapping general Non-secure System register accesses to debug registers on page G1-6143
G1-6142 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
0 This control has no effect on Non-secure EL0 and EL1 System register accesses to the Debug ROM
registers.

Table G1-61 on page G1-6143 shows the register accesses that are trapped, and how the exceptions are reported in
HSR:

If HDCR.TDE or HCR.TGE is 1, behavior is as if HDCR.TDRA is 1 other than for the purpose of a direct read.

Trapping Non-secure System register accesses to powerdown debug registers

HDCR.TDOSA traps Non-secure EL1 System register accesses to the powerdown debug registers to Hyp mode:

1 Non-secure EL1 System register accesses to the powerdown debug registers are trapped to Hyp
mode.

0 This control has no effect on Non-secure EL1 System register accesses to the powerdown debug
registers.

Table G1-62 on page G1-6143 shows the register accesses that are trapped, and how the exceptions are reported in
HSR.

Note

These registers are not accessible at EL0.

If HDCR.TDE or HCR.TGE is 1, behavior is as if HDCR.TDOSA is 1 other than for the purpose of a direct read.

Trapping general Non-secure System register accesses to debug registers

HDCR.TDA traps Non-secure EL0 and EL1 System register accesses to the debug registers that are not mentioned
in either of the following:

• Traps to Hyp mode of Non-secure System register accesses to debug registers on page G1-6142.

• Trapping Non-secure System register accesses to powerdown debug registers on page G1-6143.

This means that HDCR.TDA traps to Hyp mode Non-secure EL0 and EL1 System register accesses to all debug
registers except the following:

• Non-secure System register accesses to DBGDRAR or DBGDSAR. The HDCR.TDRA trap traps these
accesses.

• Non-secure System register access to DBGOSLSR, DBGOSLAR, DBGOSDLR, or DBGPRCR. The
HDCR.TDOSA trap traps these accesses.

Table G1-61 Register accesses trapped to Hyp mode when HDCR.TDRA is 1

Traps from Registers Syndrome reporting in HSR

Non-secure EL0 and
EL1

DBGDRAR,
DBGDSAR

For accesses using:

• MCR or MRC instructions, trapped MCR or MRC access (coproc==0b1110), using EC
value 0x05.

• MRRC instructions, trapped MRRC access (coproc==0b1110), using EC value
0x0C.

Table G1-62 Register accesses trapped to Hyp mode when HDCR.TDOSA is 1

Traps from Registers Syndrome reporting in HSR

Non-secure
EL1

DBGOSLSR, DBGOSLAR, DBGOSDLR, DBGPRCR

Any IMPLEMENTATION DEFINED integration registers.

Any IMPLEMENTATION DEFINED register with similar functionality
that the implementation specifies as trapped by HDCR.TDOSA.

Trapped MCR or MRC access
(coproc==0b1110), using EC value 0x05
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6143
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
HDCR.TDA does not trap accesses to DBGDTRTXint or DBGDTRRXint when the PE is in Debug state.

When HDCR.TDA is:

1 Non-secure EL0 or EL1 System register accesses to any of the registers shown in Table G1-63 on
page G1-6144 are trapped to Hyp mode.

0 This control has no effect on Non-secure EL0 or EL1 System register accesses.

Table G1-63 on page G1-6144 shows how the exceptions are reported in HSR.

If HDCR.TDE or HCR.TGE is 1, behavior is as if HDCR.TDA is 1 other than for the purpose of a direct read.

Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the Generic Timer registers

CNTHCTL.{PL1PCEN, PL1PCTEN} trap Non-secure EL0 and EL1 accesses to the Generic Timer registers to Hyp
mode, as follows:

• CNTHCTL.PL1PCEN traps Non-secure EL0 and EL1 accesses to the physical timer registers.

• CNTHCTL.PL1PCTEN traps Non-secure EL0 and EL1 accesses to the physical counter register.

For each of these controls:

1 This control has no effect on Non-secure EL0 and EL1 accesses to the registers shown in
Table G1-64 on page G1-6144.

0 Non-secure EL0 and EL1 accesses are trapped to Hyp mode.

Table G1-64 on page G1-6144 shows the registers for which accesses are trapped, and how the exceptions are
reported in HSR.

Table G1-63 Accesses trapped to Hyp mode when HDCR.TDA is 1

Traps from Trapped accesses Syndrome reporting in HSR

Non-secure
EL0 and EL1

Accesses to the DBGDIDR, DBGDSCRint,
DBGDCCINT, DBGDTRRXint, DBGDTRTXint,
DBGWFAR, DBGVCR, DBGDSCRext,
DBGDTRTXext, DBGDTRRXext, DBGBVR<n>,
DBGBCR<n>, DBGBXVR<n>, DBGWCR<n>,
DBGWVR<n>, DBGCLAIMSET, DBGCLAIMCLR,
DBGAUTHSTATUS, DBGDEVID, DBGDEVID1,
DBGDEVID2, and DBGOSECCR

For accesses using MCR or MRC instructions, trapped MCR or
MRC access (coproc==0b1110), using EC value 0x05

STC accesses to DBGDTRRXint.

LDC accesses to DBGDTRTXint.

Trapped LDC or STC access, using EC value 0x06

Table G1-64 Register accesses trapped to Hyp mode by CNTHCTL trap controls

Traps from
Trap
control

Registers Syndrome reporting in HSR

Non-secure EL0
and EL1

PL1PCEN CNTP_CTL, CNTP_CVAL,
CNTP_TVAL

For accesses using:

• MCR or MRC instructions, trapped MCR or MRC access
(coproc==0b1111), using EC value 0x03

• MCRR or MRRC instructions, trapped MCRR or MRRC access
(coproc==0b1111), using EC value 0x04

PL1PCTEN CNTPCT Trapped MCRR or MRRC access (coproc==0b1110), using EC value
0x04
G1-6144 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Performance Monitors
registers

If the Performance Monitors Extension is implemented, HDCR.{TPM, TPMCR} trap Non-secure EL0 and EL1
accesses to the Performance Monitors registers to Hyp mode:

HDCR.TPM:

1 Non-secure EL0 and EL1 accesses to all Performance Monitors registers are trapped to
Hyp mode.

0 This control has no effect on Non-secure EL0 and EL1 accesses to the Performance
Monitors registers.

HDCR.TPMCR:

1 Non-secure EL0 and EL1 accesses to the Performance Monitors Control Register are
trapped to Hyp mode.

Note
The conditions for this trap are identical to those for the trap controlled by HDCR.TPM

0 This control has no effect on Non-secure EL0 and EL1 accesses to the Performance
Monitors Control Registers.

Note

• EL2 does not provide traps on Performance Monitor register accesses through the optional memory-mapped
external debug interface.

• If the Performance Monitors Extension is not implemented, HDCR.{TPM, TPMCR} are RES0.

Table G1-65 on page G1-6145 shows the registers for which accesses are trapped, and how the exceptions are
reported in HSR.

Note

HDCR.HPMN affects whether a counter can be accessed from Non-secure EL1 or EL0. See the register description
of HDCR for more information.

Table G1-65 Register accesses trapped to Hyp mode when HDCR.{TPM, TPMCR} are 1

Traps from
Trap
control

Registers Syndrome reporting in HSR

Non-secure
EL0 and
EL1

TPM PMCR, PMCNTENSET, PMCNTENCLR,
PMOVSR, PMSWINC, PMSELR, PMCEID0,
PMCEID1, PMCCNTR, PMXEVTYPER,
PMXEVCNTR, PMUSERENR,
PMINTENSET, PMINTENCLR, PMOVSSET,
PMEVCNTR<n>, PMEVTYPER<n>,
PMCCFILTR

For accesses using:

• MCR or MRC instructions, trapped MCR or MRC
access (coproc==0b1111), using EC value
0x03.

• MCRR or MRRC instructions, trapped MCRR or MRRC
access (coproc==0b1111), using EC value
0x04.

TPMCR PMCR Trapped MCR or MRC access (coproc==0b1111), using
EC value 0x03
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6145
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
Traps to Hyp mode of Non-secure EL1 accesses to the RAS error record registers

HCR2.TERR traps Non-secure EL1 accesses to the RAS ER* registers to Hyp mode. For more information on the
RAS ER* registers, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the
ARMv8-A architecture profile.

G1.21.4 EL3 configurable controls

Table G1-67 on page G1-6146 shows the System registers that contain these controls.

Table G1-68 on page G1-6146 summarizes the controls.

Table G1-66 Register accesses trapped to Hyp mode when HCR2.TERR is 1

Traps from
Trap
control

Registers Syndrome reporting in HSR

Non-secure
EL0 and
EL1

TERR ERRIDR, ERRSELR, ERXADDR,
ERXADDR2, ERXCTLR, ERXCTLR2,
ERXFR, ERXFR2, ERXMISC0, ERXMISC1,
ERXMISC2, ERXMISC3, ERXMISC4,
ERXMISC5, ERXMISC6, ERXMISC7,
ERXSTATUS.

For accesses using:

• MCR or MRC instructions, trapped MCR or MRC
access (coproc==0b1111), using EC value
0x03.

• MCRR or MRRC instructions, trapped MCRR or MRRC
access (coproc==0b1111), using EC value
0x04.

Table G1-67 System registers that contain instruction enables and disables, and trap controls

Register name Register description

SCR Secure Configuration Register

NSACR Non-secure Access Control Register

Table G1-68 EL3 Instruction enables and disables, and trap controls

Control
Type of
control
a

Trap

SCR.{TWE, TWI} T Traps to Monitor mode of the execution of WFE and WFI instructions in modes other than
Monitor mode on page G1-6148

SCR.HCE E Enabling EL2 and Non-secure EL1 execution of HVC instructions on page G1-6149

SCR.SCD D Disabling SMC instructions on page G1-6149

NSACR.NSTRCDIS D Disabling Non-secure System register access to the trace registers on page G1-6149

SDCR.TTRF T Traps to Monitor mode of System register accesses to the trace filter control registers on
page G1-6150

NSACR.{cp11, cp10} E Enabling Non-secure access to SIMD and floating-point functionality on page G1-6150

NSACR.NSASEDIS D Disabling Non-secure access to Advanced SIMD functionality on page G1-6150

SCR.TERR T Traps to Monitor mode of accesses to RAS error record registers on page G1-6148

a. See Table G1-69 on page G1-6147.
G1-6146 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
Also see the following:

• Register access instructions on page G1-6118.

• Instructions that fail their Condition code check on page G1-6147.

• Trapping to EL3 of instructions that are UNPREDICTABLE on page G1-6148.

Instructions that fail their Condition code check

For UNDEFINED instructions that fail their Condition code check, see Conditional execution of undefined instructions
on page G1-6080.

For an instruction that has a Monitor trap set that fails its Condition code check:

• Unless the trap description states otherwise, it is IMPLEMENTATION DEFINED whether the instruction:

— Generates a Monitor Trap exception.

— Executes as a NOP.

Any implementation must be consistent in its handling of instructions that fail their Condition code check. This
means that:

• Whenever a Monitor trap is set on such an instruction it must either:

— Always generate a Monitor trap exception.

— Always treat the instruction as a NOP.

• The IMPLEMENTATION DEFINED part of the requirements of Conditional execution of undefined instructions
on page G1-6080 must be consistent with the handling of Monitor traps on instructions that fail their
Condition code check. Table G1-70 on page G1-6147 shows this:

Note

When SCR{TWE, TWI} is set so that conditional WFE and WFI instructions are trapped to Monitor mode, the
attempted execution of a conditional WFE or WFI instruction is only trapped if the instruction passes its Condition code
check. See Traps to Monitor mode of the execution of WFE and WFI instructions in modes other than Monitor mode
on page G1-6148.

Table G1-69 Control types, for AArch32 EL3 controls

Abbreviation Type See

D Disable Instruction enables and instruction disables on page G1-6117

E Enable Instruction enables and instruction disables on page G1-6117

T Trap Trap controls on page G1-6117

Table G1-70 Consistent handling of instructions that fail their Condition code check

Behavior of conditional UNDEFINED instructiona Monitor trap on instruction that fails its Condition code checkb

Executes as a NOP Executes as a NOP

Generates an Undefined Instruction exception Generates a Monitor trap exception

a. As defined in Conditional execution of undefined instructions on page G1-6080. In Non-secure EL0 and EL1 modes, this applies only if no
Monitor trap is set for the instruction, otherwise see the behavior in the other column of the table.

b. For a trapped instruction executed in a Non-secure EL1 or EL0 mode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6147
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
Trapping to EL3 of instructions that are UNPREDICTABLE

For an instruction that is UNPREDICTABLE, when the instruction is disabled or trapped then it is CONSTRAINED
UNPREDICTABLE whether execution of the instruction generates a Monitor Trap exception.

Note

UNPREDICTABLE and CONSTRAINED UNPREDICTABLE behavior must not perform any function that cannot be
performed at the current or lower Exception level using instructions that are not UNPREDICTABLE and are not
CONSTRAINED UNPREDICTABLE. This means that disabling or trapping an instruction changes the set of instructions
that might be executed in modes other than Monitor mode. This affects, indirectly, the permitted behavior of
UNPREDICTABLE and CONSTRAINED UNPREDICTABLE instructions.

If no instructions are trapped, the attempted execution of an UNPREDICTABLE instruction in a mode other than
Monitor mode must not generate a Monitor Trap exception.

Traps to Monitor mode of the execution of WFE and WFI instructions in modes other than
Monitor mode

SCR{TWE, TWI} trap WFE and WFI instructions to Monitor mode:

SCR.TWE 1 Any attempt to execute a WFE instruction in any mode other than Monitor mode is
trapped to Monitor mode, if the instruction would otherwise have caused the PE to enter
a low-power state.

0 This control has no effect on the execution of WFE instructions.

SCR.TWI 1 Any attempt to execute a WFI instruction in any mode other than Monitor mode is
trapped to Monitor mode, if the instruction would otherwise have caused the PE to enter
a low-power state.

0 This control has no effect on the execution of WFI instructions.

For PL0 and PL1, these traps apply to WFE and WFI instruction execution in both Security states.

The attempted execution of a conditional WFE or WFI instruction is only trapped if the instruction passes its Condition
code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed
to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the
instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

For more information about these instructions, and when they can cause the PE to enter a low-power state, see:

• Wait For Event and Send Event on page G1-6104.

• Wait For Interrupt on page G1-6107.

Traps to Monitor mode of accesses to RAS error record registers

SCR.TERR traps accesses to the RAS ER* registers from modes other than Monitor mode to Monitor mode.

Table G1-71 Register accesses trapped to EL3 when SCR.TERR is 1

Traps from Registers Syndrome reporting in ESR_EL3

AArch32
state

ERRIDR, ERRSELR, ERXADDR, ERXADDR2,
ERXCTLR, ERXCTLR2, ERXFR, ERXFR2,
ERXMISC0, ERXMISC1, ERXMISC2,
ERXMISC3, ERXMISC4, ERXMISC5,
ERXMISC6, ERXMISC7, ERXSTATUS.

For accesses using:

• MCR or MRC instructions, trapped MCR or MRC access
(coproc==0b1111), using EC value 0x03

• MCRR or MRRC instructions, trapped MCRR or MRRC access,
(coproc==0b1111) using EC value 0x04
G1-6148 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
This trap control applies to accesses from both Security states.

Enabling EL2 and Non-secure EL1 execution of HVC instructions

SCR.HCE enables EL2 and Non-secure EL1 execution of HVC instructions:

1 HVC instruction execution is enabled at EL2 and Non-secure EL1.

0 HVC instructions are:

• UNDEFINED at Non-secure EL1. The Undefined Instruction exception is taken to Undefined
mode.

• CONSTRAINED UNPREDICTABLE at EL2. The behavior must be one of the following:

— The instruction is UNDEFINED.

— The instruction executes as a NOP.

Note
• If EL2 is not implemented, SCR.HCE is RES0 and HVC is UNDEFINED.

• HVC instructions are always UNDEFINED at EL0 and in Secure state.

Disabling SMC instructions

SCR.SCD disables SMC instructions:

1 In Non-secure state

SMC instructions are UNDEFINED. The Undefined Instruction exception is taken from the
current Exception level to the current Exception level.

In Secure state

Behavior is one of the following:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

0 SMC instructions are enabled.

Note

• SMC instructions are always UNDEFINED at EL0.

• When the value of HCR.TSC is 1, any attempted execution of an SMC instruction at Non-secure EL1 is trapped
to EL2, regardless of the value of SCR.SCD, see Traps to Hyp mode of Non-secure EL1 execution of SMC
instructions on page G1-6133. As Synchronous exception prioritization for exceptions taken to AArch32 state
on page G1-6047 shows, this is an exception to the general exception prioritization rules that prioritize most
Undefined Instruction exceptions taken to Undefined mode above traps to a higher Exception level.

Disabling Non-secure System register access to the trace registers

NSACR.NSTRCDIS disables Non-secure System register accesses to the trace registers, from all Privilege levels:

1 Non-secure state accesses are disabled. Secure state accesses are enabled. If the PE is in Non-secure
state:

• CPACR.TRCDIS behaves as RAO/WI, regardless of its actual value. See Traps to Undefined
mode of PL0 and PL1 System register accesses to trace registers on page G1-6121.

This behavior applies even if the CPACR.TRCDIS control is not implemented. See the
referenced section for more information.

• HCPTR.TTA behaves as RAO/WI, regardless of its actual value. See Traps to Hyp mode of
Non-secure System register accesses to trace registers on page G1-6139.

0 There is no effect on accesses to CPACR.TRCDIS and HCPTR.TTA.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6149
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
Note

• System register accesses to the trace registers use the (coproc==0b1111) encoding space.

• NSACR.NSTRCDIS might be implemented as RAZ/WI. See the NSACR register description for more
information.

• The ETMv4 architecture does not permit EL0 to access the trace registers. If the Armv8-A architecture is
implemented with an ETMv4 implementation, EL0 accesses to the trace registers are UNDEFINED.

• EL3 does not provide Non-secure access controls on trace register accesses through the optional
memory-mapped external debug interface.

Traps to Monitor mode of System register accesses to the trace filter control registers

SDCR.TTRF traps any System register accesses to trace filter control registers to Monitor mode:

1 Any attempt to access a trace filter control register in any mode other than Monitor mode is trapped
to Monitor mode.

0 This control has no effect.

Enabling Non-secure access to SIMD and floating-point functionality

NSACR.{cp11, cp10} enable Non-secure access to the SIMD and floating-point registers, from all Privilege levels:

0b11 All accesses, from both Security states, are enabled.

0b00 Non-secure state accesses are disabled. Secure state accesses are enabled. If the PE is in Non-secure
state:

• CPACR.{cp11, cp10} behave as RAZ/WI. See Enabling PL0 and PL1 accesses to the SIMD
and floating-point registers on page G1-6122.

• HCPTR.{TCP11, TCP10} behave as RAO/WI. See General trapping to Hyp mode of
Non-secure accesses to the SIMD and floating-point registers on page G1-6137.

Note

Software must set NSACR.cp11 and NSACR.cp10 to the same value.

For more information about SIMD and floating-point support, see Advanced SIMD and floating-point support on
page G1-6112.

Disabling Non-secure access to Advanced SIMD functionality

NSACR.NSASEDIS disables Non-secure accesses to the Advanced SIMD functionality, from all Privilege levels:

1 Non-secure state accesses are disabled. Secure accesses are enabled. If the PE is in Non-secure state:

• CPACR.ASEDIS behaves as RAO/WI. See Disabling PL0 and PL1 execution of Advanced
SIMD instructions on page G1-6123.

• HCPTR.TASE behaves as RAO/WI. See Traps to Hyp mode of Non-secure accesses to
Advanced SIMD functionality on page G1-6138.

These behaviors apply even if one or both of the CPACR.ASEDIS and HCPTR.TASE controls is
not implemented. See the referenced sections for more information.

0 There is no effect on CPACR.ASEDIS and HCPTR.TASE.

G1.21.5 Pseudocode description of configurable instruction enables, disables, and traps

The pseudocode function AArch32.CheckITEnabled() checks whether the T32 IT instruction is enabled.
G1-6150 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
The pseudocode function AArch32.CheckSETENDEnabled() checks whether the SETEND instruction is disabled.

The pseudocode function for AArch32.CheckForSMCUndefOrTrap() checks for traps on an SMC instruction.

The AArch32.CheckForWFxTrap() pseudocode function checks for traps on WFE and WFI instructions:

Pseudocode description of enabling SIMD and floating-point functionality

The AArch32.CheckAdvSIMDOrFPEnabled() and AArch32.CheckFPAdvSIMDTrap() pseudocode functions take appropriate
action if an SIMD or floating-point instruction is used when the SIMD and floating-point functionality is not
enabled or is trapped.

The CheckAdvSIMDOrVFPEnabled(), CheckAdvSIMDEnabled(), and CheckVFPEnabled() wrapper functions support the
AArch32.CheckAdvSIMDOrFPEnabled() and AArch32.CheckFPAdvSIMDTrap() functions.

The AArch32.CheckAdvSIMDOrFPEnabled(), AArch32.CheckFPAdvSIMDTrap(), CheckAdvSIMDOrVFPEnabled(),
CheckAdvSIMDEnabled(), and CheckVFPEnabled() functions are described in Chapter J1 Armv8 Pseudocode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G1-6151
ID072021 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Configurable instruction enables and disables, and trap controls
G1-6152 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter G2
AArch32 Self-hosted Debug

When the PE is using self-hosted debug, it generates debug exceptions. This chapter describes the AArch32
self-hosted debug exception model. It is organized as follows:

Introductory information

• About self-hosted debug on page G2-6154.

• The debug exception enable controls on page G2-6158.

The debug Exception model

• Routing debug exceptions on page G2-6159.

• Enabling debug exceptions from the current Privilege level and Security state on
page G2-6161.

• The effect of powerdown on debug exceptions on page G2-6163.

• Summary of permitted routing and enabling of debug exceptions on page G2-6164.

• Pseudocode description of debug exceptions on page G2-6166.

The debug exceptions

• Breakpoint Instruction exceptions on page G2-6167.

• Breakpoint exceptions on page G2-6170.

• Watchpoint exceptions on page G2-6195.

• Vector Catch exceptions on page G2-6209.

Synchronization requirements

The behavior of self-hosted debug after changes to System registers, or after changes to the
authentication interface, but before a Context synchronization event guarantees the effects of the
changes:

• Synchronization and debug exceptions on page G2-6217.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6153
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.1 About self-hosted debug
G2.1 About self-hosted debug

Self-hosted debug supports debugging through the generation and handling of debug exceptions, that are taken using
the exception model described in:

• Chapter D1 The AArch64 System Level Programmers’ Model, if the exception is taken to AArch64 state.

• Chapter G1 The AArch32 System Level Programmers’ Model, if the exception is taken to AArch32 state.

This section introduces some terms used in describing self-hosted debug, and then introduces the debug exceptions.
See:

• Definition of a debugger in the context of self-hosted debug on page G2-6154.

• Context ID and Process ID on page G2-6154.

G2.1.1 Definition of a debugger in the context of self-hosted debug

Within this chapter, debugger means that part of an operating system, or higher level of system software, that
handles debug exceptions and programs the debug System registers. An operating system with rich application
environments might provide debug services that support a debugger user interface executing at EL0. From the
architectural perspective, the debug services are the debugger.

G2.1.2 Context ID and Process ID

In AArch32 state, the CONTEXTIDR identifies the current Context ID, that is used by:

• The debug logic, for breakpoint and watchpoint matching.

• Implemented trace logic, to identify the current process.

When using the Long-descriptor translation table format, the CONTEXTIDR has a single field, PROCID, that is
defined as the Process Identifier (Process ID). Therefore, in AArch64 state, the Context ID and Process ID are
identical when using this translation table format.

When using the Short-descriptor translation table format:

• CONTEXTIDR[31:0] defines the Context ID, that is used for breakpoint and watchpoint matching.

• CONTEXTIDR[31:8] defines the Process ID.

• CONTEXTIDR[7:0] define the ASID. See Global and process-specific translation table entries on
page G5-6332. This means that, when using the Short-descriptor translation table format, the ASID is always
bits[7:0] of the Context ID.

G2.1.3 About debug exceptions

Debug exceptions occur during normal program flow if a debugger has programmed the PE to generate them. For
example, a software developer might use a debugger contained in an operating system to debug an application. To
do this, the debugger might enable one or more debug exceptions. The debug exceptions that can be generated in
an AArch32 stage 1 translation regime are:

• Breakpoint Instruction exceptions on page G2-6155.

• Breakpoint exceptions on page G2-6155, generated by hardware breakpoints.

• Watchpoint exceptions on page G2-6156, generated by hardware watchpoints.

• Vector Catch exceptions on page G2-6156.

Note

In addition, Software Step exceptions can be generated in stage 1 of an AArch32 translation regime. However, these
are always taken to AArch64 state. Software Step exceptions on page D2-2566 describes this.

The PE can only generate a particular debug exception when both:

1. Debug exceptions are enabled from the current Exception level and Security state.
G2-6154 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.1 About self-hosted debug
See Enabling debug exceptions from the current Privilege level and Security state on page G2-6161.
Breakpoint Instruction exceptions are always enabled from the current Exception level and Security state.

2. A debugger has enabled that particular debug exception.

All of the debug exceptions except for Breakpoint Instruction exceptions have an enable control contained in
the DBGDSCRext. See The debug exception enable controls on page G2-6158.

Note

If halting is allowed and EDSCR.HDE is 1, hardware breakpoints and watchpoints cause entry to Debug state
instead of causing debug exceptions. In Debug state, the PE is halted.

For the definition of halting is allowed, see Halting allowed and halting prohibited on page H2-7339.

When a debug exception is taken to an Exception level that is using AArch32:

• If the debug exception is a Watchpoint exception, it is taken as a Data Abort exception.

• Otherwise, it is taken as a Prefetch Abort exception.

The following list summarizes each of the debug exceptions:

Breakpoint Instruction exceptions

Breakpoint instructions generate these. Breakpoint instructions are instructions that software
developers can use to cause exceptions at particular points in the program flow.

The breakpoint instruction in the A32 and T32 instruction sets is BKPT #<immediate>. Whenever one
of these is committed for execution, the PE takes a Breakpoint Instruction exception.

PE behavior

Breakpoint Instruction exceptions cannot be masked. The PE takes Breakpoint
Instruction exceptions regardless of both of the following:

• The current Privilege level and AArch32 mode.

• The current Security state.

For more information, see Breakpoint Instruction exceptions on page G2-6167.

Breakpoint exceptions

The Armv8-A architecture provides 2-16 hardware breakpoints. These can be programmed to
generate Breakpoint exceptions based on particular instruction addresses, or based on particular PE
contexts, or both.

For example, a software developer might program a hardware breakpoint to generate a Breakpoint
exception whenever the instruction with address 0x1000 is committed for execution.

The Armv8-A architecture supports the following types of hardware breakpoint for use in stage 1
of an AArch32 translation regime:

• Address:

— Address Match.

— Address Mismatch.

Comparisons are made with the virtual address of each instruction in the program flow.

• Context:

— Context ID Match. Matches with the Context ID value held in the CONTEXTIDR.

— VMID Match. Matches with the VMID value held in the VTTBR.

— Context ID and VMID Match. Matches with both the Context ID and the VMID value.

An Address breakpoint can link to a Context breakpoint, so that the Address breakpoint only
generates a Breakpoint exception if the PE is in a particular context when the address match or
mismatch occurs.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6155
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.1 About self-hosted debug
A breakpoint generates a Breakpoint exception whenever an instruction that causes a match is
committed for execution.

PE behavior

If halting is allowed and EDSCR.HDE is 1, hardware breakpoints cause entry to Debug
state. That is, they halt the PE. See Chapter H2 Debug State.

Otherwise:

• If debug exceptions are enabled, hardware breakpoints cause Breakpoint
exceptions.

• If debug exceptions are disabled, hardware breakpoints are ignored.

For more information, see Breakpoint exceptions on page G2-6170.

Watchpoint exceptions

The Armv8-A architecture provides 2-16 hardware watchpoints. These can be programmed to
generate Watchpoint exceptions based on accesses to particular data addresses, or based on accesses
to any address in a data address range.

For example, a software developer might program a hardware watchpoint to generate a Watchpoint
exception on an access to any address in the data address range 0x1000 - 0x101F.

A hardware watchpoint can link to a hardware breakpoint if the hardware breakpoint is a Linked
Context type. In this case, the watchpoint only generates a Watchpoint exception if the PE is in a
particular context when the data address match occurs.

The smallest data address size that a watchpoint can be programmed to match on is a byte. A single
watchpoint can be programmed to match on one or more bytes.

A watchpoint generates a Watchpoint exception whenever an instruction that initiates an access that
causes a match is committed for execution.

PE behavior

If halting is allowed and EDSCR.HDE is 1, hardware watchpoints cause entry to Debug
state. That is, they halt the PE. See Chapter H2 Debug State.

Otherwise:

• If debug exceptions are enabled, hardware watchpoints cause Watchpoint
exceptions.

• If debug exceptions are disabled, hardware watchpoints are ignored.

For more information, see Watchpoint exceptions on page G2-6195.

Vector Catch exceptions

These are used to trap exceptions. The Armv8-A architecture provides two forms of vector catch,
address-matching and exception-trapping. Only one form can be implemented.

Whichever form is implemented, a debugger must enable Vector Catch exceptions for one or more
exception vectors by programming the DBGVCR. Generation of Vector Catch exceptions is then as
follows:

• For the address-matching form, a Vector Catch exception is generated whenever the virtual
address of an instruction matches a vector that Vector Catch exceptions are enabled for.

• For the Exception-trapping form, a Vector Catch exception is generated as part of exception
entry for exception types that correspond to vectors that Vector Catch exceptions are enabled
for.

PE behavior

If debug exceptions are:

• Enabled, Vector Catch exceptions can be generated.

• Disabled, vector catch is ignored.

For more information, see Vector Catch exceptions on page G2-6209.

Table G2-1 on page G2-6157 summarizes PE behavior and shows the location of the pseudocode for each of the
debug exceptions.
G2-6156 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.1 About self-hosted debug
Table G2-1 PE behavior and pseudocode for each of the debug exceptions

Debug exception
PE behavior if debug exceptions are:

Pseudocode
Enabled Disabled

Breakpoint
Instruction
exception

Takes Prefetch
Abort exception

Takes Prefetch
Abort exception

AArch32.SoftwareBreakpoint()

Breakpoint
exception

Takes Prefetch
Abort exceptiona

Ignored See Pseudocode description of Breakpoint exceptions taken
from AArch32 state on page G2-6194

Watchpoint
exception

Takes Data Abort
exceptiona

Ignored See Pseudocode description of Watchpoint exceptions taken
from AArch32 state on page G2-6207

Vector Catch
exception

Takes Prefetch
Abort exception

Ignored See Pseudocode description of Vector Catch exceptions on
page G2-6216

a. If halting is allowed and EDSCR.HDE is 1, hardware breakpoints and watchpoints cause the PE to enter Debug state instead of causing debug
exceptions. See Chapter H2 Debug State.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6157
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.2 The debug exception enable controls
G2.2 The debug exception enable controls

The enable controls for each debug exception are as follows:

Breakpoint Instruction exceptions

None. Breakpoint Instruction exceptions are always enabled.

Breakpoint exceptions

DBGDSCRext.MDBGen, plus an enable control for each breakpoint, DBGBCR<n>.E.

Watchpoint exceptions

DBGDSCRext.MDBGen, plus an enable control for each watchpoint, DBGWCR<n>.E.

Vector Catch exceptions

DBGDSCRext.MDBGen.

In addition, for all debug exceptions other than Breakpoint Instruction exceptions, software must configure the
controls that enable debug exceptions from the current Exception level and Security state. See Enabling debug
exceptions from the current Privilege level and Security state on page G2-6161.

The PE cannot take a debug exception if debug exceptions are disabled from either the current Exception level or
the current Security state.

Breakpoint Instruction exceptions are always enabled from the current Exception level and Security state.
G2-6158 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.3 Routing debug exceptions
G2.3 Routing debug exceptions

Debug exceptions are usually routed to Abort mode. However, if EL2 is implemented, the routing of debug
exceptions depends on the Effective values of HDCR.TDE and HCR.TGE:

If the Effective value of {HDCR.TDE, HCR.TGE} is not {0, 0}

Debug exceptions taken from Non-secure state are routed to Hyp mode.

If EL2 is using AArch64 and FEAT_SEL2 is implemented, debug exceptions taken from Secure
EL0 and Secure EL1 may be routed to Secure EL2. For more information, see Routing debug
exceptions on page D2-2569.

Otherwise

In Non-secure state debug exceptions behave as follows:

• Debug exceptions taken from Non-secure EL1 and Non-secure EL0 are routed to Non-secure
Abort mode.

• Breakpoint Instruction exceptions taken from Hyp mode are routed to Hyp mode.

• All other debug exceptions are disabled from Hyp mode.

Note

If EL2 is not implemented, the Effective value of HCR.TGE is 0 and the Effective value of HDCR.TDE is 0.

Table G2-2 on page G2-6159, Table G2-3 on page G2-6159, and Table G2-4 on page G2-6160 show the routing of
debug exceptions taken from an Exception level that is using AArch32 to an Exception level that is using AArch32.
In these tables:

TDE Means the logical OR of HDCR.TDE and HCR.TGE.

(Hyp mode) Means:

• All debug exceptions other than Breakpoint Instruction exceptions are disabled from this
Privilege level.

• Breakpoint Instruction exceptions taken from this Privilege level are taken to Hyp mode.

Table G2-2 Routing when both EL3 and EL2 are implemented

TDE

Target AArch32 mode when executing in:

Non-secure:
Secure state

PL0 PL1 PL2

0 Non-secure Abort mode Non-secure Abort mode (Hyp mode) Secure Abort mode

1 Hyp mode Hyp mode (Hyp mode) Secure Abort mode

Table G2-3 Routing when EL3 is implemented and EL2 is not implemented

Target AArch32 mode when executing in:

Non-secure state Secure state

Non-secure Abort mode Secure Abort mode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6159
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.3 Routing debug exceptions
G2.3.1 Pseudocode description of routing debug exceptions

DebugTarget() returns the current debug target Exception level. DebugTargetFrom() returns the debug target
Exception level for the specified Security state.

Table G2-4 Routing when EL3 is not implemented and EL2 is implemented

TDE Target AArch32 mode when executing in Non-secure:

PL0 PL1 PL2

0 Non-secure Abort mode Non-secure Abort mode (Hyp mode)

1 Hyp mode Hyp mode (Hyp mode)
G2-6160 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.4 Enabling debug exceptions from the current Privilege level and Security state
G2.4 Enabling debug exceptions from the current Privilege level and Security state

A debug exception can only be taken if all of the following are true:

• The OS Lock is unlocked.

• DoubleLockStatus() == FALSE.

• The debug exception is enabled from the current Privilege level.

• The debug exception is enabled from the current Security state.

Table G2-5 on page G2-6161 shows when debug exceptions are enabled from the current Privilege level.

Table G2-6 on page G2-6161 shows when debug exceptions are enabled from the current Security state.

G2.4.1 Disabling debug exceptions from Secure state

If EL3 is implemented, software executing at EL3 can enable or disable all debug exceptions taken from Secure PL1
other than Breakpoint Instruction exceptions, by using one of:

• The Secure Privileged Debug field, SDCR.SPD, if EL3 is using AArch32.

• The AArch32 Secure Privileged Debug field, MDCR_EL3.SPD32, if EL3 is using AArch64.

If debug exceptions are disabled from Secure PL1, software executing at Secure PL1 can set the Secure User
Invasive Debug Enable bit, SDER.SUIDEN, to 1 to enable all debug exceptions taken from Secure PL0 other than
Breakpoint Instruction exceptions.

Note

Breakpoint Instruction exceptions are always enabled.

The Armv8-A architecture does not support disabling debug in Non-secure state.

Note

If the boot software that is executed when reset is deasserted programs SUIDEN and SPD so that all debug
exceptions are disabled from Secure state, software operating at EL3 never has to switch any of the debug registers
between the Security states.

Table G2-5 Whether debug exceptions are enabled from the current Privilege level

Current Privilege level Breakpoint Instruction exceptions All other debug exceptions

PL2 Enabled Disabled

PL1 Enabled Enabled

PL0

Table G2-6 Whether debug exceptions are enabled from the current Security state

Current Security state Breakpoint Instruction exceptions All other debug exceptions

Non-secure Enabled Enabled from PL1 and PL0 only.

Secure Enabled Depends on SDCR.SPD and SDER.SUIDEN.

See Disabling debug exceptions from Secure state
on page G2-6161.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6161
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.4 Enabling debug exceptions from the current Privilege level and Security state
G2.4.2 Pseudocode description of enabling debug exceptions

AArch64.GenerateDebugExceptions() determines whether debug exceptions are enabled from the current Exception
level and Security state. AArch64.GenerateDebugExceptionsFrom() determines whether debug exceptions are enabled
from the specified Exception level and Security state.
G2-6162 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.5 The effect of powerdown on debug exceptions
G2.5 The effect of powerdown on debug exceptions

Debug OS Save and Restore sequences on page H6-7446 describes the powerdown save routine and the restore
routine.

When executing either routine, software must use the OS Lock to disable generation of all of the following:

• Breakpoint exceptions.

• Watchpoint exceptions.

• Vector Catch exceptions.

This is because the generation of these exceptions depends on the state of the debug registers, and the state of the
debug registers might be lost over these routines.

Debug exceptions other than Breakpoint Instruction exceptions are enabled only if both the OS Lock is unlocked
and DoubleLockStatus() == FALSE.

Breakpoint Instruction exceptions are enabled regardless of the state of the OS Lock and the OS Double Lock.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6163
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.6 Summary of permitted routing and enabling of debug exceptions
G2.6 Summary of permitted routing and enabling of debug exceptions

Behavior is as follows:

Breakpoint Instruction exceptions

These are always enabled, regardless of the current Privilege level and Security state. Table G2-7
on page G2-6164 shows the routing of these. In the table, n/a means not applicable.

All other debug exceptions

The enabling and permitted routing is controlled by all of the following:

• SDCR.SPD.

• SDER.SUIDEN.

• HDCR.TDE.

• The IMPLEMENTATION DEFINED authentication interface.

Table G2-8 on page G2-6164 shows the valid combinations of the values of SDCR.SPD,
SDER.SUIDEN, HDCR.TDE, and, in the Auth on page G2-6164 column, the input from the
IMPLEMENTATION DEFINED authentication interface described by the pseudocode function
AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled(). For each combination, the table
shows where debug exceptions are enabled from and where they are taken to.

In the table, n/a means not applicable and a dash, -, means that debug exceptions are disabled from
that Exception level.

Table G2-7 Routing of Breakpoint Instruction exceptions

Current Security state HDCR.TDEa:

a. If EL2 is not implemented, behavior is as if the value of this bit is 0. Otherwise, if the value of HCR.TGE is 1,
HDCR.TDE is treated as being 1 other than for a direct read of HDCR.

Target when enabled from:

PL0 PL1 PL2

Secure X Secure Abort modeb

b. If EL3 is implemented and is using AArch32, Secure Abort mode is at EL3. Otherwise, Secure Abort mode is at EL1.

Secure Abort modeb n/a

Non-secure 0 Non-secure Abort mode Non-secure Abort mode Hyp mode

1 Hyp mode Hyp mode Hyp mode

Table G2-8 Breakpoint, Watchpoint, and Vector Catch exceptions

Debug
state

Loc
ka

Current Security
state

SP
Db

Auth
c

SUID
EN

TD
Ed

Target AArch32 mode when enabled from:

PL0 PL1
PL
2

Yes X X 0bXX X X X - - -

No TRU
E

X 0bXX X X X - - -

No FAL
SE

Secure 0b00 FAL
SE

0 X - - n/a

No FAL
SE

Secure 0b00 FAL
SE

1 X Secure Abort
modee

- n/a

No FAL
SE

Secure 0b00 TRU
E

X X Secure Abort
modee

Secure Abort
modee

n/a
G2-6164 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.6 Summary of permitted routing and enabling of debug exceptions
No FAL
SE

Secure 0b10 X 0 X - - n/a

No FAL
SE

Secure 0b10 X 1 X Secure Abort
modee

- n/a

No FAL
SE

Secure 0b11 X X X Secure Abort
modee

Secure Abort
modee

n/a

No FAL
SE

Non-secure 0bXX X X 0 Non-secure Abort
mode

Non-secure Abort
mode

-

No FAL
SE

Non-secure 0bXX X X 1 Hyp mode Hyp mode -

a. The value of (OSLSR_EL1.OSLK == ’1’ || DoubleLockStatus()).

b. If EL3 is not implemented, behavior is as if this is 0b11.

c. See the text that introduces this table for an explanation of the Auth on page G2-6164 column. An entry of TRUE indicates that the
authentication mechanism permits the debug exceptions to be taken to their default target PE mode.

d. If HCR.TGE is 1, this bit is treated as being 1 other than for a direct read of HDCR. If EL2 is not implemented, behavior is as if TDE is 0.

e. If EL3 is implemented and is using AArch32, Secure Abort mode is at EL3. Otherwise, Secure Abort mode is at EL1

Table G2-8 Breakpoint, Watchpoint, and Vector Catch exceptions (continued)

Debug
state

Loc
ka

Current Security
state

SP
Db

Auth
c

SUID
EN

TD
Ed

Target AArch32 mode when enabled from:

PL0 PL1
PL
2

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6165
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.7 Pseudocode description of debug exceptions
G2.7 Pseudocode description of debug exceptions

AArch32.DebugFault() returns a FaultRecord() that indicates that a memory access has generated a debug exception.

The AArch32.Abort() function processes FaultRecord(), as described in Abort exceptions on page G4-6260, and
generates:

• Data Abort exceptions for watchpoints.

• Prefetch Abort exceptions for all other debug exceptions.
G2-6166 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.8 Breakpoint Instruction exceptions
G2.8 Breakpoint Instruction exceptions

This section describes Breakpoint Instruction exceptions in an AArch32 translation regime.

Note

When the PE is executing in EL0 using AArch32 and EL1 is using AArch64, it is using the AArch64 EL1&0
translation regime. A T32 or A32 BKPT instruction executed at EL0 can generate a Breakpoint Instruction exception
that is taken to an Exception level that is using AArch64. For more information about the handling of these
exceptions, see Breakpoint Instruction exceptions on page D2-2577.

It contains the following subsections:

• About Breakpoint Instruction exceptions.

• Breakpoint instruction in the A32 and T32 instruction sets.

• BKPT instructions as the first instruction in an IT block on page G2-6168.

• Exception syndrome information and preferred return address for a BKPT instruction on page G2-6168.

• Pseudocode description of Breakpoint Instruction exceptions on page G2-6169.

G2.8.1 About Breakpoint Instruction exceptions

A breakpoint is an event that results from the execution of an instruction, based on either:

• The instruction address, the PE context, or both. This type of breakpoint is called a hardware breakpoint.

• The instruction itself. That is, the instruction is a breakpoint instruction. These can be included in the
program that the PE executes. This type of breakpoint is called a software breakpoint.

Breakpoint Instruction exceptions, that this section describes, are software breakpoints. Breakpoint exceptions on
page G2-6170 describes hardware breakpoints.

There is no enable control for Breakpoint Instruction exceptions. They are always enabled, and cannot be masked.

A Breakpoint Instruction exception is generated whenever a breakpoint instruction is committed for execution,
regardless of all of the following:

• The current Exception level.

• The current Security state.

• Whether the debug target Exception level, ELD, is using AArch64 or AArch32.

Note

• ELD is the Exception level that debug exceptions are targeting. See Enabling debug exceptions from the
current Privilege level and Security state on page G2-6161.

• Debuggers using breakpoint instructions must be aware of the Armv8 rules for concurrent modification and
execution of instructions. See Concurrent modification and execution of instructions on page B2-130.

G2.8.2 Breakpoint instruction in the A32 and T32 instruction sets

The breakpoint instruction, in both instruction sets, is:

• BKPT #<immediate>

For details of the instruction encoding, see BKPT on page F5-4629.

About whether the BKPT instruction is conditional

In the T32 instruction set, BKPT instructions are always unconditional.

In the A32 instruction set:

• If the Condition code field is AL, the BKPT instruction is unconditional.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6167
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint Instruction exceptions
• If the Condition code field is anything other than AL, behavior is CONSTRAINED UNPREDICTABLE, and is one
of the following:

— The instruction is UNDEFINED.

— The instruction is treated as a NOP instruction.

— The instruction is executed unconditionally.

— The instruction is executed conditionally.

G2.8.3 BKPT instructions as the first instruction in an IT block

If the first instruction in an IT block is a T32 BKPT instruction, then in an implementation that supports the ITD
control, if ITD field that applies to the current Exception level is:

0 The BKPT instruction generates a Breakpoint Instruction exception.

1 The combination of IT instruction and BKPT instruction is UNDEFINED. Either the IT instruction or the
BKPT instruction generates an Undefined Instruction exception.

In such an implementation, to ensure consistent behavior when making the first instruction in one or more IT blocks
a BKPT instruction, the debugger must replace the IT instruction.

An implementation that does not support the ITD control behaves as if the value of the ITD field is 0.

The ITD control fields are:

HSCTLR.ITD Applies to execution at EL2 when EL2 is using AArch32.

SCTLR.ITD Applies to execution at EL0 or EL1 when EL1 is using AArch32.

SCTLR_EL1.ITD

Applies to execution at EL0 using AArch32 when EL1 is using AArch64.

Note

T32 BKPT instructions are always unconditional, even when they are inside an IT block. See:

• Disabling or enabling PL0 and PL1 use of AArch32 optional functionality on page G1-6120.

• Disabling or enabling EL2 use of AArch32 optional functionality on page G1-6129.

G2.8.4 Exception syndrome information and preferred return address for a BKPT instruction

See the following:

• Exception syndrome information for a Breakpoint Instruction exception on page G2-6168.

• Preferred return address for a Breakpoint Instruction exception on page G2-6169.

Note

Usually, the term exception syndrome is used only for exceptions taken to Hyp mode, or to AArch64 state. The
referenced section uses the term more generally, to include exception information reported in the IFSR.

Exception syndrome information for a Breakpoint Instruction exception

The PE takes a Breakpoint Instruction exception as either:

• A Prefetch Abort exception if it is taken to PL1. In this case, it is taken to Abort mode.

• A Hyp Trap exception, if it is taken to PL2 because either HCR.TGE or HDCR.TDE is 1. In this case, it is
taken to Hyp mode.

If the exception is taken to:

PL1 Abort mode

The PE sets all of the following:

• DBGDSCRext.MOE to 0b0011, to indicate a Breakpoint Instruction exception.
G2-6168 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.8 Breakpoint Instruction exceptions
• IFSR.FS to the code for a debug, 0b00010.

• The IFAR with an UNKNOWN value.

PL2 Hyp mode

The PE does all of the following:

• Records information about the exception in the Hypervisor Syndrome Register, HSR. See
Table G2-9 on page G2-6169.

• Sets DBGDSCRext.MOE to 0b0011, to indicate a Breakpoint Instruction exception.

• Sets the HIFAR to an unknown value.

Note

For information about how debug exceptions can be routed to PL2, see Routing debug exceptions
on page G2-6159.

Preferred return address for a Breakpoint Instruction exception

The preferred return address is the address of the breakpoint instruction, not the next instruction. This is different
to the behavior of other exception-generating instructions, like SVC.

G2.8.5 Pseudocode description of Breakpoint Instruction exceptions

AArch32.SoftwareBreakpoint() generates a Prefetch Abort exception that is taken from AArch32 state.

Table G2-9 Information recorded in the HSR

HSR field Information recorded

Exception Class, EC The PE sets this to the code for a Prefetch Abort exception routed to Hyp mode, 0x20.

Instruction Length, IL The PE sets this to:

• 0 for a T32 BKPT instruction.

• 1 for an A32 BKPT instruction.

Instruction Specific Syndrome, ISS ISS[24:10] RES0.

ISS[9] External Abort type (EA). The PE sets this to 0.

ISS[8:6] RES0.

ISS[5:0] Instruction Fault Status Code (IFSC). The PE sets this to the code for a debug
exception, 0b100010.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6169
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
G2.9 Breakpoint exceptions

This section describes Breakpoint exceptions in stage 1 of an AArch32 translation regime.

The PE is using an AArch32 translation regime when it is executing either:

• At EL1 or higher in an Exception level that is using AArch32.

• At EL0 using AArch32 when EL1 is using AArch32.

This section contains the following subsections:

• About Breakpoint exceptions on page G2-6170.

• Breakpoint types and linking of breakpoints on page G2-6171.

• Execution conditions for which a breakpoint generates Breakpoint exceptions on page G2-6179.

• Breakpoint instruction address comparisons on page G2-6182.

• Breakpoint context comparisons on page G2-6187.

• Using breakpoints on page G2-6188.

• Exception syndrome information and preferred return address for a Breakpoint exception on page G2-6193.

• Pseudocode description of Breakpoint exceptions taken from AArch32 state on page G2-6194.

G2.9.1 About Breakpoint exceptions

A breakpoint is an event that results from the execution of an instruction, based on either:

• The instruction address, the PE context, or both. This type of breakpoint is called a hardware breakpoint.

• The instruction itself. That is, the instruction is a breakpoint instruction. These can be included in the
program that the PE executes. This type of breakpoint is called a software breakpoint.

Breakpoint exceptions are generated by Breakpoint debug events. Breakpoint debug events are generated by
hardware breakpoints. Software breakpoints are described in Breakpoint Instruction exceptions on page G2-6167.

An implementation can include between 2-16 hardware breakpoints. DBGDIDR.BRPs shows how many are
implemented.

To use an implemented hardware breakpoint, a debugger programs the following registers for the breakpoint:

• The Breakpoint Control Register, DBGBCR<n>. This contains controls for the breakpoint, for example an
enable control.

• The Breakpoint Value Register, DBGBVR<n>. This holds a value used for breakpoint matching, that is one
of:

— An instruction virtual address.

— A Context ID.

• If EL2 is implemented, the Breakpoint Extended Value Register, DBGBXVR<n>, that holds a VMID value
used for breakpoint matching.

These registers are numbered, so that:

• DBGBCR1, DBGBVR1, and DBGBXVR1 are for breakpoint number one.

• DBGBCR2, DBGBVR2, and DBGBXVR2 are for breakpoint number two.

• …

• …

• DBGBCR<n>, DBGBVR<n>, and DBGBXVR<n> are for breakpoint number <n>.

A debugger can link a breakpoint that is programmed with an address and a breakpoint that is programmed with
anything other than an address together, so that a Breakpoint debug event is only generated if both breakpoints
match.

For each instruction in the program flow, all of the breakpoints are tested. When a breakpoint is tested, it generates
a Breakpoint debug event if all of the following are true:

• The breakpoint is enabled. That is, the breakpoint enable control for it, DBGBCR<n>.E, is 1.
G2-6170 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
• The conditions specified in the DBGBCR<n> are met.

• The comparisons with the values held in one or both of the DBGBVR<n> and DBGBXVR<n>, as applicable,
are successful.

• If the breakpoint is linked to another breakpoint, the comparisons made by that other breakpoint are also
successful.

• The instruction is committed for execution.

If all of these conditions are met, the breakpoint generates the Breakpoint debug event regardless of the following:

• Whether the instruction passes its Condition code check.

• The instruction type.

If halting is allowed and EDSCR.HDE is 1, Breakpoint debug events cause entry to Debug state.

Otherwise, if debug exceptions are

• Enabled, Breakpoint debug events generate Breakpoint exceptions

• Disabled, Breakpoint debug events are ignored.

Note

The remainder of this Breakpoint exceptions section, including all subsections, describes breakpoints as generating
Breakpoint exceptions. However, the behavior described also applies if breakpoints are causing entry to Debug
state.

The debug exception enable controls on page G2-6158 describes the enable controls for Breakpoint debug events.

G2.9.2 Breakpoint types and linking of breakpoints

Each implemented breakpoint is one of the following:

• A context-aware breakpoint. This is a breakpoint that can be programmed to generate a Breakpoint exception
on any one of the following:

— An instruction address match.

— An instruction address mismatch.

— A Context ID match, with the value held in the CONTEXTIDR.

— A VMID match, with the value held in the VTTBR.

— Both a Context ID match and a VMID match.

• A breakpoint that is not context-aware. These can only be programmed to generate a Breakpoint exception
on an instruction address match or an instruction address mismatch.

DBGDIDR.CTX_CMPs shows how many of the implemented breakpoints are context-aware breakpoints. At least
one implemented breakpoint must be context-aware. The context-aware breakpoints are the highest numbered
breakpoints.

Any breakpoint that is programmed to generate a Breakpoint exception on an instruction address match or mismatch
is categorized as an Address breakpoint. Breakpoints that are programmed to match on anything else are categorized
as Context breakpoints.

When a debugger programs a breakpoint to be an Address or a Context breakpoint, it must also program that
breakpoint so that it is either:

• Used in isolation. In this case, the breakpoint is called an Unlinked breakpoint.

• Enabled for linking to another breakpoint. In this case, the breakpoint is called a Linked breakpoint.

By linking an Address breakpoint and a Context breakpoint together, the debugger can create a breakpoint pair that
only generates a Breakpoint exception if the PE is in a particular context when an instruction address match or
mismatch occurs. For example, a debugger might:

1. Program breakpoint number one to be a Linked Address Match breakpoint.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6171
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
2. Program breakpoint number five to be a Linked Context ID Match breakpoint.

3. Link these two breakpoints together. A Breakpoint exception is only generated if both the instruction address
matches and the Context ID matches.

The Breakpoint Type field for a breakpoint, DBGBCR<n>.BT, controls the breakpoint type and whether the
breakpoint is enabled for linking. If BT[0] is 1, the breakpoint is enabled for linking.

Address breakpoints can be programmed to generate Breakpoint exceptions on addresses that are halfword-aligned
but not word-aligned. This makes it possible to breakpoint on T32 instructions. See Specifying the halfword-aligned
address that an Address breakpoint matches on on page G2-6182.

Rules for linking breakpoints

The rules for breakpoint linking are as follows:

• Only Linked breakpoint types can be linked.

• Any type of Linked Address breakpoint can link to any type of Linked Context breakpoint. The Linked
Breakpoint Number field, DBGBCR<n>.LBN, for the Linked Address breakpoint specifies the particular
Linked Context breakpoint that the Linked Address breakpoint links to, and:

— DBGBCR<n>.{SSC, HMC, PMC} for the Linked Address breakpoint define the execution conditions
that the breakpoint pair generates Breakpoint exceptions for. See Execution conditions for which a
breakpoint generates Breakpoint exceptions on page G2-6179.

— DBGBCR<n>.{SSC, HMC, PMC} for the Linked Context breakpoint are ignored.

• Linked Context breakpoint types can only be linked to. The LBN field for Context breakpoints is therefore
ignored.

• Linked Address breakpoints cannot link to watchpoints. The LBN field can therefore only specify another
breakpoint.

• If a Linked Address breakpoint links to a breakpoint that is not context-aware, the behavior of the Linked
Address breakpoint is CONSTRAINED UNPREDICTABLE. See Other usage constraints for Address breakpoints
on page G2-6192.

• If a Linked Address breakpoint links to an Unlinked Context breakpoint, the Linked Address breakpoint
never generates any Breakpoint exceptions.

• Multiple Linked Address breakpoints can link to a single Linked Context breakpoint.

Note

Multiple Linked watchpoints can also link to a single Linked Context breakpoint. Watchpoint exceptions on
page G2-6195 describes watchpoints.

These rules mean that a single Linked Context breakpoint might be linked to by all, or any combination of, the
following:

• Multiple Linked Address Match breakpoints.

• Multiple Linked Address Mismatch breakpoints.

• Multiple Linked watchpoints.

It is also possible that a Linked Context breakpoint might have no breakpoints or watchpoints linked to it.

Figure G2-1 on page G2-6173 shows an example of permitted breakpoint and watchpoint linking.
G2-6172 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
Figure G2-1 The role of linking in Breakpoint and Watchpoint exception generation

In Figure G2-1 on page G2-6173, each Linked Address breakpoint can only generate a Breakpoint exception if the
comparisons made by both it, and the Linked Context breakpoint that it links to, are successful. Similarly, each
Linked watchpoint can only generate a Watchpoint exception if the comparisons made by both it, and the Linked
Context breakpoint that it links to, are successful.

Breakpoint types defined by DBGBCRn.BT

The following list provides more detail about each breakpoint type:

0b0000, Unlinked Address Match breakpoint

Generation of a Breakpoint exception depends on both:

• DBGBCR<n>.{SSC, HMC, PMC}. These define the execution conditions that the
breakpoint generates Breakpoint exceptions for. See Execution conditions for which a
breakpoint generates Breakpoint exceptions on page G2-6179.

• A successful address match, as described in Breakpoint instruction address comparisons on
page G2-6182.

DBGBCR<n>.LBN for this breakpoint is ignored.

•
•
•

Linked watchpoint

Linked watchpoint

Unlinked watchpoint

Linked watchpoint

Links

Breakpoints WatchpointsBreakpoint or
watchpoint number

0

2

1

Linked watchpoint

Linked watchpoint

3

4

5

6

n

Unlinked Address type

Linked Address type

Linked Address type

Linked Address type

Linked Context type

Linked Context type

Unlinked Context type

Linked Context type

Unlinked watchpoint

Linked watchpoint

•
•
•

•
•
•

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6173
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
0b0001, Linked Address Match breakpoint

Generation of a Breakpoint exception depends on all of the following:

• DBGBCR<n>.{SSC, HMC, PMC} for this breakpoint. These define the execution
conditions that the breakpoint generates Breakpoint exceptions for. See Execution conditions
for which a breakpoint generates Breakpoint exceptions on page G2-6179.

• A successful address match defined by this breakpoint, as described in Breakpoint instruction
address comparisons on page G2-6182.

• A successful context match defined by the Linked Context breakpoint that this breakpoint
links to.

DBGBCR<n>.LBN for this breakpoint selects the Linked Context breakpoint that this breakpoint
links to.

0b0010, Unlinked Context ID Match breakpoint

BT == 0b0010 is a reserved value if the breakpoint is not a context-aware breakpoint.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>.{SSC, HMC, PMC}. These define the execution conditions that the
breakpoint generates Breakpoint exceptions for. See Execution conditions for which a
breakpoint generates Breakpoint exceptions on page G2-6179.

• A successful Context ID match, as described in Breakpoint context comparisons on
page G2-6187.

The value of DBGBVR<n>.ContextID is compared with the current Context ID.

CONTEXTIDR_EL2 holds the current Context ID when all of:

• The implementation includes FEAT_VHE.

• EL2 is implemented and enabled in the current Security state.

• EL2 using AArch64 and the value of HCR_EL2.E2H is 1.

• The PE is executing at EL0 and HCR_EL2.TGE is 1, or the PE is executing at EL2.

Otherwise, CONTEXTIDR holds the current Context ID.

DBGBCR<n>.{LBN, BAS} for this breakpoint are ignored

0b0011, Linked Context ID Match breakpoint

BT == 0b0011 is a reserved value if the breakpoint is not a context-aware breakpoint.

For context-aware breakpoints, either:

• This breakpoint does not generate any Breakpoint exceptions, if no Linked breakpoints or
Linked watchpoints link to it.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address breakpoint that
links to this breakpoint, see Breakpoint instruction address comparisons on
page G2-6182.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons on page G2-6187.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons on page G2-6199.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons on page G2-6187.

The value of DBGBVR<n>.ContextID is compared with the current Context ID.

CONTEXTIDR_EL2 holds the current Context ID when all of:

• The implementation includes FEAT_VHE.

• EL2 is implemented and enabled in the current Security state.

• EL2 using AArch64 and the value of HCR_EL2.E2H is 1.
G2-6174 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
• The PE is executing at EL0 and HCR_EL2.TGE is 1, or the PE is executing at EL2.

Otherwise, CONTEXTIDR holds the current Context ID.

DBGBCR<n>.{LBN, SSC, HMC, BAS PMC} for this breakpoint are ignored.

0b0100, Unlinked Address Mismatch breakpoint

Generation of a Breakpoint exception depends on both:

• DBGBCR<n>.{SSC, HMC, PMC}. These define the execution conditions that the
breakpoint generates Breakpoint exceptions for. See Execution conditions for which a
breakpoint generates Breakpoint exceptions on page G2-6179.

• A successful address mismatch, as described in Breakpoint instruction address comparisons
on page G2-6182.

DBGBCR<n>.LBN for this breakpoint is ignored.

0b0101, Linked Address Mismatch breakpoint

Generation of a Breakpoint exception depends on all of the following:

• DBGBCR<n>.{SSC, HMC, PMC}. These define the execution conditions that the
breakpoint generates Breakpoint exceptions for. See Execution conditions for which a
breakpoint generates Breakpoint exceptions on page G2-6179.

• A successful address mismatch defined by this breakpoint, as described in Breakpoint
instruction address comparisons on page G2-6182.

• A successful context match defined by the Linked Context breakpoint that this breakpoint
links to.

DBGBCR<n>.LBN for this breakpoint selects the Linked Context breakpoint that this breakpoint
links to.

0b0110, Unlinked CONTEXTIDR_EL1 Match breakpoint

BT == 0b0110 is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• The implementation does not include FEAT_VHE.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>.{SSC, HMC, PMC}. These define the execution conditions for which the
breakpoint generates Breakpoint exceptions.

• A successful Context ID match defined by this breakpoint, as described in Breakpoint context
comparisons on page G2-6187.

The Context ID check is made against the value in CONTEXTIDR, or CONTEXTIDR_EL1. The
value of DBGBVR<n>.ContextID is compared with the Context ID value held in CONTEXTIDR
or CONTEXTIDR_EL1.

DBGBCR<n>.{LBN, BAS} for this breakpoint are ignored.

0b0111, Linked CONTEXTIDR_EL1 Match breakpoint

BT == 0b0111 is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• The implementation does not include FEAT_VHE.

For context-aware breakpoints, one of the following applies:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint
does not generate any Breakpoint exceptions.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address match
breakpoint that links to this breakpoint, see Breakpoint instruction address
comparisons on page G2-6182.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6175
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons on page G2-6187.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons on page G2-6199.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons on page G2-6187.

The Context ID check is made against the value in CONTEXTIDR, or CONTEXTIDR_EL1. The
value of DBGBVR<n>.ContextID is compared with the Context ID value held in CONTEXTIDR
or CONTEXTIDR_EL1.

DBGBCR<n>.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b1000, Unlinked VMID Match breakpoint

BT == 0b1000 is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• EL2 is not implemented.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>.{SSC, HMC, PMC}. These define the execution conditions that the
breakpoint generates Breakpoint exceptions for. See Execution conditions for which a
breakpoint generates Breakpoint exceptions on page G2-6179.

• A successful VMID match, as described in Breakpoint context comparisons on
page G2-6187.

DBGBCR<n>.{LBN, BAS} for this breakpoint are ignored.

0b1001, Linked VMID Match breakpoint

BT == 0b1000 is a reserved value if either:

• The breakpoint is not a context-matching breakpoint.

• EL2 is not implemented.

For context-aware breakpoints, either:

• This breakpoint does not generate any Breakpoint exceptions, if no Linked breakpoints or
Linked watchpoints link to it.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address Match
breakpoint that links to this breakpoint. See Breakpoint instruction address
comparisons on page G2-6182.

— A successful VMID match defined by this breakpoint.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons on page G2-6199.

— A successful VMID match defined by this breakpoint, as described in Breakpoint
context comparisons on page G2-6187.

DBGBCR<n>.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b1010, Unlinked Context ID and VMID Match breakpoint

BT == 0b1010 is a reserved value if either:

• The breakpoint is not a context-matching breakpoint.

• EL2 is not implemented.
G2-6176 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
For context-matching breakpoints, generation of a Breakpoint exception depends on all of the
following:

• DBGBCR<n>.{SSC, HMC, PMC}. These define the execution conditions that the
breakpoint generates Breakpoint exceptions for. See Execution conditions for which a
breakpoint generates Breakpoint exceptions on page G2-6179.

• A successful Context ID match, as described in Breakpoint context comparisons on
page G2-6187.

• A successful VMID match.

The value of DBGBVR<n>.ContextID is compared with CONTEXTIDR.

Breakpoint context comparisons on page G2-6187 describes the requirements for a successful
Context ID match and a successful VMID match.

DBGBCR<n>.{LBN, BAS} for this breakpoint are ignored.

0b1011, Linked Context ID and VMID Match breakpoint

BT == 0b1011 is a reserved value if either:

• The breakpoint is not a context-matching breakpoint.

• EL2 is not implemented.

For context-matching breakpoints, either:

• This breakpoint does not generate any Breakpoint exceptions, if no Linked breakpoints or
Linked watchpoints link to it.

• Generation of a Breakpoint exception depends on all of the following:

— A successful instruction address match, defined by a Linked Address breakpoint that
links to this breakpoint, see Breakpoint instruction address comparisons on
page G2-6182.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons on page G2-6187.

— A successful VMID match defined by this breakpoint.

• Generation of a Watchpoint exception depends on all of the following:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons on page G2-6199.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons on page G2-6187.

— A successful VMID match defined by this breakpoint.

The value of DBGBVR<n>.ContextID is compared with CONTEXTIDR.

Breakpoint context comparisons on page G2-6187 describes the requirements for a successful
Context ID match and a successful VMID match by this breakpoint.

DBGBCR<n>.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b1100, Unlinked CONTEXTIDR_EL2 Match breakpoint

BT == 0b1100 is a reserved value if:

• The breakpoint is not a context-aware breakpoint.

• FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means
the implementation does not include CONTEXTIDR_EL2.

• EL2 is not implemented.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>.{SSC, HMC, PMC}. These define the execution conditions for which the
breakpoint generates Breakpoint exceptions.

• A successful CONTEXTIDR_EL2 match.The value of DBGBVR<n>.ContextID2 is
compared with the Context ID value held in CONTEXTIDR_EL2, as described in
Breakpoint context comparisons on page G2-6187.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6177
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
The check against CONTEXTIDR_EL2 means this breakpoint can be generated only if EL2 is
implemented and enabled in the current Security state and EL2 is using AArch64.

Note
The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>.{LBN, BAS} for this breakpoint are ignored.

0b1101, Linked CONTEXTIDR_EL2 Match

BT == 0b1101 is a reserved value if:

• The breakpoint is not a context-aware breakpoint.

• FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means
the implementation does not include CONTEXTIDR_EL2.

• EL2 is not implemented.

For context-aware breakpoints, either:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint
does not generate any Breakpoint exceptions.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address match
breakpoint that links to this breakpoint, see Breakpoint instruction address
comparisons on page G2-6182.

— A successful CONTEXTIDR_EL2 match, as described in Breakpoint context
comparisons on page G2-6187.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons on page G2-6199.

— A successful CONTEXTIDR_EL2 match. The value of DBGBVR<n>.ContextID2 is
compared with the Context ID value held in CONTEXTIDR_EL2, as described in
Breakpoint context comparisons on page G2-6187.

The check against the CONTEXTIDR_EL2 means the breakpoint or watchpoint can be generated
only if EL2 is implemented and enabled in the current Security state and EL2 is using AArch64.

Note

The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b1110, Unlinked Full Context ID Match breakpoint

BT == 0b1110 is a reserved value if:

• The breakpoint is not a context-aware breakpoint.

• FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means
the implementation does not include CONTEXTIDR_EL2.

• EL2 is not implemented.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>.{SSC, HMC, PMC}. These define the execution conditions for which the
breakpoint generates Breakpoint exceptions.

• A successful Context ID match, as described in Breakpoint context comparisons on
page G2-6187.

The Context ID check is made by checking both:

• The value of DBGBVR<n>.ContextID against the value in CONTEXTIDR, or
CONTEXTIDR_EL1.
G2-6178 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
• The value of DBGBXVR<n>.ContextID2 against the value in CONTEXTIDR_EL2.

Both comparisons must match for the check to succeed.

The check against the CONTEXTIDR_EL2 means this breakpoint can be generated only if EL2 is
implemented and enabled in the current Security state and EL2 is using AArch64.

Note
The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>.{LBN, BAS} for this breakpoint are ignored.

0b1111, Linked Full Context ID Match breakpoint

BT == 0b1111 is a reserved value if:

• The breakpoint is not a context-aware breakpoint.

• FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means
the implementation does not include CONTEXTIDR_EL2.

• EL2 is not implemented.

For context-aware breakpoints, one of the following applies:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint
does not generate any Breakpoint exceptions.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address match
breakpoint that links to this breakpoint, see Breakpoint instruction address
comparisons on page G2-6182.

— A successful Context ID match, as described in Breakpoint context comparisons on
page G2-6187.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons on page G2-6199.

— A successful Context ID match, as described in Breakpoint context comparisons on
page G2-6187.

The Context ID check is made by checking both:

• The value of DBGBVR<n>.ContextID against the value in CONTEXTIDR, or
CONTEXTIDR_EL1.

• The value of DBGBXVR<n>.ContextID2 against the value in CONTEXTIDR_EL2.

Both comparisons must match for the check to succeed.

The check against the CONTEXTIDR_EL2 means the breakpoint or watchpoint can be generated
only if EL2 is implemented and enabled in the current Security state and EL2 is using AArch64.

Note

The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

Note

See Reserved DBGBCR<n>.BT values on page G2-6190 for the behavior of breakpoints programmed with reserved
BT values.

G2.9.3 Execution conditions for which a breakpoint generates Breakpoint exceptions

Each breakpoint can be programmed so that it only generates Breakpoint exceptions for certain execution
conditions. For example, a breakpoint might be programmed to generate Breakpoint exceptions only when the PE
is executing at PL0 in Secure state.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6179
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
DBGBCR<n>.{SSC, HMC, PMC} define the execution conditions the breakpoint generates Breakpoint exceptions
for, as follows:

Security State Control, SSC

Controls whether the breakpoint generates Breakpoint exceptions only in Secure state, only in
Non-secure state, or in both Security states.

Note
This is determined by the Security state of the PE, not from the NS attribute returned by the
translation of the virtual address on which the breakpoint is set.

Higher Mode Control, HMC, and Privileged Mode Control, PMC

HMC and PMC together control which AArch32 modes the breakpoint generates Breakpoint
exceptions in.

Table G2-10 on page G2-6180 shows the valid combinations of the values of HMC, SSC, and PMC, and for each
combination shows which Privilege levels breakpoints generate Breakpoint exceptions in.

In the table:

Y Means that a breakpoint programmed with the values of HMC, SSC and PMC shown in that row
can generate Breakpoint exceptions in AArch32 modes at that Privilege level.

- Means that a breakpoint programmed with the values of HMC, SSC and PMC shown in that row
cannot generate Breakpoint exceptions in AArch32 modes at that Privilege level.

Res Means that the combination of HMC, SSC, and PMC is reserved. See Reserved
DBGBCR<n>.{SSC, HMC, PMC} values on page G2-6191.

Table G2-10 Summary of breakpoint HMC, SSC, and PMC encodings

HMC SSC PMC Security state the breakpoint is programmed to match in PL2a PL1 PL0

0 00 00 Both - Yb Y

0 00 01 - Y -

0 00 10 - - Y

0 00 11 - Y Y

0 01 00 Non-Secure - Yb Y

0 01 01 - Y -

0 01 10 - - Y

0 01 11 - Y Y

0 10 00 Secure - Yb Y

0 10 01 - Y -

0 10 10 - - Y

0 10 11 - Y Y

0 11 01 Secure Y Y -

0 11 11 Y Y Y
G2-6180 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
All combinations of HMC, SSC, and PMC that this table does not show are reserved. See Reserved HMC, SSC, and
PMC combinations on page G2-6191.

1 00 01 Both Y Y -

1 00 11 Y Y Y

1 01 00 Non-secure Y -

1 01 01 Y Y -

1 01 11 Y Y Y

1 10 01 Secure Y Y -

1 10 11 Y Y Y

1 11 00 Both Y - -

1 11 01 Y Y -

1 11 11 Y Y Y

a. Debug exceptions are not generated at PL2 using AArch32. This means that these combinations of HMC, SSC, and PMC
are only relevant if breakpoints cause entry to Debug state. Self-hosted debuggers must avoid combinations of HMC, SSC,
and PMC that generate Breakpoint exceptions at PL2 using AArch32.

b. Only in User, System and Supervisor modes.

Table G2-10 Summary of breakpoint HMC, SSC, and PMC encodings (continued)

HMC SSC PMC Security state the breakpoint is programmed to match in PL2a PL1 PL0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6181
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
G2.9.4 Breakpoint instruction address comparisons

Address comparisons are made for each instruction in the program flow. The following subsections describe the
criteria for a successful address comparison, for:

• Address Match breakpoints on page G2-6182.

• Address Mismatch breakpoints on page G2-6182.

Address Match breakpoints

An address match comparison is successful if both:

• Bits [31:2] of the current instruction virtual address are equal to DBGBVR<n>[31:2].

• The word or halfword selected by DBGBCR<n>.BAS matches. That is, either:

— DBGBCR<n>.BAS is programmed with 0b0011 or 0b1111, and the instruction is at a word-aligned
address.

— DBGBCR<n>.BAS is programmed with 0b1100, and the instruction is not at a word-aligned address.

See Specifying the halfword-aligned address that an Address breakpoint matches on on page G2-6182.

Note

DBGBVR<n>[1:0] are RES0 and are ignored.

Address Mismatch breakpoints

An address mismatch comparison is successful if either:

• Bits [31:2] of the current instruction virtual address are not equal to DBGBVR<n>[31:2].

• The word or halfword selected by DBGBCR<n>.BAS does not match. That is, either:

— DBGBCR<n>.BAS is programmed with 0b0011 or 0b1111, and the instruction is not at a word-aligned
address.

— DBGBCR<n>.BAS is programmed with 0b1100, and the instruction is at a word-aligned address.

See Specifying the halfword-aligned address that an Address breakpoint matches on on page G2-6182.

Note

• DBGBVR<n>[1:0] are RES0 and are ignored.

• Address Mismatch breakpoints can be used to single-step through code. See Using an Address Mismatch
breakpoint to single-step an instruction on page G2-6188.

Specifying the halfword-aligned address that an Address breakpoint matches on

For an Address breakpoint, a debugger can use the Byte Address Selection field, DBGBCR<n>.BAS, so that the
address comparison is successful on one of:

• The whole word starting at address DBGBVR<n>[31:2]:00.

• The halfword starting at address DBGBVR<n>[31:2]:00.

• The halfword starting at address ((DBGBVR<n>[31:2]:00) + 2).

Note

The address programmed into the DBGBVR<n> must be word-aligned.
G2-6182 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
DBGBCR<n>.BAS can be used in both Address Match breakpoints and Address Mismatch breakpoints, as follows:

• For an Address Match breakpoint, DBGBCR<n>.BAS selects which halfword-aligned address the
breakpoint must generate a Breakpoint exception for. This means that an address comparison is successful
only if both of the following match:

— The instruction address held in bits [31:2] of the DBGBVR<n>.

— The halfword defined by the BAS field.

That is, a successful address comparison = DBGBVR<n>[31:2] match AND BAS match.

• For an Address Mismatch breakpoint, DBGBCR<n>.BAS selects which halfword-aligned address the
breakpoint must not generate a Breakpoint exception for. This means that an address comparison is successful
if either or both of the following do not match:

— The instruction address held in bits [31:2] of the DBGBVR<n>.

— The halfword defined by the BAS field.

That is, a successful address comparison = NOT (DBGBVR<n>[31:2] match AND BAS match).

The following subsections show the supported BAS values:

• Using the BAS field in Address Match breakpoints on page G2-6183.

• Using the BAS field in Address Mismatch breakpoints on page G2-6185.

For Context breakpoints, DBGBCR<n>.BAS is RES1 and is ignored.

Using the BAS field in Address Match breakpoints

The supported BAS values are:

0b0000 This value is reserved. Behavior is a CONSTRAINED UNPREDICTABLE choice of:

• The breakpoint is disabled.

• The breakpoint behaves as if BAS is 0b0011, 0b1100, or 0b1111.

0b0011 The breakpoint generates a Breakpoint exception if an instruction with an address described as
follows is committed for execution:

• Bits [31:2] of the address equals DBGBVR<n>[31:2].

• Bits [1:0] of the address are 0b00.

This means that breakpoints programmed with this BAS value generate Breakpoint exceptions for
all of the following:

• 32-bit T32 instructions at word-aligned addresses.

• 16-bit T32 instructions at word-aligned addresses.

• A32 instructions. These are always at word-aligned addresses.

However, Arm recommends that a debugger uses this BAS value only for T32 instructions.

It is CONSTRAINED UNPREDICTABLE whether a breakpoint programmed with this BAS value
generates a Breakpoint exception on the second halfword of a 32-bit T32 instruction starting at the
halfword-aligned address ((DBGBVR<n>[31:2]:00) - 2).

0b1100 The breakpoint generates a Breakpoint exception if an instruction with an address described as
follows is committed for execution:

• Bits [31:2] of the address equals DBGBVR<n>[31:2].

• Bits [1:0] of the address are 0b10.

This means that breakpoints programmed with this BAS value generate Breakpoint exceptions for
both of the following:

• 32-bit T32 instructions at addresses that are halfword-aligned but not word-aligned.

• 16-bit T32 instructions at addresses that are halfword-aligned but not word-aligned.

It is CONSTRAINED UNPREDICTABLE whether a breakpoint programmed with this BAS value
generates a Breakpoint exception on the second halfword of a 32-bit T32 or A32 instruction starting
at a word-aligned address.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6183
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
0b1111 The breakpoint generates a Breakpoint exception if an instruction with an address described as
follows is committed for execution:

• Bits [31:2] of the address equals DBGBVR<n>[31:2].

• Bits [1:0] of the address are 0b00.

This means that breakpoints programmed with this BAS value generate Breakpoint exceptions for
all of the following:

• 32-bit T32 instructions at word-aligned addresses.

• 16-bit T32 instructions at word-aligned addresses.

• A32 instructions. These are always at word-aligned addresses.

However, Arm recommends that a debugger uses this BAS value only for A32 instructions.

It is CONSTRAINED UNPREDICTABLE whether a breakpoint programmed with this BAS value
generates a Breakpoint exception on the second halfword of a 32-bit T32 instruction starting at the
halfword-aligned address ((DBGBVR<n>[31:2]:00) - 2).

It is CONSTRAINED UNPREDICTABLE whether a breakpoint programmed with this BAS value
generates a Breakpoint exception on a 32-bit T32 instruction or a 16-bit T32 instruction at the
halfword-aligned address ((DBGBVR<n>[31:2]:00) + 2).

All other BAS values are reserved. For these reserved other values, DBGBCR<n>.BAS[3,1] ignore writes and read
the same values as DBGBCR<n>[2,0] respectively. This means that the smallest instruction size a debugger can
program breakpoints to match on is a halfword.

Figure G2-2 on page G2-6185 shows a summary of when breakpoints programmed with particular BAS values
generate Breakpoint exceptions.

The figure contains four parts:

• A column showing the row number, on the left.

• An instruction set and instruction size table.

• A location of instruction figure.

• A BAS field values table, on the right.

To use the figure, read across the rows. For example:

• Row 2 shows that a breakpoint with a BAS value of 0b1100 generates Breakpoint exceptions for 16-bit T32
instructions starting at the halfword-aligned address ((DBGBVR<n>[31:2]:00) + 2).

• Row 6 shows that a breakpoint with a BAS value of either 0b0011 or 0b1111 generates Breakpoint exceptions
for A32 instructions. A32 instructions are always at word-aligned addresses.

In the figure:

Yes Means that the breakpoint generates a Breakpoint exception.

No Means that the breakpoint does not generate a Breakpoint exception.

UNP Means that it is CONSTRAINED UNPREDICTABLE whether the breakpoint generates a Breakpoint
exception. See Other usage constraints for Address breakpoints on page G2-6192.
G2-6184 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
Figure G2-2 Summary of BAS field meanings for Address Match breakpoints

Using the BAS field in Address Mismatch breakpoints

An Address Mismatch breakpoint generates Breakpoint exceptions for all instructions committed for execution,
except the instruction whose address the breakpoint is programmed to match.

The supported BAS values are:

0b0000 The breakpoint ignores the address held in the DBGBVR<n> and generates Breakpoint exceptions
for all instruction addresses.

0b0011 The breakpoint does not generate a Breakpoint exception if an instruction with an address described
as follows is committed for execution:

• Bits [31:2] of the address equals DBGBVR<n>[31:2].

• Bits [1:0] of the address are 0b00.

This means that breakpoints programmed with this BAS value do not generate Breakpoint
exceptions for any of the following:

• 32-bit T32 instructions at word-aligned addresses.

• 16-bit T32 instructions at word-aligned addresses.

• A32 instructions. These are always at word-aligned addresses.

However, Arm recommends that a debugger uses this BAS value only for T32 instructions.

It is CONSTRAINED UNPREDICTABLE whether a breakpoint programmed with this BAS value does
not generate a Breakpoint exception on the second halfword of a 32-bit T32 instruction starting at
the halfword-aligned address ((DBGBVR<n>[31:2]:00) - 2).

0b1100 The breakpoint does not generate a Breakpoint exception if an instruction with an address described
as follows is committed for execution:

• Bits [31:2] equals DBGBVR<n>[31:2].

• Bits [1:0] of the address are 0b10.

This means that breakpoints programmed with this BAS value do not generate Breakpoint
exceptions for either of the following:

• 32-bit T32 instructions at addresses that are halfword-aligned but not word-aligned.

• 16-bit T32 instructions at addresses that are halfword-aligned but not word-aligned.

-2 -1 +2+10 +3 +4Size

16-bit

16-bit

32-bit

32-bit

32-bit

32-bit

+5Instruction set

T32

T32

A32

Yes

UNP

UNP

Yes

UNP

Yes

0b0011

Yes

UNP

Yes

BAS[3:0]
0b1100 0b1111

No

Yes

No

No

No

UNP

Yes

UNP

Yes

Location of instructiona

a. 0 means the word-aligned address held in the DBGBVRn. The other locations
are as follows:
• -2 means ((DBGBVRn[31:2]:00) - 2).
• -1 means ((DBGBVRn[31:2]:00) - 1).
• ...
• ...
• +5 means ((DBGBVRn[31:2]:00) + 5).

The solid areas show the location of the instruction.

Row 1

ROW 2

ROW 3

Row 4

ROW 5

Row 6
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6185
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
It is CONSTRAINED UNPREDICTABLE whether a breakpoint programmed with this BAS value does
not generate a Breakpoint exception on the second halfword of a 32-bit T32 or A32 instruction at a
word-aligned address.

0b1111 The breakpoint does not generate a Breakpoint exception if an instruction with an address described
as follows is committed for execution:

• Bits [31:2] of the address equals DBGBVR<n>[31:2].

• Bits [1:0] of the address are 0b00.

This means that breakpoints programmed with this BAS value do not generate Breakpoint
exceptions for any of the following:

• 32-bit T32 instructions at word-aligned addresses.

• 16-bit T32 instructions at word-aligned addresses.

• A32 instructions. These are always at word-aligned addresses.

However, Arm recommends that a debugger uses this BAS value only for A32 instructions.

It is CONSTRAINED UNPREDICTABLE whether a breakpoint programmed with this BAS value does
not generate a Breakpoint exception on the second halfword of a 32-bit T32 instruction starting at
the halfword-aligned address ((DBGBVR<n>[31:2]:00) - 2).

It is CONSTRAINED UNPREDICTABLE whether a breakpoint programmed with this BAS value does
not generate a Breakpoint exception on a 32-bit T32 instruction or a 16-bit T32 instruction at the
halfword-aligned address ((DBGBVR<n>[31:2]:00) + 2).

All other BAS values are reserved. For these reserved other values, DBGBCR<n>.BAS[3,1] ignore writes and read
the same values as DBGBCR<n>[2,0] respectively. This means that the smallest instruction size that a breakpoint
can never generate a Breakpoint exception for is a halfword.

Figure G2-3 on page G2-6187 shows a summary of when breakpoints programmed with particular BAS values
generate Breakpoint exceptions.

The figure contains four parts:

• A column showing the row number, on the left.

• An instruction set and instruction size table.

• A location of instruction figure.

• A BAS field values table, on the right.

To use the figure, read across the rows. For example:

• Row 1 shows that a breakpoint with a BAS value of 0b1100 generates Breakpoint exceptions for 16-bit T32
instructions starting at the word-aligned address held in the DBGBVR<n>.

• Row 5 shows that a breakpoint with a BAS value of 0b0011 generates Breakpoint exceptions for 32-bit T32
instructions starting at the halfword-aligned address immediately after the word aligned address held in the
DBGBVR<n>.

In the figure:

Yes Means that the breakpoint does generate a Breakpoint exception.

No Means that the breakpoint does not generate a Breakpoint exception.

UNP Means that is it CONSTRAINED UNPREDICTABLE whether the breakpoint generates a Breakpoint
exception. See Other usage constraints for Address breakpoints on page G2-6192.
G2-6186 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
Figure G2-3 Summary of BAS field meanings for Address Mismatch breakpoints

G2.9.5 Breakpoint context comparisons

The breakpoint type defined by DBGBCR<n>.BT determines what context comparison is required, if any.
Table G2-11 on page G2-6187 shows the BT values that require a comparison, and the match required for the
comparison to be successful.

No context comparison is required for other valid DBGBCR<n>.BT values.

Context breakpoints do not generate Breakpoint exceptions when any of:

• The comparison uses the value of CONTEXTIDR, or CONTEXTIDR_EL1, and any of:

— The PE is executing at EL3 using AArch64.

— The PE is executing at EL2.

— FEAT_VHE is implemented, EL2 is using AArch64, EL2 is implemented and enabled in the current
Security state, and HCR_EL2.{E2H, TGE} == {1, 1}.

-2 -1 +2+10 +3 +4Size

16-bit

16-bit

32-bit

32-bit

32-bit

32-bit

+5Instruction set

T32

T32

A32

No

UNP

UNP

No

UNP

No

0b0011

No

UNP

No

BAS[3:0]
0b1100 0b1111

Yes

No

Yes

Yes

Yes

UNP

No

UNP

No

Location of instructiona

a. 0 means the word-aligned address held in the DBGBVRn. The other locations are as follows:
• -2 means ((DBGBVRn[31:2]:00) - 2).
• -1 means ((DBGBVRn[31:2]:00) - 1).
• ...
• ...
• +5 means ((DBGBVRn[31:2]:00) + 5).

The solid areas show the location of the instruction.

Row 1

ROW 2

ROW 3

Row 4

ROW 5

Row 6

0b0000

Yes

Yes

Yes

Yes

Yes

Yes

Table G2-11 Breakpoint Context ID and VMID comparison tests

DBGBCR<n>.BT Test required for successful context comparison

0b001x • When FEAT_VHE is implemented, EL2 is using AArch64, the Effective value of
HCR_EL2.E2H is 1, and either the PE is executing at EL0 with HCR_EL2.TGE set to 1,
or the PE is executing at EL2, CONTEXTIDR_EL2 must match the DBGBVR<n>.
ContextID value.

• Otherwise, CONTEXTIDR must match the DBGBVR<n>.ContextID value.

0b011x CONTEXTIDR, or CONTEXTIDR_EL1, must match the DBGBVR<n>.ContextID value.

0b100x VTTBR.VMID must match the DBGBXVR<n>.VMID value.

0b101x CONTEXTIDR, or CONTEXTIDR_EL1, must match the DBGBVR<n>.ContextID value, and
VTTBR.VMID must match the DBGBXVR<n>.VMID value.

0b110x CONTEXTIDR_EL2 must match the DBGBXVR<n>.ContextID2 value.

0b111x Both:

• CONTEXTIDR, or CONTEXTIDR_EL1, must match the DBGBVR<n>.ContextID value.

• CONTEXTIDR_EL2 must match the DBGBXVR<n>.ContextID2 value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6187
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
• The comparison uses the value of CONTEXTIDR_EL2 and any of:

— Neither FEAT_VHE is implemented, nor FEAT_Debugv8p2 is implemented.

— EL2 is either not implemented or not enabled in the current Security state.

— EL2 is using AArch32.

• The comparison uses the current VMID value and any of:

— EL2 is not implemented.

— EL2 is either not implemented or not enabled in the current Security state.

— The PE is executing at EL2.

— FEAT_VHE is implemented, EL2 is using AArch64, EL2 is implemented and enabled in the current
Security state, and HCR_EL2.{E2H, TGE} == {1, 1}.

Note
• For all Context breakpoints, DBGBCR<n>.BAS is RES1 and is ignored.

• For Linked Context breakpoints, DBGBCR<n>.{LBN, SSC, HMC, PMC} are RES0 and are ignored.

G2.9.6 Using breakpoints

This section contains the following:

• Using an Address Mismatch breakpoint to single-step an instruction on page G2-6188.

• ITD control effects on address breakpoints on the first instruction in an IT block on page G2-6189.

• Breakpoint usage constraints on page G2-6190.

Using an Address Mismatch breakpoint to single-step an instruction

In execution conditions that an Address Mismatch breakpoint matches, defined by DBGBCR<n>.{LBN, SSC,
PMC}, the breakpoint generates Breakpoint exceptions for all instructions committed for execution, except the
instruction whose address the breakpoint is programmed with. Figure G2-4 on page G2-6188 shows an example of
Address Mismatch breakpoint operation, for an Address Mismatch breakpoint programmed with address 0x1014.

Figure G2-4 Operation of an Address Mismatch breakpoint

This means that an Address Mismatch breakpoint can be used to single-step an instruction.

In the example shown in Figure G2-4 on page G2-6188:

• If the target of a branch is an instruction other than the instruction at address 0x1014, the breakpoint generates
a Breakpoint exception when the instruction is committed for execution.

• If the target of a branch is the instruction at address 0x1014, the PE executes the instruction at 0x1014 and the
breakpoint does not generate a Breakpoint exception until the instruction at address 0x1018 is committed for
execution. The instruction at address 0x1014 is therefore single-stepped.

0x1000
0x1004
0x1008
0x100C
0x1010
0x1014
0x1018
0x101C
0x1020

The breakpoint does not generate a Breakpoint exception

Instruction
addresses

Program
flow

The breakpoint generates a Breakpoint exception for all of these instructions

The breakpoint generates a Breakpoint exception for all of these instructions

All executed in execution conditions that the breakpoint matches
G2-6188 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
However, if the instruction at 0x1014 generates a synchronous exception, or if the PE takes an asynchronous
exception while the instruction is being stepped, the breakpoint is evaluated again after taking the exception.
This means that behavior is as follows:

— If the exception handler executes in execution conditions that the breakpoint matches, the breakpoint
generates a Breakpoint exception for the exception vector, because the exception vector is not address
0x1014. This means that software execution steps into the exception.

— If the exception handler executes in execution conditions that the breakpoint does not match, the
breakpoint does not generate any Breakpoint exceptions after the PE has taken the exception, until the
exception handler completes and executes an exception return instruction. The effect is to step over
the exception. Whether the instruction is stepped again depends on whether the target of the exception
return instruction is the instruction at 0x1014 or the instruction at 0x1018.

If the instruction at 0x1014 is single-stepped and branches to itself, it is CONSTRAINED UNPREDICTABLE
whether the breakpoint generates a Breakpoint exception after the PE has executed the branch.

This means that an instruction is only single-stepped if it is the target of a branch instruction and its address matches
the address the breakpoint is programmed for. In the example shown in Figure G2-4 on page G2-6188, this is 0x1014.

Usually this branch instruction is an exception return instruction that changes PE mode, branching from a PE mode
in which the breakpoint does not generate a Breakpoint exception. A branch instruction that does not change PE
mode would itself generate a Breakpoint exception. However, it might be a branch-to-self instruction as described
above.

Because Address Mismatch breakpoints can single-step instructions, the behavior of an address mismatch
Breakpoint exception is similar to the behavior of an AArch64 Software Step exception.

Note

• The example shown in Figure G2-4 on page G2-6188 assumes an A32 instruction. The same behavior applies
for both 32-bit and 16-bit T32 instructions.

• Software Step exceptions are the highest priority synchronous exception. Breakpoint exceptions are lower
priority. See Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2490.

ITD control effects on address breakpoints on the first instruction in an IT block

In an implementation that supports the ITD control, if the value of the ITD field that applies to the current Exception
level is 1, all of the following are true:

• An IT instruction can only be used to apply to one 16-bit T32 instruction.

• Only certain combinations of an IT instruction and second single 16-bit T32 instruction are permitted.

• For a permitted combination, it is IMPLEMENTATION DEFINED whether the implementation treats the
combination as:

— A pair of 16-bit instructions.

— One 32-bit instruction.

If the implementation treats the combination as one 32-bit instruction, then as described in Other usage constraints
for Address breakpoints on page G2-6192, an Address breakpoint might not generate a Breakpoint exception for an
address match only on the second halfword of the instruction.

For this reason, if the ITD bit associated with the current Exception level is 1, Arm recommends that a debugger
that wants to program a breakpoint to match on the second T32 instruction programs it to match on the IT instruction
instead.

However, if returning from an exception whose preferred return address is the address of the second T32 instruction,
then because the debugger is aware that the implementation has treated the combination as a pair of 16-bit
instructions, the debugger is permitted to program the breakpoint to match on the second T32 instruction.

The ITD control fields are:

HSCTLR.ITD Applies to execution at EL2 when EL2 is using AArch32.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6189
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
SCTLR.ITD Applies to execution at EL0 or EL1 when EL1 is using AArch32.

SCTLR_EL1.ITD

Applies to execution at EL0 using AArch32 when EL1 is using AArch64.

An implementation that does not support the ITD control behaves as if the value of the ITD field is 0, and therefore
the information in this section does not apply to such an implementation.

Note

Programming the breakpoint to match on the second T32 instruction might be necessary when using an Address
Mismatch breakpoint for single stepping.

Breakpoint usage constraints

See the following sections:

• Reserved DBGBCR<n>.BT values on page G2-6190.

• Reserved DBGBCR<n>.{SSC, HMC, PMC} values on page G2-6191.

• Reserved DBGBCR<n>.BAS values on page G2-6191.

• Reserved DBGBCR<n>.LBN values on page G2-6192.

• Other usage constraints for Address breakpoints on page G2-6192.

• Other usage constraints for Context breakpoints on page G2-6192.

Reserved DBGBCR<n>.BT values

Table G2-12 on page G2-6190 shows when particular DBGBCR<n>.BT values are reserved.

If a breakpoint is programmed with one of these reserved BT values:

• The breakpoint must behave as if it is either:

— Disabled.

— Programmed with a BT value that is not reserved, other than for a direct or external read of
DBGBCR<n>.

• For a direct or external read of DBGBCR<n>, if the reserved BT value:

— Has no function for any execution conditions, the value read back is UNKNOWN.

Table G2-12 Reserved BT values

BT
value

Breakpoint type Reserved

0b001x Context ID Match If the breakpoint is not context-aware

0b010x Address Mismatch If EDSCR.HDE is 1 and halting is allowed

0b011x CONTEXTIDR_EL1
Match

If FEAT_VHE is not implemented, or the breakpoint is not context-aware

0b100x VMID Match If EL2 is not implemented, or the breakpoint is not context-aware

0b101x Context ID and VMID
Match

0b110x CONTEXTIDR_EL2
Match

If FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, or if the
breakpoint is not context-aware

Note
For these BT values, breakpoints are not generated if EL2 is using AArch32.

0b111x Full Context ID Match
G2-6190 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
— Has a function for execution conditions other than the current execution conditions, the value read
back is the value written. This permits software to save and restore the BT value so that the breakpoint
functions for the other execution conditions.

The behavior of breakpoints with reserved BT values might change in future revisions of the architecture. For this
reason, software must not rely on the behavior described here.

Reserved DBGBCR<n>.{SSC, HMC, PMC} values

Table G2-13 on page G2-6191 shows when particular combinations of DBGBCR<n>.{SSC, HMC, PMC} are
reserved in stage 1 of an AArch32 translation regime.

For all breakpoints except Linked Context breakpoints, if a breakpoint is programmed with one of these reserved
combinations:

• If the reserved combination has a function for other execution conditions:

— The breakpoint must behave as if it is disabled.

— A direct or external read of DBGBCR<n>.{SSC, HMC, PMC} returns the values written. This means
that software can save and restore the combination so that the breakpoint can function for the other
execution conditions.

• If the reserved combination does not have a function for other execution conditions:

— It must behave either as if it is programmed with a combination that is not reserved or as if it is
disabled.

— A direct or external read of DBGBCR<n>.{SSC, HMC, PMC} returns UNKNOWN values.

If the breakpoint is a Linked Context breakpoint, then:

• The values of HMC, SSC, and PMC are ignored.

• A direct or external read of DBGBCR<n>.{SSC, HMC, PMC} returns UNKNOWN values

The behavior of breakpoints with reserved combinations of HMC, SSC, and PMC might change in future revisions
of the architecture. For this reason, software must not rely on the behavior described here.

Reserved DBGBCR<n>.BAS values

For all Context breakpoints

DBGBCR<n>.BAS is RES1 and is ignored.

For all Address breakpoints

The supported values of the BAS field for the Address Match and Address Mismatch breakpoints
are shown in Specifying the halfword-aligned address that an Address breakpoint matches on on
page G2-6182.

Table G2-13 Reserved HMC, SSC, and PMC combinations

HMC, SSC, and PMC combination Reserved

All combinations with SSC set to 0b01 or 0b10, except for the combination with
HMC set to 1, SSC set to 0b01 and PMC set to 0b00

When EL3 is not implemented and EL2 is
implemented.

Any combination where HMC or SSC is nonzero When both of EL2 and EL3 are not implemented

The combination with HMC set to 1, SSC set to 0b11, and PMC set to 0b00 When EL2 is not implemented

The combinations with SSC set to 0b11 and PMC set to 0b01 or 0b11 When Secure EL2 is not implemented

The combination with HMC set to 1, SSC set to 0b01 and PMC set to 0b00 When Secure EL2 is not implemented

Combinations not included in Table G2-10 on page G2-6180 Always
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6191
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
If a breakpoint is programmed with a reserved BAS value:

• The breakpoint must behave as if it is either:

— Disabled.

— Programmed with a BAS value that is not reserved, other than for a direct or external read of
DBGBCR<n>.

• A direct or external read of DBGBCR<n>.BAS returns an UNKNOWN value.

Software must not rely on these properties as the behavior of reserved values might change in a future revision of
the architecture.

Reserved DBGBCR<n>.LBN values

For all Context breakpoints

DBGBCR<n>.LBN reads UNKNOWN and its value is ignored.

For Linked Address breakpoints

A Linked Address breakpoint must link to a context-aware breakpoint. For a Linked Address
breakpoint, any DBGBCR<n>.LBN value that is not for a context-aware breakpoint is reserved.

If a Linked Address breakpoint links to a breakpoint that is not implemented, or that is not
context-aware, then reads of DBGBCR<n>.LBN return an unknown value and the behavior is
CONSTRAINED UNPREDICTABLE. The Linked Address breakpoint behaves as if it is either:

• Disabled.

• Linked to an UNKNOWN context-aware breakpoint.

If a Linked Address breakpoint that links to a breakpoint that is implemented and that is
context-aware, but that is either not enabled or not programmed as a Linked Context breakpoint, it
behaves as if it is disabled.

For Unlinked Address breakpoints

DBGBCR<n>.LBN reads UNKNOWN and its value is ignored.

Other usage constraints for Address breakpoints

For all Address breakpoints

• DBGBVR<n>[1:0] are RES0 and are ignored.

• The DBGBXVR<n> is ignored.

For Address Match breakpoints

• For 32-bit instructions, if a breakpoint matches on the address of the second halfword but not
the address of the first halfword, it is CONSTRAINED UNPREDICTABLE whether the breakpoint
generates a Breakpoint exception.

• If DBGBCR<n>.BAS is 0b1111, it is CONSTRAINED UNPREDICTABLE whether the breakpoint
generates a Breakpoint exception for a T32 instruction starting at address
((DBGBVR<n>[31:2]:00) + 2). For T32 instructions, Arm recommends that the debugger
programs the BAS field with either 0b0011 or 0b1100.

For Address Mismatch breakpoints

The constraints are the same as those described in For Address Match breakpoints on
page G2-6192, except that if two Address Mismatch breakpoints are programmed to match in the
same Exception level and Security state, it is CONSTRAINED UNPREDICTABLE whether or not the
instruction is stepped or a Breakpoint debug even is generated.

Other usage constraints for Context breakpoints

For all Context breakpoints

Any bits of DBGBVR<n> and DBGBXVR<n> that are not used to specify Context ID or VMID
are RES0 and are ignored.
G2-6192 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
Note

This means that for Context ID Match breakpoints, the DBGBXVR<n> is RES0 and is ignored, and
for VMID Match breakpoints, the DBGBVR<n> is RES0 and is ignored.

For Linked Context breakpoints

If no Linked Address breakpoints or Linked Watchpoints link to a Linked Context breakpoint, the
Linked Context breakpoint does not generate any Breakpoint exceptions.

G2.9.7 Exception syndrome information and preferred return address for a Breakpoint exception

See the following:

• Exception syndrome information for a Breakpoint exception on page G2-6193.

• Preferred return address for a Breakpoint exception on page G2-6194.

Note

Usually, the term exception syndrome is used only for exceptions taken to Hyp mode, or to AArch64 state. The
referenced section uses the term more generally, to include exception information reported in the IFSR.

Exception syndrome information for a Breakpoint exception

The PE takes a Breakpoint exception as either:

• A Prefetch Abort exception if it is taken to PL1. In this case, it is taken to Abort mode.

• A Hyp trap exception, if it is taken to PL2 because HCR.TGE or HDCR.TDE is 1. In this case, it is taken to
Hyp mode.

If the exception is taken to:

Abort mode

The PE sets all of the following:

• DBGDSCRext.MOE to 0b0001, to indicate a Breakpoint exception.

• IFSR.FS to the code for a debug exception, 0b00010.

• The IFAR with an UNKNOWN value.

Hyp mode

The PE does all of the following:

• Records information about the exception in the Hypervisor Syndrome Register, HSR. See
Table G2-14 on page G2-6193.

• Sets DBGDSCRext.MOE to 0b0001, to indicate a Breakpoint exception.

• Sets the HIFAR to an unknown value.

Table G2-14 Information recorded in the HSR

HSR field Information recorded

Exception Class, EC The PE sets this to the code for a Prefetch Abort exception routed to Hyp mode, 0x20.

Instruction Length, IL The PE sets this to 1.

Instruction Specific Syndrome, ISS ISS[24:10] RES0.

ISS[9] External Abort type (EA). The PE sets this to 0.

ISS[8:6] RES0.

ISS[5:0] Instruction Fault Status Code (IFSC). The PE sets this to the code for a debug
exception, 0b100010.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6193
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Breakpoint exceptions
Note

For information about how debug exceptions can be routed to PL2, see Routing debug exceptions
on page G2-6159.

Preferred return address for a Breakpoint exception

The preferred return address of a Breakpoint exception is the address of the instruction that was not executed
because the PE took the Breakpoint exception instead.

This means that the preferred return address is the address of the instruction that caused the exception.

G2.9.8 Pseudocode description of Breakpoint exceptions taken from AArch32 state

AArch32.BreakpointValueMatch() returns a pair of results:

• A result for Address Match and Context breakpoints.

• A result for Address Mismatch breakpoints.

AArch32.StateMatch() tests the values in DBGBCR<n>.{SSC, HMC, PMC} and, if the breakpoint links to a Linked
Context breakpoint, also tests the Linked Context breakpoint.

AArch32.BreakpointMatch() tests a committed instruction against all breakpoints.

AArch32.CheckBreakpoint() generates a FaultRecord. A Breakpoint exception is taken if all of the following are true:

• DBGDSCRext.MDBGen is 1.

• Debug exceptions are enabled from the current Exception level and Security state. See Enabling debug
exceptions from the current Privilege level and Security state on page G2-6161.

• All of the conditions required for Breakpoint exception generation are met. See About Breakpoint exceptions
on page G2-6170.

Note

AArch32.CheckBreakpoint() might halt the PE and cause it to enter Debug state. External debug uses Debug state.

The AArch32.Abort() function processes the FaultRecord object returned by AArch32.CheckBreakpoint(), as
described in Abort exceptions on page G4-6260. When a Breakpoint exception is taken to AArch32 state, the
AArch32.Abort() function generates a Prefetch Abort exception.
G2-6194 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.10 Watchpoint exceptions
G2.10 Watchpoint exceptions

This section describes Watchpoint exceptions in stage 1 of an AArch32 translation regime.

The PE is using an AArch32 translation regime when it is executing either:

• At EL1 or higher in an Exception level that is using AArch32.

• At EL0 using AArch32 when EL1 is using AArch32.

This section contains the following subsections:

• About Watchpoint exceptions on page G2-6195.

• Watchpoint types and linking of watchpoints on page G2-6196.

• Execution conditions for which a watchpoint generates Watchpoint exceptions on page G2-6197.

• Watchpoint data address comparisons on page G2-6199.

• Determining the memory location that caused a Watchpoint exception on page G2-6202.

• Watchpoint behavior on other instructions on page G2-6203.

• Usage constraints on page G2-6204.

• Exception syndrome information and preferred return address on page G2-6206.

• Pseudocode description of Watchpoint exceptions taken from AArch32 state on page G2-6207.

G2.10.1 About Watchpoint exceptions

A watchpoint is an event that results from the execution of an instruction, based on a data address. Watchpoints are
also known as data breakpoints.

A watchpoint operates as follows:

1. A debugger programs the watchpoint with a data address, or a data address range.

2. The watchpoint generates a Watchpoint debug event on an access to the address, or any address in the address
range.

A watchpoint never generates a Watchpoint debug event on an instruction fetch.

An implementation can include between 2-16 watchpoints. In an implementation, DBGDIDR.WRPs shows how
many are implemented.

To use an implemented watchpoint, a debugger programs the following registers for the watchpoint:

• The Watchpoint Control Register, DBGWCR<n>. This holds control information for the watchpoint, for
example an enable control.

• The Watchpoint Value Register, DBGWVR<n>. This holds the data virtual address used for watchpoint
matching.

The registers are numbered, so that:

• DBGWCR1 and DBGWVR1 are for watchpoint number one.

• DBGWCR2 and DBGWVR2 are for watchpoint number two.

• …

• …

• DBGWCRn and DBGWVRn are for watchpoint number n.

A watchpoint can:

• Be programmed to generate Watchpoint debug events on read accesses only, on write accesses only, or on
both types of access.

• Link to a Linked Context breakpoint, so that a Watchpoint debug event is only generated if the PE is in a
particular context when the address match occurs.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6195
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.10 Watchpoint exceptions
A single watchpoint can be programmed to match on one or more address bytes. A watchpoint generates a
Watchpoint debug event on an access to any byte that it is watching. The number of bytes a watchpoint is watching
is either:

• One to eight bytes, provided that these bytes are contiguous and that they are all in the same naturally-aligned
doubleword. A debugger uses the Byte Address Select field, DBGWCR<n>.BAS, to select the bytes. See
Programming a watchpoint with eight bytes or fewer on page G2-6200.

• Eight bytes to 2GB, provided that both of the following are true:

— The number of bytes is a power-of-two.

— The range starts at an address that is aligned to the range size.

A debugger uses the MASK field, DBGWCR<n>.MASK, to program a watchpoint with eight bytes to 2GB.
See Programming a watchpoint with eight or more bytes on page G2-6201.

A debugger must use either the BAS field or the MASK field. If it uses both, whether the watchpoint generates
Watchpoint exceptions is CONSTRAINED UNPREDICTABLE. See Programming dependencies of the BAS and MASK
fields on page G2-6205.

For each memory access, all of the watchpoints are tested. When a watchpoint is tested, it generates a Watchpoint
debug event if all of the following are true:

• The watchpoint is enabled. That is, the watchpoint enable control for it, DBGWCR<n>.E, is 1.

• The conditions specified in the DBGWCR<n> are met.

• The comparison with the address held in the DBGWVR<n> is successful.

• If the watchpoint links to a Linked Context breakpoint, the comparison or comparisons made by the Linked
Context breakpoint are successful. See on page G2-6173 shows this. See also Breakpoint context
comparisons on page G2-6187.

• The instruction that initiates the memory access is committed for execution.

• The instruction that initiates the memory access passes its Condition code check.

If halting is allowed and EDSCR.HDE is 1, Watchpoint debug events cause entry to Debug state.

Otherwise, if debug exceptions are:

• Enabled, Watchpoint debug events generate Watchpoint exceptions.

• Disabled, Watchpoint debug events are ignored.

Note

The remainder of this Watchpoint Exceptions section, including all subsections, describes watchpoints as generating
Watchpoint exceptions. However, the behavior described also applies if watchpoints are causing entry to Debug
state.

The debug exception enable controls on page G2-6158 describes the enable controls for Watchpoint debug events.

G2.10.2 Watchpoint types and linking of watchpoints

When a debugger programs a watchpoint, it must program that watchpoint so that it is either:

• Used in isolation. In this case, the watchpoint is called an Unlinked watchpoint.

• Enabled for linking to a Linked Context breakpoint. In this case, the watchpoint is called a Linked watchpoint.

When a Linked watchpoint links to a Linked Context breakpoint, the Linked watchpoint only generates a
Watchpoint exception if the PE is in a particular context when the data address match occurs. For example, a
debugger might:

1. Program watchpoint number one with a data address.

2. Program breakpoint number five to be a Linked VMID Match breakpoint.
G2-6196 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.10 Watchpoint exceptions
3. Link the watchpoint and the breakpoint together. A Watchpoint exception is only generated if both the data
address matches and the VMID matches.

The Watchpoint Type field for a watchpoint, DBGWCR<n>.WT, controls whether the watchpoint is enabled for
linking. If DBGWCR<n>.WT is 1, the watchpoint is enabled for linking.

Rules for linking watchpoints

The rules for watchpoint linking are as follows:

• Only Linked watchpoints can be linked.

• A Linked watchpoint can link to any type of Linked Context breakpoint. The Linked Breakpoint Number
field, DBGWCR<n>.LBN, for the Linked watchpoint specifies the particular Linked Context breakpoint that
the Linked watchpoint links to, and:

— DBGWCR<n>.WT.{SSC, HMC, PAC} for the Linked watchpoint define the execution conditions that
the watchpoint generates Watchpoint exceptions for. See Execution conditions for which a watchpoint
generates Watchpoint exceptions on page G2-6197.

— DBGBCR<n>.{SSC, HMC, PMC} for the Linked Context breakpoint are ignored.

• A Linked watchpoint cannot link to another watchpoint. The LBN field can therefore only specify a
breakpoint.

• If a Linked watchpoint links to a breakpoint that is not context-aware, the behavior of the Linked watchpoint
is CONSTRAINED UNPREDICTABLE. See Usage constraints on page G2-6204.

• If a Linked watchpoint links to an Unlinked Context breakpoint, the Linked watchpoint never generates any
Watchpoint exceptions.

• Multiple Linked watchpoints can link to a single Linked Context breakpoint.

Note

Multiple Address breakpoints can also link to a single Linked Context breakpoint. Breakpoint exceptions on
page G2-6170 describes breakpoints.

Figure G2-1 on page G2-6173 shows an example of permitted watchpoint linking.

G2.10.3 Execution conditions for which a watchpoint generates Watchpoint exceptions

Each watchpoint can be programmed so that it only generates Watchpoint exceptions for certain execution
conditions. For example, a watchpoint might be programmed to generate Watchpoint exceptions only when the PE
is executing at EL2.

DBGWCR<n>.{SSC, HMC, PAC} define the execution conditions a watchpoint generates Watchpoint exceptions
for, as follows:

Security State Control, SSC

Controls whether the watchpoint generates Watchpoint exceptions only in Secure state, only in
Non-secure state, or in both Security states.

Note
This is determined by the Security state of the PE, not from the NS attribute returned by the
translation of the virtual address on which the watchpoint is set.

Higher Mode Control, HMC, and Privileged Access Control, PAC

HMC and PAC together control which Privilege level the watchpoint generates Watchpoint
exceptions in.

The PAC control relates to the privilege of the memory access, not to the Exception level or
Privilege level at which the access was made.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6197
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.10 Watchpoint exceptions
Note

This means that, if the PE executes a Load unprivileged or Store unprivileged instruction at PL1,
the resulting data access triggers a watchpoint only if both:

• PAC is programmed to a value that generates watchpoints on PL0 accesses.

• All other conditions for generating the watchpoint are met.

Example A32/T32 Load unprivileged and Store unprivileged instructions are LDRT and STRT.

Table G2-15 on page G2-6198 shows the valid combinations of HMC, SSC, and PAC, and for each combination
shows which Privilege levels watchpoints generate Watchpoint exceptions in.

In the table:

Y or - Means that a watchpoint programmed with the values of HMC, SSC, and PAC shown in that row:

Y Can generate Watchpoint exceptions at that Privilege level.

- Cannot generate Watchpoint exceptions at that Privilege level.

Res Means that the combination of HMC, SSC, and PAC is reserved. See Reserved
DBGWCR<n>.{SSC, HMC, PAC} values on page G2-6204.

Table G2-15 Summary of watchpoint HMC, SSC, and PAC encodings

HM
C

SS
C

PA
C

Security state the watchpoint is programmed to
match in

PL
2a

PL
1

PL
0

Implementation

No
EL3

No EL2 and no
EL3

0 00 01 Both - Y - - -

0 00 10 - - Y - -

0 00 11 - Y Y - -

0 01 01 Non-secure - Y - Res Res

0 01 10 - - Y Res Res

0 01 11 - Y Y Res Res

0 10 01 Secure - Y - Res Res

0 10 10 - - Y Res Res

0 10 11 - Y Y Res Res

0 11 01 Secure Y Y - - Res

0 11 11 Y Y Y - Res

1 00 01 Both Y Y - - Res

1 00 11 Y Y Y - Res

1 01 00 Non-secure Y - -

1 01 01 Y Y - Res Res

1 01 11 Y Y Y Res Res

1 10 01 Secure - Y - Res Res

1 10 11 - Y Y Res Res
G2-6198 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.10 Watchpoint exceptions
All combinations of HMC, SSC, and PAC that this table does not show are reserved. See Reserved
DBGWCR<n>.{SSC, HMC, PAC} values on page G2-6204.

G2.10.4 Watchpoint data address comparisons

An address comparison is successful if bits [31:2] of the current data virtual address are equal to
DBGWVR<n>[31:2], taking into account all of the following:

• The size of the access. See Size of the data access on page G2-6199.

• The bytes selected by DBGWVR<n>.BAS. See Programming a watchpoint with eight bytes or fewer on
page G2-6200.

• Any address ranges indicated by DBGWVR<n>.MASK. See Programming a watchpoint with eight or more
bytes on page G2-6201.

Note

DBGWVR<n>[1:0] are RES0 and are ignored.

Size of the data access

Because watchpoints can be programmed to generate Watchpoint exceptions on individual bytes, the size of each
access must be taken into account. See Example G2-1 on page G2-6199.

Example G2-1

1. A debugger programs a watchpoint to generate Watchpoint exceptions only when the byte at address 0x1009
is accessed.

2. The PE accesses the unaligned doubleword starting at address 0x1003.

In this scenario, the watchpoint must generate a Watchpoint exception.

The size of data accesses initiated by DCIMVAC instructions is an IMPLEMENTATION DEFINED size that is both:

• From the inclusive range between:

— The size that CTR.DminLine defines.

— 2KB.

• A power-of-two.

1 11 00 Both Y - - - Res if no EL2b

1 11 01 Y Y -

1 11 11 Y Y Y

a. Debug exceptions are not generated at PL2 using AArch32. This means that these combinations of HMC, SSC, and PAC are only relevant
if watchpoints cause entry to Debug state. Self-hosted debuggers must avoid combinations of HMC, SSC, and PAC that generate Watchpoint
exceptions at PL2 using AArch32.

b. This encoding is only reserved when EL2 is not implemented, regardless of whether EL3 is implemented.

Table G2-15 Summary of watchpoint HMC, SSC, and PAC encodings (continued)

HM
C

SS
C

PA
C

Security state the watchpoint is programmed to
match in

PL
2a

PL
1

PL
0

Implementation

No
EL3

No EL2 and no
EL3
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6199
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.10 Watchpoint exceptions
The lowest address accessed by a DCIMVAC instruction is the address supplied to the instruction, rounded down to the
nearest multiple of the access size initiated by that instruction.

The highest address accessed is (size - 1) bytes above the lowest address accessed.

See also, Watchpoint behavior on accesses by DCIMVAC instructions on page G2-6204.

Programming a watchpoint with eight bytes or fewer

The Byte Address Select field, DBGWCR<n>.BAS, selects which bytes in the doubleword starting at the address
contained in the DBGWVR<n> the watchpoint generates Watchpoint exceptions for.

If the address programmed into the DBGWVR<n> is:

• Doubleword-aligned:

— All eight bits of DBGWCR<n>.BAS are used, and the descriptions given in Table G2-16 on
page G2-6200 apply.

• Word-aligned but not doubleword-aligned:

— Only DBGWCR<n>.BAS[3:0] are used, and the descriptions given in Table G2-17 on page G2-6200
apply. In this case, DBGWCR<n>.BAS[7:4] are RES0.

Table G2-16 Supported BAS values when the DBGWVRn address alignment is doubleword

BAS value Description

0b00000000 Watchpoint never generates a Watchpoint exception

BAS[0] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:3]:000 is accessed

BAS[1] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:3]:001 is accessed

BAS[2] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:3]:010 is accessed

BAS[3] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:3]:011 is accessed

BAS[4] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:3]:100 is accessed

BAS[5] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:3]:101 is accessed

BAS[6] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:3]:110 is accessed

BAS[7] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:3]:111 is accessed

Table G2-17 Supported BAS values when the DBGWVRn address alignment is word

BAS valuea

a. DBGWCR<n>.BAS[7:4] are RES0.

Description

0b00000000 Watchpoint never generates a Watchpoint exception

BAS[0] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:2]:00 is accessed

BAS[1] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:2]:01 is accessed

BAS[2] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:2]:10 is accessed

BAS[3] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:2]:11 is accessed
G2-6200 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.10 Watchpoint exceptions
If the BAS field is programmed with more than one byte, the bytes that it is programmed with must be contiguous.
For watchpoint behavior when its BAS field is programmed with non-contiguous bytes, see Other usage constraints
on page G2-6206.

When programming the BAS field with anything other than 0b11111111, a debugger must also program
DBGWCR<n>.MASK to be 0b00000. See Programming dependencies of the BAS and MASK fields on
page G2-6205.

A watchpoint generates a Watchpoint exception whenever a watched byte is accessed, even if:

• The access size is smaller or larger than the address region being watched.

• The access is misaligned, and the base address of the access is not in the doubleword or word of memory
addressed by the DBGWVR<n>[31:3]. See Example G2-1 on page G2-6199.

The following are some example configurations of the BAS field:

• To program a watchpoint to generate a Watchpoint exception on the byte at address 0x1003, program:

— DBGWVR<n> with 0x1000.

— DBGWCR<n>_EL1.BAS to be 0b00001000.

• To program a watchpoint to generate a Watchpoint exception on the bytes at addresses 0x2003, 0x2004 and
0x2005, program:

— DBGWVR<n> with 0x2000.

— DBGWCR<n>_EL1.BAS to be 0b00111000.

• If the address programmed into the DBGWVR<n> is doubleword-aligned:

— To generate a Watchpoint exception when any byte in the word starting at the doubleword-aligned
address is accessed, program DBGWCR<n>.BAS to be 0b00001111.

— To generate a Watchpoint exception when any byte in the word starting at address
DBGWVR<n>[31:3]:100 is accessed, program DBGWCR<n>.BAS to be 0b11110000.

Note

Arm deprecates programming a DBGWVR<n> with an address that is not doubleword-aligned.

Programming a watchpoint with eight or more bytes

A debugger can use the MASK field, DBGWCR<n>.MASK, to program a single watchpoint with a data address
range. The data address range must meet all of the following criteria:

• It is a size that is both:

— A power-of-two.

— A minimum of eight bytes.

— A maximum of 2GB.

• It starts at an address that is aligned to the size.

The MASK field specifies the number of least significant data address bits that must be masked. Up to 31 least
significant bits can be masked:

MASK 0b00000 No bits are masked.

0b00001 Reserved.

0b00010 Reserved.

0b00011 Three least significant bits are masked.

0b00100 Four least significant bits are masked.

0b00101 Five least significant bits are masked.

… …

0b11111 31 least significant bits are masked.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6201
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.10 Watchpoint exceptions
If n least significant address bits are masked, the watchpoint generates a Watchpoint exception on all of the
following:

• Address DBGWVR<n>[31:n]:000…

• Address DBGWVR<n>[31:n]:111…

• Any address between these two addresses.

For example, if the four least significant address bits are masked, Watchpoint exceptions are generated for all
addresses between DBGWVR<n>[31:4]:0000 and DBGWVR<n>[31:4]:1111, including these addresses.

Note

• The most significant bit cannot be masked. This means that the full address cannot be masked.

• For watchpoint behavior when its MASK field is programmed with a reserved value, see Reserved
DBGWCR<n>.MASK values on page G2-6206.

When masking address bits, a debugger must both:

• Program DBGWCR<n>.BAS to be 0b11111111. See Programming dependencies of the BAS and MASK fields
on page G2-6205.

• In the DBGWVR<n>, set the masked address bits to 0. For watchpoint behavior when any of the masked
address bits are not 0, see Other usage constraints on page G2-6206.

G2.10.5 Determining the memory location that caused a Watchpoint exception

On a Watchpoint exception, the PE records an address in a Fault Address Register that the debugger can use to
determine the memory location that triggered the watchpoint.

The Fault Address Register (FAR) used is either:

• DFAR, if the exception is taken to PL1.

• HDFAR, if the exception is taken to PL2.

In cases where one instruction triggers multiple watchpoints, only one address is recorded.

On entering Debug state on a Watchpoint debug event, the PE records the address in the EDWAR.

Note

If Debug state was entered from AArch32 state, then EDWAR[63:32] is UNKNOWN and must be ignored by the
debugger.

For more information, see the subsections that follow. These are:

• Address recorded for Watchpoint exceptions generated by instructions other than data cache maintenance
instructions on page G2-6202.

• Address recorded for Watchpoint exceptions generated by data cache maintenance instructions on
page G2-6203.

Address recorded for Watchpoint exceptions generated by instructions other than data
cache maintenance instructions

The address recorded must be both:

• From the inclusive range between:

— The lowest address accessed by the memory access or set of contiguous memory accesses that
triggered the watchpoint.

— The highest watchpointed address accessed by the memory access or set of contiguous memory
accesses that triggered the watchpoint. A watchpointed address is an address that the watchpoint is
watching.
G2-6202 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.10 Watchpoint exceptions
• Within a naturally-aligned block of memory that is all of the following:

— A power-of-two size.

— No larger than the DC ZVA block size.

— Contains a watchpointed address accessed by the memory access or set of contiguous memory
accesses that triggered the watchpoint.

The size of the block is IMPLEMENTATION DEFINED. There is no architectural means of discovering the size.

Example G2-2 Address recorded for a watchpoint programmed on 0x8019

A debugger programs a watchpoint to generate a Watchpoint exception on any access to the byte 0x8019.

An A32 load multiple instruction then loads nine registers starting from address 0x8004 upwards. This triggers the
watchpoint.

If the DC ZVA block size is:

• 32 bytes, the address that the PE records must be between 0x8004 and 0x8019 inclusive.

• 16 bytes, the address that the PE records must be between 0x8010 and 0x8019 inclusive.

Address recorded for Watchpoint exceptions generated by data cache maintenance
instructions

The address recorded is the address passed to the instruction. This means that the address recorded might be higher
than the address of the location that triggered the watchpoint.

G2.10.6 Watchpoint behavior on other instructions

Under normal operating conditions, the following do not generate Watchpoint exceptions:

• Instruction cache maintenance instructions.

• Address translation instructions.

• TLB maintenance instructions.

• Preload instructions.

• All data cache maintenance instructions except DCIMVAC.

However, the debug architecture allows for IMPLEMENTATION DEFINED controls, such as those in ACTLR registers,
to enable watchpoints on an implementation defined subset of these instructions. Whether a watchpoint treats the
instruction as a load or a store, and the access size of instruction cache maintenance, address translation, and TLB
maintenance instructions are implementation defined.

The access size of the IMPLEMENTATION DEFINED instruction cache maintenance, address translation, and TLB
maintenance instructions that generate Watchpoint exceptions are IMPLEMENTATION DEFINED.

See also:

• Watchpoint behavior on accesses by Store-Exclusive instructions on page G2-6203.

• Watchpoint behavior on accesses by DCIMVAC instructions on page G2-6204.

Watchpoint behavior on accesses by Store-Exclusive instructions

If a watchpoint matches on a data access caused by a Store-Exclusive instruction, then:

• If the store fails because an Exclusives monitor does not permit it, it is IMPLEMENTATION DEFINED whether
the watchpoint generates a Watchpoint exception.

• Otherwise, the watchpoint generates a Watchpoint exception.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6203
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.10 Watchpoint exceptions
Watchpoint behavior on accesses by DCIMVAC instructions

It is IMPLEMENTATION DEFINED whether DCIMVAC operations can generate Watchpoint exceptions. If they can, they
are treated as data stores. This means that for a watchpoint to match on an access caused by a DCIMVAC instruction,
the debugger must program DBGWCR<n>.LSC to be one of the following:

10 Match on data stores only.

11 Match on data stores and data loads.

Note

For the size of data accesses performed by DCIMVAC instructions, see Watchpoint data address comparisons on
page G2-6199. The size of all data accesses must be considered because watchpoints can be programmed to match
on individual bytes.

G2.10.7 Usage constraints

See the following:

• Reserved DBGWCR<n>.{SSC, HMC, PAC} values on page G2-6204.

• Reserved DBGWCR<n>.LBN values on page G2-6205.

• Programming dependencies of the BAS and MASK fields on page G2-6205.

• Reserved DBGWCR<n>.BAS values on page G2-6205.

• Reserved DBGWCR<n>.MASK values on page G2-6206.

• Other usage constraints on page G2-6206.

Reserved DBGWCR<n>.{SSC, HMC, PAC} values

Table G2-18 on page G2-6204 shows when particular combinations of DBGWCR<n>.{SSC, HMC, PAC} are
reserved.

If a watchpoint is programmed with one of these reserved combinations:

• The watchpoint must behave as if it is either:

— Disabled.

— Programmed with a combination that is not reserved, other than for a direct or external read of
DBGWCR<n>.

• For a direct or external read of DBGWCR<n>, if the reserved combination:

— Has no function for any execution conditions, the value read back for each of SSC, HMC, and PMC
is UNKNOWN.

— Has a function for execution conditions other than the current execution conditions, the value read
back is the value written. This permits software to save and restore the combination so that the
watchpoint functions for the other execution conditions.

Table G2-18 Reserved SSC, HMC, and PAC combinations

HMC, SSC, and PAC combination Reserved

All combinations with SSC set to 0b01 or 0b10, except for the combination with
HMC set to 1, SSC set to 0b01 and PAC set to 0b00

When EL3 is not implemented and EL2 is
implemented.

Any combination where HMC or SSC is nonzero When both of EL2 and EL3 are not implemented

The combination with HMC set to 1, SSC set to 0b11, and PAC set to 0b00 When EL2 is not implemented

The combinations with SSC set to 0b11 and PAC set to 0b01 or 0b11 When Secure EL2 is not implemented

The combination with HMC set to 1, SSC set to 0b01 and PAC set to 0b00 When Secure EL2 is not implemented

Combinations not included in Table G2-15 on page G2-6198. Always
G2-6204 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.10 Watchpoint exceptions
The behavior of watchpoints with reserved combinations of SSC, HMC, and PAC might change in future revisions
of the architecture. For this reason, software must not rely on the behavior described here.

Reserved DBGWCR<n>.LBN values

For Linked watchpoints

A Linked watchpoint must link to a context-aware breakpoint. For a Linked watchpoint, any
DBGWCR<n>.LBN value that is not for a context-aware breakpoint is reserved.

If a Linked watchpoint links to a breakpoint that is not implemented, or that is not context-aware,
then reads of DBGWCR<n>.LBN return an UNKNOWN value and the behavior is CONSTRAINED
UNPREDICTABLE. The Linked watchpoint behaves as if it is either:

• Disabled.

• Linked to an UNKNOWN context-aware breakpoint.

If a Linked watchpoint links to a breakpoint that is implemented and is context-aware, but that is
either not enabled or not programmed as a Linked Context breakpoint, it behaves as if it is disabled.

For Unlinked watchpoints

For Unlinked watchpoints, DBGWCR<n>.LBN reads UNKNOWN and its value is ignored.

Programming dependencies of the BAS and MASK fields

When programming a watchpoint, a debugger must use either:

• The MASK field, to program the watchpoint with an address range that can be eight bytes to 2GB.

• The BAS field, to select which bytes in the doubleword or word starting at the address contained in the
DBGWVR<n> the watchpoint must generate Watchpoint exceptions for.

If the debugger uses the:

• MASK field, it must program BAS to be 0b11111111, so that all bytes in the doubleword or word are selected.

• BAS field, it must program MASK to be 0b00000, so that the MASK field does not indicate any address
ranges.

If an enabled watchpoint has a MASK field that is non-zero and a BAS field that is not set to 0b11111111, then for
each byte in the address range, it is CONSTRAINED UNPREDICTABLE whether or not a Watchpoint exception
is generated.

Reserved DBGWCR<n>.BAS values

The BAS field must be programmed with a value Zeros(8-n-m):Ones(n):Zeros(m), where:

• n is a non-zero positive integer less-than-or-equal-to 8.

• m is a positive integer less-than 8.

• n+m is less-than-or-equal-to 8.

All other values are reserved.

Note

If x is zero, then Zeros(x) is an empty bitstring.

If DBGWVR<n>[2] is 1, DBGWCR<n>.BAS[7:4] are RES0 and are ignored.

If a watchpoint is programmed with a reserved BAS value:

• It is CONSTRAINED UNPREDICTABLE whether the watchpoint generates a Watchpoint exception for each byte
in the doubleword or word of memory addressed by the DBGWVR<n>.

• A direct or external read of DBGWCR<n>.BAS returns an UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6205
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.10 Watchpoint exceptions
Software must not rely on these properties as the behavior of reserved values might change in a future revision of
the architecture.

Reserved DBGWCR<n>.MASK values

If a watchpoint is programmed with a reserved MASK value:

• The watchpoint must behave as if it is either:

— Disabled.

— Programmed with an UNKNOWN value that is not reserved, that might be 0b00000, other than for a direct
or external read of DBGWCR<n>.

• A direct or external read of DBGWCR<n>.MASK returns an UNKNOWN value.

Other usage constraints

For all watchpoints:

• DBGWVR<n>[1:0] are RES0 and are ignored.

• If DBGWCR<n>.MASK is nonzero, and any masked bits of DBGWVR<n> are not 0, it is CONSTRAINED
UNPREDICTABLE whether the watchpoint generates a Watchpoint exception when the unmasked bits match.

• A watchpoint never generates any Watchpoint exceptions if DBGWCR<n>.LSC is 0b00.

G2.10.8 Exception syndrome information and preferred return address

See the following:

• Exception syndrome information on page G2-6206.

• Preferred return address on page G2-6207.

Exception syndrome information

The PE takes a Watchpoint exception as either:

• A Data Abort exception, if it is taken to PL1. In this case, it is taken to Abort mode.

• A Hyp trap exception, if it is taken to PL2 because HCR.TGE or HDCR.TDE is 1. In this case, it is taken to
Hyp mode.

If the exception is taken to:

Abort mode

The PE sets all of the following:

• DBGDSCRext.MOE to 0b1010, to indicate a Watchpoint exception.

• DFSR.CM to indicate whether a cache maintenance instruction caused the exception.

• DFSR.WnR to indicate whether the exception was generated on a read instruction or a write
instruction.

• DFAR to an address that the debugger can use to determine the memory location that
triggered the watchpoint. See Determining the memory location that caused a Watchpoint
exception on page G2-6202.

In addition, if using the:

• Short-descriptor format, the PE sets DFSR.FS to the code for a debug exception, 0b00010, and
DFSR.Domain to an UNKNOWN value.

• Long-descriptor format, the PE sets DFSR.STATUS to the code for a debug exception,
0b100010.
G2-6206 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.10 Watchpoint exceptions
Hyp mode

The PE does all of the following:

• Records information about the exception in the Hypervisor Syndrome Register, HSR. See
Table G2-19 on page G2-6207.

• Sets DBGDSCRext.MOE to 0b1001, to indicate a Watchpoint exception.

• Sets the HDFAR to an address that the debugger can use to determine the memory location
that triggered the watchpoint. See Determining the memory location that caused a
Watchpoint exception on page G2-6202.

Note

For information about how debug exceptions can be routed to PL2, see Routing debug exceptions
on page G2-6159.

Preferred return address

The preferred return address of a Watchpoint exception is the address of the instruction that was not executed
because the PE took the Watchpoint exception instead.

This means that the preferred return address is the address of the instruction that caused the exception.

G2.10.9 Pseudocode description of Watchpoint exceptions taken from AArch32 state

AArch32.WatchpointByteMatch() tests an individual byte accessed by an operation.

AArch32.StateMatch() tests the values in DBGWCR<n>.{HMC, SSC, PAC}, and if the watchpoint is Linked, also
tests the Linked Context breakpoint that the watchpoint links to.

AArch32.WatchpointMatch() tests the value in DBGWVR<n>.

AArch32.CheckWatchpoint() generates a FaultRecord. A Watchpoint exception is taken if all of the following are true:

• DBGDSCRext.MDBGen is 1.

• Debug exceptions are enabled from the current Exception level and Security state. See Enabling debug
exceptions from the current Privilege level and Security state on page G2-6161.

Table G2-19 Information recorded in the HSR

HSR field Information recorded

Exception Class, EC The PE sets this to the code for a Data Abort exception routed to Hyp mode, 0x24.

Instruction Length, IL The PE sets this to 1.

Instruction Specific Syndrome, ISS ISV[24] Instruction Syndrome Valid (ISV). The PE sets this to 0.

ISS[23:10] RES0.

ISS[9] External Abort type (EA). The PE sets this to 0.

ISS[8] Cache Maintenance (CM). The PE sets this to indicate whether a cache maintenance
instruction caused the exception.

ISS[7] RES0.

ISS[6] Write not Read (WnR). The PE sets this to indicate whether the exception was
generated on a read instruction or a write instruction.

ISS[5:0] Data Fault Status Code (DFSC). The PE sets this to the code for a debug exception,
0b100010.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6207
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.10 Watchpoint exceptions
• All of the conditions required for Watchpoint exception generation are met. See About Watchpoint exceptions
on page G2-6195.

Note

AArch32.CheckWatchpoint might halt the PE and cause it to enter Debug state. External debug uses Debug state.

The AArch32.Abort() function processes the FaultRecord object returned by AArch32.CheckWatchpoint(), as
described in Abort exceptions on page G4-6260. If a Watchpoint exception is taken to AArch32 state, the
AArch32.Abort() function generates a Data Abort exception.
G2-6208 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.11 Vector Catch exceptions
G2.11 Vector Catch exceptions

Arm deprecates the use of vector catch.

This section describes Vector Catch exceptions in stage 1 of an AArch32 translation regime.

The PE is using an AArch32 translation regime when it is executing either:

• At EL1 or higher in an Exception level that is using AArch32.

• At EL0 using AArch32 when EL1 is using AArch32.

Note

Vector Catch exceptions cannot be generated when the PE is using an AArch64 translation regime.

This section contains the following subsections:

• About Vector Catch exceptions on page G2-6209.

• Exception vectors that Vector Catch exceptions can be enabled for on page G2-6211.

• Generation of Vector Catch exceptions on page G2-6212.

• Usage constraints on page G2-6214.

• Exception syndrome information and preferred return address for a Vector Catch exception on
page G2-6214.

• Pseudocode description of Vector Catch exceptions on page G2-6216.

G2.11.1 About Vector Catch exceptions

Whenever the PE takes an exception, execution is forced to an address that is the exception vector for that exception.
Vector catch permits a debugger to trap exceptions based on the exception vector, or based on the exception type
associated with the exception vector, as follows:

• If the address-matching form of vector catch is implemented, the debugger can trap exceptions based on the
exception vector.

• If the exception-trapping form of vector catch is implemented, the debugger can trap exceptions based on the
exception type associated with the exception vector.

The Armv8-A architecture supports only these two forms of vector catch. Only one form can be implemented, and
which is implemented is IMPLEMENTATION DEFINED. The DBGDEVID indicates which form is implemented.

Regardless of the form of vector catch implemented, a debugger enables Vector Catch exceptions for exception
vectors or types by programming the DBGVCR. This register contains vector catch enable bits. Each of these bits
corresponds to a different vector. When a debugger sets a vector catch enable bit to 1, Vector Catch exceptions are
enabled for the corresponding exception vector or type.

Note

EL2 using AArch64 or EL3 using AArch64 can enable Vector Catch exceptions for vectors by programming the
DBGVCR32_EL2. The DBGVCR32_EL2 is architecturally mapped to the DBGVCR.

When Vector Catch exceptions are enabled for an exception vector, this is called an enabled vector catch. The set
of exception vectors that Vector Catch exceptions are enabled for is called the enabled vector catch set.

If the form of vector catch implemented is the:

Address-matching form:

The PE compares the virtual address of each instruction in the program flow with a subset of the
enabled vector catch set.

If an address match occurs, a Vector Catch exception is generated when the instruction that caused
the match is committed for execution.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6209
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.11 Vector Catch exceptions
Exception-trapping form

Whenever the PE takes an exception, if the vector the exception is taken to is included in a subset
of the enabled vector catch set, a Vector Catch exception is generated.

The Vector Catch exception is generated as part of entry to the exception, and must be taken before
the PE either executes any instructions or takes any further exceptions.

The addresses that comprise the subset depend on whether EL3 is implemented and, for the:

• Address-matching form, the current Security state.

• Exception-trapping form, the Security state that the exception is handled in.

See Generation of Vector Catch exceptions on page G2-6212.

Table G2-20 on page G2-6210 summarizes the differences between the address-matching and exception-trapping
forms.

Depending on the implementation, some vector catch enable bits in the DBGVCR might be RES0. For example, if
EL3 is not implemented or is implemented but is using AArch64, Monitor mode is not implemented, and so the
enable bits for exception vectors for exceptions taken to Monitor mode are RES0. See Exception vectors that Vector
Catch exceptions can be enabled for on page G2-6211 for the vector catch enable bits that exist for different
implementations.

The debug exception enable controls on page G2-6158 describes the enable controls for Vector Catch exceptions.

Table G2-20 Differences in behavior of the address-matching and exception-trapping forms of vector catch

Address-matching Exception-trapping

An enabled vector catch generates a Vector Catch exception when
an instruction that is fetched from the vector is committed for
execution.

This means that spurious Vector Catch exceptions might occur,
where the Vector Catch exception does not result from an
exception entry, but is instead caused by a branch to the vector.

A branch to the vector might occur, for example, on a return from
a nested exception or when simulating an exception entry.

An enabled vector catch generates a Vector Catch exception
immediately after the PE takes the exception that is associated
with the vector.

This means that Vector Catch exceptions always result from
exception entry, and not from branches to exception vectors.

A Vector Catch exception is generated as a result of an instruction
fetch. This means that the Vector Catch exception has a priority
relative to the other synchronous exceptions that result from an
instruction fetch.

Synchronous exception prioritization for exceptions taken to
AArch64 state on page D1-2490 describes this prioritization.

A Vector Catch exception is generated as a result of an exception
entry. This means that the Vector Catch exception is part of the
exception that caused the Vector Catch exception. Therefore, the
Vector Catch exception has no priority associated with it.

For this reason, Vector Catch exceptions are outside the scope of
the prioritization that Synchronous exception prioritization for
exceptions taken to AArch64 state on page D1-2490 describes.

A Vector Catch exception can be preempted by another exception.

If this happens, the Vector Catch exception is generated again
when the exception handler branches back to the vector.

Vector Catch exceptions must be taken before other exceptions.

A Vector Catch exception can be generated as a result of an
instruction fetch executed in any AArch32 mode except Hyp
mode, including User mode.

Because a Vector Catch exception is generated as the result of an
exception entry, the Vector Catch exception is only generated
when the PE is in the AArch32 exception handling mode.

If HCR.TGE is 1, Vector Catch exceptions can be generated for
User mode instruction fetches from Non-secure PL1 vectors.

If HCR.TGE is 1, Vector Catch exceptions are never generated in
Non-secure state, because:

• Exceptions are routed away from Non-secure PL1 vectors,
to PL2.

• The architecture does not provide vector catch enable bits
for the Hyp exception vectors.
G2-6210 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.11 Vector Catch exceptions
G2.11.2 Exception vectors that Vector Catch exceptions can be enabled for

When the PE takes an exception, the exception vector is contained in a vector table at the Privilege level the
exception is taken to.

Depending on the Security state and AArch32 mode the exception is taken to, when the exception is taken, the
vector table used is the table that contains one of:

• Local exception vectors.

• Non-secure Local exception vectors.

• Secure Local exception vectors.

• Hyp exception vectors.

• Monitor exception vectors.

Table G2-21 on page G2-6211 shows which vector tables are implemented for different implementations. In the
table:

• A dash, -, means that the Exception level is not implemented.

• 64 means that the Exception level is using AArch64.

• 32 means that the Exception level is using AArch32.

For example, in an AArch32-only implementation that includes EL0, EL1, and EL3, when the PE takes an exception
to Monitor mode, it uses the vector table containing Monitor exception vectors.

The tables that follow show the vectors that Vector Catch exceptions can be enabled for, and their corresponding
vector catch enable bits in the DBGVCR:

• Table G2-22 on page G2-6212 shows the Local exception vectors, Secure Local exception vectors, and
Non-secure Local exception vectors that Vector Catch exceptions can be enabled for.

Table G2-21 Vector tables implemented for different implementations

Implementation
Vector table or tables implemented

EL0 EL1 EL2 EL3

32 32 - - Local exception vectors.

64 - Non-secure Local exception vectors.

32 - Non-secure Local exception vectors.

Hyp exception vectors.

- 64 Secure Local exception vectors.

Non-secure Local exception vectors.

- 32 Secure Local exception vectors.

Non-secure Local exception vectors.

Monitor exception vectors.

64 64 Secure Local exception vectors.

Non-secure Local exception vectors.

32 64 Secure Local exception vectors.

Non-secure Local exception vectors.

Hyp exception vectors.

32 32 Secure Local exception vectors.

Non-secure Local exception vectors.

Hyp exception vectors.

Monitor exception vectors.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6211
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.11 Vector Catch exceptions
• Table G2-23 on page G2-6212 shows the Monitor exception vectors that Vector Catch exceptions can be
enabled for.

The Armv8-A architecture does not provide vector catch enable bits for the Hyp exception vectors.

Note

There is no vector catch enable bit for Monitor trap exceptions.

G2.11.3 Generation of Vector Catch exceptions

How Vector Catch exceptions are generated depends on which form is implemented:

• Address-matching form on page G2-6213.

• Exception-trapping form on page G2-6213.

Table G2-22 Local exception vectors, Secure Local exception vectors, and Non-secure Local exception vectors that
Vector Catch exceptions can be enabled for

Vector catch enable bit
Exception
type

Local exception vectors

Local or Secure Local
exception vectors

Non-secure Local
exception vectors

Normal.
SCTLR.V is 0.a

High.
SCTLR.V is 1.

SF NSF FIQ interrupt VBAR +
0x0000001C

0xFFFF001C

SI NSI IRQ interrupt VBAR +
0x00000018

0xFFFF0018

SD NSD Data Abort VBAR +
0x00000010

0xFFFF0010

SP NSP Prefetch Abort VBAR +
0x0000000C

0xFFFF000C

SS NSS Supervisor Call VBAR +
0x00000008

0xFFFF0008

SU NSU Undefined
Instruction

VBAR +
0x00000004

0xFFFF0004

a. If EL3 is implemented and is using AArch32, VBAR is banked. The Secure Local exception vectors use VBARS and the Non-secure Local
Exception vectors use VBARNS.

Table G2-23 Monitor exception vectors that Vector Catch exceptions can be enabled for

Vector catch enable bit Exception type Monitor exception vectors

MF FIQ interrupt MVBAR + 0x0000001C

MI IRQ interrupt MVBAR + 0x00000018

MD Data Abort MVBAR + 0x00000010

MP Prefetch Abort MVBAR + 0x0000000C

MS Secure Monitor Call MVBAR + 0x00000008
G2-6212 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.11 Vector Catch exceptions
Address-matching form

The PE compares the virtual address of each instruction in the program flow is with some or all of the addresses in
the enabled vector catch set, as follows:

• If EL3 is not implemented, the enabled vector catch set contains only Local exception vectors. The PE
compares the virtual address of each instruction in the program flow, including those executed at EL0, with
all addresses in the enabled vector catch set.

• If EL3 is implemented, the enabled vector catch set might contain one or more of the following:

— Monitor exception vectors, if EL3 is using AArch32.

— Secure Local exception vectors.

— Non-secure Local exception vectors.

In this case, Table G2-24 on page G2-6213 shows which addresses, in the enabled vector catch set, the virtual
address of each instruction in the program flow is compared with.

For example, for exceptions taken to a Secure PL1 mode when EL3 is using AArch64, the virtual address of each
instruction in the program flow is compared with each Secure Local exception vector in the enabled vector catch set.

For each instruction in the program flow, the PE tests for any possible Vector Catch exceptions before executing the
instruction. If a match occurs, a Vector Catch exception is generated when the instruction is committed for
execution, regardless of all of the following:

• Whether the instruction passes its Condition code check.

• Whether the instruction is executed as part of exception entry.

• If EL2 is implemented, what HCR.{IMO, FMO, AMO} are set to.

• If EL3 is implemented, what SCR.{IRQ, FIQ, EA} are set to.

Exception-trapping form

When the PE takes an exception, it tests whether the exception is by branching to an exception vector in a subset of
the enabled vector catch set, as follows:

• If EL3 is not implemented, the enabled vector catch set contains only Local exception vectors. The PE tests
whether the exception is by branching to any address in the enabled vector catch set.

• If EL3 is implemented, the enabled vector catch set might contain one or more of the following:

— Monitor exception vectors, if EL3 is using AArch32.

— Secure Local exception vectors.

— Non-secure Local exception vectors.

Table G2-24 Comparisons made if the implementation includes EL3

EL3 is using
For exceptions taken to:

Secure PL1 modes Non-secure PL1 modes

AArch64 Secure Local exception vectors Non-secure Local exception vectors

AArch32 Secure Local exception vectors and Monitor exception vectors
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6213
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.11 Vector Catch exceptions
In this case, the PE tests whether the exception is by branching to a vector in one of the subsets that
Table G2-25 on page G2-6214 shows. In the table, n/a means not applicable.

For example, for an exception taken to a Secure PL1 mode when EL3 is using AArch64, the PE tests whether the
exception is by branching to any of the Secure Local exception vectors in the enabled vector address set.

If the exception is by branching to a vector in the subset, a Vector Catch exception is generated as part of exception
entry. That is, a Vector Catch exception is generated instead of the exception handler executing its first instruction.

G2.11.4 Usage constraints

See the following subsections:

• Usage constraints that apply to both forms of vector catch on page G2-6214.

• Usage constraints that apply only to the address-matching form on page G2-6214.

Usage constraints that apply to both forms of vector catch

For Vector Catch exceptions enabled for either the Prefetch Abort exception vector or the Data Abort exception
vector, if one of these exception types is taken to the Exception level that debug exceptions are targeting, behavior
is CONSTRAINED UNPREDICTABLE. Either:

• Vector catch is ignored, therefore a Vector Catch exception is not generated.

• Vector catch generates a Prefetch Abort debug exception. For Vector Catch exceptions enabled for the
Prefetch Abort exception vector, the PE might enter a recursive loop of Prefetch Abort exceptions causing
Vector Catch exceptions and Vector Catch exceptions causing Prefetch Abort exceptions.

Note

The Exception level that debug exceptions are targeting is called the debug target Exception level, ELD. Routing
debug exceptions on page G2-6159 describes how ELD is derived.

Usage constraints that apply only to the address-matching form

Exception vectors are at word-aligned addresses, and:

• It is CONSTRAINED UNPREDICTABLE whether an enabled vector catch generates a Vector Catch exception for
a 32-bit T32 instruction starting at the halfword-aligned address immediately prior to the vector address.

• T32 instructions that start at the halfword-aligned address immediately after the exception vector do not
generate Vector Catch exceptions.

For the address-matching form, Vector Catch exceptions have the same priority as Breakpoint exceptions. If a single
instruction causes both a Vector Catch exception and a Breakpoint exception, it is CONSTRAINED UNPREDICTABLE
which of these debug exceptions the PE takes.

G2.11.5 Exception syndrome information and preferred return address for a Vector Catch exception

See the following:

• Exception syndrome information for a Vector Catch exception on page G2-6215.

Table G2-25 Subsets that the PE tests within if EL3 is implemented

EL3 is using
For exceptions taken to:

Monitor mode Other Secure PL1 modes Non-secure PL1 modes

AArch64 n/a Secure Local exception vectors Non-secure Local exception vectors

AArch32 Monitor exception vectors
G2-6214 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.11 Vector Catch exceptions
• Preferred return address for a Vector Catch exception on page G2-6215.

Note

Usually, the term exception syndrome is used only for exceptions taken to Hyp mode, or to AArch64 state. The
referenced section uses the term more generally, to include exception information reported in the IFSR.

Exception syndrome information for a Vector Catch exception

The PE takes a Vector Catch exception as either:

• A Prefetch Abort exception if it is taken to PL1. In this case, it is taken to Abort mode.

• A Hyp trap exception, if it is taken to PL2 because HCR.TGE or HDCR.TDE is 1. In this case, it is taken to
Hyp mode.

If the exception is taken to:

PL1 Abort mode

The PE sets all of the following:

• IFSR.FS to the code for a debug exception, 0b00010.

• DBGDSCRext.MOE to 0b0101, to indicate a Vector Catch exception.

• The IFAR with an UNKNOWN value.

PL2 Hyp mode

The PE does all of the following:

• Records information about the exception in the Hypervisor Syndrome Register, HSR. See
Table G2-26 on page G2-6215.

• Sets DBGDSCRext.MOE to 0b0101, to indicate a Vector Catch exception.

• Sets the HIFAR to an unknown value.

Note

For information about how debug exceptions can be routed to PL2, see Routing debug exceptions
on page G2-6159.

Preferred return address for a Vector Catch exception

The preferred return address of a Vector Catch exceptions is the address of the instruction that was not executed
because the PE took the Vector Catch exception instead.

This means that the preferred return address is the exception vector. This is true regardless of whether the
address-matching form or the exception trapping form is implemented.

Table G2-26 Information recorded in the HSR

HSR field Information recorded

Exception Class, EC The PE sets this to the code for a Prefetch Abort exception routed to Hyp mode, 0x20.

Instruction Length, IL The PE sets this to 1.

Instruction Specific Syndrome, ISS ISS[24:10] RES0.

ISS[9] External Abort type (EA). The PE sets this to 0.

ISS[8:6] RES0.

ISS[5:0] Instruction Fault Status Code (IFSC). The PE sets this to the code for a debug
exception, 0b100010.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6215
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.11 Vector Catch exceptions
G2.11.6 Pseudocode description of Vector Catch exceptions

The AArch32.VCRMatch() pseudocode function checks whether the instruction at address generates a Vector Catch
exception. It therefore shows the address-matching form of vector catch.

The AArch32.CheckVectorCatch() pseudocode function uses AArch32.VCRMatch() to test whether the instruction
generates a Vector Catch exception, and if AArch32.VCRMatch() returns TRUE it generates that event.

The AArch32.Abort() function processes the FaultRecord object returned by AArch32.CheckVectorCatch(), as
described in Abort exceptions on page G4-6260. If there is a Vector Catch exception, the AArch32.Abort() function
generates a Prefetch Abort exception.
G2-6216 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Debug
G2.12 Synchronization and debug exceptions
G2.12 Synchronization and debug exceptions

The behavior of debug depends on all of the following:

• The state of the external debug authentication interface.

• Indirect reads of:

— External debug registers.

— System registers, including system debug registers.

— Special-purpose registers.

If a change is made to any of these, the effect of that change on debug exception generation cannot be relied on until
after a Context synchronization event has occurred.

For any instructions executed between the time when the change is made and the time when the next Context
synchronization event occurs, it is CONSTRAINED UNPREDICTABLE whether debug uses the state of the PE before the
change, or the state of the PE after the change.

Example G2-3 Example of synchronization and Breakpoint exception generation

1. Software changes DBGDSCRext.MDBGen from 0 to 1.

2. An instruction is executed, that would cause a Breakpoint exception if self-hosted debug uses the state of the
PE after the change.

3. A Context synchronization event occurs.

In this case, it is CONSTRAINED UNPREDICTABLE whether the instruction generates a Breakpoint exception.

Example G2-4 Example of synchronization and debug exceptions generation

1. Software unlocks the OS Lock.

2. The PE executes some instructions.

3. A Context synchronization event occurs.

During the time when the PE is executing some instructions, step 2, it is CONSTRAINED UNPREDICTABLE whether
debug exceptions other than Breakpoint Instruction exceptions can be generated.

Note

Some register updates are self-synchronizing. Others require an explicit Context synchronization event. For more
information, see:

• Synchronization of changes to AArch32 System registers on page G8-6443.

• Accessing PSTATE fields on page G1-6036.

• Synchronization of changes to the external debug registers on page H8-7462.

G2.12.1 State and mode changes without explicit context synchronization events

Most changes to the Exception level, and most changes to the Security state if EL3 is implemented, happen as a
result of operations that are an explicit Context synchronization event. This is because taking an exception and
returning from an exception are both explicit Context synchronization events, and the Privilege level and Security
state can only change as a result of taking or returning from an exception.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G2-6217
ID072021 Non-Confidential

AArch32 Self-hosted Debug
G2.12 Synchronization and debug exceptions
However, some Security state and AArch32 mode changes can happen because of operations that are not an explicit
Context synchronization event. These are:

• AArch32 mode changes caused by MSR and CPS instructions. A mode change might be to a mode at a lower
Privilege level.

• If EL3 is using AArch32, a Security state change caused by a direct write to the SCR in a privileged mode
other than Monitor mode, to set SCR.NS to 1.
G2-6218 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter G3
AArch32 Self-hosted Trace

This chapter describes the AArch32 self-hosted trace:

Introductory information:

• About self-hosted trace on page G3-6220.

• Trace Sinks on page G3-6220.

• Register controls to enable self-hosted trace on page G3-6220.

Prohibited regions in trace:

• Controls to prohibit trace at Exception levels on page G3-6221.

• Self-hosted trace and address translation on page G3-6221.

Timestamps and Synchronization:

• Self-hosted trace timestamps on page G3-6222.

• Synchronization in self-hosted trace on page G3-6223.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G3-6219
ID072021 Non-Confidential

AArch32 Self-hosted Trace
G3.1 About self-hosted trace
G3.1 About self-hosted trace

A PE Trace Unit generates trace data to describe the program flow of the PE.

The PE Trace Unit may be an implementation of a standard Arm Embedded Trace Macrocell (ETM), or another
type of Arm Trace Architecture, or an IMPLEMENTATION DEFINED trace function.

If an Armv8.4-compliant PE implements an ETM Architecture PE Trace Unit that includes the ETM System register
interface, FEAT_TRF must be implemented.

If an Armv8.4-compliant PE implements a Trace Unit that is either not an ETM Architecture PE Trace Unit or does
not implement the ETM System register interface, Arm recommends that FEAT_TRF is implemented, but this is
not mandatory.

Self-hosted trace happens when the agent controlling the trace collection is part of the same software stack as the
software being traced. The agent controls prohibited regions. The information collected by the agent is sent to a trace
sink.

The PE Trace Unit and the PE must have the same view of the debug authentication interface. If FEAT_TRF is
implemented, ExternalNoninvasiveDebugEnabled() is always TRUE.

G3.1.1 Trace Sinks

The PE Trace Unit sends the trace data to a trace sink. A system might include multiple trace sinks, and allow
software to configure which trace sink or sinks are used.

An example of an internal trace sink is an Embedded Trace Router (ETR), which allows software to define a buffer
in memory. Trace data is written to this buffer.

Arm recommends that a system that includes FEAT_TRF incorporates an ETR, and follows the system architecture
described by the CoreSight Base System Architecture (CS-BSA).

The self-hosted trace extensions do not describe the programmers’ model trace sinks.

G3.1.2 Register controls to enable self-hosted trace

For EL1 using AArch64, see Chapter D3 AArch64 Self-hosted Trace.

If FEAT_TRF is implemented, self-hosted trace is enabled if one of the following is true:

• EDSCR.TFO == 0.

• EDSCR.TFO == 1, EL3 is implemented, SDCR.STE == 1 and ExternalSecureNoninvasiveDebugEnabled() ==
FALSE.

• EDSCR.TFO ==1, EL3 is not implemented, the PE executes in Secure state and
ExternalSecureNoninvasiveDebugEnabled() = FALSE.

The pseudocode function SelfHostedTraceEnabled() shows these rules.

If FEAT_TRF is not implemented, SelfHostedTraceEnabled() returns FALSE.

While SelfHostedTraceEnabled() == FALSE, ExternalSecureNoninvasiveDebugEnabled() and
ExternalNoninvasiveDebugEnabled() control whether tracing is prohibited or allowed in each Security state.

The self-hosted trace extensions do not provide any mechanism to control software access to the PE Trace Unit
external debug interface.
G3-6220 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Trace
G3.2 Prohibited regions in self-hosted trace
G3.2 Prohibited regions in self-hosted trace

Trace is not generated in prohibited regions. The pseudocode function TraceAllowed() indicates whether tracing is
allowed in the current Security state and Exception level.

The IMPLEMENTATION DEFINED debug authentication interface can allow an external agent to disable the self-hosted
trace extension.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited in Secure state when SDCR.STE == 0. If FEAT_TRF
is implemented but not enabled, tracing is prohibited in Secure state when
ExternalSecureNoninvasiveDebugEnabled() == FALSE.

G3.2.1 Controls to prohibit trace at Exception levels

If SelfHostedTraceEnabled() == TRUE, TRFCR, TRFCR_EL1, TRFCR_EL2 and HTRFCR control whether trace
is prohibited at an Exception level. While SelfHostedTraceEnabled() == FALSE, these registers are ignored.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited at EL0 if one of the following is true:

• The Effective value of HCR_EL2.TGE == 0 and TRFCR_EL1.E0TRE == 0.

• The Effective value of HCR.TGE == 0 and TRFCR.E0TRE == 0.

• The Effective value of HCR_EL2.TGE == 1 and TRFCR_EL2.E0HTRE == 0.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited at EL1 if TRFCR.E1TRE == 0.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited at EL2 if HTRFCR.E2TRE == 0.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited at EL3 if one of the following is true:

• EL3 is in AArch64 state.

• EL3 is in AArch32 state and TRFCR.E1TRE == 0.

The pseudocode TraceAllowed() shows the preceding rules.

If SelfHostedTraceEnabled() == TRUE, no events are exported to the PE Trace Unit when tracing is prohibited.

If SelfHostedTraceEnabled() == FALSE, no events are exported to the PE Trace Unit when the PE is in Secure state
and counting in Secure state is prohibited.

When PMCR_EL0.X==0 or PMCR.X==0, no PMU events are exported to the PE Trace Unit.

Otherwise, PMU events are exported to the PE Trace Unit.

G3.2.2 Self-hosted trace and address translation

A hypervisor can use HTRFCR.CX to control visibility of VTTBR.VMID.

If SelfHostedTraceEnabled() == TRUE, and HTRFCR.CX == 0, or if EL2 is not implemented:

• The value of VTTBR.VMID is not traced.

• Comparisons with VTTBR.VMID do not match and results of comparison are not exposed through the
comparators.

The PE Trace Unit may either prohibit trace for these values, or may record a VTTBR.VMID value of zero in the
trace.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G3-6221
ID072021 Non-Confidential

AArch32 Self-hosted Trace
G3.3 Self-hosted trace timestamps
G3.3 Self-hosted trace timestamps

For EL1 using AArch64, see Chapter D3 AArch64 Self-hosted Trace.

The trace timestamp is a value that represents the passage of time in real-time. It is calculated from a counter which
increments all the time, when the PE is generating trace and when the PE is in a prohibited region.

While SelfHostedTraceEnabled() == FALSE, the external trace provides the trace timestamp. If the external trace is
a standard CoreSight system, the relationship between CoreSight time and the Generic Timer counter is
IMPLEMENTATION DEFINED.

When SelfHostedTraceEnabled() == TRUE, the trace time stamp is one of the following:

• The physical counter value CNTPCT_EL0 or CNTPCT.

• A virtual counter, which is calculated from the physical counter CNTPCT_EL0 minus an offset
CNTVOFF_EL2, if EL2 is implemented and using AArch64.

• A virtual counter, which is calculated from the physical counter CNTPCT minus an offset CNTVOFF, if EL2
is implemented and using AArch32.

• If EL2 is implemented and using AArch64, FEAT_ECV is implemented and enabled, offset physical time,
as defined by the value of (CNTPCT_EL0 - CNTPOFF_EL2). That is, the physical counter value minus a
physical offset.

• If EL2 is not implemented, the value of the offset is zero.

The fields TRFCR_EL2.TS, TRFCR.TS and HTRFCR.TS control which counter is used for self-hosted trace.

The timestamp used for trace is shown in Table G3-1 on page G3-6222.

Note

The value of HCR_EL2.E2H does not affect the counter used for the trace timestamp.

Table G3-1 Timestamp used for trace.

SelfHostedTraceEnabled() TRFCR_EL2.TS or HTRFCR.TS TRFCR_EL1.TS Timestamp traced

FALSE xx xx CoreSight time

TRUE 0b00 0b01 CNTPCT - CNTVOFF

0b00 0b11 CNTPCT

0b01 xx CNTPCT - CNTVOFF or
CNTPCT_EL0 - CNTVOFF_EL2

0b11 xx CNTPCT or CNTPCT_EL0
G3-6222 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 Self-hosted Trace
G3.4 Synchronization in self-hosted trace
G3.4 Synchronization in self-hosted trace

The PE Trace Unit is an indirect observer of the trace control registers.

While SelfHostedTraceEnabled() == TRUE, indirect reads of the trace filter control fields, TRFCR.{E1TRE,
E0TRE} and HTRFCR.{E2TRE, E0HTRE} are treated as indirect reads made by the instruction being traced, and
are subject to the standard requirements for synchronization of System register accesses.

The TSB CSYNC operation is used to ensure that a trace operation, due to a PE Trace Unit generating trace for an
instruction has completed. The TSB CSYNC operation may be reordered with respect to other instructions, so must be
combined with at least one Context synchronization event to ensure the operations are executed in the required
order. This means that a direct write to TRFCR or HTRFCR is guaranteed to be observed by the PE Trace Unit only
after a subsequent Context synchronization event. For more information, see Trace Synchronization Barrier (TSB
CSYNC) on page E2-4303.

While SelfHostedTraceEnabled() == FALSE, the PE Trace Unit might impose stronger synchronization
requirements.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G3-6223
ID072021 Non-Confidential

AArch32 Self-hosted Trace
G3.4 Synchronization in self-hosted trace
G3-6224 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter G4
The AArch32 System Level Memory Model

This chapter provides a system level view of the general features of the memory system. It contains the following
sections:

• About the memory system architecture on page G4-6226.

• Address space on page G4-6227.

• Mixed-endian support on page G4-6228.

• AArch32 cache and branch predictor support on page G4-6229.

• System register support for IMPLEMENTATION DEFINED memory features on page G4-6254.

• External aborts on page G4-6255.

• Memory barrier instructions on page G4-6257.

• Pseudocode description of general memory System instructions on page G4-6258.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G4-6225
ID072021 Non-Confidential

The AArch32 System Level Memory Model
G4.1 About the memory system architecture
G4.1 About the memory system architecture

The Arm architecture supports different implementation choices for the memory system microarchitecture and
memory hierarchy, depending on the requirements of the system being implemented. In this respect, the memory
system architecture describes a design space in which an implementation is made. The architecture does not
prescribe a particular form for the memory systems. Key concepts are abstracted in a way that permits
implementation choices to be made while enabling the development of common software routines that do not have
to be specific to a particular microarchitectural form of the memory system. For more information about the concept
of a hierarchical memory system see Memory hierarchy on page E2-4307.

G4.1.1 Form of the memory system architecture

The Armv8 A-profile architecture includes a Virtual Memory System Architecture (VMSA). Chapter G5 The
AArch32 Virtual Memory System Architecture describes the AArch32 view of the VMSA.

G4.1.2 Memory attributes

Memory types and attributes on page E2-4318 describes the memory attributes, including how different memory
types have different attributes. Each location in memory has a set of memory attributes, and the translation tables
define the virtual memory locations, and the attributes for each location.

Table G4-1 on page G4-6226 shows the memory attributes that are visible at the system level.

For more information on Cacheability and Shareability see The Cacheability and Shareability memory attributes on
page E2-4308, Non-shareable Normal memory on page E2-4320, and Caches and memory hierarchy on
page E2-4307.

Table G4-1 Memory attribute summary

Memory type Shareability Cacheability

Devicea

a. Takes additional attributes, see Device memory on page E2-4322.

Outer Shareable Non-cacheable.

Normal One of:

• Non-shareable.

• Inner Shareable.

• Outer Shareable.

One ofb:

• Non-cacheable.

• Write-Through Cacheable.

• Write-Back Cacheable.

b. See also Cacheability, cache allocation hints, and cache transient hints on
page G4-6232.
G4-6226 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Memory Model
G4.2 Address space
G4.2 Address space

The Armv8 architecture is designed to support a wide range of applications with different memory requirements. It
supports a range of physical address (PA) sizes, and provides associated control and identification mechanisms. For
more information, see About VMSAv8-32 on page G5-6262.

G4.2.1 Address space overflow or underflow

This subsection describes address space overflow or underflow:

Instruction address space overflow

When a PE performs a normal, sequential execution of instructions, it calculates:

(address_of_current_instruction) + (size_of_executed_instruction)

This calculation is performed after each instruction to determine which instruction to execute next.

If the address calculation performed after executing an A32 or T32 instruction overflows 0xFFFF FFFF, the program
counter becomes UNKNOWN.

If the PE executes an instruction for which the instruction address, size, and alignment mean that it contains the
bytes 0xFFFFFFFF and 0x00000000, the bytes that apparently from 0x00000000 onwards come from an UNKNOWN
address.

Data address space overflow and underflow

If the PE executes a load or store instruction for which the computed address, total access size, and alignment mean
that it accesses bytes 0xFFFFFFFF and 0x00000000, then the bytes that apparently come from 0x00000000 onwards come
from UNKNOWN addresses.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G4-6227
ID072021 Non-Confidential

The AArch32 System Level Memory Model
G4.3 Mixed-endian support
G4.3 Mixed-endian support

 Table G4-2 on page G4-6228 shows the endianness of explicit data accesses and translation table walks.

AArch32 state provides the following options for endianness support:

• All Exception levels support mixed-endianness:

— SCTLR(S/NS).EE, HSCTLR.EE, and PSTATE.E are RW.

• Only EL0 supports mixed-endianness and EL1, EL2, and EL3 support only little-endianness:

— SCTLR(S/NS).EE and HSCTLR.EE are RES0. PSTATE.E is RW when in EL0 and RES0 when in EL1,
EL2, or EL3. SPSR.E is also RES0 when not returning to EL0.

• Only EL0 supports mixed-endianness and EL1, EL2, and EL3 support only big-endianness:

— SCTLR(S/NS).EE and HSCTLR.EE are RES1. PSTATE.E is RW when in EL0 and RES1 when in EL1,
EL2, or EL3. SPSR.E is also RES1 when not returning to EL0.

• All Exception levels support only little-endianness:

— Each of SCTLR(S/NS).EE, HSCTLR.EE, PSTATE.E, and SPSR.E is RES0.

• All Exception levels support only big-endianness:

— Each of SCTLR(S/NS).EE, HSCTLR.EE, PSTATE.E, and SPSR.E is RES1.

If mixed endian support is implemented for an Exception level using AArch32, endianness is controlled by
PSTATE.E. For exception returns to AArch32 state, PSTATE.E is copied from SPSR_ELx.E. If the target Exception
level supports only little-endian accesses, SPSR_ELx.E is RES0. If the target Exception level supports only
big-endian accesses, SPSR_ELx.E is RES1.

Note

• When using AArch32, Arm deprecates PSTATE.E having a different value from the equivalent System
register EE bit when in EL1, EL2 or EL3. The use of the SETEND instruction is also deprecated.

• If the higher Exception levels are using AArch64, the corresponding registers are:

— SCTLR_EL1 for SCTLR(NS).

— SCTLR_EL2 for HSCTLR.

— SCTLR_EL3 for SCTLR(S).

The BigEndian() function determines whether the current Exception level and Execution state is using big-endian
data.

For more information about endianness in the Arm architecture see Endian support on page E2-4314.

Table G4-2 Endianness support

Exception level Explicit data accesses Stage 1 translation table walks Stage 2 translation table walks

EL0 PSTATE.E SCTLR(S/NS).EE HSCTLR.EE

EL1 PSTATE.E SCTLR(S/NS).EE HSCTLR.EE

EL2 PSTATE.E HSCTLR.EE n/a

EL3 PSTATE.E SCTLR(S).EE n/a
G4-6228 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
G4.4 AArch32 cache and branch predictor support

The following sections describe the support for caches and branch predictors in AArch32 state:

• General behavior of the caches on page G4-6229.

• Cache identification on page G4-6230.

• Cacheability, cache allocation hints, and cache transient hints on page G4-6232.

• Enabling and disabling the caching of memory accesses in AArch32 state on page G4-6233.

• Behavior of caches at reset on page G4-6235.

• About cache maintenance in AArch32 state on page G4-6235.

• AArch32 cache and branch predictor maintenance instructions on page G4-6239.

• Execution and data prediction restriction System instructions on page G4-6251.

• Cache lockdown on page G4-6252.

• System level caches on page G4-6253.

See also Chapter G5 The AArch32 Virtual Memory System Architecture, and in particular Caches in VMSAv8-32 on
page G5-6351.

Note

• Branch predictors typically use a form of cache to hold branch target data. Therefore, they are included in
this section.

• In the instruction mnemonics, MVA is a synonym for VA.

G4.4.1 General behavior of the caches

When a memory location is marked with a Normal Cacheable memory attribute, determining whether a copy of the
memory location is held in a cache still depends on many aspects of the implementation. The following
non-exhaustive list of factors might be involved:

• The size, line length, and associativity of the cache.

• The cache allocation algorithm.

• Activity by other elements of the system that can access the memory.

• Speculative instruction fetching algorithms.

• Speculative data fetching algorithms.

• Interrupt behaviors.

Given this range of factors, and the large variety of cache systems that might be implemented, the architecture
cannot guarantee whether:

• A memory location present in the cache remains in the cache.

• A memory location not present in the cache is brought into the cache.

Instead, the following principles apply to the behavior of caches:

• The architecture has a concept of an entry locked down in the cache. How lockdown is achieved is
IMPLEMENTATION DEFINED, and lockdown might not be supported by:

— A particular implementation.

— Some memory attributes.

• An unlocked entry in a cache might not remain in that cache. The architecture does not guarantee that an
unlocked cache entry remains in the cache or remains incoherent with the rest of memory. Software must not
assume that an unlocked item that remains in the cache remains dirty.

• A locked entry in a cache is guaranteed to remain in that cache. The architecture does not guarantee that a
locked cache entry remains incoherent with the rest of memory, that is, it might not remain dirty.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G4-6229
ID072021 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
Note

For more information, see The interaction of cache lockdown with cache maintenance instructions on
page G4-6252.

• Any memory location that has a Normal Cacheable attribute at either the current Exception level or at a
higher Exception level can be allocated to a cache at any time.

• It is guaranteed that no memory location that does not have a Normal Cacheable attribute is allocated into the
cache.

• It is guaranteed that no memory location is allocated to the cache if it has a Normal Non-cacheable attribute
or any type of Device memory attribute in both:

— The translation regime at the current Exception level.

— The translation regime at any higher Exception level.

• For data accesses, any memory location with a Normal Inner Shareable or Normal Outer Shareable attribute
is guaranteed to be coherent with all Requesters in its Shareability domain.

• Any memory location is not guaranteed to remain incoherent with the rest of memory.

• The eviction of a cache entry from a cache level can overwrite memory that has been written by another
observer only if the entry contains a memory location that has been written to by an observer in the
Shareability domain of that memory location. The maximum size of the memory that can be overwritten is
called the Cache Write-back Granule. In some implementations the CTR identifies the Cache Write-back
Granule.

• The allocation of a memory location into a cache cannot cause the most recent value of that memory location
to become invisible to an observer, if it was previously visible to that observer.

Note

The Cacheability attribute of an address is determined by the applicable translation table entry for that address, as
modified by any applicable System register Cacheability controls, such as the SCTLR.{I, C} controls.

For the purpose of these principles, a cache entry covers at least 16 bytes and no more than 2KB of contiguous
address space, aligned to the size of the cache entry.

G4.4.2 Cache identification

The Armv8 cache identification consists of a set of registers that describe the implemented caches that are affected
by cache maintenance instructions executed on the PE. This includes cache maintenance instructions that:

• Affect the entire cache, for example ICIALLUIS.

• Operate by VA, for example ICIMVAU.

• Operate by set/way, for example DCISW.

The cache identification registers are:

• A single Cache Type Register, CTR, that defines:

— The minimum line length of any of the instruction caches affected by the instruction cache
maintenance instructions.

— The minimum line length of any of the data or unified caches, affected by the data cache maintenance
instructions.

— The cache indexing and tagging policy of the Level 1 instruction cache.

Note

It is IMPLEMENTATION DEFINED whether caches beyond the PoC will be reported by this mechanism, and
because of the possible existence of system caches some caches before the PoC might not be reported. For
more information about system caches see System level caches on page G4-6253.
G4-6230 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
• A single Cache Level ID Register, CLIDR, that defines:

— The type of cache that is implemented and can be maintained using the architected cache maintenance
instructions that operate by set/way or operate on the entire cache at each cache level, up to the
maximum of seven levels.

— The Level of Unification Inner Shareable (LoUIS), Level of Coherence (LoC) and the Level of
Unification (LoU) for the caches. See Terms used in describing the cache maintenance instructions on
page G4-6236 for a definition of these terms.

— An optional ICB field to indicate the boundary between the caches use for caching Inner Cacheable
memory regions and those used only for caching Outer Cacheable regions.

• A single Cache Size Selection Register, CSSELR, that selects the cache level and cache type of the current
Cache Size Identification Register.

• For each implemented cache that is identifiable by this mechanism, across all the levels of caching, a Cache
Size Identification Register, that defines:

— Whether the cache supports Write-Through, Write-Back, Read-Allocate and Write-Allocate.

— The number of sets, associativity, and line length of the cache. See Terms used in describing the cache
maintenance instructions on page G4-6236 for a definition of these terms.

Note

From Armv8.3, it is possible to have multiple Cache Size Identification Registers. For more details, see
Possible formats of the Cache Size Identification Registers, CCSIDR and CCSIDR2 on page G4-6231.

To determine the cache topology associated with a PE:

1. Read the Cache Type Register to find the indexing and tagging policy used for the Level 1 instruction cache.
This register also provides the size of the smallest cache lines used for the instruction caches, and for the data
and unified caches. These values are used in cache maintenance instructions.

2. Read the Cache Level ID Register to find what caches are implemented. The register includes seven Cache
type fields, for cache levels 1 to 7. Scanning these fields, starting from Level 1, identifies the instruction, data
or unified caches implemented at each level. This scan ends when it reaches a level at which no caches are
defined. The Cache Level ID Register also specifies the Level of Unification (LoU) and the Level of
Coherence (LoC) for the cache implementation.

3. For each cache identified at stage 2:

• Write to the Cache Size Selection Register to select the required cache. A cache is identified by its
level, and whether it is:

— An instruction cache.

— A data or unified cache.

• Read the Cache Size Identification Register to find details of the cache.

Possible formats of the Cache Size Identification Registers, CCSIDR and CCSIDR2

From Armv8.3, two different formats are available for defining the number of sets and associativity of the currently
selected cache. For a definition of these terms, see Terms used in describing the cache maintenance instructions on
page G4-6236.

When FEAT_CCIDX is implemented:

• There are two Cache Size Identification Registers, CCSIDR and CCSIDR2.

• The length of the CCSIDR.Assoc field is 21 bits. This limits the associativity of the currently selected cache
to 221.

• The length of the CCSIDR2.NumSets field is 24 bits. This limits the number of sets in the currently selected
cache to 224.

This is the 64-bit format of the Cache Size Identification Register.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G4-6231
ID072021 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
When FEAT_CCIDX is not implemented:

• There is a single Cache Size Identification Register, CCSIDR.

• The length of the CCSIDR.Assoc field is 10 bits. This limits the associativity of the currently selected cache
to 210.

• The length of the CCSIDR.NumSets field is 15 bits. This limits the number of sets in the currently selected
cache to 215.

This is the 32-bit format of the Cache Size Identification Register.

When one of these formats is implemented, it is implemented across all the levels of caching.

G4.4.3 Cacheability, cache allocation hints, and cache transient hints

Cacheability only applies to Normal memory, and is defined independently for Inner and Outer cache locations. All
types of Device memory are always treated as Non-cacheable.

As described in Memory types and attributes on page E2-4318, the memory attributes include a cacheability
attribute that is one of:

• Non-cacheable.

• Write-Through cacheable.

• Write-Back cacheable.

In Armv8, Cacheability attributes other than Non-cacheable can be complemented by a cache allocation hint. This
is an indication to the memory system of whether allocating a value to a cache is likely to improve performance. In
addition, it is IMPLEMENTATION DEFINED whether a cache transient hint is supported, see Transient cacheability hint
on page G4-6232.

The cache allocation hints are assigned independently for read and write accesses, and therefore when the Transient
hint is supported the following cache allocation hints can be used:

For read accesses: Read-Allocate, Transient Read-Allocate, or No Read-Allocate.

For write accesses: Write-Allocate, Transient Write-Allocate, or No Write-Allocate.

Note

• A Cacheable location with both No Read-Allocate and No Write-Allocate hints is not the same as a
Non-cacheable location. A Non-cacheable location has coherency guarantees for all observers within the
system that do not apply for a location that is Cacheable, No Read-Allocate, No Write-Allocate.

• Implementations can use the cache allocation hints to limit cache pollution to a part of a cache, such as to a
subset of ways.

• For VMSAv8-32 translation table walks using the Long-descriptor translation table format, the appropriate
TCR.{IRGNn, ORGNn} fields define the memory attributes of the translation tables, including the
cacheability. However, this assignment supports only a subset of the cacheability attributes described in this
section.

The architecture does not require an implementation to make any use of cache allocation hints. This means an
implementation might not make any distinction between memory locations with attributes that differ only in their
cache allocation hint.

Transient cacheability hint

In Armv8, it is IMPLEMENTATION DEFINED whether a Transient hint is supported for the VMSAv8-32 translation
scheme when using the Long-descriptor translation table format. In an implementation that supports the Transient
hint, the Transient hint is a qualifier of the cache allocation hints, and indicates that the benefit of caching is for a
relatively short period. It indicates that it might be better to restrict allocation of transient entries, to avoid possibly
casting-out other, less transient, entries.
G4-6232 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
Note

The architecture does not specify what is meant by a relatively short period.

When using the Short-descriptor translation table format, VMSAv8-32 cannot support the Transient hint.

The description of the MAIR0, MAIR1, HMAIR0, and HMAIR1 registers includes the assignment of the Transient
attribute in an implementation that supports this option. In this assignment:

• The Transient hint is defined independently for Inner Cacheable and Outer Cacheable memory regions.

• A single Transient hint applies to both read and write accesses to a memory region.

G4.4.4 Enabling and disabling the caching of memory accesses in AArch32 state

In Armv8, Cacheability control fields can force all memory locations with the Normal memory type to be treated
as Non-cacheable, regardless of their assigned Cacheability attribute. Independent controls are provided for each
stage of address translation, with separate controls for:

• Data accesses. These controls also apply to accesses to the translation tables.

• Instruction accesses.

Note

These Cacheability controls replace the cache enable controls provided in previous versions of the Arm architecture.

In AArch32 state, the Cacheability control fields and their effects are as follows:

For the Non-secure PL1&0 translation regime

The Non-secure instance of SCTLR holds the EL1 controls that affect cacheability:

• When the value of SCTLR.C is 0:

— All stage 1 translations for data accesses to Normal memory are Non-cacheable.

— All accesses to the PL1&0 stage 1 translation tables are Non-cacheable.

• When the value of SCTLR.I is 0:

— All stage 1 translations for instruction accesses to Normal memory are Non-cacheable.

• When the value of HCR2.CD is 1:

— All stage 2 translations for data accesses to Normal memory are Non-cacheable.

— All accesses to the PL1&0 stage 2 translation tables are Non-cacheable.

• When the value of HCR2.ID is 1:

— All stage 2 translations for instruction accesses to Normal memory are Non-cacheable.

• When the value of HCR.DC is 1, all Non-secure stage 1 translations and all accesses to the
Non-secure EL1&0 stage 1 translation tables, are treated as accesses to Normal
Non-shareable Inner Write-Back Cacheable Read-Allocate Write-Allocate, Outer
Write-Back Cacheable Read-Allocate Write-Allocate memory, regardless of the value of
SCTLR.C. This applies to translations for both data and instruction accesses.

In addition, when the value of SCTLR.M is 0, indicating that the stage 1 translations are disabled
for the translation regime, then if EL2 is using AArch32 and the value of HCR.DC is 0 or if EL2 is
using AArch64 and the value of HCR_EL2.DC is 0, then:

• If the value of SCTLR.I is 0, instruction accesses to Normal memory from stage 1 of the
translation regime are Outer Shareable, Inner Non-cacheable, Outer Non-cacheable.

• If the value of SCTLR.I is 1, instruction accesses to Normal memory from stage 1 of the
translation regime are Outer Shareable, Inner Write-Through cacheable, Outer
Write-Through cacheable.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G4-6233
ID072021 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
Note

• In Non-secure state, the stage 1 and stage 2 cacheability attributes are combined as described
in Combining the Cacheability attribute on page G5-6330.

• The Non-secure SCTLR.{C, I} and HCR.DC fields have no effect on the Secure PL1&0 and
EL2 translation regimes.

• The HCR2.{ID, CD} fields affect only stage 2 of the Non-secure PL1&0 translation regime.

• In Non-secure state, the PL1&0 translation regime can be described as the Non-secure
EL1&0 translation regime. This is consistent with the equivalent AArch64 descriptions.

• When FEAT_XS is implemented SCTLR.{C, I} and HCR2.{ID, CD} fields have no effect
on the value of the XS attribute.

For the Secure PL1&0 translation regime

The Secure instance of SCTLR holds the controls that determine cacheability:

• When the value of SCTLR.C is 0:

— All data accesses to Normal memory using the Secure PL1&0 translation regime are
Non-cacheable.

— All accesses to the Secure PL1&0 translation tables are Non-cacheable.

• When the value of SCTLR.I is 0:

— All instruction accesses to Normal memory using the Secure PL1&0 translation
regime are Non-cacheable.

In addition, when the value of SCTLR.M is 0, indicating that stage 1 translations are disabled, then:

• If the value of SCTLR.I is 0, instruction accesses to Normal memory from stage 1 of the
translation regime are Outer Shareable, Inner Non-cacheable, Outer Non-cacheable.

• If the value of SCTLR.I is 1, instruction accesses to Normal memory from stage 1 of the
translation regime are Outer Shareable, Inner Write-Through cacheable, Outer
Write-Through cacheable.

Note

• The Secure SCTLR.{I, C, M} fields have no effect on the Non-secure PL1&0 and EL2
translation regimes.

• When FEAT_XS is implemented, the SCTLR.{I, C} fields have no effect on the value

of the XS attribute.

For the EL2 translation regime

• When the value of HSCTLR.C is 0:

— All data accesses to Normal memory using the EL2 translation regime are
Non-cacheable.

— All accesses to the EL2 translation tables are Non-cacheable.

• When the value of HSCTLR.I is 0:

— All instruction accesses to Normal memory using the EL2 translation regime are
Non-cacheable.

In addition, when the value of HSCTLR.M is 0, indicating that stage 1 translations are disabled,
then:

• If the value of HSCTLR.I is 0, instruction accesses to Normal memory from stage 1 of the
translation regime are Outer Shareable, Inner Non-cacheable, Outer Non-cacheable.

• If the value of HSCTLR.I is 1, instruction accesses to Normal memory from stage 1 of the
translation regime are Outer Shareable, Inner Write-Through cacheable, Outer
Write-Through cacheable.
G4-6234 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
Note

• The HSCTLR.{I, C, M} fields have no effect on the PL1&0 and EL3 translation regimes.

• When FEAT_XS is implemented, the HSCTLR.{I, C} fields have no effect on the value of
the XS attribute.

The effect of the SCTLR.C or HSCTLR.C and HCR2.CD bits is reflected in the result of the address translation
instructions in the PAR.

Note

• The requirements in this section mean the architecturally required effects of SCTLR.I and HSCTLR.I are
limited to their effects on caching instruction accesses in unified caches.

• This specification can give rise to different cacheability attributes between instruction and data accesses to
the same location. Where this occurs, the measures for mismatch memory attributes described in Mismatched
memory attributes on page E2-4328 must be followed to manage the corresponding loss of coherency.

G4.4.5 Behavior of caches at reset

In Armv8:

• All caches reset to IMPLEMENTATION DEFINED states that might be UNKNOWN.

• The Cacheability control fields described in Enabling and disabling the caching of memory accesses in
AArch32 state on page G4-6233 reset to values that force all memory locations to be treated as
Non-cacheable.

Note

This applies only to the controls that apply to the Translation regime that is used by the Exception level, PE
mode, and Security state entered on reset.

• An implementation can require the use of a specific cache initialization routine to invalidate its storage array
before caching is enabled. The exact form of any required initialization routine is IMPLEMENTATION DEFINED,
and the routine must be documented clearly as part of the documentation of the device.

• If an implementation permits cache hits when the Cacheability control fields force all memory locations to
be treated as Non-cacheable then the cache initialization routine must:

— Provide a mechanism to ensure the correct initialization of the caches.

— Be documented clearly as part of the documentation of the device.

In particular, if an implementation permits cache hits when the Cacheability controls force all memory
locations to be treated as Non-cacheable, and the cache contents are not invalidated at reset, the initialization
routine must avoid any possibility of running from an uninitialized cache. It is acceptable for an initialization
routine to require a fixed instruction sequence to be placed in a restricted range of memory.

• Arm recommends that whenever an invalidation routine is required, it is based on the Armv8 cache
maintenance instructions.

Similar rules apply to:

• Branch predictor behavior, see Behavior of the branch predictors at reset on page G4-6243.

• TLB behavior, see TLB behavior at reset on page G5-6333.

G4.4.6 About cache maintenance in AArch32 state

The following sections give general information about cache maintenance in Armv8:

• Terms used in describing the cache maintenance instructions on page G4-6236.

• The Armv8 abstraction of the cache hierarchy on page G4-6238.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G4-6235
ID072021 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
The following sections describe the AArch32 state cache maintenance instructions:

• AArch32 instruction cache maintenance instructions (IC*) on page G4-6240.

• AArch32 data cache maintenance instructions (DC*) on page G4-6241.

Note

Some descriptions of the cache maintenance instructions refer to the Cacheability of the address on which the
instruction operates. The Cacheability of an address is determined by the applicable translation table entry for that
address, as modified by any applicable System register Cacheability controls, such as the SCTLR.{I, C} controls.

Terms used in describing the cache maintenance instructions

Cache maintenance instructions are defined to act on particular memory locations. Instructions can be defined:

• By the virtual address of the memory location to be maintained, referred to as operating by VA.

• By a mechanism that describes the location in the hardware of the cache, referred to as operating by set/way.

In addition, for instruction caches and branch predictors, there are instructions that invalidate all entries.

The following subsections define the terms used in the descriptions of the cache maintenance instructions:

• Terminology for cache maintenance instructions operating by set/way on page G4-6236.

• Terminology for Clean, Invalidate, and Clean and Invalidate instructions on page G4-6237.

Note

There is no terminology specific to cache maintenance instructions that operate by VA. When all applicable stages
of translation are disabled, the VA used is identical to the PA. For more information about memory system behavior
when address translation is disabled, see The effects of disabling address translation stages on VMSAv8-32 behavior
on page G5-6270.

Terminology for cache maintenance instructions operating by set/way

Cache maintenance instruction that operate by set/way refer to the particular structures in a cache. Three parameters
describe the location in a cache hierarchy that an instruction works on. These parameters are:

Level The cache level of the hierarchy. The number of levels of cache is IMPLEMENTATION DEFINED. The
cache levels that can be managed using the architected cache maintenance instructions that operate
by set/way can be determined from the CLIDR.

In the Arm architecture, the lower numbered cache levels are those closest to the PE. See Memory
hierarchy on page E2-4307.

Set Each level of a cache is split up into a number of sets. Each set is a set of locations in a cache level
to which an address can be assigned. Usually, the set number is an IMPLEMENTATION DEFINED
function of an address.

In the Arm architecture, sets are numbered from 0.

Way The associativity of a cache is the number of locations in a set to which a specific address can be
assigned. The way number specifies one of these locations.

In the Arm architecture, ways are numbered from 0.

Note

Because the allocation of a memory address to a cache location is entirely IMPLEMENTATION DEFINED, Arm expects
that most portable software will use only the cache maintenance instructions by set/way as single steps in a routine
to perform maintenance on the entire cache.
G4-6236 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
Terminology for Clean, Invalidate, and Clean and Invalidate instructions

Caches introduce coherency problems in two possible directions:

1. An update to a memory location by a PE that accesses a cache might not be visible to other observers that
can access memory. This can occur because new updates are still in the cache and are not visible yet to the
other observers that do not access that cache.

2. Updates to memory locations by other observers that can access memory might not be visible to a PE that
accesses a cache. This can occur when the cache contains an old, or stale, copy of the memory location that
has been updated.

The Clean and Invalidate instructions address these two issues. The definitions of these instructions are:

Clean A cache clean instruction ensures that updates made by an observer that controls the cache are made
visible to other observers that can access memory at the point to which the instruction is performed.
Once the Clean has completed, the new memory values are guaranteed to be visible to the point to
which the instruction is performed, for example to the Point of Unification.

The cleaning of a cache entry from a cache can overwrite memory that has been written by another
observer only if the entry contains a location that has been written to by an observer in the
Shareability domain of that memory location.

Invalidate A cache invalidate instruction ensures that updates made visible by observers that access memory
at the point to which the invalidate is defined, are made visible to an observer that controls the cache.
This might result in the loss of updates to the locations affected by the invalidate instruction that
have been written by observers that access the cache, if those updates have not been cleaned from
the cache since they were made.

If the address of an entry on which the invalidate instruction operates is Normal, Non-cacheable or
any type of Device memory then an invalidate instruction also ensures that this address is not
present in the cache.

Note

Entries for addresses that are Normal Cacheable can be allocated to the cache at any time, and so
the cache invalidate instruction cannot ensure that the address is not present in a cache.

Clean and Invalidate

A cache clean and invalidate instruction behaves as the execution of a clean instruction followed
immediately by an invalidate instruction. Both instructions are performed to the same location.

The points to which a cache maintenance instruction can be defined differ depending on whether the instruction
operates by VA or by set/way:

• For instructions operating by set/way, the point is defined to be to the next level of caching. For the All
operations, the point is defined as the Point of Unification for each location held in the cache.

• For instruction operating by VA, two conceptual points are defined:

Point of Coherency (PoC)

The point at which all agents that can access memory are guaranteed to see the same copy of a
memory location for accesses of any memory type or cacheability attribute. In many cases this is
effectively the main system memory, although the architecture does not prohibit the
implementation of caches beyond the PoC that have no effect on the coherency between memory
system agents.

Note
The presence of system caches can affect the determination of the point of coherency as described
in System level caches on page G4-6253.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G4-6237
ID072021 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
Point of Unification (PoU)

The PoU for a PE is the point by which the instruction and data caches and the translation table
walks of that PE are guaranteed to see the same copy of a memory location. In many cases, the
Point of Unification is the point in a uniprocessor memory system by which the instruction and
data caches and the translation table walks have merged.

The PoU for an Inner Shareable Shareability domain is the point by which the instruction and
data caches and the translation table walks of all the PEs in that Inner Shareable Shareability
domain are guaranteed to see the same copy of a memory location. Defining this point permits
self-modifying software to ensure future instruction fetches are associated with the modified
version of the software by using the standard correctness policy of:

1. Clean data cache entry by address.

2. Invalidate instruction cache entry by address.

The following fields in the CLIDR relate to these conceptual points:

LoC, Level of Coherence

This field defines the last level of cache that must be cleaned or invalidated when cleaning or
invalidating to the Point of Coherency. The LoC value is a cache level, so, for example, if LoC
contains the value 3:

• A clean to the Point of Coherency operation requires the level 1, level 2 and level 3 caches
to be cleaned.

• Level 4 cache is the first level that does not have to be maintained.

If the LoC field value is 0x0, this means that no levels of cache need to cleaned or invalidated
when cleaning or invalidating to the Point of Coherency.

If the LoC field value is a nonzero value that corresponds to a level that is not implemented, this
indicates that all implemented caches are before the Point of Coherency.

LoUU, Level of Unification, uniprocessor

This field defines the last level of cache that must be cleaned or invalidated when cleaning or
invalidating to the Point of Unification for the PE. As with LoC, the LoUU value is a cache level.

If the LoUU field value is 0x0, this means that no levels of cache need to cleaned or invalidated
when cleaning or invalidating to the Point of Unification.

If the LoUU field value is a nonzero value that corresponds to a level that is not implemented,
this indicates that all implemented caches are before the Point of Unification.

LoUIS, Level of Unification, Inner Shareable

In any implementation:

• This field defines the last level of cache that must be cleaned or invalidated when cleaning
or invalidating to the Point of Unification for the Inner Shareable Shareability domain. As
with LoC, the LoUIS value is a cache level.

• If the LoUIS field value is 0x0, this means that no levels of cache need to cleaned or
invalidated when cleaning or invalidating to the Point of Unification for the Inner
Shareable Shareability domain.

• If the LoUIS field value is a nonzero value that corresponds to a level that is not
implemented, this indicates that all implemented caches are before the Point of
Unification.

For more information, see the CLIDR description.

The Armv8 abstraction of the cache hierarchy

The following subsections describe the Armv8 abstraction of the cache hierarchy:

• Cache maintenance instructions that operate by VA on page G4-6239.

• Cache maintenance instructions that operate by set/way on page G4-6239.
G4-6238 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
Cache maintenance instructions that operate by VA

The VA-based cache maintenance instructions are described as operating by VA. Each of these instructions is always
qualified as being either:

• Performed to the Point of Coherency.

• Performed to the Point of Unification.

See Terms used in describing the cache maintenance instructions on page G4-6236 for definitions of Point of
Coherency and Point of Unification, and more information about possible meanings of VA.

AArch32 cache and branch predictor maintenance instructions on page G4-6239 lists the VA-based maintenance
instructions.

The CTR holds minimum line length values for:

• The instruction caches.

• The data and unified caches.

These values support efficient invalidation of a range of addresses, because this value is the most efficient address
stride to use to apply a sequence of VA-based maintenance instructions to a range of VAs.

For the Invalidate data or unified cache line by VA instruction, the Cache Write-back Granule field of the CTR
defines the maximum granule that a single invalidate instruction can invalidate. This meaning of the Cache
Write-back Granule is in addition to its defining the maximum size that can be written back.

Cache maintenance instructions that operate by set/way

AArch32 cache and branch predictor maintenance instructions on page G4-6239 lists the set/way-based
maintenance instructions. Some encodings of these instructions include a required field that specifies the cache level
for the instruction:

• A clean instruction cleans from the level of cache specified through to at least the next level of cache, moving
further from the PE.

• An invalidate instruction invalidates only at the level specified.

G4.4.7 AArch32 cache and branch predictor maintenance instructions

The instruction and data cache maintenance instructions have the same functionality in AArch32 state and in
AArch64 state. Table G4-3 on page G4-6240 shows the AArch32 System instructions. Instructions that take an
argument include Rt in the instruction description.

AArch32 state also provides branch predictor maintenance instructions.

Note

• In Table G4-3 on page G4-6240 the Point of Unification is the Point of Unification of the PE executing the
cache maintenance instruction.

• In AArch32 state, all of the maintenance instructions are available from EL1 or higher.

• In AArch64 state, branch predictors are always invisible to software, and therefore AArch64 state does not
provide any branch predictor maintenance instructions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G4-6239
ID072021 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
A DSB instruction intended to ensure the completion of cache or branch predictor maintenance instructions must have
an access type of both loads and stores.

In an implementation where the branch predictors are architecturally invisible, the BPIMVA, BPIALLIS, and
BPIALL instructions can execute as NOPs.

The following subsections give more information about these instructions:

• AArch32 instruction cache maintenance instructions (IC*) on page G4-6240.

• AArch32 data cache maintenance instructions (DC*) on page G4-6241.

• Branch predictors on page G4-6242.

• General requirements for the scope of cache and branch predictor maintenance instructions on
page G4-6243.

• Effects of instructions that operate by VA to the Point of Coherency on page G4-6244.

• Effects of instructions that operate by VA but not to the Point of Coherency on page G4-6244.

• Effects of All and set/way maintenance instructions on page G4-6245.

• Effects of virtualization and security on the AArch32 cache maintenance instructions on page G4-6245.

• Boundary conditions for cache maintenance instructions on page G4-6247.

• Ordering of cache and branch predictor maintenance instructions on page G4-6248.

• Performing cache maintenance instructions on page G4-6249.

AArch32 instruction cache maintenance instructions (IC*)

Where an address argument for these instructions is required, it takes the form of a 32-bit register that holds the
virtual address argument. No alignment restrictions apply for this address.

Table G4-3 AArch32 System instructions for cache maintenance

Register Instruction

Instruction cache maintenance instructions

ICIALLUIS Invalidate all to Point of Unification, Inner Shareable

ICIALLU Invalidate all to Point of Unification

ICIMVAU, Rt Invalidate by virtual address to Point of Unification

Data cache maintenance instructions

DCIMVAC, Rt Invalidate by virtual address to Point of Coherency

DCISW, Rt Invalidate by set/way

DCCMVAC, Rt Clean by virtual address to Point of Coherency

DCCSW, Rt Clean by set/way

DCCMVAU, Rt Clean by virtual address to Point of Unification

DCCIMVAC, Rt Clean and invalidate by virtual address to Point of Coherency

DCCISW, Rt Clean and invalidate by set/way

Branch prediction maintenance instructions

BPIMVA, Rt Invalidate the virtual address from the branch predictors

BPIALLIS, Rt Invalidate all entries from branch predictors, Inner Shareable

BPIALL, Rt Invalidate all entries from branch predictors
G4-6240 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
Any cache maintenance instruction operating by VA includes as part of any required VA to PA translation:

• For an instruction executed at EL1, the current system ASID.

• The current Security state.

• Whether the instruction was performed from Hyp mode, or at EL1.

• For an instruction executed at EL1, the VMID.

That VA to PA translation might fault. However for an instruction cache maintenance instruction that operates by
VA:

• It is IMPLEMENTATION DEFINED whether the operation can generate a Data Abort exception for a Translation
fault or an Access flag fault.

• The operation cannot generate a Data Abort exception for a Domain fault or a Permission fault, except for
the Permission fault case on a Stage 2 fault on a stage 1 translation table walk.

For more information about the possible faults on an instruction that operates by VA, see Types of MMU faults on
page G5-6355.

An instruction cache maintenance instruction can complete at any time after it is executed, but is only guaranteed
to be complete, and its effects visible to other observers, following a DSB instruction executed by the PE that executed
the cache maintenance instruction. See also the completion requirements for cache and branch predictor
maintenance instructions in Completion and endpoint ordering on page E2-4295.

See also Ordering of cache and branch predictor maintenance instructions on page G4-6248.

AArch32 data cache maintenance instructions (DC*)

Data cache maintenance instructions that take a set/way/level argument take a 32-bit register.

If a data cache maintenance by set/way instruction specifies a set, way, or level argument that is larger than the value
supported by the implementation then the instruction is CONSTRAINED UNPREDICTABLE, see Out of range values of
the Set/Way/Index fields in cache maintenance instructions on page K1-8398 or the instruction description.

DCISW instructions executed at EL1 perform a clean and invalidate, meaning it performs the same maintenance as
a DCCISW instruction, if all of the following apply:

• EL2 is implemented and enabled in the current Security state.

• Either:

— EL2 is using AArch32 and the value of HCR.SWIO is 1.

— EL2 is using AArch64 and the value of HCR_EL2.SWIO is 1.

Where an address argument for these instructions is required, it takes the form of a 32-bit register that holds the
virtual address argument. No alignment restrictions apply for this address.

Any cache maintenance instruction operating by VA includes as part of any required VA to PA translation:

• For an instruction executed at EL1, the current system ASID.

• The current Security state.

• Whether the instruction was performed from Hyp mode, or from EL1.

• For an instruction executed from EL1, the VMID.

That VA to PA translation might fault. However a data or unified cache maintenance instruction that operates by VA
cannot generate a Data Abort exception for a Domain fault, and cannot generate a Data Abort exception for a
Permission fault, except for the Permission fault case on a Stage 2 fault on a stage 1 translation table walk.

For more information about the possible faults on an instruction that operates by VA, see Types of MMU faults on
page G5-6355.

DCIMVAC and DCISW instructions executed at EL1 perform a clean and invalidate, meaning they perform the
same maintenance as a DCCIMVAC or DCCISW instruction respectively, if all of the following apply:

• EL2 is implemented and enabled in the current Security state.

• PL1&0 stage two address translation is enabled, meaning either:

— EL2 is using AArch32 and the value of HCR.VM is 1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G4-6241
ID072021 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
— EL2 is using AArch64 and the value of HCR_EL2.VM is 1.

If a memory fault that sets FAR for the translation regime applicable for the cache maintenance instruction is
generated from a data cache maintenance instruction, the FAR holds the address specified in the register argument
of the instruction.

See also Ordering of cache and branch predictor maintenance instructions on page G4-6248.

Branch predictors

In AArch32 state it is IMPLEMENTATION DEFINED whether branch prediction is architecturally visible. This means
that under some circumstances software must perform branch predictor maintenance to avoid incorrect execution
caused by out-of-date entries in the branch predictor. For example, to ensure correct operation it might be necessary
to invalidate branch predictor entries on a change to instruction memory, or a change of instruction address mapping.
For more information, see Specific requirements for branch predictor maintenance instructions on page G4-6242.

In an implementation where the branch predictors are architecturally invisible, the branch predictor maintenance
instructions can execute as NOPs.

An invalidate all operation on the branch predictor ensures that any location held in the branch predictor has no
functional effect on execution. An invalidate branch predictor by VA instruction operates on the address of the
branch instruction, but can affect other branch predictor entries.

Note

The architecture does not make visible the range of addresses in a branch predictor to which the invalidate operation
applies. This means the address used in the invalidate by VA operation must be the address of the branch to be
invalidated.

If branch prediction is architecturally visible, an instruction cache invalidate all operation also invalidates all branch
predictors.

See also Ordering of cache and branch predictor maintenance instructions on page G4-6248.

Specific requirements for branch predictor maintenance instructions

If, for a given translation regime and a given ASID and VMID as appropriate, the instructions at any virtual address
change, then branch predictor maintenance instructions must be performed to invalidate entries in the branch
predictor, to ensure that the change is visible to subsequent execution. This maintenance is required when writing
new values to instruction locations. It can also be required as a result of any of the following situations that change
the translation of a virtual address to a physical address, if, as a result of the change to the translation, the instructions
at the virtual addresses change:

• For any translation regime other than the Non-secure PL1&0 translation regime, enabling or disabling stage 1
translations.

• For the Non-secure PL1&0 translation regime:

— When stage 2 translations are enabled, enabling or disabling stage 1 translations unless accompanied
by a change of VMID.

— When stage 2 translations are disabled, enabling or disabling stage 1 translations.

— Enabling or disabling stage 2 translations.

• Writing new mappings to the translation tables.

• Any change to the TTBR0, TTBR1, or TTBCR registers, unless:

— For a change to the Secure PL1&0 translation regime, the change is accompanied by a change to the
ASID.

— For a change to the stage 1 translations of the Non-secure PL1&0 translation regime, the change is
accompanied by a change to the ASID or a change to the VMID.

• Any change to the VTTBR or VTCR registers, unless accompanied by a change to the VMID.
G4-6242 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
Note

Invalidation is not required if the changes to the translations are such that the instructions associated with the
non-faulting translations of a virtual address, for a given translation regime and a given ASID and VMID, as
appropriate, remain unchanged throughout the sequence of changes to the translations. Examples of translation
changes to which this applies are:

• Changing a valid translation to a translation that generates an MMU fault.

• Changing a translation that generates an MMU fault to a valid translation.

Failure to invalidate entries might give CONSTRAINED UNPREDICTABLE results, caused by the execution of old
branches. For more information, see Ordering of cache and branch predictor maintenance instructions on
page G4-6248.

Note

• In Armv8, there is no requirement to use the branch predictor maintenance operations to invalidate the branch
predictor after:

— Changing the ContextID or VMID.

— A cache maintenance instruction that is identified as also flushing the branch predictors, see AArch32
cache and branch predictor maintenance instructions on page G4-6239.

Cache maintenance system instructions on page K15-8657 shows the branch predictor maintenance operations in a
VMSA implementation.

Behavior of the branch predictors at reset

In AArch32 state:

• If branch predictors are not architecturally invisible:

— The branch predictors reset to an IMPLEMENTATION DEFINED state that might be UNKNOWN.

— The branch predictors are disabled at reset.

• An implementation can require the use of a specific branch predictor initialization routine to invalidate the
branch predictor storage array before it is enabled. The exact form of any required initialization routine is
IMPLEMENTATION DEFINED, but the routine must be documented clearly as part of the documentation of the
device.

• Arm recommends that whenever an invalidation routine is required, it is based on the AArch32 branch
predictor maintenance operations.

Similar rules apply:

• To cache behavior, see Behavior of caches at reset on page G4-6235.

• To TLB behavior, see TLB behavior at reset on page G5-6333.

General requirements for the scope of cache and branch predictor maintenance
instructions

The Armv8 specification of the cache maintenance and branch predictor instructions describes what each instruction
is guaranteed to do in a system. It does not limit other behaviors that might occur, provided they are consistent with
the requirements described in General behavior of the caches on page G4-6229, Behavior of caches at reset on
page G4-6235, and Preloading caches on page E2-4310.

This means that as a side-effect of a cache maintenance instruction:

• Any location in the cache might be cleaned.

• Any unlocked location in the cache might be cleaned and invalidated.

As a side-effect of a branch predictor maintenance instruction, any entry in the branch predictor might be
invalidated.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G4-6243
ID072021 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
Note

Arm recommends that, for best performance, such side-effects are kept to a minimum. Arm strongly recommends
that the side-effects of operations performed in Non-secure state do not have a significant performance impact on
execution in Secure state.

Effects of instructions that operate by VA to the Point of Coherency

For Normal memory that is not Inner Non-cacheable, Outer Non-cacheable, these instructions must affect the caches
of other PEs in the Shareability domain described by the Shareability attributes of the VA supplied with the
instruction.

For Device memory and Normal memory that is Inner Non-cacheable, Outer Non-cacheable, these instructions must
affect the caches of all PEs in the Outer Shareable Shareability domain of the PE on which the instruction is
operating.

In all cases, for any affected PE, these instructions affect all data and unified caches to the Point of Coherency.

Effects of instructions that operate by VA but not to the Point of Coherency

The following instruction operate by VA but not to the Point of Coherency:

• Clean data or unified cache line by MVA to the Point of Unification, DCCMVAU.

• Invalidate instruction cache line by MVA to Point of Unification, ICIMVAU.

• Invalidate by MVA from branch predictors, BPIMVA.

For these instructions, Table G4-5 on page G4-6244 shows how, for a VA in a Normal or Device memory location,
the Shareability attribute of the VA determines the minimum set of PEs affected, and the point to which the
instruction must be effective.

Note

The set of PEs guaranteed to be affected is never greater than the PEs in the Inner Shareable Shareability domain
containing the PE executing the instruction.

Table G4-4 PEs affected by cache maintenance instructions to the Point of Coherency

Shareability PEs affected Effective to

Non-shareable The PE performing the operation The Point of Coherency of the entire system

Inner Shareable All PEs in the same Inner Shareable Shareability domain as the
PE performing the operation

The Point of Coherency of the entire system

Outer Shareable All PEs in the same Outer Shareable Shareability domain as the
PE performing the operation

The Point of Coherency of the entire system

Table G4-5 PEs affected by cache maintenance instructions to the Point of Unification

Shareability PEs affected Effective to

Non-shareable The PE executing the instruction The Point of Unification of instruction cache fills, data cache fills and
write-backs, and translation table walks, on the PE executing the instruction

Inner Shareable or
Outer Shareable

All PEs in the same Inner
Shareable Shareability domain as
the PE executing the instruction

The Point of Unification of instruction cache fills, data cache fills and
write-backs, and translation table walks, of all PEs in the same Inner
Shareable Shareability domain as the PE executing the instruction
G4-6244 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
Effects of All and set/way maintenance instructions

The ICIALLU, BPIALL and DC* set/way instructions apply only to the caches and branch predictors of the PE that
performs the instruction. If the branch predictors are architecturally-visible, ICIALLU also performs a BPIALL
operation.

The ICIALLUIS and BPIALLIS instructions can affect the caches and branch predictors of all PEs in the same Inner
Shareable Shareability domain as the PE that performs the instruction. If the branch predictors are
architecturally-visible, ICIALLUIS also performs a BPIALLIS operation. These instructions have an effect to the
Point of Unification of instruction cache fills, data cache fills, and write-backs, and translation table walks, of all
PEs in the same Inner Shareable Shareability domain.

Note

The possible presence of system caches, as described in System level caches on page G4-6253, means architecture
does not guarantee that all levels of cache can be maintained using set/way instructions.

Effects of virtualization and security on the AArch32 cache maintenance instructions

Each Security state has its own physical address space, and therefore cache entries are associated with physical
address space. In addition, cache maintenance and branch predictor instructions performed in Non-secure state have
to take account of:

• Whether the instruction was performed at EL1 or at EL2.

• For instructions that operate by VA, the current VMID.

Table G4-6 on page G4-6245 shows the effects of virtualization and security on these maintenance instructions.

Table G4-6 Effects of virtualization and security on the AArch32 cache maintenance instructions

Cache maintenance instructions Specified entry

Data or unified cache maintenance instructions

Invalidate, Clean, or Clean and Invalidate
by VA: DCIMVAC, DCCMVAC,
DCCMVAU, DCCIMVAC

All lines that hold the PA that, in the current translation regime, are mapped to by the
combination of all of:

• The specified VA.

• For an instruction executed at EL1, the current ASID if the location is mapped to
by a non-global page.

• For a Non-secure instruction executed at EL1, the current VMIDa.

• For a Non-secure instruction executed at EL0, when EL2 is using AArch32 or
when EL2 is using AArch64 and HCR_EL2.{E2H, TGE} is not {1,1}. the
current VMIDa.

• For a Secure instruction executed at EL1, when EL3 is using AArch64 and
SCR_EL3.EEL2 is 1, the current VMIDa.

• For a Secure instruction executed at EL0, when EL3 is using AArch64 and
SCR_EL3EEL2 is 1, and HCR_EL2.E2H.{E2H. TGE} is not {1,1}, the current
VMIDa.

Invalidate, Clean, or Clean and Invalidate
by set/way: DCISW, DCCSW, DCCISW

For a Non-secure instruction, the line specified by set/way provided that the entry comes
from the Non-secure PA space.
For a Secure instruction, the line specified by set/way regardless of the PA space that the
entry has come from.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G4-6245
ID072021 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
Instruction cache maintenance instructions

Invalidate by VA: ICIMVAU All lines corresponding to the specified VAb in the current translation regime and:

• For an instruction executed at EL1 or EL0, the current ASID.

• For a Non-secure instruction executed at EL1 or EL0, the current VMIDa.

• For a Secure instruction executed at EL1 when EL3 is using AArch64 and
SCR_EL3.EEL2 is 1, the current VMIDa.

• For a Secure instruction executed at EL0 when EL3 is using AArch64 and
SCR_EL3.EEL2 is 1, and HCR_EL2.{E2H, TGE} is not {1,1}, the current

Invalidate All: ICIALLU, ICIALLUIS Can invalidate any unlocked entry in the instruction cache, and are required to
invalidate:

• For a Non-secure instruction executed at EL1, all instruction cache lines
containing Non-secure entries associated with the current VMID.

• For a Non-secure instruction executed at EL2, all instruction lines containing
Non-secure entries.

• For a Secure instruction executed at EL1 when EL3 is using AArch64 and
SCR_EL3.EEL2 is 1, all instruction cache lines containing entries associated
with the current VMID.

• For a Secure instruction executed at EL1 when EL3 is using AArch64 and the
Effective value of SCR_EL3.EEL2 is 0, all instruction cache lines.

• For a Secure instruction executed at EL3 all instruction cache lines.

Branch predictor instructionsc

Invalidate by VA: BPIMVA All lines that, in the current translation regime, are mapped to by the combination of: all
of:

• The specified VA.

• For an instruction executed at EL1 or EL0, the current ASID.

• For a Non-Secure instruction executed at EL1 or EL0, the current VMIDa.

• For a Secure instruction executed at EL1, when EL3 is using AArch64 and
SCR_EL3.EEL2 is 1, the current VMIDa.

• For a Secure instruction executed at EL0, when EL3 is using AArch64,
SCR_EL3.EEL2 is 1, and HCR_EL2.{E2H, TGE} is not {1,1}, the current
VMIDa.

Invalidate all: BPIALL, BPIALLIS Can invalidate any unlocked entry in the branch predictor, and are required to invalidate:

• For a Non-secure instruction executed at EL1, all lines containing Non-secure
entries associated with the current VMID.

• For a Non-secure instruction executed at EL2, all lines containing Non-secure
entries.

• For a Secure instruction executed at EL1 when EL3 is using AArch64 and
SCR_EL3.EEL2 is 1, all lines containing entries associated with the current
VMID.

• For a Secure instruction executed at EL1 when EL3 is using AArch64 and the
Effective value of SCR_EL3.EEL2 is 0, all lines.

• For a Secure instruction executed at EL3, all lines.

a. Dependencies on the VMID apply even when either EL2 is using AArch32 and the value of HCR.VM is 0 or EL2 is using AArch64 when
enabled for the current Security state, and the value of HCR_EL2.VM is 0. If the PE resets into an Exception level that is using AArch32,
VTTBR.VMID resets to zero, meaning there is a valid VMID from reset. However, if the PE resets into an Exception level that is using
AArch64, VTTBR_EL2.VMID resets to a value that is architecturally UNKNOWN, and the VTTBR_EL2.VMID field must be set to a
known value, that might be zero, as part of the PE initialization sequence.

Table G4-6 Effects of virtualization and security on the AArch32 cache maintenance instructions (continued)

Cache maintenance instructions Specified entry
G4-6246 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
For locked entries and entries that might be locked, the behavior of cache maintenance instructions described in The
interaction of cache lockdown with cache maintenance instructions on page G4-6252 applies.

With an implementation that generates aborts if entries are locked or might be locked in the cache, when the use of
lockdown aborts is enabled, these aborts can occur on any cache maintenance instructions.

In an implementation that includes EL2:

• The architecture does not require cache cleaning when switching between virtual machines. Cache
invalidation by set/way must not present an opportunity for one virtual machine to corrupt state associated
with a second virtual machine. To ensure this requirement is met, EL1 invalidate by set/way instructions
executed in at EL1 when HCR_EL2.VM or HCR.VM is 1 and EL2 is enabled can, instead, perform a clean
and invalidate by set/way.

• The AArch32 Data cache invalidate instructions DCIMVAC and DCISW perform a cache clean as well as a
cache invalidate, meaning DCIMVAC performs the same invalidation as a DCCIMVAC instruction, and
DCISW performs the same invalidation as a DCCISW instruction, if both of the following apply:

— EL2 is using AArch32, the value of HCR.VM is 1, and the instruction is executed at Non-secure EL1.

— EL2 is using AArch64, the value of HCR_EL2.VM is 1, EL2 is enabled, and the instruction is
executed at EL1.

• The AArch32 Data cache invalidate by set/way instruction DCISW performs a cache clean as well as a cache
invalidate, meaning it performs the same invalidation as a DCCISW instruction, if either of the following
apply:

— EL2 is using AArch32, the value of HCR.SWIO is 1, and the instruction is executed at Non-secure
ELl.

— EL2 is using AArch64, the value of HCR_EL2.SWIO is 1, EL2 is enabled, and the instruction is
executed at EL1.

• TLB and instruction cache invalidate instructions are broadcast across the Inner Shareable domain when
either:

— EL2 is using AArch32, the value of HCR.FB is 1, and execution is at Non-secure EL1.

— EL2 is using AArch64, the value of HCR_EL2.FWB is 1, EL2 is enabled, and the instruction is
executed at EL1.

When EL1 is using AArch32, this applies to the TLBIMVA, TLBIASID, TLBIMVAA, TLBIMVAL,
TLBIMVAAL, and ICIALLU instructions. This means the instruction performs the invalidation that would
be performed by the corresponding Inner Shareable instruction, for example ICIALLU performs the
invalidation that would be performed by ICIALLUIS, and BPIALL performs the invalidation that would be
performed by BPIALLIS.

For more information about the cache maintenance instructions, see About cache maintenance in AArch32 state on
page G4-6235, AArch32 cache and branch predictor maintenance instructions on page G4-6239, and Chapter G5
The AArch32 Virtual Memory System Architecture.

Boundary conditions for cache maintenance instructions

Cache maintenance instructions operate on the caches regardless of whether the System register Cacheability
controls force all memory accesses to be Non-cacheable.

b. The type of instruction cache used affects the interpretation of the specified entries in this table such that:
� For a PIPT instruction cache, the cache maintenance applies to all entries whose physical address corresponds to the specified address.
� For a VIPT instruction cache, the cache maintenance applies to entries whose virtual index and physical tag corresponds to the specified
address.

For information of types of instruction cache, see Instruction caches on page G5-6351.

c. In an implementation where the branch predictors are architecturally invisible, these instructions can execute as NOPs.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G4-6247
ID072021 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
For VA-based cache maintenance instructions, the instructions operate on the caches regardless of the memory type
and cacheability attributes marked for the memory address in the VMSA translation table entries. This means that
the effects of the cache maintenance instructions can apply regardless of:

• Whether the address accessed:

— Is Normal memory or Device memory.

— Has the Cacheable attribute or the Non-cacheable attribute.

• Any applicable domain control of the address accessed.

• The access permissions for the address accessed, other than the effect of the stage two write permission on
data or unified cache invalidation instructions.

Ordering of cache and branch predictor maintenance instructions

The following rules describe the effect of the memory order model on the cache and branch predictor maintenance
instructions:

• All cache and branch predictor maintenance instructions that do not specify an address execute, relative to
each other, in program order.

All cache and branch predictor instructions that specify an address:

— Execute in program order relative to all cache and branch predictor operations that do not specify an
address.

— Execute in program order relative to all cache and branch predictor operations that specify the same
address.

— Can execute in any order relative to cache and branch predictor operations that specify a different
address.

• Where a cache maintenance or branch predictor instruction appears in program order before a change to the
translation tables, the architecture guarantees that the cache or branch predictor maintenance instruction uses
the translations that were visible before the change to the translation tables.

• Where a change of the translation tables appears in program order before a cache maintenance or branch
predictor instruction, software must execute the sequence outlined in Ordering and completion of TLB
maintenance instructions on page G5-6339 before performing the cache or branch predictor maintenance
instruction, to ensure that the maintenance operation uses the new translations.

• A DMB instruction causes the effect of all data or unified cache maintenance instructions appearing in program
order before the DMB to be visible to all explicit memory read and write effects appearing in program order
after the DMB.

Also, a DMB instruction ensures that the effects of any data or unified cache maintenance instruction appearing
in program order before the DMB are observable by any observer in the same required Shareability domain
before any data or unified cache maintenance or explicit memory operations appearing in program order after
the DMB are observed by the same observer. Completion of the DMB does not guarantee the visibility of all data
to other observers. For example, all data might not be visible to a translation table walk, or to instruction
fetches.

• A DSB is required to guarantee the completion of all cache maintenance instruction that appear in program
order before the DSB instruction.

• A Context synchronization event is required to guarantee the effects of any branch predictor maintenance
operation. This means a Context synchronization event causes the effect of all completed branch predictor
maintenance operations appearing in program order before the Context synchronization event to be visible to
all instructions after the Context synchronization event.

This means that, if a branch instruction appears after an invalidate branch predictor operation and before any
Context synchronization event, it is CONSTRAINED UNPREDICTABLE whether the branch instruction is affected
by the invalidate. Software must avoid this ordering of instructions, because it might cause CONSTRAINED
UNPREDICTABLE behavior.
G4-6248 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
• Any data or unified cache maintenance instruction by VA must be executed in program order relative to any
explicit memory read or write effect on the same PE to an address covered by the VA of the cache instruction
if that load or store is to Normal Cacheable memory. The order of memory accesses that result from the cache
maintenance instruction, relative to any other memory accesses to Normal Cacheable memory, are subject to
the memory ordering rules. For more information, see Definition of the Armv8 memory model on
page E2-4288.

Any data or unified cache maintenance instruction by VA can be executed in any order relative to any explicit
memory read or write effect on the same PE to an address covered by the VA of the cache maintenance
instruction if that load or store is not to Normal Cacheable memory.

• There is no restriction on the ordering of data or unified cache maintenance instruction by VA relative to any
explicit memory read or write effect on the same PE where the address of the explicit memory read or write
effect is not covered by the VA of the cache instruction. Where the ordering must be restricted, a DMB
instruction must be inserted to enforce ordering.

• There is no restriction on the ordering of a data or unified cache maintenance instruction by set/way relative
to any explicit memory read or write effect on the same PE. Where the ordering must be restricted, a DMB
instruction must be inserted to enforce ordering.

• Software must execute a Context synchronization event after the completion of an instruction cache
maintenance instruction, to guarantee that the effect of the maintenance instruction is visible to any
instruction fetch.

A DSB instruction intended to ensure the completion of cache maintenance instructions or branch predictor
instructions must have an access type of both loads and stores.

See also the completion requirements for cache and branch predictor maintenance instructions in Completion and
endpoint ordering on page E2-4295.

The scope of instruction cache maintenance depends on the type of the instruction cache. For more information see
Instruction caches on page G5-6351.

Example G4-1 Cache cleaning operations for self-modifying code

The sequence of cache cleaning operations for a line of self-modifying code on a uniprocessor system is:

; Coherency example for data and instruction accesses within the same Inner Shareable domain.
; Enter this code with <Rt> containing a new 32-bit instruction,
; to be held in Cacheable space at a location pointed to by Rn. Use STRH in the first line
; instead of STR for a 16-bit instruction.
 STR Rt, [Rn]
 DCCMVAU Rn ; Clean data cache by MVA to point of unification (PoU)
 DSB ; Ensure visibility of the data cleaned from cache
 ICIMVAU Rn ; Invalidate instruction cache by MVA to PoU
 BPIMVA Rn ; Invalidate branch predictor by MVA to PoU
 DSB ; Ensure completion of the invalidations
 ISB ; Synchronize the fetched instruction stream

Performing cache maintenance instructions

To ensure all cache lines in a block of address space are maintained through all levels of cache Arm strongly
recommends that software:

• For data or unified cache maintenance, uses the CTR.DMinLine value to determine the loop increment size
for a loop of data cache maintenance by VA instructions.

• For instruction cache maintenance, uses the CTR.IMinLine value to determine the loop increment size for a
loop of instruction cache maintenance by VA instructions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G4-6249
ID072021 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
Example code for cache maintenance instructions

The cache maintenance instructions by set/way can be used to clean or invalidate, or both, the entirety of one or
more levels of cache attached to a PE. However, unless all PEs attached to the caches regard all memory locations
as Non-cacheable, it is not possible to prevent locations being allocated into the cache during such a sequence of
the cache maintenance instructions.

Note

Because the set/way instructions operate only locally, there is no guarantee of the atomicity of cache maintenance
between different PEs, even if those different PEs are each executing the same cache maintenance instructions at
the same time. Because any cacheable line can be allocated into the cache at any time, it is possible for a cache line
to migrate from an entry in the cache of one PE to the cache of a different PE in a way that means the cache line is
not affected by set/way based cache maintenance. Therefore, Arm strongly discourages the use of set/way
instructions to manage coherency in coherent systems. The expected use of the cache maintenance instructions that
operate by set/way is limited to the cache maintenance associated with the powerdown and powerup of caches, if
this is required by the implementation.

The limitations of cache maintenance by set/way mean maintenance by set/way does not happen on multiple PEs,
and cannot be made to happen atomically for each address on each PE. Therefore in multiprocessor or multithreaded
systems, the use of cache maintenance by set/way to clean, or clean and invalidate, the entire cache for coherency
management with very large buffers or with buffers with unknown address can fail to provide the expected
coherency results because of speculation by other PEs, or possibly by other threads. The only way that these
instructions can be used in this way is to first ensure that all PEs that might cause speculative accesses to caches that
need to be maintained are not capable of generating speculative accesses. This can be achieved by ensuring that
those PEs have no memory locations with a Normal Cacheable attribute. Such an approach can have very large
system performance effects, and Arm advises implementers to use hardware coherency mechanisms in systems
where this will be an issue.

System level caches on page G4-6253 refers to other limitations of cache maintenance by set/way.

The following example code for cleaning a data or unified cache to the Point of Coherency illustrates a generic
mechanism for cleaning the entire data or unified cache to the Point of Coherency. It assumes the current Cache Size
Identification Register is in 32-bit format. For more information, see Possible formats of the Cache Size
Identification Registers, CCSIDR and CCSIDR2 on page G4-6231.

 MRC p15, 1, R0, c0, c0, 1 ; Read CLIDR into R0
 ANDS R3, R0, #0x07000000
 MOV R3, R3, LSR #23 ; Cache level value (naturally aligned)
 BEQ Finished
 MOV R10, #0
Loop1
 ADD R2, R10, R10, LSR #1 ; Work out 3 x cache level
 MOV R1, R0, LSR R2 ; bottom 3 bits are the Cache type for this level
 AND R1, R1, #7 ; get those 3 bits alone
 CMP R1, #2
 BLT Skip ; no cache or only instruction cache at this level
 MCR p15, 2, R10, c0, c0, 0 ; write CSSELR from R10
 ISB ; ISB to sync the change to the CCSIDR
 MRC p15, 1, R1, c0, c0, 0 ; read current CCSIDR to R1
 AND R2, R1, #7 ; extract the line length field
 ADD R2, R2, #4 ; add 4 for the line length offset (log2 16 bytes)
 MOV R4, #0x3FF
 ANDS R4, R4, R1, LSR #3 ; R4 is the max number on the way size (right aligned)
 CLZ R5, R4 ; R5 is the bit position of the way size increment
 MOV R9, R4 ; R9 working copy of the max way size (right aligned)
Loop2
 MOV R7, #0x00007FFF
 ANDS R7, R7, R1, LSR #13 ; R7 is the max number of the index size (right aligned)
Loop3
 ORR R11, R10, R9, LSL R5 ; factor in the way number and cache number into R11
 ORR R11, R11, R7, LSL R2 ; factor in the index number
 MCR p15, 0, R11, c7, c10, 2 ; DCCSW, clean by set/way
 SUBS R7, R7, #1 ; decrement the index
 BGE Loop3
G4-6250 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
 SUBS R9, R9, #1 ; decrement the way number
 BGE Loop2
Skip
 ADD R10, R10, #2 ; increment the cache number
 CMP R3, R10
 DSB ; ensure completion of previous cache maintenance instruction
 BGT Loop1
Finished

Similar approaches can be used for all cache maintenance instructions.

G4.4.8 Execution and data prediction restriction System instructions

When FEAT_SPECRES is implemented, the System instructions for prediction restriction listed in Table G4-7 on
page G4-6251 prevent predictions based on information gathered from earlier execution within a particular
execution context (CTX), from affecting the later speculative execution within that CTX, to the extent that the
speculation execution is observable through side-channels.

The prediction restriction System instructions being used by a particular CTX apply to:

• All control flow prediction resources that predict execution addresses.

• Data value prediction.

• Cache allocation prediction.

For these System instructions, the CTX is defined by:

• The Security state.

• The Exception level.

• When executing at EL1, the VMID.

• When executing at EL0 when using the PL1&0 translation regime, the ASID and VMID.

Note

• The data value prediction applies to all prediction resources that use some form of training to speculate data
values as part of an execution.

• The cache allocation applies to all instruction and data caches, and TLB prefetching hardware used by the
executing PE that applies to the supplied context.

The context information is passed as a register argument, and is restricted so that:

• Execution of the System instruction at EL0 only applies to the current hardware defined context.

• Execution of the System instruction at EL1 only applies to the current VMID and Security state, and does not
apply to EL2 or EL3.

• Execution of the System instruction at EL2 can only apply to the current Security state, and does not apply
to EL3.

Table G4-7 Prediction restriction System instructions

Register Instruction

CFPRCTX Control Flow Prediction Restriction by Context

CPPRCTX Cache Prefetch Prediction Restriction by Context

DVPRCTX Data Value Prediction Restriction by Context
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G4-6251
ID072021 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
If the System instruction is specified to apply to Exception levels that are not implemented, or which are higher than
the Exception level that the System instruction is executed at, then the System instruction is treated as a NOP.

When the System instruction is complete and synchronized, no predictions of the restricted type for the affected
context are influenced by the execution of the program before the System instruction in a manner that can be
observed by the use of any side channels.

Note

• Prediction restriction System instructions do not require the invalidation of prediction structures so long as
the behavior described for completion is met by an implementation.

• Prediction restriction System instructions are permitted to invalidate more prediction information than is
defined by the supplied CTX.

These System instructions are guaranteed to be complete following a DSB that covers both read and write behavior
on the same PE that executed the original instruction. A subsequent Context synchronization event is required to
ensure that the effect of the completion of the instructions is synchronized to the current execution.

In AArch32 state, EL0 access to the System instructions is controlled by SCTLR.EnRCTX.

G4.4.9 Cache lockdown

The concept of an entry locked in a cache is allowed, but not architecturally defined. How lockdown is achieved is
IMPLEMENTATION DEFINED and might not be supported by:

• An implementation.

• Some memory attributes.

An unlocked entry in a cache might not remain in that cache. The architecture does not guarantee that an unlocked
cache entry remains in the cache or remains incoherent with the rest of memory. Software must not assume that an
unlocked item that remains in the cache remains dirty.

A locked entry in a cache is guaranteed to remain in that cache. The architecture does not guarantee that a locked
cache entry remains incoherent with the rest of memory, that is, it might not remain dirty.

The interaction of cache lockdown with cache maintenance instructions

The interaction of cache lockdown and cache maintenance instructions is IMPLEMENTATION DEFINED. However, an
architecturally-defined cache maintenance instruction on a locked cache line must comply with the following
general rules:

• The effect of the following instructions on locked cache entries is IMPLEMENTATION DEFINED:

— Cache clean by set/way, DCCSW.

— Cache invalidate by set/way, DCISW.

— Cache clean and invalidate by set/way, DCISW.

— Instruction cache invalidate all, ICIALLU and ICIALLUIS.

However, one of the following approaches must be adopted in all these cases:

1. If the instruction specified an invalidation, a locked entry is not invalidated from the cache.

2. If the instruction specified a clean it is IMPLEMENTATION DEFINED whether locked entries are cleaned.

3. If an entry is locked down, or could be locked down, an IMPLEMENTATION DEFINED Data Abort
exception is generated, using the Fault status code defined for this purpose. See Data Abort exception
on page G1-6089.

This permits a usage model for cache invalidate routines to operate on a large range of addresses by
performing the required operation on the entire cache, without having to consider whether any cache entries
are locked.

The effect of the following instructions is IMPLEMENTATION DEFINED:

• Cache clean by virtual address, DCCMVAC and DCCMVAU.
G4-6252 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
• Cache invalidate by virtual address, DCIMVAC.

• Cache clean and invalidate by virtual address, DCCIMVAC.

However, one of the following approaches must be adopted in all these cases:

1. If the instruction specified an invalidation, a locked entry is invalidated from the cache. For the clean and
invalidate instructions, the entry must be cleaned before it is invalidated.

2. If the instruction specified an invalidation, a locked entry is not invalidated from the cache. If the instruction
specified a clean it is IMPLEMENTATION DEFINED whether locked entries are cleaned.

3. If an entry is locked down, or could be locked down, an IMPLEMENTATION DEFINED Data Abort exception is
generated, using the Fault status code defined for this purpose. See DFSR or HSR.

In an implementation that includes EL2, if HCR.TIDCP is set to 1, any exception relating to lockdown of an entry
associated with Non-secure memory is routed to EL2.

Note

An implementation that uses an abort mechanism for entries that can be locked down but are not actually locked
down must:

• Document the IMPLEMENTATION DEFINED instruction sequences that perform the required operations on
entries that are not locked down.

• Implement one of the other permitted alternatives for the locked entries.

Arm recommends that, when possible, such IMPLEMENTATION DEFINED instruction sequences use
architecturally-defined instructions. This minimizes the number of customized instructions required.

In addition, an implementation that uses an abort to handle cache maintenance instructions for entries that might be
locked must provide a mechanism that ensures that no entries are locked in the cache.

The reset setting of the cache must be that no cache entries are locked.

Additional cache functions for the implementation of lockdown

An implementation can add additional cache maintenance functions for the handling of lockdown in the
IMPLEMENTATION DEFINED space.

G4.4.10 System level caches

The Arm Architecture defines a system cache as a cache that is not described in the PE Cache Identification
registers, CCSIDR, CCSIDR2, and CLIDR, and for which the set/way cache maintenance instructions do not apply.

Conceptually, three classes of system cache can be envisaged:

1. System caches which lie before the point of coherency and cannot be managed by cache maintenance
instructions. Such systems fundamentally undermine the concept of cache maintenance instructions
operating to the point of coherency, as they imply the use of non-architecture mechanisms to manage
coherency. The use of such systems in the Arm architecture is explicitly prohibited.

2. System caches which lie before the point of coherency and can be managed by cache maintenance by address
instructions that apply to the point of coherency, but cannot be managed by cache maintenance by set/way
instructions. Where maintenance of the entire system cache must be performed, as is the case for power
management, it must be performed using non-architectural mechanisms.

3. System caches which lie beyond the point of coherency and so are invisible to software. The management of
such caches is outside the scope of architecture.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G4-6253
ID072021 Non-Confidential

The AArch32 System Level Memory Model
G4.5 System register support for IMPLEMENTATION DEFINED memory features
G4.5 System register support for IMPLEMENTATION DEFINED memory features

The VMSAv8-32 defines the following registers for describing IMPLEMENTATION DEFINED features of the memory
system:

• The TCM Type Register,TCMTR must be implemented on any implementation where EL1 or above supports
AArch32. The format of this register is IMPLEMENTATION DEFINED.

• The System register encoding space with {coproc==0b1111, CRn==c9, CRm=={c0-c2, c5-c7}} is
IMPLEMENTATION DEFINED for all values of opc2 and opc1. This space is reserved for branch predictor, cache
and TCM functionality, for example maintenance, override behaviors and lockdown.

• In a VMSAv8-32 implementation, part of the System register encoding space with {coproc==0b1111,
CRn==c10} is IMPLEMENTATION DEFINED and reserved for TLB functionality, see TLB lockdown on
page G5-6334.

• The System register encoding space with {coproc==0b1111, CRn==c11, CRm=={c0-c8, c15}} is
IMPLEMENTATION DEFINED for all values of opc2 and opc1. This space is reserved for DMA operations to and
from the TCMs.

In addition, the System register encoding space with {coproc==0b1111, CRn==c15}is reserved for
IMPLEMENTATION DEFINED registers, and can provide additional registers for the memory system. For more
information, see VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space on page G7-6420.
G4-6254 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Memory Model
G4.6 External aborts
G4.6 External aborts

The Arm architecture defines External aborts as errors that occur in the memory system, other than those that are
detected by the MMU or Debug hardware. An External abort might signal a data corruption to the PE. For example,
a memory location might have been corrupted, and this corruption is detected by hardware using a parity or error
correction code (ECC). The error might have been propagated. The RAS Extension provides mechanisms for
software to determine the extent of the corruption and contain propagation of the error. For more information, see
the Arm® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture
profile.

An External abort is one of:

• Synchronous.

• Precise asynchronous.

• Imprecise asynchronous.

For more information, see Exception terminology on page G1-6014.

The RAS Extension provides an expanded taxonomy for describing aborts. When the RAS Extension is not
implemented, the Arm architecture does not provide any method to distinguish between precise asynchronous and
imprecise asynchronous External aborts.

VMSAv8-32 permits External aborts on data accesses, translation table walks, and instruction fetches to be either
synchronous or asynchronous. The reported fault code identifies whether the External abort is synchronous or
asynchronous.

It is IMPLEMENTATION DEFINED which External aborts, if any, are supported. Asynchronous External aborts generate
SError interrupt exceptions.

In AArch32 state:

• SError interrupts are taken as asynchronous Data Abort exceptions.

• Synchronous External aborts:

— On data accesses are taken as synchronous Data Abort exceptions.

— On instruction fetches, or prefetches, are taken as synchronous Prefetch Abort exceptions.

See also:

• External abort on a translation table walk on page G5-6363.

• Handling exceptions that are taken to an Exception level using AArch32 on page G1-6043.

Normally, External aborts are rare. An imprecise asynchronous External abort is likely to be fatal to the process that
is running. Arm recommends that implementations make External aborts precise wherever possible.

The following subsections give more information about possible External aborts:

• Provision for classification of External aborts on page G4-6255.

• Parity or ECC error reporting, RAS Extension not implemented on page G4-6256.

The section Exception reporting in a VMSAv8-32 implementation on page G5-6367 describes the reporting of
External aborts.

G4.6.1 Provision for classification of External aborts

For an External abort taken to a privileged mode other than Hyp mode, an implementation can use the DFSR.ExT
or IFSR.ExT bits to provide more information about the External abort:

• DFSR.ExT provides an IMPLEMENTATION DEFINED classification of External aborts on data accesses.

• IFSR.ExT provides an IMPLEMENTATION DEFINED classification of External aborts on instruction accesses.

For an External abort taken to Hyp mode, the HSR.EA bit, provides an IMPLEMENTATION DEFINED classification of
External aborts.

For all aborts other than External aborts these bits return a value of 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G4-6255
ID072021 Non-Confidential

The AArch32 System Level Memory Model
G4.6 External aborts
If the RAS Extension is implemented:

• The HSR.AET field provides information about the state of the PE following an SError interrupt exception
taken to Hyp mode.

• The DFSR.AET field provides information about the state of the PE following an asynchronous Data Abort
exception.

• The implementation might define error record registers.

For more information on the RAS Extension, see Arm® Reliability, Availability, and Serviceability (RAS)
Specification, ARMv8, for the ARMv8-A architecture profile.

G4.6.2 Parity or ECC error reporting, RAS Extension not implemented

The Arm architecture supports the reporting of both synchronous and asynchronous parity or ECC errors from the
cache systems. It is IMPLEMENTATION DEFINED what parity or ECC errors in the cache systems, if any, result in
synchronous or asynchronous parity or ECC errors.

A fault code is defined for reporting parity or ECC errors, see Exception reporting in a VMSAv8-32 implementation
on page G5-6367. However when parity or ECC error reporting is implemented it is IMPLEMENTATION DEFINED
whether a parity or ECC error is reported using the assigned fault code, or using another appropriate encoding.

For all purposes other than the Fault status encoding, parity or ECC errors are treated as External aborts.
G4-6256 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Memory Model
G4.7 Memory barrier instructions
G4.7 Memory barrier instructions

Memory barriers on page E2-4299 describes the memory barrier instructions. This section describes the system
level controls of those instructions.

G4.7.1 EL2 control of the Shareability of data barrier instructions executed at EL0 or EL1

In an implementation that includes EL2 and supports Shareability limitations on the data barrier instructions, the
HCR.BSU field can modify the required Shareability of an instruction that is executed at EL0 or EL1 in Non-secure
state. Table G4-8 on page G4-6257 shows the encoding of this field:

For an instruction executed at EL0 or EL1 in Non-secure state, Table G4-9 on page G4-6257 shows how the
HCR.BSU is combined with the Shareability specified by the argument of the DMB or DSB instruction to give the scope
of the instruction:

Table G4-8 EL2 control of Shareability of barrier instructions executed at EL0 or EL1

HCR.BSU Minimum Shareability of barrier instructions

00 No effect, Shareability is as specified by the instruction

01 Inner Shareable

10 Outer Shareable

11 Full system

Table G4-9 Effect of the HCR_EL2.BSU on barrier instructions executed at Non-secure EL1 or EL1

Shareability specified by the DMB or DSB argument HCR.BSU Resultant Shareability

Full system Any Full system

Outer Shareable 00, 01, or 10 Outer Shareable

11, Full system Full system

Inner Shareable 00 or 01 Inner Shareable

10, Outer Shareable Outer Shareable

11, Full system Full system

Non-shareable 00, No effect Non-shareable

01, Inner Shareable Inner Shareable

10, Outer Shareable Outer Shareable

11, Full system Full system
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G4-6257
ID072021 Non-Confidential

The AArch32 System Level Memory Model
G4.8 Pseudocode description of general memory System instructions
G4.8 Pseudocode description of general memory System instructions

This section lists the pseudocode describing general memory operations:

• Memory data type definitions on page G4-6258.

• Basic memory access on page G4-6258.

• Aligned memory access on page G4-6258.

• Unaligned memory access on page G4-6258.

• Exclusives monitors operations on page G4-6258.

• Access permission checking on page G4-6259.

• Abort exceptions on page G4-6260.

• Memory barriers on page G4-6260.

G4.8.1 Memory data type definitions

This section lists the memory data types.

The memory data types are:

• Address descriptor, defined by the AddressDescriptor type.

• Full address, defined by the FullAddress type.

• Memory attributes, defined by the MemoryAttributes type.

• Memory type, defined by the MemType enumeration.

• Device memory type, defined by the DeviceType enumeration.

• Normal memory attributes, defined by the MemAttrHints type.

• Cacheability attributes, defined by the MemAttr_NC, MemAttr_WT, and MemAttr_WB constants.

• Allocation hints, defined by the MemHint_No, MemHint_WA, MemHint_RA, and MemHint_RWA constants.

• Access permissions, defined by the Permissions type.

G4.8.2 Basic memory access

The PhysMemRead() and PhysMemRead() functions perform single-copy atomic, aligned, little-endian memory accesses
of size bytes to or from the underlying physical memory array of bytes.

The attributes in memaddrdesc.memattrs are used by the memory system to determine caching and ordering behaviors
as described in Memory types and attributes on page E2-4318, Definition of the Armv8 memory model on
page E2-4288, and Atomicity in the Arm architecture on page E2-4284.

G4.8.3 Aligned memory access

The AArch32.MemSingle[] functions make atomic, little-endian accesses of size bytes.

G4.8.4 Unaligned memory access

See Unaligned data access on page E2-4312 for details of the SCTLR.A and HSCTLR.A controls on the generation
of alignment faults. The HSCTLR control applies to Normal memory accesses from Hyp mode, and the SCTLR
control applies to Normal memory accesses from all other modes.

The Mem_with_type[] functions make an access of the required type. If that access is naturally aligned, each form of
the function performs an atomic access by making a single call to AArch32.MemSingle[]. If that access is not aligned
but passes the AArch32.CheckAlignment() checks, each form of the function synthesizes the required access from
multiple calls to AArch32.MemSingle[]. It also reverses the byte order if the access is big-endian.

G4.8.5 Exclusives monitors operations

The AArch32.SetExclusiveMonitors() function sets the Exclusives monitors for a Load-Exclusive instruction, for a
block of bytes. The size of the blocks is determined by size, at the VA address. The ExclusiveMonitorsPass()
function checks whether a Store-Exclusive instruction still has possession of the Exclusives monitors and therefore
completes successfully.
G4-6258 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 System Level Memory Model
G4.8 Pseudocode description of general memory System instructions
The AArch32.ExclusiveMonitorsPass() function checks whether a Store-Exclusive instruction still has possession of
the Exclusives monitors, by checking whether the Exclusives monitors are set to include the location of the memory
block specified by size, at the virtual address defined by address. The atomic write that follows after the Exclusives
monitors have been set must be to the same physical address. It is permitted, but not required, for this function to
return FALSE if the virtual address is not the same as that used in the previous call to
AArch32.SetExclusiveMonitors().

The ExclusiveMonitorsStatus() function returns 0 if the previous atomic write was to the same physical memory
locations selected by ExclusiveMonitorsPass() and therefore succeeded. Otherwise the function returns 1, indicating
that the address translation delivered a different physical address.

The MarkExclusiveGlobal() procedure takes as arguments a FullAddress.paddress, the PE identifier processorid and
the size of the transfer. The procedure records that the PE processorid has requested exclusive access covering at
least size bytes from address paddress. The size of the location marked as exclusive is IMPLEMENTATION DEFINED,
up to a limit of 2KB and no smaller than two words, and aligned in the address space to the size of the location. It
is CONSTRAINED UNPREDICTABLE whether this causes any previous request for exclusive access to any other address
by the same PE to be cleared.

The MarkExclusiveLocal() procedure takes as arguments a FullAddress paddress, the PE identifier processorid and
the size of the transfer. The procedure records in a local record that PE processorid has requested exclusive access
to an address covering at least size bytes from address paddress. The size of the location marked as exclusive is
IMPLEMENTATION DEFINED, and can at its largest cover the whole of memory but is no smaller than two words, and
is aligned in the address space to the size of the location. It is IMPLEMENTATION DEFINED whether this procedure
also performs a MarkExclusiveGlobal() using the same parameters.

The IsExclusiveGlobal() function takes as arguments a FullAddress paddress, the PE identifier processorid and the
size of the transfer. The function returns TRUE if the PE processorid has marked in a global record an address range
as exclusive access requested that covers at least size bytes from address paddress. It is IMPLEMENTATION DEFINED
whether it returns TRUE or FALSE if a global record has marked a different address as exclusive access requested.
If no address is marked in a global record as exclusive access, IsExclusiveGlobal() returns FALSE.

The IsExclusiveLocal() function takes as arguments a FullAddress paddress, the PE identifier processorid and the
size of the transfer. The function returns TRUE if the PE processorid has marked an address range as exclusive
access requested that covers at least the size bytes from address paddress. It is IMPLEMENTATION DEFINED whether
this function returns TRUE or FALSE if the address marked as exclusive access requested does not cover all of size
bytes from address paddress. If no address is marked as exclusive access requested, then this function returns
FALSE. It is IMPLEMENTATION DEFINED whether this result is ANDed with the result of IsExclusiveGlobal() with
the same parameters.

The ClearExclusiveByAddress() procedure takes as arguments a FullAddress paddress, the PE identifier processorid
and the size of the transfer. The procedure clears the global records of all PEs, other than processorid, for which an
address region including any of size bytes starting from paddress has had a request for an exclusive access. It is
IMPLEMENTATION DEFINED whether the equivalent global record of the PE processorid is also cleared if any of size
bytes starting from paddress has had a request for an exclusive access, or if any other address has had a request for
an exclusive access.

The ClearExclusiveLocal() procedure takes as arguments the PE identifier processorid. The procedure clears the
local record of PE processorid for which an address has had a request for an exclusive access. It is IMPLEMENTATION
DEFINED whether this operation also clears the global record of PE processorid that an address has had a request for
an exclusive access.

G4.8.6 Access permission checking

The AArch32.S1LDHasPermissionsFault(), AArch32.S1SDHasPermissionsFault(), and
AArch32.S2HasPermissionsFault() functions are used by the architecture to perform access permission checking
based on attributes derived from the Translation Table descriptors.

The interpretation of access permission is shown in Memory access control on page G5-6308.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G4-6259
ID072021 Non-Confidential

The AArch32 System Level Memory Model
G4.8 Pseudocode description of general memory System instructions
G4.8.7 Abort exceptions

The function AArch32.Abort() generates a Data Abort exception or a Prefetch Abort exception by calling the
AArch32.TakeDataAbortException() or AArch32.TakePrefetchAbortException() function.

The FaultRecord type describes a fault. Functions that check for faults return a record of this type appropriate to the
type of fault. Pseudocode description of VMSAv8-32 memory system operations on page G5-6393 provides a
number of wrappers to generate a FaultRecord.

The function NoFault() returns a null record that indicates no fault. The IsFault() function tests whether a
FaultRecord contains a fault.

G4.8.8 Memory barriers

The definition for the memory barrier functions is given by the enumerations MBReqDomain and MBReqTypes.

These enumerations define the required Shareability domains and required access types used as arguments for DMB
and DSB instructions.

The procedures DataMemoryBarrier(), DataSynchronizationBarrier(), and InstructionSynchronizationBarrier()
perform the memory barriers.
G4-6260 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter G5
The AArch32 Virtual Memory System Architecture

This chapter describes the Armv8-A AArch32 Virtual Memory System Architecture (VMSA), that is
backwards-compatible with VMSAv7. It includes the following sections:

• About VMSAv8-32 on page G5-6262.

• The effects of disabling address translation stages on VMSAv8-32 behavior on page G5-6270.

• Translation tables on page G5-6274.

• The VMSAv8-32 Short-descriptor translation table format on page G5-6279.

• The VMSAv8-32 Long-descriptor translation table format on page G5-6288.

• Memory access control on page G5-6308.

• Memory region attributes on page G5-6319.

• Translation Lookaside Buffers (TLBs) on page G5-6332.

• TLB maintenance requirements on page G5-6336.

• Caches in VMSAv8-32 on page G5-6351.

• VMSAv8-32 memory aborts on page G5-6354.

• Exception reporting in a VMSAv8-32 implementation on page G5-6367.

• Address translation instructions on page G5-6386.

• Pseudocode description of VMSAv8-32 memory system operations on page G5-6393.

• About the System registers for VMSAv8-32 on page G5-6396.

• Functional grouping of VMSAv8-32 System registers on page G5-6401.

Note

This chapter must be read with Chapter G4 The AArch32 System Level Memory Model.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6261
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.1 About VMSAv8-32
G5.1 About VMSAv8-32

This chapter describes the Armv8 VMSA for AArch32 state, VMSAv8-32. This is generally equivalent to VMSAv7
for an implementation that includes all of the Security Extensions, the Multiprocessing Extensions, the Large
Physical Address Extension, and the Virtualization Extensions.

This chapter describes the control of the VMSA by Exception levels that are using AArch32. Security state,
Exception levels, and AArch32 execution privilege on page G1-6022 summarizes how the AArch32 PE modes map
onto the Exception levels.

FEAT_SEL2, if implemented, is not available in AArch32 state and EL2 only executes in Non-secure state.

FEAT_S2FWB, if implemented, is not available in AArch32 state. If EL2 is executing in AArch64 state 2 stage
translations might be affected. For more informations see Chapter D5 The AArch64 Virtual Memory System
Architecture.

Chapter D5 The AArch64 Virtual Memory System Architecture describes the control of the VMSA by Exception
levels that are using AArch64.

The main function of the VMSA is to perform address translation, and access permissions and memory attribute
determination and checking, for memory accesses made by the PE. Address translation, and permissions and
attribute determination and checking, is performed by a stage of address translation.

In VMSAv8-32, the Memory Management Unit (MMU) provides a number of stages of address translation. This
chapter describes only the stages that are visible from Exception levels that are using AArch32, which are as
follows:

For operation in Secure state

A single stage of address translation, for use when executing at PL1 or EL0. This is the Secure
PL1&0 stage 1 address translation stage.

For operation in Non-secure state

• A single stage of address translation for use when executing at EL2. This is the Non-secure
EL2 stage 1 address translation stage.

• Two stages of address translation for use when executing at PL1 or EL0. These are:

— The Non-secure PL1&0 stage 1 address translation stage.

— The Non-secure PL1&0 stage 2 address translation stage.

The System registers provide independent control of each supported stage of address translation, including a control
to disable that stage of translation.

However, if the PE is executing at EL0 using AArch32 when EL1 is using AArch64 then it is using the VMSAv8-64
EL1&0 translation regime, described in Chapter D5 The AArch64 Virtual Memory System Architecture.

These features mean the VMSAv8-32 can support a hierarchy of software supervision, for example an Operating
System and a hypervisor.

Each stage of address translation uses address translations and associated memory properties held in memory
mapped tables called translation tables.

For information about how the MMU features differ if an implementation does not include all of the Exception
levels, see About address translation for VMSAv8-32 on page G5-6265.

The translation tables define the following properties:

Access to the Secure or Non-secure address map

The translation table entries determine whether an access from Secure state accesses the Secure or
the Non-secure address map. Any access from Non-secure state accesses the Non-secure address
map.

Memory access permission control

This controls whether a program is permitted to access a memory region. For instruction and data
access, the possible settings are:

• No access.
G5-6262 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.1 About VMSAv8-32
• Read-only.

• Write-only. This is possible only in a translation regime with two stages of translation.

• Read/write.

For instruction accesses, additional controls determine whether instructions can be fetched and
executed from the memory region.

If a PE attempts an access that is not permitted, a memory fault is signaled to the PE.

Memory region attributes

These describe the properties of a memory region. The top-level attribute, the Memory type, is one
of Normal, or a type of Device memory, as follows:

• Both translation table formats support the following Device memory types:

— Device-nGnRnE

— Device-nGnRE

• The Long-descriptor translation table format supports, in addition, the following Device
memory types:

— Device-nGRE

— Device-GRE

Note

Armv8 added the Device-nGRE and Device-GRE memory types. Also, in versions of the Arm
architecture before Armv8:

• Device-nGnRnE memory is described as Strongly-ordered memory.

• Device-nGnRE memory is described as Device memory.

Normal memory regions can have additional attributes.

For more information, see Memory types and attributes on page E2-4318.

Address translation mappings

An address translation maps an input address to an output address.

A stage 1 translation takes the address of an explicit data access or instruction fetch, a virtual
address (VA), as the input address, and translates it to a different output address:

• If only one stage of translation is provided, this output address is the physical address (PA).

• If two stages of address translation are provided, the output address of the stage 1 translation
is an intermediate physical address (IPA).

Note
In the Armv8-32 architecture, a software agent, such as an Operating System, that uses or defines
stage 1 memory translations, might be unaware of the distinction between IPA and PA.

A stage 2 translation translates the IPA to a PA.

The possible Security states and privilege levels of memory accesses define a set of translation
regimes, where a translation regime maps an input VA to the corresponding PA, using one or two
stages of translation. See The VMSAv8-32 translation regimes on page G5-6264.

System registers control VMSAv8-32, including defining the location of the translation tables, and enabling and
configuring the MMU, including enabling and disabling the different address translation stages. Also, they report
any faults that occur on a memory access. For more information, see Functional grouping of VMSAv8-32 System
registers on page G5-6401.

The following sections give an overview of VMSAv8-32, and of the implementation options for VMSAv8-32:

• The VMSAv8-32 translation regimes on page G5-6264.

• Address types used in a VMSAv8-32 description on page G5-6264.

• Address spaces in VMSAv8-32 on page G5-6265.

• About address translation for VMSAv8-32 on page G5-6265.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6263
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.1 About VMSAv8-32
The remainder of the chapter fully describes the VMSA, including the different implementation options, as
summarized in Organization of the remainder of this chapter on page G5-6269.

G5.1.1 The VMSAv8-32 translation regimes

As introduced in Address translation mappings on page G5-6263, a translation regime maps an input VA to the
corresponding PA, using one or two stages of translation. Figure G5-1 on page G5-6264 shows the VMSAv8-32
translation regimes, and their associated translation stages and the Exception levels from which they are controlled.

Figure G5-1 VMSAv8-32 translation regimes, and associated control

Note

Conceptually, a translation regime that has only a stage 1 address translation is equivalent to a regime with a fixed,
flat stage 2 mapping from IPA to PA.

Limited use of Privilege level in Armv8 AArch32 state on page G1-6023 describes the mapping between the PE
modes and the Privilege levels (PLs).

Alternative descriptions of the PL1&0 translation regime

The PL1&0 is described in terms of Privilege level because of the way the AArch32 PE modes map onto the
Exception levels, as described in Limited use of Privilege level in Armv8 AArch32 state on page G1-6023. The
description of this translation regime in terms of the Exception levels using depends on the current state of the PE,
as follows:

• In Non-secure state, PL1 always maps to EL1, and therefore the Non-secure PL1&0 translation regime could
be described as the Non-secure EL1&0 translation regime.

• In Secure state:

— When EL3 is using AArch32, PL1 maps to EL3, and therefore under these conditions the Secure
PL1&0 translation regime could be described as the Secure EL3&0 translation regime,

— When EL3 is using AArch64, Secure PL1 maps to Secure EL1, and therefore under these conditions
the Secure PL1&0 translation regime could be described as the Secure EL1&0 translation regime,

However, these descriptions all refer to the same translation regime, with the same System registers associated with
its stage 1 translations. Therefore, the regime is generally referred to as the PL1&0 translation regime.

Note

As Figure G5-1 on page G5-6264 shows, stage 2 translation is supported only in Non-secure state.

G5.1.2 Address types used in a VMSAv8-32 description

A description of VMSAv8-32 refers to the following address types.

Translation regimes, for Exception levels that are using AArch32

Secure PL1&0 VA PA, Secure or Non-secure

VANon-secure PL1&0 IPA

PA, Non-secure onlyNon-secure EL2 VA

Secure PL1&0 stage 1

Non-secure EL2 stage 1

PA, Non-secure only

† Typical control when controlled from an Exception level using AArch32.

Controlled from Non-secure PL1 modes†
Non-secure PL1&0 stage 1 Non-secure PL1&0 stage 2

Controlled from Hyp mode†

Controlled from Hyp mode†

Controlled from Secure PL1 modes†
G5-6264 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.1 About VMSAv8-32
Note

These descriptions relate to a VMSAv8-32 description and therefore sometimes differ from the generic definitions
given in the Glossary.

Virtual address (VA)

An address used in an instruction, as a data or instruction address, is a Virtual Address (VA).

An address held in the PC, LR, or SP, is a VA.

The VA map runs from zero to the size of the VA space. For AArch32 state, the maximum VA space
is 4GB, giving a maximum VA range of 0x00000000-0xFFFFFFFF.

Intermediate physical address (IPA)

In a translation regime that provides two stages of address translation, the IPA is the address after
the stage 1 translation, and is the input address for the stage 2 translation.

In a translation regime that provides only one stage of address translation, the IPA is identical to the
PA.

A VMSAv8-32 implementation provides only one stage of address translation:

• If the implementation does not include EL2.

• When executing in Secure state.

• When executing in Hyp mode.

Physical address (PA)

The address of a location in the Secure or Non-secure memory map. That is, an output address from
the PE to the memory system.

G5.1.3 Address spaces in VMSAv8-32

For execution in AArch32 state, the Armv8 architecture supports:

• A VA space of up to 32 bits. The actual width is IMPLEMENTATION DEFINED.

• An IPA space of up to 40 bits. The translation tables and associated System registers define the width of the
implemented address space.

Note

AArch32 defines two translation table formats. The Long-descriptor format gives access to the full 40-bit IPA or
PA space at a granularity of 4KB. The Short-descriptor format:

• Gives access to a 32-bit PA space at 4KB granularity.

• Gives access to a 40-bit PA space, but only at 16MB granularity, by the use of Supersections.

If an implementation includes EL3, the address maps are defined independently for Secure and Non-secure
operation, providing two independent 40-bit address spaces, where:

• A VA accessed from Non-secure state can only be translated to the Non-secure address map.

• A VA accessed from Secure state can be translated to either the Secure or the Non-secure address map.

G5.1.4 About address translation for VMSAv8-32

Address translation is the process of mapping one address type to another, for example, mapping VAs to IPAs, or
mapping VAs to PAs. A translation table defines the mapping from one address type to another, and a Translation
table base register (TTBR) indicates the start of a translation table. Each implemented stage of address translation
shown in Figure G5-1 on page G5-6264 requires its own translation tables.

For PL1&0 stage 1 translations, the mapping can be split between two tables, one controlling the lower part of the
VA space, and the other controlling the upper part of the VA space. This can be used, for example, so that:

• One table defines the mapping for operating system and I/O addresses, that do not change on a context switch.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6265
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.1 About VMSAv8-32
• A second table defines the mapping for application-specific addresses, and therefore might require updating
on a context switch.

The VMSAv8-32 implementation options determine the supported address translation stages. The following
descriptions apply when all implemented Exception levels are using AArch32:

VMSAv8-32 without EL2 or EL3

Supports only a single PL1&0 stage 1 address translation. Translation of this stage of address
translation can be split between two sets of translation tables, with base addresses defined by
TTBR0 and TTBR1, and controlled by TTBCR.

VMSAv8-32 with EL3 but without EL2

Supports only the Secure PL1&0 stage 1 address translation and the Non-secure PL1&0 stage 1
address translation. In each Security state, this stage of translation can be split between two sets of
translation tables, with base addresses defined by the Secure and Non-secure copies of TTBR0 and
TTBR1, and controlled by the Secure and Non-secure copies of TTBCR.

VMSAv8-32 with EL2 but without EL3

The implementation supports the following stages of address translation:

Non-secure EL2 stage 1 address translation

The HTTBR defines the base address of the translation table for this stage of address
translation, controlled by HTCR.

Non-secure PL1&0 stage 1 address translation

Translation of this stage of address translation can be split between two sets of
translation tables, with base addresses defined by the Non-secure copies of TTBR0 and
TTBR1 and controlled by the Non-secure instance of TTBCR.

Non-secure PL1&0 stage 2 address translation

The VTTBR defines the base address of the translation table for this stage of address
translation, controlled by VTCR.

VMSAv8-32 with EL2 and EL3

The implementation supports all of the stages of address translation, as follows:

Secure PL1&0 stage 1 address translation

Translation of this stage of address translation can be split between two sets of
translation tables, with base addresses defined by the Secure copies of TTBR0 and
TTBR1, and controlled by the Secure instance of TTBCR.

Non-secure EL2 stage 1 address translation

The HTTBR defines the base address of the translation table for this stage of address
translation, controlled by HTCR.

Non-secure PL1&0 stage 1 address translation

Translation of this stage of address translation can be split between two sets of
translation tables, with base addresses defined by the Non-secure copies of TTBR0 and
TTBR1 and controlled by the Non-secure instance of TTBCR.

Non-secure PL1&0 stage 2 address translation

The VTTBR defines the base address of the translation table for this stage of address
translation, controlled by VTCR.

Figure G5-2 on page G5-6267 shows the translation regimes and stages in a VMSAv8-32 implementation that
includes all of the Exception levels, and indicates the PE mode that, typically, defines each set of translation tables,
if that stage of address translation is controlled by a Privilege level that is using AArch32:
G5-6266 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.1 About VMSAv8-32
Figure G5-2 VMSAv8-32 address translation summary

Note

The term Typically configured is used in Figure G5-2 on page G5-6267 to indicate the expected software usage.
However, stages of address translation used in AArch32 state can also be configured:

• From an Exception level higher than the Exception level of the configuring PE mode shown in Figure G5-2
on page G5-6267, regardless of whether that Exception level is using AArch32 or is using AArch64, except
that a Non-secure Exception level can never configure a stage of address translation that is used in Secure
state.

• From an Exception level that is using AArch64 and is higher than the level at which the translation stage is
being used. For example, if Non-secure EL0 is the only Non-secure Exception level that is using AArch32,
then the Non-secure PL1&0 stage of address translation is configured from Non-secure EL1, that is using
AArch64.

In general:

• The translation from VA to PA can require multiple stages of address translation, as Figure G5-2 on
page G5-6267 shows.

• A single stage of address translation takes an input address and translates it to an output address.

A full translation table lookup is called a translation table walk. It is performed automatically by hardware, and can
have a significant cost in execution time. To support fine granularity of the VA to PA mapping, a single input address
to output address translation can require multiple accesses to the translation tables, with each access giving finer
granularity. Each access is described as a level of address lookup. The final level of the lookup defines:

• The required output address.

• The attributes and access permissions of the addressed memory.

Translation Lookaside Buffers (TLBs) reduce the average cost of a memory access by caching the results of
translation table walks. TLBs behave as caches of the translation table information, and VMSAv8-32 provides TLB
maintenance instructions for the management of TLB contents.

Note

The Arm architecture permits TLBs to hold any translation table entry that does not directly cause a Translation
fault, an Address size fault, or an Access flag fault.

To reduce the software overhead of TLB maintenance, for the PL1&0 translation regimes VMSAv8-32
distinguishes between Global pages and Process-specific pages. The ASID identifies pages associated with a
specific process and provides a mechanism for changing process-specific tables without having to maintain the TLB
structures.

† Typically configured from a Non-secure PL1 mode
§ Typically configured from Hyp mode Translation table base address and control registers.

See the Note that follows this figure for other configuration options.

‡ Typically configured from a Secure PL1 mode

VA

Non-secure TTBR0†, TTBR1†, and TTBCR† IPA
VTTBR§ and VTCR§

HTTBR§ and HTCR§VA

Secure PL1&0 stage 1
Secure TTBR0‡, TTBR1‡, and TTBCR‡

Non-secure PL1&0 stage 1

Non-secure PL2 stage 1

VA

PA,
Secure or Non-secure

PA,
Non-secure only

PA,
Non-secure only

Non-secure PL1&0 stage 2

Translation regime

Secure PL1&0

Non-secure PL1&0

Non-secure EL2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6267
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.1 About VMSAv8-32
If an implementation includes EL2, the VMID identifies the current virtual machine, with its own independent
ASID space. The TLB entries include this VMID information, meaning TLBs do not require explicit invalidation
when changing from one virtual machine to another, if the virtual machines have different VMIDs. For stage 2
translations, all translations are associated with the current VMID. There is no mechanism to associate a particular
stage 2 translation with multiple virtual machines.

Atomicity of register changes on changing virtual machine

From the viewpoint of software executing at Non-secure PL1 or EL0, when there is a switch from one virtual
machine to another, the registers that control or affect address translation must be changed atomically. This applies
to the registers for the Non-secure PL1&0 translation regime. This means that all of the following registers must
change atomically:

• The registers associated with the stage 1 translations:

— MAIR0, MAIR1, AMAIR0, and AMAIR1.

— TTBR0, TTBR1, TTBCR, TTBCR2, and CONTEXTIDR.

— SCTLR.

• The registers associated with the stage 2 translations:

— VTTBR and VTCR.

— HSCTLR.

Note

Only some fields of SCTLR affect the stage 1 translation, and only some fields of HSCTLR affect the stage 2
translation. However, in each case, changing these fields requires a write to the register, and that write must be
atomic with the other register updates.

These registers apply to execution using the Non-secure PL1&0 translation regime. However, when updated as part
of a switch of virtual machines they are updated by software executing at EL2. This means the registers are out of
context when they are updated, and no synchronization precautions are required.

Use of out-of-context translation regimes

The architecture requires that:

• When executing at EL3 or EL2, the PE must not use the registers associated with the Non-secure PL1&0
translation regime for speculative memory accesses.

• When executing at EL3 the PE must not use the registers associated with the EL2 translation regime for
speculative memory accesses.

• When executing at EL3, EL2, or Non-secure EL1, the PE must not use the registers associated with the
Secure PL1&0 translation regime for speculative memory accesses.

If the Statistical Profiling Unit (SPU) is not in use for a lower Exception level when entering an Exception level on
completion of a DSB instruction, then no new memory accesses using any translation table entries from a translation
regime of an Exception level lower than the Exception level that has been entered will be observed by any observers
to the extent that those accesses are required to be observed, as determined by the Shareability and Cacheability of
those translation table entries.

If the SPU is in use for a lower Exception level when entering an Exception level on completion of a PSB CSYNC and
a subsequent DSB instruction, then no new memory accesses using any translation table entries from a translation
regime of an Exception level lower than the Exception level that has been entered will be observed by any observers,
to the extent that those accesses are required to be observed, as determined by the Shareability and Cacheability of
those translation table entries.

Note

• This does not require that speculative memory accesses cannot be performed using those entries if it is
impossible to tell that those memory accesses have been observed by the observers.
G5-6268 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.1 About VMSAv8-32
• This requirement does not imply that, on taking an exception to a higher Exception level, any translation table
walks started before the exception was taken will be completed by the time the higher Exception level is
entered, and therefore memory accesses required for such a translation table walk might, in effect, be
performed speculatively. However, the execution of a DSB on entry to the higher Exception level ensures that
these accesses are complete.

G5.1.5 Organization of the remainder of this chapter

The remainder of this chapter is organized as follows.

The next part of the chapter describes address translation and the associated memory properties held in the
translation table entries, in the following sections:

• The effects of disabling address translation stages on VMSAv8-32 behavior on page G5-6270.

• Translation tables on page G5-6274.

• Secure and Non-secure address spaces on page G5-6277.

• The VMSAv8-32 Short-descriptor translation table format on page G5-6279.

• The VMSAv8-32 Long-descriptor translation table format on page G5-6288.

• Memory access control on page G5-6308.

• Memory region attributes on page G5-6319.

• Translation Lookaside Buffers (TLBs) on page G5-6332.

• TLB maintenance requirements on page G5-6336.

Caches in VMSAv8-32 on page G5-6351 describes VMSAv8-32-specific cache requirements.

The following sections then describe aborts on VMSAv8-32 memory accesses, and how these and other faults are
reported:

• VMSAv8-32 memory aborts on page G5-6354.

• Exception reporting in a VMSAv8-32 implementation on page G5-6367.

Address translation instructions on page G5-6386 then describes these operations, and how they relate to address
translation.

A number of sections then describe the System registers for VMSAv8-32. The following sections give general
information about the System registers, and the organization of the registers in the primary encoding spaces,
(coproc==0b1110) and (coproc==0b1111) for these registers:

• About the System registers for VMSAv8-32 on page G5-6396.

• Functional grouping of VMSAv8-32 System registers on page G5-6401.

Note

The System registers in the (coproc==0b1110) encoding space provide the following functionality:

• Self-hosted debug. These registers are described in Debug registers on page G8-6945.

• The System register interface to a PE Trace Unit These registers are not described in this manual.

• Jazelle registers. These registers are summarized in Legacy feature registers and system instructions on
page K15-8659.

Therefore, there is no summary of these registers by functional groups.

Pseudocode description of VMSAv8-32 memory system operations on page G5-6393 then summarizes the
pseudocode functions that describe many features of VMSAv8-32 operation.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6269
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.2 The effects of disabling address translation stages on VMSAv8-32 behavior
G5.2 The effects of disabling address translation stages on VMSAv8-32 behavior

About VMSAv8-32 on page G5-6262 defines the translation regimes and the associated stages of address translation,
each of which has its own System registers for control and configuration. VMSAv8-32 includes an enable bit for
each stage of address translation, as follows:

• SCTLR.M, in the Secure instance of the register, controls Secure PL1&0 stage 1 address translation.

• SCTLR.M, in the Non-secure instance of the register, controls Non-secure PL1&0 stage 1 address
translation.

• HCR.VM controls Non-secure PL1&0 stage 2 address translation.

• HSCTLR.M controls Non-secure EL2 stage 1 address translation.

Note

• The descriptions throughout this chapter describe address translation as seen by Exception levels that are
using AArch32. However, for the Non-secure PL1&0 translation regime, the stage 2 translation:

— Is controlled by the HCR if EL2 is using AArch32.

— Is controlled by the HCR_EL2 if EL2 is using AArch64.

For this reason, links to the HCR link to a table that disambiguates between the AArch32 HCR and the
AArch64 HCR_EL2.

• If EL2 is using AArch64, then the equivalent of the Non-secure EL2 translation regime is described in
Chapter D5 The AArch64 Virtual Memory System Architecture, not in this chapter.

The following sections describe the effect on VMSAv8-32 behavior of disabling each stage of translation:

• VMSAv8-32 behavior when stage 1 address translation is disabled on page G5-6270.

• VMSAv8-32 behavior when stage 2 address translation is disabled on page G5-6272.

• Behavior of instruction fetches when all associated address translations are disabled on page G5-6272.

Enabling stages of address translation on page G5-6272 gives more information about each stage of address
translation, in particular after a reset on an implementation that includes EL3.

G5.2.1 VMSAv8-32 behavior when stage 1 address translation is disabled

When stage 1 address translation is disabled, memory accesses that would otherwise be translated by that stage of
address translation are treated as follows:

Non-secure PL1 and EL0 accesses when EL2 is implemented and HCR.DC is set to 1

In an implementation that includes EL2, for an access from a Non-secure PL1 or EL0 mode when
HCR.DC is set to 1, the stage 1 translation assigns the Normal Non-shareable, Inner Write-Back
Read-Allocate Write-Allocate, Outer Write-Back Read-Allocate Write-Allocate memory attributes.

When FEAT_XS is implemented and HCR.DC is 1, the XS attribute is set to 0 at stage 1 of the
translation. Otherwise, the XS attribute is set to 1 at stage 1 of the translation.

See also Effect of the HCR.DC field on page G5-6271.

All other accesses

For all other accesses, when a stage 1 address translation is disabled, the assigned attributes depend
on whether the access is a data access or an instruction access, as follows:

Data access

The stage 1 translation assigns the Device-nGnRnE memory type.

Instruction access

The stage 1 translation assigns Normal memory attribute, with the Cacheability and
Shareability attributes determined by the value of:

• The Secure instance of SCTLR.I for the Secure PL1&0 translation regime.
G5-6270 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.2 The effects of disabling address translation stages on VMSAv8-32 behavior
• The Non-secure instance of SCTLR.I for the Non-secure PL1&0 translation
regime.

• HSCTLR.I for the Non-secure EL2 translation regime.

In these cases, the meaning of the I field is as follows:

When I is set to 0

The stage 1 translation assigns the attributes Outer Shareable,
Non-cacheable.

When I is set to 1

The stage 1 translation assigns the attributes Inner Write-Through
Read-Allocate No Write-Allocate, Outer Write-Through Read-Allocate
No Write-Allocate Cacheable.

Note
On some implementations, if the SCTLR.TRE field is set to 0 then this behavior can be
changed by the remap settings in the memory remap registers. The details of TEX remap
when SCTLR.TRE is set to 0 are IMPLEMENTATION DEFINED, see SCTLR.TRE,
SCTLR.M, and the effect of the TEX remap registers on page G5-6325.

For this stage of translation, no memory access permission checks are performed, and therefore no MMU
Permission faults relating to this stage of translation can be generated.

Note

Alignment checking is performed, and therefore Alignment faults can occur.

For every access, when stage 1 translation is disabled, the output address of the stage 1 translation is equal to the
input address. This is called a flat address mapping. If the implementation supports output addresses of more than
32 bits then the output address bits above bit[31] are zero. For example, for a VA to PA translation on an
implementation that supports 40-bit PAs, PA[39:32] is 0x00.

For a Non-secure PL1 or EL0 access, if the PL1&0 stage 2 address translation is enabled, the stage 1 memory
attribute assignments and output address can be modified by the stage 2 translation.

See also Behavior of instruction fetches when all associated address translations are disabled on page G5-6272.

Effect of the HCR.DC field

The HCR.DC field determines the default memory attributes assigned for the first stage of the Non-secure PL1&0
translation regime when that stage of translation is disabled.

When executing in a Non-secure PL1 or EL0 mode with HCR.DC set to 1:

• For all purposes other than reading the value of the SCTLR, the PE behaves as if the value of the SCTLR.M
field is 0. This means Non-secure PL1&0 stage 1 address translation is disabled.

• For all purposes other than reading the value of the HCR, the PE behaves as if the value of the HCR.VM field
is 1. This means Non-secure PL1&0 stage 2 address translation is enabled.

The effect of HCR.DC might be held in TLB entries associated with a particular VMID. Therefore, if software
executing at EL2 changes the HCR.DC value without also changing the current VMID, it must also invalidate all
TLB entries associated with the current VMID. Otherwise, the behavior of Non-secure software executing at EL1
or EL0 is CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of
System register control or data values on page K1-8391.

Effect of disabling translation on maintenance and address translation instructions

Cache maintenance instructions act on the target cache whether address translation is enabled or not, and regardless
of the values of the memory attributes. However, if a stage of translation is disabled, they use the flat address
mapping for that stage, and all mappings are considered global.

TLB invalidate operations act on the target TLB whether address translation is enabled or not.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6271
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.2 The effects of disabling address translation stages on VMSAv8-32 behavior
When the Non-secure PL1&0 stage 1 address translation is disabled, any ATS1C** or ATS12NSO** address
translation instruction that accesses the Non-secure state translation reflects the effect of the HCR.DC field.

G5.2.2 VMSAv8-32 behavior when stage 2 address translation is disabled

When stage 2 address translation is disabled:

• The IPA output from the stage 1 translation maps flat to the PA

• The memory attributes and permissions from the stage 1 translation apply to the PA.

If the stage 1 address translation and the stage 2 address translation are both disabled, see Behavior of instruction
fetches when all associated address translations are disabled on page G5-6272.

G5.2.3 Behavior of instruction fetches when all associated address translations are disabled

The information in this section applies to memory accesses:

• From Secure PL1 and EL0 modes, when the Secure PL1&0 stage 1 address translation is disabled

• From Hyp mode, when the Non-secure EL2 stage 1 address translation is disabled

• From Non-secure PL1 and EL0 modes, when all of the following apply:

— The Non-secure PL1&0 stage 1 address translation is disabled.

— The Non-secure PL1&0 stage 2 address translation is disabled.

— HCR.DC is set to 0.

In these cases, when execution is in AArch32 state a memory location might be accessed as a result of an instruction
fetch if either:

• The memory location is in the same 4KB block of memory, aligned to 4KB, as an instruction which a simple
sequential execution of the program either requires to be fetched now or has required to be fetched since the
last reset, or is in the 4KB block immediately following such a block.

• The memory location is the target of a direct branch that a simple sequential execution of the program would
have taken since the most recent of:

— The last reset.

— If the branch predictor is architecturally invisible, the last synchronization of instruction cache
maintenance targeting the address of the branch instruction.

— If the branch predictor is not architecturally invisible, the last synchronization of branch predictor
maintenance targeting the address of the branch instruction.

These accesses can be caused by speculative instruction fetches, regardless of whether the prefetched instruction is
committed for execution.

Note

To ensure architectural compliance, software must ensure that both of the following apply:

• Instructions that will be executed when address translation is disabled are located in 4KB blocks of the
address space that contain only memory that is tolerant to speculative accesses.

• Each 4KB block of the address space that immediately follows a 4KB block that holds instructions that will
be executed when address translation is disabled also contains only memory that is tolerant to speculative
accesses.

G5.2.4 Enabling stages of address translation

On powerup or Warm reset, only the SCTLR.M field for the Exception level and Security state entered on reset is
reset to 0, disabling address translation for the initial state of the PE. All other SCTLR.M and HSCTLR.M fields
that are implemented are UNKNOWN after the reset.
G5-6272 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.2 The effects of disabling address translation stages on VMSAv8-32 behavior
This means, on powerup or reset:

• On an implementation that includes EL3, where EL3 is using AArch32:

— The PL1&0 stage 1 address translation enable bit, SCTLR.M, is banked, meaning there are separate
enables for operation in Secure and Non-secure state.

— If EL3 is using AArch32, only the Secure instance of the SCTLR.M field resets to 0, disabling the
Secure state PL1&0 stage 1 address translation. The reset value of the Non-secure instance of
SCTLR.M is UNKNOWN.

• On an implementation that includes EL2, where EL2 is using AArch32, the HSCTLR.M field, that controls
the Non-secure EL2 stage 1 address translation:

— If the implementation does not include EL3, resets to 0.

— Otherwise, is UNKNOWN.

• On an implementation that does not include either EL2 or EL3, there is a single stage of translation. This is
controlled by SCTLR.M, that resets to 0.

Note

If, for the software that enables or disables a stage of address translation, the input address of a stage 1 translation
differs from the output address of that stage 1 translation, and the software is running in translation regime that is
affected by that stage of translation, then the requirement to synchronize changes to the System registers means it
is uncertain where in the instruction stream the change of the translation takes place. For this reason, Arm strongly
recommends that the input address and the output address are identical in this situation.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6273
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.3 Translation tables
G5.3 Translation tables

VMSAv8-32 defines two alternative translation table formats:

Short-descriptor format

It uses 32-bit descriptor entries in the translation tables, and provides:

• Up to two levels of address lookup.

• 32-bit input addresses.

• Output addresses of up to 40 bits.

• Support for PAs of more than 32 bits by use of supersections, with 16MB granularity.

• Support for No access, Client, and Manager domains.

Long-descriptor format

It uses 64-bit descriptor entries in the translation tables, and provides:

• Up to three levels of address lookup.

• Input addresses of up to 40 bits, when used for stage 2 translations.

• Output addresses of up to 40 bits.

• 4KB assignment granularity across the entire PA range.

• No support for domains, all memory regions are treated as in a Client domain.

• Fixed 4KB table size, unless truncated by the size of the input address space.

Note
— Translation with a 40-bit input address range requires two concatenated 4KB top-level

tables, aligned to 8KB.

— The VMSAv8-64 Long-descriptor translation table format is generally similar to this
format, but supports input and output addresses of up to 48 bits, and has an assignment
granularity and table size defined by its translation granule. This can be 4KB, 16KB,
or 64KB. See The VMSAv8-64 translation table format on page D5-2719.

In all implementations, of the possible address translations shown in Figure G5-2 on page G5-6267, for stages of
address translation that are using AArch32:

• In a particular Security state, the translation tables for the PL1&0 stage 1 translations can use either
translation table format, and the TTBCR.EAE field indicates the current translation table format.

• The translation tables for the Non-secure EL2 stage 1 translations, and for the Non-secure PL1&0 stage 2
translations, must use the Long-descriptor translation table format.

Many aspects of performing a translation table walk depend on the current translation table format. Therefore, the
following sections describe the two formats, including how the MMU performs a translation table walk for each
format:

• The VMSAv8-32 Short-descriptor translation table format on page G5-6279.

• The VMSAv8-32 Long-descriptor translation table format on page G5-6288.

The following subsections describe aspects of the translation tables and translation table walks, for memory
accesses from AArch32 state, that are independent of the translation table format:

• Translation table walks for memory accesses using VMSAv8-32 translation regimes on page G5-6275.

• Information returned by a translation table lookup on page G5-6275.

• Determining the translation table base address in the VMSAv8-32 translation regimes on page G5-6276.

• Control of translation table walks on a TLB miss on page G5-6277.

• Access to the Secure or Non-secure PA map on page G5-6277.

See also TLB maintenance requirements on page G5-6336.
G5-6274 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.3 Translation tables
G5.3.1 Translation table walks for memory accesses using VMSAv8-32 translation regimes

A translation table walk occurs as the result of a TLB miss, and starts with a read of the appropriate starting-level
translation table. The result of that read determines whether additional translation table reads are required, for this
stage of translation, as described in either:

• Translation table walks, when using the VMSAv8-32 Short-descriptor translation table format on
page G5-6285.

• Translation table walks, when using the VMSAv8-32 Long-descriptor translation table format on
page G5-6303.

Note

When using the Short-descriptor translation table format, the starting level for a translation table walk is always a
level 1 lookup. However, with the Long-descriptor translation table format, the starting-level can be either a
level 1or a level 2 lookup.

For the PL1&0 stage 1 translations, SCTLR.EE determines the endianness of the translation table lookups. SCTLR
is banked, and therefore the endianness is determined independently for each Security state.

 HSCTLR.EE defines the endianness for the Non-secure EL2 stage 1 and Non-secure PL1&0 stage 2 translations.

Note

Dynamically changing translation table endianness

Because any change to SCTLR.EE or HSCTLR.EE requires synchronization before it is visible to
subsequent operations, Arm strongly recommends that:

• SCTLR.EE is changed only when either:

— Executing in a mode that does not use the translation tables affected by SCTLR.EE.

— Executing with SCTLR.M set to 0.

• HSCTLR.EE is changed only when either:

— Executing in a mode that does not use the translation tables affected by HSCTLR.EE.

— Executing with HSCTLR.M set to 0.

The PA of the base of the starting-level translation table is determined from the appropriate TTBR, see Determining
the translation table base address in the VMSAv8-32 translation regimes on page G5-6276.

For more information, see Ordering and completion of TLB maintenance instructions on page G5-6339.

Translation table walks must access data or unified caches, or data and unified caches, of other agents participating
in the coherency protocol, according to the Shareability attributes described in the TTBR. These Shareability
attributes must be consistent with the Shareability attributes for the translation tables themselves.

G5.3.2 Information returned by a translation table lookup

When an associated stage of address translation is enabled, a memory access requires one or more translation table
lookups. If the required Translation Table descriptor is not held in a TLB, a translation table walk is performed to
obtain the descriptor. A lookup, whether from the TLB or as the result of a translation table walk, returns both:

• An output address that corresponds to the input address for the lookup.

• A set of properties that correspond to that output address.

The returned properties are classified as providing address map control, access controls, or region attributes. This
classification determines how the descriptions of the properties are grouped. The classification is based on the
following model:

Address map control

Memory accesses from Secure state can access either the Secure or the Non-secure address map, as
summarized in Access to the Secure or Non-secure PA map on page G5-6277.

Memory accesses from Non-secure state can only access the Non-secure address map.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6275
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.3 Translation tables
Access controls

Determine whether the PE, in its current state, can access the output address that corresponds to the
given input address. If not, an MMU fault is generated and there is no memory access.

Memory access control on page G5-6308 describes the properties in this group.

Attributes Are valid only for an output address that the PE, in its current state, can access. The attributes define
aspects of the required behavior of accesses to the target memory region.

Memory region attributes on page G5-6319 describes the properties in this group.

G5.3.3 Determining the translation table base address in the VMSAv8-32 translation regimes

On a TLB miss, the VMSA must perform a translation table walk, and therefore must find the base address of the
translation table to use for its lookup. A TTBR holds this address. As Figure G5-2 on page G5-6267 shows:

• For a Non-secure EL2 stage 1 translation, the HTTBR holds the required base address. The HTCR is the
control register for these translations.

• For a Non-secure PL1&0 stage 2 translation, the VTTBR holds the required base address. The VTCR is the
control register for these translations.

• For a PL1&0 stage 1 translation, either TTBR0 or TTBR1 holds the required base address. The TTBCR is
the control register for these translations.

The Non-secure copies of TTBR0, TTBR1, and TTBCR, relate to the Non-secure PL1&0 stage 1 translation.
The Secure copies of TTBR0, TTBR1, and TTBCR, relate to the Secure PL1&0 stage 1 translation.

For the PL1&0 translation table walks:

• TTBR0 can be configured to describe the translation of VAs in the entire address map, or to describe only the
translation of VAs in the lower part of the address map.

• If TTBR0 is configured to describe the translation of VAs in the lower part of the address map, TTBR1 is
configured to describe the translation of VAs in the upper part of the address map.

The contents of the appropriate instance of the TTBCR determine whether the address map is separated into two
parts, and where the separation occurs. The details of the separation depend on the current translation table format,
see:

• Selecting between TTBR0 and TTBR1, VMSAv8-32 Short-descriptor translation table format on
page G5-6284.

• Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format on
page G5-6297.

Example G5-1 on page G5-6276 shows a typical use of the two sets of translation tables:

Example G5-1 Example use of TTBR0 and TTBR1

An example of using the two TTBRs for PL1&0 stage 1 address translations is:

TTBR0 Used for process-specific addresses.

Each process maintains a separate level 1 translation table. On a context switch:

• TTBR0 is updated to point to the level 1 translation table for the new context.

• TTBCR is updated if this change changes the size of the translation table.

• The CONTEXTIDR is updated.

TTBCR can be programmed so that all translations use TTBR0 in a manner compatible with
architecture versions before Armv6.

TTBR1 Used for operating system and I/O addresses, that do not change on a context switch.
G5-6276 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.3 Translation tables
G5.3.4 Control of translation table walks on a TLB miss

Two fields in the TCR for the translation stage required by a memory access control whether a translation table walk
is performed on a TLB miss. These two fields are the:

• PD0 and PD1 fields, on a PE using the Short-descriptor translation table format.

• EPD0 and EPD1 fields, on a PE using the Long-descriptor translation table format.

Note

For the VMSAv8-32 translation regimes, the different field names are because the fields are in different positions
in TTBCR, depending on the translation table format.

The effect of these fields is:

{E}PDx == 0 If a TLB miss occurs based on TTBRx, a translation table walk is performed. The current Security
state determines whether the memory access is Secure or Non-secure.

{E}PDx == 1 If a TLB miss occurs based on TTBRx, a level 1 Translation fault is returned, and no translation
table walk is performed.

G5.3.5 Access to the Secure or Non-secure PA map

As stated in Address spaces in VMSAv8-32 on page G5-6265, a PE can access independent Secure and Non-secure
address maps. When the PL1 Exception level is using AArch32, these are defined by the translation tables identified
by the Secure TTBR0 and TTBR1. In both translation table formats in the Secure translation tables, the NS field in
a descriptor indicates whether the descriptor refers to the Secure or the Non-secure address map:

NS == 0 Access the Secure PA space.

NS == 1 Access the Non-secure PA space.

Note

In the Non-secure translation tables, the corresponding field is SBZ. Non-secure accesses always access the
Non-secure PA space, regardless of the value of this field.

The Long-descriptor translation table format extends this control, adding an NSTable field to the Secure translation
tables, as described in Hierarchical control of Secure or Non-secure memory accesses, Long-descriptor format on
page G5-6296. In the Non-secure translation tables, the corresponding field is SBZ, and Non-secure accesses ignore
the value of this field.

The following sections describe the address map controls in the two implementations:

• Control of Secure or Non-secure memory access, VMSAv8-32 Short-descriptor format on page G5-6284.

• Control of Secure or Non-secure memory access, VMSAv8-32 Long-descriptor format on page G5-6296.

The following subsection gives more information.

Secure and Non-secure address spaces

EL3 provides two PA spaces, a Secure PA space and a Non-secure PA space.

As described in Access to the Secure or Non-secure PA map on page G5-6277, for the PL1&0 stage 1 translations
when controlled from an Exception level using AArch32, the registers that control the stage of translation, TTBR0,
TTBR1, TTBCR, and TTBCR2 are banked to provide independent Secure and Non-secure instances of the registers,
and the Security state of the PE when it performs a memory access whether the Secure or Non-secure instances are
used. This means that for stage 1 of the PL1&0 translation regime there are independent Secure and Non-secure
translation tables, and translation table walks are made to the PA space corresponding to the Security state of the
translation tables used.

For a translation table walk caused by a memory access from Non-secure state, all memory accesses are to the
Non-secure address space.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6277
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.3 Translation tables
For a translation table walk caused by a memory access from Secure state:

• When address translation is using the Long-descriptor translation table format:

— The initial lookup performed must access the Secure address space.

— If a Table descriptor read from the Secure address space has the NSTable field set to 0, then the next
level of lookup is from the Secure address space.

— If a Table descriptor read from the Secure address space has the NSTable field set to 1, then the next
level of lookup, and any subsequent level of lookup, is from the Non-secure address space.

For more information, see Control of Secure or Non-secure memory access, VMSAv8-32 Long-descriptor
format on page G5-6296.

• Otherwise, all memory accesses are to the Secure address space.

Note

• When executing in Non-secure state, additional translations are supported. For memory accesses from
AArch32 state, these are:

— Non-secure EL2 stage 1 translation.

— Non-secure PL1&0 stage 2 translation.

These translations can access only the Non-secure address space.

• A system implementation can alias parts of the Secure PA space to the Non-secure PA space in an
implementation-specific way. As with any other aliasing of physical memory, the use of aliases in this way
can require the use of cache maintenance instructions to ensure that changes to memory made using one alias
of the physical memory are visible to accesses to the other alias of the physical memory.
G5-6278 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.4 The VMSAv8-32 Short-descriptor translation table format
G5.4 The VMSAv8-32 Short-descriptor translation table format

The Short-descriptor translation table format supports a memory map based on memory sections or pages:

Supersections Consist of 16MB blocks of memory. Support for Supersections is optional, except that an
implementation that supports more than 32 bits of PA must also support Supersections to provide
access to the entire PA space.

Sections Consist of 1MB blocks of memory.

Large pages Consist of 64KB blocks of memory.

Small pages Consist of 4KB blocks of memory.

Supersections, Sections, and Large pages map large regions of memory using only a single TLB entry.

Note

• Whether a VMSAv8-32 implementation of the Short-descriptor format translation tables supports
supersections is IMPLEMENTATION DEFINED.

• The EL2 translation regime cannot use the Short-descriptor translation table format.

When using the Short-descriptor translation table format, two levels of translation tables are held in memory:

Level 1 table

Holds level 1 descriptors that contain the base address and

• Translation properties for a Section and Supersection.

• Translation properties and pointers to a level 2 table for a Large page or a Small page.

Level 2 tables

Hold level 2 descriptors that contain the base address and translation properties for a Small page or
a Large page. With the Short-descriptor format, level 2 tables can be referred to as translation tables.

A level 2 table requires 1KB of memory.

In the translation tables, in general, a descriptor is one of:

• An invalid or fault entry.

• A translation table entry, that points to a next-level translation table.

• A page or section entry, that defines the memory properties for the access.

• A reserved format.

Bits[1:0] of the descriptor give the primary indication of the descriptor type.

Figure G5-3 on page G5-6280 gives a general view of address translation when using the Short-descriptor
translation table format.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6279
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.4 The VMSAv8-32 Short-descriptor translation table format
Figure G5-3 General view of address translation using VMSAv8-32 Short-descriptor format translation tables

Additional requirements for Short-descriptor format translation tables on page G5-6283 describes why, when using
the Short-descriptor format, Supersection and Large page entries must be repeated 16 times, as shown in
Figure G5-3 on page G5-6280.

VMSAv8-32 Short-descriptor Translation Table format descriptors on page G5-6280, Memory attributes in the
VMSAv8-32 Short-descriptor Translation Table format descriptors on page G5-6283, and Control of Secure or
Non-secure memory access, VMSAv8-32 Short-descriptor format on page G5-6284 describe the format of the
descriptors in the Short-descriptor format translation tables.

The following sections then describe the use of this translation table format:

• Selecting between TTBR0 and TTBR1, VMSAv8-32 Short-descriptor translation table format on
page G5-6284.

• Translation table walks, when using the VMSAv8-32 Short-descriptor translation table format on
page G5-6285.

G5.4.1 VMSAv8-32 Short-descriptor Translation Table format descriptors

The following sections describe the formats of the entries in the Short-descriptor Translation Tables:

• Short-descriptor Translation Table level 1 descriptor formats on page G5-6280.

• Short-descriptor Translation Table level 2 descriptor formats on page G5-6282.

For more information about level 2 translation tables, see Additional requirements for Short-descriptor format
translation tables on page G5-6283.

Note

Previous versions of the Arm Architecture Reference Manual, and some other documentation, describes the AP[2]
bit in the translation table entries as the APX bit.

Information returned by a translation table lookup on page G5-6275 describes the classification of the non-address
fields in the descriptors as address map control, access control, or attribute fields.

Short-descriptor Translation Table level 1 descriptor formats

Each entry in the level 1 table describes the mapping of the associated 1MB VA range.

Figure G5-4 on page G5-6281 shows the possible level 1 descriptor formats.

TBR0 or TTBR1
Level 1 table

Indexed by
VA[19:12]

Section
1MB
memory
region

Translation table

Supersection
16MB
memory
region

Level 2 table

Indexed by
VA[31-N:20]‡

Large page
64KB
memory
page

Small page
4KB
memory
page

† Repeated entries required because of descriptor field overlaps.

Supersection

Repeated
16 times†

Repeated
16 times†

Large page

See text for more information.
G5-6280 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.4 The VMSAv8-32 Short-descriptor translation table format
Figure G5-4 VMSAv8-32 Short-descriptor level 1 descriptor formats

Descriptor bits[1:0] identify the descriptor type. The encoding of these bits is:

0b00, Invalid entry

The associated VA is unmapped, and any attempt to access it generates a Translation fault.

Bits[31:2] of the descriptor are IGNORED, see IGNORED on page Glossary-8682. This means
software can use these bits for its own purposes.

0b01, Translation table

The descriptor gives the address of a level 2 translation table, that specifies the mapping of the
associated 1MByte VA range.

0b10, Section or Supersection

The descriptor gives the base address of the Section or Supersection. Bit[18] determines whether
the entry describes a Section or a Supersection.

This encoding also defines the PXN field as 0.

0b11, Section or Supersection, if the implementation supports the PXN attribute

This encoding is identical to 0b10, except that it defines the PXN field as 1.

Note

A VMSAv8-32 implementation can use the Short-descriptor translation table format for the PL1&0 stage 1
translations, by setting TTBCR.EAE to 0.

The address information in the level 1 descriptors is:

Translation table Bits[31:10] of the descriptor are bits[31:10] of the address of a translation table.

Section Bits[31:20] of the descriptor are bits[31:20] of the address of the Section.

0 0

31 2 1 0

IGNOREDInvalid

Translation table Domain 0 1

31 10 9 8 5 4 3 2 1 0

Translation table base address, bits[31:10]

RES0
NS

PXN

0 S Domain C B 1

31 20 19 18 17 16 15 14 12 11 10 9 8 5 4 3 2 1 0

Section base address, PA[31:20]Section

NS nG
AP[2]

TEX[2:0]
AP[1:0]

XN

1 S C B 1

31 24 23 20 19 18 17 16 15 14 12 11 10 9 8 5 4 3 2 1 0

Supersection base address, PA[31:24]

Supersection

Extended base address, PA[35:32]
NS nG

AP[2]

IMPLEMENTATION DEFINED

XN

Extended base address, PA[39:36]

TEX[2:0]

AP[1:0]

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED

PXN

PXN
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6281
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.4 The VMSAv8-32 Short-descriptor translation table format
Supersection Bits[31:24] of the descriptor are bits[31:24] of the address of the Supersection.

Optionally, bits[8:5, 23:20] of the descriptor are bits[39:32] of the extended Supersection address.

For the Non-secure PL1&0 translation tables, the address in the descriptor is the IPA of the translation table, Section,
or Supersection. Otherwise, the address is the PA of the translation table, Section, or Supersection.

For descriptions of the other fields in the descriptors, see Memory attributes in the VMSAv8-32 Short-descriptor
Translation Table format descriptors on page G5-6283.

Short-descriptor Translation Table level 2 descriptor formats

Figure G5-5 on page G5-6282 shows the possible formats of a level 2 descriptor.

Figure G5-5 Short-descriptor level 2 descriptor formats

Descriptor bits[1:0] identify the descriptor type. The encoding of these bits is:

0b00, Invalid entry

The associated VA is unmapped, and attempting to access it generates a Translation fault.

Bits[31:2] of the descriptor are IGNORED, see IGNORED on page Glossary-8682. This means
software can use these bits for its own purposes.

0b01, Large page

The descriptor gives the base address and properties of the Large page.

0b1x, Small page

The descriptor gives the base address and properties of the Small page.

In this descriptor format, bit[0] of the descriptor is the XN field.

The address information in the level 2 descriptors is:

Large page Bits[31:16] of the descriptor are bits[31:16] of the address of the Large page.

Small page Bits[31:12] of the descriptor are bits[31:12] of the address of the Small page.

For the Non-secure PL1&0 translation tables, the address in the descriptor is the IPA of the translation table, Section,
or Supersection. Otherwise, the address is the PA of the translation table, Section, or Supersection.

For descriptions of the other fields in the descriptors, see Memory attributes in the VMSAv8-32 Short-descriptor
Translation Table format descriptors on page G5-6283.

Large page Large page base address, PA[31:16]

XN

TEX[2:0]

nG

S

AP[2]

RES0 C B 0 1

0 0

31 2 1 0

IGNOREDInvalid

1631 15

AP[1:0]

14 12 11 10 9 8 6 5 4 3 2 1 0

Small page base address, PA[31:12]

31 12 11 10 9 8 6 5 4 3 2 1 0

S TEX[2:0] C B 1

nG
AP[2]

AP[1:0] XN

Small page
G5-6282 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.4 The VMSAv8-32 Short-descriptor translation table format
Additional requirements for Short-descriptor format translation tables

When using Supersection or Large Page descriptors in the Short-descriptor translation table format, the input
address field that defines the Supersection or Large Page descriptor address overlaps the table address field. In each
case, the size of the overlap is 4 bits. The following diagrams show these overlaps:

• Figure K7-14 on page K7-8493 for the level 1 translation table entry for a Supersection.

• Figure K7-16 on page K7-8495 for the level 2 translation table entry for a Large page.

Considering the case of using Large Page descriptors in a level 2 translation table, this overlap means that for any
specific Large page, the bottom four bits of the level 2 translation table entry might take any value from 0b0000 to
0b1111. Therefore, each of these 16 index values must point to a separate copy of the same descriptor.

This means that each Large page or Supersection descriptor must:

• Occur first on a sixteen-word boundary.

• Be repeated in 16 consecutive memory locations.

G5.4.2 Memory attributes in the VMSAv8-32 Short-descriptor Translation Table format descriptors

This section describes the descriptor fields other than the descriptor type field and the address field:

TEX[2:0], C, B

Memory region attribute fields, see Memory region attributes on page G5-6319.

These fields are not present in a descriptor for a translation table.

XN bit The Execute-never field, see Access permissions for instruction execution on page G5-6312.

This bit is not present in a descriptor for a translation table.

PXN bit The Privileged execute-never field, see Access permissions for instruction execution on
page G5-6312.

When this field is set to 1 in the descriptor for a translation table, it indicates that all memory pages
described in the corresponding translation table are Privileged execute-never.

NS bit Non-secure bit. Specifies whether the translated PA is in the Secure or Non-secure address map, see
Control of Secure or Non-secure memory access, VMSAv8-32 Short-descriptor format on
page G5-6284.

This bit is not present in level 2 descriptors. The value of the NS bit in a level 1 descriptor for a
translation table applies to all entries in the corresponding level 2 translation table.

Domain Domain field, see Domains, Short-descriptor format only on page G5-6315.

This field is not present in a Supersection entry. Memory described by Supersections is in domain 0.

This bit is not present in level 2 descriptors. The value of the Domain field in the level 1 descriptor
for a translation table applies to all entries in the corresponding level 2 translation table.

An IMPLEMENTATION DEFINED bit

This bit is not present in level 2 descriptors.

AP[2], AP[1:0]

Access Permissions bits, see Memory access control on page G5-6308.

AP[0] can be configured as the Access flag, see The Access flag on page G5-6316.

These bits are not present in a descriptor for a translation table.

S bit Shareable bit. Used in determining the Shareability of the addressed region, see Memory region
attributes on page G5-6319.

Note
The naming of this bit as the Shareable bit is carried forward from early versions of the Arm
architecture. This name is no longer an adequate description of the interpretation of the bit.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6283
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.4 The VMSAv8-32 Short-descriptor translation table format
This bit is not present in a descriptor for a translation table.

nG bit The not global bit. If a lookup using this descriptor is cached in a TLB, determines whether the TLB
entry applies to all ASID values, or only to the current ASID value. See Global and process-specific
translation table entries on page G5-6332.

This bit is not present in a descriptor for a translation table.

Bit[18], when bits[1:0] indicate a Section or Supersection descriptor

0 Descriptor is for a Section.

1 Descriptor is for a Supersection.

G5.4.3 Control of Secure or Non-secure memory access, VMSAv8-32 Short-descriptor format

Access to the Secure or Non-secure PA map on page G5-6277 describes how the NS bit in the translation table
entries:

• For accesses from Secure state, determines whether the access is to Secure or Non-secure memory.

• Is ignored by accesses from Non-secure state.

In the Short-descriptor translation table format, the NS bit is defined only in the level 1 translation tables. This
means that, in a level 1 descriptor for a translation table, the NS bit defines the PA map, Secure or Non-secure, for
all of the Large pages and Small pages of memory described by that table.

The NS bit of a level 1 descriptor for a translation table has no effect on the PA map in which that translation table
is held. As stated in Secure and Non-secure address spaces on page G5-6277, the PA of that translation table is in:

• The Secure address map if the translation table walk is in Secure state.

• The Non-secure address map if the translation table walk is in Non-secure state.

This means the granularity of the Secure and Non-secure memory maps is 1MB. However, in these memory maps,
table entries can define physical memory regions with a granularity of 4KB.

G5.4.4 Selecting between TTBR0 and TTBR1, VMSAv8-32 Short-descriptor translation table format

As described in Determining the translation table base address in the VMSAv8-32 translation regimes on
page G5-6276, two sets of translation tables can be defined for each of the PL1&0 stage 1 translations, and TTBR0
and TTBR1 hold the base addresses for the two sets of tables. When using the Short-descriptor translation table
format, the value of TTBCR.N indicates the number of most significant bits of the input VA that determine whether
TTBR0 or TTBR1 holds the required translation table base address, as follows:

• If N == 0 then use TTBR0. Setting TTBCR.N to zero disables use of a second set of translation tables.

• If N > 0 then:

— If bits[31:32-N] of the input VA are all zero, then use TTBR0.

— Otherwise use TTBR1.

Table G5-1 on page G5-6284 shows how the value of N determines the lowest address translated using TTBR1, and
the size of the level 1 translation table addressed by TTBR0.

Table G5-1 Effect of TTBCR.N on address translation, Short-descriptor format

TTBCR.N First address translated with TTBR1
TTBR0 table

Size Index range

0b000 TTBR1 not used 16KB VA[31:20]

0b001 0x80000000 8KB VA[30:20]

0b010 0x40000000 4KB VA[29:20]

0b011 0x20000000 2KB VA[28:20]

0b100 0x10000000 1KB VA[27:20]
G5-6284 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.4 The VMSAv8-32 Short-descriptor translation table format
Whenever TTBCR.N is nonzero, the size of the translation table addressed by TTBR1 is 16KB.

Figure G5-6 on page G5-6285 shows how the value of TTBCR.N controls the boundary between VAs that are
translated using TTBR0, and VAs that are translated using TTBR1.

Figure G5-6 How TTBCR.N controls the boundary between the TTBRs, Short-descriptor format

In the selected TTBR, bits RGN, S, and IRGN[1:0] define the memory region attributes for the translation table
walk.

Translation table walks, when using the VMSAv8-32 Short-descriptor translation table format on page G5-6285
describes the translation.

G5.4.5 Translation table walks, when using the VMSAv8-32 Short-descriptor translation table format

When using the Short-descriptor translation table format, and a memory access requires a translation table walk:

• A section-mapped access only requires a read of the level 1 translation table.

• A page-mapped access also requires a read of the level 2 translation table.

Reading a level 1 translation table on page G5-6286 describes how either TTBR1 or TTBR0 is used, with the
accessed VA, to determine the address of the level 1 descriptor.

Reading a level 1 translation table on page G5-6286 shows the output address as A[39:0]:

• For a Non-secure PL1&0 stage 1 translation, this is the IPA of the required descriptor. A Non-secure PL1&0
stage 2 translation of this address is performed to obtain the PA of the descriptor.

• Otherwise, this address is the PA of the required descriptor.

The full translation flow for Sections, Supersections, Small pages and Large pages on page G5-6286 then shows the
complete translation flow for each valid memory access.

0b101 0x08000000 512 bytes VA[26:20]

0b110 0x04000000 256 bytes VA[25:20]

0b111 0x02000000 128 bytes VA[24:20]

Table G5-1 Effect of TTBCR.N on address translation, Short-descriptor format (continued)

TTBCR.N First address translated with TTBR1
TTBR0 table

Size Index range

0x00000000

0xFFFFFFFF

0x02000000

TTBR0 region

Boundary, when
TTBCR.N==0b111

Effect of decreasing N

TTBR1 region

TTBR0 region

TTBCR.N==0b000
Use of TTBR1 disabled
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6285
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.4 The VMSAv8-32 Short-descriptor translation table format
Reading a level 1 translation table

When performing a fetch based on TTBR0:

• The address bits taken from TTBR0 vary between bits[31:14] and bits[31:7].

• The address bits taken from the VA, that is the input address for the translation, vary between bits[31:20] and
bits[24:20].

The width of the TTBR0 and VA fields depend on the value of TTBCR.N, as Figure G5-7 on page G5-6286 shows.

When performing a fetch based on TTBR1, Bits TTBR1[31:14] are concatenated with bits[31:20] of the VA. This
makes the fetch equivalent to that shown in Figure G5-7 on page G5-6286, with N==0.

Note

See The address and Properties fields shown in the translation flows on page K7-8496 for more information about
the Properties label used in this and other figures.

Figure G5-7 Accessing level 1 translation table based on TTBR0, Short-descriptor format

Regardless of which register is used as the base for the fetch, the resulting output address selects a four-byte
translation table entry that is one of:

• A level 1 descriptor for a Section or Supersection.

• A descriptor for a translation table, that points to a level 2 translation table. In this case:

— A second fetch is performed to retrieve a level 2 descriptor.

— The descriptor also contains some attributes for the access, see Figure G5-4 on page G5-6281.

• A faulting entry.

The full translation flow for Sections, Supersections, Small pages and Large pages

In a translation table walk, only the initial lookup uses the translation table base address from the appropriate TTBR.
Subsequent lookups use a combination of address information from:

• The Table descriptor read in the previous lookup.

• The input address.

Address translation examples using the VMSAv8-32 Short descriptor translation table format on page K7-8492
shows the full translation flow for each of the memory section and page options. As described in VMSAv8-32
Short-descriptor Translation Table format descriptors on page G5-6280, these options are:

Supersection A 16MB memory region, see Translation flow for a Supersection on page K7-8492.

Section A 1MB memory region, see Translation flow for a Section on page K7-8494.

TTBR0

A[31:0] of level 1 descriptor
A[39:32] = 0x00

‡ This field is absent if N is 0
 N is the value of TTBCR.N

Input addressTable index
31 20 19 0

32-N
31-N

‡

0 0Translation base
31 0

Table index
2 1

14-N
13-N

Descriptor address

For details of the Properties field, see the register description

PropertiesRES0Translation base

31
14-N

13-N
07 6
G5-6286 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.4 The VMSAv8-32 Short-descriptor translation table format
Large page A 64KB memory region, described by the combination of:

• A level 1 translation table entry that indicates the address of a level 2 translation table.

• A level 2 descriptor that indicates a Large page.

See Translation flow for a Large page on page K7-8495.

Small page A 4KB memory region, described by the combination of:

• A level 1 translation table entry that indicates the address of a level 2 translation table.

• A level 2 descriptor that indicates a Small page.

See Translation flow for a Small page on page K7-8496.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6287
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
G5.5 The VMSAv8-32 Long-descriptor translation table format

The VMSAv8-32 Long-descriptor translation table format supports the assignment of memory attributes to memory
Pages, at a granularity of 4KB, across the complete input address range. It also supports the assignment of memory
attributes to blocks of memory, where a block can be 2MB or 1GB.

Note

• Although the VMSAv8-32 Long-descriptor format is limited to three levels of address lookup, its design and
naming conventions support extension to additional levels, to support a larger input address range.

• Similarly, while the VMSAv8-32 implementation limits the output address range to 40 bits, its design
supports extension to a larger output address range.

Figure G5-2 on page G5-6267 shows the different address translation stages. The Long-descriptor translation table
format:

• Is used for:

— The Non-secure EL2 stage 1 translation.

— The Non-secure PL1&0 stage 2 translation.

• Can be used for the Secure and Non-secure PL1&0 translations.

When used for a stage 1 translation, the translation tables support an input address of up to 32 bits, corresponding
to the VA address range of the PE.

When used for a stage 2 translation, the translation tables support an input address range of up to 40 bits, to support
the translation from IPA to PA. If the input address for the stage 2 translation is a 32-bit address, then this address
is zero-extended to 40 bits.

Note

When the Short-descriptor translation table format is used for the Non-secure stage 1 translations, this generates
32-bit IPAs. These are zero-extended to 40 bits to provide the input address for the stage 2 translation.

Overview of VMSAv8-32 address translation using Long-descriptor translation tables on page G5-6288
summarizes address translation from AArch32 state when using the Long-descriptor format translation tables.

The following sections then describe the format of the descriptors in the Long-descriptor format translation tables:

• VMSAv8-32 Long-descriptor Translation Table format descriptors on page G5-6289.

• Attribute fields in VMSAv8-32 Long-descriptor translation table format descriptors on page G5-6292.

• Control of Secure or Non-secure memory access, VMSAv8-32 Long-descriptor format on page G5-6296.

The following sections then describe this translation table format:

• Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format on
page G5-6297.

• VMSAv8-32 Long-descriptor translation table format address lookup levels on page G5-6300.

• Translation table walks, when using the VMSAv8-32 Long-descriptor translation table format on
page G5-6303.

• The algorithm for finding the translation table entries, VMSAv8-32 Long-descriptor format on
page G5-6306.

G5.5.1 Overview of VMSAv8-32 address translation using Long-descriptor translation tables

Figure G5-8 on page G5-6289 gives a general view of VMSAv8-32 stage 1 address translation when using the
Long-descriptor translation table format.
G5-6288 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
Figure G5-8 General view of VMSAv8-32 stage 1 address translation using Long-descriptor format

Figure G5-9 on page G5-6289 gives a general view of VMSAv8-32 stage 2 address translation. Stage 2 translation
always uses the Long-descriptor translation table format.

Figure G5-9 General view of VMSAv8-32 stage 2 address translation, Long-descriptor translation table format

Use of concatenated translation tables for the initial stage 2 lookup on page G5-6301 describes how using
concatenated level 2 tables means lookup can start at level 2, as referred to in Figure G5-9 on page G5-6289.

G5.5.2 VMSAv8-32 Long-descriptor Translation Table format descriptors

As described in VMSAv8-32 Long-descriptor translation table format address lookup levels on page G5-6300, the
Long-descriptor translation table format provides up to three levels of address lookup. A translation table walk starts
either at level 1 or level 2 of the address lookup.

In general, a descriptor is one of:

• An invalid or fault entry.

• A table entry, that points to the next-level translation table.

• A block entry, that defines the memory properties for the access.

• A reserved format.

Bit[1] of the descriptor indicates the descriptor type, and bit[0] indicates whether the descriptor is valid.

The following sections describe the Long-descriptor Translation Table descriptor formats:

• VMSAv8-32 Long-descriptor level 1 and level 2 descriptor formats on page G5-6290.

• VMSAv8-32 Long-descriptor translation table level 3 descriptor formats on page G5-6291.

TTBR0,
TTBR1, or

HTTBR

Level 1 table

Indexed by
VA[29:21]

Block
1GB
memory
region

Table

Level 2 table

Indexed by
VA[31:30]

4KB
memory
page

If a level 1 table would contain only one entry, it is skipped, and the TTBR points to
the level 2 table. This happens if the VA address range is 30 bits or less.

Block
2MB
memory
region

Table

Level 3 table

Page
Indexed by
VA[20:12]

VTTBR
Level 1 tables

Block
1GB
memory
region

Table
Indexed by
IPA[38:30]

4KB
memory
page

If a level 1 table would contain 16 entries or fewer, level 1 lookup can be omited. If so, VTTBR
points to the start of a block of concatenated level 2 tables. See text for more information.

Level 3 table

Page
Block

Table

Indexed by
IPA[20:12]

Up to two concatenated
Level 1 tables, so that
IPA[39] indexes the table.

Indexed by
IPA[29:21]

Level 2 tables

Block
2MB
memory
region

Table

Block

Table
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6289
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
Information returned by a translation table lookup on page G5-6275 describes the classification of the non-address
fields in the descriptors between address map control, access controls, and region attributes.

VMSAv8-32 Long-descriptor level 1 and level 2 descriptor formats

In the Long-descriptor translation tables, the formats of the level 1 and level 2 descriptors differ only in the size of
the block of memory addressed by the Block descriptor. A block entry:

• In a level 1 table describes the mapping of the associated 1GB input address range.

• In a level 2 table describes the mapping of the associated 2MB input address range.

Figure G5-10 on page G5-6290 shows the Long-descriptor level 1 and level 2 descriptor formats:

Figure G5-10 VMSAv8-32 Long-descriptor level 1and level 2 descriptor formats

Descriptor encodings, Long-descriptor level 1 and level 2 formats

Descriptor bit[0] identifies whether the descriptor is valid, and is 1 for a valid descriptor. If a lookup returns an
invalid descriptor, the associated input address is unmapped, and any attempt to access it generates a Translation
fault.

Descriptor bit[1] identifies the descriptor type, and is encoded as:

0, Block The descriptor gives the base address of a block of memory, and the attributes for that memory
region.

1, Table The descriptor gives the address of the next level of translation table, and for a stage 1 translation,
some attributes for that translation.

The other fields in the valid descriptors are:

Block descriptor

Gives the base address and attributes of a block of memory:

• For a level 1 Block descriptor, bits[39:30] are bits[39:30] of the output address that specifies
a 1GB block of memory.

• For a level 2 Block descriptor, bits[39:21] are bits[39:21] of the output address that specifies
a 2MB block of memory.

In both cases, if bits[47:40] of the descriptor are not zero then a translation that uses the descriptor
will generate an Address size fault, see Address size fault on page G5-6356.

0IGNORED

63 1 0

Invalid

1Upper block attributes

63 52 51 3940 n n-1 12 11 2 1 0

SBZ‡ Output address[39:n] RES0 Lower block attributes 0Block

For the level 1 descriptor, n is 30. For the level 2 descriptor, n is 21.

The level 1 descriptor returns the address of the level 2 table.
The level 2 descriptor returns the address of the level 3 table.

1

63 62 61 60 59 58 52 51 40 39 12 11 2 1 0

IGNORED SBZ‡ Next-level table address[39:12] IGNORED 1Table

PXNTable
XNTable
APTable
NSTable

Stage 1 only,
SBZ at stage 2

‡ See the descriptions of the address fields for more information about bits[47:40] of the Block and Table descriptors.
G5-6290 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
Bits[63:52, 11:2] provide attributes for the target memory block, see Attribute fields in VMSAv8-32
Long-descriptor translation table format descriptors on page G5-6292. The position and contents
of these bits is identical in the level 2 Block descriptor and in the level 3 Page descriptor.

Table descriptor

Bits[39:m] are bits[39:m] of the address of the required next-level table. Bits[m-1:0] of the table
address are zero:

• For a level 1 Table descriptor, this is the address of a level 2 table.

• For a level 2 Table descriptor, this is the address of a level 3 table.

In both cases, if bits[47:40] of the descriptor are not zero then a translation that uses the descriptor
will generate an Address size fault, see Address size fault on page G5-6356.

For a stage 1 translation only, bits[63:59] provide attributes for the next-level lookup, see Attribute
fields in VMSAv8-32 Long-descriptor translation table format descriptors on page G5-6292.

If the translation table defines the Non-secure PL1&0 stage 1 translations, then the output address in the descriptor
is the IPA of the target block or table. Otherwise, it is the PA of the target block or table.

VMSAv8-32 Long-descriptor translation table level 3 descriptor formats

Each entry in a level 3 table describes the mapping of the associated 4KB input address range.

Figure G5-11 on page G5-6291 shows the Long-descriptor level 3 descriptor formats.

Figure G5-11 VMSAv8-32 Long-descriptor level 3 descriptor formats

Descriptor bit[0] identifies whether the descriptor is valid, and is 1 for a valid descriptor. If a lookup returns an
invalid descriptor, the associated input address is unmapped, and any attempt to access it generates a Translation
fault.

Descriptor bit[1] identifies the descriptor type, and is encoded as:

0, Reserved, invalid

Behaves identically to encodings with bit[0] set to 0.

This encoding must not be used in level 3 translation tables.

1, Page Gives the address and attributes of a 4KB page of memory.

At this level, the only valid format is the Page descriptor. The other fields in the Page descriptor are:

Page descriptor

Bits[39:12] are bits[39:12] of the output address for a page of memory.

If bits[47:40] of the descriptor are not zero, then a translation that uses the descriptor will generate
an Address size fault, see Address size fault on page G5-6356.

Bits[63:52, 11:2] provide attributes for the target memory page, see Attribute fields in VMSAv8-32
Long-descriptor translation table format descriptors on page G5-6292. The position and contents
of these bits are identical in the level 1 Block descriptor and in the level 2 Block descriptor.

0IGNORED

63 1 0

Invalid

Reserved,
invalid 1RES0

63 2 1 0

0

Page 1Upper page attributes

63 52 51 3940 12 11 2 1 0

SBZ‡ Output address[39:12] Lower page attributes 1

‡ See the description of the address field for more information about bits[47:40] of the Page descriptor.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6291
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
If the translation table defines the Non-secure PL1&0 stage 1 translations, then the output address in the descriptor
is the IPA of the target page. Otherwise, it is the PA of the target page.

G5.5.3 Attribute fields in VMSAv8-32 Long-descriptor translation table format descriptors

The memory attributes in the VMSAv8-32 Long-descriptor translation tables are based on those in the
Short-descriptor translation table format, with some extensions. Memory region attributes on page G5-6319
describes these attributes. In the Long-descriptor translation table format:

• Table entries for stage 1 translations define attributes for the next level of lookup, see Next-level attributes in
VMSAv8-32 Long-descriptor stage 1 Table descriptors on page G5-6292

The hierarchical attributes in the translation tables, APTable, XNTable, and PXNTable, permit subtrees of the
translation tables to be used by different agents. Not all operating systems use this functionality, and so
FEAT_AA32HPD adds a facility to disable these bits.

This ability to disable hierarchical attribute bits has no effect on the NSTable bit.

• Block and Page entries define memory attributes for the target block or page of memory. Stage 1 and stage 2
translations have some differences in these attributes, see:

— Attribute fields in VMSAv8-32 Long-descriptor stage 1 Block and Page descriptors on page G5-6293.

— Attribute fields in VMSAv8-32 Long-descriptor stage 2 Block and Page descriptors on page G5-6295.

Next-level attributes in VMSAv8-32 Long-descriptor stage 1 Table descriptors

In a Table descriptor for a stage 1 translation, bits[63:59] of the descriptor define the following attributes for the
next-level translation table access:

NSTable, bit[63] For memory accesses from Secure state, specifies the Security state for subsequent levels of
lookup, see Hierarchical control of Secure or Non-secure memory accesses,
Long-descriptor format on page G5-6296.

For memory accesses from Non-secure state, this bit is ignored.

APTable, bits[62:61] Access permissions limit for subsequent levels of lookup, see Hierarchical control of access
permissions, Long-descriptor format on page G5-6309.

APTable[0] is reserved, SBZ, in the Non-secure EL2 stage 1 translation tables.

From Armv8.2, when FEAT_AA32HPD is implemented, this field can be disabled.

When the value of TTBCR2.HPD0 or TTBCR2.HPD1 is 1, and the value of TTBCR.T2E
is also 1:

• The value of the corresponding APTable field is IGNORED by hardware, allowing the
field to be used by software.

• The behavior of the system is as if the value of the corresponding APTable field is 0,
that is to say, the APTable field has an Effective value of 0.

XNTable, bit[60] XN limit for subsequent levels of lookup, see Hierarchical control of instruction fetching,
Long-descriptor format on page G5-6314.

From Armv8.2, when FEAT_AA32HPD is implemented, this field can be disabled.

When the value of TTBCR2.HPD0 or TTBCR2.HPD1 is 1, and the value of TTBCR.T2E
is also 1:

• The value of the corresponding XNTable field is IGNORED by hardware, allowing the
field to be used by software.

• The behavior of the system is as if the value of the corresponding XNTable field is 0,
that is to say, the XNTable field has an Effective value of 0.

PXNTable, bit[59] PXN limit for subsequent levels of lookup, see Hierarchical control of instruction fetching,
Long-descriptor format on page G5-6314.

This bit is RES0 in the Non-secure EL2 stage 1 translation tables.
G5-6292 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
From Armv8.2, when FEAT_AA32HPD is implemented, this field can be disabled.

When the value of TTBCR2.HPD0 or TTBCR2.HPD1 is 1 and the value of TTBCR.T2E is
also 1:

• The value of the corresponding PXNTable field is ignored by hardware, allowing the
field to be used by software.

• The behavior of the system is as if the value of the corresponding PXNTable field is
0, that is to say, the PXNTable field has an Effective value of 0.

Attribute fields in VMSAv8-32 Long-descriptor stage 1 Block and Page descriptors

In Block and Page descriptors, the memory attributes are split into an upper block and a lower block as shown for
a stage 1 translation:

For a stage 1 descriptor, the attributes are:

PBHA, bits[62:59]

Page-based hardware attributes bits.

These bits are IGNORED when FEAT_HPDS2 is not implemented.

When FEAT_HPDS2 is implemented, the HTCR and the TTBCR2 registers both contain a control
bit for each PBHA bit in the translation tables that they control. When the value of that control bit
is 1, and the value of the corresponding Hierarchical permission disables bit is 1, hardware can use
that PBHA bit for IMPLEMENTATION DEFINED purposes. When the PBHA bit is used for
IMPLEMENTATION DEFINED purposes, the value of 0 in the PBHA bit is a safe default setting that
gives the same behavior as when the PBHA bit is not used for IMPLEMENTATION DEFINED purposes.

The control bits for this feature are:

For a Non-secure EL2 translation regime:

HTCR.HWUnn

Controls whether Block or Page descriptor bit[nn] can be used by hardware.

These controls apply only when the value of HTCR.HPD is 1.

For a PL1&0 translation regime:

TTBCR2.HWU1nn

For the translation tables indicated by TTBR1, controls whether Block or
Page descriptor bit[nn] can be used by hardware.

These controls apply only when the value of TTBCR2.HPD1 is 1 and the
value of TTBCR.T2E is 1.

TTBCR2.HWU0nn

For the translation tables indicated by TTBR0, controls whether Block or
Page descriptor bit[nn] can be used by hardware.

These controls apply only when the value of TTBCR2.HPD0 is 1 and the
value of TTBCR.T2E is 1.

Upper attributes Lower attributes

63 59 58 55 54 53 52
IGNORED

11 10 9 8 7 6 5 4 2

nG
AF

SH[1:0]
AP[2:1]

NS
AttrIndx[2:0]

PBHA †

62

‡ RES0 for a translation regime that cannot apply to execution at EL0.

IGNORED

† IGNORED if FEAT_HPDS2 is not implemented.

XN
PXN ‡

Contiguous

Reserved for software use
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6293
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
Implementation of FEAT_HPDS2 requires the implementation of FEAT_AA32HPD, which
provides the Hierarchical permission disables bits. If FEAT_AA32HPD is implemented but
FEAT_HPDS2 is not implemented, then the control bits are RAZ/WI but other aspects of
FEAT_AA32HPD functionality are implemented. If neither feature is implemented, then:

• The control bits are RAZ/WI.

• The FEAT_AA32HPD identification registers indicate that the functionality is not supported,
see FEAT_AA32HPD on page A2-81.

• The TTBCR2 register encoding is treated as unallocated.

XN, bit[54] The Execute-never field, see Access permissions for instruction execution on page G5-6312.

PXN, bit[53] The Privileged execute-never field, see Access permissions for instruction execution on
page G5-6312.

This bit is RES0 in the Non-secure EL2 stage 1 translation tables.

Contiguous, bit[52]

Indicates that 16 adjacent translation table entries point to contiguous memory regions, see
Contiguous bit on page G5-6327.

nG, bit[11] The not global bit. Determines how the translation is marked in the TLB, see Global and
process-specific translation table entries on page G5-6332.

This bit is RES0 in the Non-secure EL2 stage 1 translation tables.

AF, bit[10] The Access flag, see The Access flag on page G5-6316.

SH, bits[9:8] Shareability field, see Memory region attributes on page G5-6319.

AP[2:1], bits[7:6]

Access Permissions bits, see Memory access control on page G5-6308.

Note

For consistency with the Short-descriptor translation table formats, the Long-descriptor format
defines AP[2:1] as the Access Permissions bits, and does not define an AP[0] bit.

AP[1] is RES1 in the Non-secure EL2 stage 1 translation tables.

NS, bit[5] Non-secure bit. For memory accesses from Secure state, specifies whether the output address is in
Secure or Non-secure memory, see Control of Secure or Non-secure memory access, VMSAv8-32
Long-descriptor format on page G5-6296.

For memory accesses from Non-secure state, this bit is RES0 and is ignored by the PE.

AttrIndx[2:0], bits[4:2]

Stage 1 memory attributes index field, for the indicated Memory Attribute Indirection Register, see
VMSAv8-32 Long-descriptor format memory region attributes on page G5-6326.

The definition of IGNORED means the architecture guarantees that the PE makes no use of the field, see IGNORED
on page Glossary-8682. For more information about these fields, see Other fields in the Long-descriptor translation
table format descriptors on page G5-6327.
G5-6294 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
Attribute fields in VMSAv8-32 Long-descriptor stage 2 Block and Page descriptors

In Block and Page descriptors, the memory attributes are split into an upper block and a lower block as shown for
a stage 2 translation:

For a stage 2 descriptor, the attributes are:

PBHA[3:1], bits[62:60]

Page-based hardware attributes bits.

These bits are IGNORED and reserved for System MMU use when FEAT_HPDS2 is not
implemented.

When FEAT_HPDS2 is implemented, VTCR_EL2 has a control bit for each PBHA bit in the
EL1&0 stage 2 translation tables:

• When the value of that control bit is 1, hardware can use the corresponding PBHA bit for
IMPLEMENTATION DEFINED purposes. When the PBHA bit is used for IMPLEMENTATION
DEFINED purposes, the value of 0 in the PBHA bit is a safe default setting that gives the same
behavior as when the PBHA bit is not used for IMPLEMENTATION DEFINED purposes.

• When the value of that control bit is 0, the corresponding PBHA bit is IGNORED and reserved
for System MMU use.

PBHA[0], bit[59]

Page-based hardware attributes bit.

This bit is IGNORED when FEAT_HPDS2 is not implemented.

When FEAT_HPDS2 is implemented, VTCR_EL2 has a control bit for this bit in the EL1&0 stage
2 translation tables:

• When the value of that control bit is 1, hardware can use this bit for IMPLEMENTATION
DEFINED purposes. When the PBHA bit is used for IMPLEMENTATION DEFINED purposes, the
value of 0 in the PBHA bit is a safe default setting that gives the same behavior as when the
PBHA bit is not used for IMPLEMENTATION DEFINED purposes.

• When the value of that control bit is 0, this bit is IGNORED.

XN[1:0], bits[54:53]

The stage 2 Execute-never field, see Access permissions for instruction execution on page G5-6312.

If FEAT_XNX is not implemented, bit[53] is RES0.

Contiguous, bit[52]

Indicates that 16 adjacent translation table entries point to contiguous memory regions, see
Contiguous bit on page G5-6327.

AF, bit[10] The Access flag, see The Access flag on page G5-6316.

SH, bits[9:8] Shareability field, see EL2 control of Non-secure memory region attributes on page G5-6328.

Lower attributes

11 10 9 8 7 6 5 2
(0)

Upper attributes

PBHA†

63 59 58 55 54 53 52
IGNORED

XN[1:0]‡

Contiguous

Reserved for software use
Reserved for use by System MMU

60

MemAttr[3:0]

AF
SH[1:0]

S2AP[1:0]

‡ Bit[53] is RES0 if FEAT_XNX is not implemented.

62

† Bits [62:60] are IGNORED and reserved for use by System MMU if FEAT_HPDS2 is not implemented.
Bits [59] is IGNORED if FEAT_HPDS2 is not implemented.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6295
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
S2AP, bits[7:6]

Stage 2 Access Permissions bits, see Hyp mode control of Non-secure access permissions on
page G5-6317.

Note
In the original VMSAv7-32 Long-descriptor attribute definition, this field was called HAP[2:1], for
consistency with the AP[2:1] field in the stage 1 descriptors and despite there being no HAP[0] bit.
Armv8 renames the field for greater clarity.

MemAttr, bits[5:2]

Stage 2 memory attributes, see EL2 control of Non-secure memory region attributes on
page G5-6328.

The definition of IGNORED means the architecture guarantees that the PE makes no use of the field, see IGNORED
on page Glossary-8682. For more information about these fields, see Other fields in the Long-descriptor translation
table format descriptors on page G5-6327.

G5.5.4 Control of Secure or Non-secure memory access, VMSAv8-32 Long-descriptor format

Access to the Secure or Non-secure PA map on page G5-6277 describes how the NS bit in the translation table
entries:

• For accesses from Secure state, determines whether the access is to Secure or Non-secure memory.

• Is ignored by accesses from Non-secure state.

In the Long-descriptor format:

• The NS bit relates only to the memory block or page at the output address defined by the descriptor.

• The descriptors also include an NSTable bit, see Hierarchical control of Secure or Non-secure memory
accesses, Long-descriptor format on page G5-6296.

The NS and NSTable bits are valid only for memory accesses from Secure state. Memory accesses from Non-secure
state ignore the values of these bits.

Hierarchical control of Secure or Non-secure memory accesses, Long-descriptor
format

For Long-descriptor Format Table descriptors for stage 1 translations, the descriptor includes an NSTable bit, which
indicates whether the table identified in the descriptor is in Secure or Non-secure memory. For accesses from Secure
state, the meaning of the NSTable bit is:

NSTable == 0 The defined table address is in the Secure PA map. In the descriptors in that translation table, NS
bits and NSTable bits have their defined meanings.

NSTable == 1 The defined table address is in the Non-secure PA map. Because this table is fetched from the
Non-secure address map, the NS and NSTable bits in the descriptors in this table must be ignored.
This means that, for this table:

• The value of the NS bit in any Block or Page descriptor is ignored. The block or page address
refers to Non-secure memory.

• The value of the NSTable bit in any Table descriptor is ignored, and the table address refers
to Non-secure memory. When this table is accessed, the NS bit in any Block or Page
descriptor is ignored, and all descriptors in the table refer to Non-secure memory.

In addition, an entry fetched in Secure state is treated as non-global if it is read from Non-secure memory. That is,
these entries must be treated as if nG==1, regardless of the value of the nG bit. For more information about the nG
bit, see Global and process-specific translation table entries on page G5-6332.
G5-6296 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
The effect of NSTable applies to later entries in the translation table walk, and so its effects can be held in one or
more TLB entries. Therefore, a change to NSTable requires coarse-grained invalidation of the TLB to ensure that
the effect of the change is visible to subsequent memory transactions.

Note

• When using the Long-descriptor Format, Table descriptors are defined only for the level 1 and level 2 of
lookup.

• Stage 2 translations are performed only for operations in Non-secure state, that can access only the
Non-secure address map. Therefore, the stage 2 descriptors do not include NS or NSTable bits.

G5.5.5 Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format

As described in Determining the translation table base address in the VMSAv8-32 translation regimes on
page G5-6276, two sets of translation tables can be defined for each of the PL1&0 stage 1 translations, and TTBR0
and TTBR1 hold the base addresses for the two sets of tables. The Long-descriptor translation table format provides
more flexibility in defining the boundary between using TTBR0 and using TTBR1. When a PL1&0 stage 1 address
translation is enabled, TTBR0 is always used. If TTBR1 is also used then:

• TTBR1 is used for the top part of the input address range.

• TTBR0 is used for the bottom part of the input address range.

The TTBCR.T0SZ and TTBCR.T1SZ size fields control the use of TTBR0 and TTBR1, as Table G5-2 on
page G5-6297 shows.

For stage 1 translations, the input address is always a VA, and the maximum possible VA is (232-1).

When address translation is using the Long-descriptor translation table format:

• Figure G5-12 on page G5-6298 shows how, when TTBCR.T1SZ is zero, the value of TTBCR.T0SZ controls
the boundary between VAs that are translated using TTBR0, and VAs that are translated using TTBR1.

Table G5-2 Use of TTBR0 and TTBR1, Long-descriptor format

TTBCR Input address range using:

T0SZ T1SZ TTBR0 TTBR1

0b000 0b000 All addresses Not used

Ma

a. M, N must be greater than 0.The maximum possible value for each of T0SZ and
T1SZ is 7.

0b000 Zero to (2(32-M)-1) 232-M to maximum input address

0b000 Na Zero to (232-2(32-N)-1) 232-2(32-N) to maximum input address

Ma Na Zero to (2(32-M)-1) 232-2(32-N) to maximum input address
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6297
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
Figure G5-12 Control of TTBR boundary, when TTBCR.T1SZ is zero

• Figure G5-13 on page G5-6298 shows how, when TTBCR.T1SZ is nonzero, the values of TTBCR.T0SZ and
TTBCR.T1SZ control the boundaries between VAs that are translated using TTBR0, and VAs that are
translated using TTBR1.

Figure G5-13 Control of TTBR boundaries, when TTBCR.T1SZ is nonzero

When T0SZ and T1SZ are both nonzero:

— If both fields are set to 0b001, the boundary between the two regions is 0x80000000. This is identical to
having T0SZ set to 0b000 and T1SZ set to 0b001.

— Otherwise, the TTBR0 and TTBR1 regions are non-contiguous. In this case, any attempt to access an
address that is in that gap between the TTBR0 and TTBR1 regions generates a Translation fault.

Note
The handling of the Contiguous bit can mean that the boundary between the translation regions defined
by the TCR_EL1.TnSZ values and the region for which an access generates a Translation fault is wider
than shown in Figure G5-13 on page G5-6298. That is, if the descriptor for an access to the region
shown as generating a fault has the Contiguous bit set to 1, the access might not generate a fault.
Possible errors in programming the translation table registers on page G5-6299 describes this
possibility.

When using the Long-descriptor translation table format:

• The TTBCR contains fields that define memory region attributes for the translation table walk, for each
TTBR. These are the SH0, ORGN0, IRGN0, SH1, ORGN1, and IRGN1 bits.

• TTBR0 and TTBR1 each contain an ASID field, and the TTBCR.A1 field selects which ASID to use.

0x00000000

0xFFFFFFFF

0x02000000

TTBR0 region Effect of increasing TTBCR.T0SZ

TTBCR.T0SZ==0b000
Use of TTBR1 disabled

TTBR0 region

TTBR1 region

Boundary, when TTBCR.T0SZ==0b111

0x80000000 Boundary, when TTBCR.T0SZ==0b001

TTBCR.T1SZ==0b000

0x00000000

0xFFFFFFFF

TTBR0 region

Effect of increasing TTBCR.T1SZTTBR1 region

TTBCR.T0SZ==0b000

0x80000000
Boundary,
TTBCR.T1SZ==0b001

0x40000000

TTBR1 region

TTBR0 region

Boundary, when TTBCR.T0SZ==0b010

Effect of increasing TTBCR.T0SZ

Access generates a
Translation fault,

see text

Effect of
increasing

TTBCR.T1SZ

Boundary, when TTBCR.T1SZ==0b001

TTBCR.T0SZ>0b000

Effect of decreasing TTBCR.T0SZ
G5-6298 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
For this translation table format, VMSAv8-32 Long-descriptor translation table format address lookup levels on
page G5-6300 summarizes the lookup levels, and Translation table walks, when using the VMSAv8-32
Long-descriptor translation table format on page G5-6303 describes the possible translations.

Possible errors in programming the translation table registers

In all the descriptions in this subsection, the size of the input address supported for a PL1&0 stage 1 translation
refers to the size specified by a TTBCR.TxSZ field.

Note

For a PL1&0 stage 1 translation, the input address range can be split so that the lower addresses are translated by
TTBR0 and the higher addresses are translated by TTBR1. In this case, each of input address sizes specified by
TTBCR.{T0SZ, T1SZ} is smaller than the total address size supported by the stage of translation.

The following are possible errors in the programming of TTBR0, TTBR1, and TTBCR. For the translation of a
particular address at a particular stage of translation, either:

• The block size being used to translate the address is larger than the size of the input address supported at a
stage of translation used in performing the required translation. This can occur only for the PL1&0 stage 1
translations, and only when either TTBCR.T0SZ or TTBCR.T1SZ is zero, meaning there is no gap between
the address range translated by TTBR0 and the range translated by TTBR1. In this case, this programming
error occurs if a block translated from the region that has TxSZ set to zero straddles the boundary between
the two address ranges. Example G5-2 on page G5-6299 shows an example of this mis-programming.

• The address range translated by a set of blocks marked as contiguous, by use of the contiguous bit, is larger
than the size of the input address supported at a stage of translation used in performing the required
translation.

Example G5-2 Error in programming the translation table registers

If TTBCR.T0SZ is programmed to 0 and TTBCR.T1SZ is programmed to 7, this means:

• TTBR0 translates addresses in the range 0x00000000-0xFDFFFFFF.

• TTBR1 translates addresses in the range 0xFE000000-0xFFFFFFFF.

The translation table indicated by TTBR0 might be programmed with a block entry for a 1GB region starting at
0xC0000000. This covers the address range 0xC0000000-0xFFFFFFFF, that overlaps the TTBR1 address range. This
means this block size is larger than the input address size supported for translations using TTBR0, and therefore this
is a programming error.

To understand why this must be a programming error, consider a memory access to address 0xFFFF0000. According
to the TTBCR.{T0SZ, T1SZ} values, this must be translated using TTBR1. However, the access matches a TLB
entry for the translation, using TTBR0, of the block at 0xC0000000. Hardware is not required to detect that the access
to 0xFFFF0000 is being translated incorrectly.

In these cases, an implementation might use one of the following approaches:

• Treat such a block as causing a Translation fault, even though the block is valid, and the address accessed
within that block is within the size of the input address supported at a stage of translation.

The block might be a block within a contiguous set of blocks.

• Treat such a block as not causing a Translation fault, even though the address accessed within that block is
outside the size of the input address supported at a stage of translation, provided that both of the following
apply:

— The block is valid.

— At least one address within the block, or contiguous set of blocks, is within the size of the input address
supported at a stage of translation.

The block might be a block within a contiguous set of blocks.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6299
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
Additional constraints apply to programming the VTCR, see Determining the required initial lookup level for stage
2 translations on page G5-6305.

G5.5.6 VMSAv8-32 Long-descriptor translation table format address lookup levels

As stated at the start of this section, because the Long-descriptor translation table format is used for the Non-secure
PL1&0 stage 2 translations, the format must support input addresses of up to 40 bits.

Table G5-3 on page G5-6300 summarizes the properties of the different levels of address lookup when using this
format.

For level 1 and level 2 tables, reducing the input address range reduces the number of addresses in the table and
therefore reduces the table size. The appropriate Translation Table Control Register specifies the input address
range.

Stage 1 translations require an input address range of up to 32 bits, corresponding to VA[31:0]. For these
translations:

• For a memory access from a mode other than Hyp mode, the Secure or Non-secure TTBR0 or TTBR1 holds
the translation table base address, and the Secure or Non-secure TTBCR is the control register.

• For a memory access from Hyp mode, HTTBR holds the translation table base address, and HTCR is the
control register.

Note

For translations controlled by TTBR0 and TTBR1, if neither TTBR has an input address range larger than 1GB,
then translation starts at level 2. Together, TTBR0 and TTBR1 can still cover the 32-bit VA input address range.

Stage 2 translations require an input address range of up to 40 bits, corresponding to IPA[39:0], and the supported
input address size is configurable in the range 25-40 bits. Table G5-3 on page G5-6300 indicates a requirement for
the translation mechanism to support a 39-bit input address range, Address[38:0]. Use of concatenated translation
tables for the initial stage 2 lookup on page G5-6301 describes how a 40-bit IPA address range is supported. For
stage 2 translations:

• VTTBR holds the translation table base address, and VTCR is the control register.

• If a supplied input address is larger than the configured input address size, a Translation fault is generated.

Table G5-3 Properties of the three levels of address lookup with VMSAv8-32 Long-descriptor
translation tables

Level
Input address Output addressa

a. Output address when an entry addresses a block of memory or a memory page. If an entry addresses the
next level of address lookup it specifies Address[39:12] for the next-level translation table.

Number of entries
Size Address rangeb

b. Input address range for the translation table. See Use of concatenated level 1 translation tables on
page G5-6301 for details of support for additional bits of address at a given level, including possible
support of a 40-bit input address range for stage 2 translations at level 1. For stage 1 translations at level
1 the input address range is limited to the VA size of [31:0].

Size Address range

First Up to 512GB Up to Address[38:0] 1GB Address[39:30] Up to 512

Second Up to 1GB Up to Address[29:0] 2MB Address[39:21] Up to 512

Third 2MB Address[20:0] 4KB Address[39:12] 512
G5-6300 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
Use of concatenated translation tables for the initial stage 2 lookup

If a stage 2 translation would require 16 entries or fewer in its top-level translation table, that stage of translation
can, instead, be configured so that:

• It requires the corresponding number of concatenated translation tables at the next translation level, aligned
to the size of the block of concatenated translation tables.

• The stage 2 translation starts at that next translation level.

Note

Stage 2 translations always use the Long-descriptor translation table format.

This use of concatenated translation tables is:

• Required when the stage 2 translation supports a 40-bit input address range, see Use of concatenated level 1
translation tables on page G5-6301.

• Supported for a stage 2 translation with an input address range of 31-34 bits, see Use of concatenated level 2
translation tables on page G5-6301.

The use of concatenated translation tables requires the software that is defining the translation to:

• Define the concatenated translation tables with the required overall alignment.

• Program VTTBR to hold the address of the first of the concatenated translation tables.

• Program VTCR to indicate the required input address range and initial lookup level.

Note

The use of concatenated translation tables avoids the overhead of an additional level of translation.

Use of concatenated level 1 translation tables

The Long-descriptor format translation tables provide 9 bits of address resolution at each level of lookup. However,
a 40-bit input address range with a translation granularity of 4KB requires a total of 28 bits of address resolution.
Therefore, a stage 2 translation that supports a 40-bit input address range requires two concatenated level 1
translation tables, together aligned to 8KB, where:

• The table at the address with PA[12:0]==0b0_0000_0000_0000 defines the translations for input addresses with
bit[39]==0.

• The table at the address with PA[12:0]==0b1_0000_0000_0000 defines the translations for input addresses with
bit[39]==1.

• The 8KB alignment requirement means that both tables have the same value for PA[39:13].

Use of concatenated level 2 translation tables

A stage 2 translation with an input address range of 31-34 bits can start the translation either:

• With a level 1 lookup, accessing a level 1 translation table with 2-16 entries.

• With a level 2 lookup, accessing a set of concatenated level 2 translation tables.

Table G5-4 on page G5-6302 shows these options, for each of the input address ranges that can use this scheme.

Note

Because these are stage 2 translations, the input address range is an IPA range.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6301
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
See also Determining the required initial lookup level for stage 2 translations on page G5-6305.

Table G5-4 Possible uses of concatenated translation tables for level 2 lookup

Input address range Lookup starts at level 1 Lookup starts at level 2

IPA range Size Required level 1 entries Number of concatenated tables Required alignmenta

IPA[30:0] 231 bytes 2 2 8KB

IPA[31:0] 232 bytes 4 4 16KB

IPA[32:0] 233 bytes 8 8 32KB

IPA[33:0] 234 bytes 16 16 64KB

a. Required alignment of the set of concatenated level 2 tables.
G5-6302 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
G5.5.7 Translation table walks, when using the VMSAv8-32 Long-descriptor translation table format

Figure G5-2 on page G5-6267 shows the possible address translations. If a stage of translation is controlled from an
Exception level that is using AArch32, the input and output address constraints and the registers that control the
translation are as follows:

Stage 1 translations

For all stage 1 translations:

• The input address range is up to 32 bits, as determined by either:

— TTBCR.T0SZ or TTBCR.T1SZ, for a PL1&0 stage 1 translation.

— HTCR.T0SZ, for an EL2 stage 1 translation.

• The output address range is 40 bits.

The stage 1 translations are:

Non-secure PL1&0 stage 1 translation

The stage 1 translation for memory accesses from Non-secure modes other than Hyp
mode. This translates a VA to an IPA. For this translation, when Non-secure EL1 is
using AArch32:

• Non-secure TTBR0 or TTBR1 holds the translation table base address.

• Non-secure TTBCR determines which TTBR is used.

Non-secure EL2 stage 1 translation

The stage 1 translation for memory accesses from Hyp mode, translates a VA to a PA.
For this translation, when EL2 is using AArch32, HTTBR holds the translation table
base address.

Secure PL1&0 stage 1 translation

The stage 1 translation for memory accesses from Secure modes, translates a VA to a
PA. For this translation, when the Secure PL1 modes are using AArch32:

• Secure TTBR0 or TTBR1 holds the translation table base address.

• Secure TTBCR determines which TTBR is used.

Stage 2 translation

Non-secure PL1&0 stage 2 translation

The stage 2 translation for memory accesses from Non-secure modes other than Hyp
mode, and translates an IPA to a PA. For this translation, when EL2 is using AArch32:

• The input address range is 40 bits, and VTCR.T0SZ determines the input address
size.

• The output address range depends on the implemented memory system, and is up
to 40 bits.

• VTTBR holds the translation table base address.

• VTCR specifies the required input address range, and whether the initial lookup
is at level 1 or at level 2.

The descriptions of the VMSAv8-32 translation stages state that the maximum output address size is 40 bits.
However, the register and Long-descriptor Format descriptor fields that hold these addresses are 48 bits wide. If
bits[47:40] of an output address are not all zero, then the address generates an Address size fault.

The Long-descriptor translation table format provides up to three levels of address lookup, as described in
VMSAv8-32 Long-descriptor translation table format address lookup levels on page G5-6300, and the initial
lookup, in which the MMU reads the translation table base address, is at either level 1 or level 2. The following
determines the level of the initial lookup:

• For a stage 1 translation, the required input address range. For more information, see Determining the
required initial lookup level for stage 1 translations on page G5-6305.

• For a stage 2 translation, the level specified by the VTCR.SL0 field. For more information, see Determining
the required initial lookup level for stage 2 translations on page G5-6305.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6303
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
Note

For a stage 2 translation, the size of the required input address range constrains the VTCR.SL0 value.

Figure G5-14 on page G5-6304 shows how the descriptor address for the initial lookup for a translation using the
Long-descriptor translation table format is determined from the input address and the TTBR value. This figure
shows the lookup for a translation that starts with a level 1 lookup, that translates bits[39:30] of the input address,
zero extended if necessary.

Figure G5-14 VMSAv8-32 Long-descriptor initial lookup, starting at level 1

If bits[47:40] of the TTBR are not zero then the initial lookup will generate an Address size fault, see Address size
fault on page G5-6356.

For a translation that starts with a level 1 lookup, as shown in Figure G5-14 on page G5-6304:

For a stage 1 translation

n is in the range 4-5 and:

• For a memory access from Hyp mode:

— HTTBR is the TTBR.

— n=5-(HTCR.T0SZ).

• For other accesses:

— The Secure or Non-secure instance of TTBR0 or TTBR1 is the TTBR.

— n=(5-TTBCR.TxSZ), where x is 0 when using TTBR0, and 1 when using TTBR1.

For a stage 2 translation

n is in the range 4-13 and:

• VTTBR is the TTBR.

• n=5-(VTCR.T0SZ).

SBZ§

Input address‡
39

n+27
n+26

30 29 0

39 n
n-1

3 2 0

0 0 0 Descriptor address†

See text for more information about the translation table base register used, and the value of n.

† For a Non-secure PL1&0 stage 1 translation, the IPA of the descriptor. Otherwise, the PA of the descriptor.
‡ This field is absent if n is 13.

Translation table base address[39:n]RES0
63 56 55 48 47 n n-1 0

Register-defined RES0 TTBR
40 39

§ See the lookup description for more information about bits[40:47] of the TTBR
G5-6304 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
For a translation that starts with a level 2 lookup, the descriptor address is obtained in the same way, except that
bits[(n+17):21] of the input address provide bits[(n-1):3] of the descriptor address, where:

For a stage 1 translation

n is in the range 7-12. As Determining the required initial lookup level for stage 1 translations on
page G5-6305 shows, for a stage 1 translation to start with a level 2 lookup, the corresponding T0SZ
or T1SZ field must be 2 or more. This means:

• For a memory access from Hyp mode, n=14-HTCR.T0SZ.

• For other memory accesses, n=14-(TTBCR.TxSZ), where x is 0 when using TTBR0, and 1
when using TTBR1.

For a stage 2 translation

n is in the range 7-16. For a stage 2 translation to start with a level 2 lookup, VTCR.SL0 is 0b00, and
n=14-(VTCR.T0SZ).

The following sections describe how the level of the initial lookup is determined:

• Determining the required initial lookup level for stage 1 translations on page G5-6305.

• Determining the required initial lookup level for stage 2 translations on page G5-6305.

Address translation examples using the VMSAv8-32 Long descriptor translation table format on page K7-8497
shows examples of full translation flows, to an entry for a 4KB memory page, for lookups starting at level 1 and
lookups starting at level 2.

Determining the required initial lookup level for stage 1 translations

For a stage 1 translation, the required input address range, indicated by a T0SZ or T1SZ field in a translation table
control register, determines the initial lookup level. The size of this input address region is 2(32-TxSZ) bytes, and if
this size is:

• Less than or equal to 230 bytes, the required start is at level 2, and translation requires two levels of table to
map to 4KB pages. This corresponds to a TxSZ value of 2 or more.

• More than 230 bytes, the required start is at level 1, and translation requires three levels of table to map to
4KB pages. This corresponds to a TxSZ value that is less than 2.

For the PL1&0 stage 1 translations, the TTBCR:

• Splits the 32-bit VA input address range between TTBR0 and TTBR1, see Selecting between TTBR0 and
TTBR1, VMSAv8-32 Long-descriptor translation table format on page G5-6297.

• Holds the input address range sizes for TTBR0 and TTBR1, in the TTBCR.T0SZ and TTBCR.T1SZ fields.

For the EL2 stage 1 translations, HTCR.T0SZ indicates the size of the required input address range. For example,
if this field is 0b000, it indicates a 32-bit VA input address range, and translation lookup must start at level 1.

Determining the required initial lookup level for stage 2 translations

For a PL1&0 stage 2 translation, the output address range from the PL1&0 stage 1 translations determines the
required input address range for the stage 2 translation.

VTCR.SL0 indicates the starting level for the lookup. The permitted SL0 values are:

0b00 Stage 2 translation lookup must start at level 2.

0b01 Stage 2 translation lookup must start at level 1.

In addition, VTCR.T0SZ must indicate the required input address range. The size of the input address region is
2(32-T0SZ) bytes.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6305
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
Note

VTCR.T0SZ holds a four-bit signed integer value, meaning it supports values from -8 to 7. This is different from
the other translation control registers, where TnSZ holds a three-bit unsigned integer, supporting values from 0 to 7.

The programming of VTCR must follow the constraints shown in Table G5-5 on page G5-6306, otherwise any
attempt to perform a translation table walk that uses the stage 2 address translation generates a stage 2 level 1
Translation Fault. The table also shows how the VTCR.SL0 and VTCR.T0SZ values determine the
VTTBR.BADDR field width.

Note

If VTCR.SL0 is programmed to a reserved value then the constraints shown in Table G5-5 on page G5-6306 are not
met, and a translation table walk that uses stage 2 translation generates a stage 2 level 1 Translation fault.

In addition, VTCR.S must be programmed to the value of T0SZ[3], otherwise behavior is CONSTRAINED
UNPREDICTABLE with the resulting behavior being that VTCR.T0SZ is treated as an UNKNOWN value.

Note

VTCR.T0SZ being treated as an UNKNOWN value results in a stage 2 level 1 Translation Fault if that UNKNOWN
value is not consistent with the programmed value of VTCR.SL0.

CONSTRAINED UNPREDICTABLE behaviors associated with the VTCR on page K1-8405 describes these
CONSTRAINED UNPREDICTABLE behaviors.

Where necessary, the initial lookup level provides multiple concatenated translation tables, as described in Use of
concatenated level 2 translation tables on page G5-6301. This section also gives more information about the
alternatives, shown in Table G5-5 on page G5-6306, when R is in the range 231-234.

G5.5.8 The algorithm for finding the translation table entries, VMSAv8-32 Long-descriptor format

This section gives the algorithm for finding the translation table entry that corresponds to a given IA, for each
required level of lookup. The algorithm encodes the descriptions of address translation given earlier in this section.
The VMSAv8-32 Long-descriptor format uses a 4KB translation granule.

The description uses the following terms:

BaseAddr The base address for the level of lookup, as defined by:

• For the initial lookup level, the TTBR.BADDR base address field in the appropriate TTBR,
see the description of TnSZ on page G5-6307.

• Otherwise, the translation table address returned by the previous level of lookup.

IA The supplied IA for this stage of translation.

Table G5-5 Input address range constraints on programming VTCR

VTCR.SL0 VTCR.T0SZ Input address range, R Initial lookup level BADDR[39:x] widtha

a. The first range corresponds to the first T0SZ value, the second range to the second T0SZ value.

0b00 2 to 7 R≤230bytes Level 2 [39:12] to [39:7]

0b00 -2 to 1 230<R≤234bytes Level 2 [39:16] to [39:13]

0b01 -2 to 1 Level 1 [39:7] to [39:4]

0b01 -8 to -3 234<R Level 1 [39:13] to [39:8]
G5-6306 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
TnSZ The translation table size for this stage of translation:

For PL1&0 stage 1 Either:

• TTBCR.T0SZ if the translation is using TTBR0.

• TTBCR.T1SZ if the translation is using TTBR1.

For PL1&0 stage 2 VTCR.T0SZ. The translation uses VTTBR.

For EL2 stage 1 HTCR.T0SZ. The translation uses HTTBR.

SL0 VTCR.SL0. Applies to the Non-secure PL1&0 stage 2 translation only.

Table G5-6 on page G5-6307 shows the Translation Table descriptor address, for each level of lookup. The table
shows only architecturally-valid programming of the TCR. See also Possible errors in programming the translation
table registers on page G5-6299.

Table G5-6 Translation table entry addresses, VMSAv8-32 using Long-descriptor format

Lookup
level

Entry address and conditions
General conditions

Stage 1 translation Stage 2 translation

One BaseAddr[39:x]:IA[y:30]:0b000

ifa 0  TnSZ  1 then x = (5 - TnSZ)

BaseAddr[39:x]:IA[y:30]:0b000

if SL0b == 1 then

ifa -8  T0SZ  1 then x = (5 - T0SZ)

y = (x + 26)

Two BaseAddr[39:x]:IA[y:21]:0b000

if a 2  TnSZ  7 then x = (14 - TnSZ)

elsec x =12

BaseAddr[39:x]:IA[y:21]:0b000

if SL0 == 0 then

ifa -2  T0SZ  7 then x = (14 - T0SZ)

elsifc SL0b == 1 then x = 12

y = (x + 17)

Three BaseAddr[39:12]:IA[20:12]:0b000 BaseAddr[39:12]:IA[20:12]:0b000 -

a. This line indicates the range of permitted values for TnSZ, for a lookup that starts at this level, see Use of concatenated
translation tables for the initial stage 2 lookup on page G5-6301.

b. SL0 == 0 if the initial lookup is level 2, SL0 == 1 if the initial lookup is level 1.

c. This is the case where this level of lookup is not the initial level of lookup.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6307
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
G5.6 Memory access control

In addition to an output address, a translation table entry that refers to page or region of memory includes fields that
define properties of the target memory region. Information returned by a translation table lookup on page G5-6275
describes the classification of those fields as address map control, access control, and memory attribute fields. The
access control fields, described in this section, determine whether the PE, in its current state, is permitted to perform
the required access to the output address given in the Translation Table descriptor. If a translation stage does not
permit the access, then an MMU fault is generated for that translation stage, and no memory access is performed.

The following sections describe the memory access controls:

• About access permissions on page G5-6308.

• About the PAN bit on page G5-6311.

• Access permissions for instruction execution on page G5-6312.

• Domains, Short-descriptor format only on page G5-6315.

• The Access flag on page G5-6316.

• Hyp mode control of Non-secure access permissions on page G5-6317.

G5.6.1 About access permissions

The Translation Table descriptors include fields that define access permissions for data accesses and for instruction
fetches. This section introduces those fields. In addition:

• System register controls can prevent execution from writable locations, see Preventing execution from
writable locations on page G5-6314.

• In Armv8.1, the PSTATE.PAN can affect the access permissions for privileged data accesses, see About the
PAN bit on page G5-6311.

Note

This section gives a general description of memory access permissions. Software executing at PL1 in Non-secure
state can see only the access permissions defined by the Non-secure PL1&0 stage 1 translations. However, software
executing at EL2 can modify these permissions, as described in Hyp mode control of Non-secure access permissions
on page G5-6317. This modification is invisible to Non-secure software executing at EL1 or EL0.

Access permission bits in a Translation Table descriptor control access to the corresponding memory region. The
details of this control depend on the translation table format, as follows:

Short-descriptor format

This format supports two options for defining the access permissions:

• Three bits, AP[2:0], define the access permissions.

• Two bits, AP[2:1], define the access permissions, and AP[0] can be used as an Access flag.

SCTLR.AFE selects the access permissions option. Setting this bit to 1, to enable the Access flag,
also selects use of AP[2:1] to define access permissions.

Arm deprecates any use of the AP[2:0] scheme for defining access permissions.

Long-descriptor format

AP[2:1] to control the access permissions, and the descriptors provide an AF bit for use as an Access
flag. This means VMSAv8-32 behaves as if the value of SCTLR.AFE is 1, regardless of the value
that software has written to this bit.

Note

When use of the Long-descriptor format is enabled, SCTLR.AFE is UNK/SBOP.

The Access flag on page G5-6316 describes the Access flag, for both translation table formats.

The XN and PXN bits provide additional access controls for instruction fetches, see Access permissions for
instruction execution on page G5-6312.
G5-6308 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
An attempt to perform a memory access that the translation table access permission bits do not permit generates a
Permission fault, for the corresponding stage of translation. However, when using the Short-descriptor translation
table format, it generates the fault only if the access is to memory in the Client domain, see Domains,
Short-descriptor format only on page G5-6315.

Note

For the Non-secure PL1&0 translation regime, memory accesses are subject to two stages of translation. Each stage
of translation has its own, independent, fault checking. Fault handling is different for the two stages, see Exception
reporting in a VMSAv8-32 implementation on page G5-6367.

The following sections describe the two access permissions models:

• AP[2:1] access permissions model on page G5-6309.

• AP[2:0] access permissions control, Short-descriptor format only on page G5-6310. This section includes
some information on access permission control in earlier versions of the Arm VMSA.

AP[2:1] access permissions model

Note

Arm recommends that this model is always used, even where the AP[2:0] model is permitted. Some documentation
describes the AP[2:1] model as the simplified access permissions model.

This access permissions model is used if the translation is either:

• Using the Long-descriptor translation table format.

• Using Short-descriptor translation table format, and the SCTLR.AFE bit is set to 1.

In this model:

• One bit, AP[2], selects between read-only and read/write access.

• A second bit, AP[1], selects between Application level (EL0) and System level (PL1) control.

For the Non-secure EL2 stage 1 translations, AP[1] is SBO.

This provides four access combinations:

• Read-only at all privilege levels.

• Read/write at all privilege levels.

• Read-only at PL1, no access by software executing at EL0.

• Read/write at PL1, no access by software executing at EL0.

Table G5-7 on page G5-6309 shows this access control model.

Hierarchical control of access permissions, Long-descriptor format

The Long-descriptor translation table format introduces a mechanism that entries at one level of translation table
lookup can use to set limits on the permitted entries at subsequent levels of lookup. This applies to the access
permissions, and also to the restrictions on instruction fetching described in Hierarchical control of instruction
fetching, Long-descriptor format on page G5-6314.

Table G5-7 VMSAv8-32 AP[2:1] access permissions model

AP[2], disable write access AP[1], enable unprivileged access Access

0 0a

a. Not valid for Non-secure EL2 stage 1 translation tables. AP[1] is SBO in these tables.

Read/write, only at PL1

0 1 Read/write, at any privilege level

1 0a Read-only, only at PL1

1 1 Read-only, at any privilege level
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6309
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
The restrictions apply only to subsequent levels of lookup at the same stage of translation. The APTable[1:0] field
restricts the access permissions, as Table G5-8 on page G5-6310 shows.

However, in an implementation that includes FEAT_AA32HPD, when hierarchical control of data access
permissions is disabled for a translation regime, the information in this subsection does not apply. See Attribute
fields in VMSAv8-32 Long-descriptor translation table format descriptors on page G5-6292.

As stated in the table footnote, for the Non-secure EL2 stage 1 translation tables, APTable[0] is reserved, SBZ.

Note

The APTable[1:0] settings are combined with the translation table access permissions in the Translation Tables
descriptors accessed in subsequent levels of lookup. They do not restrict or change the values entered in those
descriptors.

The Long-descriptor format provides APTable[1:0] control only for the stage 1 translations. The corresponding bits
are SBZ in the stage 2 Translation Table descriptors.

The effect of APTable applies to later entries in the translation table walk, and so its effects can be held in one or
more TLB entries. Therefore, a change to APTable requires coarse-grained invalidation of the TLB to ensure that
the effect of the change is visible to subsequent memory transactions.

AP[2:0] access permissions control, Short-descriptor format only

This access permissions model applies when using the Short-descriptor translation tables format, and the
SCTLR.AFE bit is set to 0. Arm deprecates any use of this access permissions model.

When SCTLR.AFE is set to 0, ensuring that the AP[0] bit is always set to 1 effectively changes the access model to
the simpler model described in AP[2:1] access permissions model on page G5-6309.

Table G5-9 on page G5-6310 shows the full AP[2:0] access permissions model:

Table G5-8 Effect of APTable[1:0] on subsequent levels of lookup

APTable[1:0] Effect

00 No effect on permissions in subsequent levels of lookup.

01a Access at EL0 not permitted, regardless of permissions in subsequent levels of lookup.

10 Write access not permitted, at any Exception level, regardless of permissions in subsequent levels
of lookup.

11a Regardless of permissions in subsequent levels of lookup:

• Write access not permitted, at any Exception level.

• Read access not permitted at EL0.

a. Not valid for the Non-secure EL2 stage 1 translation tables. In those tables, APTable[0] is SBZ.

Table G5-9 VMSAv8-32 MMU access permissions

AP[2] AP[1:0] PL1 access Unprivileged access Description

0 00 No access No access All accesses generate Permission faults

01 Read/write No access Access only at PL1

10 Read/write Read-only Writes at EL0 generate Permission faults

11 Read/write Read/write Full access
G5-6310 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
Note

• VMSAv8-32 supports the full set of access permissions shown in Table G5-9 on page G5-6310 only when
SCTLR.AFE is set to 0. When SCTLR.AFE is set to 1, the only supported access permissions are those
described in AP[2:1] access permissions model on page G5-6309.

• Some old documentation describes the AP[2] bit in the translation table entries as the APX bit.

G5.6.2 About the PAN bit

When the value of PSTATE.PAN is 1, any privileged data access from PL1 or EL2 to a virtual memory address that
is accessible at EL0 generates a Permission fault.

When the value of PSTATE.PAN is 0, the translation system is the same as in Armv8.0.

A corresponding PAN bit is added to CPSR and SPSR for exception returns, and DSPSR for entry to and exit from
Debug state.

A new SPAN bit is added to SCTLR that controls whether the PAN state bit is set on taking an exception to EL1
from either Secure or Non-secure state, or to EL3 from Secure state when EL3 is using AArch32.

CPSR.PAN bit can be written using an MSR instruction at PL1 or higher. Data writes to CPSR.PAN using an MSR
instruction at EL0 are ignored. The value that is returned for an MRS instruction of CPSR from EL0 is UNKNOWN. In
keeping with all other writes to the CPSR, other than for instruction fetches, the effect of the PAN state bit does not
need to be explicitly synchronized.

The PAN state bit has no effect on:

• Data Cache instructions.

• Address translation instructions, other than ATS1CPRP and ATS1CPWP when FEAT_PAN2 is implemented.

• Unprivileged instructions, LDRBT, LDRHT, LDRT, LDRSBT, LDRSHT, STRBT, STRHT, STRT, STRSBT, and STRSHT, unless
HCR_EL2.{E2H, TGE} == {1, 0}.

• Instruction accesses.

• Manager domains.

The PAN bit has no effect when the first stage of translation is disabled for the current translation regime or when
the first stage of translation for the current translation regime does not describe the permissions for access at EL0.

If access is disabled, then the access will give rise to a stage 1 Permission fault.

On an exception taken from AArch32:

• CPSR.PAN is copied to SPSR_ELx.PAN, when the target Exception level is AArch64.

• CPSR.PAN is copied to SPSR.PAN, when the target Exception level is AArch32.

On an exception return from AArch32 to AArch32, SPSR.PAN is copied to CPSR.PAN.

On entry to Debug state, CPSR.PAN is copied to DSPSR.PAN.

1 00 - - Reserved

01 Read-only No access Read-only, only at PL1

10 Read-only Read-only Read-only at any Exception level, deprecateda

11 Read-only Read-only Read-only at any Exception levelb

a. From VMSAv7, Arm strongly recommends use of the 0b11 encoding for Read-only at any Exception level.

b. This mapping was introduced in VMSAv7, and is reserved in earlier versions of the VMSA.

Table G5-9 VMSAv8-32 MMU access permissions (continued)

AP[2] AP[1:0] PL1 access Unprivileged access Description
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6311
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
On exit from Debug state, DSPSR.PAN is copied to CPSR.PAN.

The CPSR.PAN bit is not an Execution state bit.

Note

• In Non-debug state, in AArch32 state, software can use the SETPAN #imm instruction to modify PSTATE.PAN.

• In Debug state, in AArch32 state, a debugger can use the ERET instruction to perform a DRPS operation to
modify PSTATE.PAN.

G5.6.3 Access permissions for instruction execution

Execute-never controls provide an additional level of control on memory accesses permitted by the access
permissions settings. These controls are:

XN, Execute-never

Descriptor bit[54], defined as XN for:

• Stage 1 of any translation regime.

• Stage 2 translations when FEAT_XNX is not implemented.

Note
XN[1:0], Execute-never, stage 2 only describes the stage 2 control when FEAT_XNX is
implemented.

This field applies to execution at any Exception level to which the stage of translation applies. A
value of 0 indicates that this control permits execution.

PXN, Privileged execute-never, stage 1 only

Descriptor bit[53], used only for stage 1 of any translation regime for which the stage 1 translation
can support two VA ranges:

• For stage 1 of a translation regime for which the stage 1 translation supports only a single VA
range the stage 1 descriptors define a PXN field that is RES0, meaning it is ignored by
hardware.

This field applies only to execution at an Exception level higher than EL0. A value of 0 indicates
that this control permits execution.

XN[1:0], Execute-never, stage 2 only

Descriptor bits[54:53], defined as XN[1:0] for:

• Stage 2 translations when FEAT_XNX is implemented.

Table G5-10 on page G5-6312 shows the operation of this control.

Table G5-10 XN[1:0] stage 2 access permissions model

XN[1] XN[0] Access

0 0 The stage 2 control permits execution at EL1 and EL0 if read access is permitted

0 1 The stage 2 control does not permit execution at EL1, but permits execution at EL0 if read access
is permitted

1 0 The stage 2 control does not permit execution at EL1 or at EL0

1 1 The stage 2 control permits execution at EL1 if read access is permitted, but does not permit
execution at EL0
G5-6312 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
Note

For stage 2 translations when FEAT_XNX is not implemented, descriptor bit[53] is RES0, meaning
it is ignored by hardware, and bit[54] is the XN control, see XN, Execute-never on page G5-6312.

Executing an instruction at ELx in a particular Security state generates a Permission fault unless all of the following
are true for the instruction address:

• Any stage 1 execute-never control that applies to execution at ELx in the current Security state permits
execution.

• If the translation regime that applies to ELx in the current Security state has two stages of translations, the
stage 2 execute-never control that applies to execution at ELx permits execution.

• Read access is permitted.

However, if a stage 1 translation is using the Short-descriptor translation table format and the address is in a
Managers domain the stage 1 access permissions are not checked, and therefore the access cannot cause a stage 1
Permission fault, see Domains, Short-descriptor format only on page G5-6315.

See also Hyp mode control of Non-secure access permissions on page G5-6317.

In addition, System register controls can enforce execute-never restrictions, regardless of the settings in the
translation table XN and PXN fields, see:

• Restriction on Secure instruction fetch on page G5-6315.

• Preventing execution from writable locations on page G5-6314.

The execute-never controls apply also to speculative instruction fetching. This means a speculative instruction fetch
from a memory region that is execute-never at the current level of privilege is prohibited.

The execute-never controls means that, when the stage of address translation is enabled, the PE can fetch, or
speculatively fetch, an instruction from a memory location only if all of the following apply:

• If using the Short-descriptor translation table format, the Translation Table descriptor for the location does
not indicate that it is in a No access domain.

• If using the Long-descriptor translation table format, or using the Short descriptor format and the descriptor
indicates that the location is in a Client domain, in the descriptor for the location the following apply:

— The stage 1 execute-never control for the Exception level at which the instruction is executed permits
execution.

— For a translation regime with two stages of address translation, the stage 2 execute-never control that
applies to the Exception level at which the instruction is executed permits execution.

— The access permissions permit a read access from the current PE mode.

• No other Prefetch Abort condition exists.

Note

• The PXN control applies to the PE privilege when it attempts to execute the instruction. In an implementation
that fetches instructions speculatively, this might not be the privilege when the instruction was prefetched.
Therefore, the architecture does not require the PXN control to prevent instruction fetching.

• Although the XN control applies to speculative fetching, on a speculative instruction fetch from an XN
location, no Permission fault is generated unless the PE attempts to execute the instruction that would have
been fetched from that location. This means that, if a speculative fetch from an XN location is attempted, but
there is no attempt to execute the corresponding instruction, a Permission fault is not generated.

• The software that defines a translation table must mark any region of memory that is read-sensitive as XN,
to avoid the possibility of a speculative fetch accessing the memory region. This means it must mark any
memory region that corresponds to a read-sensitive peripheral as XN. Hardware does not prevent speculative
accesses to a region of any Device memory type unless that region is also marked as execute-never for all
Exception levels from which it can be accessed.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6313
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
• When using the Short-descriptor translation table format, the XN attribute is not checked for domains marked
as Manager. Therefore, the system must not include read-sensitive memory in domains marked as Manager,
because the XN field does not prevent speculative fetches from a Manager domain.

When no stage of address translation for the translation regime is enabled, memory regions cannot have XN or PXN
attributes assigned. Behavior of instruction fetches when all associated address translations are disabled on
page G5-6272 describes how disabling all MMUs affects instruction fetching.

Hierarchical control of instruction fetching, Long-descriptor format

The Long-descriptor translation table format introduces a mechanism that means entries at one level of translation
tables lookup can set limits on the permitted entries at subsequent levels of lookup. This applies to the restrictions
on instruction fetching, and also to the access permissions described in Hierarchical control of access permissions,
Long-descriptor format on page G5-6309.

Note

Similar hierarchical controls apply to data accesses, see Hierarchical control of access permissions,
Long-descriptor format on page G5-6309.

However, in an implementation that includes FEAT_AA32HPD, when hierarchical control of instruction fetching
is disabled for a translation regime, the information in this subsection does not apply. See Attribute fields in
VMSAv8-32 Long-descriptor translation table format descriptors on page G5-6292.

The restrictions apply only to subsequent levels of lookup at the same stage of translation, and:

• XNTable restricts the XN control:

— When XNTable is set to 1, the XN field is treated as 1 in all subsequent levels of lookup, regardless of
the actual value of the field.

— When XNTable is set to 0 it has no effect.

• PXNTable restricts the PXN control:

— When PXNTable is set to 1, the PXN field is treated as 1 in all subsequent levels of lookup, regardless
of the actual value of the field.

— When PXNTable is set to 0 it has no effect.

Note

The XNTable and PXNTable settings are combined with the XN and PXN fields in the Translation Table descriptors
accessed at subsequent levels of lookup. They do not restrict or change the values entered in those descriptors.

The XNTable and PXNTable controls are provided only in the Long-descriptor translation table format, and only
for stage 1 translations. The corresponding bits are SBZ in the stage 2 Translation Table descriptors.

The effect of XNTable or PXNTable applies to later entries in the translation table walk, and so its effects can be
held in one or more TLB entries. Therefore, a change to XNTable or PXNTable requires coarse-grained invalidation
of the TLB to ensure that the effect of the change is visible to subsequent memory transactions.

Preventing execution from writable locations

Armv8 provides control bits that, when the corresponding stage 1 address translation is enabled, force writable
memory to be treated as XN or PXN, regardless of the value of the XN or PXN field. When the translation stages
are controlled by an Exception level that is using AArch32:

• For PL1&0 stage 1 translations, when SCTLR.WXN is set to 1, all regions that are writable at stage 1 of the
address translation are treated as XN.

• For PL1&0 stage 1 translations, when SCTLR.UWXN is set to 1, an instruction fetch is treated as accessing
a PXN region if it accesses a region that software executing at EL0 can write to.
G5-6314 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
• For Non-secure EL2 stage 1 translations, when HSCTLR.WXN is set to 1, all regions that are writable at
stage 1 of the address translation are treated as XN.

Note

• The SCTLR.WXN controls are intended to be used in systems with very high security requirements.

• Setting a WXN or UWXN bit to 1 changes the interpretation of the translation table entry, overriding a zero
value of an XN or PXN field. It does not cause any change to the translation table entry.

For any given virtual machine, Arm expects WXN and UWXN to remain static in normal operation. In particular,
it is IMPLEMENTATION DEFINED whether TLB entries associated with a particular VMID reflect the effect of the
values of these fields. A generic sequence to ensure synchronization of a change to these fields, when that change
is made without a corresponding change of VMID, is:

 Change the WXN or UWXN bit
 ISB ; This ensures synchronization of the change
 Invalidate entire TLB of associated entries
 DSB ; This completes the TLB Invalidation
 ISB ; This ensures instruction synchronization

As with all Permission fault checking, if the stage 1 translation is using the Short-descriptor translation table format,
the permission checks are performed only for Client domains. For more information, see About access permissions
on page G5-6308.

For more information about address translation, see About address translation for VMSAv8-32 on page G5-6265.

Restriction on Secure instruction fetch

EL3 provides a Secure instruction fetch bit, SCR.SIF. When this bit is 1, any attempt in Secure state to execute an
instruction fetched from Non-secure physical memory causes a Permission fault. As with all Permission fault
checking, when using the Short-descriptor format translation tables the check applies only to Client domains, see
About access permissions on page G5-6308.

Arm expects SCR.SIF to be static during normal operation. In particular, whether the TLB holds the effect of the
SIF bit is IMPLEMENTATION DEFINED. The generic sequence to ensure visibility of a change to the SIF bit is:

 Change the SCR.SIF bit
 ISB ; This ensures synchronization of the change
 Invalidate entire TLB
 DSB ; This completes the TLB Invalidation
 ISB ; This ensures instruction synchronization

G5.6.4 Domains, Short-descriptor format only

A domain is a collection of memory regions. The Short-descriptor translation table format supports 16 domains, and
requires the software that defines a translation table to assign each VMSAv8-32 memory region to a domain. When
using the Short-descriptor format:

• Level 1 translation table entries for translation tables and Sections include a domain field.

• Translation table entries for Supersections do not include a domain field. The Short-descriptor format defines
Supersections as being in domain 0.

• Level 2 translation table entries inherit a domain setting from the parent level 1 Translation Table descriptor.

• Each TLB entry includes a domain field.

The domain field specifies which of the 16 domains the entry is in, and a two-bit field in the DACR defines the
permitted access for each domain. The possible settings for each domain are:

No access Any access using the Translation Table descriptor generates a Domain fault.

Clients On an access using the Translation Table descriptor, the access permission attributes are checked.
Therefore, the access might generate a Permission fault.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6315
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
Managers On an access using the Translation Table descriptor, the access permission attributes are not
checked. Therefore, the access cannot generate a Permission fault.

See The MMU fault-checking sequence on page G5-6358 for more information about how, when using the
Short-descriptor translation table format, the Domain attribute affects the checking of the other attributes in the
Translation Table descriptor.

Note

A single program might:

• Be a Client of some domains.

• Be a Manager of some other domains.

• Have no access to the remaining domains.

The Long-descriptor translation table format does not support domains. When a stage of translation is using this
format, all memory is treated as being in a Client domain, and the settings in the DACR are ignored.

G5.6.5 The Access flag

The Access flag indicates when a page or section of memory is accessed for the first time since the Access flag in
the corresponding Translation Table descriptor was set to 0:

• If address translation is using the Short-descriptor translation table format, it must set SCTLR.AFE to 1 to
enable use of the Access flag. Setting this bit to 1 redefines the AP[0] bit in the Translation Table descriptors
as an Access flag, and limits the access permissions information in the Translation Table descriptors to
AP[2:1], as described in AP[2:1] access permissions model on page G5-6309.

• The Long-descriptor format always supports an Access flag bit in the Translation Table descriptors, and
address translation using this format behaves as if SCTLR.AFE is set to 1, regardless of the value of that bit.

In Armv8.0, the Access flag is managed by software as described in Software management of the Access flag on
page G5-6316.

Note

Previous versions of the Arm architecture optionally supported hardware management of the Access flag. Armv8.0
obsoletes this option. However, FEAT_HAFDBS provides a new mechanism for hardware management of the
Access flag, that is supported only for the VMSAv8-64 translation regimes.

Software management of the Access flag

Armv8.0 requires that software manages the Access flag. This means an Access flag fault is generated whenever an
attempt is made to read into the TLB a Translation Table descriptor entry for which the value of the Access flag is 0.

Note

When using the Short-descriptor translation table format, Access flag faults are generated only if SCTLR.AFE is
set to 1, to enable use of a Translation Table descriptor bit as an Access flag.

The Access flag mechanism expects that, when an Access flag fault occurs, software resets the Access flag to 1 in
the translation table entry that caused the fault. This prevents the fault occurring the next time that memory location
is accessed. Entries with the Access flag set to 0 are never held in the TLB, meaning software does not have to flush
the entry from the TLB after setting the flag.

Note

If a system incorporates components that can autonomously update translation table entries that are shared with the
Arm PE, then the software must be aware of the possibility that such components can update the access flag
autonomously.
G5-6316 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
In such a system, system software should perform any changes of translation table entries with an Access flag of 0,
other than changes to the Access flag value, by using an Load-Exclusive/Store-Exclusive loop, to allow for the
possibility of simultaneous updates.

G5.6.6 Hyp mode control of Non-secure access permissions

When EL2 is using AArch32, Non-secure software executing in Hyp mode controls two sets of translation tables,
both of which use the Long-descriptor translation table format:

• The translation tables that control the Non-secure EL2 stage 1 translations. These map VAs to PAs, for
memory accesses made when executing in Non-secure state in Hyp mode, and are indicated and controlled
by the HTTBR and HTCR.

These translations have similar access controls to other Non-secure stage 1 translations using the
Long-descriptor translation table format, as described in:

— AP[2:1] access permissions model on page G5-6309.

— Access permissions for instruction execution on page G5-6312.

The differences from the Non-secure stage 1 translations are that:

— The APTable[0], PXNTable, and PXN bits are reserved, SBZ.

— AP[1] is reserved, SBO.

• The translation tables that control the Non-secure PL1&0 stage 2 translations. These map the IPAs from the
stage 1 translation onto PAs, for memory accesses made when executing in Non-secure state at PL1 or EL0,
and are indicated and controlled by the VTTBR and VTCR.

The descriptors in the virtualization translation tables define stage 2 access permissions, that are combined
with the permissions defined in the stage 1 translation. This section describes this combining of access
permissions.

Note

The level 2 access permissions mean a hypervisor can define additional access restrictions to those defined by a
Guest OS in the stage 1 translation tables. For a particular access, the actual access permission is the more restrictive
of the permissions defined by:

• The Guest OS, in the stage 1 translation tables.

• The hypervisor, in the stage 2 translation tables.

The stage 2 access controls defined from Hyp mode:

• Affect only the Non-secure stage 1 access permissions settings.

• Take no account of whether the accesses are from a Non-secure PL1 mode or a Non-secure EL0 mode.

• Permit software executing in Hyp mode to assign a write-only attribute to a memory region.

The S2AP field in the stage 2 descriptors define the stage 2 access permissions, as Table G5-11 on page G5-6317
shows:

For more information about the S2AP field, see Attribute fields in VMSAv8-32 Long-descriptor stage 2 Block and
Page descriptors on page G5-6295.

Table G5-11 Stage 2 control of access permissions

S2AP Access permission

00 No access permitted

01 Read-only. Writes to the region are not permitted, regardless of the stage 1 permissions.

10 Write-only. Reads from the region are not permitted, regardless of the stage 1 permissions.

11 Read/write. The stage 1 permissions determine the access permissions for the region.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6317
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
If the stage 2 permissions cause a Permission fault, this is a stage 2 MMU fault. Stage 2 MMU faults are taken to
Hyp mode, and reported in the HSR using an EC code of 0x20 or 0x24. For more information, see Use of the HSR
on page G5-6381.

Note

In the HSR, the combination of the EC code and the DFSC or IFSC value in the ISS indicate that the fault is a stage 2
MMU fault.

The stage 2 permissions include an XN attribute. If this identifies the region as execute-never, execution from the
region is not permitted, regardless of the value of the XN or UXN attribute in the stage 1 translation. If a Permission
fault is generated because the stage 2 XN field identifies the region as execute-never, this is reported as a stage 2
MMU fault.

Note

The stage 2 XN attribute:

• Is a single bit if FEAT_XNX is not implemented, see XN, Execute-never on page G5-6312.

• Is a 2-bit field if FEAT_XNX is implemented, see XN[1:0], Execute-never, stage 2 only on page G5-6312.

AArch32 state prioritization of synchronous aborts from a single stage of address translation on page G5-6364
describes the abort prioritization if both stages of a translation generate a fault.
G5-6318 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
G5.7 Memory region attributes

In addition to an output address, a translation table entry that refers to a page or region of memory includes fields
that define properties of that target memory region. Information returned by a translation table lookup on
page G5-6275 describes the classification of those fields as address map control, access control, and memory
attribute fields. The memory region attribute fields control the memory type, Cacheability, and Shareability of the
region.

The following sections describe the assignment of memory region attributes for stage 1 translations:

• Overview of memory region attributes for stage 1 translations on page G5-6319.

• Short-descriptor format memory region attributes, without TEX remap on page G5-6320.

• Short-descriptor format memory region attributes, with TEX remap on page G5-6323.

• VMSAv8-32 Long-descriptor format memory region attributes on page G5-6326.

For an implementation that is operating in Secure state, or in Hyp mode, these assignments define the memory
attributes of the accessed region.

For an implementation that is operating in a Non-secure PL1 or EL0 mode, the Non-secure PL1&0 stage 2
translation can modify the memory attributes assigned by the stage 1 translation. EL2 control of Non-secure memory
region attributes on page G5-6328 describes these stage 2 assignments.

G5.7.1 Overview of memory region attributes for stage 1 translations

The description of the memory region attributes in a Translation descriptor divides into:

Memory type and attributes

These are described either:

• Directly, by bits in the Translation Table descriptor.

• Indirectly, by registers referenced by bits in the Table descriptor. This is described as
remapping the memory type and attribute description.

The Short-descriptor translation table format can use either of these approaches, selected by the
SCTLR.TRE bit:

TRE == 0 Remap disabled. The TEX[2:0], C, and B bits in the Translation Table descriptor define
the memory region attributes. Short-descriptor format memory region attributes,
without TEX remap on page G5-6320 describes this encoding.

Note
With the Short-descriptor format, remapping is called TEX remap, and the SCTLR.TRE
bit is the TEX remap enabled bit.

The description of the TRE == 0 encoding includes information about the encoding in
previous versions of the architecture.

TRE == 1 Remap enabled. The TEX[0], C, and B bits in the Translation Table descriptor are index
bits to the remap registers, that define the memory region attributes:

• The Primary Region Remap Register, PRRR.

• The Normal Memory Remap Register, NMRR.

Short-descriptor format memory region attributes, with TEX remap on page G5-6323
describes this encoding scheme.

This scheme reassigns Translation Table descriptor bits TEX[2:1] for use as bits
managed by the operating system.

The Long-descriptor translation table format always uses remapping. This means that when the
value of TTBCR.EAE is 1, enabling use of the Long-descriptor translation table format,
SCTLR.TRE is RES1.

VMSAv8-32 Long-descriptor format memory region attributes on page G5-6326 describes this
encoding.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6319
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
Shareability In the Short-descriptor translation table format, the S bit in the Translation Table descriptor is used
in determining the Shareability of the region. How the S bit is interpreted depends on whether TEX
remap is enabled, see:

• Shareability and the S bit, without TEX remap on page G5-6322.

• Determining the Shareability, with TEX remap on page G5-6324.

In the Long-descriptor translation table format, the SH[1:0] field in the Translation Table descriptor
encodes the Shareability of the region, see Shareability, Long-descriptor format on page G5-6326.

Note
Shareability is one of Non-shareable, Inner Shareable, and Outer Shareable. However, when using
the Short-descriptor translation table format without TEX remap, VMSAv8-32 does not support any
distinction between Inner Shareable and Outer Shareable memory, and a memory region is either
Non-shareable or Outer Shareable.

Stage 1 definition of the XS attribute

When FEAT_XS is implemented, all stage 1 memory types defined in the MAIR0, MAIR1, HMAIR0, HMAIR1,
PRRR, and NMRR registers, or the TTBCR or HTCR registers, or in the page tables, have the XS attribute set to 1,
unless they are Inner Write-Back Cacheable, Outer Write-back Cacheable, which have the XS attribute set to 0. This
includes any memory types that are treated as Write-Back Cacheable as a result of IMPLEMENTATION DEFINED
choices in the architecture.

G5.7.2 Short-descriptor format memory region attributes, without TEX remap

When using the Short-descriptor translation table formats, TEX remap is disabled when the value of SCTLR.TRE
is 0.

Note

• The Short-descriptor format scheme without TEX remap is the scheme used in VMSAv6.

• The B (Bufferable), C (Cacheable), and TEX (Type extension) bit names are inherited from earlier versions
of the architecture. These names no longer adequately describe the function of the B, C, and TEX bits.

Table G5-12 on page G5-6320 shows the C, B, and TEX[2:0] encodings when TEX remap is disabled. In the Page
Shareability on page G5-6320 column, an entry of S bit indicates that the S bit in the Translation Table descriptor
determines the Shareability, see Shareability and the S bit, without TEX remap on page G5-6322.

Table G5-12 TEX, C, and B encodings when TRE == 0

TEX[2:0] C B Description Memory type Page Shareability

000 0 0 Device-nGnRnE Device-nGnRnE Outer Shareable

1 Device-nGnREa Device-nGnRE Outer Shareablea

1 0 Outer and Inner Write-Through, Read-Allocate
No Write-Allocate

Normal S bit

1 Outer and Inner Write-Back, Read-Allocate
No Write-Allocate

Normal S bit
G5-6320 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
001 0 0 Outer and Inner Non-cacheable Normal Outer Shareableb

1 Reserved - -

1 0 IMPLEMENTATION DEFINED IMPLEMENTATION
DEFINED

IMPLEMENTATION
DEFINED

1 Outer and Inner Write-Back, Read-Allocate Write-Allocate Normal S bit

010 0 0 Device-nGnREa Device-nGnRE Outer Shareablea

1 Reserved - -

1 x Reserved - -

Table G5-12 TEX, C, and B encodings when TRE == 0 (continued)

TEX[2:0] C B Description Memory type Page Shareability
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6321
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
See Memory types and attributes on page E2-4318 for an explanation of Normal memory, and the types of Device
memory, and of the Shareability attribute.

Cacheability attributes, without TEX remap

When the value of TEX[2] is 0, the same Cacheability attribute applies to Inner Cacheable and Outer Cacheable
memory regions, and the {TEX[1:0], C, B} values identify this attribute, as Table G5-12 on page G5-6320 shows.

When the value of TEX[2] is 1, the memory described by the translation table entry is cacheable, and the rest of the
encoding defines the Inner Cacheability and Outer Cacheability attributes:

TEX[1:0] Define the Outer Cacheability attribute.

C, B Define the Inner Cacheability attribute.

The translation table entries use the same encoding for the Outer and Inner Cacheability attributes, as Table G5-13
on page G5-6322 shows.

Shareability and the S bit, without TEX remap

The Short-descriptor format translation table entries include an S bit. This bit:

• Is ignored if the entry refers to any type of Device memory, or to Normal memory that is Inner
Non-cacheable, Outer Non-cacheable.

• For Normal memory that is not Inner Non-cacheable, Outer Non-cacheable, determines whether the memory
region is Outer Shareable or Non-shareable:

S == 0 Normal memory region is Non-shareable.

S == 1 Normal memory region is Outer Shareable.

Without TEX remapping there is no distinction between Inner Shareable and Outer Shareable memory, meaning the
S bit determines whether the region is Non-shareable or Outer Shareable.

011 x x Reserved - -

1BB A A Cacheable memory: AA = Inner attributec

BB = Outer attribute

Normal S bit

a. In Armv8, all Device memory types are Outer Shareable. For the Device-nGnRE memory type this is a change from previous versions
of the architecture. This is why Device-nGnRE memory has two entries in this table. For compatibility with Armv7 software should
use the {TEX, C, B} values {000, 0, 1}.

b. In Armv8, Normal Inner Non-cacheable, Outer Non-cacheable memory is always Outer Shareable. This is a change from previous
versions of the architecture, where the S bit determined the Shareability. For compatibility with Armv7 software should set S to 1.

c. For more information, see Cacheability attributes, without TEX remap on page G5-6322.

Table G5-12 TEX, C, and B encodings when TRE == 0 (continued)

TEX[2:0] C B Description Memory type Page Shareability

Table G5-13 Inner and Outer Cacheability attribute encoding

Encoding Cacheability attribute

00 Non-cacheable

01 Write-Back, Read-Allocate Write-Allocate

10 Write-Through, Read Allocate No Write-Allocate

11 Write-Back, Read Allocate No Write-Allocate
G5-6322 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
G5.7.3 Short-descriptor format memory region attributes, with TEX remap

When using the Short-descriptor translation table formats, TEX remap is enabled when the value of SCTLR.TRE
is 1. In this configuration:

• The software that defines the translation tables must program the PRRR and NMRR to define seven possible
memory region attributes.

• The TEX[0], C, and B bits of the Translation Table descriptors define the memory region attributes, by
indexing PRRR and NMRR.

• Hardware makes no use of TEX[2:1], see The OS managed translation table bits on page G5-6325.

When TEX remap is enabled:

• For seven of the eight possible combinations of the TEX[0], C and B bits, fields in the PRRR and NMRR
define the region attributes, as described in this section.

• The meaning of the eighth combination for the TEX[0], C and B bits is IMPLEMENTATION DEFINED.

• If the TEX[0], C and B bits determine that the region is a Device memory type, or is Normal Inner
Non-cacheable, Outer Non-cacheable, then the region is Outer Shareable. Otherwise, the Shareability is
determined by the combination of:

— The S bit from the Translation Table descriptor.

— The value of the PRRR.NS0 or PRRR.NS1 bit.

— The value of the appropriate PRRR.NOSn bit, as shown in Table G5-14 on page G5-6323.

For more information, see Determining the Shareability, with TEX remap on page G5-6324.

For each of the possible encodings of the TEX[0], C, and B bits in a translation table entry, Table G5-14 on
page G5-6323 shows which fields of the PRRR and NMRR registers describe the memory region attributes.

Table G5-14 TEX, C, and B encodings when TRE == 1

Encoding
Memory typea

Cache attributesa, b:
Outer Shareable attributea, c

TEX[0] C B Inner cacheability Outer cacheability

0 0 0 PRRR.TR0 NMRR.IR0 NMRR.OR0 NOT(PRRR.NOS0)

1 PRRR.TR1 NMRR.IR1 NMRR.OR1 NOT(PRRR.NOS1)

1 0 PRRR.TR2 NMRR.IR2 NMRR.OR2 NOT(PRRR.NOS2)

1 PRRR.TR3 NMRR.IR3 NMRR.OR3 NOT(PRRR.NOS3)

1 0 0 PRRR.TR4 NMRR.IR4 NMRR.OR4 NOT(PRRR.NOS4)

1 PRRR.TR5 NMRR.IR5 NMRR.OR5 NOT(PRRR.NOS5)

1 0 IMPLEMENTATION DEFINED

1 PRRR.TR7 NMRR.IR7 NMRR.OR7 NOT(PRRR.NOS7)

a. For details of the Memory type and Outer Shareable encodings see the description of the PRRR. For details of the Cache attributes
encodings the description of the NMRR.

b. Applies only if the memory type for the region is mapped as Normal memory.

c. Applies only if both of the following apply:

The memory type for the region is mapped as Normal memory that is not Inner Non-cacheable and Outer Non-cacheable.

The region is not Non-shareable.

See Determining the Shareability, with TEX remap on page G5-6324.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6323
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
As Table G5-14 on page G5-6323 shows, when TEX remap is enabled, for a given set of {TEX[0], C, B} bits from
a Translation Table descriptor:

1. The primary mapping, to memory type, is given by the PRRR.TRn field as shown in the Memory type
column.

2. For any region that the PRRR.TRn maps as Normal memory, NMRR.IRn determines the Inner cacheability
attribute, and NMRR.ORn determines the Outer cacheability attribute.

3. For a region that PRRR.TRn maps as Normal memory, if NMRR.{IRn, ORn} do not map the region as Inner
Non-cacheable, Outer Non-cacheable, PRRR.{NS0, NS1} and PRRR.NOSn are used to determine the
Shareability of the region, see Determining the Shareability, with TEX remap on page G5-6324.

The TEX remap registers and the SCTLR.TRE bit are banked between the Secure and Non-secure Security states.
For more information, see The effect of EL3 on TEX remap on page G5-6326.

The TEX remap registers must be static during normal operation. In particular, when the remap registers are
changed:

• It is IMPLEMENTATION DEFINED when the changes take effect.

• It is CONSTRAINED UNPREDICTABLE whether the TLB caches the effect of the TEX remap on translation
tables, see CONSTRAINED UNPREDICTABLE behaviors due to caching of System register control or data
values on page K1-8391.

The software sequence to ensure the synchronization of changes to the TEX remap registers is:

1. Execute a DSB instruction. This ensures any memory accesses using the old mapping have completed.

2. Write the TEX remap registers or SCTLR.TRE bit.

3. Execute an ISB instruction. This ensures synchronization of the register updates.

4. Invalidate the entire TLB.

5. Execute a DSB instruction. This ensures completion of the entire TLB operation.

6. Clean and invalidate all caches. This removes any cached information associated with the old mapping.

7. Execute a DSB instruction. This ensures completion of the cache maintenance.

8. Execute an ISB instruction. This ensures instruction synchronization.

This extends the standard rules for the synchronization of changes to System registers described in Synchronization
of changes to AArch32 System registers on page G8-6443, and provides implementation freedom as to whether or
not the effect of the TEX remap is cached.

Determining the Shareability, with TEX remap

The memory type of a region, as indicated in the Memory type column of Table G5-14 on page G5-6323, provides
the first level of control of the Shareability of the region:

• If the memory is any type of Device memory, then the region is Outer Shareable, and any Shareability
attributes in the Translation Table descriptor and PRRR for that region are ignored.

This applies also to a Normal memory region that the NMRR attributes identify as Inner Non-cacheable and
Outer Non-cacheable,

• If using the Short descriptor translation table format then the Shareability of the region is determined using
the value of the S bit in the Translation Table descriptor to index one of the PRRR.{NS1. NS0} bits, as
described in this section.

Table G5-15 on page G5-6324 shows how the translation table S bit indexes into the PRRR:

Table G5-15 Determining the Shareability attribute, with TEX remap

Memory type Remapping when S == 0 Remapping when S == 1

Device or Normal Inner Non-cacheable, Outer Non-cacheable Outer Shareable Outer Shareable

Normal, not Inner Non-cacheable, Outer Non-cacheable PRRR.NS0 PRRR.NS1
G5-6324 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
For a Normal memory region that is not Inner Non-cacheable, Outer Non-cacheable, the appropriate bit of the
PRRR indicates whether the region is Non-shareable, as follows:

PRRR.NSn==0 Non-shareable.

PRRR.{NOS7:NOS0} are ignored.

PRRR.NSn==1 The appropriate PRRR.NOSm field, as shown in Table G5-14 on page G5-6323, indicates
whether the region is Inner Shareable or Outer Shareable:

PRRR.NOSm==0 Region is Outer Shareable.

PRRR.NOSm==1 Region is Inner Shareable.

Note

This means that TEX remapping can map a translation table entry with S == 0 as shareable memory.

SCTLR.TRE, SCTLR.M, and the effect of the TEX remap registers

When TEX remap is disabled, because the value of the SCTLR.TRE bit is 0:

• The effect of the PRRR and NMRR registers can be IMPLEMENTATION DEFINED.

• The interpretation of the fields of the PRRR and NMRR registers can differ from the description given earlier
in this section. One implication of this is that the implementation can provide an IMPLEMENTATION DEFINED
mechanism to interpret the PRRR.{NOS7:NOS0} fields.

VMSAv8-32 requires that the effect of these registers is limited to remapping the attributes of memory locations.
These registers must not change whether any cache hardware or stages of address translation are enabled. The
mechanism by which the TEX remap registers have an effect when the value of the SCTLR.TRE bit is 0 is
IMPLEMENTATION DEFINED. The AArch32 architecture requires that from reset, if the IMPLEMENTATION DEFINED
mechanism has not been invoked:

• If the PL1&0 stage 1 address translation is enabled and is using the Short-descriptor format translation tables,
the architecturally-defined behavior of the TEX[2:0], C, and B bits must apply, without reference to the TEX
remap functionality. In other words, memory attribute assignment must comply with the scheme described
in Short-descriptor format memory region attributes, without TEX remap on page G5-6320.

• If the PL1&0 stage 1 address translation is disabled, then the architecturally-defined behavior of VMSAv8-32
with address translation disabled must apply, without reference to the TEX remap functionality. See The
effects of disabling address translation stages on VMSAv8-32 behavior on page G5-6270.

Possible mechanisms for enabling the IMPLEMENTATION DEFINED effect of the TEX remap registers when the value
of SCTLR.TRE is 0 include:

• A control bit in the ACTLR, or in an IMPLEMENTATION DEFINED System register.

• Changing the behavior when the PRRR and NMRR registers are changed from their IMPLEMENTATION
DEFINED reset values.

In addition, if the stage of address translation is disabled and the value of the SCTLR.TRE bit is 1, the
architecturally-defined behavior of the VMSAv8-32 with the stage of address translation disabled must apply
without reference to the TEX remap functionality.

In an implementation that includes EL3, the IMPLEMENTATION DEFINED effect of these registers must only take
effect in the Security state of the registers. See also The effect of EL3 on TEX remap on page G5-6326.

The OS managed translation table bits

When TEX remap is enabled, the TEX[2:1] bits in the Translation Table descriptors are available as two bits that
can be managed by the operating system. In VMSAv8-32, as long as the SCTLR.TRE bit is set to 1, the values of
the TEX[2:1] bits are IGNORED by the PE. Software can write any value to these bits in the translation tables.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6325
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
The effect of EL3 on TEX remap

In an implementation that includes EL3, when EL3 is using AArch32, the TEX remap registers are banked between
the Secure and Non-secure Security states. When EL3 is using AArch32, write accesses to the Secure register for
the current security state apply to all PL1&0 stage 1 translation table lookups in that state. The SCTLR.TRE bit is
banked in the Secure and Non-secure copies of the register, and the appropriate version of this bit determines
whether TEX remap is applied to translation table lookups in the current security state.

Write accesses to the Secure copies of the TEX remap registers are disabled when the CP15SDISABLE input is
asserted HIGH, meaning the MCR operations to access these registers are UNDEFINED. For more information, see The
CP15SDISABLE and CP15SDISABLE2 input signals on page G5-6400.

G5.7.4 VMSAv8-32 Long-descriptor format memory region attributes

When a PE is using the VMSAv8-32 Long-descriptor translation table format, the AttrIndx[2:0] field in a block or
page Translation Table descriptor for a stage 1 translation indicates the 8-bit field, in the appropriate MAIR register,
that specifies the attributes for the corresponding memory region, as follows:

• AttrIndx[2] indicates the MAIR register to be used:

AttrIndx[2] == 0 Use MAIR0.

AttrIndx[2] == 1 Use MAIR1.

• AttrIndx[2:0] indicates the required Attr field, Attrn, where n = AttrIndx[2:0].

Each AttrIndx field defines, for the corresponding memory region:

• The memory type, Normal or a type of Device memory.

• For Normal memory:

— The Inner cacheability and Outer cacheability attributes, each of which is one of Non-cacheable,
Write-Through Cacheable, or Write-Back Cacheable.

— For Write-Through Cacheable and Write-Back Cacheable regions, the Read-Allocate and
Write-Allocate policy hints, each of which is Allocate or No allocate.

For more information about the AttrIndx[2:0] descriptor field, see Attribute fields in VMSAv8-32 Long-descriptor
stage 1 Block and Page descriptors on page G5-6293.

Shareability, Long-descriptor format

When a PE is using the Long-descriptor translation table format, the SH[1:0] field in a Block or Page Translation
Table descriptor specifies the Shareability attributes of the corresponding memory region, if the MAIR entry for that
region identifies it as Normal memory that is not both Inner Non-cacheable and Outer Non-cacheable. Table G5-16
on page G5-6326 shows the encoding of this field.

See Combining the Shareability attribute on page G5-6331 for constraints on the Shareability attributes of a Normal
memory region that is Inner Non-cacheable, Outer Non-cacheable.

Table G5-16 SH[1:0] field encoding for Normal memory, Long-descriptor format

SH[1:0] Normal memory

00 Non-shareable

01 Reserved, CONSTRAINED UNPREDICTABLE, see Reserved values in System and memory-mapped
registers and translation table entries on page K1-8407 for the permitted behavior.

10 Outer Shareable

11 Inner Shareable
G5-6326 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
For any type of Device memory, and for Normal Inner Non-cacheable, Outer Non-cacheable memory, the value of
the SH[1:0] field of the Translation Table descriptor is ignored.

Other fields in the Long-descriptor translation table format descriptors

The following subsections describe the other fields in the Translation Table Block and Page descriptors when a PE
is using the Long-descriptor translation table format:

• Contiguous bit on page G5-6327

• IGNORED fields on page G5-6327.

• Field reserved for software use on page G5-6327

Contiguous bit

The Long-descriptor Translation Table Format descriptors contain a Contiguous bit. Setting this bit to 1 indicates
that 16 adjacent translation table entries point to a contiguous output address range. These 16 entries must be
aligned in the translation table so that the top five bits of their input addresses, that index their position in the
translation table, are the same. For example, to use this bit for a block of 16 entries in the level 3 translation table,
bits[20:16] of the input addresses for the 16 entries must be the same.

The contiguous output address range must be aligned to size of 16 translation table entries at the same translation
table level.

Use of this bit means that the TLB can cache a single entry to cover the 16 translation table entries.

This bit acts as a hint. The architecture does not require a PE to cache TLB entries in this way. To avoid TLB
coherency issues, any TLB maintenance by address must not assume any optimization of the TLB tables that might
result from use of this bit.

Note

The use of the contiguous bit is similar to the approach used, in the Short-descriptor translation table format, for
optimized caching of Large Pages and Supersections in the TLB. However, an important difference in the
contiguous bit capability is that TLB maintenance must be performed based on the size of the underlying translation
table entries, to avoid TLB coherency issues. That is, any use of the contiguous bit has no effect on the minimum
size of entry that must be invalidated from the TLB.

IGNORED fields

In the VMSAv8-32 translation table long-descriptor format, the following fields are defined as IGNORED, meaning
the architecture guarantees that a PE makes no use of these fields:

• In the stage 1 and stage 2 Table descriptors, bits[58:52] and bits[11:2].

• In the stage 1 and stage 2 Block and Page descriptors, bit[63] and bits[58:55].

• In the stage 1 and stage 2 Block and Page descriptors in an implementation that does not include
FEAT_HPDS2, bits[62:59].

Of these fields:

• In the stage 1 and stage 2 Block and Page descriptors, bits[58:55] are reserved for software use, see Field
reserved for software use on page G5-6327.

• In the stage 2 Block and Page descriptors:

— Bit[63] is reserved for use by a System MMU.

— In an implementation that does not include FEAT_HPDS2, bits[62:59] are reserved for use by a
System MMU.

Field reserved for software use

The architecture reserves a 4-bit IGNORED field in the Block and Translation Table descriptors, bits[58:55], for
software use. In considering migration from using the Short-descriptor format to the Long-descriptor format, this
field is an extension of the Short-descriptor field described in The OS managed translation table bits on
page G5-6325.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6327
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
Note

The definition of IGNORED means there is no need to invalidate the TLB if these bits are changed.

G5.7.5 EL2 control of Non-secure memory region attributes

Software executing at EL2 controls two sets of translation tables, both of which use the Long-descriptor translation
table format. These are:

• The translation tables that control Non-secure EL2 stage 1 translations. These map VAs to PAs, and when
EL2 is using AArch32 they are indicated and controlled by the HTTBR and HTCR.

These translations have exactly the same memory region attribute controls as any other stage 1 translations,
as described in VMSAv8-32 Long-descriptor format memory region attributes on page G5-6326.

• The translation tables that control Non-secure PL1&0 stage 2 translations. These map the IPAs from the stage
1 translation onto PAs, and are indicated and when EL2 is using AArch32 they are controlled by the VTTBR
and VTCR.

The descriptors in the virtualization translation tables define level 2 memory region attributes, that are
combined with the attributes defined in the stage 1 translation. This section describes this combining of
attributes.

VMSAv8-32 Long-descriptor Translation Table format descriptors on page G5-6289 describes the format of the
entries in these tables.

Note

In a virtualization implementation, a hypervisor might usefully:

• Reduce the permitted Cacheability of a region.

• Increase the required Shareability of a region.

The combining of attributes from stage 1 and stage 2 translations supports both of these options.

In the stage 2 Translation Table descriptors for memory regions and pages, the MemAttr[3:0] and SH[1:0] fields
describe the stage 2 memory region attributes:

• The definition of the stage 2 SH[1:0] field is identical to the same field for a stage 1 translation, see
Shareability, Long-descriptor format on page G5-6326.

• MemAttr[3:2] give a top-level definition of the memory type, and of the cacheability of a Normal memory
region, as Table G5-17 on page G5-6328 shows:

Table G5-17 Long-descriptor MemAttr[3:2] encoding, stage 2 translation

MemAttr[3:2] Memory type Cacheability

00 Device, of type determined by MemAttr[1:0] Not applicable

01 Normal, Inner cacheability determined by MemAttr[1:0] Outer Non-cacheable

10 Outer Write-Through Cacheable

11 Outer Write-Back Cacheable
G5-6328 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
The encoding of MemAttr[1:0] depends on the Memory type indicated by MemAttr[3:2]:

— When MemAttr[3:2]==0b00, indicating a type of Device memory, Table G5-18 on page G5-6329
shows the encoding of MemAttr[1:0]:

— When MemAttr[3:2]!=0b00, indicating Normal memory, Table G5-19 on page G5-6329 shows the
encoding of MemAttr[1:0]:

Note

The stage 2 translation does not assign any allocation hints.

The following sections describe how the memory type attributes assigned at stage 2 of the translation are combined
with those assigned at stage 1:

• Combining the memory type attribute on page G5-6330.

• Combining the Cacheability attribute on page G5-6330.

• Combining the Shareability attribute on page G5-6331.

Note

• The following stage 2 translation table attribute settings leave the stage 1 settings unchanged:

— MemAttr[3:2] == 0b11, Normal memory, Outer Write-Back Cacheable.

— MemAttr[1:0] == 0b11, Inner Write-Back Cacheable.

• In addition to the attribute combinations described in this section, Access permissions for instruction
execution on page G5-6312 describes how the stage 1 and stage 2 execute-never permission fields are
combined, so that a region is execute-never if it is defined as execute-never in at least one stage of translation.

Table G5-18 MemAttr[1:0] encoding for the types of Device memory

MemAttr[1:0] Meaning when MemAttr[3:2] == 0b00

00 Region is Device-nGnRnE memory

01 Region is Device-nGnRE memory

10 Region is Device-nGRE memory

11 Region is Device-GRE memory

Table G5-19 MemAttr[1:0] encoding for Normal memory

MemAttr[1:0] Meaning when MemAttr[3:2] != 0b00

00 Reserved, CONSTRAINED UNPREDICTABLE, See Reserved values in System and memory-mapped
registers and translation table entries on page K1-8407 for the permitted behavior.

01 Inner Non-cacheable

10 Inner Write-Through Cacheable

11 Inner Write-Back Cacheable
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6329
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
Combining the memory type attribute

Table G5-20 on page G5-6330 shows how the stage 1 and stage 2 memory type assignments are combined:

See Combining the Shareability attribute on page G5-6331 for information about the Shareability of:

• A region for which the resultant type is any Device type.

• A region with a resultant type of Normal for which the resultant cacheability, described in Combining the
Cacheability attribute on page G5-6330, is Inner Non-cacheable, Outer Non-cacheable.

The combining of the memory type attribute means a translation table walk for a stage 1 translation can be made to
a type of Device memory. If this occurs, then:

• If the value of HCR.PTW is 0, then the translation table walk occurs as if it is to Normal Non-cacheable
memory. This means it can be done speculatively.

• If the value of HCR.PTW is 1, then the memory access generates a stage 2 Permission fault.

Combining the Cacheability attribute

For a Normal memory region, Table G5-21 on page G5-6330 shows how the stage 1 and stage 2 Cacheability
assignments are combined. This combination applies, independently, for the Inner Cacheability and Outer
Cacheability attributes:

Table G5-20 Combining the stage 1 and stage 2 memory type assignments

Assignment in stage 1 Assignment in stage 2 Resultant type

Device-nGnRnE Any Device-nGnRnE

Device-nGnRE Device-nGnRnE Device-nGnRnE

Not Device-nGnRnE Device-nGnRE

Device-nGRE Device-nGnRnE Device-nGnRnE

Device-nGnRE Device-nGnRE

Not (Device-nGnRnE or Device-nGnRE) Device-nGRE

Device-GRE Device-nGnRnE Device-nGnRnE

Device-nGnRE Device-nGnRE

Device-nGRE Device-nGRE

Device-GRE or Normal Device-GRE

Normal Any type of Device Device type assigned at stage 2

Normal Normal

Table G5-21 Combining the stage 1 and stage 2 cacheability assignments

Assignment in stage 1 Assignment in stage 2 Resultant cacheability

Non-cacheable Any Non-cacheable

Any Non-cacheable Non-cacheable
G5-6330 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
Note

Only Normal memory has a Cacheability attribute.

Combining the Shareability attribute

In the following cases, a memory region is treated as Outer Shareable, regardless of any shareability assignments at
either stage of translation:

• The resultant memory type attribute, described in Combining the memory type attribute on page G5-6330, is
any type of Device memory.

• The resultant memory type attribute is Normal memory, and the resultant Cacheability, described in
Combining the Cacheability attribute on page G5-6330, is Inner Non-cacheable Outer Non-cacheable.

For a memory region with a resultant memory type attribute of Normal that is not Inner Non-cacheable Outer
Non-cacheable, Table G5-22 on page G5-6331 shows how the stage 1 and stage 2 shareability assignments are
combined:

Write-Through Cacheable Write-Through or Write-Back Cacheable Write-Through Cacheable

Write-Through or Write-Back Cacheable Write-Through Cacheable Write-Through Cacheable

Write-Back Cacheable Write-Back Cacheable Write-Back Cacheable

Table G5-21 Combining the stage 1 and stage 2 cacheability assignments (continued)

Assignment in stage 1 Assignment in stage 2 Resultant cacheability

Table G5-22 Combining the stage 1 and stage 2 Shareability assignments

Assignment in stage 1 Assignment in stage 2 Resultant Shareability

Outer Shareable Any Outer Shareable

Inner Shareable Outer Shareable Outer Shareable

Inner Shareable Inner Shareable Inner Shareable

Inner Shareable Non-shareable Inner Shareable

Non-shareable Outer Shareable Outer Shareable

Non-shareable Inner Shareable Inner Shareable

Non-shareable Non-shareable Non-shareable
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6331
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.8 Translation Lookaside Buffers (TLBs)
G5.8 Translation Lookaside Buffers (TLBs)

Translation Lookaside Buffers (TLBs) are an implementation technique that caches translations or translation table
entries. TLBs avoid the requirement to perform a translation table walk in memory for every memory access. The
Arm architecture does not specify the exact form of the TLB structures for any design. In a similar way to the
requirements for caches, the architecture only defines certain principles for TLBs:

• The architecture has a concept of an entry locked down in the TLB. The method by which lockdown is
achieved is IMPLEMENTATION DEFINED, and an implementation might not support lockdown.

• The architecture does not guarantee that an unlocked TLB entry remains in the TLB.

• The architecture guarantees that a locked TLB entry remains in the TLB. However, a locked TLB entry might
be updated by subsequent updates to the translation tables. Therefore, when a change is made to the
translation tables, the architecture does not guarantee that a locked TLB entry remains incoherent with an
entry in the translation table.

• The architecture guarantees that a translation table entry that generates a Translation fault, an Address size
fault, or an Access flag fault is not held in the TLB. However a translation table entry that generates a Domain
fault or a Permission fault might be held in the TLB.

• When address translation is enabled, any translation table entry that does not generate a Translation fault, an
Address size fault, or an Access flag fault and is not from a translation regime for an Exception level that is
lower than the current Exception level can be allocated to a TLB at any time. The only translation table entries
guaranteed not to be held in the TLB are those that generate a Translation fault, an Address size fault, or an
Access flag fault.

Note

A TLB can hold translation table entries that do not generate a Translation fault but point to subsequent tables
in the translation table walk. This can be referred to as intermediate caching of TLB entries.

• Software can rely on the fact that between disabling and re-enabling a stage of address translation, entries in
the TLB relating to that stage of translation have not been corrupted to give incorrect translations.

The following sections give more information about TLB implementation:

• Global and process-specific translation table entries on page G5-6332.

• TLB matching on page G5-6333.

• TLB behavior at reset on page G5-6333.

• TLB lockdown on page G5-6334.

• TLB conflict aborts on page G5-6334.

See also TLB maintenance requirements on page G5-6336.

Note

In addition to the functions described in this section, the TLB might cache information from control registers that
are described as being "permitted to be cached in a TLB", even when any or all of the stages of translation are
disabled. This caching of information gives rise to the maintenance requirements described in General TLB
maintenance requirements on page G5-6336

G5.8.1 Global and process-specific translation table entries

For VMSAv8-32, system software can divide a virtual memory map used by memory accesses at PL1 and EL0 into
global and non-global regions, indicated by the nG bit in the Translation Table descriptors:

nG == 0 The translation is global, meaning the region is available for all processes.
G5-6332 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.8 Translation Lookaside Buffers (TLBs)
nG == 1 The translation is non-global, or process-specific, meaning it relates to the current ASID, as defined
by:

• TTBR0.ASID or TTBR1.ASID, if using the Long-descriptor translation table format. In this
case, TTBCR.A1 selects which ASID is current.

• CONTEXTIDR.ASID, if using the Short-descriptor translation table format.

Each non-global region has an associated ASID. These identifiers mean different translation table mappings can
co-exist in a caching structure such as a TLB. This means that software can create a new mapping of a non-global
memory region without removing previous mappings.

For a symmetric multiprocessor cluster where a single operating system is running on the set of PEs, the architecture
requires all ASID values to be assigned uniquely within any single Inner Shareable domain. In other words, each
ASID value must have the same meaning to all PEs in the system.

In AArch32 state, the translation regime used for accesses made at EL2 never supports ASIDs, and all pages are
treated as global.

When a PE is using the Long-descriptor translation table format, and is in Secure state, a translation must be treated
as non-global, regardless of the value of the nG bit, if NSTable is set to 1 at any level of the translation table walk.

For more information, see Control of Secure or Non-secure memory access, VMSAv8-32 Long-descriptor format on
page G5-6296.

G5.8.2 TLB matching

A TLB is a hardware caching structure for translation table information. Like other hardware caching structures, it
is mostly invisible to software. However, there are some situations where it can become visible. These are associated
with coherency problems caused by an update to the translation table that has not been reflected in the TLB. Use of
the TLB maintenance instructions described in TLB maintenance requirements on page G5-6336 can prevent any
TLB incoherency becoming a problem.

A particular case where the presence of the TLB can become visible is if the translation table entries that are in use
under a particular ASID and VMID are changed without suitable invalidation of the TLB. This can occur only if the
architecturally-required break-before-make sequence described in Using break-before-make when updating
translation table entries on page G5-6337 is not used. If the break-before make sequence is not used, the TLB can
hold two mappings for the same address, and this:

• Might generate an exception that is reported using the TLB Conflict fault code, see TLB conflict aborts on
page G5-6334.

• Might lead to CONSTRAINED UNPREDICTABLE behavior. In this case, behavior will be consistent with one of
the mappings held in the TLB, or with some amalgamation of the values held in the TLB, but cannot give
access to regions of memory with permissions or attributes that could not be assigned by valid translation
table entries in the translation regime being used for the access. See CONSTRAINED UNPREDICTABLE
behaviors due to caching of System register control or data values on page K1-8391.

G5.8.3 TLB behavior at reset

The Arm architecture does not require a reset to invalidate the TLBs, and recognizes that an implementation might
require caches, including TLBs, to maintain context over a system reset. Possible reasons for doing so include power
management and debug requirements.

Therefore, for Armv8:

• All TLBs reset to an IMPLEMENTATION DEFINED state that might be UNKNOWN.

• All TLBs are disabled from reset. All stages of address translation that are used from the PE state entered on
coming out of reset are disabled from reset, and the contents of the TLBs have no effect on address
translation. For more information, see Enabling stages of address translation on page G5-6272.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6333
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.8 Translation Lookaside Buffers (TLBs)
• An implementation can require the use of a specific TLB invalidation routine, to invalidate the TLB arrays
before they are enabled after a reset. The exact form of this routine is IMPLEMENTATION DEFINED, but if an
invalidation routine is required it must be documented clearly as part of the documentation of the device.

Arm recommends that if an invalidation routine is required for this purpose, and the PE resets into AArch32
state, the routine is based on the AArch32 TLB maintenance instructions described in The scope of TLB
maintenance instructions on page G5-6345.

Similar rules apply:

• To cache behavior, see Behavior of caches at reset on page G4-6235.

• To branch predictor behavior, see Behavior of the branch predictors at reset on page G4-6243.

G5.8.4 TLB lockdown

The Arm architecture recognizes that any TLB lockdown scheme is heavily dependent on the microarchitecture,
making it inappropriate to define a common mechanism across all implementations. This means that:

• The architecture does not require TLB lockdown support.

• If TLB lockdown support is implemented, the lockdown mechanism is IMPLEMENTATION DEFINED. However,
key properties of the interaction of lockdown with the architecture must be documented as part of the
implementation documentation.

This means that:

• The TLB Type Register, TLBTR, does not define the lockdown scheme in use.

• In AArch32 state, a region of the {coproc==0b1111, CRn==c10} encodings is reserved for IMPLEMENTATION
DEFINED TLB functions, such as TLB lockdown functions. The reserved encodings are those with:

— <CRm> == {c0, c1, c4, c8}.

— All values of <opc2> and <opc1>.

An implementation might use some of the {coproc==0b1111, CRn==c10} encodings that are reserved for
IMPLEMENTATION DEFINED TLB functions to implement additional TLB control functions. These functions might
include:

• Unlock all locked TLB entries.

• Preload into a specific level of TLB. This is beyond the scope of the PLI and PLD hint instructions.

The inclusion of EL2 in an implementation does not affect the TLB lockdown requirements. However, in an
implementation that includes EL2, exceptions generated as a result of TLB lockdown when executing in a
Non-secure PL1 mode or in Non-secure User mode can be routed to either:

• Non-secure Abort mode, using the Non-secure Data Abort exception vector.

• Hyp mode, using the Hyp Trap exception vector.

For more information, see Traps to Hyp mode of Non-secure EL0 and EL1 accesses to lockdown, DMA, and TCM
operations on page G1-6132.

G5.8.5 TLB conflict aborts

If an address matches multiple entries in the TLB, it is IMPLEMENTATION DEFINED whether a TLB conflict abort is
generated.

An implementation can generate TLB conflict aborts on either or both instruction fetches and data accesses. A TLB
conflict abort is classified as an MMU fault, see Types of MMU faults on page G5-6355. This means:

• A TLB conflict abort on an instruction fetch is reported as a Prefetch Abort exception,

• A TLB conflict abort on a data access is reported as a Data Abort exception,

Fault status codes for TLB conflict aborts are defined for both the Short-descriptor and Long-descriptor translation
table formats, see:

• PL1 fault reporting with the Short-descriptor translation table format on page G5-6372

• PL1 fault reporting with the Long-descriptor translation table format on page G5-6374.
G5-6334 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.8 Translation Lookaside Buffers (TLBs)
On a TLB conflict abort, the fault address register returns the address that generated the fault. That is, it returns the
address that was being looked up in the TLB.

It is IMPLEMENTATION DEFINED whether a TLB conflict abort is a stage 1 abort or a stage 2 abort.

Note

• An address can hit multiple entries in the TLB if the TLB has been invalidated inappropriately, for example
if TLB invalidation required by this manual has not been performed.

• A stage 2 abort cannot be generated if the Non-secure PL1&0 stage 2 address translation is disabled.

The priority of the TLB conflict abort is IMPLEMENTATION DEFINED, because it depends on the form of any TLB
that can generate the abort. However, the TLB conflict abort must have higher priority than any abort that depends
on a value held in the TLB.

If an address matches multiple entries in the TLB and no TLB conflict abort not generated, the resulting behavior
is CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of System
register control or data values on page K1-8391. The CONSTRAINED UNPREDICTABLE behavior must not permit
access to regions of memory with permissions or attributes that mean they cannot be accessed in the current Security
state at the current Privilege level.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6335
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
G5.9 TLB maintenance requirements

Translation Lookaside Buffers (TLBs) on page G5-6332 describes the Arm architectural provision for TLBs.
Although the Arm architecture does not specify the form of any TLB structures, it does define the mechanisms by
which TLBs can be maintained. The following sections describe the VMSAv8-32 TLB maintenance instructions:

• General TLB maintenance requirements on page G5-6336.

• Maintenance requirements on changing System register values on page G5-6341.

• Atomicity of register changes on changing virtual machine on page G5-6343.

• Synchronization of changes of ASID and TTBR on page G5-6343.

• The scope of TLB maintenance instructions on page G5-6345.

G5.9.1 General TLB maintenance requirements

TLB maintenance instructions provide a mechanism to invalidate entries from a TLB. As Translation Lookaside
Buffers (TLBs) on page G5-6332 describes, when address translation is enabled translation table entries can be
allocated to a TLB at any time. This means that software must perform TLB maintenance between updating
translation table entries that apply in a particular context and accessing memory locations whose translation is
determined by those entries in that context.

Note

This requirement applies to any translation table entry at any level of the translation tables, including an entry that
points to further levels of the tables, provided that the entry in that level of the tables does not cause a Translation
fault, an Address size fault, or an Access flag fault.

In addition to any TLB maintenance requirement, when changing the cacheability attributes of an area of memory,
software must ensure that any cached copies of affected locations are removed from the caches. For more
information, see Cache maintenance requirement created by changing translation table attributes on
page G5-6353.

Because a TLB never holds any translation table entry that generates a Translation fault, an Address size fault, or
an Access flag fault, a change from a translation table entry that causes a Translation, Address size, or Access flag
fault to one that does not fault, does not require any TLB or branch predictor invalidation. However, a Context
synchronization event is required to ensure that instruction fetches are affected by a completed change to translation
table entries that, before the change, generated a Translation, Address size, or Access flag fault.

Special considerations apply to translation table updates that change the memory type, cacheability, or output
address of an entry, see Using break-before-make when updating translation table entries on page G5-6337.

In addition, software must perform TLB maintenance after updating the System registers if the update means that
the TLB might hold information that applies to a current translation context, but is no longer valid for that context.
Maintenance requirements on changing System register values on page G5-6341 gives more information about this
maintenance requirement.

Each of the translation regimes defined in Figure G5-1 on page G5-6264 is a different context, and:

• For the Non-secure PL1&0 regime, a change in the VMID or ASID value changes the context.

• For the Secure PL1&0 regime, a change in the ASID value changes the context.

For operation in Non-secure PL1 or EL0 modes, a change of HCR.VM, unless made at the same time as a change
of VMID, requires the invalidation of all TLB entries for the Non-secure PL1&0 translation regime that apply to
the current VMID. Otherwise, there is no guarantee that the effect of the change of HCR.VM is visible to software
executing in the Non-secure PL1 and EL0 modes.

Any TLB maintenance instruction can affect any other TLB entries that are not locked down.

AArch32 state defines {coproc==0b1111, CRn==c8} System instructions for TLB maintenance instructions, and
supports the following operations:

• Invalidate all unlocked entries in the TLB.

• Invalidate a single TLB entry, by VA, or VA and ASID for a non-global entry.

• Invalidate all TLB entries that match a specified ASID.
G5-6336 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
• Invalidate all TLB entries that match a specified VA, regardless of the ASID.

• Operations that apply across multiprocessors in the same Inner Shareable domain.

Note
An address-based TLB maintenance instruction that applies to the Inner Shareable domain does so regardless
of the Shareability attributes of the address supplied as an argument to the instruction.

A TLB maintenance instruction that specifies a VA that would generate any MMU fault, including a VA that is not
in the range of VAs that can be translated, does not generate an abort.

EL2 provides additional TLB maintenance instructions for use in AArch32 state at EL2, and has some implications
for the effect of the other TLB maintenance instructions, see The scope of TLB maintenance instructions on
page G5-6345.

In an implementation that includes EL3, the TLB maintenance instructions take account of the current Security
state, as part of the address translation required for the TLB maintenance instruction.

Some TLB maintenance instructions are defined as operating only on instruction TLBs, or only on data TLBs.
Armv8 AArch32 state includes these instructions for backwards compatibility. However, more recent TLB
maintenance instructions do not support this distinction. From the introduction of Armv7, Arm deprecates any use
of Instruction TLB maintenance instructions, or of Data TLB maintenance instructions, and developers must not
rely on this distinction being maintained in future revisions of the Arm architecture.

The Arm architecture does not dictate the form in which the TLB stores translation table entries. However, for TLB
invalidate instructions, the minimum size of the table entry that is invalidated from the TLB must be at least the size
that appears in the translation table entry.

The scope of TLB maintenance instructions on page G5-6345 describes the TLB maintenance instructions. The
following subsections give more information about the general requirements for TLB maintenance:

• Using break-before-make when updating translation table entries on page G5-6337.

• The interaction of TLB lockdown with TLB maintenance instructions on page G5-6338.

• Ordering and completion of TLB maintenance instructions on page G5-6339.

• Use of ASIDs and VMIDs to reduce TLB maintenance requirements on page G5-6340.

Using break-before-make when updating translation table entries

To avoid possibly creating multiple TLB entries for the same address, and to avoid the effects of TLB caching
possibly breaking coherency, single-copy atomicity properties, ordering guarantees or uniprocessor semantics, or
possibly failing to clear the Exclusives monitors, the architecture requires the use of a break-before-make sequence
when changing translation table entries whenever multiple threads of execution can use the same translation tables
and the change to the translation table entries involves any of:

• A change of the memory type, including shareability.

• A change of the cacheability attributes.

• A change of the output address (OA), if the OA of at least one of the old translation table entries and the new
translation table entry is writable.

• A change to the size of block used by the translation system. This applies both:

— When changing from a smaller size to a larger size, for example by replacing a table mapping with a
block mapping in a stage 2 translation table.

— When changing from a larger size to a smaller size, for example by replacing a block mapping with a
table mapping in a stage 2 translation table.

• A change of the output address (OA), if the contents of memory at the new OA do not match the contents of
memory at the previous OA.

• Creating a global entry when there might be non-global entries in a TLB that overlap with that global entry.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6337
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
Note

Changes to the output address (OA) include changing between Secure and Non-secure output addresses.

A break-before-make sequence on changing from an old translation table entry to a new translation table entry
requires the following steps:

1. Replace the old translation table entry with an invalid entry, and execute a DSB instruction.

2. Invalidate the translation table entry with a broadcast TLB invalidation instruction, and execute a DSB
instruction to ensure the completion of that invalidation.

3. Write the new translation table entry, and execute a DSB instruction to ensure that the new entry is visible.

This sequence ensures that at no time are both the old and new entries simultaneously visible to different threads of
execution, and therefore the problems described at the start of this subsection cannot arise.

The interaction of TLB lockdown with TLB maintenance instructions

The precise interaction of TLB lockdown with the TLB maintenance instructions is IMPLEMENTATION DEFINED.
However, the architecturally-defined TLB maintenance instructions must comply with these rules:

• The effect on locked entry of a TLB invalidate all unlocked entries instruction or a TLB invalidate by VA all
ASID instruction that would invalidate that entry if the entry was not locked must be one of the following,
and it is IMPLEMENTATION DEFINED which behavior applies:

— The instructions have no effect on entries that are locked down.

— The instructions generate an IMPLEMENTATION DEFINED Data Abort exception if an entry is locked
down, or might be locked down. For an invalidate instruction performed in AArch32 state, the
{coproc==0b1111, CRn==c5} fault status register definitions include a Fault status code for cache and
TLB lockdown faults, see Table G5-26 on page G5-6372 for the codes used with the Short-descriptor
translation table formats, or Table G5-27 on page G5-6374 for the codes used with the Long-descriptor
translation table formats.

In an implementation that includes EL2, if EL2 is using AArch32 and the value of HCR.TIDCP is 1,
any such exceptions taken from a Non-secure PL1 mode are routed to Hyp mode, see Traps to Hyp
mode of Non-secure EL0 and EL1 accesses to lockdown, DMA, and TCM operations on
page G1-6132.

This permits a usage model for TLB invalidate routines, where the routine invalidates a large range of
addresses, without considering whether any entries are locked in the TLB.

• The effect on a locked TLB entry of a TLB invalidate by VA instruction or a TLB invalidate by ASID match
instruction that would invalidate that entry if the entry was not locked must be one of the following, and it is
IMPLEMENTATION DEFINED which behavior applies:

— A locked entry is invalidated in the TLB.

— The instruction has no effect on a locked entry in the TLB. In the case of the Invalidate single entry by
VA, this means the PE treats the instruction as a NOP.

— The instruction generates an IMPLEMENTATION DEFINED Data Abort exception if it operates on an entry
that is locked down, or might be locked down. For an invalidate instruction performed in AArch32
state, the {coproc==0b1111, CRn==c5} fault status register definitions include a Fault status code for
cache and TLB lockdown faults, see Table G5-26 on page G5-6372 and Table G5-27 on
page G5-6374.

Note

Any implementation that uses an abort mechanism for entries that can be locked down but are not actually locked
down must:

• Document the IMPLEMENTATION DEFINED instruction sequences that perform the required invalidation on
entries that are not locked down.

• Implement one of the other specified alternatives for the locked entries.
G5-6338 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
Arm recommends that, when possible, such IMPLEMENTATION DEFINED instruction sequences use the
architecturally-defined maintenance instructions. This minimizes the number of customized maintenance
operations required.

In addition, an implementation that uses an abort mechanism for handling TLB maintenance instructions on entries
that can be locked down but are not actually locked down must also must provide a mechanism that ensures that no
TLB entries are locked.

Similar rules apply to cache lockdown, see The interaction of cache lockdown with cache maintenance instructions
on page G4-6252.

The architecture does not guarantee that any unlocked entry in the TLB remains in the TLB. This means that, as a
side-effect of a TLB maintenance instruction, any unlocked entry in the TLB might be invalidated.

Ordering and completion of TLB maintenance instructions

The following rules describe the relations between the memory order model and the TLB maintenance instructions:

• A TLB maintenance instruction executed by a PE, PEe, causes a TLB maintenance operation to be generated
on each PE within the shareability domain of PEe that is specified by the instruction.

— At EL2 or EL3, or at EL1 when the Effective value of HCRX_EL2.FnXS is 0, the associated TLB
maintenance operations do not have the nXS qualifier.

— At EL1, when the Effective value of HCRX_EL2.FnXS is 1, the behavior of the associated TLB
maintenance operations is the same as described for the AArch64 TLB maintenance instructions with
the nXS qualifier. See Ordering and completion of TLB maintenance instructions on page D5-2831.

Note

When FEAT_XS is not implemented, all TLB maintenance instructions do not have the nXS qualifier and
the Effective value of HCRX_EL2 is 0.

• A TLB maintenance operation generated by a TLB maintenance instruction is finished for a PE when:

— All memory accesses generated by that PE using in-scope old translation information are complete.

— All memory accesses RWx generated by that PE are complete.

RWx is the set of all memory accesses generated by instructions for that PE that appear in program order
before an instruction I1 executed by that PE where all of the following apply:

— I1 uses the in-scope old translation information.

— The use of the in-scope old translation information generates a synchronous Data Abort.

— If I1 did not generate an abort from use of the in-scope old translation information, I1 would generate
a memory access that RWx would be locally-ordered-before.

In-scope old translation information is any translation information, for addresses that are in the scope of the
TLB maintenance instruction, that is not consistent with either:

— The architectural translation information held in the translation tables at the time that the TLB
maintenance instruction is executed by PEe.

— Any architecture translation information that is Coherence-after the information held in the translation
tables at the time that the TLB maintenance instruction is executed by PEe.

Note
•

Old translation information of this type might be held in TLBs or other non-coherent caching structures.

A TLB maintenance instruction is complete when the TLB maintenance operations specified by the TLB
maintenance instruction are finished for all PEs.

After the TLB maintenance instruction is complete, no new memory accesses using the in-scope old
translation information will be architecturally performed by any observer that is affected by the TLB
maintenance instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6339
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
Note

Speculative memory accesses can be performed using those entries if it is impossible for software running
on any observer to tell that those memory accesses have been performed.

• A TLB maintenance instruction is only guaranteed to be complete after the execution of a DSB instruction.

• An ISB instruction, or a return from an exception, causes the effect of all completed TLB maintenance
instructions that appear in program order before the ISB or return from exception to be visible to all
subsequent instructions, including the instruction fetches for those instructions.

• An exception causes all completed TLB maintenance instructions, that appear in the instruction stream before
the point where the exception is taken, to be visible to all subsequent instructions, including the instruction
fetches for those instructions.

• All TLB maintenance instructions are executed in program order relative to each other.

• The execution of a Data or Unified TLB maintenance instruction is only guaranteed to be visible to a
subsequent explicit memory read or write effect instruction after both:

— The execution of a DSB instruction to ensure the completion of the TLB maintenance instruction.

— Execution of a subsequent Context synchronization event.

• The execution of an Instruction or Unified TLB maintenance instruction is only guaranteed to be visible to a
subsequent instruction fetch after both:

— The execution of a DSB instruction to ensure the completion of the TLB maintenance instruction.

— Execution of a subsequent Context synchronization event.

In all cases in this section where a DMB or DSB is referred to, it refers to a DMB or DSB whose required access type is
both loads and stores. A DSB NSH is sufficient to ensure completion of TLB maintenance instructions that apply to a
single PE. A DSB ISH is sufficient to ensure completion of TLB maintenance instructions that apply to PEs in the
same Inner Shareable domain.

The following rules apply when writing translation table entries. They ensure that the updated entries are visible to
subsequent accesses and cache maintenance instructions.

For TLB maintenance, the translation table walk is treated as a separate observer. This means:

• A write to the translation tables is only guaranteed to be seen by a translation table walk caused by an explicit
memory read or write effect after the execution of both a DSB and an ISB.

However, the architecture guarantees that any writes to the translation tables are not seen by any explicit
memory effect that occurs in program order before the write to the translation tables.

• A write to the translation tables is only guaranteed to be seen by a translation table walk caused by the
instruction fetch of an instruction that follows the write to the translation tables after both a DSB and an ISB.

Therefore, in a uniprocessor system, an example instruction sequence for writing a translation table entry, covering
changes to the instruction or data mappings is:

 STR rx, [Translation table entry] ; write new entry to the translation table
 DSB ; ensures visibility of the new entry
 Invalidate TLB entry by VA (and ASID if non-global) [page address]
 Invalidate BTC
 DSB ; ensure completion of the Invalidate TLB instruction
 ISB ; ensure table changes visible to instruction fetch

Use of ASIDs and VMIDs to reduce TLB maintenance requirements

To reduce the need for TLB maintenance on context switches, the lookups from some translation regimes can be
associated with an ASID, or with an ASID and a VMID.
G5-6340 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
Note

The use of ASIDs and VMIDs in VMSAv8-32 is generally similar to their use in VMSAv8-64, see Use of ASIDs
and VMIDs to reduce TLB maintenance requirements on page D5-2810.

For more information about the use of ASIDs in VMSAv8-32 see Global and process-specific translation table
entries on page G5-6332.

Common not private translations in VMSAv8-32

In an implementation that includes FEAT_TTCNP, multiple PEs in the same Inner Shareable domain can use the
same translation table entries for a given stage of address translation in a particular translation regime. This sharing
is enabled by the TTBR.CnP field for the stage of address translation.

When the value of a TTBR.CnP field is 1, translation table entries pointed to by that TTBR are shared with all other
PEs in the Inner Shareable domain for which the following conditions are met:

• The corresponding TTBR.CnP field has the value 1.

• That TTBR is using the Long-descriptor translation table format.

• If an ASID applies to the stage of translation corresponding to that TTBR then the current ASID value must
be the same for all of the PEs that are sharing entries for any translation table entry that is not global or not
leaf level.

• If a VMID applies to the stage of translation corresponding to that TTBR then the current VMID value must
be the same for all of the PEs that are sharing entries.

Note

In an implementation that includes EL3, the Secure instances of TTBR0 and TTBR1 relate to the Secure PL1&0
translation regime, and the Non-secure instances of TTBR0 and TTBR1 relate to the Non-secure PL1&0 translation
regime.

For a translation regime with both stage 1 and stage 2 translations, where a TLB combines information from stage
1 and stage 2 translation table entries into a single entry, this entry can be shared between different PEs only if the
value of the TTBR.CnP bit is 1 for both stage 1 and stage 2 of the translation table walk.

The TTBR.CnP bit can be cached in a TLB.

For a given TTBR, if the value of TTBR.CnP is 1 on multiple PEs in the same Inner Shareable domain, and those
PEs meet the other conditions for sharing translation table entries as defined in this section, but those TTBRs do not
point to the same translation table entries, then the system is misconfigured, and performing an address translation
using that TTBR:

• Might generate multiple hits in the TLB, and as a result generate an exception that is reported using the TLB
conflict fault code, see TLB conflict aborts on page G5-6334.

• Otherwise, has a CONSTRAINED UNPREDICTABLE result, as described in CONSTRAINED UNPREDICTABLE
behaviors due to caching of System register control or data values on page K1-8391.

G5.9.2 Maintenance requirements on changing System register values

The TLB contents can be influenced by control bits in a number of System registers. This means the TLB entries
associated with a translation regime affected by these control bits must be invalidated after any changes to these
bits, unless the changes are accompanied by a change to the VMID or ASID, if appropriate depending on the
translation regime, that defines the context to which the bits apply. The general form of the required invalidation
sequence is as follows:

; Change control bits in System registers
ISB ; Synchronize changes to the control bits
; Perform TLB invalidation of all entries that might be affected by the changed control bits
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6341
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
The System register changes that this applies to are:

• Any change to the NMRR, PRRR, MAIR0, MAIR1, HMAIR0 or HMAIR1 registers.

• Any change to the SCTLR.AFE bit, see Changing the Access flag enable on page G5-6342.

• Any change to any of the SCTLR.{TRE, WXN, UWXN} bits.

• Any change to the Translation table base 0 address in TTBR0.

• Any change to the Translation table base 1 address in TTBR1.

• Any change to HTTBR.BADDR.

• Any change to VTTBR.BADDR.

• Changing TTBCR.EAE, see Changing the current Translation table format on page G5-6342.

• In an implementation that includes EL3, any change to the SCR.SIF bit.

• In an implementation that includes EL2:

— Any change to the HCR.VM bit.

— Any change to HCR.PTW bit, see Changing HCR.PTW on page G5-6342.

• When using the Short-descriptor translation table format:

— Any change to the RGN, IRGN, S, or NOS fields in TTBR0 or TTBR1.

— Any change to the N, EAE, PD0 or PD1 fields in TTBCR.

• When using the Long-descriptor translation table format:

— Any change to the EAE, TnSZ, ORGNn, IRGNn, SHn, or EPDn fields in the TTBCR, where n is 0
or 1.

— Any change to the TTBCR2.

— Any change to the T0SZ, ORGN0, IRGN0, or SH0 fields in the HTCR.

— Any change to the T0SZ, ORGN0, IRGN0, or SH0 fields in the VTCR.

Changing the Access flag enable

In a PE that is using the Short-descriptor translation table format, it is CONSTRAINED UNPREDICTABLE whether the
TLB caches the effect of the SCTLR.AFE bit on translation tables. This means that, after changing the SCTLR.AFE
bit software must invalidate the TLB before it relies on the effect of the new value of the SCTLR.AFE bit, otherwise
behavior is CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of
System register control or data values on page K1-8391.

Note

There is no enable bit for use of the Access flag when using the Long-descriptor translation table format.

Changing HCR.PTW

When EL2 is using AArch32 and the value of the Protected table walk bit, HCR.PTW, is 1, a stage 1 translation
table access in the Non-secure PL1&0 translation regime, to an address that is mapped to any type of Device
memory by its stage 2 translation, generates a stage 2 Permission fault. A TLB associated with a particular VMID
might hold entries that depend on the effect of HCR.PTW. Therefore, if the value of HCR.PTW is changed without
a change to the VMID value, all TLB entries associated with the current VMID must be invalidated before executing
software in a Non-secure PL1 or EL0 mode. If this is not done, behavior is CONSTRAINED UNPREDICTABLE, see
CONSTRAINED UNPREDICTABLE behaviors due to caching of System register control or data values on
page K1-8391.

Changing the current Translation table format

The effect of changing TTBCR.EAE when executing in the translation regime affected by TTBCR.EAE with any
stage of address translation for that translation regime enabled is CONSTRAINED UNPREDICTABLE. This means that,
when TTBCR.EAE is changed for a given context, the TLB must be invalidated before resuming execution in that
context, otherwise the effect is CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors
due to caching of System register control or data values on page K1-8391.
G5-6342 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
G5.9.3 Atomicity of register changes on changing virtual machine

From the viewpoint of software executing in a Non-secure PL1 or EL0 mode, when there is a switch from one virtual
machine to another, the registers that control or affect address translation must be changed atomically. This applies
to the registers for:

• Non-secure PL1&0 stage 1 address translations. This means that all of the following registers must change
atomically:

— PRRR and NMRR, if using the Short-descriptor translation table format.

— MAIR0 and MAIR1, if using the Long-descriptor translation table format.

— TTBR0, TTBR1, TTBCR, TTBCR2, DACR, and CONTEXTIDR.

— The SCTLR.

• Non-secure PL1&0 stage 2 address translations. When EL2 is using AArch32, this means that all of the
following registers and register fields must change atomically:

— VTTBR and VTCR.

— HMAIR0 and HMAIR1.

— The HSCTLR.

Note

Only some bits of SCTLR affect the stage 1 translation, and only some bits of HSCTLR affect the stage 2 translation.
However, in each case, changing these bits requires a write to the register, and that write must be atomic with the
other register updates.

These registers apply to execution in Non-secure PL1&0 modes. However, when updated as part of a switch of
virtual machines they are updated by software executing in Hyp mode. This means the registers are out of context
when they are updated, and no synchronization precautions are required.

Note

By contrast, a translation table change associated with a change of ASID, made by software executing at PL1, can
require changes to registers that are in context. Synchronization of changes of ASID and TTBR on page G5-6343
describes appropriate precautions for such a change.

Software executing in Hyp mode, or in Secure state, must not use the registers associated with the Non-secure
PL1&0 translation regime for speculative memory accesses.

G5.9.4 Synchronization of changes of ASID and TTBR

A common virtual memory management requirement is to change the ASID and TTBR together to associate the
new ASID with different translation tables, without any change to the current translation regime. When using the
Short-descriptor translation table format, different registers hold the ASID and the translation table base address,
meaning these two values cannot be updated atomically. Since a PE can perform a speculative memory access at
any time, this lack of atomicity is a problem that software must address. Such a change is complicated by:

• The depth of speculative fetch being IMPLEMENTATION DEFINED.

• The use of branch prediction.

When using the Short-descriptor translation table format, the virtual memory management operations must ensure
the synchronization of changes of the ContextID and the translation table registers. For example, some or all of the
TLBs, branch predictors, and other caching of ASID and translation information might become corrupt with invalid
translations. Synchronization is required to avoid either:

• The old ASID being associated with translation table walks from the new translation tables.

• The new ASID being associated with translation table walks from the old translation tables.

There are a number of possible solutions to this problem, and the most appropriate approach depends on the system.
Example G5-3 on page G5-6344, Example G5-4 on page G5-6344, and Example G5-5 on page G5-6345 describe
three possible approaches.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6343
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
Note

Another instance of the synchronization problem occurs if a branch is encountered between changing the ASID and
performing the synchronization. In this case the value in the branch predictor might be associated with the incorrect
ASID. Software can address this possibility using any of these approaches, but instead software might be written in
a way that avoids such branches.

Example G5-3 Using a reserved ASID to synchronize ASID and TTBR changes

In this approach, a particular ASID value is reserved for use by the operating system, and is used only for the
synchronization of the ASID and TTBR. This example uses the value of 0 for this purpose, but any value could be
used.

This approach can be used only when the size of the mapping for any given VA is the same in the old and new
translation tables.

The maintenance software uses the following sequence, which must be executed from memory marked as global:

Change ASID to 0
ISB
Change TTBR
ISB
Change ASID to new value

This approach ensures that any non-global pages fetched at a time when it is uncertain whether the old or new
translation tables are being accessed are associated with the unused ASID value of 0. Since the ASID value of 0 is
not used for any normal operations these entries cannot cause corruption of execution.

Example G5-4 Using translation tables containing only global mappings when changing the ASID

A second approach involves switching the translation tables to a set of translation tables that only contain global
mappings while switching the ASID.

The maintenance software uses the following sequence, which must be executed from memory marked as global:

Change TTBR to the global-only mappings
ISB
Change ASID to new value
ISB
Change TTBR to new value

This approach ensures that no non-global pages can be fetched at a time when it is uncertain whether the old or new
ASID value will be used.

This approach works without the need for TLB invalidations in systems that have caching of intermediate levels of
translation tables, as described in General TLB maintenance requirements on page G5-6336, provided that the
translation tables containing only global mappings have only level 1 translation table entries of the following kinds:

• Entries that are global.

• Pointers to level 2 tables that hold only global entries, and that are the same level 2 tables that are used for
accessing global entries by both:

— The set of translation tables that were used under the old ASID value.

— The set of translation tables that will be used with the new ASID value.

• Invalid level 1 entries.
G5-6344 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
In addition, all sets of translation tables in this example should have the same Shareability and Cacheability
attributes, as held in the TTBR0.{ORGN, IRGN} or TTBR1.{ORGN, IRGN} fields.

If these rules are not followed, then the implementation might cache level 1 translation table entries that require
explicit invalidation.

Example G5-5 Disabling non-global mappings when changing the ASID

In systems where only the translation tables indexed by TTBR0 hold non-global mappings, maintenance software
can use the TTBCR.PD0 field to disable use of TTBR0 during the change of ASID. This means the system does not
require a set of global-only mappings.

The maintenance software uses the following sequence, which must be executed from a memory region with a
translation that is accessed using the base address in the TTBR1 register, and is marked as global:

Set TTBCR.PD0 = 1
ISB
Change ASID to new value
Change TTBR to new value
ISB
Set TTBCR.PD0 = 0

This approach ensures that no non-global pages can be fetched at a time when it is uncertain whether the old or new
ASID value will be used.

When using the Long-descriptor translation table format, TTBCR.A1 holds the number, 0 or 1, of the TTBR that
holds the current ASID. This means the current TTBR can also hold the current ASID, and the current translation
table base address and ASID can be updated atomically when:

• TTBR0 is the only TTBR being used. TTBCR.A1 must be set to 0.

• TTBR0 points to the only translation tables that hold non-global entries, and TTBCR.A1 is set to 0.

• TTBR1 points to the only translation tables that hold non-global entries, and TTBCR.A1 is set to 1.

In these cases, software can update the current translation table base address and ASID atomically, by updating the
appropriate TTBR, and does not require a specific routine to ensure synchronization of the change of ASID and base
address.

However, in all other cases using the Long-descriptor format, the synchronization requirements are identical to
those when using the Short-descriptor formats, and the examples in this section indicate how synchronization might
be achieved.

Note

When using the Long-descriptor translation table format, CONTEXTIDR.ASID has no significance for address
translation, and is only an extension of the Context ID value.

G5.9.5 The scope of TLB maintenance instructions

TLB maintenance instructions provide a mechanism for invalidating entries from TLB caching structures, to ensure
that changes to the translation tables are reflected correctly in the TLB caching structures. To support TLB
maintenance in multiprocessor systems, there are maintenance operations that apply to the TLBs of all PEs in the
same Inner Shareable domain.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6345
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
The architecture permits the caching of any translation table entry that has been returned from memory without a
fault and that does not, itself, cause a Translation Fault, an Address size fault, or an Access Flag fault. This means
the TLB:

• Cannot hold an entry that, when used for a translation table lookup, causes a Translation fault, an Address
size fault, or an Access Flag fault.

• Can hold an entry for a translation table lookup for a translation that causes a Translation Fault, an Address
size fault, or an Access Flag fault at a subsequent level of translation table lookup. For example, it can hold
an entry for the level 1 lookup of a translation that causes a Translation fault, an Address size fault, or an
Access Flag fault at level 2 or level 3 of lookup.

This means that entries cached in the TLB can include:

• Translation table entries that point to a subsequent table to be used in the current stage of translation.

• In an implementation that includes EL2:

— Stage 2 translation table entries that are used as part of a stage 1 translation table walk.

— Stage 2 translation table entries for translating the output address of a stage 1 translation.

Such entries might be held in intermediate TLB caching structures that are used during a translation table walk and
that are distinct from the data caches in that they are not required to be invalidated as the result of writes of the data.
The architecture makes no restriction on the form of these intermediate TLB caching structures when these caches
are indexed by their input address. The architecture does not restrict having either:

• Translation table entry caching that is indexed by the physical address of the location holding the translation
table entry.

• Translation table entry caching that is used for stage 1 translations and is indexed by the intermediate physical
address of the location holding the translation table entry. However, FEAT_nTLBPA allows software
discoverability of whether such caches exist, such that if FEAT_nTLBPA is implemented, such caching is not
implemented.

If all of the following are true, a TLB maintenance instruction will ensure that any physical address or intermediate
physical address indexed cached copies of translation table entries are invalidated for a PE:

• The TLB maintenance instruction applies to that PE with the context information that is relevant to
translation table entry caching that is either:

— Indexed by the physical address of the location holding the translation table entry.

— Stage 1 translation information that is indexed by the intermediate physical address of the location
holding the translation table entry.

• FEAT_nTLBPA is not implemented.

Note

Any TLB caching based on the physical address or intermediate physical address obeys the other rules regarding
the caching to TLB entries described in this manner, including restrictions on types of entries that cannot be held in
a TLB, and a requirement that entries held in a TLB are distinguished by context information such as translation
regime, VMID, and ASID.

The architecture does not intend to restrict the form of TLB caching structures used for holding translation table
entries. In particular for translation regimes that involve two stages of translation, it recognizes that such caching
structures might contain:

• At any level of the translation table walk, entries containing information from stage 1 translation table entries.

• In an implementation that includes EL2:

— At any level of the translation table walk, entries containing information from stage 2 translation table
entries.

— At any level of the translation table walk, entries combining information from both stage 1 and stage
2 translation table entries.
G5-6346 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
Note

For the purpose of TLB maintenance, the term TLB entry denotes any structure, including temporary working
registers in translation table walk hardware, that holds a translation table entry.

For the TLB maintenance instructions:

• If a TLB maintenance instruction is required to apply to stage 1 entries then it must apply to any cached entry
in the caching structures that includes any stage 1 information that would be used to translate the address
being invalidated, including any entry that combines information from both stage 1 and stage 2 translation
table entries.

Note

— Where stage 1 information has been cached in multiple TLB entries, as could occur from splintering
a page when caching in the TLB, then the invalidation must apply to each cached entry containing
stage 1 information from the page that is used to translate the address being invalidated, regardless of
whether or not that cached entry would be used to translate the address being invalidated.

— As stated in Global and process-specific translation table entries on page G5-6332, translation table
entries from levels of translation other than the final level are treated as being non-global. Arm expects
that, in at least some implementations, cached copies of levels of the translation table walk other than
the last level are tagged with their ASID, regardless of whether the final level is global. This means
that TLB invalidations that involve the ASID require the ASID to match such entries to perform the
required invalidation.

• If a TLB maintenance instruction is required to apply to stage 2 entries only, then:

— It is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

— It must apply to caching structures that contain information only from stage 2 translation table entries.

• If a TLB maintenance instruction is required to apply to both stage 1 and stage 2 entries, then it must apply
to any entry in the caching structures that includes information from either a stage 1 translation table entry or
a stage 2 translation table entry, including any entry that combines information from both stage 1 and stage
2 translation table entries.

Table G5-23 on page G5-6348 summarizes the required effect of the AArch32 TLB maintenance instructions, that
operate only on TLBs on the PE that executes the instruction. Additional TLB maintenance instructions that:

• Apply across all PEs in the same Inner Shareable domain. Each instruction shown in the table has an Inner
Shareable equivalent, identified by an IS suffix. For example, the Inner Shareable equivalent of TLBIALL is
TLBIALLIS. See also EL2 forced broadcasting of TLB maintenance instructions on page G5-6350.

• Can apply to separate Instruction or Data TLBs. These instructions are indicated by a footnote to the table.
Arm deprecates any use of these instructions.

Note

• The architecture permits a TLB invalidation instruction to affect any unlocked entry in the TLB. Table G5-23
on page G5-6348 defines only the entries that each instruction must invalidate.

• All TLB instructions, including those that operate on a VA match, operate as described regardless of the value
of SCTLR.M.

When interpreting the table:

Related operations Each instruction description applies also to any equivalent instruction that either:

• Applies to all PEs in the same Inner Shareable domain.

• Applies only to a data TLB, or only to an instruction TLB.

So, for example, the TLBIALL instruction description applies also to TLBIALLIS,
ITLBIALL, and DTLBIALL.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6347
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
TLB maintenance system instructions on page K15-8658 lists all of the TLB maintenance
instructions.

Matches the VA Means the VA argument for the instruction must match the VA value in the TLB entry.

Matches the ASID Means the ASID argument for the instruction must match the ASID in use when the TLB
entry was assigned.

Matches the current VMID

Means the current VMID must match the VMID in use when the TLB entry was assigned.

The dependency on the VMID applies even when the value of HCR.VM is 0, including
situations where there is no use of virtualization. However, VTTBR.VMID resets to zero,
meaning there is a valid VMID from reset.

Execution at EL2 Descriptions of operations at EL2 apply only to implementations that include EL2.

For the definitions of the translation regimes referred to in the table see About VMSAv8-32 on page G5-6262.

Table G5-23 Effect of the TLB maintenance instructions

Instruction
Executed from

Effect, must invalidate any entry that matches all stated conditionsa

State Mode

TLBIALLb Secure PL1 All entries for the Secure PL1&0 translation regime. That is, all entries that were
allocated in Secure state.

Non-secure PL1 All entries for stage 1 of the Non-secure PL1&0 translation regime that match
the current VMID.

Hyp All entries for stage 1 or stage 2 of the Non-secure PL1&0 translation regime
that match the current VMID.

TLBIMVAb Secure PL1 Any entry for the Secure PL1&0 translation regime that both:

• Matches the VA argument.

• Matches the ASID argument, or is global.

Non-secure PL1 or
Hyp

Any entry for stage 1 of the Non-secure PL1&0 translation regime to which all
of the following apply. The entry:

• Matches the VA argument.

• Matches the ASID argument, or is global.

• Matches the current VMID.

TLBIASIDb Secure PL1 Any entry for the Secure PL1&0 translation regime that matches the specified
ASID and either:

• Is from a level of lookup above the final level.

• Is a non-global entry from the final level of lookup.

Non-secure PL1 or
Hyp

Any entry for stage 1 of the Non-secure PL1&0 translation regime that both:

• Matches the specified ASID and either:

— Is from a level of lookup above the final level.

— Is a non-global entry from the final level of lookup.

• Matches the current VMID.

TLBIMVAA Secure PL1 Any entry for the Secure PL1&0 translation regime that matches the VA
argument.

Non-secure PL1 or
Hyp

Any entry for stage 1 of the Non-secure PL1&0 translation regime that both:

• Matches the VA argument.

• Matches the current VMID.
G5-6348 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
TLBIALLNSNHc Secure Monitor All entries for stage 1 or stage 2 of the Non-secure PL1&0 translation regime,
regardless of the associated VMID.

Non-secure Hyp

TLBIALLHc Secure Monitor All entries for the Non-secure EL2 translation regime. That is, any entry that was
allocated in Non-secure state from Hyp mode.

Non-secure Hyp

TLBIMVAL Secure PL1 Any entry for stage 1 of the Secure PL1&0 translation regime that is from the
last level of the translation table walk and both:

• Matches the VA argument.

• Matches the ASID argument, or is global.

Non-secure PL1 or
Hyp

Any entry for stage 1 of the Non-secure PL1&0 translation regime that is from
the last level of the translation table walk and to which all of the following apply.
The entry:

• Matches the VA argument.

• Matches the ASID argument, or is global.

• Matches the current VMID.

TLBIMVAAL Secure PL1 Any entry for stage 1 of the Secure PL1&0 translation regime that is from the
last level of the translation table walk and matches the VA argument.

Non-secure PL1 or
Hyp

Any entry for stage 1 of the Non-secure PL1&0 translation regime that is from
the last level of the translation table walk and both:

• Matches the VA argument.

• Matches the current VMID.

TLBIMVAHc Secure Monitor Any entry for the Non-secure EL2 translation regime that matches the VA
argument.

Non-secure Hyp

TLBIMVALHc Secure Monitor Any entry for the Non-secure EL2 translation regime that is from the last level
of the translation table walk and matches the VA argument.

Non-secure Hyp

TLBIIPAS2c, d Secure Monitore Any entry for stage 2 of the PL1&0 translation regime that both:

• Matches the IPA argument.

• Matches the current VMID.
Non-secure Hyp

TLBIIPAS2Lc, d Secure Monitore Any entry for stage 2 of the PL1&0 translation regime that is from the last level
of translation and both:

• Matches the IPA argument.

• Matches the current VMID.

Non-secure Hyp

a. When a TLB maintenance instruction is executed at Secure EL1 in AArch32 state when EL3 is using AArch64, it only affects TLB entries
related to the Secure EL1 translation regime.

b. The architecture defines variants of these instructions that apply only to instruction TLBs, and only to data TLBs. Arm deprecates any
use of these variants. For more information, see the referenced description of the operation.

c. Available only in an implementation that includes EL2. See also EL2 forced broadcasting of TLB maintenance instructions on
page G5-6350.

d. This instruction is CONSTRAINED UNPREDICTABLE if executed in any AArch32 Secure privileged mode.

e. This instruction executes as a NOP when SCR.NS == 0.

Table G5-23 Effect of the TLB maintenance instructions (continued)

Instruction
Executed from

Effect, must invalidate any entry that matches all stated conditionsa

State Mode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6349
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
EL2 forced broadcasting of TLB maintenance instructions

In an implementation that includes EL2, when the value of HCR.FB is 1, the TLB maintenance instructions that are
not broadcast across the Inner Shareable domain are forced to operate across the Inner Shareable domain when
executed in a Non-secure PL1 mode. For example, when the value of HCR.FB is 1, a TLBIMVA instruction
executed in a Non-secure PL1 mode performs the same invalidation as the invalidation performed by a TLBIMVAIS
instruction.

TLB maintenance with different translation granule sizes

If a TLB maintenance instruction specifying a VA affecting the EL2 translation regime is broadcast from a PE using
AArch32 to a PE using AArch64 using a translation granule size that is different from the AArch32 translation
granule size for that same translation regime, the TLB maintenance instruction is not required to perform any
invalidation on the recipient PE.

If a TLB maintenance instruction specifying a VA affecting the PL1 translation regime is broadcast from a PE using
AArch32 using one translation granule size for that translation regime for a particular ASID, VMID (if applicable),
and Security state, to a PE using AArch64 where EL1 for the same ASID, VMID (if applicable), and Security state,
is using a translation granule size that is different from the AArch32 translation granule size, the TLB maintenance
instruction is not required to perform any invalidation on the recipient PE.
G5-6350 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.10 Caches in VMSAv8-32
G5.10 Caches in VMSAv8-32

The Arm architecture describes the required behavior of an implementation of the architecture. As far as possible it
does not restrict the implemented microarchitecture, or the implementation techniques that might achieve the
required behavior.

Maintaining this level of abstraction is difficult when describing the relationship between memory address
translation and caches, especially regarding the indexing and tagging policy of caches. This section:

• Summarizes the architectural requirements for the interaction between caches and memory translation.

• Gives some information about the likely implementation impact of the required behavior.

The following sections give this information:

• Data and unified caches on page G5-6351.

• Instruction caches on page G5-6351.

In addition Cache maintenance requirement created by changing translation table attributes on page G5-6353
describes the cache maintenance required after updating the translation tables to change the attributes of an area of
memory.

For more information about cache maintenance see:

• AArch32 cache and branch predictor support on page G4-6229. This section describes the Arm cache
maintenance instructions.

• Cache maintenance system instructions on page K15-8657. This section summarizes the System register
encodings used for these operations when executing in AArch32 state.

G5.10.1 Data and unified caches

For data and unified caches, the use of memory address translation is entirely transparent to any data access other
than as described in Mismatched memory attributes on page E2-4328.

This means that the behavior of accesses from the same observer to different VAs, that are translated to the same PA
with the same memory attributes, is fully coherent. This means these accesses behave as follows, regardless of
which VA is accessed:

• Two writes to the same PA occur in program order.

• A read of a PA returns the value of the last successful write to that PA.

• A write to a PA that occurs, in program order, after a read of that PA, has no effect on the value returned by
that read.

The memory system behaves in this way without any requirement to use barrier or cache maintenance instructions.

In addition, if cache maintenance is performed on a memory location, the effect of that cache maintenance is visible
to all aliases of that physical memory location.

These properties are consistent with implementing all caches that can handle data accesses as Physically-indexed,
physically-tagged (PIPT) caches.

G5.10.2 Instruction caches

In the Arm architecture, an instruction cache is a cache that is accessed only as a result of an instruction fetch.
Therefore, an instruction cache is never written to by any load or store instruction executed by the PE.

The Arm architecture permits different behaviors for instruction caches. These are identified by descriptions of the
associated expected implementation. The following subsections describe the behavior associated with these cache
types, including any occasions where explicit cache maintenance is required to make the use of memory address
translation transparent to the instruction cache:

• PIPT (Physically-indexed, physically-tagged) instruction caches on page G5-6352.

• VPIPT (VMID-aware PIPT) instruction caches on page G5-6352.

• VIPT (Virtually-indexed, physically-tagged) instruction caches on page G5-6352.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6351
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.10 Caches in VMSAv8-32
• The IVIPT architecture Extension on page G5-6353.

In AArch32 state, the CTR.L1Ip field identifies the form of the instruction caches.

Note

For software to be portable between implementations that might use any of PIPT instruction caches, VPIPT
instruction caches, or VIPT instruction caches, software must invalidate the instruction cache whenever any
condition occurs that would require instruction cache maintenance for at least one of the instruction cache types.

PIPT (Physically-indexed, physically-tagged) instruction caches

For a PIPT instruction cache:

• The use of memory address translation is entirely transparent to all instruction fetches other than as described
in Mismatched memory attributes on page E2-4328.

• If cache maintenance is performed on a memory location, the effect of that cache maintenance is visible to
all aliases of that physical memory location.

An implementation that provides PIPT instruction caches implements the IVIPT Extension, see The IVIPT
architecture Extension on page G5-6353.

VPIPT (VMID-aware PIPT) instruction caches

An Armv8.2 implementation can implement VPIPT instruction caches. If it does so then it is described as
implementing FEAT_VPIPT.

The CTR.L1Ip field identifies the implemented cache type, meaning it identifies whether FEAT_VPIPT is
implemented.

For a VPIPT instruction cache:

• If VMIDs are being used for the current Security state, instruction fetches from EL1 and EL0 are only
permitted to hit in the cache if the instruction fetch is made using the VMID that was used when the entry in
the instruction cache was fetched.

• If VMIDs are being used for the current Security state, an instruction cache maintenance instruction executed
at EL0 or at EL1 is required to have an effect on entries in the instruction cache only if those entries were
fetched using the VMID that is current when the cache maintenance instruction is executed.

All other requirements for the use of cache maintenance instructions are the same as for PIPT (Physically-indexed,
physically-tagged) instruction caches on page G5-6352.

An implementation that provides VPIPT instruction caches implements the IVIPT Extension, see The IVIPT
architecture Extension on page G5-6353.

VIPT (Virtually-indexed, physically-tagged) instruction caches

For a VIPT instruction cache:

• The use of memory address translation is transparent to all instruction fetches other than for the effect of
memory address translation on instruction cache invalidate by address operations or as described in
Mismatched memory attributes on page E2-4328.

Note
Cache invalidation is the only cache maintenance instruction that can be performed on an instruction cache.

• If instruction cache invalidation by address is performed on a memory location, the effect of that invalidation
is visible only to the VA supplied with the operation. The effect of the invalidation might not be visible to
any other VA aliases of that physical memory location.
G5-6352 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.10 Caches in VMSAv8-32
The only architecturally-guaranteed way to invalidate all aliases of a PA from a VIPT instruction cache is to
invalidate the entire instruction cache.

An implementation that provides VIPT instruction caches implements the IVIPT Extension, see The IVIPT
architecture Extension on page G5-6353.

The IVIPT architecture Extension

In Armv8, any permitted instruction cache implementation can be described as implementing the IVIPT Extension
to the Arm architecture.

The formal definition of the Arm IVIPT Extension is that it reduces the instruction cache maintenance requirement
to the following condition:

• Instruction cache maintenance is required only after writing new data to a PA that holds an instruction.

Note

Previous versions of the Arm architecture have permitted an instruction cache option that does not implement the
Arm IVIPT Extension.

G5.10.3 Cache maintenance requirement created by changing translation table attributes

Any change to the translation tables to change the attributes of an area of memory can require maintenance of the
translation tables, as described in General TLB maintenance requirements on page G5-6336. If the change affects
the cacheability attributes of the area of memory, including any change between Write-Through and Write-Back
attributes, software must ensure that any cached copies of affected locations are removed from the caches, typically
by cleaning and invalidating the locations from the levels of cache that might hold copies of the locations affected
by the attribute change. Any of the following changes to the inner cacheability or outer cacheability attribute creates
this maintenance requirement:

• Write-Back to Write-Through.

• Write-Back to Non-cacheable.

• Write-Through to Non-cacheable.

• Write-Through to Write-Back.

The cache clean and invalidate avoids any possible coherency errors caused by mismatched memory attributes.

Similarly, to avoid possible coherency errors caused by mismatched memory attributes, the following sequence
must be followed when changing the Shareability attributes of a cacheable memory location:

1. Make the memory location Non-cacheable, Outer Shareable.

2. Clean and invalidate the location from them cache.

3. Change the Shareability attributes to the required new values.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6353
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
G5.11 VMSAv8-32 memory aborts

In a VMSAv8-32 implementation, the following mechanisms cause a PE to take an exception on a failed memory
access:

Debug exception An exception caused by the debug configuration, see Chapter G2 AArch32 Self-hosted
Debug.

Alignment fault An Alignment fault is generated if the address used for a memory access does not have the
required alignment for the operation. For more information, see Unaligned data access on
page E2-4312 and Alignment faults on page G5-6363.

MMU fault An MMU fault is a fault generated by the fault checking sequence for the current translation
regime. See Types of MMU faults on page G5-6355.

External abort Any memory system fault other than a Debug exception, an Alignment fault, or an MMU
fault.

Collectively, these mechanisms are called aborts. Chapter G2 AArch32 Self-hosted Debug and Chapter H3 Halting
Debug Events describe Debug exceptions, and the remainder of this section describes Alignment faults, MMU
faults, and External aborts.

An access that causes an abort is said to be aborted, and uses the Fault Address Registers (FARs) and Fault Status
Registers (FSRs) or Exception Syndrome Registers (ESRs) to record context information.

The exception generated on a synchronous memory abort:

• On an instruction fetch is called the Prefetch Abort exception.

• On a data access is called the Data Abort exception.

Note

The Prefetch Abort exception applies to any synchronous memory abort on an instruction fetch. It is not restricted
to speculative instruction fetches.

The Exception level and PE mode that a VMSAv8-32 memory abort is taken to depends on the translation regime
and stage that generate the abort. The fault context is dependent on whether:

• The abort is reported as a Prefetch Abort or as a Data Abort.

• The exception is taken from the same or a lower Exception level.

Note

A memory access from AArch32 state may be subject to one or more VMSAv8-64 translation stages. For example,
a Non-secure EL0 access when EL1 is using AArch64 is subject to both stages of the VMSAv8-64 Non-secure
EL1&0 translation regime. A memory abort generated on a VMSAv8-64 translation stage is handled as described
in VMSAv8-64 memory aborts on page D5-2800.

For more information, see Routing of aborts taken to AArch32 state on page G1-6062.

External aborts can be reported synchronously or asynchronously. Asynchronous External aborts are reported using
the SError interrupt. For more information, see External aborts on page G4-6255.

In AArch32 state, asynchronous memory aborts are a type of External abort, and are treated as a type of Data Abort
exception.

The following sections describe the abort mechanisms:

• Types of MMU faults on page G5-6355.

• VMSAv8-32 MMU fault terminology on page G5-6357.

• The MMU fault-checking sequence on page G5-6358.

• Alignment faults on page G5-6363.

• External abort on a translation table walk on page G5-6363.

• AArch32 state prioritization of synchronous aborts from a single stage of address translation on
page G5-6364.
G5-6354 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
An access that causes an abort is said to be aborted. On an abort, System registers are used to record context
information. For more information, see Exception reporting in a VMSAv8-32 implementation on page G5-6367.

G5.11.1 Types of MMU faults

This section describes the faults that might be detected during one of the fault-checking sequences described in The
MMU fault-checking sequence on page G5-6358. Unless indicated otherwise, information in this section applies to
the fault checking sequences for both the Short-descriptor translation table format and the Long-descriptor
translation table format.

MMU faults are always synchronous.

When an MMU fault generates an abort for a region of memory, no memory access is made if that region is or could
be marked as any type of Device memory.

The MMU faults that might be detected during a fault checking sequence are:

• Permission fault.

• Translation fault.

• Address size fault.

• Access flag fault.

• Domain fault, Short-descriptor translation tables only.

• TLB conflict abort.

See also External abort on a translation table walk on page G5-6363.

Note

• Although the TLB conflict abort is classified as an MMU fault, it is described in the section Translation
Lookaside Buffers (TLBs) on page G5-6332.

• In VMSAv8-64 an External abort on a translation table walk is classified as an MMU fault. However, in
VMSAv8-32, for consistency with earlier versions of the architecture these aborts are not classified as MMU
faults.

Permission fault

A Permission fault can be generated at any level of lookup, and the reported fault code identifies the lookup level.
See About access permissions on page G5-6308 for information about conditions that cause a Permission fault.

Note

When using the Short-descriptor translation table format, the Translation Table descriptors are checked for
Permission faults only for accesses to memory regions in Client domains.

A TLB might hold a translation table entry that cause a Permission fault. Therefore, if the handling of a Permission
fault results in an update to the associated translation tables, the software that updates the translation tables must
invalidate the appropriate TLB entry, to prevent the stale information in the TLB being used on a subsequent
memory access. For more information, see the translation table entry update examples in Ordering and completion
of TLB maintenance instructions on page G5-6339.

In an implementation that includes EL2, this maintenance requirement applies to Permission faults in both stage 1
and stage 2 translations.

Cache or branch predictor maintenance operations cannot cause a Permission fault, except that a stage 1 translation
table walk performed as part of a cache or branch predictor maintenance operation can generate a stage 2 Permission
fault as described in Stage 2 fault on a stage 1 translation table walk.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6355
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
Translation fault

A Translation fault can be generated at any level of lookup, and the reported fault code identifies the lookup level.
A Translation fault is generated if bits[1:0] of a Translation Table descriptor identify the descriptor as either a Fault
encoding or a reserved encoding. For more information, see:

• VMSAv8-32 Short-descriptor Translation Table format descriptors on page G5-6280.

• VMSAv8-32 Long-descriptor Translation Table format descriptors on page G5-6289.

In addition, a Translation fault is generated if the input address for a translation either does not map onto an address
range of a TTBR, or the TTBR range that it maps onto is disabled. In these cases the fault is reported as a level 1
Translation fault on the translation stage at which the mapping to a region described by a TTBR failed.

The architecture guarantees that any translation table entry that causes a Translation fault is not cached, meaning
the TLB never holds such an entry. Therefore, when a Translation fault occurs, the fault handler does not have to
perform any TLB maintenance instructions to remove the faulting entry.

A data or unified cache maintenance by VA instruction can generate a Translation fault. However:

• If the Point of Coherency is before any level of cache, it is IMPLEMENTATION DEFINED whether a data or
unified cache maintenance by VA to the Point of Coherency instruction can generate a Translation fault.

• If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether a data
or unified cache clean by VA to the Point of Unification instruction can generate a Translation fault.

It is IMPLEMENTATION DEFINED whether an instruction cache invalidate by VA operation can generate a Translation
fault.

It is IMPLEMENTATION DEFINED whether a branch predictor maintenance operation can generate a Translation fault.

Address size fault

An Address size fault can be generated at any level of lookup, and the reported fault code identifies the lookup level.

An Address size fault is generated if the translation table entries or the TTBR for the stage of translation have
nonzero address bits above the most significant bit of the maximum output address size. Because VMSAv8-32
supports a maximum PA and IPA size of 40 bits, this means any case where a translation table entry or the TTBR
holds an address for which A[47:40] is nonzero generates an Address size fault.

A data or unified cache maintenance by VA instruction can generate an Address size fault. However:

• If the Point of Coherency is before any level of cache, it is IMPLEMENTATION DEFINED whether a data or
unified cache maintenance by VA instruction can generate an Address size fault.

• If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether a data
or unified cache clean by VA to the Point of Unification instruction can generate an Address size fault.

It is IMPLEMENTATION DEFINED whether an instruction cache invalidate by VA operation can generate an Address
size fault.

It is IMPLEMENTATION DEFINED whether a branch predictor maintenance operation can generate an Address size
fault.

The architecture guarantees that any translation table entry that causes an Address size fault is not cached, meaning
the TLB never holds such an entry. Therefore, when an Address size fault occurs, the fault handler does not have to
perform any TLB maintenance instructions to remove the faulting entry.

Access flag fault

An Access flag fault can be generated at any level of lookup, and the reported fault code identifies the lookup level.
An Access flag fault is generated only if all of the following apply:

• The translation tables support an Access flag bit:

— The Short-descriptor format supports an Access flag only when SCTLR.AFE is set to 1.

— The Long-descriptor format always supports an Access flag.
G5-6356 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
• A Translation Table descriptor with the Access flag bit set to 0 is loaded.

For more information about the Access flag bit see:

• VMSAv8-32 Short-descriptor Translation Table format descriptors on page G5-6280.

• VMSAv8-32 Long-descriptor Translation Table format descriptors on page G5-6289.

The architecture guarantees that any translation table entry that causes an Access flag fault is not cached, meaning
the TLB never holds such an entry. Therefore, when an Access flag fault occurs, the fault handler does not have to
perform any TLB maintenance instructions to remove the faulting entry.

Whether any cache maintenance instruction by VA can generate Access flag faults is IMPLEMENTATION DEFINED.

Whether branch predictor invalidate by VA operations can generate Access flag faults is IMPLEMENTATION DEFINED.

For more information, see The Access flag on page G5-6316.

Domain fault, Short-descriptor format translation tables only

When using the Short-descriptor translation table format, a Domain fault can be generated at level 1or level 2 of
lookup. The reported fault code identifies the lookup level. The conditions for generating a Domain fault are:

Level 1 When a level 1 descriptor fetch returns a valid Section level 1 descriptor, the domain field of that
descriptor is checked against the DACR. A level 1 Domain fault is generated if this check fails.

Level 2 When a level 2 descriptor fetch returns a valid level 2 descriptor, the domain field of the level 1
descriptor that required the level 2 fetch is checked against the DACR, and a level 2 Domain fault
is generated if this check fails.

For more information, see Domains, Short-descriptor format only on page G5-6315.

Domain faults cannot occur on cache or branch predictor maintenance operations.

A TLB might hold a translation table entry that cause a Domain fault. Therefore, if the handling of a Domain fault
results in an update to the associated translation tables, the software that updates the translation tables must
invalidate the appropriate TLB entry, to prevent the stale information in the TLB being used on a subsequent
memory access. For more information, see the translation table entry update examples in Ordering and completion
of TLB maintenance instructions on page G5-6339.

Any change to the DACR must be synchronized by a Context synchronization event. For more information, see
Synchronization of changes to AArch32 System registers on page G8-6443.

G5.11.2 VMSAv8-32 MMU fault terminology

The Armv7 Large Physical Address Extension introduced new terminology for faults on a stage of address
translation, to provide consistent terminology across all implementations. Table G5-24 on page G5-6357 shows the
terminology used in this manual for an MMU faults, compared with older Arm documentation. The current terms
are the same for faults that occur with the Short-descriptor translation table format and with the Long-descriptor
format, and also apply to faults in a level 3 lookup when using the Long-descriptor translation table format.

Table G5-24 MMU fault terminology

Current term Old term Note

Level 1 Translation
fault

Section Translation
fault

-

Level 2 Translation
fault

Page Translation
fault

-

Level 3 Translation
fault

- Long-descriptor translation table format only.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6357
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
In an implementation that includes EL2, MMU faults are also classified by the translation stage at which the fault
is generated. This means that a memory access from a Non-secure PL1 or EL0 mode can generate:

• A stage 1 MMU fault, for example, a stage 1 Translation fault.

• A stage 2 MMU fault, for example, a stage 2 Translation fault.

G5.11.3 The MMU fault-checking sequence

This section describes the MMU checks made for the memory accesses required for instruction fetches and for
explicit memory effects:

• If an instruction fetch faults it generates a Prefetch Abort exception.

• If an data memory access faults it generates a Data Abort exception.

For more information about Prefetch Abort exceptions and Data Abort exceptions see Handling exceptions that are
taken to an Exception level using AArch32 on page G1-6043.

In VMSAv8-32, all memory accesses require VA to PA translation. Therefore, when a corresponding stage of
address translation is enabled, each access requires a lookup of the Translation Table descriptor for the accessed VA.
For more information, see Translation tables on page G5-6274 and subsequent sections of this chapter. MMU fault
checking is performed for each level of translation table lookup. If an implementation includes EL2 and is operating
in Non-secure state, MMU fault checking is performed for each stage of address translation.

Note

In an implementation that includes EL2, if a PE is executing in Non-secure state, the operating system or similar
Non-secure system software defines the stage 1 translation tables in the IPA address map, and typically is unaware
of the stage 2 translation from IPA to PA. However, each Non-secure stage 1 translation table access is subject to
stage 2 address translation, and might be faulted at that stage.

The MMU fault checking sequence is largely independent of the translation table format, as the figures in this
section show. The differences are:

When using the Short-descriptor format

• There are one or two levels of lookup.

• Lookup always starts at level 1.

Level 1 Access flag
fault

Section Access flag
fault

-

Level 2 Access flag
fault

Page Access flag
fault

-

Level 3 Access flag
fault

- Long-descriptor translation table format only.

Level 1 Domain fault Section Domain fault Short-descriptor translation table format only, except for reporting faults on address
translation instructions in the 64-bit PAR, see Determining the PAR format on
page G5-6390.

Cannot occur at level 3.

Level 2 Domain fault Page Domain fault

Level 1 Permission
fault

Section Permission
fault

-

Level 2 Permission
fault

Page Permission
fault

-

Level 3 Permission
fault

- Long-descriptor translation table format only.

Table G5-24 MMU fault terminology (continued)

Current term Old term Note
G5-6358 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
• The final level of lookup checks the Domain field of the descriptor and:

— Faults if there is no access to the Domain.

— Checks the access permissions only for Client domains.

When using the Long-descriptor format

• There are one, two, or three levels of lookup.

• Lookup starts at either level 1 or level 2.

• Domains are not supported. All accesses are treated as Client domain accesses.

The fault-checking sequence shows a translation from an Input address to an Output address. For more information
about this terminology, see About address translation for VMSAv8-32 on page G5-6265.

Note

The descriptions in this section do not include the possibility that the attempted address translation generates a TLB
conflict abort, as described in TLB conflict aborts on page G5-6334.

Types of MMU faults on page G5-6355 describes the faults that an MMU fault-checking sequence can report.

Figure G5-15 on page G5-6360 shows the process of fetching a descriptor from the translation table. For the
top-level fetch for any translation, the descriptor is fetched only if the input address passes any required alignment
check. As the figure shows, in an implementation that includes EL2, if the translation is stage 1 of the Non-secure
PL1&0 translation regime, then the descriptor address is in the IPA address map, and is subject to a stage 2
translation to obtain the required PA. This stage 2 translation requires a recursive entry to the fault checking
sequence.

Note

Figure G5-15 on page G5-6360 and Figure G5-16 on page G5-6361 give an overview of the fault checking
performed by the MMU. See AArch32 state prioritization of synchronous aborts from a single stage of address
translation on page G5-6364 for the complete set of possible faults and their prioritization.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6359
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
Figure G5-15 Fetching the descriptor in a VMSAv8-32 translation table walk

Figure G5-16 on page G5-6361 shows the full VMSAv8-32 fault checking sequence, including the alignment check
on the initial access.

Descriptor address

Translation
required?

Yes

Translate address.
Descriptor address is input

address for stage 2
translation

A1

Fault checking sequence,
for stage 2 translation

A2

Returns descriptor PA

Fetch descriptor

No

Yes
Synchronous

External
abort?

Synchronous
External abort on
translation table

walk

Is this address an IPA for a
Non-secure PL0 or PL1 access?

Return descriptor

No
G5-6360 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
Figure G5-16 VMSAv8-32 fault checking sequence

Input address

Alignment
check?

Yes

Is the access subject to an alignment check?

Fetch descriptor ‡

No

Table
entry

?

Check address alignment

Misaligned
?

Yes Alignment
fault

Check access permissions

Violation
?

Output address

Table not possible at lowest level

Yes

Address
size fault

?

Descriptor
valid?

Yes

No

Translation
faultNo

Address
size faultYes

No

Yes Permission
fault

‡ See Fetching the descriptor
flowchart

† Links to and from Fetching the
descriptor flowchart

A1†

A2†

No

Alignment
fault

Alignment
valid

?

No

No Access
flag fault

?
No

Access flag
faultYes

Domain
fault

Short
descriptors

?

No access
domain

?

Yes

Client
domain

?
Yes No

Manager
domain

Yes

No

Fault unaligned access to any
Device memory type

Yes

No
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6361
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
Stage 2 fault on a stage 1 translation table walk

When an implementation that includes EL2 is operating in a Non-secure PL1 or EL0 mode, any memory access
goes through two stages of translation:

• Stage 1, from VA to IPA.

• Stage 2, from IPA to PA.

Note

In a virtualized system that is using AArch32, typically, a Guest OS operating in a Non-secure PL1 mode defines
the translation tables and translation table register entries controlling the Non-secure PL1&0 stage 1 translations. A
Guest OS has no awareness of the stage 2 address translation, and therefore believes it is specifying translation table
addresses in the PA map. However, it actually specifies these addresses in its IPA map. Therefore, to support
virtualization, translation table addresses for the Non-secure PL1&0 stage 1 translations are always defined in the
IPA address map.

On performing a translation table walk for the stage 1 translations, the descriptor addresses must be translated from
IPA to PA, using a stage 2 translation. This means that a memory access made as part of a stage 1 translation table
lookup might generate, on a stage 2 translation:

• A Translation fault, Access flag fault, or Permission fault.

• A synchronous External abort on the memory access.

If SCR.EA is set to 1, a synchronous External abort is taken to EL3, and if EL3 is using AArch32 it is taken to Secure
Monitor mode. Otherwise, these faults are reported as stage 2 memory aborts. When EL2 is using AArch32,
HSR.ISS[7] is set to 1, to indicate a stage 2 fault during a stage 1 translation table walk, and the part of the ISS field
that might contain details of the instruction is invalid. For more information, see Use of the HSR on page G5-6381.

Alternatively, a memory access made as part of a stage 1 translation table lookup might target an area of memory
with the Device memory attribute assigned on the stage 2 translation of the address accessed. When the value of the
HCR.PTW bit is 1, such an access generates a stage 2 Permission fault.

Note

• On most systems, such a mapping to a Device memory type on the stage 2 translation is likely to indicate a
Guest OS error, where the stage 1 translation table is corrupted. Therefore, it is appropriate to trap this access
to the hypervisor.

A TLB might hold entries that depend on the effect of HCR.PTW. Therefore, if HCR.PTW is changed without
changing the current VMID, the TLBs must be invalidated before executing in a Non-secure PL1 or EL0 mode. For
more information, see Changing HCR.PTW on page G5-6342.

A cache maintenance instruction executed at Non-secure PL1 can cause a stage 1 translation table walk that might
generate a stage 2 Permission fault, as described in this section. However:

• If the Point of Coherency is before any level of cache, it is IMPLEMENTATION DEFINED whether a cache
maintenance by VA instruction can generate a Permission fault in this way.

• If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether a data
or unified cache clean by VA to the Point of Unification instruction can generate a Permission fault in this
way.

Note

This is an exception to the general rule that a cache maintenance instruction cannot generate a Permission fault.
G5-6362 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
The level associated with MMU faults

When an MMU fault is from a stage of translation that is using Long-descriptor translation table format,
Table G5-25 on page G5-6363 shows how the LL bits in the STATUS field of DFSR, IFSR, and HSR encode the
lookup level associated with the fault.

The lookup level associated with a fault is:

• For a fault generated on a translation table walk, the lookup level of the walk being performed.

• For a Translation fault, the lookup level of the translation table that gave the fault. If a fault occurs because
a stage of address translation is disabled, or because the input address is outside the range specified by the
appropriate base address register or registers, the fault is reported as a level 1 fault.

• For an Access flag fault, the lookup level of the translation table that gave the fault.

• For a Permission fault, including a Permission fault caused by hierarchical permissions, the lookup level of
the final level of translation table accessed for the translation. That is, the lookup level of the translation table
that returned a Block or Page descriptor.

Also see Synchronous External abort errors from address translation caching structures on page G5-6366.

G5.11.4 Alignment faults

The Arm memory architecture requires support for strict alignment checking. This checking is controlled by:

• SCTLR.A, for accesses made from any PE mode other than Hyp mode.

• HSCTLR.A, for accesses made from Hyp mode.

In addition, some instructions do not support unaligned accesses, regardless of the value of SCTLR.A or
HSCTLR.A.

Unaligned data access on page E2-4312:

• Defines when Alignment faults are generated, for both values of SCTLR.A or HSCTLR.A.

• Describes the possible generation of Alignment faults on accesses to Device memory by AArch32 Load
Multiple or Store Multiple instructions when FEAT_LSMAOC is implemented.

An Alignment fault can occur on an access for which the stage of address translation is disabled.

Any unaligned access to memory region with any Device memory type attribute generates an Alignment fault.

Routing of aborts taken to AArch32 state on page G1-6062 defines the mode to which an Alignment fault is taken.

The prioritization of Alignment faults depends on whether the fault was generated because of an access to a Device
memory type, or for another reason. For more information, see AArch32 state prioritization of synchronous aborts
from a single stage of address translation on page G5-6364.

G5.11.5 External abort on a translation table walk

An External abort on a translation table walk can be either synchronous or asynchronous. For more information on
External aborts, see External aborts on page G4-6255.

Table G5-25 Use of LL bits to encode the lookup level at which the fault occurred

LL bits Meaning

00 Level 0 of translation or translation table base register.

01 Level 1.

10 Level 2.

11 Level 3. When xFSR.STATUS indicates a Domain fault, this value is reserved.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6363
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
An External abort on a translation table walk is reported:

• If the External abort is synchronous, using:

— A synchronous Prefetch Abort exception if the translation table walk is for an instruction fetch.

— A synchronous Data Abort exception if the translation table walk is for a data access.

• If the External abort is asynchronous, using an SError interrupt, which is taken as an asynchronous Data
Abort exception.

If an implementation reports the error in the translation table walk asynchronously from executing the instruction
whose instruction fetch or memory access caused the translation table walk, these aborts behave essentially as
interrupts. The aborts are masked when PSTATE.A is set to 1, otherwise they are reported using the Data Abort
exception.

Behavior of External aborts on a translation table walk caused by address translation
instructions

The address translation instructions summarized in Address translation system instructions on page K15-8657
require translation table walks. An External abort can occur in the translation table walk. The abort generates a Data
Abort exception, and can be synchronous or asynchronous. For more information, see Handling of faults and aborts
during an address translation instruction on page G5-6390.

G5.11.6 AArch32 state prioritization of synchronous aborts from a single stage of address translation

Exception prioritization for exceptions taken to AArch32 state on page G1-6046 describes the prioritization of
exceptions taken from an Exception level that is using AArch32. This section gives additional information about
the prioritization of MMU faults from VMSAv8-32 translation regimes.

If a single instruction generates aborts on more than one memory access, the architecture does not define any
prioritization between those aborts.

In general, the Arm architecture does not define when asynchronous events are taken, and therefore the
prioritization of asynchronous events is IMPLEMENTATION DEFINED.

Note

The priority numbering in this list only shows the relative priorities of aborts from a single stage of address
translation in a VMSAv8-32 translation regime. This numbering has no global significance and, for example, does
not correlate with the equivalent AArch64 list in AArch64 state prioritization of synchronous aborts from a single
stage of address translation on page D5-2807.

For a single stage of translation in a VMSAv8-32 translation regime, the following numbered list shows the priority
of the possible memory management faults on a memory access. In this list:

• For memory accesses that undergo two stages of translation, the italic entries show where the faults from the
stage 2 translation can occur. A stage 2 fault within a stage 1 translation table walk follows the same
prioritization of faults.

• For synchronous External aborts from translation table walks see also Synchronous External abort errors
from address translation caching structures on page G5-6366.

The priority order, from highest priority to lowest priority, is:

1. Alignment fault not caused by memory type. This is possible for a stage 1 translation only.

2. Translation fault due to the input address being out of the address range to be translated or requiring an
AArch32 TTBR that is disabled. This includes VTCR.SL0 being inconsistent with VTCR.T0SZ or
programmed to a reserved value.

3. Address size fault on an AArch32 TTBR caused by the PA being out of the range implemented.

4. Second stage abort on a level 1 lookup of a a stage 1 table walk. When stage 2 address translation is enabled
this includes an Address size fault caused by the PA being out of the range implemented. This is second stage
abort during a first stage translation table walk.
G5-6364 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
5. Synchronous parity or ECC error on a level 1 lookup of a translation table walk.

6. Synchronous External abort on a level 1 lookup level of a translation table walk.

7. Translation fault on a level 1 translation table entry.

8. Address size fault on a level 1 lookup translation table entry caused by the output address being out of the
range implemented.

9. Second stage abort on a level 2 lookup of a a stage 1 table walk. When stage 2 address translation is enabled
this includes an Address size fault caused by the PA being out of the range implemented. This is second stage
abort during a first stage translation table walk.

10. Synchronous parity or ECC error on a level 2 lookup of a translation table walk.

11. Synchronous External abort on a level 2 lookup level of a translation table walk.

12. Translation fault on a level 2 translation table entry.

13. Address size fault on a level 2 lookup translation table entry caused by the output address being out of the
range implemented.

14. Second stage abort on a level 3 lookup of a a stage 1 table walk. When stage 2 address translation is enabled
this includes an Address size fault caused by the PA being out of the range implemented. This is second stage
abort during a first stage translation table walk.

15. Synchronous parity or ECC error on a level 3 lookup of a translation table walk.

16. Synchronous External abort on a level 3 lookup level of a translation table walk.

17. Translation fault on a level 3 translation table entry.

18. Address size fault on a level 3 lookup translation table entry caused by the output address being out of the
range implemented.

19. Access Flag fault.

20. Alignment fault caused by the memory type.

21. Domain fault.

Note
Domain faults are possible only when using the VMSAv8-32 Short-descriptor translation table format, see
Domain fault, Short-descriptor format translation tables only on page G5-6357.

22. Permission fault.

23. A fault from the stage 2 translation of the memory access. When stage 2 address translation is enabled this
includes an Address size fault caused by the PA being out of the range implemented.

24. Synchronous parity or ECC error on the memory access.

25. Synchronous External abort on the memory access.

Note

• The prioritization of TLB Conflict aborts is IMPLEMENTATION DEFINED, as the exact cause of these aborts
depends on the form of TLBs implemented. However, the TLB conflict abort must have higher priority than
any abort that depends on a value held in the TLB.

• The prioritization of IMPLEMENTATION DEFINED MMU faults for a Load-Exclusive or Store-Exclusive to an
unsupported memory type is IMPLEMENTATION DEFINED.

See also The MMU fault-checking sequence on page G5-6358.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6365
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
Synchronous External abort errors from address translation caching structures

A caching structure used for caching translation table walks might support:

• An arbitrary number of levels of translation table lookup.

• One or more stages of translation, which might not correspond to the stages of an address translation lookup.

This might mean that, on a synchronous External abort arising from the caching structure, such as from a parity or
ECC error, the PE cannot precisely determine one or both of the translation stage and level of lookup at which the
error occurred. In this case:

• If the PE cannot determine precisely the translation stage at which the error occurred, it is reported and
prioritized as a stage 1 error.

• If the PE cannot determine precisely the lookup level at which the error occurred, the level is reported and
prioritized as either:

— The lowest-numbered level that could have given rise to the error.

— Level 1 if it the PE cannot determine any information about the level.
G5-6366 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
G5.12 Exception reporting in a VMSAv8-32 implementation

This section describes exception reporting, in AArch32 state, in a VMSAv8-32 implementation. That is, it describes
only the reporting of exceptions that are taken to an Exception level that is using AArch32. EL2 provides an
enhanced reporting mechanism for exceptions taken to the Non-secure EL2 mode, Hyp mode. This means that, for
VMSAv8-32, the exception reporting depends on the mode to which the exception is taken.

Note

The enhanced reporting mechanism for exceptions that are taken to Hyp mode is generally similar to the reporting
of exceptions that are taken to an Exception level that is using AArch64.

About exception reporting on page G5-6367 introduces the general approach to exception reporting, and the
following sections then describe exception reporting at different privilege levels:

• Reporting exceptions taken to PL1 modes on page G5-6368.

• Fault reporting in PL1 modes on page G5-6371.

• Summary of register updates on faults taken to PL1 modes on page G5-6376.

• Reporting exceptions taken to Hyp mode on page G5-6377.

• Use of the HSR on page G5-6381.

• Summary of register updates on exceptions taken to Hyp mode on page G5-6384.

Note

The registers used for exception reporting also report information about debug exceptions. For more information,
see:

• Data Abort exceptions, taken to a PL1 mode on page G5-6369.

• Prefetch Abort exceptions, taken to a PL1 mode on page G5-6371.

• Reporting exceptions taken to Hyp mode on page G5-6377.

G5.12.1 About exception reporting

In an implementation that includes EL2 and EL3, exceptions can be taken to:

• Monitor mode, if EL3 is using AArch32.

• Hyp mode, if EL2 is using AArch32.

• A Secure or Non-secure PL1 mode.

Monitor mode is a PL1 mode, but:

• It is accessible only when EL3 is using AArch32.

• It is present only in Secure state.

• When EL3 is using AArch32, System register controls route some exceptions from Non-secure state to
Monitor mode. These are the only cases where taking an exception to an Exception level that is using
AArch32 changes the Security state of the PE.

Exception reporting in Hyp mode differs significantly from that in the other modes, but in general, exception
reporting returns:

• Information about the exception:

— On taking an exception to Hyp mode, the Hyp Syndrome Register, HSR, returns syndrome
information.

— On taking an exception to any other mode, a Fault Status Register (FSR) returns status information.

• For synchronous exceptions, one or more addresses associated with the exceptions, returned in Fault Address
Registers (FARs). For a permitted exception to this requirement see Fault address reporting on synchronous
External aborts on page G5-6368.

In all modes, additional IMPLEMENTATION DEFINED registers can provide additional information about exceptions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6367
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
Note

• PE mode for taking exceptions on page G1-6053 describes how the mode to which an exception is taken is
determined.

• EL2 provides:

— Specific exception types, that can only be taken from Non-secure PL1 and EL0 modes, and are always
taken to Hyp mode.

— Routing controls that can route some exceptions from Non-secure PL1 and EL0 modes to Hyp mode.

These exceptions are reported using the same mechanism as the Hyp mode reporting of VMSAv8-32 memory
aborts, as described in this section.

Memory system faults generate either a Data Abort exception or a Prefetch Abort exception, as summarized in:

• Reporting exceptions taken to PL1 modes on page G5-6368.

• Memory fault reporting in Hyp mode on page G5-6379.

On an access that might have multiple aborts, the MMU fault checking sequence and the prioritization of aborts
determine which abort occurs. For more information, see The MMU fault-checking sequence on page G5-6358 and
AArch32 state prioritization of synchronous aborts from a single stage of address translation on page G5-6364.

Fault address reporting on synchronous External aborts

The general architectural requirement is that, on a synchronous abort, the faulting address is recorded in a Fault
Address Register (FAR). This requirement is relaxed for the case of a synchronous External abort that is not a
synchronous External abort on a translation table walk. In this case only:

• It is IMPLEMENTATION DEFINED whether the faulting address is recorded in a FAR.

• A bit in a fault reporting register, the FnV bit, indicates whether a valid address is recorded.

For exceptions taken to an Exception level that is using AArch32, the details of this reporting depend on whether
the exception is taken to:

• A PL1 mode, as described in Reporting exceptions taken to PL1 modes on page G5-6368.

• Hyp mode, as described in Reporting exceptions taken to Hyp mode on page G5-6377.

G5.12.2 Reporting exceptions taken to PL1 modes

The following sections give general information about the reporting of exceptions when they are taken to a Secure
or Non-secure PL1 mode:

• Registers used for reporting exceptions taken to PL1 modes on page G5-6368.

• Data Abort exceptions, taken to a PL1 mode on page G5-6369.

• Prefetch Abort exceptions, taken to a PL1 mode on page G5-6371.

Fault reporting in PL1 modes on page G5-6371 then describes the fault reporting in these modes, including the
encodings used for reporting the faults.

Note

Security state, Exception levels, and AArch32 execution privilege on page G1-6022 describes how the Secure and
Non-secure PL1 modes map onto the Exception levels.

Registers used for reporting exceptions taken to PL1 modes

AArch32 state defines the following registers, and register encodings, for exceptions taken to PL1 modes:

• The DFSR holds information about a Data Abort exception.

• The DFAR holds the faulting address for some synchronous Data Abort exceptions.

• The IFSR holds information about a Prefetch Abort exception.

• The IFAR holds the faulting address for some synchronous Prefetch Abort exceptions.
G5-6368 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
In addition, if implemented, the optional ADFSR and AIFSR can provide additional fault information, see Auxiliary
Fault Status Registers on page G5-6369.

Auxiliary Fault Status Registers

AArch32 state defines the following Auxiliary Fault Status Registers:

• The Auxiliary Data Fault Status Register, ADFSR.

• The Auxiliary Instruction Fault Status Register, AIFSR.

The position of these registers is architecturally-defined, but the content and use of the registers is IMPLEMENTATION
DEFINED. An implementation can use these registers to return additional fault status information. An example use
of these registers is to return more information for diagnosing parity or ECC errors.

An implementation that does not need to report additional fault information must implement these registers as RES0.
This ensures that an attempt to access these registers from software executing at PL1 does not cause an Undefined
Instruction exception.

Data Abort exceptions, taken to a PL1 mode

On taking a Data Abort exception to a PL1 mode:

• If the exception is on an instruction cache or branch predictor maintenance operation by VA, its reporting
depends on the value of TTBCR.EAE. For more information about the registers used when reporting the
exception, see Data Abort on an instruction cache or branch predictor maintenance instruction by VA on
page G5-6370.

• Otherwise, the DFSR is updated with details of the fault, including the appropriate Fault status code. If the
Data Abort exception is synchronous, DFSR.WnR is updated to indicate whether the faulted instruction was
a read or a write. However, if the fault is on a cache maintenance instruction, or on an address translation
instruction, WnR is set to 1, to indicate a fault on a write instruction, and the CM bit is set to 1.

If the Data Abort is external, then DFSR provides fields for additional classification of the abort, see
Provision for classification of External aborts on page G4-6255.

If the RAS Extension is implemented, and the exception is a virtual SError interrupt exception, the
classification reported in DFSR is taken from VDFSR or VSESR_EL2. For more information, see the Arm®
Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture
profile.

See the register description for more information about the returned fault information. See also Data Abort
on a Watchpoint exception on page G5-6370.

If the Data Abort exception is

— Synchronous, the DFAR is updated with the VA that caused the exception, but see Fault address
reporting on synchronous External aborts on page G5-6368 for a permitted exception to this
requirement.

— Asynchronous, the DFAR becomes UNKNOWN.

DFSR.WnR and DFSR.CM are UNKNOWN on an asynchronous Data Abort exception.

For all Data Abort exceptions, if the implementation includes EL3, the Security state of the PE in the mode to which
the Data Abort exception is taken determines whether the Secure or Non-secure DFSR and DFAR are updated.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6369
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
Data Abort on an instruction cache or branch predictor maintenance instruction by VA

If an instruction cache invalidation by VA or branch predictor invalidation by VA operation generates a Data Abort
exception that is taken to a PL1 mode, the DFAR is updated to hold the faulting VA. However, the reporting of the
fault depends on the value of TTBCR.EAE:

TTBCR.EAE == 0

When the value of TTBCR.EAE is 0, it is IMPLEMENTATION DEFINED which of the following is used
when reporting the fault:

• The DFSR indicates an Instruction cache maintenance instruction fault, and the IFSR is valid
and indicates the cause of the fault, a Translation fault or Access flag fault.

• The DFSR indicates the cause of the fault, a Translation fault or Access flag fault. The IFSR
is UNKNOWN.

In either case:

• DFSR.WnR is set to 1.

• DFSR.CM is set to 1, to indicate a fault on a cache maintenance instruction.

TTBCR.EAE == 1

When the value of TTBCR.EAE is 1:

• DFSR.CM is set to 1, to indicate a fault on a cache maintenance instruction.

• DFSR.STATUS indicates the cause of the fault, a Translation or Access flag fault.

• DFSR.WnR is set to 1.

• The IFSR is UNKNOWN.

Data Abort on a Watchpoint exception

On taking a Data Abort exception caused by a watchpoint:

• DFSR.FS is updated to indicate a debug exception.

• DFSR.{WnR, Domain} are UNKNOWN.

• DFAR is set to the address that generated the watchpoint

Note

• LR_abt indicates the address of the instruction that triggered the watchpoint.

• In some Armv7 AArch32 implementations, the DBGWFAR is set to the address of the instruction that
triggered the watchpoint. In Armv8 this register is RES0.

A watchpointed address can be any byte-aligned address. The address reported in DFAR might not be the
watchpointed address, and:

• For a watchpoint due to an operation other than a Data Cache maintenance instruction, can be any address
between and including:

— The lowest address accessed by the instruction that triggered the watchpoint.

— The highest watchpointed address accessed by that instruction.

If multiple watchpoints are set in this range, there is no guarantee of which watchpoint is generated.

The address must also be within a naturally-aligned block of memory of an IMPLEMENTATION DEFINED
power-of-two size, containing a watchpoint address accessed by that location.

Note
— In particular, there is no guarantee of generating the watchpoint with the lowest address in the range.

— The IMPLEMENTATION DEFINED power-of-two size must be no larger than the block size of the
AArch64 DC ZVA operation.

• For a watchpoint due to a Data Cache operation, the address is the address passed to the instruction. This
might be an address that is above the watchpointed location.
G5-6370 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
Prefetch Abort exceptions, taken to a PL1 mode

For a Prefetch Abort exception generated by an instruction fetch, the Prefetch Abort exception is taken
synchronously with the instruction that the abort is reported on. This means:

• If the PE attempts to execute the instruction a Prefetch Abort exception is generated.

• If an instruction fetch is issued but the PE does not attempt to execute the prefetched instruction, no Prefetch
Abort exception is generated for that instruction. For example, if the execution flow branches round a
prefetched instruction, no Prefetch Abort exception is generated.

In addition, Breakpoint Instruction, Breakpoint, and Vector Catch exceptions, generate a Prefetch Abort exception,
see the following for more information:

• Exception syndrome information and preferred return address for a BKPT instruction on page G2-6168.

• Exception syndrome information and preferred return address for a Breakpoint exception on page G2-6193.

• Exception syndrome information and preferred return address for a Vector Catch exception on
page G2-6214.

Note

Usually, the term exception syndrome is used only for exceptions taken to Hyp mode, or to AArch64 state. The
referenced sections use the term more generally, to include exception information reported in the IFSR.

On taking a Prefetch Abort exception to a PL1 mode:

• The IFSR is updated with details of the fault, including the appropriate fault code. If appropriate, the fault
code indicates that the exception was generated by a debug exception.

See the register description for more information about the returned fault information.

• For a Prefetch Abort exception generated by an instruction fetch, the IFAR is updated with the VA that caused
the exception, but see Fault address reporting on synchronous External aborts on page G5-6368 for a
permitted exception to this requirement.

• For a Prefetch Abort exception generated by a debug exception, the IFAR is UNKNOWN.

If the implementation includes EL3, the security state of the PE in the mode to which it takes the Prefetch Abort
exception determines whether the exception updates the Secure or Non-secure IFSR and IFAR.

G5.12.3 Fault reporting in PL1 modes

The FSRs provide fault information, including an indication of the fault that occurred. The following subsections
describe fault reporting in PL1 modes for each of the translation table formats:

• PL1 fault reporting with the Short-descriptor translation table format on page G5-6372.

• PL1 fault reporting with the Long-descriptor translation table format on page G5-6374.

Reserved encoding in the IFSR and DFSR encodings tables on page G5-6375 gives some additional information
about the encodings for both formats.

Summary of register updates on faults taken to PL1 modes on page G5-6376 shows which registers are updated on
each of the reported faults.

Reporting of External aborts taken from Non-secure state to Monitor mode on page G5-6371 describes how the fault
status register format is determined for those aborts. For all other aborts, the current translation table format
determines the format of the fault status registers.

Reporting of External aborts taken from Non-secure state to Monitor mode

When an External abort is taken from Non-secure state to Monitor mode:

• For a Data Abort exception, the Secure DFSR and DFAR hold information about the abort.

• For a Prefetch Abort exception, the Secure IFSR and IFAR hold information about the abort.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6371
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
• The abort does not affect the contents of the Non-secure copies of the fault reporting registers.

Normally, the current translation table format determines the format of the DFSR and IFSR. However, when
SCR.EA is set to 1, to route External aborts to Monitor mode, and an External abort is taken from Non-secure state,
this section defines the DFSR and IFSR format.

For an External abort taken from Non-secure state to Monitor mode, the DFSR or IFSR uses the format associated
with the Long-descriptor translation table format, as described in PL1 fault reporting with the Long-descriptor
translation table format on page G5-6374, if any of the following applies:

• The value of the Secure TTBCR.EAE field is 1.

• The External abort is synchronous and is taken from either:

— Hyp mode.

— A Non-secure PL1 or EL0 mode, and the value of the Non-secure TTBCR.EAE field is 1.

Otherwise:

• For a synchronous External abort from a stage 2 translation routed to Monitor mode when the value of the
Secure TTBCR.EAE field is 0 it is IMPLEMENTATION DEFINED whether:

— The format associated with the Long-descriptor translation table format is used, as described in PL1
fault reporting with the Long-descriptor translation table format on page G5-6374.

— The format associated with the Short-descriptor translation table format is used, as described in PL1
fault reporting with the Short-descriptor translation table format on page G5-6372. Arm deprecates
using this format.

When this format is used, the value of DFSR.FS[1] or IFSR.FS[1] is UNKNOWN when reporting a
synchronous External abort, or a synchronous parity or ECC error, on the stage 2 translation.

• In all other cases the DFSR or IFSR uses the format associated with the Short-descriptor translation table
format, as described in PL1 fault reporting with the Short-descriptor translation table format on
page G5-6372.

PL1 fault reporting with the Short-descriptor translation table format

This subsection describes the fault reporting for a fault taken to a PL1 when address translation is using the
Short-descriptor translation table format.

On taking an exception, bit[9] of the FSR is RAZ, or set to 0, if the PE is using this FSR format.

An FSR encodes the fault in a 5-bit FS field, that comprises FSR[10, 3:0]. Table G5-26 on page G5-6372 shows the
encoding of that field. Summary of register updates on faults taken to PL1 modes on page G5-6376 shows:

• Whether the corresponding FAR is updated on the fault. That is:

— For a fault reported in the IFSR, whether the IFAR holds a valid address.

— For a fault reported in the DFSR, whether the DFAR holds a valid address.

• For faults that update DFSR, whether DFSR.Domain is valid

When reading Table G5-26 on page G5-6372:

• FS values not shown in the table are reserved.

• FS values shown as DFSR only are reserved for the IFSR.

Table G5-26 FSR encodings when using the Short-description translation table format

FS Source Notes

00001 Alignment fault. DFSR only. Fault on initial lookup.

00100 Fault on instruction cache maintenance. DFSR only.

01100

01110
Synchronous External abort on translation table walka, b. Level 1

Level 2
-

G5-6372 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
The level associated with MMU faults on a Short-descriptor translation table lookup

The lookup level associated with a fault is:

• For a fault generated on a translation table walk, the lookup level of the walk being performed.

• For a Translation fault, the lookup level of the translation table that gave the fault. If a fault occurs because
a stage of address translation is disabled, or because the input address is outside the range specified by the
appropriate base address register or registers, the fault is reported as a level 1 fault.

• For an Access flag fault, Permission fault, or Domain fault, the lookup level of the final level of translation
table accessed for the translation. That is, the lookup level of the translation table that returned a
Supersection, Section, or Page descriptor.

Also see Synchronous External abort errors from address translation caching structures on page G5-6366.

The Domain field in the DFSR

The DFSR includes a Domain field. This is inherited from previous versions of the VMSA. The IFSR does not
include a Domain field. Summary of register updates on faults taken to PL1 modes on page G5-6376 describes when
DFSR.Domain is valid.

11100

11110
Synchronous parity or ECC error on translation table walka, b. Level 1

Level 2
-

00101

00111
Translation faulta. Level 1

Level 2

MMU fault.

00011c

00110

Access flag faulta. Level 1

Level 2

MMU fault.

01001

01011
Domain faulta. Level 1

Level 2

MMU fault.

01101

01111
Permission faulta. Level 1

Level 2

MMU fault.

00010 Debug exception. See Chapter G2 AArch32 Self-hosted Debug.

01000 Synchronous External abort. -

10000 TLB conflict abort. See TLB conflict aborts on page G5-6334.

10100 IMPLEMENTATION DEFINED. Lockdown.

10101 IMPLEMENTATION DEFINED. Unsupported Exclusive access.

11001 Synchronous parity or ECC error on memory access. -

10110 SError interruptd. DFSR only.

11000 SError interruptd from a parity or ECC error on memory access. DFSR only.

a. See The level associated with MMU faults on a Short-descriptor translation table lookup on page G5-6373.

b. FS[1] is UNKNOWN if the reported error is from a stage 2 translation.

c. Previously, this encoding was a deprecated encoding for Alignment fault. The extensive changes in the memory model in VMSAv8-32
mean there should be no possibility of confusing the new use of this encoding with its previous use

d. Including asynchronous External abort on a data access, a translation table walk, or an instruction fetch.

Table G5-26 FSR encodings when using the Short-description translation table format (continued)

FS Source Notes
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6373
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
Arm deprecates any use of the Domain field in the DFSR. The Long-descriptor translation table format does not
support a Domain field, and future versions of the Arm architecture might not support a Domain field in the
Short-descriptor translation table format. Arm strongly recommends that new software does not use this field.

For both Data Abort exceptions and Prefetch Abort exceptions, software can find the domain information by
performing a translation table read for the faulting address and extracting the Domain field from the translation table
entry.

PL1 fault reporting with the Long-descriptor translation table format

This subsection describes the fault reporting for a fault taken to a PL1mode when address translation is using the
Long-descriptor translation table format.

When the PE takes an exception, bit[9] of the FSR is set to 1 if the PE is using this FSR format.

The FSRs encode the fault in a 6-bit STATUS field, that comprises FSR[5:0]. Table G5-27 on page G5-6374 shows
the encoding of that field. In addition:

• For a fault taken to a PL1 mode, Summary of register updates on faults taken to PL1 modes on page G5-6376
shows whether the corresponding FAR is updated on the fault. That is:

— For a fault reported in the IFSR, whether the IFAR holds a valid address.

— For a fault reported in the DFSR, whether the DFAR holds a valid address.

• For a fault taken to the Hyp mode, Summary of register updates on exceptions taken to Hyp mode on
page G5-6384 shows what registers are updated on the fault.

Table G5-27 FSR encodings when using the Long-descriptor translation table format

STATUSa Source Notes

0000LL Address size fault. LL bits indicate levelb. MMU fault.

0001LL Translation fault. LL bits indicate levelb. MMU fault.

0010LL Access flag fault. LL bits indicate levelb. MMU fault.

0011LL Permission fault. LL bits indicate levelb. MMU fault.

010000 Synchronous External abort. -

011000 Synchronous parity or ECC error on memory access. -

010001 SError interruptc. DFSR only.

011001 SError interruptc from a parity or ECC error on memory
access.

DFSR only.

0101LL Synchronous External abort on translation table walk.

LL bits indicate levelb.

-

0111LL Synchronous parity or ECC error on memory access on
translation table walk.

LL bits indicate levelb.

-

100001 Alignment fault. Fault on initial lookup.

100010 Debug exception. See Chapter G2 AArch32 Self-hosted Debug.

110000 TLB conflict abort. See TLB conflict aborts on page G5-6334.
G5-6374 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
The level associated with MMU faults on a Long-descriptor translation table lookup

For MMU faults, Table G5-28 on page G5-6375 shows how the LL bits in the xFSR.STATUS field encode the
lookup level associated with the fault.

The lookup level associated with a fault is:

• For a fault generated on a translation table walk, the lookup level of the walk being performed.

• For a Translation fault, the lookup level of the translation table that gave the fault. If a fault occurs because
a stage of address translation is disabled, or because the input address is outside the range specified by the
appropriate base address register or registers, the fault is reported as a level 1 fault.

• For an Access flag fault, the lookup level of the translation table that gave the fault.

• For a Permission fault, including a Permission fault caused by hierarchical permissions, the lookup level of
the final level of translation table accessed for the translation. That is, the lookup level of the translation table
that returned a Block or Page descriptor.

Also see Synchronous External abort errors from address translation caching structures on page G5-6366.

Reserved encoding in the IFSR and DFSR encodings tables

With both the Short-descriptor and the Long-descriptor FSR format, the fault encodings reserve a single encoding
for Cache and TLB lockdown faults. The details of these faults and any associated subsidiary registers are
IMPLEMENTATION DEFINED.

110100 IMPLEMENTATION DEFINED. Lockdown, DFSR only.

110101 IMPLEMENTATION DEFINED. Unsupported Exclusive access.

1111LL Domain fault.

LL bits indicate levelb.

MMU fault. 64-bit PAR only, level 1 or level 2 only.
Never used in DFSR, IFSR, or HSRd.

a. STATUS values not shown in this table are reserved. STATUS values not supported in the IFSR or DFSR are reserved for the register
or registers in which they are not supported.

b. See The level associated with MMU faults on a Long-descriptor translation table lookup on page G5-6375.

c. Including asynchronous External abort on a data access, a translation table walk, or an instruction fetch.

d. A Domain fault can be reported using the Long-descriptor STATUS encodings only as a result of a fault on an address translation
instruction. For more information, see MMU fault on an address translation instruction on page G5-6390.

Table G5-27 FSR encodings when using the Long-descriptor translation table format (continued)

STATUSa Source Notes

Table G5-28 Use of LL bits to encode the lookup level at which the fault occurred

LL bits Meaning

00 Address size fault Address size fault in TTBR0 or TTBR1.

All other faults Reserved.

01 Level 1.

10 Level 2.

11 Level 3. When xFSR.STATUS indicates a Domain fault, this value is reserved.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6375
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
G5.12.4 Summary of register updates on faults taken to PL1 modes

For faults that generate exceptions that are taken to a PL1 mode, Table G5-29 on page G5-6376 shows the registers
affected by each fault. In this table:

• Yes indicates that the register is updated.

• UNK indicates that the fault makes the register value UNKNOWN.

• A null entry, -, indicates that the fault does not affect the register.

For faults that update the DFSR using the Short-descriptor format FSR encodings, Table G5-30 on page G5-6377
shows whether DFSR.Domain is valid.

Table G5-29 Effect of a fault taken to a PL1 mode on the reporting registers

Fault IFSR IFAR DFSR DFAR

Faults reported as Prefetch Abort exceptions:

MMU fault, always synchronous Yes Yes - -

Synchronous External abort on translation table walk Yes Yes - -

Synchronous parity or ECC error on translation table walk Yes Yes - -

Synchronous External abort Yes IMP
DEFa

- -

Synchronous parity or ECC error on memory access Yes Yes - -

TLB conflict abort Yes Yes - -

Fault reported as Data Abort exception:

Alignment fault, always synchronous - - Yes Yes

MMU fault, always synchronous - - Yes Yes

Fault on instruction cache maintenance, when using Long-descriptor translation table
formatb

UNK - Yes Yes

Fault on instruction cache maintenance, when using Short descriptor translation
table formatc

either Yes - Yes Yes

or UNK - Yes Yes

Synchronous External abort on translation table walk - - Yes Yes

Synchronous parity or ECC error on translation table walk - - Yes Yes

Synchronous External abort - - Yes IMP
DEFa

Synchronous parity or ECC error on memory access - - Yes Yes

SError interrupt - - Yes UNK

SError interrupt from a parity or ECC error on memory access - - Yes UNK

TLB conflict abort - - Yes Yes

Debug exceptions:

Breakpoint, Breakpoint Instruction, or Vector Catchd Yes UNK - -

Watchpointe - - Yes Yes
G5-6376 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
For those faults for which Table G5-29 on page G5-6376 shows that the DFSR is updated, if the fault is reported
using the Short-descriptor FSR encodings, Table G5-30 on page G5-6377 shows whether DFSR.Domain is valid.
In this table, UNK indicates that the fault makes DFSR.Domain UNKNOWN.

G5.12.5 Reporting exceptions taken to Hyp mode

Hyp mode is the Non-secure EL2 mode. It is entered by taking an exception to Hyp mode.

a. IMPLEMENTATION DEFINED. The IFSR.FnV or DFSR.FnV bit indicates whether the register holds a valid address. See Fault address
reporting on synchronous External aborts on page G5-6368.

b. When using the Long-descriptor translation table format, there is not a specific fault code for a fault on an instruction cache maintenance
instruction. For more information, see Data Abort on an instruction cache or branch predictor maintenance instruction by VA on
page G5-6370.

c. The two lines of this entry show the alternative ways of reporting the fault when using the Short-descriptor translation table format. It is
IMPLEMENTATION DEFINED which methods is used, see Data Abort on an instruction cache or branch predictor maintenance instruction by
VA on page G5-6370.

d. Generates a Prefetch Abort exception.

e. Generates a Data Abort exception.

Table G5-30 Validity of Domain field on faults that update the DFSR when using the Short-descriptor encodings

DFSR.FS Source DFSR.Domain Notes

00001 Alignment fault UNK -

00100 Fault on instruction cache maintenance instruction UNK -

01100

01110

Synchronous External abort on translation table walk Level 1

Level 2

UNK

Valid
-

11100

11110

Synchronous parity or ECC error on translation table walk Level 1

Level 2

UNK

Valid
-

00101

00111

Translation fault Level 1

Level 2

UNK

Valid

MMU fault

00011a

00110

Access flag fault Level 1

Level 2

UNK

Valid

MMU fault

01001

01011

Domain fault Level 1

Level 2

Valid

Valid

MMU fault

01101

01111

Permission fault Level 1

Level 2

UNK

UNK

MMU fault

01000 Synchronous External abort UNK -

10000 TLB conflict abort UNK -

11001 Synchronous parity or ECC error on memory access UNK -

10110 SError interruptb UNK -

11000 SError interruptb from a parity or ECC error on memory access UNK -

00010 Watchpoint UNK

a. Previously, this encoding was a deprecated encoding for Alignment fault. The extensive changes in the memory model in
VMSAv8-32 mean there should be no possibility of confusing the new use of this encoding with its previous use

b. Including asynchronous External abort on a data access, a translation table walk, or an instruction fetch.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6377
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
Note

Software executing in Monitor mode, or at EL3 when EL3 is using AArch64, can perform an exception return to
Hyp mode. This means Hyp mode can be entered either by taking an exception, or by a permitted exception return.

When EL2 is using AArch32, the following exceptions are taken to Hyp mode:

• SError interrupt exceptions, IRQ exceptions, and FIQ exceptions, from Non-secure PL1 and EL0 modes, if
not routed to Secure Monitor mode, and if configured by the AMO, FMO or IMO bits. For more information,
see Asynchronous exception routing controls on page G1-6072.

• When HCR.TGE is set to 1, all exceptions that would be routed to Non-secure PL1 modes.

For more information, see Routing exceptions from Non-secure EL0 to EL2 on page G1-6058.

• When HDCR.TDE is set to 1, any debug exception that would otherwise be taken to a Non-secure PL1 mode,
see Routing debug exceptions to EL2 using AArch32 on page G1-6060.

• The privilege rules for taking exceptions mean that any exception taken from Hyp mode, if not routed to EL3,
must be taken to Hyp mode.

• An abort that Routing of aborts taken to AArch32 state on page G1-6062 identifies as taken to Hyp mode.

• Hypervisor Call exceptions, and Hyp Trap exceptions, are always taken to Hyp mode. These exceptions are
supported only as part of EL2.

When EL2 is implemented, various operations from Non-secure PL1 and EL0 modes can be trapped to Hyp
mode, using the Hyp Trap exception. For more information, see EL2 configurable controls on page G1-6126.

Synchronous exceptions taken to Hyp mode provide syndrome information in the HSR.

On an abort exception taken to Hyp mode, the syndrome information in the HSR includes the Fault status code
otherwise provided by the fault status register, and extends the fault reporting compared to that available for an
exception taken to a PL1 mode.

In addition, for a Debug exception taken to Hyp mode, DBGDSCRint.MOE or DBGDSCRext.MOE shows what
caused the Debug exception. This field is valid regardless of whether the Debug exception was taken from Hyp
mode or from another Non-secure mode.

For more information, see the following subsections:

• Registers used for reporting exceptions taken to Hyp mode on page G5-6378.

• Memory fault reporting in Hyp mode on page G5-6379.

• Use of the HSR on page G5-6381

Registers used for reporting exceptions taken to Hyp mode

The following registers are used for reporting exceptions taken to Hyp mode:

• The HSR holds syndrome information for the exception.

• The HDFAR holds the VA associated with a Data Abort exception.

• The HIFAR holds the VA associated with a Prefetch Abort exception.

• The HPFAR holds bits[39:12] of the IPA associated with some aborts on stage 2 address translations.

In addition, if implemented, the optional HADFSR and HAIFSR can provide additional fault information, see Hyp
Auxiliary Fault Syndrome Registers on page G5-6378.

Hyp Auxiliary Fault Syndrome Registers

EL2 also defines encodings for the following Hyp Auxiliary Fault Syndrome Registers:

• The Hyp Auxiliary Data Fault Syndrome Register, HADFSR.

• The Hyp Auxiliary Instruction Fault Syndrome Register, HAIFSR.
G5-6378 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
An implementation can use these registers to return additional fault status information for aborts taken to Hyp mode.
They are the Hyp mode equivalents of the registers described in Auxiliary Fault Status Registers on page G5-6369.
An example use of these registers is to return more information for diagnosing parity or ECC errors.

The architectural requirements for the HADFSR and HAIFSR are:

• The position of these registers is architecturally-defined, but the content and use of the registers is
IMPLEMENTATION DEFINED.

• An implementation with no requirement for additional fault reporting can implement these registers as RES0,
but the architecture does not require it to do so.

Memory fault reporting in Hyp mode

Prefetch Abort and Data Abort exceptions taken to Hyp mode report memory faults. For these aborts, the HSR
contains the following fault status information:

• The HSR.EC field indicates the type of abort, as Table G5-31 on page G5-6379 shows.

• The HSR.ISS field holds more information about the abort. In particular:

— Bits[5:0] of this field hold the STATUS field for the abort, using the encodings defined in PL1 fault
reporting with the Long-descriptor translation table format on page G5-6374.

— Other subfields of the ISS give more information about the exception, equivalent to the information
returned in the FSR for a memory fault reported at PL1.

See the descriptions of the ISS fields for the memory faults, referenced from the Syndrome description
column of Table G5-31 on page G5-6379, for information about the returned fault information.

For more information, see Use of the HSR on page G5-6381.

A Prefetch Abort exception is taken synchronously with the instruction that the abort is reported on. This means:

• If the PE attempts to execute the instruction a Prefetch Abort exception is generated.

• If an instruction fetch is issued but the PE does not attempt to execute the prefetched instruction, no Prefetch
Abort exception is generated for that instruction. For example, if the execution flow branches round a
prefetched instruction that would abort if the PE attempted to execute it, no Prefetch Abort exception is
generated.

Register updates on exception reporting in Hyp mode

The use of the HSR, and of the other registers listed in Registers used for reporting exceptions taken to Hyp mode
on page G5-6378, depends on the cause of the Abort. In reporting these faults, in general:

• If the fault generates a synchronous Data Abort exception, the HDFAR holds the associated VA, but see Fault
address reporting on synchronous External aborts on page G5-6368 for a permitted exception to this
requirement.

• If the fault generates a Prefetch Abort exception, the HIFAR holds the associated VA, but see Fault address
reporting on synchronous External aborts on page G5-6368 for a permitted exception to this requirement.

Table G5-31 HSR.EC encodings for aborts taken to Hyp mode

HSR.EC Abort Syndrome description

0x20 Prefetch Abort taken from Non-secure PL1 or EL0
mode

ISS encoding for exception from a Prefetch Abort on
page G8-6648

0x21 Prefetch Abort taken from Hyp mode

0x24 Data Abort taken from Non-secure PL1 or EL0 mode ISS encoding for exception from a Data Abort on
page G8-6650

0x25 Data Abort taken from Hyp mode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6379
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
• In the following cases, the HPFAR holds the faulting IPA:

— A Translation or Access flag fault on a stage 2 translation.

— A Translation, Access flag, or Permission fault on the stage 2 translation of an address accessed in a
stage 1 translation table walk.

— A stage 2 Address size fault.

In all other cases, the HPFAR is UNKNOWN.

• On a Data Abort exception that is taken to Hyp mode, the HIFAR is UNKNOWN.

• On a Prefetch Abort exception that is taken to Hyp mode, the HDFAR is UNKNOWN.

In addition, the reporting of particular aborts is as follows:

Abort on the stage 1 translation for a memory access from Hyp mode

The HDFAR or HIFAR holds the VA that caused the fault. The STATUS subfield of HSR.ISS
indicates the type of fault, Translation, Address size, Access flag, or Permission. The HPFAR is
UNKNOWN.

Abort on the stage 2 translation for a memory access from a Non-secure PL1 or EL0 mode

This includes aborts on the stage 2 translation of a memory access made as part of a translation table
walk for a stage 1 translation. The HDFAR or HIFAR holds the VA that caused the fault. The
STATUS subfield of HSR.ISS indicates the type of fault, Translation, Address size, Access flag, or
Permission.

For any Access flag fault or Translation fault, and also for any Permission fault on the stage 2
translation of a memory access made as part of a translation table walk for a stage 1 translation, the
HPFAR holds the IPA that caused the fault. Otherwise, the HPFAR is UNKNOWN.

Abort caused by a synchronous External abort, or synchronous parity or ECC error, and taken to Hyp mode

The HDFAR or HIFAR holds the VA that caused the fault, but see Fault address reporting on
synchronous External aborts on page G5-6368 for a permitted exception to this requirement. The
HPFAR is UNKNOWN.

Data Abort caused by a Watchpoint exception and routed to Hyp mode because HDCR.TDE is set to 1

When HDCR.TDE is set to 1, a Watchpoint exception generated in a Non-secure PL1 or EL0 mode,
that would otherwise generate a Data Abort exception, is routed to Hyp mode and generates a Hyp
Trap exception.

HDFAR is set to the address that generated the watchpoint.

Note
ELR_hyp indicates the address of the instruction that triggered the watchpoint.

A watchpointed address can be any byte-aligned address. The address reported in HDFAR might
not be the watchpointed address, and, for a watchpoint due to an operation other than a Data Cache
maintenance instruction, can be any address between and including:

• The lowest address accessed by the instruction that triggered the watchpoint.

• The highest watchpointed address accessed by that instruction.

If multiple watchpoints are set in this range, there is no guarantee of which watchpoint is generated.

Note

In particular, there is no guarantee of generating the watchpoint with the lowest address in the range.

The address must also be within a naturally-aligned block of memory of an IMPLEMENTATION
DEFINED power-of-two size, containing a watchpoint address accessed by that location.
G5-6380 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
Note

The IMPLEMENTATION DEFINED power-of-two size must be no larger than the block size of the
AArch64 DC ZVA operation.

See also Watchpoint exceptions on page G2-6195.

In all cases, HPFAR is UNKNOWN.

Prefetch Abort caused by a Breakpoint Instruction exception and taken to Hyp mode

This abort is generated if a BKPT instruction is executed in Hyp mode. The abort leaves the HIFAR
and HPFAR UNKNOWN.

See also Breakpoint Instruction exceptions on page G2-6167.

Prefetch Abort caused by a Breakpoint Instruction, Breakpoint, or Vector Catch exception, and routed to
Hyp mode because HDCR.TDE is set to 1

When HDCR.TDE is set to 1, a debug exception, generated in a Non-secure PL1 or EL0 mode, that
would otherwise generate a Prefetch Abort exception, is routed to Hyp mode and generates a Hyp
Trap exception.

The abort leaves the HIFAR and HPFAR UNKNOWN. This is identical to the reporting of a Prefetch
Abort exception caused by a Debug exception on a BKPT instruction that is executed in Hyp mode.

Note

The difference between these two cases is:

• The Debug exception on a BKPT instruction executed in Hyp mode generates a Prefetch Abort
exception, taken to Hyp mode, and reported in the HSR using EC value 0x21.

• Aborts generated because HDCR.TDE is set to 1 generate a Hyp Trap exception, and are
reported in the HSR using EC value 0x20.

Use of the HSR

The HSR holds syndrome information for any synchronous exception taken to Hyp mode. Compared with the
reporting of exceptions taken to PL1 modes, the HSR:

• Always provides details of the fault. The DFSR and IFSR are not used.

• Provides more extensive information, for a wider range of exceptions.

Note

IRQ and FIQ exceptions taken to Hyp mode do not report any syndrome information in the HSR.

This section summarizes the general form of the HSR register, to show how it encodes exception syndrome
information, see the register description for more information. The register comprises:

• A 6-bit Exception class field, EC, that indicates the cause of the exception.

• An instruction length bit, IL. When an exception is caused by trapping an instruction to Hyp mode, this bit
indicates the length of the trapped instruction, as follows:

0 16-bit instruction trapped.

1 32-bit instruction trapped.

In other cases the IL field is not valid and is RES1.

• An instruction specific syndrome field, ISS. Architecturally, this field could be defined independently for
each defined Exception class (EC), but in practice several ISS formats are common to more than one EC.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6381
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
The format of the HSR depends on the value of the EC field, as follows:

0b000000<EC0b001100

The ISS part of the returned value includes the CV and COND fields described in Encoding
of ISS[24:20] when 0b000000<EC0b001100 on page G5-6382. Figure G5-17 on
page G5-6382 shows the HSR format in this case.

Figure G5-17 HSR format when the ISS includes CV and COND fields

EC==0b000000 or EC==0b001110

There are no generic fields within the ISS. Figure G5-18 on page G5-6382 shows the HSR
format in this case.

Figure G5-18 HSR format when the ISS does not include a COND field

Encoding of ISS[24:20] when 0b000000<EC0b001100

For EC values that are nonzero and less than or equal to 0b001100, ISS[24:20] provides the Condition code field for
the trapped instruction, together with a valid flag for this field. The encoding of this part of the ISS field is:

CV, ISS[24] Condition code valid. Possible values of this bit are:

0 The COND field is not valid.

1 The COND field is valid.

COND, ISS[23:20]

The Condition code for the trapped instruction. This field is valid only when CV is set to 1.

If CV is set to 0, this field is RES0.

The full descriptions of the HSR.ISS formats give more information about the CV field.

Note

In some circumstances, it is IMPLEMENTATION DEFINED whether a conditional instruction that fails its Condition
code check generates an Undefined Instruction exception, see Conditional execution of undefined instructions on
page G1-6080.

ISSEC IL

CV

0

31 30 29 26 25 24 23 20 19 0

0 COND

ISSEC IL

31 26 25 24 0
G5-6382 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
HSR exception classes

Table G5-32 on page G5-6383 shows the encoding of the HSR exception class field, EC. Values of EC not shown
in the table are reserved. For each EC value, the table references a subsection of the description of the HSR that
describes the associated ISS format and gives information about the cause of the exception, for example the
configuration required to enable the associated trap.

All EC encodings not shown in Table G5-31 on page G5-6379 are reserved by Arm.

Table G5-32 HSR.EC field encoding

EC Exception class ISS description, or notes

0b000000 Unknown reason ISS encoding for exceptions with an unknown reason on
page G8-6637.

0b000001 Trapped WFI or WFE instruction ISS encoding for exception from a WFI or WFE
instruction on page G8-6638.

0b000011 Trapped MCR or MRC access with (coproc==0b1111) ISS encoding for exception from an MCR or MRC access
on page G8-6639.

0b000100 Trapped MCRR or MRRC access with (coproc==0b1111) ISS encoding for exception from an MCRR or MRRC
access on page G8-6642.

0b000101 Trapped MCR or MRC access with (coproc==0b1110) ISS encoding for exception from an MCR or MRC access
on page G8-6639.

0b000110 Trapped LDC or STC access ISS encoding for exception from an LDC or STC
instruction on page G8-6643.

0b000111 Advanced SIMD or floating-point functionality trapped by a
HCPTR.{TASE, TCP10} control

ISS encoding for exception from an access to SIMD or
floating-point functionality, resulting from HCPTR on
page G8-6645.

0b001000 Trapped VMRS access, from ID group traps, that is not reported
using EC 0b000111

ISS encoding for exception from an MCR or MRC access
on page G8-6639.

This trap is not taken if the HCPTR settings trap the
access.

0b001100 Trapped MRRC access with (coproc==0b1110) ISS encoding for exception from an MCRR or MRRC
access on page G8-6642.

0b001110 Illegal exception return to AArch32 state ISS encoding for exception from an Illegal state or PC
alignment fault on page G8-6650.

0b010001 Exception on SVC execution in AArch32 state routed to EL2 ISS encoding for exception from HVC or SVC instruction
execution on page G8-6647.

0b010010 HVC instruction execution in AArch32 state, when HVC is not
disabled

0b010011 Trapped execution of SMC instruction in AArch32 state ISS encoding for exception from SMC instruction
execution on page G8-6647.

0b100000 Prefetch Abort from a lower Exception level ISS encoding for exception from a Prefetch Abort on
page G8-6648.

0b100001 Prefetch Abort taken without a change in Exception level

0b100010 PC alignment exception. ISS encoding for exception from an Illegal state or PC
alignment fault on page G8-6650.

0b100100 Data Abort from a lower Exception level ISS encoding for exception from a Data Abort on
page G8-6650.

0b100101 Data Abort taken without a change in Exception level
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6383
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
G5.12.6 Summary of register updates on exceptions taken to Hyp mode

For memory system faults that generate exceptions that are taken to Hyp mode, Table G5-33 on page G5-6384
shows the registers affected by each fault. In this table:

• Yes indicates that the register is updated.

• UNK indicates that the fault makes the register value UNKNOWN.

• A null entry, -, indicates that the fault does not affect the register.

Note

For a list of the MMU faults see Types of MMU faults on page G5-6355.

Table G5-33 Effect of an exception taken to Hyp mode on the reporting registers

Fault HSR HIFAR HDFAR HPFAR

Faults reported as Prefetch Abort exceptions:

MMU faulta at stage 1. Yes Yes UNK UNK

Translation or Access flag MMU faulta at stage 2. Yes Yes UNK Yes

Otherb MMU faulta at stage 2. Yes Yes UNK UNK

Stage 2 MMU faulta on a stage 1 translation. Yes Yes UNK Yes

Synchronous External abort on translation table walk. Yes Yes UNK UNK

Synchronous parity or ECC error on translation table walk. Yes Yes UNK UNK

Synchronous External abort. Yes IMP DEFc UNK UNK

Synchronous parity or ECC error on memory access. Yes Yes UNK UNK

Fault reported as Data Abort exception:

MMU faulta at stage 1. Yes UNK Yes UNK

Translation or Access flag MMU faulta at stage 2. Yes UNK Yes Yes

Otherb MMU faulta at stage 2. Yes UNK Yes UNK

Stage 2 MMU faulta on a stage 1 translation. Yes UNK Yes Yes

Synchronous External abort on translation table walk. Yes UNK Yes UNK

Synchronous parity or ECC error on translation table walk. Yes UNK Yes UNK

Synchronous External abort. Yes UNK IMP DEFc UNK

Synchronous parity or ECC error on memory access. Yes UNK Yes UNK

SError interrupt. Yes UNK UNK UNK

SError interrupt from a parity or ECC error on memory access. Yes UNK UNK UNK

Debug exception:

Breakpoint Instructiond, generates a Prefetch Abort exception. Yes UNK - UNK
G5-6384 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
Note

Unlike Table G5-29 on page G5-6376, the Hyp mode fault reporting table does not include an entry for a fault on
an instruction cache maintenance instruction. That is because, when the fault is taken to Hyp mode, the reporting
indicates the cause of the fault, for example a Translation fault, and ISS.CM is set to 1 to indicate that the fault was
on a cache maintenance instruction, see ISS encoding for exception from a Data Abort on page G8-6650.

Classification of MMU faults taken to Hyp mode

This subsection gives more information about the MMU faults shown in Table G5-33 on page G5-6384.

Note

All MMU faults are synchronous.

The table uses the following descriptions for MMU faults taken to Hyp mode:

MMU fault at stage 1

This is an MMU fault generated on a stage 1 translation performed in the Non-secure EL2
translation regime.

MMU fault at stage 2

This is an MMU fault generated on a stage 2 translation performed in the Non-secure PL1&0
translation regime.

As the table shows, for the faults in this group:

• Translation and Access flag faults update the HPFAR.

• Permission faults leave the HPFAR UNKNOWN.

MMU stage 2 fault on a stage 1 translation

This is an MMU fault generated on the stage 2 translation of an address accessed in a stage 1
translation table walk performed in the Non-secure PL1&0 translation regime. For more
information about these faults see Stage 2 fault on a stage 1 translation table walk on page G5-6362.

Figure G5-1 on page G5-6264 shows the different translation regimes and associated stages of translation.

Debug exception routed to Hyp mode because HDCR.TDE is set to 1. Generates a Hyp Trap exception.

Breakpoint Instruction or Vector Catch. Yes UNK - UNK

Watchpoint. Yes - Yes UNK

a. For more information, see Classification of MMU faults taken to Hyp mode on page G5-6385

b. MMU fault other than a Translation fault or an Access flag fault.

c. IMPLEMENTATION DEFINED. The FnV bit in the HSR.ISS field indicates whether the register holds a valid address.
See Fault address reporting on synchronous External aborts on page G5-6368.

d. All other debug exceptions are not permitted in Hyp mode.

Table G5-33 Effect of an exception taken to Hyp mode on the reporting registers (continued)

Fault HSR HIFAR HDFAR HPFAR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6385
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.13 Address translation instructions
G5.13 Address translation instructions

The System register encoding space includes encodings for instructions that either:

• Translate a virtual address (VA) to a physical address (PA).

• Translate a virtual address (VA) to an intermediate physical address (IPA).

Address translation system instructions on page K15-8657 summarizes these instructions.

When using the Short-descriptor translation table format, all translations performed by these instructions take
account of TEX remap when this is enabled, see Short-descriptor format memory region attributes, with TEX remap
on page G5-6323.

An address translation instruction that executes successfully returns the output address, a PA or an IPA, in the PAR.
This is a 64-bit register that can hold addresses of up to 40 bits.

It is IMPLEMENTATION DEFINED whether the address translation instructions return the values held in a TLB or the
result of a translation table walk. Therefore, Arm recommends that these instructions are not used at a time when
the TLB entries might be different from the underlying translation tables held in memory.

The following sections give more information about these instructions:

• Address translation instruction naming and operation summary on page G5-6386.

• Encoding and availability of the address translation instructions on page G5-6388.

• Determining the PAR format on page G5-6390.

• Handling of faults and aborts during an address translation instruction on page G5-6390.

G5.13.1 Address translation instruction naming and operation summary

Some older documentation uses the original names for the address translation instructions that were included in the
original Armv7 documentation. Table G5-34 on page G5-6386 summarizes the instructions that are available in
AArch32 state, and relates the old instruction names to the current names.

In an implementation that does not include EL2, there is no distinction between stage 1 translations and stage 1 and
2 combined translations.

For the stage 1 current state and stages 1 and 2 Non-secure state only instructions, the meanings of the final letters
of the names are:

PR PL1 mode, read operation.

PRP PL1 mode, read operation, taking account of PSTATE.PAN.

PW PL1 mode, write operation.

PWP PL1 mode, write operation, taking account of PSTATE.PAN.

UR User mode, read operation.

UW User mode, write operation.

Table G5-34 Naming of address translation instructions

Name Old name Description

ATS1CPR, ATS1CPW,
ATS1CUR, ATS1CUW

ATS1CPRP, ATS1CPWP

V2PCWPR, V2PCWPW,
V2PCWUR, V2PCWUW

Not applicablea

See ATS1C**, Address translation stage 1, current security
state on page G5-6387

ATS12NSOPR, ATS12NSOPW,
ATS12NSOUR, ATS12NSOUW

V2POWPR, V2POWPW,
V2POWUR, V2POWUW

See ATS12NSO**, Address translation stages 1 and 2,
Non-secure state only on page G5-6387

ATS1HR, ATS1HW Not applicableb See ATS1H*, Address translation stage 1, Hyp mode on
page G5-6388

a. Instructions are added by FEAT_PAN2 and do not have a previous name.

b. Instructions are part of EL2 and have no equivalent in the older descriptions.
G5-6386 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.13 Address translation instructions
Note

User mode can be described as the unprivileged mode. It is the only EL0 mode.

For the stage 1 Hyp mode instructions, the last letter of the instruction name is R for the read operation and W for
the write operation.

See also Encoding and availability of the address translation instructions on page G5-6388.

ATS1C**, Address translation stage 1, current security state

Any VMSAv8-32 implementation supports the ATS1C** instructions. They can be executed by any software
executing at PL1 or higher, in either Security state.

The ATS1C** instructions are ATS1CPR, ATS1CPW, ATS1CUR, and ATS1CUW and, when FEAT_PAN2 is
implemented, ATS1CPRP and ATS1CPWP. These instructions perform the address translations of the PL1&0
translation regime.

In an implementation that includes EL2, when executed in Non-secure state, these instructions return the IPA that
is the output address of the stage 1 translation. Figure G5-1 on page G5-6264 shows the different translation
regimes.

Note

The Non-secure PL1 and EL0 modes have no visibility of the stage 2 address translations, that can be defined only
at EL2, and translate IPAs to be PAs.

See Determining the PAR format on page G5-6390 for the format used when returning the result of these
instructions.

ATS12NSO**, Address translation stages 1 and 2, Non-secure state only

A VMSAv8-32 implementation supports the ATS12NSO** instructions only if it includes EL2. In an
implementation that includes EL2, in AArch32 state, they can be executed:

• By software executing in Non-secure state at EL2. This means by software executing in Hyp mode.

• If the implementation includes EL3, when EL3 is using AArch32, by software executing in Secure state at
PL1.

The ATS12NSO** instructions are ATS12NSOPR, ATS12NSOPW, ATS12NSOUR, and ATS12NSOUW.

In an implementation that includes EL3, when EL3 is using AArch64 and EL1 is using AArch32, any execution of
an ATS12NSO** instruction at Secure EL1 is trapped as an exception that is taken to EL3.

In an implementation that does not include EL2, but includes EL3, when EL3 is using AArch32 these instructions
are not UNDEFINED but each instruction behaves in the same way as the equivalent ATS1C** instruction.

If an implementation does not include EL2 and does not include EL3 then these instructions are CONSTRAINED
UNPREDICTABLE, with the permitted behavior that the instructions are UNDEFINED, see Unallocated System register
access instructions on page K1-8389.

Arm deprecates use of these instructions from any Secure PL1 mode other than Monitor mode.

In Secure state and in Non-secure Hyp mode these instructions perform the translations made by the Non-secure
PL1&0 translation regime.

These instructions always return the PA and final attributes generated by the translation. That is, for an
implementation that includes EL2, they return:

• The result of the two stages of address translation for the specified Non-secure input address.

• The memory attributes obtained by the combination of the stage 1 and stage 2 attributes.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6387
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.13 Address translation instructions
Note

From Hyp mode, the ATS1C** and ATS12NSO** instructions both return the results of address translations that
would be performed in the Non-secure modes other than Hyp mode. The difference is:

• The ATS1C** instructions return the Non-secure PL1 view of the associated address translation. That is, they
return the IPA output address corresponding to the VA input address.

• The ATS12NSO** instructions return the EL2, or Hyp mode, view of the associated address translation. That
is, they return the PA output address corresponding to the VA input address, generated by two stages of
translation.

See Determining the PAR format on page G5-6390 for the format used when returning the result of these
instructions.

ATS1H*, Address translation stage 1, Hyp mode

A VMSAv8-32 implementation supports the ATS1H* instructions only if it includes EL2. They can be executed by:

• Software executing in Non-secure state at EL2. This means by software executing in Hyp mode.

• Software executing in Secure state in Monitor mode.

The ATS1H* instructions are ATS1HR and ATS1HW. In an implementation that includes EL3, these instructions
are CONSTRAINED UNPREDICTABLE if executed in a Secure PL1 mode other than Monitor mode.

If an implementation does not include EL2 then these instructions are CONSTRAINED UNPREDICTABLE, with the
permitted behavior that the instructions are UNDEFINED, see Unallocated System register access instructions on
page K1-8389.

These instructions perform the translations made by the Non-secure EL2 translation regime. The instruction takes
a VA input address and returns a PA output address.

These instructions always return a result in a 64-bit format PAR.

G5.13.2 Encoding and availability of the address translation instructions

Software executing at EL0 never has any visibility of the address translation instructions, but software executing at
PL1 or higher can use the unprivileged address translation instructions to find the address translations used for
memory accesses by software executing at PL1 and EL0.

Note

For information about translations when the stage of address translation is disabled see The effects of disabling
address translation stages on VMSAv8-32 behavior on page G5-6270.

Table G5-35 on page G5-6388 shows the encodings for the address translation instructions, and their availability in
different implementations in different PE modes and states.

Table G5-35 Address translation instructions in AArch32 state

opc1 CRm opc2 Name Type Description

All VMSAv8-32 implementations, in all modes, at PL1 or higher, see ATS1C**, Address translation stage 1, current security state on
page G5-6387
G5-6388 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.13 Address translation instructions
The result of an instruction is always returned in the PAR. The PAR is a RW register and:

• In all implementations, the 32-bit format PAR is accessed using an MCR or MRC instruction with CRn set to c7,
CRm set to c4, and opc1 and opc2 both set to 0.

• The 64-bit format PAR is accessed using an MCRR or MRRC instruction with CRm set to c7, and opc1 set to 0.

Address translation instructions that are not available in a particular implementation are reserved and CONSTRAINED
UNPREDICTABLE. For example:

• In an implementation that does not include EL2, the encodings with an opc1 value of 4 are reserved and
CONSTRAINED UNPREDICTABLE. These are the ATS1H* instructions.

• In an implementation that does not include either EL2 or EL3, the encodings with opc2 values of 4-7 are
reserved and CONSTRAINED UNPREDICTABLE. These are the ATS12NSO** instructions.

The CONSTRAINED UNPREDICTABLE behavior of these encodings is that they are UNDEFINED, see Unallocated
System register access instructions on page K1-8389.

0

c8 0 ATS1CPR WO PL1 stage 1 read translation, current state

1 ATS1CPW WO PL1 stage 1 write translation, current state

2 ATS1CUR WO Unprivileged stage 1 read translation, current state

3 ATS1CUW WO Unprivileged stage 1 write translation, current state

c9 0 ATS1CPRPa WO PL1 stage 1 read translation, current state, PSTATE.PANa

1 ATS1CPWPa WO PL1 stage 1 write translation, current state, PSTATE.PANa

Implementation includes EL2, in Non-secure Hyp mode and Secure PL1 modes, see ATS12NSO**, Address translation stages 1 and
2, Non-secure state only on page G5-6387

0 c8 4 ATS12NSOPR WO Non-secure PL1 stage 1 and 2 read translation

5 ATS12NSOPW WO Non-secure PL1 stage 1 and 2 write translation

6 ATS12NSOUR WO Non-secure unprivileged stage 1 and 2 read translation

7 ATS12NSOUW WO Non-secure unprivileged stage 1 and 2 write translation

Implementation includes EL2, in Non-secure Hyp mode and Secure Monitor mode, see ATS1H*, Address translation stage 1, Hyp mode
on page G5-6388

4 c8 0 ATS1HR WO Hyp mode stage 1 read translation

1 ATS1HW WO Hyp mode stage 1 write translation

a. Instruction only supported when FEAT_PAN2 is implemented.

Table G5-35 Address translation instructions in AArch32 state (continued)

opc1 CRm opc2 Name Type Description
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6389
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.13 Address translation instructions
G5.13.3 Determining the PAR format

The PAR is a 64-bit register that supports both 32-bit and 64-bit PAR formats. This section describes how the PAR
format is determined, for returning a result from each of the groups of address translation instructions. The returned
result might be the translated address, or might indicate a fault on the translation, see Handling of faults and aborts
during an address translation instruction on page G5-6390.

ATS1C** instructions

Address translations for the current state. From modes other than Hyp mode:

• TTBCR.EAE determines whether the result is returned using the 32-bit or the 64-bit PAR
format.

• If the implementation includes EL3, the translation performed is for the current security state
and, depending on that state:

— The Secure or Non-secure TTBCR.EAE determines the PAR format.

— The result is returned to the Secure or Non-secure instance of the PAR

Instructions executed in Hyp mode always return a result to the Non-secure PAR, using the 64-bit
format.

ATS12NSO** instructions

Address translations for the Non-secure PL1 and EL0 modes. These instructions return a result
using the 64-bit PAR format if at least one of the following is true:

• The Non-secure TTBCR.EAE bit is set to 1.

• The implementation includes EL2, and the value of HCR.VM is 1.

Otherwise, the instruction returns a result using the 32-bit PAR format.

Instructions executed in a Secure PL1 mode return a result to the Secure PAR. Instructions executed
in Hyp mode return a result to the Non-secure PAR.

ATS1H* instructions

Address translations from Hyp mode. These instructions always return a result using the 64-bit PAR
format.

Instructions executed in Secure Monitor mode return a result to the Secure PAR. Instructions
executed in Non-secure Hyp mode return a result to the Non-secure PAR.

G5.13.4 Handling of faults and aborts during an address translation instruction

When a stage of address translation is enabled, any corresponding address translation instruction requires a
translation table lookup, and this might require a translation table walk. However, the input address for the
translation might be a faulting address, either because:

• The translation table entries used for the translation indicate a fault.

• A stage 2 fault or an External abort occurs on the required translation table walk.

VMSAv8-32 memory aborts on page G5-6354 describes the faults that might occur on a translation table walk in
AArch32 state.

How the fault is handled, and whether it generates an exception, depends on the cause of the fault, as described in:

• MMU fault on an address translation instruction on page G5-6390.

• External abort during an address translation instruction on page G5-6391.

• Stage 2 fault on a current state address translation instruction on page G5-6391.

MMU fault on an address translation instruction

In the following cases, an MMU fault on an address translation is reported in the PAR, and no abort is taken. This
applies:

• For a faulting address translation instruction executed in Hyp mode, or in a Secure PL1 mode.
G5-6390 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.13 Address translation instructions
• For a faulting address translation instruction executed in a Non-secure PL1 mode, for cases where the fault
would generate a stage 1 abort if it occurred on the equivalent load or store operation.

Using the PAR to report a fault on an address translation instruction on page G5-6391 gives more information about
how these faults are reported.

Note

• The Domain fault encodings shown in Table G5-27 on page G5-6374 are used only for reporting a fault on
an address translation instruction that uses the 64-bit PAR format. That is, they are used only in an
implementation that includes EL2, and are used for reporting a Domain fault on either:

— An ATS1C** instruction executed in Hyp mode.

— An ATS12NSO** instruction executed when the value of HCR.VM is 1.

These encodings are never used for fault reporting in the DFSR, IFSR, or HSR.

• For an address translation instruction executed in a Non-secure PL1 mode, for a fault that would generate a
stage 2 abort if it occurred on the equivalent load or store operation, the stage 2 abort is generated as described
in Stage 2 fault on a current state address translation instruction on page G5-6391.

Using the PAR to report a fault on an address translation instruction

For a fault on an address translation instruction for which no abort is taken, the PAR is updated with the following
information, to indicate the fault:

• The fault code, that would normally be written to the Fault status register. The code used depends on the
current translation table format, as described in either:

— PL1 fault reporting with the Short-descriptor translation table format on page G5-6372.

— PL1 fault reporting with the Long-descriptor translation table format on page G5-6374.

See also the Note at the start of Determining the PAR format on page G5-6390 about the Domain fault
encodings shown in Table G5-27 on page G5-6374.

• A status bit, that indicates that the translation operation failed.

The fault does not update any Fault Address Register.

External abort during an address translation instruction

As stated in External abort on a translation table walk on page G5-6363, an External abort on a translation table
walk generates a Data Abort exception. The abort can be synchronous or asynchronous, and behaves as follows:

Synchronous External abort on a translation table walk

The fault status and fault address registers of the Security state to which the abort is taken are
updated. The fault status register indicates the appropriate External abort on a Translation fault, and
the fault address register indicates the input address for the translation.

The PAR is UNKNOWN.

Asynchronous External abort on a translation table walk

The fault status register of the Security state to which the abort is taken is updated, to indicate the
asynchronous External abort. No fault address registers are updated.

The PAR is UNKNOWN.

Stage 2 fault on a current state address translation instruction

If the PE is in a Non-secure PL1 mode and executes one of the ATS1C** instructions, then a fault in the stage 2
translation of an address accessed in a stage 1 translation table lookup generates an exception. This is equivalent to
the case described in Stage 2 fault on a stage 1 translation table walk on page G5-6362. When this fault occurs on
an ATS1C** address translation instruction:

• A Hyp Trap exception is taken to Hyp mode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6391
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.13 Address translation instructions
• The PAR is UNKNOWN.

• The HSR indicates that:

— The fault occurred on a translation table walk.

— The operation that faulted was a cache maintenance instruction.

• The HPFAR holds the IPA that faulted.

• The HDFAR holds the VA that the executing software supplied to the address translation instruction.
G5-6392 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.14 Pseudocode description of VMSAv8-32 memory system operations
G5.14 Pseudocode description of VMSAv8-32 memory system operations

This section contains a list of pseudocode functions describing VMSAv8-32 memory operations. The following
subsections describe the pseudocode functions:

• Full Physical Address on page G5-6393.

• Translation regime on page G5-6393.

• Address translation on page G5-6393.

• Long-descriptor Translation table walk on page G5-6394.

• Short-descriptor Translation table walk on page G5-6394.

• Memory attribute decoding on page G5-6394.

• Fault detection on page G5-6394.

See also the descriptions of pseudocode for general memory system operations in Pseudocode description of
general memory System instructions on page G4-6258.

G5.14.1 Full Physical Address

A complete physical address necessary to identify a location in physical memory is captured by the type
FullAddress. This is composed of:

• A bitstring address, which identifies the physical address.

• An enumeration paspace, which identifies the physical address space.

G5.14.2 Translation regime

The architecture specifies translation regimes in terms of Privilege Level (PL). An alternative approach is used in
pseudocode where regimes are expressed in terms of ELs instead, mirroring regimes in AArch64. The pseudocode
and ARM use a differently named but equivalent set of regimes:

G5.14.3 Address translation

AArch32.TranslateAddress() acts as the entry point to VMSAv8-32 and performs the required address translation
based on the provided parameters and system register configurations. The function returns an AddressDescriptor
structure holding valid data for either of the following:

• Target memory address and attributes for a non-faulting translation.

• Fault details holding data to be populated in syndrome registers.

AArch32.FullTranslate() selects the translation regime and performs first and potentially second stage of translation
returning the physical address (PA) and attributes of target memory. AArch32.S1TranslateLD() carries out the first
stage of translation when stage 1 is not disabled and Long-descriptor format is used, mapping the virtual address
(VA) to the intermediate physical address (IPA) and carrying out permission checks. Alternatively
AArch32.S1TranslateSD() carries out the first stage of translation using the Short-descriptor format along with
Domain checks and TEX memory attribute mapping. Otherwise, AArch32.S1DisabledOutput() assigns the
appropriate memory attributes and flat maps the input address to the output address. AArch32.S2Translate() carries
out stage 2 translation for Regime_EL10 when enabled, mapping the IPA to the PA. Otherwise, the IPA is the PA.

Table G5-36 Pseudocode and equivalent ARM regimes

Pseudocode Regime Equivalent ARM regime

Regime_EL10 Secure PL1&0 when EL3 is AArch64 or Non-Secure PL1&0

Regime_EL30 Secure PL1&0 when EL3 is AArch32

Regime_EL2 Non-Secure PL2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6393
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.14 Pseudocode description of VMSAv8-32 memory system operations
G5.14.4 Long-descriptor Translation table walk

A separate walk function is dedicated for Stage 1 Long-descriptor format, AArch32.S1WalkLD(), and Stage 2,
AArch32.S2Walk(), which supports only Long-descriptor format. Each use walk parameters extracted from related
system registers and held in S1TTWParams for stage 1 and S2TTWParams for stage 2. Parameters are collected
based on the active translation regime. For instance, stage 1 EL2 translation regime parameters are obtained and
returned by the function AArch32.S1TTWParamsPL2(). It is important to note that Regime_EL30 and Regime_EL10
utilise the same parameter source registers and a single function, AArch32.S1TTWParamsPL10(), gathers them. Given
these parameters, a walk initializes a walk state of the type TTWState, holding the base address of the first
translation table.

The walk progressively fetches and decodes Translation Table descriptors, updating the walk state to the next base
address as it descends through the levels of tables until a Block or Page descriptor is discovered or an invalid
descriptor is fetched. Decoding the descriptor for both stage 1 and stage 2 walks is carried out by the function
AArch32.DecodeDescriptorTypeLD().

For a non-faulting walk, a valid final walk state is returned, otherwise a faulting walk could report one of the
following at a specified level:

• Translation Fault.

• Address Size Fault.

• Access Flag Fault.

G5.14.5 Short-descriptor Translation table walk

Short-Descriptor format is only supported for Regime_EL10 and Regime_EL30 (PL1&0) Stage 1 and a separate
walk function is dedicated for that, AArch32.S1WalkSD(). The limited number of parameters are collected in the walk
function and would otherwise follow a similar flow to Long-descriptor formats of iteratively updating the walk
state. The walk notably collects the domain and Short-descriptor format type which are unique to Short-descriptor
formats. The descriptor type is decoded using AArch32.DecodeDescriptorTypeSD().

For a non-faulting walk, a valid final walk state is returned, otherwise a faulting walk could report one of the
following at a specified level:

• Translation Fault.

• Address Size Fault.

• Access Flag Fault, when SCTLR.AFE is configured to support Access flags.

G5.14.6 Memory attribute decoding

If a stage of translation is enabled, Fetched Leaf descriptors encode memory attributes assigned to the output of
translation. Stage 1 Long-descriptor format memory attributes are decoded by the function S1DecodeMemAttrs().
Likewise, stage 2 memory attributes are decoded by the function S2DecodeMemAttrs() followed by combining stage
1 and stage 2 attributes by the function S2CombineS1MemAttrs(). A separate set of functions are used to assign memory
attributes to the output of Short-descriptor format. AArch32.DefaultTEXDecode() is used when TEX remapping is
disabled, otherwise AArch32.RemappedTEXDecode() defines output memory attributes.

G5.14.7 Fault detection

As soon as translation is invoked, a reserve FaultRecord accompanies the process, capturing the stage and level of
translation as it proceeds. When a fault is detected, it is reflected in the FaultRecord and reported back as the result
of translation with the most recent state to be reported already captured within. The following functions detect a
certain type of fault, their outputs are all boolean with a TRUE value on detection:

• AArch32.S1LDHasPermissionsFault() and AArch32.S2HasPermissionsFault() detect a permissions fault for stage
1 and stage 2 respectively for Long-descriptor format. AArch32.S1SDHasPermissionsFault() detects a
permissions fault for a translation in Short-descriptor format. Note that for atomic instructions introduced by
FEAT_LSE, these functions are called twice, once to check for read permissions and another for write
allowing the correct failure to be reported.
G5-6394 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.14 Pseudocode description of VMSAv8-32 memory system operations
• AArch32.S1HasAlignmentFault() and AArch32.S2HasAlignmentFault() detect an alignment fault for stage 1 and
stage 2 respectively.

• AArch32.S2InconsistentSL() detects a stage 2 translation fault caused by erroneous configuration of the
VTCR.SL0 field.

• AArch32.VAIsOutOfRange() detects a stage 1 translation fault caused by virtual addresses larger than the address
input size configured. Similarly, AArch32.IPAIsOutOfRange() detects a stage 2 translation fault caused by the
output of stage 1 being larger than the configured input size for stage 2. Both are solely part of
Long-descriptor format translation.

Note

Domain faults are detected inline as part of AArch32.S1TranslateSD() since they are a simple equality check.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6395
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.15 About the System registers for VMSAv8-32
G5.15 About the System registers for VMSAv8-32

The System registers and System instructions that are accessible in AArch32 state are almost all in the encoding
space described in The AArch32 System register interface on page G1-6109. This section gives general information
about these registers, which comprise:

• Registers in the (coproc==0b1111) encoding space, that provide control and status information for the PE in
Non-debug state.

• Registers in the (coproc==0b1110) encoding space, including:

— Debug registers.

— Trace registers.

— Legacy execution environment registers.

VMSAv8-32 organization of registers in the (coproc==0b1110) encoding space on page G7-6417 summarizes the
registers in the (coproc==0b1110) encoding space, and indicates where these registers are described, either in this
manual or in other architecture specifications.

VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space on page G7-6420 summarizes the
registers in the (coproc==0b1111) encoding space, and indicates where in this manual these registers are described.

Note

Many implementations include other interfaces to some System registers, for example a memory-mapped interface
to some debug System registers. These are described in the appropriate sections of this manual.

G5.15.1 Classification of System registers

Features provided by EL3 and EL2 integrate with many features of the architecture. Therefore, the descriptions of
the individual System registers include information about how these Exception levels affect the register. This
section:

• Summarizes how EL3 and EL2 affect the implementation of the System registers, and the classification of
those registers.

• Summarizes how EL3 controls access to the System registers.

• Describes an EL3 signal that can control access to some registers in the (coproc==0b1111) encoding space.

It contains the following subsections:

• Banked System registers on page G5-6396.

• Restricted access System registers on page G5-6397.

• Configurable access System registers on page G5-6397.

• EL2-mode System registers on page G5-6398.

• Common System registers on page G5-6399.

• Access to registers from Monitor mode on page G5-6399.

• The CP15SDISABLE and CP15SDISABLE2 input signals on page G5-6400.

Note

EL3 defines the register classifications of Banked, Restricted access, Configurable, and Common. EL2 defines the
EL2-mode classification.

It is IMPLEMENTATION DEFINED whether each IMPLEMENTATION DEFINED register is Banked, Restricted access,
Configurable, EL2-mode, or Common.

Banked System registers

In an implementation that includes EL3 using AArch32, some System registers are banked. Banked System
registers have two copies, one Secure and one Non-secure. The SCR.NS bit selects the Secure or Non-secure
instance of the register.
G5-6396 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.15 About the System registers for VMSAv8-32
A Banked System register can contain a mixture of:

• Fields that are banked.

• Fields that are read-only in Non-secure PL1 or EL2 modes but read/write in the Secure state.

The System Control Register SCTLR is an example of a register of that contains this mixture of fields.

The Secure copies of the Banked System registers are sometimes referred to as the Secure Banked System registers.
The Non-secure copies of the Banked System registers are sometimes referred to as the Non-secure Banked System
registers.

Restricted access System registers

In an implementation that includes EL3, some System registers are present only in Secure state. These are called
Restricted access registers, and their read/write access permissions are:

• In Non-secure state, software cannot modify Restricted access registers.

• For the NSACR, in Non-secure state:

— Software running at PL1 or higher can read the register.

— Unprivileged software, meaning software running at EL0, cannot read the register.

This means that Non-secure software running at PL1 or higher can read the access permissions for System
registers that have Configurable access.

If EL3 is using AArch64, then any read of the NSACR from Non-secure EL2 using AArch32, or Non-secure
EL1 using AArch32, returns the value 0x00000C00.

• For all other Restricted access registers, Non-secure software cannot read the register.

In an implementation that does not include EL3:

• SDER is implemented only in Secure state.

• Any read of the NSACR returns the value 0x00000C00.

• All other accesses to Restricted access System registers are UNDEFINED.

Configurable access System registers

Secure software can configure the access to some System registers. These registers are called Configurable access
registers, and the control can be:

• A bit in the control register determines whether the register is:

— Accessible from Secure state only.

— Accessible from both Secure and Non-secure states.

• A bit in the control register changes the accessibility of a register bit or field. For example, setting a bit in the
control register might mean that an RW field behaves as RAZ/WI when accessed from Non-secure state.

Bits in the NSACR control access.

In an AArch32 implementation that includes EL3:

• There are no Configurable access System registers in the (coproc==0b1110) encoding space.

• The only required Configurable access register in the (coproc==0b1111) encoding space is the CPACR.

— Floating-point Status and Control Register, FPSCR

— Floating-point Exception register, FPEXC.

— Floating-point System ID register, FPSID.

— Media and VFP Feature Register 0, MVFR0.

— Media and VFP Feature Register 1, MVFR1.

— Media and VFP Feature Register 2, MVFR2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6397
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.15 About the System registers for VMSAv8-32
EL2-mode System registers

In an implementation that includes EL2, if EL2 can use AArch32, the implementation provides a number of
registers for use in the EL2 mode, Hyp mode. As with other System register encodings, some of these register
encodings provide write-only operations. When the implementation includes EL3 and EL3 is using AArch32, these
registers are also accessible from Monitor mode when the value of SCR.NS is 1.

The following subsections describe the EL2-mode registers:

• Hyp mode read/write registers in the (coproc==0b1111) encoding space on page G5-6398.

• Hyp mode encodings for shared (coproc==0b1111) System registers on page G5-6398.

• Hyp mode (coproc==0b1111) write-only System instructions on page G5-6399.

There are no EL2-mode registers in the (coproc==0b1110) encoding space.

Hyp mode read/write registers in the (coproc==0b1111) encoding space

These registers are implemented only in Non-secure state, and in Non-secure state they are accessible only from
Hyp mode.

Except for accesses to CNTVOFF in an implementation that includes EL3 but not EL2, the behavior of accesses to
these registers is as follows:

• In Secure state, the registers can be accessed from EL3 when SCR.NS is set to 1, see Access to registers from
Monitor mode on page G5-6399.

• The following accesses are UNDEFINED:

— Accesses from Non-secure PL1 modes.

— Accesses in Secure state when SCR.NS is set to 0.

In an implementation that includes EL3 but not EL2, the behavior of accesses to CNTVOFF is as follows:

• Any access from Secure Monitor mode is CONSTRAINED UNPREDICTABLE, regardless of the value of SCR.NS.
The CONSTRAINED UNPREDICTABLE behavior is that the access is UNDEFINED, see Unallocated System
register access instructions on page K1-8389.

• All other accesses are UNDEFINED.

Note

Except for CNTVOFF, the Hyp mode registers are part of EL2, meaning they are implemented only if the
implementation includes EL2. However, conceptually, CNTVOFF is part of any implementation of the Generic
Timer, see The virtual offset register on page G6-6410. This means the behavior of CNTVOFF in an implementation
that does not include EL2 is not covered by the general definition of the behavior of the Hyp mode (coproc==0b1111)
read/write registers.

Hyp mode encodings for shared (coproc==0b1111) System registers

Some Hyp mode registers share the Secure instance of an existing banked register. In this case, the implementation
includes an encoding for the register that is accessible only in Hyp mode, or in Monitor mode when SCR.NS is
set to 1.

For these registers, the following accesses are UNDEFINED:

• Accesses from Non-secure PL1 modes.

• Accesses in Secure state when SCR.NS is set to 0.

In Monitor mode, the Secure copies of these registers can be accessed either:

• Using the DFAR or IFAR encoding with SCR.NS set to 0.

• Using the HDFAR or HIFAR encoding with SCR.NS set to 1.

However, between accessing a register using one alias and accessing the register using the other alias, a Context
synchronization event is required to ensure the ordering of the accesses.
G5-6398 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.15 About the System registers for VMSAv8-32
Hyp mode (coproc==0b1111) write-only System instructions

Architecturally, these encodings are an extension of the banked register encodings described in Banked System
registers on page G5-6396, where:

• The implementation does not implement the operation in Secure state.

• In Non-secure state, the operation is accessible only at EL2, that is, only from Hyp mode.

In Secure state:

• These instructions can be accessed from Monitor mode regardless of the value of SCR.NS, see Access to
registers from Monitor mode on page G5-6399.

• Accesses to these instructions are CONSTRAINED UNPREDICTABLE if executed in a Secure mode other than
Monitor mode.

Accesses to these instructions are UNDEFINED if accessed from a Non-secure PL1 mode.

Common System registers

Some System registers and operations are common to the Secure and Non-secure Security states. These are
described as the Common access registers, or simply as the Common registers. These registers include:

• Read-only registers that hold configuration information.

• Register encodings used for various memory system operations, rather than to access registers.

• The ISR.

• All System registers in the (coproc==0b1110) encoding space.

Secure System registers for the (coproc==0b1111) encoding space

The Secure System registers in the (coproc==0b1111) encoding space comprise:

• The Secure copies of the Banked System registers in the (coproc==0b1111) encoding space.

• The Restricted access System registers in the (coproc==0b1111) encoding space.

• The Configurable access System registers in the (coproc==0b1111) encoding space that are configured to be
accessible only from Secure state.

In an implementation that includes EL3, the Non-secure System registers are the System registers other than the
Secure System registers.

Access to registers from Monitor mode

When the PE is in Monitor mode, the PE is in Secure state regardless of the value of the SCR.NS bit. In Monitor
mode, the SCR.NS bit determines whether, for System registers in the (coproc==0b1111) encoding space, valid uses
of the MRC, MCR, MRRC, and MCRR instructions access the Secure Banked System registers or the Non-secure Banked
System registers. That is, when:

NS == 0 Common, Restricted access, and Secure Banked System registers are accessed by MRC, MCR, MRRC, and
MCRR instructions that target the (coproc==0b1111) encoding space.

If the implementation includes EL2, the registers listed in Hyp mode read/write registers in the
(coproc==0b1111) encoding space on page G5-6398 and Hyp mode encodings for shared
(coproc==0b1111) System registers on page G5-6398 are not accessible, and any attempt to access
them generates an Undefined Instruction exception.

Note

The operations listed in Hyp mode (coproc==0b1111) write-only System instructions on
page G5-6399 are accessible in Monitor mode regardless of the value of SCR.NS.

System instructions in the (coproc==0b1111) encoding space use the Security state to determine all
resources used, that is, all operations performed by these instructions are performed in Secure state.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6399
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.15 About the System registers for VMSAv8-32
NS == 1 Common, Restricted access and Non-secure Banked System registers are accessed by MRC, MCR, MRRC,
and MCRR instructions that target the (coproc==0b1111) encoding space.

If the implementation includes EL2, all the registers and operations listed in the subsections of
EL2-mode System registers on page G5-6398 are accessible, using the MRC, MCR, MRRC, or MCRR
instructions required to access them from Hyp mode.

System instructions in the (coproc==0b1111) encoding space use the Security state to determine all
resources used, that is, all operations by these instructions are performed in Secure state.

The Security state determines whether the Secure or Non-secure banked registers determine the control state.

Note

Where the contents of a register select the value accessed by an MRC or MCR access to a different register, then the
register that is used for selection is being used as control state. For example, CSSELR selects the current Cache Size
Identification Register, and therefore CSSELR is used as control state. Therefore, in Monitor mode:

• SCR.NS determines whether the Secure or Non-secure CSSELR is accessible.

• Because the PE is in Secure state, the Secure CSSELR selects the current Cache Size Identification Register.

From Armv8.3, it is possible to have multiple Cache Size Identification Registers. For more details, see Possible
formats of the Cache Size Identification Registers, CCSIDR and CCSIDR2 on page G4-6231.

The CP15SDISABLE and CP15SDISABLE2 input signals

When EL3 is using AArch32, it provides an input signal, CP15SDISABLE, that disables write access to some of
the Secure registers when asserted HIGH. The CP15SDISABLE signal has no effect on:

• Register accesses from AArch64 state.

• Register accesses from Secure EL1 when EL3 is using AArch64 and EL1 is using AArch32.

Note

When EL3 is using AArch32, the interaction between CP15SDISABLE and any IMPLEMENTATION DEFINED
register is IMPLEMENTATION DEFINED.

On a Warm reset by the external system that resets the PE into EL3 using AArch32, the CP15SDISABLE input
signal must be taken LOW. This permits the Reset code to set up the configuration of EL3 features. When the input
is asserted HIGH, any attempt to write to the Secure registers that are affected by CP15SDISABLE results in an
Undefined Instruction exception.

The CP15SDISABLE input does not affect reading Secure registers, or reading or writing Non-secure registers. It
is IMPLEMENTATION DEFINED how the input is changed and when changes to this input are reflected in the PE, and
an implementation might not provide any mechanism for driving the CP15SDISABLE input HIGH. However, in
an implementation in which the CP15SDISABLE input can be driven HIGH, changes in the state of
CP15SDISABLE must be reflected as quickly as possible. Any change must occur before completion of an
Instruction Synchronization Barrier operation, issued after the change, is visible to the PE with respect to instruction
execution boundaries. Software must perform an Instruction Synchronization Barrier operation meeting the above
conditions to ensure all subsequent instructions are affected by the change to CP15SDISABLE.

When EL3 is using AArch32, use of CP15SDISABLE means key Secure features that are accessible only at PL1
can be locked in a known state. This provides an additional level of overall system security. Arm expects control of
CP15SDISABLE to reside in the system, in a block dedicated to security.

When FEAT_CP15SDISABLE2 is implemented and EL3 is using AArch32, EL3 provides a second input signal,
CP15SDISABLE2. CP15SDISABLE2 has all of the properties of CP15SDISABLE described above. The
difference between CP15SDISABLE and CP15SDISABLE2 is only in the set of registers each signal affects.

Information on whether a given register is affected by CP15SDISABLE, or CP15SDISABLE2 when it is
implemented, can be found in the access pseudocode for that register, as described in Chapter G8 AArch32 System
Register Descriptions.
G5-6400 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The AArch32 Virtual Memory System Architecture
G5.16 Functional grouping of VMSAv8-32 System registers
G5.16 Functional grouping of VMSAv8-32 System registers

This section describes how the System registers in an VMSAv8-32 implementation divide into functional groups.
The functional groups of AArch32 registers are:

• Special-purpose registers.

• VMSA-specific registers.

• ID registers.

• Performance monitors registers.

• Activity monitors registers.

• Debug registers.

• The Reliability, Availability, and Serviceability Extension registers.

• Generic timer registers.

• Cache maintenance System instructions.

• Address translation System instructions.

• TLB maintenance System instructions.

• Base system registers.

• Legacy feature registers and System instructions.

For a list of these functional groups and the registers in each group, see Functional index of AArch32 registers and
System instructions on page K15-8650.

Chapter G8 AArch32 System Register Descriptions describes each of these registers.

Note

• Table G7-3 on page G7-6424 lists all of the VMSAv8-32 System registers in the (coproc==0b1111) encoding
space, ordered by:

1. The CRn primary register used when using a 32-bit access to the register.

For 64-bit register accesses using an MCRR or MRRC instruction, the instruction arguments that identify
the target register are {coproc, Rm, opc1} The value of Rm determines where these registers appear in
Table G7-3 on page G7-6424, so that these registers appear with the 32-bit registers accessed using
that value for CRn. So, for example, the 64-bit access to TTBR0, that uses (CRm==c2), appears with the
32-bit access to TTBR0, that uses (CRn==c2).

2. The opc1 value used when accessing the register.

3. For 32-bit registers, the {CRm, opc2} values used when accessing the register.

• The functional groups defined in this section mainly consist of the VMSAv8-32 System registers, but include
some additional System registers.

• Some registers belong to more than one functional group.

For other related information, see:

• The AArch32 System register interface on page G1-6109 for general information about the access to the
AArch32 System registers, including the main register access instructions MRC and MCR.

• About the System registers for VMSAv8-32 on page G5-6396.

• VMSAv8-32 organization of registers in the (coproc==0b1110) encoding space on page G7-6417.

• VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space on page G7-6420.

• About the AArch32 System registers on page G8-6438.

The register descriptions in Chapter G8 AArch32 System Register Descriptions, assume you are familiar with these
functional groups, and use conventions and other information from them without any explanation.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G5-6401
ID072021 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.16 Functional grouping of VMSAv8-32 System registers
G5-6402 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter G6
The Generic Timer in AArch32 state

This chapter describes the implementation of the Arm Generic Timer as an extension to an Armv8 implementation.
It includes an overview of the AArch32 System register interface to an Arm Generic Timer.

It contains the following sections:

• About the Generic Timer in AArch32 state on page G6-6404.

• The AArch32 view of the Generic Timer on page G6-6408.

Chapter D11 The Generic Timer in AArch64 state describes the AArch64 view of the Generic Timer, including
additional timers that can be implemented in AArch64 state, and Chapter I2 System Level Implementation of the
Generic Timer describes the system level implementation of the Generic Timer.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G6-6403
ID072021 Non-Confidential

The Generic Timer in AArch32 state
G6.1 About the Generic Timer in AArch32 state
G6.1 About the Generic Timer in AArch32 state

Figure G6-1 on page G6-6404 shows an example system-on-chip that uses the Generic Timer as a system timer. In
this figure:

• This manual defines the architecture of the individual PEs in the multiprocessor blocks.

• The ARM Generic Interrupt Controller Architecture Specification defines a possible architecture for the
interrupt controllers.

• Generic Timer functionality is distributed across multiple components.

Figure G6-1 Generic Timer example

The Generic Timer:

• Provides a system counter, that measures the passing of time in real-time.

Note
The Generic Timer can also provide other components at a system level, but Figure G6-1 on page G6-6404
does not show any such components.

• Supports virtual counters that measure the passing of virtual-time. That is, a virtual counter can measure the
passing of time on a particular virtual machine.

• Timers, that can trigger events after a period of time has passed. The timers:

— Can be used as count-up or as count-down timers.

— Can operate in real-time or in virtual-time.

This chapter describes an instance of the Generic Timer component that Figure G6-1 on page G6-6404 shows as
Timer_0 or Timer_1 within the Multiprocessor A or Multiprocessor B block. This component can be accessed from
AArch64 state or AArch32 state, and this chapter describes access from AArch32 state. Chapter D11 The Generic
Timer in AArch64 state describes access to this component from AArch64 state.

Note

The reset requirements of Generic Timer registers are more strict when they are accessed from AArch32 state than
when they are accessed from AArch64 state.

System
counter

Always-powered
domain

Power
controller

System Timer Bus

APB

Counter interface

Interrupt
Controller

Timer_0

PE_0

Timer_1

PE_1

Shared cache

Memory interconnect and memory controller

Counter interface

Interrupt
Controller

Timer_0

PE_0

Timer_1

PE_1

Shared cache

System
eventsnFIQ,

nIRQ
nFIQ,
nIRQ

Cache Cache Cache Cache

Multiprocessor A Multiprocessor B
G6-6404 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Generic Timer in AArch32 state
G6.1 About the Generic Timer in AArch32 state
A Generic Timer implementation must also include a memory-mapped system component. This component:

• Must provide the System counter shown in Figure G6-1 on page G6-6404.

• Optionally, can provide timer components for use at a system level.

Chapter I2 System Level Implementation of the Generic Timer describes this memory-mapped component.

G6.1.1 The full set of Generic Timer components

Within a system that might include multiple PEs, a full set of Generic Timer components is as follows:

The system counter

This provides a uniform view of system time, see The system counter on page G6-6406. Because
this must be implemented at the system level, it is accessed through The system level
memory-mapped implementation of the Generic Timer on page G6-6405. However, during
initialization, a status register in each implemented timer in the system must be programmed with
the frequency of the system counter, so that software can read this frequency.

PE implementations of the Generic Timer

Each PE implementation of the Generic Timer provides the following components:

• A physical counter, that gives access to the count value of the system counter. When
FEAT_ECV is implemented, EL2 is using AArch64, and EL2 is implemented and enabled in
the current Security state, the CNTPOFF_EL2 register allows offsetting of AArch32 physical
timers and counters.

• A virtual counter, that gives access to virtual time. In AArch32 state, the CNTVOFF register
defines the offset between physical time, as defined by the value of the system counter, and
virtual time.

• A number of timers. In an implementation where all Exception levels are implemented and
can use AArch32 state, the timers that are accessible from AArch32 state are:

— A Secure PL1 physical timer.

— A Non-secure EL1 physical timer.

— A Non-secure EL2 physical timer.

— An EL1 virtual timer.

— A Non-secure EL2 virtual timer.

— A Secure EL2 virtual timer.

— A Secure EL2 physical timer.

The Non-secure EL2 virtual timer is available when FEAT_VHE is implemented.

The Secure EL2 timers are available when FEAT_SEL2 is implemented, but are only
accessible in AArch32 state if using EL0, when EL0 is using AArch32, Secure EL2 is using
AArch64, and HCR_EL2.{E2H,TGE} == {1, 1}.

Note
The Secure PL1 physical timer uses the Secure banked instances of the CNTP_CTL,
CNTP_CVAL, and CNTP_TVAL registers, and the Non-secure EL1 physical timer uses the
Non-secure instances of the same registers.

The AArch32 view of the Generic Timer on page G6-6408 describes these components.

The system level memory-mapped implementation of the Generic Timer

The memory-mapped registers that control the components of the system level implementation of
the Generic Timer are grouped into frames. The Generic Timer architecture defines the offset of
each register within its frame, but the base address of each frame is IMPLEMENTATION DEFINED, and
defined by the system.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G6-6405
ID072021 Non-Confidential

The Generic Timer in AArch32 state
G6.1 About the Generic Timer in AArch32 state
Each system level component has one or two register frames. The possible system level components
are:

The memory-mapped counter module, required

This module controls the system counter. It has two frames:

• A control frame, CNTControlBase.

• A status frame, CNTReadBase.

The memory-mapped timer control module, required

The system level implementation of the Generic Timer can provide up to eight timers,
and the memory-mapped timer control module identifies:

• Which timers are implemented.

• The features of each implemented timer.

This module has a single frame, CNTCTLBase.

Memory-mapped timers, optional

An implemented memory-mapped timer:

• Must provide a privileged view of the timer, in the CNTBaseN frame.

• Optionally. provides an unprivileged view of the timer in the CNTEL0BaseN
frame.

N is the timer number, and the corresponding frame number, in the range 0-7.

Chapter I2 System Level Implementation of the Generic Timer describes these components.

G6.1.2 The system counter

The Generic Timer provides a system counter with the following specification:

Width From Armv8.0 to Armv8.5 inclusive, at least 56 bits wide. The value returned by any 64-bit read of
the counter is zero-extended to 64 bits.

From Armv8.6, must be 64 bits wide.

Frequency From Armv8.0 to Armv8.5 inclusive, increments at a fixed frequency, typically in the range
1-50MHz. It can support one or more alternative operating modes in which it increments by larger
amounts at a lower frequency, typically for power-saving.

From Armv8.6, increments at a fixed frequency of 1GHz.

Roll-over Roll-over time of not less than 40 years.

Accuracy Arm does not specify a required accuracy, but recommends that the counter does not gain or lose
more than ten seconds in a 24-hour period.

Use of lower-frequency modes must not affect the implemented accuracy.

Start-up Starts operating from zero.

The system counter, once configured and running, must provide a uniform view of system time. More precisely, it
must be impossible for the following sequence of events to show system time going backwards:

1. Device A reads the time from the system counter.

2. Device A communicates with another agent in the system, Device B.

3. After recognizing the communication from Device A, Device B reads the time from the system counter.

The system counter must be implemented in an always-on power domain.

To support lower-power operating modes in architectures from Armv8.0 to Armv8.5, the counter can increment by
larger amounts at a lower frequency. For example, a 10MHz system counter might either increment:

• By 1 at 10MHz.

• By 500 at 20kHz, when the system lowers the clock frequency, to reduce power consumption.

In this case, the counter must support transitions between high-frequency, high-precision operation, and
lower-frequency, lower-precision operation, without any impact on the required accuracy of the counter.

From Armv8.6 the counter operates at a higher fixed frequency of 1GHz.
G6-6406 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Generic Timer in AArch32 state
G6.1 About the Generic Timer in AArch32 state
Note

Though each unit of the counter is set to 1ns, this does not require that the counter is incremented every 1ns. A step
in the counter might be more than a single bit increment. It is recommended that the count is not incremented at a
rate that is less than 50MHz in normal running operation.

The CNTFRQ register is intended to hold a copy of the current clock frequency to allow fast reference to this
frequency by software running on the PE. For more information see Initializing and reading the system counter
frequency on page G6-6407.

The mechanism by which the count from the system counter is distributed to system components is
IMPLEMENTATION DEFINED, but each PE with a System register interface to the system counter must have a counter
input that can capture each increment of the counter.

Note

So that the system counter can be clocked independently from the PE hardware, the count value might be distributed
using a Gray code sequence. Gray-count scheme for timer distribution scheme on page K5-8470 gives more
information about this possibility.

Initializing and reading the system counter frequency

The CNTFRQ register must be programmed to the clock frequency of the system counter. Typically, this is done
only during the system boot process, by using the System register interface to write the system counter frequency
to the CNTFRQ register. Only software executing at the highest implemented Exception level can write to
CNTFRQ.

Note

The CNTFRQ register is UNKNOWN at reset, and therefore the counter frequency must be set as part of the system
boot process.

Software can read the CNTFRQ register, to determine the current system counter frequency, in the following states
and modes:

• Hyp mode.

• Secure PL1 modes and Non-secure EL1 modes.

• When CNTKCTL.{PL0PCTEN, PL0VCTEN} is not {0,0}, Secure and Non-secure EL0 modes.

Memory-mapped controls of the system counter

Some system counter controls are accessible only through the memory-mapped interface to the system counter.
These controls are:

• Enabling and disabling the counter.

• Setting the counter value.

• Changing the operating mode, to change the update frequency and increment value.

• Enabling Halt-on-debug, that a debugger can then use to suspend counting.

For descriptions of these controls, see Chapter I2 System Level Implementation of the Generic Timer.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G6-6407
ID072021 Non-Confidential

The Generic Timer in AArch32 state
G6.2 The AArch32 view of the Generic Timer
G6.2 The AArch32 view of the Generic Timer

The following sections describe the components and features of a PE implementation of the Generic Timer, as seen
from AArch32 state:

• The physical counter on page G6-6408.

• The virtual counter on page G6-6409.

• Event streams on page G6-6411.

• Timers on page G6-6412.

G6.2.1 The physical counter

The PE includes a physical counter that contains the count value of the system counter. The CNTPCT register holds
the current physical counter value. When FEAT_ECV is implemented and EL2 is executing in AArch64 state, the
CNTPOFF_EL2 register holds the optional physical offset that can be applied to EL0 and EL1 whether EL0 and
EL1 are using AArch64 state or AArch32 state. For more information, see The physical offset register on
page D11-3013.

Reads of CNTPCT can occur speculatively and out of order relative to other instructions executed on the same PE.

The self-synchronized view of the physical counter

When FEAT_ECV is implemented, an alternative way to read the physical counter is supported. The CNTPCTSS
register is a non-speculative view of the physical counter, as seen from the Exception level that CNTPCTSS is read
from.

Access to the CNTPCTSS are subject to the same traps as accesses to the CNTPCT.

Reads of CNTPCT occur in program order relative to reads of CNTPCT or CNTPCTSS.

Reads of CNTPCTSS occur in program order relative to reads of CNTPCT or CNTPCTSS.

Example G6-1 Ensuring reads of the physical counter occur after signal read from memory

If a read from memory is used to obtain a signal from another agent that indicates that CNTPCT must be read, an
ISB is used to ensure that the read of CNTPCT occurs after the signal has been read from memory, as shown in the
following code sequence:

loop ; polling for some communication to indicate a requirement to read the timer
 LDR R1, [R2]
 CMP R1, #1 ; has had the value 1 written to it
 BNE loop
 ISB ; without this the CNTPCT could be read before the memory location in [R2]
 MRC R1, CNTPCT

When FEAT_ECV is implemented, an access to CNTPCTSS can be used in place of the CNTPCT which, because
it cannot be accessed speculatively, allows the ISB to be removed. This means that the following code sequence can
be used:

loop ; polling for some communication to indicate a requirement to read the timer
LDR R1, [R2]
CMP R1, #1 ; has had the value 1 written to it
BNE loop
MRC R1, CNTPCTSS

Similarly where a read of the physical counter is required to take place after the completion of all loads and stores
appearing in program order before the read of the counter, then the following code sequences can be used:

... ; earlier loads and stores
DSB ; completes earlier loads and stores
ISB ; without this the CNTPCT could be read before the completion of the earlier loads

; and stores
MRC R1, CNTPCT
G6-6408 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Generic Timer in AArch32 state
G6.2 The AArch32 view of the Generic Timer
Or, if FEAT_ECV is implemented:

... ; earlier loads and stores
DSB ; completes earlier loads and stores
MRC R1, CNTPCTSS

Neither view of the physical counter ensures that:

• Context changes occurring in program order before the read of the counter have been synchronized.

• Accesses to memory appearing in program order after the read of the counter are executed before the counter
has been read.

Example G6-2 Ensuring reads of the physical counter occur after previous memory accesses

To ensure that all previous memory accesses have completed and all previous context changes have been
synchronized before the read of the counter, the following sequence should be used:

DSB
ISB
MRC Rn, CNTPCT{SS} ; either view of the physical counter has the same effect in this example

To ensure that a memory access only occurs after a read of the counter, the following sequence should be used:

MRC Rn, CNTPCT{SS} ; either view of the physical counter has the same effect in this example
ISB
LDR Ra, [Rb] ; this load will be executed after the timer has been read

G6.2.2 The virtual counter

An implementation of the Generic Timer always includes a virtual counter, that indicates virtual time.

The virtual counter contains the value of the physical counter minus a 64-bit virtual offset. When executing in a
Non-secure EL1 or EL0 mode, the virtual offset value relates to the current virtual machine.

The CNTVOFF register contains the virtual offset, see The virtual offset register on page G6-6410.

The CNTVCT register holds the current virtual counter value.

Reads of CNTVCT can occur speculatively and out of order relative to other instructions executed on the same PE.

The self-synchronized view of the virtual counter

When FEAT_ECV is implemented, an alternative way to read the virtual counter is supported. The CNTVCTSS
register is a non-speculative view of the virtual counter, as seen from the Exception level that CNTVCTSS is read
from.

Accesses to the CNTVCTSS are subject to the same traps as accesses to the CNTVCT.

Reads of CNTVCT occur in program order relative to reads of CNTVCT or CNTVCTSS.

Reads of CNTVCTSS occur in program order relative to reads of CNTVCT or CNTVCTSS.

Example G6-3 Ensuring reads of virtual counter occur after signal read from memory

If a read from memory is used to obtain a signal from another agent that indicates that CNTVCT must be read, an
ISB is used to ensure that the read of CNTVCT occurs after the signal has been read from memory, as shown in the
following code sequence:

loop ; polling for some communication to indicate a requirement to read the timer
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G6-6409
ID072021 Non-Confidential

The Generic Timer in AArch32 state
G6.2 The AArch32 view of the Generic Timer
 LDR R1, [R2]
 CMP R1, #1 ; has had the value 1 written to it
 BNE loop
 ISB ; without this the CNTVCT could be read before the memory location in [R2]
 MRC R1, CNTVCT

When FEAT_ECV is implemented, an access to CNTVCTSS can be used in place of the CNTVCT, which, because
it cannot be accessed speculatively, allows the ISB to be removed. This means that the following code sequence can
be used:

loop ; polling for some communication to indicate a requirement to read the timer
LDR R1, [R2]
CMP R1, #1 ; has had the value 1 written to it
BNE loop
MRC R1, CNTVCTSS

Similarly where a read of the virtual counter is required to take place after the completion of all loads and stores
appearing in program order before the read of the counter, then the following two sequences can be used:

... ; earlier loads and stores
DSB ; completes earlier loads and stores
ISB ; without this the CNTVCT could be read before the completion of the earlier loads

; and stores
MRC R1, CNTVCT

Or, if FEAT_ECV is implemented:

... ; earlier loads and stores
DSB ; completes earlier loads and stores
MRC R1, CNTVCTSS

Neither view of the virtual counter ensures that:

• Context changes occurring in program order before the read of the counter have been synchronized.

• Accesses to memory appearing in program order after the read of the counter are executed before the counter
has been read.

Example G6-4 Ensuring reads of virtual counter occur after previous memory accesses

To ensure that all previous memory accesses have completed and all previous context changes have been
synchronized before the read of the counter, the following sequence should be used:

DSB
ISB
MRC Rn, CNTVCT{SS} ; either view of the virtual counter has the same effect in this example

To ensure that a memory access only occurs after a read of the counter, the following sequence should be used:

MRC Rn, CNTVCT{SS} ; either view of the virtual counter has the same effect in this example
ISB
LDR Ra, [Rb] ; this load will be executed after the timer has been read

The virtual offset register

The virtual counter is a counter that has a virtual offset relative to the physical counter as viewed from EL2 and EL3.
This virtual offset is held in the register CNTVOFF. The virtual counter value is the count compared by the EL1
virtual timer.

If EL2 is not implemented and enabled, then the virtual counter uses a fixed virtual offset of zero.
G6-6410 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Generic Timer in AArch32 state
G6.2 The AArch32 view of the Generic Timer
G6.2.3 Event streams

Any implementation of the Generic Timer can use the system counter to generate one or more event streams, to
generate periodic wake-up events as part of the mechanism described in Wait for Event mechanism and Send event
on page D1-2536.

Note

An event stream might be used:

• To impose a time-out on a Wait For Event polling loop.

• To safeguard against any programming error that means an expected event is not generated.

The CNTKCTL.{EVNTEN, EVNTDIR, EVNTI, EVNTIS} fields define an event stream that is generated from the
virtual counter.

In all implementations the CNTHCTL.{EVNTEN, EVNTDIR, EVNTI, EVNTIS} fields define an event stream that
is generated from the physical counter.

The event stream is configured as follows:

• EVNTI selects the counter bit that triggers the event.

• If FEAT_ECV is not implemented, EVNTI selects between bits[0:15].

• If FEAT_ECV is implemented, EVNTIS selects whether ENVTI selects between bits[0:15] or bits[8:23].

• EVNTDIR selects whether the event is generated on each 0 to 1 transition, or each 1 to 0 transition, of the
selected counter bit.

Note

If the event stream is configured to produce events from the low order bits of the counter when the counter frequency
is very high (for example 1GHz), then the practical update rate of the counter might mean that the event stream is
not generated as the low order bit might not change. Software can rely on an event stream rate of at least 1MHz in
normal operation.

The operation of an event stream is as follows:

• The pseudocode variables PreviousCNTVCT and PreviousCNTPCT are initialized as:

// Variables used for the generation of the timer event stream.
bits (64) PreviousCNTVCT = bits (64) UNKNOWN;
bits (64) PreviousCNTPCT - bits (64) UNKNOWN;

• The pseudocode functions TestEventCNTV() and TestEventCNTP() are called on each cycle of the PE clock.

• The TestEventCNTx() pseudocode template defines the functions TestEventCNTV() and TestEventCNTP():

// TestEventCNTx()
// ===============

// Template for the TestEventCNTV() and TestEventCNTP() functions
// Describes operation when all Exception levels are using AArch32:
// CNTxCT is CNTVCT or CNTPCT 64-bit count value
// CNTxCTL is CNTHCTL or CNTKCTL Control register
// PreviousCNTxCT is PreviousCNTVCT or PreviousCNTPCT

TestEventCNTx()
 if CNTxCTL.EVNTEN == '1' then
 n = UInt(CNTxCTL.EVNTI);

if CNTxCTL.EVNTIS == ’1’ then
n = n + 8;

SampleBit = CNTxCT<n>;

 PreviousBit = PreviousCNTxCT<n>;

 if CNTx_CTL.EVNTDIR == '0' then
 if PreviousBit == '0' && SampleBit == '1' then EventRegisterSet();
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G6-6411
ID072021 Non-Confidential

The Generic Timer in AArch32 state
G6.2 The AArch32 view of the Generic Timer
 else
 if PreviousBit == '1' && SampleBit == '0' then EventRegisterSet();

 PreviousCNTxCT = CNTxCT;

 return;

G6.2.4 Timers

In an implementation of the Generic Timer that includes EL3 the following timers are accessible from AArch32
state, provided the appropriate Exception level can use AArch32:

• A Non-secure EL1 physical timer. A Non-secure EL1 control determines whether this register is accessible
from Non-secure EL0.

• A Secure PL1 physical timer. This timer is accessible from EL3 when EL3 is using AArch32.

Note
When EL3 is using AArch64, the AArch32 EL1 timers are not banked between Secure and Non-secure state.

A Secure PL1 control determines whether this register is accessible from Secure EL0.

• A Non-secure EL2 physical timer, accessible from Non-secure EL2.

• An EL1 virtual timer.

• When FEAT_VHE is implemented, a Non-secure EL2 virtual timer.

• When FEAT_SEL2 is implemented, a Secure EL2 physical timer.

• When FEAT_SEL2 is implemented, a Secure EL2 virtual timer.

Note

The Secure EL2 timers are accessible in AArch32 state if using EL0, when EL0 is using AArch32 state, Secure EL2
is using AArch64, and HCR_EL2.{E2H,TGE} == {1, 1}.

The output of each implemented timer:

• Provides an output signal to the system.

• If the PE interfaces to a Generic Interrupt Controller (GIC), signals a Private Peripheral Interrupt (PPI) to
that GIC. In a multiprocessor implementation, each PE must use the same interrupt number for each timer.

Each timer:

• Is based around a 64-bit CompareValue that provides a 64-bit unsigned upcounter.

• Provides an alternative view of the CompareValue, called the TimerValue, that appears to operate as a 32-bit
downcounter.

• Has, in addition, a 32-bit Control register.

In all implementations, the AArch32 System registers for the EL1 (or PL1) physical timer are banked, to provide
the Secure and Non-secure implementations of the timer. Table G6-1 on page G6-6412 shows the physical timer
registers and Table G6-2 on page G6-6413 show the virtual timer registers.

Table G6-1 Physical timer registers summary for the Generic Timer

Timer
registera

Secure PL1 or Non-secure EL1 physical
timer

Non-secure EL2 physical
timer

Secure EL2 physical
timerb

CV CNTP_CVALc CNTHP_CVAL CNTHPS_CVAL

TV CNTP_TVALc CNTHP_TVAL CNTHPS_TVAL

Control CNTP_CTLc CNTHP_CTL CNTHPS_CTL

a. In this column, CV indicates the CompareValue register, and TV indicates the TimerValue register.
G6-6412 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Generic Timer in AArch32 state
G6.2 The AArch32 view of the Generic Timer
Operation of the CompareValue views of the timers

The CompareValue view of a timer operates as a 64-bit upcounter. The timer condition is met when the appropriate
counter reaches the value programmed into its CompareValue register. When the timer condition is met an interrupt
is generated if the interrupt is not masked in the corresponding timer control register, CNTP_CTL, CNTHP_CTL,
CNTHPS_CTL, CNTV_CTL, CNTHV_CTL, or CNTHVS_CTL. For CNTP_CTL, the interrupt is the same as the
interrupt asserted by the Non-secure instance of the AArch64 register CNTP_CTL_EL0.

The operation of this view of a timer is:

TimerConditionMet = (((Counter[63:0] – Offset[63:0])[63:0] - CompareValue[63:0]) >= 0)

Where:

TimerConditionMet Is TRUE if the timer condition for this counter is met, and FALSE otherwise.

Counter The physical counter value, that can be read from the CNTPCT register.

Offset For the EL1 physical timer, if ID_AA64MMFR0_EL1.ECV is 0b10, EL2 is using AArch64
and is implemented and enabled in the current Security state, and CNTHCTL_EL2.ECV is
0b1, then the offset value is held in the CNTPOFF_EL2. Otherwise the offset value for the
EL1 physical timer is zero.

For the EL1 virtual timer, the offset value is held in the CNTVOFF register.

For the EL2 physical and virtual timers, the offset value is zero.

CompareValue The value of the appropriate CompareValue register, CNTP_CVAL, CNTHP_CVAL,
CNTHPS_CVAL, CNTV_CVAL, CNTHV_CVAL, or CNTHVS_CVAL.

In this view of a timer, Counter, Offset, and CompareValue are all 64-bit unsigned values.

Note

This means that a timer with a CompareValue of, or close to, 0xFFFF_FFFF_FFFF_FFFF might never meet its timer
condition. However, there is no practical requirement to use values close to the counter wrap value.

Software can observe the counter value by the offset in some situations by reading CNTVCT.

Operation of the TimerValue views of the timers

The TimerValue view of a timer appears to operate as a signed 32-bit downcounter. A TimerValue register is
programmed with a count value. This value decrements on each increment of the appropriate counter, and the timer
condition is met when the value reaches zero. When the timer condition is met, an interrupt is generated if the
interrupt is not masked in the corresponding timer control register, CNTP_CTL, CNTHP_CTL, CNTHPS_CTL,
CNTV_CTL, CNTHV_CTL, or CNTHVS_CTL.

This view of a timer depends on the following behavior of accesses to TimerValue registers:

Reads TimerValue = (CompareValue – (Counter - Offset))[31:0]

Writes CompareValue = ((Counter - Offset)[63:0] + SignExtend(TimerValue))[63:0]

Table G6-2 Virtual timer register summary for the Generic Timer

Timer registera EL1 virtual timer Non-secure EL2 virtual timerb Secure EL2 virtual timerc

CV CNTV_CVAL CNTHV_CVAL CNTHVS_CVAL

TV CNTV_TVAL CNTHV_TVAL CNTHVS_TVAL

Control CNTV_CTL CNTHV_CTL CNTHVS_CTL

a. In this column, CV indicates the CompareValue register, and TV indicates the TimerValue register.

b. Only when the implementation includes FEAT_VHE.

c. Only present when the implementation includes FEAT_SEL2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G6-6413
ID072021 Non-Confidential

The Generic Timer in AArch32 state
G6.2 The AArch32 view of the Generic Timer
Where the arguments other than TimerValue have the definitions used in Operation of the CompareValue views of
the timers on page G6-6413, and in addition:

TimerValue The value of a TimerValue register, CNTP_TVAL, CNTHP_TVAL, CNTHPS_TVAL,
CNTV_TVAL, CNTHV_TVAL, or CNTHVS_TVAL.

In this view of a timer, values are signed, in standard two’s complement form.

A read of a TimerValue register after the timer condition has been met indicates the time since the timer condition
was met.

Note

• Operation of the CompareValue views of the timers on page G6-6413 gives a strict definition of
TimerConditionMet. However, provided that the TimerValue is not expected to wrap as a 32-bit signed value
when decremented from 0x80000000, the TimerValue view can be used as giving an effect equivalent to:

TimerConditionMet = (TimerValue 0)

• Programming TimerValue to a negative number with magnitude greater than (Counter–Offset) can lead to
an arithmetic overflow that causes the CompareValue to be an extremely large positive value. This potentially
delays meeting the timer condition for an extremely long period of time.
G6-6414 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter G7
AArch32 System register Encoding

This chapter describes the AArch32 System register encoding space. It contains the following sections:

• The AArch32 System register encoding space on page G7-6416.

• VMSAv8-32 organization of registers in the (coproc==0b1110) encoding space on page G7-6417.

• VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space on page G7-6420.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G7-6415
ID072021 Non-Confidential

AArch32 System register Encoding
G7.1 The AArch32 System register encoding space
G7.1 The AArch32 System register encoding space

The T32 and A32 instruction sets includes instructions that access the System register encoding space. These
instructions provide:

• Access to System registers, including the debug registers, that provide system control, and system status
information.

• The cache, branch predictor, and TLB maintenance instructions, and address translation instructions.

The AArch32 System register interface on page G1-6109 describes the instructions that provide access to these
registers and instructions. Chapter G8 AArch32 System Register Descriptions describes these registers and
encodings.

When accessing 32-bit registers, or executing these instructions, entries in the encoding space are characterized by
the parameter set {coproc, CRn, opc1, CRm, opc2}. In Armv8 this encoding space is defined only for the coproc values
0b1110 and 0b1111.

Note

• When accessing 64-bit registers entries in the encoding space are characterized by the parameter set
{coproc, CRm, opc1}, for the coproc values 0b1110 and 0b1111. A CRm value in this parameter set is equivalent
to a CRn value in the parameter set for accessing 32-bit registers.

• Background to the System register interface on page G1-6110 gives more information about this encoding
model.

The following describe this encoding space:

• VMSAv8-32 organization of registers in the (coproc==0b1110) encoding space on page G7-6417.

• VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space on page G7-6420.
G7-6416 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System register Encoding
G7.2 VMSAv8-32 organization of registers in the (coproc==0b1110) encoding space
G7.2 VMSAv8-32 organization of registers in the (coproc==0b1110) encoding space

The System registers in the (coproc==0b1110) encoding space provide a number of distinct control functions,
covering:

• Debug.

• Trace.

• Execution environment control, for identification of the trivial Jazelle implementation.

Because these functions are distinct, the descriptions of these registers are distributed, as follows:

• In this manual, Debug registers on page G8-6945 describes the Debug registers.

• The Embedded Trace Macrocell Architecture Specification describes the Trace registers.

This section summarizes the allocation of the System registers in the (coproc==0b1110) encoding space between
these different functions, and the register encodings in this space that are reserved.

The 32-bit System register encodings are classified by the {opc1, CRn, opc2, CRm} values required to access them using
an MCR or an MRC instruction. The 64-bit System register encodings are classified by the {opc1, CRm} values required
to access them using an MCRR or an MRRC instruction. For the registers in the (coproc==0b1110) encoding space, the
opc1 value determines the primary allocation of these registers, as follows:

opc1==0 Debug registers.

opc1==1 Trace registers.

opc1==7 Jazelle registers. Jazelle registers are implemented as required for a trivial Jazelle implementation.

Other opc1 values

Reserved.

Note

Primary allocation of (coproc==0b1110) register function by opc1 value differs from the allocation of
(coproc==0b1111) registers, where primary allocation is by CRn value for 32-bit register accesses, or CRm value for
64-bit register accesses.

For the Debug and Jazelle registers, Table G7-1 on page G7-6418 defines:

• The {opc1, CRn, opc2, CRm} values used for accessing the 32-bit registers using the MRC and MCR instructions.

• The {opc1, CRm} values used for accessing the 64-bit register using the MRRC instruction.

Some Debug registers can also be accessed using the LDC and STC instructions. Table G7-2 on page G7-6419 defines
the CRn values used for accessing the registers using these instructions.

Note

The only permitted uses of the LDC and STC instructions are:

• An LDC access to load data from memory to DBGDTRTXint.

• An STC access to store data to memory from DBGDTRRXint.

In the LDC and STC syntax descriptions in this Manual, the required coproc value of p14 and CRn value of c5 are given
explicitly.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G7-6417
ID072021 Non-Confidential

AArch32 System register Encoding
G7.2 VMSAv8-32 organization of registers in the (coproc==0b1110) encoding space
G7.2.1 Register access instruction arguments, (coproc==0b1110) registers

Table G7-1 on page G7-6418 shows the MCR, MRC, and MRRC instruction arguments required for accesses to each
register that can be visible in the System register interface in the (coproc==0b1110) encoding.

Table G7-1 Mapping of (coproc==0b1110) MCR, MRC, and MRRC instruction arguments to System
registers

Name opc1 CRn opc2 CRm

DBGDIDRa 0 c0 0 c0

DBGDSCRint c1

DBGDCCINT c2

DBGDTRRXint c5

DBGDTRTXint c5

- c6

DBGVCR c7

DBGDTRRXext 2 c0

DBGDSCRext c2

DBGDTRTXext c3

DBGOSECCR c6

DBGBVR<n> 4 c0-15b

DBGBCR<n> 5 c0-15b

DBGWVR<n> 6 c0-15b

DBGWCR<n> 7 c0-15b

DBGDRAR 32 bits wide c1 0 c0

DBGDRAR 64 bits wide - - c1

DBGBXVR<n> c1 1 c0-15b

DBGOSLAR 4 c0

DBGOSLSR c1

DBGOSDLR c3

DBGPRCR c4

DBGDSAR 32 bits wide c2 0 c0

DBGDSAR 64 bits wide - - c2

- c4 0-3 c0-15
G7-6418 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System register Encoding
G7.2 VMSAv8-32 organization of registers in the (coproc==0b1110) encoding space
Table G7-2 on page G7-6419 shows the LDC and STC instruction arguments required for accesses to the Debug
registers that can be accessed using these instructions.

Note

In the instruction syntax descriptions for the LDC and STC instructions, the required coproc and CRn values are given
explicitly as coproc==p14, CRn==c5.

DBGCLAIMSET 0 c7 6 c8

DBGCLAIMCLR c9

DBGAUTHSTATUS c14

DBGDEVID2 7 c0

DBGDEVID1 c1

DBGDEVID c2

- 1 c0-c7 0-7 c0-c15

JIDRc 7 c0 0 c0

JOSCRc c1 0 c0

JMCRc c2 0 c0

- All other encodings

a. If EL1 cannot use AArch32, this register is OPTIONAL and
deprecated. See the register description for details.

b. Accesses to not implemented breakpoint and watchpoint
register access instructions are UNDEFINED. If EL2 is not
implemented or breakpoint n is not context-aware,
DBGBXVR<n> is unallocated. CRm encodes <n>, the
breakpoint or watchpoint number.

c. Legacy register.

Table G7-2 Mapping of LDC and STC instruction arguments to System registers

Name CRn Instruction Description

DBGDTRTXint c5 LDC Debug Data Transfer Register, Transmit, Internal View

DBGDTRRXint c5 STC Debug Data Transfer Register, Receive, Internal View

Table G7-1 Mapping of (coproc==0b1110) MCR, MRC, and MRRC instruction arguments to System
registers (continued)

Name opc1 CRn opc2 CRm
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G7-6419
ID072021 Non-Confidential

AArch32 System register Encoding
G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space
G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space

For 32-bit accesses to the System registers in the (coproc==0b1111) encoding space, the ordered set of parameters
{CRn, opc1, CRm, opc2} determine the register order. Within this ordering, the CRn value originally provided a
functional grouping of these registers. As the number of System registers has increased this ordering has become
less appropriate.

This document now:

• Groups the Armv8.0 System registers in the (coproc==0b1111) encoding space by functional group, see
Functional index of AArch32 registers and System instructions on page K15-8650.

• Describes all of the Armv8.0 System registers for VMSAv8-32, in Chapter G8 AArch32 System Register
Descriptions.

• Gives additional information about the organization of the VMSAv8-32 System registers in the
(coproc==0b1111) encoding space, in the remainder of this section.

Note

Not all System registers introduced by architectural extensions to Armv8.0 are described in Chapter G8 AArch32
System Register Descriptions. For information about the System registers introduced by architectural extensions to
Armv8.0, see Chapter A2 Armv8-A Architecture Extensions.

This section presents information about the register ordering by {CRn, opc1, CRm, opc2}. It contains the following
subsections:

• System register summary for (coproc==0b1111) encodings by CRn value on page G7-6420.

• Full list of VMSAv8-32 System registers in the (coproc==0b1111) encoding space on page G7-6423.

Note

The ordered listing of (coproc==0b1111) registers by the {CRn, opc1, CRm, opc2} encoding of the 32-bit registers is
most likely to be useful to those implementing AArch32 state, and to those validating such implementations.
However, otherwise, the grouping of registers by function is more logical.

In addition, the indexes in Appendix K15 Registers Index include all of the System registers.

G7.3.1 System register summary for (coproc==0b1111) encodings by CRn value

Figure G7-1 on page G7-6421 summarizes the grouping of the System registers in the (coproc==0b1111) encoding
space, for a VMSAv8-32 implementation, by the value of CRn used for a 32-bit access to the register.
G7-6420 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System register Encoding
G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space
Figure G7-1 AArch32 System register groupings for (coproc==0b1111), for 32-bit registers

Note

For the System registers in the (coproc==0b1111) encoding space, Figure G7-1 on page G7-6421 gives only an
overview of the assigned encodings for 32-bit registers for each of the CRn values c0-c15. For more information, see:

• The full list of registers in the (coproc==0b1111) encoding space, in Full list of VMSAv8-32 System registers
in the (coproc==0b1111) encoding space on page G7-6423, for the definition of the assigned and unassigned
encodings for that register.

• The register definitions in Chapter G8 AArch32 System Register Descriptions for any dependencies on the
implemented Exception levels.

In general, System register accesses using an unallocated set of {CRn, opc1, CRm, opc2} values are UNDEFINED.
Behavior of VMSAv8-32 32-bit System registers with (coproc==0b1111, CRn==c0) on page G7-6421 described
the only exceptions to this rule.

The 32-bit System registers with (coproc==0b1111, CRn==c15), and the corresponding 64-bit System registers, are
reserved for IMPLEMENTATION DEFINED registers. For more information see Reserved encodings in the VMSAv8-32
System register (coproc==0b1111) space on page G7-6422.

The HSTR.Tn trap on (coproc==0b1111) System registers

As General trapping to Hyp mode of Non-secure EL0 and EL1 accesses to System registers in the
(coproc==0b1111) encoding space on page G1-6140 describes, when the value of HSTR.Tn is 1, Non-secure PL1
accesses to System registers in the (coproc==0b1111) encoding space using a CRn or CRm value that corresponds to
the value of Tn are trapped to EL2, even if the encoding is UNDEFINED when the value of HSTR.Tn is 0. This applies:

• For 32 bit register accesses when the value of Rn in the MCR or MRC instruction corresponds to Tn.

• For 64 bit register accesses when the value of Rm in the MCRR or MRRC instruction corresponds to Tn.

If there are matching System register encodings that are accessible from Non-secure EL0 then those accesses are
also trapped to EL2 when the value of HSTR.Tn is 1.

Behavior of VMSAv8-32 32-bit System registers with (coproc==0b1111, CRn==c0)

In the (coproc==0b1111) encoding space, the 32-bit System registers with (CRn==c0) provide device and feature
identification.

ID registers
System control registers

Cache maintenance, address translations, legacy operations
TLB maintenance operations

opc2CRm
{0-7}

{0-2}
0

{0,1}

Various

{c0-c2}
{c0, c1}
{c0, c1}

c0

{c0,c1}
c0

{0-7}

Memory system control registers

{0, 2, 4}
Memory system fault registers

Various
VariousVarious

0c6 GIC System register *, Debug exception registers

Performance monitors

Reserved for DMA operations for TCM access
System control registers, GIC System registers *

IMPLEMENTATION DEFINED registers

{0-7}

{0-7}
{0,1}

Various

{0-7}

Various

{c0-c8,c15}
Various

{c0-c15}

Various
Memory mapping registers and TLB operations{0-7}Various

Process, Context, Thread ID registers, Activity Monitors registers *
Generic Timer registers *, Performance Monitors registers *{0-7}{c0-c15}

CRn opc1
{0-2, 4}
{0, 4}
{0, 4}

0

{0, 4}

c0
c1
c2
c3

c5
c6
c7
c8

{0, 4}
{0, 4}
{0, 4}

0c4

{0-7}

{0-7}

{0-7}

c9
c10
c11
c12
c13

c15

{0-7}

{0-2, 4, 6}
{0, 4}
{0-7}c14

* If implemented
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G7-6421
ID072021 Non-Confidential

AArch32 System register Encoding
G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space
Table G7-3 on page G7-6424 shows all of the architecturally required System registers with {coproc==0b1111,
CRn==c0}. The behavior of 32-bit System register encodings in this group that are not shown in the table, and
encodings that are part of an unimplemented Exception level, depends on the value of opc1, and possibly on the
value of CRm and opc2, as follows:

opc1 == 0 All write accesses to the encodings are UNDEFINED.

For read accesses:

• The following encodings return an UNKNOWN value:

— CRm==3, opc2=={0, 1, 2}.

— CRm=={4, 6, 7}, opc2=={0, 1}.

— CRm==5, opc2=={0, 1, 4, 5}.

• All other encodings are RES0.

opc1 > 0 All accesses to the encodings are UNDEFINED.

See also Accesses to unallocated encodings in the (coproc==0b111x) encoding space on page G8-6440.

Note

Some of these registers were previously described as being part of the CPUID identification scheme, see The
CPUID identification scheme on page G8-6439.

Reserved encodings in the VMSAv8-32 System register (coproc==0b1111) space

AArch32 state reserves a number of regions in the (coproc==0b1111) encoding space for IMPLEMENTATION
DEFINED System registers. These reservations are defined in terms of the encoding of 32-bit accesses to the System
register encoding space. That is, they are defined by the reserved 32-bit {CRn, opc1, CRm, opc2} encodings.

In Armv8, reserved encodings that do not have an IMPLEMENTATION DEFINED function are UNDEFINED.

The following subsections give more information about these reserved encodings:

• Reserved 32-bit encodings with {coproc==0b1111, CRn==c9} on page G7-6422.

• Reserved 32-bit encodings with {coproc==0b1111, CRn==c10} on page G7-6422.

• Reserved 32-bit encodings with {coproc==0b1111, CRn==c11} on page G7-6423.

• Reserved 32-bit encodings with {coproc==0b1111, CRn==c15} on page G7-6423.

Reserved 32-bit encodings with {coproc==0b1111, CRn==c9}

In the AArch32 encoding space, for 32-bit encodings with {coproc==0b1111, CRn==c9}, the following encodings
are reserved for IMPLEMENTATION DEFINED purposes:

• Encodings with {coproc==0b1111, CRn==c9, opc1=={0-7}, opc2=={0-7}, CRm=={c0-c2, c5-c8}} are
reserved for IMPLEMENTATION DEFINED branch predictor, cache, and TCM operations.

• Encodings with {coproc==0b1111, CRn==c9, opc1=={0-7}, opc2=={0-7}, CRm==c15} are reserved for
IMPLEMENTATION DEFINED performance monitors.

Note

These are distinct from the OPTIONAL Arm Performance Monitors Extension, the registers for which use the
encoding space {coproc==0b1111, CRn==c9, opc1=={0-7}, opc2=={0-7}, CRm=={c12-c14}}.

Reserved 32-bit encodings with {coproc==0b1111, CRn==c10}

In the AArch32 encoding space, for 32-bit encodings with {coproc==0b1111, CRn==c10}, the following encodings
are reserved for IMPLEMENTATION DEFINED purposes:

• Encodings with {coproc==0b1111, CRn==c10, opc=={0-7}, CRm=={c0, c1, c4, c8}} are reserved for
IMPLEMENTATION DEFINED TLB lockdown operations.
G7-6422 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System register Encoding
G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space
Reserved 32-bit encodings with {coproc==0b1111, CRn==c11}

In the AArch32 encoding space, for 32-bit encodings with {coproc==0b1111, CRn==c11}, the following encodings
are reserved for IMPLEMENTATION DEFINED purposes:

• Encodings with {coproc==0b1111, CRn==c11, opc=={0-7}, CRm=={c0-c8, c15}} are reserved for
IMPLEMENTATION DEFINED DMA operations for TCM access.

In Armv8, the remainder of the AArch32 {coproc==0b1111, CRn==c11} encoding space is UNDEFINED.

Reserved 32-bit encodings with {coproc==0b1111, CRn==c15}

Armv8 reserves the AArch32 System register encodings with (coproc==0b1111, CRn==c15) for IMPLEMENTATION
DEFINED purposes, and does not impose any restrictions on the use of these encodings. The documentation of the
Arm implementation must describe fully any registers implemented in the {coproc==0b1111, CRn==c15} encoding
space. Normally, for processor implementations by Arm, this information is included in the Technical Reference
Manual for the processor.

Typically, an implementation uses the {coproc==0b1111, CRn==c15} encodings to provide test features, and any
required configuration options that are not covered by this Manual.

This reservation means that the AArch32 64-bit encodings with {coproc==0b1111, CRm==c15} are also reserved for
IMPLEMENTATION DEFINED purposes, without any restrictions on the use of these encodings.

G7.3.2 Full list of VMSAv8-32 System registers in the (coproc==0b1111) encoding space

Table G7-3 on page G7-6424 shows the System registers in the (coproc==0b1111) encoding space in VMSAv8-32,
in the order of the {CRn, opc1, CRm, opc2} parameter values used in MCR or MRC accesses to the 32-bit registers:

• For MCR or MRC accesses to the 32-bit registers, CRn is the primary identifier of the target System register for
the access. This applies, also, to MCR or MRC instructions that provide 32-bit accesses to a single word of a 64-bit
System register.

• For MCRR or MRRC accesses to the 64-bit registers, CRm is the primary identifier of the target System register for
the access. Table G7-3 on page G7-6424 orders the 64-bit registers with the 32-bit registers accessed using
the same primary register identifier. For example, the 64-bit encoding of TTBR0, that is accessed with
(CRm==c2), is listed with the 32-bit registers that are accessed with (CRn==c2).
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G7-6423
ID072021 Non-Confidential

AArch32 System register Encoding
G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space
Table G7-3 VMSAv8-32 (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source

MIDR c0 0 c0 0 v8.0

CTR 1 v8.0

TCMTR 2 v8.0

TLBTR 3 v8.0

MIDR 4, 6a, 7 v8.0

MPIDR 5 v8.0

REVIDR 6a v8.0

ID_PFR0 c1 0 v8.0

ID_PFR1 1 v8.0

ID_DFR0 2 v8.0

ID_AFR0 3 v8.0

ID_MMFR0 4 v8.0

ID_MMFR1 5 v8.0

ID_MMFR2 6 v8.0

ID_MMFR3 7 v8.0

ID_ISAR0 c2 0 v8.0

ID_ISAR1 1 v8.0

ID_ISAR2 2 v8.0

ID_ISAR3 3 v8.0

ID_ISAR4 4 v8.0

ID_ISAR5 5 v8.0

ID_MMFR4 6 v8.0

ID_ISAR6 7 v8.0

ID_PFR2 c3 4 v8.0

ID_DFR1 5 v8.6

ID_MMFR5 6 v8.6

CCSIDR 1 c0 0 v8.0

CLIDR 1 v8.0

CCSIDR2 2 v8.3b

AIDR 7 v8.0
G7-6424 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System register Encoding
G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space
CSSELR c0 2 c0 0 v8.0

VPIDRc 4 c0 0 v8.0

VMPIDRc 5 v8.0

SCTLR c1 0 c0 0 v8.0

ACTLR 1 v8.0

CPACR 2 v8.0

ACTLR2 3 v8.0

SCRd c1 0 v8.0

SDERd 1 v8.0

NSACRd 2 v8.0

TRFCR c2 1 v8.4

SDCR c3 1 v8.0

HSCTLRc 4 c0 0 v8.0

HACTLRc 1 v8.0

HACTLR2c 3 v8.0

HCRc c1 0 v8.0

HDCRc 1 v8.0

HCPTRc 2 v8.0

HSTRc 3 v8.0

HCR2c 4 v8.0

HACRc 7 v8.0

HTRFCR c2 1 v8.4

TTBR0, 32 bits wide c2 0 c0 0 v8.0

TTBR0, 64 bits wide - 0 c2 - v8.0

TTBR1, 32 bits wide c2 0 c0 1 v8.0

TTBR1, 64 bits wide - 1 c2 - v8.0

TTBCR c2 0 c0 2 v8.0

TTBCR2 3 v8.2

HTCRc 4 c0 2 v8.0

VTCRc c1 2 v8.0

HTTBRc, 64 bits wide - 4 c2 - v8.0

Table G7-3 VMSAv8-32 (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G7-6425
ID072021 Non-Confidential

AArch32 System register Encoding
G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space
VTTBRc. 64 bits wide - 6 c2 - v8.0

DACR c3 0 c0 0 v8.0

ICC_PMR

ICV_PMR

c4 0 c6 0 GICe

DSPSRf c4 3 c5 0 v8.0

DLR 1 v8.0

DFSR c5 0 c0 0 v8.0

IFSR 1 v8.0

ADFSR c1 0 v8.0

AIFSR 1 v8.0

ERRIDR c3 0 RASg

ERRSELR 1 RASg

ERXFR c4 0 RASg

ERXCTLR 1 RASg

ERXSTATUS 2 RASg

ERXADDR 3 RASg

ERXFR2 4 RASg

ERXCTLR2 5 RASg

ERXADDR2 7 RASg

ERXMISC0 c5 0 RASg

ERXMISC1 1 RASg

ERXMISC4 2 RASg

ERXMISC5 3 RASg

ERXMISC2 4 RASg

ERXMISC3 5 RASg

ERXMISC6 6 RASg

ERXMISC7 7 RASg

HADFSRc 4 c1 0 v8.0

HAIFSR 1 v8.0

HSRc c2 0 v8.0

VDFSR 3 RASg

Table G7-3 VMSAv8-32 (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source
G7-6426 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System register Encoding
G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space
DFAR c6 0 c0 0 v8.0

IFAR 2 v8.0

HDFARc 4 c0 0 v8.0

HIFARc 2 v8.0

HPFARc c6 4 c0 4 v8.0

ICIALLUIS c7 0 c1 0 v8.0

BPIALLIS 6 v8.0

CFPRCTX c3 4 v8.0h

DVPRCTX 5 v8.0h

CPPRCTX 7 v8.0h

PAR, 32 bits wide c4 0 v8.0

PAR, 64 bits wide - 0 c7 - v8.0

ICIALLU c7 0 c5 0 v8.0

ICIMVAU 1 v8.0

CP15ISBi 4 v8.0

BPIALL 6 v8.0

BPIMVA 7 v8.0

DCIMVAC c6 1 v8.0

DCISW 2 v8.0

ATS1CPR c8 0 v8.0

ATS1CPW 1 v8.0

ATS1CUR 2 v8.0

ATS1CUW 3 v8.0

ATS12NSOPRd 4 v8.0

ATS12NSOPWd 5 v8.0

ATS12NSOURd 6 v8.0

ATS12NSOUWd 7 v8.0

DCCMVAC c10 1 v8.0

DCCSW 2 v8.0

CP15DSBi 4 v8.0

CP15DMBi 5 v8.0

DCCMVAU c11 1 v8.0

Table G7-3 VMSAv8-32 (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G7-6427
ID072021 Non-Confidential

AArch32 System register Encoding
G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space
DCCIMVAC c7 0 c14 1 v8.0

DCCISW 2 v8.0

ATS1HRc 4 c8 0 v8.0

ATS1HWc 1 v8.0

TLBIALLIS c8 0 c3 0 v8.0

TLBIMVAIS 1 v8.0

TLBIASIDIS 2 v8.0

TLBIMVAAIS 3 v8.0

TLBIMVALIS 5 v8.0

TLBIMVAALIS 7 v8.0

ITLBIALL c5 0 v8.0

ITLBIMVA 1 v8.0

ITLBIASID 2 v8.0

DTLBIALL c6 0 v8.0

DTLBIMVA 1 v8.0

DTLBIASID 2 v8.0

TLBIALL c7 0 v8.0

TLBIMVA 1 v8.0

TLBIASID 2 v8.0

TLBIMVAA 3 v8.0

TLBIMVAL 5 v8.0

TLBIMVAAL 7 v8.0

TLBIIPAS2IS 4 c0 1 v8.0

TLBIIPAS2LIS 5 v8.0

TLBIALLHISc c3 0 v8.0

TLBIMVAHISc 1 v8.0

TLBIALLNSNHISc 4 v8.0

TLBIMVALHIS 5 v8.0

TLBIIPAS2 c4 1 v8.0

TLBIIPAS2L 5 v8.0

TLBIALLHc c7 0 v8.0

TLBIMVAHc 1 v8.0

Table G7-3 VMSAv8-32 (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source
G7-6428 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System register Encoding
G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space
TLBIALLNSNHc c8 4 c7 4 v8.0

TLBIMVALH 5 v8.0

Reservedj c9 0-7 c0- c2 0-7 -

Reservedj c5- c8 0-7 -

PMCRk 0 c12 0 v8.0

PMCNTENSETk 1 v8.0

PMCNTENCLRk 2 v8.0

PMOVSRk 3 v8.0

PMSWINCk 4 v8.0

PMSELRk 5 v8.0

PMCEID0 k 6 v8.0

PMCEID1k 7 v8.0

PMCCNTRk, 32 bits wide c13 0 v8.0

PMCCNTR_EL0k, 64 bits wide - 0 c9 - v8.0

PMXEVTYPERk c9 0 c13 1 v8.0

PMXEVCNTRk 2 v8.0

PMUSERENRk c14 0 v8.0

PMINTENSETk 1 v8.0

PMINTENCLRk 2 v8.0

PMOVSSETc, k 3 v8.0

PMCEID2k 4 v8.1

PMCEID3k 5 v8.1

PMMIR 6 v8.4

Reservedl 0-7 c15 0-7 -

Reservedm c10 0 c0- c1 0-7 -

PRRRn c2 0 v8.0

MAIR0n v8.0

NMRRn 1 v8.0

MAIR1n v8.0

AMAIR0 c3 0 v8.0

AMAIR1 1 v8.0

Table G7-3 VMSAv8-32 (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G7-6429
ID072021 Non-Confidential

AArch32 System register Encoding
G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space
Reservedm c10 0 c4, c8 0-7 -

Reservedm 1-3 c0, c1, c4, c8 0-7 -

Reservedm 4 c0, c1 0-7 -

HMAIR0c c2 0 v8.0

HMAIR1c 1 v8.0

HAMAIR0c c3 0 v8.0

HAMAIR1c 1 v8.0

Reservedm c4, c8 0-7 -

Reservedm 5-7 c0, c1, c4, c8 0-7 -

Reservedo c11 0-7 c0-c8 0-7 -

Reservedo c15 0-7 -

ICC_SGI1R, 64 bits wide - 0 c12 - GICe

VBAR c12 0 c0 0 v8.0

MVBARd 1 v8.0

RVBAR v8.0

RMRp 2 v8.0

ISRd c1 0 v8.0

DISR 1 RASg

VDISR 4 c1 1 RASg

ICC_IAR0

ICV_IAR0

0 c8 0 GICe

ICC_EOIR0

ICV_EOIR0

1 GICe

ICC_HPPIR0

ICV_HPPIR0

2 GICe

ICC_BPR0

ICV_BPR0

3 GICe

ICC_AP0R0

ICV_AP0R0

4 GICe

ICC_AP0R1

ICV_AP0R1

5 GICe

ICC_AP0R2

ICV_AP0R2

6 GICe

Table G7-3 VMSAv8-32 (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source
G7-6430 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System register Encoding
G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space
ICC_AP0R3

ICV_AP0R3

c12 0 c8 7 GICe

ICC_AP1R0

ICV_AP1R0

c9 0 GICe

ICC_AP1R1

ICV_AP1R1

1 GICe

ICC_AP1R2

ICV_AP1R2

2 GICe

ICC_AP1R3

ICV_AP1R3

3 GICe

ICC_DIR

ICV_DIR

c11 1 GICe

ICC_RPR

ICV_RPR

3 GICe

ICC_IAR1

ICV_IAR1

c12 0 GICe

ICC_EOIR1

ICV_EOIR1

1 GICe

ICC_HPPIR1

ICV_HPPIR1

2 GICe

ICC_BPR1

ICV_BPR1

3 GICe

ICC_CTLR

ICV_CTLR

4 GICe

ICC_SRE 5 GICe

ICC_IGRPEN0

ICV_IGRPEN0

6 GICe

ICC_IGRPEN1

ICV_IGRPEN1

7 GICe

ICC_ASGI1R, 64 bits wide - 1 c12 - GICe

ICC_SGI0R, 64 bits wide - 2 c12 - GICe

HVBARc c12 4 c0 0 v8.0e

HRMRp 2 v8.0e

ICH_AP0R0 c8 0 GICe

ICH_AP0R1 1 GICe

ICH_AP0R2 2 GICe

Table G7-3 VMSAv8-32 (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G7-6431
ID072021 Non-Confidential

AArch32 System register Encoding
G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space
ICH_AP0R3 c12 4 c8 3 GICe

ICH_AP1R0 c9 0 GICe

ICH_AP1R1 1 GICe

ICH_AP1R2 2 GICe

ICH_AP1R3 3 GICe

ICC_HSRE 5 GICe

ICH_HCR c11 0 GICe

ICH_VTR 1 GICe

ICH_MISR 2 GICe

ICH_EISR 3 GICe

ICH_ELRSR 5 GICe

ICH_VMCR 7 GICe

ICH_LR<n>, for n==0 to 7 c12 0-7 GICe

ICH_LR<n>, for n==8 to 15 c13 0-7 GICe

ICH_LRC<n>, for n==0 to 7 c14 0-7 GICe

ICH_LRC<n>, for n==8 to 15 c15 0-7 GICe

ICC_MCTLR 6 c12 4 GICe

ICC_MSRE 5 GICe

ICC_MGRPEN1 7 GICe

FCSEIDR c13 0 c0 0 v8.0

CONTEXTIDR 1 v8.0

TPIDRURW 2 v8.0

TPIDRURO 3 v8.0

TPIDRPRW 4 v8.0

AMCR c2 0 AMUq

AMCFGR c2 1 AMUq

AMCGCR c2 2 AMUq

AMUSERENR c2 3 AMUq

AMCNTENCLR0 c2 4 AMUq

AMCNTENSET0 c2 5 AMUq

AMCNTENCLR1 c3 0 AMUq

Table G7-3 VMSAv8-32 (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source
G7-6432 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System register Encoding
G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space
AMCNTENSET1 c3 1 AMUq

AMEVTYPER0<n>, for n==0 to 7 c13 0 c6 0-7 AMUq

AMEVTYPER0<n>, for n==8 to 15 c7 AMUq

AMEVTYPER1<n>, for n==0 to 7 c14 AMUq

AMEVTYPER1<n>, for n==8 to 15 c15 AMUq

AMEVCNTR0<n>, for n==0 to 7, 64 bits wide - 0-7 c0 - AMUq

AMEVCNTR0<n>, for n==8 to 15, 64 bits wide - c1 AMUq

AMEVCNTR1<n> for n==0 to 7, 64 bits wide - c4 AMUq

AMEVCNTR1<n>, for n==8 to 15, 64 bits wide - c5 AMUq

HTPIDRc c13 4 c0 2 v8.0

CNTPCTr, 64 bits wide - 0 c14 - v8.0

CNTFRQr c14 0 c0 0 v8.0

CNTKCTLr c1 0 v8.0

CNTP_TVALr c2 0 v8.0

CNTP_CTLr 1 v8.0

CNTV_TVALr c3 0 v8.0

CNTV_CTLr 1 v8.0

PMEVCNTR<n>, for n==0 to 7k c8 0-7 v8.0

PMEVCNTR<n>, for n==8 to 15 k c9 0-7 v8.0

PMEVCNTR<n>, for n==16 to 23k c10 0-7 v8.0

PMEVCNTR<n>, for n==24 to 30k c11 0-6 v8.0

PMEVTYPER<n>, for n==0 to 7k c12 0-7 v8.0

PMEVTYPER<n>, for n==8 to 15k c13 0-7 v8.0

PMEVTYPER<n>, for n==16 to 23k c14 0-7 v8.0

PMEVTYPER<n>, for n==17 to 30k c15 0-6 v8.0

PMCCFILTRk c15 7 v8.0

CNTVCTr, 64 bits wide - 1 c14 - v8.0

CNTP_CVALr, 64 bits wide - 2 c14 - v8.0

CNTV_CVALr, 64 bits wide - 3 c14 - v8.0

CNTVOFFs, 64 bits wide - 4 c14 - v8.0

CNTHCTLr c14 4 c1 0 v8.0

Table G7-3 VMSAv8-32 (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G7-6433
ID072021 Non-Confidential

AArch32 System register Encoding
G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space
About the GIC System registers

From version 3.0 of the GIC architecture specification, the specification defines three groups of System registers,
identified by the prefix of the register name:

ICC_ GIC physical CPU interface System registers.

ICH_ GIC virtual interface control System registers.

ICV_ GIC Virtual CPU interface System registers.

CNTHP_TVALr c14 4 c2 0 v8.0

CNTHP_CTLr 1 v8.0

CNTHP_CVALr, 64 bits wide - 6 c14 - v8.0

CNTPCTSSr, 64 bits wide - 8 c14 - v8.6

CNTVCTSSr, 64 bits wide - 9 c14 - v8.6

Reservedt c15 0-7 c0-c15 0-7 -

a. REVIDR is an optional register. If it is not implemented, the encoding with opc2 set to 2 is an alias of MIDR.

b. When FEAT_CCIDX is implemented, CCSIDR2 is implemented.

c. Implemented only as part of EL2 when EL2 is using AArch32. Otherwise, encoding is unallocated and
UNDEFINED.

d. Implemented only as part of EL3 when EL3 is using AArch32. Otherwise, encoding is unallocated and
UNDEFINED.

e. GIC System register, see About the GIC System registers on page G7-6434. As that subsection describes, each
ICV_* register uses the same encoding as the corresponding ICC_* register.

f. This register is accessible only in Debug state.

g. RAS Extension System registers, see The Reliability, Availability, and Serviceability Extension on
page A2-108.

h. When FEAT_SPECRES is implemented, the execution and data prediction restriction instructions are
implemented, see Execution and data prediction restriction System instructions on page G4-6251.

i. For performance reasons, Arm deprecates any use of these memory barrier operations.

j. Reserved for IMPLEMENTATION DEFINED branch predictor, cache, and TCM operations, see Reserved 32-bit
encodings with {coproc==0b1111, CRn==c9} on page G7-6422.

k. Performance Monitors Extension System register, see Performance Monitors registers on page G8-7074.

l. Reserved for IMPLEMENTATION DEFINED performance monitors, see Reserved 32-bit encodings with
{coproc==0b1111, CRn==c9} on page G7-6422.

m. Reserved for IMPLEMENTATION DEFINED TLB lockdown operations, see Reserved 32-bit encodings with
{coproc==0b1111, CRn==c10} on page G7-6422.

n. When an implementation is using the Long descriptor translation table format, these encodings access the
MAIR0 and MAIR1 registers. Otherwise, they use PRRR and NMRR.

o. Reserved for IMPLEMENTATION DEFINED DMA operations for TCM access, see Reserved 32-bit encodings
with {coproc==0b1111, CRn==c11} on page G7-6423.

p. Only one of RMR and HRMR is implemented, corresponding to the highest implemented Exception level,
and the register is implemented only if that Exception level is using AArch32.

q. Activity Monitors System register, see Activity Monitors registers on page G8-7155.

r. Generic Timer System register, see Generic Timer registers on page D13-4139.

s. Implemented as RW as part of the Generic Timer on an implementation that includes EL2 and when EL2 is
using AArch32. For more information, see The virtual offset register on page G6-6410.

t. Reserved for IMPLEMENTATION DEFINED purposes, see Reserved 32-bit encodings with {coproc==0b1111,
CRn==c15} on page G7-6423.

Table G7-3 VMSAv8-32 (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source
G7-6434 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System register Encoding
G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space
Note

These registers are in addition to the GIC memory-mapped register groups GICC_, GICD_, GICH_, GICR_,
GICV_, and GITS_.

In VMSAv8-32, the GIC System registers are all in the (coproc==0b1111) encoding space with (CRn==c12). The
ICV_* registers have the same {CRn, opc1, CRm, op2} encodings as the corresponding ICC_* registers. For these
encodings, GIC register configuration fields determine which register is accessed.

When implemented, the GIC System registers form part of an Arm processor implementation, and therefore these
registers are included in the register summaries. However, the registers are defined only in the GIC Architecture
Specification.

For more information see the ARM® Generic Interrupt Controller Architecture Specification, GIC architecture
version 3.0 and version 4.0 (ARM IHI 0069).
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G7-6435
ID072021 Non-Confidential

AArch32 System register Encoding
G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space
G7-6436 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter G8
AArch32 System Register Descriptions

This chapter describes each of the AArch32 System registers.

It contains the following sections:

• About the AArch32 System registers on page G8-6438.

• General system control registers on page G8-6454.

• Debug registers on page G8-6945.

• Performance Monitors registers on page G8-7074.

• Activity Monitors registers on page G8-7155.

• RAS registers on page G8-7192.

• Generic Timer registers on page G8-7253.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6437
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
G8.1 About the AArch32 System registers

For general information about the AArch32 System registers, see:

In Chapter G5 The AArch32 Virtual Memory System Architecture:

• About the System registers for VMSAv8-32 on page G5-6396.

• Functional grouping of VMSAv8-32 System registers on page G5-6401.

In Chapter G7 AArch32 System register Encoding:

• VMSAv8-32 organization of registers in the (coproc==0b1110) encoding space on
page G7-6417.

• VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space on
page G7-6420.

In this chapter:

• Fixed values in the System register descriptions on page G8-6438.

• General behavior of System registers on page G8-6438.

• Principles of the ID scheme for fields in ID registers on page G8-6448.

• About AArch32 System register accesses on page G8-6450.

The remainder of this chapter describes the AArch32 System registers, in the following sections:

• General system control registers on page G8-6454.

• Debug registers on page G8-6945.

• Performance Monitors registers on page G8-7074.

• Generic Timer registers on page G8-7253.

G8.1.1 Fixed values in the System register descriptions

See Fixed values in AArch32 instruction and System register descriptions on page F1-4355. This section defines
how the glossary terms RAZ, RES0, RAO, and RES1 can be represented in the System register descriptions.

G8.1.2 General behavior of System registers

Except where indicated, System registers are 32-bits wide. As stated in About the System registers for VMSAv8-32
on page G5-6396, there are some 64-bit registers, and these include cases where software can access either a 32-bit
view or a 64-bit view of a register. The register summaries, and the individual register descriptions, identify the
64-bit registers and how they can be accessed.

The following sections give information about the general behavior of these registers:

• Register names on page G8-6439.

• Read-only bits in read/write registers on page G8-6439.

• The CPUID identification scheme on page G8-6439.

• IMPLEMENTATION DEFINED performance monitors on page G8-6439.

• UNPREDICTABLE, CONSTRAINED UNPREDICTABLE, and UNDEFINED behavior for AArch32 System
register accesses on page G8-6439.

• Read-only and write-only register encodings on page G8-6441.

• Reset behavior of AArch32 System registers on page G8-6442.

• Synchronization of changes to AArch32 System registers on page G8-6443.

Unless otherwise indicated, information in the listed sections applies to all AArch32 System registers

See also About AArch32 System register accesses on page G8-6450.
G8-6438 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
Register names

The Arm architecture guarantees not to define any register name prefixed with IMP_ as part of the standard Arm
architecture.

Note

Arm strongly recommends that any register names created in the IMPLEMENTATION DEFINED register spaces be
prefixed with IMP_, where appropriate.

Read-only bits in read/write registers

Some read/write registers include bits that are read-only. These bits ignore writes.

The CPUID identification scheme

The ID_* registers were originally called the CPUID identification scheme registers. However, functionally, there
is no value in separating these registers from the slightly larger Identification registers functional group. See
Table K15-23 on page K15-8651 for a list of the ID_ * registers.

IMPLEMENTATION DEFINED performance monitors

VMSAv8-32 reserves some additional System register encodings in the (coproc==0b1111) encoding space for
optional additional IMPLEMENTATION DEFINED performance monitors. Table G8-1 on page G8-6439 shows the
allocation of these encodings:

UNPREDICTABLE, CONSTRAINED UNPREDICTABLE, and UNDEFINED behavior for
AArch32 System register accesses

This section defines UNPREDICTABLE and UNDEFINED behaviors for accesses to System registers, including those
cases where the Armv8 behavior is CONSTRAINED UNPREDICTABLE.

In AArch32 state the following operations are UNDEFINED:

• All LDC and STC accesses, except for the LDC access to DBGDTRTXint and the STC access to DBGDTRRXint
specified in Table G7-2 on page G7-6419.

• All MCRR and MRRC operations to the (coproc==0b111x) encoding space, except for those explicitly defined as
accessing 64-bit System registers specified in Table G7-1 on page G7-6418 and Table G7-3 on
page G7-6424.

Unless otherwise indicated in the individual register descriptions:

• Reserved fields in registers are RES0.

• Assigning a reserved value to a field has a CONSTRAINED UNPREDICTABLE effect, see Reserved values in
System and memory-mapped registers and translation table entries on page K1-8407.

The following subsections give more information about UNPREDICTABLE, CONSTRAINED UNPREDICTABLE, and
UNDEFINED behavior for accesses to the (coproc==0b111x) encoding space:

• Accesses to unallocated encodings in the (coproc==0b111x) encoding space.

Table G8-1 Performance Monitors System register encoding allocations

CRn opc1 CRm opc2 Name Type

c9 0-7 c12-c14 0-7 Performance Monitors Extension registers, see Table K15-24 on page K15-8652 RW or ROa

c15 0-7 IMPLEMENTATION DEFINED b

a. The table referenced in the Name on page G8-6439 entry shows the type of each of the OPTIONAL Performance Monitors Extension registers.

b. Access depends on the register or operation, and is IMPLEMENTATION DEFINED.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6439
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
• Additional rules for MCR and MRC accesses to System registers.

• Effects of EL3 and EL2 on System register accesses.

Accesses to unallocated encodings in the (coproc==0b111x) encoding space

In Armv8-A, accesses to unallocated register encodings in the (coproc==0b111x) encoding space are UNDEFINED.

Note

In Armv7, except for 32-bit registers encoded with a CRn value of c12, accesses to unallocated 32-bit registers were
UNPREDICTABLE. The Armv8 CONSTRAINED UNPREDICTABLE behavior of these accesses is that they are UNDEFINED,
see Unallocated System register access instructions on page K1-8389.

Additional rules for MCR and MRC accesses to System registers

The following operations are CONSTRAINED UNPREDICTABLE for all encodings in the (coproc==0b111x) encoding
space:

• All MCR operations from the PC.

• All MRC operations to APSR_nzcv, except for the (coproc==0b1110) MRC operation to APSR_nzcv from
DBGDSCRint.

The CONSTRAINED UNPREDICTABLE behavior of these operations is described in Using R15 by instruction on
page K1-8387.

For registers and operations that are accessible from a particular Privilege level, any attempt to access those registers
from a lower Privilege level is UNDEFINED.

Some individual registers can be made inaccessible by setting configuration bits, possibly including
IMPLEMENTATION DEFINED configuration bits, to disable access to the register. The effects of the
architecturally-defined configuration bits are defined individually in this manual. Unless explicitly stated otherwise
in this manual, setting a configuration bit to disable access to a register results in the register becoming UNDEFINED
for MRC and MCR accesses.

See also Read-only and write-only register encodings on page G8-6441.

Effects of EL3 and EL2 on System register accesses

EL2 and EL3 introduce classes of System registers, described in Classification of System registers on
page G5-6396. Some of these classes of register are either:

• Accessible only from certain modes or states.

• Accessible from certain modes or states only when configuration settings permit the access.

Accesses to these registers that are not permitted are UNDEFINED, meaning execution of the register access
instruction generates an Undefined Instruction exception.

Note

This section applies only to registers that are accessible from some modes and states. That is, it applies only to
register access instructions using an encoding that, under some circumstances, would perform a valid register
access.

The following register classes restrict access in this way:

Restricted access System registers

This register class is defined in any implementation that includes EL3.

Restricted access registers other than the NSACR are accessible only from Secure EL3 modes. All
other accesses to these registers are UNDEFINED.

The NSACR is a special case of a Restricted access register and:

• The NSACR is:

— Read/write accessible from Secure PL1 modes.
G8-6440 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
— Is Read-only accessible from Non-secure PL2 and PL1 modes.

• All other accesses to the NSACR are UNDEFINED.

For more information, including behavior when EL3 is using AArch64 or is not implemented, see
Restricted access System registers on page G5-6397.

Configurable access System registers

This register class is defined in any implementation that includes EL3.

Most Configurable access registers are accessible from Non-secure state only if control bits in the
NSACR permit Non-secure access to the register. Otherwise, a Non-secure access to the register is
UNDEFINED.

For other Configurable access registers, control bits in the NSACR control the behavior of bits or
fields in the register when it is accessed from Non-secure state. That is, Non-secure accesses to the
register are permitted, but the NSACR controls how they behave. The only architecturally-defined
register of this type is the CPACR.

For more information, see Configurable access System registers on page G5-6397.

EL2-mode System registers

This register class is defined only in an implementation that includes EL2.

EL2-mode registers are accessible only from:

• The Non-secure EL2 mode, Hyp mode.

• Secure Monitor mode when SCR.NS is set to 1.

All other accesses to these registers are UNDEFINED.

For more information, see Hyp mode read/write registers in the (coproc==0b1111) encoding space
on page G5-6398 and Hyp mode encodings for shared (coproc==0b1111) System registers on
page G5-6398.

EL2-mode write-only operations

This register class is defined only in an implementation that includes EL2.

EL2-mode write-only operations are accessible only from:

• The Non-secure EL2 mode, Hyp mode.

• Secure Monitor mode, regardless of the value of SCR.NS.

Write accesses to these operations are:

• CONSTRAINED UNPREDICTABLE in Secure EL3 modes other than Monitor mode.

• UNDEFINED in Non-secure modes other than Hyp mode.

For more information, see Hyp mode (coproc==0b1111) write-only System instructions on
page G5-6399.

In addition, in any implementation that includes EL3, when EL3 is using AArch32, if write access to a register is
disabled by the CP15SDISABLE signal then any MCR access to that register is UNDEFINED.

Read-only and write-only register encodings

Some System registers are read-only (RO) or write-only (WO). For example:

• Most identification registers are read-only.

• Most encodings that perform an operation, such as a cache maintenance instruction, are write-only.

If a particular Privilege level defines a register to be:

• RO, then any attempt to write to that register, at that Privilege level, is UNDEFINED. This means that any access
to that register with L == 0 is UNDEFINED.

• WO, then any attempt to read from that register, at that Privilege level, is UNDEFINED. This means that any
access to that register with L== 1 is UNDEFINED.

For IMPLEMENTATION DEFINED encoding spaces, the treatment of the encodings is IMPLEMENTATION DEFINED.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6441
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
Note

This section applies only to registers that this manual defines as RO or WO. It does not apply to registers for which
other access permissions are explicitly defined.

Reset behavior of AArch32 System registers

Reset values apply only to RW registers and fields, however:

• Some RO registers or fields, including feature ID registers and some status registers or register fields, always
return a known value.

• Some RW and RO registers or register fields return status information about the PE. Unless the register
description indicates that the value is UNKNOWN on reset, a read of the register immediately after a reset
returns valid information.

• Some RW and RO registers and fields are aliases of other registers or fields. In these cases, the reset behavior
of the aliased register or field determines the value returned by a read of the register immediately after a reset.

• WO registers that only have an effect on writes do not have meaningful reset values. However, an access to
a WO register might affect underlying state, and that state might have a defined reset value.

• IMPLEMENTATION DEFINED registers have IMPLEMENTATION DEFINED reset behavior.

After a reset, only a limited subset of the PE state is guaranteed to be set to defined values. Also, for debug and trace
System registers, reset requirements must take account of different levels of reset. For more information about the
reset behavior of System registers when the PE resets into an Exception level that is using AArch32, see:

• PE state on reset into AArch32 state on page G1-6100.

• The appropriate Trace architecture specification, for the Trace System registers.

When the PE resets into an Exception level that is using AArch64, PE state that relates to execution in AArch32
state, including the System register values, is UNKNOWN. The only exception to this is state that applies to execution
in both AArch64 state and AArch32 state and that has a defined reset value on the reset into AArch64 state. An
example of such PE state is the EDPRSR.SR bit.

For a PE reset into an Exception level that is using AArch32, the architecture defines which AArch32 System
registers have a defined reset value, and when that defined reset value applies. The register descriptions include this
information, and PE state on reset into AArch32 state on page G1-6100 summarizes these architectural
requirements. Otherwise, RW registers reset to an architecturally unknown value.

Note

In an implementation that includes EL3, unless this manual explicitly states otherwise, only the Secure instance of
a banked register is reset to the defined value. This means that software must program the Non-secure instance of
the register with the required values. Typically, this programming is part of the PE boot sequence.

Pseudocode description of resetting System registers

The AArch32.ResetControlRegisters() pseudocode function resets all System registers, and register fields, that have
defined reset values, as described in this section and PE state on reset into AArch32 state on page G1-6100.

Note

For debug and trace System registers, this function resets registers as defined for the appropriate level of reset.
G8-6442 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
Synchronization of changes to AArch32 System registers

In this section, this PE means the PE on which accesses are being synchronized.

Note

See Definitions of direct and indirect reads and writes and their side-effects on page G8-6447 for definitions of the
terms direct write, direct read, indirect write, and indirect read.

A direct write to a System register might become visible at any point after the change to the register, but without a
Context synchronization event there is no guarantee that the change becomes visible.

Any direct write to a System register is guaranteed not to affect any instruction that appears, in program order, before
the instruction that performed the direct write, and any direct write to a System register must be synchronized before
any instruction that appears after the direct write, in program order, can rely on the effect of that write. The only
exceptions to this are:

• All direct writes to the same register, using the same encoding, are guaranteed to occur in program order.

• All direct writes to a register are guaranteed to occur in program order relative to all direct reads of the same
register using the same encoding.

• Any System register access that an Arm Architecture Specification or equivalent specification defines as not
requiring synchronization.

• If an instruction that appears in program order before the direct write performs a memory access, such as a
memory-mapped register access, that causes an indirect read or write to a register, that memory access is
subject to the memory order model. In this case, if permitted by the memory order model, the instruction that
appears in program order before the direct write can be affected by the direct write. For information about
the memory order model, see Definition of the Armv8 memory model on page E2-4288.

These rules mean that an instruction that writes to one of the address translation instructions described in Address
translation instructions on page G5-6386 must be explicitly synchronized to guarantee that the result of the address
translation instruction is visible in the PAR.

Note

In this case, the direct write to the encoding of the address translation instruction causes an indirect write to the PAR.
Without a Context synchronization event after the direct write, there is no guarantee that the indirect write to the
PAR is visible.

Conceptually, the explicit synchronization occurs as the first step of any Context synchronization event. This means
that if the operation uses the state that had been changed but not synchronized before the operation occurred, the
operation is guaranteed to use the state as if it had been synchronized.

Note

• This explicit synchronization is applied as the first step of the execution of any instruction that causes the
synchronization operation. This means it does not synchronize any effect of changes to the System registers
that might affect the fetch and decode of the instructions that cause the operation, such as breakpoints or
changes to translation tables.

• For a synchronous exception, the control state in use at the time the exception is generated determines the
exception syndrome information, and this syndrome information is not changed by this synchronization at
the start of taking the exception.

Except for the register reads listed in Registers with some architectural guarantee of ordering or observability on
page G8-6446, if no Context synchronization event is performed, direct reads of System registers can occur in any
order.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6443
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
Table G8-2 on page G8-6444 shows the synchronization requirement between two reads or writes that access the
same System register. In the column headings, First and Second refer to:

• Program order, for any read or write caused by the execution of an instruction by this PE, other than a read
or write caused by a memory access made by that instruction.

• The order of arrival of asynchronous reads or writes made by this PE relative to the execution of instructions
by this PE.

In addition:

• For indirect reads or writes caused by an external agent, such as a debugger, the mechanism that determines
the order of the reads or writes is defined by that external agent. The external agent can provide mechanisms
that ensure that any read or write it makes arrives at the PE. These indirect reads and writes are asynchronous
to software execution on the PE.

• For indirect reads or writes caused by memory-mapped reads or writes made by this PE, the ordering of the
memory accesses is subject to the memory order model, including the effect of the memory type of the
accessed memory address. This applies, for example, if this PE reads or writes one of its registers in a
memory-mapped register interface.

The mechanism for ensuring completion of these memory accesses, including ensuring the arrival of the
asynchronous read or write at the PE, is defined by the system.

Note

Such accesses are likely to be given a Device memory attribute, but requiring this is outside the scope of the
architecture.

• For indirect reads or writes caused by autonomous asynchronous events that are counted, for example events
caused by the passage of time, the events are ordered so that:

— Counts progress monotonically.

— The events arrive at the PE in finite time and without undue delay.

Table G8-2 Synchronization requirements for updates to System registers

First read or write Second read or write Context synchronization event required

Direct read Direct read No

Direct write No

Indirect read Noa

Indirect write Noa, but see text in this section for exceptions

Direct write Direct read No

Direct write No

Indirect read Yesa

Indirect write No, but see text in this section for exceptions

Indirect read Direct read No

Direct write No

Indirect read No

Indirect write No
G8-6444 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
If the indirect write is to a register that Registers with some architectural guarantee of ordering or observability on
page G8-6446 shows as having some guarantee of the visibility of an indirect write, synchronization might not be
required.

If a direct read or a direct write to a register is followed by an indirect write to that register that is caused by an
external agent, or by an autonomous asynchronous event, or as a result of a memory-mapped write, then
synchronization is required to guarantee the ordering of the indirect write relative to the direct read or direct write.

If an indirect write caused by a direct write is followed by an indirect write caused by an external agent, or by an
autonomous asynchronous event, or as a result of a memory-mapped write, then synchronization is required to
guarantee the ordering of the two indirect writes.

Where an indirect write occurs as a side-effect of an access, this happens atomically with the access, meaning no
other accesses are allowed between the register access and its side-effect. For other information about indirect writes
after a direct read or a direct write, see Definitions of direct and indirect reads and writes and their side-effects on
page G8-6447

Note

Where a register has more that one encoding, a direct write to the register using a particular encoding is not an
indirect write to the same register with a different encoding.

Where an indirect write is caused by the action of an external agent, such as a debugger, or by a memory-mapped
read or write by the PE, then an indirect write by that agent to a register using a particular access mechanism,
followed by an indirect read by that agent to the same register using the same access mechanism and address does
not need synchronization.

Without explicit synchronization to guarantee the order of the accesses, where the same register is accessed by two
or more of a System register access instruction, and external agent, and autonomous asynchronous event, or as a
result of a memory-mapped access, the behavior must be as if the accesses occurred atomically and in any order.
This applies even if the accesses occur simultaneously.

For information about the additional synchronization requirements for memory-mapped registers, see
Synchronization requirements for AArch64 System registers on page D13-3041.

To guarantee the visibility of changes to some registers, additional operations might be required before the Context
synchronization event. For such a register, the definition of the register identifies these additional requirements.

In this manual, unless the context indicates otherwise:

• Accessing a System register refers to a direct read or write of the register.

• Using a System register refers to an indirect read or write of the register.

Indirect write Direct read Yes, but see text in this section for exceptions

Direct write No, but see text in this section for exceptions

Indirect read Yes, but see text in this section for exceptions

Indirect write No, but see text in this section for exceptions

a. Although no synchronization is required between a Direct write and a Direct read, or between a Direct
read and an Indirect write, this does not imply that a Direct read causes synchronization of a previous
Direct write. This means that the sequence Direct write followed by Direct read followed by Indirect
read, with no intervening context synchronization, does not guarantee that the Indirect read observes
the result of the Direct write.

Table G8-2 Synchronization requirements for updates to System registers (continued)

First read or write Second read or write Context synchronization event required
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6445
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
Registers with some architectural guarantee of ordering or observability

For the registers for which Table G8-3 on page G8-6446 shows that the ordering of direct reads is guaranteed,
multiple direct reads of a single register, using the same encoding, occur in program order without any explicit
ordering.

For the registers for which Table G8-3 on page G8-6446 shows that some observability of indirect writes is
guaranteed, an indirect write to the register caused by an external agent, an autonomous asynchronous event, or as
a result of a memory-mapped write, is both:

• Observable to direct reads of the register, in finite time, without explicit synchronization.

• Observable to subsequent indirect reads of the register without explicit synchronization.

These two sets of registers are similar, as Table G8-3 on page G8-6446 shows:

In addition to the requirements shown in Table G8-3 on page G8-6446:

• Indirect writes to the following registers as a result of memory-mapped writes, including accesses by external
agents, are required to be observable to the indirect read made in determining the response to a subsequent
memory-mapped access without explicit synchronization:

— OSLAR_EL1. OSLAR_EL1 is indirectly read to determine whether the subsequent access is
permitted.

Note
OSLAR_EL1 maps to the AArch32 System register DBGOSLAR.

Table G8-3 Registers with a guarantee of ordering or observability, VMSAv8-32

Register
Ordering of
direct reads

Observability of
indirect writes

Notes

ISR Guaranteed Guaranteed Interrupt Status Register

DBGCLAIMCLR Guaranteed Guaranteed Debug CLAIM registers

DBGCLAIMSET - Guaranteed

DBGDTRRXint Guaranteed Guaranteed Debug Communication Channel registers

DBGDTRTXint - Guaranteed

The DCC flags in DBGDSCRint Guaranteed Guaranteed

CNTPCT Guaranteed Guaranteed Generic Timer registers

CNTP_TVAL Guaranteed Guaranteed

CNTVCT Guaranteed Guaranteed

CNTV_TVAL Guaranteed Guaranteed

CNTHP_TVAL Guaranteed Guaranteed

PMCCNTR Guaranteed Guaranteed Performance Monitors Extension registers, if the
implementation includes the extension

PMEVCNTR<n> Guaranteed Guaranteed

PMXEVCNTR Guaranteed Guaranteed

PMOVSSET Guaranteed Guaranteed

PMOVSR Guaranteed Guaranteed

EDSCR.PipeAdv and the DCC
flags in EDSCR

- Guaranteed Fields of the External Debug Status and Control
Register
G8-6446 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
— EDLAR, if implemented. EDLAR is indirectly read to determine whether a subsequent write or
side-effect of an access is ignored.

Note
This requirement is stricter than the general requirement for the observability of indirect writes.

• The requirement that an indirect write to the registers in Table G8-3 on page G8-6446 is observable to direct
reads in finite time does not imply that all observers will observe the indirect write at the same time.

For example, an increment of the system counter is an autonomous asynchronous event that performs an
indirect write to the counter. This asynchronous event might generate a timer interrupt request, resulting in a
Context synchronization event. When a GIC is used, the timer interrupt might arrive at the GIC after the PE
has taken an interrupt request from another source, but before software reads the current interrupt ID from
the GIC. This means that the GIC might identify the timer interrupt as the current interrupt. Software must
not assume that a subsequent direct read of the counter register is guaranteed to observe the updated value of
that register.

Although this example uses the counter-timer registers, it applies equally to other registers that might be
linked to interrupt requests, including the PMU and Statistical Profiling status registers.

• When the PE is in Debug state, there are synchronization requirements for the Debug Communication
Channel and Instruction Transfer registers. See DCC and ITR access in Debug state on page H4-7417.

The possibility that direct reads can occur early, in the absence of context synchronization, described in Ordering
of reads of System registers on page G8-6450, still applies to the registers listed in Table G8-3 on page G8-6446.

Definitions of direct and indirect reads and writes and their side-effects

Direct and indirect reads and writes are defined as follows:

Direct read Is a read of a register, using an MRC, MRRC, or STC instruction, that the architecture permits for the
current PE state.

If a direct read of a register has a side-effect of changing the value of a register, the effect of a direct
read on that register is defined to be an indirect write, and has the synchronization requirements of
an indirect write. This means the indirect write is guaranteed to have occurred, and to be visible to
subsequent direct or indirect reads and writes only if synchronization is performed after the direct
read.

Note

The indirect write described here can affect either the register written to by the direct write, or some
other register. The synchronization requirement is the same in both cases.

Direct write Is a write to a register, using an MCR, MCRR, or LDC instruction, that the architecture permits for the
current PE state.

In the following cases, the side-effect of the direct write is defined to be an indirect write of the
affected register, and has the synchronization requirements of an indirect write:

• If the direct write has a side-effect of changing the value of a register other than the register
accessed by the direct write.

• If the direct write has a side-effect of changing the value of the register accessed by the direct
write, so that the value in that register might not be the value that the direct write wrote to the
register.

In both cases, this means that the indirect write is not guaranteed to be visible to subsequent direct
or indirect reads and writes unless synchronization is performed after the direct write.

Note

• As an example of a direct write to a register having an effect that is an indirect write of that
register, writing 1 to a PMCNTENCLR.Px bit is also an indirect write, because if the Px bit
had the value 1 before the direct write, the side-effect of the write changes the value of that
bit to 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6447
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
• The indirect write described here can affect either the register written to by the direct write,
or some other register. The synchronization requirement is the same in both cases.

For example, writing 1 to a PMCNTENCLR.Px bit that is set to 1 also changes the
corresponding PMCNTENSET.Px bit from 1 to 0. This means that the direct write to the
PMCNTENCLR defines indirect writes to both itself and to the PMCNTENSET.

Indirect read Is a use of the register by an instruction to establish the operating conditions for the instruction.
Examples of operating conditions that might be determined by an indirect read are the translation
table base address, or whether memory accesses are forced to be Non-cacheable.

Indirect reads include situations where the value of one register determines what value is returned
by a second register. This means that any read of the second register is an indirect read of the register
that determines what value is returned.

Indirect reads also include:

• Reads of the System registers by external agents, such as debuggers, as described in Debug
registers on page G8-6945.

• Memory-mapped reads of the System registers made by the PE on which the System registers
are implemented.

Where an indirect read of a register has a side-effect of changing the value of a register, that change
is defined to be an indirect write, and has the synchronization requirements of an indirect write.

Indirect write Is an update to the value of a register as a consequence of either:

• An exception, operation, or execution of an instruction that is not a direct write to that
register.

• The asynchronous operation of an external agent.

This can include:

• The passage of time, as seen in counters or timers, including performance counters.

• The assertion of an interrupt.

• A write from an external agent, such as a debugger.

However, for some registers, the architecture gives some guarantee of visibility without any explicit
synchronization, see Registers with some architectural guarantee of ordering or observability on
page G8-6446.

Note

Taking an exception is a Context synchronization event. Any indirect write performed as part of an
exception entry does not require additional synchronization. This includes the indirect writes to the
registers that report the exception, as described in Exception reporting in a VMSAv8-32
implementation on page G5-6367.

G8.1.3 Principles of the ID scheme for fields in ID registers

The Arm architecture specifies a number of ID registers that are characterized as comprising a set of 4-bit ID fields,
Each ID field identifies the presence, and possibly the level of support for, a particular feature in an implementation
of the architecture. These fields follow an architectural model that aids their use by software and provides future
compatibility. This section describes that model. AArch32 ID registers to which this scheme applies on
page G8-6450 identifies the set of ID registers that are accessible from AArch32 state.

A small number of ID fields do not follow the scheme described in this section. In these cases, the field description
states that it does not follow this scheme.

Note

• The ID fields described here are distinct from register fields that enumerate the number of resources, such as
the number of breakpoints, watchpoints, or performance monitors, or the amount of memory.
G8-6448 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
• ID fields that do not follow this scheme include the ID_AA64DFR0_EL1.PMUVer,
ID_DFR0_EL1.PerfMon, ID_DFR0.PerfMon and EDDFR.PMUVer fields, see Alternative ID scheme used
for the Performance Monitors Extension version on page G8-6450.

• The presence of an ID field for a feature does not imply that the feature is optional.

To provide forward compatibility, software can rely on the features of these fields that are described in this section.

The ID fields, which are either signed or unsigned, use increasing numerical values to indicate increases in
functionality. Therefore, if a value of 0x1 indicates the presence of some instructions, then the value 0x2 will indicate
the presence of those instructions plus some additional instructions or functionality. This means software can be
written in the form:

if (value >= number) {
// do something that relies on the value of the feature

}

For ID fields where the value 0x0 defines that a feature is not present, the field holds an unsigned value. This covers
the vast majority of such fields.

In a few cases, the architecture has been changed to permit implementations to exclude a feature that has previously
been required and for which no ID field has been defined. In these cases, a new ID field is defined and:

• The field holds a signed value.

• The field value 0xF indicates that the feature is not implemented.

• The field value 0x0 indicates that the feature is implemented.

• Software that depends on the feature can use the test:
if value >= 0 {

// Software features that depend on the presence of the hardware feature
}

In some cases, it has been decided retrospectively that the increase in functionality between two consecutive
numerical values is too great, and it is desirable to permit an intermediate degree of functionality, and the means to
discover this. This is done by the introduction of a fractional field that both:

• Is referred to in the definition of the original field.

• Applies only when the original field is at the lower value of the step.

In principle, a fractional field can be used for two different fractional steps, with different meanings associated with
each of these steps. For this reason, a fractional field must be interpreted in the context of the field to which it relates
and the value of that field. Example G8-1 on page G8-6449 shows the use of such a field.

Example G8-1 Example of the use of a fractional field

For a field describing some class of functionality:

• The value 0x1 was defined as indicating that item A is present.

• The value 0x2 was defined as indicating that items B and C are present, in addition to item A.

Subsequently, it might be necessary to introduce a second ID field to indicate that A and B only are present. This
new field is a fractional field, and might be defined as having the value 0x1 when A and B only are present. This
fractional field is valid only when the original ID field has the value 0x1.

This approach means that:

• Software that depends on the test if (value >= 0x2) can rely on features A, B, and C being present,

• Software that depends on the test if (value >= 0x1) can rely on feature A being present.

• If new software needs to check only that features A and B are present, then it can test:
if (value >= 0x2 || (value == 0x1 && fractional_value >= 0x1)) {

// Software features that depend on A and B only
}

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6449
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
A fractional field uses the same approach of increasing numerical values indicating increasing functionality, and the
fractional approach can also be applied recursively to fractional fields.

Unused ID fields, and fractional fields that are not applicable, are RES0 to allow their future use when features, or
fractional implementation options, are added.

AArch32 ID registers to which this scheme applies
• The Auxiliary Feature register ID_AFR0.

• The Processor Feature registers ID_PFR0 and ID_PFR1.

• The Debug Feature register ID_DFR0.

• The Memory Model Feature registers ID_MMFR0, ID_MMFR1, ID_MMFR2, ID_MMFR3, and
ID_MMFR4.

• The Instruction Set Attribute registers ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, and
ID_ISAR5.

• The Media and VFP Feature registers MVFR0, MVFR1, and MVFR2.

Note

Principles of the ID scheme for fields in ID registers on page D13-3045 includes information about the AArch64
System registers and the memory-mapped registers to which this scheme applies.

Alternative ID scheme used for the Performance Monitors Extension version

The ID_AA64DFR0_EL1.PMUVer, ID_DFR0_EL1.PerfMon, ID_DFR0.PerfMon, and EDDFR.PMUVer fields,
which identify the version of the Performance Monitors Extension, do not follow the standard ID scheme. Software
must treat these fields as follows:

• The value 0xF indicates that the Arm-architected Performance Monitors Extension is not implemented.

• If the field value is not 0xF the field is treated as an unsigned value, as described for the standard ID scheme.

This means that software that depends on the implementation of a particular version of the Arm Performance
Monitors Extension must be written in the form:

if (value != 0xF and value >= number) {
// do something that relies on version 'number' of the feature

}

For these fields, Arm deprecates use of the value 0xF in new implementations.

G8.1.4 About AArch32 System register accesses

The following subsections give more information about accesses to the AArch32 System registers:

• Ordering of reads of System registers on page G8-6450.

• Accessing 32-bit System registers on page G8-6451.

• Accessing 64-bit System registers on page G8-6452.

Ordering of reads of System registers

Reads of the System registers can occur out of order with respect to earlier instructions executed on the same PE,
provided that both:

• Any data dependencies between the instructions, as specified in Synchronization of changes to AArch32
System registers on page G8-6443, including read-after-read dependencies, are respected.

• The reads to the register do not occur earlier than the most recent Context synchronization event to its
architectural position in the instruction stream.
G8-6450 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
Note

In particular, the values read from System registers that hold self-incrementing counts, such as the Performance
Monitors counters or the Generic Timer counter or timers, could be accessed from any time after the previous
Context synchronization event. For example, where a memory access is used to communicate a read of such a
counter, an ISB must be inserted between the read of the memory location that is known to have returned its data,
either as a result of a condition on that data or of the read having completed, and the read of the counter, if it is
necessary that the counter returns a count value after the memory communication.

Accessing 32-bit System registers

Software accesses most 32-bit System registers using the generic MCR and MRC System register access instructions,
specifying some or all of the parameters {coproc, CRn, opc1, CRm, opc2}, where:

coproc Identifies the primary region of the System register encoding space. Takes one of the values:

p14 Encoded as 0b1110.

p15 Encoded as 0b1111.

CRn Takes a value in the range c0-c15, encoded the corresponding 4-bit binary value, 0b0000-0b1111.

In the (coproc==0b1110) encoding space, the opc1 value identifies the System register functional
group, and CRn is the most significant identifier for the required register within that group.

In the (coproc==0b1111) encoding space, CRn is the most significant identifier for the required
register.

opc1 Takes a value in the range 0-7, encoded as its 3-bit binary value.

In the (coproc==0b1110) encoding space, the opc1 value identifies the System register functional
group, and can take the following values:

0 Debug System registers.

1 Trace System registers.

7 Legacy Jazelle System registers.

In the (coproc==0b1111) encoding space, opc1 can take any value in the range 0-7.

CRm Takes a value in the range c0-c15, encoded the corresponding 4-bit binary value, 0b0000-0b1111.

opc2 Takes a value in the range 0-7, encoded as its 3-bit binary value.

opc2 is optional in the MCR and MRC instruction syntax, and if no value is specified the encoding
defaults to 0b000.

Rt A general-purpose register to hold a 32-bit value to transfer to or from the System register. Takes a
value in the range R0-R14, encoded as the corresponding 4-bit binary value, 0b0000-0b1110.

This means an MCR or MRC access to a specific 32-bit System register uses:

• A unique combination of coproc, CRn, opc1, CRm, and opc2, to specify the required System register.

• A general-purpose register, Rt, for the transferred 32-bit value.

See also:

• MCR on page F5-4829.

• MRC on page F5-4852.

A small number of AArch32 debug System registers are accessed using LDC or STC instructions. In these cases, the
register to be accessed is identified in the instruction syntax by the use of p14, c5 where:

p14 Identifies that the access is to the (coproc==0b1110) encoding space.

c5 Identifies the target debug System register.

See the instruction descriptions:

• LDC (immediate) on page F5-4718.

• LDC (literal) on page F5-4720.

• STC on page F5-5074.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6451
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
The only uses of LDC and STC permitted in Armv8-A are:

• An LDC access to load data from memory to DBGDTRTXint, see LDC (immediate) on page F5-4718 and LDC
(literal) on page F5-4720.

• An STC access to store data to memory from DBGDTRRXint, see STC on page F5-5074.

A small number of AArch32 System registers are accessed using MRS, MSR, VMRS, or VMSR instructions, see the
appropriate register and instruction description for more information, see:

• MRS on page F5-4856.

• MSR (immediate) on page F5-4866,

• MSR (register) on page F5-4868.

• VMRS on page F6-5684.

• VMSR on page F6-5687.

Note

• For example:

— The APSR, CPSR, and SPSR are accessed using MRS or MSR instructions.

— The MVFR0, MVFR1, and MVFR2 are accessed using VMRS or VMSR instructions.

• In addition, the banked register forms of the MRS and MSR instructions can be used to access some System
registers associated with PE modes other than the mode in which the PE is currently executing, see MRS
(Banked register) on page F5-4858 and MSR (Banked register) on page F5-4862.

Accessing 64-bit System registers

Software accesses a 64-bit System register using the generic MCRR and MRRC System register access instructions,
specifying the parameters {coproc, CRm, opc1}, where:

coproc Identifies the primary region of the System register encoding space. Takes one of the values:

p14 Encoded as 0b1110.

p15 Encoded as 0b1111.

CRm Takes a value in the range c0-c15, encoded the corresponding 4-bit binary value, 0b0000-0b1111.

In the (coproc==0b1110) encoding space, the opc1 value identifies the System register functional
group, and CRm is the most significant identifier for the required register within that group.

In the (coproc==0b1111) encoding space, CRm is the most significant identifier for the required
register.

opc1 Takes a value in the range 0-15, encoded as its 3-bit binary value.

In the (coproc==0b1110) encoding space, the opc1 value identifies the System register functional
group, and can take the following values:

0 Debug System registers.

1 Trace System registers.

In the (coproc==0b1111) encoding space, opc1 can take any value in the range 0-15.

Rt A general-purpose register to hold bits[31:0] of the value to transfer to or from the System register.
Takes a value in the range R0-R14, encoded as the corresponding 4-bit binary value, 0b0000-0b1110.

Rt2 A general-purpose register to hold bits[63:32] of the value to transfer to or from the System register.
Takes a value in the range R0-R14, encoded as the corresponding 4-bit binary value, 0b0000-0b1110.

This means an MCRR or MRRC access to a specific 64-bit System register uses:

• A unique combination of coproc, CRm and opc1, to specify the required 64-bit System register.

• Two general-purpose registers, each holding 32 bits of the value to transfer.

This means a PE can access a 64-bit System register using:

• An MCRR instruction to write to a System register, see MCRR on page F5-4831.

• An MRRC instruction to read a System register, see MRRC on page F5-4854.

When using an MCRR or MRRC instruction the System register access is 64-bit atomic.
G8-6452 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
Some 64-bit registers also have an MCR and MRC encoding. The MCR and MRC encodings for these registers access the
least significant 32 bits of the register. For example, to access the PAR, software can:

• Use the following instructions to access all 64 bits of the register:
MRRC p15, 0, <Rt>, <Rt2>, c7 ; Read 64-bit PAR into Rt (low word) and Rt2 (high word)
MCRR p15, 0, <Rt>, <Rt2>, c7 ; Write Rt (low word) and Rt2 (high word) to 64-bit PAR

• Use the following instructions to access the least-significant 32 bits of the register:
MRC p15, 0, <Rt>, c7, c4, 0 ; Read PAR[31:0] into Rt
MCR p15, 0, <Rt>, c7, c4, 0 ; Write Rt to PAR[31:0]
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6453
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2 General system control registers

This section lists the System registers in AArch32 state that are not part of one of the other listed groups.
G8-6454 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.1 ACTLR, Auxiliary Control Register

The ACTLR characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED configuration and control options for execution at EL1 and
EL0.

Configurations

AArch32 System register ACTLR bits [31:0] are architecturally mapped to AArch64 System
register ACTLR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ACTLR are UNDEFINED.

Some bits might define global configuration settings, and be common to the Secure and Non-secure
instances of the register.

Attributes

ACTLR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ACTLR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TACR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TAC == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return ACTLR_NS;
 else
 return ACTLR;
elsif PSTATE.EL == EL2 then

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6455
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return ACTLR_NS;
 else
 return ACTLR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return ACTLR_S;
 else
 return ACTLR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TACR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TAC == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 ACTLR_NS = R[t];
 else
 ACTLR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 ACTLR_NS = R[t];
 else
 ACTLR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 ACTLR_S = R[t];
 else
 ACTLR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0000 0b001
G8-6456 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.2 ACTLR2, Auxiliary Control Register 2

The ACTLR2 characteristics are:

Purpose

Provides additional space to the ACTLR register to hold IMPLEMENTATION DEFINED trap
functionality for execution at EL1 and EL0.

Configurations

AArch32 System register ACTLR2 bits [31:0] are architecturally mapped to AArch64 System
register ACTLR_EL1[63:32].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ACTLR2 are UNDEFINED.

In Armv8.0 and Armv8.1, it is IMPLEMENTATION DEFINED whether this register is implemented, or
whether it causes UNDEFINED exceptions when accessed. The implementation of this register can be
detected by examining ID_MMFR4.AC2.

From Armv8.2 this register must be implemented.

Attributes

ACTLR2 is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ACTLR2

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TACR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TAC == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return ACTLR2_NS;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0000 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6457
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 return ACTLR2;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return ACTLR2_NS;
 else
 return ACTLR2;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return ACTLR2_S;
 else
 return ACTLR2_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TACR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TAC == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 ACTLR2_NS = R[t];
 else
 ACTLR2 = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 ACTLR2_NS = R[t];
 else
 ACTLR2 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 ACTLR2_S = R[t];
 else
 ACTLR2_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0000 0b011
G8-6458 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.3 ADFSR, Auxiliary Data Fault Status Register

The ADFSR characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for Data Abort exceptions
taken to EL1 modes, and EL3 modes when EL3 is implemented and is using AArch32.

Configurations

AArch32 System register ADFSR bits [31:0] are architecturally mapped to AArch64 System
register AFSR0_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ADFSR are UNDEFINED.

Attributes

ADFSR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ADFSR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return ADFSR_NS;
 else
 return ADFSR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return ADFSR_NS;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6459
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 return ADFSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return ADFSR_S;
 else
 return ADFSR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 ADFSR_NS = R[t];
 else
 ADFSR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 ADFSR_NS = R[t];
 else
 ADFSR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 ADFSR_S = R[t];
 else
 ADFSR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0001 0b000
G8-6460 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.4 AIDR, Auxiliary ID Register

The AIDR characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED identification information.

The value of this register must be used in conjunction with the value of MIDR.

Configurations

AArch32 System register AIDR bits [31:0] are architecturally mapped to AArch64 System register
AIDR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to AIDR
are UNDEFINED.

Attributes

AIDR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing AIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return AIDR;
elsif PSTATE.EL == EL2 then
 return AIDR;
elsif PSTATE.EL == EL3 then
 return AIDR;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b001 0b0000 0b0000 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6461
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.5 AIFSR, Auxiliary Instruction Fault Status Register

The AIFSR characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for Prefetch Abort
exceptions taken to EL1 modes, and EL3 modes when EL3 is implemented and is using AArch32.

Configurations

AArch32 System register AIFSR bits [31:0] are architecturally mapped to AArch64 System register
AFSR1_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
AIFSR are UNDEFINED.

Attributes

AIFSR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AIFSR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return AIFSR_NS;
 else
 return AIFSR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return AIFSR_NS;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0001 0b001
G8-6462 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 return AIFSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return AIFSR_S;
 else
 return AIFSR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 AIFSR_NS = R[t];
 else
 AIFSR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 AIFSR_NS = R[t];
 else
 AIFSR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 AIFSR_S = R[t];
 else
 AIFSR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0001 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6463
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.6 AMAIR0, Auxiliary Memory Attribute Indirection Register 0

The AMAIR0 characteristics are:

Purpose

When using the Long-descriptor format translation tables for stage 1 translations, provides
IMPLEMENTATION DEFINED memory attributes for the memory regions specified by MAIR0.

Configurations

AArch32 System register AMAIR0 bits [31:0] are architecturally mapped to AArch64 System
register AMAIR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
AMAIR0 are UNDEFINED.

Attributes

AMAIR0 is a 32-bit register.

Field descriptions

This register is RES0 in the following cases:

• When an implementation does not provide any IMPLEMENTATION DEFINED memory attributes.

• When the Long-descriptor translation table format is not used.

If EL3 is implemented and is using AArch32:

• AMAIR0(S) gives the value for memory accesses from Secure state.

• AMAIR0(NS) gives the value for memory accesses from Non-secure states other than Hyp mode.

Any IMPLEMENTATION DEFINED memory attributes are additional qualifiers for the memory locations and must not
change the architected behavior specified by MAIR0 and MAIR1.

In a typical implementation, AMAIR0 and AMAIR1 split into eight one-byte fields, corresponding to the
MAIRn.Attr<n> fields, but the architecture does not require them to do so.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AMAIR0

Accesses to this register use the following encodings in the System register encoding space:

IMPLEMENTATION DEFINED

31 0
G8-6464 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return AMAIR0_NS;
 else
 return AMAIR0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return AMAIR0_NS;
 else
 return AMAIR0;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return AMAIR0_S;
 else
 return AMAIR0_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 AMAIR0_NS = R[t];
 else
 AMAIR0 = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 AMAIR0_NS = R[t];
 else
 AMAIR0 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0011 0b000

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6465
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 AMAIR0_S = R[t];
 else
 AMAIR0_NS = R[t];

G8-6466 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.7 AMAIR1, Auxiliary Memory Attribute Indirection Register 1

The AMAIR1 characteristics are:

Purpose

When using the Long-descriptor format translation tables for stage 1 translations, provides
IMPLEMENTATION DEFINED memory attributes for the memory regions specified by MAIR1.

Configurations

AArch32 System register AMAIR1 bits [31:0] are architecturally mapped to AArch64 System
register AMAIR_EL1[63:32].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
AMAIR1 are UNDEFINED.

When EL3 is using AArch32, write access to AMAIR1(S) is disabled when the CP15SDISABLE
signal is asserted HIGH.

Attributes

AMAIR1 is a 32-bit register.

Field descriptions

This register is RES0 in the following cases:

• When an implementation does not provide any IMPLEMENTATION DEFINED memory attributes.

• When the Long-descriptor translation table format is not used.

If EL3 is implemented and is using AArch32:

• AMAIR1(S) gives the value for memory accesses from Secure state.

• AMAIR1(NS) gives the value for memory accesses from Non-secure states other than Hyp mode.

Any IMPLEMENTATION DEFINED memory attributes are additional qualifiers for the memory locations and must not
change the architected behavior specified by MAIR0 and MAIR1.

In a typical implementation, AMAIR0 and AMAIR1 split into eight one-byte fields, corresponding to the
MAIRn.Attr<n> fields, but the architecture does not require them to do so.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AMAIR1

Accesses to this register use the following encodings in the System register encoding space:

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6467
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return AMAIR1_NS;
 else
 return AMAIR1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return AMAIR1_NS;
 else
 return AMAIR1;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return AMAIR1_S;
 else
 return AMAIR1_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 AMAIR1_NS = R[t];
 else
 AMAIR1 = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 AMAIR1_NS = R[t];
 else
 AMAIR1 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0011 0b001

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0011 0b001
G8-6468 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 AMAIR1_S = R[t];
 else
 AMAIR1_NS = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6469
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.8 APSR, Application Program Status Register

The APSR characteristics are:

Purpose

Hold program status and control information.

Configurations

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to APSR
are UNDEFINED.

Attributes

APSR is a 32-bit register.

Field descriptions

N, bit [31]

Negative condition flag. Set to bit[31] of the result of the last flag-setting instruction. If the result is
regarded as a two's complement signed integer, then N is set to 1 if the result was negative, and N
is set to 0 if the result was positive or zero.

Z, bit [30]

Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0
otherwise. A result of zero often indicates an equal result from a comparison.

C, bit [29]

Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for
example an unsigned overflow on an addition.

V, bit [28]

Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition,
for example a signed overflow on an addition.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some
instructions.

Bits [26:20]

Reserved, RES0.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

Bits [15:5]

Reserved, RES0.

Bit [4]

Reserved, RES1.

Bits [3:0]

Reserved, RES0.

N

31

Z

30

C

29

V

28

Q

27

RES0

26 20

GE

19 16

RES0

15 5 4

RES0

3 0

RES1
G8-6470 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
It is permitted that, on a read of APSR:

• Bit[22] returns the value of PSTATE.PAN

• Bit[9] returns the value of PSTATE.E.

• Bits[8:6] return the value of PSTATE.{A, I, F}, the mask bits.

• Bit[4:0] returns the value of PSTATE.M[4:0]

Note

This is an exception to the general rule that an UNKNOWN field must not return information that cannot be obtained,
at the current Privilege level, by an architected mechanism.

For more information see The Application Program Status Register, APSR on page E1-4255.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6471
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.9 ATS12NSOPR, Address Translate Stages 1 and 2 Non-secure Only PL1 Read

The ATS12NSOPR characteristics are:

Purpose

Performs stage 1 and 2 address translations as defined for PL1 and the Non-secure state, with
permissions as if reading from the given virtual address.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ATS12NSOPR are UNDEFINED.

Attributes

ATS12NSOPR is a 32-bit System instruction.

Field descriptions

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address
of the stage 2 translation.

Executing ATS12NSOPR instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 ATS12NSOPR(R[t]);
elsif PSTATE.EL == EL3 then
 ATS12NSOPR(R[t]);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1000 0b100
G8-6472 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.10 ATS12NSOPW, Address Translate Stages 1 and 2 Non-secure Only PL1 Write

The ATS12NSOPW characteristics are:

Purpose

Performs stage 1 and 2 address translations as defined for PL1 and the Non-secure state, with
permissions as if writing to the given virtual address.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ATS12NSOPW are UNDEFINED.

Attributes

ATS12NSOPW is a 32-bit System instruction.

Field descriptions

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address
of the stage 2 translation.

Executing ATS12NSOPW instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 ATS12NSOPW(R[t]);
elsif PSTATE.EL == EL3 then
 ATS12NSOPW(R[t]);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1000 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6473
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.11 ATS12NSOUR, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read

The ATS12NSOUR characteristics are:

Purpose

Performs stage 1 and 2 address translations as defined for PL0 and the Non-secure state, with
permissions as if reading from the given virtual address.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ATS12NSOUR are UNDEFINED.

Attributes

ATS12NSOUR is a 32-bit System instruction.

Field descriptions

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address
of the stage 2 translation.

Executing ATS12NSOUR instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 ATS12NSOUR(R[t]);
elsif PSTATE.EL == EL3 then
 ATS12NSOUR(R[t]);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1000 0b110
G8-6474 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.12 ATS12NSOUW, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write

The ATS12NSOUW characteristics are:

Purpose

Performs stage 1 and 2 address translations as defined for PL0 and the Non-secure state, with
permissions as if writing to the given virtual address.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ATS12NSOUW are UNDEFINED.

Attributes

ATS12NSOUW is a 32-bit System instruction.

Field descriptions

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address
of the stage 2 translation.

Executing ATS12NSOUW instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 ATS12NSOUW(R[t]);
elsif PSTATE.EL == EL3 then
 ATS12NSOUW(R[t]);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1000 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6475
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.13 ATS1CPR, Address Translate Stage 1 Current state PL1 Read

The ATS1CPR characteristics are:

Purpose

Performs stage 1 address translation as defined for PL1 and the current Security state, with
permissions as if reading from the given virtual address.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ATS1CPR are UNDEFINED.

Attributes

ATS1CPR is a 32-bit System instruction.

Field descriptions

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current
Security state, the resulting address is the IPA that is the output address of the stage 1 translation.
Otherwise, the resulting address is a PA.

Executing ATS1CPR instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 ATS1CPR(R[t]);
elsif PSTATE.EL == EL2 then
 ATS1CPR(R[t]);
elsif PSTATE.EL == EL3 then
 ATS1CPR(R[t]);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1000 0b000
G8-6476 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.14 ATS1CPRP, Address Translate Stage 1 Current state PL1 Read PAN

The ATS1CPRP characteristics are:

Purpose

Performs a stage 1 address translation at PL1 and in the current Security state, where the value of
PSTATE.PAN determines if a read from a location will generate a Permission fault for a privileged
access.

Configurations

This instruction is present only when AArch32 is supported at EL0 and FEAT_PAN2 is
implemented. Otherwise, direct accesses to ATS1CPRP are UNDEFINED.

Attributes

ATS1CPRP is a 32-bit System instruction.

Field descriptions

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current
Security state, the resulting address is the IPA that is the output address of the stage 1 translation.
Otherwise, the resulting address is a PA.

Executing ATS1CPRP instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 ATS1CPRP(R[t]);
elsif PSTATE.EL == EL2 then
 ATS1CPRP(R[t]);
elsif PSTATE.EL == EL3 then
 ATS1CPRP(R[t]);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6477
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.15 ATS1CPW, Address Translate Stage 1 Current state PL1 Write

The ATS1CPW characteristics are:

Purpose

Performs stage 1 address translation as defined for PL1 and the current Security state, with
permissions as if writing to the given virtual address.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ATS1CPW are UNDEFINED.

Attributes

ATS1CPW is a 32-bit System instruction.

Field descriptions

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current
Security state, the resulting address is the IPA that is the output address of the stage 1 translation.
Otherwise, the resulting address is a PA.

Executing ATS1CPW instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 ATS1CPW(R[t]);
elsif PSTATE.EL == EL2 then
 ATS1CPW(R[t]);
elsif PSTATE.EL == EL3 then
 ATS1CPW(R[t]);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1000 0b001
G8-6478 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.16 ATS1CPWP, Address Translate Stage 1 Current state PL1 Write PAN

The ATS1CPWP characteristics are:

Purpose

Performs a stage 1 address translation at PL1 and in the current Security state, where the value of
PSTATE.PAN determines if a write to the location will generate a Permission fault for a privileged
access.

Configurations

This instruction is present only when AArch32 is supported at EL0 and FEAT_PAN2 is
implemented. Otherwise, direct accesses to ATS1CPWP are UNDEFINED.

Attributes

ATS1CPWP is a 32-bit System instruction.

Field descriptions

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current
Security state, the resulting address is the IPA that is the output address of the stage 1 translation.
Otherwise, the resulting address is a PA.

Executing ATS1CPWP instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 ATS1CPWP(R[t]);
elsif PSTATE.EL == EL2 then
 ATS1CPWP(R[t]);
elsif PSTATE.EL == EL3 then
 ATS1CPWP(R[t]);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1001 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6479
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.17 ATS1CUR, Address Translate Stage 1 Current state Unprivileged Read

The ATS1CUR characteristics are:

Purpose

Performs stage 1 address translation as defined for PL0 and the current Security state, with
permissions as if reading from the given virtual address.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ATS1CUR are UNDEFINED.

Attributes

ATS1CUR is a 32-bit System instruction.

Field descriptions

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current
Security state, the resulting address is the IPA that is the output address of the stage 1 translation.
Otherwise, the resulting address is a PA.

Executing ATS1CUR instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 ATS1CUR(R[t]);
elsif PSTATE.EL == EL2 then
 ATS1CUR(R[t]);
elsif PSTATE.EL == EL3 then
 ATS1CUR(R[t]);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1000 0b010
G8-6480 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.18 ATS1CUW, Address Translate Stage 1 Current state Unprivileged Write

The ATS1CUW characteristics are:

Purpose

Performs stage 1 address translation as defined for PL0 and the current Security state, with
permissions as if writing to the given virtual address.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ATS1CUW are UNDEFINED.

Attributes

ATS1CUW is a 32-bit System instruction.

Field descriptions

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current
Security state, the resulting address is the IPA that is the output address of the stage 1 translation.
Otherwise, the resulting address is a PA.

Executing ATS1CUW instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 ATS1CUW(R[t]);
elsif PSTATE.EL == EL2 then
 ATS1CUW(R[t]);
elsif PSTATE.EL == EL3 then
 ATS1CUW(R[t]);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1000 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6481
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.19 ATS1HR, Address Translate Stage 1 Hyp mode Read

The ATS1HR characteristics are:

Purpose

Performs stage 1 address translation as defined for PL2 and the Non-secure state, with permissions
as if reading from the given virtual address.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ATS1HR are UNDEFINED.

Attributes

ATS1HR is a 32-bit System instruction.

Field descriptions

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address
of the translation.

Executing ATS1HR instruction

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 ATS1HR(R[t]);
elsif PSTATE.EL == EL2 then
 ATS1HR(R[t]);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0111 0b1000 0b000
G8-6482 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL3 then
 ATS1HR(R[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6483
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.20 ATS1HW, Address Translate Stage 1 Hyp mode Write

The ATS1HW characteristics are:

Purpose

Performs stage 1 address translation as defined for PL2 and the Non-secure state, with permissions
as if writing to the given virtual address.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ATS1HW are UNDEFINED.

Attributes

ATS1HW is a 32-bit System instruction.

Field descriptions

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address
of the translation.

Executing ATS1HW instruction

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 ATS1HW(R[t]);
elsif PSTATE.EL == EL2 then
 ATS1HW(R[t]);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0111 0b1000 0b001
G8-6484 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL3 then
 ATS1HW(R[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6485
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.21 BPIALL, Branch Predictor Invalidate All

The BPIALL characteristics are:

Purpose

Invalidate all entries from branch predictors.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
BPIALL are UNDEFINED.

In an implementation where the branch predictors are architecturally invisible, this instruction can
execute as a NOP.

Attributes

BPIALL is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing BPIALL instruction

The PE ignores the value of <Rt>. Software does not have to write a value to this register before issuing this
instruction.

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a BPIALLIS.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
 BPIALLIS();
 else
 BPIALL();
elsif PSTATE.EL == EL2 then
 BPIALL();
elsif PSTATE.EL == EL3 then
 BPIALL();

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0101 0b110
G8-6486 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.22 BPIALLIS, Branch Predictor Invalidate All, Inner Shareable

The BPIALLIS characteristics are:

Purpose

Invalidate all entries from branch predictors Inner Shareable.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
BPIALLIS are UNDEFINED.

In an implementation where the branch predictors are architecturally invisible, this instruction can
execute as a NOP.

Attributes

BPIALLIS is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing BPIALLIS instruction

The PE ignores the value of <Rt>. Software does not have to write a value to this register before issuing this
instruction.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 BPIALLIS();
elsif PSTATE.EL == EL2 then
 BPIALLIS();
elsif PSTATE.EL == EL3 then
 BPIALLIS();

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0001 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6487
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.23 BPIMVA, Branch Predictor Invalidate by VA

The BPIMVA characteristics are:

Purpose

Invalidate virtual address from branch predictors.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
BPIMVA are UNDEFINED.

In an implementation where the branch predictors are architecturally invisible, this instruction can
execute as a NOP.

Attributes

BPIMVA is a 32-bit System instruction.

Field descriptions

Bits [31:0]

Virtual address to use.

Executing BPIMVA instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 BPIMVA(R[t]);
elsif PSTATE.EL == EL2 then
 BPIMVA(R[t]);
elsif PSTATE.EL == EL3 then
 BPIMVA(R[t]);

Virtual address to use

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0101 0b111
G8-6488 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.24 CCSIDR, Current Cache Size ID Register

The CCSIDR characteristics are:

Purpose

Provides information about the architecture of the currently selected cache.

When FEAT_CCIDX is implemented, this register is used in conjunction with CCSIDR2.

Configurations

AArch32 System register CCSIDR bits [31:0] are architecturally mapped to AArch64 System
register CCSIDR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CCSIDR are UNDEFINED.

The implementation includes one CCSIDR for each cache that it can access. CSSELR and the
Security state select which Cache Size ID Register is accessible.

Attributes

CCSIDR is a 32-bit register.

Field descriptions

When FEAT_CCIDX is implemented:

Note

The parameters NumSets, Associativity, and LineSize in these registers define the architecturally visible parameters
that are required for the cache maintenance by Set/Way instructions. They are not guaranteed to represent the actual
microarchitectural features of a design. You cannot make any inference about the actual sizes of caches based on
these parameters.

Bits [31:24]

Reserved, RES0.

Associativity, bits [23:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity
does not have to be a power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.

For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

Otherwise:

RES0

31 24

Associativity

23 3 2 0

LineSize

UNKNOWN

31 28

NumSets

27 13

Associativity

12 3 2 0

LineSize
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6489
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Note

The parameters NumSets, Associativity, and LineSize in these registers define the architecturally visible parameters
that are required for the cache maintenance by Set/Way instructions. They are not guaranteed to represent the actual
microarchitectural features of a design. You cannot make any inference about the actual sizes of caches based on
these parameters.

Bits [31:28]

Reserved, UNKNOWN.

NumSets, bits [27:13]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets
does not have to be a power of 2.

Associativity, bits [12:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity
does not have to be a power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.

For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

Accessing CCSIDR

If CSSELR.Level is programmed to a cache level that is not implemented, then on a read of the CCSIDR the
behavior is CONSTRAINED UNPREDICTABLE, and can be one of the following:

• The CCSIDR read is treated as NOP.

• The CCSIDR read is UNDEFINED.

• The CCSIDR read returns an UNKNOWN value.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return CCSIDR;

coproc opc1 CRn CRm opc2

0b1111 0b001 0b0000 0b0000 0b000
G8-6490 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL2 then
 return CCSIDR;
elsif PSTATE.EL == EL3 then
 return CCSIDR;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6491
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.25 CCSIDR2, Current Cache Size ID Register 2

The CCSIDR2 characteristics are:

Purpose

Provides information about the architecture of the currently selected cache.

Configurations

AArch32 System register CCSIDR2 bits [31:0] are architecturally mapped to AArch64 System
register CCSIDR2_EL1[31:0].

This register is present only when FEAT_CCIDX is implemented and AArch32 is supported at EL1.
Otherwise, direct accesses to CCSIDR2 are UNDEFINED.

The implementation includes one CCSIDR2 for each cache that it can access. CSSELR and the
Security state select which Cache Size ID Register is accessible.

Attributes

CCSIDR2 is a 32-bit register.

Field descriptions

Bits [31:24]

Reserved, RES0.

NumSets, bits [23:0]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets
does not have to be a power of 2.

Accessing CCSIDR2

If CSSELR.Level is programmed to a cache level that is not implemented, then on a read of the CCSIDR2 the
behavior is CONSTRAINED UNPREDICTABLE, and can be one of the following:

• The CCSIDR2 read is treated as NOP.

• The CCSIDR2 read is UNDEFINED.

• The CCSIDR2 read returns an UNKNOWN value.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

RES0

31 24

NumSets

23 0

coproc opc1 CRn CRm opc2

0b1111 0b001 0b0000 0b0000 0b010
G8-6492 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return CCSIDR2;
elsif PSTATE.EL == EL2 then
 return CCSIDR2;
elsif PSTATE.EL == EL3 then
 return CCSIDR2;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6493
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.26 CFPRCTX, Control Flow Prediction Restriction by Context

The CFPRCTX characteristics are:

Purpose

Control Flow Prediction Restriction by Context applies to all Control Flow Prediction Resources
that predict execution based on information gathered within the target execution context or contexts.

Control flow predictions determined by the actions of code in the target execution context or
contexts appearing in program order before the instruction cannot exploitatively control speculative
execution occurring after the instruction is complete and synchronized.

This instruction is guaranteed to be complete following a DSB that covers both read and write
behavior on the same PE as executed the original restriction instruction, and a subsequent context
synchronization event is required to ensure that the effect of the completion of the instructions is
synchronized to the current execution.

Note

This instruction does not require the invalidation of prediction structures so long as the behavior
described for completion of this instruction is met by the implementation.

On some implementations the instruction is likely to take a significant number of cycles to execute.
This instruction is expected to be used very rarely, such as on the roll-over of an ASID or VMID,
but should not be used on every context switch.

Configurations

This instruction is present only when AArch32 is supported at EL0 and FEAT_SPECRES is
implemented. Otherwise, direct accesses to CFPRCTX are UNDEFINED.

Attributes

CFPRCTX is a 32-bit System instruction.

Field descriptions

Bits [31:28]

Reserved, RES0.

GVMID, bit [27]

Execution of this instruction applies to all VMIDs or a specified VMID.

0b0 Applies to specified VMID for an EL0 or EL1 target execution context.

0b1 Applies to all VMIDs for an EL0 or EL1 target execution context.

For target execution contexts other than EL0 or EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

NS, bit [26]

Security State.

0b0 Secure state.

0b1 Non-secure state.

If the instruction is executed in Non-secure state, this field has an Effective value of 1.

RES0

31 28 27

NS

26

EL

25 24

VMID

23 16

RES0

15 9 8

ASID

7 0

GVMID GASID
G8-6494 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, this instruction is
treated as a NOP.

VMID, bits [23:16]

Only applies when bit[27] is 0 and the target execution context is either:

• EL1.

• EL0 when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0) or EL2 is using AArch32 state.

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0 or
ELUsingAArch32(EL2)), this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1 and
!ELUsingAArch32(EL2)), this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

Bits [15:9]

Reserved, RES0.

GASID, bit [8]

Execution of this instruction applies to all ASIDs or a specified ASID.

0b0 Applies to specified ASID for an EL0 target execution context.

0b1 Applies to all ASID for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field is treated as 0.

ASID, bits [7:0]

Only applies for an EL0 target execution context and when bit[8] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.

Executing CFPRCTX instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0011 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6495
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && SCTLR.EnRCTX == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGITR_EL2.CFPRCTX == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 CFPRCTX(R[t]);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x03);
 else
 CFPRCTX(R[t]);
elsif PSTATE.EL == EL2 then
 CFPRCTX(R[t]);
elsif PSTATE.EL == EL3 then
 CFPRCTX(R[t]);

G8-6496 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.27 CLIDR, Cache Level ID Register

The CLIDR characteristics are:

Purpose

Identifies the type of cache, or caches, that are implemented at each level and can be managed using
the architected cache maintenance instructions that operate by set/way, up to a maximum of seven
levels. Also identifies the Level of Coherence (LoC) and Level of Unification (LoU) for the cache
hierarchy.

Configurations

AArch32 System register CLIDR bits [31:0] are architecturally mapped to AArch64 System register
CLIDR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CLIDR are UNDEFINED.

Attributes

CLIDR is a 32-bit register.

Field descriptions

ICB, bits [31:30]

Inner cache boundary. This field indicates the boundary for caching Inner Cacheable memory
regions.

The possible values are:

0b00 Not disclosed by this mechanism.

0b01 L1 cache is the highest Inner Cacheable level.

0b10 L2 cache is the highest Inner Cacheable level.

0b11 L3 cache is the highest Inner Cacheable level.

LoUU, bits [29:27]

Level of Unification Uniprocessor for the cache hierarchy.

Note

When FEAT_S2FWB is implemented, the architecture requires that this field is zero so that no
levels of data cache need to be cleaned in order to manage coherency with instruction fetches.

LoC, bits [26:24]

Level of Coherence for the cache hierarchy.

LoUIS, bits [23:21]

Level of Unification Inner Shareable for the cache hierarchy.

Note

When FEAT_S2FWB is implemented, the architecture requires that this field is zero so that no
levels of data cache need to be cleaned in order to manage coherency with instruction fetches.

ICB

31 30

LoUU

29 27

LoC

26 24

LoUIS

23 21

Ctype7

20 18

Ctype6

17 15

Ctype5

14 12

Ctype4

11 9

Ctype3

8 6

Ctype2

5 3

Ctype1

2 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6497
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Ctype<n>, bits [3(n-1)+2:3(n-1)], for n = 7 to 1

Cache Type fields. Indicate the type of cache that is implemented and can be managed using the
architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to
a maximum of seven levels of cache hierarchy. Possible values of each field are:

0b000 No cache.

0b001 Instruction cache only.

0b010 Data cache only.

0b011 Separate instruction and data caches.

0b100 Unified cache.

All other values are reserved.

If software reads the Cache Type fields from Ctype1 upwards, once it has seen a value of 000, no
caches that can be managed using the architected cache maintenance instructions that operate by
set/way exist at further-out levels of the hierarchy. So, for example, if Ctype3 is the first Cache Type
field with a value of 000, the values of Ctype4 to Ctype7 must be ignored.

Accessing CLIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return CLIDR;
elsif PSTATE.EL == EL2 then
 return CLIDR;
elsif PSTATE.EL == EL3 then
 return CLIDR;

coproc opc1 CRn CRm opc2

0b1111 0b001 0b0000 0b0000 0b001
G8-6498 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.28 CONTEXTIDR, Context ID Register

The CONTEXTIDR characteristics are:

Purpose

Identifies the current Process Identifier and, when using the Short-descriptor translation table
format, the Address Space Identifier.

The value of the whole of this register is called the Context ID and is used by:

• The debug logic, for Linked and Unlinked Context ID matching.

• The trace logic, to identify the current process.

The significance of this register is for debug and trace use only.

Configurations

AArch32 System register CONTEXTIDR bits [31:0] are architecturally mapped to AArch64
System register CONTEXTIDR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CONTEXTIDR are UNDEFINED.

The register format depends on whether address translation is using the Long-descriptor or the
Short-descriptor translation table format.

Attributes

CONTEXTIDR is a 32-bit register.

Field descriptions

When TTBCR.EAE == 0:

PROCID, bits [31:8]

Process Identifier. This field must be programmed with a unique value that identifies the current
process.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ASID, bits [7:0]

Address Space Identifier. This field is programmed with the value of the current ASID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When TTBCR.EAE == 1:

PROCID, bits [31:0]

Process Identifier. This field must be programmed with a unique value that identifies the current
process.

PROCID

31 8

ASID

7 0

PROCID

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6499
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CONTEXTIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CONTEXTIDR_NS;
 else
 return CONTEXTIDR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CONTEXTIDR_NS;
 else
 return CONTEXTIDR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return CONTEXTIDR_S;
 else
 return CONTEXTIDR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CONTEXTIDR_NS = R[t];
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0000 0b001

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0000 0b001
G8-6500 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 CONTEXTIDR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CONTEXTIDR_NS = R[t];
 else
 CONTEXTIDR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CONTEXTIDR_S = R[t];
 else
 CONTEXTIDR_NS = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6501
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.29 CP15DMB, Data Memory Barrier System instruction

The CP15DMB characteristics are:

Purpose

Performs a Data Memory Barrier.

Arm deprecates any use of this System instruction, and strongly recommends that software use the
DMB instruction instead.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CP15DMB are UNDEFINED.

Attributes

CP15DMB is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing CP15DMB instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.CP15BEN == '0'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.CP15BEN == '0'
then
 UNDEFINED;
 elsif ELUsingAArch32(EL1) && SCTLR.CP15BEN == '0' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 CP15DMB();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif SCTLR.CP15BEN == '0' then
 UNDEFINED;
 else
 CP15DMB();
elsif PSTATE.EL == EL2 then
 if HSCTLR.CP15BEN == '0' then
 UNDEFINED;
 else
 CP15DMB();

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1010 0b101
G8-6502 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL3 then
 if SCTLR.CP15BEN == '0' then
 UNDEFINED;
 else
 CP15DMB();

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6503
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.30 CP15DSB, Data Synchronization Barrier System instruction

The CP15DSB characteristics are:

Purpose

Performs a Data Synchronization Barrier.

Arm deprecates any use of this System instruction, and strongly recommends that software use the
DSB instruction instead.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CP15DSB are UNDEFINED.

Attributes

CP15DSB is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing CP15DSB instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.CP15BEN == '0'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.CP15BEN == '0'
then
 UNDEFINED;
 elsif ELUsingAArch32(EL1) && SCTLR.CP15BEN == '0' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 CP15DSB();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif SCTLR.CP15BEN == '0' then
 UNDEFINED;
 else
 CP15DSB();
elsif PSTATE.EL == EL2 then
 if HSCTLR.CP15BEN == '0' then
 UNDEFINED;
 else
 CP15DSB();

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1010 0b100
G8-6504 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL3 then
 if SCTLR.CP15BEN == '0' then
 UNDEFINED;
 else
 CP15DSB();

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6505
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.31 CP15ISB, Instruction Synchronization Barrier System instruction

The CP15ISB characteristics are:

Purpose

Performs an Instruction Synchronization Barrier.

Arm deprecates any use of this System instruction, and strongly recommends that software use the
ISB instruction instead.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CP15ISB are UNDEFINED.

Attributes

CP15ISB is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing CP15ISB instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.CP15BEN == '0'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.CP15BEN == '0'
then
 UNDEFINED;
 elsif ELUsingAArch32(EL1) && SCTLR.CP15BEN == '0' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 CP15ISB();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif SCTLR.CP15BEN == '0' then
 UNDEFINED;
 else
 CP15ISB();
elsif PSTATE.EL == EL2 then
 if HSCTLR.CP15BEN == '0' then
 UNDEFINED;
 else
 CP15ISB();

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0101 0b100
G8-6506 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL3 then
 if SCTLR.CP15BEN == '0' then
 UNDEFINED;
 else
 CP15ISB();

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6507
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.32 CPACR, Architectural Feature Access Control Register

The CPACR characteristics are:

Purpose

Controls access to trace, and to Advanced SIMD and floating-point functionality from EL0, EL1,
and EL3.

In an implementation that includes EL2, the CPACR has no effect on instructions executed at EL2.

Configurations

AArch32 System register CPACR bits [31:0] are architecturally mapped to AArch64 System
register CPACR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CPACR are UNDEFINED.

Bits in the NSACR control Non-secure access to the CPACR fields. See the field descriptions for
more information.

Note

In the register field descriptions, controls are described as applying at specified Privilege levels.
This is because, in Secure state, a PL1 control:

• Applies to execution in a Secure EL3 mode when EL3 is using AArch32.

• Applies to execution in a Secure EL1 mode when EL3 is using AArch64.

See Security state, Exception levels, and AArch32 execution privilege on page G1-6022.

Attributes

CPACR is a 32-bit register.

Field descriptions

ASEDIS, bit [31]

Disables PL0 and PL1 execution of Advanced SIMD instructions.

0b0 This control permits execution of Advanced SIMD instructions at PL0 and PL1.

0b1 All instruction encodings that are Advanced SIMD instruction encodings, but are not
also floating-point instruction encodings, are UNDEFINED at PL0 and PL1.

If the implementation does not include Advanced SIMD and floating-point functionality, this field
is RES0. Otherwise, it is IMPLEMENTATION DEFINED whether this field is implemented as a RW field.
If it is not implemented as a RW field, it is RAZ/WI.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSASEDIS is 1, this field
behaves as RAO/WI in Non-secure state, regardless of its actual value. This applies even if the field
is implemented as RAZ/WI.

For the list of instructions affected by this field, see Controls of Advanced SIMD operation that do
not apply to floating-point operation on page E1-4273.

See the description of CPACR.cp10 for a list of other controls that can disable or trap execution of
Advanced SIMD instructions in AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

31

RES0

30 29 28

RES0

27 24

cp11

23 22

cp10

21 20

RES0

19 0

ASEDIS TRCDIS
G8-6508 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
Bits [30:29]

Reserved, RES0.

TRCDIS, bit [28]

Traps PL0 and PL1 System register accesses to all implemented trace registers to Undefined mode.

0b0 This control has no effect on PL0 and PL1 System register accesses to trace registers.

0b1 PL0 and PL1 System register accesses to all implemented trace registers are trapped to
Undefined mode.

If the implementation does not include a PE trace unit, or does not include a System register
interface to the PE trace unit registers, this field is RES0. Otherwise, it is IMPLEMENTATION DEFINED
whether this field is implemented as a RW field. If it is not implemented as a RW field, it is RAZ/WI.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSTRCDIS is 1, this field
behaves as RAO/WI in Non-secure state, regardless of its actual value. This applies even if the field
is implemented as RAZ/WI.

Note

• The ETMv4 architecture does not permit EL0 to access the trace registers. If the PE trace unit
implements FEAT_ETMv4, EL0 accesses to the trace registers are UNDEFINED.

• The architecture does not provide traps on trace register accesses through the optional
memory-mapped external debug interface.

System register accesses to the trace registers can have side-effects. When a System register access
is trapped, any side-effects that are normally associated with the access do not occur before the
exception is taken.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:24]

Reserved, RES0.

cp11, bits [23:22]

The value of this field is ignored. If this field is programmed with a different value to the cp10 field
then this field is UNKNOWN on a direct read of the CPACR.

If the implementation does not include Advanced SIMD and floating-point functionality, this field
is RES0.

In Non-secure state, if EL3 is implemented and is using AArch32, when the value of NSACR.cp10
is 0, this field behaves as RAZ/WI, regardless of its actual value.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

cp10, bits [21:20]

Defines the access rights for the Advanced SIMD and floating-point functionality. Possible values
of the field are:

0b00 PL0 and PL1 accesses to Advanced SIMD and floating-point registers or instructions
are UNDEFINED.

0b01 PL0 accesses to Advanced SIMD and floating-point registers or instructions are
UNDEFINED.

0b10 Reserved. The effect of programming this field to this value is CONSTRAINED
UNPREDICTABLE. See Handling of System register control fields for Advanced SIMD
and floating-point operation on page K1-8392.

0b11 This control permits full access to the Advanced SIMD and floating-point functionality
from PL0 and PL1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6509
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The Advanced SIMD and floating-point features controlled by these fields are:

• Execution of any floating-point or Advanced SIMD instruction.

• Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as
S0-S31 and Q0-Q15.

• Any access to the FPSCR, FPSID, MVFR0, MVFR1, MVFR2, or FPEXC System registers.

Note
The CPACR has no effect on Advanced SIMD and floating-point accesses from PL2. These can be
disabled by the HCPTR.TCP10 field.

If the implementation does not include Advanced SIMD and floating-point functionality, this field
is RES0.

In Non-secure state, if EL3 is implemented and is using AArch32, when the value of NSACR.cp10
is 0, this field behaves as RAZ/WI, regardless of its actual value.

Execution of Advanced SIMD and floating-point instructions in AArch32 state can be disabled or
trapped by the following controls:

• CPACR.cp10, or, if executing at EL0, CPACR_EL1.FPEN.

• FPEXC.EN.

• If executing in Non-secure state:

— HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.

— NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.

• For Advanced SIMD instructions only:

— CPACR.ASEDIS.

— If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

See the descriptions of the controls for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [19:0]

Reserved, RES0.

Accessing CPACR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TCPAC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0000 0b010
G8-6510 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TCPAC == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return CPACR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return CPACR;
elsif PSTATE.EL == EL3 then
 return CPACR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TCPAC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TCPAC == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 CPACR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 CPACR = R[t];
elsif PSTATE.EL == EL3 then
 CPACR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0000 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6511
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.33 CPSR, Current Program Status Register

The CPSR characteristics are:

Purpose

Holds PE status and control information.

Configurations

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to CPSR
are UNDEFINED.

Attributes

CPSR is a 32-bit register.

Field descriptions

N, bit [31]

Negative condition flag. Set to bit[31] of the result of the last flag-setting instruction. If the result is
regarded as a two's complement signed integer, then N is set to 1 if the result was negative, and N
is set to 0 if the result was positive or zero.

Z, bit [30]

Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0
otherwise. A result of zero often indicates an equal result from a comparison.

C, bit [29]

Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for
example an unsigned overflow on an addition.

V, bit [28]

Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition,
for example a signed overflow on an addition.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some
instructions.

Bits [26:24]

Reserved, RES0.

SSBS, bit [23]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass Safe.

Prohibits speculative loads or stores that might practically allow a cache timing side channel.

N

31

Z

30

C

29

V

28

Q

27

RES0

26 24 23 22 21 20

GE

19 16

RES0

15 10

E

9

A

8

I

7

F

6 5 4

M

3 0

SSBS
PAN

RES0
DIT

RES0 RES1
G8-6512 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
A cache timing side channel might be exploited where a load or store uses an address that is derived
from a register that is being loaded from memory using a load instruction speculatively read from a
memory location. If PSTATE.SSBS is enabled, the address derived from the load instruction might
be from earlier in the coherence order than the latest store to that memory location with the same
virtual address.

0b0 Hardware is not permitted to load or store speculatively in the manner described.

0b1 Hardware is permitted to load or store speculatively in the manner described.

The value of this bit is usually set to the value described by the SCTLR.DSSBS bit on exceptions
to any mode except Hyp mode, and the value described by HSCTLR.DSSBS on exceptions to Hyp
mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never.

0b0 The translation system is the same as Armv8.0.

0b1 Disables privileged read and write accesses to addresses accessible at EL0.

The value of this bit is usually preserved on taking an exception, except in the following situations:

• When the target of the exception is EL1, and the value of the SCTLR.SPAN bit for the current
Security state is 0, this bit is set to 1.

• When the target of the exception is EL3, from Secure state, and the value of the Secure
SCTLR.SPAN is 0, this bit is set to 1.

• When the target of the exception is EL3, from Non-secure state, this bit is set to 0 regardless
of the value of the Secure SCTLR.SPAN bit.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

DIT

Data Independent Timing.

0b0 The architecture makes no statement about the timing properties of any instructions.

0b1 The architecture requires that:

• The timing of every load and store instruction is insensitive to the value of the
data being loaded or stored.

• For certain data processing instructions, the instruction takes a time that is
independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• For certain data processing instructions, the response of the instruction to
asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6513
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
— The values of the NZCV flags.

The data processing instructions affected by this bit are:

• All cryptographic instructions. These instructions are:

— AESD, AESE, AESIMC, AESMC, SHA1C, SHA1H, SHA1M, SHA1P, SHA1SU0, SHA1SU1, SHA256H,
SHA256H2, SHA256SU0, and SHA256SU1.

• A subset of the instructions that use the general-purpose register file. For these instructions,
the effects of CPSR.DIT apply only if they do not use R15 as either their source or destination
and pass their condition execution check. These instructions are:

— BFI, BFC, CLZ, CMN, CMP, MLA, MLAS, MLS, MOVT, MUL, MULS, NOP, PKHBT, PKHTB, RBIT, REV, REV16,
REVSH, RRX, SADD16, SADD8, SASX, SBFX, SHADD16, SHADD8, SHASX, SHSAX, SHSUB16, SHSUB8,
SMLAL**, SMLAW*, SMLSD*, SMMLA*, SMMLS*, SMMUL*, SMUAD*, SMUL*, SSAX, SSUB16, SSUB8,
SXTAB*, SXTAH, SXTB*, SXTH, TEQ, TST, UADD*, UASX, UBFX, UHADD*, UHASX, UHSAX, UHSUB*,
UMAAL, UMLAL, UMLALS, UMULL, UMULLS, USADA8, USAX, USUB*, UXTAB*, UXTAH, UXTB*, UXTH, ADC
(register-shifted register), ADCS (register-shifted register), ADD (register-shifted
register), ADDS (register-shifted register), AND (register-shifted register), ANDS
(register-shifted register), ASR (register-shifted register), ASRS (register-shifted
register), BIC (register-shifted register), BICS (register-shifted register), EOR
(register-shifted register), EORS (register-shifted register), LSL (register-shifted
register), LSLS (register-shifted register), LSR (register-shifted register), LSRS
(register-shifted register), MOV (register-shifted register), MOVS (register-shifted
register), MVN (register-shifted register), MVNS (register-shifted register), ORR
(register-shifted register), ORRS (register-shifted register), ROR (register-shifted
register), RORS (register-shifted register), RSB (register-shifted register), RSBS
(register-shifted register), RSC (register-shifted register), RSCS (register-shifted
register), SBC (register-shifted register), SBCS (register-shifted register), SUB
(register-shifted register), and SUBS (register-shifted register).

• A subset of the instructions that use the general-purpose register file. For these instructions,
the effects of CPSR.DIT apply only if they do not use R15 as either their source or
destination. The effects of CPSR.DIT do not depend on these instructions passing their
condition execution check. These instructions are:

— ADC (immediate), ADC (register), ADCS (immediate), ADCS (register), ADD (immediate), ADD
(register), ADDS (immediate), ADDS (register), AND (immediate), AND (register), ANDS
(immediate), ANDS (register), ASR (immediate), ASR (register), ASRS (immediate), ASRS
(register), BIC (immediate), BIC (register), BICS (immediate), BICS (register), EOR
(immediate), EOR (register), EORS (immediate), EORS (register), LSL (immediate), LSL
(register), LSLS (immediate), LSLS (register), LSR (immediate), LSR (register), LSRS
(immediate), LSRS (register), MOV (immediate), MOV (register), MOVS (immediate), MOVS
(register), MVN (immediate), MVN (register), MVNS (immediate), MVNS (register), ORR
(immediate), ORR (register), ORRS (immediate), ORRS (register), ROR (immediate), ROR
(register), RORS (immediate), RORS (register), RSB (immediate), RSB (register), RSBS
(immediate), RSBS (register), RSC (immediate), RSC (register), RSCS (immediate), RSCS
(register), SBC (immediate), SBC (register), SBCS (immediate), SBCS (register), SUB
(immediate), SUB (register), SUBS (immediate), and SUBS (register).

— If FEAT_CRC32 is implemented, CRC32B, CRC32H, CRC32W, CRC32CB, CRC32CH, and
CRC32CW.

• A subset of the instructions that use the SIMD&FP register file. For these instructions, the
effects of CPSR.DIT apply only if they pass their condition execution check. These
instructions are:

— VABA*, VABD* (integer), VADD (integer), VADDHN, VADDL, VADDW, VAND, VBIC, VBIF, VBIT, VBSL,
VCLS, VCLZ, VCNT, VDUP, VEOR, VEXT, VHADD, VHSUB, VMAX (integer), VMIN (integer), VMLA
(integer), VMLAL, VMLS (integer), VMLSL, VMOV, VMOVL, VMOVN, VMUL (integer and
polynomial), VMULL (integer and polynomial), VMVN, VORN, VORR, VPADAL, VPADD (integer),
VPADDL, VPMAX (integer), VPMIN (integer), VRADDHN, VREV*, VRHADD, VRSHL, VRSHR, VRSHRN,
VRSRA, VRSUBHN, VSHL, VSHLL, VSHR, VSLI, VSRA, VSRI, VSUB (integer), VSUBHN, VSUBL, VSUBW,
VSWP, VTBL, VTBX, VTRN, VTST, VUZP, and VZIP.
G8-6514 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
• Another subset of the instructions that use the SIMD&FP register file. For these instructions,
the effects of CPSR.DIT apply only if they pass their condition execution check and apply
only when the instructions are operating on integer vector elements. These instructions are:

— VABS, VCGE, VCGT, VCLE, VCLT, VMLA (by scalar), VMLS (by scalar), and VNEG.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [20]

Reserved, RES0.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

Bits [15:10]

Reserved, RES0.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0b0 Little-endian operation

0b1 Big-endian operation.

Instruction fetches ignore this bit.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.

The reset behavior of this field is:

• When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that
value also applies to the CPSR.E bit on reset, and therefore applies to software execution
from reset.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

0b0 Exception not masked.

0b1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

0b0 Exception not masked.

0b1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

0b0 Exception not masked.

0b1 Exception masked.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6515
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Bit [5]

Reserved, RES0.

Bit [4]

Reserved, RES1.

M, bits [3:0]

Current PE mode. Possible values are:

0b0000 User.

0b0001 FIQ.

0b0010 IRQ.

0b0011 Supervisor.

0b0110 Monitor.

0b0111 Abort.

0b1010 Hyp.

0b1011 Undefined.

0b1111 System.
G8-6516 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.34 CPPRCTX, Cache Prefetch Prediction Restriction by Context

The CPPRCTX characteristics are:

Purpose

Cache Prefetch Prediction Restriction by Context applies to all Cache Allocation Resources that
predict cache allocations based on information gathered within the target execution context or
contexts.

Cache prefetch predictions determined by the actions of code in the target execution context or
contexts appearing in program order before the instruction cannot exploitatively control speculative
execution occurring after the instruction is complete and synchronized.

This instruction applies to all:

• Instruction caches.

• Data caches.

• TLB prefetching hardware used by the executing PE that applies to the supplied context or
contexts.

This instruction is guaranteed to be complete following a DSB that covers both read and write
behavior on the same PE as executed the original restriction instruction, and a subsequent context
synchronization event is required to ensure that the effect of the completion of the instructions is
synchronized to the current execution.

Note

This instruction does not require the invalidation of Cache Allocation Resources so long as the
behavior described for completion of this instruction is met by the implementation.

On some implementations the instruction is likely to take a significant number of cycles to execute.
This instruction is expected to be used very rarely, such as on the roll-over of an ASID or VMID,
but should not be used on every context switch.

Configurations

This instruction is present only when AArch32 is supported at EL0 and FEAT_SPECRES is
implemented. Otherwise, direct accesses to CPPRCTX are UNDEFINED.

Attributes

CPPRCTX is a 32-bit System instruction.

Field descriptions

Bits [31:28]

Reserved, RES0.

GVMID, bit [27]

Execution of this instruction applies to all VMIDs or a specified VMID.

0b0 Applies to specified VMID for an EL0 or EL1 target execution context.

0b1 Applies to all VMIDs for an EL0 or EL1 target execution context.

For target execution contexts other than EL0 or EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, then this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

RES0

31 28 27

NS

26

EL

25 24

VMID

23 16

RES0

15 9 8

ASID

7 0

GVMID GASID
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6517
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
NS, bit [26]

Security State.

0b0 Secure state.

0b1 Non-secure state.

If the instruction is executed in Non-secure state, this field is treated as 1.

EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, this instruction is
treated as a NOP.

VMID, bits [23:16]

Only applies when bit[27] is 0 and the target execution context is either:

• EL1.

• EL0 when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0) or EL2 is using AArch32 state.

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0 or
ELUsingAArch32(EL2)), this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1 and
!ELUsingAArch32(EL2)), this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

Bits [15:9]

Reserved, RES0.

GASID, bit [8]

Execution of this instruction applies to all ASIDs or a specified ASID.

0b0 Applies to specified ASID for an EL0 target execution context.

0b1 Applies to all ASID for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [7:0]

Only applies for an EL0 target execution context and when bit[8] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.

Executing CPPRCTX instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:
G8-6518 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && SCTLR.EnRCTX == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGITR_EL2.CPPRCTX == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 CPPRCTX(R[t]);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x03);
 else
 CPPRCTX(R[t]);
elsif PSTATE.EL == EL2 then
 CPPRCTX(R[t]);
elsif PSTATE.EL == EL3 then
 CPPRCTX(R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0011 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6519
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.35 CSSELR, Cache Size Selection Register

The CSSELR characteristics are:

Purpose

Selects the current Cache Size ID Register, CCSIDR, by specifying the required cache level and the
cache type, which is either instruction cache or data cache.

If FEAT_CCIDX is implemented, CSSELR also selects the current CCSIDR2.

Configurations

AArch32 System register CSSELR bits [31:0] are architecturally mapped to AArch64 System
register CSSELR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CSSELR are UNDEFINED.

Attributes

CSSELR is a 32-bit register.

Field descriptions

Bits [31:4]

Reserved, RES0.

Level, bits [3:1]

Cache level of required cache. Permitted values are:

0b000 Level 1 cache.

0b001 Level 2 cache.

0b010 Level 3 cache.

0b011 Level 4 cache.

0b100 Level 5 cache.

0b101 Level 6 cache.

0b110 Level 7 cache.

All other values are reserved.

If CSSELR.Level is programmed to a cache level that is not implemented, then the value for this
field on a read of CSSELR is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

InD, bit [0]

Instruction not Data bit. Permitted values are:

0b0 Data or unified cache.

0b1 Instruction cache.

If CSSELR.Level is programmed to a cache level that is not implemented, then the value for this
field on a read of CSSELR is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

31 4

Level

3 1 0

InD
G8-6520 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
Accessing CSSELR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CSSELR_NS;
 else
 return CSSELR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CSSELR_NS;
 else
 return CSSELR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return CSSELR_S;
 else
 return CSSELR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b010 0b0000 0b0000 0b000

coproc opc1 CRn CRm opc2

0b1111 0b010 0b0000 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6521
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CSSELR_NS = R[t];
 else
 CSSELR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CSSELR_NS = R[t];
 else
 CSSELR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CSSELR_S = R[t];
 else
 CSSELR_NS = R[t];

G8-6522 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.36 CTR, Cache Type Register

The CTR characteristics are:

Purpose

Provides information about the architecture of the caches.

Configurations

AArch32 System register CTR bits [31:0] are architecturally mapped to AArch64 System register
CTR_EL0[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to CTR
are UNDEFINED.

Attributes

CTR is a 32-bit register.

Field descriptions

Bit [31]

Reserved, RES1.

Bit [30]

Reserved, RES0.

DIC, bit [29]

Instruction cache invalidation requirements for data to instruction coherence.

0b0 Instruction cache invalidation to the Point of Unification is required for data to
instruction coherence.

0b1 Instruction cache invalidation to the Point of Unification is not required for data to
instruction coherence.

IDC, bit [28]

Data cache clean requirements for instruction to data coherence. The meaning of this bit is:

0b0 Data cache clean to the Point of Unification is required for instruction to data coherence,
unless CLIDR.LoC == 0b000 or (CLIDR.LoUIS == 0b000 && CLIDR.LoUU == 0b000).

0b1 Data cache clean to the Point of Unification is not required for instruction to data
coherence.

CWG, bits [27:24]

Cache writeback granule. Log2 of the number of words of the maximum size of memory that can be
overwritten as a result of the eviction of a cache entry that has had a memory location in it modified.

A value of 0b0000 indicates that this register does not provide Cache writeback granule information
and either:

• The architectural maximum of 512 words (2KB) must be assumed.

• The Cache writeback granule can be determined from maximum cache line size encoded in
the Cache Size ID Registers.

Values greater than 0b1001 are reserved.

31 30 29 28

CWG

27 24

ERG

23 20

DminLine

19 16

L1Ip

15 14

RES0

13 4

IminLine

3 0

RES1
RES0

IDC
DIC
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6523
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Arm recommends that an implementation that does not support cache write-back implements this
field as 0b0001. This applies, for example, to an implementation that supports only write-through
caches.

ERG, bits [23:20]

Exclusives reservation granule. Log2 of the number of words of the maximum size of the reservation
granule that has been implemented for the Load-Exclusive and Store-Exclusive instructions.

The use of the value 0b0000 is deprecated.

The value 0b0001 and values greater than 0b1001 are reserved.

DminLine, bits [19:16]

Log2 of the number of words in the smallest cache line of all the data caches and unified caches that
are controlled by the PE.

L1Ip, bits [15:14]

Level 1 instruction cache policy. Indicates the indexing and tagging policy for the L1 instruction
cache. Possible values of this field are:

0b00 When FEAT_VPIPT is implemented:

VMID aware Physical Index, Physical tag (VPIPT).

0b01 ASID-tagged Virtual Index, Virtual Tag (AIVIVT).

0b10 Virtual Index, Physical Tag (VIPT).

0b11 Physical Index, Physical Tag (PIPT).

The value 0b00 is permitted only in an implementation that includes FEAT_VPIPT, otherwise the
value is reserved.

The value 0b01 is not permitted in Armv8.

Bits [13:4]

Reserved, RES0.

IminLine, bits [3:0]

Log2 of the number of words in the smallest cache line of all the instruction caches that are
controlled by the PE.

Accessing CTR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0000 0b001
G8-6524 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 return CTR;
elsif PSTATE.EL == EL2 then
 return CTR;
elsif PSTATE.EL == EL3 then
 return CTR;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6525
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.37 DACR, Domain Access Control Register

The DACR characteristics are:

Purpose

Defines the access permission for each of the sixteen memory domains.

Configurations

AArch32 System register DACR bits [31:0] are architecturally mapped to AArch64 System register
DACR32_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DACR are UNDEFINED.

This register has no function when TTBCR.EAE is set to 1, to select the Long-descriptor translation
table format.

Attributes

DACR is a 32-bit register.

Field descriptions

D<n>, bits [2n+1:2n], for n = 15 to 0

Domain n access permission, where n = 0 to 15. Permitted values are:

0b00 No access. Any access to the domain generates a Domain fault.

0b01 Client. Accesses are checked against the permission bits in the translation tables.

0b11 Manager. Accesses are not checked against the permission bits in the translation tables.

The value 0b10 is reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing DACR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);

D15

31 30

D14

29 28

D13

27 26

D12

25 24

D11

23 22

D10

21 20

D9

19 18

D8

17 16

D7

15 14

D6

13 12

D5

11 10

D4

9 8

D3

7 6

D2

5 4

D1

3 2

D0

1 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0011 0b0000 0b000
G8-6526 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return DACR_NS;
 else
 return DACR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return DACR_NS;
 else
 return DACR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return DACR_S;
 else
 return DACR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 DACR_NS = R[t];
 else
 DACR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 DACR_NS = R[t];
 else
 DACR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 DACR_S = R[t];
 else
 DACR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0011 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6527
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.38 DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC

The DCCIMVAC characteristics are:

Purpose

Clean and Invalidate data or unified cache line by virtual address to PoC.

Configurations

AArch32 System register DCCIMVAC performs the same function as AArch64 System register DC
CIVAC.

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DCCIMVAC are UNDEFINED.

Attributes

DCCIMVAC is a 32-bit System instruction.

Field descriptions

Bits [31:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DCCIMVAC instruction

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see AArch32 data cache maintenance instructions (DC*) on page G4-6241.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPC == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.DC(R[t], CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch32.DC(R[t], CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL3 then
 AArch32.DC(R[t], CacheOp_CleanInvalidate, CacheOpScope_PoC);

Virtual address to use

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1110 0b001
G8-6528 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.39 DCCISW, Data Cache line Clean and Invalidate by Set/Way

The DCCISW characteristics are:

Purpose

Clean and Invalidate data or unified cache line by set/way.

Configurations

AArch32 System register DCCISW performs the same function as AArch64 System register DC
CISW.

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DCCISW are UNDEFINED.

Attributes

DCCISW is a 32-bit System instruction.

Field descriptions

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DCCISW instruction

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings in the System instruction encoding space:

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6529
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TSW == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TSW == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.DC(R[t], CacheOp_CleanInvalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch32.DC(R[t], CacheOp_CleanInvalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch32.DC(R[t], CacheOp_CleanInvalidate, CacheOpScope_SetWay);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1110 0b010
G8-6530 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.40 DCCMVAC, Data Cache line Clean by VA to PoC

The DCCMVAC characteristics are:

Purpose

Clean data or unified cache line by virtual address to PoC.

Configurations

AArch32 System register DCCMVAC performs the same function as AArch64 System register DC
CVAC.

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DCCMVAC are UNDEFINED.

Attributes

DCCMVAC is a 32-bit System instruction.

Field descriptions

Bits [31:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DCCMVAC instruction

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see AArch32 data cache maintenance instructions (DC*) on page G4-6241.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPC == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.DC(R[t], CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch32.DC(R[t], CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL3 then
 AArch32.DC(R[t], CacheOp_Clean, CacheOpScope_PoC);

Virtual address to use

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6531
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.41 DCCMVAU, Data Cache line Clean by VA to PoU

The DCCMVAU characteristics are:

Purpose

Clean data or unified cache line by virtual address to PoU.

Configurations

AArch32 System register DCCMVAU performs the same function as AArch64 System register DC
CVAU.

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DCCMVAU are UNDEFINED.

Attributes

DCCMVAU is a 32-bit System instruction.

Field descriptions

Bits [31:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DCCMVAU instruction

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see AArch32 data cache maintenance instructions (DC*) on page G4-6241.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TOCU == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPU == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TOCU == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.DC(R[t], CacheOp_Clean, CacheOpScope_PoU);
elsif PSTATE.EL == EL2 then
 AArch32.DC(R[t], CacheOp_Clean, CacheOpScope_PoU);

Virtual address to use

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1011 0b001
G8-6532 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL3 then
 AArch32.DC(R[t], CacheOp_Clean, CacheOpScope_PoU);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6533
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.42 DCCSW, Data Cache line Clean by Set/Way

The DCCSW characteristics are:

Purpose

Clean data or unified cache line by set/way.

Configurations

AArch32 System register DCCSW performs the same function as AArch64 System register DC
CSW.

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DCCSW are UNDEFINED.

Attributes

DCCSW is a 32-bit System instruction.

Field descriptions

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DCCSW instruction

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings in the System instruction encoding space:

SetWay

31 4

Level

3 1 0

RES0
G8-6534 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TSW == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TSW == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.DC(R[t], CacheOp_Clean, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch32.DC(R[t], CacheOp_Clean, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch32.DC(R[t], CacheOp_Clean, CacheOpScope_SetWay);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1010 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6535
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.43 DCIMVAC, Data Cache line Invalidate by VA to PoC

The DCIMVAC characteristics are:

Purpose

Invalidate data or unified cache line by virtual address to PoC.

Configurations

AArch32 System register DCIMVAC performs the same function as AArch64 System register DC
IVAC.

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DCIMVAC are UNDEFINED.

Attributes

DCIMVAC is a 32-bit System instruction.

Field descriptions

Bits [31:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DCIMVAC instruction

It is IMPLEMENTATION DEFINED whether, when this instruction is executed, it can generate a watchpoint. If this
instruction can generate a watchpoint this is prioritized in the same way as other watchpoints.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see AArch32 data cache maintenance instructions (DC*) on page G4-6241.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPC == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.DC(R[t], CacheOp_Invalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch32.DC(R[t], CacheOp_Invalidate, CacheOpScope_PoC);

Virtual address to use

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0110 0b001
G8-6536 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL3 then
 AArch32.DC(R[t], CacheOp_Invalidate, CacheOpScope_PoC);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6537
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.44 DCISW, Data Cache line Invalidate by Set/Way

The DCISW characteristics are:

Purpose

Invalidate data or unified cache line by set/way.

Configurations

AArch32 System register DCISW performs the same function as AArch64 System register DC
ISW.

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DCISW are UNDEFINED.

Attributes

DCISW is a 32-bit System instruction.

Field descriptions

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DCISW instruction

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings in the System instruction encoding space:

SetWay

31 4

Level

3 1 0

RES0
G8-6538 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TSW == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TSW == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.DC(R[t], CacheOp_Invalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch32.DC(R[t], CacheOp_Invalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch32.DC(R[t], CacheOp_Invalidate, CacheOpScope_SetWay);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0110 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6539
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.45 DFAR, Data Fault Address Register

The DFAR characteristics are:

Purpose

Holds the virtual address of the faulting address that caused a synchronous Data Abort exception.

Configurations

AArch32 System register DFAR bits [31:0] are architecturally mapped to AArch64 System register
FAR_EL1[31:0].

AArch32 System register DFAR bits [31:0] (S) are architecturally mapped to AArch32 System
register HDFAR[31:0] when EL2 is implemented, EL3 is implemented and the implementation only
supports execution in AArch32 state.

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DFAR are UNDEFINED.

Attributes

DFAR is a 32-bit register.

Field descriptions

Bits [31:0]

VA of faulting address of synchronous Data Abort exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing DFAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return DFAR_NS;
 else
 return DFAR;
elsif PSTATE.EL == EL2 then

VA of faulting address of synchronous Data Abort exception

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0110 0b0000 0b000
G8-6540 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return DFAR_NS;
 else
 return DFAR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return DFAR_S;
 else
 return DFAR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 DFAR_NS = R[t];
 else
 DFAR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 DFAR_NS = R[t];
 else
 DFAR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 DFAR_S = R[t];
 else
 DFAR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0110 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6541
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.46 DFSR, Data Fault Status Register

The DFSR characteristics are:

Purpose

Holds status information about the last data fault.

Configurations

AArch32 System register DFSR bits [31:0] are architecturally mapped to AArch64 System register
ESR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to DFSR
are UNDEFINED.

The current translation table format determines which format of the register is used.

Attributes

DFSR is a 32-bit register.

Field descriptions

When TTBCR.EAE == 0:

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 DFAR is valid.

0b1 DFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a synchronous External abort other than a synchronous External abort on
a translation table walk. It is RES0 for all other Data Abort exceptions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AET, bits [15:14]

When FEAT_RAS is implemented:

AET

Asynchronous Error Type. When DFSC is 0b010001, describes the PE error state after taking the
SError interrupt exception. Possible values are:

0b00 Uncontainable (UC).

0b01 Unrecoverable state (UEU).

0b10 Restartable state (UEO).

0b11 Recoverable state (UER).

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other aborts.

RES0

31 17 16

AET

15 14

CM

13 12 11 10 9 8

Domain

7 4

FS[3:0]

3 0

FnV
ExT

WnR

RES0
LPAE

FS[4]
G8-6542 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
In the event of multiple errors taken as a single SError interrupt exception, the overall PE error state
is reported.

Note
Software can use this information to determine what recovery might be possible. The recovery
software must also examine any implemented fault records to determine the location and extent of
the error.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CM, bit [13]

Cache maintenance fault. For synchronous faults, this bit indicates whether a cache maintenance
instruction generated the fault. The possible values of this bit are:

0b0 Abort not caused by execution of a cache maintenance instruction.

0b1 Abort caused by execution of a cache maintenance instruction, or on an address
translation.

On a synchronous Data Abort on a translation table walk, this bit is UNKNOWN.

On an asynchronous fault, this bit is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of
External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [11]

Write not Read bit. Indicates whether the abort was caused by a write or a read instruction. The
possible values of this bit are:

0b0 Abort caused by a read instruction.

0b1 Abort caused by a write instruction.

For faults on the cache maintenance and address translation System instructions in the
(coproc==0b1111) encoding space this bit always returns a value of 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FS, bits [10, 3:0]

Fault status bits. Possible values of FS[4:0] are:

0b00001 Alignment fault.

0b00010 Debug exception.

0b00011 Access flag fault, level 1.

0b00100 Fault on instruction cache maintenance.

0b00101 Translation fault, level 1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6543
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b00110 Access flag fault, level 2.

0b00111 Translation fault, level 2.

0b01000 Synchronous External abort, not on translation table walk.

0b01001 Domain fault, level 1.

0b01011 Domain fault, level 2.

0b01100 Synchronous External abort, on translation table walk, level 1.

0b01101 Permission fault, level 1.

0b01110 Synchronous External abort, on translation table walk, level 2.

0b01111 Permission fault, level 2.

0b10000 TLB conflict abort.

0b10100 IMPLEMENTATION DEFINED fault (Lockdown fault).

0b10101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive access fault).

0b10110 SError interrupt.

0b11000 When FEAT_RAS is not implemented:

SError interrupt, from a parity or ECC error on memory access.

0b11001 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b11100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on translation table walk, level 1.

0b11110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on translation table walk, level 2.

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on a Short-descriptor translation table lookup on page G5-6373.

The FS field is split as follows:

• FS[4] is DFSR[10].

• FS[3:0] is DFSR[3:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

0b0 Using the Short-descriptor translation table formats.

0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore
software can set this bit to 0 or 1 without affecting operation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

Domain, bits [7:4]

The domain of the fault address.

Arm deprecates any use of this field, see The Domain field in the DFSR on page G5-6373.

This field is UNKNOWN for certain faults where the DFSR is updated and reported using the
Short-descriptor FSR encodings, see Table G5-30 on page G5-6377.
G8-6544 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When TTBCR.EAE == 1:

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 DFAR is valid.

0b1 DFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a synchronous External abort other than a synchronous External abort on
a translation table walk. It is RES0 for all other Data Abort exceptions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AET, bits [15:14]

When FEAT_RAS is implemented:

AET

Asynchronous Error Type. When DFSC is 0b010001, describes the PE error state after taking the
SError interrupt exception. Possible values are:

0b00 Uncontainable (UC).

0b01 Unrecoverable state (UEU).

0b10 Restartable state (UEO).

0b11 Recoverable state (UER).

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other aborts.

In the event of multiple errors taken as a single SError interrupt exception, the overall PE error state
is reported.

Note

Software can use this information to determine what recovery might be possible. The recovery
software must also examine any implemented fault records to determine the location and extent of
the error.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

31 17 16

AET

15 14

CM

13 12 11 10 9

RES0

8 6

STATUS

5 0

FnV
ExT

LPAE
RES0

WnR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6545
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
CM, bit [13]

Cache maintenance fault. For synchronous faults, this bit indicates whether a cache maintenance
instruction generated the fault. The possible values of this bit are:

0b0 Abort not caused by execution of a cache maintenance instruction.

0b1 Abort caused by execution of a cache maintenance instruction.

On a synchronous Data Abort on a translation table walk, this bit is UNKNOWN.

On an asynchronous fault, this bit is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of
External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [11]

Write not Read bit. Indicates whether the abort was caused by a write or a read instruction. The
possible values of this bit are:

0b0 Abort caused by a read instruction.

0b1 Abort caused by a write instruction.

For faults on the cache maintenance and address translation System instructions in the
(coproc==0b1111) encoding space this bit always returns a value of 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [10]

Reserved, RES0.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

0b0 Using the Short-descriptor translation table formats.

0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore
software can set this bit to 0 or 1 without affecting operation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault status bits. Possible values of this field are:

0b000000 Address size fault in translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.
G8-6546 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk.

0b010001 Asynchronous SError interrupt.

0b010101 Synchronous External abort on translation table walk, level 1.

0b010110 Synchronous External abort on translation table walk, level 2.

0b010111 Synchronous External abort on translation table walk, level 3.

0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011001 When FEAT_RAS is not implemented:

Asynchronous SError interrupt, from a parity or ECC error on memory access.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 3.

0b100001 Alignment fault.

0b100010 Debug exception.

0b110000 TLB conflict abort.

0b110100 IMPLEMENTATION DEFINED fault (Lockdown).

0b110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive access).

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on a Long-descriptor translation table lookup on page G5-6375.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing DFSR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6547
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return DFSR_NS;
 else
 return DFSR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return DFSR_NS;
 else
 return DFSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return DFSR_S;
 else
 return DFSR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 DFSR_NS = R[t];
 else
 DFSR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 DFSR_NS = R[t];
 else
 DFSR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 DFSR_S = R[t];
 else
 DFSR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0000 0b000
G8-6548 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.47 DTLBIALL, Data TLB Invalidate All

The DTLBIALL characteristics are:

Purpose

Invalidate all cached copies of translation table entries from data TLBs that are from any level of
the translation table walk. The entries that are invalidated are as follows:

• If executed at EL1, all entries that:

— Would be required for the EL1&0 translation regime.

— Match the current VMID, if EL2 is implemented and enabled in the current Security
state.

• If executed in Secure state when EL3 is using AArch32, all entries that would be required for
the Secure PL1&0 translation regime.

• If executed at EL2, and if EL2 is enabled in the current Security state, the stage 1 or stage 2
translation table entries that would be required for the Non-secure PL1&0 translation regime
and matches the current VMID.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility
with earlier versions of the Arm architecture.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DTLBIALL are UNDEFINED.

Attributes

DTLBIALL is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing DTLBIALL instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0110 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6549
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch32.DTLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH, TLBI_ExcludeXS);
 else
 AArch32.DTLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH, TLBI_AllAttr);
elsif PSTATE.EL == EL2 then
 AArch32.DTLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 AArch32.DTLBI_ALL(SecurityStateAtEL(EL3), Regime_EL30, Shareability_NSH, TLBI_AllAttr);

G8-6550 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.48 DTLBIASID, Data TLB Invalidate by ASID match

The DTLBIASID characteristics are:

Purpose

Invalidate all cached copies of translation table entries from data TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used for the specified ASID, and either:

— Is from a level of lookup above the final level.

— Is a non-global entry from the final level of lookup.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility
with earlier versions of the Arm architecture.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DTLBIASID are UNDEFINED.

Attributes

DTLBIASID is a 32-bit System instruction.

Field descriptions

Bits [31:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries for non-global pages that match the ASID values will be
affected by this System instruction.

Executing DTLBIASID instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

RES0

31 8

ASID

7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6551
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.DTLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_ExcludeXS, R[t]);
 else
 AArch32.DTLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.DTLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBI_AllAttr,
R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.DTLBI_ASID(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_NSH, TLBI_AllAttr,
R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0110 0b010
G8-6552 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.49 DTLBIMVA, Data TLB Invalidate by VA

The DTLBIMVA characteristics are:

Purpose

Invalidate all cached copies of translation table entries from data TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified address, and one of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility
with earlier versions of the Arm architecture.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DTLBIMVA are UNDEFINED.

Attributes

DTLBIMVA is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected
by this System instruction.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

VA

31 12

RES0

11 8

ASID

7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6553
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Executing DTLBIMVA instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.DTLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, R[t]);
 else
 AArch32.DTLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.DTLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.DTLBI_VA(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0110 0b001
G8-6554 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.50 DVPRCTX, Data Value Prediction Restriction by Context

The DVPRCTX characteristics are:

Purpose

Data Value Prediction Restriction by Context applies to all Data Value Prediction Resources that
predict execution based on information gathered within the target execution context or contexts.

Data value predictions determined by the actions of code in the target execution context or contexts
appearing in program order before the instruction cannot exploitatively control speculative
execution occurring after the instruction is complete and synchronized.

This instruction is guaranteed to be complete following a DSB that covers both read and write
behavior on the same PE as executed the original restriction instruction, and a subsequent context
synchronization event is required to ensure that the effect of the completion of the instructions is
synchronized to the current execution.

Note

This instruction does not require the invalidation of prediction structures so long as the behavior
described for completion of this instruction is met by the implementation.

On some implementations the instruction is likely to take a significant number of cycles to execute.
This instruction is expected to be used very rarely, such as on the roll-over of an ASID or VMID,
but should not be used on every context switch.

Configurations

This instruction is present only when AArch32 is supported at EL0 and FEAT_SPECRES is
implemented. Otherwise, direct accesses to DVPRCTX are UNDEFINED.

Attributes

DVPRCTX is a 32-bit System instruction.

Field descriptions

Bits [31:28]

Reserved, RES0.

GVMID, bit [27]

Execution of this instruction applies to all VMIDs or a specified VMID.

0b0 Applies to specified VMID for an EL0 or EL1 target execution context.

0b1 Applies to all VMIDs for an EL0 or EL1 target execution context.

For target execution contexts other than EL0 or EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

NS, bit [26]

Security State.

0b0 Secure state.

0b1 Non-secure state.

If the instruction is executed in Non-secure state, this field has an Effective value of 1.

RES0

31 28 27

NS

26

EL

25 24

VMID

23 16

RES0

15 9 8

ASID

7 0

GVMID GASID
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6555
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, this instruction is
treated as a NOP.

VMID, bits [23:16]

Only applies when bit[27] is 0 and the target execution context is either:

• EL1.

• EL0 when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0) or EL2 is using AArch32 state.

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0 or
ELUsingAArch32(EL2)), this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1 and
!ELUsingAArch32(EL2)), this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

Bits [15:9]

Reserved, RES0.

GASID, bit [8]

Execution of this instruction applies to all ASIDs or a specified ASID.

0b0 Applies to specified ASID for an EL0 target execution context.

0b1 Applies to all ASID for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [7:0]

Only applies for an EL0 target execution context and when bit[8] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.

Executing DVPRCTX instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0011 0b101
G8-6556 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && SCTLR.EnRCTX == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGITR_EL2.DVPRCTX == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 DVPRCTX(R[t]);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x03);
 else
 DVPRCTX(R[t]);
elsif PSTATE.EL == EL2 then
 DVPRCTX(R[t]);
elsif PSTATE.EL == EL3 then
 DVPRCTX(R[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6557
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.51 ELR_hyp, Exception Link Register (Hyp mode)

The ELR_hyp characteristics are:

Purpose

When taking an exception to Hyp mode, holds the address to return to.

Configurations

AArch32 System register ELR_hyp bits [31:0] are architecturally mapped to AArch64 System
register ELR_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ELR_hyp are UNDEFINED.

Attributes

ELR_hyp is a 32-bit register.

Field descriptions

Bits [31:0]

Return address.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ELR_hyp

ELR_hyp is accessible only at Hyp mode and Monitor mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS{<c>}{<q>} <Rd>, ELR_hyp

MSR{<c>}{<q>} ELR_hyp, <Rn>

Return address

31 0

R M M1

0b0 0b1 0b1110

R M M1

0b0 0b1 0b1110
G8-6558 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.52 FCSEIDR, FCSE Process ID register

The FCSEIDR characteristics are:

Purpose

Identifies whether the Fast Context Switch Extension (FCSE) is implemented.

From Armv8, the FCSE is not implemented, so this register is RAZ/WI. Software can access this
register to determine that the implementation does not include the FCSE.

Configurations

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
FCSEIDR are UNDEFINED.

Attributes

FCSEIDR is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RAZ/WI.

Accessing FCSEIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return FCSEIDR;
elsif PSTATE.EL == EL2 then
 return FCSEIDR;
elsif PSTATE.EL == EL3 then
 return FCSEIDR;

RAZ/WI

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6559
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 FCSEIDR = R[t];
elsif PSTATE.EL == EL2 then
 FCSEIDR = R[t];
elsif PSTATE.EL == EL3 then
 FCSEIDR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0000 0b000
G8-6560 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.53 FPEXC, Floating-Point Exception Control register

The FPEXC characteristics are:

Purpose

Provides a global enable for the implemented Advanced SIMD and floating-point functionality, and
reports floating-point status information.

Configurations

AArch32 System register FPEXC bits [31:0] are architecturally mapped to AArch64 System
register FPEXC32_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
FPEXC are UNDEFINED.

Implemented only if the implementation includes the Advanced SIMD and floating-point
functionality.

Attributes

FPEXC is a 32-bit register.

Field descriptions

EX, bit [31]

Exception bit. From Armv8, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EN, bit [30]

Enables access to the Advanced SIMD and floating-point functionality from all Exception levels,
except that setting this field to 0 does not disable the following:

• VMSR accesses to the FPEXC or FPSID.

• VMRS accesses from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2.

0b0 Accesses to the FPSCR, and any of the SIMD and floating-point registers Q0-Q15,
including their views as D0-D31 registers or S0-S31 registers, are UNDEFINED at all
Exception levels.

0b1 This control permits access to the Advanced SIMD and floating-point functionality at
all Exception levels.

Execution of Advanced SIMD and floating-point instructions in AArch32 state can be disabled or
trapped by the following controls:

• CPACR.cp10, or, if executing at EL0, CPACR_EL1.FPEN.

• FPEXC.EN.

• If executing in Non-secure state:

— HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.

— NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.

• For Advanced SIMD instructions only:

— CPACR.ASEDIS.

EX

31

EN

30 29 28

VV

27 26

RES0

25 11

VECITR

10 8 7

RES0

6 5 4 3 2 1 0

DEX TFV
FP2V

IDF
IXF

UFF

IOF
DZF

OFF
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6561
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
— If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

See the descriptions of the controls for more information.

Note

When executing at EL0 using AArch32:

• If EL1 is using AArch64, then the Effective value of FPEXC.EN is 1. This includes when
EL2 is using AArch64 and is enabled in the current Security state, HCR_EL2.TGE is 1, and
the Effective value of HCR_EL2.RW is 1.

• If EL2 is using AArch64 and is enabled in the current Security state, HCR_EL2.TGE is 1,
and the Effective value of HCR_EL2.RW is 0, then it is IMPLEMENTATION DEFINED whether
the Effective value of FPEXC.EN is 1 or the value written to FPEXC.EN. However, Arm
deprecates using the value of FPEXC.EN to determine behavior.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

DEX, bit [29]

Defined synchronous exception on floating-point execution.

This field identifies whether a synchronous exception generated by the attempted execution of an
instruction was generated by an unallocated encoding. The instruction must be in the encoding space
that is identified by the pseudocode function ExecutingCP10or11Instr() returning TRUE. This field
also indicates whether the FPEXC.TFV field is valid.

The meaning of this bit is:

0b0 The exception was generated by the attempted execution of an unallocated instruction
in the encoding space that is identified by the pseudocode function
ExecutingCP10or11Instr(). If FPEXC.TFV is RW then it is invalid and UNKNOWN. If
FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} are RW then they are invalid and UNKNOWN.

0b1 The exception was generated during the execution of an allocated encoding.
FPEXC.TFV is valid and indicates the cause of the exception.

On an exception that sets this bit to 1 the exception-handling routine must clear this bit to 0.

On an implementation that both does not support trapping of floating-point exceptions and
implements the FPSCR.{Stride, Len} fields as RAZ, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FP2V, bit [28]

FPINST2 instruction valid bit. From Armv8, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VV, bit [27]

VECITR valid bit. From Armv8, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
G8-6562 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
TFV, bit [26]

Trapped Fault Valid bit. Valid only when the value of FPEXC.DEX is 1. When valid, it indicates the
cause of the exception and therefore whether the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} bits are
valid.

0b0 The exception was caused by the execution of a floating-point VABS, VADD, VDIV,
VFMA, VFMS, VFNMA, VFNMS, VMLA, VMLS, VMOV, VMUL, VNEG,
VNMLA, VNMLS, VNMUL, VSQRT, or VSUB instruction when one or both of
FPSCR.{Stride, Len} was non-zero. If the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF}
bits are RW then they are invalid and UNKNOWN.

0b1 FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} indicate the presence of trapped
floating-point exceptions that had occurred at the time of the exception. Bits are set for
all trapped exceptions that had occurred at the time of the exception.

This bit returns a status value and ignores writes.

When the value of FPEXC.DEX is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is
RAZ/WI.

On an implementation that supports the trapping of floating-point exceptions and implements
FPSCR.{Stride, Len} as RAZ, this bit is RAO/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [25:11]

Reserved, RES0.

VECITR, bits [10:8]

Vector iteration count. From Armv8, this field is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid,
it indicates whether an Input Denormal exception occurred while FPSCR.IDE was 1:

0b0 Input Denormal exception has not occurred.

0b1 Input Denormal exception has occurred.

Input Denormal exceptions can occur only when FPSCR.FZ is 1.

Note

A half-precision floating-point value that is flushed to zero because the value of FPSCR.FZ16 is 1
does not generate an Input Denormal exception.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is
RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6563
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
IXF, bit [4]

Inexact trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it
indicates whether an Inexact exception occurred while FPSCR.IXE was 1:

0b0 Inexact exception has not occurred.

0b1 Inexact exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is
RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it
indicates whether an Underflow exception occurred while FPSCR.UFE was 1:

0b0 Underflow exception has not occurred.

0b1 Underflow exception has occurred.

Underflow trapped exceptions can occur:

• On half-precision data-processing instructions only when FPSCR.FZ16 is 0.

• Otherwise only when FPSCR.FZ is 0.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is
RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it
indicates whether an Overflow exception occurred while FPSCR.OFE was 1:

0b0 Overflow exception has not occurred.

0b1 Overflow exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is
RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid,
it indicates whether a Divide by Zero exception occurred while FPSCR.DZE was 1:

0b0 Divide by Zero exception has not occurred.

0b1 Divide by Zero exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is
RAZ/WI.
G8-6564 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid,
it indicates whether an Invalid Operation exception occurred while FPSCR.IOE was 1:

0b0 Invalid Operation exception has not occurred.

0b1 Invalid Operation exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is
RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing FPEXC

Accesses to this register use the following encodings in the System register encoding space:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 ==
'0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 return FPEXC;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 ==
'1') then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);

reg

0b1000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6565
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 return FPEXC;
elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 return FPEXC;

VMSR{<c>}{<q>} <spec_reg>, <Rt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 ==
'0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 FPEXC = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 ==
'1') then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 FPEXC = R[t];
elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 FPEXC = R[t];

reg

0b1000
G8-6566 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.54 FPSCR, Floating-Point Status and Control Register

The FPSCR characteristics are:

Purpose

Provides floating-point system status information and control.

Configurations

AArch32 System register FPSCR bits [31:27] are architecturally mapped to AArch64 System
register FPSR[31:27].

AArch32 System register FPSCR bit [7] is architecturally mapped to AArch64 System register
FPSR[7].

AArch32 System register FPSCR bits [4:0] are architecturally mapped to AArch64 System register
FPSR[4:0].

AArch32 System register FPSCR bits [26:15] are architecturally mapped to AArch64 System
register FPCR[26:15].

AArch32 System register FPSCR bits [12:8] are architecturally mapped to AArch64 System register
FPCR[12:8].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
FPSCR are UNDEFINED.

It is IMPLEMENTATION DEFINED whether the Len and Stride fields can be programmed to non-zero
values, which will cause some AArch32 floating-point instruction encodings to be UNDEFINED, or
whether these fields are RAZ.

Implemented only if the implementation includes the Advanced SIMD and floating-point
functionality.

Attributes

FPSCR is a 32-bit register.

Field descriptions

N, bit [31]

Negative condition flag. This is updated by floating-point comparison operations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero condition flag. This is updated by floating-point comparison operations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

N

31

Z

30

C

29

V

28

QC

27 26

DN

25

FZ

24 23 22 21 20 19

Len

18 16 15

RES0

14 13 12 11 10 9 8 7

RES0

6 5 4 3 2 1 0

AHP
RMode

Stride
FZ16

IDE
IXE

UFE
OFE

IOC
DZC

OFC
UFC

IXC
IDC

IOE
DZE
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6567
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
C, bit [29]

Carry condition flag. This is updated by floating-point comparison operations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow condition flag. This is updated by floating-point comparison operations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

QC, bit [27]

Cumulative saturation bit, Advanced SIMD only. This bit is set to 1 to indicate that an Advanced
SIMD integer operation has saturated since 0 was last written to this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AHP, bit [26]

Alternative half-precision control bit:

0b0 IEEE half-precision format selected.

0b1 Alternative half-precision format selected.

This bit is used only for conversions between half-precision floating-point and other floating-point
formats.

The data-processing instructions added as part of the FEAT_FP16 extension always use the IEEE
half-precision format, and ignore the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DN, bit [25]

Default NaN mode control bit:

0b0 NaN operands propagate through to the output of a floating-point operation.

0b1 Any operation involving one or more NaNs returns the Default NaN.

The value of this bit controls only scalar floating-point arithmetic. Advanced SIMD arithmetic
always uses the Default NaN setting, regardless of the value of the DN bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FZ, bit [24]

Flush-to-zero mode control bit:

0b0 Flush-to-zero mode disabled. Behavior of the floating-point system is fully compliant
with the IEEE 754 standard.

0b1 Flush-to-zero mode enabled.

The value of this bit controls only scalar floating-point arithmetic. Advanced SIMD arithmetic
always uses the Flush-to-zero setting, regardless of the value of the FZ bit.

This bit has no effect on half-precision calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RMode, bits [23:22]

Rounding Mode control field. The encoding of this field is:

0b00 Round to Nearest (RN) mode.
G8-6568 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
0b01 Round towards Plus Infinity (RP) mode.

0b10 Round towards Minus Infinity (RM) mode.

0b11 Round towards Zero (RZ) mode.

The specified rounding mode is used by almost all scalar floating-point instructions. Advanced
SIMD arithmetic always uses the Round to Nearest setting, regardless of the value of the RMode
bits.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Stride, bits [21:20]

It is IMPLEMENTATION DEFINED whether this field is RW or RAZ.

If this field is RW and is set to a value other than zero, some floating-point instruction encodings
are UNDEFINED. The instruction pseudocode identifies these instructions.

Arm strongly recommends that software never sets this field to a value other than zero.

The value of this field is ignored when processing Advanced SIMD instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FZ16, bit [19]

When FEAT_FP16 is implemented:

FZ16

Flush-to-zero mode control bit on half-precision data-processing instructions:

0b0 Flush-to-zero mode disabled. Behavior of the floating-point system is fully compliant
with the IEEE 754 standard.

0b1 Flush-to-zero mode enabled.

The value of this bit applies to both scalar and Advanced SIMD floating-point half-precision
calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Len, bits [18:16]

It is IMPLEMENTATION DEFINED whether this field is RW or RAZ.

If this field is RW and is set to a value other than zero, some floating-point instruction encodings
are UNDEFINED. The instruction pseudocode identifies these instructions.

Arm strongly recommends that software never sets this field to a value other than zero.

The value of this field is ignored when processing Advanced SIMD instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDE, bit [15]

Input Denormal floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the IDC
bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does
not update the IDC bit.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6569
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an
implementation that does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always
use untrapped floating-point exception handling in AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [14:13]

Reserved, RES0.

IXE, bit [12]

Inexact floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the IXC
bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does
not update the IXC bit.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an
implementation that does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always
use untrapped floating-point exception handling in AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFE, bit [11]

Underflow floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the UFC
bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs and
Flush-to-zero is not enabled, the PE does not update the UFC bit.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an
implementation that does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always
use untrapped floating-point exception handling in AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFE, bit [10]

Overflow floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the OFC
bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does
not update the OFC bit.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an
implementation that does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always
use untrapped floating-point exception handling in AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
G8-6570 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
DZE, bit [9]

Divide by Zero floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the DZC
bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does
not update the DZC bit.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an
implementation that does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always
use untrapped floating-point exception handling in AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOE, bit [8]

Invalid Operation floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the IOC
bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does
not update the IOC bit.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an
implementation that does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always
use untrapped floating-point exception handling in AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDC, bit [7]

Input Denormal cumulative floating-point exception bit. This bit is set to 1 to indicate that the Input
Denormal floating-point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the IDE bit.

Advanced SIMD instructions set this bit if the Input Denormal floating-point exception occurs in
one or more of the floating-point calculations performed by the instruction, regardless of the value
of the IDE bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXC, bit [4]

Inexact cumulative floating-point exception bit. This bit is set to 1 to indicate that the Inexact
floating-point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the IXE bit.

Advanced SIMD instructions set this bit if the Inexact floating-point exception occurs in one or
more of the floating-point calculations performed by the instruction, regardless of the value of the
IXE bit.

The criteria for the Inexact floating-point exception to occur are different in Flush-to-zero mode.
For more information, see Flushing denormalized numbers to zero on page A1-54.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6571
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
UFC, bit [3]

Underflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Underflow
floating-point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the UFE bit.

Advanced SIMD instructions set this bit if the Underflow floating-point exception occurs in one or
more of the floating-point calculations performed by the instruction, if FPSCR.UFE is 0 or if
Flush-to-zero is enabled.

The criteria for the Underflow floating-point exception to occur are different in Flush-to-zero mode.
For more information, see Flushing denormalized numbers to zero on page A1-54.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFC, bit [2]

Overflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Overflow
floating-point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the OFE bit.

Advanced SIMD instructions set this bit if the Overflow floating-point exception occurs in one or
more of the floating-point calculations performed by the instruction, regardless of the value of the
OFE bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZC, bit [1]

Divide by Zero cumulative floating-point exception bit. This bit is set to 1 to indicate that the Divide
by Zero floating-point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the DZE bit.

Advanced SIMD instructions set this bit if the Divide by Zero floating-point exception occurs in one
or more of the floating-point calculations performed by the instruction, regardless of the value of
the DZE bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOC, bit [0]

Invalid Operation cumulative floating-point exception bit. This bit is set to 1 to indicate that the
Invalid Operation floating-point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the IOE bit.

Advanced SIMD instructions set this bit if the Invalid Operation floating-point exception occurs in
one or more of the floating-point calculations performed by the instruction, regardless of the value
of the IOE bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing FPSCR

Accesses to this register use the following encodings in the System register encoding space:
G8-6572 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
VMRS{<c>}{<q>} <Rt>, <spec_reg>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x00);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x07);
 elsif ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||
CPACR.cp10 == '0x') then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN != '11' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 ==
'0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 return FPSCR;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif CPACR_EL1.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL1, 0x07);
 elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 ==
'0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 return FPSCR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 ==
'1') then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then

reg

0b0001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6573
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 return FPSCR;
elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 return FPSCR;

VMSR{<c>}{<q>} <spec_reg>, <Rt>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x00);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x07);
 elsif ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||
CPACR.cp10 == '0x') then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN != '11' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 ==
'0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 FPSCR = R[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif CPACR_EL1.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL1, 0x07);
 elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 ==
'0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then

reg

0b0001
G8-6574 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 FPSCR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 ==
'1') then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 FPSCR = R[t];
elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 FPSCR = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6575
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.55 FPSID, Floating-Point System ID register

The FPSID characteristics are:

Purpose

Provides top-level information about the floating-point implementation.

This register largely duplicates information held in the MIDR. Arm deprecates use of it.

Configurations

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
FPSID are UNDEFINED.

Implemented only if the implementation includes the Advanced SIMD and floating-point
functionality.

Attributes

FPSID is a 32-bit register.

Field descriptions

Implementer, bits [31:24]

Implementer codes are the same as those used for the MIDR.

For an implementation by Arm this field is 0x41, the ASCII code for A.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

SW, bit [23]

Software bit. Defined values are:

0b0 The implementation provides a hardware implementation of the floating-point
instructions.

0b1 The implementation supports only software emulation of the floating-point instructions.

In Armv8-A, the only permitted value is 0b0.

Access to this field is RO.

Subarchitecture, bits [22:16]

Subarchitecture version number. For an implementation by Arm, defined values are:

0b0000000 VFPv1 architecture with an IMPLEMENTATION DEFINED subarchitecture.

0b0000001 VFPv2 architecture with Common VFP subarchitecture v1.

0b0000010 VFPv3 architecture, or later, with Common VFP subarchitecture v2. The VFP
architecture version is indicated by the MVFR0 and MVFR1 registers.

0b0000011 VFPv3 architecture, or later, with Null subarchitecture. The entire floating-point
implementation is in hardware, and no software support code is required. The VFP
architecture version is indicated by the MVFR0 and MVFR1 registers. This value can
be used only by an implementation that does not support the trap enable bits in the
FPSCR.

0b0000100 VFPv3 architecture, or later, with Common VFP subarchitecture v3, and support for
trap enable bits in FPSCR. The VFP architecture version is indicated by the MVFR0 and
MVFR1 registers.

Implementer

31 24

SW

23

Subarchitecture

22 16

PartNum

15 8

Variant

7 4

Revision

3 0
G8-6576 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
For a subarchitecture designed by Arm the most significant bit of this field, register bit[22], is 0.
Values with a most significant bit of 0 that are not listed here are reserved.

When the subarchitecture designer is not Arm, the most significant bit of this field, register bit[22],
must be 1. Each implementer must maintain its own list of subarchitectures it has designed, starting
at subarchitecture version number 0x40.

In Armv8-A, the permitted values are 0b0000011 and 0b0000100.

Access to this field is RO.

PartNum, bits [15:8]

Part Number for the floating-point implementation, assigned by the implementer.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Variant, bits [7:4]

Variant number. Typically, this field distinguishes between different production variants of a single
product.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [3:0]

Revision number for the floating-point implementation.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing FPSID

Accesses to this register use the following encodings in the System register encoding space:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 ==
'0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x08);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID0 == '1' then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else

reg

0b0000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6577
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 return FPSID;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 ==
'1') then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 return FPSID;
elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 return FPSID;

VMSR{<c>}{<q>} <spec_reg>, <Rt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 ==
'0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x08);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID0 == '1' then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 //no operation
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 ==
'1') then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then

reg

0b0000
G8-6578 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 //no operation
elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 //no operation

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6579
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.56 HACR, Hyp Auxiliary Configuration Register

The HACR characteristics are:

Purpose

Controls trapping to Hyp mode of IMPLEMENTATION DEFINED aspects of Non-secure EL1 or EL0
operation.

Configurations

AArch32 System register HACR bits [31:0] are architecturally mapped to AArch64 System register
HACR_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HACR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HACR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HACR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HACR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HACR;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b111
G8-6580 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HACR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HACR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6581
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.57 HACTLR, Hyp Auxiliary Control Register

The HACTLR characteristics are:

Purpose

Controls IMPLEMENTATION DEFINED features of Hyp mode operation.

Configurations

AArch32 System register HACTLR bits [31:0] are architecturally mapped to AArch64 System
register ACTLR_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HACTLR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HACTLR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HACTLR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HACTLR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HACTLR;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0000 0b001
G8-6582 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HACTLR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HACTLR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6583
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.58 HACTLR2, Hyp Auxiliary Control Register 2

The HACTLR2 characteristics are:

Purpose

Provides additional space to the HACTLR register to hold IMPLEMENTATION DEFINED trap
functionality.

Configurations

AArch32 System register HACTLR2 bits [31:0] are architecturally mapped to AArch64 System
register ACTLR_EL2[63:32].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HACTLR2 are UNDEFINED.

In Armv8.0 and Armv8.1, it is IMPLEMENTATION DEFINED whether this register is implemented, or
whether it causes UNDEFINED exceptions when accessed. The implementation of this register can be
detected by examining ID_MMFR4.AC2.

From Armv8.2 this register must be implemented.

Attributes

HACTLR2 is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HACTLR2

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HACTLR2;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0000 0b011
G8-6584 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 UNDEFINED;
 else
 return HACTLR2;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HACTLR2 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HACTLR2 = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0000 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6585
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.59 HADFSR, Hyp Auxiliary Data Fault Status Register

The HADFSR characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED syndrome information for Data Abort exceptions
taken to Hyp mode.

Configurations

AArch32 System register HADFSR bits [31:0] are architecturally mapped to AArch64 System
register AFSR0_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HADFSR are UNDEFINED.

This is an optional register. An implementation that does not require this register can implement it
as RES0.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HADFSR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HADFSR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HADFSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0101 0b0001 0b000
G8-6586 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 return HADFSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HADFSR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HADFSR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0101 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6587
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.60 HAIFSR, Hyp Auxiliary Instruction Fault Status Register

The HAIFSR characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED syndrome information for Prefetch Abort
exceptions taken to Hyp mode.

Configurations

AArch32 System register HAIFSR bits [31:0] are architecturally mapped to AArch64 System
register AFSR1_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HAIFSR are UNDEFINED.

This is an optional register. An implementation that does not require this register can implement it
as RES0.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HAIFSR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HAIFSR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HAIFSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0101 0b0001 0b001
G8-6588 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 return HAIFSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HAIFSR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HAIFSR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0101 0b0001 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6589
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.61 HAMAIR0, Hyp Auxiliary Memory Attribute Indirection Register 0

The HAMAIR0 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory attribute encodings defined
by HMAIR0. These IMPLEMENTATION DEFINED attributes can only provide additional qualifiers for
the memory attribute encodings, and cannot change the memory attributes defined in HMAIR0.

Configurations

AArch32 System register HAMAIR0 bits [31:0] are architecturally mapped to AArch64 System
register AMAIR_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HAMAIR0 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HAMAIR0 is a 32-bit register.

Field descriptions

If an implementation does not provide any IMPLEMENTATION DEFINED memory attributes, this register is RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HAMAIR0

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HAMAIR0;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1010 0b0011 0b000
G8-6590 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 return HAMAIR0;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HAMAIR0 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HAMAIR0 = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1010 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6591
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.62 HAMAIR1, Hyp Auxiliary Memory Attribute Indirection Register 1

The HAMAIR1 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory attribute encodings defined
by HMAIR1. These IMPLEMENTATION DEFINED attributes can only provide additional qualifiers for
the memory attribute encodings, and cannot change the memory attributes defined in HMAIR1.

Configurations

AArch32 System register HAMAIR1 bits [31:0] are architecturally mapped to AArch64 System
register AMAIR_EL2[63:32].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HAMAIR1 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HAMAIR1 is a 32-bit register.

Field descriptions

If an implementation does not provide any IMPLEMENTATION DEFINED memory attributes, this register is RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HAMAIR1

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HAMAIR1;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1010 0b0011 0b001
G8-6592 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 return HAMAIR1;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HAMAIR1 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HAMAIR1 = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1010 0b0011 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6593
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.63 HCPTR, Hyp Architectural Feature Trap Register

The HCPTR characteristics are:

Purpose

Controls:

• Trapping to Hyp mode of Non-secure access, at EL1 or EL0, to trace, and to Advanced SIMD
and floating-point functionality.

• Hyp mode access to trace, and to Advanced SIMD and floating-point functionality.

Note

Accesses to this functionality:

• From Non-secure modes other than Hyp mode are also affected by settings in the CPACR and
NSACR.

• From Hyp mode are also affected by settings in the NSACR.

Exceptions generated by the CPACR and NSACR controls are higher priority than those generated
by the HCPTR controls.

Configurations

AArch32 System register HCPTR bits [31:0] are architecturally mapped to AArch64 System
register CPTR_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HCPTR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HCPTR is a 32-bit register.

Field descriptions

TCPAC, bit [31]

Traps Non-secure EL1 accesses to the CPACR to Hyp mode.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 accesses to the CPACR are trapped to Hyp mode.

Note
The CPACR is not accessible at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TAM, bit [30]

When FEAT_AMUv1 is implemented:

TAM

31 30

RES0

29 21 20

RES0

19 16 15 14

RES1

13 12 11 10

RES1

9 0

TCPAC TAM TTA TASE
RES0

TCP10
TCP11
G8-6594 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
Trap Activity Monitor access. Traps Non-secure EL1 and EL0 accesses to all Activity Monitor
registers to EL2.

0b0 Accesses from Non-secure EL1 and EL0 to Activity Monitor registers are not trapped.

0b1 Accesses from Non-secure EL1 and EL0 to Activity Monitor registers are trapped to
Hyp mode.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [29:21]

Reserved, RES0.

TTA, bit [20]

Traps Non-secure System register accesses to all implemented trace registers to Hyp mode.

0b0 This control does not cause any instructions to be trapped.

0b1 Any Non-secure System register access to an implemented trace register is trapped to
Hyp mode, unless the access is trapped to EL1 by a CPACR or NSACR control, or the
access is from Non-secure EL0 and the definition of the register in the appropriate trace
architecture specification indicates that the register is not accessible from EL0. A
trapped instruction generates:

• A Hyp Trap exception, if the exception is taken from Non-secure EL0 or EL1.

• An Undefined Instruction exception taken to Hyp mode, if the exception is taken
from Hyp mode.

If the implementation does not include a PE trace unit, or does not include a System register
interface to the PE trace unit registers, it is IMPLEMENTATION DEFINED whether this bit:

• Is RES0.

• Is RES1.

• Can be written from Hyp mode, and from Secure Monitor mode when SCR.NS is 1.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSTRCDIS is 1, in
Non-secure state this field behaves as RAO/WI, regardless of its actual value.

Note

• The ETMv4 architecture does not permit EL0 to access the trace registers. If the PE trace unit
implements FEAT_ETMv4, EL0 accesses to the trace registers are UNDEFINED, and a
resulting Undefined Instruction exception is higher priority than a HCPTR.TTA Hyp Trap
exception.

• The architecture does not provide traps on trace register accesses through the optional
memory-mapped debug interface.

System register accesses to the trace registers can have side-effects. When a System register access
is trapped, any side-effects that are normally associated with the access do not occur before the
exception is taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Bits [19:16]

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6595
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
TASE, bit [15]

Traps Non-secure execution of Advanced SIMD instructions to Hyp mode when the value of
HCPTR.TCP10 is 0.

0b0 This control does not cause any instructions to be trapped.

0b1 When the value of HCPTR.TCP10 is 0, any attempt to execute an Advanced SIMD
instruction in Non-secure state is trapped to Hyp mode, unless it is trapped to EL1 by a
CPACR or NSACR control. A trapped instruction generates:

• A Hyp Trap exception, if the exception is taken from Non-secure EL0 or EL1.

• An Undefined Instruction exception taken to Hyp mode, if the exception is taken
from Hyp mode.

When the value of HCPTR.TCP10 is 1, the value of this field is ignored.

If the implementation does not include Advanced SIMD and floating-point functionality, this field
is RES1. Otherwise, it is IMPLEMENTATION DEFINED whether this field is implemented as a RW field.
If it is not implemented as a RW field, then it is RAZ/WI.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSASEDIS is 1, in
Non-secure state this field behaves as RAO/WI, regardless of its actual value. This applies even if
the field is implemented as RAZ/WI.

For the list of instructions affected by this field, see Controls of Advanced SIMD operation that do
not apply to floating-point operation on page E1-4273.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Bit [14]

Reserved, RES0.

Bits [13:12]

Reserved, RES1.

TCP11, bit [11]

The value of this field is ignored. If this field is programmed with a different value to the TCP10 bit
then this field is UNKNOWN on a direct read of the HCPTR.

If the implementation does not include Advanced SIMD and floating-point functionality, this field
is RES1.

If EL3 is implemented and is using AArch32, and the value of NSACR.cp10 is 0, in Non-secure
state this field behaves as RAO/WI, regardless of its actual value.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TCP10, bit [10]

Trap Non-secure accesses to Advanced SIMD and floating-point functionality to Hyp mode:

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempted access to Advanced SIMD and floating-point functionality from
Non-secure state is trapped to Hyp mode, unless it is trapped to EL1 by a CPACR or
NSACR control. A trapped instruction generates:

• A Hyp Trap exception, if the exception is taken from Non-secure EL0 or EL1.

• An Undefined Instruction exception taken to Hyp mode, if the exception is taken
from Hyp mode.

The Advanced SIMD and floating-point features controlled by these fields are:

• Execution of any floating-point or Advanced SIMD instruction.

• Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as
S0-S31 and Q0-Q15.
G8-6596 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
• Any access to the FPSCR, FPSID, MVFR0, MVFR1, MVFR2, or FPEXC System registers.

If the implementation does not include Advanced SIMD and floating-point functionality, this field
is RES1.

If EL3 is implemented and is using AArch32, and the value of NSACR.cp10 is 0, in Non-secure
state this field behaves as RAO/WI, regardless of its actual value.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Bits [9:0]

Reserved, RES1.

Accessing HCPTR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return HCPTR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HCPTR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b010

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6597
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 HCPTR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HCPTR = R[t];

G8-6598 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.64 HCR, Hyp Configuration Register

The HCR characteristics are:

Purpose

Provides configuration controls for virtualization, including defining whether various Non-secure
operations are trapped to Hyp mode.

Configurations

AArch32 System register HCR bits [31:0] are architecturally mapped to AArch64 System register
HCR_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to HCR
are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HCR is a 32-bit register.

Field descriptions

Bit [31]

Reserved, RES0.

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps Non-secure EL1 reads of the virtual memory control
registers to EL2, when EL2 is enabled in the current Security state.

The registers for which read accesses are trapped are as follows:

SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR,
AIFSR, PRRR, NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 read accesses to the specified Virtual Memory controls are trapped to
EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

HCD, bit [29]

When EL3 is not implemented:

HCD

HVC instruction disable. Disables Non-secure EL1 and EL2 execution of HVC instructions, when
EL2 is enabled in the current Security state.

0b0 HVC instruction execution is enabled at EL2 and EL1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

DC

12

BSU

11 10

FB

9

VA

8

VI

7

VF

6 5 4 3 2 1

VM

0

RES0
TRVM

HCD
RES0

TGE
TVM
TTLB

TPU
TPC

TWI
TWE

TID0
TID1

TID2
TID3

TSC
TIDCP

TAC
TSW

AMO
IMO

SWIO
PTW

FMO
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6599
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b1 HVC instructions are UNDEFINED at EL2 and Non-secure EL1.

The Undefined Instruction exception is taken to the Exception level at which the HVC
instruction is executed.

Note

HVC instructions are always UNDEFINED at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [28]

Reserved, RES0.

TGE, bit [27]

Trap General Exceptions, from Non-secure EL0.

0b0 This control has no effect on execution at EL0.

0b1 When EL2 is not enabled in the current Security state, this control has no effect on
execution at EL0.

When EL2 is enabled in the current Security state, then:

• All exceptions that would be routed to EL1 are routed to EL2.

• The SCTLR.M bit is treated as being 0 for all purposes other than returning the
result of a direct read of SCTLR.

• The HCR.{FMO, IMO, AMO} bits are treated as being 1 for all purposes other
than returning the result of a direct read of HCR.

• All virtual interrupts are disabled.

• Any IMPLEMENTATION DEFINED mechanisms for signaling virtual interrupts are
disabled.

• An exception return to EL1 is treated as an illegal exception return.

• Monitor mode execution of an MSR or CPS instruction that changes PSTATE.M
to a Non-secure EL1 mode is an illegal change to PSTATE.M. For more
information see Illegal changes to PSTATE.M on page G1-6039.

Also, when HCR.TGE is 1:

• If EL3 is using AArch32, an attempt to change from a Secure PL1 mode to a Non-secure EL1
mode by changing SCR.NS from 0 to 1 results in SCR.NS remaining as 0.

• The HDCR.{TDRA, TDOSA, TDA, TDE} bits are ignored and treated as being 1 other than
for the purpose of a direct read of HDCR.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TVM, bit [26]

Trap Virtual Memory controls. Traps Non-secure EL1 writes to the virtual memory control registers
to EL2, when EL2 is enabled in the current Security state.

The registers for which write accesses are trapped are as follows:

SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR,
AIFSR, PRRR, NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 write accesses to the specified virtual memory control registers are
trapped to EL2.
G8-6600 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TTLB, bit [25]

Trap TLB maintenance instructions. Traps Non-secure EL1 execution of a TLBI instruction to EL2,
when EL2 is enabled in the current Security state.

This applies to the following instructions:

TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVAALIS,
ITLBIALL, ITLBIMVA, ITLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, TLBIALL,
TLBIMVA, TLBIASID, TLBIMVAA, TLBIMVAL, TLBIMVAAL

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 accesses to the specified TLB maintenance instructions are trapped to
EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps Non-secure EL1
execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current
Security state.

This applies to the following instructions:

• ICIMVAU, ICIALLU, ICIALLUIS, DCCMVAU.

Note

An Undefined Instruction exception generated at EL0 is higher priority than this trap to EL2, and
these instructions are always UNDEFINED at EL0.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 execution of the specified cache maintenance instructions is trapped to
EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean by VA to the Point of Unification instruction can
be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate to the Point of Unification instruction can
be trapped when the value of this control is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TPC, bit [23]

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps
Non-secure EL1 execution of those cache maintenance instructions to EL2, when EL2 is enabled in
the current Security state.

This applies to the following instructions:

• DCIMVAC, DCCIMVAC, DCCMVAC.

Note
An Undefined Instruction exception generated at EL0 is higher priority than this trap to EL2, and
these instructions are always UNDEFINED at EL0.

0b0 This control does not cause any instructions to be trapped.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6601
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b1 Non-secure EL1 execution of the specified cache maintenance instructions is trapped to
EL2.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean, invalidate, or clean and invalidate instruction that
operates by VA to the point of coherency can be trapped when the value of this control is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps Non-secure EL1
execution of those cache maintenance instructions by set/way to EL2, when EL2 is enabled in the
current Security state.

This applies to the following instructions:

• DCISW, DCCSW, DCCISW.

Note

An Undefined Instruction exception generated at EL0 is higher priority than this trap to EL2, and
these instructions are always UNDEFINED at EL0.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 execution of the specified cache maintenance instructions is trapped to
EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TAC, bit [21]

Trap Auxiliary Control Registers. Traps Non-secure EL1 accesses to the Auxiliary Control
Registers to EL2, when EL2 is enabled in the current Security state, from both Execution states.

This applies to the following register accesses:

ACTLR and, if implemented, ACTLR2.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 accesses to the specified registers are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TIDCP, bit [20]

Trap IMPLEMENTATION DEFINED functionality. Traps Non-secure EL1 accesses to the encodings for
IMPLEMENTATION DEFINED System Registers to EL2, when EL2 is enabled in the current Security
state.

MCR and MRC instructions accessing the following encodings:

• All coproc==p15, CRn==c9, Opcode1 = {0-7}, CRm == {c0-c2, c5-c8}, opcode2 == {0-7}.

• All coproc==p15, CRn==c10, Opcode1 =={0-7}, CRm == {c0, c1, c4, c8}, opcode2 ==
{0-7}.

• All coproc==p15, CRn==c11, Opcode1=={0-7}, CRm == {c0-c8, c15}, opcode2 == {0-7}.

When HCR.TIDCP is set to 1, it is IMPLEMENTATION DEFINED whether any of this functionality
accessed from Non-secure EL0 is trapped to EL2. Otherwise, it is UNDEFINED and the PE takes an
Undefined Instruction exception to Non-secure Undefined mode.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 accesses to the specified System register encodings for
IMPLEMENTATION DEFINED functionality are trapped to EL2.
G8-6602 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TSC, bit [19]

Trap SMC instructions. Traps Non-secure EL1 execution of SMC instructions to Hyp mode.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute an SMC instruction at Non-secure EL1 is trapped to Hyp mode,
regardless of the value of SCR.SCD.

The Armv8-A architecture permits, but does not require, this trap to apply to conditional SMC
instructions that fail their condition code check, in the same way as with traps on other conditional
instructions.

Note

• This trap is only implemented if the implementation includes EL3.

• SMC instructions are always UNDEFINED at PL0.

• This bit traps execution of the SMC instruction. It is not a routing control for the SMC
exception. Hyp Trap exceptions and SMC exceptions have different preferred return
addresses.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TID3, bit [18]

Trap ID group 3. Traps Non-secure EL1 reads of the following registers to EL2, when EL2 is
enabled in the current Security state as follows:

• VMRS access to MVFR0, MVFR1, and MVFR2, reported using EC syndrome value 0x08,
unless access is also trapped by HCPTR which takes priority.

• MRC access to the following registers are reported using EC syndrome value 0x03:

— ID_PFR0, ID_PFR1, ID_PFR2, ID_DFR0, ID_AFR0, ID_MMFR0, ID_MMFR1,
ID_MMFR2, ID_MMFR3, ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3,
ID_ISAR4, and ID_ISAR5.

— If FEAT_FGT is implemented:

— ID_MMFR4 and ID_MMFR5 are trapped to EL2.

— ID_ISAR6 is trapped to EL2.

— ID_DFR1 is trapped to EL2.

— This field traps all MRC accesses to registers in the following range that are not
already mentioned in this field description: coproc == p15, opc1 == 0, CRn ==
c0, CRm == {c2-c7}, opc2 == {0-7}.

— If FEAT_FGT is not implemented:

— ID_MMFR4 and ID_MMFR5 are trapped to EL2, unless implemented as RAZ,
when it is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4 or
ID_MMFR5 are trapped.

— ID_ISAR6 is trapped to EL2, unless implemented as RAZ, when it is
IMPLEMENTATION DEFINED whether accesses to ID_ISAR6 are trapped to EL2.

— ID_DFR1 is trapped to EL2, unless implemented as RAZ, when it is
IMPLEMENTATION DEFINED whether accesses to ID_DFR1 are trapped to EL2.

— Otherwise, it is IMPLEMENTATION DEFINED whether this bit traps MRC accesses
to registers not already mentioned, with coproc == p15, opc1 == 0, CRn == c0,
CRm == {c2-c7}, opc2 == {0-7}.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified Non-secure EL1 read accesses to ID group 3 registers are trapped to EL2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6603
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TID2, bit [17]

Trap ID group 2. Traps the following register accesses to EL2, when EL2 is enabled in the current
Security state:

• Non-secure EL1 and EL0 reads of the CTR, CCSIDR, CCSIDR2, CLIDR, and CSSELR.

• Non-secure EL1 and EL0 writes to the CSSELR.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified Non-secure EL1 and EL0 accesses to ID group 2 registers are trapped to
EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TID1, bit [16]

Trap ID group 1. Traps Non-secure EL1 reads of the following registers to EL2, when EL2 is
enabled in the current Security state:

TCMTR, TLBTR, REVIDR, AIDR.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified Non-secure EL1 read accesses to ID group 1 registers are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TID0, bit [15]

Trap ID group 0. Traps the following register accesses to EL2, when EL2 is enabled in the current
Security state:

• Non-secure EL1 reads of the JIDR and FPSID.

• If the JIDR is RAZ from Non-secure EL0, Non-secure EL0 reads of the JIDR.

Note

• It is IMPLEMENTATION DEFINED whether the JIDR is RAZ or UNDEFINED at EL0. If it is
UNDEFINED at EL0 then the Undefined Instruction exception takes precedence over this trap.

• The FPSID is not accessible at EL0.

• Writes to the FPSID are ignored, and not trapped by this control.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified Non-secure EL1 read accesses to ID group 0 registers are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TWE, bit [14]

Traps Non-secure EL0 and EL1 execution of WFE instructions to EL2, when EL2 is enabled in the
current Security state.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute a WFE instruction at Non-secure EL0 or EL1 is trapped to EL2,
if the instruction would otherwise have caused the PE to enter a low-power state and it
is not trapped by SCTLR.nTWE.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes
its condition code check.
G8-6604 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
Note

Since a WFE can complete at any time, even without a Wakeup event, the traps on WFE are not
guaranteed to be taken, even if the WFE is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event,
the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TWI, bit [13]

Traps Non-secure EL0 and EL1 execution of WFI instructions to EL2, when EL2 is enabled in the
current Security state.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute a WFI instruction at Non-secure EL0 or EL1 is trapped to EL2,
if the instruction would otherwise have caused the PE to enter a low-power state and it
is not trapped by SCTLR.nTWI.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Note

Since a WFI can complete at any time, even without a Wakeup event, the traps on WFI are not
guaranteed to be taken, even if the WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event,
the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

DC, bit [12]

Default Cacheability.

0b0 This control has no effect on the Non-secure EL1&0 translation regime.

0b1 In Non-secure state:

• The SCTLR.M field behaves as 0 for all purposes other than a direct read of the
value of the field.

• The HCR.VM field behaves as 1 for all purposes other than a direct read of the
value of the field.

• The memory type produced by the first stage of the EL1&0 translation regime is
Normal Non-Shareable, Inner Write-Back Read-Allocate Write-Allocate, Outer
Write-Back Read-Allocate Write-Allocate.

This field has no effect on the EL2 and EL3 translation regimes.

This field is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied
to any barrier instruction executed from Non-secure EL1 or Non-secure EL0:

0b00 No effect.

0b01 Inner Shareable.

0b10 Outer Shareable.

0b11 Full system.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6605
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
This value is combined with the specified level of the barrier held in its instruction, using the same
principles as combining the shareability attributes from two stages of address translation.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable
domain when executed from Non-secure EL1:

BPIALL, TLBIALL, TLBIMVA, TLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID,
ITLBIALL, ITLBIMVA, ITLBIASID, TLBIMVAA, ICIALLU, TLBIMVAL, TLBIMVAAL.

0b0 This field has no effect on the operation of the specified instructions.

0b1 When one of the specified instruction is executed at Non-secure EL1, the instruction is
broadcast within the Inner Shareable shareability domain.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

VA, bit [8]

Virtual SError interrupt exception.

0b0 This mechanism is not making a virtual SError interrupt pending.

0b1 A virtual SError interrupt is pending because of this mechanism.

The virtual SError interrupt is enabled only when the value of HCR.{TGE, AMO} is {0, 1}.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

VI, bit [7]

Virtual IRQ exception.

0b0 This mechanism is not making a virtual IRQ pending.

0b1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is enabled only when the value of HCR.{TGE, IMO} is {0, 1}.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

VF, bit [6]

Virtual FIQ exception.

0b0 This mechanism is not making a virtual FIQ pending.

0b1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR.{TGE, FMO} is {0, 1}.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

AMO, bit [5]

SError interrupt Mask Override. When this bit is set to 1, it overrides the effect of PSTATE.A, and
enables virtual exception signaling by the VA bit.

If the value of HCR.TGE is 0, then virtual SError interrupts are enabled in Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.AMO bit behaves as 1 for all
purposes other than a direct read of the value of the bit.
G8-6606 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

IMO, bit [4]

IRQ Mask Override. When this bit is set to 1, it overrides the effect of PSTATE.I, and enables virtual
exception signaling by the VI bit.

If the value of HCR.TGE is 0, then Virtual IRQ interrupts are enabled in the Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.IMO bit behaves as 1 for all
purposes other than a direct read of the value of the bit.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

FMO, bit [3]

FIQ Mask Override. When this bit is set to 1, it overrides the effect of PSTATE.F, and enables virtual
exception signaling by the VF bit.

If the value of HCR.TGE is 0, then Virtual FIQ interrupts are enabled in the Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.FMO bit behaves as 1 for all
purposes other than a direct read of the value of the bit.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

PTW, bit [2]

Protected Table Walk. In the Non-secure PL1&0 translation regime, a translation table access made
as part of a stage 1 translation table walk is subject to a stage 2 translation. The combining of the
memory type attributes from the two stages of translation means the access might be made to a type
of Device memory. If this occurs then the value of this bit determines the behavior:

0b0 The translation table walk occurs as if it is to Normal Non-cacheable memory. This
means it can be made speculatively.

0b1 The memory access generates a stage 2 Permission fault.

This field is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

SWIO, bit [1]

Set/Way Invalidation Override. Causes Non-secure EL1 execution of the data cache invalidate by
set/way instructions to perform a data cache clean and invalidate by set/way.

0b0 This control has no effect on the operation of data cache invalidate by set/way
instructions.

0b1 Data cache invalidate by set/way instructions perform a data cache clean and invalidate
by set/way.

When this bit is set to 1, DCISW performs the same invalidation as a DCCISW instruction.

As a result of changes to the behavior of DCISW, this bit is redundant in Armv8. This bit can be
implemented as RES1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

VM, bit [0]

Virtualization enable. Enables stage 2 address translation for the Non-secure EL1&0 translation
regime.

0b0 Non-secure EL1&0 stage 2 address translation disabled.

0b1 Non-secure EL1&0 stage 2 address translation enabled.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6607
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
If the HCR.DC bit is set to 1, then the behavior of the PE when executing in a Non-secure mode
other than Hyp mode is consistent with HCR.VM being 1, regardless of the actual value of
HCR.VM, other than the value returned by an explicit read of HCR.VM.

When the value of this bit is 1, data cache invalidate instructions executed at Non-secure EL1
perform a data cache clean and invalidate. For the invalidate by set/way instruction this behavior
applies regardless of the value of the HCR.SWIO bit.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Accessing HCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HCR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HCR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b000

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b000
G8-6608 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 HCR = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6609
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.65 HCR2, Hyp Configuration Register 2

The HCR2 characteristics are:

Purpose

Provides additional configuration controls for virtualization.

Configurations

AArch32 System register HCR2 bits [31:0] are architecturally mapped to AArch64 System register
HCR_EL2[63:32].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HCR2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HCR2 is a 32-bit register.

Field descriptions

Bits [31:23]

Reserved, RES0.

TTLBIS, bit [22]

When FEAT_EVT is implemented:

TTLBIS

Trap TLB maintenance instructions that operate on the Inner Shareable domain. Traps execution of
the following TLB maintenance instructions at EL1 to EL2:

TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVAALIS

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 execution of the specified TLB maintenance instructions is trapped to
EL2.

When FEAT_VHE and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

Otherwise:

Reserved, RES0.

Bit [21]

Reserved, RES0.

TOCU, bit [20]

When FEAT_EVT is implemented:

TOCU

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of
those cache maintenance instructions at EL1 or EL0 using AArch64, and at EL1 using AArch32, to
EL2.

RES0

31 23 22 21 20 19 18 17

RES0

16 7 6 5 4

RES0

3 2

ID

1

CD

0

TTLBIS
RES0

TOCU

TID4
TICAB

RES0

MIOCNCE TERR
TEA
G8-6610 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
This applies to the following instructions:

• When Non-secure EL0 is using AArch64, IC IVAU, DC CVAU. However, if the value of
SCTLR_EL1.UCI is 0 these instructions are UNDEFINED at EL0 and any resulting exception
is higher priority than this trap to EL2.

• When EL1 is using AArch64, IC IVAU, IC IALLU, DC CVAU.

• When Non-secure EL1 is using AArch32, ICIMVAU, ICIALLU, DCCMVAU.

Note

An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this trap
to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using AArch64.

• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always UNDEFINED at EL0 using
AArch32.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure execution of the specified cache maintenance instructions is trapped to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean by VA to the Point of Unification instruction can
be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate to the Point of Unification instruction can
be trapped when the value of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

Otherwise:

Reserved, RES0.

Bit [19]

Reserved, RES0.

TICAB, bit [18]

When FEAT_EVT is implemented:

TICAB

Trap ICIALLUIS cache maintenance instructions. Traps execution of those cache maintenance
instructions at EL1 to EL2.

This applies to the following instructions:

ICIALLUIS.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 execution of the specified cache maintenance instructions is trapped to
EL2.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate to the Point of Unification instruction can
be trapped when the value of this control is 1.

When FEAT_VHE and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6611
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
TID4, bit [17]

When FEAT_EVT is implemented:

TID4

Trap ID group 4. Traps the following register accesses to EL2:

• EL1 reads of CCSIDR, CCSIDR2, CLIDR, and CSSELR.

• EL1 writes to CSSELR.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified Non-secure EL1 and EL0 accesses to ID group 4 registers are trapped to
EL2.

When FEAT_VHE is implemented and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

Otherwise:

Reserved, RES0.

Bits [16:7]

Reserved, RES0.

MIOCNCE, bit [6]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the Non-secure PL1&0 translation
regime.

0b0 For the Non-secure PL1&0 translation regime, for permitted accesses to a memory
location that use a common definition of the Shareability and Cacheability of the
location, there must be no loss of coherency if the Inner Cacheability attribute for those
accesses differs from the Outer Cacheability attribute.

0b1 For the Non-secure PL1&0 translation regime, for permitted accesses to a memory
location that use a common definition of the Shareability and Cacheability of the
location, there might be a loss of coherency if the Inner Cacheability attribute for those
accesses differs from the Outer Cacheability attribute.

For more information, see Mismatched memory attributes on page E2-4328.

This field can be implemented as RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an
architecturally UNKNOWN value.

TEA, bit [5]

When FEAT_RAS is implemented:

TEA

Route synchronous External abort exceptions from EL0 and EL1 to EL2.

0b0 Does not route synchronous External abort exceptions from Non-secure EL0 and EL1
to EL2.

0b1 Route synchronous External abort exceptions from Non-secure EL0 and EL1 to EL2, if
not routed to EL3.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.
G8-6612 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
TERR, bit [4]

When FEAT_RAS is implemented:

TERR

Trap Error record accesses from EL1 to EL2. Trap accesses to the following registers from EL1 to
EL2:

ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR, ERXFR2,
ERXMISC0, ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS.

When FEAT_RASv1p1 is implemented, ERXMISC4, ERXMISC5, ERXMISC6, and ERXMISC7.

0b0 This control does not cause any instructions to be trapped.

0b1 Accesses to the specified registers from EL1 generate a Trap exception to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [3:2]

Reserved, RES0.

ID, bit [1]

Stage 2 Instruction access cacheability disable. For the Non-secure PL1&0 translation regime, when
HCR.VM==1, this control forces all stage 2 translations for instruction accesses to Normal memory
to be Non-cacheable.

0b0 This control has no effect on stage 2 of the Non-secure PL1&0 translation regime.

0b1 For the Non-secure PL1&0 translation regime, forces all stage 2 translations for
instruction accesses to Normal memory to be Non-cacheable.

This bit has no effect on the EL2 translation regime.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

CD, bit [0]

Stage 2 Data access cacheability disable. When HCR.VM==1, this forces all stage 2 translations for
data accesses and translation table walks to Normal memory to be Non-cacheable for the
Non-secure PL1&0 translation regime.

0b0 This control has no effect on stage 2 of the Non-secure PL1&0 translation regime for
data accesses and translation table walks.

0b1 For the Non-secure PL1&0 translation regime, forces all stage 2 translations for data
accesses and translation table walks to Normal memory to be Non-cacheable.

This bit has no effect on the EL2 translation regime.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Accessing HCR2

Accesses to this register use the following encodings in the System register encoding space:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6613
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HCR2;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HCR2;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HCR2 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HCR2 = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b100

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b100
G8-6614 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.66 HDFAR, Hyp Data Fault Address Register

The HDFAR characteristics are:

Purpose

Holds the virtual address of the faulting address that caused a synchronous Data Abort exception
that is taken to Hyp mode.

Configurations

AArch32 System register HDFAR bits [31:0] are architecturally mapped to AArch64 System
register FAR_EL2[31:0].

AArch32 System register HDFAR bits [31:0] are architecturally mapped to AArch32 System
register DFAR[31:0] (S) when EL2 is implemented, EL3 is implemented and the implementation
only supports execution in AArch32 state.

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HDFAR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HDFAR is a 32-bit register.

Field descriptions

Bits [31:0]

VA of faulting address of synchronous Data Abort exception taken to Hyp mode.

On a Prefetch Abort exception, this register is UNKNOWN.

Any execution in a Non-secure EL1 or Non-secure EL0 mode makes this register UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HDFAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else

31 0

VA of faulting address of synchronous Data
Abort exception taken to Hyp mode

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0110 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6615
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HDFAR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HDFAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HDFAR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HDFAR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0110 0b0000 0b000
G8-6616 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.67 HIFAR, Hyp Instruction Fault Address Register

The HIFAR characteristics are:

Purpose

Holds the virtual address of the faulting address that caused a synchronous Prefetch Abort exception
that is taken to Hyp mode.

Configurations

AArch32 System register HIFAR bits [31:0] are architecturally mapped to AArch64 System register
FAR_EL2[63:32].

AArch32 System register HIFAR bits [31:0] are architecturally mapped to AArch32 System register
IFAR[31:0] (S) when EL2 is implemented, EL3 is implemented and the implementation only
supports execution in AArch32 state.

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HIFAR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HIFAR is a 32-bit register.

Field descriptions

Bits [31:0]

VA of faulting address of synchronous Prefetch Abort exception taken to Hyp mode.

On a Data Abort exception, this register is UNKNOWN.

Any execution in a Non-secure EL1 or Non-secure EL0 mode makes this register UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HIFAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else

31 0

VA of faulting address of synchronous
Prefetch Abort exception taken to Hyp mode

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0110 0b0000 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6617
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HIFAR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HIFAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HIFAR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HIFAR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0110 0b0000 0b010
G8-6618 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.68 HMAIR0, Hyp Memory Attribute Indirection Register 0

The HMAIR0 characteristics are:

Purpose

Along with HMAIR1, provides the memory attribute encodings corresponding to the possible
AttrIndx values in a Long-descriptor format translation table entry for stage 1 translations for
memory accesses from Hyp mode.

AttrIndx[2] indicates the HMAIR register to be used:

• When AttrIndx[2] is 0, HMAIR0 is used.

• When AttrIndx[2] is 1, HMAIR1 is used.

Configurations

AArch32 System register HMAIR0 bits [31:0] are architecturally mapped to AArch64 System
register MAIR_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HMAIR0 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HMAIR0 is a 32-bit register.

Field descriptions

When TTBCR.EAE == 1:

Attr<n>, bits [8n+7:8n], for n = 3 to 0

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation
table entry, where:

• AttrIndx[2:0] gives the value of <n> in Attr<n>.

• AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0
are in MAIR0.

Bits [7:4] are encoded as follows:

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

Attr3

31 24

Attr2

23 16

Attr1

15 8

Attr0

7 0

Attr<n>[7:4] Meaning

0b0000 Device memory. See encoding of Attr<n>[3:0] for the type of Device memory.

0b00RW, RW not 0b00 Normal memory, Outer Write-Through Transient.

0b0100 Normal memory, Outer Non-cacheable.

0b01RW, RW not 0b00 Normal memory, Outer Write-Back Transient.

0b10RW Normal memory, Outer Write-Through Non-transient.

0b11RW Normal memory, Outer Write-Back Non-transient.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6619
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The meaning of bits [3:0] depends on the value of bits [7:4]:

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back
Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HMAIR0

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;

Attr<n>[3:0] Meaning when Attr<n>[7:4] is 0b0000 Meaning when Attr<n>[7:4] is not 0b0000

0b0000 Device-nGnRnE memory UNPREDICTABLE

0b00RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Through Transient

0b0100 Device-nGnRE memory Normal memory, Inner Non-cacheable

0b01RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Back Transient

0b1000 Device-nGRE memory Normal memory, Inner Write-Through Non-transient
(RW=0b00)

0b10RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Through Non-transient

0b1100 Device-GRE memory Normal memory, Inner Write-Back Non-transient (RW=0b00)

0b11RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Back Non-transient

R or W Meaning

0b0 No Allocate

0b1 Allocate

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1010 0b0010 0b000
G8-6620 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL2 then
 return HMAIR0;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HMAIR0;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HMAIR0 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HMAIR0 = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1010 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6621
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.69 HMAIR1, Hyp Memory Attribute Indirection Register 1

The HMAIR1 characteristics are:

Purpose

Along with HMAIR0, provides the memory attribute encodings corresponding to the possible
AttrIndx values in a Long-descriptor format translation table entry for stage 1 translations for
memory accesses from Hyp mode.

AttrIndx[2] indicates the HMAIR register to be used:

• When AttrIndx[2] is 0, HMAIR0 is used.

• When AttrIndx[2] is 1, HMAIR1 is used.

Configurations

AArch32 System register HMAIR1 bits [31:0] are architecturally mapped to AArch64 System
register MAIR_EL2[63:32].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HMAIR1 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HMAIR1 is a 32-bit register.

Field descriptions

When TTBCR.EAE == 1:

Attr<n>, bits [8(n-4)+7:8(n-4)], for n = 7 to 4

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation
table entry, where:

• AttrIndx[2:0] gives the value of <n> in Attr<n>.

• AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0
are in MAIR0.

Bits [7:4] are encoded as follows:

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

Attr7

31 24

Attr6

23 16

Attr5

15 8

Attr4

7 0

Attr<n>[7:4] Meaning

0b0000 Device memory. See encoding of Attr<n>[3:0] for the type of Device memory.

0b00RW, RW not 0b00 Normal memory, Outer Write-Through Transient.

0b0100 Normal memory, Outer Non-cacheable.

0b01RW, RW not 0b00 Normal memory, Outer Write-Back Transient.

0b10RW Normal memory, Outer Write-Through Non-transient.

0b11RW Normal memory, Outer Write-Back Non-transient.
G8-6622 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
The meaning of bits [3:0] depends on the value of bits [7:4]:

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back
Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HMAIR1

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;

Attr<n>[3:0] Meaning when Attr<n>[7:4] is 0b0000 Meaning when Attr<n>[7:4] is not 0b0000

0b0000 Device-nGnRnE memory UNPREDICTABLE

0b00RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Through Transient

0b0100 Device-nGnRE memory Normal memory, Inner Non-cacheable

0b01RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Back Transient

0b1000 Device-nGRE memory Normal memory, Inner Write-Through Non-transient
(RW=0b00)

0b10RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Through Non-transient

0b1100 Device-GRE memory Normal memory, Inner Write-Back Non-transient (RW=0b00)

0b11RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Back Non-transient

R or W Meaning

0b0 No Allocate

0b1 Allocate

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1010 0b0010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6623
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL2 then
 return HMAIR1;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HMAIR1;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HMAIR1 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HMAIR1 = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1010 0b0010 0b001
G8-6624 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.70 HPFAR, Hyp IPA Fault Address Register

The HPFAR characteristics are:

Purpose

Holds the faulting IPA for some aborts on a stage 2 translation taken to Hyp mode.

Configurations

AArch32 System register HPFAR bits [31:0] are architecturally mapped to AArch64 System
register HPFAR_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HPFAR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HPFAR is a 32-bit register.

Field descriptions

Execution in any Non-secure mode other than Hyp mode makes this register UNKNOWN.

FIPA[39:12], bits [31:4]

Bits [39:12] of the faulting intermediate physical address.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [3:0]

Reserved, RES0.

Accessing HPFAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HPFAR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then

FIPA[39:12]

31 4

RES0

3 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0110 0b0000 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6625
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 UNDEFINED;
 else
 return HPFAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HPFAR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HPFAR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0110 0b0000 0b100
G8-6626 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.71 HRMR, Hyp Reset Management Register

The HRMR characteristics are:

Purpose

If EL2 is the highest implemented Exception level and this register is implemented:

• A write to the register at EL2 can request a Warm reset.

• If EL2 can use AArch32 and AArch64, this register specifies the Execution state that the PE
boots into on a Warm reset.

Configurations

AArch32 System register HRMR bits [31:0] are architecturally mapped to AArch64 System register
RMR_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HRMR are UNDEFINED.

Only implemented if EL2 is the highest implemented Exception level. In this case:

• If EL2 can use AArch32 and AArch64 then this register must be implemented.

• If EL2 cannot use AArch64 then it is IMPLEMENTATION DEFINED whether the register is
implemented.

Attributes

HRMR is a 32-bit register.

Field descriptions

Bits [31:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

AA64, bit [0]

When EL2 can use AArch64, determines which Execution state the PE boots into after a Warm
reset:

0b0 AArch32.

0b1 AArch64.

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector
address of the specified Execution state.

If EL2 cannot use AArch64 this bit is RAZ/WI.

The reset behavior of this field is:

• When implemented as a RW field, this field resets to 0 on a Cold reset.

Accessing HRMR

Accesses to this register use the following encodings in the System register encoding space:

RES0

31 2

RR

1 0

AA64
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6627
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif PSTATE.EL == EL2 && IsHighestEL(EL2) then
 return HRMR;
else
 UNDEFINED;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif PSTATE.EL == EL2 && IsHighestEL(EL2) then
 HRMR = R[t];
else
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1100 0b0000 0b010

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1100 0b0000 0b010
G8-6628 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.72 HSCTLR, Hyp System Control Register

The HSCTLR characteristics are:

Purpose

Provides top level control of the system operation in Hyp mode.

Configurations

AArch32 System register HSCTLR bits [31:0] are architecturally mapped to AArch64 System
register SCTLR_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HSCTLR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HSCTLR is a 32-bit register.

Field descriptions

DSSBS, bit [31]

When FEAT_SSBS is implemented:

DSSBS

Default PSTATE.SSBS value on Exception Entry. The defined values are:

0b0 PSTATE.SSBS is set to 0 on an exception to Hyp mode.

0b1 PSTATE.SSBS is set to 1 on an exception to Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

TE, bit [30]

T32 Exception Enable. This bit controls whether exceptions to EL2 are taken to A32 or T32 state:

0b0 Exceptions, including reset, taken to A32 state.

0b1 Exceptions, including reset, taken to T32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Bits [29:28]

Reserved, RES1.

Bits [27:26]

Reserved, RES0.

31

TE

30

RES1

29 28

RES0

27 26

EE

25 24

RES1

23 22

RES0

21 20 19 18 17 16

RES0

15 13

I

12 11

RES0

10 9 8 7 6 5 4 3

C

2

A

1

M

0

DSSBS RES0 WXN
RES1

RES0
RES1

RES1

nTLSMD
LSMAOE

CP15BEN
RES0

ITD
SED
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6629
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
EE, bit [25]

The value of the PSTATE.E bit on entry to Hyp mode, the endianness of stage 1 translation table
walks in the EL2 translation regime, and the endianness of stage 2 translation table walks in the
PL1&0 translation regime.

The possible values of this bit are:

0b0 Little-endian. PSTATE.E is cleared to 0 on entry to Hyp mode. Stage 1 translation table
walks in the EL2 translation regime, and stage 2 translation table walks in the PL1&0
translation regime are little-endian.

0b1 Big-endian. PSTATE.E is set to 1 on entry to Hyp mode. Stage 1 translation table walks
in the EL2 translation regime, and stage 2 translation table walks in the PL1&0
translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than EL0, this
bit is RES0.

If an implementation does not provide Little-endian support at Exception levels higher than EL0,
this bit is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Bit [24]

Reserved, RES0.

Bits [23:22]

Reserved, RES1.

Bits [21:20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 translation regime, this bit can force all
memory regions that are writable to be treated as XN. The possible values of this bit are:

0b0 This control has no effect on memory access permissions.

0b1 Any region that is writable in the EL2 translation regime is forced to XN for accesses
from software executing at EL2.

This bit applies only when HSCTLR.M bit is set.

The WXN bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Bit [18]

Reserved, RES1.

Bit [17]

Reserved, RES0.

Bit [16]

Reserved, RES1.

Bits [15:13]

Reserved, RES0.
G8-6630 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
I, bit [12]

Instruction access Cacheability control, for accesses at EL2:

0b0 All instruction access to Normal memory from EL2 are Non-cacheable for all levels of
instruction and unified cache.

If the value of HSCTLR.M is 0, instruction accesses from stage 1 of the EL2 translation
regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-cacheable
memory.

0b1 All instruction access to Normal memory from EL2 can be cached at all levels of
instruction and unified cache.

If the value of HSCTLR.M is 0, instruction accesses from stage 1 of the EL2 translation
regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-Through
memory.

This bit has no effect on the PL1&0 translation regime.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at EL2.

0b0 SETEND instruction execution is enabled at EL2.

0b1 SETEND instructions are UNDEFINED at EL2.

If the implementation does not support mixed-endian operation at EL2, this bit is RES1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at EL2.

0b0 All IT instruction functionality is enabled at EL2.

0b1 Any attempt at EL2 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.

• All encodings of the subsequent instruction with the following values for hw1:

— 11xxxxxxxxxxxxxx: All 32-bit instructions, and the 16-bit instructions B,
UDF, SVC, LDM, and STM.

— 1011xxxxxxxxxxxx: All instructions in Miscellaneous 16-bit instructions
on page F3-4423.

— 10100xxxxxxxxxxx: ADD Rd, PC, #imm

— 01001xxxxxxxxxxx: LDR Rd, [PC, #imm]

— 0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC;
BLX PC.

— 010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This
pattern also covers unpredictable cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or fail
the condition code check that applies to them as a result of being in an IT block.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6631
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.

• The first half of a 32-bit instruction.

This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.

An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then
behavior is CONSTRAINED UNPREDICTABLE. For more information, see Changes to an ITD control
by an instruction in an IT block on page E1-4258.

ITD is optional, but if it is implemented in the HSCTLR then it must also be implemented in the
SCTLR_EL1, SCTLR_EL2, and SCTLR.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

When an implementation does not implement ITD, access to this field is RAZ/WI.

Bit [6]

Reserved, RES0.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System
instructions in the (coproc==0b1111) encoding space from EL2:

0b0 EL2 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is UNDEFINED.

0b1 EL2 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is enabled.

CP15BEN is optional, but if it is implemented in the HSCTLR then it must also be implemented in
the SCTLR_EL1, SCTLR_EL2, and SCTLR.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

When an implementation does not implement CP15BEN, access to this field is RAO/WI.

LSMAOE, bit [4]

When FEAT_LSMAOC is implemented:

LSMAOE

Load Multiple and Store Multiple Atomicity and Ordering Enable.

0b0 For all memory accesses at EL2, A32 and T32 Load Multiple and Store Multiple can
have an interrupt taken during the sequence memory accesses, and the memory accesses
are not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load Multiple and Store Multiple
at EL2 is as defined for Armv8.0.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 1.

Otherwise:

Reserved, RES1.
G8-6632 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
nTLSMD, bit [3]

When FEAT_LSMAOC is implemented:

nTLSMD

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE
memory.

0b0 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL2 that are
marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
trapped and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL2 that are
marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory are not
trapped.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 1.

Otherwise:

Reserved, RES1.

C, bit [2]

Cacheability control, for data accesses at EL2:

0b0 All data access to Normal memory from EL2, and all accesses to the EL2 translation
tables, are Non-cacheable for all levels of data and unified cache.

0b1 All data access to Normal memory from EL2, and all accesses to the EL2 translation
tables, can be cached at all levels of data and unified cache.

This bit has no effect on the PL1&0 translation regime.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2:

0b0 Alignment fault checking disabled when executing at EL2.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element or data elements being accessed.

0b1 Alignment fault checking enabled when executing at EL2.

All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element or data elements being
accessed. If this check fails it causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless
of the value of the A bit.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL2 stage 1 address translation. Possible values of this bit are:

0b0 EL2 stage 1 address translation disabled.

See the HSCTLR.I field for the behavior of instruction accesses to Normal memory.

0b1 EL2 stage 1 address translation enabled.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6633
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing HSCTLR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HSCTLR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HSCTLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HSCTLR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HSCTLR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0000 0b000

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0000 0b000
G8-6634 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.73 HSR, Hyp Syndrome Register

The HSR characteristics are:

Purpose

Holds syndrome information for an exception taken to Hyp mode.

Configurations

AArch32 System register HSR bits [31:0] are architecturally mapped to AArch64 System register
ESR_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to HSR
are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HSR is a 32-bit register.

Field descriptions

Execution in any Non-secure PE mode other than Hyp mode makes this register UNKNOWN.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL2, the value of HSR
is UNKNOWN. The value written to HSR must be consistent with a value that could be created as a result of an
exception from the same Exception level that generated the exception as a result of a situation that is not
UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.
Possible values of this field are:

EC == 0b000000

Unknown reason.

See ISS encoding for exceptions with an unknown reason.

EC == 0b000001

Trapped WFI or WFE instruction execution.

Conditional WFE and WFI instructions that fail their condition code check do not cause
an exception.

See ISS encoding for exception from a WFI or WFE instruction.

EC == 0b000011

Trapped MCR or MRC access with (coproc==0b1111) that is not reported using EC
0b000000.

See ISS encoding for exception from an MCR or MRC access.

EC == 0b000100

Trapped MCRR or MRRC access with (coproc==0b1111) that is not reported using EC
0b000000.

See ISS encoding for exception from an MCRR or MRRC access.

EC == 0b000101

Trapped MCR or MRC access with (coproc==0b1110).

See ISS encoding for exception from an MCR or MRC access.

EC

31 26

IL

25

ISS

24 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6635
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
EC == 0b000110

Trapped LDC or STC access.

The only architected uses of these instructions are:

• An STC to write data to memory from DBGDTRRXint.

• An LDC to read data from memory to DBGDTRTXint.

See ISS encoding for exception from an LDC or STC instruction.

EC == 0b000111

Access to Advanced SIMD or floating-point functionality trapped by a HCPTR.{TASE,
TCP10} control.

Excludes exceptions generated because Advanced SIMD and floating-point are not
implemented. These are reported with EC value 0b000000.

See ISS encoding for exception from an access to SIMD or floating-point functionality,
resulting from HCPTR.

EC == 0b001000

Trapped VMRS access, from ID group trap, that is not reported using EC 0b000111.

See ISS encoding for exception from an MCR or MRC access.

EC == 0b001100

Trapped MRRC access with (coproc==0b1110).

See ISS encoding for exception from an MCRR or MRRC access.

EC == 0b001110

Illegal exception return to AArch32 state.

See ISS encoding for exception from an Illegal state or PC alignment fault.

EC == 0b010001

Exception on SVC instruction execution in AArch32 state routed to EL2.

See ISS encoding for exception from HVC or SVC instruction execution.

EC == 0b010010

HVC instruction execution in AArch32 state, when HVC is not disabled.

See ISS encoding for exception from HVC or SVC instruction execution.

EC == 0b010011

Trapped execution of SMC instruction in AArch32 state.

See ISS encoding for exception from SMC instruction execution.

EC == 0b100000

Prefetch Abort from a lower Exception level.

See ISS encoding for exception from a Prefetch Abort.

EC == 0b100001

Prefetch Abort taken without a change in Exception level.

See ISS encoding for exception from a Prefetch Abort.

EC == 0b100010

PC alignment fault exception.

See ISS encoding for exception from an Illegal state or PC alignment fault.

EC == 0b100100

Data Abort from a lower Exception level.

See ISS encoding for exception from a Data Abort.

EC == 0b100101

Data Abort taken without a change in Exception level.

See ISS encoding for exception from a Data Abort.

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for
synchronous exceptions.
G8-6636 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and
might be used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED
UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction length bit. Indicates the size of the instruction that has been trapped to Hyp mode. When
this bit is valid, possible values of this bit are:

0b0 16-bit instruction trapped.

0b1 32-bit instruction trapped.

This field is RES1 and not valid for the following cases:

• When the EC field is 0b000000, indicating an exception with an unknown reason.

• Prefetch Aborts.

• Data Aborts for which the HSR.ISS.ISV field is 0.

• When the EC value is 0b001110, indicating an Illegal state exception.

Note

This is a change from the behavior in Armv7, where the IL field is UNK/SBZP for the
corresponding cases.

The IL field is not valid and is UNKNOWN on an exception from a PC alignment fault.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each
defined Exception class. However, in practice, some ISS encodings are used for more than one
Exception class.

ISS encoding for exceptions with an unknown reason

Bits [24:0]

Reserved, RES0.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions that
are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or is not accessible in
the current PE mode in the current Security state, including:

— A read access using a System register encoding pattern that is not allocated for reads or that does not
permit reads in the current PE mode and Security state.

— A write access using a System register encoding pattern that is not allocated for writes or that does not
permit writes in the current PE mode and Security state.

— Instruction encodings that are unallocated.

— Instruction encodings for instructions not implemented in the implementation.

RES0

24 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6637
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug state.

• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-debug
state.

• The attempted execution of a short vector floating-point instruction.

• In an implementation that does not include Advanced SIMD and floating-point functionality, an attempted
access to Advanced SIMD or floating-point functionality under conditions where that access would be
permitted if that functionality was present. This includes the attempted execution of an Advanced SIMD or
floating-point instruction, and attempted accesses to Advanced SIMD and floating-point System registers.

• An exception generated because of the value of one of the SCTLR.{ITD, SED, CP15BEN} control bits.

• Attempted execution of:

— An HVC instruction when disabled by HCR.HCD, SCR.HCE, or SCR_EL3.HCE.

— An SMC instruction when disabled by SCR.SCD or SCR_EL3.SMD.

— An HLT instruction when disabled by EDSCR.HDE.

• An HVC instruction when disabled by HCR.HCD, SCR.HCE, or SCR_EL3.HCE.An SMC instruction when
disabled by SCR.SCD or SCR_EL3.SMD.An HLT instruction when disabled by EDSCR.HDE.

• An exception generated because of the attempted execution of an MSR (Banked register) or MRS (Banked
register) instruction that would access a Banked register that is not accessible from the Security state and PE
mode at which the instruction was executed.

Note

An exception is generated only if the CONSTRAINED UNPREDICTABLE behavior of the instruction is that it is
UNDEFINED, see MSR (banked register) and MRS (banked register) on page K1-8406.

• Attempted execution, in Debug state, of:

— A DCPS1 instruction in Non-secure state from EL0 when EL2 is using AArch32 and the value of
HCR.TGE is 1.

— A DCPS2 instruction at EL1 or EL0 when EL2 is not implemented, or when EL3 is using AArch32
and the value of SCR.NS is 0, or when EL3 is using AArch64 and the value of SCR_EL3.NS is 0.

— A DCPS3 instruction when EL3 is not implemented, or when the value of EDSCR.SDD is 1.

• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an
instruction that is configured to trap to EL3.

Undefined Instruction exception, when the value of HCR.TGE is 1 on page G1-6059 describes the configuration
settings for a trap that returns an HSR.EC value of 0b000000.

ISS encoding for exception from a WFI or WFE instruction

CV, bit [24]

Condition code valid. Possible values of this bit are:

0b0 The COND field is not valid.

0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to
0. For more information, see the description of the COND field.

CV

24

COND

23 20

RES0

19 1

TI

0

G8-6638 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.

• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT
field to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110,
or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:1]

Reserved, RES0.

TI, bit [0]

Trapped instruction. Possible values of this bit are:

0b0 WFI trapped.

0b1 WFE trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions on page G1-6136 describes
the configuration settings for this trap.

ISS encoding for exception from an MCR or MRC access

CV, bit [24]

Condition code valid. Possible values of this bit are:

0b0 The COND field is not valid.

0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

CV

24

COND

23 20

Opc2

19 17

Opc1

16 14

CRn

13 10 9

Rt

8 5

CRm

4 1 0

RES0 Direction
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6639
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to
0. For more information, see the description of the COND field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.

• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT
field to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110,
or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES0.

Rt, bits [8:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.
G8-6640 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

0b0 Write to System register space. MCR instruction.

0b1 Read from System register space. MRC or VMRS instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following sections describe configuration settings for traps that are reported using EC value 0b000011:

• Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the ID registers on page G1-6134.

• Traps to Hyp mode of Non-secure EL0 and EL1 accesses to lockdown, DMA, and TCM operations on
page G1-6132.

• Traps to Hyp mode of Non-secure EL1 execution of cache maintenance instructions on page G1-6131.

• Traps to Hyp mode of Non-secure EL1 execution of TLB maintenance instructions on page G1-6131.

• Traps to Hyp mode of Non-secure EL1 accesses to the Auxiliary Control Register on page G1-6132.

• Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Performance Monitors registers on
page G1-6145.

• Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Activity Monitors registers on page G1-6137.

• Traps to Hyp mode of Non-secure EL1 accesses to the CPACR on page G1-6139.

• Traps to Hyp mode of Non-secure EL1 accesses to virtual memory control registers on page G1-6130.

• General trapping to Hyp mode of Non-secure EL0 and EL1 accesses to System registers in the
(coproc==0b1111) encoding space on page G1-6140.

The following sections describe configuration settings for traps that are reported using EC value 0b000101:

• ID group 0, Primary device identification registers on page G1-6135.

• Traps to Hyp mode of Non-secure System register accesses to trace registers on page G1-6139.

• Trapping Non-secure System register accesses to Debug ROM registers on page G1-6142.

• Trapping Non-secure System register accesses to powerdown debug registers on page G1-6143.

• Trapping general Non-secure System register accesses to debug registers on page G1-6143.

The following sections describes configuration settings for traps that are reported using EC value 0b001000:

• ID group 0, Primary device identification registers on page G1-6135.

• ID group 3, Detailed feature identification registers on page G1-6136.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6641
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
ISS encoding for exception from an MCRR or MRRC access

CV, bit [24]

Condition code valid. Possible values of this bit are:

0b0 The COND field is not valid.

0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to
0. For more information, see the description of the COND field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.

• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT
field to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110,
or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:14]

Reserved, RES0.

Rt2, bits [13:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CV

24

COND

23 20

Opc1

19 16

RES0

15 14

Rt2

13 10 9

Rt

8 5

CRm

4 1 0

RES0 Direction
G8-6642 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
Bit [9]

Reserved, RES0.

Rt, bits [8:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

0b0 Write to System register space. MCRR instruction.

0b1 Read from System register space. MRRC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following sections describe configuration settings for traps that are reported using EC value 0b000100:

• Traps to Hyp mode of Non-secure EL1 accesses to virtual memory control registers on page G1-6130.

• Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Performance Monitors registers on
page G1-6145.

• Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Activity Monitors registers on page G1-6137.

• Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the Generic Timer registers on page G1-6144.

• General trapping to Hyp mode of Non-secure EL0 and EL1 accesses to System registers in the
(coproc==0b1111) encoding space on page G1-6140.

The following sections describe configuration settings for traps that are reported using EC value 0b001100:

• Traps to Hyp mode of Non-secure System register accesses to trace registers on page G1-6139.

• Trapping Non-secure System register accesses to Debug ROM registers on page G1-6142.

ISS encoding for exception from an LDC or STC instruction

CV, bit [24]

Condition code valid. Possible values of this bit are:

0b0 The COND field is not valid.

0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to
0. For more information, see the description of the COND field.

CV

24

COND

23 20

imm8

19 12

RES0

11 9

Rn

8 5 4

AM

3 1 0

Offset Direction
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6643
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.

• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT
field to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110,
or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:9]

Reserved, RES0.

Rn, bits [8:5]

The Rn value from the issued instruction. Valid only when AM[2] is 0, indicating an immediate
form of the LDC or STC instruction.

When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

0b0 Subtract offset.

0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

0b000 Immediate unindexed.
G8-6644 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
0b001 Immediate post-indexed.

0b010 Immediate offset.

0b011 Immediate pre-indexed.

0b100 Literal unindexed.

LDC instruction in A32 instruction set only.

For a trapped STC instruction or a trapped T32 LDC instruction this encoding is
reserved.

0b110 Literal offset.

LDC instruction only.

For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is
that behavior is CONSTRAINED UNPREDICTABLE.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

0b0 Write to memory. STC instruction.

0b1 Read from memory. LDC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Trapping general Non-secure System register accesses to debug registers on page G1-6143 describes the
configuration settings for the trap that is reported using EC value 0b000110.

ISS encoding for exception from an access to SIMD or floating-point functionality, resulting from
HCPTR

Excludes exceptions that occur because Advanced SIMD and floating-point functionality is not implemented, or
because the value of HCR.TGE or HCR_EL2.TGE is 1. These are reported with EC value 0b000000.

CV, bit [24]

Condition code valid. Possible values of this bit are:

0b0 The COND field is not valid.

0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to
0. For more information, see the description of the COND field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

CV

24

COND

23 20

RES0

19 6

TA

5 4

coproc

3 0

RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6645
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.

• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT
field to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110,
or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:6]

Reserved, RES0.

TA, bit [5]

Indicates trapped use of Advanced SIMD functionality. The possible values of this bit are:

0b0 Exception was not caused by trapped use of Advanced SIMD functionality.

0b1 Exception was caused by trapped use of Advanced SIMD functionality.

Any use of an Advanced SIMD instruction that is not also a floating-point instruction that is trapped
to Hyp mode because of a trap configured in the HCPTR sets this bit to 1.

For a list of these instructions, see Controls of Advanced SIMD operation that do not apply to
floating-point operation on page E1-4273.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [4]

Reserved, RES0.

coproc, bits [3:0]

When the HSR.TA field returns the value 1, this field returns the value 0b1010. Otherwise, this field
is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following sections describe the configuration settings for the traps that are reported using EC value 0b000111:

• General trapping to Hyp mode of Non-secure accesses to the SIMD and floating-point registers on
page G1-6137.

• Traps to Hyp mode of Non-secure accesses to Advanced SIMD functionality on page G1-6138.
G8-6646 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
ISS encoding for exception from HVC or SVC instruction execution

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, this is the value of the imm16 field of the issued instruction.

For an SVC instruction:

• If the instruction is unconditional, then:

— For the T32 instruction, this field is zero-extended from the imm8 field of the
instruction.

— For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the
instruction.

• For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.For
the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.

• If the instruction is conditional, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The HVC instruction is unconditional, and a conditional SVC instruction generates an exception only if it passes its
condition code check. Therefore, the syndrome information for these exceptions does not require conditionality
information.

Supervisor Call exception, when the value of HCR.TGE is 1 on page G1-6059 describes the configuration settings
for the trap reported with EC value 0b010001.

ISS encoding for exception from SMC instruction execution

CV, bit [24]

Condition code valid. Possible values of this bit are:

0b0 The COND field is not valid.

0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to
0. For more information, see the description of the COND field.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

RES0

24 16

imm16

15 0

CV

24

COND

23 20 19

RES0

18 0

CCKNOWNPASS
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6647
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.

• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT
field to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110,
or to the value of any condition that applied to the instruction.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

0b0 The instruction was unconditional, or was conditional and passed its condition code
check.

0b1 The instruction was conditional, and might have failed its condition code check.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

Traps to Hyp mode of Non-secure EL1 execution of SMC instructions on page G1-6133 describes the configuration
settings for this trap, for instructions executed in Non-secure EL1.

ISS encoding for exception from a Prefetch Abort

Bits [24:11]

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 HIFAR is valid.

0b1 HIFAR is not valid, and holds an UNKNOWN value.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

RES0

24 11 10

EA

9 8 7 6

IFSC

5 0

FnV
RES0

RES0
S1PTW
G8-6648 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External
aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code. Possible values of this field are:

0b000000 Address size fault in translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk.

0b010101 Synchronous External abort on translation table walk, level 1.

0b010110 Synchronous External abort on translation table walk, level 2.

0b010111 Synchronous External abort on translation table walk, level 3.

0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6649
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 3.

0b100010 Debug exception.

0b110000 TLB conflict abort.

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on a Long-descriptor translation table lookup on page G5-6375.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following sections describe cases where Prefetch Abort exceptions can be routed to Hyp mode, generating
exceptions that are reported in the HSR with EC value 0b100000:

• Abort exceptions, when the value of HCR.TGE is 1 on page G1-6059.

• Routing debug exceptions to EL2 using AArch32 on page G1-6060.

ISS encoding for exception from an Illegal state or PC alignment fault

Bits [24:0]

Reserved, RES0.

For more information about the Illegal state exception, see:

• Illegal changes to PSTATE.M on page G1-6039.

• Illegal return events from AArch32 state on page G1-6066.

• Legal returns that set PSTATE.IL to 1 on page G1-6068.

• The Illegal Execution state exception on page G1-6068.

For more information about the PC alignment fault exception, see Branching to an unaligned PC on page K1-8388.

ISS encoding for exception from a Data Abort

ISV, bit [24]

Instruction syndrome valid. Indicates whether the syndrome information in ISS[23:14] is valid.

0b0 No valid instruction syndrome. ISS[23:14] are RES0.

0b1 ISS[23:14] hold a valid instruction syndrome.

RES0

24 0

24

SAS

23 22 21 20

SRT

19 16 15

AR

14

RES0

13 12

AET

11 10

EA

9

CM

8 7 6

DFSC

5 0

ISV
SSE

RES0
RES0

S1PTW WnR
G8-6650 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
This bit is 0 for all faults except Data Aborts generated by stage 2 address translations for which all
the following apply to the instruction that generated the Data Abort exception:

• The instruction is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT,
LDRSB, LDRSBT, LDRB, LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT,
STRB, STLB, or STRBT instruction.

• The instruction is not performing register writeback.

• The instruction is not using the PC as a source or destination register.

For these cases, ISV is UNKNOWN if the exception was generated in Debug state in memory access
mode, as described in Data Aborts in Memory access mode on page H4-7408, and otherwise
indicates whether ISS[23:14] hold a valid syndrome.

Note

In the A32 instruction set, LDR*T and STR*T instructions always perform register writeback and
therefore never return a valid instruction syndrome.

When FEAT_RAS is implemented, ISV is 0 for any synchronous External abort.

ISV is set to 0 on a stage 2 abort on a stage 1 translation table walk.

When FEAT_RAS is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0
on a synchronous External abort on a stage 2 translation table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]

Syndrome Access Size. When ISV is 1, indicates the size of the access attempted by the faulting
operation.

0b00 Byte

0b01 Halfword

0b10 Word

0b11 Doubleword

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SSE, bit [21]

Syndrome Sign Extend. When ISV is 1, for a byte, halfword, or word load operation, indicates
whether the data item must be sign extended. For these cases, the possible values of this bit are:

0b0 Sign-extension not required.

0b1 Data item must be sign-extended.

For all other operations this bit is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [20]

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6651
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
SRT, bits [19:16]

Syndrome Register transfer. When ISV is 1, the register number of the Rt operand of the faulting
instruction.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

AR, bit [14]

Acquire/Release. When ISV is 1, the possible values of this bit are:

0b0 Instruction did not have acquire/release semantics.

0b1 Instruction did have acquire/release semantics.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [13:12]

Reserved, RES0.

Bits[11:10]

When FEAT_RAS is implemented:

AET

Asynchronous Error Type. When DFSC is 0b010001, describes the PE error state after taking the
SError interrupt exception. The possible values of this field are:

0b00 Uncontainable (UC).

0b01 Unrecoverable state (UEU).

0b10 Restartable state (UEO).

0b11 Recoverable state (UER).

On a synchronous Data Abort, this field is RES0.

In the event of multiple errors taken as a single SError interrupt exception, the overall PE error state
is reported.

Note

Software can use this information to determine what recovery might be possible. The recovery
software must also examine any implemented fault records to determine the location and extent of
the error.

When FEAT_RAS is not implemented, or when DFSC is not 0b010001:

• Bit[11] is RES0.

• Bit[10] forms the FnV field.

Note

Armv8.2 requires the implementation of FEAT_RAS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
G8-6652 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
Otherwise:

Bit[10], FnV

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 HDFAR is valid.

0b1 HDFAR is not valid, and holds an UNKNOWN value.

When FEAT_RAS is not implemented, this field is valid only if DFSC is 0b010000. It is RES0 for all
other aborts.

When FEAT_RAS is implemented:

• If DFSC is 0b010000, this field is valid.

• If DFSC is 0b010001, this bit forms part of the AET field, becoming AET[0].

• This field is RES0 for all other aborts.

Note

Armv8.2 requires the implementation of FEAT_RAS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

All other bits in this section of the register are RES0.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External
aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. For a synchronous fault, identifies fault that comes from a cache maintenance
or address translation instruction. For synchronous faults, the possible values of this bit are:

0b0 Fault not generated by a cache maintenance or address translation instruction.

0b1 Fault generated by a cache maintenance or address translation instruction.

For an asynchronous Data Abort exception, this bit is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by a write instruction or a read
instruction. The possible values of this bit are:

0b0 Abort caused by a read instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6653
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b1 Abort caused by a write instruction.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

On an asynchronous Data Abort:

• When FEAT_RAS is not implemented, this bit is UNKNOWN.

• When FEAT_RAS is implemented, this bit is RES0.

Note
Armv8.2 requires the implementation of FEAT_RAS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code. Possible values of this field are:

0b000000 Address size fault in translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk.

0b010001 Asynchronous SError interrupt.

0b010101 Synchronous External abort on translation table walk, level 1.

0b010110 Synchronous External abort on translation table walk, level 2.

0b010111 Synchronous External abort on translation table walk, level 3.

0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011001 When FEAT_RAS is not implemented:

Asynchronous SError interrupt, from a parity or ECC error on memory access.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 3.

0b100001 Alignment fault.

0b100010 Debug exception.

0b110000 TLB conflict abort.

0b110100 IMPLEMENTATION DEFINED fault (Lockdown).
G8-6654 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
0b110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive access).

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on a Long-descriptor translation table lookup on page G5-6375.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following describe cases where Data Abort exceptions can be routed to Hyp mode, generating exceptions that
are reported in the HSR with EC value 0b100100:

• Abort exceptions, when the value of HCR.TGE is 1 on page G1-6059.

• Routing debug exceptions to EL2 using AArch32 on page G1-6060.

The following describe cases that can cause a Data Abort exception that is taken to Hyp mode, and reported in the
HSR with EC value of 0b100000 or 0b100100:

• Hyp mode control of Non-secure access permissions on page G5-6317.

• Memory fault reporting in Hyp mode on page G5-6379.

Accessing HSR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HSR;

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0101 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6655
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HSR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HSR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0101 0b0010 0b000
G8-6656 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.74 HSTR, Hyp System Trap Register

The HSTR characteristics are:

Purpose

Controls trapping to Hyp mode of Non-secure accesses, at EL1 or lower, to System registers in the
coproc == 0b1111 encoding space:

• By the CRn value used to access the register using MCR or MRC instruction.

• By the CRm value used to access the register using MCRR or MRRC instruction.

Configurations

AArch32 System register HSTR bits [31:0] are architecturally mapped to AArch64 System register
HSTR_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HSTR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HSTR is a 32-bit register.

Field descriptions

Bits [31:16, 14, 4]

Reserved, RES0.

T<n>, bit [n], for n = 15, 13 to 5, 3 to 0

The remaining fields control whether Non-secure EL0 and EL1 accesses, using MCR, MRC,
MCRR, and MRRC instructions, to the System registers in the coproc == 0b1111 encoding space are
trapped to Hyp mode:

0b0 This control has no effect on Non-secure EL0 or EL1 accesses to System registers.

0b1 Any Non-secure EL1 MCR or MRC access with coproc == 0b1111 and CRn == <n> is
trapped to Hyp mode. A Non-secure EL0 MCR or MRC access with these values is
trapped to Hyp mode only if the access is not UNDEFINED when the value of this field is
0.

Any Non-secure EL1 MCRR or MRRC access with coproc == 0b1111 and CRm == <n>
is trapped to Hyp mode. A Non-secure EL0 MCRR or MRRC access with these values
is trapped to Hyp mode only if the access is not UNDEFINED when the value of this field
is 0.

For example, when HSTR.T7 is 1, for instructions executed at Non-secure EL1:

• An MCR or MRC instruction with coproc set to 0b1111 and <CRn> set to c7 is trapped to Hyp
mode.

• An MCRR or MRRC instruction with coproc set to 0b1111 and <CRm> set to c7 is trapped to
Hyp mode.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

RES0

31 16 15 14 13 12 11 10

T9

9

T8

8

T7

7

T6

6

T5

5 4

T3

3

T2

2

T1

1

T0

0

T15
RES0

T13

T10
T11

T12

RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6657
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accessing HSTR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HSTR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HSTR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HSTR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HSTR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b011

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b011
G8-6658 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.75 HTCR, Hyp Translation Control Register

The HTCR characteristics are:

Purpose

The control register for stage 1 of the EL2 translation regime.

Note
This stage of translation always uses the Long-descriptor translation table format.

Configurations

AArch32 System register HTCR bits [31:0] are architecturally mapped to AArch64 System register
TCR_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HTCR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HTCR is a 32-bit register.

Field descriptions

Bit [31]

Reserved, RES1.

IMPLEMENTATION DEFINED, bit [30]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [29]

Reserved, RES0.

HWU62, bit [28]

When FEAT_HPDS2 is implemented:

HWU62

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry.

0b0 Bit[62] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[62] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of HTCR.HPD is 1.

The Effective value of this field is 0 if the value of HTCR.HPD is 0.

31 30 29 28 27 26 25 24 23

RES0

22 14

SH0

13 12 11 10 9 8

RES0

7 3

T0SZ

2 0

RES1
IMPLEMENTATION DEFINED

RES0
HWU62

RES1
HPD

HWU59
HWU60

HWU61

ORGN0 IRGN0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6659
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU61, bit [27]

When FEAT_HPDS2 is implemented:

HWU61

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry.

0b0 Bit[61] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[61] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of HTCR.HPD is 1.

The Effective value of this field is 0 if the value of HTCR.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU60, bit [26]

When FEAT_HPDS2 is implemented:

HWU60

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry.

0b0 Bit[60] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[60] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of HTCR.HPD is 1.

The Effective value of this field is 0 if the value of HTCR.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU59, bit [25]

When FEAT_HPDS2 is implemented:

HWU59

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry.

0b0 Bit[59] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[59] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of HTCR.HPD is 1.

The Effective value of this field is 0 if the value of HTCR.HPD is 0.
G8-6660 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD, bit [24]

When FEAT_AA32HPD is implemented:

HPD

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, XNTable, and
PXNTable, in the PL2 translation regime.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [23]

Reserved, RES1.

Bits [22:14]

Reserved, RES0.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using HTTBR.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using HTTBR.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using HTTBR.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6661
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:3]

Reserved, RES0.

T0SZ, bits [2:0]

The size offset of the memory region addressed by HTTBR. The region size is 2(32-T0SZ) bytes.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HTCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HTCR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HTCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0010 0b0000 0b010

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0010 0b0000 0b010
G8-6662 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 HTCR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HTCR = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6663
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.76 HTPIDR, Hyp Software Thread ID Register

The HTPIDR characteristics are:

Purpose

Provides a location where software running in Hyp mode can store thread identifying information
that is not visible to Non-secure software executing at EL0 or EL1, for hypervisor management
purposes.

The PE makes no use of this register.

Configurations

AArch32 System register HTPIDR bits [31:0] are architecturally mapped to AArch64 System
register TPIDR_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HTPIDR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Note

The PE never updates this register.

Attributes

HTPIDR is a 32-bit register.

Field descriptions

Bits [31:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HTPIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

Thread ID

31 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1101 0b0000 0b010
G8-6664 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 return HTPIDR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HTPIDR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HTPIDR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HTPIDR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1101 0b0000 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6665
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.77 HTTBR, Hyp Translation Table Base Register

The HTTBR characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of an address
translation in the EL2 translation regime, and other information for this translation regime.

Configurations

AArch32 System register HTTBR bits [47:1] are architecturally mapped to AArch64 System
register TTBR0_EL2[47:1].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HTTBR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HTTBR is a 64-bit register.

Field descriptions

Bits [63:48]

Reserved, RES0.

BADDR, bits [47:1]

Translation table base address, bits[47:x], Bits [x-1:1] are RES0, with the additional requirement that
if bits[x-1:3] are not all zero, this is a misaligned translation table base address, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits
is either the value written or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

x is determined from the value of HTCR.T0SZ as follows:

• If HTCR.T0SZ is 0 or 1, x = 5 - HTCR.T0SZ.

• If HTCR.T0SZ is greater than 1, x = 14 - HTCR.T0SZ.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

CnP

RES0

63 48

BADDR

47 32

BADDR

31 1 0

CnP
G8-6666 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
Common not Private. This bit indicates whether each entry that is pointed to by HTTBR is a member
of a common set that can be used by every PE in the Inner Shareable domain for which the value of
HTTBR.CnP is 1.

0b0 The translation table entries pointed to by HTTBR are permitted to differ from
corresponding entries for HTTBR for other PEs in the Inner Shareable domain. This is
not affected by the value of HTTBR.CnP on those other PEs.

0b1 The translation table entries pointed to by HTTBR are the same as the translation table
entries pointed to by HTTBR on every other PE in the Inner Shareable domain for which
the value of HTTBR.CnP is 1.

Note

If the value of the HTTBR.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
those HTTBRs do not point to the same translation table entries when the other conditions specified
for the case when the value of CnP is 1 apply, then the results of translations are CONSTRAINED
UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of System
register control or data values on page K1-8391.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing HTTBR

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x04);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HTTBR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HTTBR;

coproc CRm opc1

0b1111 0b0010 0b0100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6667
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x04);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HTTBR = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HTTBR = R[t2]:R[t];

coproc CRm opc1

0b1111 0b0010 0b0100
G8-6668 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.78 HVBAR, Hyp Vector Base Address Register

The HVBAR characteristics are:

Purpose

Holds the vector base address for any exception that is taken to Hyp mode.

Configurations

AArch32 System register HVBAR bits [31:0] are architecturally mapped to AArch64 System
register VBAR_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HVBAR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HVBAR is a 32-bit register.

Field descriptions

Bits [31:5]

Vector Base Address. Bits[31:5] of the base address of the exception vectors for exceptions taken to
this Exception level. Bits[4:0] of an exception vector are the exception offset.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [4:0]

Reserved, RES0.

Accessing HVBAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HVBAR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then

Vector Base Address

31 5

RES0

4 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1100 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6669
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 UNDEFINED;
 else
 return HVBAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HVBAR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HVBAR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1100 0b0000 0b000
G8-6670 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.79 ICIALLU, Instruction Cache Invalidate All to PoU

The ICIALLU characteristics are:

Purpose

Invalidate all instruction caches of the PE executing the instruction to the Point of Unification. If
branch predictors are architecturally visible, also flush branch predictors.

Configurations

AArch32 System register ICIALLU performs the same function as AArch64 System register IC
IALLU.

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ICIALLU are UNDEFINED.

Attributes

ICIALLU is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing ICIALLU instruction

The PE ignores the value of <Rt>. Software does not have to write a value to this register before issuing this
instruction.

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a ICIALLUIS.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TOCU == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPU == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TOCU == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
 AArch32.IC(CacheOpScope_ALLUIS);
 else
 AArch32.IC(CacheOpScope_ALLU);
elsif PSTATE.EL == EL2 then
 AArch32.IC(CacheOpScope_ALLU);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0101 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6671
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL3 then
 AArch32.IC(CacheOpScope_ALLU);

G8-6672 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.80 ICIALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable

The ICIALLUIS characteristics are:

Purpose

Invalidate all instruction caches in the Inner Shareable domain of the PE executing the instruction
to the Point of Unification. If branch predictors are architecturally visible, also flush branch
predictors.

Configurations

AArch32 System register ICIALLUIS performs the same function as AArch64 System register IC
IALLUIS.

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ICIALLUIS are UNDEFINED.

Attributes

ICIALLUIS is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing ICIALLUIS instruction

The PE ignores the value of <Rt>. Software does not have to write a value to this register before issuing this
instruction.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TICAB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPU == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TICAB == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.IC(CacheOpScope_ALLUIS);
elsif PSTATE.EL == EL2 then
 AArch32.IC(CacheOpScope_ALLUIS);
elsif PSTATE.EL == EL3 then
 AArch32.IC(CacheOpScope_ALLUIS);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6673
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.81 ICIMVAU, Instruction Cache line Invalidate by VA to PoU

The ICIMVAU characteristics are:

Purpose

Invalidate instruction cache line by virtual address to PoU.

Configurations

AArch32 System register ICIMVAU performs the same function as AArch64 System register IC
IVAU.

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ICIMVAU are UNDEFINED.

Attributes

ICIMVAU is a 32-bit System instruction.

Field descriptions

Bits [31:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing ICIMVAU instruction

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see AArch32 instruction cache maintenance instructions (IC*) on page G4-6240.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TOCU == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPU == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TOCU == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.IC(R[t], CacheOpScope_PoU);
elsif PSTATE.EL == EL2 then
 AArch32.IC(R[t], CacheOpScope_PoU);

Virtual address to use

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0101 0b001
G8-6674 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL3 then
 AArch32.IC(R[t], CacheOpScope_PoU);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6675
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.82 ID_AFR0, Auxiliary Feature Register 0

The ID_AFR0 characteristics are:

Purpose

Provides information about the IMPLEMENTATION DEFINED features of the PE in AArch32 state.

Must be interpreted with the Main ID Register, MIDR.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register ID_AFR0 bits [31:0] are architecturally mapped to AArch64 System
register ID_AFR0_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ID_AFR0 are UNDEFINED.

Attributes

ID_AFR0 is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [15:12]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [11:8]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [7:4]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [3:0]

IMPLEMENTATION DEFINED.

Accessing ID_AFR0

Accesses to this register use the following encodings in the System register encoding space:

RES0

31 16 15 12 11 8 7 4 3 0

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED
G8-6676 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_AFR0;
elsif PSTATE.EL == EL2 then
 return ID_AFR0;
elsif PSTATE.EL == EL3 then
 return ID_AFR0;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0001 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6677
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.83 ID_DFR0, Debug Feature Register 0

The ID_DFR0 characteristics are:

Purpose

Provides top level information about the debug system in AArch32 state.

Must be interpreted with the Main ID Register, MIDR.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register ID_DFR0 bits [31:0] are architecturally mapped to AArch64 System
register ID_DFR0_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ID_DFR0 are UNDEFINED.

Attributes

ID_DFR0 is a 32-bit register.

Field descriptions

TraceFilt, bits [31:28]

Armv8.4 Self-hosted Trace Extension version. Defined values are:

0b0000 Armv8.4 Self-hosted Trace Extension not implemented.

0b0001 Armv8.4 Self-hosted Trace Extension implemented.

All other values are reserved.

FEAT_TRF implements the functionality added by the value 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

PerfMon, bits [27:24]

Performance Monitors Extension version.

This field does not follow the standard ID scheme, but uses the alternative ID scheme described in
Alternative ID scheme used for the Performance Monitors Extension version on page G8-6450.

Defined values are:

0b0000 Performance Monitors Extension not implemented.

0b0001 Performance Monitors Extension, PMUv1 implemented.

0b0010 Performance Monitors Extension, PMUv2 implemented.

0b0011 Performance Monitors Extension, PMUv3 implemented.

0b0100 PMUv3 for Armv8.1. As 0b0011, and also includes support for:

• Extended 16-bit PMEVTYPER<n>.evtCount field.

• If EL2 is implemented, the HDCR.HPMD control bit.

0b0101 PMUv3 for Armv8.4. As 0b0100, and also includes support for the PMMIR register.

0b0110 PMUv3 for Armv8.5. As 0b0101, and also includes support for:

• 64-bit event counters.

• If EL2 is implemented, the HDCR.HCCD control bit.

31 28

PerfMon

27 24

MProfDbg

23 20

MMapTrc

19 16

CopTrc

15 12

MMapDbg

11 8

CopSDbg

7 4

CopDbg

3 0

TraceFilt
G8-6678 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
• If EL3 is implemented, the SDCR.SCCD control bit.

0b0111 PMUv3 for Armv8.7. As 0b0110, and also includes support for:

• The PMCR.FZO and, if EL2 is implemented, HDCR.HPMFZO control bits.

• If EL3 is implemented and using AArch64, the MDCR_EL3.{MPMX,MCCD}
control bits.

0b1111 IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3 not
supported. Arm does not recommend this value for new implementations.

All other values are reserved.

FEAT_PMUv3 implements the functionality identified by the value 0b0011.

FEAT_PMUv3p1 implements the functionality identified by the value 0b0100.

FEAT_PMUv3p4 implements the functionality identified by the value 0b0101.

FEAT_PMUv3p5 implements the functionality identified by the value 0b0110.

FEAT_PMUv3p7 implements the functionality identified by the value 0b0111.

In any Armv8 implementation, the values 0b0001 and 0b0010 are not permitted.

From Armv8.1, if FEAT_PMUv3 is implemented, the value 0b0011 is not permitted.

From Armv8.4, if FEAT_PMUv3 is implemented, the value 0b0100 is not permitted.

From Armv8.5, if FEAT_PMUv3 is implemented, the value 0b0101 is not permitted.

From Armv8.7, if FEAT_PMUv3 is implemented, the value 0b0110 is not permitted.

Note

In Armv7, the value 0b0000 can mean that PMUv1 is implemented. PMUv1 is not permitted in an
Armv8 implementation.

MProfDbg, bits [23:20]

M-profile Debug. Support for memory-mapped debug model for M-profile processors. Defined
values are:

0b0000 Not supported.

0b0001 Support for M-profile Debug architecture, with memory-mapped access.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

MMapTrc, bits [19:16]

Memory-mapped Trace. Support for memory-mapped trace model. Defined values are:

0b0000 Not supported.

0b0001 Support for Arm trace architecture, with memory-mapped access.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

For more information, see the ARM® Embedded Trace Macrocell Architecture Specification,
ETMv4 (ARM IHI 0064).

CopTrc, bits [15:12]

Support for System registers-based trace model, using registers in the coproc == 0b1110 encoding
space. Defined values are:

0b0000 Not supported.

0b0001 Support for Arm trace architecture, with System registers access.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6679
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
For more information, see the ARM® Embedded Trace Macrocell Architecture Specification,
ETMv4 (ARM IHI 0064).

MMapDbg, bits [11:8]

Memory-mapped Debug. Support for Armv7 memory-mapped debug model for A and R-profile
processors. Defined values are:

0b0000 Not supported.

0b0100 Support for Armv7, v7 Debug architecture, with memory-mapped access.

0b0101 Support for Armv7, v7.1 Debug architecture, with memory-mapped access.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

The optional memory map defined by Armv8 is not compatible with Armv7.

CopSDbg, bits [7:4]

Support for a System registers-based Secure debug model, using registers in the coproc = 0b1110
encoding space, for an A-profile processor that includes EL3.

If EL3 is not implemented and the implemented Security state is Non-secure state, this field is RES0.
Otherwise, this field reads the same as bits [3:0].

CopDbg, bits [3:0]

Support for System registers-based debug model, using registers in the coproc == 0b1110 encoding
space, for A and R-profile processors. Defined values are:

0b0000 Not supported.

0b0010 Support for Armv6, v6 Debug architecture, with System registers access.

0b0011 Support for Armv6, v6.1 Debug architecture, with System registers access.

0b0100 Support for Armv7, v7 Debug architecture, with System registers access.

0b0101 Support for Armv7, v7.1 Debug architecture, with System registers access.

0b0110 Support for Armv8 debug architecture, with System registers access.

0b0111 Support for Armv8 debug architecture, with System registers access, and Virtualization
Host Extensions.

0b1000 Support for Armv8.2 debug architecture.

0b1001 Support for Armv8.4 debug architecture.

All other values are reserved.

FEAT_Debugv8p2 adds the functionality identified by the value 0b1000.

FEAT_Debugv8p4 adds the functionality identified by the value 0b1001.

In Armv8.0, the only permitted value is 0b0110.

In Armv8.1, the only permitted value is 0b0111.

In Armv8.2, the only permitted value is 0b1000.

From Armv8.4, the only permitted value is 0b1001.

Accessing ID_DFR0

Accesses to this register use the following encodings in the System register encoding space:
G8-6680 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_DFR0;
elsif PSTATE.EL == EL2 then
 return ID_DFR0;
elsif PSTATE.EL == EL3 then
 return ID_DFR0;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0001 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6681
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.84 ID_DFR1, Debug Feature Register 1

The ID_DFR1 characteristics are:

Purpose

Provides top level information about the debug system in AArch32.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register ID_DFR1 bits [31:0] are architecturally mapped to AArch64 System
register ID_DFR1_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ID_DFR1 are UNDEFINED.

Note

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_DFR1 is a 32-bit register.

Field descriptions

Bits [31:4]

Reserved, RES0.

MTPMU, bits [3:0]

Multi-threaded PMU extension. Defined values are:

0b0000 FEAT_MTPMU not implemented. If FEAT_PMUv3 is implemented, it is
IMPLEMENTATION DEFINED whether PMEVTYPER<n>.MT are read/write or RES0.

0b0001 FEAT_MTPMU and FEAT_PMUv3 implemented. PMEVTYPER<n>.MT are
read/write. When FEAT_MTPMU is disabled, the Effective values of
PMEVTYPER<n>.MT are 0.

0b1111 FEAT_MTPMU not implemented. If FEAT_PMUv3 is implemented,
PMEVTYPER<n>.MT are RES0.

All other values are reserved.

FEAT_MTPMU implements the functionality identified by the value 0b0001.

From Armv8.6, in an implementation that includes FEAT_PMUv3, the value 0b0000 is not
permitted.

In an implementation that does not include FEAT_PMUv3, the value 0b0001 is not permitted.

Accessing ID_DFR1

Accesses to this register use the following encodings in the System register encoding space:

RES0

31 4

MTPMU

3 0
G8-6682 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!IsZero(ID_DFR1) || boolean IMPLEMENTATION_DEFINED
"ID_DFR1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (!IsZero(ID_DFR1) || boolean IMPLEMENTATION_DEFINED
"ID_DFR1 trapped by HCR.TID3") && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_DFR1;
elsif PSTATE.EL == EL2 then
 return ID_DFR1;
elsif PSTATE.EL == EL3 then
 return ID_DFR1;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0011 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6683
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.85 ID_ISAR0, Instruction Set Attribute Register 0

The ID_ISAR0 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, and ID_ISAR5.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register ID_ISAR0 bits [31:0] are architecturally mapped to AArch64 System
register ID_ISAR0_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ID_ISAR0 are UNDEFINED.

Attributes

ID_ISAR0 is a 32-bit register.

Field descriptions

Bits [31:28]

Reserved, RES0.

Divide, bits [27:24]

Indicates the implemented Divide instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds SDIV and UDIV in the T32 instruction set.

0b0010 As for 0b0001, and adds SDIV and UDIV in the A32 instruction set.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Debug, bits [23:20]

Indicates the implemented Debug instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds BKPT.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Coproc, bits [19:16]

Indicates the implemented System register access instructions. Defined values are:

0b0000 None implemented, except for instructions separately attributed by the architecture to
provide access to AArch32 System registers and System instructions.

0b0001 Adds generic CDP, LDC, MCR, MRC, and STC.

0b0010 As for 0b0001, and adds generic CDP2, LDC2, MCR2, MRC2, and STC2.

0b0011 As for 0b0010, and adds generic MCRR and MRRC.

RES0

31 28

Divide

27 24

Debug

23 20

Coproc

19 16 15 12

BitField

11 8

BitCount

7 4

Swap

3 0

CmpBranch
G8-6684 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
0b0100 As for 0b0011, and adds generic MCRR2 and MRRC2.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

CmpBranch, bits [15:12]

Indicates the implemented combined Compare and Branch instructions in the T32 instruction set.
Defined values are:

0b0000 None implemented.

0b0001 Adds CBNZ and CBZ.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

BitField, bits [11:8]

Indicates the implemented BitField instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds BFC, BFI, SBFX, and UBFX.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

BitCount, bits [7:4]

Indicates the implemented Bit Counting instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds CLZ.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Swap, bits [3:0]

Indicates the implemented Swap instructions in the A32 instruction set. Defined values are:

0b0000 None implemented.

0b0001 Adds SWP and SWPB.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Accessing ID_ISAR0

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6685
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_ISAR0;
elsif PSTATE.EL == EL2 then
 return ID_ISAR0;
elsif PSTATE.EL == EL3 then
 return ID_ISAR0;

G8-6686 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.86 ID_ISAR1, Instruction Set Attribute Register 1

The ID_ISAR1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR2, ID_ISAR3, ID_ISAR4, and ID_ISAR5.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register ID_ISAR1 bits [31:0] are architecturally mapped to AArch64 System
register ID_ISAR1_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ID_ISAR1 are UNDEFINED.

Attributes

ID_ISAR1 is a 32-bit register.

Field descriptions

Jazelle, bits [31:28]

Indicates the implemented Jazelle extension instructions. Defined values are:

0b0000 No support for Jazelle.

0b0001 Adds the BXJ instruction, and the J bit in the PSR. This setting might indicate a trivial
implementation of the Jazelle extension.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Interwork, bits [27:24]

Indicates the implemented Interworking instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds the BX instruction, and the T bit in the PSR.

0b0010 As for 0b0001, and adds the BLX instruction. PC loads have BX-like behavior.

0b0011 As for 0b0010, and guarantees that data-processing instructions in the A32 instruction
set with the PC as the destination and the S bit clear have BX-like behavior.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0011.

Immediate, bits [23:20]

Indicates the implemented data-processing instructions with long immediates. Defined values are:

0b0000 None implemented.

0b0001 Adds:

• The MOVT instruction

• The MOV instruction encodings with zero-extended 16-bit immediates.

Jazelle

31 28 27 24 23 20

IfThen

19 16

Extend

15 12 11 8

Except

7 4

Endian

3 0

Interwork Immediate Except_AR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6687
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
• The T32 ADD and SUB instruction encodings with zero-extended 12-bit
immediates, and the other ADD, ADR, and SUB encodings cross-referenced by
the pseudocode for those encodings.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

IfThen, bits [19:16]

Indicates the implemented If-Then instructions in the T32 instruction set. Defined values are:

0b0000 None implemented.

0b0001 Adds the IT instructions, and the IT bits in the PSRs.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Extend, bits [15:12]

Indicates the implemented Extend instructions. Defined values are:

0b0000 No scalar sign-extend or zero-extend instructions are implemented, where scalar
instructions means non-Advanced SIMD instructions.

0b0001 Adds the SXTB, SXTH, UXTB, and UXTH instructions.

0b0010 As for 0b0001, and adds the SXTB16, SXTAB, SXTAB16, SXTAH, UXTB16, UXTAB,
UXTAB16, and UXTAH instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Except_AR, bits [11:8]

Indicates the implemented A and R-profile exception-handling instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds the SRS and RFE instructions, and the A and R-profile forms of the CPS
instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Except, bits [7:4]

Indicates the implemented exception-handling instructions in the A32 instruction set. Defined
values are:

0b0000 Not implemented. This indicates that the User bank and Exception return forms of the
LDM and STM instructions are not implemented.

0b0001 Adds the LDM (exception return), LDM (user registers), and STM (user registers)
instruction versions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Endian, bits [3:0]

Indicates the implemented Endian instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds the SETEND instruction, and the E bit in the PSRs.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.
G8-6688 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
Accessing ID_ISAR1

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_ISAR1;
elsif PSTATE.EL == EL2 then
 return ID_ISAR1;
elsif PSTATE.EL == EL3 then
 return ID_ISAR1;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6689
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.87 ID_ISAR2, Instruction Set Attribute Register 2

The ID_ISAR2 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR3, ID_ISAR4, and ID_ISAR5.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register ID_ISAR2 bits [31:0] are architecturally mapped to AArch64 System
register ID_ISAR2_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ID_ISAR2 are UNDEFINED.

Attributes

ID_ISAR2 is a 32-bit register.

Field descriptions

Reversal, bits [31:28]

Indicates the implemented Reversal instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds the REV, REV16, and REVSH instructions.

0b0010 As for 0b0001, and adds the RBIT instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

PSR_AR, bits [27:24]

Indicates the implemented A and R-profile instructions to manipulate the PSR. Defined values are:

0b0000 None implemented.

0b0001 Adds the MRS and MSR instructions, and the exception return forms of data-processing
instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

The exception return forms of the data-processing instructions are:

• In the A32 instruction set, data-processing instructions with the PC as the destination and the
S bit set. These instructions might be affected by the WithShifts attribute.

• In the T32 instruction set, the SUBS PC,LR,#N instruction.

MultU, bits [23:20]

Indicates the implemented advanced unsigned Multiply instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds the UMULL and UMLAL instructions.

0b0010 As for 0b0001, and adds the UMAAL instruction.

Reversal

31 28

PSR_AR

27 24

MultU

23 20

MultS

19 16

Mult

15 12 11 8

MemHint

7 4 3 0

MultiAccessInt LoadStore
G8-6690 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

MultS, bits [19:16]

Indicates the implemented advanced signed Multiply instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds the SMULL and SMLAL instructions.

0b0010 As for 0b0001, and adds the SMLABB, SMLABT, SMLALBB, SMLALBT,
SMLALTB, SMLALTT, SMLATB, SMLATT, SMLAWB, SMLAWT, SMULBB,
SMULBT, SMULTB, SMULTT, SMULWB, and SMULWT instructions. Also adds the
Q bit in the PSRs.

0b0011 As for 0b0010, and adds the SMLAD, SMLADX, SMLALD, SMLALDX, SMLSD,
SMLSDX, SMLSLD, SMLSLDX, SMMLA, SMMLAR, SMMLS, SMMLSR,
SMMUL, SMMULR, SMUAD, SMUADX, SMUSD, and SMUSDX instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0011.

Mult, bits [15:12]

Indicates the implemented additional Multiply instructions. Defined values are:

0b0000 No additional instructions implemented. This means only MUL is implemented.

0b0001 Adds the MLA instruction.

0b0010 As for 0b0001, and adds the MLS instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

MultiAccessInt, bits [11:8]

Indicates the support for interruptible multi-access instructions. Defined values are:

0b0000 No support. This means the LDM and STM instructions are not interruptible.

0b0001 LDM and STM instructions are restartable.

0b0010 LDM and STM instructions are continuable.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

MemHint, bits [7:4]

Indicates the implemented Memory Hint instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds the PLD instruction.

0b0010 Adds the PLD instruction. (0b0001 and 0b0010 have identical effects.)

0b0011 As for 0b0001 (or 0b0010), and adds the PLI instruction.

0b0100 As for 0b0011, and adds the PLDW instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0100.

LoadStore, bits [3:0]

Indicates the implemented additional load/store instructions. Defined values are:

0b0000 No additional load/store instructions implemented.

0b0001 Adds the LDRD and STRD instructions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6691
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b0010 As for 0b0001, and adds the Load Acquire (LDAB, LDAH, LDA, LDAEXB, LDAEXH,
LDAEX, LDAEXD) and Store Release (STLB, STLH, STL, STLEXB, STLEXH,
STLEX, STLEXD) instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Accessing ID_ISAR2

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_ISAR2;
elsif PSTATE.EL == EL2 then
 return ID_ISAR2;
elsif PSTATE.EL == EL3 then
 return ID_ISAR2;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0010 0b010
G8-6692 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.88 ID_ISAR3, Instruction Set Attribute Register 3

The ID_ISAR3 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR4, and ID_ISAR5.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register ID_ISAR3 bits [31:0] are architecturally mapped to AArch64 System
register ID_ISAR3_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ID_ISAR3 are UNDEFINED.

Attributes

ID_ISAR3 is a 32-bit register.

Field descriptions

T32EE, bits [31:28]

Indicates the implemented T32EE instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds the ENTERX and LEAVEX instructions, and modifies the load behavior to
include null checking.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

TrueNOP, bits [27:24]

Indicates the implemented true NOP instructions. Defined values are:

0b0000 None implemented. This means there are no NOP instructions that do not have any
register dependencies.

0b0001 Adds true NOP instructions in both the T32 and A32 instruction sets. This also permits
additional NOP-compatible hints.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

T32Copy, bits [23:20]

Indicates the support for T32 non flag-setting MOV instructions. Defined values are:

0b0000 Not supported. This means that in the T32 instruction set, encoding T1 of the MOV
(register) instruction does not support a copy from a low register to a low register.

0b0001 Adds support for T32 instruction set encoding T1 of the MOV (register) instruction,
copying from a low register to a low register.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

T32EE

31 28

TrueNOP

27 24

T32Copy

23 20 19 16 15 12

SVC

11 8

SIMD

7 4

Saturate

3 0

TabBranch SynchPrim
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6693
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
TabBranch, bits [19:16]

Indicates the implemented Table Branch instructions in the T32 instruction set. Defined values are:

0b0000 None implemented.

0b0001 Adds the TBB and TBH instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

SynchPrim, bits [15:12]

Used in conjunction with ID_ISAR4.SynchPrim_frac to indicate the implemented Synchronization
Primitive instructions. Defined values are:

0b0000 If SynchPrim_frac == 0b000, no Synchronization Primitives implemented.

0b0001 If SynchPrim_frac == 0b000, adds the LDREX and STREX instructions.

If SynchPrim_frac == 0b011, also adds the CLREX, LDREXB, STREXB, and STREXH
instructions.

0b0010 If SynchPrim_frac == 0b000, as for [0b001, 0b011] and also adds the LDREXD and
STREXD instructions.

All other combinations of SynchPrim and SynchPrim_frac are reserved.

In Armv8-A, the only permitted value is 0b0010.

SVC, bits [11:8]

Indicates the implemented SVC instructions. Defined values are:

0b0000 Not implemented.

0b0001 Adds the SVC instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

SIMD, bits [7:4]

Indicates the implemented SIMD instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds the SSAT and USAT instructions, and the Q bit in the PSRs.

0b0011 As for 0b0001, and adds the PKHBT, PKHTB, QADD16, QADD8, QASX, QSUB16,
QSUB8, QSAX, SADD16, SADD8, SASX, SEL, SHADD16, SHADD8, SHASX,
SHSUB16, SHSUB8, SHSAX, SSAT16, SSUB16, SSUB8, SSAX, SXTAB16,
SXTB16, UADD16, UADD8, UASX, UHADD16, UHADD8, UHASX, UHSUB16,
UHSUB8, UHSAX, UQADD16, UQADD8, UQASX, UQSUB16, UQSUB8, UQSAX,
USAD8, USADA8, USAT16, USUB16, USUB8, USAX, UXTAB16, and UXTB16
instructions. Also adds support for the GE[3:0] bits in the PSRs.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0011.

The SIMD field relates only to implemented instructions that perform SIMD operations on the
general-purpose registers. In an implementation that supports Advanced SIMD and floating-point
instructions, MVFR0, MVFR1, and MVFR2 give information about the implemented Advanced
SIMD instructions.

Saturate, bits [3:0]

Indicates the implemented Saturate instructions. Defined values are:

0b0000 None implemented. This means no non-Advanced SIMD saturate instructions are
implemented.

0b0001 Adds the QADD, QDADD, QDSUB, and QSUB instructions, and the Q bit in the PSRs.

All other values are reserved.
G8-6694 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
In Armv8-A, the only permitted value is 0b0001.

Accessing ID_ISAR3

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_ISAR3;
elsif PSTATE.EL == EL2 then
 return ID_ISAR3;
elsif PSTATE.EL == EL3 then
 return ID_ISAR3;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0010 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6695
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.89 ID_ISAR4, Instruction Set Attribute Register 4

The ID_ISAR4 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, and ID_ISAR5.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register ID_ISAR4 bits [31:0] are architecturally mapped to AArch64 System
register ID_ISAR4_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ID_ISAR4 are UNDEFINED.

Attributes

ID_ISAR4 is a 32-bit register.

Field descriptions

SWP_frac, bits [31:28]

Indicates support for the memory system locking the bus for SWP or SWPB instructions. Defined
values are:

0b0000 SWP or SWPB instructions not implemented.

0b0001 SWP or SWPB implemented but only in a uniprocessor context. SWP and SWPB do not
guarantee whether memory accesses from other Requesters can come between the load
memory access and the store memory access of the SWP or SWPB.

All other values are reserved. This field is valid only if ID_ISAR0.Swap is 0b0000.

In Armv8-A, the only permitted value is 0b0000.

PSR_M, bits [27:24]

Indicates the implemented M-profile instructions to modify the PSRs. Defined values are:

0b0000 None implemented.

0b0001 Adds the M-profile forms of the CPS, MRS, and MSR instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

SynchPrim_frac, bits [23:20]

Used in conjunction with ID_ISAR3.SynchPrim to indicate the implemented Synchronization
Primitive instructions. Possible values are:

0b0000 If SynchPrim == 0b0000, no Synchronization Primitives implemented. If SynchPrim ==
0b0001, adds the LDREX and STREX instructions. If SynchPrim == 0b0010, also adds
the CLREX, LDREXB, LDREXH, STREXB, STREXH, LDREXD, and STREXD
instructions.

0b0011 If SynchPrim == 0b0001, adds the LDREX, STREX, CLREX, LDREXB, LDREXH,
STREXB, and STREXH instructions.

SWP_frac

31 28

PSR_M

27 24 23 20

Barrier

19 16

SMC

15 12 11 8 7 4

Unpriv

3 0

SynchPrim_frac WithShifts
Writeback
G8-6696 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
All other combinations of SynchPrim and SynchPrim_frac are reserved.

In Armv8-A, the only permitted value is 0b0000.

Barrier, bits [19:16]

Indicates the implemented Barrier instructions in the A32 and T32 instruction sets. Defined values
are:

0b0000 None implemented. Barrier operations are provided only as System instructions in the
(coproc==0b1111) encoding space.

0b0001 Adds the DMB, DSB, and ISB barrier instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

SMC, bits [15:12]

Indicates the implemented SMC instructions. Defined values are:

0b0000 None implemented.

0b0001 Adds the SMC instruction.

All other values are reserved.

In Armv8-A, the permitted values are:

• If EL3 is implemented, the only permitted value is 0b0001.

• If neither EL3 nor EL2 is implemented, the only permitted value is 0b0000.

Writeback, bits [11:8]

Indicates the support for Writeback addressing modes. Defined values are:

0b0000 Basic support. Only the LDM, STM, PUSH, POP, SRS, and RFE instructions support
writeback addressing modes. These instructions support all of their writeback
addressing modes.

0b0001 Adds support for all of the writeback addressing modes.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

WithShifts, bits [7:4]

Indicates the support for instructions with shifts. Defined values are:

0b0000 Nonzero shifts supported only in MOV and shift instructions.

0b0001 Adds support for shifts of loads and stores over the range LSL 0-3.

0b0011 As for 0b0001, and adds support for other constant shift options, both on load/store and
other instructions.

0b0100 As for 0b0011, and adds support for register-controlled shift options.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0100.

Unpriv, bits [3:0]

Indicates the implemented unprivileged instructions. Defined values are:

0b0000 None implemented. No T variant instructions are implemented.

0b0001 Adds the LDRBT, LDRT, STRBT, and STRT instructions.

0b0010 As for 0b0001, and adds the LDRHT, LDRSBT, LDRSHT, and STRHT instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6697
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accessing ID_ISAR4

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_ISAR4;
elsif PSTATE.EL == EL2 then
 return ID_ISAR4;
elsif PSTATE.EL == EL3 then
 return ID_ISAR4;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0010 0b100
G8-6698 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.90 ID_ISAR5, Instruction Set Attribute Register 5

The ID_ISAR5 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, and ID_ISAR4.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register ID_ISAR5 bits [31:0] are architecturally mapped to AArch64 System
register ID_ISAR5_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ID_ISAR5 are UNDEFINED.

Attributes

ID_ISAR5 is a 32-bit register.

Field descriptions

VCMA, bits [31:28]

Indicates AArch32 support for complex number addition and multiplication where numbers are
stored in vectors. Defined values are:

0b0000 The VCMLA and VCADD instructions are not implemented in AArch32.

0b0001 The VCMLA and VCADD instructions are implemented in AArch32.

All other values are reserved.

FEAT_FCMA implements the functionality identified by 0b0001.

From Armv8.3, the only permitted value is 0b0001.

RDM, bits [27:24]

Indicates support for the VQRDMLAH and VQRDMLSH instructions in AArch32 state. Defined
values are:

0b0000 No VQRDMLAH and VQRDMLSH instructions implemented.

0b0001 VQRDMLAH and VQRDMLSH instructions implemented.

All other values are reserved.

FEAT_RDM implements the functionality identified by the value 0b0001.

From Armv8.1, the only permitted value is 0b0001.

Bits [23:20]

Reserved, RES0.

CRC32, bits [19:16]

Indicates support for the CRC32 instructions in AArch32 state. Defined values are:

0b0000 No CRC32 instructions implemented.

0b0001 CRC32B, CRC32H, CRC32W, CRC32CB, CRC32CH, and CRC32CW instructions
implemented.

VCMA

31 28

RDM

27 24

RES0

23 20

CRC32

19 16

SHA2

15 12

SHA1

11 8

AES

7 4

SEVL

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6699
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
All other values are reserved.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.1, the only permitted value is 0b0001.

SHA2, bits [15:12]

Indicates support for the SHA2 instructions in AArch32 state.

0b0000 No SHA2 instructions implemented.

0b0001 SHA256H, SHA256H2, SHA256SU0, and SHA256SU1 implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

SHA1, bits [11:8]

Indicates support for the SHA1 instructions are implemented in AArch32 state. Defined values are:

0b0000 No SHA1 instructions implemented.

0b0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1 implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

AES, bits [7:4]

Indicates support for the AES instructions in AArch32 state. Defined values are:

0b0000 No AES instructions implemented.

0b0001 AESE, AESD, AESMC, and AESIMC implemented.

0b0010 As for 0b0001, plus VMULL (polynomial) instructions operating on 64-bit data
quantities.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0010.

SEVL, bits [3:0]

Indicates support for the SEVL instruction in AArch32 state. Defined values are:

0b0000 SEVL is implemented as a NOP.

0b0001 SEVL is implemented as Send Event Local.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Accessing ID_ISAR5

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0010 0b101
G8-6700 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_ISAR5;
elsif PSTATE.EL == EL2 then
 return ID_ISAR5;
elsif PSTATE.EL == EL3 then
 return ID_ISAR5;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6701
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.91 ID_ISAR6, Instruction Set Attribute Register 6

The ID_ISAR6 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, and
ID_ISAR5.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register ID_ISAR6 bits [31:0] are architecturally mapped to AArch64 System
register ID_ISAR6_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ID_ISAR6 are UNDEFINED.

Note

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_ISAR6 is a 32-bit register.

Field descriptions

Bits [31:28]

Reserved, RES0.

I8MM, bits [27:24]

Indicates support for Advanced SIMD and floating-point Int8 matrix multiplication instructions in
AArch32 state. Defined values are:

0b0000 Int8 matrix multiplication instructions are not implemented.

0b0001 VSMMLA, VSUDOT, VUMMLA, VUSMMLA, and VUSDOT instructions are
implemented.

All other values are reserved.

FEAT_AA32I8MM implements the functionality identified by 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

BF16, bits [23:20]

Indicates support for Advanced SIMD and floating-point BFloat16 instructions in AArch32 state.
Defined values are:

0b0000 BFloat16 instructions are not implemented.

0b0001 VCVT, VCVTB, VCVTT, VDOT, VFMAB, VFMAT, and VMMLA instructions with
BF16 operand or result types are implemented.

All other values are reserved.

FEAT_AA32BF16 implements the functionality identified by 0b0001.

RES0

31 28

I8MM

27 24

BF16

23 20

SPECRES

19 16

SB

15 12

FHM

11 8

DP

7 4

JSCVT

3 0
G8-6702 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
From Armv8.2, the permitted values are 0b0000 and 0b0001.

SPECRES, bits [19:16]

Indicates support for Speculation invalidation instructions in AArch32 state. Defined values are:

0b0000 CFPRCTX, DVPRCTX, and CPPRCTX instructions are not implemented.

0b0001 CFPRCTX, DVPRCTX, and CPPRCTX instructions are implemented.

All other values are reserved.

From Armv8.5, the only permitted value is 0b0001.

SB, bits [15:12]

Indicates support for SB instruction in AArch32 state. Defined values are:

0b0000 SB instruction is not implemented.

0b0001 SB instruction is implemented.

All other values are reserved.

From Armv8.5, the only permitted value is 0b0001.

FHM, bits [11:8]

Indicates support for Advanced SIMD and floating-point VFMAL and VFMSL instructions in
AArch32 state. Defined values are:

0b0000 VFMAL and VMFSL instructions not implemented.

0b0001 VFMAL and VMFSL instructions implemented.

FEAT_FHM implements the functionality identified by the value 0b0001.

DP, bits [7:4]

Indicates support for dot product instructions in AArch32 state. Defined values are:

0b0000 No dot product instructions implemented.

0b0001 VUDOT and VSDOT instructions implemented.

All other values are reserved.

FEAT_DotProd implements the functionality identified by the value 0b0001.

JSCVT, bits [3:0]

Indicates support for the Javascript conversion instruction in AArch32 state. Defined values are:

0b0000 The VJCVT instruction is not implemented.

0b0001 The VJCVT instruction is implemented.

All other values are reserved.

In Armv8.0, the only permitted value is 0b0000.

FEAT_JSCVT implements the functionality identified by 0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is
0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value
is 0b0000.

Accessing ID_ISAR6

Accesses to this register use the following encodings in the System register encoding space:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6703
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!IsZero(ID_ISAR6) || boolean IMPLEMENTATION_DEFINED
"ID_ISAR6 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (!IsZero(ID_ISAR6) || boolean IMPLEMENTATION_DEFINED
"ID_ISAR6 trapped by HCR.TID3") && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_ISAR6;
elsif PSTATE.EL == EL2 then
 return ID_ISAR6;
elsif PSTATE.EL == EL3 then
 return ID_ISAR6;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0010 0b111
G8-6704 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.92 ID_MMFR0, Memory Model Feature Register 0

The ID_MMFR0 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register ID_MMFR0 bits [31:0] are architecturally mapped to AArch64 System
register ID_MMFR0_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ID_MMFR0 are UNDEFINED.

Attributes

ID_MMFR0 is a 32-bit register.

Field descriptions

InnerShr, bits [31:28]

Innermost Shareability. Indicates the innermost shareability domain implemented. Defined values
are:

0b0000 Implemented as Non-cacheable.

0b0001 Implemented with hardware coherency support.

0b1111 Shareability ignored.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000, 0b0001, and 0b1111.

This field is valid only if the implementation supports two levels of shareability, as indicated by
ID_MMFR0.ShareLvl having the value 0b0001.

When ID_MMFR0.ShareLvl is zero, this field is UNKNOWN.

FCSE, bits [27:24]

Indicates whether the implementation includes the FCSE. Defined values are:

0b0000 Not supported.

0b0001 Support for FCSE.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

AuxReg, bits [23:20]

Auxiliary Registers. Indicates support for Auxiliary registers. Defined values are:

0b0000 None supported.

0b0001 Support for Auxiliary Control Register only.

0b0010 Support for Auxiliary Fault Status Registers (AIFSR and ADFSR) and Auxiliary
Control Register.

All other values are reserved.

InnerShr

31 28

FCSE

27 24

AuxReg

23 20

TCM

19 16

ShareLvl

15 12

OuterShr

11 8

PMSA

7 4

VMSA

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6705
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
In Armv8-A, the only permitted value is 0b0010.

Note

Accesses to unimplemented Auxiliary registers are UNDEFINED.

TCM, bits [19:16]

Indicates support for TCMs and associated DMAs. Defined values are:

0b0000 Not supported.

0b0001 Support is IMPLEMENTATION DEFINED. Armv7 requires this setting.

0b0010 Support for TCM only, Armv6 implementation.

0b0011 Support for TCM and DMA, Armv6 implementation.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

ShareLvl, bits [15:12]

Shareability Levels. Indicates the number of shareability levels implemented. Defined values are:

0b0000 One level of shareability implemented.

0b0001 Two levels of shareability implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

OuterShr, bits [11:8]

Outermost Shareability. Indicates the outermost shareability domain implemented. Defined values
are:

0b0000 Implemented as Non-cacheable.

0b0001 Implemented with hardware coherency support.

0b1111 Shareability ignored.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000, 0b0001, and 0b1111.

PMSA, bits [7:4]

Indicates support for a PMSA. Defined values are:

0b0000 Not supported.

0b0001 Support for IMPLEMENTATION DEFINED PMSA.

0b0010 Support for PMSAv6, with a Cache Type Register implemented.

0b0011 Support for PMSAv7, with support for memory subsections. Armv7-R profile.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

VMSA, bits [3:0]

Indicates support for a VMSA. Defined values are:

0b0000 Not supported.

0b0001 Support for IMPLEMENTATION DEFINED VMSA.

0b0010 Support for VMSAv6, with Cache and TLB Type Registers implemented.

0b0011 Support for VMSAv7, with support for remapping and the Access flag. ARMv7-A
profile.

0b0100 As for 0b0011, and adds support for the PXN bit in the Short-descriptor translation table
format descriptors.
G8-6706 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
0b0101 As for 0b0100, and adds support for the Long-descriptor translation table format.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0101.

Accessing ID_MMFR0

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_MMFR0;
elsif PSTATE.EL == EL2 then
 return ID_MMFR0;
elsif PSTATE.EL == EL3 then
 return ID_MMFR0;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0001 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6707
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.93 ID_MMFR1, Memory Model Feature Register 1

The ID_MMFR1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register ID_MMFR1 bits [31:0] are architecturally mapped to AArch64 System
register ID_MMFR1_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ID_MMFR1 are UNDEFINED.

Attributes

ID_MMFR1 is a 32-bit register.

Field descriptions

BPred, bits [31:28]

Branch Predictor. Indicates branch predictor management requirements. Defined values are:

0b0000 No branch predictor, or no MMU present. Implies a fixed MPU configuration.

0b0001 Branch predictor requires flushing on:

• Enabling or disabling a stage of address translation.

• Writing new data to instruction locations.

• Writing new mappings to the translation tables.

• Changes to the TTBR0, TTBR1, or TTBCR registers.

• Changes to the ContextID or ASID, or to the FCSE ProcessID if this is supported.

0b0010 Branch predictor requires flushing on:

• Enabling or disabling a stage of address translation.

• Writing new data to instruction locations.

• Writing new mappings to the translation tables.

• Any change to the TTBR0, TTBR1, or TTBCR registers without a change to the
corresponding ContextID or ASID, or FCSE ProcessID if this is supported.

0b0011 Branch predictor requires flushing only on writing new data to instruction locations.

0b0100 For execution correctness, branch predictor requires no flushing at any time.

All other values are reserved.

In Armv8-A, the permitted values are 0b0010, 0b0011, or 0b0100. For values other than 0b0000 and
0b0100, the Arm Architecture Reference Manual, or the product documentation, might give more
information about the required maintenance.

BPred

31 28

L1TstCln

27 24

L1Uni

23 20

L1Hvd

19 16

L1UniSW

15 12

L1HvdSW

11 8

L1UniVA

7 4

L1HvdVA

3 0
G8-6708 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
L1TstCln, bits [27:24]

Level 1 cache Test and Clean. Indicates the supported Level 1 data cache test and clean operations,
for Harvard or unified cache implementations. Defined values are:

0b0000 None supported.

0b0001 Supported Level 1 data cache test and clean operations are:

• Test and clean data cache.

0b0010 As for 0b0001, and adds:

• Test, clean, and invalidate data cache.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

L1Uni, bits [23:20]

Level 1 Unified cache. Indicates the supported entire Level 1 cache maintenance operations for a
unified cache implementation. Defined values are:

0b0000 None supported.

0b0001 Supported entire Level 1 cache operations are:

• Invalidate cache, including branch predictor if appropriate.

• Invalidate branch predictor, if appropriate.

0b0010 As for 0b0001, and adds:

• Clean cache, using a recursive model that uses the cache dirty status bit.

• Clean and invalidate cache, using a recursive model that uses the cache dirty
status bit.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

L1Hvd, bits [19:16]

Level 1 Harvard cache. Indicates the supported entire Level 1 cache maintenance operations for a
Harvard cache implementation. Defined values are:

0b0000 None supported.

0b0001 Supported entire Level 1 cache operations are:

• Invalidate instruction cache, including branch predictor if appropriate.

• Invalidate branch predictor, if appropriate.

0b0010 As for 0b0001, and adds:

• Invalidate data cache.

• Invalidate data cache and instruction cache, including branch predictor if
appropriate.

0b0011 As for 0b0010, and adds:

• Clean data cache, using a recursive model that uses the cache dirty status bit.

• Clean and invalidate data cache, using a recursive model that uses the cache dirty
status bit.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

L1UniSW, bits [15:12]

Level 1 Unified cache by Set/Way. Indicates the supported Level 1 cache line maintenance
operations by set/way, for a unified cache implementation. Defined values are:

0b0000 None supported.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6709
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b0001 Supported Level 1 unified cache line maintenance operations by set/way are:

• Clean cache line by set/way.

0b0010 As for 0b0001, and adds:

• Clean and invalidate cache line by set/way.

0b0011 As for 0b0010, and adds:

• Invalidate cache line by set/way.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

L1HvdSW, bits [11:8]

Level 1 Harvard cache by Set/Way. Indicates the supported Level 1 cache line maintenance
operations by set/way, for a Harvard cache implementation. Defined values are:

0b0000 None supported.

0b0001 Supported Level 1 Harvard cache line maintenance operations by set/way are:

• Clean data cache line by set/way.

• Clean and invalidate data cache line by set/way.

0b0010 As for 0b0001, and adds:

• Invalidate data cache line by set/way.

0b0011 As for 0b0010, and adds:

• Invalidate instruction cache line by set/way.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

L1UniVA, bits [7:4]

Level 1 Unified cache by Virtual Address. Indicates the supported Level 1 cache line maintenance
operations by VA, for a unified cache implementation. Defined values are:

0b0000 None supported.

0b0001 Supported Level 1 unified cache line maintenance operations by VA are:

• Clean cache line by VA.

• Invalidate cache line by VA.

• Clean and invalidate cache line by VA.

0b0010 As for 0b0001, and adds:

• Invalidate branch predictor by VA, if branch predictor is implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

L1HvdVA, bits [3:0]

Level 1 Harvard cache by Virtual Address. Indicates the supported Level 1 cache line maintenance
operations by VA, for a Harvard cache implementation. Defined values are:

0b0000 None supported.

0b0001 Supported Level 1 Harvard cache line maintenance operations by VA are:

• Clean data cache line by VA.

• Invalidate data cache line by VA.

• Clean and invalidate data cache line by VA.

• Clean instruction cache line by VA.

0b0010 As for 0b0001, and adds:

• Invalidate branch predictor by VA, if branch predictor is implemented.
G8-6710 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Accessing ID_MMFR1

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_MMFR1;
elsif PSTATE.EL == EL2 then
 return ID_MMFR1;
elsif PSTATE.EL == EL3 then
 return ID_MMFR1;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0001 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6711
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.94 ID_MMFR2, Memory Model Feature Register 2

The ID_MMFR2 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register ID_MMFR2 bits [31:0] are architecturally mapped to AArch64 System
register ID_MMFR2_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ID_MMFR2 are UNDEFINED.

Attributes

ID_MMFR2 is a 32-bit register.

Field descriptions

HWAccFlg, bits [31:28]

Hardware Access Flag. In earlier versions of the Arm Architecture, this field indicates support for
a Hardware Access flag, as part of the VMSAv7 implementation. Defined values are:

0b0000 Not supported.

0b0001 Support for VMSAv7 Access flag, updated in hardware.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

WFIStall, bits [27:24]

Wait For Interrupt Stall. Indicates the support for Wait For Interrupt (WFI) stalling. Defined values
are:

0b0000 Not supported.

0b0001 Support for WFI stalling.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

MemBarr, bits [23:20]

Memory Barrier. Indicates the supported memory barrier System instructions in the (coproc ==
1111) encoding space. Defined values are:

0b0000 None supported.

0b0001 Supported memory barrier System instructions are:

• Data Synchronization Barrier (DSB).

0b0010 As for 0b0001, and adds:

• Instruction Synchronization Barrier (ISB).

• Data Memory Barrier (DMB).

All other values are reserved.

HWAccFlg

31 28

WFIStall

27 24

MemBarr

23 20

UniTLB

19 16

HvdTLB

15 12

L1HvdRng

11 8

L1HvdBG

7 4

L1HvdFG

3 0
G8-6712 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
In Armv8-A, the only permitted value is 0b0010.

Arm deprecates the use of these operations. ID_ISAR4.Barrier_instrs indicates the level of support
for the preferred barrier instructions.

UniTLB, bits [19:16]

Unified TLB. Indicates the supported TLB maintenance operations, for a unified TLB
implementation. Defined values are:

0b0000 Not supported.

0b0001 Supported unified TLB maintenance operations are:

• Invalidate all entries in the TLB.

• Invalidate TLB entry by VA.

0b0010 As for 0b0001, and adds:

• Invalidate TLB entries by ASID match.

0b0011 As for 0b0010, and adds:

• Invalidate instruction TLB and data TLB entries by VA All ASID. This is a
shared unified TLB operation

0b0100 As for 0b0011, and adds:

• Invalidate Hyp mode unified TLB entry by VA.

• Invalidate entire Non-secure PL1&0 unified TLB.

• Invalidate entire Hyp mode unified TLB.

0b0101 As for 0b0100, and adds the following operations: TLBIMVALIS, TLBIMVAALIS,
TLBIMVALHIS, TLBIMVAL, TLBIMVAAL,TLBIMVALH.

0b0110 As for 0b0101, and adds the following operations: TLBIIPAS2IS, TLBIIPAS2LIS,
TLBIIPAS2, TLBIIPAS2L.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0110.

HvdTLB, bits [15:12]

If the value of ID_MMFR2.UniTLB is not 0b0000, then the meaning of this field is
IMPLEMENTATION DEFINED. Arm deprecates the use of this field by software.

L1HvdRng, bits [11:8]

Level 1 Harvard cache Range. Indicates the supported Level 1 cache maintenance range operations,
for a Harvard cache implementation. Defined values are:

0b0000 Not supported.

0b0001 Supported Level 1 Harvard cache maintenance range operations are:

• Invalidate data cache range by VA.

• Invalidate instruction cache range by VA.

• Clean data cache range by VA.

• Clean and invalidate data cache range by VA.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

L1HvdBG, bits [7:4]

Level 1 Harvard cache Background fetch. Indicates the supported Level 1 cache background fetch
operations, for a Harvard cache implementation. When supported, background fetch operations are
non-blocking operations. Defined values are:

0b0000 Not supported.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6713
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b0001 Supported Level 1 Harvard cache background fetch operations are:

• Fetch instruction cache range by VA.

• Fetch data cache range by VA.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

L1HvdFG, bits [3:0]

Level 1 Harvard cache Foreground fetch. Indicates the supported Level 1 cache foreground fetch
operations, for a Harvard cache implementation. When supported, foreground fetch operations are
blocking operations. Defined values are:

0b0000 Not supported.

0b0001 Supported Level 1 Harvard cache foreground fetch operations are:

• Fetch instruction cache range by VA.

• Fetch data cache range by VA.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Accessing ID_MMFR2

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_MMFR2;
elsif PSTATE.EL == EL2 then
 return ID_MMFR2;
elsif PSTATE.EL == EL3 then
 return ID_MMFR2;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0001 0b110
G8-6714 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.95 ID_MMFR3, Memory Model Feature Register 3

The ID_MMFR3 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register ID_MMFR3 bits [31:0] are architecturally mapped to AArch64 System
register ID_MMFR3_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ID_MMFR3 are UNDEFINED.

Attributes

ID_MMFR3 is a 32-bit register.

Field descriptions

Supersec, bits [31:28]

Supersections. On a VMSA implementation, indicates whether Supersections are supported.
Defined values are:

0b0000 Supersections supported.

0b1111 Supersections not supported.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b1111.

CMemSz, bits [27:24]

Cached Memory Size. Indicates the physical memory size supported by the caches. Defined values
are:

0b0000 4GB, corresponding to a 32-bit physical address range.

0b0001 64GB, corresponding to a 36-bit physical address range.

0b0010 1TB or more, corresponding to a 40-bit or larger physical address range.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000, 0b0001, and 0b0010.

CohWalk, bits [23:20]

Coherent Walk. Indicates whether Translation table updates require a clean to the Point of
Unification. Defined values are:

0b0000 Updates to the translation tables require a clean to the Point of Unification to ensure
visibility by subsequent translation table walks.

0b0001 Updates to the translation tables do not require a clean to the Point of Unification to
ensure visibility by subsequent translation table walks.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Supersec

31 28

CMemSz

27 24

CohWalk

23 20

PAN

19 16 15 12

BPMaint

11 8

CMaintSW

7 4

CMaintVA

3 0

MaintBcst
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6715
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
PAN, bits [19:16]

Privileged Access Never. Indicates support for the PAN bit in CPSR, SPSR, and DSPSR in AArch32
state. Defined values are:

0b0000 PAN not supported.

0b0001 PAN supported.

0b0010 PAN supported and ATS1CPRP and ATS1CPWP instructions supported.

All other values are reserved.

FEAT_PAN implements the functionality identified by the value 0b0001.

FEAT_PAN2 implements the functionality added by the value 0b0010.

In Armv8.1, the value 0b0000 is not permitted.

From Armv8.2, the only permitted value is 0b0010.

MaintBcst, bits [15:12]

Maintenance Broadcast. Indicates whether Cache, TLB, and branch predictor operations are
broadcast. Defined values are:

0b0000 Cache, TLB, and branch predictor operations only affect local structures.

0b0001 Cache and branch predictor operations affect structures according to shareability and
defined behavior of instructions. TLB operations only affect local structures.

0b0010 Cache, TLB, and branch predictor operations affect structures according to shareability
and defined behavior of instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

BPMaint, bits [11:8]

Branch Predictor Maintenance. Indicates the supported branch predictor maintenance operations in
an implementation with hierarchical cache maintenance operations. Defined values are:

0b0000 None supported.

0b0001 Supported branch predictor maintenance operations are:

• Invalidate all branch predictors.

0b0010 As for 0b0001, and adds:

• Invalidate branch predictors by VA.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

CMaintSW, bits [7:4]

Cache Maintenance by Set/Way. Indicates the supported cache maintenance operations by set/way,
in an implementation with hierarchical caches. Defined values are:

0b0000 None supported.

0b0001 Supported hierarchical cache maintenance instructions by set/way are:

• Invalidate data cache by set/way.

• Clean data cache by set/way.

• Clean and invalidate data cache by set/way.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

In a unified cache implementation, the data cache maintenance operations apply to the unified
caches.
G8-6716 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
CMaintVA, bits [3:0]

Cache Maintenance by Virtual Address. Indicates the supported cache maintenance operations by
VA, in an implementation with hierarchical caches. Defined values are:

0b0000 None supported.

0b0001 Supported hierarchical cache maintenance operations by VA are:

• Invalidate data cache by VA.

• Clean data cache by VA.

• Clean and invalidate data cache by VA.

• Invalidate instruction cache by VA.

• Invalidate all instruction cache entries.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

In a unified cache implementation, data cache maintenance operations apply to the unified caches,
and the instruction cache maintenance instructions are not implemented.

Accessing ID_MMFR3

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_MMFR3;
elsif PSTATE.EL == EL2 then
 return ID_MMFR3;
elsif PSTATE.EL == EL3 then
 return ID_MMFR3;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0001 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6717
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.96 ID_MMFR4, Memory Model Feature Register 4

The ID_MMFR4 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register ID_MMFR4 bits [31:0] are architecturally mapped to AArch64 System
register ID_MMFR4_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ID_MMFR4 are UNDEFINED.

Attributes

ID_MMFR4 is a 32-bit register.

Field descriptions

EVT, bits [31:28]

Enhanced Virtualization Traps. If EL2 is implemented, indicates support for the HCR2.{TTLBIS,
TOCU, TICAB, TID4} traps. Defined values are:

0b0000 HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are not supported.

0b0001 HCR2.{TOCU, TICAB, TID4} traps are supported. HCR2.TTLBIS trap is not
supported.

0b0010 HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are supported.

All other values are reserved.

FEAT_EVT implements the functionality identified by the values 0b0001 and 0b0010.

If EL2 is not implemented supporting AArch32, the only permitted value is 0b0000.

In Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

From Armv8.5, the permitted values are:

• 0b0000 when EL2 is not implemented or does not support AArch32.

• 0b0010 when EL2 is implemented and supports AArch32.

CCIDX, bits [27:24]

Support for use of the revised CCSIDR format and the presence of the CCSIDR2 is indicated.
Defined values are:

0b0000 32-bit format implemented for all levels of the CCSIDR, and the CCSIDR2 register is
not implemented.

0b0001 64-bit format implemented for all levels of the CCSIDR, and the CCSIDR2 register is
implemented.

All other values are reserved.

FEAT_CCIDX implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

EVT

31 28

CCIDX

27 24

LSM

23 20

HPDS

19 16

CnP

15 12

XNX

11 8

AC2

7 4

SpecSEI

3 0
G8-6718 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
LSM, bits [23:20]

Indicates support for LSMAOE and nTLSMD bits in HSCTLR and SCTLR. Defined values are:

0b0000 LSMAOE and nTLSMD bits not supported.

0b0001 LSMAOE and nTLSMD bits supported.

All other values are reserved.

FEAT_LSMAOC implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

HPDS, bits [19:16]

Hierarchical permission disables bits in translation tables. Defined values are:

0b0000 Disabling of hierarchical controls not supported.

0b0001 Supports disabling of hierarchical controls using the TTBCR2.HPD0, TTBCR2.HPD1,
and HTCR.HPD bits.

0b0010 As for value 0b0001, and adds possible hardware allocation of bits[62:59] of the
translation table descriptors from the final lookup level for IMPLEMENTATION DEFINED
use.

All other values are reserved.

FEAT_AA32HPD implements the functionality identified by the value 0b0001.

FEAT_HPDS2 implements the functionality added by the value 0b0010.

Note

The value 0b0000 implies that the encoding for TTBCR2 is UNDEFINED.

CnP, bits [15:12]

Common not Private translations. Defined values are:

0b0000 Common not Private translations not supported.

0b0001 Common not Private translations supported.

All other values are reserved.

FEAT_TTCNP implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

XNX, bits [11:8]

Support for execute-never control distinction by Exception level at stage 2. Defined values are:

0b0000 Distinction between EL0 and EL1 execute-never control at stage 2 not supported.

0b0001 Distinction between EL0 and EL1 execute-never control at stage 2 supported.

All other values are reserved.

FEAT_XNX implements the functionality identified by the value 0b0001.

When FEAT_XNX is implemented:

• If all of the following conditions are true, it is IMPLEMENTATION DEFINED whether the value
of ID_MMFR4.XNX is 0b0000 or 0b0001:

— ID_AA64MMFR1_EL1.XNX ==1.

— EL2 cannot use AArch32.

— EL1 can use AArch32.

• If EL2 can use AArch32 then the only permitted value is 0b0001.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6719
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
AC2, bits [7:4]

Indicates the extension of the ACTLR and HACTLR registers using ACTLR2 and HACTLR2.
Defined values are:

0b0000 ACTLR2 and HACTLR2 are not implemented.

0b0001 ACTLR2 and HACTLR2 are implemented.

All other values are reserved.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.2, the only permitted value is 0b0001.

SpecSEI, bits [3:0]

Describes whether the PE can generate SError interrupt exceptions from speculative reads of
memory, including speculative instruction fetches. The defined values of this field are:

0b0000 The PE never generates an SError interrupt due to an External abort on a speculative
read.

0b0001 The PE might generate an SError interrupt due to an External abort on a speculative
read.

All other values are reserved.

Accessing ID_MMFR4

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!IsZero(ID_MMFR4) || boolean IMPLEMENTATION_DEFINED
"ID_MMFR4 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (!IsZero(ID_MMFR4) || boolean IMPLEMENTATION_DEFINED
"ID_MMFR4 trapped by HCR.TID3") && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_MMFR4;
elsif PSTATE.EL == EL2 then
 return ID_MMFR4;
elsif PSTATE.EL == EL3 then
 return ID_MMFR4;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0010 0b110
G8-6720 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.97 ID_MMFR5, Memory Model Feature Register 5

The ID_MMFR5 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register ID_MMFR5 bits [31:0] are architecturally mapped to AArch64 System
register ID_MMFR5_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ID_MMFR5 are UNDEFINED.

Attributes

ID_MMFR5 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

nTLBPA, bits [7:4]

Indicates support for intermediate caching of translation table walks. Defined values are:

0b0000 The intermediate caching of translation table walks might include non-coherent caches
of previous valid translation table entries since the last completed relevant TLBI
applicable to the PE where either:

• The caching is indexed by the physical address of the location holding the
translation table entry.

• The caching is used for stage 1 translations and is indexed by the intermediate
physical address of the location holding the translation table entry.

0b0001 The intermediate caching of translation table walks does not include non-coherent
caches of previous valid translation table entries since the last completed TLBI
applicable to the PE where either:

• The caching is indexed by the physical address of the location holding the
translation table entry.

• The caching is used for stage 1 translations and is indexed by the intermediate
physical address of the location holding the translation table entry.

All other values are reserved.

FEAT_nTLBPA implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

ETS, bits [3:0]

Indicates support for Enhanced Translation Synchronization. Defined values are:

0b0000 Enhanced Translation Synchronization is not supported.

0b0001 Enhanced Translation Synchronization is supported.

RES0

31 8

nTLBPA

7 4

ETS

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6721
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
All other values are reserved.

FEAT_ETS implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.7, the only permitted value is 0b0001.

Accessing ID_MMFR5

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!IsZero(ID_MMFR5) || boolean IMPLEMENTATION_DEFINED
"ID_MMFR5 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (!IsZero(ID_MMFR5) || boolean IMPLEMENTATION_DEFINED
"ID_MMFR5 trapped by HCR.TID3") && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_MMFR5;
elsif PSTATE.EL == EL2 then
 return ID_MMFR5;
elsif PSTATE.EL == EL3 then
 return ID_MMFR5;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0011 0b110
G8-6722 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.98 ID_PFR0, Processor Feature Register 0

The ID_PFR0 characteristics are:

Purpose

Gives top-level information about the instruction sets and other features supported by the PE in
AArch32 state.

Must be interpreted with ID_PFR1.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register ID_PFR0 bits [31:0] are architecturally mapped to AArch64 System
register ID_PFR0_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ID_PFR0 are UNDEFINED.

Attributes

ID_PFR0 is a 32-bit register.

Field descriptions

RAS, bits [31:28]

RAS Extension version. Defined values are:

0b0000 No RAS Extension.

0b0001 RAS Extension implemented.

0b0010 FEAT_RASv1p1 implemented. As 0b0001, and adds support for additional
ERXMISC<m> System registers.

Error records accessed through System registers conform to RAS System Architecture
v1.1, which includes simplifications to ERR<n>STATUS and support for the optional
RAS Timestamp Extension.

All other values are reserved.

FEAT_RAS implements the functionality identified by the value 0b0001.

FEAT_RASv1p1 implements the functionality identified by the value 0b0010.

In Armv8.0 and Armv8.1, the permitted values are 0b0000 and 0b0001.

In Armv8.2, the only permitted value is 0b0001.

From Armv8.4, if FEAT_DoubleFault is implemented, the only permitted value is 0b0010.

From Armv8.4, when FEAT_DoubleFault is not implemented, and ERRIDR.NUM is 0, the
permitted values are IMPLEMENTATION DEFINED 0b0001 or 0b0010.

Note

When the value of this field is 0b0001, ID_PFR2.RAS_frac indicates whether FEAT_RASv1p1 is
implemented.

DIT, bits [27:24]

Data Independent Timing. Defined values are:

0b0000 AArch32 does not guarantee constant execution time of any instructions.

RAS

31 28

DIT

27 24

AMU

23 20

CSV2

19 16

State3

15 12

State2

11 8

State1

7 4

State0

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6723
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b0001 AArch32 provides the PSTATE.DIT mechanism to guarantee constant execution time
of certain instructions.

All other values are reserved.

FEAT_DIT implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

AMU, bits [23:20]

Indicates support for Activity Monitors Extension. Defined values are:

0b0000 Activity Monitors Extension is not implemented.

0b0001 FEAT_AMUv1 is implemented.

0b0010 FEAT_AMUv1p1 is implemented. As 0b0001 and adds support for virtualization of the
activity monitor event counters.

All other values are reserved.

FEAT_AMUv1 implements the functionality identified by the value 0b0001.

FEAT_AMUv1p1 implements the functionality identified by the value 0b0010.

In Armv8.0, the only permitted value is 0b0000.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.6, the permitted values are 0b0000, 0b0001, and 0b0010.

CSV2, bits [19:16]

Speculative use of out of context branch targets. Defined values are:

0b0000 This PE does not disclose whether branch targets trained in one hardware-described
context can exploitatively control speculative execution in a different
hardware-described context.

0b0001 Branch targets trained in one hardware-described context can exploitatively control
speculative execution in a different hardware-described context only in a
hard-to-determine way.

0b0010 Branch targets trained in one hardware-described context can exploitatively control
speculative execution in a different hardware-described context only in a
hard-to-determine way. Within a hardware-described context, branch targets trained for
branches situated at one address can control speculative execution of branches situated
at different addresses only in a hard-to-determine way.

All other values are reserved.

FEAT_CSV2 implements the functionality identified by the values 0b0001 and 0b0010.

From Armv8.5, the permitted values are 0b0001 and 0b0010.

State3, bits [15:12]

T32EE instruction set support. Defined values are:

0b0000 Not implemented.

0b0001 T32EE instruction set implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

State2, bits [11:8]

Jazelle extension support. Defined values are:

0b0000 Not implemented.

0b0001 Jazelle extension implemented, without clearing of JOSCR.CV on exception entry.

0b0010 Jazelle extension implemented, with clearing of JOSCR.CV on exception entry.

All other values are reserved.
G8-6724 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
In Armv8-A, the only permitted value is 0b0001.

State1, bits [7:4]

T32 instruction set support. Defined values are:

0b0000 T32 instruction set not implemented.

0b0001 T32 encodings before the introduction of Thumb-2 technology implemented:

• All instructions are 16-bit.

• A BL or BLX is a pair of 16-bit instructions.

• 32-bit instructions other than BL and BLX cannot be encoded.

0b0011 T32 encodings after the introduction of Thumb-2 technology implemented, for all
16-bit and 32-bit T32 basic instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0011.

State0, bits [3:0]

A32 instruction set support. Defined values are:

0b0000 A32 instruction set not implemented.

0b0001 A32 instruction set implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Accessing ID_PFR0

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_PFR0;
elsif PSTATE.EL == EL2 then
 return ID_PFR0;
elsif PSTATE.EL == EL3 then
 return ID_PFR0;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6725
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.99 ID_PFR1, Processor Feature Register 1

The ID_PFR1 characteristics are:

Purpose

Gives information about the AArch32 programmers' model.

Must be interpreted with ID_PFR0.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register ID_PFR1 bits [31:0] are architecturally mapped to AArch64 System
register ID_PFR1_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ID_PFR1 are UNDEFINED.

Attributes

ID_PFR1 is a 32-bit register.

Field descriptions

GIC, bits [31:28]

System register GIC CPU interface. Defined values are:

0b0000 GIC CPU interface system registers not implemented.

0b0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is supported.

0b0011 System register interface to version 4.1 of the GIC CPU interface is supported.

All other values are reserved.

Virt_frac, bits [27:24]

Virtualization fractional field. When the Virtualization field is 0b0000, determines the support for
Virtualization Extensions. Defined values are:

0b0000 No Virtualization Extensions are implemented.

0b0001 The following Virtualization Extensions are implemented:

• The SCR.SIF bit, if EL3 is implemented.

• The modifications to the SCR.AW and SCR.FW bits described in the
Virtualization Extensions, if EL3 is implemented.

• The MSR (banked register) and MRS (banked register) instructions.

• The ERET instruction.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL2 is implemented.

• 0b0001 when EL2 is not implemented.

This field is only valid when the value of ID_PFR1.Virtualization is 0, otherwise it holds the value
0b0000.

GIC

31 28 27 24

Sec_frac

23 20

GenTimer

19 16 15 12

MProgMod

11 8

Security

7 4

ProgMod

3 0

Virt_frac Virtualization
G8-6726 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
Note

The ID_ISAR registers do not identify whether the instructions added by the Virtualization
Extensions are implemented.

Sec_frac, bits [23:20]

Security fractional field. When the Security field is 0b0000, determines the support for Security
Extensions. Defined values are:

0b0000 No Security Extensions are implemented.

0b0001 The following Security Extensions are implemented:

• The VBAR register.

• The TTBCR.PD0 and TTBCR.PD1 bits.

0b0010 As for 0b0001, plus the ability to access Secure or Non-secure physical memory is
supported.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL3 is implemented.

• 0b0001 or 0b0010 when EL3 is not implemented.

This field is only valid when the value of ID_PFR1.Security is 0, otherwise it holds the value 0b0000.

GenTimer, bits [19:16]

Generic Timer support. Defined values are:

0b0000 Generic Timer is not implemented.

0b0001 Generic Timer is implemented.

0b0010 Generic Timer is implemented, and also includes support for CNTHCTL.EVNTIS and
CNTKCTL.EVNTIS fields, and CNTPCTSS and CNTVCTSS counter views.

All other values are reserved.

FEAT_ECV implements the functionality identified by the value 0b0010.

In Armv8.0, the only permitted value is 0b0001.

From Armv8.6, the only permitted value is 0b0010.

Virtualization, bits [15:12]

Virtualization support. Defined values are:

0b0000 EL2, Hyp mode, and the HVC instruction not implemented.

0b0001 EL2, Hyp mode, the HVC instruction, and all the features described by Virt_frac ==
0b0001 implemented.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL2 is not implemented.

• 0b0001 when EL2 is implemented.

In an implementation that includes EL2, if EL2 cannot use AArch32 but EL1 can use AArch32 then
this field has the value 0b0001.

Note

The ID_ISARs do not identify whether the HVC instruction is implemented.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6727
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MProgMod, bits [11:8]

M-profile programmers' model support. Defined values are:

0b0000 Not supported.

0b0010 Support for two-stack programmers' model.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Security, bits [7:4]

Security support. Defined values are:

0b0000 EL3, Monitor mode, and the SMC instruction not implemented.

0b0001 EL3, Monitor mode, the SMC instruction, and all the features described by Sec_frac ==
0b0001 implemented.

0b0010 As for 0b0001, and adds the ability to set the NSACR.RFR bit. Not permitted in Armv8
as the NSACR.RFR bit is RES0.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL3 is not implemented.

• 0b0001 when EL3 is implemented.

In an implementation that includes EL3, if EL3 cannot use AArch32 but EL1 can use AArch32 then
this field has the value 0b0001.

ProgMod, bits [3:0]

Support for the standard programmers' model for ARMv4 and later. Model must support User, FIQ,
IRQ, Supervisor, Abort, Undefined, and System modes. Defined values are:

0b0000 Not supported.

0b0001 Supported.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Accessing ID_PFR1

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_PFR1;
elsif PSTATE.EL == EL2 then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0001 0b001
G8-6728 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 return ID_PFR1;
elsif PSTATE.EL == EL3 then
 return ID_PFR1;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6729
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.100 ID_PFR2, Processor Feature Register 2

The ID_PFR2 characteristics are:

Purpose

Gives information about the AArch32 programmers' model.

Must be interpreted with ID_PFR0 and ID_PFR1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register ID_PFR2 bits [31:0] are architecturally mapped to AArch64 System
register ID_PFR2_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ID_PFR2 are UNDEFINED.

Attributes

ID_PFR2 is a 32-bit register.

Field descriptions

Bits [31:12]

Reserved, RES0.

RAS_frac, bits [11:8]

RAS Extension fractional field.

0b0000 If ID_PFR0.RAS == 0b0001, RAS Extension implemented.

0b0001 If ID_PFR0.RAS == 0b0001, as 0b0000 and adds support for additional ERXMISC<m>
System registers.

Error records accessed through System registers conform to RAS System Architecture
v1.1, which includes simplifications to ERR<n>STATUS and support for the optional
RAS Timestamp Extension.

All other values are reserved.

This field is valid only if ID_PFR0.RAS == 0b0001.

SSBS, bits [7:4]

Speculative Store Bypassing controls in AArch64 state. Defined values are:

0b0000 AArch32 provides no mechanism to control the use of Speculative Store Bypassing.

0b0001 AArch32 provides the PSTATE.SSBS mechanism to mark regions that are Speculative
Store Bypass Safe.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

All other values are reserved.

RES0

31 12

RAS_frac

11 8

SSBS

7 4

CSV3

3 0
G8-6730 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
CSV3, bits [3:0]

Speculative use of faulting data. Defined values are:

0b0000 This PE does not disclose whether data loaded under speculation with a permission or
domain fault can be used to form an address or generate condition codes or SVE
predicate values to be used by other instructions in the speculative sequence.

0b0001 Data loaded under speculation with a permission or domain fault cannot be used to form
an address or generate condition codes or SVE predicate values to be used by other
instructions in the speculative sequence.

All other values are reserved.

FEAT_CSV3 implements the functionality identified by the value 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

If FEAT_E0PD is implemented, FEAT_CSV3 must be implemented.

Accessing ID_PFR2

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_PFR2;
elsif PSTATE.EL == EL2 then
 return ID_PFR2;
elsif PSTATE.EL == EL3 then
 return ID_PFR2;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0011 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6731
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.101 IFAR, Instruction Fault Address Register

The IFAR characteristics are:

Purpose

Holds the virtual address of the faulting address that caused a synchronous Prefetch Abort
exception.

Configurations

AArch32 System register IFAR bits [31:0] are architecturally mapped to AArch64 System register
FAR_EL1[63:32].

AArch32 System register IFAR bits [31:0] (S) are architecturally mapped to AArch32 System
register HIFAR[31:0] when EL2 is implemented, EL3 is implemented and the implementation only
supports execution in AArch32 state.

AArch32 System register IFAR bits [31:0] (S) are architecturally mapped to AArch64 System
register FAR_EL2[63:32] when EL2 is implemented.

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to IFAR
are UNDEFINED.

Attributes

IFAR is a 32-bit register.

Field descriptions

Bits [31:0]

VA of faulting address of synchronous Prefetch Abort exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing IFAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

VA of faulting address of synchronous Prefetch Abort exception

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0110 0b0000 0b010
G8-6732 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 return IFAR_NS;
 else
 return IFAR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return IFAR_NS;
 else
 return IFAR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return IFAR_S;
 else
 return IFAR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 IFAR_NS = R[t];
 else
 IFAR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 IFAR_NS = R[t];
 else
 IFAR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 IFAR_S = R[t];
 else
 IFAR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0110 0b0000 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6733
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.102 IFSR, Instruction Fault Status Register

The IFSR characteristics are:

Purpose

Holds status information about the last instruction fault.

Configurations

AArch32 System register IFSR bits [31:0] are architecturally mapped to AArch64 System register
IFSR32_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to IFSR
are UNDEFINED.

The current translation table format determines which format of the register is used.

Attributes

IFSR is a 32-bit register.

Field descriptions

When TTBCR.EAE == 0:

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 IFAR is valid.

0b1 IFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a synchronous External abort other than a synchronous External abort on
a translation table walk. It is RES0 for all other Prefetch Abort exceptions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:13]

Reserved, RES0.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of
External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

31 17 16

RES0

15 13 12 11 10 9

RES0

8 4

FS[3:0]

3 0

FnV
ExT

LPAE
FS[4]

RES0
G8-6734 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
Bit [11]

Reserved, RES0.

FS, bits [10, 3:0]

Fault Status bits. Bits [10] and [3:0] are interpreted together.

0b00001 PC alignment fault.

0b00010 Debug exception.

0b00011 Access flag fault, level 1.

0b00101 Translation fault, level 1.

0b00110 Access flag fault, level 2.

0b00111 Translation fault, level 2.

0b01000 Synchronous External abort, not on translation table walk.

0b01001 Domain fault, level 1.

0b01011 Domain fault, level 2.

0b01100 Synchronous External abort, on translation table walk, level 1.

0b01101 Permission fault, level 1.

0b01110 Synchronous External abort, on translation table walk, level 2.

0b01111 Permission fault, level 2.

0b10000 TLB conflict abort.

0b10100 IMPLEMENTATION DEFINED fault (Lockdown fault).

0b11001 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b11100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on translation table walk, level 1.

0b11110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on translation table walk, level 2.

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on a Short-descriptor translation table lookup on page G5-6373.

The FS field is split as follows:

• FS[4] is IFSR[10].

• FS[3:0] is IFSR[3:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

0b0 Using the Short-descriptor translation table formats.

0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore
software can set this bit to 0 or 1 without affecting operation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:4]

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6735
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
When TTBCR.EAE == 1:

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 IFAR is valid.

0b1 IFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a synchronous External abort other than a synchronous External abort on
a translation table walk. It is RES0 for all other Prefetch Abort exceptions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:13]

Reserved, RES0.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of
External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

0b0 Using the Short-descriptor translation table formats.

0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore
software can set this bit to 0 or 1 without affecting operation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault status bits. Possible values of this field are:

0b000000 Address size fault in translation table base register.

0b000001 Address size fault, level 1.

RES0

31 17 16

RES0

15 13 12

RES0

11 10 9

RES0

8 6

STATUS

5 0

FnV LPAE
ExT
G8-6736 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk.

0b010101 Synchronous External abort on translation table walk, level 1.

0b010110 Synchronous External abort on translation table walk, level 2.

0b010111 Synchronous External abort on translation table walk, level 3.

0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 3.

0b100001 PC alignment fault.

0b100010 Debug exception.

0b110000 TLB conflict abort.

All other values are reserved.

When FEAT_RAS is implemented, 0b011000, 0b011101, 0b011110, and 0b011111 are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on a Long-descriptor translation table lookup on page G5-6375.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing IFSR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6737
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return IFSR_NS;
 else
 return IFSR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return IFSR_NS;
 else
 return IFSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return IFSR_S;
 else
 return IFSR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 IFSR_NS = R[t];
 else
 IFSR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 IFSR_NS = R[t];
 else
 IFSR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 IFSR_S = R[t];
 else
 IFSR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0000 0b001
G8-6738 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.103 ISR, Interrupt Status Register

The ISR characteristics are:

Purpose

Shows the pending status of the IRQ, FIQ, or SError.

When executing at EL2, EL3, or Secure EL1, when SCR_EL3.EEL2 == 0b0, this shows the pending
status of the physical interrupts.

When executing at Non-secure EL1, or at Secure EL1, when SCR_EL3.EEL2 == 0b01:

• If the HCR.{IMO,FMO,AMO} bit has a value of 1, the corresponding ISR.{I,F,A} bit shows
the pending status of the virtual IRQ, FIQ, or SError.

• If the HCR.{IMO,FMO,AMO} bit has a value of 0, the corresponding ISR.{I,F,A} bit shows
the pending status of the physical IRQ, FIQ, or SError.

Configurations

AArch32 System register ISR bits [31:0] are architecturally mapped to AArch64 System register
ISR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to ISR
are UNDEFINED.

Attributes

ISR is a 32-bit register.

Field descriptions

Bits [31:9]

Reserved, RES0.

A, bit [8]

SError interrupt pending bit:

0b0 No pending SError interrupt.

0b1 An SError interrupt is pending.

If the SError interrupt is edge-triggered, this field is cleared to zero when the physical SError
interrupt is taken.

I, bit [7]

IRQ pending bit. Indicates whether an IRQ interrupt is pending:

0b0 No pending IRQ.

0b1 An IRQ interrupt is pending.

F, bit [6]

FIQ pending bit. Indicates whether an FIQ interrupt is pending.

0b0 No pending FIQ.

0b1 An FIQ interrupt is pending.

Bits [5:0]

Reserved, RES0.

RES0

31 9

A

8

I

7

F

6

RES0

5 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6739
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accessing ISR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ISR;
elsif PSTATE.EL == EL2 then
 return ISR;
elsif PSTATE.EL == EL3 then
 return ISR;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0001 0b000
G8-6740 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.104 ITLBIALL, Instruction TLB Invalidate All

The ITLBIALL characteristics are:

Purpose

Invalidate all cached copies of translation table entries from instruction TLBs that are from any level
of the translation table walk. The entries that are invalidated are as follows:

• If executed at EL1, all entries that:

— Would be required for the EL1&0 translation regime.

— Match the current VMID, if EL2 is implemented and enabled in the current Security
state.

• If executed in Secure state when EL3 is using AArch32, all entries that would be required for
the Secure PL1&0 translation regime.

• If executed at EL2, and if EL2 is enabled in the current Security state, the stage 1 or stage 2
translation table entries that would be required for the Non-secure PL1&0 translation regime
and matches the current VMID.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility
with earlier versions of the Arm architecture.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ITLBIALL are UNDEFINED.

Attributes

ITLBIALL is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing ITLBIALL instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0101 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6741
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch32.ITLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH, TLBI_ExcludeXS);
 else
 AArch32.ITLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH, TLBI_AllAttr);
elsif PSTATE.EL == EL2 then
 AArch32.ITLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 AArch32.ITLBI_ALL(SecurityStateAtEL(EL3), Regime_EL30, Shareability_NSH, TLBI_AllAttr);

G8-6742 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.105 ITLBIASID, Instruction TLB Invalidate by ASID match

The ITLBIASID characteristics are:

Purpose

Invalidate all cached copies of translation table entries from instruction TLBs that meet the
following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used for the specified ASID, and either:

— Is from a level of lookup above the final level.

— Is a non-global entry from the final level of lookup.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility
with earlier versions of the Arm architecture.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ITLBIASID are UNDEFINED.

Attributes

ITLBIASID is a 32-bit System instruction.

Field descriptions

Bits [31:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries for non-global pages that match the ASID values will be
affected by this System instruction.

Executing ITLBIASID instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

RES0

31 8

ASID

7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6743
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.ITLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_ExcludeXS, R[t]);
 else
 AArch32.ITLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.ITLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBI_AllAttr,
R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.ITLBI_ASID(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_NSH, TLBI_AllAttr,
R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0101 0b010
G8-6744 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.106 ITLBIMVA, Instruction TLB Invalidate by VA

The ITLBIMVA characteristics are:

Purpose

Invalidate all cached copies of translation table entries from instruction TLBs that meet the
following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified address, and one of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility
with earlier versions of the Arm architecture.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
ITLBIMVA are UNDEFINED.

Attributes

ITLBIMVA is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected
by this System instruction.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this operation, regardless of the
value of the ASID field.

VA

31 12

RES0

11 8

ASID

7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6745
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Executing ITLBIMVA instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.ITLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, R[t]);
 else
 AArch32.ITLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.ITLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.ITLBI_VA(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0101 0b001
G8-6746 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.107 JIDR, Jazelle ID Register

The JIDR characteristics are:

Purpose

A Jazelle register, which identified the Jazelle architecture version.

Configurations

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to JIDR
are UNDEFINED.

Attributes

JIDR is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RAZ.

Accessing JIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if boolean IMPLEMENTATION_DEFINED "JIDR UNDEFINED at EL0" then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TID0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID0 == '1' then
 AArch32.TakeHypTrapException(0x05);
 else
 return JIDR;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID0 == '1' then
 AArch32.TakeHypTrapException(0x05);
 else
 return JIDR;
elsif PSTATE.EL == EL2 then
 return JIDR;
elsif PSTATE.EL == EL3 then
 return JIDR;

RAZ

31 0

coproc opc1 CRn CRm opc2

0b1110 0b111 0b0000 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6747
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.108 JMCR, Jazelle Main Configuration Register

The JMCR characteristics are:

Purpose

A Jazelle register, which provides control of the Jazelle extension.

Configurations

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
JMCR are UNDEFINED.

Attributes

JMCR is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RAZ/WI.

Accessing JMCR

For accesses from EL0 it is IMPLEMENTATION DEFINED whether the register is RW or UNDEFINED.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if boolean IMPLEMENTATION_DEFINED "JMCR UNDEFINED at EL0" then
 UNDEFINED;
 else
 return JMCR;
elsif PSTATE.EL == EL1 then
 return JMCR;
elsif PSTATE.EL == EL2 then
 return JMCR;
elsif PSTATE.EL == EL3 then
 return JMCR;

RAZ/WI

31 0

coproc opc1 CRn CRm opc2

0b1110 0b111 0b0010 0b0000 0b000
G8-6748 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if boolean IMPLEMENTATION_DEFINED "JMCR UNDEFINED at EL0" then
 UNDEFINED;
 else
 //no operation
elsif PSTATE.EL == EL1 then
 //no operation
elsif PSTATE.EL == EL2 then
 //no operation
elsif PSTATE.EL == EL3 then
 //no operation

coproc opc1 CRn CRm opc2

0b1110 0b111 0b0010 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6749
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.109 JOSCR, Jazelle OS Control Register

The JOSCR characteristics are:

Purpose

A Jazelle register, which provides operating system control of the Jazelle Extension.

Configurations

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
JOSCR are UNDEFINED.

Attributes

JOSCR is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RAZ/WI.

Accessing JOSCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if boolean IMPLEMENTATION_DEFINED "JOSCR UNDEFINED at EL0" then
 UNDEFINED;
 else
 return JOSCR;
elsif PSTATE.EL == EL1 then
 return JOSCR;
elsif PSTATE.EL == EL2 then
 return JOSCR;
elsif PSTATE.EL == EL3 then
 return JOSCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if boolean IMPLEMENTATION_DEFINED "JOSCR UNDEFINED at EL0" then
 UNDEFINED;

RAZ/WI

31 0

coproc opc1 CRn CRm opc2

0b1110 0b111 0b0001 0b0000 0b000

coproc opc1 CRn CRm opc2

0b1110 0b111 0b0001 0b0000 0b000
G8-6750 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 //no operation
elsif PSTATE.EL == EL1 then
 //no operation
elsif PSTATE.EL == EL2 then
 //no operation
elsif PSTATE.EL == EL3 then
 //no operation

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6751
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.110 MAIR0, Memory Attribute Indirection Register 0

The MAIR0 characteristics are:

Purpose

Along with MAIR1, provides the memory attribute encodings corresponding to the possible
AttrIndx values in a Long-descriptor format translation table entry for stage 1 translations.

AttrIndx[2] indicates the MAIR register to be used:

• When AttrIndx[2] is 0, MAIR0 is used.

• When AttrIndx[2] is 1, MAIR1 is used.

Configurations

AArch32 System register MAIR0 bits [31:0] are architecturally mapped to AArch64 System
register MAIR_EL1[31:0] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register MAIR0 bits [31:0] are architecturally mapped to AArch32 System
register PRRR[31:0] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register MAIR0 bits [31:0] (MAIR0_NS) are architecturally mapped to AArch32
System register PRRR[31:0] (PRRR_NS) when EL3 is using AArch32.

AArch32 System register MAIR0 bits [31:0] (MAIR0_S) are architecturally mapped to AArch32
System register PRRR[31:0] (PRRR_S) when EL3 is using AArch32.

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
MAIR0 are UNDEFINED.

MAIR0 and PRRR are the same register, with a different view depending on the value of
TTBCR.EAE:

• When it is set to 0, the register is as described in PRRR.

• When it is set to 1, the register is as described in MAIR0.

When EL3 is using AArch32, write access to MAIR0(S) is disabled when the CP15SDISABLE
signal is asserted HIGH.

Attributes

MAIR0 is a 32-bit register.

Field descriptions

When TTBCR.EAE == 1:

Attr<n>, bits [8n+7:8n], for n = 3 to 0

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation
table entry, where:

• AttrIndx[2:0] gives the value of <n> in Attr<n>.

• AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0
are in MAIR0.

Attr3

31 24

Attr2

23 16

Attr1

15 8

Attr0

7 0
G8-6752 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
Bits [7:4] are encoded as follows:

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back
Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MAIR0

Accesses to this register use the following encodings in the System register encoding space:

Attr<n>[7:4] Meaning

0b0000 Device memory. See encoding of Attr<n>[3:0] for the type of Device memory.

0b00RW, RW not 0b00 Normal memory, Outer Write-Through Transient.

0b0100 Normal memory, Outer Non-cacheable.

0b01RW, RW not 0b00 Normal memory, Outer Write-Back Transient.

0b10RW Normal memory, Outer Write-Through Non-transient.

0b11RW Normal memory, Outer Write-Back Non-transient.

Attr<n>[3:0] Meaning when Attr<n>[7:4] is 0b0000 Meaning when Attr<n>[7:4] is not 0b0000

0b0000 Device-nGnRnE memory UNPREDICTABLE

0b00RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Through Transient

0b0100 Device-nGnRE memory Normal memory, Inner Non-cacheable

0b01RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Back Transient

0b1000 Device-nGRE memory Normal memory, Inner Write-Through Non-transient
(RW=0b00)

0b10RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Through Non-transient

0b1100 Device-GRE memory Normal memory, Inner Write-Back Non-transient (RW=0b00)

0b11RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Back Non-transient

R or W Meaning

0b0 No Allocate

0b1 Allocate
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6753
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 return MAIR0_NS;
 else
 return PRRR_NS;
 else
 if TTBCR.EAE == '1' then
 return MAIR0;
 else
 return PRRR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 return MAIR0_NS;
 else
 return PRRR_NS;
 else
 if TTBCR.EAE == '1' then
 return MAIR0;
 else
 return PRRR;
elsif PSTATE.EL == EL3 then
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 return MAIR0_S;
 else
 return MAIR0_NS;
 else
 if SCR.NS == '0' then
 return PRRR_S;
 else
 return PRRR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0010 0b000

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0010 0b000
G8-6754 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR0_NS = R[t];
 else
 PRRR_NS = R[t];
 else
 if TTBCR.EAE == '1' then
 MAIR0 = R[t];
 else
 PRRR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR0_NS = R[t];
 else
 PRRR_NS = R[t];
 else
 if TTBCR.EAE == '1' then
 MAIR0 = R[t];
 else
 PRRR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 MAIR0_S = R[t];
 else
 MAIR0_NS = R[t];
 else
 if SCR.NS == '0' then
 PRRR_S = R[t];
 else
 PRRR_NS = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6755
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.111 MAIR1, Memory Attribute Indirection Register 1

The MAIR1 characteristics are:

Purpose

Along with MAIR0, provides the memory attribute encodings corresponding to the possible
AttrIndx values in a Long-descriptor format translation table entry for stage 1 translations.

AttrIndx[2] indicates the MAIR register to be used:

• When AttrIndx[2] is 0, MAIR0 is used.

• When AttrIndx[2] is 1, MAIR1 is used.

Configurations

AArch32 System register MAIR1 bits [31:0] are architecturally mapped to AArch64 System
register MAIR_EL1[63:32] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register MAIR1 bits [31:0] are architecturally mapped to AArch32 System
register NMRR[31:0] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register MAIR1 bits [31:0] (MAIR1_NS) are architecturally mapped to AArch32
System register NMRR[31:0] (NMRR_NS) when EL3 is using AArch32.

AArch32 System register MAIR1 bits [31:0] (MAIR1_S) are architecturally mapped to AArch32
System register NMRR[31:0] (NMRR_S) when EL3 is using AArch32.

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
MAIR1 are UNDEFINED.

MAIR1 and NMRR are the same register, with a different view depending on the value of
TTBCR.EAE:

• When it is set to 0, the register is as described in NMRR.

• When it is set to 1, the register is as described in MAIR1.

When EL3 is using AArch32, write access to MAIR1(S) is disabled when the CP15SDISABLE
signal is asserted HIGH.

Attributes

MAIR1 is a 32-bit register.

Field descriptions

When TTBCR.EAE == 1:

Attr<n>, bits [8(n-4)+7:8(n-4)], for n = 7 to 4

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation
table entry, where:

• AttrIndx[2:0] gives the value of <n> in Attr<n>.

• AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0
are in MAIR0.

Attr7

31 24

Attr6

23 16

Attr5

15 8

Attr4

7 0
G8-6756 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
Bits [7:4] are encoded as follows:

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back
Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MAIR1

Accesses to this register use the following encodings in the System register encoding space:

Attr<n>[7:4] Meaning

0b0000 Device memory. See encoding of Attr<n>[3:0] for the type of Device memory.

0b00RW, RW not 0b00 Normal memory, Outer Write-Through Transient.

0b0100 Normal memory, Outer Non-cacheable.

0b01RW, RW not 0b00 Normal memory, Outer Write-Back Transient.

0b10RW Normal memory, Outer Write-Through Non-transient.

0b11RW Normal memory, Outer Write-Back Non-transient.

Attr<n>[3:0] Meaning when Attr<n>[7:4] is 0b0000 Meaning when Attr<n>[7:4] is not 0b0000

0b0000 Device-nGnRnE memory UNPREDICTABLE

0b00RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Through Transient

0b0100 Device-nGnRE memory Normal memory, Inner Non-cacheable

0b01RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Back Transient

0b1000 Device-nGRE memory Normal memory, Inner Write-Through Non-transient
(RW=0b00)

0b10RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Through Non-transient

0b1100 Device-GRE memory Normal memory, Inner Write-Back Non-transient (RW=0b00)

0b11RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Back Non-transient

R or W Meaning

0b0 No Allocate

0b1 Allocate
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6757
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 return MAIR1_NS;
 else
 return NMRR_NS;
 else
 if TTBCR.EAE == '1' then
 return MAIR1;
 else
 return NMRR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 return MAIR1_NS;
 else
 return NMRR_NS;
 else
 if TTBCR.EAE == '1' then
 return MAIR1;
 else
 return NMRR;
elsif PSTATE.EL == EL3 then
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 return MAIR1_S;
 else
 return MAIR1_NS;
 else
 if SCR.NS == '0' then
 return NMRR_S;
 else
 return NMRR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0010 0b001

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0010 0b001
G8-6758 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR1_NS = R[t];
 else
 NMRR_NS = R[t];
 else
 if TTBCR.EAE == '1' then
 MAIR1 = R[t];
 else
 NMRR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR1_NS = R[t];
 else
 NMRR_NS = R[t];
 else
 if TTBCR.EAE == '1' then
 MAIR1 = R[t];
 else
 NMRR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 MAIR1_S = R[t];
 else
 MAIR1_NS = R[t];
 else
 if SCR.NS == '0' then
 NMRR_S = R[t];
 else
 NMRR_NS = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6759
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.112 MIDR, Main ID Register

The MIDR characteristics are:

Purpose

Provides identification information for the PE, including an implementer code for the device and a
device ID number.

Configurations

AArch32 System register MIDR bits [31:0] are architecturally mapped to AArch64 System register
MIDR_EL1[31:0].

AArch32 System register MIDR bits [31:0] are architecturally mapped to External register
MIDR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
MIDR are UNDEFINED.

Some fields of the MIDR are IMPLEMENTATION DEFINED. For more information about the values of
these fields for a particular Armv8 implementation, and any implementation-specific significance
of these values, see the product documentation.

Attributes

MIDR is a 32-bit register.

Field descriptions

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm.
Assigned codes include the following:

0x00 Reserved for software use.

0x41 Arm Limited.

0x42 Broadcom Corporation.

0x43 Cavium Inc.

0x44 Digital Equipment Corporation.

0x46 Fujitsu Ltd.

0x49 Infineon Technologies AG.

0x4D Motorola or Freescale Semiconductor Inc.

0x4E NVIDIA Corporation.

0x50 Applied Micro Circuits Corporation.

0x51 Qualcomm Inc.

0x56 Marvell International Ltd.

0x69 Intel Corporation.

0xC0 Ampere Computing.

Arm can assign codes that are not published in this manual. All values not assigned by Arm are
reserved and must not be used.

Access to this field is RO.

Implementer

31 24

Variant

23 20 19 16

PartNum

15 4

Revision

3 0

Architecture
G8-6760 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
Variant, bits [23:20]

Variant number. Typically, this field is used to distinguish between different product variants, or
major revisions of a product.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Architecture, bits [19:16]

Architecture version. Defined values are:

0b0001 Armv4.

0b0010 Armv4T.

0b0011 Armv5 (obsolete).

0b0100 Armv5T.

0b0101 Armv5TE.

0b0110 Armv5TEJ.

0b0111 Armv6.

0b1111 Architectural features are individually identified in the ID_* registers.

All other values are reserved.

Access to this field is RO.

PartNum, bits [15:4]

Primary Part Number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7,
the variant and architecture are encoded differently.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [3:0]

Revision number for the device.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing MIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) then
 return VPIDR_EL2<31:0>;
 elsif EL2Enabled() && ELUsingAArch32(EL2) then
 return VPIDR;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6761
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 return MIDR;
elsif PSTATE.EL == EL2 then
 return MIDR;
elsif PSTATE.EL == EL3 then
 return MIDR;

G8-6762 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.113 MPIDR, Multiprocessor Affinity Register

The MPIDR characteristics are:

Purpose

In a multiprocessor system, provides an additional PE identification mechanism for scheduling
purposes.

Configurations

AArch32 System register MPIDR bits [31:0] are architecturally mapped to AArch64 System
register MPIDR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
MPIDR are UNDEFINED.

In a uniprocessor system, Arm recommends that each Aff<n> field of this register returns a value
of 0.

Attributes

MPIDR is a 32-bit register.

Field descriptions

M, bit [31]

Indicates whether this implementation includes the functionality introduced by the ARMv7
Multiprocessing Extensions.

0b0 This implementation does not include the ARMv7 Multiprocessing Extensions
functionality.

0b1 This implementation includes the ARMv7 Multiprocessing Extensions functionality.

From Armv8, this bit is RAO.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system.

0b0 Processor is part of a multiprocessor system.

0b1 Processor is part of a uniprocessor system.

Bits [29:25]

Reserved, RES0.

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a
multithreading type approach. See the description of Aff0 for more information about affinity
levels.

0b0 Performance of PEs with different affinity level 0 values, and the same values for
affinity level 1 and higher, is largely independent.

0b1 Performance of PEs with different affinity level 0 values, and the same values for
affinity level 1 and higher, is very interdependent.

Aff2, bits [23:16]

Affinity level 2. See the description of Aff0 for more information.

M

31

U

30

RES0

29 25

MT

24

Aff2

23 16

Aff1

15 8

Aff0

7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6763
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Aff1, bits [15:8]

Affinity level 1. See the description of Aff0 for more information.

Aff0, bits [7:0]

Affinity level 0. This is the affinity level that is most significant for determining PE behavior. Higher
affinity levels are increasingly less significant in determining PE behavior. The assigned value of
the MPIDR.{Aff2, Aff1, Aff0} or MPIDR_EL1.{Aff3, Aff2, Aff1, Aff0} set of fields of each PE
must be unique within the system as a whole.

Accessing MPIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) then
 return VMPIDR_EL2<31:0>;
 elsif EL2Enabled() && ELUsingAArch32(EL2) then
 return VMPIDR;
 else
 return MPIDR;
elsif PSTATE.EL == EL2 then
 return MPIDR;
elsif PSTATE.EL == EL3 then
 return MPIDR;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0000 0b101
G8-6764 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.114 MVBAR, Monitor Vector Base Address Register

The MVBAR characteristics are:

Purpose

When EL3 is implemented and can use AArch32, holds the vector base address for any exception
that is taken to Monitor mode.

Secure software must program the MVBAR with the required initial value as part of the PE boot
sequence.

Configurations

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
MVBAR are UNDEFINED.

It is IMPLEMENTATION DEFINED whether MVBAR[0] has a fixed value and ignored writes, or takes
the last value written to it.

On a Warm reset into EL3 using AArch32, the reset value of MVBAR is an IMPLEMENTATION
DEFINED choice between the following:

• MVBAR[31:5] = an IMPLEMENTATION DEFINED value, which might be UNKNOWN,
MVBAR[4:1] = RES0, and MVBAR[0] = 0.

• MVBAR[31:1] = an IMPLEMENTATION DEFINED value that is bits[31:1] of the AArch32 reset
address, and MVBAR[0] = 1.

Attributes

MVBAR is a 32-bit register.

Field descriptions

When programmed with a vector base address:

Bits [31:5]

Vector Base Address. Bits[31:5] of the base address of the exception vectors for exceptions taken to
this Exception level. Bits[4:0] of an exception vector are the exception offset.

Reserved, bits [4:0]

Reserved, see Configurations.

Accessing MVBAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if IsHighestEL(EL1) then

Vector Base Address

31 5

Reserved

4 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6765
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 return RVBAR;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if IsHighestEL(EL2) then
 return RVBAR;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return MVBAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 MVBAR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0000 0b001
G8-6766 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.115 MVFR0, Media and VFP Feature Register 0

The MVFR0 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point
implementation.

Must be interpreted with MVFR1 and MVFR2.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register MVFR0 bits [31:0] are architecturally mapped to AArch64 System
register MVFR0_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
MVFR0 are UNDEFINED.

Implemented only if the implementation includes Advanced SIMD and floating-point instructions.

Attributes

MVFR0 is a 32-bit register.

Field descriptions

FPRound, bits [31:28]

Floating-Point Rounding modes. Indicates whether the floating-point implementation provides
support for rounding modes. Defined values are:

0b0000 Not implemented, or only Round to Nearest mode supported, except that Round towards
Zero mode is supported for VCVT instructions that always use that rounding mode
regardless of the FPSCR setting.

0b0001 All rounding modes supported.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

FPShVec, bits [27:24]

Short Vectors. Indicates whether the floating-point implementation provides support for the use of
short vectors. Defined values are:

0b0000 Short vectors not supported.

0b0001 Short vector operation supported.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

FPSqrt, bits [23:20]

Square Root. Indicates whether the floating-point implementation provides support for the ARMv6
VFP square root operations. Defined values are:

0b0000 Not supported in hardware.

0b0001 Supported.

All other values are reserved.

FPRound

31 28

FPShVec

27 24

FPSqrt

23 20

FPDivide

19 16

FPTrap

15 12

FPDP

11 8

FPSP

7 4

SIMDReg

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6767
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
In Armv8-A, the permitted values are 0b0000 and 0b0001.

The VSQRT.F32 instruction also requires the single-precision floating-point attribute, bits [7:4],
and the VSQRT.F64 instruction also requires the double-precision floating-point attribute, bits
[11:8].

FPDivide, bits [19:16]

Indicates whether the floating-point implementation provides support for VFP divide operations.
Defined values are:

0b0000 Not supported in hardware.

0b0001 Supported.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

The VDIV.F32 instruction also requires the single-precision floating-point attribute, bits [7:4], and
the VDIV.F64 instruction also requires the double-precision floating-point attribute, bits [11:8].

FPTrap, bits [15:12]

Floating Point Exception Trapping. Indicates whether the floating-point implementation provides
support for exception trapping. Defined values are:

0b0000 Not supported.

0b0001 Supported.

All other values are reserved.

A value of 0b0001 indicates that, when the corresponding trap is enabled, a floating-point exception
generates an exception.

FPDP, bits [11:8]

Double Precision. Indicates whether the floating-point implementation provides support for
double-precision operations. Defined values are:

0b0000 Not supported in hardware.

0b0001 Supported, VFPv2.

0b0010 Supported, VFPv3, VFPv4, or Armv8. VFPv3 and Armv8 add an instruction to load a
double-precision floating-point constant, and conversions between double-precision
and fixed-point values.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0010.

A value of 0b0001 or 0b0010 indicates support for all VFP double-precision instructions in the
supported version of VFP, except that, in addition to this field being nonzero:

• VSQRT.F64 is only available if the Square root field is 0b0001.

• VDIV.F64 is only available if the Divide field is 0b0001.

• Conversion between double-precision and single-precision is only available if the
single-precision field is nonzero.

FPSP, bits [7:4]

Single Precision. Indicates whether the floating-point implementation provides support for
single-precision operations. Defined values are:

0b0000 Not supported in hardware.

0b0001 Supported, VFPv2.

0b0010 Supported, VFPv3 or VFPv4. VFPv3 adds an instruction to load a single-precision
floating-point constant, and conversions between single-precision and fixed-point
values.

All other values are reserved.
G8-6768 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
In Armv8-A, the permitted values are 0b0000 and 0b0010.

A value of 0b0001 or 0b0010 indicates support for all VFP single-precision instructions in the
supported version of VFP, except that, in addition to this field being nonzero:

• VSQRT.F32 is only available if the Square root field is 0b0001.

• VDIV.F32 is only available if the Divide field is 0b0001.

• Conversion between double-precision and single-precision is only available if the
double-precision field is nonzero.

SIMDReg, bits [3:0]

Advanced SIMD registers. Indicates whether the Advanced SIMD and floating-point
implementation provides support for the Advanced SIMD and floating-point register bank. Defined
values are:

0b0000 The implementation has no Advanced SIMD and floating-point support.

0b0001 The implementation includes floating-point support with 16 x 64-bit registers.

0b0010 The implementation includes Advanced SIMD and floating-point support with 32 x
64-bit registers.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0010.

Accessing MVFR0

Accesses to this register use the following encodings in the System register encoding space:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 ==
'0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x08);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 return MVFR0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then

reg

0b0111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6769
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 UNDEFINED;
 elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 ==
'1') then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 return MVFR0;
elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 return MVFR0;

G8-6770 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.116 MVFR1, Media and VFP Feature Register 1

The MVFR1 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point
implementation.

Must be interpreted with MVFR0 and MVFR2.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register MVFR1 bits [31:0] are architecturally mapped to AArch64 System
register MVFR1_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
MVFR1 are UNDEFINED.

Implemented only if the implementation includes Advanced SIMD and floating-point instructions.

Attributes

MVFR1 is a 32-bit register.

Field descriptions

SIMDFMAC, bits [31:28]

Advanced SIMD Fused Multiply-Accumulate. Indicates whether the Advanced SIMD
implementation provides fused multiply accumulate instructions. Defined values are:

0b0000 Not implemented.

0b0001 Implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

The Advanced SIMD and floating-point implementations must provide the same level of support
for these instructions.

FPHP, bits [27:24]

Floating Point Half Precision. Indicates the level of half-precision floating-point support. Defined
values are:

0b0000 Not supported.

0b0001 Floating-point half-precision conversion instructions are supported for conversion
between single-precision and half-precision.

0b0010 As for 0b0001, and adds instructions for conversion between double-precision and
half-precision.

0b0011 As for 0b0010, and adds support for half-precision floating-point arithmetic.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 in an implementation without floating-point support.

• 0b0010 in an implementation with floating-point support that does not include the
FEAT_FP16 extension.

SIMDFMAC

31 28

FPHP

27 24

SIMDHP

23 20

SIMDSP

19 16

SIMDInt

15 12

SIMDLS

11 8

FPDNaN

7 4

FPFtZ

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6771
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
• 0b0011 in an implementation with floating-point support that includes the FEAT_FP16
extension.

The level of support indicated by this field must be equivalent to the level of support indicated by
the SIMDHP field, meaning the permitted values are:

SIMDHP, bits [23:20]

Advanced SIMD Half Precision. Indicates the level of half-precision floating-point support.
Defined values are:

0b0000 Not supported.

0b0001 SIMD half-precision conversion instructions are supported for conversion between
single-precision and half-precision.

0b0010 As for 0b0001, and adds support for half-precision floating-point arithmetic.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 in an implementation without SIMD floating-point support.

• 0b0001 in an implementation with SIMD floating-point support that does not include the
FEAT_FP16 extension.

• 0b0010 in an implementation with SIMD floating-point support that includes the FEAT_FP16
extension.

The level of support indicated by this field must be equivalent to the level of support indicated by
the FPHP field, meaning the permitted values are:

SIMDSP, bits [19:16]

Advanced SIMD Single Precision. Indicates whether the Advanced SIMD and floating-point
implementation provides single-precision floating-point instructions. Defined values are:

0b0000 Not implemented.

0b0001 Implemented. This value is permitted only if the SIMDInt field is 0b0001.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

SIMDInt, bits [15:12]

Advanced SIMD Integer. Indicates whether the Advanced SIMD and floating-point implementation
provides integer instructions. Defined values are:

0b0000 Not implemented.

0b0001 Implemented.

All other values are reserved.

Half Precision instructions supported FPHP SIMDHP

No support 0b0000 0b0000

Conversions only 0b0010 0b0001

Conversions and arithmetic 0b0011 0b0010

Half Precision instructions supported FPHP SIMDHP

No support 0b0000 0b0000

Conversions only 0b0010 0b0001

Conversions and arithmetic 0b0011 0b0010
G8-6772 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
In Armv8-A, the permitted values are 0b0000 and 0b0001.

SIMDLS, bits [11:8]

Advanced SIMD Load/Store. Indicates whether the Advanced SIMD and floating-point
implementation provides load/store instructions. Defined values are:

0b0000 Not implemented.

0b0001 Implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

FPDNaN, bits [7:4]

Default NaN mode. Indicates whether the floating-point implementation provides support only for
the Default NaN mode. Defined values are:

0b0000 Not implemented, or hardware supports only the Default NaN mode.

0b0001 Hardware supports propagation of NaN values.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

FPFtZ, bits [3:0]

Flush to Zero mode. Indicates whether the floating-point implementation provides support only for
the Flush-to-Zero mode of operation. Defined values are:

0b0000 Not implemented, or hardware supports only the Flush-to-Zero mode of operation.

0b0001 Hardware supports full denormalized number arithmetic.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

Accessing MVFR1

Accesses to this register use the following encodings in the System register encoding space:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 ==
'0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x08);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x08);

reg

0b0110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6773
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 return MVFR1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 ==
'1') then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 return MVFR1;
elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 return MVFR1;

G8-6774 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.117 MVFR2, Media and VFP Feature Register 2

The MVFR2 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point
implementation.

Must be interpreted with MVFR0 and MVFR1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page G8-6448.

Configurations

AArch32 System register MVFR2 bits [31:0] are architecturally mapped to AArch64 System
register MVFR2_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
MVFR2 are UNDEFINED.

Implemented only if the implementation includes Advanced SIMD and floating-point instructions.

Attributes

MVFR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

FPMisc, bits [7:4]

Indicates whether the floating-point implementation provides support for miscellaneous VFP
features.

0b0000 Not implemented, or no support for miscellaneous features.

0b0001 Support for Floating-point selection.

0b0010 As 0b0001, and Floating-point Conversion to Integer with Directed Rounding modes.

0b0011 As 0b0010, and Floating-point Round to Integer Floating-point.

0b0100 As 0b0011, and Floating-point MaxNum and MinNum.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0100.

SIMDMisc, bits [3:0]

Indicates whether the Advanced SIMD implementation provides support for miscellaneous
Advanced SIMD features.

0b0000 Not implemented, or no support for miscellaneous features.

0b0001 Floating-point Conversion to Integer with Directed Rounding modes.

0b0010 As 0b0001, and Floating-point Round to Integer Floating-point.

0b0011 As 0b0010, and Floating-point MaxNum and MinNum.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0011.

RES0

31 8

FPMisc

7 4

SIMDMisc

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6775
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accessing MVFR2

Accesses to this register use the following encodings in the System register encoding space:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 ==
'0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x08);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 return MVFR2;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 ==
'1') then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 return MVFR2;
elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 return MVFR2;

reg

0b0101
G8-6776 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.118 NMRR, Normal Memory Remap Register

The NMRR characteristics are:

Purpose

Provides additional mapping controls for memory regions that are mapped as Normal memory by
their entry in the PRRR.

Used in conjunction with the PRRR.

Configurations

AArch32 System register NMRR bits [31:0] are architecturally mapped to AArch64 System register
MAIR_EL1[63:32] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register NMRR bits [31:0] are architecturally mapped to AArch32 System register
MAIR1[31:0] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register NMRR bits [31:0] (NMRR_S) are architecturally mapped to AArch32
System register MAIR1[31:0] (MAIR1_S) when EL3 is using AArch32.

AArch32 System register NMRR bits [31:0] (NMRR_NS) are architecturally mapped to AArch32
System register MAIR1[31:0] (MAIR1_NS) when EL3 is using AArch32.

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
NMRR are UNDEFINED.

MAIR1 and NMRR are the same register, with a different view depending on the value of
TTBCR.EAE:

• When it is set to 0, the register is as described in NMRR.

• When it is set to 1, the register is as described in MAIR1.

Attributes

NMRR is a 32-bit register.

Field descriptions

When TTBCR.EAE == 0:

OR<n>, bits [2n+17:2n+16], for n = 7 to 0

Outer Cacheable property mapping for memory attributes n, if the region is mapped as Normal
memory by the PRRR.TR<n> entry. n is the value of the TEX[0], C, and B bits concatenated. The
possible values of this field are:

0b00 Region is Non-cacheable.

0b01 Region is Write-Back, Write-Allocate.

0b10 Region is Write-Through, no Write-Allocate.

0b11 Region is Write-Back, no Write-Allocate.

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the meaning
given here. This is because the meaning of the attribute combination {TEX[0] = 1, C = 1, B = 0} is
IMPLEMENTATION DEFINED.

When FEAT_XS is implemented, stage 1 Outer Write-Back Cacheable memory types have the XS
attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OR7

31 30

OR6

29 28

OR5

27 26

OR4

25 24

OR3

23 22

OR2

21 20

OR1

19 18

OR0

17 16

IR7

15 14

IR6

13 12

IR5

11 10

IR4

9 8

IR3

7 6

IR2

5 4

IR1

3 2

IR0

1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6777
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
IR<n>, bits [2n+1:2n], for n = 7 to 0

Inner Cacheable property mapping for memory attributes n, if the region is mapped as Normal
memory by the PRRR.TR<n> entry. n is the value of the TEX[0], C, and B bits concatenated. The
possible values of this field are:

0b00 Region is Non-cacheable.

0b01 Region is Write-Back, Write-Allocate.

0b10 Region is Write-Through, no Write-Allocate.

0b11 Region is Write-Back, no Write-Allocate.

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the meaning
given here. This is because the meaning of the attribute combination {TEX[0] = 1, C = 1, B = 0} is
IMPLEMENTATION DEFINED.

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable memory types have the XS
attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing NMRR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 return MAIR1_NS;
 else
 return NMRR_NS;
 else
 if TTBCR.EAE == '1' then
 return MAIR1;
 else
 return NMRR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 return MAIR1_NS;
 else
 return NMRR_NS;
 else
 if TTBCR.EAE == '1' then
 return MAIR1;
 else
 return NMRR;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0010 0b001
G8-6778 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL3 then
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 return MAIR1_S;
 else
 return MAIR1_NS;
 else
 if SCR.NS == '0' then
 return NMRR_S;
 else
 return NMRR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR1_NS = R[t];
 else
 NMRR_NS = R[t];
 else
 if TTBCR.EAE == '1' then
 MAIR1 = R[t];
 else
 NMRR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR1_NS = R[t];
 else
 NMRR_NS = R[t];
 else
 if TTBCR.EAE == '1' then
 MAIR1 = R[t];
 else
 NMRR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 MAIR1_S = R[t];
 else
 MAIR1_NS = R[t];
 else
 if SCR.NS == '0' then
 NMRR_S = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6779
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 NMRR_NS = R[t];

G8-6780 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.119 NSACR, Non-Secure Access Control Register

The NSACR characteristics are:

Purpose

When EL3 is implemented and can use AArch32, defines the Non-secure access permissions to
Trace, Advanced SIMD and floating-point functionality. Also includes IMPLEMENTATION DEFINED
bits that can define Non-secure access permissions for IMPLEMENTATION DEFINED functionality.

Configurations

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
NSACR are UNDEFINED.

Note

In AArch64 state, the NSACR controls are replaced by controls in CPTR_EL3.

Attributes

NSACR is a 32-bit register.

Field descriptions

If EL3 is implemented and is using AArch64 then:

• Any read of the NSACR from Non-secure EL2 or Non-secure EL1 returns a value of 0x00000C00.

• Any read or write to NSACR from Secure EL1 is trapped as an exception to EL3.

If EL3 is not implemented, then any read of the NSACR from EL2 or EL1 returns a value of 0x00000C00.

Bits [31:21]

Reserved, RES0.

NSTRCDIS, bit [20]

Disables Non-secure System register accesses to all implemented trace registers.

0b0 This control has no effect on:

• System register access to implemented trace registers.

• The behavior of CPACR.TRCDIS and HCPTR.TTA.

0b1 Non-secure System register accesses to all implemented trace registers are disabled,
meaning:

• CPACR.TRCDIS behaves as RAO/WI in Non-secure state, regardless of its
actual value.

• HCPTR.TTA behaves as RAO/WI, regardless of its actual value.

The implementation of this field must correspond to the implementation of the CPACR.TRCDIS
field:

• If CPACR.TRCDIS is RAZ/WI, this field is RAZ/WI.

• If CPACR.TRCDIS is RW, this field is RW.

RES0

31 21 20 19 18 16 15

RES0

14 12 11 10

RES0

9 0

NSTRCDIS
RES0

IMPLEMENTATION DEFINED

cp10
cp11

NSASEDIS
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6781
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Note

• The ETMv4 architecture does not permit EL0 to access the trace registers. If the PE trace unit
implements FEAT_ETMv4, EL0 accesses to the trace registers are UNDEFINED.

• The architecture does not provide Non-secure access controls on trace register accesses
through the optional memory-mapped external debug interface.

System register accesses to the trace registers can have side-effects. When a System register access
is trapped, any side-effects that are normally associated with the access do not occur before the
exception is taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Bit [19]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [18:16]

IMPLEMENTATION DEFINED.

NSASEDIS, bit [15]

Disables Non-secure access to the Advanced SIMD functionality.

0b0 This control has no effect on:

• Non-secure access to Advanced SIMD functionality.

• The behavior of CPACR.ASEDIS and HCPTR.TASE.

0b1 Non-secure access to the Advanced SIMD functionality is disabled, meaning:

• CPACR.ASEDIS behaves as RAO/WI in Non-secure state, regardless of its
actual value.

• HCPTR.TASE behaves as RAO/WI, regardless of its actual value.

The implementation of this field must correspond to the implementation of the CPACR.ASEDIS
field:

• If CPACR.ASEDIS is RES0, this field is RES0. If the implementation does not include
Advanced SIMD and floating-point functionality, this field is RES0.

• If CPACR.ASEDIS is RAZ/WI, this field is RAZ/WI.

• If CPACR.ASEDIS is RW, this field is RW.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Bits [14:12]

Reserved, RES0.

cp11, bit [11]

The value of this field is ignored. If this field is programmed with a different value to the cp10 field
then this field is UNKNOWN on a direct read of the NSACR.

If the implementation does not include Advanced SIMD and floating-point functionality, this field
is RES0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.
G8-6782 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
cp10, bit [10]

Enable Non-secure access to the Advanced SIMD and floating-point features. Possible values of the
fields are:

0b0 Advanced SIMD and floating-point features can be accessed only from Secure state.
Any attempt to access this functionality from Non-secure state is UNDEFINED.

When the PE is in Non-secure state:

• The CPACR.{cp11, cp10} fields ignore writes and read as 0b00, access denied.

• The HCPTR.{TCP11, TCP10} fields behave as RAO/WI, regardless of their
actual values.

0b1 Advanced SIMD and floating-point features can be accessed from both Security states.

If Non-secure access to the Advanced SIMD and floating-point functionality is enabled, the CPACR
must be checked to determine the level of access that is permitted.

The Advanced SIMD and floating-point features controlled by these fields are:

• Execution of any floating-point or Advanced SIMD instruction.

• Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as
S0-S31 and Q0-Q15.

• Any access to the FPSCR, FPSID, MVFR0, MVFR1, MVFR2, or FPEXC System registers.

If the implementation does not include Advanced SIMD and floating-point functionality, this field
is RES0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Bits [9:0]

Reserved, RES0.

Accessing NSACR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif !HaveEL(EL3) || (!ELUsingAArch32(EL3) && SCR_EL3.NS == '1') then
 return Zeros(20):'1100':Zeros(8);
 else
 return NSACR;
elsif PSTATE.EL == EL2 then
 if !HaveEL(EL3) || (!ELUsingAArch32(EL3) && SCR_EL3.NS == '1') then
 return Zeros(20):'1100':Zeros(8);
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0001 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6783
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 return NSACR;
elsif PSTATE.EL == EL3 then
 return NSACR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 NSACR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0001 0b010
G8-6784 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.120 PAR, Physical Address Register

The PAR characteristics are:

Purpose

Returns the output address (OA) from an Address translation instruction that executed successfully,
or fault information if the instruction did not execute successfully.

Configurations

AArch32 System register PAR bits [63:0] are architecturally mapped to AArch64 System register
PAR_EL1[63:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to PAR
are UNDEFINED.

PAR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit
register, accesses read and write bits[31:0] and do not modify bits[63:32].

The Configurations section specifies the cases where each PAR format is used.

PAR is accessed as a 32-bit value:

• When the PE is not in Hyp mode and is using the Short-descriptor translation table format.

• When the PE is in Hyp mode and executes an ATS12NSOPR, ATS12NSOPW,
ATS12NSOUR, or ATS12NSOUW instruction and the value of HCR.VM is 0 and the value
of TTBCR.EAE is 0.

In these cases, PAR[63:32] is RES0.

Otherwise, the PAR is accessed as a 64-bit value, if any of the following is true:

• When using the Long-descriptor translation table format.

• If the stage 1 address translation is disabled and TTBCR.EAE is set to 1.

• In an implementation that includes EL2, for the result of an ATS1Cxx instruction performed
from Hyp mode.

For PL1&0 stage 1 translations, TTBCR.EAE selects the translation table format.

Attributes

PAR is a 64-bit register.

Field descriptions

When the instruction returned a 32-bit value to the PAR, PAR.F==0:

This section describes the register value returned by the successful execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of
the PE.

RES0

63 32

PA

31 12 11 10

NS

9 8

SH

7 6 4 3 2

SS

1

F

0

LPAE
NOS

Outer[1:0]
Inner[2:0]

IMPLEMENTATION DEFINED
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6785
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
On a successful conversion, the PAR can return a value that indicates the resulting attributes, rather than the values
that appear in the translation table descriptors. More precisely:

• Memory attribute fields are permitted to report the resulting attributes, as determined by any permitted
implementation choices and any applicable configuration bits, instead of reporting the values that appear in
the translation table descriptors. This applies to the NOS, SH, Inner, and Outer fields.

• See the NS bit description for constraints on the value it returns.

Bits [63:32]

Reserved, RES0.

PA, bits [31:12]

Output address. The output address (OA) corresponding to the supplied input address. This field
returns address bits[31:12].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

0b0 Short-descriptor translation table format used. This means the PAR returned a 32-bit
value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NOS, bit [10]

Not Outer Shareable. When the returned value of PAR.SH is 1, indicates the Shareability attribute
for the physical memory region:

0b0 Memory region is Outer Shareable.

0b1 Memory region is Inner Shareable.

When the returned value of PAR.SH is 0 the value returned to this field is UNKNOWN.

The value returned in this field can be the resulting attribute, as determined by any permitted
implementation choices and any applicable configuration bits, instead of the value that appears in
the translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NS, bit [9]

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, this bit reflects the Security state of the physical
address space of the translation. This means it reflects the effect of the NSTable bits of earlier levels
of the translation table walk if those NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bit [8]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
G8-6786 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
SH, bit [7]

Shareability. Indicates whether the physical memory region is Non-shareable:

0b0 Memory is Non-shareable.

0b1 Memory is shareable, and PAR.NOS indicates whether the region is Outer Shareable or
Inner Shareable.

The value returned in this field can be the resulting attribute, as determined by any permitted
implementation choices and any applicable configuration bits, instead of the value that appears in
the translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Inner[2:0], bits [6:4]

Inner cacheability attribute for the region. Permitted values are:

0b000 Non-cacheable.

0b001 Device-nGnRnE.

0b011 Device-nGnRE.

0b101 Write-Back, Write-Allocate.

0b110 Write-Through.

0b111 Write-Back, no Write-Allocate.

The values 0b010 and 0b100 are reserved.

The value returned in this field can be the resulting attribute, as determined by any permitted
implementation choices and any applicable configuration bits, instead of the value that appears in
the translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Outer[1:0], bits [3:2]

Outer cacheability attribute for the region. Permitted values are:

0b00 Non-cacheable.

0b01 Write-Back, Write-Allocate.

0b10 Write-Through, no Write-Allocate.

0b11 Write-Back, no Write-Allocate.

The value returned in this field can be the resulting attribute, as determined by any permitted
implementation choices and any applicable configuration bits, instead of the value that appears in
the translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SS, bit [1]

Supersection. Used to indicate if the result is a Supersection:

0b0 Result is not a Supersection. PAR[31:12] contains OA[31:12].

0b1 Result is a Supersection, and:

• PAR[31:24] contains OA[31:24].

• PAR[23:16] contains OA[39:32].

• PAR[15:12] contains 0b0000.

If an implementation supports less than 40 bits of physical address, the bits in the PAR
field that correspond to physical address bits that are not implemented are UNKNOWN.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6787
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

0b0 Address translation completed successfully.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When the instruction returned a 32-bit value to the PAR, PAR.F==1:

This section describes the register value returned by a fault on the execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of
the PE.

Bits [63:32]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [31:16]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:12]

Reserved, RES0.

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

0b0 Short-descriptor translation table format used. This means the PAR returned a 32-bit
value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [10:7]

Reserved, RES0.

FS[5], bit [6]

Fault status bits, External abort type. Provides an IMPLEMENTATION DEFINED classification of an
External abort. Values are as in the DFSR.ExT field when using the Short-descriptor translation
table format.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

IMPLEMENTATION DEFINED

31 16

RES0

15 12 11

RES0

10 7 6

FS[4:0]

5 1

F

0

LPAE FS[5]
G8-6788 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
FS[4:0], bits [5:1]

Fault status bits. Values are as in the DFSR.FS field when using the Short-descriptor translation
table format.

0b00001 Alignment fault.

0b00011 Access flag fault, level 1.

0b00100 Fault on instruction cache maintenance.

0b00101 Translation fault, level 1.

0b00110 Access flag fault, level 2.

0b00111 Translation fault, level 2.

0b01001 Domain fault, level 1.

0b01011 Domain fault, level 2.

0b01100 Synchronous External abort, on translation table walk, level 1.

0b01101 Permission fault, level 1.

0b01110 Synchronous External abort, on translation table walk, level 2.

0b01111 Permission fault, level 2.

0b10000 TLB conflict abort.

0b11001 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b11100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on translation table walk, level 1.

0b11110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on translation table walk, level 2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

0b1 Address translation aborted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When the instruction returned a 64-bit value to the PAR, PAR.F==0:

This section describes the register value returned by the successful execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of
the PE.

On a successful conversion, the PAR can return a value that indicates the resulting attributes, rather than the values
that appear in the translation table descriptors. More precisely:

• Memory attribute fields are permitted to report the resulting attributes, as determined by any permitted
implementation choices and any applicable configuration bits, instead of reporting the values that appear in
the translation table descriptors. This applies to the ATTR and SH fields.

ATTR

63 56

RES0

55 40

PA

39 32

PA

31 12 11 10

NS

9

SH

8 7

RES0

6 1

F

0

LPAE IMPLEMENTATION DEFINED
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6789
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
• See the NS bit description for constraints on the value it returns.

ATTR, bits [63:56]

Memory attributes for the returned output address. This field uses the same encoding as the Attr<n>
fields in MAIR0 and MAIR1.

The value returned in this field can be the resulting attribute, as determined by any permitted
implementation choices and any applicable configuration bits, instead of the value that appears in
the translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [55:40]

Reserved, RES0.

PA, bits [39:12]

Output address. The output address (OA) corresponding to the supplied input address. This field
returns address bits[39:12].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

0b1 Long-descriptor translation table format used. This means the PAR returned a 64-bit
value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bit [10]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NS, bit [9]

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, this bit reflects the Security state of the physical
address space of the translation. This means it reflects the effect of the NSTable bits of earlier levels
of the translation table walk if those NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH, bits [8:7]

Shareability attribute, for the returned output address. Permitted values are:

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

The value 0b01 is reserved.

Note
This field returns the value 0b10 for:

• Any type of Device memory.
G8-6790 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
• Normal memory with both Inner Non-cacheable and Outer Non-cacheable attributes.

The value returned in this field can be the resulting attribute, as determined by any permitted
implementation choices and any applicable configuration bits, instead of the value that appears in
the translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:1]

Reserved, RES0.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

0b0 Address translation completed successfully.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When the instruction returned a 64-bit value to the PAR, PAR.F==1:

This section describes the register value returned by a fault on the execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of
the PE.

IMPLEMENTATION DEFINED, bits [63:56]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [55:52]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [51:48]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [47:12]

Reserved, RES0.

63 56 55 52 51 48

RES0

47 32

IMPLEMENTATION
DEFINED

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

RES0

31 12 11 10 9 8 7

FST

6 1

F

0

LPAE
RES0

RES0
S2WLK

FSTAGE
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6791
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

0b1 Long-descriptor translation table format used. This means the PAR returned a 64-bit
value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [10]

Reserved, RES0.

FSTAGE, bit [9]

Indicates the translation stage at which the translation aborted:

0b0 Translation aborted because of a fault in the stage 1 translation.

0b1 Translation aborted because of a fault in the stage 2 translation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S2WLK, bit [8]

If this bit is set to 1, it indicates the translation aborted because of a stage 2 fault during a stage 1
translation table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

FST, bits [6:1]

Fault status field. Values are as in the DFSR.STATUS and IFSR.STATUS fields when using the
Long-descriptor translation table format.

0b000000 Address size fault in translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010101 Synchronous External abort on translation table walk, level 1.

0b010110 Synchronous External abort on translation table walk, level 2.

0b010111 Synchronous External abort on translation table walk, level 3.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 1.

0b011110 When FEAT_RAS is not implemented:
G8-6792 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
Synchronous parity or ECC error on memory access on translation table walk, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 3.

0b110000 TLB conflict abort.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

0b1 Address translation aborted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return PAR_NS<31:0>;
 else
 return PAR<31:0>;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return PAR_NS<31:0>;
 else
 return PAR<31:0>;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return PAR_S<31:0>;
 else
 return PAR_NS<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0100 0b000

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0100 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6793
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 PAR_NS = ZeroExtend(R[t]);
 else
 PAR = ZeroExtend(R[t]);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 PAR_NS = ZeroExtend(R[t]);
 else
 PAR = ZeroExtend(R[t]);
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 PAR_S = ZeroExtend(R[t]);
 else
 PAR_NS = ZeroExtend(R[t]);

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return PAR_NS;
 else
 return PAR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return PAR_NS;
 else
 return PAR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return PAR_S;
 else
 return PAR_NS;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

coproc CRm opc1

0b1111 0b0111 0b0000

coproc CRm opc1

0b1111 0b0111 0b0000
G8-6794 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 PAR_NS = R[t2]:R[t];
 else
 PAR = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 PAR_NS = R[t2]:R[t];
 else
 PAR = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 PAR_S = R[t2]:R[t];
 else
 PAR_NS = R[t2]:R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6795
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.121 PRRR, Primary Region Remap Register

The PRRR characteristics are:

Purpose

Controls the top level mapping of the TEX[0], C, and B memory region attributes.

Configurations

AArch32 System register PRRR bits [31:0] are architecturally mapped to AArch64 System register
MAIR_EL1[31:0] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register PRRR bits [31:0] are architecturally mapped to AArch32 System register
MAIR0[31:0] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register PRRR bits [31:0] (PRRR_S) are architecturally mapped to AArch32
System register MAIR0[31:0] (MAIR0_S) when EL3 is using AArch32.

AArch32 System register PRRR bits [31:0] (PRRR_NS) are architecturally mapped to AArch32
System register MAIR0[31:0] (MAIR0_NS) when EL3 is using AArch32.

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
PRRR are UNDEFINED.

MAIR0 and PRRR are the same register, with a different view depending on the value of
TTBCR.EAE:

• When it is set to 0, the register is as described in PRRR.

• When it is set to 1, the register is as described in MAIR0.

Attributes

PRRR is a 32-bit register.

Field descriptions

When TTBCR.EAE == 0:

NOS<n>, bit [n+24], for n = 7 to 0

Not Outer Shareable. NOS<n> is the Outer Shareable property for memory attributes n, if the region
is mapped as Normal memory that is not Inner Non-cacheable, Outer Non-cacheable, and the
appropriate PRRR.{NS0, NS1} field identifies the region as shareable. n is the value of the
concatenation of the {TEX[0], C, B} bits from the translation table descriptor. The possible values
of each NOS<n> field other than NOS6 are:

0b0 Memory region is Outer Shareable.

0b1 Memory region is Inner Shareable.

The value of this bit is ignored if the region is:

• Device memory

• Normal memory that is at least one of:

— Inner Non-cacheable, Outer Non-cacheable.

— Identified by the appropriate PRRR.{NS0, NS1} field as Non-shareable.

The meaning of the NOS6 field is IMPLEMENTATION DEFINED.

31 30 29 28 27 26 25 24

RES0

23 20 19 18 17 16

TR7

15 14

TR6

13 12

TR5

11 10

TR4

9 8

TR3

7 6

TR2

5 4

TR1

3 2

TR0

1 0

NOS7
NOS6

NOS5
NOS4

NOS0
NOS1

NOS2
NOS3

NS1
NS0

DS0
DS1
G8-6796 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:20]

Reserved, RES0.

NS1, bit [19]

Mapping of S = 1 attribute for Normal memory regions. This field is used in determining the
Shareability of a memory region that is mapped to Normal memory and both:

• Is not Inner Non-cacheable, Outer Non-cacheable.

• Has the S bit in the translation table descriptor set to 1.

The possible values of this bit are:

0b0 Region is Non-shareable.

0b1 Region is shareable. The value of the appropriate PRRR.NOS<n> field determines
whether the region is Inner Shareable or Outer Shareable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NS0, bit [18]

Mapping of S = 0 attribute for Normal memory regions. This field is used in determining the
Shareability of a memory region that is mapped to Normal memory and both:

• Is not Inner Non-cacheable, Outer Non-cacheable.

• Has the S bit in the translation table descriptor set to 0.

The possible values of this bit are:

0b0 Region is Non-shareable.

0b1 Region is shareable. The value of the appropriate PRRR.NOS<n> field determines
whether the region is Inner Shareable or Outer Shareable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DS1, bit [17]

Mapping of S = 1 attribute for Device memory. From Armv8, all types of Device memory are Outer
Shareable, and therefore this bit is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DS0, bit [16]

Mapping of S = 0 attribute for Device memory. From Armv8, all types of Device memory are Outer
Shareable, and therefore this bit is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TR<n>, bits [2n+1:2n], for n = 7 to 0

TR<n> is the primary TEX mapping for memory attributes n, and defines the mapped memory type
for a region with attributes n. n is the value of the concatenation of the {TEX[0], C, B} bits from the
translation table descriptor. The possible values for each field other than TR6 are:

0b00 Device-nGnRnE memory

0b01 Device-nGnRE memory

0b10 Normal memory

The value 0b11 is reserved. The effect of programming a field to 0b11 is CONSTRAINED
UNPREDICTABLE.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6797
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The meaning of the TR6 field is IMPLEMENTATION DEFINED.

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back
Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PRRR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 return MAIR0_NS;
 else
 return PRRR_NS;
 else
 if TTBCR.EAE == '1' then
 return MAIR0;
 else
 return PRRR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 return MAIR0_NS;
 else
 return PRRR_NS;
 else
 if TTBCR.EAE == '1' then
 return MAIR0;
 else
 return PRRR;
elsif PSTATE.EL == EL3 then
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 return MAIR0_S;
 else
 return MAIR0_NS;
 else
 if SCR.NS == '0' then
 return PRRR_S;
 else
 return PRRR_NS;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0010 0b000
G8-6798 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR0_NS = R[t];
 else
 PRRR_NS = R[t];
 else
 if TTBCR.EAE == '1' then
 MAIR0 = R[t];
 else
 PRRR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR0_NS = R[t];
 else
 PRRR_NS = R[t];
 else
 if TTBCR.EAE == '1' then
 MAIR0 = R[t];
 else
 PRRR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 MAIR0_S = R[t];
 else
 MAIR0_NS = R[t];
 else
 if SCR.NS == '0' then
 PRRR_S = R[t];
 else
 PRRR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6799
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.122 REVIDR, Revision ID Register

The REVIDR characteristics are:

Purpose

Provides implementation-specific minor revision information.

Configurations

AArch32 System register REVIDR bits [31:0] are architecturally mapped to AArch64 System
register REVIDR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
REVIDR are UNDEFINED.

If REVIDR has the same value as MIDR, then its contents have no significance.

Attributes

REVIDR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing REVIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return REVIDR;
elsif PSTATE.EL == EL2 then
 return REVIDR;
elsif PSTATE.EL == EL3 then
 return REVIDR;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0000 0b110
G8-6800 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.123 RMR, Reset Management Register

The RMR characteristics are:

Purpose

If EL1 or EL3 is the highest implemented Exception level and this register is implemented:

• A write to the register at the highest implemented Exception level can request a Warm reset.

• If the highest implemented Exception level can use AArch32 and AArch64, this register
specifies the Execution state that the PE boots into on a Warm reset.

Configurations

AArch32 System register RMR bits [31:0] are architecturally mapped to AArch64 System register
RMR_EL1[31:0] when the highest implemented Exception level is EL1.

AArch32 System register RMR bits [31:0] are architecturally mapped to AArch64 System register
RMR_EL3[31:0] when EL3 is implemented.

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to RMR
are UNDEFINED.

Only implemented if EL1 or EL3 is the highest implemented Exception level. In this case:

• If the highest implemented Exception level can use AArch32 and AArch64 then this register
must be implemented.

• If the highest implemented Exception level cannot use AArch64 then it is IMPLEMENTATION
DEFINED whether the register is implemented.

Attributes

RMR is a 32-bit register.

Field descriptions

Bits [31:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

AA64, bit [0]

When the highest implemented Exception level can use AArch64, determines which Execution state
the PE boots into after a Warm reset:

0b0 AArch32.

0b1 AArch64.

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector
address of the specified Execution state.

If the highest implemented Exception level cannot use AArch64 this bit is RAZ/WI.

The reset behavior of this field is:

• When implemented as a RW field, this field resets to 0 on a Cold reset.

RES0

31 2

RR

1 0

AA64
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6801
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accessing RMR

When EL3 is implemented, Arm deprecates accessing this register from any PE mode other than Monitor mode.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL IN {EL1, EL3} && IsHighestEL(PSTATE.EL) then
 return RMR;
else
 UNDEFINED;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL IN {EL1, EL3} && IsHighestEL(PSTATE.EL) then
 RMR = R[t];
else
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0000 0b010

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0000 0b010
G8-6802 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.124 RVBAR, Reset Vector Base Address Register

The RVBAR characteristics are:

Purpose

If EL3 is not implemented, contains the IMPLEMENTATION DEFINED address that execution starts
from after reset when executing in AArch32 state.

Configurations

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
RVBAR are UNDEFINED.

This register is only implemented if the highest Exception level implemented is capable of using
AArch32, and is not EL3.

Attributes

RVBAR is a 32-bit register.

Field descriptions

ResetAddress, bits [31:1]

Bits [31:1] of the IMPLEMENTATION DEFINED address that execution starts from after reset when
executing in 32-bit state.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bit [0]

Reserved, RES1.

Accessing RVBAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if IsHighestEL(EL1) then
 return RVBAR;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);

ResetAddress

31 1 0

RES1

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6803
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if IsHighestEL(EL2) then
 return RVBAR;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return MVBAR;

G8-6804 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.125 SCR, Secure Configuration Register

The SCR characteristics are:

Purpose

When EL3 is implemented and can use AArch32, defines the configuration of the current Security
state. It specifies:

• The Security state, either Secure or Non-secure.

• What mode the PE branches to if an IRQ, FIQ, or External abort occurs.

• Whether the PSTATE.F or PSTATE.A bits can be modified when SCR.NS==1.

Configurations

AArch32 System register SCR bits [31:0] can be mapped to AArch64 System register
SCR_EL3[31:0], but this is not architecturally mandated.

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to SCR
are UNDEFINED.

Attributes

SCR is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

TERR, bit [15]

When FEAT_RAS is implemented:

TERR

Trap Error record accesses. Generate a Monitor Trap exception on accesses to the following
registers from modes other than Monitor mode:

ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR, ERXFR2,
ERXMISC0, ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS. When FEAT_RASv1p1
is implemented, ERXMISC4, ERXMISC5, ERXMISC6, ERXMISC7.

0b0 This control does not cause any instructions to be trapped.

0b1 Accesses to the specified registers from modes other than Monitor mode generate a
Monitor Trap exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [14]

Reserved, RES0.

RES0

31 16 15 14 13 12

RES0

11 10 9 8 7 6

AW

5

FW

4

EA

3 2 1

NS

0

TERR
RES0

TWE
TWI

SIF

IRQ
FIQ

nET
SCD

HCE
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6805
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
TWE, bit [13]

Traps WFE instructions to Monitor mode.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute a WFE instruction in any mode other than Monitor mode is
trapped to Monitor mode, if the instruction would otherwise have caused the PE to enter
a low-power state and the attempted execution does not generate an exception that is
taken to EL1 or EL2 by SCTLR.nTWE or HCR.TWE.

Any exception that is taken to EL1 or to EL2 has priority over this trap.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes
its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

TWI, bit [12]

Traps WFI instructions to Monitor mode.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute a WFI instruction in any mode other than Monitor mode is
trapped to Monitor mode, if the instruction would otherwise have caused the PE to enter
a low-power state and the attempted execution does not generate an exception that is
taken to EL1 or EL2 by SCTLR.nTWI or HCR.TWI.

Any exception that is taken to EL1 or to EL2 has priority over this trap.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Note
Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Bits [11:10]

Reserved, RES0.

SIF, bit [9]

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from
Non-secure memory. The possible values for this bit are:

0b0 Secure state instruction fetches from Non-secure memory are permitted.

0b1 Secure state instruction fetches from Non-secure memory are not permitted.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.
G8-6806 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
HCE, bit [8]

Hypervisor Call instruction enable. If EL2 is implemented, enables execution of HVC instructions
at Non-secure EL1 and EL2.

0b0 HVC instructions are:

• UNDEFINED at Non-secure EL1. The Undefined Instruction exception is taken
from PL1 to PL1.

• UNPREDICTABLE at EL2. Behavior is one of the following:

— The instruction is UNDEFINED.

— The instruction executes as a NOP.

0b1 HVC instructions are enabled at Non-secure EL1 and EL2.

Note

HVC instructions are always UNDEFINED at EL0 and in Secure state.

If EL2 is not implemented, this bit is RES0 and HVC is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

SCD, bit [7]

Secure Monitor Call disable. Disables SMC instructions.

0b0 SMC instructions are enabled.

0b1 In Non-secure state, SMC instructions are UNDEFINED. The Undefined Instruction
exception is taken from the current Exception level to the current Exception level.

In Secure state, behavior is one of the following:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

Note

SMC instructions are always UNDEFINED at PL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

nET, bit [6]

Not Early Termination. This bit disables early termination.

0b0 Early termination permitted. Execution time of data operations can depend on the data
values.

0b1 Disable early termination. The number of cycles required for data operations is forced
to be independent of the data values.

This IMPLEMENTATION DEFINED mechanism can disable data dependent timing optimizations from
multiplies and data operations. It can provide system support against information leakage that might
be exploited by timing correlation types of attack.

On implementations that do not support early termination or do not support disabling early
termination, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6807
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
AW, bit [5]

When the value of SCR.EA is 1 and the value of HCR.AMO is 0, this bit controls whether
PSTATE.A masks an External abort taken from Non-secure state.

0b0 External aborts taken from Non-secure state are not masked by PSTATE.A, and are
taken to EL3.

External aborts taken from Secure state are masked by PSTATE.A.

0b1 External aborts taken from either Security state are masked by PSTATE.A. When
PSTATE.A is 0, the abort is taken to EL3.

When SCR.EA is 0 or HCR.AMO is 1, this bit has no effect.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

FW, bit [4]

When the value of SCR.FIQ is 1 and the value of HCR.FMO is 0, this bit controls whether
PSTATE.F masks an FIQ interrupt taken from Non-secure state.

0b0 An FIQ taken from Non-secure state is not masked by PSTATE.F, and is taken to EL3.

An FIQ taken from Secure state is masked by PSTATE.F.

0b1 An FIQ taken from either Security state is masked by PSTATE.F. When PSTATE.F is 0,
the FIQ is taken to EL3.

When SCR.FIQ is 0 or HCR.FMO is 1, this bit has no effect.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

EA, bit [3]

External Abort handler. This bit controls which mode takes External aborts and SError interrupt
exceptions.

0b0 External aborts taken to Abort mode.

0b1 External aborts taken to Monitor mode.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

FIQ, bit [2]

FIQ handler. This bit controls which mode takes FIQ exceptions.

0b0 FIQs taken to FIQ mode.

0b1 FIQs taken to Monitor mode.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

IRQ, bit [1]

IRQ handler. This bit controls which mode takes IRQ exceptions.

0b0 IRQs taken to IRQ mode.

0b1 IRQs taken to Monitor mode.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

NS, bit [0]

Non-secure bit. Except when the PE is in Monitor mode, this bit determines the Security state of the
PE:

0b0 PE is in Secure state.

0b1 PE is in Non-secure state.
G8-6808 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
If the HCR.TGE bit is set, an attempt to change from a Secure PL1 mode to a Non-secure EL1 mode
by changing the SCR.NS bit from 0 to 1 results in the SCR.NS bit remaining as 0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Accessing SCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return SCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SCR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0001 0b000

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6809
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.126 SCTLR, System Control Register

The SCTLR characteristics are:

Purpose

Provides the top level control of the system, including its memory system.

Configurations

AArch32 System register SCTLR bits [31:0] are architecturally mapped to AArch64 System
register SCTLR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
SCTLR are UNDEFINED.

Some bits in the register are read-only. These bits relate to non-configurable features of an
implementation, and are provided for compatibility with previous versions of the architecture.

Attributes

SCTLR is a 32-bit register.

Field descriptions

DSSBS, bit [31]

When FEAT_SSBS is implemented:

DSSBS

Default PSTATE.SSBS value on Exception Entry. The defined values are:

0b0 PSTATE.SSBS is set to 0 on an exception to any mode in this security state except Hyp
mode

0b1 PSTATE.SSBS is set to 1 on an exception to any mode in this security state except Hyp
mode

Note
When EL3 is implemented and is using AArch32, this bit is banked between the two Security states.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

31

TE

30 29 28

RES0

27 26

EE

25 24 23 22 21 20 19 18 17 16

RES0

15 14

V

13

I

12 11 10 9 8 7 6 5 4 3

C

2

A

1

M

0

DSSBS
AFE

TRE
RES0

SPAN
RES1

RES0
UWXN

WXN
nTWE

nTLSMD
LSMAOE

CP15BEN
UNK

ITD
SED

RES0
EnRCTX

RES1
nTWI

RES0
G8-6810 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
TE, bit [30]

T32 Exception Enable. This bit controls whether exceptions to an Exception level that is executing
at PL1 are taken to A32 or T32 state:

0b0 Exceptions, including reset, taken to A32 state.

0b1 Exceptions, including reset, taken to T32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

AFE, bit [29]

Access Flag Enable. When using the Short-descriptor translation table format for the PL1&0
translation regime, this bit enables use of the AP[0] bit in the translation descriptors as the Access
flag, and restricts access permissions in the translation descriptors to the simplified model. The
possible values of this bit are:

0b0 In the translation table descriptors, AP[0] is an access permissions bit. The full range of
access permissions is supported. No Access flag is implemented.

0b1 In the translation table descriptors, AP[0] is the Access flag. Only the simplified model
for access permissions is supported.

When using the Long-descriptor translation table format, the VMSA behaves as if this bit is set to
1, regardless of the value of this bit.

The AFE bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

TRE, bit [28]

TEX remap enable. This bit enables remapping of the TEX[2:1] bits in the PL1&0 translation
regime for use as two translation table bits that can be managed by the operating system. Enabling
this remapping also changes the scheme used to describe the memory region attributes in the
VMSA. The possible values of this bit are:

0b0 TEX remap disabled. TEX[2:0] are used, with the C and B bits, to describe the memory
region attributes.

0b1 TEX remap enabled. TEX[2:1] are reassigned for use as bits managed by the operating
system. The TEX[0], C, and B bits are used to describe the memory region attributes,
with the MMU remap registers.

When the value of TTBCR.EAE is 1, this bit is RES1.

The TRE bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [27:26]

Reserved, RES0.

EE, bit [25]

The value of the PSTATE.E bit on branch to an exception vector or coming out of reset, and the
endianness of stage 1 translation table walks in the PL1&0 translation regime.

The possible values of this bit are:

0b0 Little-endian. PSTATE.E is cleared to 0 on taking an exception or coming out of reset.
Stage 1 translation table walks in the PL1&0 translation regime are little-endian.

0b1 Big-endian. PSTATE.E is set to 1 on taking an exception or coming out of reset. Stage
1 translation table walks in the PL1&0 translation regime are big-endian.

If an implementation does not provide Big-endian support for data accesses at Exception levels
higher than EL0, this bit is RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6811
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
If an implementation does not provide Little-endian support for data accesses at Exception levels
higher than EL0, this bit is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Bit [24]

Reserved, RES0.

SPAN, bit [23]

When FEAT_PAN is implemented:

SPAN

Set Privileged Access Never, on taking an exception to EL1 from either Secure or Non-secure state,
or to EL3 from Secure state when EL3 is using AArch32.

0b0 PSTATE.PAN is set to 1 in the following situations:

• In Non-secure state, on taking an exception to EL1.

• In Secure state, when EL3 is using AArch64, on taking an exception to EL1.

• In Secure state, when EL3 is using AArch32, on taking an exception to EL3.

0b1 The value of PSTATE.PAN is left unchanged on taking an exception to EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bit [22]

Reserved, RES1.

Bit [21]

Reserved, RES0.

UWXN, bit [20]

Unprivileged write permission implies PL1 XN (Execute-never). This bit can force all memory
regions that are writable at PL0 to be treated as XN for accesses from software executing at PL1.
The possible values of this bit are:

0b0 This control has no effect on memory access permissions.

0b1 Any region that is writable at PL0 forced to XN for accesses from software executing
at PL1.

The UWXN bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the PL1&0 translation regime, this bit can force
all memory regions that are writable to be treated as XN. The possible values of this bit are:

0b0 This control has no effect on memory access permissions.

0b1 Any region that is writable in the PL1&0 translation regime is forced to XN for accesses
from software executing at PL1 or PL0.

This bit applies only when SCTLR.M bit is set.

The WXN bit is permitted to be cached in a TLB.
G8-6812 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to Undefined mode.

0b0 Any attempt to execute a WFE instruction at EL0 is trapped to Undefined mode, if the
instruction would otherwise have caused the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes
its condition code check.

Note
Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to Undefined mode.

0b0 Any attempt to execute a WFI instruction at EL0 is trapped to Undefined mode, if the
instruction would otherwise have caused the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Bits [15:14]

Reserved, RES0.

V, bit [13]

Vectors bit. This bit selects the base address of the exception vectors for exceptions taken to a PE
mode other than Monitor mode or Hyp mode:

0b0 Normal exception vectors. Base address is held in VBAR.

0b1 High exception vectors (Hivecs), base address 0xFFFF0000. This base address cannot be
remapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6813
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
I, bit [12]

Instruction access Cacheability control, for accesses at EL1 and EL0:

0b0 All instruction access to Normal memory from PL1 and PL0 are Non-cacheable for all
levels of instruction and unified cache.

If the value of SCTLR.M is 0, instruction accesses from stage 1 of the PL1&0
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer
Non-cacheable memory.

0b1 All instruction access to Normal memory from PL1 and PL0 can be cached at all levels
of instruction and unified cache.

If the value of SCTLR.M is 0, instruction accesses from stage 1 of the PL1&0
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer
Write-Through memory.

Instruction accesses to Normal memory from EL1 and EL0 are Cacheable regardless of the value of
the SCTLR.I bit if either:

• EL2 is using AArch32 and the value of HCR.DC is 1.

• EL2 is using AArch64 and the value of HCR_EL2.DC is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bit [11]

Reserved, RES1.

EnRCTX, bit [10]

When FEAT_SPECRES is implemented:

EnRCTX

Enable EL0 access to the AArch32 CFPRCTX, DVPRCTX, and CPPRCTX instructions.

0b0 EL0 access to these instructions is disabled, and these instructions are trapped to EL1.

0b1 EL0 access to these instructions is enabled.

Note
When EL3 is implemented and is using AArch32, this bit is banked between the two Security states.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at PL0 and PL1.

0b0 SETEND instruction execution is enabled at PL0 and PL1.

0b1 SETEND instructions are UNDEFINED at PL0 and PL1.

If the implementation does not support mixed-endian operation at any Exception level, this bit is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.
G8-6814 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
ITD, bit [7]

IT Disable. Disables some uses of IT instructions at PL1 and PL0.

0b0 All IT instruction functionality is enabled at PL1 and PL0.

0b1 Any attempt at PL1 or PL0 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.

• All encodings of the subsequent instruction with the following values for hw1:

— 11xxxxxxxxxxxxxx: All 32-bit instructions, and the 16-bit instructions B,
UDF, SVC, LDM, and STM.

— 1011xxxxxxxxxxxx: All instructions in Miscellaneous 16-bit instructions
on page F3-4423.

— 10100xxxxxxxxxxx: ADD Rd, PC, #imm

— 01001xxxxxxxxxxx: LDR Rd, [PC, #imm]

— 0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC;
BLX PC.

— 010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This
pattern also covers unpredictable cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or fail
the condition code check that applies to them as a result of being in an IT block.

It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.

• The first half of a 32-bit instruction.

This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.

An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then
behavior is CONSTRAINED UNPREDICTABLE. For more information see Changes to an ITD control by
an instruction in an IT block on page E1-4258.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the
SCTLR_EL1, SCTLR_EL2, and HSCTLR.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When an implementation does not implement ITD, access to this field is RAZ/WI.

UNK, bit [6]

Writes to this bit are IGNORED. Reads of this bit return an UNKNOWN value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System
instructions in the (coproc==0b1111) encoding space from PL1 and PL0:

0b0 PL0 and PL1 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is
UNDEFINED.

0b1 PL0 and PL1 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is
enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in
the SCTLR_EL1, SCTLR_EL2, and HSCTLR.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6815
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

When an implementation does not implement CP15BEN, access to this field is RAO/WI.

LSMAOE, bit [4]

When FEAT_LSMAOC is implemented:

LSMAOE

Load Multiple and Store Multiple Atomicity and Ordering Enable.

0b0 For all memory accesses at EL1 or EL0, A32 and T32 Load Multiple and Store Multiple
can have an interrupt taken during the sequence memory accesses, and the memory
accesses are not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load Multiple and Store Multiple
at EL1 or EL0 is as defined for Armv8.0.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Otherwise:

Reserved, RES1.

nTLSMD, bit [3]

When FEAT_LSMAOC is implemented:

nTLSMD

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE
memory.

0b0 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL1 or EL0
that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory
are trapped and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL1 or EL0
that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory
are not trapped.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Otherwise:

Reserved, RES1.

C, bit [2]

Cacheability control, for data accesses at EL1 and EL0:

0b0 All data access to Normal memory from PL1 and PL0, and all accesses to the PL1&0
stage 1 translation tables, are Non-cacheable for all levels of data and unified cache.

0b1 All data access to Normal memory from PL1 and PL0, and all accesses to the PL1&0
stage 1 translation tables, can be cached at all levels of data and unified cache.

The PE ignores SCTLR.C for Non-secure state and data accesses to Normal memory from EL1 and
EL0 are Cacheable if either:

• EL2 is using AArch32 and the value of HCR.DC is 1.

• EL2 is using AArch64 and the value of HCR_EL2.DC is 1.
G8-6816 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at PL1 and PL0:

0b0 Alignment fault checking disabled when executing at PL1 or PL0.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

0b1 Alignment fault checking enabled when executing at PL1 or PL0.

All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless
of the value of the A bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

M, bit [0]

MMU enable for EL1 and EL0 stage 1 address translation. Possible values of this bit are:

0b0 EL1 and EL0 stage 1 address translation disabled.

See the SCTLR.I field for the behavior of instruction accesses to Normal memory.

0b1 EL1 and EL0 stage 1 address translation enabled.

In the Non-secure state the PE behaves as if the value of the SCTLR.M field is 0 for all purposes
other than returning the value of a direct read of the field if either:

• EL2 is using AArch32 and the value of HCR.{DC, TGE} is not {0, 0}.

• EL2 is using AArch64 and the value of HCR_EL2.{DC, TGE} is not {0, 0}.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing SCTLR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return SCTLR_NS;
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6817
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 return SCTLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return SCTLR_NS;
 else
 return SCTLR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return SCTLR_S;
 else
 return SCTLR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 SCTLR_NS = R[t];
 else
 SCTLR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 SCTLR_NS = R[t];
 else
 SCTLR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 SCTLR_S = R[t];
 else
 SCTLR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0000 0b000
G8-6818 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.127 SPSR, Saved Program Status Register

The SPSR characteristics are:

Purpose

Holds the saved process state for the current mode.

Configurations

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to SPSR
are UNDEFINED.

Attributes

SPSR is a 32-bit register.

Field descriptions

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to the current mode,
and copied to PSTATE.N on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to the current mode, and
copied to PSTATE.Z on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to the current mode, and
copied to PSTATE.C on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to the current mode,
and copied to PSTATE.V on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to the current
mode, and copied to PSTATE.Q on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6819
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to the current mode, and copied to
PSTATE.IT on executing an exception return operation in the current mode.

SPSR.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR[26:25].

• IT[7:2] is SPSR[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to the current
mode, and copied to PSTATE.SSBS on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to the current
mode, and copied to PSTATE.PAN on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to the current
mode, and copied to PSTATE.DIT on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
G8-6820 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to the current mode,
and copied to PSTATE.IL on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to the current
mode, and copied to PSTATE.GE on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to the current mode, and copied
to PSTATE.E on executing an exception return operation in the current mode.

If the implementation does not support big-endian operation, SPSR.E is RES0. If the implementation
does not support little-endian operation, SPSR.E is RES1. On executing an exception return
operation in the current mode, if the implementation does not support big-endian operation at the
Exception level being returned to, SPSR.E is RES0, and if the implementation does not support
little-endian operation at the Exception level being returned to, SPSR.E is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to the current mode,
and copied to PSTATE.A on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to the current mode, and
copied to PSTATE.I on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to the current mode, and
copied to PSTATE.F on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to the current mode,
and copied to PSTATE.T on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to the current mode, and copied
to PSTATE.M[4:0] on executing an exception return operation in the current mode.

0b10000 User.

0b10001 FIQ.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6821
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b10010 IRQ.

0b10011 Supervisor.

0b10110 Monitor.

0b10111 Abort.

0b11010 Hyp.

0b11011 Undefined.

0b11111 System.

Other values are reserved. If SPSR.M[4:0] has a Reserved value, or a value for an unimplemented
Exception level, executing an exception return operation in the current mode is an illegal return
event, as described in Illegal return events from AArch32 state on page G1-6066.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
G8-6822 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.128 SPSR_abt, Saved Program Status Register (Abort mode)

The SPSR_abt characteristics are:

Purpose

Holds the saved process state when an exception is taken to Abort mode.

Configurations

AArch32 System register SPSR_abt bits [31:0] are architecturally mapped to AArch64 System
register SPSR_abt[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
SPSR_abt are UNDEFINED.

Attributes

SPSR_abt is a 32-bit register.

Field descriptions

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Abort mode, and
copied to PSTATE.N on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Abort mode, and
copied to PSTATE.Z on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Abort mode, and
copied to PSTATE.C on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Abort mode, and
copied to PSTATE.V on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Abort mode,
and copied to PSTATE.Q on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6823
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to Abort mode, and copied to
PSTATE.IT on executing an exception return operation in Abort mode.

SPSR_abt.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_abt[26:25].

• IT[7:2] is SPSR_abt[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Abort mode,
and copied to PSTATE.SSBS on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Abort mode,
and copied to PSTATE.PAN on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Abort mode,
and copied to PSTATE.DIT on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
G8-6824 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Abort mode, and
copied to PSTATE.IL on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Abort mode,
and copied to PSTATE.GE on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Abort mode, and copied to
PSTATE.E on executing an exception return operation in Abort mode.

If the implementation does not support big-endian operation, SPSR_abt.E is RES0. If the
implementation does not support little-endian operation, SPSR_abt.E is RES1. On executing an
exception return operation in Abort mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_abt.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_abt.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Abort mode, and
copied to PSTATE.A on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Abort mode, and copied
to PSTATE.I on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Abort mode, and copied
to PSTATE.F on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Abort mode, and
copied to PSTATE.T on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Abort mode, and copied to
PSTATE.M[4:0] on executing an exception return operation in Abort mode.

0b10000 User.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6825
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10111 Abort.

0b11011 Undefined.

0b11111 System.

Other values are reserved. If SPSR_abt.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in Abort mode is an illegal
return event, as described in Illegal return events from AArch32 state on page G1-6066.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_abt

SPSR_abt is accessible in all modes other than User mode and Abort mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS{<c>}{<q>} <Rd>, SPSR_abt

MSR{<c>}{<q>} SPSR_abt, <Rn>

R M M1

0b1 0b1 0b0100

R M M1

0b1 0b1 0b0100
G8-6826 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.129 SPSR_fiq, Saved Program Status Register (FIQ mode)

The SPSR_fiq characteristics are:

Purpose

Holds the saved process state when an exception is taken to FIQ mode.

Configurations

AArch32 System register SPSR_fiq bits [31:0] are architecturally mapped to AArch64 System
register SPSR_fiq[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
SPSR_fiq are UNDEFINED.

Attributes

SPSR_fiq is a 32-bit register.

Field descriptions

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to FIQ mode, and
copied to PSTATE.N on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to FIQ mode, and copied
to PSTATE.Z on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to FIQ mode, and copied
to PSTATE.C on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to FIQ mode, and
copied to PSTATE.V on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to FIQ mode, and
copied to PSTATE.Q on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6827
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to FIQ mode, and copied to
PSTATE.IT on executing an exception return operation in FIQ mode.

SPSR_fiq.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_fiq[26:25].

• IT[7:2] is SPSR_fiq[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to FIQ mode,
and copied to PSTATE.SSBS on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to FIQ mode, and
copied to PSTATE.PAN on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to FIQ mode,
and copied to PSTATE.DIT on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
G8-6828 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to FIQ mode, and
copied to PSTATE.IL on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to FIQ mode,
and copied to PSTATE.GE on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to FIQ mode, and copied to
PSTATE.E on executing an exception return operation in FIQ mode.

If the implementation does not support big-endian operation, SPSR_fiq.E is RES0. If the
implementation does not support little-endian operation, SPSR_fiq.E is RES1. On executing an
exception return operation in FIQ mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_fiq.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_fiq.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to FIQ mode, and
copied to PSTATE.A on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to FIQ mode, and copied
to PSTATE.I on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to FIQ mode, and copied
to PSTATE.F on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to FIQ mode, and
copied to PSTATE.T on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to FIQ mode, and copied to
PSTATE.M[4:0] on executing an exception return operation in FIQ mode.

0b10000 User.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6829
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10111 Abort.

0b11011 Undefined.

0b11111 System.

Other values are reserved. If SPSR_fiq.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in FIQ mode is an illegal
return event, as described in Illegal return events from AArch32 state on page G1-6066.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_fiq

SPSR_fiq is accessible in all modes other than User mode and FIQ mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS{<c>}{<q>} <Rd>, SPSR_fiq

MSR{<c>}{<q>} SPSR_fiq, <Rn>

R M M1

0b1 0b0 0b1110

R M M1

0b1 0b0 0b1110
G8-6830 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.130 SPSR_hyp, Saved Program Status Register (Hyp mode)

The SPSR_hyp characteristics are:

Purpose

Holds the saved process state when an exception is taken to Hyp mode.

Configurations

AArch32 System register SPSR_hyp bits [31:0] are architecturally mapped to AArch64 System
register SPSR_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
SPSR_hyp are UNDEFINED.

Attributes

SPSR_hyp is a 32-bit register.

Field descriptions

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Hyp mode, and
copied to PSTATE.N on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Hyp mode, and copied
to PSTATE.Z on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Hyp mode, and copied
to PSTATE.C on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Hyp mode, and
copied to PSTATE.V on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Hyp mode, and
copied to PSTATE.Q on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6831
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to Hyp mode, and copied to
PSTATE.IT on executing an exception return operation in Hyp mode.

SPSR_hyp.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_hyp[26:25].

• IT[7:2] is SPSR_hyp[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Hyp mode,
and copied to PSTATE.SSBS on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Hyp mode, and
copied to PSTATE.PAN on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Hyp mode,
and copied to PSTATE.DIT on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
G8-6832 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Hyp mode, and
copied to PSTATE.IL on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Hyp mode,
and copied to PSTATE.GE on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Hyp mode, and copied to
PSTATE.E on executing an exception return operation in Hyp mode.

If the implementation does not support big-endian operation, SPSR_hyp.E is RES0. If the
implementation does not support little-endian operation, SPSR_hyp.E is RES1. On executing an
exception return operation in Hyp mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_hyp.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_hyp.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Hyp mode, and
copied to PSTATE.A on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Hyp mode, and copied
to PSTATE.I on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Hyp mode, and copied
to PSTATE.F on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Hyp mode, and
copied to PSTATE.T on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Hyp mode, and copied to
PSTATE.M[4:0] on executing an exception return operation in Hyp mode.

0b10000 User.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6833
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10111 Abort.

0b11010 Hyp.

0b11011 Undefined.

0b11111 System.

Other values are reserved. If SPSR_hyp.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in Hyp mode is an illegal
return event, as described in Illegal return events from AArch32 state on page G1-6066.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_hyp

SPSR_hyp is accessible only in Monitor mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS{<c>}{<q>} <Rd>, SPSR_hyp

MSR{<c>}{<q>} SPSR_hyp, <Rn>

R M M1

0b1 0b1 0b1110

R M M1

0b1 0b1 0b1110
G8-6834 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.131 SPSR_irq, Saved Program Status Register (IRQ mode)

The SPSR_irq characteristics are:

Purpose

Holds the saved process state when an exception is taken to IRQ mode.

Configurations

AArch32 System register SPSR_irq bits [31:0] are architecturally mapped to AArch64 System
register SPSR_irq[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
SPSR_irq are UNDEFINED.

Attributes

SPSR_irq is a 32-bit register.

Field descriptions

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to IRQ mode, and
copied to PSTATE.N on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to IRQ mode, and copied
to PSTATE.Z on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to IRQ mode, and copied
to PSTATE.C on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to IRQ mode, and
copied to PSTATE.V on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to IRQ mode, and
copied to PSTATE.Q on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6835
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to IRQ mode, and copied to
PSTATE.IT on executing an exception return operation in IRQ mode.

SPSR_irq.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_irq[26:25].

• IT[7:2] is SPSR_irq[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to IRQ mode,
and copied to PSTATE.SSBS on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to IRQ mode, and
copied to PSTATE.PAN on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to IRQ mode,
and copied to PSTATE.DIT on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
G8-6836 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to IRQ mode, and
copied to PSTATE.IL on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to IRQ mode,
and copied to PSTATE.GE on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to IRQ mode, and copied to
PSTATE.E on executing an exception return operation in IRQ mode.

If the implementation does not support big-endian operation, SPSR_irq.E is RES0. If the
implementation does not support little-endian operation, SPSR_irq.E is RES1. On executing an
exception return operation in IRQ mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_irq.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_irq.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to IRQ mode, and
copied to PSTATE.A on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to IRQ mode, and copied
to PSTATE.I on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to IRQ mode, and copied
to PSTATE.F on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to IRQ mode, and
copied to PSTATE.T on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to IRQ mode, and copied to
PSTATE.M[4:0] on executing an exception return operation in IRQ mode.

0b10000 User.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6837
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10111 Abort.

0b11011 Undefined.

0b11111 System.

Other values are reserved. If SPSR_irq.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in IRQ mode is an illegal
return event, as described in Illegal return events from AArch32 state on page G1-6066.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_irq

SPSR_irq is accessible in all modes other than User mode and IRQ mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS{<c>}{<q>} <Rd>, SPSR_irq

MSR{<c>}{<q>} SPSR_irq, <Rn>

R M M1

0b1 0b1 0b0000

R M M1

0b1 0b1 0b0000
G8-6838 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.132 SPSR_mon, Saved Program Status Register (Monitor mode)

The SPSR_mon characteristics are:

Purpose

Holds the saved process state when an exception is taken to Monitor mode.

Configurations

AArch32 System register SPSR_mon bits [31:0] can be mapped to AArch64 System register
SPSR_EL3[31:0], but this is not architecturally mandated.

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
SPSR_mon are UNDEFINED.

Attributes

SPSR_mon is a 32-bit register.

Field descriptions

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Monitor mode,
and copied to PSTATE.N on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Monitor mode, and
copied to PSTATE.Z on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Monitor mode, and
copied to PSTATE.C on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Monitor mode,
and copied to PSTATE.V on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Monitor mode,
and copied to PSTATE.Q on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6839
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to Monitor mode, and copied to
PSTATE.IT on executing an exception return operation in Monitor mode.

SPSR_mon.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_mon[26:25].

• IT[7:2] is SPSR_mon[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Monitor
mode, and copied to PSTATE.SSBS on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Monitor mode,
and copied to PSTATE.PAN on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Monitor mode,
and copied to PSTATE.DIT on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
G8-6840 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Monitor mode, and
copied to PSTATE.IL on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Monitor
mode, and copied to PSTATE.GE on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Monitor mode, and copied to
PSTATE.E on executing an exception return operation in Monitor mode.

If the implementation does not support big-endian operation, SPSR_mon.E is RES0. If the
implementation does not support little-endian operation, SPSR_mon.E is RES1. On executing an
exception return operation in Monitor mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_mon.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_mon.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Monitor mode, and
copied to PSTATE.A on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Monitor mode, and
copied to PSTATE.I on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Monitor mode, and
copied to PSTATE.F on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Monitor mode,
and copied to PSTATE.T on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Monitor mode, and copied to
PSTATE.M[4:0] on executing an exception return operation in Monitor mode.

0b10000 User.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6841
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10110 Monitor.

0b10111 Abort.

0b11010 Hyp.

0b11011 Undefined.

0b11111 System.

Other values are reserved. If SPSR_mon.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in Monitor mode is an
illegal return event, as described in Illegal return events from AArch32 state on page G1-6066.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_mon

SPSR_mon is only accessible in EL3 modes other than Monitor mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS{<c>}{<q>} <Rd>, SPSR_mon

MSR{<c>}{<q>} SPSR_mon, <Rn>

R M M1

0b1 0b1 0b1100

R M M1

0b1 0b1 0b1100
G8-6842 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.133 SPSR_svc, Saved Program Status Register (Supervisor mode)

The SPSR_svc characteristics are:

Purpose

Holds the saved process state when an exception is taken to Supervisor mode.

Configurations

AArch32 System register SPSR_svc bits [31:0] are architecturally mapped to AArch64 System
register SPSR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
SPSR_svc are UNDEFINED.

Attributes

SPSR_svc is a 32-bit register.

Field descriptions

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Supervisor mode,
and copied to PSTATE.N on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Supervisor mode, and
copied to PSTATE.Z on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Supervisor mode, and
copied to PSTATE.C on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Supervisor mode,
and copied to PSTATE.V on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Supervisor
mode, and copied to PSTATE.Q on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6843
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to Supervisor mode, and copied to
PSTATE.IT on executing an exception return operation in Supervisor mode.

SPSR_svc.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_svc[26:25].

• IT[7:2] is SPSR_svc[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Supervisor
mode, and copied to PSTATE.SSBS on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Supervisor
mode, and copied to PSTATE.PAN on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Supervisor
mode, and copied to PSTATE.DIT on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
G8-6844 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Supervisor mode,
and copied to PSTATE.IL on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Supervisor
mode, and copied to PSTATE.GE on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Supervisor mode, and copied
to PSTATE.E on executing an exception return operation in Supervisor mode.

If the implementation does not support big-endian operation, SPSR_svc.E is RES0. If the
implementation does not support little-endian operation, SPSR_svc.E is RES1. On executing an
exception return operation in Supervisor mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_svc.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_svc.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Supervisor mode,
and copied to PSTATE.A on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Supervisor mode, and
copied to PSTATE.I on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Supervisor mode, and
copied to PSTATE.F on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Supervisor mode,
and copied to PSTATE.T on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Supervisor mode, and copied
to PSTATE.M[4:0] on executing an exception return operation in Supervisor mode.

0b10000 User.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6845
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10111 Abort.

0b11011 Undefined.

0b11111 System.

Other values are reserved. If SPSR_svc.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in Supervisor mode is an
illegal return event, as described in Illegal return events from AArch32 state on page G1-6066.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_svc

SPSR_svc is accessible in all modes other than User mode and Supervisor mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS{<c>}{<q>} <Rd>, SPSR_svc

MSR{<c>}{<q>} SPSR_svc, <Rn>

R M M1

0b1 0b1 0b0010

R M M1

0b1 0b1 0b0010
G8-6846 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.134 SPSR_und, Saved Program Status Register (Undefined mode)

The SPSR_und characteristics are:

Purpose

Holds the saved process state when an exception is taken to Undefined mode.

Configurations

AArch32 System register SPSR_und bits [31:0] are architecturally mapped to AArch64 System
register SPSR_und[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
SPSR_und are UNDEFINED.

Attributes

SPSR_und is a 32-bit register.

Field descriptions

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Undefined mode,
and copied to PSTATE.N on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Undefined mode, and
copied to PSTATE.Z on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Undefined mode, and
copied to PSTATE.C on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Undefined mode,
and copied to PSTATE.V on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Undefined
mode, and copied to PSTATE.Q on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6847
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to Undefined mode, and copied to
PSTATE.IT on executing an exception return operation in Undefined mode.

SPSR_und.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_und[26:25].

• IT[7:2] is SPSR_und[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Undefined
mode, and copied to PSTATE.SSBS on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Undefined
mode, and copied to PSTATE.PAN on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Undefined
mode, and copied to PSTATE.DIT on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
G8-6848 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Undefined mode,
and copied to PSTATE.IL on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Undefined
mode, and copied to PSTATE.GE on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Undefined mode, and copied
to PSTATE.E on executing an exception return operation in Undefined mode.

If the implementation does not support big-endian operation, SPSR_und.E is RES0. If the
implementation does not support little-endian operation, SPSR_und.E is RES1. On executing an
exception return operation in Undefined mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_und.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_und.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Undefined mode,
and copied to PSTATE.A on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Undefined mode, and
copied to PSTATE.I on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Undefined mode, and
copied to PSTATE.F on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Undefined mode,
and copied to PSTATE.T on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Undefined mode, and copied
to PSTATE.M[4:0] on executing an exception return operation in Undefined mode.

0b10000 User.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6849
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10111 Abort.

0b11011 Undefined.

0b11111 System.

Other values are reserved. If SPSR_und.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in Undefined mode is an
illegal return event, as described in Illegal return events from AArch32 state on page G1-6066.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_und

SPSR_und is accessible in all modes other than User mode and Undefined mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS{<c>}{<q>} <Rd>, SPSR_und

MSR{<c>}{<q>} SPSR_und, <Rn>

R M M1

0b1 0b1 0b0110

R M M1

0b1 0b1 0b0110
G8-6850 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.135 TCMTR, TCM Type Register

The TCMTR characteristics are:

Purpose

Provides information about the implementation of the TCM.

Configurations

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TCMTR are UNDEFINED.

If EL1 or above can use AArch32 then this register must be implemented.

Attributes

TCMTR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing TCMTR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return TCMTR;
elsif PSTATE.EL == EL2 then
 return TCMTR;
elsif PSTATE.EL == EL3 then
 return TCMTR;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0000 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6851
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.136 TLBIALL, TLB Invalidate All

The TLBIALL characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that are from any level of the
translation table walk. The entries that are invalidated are as follows:

• If executed at EL1, all entries that:

— Would be required for the EL1&0 translation regime.

— Match the current VMID, if EL2 is implemented and enabled in the current Security
state.

• If executed in Secure state when EL3 is using AArch32, all entries that would be required for
the Secure PL1&0 translation regime.

• If executed at EL2, and if EL2 is enabled in the current Security state, the stage 1 or stage 2
translation table entries that would be required for the PL1&0 translation regime and matches
the current VMID.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIALL are UNDEFINED.

Attributes

TLBIALL is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing TLBIALL instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS);
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0111 0b000
G8-6852 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch32.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_AllAttr);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
 AArch32.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBI_AllAttr);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_ExcludeXS);
 else
 AArch32.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_AllAttr);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL30, Shareability_NSH, TLBI_ExcludeXS);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6853
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.137 TLBIALLH, TLB Invalidate All, Hyp mode

The TLBIALLH characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are
from any level of the translation table walk that would be required for the Non-secure EL2
translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIALLH are UNDEFINED.

Attributes

TLBIALLH is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing TLBIALLH instruction

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_NSH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 else
 AArch32.TLBI_ALL(SS_NonSecure, Regime_EL2, Shareability_NSH, TLBI_AllAttr);

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0111 0b000
G8-6854 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.138 TLBIALLHIS, TLB Invalidate All, Hyp mode, Inner Shareable

The TLBIALLHIS characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are
from any level of the translation table walk that would be required for the Non-secure EL2
translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIALLHIS are UNDEFINED.

Attributes

TLBIALLHIS is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing TLBIALLHIS instruction

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_ISH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 else
 AArch32.TLBI_ALL(SS_NonSecure, Regime_EL2, Shareability_ISH, TLBI_AllAttr);

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6855
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.139 TLBIALLIS, TLB Invalidate All, Inner Shareable

The TLBIALLIS characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that are from any level of the
translation table walk. The entries that are invalidated are as follows:

• If executed at EL1, all entries that:

— Would be required for the EL1&0 translation regime.

— Match the current VMID, if EL2 is implemented and enabled in the current Security
state.

• If executed in Secure state when EL3 is using AArch32, all entries that would be required for
the Secure PL1&0 translation regime.

• If executed at EL2, and if EL2 is enabled in the current Security state, the stage 1 or stage 2
translation table entries that would be required for the PL1&0 translation regime and matches
the current VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIALLIS are UNDEFINED.

Attributes

TLBIALLIS is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing TLBIALLIS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then
 AArch32.TakeHypTrapException(0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0011 0b000
G8-6856 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS);
 else
 AArch32.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_AllAttr);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL30, Shareability_ISH, TLBI_ExcludeXS);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6857
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.140 TLBIALLNSNH, TLB Invalidate All, Non-Secure Non-Hyp

The TLBIALLNSNH characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are
from any level of the translation table walk that would be required for stage 1 or stage 2 of the
Non-secure PL1&0 translation regime, regardless of the associated VMID.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIALLNSNH are UNDEFINED.

Attributes

TLBIALLNSNH is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing TLBIALLNSNH instruction

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 else
 AArch32.TLBI_ALL(SS_NonSecure, Regime_EL10, Shareability_NSH, TLBI_AllAttr);

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0111 0b100
G8-6858 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.141 TLBIALLNSNHIS, TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable

The TLBIALLNSNHIS characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are
from any level of the translation table walk that would be required for stage 1 or stage 2 of the
Non-secure PL1&0 translation regime, regardless of the associated VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIALLNSNHIS are UNDEFINED.

Attributes

TLBIALLNSNHIS is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing TLBIALLNSNHIS instruction

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_ISH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 else
 AArch32.TLBI_ALL(SS_NonSecure, Regime_EL10, Shareability_ISH, TLBI_AllAttr);

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0011 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6859
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.142 TLBIASID, TLB Invalidate by ASID match

The TLBIASID characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used for the specified ASID, and either:

— Is from a level of lookup above the final level.

— Is a non-global entry from the final level of lookup.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIASID are UNDEFINED.

Attributes

TLBIASID is a 32-bit System instruction.

Field descriptions

Bits [31:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries for non-global pages that match the ASID values will be
affected by this System instruction.

Executing TLBIASID instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

RES0

31 8

ASID

7 0
G8-6860 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_AllAttr, R[t]);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
 AArch32.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBI_AllAttr,
R[t]);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_ASID(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_NSH, TLBI_AllAttr,
R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0111 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6861
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.143 TLBIASIDIS, TLB Invalidate by ASID match, Inner Shareable

The TLBIASIDIS characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used for the specified ASID, and either:

— Is from a level of lookup above the final level.

— Is a non-global entry from the final level of lookup.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIASIDIS are UNDEFINED.

Attributes

TLBIASIDIS is a 32-bit System instruction.

Field descriptions

Bits [31:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries for non-global pages that match the ASID values will be
affected by this System instruction.

Executing TLBIASIDIS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

RES0

31 8

ASID

7 0
G8-6862 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_ASID(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_ISH, TLBI_AllAttr,
R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0011 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6863
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.144 TLBIIPAS2, TLB Invalidate by Intermediate Physical Address, Stage 2

The TLBIIPAS2 characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that meet
the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• SCR.NS is 1.

• The entry would be used for the specified IPA.

• The entry would be used with the current VMID.

• The entry would be required for the PL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIIPAS2 are UNDEFINED.

Note

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIIPAS2 is a 32-bit System instruction.

Field descriptions

Bits [31:28]

Reserved, RES0.

IPA[39:12], bits [27:0]

Bits[39:12] of the intermediate physical address to match.

Executing TLBIIPAS2 instruction

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

RES0

31 28

IPA[39:12]

27 0
G8-6864 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 elsif SCR.NS == '0' then
 //no operation
 else
 AArch32.TLBI_IPAS2(SS_NonSecure, Regime_EL10, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0100 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6865
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.145 TLBIIPAS2IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable

The TLBIIPAS2IS characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that meet
the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• SCR.NS is 1.

• The entry would be used for the specified IPA.

• The entry would be used with the current VMID.

• The entry would be required for the PL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIIPAS2IS are UNDEFINED.

Note

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIIPAS2IS is a 32-bit System instruction.

Field descriptions

Bits [31:28]

Reserved, RES0.

IPA[39:12], bits [27:0]

Bits[39:12] of the intermediate physical address to match.

Executing TLBIIPAS2IS instruction

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

RES0

31 28

IPA[39:12]

27 0
G8-6866 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 elsif SCR.NS == '0' then
 //no operation
 else
 AArch32.TLBI_IPAS2(SS_NonSecure, Regime_EL10, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6867
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.146 TLBIIPAS2L, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level

The TLBIIPAS2L characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that meet
the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table
walk.

• SCR.NS is 1.

• The entry would be used for the specified IPA.

• The entry would be used with the current VMID.

• The entry would be required for the PL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIIPAS2L are UNDEFINED.

Note

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIIPAS2L is a 32-bit System instruction.

Field descriptions

Bits [31:28]

Reserved, RES0.

IPA[39:12], bits [27:0]

Bits[39:12] of the intermediate physical address to match.

Executing TLBIIPAS2L instruction

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

RES0

31 28

IPA[39:12]

27 0
G8-6868 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 elsif SCR.NS == '0' then
 //no operation
 else
 AArch32.TLBI_IPAS2(SS_NonSecure, Regime_EL10, VMID_NONE, Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0100 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6869
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.147 TLBIIPAS2LIS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner
Shareable

The TLBIIPAS2LIS characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that meet
the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table
walk.

• SCR.NS is 1.

• The entry would be used for the specified IPA.

• The entry would be used with the current VMID.

• The entry would be required for the PL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIIPAS2LIS are UNDEFINED.

Note

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIIPAS2LIS is a 32-bit System instruction.

Field descriptions

Bits [31:28]

Reserved, RES0.

IPA[39:12], bits [27:0]

Bits[39:12] of the intermediate physical address to match.

Executing TLBIIPAS2LIS instruction

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

RES0

31 28

IPA[39:12]

27 0
G8-6870 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 elsif SCR.NS == '0' then
 //no operation
 else
 AArch32.TLBI_IPAS2(SS_NonSecure, Regime_EL10, VMID_NONE, Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0000 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6871
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.148 TLBIMVA, TLB Invalidate by VA

The TLBIMVA characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified address, and one of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIMVA are UNDEFINED.

Attributes

TLBIMVA is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected
by this System instruction.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

VA

31 12

RES0

11 8

ASID

7 0
G8-6872 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
Executing TLBIMVA instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, R[t]);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, R[t]);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0111 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6873
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.149 TLBIMVAA, TLB Invalidate by VA, All ASID

The TLBIMVAA characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified address.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIMVAA are UNDEFINED.

Attributes

TLBIMVAA is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any unlocked TLB entries that match the VA will be affected by this
System instruction, regardless of the ASID.

Bits [11:0]

Reserved, RES0.

Executing TLBIMVAA instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

VA

31 12

RES0

11 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0111 0b011
G8-6874 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, R[t]);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, R[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6875
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.150 TLBIMVAAIS, TLB Invalidate by VA, All ASID, Inner Shareable

The TLBIMVAAIS characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified address.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIMVAAIS are UNDEFINED.

Attributes

TLBIMVAAIS is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any unlocked TLB entries that match the VA will be affected by this
System instruction, regardless of the ASID.

Bits [11:0]

Reserved, RES0.

Executing TLBIMVAAIS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

VA

31 12

RES0

11 0
G8-6876 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0011 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6877
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.151 TLBIMVAAL, TLB Invalidate by VA, All ASID, Last level

The TLBIMVAAL characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate the specified address.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIMVAAL are UNDEFINED.

Note

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIMVAAL is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any unlocked TLB entries that match the VA will be affected by this
System instruction, regardless of the ASID.

Bits [11:0]

Reserved, RES0.

Executing TLBIMVAAL instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

VA

31 12

RES0

11 0
G8-6878 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, R[t]);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0111 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6879
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.152 TLBIMVAALIS, TLB Invalidate by VA, All ASID, Last level, Inner Shareable

The TLBIMVAALIS characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate the specified address.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIMVAALIS are UNDEFINED.

Note

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIMVAALIS is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any unlocked TLB entries that match the VA will be affected by this
System instruction, regardless of the ASID.

Bits [11:0]

Reserved, RES0.

Executing TLBIMVAALIS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

VA

31 12

RES0

11 0
G8-6880 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0011 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6881
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.153 TLBIMVAH, TLB Invalidate by VA, Hyp mode

The TLBIMVAH characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are
from any level of the translation table walk that would be required for the Non-secure EL2
translation regime and used to translate the specified address.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIMVAH are UNDEFINED.

Attributes

TLBIMVAH is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected
by this System instruction.

Bits [11:0]

Reserved, RES0.

Executing TLBIMVAH instruction

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else

VA

31 12

RES0

11 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0111 0b001
G8-6882 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 else
 AArch32.TLBI_VA(SS_NonSecure, Regime_EL2, VMID[], Shareability_NSH, TLBILevel_Any, TLBI_AllAttr,
R[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6883
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.154 TLBIMVAHIS, TLB Invalidate by VA, Hyp mode, Inner Shareable

The TLBIMVAHIS characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are
from any level of the translation table walk that would be required for the Non-secure EL2
translation regime and used to translate the specified address.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIMVAHIS are UNDEFINED.

Attributes

TLBIMVAHIS is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected
by this System instruction.

Bits [11:0]

Reserved, RES0.

Executing TLBIMVAHIS instruction

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);

VA

31 12

RES0

11 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0011 0b001
G8-6884 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 else
 AArch32.TLBI_VA(SS_NonSecure, Regime_EL2, VMID[], Shareability_ISH, TLBILevel_Any, TLBI_AllAttr,
R[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6885
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.155 TLBIMVAIS, TLB Invalidate by VA, Inner Shareable

The TLBIMVAIS characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified address, and one of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIMVAIS are UNDEFINED.

Attributes

TLBIMVAIS is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected
by this System instruction.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

VA

31 12

RES0

11 8

ASID

7 0
G8-6886 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
Executing TLBIMVAIS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0011 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6887
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.156 TLBIMVAL, TLB Invalidate by VA, Last level

The TLBIMVAL characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified address, and one of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIMVAL are UNDEFINED.

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIMVAL is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected
by this System instruction.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

Executing TLBIMVAL instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

VA

31 12

RES0

11 8

ASID

7 0
G8-6888 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, R[t]);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0111 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6889
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.157 TLBIMVALH, TLB Invalidate by VA, Last level, Hyp mode

The TLBIMVALH characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are
from the final level of the translation table walk that would be required for the Non-secure EL2
translation regime and used to translate the specified address.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIMVALH are UNDEFINED.

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIMVALH is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected
by this System instruction.

Bits [11:0]

Reserved, RES0.

Executing TLBIMVALH instruction

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

VA

31 12

RES0

11 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0111 0b101
G8-6890 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 else
 AArch32.TLBI_VA(SS_NonSecure, Regime_EL2, VMID[], Shareability_NSH, TLBILevel_Last, TLBI_AllAttr,
R[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6891
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.158 TLBIMVALHIS, TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable

The TLBIMVALHIS characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are
from the final level of the translation table walk that would be required for the Non-secure EL2
translation regime and used to translate the specified address.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIMVALHIS are UNDEFINED.

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIMVALHIS is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected
by this System instruction.

Bits [11:0]

Reserved, RES0.

Executing TLBIMVALHIS instruction

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

VA

31 12

RES0

11 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0011 0b101
G8-6892 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 else
 AArch32.TLBI_VA(SS_NonSecure, Regime_EL2, VMID[], Shareability_ISH, TLBILevel_Last, TLBI_AllAttr,
R[t]);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6893
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.159 TLBIMVALIS, TLB Invalidate by VA, Last level, Inner Shareable

The TLBIMVALIS characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified address, and one of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBIMVALIS are UNDEFINED.

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIMVALIS is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected
by this System instruction.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

VA

31 12

RES0

11 8

ASID

7 0
G8-6894 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
Executing TLBIMVALIS instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0011 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6895
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.160 TLBTR, TLB Type Register

The TLBTR characteristics are:

Purpose

Provides information about the TLB implementation. The register must define whether the
implementation provides separate instruction and data TLBs, or a unified TLB. Normally, the
IMPLEMENTATION DEFINED information in this register includes the number of lockable entries in
the TLB.

Configurations

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TLBTR are UNDEFINED.

Attributes

TLBTR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:1]

IMPLEMENTATION DEFINED.

nU, bit [0]

Not Unified TLB. Indicates whether the implementation has a unified TLB:

0b0 Unified TLB.

0b1 Separate Instruction and Data TLBs.

Accessing TLBTR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return TLBTR;
elsif PSTATE.EL == EL2 then
 return TLBTR;

IMPLEMENTATION DEFINED

31 1

nU

0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0000 0b011
G8-6896 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL3 then
 return TLBTR;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6897
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.161 TPIDRPRW, PL1 Software Thread ID Register

The TPIDRPRW characteristics are:

Purpose

Provides a location where software executing at EL1 or higher can store thread identifying
information that is not visible to software executing at EL0, for OS management purposes.

The PE makes no use of this register.

Configurations

AArch32 System register TPIDRPRW bits [31:0] are architecturally mapped to AArch64 System
register TPIDR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TPIDRPRW are UNDEFINED.

Note

The PE never updates this register.

Attributes

TPIDRPRW is a 32-bit register.

Field descriptions

Bits [31:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TPIDRPRW

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return TPIDRPRW_NS;
 else
 return TPIDRPRW;
elsif PSTATE.EL == EL2 then

Thread ID

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0000 0b100
G8-6898 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return TPIDRPRW_NS;
 else
 return TPIDRPRW;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return TPIDRPRW_S;
 else
 return TPIDRPRW_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 TPIDRPRW_NS = R[t];
 else
 TPIDRPRW = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 TPIDRPRW_NS = R[t];
 else
 TPIDRPRW = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 TPIDRPRW_S = R[t];
 else
 TPIDRPRW_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0000 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6899
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.162 TPIDRURO, PL0 Read-Only Software Thread ID Register

The TPIDRURO characteristics are:

Purpose

Provides a location where software executing at EL1 or higher can store thread identifying
information that is visible to software executing at EL0, for OS management purposes.

The PE makes no use of this register.

Configurations

AArch32 System register TPIDRURO bits [31:0] are architecturally mapped to AArch64 System
register TPIDRRO_EL0[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TPIDRURO are UNDEFINED.

Note

The PE never updates this register.

Attributes

TPIDRURO is a 32-bit register.

Field descriptions

Bits [31:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TPIDRURO

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TPIDRRO_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 return TPIDRURO;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then

Thread ID

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0000 0b011
G8-6900 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return TPIDRURO_NS;
 else
 return TPIDRURO;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return TPIDRURO_NS;
 else
 return TPIDRURO;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return TPIDRURO_S;
 else
 return TPIDRURO_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 TPIDRURO_NS = R[t];
 else
 TPIDRURO = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 TPIDRURO_NS = R[t];
 else
 TPIDRURO = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 TPIDRURO_S = R[t];
 else
 TPIDRURO_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0000 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6901
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.163 TPIDRURW, PL0 Read/Write Software Thread ID Register

The TPIDRURW characteristics are:

Purpose

Provides a location where software executing at EL0 can store thread identifying information, for
OS management purposes.

The PE makes no use of this register.

Configurations

AArch32 System register TPIDRURW bits [31:0] are architecturally mapped to AArch64 System
register TPIDR_EL0[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TPIDRURW are UNDEFINED.

Note

The PE never updates this register.

Attributes

TPIDRURW is a 32-bit register.

Field descriptions

Bits [31:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TPIDRURW

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TPIDR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 return TPIDRURW;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then

Thread ID

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0000 0b010
G8-6902 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return TPIDRURW_NS;
 else
 return TPIDRURW;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return TPIDRURW_NS;
 else
 return TPIDRURW;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return TPIDRURW_S;
 else
 return TPIDRURW_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TPIDR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 TPIDRURW = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 TPIDRURW_NS = R[t];
 else
 TPIDRURW = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 TPIDRURW_NS = R[t];
 else
 TPIDRURW = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 TPIDRURW_S = R[t];
 else
 TPIDRURW_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0000 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6903
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.164 TTBCR, Translation Table Base Control Register

The TTBCR characteristics are:

Purpose

The control register for stage 1 of the PL1&0 translation regime. Its controls include:

• Where the VA range is split between addresses translated using TTBR0 and addresses
translated using TTBR1.

• The translation table format used by this stage of translation.

From Armv8.2, when the value of TTBCR.{EAE, T2E} is {1, 1}, TTBCR is used with TTBCR2.

Configurations

AArch32 System register TTBCR bits [31:0] are architecturally mapped to AArch64 System
register TCR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TTBCR are UNDEFINED.

The current translation table format determines which format of the register is used.

Some RW fields of this register have defined reset values. These apply only if the PE resets into an
Exception level that is using AArch32. If the PE resets into EL3 using AArch32 then:

• The EAE bit resets to 0 in both the Secure and the Non-secure instances of the register.

• Other reset values apply only to the Secure instance of the register.

Attributes

TTBCR is a 32-bit register.

Field descriptions

When TTBCR.EAE == 0:

EAE, bit [31]

Extended Address Enable.

0b0 Use the VMSAv8-32 translation system with the Short-descriptor translation table
format.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [30:6]

Reserved, RES0.

PD1, bit [5]

Translation table walk disable for translations using TTBR1. This bit controls whether a translation
table walk is performed on a TLB miss, for an address that is translated using TTBR1.

0b0 Perform translation table walks using TTBR1.

0b1 A TLB miss on an address that is translated using TTBR1 generates a Translation fault.
No translation table walk is performed.

31

RES0

30 6 5 4 3

N

2 0

EAE PD1 RES0
PD0
G8-6904 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

PD0, bit [4]

Translation table walk disable for translations using TTBR0. This bit controls whether a translation
table walk is performed on a TLB miss for an address that is translated using TTBR0.

0b0 Perform translation table walks using TTBR0.

0b1 A TLB miss on an address that is translated using TTBR0 generates a Translation fault.
No translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bit [3]

Reserved, RES0.

N, bits [2:0]

Indicate the width of the base address held in TTBR0. In TTBR0, the base address field is
bits[31:14-N]. The value of N also determines:

• Whether TTBR0 or TTBR1 is used as the base address for translation table walks.

• The size of the translation table pointed to by TTBR0.

N can take any value from 0 to 7, that is, from 0b000 to 0b111.

When N has its reset value of 0, the translation table base is compatible with Armv5 and Armv6.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When TTBCR.EAE == 1:

EAE, bit [31]

Extended Address Enable.

0b1 Use the VMSAv8-32 translation system with the Long-descriptor translation table
format.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

IMPLEMENTATION DEFINED, bit [30]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using TTBR1.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

31 30

SH1

29 28 27 26 25 24 23

A1

22

RES0

21 19

T1SZ

18 16

RES0

15 14

SH0

13 12 11 10 9 8 7 6

RES0

5 3

T0SZ

2 0

EAE
IMPLEMENTATION DEFINED

EPD1
IRGN1

ORGN1

ORGN0
IRGN0

T2E
EPD0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6905
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using TTBR1.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using TTBR1.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

EPD1, bit [23]

Translation table walk disable for translations using TTBR1. This bit controls whether a translation
table walk is performed on a TLB miss, for an address that is translated using TTBR1.

0b0 Perform translation table walks using TTBR1.

0b1 A TLB miss on an address that is translated using TTBR1 generates a Translation fault.
No translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

A1, bit [22]

Selects whether TTBR0 or TTBR1 defines the ASID.

0b0 TTBR0.ASID defines the ASID.

0b1 TTBR1.ASID defines the ASID.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [21:19]

Reserved, RES0.

T1SZ, bits [18:16]

See Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format on
page G5-6297 for how TTBCR.{T1SZ, T0SZ} determine the input address ranges and memory
region sizes translated using TTBR0 and TTBR1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.
G8-6906 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
Bits [15:14]

Reserved, RES0.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0.

0b00 Non-shareable

0b10 Outer Shareable

0b11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

EPD0, bit [7]

Translation table walk disable for translations using TTBR0. This bit controls whether a translation
table walk is performed on a TLB miss, for an address that is translated using TTBR0.

0b0 Perform translation table walks using TTBR0.

0b1 A TLB miss on an address that is translated using TTBR0 generates a Translation fault.
No translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

T2E, bit [6]

When FEAT_AA32HPD is implemented:

T2E

TTBCR2 Enable.

0b0 TTBCR2 is disabled. The contents of TTBCR2 are treated as 0 for all purposes other
than reading or writing the register.

0b1 TTBCR2 is enabled.

If TTBCR.EAE==0, then the behavior is as if the bit is 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6907
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Otherwise:

Reserved, RAZ/WI.

Bits [5:3]

Reserved, RES0.

T0SZ, bits [2:0]

See Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format on
page G5-6297 for how TTBCR.{T1SZ, T0SZ} determine the input address ranges and memory
region sizes translated using TTBR0 and TTBR1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing TTBCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return TTBCR_NS;
 else
 return TTBCR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return TTBCR_NS;
 else
 return TTBCR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return TTBCR_S;
 else
 return TTBCR_NS;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0010 0b0000 0b010
G8-6908 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBCR_NS = R[t];
 else
 TTBCR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBCR_NS = R[t];
 else
 TTBCR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 TTBCR_S = R[t];
 else
 TTBCR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0010 0b0000 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6909
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.165 TTBCR2, Translation Table Base Control Register 2

The TTBCR2 characteristics are:

Purpose

The second control register for stage 1 of the PL1&0 translation regime.

If FEAT_AA32HPD is not implemented then this register is not implemented and its encoding is
UNDEFINED. Otherwise:

• When the value of TTBCR.{EAE, T2E} is not {1, 1} the contents of TTBCR2 are treated as
zero for all purposes other than reading or writing the register.

• When the value of TTBCR.{EAE, T2E} is {1, 1} TTBCR2 is used with TTBCR.

Configurations

AArch32 System register TTBCR2 bits [31:0] are architecturally mapped to AArch64 System
register TCR_EL1[63:32].

This register is present only when AArch32 is supported at EL0 and FEAT_AA32HPD is
implemented. Otherwise, direct accesses to TTBCR2 are UNDEFINED.

Attributes

TTBCR2 is a 32-bit register.

Field descriptions

Bits [31:19]

Reserved, RES0.

HWU162, bit [18]

When FEAT_HPDS2 is implemented:

HWU162

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry for translations using TTBR1.

0b0 For translations using TTBR1, bit[62] of each stage 1 translation table Block or Page
entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1, bit[62] of each stage 1 translation table Block or Page
entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of
TTBCR2.HPD1 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD1 is 0 or the value of TTBCR.T2E
is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

RES0

31 19 18 17 16 15 14 13 12 11 10 9

RES0

8 0

HWU162
HWU161

HWU160
HWU159

HWU062

HPD0
HPD1

HWU059
HWU060

HWU061
G8-6910 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
HWU161, bit [17]

When FEAT_HPDS2 is implemented:

HWU161

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry for translations using TTBR1.

0b0 For translations using TTBR1, bit[61] of each stage 1 translation table Block or Page
entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1, bit[61] of each stage 1 translation table Block or Page
entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of
TTBCR2.HPD1 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD1 is 0 or the value of TTBCR.T2E
is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU160, bit [16]

When FEAT_HPDS2 is implemented:

HWU160

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry for translations using TTBR1.

0b0 For translations using TTBR1, bit[60] of each stage 1 translation table Block or Page
entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1, bit[60] of each stage 1 translation table Block or Page
entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of
TTBCR2.HPD1 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD1 is 0 or the value of TTBCR.T2E
is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU159, bit [15]

When FEAT_HPDS2 is implemented:

HWU159

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry for translations using TTBR1.

0b0 For translations using TTBR1, bit[59] of each stage 1 translation table Block or Page
entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1, bit[59] of each stage 1 translation table Block or Page
entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of
TTBCR2.HPD1 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD1 is 0 or the value of TTBCR.T2E
is 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6911
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU062, bit [14]

When FEAT_HPDS2 is implemented:

HWU062

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry for translations using TTBR0.

0b0 For translations using TTBR0, bit[62] of each stage 1 translation table Block or Page
entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0, bit[62] of each stage 1 translation table Block or Page
entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of
TTBCR2.HPD0 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD0 is 0 or the value of TTBCR.T2E
is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU061, bit [13]

When FEAT_HPDS2 is implemented:

HWU061

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry for translations using TTBR0.

0b0 For translations using TTBR0, bit[61] of each stage 1 translation table Block or Page
entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0, bit[61] of each stage 1 translation table Block or Page
entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of
TTBCR2.HPD0 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD0 is 0 or the value of TTBCR.T2E
is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU060, bit [12]

When FEAT_HPDS2 is implemented:

HWU060

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry for translations using TTBR0.

0b0 For translations using TTBR0, bit[60] of each stage 1 translation table Block or Page
entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
G8-6912 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
0b1 For translations using TTBR0, bit[60] of each stage 1 translation table Block or Page
entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of
TTBCR2.HPD0 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD0 is 0 or the value of TTBCR.T2E
is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU059, bit [11]

When FEAT_HPDS2 is implemented:

HWU059

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry for translations using TTBR0.

0b0 For translations using TTBR0, bit[59] of each stage 1 translation table Block or Page
entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0, bit[59] of each stage 1 translation table Block or Page
entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of
TTBCR2.HPD0 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD0 is 0 or the value of TTBCR.T2E
is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HPD1, bit [10]

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, XNTable, and
PXNTable, in the translation tables pointed to by TTBR1.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled if TTBCR.T2E == 1.

When disabled, the permissions are treated as if the bits are 0.

The Effective value of this field is 0 if the value of TTBCR.T2E is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HPD0, bit [9]

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, XNTable, and
PXNTable, in the translation tables pointed to by TTBR0.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled if TTBCR.T2E ==1.

When disabled, the permissions are treated is as if the bits are 0.

The Effective value of this field is 0 if the value of TTBCR.T2E is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6913
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Bits [8:0]

Reserved, RES0.

Accessing TTBCR2

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return TTBCR2_NS;
 else
 return TTBCR2;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return TTBCR2_NS;
 else
 return TTBCR2;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return TTBCR2_S;
 else
 return TTBCR2_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBCR2_NS = R[t];
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0010 0b0000 0b011

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0010 0b0000 0b011
G8-6914 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 TTBCR2 = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBCR2_NS = R[t];
 else
 TTBCR2 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 TTBCR2_S = R[t];
 else
 TTBCR2_NS = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6915
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.166 TTBR0, Translation Table Base Register 0

The TTBR0 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of the translation of
an address from the lower VA range in the PL1&0 translation regime, and other information for this
translation regime.

Configurations

AArch32 System register TTBR0 bits [63:0] are architecturally mapped to AArch64 System
register TTBR0_EL1[63:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TTBR0 are UNDEFINED.

TTBR0 is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit
register, accesses read and write bits [31:0] and do not modify bits [63:32].

TTBCR.EAE determines which TTBR0 format is used:

• TTBCR.EAE == 0b0: 32-bit format is used. TTBR0[63:32] are ignored.

• TTBCR.EAE == 0b1: 64-bit format is used.

When EL3 is using AArch32, write access to TTBR0(S) is disabled when the CP15SDISABLE
signal is asserted HIGH.

Used in conjunction with the TTBCR. When the 64-bit TTBR0 format is used, cacheability and
shareability information is held in the TTBCR, not in TTBR0.

Attributes

TTBR0 is a 64-bit register.

Field descriptions

When TTBCR.EAE == 0:

Bits [63:32]

Reserved, RES0.

TTB0, bits [31:7]

Translation table base address, bits[31:x], where x is 14-(TTBCR.N). Register bits [x-1:7] are RES0,
with the additional requirement that if these bits are not all zero, this is a misaligned translation table
base address, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Register bits [x-1:7] are treated as if all the bits are zero. The value read back from these bits
is either the value written or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

TTB0

31 7 6 5

RGN

4 3 2

S

1 0

IRGN[0]
NOS

IRGN[1]
IMP
G8-6916 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
IRGN, bits [0, 6]

Inner region bits. Bits [0,6] of this register together indicate the Inner Cacheability attributes for the
memory associated with the translation table walks. The possible values of IRGN[1:0] are:

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Cacheable.

0b11 Normal memory, Inner Write-Back no Write-Allocate Cacheable.

Note
The encoding of the IRGN bits is counter-intuitive, with register bit[6] being IRGN[0] and register
bit[0] being IRGN[1]. This encoding is chosen to give a consistent encoding of memory region
types and to ensure that software written for ARMv7 without the Multiprocessing Extensions can
run unmodified on an implementation that includes the functionality introduced by the ARMv7
Multiprocessing Extensions.

The IRGN field is split as follows:

• IRGN[0] is TTBR0[6].

• IRGN[1] is TTBR0[0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NOS, bit [5]

Not Outer Shareable. When the value of TTBR0.S is 1, indicates whether the memory associated
with a translation table walk is Inner Shareable or Outer Shareable:

0b0 Memory is Outer Shareable.

0b1 Memory is Inner Shareable.

This bit is ignored when the value of TTBR0.S is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RGN, bits [4:3]

Region bits. Indicates the Outer cacheability attributes for the memory associated with the
translation table walks:

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Cacheable.

0b11 Normal memory, Outer Write-Back no Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMP, bit [2]

The effect of this bit is IMPLEMENTATION DEFINED. If the translation table implementation does not
include any IMPLEMENTATION DEFINED features this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S, bit [1]

Shareable. Indicates whether the memory associated with the translation table walks is Shareable:

0b0 Memory is Non-shareable.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6917
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b1 Memory is Shareable. The TTBR0.NOS field indicates whether the memory is Inner
Shareable or Outer Shareable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When TTBCR.EAE == 1:

Bits [63:56]

Reserved, RES0.

ASID, bits [55:48]

An ASID for the translation table base address. The TTBCR.A1 field selects either TTBR0.ASID
or TTBR1.ASID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BADDR, bits [47:1]

Translation table base address, bits[47:x], Bits [x-1:1] are RES0, with the additional requirement that
if bits[x-1:3] are not all zero, this is a misaligned translation table base address, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits
is either the value written or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

x is determined from the value of TTBCR.T0SZ as follows:

• If TTBCR.T0SZ is 0 or 1, x = 5 - TTBCR.T0SZ.

• If TTBCR.T0SZ is greater than 1, x = 14 - TTBCR.T0SZ.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

CnP

Common not Private. When TTBCR.EAE ==1, this bit indicates whether each entry that is pointed
to by TTBR0 is a member of a common set that can be used by every PE in the Inner Shareable
domain for which the value of TTBR0.CnP is 1.

0b0 The translation table entries pointed to by this instance of TTBR0, for the current ASID,
are permitted to differ from corresponding entries for this instance of TTBR0 for other
PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR0.CnP on those other PEs.

• The value of TTBCR.EAE on those other PEs.

RES0

63 56

ASID

55 48

BADDR

47 32

BADDR

31 1 0

CnP
G8-6918 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
• The value of the current ASID or, for the Non-secure instance of TTBR0, the
value of the current VMID.

0b1 The translation table entries pointed to by this instance of TTBR0 are the same as the
translation table entries for every other PE in the Inner Shareable domain for which the
value of TTBR0.CnP is 1 for this instance of TTBR0 and all of the following apply:

• The translation table entries are pointed to by this instance of TTBR0.

• The value of the applicable TTBCR.EAE field is 1.

• The ASID is the same as the current ASID.

• For the Non-secure instance of TTBR0, the VMID is the same as the current
VMID.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry,
that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1
and stage 2.

Note

If the value of the TTBR0.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
those TTBR0s do not point to the same translation table entries when the other conditions specified
for the case when the value of CnP is 1 apply, then the results of translations are CONSTRAINED
UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of System
register control or data values on page K1-8391.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TTBR0

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return TTBR0_NS<31:0>;
 else
 return TTBR0<31:0>;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return TTBR0_NS<31:0>;
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0010 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6919
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 return TTBR0<31:0>;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return TTBR0_S<31:0>;
 else
 return TTBR0_NS<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBR0_NS = ZeroExtend(R[t]);
 else
 TTBR0 = ZeroExtend(R[t]);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBR0_NS = ZeroExtend(R[t]);
 else
 TTBR0 = ZeroExtend(R[t]);
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 TTBR0_S = ZeroExtend(R[t]);
 else
 TTBR0_NS = ZeroExtend(R[t]);

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0010 0b0000 0b000

coproc CRm opc1

0b1111 0b0010 0b0000
G8-6920 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 return TTBR0_NS;
 else
 return TTBR0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return TTBR0_NS;
 else
 return TTBR0;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return TTBR0_S;
 else
 return TTBR0_NS;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBR0_NS = R[t2]:R[t];
 else
 TTBR0 = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBR0_NS = R[t2]:R[t];
 else
 TTBR0 = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 TTBR0_S = R[t2]:R[t];
 else
 TTBR0_NS = R[t2]:R[t];

coproc CRm opc1

0b1111 0b0010 0b0000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6921
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.167 TTBR1, Translation Table Base Register 1

The TTBR1 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of the translation of
an address from the higher VA range in the PL1&0 translation regime, and other information for this
translation regime.

Configurations

AArch32 System register TTBR1 bits [63:0] are architecturally mapped to AArch64 System
register TTBR1_EL1[63:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
TTBR1 are UNDEFINED.

TTBR1 is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit
register, accesses read and write bits [31:0] and do not modify bits [63:32].

TTBCR.EAE determines which TTBR1 format is used:

• TTBCR.EAE == 0b0: 32-bit format is used. TTBR1[63:32] are ignored.

• TTBCR.EAE == 0b1: 64-bit format is used.

Used in conjunction with the TTBCR. When the 64-bit TTBR1 format is used, cacheability and
shareability information is held in the TTBCR, not in TTBR1.

Attributes

TTBR1 is a 64-bit register.

Field descriptions

When TTBCR.EAE == 0:

Bits [63:32]

Reserved, RES0.

TTB1, bits [31:7]

Translation table base address, bits[31:14]. Register bits [13:7] are RES0, with the additional
requirement that if these bits are not all zero, this is a misaligned translation table base address, with
effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Register bits [13:7] are treated as if all the bits are zero. The value read back from these bits
is either the value written or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

TTB1

31 7 6 5

RGN

4 3 2

S

1 0

IRGN[1]
NOS

IRGN[0]
IMP
G8-6922 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
IRGN, bits [6, 0]

Inner region bits. IRGN[1:0] indicate the Inner Cacheability attributes for the memory associated
with the translation table walks. The possible values of IRGN[1:0] are:

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Cacheable.

0b11 Normal memory, Inner Write-Back no Write-Allocate Cacheable.

Note
The encoding of the IRGN bits is counter-intuitive, with register bit[6] being IRGN[0] and register
bit[0] being IRGN[1]. This encoding is chosen to give a consistent encoding of memory region
types and to ensure that software written for Armv7 without the Multiprocessing Extensions can run
unmodified on an implementation that includes the functionality introduced by the ARMv7
Multiprocessing Extensions.

The IRGN field is split as follows:

• IRGN[1] is TTBR1[6].

• IRGN[0] is TTBR1[0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NOS, bit [5]

Not Outer Shareable. When the value of TTBR1.S is 1, indicates whether the memory associated
with a translation table walk is Inner Shareable or Outer Shareable:

0b0 Memory is Outer Shareable.

0b1 Memory is Inner Shareable.

This bit is ignored when the value of TTBR1.S is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RGN, bits [4:3]

Region bits. Indicates the Outer cacheability attributes for the memory associated with the
translation table walks:

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Cacheable.

0b11 Normal memory, Outer Write-Back no Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMP, bit [2]

The effect of this bit is IMPLEMENTATION DEFINED. If the translation table implementation does not
include any IMPLEMENTATION DEFINED features this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S, bit [1]

Shareable. Indicates whether the memory associated with the translation table walks is Shareable:

0b0 Memory is Non-shareable.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6923
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b1 Memory is Shareable. The TTBR1.NOS field indicates whether the memory is Inner
Shareable or Outer Shareable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When TTBCR.EAE == 1:

Bits [63:56]

Reserved, RES0.

ASID, bits [55:48]

An ASID for the translation table base address. The TTBCR.A1 field selects either TTBR0.ASID
or TTBR1.ASID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BADDR, bits [47:1]

Translation table base address, bits[47:x], Bits [x-1:1] are RES0, with the additional requirement that
if bits[x-1:3] are not all zero, this is a misaligned translation table base address, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits
is either the value written or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

x is determined from the value of TTBCR.T1SZ as follows:

• If TTBCR.T1SZ is 0 or 1, x = 5 - TTBCR.T1SZ.

• If TTBCR.T1SZ is greater than 1, x = 14 - TTBCR.T1SZ.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

CnP

Common not Private. When TTBCR.EAE ==1, this bit indicates whether each entry that is pointed
to by TTBR1 is a member of a common set that can be used by every PE in the Inner Shareable
domain for which the value of TTBR1.CnP is 1.

0b0 The translation table entries pointed to by this instance of TTBR1, for the current ASID,
are permitted to differ from corresponding entries for this instance of TTBR1 for other
PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR1.CnP on those other PEs.

• The value of TTBCR.EAE on those other PEs.

RES0

63 56

ASID

55 48

BADDR

47 32

BADDR

31 1 0

CnP
G8-6924 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
• The value of the current ASID or, for the Non-secure instance of TTBR1, the
value of the current VMID.

0b1 The translation table entries pointed to by this instance of TTBR1 are the same as the
translation table entries for every other PE in the Inner Shareable domain for which the
value of TTBR1.CnP is 1 for this instance of TTBR1 and all of the following apply:

• The translation table entries are pointed to by this instance of TTBR1.

• The value of the applicable TTBCR.EAE field is 1.

• The ASID is the same as the current ASID.

• For the Non-secure instance of TTBR1, the VMID is the same as the current
VMID.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry,
that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1
and stage 2.

Note

If the value of the TTBR1.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
those TTBR1s do not point to the same translation table entries when the other conditions specified
for the case when the value of CnP is 1 apply, then the results of translations are CONSTRAINED
UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of System
register control or data values on page K1-8391.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TTBR1

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return TTBR1_NS<31:0>;
 else
 return TTBR1<31:0>;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return TTBR1_NS<31:0>;
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0010 0b0000 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6925
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 return TTBR1<31:0>;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return TTBR1_S<31:0>;
 else
 return TTBR1_NS<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBR1_NS = ZeroExtend(R[t]);
 else
 TTBR1 = ZeroExtend(R[t]);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBR1_NS = ZeroExtend(R[t]);
 else
 TTBR1 = ZeroExtend(R[t]);
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 TTBR1_S = ZeroExtend(R[t]);
 else
 TTBR1_NS = ZeroExtend(R[t]);

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0010 0b0000 0b001

coproc CRm opc1

0b1111 0b0010 0b0001
G8-6926 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 return TTBR1_NS;
 else
 return TTBR1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return TTBR1_NS;
 else
 return TTBR1;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return TTBR1_S;
 else
 return TTBR1_NS;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBR1_NS = R[t2]:R[t];
 else
 TTBR1 = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBR1_NS = R[t2]:R[t];
 else
 TTBR1 = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 TTBR1_S = R[t2]:R[t];
 else
 TTBR1_NS = R[t2]:R[t];

coproc CRm opc1

0b1111 0b0010 0b0001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6927
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.168 VBAR, Vector Base Address Register

The VBAR characteristics are:

Purpose

When high exception vectors are not selected, holds the vector base address for exceptions that are
not taken to Monitor mode or to Hyp mode.

Software must program VBAR(NS) with the required initial value as part of the PE boot sequence.

Configurations

AArch32 System register VBAR bits [31:0] are architecturally mapped to AArch64 System register
VBAR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
VBAR are UNDEFINED.

Attributes

VBAR is a 32-bit register.

Field descriptions

Bits [31:5]

Vector Base Address. Bits[31:5] of the base address of the exception vectors for exceptions taken to
this Exception level. Bits[4:0] of an exception vector are the exception offset.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Bits [4:0]

Reserved, RES0.

Accessing VBAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return VBAR_NS;
 else
 return VBAR;
elsif PSTATE.EL == EL2 then

Vector Base Address

31 5

RES0

4 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0000 0b000
G8-6928 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return VBAR_NS;
 else
 return VBAR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return VBAR_S;
 else
 return VBAR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 VBAR_NS = R[t];
 else
 VBAR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 VBAR_NS = R[t];
 else
 VBAR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 VBAR_S = R[t];
 else
 VBAR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6929
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.169 VMPIDR, Virtualization Multiprocessor ID Register

The VMPIDR characteristics are:

Purpose

Holds the value of the Virtualization Multiprocessor ID. This is the value returned by Non-secure
EL1 reads of MPIDR.

Configurations

AArch32 System register VMPIDR bits [31:0] are architecturally mapped to AArch64 System
register VMPIDR_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
VMPIDR are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, this register takes the value of the MPIDR.

Attributes

VMPIDR is a 32-bit register.

Field descriptions

M, bit [31]

Indicates whether this implementation includes the functionality introduced by the ARMv7
Multiprocessing Extensions. The possible values of this bit are:

0b0 This implementation does not include the ARMv7 Multiprocessing Extensions
functionality.

0b1 This implementation includes the ARMv7 Multiprocessing Extensions functionality.

From Armv8 this bit is RES1.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system. The possible
values of this bit are:

0b0 Processor is part of a multiprocessor system.

0b1 Processor is part of a uniprocessor system.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to the
value in MPIDR.U.

Bits [29:25]

Reserved, RES0.

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a
multithreading type approach. See the description of Aff0 for more information about affinity
levels. The possible values of this bit are:

0b0 Performance of PEs at the lowest affinity level is largely independent.

0b1 Performance of PEs at the lowest affinity level is very interdependent.

M

31

U

30

RES0

29 25

MT

24

Aff2

23 16

Aff1

15 8

Aff0

7 0
G8-6930 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to the
value in MPIDR.MT.

Aff2, bits [23:16]

Affinity level 2. See the description of Aff0 for more information.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to the
value in MPIDR.Aff2.

Aff1, bits [15:8]

Affinity level 1. See the description of Aff0 for more information.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to the
value in MPIDR.Aff1.

Aff0, bits [7:0]

Affinity level 0. This is the affinity level that is most significant for determining PE behavior. Higher
affinity levels are increasingly less significant in determining PE behavior. The assigned value of
the MPIDR.{Aff2, Aff1, Aff0} or MPIDR_EL1.{Aff3, Aff2, Aff1, Aff0} set of fields of each PE
must be unique within the system as a whole.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to the
value in MPIDR.Aff0.

Accessing VMPIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return VMPIDR;
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 return MPIDR;
 elsif SCR.NS == '0' then
 UNDEFINED;
 else
 return VMPIDR;

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0000 0b0000 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6931
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VMPIDR = R[t];
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 //no operation
 elsif SCR.NS == '0' then
 UNDEFINED;
 else
 VMPIDR = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) then
 return VMPIDR_EL2<31:0>;
 elsif EL2Enabled() && ELUsingAArch32(EL2) then
 return VMPIDR;
 else
 return MPIDR;
elsif PSTATE.EL == EL2 then
 return MPIDR;
elsif PSTATE.EL == EL3 then
 return MPIDR;

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0000 0b0000 0b101

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0000 0b101
G8-6932 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.170 VPIDR, Virtualization Processor ID Register

The VPIDR characteristics are:

Purpose

Holds the value of the Virtualization Processor ID. This is the value returned by Non-secure EL1
reads of MIDR.

Configurations

AArch32 System register VPIDR bits [31:0] are architecturally mapped to AArch64 System register
VPIDR_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
VPIDR are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, this register takes the value of the MIDR.

Attributes

VPIDR is a 32-bit register.

Field descriptions

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm.
Assigned codes include the following:

0x00 Reserved for software use.

0x41 Arm Limited.

0x42 Broadcom Corporation.

0x43 Cavium Inc.

0x44 Digital Equipment Corporation.

0x46 Fujitsu Ltd.

0x49 Infineon Technologies AG.

0x4D Motorola or Freescale Semiconductor Inc.

0x4E NVIDIA Corporation.

0x50 Applied Micro Circuits Corporation.

0x51 Qualcomm Inc.

0x56 Marvell International Ltd.

0x69 Intel Corporation.

0xC0 Ampere Computing.

Arm can assign codes that are not published in this manual. All values not assigned by Arm are
reserved and must not be used.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to the
value in MIDR.Implementer.

Implementer

31 24

Variant

23 20 19 16

PartNum

15 4

Revision

3 0

Architecture
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6933
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between
different product variants, or major revisions of a product.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to the
value in MIDR.Variant.

Architecture, bits [19:16]

Architecture version. Defined values are:

0b0001 Armv4.

0b0010 Armv4T.

0b0011 Armv5 (obsolete).

0b0100 Armv5T.

0b0101 Armv5TE.

0b0110 Armv5TEJ.

0b0111 Armv6.

0b1111 Architectural features are individually identified in the ID_* registers.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to the
value in MIDR.Architecture.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7,
the variant and architecture are encoded differently.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to the
value in MIDR.PartNum.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to the
value in MIDR.Revision.

Accessing VPIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0000 0b0000 0b000
G8-6934 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return VPIDR;
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 return MIDR;
 elsif SCR.NS == '0' then
 UNDEFINED;
 else
 return VPIDR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VPIDR = R[t];
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 //no operation
 elsif SCR.NS == '0' then
 UNDEFINED;
 else
 VPIDR = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) then
 return VPIDR_EL2<31:0>;
 elsif EL2Enabled() && ELUsingAArch32(EL2) then
 return VPIDR;
 else
 return MIDR;
elsif PSTATE.EL == EL2 then
 return MIDR;

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0000 0b0000 0b000

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6935
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL3 then
 return MIDR;

G8-6936 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.171 VTCR, Virtualization Translation Control Register

The VTCR characteristics are:

Purpose

The control register for stage 2 of the Non-secure PL1&0 translation regime.

Note
This stage of translation always uses the Long-descriptor translation table format.

Configurations

AArch32 System register VTCR bits [31:0] are architecturally mapped to AArch64 System register
VTCR_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
VTCR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

VTCR is a 32-bit register.

Field descriptions

Bit [31]

Reserved, RES1.

Bits [30:29]

Reserved, RES0.

HWU62, bit [28]

When FEAT_HPDS2 is implemented:

HWU62

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 2
translation table Block or Page entry.

0b0 Bit[62] of each stage 2 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[62] of each stage 2 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

31

RES0

30 29 28 27 26 25

RES0

24 14

SH0

13 12 11 10 9 8

SL0

7 6 5

S

4

T0SZ

3 0

RES1
HWU62

HWU59
HWU60

HWU61

ORGN0 RES0
IRGN0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6937
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
HWU61, bit [27]

When FEAT_HPDS2 is implemented:

HWU61

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 2
translation table Block or Page entry.

0b0 Bit[61] of each stage 2 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[61] of each stage 2 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU60, bit [26]

When FEAT_HPDS2 is implemented:

HWU60

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 2
translation table Block or Page entry.

0b0 Bit[60] of each stage 2 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[60] of each stage 2 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

HWU59, bit [25]

When FEAT_HPDS2 is implemented:

HWU59

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 2
translation table Block or Page entry.

0b0 Bit[59] of each stage 2 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[59] of each stage 2 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

Bits [24:14]

Reserved, RES0.
G8-6938 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using VTTBR.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using VTTBR.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using VTTBR.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SL0, bits [7:6]

Starting level for translation table walks using VTTBR.

0b00 Start at level 2

0b01 Start at level 1

All other values are reserved. If this field is programmed to a reserved value, or to a value that is not
consistent with the programming of T0SZ, then a stage 2 level 1 Translation fault is generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

S, bit [4]

Sign extension bit. This bit must be programmed to the value of T0SZ[3]. If it is not, then the stage
2 T0SZ value is treated as an UNKNOWN value

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T0SZ, bits [3:0]

The size offset of the memory region addressed by VTTBR. The region size is 2(32-T0SZ) bytes.

This field holds a four-bit signed integer value, meaning it supports values from -8 to 7.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6939
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Note

This is different from the other translation control registers, where TnSZ holds a three-bit unsigned
integer, supporting values from 0 to 7.

If this field is programmed to a value that is not consistent with the programming of SL0 then a stage
2 level 1 Translation fault is generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VTCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return VTCR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return VTCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VTCR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0010 0b0001 0b010

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0010 0b0001 0b010
G8-6940 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 VTCR = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6941
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.172 VTTBR, Virtualization Translation Table Base Register

The VTTBR characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 2 of an address
translation in the Non-secure PL1&0 translation regime, and other information for this translation
regime.

Configurations

AArch32 System register VTTBR bits [63:0] are architecturally mapped to AArch64 System
register VTTBR_EL2[63:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
VTTBR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

VTTBR is a 64-bit register.

Field descriptions

Bits [63:56]

Reserved, RES0.

VMID, bits [55:48]

The VMID for the translation table.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

BADDR, bits [47:1]

Translation table base address, bits[47:x], Bits [x-1:1] are RES0, with the additional requirement that
if bits[x-1:3] are not all zero, this is a misaligned translation table base address, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits
is either the value written or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

x is determined from the value of VTCR.SL0 and VTCR.T0SZ as follows:

• If VTCR.SL0 is 0b00, meaning that lookup starts at level 2, then x is 14 - VTCR.T0SZ.

• If VTCR.SL0 is 0b01, meaning that lookup starts at level 1, then x is 5 - VTCR.T0SZ.

• If VTCR.SL0 is either 0b10 or 0b11 then a stage 2 level 1 Translation fault is generated.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an
architecturally UNKNOWN value.

RES0

63 56

VMID

55 48

BADDR

47 32

BADDR

31 1 0

CnP
G8-6942 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.2 General system control registers
CnP, bit [0]

When FEAT_TTCNP is implemented:

CnP

Common not Private. This bit indicates whether each entry that is pointed to by VTTBR is a member
of a common set that can be used by every PE in the Inner Shareable domain for which the value of
VTTBR.CnP is 1.

0b0 The translation table entries pointed to by VTTBR are permitted to differ from the
entries for VTTBR for other PEs in the Inner Shareable domain. This is not affected by
the value of the current VMID.

0b1 The translation table entries pointed to by VTTBR are the same as the translation table
entries for every other PE in the Inner Shareable domain for which the value of
VTTBR.CnP is 1 and the VMID is the same as the current VMID.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry,
that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1
and stage 2.

Note

If the value of the VTTBR.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
those VTTBRs do not point to the same translation table entries when the VMID value is the same
as the current VMID, then the results of translations are CONSTRAINED UNPREDICTABLE, see
CONSTRAINED UNPREDICTABLE behaviors due to caching of System register control or data
values on page K1-8391.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing VTTBR

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x04);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return VTTBR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;

coproc CRm opc1

0b1111 0b0010 0b0110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6943
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 return VTTBR;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x04);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VTTBR = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 VTTBR = R[t2]:R[t];

coproc CRm opc1

0b1111 0b0010 0b0110
G8-6944 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3 Debug registers

This section lists the Debug System registers in AArch32 state, in alphabetic order.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6945
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.1 DBGAUTHSTATUS, Debug Authentication Status register

The DBGAUTHSTATUS characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for
debug.

Configurations

AArch32 System register DBGAUTHSTATUS bits [31:0] are architecturally mapped to AArch64
System register DBGAUTHSTATUS_EL1[31:0].

AArch32 System register DBGAUTHSTATUS bits [31:0] are architecturally mapped to External
register DBGAUTHSTATUS_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGAUTHSTATUS are UNDEFINED.

This register is required in all implementations.

Attributes

DBGAUTHSTATUS is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SNID, bits [7:6]

When FEAT_Debugv8p4 is implemented:

SNID

Secure Non-Invasive Debug.

This field has the same value as DBGAUTHSTATUS.SID.

Otherwise:

SNID

Secure Non-Invasive Debug.

0b00 Not implemented. EL3 is not implemented and the Effective value of SCR.NS is 1.

0b10 Implemented and disabled. ExternalSecureNoninvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalSecureNoninvasiveDebugEnabled() == TRUE.

All other values are reserved.

SID, bits [5:4]

Secure Invasive Debug.

0b00 Not implemented. EL3 is not implemented and the Effective value of SCR_EL3.NS is 1.

0b10 Implemented and disabled. ExternalSecureInvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalSecureInvasiveDebugEnabled() == TRUE.

All other values are reserved.

RES0

31 8

SNID

7 6

SID

5 4 3 2

NSID

1 0

NSNID
G8-6946 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
NSNID, bits [3:2]

When FEAT_Debugv8p4 is implemented:

NSNID

Non-secure Non-invasive debug.

0b00 Not implemented. EL3 is not implemented and the Effective value of SCR.NS is 0.

0b11 Implemented and enabled. EL3 is implemented or the Effective value of SCR.NS is 1.

All other values are reserved.

Otherwise:

NSNID

Non-secure Non-Invasive Debug.

0b00 Not implemented. EL3 is not implemented and the Effective value of SCR.NS is 0

0b10 Implemented and disabled. ExternalNoninvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalNoninvasiveDebugEnabled() == TRUE.

All other values are reserved.

NSID, bits [1:0]

Non-secure Invasive Debug.

0b00 Not implemented. EL3 is not implemented or the Effective value of SCR_EL3.NS is 0.

0b10 Implemented and disabled. ExternalInvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalInvasiveDebugEnabled() == TRUE.

All other values are reserved.

Accessing DBGAUTHSTATUS

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGAUTHSTATUS;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0111 0b1110 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6947
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGAUTHSTATUS;
elsif PSTATE.EL == EL3 then
 return DBGAUTHSTATUS;

G8-6948 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.2 DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

The DBGBCR<n> characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register
DBGBVR<n>. If EL2 is implemented and this breakpoint supports Context matching,
DBGBVR<n> can be associated with a Breakpoint Extended Value Register DBGBXVR<n> for
VMID matching.

Configurations

AArch32 System register DBGBCR<n> bits [31:0] are architecturally mapped to AArch64 System
register DBGBCR<n>_EL1[31:0].

AArch32 System register DBGBCR<n> bits [31:0] are architecturally mapped to External register
DBGBCR<n>_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGBCR<n> are UNDEFINED.

If breakpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes

DBGBCR<n> is a 32-bit register.

Field descriptions

When the E field is zero, all the other fields in the register are ignored.

Bits [31:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

0b0000 Unlinked instruction address match. DBGBVR<n> is the address of an instruction.

0b0001 As 0b0000 with linking enabled.

0b0010 Unlinked Context ID match. When FEAT_VHE is implemented, EL2 is using
AArch64, and the Effective value of HCR_EL2.E2H is 1, if either the PE is executing
at EL0 with HCR_EL2.TGE set to 1 or the PE is executing at EL2, then
DBGBVR<n>.ContextID must match the CONTEXTIDR_EL2 value. Otherwise,
DBGBVR<n>.ContextID must match the CONTEXTIDR value.

0b0011 As 0b0010 with linking enabled.

0b0100 Unlinked instruction address mismatch. DBGBVR<n> is the address of an instruction
to be stepped.

0b0101 As 0b0100 with linking enabled.

0b0110 Unlinked CONTEXTIDR_EL1 match. DBGBVR<n>.ContextID is a Context ID
compared against CONTEXTIDR.

0b0111 As 0b0110 with linking enabled.

0b1000 Unlinked VMID match. DBGBXVR<n>.VMID is a VMID compared against
VTTBR.VMID.

0b1001 As 0b1000 with linking enabled.

RES0

31 24

BT

23 20

LBN

19 16

SSC

15 14 13

RES0

12 9

BAS

8 5

RES0

4 3

PMC

2 1

E

0

HMC
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6949
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
0b1010 Unlinked VMID and Context ID match. DBGBVR<n>.ContextID is a Context ID
compared against CONTEXTIDR, and DBGBXVR<n>.VMID is a VMID compared
against VTTBR.VMID.

0b1011 As 0b1010 with linking enabled.

0b1100 Unlinked CONTEXTIDR_EL2 match. DBGBXVR<n>.ContextID2 is a Context ID
compared against CONTEXTIDR_EL2.

0b1101 As 0b1100 with linking enabled.

0b1110 Unlinked Full Context ID match. DBGBVR<n>.ContextID is compared against
CONTEXTIDR, and DBGBXVR<n>.ContextID2 is compared against
CONTEXTIDR_EL2.

0b1111 As 0b1110 with linking enabled.

For more information on Breakpoints and their constraints, see Breakpoint exceptions on
page G2-6170 and Reserved DBGBCR<n>.BT values on page G2-6190.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the
Context-matching breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN
value.

This field is ignored when the value of DBGBCR<n>.E is 0.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for
breakpoint n is generated. This field must be interpreted along with the HMC and PMC fields, and
there are constraints on the permitted values of the {HMC, SSC, PMC} fields.

For more information, see Execution conditions for which a breakpoint generates Breakpoint
exceptions on page G2-6179 and Reserved DBGBCR<n>.{SSC, HMC, PMC} values on
page G2-6191.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug
event for breakpoint n is generated. This field must be interpreted along with the SSC and PMC
fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information see the SSC, bits [15:14] description.

For more information on the operation of the SSC, HMC, and PMC fields, see Execution conditions
for which a breakpoint generates Breakpoint exceptions on page G2-6179.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [12:9]

Reserved, RES0.

BAS, bits [8:5]

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless
of the instruction set and Execution state.

The permitted values depend on the breakpoint type.
G8-6950 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
For Address match breakpoints, the permitted values are:

All other values are reserved. For more information, see Reserved DBGBCR<n>.BAS values on
page G2-6191.

For more information on using the BAS field in Address Match breakpoints, see Using the BAS field
in Address Match breakpoints on page G2-6183.

For Address mismatch breakpoints in an AArch32 stage 1 translation regime, the permitted values
are:

All other values are reserved. For more information, see Reserved DBGBCR<n>.BAS values on
page G2-6191.

For more information on using the BAS field in address mismatch breakpoints, see Using the BAS
field in Address Match breakpoints on page G2-6183.

For Context matching breakpoints, this field is RES1 and ignored.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [4:3]

Reserved, RES0.

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event
for breakpoint n is generated. This field must be interpreted along with the SSC and HMC fields,
and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information see the DBGBCR<n>.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see Execution conditions
for which a breakpoint generates Breakpoint exceptions on page G2-6179.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

E, bit [0]

Enable breakpoint DBGBVR<n>. Possible values are:

0b0 Breakpoint disabled.

0b1 Breakpoint enabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

BAS Match instruction at Constraint for debuggers

0b0011 DBGBVR<n> Use for T32 instructions

0b1100 DBGBVR<n>+2 Use for T32 instructions

0b1111 DBGBVR<n> Use for A32 instructions

BAS Step instruction at Constraint for debuggers

0b0000 - Use for a match anywhere breakpoint

0b0011 DBGBVR<n> Use for T32 instructions

0b1100 DBGBVR<n>+2 Use for T32 instructions

0b1111 DBGBVR<n> Use for A32 instructions
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6951
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
Accessing DBGBCR<n>

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBCR[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBCR[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBCR[UInt(CRm<3:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 n[3:0] 0b101

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 n[3:0] 0b101
G8-6952 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBCR[UInt(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBCR[UInt(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBCR[UInt(CRm<3:0>)] = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6953
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.3 DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15

The DBGBVR<n> characteristics are:

Purpose

Holds a value for use in breakpoint matching, either the virtual address of an instruction or a context
ID. Forms breakpoint n together with control register DBGBCR<n>. If EL2 is implemented and this
breakpoint supports Context matching, DBGBVR<n> can be associated with a Breakpoint
Extended Value Register DBGBXVR<n> for VMID matching.

Configurations

AArch32 System register DBGBVR<n> bits [31:0] are architecturally mapped to AArch64 System
register DBGBVR<n>_EL1[31:0].

AArch32 System register DBGBVR<n> bits [31:0] are architecturally mapped to External register
DBGBVR<n>_EL1[31:0].

Note

Writes to DBGBVR<n> do not modify DBGBVR<n>_EL1[63:32].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGBVR<n> are UNDEFINED.

How this register is interpreted depends on the value of DBGBCR<n>.BT.

• When DBGBCR<n>.BT is 0b0x0x, this register holds a virtual address.

• When DBGBCR<n>.BT is 0bxx1x, this register holds a Context ID.

For other values of DBGBCR<n>.BT, this register is RES0.

Some breakpoints might not support Context ID comparison. For more information, see the
description of the DBGDIDR.CTX_CMPs field.

If breakpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes

DBGBVR<n> is a 32-bit register.

Field descriptions

When DBGBCR<n>.BT == 0b0x0x:

VA[31:2], bits [31:2]

Bits[31:2] of the address value for comparison.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

VA[31:2]

31 2

RES0

1 0
G8-6954 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
When DBGBCR<n>.BT == 0b001x:

ContextID, bits [31:0]

Context ID value for comparison.

The value is compared against CONTEXTIDR_EL2 when all of the following are true:

• FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented.

• HCR_EL2.{E2H, TGE} is {1,1}.

• The PE is executing at EL0.

• EL2 is using AArch64 and is enabled in the current Security state.

Otherwise, the value is compared against CONTEXTIDR.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>.BT == 0b101x and EL2 is implemented:

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>.BT == 0bx11x, EL2 is implemented and (FEAT_VHE is implemented or
FEAT_Debugv8p2 is implemented):

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGBVR<n>

Accesses to this register use the following encodings in the System register encoding space:

ContextID

31 0

ContextID

31 0

ContextID

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6955
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBVR[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBVR[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBVR[UInt(CRm<3:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 n[3:0] 0b100

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 n[3:0] 0b100
G8-6956 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBVR[UInt(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBVR[UInt(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBVR[UInt(CRm<3:0>)] = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6957
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.4 DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15

The DBGBXVR<n> characteristics are:

Purpose

Holds a value for use in breakpoint matching, to support VMID matching. Used in conjunction with
a control register DBGBCR<n> and a value register DBGBVR<n>, where EL2 is implemented and
breakpoint n supports Context matching.

Configurations

AArch32 System register DBGBXVR<n> bits [31:0] are architecturally mapped to AArch64
System register DBGBVR<n>_EL1[63:32].

AArch32 System register DBGBXVR<n> bits [31:0] are architecturally mapped to External
register DBGBVR<n>_EL1[63:32].

Note

Writes to DBGBXVR<n> do not modify DBGBVR<n>_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGBXVR<n> are UNDEFINED.

How this register is interpreted depends on the value of DBGBCR<n>.BT.

• When DBGBCR<n>.BT is 0b10xx, this register holds a VMID.

• When DBGBCR<n>.BT is 0b11xx, this register holds a Context ID.

For other values of DBGBCR<n>.BT, this register is RES0.

Accesses to this register are UNDEFINED in any of the following cases:

• Breakpoint n is not implemented.

• Breakpoint n does not support Context matching.

• EL2 is not implemented.

For more information, see the description of the DBGDIDR.CTX_CMPs field.

Attributes

DBGBXVR<n> is a 32-bit register.

Field descriptions

When DBGBCR<n>.BT == 0b10xx and EL2 is implemented:

Bits [31:16]

Reserved, RES0.

VMID[15:8], bits [15:8]

When FEAT_VMID16 is implemented and VTCR_EL2.VS == 1:

VMID[15:8]

Extension to VMID[7:0]. For more information, see VMID[7:0].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

RES0

31 16

VMID[15:8]

15 8

VMID[7:0]

7 0
G8-6958 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
Otherwise:

Reserved, RES0.

VMID[7:0], bits [7:0]

VMID value for comparison. The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.

• VTCR_EL2.VS is 0.

• FEAT_VMID16 is not implemented.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>.BT == 0b11xx and EL2 is implemented:

ContextID2, bits [31:0]

When FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented:

ContextID2

Context ID value for comparison against CONTEXTIDR_EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing DBGBXVR<n>

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else

ContextID2

31 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0001 n[3:0] 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6959
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBXVR[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBXVR[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBXVR[UInt(CRm<3:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBXVR[UInt(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBXVR[UInt(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0001 n[3:0] 0b001
G8-6960 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBXVR[UInt(CRm<3:0>)] = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6961
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.5 DBGCLAIMCLR, Debug CLAIM Tag Clear register

The DBGCLAIMCLR characteristics are:

Purpose

Used by software to read the values of the CLAIM tag bits, and to clear CLAIM tag bits to 0.

The architecture does not define any functionality for the CLAIM tag bits.

Note
CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMSET register.

Configurations

AArch32 System register DBGCLAIMCLR bits [31:0] are architecturally mapped to AArch64
System register DBGCLAIMCLR_EL1[31:0].

AArch32 System register DBGCLAIMCLR bits [31:0] are architecturally mapped to External
register DBGCLAIMCLR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGCLAIMCLR are UNDEFINED.

An implementation must include eight CLAIM tag bits.

Attributes

DBGCLAIMCLR is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RAZ/WI.

CLAIM, bits [7:0]

Read or clear CLAIM tag bits. Reading this field returns the current value of the CLAIM tag bits.

Writing a 1 to one of these bits clears the corresponding CLAIM tag bit to 0. This is an indirect write
to the CLAIM tag bits. A single write operation can clear multiple CLAIM tag bits to 0.

Writing 0 to one of these bits has no effect.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing DBGCLAIMCLR

Accesses to this register use the following encodings in the System register encoding space:

RAZ/WI

31 8

CLAIM

7 0
G8-6962 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGCLAIMCLR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGCLAIMCLR;
elsif PSTATE.EL == EL3 then
 return DBGCLAIMCLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGCLAIMCLR = R[t];
elsif PSTATE.EL == EL2 then

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0111 0b1001 0b110

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0111 0b1001 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6963
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGCLAIMCLR = R[t];
elsif PSTATE.EL == EL3 then
 DBGCLAIMCLR = R[t];

G8-6964 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.6 DBGCLAIMSET, Debug CLAIM Tag Set register

The DBGCLAIMSET characteristics are:

Purpose

Used by software to set the CLAIM tag bits to 1.

The architecture does not define any functionality for the CLAIM tag bits.

Note
CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMCLR register.

Configurations

AArch32 System register DBGCLAIMSET bits [31:0] are architecturally mapped to AArch64
System register DBGCLAIMSET_EL1[31:0].

AArch32 System register DBGCLAIMSET bits [31:0] are architecturally mapped to External
register DBGCLAIMSET_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGCLAIMSET are UNDEFINED.

An implementation must include eight CLAIM tag bits.

Attributes

DBGCLAIMSET is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RAZ/WI.

CLAIM, bits [7:0]

Set CLAIM tag bits.

This field is RAO.

Writing a 1 to one of these bits sets the corresponding CLAIM tag bit to 1. This is an indirect write
to the CLAIM tag bits. A single write operation can set multiple CLAIM tag bits to 1.

Writing 0 to one of these bits has no effect.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing DBGCLAIMSET

Accesses to this register use the following encodings in the System register encoding space:

RAZ/WI

31 8

CLAIM

7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6965
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGCLAIMSET;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGCLAIMSET;
elsif PSTATE.EL == EL3 then
 return DBGCLAIMSET;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGCLAIMSET = R[t];
elsif PSTATE.EL == EL2 then

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0111 0b1000 0b110

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0111 0b1000 0b110
G8-6966 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGCLAIMSET = R[t];
elsif PSTATE.EL == EL3 then
 DBGCLAIMSET = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6967
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.7 DBGDCCINT, DCC Interrupt Enable Register

The DBGDCCINT characteristics are:

Purpose

Enables interrupt requests to be signaled based on the DCC status flags.

Configurations

AArch32 System register DBGDCCINT bits [31:0] are architecturally mapped to AArch64 System
register MDCCINT_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGDCCINT are UNDEFINED.

Attributes

DBGDCCINT is a 32-bit register.

Field descriptions

Bit [31]

Reserved, RES0.

RX, bit [30]

DCC interrupt request enable control for DTRRX. Enables a common COMMIRQ interrupt
request to be signaled based on the DCC status flags.

0b0 No interrupt request generated by DTRRX.

0b1 Interrupt request will be generated on RXfull == 1.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the
value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

TX, bit [29]

DCC interrupt request enable control for DTRTX. Enables a common COMMIRQ interrupt
request to be signaled based on the DCC status flags.

0b0 No interrupt request generated by DTRTX.

0b1 Interrupt request will be generated on TXfull == 0.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the
value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [28:0]

Reserved, RES0.

Accessing DBGDCCINT

Accesses to this register use the following encodings in the System register encoding space:

31

RX

30

TX

29

RES0

28 0

RES0
G8-6968 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 return DBGDCCINT;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDCCINT;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6969
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDCCINT;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return DBGDCCINT;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 DBGDCCINT = R[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGDCCINT = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0010 0b000
G8-6970 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGDCCINT = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 else
 DBGDCCINT = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6971
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.8 DBGDEVID, Debug Device ID register 0

The DBGDEVID characteristics are:

Purpose

Adds to the information given by the DBGDIDR by describing other features of the debug
implementation.

Configurations

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGDEVID are UNDEFINED.

This register is required in all implementations.

Attributes

DBGDEVID is a 32-bit register.

Field descriptions

CIDMask, bits [31:28]

Indicates the level of support for the Context ID matching breakpoint masking capability. Defined
values are:

0b0000 Context ID masking is not implemented.

0b0001 Context ID masking is implemented.

All other values are reserved. The value of this for Armv8 is 0b0000.

AuxRegs, bits [27:24]

Indicates support for Auxiliary registers. Permitted values for this field are:

0b0000 None supported.

0b0001 Support for External Debug Auxiliary Control Register, EDACR.

All other values are reserved.

DoubleLock, bits [23:20]

OS Double Lock implemented. Defined values are:

0b0000 OS Double Lock is not implemented. DBGOSDLR is RAZ/WI.

0b0001 OS Double Lock is implemented. DBGOSDLR is RW.

FEAT_DoubleLock implements the functionality identified by the value 0b0001.

All other values are reserved.

VirtExtns, bits [19:16]

Indicates whether EL2 is implemented. Defined values are:

0b0000 EL2 is not implemented.

0b0001 EL2 is implemented.

All other values are reserved.

CIDMask

31 28

AuxRegs

27 24 23 20 19 16 15 12 11 8 7 4

PCSample

3 0

DoubleLock
VirtExtns

WPAddrMask
BPAddrMask

VectorCatch
G8-6972 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
VectorCatch, bits [15:12]

Defines the form of Vector Catch exception implemented. Defined values are:

0b0000 Address matching Vector Catch exception implemented.

0b0001 Exception matching Vector Catch exception implemented.

All other values are reserved.

BPAddrMask, bits [11:8]

Indicates the level of support for the instruction address matching breakpoint masking capability.
Defined values are:

0b0000 Breakpoint address masking might be implemented. If not implemented,
DBGBCR<n>[28:24] is RAZ/WI.

0b0001 Breakpoint address masking is implemented.

0b1111 Breakpoint address masking is not implemented. DBGBCR<n>[28:24] is RES0.

All other values are reserved. The value of this for Armv8 is 0b1111.

WPAddrMask, bits [7:4]

Indicates the level of support for the data address matching watchpoint masking capability. Defined
values are:

0b0000 Watchpoint address masking might be implemented. If not implemented,
DBGWCR<n>.MASK (Address mask) is RAZ/WI.

0b0001 Watchpoint address masking is implemented.

0b1111 Watchpoint address masking is not implemented. DBGWCR<n>.MASK (Address
mask) is RES0.

All other values are reserved. The value of this for Armv8 is 0b0001.

PCSample, bits [3:0]

Indicates the level of PC Sample-based Profiling support using external debug registers. Defined
values are:

0b0000 PC Sample-based Profiling Extension is not implemented in the external debug registers
space.

0b0010 Only EDPCSR and EDCIDSR are implemented. This option is only permitted if EL3
and EL2 are not implemented.

0b0011 EDPCSR, EDCIDSR, and EDVIDSR are implemented.

All other values are reserved.

When FEAT_PCSRv8p2 is implemented, the only permitted value is 0b0000.

Note

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance
Monitors register space, as indicated by the value of PMDEVID.PCSample.

Accessing DBGDEVID

Accesses to this register use the following encodings in the System register encoding space:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6973
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDEVID;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDEVID;
elsif PSTATE.EL == EL3 then
 return DBGDEVID;

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0111 0b0010 0b111
G8-6974 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.9 DBGDEVID1, Debug Device ID register 1

The DBGDEVID1 characteristics are:

Purpose

Adds to the information given by the DBGDIDR by describing other features of the debug
implementation.

Configurations

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGDEVID1 are UNDEFINED.

This register is required in all implementations.

Attributes

DBGDEVID1 is a 32-bit register.

Field descriptions

Bits [31:4]

Reserved, RES0.

PCSROffset, bits [3:0]

This field indicates the offset applied to PC samples returned by reads of EDPCSR. Permitted values
of this field in Armv8 are:

0b0000 EDPCSR is not implemented.

0b0010 EDPCSR implemented. Samples have no offset applied and do not sample the
instruction set state in AArch32 state.

When FEAT_PCSRv8p2 is implemented, the only permitted value is 0b0000.

Note

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance
Monitors register space, as indicated by the value of PMDEVID.PCSample.

Accessing DBGDEVID1

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;

RES0

31 4 3 0

PCSROffset

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0111 0b0001 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6975
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDEVID1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDEVID1;
elsif PSTATE.EL == EL3 then
 return DBGDEVID1;

G8-6976 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.10 DBGDEVID2, Debug Device ID register 2

The DBGDEVID2 characteristics are:

Purpose

Reserved for future descriptions of features of the debug implementation.

Configurations

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGDEVID2 are UNDEFINED.

Attributes

DBGDEVID2 is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing DBGDEVID2

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDEVID2;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else

RES0

31 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0111 0b0000 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6977
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDEVID2;
elsif PSTATE.EL == EL3 then
 return DBGDEVID2;

G8-6978 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.11 DBGDIDR, Debug ID Register

The DBGDIDR characteristics are:

Purpose

Specifies which version of the Debug architecture is implemented, and some features of the debug
implementation.

Configurations

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGDIDR are UNDEFINED.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes

DBGDIDR is a 32-bit register.

Field descriptions

WRPs, bits [31:28]

The number of watchpoints implemented, minus 1.

Permitted values of this field are from 0b0001 for 2 implemented watchpoints, to 0b1111 for 16
implemented watchpoints.

The value of 0b0000 is reserved.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.WRPs.

BRPs, bits [27:24]

The number of breakpoints implemented, minus 1.

Permitted values of this field are from 0b0001 for 2 implemented breakpoint, to 0b1111 for 16
implemented breakpoints.

The value of 0b0000 is reserved.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.BRPs.

CTX_CMPs, bits [23:20]

The number of breakpoints that can be used for Context matching, minus 1.

Permitted values of this field are from 0b0000 for 1 Context matching breakpoint, to 0b1111 for 16
Context matching breakpoints.

The Context matching breakpoints must be the highest addressed breakpoints. For example, if six
breakpoints are implemented and two are Context matching breakpoints, they must be breakpoints
4 and 5.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.CTX_CMPs.

Version, bits [19:16]

The Debug architecture version. Defined values are:

0b0001 Armv6, v6 Debug architecture.

0b0010 Armv6, v6.1 Debug architecture.

0b0011 Armv7, v7 Debug architecture, with baseline CP14 registers implemented.

WRPs

31 28

BRPs

27 24

CTX_CMPs

23 20

Version

19 16 15 14 13 12

RES0

11 0

RES1
nSUHD_imp

SE_imp
RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6979
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
0b0100 Armv7, v7 Debug architecture, with all CP14 registers implemented.

0b0101 Armv7, v7.1 Debug architecture.

0b0110 Armv8, v8 Debug architecture.

0b0111 Armv8.1, v8 Debug architecture, with Virtualization Host Extensions.

0b1000 Armv8.2, v8.2 Debug architecture.

0b1001 Armv8.4, v8.4 Debug architecture.

All other values are reserved.

In any Armv8 implementation, the values 0b0001, 0b0010, 0b0011, 0b0100, and 0b0101 are not
permitted.

• If FEAT_VHE is not implemented, the only permitted value is 0b0110.

• In an Armv8.0 implementation, the value 0b1000 or higher is not permitted.

Bit [15]

Reserved, RES1.

nSUHD_imp, bit [14]

In Armv7-A, was Secure User Halting Debug not implemented.

The value of this bit must match the value of the SE_imp bit.

Bit [13]

Reserved, RES0.

SE_imp, bit [12]

EL3 implemented. The meanings of the values of this bit are:

0b0 EL3 not implemented.

0b1 EL3 implemented.

The value of this bit must match the value of the nSUHD_imp bit.

Bits [11:0]

Reserved, RES0.

Accessing DBGDIDR

Arm deprecates any access to this register from EL0.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 return DBGDIDR;
elsif PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x05);

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0000 0b000
G8-6980 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDA> != '00') then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDIDR;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDIDR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDIDR;
elsif PSTATE.EL == EL3 then
 return DBGDIDR;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6981
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.12 DBGDRAR, Debug ROM Address Register

The DBGDRAR characteristics are:

Purpose

Defines the base physical address of a 4KB-aligned memory-mapped debug component, usually a
ROM table that locates and describes the memory-mapped debug components in the system. Armv8
deprecates any use of this register.

Configurations

AArch32 System register DBGDRAR bits [63:0] are architecturally mapped to AArch64 System
register MDRAR_EL1[63:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGDRAR are UNDEFINED.

DBGDRAR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit
register, bits [31:0] are read.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes

DBGDRAR is a 64-bit register.

Field descriptions

Bits [63:48]

Reserved, RES0.

ROMADDR[47:12], bits [47:12]

Bits[47:12] of the ROM table physical address.

If the physical address size in bits (PAsize) is less than 48 then the register bits corresponding to
ROMADDR [47:PAsize] are RES0.

Bits [11:0] of the ROM table physical address are zero.

Arm strongly recommends that bits ROMADDR[(PAsize-1):32] are zero in any system that
supports AArch32 at the highest implemented Exception level.

In an implementation that includes EL3, ROMADDR is an address in Non-secure memory. It is
IMPLEMENTATION DEFINED whether the ROM table is also accessible in Secure memory.

If DBGDRAR.Valid == 0b00, then this field is UNKNOWN.

Bits [11:2]

Reserved, RES0.

Valid, bits [1:0]

This field indicates whether the ROM Table address is valid.

0b00 ROM Table address is not valid. Software must ignore ROMADDR.

0b11 ROM Table address is valid.

Other values are reserved.

RES0

63 48

ROMADDR[47:12]

47 32

ROMADDR[47:12]

31 12

RES0

11 2 1 0

Valid
G8-6982 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
Arm recommends implementations set this field to zero.

Accessing DBGDRAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 return DBGDRAR<31:0>;
elsif PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x05);
 elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDRA> != '00')
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDRA> != '00') then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDRAR<31:0>;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDRA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDRA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDRAR<31:0>;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0001 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6983
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDRAR<31:0>;
elsif PSTATE.EL == EL3 then
 return DBGDRAR<31:0>;

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 return DBGDRAR;
elsif PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x0C);
 elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDRA> != '00')
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDRA> != '00') then
 AArch32.TakeHypTrapException(0x0C);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x0C);
 else
 return DBGDRAR;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDRA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDRA> != '00' then
 AArch32.TakeHypTrapException(0x0C);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x0C);
 else
 return DBGDRAR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then

coproc CRm opc1

0b1110 0b0001 0b0000
G8-6984 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x0C);
 else
 return DBGDRAR;
elsif PSTATE.EL == EL3 then
 return DBGDRAR;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6985
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.13 DBGDSAR, Debug Self Address Register

The DBGDSAR characteristics are:

Purpose

In earlier versions of the Arm Architecture, this register defines the offset from the base address
defined in DBGDRAR of the physical base address of the debug registers for the PE. Armv8
deprecates any use of this register.

Configurations

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGDSAR are UNDEFINED.

DBGDSAR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit
register, bits [31:0] are read.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes

DBGDSAR is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

Bits [1:0]

Reserved, RAZ.

This field indicates whether the debug self address offset is valid. For ARMv8, this field is always
0b00, the offset is not valid.

Accessing DBGDSAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 return DBGDSAR<31:0>;
elsif PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);

RES0

63 32

RES0

31 2

RAZ

1 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0010 0b0000 0b000
G8-6986 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x05);
 elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDRA> != '00')
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDRA> != '00') then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDSAR<31:0>;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDRA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDRA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDSAR<31:0>;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDSAR<31:0>;
elsif PSTATE.EL == EL3 then
 return DBGDSAR<31:0>;

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 return DBGDSAR;
elsif PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

coproc CRm opc1

0b1110 0b0010 0b0000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6987
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x0C);
 elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDRA> != '00')
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDRA> != '00') then
 AArch32.TakeHypTrapException(0x0C);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x0C);
 else
 return DBGDSAR;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDRA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDRA> != '00' then
 AArch32.TakeHypTrapException(0x0C);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x0C);
 else
 return DBGDSAR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x0C);
 else
 return DBGDSAR;
elsif PSTATE.EL == EL3 then
 return DBGDSAR;

G8-6988 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.14 DBGDSCRext, Debug Status and Control Register, External View

The DBGDSCRext characteristics are:

Purpose

Main control register for the debug implementation.

Configurations

AArch32 System register DBGDSCRext bits [31:0] are architecturally mapped to AArch64 System
register MDSCR_EL1[31:0].

AArch32 System register DBGDSCRext bit [15] is architecturally mapped to AArch32 System
register DBGDSCRint[15].

AArch32 System register DBGDSCRext bit [12] is architecturally mapped to AArch32 System
register DBGDSCRint[12].

AArch32 System register DBGDSCRext bits [5:2] are architecturally mapped to AArch32 System
register DBGDSCRint[5:2].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGDSCRext are UNDEFINED.

This register is required in all implementations.

Attributes

DBGDSCRext is a 32-bit register.

Field descriptions

TFO, bit [31]

When FEAT_TRF is implemented:

TFO

Trace Filter override. Used for save/restore of EDSCR.TFO.

When the OS Lock is unlocked, DBGOSLSR.OSLK == 0, software must treat this bit as
UNK/SBZP.

When the OS Lock is locked, DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.TFO.
Reads and writes of this bit are indirect accesses to EDSCR.TFO.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.

• When DBGOSLSR.OSLK == 0, access to this field is RO.

Otherwise:

Reserved, RES0.

31 30 29 28 27 26

RES0

25 24 23 22 21 20 19

NS

18 17 16 15 14 13 12

RES0

11 7 6

MOE

5 2

RES0

1 0

TFO
RXfull

TXfull
RES0

RXO
TXU

INTdis
TDA

ERR
UDCCdis

RES0
HDE

MDBGen
SPIDdis

SPNIDdis
SC2

RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6989
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
RXfull, bit [30]

DTRRX full. Used for save/restore of EDSCR.RXfull.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.RXfull. Reads and writes of this
bit are indirect accesses to EDSCR.RXfull.

Arm deprecates use of this bit other than for save/restore. Use DBGDSCRint to access the DTRRX
full status.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.

• When DBGOSLSR.OSLK == 0, access to this field is RO.

TXfull, bit [29]

DTRTX full. Used for save/restore of EDSCR.TXfull.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.TXfull. Reads and writes of this
bit are indirect accesses to EDSCR.TXfull.

Arm deprecates use of this bit other than for save/restore. Use DBGDSCRint to access the DTRTX
full status.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.

• When DBGOSLSR.OSLK == 0, access to this field is RO.

Bit [28]

Reserved, RES0.

RXO, bit [27]

Used for save/restore of EDSCR.RXO.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.RXO. Reads and writes of this
bit are indirect accesses to EDSCR.RXO.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.

• When DBGOSLSR.OSLK == 0, access to this field is RO.

TXU, bit [26]

Used for save/restore of EDSCR.TXU.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.TXU. Reads and writes of this
bit are indirect accesses to EDSCR.TXU.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
G8-6990 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
• When DBGOSLSR.OSLK == 0, access to this field is RO.

Bits [25:24]

Reserved, RES0.

INTdis, bits [23:22]

Used for save/restore of EDSCR.INTdis.

When DBGOSLSR.OSLK == 0, this field is RO, and software must treat it as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this field is RW and holds the value of EDSCR.INTdis. Reads and
writes of this field are indirect accesses to EDSCR.INTdis.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.

• When DBGOSLSR.OSLK == 0, access to this field is RO.

TDA, bit [21]

Used for save/restore of EDSCR.TDA.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.TDA. Reads and writes of this
bit are indirect accesses to EDSCR.TDA.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.

• When DBGOSLSR.OSLK == 0, access to this field is RO.

Bit [20]

Reserved, RES0.

SC2, bit [19]

When FEAT_PCSRv8 is implemented, FEAT_VHE is implemented and FEAT_PCSRv8p2 is not
implemented:

SC2

Used for save/restore of EDSCR.SC2.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.SC2. Reads and writes of this
bit are indirect accesses to EDSCR.SC2.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.

• When DBGOSLSR.OSLK == 0, access to this field is RO.

Otherwise:

Reserved, RES0.

NS, bit [18]

Non-secure status.

Arm deprecates use of this field.

0b0 Secure state.

0b1 Non-secure state.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6991
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
Access to this field is RO.

SPNIDdis, bit [17]

When EL3 is implemented:

SPNIDdis

Secure privileged profiling disabled status bit.

0b0 Profiling allowed in Secure privileged modes.

0b1 Profiling prohibited in Secure privileged modes.

This field reads as 0 if any of the following applies, and reads as 1 otherwise:

• FEAT_Debugv8p2 is not implemented and ExternalSecureNoninvasiveDebugEnabled()
returns TRUE.

• EL3 is using AArch32 and the value of SDCR.SPME is 1.

• EL3 is using AArch64 and the value of MDCR_EL3.SPME is 1.

Arm deprecates use of this field.

Access to this field is RO.

Otherwise:

Reserved, RES0.

SPIDdis, bit [16]

When EL3 is implemented:

SPIDdis

Secure privileged AArch32 invasive self-hosted debug disabled status bit. The value of this bit
depends on the value of SDCR.SPD and the pseudocode function
AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled().

0b0 Self-hosted debug enabled in Secure privileged AArch32 modes.

0b1 Self-hosted debug disabled in Secure privileged AArch32 modes.

This bit reads as 1 if any of the following is true and reads as 0 otherwise:

• EL3 is using AArch32 and SDCR.SPD has the value 0b10.

• EL3 is using AArch64 and MDCR_EL3.SPD32 has the value 0b10.

• EL3 is using AArch32, SDCR.SPD has the value 0b00, and
AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled() returns FALSE.

• EL3 is using AArch64, MDCR_EL3.SPD32 has the value 0b00, and
AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled() returns FALSE.

Arm deprecates use of this field.

Access to this field is RO.

Otherwise:

Reserved, RES0.

MDBGen, bit [15]

Monitor debug events enable. Enable Breakpoint, Watchpoint, and Vector Catch exceptions.

0b0 Breakpoint, Watchpoint, and Vector Catch exceptions disabled.

0b1 Breakpoint, Watchpoint, and Vector Catch exceptions enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.
G8-6992 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
HDE, bit [14]

Used for save/restore of EDSCR.HDE.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.HDE. Reads and writes of this
bit are indirect accesses to EDSCR.HDE.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.

• When DBGOSLSR.OSLK == 0, access to this field is RO.

Bit [13]

Reserved, RES0.

UDCCdis, bit [12]

Traps EL0 accesses to the DCC registers to Undefined mode.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 accesses to the DBGDSCRint, DBGDTRRXint, DBGDTRTXint, DBGDIDR,
DBGDSAR, and DBGDRAR are trapped to Undefined mode.

Note

All accesses to these registers are trapped, including LDC and STC accesses to DBGDTRTXint and
DBGDTRRXint, and MRRC accesses to DBGDSAR and DBGDRAR.

Traps of EL0 accesses to the DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [11:7]

Reserved, RES0.

ERR, bit [6]

Used for save/restore of EDSCR.ERR.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.ERR. Reads and writes of this
bit are indirect accesses to EDSCR.ERR.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.

• When DBGOSLSR.OSLK == 0, access to this field is RO.

MOE, bits [5:2]

Method of Entry for debug exception. When a debug exception is taken to an Exception level using
AArch32, this field is set to indicate the event that caused the exception:

0b0001 Breakpoint.

0b0011 Software breakpoint (BKPT) instruction.

0b0101 Vector catch.

0b1010 Watchpoint.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6993
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

Accessing DBGDSCRext

Individual fields within this register might have restricted accessibility when the OS Lock is unlocked,
DBGOSLSR.OSLK == 0. See the field descriptions for more detail.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDSCRext;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDSCRext;
elsif PSTATE.EL == EL3 then
 return DBGDSCRext;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0010 0b010

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0010 0b010
G8-6994 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGDSCRext = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGDSCRext = R[t];
elsif PSTATE.EL == EL3 then
 DBGDSCRext = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6995
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.15 DBGDSCRint, Debug Status and Control Register, Internal View

The DBGDSCRint characteristics are:

Purpose

Main control register for the debug implementation. This is an internal, read-only view.

Configurations

AArch32 System register DBGDSCRint bits [30:29] are architecturally mapped to AArch64
System register MDCCSR_EL0[30:29].

AArch32 System register DBGDSCRint bit [15] is architecturally mapped to AArch64 System
register MDSCR_EL1[15].

AArch32 System register DBGDSCRint bit [12] is architecturally mapped to AArch64 System
register MDSCR_EL1[12].

AArch32 System register DBGDSCRint bits [5:2] are architecturally mapped to AArch64 System
register MDSCR_EL1[5:2].

AArch32 System register DBGDSCRint bit [15] is architecturally mapped to AArch32 System
register DBGDSCRext[15].

AArch32 System register DBGDSCRint bit [12] is architecturally mapped to AArch32 System
register DBGDSCRext[12].

AArch32 System register DBGDSCRint bits [5:2] are architecturally mapped to AArch32 System
register DBGDSCRext[5:2].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGDSCRint are UNDEFINED.

This register is required in all implementations.

DBGDSCRint.{NS, SPNIDdis, SPIDdis, MDBGen, UDCCdis, MOE} are UNKNOWN when the
register is accessed at EL0. However, although these values are not accessible at EL0 by instructions
that are neither UNPREDICTABLE nor return UNKNOWN values, it is permissible for an
implementation to return the values of DBGDSCRext.{NS, SPNIDdis, SPIDdis, MDBGen,
UDCCdis, MOE} for these fields at EL0.

It is also permissible for an implementation to return the same values as defined for a read of
DBGDSCRint at EL1 or above. (This is the case even if the implementation does not support
AArch32 at EL1 or above.)

Attributes

DBGDSCRint is a 32-bit register.

Field descriptions

Bit [31]

Reserved, RES0.

RXfull, bit [30]

DTRRX full. Read-only view of the equivalent bit in the EDSCR.

TXfull, bit [29]

DTRTX full. Read-only view of the equivalent bit in the EDSCR.

31 30 29

RES0

28 19

NS

18 17 16 15

RES0

14 13 12

RES0

11 6

MOE

5 2

RES0

1 0

RES0 TXfull
RXfull

SPNIDdis
SPIDdis

UDCCdis
MDBGen
G8-6996 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
Bits [28:19]

Reserved, RES0.

NS, bit [18]

Non-secure status.

Read-only view of the equivalent bit in the DBGDSCRext. Arm deprecates use of this field.

SPNIDdis, bit [17]

Secure privileged non-invasive debug disable.

Read-only view of the equivalent bit in the DBGDSCRext. Arm deprecates use of this field.

SPIDdis, bit [16]

Secure privileged invasive debug disable.

Read-only view of the equivalent bit in the DBGDSCRext. Arm deprecates use of this field.

MDBGen, bit [15]

Monitor debug events enable.

Read-only view of the equivalent bit in the DBGDSCRext.

Bits [14:13]

Reserved, RES0.

UDCCdis, bit [12]

User mode access to Debug Communications Channel disable.

Read-only view of the equivalent bit in the DBGDSCRext. Arm deprecates use of this field.

Bits [11:6]

Reserved, RES0.

MOE, bits [5:2]

Method of Entry for debug exception. When a debug exception is taken to an Exception level using
AArch32, this field is set to indicate the event that caused the exception:

0b0001 Breakpoint

0b0011 Software breakpoint (BKPT) instruction

0b0101 Vector catch

0b1010 Watchpoint

Read-only view of the equivalent bit in the DBGDSCRext.

Bits [1:0]

Reserved, RES0.

Accessing DBGDSCRint

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 return DBGDSCRint;

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6997
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
elsif PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x05);
 elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDA> != '00') then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDSCRint;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
G8-6998 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDSCRint;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDSCRint;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return DBGDSCRint;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-6999
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.16 DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View

The DBGDTRRXext characteristics are:

Purpose

Used for save/restore of DBGDTRRXint. It is a component of the Debug Communications Channel.

Configurations

AArch32 System register DBGDTRRXext bits [31:0] are architecturally mapped to AArch64
System register OSDTRRX_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGDTRRXext are UNDEFINED.

Attributes

DBGDTRRXext is a 32-bit register.

Field descriptions

Bits [31:0]

Update DTRRX without side-effect.

Writes to this register update the value in DTRRX and do not change RXfull.

Reads of this register return the last value written to DTRRX and do not change RXfull.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGDTRRXext

Arm deprecates reads and writes of DBGDTRRXext through the System register interface when the OS Lock is
unlocked, DBGOSLSR.OSLK == 0.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 return DBGDTRRXext;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 UNDEFINED;

Update DTRRX without side-effect

31 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0000 0b010
G8-7000 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDTRRXext;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDTRRXext;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return DBGDTRRXext;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7001
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 DBGDTRRXext = R[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGDTRRXext = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0000 0b010
G8-7002 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGDTRRXext = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 else
 DBGDTRRXext = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7003
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.17 DBGDTRRXint, Debug Data Transfer Register, Receive

The DBGDTRRXint characteristics are:

Purpose

Transfers data from an external debugger to the PE. For example, it is used by a debugger
transferring commands and data to a debug target. See DBGDTR_EL0 for additional architectural
mappings. It is a component of the Debug Communications Channel.

Configurations

AArch32 System register DBGDTRRXint bits [31:0] are architecturally mapped to AArch64
System register DBGDTRRX_EL0[31:0].

AArch32 System register DBGDTRRXint bits [31:0] are architecturally mapped to External
register DBGDTRRX_EL0[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGDTRRXint are UNDEFINED.

Attributes

DBGDTRRXint is a 32-bit register.

Field descriptions

Bits [31:0]

Update DTRRX.

Reads of this register:

• If RXfull is set to 1, return the last value written to DTRRX.

• If RXfull is set to 0, return an UNKNOWN value.

After the read, RXfull is cleared to 0.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGDTRRXint

Data can be stored to memory from this register using STC.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if Halted() then
 return DBGDTRRXint;
elsif PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then

Update DTRRX

31 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0101 0b000
G8-7004 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x05);
 elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDA> != '00') then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDTRRXint;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDTRRXint;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDTRRXint;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return DBGDTRRXint;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7005
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.18 DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit

The DBGDTRTXext characteristics are:

Purpose

Used for save/restore of DBGDTRTXint. It is a component of the Debug Communication Channel.

Configurations

AArch32 System register DBGDTRTXext bits [31:0] are architecturally mapped to AArch64
System register OSDTRTX_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGDTRTXext are UNDEFINED.

Attributes

DBGDTRTXext is a 32-bit register.

Field descriptions

Bits [31:0]

Return DTRTX without side-effect.

Reads of this register return the value in DTRTX and do not change TXfull.

Writes of this register update the value in DTRTX and do not change TXfull.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGDTRTXext

Arm deprecates reads and writes of DBGDTRTXext through the System register interface when the OS Lock is
unlocked, DBGOSLSR.OSLK == 0.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 return DBGDTRTXext;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 UNDEFINED;

Return DTRTX without side-effect

31 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0011 0b010
G8-7006 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDTRTXext;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGDTRTXext;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return DBGDTRTXext;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7007
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 DBGDTRTXext = R[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGDTRTXext = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0011 0b010
G8-7008 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGDTRTXext = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 else
 DBGDTRTXext = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7009
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.19 DBGDTRTXint, Debug Data Transfer Register, Transmit

The DBGDTRTXint characteristics are:

Purpose

Transfers data from the PE to an external debugger. For example, it is used by a debug target to
transfer data to the debugger. See DBGDTR_EL0 for additional architectural mappings. It is a
component of the Debug Communication Channel.

Configurations

AArch32 System register DBGDTRTXint bits [31:0] are architecturally mapped to AArch64
System register DBGDTRTX_EL0[31:0].

AArch32 System register DBGDTRTXint bits [31:0] are architecturally mapped to External register
DBGDTRTX_EL0[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGDTRTXint are UNDEFINED.

Attributes

DBGDTRTXint is a 32-bit register.

Field descriptions

Bits [31:0]

Return DTRTX.

Writes to this register:

• If TXfull is set to 1, set DTRTX to UNKNOWN.

• If TXfull is set to 0, update the value in DTRTX.

After the write, TXfull is set to 1.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGDTRTXint

Data can be loaded from memory into this register using LDC (immediate) and LDC (literal).

Accesses to this register use the following encodings in the System register encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if Halted() then
 DBGDTRTXint = R[t];
elsif PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then

Return DTRTX

31 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0101 0b000
G8-7010 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x05);
 elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDA> != '00') then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGDTRTXint = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGDTRTXint = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGDTRTXint = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 else
 DBGDTRTXint = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7011
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.20 DBGOSDLR, Debug OS Double Lock Register

The DBGOSDLR characteristics are:

Purpose

Locks out the external debug interface.

Configurations

AArch32 System register DBGOSDLR bits [31:0] are architecturally mapped to AArch64 System
register OSDLR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGOSDLR are UNDEFINED.

Attributes

DBGOSDLR is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

DLK, bit [0]

When FEAT_DoubleLock is implemented:

DLK

OS Double Lock control bit.

0b0 OS Double Lock unlocked.

0b1 OS Double Lock locked, if DBGPRCR.CORENPDRQ (Core no powerdown request)
bit is set to 0 and the PE is in Non-debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RAZ/WI.

Accessing DBGOSDLR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

RES0

31 1 0

DLK

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0001 0b0011 0b100
G8-7012 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA")
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL2.TDOSA")
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by HDCR.TDOSA") then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA")
then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGOSDLR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA")
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA")
then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGOSDLR;
elsif PSTATE.EL == EL3 then
 return DBGOSDLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA")
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL2.TDOSA")
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by HDCR.TDOSA") then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA")
then
 if Halted() && EDSCR.SDD == '1' then

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0001 0b0011 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7013
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGOSDLR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA")
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA")
then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGOSDLR = R[t];
elsif PSTATE.EL == EL3 then
 DBGOSDLR = R[t];

G8-7014 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.21 DBGOSECCR, Debug OS Lock Exception Catch Control Register

The DBGOSECCR characteristics are:

Purpose

Provides a mechanism for an operating system to access the contents of EDECCR that are otherwise
invisible to software, so it can save/restore the contents of EDECCR over powerdown on behalf of
the external debugger.

Configurations

AArch32 System register DBGOSECCR bits [31:0] are architecturally mapped to AArch64 System
register OSECCR_EL1[31:0].

AArch32 System register DBGOSECCR bits [31:0] are architecturally mapped to External register
EDECCR[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGOSECCR are UNDEFINED.

If DBGOSLSR.OSLK == 0 then DBGOSECCR returns an UNKNOWN value on reads and ignores
writes.

Attributes

DBGOSECCR is a 32-bit register.

Field descriptions

When DBGOSLSR.OSLK == 1:

EDECCR, bits [31:0]

Used for save/restore to EDECCR over powerdown.

Reads or writes to this field are indirect accesses to EDECCR.

Accessing DBGOSECCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

EDECCR

31 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0110 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7015
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' then
 return bits(32) UNKNOWN;
 else
 return DBGOSECCR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' then
 return bits(32) UNKNOWN;
 else
 return DBGOSECCR;
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' then
 return bits(32) UNKNOWN;
 else
 return DBGOSECCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' then
 //no operation
 else
 DBGOSECCR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' then
 //no operation
 else

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0110 0b010
G8-7016 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 DBGOSECCR = R[t];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' then
 //no operation
 else
 DBGOSECCR = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7017
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.22 DBGOSLAR, Debug OS Lock Access Register

The DBGOSLAR characteristics are:

Purpose

Provides a lock for the debug registers. The OS Lock also disables some debug exceptions and
debug events.

Configurations

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGOSLAR are UNDEFINED.

The OS Lock can also be locked or unlocked using the AArch64 System register OSLAR_EL1 and
External register OSLAR_EL1.

Attributes

DBGOSLAR is a 32-bit register.

Field descriptions

OSLA, bits [31:0]

OS Lock Access. Writing the value 0xC5ACCE55 to the DBGOSLAR sets the OS Lock to 1. Writing
any other value sets the OS Lock to 0.

Use DBGOSLSR.OSLK to check the current status of the lock.

Accessing DBGOSLAR

Accesses to this register use the following encodings in the System register encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGOSLAR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

OSLA

31 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0001 0b0000 0b100
G8-7018 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGOSLAR = R[t];
elsif PSTATE.EL == EL3 then
 DBGOSLAR = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7019
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.23 DBGOSLSR, Debug OS Lock Status Register

The DBGOSLSR characteristics are:

Purpose

Provides status information for the OS Lock.

Configurations

AArch32 System register DBGOSLSR bits [31:0] are architecturally mapped to AArch64 System
register OSLSR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGOSLSR are UNDEFINED.

The OS Lock status is also visible in the external debug interface through EDPRSR.

Attributes

DBGOSLSR is a 32-bit register.

Field descriptions

Bits [31:4]

Reserved, RES0.

OSLM, bits [3, 0]

OS Lock model implemented. Identifies the form of OS save and restore mechanism implemented.

0b00 OS Lock not implemented.

0b10 OS Lock implemented.

All other values are reserved. In an Armv8 implementation the value 0b00 is not permitted.

The OSLM field is split as follows:

• OSLM[1] is DBGOSLSR[3].

• OSLM[0] is DBGOSLSR[0].

nTT, bit [2]

Not 32-bit access. This bit is always RAZ. It indicates that a 32-bit access is needed to write the key
to the OS Lock Access Register.

OSLK, bit [1]

OS Lock Status. The possible values are:

0b0 OS Lock unlocked.

0b1 OS Lock locked.

The OS Lock is locked and unlocked by writing to the OS Lock Access Register.

The reset behavior of this field is:

• On a Cold reset, this field resets to 1.

Accessing DBGOSLSR

Accesses to this register use the following encodings in the System register encoding space:

RES0

31 4 3 2 1 0

OSLM[1]
nTT

OSLM[0]
OSLK
G8-7020 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGOSLSR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGOSLSR;
elsif PSTATE.EL == EL3 then
 return DBGOSLSR;

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0001 0b0001 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7021
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.24 DBGPRCR, Debug Power Control Register

The DBGPRCR characteristics are:

Purpose

Controls behavior of the PE on powerdown request.

Configurations

AArch32 System register DBGPRCR bits [31:0] are architecturally mapped to AArch64 System
register DBGPRCR_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGPRCR are UNDEFINED.

Bit [0] of this register is mapped to EDPRCR.CORENPDRQ, bit [0] of the external view of this
register.

The other bits in these registers are not mapped to each other.

Attributes

DBGPRCR is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

CORENPDRQ, bit [0]

When FEAT_DoPD is implemented:

CORENPDRQ

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request
causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power
controller must not allow the Core power domain to switch off while this bit is 1.

0b0 If the system responds to a powerdown request, it powers down Core power domain.

0b1 If the system responds to a powerdown request, it does not powerdown the Core power
domain, but instead emulates a powerdown of that domain.

In an implementation that includes the recommended external debug interface, this bit drives the
DBGNOPWRDWN signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to the Cold reset value on exit from an
IMPLEMENTATION DEFINED software-visible retention state. For more information about retention
states see Core power domain power states on page H6-7440.

Note
Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This
means that a debugger can request emulation of powerdown regardless of whether invasive debug
is permitted.

RES0

31 1 0

CORENPDRQ
G8-7022 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
The reset behavior of this field is:

• On a Cold reset, if the powerup request is implemented and the powerup request has been
asserted, this field is set to an IMPLEMENTATION DEFINED choice of 0 or 1. If the powerup
request is not asserted, this field is set to 0.

Otherwise:

CORENPDRQ

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request
causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power
controller must not allow the Core power domain to switch off while this bit is 1.

0b0 If the system responds to a powerdown request, it powers down Core power domain.

0b1 If the system responds to a powerdown request, it does not powerdown the Core power
domain, but instead emulates a powerdown of that domain.

In an implementation that includes the recommended external debug interface, this bit drives the
DBGNOPWRDWN signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to the value of EDPRCR.COREPURQ on
exit from an IMPLEMENTATION DEFINED software-visible retention state. For more information
about retention states see Core power domain power states on page H6-7440.

Note

Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This
means that a debugger can request emulation of powerdown regardless of whether invasive debug
is permitted.

The reset behavior of this field is:

• On a Cold reset, this field resets to the value in EDPRCR.COREPURQ.

Accessing DBGPRCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGPRCR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0001 0b0100 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7023
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGPRCR;
elsif PSTATE.EL == EL3 then
 return DBGPRCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGPRCR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGPRCR = R[t];
elsif PSTATE.EL == EL3 then
 DBGPRCR = R[t];

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0001 0b0100 0b100
G8-7024 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.25 DBGVCR, Debug Vector Catch Register

The DBGVCR characteristics are:

Purpose

Controls Vector Catch debug events.

Configurations

AArch32 System register DBGVCR bits [31:0] are architecturally mapped to AArch64 System
register DBGVCR32_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGVCR are UNDEFINED.

This register is required in all implementations.

Attributes

DBGVCR is a 32-bit register.

Field descriptions

When EL3 is implemented and EL3 is using AArch32:

NSF, bit [31]

FIQ vector catch enable in Non-secure state.

The exception vector offset is 0x1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSI, bit [30]

IRQ vector catch enable in Non-secure state.

The exception vector offset is 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [29]

Reserved, RES0.

NSD, bit [28]

Data Abort vector catch enable in Non-secure state.

The exception vector offset is 0x10.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSP, bit [27]

Prefetch Abort vector catch enable in Non-secure state.

The exception vector offset is 0x0C.

31 30 29 28 27 26 25

RES0

24 16

MF

15

MI

14 13

MD

12

MP

11

MS

10

RES0

9 8

SF

7

SI

6 5

SD

4

SP

3

SS

2

SU

1 0

NSF
NSI
RES0

NSU
NSS

NSP
NSD

RES0 RES0 RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7025
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSS, bit [26]

Supervisor Call (SVC) vector catch enable in Non-secure state.

The exception vector offset is 0x08.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSU, bit [25]

Undefined Instruction vector catch enable in Non-secure state.

The exception vector offset is 0x04.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [24:16]

Reserved, RES0.

MF, bit [15]

FIQ vector catch enable in Monitor mode.

The exception vector offset is 0x1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MI, bit [14]

IRQ vector catch enable in Monitor mode.

The exception vector offset is 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

MD, bit [12]

Data Abort vector catch enable in Monitor mode.

The exception vector offset is 0x10.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MP, bit [11]

Prefetch Abort vector catch enable in Monitor mode.

The exception vector offset is 0x0C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MS, bit [10]

Secure Monitor Call (SMC) vector catch enable in Monitor mode.

The exception vector offset is 0x08.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
G8-7026 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
Bits [9:8]

Reserved, RES0.

SF, bit [7]

FIQ vector catch enable in Secure state.

The exception vector offset is 0x1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SI, bit [6]

IRQ vector catch enable in Secure state.

The exception vector offset is 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

SD, bit [4]

Data Abort vector catch enable in Secure state.

The exception vector offset is 0x10.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SP, bit [3]

Prefetch Abort vector catch enable in Secure state.

The exception vector offset is 0x0C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SS, bit [2]

Supervisor Call (SVC) vector catch enable in Secure state.

The exception vector offset is 0x08.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SU, bit [1]

Undefined Instruction vector catch enable in Secure state.

The exception vector offset is 0x04.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7027
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
When EL3 is implemented and EL3 is using AArch64:

NSF, bit [31]

FIQ vector catch enable in Non-secure state.

The exception vector offset is 0x1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSI, bit [30]

IRQ vector catch enable in Non-secure state.

The exception vector offset is 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [29]

Reserved, RES0.

NSD, bit [28]

Data Abort vector catch enable in Non-secure state.

The exception vector offset is 0x10.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSP, bit [27]

Prefetch Abort vector catch enable in Non-secure state.

The exception vector offset is 0x0C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSS, bit [26]

Supervisor Call (SVC) vector catch enable in Non-secure state.

The exception vector offset is 0x08.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSU, bit [25]

Undefined Instruction vector catch enable in Non-secure state.

The exception vector offset is 0x04.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [24:8]

Reserved, RES0.

31 30 29 28 27 26 25

RES0

24 8

SF

7

SI

6 5

SD

4

SP

3

SS

2

SU

1 0

NSF
NSI
RES0

NSU
NSS

NSP
NSD

RES0 RES0
G8-7028 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
SF, bit [7]

FIQ vector catch enable in Secure state.

The exception vector offset is 0x1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SI, bit [6]

IRQ vector catch enable in Secure state.

The exception vector offset is 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

SD, bit [4]

Data Abort vector catch enable in Secure state.

The exception vector offset is 0x10.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SP, bit [3]

Prefetch Abort vector catch enable in Secure state.

The exception vector offset is 0x0C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SS, bit [2]

Supervisor Call (SVC) vector catch enable in Secure state.

The exception vector offset is 0x08.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SU, bit [1]

Undefined Instruction vector catch enable in Secure state.

The exception vector offset is 0x04.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.

When EL3 is not implemented:

RES0

31 8

F

7

I

6 5

D

4

P

3

S

2

U

1 0

RES0 RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7029
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
Bits [31:8]

Reserved, RES0.

F, bit [7]

FIQ vector catch enable.

The exception vector offset is 0x1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [6]

IRQ vector catch enable.

The exception vector offset is 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

D, bit [4]

Data Abort vector catch enable.

The exception vector offset is 0x10.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P, bit [3]

Prefetch Abort vector catch enable.

The exception vector offset 0x0C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S, bit [2]

Supervisor Call (SVC) vector catch enable.

The exception vector offset is 0x08.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [1]

Undefined Instruction vector catch enable.

The exception vector offset is 0x04.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.

Accessing DBGVCR

Accesses to this register use the following encodings in the System register encoding space:
G8-7030 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGVCR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGVCR;
elsif PSTATE.EL == EL3 then
 return DBGVCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGVCR = R[t];
elsif PSTATE.EL == EL2 then

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0111 0b000

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0111 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7031
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGVCR = R[t];
elsif PSTATE.EL == EL3 then
 DBGVCR = R[t];

G8-7032 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.26 DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15

The DBGWCR<n> characteristics are:

Purpose

Holds control information for a watchpoint. Forms watchpoint n together with value register
DBGWVR<n>.

Configurations

AArch32 System register DBGWCR<n> bits [31:0] are architecturally mapped to AArch64 System
register DBGWCR<n>_EL1[31:0].

AArch32 System register DBGWCR<n> bits [31:0] are architecturally mapped to External register
DBGWCR<n>_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGWCR<n> are UNDEFINED.

If watchpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes

DBGWCR<n> is a 32-bit register.

Field descriptions

When the E field is zero, all the other fields in the register are ignored.

Bits [31:29]

Reserved, RES0.

MASK, bits [28:24]

Address mask. Only objects up to 2GB can be watched using a single mask.

0b00000 No mask.

0b00001 Reserved.

0b00010 Reserved.

If programmed with a reserved value, a watchpoint must behave as if either:

• MASK has been programmed with a defined value, which might be 0 (no mask), other than
for a direct read of DBGWCRn_EL1.

• The watchpoint is disabled.

Software must not rely on this property because the behavior of reserved values might change in a
future revision of the architecture.

Other values mask the corresponding number of address bits, from 0b00011 masking 3 address bits
(0x00000007 mask for address) to 0b11111 masking 31 address bits (0x7FFFFFFF mask for address).

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [23:21]

Reserved, RES0.

RES0

31 29

MASK

28 24

RES0

23 21

WT

20

LBN

19 16

SSC

15 14 13

BAS

12 5

LSC

4 3

PAC

2 1

E

0

HMC
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7033
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
WT, bit [20]

Watchpoint type. Possible values are:

0b0 Unlinked data address match.

0b1 Linked data address match.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

LBN, bits [19:16]

Linked breakpoint number. For Linked data address watchpoints, this specifies the index of the
Context-matching breakpoint linked to.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Watchpoint debug event for
watchpoint n is generated. This field must be interpreted along with the HMC and PAC fields.

For more information, see Execution conditions for which a watchpoint generates Watchpoint
exceptions on page G2-6197, and Reserved DBGWCR<n>.{SSC, HMC, PAC} values on
page G2-6204.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Watchpoint debug
event for watchpoint n is generated. This field must be interpreted along with the SSC and PAC
fields.

For more information on the operation of the SSC, HMC, and PAC fields, see Execution conditions
for which a watchpoint generates Watchpoint exceptions on page G2-6197.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

BAS, bits [12:5]

Byte address select. Each bit of this field selects whether a byte from within the word or
double-word addressed by DBGWVR<n> is being watched.

In cases where DBGWVR<n> addresses a double-word:

BAS Description

0bxxxxxxx1 Match byte at DBGWVR<n>

0bxxxxxx1x Match byte at DBGWVR<n>+1

0bxxxxx1xx Match byte at DBGWVR<n>+2

0bxxxx1xxx Match byte at DBGWVR<n>+3

BAS Description, if DBGWVR<n>[2] == 0

0bxxx1xxxx Match byte at DBGWVR<n>+4
G8-7034 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
If DBGWVR<n>[2] == 1, only BAS[3:0] are used and BAS[7:4] are ignored. Arm deprecates
setting DBGWVR<n>[2] == 1.

The valid values for BAS are non-zero binary numbers all of whose set bits are contiguous. All other
values are reserved and must not be used by software. See Reserved DBGWCR<n>.BAS values on
page G2-6205.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

LSC, bits [4:3]

Load/store control. This field enables watchpoint matching on the type of access being made.
Possible values of this field are:

0b01 Match instructions that load from a watchpointed address.

0b10 Match instructions that store to a watchpointed address.

0b11 Match instructions that load from or store to a watchpointed address.

All other values are reserved, but must behave as if the watchpoint is disabled. Software must not
rely on this property as the behavior of reserved values might change in a future revision of the
architecture.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

PAC, bits [2:1]

Privilege of access control. Determines the Exception level or levels at which a Watchpoint debug
event for watchpoint n is generated. This field must be interpreted along with the SSC and HMC
fields.

For more information on the operation of the SSC, HMC, and PAC fields, see Execution conditions
for which a watchpoint generates Watchpoint exceptions on page G2-6197.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

E, bit [0]

Enable watchpoint n. Possible values are:

0b0 Watchpoint disabled.

0b1 Watchpoint enabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGWCR<n>

Accesses to this register use the following encodings in the System register encoding space:

0bxx1xxxxx Match byte at DBGWVR<n>+5

0bx1xxxxxx Match byte at DBGWVR<n>+6

0b1xxxxxxx Match byte at DBGWVR<n>+7

BAS Description, if DBGWVR<n>[2] == 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7035
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGWCR[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGWCR[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGWCR[UInt(CRm<3:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 n[3:0] 0b111

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 n[3:0] 0b111
G8-7036 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGWCR[UInt(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGWCR[UInt(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGWCR[UInt(CRm<3:0>)] = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7037
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.27 DBGWFAR, Debug Watchpoint Fault Address Register

The DBGWFAR characteristics are:

Purpose

Previously returned information about the address of the instruction that accessed a watchpointed
address. Is now deprecated and RES0.

Configurations

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGWFAR are UNDEFINED.

Attributes

DBGWFAR is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing DBGWFAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGWFAR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;

RES0

31 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0110 0b000
G8-7038 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 return DBGWFAR;
elsif PSTATE.EL == EL3 then
 return DBGWFAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGWFAR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGWFAR = R[t];
elsif PSTATE.EL == EL3 then
 DBGWFAR = R[t];

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0110 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7039
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.28 DBGWVR<n>, Debug Watchpoint Value Registers, n = 0 - 15

The DBGWVR<n> characteristics are:

Purpose

Holds a data address value for use in watchpoint matching. Forms watchpoint n together with
control register DBGWCR<n>.

Configurations

AArch32 System register DBGWVR<n> bits [31:0] are architecturally mapped to AArch64 System
register DBGWVR<n>_EL1[31:0].

AArch32 System register DBGWVR<n> bits [31:0] are architecturally mapped to External register
DBGWVR<n>_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DBGWVR<n> are UNDEFINED.

If watchpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes

DBGWVR<n> is a 32-bit register.

Field descriptions

VA, bits [31:2]

Bits[31:2] of the address value for comparison.

Arm deprecates setting DBGWVR<n>[2] == 1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

Accessing DBGWVR<n>

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

VA

31 2

RES0

1 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 n[3:0] 0b110
G8-7040 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGWVR[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGWVR[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGWVR[UInt(CRm<3:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGWVR[UInt(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 n[3:0] 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7041
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGWVR[UInt(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGWVR[UInt(CRm<3:0>)] = R[t];

G8-7042 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.29 DLR, Debug Link Register

The DLR characteristics are:

Purpose

In Debug state, holds the address to restart from.

Configurations

AArch32 System register DLR bits [31:0] are architecturally mapped to AArch64 System register
DLR_EL0[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to DLR
are UNDEFINED.

Attributes

DLR is a 32-bit register.

Field descriptions

Bits [31:0]

Restart address.

Accessing DLR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if !Halted() then
 UNDEFINED;
else
 return DLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if !Halted() then
 UNDEFINED;
else
 DLR = R[t];

Restart address

31 0

coproc opc1 CRn CRm opc2

0b1111 0b011 0b0100 0b0101 0b001

coproc opc1 CRn CRm opc2

0b1111 0b011 0b0100 0b0101 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7043
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.30 DSPSR, Debug Saved Program Status Register

The DSPSR characteristics are:

Purpose

Holds the saved process state for Debug state. On entering Debug state, PSTATE information is
written to this register. On exiting Debug state, values are copied from this register to PSTATE.

Configurations

AArch32 System register DSPSR bits [31:0] are architecturally mapped to AArch64 System
register DSPSR_EL0[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
DSPSR are UNDEFINED.

Attributes

DSPSR is a 32-bit register.

Field descriptions

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on entering Debug state, and copied to
PSTATE.N on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on entering Debug state, and copied to
PSTATE.Z on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on entering Debug state, and copied to
PSTATE.C on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on entering Debug state, and copied to
PSTATE.V on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on entering Debug state, and copied to
PSTATE.Q on exiting Debug state.

N

31

Z

30

C

29

V

28

Q

27 26 25 24 23 22

SS

21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
DIT

PAN
SSBS
G8-7044 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on entering Debug state, and copied to PSTATE.IT on
exiting Debug state.

DSPSR.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is DSPSR[26:25].

• IT[7:2] is DSPSR[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When FEAT_DIT is implemented:

DIT

Data Independent Timing. Set to the value of PSTATE.DIT on entering Debug state, and copied to
PSTATE.DIT on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When FEAT_SSBS is implemented:

SSBS

Speculative Store Bypass. Set to the value of PSTATE.SSBS on entering Debug state, and copied to
PSTATE.SSBS on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

PAN

Privileged Access Never. Set to the value of PSTATE.PAN on entering Debug state, and copied to
PSTATE.PAN on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on entering Debug state, and conditionally copied to
PSTATE.SS on exiting Debug state.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7045
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on entering Debug state, and copied to
PSTATE.IL on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on entering Debug state, and copied to
PSTATE.GE on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on entering Debug state, and copied to PSTATE.E on
exiting Debug state.

If the implementation does not support big-endian operation, DSPSR.E is RES0. If the
implementation does not support little-endian operation, DSPSR.E is RES1. On exiting Debug state,
if the implementation does not support big-endian operation at the Exception level being returned
to, DSPSR.E is RES0, and if the implementation does not support little-endian operation at the
Exception level being returned to, DSPSR.E is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on entering Debug state, and copied to
PSTATE.A on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on entering Debug state, and copied to PSTATE.I
on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on entering Debug state, and copied to PSTATE.F
on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on entering Debug state, and copied to
PSTATE.T on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
G8-7046 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on entering Debug state, and copied to PSTATE.M[4:0]
on exiting Debug state.

0b10000 User.

0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10110 Monitor.

0b10111 Abort.

0b11010 Hyp.

0b11011 Undefined.

0b11111 System.

Other values are reserved. If DSPSR.M[4:0] has a Reserved value, or a value for an unimplemented
Exception level, exiting Debug state is an illegal return event, as described in Illegal return events
from AArch32 state on page G1-6066.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing DSPSR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if !Halted() then
 UNDEFINED;
else
 return DSPSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if !Halted() then
 UNDEFINED;
else
 DSPSR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b011 0b0100 0b0101 0b000

coproc opc1 CRn CRm opc2

0b1111 0b011 0b0100 0b0101 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7047
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.31 HDCR, Hyp Debug Control Register

The HDCR characteristics are:

Purpose

Controls the trapping to Hyp mode of Non-secure accesses, at EL1 or lower, to functions provided
by the debug and trace architectures and the Performance Monitors Extension.

Configurations

AArch32 System register HDCR bits [31:0] are architecturally mapped to AArch64 System register
MDCR_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
HDCR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3, and other than for a direct read of the
register, the PE behaves as if HDCR.HPMN == PMCR.N.

Attributes

HDCR is a 32-bit register.

Field descriptions

Bits [31:30]

Reserved, RES0.

HPMFZO, bit [29]

When FEAT_PMUv3p7 is implemented:

HPMFZO

Hyp Performance Monitors Freeze-on-overflow. Stop event counters on overflow.

0b0 Do not freeze on overflow.

0b1 Event counters do not count when PMOVSR[(PMCR.N-1):HDCR.HPMN] is nonzero.

If HDCR.HPMN is less than PMCR.N, this field affects the operation of event counters in the range
[HDCR.HPMN .. (PMCR.N-1)].

If HDCR.HPMN is equal to PMCR.N, this field has no effect.

This field does not affect the operation of event counters in the range [0 .. (HDCR.HPMN-1)] and
PMCCNTR.

The operation of this field ignores the values of PMOVSR[(HDCR.HPMN-1):0].

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

31 30 29 28 27 26

RES0

25 24 23

RES0

22 20 19 18 17

RES0

16 12 11 10 9 8 7 6 5

HPMN

4 0

HPMFZO
MTPME

TDCC
HLP

HPMD
RES0

TTRF
HCCD

TDRA
TDOSA

TDA

TPMCR
TPM

HPME
TDE
G8-7048 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
MTPME, bit [28]

When FEAT_MTPMU is implemented and EL3 is not implemented:

MTPME

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>.MT bits.

0b0 FEAT_MTPMU is disabled. The Effective value of PMEVTYPER<n>.MT is zero.

0b1 PMEVTYPER<n>.MT bits not affected by this bit.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as
the PE, it is IMPLEMENTATION DEFINED whether the PE behaves as if this bit is 0b0.

The reset behavior of this field is:

• On a Cold reset, in a system where the PE resets into EL2 or EL3, this field resets to 1.

Otherwise:

Reserved, RES0.

TDCC, bit [27]

When FEAT_FGT is implemented:

TDCC

Trap DCC. Traps use of the Debug Comms Channel at EL1 and EL0 to EL2.

0b0 This control does not cause any register accesses to be trapped.

0b1 If EL2 is implemented and enabled in the current Security state, accesses to the DCC
registers at EL1 and EL0 generate a Hyp Trap exception, unless the access also
generates a higher priority exception.

Traps on the DCC data transfer registers are ignored when the PE is in Debug state.

The DCC registers trapped by this control are:

• DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is in
Non-debug state, DBGDTRRXint and DBGDTRTXint.

The traps are reported with EC syndrome value:

• 0x05 for trapped MRC and MCR accesses with coproc == 0b1110.

• 0x06 for trapped LDC to DBGDTRTXint and STC from DBGDTRRXint.

When the PE is in Debug state, HDCR.TDCC does not trap any accesses to:

• DBGDTRRXint and DBGDTRTXint.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

HLP, bit [26]

When FEAT_PMUv3p5 is implemented:

HLP

Hypervisor Long event counter enable. Determines when unsigned overflow is recorded by an event
counter overflow bit.

0b0 Event counter overflow on increment that causes unsigned overflow of
PMEVCNTR<n>[31:0].

0b1 Event counter overflow on increment that causes unsigned overflow of
PMEVCNTR<n>[63:0].
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7049
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
If the highest implemented Exception level is using AArch32, it is IMPLEMENTATION DEFINED
whether this bit is read/write or RAZ/WI.

If HDCR.HPMN is less than PMCR.N, this bit affects the operation of event counters in the range
[HDCR.HPMN..(PMCR.N-1)]. Otherwise this bit has no effect on the operation of the event
counters.

Note

The effect of HDCR.HPMN on the operation of this bit always applies if EL2 is implemented, at all
Exception levels including EL2 and EL3, and regardless of whether EL2 is enabled in the current
Security state.

For more information see the description of the HDCR.HPMN field.

Note

PMEVCNTR<n>[63:32] cannot be accessed directly in AArch32 state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [25:24]

Reserved, RES0.

HCCD, bit [23]

When FEAT_PMUv3p5 is implemented:

HCCD

Hypervisor Cycle Counter Disable. Prohibits PMCCNTR from counting at EL2.

0b0 Cycle counting by PMCCNTR is not affected by this mechanism.

0b1 Cycle counting by PMCCNTR is prohibited at EL2.

This field does not affect the CPU_CYCLES event or any other event that counts cycles.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [22:20]

Reserved, RES0.

TTRF, bit [19]

When FEAT_TRF is implemented:

TTRF

Traps use of the Trace Filter Control registers at EL1 to EL2.

0b0 Accesses to TRFCR at EL1 are not affected by this control bit.

0b1 Accesses to TRFCR at EL1 generate a Hyp Trap exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.
G8-7050 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
Otherwise:

Reserved, RES0.

Bit [18]

Reserved, RES0.

HPMD, bit [17]

When FEAT_PMUv3p1 is implemented and FEAT_Debugv8p2 is implemented:

HPMD

Guest Performance Monitors Disable. Controls event counting by some event counters at EL2.

0b0 Event counting and PMCCNTR are not affected by this mechanism.

0b1 Event counting by some event counters is prohibited in Hyp mode. If PMCR.DP is 1,
PMCCNTR is disabled in Hyp mode. Otherwise, PMCCNTR is not affected by this
mechanism.

This field applies only to:

• The event counters in the range [0 .. (HDCR.HPMN-1)].

• If PMCR.DP is 1, PMCCNTR.

The other event counters are not affected. When PMCR.DP is 0, PMCCNTR is not affected.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

When FEAT_PMUv3p1 is implemented:

HPMD

Guest Performance Monitors Disable. Controls event counting by some event counters at EL2.

0b0 Event counting and PMCCNTR are not affected by this mechanism.

0b1 If ExternalSecureNoninvasiveDebugEnabled () is FALSE, event counting by some event
counters is prohibited in Hyp mode, and if PMCR.DP is 1, PMCCNTR is disabled in
Hyp mode.

If ExternalSecureNoninvasiveDebugEnabled () is TRUE, the event counters and PMCCNTR are not
affected by this field.

Otherwise, this field applies only to:

• The event counters in the range [0 .. (HDCR.HPMN-1)].

• If PMCR.DP is 1, PMCCNTR.

The other event counters are not affected. When PMCR.DP is 0, PMCCNTR is not affected.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [16:12]

Reserved, RES0.

TDRA, bit [11]

Trap Debug ROM Address register access. Traps Non-secure EL0 and EL1 System register accesses
to the Debug ROM registers to Hyp mode.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL0 and EL1 System register accesses to the DBGDRAR or DBGDSAR
are trapped to Hyp mode, unless it is trapped by DBGDSCRext.UDCCdis.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7051
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct
read.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TDOSA, bit [10]

When FEAT_DoubleLock is implemented:

TDOSA

Trap debug OS-related register access. Traps Non-secure EL1 System register accesses to the
powerdown debug registers to Hyp mode.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 System register accesses to the powerdown debug registers are trapped
to Hyp mode.

The registers for which accesses are trapped are as follows:

• DBGOSLSR, DBGOSLAR, DBGOSDLR, and DBGPRCR.

• Any IMPLEMENTATION DEFINED register with similar functionality that the implementation
specifies as trapped by this bit.

Note

These registers are not accessible at EL0.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct
read.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

TDOSA

Trap debug OS-related register access. Traps Non-secure EL1 System register accesses to the
powerdown debug registers to Hyp mode.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 System register accesses to the powerdown debug registers are trapped
to Hyp mode.

The registers for which accesses are trapped are as follows:

• DBGOSLSR, DBGOSLAR, and DBGPRCR.

• Any IMPLEMENTATION DEFINED register with similar functionality that the implementation
specifies as trapped by this bit.

It is IMPLEMENTATION DEFINED whether accesses to DBGOSDLR are trapped.

Note

These registers are not accessible at EL0.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct
read.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TDA, bit [9]

Trap debug access. Traps Non-secure EL0 and EL1 System register accesses to those debug System
registers in the (coproc==0b1110) encoding space that are not trapped by either of the following:

• HDCR.TDRA.
G8-7052 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
• HDCR.TDOSA.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL0 or EL1 System register accesses to the debug registers, other than the
registers trapped by HDCR.TDRA and HDCR.TDOSA, are trapped to Hyp mode,
unless it is trapped by DBGDSCRext.UDCCdis.

Traps of AArch32 accesses to DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct
read.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TDE, bit [8]

Trap Debug exceptions. Controls routing of Debug exceptions, and defines the debug target
Exception level, ELD.

0b0 The debug target Exception level is EL1.

0b1 If EL2 is enabled for the current Effective value of SCR.NS, the debug target Exception
level is EL2, otherwise the debug target Exception level is EL1.

The HDCR.{TDRA, TDOSA, TDA} fields are treated as being 1 for all purposes other
than returning the result of a direct read of the register.

For more information, see Routing debug exceptions on page G2-6159.

When HCR.TGE == 1, the PE behaves as if the value of this field is 1 for all purposes other than
returning the value of a direct read of the register.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

HPME, bit [7]

When FEAT_PMUv3 is implemented:

HPME

[HDCR.HPMN..(N-1)] event counters enable.

0b0 Event counters in the range [HDCR.HPMN..(PMCR.N-1)] are disabled.

0b1 Event counters in the range [HDCR.HPMN..(PMCR.N-1)] are enabled by
PMCNTENSET.

If HDCR.HPMN is less than PMCR.N, the event counters in the range
[HDCR.HPMN..(PMCR.N-1)], are enabled and disabled by this bit. Otherwise this bit has no effect
on the operation of the event counters.

Note

The effect of HDCR.HPMN on the operation of this bit applies regardless of whether EL2 is enabled
in the current Security state.

For more information see the description of the HPMN field.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7053
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
TPM, bit [6]

When FEAT_PMUv3 is implemented:

TPM

Trap Performance Monitors accesses. Traps Non-secure EL0 and EL1 accesses to all Performance
Monitors registers to Hyp mode.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL0 and EL1 accesses to all Performance Monitors registers are trapped to
Hyp mode.

Note

EL2 does not provide traps on Performance Monitor register accesses through the optional
memory-mapped external debug interface.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

TPMCR, bit [5]

When FEAT_PMUv3 is implemented:

TPMCR

Trap PMCR accesses. Traps Non-secure EL0 and EL1 accesses to the PMCR to Hyp mode.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL0 and EL1 accesses to the PMCR are trapped to Hyp mode, unless it is
trapped by PMUSERENR.EN.

Note

EL2 does not provide traps on Performance Monitor register accesses through the optional
memory-mapped external debug interface.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

HPMN, bits [4:0]

When FEAT_PMUv3 is implemented:

HPMN

Defines the number of event counters that are accessible from Non-secure EL1 modes, and from
Non-secure EL0 modes if unprivileged access is enabled.

If HPMN is less than PMCR.N, HPMN divides the event counters into two ranges, [0..(HPMN-1)]
and [HPMN..(PMCR.N-1)].

For an event counter in the range [0..(HPMN-1)]:

• The counter is accessible from EL1 and EL2, and from EL0 if unprivileged access to the
counters is enabled.

• If FEAT_PMUv3p5 is implemented, PMCR.LP determines whether the counter overflows at
PMEVCNTR<n>[31:0] or PMEVCNTR<n>[63:0].

• PMCR.E enables the operation of counters in this range.
G8-7054 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
Note

If HPMN is equal to PMCR.N, this applies to all event counters.

If HPMN is less than PMCR.N, for an event counter in the range [HPMN..(PMCR.N-1)]:

• The counter is accessible only from EL2 and from Secure state.

• If FEAT_PMUv3p5 is implemented, HDCR.HLP determines whether the counter overflows
at PMEVCNTR<n>[31:0] or PMEVCNTR<n>[63:0].

• HDCR.HPME enables the operation of counters in this range.

If this field is set to 0, or to a value larger than PMCR.N, then the following CONSTRAINED
UNPREDICTABLE behaviors apply:

• The value returned by a direct read of HDCR.HPMN is UNKNOWN.

• Either:

— An UNKNOWN number of counters are reserved for EL2 use. That is, the PE behaves
as if HDCR.HPMN is set to an UNKNOWN non-zero value less than or equal to
PMCR.N.

— All counters are reserved for EL2 use, meaning no counters are accessible from
Non-secure EL1 and Non-secure EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to the
value in PMCR.N.

Otherwise:

Reserved, RES0.

Accessing HDCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return HDCR;

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7055
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HDCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 HDCR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HDCR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b001
G8-7056 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.32 HTRFCR, Hyp Trace Filter Control Register

The HTRFCR characteristics are:

Purpose

Provides EL2 controls for Trace.

Configurations

AArch32 System register HTRFCR bits [31:0] are architecturally mapped to AArch64 System
register TRFCR_EL2[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_TRF is implemented.
Otherwise, direct accesses to HTRFCR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from Monitor mode when SCR.NS == 1.

Attributes

HTRFCR is a 32-bit register.

Field descriptions

Bits [31:7]

Reserved, RES0.

TS, bits [6:5]

Timestamp Control. Controls which timebase is used for trace timestamps.

0b00 The timestamp is controlled by TRFCR.TS.

0b01 Virtual timestamp. The traced timestamp is the physical counter value minus the value
of CNTVOFF.

0b11 Physical timestamp. The traced timestamp is the physical counter value.

When SelfHostedTraceEnabled() == FALSE, this field is ignored.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Bit [4]

Reserved, RES0.

CX, bit [3]

VMID Trace Enable.

0b0 VMID tracing is not allowed.

0b1 VMID tracing is allowed.

When SelfHostedTraceEnabled() == FALSE, this field is ignored.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Bit [2]

Reserved, RES0.

RES0

31 7

TS

6 5 4

CX

3 2 1 0

RES0
RES0

E0HTRE
E2TRE
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7057
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
E2TRE, bit [1]

EL2 Trace Enable.

0b0 Tracing is prohibited at EL2.

0b1 Tracing is allowed at EL2.

When SelfHostedTraceEnabled() == FALSE, this field is ignored.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

E0HTRE, bit [0]

EL0 Trace Enable.

0b0 Tracing is prohibited at EL0 when HCR.TGE == 1.

0b1 Tracing is allowed at EL0 when HCR.TGE == 1.

This field is ignored if any of the following are true:

• The PE is in Secure state.

• SelfHostedTraceEnabled() == FALSE.

• HCR.TGE == 0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Accessing HTRFCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0010 0b001
G8-7058 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 return HTRFCR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HTRFCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 HTRFCR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HTRFCR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7059
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.33 PMMIR, Performance Monitors Machine Identification Register

The PMMIR characteristics are:

Purpose

Describes Performance Monitors parameters specific to the implementation to software.

Configurations

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3p4 is
implemented. Otherwise, direct accesses to PMMIR are UNDEFINED.

Attributes

PMMIR is a 32-bit register.

Field descriptions

Bits [31:20]

Reserved, RES0.

BUS_WIDTH, bits [19:16]

Bus width. Indicates the number of bytes each BUS_ACCESS event relates to. Encoded as
Log2(number of bytes), plus one. Defined values are:

0b0000 The information is not available.

0b0011 Four bytes.

0b0100 8 bytes.

0b0101 16 bytes.

0b0110 32 bytes.

0b0111 64 bytes.

0b1000 128 bytes.

0b1001 256 bytes.

0b1010 512 bytes.

0b1011 1024 bytes.

0b1100 2048 bytes.

All other values are reserved.

Each transfer is up to this number of bytes. An access might be smaller than the bus width.

When this field is nonzero, each access counted by BUS_ACCESS is at most BUS_WIDTH bytes.
An implementation might treat a wide bus as multiple narrower buses, such that a wide access on
the bus increments the BUS_ACCESS counter by more than one.

BUS_SLOTS, bits [15:8]

Bus count. The largest value by which the BUS_ACCESS event might increment in a single
BUS_CYCLES cycle.

When this field is nonzero, the largest value by which the BUS_ACCESS event might increment in
a single BUS_CYCLES cycle is BUS_SLOTS.

RES0

31 20 19 16

BUS_SLOTS

15 8

SLOTS

7 0

BUS_WIDTH
G8-7060 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
SLOTS, bits [7:0]

Operation width. The largest value by which the STALL_SLOT event might increment in a single
cycle. If the STALL_SLOT event is not implemented, this field might be RAZ.

Accessing PMMIR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMMIR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMMIR;
elsif PSTATE.EL == EL3 then
 return PMMIR;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7061
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.34 SDCR, Secure Debug Control Register

The SDCR characteristics are:

Purpose

Provides EL3 configuration options for self-hosted debug, trace, and the Performance Monitors
Extension.

Configurations

AArch32 System register SDCR bits [31:0] can be mapped to AArch64 System register
MDCR_EL3[31:0], but this is not architecturally mandated.

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
SDCR are UNDEFINED.

Attributes

SDCR is a 32-bit register.

Field descriptions

Bits [31:29]

Reserved, RES0.

MTPME, bit [28]

When FEAT_MTPMU is implemented:

MTPME

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>.MT bits.

0b0 FEAT_MTPMU is disabled. The Effective value of PMEVTYPER<n>.MT is 0.

0b1 PMEVTYPER<n>.MT bits not affected by this bit.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as
the PE, it is IMPLEMENTATION DEFINED whether the PE behaves as if this bit is 0.

The reset behavior of this field is:

• On a Cold reset, in a system where the PE resets into EL3, this field resets to 1.

Otherwise:

Reserved, RES0.

TDCC, bit [27]

When FEAT_FGT is implemented:

TDCC

Trap DCC. Traps use of the Debug Comms Channel in modes other than Monitor mode to Monitor
mode.

0b0 This control does not cause any register accesses to be trapped.

RES0

31 29 28 27

RES0

26 24 23 22 21 20 19 18 17 16

SPD

15 14

RES0

13 0

MTPME
TDCC

SCCD
RES0
EPMAD

RES0
SPME

STE
TTRF

EDAD
G8-7062 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
0b1 Accesses to the DCC registers in modes other than Monitor mode generate a Monitor
Trap exception, unless the access also generates a higher priority exception.

Traps on the DCC data transfer registers are ignored when the PE is in Debug state.

The DCC registers trapped by this control are:

• DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is in
Non-debug state, DBGDTRRXint and DBGDTRTXint.

When the PE is in Debug state, SDCR.TDCC does not trap any accesses to:

• DBGDTRRXint and DBGDTRTXint.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [26:24]

Reserved, RES0.

SCCD, bit [23]

When FEAT_PMUv3p5 is implemented:

SCCD

Secure Cycle Counter Disable. Prohibits PMCCNTR from counting in Secure state.

0b0 Cycle counting by PMCCNTR is not affected by this mechanism.

0b1 Cycle counting by PMCCNTR is prohibited in Secure state.

This field does not affect the CPU_CYCLES event or any other event that counts cycles.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [22]

Reserved, RES0.

EPMAD, bit [21]

When FEAT_Debugv8p4 is implemented and FEAT_PMUv3 is implemented:

EPMAD

External Performance Monitors Non-secure access disable. Controls Non-secure access to
Performance Monitors registers by an external debugger.

0b0 Non-secure access to the Performance Monitors registers from an external debugger is
permitted.

0b1 Non-secure access to the Performance Monitors registers from an external debugger is
not permitted.

If the Performance Monitors Extension does not support external debug interface accesses, this bit
is RES0.

Otherwise, if EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective
value of this field is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7063
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
When FEAT_PMUv3 is implemented:

EPMAD

External Performance Monitors access disable. Controls access to Performance Monitors registers
by an external debugger.

0b0 Access to Performance Monitors registers from an external debugger is permitted.

0b1 Access to Performance Monitors registers from an external debugger is not permitted,
unless overridden by the IMPLEMENTATION DEFINED authentication interface.

If the Performance Monitors Extension does not support external debug interface accesses, this bit
is RES0.

Otherwise, if EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective
value of this field is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

EDAD, bit [20]

When FEAT_Debugv8p4 is implemented:

EDAD

External debug Non-secure access disable. Controls Non-secure access to breakpoint, watchpoint,
and OSLAR_EL1 registers by an external debugger.

0b0 Non-secure access to debug registers from an external debugger is permitted.

0b1 Non-secure access to breakpoint registers, watchpoint registers, and OSLAR_EL1 from
an external debugger is not permitted.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this
field is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

When FEAT_Debugv8p2 is implemented:

EDAD

External debug access disable. Controls access to breakpoint, watchpoint, and OSLAR_EL1
registers by an external debugger.

0b0 Access to debug registers from an external debugger is permitted.

0b1 Access to breakpoint registers, watchpoint registers, and OSLAR_EL1 from an external
debugger is not permitted, unless overridden by the IMPLEMENTATION DEFINED
authentication interface.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this
field is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

EDAD

External debug access disable. Controls access to breakpoint, watchpoint, and optionally
OSLAR_EL1 registers by an external debugger.

0b0 Access to debug registers from an external debugger is permitted.

0b1 Access to breakpoint registers and watchpoint registers from an external debugger is not
permitted, unless overridden by the IMPLEMENTATION DEFINED authentication interface.
G8-7064 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
It is IMPLEMENTATION DEFINED whether access to the OSLAR_EL1 register from an
external debugger is permitted or not permitted.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this
field is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

TTRF, bit [19]

When FEAT_TRF is implemented:

TTRF

Trap Trace Filter controls. Controls whether accesses in modes other than Monitor mode to the trace
filter control registers generate a Monitor Trap exception.

0b0 Accesses to HTRFCR and TRFCR are not affected by this control bit.

0b1 When not in Monitor mode, accesses to HTRFCR and TRFCR generate a Monitor Trap
exception, unless the access generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

STE, bit [18]

When FEAT_TRF is implemented:

STE

Secure Trace Enable. This bit enables tracing in Secure state and controls the level of authentication
required by an external debugger to enable external tracing.

0b0 Trace is prohibited in Secure state unless overridden by the IMPLEMENTATION DEFINED
authentication interface.

0b1 Trace in Secure state is not affected by this bit.

This bit also controls the level of authentication required by an external debugger to enable external
tracing. See Register controls to enable self-hosted trace on page G3-6220.

If EL3 is not implemented and the Effective value of SCR.NS is 0, the PE behaves as if this bit is
set to 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

SPME, bit [17]

When FEAT_PMUv3 is implemented and FEAT_Debugv8p2 is implemented:

SPME

Secure Performance Monitors Enable. Controls event counting in Secure state.

0b0 Event counting is prohibited in Secure state. If PMCR.DP is 1, PMCCNTR is disabled
in Secure state. Otherwise, PMCCNTR is not affected by this mechanism.

0b1 Event counting and PMCCNTR are not affected by this mechanism.

This field affects the operation of all event counters in Secure state, and if PMCR.DP is 1, the
operation of PMCCNTR in Secure state. When PMCR.DP is 0, PMCCNTR is not affected by this
field.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7065
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this
field is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

When FEAT_PMUv3 is implemented:

SPME

Secure Performance Monitors Enable. Controls event counting in Secure state.

0b0 If ExternalSecureNoninvasiveDebugEnabled () is FALSE, event counting is prohibited in
Secure state, and if PMCR.DP is 1, PMCCNTR is disabled in Secure state.

0b1 Event counting and PMCCNTR are not affected by this mechanism.

If ExternalSecureNoninvasiveDebugEnabled () is TRUE, the event counters and PMCCNTR are not
affected by this field.

Otherwise, this field affects the operation of all event counters in Secure state, and if PMCR.DP is
1, the operation of PMCCNTR in Secure state. When PMCR.DP is 0, PMCCNTR is not affected by
this field.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this
field is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [16]

Reserved, RES0.

SPD, bits [15:14]

AArch32 Secure self-hosted Privileged Debug. Enables or disables debug exceptions from EL3,
other than Breakpoint Instruction exceptions.

0b00 Legacy mode. Debug exceptions from EL3 are enabled by the authentication interface.

0b10 Secure privileged debug disabled. Debug exceptions from EL3 are disabled.

0b11 Secure privileged debug enabled. Debug exceptions from EL3 are enabled.

Other values are reserved, and have the CONSTRAINED UNPREDICTABLE behavior that they must
have the same behavior as 0b00. Software must not rely on this property as the behavior of reserved
values might change in a future revision of the architecture.

This field has no effect on Breakpoint Instruction exceptions. These are always enabled.

This field is ignored in Non-secure state.

If debug exceptions from EL3 are enabled, then debug exceptions from Secure EL0 are also
enabled.

Otherwise, debug exceptions from Secure EL0 are enabled only if the value of SDER.SUIDEN is 1.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this
field is 0b11.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Bits [13:0]

Reserved, RES0.
G8-7066 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
Accessing SDCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return SDCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 SDCR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0011 0b001

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0011 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7067
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.35 SDER, Secure Debug Enable Register

The SDER characteristics are:

Purpose

Controls invasive and non-invasive debug in the Secure EL0 mode.

Configurations

AArch32 System register SDER bits [31:0] are architecturally mapped to AArch64 System register
SDER32_EL2[31:0] when EL2 is implemented and FEAT_SEL2 is implemented.

AArch32 System register SDER bits [31:0] are architecturally mapped to AArch64 System register
SDER32_EL3[31:0] when EL3 is implemented.

This register is present only when (EL3 is implemented and EL3 is capable of using AArch32) or
(EL1 is capable of using AArch32 and Secure EL1 is implemented). Otherwise, direct accesses to
SDER are UNDEFINED.

This register is ignored by the PE when one or more of the following are true:

• The PE is in Non-secure state.

• EL1 is using AArch64.

Attributes

SDER is a 32-bit register.

Field descriptions

Bits [31:2]

Reserved, RES0.

SUNIDEN, bit [1]

Secure User Non-Invasive Debug Enable.

0b0 This bit does not affect Performance Monitors event counting at Secure EL0

0b1 If EL3 or EL1 is using AArch32, Performance Monitors event counting is allowed in
Secure EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

SUIDEN, bit [0]

Secure User Invasive Debug Enable.

0b0 This bit does not affect the generation of debug exceptions at Secure EL0.

0b1 If EL3 or EL1 is using AArch32, debug exceptions from Secure EL0 are enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing SDER

Accesses to this register use the following encodings in the System register encoding space:

RES0

31 2 1 0

SUNIDEN SUIDEN
G8-7068 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return SDER;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return SDER;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 SDER = R[t];
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 SDER = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0001 0b001

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0001 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7069
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.36 TRFCR, Trace Filter Control Register

The TRFCR characteristics are:

Purpose

Provides EL1 controls for Trace.

Configurations

AArch32 System register TRFCR bits [31:0] are architecturally mapped to AArch64 System
register TRFCR_EL1[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_TRF is implemented.
Otherwise, direct accesses to TRFCR are UNDEFINED.

Attributes

TRFCR is a 32-bit register.

Field descriptions

Bits [31:7]

Reserved, RES0.

TS, bits [6:5]

Timestamp Control. Controls which timebase is used for trace timestamps.

0b01 Virtual timestamp. The traced timestamp is the physical counter value minus the value
of CNTVOFF.

0b10 When FEAT_ECV is implemented:

Guest physical timestamp. The traced timestamp is the physical counter value minus a
physical offset. If any of the following are true, the physical offset is zero, otherwise the
physical offset is the value of CNTPOFF_EL2:

• EL3 is implemented and is using AArch32.

• EL3 is implemented, using AArch64, and SCR_EL3.ECVEn == 0b0.

• EL2 is using AArch32.

• EL2 is using AArch64 and CNTHCTL_EL2.ECV == 0b0.

0b11 Physical timestamp. The traced timestamp is the physical counter value.

All other values are reserved.

This field is ignored by the PE when any of the following are true:

• EL2 is implemented and HTRFCR.TS != 0b00.

• SelfHostedTraceEnabled () == FALSE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [4:2]

Reserved, RES0.

E1TRE, bit [1]

EL1 Trace Enable.

0b0 Tracing is prohibited in PL1 modes.

RES0

31 7

TS

6 5

RES0

4 2 1 0

E1TRE E0TRE
G8-7070 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
0b1 Tracing is allowed in PL1 modes.

This field is ignored if SelfHostedTraceEnabled() == FALSE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

E0TRE, bit [0]

EL0 Trace Enable.

0b0 Tracing is prohibited at EL0.

0b1 Tracing is allowed at EL0.

This field is ignored if any of the following are true:

• SelfHostedTraceEnabled() == FALSE.

• EL2 is implemented and enabled in the current security state and HCR.TGE == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing TRFCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SDCR.TTRF == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TTRF == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TTRF == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SDCR.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return TRFCR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7071
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return TRFCR;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TTRF == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return TRFCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SDCR.TTRF == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TTRF == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TTRF == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SDCR.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 TRFCR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0010 0b001
G8-7072 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.3 Debug registers
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 TRFCR = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TTRF == '1' then
 AArch32.TakeMonitorTrapException();
 else
 TRFCR = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7073
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4 Performance Monitors registers

This section lists the Performance Monitors registers in AArch32.
G8-7074 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.1 PMCCFILTR, Performance Monitors Cycle Count Filter Register

The PMCCFILTR characteristics are:

Purpose

Determines the modes in which the Cycle Counter, PMCCNTR, increments.

Configurations

AArch32 System register PMCCFILTR bits [31:0] are architecturally mapped to AArch64 System
register PMCCFILTR_EL0[31:0].

AArch32 System register PMCCFILTR bits [31:0] are architecturally mapped to External register
PMCCFILTR_EL0[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMCCFILTR are UNDEFINED.

Attributes

PMCCFILTR is a 32-bit register.

Field descriptions

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the
PMCCFILTR.NSK bit.

0b0 Count cycles in EL1.

0b1 Do not count cycles in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

U, bit [30]

User filtering bit. Controls counting in EL0.

If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the
PMCCFILTR.NSU bit.

0b0 Count cycles in EL0.

0b1 Do not count cycles in EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

NSK, bit [29]

When EL3 is implemented:

NSK

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

If the value of this bit is equal to the value of PMCCFILTR.P, cycles in Non-secure EL1 are counted.

Otherwise, cycles in Non-secure EL1 are not counted.

P

31

U

30 29 28 27

RES0

26 0

NSK NSH
NSU
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7075
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

NSU

Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of PMCCFILTR.U, cycles in Non-secure EL0 are
counted.

Otherwise, cycles in Non-secure EL0 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

NSH

EL2 (Hyp mode) filtering bit. Controls counting in EL2.

0b0 Do not count cycles in EL2.

0b1 Count cycles in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [26:0]

Reserved, RES0.

Accessing PMCCFILTR

PMCCFILTR can also be accessed by using PMXEVTYPER with PMSELR.SEL set to 0b11111.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b1111 0b111
G8-7076 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCCFILTR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCCFILTR;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCCFILTR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCCFILTR;
elsif PSTATE.EL == EL3 then
 return PMCCFILTR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b1111 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7077
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCCFILTR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCCFILTR = R[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCCFILTR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCCFILTR = R[t];
elsif PSTATE.EL == EL3 then
 PMCCFILTR = R[t];

G8-7078 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.2 PMCCNTR, Performance Monitors Cycle Count Register

The PMCCNTR characteristics are:

Purpose

Holds the value of the processor Cycle Counter, CCNT, that counts processor clock cycles. See Time
as measured by the Performance Monitors cycle counter on page D7-2852 for more information.

PMCCFILTR determines the modes and states in which the PMCCNTR can increment.

Configurations

AArch32 System register PMCCNTR bits [63:0] are architecturally mapped to AArch64 System
register PMCCNTR_EL0[63:0].

AArch32 System register PMCCNTR bits [63:0] are architecturally mapped to External register
PMCCNTR_EL0[63:0].

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMCCNTR are UNDEFINED.

PMCCNTR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit
register, accesses read and write bits [31:0] and do not modify bits [63:32].

All counters are subject to any changes in clock frequency, including clock stopping caused by the
WFI and WFE instructions. This means that it is CONSTRAINED UNPREDICTABLE whether or not
PMCCNTR continues to increment when clocks are stopped by WFI and WFE instructions.

Attributes

PMCCNTR is a 64-bit register.

Field descriptions

CCNT, bits [63:0]

Cycle count. Depending on the values of PMCR.{LC,D}, this field increments in one of the
following ways:

• Every processor clock cycle.

• Every 64th processor clock cycle.

Writing 1 to PMCR.C sets this field to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMCCNTR

Accesses to this register use the following encodings in the System register encoding space:

CCNT

63 32

CCNT

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7079
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.<CR,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.<CR,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCCNTR<31:0>;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCCNTR<31:0>;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1101 0b000
G8-7080 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCCNTR<31:0>;
elsif PSTATE.EL == EL3 then
 return PMCCNTR<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCCNTR = ZeroExtend(R[t]);
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1101 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7081
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCCNTR = ZeroExtend(R[t]);
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCCNTR = ZeroExtend(R[t]);
elsif PSTATE.EL == EL3 then
 PMCCNTR = ZeroExtend(R[t]);

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.<CR,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && PMUSERENR.<CR,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 else
 return PMCCNTR;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

coproc CRm opc1

0b1111 0b1001 0b0000
G8-7082 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 else
 return PMCCNTR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 else
 return PMCCNTR;
elsif PSTATE.EL == EL3 then
 return PMCCNTR;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);

coproc CRm opc1

0b1111 0b1001 0b0000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7083
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 else
 PMCCNTR = R[t2]:R[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 else
 PMCCNTR = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 else
 PMCCNTR = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 PMCCNTR = R[t2]:R[t];

G8-7084 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.3 PMCEID0, Performance Monitors Common Event Identification register 0

The PMCEID0 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are
implemented, or counted, using PMU events in the range 0x0000 to 0x001F

For more information about the common events and the use of the PMCEIDn registers see The PMU
event number space and common events on page D7-2875.

Configurations

AArch32 System register PMCEID0 bits [31:0] are architecturally mapped to AArch64 System
register PMCEID0_EL0[31:0].

AArch32 System register PMCEID0 bits [31:0] are architecturally mapped to External register
PMCEID0[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMCEID0 are UNDEFINED.

Attributes

PMCEID0 is a 32-bit register.

Field descriptions

ID<n>, bit [n], for n = 31 to 0

ID[n] corresponds to common event n.

For each bit:

0b0 The common event is not implemented, or not counted.

0b1 The common event is implemented.

When the value of a bit in the field is 1, the corresponding common event is implemented and
counted.

Note

Arm recommends that if a common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional common event.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID31
ID30

ID29
ID28

ID27
ID26

ID25
ID24

ID23
ID22

ID21
ID20

ID19
ID18

ID17
ID16

ID0
ID1

ID2
ID3

ID4
ID5

ID6
ID7

ID8
ID9

ID10
ID11

ID12
ID13

ID14
ID15
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7085
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing PMCEID0

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCEID0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b110
G8-7086 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCEID0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCEID0;
elsif PSTATE.EL == EL3 then
 return PMCEID0;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7087
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.4 PMCEID1, Performance Monitors Common Event Identification register 1

The PMCEID1 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are
implemented, or counted, using PMU events in the range 0x0020 to 0x003F.

For more information about the common events and the use of the PMCEIDn registers see The PMU
event number space and common events on page D7-2875.

Configurations

AArch32 System register PMCEID1 bits [31:0] are architecturally mapped to AArch64 System
register PMCEID1_EL0[31:0].

AArch32 System register PMCEID1 bits [31:0] are architecturally mapped to External register
PMCEID1[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMCEID1 are UNDEFINED.

Attributes

PMCEID1 is a 32-bit register.

Field descriptions

ID<n>, bit [n], for n = 31 to 0

ID[n] corresponds to common event (0x0020 + n).

For each bit:

0b0 The common event is not implemented, or not counted.

0b1 The common event is implemented.

When the value of a bit in the field is 1, the corresponding common event is implemented and
counted.

Note

Arm recommends that if a common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional common event.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID31
ID30

ID29
ID28

ID27
ID26

ID25
ID24

ID23
ID22

ID21
ID20

ID19
ID18

ID17
ID16

ID0
ID1

ID2
ID3

ID4
ID5

ID6
ID7

ID8
ID9

ID10
ID11

ID12
ID13

ID14
ID15
G8-7088 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing PMCEID1

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCEID1;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7089
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCEID1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCEID1;
elsif PSTATE.EL == EL3 then
 return PMCEID1;

G8-7090 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.5 PMCEID2, Performance Monitors Common Event Identification register 2

The PMCEID2 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are
implemented, or counted, using PMU events in the range 0x4000 to 0x401F.

For more information about the common events and the use of the PMCEIDn registers see The PMU
event number space and common events on page D7-2875.

Configurations

AArch32 System register PMCEID2 bits [31:0] are architecturally mapped to AArch64 System
register PMCEID0_EL0[63:32].

AArch32 System register PMCEID2 bits [31:0] are architecturally mapped to External register
PMCEID2[63:32].

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3p1 is
implemented. Otherwise, direct accesses to PMCEID2 are UNDEFINED.

Attributes

PMCEID2 is a 32-bit register.

Field descriptions

IDhi<n>, bit [n], for n = 31 to 0

IDhi[n] corresponds to common event (0x4000 + n).

For each bit:

0b0 The common event is not implemented, or not counted.

0b1 The common event is implemented.

When the value of a bit in the field is 1, the corresponding common event is implemented and
counted.

Note

Arm recommends that if a common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional common event.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi31
IDhi30

IDhi29
IDhi28

IDhi27
IDhi26

IDhi25
IDhi24

IDhi23
IDhi22

IDhi21
IDhi20

IDhi19
IDhi18

IDhi17
IDhi16

IDhi0
IDhi1

IDhi2
IDhi3

IDhi4
IDhi5

IDhi6
IDhi7

IDhi8
IDhi9

IDhi10
IDhi11

IDhi12
IDhi13

IDhi14
IDhi15
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7091
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing PMCEID2

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCEID2;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b100
G8-7092 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCEID2;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCEID2;
elsif PSTATE.EL == EL3 then
 return PMCEID2;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7093
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.6 PMCEID3, Performance Monitors Common Event Identification register 3

The PMCEID3 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are
implemented, or counted, using PMU events in the range 0x4020 to 0x403F.

For more information about the common events and the use of the PMCEIDn registers see The PMU
event number space and common events on page D7-2875.

Configurations

AArch32 System register PMCEID3 bits [31:0] are architecturally mapped to AArch64 System
register PMCEID1_EL0[63:32].

AArch32 System register PMCEID3 bits [31:0] are architecturally mapped to External register
PMCEID3[63:32].

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3p1 is
implemented. Otherwise, direct accesses to PMCEID3 are UNDEFINED.

Attributes

PMCEID3 is a 32-bit register.

Field descriptions

IDhi<n>, bit [n], for n = 31 to 0

IDhi[n] corresponds to common event (0x4020 + n).

For each bit:

0b0 The common event is not implemented, or not counted.

0b1 The common event is implemented.

When the value of a bit in the field is 1, the corresponding common event is implemented and
counted.

Note

Arm recommends that if a common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional common event.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi31
IDhi30

IDhi29
IDhi28

IDhi27
IDhi26

IDhi25
IDhi24

IDhi23
IDhi22

IDhi21
IDhi20

IDhi19
IDhi18

IDhi17
IDhi16

IDhi0
IDhi1

IDhi2
IDhi3

IDhi4
IDhi5

IDhi6
IDhi7

IDhi8
IDhi9

IDhi10
IDhi11

IDhi12
IDhi13

IDhi14
IDhi15
G8-7094 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing PMCEID3

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCEID3;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7095
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCEID3;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCEID3;
elsif PSTATE.EL == EL3 then
 return PMCEID3;

G8-7096 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.7 PMCNTENCLR, Performance Monitors Count Enable Clear register

The PMCNTENCLR characteristics are:

Purpose

Disables the Cycle Count Register, PMCCNTR, and any implemented event counters
PMEVCNTR<n>. Reading this register shows which counters are enabled.

PMCNTENCLR is used in conjunction with the PMCNTENSET register.

Configurations

AArch32 System register PMCNTENCLR bits [31:0] are architecturally mapped to AArch64
System register PMCNTENCLR_EL0[31:0].

AArch32 System register PMCNTENCLR bits [31:0] are architecturally mapped to External
register PMCNTENCLR_EL0[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMCNTENCLR are UNDEFINED.

Attributes

PMCNTENCLR is a 32-bit register.

Field descriptions

C, bit [31]

PMCCNTR disable bit. Disables the cycle counter register.

0b0 When read, means the cycle counter is disabled. When written, has no effect.

0b1 When read, means the cycle counter is enabled. When written, disables the cycle
counter.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 30 to 0

Event counter disable bit for PMEVCNTR<n>.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the
current Security state, in EL1 and EL0, N is the value in MDCR_EL2.HPMN if EL2 is using
AArch64, or in HDCR.HPMN if EL2 is using AArch32. Otherwise, N is the value in PMCR.N.

0b0 When read, means that PMEVCNTR<n> is disabled. When written, has no effect.

0b1 When read, means that PMEVCNTR<n> is enabled. When written, disables
PMEVCNTR<n>.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7097
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Accessing PMCNTENCLR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCNTEN == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCNTENCLR;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCNTENCLR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b010
G8-7098 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCNTENCLR;
elsif PSTATE.EL == EL3 then
 return PMCNTENCLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCNTEN == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCNTENCLR = R[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7099
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCNTENCLR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCNTENCLR = R[t];
elsif PSTATE.EL == EL3 then
 PMCNTENCLR = R[t];

G8-7100 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.8 PMCNTENSET, Performance Monitors Count Enable Set register

The PMCNTENSET characteristics are:

Purpose

Enables the Cycle Count Register, PMCCNTR, and any implemented event counters
PMEVCNTR<n>. Reading this register shows which counters are enabled.

PMCNTENSET is used in conjunction with the PMCNTENCLR register.

Configurations

AArch32 System register PMCNTENSET bits [31:0] are architecturally mapped to AArch64
System register PMCNTENSET_EL0[31:0].

AArch32 System register PMCNTENSET bits [31:0] are architecturally mapped to External
register PMCNTENSET_EL0[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMCNTENSET are UNDEFINED.

Attributes

PMCNTENSET is a 32-bit register.

Field descriptions

C, bit [31]

PMCCNTR enable bit. Enables the cycle counter register.

0b0 When read, means the cycle counter is disabled. When written, has no effect.

0b1 When read, means the cycle counter is enabled. When written, enables the cycle
counter.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 30 to 0

Event counter enable bit for PMEVCNTR<n>.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the
current Security state, in EL1 and EL0, N is the value in MDCR_EL2.HPMN if EL2 is using
AArch64, or in HDCR.HPMN if EL2 is using AArch32. Otherwise, N is the value in PMCR.N.

0b0 When read, means that PMEVCNTR<n> is disabled. When written, has no effect.

0b1 When read, means that PMEVCNTR<n> event counter is enabled. When written,
enables PMEVCNTR<n>.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7101
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Accessing PMCNTENSET

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCNTEN == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCNTENSET;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCNTENSET;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b001
G8-7102 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCNTENSET;
elsif PSTATE.EL == EL3 then
 return PMCNTENSET;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCNTEN == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCNTENSET = R[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7103
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCNTENSET = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCNTENSET = R[t];
elsif PSTATE.EL == EL3 then
 PMCNTENSET = R[t];

G8-7104 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.9 PMCR, Performance Monitors Control Register

The PMCR characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters
implemented, and configures and controls the counters.

Configurations

AArch32 System register PMCR bits [31:0] are architecturally mapped to AArch64 System register
PMCR_EL0[31:0].

AArch32 System register PMCR bits [7:0] are architecturally mapped to External register
PMCR_EL0[7:0].

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMCR are UNDEFINED.

Attributes

PMCR is a 32-bit register.

Field descriptions

IMP, bits [31:24]

When FEAT_PMUv3p7 is not implemented:

IMP

Implementer code.

If this field is zero, then PMCR.IDCODE is RES0 and software must use MIDR to identify the PE.

Otherwise, this field and PMCR.IDCODE identify the PMU implementation to software. The
implementer codes are allocated by Arm. A non-zero value has the same interpretation as
MIDR.Implementer.

Use of this field is deprecated.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RAZ.

IDCODE, bits [23:16]

When PMCR.IMP != 0x00:

IDCODE

Identification code. Use of this field is deprecated. This field has an IMPLEMENTATION DEFINED
value.

Each implementer must maintain a list of identification codes that are specific to the implementer.
A specific implementation is identified by the combination of the implementer code and the
identification code.

Access to this field is RO.

IMP

31 24

IDCODE

23 16

N

15 11 10 9 8

LP

7

LC

6

DP

5

X

4

D

3

C

2

P

1

E

0

RES0 RES0
FZO
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7105
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Otherwise:

Reserved, RES0.

N, bits [15:11]

Indicates the number of event counters implemented. This value is in the range of 0b00000-0b11111.
If the value is 0b00000 then only PMCCNTR is implemented. If the value is 0b11111 PMCCNTR and
31 event counters are implemented.

In an implementation that includes EL2:

• If EL2 is using AArch32, reads of this field from Non-secure EL1 and Non-secure EL0 return
the value of HDCR.HPMN.

• If EL2 is using AArch64 and is enabled in the current Security state, reads of this field from
EL1 and EL0 return the value of MDCR_EL2.HPMN.

Access to this field is RO.

Bit [10]

Reserved, RES0.

FZO, bit [9]

When FEAT_PMUv3p7 is implemented:

FZO

Freeze-on-overflow. Stop event counters on overflow.

0b0 Do not freeze on overflow.

0b1 Event counters do not count when PMOVSR[(N-1):0] is nonzero, where N is the value
of HDCR.HPMN if EL2 is implemented, and PMCR.N otherwise.

If EL2 is implemented, then:

• This field affects the operation of event counters in the range [0 .. (HDCR.HPMN-1)].

• If HDCR.HPMN is less than PMCR.N:

— This field does not affect the operation of event counters in the range [HDCR.HPMN
.. (PMCR.N-1)].

— The operation of this field ignores the values of
PMOVSR[(PMCR.N-1):HDCR.HPMN].

• This applies even when EL2 is disabled in the current Security state.

This field does not affect the operation of PMCCNTR.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [8]

Reserved, RES0.

LP, bit [7]

When FEAT_PMUv3p5 is implemented:

LP

Long event counter enable. Determines when unsigned overflow is recorded by an event counter
overflow bit.

0b0 Event counter overflow on increment that causes unsigned overflow of
PMEVCNTR<n>[31:0].
G8-7106 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
0b1 Event counter overflow on increment that causes unsigned overflow of
PMEVCNTR<n>[63:0].

If the highest implemented Exception level is using AArch32, it is IMPLEMENTATION DEFINED
whether this bit is RW or RAZ/WI.

If EL2 is implemented and HDCR.HPMN or MDCR_EL2.HPMN is less than PMCR.N, this bit
does not affect the operation of event counters in the range [HDCR.HPMN..(PMCR.N-1)] or
[MDCR_EL2.HPMN..(PMCR.N-1)].

PMEVCNTR<n>[63:32] cannot be accessed directly in AArch32 state.

Note
The effect of HDCR.HPMN or MDCR_EL2.HPMN on the operation of this bit always applies if
EL2 is implemented, at all Exception levels including EL2 and EL3, and regardless of whether EL2
is enabled in the current Security state. For more information, see the description of HDCR.HPMN
or MDCR_EL2.HPMN.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

LC, bit [6]

Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter
overflow bit.

0b0 Cycle counter overflow on increment that causes unsigned overflow of
PMCCNTR[31:0].

0b1 Cycle counter overflow on increment that causes unsigned overflow of
PMCCNTR[63:0].

Arm deprecates use of PMCR.LC = 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DP, bit [5]

When EL3 is implemented or (FEAT_PMUv3p1 is implemented and EL2 is implemented):

DP

Disable cycle counter when event counting is prohibited.

0b0 Cycle counting by PMCCNTR is not affected by this bit.

0b1 When event counting for counters in the range [0..(HDCR.HPMN-1)] or
[0..(MDCR_EL2.HPMN-1)] is prohibited, cycle counting by PMCCNTR is disabled.

For more information see Controlling the PMU counters on page D7-2859

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

X, bit [4]

When the implementation includes a PMU event export bus:

X

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7107
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

0b0 Do not export events.

0b1 Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus
to another device, for example to an OPTIONAL PE trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or
signaling to a cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RAZ/WI.

D, bit [3]

Clock divider. The possible values of this bit are:

0b0 When enabled, PMCCNTR counts every clock cycle.

0b1 When enabled, PMCCNTR counts once every 64 clock cycles.

If PMCR.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR.D = 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

0b0 No action.

0b1 Reset PMCCNTR to zero.

Note
Resetting PMCCNTR does not change the cycle counter overflow bit. If FEAT_PMUv3p5 is
implemented, the value of PMCR.LC is ignored, and bits [63:0] of the cycle counter are reset.

Access to this field is WO/RAZ.

P, bit [1]

Event counter reset. The effects of writing to this bit are:

0b0 No action.

0b1 Reset all event counters accessible in the current Exception level, not including
PMCCNTR, to zero.

In EL0 and EL1:

• If EL2 is implemented and is enabled in the current Security state, and HDCR.HPMN or
MDCR_EL2.HPMN is less than PMCR_EL0.N, a write of 1 to this bit does not reset event
counters in the range [HDCR.HPMN..(PMCR.N-1)] or
[MDCR_EL2.HPMN..(PMCR.N-1)].

• If EL2 is not implemented, EL2 is disabled in the current Security state, or HDCR.HPMN or
MDCR_EL2.HPMN is equal to PMCR_EL0.N, a write of 1 to this bit resets all the event
counters.

In EL2 and EL3, a write of 1 to this bit resets all the event counters.
G8-7108 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Note

Resetting the event counters does not change the event counter overflow bits. If FEAT_PMUv3p5
is implemented, the values of HDCR.HLP and PMCR.LP are ignored and bits [63:0] of all affected
event counters are reset.

Access to this field is WO/RAZ.

E, bit [0]

Enable.

0b0 All event counters in the range [0..(PMN-1)] and PMCCNTR, are disabled.

0b1 All event counters in the range [0..(PMN-1)] and PMCCNTR, are enabled by
PMCNTENSET.

If EL2 is implemented then:

• If EL2 is using AArch32, PMN is HDCR.HPMN.

• If EL2 is using AArch64, PMN is MDCR_EL2.HPMN.

• If PMN is less than PMCR.N, this bit does not affect the operation of event counters in the
range [PMN..(PMCR.N-1)].

If EL2 is not implemented, PMN is PMCR.N.

Note

The effect of MDCR_EL2.HPMN or HDCR.HPMN on the operation of this bit always applies if
EL2 is implemented, at all Exception levels including EL2 and EL3, regardless of whether EL2 is
enabled in the current Security state. For more information, see the description of
MDCR_EL2.HPMN or HDCR.HPMN.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing PMCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7109
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCR;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCR;
elsif PSTATE.EL == EL3 then
 return PMCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b000
G8-7110 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCR = R[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7111
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 PMCR = R[t];
elsif PSTATE.EL == EL3 then
 PMCR = R[t];

G8-7112 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.10 PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30

The PMEVCNTR<n> characteristics are:

Purpose

Holds event counter n, which counts events, where n is 0 to 30.

Configurations

AArch32 System register PMEVCNTR<n> bits [31:0] are architecturally mapped to AArch64
System register PMEVCNTR<n>_EL0[31:0].

AArch32 System register PMEVCNTR<n> bits [31:0] are architecturally mapped to External
register PMEVCNTR<n>_EL0[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMEVCNTR<n> are UNDEFINED.

Attributes

PMEVCNTR<n> is a 32-bit register.

Field descriptions

Bits [31:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number
from 0 to 30.

If FEAT_PMUv3p5 is implemented, the event counter is 64 bits and only the least-significant part
of the event counter is accessible in AArch32 state:

• Reads from PMEVCNTR<n> return bits [31:0] of the counter.

• Writes to PMEVCNTR<n> update bits [31:0] and leave bits [63:32] unchanged.

• There is no means to access bits [63:32] directly from AArch32 state.

• If the implementation does not support AArch64, bits [63:32] are not required to be
implemented.

If FEAT_PMUv3p5 is not implemented, the event counter is 32 bits.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMEVCNTR<n>

PMEVCNTR<n> can also be accessed by using PMXEVCNTR with PMSELR.SEL set to the value of <n>.

If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible event counters, then the
behavior of permitted reads and writes of PMEVCNTR<n> is as follows:

• If <n> is an unimplemented event counter, the access is UNDEFINED.

• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible event counters, then
reads and writes of PMEVCNTR<n> are CONSTRAINED UNPREDICTABLE, and the following behaviors are
permitted:

• Accesses to the register are UNDEFINED.

Event counter n

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7113
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of
implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR.{ER,EN} or PMUSERENR_EL0.{ER,EN}.

If EL2 is implemented and enabled in the current Security state, at EL0 and EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible event counters.

• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible event counters.

Otherwise, the number of accessible event counters is the number of implemented event counters. For more
information, see HDCR.HPMN and MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.<ER,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.<ER,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b10:n[4:3] n[2:0]
G8-7114 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];
elsif PSTATE.EL == EL3 then
 return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b10:n[4:3] n[2:0]
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7115
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
elsif PSTATE.EL == EL3 then
 PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)] = R[t];

G8-7116 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.11 PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

The PMEVTYPER<n> characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

Configurations

AArch32 System register PMEVTYPER<n> bits [31:0] are architecturally mapped to AArch64
System register PMEVTYPER<n>_EL0[31:0].

AArch32 System register PMEVTYPER<n> bits [31:0] are architecturally mapped to External
register PMEVTYPER<n>_EL0[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMEVTYPER<n> are UNDEFINED.

Attributes

PMEVTYPER<n> is a 32-bit register.

Field descriptions

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the
PMEVTYPER<n>.NSK bit.

0b0 Count events in EL1.

0b1 Do not count events in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

User filtering bit. Controls counting in EL0.

If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the
PMEVTYPER<n>.NSU bit.

0b0 Count events in EL0.

0b1 Do not count events in EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]

When EL3 is implemented:

NSK

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

If the value of this bit is equal to the value of PMEVTYPER<n>.P, events in Non-secure EL1 are
counted.

Otherwise, events in Non-secure EL1 are not counted.

P

31

U

30 29 28 27 26

MT

25

RES0

24 16 15 10

evtCount[9:0]

9 0

NSK
NSU

RES0
NSH

evtCount[15:10]
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7117
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

NSU

Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of PMEVTYPER<n>.U, events in Non-secure EL0 are
counted.

Otherwise, events in Non-secure EL0 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

NSH

EL2 (Hyp mode) filtering bit. Controls counting in EL2.

0b0 Do not count events in EL2.

0b1 Count events in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [26]

Reserved, RES0.

MT, bit [25]

When FEAT_MTPMU is implemented or an IMPLEMENTATION DEFINED multi-threaded PMU
extension is implemented:

MT

Multithreading.

0b0 Count events only on controlling PE.

0b1 Count events from any PE with the same affinity at level 1 and above as this PE.

From Armv8.6, the IMPLEMENTATION DEFINED multi-threaded PMU extension is not permitted,
meaning if FEAT_MTPMU is not implemented, this bit is RES0. See ID_DFR1.MTPMU.

This bit is ignored by the PE and treated as zero when FEAT_MTPMU is implemented and
Disabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
G8-7118 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Otherwise:

Reserved, RES0.

Bits [24:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]

When FEAT_PMUv3p1 is implemented:

evtCount[15:10]

Extension to evtCount[9:0]. For more information, see evtCount[9:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>.

Software must program this field with an event that is supported by the PE being programmed.

The ranges of event numbers allocated to each type of event are shown in Table D7-6 on
page D7-2875.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior
depends on the value written:

• For the range 0x0000 to 0x003F, no events are counted, and the value returned by a direct or
external read of the evtCount field is the value written to the field.

• If 16-bit evtCount is implemented, for the range 0x4000 to 0x403F, no events are counted, and
the value returned by a direct or external read of the evtCount field is the value written to the
field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted,
and the value returned by a direct or external read of the evtCount field is UNKNOWN.

Note
UNPREDICTABLE means the event must not expose privileged information.

Arm recommends that the behavior across a family of implementations is defined such that if a
given implementation does not include an event from a set of common IMPLEMENTATION DEFINED
events, then no event is counted and the value read back on evtCount is the value written.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMEVTYPER<n>

PMEVTYPER<n> can also be accessed by using PMXEVTYPER with PMSELR.SEL set to n.

If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible event counters, then the
behavior of permitted reads and writes of PMEVTYPER<n> is as follows:

• If <n> is an unimplemented event counter, the access is UNDEFINED.

• Otherwise, the access is trapped to EL2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7119
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible event counters, then
reads and writes of PMEVTYPER<n> are CONSTRAINED UNPREDICTABLE, and the following behaviors are
permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of
implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR.EN or PMUSERENR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, at EL0 and EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible event counters.

• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible event counters.

Otherwise, the number of accessible event counters is the number of implemented event counters. For more
information, see HDCR.HPMN and MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b11:n[4:3] n[2:0]
G8-7120 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];
elsif PSTATE.EL == EL3 then
 return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b11:n[4:3] n[2:0]
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7121
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
elsif PSTATE.EL == EL3 then
 PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];

G8-7122 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.12 PMINTENCLR, Performance Monitors Interrupt Enable Clear register

The PMINTENCLR characteristics are:

Purpose

Disables the generation of interrupt requests on overflows from the Cycle Count Register,
PMCCNTR, and the event counters PMEVCNTR<n>. Reading the register shows which overflow
interrupt requests are enabled.

PMINTENCLR is used in conjunction with the PMINTENSET register.

Configurations

AArch32 System register PMINTENCLR bits [31:0] are architecturally mapped to AArch64
System register PMINTENCLR_EL1[31:0].

AArch32 System register PMINTENCLR bits [31:0] are architecturally mapped to External register
PMINTENCLR_EL1[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMINTENCLR are UNDEFINED.

Attributes

PMINTENCLR is a 32-bit register.

Field descriptions

C, bit [31]

PMCCNTR overflow interrupt request disable bit.

0b0 When read, means the cycle counter overflow interrupt request is disabled. When
written, has no effect.

0b1 When read, means the cycle counter overflow interrupt request is enabled. When
written, disables the cycle count overflow interrupt request.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 30 to 0

Event counter overflow interrupt request disable bit for PMEVCNTR<n>.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the
current Security state, in EL1, N is the value in MDCR_EL2.HPMN if EL2 is using AArch64, or in
HDCR.HPMN if EL2 is using AArch32. Otherwise, N is the value in PMCR.N.

0b0 When read, means that the PMEVCNTR<n> event counter interrupt request is disabled.
When written, has no effect.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7123
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
0b1 When read, means that the PMEVCNTR<n> event counter interrupt request is enabled.
When written, disables the PMEVCNTR<n> interrupt request.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMINTENCLR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMINTENCLR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMINTENCLR;
elsif PSTATE.EL == EL3 then
 return PMINTENCLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b010

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b010
G8-7124 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMINTENCLR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMINTENCLR = R[t];
elsif PSTATE.EL == EL3 then
 PMINTENCLR = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7125
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.13 PMINTENSET, Performance Monitors Interrupt Enable Set register

The PMINTENSET characteristics are:

Purpose

Enables the generation of interrupt requests on overflows from the Cycle Count Register,
PMCCNTR, and the event counters PMEVCNTR<n>. Reading the register shows which overflow
interrupt requests are enabled.

PMINTENSET is used in conjunction with the PMINTENCLR register.

Configurations

AArch32 System register PMINTENSET bits [31:0] are architecturally mapped to AArch64
System register PMINTENSET_EL1[31:0].

AArch32 System register PMINTENSET bits [31:0] are architecturally mapped to External register
PMINTENSET_EL1[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMINTENSET are UNDEFINED.

Attributes

PMINTENSET is a 32-bit register.

Field descriptions

C, bit [31]

PMCCNTR overflow interrupt request enable bit.

0b0 When read, means the cycle counter overflow interrupt request is disabled. When
written, has no effect.

0b1 When read, means the cycle counter overflow interrupt request is enabled. When
written, enables the cycle count overflow interrupt request.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 30 to 0

Event counter overflow interrupt request enable bit for PMEVCNTR<n>.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the
current Security state, in EL1, N is the value in MDCR_EL2.HPMN if EL2 is using AArch64, or in
HDCR.HPMN if EL2 is using AArch32. Otherwise, N is the value in PMCR.N.

0b0 When read, means that the PMEVCNTR<n> event counter interrupt request is disabled.
When written, has no effect.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
G8-7126 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
0b1 When read, means that the PMEVCNTR<n> event counter interrupt request is enabled.
When written, enables the PMEVCNTR<n> interrupt request.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMINTENSET

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMINTENSET;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMINTENSET;
elsif PSTATE.EL == EL3 then
 return PMINTENSET;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b001

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7127
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMINTENSET = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMINTENSET = R[t];
elsif PSTATE.EL == EL3 then
 PMINTENSET = R[t];

G8-7128 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.14 PMOVSR, Performance Monitors Overflow Flag Status Register

The PMOVSR characteristics are:

Purpose

Contains the state of the overflow bit for the Cycle Count Register, PMCCNTR, and each of the
implemented event counters PMEVCNTR<n>. Writing to this register clears these bits.

Configurations

AArch32 System register PMOVSR bits [31:0] are architecturally mapped to AArch64 System
register PMOVSCLR_EL0[31:0].

AArch32 System register PMOVSR bits [31:0] are architecturally mapped to External register
PMOVSCLR_EL0[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMOVSR are UNDEFINED.

Attributes

PMOVSR is a 32-bit register.

Field descriptions

C, bit [31]

Cycle counter overflow clear bit. Possible values are:

0b0 When read, means the cycle counter has not overflowed since this bit was last cleared.
When written, has no effect.

0b1 When read, means the cycle counter has overflowed since this bit was last cleared.
When written, clears the cycle counter overflow bit to 0.

PMCR.LC controls whether an overflow is detected from unsigned overflow of PMCCNTR[31:0]
or unsigned overflow of PMCCNTR[63:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 30 to 0

Event counter overflow clear bit for PMEVCNTR<n>.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the
current Security state, in EL1 and EL0, N is the value in MDCR_EL2.HPMN if EL2 is using
AArch64, or in HDCR.HPMN if EL2 is using AArch32. Otherwise, N is the value in PMCR.N.

0b0 When read, means that PMEVCNTR<n> has not overflowed since this bit was last
cleared. When written, has no effect.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7129
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
0b1 When read, means that PMEVCNTR<n> has overflowed since this bit was last cleared.
When written, clears the PMEVCNTR<n> overflow bit to 0.

If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP, HDCR.HLP, and PMCR.LP control
whether an overflow is detected from unsigned overflow of PMEVCNTR<n>[31:0] or unsigned
overflow of PMEVCNTR<n>[63:0]. PMEVCNTR<n>[63:32] cannot be accessed directly in
AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMOVSR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMOVS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMOVSR;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b011
G8-7130 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMOVSR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMOVSR;
elsif PSTATE.EL == EL3 then
 return PMOVSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMOVS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMOVSR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7131
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMOVSR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMOVSR = R[t];
elsif PSTATE.EL == EL3 then
 PMOVSR = R[t];

G8-7132 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.15 PMOVSSET, Performance Monitors Overflow Flag Status Set register

The PMOVSSET characteristics are:

Purpose

Sets the state of the overflow bit for the Cycle Count Register, PMCCNTR, and each of the
implemented event counters PMEVCNTR<n>.

Configurations

AArch32 System register PMOVSSET bits [31:0] are architecturally mapped to AArch64 System
register PMOVSSET_EL0[31:0].

AArch32 System register PMOVSSET bits [31:0] are architecturally mapped to External register
PMOVSSET_EL0[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMOVSSET are UNDEFINED.

Attributes

PMOVSSET is a 32-bit register.

Field descriptions

C, bit [31]

Cycle counter overflow set bit.

0b0 When read, means the cycle counter has not overflowed since this bit was last cleared.
When written, has no effect.

0b1 When read, means the cycle counter has overflowed since this bit was last cleared.
When written, sets the cycle counter overflow bit to 1.

PMCR.LC controls whether an overflow is detected from unsigned overflow of PMCCNTR[31:0]
or unsigned overflow of PMCCNTR[63:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 30 to 0

Event counter overflow set bit for PMEVCNTR<n>.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the
current Security state, in EL1 and EL0, N is the value in MDCR_EL2.HPMN if EL2 is using
AArch64, or in HDCR.HPMN if EL2 is using AArch32. Otherwise, N is the value in PMCR.N.

0b0 When read, means that PMEVCNTR<n> has not overflowed since this bit was last
cleared. When written, has no effect.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7133
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
0b1 When read, means that PMEVCNTR<n> has overflowed since this bit was last . When
written, sets the PMEVCNTR<n> overflow bit to 1.

If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP, HDCR.HLP, and PMCR.LP control
whether an overflow is detected from unsigned overflow of PMEVCNTR<n>[31:0] or unsigned
overflow of PMEVCNTR<n>[63:0]. PMEVCNTR<n>[63:32] cannot be accessed directly in
AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMOVSSET

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMOVS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMOVSSET;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b011
G8-7134 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMOVSSET;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMOVSSET;
elsif PSTATE.EL == EL3 then
 return PMOVSSET;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMOVS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMOVSSET = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7135
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMOVSSET = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMOVSSET = R[t];
elsif PSTATE.EL == EL3 then
 PMOVSSET = R[t];

G8-7136 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.16 PMSELR, Performance Monitors Event Counter Selection Register

The PMSELR characteristics are:

Purpose

Selects the current event counter PMEVCNTR<n> or the cycle counter, CCNT.

PMSELR is used in conjunction with PMXEVTYPER to determine the event that increments a
selected event counter, and the modes and states in which the selected counter increments.

It is also used in conjunction with PMXEVCNTR, to determine the value of a selected event
counter.

Configurations

AArch32 System register PMSELR bits [31:0] are architecturally mapped to AArch64 System
register PMSELR_EL0[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMSELR are UNDEFINED.

Attributes

PMSELR is a 32-bit register.

Field descriptions

Bits [31:5]

Reserved, RES0.

SEL, bits [4:0]

Selects event counter, PMEVCNTR<n>, where n is the value held in this field. This value identifies
which event counter is accessed when a subsequent access to PMXEVTYPER or PMXEVCNTR
occurs.

This field can take any value from 0 (0b00000) to (PMCR.N)-1, or 31 (0b11111).

When PMSELR.SEL is 0b11111, it selects the cycle counter and:

• A read of the PMXEVTYPER returns the value of PMCCFILTR.

• A write of the PMXEVTYPER writes to PMCCFILTR.

• A read or write of PMXEVCNTR has CONSTRAINED UNPREDICTABLE effects. For more
information, see PMXEVCNTR.

For more information about the results of accesses to event counters, see PMXEVTYPER and
PMXEVCNTR.

For more information about the number of counters accessible at each Exception level, see
HDCR.HPMN and MDCR_EL2.HPMN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMSELR

Accesses to this register use the following encodings in the System register encoding space:

RES0

31 5

SEL

4 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7137
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.<ER,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.<ER,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSELR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMSELR;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMSELR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b101
G8-7138 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMSELR;
elsif PSTATE.EL == EL3 then
 return PMSELR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.<ER,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.<ER,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSELR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMSELR = R[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7139
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMSELR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMSELR = R[t];
elsif PSTATE.EL == EL3 then
 PMSELR = R[t];

G8-7140 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.17 PMSWINC, Performance Monitors Software Increment register

The PMSWINC characteristics are:

Purpose

Increments a counter that is configured to count the Software increment event, event 0x00. For more
information, see SW_INCR.

Configurations

AArch32 System register PMSWINC bits [31:0] are architecturally mapped to AArch64 System
register PMSWINC_EL0[31:0].

AArch32 System register PMSWINC bits [31:0] are architecturally mapped to External register
PMSWINC_EL0[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMSWINC are UNDEFINED.

Attributes

PMSWINC is a 32-bit register.

Field descriptions

Bit [31]

Reserved, RES0.

P<n>, bit [n], for n = 30 to 0

Event counter software increment bit for PMEVCNTR<n>.

If N is less than 31, then bits [30:N] are WI. When EL2 is implemented and enabled in the current
Security state, in EL1 and EL0, N is the value in MDCR_EL2.HPMN if EL2 is using AArch64, or
in HDCR.HPMN if EL2 is using AArch32. Otherwise, N is the value in PMCR.N.

0b0 No action. The write to this bit is ignored.

0b1 If PMEVCNTR<n> is enabled and configured to count the software increment event,
increments PMEVCNTR<n> by 1. If PMEVCNTR<n> is disabled, or not configured to
count the software increment event, the write to this bit is ignored.

Accessing PMSWINC

Accesses to this register use the following encodings in the System register encoding space:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

RES0
P30

P29
P28

P27
P26

P25
P24

P23
P22

P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7141
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.<SW,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.<SW,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSWINC_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMSWINC = R[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMSWINC = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b100
G8-7142 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMSWINC = R[t];
elsif PSTATE.EL == EL3 then
 PMSWINC = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7143
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.18 PMUSERENR, Performance Monitors User Enable Register

The PMUSERENR characteristics are:

Purpose

Enables or disables User mode access to the Performance Monitors.

Configurations

AArch32 System register PMUSERENR bits [31:0] are architecturally mapped to AArch64 System
register PMUSERENR_EL0[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMUSERENR are UNDEFINED.

Attributes

PMUSERENR is a 32-bit register.

Field descriptions

Bits [31:4]

Reserved, RES0.

ER, bit [3]

Event counter read trap control:

0b0 EL0 reads of the PMXEVCNTR and PMEVCNTR<n>, and EL0 RW access to the
PMSELR, are trapped to Undefined mode if PMUSERENR.EN is also 0.

0b1 Overrides PMUSERENR.EN and enables RO access to PMXEVCNTR and
PMEVCNTR<n>, and RW access to PMSELR.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

CR, bit [2]

Cycle counter read trap control:

0b0 EL0 reads of the PMCCNTR are trapped to Undefined mode if PMUSERENR.EN is
also 0.

0b1 Overrides PMUSERENR.EN and enables access to PMCCNTR.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

SW, bit [1]

Software increment write trap control:

0b0 EL0 writes to the PMSWINC are trapped to Undefined mode if PMUSERENR.EN is
also 0.

0b1 Overrides PMUSERENR.EN and enables access to PMSWINC.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

RES0

31 4

ER

3

CR

2

SW

1

EN

0

G8-7144 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
EN, bit [0]

Traps EL0 accesses to the Performance Monitors registers to Undefined mode, as follows:

• PMCR, PMOVSR, PMSELR, PMCEID0, PMCEID1, PMCCNTR, PMXEVTYPER,
PMXEVCNTR, PMCNTENSET, PMCNTENCLR, PMOVSSET, PMEVCNTR<n>,
PMEVTYPER<n>, PMCCFILTR, PMSWINC.

• If FEAT_PMUv3p1 is implemented, PMCEID2, and PMCEID3.

• If FEAT_PMUv3p4 is implemented, PMMIR.

0b0 While at EL0, accesses to the specified registers at EL0 are trapped to Undefined mode,
unless overridden by one of PMUSERENR.{ER, CR, SW}.

0b1 While at EL0, software can access all of the specified registers.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing PMUSERENR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMUSERENR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMUSERENR;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7145
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMUSERENR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMUSERENR;
elsif PSTATE.EL == EL3 then
 return PMUSERENR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMUSERENR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMUSERENR = R[t];
elsif PSTATE.EL == EL3 then
 PMUSERENR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b000
G8-7146 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.19 PMXEVCNTR, Performance Monitors Selected Event Count Register

The PMXEVCNTR characteristics are:

Purpose

Reads or writes the value of the selected event counter, PMEVCNTR<n>. PMSELR.SEL
determines which event counter is selected.

Configurations

AArch32 System register PMXEVCNTR bits [31:0] are architecturally mapped to AArch64 System
register PMXEVCNTR_EL0[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMXEVCNTR are UNDEFINED.

Attributes

PMXEVCNTR is a 32-bit register.

Field descriptions

PMEVCNTR<n>, bits [31:0]

Value of the selected event counter, PMEVCNTR<n>, where n is the value stored in PMSELR.SEL.

If FEAT_PMUv3p5 is implemented, the event counter is 64 bits and only the least-significant part
of the event counter is accessible in AArch32 state:

• Reads from PMXEVCNTR return bits [31:0] of the counter.

• Writes to PMXEVCNTR update bits [31:0] and leave bits [63:32] unchanged.

• There is no means to access bits [63:32] directly from AArch32 state.

• If the implementation does not support AArch64, bits [63:32] are not required to be
implemented.

If FEAT_PMUv3p5 is not implemented, the event counter is 32 bits.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMXEVCNTR

If FEAT_FGT is implemented and PMSELR.SEL is greater than or equal to the number of accessible event
counters, then the behavior of permitted reads and writes of PMXEVCNTR is as follows:

• If PMSELR.SEL selects an unimplemented event counter, the access is UNDEFINED.

• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and PMSELR.SEL is greater than or equal to the number of accessible event
counters, then reads and writes of PMXEVCNTR are CONSTRAINED UNPREDICTABLE, and the following behaviors
are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP

PMEVCNTR<n>

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7147
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
• Accesses to the register behave as if PMSELR.SEL has an UNKNOWN value less than the number of event
counters accessible at the current Exception level and Security state.

• If EL2 is implemented and enabled in the current Security state, and PMSELR.SEL is less than the number
of implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR.{ER,EN} or PMUSERENR_EL0.{ER,EN}.

If EL2 is implemented and enabled in the current Security state, at EL0 and EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible event counters.

• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible event counters.

Otherwise, the number of accessible event counters is the number of implemented event counters. For more
information, see HDCR.HPMN and MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.<ER,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.<ER,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMXEVCNTR;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1101 0b010
G8-7148 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMXEVCNTR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMXEVCNTR;
elsif PSTATE.EL == EL3 then
 return PMXEVCNTR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1101 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7149
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMXEVCNTR = R[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMXEVCNTR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMXEVCNTR = R[t];
elsif PSTATE.EL == EL3 then
 PMXEVCNTR = R[t];

G8-7150 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.20 PMXEVTYPER, Performance Monitors Selected Event Type Register

The PMXEVTYPER characteristics are:

Purpose

When PMSELR.SEL selects an event counter, this accesses a PMEVTYPER<n> register. When
PMSELR.SEL selects the cycle counter, this accesses PMCCFILTR.

Configurations

AArch32 System register PMXEVTYPER bits [31:0] are architecturally mapped to AArch64
System register PMXEVTYPER_EL0[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMXEVTYPER are UNDEFINED.

Attributes

PMXEVTYPER is a 32-bit register.

Field descriptions

Bits [31:0]

Event type register or PMCCFILTR.

When PMSELR.SEL == 31, this register accesses PMCCFILTR.

Otherwise, this register accesses PMEVTYPER<n> where n is the value in PMSELR.SEL.

Accessing PMXEVTYPER

If FEAT_FGT is implemented, and PMSELR.SEL is not 31 and is greater than or equal to the number of accessible
event counters, then the behavior of permitted reads and writes of PMXEVTYPER is as follows:

• If PMSELR.SEL selects an unimplemented event counter, the access is UNDEFINED.

• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented, and PMSELR.SEL is not 31 and is greater than or equal to the number of
accessible event counters, then reads and writes of PMXEVTYPER are CONSTRAINED UNPREDICTABLE, and the
following behaviors are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP

• Accesses to the register behave as if PMSELR.SEL has an UNKNOWN value less than the number of event
counters accessible at the current Exception level and Security state.

• Accesses to the register behave as if PMSELR.SEL is 31.

• If EL2 is implemented and enabled in the current Security state, and PMSELR.SEL is less than the number
of implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR.EN or PMUSERENR_EL0.EN.

Event type register or PMCCFILTR

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7151
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
If EL2 is implemented and enabled in the current Security state, at EL0 and EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible event counters.

• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible event counters.

Otherwise, the number of accessible event counters is the number of implemented event counters. For more
information, see HDCR.HPMN and MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMXEVTYPER;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1101 0b001
G8-7152 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMXEVTYPER;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMXEVTYPER;
elsif PSTATE.EL == EL3 then
 return PMXEVTYPER;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMXEVTYPER = R[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1101 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7153
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMXEVTYPER = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMXEVTYPER = R[t];
elsif PSTATE.EL == EL3 then
 PMXEVTYPER = R[t];

G8-7154 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5 Activity Monitors registers

This section lists the Activity Monitoring registers in AArch32.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7155
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.1 AMCFGR, Activity Monitors Configuration Register

The AMCFGR characteristics are:

Purpose

Global configuration register for the activity monitors.

Provides information on supported features, the number of counter groups implemented, the total
number of activity monitor event counters implemented, and the size of the counters. AMCFGR is
applicable to both the architected and the auxiliary counter groups.

Configurations

AArch32 System register AMCFGR bits [31:0] are architecturally mapped to AArch64 System
register AMCFGR_EL0[31:0].

AArch32 System register AMCFGR bits [31:0] are architecturally mapped to External register
AMCFGR[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCFGR are UNDEFINED.

Attributes

AMCFGR is a 32-bit register.

Field descriptions

NCG, bits [31:28]

Defines the number of counter groups.

The number of implemented counter groups is [AMCFGR.NCG + 1].

If the number of implemented auxiliary activity monitor event counters is zero, this field has a value
of 0b0000. Otherwise, this field has a value of 0b0001.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [27:25]

Reserved, RES0.

HDBG, bit [24]

Halt-on-debug supported.

This feature must be supported, and so this bit is 0b1.

0b0 AMCR.HDBG is RES0.

0b1 AMCR.HDBG is read/write.

Access to this field is RO.

Bits [23:14]

Reserved, RAZ.

SIZE, bits [13:8]

Defines the size of activity monitor event counters.

The size of the activity monitor event counters implemented by the Activity Monitors Extension is
[AMCFGR.SIZE + 1].

NCG

31 28

RES0

27 25 24

RAZ

23 14

1 1 1 1 1 1

13 8

N

7 0

HDBG SIZE
G8-7156 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
The counters are 64-bit.

Note

Software also uses this field to determine the spacing of counters in the memory-map. The counters
are at doubleword-aligned addresses.

Reads as 0b111111.

Access to this field is RO.

N, bits [7:0]

Defines the number of activity monitor event counters.

The total number of counters implemented in all groups by the Activity Monitors Extension is
[AMCFGR.N + 1].

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing AMCFGR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCFGR;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7157
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCFGR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCFGR;
elsif PSTATE.EL == EL3 then
 return AMCFGR;

G8-7158 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.2 AMCGCR, Activity Monitors Counter Group Configuration Register

The AMCGCR characteristics are:

Purpose

Provides information on the number of activity monitor event counters implemented within each
counter group.

Configurations

AArch32 System register AMCGCR bits [31:0] are architecturally mapped to AArch64 System
register AMCGCR_EL0[31:0].

AArch32 System register AMCGCR bits [31:0] are architecturally mapped to External register
AMCGCR[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCGCR are UNDEFINED.

Attributes

AMCGCR is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

CG1NC, bits [15:8]

Counter Group 1 Number of Counters. The number of counters in the auxiliary counter group.

In an implementation that includes FEAT_AMUv1, the permitted range of values is 0 to 16.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CG0NC, bits [7:0]

Counter Group 0 Number of Counters. The number of counters in the architected counter group.

Reads as 0x04.

Access to this field is RO.

Accessing AMCGCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

RES0

31 16

CG1NC

15 8

100

7 0

CG0NC

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0010 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7159
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCGCR;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCGCR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCGCR;
elsif PSTATE.EL == EL3 then
 return AMCGCR;

G8-7160 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.3 AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0

The AMCNTENCLR0 characteristics are:

Purpose

Disable control bits for the architected activity monitors event counters, AMEVCNTR0<n>.

Configurations

AArch32 System register AMCNTENCLR0 bits [31:0] are architecturally mapped to AArch64
System register AMCNTENCLR0_EL0[31:0].

AArch32 System register AMCNTENCLR0 bits [31:0] are architecturally mapped to External
register AMCNTENCLR0[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENCLR0 are UNDEFINED.

Attributes

AMCNTENCLR0 is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

Bits [15:4]

Reserved, RAZ/WI.

This field is reserved for additional architected activity monitor event counters, which Arm might
define in a future version of the Activity Monitors architecture.

P<n>, bit [n], for n = 3 to 0

Activity monitor event counter disable bit for AMEVCNTR0<n>.

Note
AMCGCR.CG0NC identifies the number of architected activity monitor event counters. In an
implementation that includes FEAT_AMUv1, the number of architected activity monitor event
counters is 4.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR0<n> is disabled. When written, has no effect.

0b1 When read, means that AMEVCNTR0<n> is enabled. When written, disables
AMEVCNTR0<n>.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMCNTENCLR0

Accesses to this register use the following encodings in the System register encoding space:

RES0

31 16

RAZ/WI

15 4

P3

3

P2

2

P1

1

P0

0

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7161
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCNTENCLR0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCNTENCLR0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0010 0b100
G8-7162 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCNTENCLR0;
elsif PSTATE.EL == EL3 then
 return AMCNTENCLR0;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif IsHighestEL(PSTATE.EL) then
 AMCNTENCLR0 = R[t];
else
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0010 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7163
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.4 AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1

The AMCNTENCLR1 characteristics are:

Purpose

Disable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>.

Configurations

AArch32 System register AMCNTENCLR1 bits [31:0] are architecturally mapped to AArch64
System register AMCNTENCLR1_EL0[31:0].

AArch32 System register AMCNTENCLR1 bits [31:0] are architecturally mapped to External
register AMCNTENCLR1[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENCLR1 are UNDEFINED.

Attributes

AMCNTENCLR1 is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

P<n>, bit [n], for n = 15 to 0

Activity monitor event counter disable bit for AMEVCNTR1<n>.

When N is less than 16, bits [15:N] are RAZ/WI, where N is the value in AMCGCR.CG1NC.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR1<n> is disabled. When written, has no effect.

0b1 When read, means that AMEVCNTR1<n> is enabled. When written, disables
AMEVCNTR1<n>.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMCNTENCLR1

If the number of auxiliary activity monitor event counters implemented is zero, reads and writes of
AMCNTENCLR1 are UNDEFINED.

Note

The number of auxiliary activity monitor event counters implemented is zero exactly when AMCFGR.NCG ==
0b0000.

Accesses to this register use the following encodings in the System register encoding space:

RES0

31 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P15
P14

P13

P10
P11

P12
G8-7164 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCNTENCLR1;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCNTENCLR1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7165
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCNTENCLR1;
elsif PSTATE.EL == EL3 then
 return AMCNTENCLR1;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif IsHighestEL(PSTATE.EL) then
 AMCNTENCLR1 = R[t];
else
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0011 0b000
G8-7166 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.5 AMCNTENSET0, Activity Monitors Count Enable Set Register 0

The AMCNTENSET0 characteristics are:

Purpose

Enable control bits for the architected activity monitors event counters, AMEVCNTR0<n>.

Configurations

AArch32 System register AMCNTENSET0 bits [31:0] are architecturally mapped to AArch64
System register AMCNTENSET0_EL0[31:0].

AArch32 System register AMCNTENSET0 bits [31:0] are architecturally mapped to External
register AMCNTENSET0[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENSET0 are UNDEFINED.

Attributes

AMCNTENSET0 is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

Bits [15:4]

Reserved, RAZ/WI.

This field is reserved for additional architected activity monitor event counters, which Arm might
define in a future version of the Activity Monitors architecture.

P<n>, bit [n], for n = 3 to 0

Activity monitor event counter enable bit for AMEVCNTR0<n>.

Note
AMCGCR.CG0NC identifies the number of architected activity monitor event counters. In an
implementation that includes FEAT_AMUv1, the number of architected activity monitor event
counters is 4.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR0<n> is disabled. When written, has no effect.

0b1 When read, means that AMEVCNTR0<n> is enabled. When written, enables
AMEVCNTR0<n>.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMCNTENSET0

Accesses to this register use the following encodings in the System register encoding space:

RES0

31 16

RAZ/WI

15 4

P3

3

P2

2

P1

1

P0

0

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7167
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCNTENSET0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCNTENSET0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0010 0b101
G8-7168 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCNTENSET0;
elsif PSTATE.EL == EL3 then
 return AMCNTENSET0;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif IsHighestEL(PSTATE.EL) then
 AMCNTENSET0 = R[t];
else
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0010 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7169
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.6 AMCNTENSET1, Activity Monitors Count Enable Set Register 1

The AMCNTENSET1 characteristics are:

Purpose

Enable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>.

Configurations

AArch32 System register AMCNTENSET1 bits [31:0] are architecturally mapped to AArch64
System register AMCNTENSET1_EL0[31:0].

AArch32 System register AMCNTENSET1 bits [31:0] are architecturally mapped to External
register AMCNTENSET1[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENSET1 are UNDEFINED.

Attributes

AMCNTENSET1 is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

P<n>, bit [n], for n = 15 to 0

Activity monitor event counter enable bit for AMEVCNTR1<n>.

When N is less than 16, bits [15:N] are RAZ/WI, where N is the value in AMCGCR.CG1NC.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR1<n> is disabled. When written, has no effect.

0b1 When read, means that AMEVCNTR1<n> is enabled. When written, enables
AMEVCNTR1<n>.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMCNTENSET1

If the number of auxiliary activity monitor event counters implemented is zero, reads and writes of
AMCNTENSET1 are UNDEFINED.

Note

The number of auxiliary activity monitor counters implemented is zero when AMCFGR.NCG == 0b0000.

Accesses to this register use the following encodings in the System register encoding space:

RES0

31 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P15
P14

P13

P10
P11

P12
G8-7170 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCNTENSET1;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCNTENSET1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0011 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7171
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCNTENSET1;
elsif PSTATE.EL == EL3 then
 return AMCNTENSET1;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif IsHighestEL(PSTATE.EL) then
 AMCNTENSET1 = R[t];
else
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0011 0b001
G8-7172 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.7 AMCR, Activity Monitors Control Register

The AMCR characteristics are:

Purpose

Global control register for the activity monitors implementation. AMCR is applicable to both the
architected and the auxiliary counter groups.

Configurations

AArch32 System register AMCR bits [31:0] are architecturally mapped to AArch64 System register
AMCR_EL0[31:0].

AArch32 System register AMCR bits [31:0] are architecturally mapped to External register
AMCR[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCR are UNDEFINED.

Attributes

AMCR is a 32-bit register.

Field descriptions

Bits [31:18]

Reserved, RES0.

CG1RZ, bit [17]

When FEAT_AMUv1p1 is implemented:

CG1RZ

Counter Group 1 Read Zero.

0b0 System register reads of AMEVCNTR1<n> return the event count at all implemented
and enabled Exception levels.

0b1 If the current Exception level is the highest implemented Exception level, system
register reads of AMEVCNTR1<n> return the event count. Otherwise, reads of
AMEVCNTR1<n> return a zero value.

Note

Reads from the memory-mapped view are unaffected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [16:11]

Reserved, RES0.

RES0

31 18 17

RES0

16 11 10

RES0

9 0

CG1RZ HDBG
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7173
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
HDBG, bit [10]

This bit controls whether activity monitor counting is halted when the PE is halted in Debug state.

0b0 Activity monitors do not halt counting when the PE is halted in Debug state.

0b1 Activity monitors halt counting when the PE is halted in Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [9:0]

Reserved, RES0.

Accessing AMCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCR;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0010 0b000
G8-7174 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCR;
elsif PSTATE.EL == EL3 then
 return AMCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif IsHighestEL(PSTATE.EL) then
 AMCR = R[t];
else
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7175
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.8 AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 3

The AMEVCNTR0<n> characteristics are:

Purpose

Provides access to the architected activity monitor event counters.

Configurations

AArch32 System register AMEVCNTR0<n> bits [63:0] are architecturally mapped to AArch64
System register AMEVCNTR0<n>_EL0[63:0].

AArch32 System register AMEVCNTR0<n> bits [63:0] are architecturally mapped to External
register AMEVCNTR0<n>[63:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVCNTR0<n> are UNDEFINED.

Attributes

AMEVCNTR0<n> is a 64-bit register.

Field descriptions

ACNT, bits [63:0]

Architected activity monitor event counter n.

Value of architected activity monitor event counter n, where n is the number of this register and is
a number from 0 to 3.

If FEAT_AMUv1p1 is implemented, HCR_EL2.AMVOFFEN is 1, SCR_EL3.AMVOFFEN is 1,
HCR_EL2.{E2H, TGE} is not {1,1}, and EL2 is using AArch64 and is implemented in the current
Security state, access to these registers at EL0 or EL1 return (PCount<63:0> -
AMEVCNTVOFF0<n>_EL2<63:0>).

PCount is the physical count returned when AMEVCNTR0<n> is read from EL2 or EL3.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMEVCNTR0<n>

If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of
AMEVCNTR0<n> are UNDEFINED.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters.

Accesses to this register use the following encodings in the System register encoding space:

ACNT

63 32

ACNT

31 0
G8-7176 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if CRm == '0000' then
 if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T0 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVCNTR0<n>_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 else
 return AMEVCNTR0[UInt(CRm<0>:opc1<2:0>)];
 elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 else
 return AMEVCNTR0[UInt(CRm<0>:opc1<2:0>)];
 elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;

coproc CRm opc1

0b1111 0b000:n[3] 0b0:n[2:0]
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7177
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 else
 return AMEVCNTR0[UInt(CRm<0>:opc1<2:0>)];
 elsif PSTATE.EL == EL3 then
 return AMEVCNTR0[UInt(CRm<0>:opc1<2:0>)];
else
 UNDEFINED;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if CRm == '0000' then
 if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif IsHighestEL(PSTATE.EL) then
 AMEVCNTR0[UInt(CRm<0>:opc1<2:0>)] = R[t2]:R[t];
 else
 UNDEFINED;
else
 UNDEFINED;

coproc CRm opc1

0b1111 0b000:n[3] 0b0:n[2:0]
G8-7178 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.9 AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15

The AMEVCNTR1<n> characteristics are:

Purpose

Provides access to the auxiliary activity monitor event counters.

Configurations

AArch32 System register AMEVCNTR1<n> bits [63:0] are architecturally mapped to AArch64
System register AMEVCNTR1<n>_EL0[63:0].

AArch32 System register AMEVCNTR1<n> bits [63:0] are architecturally mapped to External
register AMEVCNTR1<n>[63:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVCNTR1<n> are UNDEFINED.

Attributes

AMEVCNTR1<n> is a 64-bit register.

Field descriptions

ACNT, bits [63:0]

Auxiliary activity monitor event counter n.

Value of auxiliary activity monitor event counter n, where n is the number of this register and is a
number from 0 to 15.

If FEAT_AMUv1p1 is implemented, HCR_EL2.AMVOFFEN is 1, SCR_EL3.AMVOFFEN is 1,
HCR_EL2.{E2H, TGE} is not {1,1}, EL2 is using AArch64 and is implemented in the current
Security state, and AMCR_EL0.CG1RZ is 0, reads to these registers at EL0 or EL1 return
(PCount<63:0> - AMEVCNTVOFF1<n>_EL2<63:0>).

PCount is the physical count returned when AMEVCNTR1<n> is read from EL2 or EL3.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMEVCNTR1<n>

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of
AMEVCNTR1<n> are UNDEFINED.

Note

AMCGCR.CG1NC identifies the number of auxiliary activity monitor event counters.

Accesses to this register use the following encodings in the System register encoding space:

ACNT

63 32

ACNT

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7179
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if CRm == '0100' then
 if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVCNTR1<n>_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 elsif HaveAArch64() && AMCR_EL0.CG1RZ == '1' then
 return Zeros();
 elsif !HaveAArch64() && AMCR.CG1RZ == '1' then
 return Zeros();
 else
 return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
 elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 elsif !IsHighestEL(PSTATE.EL) && HaveAArch64() && AMCR_EL0.CG1RZ == '1' then
 return Zeros();
 elsif !IsHighestEL(PSTATE.EL) && !HaveAArch64() && AMCR.CG1RZ == '1' then
 return Zeros();
 else
 return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
 elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then

coproc CRm opc1

0b1111 0b010:n[3] 0b0:n[2:0]
G8-7180 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 elsif !IsHighestEL(PSTATE.EL) && HaveAArch64() && AMCR_EL0.CG1RZ == '1' then
 return Zeros();
 elsif !IsHighestEL(PSTATE.EL) && !HaveAArch64() && AMCR.CG1RZ == '1' then
 return Zeros();
 else
 return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
 elsif PSTATE.EL == EL3 then
 return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
elsif CRm == '0101' then
 if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T5 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVCNTR1<n>_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 elsif HaveAArch64() && AMCR_EL0.CG1RZ == '1' then
 return Zeros();
 elsif !HaveAArch64() && AMCR.CG1RZ == '1' then
 return Zeros();
 else
 return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
 elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7181
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 elsif !IsHighestEL(PSTATE.EL) && HaveAArch64() && AMCR_EL0.CG1RZ == '1' then
 return Zeros();
 elsif !IsHighestEL(PSTATE.EL) && !HaveAArch64() && AMCR.CG1RZ == '1' then
 return Zeros();
 else
 return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
 elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 elsif !IsHighestEL(PSTATE.EL) && HaveAArch64() && AMCR_EL0.CG1RZ == '1' then
 return Zeros();
 elsif !IsHighestEL(PSTATE.EL) && !HaveAArch64() && AMCR.CG1RZ == '1' then
 return Zeros();
 else
 return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
 elsif PSTATE.EL == EL3 then
 return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
else
 UNDEFINED;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if CRm == '0100' then
 if IsHighestEL(PSTATE.EL) then
 AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)] = R[t2]:R[t];
 else
 UNDEFINED;
elsif CRm == '0101' then
 if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif IsHighestEL(PSTATE.EL) then
 AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)] = R[t2]:R[t];
 else
 UNDEFINED;
else
 UNDEFINED;

coproc CRm opc1

0b1111 0b010:n[3] 0b0:n[2:0]
G8-7182 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.10 AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 3

The AMEVTYPER0<n> characteristics are:

Purpose

Provides information on the events that an architected activity monitor event counter
AMEVCNTR0<n> counts.

Configurations

AArch32 System register AMEVTYPER0<n> bits [31:0] are architecturally mapped to AArch64
System register AMEVTYPER0<n>_EL0[31:0].

AArch32 System register AMEVTYPER0<n> bits [31:0] are architecturally mapped to External
register AMEVTYPER0<n>[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVTYPER0<n> are UNDEFINED.

Attributes

AMEVTYPER0<n> is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the architected activity monitor
event counter AMEVCNTR0<n>. The value of this field is architecturally mandated for each
architected counter.

The following table shows the mapping between required event numbers and the corresponding
counters:

0x0011 When n == 0:

Processor frequency cycles

0x4004 When n == 1:

Constant frequency cycles

0x0008 When n == 2:

Instructions retired

0x4005 When n == 3:

Memory stall cycles

Accessing AMEVTYPER0<n>

If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of
AMEVTYPER0<n> are UNDEFINED.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters.

Accesses to this register use the following encodings in the System register encoding space:

RES0

31 16

evtCount

15 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7183
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMEVTYPER0[UInt(CRm<0>:opc2<2:0>)];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMEVTYPER0[UInt(CRm<0>:opc2<2:0>)];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b011:n[3] n[2:0]
G8-7184 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 else
 return AMEVTYPER0[UInt(CRm<0>:opc2<2:0>)];
elsif PSTATE.EL == EL3 then
 return AMEVTYPER0[UInt(CRm<0>:opc2<2:0>)];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7185
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.11 AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15

The AMEVTYPER1<n> characteristics are:

Purpose

Provides information on the events that an auxiliary activity monitor event counter
AMEVCNTR1<n> counts.

Configurations

AArch32 System register AMEVTYPER1<n> bits [31:0] are architecturally mapped to AArch64
System register AMEVTYPER1<n>_EL0[31:0].

AArch32 System register AMEVTYPER1<n> bits [31:0] are architecturally mapped to External
register AMEVTYPER1<n>[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVTYPER1<n> are UNDEFINED.

Attributes

AMEVTYPER1<n> is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the auxiliary activity monitor event
counter AMEVCNTR1<n>.

It is IMPLEMENTATION DEFINED what values are supported by each counter.

If software writes a value to this field which is not supported by the corresponding counter
AMEVCNTR1<n>, then:

• It is UNPREDICTABLE which event will be counted.

• The value read back is UNKNOWN.

The event counted by AMEVCNTR1<n> might be fixed at implementation. In this case, the field
is read-only and writes are UNDEFINED.

If the corresponding counter AMEVCNTR1<n> is enabled, writes to this register have
UNPREDICTABLE results.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AMEVTYPER1<n>

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of
AMEVTYPER1<n> are UNDEFINED.

Note

AMCGCR.CG1NC identifies the number of auxiliary activity monitor event counters.

Accesses to this register use the following encodings in the System register encoding space:

RES0

31 16

evtCount

15 0
G8-7186 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVTYPER1<n>_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMEVTYPER1[UInt(CRm<0>:opc2<2:0>)];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMEVTYPER1[UInt(CRm<0>:opc2<2:0>)];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b111:n[3] n[2:0]
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7187
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMEVTYPER1[UInt(CRm<0>:opc2<2:0>)];
elsif PSTATE.EL == EL3 then
 return AMEVTYPER1[UInt(CRm<0>:opc2<2:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif IsHighestEL(PSTATE.EL) && !boolean IMPLEMENTATION_DEFINED "AMEVCNTR1<n> is fixed" then
 AMEVTYPER1[UInt(CRm<0>:opc2<2:0>)] = R[t];
else
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b111:n[3] n[2:0]
G8-7188 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.12 AMUSERENR, Activity Monitors User Enable Register

The AMUSERENR characteristics are:

Purpose

Global user enable register for the activity monitors. Enables or disables EL0 access to the activity
monitors. AMUSERENR is applicable to both the architected and the auxiliary counter groups.

Configurations

AArch32 System register AMUSERENR bits [31:0] are architecturally mapped to AArch64 System
register AMUSERENR_EL0[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMUSERENR are UNDEFINED.

Attributes

AMUSERENR is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

EN, bit [0]

Traps EL0 accesses to the activity monitors registers to EL1.

0b0 EL0 accesses to the activity monitors registers are trapped to EL1.

0b1 This control does not cause any instructions to be trapped. Software can access all
activity monitor registers at EL0.

Note

• AMUSERENR can always be read at EL0 and is not governed by this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AMUSERENR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

RES0

31 1

EN

0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0010 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7189
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMUSERENR;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMUSERENR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMUSERENR;
elsif PSTATE.EL == EL3 then
 return AMUSERENR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0010 0b011
G8-7190 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 AMUSERENR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 AMUSERENR = R[t];
elsif PSTATE.EL == EL3 then
 AMUSERENR = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7191
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6 RAS registers

This section lists The Reliability, Availability, and Serviceability Extension registers in AArch32.
G8-7192 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.1 DISR, Deferred Interrupt Status Register

The DISR characteristics are:

Purpose

Records that an SError interrupt has been consumed by an ESB instruction.

Configurations

AArch32 System register DISR bits [31:0] are architecturally mapped to AArch64 System register
DISR_EL1[31:0] when the highest implemented Exception level is using AArch64.

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to DISR
are UNDEFINED.

Attributes

DISR is a 32-bit register.

Field descriptions

When the ESB instruction is executed at EL2:

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError interrupt. If the implementation does
not include any sources of SError interrupt that can be synchronized by an Error Synchronization
Barrier, then this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:12]

Reserved, RES0.

AET, bits [11:10]

Asynchronous Error Type. See the description of HSR.AET for an SError interrupt.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort Type. See the description of HSR.EA for an SError interrupt.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]

Fault Status Code. See the description of HSR.DFSC for an SError interrupt.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A

31

RES0

30 12

AET

11 10

EA

9

RES0

8 6

DFSC

5 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7193
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
When the ESB instruction is executed at EL0 or EL1 and where TTBCR.EAE == 0:

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError interrupt. If the implementation does
not include any sources of SError interrupt that can be synchronized by an Error Synchronization
Barrier, then this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

Asynchronous Error Type. See the description of DFSR.AET for an SError interrupt.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

External abort Type. See the description of DFSR.ExT for an SError interrupt.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [11]

Reserved, RES0.

FS, bits [10, 3:0]

Fault Status Code. See the description of DFSR.FS for an SError interrupt.

The FS field is split as follows:

• FS[4] is DISR[10].

• FS[3:0] is DISR[3:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

Format.

0b0 Using the Short-descriptor translation table format.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:4]

Reserved, RES0.

A

31

RES0

30 16

AET

15 14 13 12 11 10 9

RES0

8 4

FS[3:0]

3 0

RES0
ExT

LPAE
FS[4]

RES0
G8-7194 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
When the ESB instruction is executed at EL0 or EL1 and where TTBCR.EAE == 1:

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError interrupt. If the implementation does
not include any sources of SError interrupt that can be synchronized by an Error Synchronization
Barrier, then this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

Asynchronous Error Type. See the description of DFSR.AET for an SError interrupt.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

External abort Type. See the description of DFSR.ExT for an SError interrupt.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

LPAE, bit [9]

Format.

0b1 Using the Long-descriptor translation table format.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault Status Code. See the description of DFSR.FS for an SError interrupt.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing DISR

An indirect write to DISR made by an ESB instruction does not require an explicit synchronization operation for the
value that is written to be observed by a direct read of DISR occurring in program order after the ESB instruction.

A

31

RES0

30 16

AET

15 14 13 12

RES0

11 10 9

RES0

8 6

STATUS

5 0

RES0 LPAE
ExT
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7195
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
DISR is RAZ/WI if EL3 is implemented, the PE is in Non-debug state, and any of the following apply:

• EL3 is using AArch64, SCR_EL3.EA == 1, and any of the following apply:

— The PE is executing at EL2.

— The PE is executing at EL1 and ((SCR_EL3.NS == 0 && SCR_EL3.EEL2 == 0) || HCR_EL2.AMO
== 0).

• EL3 is using AArch32, SCR.EA == 1, and any of the following apply:

— The PE is executing at EL2.

— The PE is executing at EL1 and (SCR.NS == 0 || HCR.AMO == 0).

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AMO == '1' then
 return VDISR_EL2;
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.AMO == '1' then
 return VDISR;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then
 return Zeros();
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then
 return Zeros();
 else
 return DISR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then
 return Zeros();
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then
 return Zeros();
 else
 return DISR;
elsif PSTATE.EL == EL3 then
 return DISR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0001 0b001

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0001 0b001
G8-7196 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AMO == '1' then
 VDISR_EL2 = R[t];
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.AMO == '1' then
 VDISR = R[t];
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then
 //no operation
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then
 //no operation
 else
 DISR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then
 //no operation
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then
 //no operation
 else
 DISR = R[t];
elsif PSTATE.EL == EL3 then
 DISR = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7197
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.2 ERRIDR, Error Record ID Register

The ERRIDR characteristics are:

Purpose

Defines the highest numbered index of the error records that can be accessed through the Error
Record System registers.

Configurations

AArch32 System register ERRIDR bits [31:0] are architecturally mapped to AArch64 System
register ERRIDR_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERRIDR are UNDEFINED.

Attributes

ERRIDR is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

NUM, bits [15:0]

Highest numbered index of the records that can be accessed through the Error Record System
registers plus one. Zero indicates that no records can be accessed through the Error Record System
registers.

Each implemented record is owned by a node. A node might own multiple records.

Accessing ERRIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then

RES0

31 16

NUM

15 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0011 0b000
G8-7198 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERRIDR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERRIDR;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return ERRIDR;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7199
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.3 ERRSELR, Error Record Select Register

The ERRSELR characteristics are:

Purpose

Selects an error record to be accessed through the Error Record System registers.

Configurations

AArch32 System register ERRSELR bits [31:0] are architecturally mapped to AArch64 System
register ERRSELR_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERRSELR are UNDEFINED.

If ERRIDR indicates that zero error records are implemented, then it is IMPLEMENTATION DEFINED
whether ERRSELR is UNDEFINED or RES0.

Attributes

ERRSELR is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

SEL, bits [15:0]

Selects the error record accessed through the ERX registers.

For example, if ERRSELR.SEL is 0x0004, then direct reads and writes of ERXSTATUS access
ERR4STATUS.

If ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then all of the following apply:

• The value read back from ERRSELR.SEL is UNKNOWN.

• One of the following occurs:

— An UNKNOWN error record is selected.

— The ERX* registers are RAZ/WI.

— ERX* register reads and writes are NOPs.

— ERX* register reads and writes are UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ERRSELR

Accesses to this register use the following encodings in the System register encoding space:

RES0

31 16

SEL

15 0
G8-7200 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERRSELR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERRSELR;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return ERRSELR;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0011 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7201
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERRSELR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERRSELR = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERRSELR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0011 0b001
G8-7202 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.4 ERXADDR, Selected Error Record Address Register

The ERXADDR characteristics are:

Purpose

Accesses bits [31:0] of ERR<n>ADDR for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXADDR bits [31:0] are architecturally mapped to AArch64 System
register ERXADDR_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXADDR are UNDEFINED.

Attributes

ERXADDR is a 32-bit register.

Field descriptions

Bits [31:0]

ERXADDR accesses bits [31:0] of ERR<n>ADDR, where <n> is the value in ERRSELR.SEL.

Accessing ERXADDR

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXADDR is RAZ/WI.

• Direct reads and writes of ERXADDR are NOPs.

• Direct reads and writes of ERXADDR are UNDEFINED.

ERR<n>ADDR describes additional constraints that also apply when ERR<n>ADDR is accessed through
ERXADDR.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;

Bits [31:0] of ERR<n>ADDR

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7203
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXADDR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXADDR;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return ERXADDR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b011
G8-7204 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXADDR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXADDR = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXADDR = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7205
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.5 ERXADDR2, Selected Error Record Address Register 2

The ERXADDR2 characteristics are:

Purpose

Accesses bits [63:32] of ERR<n>ADDR for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXADDR2 bits [31:0] are architecturally mapped to AArch64 System
register ERXADDR_EL1[63:32].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXADDR2 are UNDEFINED.

Attributes

ERXADDR2 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXADDR2 accesses bits [63:32] of ERR<n>ADDR, where <n> is the value in ERRSELR.SEL.

Accessing ERXADDR2

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXADDR2 is RAZ/WI.

• Direct reads and writes of ERXADDR2 are NOPs.

• Direct reads and writes of ERXADDR2 are UNDEFINED.

ERR<n>ADDR describes additional constraints that also apply when ERR<n>ADDR is accessed through
ERXADDR2.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;

Bits [63:32] of ERR<n>ADDR

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b111
G8-7206 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXADDR2;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXADDR2;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return ERXADDR2;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7207
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXADDR2 = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXADDR2 = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXADDR2 = R[t];

G8-7208 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.6 ERXCTLR, Selected Error Record Control Register

The ERXCTLR characteristics are:

Purpose

Accesses bits [31:0] of ERR<n>CTLR for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXCTLR bits [31:0] are architecturally mapped to AArch64 System
register ERXCTLR_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXCTLR are UNDEFINED.

Attributes

ERXCTLR is a 32-bit register.

Field descriptions

Bits [31:0]

ERXCTLR accesses bits [31:0] of ERR<n>CTLR, where <n> is the value in ERRSELR.SEL.

Accessing ERXCTLR

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXCTLR is RAZ/WI.

• Direct reads and writes of ERXCTLR are NOPs.

• Direct reads and writes of ERXCTLR are UNDEFINED.

If ERRSELR.SEL is not the index of the first error record owned by a node, then ERR<n>CTLR[31:0] is not
present, meaning reads and writes of ERXCTLR are RES0.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;

Bits [31:0] of ERR<n>CTLR

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7209
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXCTLR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXCTLR;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return ERXCTLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b001
G8-7210 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXCTLR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXCTLR = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXCTLR = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7211
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.7 ERXCTLR2, Selected Error Record Control Register 2

The ERXCTLR2 characteristics are:

Purpose

Accesses bits [63:32] of ERR<n>CTLR for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXCTLR2 bits [31:0] are architecturally mapped to AArch64 System
register ERXCTLR_EL1[63:32].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXCTLR2 are UNDEFINED.

Attributes

ERXCTLR2 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXCTLR2 accesses bits [63:32] of ERR<n>CTLR, where <n> is the value in ERRSELR.SEL.

Accessing ERXCTLR2

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXCTLR2 is RAZ/WI.

• Direct reads and writes of ERXCTLR2 are NOPs.

• Direct reads and writes of ERXCTLR2 are UNDEFINED.

If ERRSELR.SEL is not the index of the first error record owned by a node, then ERR<n>CTLR[63:32] is not
present, meaning reads and writes of ERXCTLR2 are RES0.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;

Bits [63:32] of ERR<n>CTLR

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b101
G8-7212 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXCTLR2;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXCTLR2;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return ERXCTLR2;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7213
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXCTLR2 = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXCTLR2 = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXCTLR2 = R[t];

G8-7214 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.8 ERXFR, Selected Error Record Feature Register

The ERXFR characteristics are:

Purpose

Accesses bits [31:0] of ERR<n>FR for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXFR bits [31:0] are architecturally mapped to AArch64 System
register ERXFR_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXFR are UNDEFINED.

Attributes

ERXFR is a 32-bit register.

Field descriptions

Bits [31:0]

ERXFR accesses bits [31:0] of ERR<n>FR, where <n> is the value in ERRSELR.SEL.

Accessing ERXFR

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXFR is RAZ.

• Direct reads of ERXFR are NOPs.

• Direct reads of ERXFR are UNDEFINED.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;

Bits [31:0] of ERR<n>FR

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7215
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXFR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXFR;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return ERXFR;

G8-7216 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.9 ERXFR2, Selected Error Record Feature Register 2

The ERXFR2 characteristics are:

Purpose

Accesses bits [63:32] of ERR<n>FR for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXFR2 bits [31:0] are architecturally mapped to AArch64 System
register ERXFR_EL1[63:32].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXFR2 are UNDEFINED.

Attributes

ERXFR2 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXFR2 accesses bits [63:32] of ERR<n>FR, where <n> is the value in ERRSELR.SEL.

Accessing ERXFR2

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXFR2 is RAZ.

• Direct reads of ERXFR2 are NOPs.

• Direct reads of ERXFR2 are UNDEFINED.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;

Bits [63:32] of ERR<n>FR

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7217
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXFR2;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXFR2;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return ERXFR2;

G8-7218 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.10 ERXMISC0, Selected Error Record Miscellaneous Register 0

The ERXMISC0 characteristics are:

Purpose

Accesses bits [31:0] of ERR<n>MISC0 for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXMISC0 bits [31:0] are architecturally mapped to AArch64 System
register ERXMISC0_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXMISC0 are UNDEFINED.

Attributes

ERXMISC0 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXMISC0 accesses bits [31:0] of ERR<n>MISC0, where <n> is the value in ERRSELR.SEL.

Accessing ERXMISC0

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXMISC0 is RAZ/WI.

• Direct reads and writes of ERXMISC0 are NOPs.

• Direct reads and writes of ERXMISC0 are UNDEFINED.

ERR<n>MISC0 describes additional constraints that also apply when ERR<n>MISC0 is accessed through
ERXMISC0.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;

Bits [31:0] of ERR<n>MISC0

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7219
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC0;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC0;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b000
G8-7220 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC0 = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC0 = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC0 = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7221
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.11 ERXMISC1, Selected Error Record Miscellaneous Register 1

The ERXMISC1 characteristics are:

Purpose

Accesses bits [63:32] of ERR<n>MISC0 for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXMISC1 bits [31:0] are architecturally mapped to AArch64 System
register ERXMISC0_EL1[63:32].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXMISC1 are UNDEFINED.

Attributes

ERXMISC1 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXMISC1 accesses bits [63:32] of ERR<n>MISC0, where <n> is the value in ERRSELR.SEL.

Accessing ERXMISC1

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXMISC1 is RAZ/WI.

• Direct reads and writes of ERXMISC1 are NOPs.

• Direct reads and writes of ERXMISC1 are UNDEFINED.

ERR<n>MISC0 describes additional constraints that also apply when ERR<n>MISC0 is accessed through
ERXMISC1.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;

Bits [63:32] of ERR<n>MISC0

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b001
G8-7222 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC1;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC1;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7223
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC1 = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC1 = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC1 = R[t];

G8-7224 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.12 ERXMISC2, Selected Error Record Miscellaneous Register 2

The ERXMISC2 characteristics are:

Purpose

Accesses bits [31:0] of ERR<n>MISC1 for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXMISC2 bits [31:0] are architecturally mapped to AArch64 System
register ERXMISC1_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXMISC2 are UNDEFINED.

Attributes

ERXMISC2 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXMISC2 accesses bits [31:0] of ERR<n>MISC1, where <n> is the value in ERRSELR.SEL.

Accessing ERXMISC2

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXMISC2 is RAZ/WI.

• Direct reads and writes of ERXMISC2 are NOPs.

• Direct reads and writes of ERXMISC2 are UNDEFINED.

ERR<n>MISC1 describes additional constraints that also apply when ERR<n>MISC1 is accessed through
ERXMISC2.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;

Bits [31:0] of ERR<n>MISC1

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7225
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC2;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC2;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC2;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b100
G8-7226 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC2 = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC2 = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC2 = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7227
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.13 ERXMISC3, Selected Error Record Miscellaneous Register 3

The ERXMISC3 characteristics are:

Purpose

Accesses bits [63:32] of ERR<n>MISC1 for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXMISC3 bits [31:0] are architecturally mapped to AArch64 System
register ERXMISC1_EL1[63:32].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXMISC3 are UNDEFINED.

Attributes

ERXMISC3 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXMISC3 accesses bits [63:32] of ERR<n>MISC1, where <n> is the value in ERRSELR.SEL.

Accessing ERXMISC3

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXMISC3 is RAZ/WI.

• Direct reads and writes of ERXMISC3 are NOPs.

• Direct reads and writes of ERXMISC3 are UNDEFINED.

ERR<n>MISC1 describes additional constraints that also apply when ERR<n>MISC1 is accessed through
ERXMISC3.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;

Bits [63:32] of ERR<n>MISC1

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b101
G8-7228 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC3;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC3;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC3;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b101
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7229
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC3 = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC3 = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC3 = R[t];

G8-7230 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.14 ERXMISC4, Selected Error Record Miscellaneous Register 4

The ERXMISC4 characteristics are:

Purpose

Accesses bits [31:0] of ERR<n>MISC2 for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXMISC4 bits [31:0] are architecturally mapped to AArch64 System
register ERXMISC2_EL1[31:0].

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to
ERXMISC4 are UNDEFINED.

Attributes

ERXMISC4 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXMISC4 accesses bits [31:0] of ERR<n>MISC2, where <n> is the value in ERRSELR.SEL.

Accessing ERXMISC4

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXMISC4 is RAZ/WI.

• Direct reads and writes of ERXMISC4 are NOPs.

• Direct reads and writes of ERXMISC4 are UNDEFINED.

ERR<n>MISC2 describes additional constraints that also apply when ERR<n>MISC2 is accessed through
ERXMISC4.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;

Bits [31:0] of ERR<n>MISC2

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7231
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC4;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC4;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC4;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b010
G8-7232 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC4 = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC4 = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC4 = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7233
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.15 ERXMISC5, Selected Error Record Miscellaneous Register 5

The ERXMISC5 characteristics are:

Purpose

Accesses bits [63:32] of ERR<n>MISC2 for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXMISC5 bits [31:0] are architecturally mapped to AArch64 System
register ERXMISC2_EL1[63:32].

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to
ERXMISC5 are UNDEFINED.

Attributes

ERXMISC5 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXMISC5 accesses bits [63:32] of ERR<n>MISC2, where <n> is the value in ERRSELR.SEL.

Accessing ERXMISC5

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXMISC5 is RAZ/WI.

• Direct reads and writes of ERXMISC5 are NOPs.

• Direct reads and writes of ERXMISC5 are UNDEFINED.

ERR<n>MISC2 describes additional constraints that also apply when ERR<n>MISC2 is accessed through
ERXMISC5.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;

Bits [63:32] of ERR<n>MISC2

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b011
G8-7234 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC5;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC5;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC5;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7235
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC5 = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC5 = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC5 = R[t];

G8-7236 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.16 ERXMISC6, Selected Error Record Miscellaneous Register 6

The ERXMISC6 characteristics are:

Purpose

Accesses bits [31:0] of ERR<n>MISC3 for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXMISC6 bits [31:0] are architecturally mapped to AArch64 System
register ERXMISC3_EL1[31:0].

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to
ERXMISC6 are UNDEFINED.

Attributes

ERXMISC6 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXMISC6 accesses bits [31:0] of ERR<n>MISC3, where <n> is the value in ERRSELR.SEL.

Accessing ERXMISC6

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXMISC6 is RAZ/WI.

• Direct reads and writes of ERXMISC6 are NOPs.

• Direct reads and writes of ERXMISC6 are UNDEFINED.

ERR<n>MISC3 describes additional constraints that also apply when ERR<n>MISC3 is accessed through
ERXMISC6.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;

Bits [31:0] of ERR<n>MISC3

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7237
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC6;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC6;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC6;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b110
G8-7238 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC6 = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC6 = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC6 = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7239
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.17 ERXMISC7, Selected Error Record Miscellaneous Register 7

The ERXMISC7 characteristics are:

Purpose

Accesses bits [63:32] of ERR<n>MISC3 for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXMISC7 bits [31:0] are architecturally mapped to AArch64 System
register ERXMISC3_EL1[63:32].

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to
ERXMISC7 are UNDEFINED.

Attributes

ERXMISC7 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXMISC7 accesses bits [63:32] of ERR<n>MISC3, where <n> is the value in ERRSELR.SEL.

Accessing ERXMISC7

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXMISC7 is RAZ/WI.

• Direct reads and writes of ERXMISC7 are NOPs.

• Direct reads and writes of ERXMISC7 are UNDEFINED.

ERR<n>MISC3 describes additional constraints that also apply when ERR<n>MISC3 is accessed through
ERXMISC7.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;

Bits [63:32] of ERR<n>MISC3

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b111
G8-7240 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC7;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC7;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return ERXMISC7;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b111
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7241
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC7 = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC7 = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC7 = R[t];

G8-7242 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.18 ERXSTATUS, Selected Error Record Primary Status Register

The ERXSTATUS characteristics are:

Purpose

Accesses bits [31:0] of ERR<n>STATUS for the error record selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXSTATUS bits [31:0] are architecturally mapped to AArch64 System
register ERXSTATUS_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXSTATUS are UNDEFINED.

Attributes

ERXSTATUS is a 32-bit register.

Field descriptions

Bits [31:0]

ERXSTATUS accesses bits [31:0] of ERR<n>STATUS, where n is the value in ERRSELR.SEL.

Accessing ERXSTATUS

If ERRIDR.NUM == 0 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the
following occurs:

• An UNKNOWN record is selected.

• ERXSTATUS is RAZ/WI.

• Direct reads and writes of ERXSTATUS are NOPs.

• Direct reads and writes of ERXSTATUS are UNDEFINED.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;

Bits [31:0] of ERR<n>STATUS

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7243
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXSTATUS;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 return ERXSTATUS;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return ERXSTATUS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b010
G8-7244 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXSTATUS = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXSTATUS = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXSTATUS = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7245
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.19 VDFSR, Virtual SError Exception Syndrome Register

The VDFSR characteristics are:

Purpose

Provides the syndrome value reported to software on taking a virtual SError interrupt exception to
EL1, or on executing an ESB instruction at EL1.

When the virtual SError interrupt injected using HCR.VA is taken to EL1 using AArch32, then the
syndrome value is reported in DFSR.{AET, ExT} and the remainder of DFSR is set as defined by
VMSAv8-32. For more information, see Chapter G5 The AArch32 Virtual Memory System
Architecture.

If the virtual SError interrupt injected using HCR.VA is deferred by an ESB instruction, then the
syndrome value is written to VDISR.

Configurations

AArch32 System register VDFSR bits [31:0] are architecturally mapped to AArch64 System
register VSESR_EL2[31:0] when the highest implemented Exception level is using AArch64.

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
VDFSR are UNDEFINED.

If EL2 is not implemented, then VDFSR is RES0 from Monitor mode when SCR.NS == 1.

Attributes

VDFSR is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

AET, bits [15:14]

When a virtual SError interrupt is taken to EL1 using AArch32, DFSR[15:4] is set to VDFSR.AET.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR[15:4] is set to
VDFSR.AET.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

When a virtual SError interrupt is taken to EL1 using AArch32, DFSR[12] is set to VDFSR.ExT.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR[12] is set to VDFSR.ExT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:0]

Reserved, RES0.

RES0

31 16

AET

15 14 13 12

RES0

11 0

RES0 ExT
G8-7246 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
Accessing VDFSR

Direct reads and writes of VDFSR are UNDEFINED if EL3 is implemented and using AArch32 in all Secure
privileged modes other than Monitor mode.

If EL2 is not implemented, then VDFSR is RES0 from Monitor mode when SCR.NS == 1.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return VDFSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return VDFSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VDFSR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 VDFSR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0101 0b0010 0b011

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0101 0b0010 0b011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7247
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.20 VDISR, Virtual Deferred Interrupt Status Register

The VDISR characteristics are:

Purpose

Records that an SError interrupt has been consumed by an ESB instruction.

Configurations

AArch32 System register VDISR bits [31:0] are architecturally mapped to AArch64 System register
VDISR_EL2[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
VDISR are UNDEFINED.

If EL2 is not implemented, then VDISR is RES0 from Monitor mode when SCR.NS == 1.

Attributes

VDISR is a 32-bit register.

Field descriptions

When TTBCR.EAE == 0:

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError interrupt.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

The value copied from VDFSR.AET.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

The value copied from VDFSR.ExT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [11]

Reserved, RES0.

A

31

RES0

30 16

AET

15 14 13 12 11 10 9

RES0

8 4

FS[3:0]

3 0

RES0
ExT

LPAE
FS[4]

RES0
G8-7248 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
FS, bits [10, 3:0]

Fault status code. Set to 0b10110 when an ESB instruction defers a virtual SError interrupt.

0b10110 Asynchronous SError interrupt.

All other values are reserved.

The FS field is split as follows:

• FS[4] is VDISR[10].

• FS[3:0] is VDISR[3:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

Format.

Set to TTBCR.EAE when an ESB instruction defers a virtual SError interrupt.

0b0 Using the Short-descriptor translation table format.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:4]

Reserved, RES0.

When TTBCR.EAE == 1:

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError interrupt.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

The value copied from VDFSR.AET.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

The value copied from VDFSR.ExT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

A

31

RES0

30 16

AET

15 14 13 12

RES0

11 10 9

RES0

8 6

STATUS

5 0

RES0 LPAE
ExT
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7249
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
LPAE, bit [9]

Format.

Set to TTBCR.EAE when an ESB instruction defers a virtual SError interrupt.

0b1 Using the Long-descriptor translation table format.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault status code. Set to 0b010001 when an ESB instruction defers a virtual SError interrupt.

0b010001 Asynchronous SError interrupt.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VDISR

Direct reads and writes of VDFSR are UNDEFINED if EL3 is implemented and using AArch32 in all Secure
privileged modes other than Monitor mode.

An indirect write to VDISR made by an ESB instruction does not require an explicit synchronization operation for
the value that is written to be observed by a direct read of DISR occurring in program order after the ESB instruction.

If EL2 is not implemented, then VDISR is RES0 from Monitor mode when SCR.NS == 1.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return VDISR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return VDISR;

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1100 0b0001 0b001
G8-7250 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.6 RAS registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VDISR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 VDISR = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AMO == '1' then
 return VDISR_EL2;
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.AMO == '1' then
 return VDISR;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then
 return Zeros();
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then
 return Zeros();
 else
 return DISR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then
 return Zeros();
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then
 return Zeros();
 else
 return DISR;
elsif PSTATE.EL == EL3 then
 return DISR;

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1100 0b0001 0b001

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0001 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7251
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AMO == '1' then
 VDISR_EL2 = R[t];
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.AMO == '1' then
 VDISR = R[t];
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then
 //no operation
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then
 //no operation
 else
 DISR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then
 //no operation
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then
 //no operation
 else
 DISR = R[t];
elsif PSTATE.EL == EL3 then
 DISR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0001 0b001
G8-7252 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7 Generic Timer registers

This section lists the Generic Timer registers in AArch32.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7253
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.1 CNTFRQ, Counter-timer Frequency register

The CNTFRQ characteristics are:

Purpose

This register is provided so that software can discover the frequency of the system counter. It must
be programmed with this value as part of system initialization. The value of the register is not
interpreted by hardware.

Configurations

AArch32 System register CNTFRQ bits [31:0] are architecturally mapped to AArch64 System
register CNTFRQ_EL0[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CNTFRQ are UNDEFINED.

Attributes

CNTFRQ is a 32-bit register.

Field descriptions

Bits [31:0]

Clock frequency. Indicates the system counter clock frequency, in Hz.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTFRQ

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&
CNTKCTL_EL1.<EL0PCTEN,EL0VCTEN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PCTEN == '0' && CNTKCTL.PL0VCTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&
CNTHCTL_EL2.<EL0PCTEN,EL0VCTEN> == '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

Clock frequency

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0000 0b000
G8-7254 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 else
 return CNTFRQ;
elsif PSTATE.EL == EL1 then
 return CNTFRQ;
elsif PSTATE.EL == EL2 then
 return CNTFRQ;
elsif PSTATE.EL == EL3 then
 return CNTFRQ;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if IsHighestEL(PSTATE.EL) then
 CNTFRQ = R[t];
else
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0000 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7255
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.2 CNTHCTL, Counter-timer Hyp Control register

The CNTHCTL characteristics are:

Purpose

Controls the generation of an event stream from the physical counter, and access from Non-secure
EL1 modes to the physical counter and the Non-secure EL1 physical timer.

Configurations

AArch32 System register CNTHCTL bits [31:0] are architecturally mapped to AArch64 System
register CNTHCTL_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CNTHCTL are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHCTL is a 32-bit register.

Field descriptions

Bits [31:18]

Reserved, RES0.

EVNTIS, bit [17]

When FEAT_ECV is implemented:

EVNTIS

Controls the scale of the generation of the event stream.

0b0 The CNTHCTL.EVNTI field applies to CNTPCT[15:0].

0b1 The CNTHCTL.EVNTI field applies to CNTPCT[23:8].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [16:8]

Reserved, RES0.

EVNTI, bits [7:4]

Selects which bit of the counter register CNTPCT is the trigger for the event stream generated from
that counter, when that stream is enabled.

If FEAT_ECV is implemented, and CNTHCTL.EVNTIS is 1, this field selects a trigger bit in the
range 8 to 23 of the counter register CNTPCT is the trigger.

Otherwise, this field selects a trigger bit in the range 0 to 15 of the counter register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

31 18 17

RES0

16 8

EVNTI

7 4 3 2 1 0

EVNTIS EVNTDIR
EVNTEN

PL1PCTEN
PL1PCEN
G8-7256 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
EVNTDIR, bit [3]

Controls which transition of the counter register CNTPCT trigger bit, defined by EVNTI, generates
an event when the event stream is enabled:

0b0 A 0 to 1 transition of the trigger bit triggers an event.

0b1 A 1 to 0 transition of the trigger bit triggers an event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTPCT:

0b0 Disables the event stream.

0b1 Enables the event stream.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PL1PCEN, bit [1]

Traps Non-secure EL0 and EL1 accesses to the physical timer registers to Hyp mode.

0b0 Non-secure EL0 and EL1 accesses to the CNTP_CTL, CNTP_CVAL, and
CNTP_TVAL are trapped to Hyp mode, unless the it is trapped by
CNTKCTL.PL0PTEN.

0b1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the
purpose of a direct read.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PL1PCTEN, bit [0]

Traps Non-secure EL0 and EL1 accesses to the physical counter register to Hyp mode.

0b0 Non-secure EL0 and EL1 accesses to the CNTPCT are trapped to Hyp mode, unless it
is trapped by CNTKCTL.PL0PCTEN.

0b1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the
purpose of a direct read.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHCTL

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1110 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7257
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 return CNTHCTL;
elsif PSTATE.EL == EL3 then
 return CNTHCTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHCTL = R[t];
elsif PSTATE.EL == EL3 then
 CNTHCTL = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1110 0b0001 0b000
G8-7258 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.3 CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

The CNTHP_CTL characteristics are:

Purpose

Control register for the Hyp mode physical timer.

Configurations

AArch32 System register CNTHP_CTL bits [31:0] are architecturally mapped to AArch64 System
register CNTHP_CTL_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CNTHP_CTL are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHP_CTL is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7259
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTHP_TVAL continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, when the PE resets into EL2 or EL3, On a Warm reset, this field resets to 0.

Accessing CNTHP_CTL

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return CNTHP_CTL;
elsif PSTATE.EL == EL3 then
 return CNTHP_CTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHP_CTL = R[t];
elsif PSTATE.EL == EL3 then
 CNTHP_CTL = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1110 0b0010 0b001

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1110 0b0010 0b001

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b001
G8-7260 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_CTL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_CTL_EL2;
 else
 return CNTP_CTL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_CTL_NS;
 else
 return CNTP_CTL;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_CTL_NS;
 else
 return CNTP_CTL;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return CNTP_CTL_S;
 else
 return CNTP_CTL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7261
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CTL_EL2 = R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = R[t];
 else
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CTL_NS = R[t];
 else
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CTL_NS = R[t];
 else
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_CTL_S = R[t];
 else
 CNTP_CTL_NS = R[t];

G8-7262 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.4 CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register

The CNTHP_CVAL characteristics are:

Purpose

Holds the compare value for the Hyp mode physical timer.

Configurations

AArch32 System register CNTHP_CVAL bits [63:0] are architecturally mapped to AArch64
System register CNTHP_CVAL_EL2[63:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CNTHP_CVAL are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHP_CVAL is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is
greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer.
When the timer condition is met:

• CNTHP_CTL.ISTATUS is set to 1.

• If CNTHP_CTL.IMASK is 0, an interrupt is generated.

When CNTHP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHP_CVAL

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;

CompareValue

63 32

CompareValue

31 0

coproc CRm opc1

0b1111 0b1110 0b0110
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7263
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return CNTHP_CVAL;
elsif PSTATE.EL == EL3 then
 return CNTHP_CVAL;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 CNTHP_CVAL = R[t2]:R[t];

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_CVAL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_CVAL_EL2;
 else
 return CNTP_CVAL;
elsif PSTATE.EL == EL1 then

coproc CRm opc1

0b1111 0b1110 0b0110

coproc CRm opc1

0b1111 0b1110 0b0010
G8-7264 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_CVAL_NS;
 else
 return CNTP_CVAL;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_CVAL_NS;
 else
 return CNTP_CVAL;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return CNTP_CVAL_S;
 else
 return CNTP_CVAL_NS;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = R[t2]:R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

coproc CRm opc1

0b1111 0b1110 0b0010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7265
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_CVAL_S = R[t2]:R[t];
 else
 CNTP_CVAL_NS = R[t2]:R[t];

G8-7266 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.5 CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

The CNTHP_TVAL characteristics are:

Purpose

Holds the timer value for the Hyp mode physical timer.

Configurations

AArch32 System register CNTHP_TVAL bits [31:0] are architecturally mapped to AArch64
System register CNTHP_TVAL_EL2[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CNTHP_TVAL are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHP_TVAL is a 32-bit register.

Field descriptions

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHP_CTL.ENABLE is 0, the value returned is UNKNOWN.

• If CNTHP_CTL.ENABLE is 1, the value returned is (CNTHP_CVAL - CNTPCT).

On a write of this register, CNTHP_CVAL is set to (CNTPCT + TimerValue), where TimerValue is
treated as a signed 32-bit integer.

When CNTHP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CNTHP_CVAL)
is greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer.
When the timer condition is met:

• CNTHP_CTL.ISTATUS is set to 1.

• If CNTHP_CTL.IMASK is 0, an interrupt is generated.

When CNTHP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count,
so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHP_TVAL

Accesses to this register use the following encodings in the System register encoding space:

TimerValue

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7267
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return CNTHP_TVAL;
elsif PSTATE.EL == EL3 then
 return CNTHP_TVAL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHP_TVAL = R[t];
elsif PSTATE.EL == EL3 then
 CNTHP_TVAL = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0'
then

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1110 0b0010 0b000

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1110 0b0010 0b000

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b000
G8-7268 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_TVAL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_TVAL_EL2;
 else
 return CNTP_TVAL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_TVAL_NS;
 else
 return CNTP_TVAL;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_TVAL_NS;
 else
 return CNTP_TVAL;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return CNTP_TVAL_S;
 else
 return CNTP_TVAL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7269
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 CNTHPS_TVAL_EL2 = R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_TVAL_EL2 = R[t];
 else
 CNTP_TVAL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_TVAL_NS = R[t];
 else
 CNTP_TVAL = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_TVAL_NS = R[t];
 else
 CNTP_TVAL = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_TVAL_S = R[t];
 else
 CNTP_TVAL_NS = R[t];

G8-7270 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.6 CNTHPS_CTL, Counter-timer Secure Physical Timer Control Register (EL2)

The CNTHPS_CTL characteristics are:

Purpose

Provides AArch32 access from EL0 to the Secure EL2 physical timer.

Configurations

AArch32 System register CNTHPS_CTL bits [31:0] are architecturally mapped to AArch64
System register CNTHPS_CTL_EL2[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHPS_CTL are UNDEFINED.

Attributes

CNTHPS_CTL is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the CNTHPS_CTL.ENABLE bit is 1, ISTATUS indicates whether the timer
condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS
is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the CNTHPS_CTL.ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7271
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTHPS_TVAL_EL2 continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHPS_CTL

This register is accessed using the encoding for CNTP_CTL.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_CTL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_CTL_EL2;
 else
 return CNTP_CTL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_CTL_NS;
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b001
G8-7272 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 return CNTP_CTL;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_CTL_NS;
 else
 return CNTP_CTL;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return CNTP_CTL_S;
 else
 return CNTP_CTL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CTL_EL2 = R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = R[t];
 else
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CTL_NS = R[t];
 else
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CTL_NS = R[t];
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7273
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_CTL_S = R[t];
 else
 CNTP_CTL_NS = R[t];

G8-7274 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.7 CNTHPS_CVAL, Counter-timer Secure Physical Timer CompareValue Register (EL2)

The CNTHPS_CVAL characteristics are:

Purpose

Provides AArch32 access from EL0 to the compare value for the Secure EL2 physical timer.

Configurations

AArch32 System register CNTHPS_CVAL bits [63:0] are architecturally mapped to AArch64
System register CNTHPS_CVAL_EL2[63:0].

This register is present only when AArch32 is supported at EL0 and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHPS_CVAL are UNDEFINED.

Attributes

CNTHPS_CVAL is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHPS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 -
CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit
upcounter timer. When the timer condition is met:

• CNTHPS_CTL_EL2.ISTATUS is set to 1.

• If CNTHPS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHPS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0
continues to count

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHPS_CVAL

This register is accessed using the encoding for CNTP_CVAL.

Accesses to this register use the following encodings in the System register encoding space:

CompareValue

63 32

CompareValue

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7275
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_CVAL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_CVAL_EL2;
 else
 return CNTP_CVAL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_CVAL_NS;
 else
 return CNTP_CVAL;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_CVAL_NS;
 else
 return CNTP_CVAL;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return CNTP_CVAL_S;
 else
 return CNTP_CVAL_NS;

coproc CRm opc1

0b1111 0b1110 0b0010
G8-7276 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = R[t2]:R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_CVAL_S = R[t2]:R[t];
 else
 CNTP_CVAL_NS = R[t2]:R[t];

coproc CRm opc1

0b1111 0b1110 0b0010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7277
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.8 CNTHPS_TVAL, Counter-timer Secure Physical Timer TimerValue Register (EL2)

The CNTHPS_TVAL characteristics are:

Purpose

Provides AArch32 access from EL0 to the timer value for the Secure EL2 physical timer.

Configurations

AArch32 System register CNTHPS_TVAL bits [31:0] are architecturally mapped to AArch64
System register CNTHPS_TVAL_EL2[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHPS_TVAL are UNDEFINED.

Attributes

CNTHPS_TVAL is a 32-bit register.

Field descriptions

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHPS_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.

• If CNTHPS_CTL_EL2.ENABLE is 1, the value returned is (CNTHPS_CVAL_EL2 -
CNTPCT_EL0).

On a write of this register, CNTHPS_CVAL_EL2 is set to (CNTPCT_EL0 + TimerValue), where
TimerValue is treated as a signed 32-bit integer.

When CNTHPS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 -
CNTHPS_CVAL_EL2) is greater than or equal to zero. This means that TimerValue acts like a
32-bit downcounter timer. When the timer condition is met:

• CNTHPS_CTL_EL2.ISTATUS is set to 1.

• If CNTHPS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHPS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0
continues to count, so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHPS_TVAL

This register is accessed using the encoding for CNTP_TVAL.

Accesses to this register use the following encodings in the System register encoding space:

TimerValue

31 0
G8-7278 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_TVAL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_TVAL_EL2;
 else
 return CNTP_TVAL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_TVAL_NS;
 else
 return CNTP_TVAL;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_TVAL_NS;
 else
 return CNTP_TVAL;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return CNTP_TVAL_S;
 else
 return CNTP_TVAL_NS;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7279
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_TVAL_EL2 = R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_TVAL_EL2 = R[t];
 else
 CNTP_TVAL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_TVAL_NS = R[t];
 else
 CNTP_TVAL = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_TVAL_NS = R[t];
 else
 CNTP_TVAL = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_TVAL_S = R[t];
 else
 CNTP_TVAL_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b000
G8-7280 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.9 CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)

The CNTHV_CTL characteristics are:

Purpose

Provides AArch32 access to the control register for the EL2 virtual timer.

Configurations

AArch32 System register CNTHV_CTL bits [31:0] are architecturally mapped to AArch64 System
register CNTHV_CTL_EL2[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_VHE is implemented.
Otherwise, direct accesses to CNTHV_CTL are UNDEFINED.

Attributes

CNTHV_CTL is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7281
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTHV_TVAL continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHV_CTL

This register is accessed using the encoding for CNTV_CTL.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_CTL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_CTL_EL2;
 else
 return CNTV_CTL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 return CNTV_CTL;
elsif PSTATE.EL == EL2 then
 return CNTV_CTL;
elsif PSTATE.EL == EL3 then
 return CNTV_CTL;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b001
G8-7282 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CTL_EL2 = R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = R[t];
 else
 CNTV_CTL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 CNTV_CTL = R[t];
elsif PSTATE.EL == EL2 then
 CNTV_CTL = R[t];
elsif PSTATE.EL == EL3 then
 CNTV_CTL = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7283
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.10 CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2)

The CNTHV_CVAL characteristics are:

Purpose

Provides AArch32 access to the compare value for the EL2 virtual timer.

Configurations

AArch32 System register CNTHV_CVAL bits [63:0] are architecturally mapped to AArch64
System register CNTHV_CVAL_EL2[63:0].

This register is present only when FEAT_VHE is implemented. Otherwise, direct accesses to
CNTHV_CVAL are UNDEFINED.

Attributes

CNTHV_CVAL is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL2 virtual timer CompareValue.

When CNTHV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue)
is greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer.
When the timer condition is met:

• CNTHV_CTL.ISTATUS is set to 1.

• If CNTHV_CTL.IMASK is 0, an interrupt is generated.

When CNTHV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to
count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

Accessing CNTHV_CVAL

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else

CompareValue

63 32

CompareValue

31 0

coproc CRm opc1

0b1111 0b1110 0b0011
G8-7284 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_CVAL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_CVAL_EL2;
 else
 return CNTV_CVAL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 return CNTV_CVAL;
elsif PSTATE.EL == EL2 then
 return CNTV_CVAL;
elsif PSTATE.EL == EL3 then
 return CNTV_CVAL;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = R[t2]:R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = R[t2]:R[t];
 else
 CNTV_CVAL = R[t2]:R[t];

coproc CRm opc1

0b1111 0b1110 0b0011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7285
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 CNTV_CVAL = R[t2]:R[t];

G8-7286 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.11 CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)

The CNTHV_TVAL characteristics are:

Purpose

Provides AArch32 access to the timer value for the EL2 virtual timer.

Configurations

AArch32 System register CNTHV_TVAL bits [31:0] are architecturally mapped to AArch64
System register CNTHV_TVAL_EL2[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_VHE is implemented.
Otherwise, direct accesses to CNTHV_TVAL are UNDEFINED.

Attributes

CNTHV_TVAL is a 32-bit register.

Field descriptions

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHV_CTL.ENABLE is 0, the value returned is UNKNOWN.

• If CNTHV_CTL.ENABLE is 1, the value returned is (CNTHV_CVAL - CNTVCT).

On a write of this register, CNTHV_CVAL is set to (CNTVCT + TimerValue), where TimerValue
is treated as a signed 32-bit integer.

When CNTHV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CNTHV_CVAL)
is greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer.
When the timer condition is met:

• CNTHV_CTL.ISTATUS is set to 1.

• If CNTHV_CTL.IMASK is 0, an interrupt is generated.

When CNTHV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to
count, so the TimerValue view appears to continue to count down.

Accessing CNTHV_TVAL

This register is accessed using the encoding for CNTV_TVAL.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

TimerValue

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7287
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_TVAL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_TVAL_EL2;
 else
 return CNTV_TVAL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 return CNTV_TVAL;
elsif PSTATE.EL == EL2 then
 return CNTV_TVAL;
elsif PSTATE.EL == EL3 then
 return CNTV_TVAL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_TVAL_EL2 = R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_TVAL_EL2 = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b000
G8-7288 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 else
 CNTV_TVAL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 CNTV_TVAL = R[t];
elsif PSTATE.EL == EL2 then
 CNTV_TVAL = R[t];
elsif PSTATE.EL == EL3 then
 CNTV_TVAL = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7289
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.12 CNTHVS_CTL, Counter-timer Secure Virtual Timer Control Register (EL2)

The CNTHVS_CTL characteristics are:

Purpose

Provides AArch32 access from EL0 to the Secure EL2 virtual timer.

Configurations

AArch32 System register CNTHVS_CTL bits [31:0] are architecturally mapped to AArch64
System register CNTHVS_CTL_EL2[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHVS_CTL are UNDEFINED.

Attributes

CNTHVS_CTL is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
G8-7290 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTHVS_TVAL continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHVS_CTL

This register is accessed using the encoding for CNTV_CTL.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_CTL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_CTL_EL2;
 else
 return CNTV_CTL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 return CNTV_CTL;
elsif PSTATE.EL == EL2 then
 return CNTV_CTL;
elsif PSTATE.EL == EL3 then
 return CNTV_CTL;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7291
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CTL_EL2 = R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = R[t];
 else
 CNTV_CTL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 CNTV_CTL = R[t];
elsif PSTATE.EL == EL2 then
 CNTV_CTL = R[t];
elsif PSTATE.EL == EL3 then
 CNTV_CTL = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b001
G8-7292 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.13 CNTHVS_CVAL, Counter-timer Secure Virtual Timer CompareValue Register (EL2)

The CNTHVS_CVAL characteristics are:

Purpose

Provides AArch32 access to the compare value for the Secure EL2 virtual timer.

Configurations

AArch32 System register CNTHVS_CVAL bits [63:0] are architecturally mapped to AArch64
System register CNTHVS_CVAL_EL2[63:0].

This register is present only when AArch32 is supported at EL0 and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHVS_CVAL are UNDEFINED.

Attributes

CNTHVS_CVAL is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL2 virtual timer CompareValue.

When CNTHVS_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue)
is greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer.
When the timer condition is met:

• CNTHVS_CTL.ISTATUS is set to 1.

• If CNTHVS_CTL.IMASK is 0, an interrupt is generated.

When CNTHVS_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to
count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

Accessing CNTHVS_CVAL

This register is accessed using the encoding for CNTV_CVAL.

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

CompareValue

63 32

CompareValue

31 0

coproc CRm opc1

0b1111 0b1110 0b0011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7293
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_CVAL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_CVAL_EL2;
 else
 return CNTV_CVAL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 return CNTV_CVAL;
elsif PSTATE.EL == EL2 then
 return CNTV_CVAL;
elsif PSTATE.EL == EL3 then
 return CNTV_CVAL;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = R[t2]:R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = R[t2]:R[t];

coproc CRm opc1

0b1111 0b1110 0b0011
G8-7294 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 else
 CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 CNTV_CVAL = R[t2]:R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7295
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.14 CNTHVS_TVAL, Counter-timer Secure Virtual Timer TimerValue Register (EL2)

The CNTHVS_TVAL characteristics are:

Purpose

Provides AArch32 access to the timer value for the Secure EL2 virtual timer.

Configurations

AArch32 System register CNTHVS_TVAL bits [31:0] are architecturally mapped to AArch64
System register CNTHVS_TVAL_EL2[31:0].

This register is present only when AArch32 is supported at EL0 and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHVS_TVAL are UNDEFINED.

Attributes

CNTHVS_TVAL is a 32-bit register.

Field descriptions

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHVS_CTL.ENABLE is 0, the value returned is UNKNOWN.

• If CNTHVS_CTL.ENABLE is 1, the value returned is (CNTHVS_CVAL - CNTVCT).

On a write of this register, CNTHVS_CVAL is set to (CNTVCT + TimerValue), where TimerValue
is treated as a signed 32-bit integer.

When CNTHVS_CTL.ENABLE is 1, the timer condition is met when (CNTVCT -
CNTHVS_CVAL) is greater than or equal to zero. This means that TimerValue acts like a 32-bit
downcounter timer. When the timer condition is met:

• CNTHVS_CTL.ISTATUS is set to 1.

• If CNTHVS_CTL.IMASK is 0, an interrupt is generated.

When CNTHVS_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to
count, so the TimerValue view appears to continue to count down.

Accessing CNTHVS_TVAL

This register is accessed using the encoding for CNTV_TVAL.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

TimerValue

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b000
G8-7296 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_TVAL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_TVAL_EL2;
 else
 return CNTV_TVAL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 return CNTV_TVAL;
elsif PSTATE.EL == EL2 then
 return CNTV_TVAL;
elsif PSTATE.EL == EL3 then
 return CNTV_TVAL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_TVAL_EL2 = R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_TVAL_EL2 = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7297
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 else
 CNTV_TVAL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 CNTV_TVAL = R[t];
elsif PSTATE.EL == EL2 then
 CNTV_TVAL = R[t];
elsif PSTATE.EL == EL3 then
 CNTV_TVAL = R[t];

G8-7298 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.15 CNTKCTL, Counter-timer Kernel Control register

The CNTKCTL characteristics are:

Purpose

Controls the generation of an event stream from the virtual counter, and access from EL0 modes to
the physical counter, virtual counter, EL1 physical timers, and the virtual timer.

Configurations

AArch32 System register CNTKCTL bits [31:0] are architecturally mapped to AArch64 System
register CNTKCTL_EL1[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CNTKCTL are UNDEFINED.

Attributes

CNTKCTL is a 32-bit register.

Field descriptions

Bits [31:18]

Reserved, RES0.

EVNTIS, bit [17]

When FEAT_ECV is implemented:

EVNTIS

Controls the scale of the generation of the event stream.

0b0 The CNTKCTL.EVNTI field applies to CNTVCT[15:0].

0b1 The CNTKCTL.EVNTI field applies to CNTVCT[23:8].

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [16:10]

Reserved, RES0.

PL0PTEN, bit [9]

Traps PL0 accesses to the physical timer registers to Undefined mode.

0b0 PL0 accesses to the CNTP_CTL, CNTP_CVAL, and CNTP_TVAL registers are trapped
to Undefined mode.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

31 18 17

RES0

16 10 9 8

EVNTI

7 4 3 2 1 0

EVNTIS PL0PTEN
PL0VTEN

EVNTDIR

PL0PCTEN
PL0VCTEN

EVNTEN
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7299
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
PL0VTEN, bit [8]

Traps PL0 accesses to the virtual timer registers to Undefined mode.

0b0 PL0 accesses to the CNTV_CTL, CNTV_CVAL, and CNTV_TVAL registers are
trapped to Undefined mode.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTI, bits [7:4]

Selects which bit of the counter register CNTVCT is the trigger for the event stream generated from
that counter, when that stream is enabled.

If FEAT_ECV is implemented, and CNTKCTL.EVNTIS is 1, this field selects a trigger bit in the
range 8 to 23 of the counter register CNTVCT.

Otherwise, this field selects a trigger bit in the range 0 to 15 of the counter register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTVCT trigger bit, defined by EVNTI, generates
an event when the event stream is enabled:

0b0 A 0 to 1 transition of the trigger bit triggers an event.

0b1 A 1 to 0 transition of the trigger bit triggers an event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTVCT:

0b0 Disables the event stream.

0b1 Enables the event stream.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PL0VCTEN, bit [1]

Traps PL0 accesses to the frequency register and virtual counter register to Undefined mode.

0b0 PL0 accesses to the CNTVCT are trapped to Undefined mode.

PL0 accesses to the CNTFRQ register are trapped to Undefined mode, if
CNTKCTL.PL0PCTEN is also 0.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PL0PCTEN, bit [0]

Traps PL0 accesses to the frequency register and physical counter register to Undefined mode.

0b0 PL0 accesses to the CNTPCT are trapped to Undefined mode.

PL0 accesses to the CNTFRQ register are trapped to Undefined mode, if
CNTKCTL.PL0VCTEN is also 0.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
G8-7300 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
Accessing CNTKCTL

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 return CNTKCTL;
elsif PSTATE.EL == EL2 then
 return CNTKCTL;
elsif PSTATE.EL == EL3 then
 return CNTKCTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 CNTKCTL = R[t];
elsif PSTATE.EL == EL2 then
 CNTKCTL = R[t];
elsif PSTATE.EL == EL3 then
 CNTKCTL = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0001 0b000

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0001 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7301
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.16 CNTP_CTL, Counter-timer Physical Timer Control register

The CNTP_CTL characteristics are:

Purpose

Control register for the EL1 physical timer.

Configurations

AArch32 System register CNTP_CTL bits [31:0] are architecturally mapped to AArch64 System
register CNTP_CTL_EL0[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CNTP_CTL are UNDEFINED.

Attributes

CNTP_CTL is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
G8-7302 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTP_TVAL continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing CNTP_CTL

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_CTL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_CTL_EL2;
 else
 return CNTP_CTL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_CTL_NS;
 else
 return CNTP_CTL;
elsif PSTATE.EL == EL2 then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7303
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_CTL_NS;
 else
 return CNTP_CTL;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return CNTP_CTL_S;
 else
 return CNTP_CTL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CTL_EL2 = R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = R[t];
 else
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CTL_NS = R[t];
 else
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CTL_NS = R[t];
 else
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL3 then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b001
G8-7304 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 if SCR.NS == '0' then
 CNTP_CTL_S = R[t];
 else
 CNTP_CTL_NS = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7305
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.17 CNTP_CVAL, Counter-timer Physical Timer CompareValue register

The CNTP_CVAL characteristics are:

Purpose

Holds the compare value for the EL1 physical timer.

Configurations

AArch32 System register CNTP_CVAL bits [63:0] are architecturally mapped to AArch64 System
register CNTP_CVAL_EL0[63:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CNTP_CVAL are UNDEFINED.

Attributes

CNTP_CVAL is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL1 physical timer CompareValue.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is
greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer.
When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.

• If CNTP_CTL.IMASK is 0, an interrupt is generated.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTP_CVAL

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

CompareValue

63 32

CompareValue

31 0

coproc CRm opc1

0b1111 0b1110 0b0010
G8-7306 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_CVAL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_CVAL_EL2;
 else
 return CNTP_CVAL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_CVAL_NS;
 else
 return CNTP_CVAL;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_CVAL_NS;
 else
 return CNTP_CVAL;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return CNTP_CVAL_S;
 else
 return CNTP_CVAL_NS;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

coproc CRm opc1

0b1111 0b1110 0b0010
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7307
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = R[t2]:R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_CVAL_S = R[t2]:R[t];
 else
 CNTP_CVAL_NS = R[t2]:R[t];

G8-7308 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.18 CNTP_TVAL, Counter-timer Physical Timer TimerValue register

The CNTP_TVAL characteristics are:

Purpose

Holds the timer value for the EL1 physical timer.

Configurations

AArch32 System register CNTP_TVAL bits [31:0] are architecturally mapped to AArch64 System
register CNTP_TVAL_EL0[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CNTP_TVAL are UNDEFINED.

Attributes

CNTP_TVAL is a 32-bit register.

Field descriptions

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.

On a read of this register:

• If CNTP_CTL.ENABLE is 0, the value returned is UNKNOWN.

• If CNTP_CTL.ENABLE is 1, the value returned is (CNTP_CVAL - CNTPCT).

On a write of this register, CNTP_CVAL is set to (CNTPCT + TimerValue), where TimerValue is
treated as a signed 32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CNTP_CVAL) is
greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer.
When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.

• If CNTP_CTL.IMASK is 0, an interrupt is generated.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count,
so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTP_TVAL

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0'
then

TimerValue

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7309
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHPS_TVAL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_TVAL_EL2;
 else
 return CNTP_TVAL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_TVAL_NS;
 else
 return CNTP_TVAL;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_TVAL_NS;
 else
 return CNTP_TVAL;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return CNTP_TVAL_S;
 else
 return CNTP_TVAL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b000
G8-7310 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_TVAL_EL2 = R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_TVAL_EL2 = R[t];
 else
 CNTP_TVAL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_TVAL_NS = R[t];
 else
 CNTP_TVAL = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_TVAL_NS = R[t];
 else
 CNTP_TVAL = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_TVAL_S = R[t];
 else
 CNTP_TVAL_NS = R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7311
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.19 CNTPCT, Counter-timer Physical Count register

The CNTPCT characteristics are:

Purpose

Holds the 64-bit physical count value.

Configurations

AArch32 System register CNTPCT bits [63:0] are architecturally mapped to AArch64 System
register CNTPCT_EL0[63:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CNTPCT are UNDEFINED.

All reads to the CNTPCT occur in program order relative to reads to CNTPCTSS or CNTPCT.

Attributes

CNTPCT is a 64-bit register.

Field descriptions

Bits [63:0]

Physical count value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTPCT

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PCTEN ==
'0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PCTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCTEN == '0' then

Physical count value

63 32

Physical count value

31 0

coproc CRm opc1

0b1111 0b1110 0b0000
G8-7312 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PCTEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PCTEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCTEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 else
 if IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.ECVEn == '1'
&& CNTHCTL_EL2.ECV == '1' && HCR_EL2.<E2H,TGE> != '11' then
 return PhysicalCountInt() - CNTPOFF_EL2;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCTEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 else
 if IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.ECVEn == '1'
&& CNTHCTL_EL2.ECV == '1' then
 return PhysicalCountInt() - CNTPOFF_EL2;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 return PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 return PhysicalCountInt();

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7313
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.20 CNTPCTSS, Counter-timer Self-Synchronized Physical Count register

The CNTPCTSS characteristics are:

Purpose

Holds the 64-bit physical count value.

Configurations

AArch32 System register CNTPCTSS bits [63:0] are architecturally mapped to AArch64 System
register CNTPCTSS_EL0[63:0].

This register is present only when AArch32 is supported at EL0 and FEAT_ECV is implemented.
Otherwise, direct accesses to CNTPCTSS are UNDEFINED.

All reads to the CNTPCTSS occur in program order relative to reads to CNTPCT or CNTPCTSS.

This register is a self-synchronised view of the CNTPCT counter, and cannot be read speculatively.

Attributes

CNTPCTSS is a 64-bit register.

Field descriptions

Bits [63:0]

Self-Synchronized Physical count value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTPCTSS

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PCTEN ==
'0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PCTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else

Self-Synchronized Physical count value

63 32

Self-Synchronized Physical count value

31 0

coproc CRm opc1

0b1111 0b1110 0b1000
G8-7314 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PCTEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PCTEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCTEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 else
 if IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.ECVEn == '1'
&& CNTHCTL_EL2.ECV == '1' && HCR_EL2.<E2H,TGE> != '11' then
 return PhysicalCountInt() - CNTPOFF_EL2;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCTEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 else
 if IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.ECVEn == '1'
&& CNTHCTL_EL2.ECV == '1' then
 return PhysicalCountInt() - CNTPOFF_EL2;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 return PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 return PhysicalCountInt();

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7315
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.21 CNTV_CTL, Counter-timer Virtual Timer Control register

The CNTV_CTL characteristics are:

Purpose

Control register for the virtual timer.

Configurations

AArch32 System register CNTV_CTL bits [31:0] are architecturally mapped to AArch64 System
register CNTV_CTL_EL0[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CNTV_CTL are UNDEFINED.

Attributes

CNTV_CTL is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
G8-7316 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTV_TVAL continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing CNTV_CTL

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_CTL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_CTL_EL2;
 else
 return CNTV_CTL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 return CNTV_CTL;
elsif PSTATE.EL == EL2 then
 return CNTV_CTL;
elsif PSTATE.EL == EL3 then
 return CNTV_CTL;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7317
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CTL_EL2 = R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = R[t];
 else
 CNTV_CTL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 CNTV_CTL = R[t];
elsif PSTATE.EL == EL2 then
 CNTV_CTL = R[t];
elsif PSTATE.EL == EL3 then
 CNTV_CTL = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b001
G8-7318 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.22 CNTV_CVAL, Counter-timer Virtual Timer CompareValue register

The CNTV_CVAL characteristics are:

Purpose

Holds the compare value for the virtual timer.

Configurations

AArch32 System register CNTV_CVAL bits [63:0] are architecturally mapped to AArch64 System
register CNTV_CVAL_EL0[63:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CNTV_CVAL are UNDEFINED.

Attributes

CNTV_CVAL is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL1 virtual timer CompareValue.

When CNTV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is
greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer.
When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.

• If CNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTV_CVAL

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

CompareValue

63 32

CompareValue

31 0

coproc CRm opc1

0b1111 0b1110 0b0011
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7319
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_CVAL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_CVAL_EL2;
 else
 return CNTV_CVAL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 return CNTV_CVAL;
elsif PSTATE.EL == EL2 then
 return CNTV_CVAL;
elsif PSTATE.EL == EL3 then
 return CNTV_CVAL;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = R[t2]:R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = R[t2]:R[t];

coproc CRm opc1

0b1111 0b1110 0b0011
G8-7320 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 else
 CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 CNTV_CVAL = R[t2]:R[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7321
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.23 CNTV_TVAL, Counter-timer Virtual Timer TimerValue register

The CNTV_TVAL characteristics are:

Purpose

Holds the timer value for the virtual timer.

Configurations

AArch32 System register CNTV_TVAL bits [31:0] are architecturally mapped to AArch64 System
register CNTV_TVAL_EL0[31:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CNTV_TVAL are UNDEFINED.

Attributes

CNTV_TVAL is a 32-bit register.

Field descriptions

TimerValue, bits [31:0]

The TimerValue view of the virtual timer.

On a read of this register:

• If CNTV_CTL.ENABLE is 0, the value returned is UNKNOWN.

• If CNTV_CTL.ENABLE is 1, the value returned is (CNTV_CVAL - CNTVCT).

On a write of this register, CNTV_CVAL is set to (CNTVCT + TimerValue), where TimerValue is
treated as a signed 32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CNTP_CVAL) is
greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer.
When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.

• If CNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count,
so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTV_TVAL

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0'
then

TimerValue

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b000
G8-7322 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 return CNTHVS_TVAL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_TVAL_EL2;
 else
 return CNTV_TVAL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 return CNTV_TVAL;
elsif PSTATE.EL == EL2 then
 return CNTV_TVAL;
elsif PSTATE.EL == EL3 then
 return CNTV_TVAL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_TVAL_EL2 = R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b000
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7323
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 CNTHV_TVAL_EL2 = R[t];
 else
 CNTV_TVAL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 CNTV_TVAL = R[t];
elsif PSTATE.EL == EL2 then
 CNTV_TVAL = R[t];
elsif PSTATE.EL == EL3 then
 CNTV_TVAL = R[t];

G8-7324 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.24 CNTVCT, Counter-timer Virtual Count register

The CNTVCT characteristics are:

Purpose

Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value
minus the virtual offset visible in CNTVOFF.

Configurations

AArch32 System register CNTVCT bits [63:0] are architecturally mapped to AArch64 System
register CNTVCT_EL0[63:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CNTVCT are UNDEFINED.

The value of this register is the same as the value of CNTPCT in the following conditions:

• When EL2 is not implemented.

• When EL2 is implemented and is using AArch64, HCR_EL2.{E2H, TGE} is {1, 1}, and this
register is read from Non-secure EL0.

All reads to the CNTVCT occur in program order relative to reads to CNTVCTSS or CNTVCT.

Attributes

CNTVCT is a 64-bit register.

Field descriptions

Bits [63:0]

Virtual count value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTVCT

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VCTEN ==
'0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VCTEN == '0' then

Virtual count value

63 32

Virtual count value

31 0

coproc CRm opc1

0b1111 0b1110 0b0001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7325
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VCTEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVCT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 if HaveEL(EL2) && !ELUsingAArch32(EL2) && (!EL2Enabled() || HCR_EL2.<E2H,TGE> != '11') then
 return PhysicalCountInt() - CNTVOFF_EL2;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 return PhysicalCountInt() - CNTVOFF;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVCT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 if HaveEL(EL2) && !ELUsingAArch32(EL2) then
 return PhysicalCountInt() - CNTVOFF_EL2;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 return PhysicalCountInt() - CNTVOFF;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 return PhysicalCountInt() - CNTVOFF;
elsif PSTATE.EL == EL3 then
 if HaveEL(EL2) then
 return PhysicalCountInt() - CNTVOFF;
 else
 return PhysicalCountInt();

G8-7326 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.25 CNTVCTSS, Counter-timer Self-Synchronized Virtual Count register

The CNTVCTSS characteristics are:

Purpose

Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value
visible in CNTPCT minus the virtual offset visible in CNTVOFF.

Configurations

AArch32 System register CNTVCTSS bits [63:0] are architecturally mapped to AArch64 System
register CNTVCTSS_EL0[63:0].

This register is present only when AArch32 is supported at EL0 and FEAT_ECV is implemented.
Otherwise, direct accesses to CNTVCTSS are UNDEFINED.

All reads to the CNTVCTSS occur in program order relative to reads to CNTVCT or CNTVCTSS.

This register is a self-synchronised view of the CNTVCT counter, and cannot be read speculatively.

Attributes

CNTVCTSS is a 64-bit register.

Field descriptions

Bits [63:0]

Self-Synchronized Virtual count value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTVCTSS

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VCTEN ==
'0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VCTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);

Self-Synchronized Virtual count value

63 32

Self-Synchronized Virtual count value

31 0

coproc CRm opc1

0b1111 0b1110 0b1001
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7327
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VCTEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVCT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 if HaveEL(EL2) && !ELUsingAArch32(EL2) && (!EL2Enabled() || HCR_EL2.<E2H,TGE> != '11') then
 return PhysicalCountInt() - CNTVOFF_EL2;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 return PhysicalCountInt() - CNTVOFF;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVCT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 if HaveEL(EL2) && !ELUsingAArch32(EL2) then
 return PhysicalCountInt() - CNTVOFF_EL2;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 return PhysicalCountInt() - CNTVOFF;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 return PhysicalCountInt() - CNTVOFF;
elsif PSTATE.EL == EL3 then
 if HaveEL(EL2) then
 return PhysicalCountInt() - CNTVOFF;
 else
 return PhysicalCountInt();

G8-7328 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.26 CNTVOFF, Counter-timer Virtual Offset register

The CNTVOFF characteristics are:

Purpose

Holds the 64-bit virtual offset. This is the offset between the physical count value visible in
CNTPCT and the virtual count value visible in CNTVCT.

Configurations

AArch32 System register CNTVOFF bits [63:0] are architecturally mapped to AArch64 System
register CNTVOFF_EL2[63:0].

This register is present only when AArch32 is supported at EL0. Otherwise, direct accesses to
CNTVOFF are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3 and the virtual counter uses a fixed virtual
offset of zero.

Note

When EL2 is implemented and is using AArch64, if HCR_EL2.{E2H, TGE} is {1, 1}, the virtual
counter uses a fixed virtual offset of zero when CNTVCT is read from Non-secure EL0.

Attributes

CNTVOFF is a 64-bit register.

Field descriptions

Bits [63:0]

Virtual offset.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTVOFF

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

Virtual offset

63 32

Virtual offset

31 0

coproc CRm opc1

0b1111 0b1110 0b0100
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. G8-7329
ID072021 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return CNTVOFF;
elsif PSTATE.EL == EL3 then
 return CNTVOFF;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTVOFF = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 CNTVOFF = R[t2]:R[t];

coproc CRm opc1

0b1111 0b1110 0b0100
G8-7330 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Part H
 External Debug

Chapter H1
About External Debug

This chapter gives an overview of Armv8 external debug and specifies the required debug authentication. It contains
the following sections:

• Introduction to external debug on page H1-7334.

• External debug on page H1-7335.

• Required debug authentication on page H1-7336.

Note

For information about self-hosted debug, see Chapter D2 AArch64 Self-hosted Debug and Chapter G2 AArch32
Self-hosted Debug.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H1-7333
ID072021 Non-Confidential

About External Debug
H1.1 Introduction to external debug
H1.1 Introduction to external debug

Armv8 supports both:

Self-hosted debug

The PE itself hosts a debugger. That is, developers developing software to run on the PE use
debugger software running on the same PE.

External debug

The debugger is external to the PE. The debugging might be either on-chip, for example in a second
PE, or off-chip, for example a JTAG debugger that accesses the chip through a Debug Access Port.

External debug is particularly useful for:

• Hardware bring-up. That is, debugging during development when a system is first powered
up and not all of the software functionality is available.

• PEs that are deeply embedded inside systems.

To support external debug, the Arm architecture defines required features that are called external
debug features.

Note

An external debugger has a potentially high level of control over and visibility into the PE. The
system sets this level using debug authentication. See Required debug authentication on
page H1-7336.

If the debug authentication level is set too low, agents may be able to bypass elements of the security
and privilege models. This includes both off-chip agents and on-chip agents such as unprivileged or
Non-secure software.

H1.1.1 Definition and constraints of a debugger in the context of external debug

When the description of external debug in this Part of the manual describes a debugger as controlling external debug
this debugger might be a second on-chip PE or an off-chip device such as a JTAG debugger using a Debug Access
Port (DAP).

If a Debug Access Port is implemented:

• When debug is prohibited at the Debug Access Port, the port must not generate accesses to the external debug
interface of the PE.

• When Secure debug is prohibited at the Debug Access Port, the port must not generate Secure accesses to the
external debug interface of the PE.

• When Secure accesses are allowed at the Debug Access Port, the port must be able to generate Secure
accesses.

If FEAT_Debugv8p4 is not implemented, accesses to the PE are controlled by the external authentication interface
functions, ExternalInvasiveDebugEnabled(), ExternalNoninvasiveDebugEnabled(),
ExternalSecureNoninvasiveDebugEnabled() and ExternalSecureInvasiveDebugEnabled(). The external authentication
interface functions override MDCR_EL3.{EPMAD, EDAD}.

If FEAT_TRF is implemented, the bus Requester, which may be the Debug Access Port, controls the accesses it
makes to the PE and MDCR_EL3.{EPMAD, EDAD} control Non-secure access to registers.

The Debug Access Port is not required to use the same authentication interface as the PE.

Arm recommends the following authentication interface:

• When ExternalSecureInvasiveDebugEnabled() == FALSE at the PE, Secure debug is disabled at the DAP.

• When ExternalInvasiveDebugEnabled() == FALSE at the PE, all debug is prohibited at the DAP.
H1-7334 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About External Debug
H1.2 External debug
H1.2 External debug

Debug events allow an external debugger to halt the PE. Armv8 provides the following debug events:

• Halting Step debug events on page H3-7380:

— The debugger can use this resource to make the PE step through code one line at a time.

• Halt Instruction debug event on page H3-7390:

— This might occur when software executes the Halting breakpoint instruction, HLT.

• Exception Catch debug event on page H3-7391:

— This can be programmed to occur on all entries to a given Exception level.

• External Debug Request debug event on page H3-7395:

— An embedded cross-trigger can signal this debug event.

• OS Unlock Catch debug event on page H3-7396:

— This might occur when the state of the OS Lock changes from locked to unlocked.

• Reset Catch debug events on page H3-7397:

— This might occur when the PE exits reset state.

• Software Access debug event on page H3-7398:

— This can be programmed to occur when software tries to access the Breakpoint Value registers, the
Breakpoint Control registers, the Watchpoint value registers, or the Watchpoint Control registers. It
caused a trap to Debug state.

Breakpoints and watchpoints can also halt the PE.

When the PE is in Debug state:

• It stops executing instructions from the location indicated by the program counter, and is instead controlled
through the external debug interface.

• The Instruction Transfer Register, ITR, passes instructions to the PE to execute in Debug state:

— The ITR contains a single register, EDITR, and associated flow-control flags.

• The Debug Communications Channel, DCC, passes data between the PE and the debugger:

— The DCC includes the data transfer registers, DTRRX and DTRTX, and associated flow-control flags.

— Although the DCC is an essential part of Debug state operation, it can also be used in Non-debug state.

• The PE cannot service any interrupts in Debug state.

Chapter H2 Debug State describes Debug state in more detail.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H1-7335
ID072021 Non-Confidential

About External Debug
H1.3 Required debug authentication
H1.3 Required debug authentication

Any implementation must provide the debug authentication defined in this section, that controls:

• Whether the PE can halt.

• Whether some aspects of non-invasive debug are permitted.

• Some legacy aspects of the AArch32 self-hosted debug model.

The pseudocode functions shown in Table H1-1 on page H1-7336, and the conditions that follow that table, define
the architectural requirements for debug authentication.

The following conditions always apply:

• If ExternalInvasiveDebugEnabled() is FALSE then ExternalSecureInvasiveDebugEnabled() is FALSE.

• IfExternalNoninvasiveDebugEnabled() is FALSE then ExternalSecureNoninvasiveDebugEnabled() is FALSE.

• If ExternalInvasiveDebugEnabled() is TRUE then ExternalNoninvasiveDebugEnabled() is TRUE.

• If ExternalSecureInvasiveDebugEnabled() is TRUE then ExternalSecureNoninvasiveDebugEnabled() is TRUE.

If FEAT_Debugv8p4 is implemented:

• ExternalNoninvasiveDebugEnabled() always returns TRUE.

• ExternalSecureNoninvasiveDebugEnabled()returns the same as ExternalSecureInvasiveDebugEnabled().

Arm recommends the use of the interface described in Recommended authentication interface on page K2-8431 to
provide this debug authentication. The pseudocode functions in Chapter J1 Armv8 Pseudocode, that are linked to
by the entries in the Pseudocode function on page H1-7336 column of Table H1-1 on page H1-7336, assume that
this interface is implemented.

Table H1-1 Debug authentication functions

Pseudocode function Description

ExternalSecureNoninvasiveDebugEnabled() Returns TRUE if Secure non-invasive debug is enabled.

AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled() Returns TRUE if Secure invasive self-hosted debug is enabled in
AArch32 state.

ExternalSecureInvasiveDebugEnabled() Returns TRUE if Secure invasive debug is enabled.

ExternalNoninvasiveDebugEnabled() Returns TRUE if Non-secure non-invasive debug is enabled.

ExternalInvasiveDebugEnabled() Returns TRUE if Non-secure invasive debug is enabled.
H1-7336 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter H2
Debug State

This chapter describes Debug state. It contains the following sections:

• About Debug state on page H2-7338.

• Halting the PE on debug events on page H2-7339.

• Entering Debug state on page H2-7345.

• Behavior in Debug state on page H2-7348.

• Exiting Debug state on page H2-7375.

Note

Table K15-1 on page K15-8602 disambiguates the general register references used in this chapter.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H2-7337
ID072021 Non-Confidential

Debug State
H2.1 About Debug state
H2.1 About Debug state

In external debug, debug events allow an external debugger to halt the PE. The PE then enters Debug state. When
the PE is in Debug state:

• It stops executing instructions from the location indicated by the program counter, and is instead controlled
through the external debug interface.

• The Instruction Transfer Register, ITR, passes instructions to the PE to execute in Debug state.

• The Debug Communications Channel, DCC, passes data between the PE and the debugger.

The PE cannot service any interrupts in Debug state.
H2-7338 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug State
H2.2 Halting the PE on debug events
H2.2 Halting the PE on debug events

For details of debug events, see Introduction to Halting debug events on page H3-7378 and Breakpoint and
Watchpoint debug events on page H2-7340.

On a debug event, the PE must do one of the following:

• Enter Debug state.

• Pend the debug event.

• Generate a debug exception.

• Ignore the debug event.

This behavior depends on both:

• Whether halting is allowed by the current state of the debug authentication interface. See Halting allowed
and halting prohibited on page H2-7339.

• The type of debug event and the programming of the debug control registers.

— See Halting debug events on page H2-7339 for all Halting debug events.

— See Breakpoint and Watchpoint debug events on page H2-7340 for Breakpoint and Watchpoint debug
events.

See also Other debug exceptions on page H2-7340.

This means that behavior can be CONSTRAINED UNPREDICTABLE if the conditions change. See Synchronization and
Halting debug events on page H3-7399.

Summary of debug events and possible outcomes on page H3-7378 summarizes the possible outcomes of each type
of debug event.

H2.2.1 Halting allowed and halting prohibited

Halting can be either allowed or prohibited:

• Halting is always prohibited in Debug state.

• Halting is always prohibited when DoubleLockStatus() == TRUE.

— This means that FEAT_DoubleLock is implemented and OS Double lock is locked.

• Halting is also controlled by the IMPLEMENTATION DEFINED authentication interface, and is prohibited when
either:

— The PE is in Non-secure state and ExternalInvasiveDebugEnabled() == FALSE.

— The PE is in Secure state and ExternalSecureInvasiveDebugEnabled() == FALSE.

Note
See Appendix K2 Recommended External Debug Interface for more information on these functions.

• Otherwise, halting is allowed.

For more information, see:

• Pseudocode description of Halting on debug events on page H2-7344

• Required debug authentication on page H1-7336.

H2.2.2 Halting debug events

The Halting debug events are described in Chapter H3 Halting Debug Events.

When a Halting debug event is generated, it causes entry to Debug state if all of:

• Halting is allowed. See Halting allowed and halting prohibited on page H2-7339.

• The Halting debug event is one of:

— A Halt Instruction debug event and EDSCR.HDE == 1.

— A Software Access debug event and OSLSR_EL1.OSLK == 0, meaning that the OS Lock is unlocked.

— Neither a Halt Instruction debug event nor a Software Access debug event.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H2-7339
ID072021 Non-Confidential

Debug State
H2.2 Halting the PE on debug events
Note
— A Halt Instruction debug event is the only Halting debug event that relies on EDSCR.HDE == 1.

— Halting on Breakpoint and Watchpoint debug events is also controlled by EDSCR.HDE. See
Breakpoint and Watchpoint debug events on page H2-7340.

— EDSCR.HDE can be written by software when the OS Lock is locked. Privileged code can use
MDCR_EL3.TDOSA and HDCR.TDOSA to trap writes to these registers.

If a Halting debug event does not generate entry to Debug state because the conditions listed in this section do not
hold, then:

• If the Halting debug event is a Halt Instruction debug event, the instruction that generated the Halting debug
event is treated as UNDEFINED.

• If the Halting debug event is an Exception Catch debug event or a Software Access debug event, it is ignored.

In all other cases the Halting debug event is pended, see Pending Halting debug events on page H3-7399.

Summary of actions from debug events on page H2-7343 summarizes the possible outcome for each type of Debug
event.

Note

Halting debug events never generate debug exceptions.

H2.2.3 Breakpoint and Watchpoint debug events

A breakpoint or watchpoint generates an entry to Debug state if all of the following conditions hold:

• Halting debug is enabled, that is EDSCR.HDE == 1.

• Halting is allowed. See Halting allowed and halting prohibited on page H2-7339.

• The OS Lock is unlocked, that is OSLSR.OSLK == 0.

The Address Mismatch breakpoint type is reserved when all of these conditions are met.

MDSCR_EL1.MDE or DBGDSCRext.MDBGen is ignored when determining whether to enter Debug state. A
breakpoint or watchpoint that generates entry to Debug state is a Breakpoint or Watchpoint debug event and does
not generate a debug exception.

A breakpoint or watchpoint that does not generate an entry to Debug state either:

• Generates a Breakpoint or Watchpoint exception.

• Is ignored.

Note

EDSCR.HDE is ignored when determining whether to generate a debug exception. The debug exception is
suppressed only if the PE enters Debug state. This means that the use of Halting debug mode in Non-secure state
does not affect the Exception model in Secure state.

See Chapter D2 AArch64 Self-hosted Debug, Chapter G2 AArch32 Self-hosted Debug, and the Note in Other debug
exceptions on page H2-7340.

H2.2.4 Other debug exceptions

The following events never generate entry to Debug state:

• Breakpoint Instruction exceptions.

• Software Step exceptions.

• Vector Catch exceptions.

The behavior of these events is unchanged when Halting debug mode is enabled, that is when EDSCR.HDE == 1.
This means that these events can do one of the following:

• They can generate a debug exception.
H2-7340 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug State
H2.2 Halting the PE on debug events
• They can be ignored.

For additional information, see Chapter D2 AArch64 Self-hosted Debug and Chapter G2 AArch32 Self-hosted
Debug.

H2.2.5 Debug state entry and debug event prioritization

The following are synchronous debug events:

• Breakpoint debug event.

• Watchpoint debug event.

• Halting Step debug event.

• Halt Instruction debug event.

• Exception Catch debug event.

• Software Access debug event.

• Reset Catch debug event.

Each of these synchronous debug events are treated as a synchronous exception generated by an instruction, or by
the taking of an exception or reset. That is, if halting is allowed, the synchronous debug event must be taken before
any subsequent instructions are executed. Reset Catch debug events must be taken before the PE executes the
instruction at the reset vector.

Note

• Reset Catch and Exception Catch debug events might be generated asynchronously, because they can result
from an asynchronous exception. However, if halting is allowed after the reset or asynchronous exception
has been processed, the Reset Catch or Exception Catch debug event is taken synchronously.

• The Halting Step debug event is generated by the instruction after the stepped instruction. Therefore, if the
stepped instruction generates any other synchronous exceptions or debug events these are taken first.

If halting is prohibited then Halting Step debug events and Reset Catch debug events might be pended and taken
asynchronously. OS Unlock Catch debug events are always pended and taken asynchronously. See Pending Halting
debug events on page H3-7399.

The architecture does not define when asynchronous debug events are taken, and therefore the prioritization of
asynchronous debug events is IMPLEMENTATION DEFINED. See Synchronization and Halting debug events on
page H3-7399.

The following list shows how the synchronous debug events are prioritized, with 1 being the highest priority.

Note

The priority numbering is the same as the numbering for AArch64 synchronous exception priorities listed in
Synchronous exception types, routing and priorities on page D1-2489, and in particular Prioritization and
recognition of interrupts on page D1-2508. This numbering correlates with the equivalent AArch32 list in
Exception prioritization for exceptions taken to AArch32 state on page G1-6046.

The priority for synchronous debug events is as follows:

1 Reset Catch debug event. See Reset Catch debug events on page H3-7397.

This debug event has a higher priority than the synchronous exceptions listed in Synchronous
exception types, routing and priorities on page D1-2489.

2 Exception Catch debug event. See Exception Catch debug event on page H3-7391.

This debug event can be assigned one of two priorities. When it has a priority of 2, it has a higher
priority than the synchronous exceptions listed in the Exception model. See Exception Catch debug
event on page H3-7391.

3 Halting Step debug event. See Halting Step debug events on page H3-7380.

This debug event has a higher priority than the synchronous exceptions listed in the Exception
model.

4 This event is not a debug event.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H2-7341
ID072021 Non-Confidential

Debug State
H2.2 Halting the PE on debug events
5 Exception Catch debug event. See Exception Catch debug event on page H3-7391.

This debug event can be assigned one of two priorities, 0 or 5. See Exception Catch debug event on
page H3-7391.

6 - 7 These events are not debug events.

8 Breakpoint exception or debug event or Address Matching Vector Catch exception. See Breakpoint
exceptions on page D2-2579, and Vector Catch exceptions on page G2-6209.

These two debug events have the same priority.

9 This event is not a debug event.

10 Halt Instruction debug event. See Halt Instruction debug event on page H3-7390.

11 - 26 These events are not debug events.

27 Software Access debug event. See Software Access debug event on page H3-7398.

28 - 29 These events are not debug events.

30 Watchpoint exception or debug event. See Watchpoint exceptions on page D2-2598 for exceptions
taken from AArch64 state, or Watchpoint exceptions on page G2-6195 for exceptions taken from
AArch32 state.

31 This event is not a debug event.

For Reset Catch debug events and Halting Step debug events, the priorities listed in this section apply only when
halting is allowed at the time the event is generated. This means that the event is taken synchronously and not
pended.

For more information on the prioritization of exceptions, see:

• Synchronous exception types, routing and priorities on page D1-2489.

• Prioritization and recognition of interrupts on page D1-2508.

• Exception prioritization for exceptions taken to AArch32 state on page G1-6046. This section covers
synchronous and asynchronous exceptions.

Breakpoint debug events and Vector Catch exception

An Address Matching Vector Catch exception has the same priority as a Breakpoint debug event. See Synchronous
exception prioritization for exceptions taken to AArch64 state on page D1-2490.

The prioritization of these events is unchanged even if the breakpoint generates entry to Debug state instead of a
Breakpoint exception. This means that if a single instruction generates both an Address Matching Vector Catch
exception and a Breakpoint debug event, there is a CONSTRAINED UNPREDICTABLE choice of:

• The PE entering Debug state due to the Breakpoint debug event.

• A Vector Catch exception.

This applies only if all of the following are true:

• Halting debug is enabled.

• Halting is allowed.

• The OS Lock is unlocked.

An Exception Trapping Vector Catch exception must be generated immediately following the exception that
generated it. This means that it does not appear in the priority table.

H2.2.6 Imprecise entry to Debug state

Debug state entry is normally precise. This means that the PE cannot enter Debug state if it can neither complete
nor abandon all currently executing instructions and leave the PE in a precise state. See Definition of a precise
exception on page D1-2455.

A debugger can write a value of 1 to EDRCR.CBRRQ to allow imprecise entry to Debug state. An External Debug
Request debug event must be pending before writing 1 to this bit. Support for this feature is OPTIONAL and it is
IMPLEMENTATION DEFINED when it is effective at forcing entry to Debug state.

The PE ignores writes to this bit if either:

• External debugging is not enabled, meaning ExternalInvasiveDebugEnabled() == FALSE.
H2-7342 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug State
H2.2 Halting the PE on debug events
• Secure external debugging is not enabled, meaning ExternalSecureInvasiveDebugEnabled() == FALSE, and
either:

— EL3 is not implemented and the implemented Security state is Secure state.

— EL3 is implemented.

Example H2-1 on page H2-7343 shows how entry to Debug state can be forced.

Example H2-1 Forcing entry to Debug state

The debugger pends an External Debug Request debug event through the CTI to halt a program that has stopped
responding. However, the memory system is not responding and a memory access instruction cannot complete. This
means that Debug state cannot be entered precisely. The debugger writes a value of 1 to EDRCR.CBRRQ. The PE
cancels all outstanding memory accesses and enters Debug state. As some instructions might not have completed
correctly, entry to Debug state is imprecise.

When Debug state is entered imprecisely, all memory access instructions executed through the ITR have
CONSTRAINED UNPREDICTABLE behavior. The value of all registers is UNKNOWN, but might be useful for diagnostic
purposes.

H2.2.7 Summary of actions from debug events

Table H2-1 on page H2-7344 shows the Software and Halting debug events. In Table H2-1 on page H2-7344, the
columns have the following meaning:

Debug event type

This means the type of debug event where:

Other software Means one of:

• Software Step exceptions on page D2-2613.

• Breakpoint Instruction exceptions on page D2-2577.

• Vector Catch exceptions on page D2-2612 for AArch64 state or
Vector Catch exceptions on page G2-6209 for AArch32 state.

Other Halting Means one of the following:

• Halting Step debug events on page H3-7380.

• External Debug Request debug event on page H3-7395.

• Reset Catch debug events on page H3-7397.

• OS Unlock Catch debug event on page H3-7396.

Other debug events are referred to explicitly.

Authentication

This means halting is allowed by the IMPLEMENTATION DEFINED external authentication interface.
It is the result of one of the following pseudocode functions:

In Secure state ExternalSecureInvasiveDebugEnabled().

In Non-secure state ExternalInvasiveDebugEnabled().

DLK This indicates whether FEAT_DoubleLock is implemented and locked, DoubleLockStatus() ==
TRUE.

OSLK This is the value of OSLSR.OSLK. It indicates whether the OS Lock is locked.

HDE This is the value of EDSCR.HDE. It indicates whether Halting debug is enabled.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H2-7343
ID072021 Non-Confidential

Debug State
H2.2 Halting the PE on debug events
The letter X in Table H2-1 on page H2-7344 indicates that the value can be either 0 or 1.

H2.2.8 Pseudocode description of Halting on debug events

The Halted(), Restarting(), HaltingAllowed(), and HaltOnBreakpointOrWatchpoint() functions are described in the
Armv8 pseudocode.

Table H2-1 Debug authentication for external debug

Debug event type Authentication DLK OSLK HDE Behavior

Other software X X X X Handled by the Exception model

Breakpoint or Watchpoint debug event X TRUE X X Handled by the Exception model
(ignored)

X FALSE 1 X Handled by the Exception model
(ignored)

FALSE FALSE 0 X Handled by the Exception model

TRUE FALSE 0 0 Handled by the Exception model

TRUE FALSE 0 1 Entry to Debug state

Halt Instruction debug event FALSE X X X undefined

TRUE TRUE X X undefined

TRUE FALSE X 0 undefined

TRUE FALSE X 1 Entry to Debug state

Exception Catch debug event FALSE X X X Ignored

TRUE TRUE X X Ignored

TRUE FALSE X X Entry to Debug state

Software Access debug event FALSE X X X Ignored

TRUE TRUE X X Ignored

TRUE FALSE 1 X Ignored

TRUE FALSE 0 X Entry to Debug state

Other Halting FALSE X X X Debug event is pended

TRUE TRUE X X Debug event is pended

TRUE FALSE X X Entry to Debug state
H2-7344 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug State
H2.3 Entering Debug state
H2.3 Entering Debug state

On entry to Debug state, the preferred restart address and PSTATE are saved in DLR and DSPSR. The PE remains
in the mode and security state from which it entered Debug state.

If EDRCR.CBRRQ has a value of 0, entry to Debug state is precise. If EDRCR.CBRRQ has a value of 1, then
imprecise entry to Debug state is permitted.

If a Watchpoint debug event causes an entry to Debug state, the address of the access that generated the Watchpoint
debug event is recorded in EDWAR.

For more information, see:

• Determining the memory location that caused a Watchpoint exception on page D2-2606 for a debug event
taken from AArch64 state.

• Determining the memory location that caused a Watchpoint exception on page G2-6202 for a debug event
taken from AArch32 state.

Other than the effect on PSTATE and EDSCR, entry to Debug state is not a Context synchronization event. The
effects of entry to Debug state on PSTATE and EDSCR are synchronized.

H2.3.1 Entering Debug state from AArch32 state

When entering Debug state from AArch32 state, the PE remains in AArch32 state. In AArch32 Debug state the PE
executes T32 instructions, regardless of the value of PSTATE.T before entering Debug state.

To allow the debugger to determine the state of the PE, the current Execution state for all four Exception levels can
be read from EDSCR.RW, and the current Exception level can be read from EDSCR.EL.

The current endianness state, PSTATE.E, is unchanged on entry to Debug state.

Note

• If EL1 is using AArch32 state, the current endianness state can differ from that indicated by SCTLR.EE.

• If EL2 is using AArch32 state, the current endianness state can differ from that indicated by HSCTLR.EE.

• On entry to Debug state from AArch32 state, PSTATE.SS is copied to DSPSR.SS, even though the PE
remains in AArch32 state.

See also Effect of entering Debug state on PSTATE on page H2-7346.

H2.3.2 Effect of Debug state entry on DLR and DSPSR

DLR is set to the preferred restart address for the debug event, that depends on the event type. The value of PSTATE
is saved in DSPSR.

For entry to Debug state from AArch32 state, the values saved in DSPSR.IT are always correct for the preferred
restart address.

For synchronous Halting debug events, the preferred restart address is the address of the instruction that generated
the debug event. It is CONSTRAINED UNPREDICTABLE whether DSPSR_EL0.BTYPE is set to the value of
PSTATE.BTYPE or 0 for synchronous debug events other than the following debug events:

• A Halting Step debug event.

• A Breakpoint debug event.

• A Halt Instruction debug event.

For asynchronous Halting debug events, including pending Halting debug events taken asynchronously, the
preferred restart address is the address of the first instruction that must be executed on exit from Debug state.

This means that:

• For Breakpoint and Watchpoint debug events, the preferred restart address is the same as the preferred return
address for a debug exception, as described in Chapter D2 AArch64 Self-hosted Debug and Chapter G2
AArch32 Self-hosted Debug.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H2-7345
ID072021 Non-Confidential

Debug State
H2.3 Entering Debug state
• For Halt Instruction debug events, DLR is set to the address of the HLT instruction and DSPSR.IT is correct
for the HLT instruction.

• For Software Access debug events, DLR is set to the address of the accessing instruction and DSPSR.IT is
correct for this instruction.

• For Halting Step debug events taken synchronously, DLR and DSPSR are set as the ELR and SPSR would
be set for a Software Step exception. This is usually the address of, and PSTATE for, the instruction after the
one that was stepped.

• For Exception Catch debug events:

— If the debug event is generated on taking an exception to a trapped Exception level, the DLR is set to
the address of the exception vector the PE would have started fetching from. This is UNKNOWN if the
VBAR for the Exception level has never been initialized. The DSPSR records the value of PSTATE
after taking the exception. The Exception Catch occurs after the SPSR and the Link register are set,
and the debugger can use these registers to determine where in the application program the exception
occurred.

Note
Depending on the target Exception level and Execution state for the exception, the Link register is one
of ELR_EL1, ELR_EL2, ELR_EL3, ELR_hyp, or LR (R14).

— If the debug event is generated on an exception return to a trapped Exception level, the DLR is set to
the target address of the exception return and the DSPSR records the value of PSTATE after the
exception return.

• Reset Catch debug events taken synchronously behave like Exception Catch debug events.

• For Reset Catch debug events and Exception Catch debug events generated on reset to a trapped Exception
level, the DLR is set to is set to the reset address and the DSPSR records the reset value of PSTATE.

• For pending Halting debug events and External Debug Request debug events, DLR is set to the address of
the first instruction that must be executed on exit from Debug state and DSPSR.IT is correct for this
instruction. See Pending Halting debug events on page H3-7399.

Normally DLR is aligned according to the instruction set state indicated in DSPSR. However, a debug event might
be taken at a point where the PC is not aligned.

H2.3.3 Effect of Debug state entry on System registers, the Event register, and Exclusives monitors

Entering Debug state has no effect on System registers other than DLR and DSPSR. In particular, ESRs, FARs, and
FSRs are not updated on entering Debug state. SCR is unchanged, even when entering Debug state from EL3.

Entering Debug state has no architecturally-defined effect on the Event Register and Exclusives monitors.

Note

Entry to Debug state might set the Event Register or clear the Exclusives monitors, or both. However, this is not a
requirement, and debuggers must not rely on any implementation specific behavior.

Unless otherwise described in this reference manual, instructions executed in Debug state have their
architecturally-defined effects on the System registers, the Event register, and Exclusives monitors.

H2.3.4 Effect of entering Debug state on PSTATE

The effect of an entry to Debug state on PSTATE is described in Entering Debug state on page H2-7345 and
Entering Debug state from AArch32 state on page H2-7345.

On entry to Debug state after PSTATE is saved in DSPSR:

• PSTATE.IL is cleared to 0.

• PSTATE.TCO is set to 1.

• PSTATE.BTYPE is set to 0.

• PSTATE.{IT, T, SS, D, A, I, F, SSBS} are set to UNKNOWN values

PSTATE.{N, Z, C, V, Q, GE, E, M, nRW, EL, SP, PAN, UAO, DIT} are unchanged.
H2-7346 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug State
H2.3 Entering Debug state
For more information, see PSTATE in Debug state on page H2-7348.

H2.3.5 Entering Debug state during loads and stores

The PE can enter Debug state during instructions that perform a sequence of memory accesses, as opposed to a
single single-copy atomic access, because of a Watchpoint debug event. The effect of entering Debug state on such
an instruction is the same as taking a Data Abort exception during such an instruction.

In addition, when executing in AArch64 state, the PE can enter Debug state during instructions that perform a
sequence of memory accesses because of an External Debug Request debug event. The effect of entering Debug
state on such an instruction is the same as taking an interrupt exception during such an instruction.

This applies to all memory types.

H2.3.6 Entering Debug state and Software Step

When Software Step is active, a debug event that causes entry to Debug state behaves like an exception taken to an
Exception level above the debug target Exception level. That is:

• If the instruction that is stepped generates a synchronous debug event that causes entry to Debug state, or an
asynchronous debug event is taken before the step completes, the PE enters Debug state with DSPSR.SS set
to 1.

• A pending Halting debug event or an asynchronous debug event can be taken after the step has completed.
In this case the PE enters Debug state with DSPSR.SS set to 0.

In addition:

• If the instruction that is stepped generates an exception trapped by an Exception Catch debug event, the PE
enters Debug state at the exception vector with DSPSR.SS set to 0. This is because PSTATE.SS is set to 0 by
taking the exception.

• If the PE is reset, PSTATE.SS is reset to 0. If the following debug events are enabled, the PE enters Debug
state with DSPSR.SS set to 0:

— Reset Catch debug event at the reset Exception level.

— Exception Catch debug event at the reset Exception level.

— Halting Step debug event.

• If Halting Step is also active, then Halting Step and Software Step operate in parallel and can both become
active-pending. In this case Halting step has a higher priority than Software step. This means that the PE
enters Debug state and DSPSR.SS is set to 0.

H2.3.7 Pseudocode description of entering Debug state

The DebugHalt constants are described in shared/debug/halting/DebugHalt on page J1-8233 in the Armv8
pseudocode. The UpdateEDSCRFields() and Halt() functions are described in Chapter J1 Armv8 Pseudocode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H2-7347
ID072021 Non-Confidential

Debug State
H2.4 Behavior in Debug state
H2.4 Behavior in Debug state

Instructions are executed in Debug state from the Instruction Transfer Register, ITR. The debugger controls which
instructions are executed in Debug state by writing the instructions to the External Debug Instruction Transfer
register, EDITR. The Execution state of the PE determines which instruction set is executed:

• If the PE is in AArch64 state it executes A64 instructions.

• If the PE is in AArch32 state it executes T32 instructions:

— For a 32-bit T32 instruction, EDITR[15:0] specifies the first halfword and EDITR[31:16] specifies the
second halfword.

— For a 16-bit T32 instruction, EDITR[15:0] contains the instruction and EDITR[31:16] is ignored. All
16-bit T32 instructions are UNPREDICTABLE in Debug state.

The PE does not execute A32 instructions in Debug state.

Some instructions are available only in Debug state. See Debug state operations, DCPS, DRPS, MRS, MSR on
page H2-7366. In Non-debug state these instructions are UNDEFINED.

The following sections describe behavior in Debug state:

• PSTATE in Debug state on page H2-7348.

• Executing instructions in Debug state on page H2-7349.

• Decode tables on page H2-7361.

• Security in Debug state on page H2-7365.

• Privilege in Debug state on page H2-7366.

• Debug state operations, DCPS, DRPS, MRS, MSR on page H2-7366.

• Exceptions in Debug state on page H2-7369.

• Accessing registers in Debug state on page H2-7371.

• Accessing memory in Debug state on page H2-7374.

This section specifies the CONSTRAINED UNPREDICTABLE behaviors that apply in Debug state, but see Changing the
value of EDECR.SS when not in Debug state on page H3-7387 for a change in Non-debug state that causes
CONSTRAINED UNPREDICTABLE behavior.

H2.4.1 PSTATE in Debug state

PSTATE.{N, Z, C, V, Q, GE, IT, T, SS, D, A, I, F, SSBS} are all ignored in Debug state:

• There are no conditional instructions in Debug state.

• In AArch32 state, the PE executes only T32 instructions and PSTATE.IT is ignored.

• Asynchronous exceptions and debug events are ignored.

• Software step is inactive.

Instructions executed in Debug state indirectly read PSTATE.{UAO, PAN, IL, E, M, nRW, EL, SP} as they would
in Non-debug state.

Note

PSTATE.DIT is not guaranteed to have any effect in Debug state.

In Debug state:

• PSTATE.PAN is set to 1 by:

— A DCPS instruction to EL1 using AArch64 if SCTLR_EL1.SPAN == 0.

— A DCPS instruction to EL2 using AArch64 if SCTLR_EL2.SPAN == 0.

• PSTATE.UAO is set to 0 by a DCPS instruction to AArch64 state.

• PSTATE.TCO is set to 1 by a DCPS instruction to AArch64 state.

• PSTATE can also be changed by taking exceptions in Debug state, and by the execution of DCPS and DRPS
instructions.

When in Debug state, if FEAT_SSBS is implemented, then hardware is permitted to load or store speculatively,
regardless of the value of PSTATE.SSBS.
H2-7348 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug State
H2.4 Behavior in Debug state
When FEAT_MTE is implemented, if Memory-access mode is enabled and PSTATE.TCO is 0, reads and writes to
the external debug interface DTR registers are CONSTRAINED UNPREDICTABLE, with the following permitted
behaviors:

• The PE behaves as if PSTATE.TCO is 0. That is, the load or store operation performs the tag check if
required.

• The PE behaves as if PSTATE.TCO is 1. That is, the load or store operation does not perform the tag check.

For more information, see Chapter D6 Memory Tagging Extension.

H2.4.2 Executing instructions in Debug state

The instructions executed in Debug state must be either A64 instructions or T32 instructions, depending on the
current Execution state.

Each instruction falls into one of the following groups:

• Debug state instructions. These are instructions that are changed in Debug state. See A64 instructions that
are changed in Debug state on page H2-7349 and T32 instructions that are changed in Debug state on
page H2-7356.

• Instructions that are unchanged in Debug state. See A64 instructions that are unchanged in Debug state on
page H2-7349 and T32 instructions that are unchanged in Debug state on page H2-7356.

• Instructions that are UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in Debug state. See A64 instructions
that are CONSTRAINED UNPREDICTABLE in Debug state on page H2-7352 and T32 instructions that are
CONSTRAINED UNPREDICTABLE in Debug state on page H2-7358.

All T32 instructions are treated as unconditional, regardless of PSTATE.IT. See PSTATE in Debug state on
page H2-7348.

If EDSCR.SDD == 1 then an instruction executed in Non-secure state cannot cause entry into Secure state. See
Security in Debug state on page H2-7365

Executing A64 instructions in Debug state

The following sections describe the behavior of the A64 instructions in Debug state:

• A64 instructions that are changed in Debug state on page H2-7349.

• A64 instructions that are unchanged in Debug state on page H2-7349.

• A64 instructions that are CONSTRAINED UNPREDICTABLE in Debug state on page H2-7352.

A64 instructions that are changed in Debug state

The following A64 instructions are defined in Debug state, but are undefined in Non-debug state:

• DCPS.

Note
DCPS can be UNDEFINED in certain conditions in Debug state. See DCPS<n> on page H2-7366.

• DRPS.

• MRS (DLR_EL0), MRS (DSPSR_EL0), MSR (DLR_EL0), MSR (DSPSR_EL0)

For more information, see Debug state operations, DCPS, DRPS, MRS, MSR on page H2-7366.

A64 instructions that are unchanged in Debug state

The following list shows the instructions that are unchanged in Debug state:

Any instruction that is UNDEFINED in Non-debug state

This list of instructions excludes:

• Any instruction listed in A64 instructions that are changed in Debug state on page H2-7349.

• Any instruction listed in A64 instructions that are CONSTRAINED UNPREDICTABLE in
Debug state on page H2-7352 that is UNDEFINED because an enable or disable bit is not RES0
or RES1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H2-7349
ID072021 Non-Confidential

Debug State
H2.4 Behavior in Debug state
Instructions that move System or Special-purpose registers to or from a general-purpose register

This list of instructions:

• Includes the instructions to transfer a general-purpose register to or from the DTR, which can
be executed at any Exception level.

• Excludes PSTATE access instructions.

These instructions are:

• MRS <special_reg>, MSR <special_reg>.

Note
This does not include NZCV, DAIF, DAIFSet, DAIFClr, SPSel, CurrentEL, PAN, UAO, DIT,
and TCO.

• MRS <system_reg>, MSR <system_reg>.

Floating-point moves between a SIMD&FP register and a general-purpose register

These instructions are:

• FMOV (between a general-purpose register and a half-precision register).

• FMOV (between a general-purpose register and a single-precision register).

• FMOV (between a general-purpose register and a double-precision register).

• FMOV (between a general-purpose register and a SIMD element).

SIMD moves between a SIMD&FP register and a general-purpose register

These instructions are:

• INS (from a general-purpose register to a SIMD element).

• UMOV (from a SIMD element to a general-purpose register).

Barriers These instructions are:

• DMB.

• DSB.

• ISB.

• CSDB.

• SSBB.

• PSSBB.

When FEAT_SB is implemented, this instruction is:

• SB.

When FEAT_SPE is implemented, this instruction is:

• PSB CSYNC.

When FEAT_TRF is implemented, this instruction is:

• TSB CSYNC.

When FEAT_RAS is implemented, this instruction is:

• ESB.

Memory access instructions at various access sizes

The following constraints apply:

• General purpose-registers only.

• One of the following addressing modes:

— Unscaled (9-bit signed) immediate offset.

— Immediate (9-bit signed) post-indexed.

— Immediate (9-bit signed) pre-indexed.

— Unprivileged (9-bit signed).

• Not literal.
H2-7350 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug State
H2.4 Behavior in Debug state
• One of the following types:

— (Single) register.

— Exclusive.

— Exclusive pair.

— Acquire/Release.

— Acquire/Release Exclusive.

— Acquire/Release Exclusive pair.

• 32-bit and 64-bit target register variants.

These instructions are:

• LDR, LDRB, LDRH, LDRSB, LDRSH, LDRSW (immediate, not literal).

• LDUR, LDURB, LDURH, LDURSB, LDURSH, LDURSW (immediate).

• LDTR, LDTRB, LDTRH, LDTRSB, LDTRSH, LDTRSW (immediate).

• LDAR, LDARB, LDARH, LDXR, LDXRB, LDXRH, LDAXR, LDAXRB, LDAXRH.

• LDXP, LDAXP.

• STR, STRB, STRH (immediate).

• STUR, STURB, STURH (immediate).

• STTR, STTRB, STTRH (immediate).

• STLR, STLRB, STLRH, STXR, STXRB, STXRH, STLXR, STLXRB, STLXRH.

• STXP, STLXP.

When FEAT_LOR is implemented, these instructions are:

• LDLAR, LDLARB, LDLARH.

• STLLR, STLLRBB, STLLRH.

When FEAT_LSE is implemented, these instructions are:

• CAS, CASB, CASH, CASP.

• SWP, SWPB, SWPH.

• LDADD, LDADDB, LDADDH.

• LDCLR, LDCLB, LDCLRH.

• LDEOR, LDEORB, LDEORH.

• LDSET, LDSETB, LDSETH.

• LDSMAX, LDSMAXB, LDSMAXH.

• LDSMIN, LDSMINB, LDSMINH.

• LDUMAX, LDUMAXB, LDUMAXH.

• LDUMIN, LDUMINB, LDUMINH.

• STADD, STADDB, STADDH.

• STCLR, STCLB, STCLRH.

• STEOR, STEORB, STEORH.

• STSET, STSETB, STSETH.

• STSMAX, STSMAXB, STSMAXH.

• STSMIN, STSMINB, STSMINH.

• STUMAX, STUMAXB, STUMAXH.

• STUMIN, STUMINB, STUMINH.

When FEAT_LRCPC is implemented, these instructions are:

• LDAPR, LDAPRB, LDAPRH.

When FEAT_LRCPC2 is implemented, these instructions are:

• LDAPURH, LDAPURSH, LDAPUR, LDAPURSW, LDAPURSB, LDAPURB.

• STLUR, STLURH, STLURB.

When FEAT_LS64 is implemented, these instructions are:

• LD64B.

• ST64B, ST64BV, ST64BV0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H2-7351
ID072021 Non-Confidential

Debug State
H2.4 Behavior in Debug state
Move immediate to general-purpose register

These instructions are:

• MOVZ, MOVN, MOVK (immediate).

• MOV (between a general-purpose register and the stack pointer).

System instructions, Send Event, NOP, Clear Exclusive, and Prediction

In this context, the System instructions are the Cache maintenance instructions, TLB maintenance
instructions, Address translation instructions, and the prediction restriction instructions.

These instructions are:

• IC.

• DC.

• TLBI.

• AT.

• SEV, SEVL.

• NOP.

• CLREX.

• CFP.

• CPP.

• DVP.

Basic pointer authentication instructions

When FEAT_PAuth is implemented, these instructions are:

• AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA.

• AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB.

• AUTDA, AUTDZA.

• AUTDB, AUTDZB.

• PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA.

• PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB.

• PACDA, PACDZA.

• PACDB, PACDZB.

• PACGA.

• XPACD, XPACI, XPACLRI.

Memory Tagging Extension instructions

When FEAT_MTE is implemented, these instructions are:

• ADDG.

• SUBG.

• STG.

• STZG.

• ST2G.

• STZ2G.

• LDG.

• STGP.

When FEAT_MTE2 is implemented, these instructions are:

• LDGM.

• STGM.

• STZGM.

A64 instructions that are CONSTRAINED UNPREDICTABLE in Debug state

This subsection describes all instructions that are not listed in either:

• A64 instructions that are changed in Debug state on page H2-7349.
H2-7352 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug State
H2.4 Behavior in Debug state
• A64 instructions that are unchanged in Debug state on page H2-7349.

These instructions are CONSTRAINED UNPREDICTABLE in Debug state. In general, the permissible behaviors are:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• If the instruction reads the PC or PSTATE, it uses an UNKNOWN value.

• If the instruction modifies the PC or PSTATE, other than by advancing the PC to the sequentially next
instruction, it sets DLR_EL0 and DSPSR_EL0 to UNKNOWN values.

• If the instruction is similar to a Debug state instruction, it executes as that Debug state instruction.

• The instruction has the same behavior as in Non-debug state.

The following list shows the permissible behaviors for A64 instruction in Debug state. An instruction might appear
multiple times in the list, in which case the choice of permissible behaviors is any of those listed. An example of
this is CCMP.

Exception-generating instructions

These instructions are:

• SVC.

• HVC.

• SMC.

• BRK.

• HLT.

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• SVC behaves as DCPS1.

• HVC behaves as DCPS2.

• SMC behaves as DCPS3.

• They generate the exception that the instruction would generate in Non-debug state. The
exception is taken as described in Exceptions in Debug state on page H2-7369.

Note
SMC must not generate a Secure Monitor Call exception from Non-secure state if
EDSCR.SDD is set to 1.

Instructions that explicitly write to the PC (branches)

These instructions are:

• B, B.cond, BL, BLR, BR, CBZ, CBNZ, RET, TBZ, TBNZ.

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They execute as in Non-debug state without branching and set DSPSR_EL0 and DLR_EL0
to UNKNOWN values.

Exception return and related instructions

These instructions are:

• ERET.

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H2-7353
ID072021 Non-Confidential

Debug State
H2.4 Behavior in Debug state
• They execute as in Non-debug state without branching. They set DSPSR_EL0 and DLR_EL0
to UNKNOWN values, and either:

— Execute the DRPS operation instead of performing an exception return, using
UNKNOWN SPSR values.

— Not change the Exception level.

Instructions that request entry to a low-power state

These instructions are:

• WFE, WFI.

When FEAT_WFxT or FEAT_WFxT2 is implemented, these instructions are:

• WFET, WFIT.

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They generate a synchronous exception if the corresponding instruction would be trapped in
Non-debug state. See Configurable instruction enables and disables, and trap controls on
page D1-2510.

• A WFE instruction clears the Event register if it is set.

Note

This means that these instructions must not suspend execution.

Instructions that read the PC

These instructions are:

• LDR (literal), LDRSW (literal).

• ADR, ADRP.

• PRFM (literal).

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They execute as in Non-debug state, using an UNKNOWN value for the PC operand.

Instructions that explicitly modify PSTATE, other than DCPS and DRPS

These instructions are:

• ADDS, SUBS, ADCS, SBCS, ANDS, BICS, CCMN, CCMP.

• FCMP, FCMPE, FCCMP, FCCMPE.

• MSR DAIFSet (immediate), MSR DAIFClr (immediate), MSR SPSel (immediate).

• MSR NZCV (register), MSR DAIF (register), MSR SPSel (register).

When FEAT_PAN is implemented, these instructions are:

• MSR PAN (immediate).

• MSR PAN (register).

When FEAT_UAO is implemented, these instructions are:

• MSR UAO (immediate).

• MSR UAO (register).

When FEAT_FlagM is implemented, these instructions are:

• CFINV.

• RMIF.

• SETF8.

• SETF16.
H2-7354 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug State
H2.4 Behavior in Debug state
When FEAT_DIT is implemented, this instruction is:

• MSR DIT.

When FEAT_FlagM2 is implemented, these instructions are:

• AXFLAG.

• XAFLAG.

When FEAT_MTE is implemented, this instruction is:

• MSR TCO.

When FEAT_RNG is implemented, these instructions are:

• MRS RNDR.

• MRS RNDRRS.

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They execute as in Non-debug state, setting DSPSR_EL0 and DLR_EL0 to UNKNOWN
values.

Instructions that read PSTATE.{N, Z, C, V} or other PSTATE fields

These instructions are:

• CSEL, CSINC, CSINV, CSNEG, CCMN, CCMP, FCSEL, FCCMP, FCCMPE.

• ADC, ADCS,SBC, SBCS.

• CFINV.

• MRS NZCV, MRS DAIF, MRS SPSel, MRS CurrentEL.

When FEAT_PAN is implemented, this instruction is:

• MRS PAN.

When FEAT_UAO is implemented, this instruction is:

• MRS UAO.

When FEAT_FlagM is implemented, this instruction is:

• CFINV.

When FEAT_DIT is implemented, this instruction is:

• MRS DIT.

When FEAT_MTE is implemented, this instruction is:

• MRS TCO.

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They execute as in Non-debug state:

— For the conditional operations and those using the PSTATE.C flag as an input, these
instructions use an UNKNOWN value for the Condition flag.

— For the MRS instruction, they return an UNKNOWN value.

Hint instructions

When FEAT_DGH is implemented, this instruction is:

• DGH.

These instructions behave in one of the following ways:

• They execute as a NOP.

• They execute as in Non-debug state.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H2-7355
ID072021 Non-Confidential

Debug State
H2.4 Behavior in Debug state
All other instructions

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They execute as in Non-debug state.

Note

This includes instructions defined as UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in
Non-debug state. These instructions are UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in
Debug state.

Executing T32 instructions in Debug state

The following sections describe the behavior of the T32 instructions in Debug state:

• T32 instructions that are changed in Debug state on page H2-7356.

• T32 instructions that are unchanged in Debug state on page H2-7356.

• T32 instructions that are CONSTRAINED UNPREDICTABLE in Debug state on page H2-7358.

T32 instructions that are changed in Debug state

The following T32 instructions are defined in Debug state, but are undefined in Non-debug state:

• DCPS

Note
DCPS can be UNDEFINED in certain conditions in Debug state. See DCPS<n> on page H2-7366.

• MRC p15,3,<Rt>,c4,c5,0 (DSPSR).

• MCR p15,3,<Rt>,c4,c5,0 (DSPSR).

• MRC p15,3,<Rt>,c4,c5,1 (DLR).

• MCR p15,3,<Rt>,c4,c5,1 (DLR).

In addition, ERET executes the DRPS operation in Debug state.

For more information, see Debug state operations, DCPS, DRPS, MRS, MSR on page H2-7366.

T32 instructions that are unchanged in Debug state

The following list shows the instructions that are unchanged in Debug state. Any T32 instruction that uses the PC
or APSR.{N, Z, C, V} as the source or destination register is not included in the list. Moreover, the list includes only
the 32-bit T32 encodings.

Any instruction that is UNDEFINED in Non-debug state

The list of instructions:

• Excludes any instruction listed in T32 instructions that are changed in Debug state on
page H2-7356.

• Excludes any instruction listed in T32 instructions that are CONSTRAINED
UNPREDICTABLE in Debug state on page H2-7358 that is UNDEFINED because an enable or
disable bit is not RES0 or RES1.

Instructions that move System or Special-purpose registers to or from a general-purpose register

The list of instructions:

• Includes the instructions to transfer a general-purpose register to or from the DTR, which can
be executed at any Exception level.

• Excludes APSR and CPSR access instructions.

• Excludes instructions for accessing banked registers for the current mode.
H2-7356 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug State
H2.4 Behavior in Debug state
These instructions are:

• MRS <banked_reg>, MSR <banked_reg>.

Note
This does not apply to cases which are UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in
Non-debug state in the current mode.

• MRC, MCR.

Note
This includes all allocated System registers in the (coproc==0b111x) encoding space other
than an MRC move to APSR_nzcv.

• MRS SPSR, MSR SPSR_fsxc (register).

• VMRS <vfp_system_reg>, VMSR <vfp_system_reg>.

Note
This includes all allocated Advanced SIMD and floating-point System registers, other than
an a VMRS move to APSR_nzcv.

Floating-point moves between a SIMD&FP register and a general-purpose register

These instructions are:

• VMOV (between a general-purpose register and a single-precision register).

• VMOV (between a general-purpose register and a doubleword floating-point register).

SIMD moves between a SIMD&FP register and a general-purpose register

These instructions are:

• VMOV (between a general-purpose register and a scalar).

Barriers These instructions are:

• CSDB.

• DMB.

• DSB.

• ISB.

• PSSBB.

• SSBB.

When FEAT_RAS is implemented, this instruction is:

• ESB.

When FEAT_SB is implemented, this instruction is:

• SB.

When FEAT_TRF is implemented, this instruction is:

• TSB CSYNC.

Memory access instructions at various access sizes

The following constraints apply:

• General purpose-registers only.

• One of the following addressing modes:

— Immediate (8-bit or 12-bit) offset.

— Immediate (8-bit) post-indexed.

— Immediate (8-bit) pre-indexed.

— Unprivileged (8-bit).

• Not literal.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H2-7357
ID072021 Non-Confidential

Debug State
H2.4 Behavior in Debug state
• One of the following types:

— (Single) register.

— Dual.

— Exclusive.

— Exclusive doubleword.

— Acquire/Release.

— Acquire/Release Exclusive.

— Acquire/Release Exclusive doubleword.

These instructions are:

• LDR.W, LDRB.W, LDRH.W, LDRD, LDRSB.W, LDRSH.W (immediate, not literal).

• LDRT, LDRBT, LDRHT, LDRSBT, LDRSHT (immediate).

• LDREX, LDREXB, LDREXH, LDA, LDAB, LDAH, LDAEX, LDAEXB, LDAEXH.

• LDREXD, LDAEXD.

• STR.W, STRB.W, STRH.W, STRD (immediate).

• STRT, STRBT, STRHT (immediate).

• STREX, STREXB, STREXH, STL, STLB, STLH, STLEX, STLEXB, STLEXH.

• STREXD, STLEXD.

Move to general-purpose register

These instructions are:

• MOVW, MOVT (immediate).

System instructions, Send Event, NOP, and Clear Exclusive

The System instructions are Cache maintenance instructions, TLB maintenance instructions, and
Address translation instructions. These are encoded in the (coproc==0b1111) System register
encoding space.

These instructions are:

• ICIALLU, ICIALLUIS, ICIMVAU.

• DCCIMVAC, DCCISW, DCCMVAC, DCCMVAU, DCCSW, DCIMVAC, DCISW.

• TLBIALL, TLBIALLH, TLBIALLHIS, TLBIALLIS, TLBIALLNSNH,
TLBIALLNSNHIS, TLBIASID, TLBIASIDIS, TLBIIPAS2, TLBIIPAS2IS, TLBIIPAS2L,
TLBIIPAS2LIS, TLBIMVA, TLBIMVAA, TLBIMVAAIS, TLBIMVAAL, TLBIMVAALIS,
TLBIMVAH, TLBIMVAHIS, TLBIMVAIS, TLBIMVAL, TLBIMVALH, TLBIMVALHIS,
TLBIMVALIS.

• ATS12NSOPR, ATS12NSOPW, ATS12NSOUR, ATS12NSOUW, ATS1CPR, ATS1CPW.
ATS1CUR, ATS1CUW, ATS1HR, ATS1HW.

• BPIALL, BPIALLIS, BPIMVA.

• SEV.W, SEVL.W.

• NOP.W.

• CLREX.

T32 instructions that are CONSTRAINED UNPREDICTABLE in Debug state

This subsection describes all instruction not listed in either:

• T32 instructions that are changed in Debug state on page H2-7356.

• T32 instructions that are unchanged in Debug state on page H2-7356.

These instructions are CONSTRAINED UNPREDICTABLE in Debug state. In general, the permissible behaviors are:

• The instruction generates an Undefined Instruction exception.

• The instruction executes as a NOP.

• If the instruction reads the PC or PSTATE, it uses an UNKNOWN value.

• If the instruction modifies the PC or PSTATE, other than by advancing the PC to the sequentially next
instruction, it sets DLR and DSPSR to UNKNOWN values.

• If the instruction is similar to a Debug state instruction, it executes as that Debug state instruction.
H2-7358 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug State
H2.4 Behavior in Debug state
• The instruction has the same behavior as in Non-debug state.

The following list shows the permissible behaviors for T32 instruction in Debug state. An instruction might appear
multiple times in the list, in which case the choice of permissible behaviors is any of those listed.

Exception-generating instructions

These instructions are:

• SVC.

• HVC.

• SMC.

• UDF.

• BKPT.

• HLT.

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• SVC behaves as DCPS1.

• HVC behaves as DCPS2.

• SMC behaves as DCPS3.

• They generate the exception the instruction would generate in Non-debug state. The
exception is taken as described in Exceptions in Debug state on page H2-7369

Note
SMC must not generate a Secure Monitor Call exception from Non-secure state if
EDSCR.SDD is set to 1.

Instructions that explicitly write to the PC (branches)

These instructions are:

• B, B (conditional), CBZ, CBNZ BL.

• BX, BLX (register or immediate).

• BXJ, TBB, TBH.

• MOV pc and related instructions.

• LDR pc, LDM (with a register list includes the PC), POP (with a register list that includes the PC).

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They execute as in Non-debug state without branching and set DSPSR and DLR to
UNKNOWN values.

Exception return and related instructions, other than ERET

These instructions are:

• SRS, RFE, SUBS pc, 1r, and related instructions.

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They execute as in Non-debug state without branching, setting DLR and DSPSR to
UNKNOWN values, and either:

— Execute the DRPS operation instead of performing an exception return, using UNKNOWN
SPSR values.

— Not changing Exception level or PE mode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H2-7359
ID072021 Non-Confidential

Debug State
H2.4 Behavior in Debug state
Instructions that request entry to a low-power state

These instructions are:

• WFE, WFI, WFET, WFIT

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They generate a synchronous exception if the corresponding instruction would be trapped in
Non-debug state. See Configurable instruction enables and disables, and trap controls on
page G1-6117.

• A WFE instruction is permitted to clear the Event register if it is set.

Note

This means that these instructions must not suspend execution.

Instructions that read the PC

These instructions are:

• LDR (literal), LDRB (literal), LDRH (literal), LDRSB (literal), LDRSH (literal).

• ADR, ADRL, ADRH.

• PLD (literal), PLI (literal).

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They execute as in Non-debug state using an UNKNOWN value for the PC operand.

Instructions that explicitly modify PSTATE, other than DCPS and ERET

These instructions are:

• CMP, TST, TEQ, CMN.

• <opc>S.

• MRC p14,0,APSR_nzcv,c0,c1,0 (accessing DBGDSCRint).

• CPS, SETEND, IT.

• MSR CPSR (immediate), MSR CPSR (register), MSR APSR (immediate), MSR APSR (register).

• VMRS APSR_nzcv,FPSCR.

• QADD, QDADD, QSUB, QDSUB.

• SMLABB, SMLABT, SMLATB, SMLATT, SMLAD, SMLAWB, SMLAWT, SMLSD, SMUAD.

• SSAT, SSAT16, USAT, USAT16.

• SADD, SADD8, SADD16, SASX, SSAX, SSUB, SSUB8, SSUB16.

• UADD, UADD8, UADD16, UASX, USAX, USAUB, USUN8, USUB16.

When FEAT_PAN is implemented, this instruction is:

• SETPAN.

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They execute as in Non-debug state, setting DSPSR_EL0 and DLR_EL0 to UNKNOWN
values.

Instructions that read PSTATE.{N, Z, C, V} or other PSTATE fields

These instructions are:

• SEL, VSEL.

• ADC, SBC, all instructions with an RRX shift.

• MRS CPSR.
H2-7360 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug State
H2.4 Behavior in Debug state
These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They execute as in Non-debug state:

— For the conditional operations and those using the PSTATE.C flag as an input, these
instructions use an UNKNOWN value for the Condition flag.

— For the MRS instruction, they return an UNKNOWN value.

All other instructions

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They have the same behavior as in Non-debug state.

Note

This includes instructions defined as UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in
Non-debug state. These instructions are CONSTRAINED UNPREDICTABLE in Debug state. This
includes some T32 instructions that specify R15 as a destination or source register.

Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors describes the
CONSTRAINED UNPREDICTABLE behavior for these instructions. In Debug state these CONSTRAINED
UNPREDICTABLE choices are further restricted:

• Instructions that specify R15 as a destination register:

— Are not permitted to branch, because the architecture does not define a branch
operation in Debug state.

— Might set DLR and DSPSR to UNKNOWN values.

— Might have any of the other permitted behaviors.

• Instructions that specify R15 as a source operand:

— Cannot use PC + offset, because there is no architecturally-defined PC in Debug state.

— Might have any of the other permitted behaviors, including using an UNKNOWN value.

H2.4.3 Decode tables

The syntax in the tables is defined as follows:

1 The bit has a fixed value of 1.

0 The bit has a fixed value of 0.

!= The field has any value other than the value or values specified. The field might be an encoding field
in the instruction whose value is supplied by the debugger.

Note

The instruction encodings in Chapter C6 A64 Base Instruction Descriptions and Chapter F5 T32 and A32 Base
Instruction Set Instruction Descriptions might show these bits as (0) or (1). A debugger must set these bits to 0 or
1, as appropriate.

Any other value indicates an encoding field in the instruction whose value is supplied by the debugger. Some values
might be reserved or undefined, in which case the instruction is UNDEFINED or CONSTRAINED UNPREDICTABLE in
Debug state, as it is in Non-debug state.

For more information about the instruction encodings, see:

• Chapter C6 A64 Base Instruction Descriptions.

• Chapter F5 T32 and A32 Base Instruction Set Instruction Descriptions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H2-7361
ID072021 Non-Confidential

Debug State
H2.4 Behavior in Debug state
For information about the syntax used in Table H2-2 on page H2-7362, Table H2-3 on page H2-7362, Table H2-4
on page H2-7362, and Table H2-5 on page H2-7364, see:

• Common syntax terms on page C1-195.

• Assembler symbols on page F1-4345.

Table H2-2 on page H2-7362 shows the A64 instructions that are modified in Debug state. For details of how these
are packed in the EDITR, see the register description.

Table H2-3 on page H2-7362 shows the T32 instructions that are modified in Debug state, with the first halfword
on the left side and the second halfword on the right side. For details of how these are packed in the EDITR, see the
register description.

Table H2-4 on page H2-7362 lists the A64 instructions that are unchanged in Debug state, other than some
unallocated and UNDEFINED instructions.

Table H2-2 Modified A64 instructions in Debug state

31302928272625242322212019181716151413121110987654321 0 Description

1 1 0 1 0 1 0 0 1 0 1 imm16 000!=00DCPS<opt>

1 1 0 1 0 1 0 1 0 0 L 1 1 0 1 1 0 1 0 0 0 1 01000Rt MRS|MSR accessing DSPSR_EL0

1 1 0 1 0 1 0 1 0 0 L 1 1 0 1 1 0 1 0 0 0 1 01001Rt MRS|MSR accessing DLR_EL0

1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 111110000 0 DRPS

Table H2-3 Modified T32 instructions in Debug state

1514131211109876543210151413121110987654321 0 Description

1 1 1 0 1 1 10011L0100!=1111 1 1 110001010 1 MRC|MCR accessing DSPSR

1 1 1 0 1 1 10011L0100!=1111 1 1 110011010 1 MRC|MCR accessing DLR

1 1 1 1 0 0 111101 11101 0 0 0 1 1 110000000 0 ERET

1 1 1 1 0 1 111000 11111 0 0 0 0 0 00000000!=00DCPS<opt>

Table H2-4 A64 instructions that are unchanged in Debug state

31302928272625242322212019181716151413121110987 6 5 43210Description

sf 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 111 1 1 Rd MOV <Rn>,SP

sf 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Rn 11111MOV SP,<Rn>

1 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 1 0 0 Rn Rd PACGA

sf !=01 1 0 0 1 0 1 hw imm16 Rd MOVN, MOVK, MOVZ

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 000 0 0 11111NOP

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 001 0 L 11111SEV, SEVL

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 001 1 1 11111XPACLRI

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 01op2 11111PAC(IA|IB)1716, AUT(IA|IB)1716

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 10!= 01011111CSDB, ESB, PSB

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 11op2 11111PAC(IA|IB)(Z|SP), AUT(IA|IB)(Z|SP)

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 0 1 0 11111CLREX

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 option 1 op2 11111DSB, DMB, ISB, SB, SSBB, PSSBB

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 CRn CRm op2 Rt IC, DC, TLBI, AT

1 1 0 1 0 1 0 1 0 0 L 1 0 op1 CRn CRm op2 Rt MRS|MSR accessing System register

1 1 0 1 0 1 0 1 0 0 L 1 1 op1 !=0100 CRm op2 Rt MRS|MSR accessing System register

1 1 0 1 0 1 0 1 0 0 L 1 1 op1 0 1 0 0 !=0010 op2 Rt MRS|MSR accessing Special-purpose register

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 opc Rn Rd PAC(IA|IB|DA|DB), AUT(IA|IB|DA|DB)
H2-7362 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug State
H2.4 Behavior in Debug state
1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 opc 111 1 1 Rd PAC(IZA|IZB|DZA|DZB), AUT(IZA|IZB|DZA|DZB)

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 op111 1 1 Rd XPAC(I|D)

size 0 0 1 0 0 0 o2L 0 Rs o0 Rt2 Rn Rt LD(A|LA|X|AX)R{B|H},
ST(L|LL|X|LX)R{B|H},
 CAS{A|L|AL}{B|H}

size 0 0 1 0 0 0 o2L 1 Rs o0 Rt2 Rn Rt LD{A}XP, ST{L}XP, CASP{A|L|AL}

0 x 0 1 1 0 0 1 opc 0 imm9 0 0 Rn Rt LDAPUR(B|H|SB|SH), STLUR(B|H)

1 0 0 1 1 0 0 1 !=11 0 imm9 0 0 Rn Rt LDAPUR{SW}, STLUR

1 1 0 1 1 0 0 1 !=1x 0 imm9 0 0 Rn Rt LDAPUR, STLUR

0 x 1 1 1 0 0 0 opc 0 imm9 0 0 Rn Rt LDUR(B|H|SB|SH),STUR(B|H)

1 0 1 1 1 0 0 0 !=11 0 imm9 0 0 Rn Rt LDUR{SW},STUR

1 1 1 1 1 0 0 0 !=1x 0 imm9 0 0 Rn Rt LDUR,STUR

size 1 1 1 0 0 0 opc 0 imm9 1 0 Rn Rt LDTR{B|H|SB|SH|SW}, STTR{B|H}

size 1 1 1 0 0 0 opc 0 imm9 P 1 Rn Rt LDR{B|H|SB|SH|SW}, STR{B|H}

size 1 1 1 0 0 0 A R 1 Rs 0 opc 0 0 Rn Rt LD<op>{A|L|AL}{B|H},
ST<op>{A|L|AL}{B|H}

size 1 1 1 0 0 0 A R 1 Rs 1 0 0 0 0 0 Rn Rt SWP{A|L|AL}{B|H}

size 1 1 1 0 0 0 1 0 1 Rs 1 1 0 0 0 0 Rn Rt LDAPR{B|H}

0 1 0 0 1 1 1 0 0 0 0 imm5 0 0 0 1 1 1 Rn Rd INS <Vd>.<Ts>[<index>],<R><n>

0 Q 0 0 1 1 1 0 0 0 0 imm5 0 0 1 1 1 1 Rn Rd UMOV <R><d>,<Vn>.<Ts>[<index>]

0 0 0 1 1 1 1 0 0 0 1 0 0 1 1 op 0 0 0 0 0 0 Rn Rd FMOV <Sd>,<Wn>, FMOV <Wd>,<Sn>

0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 op 0 0 0 0 0 0 Rn Rd FMOV <Hd>, <Wn>, FMOV <Wd>, <Hn>

1 0 0 1 1 1 1 0 ft 1 1 0 0 1 1 op 0 0 0 0 0 0 Rn Rd FMOV <Dd|Hd>,<Xn>, FMOV <Xd>,<Dn|Hn>

1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 op 0 0 0 0 0 0 Rn Rd FMOV <Vd>.D[1],<Xn>

FMOV <Xd>,<Vn>.D[1]

1 0 0 1 0 0 0 1 1 0 uimm6 (0)(0)uimm4 Xn Xd ADDG <Xd|SP>, <XN|SP>, #<uimm6>, #<uimm4>

1 1 0 1 1 0 0 1 0 0 1 imm9 1 0 Xn Xd STG <Xt|SP>, [<Xn|SP>{, #<simm}]!, Signed offset

1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 Xn Xd STGM <Xt>, [<Xt|SP>]

1 1 0 1 1 0 0 1 1 0 1 imm9 1 1 Xn Xd ST2G <Xt|>, [Xt|SP>{, #<simm>}] Signed offset

1 1 0 1 1 0 0 1 0 1 1 imm9 1 1 Xn Xd STZG <XT|SP>, [<Xn|SP{. #<simm>}]! Signed offset

1 1 0 1 1 0 0 1 1 1 1 imm9 1 0 Xn Xd STZ2G <XT|SP>, [<Xn|SP{. #<simm>}]! Signed offset

1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Xn Xd STZGM, <Xt>, [Xn|SP>]

0 1 1 0 1 0 0 1 0 0 simm7 Xt2 Xn Xt STGP <xt1>, <Xt2>, [<Xn|SP>{, #<imm>}] Signed offset

1 1 0 1 0 0 0 1 1 0 uimm6 op3 uimm4 Xn Xd SUBG <Xd|SP>, <Xn|SP>, #<uimm6>, #<uimm4>

1 1 0 1 1 0 0 1 0 1 1 imm9 0 0 Xn Xd LDG <Xt>, [<Xn|SP>{, #<simm>}]

1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 Xn Xd LDGM <Xt>,[<Xn|SP>]

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 Rn Rt ST64B <Xt>, [<Xn|SP> {,#0}]

1 1 1 1 1 0 0 0 0 0 1 Rs 1 0 1 0 0 0 Rn Rt ST64BV0 <Xs>, <Xt>, [<Xn|SP>]

1 1 1 1 1 0 0 0 0 0 1 Rs 1 0 1 1 0 0 Rn Rt ST64BV <Xs>, <Xt>, [<Xn|SP>]

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 Rn Rt LD64B <Xt>, [<Xn|SP> {,#0}]

Table H2-4 A64 instructions that are unchanged in Debug state (continued)

31302928272625242322212019181716151413121110987 6 5 43210Description
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H2-7363
ID072021 Non-Confidential

Debug State
H2.4 Behavior in Debug state
Table H2-5 on page H2-7364 lists the T32 instructions that are unchanged in Debug state, other than some
unallocated and UNDEFINED instructions. It shows the T32 instructions with the first halfword on the left side and
the second halfword on the right side.

Table H2-5 T32 instructions that are unchanged in Debug state

151413121110987 6 5 4 3 2 1 0 15141312111098 7 6 5 4 32 10Description

1 1 1 0 1 1 000 1 0 op!=1111!=1111 1 0 11 0 0 M 1 Vm VMOV <Dm>,<Rt>,<Rt2>

VMOV <Rt>,<Rt2>,<Dm>

1 1 1 0 1 1 100 0 0 opVn !=1111 1 0 10 N0 0 1 00 00 VMOV <Sn>,<Rt>, VMOV <Rt>,<Sn>

1 1 1 0 1 1 100 opc 0 Vd !=1111 1 0 11 Dopc21 00 00 VMOV.<size> <Dd>[<x>],<Rt>

1 1 1 0 1 1 10Uopc 1 Vn !=1111 1 0 11 Dopc21 00 00 VMOV.<dt> <Rt>,<Dd>[<x>]

1 1 1 0 1 1 101 1 1 opreg !=1111 1 0 10 0 0 0 1 00 00 VMRS, VMSR

1 1 1 0 1 1 000 1 0 op!=1111!=1111 1 1 1cpopc1 CRm MCRR|MRRC accessing System registers

1 1 1 0 1 1 10opc1 opCRn !=1111 1 1 1cpopc2 1 CRm MCR|MRC accessing System registers

1 1 1 0 1 0 000 1 0 L !=1111!=1111 Rd imm8 LDREX, STREX

1 1 1 0 1 0 001 1 0 L !=1111!=1111 Rt2 0 1 !=10Rd LDREX(B|H|D), STREX(B|H|D)

1 1 1 0 1 0 001 1 0 L !=1111!=1111 Rt2 1 op3 Rd LDA{EX}{B|H|D}, STL{EX}{B|H|D}

1 1 1 0 1 0 0 !=0x10

!=xx0x

L !=1111!=1111 !=1111 imm8 LDRD, STRD

1 1 1 1 0 i 10T 1 0 0 imm4 0 imm3 !=1111 imm8 MOVW, MOVT

1 1 1 1 0 0 111 0 0 R !=11111 0 0 0 M1 0 0 1 M00 00 MSR <spec_reg><mode>,<Rn>

1 1 1 1 0 0 111 0 0 1 !=11111 0 0 0 1 1 11 0 0 0 0 00 00 MSR SPSR, <Rn>

1 1 1 1 0 0 111 0 1 0 1 1 1 1 1 0 0 0 0 0 00 0 0 0 0 00 00 NOP.W

1 1 1 1 0 0 111 0 1 0 1 1 1 1 1 0 0 0 0 0 00 0 0 0 0 01 0LSEV.W, SEVL.W

1 1 1 1 0 0 111 0 1 0 1 1 1 1 1 0 0 0 0 0 00 0 0 0 1 0op00 ESB, CSDB

1 1 1 1 0 0 111 0 1 1 1 1 1 1 1 0 0 0 1 1 11 0 0 1 0 11 11 CLREX

1 1 1 1 0 0 111 0 1 1 1 1 1 1 1 0 0 0 1 1 11 0 1 op option DSB, DMB, ISB, SSBB, PSSBB, SB

1 1 1 1 0 0 111 1 1 R M1 1 0 0 0 !=1111 0 0 1 M00 00 MRS <Rd>,<spec_reg><mode>

1 1 1 1 0 0 111 1 1 1 1 1 1 1 1 0 0 0 !=1111 0 0 0 0 00 00 MRS <Rd>,SPSR

1 1 1 1 1 0 001 !=110 !=1111!=1111 imm12 STR{B|H}.W (12-bit immediate)

1 1 1 1 1 0 000 !=110 !=1111!=1111 1 !=000 imm8 STR{B|H|}{T} (8-bit immediate)

1 1 1 1 1 0 0S1 !=111 !=1111!=1111 imm12 LDR{SB|SH|B|H}.W (12-bit immediate)

1 1 1 1 1 0 0S0 !=111 !=1111!=1111 1 !=000 imm8 LDR{SB|SH|B|H}{T} (8-bit immediate)
H2-7364 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug State
H2.4 Behavior in Debug state
H2.4.4 Security in Debug state

If EL3 is implemented or the implemented Security state is Secure state, security in Debug state is governed by the
Secure debug disabled flag, EDSCR.SDD.

On entry to Debug state

If entering in Secure state, EDSCR.SDD is set to 0. Otherwise EDSCR.SDD is set to the inverse of
ExternalSecureInvasiveDebugEnabled(). That is:

• If ExternalSecureInvasiveDebugEnabled() == TRUE, EDSCR.SDD is set to 0.

• If ExternalSecureInvasiveDebugEnabled() == FALSE, EDSCR.SDD is set to 1.

Note
Normally, if ExternalSecureInvasiveDebugEnabled() == FALSE then halting is prohibited and it is
not possible to enter Debug state from Secure state. However, because changes to the authentication
signals require a Context synchronization event to guarantee their effect, there is a period during
which the PE might halt even though the authentication signals prohibit halting.

In Debug state

The value of EDSCR.SDD does not change, even if ExternalSecureInvasiveDebugEnabled()
changes.

Note

• DBGAUTHSTATUS_EL1.{SNID, SID, NSNID, NSID} are not frozen in Debug state.

• If EDSCR.SDD set to 1 in Debug state, then there is no means to enter Secure state from
Non-secure state. In this case it is impossible for the PE to be in Secure state. This is a general
principle of behavior in Debug state.

In Non-debug state

EDSCR.SDD returns the inverse of ExternalSecureInvasiveDebugEnabled(). If the authentication
signals that control ExternalSecureInvasiveDebugEnabled() change, a Context synchronization event
is required to guarantee their effect.

Note

• In Non-debug state, EDSCR.SDD is unaffected by the Security state of the PE.

• A Context synchronization event is also required to guarantee that changes in the
authentication signals are visible in DBGAUTHSTATUS_EL1.{SNID, SID, NSNID,
NSID}.

If EL3 is not implemented and the implemented Security state is Non-Secure state, EDSCR.SDD is RES1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H2-7365
ID072021 Non-Confidential

Debug State
H2.4 Behavior in Debug state
H2.4.5 Privilege in Debug state

The only additional privileges offered to Debug state are:

• The privilege to execute Debug state operations, DCPS, DRPS, MRS, MSR on page H2-7366.

• The privilege to execute DTR access instructions regardless of the Exception level and traps.

The DTR access instructions can be executed at any Exception level, including EL0, regardless of any control
register settings that might force these instructions to be undefined or trapped in Non-debug state. These instruction
are:

• The MRS and MSR instructions that access DBGDTR_EL0, DBGDTRTX_EL0, and DBGDTRRX_EL0 in
AArch64 state.

• The MRC and MCR instructions that access DBGDTRTXint and DBGDTRRXint in AArch32 state.

All other instructions operate with the privilege determined by the current Exception level and security state. This
applies to all Special-purpose and System registers accesses, memory accesses, and undefined instructions, and
includes generating exceptions when the System registers trap or disable an instruction.

H2.4.6 Debug state operations, DCPS, DRPS, MRS, MSR

Armv8 defines operations to change between Exception levels in Debug state. These operations can also change the
mode at the current Exception level.

DCPS<n>

Executing a DCPS<n> instruction in Debug state moves the PE to a higher Exception level or to a specific mode at
the current Exception level.

If the DCPS<n> instruction is executed in AArch32 state and the target Exception level is using AArch64:

• The current instruction set switches from T32 to A64.

• The effect on registers that are not visible or only partially visible in AArch32 state is the same as for system
calls in Non-debug state. See Execution state on page D1-2457.

Otherwise, the instruction set state does not change.

If the target Exception level is the same as the current Exception level, then the PE does not change Exception level.
However, the PE might change mode.

The effect on endianness is the same as for exceptions and exception returns in Non-debug state:

• In AArch64 state the current endianness is determined by the value of SCTLR_ELx.EE for the target
Exception level.

• In AArch32 state the current endianness is determined by the value of SCTLR.EE or HSCTLR.EE for the
target Exception level.

The DCPS<n> instructions are:

In AArch64 state

• DCPS1

• DCPS2

• DCPS3

In AArch32 state, in the T32 instruction set only

• DCPS1

• DCPS2

• DCPS3

The DCPS instructions are undefined in Non-debug state.

Table H2-6 on page H2-7367 shows the target of the instruction. In Table H2-6 on page H2-7367, the entries have
the following meaning:

EL1h/Svc This means that the target is:

• EL1h if EL1 is using AArch64.
H2-7366 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug State
H2.4 Behavior in Debug state
• EL1 and Supervisor mode if EL1 is using AArch32.

EL2h/Hyp This means that the target is:

• EL2h if EL2 is using AArch64.

• EL2 and Hyp mode if EL2 is using AArch32.

EL3h/Monitor This means that the target is:

• EL3h if EL3 is using AArch64.

• EL3 and Monitor mode if EL3 is using AArch32.

Svc Secure Supervisor mode, in EL3 using AArch32.

Monitor Secure Monitor mode, in EL3 using AArch32.

 In AArch32 Monitor mode, DCPS1 and DCPS3 clear SCR.NS to 0.

Note

In AArch64 state, at EL3, DCPS<n> does not change SCR_EL3.NS.

However:

• DCPS1 is undefined at EL0 if either:

— EL2 is implemented and enabled in the current Security state, and is using AArch64 and
HCR_EL2.TGE == 1.

— In Non-secure state, EL2 is implemented and using AArch32 and HCR.TGE == 1.

• DCPS2 is undefined at all Exception levels if EL2 is not implemented.

• DCPS2 is undefined at the following Exception levels if EL2 is implemented:

— At EL0 and EL1 in Secure state if EL2 is disabled in the current Security state.

— At EL3 if EL3 is using AArch32.

• DCPS3 is undefined at all Exception levels if either:

— EDSCR.SDD == 1.

— EL3 is not implemented.

Note

The references to DCPS1, DCPS2, and DCPS3 in this section link to the descriptions of the instructions in the A64
instruction set. The DCPS<n> instructions are also defined in the T32 instruction set, see DCPS1, DCPS2, DCPS3. These
instructions are not defined in the A32 instruction set, because A32 instructions cannot be executed in Debug state.

On executing a DCPS instruction:

• If the target Exception level is using AArch64:

— ELR_ELx of the target Exception level becomes UNKNOWN.

— SPSR_ELx of the target Exception level becomes UNKNOWN.

— ESR_ELx of the target Exception level becomes UNKNOWN.

Table H2-6 Target for DCPS instructions in Debug state

Instruction Target when DCPS instruction executed at stated Exception level:

EL0 EL1 EL2 EL3 (AArch64) EL3 (AArch32)

DCPS1 EL1h/Svc EL1h/Svc EL2h/Hyp EL3h Svc, clears SCR.NS to 0

DCPS2 EL2h/Hyp EL2h/Hyp EL2h/Hyp EL3h UNDEFINED

DCPS3 EL3h/Monitor EL3h/Monitor EL3h/Monitor EL3h Monitor, clears SCR.NS to 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H2-7367
ID072021 Non-Confidential

Debug State
H2.4 Behavior in Debug state
— DLR_EL0 and DSPSR_EL0 become UNKNOWN.

• If the target Exception level is using AArch32 DLR and DSPSR become UNKNOWN and:

— If the target Exception level is EL1 or EL3, the LR and SPSR of the target mode become UNKNOWN.

— If the target Exception level is EL2, then ELR_hyp, SPSR_hyp, and HSR become UNKNOWN.

If the target Exception level is using AArch32, and the target Exception level is EL1 or EL3, the LR and SPSR of
the target mode become UNKNOWN.

If FEAT_SSBS is implemented, the DCPS<n> instruction leaves the PSTATE.SSBS bit UNKNOWN.

The DCPSInstruction() function is described in Chapter J1 Armv8 Pseudocode.

DRPS

Executing the DRPS operation in Debug state moves the PE to a lower Exception level, or to another PE mode at
the current Exception level, by copying the current SPSR to PSTATE.

If DRPS is executed in AArch64 state and the target Exception level is using AArch32:

• The current instruction set switches from A64 to T32.

• The effect on registers that are not visible or only partially visible in AArch32 state is the same as for
exception returns in Non-debug state. See Execution state on page D1-2457.

Otherwise, the instruction set state does not change.

If the target Exception level is the same as the current Exception level, then the PE does not change Exception level.
However, the PE might change mode.

The effect on endianness is the same as for exceptions and exception returns in Non-debug state:

• If targeting an Exception level using AArch64, current endianness is set according to SCTLR_ELx.EE, or
SCTLR_EL1.E0E for the target Exception level.

• If targeting an Exception level using AArch32, current endianness is set by SPSR.E as appropriate.

The DRPS instructions are:

In AArch64 state

• DRPS

In AArch32 state, in the T32 instruction set only

• ERET

If the SPSR specifies an illegal exception return, then PSTATE.{M, nRW, EL, SP} are unchanged and PSTATE.IL
is set to 1. For further information on illegal exception returns, see Illegal return events from AArch64 state on
page D1-2486.

PSTATE.{N, Z, C, V, Q, GE, IT, T, SS, D, A, I, F} are ignored in Debug state. This means that the effect of the DRPS
operation on these fields is to set them to an UNKNOWN value that might be the value from the SPSR. For more
information, see PSTATE in Debug state on page H2-7348.

All other PSTATE fields are copied from SPSR.

DRPS is undefined at EL0 and in Non-debug state.

Note

Unlike an exception return, the DRPS operation has no architecturally-defined effect on the Event Register and
Exclusives monitors. DRPS might set the Event Register or clear the Exclusives monitors, or both, but this is not a
requirement and debuggers must not rely on any implementation specific behavior.

On executing a DRPS instruction:

• If the target Exception level is using AArch64:

— DLR_EL0 and DSPSR_EL0 become UNKNOWN.

• If the target Exception level is using AArch32:

— DLR and DSPSR become UNKNOWN.
H2-7368 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug State
H2.4 Behavior in Debug state
If FEAT_SSBS is implemented, the DRPS instruction leaves the PSTATE.SSBS bit UNKNOWN.

The DRPSInstruction() function is described in Chapter J1 Armv8 Pseudocode.

MRS and MSR

The other Debug state instructions are used to read or write DLR_EL0 and DSPSR_EL0.

These instructions are:

In AArch64 state

• MRS

• MSR (register)

In AArch32 state

• MRC

• MCR

MRS <Xt>, DLR_EL0 ; Copy DLR_EL0 to <Xt>
MRS <Xt>, DSPSR_EL0 ; Copy DSPSR_EL0 to <Xt>
MSR DLR_EL0, <Xt> ; Copy <Xt> to DLR_EL0
MSR DSPSR_EL0, <Xt> ; Copy <Xt> to DSPSR_EL0

These instructions can be executed at any Exception level when in Debug state, including EL0. They are undefined
in Non-debug state.

H2.4.7 Exceptions in Debug state

The following sections describe how exceptions are handled in Debug state:

• Generating exceptions when in Debug state on page H2-7369.

• Taking exceptions when in Debug state on page H2-7370.

• Reset in Debug state on page H2-7371.

Generating exceptions when in Debug state

In Debug state:

• Instruction Abort exceptions cannot happen because instructions are not fetched from memory.

• Interrupts, including SError and virtual interrupts are ignored and remain pending:

— The pending interrupt remains visible in ISR.

• Debug exceptions and debug events are ignored.

• SCR.EA is treated as if it were set to 0, regardless of its actual state, other than for the purpose of reading the
bit.

• Any attempt to execute an instruction bit pattern that is an allocated instruction at the current Exception level,
but is listed in Executing instructions in Debug state on page H2-7349 as undefined in Debug state, generates
an exception that is taken to the current Exception level, or to EL1 if executing at EL0.

Note
If the exception is taken to an Exception level that is using AArch32 then it is taken as an Undefined
Instruction exception.

The priority and syndrome for these exceptions is the same as for executing an encoding that does not have
an allocated instruction.

• Instructions executed at EL2, EL1 and EL0 that are configured by EL3 control registers to trap to EL3:

— When the value of EDSCR.SDD is 0, generate the appropriate trap exception that is taken to EL3.

— When the value of EDSCR.SDD is 1, are treated as UNDEFINED and generate an exception that is taken
to the current Exception level, or to EL1 if the instruction is executed at EL0. If the exception is taken
to an Exception level that is using AArch32 it is taken as an Undefined Instruction exception.

If the exception is taken to an Exception level using AArch64 or to AArch32 Hyp mode, then it is
reported with an EC value of 0x00.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H2-7369
ID072021 Non-Confidential

Debug State
H2.4 Behavior in Debug state
Otherwise configurable traps, enables, and disables for instructions are unaffected by Debug state, and
executing an affected instruction generates the appropriate exception.

Otherwise, synchronous exceptions, including Data Aborts, are generated as they would be in Non-debug state and
taken to the appropriate Exception level in Debug state.

Note

If EDSCR.SDD == 1 then an exception from Non-secure state is never taken to Secure state. See Security in Debug
state on page H2-7365.

Taking exceptions when in Debug state

When the PE is in Debug state, all exceptions are synchronous. When an exception is generated, it is taken to Debug
state. This means that:

• The target Exception level is as defined for the exception in Non-debug state.

• If the target Exception level is using AArch32 then the target PE mode is as defined for the exception in
Non-debug state.

• The exception syndrome is reported as defined for the exception in Non-debug state, except for the case
described in Data Aborts in Memory access mode on page H4-7408 for which the reporting requirements are
relaxed.

The exception syndrome is reported using the syndrome register or registers for the target Exception level.
In AArch64 state, these are ESR_ELx, and FAR_ELx. In AArch32 state, these are DFSR, DFAR, HSR,
HDFAR, and HPFAR. For example:

— If a Data Abort exception is taken to Abort mode at EL1 or EL3 and the exception is taken from
AArch32 state and using the Short-descriptor translation table format, the DFSR reports the exception
using the Short-descriptor format fault encoding. For exceptions other than Data Abort exceptions
taken to Abort mode, DFSR is not updated.

— If an instruction is trapped to an Exception level using AArch64 due to a configurable trap, disable, or
enable, the exception code reported is the same as it would be in Non-debug state.

The effect on auxiliary syndrome registers, such as AFSR, is IMPLEMENTATION DEFINED.

Note
Generally, the AArch32 Fault Address Registers (FARs) and Fault Status Registers (FSRs) are not described
as syndrome registers, although the term is appropriate to their function.

• The PE remains in Debug state and changes to the target mode.

• If EL3 is using AArch32 and the exception is taken from Monitor mode, SCR.NS is cleared to 0.

• If the exception is taken to an Exception level using AArch32, the PE continues to execute T32 instructions,
regardless of the TE bit in the System register for the target Exception level.

• The endianness switches to that indicated by the EE bit of the System register for the target Exception level.

• The SPSR for the target Exception level or mode is corrupted and becomes UNKNOWN.

• If the target Exception level is using AArch64, ELR_ELx for the target Exception level becomes unknown.

• If the target Exception level is EL2 using AArch32, ELR_hyp becomes unknown.

• If the target Exception level is EL1 or EL3 using AArch32, LR_<mode> for the target mode becomes
unknown.

• DLR and DSPSR become UNKNOWN.

• The cumulative error flag, EDSCR.ERR, is set to 1. See Cumulative error flag on page H4-7412.

• PSTATE.IL is cleared to 0.

• PSTATE.{IT, T, SS, D, A, I, F} are set to UNKNOWN values, and PSTATE.{N, Z, C, V, Q, GE} are unchanged.
However, these fields are ignored and are not observable in Debug state. For more information, see PSTATE
in Debug state on page H2-7348.

The debugger must save any state that can be corrupted by an exception before executing an instruction that might
generate another exception.
H2-7370 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug State
H2.4 Behavior in Debug state
Pseudocode description of taking exceptions in Debug state

The pseudocode function AArch64.TakeException() shows the behavior when the PE takes an exception to an
Exception level using AArch64 in Non-debug state. In Debug state, this is replaced with the function
AArch64.TakeExceptionInDebugState().

The pseudocode functions AArch32.EnterMode(), AArch32.EnterHypMode(), and AArch32.EnterMonitorMode() show
the behavior when the PE takes an exception to an Exception level using AArch32 in Non-debug state. In Debug
state:

• AArch32.EnterMode() is replaced with the function AArch32.EnterModeInDebugState().

• AArch32.EnterHypMode() is replaced with the function AArch32.EnterHypModeInDebugState().

• AArch32.EnterMonitorMode() is replaced with AArch32.EnterMonitorModeInDebugState().

Reset in Debug state

If the PE is reset when in Debug state, it exits Debug state and enters Non-debug reset state. When the PE is in reset
state, EDSCR.STATUS == 0b000010 and writes to EDITR are ignored.

Note

If EDECR.RCE == 1 or CTIDEVCTL.RCE ==1, meaning that a Reset Catch debug event is programmed, and if
halting is allowed on exiting reset state, then on exiting reset state the PE halts and re-enters Debug state. See Reset
Catch debug events on page H3-7397. All PE registers have taken their reset values, which might be UNKNOWN.

H2.4.8 Accessing registers in Debug state

Register accesses are unchanged in Debug state. The view of each register is determined by either the current
Exception level or the mode, or both, and accesses might be disabled or trapped by controls at a higher Exception
level.

General-purpose register access, other than AArch64 state SP access

A single general-purpose register can be read by issuing an MSR instruction through the ITR to write DBGDTR_EL0
in AArch64 state, or an MCR instruction through the ITR to write DBGDTRTXint in AArch32 state. The debugger
can then read the DTR register or registers through the external debug interface. The reverse sequence writes to a
general-purpose register.

Figure H2-1 on page H2-7372 shows the reading and writing of general-purpose registers, other than SP, in Debug
state in AArch64 state.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H2-7371
ID072021 Non-Confidential

Debug State
H2.4 Behavior in Debug state
Figure H2-1 Reading and writing general-purpose registers, other than SP, in Debug state in AArch64 state

Figure H2-2 on page H2-7373 shows the reading and writing of general-purpose registers in Debug state in
AArch32 state.

DBGDTRTX = D[63:32]
DBGDTRRX = D[31:0]

Sets RXfull to 1

EDITR = MRS Xn, DBGDTR_EL0
Clears RXfull to 0

TXfull == 0
ITE == 1

EDITR = MSR DBGDTR_EL0, Xn
Sets TXfull to 1

D[63:0] = DBGDTRRX
D[31:0] = DBGDTRTX

Clears TXfull to 0

DONE
Xn = D[63:0]

START

RXfull == 0
ITE == 1

No

Yes Yes

No

DONE
D[63:0] = Xn

START
H2-7372 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug State
H2.4 Behavior in Debug state
Figure H2-2 Reading and writing general-purpose registers in Debug state in AArch32 state

SIMD and floating-point register, System register, and AArch64 state SP accesses

To read a SIMD and floating-point register or a System register, the debugger must first copy the value into a
general-purpose register using:

• An FMOV instruction in AArch64 state or a VMOV instruction in AArch32 state for floating-point transfers to
SIMD and FP registers.

• A UMOV instruction in AArch64 state or a VMOV instruction in AArch32 state for SIMD transfers to SIMD and
FP registers.

• An MRS instruction in AArch64 state or an MRC instruction in AArch32 state for System registers.

• A MOV Xd,SP instruction for the SP register in AArch64 state.

The debugger can then read out the particular general-purpose register. The reverse sequence writes a register.

PC and PSTATE access

The debugger reads the program counter and PSTATE of the process being debugged through the DLR_EL0 and
DSPSR_EL0 System registers. The actual values of PC and PSTATE cannot be directly observed in Debug state:

• Instructions that are used for direct reads and writes of PC and PSTATE in Non-debug state are UNDEFINED
in Debug state.

• On taking an exception, ELR_ELx and SPSR_ELx at the target Exception level are UNKNOWN. They do not
record the PC and PSTATE.

PSTATE.{IL, E, M, nRW, EL, SP} are indirectly read by instructions executed in Debug state, but all other PSTATE
fields are ignored and cannot be observed. See also:

• PSTATE in Debug state on page H2-7348.

• Executing instructions in Debug state on page H2-7349.

• Exceptions in Debug state on page H2-7369.

DBGDTRRX = W[31:0]
Sets RXfull to 1

EDITR = MRC p14, 0, Rn, c0, c5, 0
Clears RXfull to 0

TXfull == 0
ITE == 1

EDITR = MCR p14, 0, Rn, c0, c5, 0
Sets TXfull to 1

W[31:0] = DBGDTRTX
Clears TXfull to 0

DONE
Rn = W[31:0]

START

RXfull == 0
ITE == 1

No

Yes Yes

No

DONE
W[31:0] = Rn

START
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H2-7373
ID072021 Non-Confidential

Debug State
H2.4 Behavior in Debug state
H2.4.9 Accessing memory in Debug state

How the PE accesses memory is unchanged in Debug state. This includes:

• The operation of the MMU, including address translation, tagged address handling, access permissions,
memory attribute determination, and the operation of any TLBs.

• The operation of any caches and coherency mechanisms.

• Alignment support.

• Endianness support.

• The Memory order model.

Simple memory transfers

Simple memory accesses can be performed in Debug state by issuing memory access instructions through the ITR
and passing data through the DTR registers. Executing instructions in Debug state on page H2-7349 lists the
memory access instructions that are supported in Debug state.

Bulk memory transfers

Memory access mode can accelerate bulk memory transfers in Debug state. See DCC and ITR access modes on
page H4-7406.
H2-7374 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug State
H2.5 Exiting Debug state
H2.5 Exiting Debug state

The PE exits Debug state when it receives a Restart request trigger event. If EDSCR.ITE == 0 the behavior of any
instruction issued through the ITR in Normal access mode or an operation issued by a DTR access in memory access
mode that has not completed execution is CONSTRAINED UNPREDICTABLE, and must do one of the following:

• It must complete execution in Debug state before the PE executes the restart sequence.

• It must complete execution in Non-debug state after the PE executes the restart sequence.

• It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed
by the instruction are left in an UNKNOWN state.

Note

• Implementations can set EDSCR.ITE to 1 to indicate that further instructions can be accepted by ITR before
the previous instructions have completed. If any previous instruction has not completed and
EDSCR.ITE == 1, then the PE must complete these instructions in Debug state before executing the restart
sequence. EDSCR.ITE == 0 indicates that the PE is not ready to restart.

• A debugger must observe that any instructions issued through EDITR that might generate a synchronous
exception, as complete, before issuing a restart request. It can do this by observing the completion of a later
instruction, as synchronous exceptions must occur in program order. For example, a debugger can observe
that an instruction that reads or writes a DTR register is complete because of its effect on the
EDSCR.{TXfull, RXfull} flags.

On exiting Debug state, the PE sets the program counter to the address in DLR, where:

• If exiting to AArch32 state:

— Bits[31:1] of the PC are set to the value of bits[31:1] of DLR.

— Bit[0] of the PC is set to a CONSTRAINED UNPREDICTABLE choice of 0 or the value of bit[0] in DLR.

• If exiting to AArch64 state:

— Bits[63:56] of DLR_EL0 might be ignored as part of tagged address handling. See Address tagging in
AArch64 state on page D5-2676.

— Otherwise the PC is set from DLR_EL0.

Note

Bits[63:32] of DLR_EL0 are ignored when exiting to AArch32 state.

Exit from Debug state can give rise to a PC alignment fault exception when the program counter is used. Unlike an
exception return, this might also happen when returning to AArch32 state. For more information, see PC alignment
checking on page D1-2469.

On exiting Debug state, PSTATE is set from DSPSR in the same way that an exception return sets PSTATE from
SPSR_ELx:

• The same illegal exception return checks that apply to an exception return also apply to exiting Debug state.
If the return from Debug state is an illegal exception return then the effect on PSTATE and the PC is the same
as for any other illegal exception return. See Exception return on page D1-2485 and Exception return to an
Exception level using AArch32 on page G1-6065.

• The checks on the PSTATE.IT bits that apply to exiting Debug state into AArch32 state are the same as those
that apply to an exception return. See Appendix K1 Architectural Constraints on UNPREDICTABLE
Behaviors.

• PSTATE.SS is copied from DSPSR.SS if all of the following hold:

— MDSCR_EL1.SS == 1.

— The debug target Exception level is using AArch64.

— Software step exceptions from the restart Exception level are enabled.

Otherwise PSTATE.SS is set to 0.

Note
Unlike a return using ERET, PSTATE.SS must be restored from DSPSR.SS because otherwise it is UNKNOWN.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H2-7375
ID072021 Non-Confidential

Debug State
H2.5 Exiting Debug state
However, if OSDLR.DLK == 1 and DBGPRCR.CORENPDRQ == 0, meaning FEAT_DoubleLock is
implemented and locked in Non-debug state and therefore Software Step exceptions are disabled, but
otherwise Software Step exceptions would be enabled from the restart Exception level, it is CONSTRAINED
UNPREDICTABLE whether PSTATE.SS is copied from DSPSR.SS.

• If FEAT_SSBS is implemented, on exit from Debug state to AArch64 state, DSPSR_EL0.SSBS is copied to
PSTATE.SSBS.

• If FEAT_SSBS is implemented, on exit from Debug state to AArch32 state, DSPSR.SSBS is copied to
CPSR.SSBS.

• If FEAT_PAN is implemented, DSPSR_EL0.PAN is copied to PSTATE.PAN.

• If FEAT_UAO is implemented, DSPSR_EL0.UAO is copied to PSTATE.UAO.

• If FEAT_DIT is implemented, on exit from Debug state to AArch64 state, DSPSR_EL0.DIT is copied to
PSTATE.DIT.

• If FEAT_DIT is implemented, on exit from Debug state to AArch32 state, DSPSR.DIT is copied to
CPSR.DIT.

• If FEAT_MTE is implemented, on exit from Debug state to AArch64 state, DSPSR_EL0.TCO is copied to
PSTATE.TCO. On exit from Debug state to AArch32 state, PSTATE.TCO is not updated.

• If FEAT_BTI is implemented, DSPSR_EL0.BTYPE is copied to PSTATE.BTYPE.

Note

• One important difference between Debug state exit and an exception return is that the PE can exit Debug state
at EL0. Despite this, the behavior of an exit from Debug state is similar to an exception return. For example,
PSTATE.{D, A, I, F} is updated regardless of the value of SCTLR_EL1.UMA.

• Exit from Debug state has no architecturally-defined effect on the Event Register and Exclusives monitors.
An exit from Debug state might set the Event Register or clear the Exclusives monitors, or both, but this is
not a requirement and debuggers must not rely on any implementation specific behavior.

The ExitDebugState() function is described in Chapter J1 Armv8 Pseudocode.
H2-7376 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter H3
Halting Debug Events

This chapter describes a particular class of debug events. It contains the following sections:

• Introduction to Halting debug events on page H3-7378.

• Halting Step debug events on page H3-7380.

• Halt Instruction debug event on page H3-7390.

• Exception Catch debug event on page H3-7391.

• External Debug Request debug event on page H3-7395.

• OS Unlock Catch debug event on page H3-7396.

• Reset Catch debug events on page H3-7397.

• Software Access debug event on page H3-7398.

• Synchronization and Halting debug events on page H3-7399.

Note

Table K15-1 on page K15-8602 disambiguates the general register references used in this chapter.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H3-7377
ID072021 Non-Confidential

Halting Debug Events
H3.1 Introduction to Halting debug events
H3.1 Introduction to Halting debug events

External debug defines Halting debug events. The following Halting debug events are available in Armv8:

• Halting Step debug events on page H3-7380.

• Halt Instruction debug event on page H3-7390.

• Exception Catch debug event on page H3-7391.

• External Debug Request debug event on page H3-7395.

• OS Unlock Catch debug event on page H3-7396.

• Reset Catch debug events on page H3-7397.

• Software Access debug event on page H3-7398.

If halting is allowed, a Halting debug event halts the PE. The PE enters Debug state.

In addition, breakpoints and watchpoints might halt the PE if halting is allowed. See Breakpoint and Watchpoint
debug events on page H2-7340. Because breakpoints and watchpoints can generate an exception or halt the PE,
Breakpoint and Watchpoint debug events are not classified as Halting debug events.

For a definition of Debug state, see Chapter H2 Debug State. For a definition of halting allowed, see Halting allowed
and halting prohibited on page H2-7339.

Debug state entry and debug event prioritization on page H2-7341 describes the behavior when multiple debug
events are generated by an instruction.

See also Synchronization and Halting debug events on page H3-7399.

Table H3-1 on page H3-7378 shows the behavior of Breakpoint, Watchpoint, and Halting debug events.

Table H3-2 on page H3-7378 shows where the pseudocode for each Halting debug event type is located.

Table H3-1 Summary of debug events and possible outcomes

Debug event type
PE behavior when halting is:

Allowed Prohibited

Breakpoint and Watchpoint debug events on page H2-7340 Halt See Table D2-1 on page D2-2566
and Table G2-1 on page G2-6157

Halt Instruction debug event on page H3-7390 Halt UNDEFINED

Software Access debug event on page H3-7398 Halt Ignored

Exception Catch debug event on page H3-7391 Halt Ignored

Halting Step debug events on page H3-7380 Halt Pended

External Debug Request debug event on page H3-7395 Halt Pended

Reset Catch debug events on page H3-7397 Halt Pended

OS Unlock Catch debug event on page H3-7396 Pended Pended

Table H3-2 Pseudocode description of Halting debug events

Halting debug event type Pseudocode

Halt Instruction debug event on page H3-7390 HLT on page C6-1034 for AArch64 and HLT on page F5-4696 for AArch32

Software Access debug event on page H3-7398 Pseudocode description of Software Access debug event on page H3-7398

Exception Catch debug event on page H3-7391 Pseudocode description of Exception Catch debug events on page H3-7394
H3-7378 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Halting Debug Events
H3.1 Introduction to Halting debug events
Halting Step debug events on page H3-7380 Pseudocode description of Halting Step debug events on page H3-7389

External Debug Request debug event on
page H3-7395

Pseudocode description of External Debug Request debug events on
page H3-7395

Reset Catch debug events on page H3-7397 Pseudocode description of Reset Catch debug event on page H3-7397

OS Unlock Catch debug event on page H3-7396 Pseudocode description of OS Unlock Catch debug event on page H3-7396

Table H3-2 Pseudocode description of Halting debug events (continued)

Halting debug event type Pseudocode
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H3-7379
ID072021 Non-Confidential

Halting Debug Events
H3.2 Halting Step debug events
H3.2 Halting Step debug events

Halting Step is a debug resource that a debugger can use to make the PE step through code one instruction at a time.
This section describes the Halting Step debug events. It is divided into the following sections:

• Overview of a Halting Step debug event on page H3-7380.

• The Halting Step state machine on page H3-7380.

• Using Halting Step on page H3-7383.

• Detailed Halting Step state machine behavior on page H3-7383.

• Synchronization and the Halting Step state machine on page H3-7386.

• Stepping T32 IT instructions on page H3-7387.

• Disabling interrupts while stepping on page H3-7388.

• Syndrome information on Halting Step on page H3-7388.

• Pseudocode description of Halting Step debug events on page H3-7389.

The architecture describes the behavior as a simple Halting Step state machine. See The Halting Step state machine
on page H3-7380.

H3.2.1 Overview of a Halting Step debug event

The behavior of Halting Step is defined by a state machine, shown in Figure H3-1 on page H3-7382. A Halting Step
debug event executes a single instruction and then returns control to the debugger. When the debugger software
wants to execute a Halting Step:

1. With the PE in Debug state, the debugger activates Halting Step.

2. The debugger signals the PE to exit Debug state and return to the instruction that is to be stepped.

3. The PE executes that single instruction.

4. The PE enters Debug state before executing the next instruction.

However, an exception might be generated while the instruction is being stepped. That is either:

• A synchronous exception generated by the instruction being stepped.

• An asynchronous exception taken before or after the instruction being stepped.

Halting Step has its own enable control bit, EDECR.SS and EDESR.SS.

Note

Because the Halting Step state machine states occur as a result of normal PE operation, the states can be described
as both:

• PE states.

• Halting Step states.

H3.2.2 The Halting Step state machine

The state machine states are:

Inactive Halting Step is inactive. No Halting Step debug events can be generated, therefore execution is not
affected by Halting Step. The PE is in this state whenever either of the following is true:

• Halting Step is disabled. That is, EDECR.SS is set to 0 and EDESR.SS is set to 0.

• Halting is prohibited. See Halting the PE on debug events on page H2-7339. In this state, if
EDECR.SS is set to 1, then a Halting Step debug event is pending.

In Figure H3-1 on page H3-7382, this state is shown in red.

Active-not-pending

Halting Step is enabled and active. This is the state in which the PE steps an instruction. EDECR.SS
== 1 and EDESR.SS == 0. Software must not set EDECR.SS to 1 unless the PE is in Debug state,
otherwise behavior is CONSTRAINED UNPREDICTABLE, as described in Changing the value of
EDECR.SS when not in Debug state on page H3-7387.
H3-7380 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Halting Debug Events
H3.2 Halting Step debug events
In Figure H3-1 on page H3-7382, this state is shown in green.

Active-pending

Halting Step is enabled and active. The step has completed and the PE enters Debug state.
EDESR.SS == 1.

In Figure H3-1 on page H3-7382, this state is shown in green.

Whenever Halting Step is enabled and active, whether the state machine is in the active-not-pending state or in the
active-pending state depends on EDESR.SS. Halting Step state machine states on page H3-7383 shows this.

In the simple sequential execution of the program, the PE executes the Halting Step state machine as follows:

1. Initially, Halting Step is inactive.

2. After exiting Debug state, Halting Step is active-not-pending.

3. The PE executes an instruction and Halting Step is active-pending.

4. The pending Debug state entry is taken on the next instruction and the step is complete.

Exceptions and other changes to the PE context can interrupt this sequence.

Figure H3-1 on page H3-7382 shows a Halting Step state machine.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H3-7381
ID072021 Non-Confidential

Halting Debug Events
H3.2 Halting Step debug events
Figure H3-1 Halting Step state machine

Debugger activation

Inactive
EDECR.SS=0
Debug state

Inactive
EDECR.SS=1
Debug state

Active-not-pending
EDECR.SS=1
EDESR.SS=0

Halting allowed

Debug state exit

Halting step is disabled

Halting step is enabled

Inactive
EDECR.SS=1
EDESR.SS=1
Debug state

Return to
Non-secure state

Exception to Secure state
where halting is prohibited,

other than SMC

Active pending
EDECR.SS=1
EDESR.SS=1

Halting allowed

Execution within
 Secure state

Write 1 to
EDECR.SS

EDESR.SS is
set to 0 by the
exit from Debug
state

Return to
Non-secure state

Asynchronous
exceptione

Debug state entry

Step completedb

a. Step completed occurs when:
 • A debug event, other than a Halting Step debug event, causes entry into Debug state.

b. Step completed occurs when:
• An instruction is executed without taking an exception.
• An exception is taken to a state where halting is allowed.
• A reset.

c. Step completed occurs when:
• An SMC exception is taken to Secure state where halting is prohibited.

d. An asynchronous exception taken to a state where halting is allowed.

e. An asynchronous exception taken to Secure state where halting is prohibited.

Step completeda

Step completedc

Inactive
EDECR.SS=1
EDESR.SS=0

Halting prohibited

Inactive
EDECR.SS=1
EDESR.SS=1

Halting prohibited

Execution within
 Secure state

Debug state exit with
 halting prohibited

Asynchronous
exceptiond
H3-7382 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Halting Debug Events
H3.2 Halting Step debug events
Note

Figure H3-1 on page H3-7382 only describes state transitions to and from the inactive state by exit from Debug
state, executing an exception return, or taking an exception. Other changes to the PE context, including writes to
registers such as EDECR and OSDLR and changes to the authentication interface can also cause changes to the
Halting Step state machine. These can lead to UNPREDICTABLE or CONSTRAINED UNPREDICTABLE behavior. See
Synchronization and the Halting Step state machine on page H3-7386.

The following bits control the state machine, as shown in Table H3-3 on page H3-7383:

• EDECR.SS. This is the Halting Step enable bit.

• EDESR.SS. This is the Halting Step debug event pending bit.

Table H3-3 on page H3-7383 shows the Halting Step state machine states. The letter X in a register column means
that the relevant bit can be set to either zero or one.

H3.2.3 Using Halting Step

To step a single instruction the PE must be in Debug state:

1. The debugger sets EDECR.SS to 1 to enable Halting step.

2. The debugger signals the PE to exit Debug state with DLR set to the address of the instruction being stepped.
The PE clears EDESR.SS to 0 and the Halting Step state machine enter the active-not-pending state.

3. The PE executes the instruction being stepped.

If an exception is taken to a state where halting is prohibited, then EDESR.SS is always correct for the
preferred return address of the exception.

4. The PE enters Debug state before executing the next instruction and the step is complete.

Note

• If FEAT_DoPD is not implemented, EDECR.SS value is in the Debug power domain, meaning that the state
machine is maintained over a powerdown of the Core power domain.

• If FEAT_DoPD is implemented, the values of EDECR.SS and EDESR.SS are set to 0 on a Cold reset, and,
if the PE was stepping an instruction, EDESR.SS is effectively UNKNOWN after a Warm reset. A debugger
must use a Reset Catch debug event to step over a powerdown state.

• A debugger must only change the value of EDECR.SS when the PE is in Debug state, otherwise behavior is
CONSTRAINED UNPREDICTABLE as described in Changing the value of EDECR.SS when not in Debug state
on page H3-7387.

H3.2.4 Detailed Halting Step state machine behavior

The behavior of the Halting Step state machine is described in the following sections:

• Entering the active-not-pending state on page H3-7384.

• PE behavior in the active-not-pending state on page H3-7384.

• Entering the active-pending state on page H3-7385.

Table H3-3 Halting Step state machine states

Halting EDECR.SS EDESR.SS Halting Step state

Prohibited X X Inactive (Halting Step debug even not pending)

Prohibited X 1 Inactive (Halting Step debug event pending)

Allowed 0 0 Inactive

Allowed 1 0 Active-not-pending

Allowed X 1 Active-pending
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H3-7383
ID072021 Non-Confidential

Halting Debug Events
H3.2 Halting Step debug events
• PE behavior in the active-pending state on page H3-7385.

• PE behavior in the inactive state when in Non-debug state on page H3-7386.

• PE behavior in Debug state on page H3-7386.

Entering the active-not-pending state

The PE enters the active-not-pending state:

• By exiting Debug state to a state where halting is allowed with EDECR.SS == 1.

• By an exception return from a state where halting is prohibited to a state where halting is allowed with
EDECR.SS == 1 and EDESR.SS == 0.

• As described in Synchronization and the Halting Step state machine on page H3-7386.

PE behavior in the active-not-pending state

When the PE is in the active-not-pending state it does one of the following:

• It executes one instruction and does one of the following:

— Completes it without taking a synchronous exception.

— Takes a synchronous exception generated by the instruction.

— Generates a debug event that causes entry to Debug state.

• It takes an asynchronous exception without executing any instruction.

• It takes an asynchronous debug event into Debug state.

If no exception or debug event is generated

If no exception or debug event is generated the PE sets EDESR.SS to 1. This means that the Halting Step state
machine advances to the active-pending state.

If an exception or debug event is generated

The PE sets EDESR.SS according to all of the following:

• The type of exception.

• The target Exception level of the exception.

• If the exception is taken to Secure state, whether halting is prohibited in Secure state.

— This is determined by the result of ExternalSecureInvasiveDebugEnabled().

If an exception or debug event is generated, the PE sets EDESR.SS to 1 if one of the following applies:

• A synchronous exception is generated by the instruction and one of the following applies:

— The exception is taken to EL1 or EL2.

— The exception is taken to EL3, it is not an SMC exception, and ExternalSecureInvasiveDebugEnabled()
== TRUE.

— The exception is an SMC exception.

• An asynchronous exception is generated before executing an instruction and this is either:

— Taken to EL1 or EL2.

— Taken to EL3 and ExternalSecureInvasiveDebugEnabled() == TRUE.

• A PE reset occurs.

Otherwise, EDESR.SS is unchanged. This happens when:

• No instruction is executed because either:

— An asynchronous exception is taken to EL3 and ExternalSecureInvasiveDebugEnabled() == FALSE.

— An asynchronous debug event causes entry to Debug state.

• An instruction is executed and either:

— Generates a synchronous exception other than an SMC exception which is taken to EL3, and
ExternalSecureInvasiveDebugEnabled() == FALSE.

— Generates a synchronous debug event and causes entry to Debug state.
H3-7384 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Halting Debug Events
H3.2 Halting Step debug events
It is UNPREDICTABLE whether EDESR.SS is set to 1 or unchanged when an SError interrupt is taken to EL3 without
executing the instruction, and ExternalSecureInvasiveDebugEnabled() == FALSE.

If halting is prohibited after taking the exception or debug event, then the Halting Step state machine advances to
the inactive state. Otherwise, the Halting Step state machine advances to the active-pending state.

Note

The underlying criteria for the value of EDESR.SS on an exception are:

• Whether halting is allowed at the target of the exception. If halting is allowed, the PE must step into the
exception. If halting is prohibited, the PE must step over the exception.

• Whether the preferred return address of the exception is the instruction itself or the next instruction, if the PE
steps over the exception.

Table H3-4 on page H3-7385 shows the behavior of the active-not-pending state. The letter X indicates that
ExternalSecureInvasiveDebugEnabled() can be either TRUE or FALSE.

Entering the active-pending state

The PE enters the active-pending state by one of the following:

• From the active-not-pending state by:

— Executing an instruction without taking an exception.

— Taking an exception so that the PE remains in a state where halting is allowed.

• An exception return from a state where halting is prohibited when EDESR.SS == 1.

Note
That is, an exception return from Secure state with ExternalSecureInvasiveDebugEnabled() == FALSE to
Non-secure state with ExternalInvasiveDebugEnabled() == TRUE.

• A reset when the value of EDECR.SS == 1, regardless of the state the PE was in before the reset occurred.

• From the active-pending state by taking an asynchronous exception to a state where halting is allowed.

• Following the description in Synchronization and the Halting Step state machine on page H3-7386.

PE behavior in the active-pending state

When the PE is in the active-pending state, it enters Debug state before executing an instruction.

Table H3-4 Summary of active-not-pending state behavior

Event Target Exception level ExternalSecureInvasiveDebugEnabled()
Value
written to
EDESR.SS

No exception or debug event Not applicable X 1

SMC exception EL3 X 1

Reset Highest X 1

Exception, other than SMC
exception

EL1 X 1

EL2 X 1

EL3 TRUE 1

FALSE Unchanged

Debug event Debug state X Unchanged
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H3-7385
ID072021 Non-Confidential

Halting Debug Events
H3.2 Halting Step debug events
The entry into Debug state has higher priority than all other types of synchronous debug event and synchronous
exception. However, the architecture does not define the prioritization of this Debug state entry with respect to any
unmasked pending asynchronous exception. If an asynchronous exception is prioritized over the entry to Debug
state, then EDESR.SS is unchanged.

For more information on the prioritization of debug events, see Debug state entry and debug event prioritization on
page H2-7341.

PE behavior in the inactive state when in Non-debug state

EDESR.SS is not updated by the execution of an instruction or the taking of an exception when Halting Step is
inactive. This means that EDESR.SS is not changed by an exception handled in a state where halting is prohibited.

On return to a state where halting is allowed, the Halting Step state machine is restored either to the active-pending
state or the active-not-pending state, depending on the value of EDESR.SS. The return to a state where halting is
allowed is normally by an exception return, which in some situations is a Context synchronization event.

See also Synchronization and the Halting Step state machine on page H3-7386.

PE behavior in Debug state

Halting Step is inactive in Debug state because halting is prohibited, see Halting allowed and halting prohibited on
page H2-7339.

Entry to Debug state does not change EDESR.SS.

EDESR.SS is cleared to 0 on exiting Debug state as the result of a restart request. If EDECR.SS == 1, Halting Step
enters the active-not-pending state.

Note

This means that EDESR.SS is never cleared to 0 by the execution of an instruction in Debug state, or by taking an
exception when in Debug state as described in PE behavior in the active-not-pending state on page H3-7384,
because the Halting Step state machine is not in the active-not-pending state. EDESR.SS can be cleared by a write
to EDESR, see the register description.

However, if the PE exits Debug state as the result of a PE reset and EDECR.SS == 1, then Halting Step immediately
enters the active-pending state, as EDESR.SS is set to the value of EDECR.SS.

H3.2.5 Synchronization and the Halting Step state machine

The Halting Step state machine also changes state if:

• Halting becomes allowed or prohibited other than by exit from Debug state, an exception return, or taking an
exception. This means that halting becomes allowed or prohibited because:

— The Security state changes without an exception return. See State and mode changes without explicit
context synchronization events on page G2-6217.

— The external authentication interface changes.

— FEAT_DoubleLock is implemented and the status, DoubleLockStatus(), changes.

• A write to EDECR when the PE is in Non-debug state changes the value of EDECR.SS.

Note
Behavior is CONSTRAINED UNPREDICTABLE if the value of EDECR.SS is changed when the PE is in
Non-debug state, see Changing the value of EDECR.SS when not in Debug state on page H3-7387.

• A write to EDESR when the PE is in Non-debug state clears EDESR.SS to 0.

These operations are guaranteed to take effect only after a Context synchronization event. If the instruction being
stepped generates a Context synchronization event, then the PE might use the old or new state.
H3-7386 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Halting Debug Events
H3.2 Halting Step debug events
The PE must perform the required behavior of the new state before or immediately following the next Context
synchronization event, but it is not required to do so immediately. This means that the PE can perform the required
behavior of the old state before the next Context synchronization event. This is illustrated in Example H3-1 on
page H3-7387 and Example H3-2 on page H3-7387.

Example H3-1 Synchronization requirements 1

EDECR.SS is set to 1 in Debug state, requesting the active-not-pending state on exit from Debug state. On exit from
Debug state the PE immediately takes an exception to Secure state. ExternalSecureInvasiveDebugEnabled() ==
FALSE, meaning that halting is prohibited in Secure state. The PE does not step any instructions but executes the
software in Secure state as normal. EDESR.SS remains set to 0. If ExternalSecureInvasiveDebugEnabled()
subsequently becomes TRUE, meaning that halting is now allowed, the PE must perform the required behavior of
the active-not-pending state before or immediately following the next Context synchronization event, but it is not
required to do so immediately.

Example H3-2 Synchronization requirements 2

EDECR.SS is set to 1 in Debug state. On exit from Debug the PE executes an MSR instruction that sets
OSDLR_EL1.DLK to 1 and DoubleLockStatus() becomes TRUE. This change requires a Context synchronization
event to guarantee its effect, meaning it is CONSTRAINED UNPREDICTABLE whether:

• Halting is allowed:

— The PE enters Debug state on the next instruction.

• Halting is prohibited:

— The PE does not enter Debug state.

The value in EDESR.SS depends on whether halting was allowed or prohibited when the write to
OSDLR_EL1.DLK completed, and so it might be 0 or 1. If a second MSR instruction clears OSDLR_EL1.DLK to 0,
the PE must perform the required behavior of the state indicated by EDESR.SS before or immediately following the
next Context synchronization event, but it is not required to do so immediately.

See also Synchronization and Halting debug events on page H3-7399.

Changing the value of EDECR.SS when not in Debug state

If software changes the value of EDECR.SS when the PE is not in Debug state then behavior is CONSTRAINED
UNPREDICTABLE, and one or more of the following behaviors occurs:

• The value of EDECR.SS becomes UNKNOWN.

• The state of the Halting Step state machine becomes UNKNOWN.

• On a reset of the PE, the value of EDECR.SS and the state of the Halting Step state machine are UNKNOWN.

H3.2.6 Stepping T32 IT instructions

In an implementation that supports the ITD control, the architecture permits a combination of one T32 IT instruction
and another 16-bit T32 instruction to be treated as a single 32-bit instruction when the value of the ITD field that
applies to the current Exception level is 1.

For the purpose of stepping an item, it is IMPLEMENTATION DEFINED whether:

• The PE considers such a pair of instructions to be one instruction.

• The PE considers such a pair of instructions be two instructions.

It is IMPLEMENTATION DEFINED whether this behavior depends on the value of the applicable ITD bit. For example:

• The debug logic might consider such a pair of instructions as one instruction, regardless of the state of the
applicable ITD field.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H3-7387
ID072021 Non-Confidential

Halting Debug Events
H3.2 Halting Step debug events
• The debug logic might consider such a pair of instructions as two instructions, regardless of the state of the
applicable ITD field.

• The debug logic might consider such a pair of instructions as one instruction when the value of the applicable
ITD field is 1, and as two instructions when the value of the ITD field is 0.

An implementation that does not support the ITD control behaves as if the value of the ITD field is 0.

The ITD control fields are:

HSCTLR.ITD

Applies to execution at EL2 when EL2 is using AArch32.

SCTLR.ITD

Applies to execution at EL0 or EL1 when EL1 is using AArch32.

SCTLR_EL1.ITD

Applies to execution at EL0 using AArch32 when EL1 is using AArch64.

H3.2.7 Disabling interrupts while stepping

When using Halting Step, the sequence of entering Debug state, interacting with the debugger, and then exiting
Debug state for each instruction reduces the rate at which the PE executes instructions. However, the rate at which
certain interrupts, such as timer interrupts, are generated might be fixed by the system. This means it might be
necessary to disable interrupts while using Halting Step by setting EDSCR.INTdis, to allow the code being
debugged to make forward progress.

H3.2.8 Syndrome information on Halting Step

Three EDSCR.STATUS encodings record different scenarios for entering Debug state on a Halting Step debug
event:

Halting Step, normal

An instruction other than a Load-Exclusive instruction was stepped.

Halting Step, exclusive

A Load-Exclusive instruction was stepped.

Halting Step, no syndrome

The syndrome data is not available.

If the PE enters Debug state due to a Halting Step debug event immediately after stepping an instruction in the
active-not-pending state, EDSCR.STATUS is set to either:

• Halting Step, normal, if the stepped instruction was not a Load-Exclusive instruction.

• Halting Step, exclusive, if the stepped instruction was a Load-Exclusive instruction.

If the stepped instruction was a conditional Load-Exclusive instruction that failed its Condition code check,
EDSCR.STATUS is set to a CONSTRAINED UNPREDICTABLE choice of Halting Step, normal, or Halting Step,
exclusive.

Otherwise, the PE enters Debug state without stepping an instruction. This means that the Halting Step state
machine enters the active-pending state directly from the inactive state, without going through active-not-pending
state. In this case, EDSCR.STATUS is set to Halting Step, no syndrome. This happens when:

• The PE enters directly into the active-pending state on an exception return to Non-secure state from EL3
when Halting is prohibited in Secure state.

• The active-pending state is entered for other reasons. See Synchronization and the Halting Step state machine
on page H3-7386

In addition, EDSCR.STATUS is CONSTRAINED UNPREDICTABLE when:

• The instruction being stepped generated a Halting Step debug event before the instruction was executed.
H3-7388 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Halting Debug Events
H3.2 Halting Step debug events
In this case EDSCR.STATUS is set to a CONSTRAINED UNPREDICTABLE choice of:

— Halting Step, no syndrome, or Halting Step, normal, if the stepped instruction was not a
Load-Exclusive instruction.

— Halting Step, no syndrome, or Halting Step, exclusive, if the stepped instruction was a Load-Exclusive
instruction.

• The instruction that was stepped was an Exception Return instruction or an ISB. As these instructions are not
in the Load-Exclusive instructions, EDSCR.STATUS is set to a CONSTRAINED UNPREDICTABLE choice of
Halting Step, no syndrome or Halting Step, normal.

• The PE enters directly into the active-pending state on a Warm reset because EDECR.SS is set to 1.
EDSCR.STATUS is set to a CONSTRAINED UNPREDICTABLE choice of Halting Step, no syndrome or Halting
Step, normal.

In all cases, if EDSCR.STATUS is not set to Halting Step, no syndrome, then it must indicate whether the stepped
instruction was a Load-Exclusive instruction by setting EDSCR.STATUS to Halting Step, normal or Halting Step,
exclusive.

Note

In an implementation that always sets EDSCR.STATUS to Halting Step, no syndrome is not compliant.

H3.2.9 Pseudocode description of Halting Step debug events

There are two pseudocode functions for Halting Step debug events:

• RunHaltingStep(). This is called after an instruction has executed and any exception generated by the
instruction is taken. It is also called after taking a reset before executing any instructions. That is, reset is
treated like an asynchronous exception, even if EDECR.RCE == 1 or CTIDEVCTL.RCE == 1.
RunHaltingStep() affects the next instruction.

• CheckHaltingStep(). This is called before the next instruction is executed. If a step is pending, it generates the
debug event.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H3-7389
ID072021 Non-Confidential

Halting Debug Events
H3.3 Halt Instruction debug event
H3.3 Halt Instruction debug event

A Halt Instruction debug event is generated when EDSCR.HDE == 1, halting is allowed, and the PE executes the
Halt instruction, HLT.

The pseudocode for Halt Instruction debug events is described in HLT on page C6-1034 for A64 and HLT on
page F5-4696 for A32 and T32.

HLT never generates a debug exception. It is treated as UNDEFINED if EDSCR.HDE == 0, or if halting is prohibited.

Note

A debugger can replace a program instruction with a Halt instruction to generate a Halt Instruction debug event.
Debuggers that use the HLT instruction must be aware of the Armv8-A rules for concurrent modification of
executable code, CMODX. The rules for concurrent modification and execution of instructions do not allow one
thread of execution or an external debugger to replace an instruction with an HLT instruction when these same
instructions are being executed by a different thread of execution. See Concurrent modification and execution of
instructions on page B2-130.

The T32 HLT instruction is unconditionally executed inside an IT block, even when it is treated as undefined. The
A32 HLT instruction is CONSTRAINED UNPREDICTABLE if the Condition code field is not 0b1110, with the set of
behaviors the same as for BKPT. See Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Note

The HLT instruction is part of the external debug solution for Armv8-A. As such, the presence of the HLT instruction
is not indicated in the ID registers. In particular, the AArch32 System register ID_ISAR0. Debug does not indicate
the presence of the HLT instruction.

H3.3.1 HLT instructions as the first instruction in a T32 IT block

In an implementation that supports the ITD control, the architecture permits a combination of one T32 IT instruction
and certain other 16-bit T32 instruction to be treated as a single 32-bit instruction when the value of the ITD field
that applies to the current Exception level is 1.

The T32 HLT instruction cannot be combined with an IT instruction in this way. In an implementation that supports
the ITD control, if the first instruction in an IT block is an HLT instruction, then the behavior of the instruction
depends on the value of the applicable ITD field:

• If the value of the ITD field is 1, then the combination is treated as undefined and an Undefined Instruction
exception is generated either by the IT instruction or by the HLT instruction.

• If the value of the ITD field is 0, then the HLT instruction unconditionally executed.

An implementation that does not support the ITD control behaves as if the value of the ITD field is 0.

To set an Halt Instruction debug event on the first instruction of an IT block, debuggers must replace the IT
instruction with an HLT instruction to ensure consistent behavior.

The ITD control fields are:

HSCTLR.ITD

Applies to execution at EL2 when EL2 is using AArch32.

SCTLR.ITD

Applies to execution at EL0 or EL1 when EL1 is using AArch32.

SCTLR_EL1.ITD

Applies to execution at EL0 using AArch32 when EL1 is using AArch64.

Note

An HLT instruction is always unconditional, even within an IT block.
H3-7390 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Halting Debug Events
H3.4 Exception Catch debug event
H3.4 Exception Catch debug event

Exception Catch debug events:

• Are generated when the corresponding bit in the Exception Catch Control Register, EDECCR, is set to 1 on
all entries to a given Exception level. This means:

— Exceptions taken to the Exception level.

— Exception returns to the Exception level.

— It is IMPLEMENTATION DEFINED whether a reset into an Exception level generates an Exception Catch
debug event.

• Are taken synchronously, after the exception or reset entry or the exception return has been processed by the
PE.

• Ignore the Execution state of the target Exception level.

• Are ignored if halting is prohibited.

For exception returns, the final Exception level of the exception return determines whether an Exception Catch
debug event is generated. On an illegal exception return, an Exception Catch debug event is generated only if
EDECCR is programmed to generate an Exception Catch debug event for an exception return to the current
Exception level.

The EDECCR contains two sets of fields to generate Exception Catch debug events:

• NSE, and when FEAT_Debugv8p2 is implemented, NSR for Non-secure state.

• SE, and when FEAT_Debugv8p2 is implemented, SR for Secure state.

Each field within each set contains one bit for each Exception level in that state. Bits corresponding to Exception
levels that are not implemented, or that are not implemented in the Security state, are RES0.

Note

• EDECCR does not replace DBGVCR:

— DBGVCR is retained in AArch32 state for backwards compatibility.

— DBGVCR is ignored in AArch64 state and never generates entries to Debug state.

— DBGVCR cannot be accessed by the external debug interface.

• EDECCR is visible as OSECCR_EL1 by System register instructions in AArch64 state, and as
DBGOSECCR by System register access instructions in AArch32 state, only when the OS Lock is locked to
allow software to save and restore it over a powerdown.

• Exception Catch debug events are not disabled when the OS Lock is locked.

When an Exception Catch debug event is generated after exception entry, the PE halts and enters Debug state:

• Before the first instruction at the handler is executed.

• After the exception entry has updated the program counter, PSTATE and syndrome registers for the
exception. This means that on entering Debug state:

— The current Exception level is the target Exception level of the exception.

— The ELR, SPSR, ESR, and other syndrome registers contain information about the exception.

— DLR contains the exception vector address or the reset address.

When an Exception Catch debug event is generated on exception return, the PE halts and enters Debug state:

• After the exception return has updated the program counter and PSTATE.

• Before the execution of the first instruction at the return address is completed.

The PE does not fetch instructions from the vector address before entering Debug state, if address translation is
disabled in the translation regime at the target Exception level.

The following rules define the prioritization of Exception Catch debug events:

• It is IMPLEMENTATION DEFINED whether Exception Catch debug events are higher or lower priority than each
of Software Step exceptions and Halting Step debug events.

• Exception Catch debug events are higher priority than all synchronous exceptions other than Software Step
exceptions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H3-7391
ID072021 Non-Confidential

Halting Debug Events
H3.4 Exception Catch debug event
• Exception Catch debug events are lower priority than Reset Catch debug events.

• The prioritization of Exception Catch debug events against pending asynchronous exceptions depends on
whether FEAT_Debugv8p2 is implemented and is described in Exception Catch debug events when
FEAT_Debugv8p2 is implemented on page H3-7392 and Exception Catch debug events when
FEAT_Debugv8p2 is not implemented on page H3-7393.

Note

As described in Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2490, an
exception trapping form of a Vector Catch debug event might generate a second debug exception as part of the
exception entry, before the Exception Catch debug event is taken. See Vector Catch exceptions on page D2-2612 or
Vector Catch exceptions on page G2-6209.

H3.4.1 Exception Catch debug events when FEAT_Debugv8p2 is implemented

When FEAT_Debugv8p2 is implemented, the fields NSR, SR, NSE, and SE in EDECCR control generation of
Exception Catch debug events:

• On exception entry but not on exception return.

• On exception return but not on exception entry.

• On exception entry and exception return.

Exception entry, reset and exception return Exception Catch debug events are enabled as shown in Table H3-5 on
page H3-7392.

When an Exception Catch debug event is generated on exception entry, the PE halts and enters Debug state before
any asynchronous exception or debug event is taken at the first instruction in the exception handler.

Note

There is no prioritization between asynchronous exceptions, asynchronous debug events, and an Exception Catch
debug event generated on an exception return.

See also Debug state entry and debug event prioritization on page H2-7341.

Table H3-5 Summary of Exception Catch debug event control when FEAT_Debugv8p2 is implemented

(N)SR
<n>

(N)SE
<n>

Behavior on exception
return to ELn

Behavior on exception taken to ELn, and if resets are Exception
Catch debug events, reset into ELn

0 0 No action. No action.

0 1 Halt if allowed. Halt if allowed.

1 0 Halt if allowed. No action.

1 1 No action. Halt if allowed.
H3-7392 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Halting Debug Events
H3.4 Exception Catch debug event
H3.4.2 Exception Catch debug events when FEAT_Debugv8p2 is not implemented

When FEAT_Debugv8p2 is not implemented, all Exception Catch debug events are enabled by a combination of
the fields NSE and SE in EDECCR, as shown in Table H3-6 on page H3-7393.

A second unmasked asynchronous exception can be taken before the PE enters Debug state. If this second exception
does not generate an Exception Catch debug event, the exception handler executed at the higher Exception level
later returns to the trapped Exception level, causing the Exception Catch debug event to be generated again.

When the PE is executing code at a given Exception level, and the corresponding EDECCR bit is 1, it is
CONSTRAINED UNPREDICTABLE whether an Exception Catch debug event is generated.

Note

It is possible to generate Exception Catch debug events:

• As a trap on all instruction fetches from the trapped Exception level as part of an instruction fetch.

• On entry to the Exception level, as described in Detailed Halting Step state machine behavior on
page H3-7383.

This is similar to the implementation options allowed for Vector Catch debug events. The architecture does not
require that the event is generated following an ISB operation executed at the Exception level.

Examples of this are:

• If the debugger writes to EDECCR so that the current Exception level is trapped.

• If the OS restore code writes to OSECCR so that the current Exception level is trapped.

• If the code executing in AArch32 state changes the Exception level or Security state other than by an
exception return, and the target Exception level is trapped. See State and mode changes without explicit
context synchronization events on page G2-6217.

H3.4.3 Examples of Exception Catch debug events

If EDECCR == 0x0020, meaning that the Exception Catch debug event is enabled for Non-secure EL1, then the
following exceptions generate Exception Catch debug events:

• An exception taken from Non-secure EL0 to Non-secure EL1.

• An exception return from EL2 to Non-secure EL1.

• An exception return from EL3 to Non-secure EL1.

For example, on taking a Data Abort exception from Non-secure EL0 to Non-secure EL1, using AArch64:

• ELR_EL1 and SPSR_EL1 are written with the preferred return address and PE state for a return to EL0.

• ESR_EL1 and FAR_EL1 are written with the syndrome information for the exception.

• DLR_EL0 is set to VBAR_EL1 + 0x400, the synchronous exception vector.

• DSPSR_EL0 is written with the PE state for an exit to EL1.

The following do not generate Exception Catch debug events:

• An exception taken from EL0 to EL2, in either Security state, or EL3.

• An exception return from EL2, in either Security state, to EL0.

• An exception taken from Secure EL0 to Secure EL1.

• An exception return from EL3 to Secure EL1.

Table H3-6 Summary of Exception Catch debug event control when FEAT_Debugv8p2 is not
implemented

(N)SE<n>
Behavior on exception taken to ELn, return to ELn, and if resets are Exception
Catch debug events, reset into ELn

0 No action.

1 Halt if allowed.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H3-7393
ID072021 Non-Confidential

Halting Debug Events
H3.4 Exception Catch debug event
H3.4.4 Pseudocode description of Exception Catch debug events

The pseudocode function CheckExceptionCatch() is described in Chapter J1 Armv8 Pseudocode.
H3-7394 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Halting Debug Events
H3.5 External Debug Request debug event
H3.5 External Debug Request debug event

External Debug Request debug events are asynchronous debug events.

An External Debug Request debug event is generated when signaled by the embedded cross-trigger. See Chapter H5
The Embedded Cross-Trigger Interface.

Note

Armv8-A requires the implementation of an embedded cross-trigger.

An implementation might also support IMPLEMENTATION DEFINED ways of generating an External Debug Request
debug event.

H3.5.1 Synchronization and External Debug Request debug events

An External Debug Request debug event that is asserted before a Context synchronization event is taken and the PE
enters Debug state before the first instruction following the Context synchronization event completes its execution,
provided that halting is allowed after completion of the Context synchronization event.

An External Debug Request debug event that is being asserted when the PE comes out of reset is taken, and the PE
enters Debug state before the first instruction after the reset completes its execution, provided that halting is allowed
when the PE exits reset state.

If the first instruction after the Context synchronization event or after coming out of reset generates a synchronous
exception then the architecture does not define the order in which the debug event and the exception or exceptions
are taken.

Otherwise, when halting is allowed, External Debug Request debug events must be taken in finite time, without
requiring the synchronization of any necessary change to the external authentication interface.

Note

These rules are based on the rules that apply when taking asynchronous exceptions. See Asynchronous exception
types, routing, masking and priorities on page D1-2500.

If an unmasked External Debug Request debug event was pending but is changed to not pending before it is taken,
then the architecture permits the External Debug Request debug event to be taken, but does not require this to
happen. If the External Debug Request debug event is taken then it must be taken before the first Context
synchronization event after the External Debug Request debug event was changed to not pending.

Example H3-3 on page H3-7395 shows an example of the synchronization requirements.

Example H3-3 Synchronization requirements

Secure software locks up in a tight loop, so it executes indefinitely without any synchronization operations. An
External debug request must be able to break the PE out of that loop. This is a requirement even if DBGEN or
SPIDEN or both are LOW on entry to the loop, meaning that halting is prohibited, and are only asserted HIGH later.

H3.5.2 Pseudocode description of External Debug Request debug events

The ExternalDebugRequest() function is described in Chapter J1 Armv8 Pseudocode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H3-7395
ID072021 Non-Confidential

Halting Debug Events
H3.6 OS Unlock Catch debug event
H3.6 OS Unlock Catch debug event

An OS Unlock Catch debug event is generated when enabled and the state of the OS Lock changes from locked to
unlocked. When FEAT_DoPD is implemented, CTIDEVCTL.OSUCE enables an OS Unlock Catch debug event,
otherwise EDECR.OSUCE enables an OS Unlock Catch debug event.

When the OS Lock is unlocked, the PE sets EDESR.OSUC to 1 if the OS Unlock Catch debug event is enabled, and
the PE is in Non-debug state, meaning the OS Unlock Catch debug event becomes pending. However, this is an
indirect write to EDESR.OSUC, meaning the OS Unlock Catch debug event is not guaranteed to be taken before a
subsequent Context synchronization event. If the PE enters Debug state or the OS Unlock Catch debug event is
disabled before EDESR.OSUC becomes set to 1, then EDESR.OSUC might not be set.

OS Unlock Catch debug events are not generated if the OS Lock is unlocked when the PE is in Debug state. See
also Synchronization and Halting debug events on page H3-7399.

EDESR.OSUC is cleared to 0 on a Warm reset and on exiting Debug state.

H3.6.1 Using the OS Unlock Catch debug event

When the Core power domain is completely off or in a low-power state, a debugger is permitted to access a debug
register that is implemented in the External debug power domain. However, if a debugger attempts to access a debug
register that is implemented in the Core power domain when the Core power domain registers cannot be accessed,
and that access returns an error, the debugger must retry the access.

Regularly powering down the Core power domain can result in unreliable debugger behavior.

The debugger can program a Reset Catch debug event to halt the PE when it has powered up, and can program the
debug registers from Debug state. However, if the PE boot software restores the debug registers, as described in
Debug OS Save and Restore sequences on page H6-7446, then newly written values are overwritten by the restore
sequence.

The debugger can program an OS Unlock Catch debug event to halt the PE after the restore sequence has completed,
and program the debug registers from Debug state.

H3.6.2 Pseudocode description of OS Unlock Catch debug event

The CheckOSUnlockCatch() function is called when the OS Lock is unlocked.

The CheckPendingOSUnlockCatch() function is called before an instruction is executed. If an OS Unlock Catch is
pending, it generates the debug event.
H3-7396 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Halting Debug Events
H3.7 Reset Catch debug events
H3.7 Reset Catch debug events

A Reset Catch debug event is generated when enabled, and the PE exits reset state. When the Reset Catch debug
event is generated, it is recorded by setting EDESR.RC to 1. When FEAT_DoPD is implemented,
CTIDEVCTL.RCE enables a Reset Catch debug event, otherwise EDECR.RCE enables a Reset Catch debug event.

If halting is allowed when the event is generated, the Reset Catch debug event is taken immediately and
synchronously. On entering Debug state, DLR has the address of the reset vector. The PE must not fetch any
instructions from memory.

Otherwise, the Reset Catch debug event is pended and taken when halting is allowed. See Synchronization and
Halting debug events on page H3-7399 for more information.

This means that EDESR.RC is set to the value of EDECR.RCE or CTIDEVCTL.RCE on a Warm reset. EDESR.RC
is cleared to 0 on exiting Debug state.

H3.7.1 Pseudocode description of Reset Catch debug event

The CheckResetCatch() function is called after reset before executing any instruction.

The CheckPendingResetCatch() function is called before an instruction is executed. If a Reset Catch is pending, it
generates the Reset Catch debug event.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H3-7397
ID072021 Non-Confidential

Halting Debug Events
H3.8 Software Access debug event
H3.8 Software Access debug event

When the value of EDSCR.TDA is 1, software access to the following AArch64 and AArch32 debug System
registers generate a Software Access debug event:

• The Breakpoint Value Registers, DBGBVR.

• The Breakpoint Control Registers, DBGBCR.

• The Watchpoint Value Registers, DBGWVR.

• The Watchpoint Control Registers, DBGWCR.

However, EDSCR.TDA is ignored if any of the following applies:

• The value of OSLSR.OSLK == 1, meaning that the OS Lock is locked.

• Halting is prohibited. See Halting allowed and halting prohibited on page H2-7339.

• The register access generates an exception.

Note

• The only accesses to the specified registers that generate a Software Access debug event are:

— Accesses to System registers in AArch64 state.

— Accesses to System registers in the (coproc==0b1110) encoding space in AArch32 state.

• Accesses by a PE using the external debug interface never generate a Software Access debug event.

H3.8.1 Pseudocode description of Software Access debug event

The CheckSoftwareAccessToDebugRegisters() function is described in Chapter J1 Armv8 Pseudocode.
H3-7398 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Halting Debug Events
H3.9 Synchronization and Halting debug events
H3.9 Synchronization and Halting debug events

The behavior of external debug depends on:

• Indirect reads of:

— External debug registers.

— System registers, including system debug registers.

— Special-purpose registers.

• The state of the external authentication interface.

For some registers, all read and write accesses that update the register occur in program order, without any additional
synchronization, but others require an explicit Context synchronization event. For more information on the
synchronization of register updates, see:

• Synchronization requirements for AArch64 System registers on page D13-3041.

• Synchronization of changes to the external debug registers on page H8-7462.

• State and mode changes without explicit context synchronization events on page G2-6217.

Changes to the external authentication interface do not require explicit synchronization to affect External Debug
Request debug events. See Synchronization and External Debug Request debug events on page H3-7395.

For changes that require explicit synchronization, it is CONSTRAINED UNPREDICTABLE whether instructions between
the change and the Context synchronization event observe the old state or the new state.

This means that any change to these registers or the external authentication interface requires explicit
synchronization by a Context synchronization event before the change takes effect. This ensures that for instructions
appearing in program order after the change, the change affects the following:

• The generation and behavior of Breakpoint and Watchpoint debug events. See Synchronization and debug
exceptions on page D2-2626 for exceptions taken from AArch64 state, or Synchronization and debug
exceptions on page G2-6217 for exceptions taken from AArch32 state.

• The generation of all Halting debug events by instructions.

• Taking a pending Halting debug event or other asynchronous debug event. See:

— Pending Halting debug events on page H3-7399.

— Synchronization and External Debug Request debug events on page H3-7395.

• The behavior of the Halting Step state machine. See Synchronization and the Halting Step state machine on
page H3-7386.

H3.9.1 Pending Halting debug events

A Halting debug event might be pending:

1. If Halting Step of an instruction sets EDESR.SS is set to 1, and halting is prohibited following the step, then
the Halting Step state machine is inactive but a Halting Step debug event is pending.

2. If a Reset Catch debug event sets EDESR.RC to 1, and halting is prohibited following reset, then a Reset
Catch debug event is pending.

3. If an OS Unlock Catch debug event sets EDESR.OSUC to 1, then an OS Unlock Catch debug event is
pending.

Pending Halting debug events are taken asynchronously when halting is allowed.

Pending Halting debug events are discarded by a Cold reset. The debugger can also force a pending event to be
dropped by writing to EDESR.

Any Halting debug event that is observed as pending in the EDESR before a Context synchronization event is taken
and the PE enters Debug state before the first instruction following the Context synchronization event completes its
execution. This is possible only if halting is allowed after completion of the Context synchronization event.

If the first instruction after the Context synchronization event generates a synchronous exception then the
architecture does not define the order in which the debug event and the exception or exceptions are taken, unless
both:

• A Halting Step debug event is pending. EDESR.SS == 1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H3-7399
ID072021 Non-Confidential

Halting Debug Events
H3.9 Synchronization and Halting debug events
• The Context synchronization event is an exception return from a state where halting is prohibited to a state
where halting is allowed.

Note
This applies to an exception return from Secure state with ExternalSecureInvasiveDebugEnabled() == FALSE
to Non-secure state with ExternalInvasiveDebugEnabled() == TRUE.

In this case the order in which the debug events are handled is specified to avoid a double-step. See Entering the
active-pending state on page H3-7385.

If an asynchronous exception is also pending after the Context synchronization event then the architecture does not
define the order in which the debug event and the exception or exceptions are taken.

Note

These rules are based on the rules that apply to taking asynchronous exceptions. See Asynchronous exception types,
routing, masking and priorities on page D1-2500.
H3-7400 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter H4
The Debug Communication Channel and Instruction
Transfer Register

This chapter describes communication between a debugger and the implemented debug logic, using the Debug
Communications Channel (DCC) and the Instruction Transfer Register (ITR), and associated control flags. It
contains the following sections:

• Introduction on page H4-7402.

• DCC and ITR registers on page H4-7403.

• DCC and ITR access modes on page H4-7406.

• Flow control of the DCC and ITR registers on page H4-7410.

• Synchronization of DCC and ITR accesses on page H4-7413.

• Interrupt-driven use of the DCC on page H4-7418.

• Pseudocode description of the operation of the DCC and ITR registers on page H4-7419.

Note

Where necessary, Table K15-1 on page K15-8602 disambiguates the general register references used in this chapter.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H4-7401
ID072021 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.1 Introduction
H4.1 Introduction

The Debug Communications Channel, DCC, is a channel for passing data between the PE and an external agent,
such as a debugger. The DCC provides a communications channel between:

• An external debugger, described as the debug host.

• The debug implementation on the PE, described as the debug target.

The DCC can be used:

• As a 32-bit full-duplex channel.

• As a 64-bit half-duplex channel.

The DCC is an essential part of Debug state operation and can also be used in Non-debug state.

The Instruction Transfer Register, ITR, passes instructions to the PE to execute in Debug state.

The PE includes flow-control mechanisms for both the DCC and ITR.
H4-7402 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Debug Communication Channel and Instruction Transfer Register
H4.2 DCC and ITR registers
H4.2 DCC and ITR registers

The DCC comprises data transfer registers, the DTRs, and associated flow-control flags. The data transfer registers
are DTRRX and DTRTX.

The ITR comprises a single register, EDITR, and associated flow-control flags.

In AArch64 state, software can access the data transfer registers as:

• A receive and transmit pair for 32-bit full duplex operation:

— The write-only DBGDTRTX_EL0 register to transmit data.

— The read-only DBGDTRRX_EL0 register to receive data.

• A single 64-bit read/write register, DBGDTR_EL0, for 64-bit half-duplex operation.

• The read/write OSDTRTX_EL1 and OSDTRRX_EL1 registers for save and restore.

In AArch32 state, software can only access the data transfer registers as:

• A receive and transmit pair, for 32-bit full duplex operation:

— The write-only DBGDTRTXint register to transmit data.

— The read-only DBGDTRRXint register to receive data.

• The read/write DBGDTRTXext and DBGDTRRXext registers for save and restore.

The data transfer registers are also accessible by the external debug interface as a pair of 32-bit registers,
DBGDTRRX_EL0 and DBGDTRTX_EL0. Both registers are read/write, allowing both 32-bit full-duplex and
64-bit half-duplex operation.

The DCC flow-control flags are EDSCR.{RXfull, TXfull, RXO, TXU}:

• The RXfull and TXfull ready flags are used for flow-control and are visible to software in the Debug system
registers in DCCSR.

• The RX overrun flag, RXO, and the TX underrun flag, TXU, report flow-control errors.

• The flow-control flags are also accessible by software as simple read/write bits for saving and restoring over
a powerdown when the OS Lock is locked in DSCR.

• The flow-control flags are accessible from the external debug interface in EDSCR.

Figure H4-1 on page H4-7404 shows the System register and external debug interface views of the EDSCR and
DTR registers in both AArch64 state and AArch32 state. These figures do not include the save and restore views.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H4-7403
ID072021 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.2 DCC and ITR registers
Figure H4-1 System register and external debug interface views of EDSCR and DTR registers, Normal access mode

EDITR and the ITR flow-control flags, EDSCR.{ITE, ITO} are accessible only by the external debug interface:

• The EDITR specifies an instruction to execute in Debug state.

• The ITR empty flag, ITE, is used for flow-control.

• The ITR overrun flag, ITO, reports flow-control errors.

Figure H4-2 External debug interface views of EDSCR and EDITR registers, Normal access mode

The sticky overflow flag, EDSCR.ERR, is used by both the DCC and ITR to report flow-control errors.

To save and restore the DCC registers for an external debugger over powerdown, software uses:

• The MDSCR_EL1, OSDTRTX_EL1, and OSDTRRX_EL1 registers in AArch64 state.

DBGDTRTXint †

DBGDTRRXint †

DBGDSCRint †
EDSCR

RXO

RXfull

TXfull

TXU

RX
write

logic §

TX
read

logic §

DTRTX DBGDTRTX_EL0
read/write

DTRRX DBGDTRRX_EL0
read/write

DBGDTRTX_EL0 ‡
32b, write-only

DBGDTRRX_EL0 ‡
32b, read-only

1, on writes

0, on reads

EDSCR
read/write

MDCCSR_EL0 ‡
read-only

External debug interface

DBGDTR_EL0 ‡
64b, read/write

1, on writes
0, on reads

§ underrun and overrun checks only performed
for accesses by the external debug interface

System register interface

† AArch32 state
‡ AArch64 state

ERR

EDSCR

ERR

ITO
ITR
write
logic

EDITR EDITR
write-only

EDSCR
read/write

External debug interface

ITE

1, on completion

Instruction issue
logic
H4-7404 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Debug Communication Channel and Instruction Transfer Register
H4.2 DCC and ITR registers
• The DBGDSCRext, DBGDTRTXext, and DBGDTRRXext registers in AArch32 state.

Note

There is no save and restore mechanism for the ITR registers as the ITR is only used in Debug state.

Figure H4-3 System register views of EDSCR and DTR registers for save and restore

DBGDTRTXint †

DBGDTRRXint †

DBGDSCRint †

EDSCR

RXO

RXfull

TXfull

TXU

DTRTX

DTRRX

DBGDTRTX_EL0 ‡
32b, write-only

DBGDTRRX_EL0 ‡
32b, read-only

1, on writes

0, on reads

MDCCSR_EL0 ‡
read-only

System register interface

ERR

† AArch32 state
‡ AArch64 state
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H4-7405
ID072021 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.3 DCC and ITR access modes
H4.3 DCC and ITR access modes

The DCC and ITR support two access modes:

H4.3.1 Normal access mode

The Normal access mode allows use of the DCC as a communications channel between target and host. It also
allows the use of the ITR for issuing instructions to the PE in Debug state.

In Normal access mode, if there is no overrun or underrun, the following occurs:

For accesses by software:

• Direct writes to DBGDTRTX update the value in DTRTX and indirectly write 1 to TXfull.

• Direct reads from DBGDTRRX return the value in DTRRX and indirectly write 0 to RXfull.

• In AArch64 state, direct writes to DBGDTR_EL0 update both DTRTX and DTRRX,
indirectly write 1 to TXfull, and do not change RXfull:

— DTRTX is set from bits[31:0] of the transfer register.

— DTRRX is set from bits[63:32] of the transfer register.

• In AArch64 state, direct reads from DBGDTR_EL0 return the concatenation of DTRRX and
DTRTX, indirectly write 0 to RXfull, and do not change TXfull:

— Bits[31:0] of the transfer register are set from DTRRX.

— Bits[63:32] of the transfer register are set from DTRTX.

Note

For DBGDTR_EL0, the word order is reversed for reads with respect to writes.

Software reads TXfull and RXfull using DCCSR.

For accesses by the external debug interface:

• Writes to EDITR trigger the instruction to be executed if the PE is in Debug state:

— If the PE is in AArch64 state, this is an A64 instruction.

— If the PE is in AArch32 state, this is a T32 instruction. The T32 instruction is a pair of
halfwords where the first halfword is taken from the lower 16-bits, and the second
halfword is taken from the upper 16-bits.

• Reads of DBGDTRTX_EL0 return the value in DTRTX and indirectly write 0 to TXfull.

• Writes to DBGDTRTX_EL0 update the value in DTRTX and do not change TXfull.

• Reads of DBGDTRRX_EL0 return the value in DTRRX and do not change RXfull.

• Writes to DBGDTRRX_EL0 update the value in DTRRX and indirectly write 1 to RXfull.

TXfull and RXfull are visible to the external debug interface in EDSCR.

The PE detects overrun and underrun by the external debug interface, and records errors in
EDSCR.{TXU, RXO, ITO, ERR}. See Flow control of the DCC and ITR registers on
page H4-7410.

See also Synchronization of DCC and ITR accesses on page H4-7413.

DCC and ITR access mode, links to description Applies when:

Normal access mode on page H4-7406 EDSCR.MA == 0 or the PE is in Non-debug state

Memory access mode on page H4-7407 EDSCR.MA == 1 and the PE is in Debug state
H4-7406 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Debug Communication Channel and Instruction Transfer Register
H4.3 DCC and ITR access modes
H4.3.2 Memory access mode

When the PE is in Debug state, Memory access mode can be selected to accelerate word-aligned block reads or
writes of memory by an external debugger. Memory access mode can only be enabled in Debug state, and no
instructions can be issued directly by the debugger when in Memory access mode.

If there is no overrun or underrun when in Memory access mode, an access by the external debug interface results
in the following:

• External reads from DBGDTRTX_EL0 cause:

1. The existing value in DTRTX to be returned. This clears EDSCR.TXfull to 0.

2. The equivalent of LDR W1,[X0],#4, if in AArch64 state, or LDR R1,[R0],#4, if in AArch32 state, to be
executed.

3. The equivalent of the MSR DBGDTRTX_EL0,X1 instruction, if in AArch64 state, or the MCR
p14,0,R1,c0,c5,0 instruction, if in AArch32 state, to be executed.

4. EDSCR.{TXfull, ITE} to be set to {1,1}, and X1 or R1 to be set to an UNKNOWN value.

• External writes to DBGDTRRX_EL0 cause:

1. The value in DTRRX to be updated. This sets EDSCR.RXfull to 1.

2. The equivalent of the instruction MRS X1,DBGDTRRX_EL0, if in AArch64 state, or MRC p14,0,R1,c0,c5,0 if
in AArch32 state, to be executed.

3. The equivalent of the instruction STR W1,[X0],#4, if in AArch64 state, or STR R1,[R0],#4, if in AArch32
state, to be executed.

4. EDSCR.{RXfull, ITE} to be set to {0,1}, and X1 or R1 to be set to an UNKNOWN value.

• External reads from DBGDTRRX_EL0 return the last value written to DTRRX.

• External writes to EDITR generate an overrun error.

During these accesses, EDSCR.{TXfull, RXfull, ITE} are used for flow control.

Note

An overrun or underrun might result in EDSCR.ERR being set to 1 asynchronously to the sequence of operations
that are outlined in this section. As this is timing-dependent, it is UNPREDICTABLE when the EDSCR.ERR flag
affects the instructions and therefore whether neither instruction, only the first instruction, or both instructions are
executed. If the second instruction is executed, then the first instruction must have been executed. However, in each
case X1 or R1 is set to an UNKNOWN value. This means that:

• In both cases, if the memory access instruction is not executed, then the base register X0 or R0 is not updated,
meaning the debugger can determine the last accessed location.

• In the list describing External reads from DBGDTRTX_EL0, DTRTX and EDSCR.TXfull get set to
UNKNOWN values. If the load was executed, then the value that was read by the PE is lost. This means the
operation might need to be repeated by the debugger, and it is not advisable to use Memory access mode to
read from read-sensitive locations using the underrun and overrun detection for flow control.

• In the list describing External writes to DBGDTRRX_EL0, EDSCR.RXfull is set to an UNKNOWN value.

A Data Abort from the memory access can also set EDSCR.ERR to 1. See Data Aborts in Memory access mode on
page H4-7408.

The architecture does not require precisely when these flags are set or cleared by the sequence of operations outlined
in this section. For example, in the case of an external write to DBGDTRRX_EL0, in AArch64 state, RXfull might
be cleared after step 2, or it might not be cleared until after step 3, as an implementation is free to fuse these steps
into a single operation. The architecture does require that the flags are set as at step 4 when the PE is ready to accept
a further read or write without causing an overrun error or an underrun error.

The process outlined in this section represents a simple sequential execution model of Memory access mode. An
implementation is free to pipeline, buffer, and re-order instructions and transactions, as long as the following remain
true:

• Data items are transferred into and out of the DTR in order and without loss of data, other than as a result of
an overrun or an underrun.

• Data Aborts occur in order.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H4-7407
ID072021 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.3 DCC and ITR access modes
• The constraints of the memory type are met.

• In the list describing External reads from DBGDTRTX_EL0 on page H4-7407:

— The MSR equivalent operation at step 3 of the sequence reads the value loaded by step 2.

— If the list is performed in a loop, for all but the first iteration of this list, the value read by step 1 returns
the values written by the MSR equivalent operation at the previous iteration of step 3.

• In the list describing External writes to DBGDTRRX_EL0 on page H4-7407:

— The MRS equivalent operation at step 2 of the sequence returns the value written at step 1.

— The STR equivalent at step 3 of the sequence writes the value read at step 2.

• If the PE cannot accept a read or write, as applicable, during the sequence, then the flags are updated to
indicate an overrun or underrun.

See Flow control of the DCC and ITR registers on page H4-7410 for more information on overrun and underrun.

Ordering, access sizes and effect on Exclusives monitors

For the purposes of memory ordering, access sizes, and effect on the Exclusives monitor, accesses in Memory access
mode are consistent with load/store word instructions executed by the PE.

The simple sequential access model of Memory-access mode, as stated in Memory access mode on page H4-7407,
must also be ordered with respect to instructions executed as a result of explicit writes to EDITR in Normal mode
both before and after accesses to the DTR registers in Memory-access mode.

Data Aborts in Memory access mode

If a memory access generates a Data Abort, then:

• The Data Abort exception is taken. See Exceptions in Debug state on page H2-7369:

— This means EDSCR.ERR is set to 1, see Cumulative error flag on page H4-7412.

— If the Data Abort occurs on stage 2 of an address translation, then the values returned in the ISV field
and in bits[23:14] of the ISS are UNKNOWN.

If this Data Abort is taken to EL2 using AArch64, the ISS is returned by ESR_EL2. ISS encoding for
an exception from a Data Abort on page D13-3172 describes the usual encoding of this ISS.

If EL2 is using AArch32 and this Data Abort is taken to Hyp mode, the ISS is returned by HSR. ISS
encoding for exception from a Data Abort on page G8-6650 describes the usual encoding of this ISS.

• Register R0 retains the address that generated the abort.

• Register R1 is set to an UNKNOWN value.

• EDSCR.TXfull, for a load, or EDSCR.RXfull, for a store, is set to an UNKNOWN value.

• DTRTX, for a load, or DTRRX, for a store, is set to an UNKNOWN value.

• EDSCR.ITE is set to 1.

Illegal Execution state exception

If PSTATE.IL is set to 1 when EDSCR.MA == 1, then on an external write access to DBGDTRRX_EL0 or an
external read from DBGDTRTX_EL0, it is CONSTRAINED UNPREDICTABLE whether the PE:

• Takes an Illegal Execution state exception without performing any operations. In this case:

— EDSCR.ERR is set to 1, see Cumulative error flag on page H4-7412.

— Register R0 is unchanged.

— Register R1 is set to an UNKNOWN value.

— EDSCR.TXfull or EDSCR.RXfull, as applicable, is set to an UNKNOWN value.

— DTRTX or DTRRX, as applicable, is set an UNKNOWN value.

— EDSCR.ITE is set to 1.

See also Exceptions in Debug state on page H2-7369.

• Ignores PSTATE.IL.
H4-7408 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Debug Communication Channel and Instruction Transfer Register
H4.3 DCC and ITR access modes
Note

The typical usage model for Memory access mode involves executing instructions in Normal access mode to set up
X0 before setting EDSCR.MA to 1. These instructions generate an Illegal state exception if PSTATE.IL is set to 1.

Alignment constraints

If the address in R0 is not aligned to a multiple of four, the behavior is as follows:

• For each external DTR access a CONSTRAINED UNPREDICTABLE choice of:

1. The PE makes an unaligned memory access to R0. If alignment checking is enabled for the memory
access, this generates an Alignment fault.

2. The PE makes a memory access to Align(X[0],4) in AArch64 state, or Align(R[0],4) in AArch32
state.

3. The PE generates an Alignment fault, regardless of whether alignment checking is enabled.

4. The PE does nothing.

• Following each memory access, if there is no Data Abort, R0 is updated with an UNKNOWN value.

• For external writes to DBGDTRRX_EL0, if the PE writes to memory, an UNKNOWN value is written.

• For external reads of DBGDTRTX_EL0 an UNKNOWN value is returned.

• The RXfull and TXfull flags are left in an UNKNOWN state, meaning that a DBGDTRTX_EL0 read can trigger
a TX underrun, and a DBGDTRTX_EL0 write can trigger an RX overrun.

H4.3.3 Memory-mapped accesses to the DCC and ITR

Writes to the flags in EDSCR by external debug interface accesses to the DCC and the ITR registers are indirect
writes, because they are a side-effect of the access. The indirect write might not occur for a memory-mapped access
to the external debug interface. For more information, see Register access permissions for memory-mapped
accesses on page H8-7466.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H4-7409
ID072021 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.4 Flow control of the DCC and ITR registers
H4.4 Flow control of the DCC and ITR registers
• Ready flags on page H4-7410.

• Buffering writes to EDITR on page H4-7410.

• Overrun and underrun flags on page H4-7410.

• Cumulative error flag on page H4-7412.

H4.4.1 Ready flags

In Normal access mode:

• For the DTR registers there are two ready flags:

— EDSCR.RXfull == 1 indicates that DBGDTRRX_EL0 contains a valid value that has been written by
the external debugger and not yet read by software running on the target.

— EDSCR.TXfull == 1 indicates that DBGDTRTX_EL0 contains a valid value that has been written by
software running on the target and not yet read by an external debugger.

• For the ITR register there is a single ready flag:

— EDSCR.ITE == 1 indicates that the PE is ready to accept an instruction to the ITR.

Note
The architecture permits a PE to continue to accept and buffer instructions when previous instructions
have not completed their architecturally defined behavior, as long as those instructions are discarded
if EDSCR.ERR is set, either by an underrun or overrun or by any of the other error conditions
described in this architecture, such as an instruction generating an abort.

In Memory access mode:

• EDSCR.{RXfull, ITE} == {0,1} indicates that DBGDTRRX_EL0 is empty and the PE is ready to accept a
word external write to DBGDTRRX_EL0.

• EDSCR.{TXfull, ITE} == {1,1} indicates that DBGDTRTX_EL0 is full and the PE is ready to accept a word
external read from DBGDTRTX_EL0.

All other values indicate that the PE is not ready, and result in a DTR overrun or underrun error, an ITR overrun
error, or both, as defined in Overrun and underrun flags on page H4-7410.

EDSCR.{ITE, RXfull, TXfull} shows the status of the ITR and DCC registers. It ignores the question of whether a
read or write cannot be accepted because, for example, EDSCR.ERR is set or the OPTIONAL Software Lock is locked
for memory-mapped accesses (EDLSR.SLK == 1).

H4.4.2 Buffering writes to EDITR

The architecture permits a processor to continue to accept and buffer instructions when previous instructions have
not completed their architecturally defined behavior, provided that:

• Those instructions are discarded if EDSCR.ERR is set to 1, either by an underrun or an overrun, or by any
other error conditions described in this architecture, such as an instruction generating an abort.

• The PE maintains the simple sequential execution model with the order of instructions determined by the
order in which the PE accepts the EDITR writes. In particular, the buffered instructions must be executed in
the Execution state consistent with a simple sequential execution of the instructions, even if one of the
previous instructions is a state changing operation, such as DCPS or DRPS.

H4.4.3 Overrun and underrun flags

Each of the ready flags has a corresponding overrun or a corresponding underrun flag. These are sticky status flags
that are set if the register is accessed using the external debug interface when the corresponding ready flag is not in
the ready state.

If the PE is in Debug state and Memory access mode, the corresponding error flag is also set if the PE is not ready
to accept an operation because a previous load or store is still in progress. The sticky status flag remains set until
cleared by writing 1 to EDRCR.CSE.
H4-7410 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Debug Communication Channel and Instruction Transfer Register
H4.4 Flow control of the DCC and ITR registers
Note

The architecture permits a PE to continue to accept and buffer data to write to memory in Memory access mode.

Table H4-1 on page H4-7411 shows DCC and ITR ready flags and the overrun and underrun flags associated with
them.

When an overrun or underrun flag is set to 1, the cumulative error flag, EDSCR.ERR, described in Cumulative error
flag on page H4-7412, is also set to 1.

In the event of an external write to DBGDTRRX_EL0 or EDITR generating an overrun, or an external read from
DBGDTRTX_EL0 generating an underrun:

• For a write, the written value is ignored.

• For a read, an UNKNOWN value is returned.

• EDSCR.TXfull, EDSCR.RXfull or EDSCR.ITE, as applicable, are not updated.

There is no overrun or underrun detection on external reads of DBGDTRRX_EL0 or external writes of
DBGDTRTX_EL0.

There is no overrun or underrun detection of direct reads and direct writes of the DTR System registers by software:

• If RXfull == 0, a direct read of DBGDTRRX or DBGDTR_EL0 returns UNKNOWN.

• If TXfull == 1, a direct write of:

— DBGDTRTX sets DTRTX to UNKNOWN.

— DBGDTR_EL0 sets DTRRX and DTRTX to UNKNOWN.

See DCC accesses in Non-debug state on page H4-7414 for more information.

Accessing 64-bit data

In AArch64 state, a software access to the DBGDTR_EL0 register and an external debugger access to both
DBGDTRRX_EL0 and DBGDTRTX_EL0 can perform a 64-bit half-duplex operation.

However, there is only overrun and underrun detection on one of the external debug registers. That is:

• If software directly writes a 64-bit value to DBGDTR_EL0, only TXfull is set to 1, meaning:

— A subsequent external write to DBGDTRRX_EL0 would not be detected as an overrun.

— If the external debugger reads DBGDTRTX_EL0 first, software might observe
MDCCSR_EL0.TXfull == 0 and send a second value before the external debugger reads
DBGDTRRX_EL0, leading to an undetected overrun.

• On external writes to both DBGDTRRX_EL0 and DBGDTRTX_EL0 only RXfull is set to 1, meaning:

— A subsequent direct write of DBGDTRTX_EL0 would not be detected as an overrun.

— If the external debugger writes to DBGDTRRX_EL0 first, software might observe
MDCCSR_EL0.RXfull == 1 and read a full 64-bit value, before the external debugger writes to
DBGDTRTX_EL0, leading to an undetected underrun.

To avoid this, debuggers need to be aware of the data size used by software for transfers and ensure that 64-bit data
is read or written in the correct order. If the PE is in Non-debug state, this order is as follows:

• The external debugger must check EDSCR.{RXfull, TXfull} before each transfer.

Table H4-1 DCC and ITR ready flags and the associated overrun/underrun flags

External debug
interface access

Overrun/Underrun condition EDSCR flag

Write DBGDTRRX_EL0 EDSCR.RXfull == ‘1’ || (Halted() && EDSCR.MA == ‘1’ && EDSCR.ITE == ‘0’) RXO

Read DBGDTRTX_EL0 EDSCR.TXfull == ‘0’ || (Halted() && EDSCR.MA == ‘1’ && EDSCR.ITE == ‘0’) TXU

Write EDITR Halted() && (EDSCR.ITE == ‘0’ || EDSCR.MA == ‘1’) ITO
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H4-7411
ID072021 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.4 Flow control of the DCC and ITR registers
• To receive a 64-bit value from the target, the external debugger must read DBGDTRRX_EL0 before reading
DBGDTRTX_EL0.

• To send a 64-bit value to the target, the external debugger must write to DBGDTRTX_EL0 before writing
DBGDTRRX_EL0.

Because three accesses are required to transfer 64 bits of data, 64-bit transfers are not recommended for regular
communication between host and target. The use of underrun and overrun detection means that only one access is
required for 32 bits of data when using 32-bit transfers.

In Debug state, the debugger controls the instructions executed by the PE, so these limitations do not apply. 64-bit
transfers provide a means to transfer a 64-bit general register between the host and the target in Debug state.

H4.4.4 Cumulative error flag

The cumulative error flag, EDSCR.ERR, is set to 1:

• On taking an exception from Debug state.

• On any signaled overrun or underrun in the DCC or ITR.

When EDSCR.ERR == 1:

• External reads of DBGDTRTX_EL0 do not have any side-effects.

• External writes to DBGDTRRX_EL0 are ignored.

• External writes to EDITR are ignored.

• No further instructions can be issued in Debug state. This includes any instructions previously accepted as
external writes to EDITR that occur in program order after the instruction or access that caused the error.

This allows a debugger to stream data, or, in Debug state, instructions, to the target without having to:

• Check EDSCR.{RXfull, TXfull, ITE} before each access.

• Check EDSCR.{ITO, RXO, TXU} following each access, for overrun or underrun.

• Check PSTATE or other syndrome registers, or both, for an exception following each instruction executed in
Debug state that might generate a synchronous exception.

The cumulative error flag remains set until cleared to 0 by writing 1 to EDRCR.CSE. However, the effect of
writing 1 to EDRCR.CSE to clear EDSCR.ERR is CONSTRAINED UNPREDICTABLE when both of the following
apply:

• The PE is in Debug state.

• The value of EDSCR.ITE is 0.

When these conditions apply and a value of 1 is written to EDRCR.CSE, either or both of the following might occur:

• EDSCR.ERR is not cleared to 0.

• Any instructions in EDITR that have not been executed might be executed subsequently, rather than being
ignored.

Note

This means that a debugger must poll EDSCR.ITE until it has the value 1, indicating that EDITR is empty, before
writing to EDRCR.CSE to clear the EDSCR.ERR flag to 0.

For overruns and underruns, EDSCR.{ITO, RXO, TXU} record the error type.

Pseudocode description of clearing the error flag

The ClearStickyErrors() pseudocode function is described in Chapter J1 Armv8 Pseudocode.
H4-7412 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Debug Communication Channel and Instruction Transfer Register
H4.5 Synchronization of DCC and ITR accesses
H4.5 Synchronization of DCC and ITR accesses

In addition to the standard synchronization requirements for register accesses, the following subsections describe
additional requirements that apply for the DCC and ITR registers:

• Summary of System register accesses to the DCC on page H4-7413.

• DCC accesses in Non-debug state on page H4-7414.

• Synchronization of DCC interrupt request signals on page H4-7416.

• DCC and ITR access in Debug state on page H4-7417.

In these sections, accesses by the external debug interface are referred to as external reads and external writes.
Accesses to System registers are referred to as direct reads, direct writes, indirect reads, and indirect writes.

Note

In Synchronization requirements for AArch64 System registers on page D13-3041 external reads and external writes
are described as forms of indirect access. This whole section uses more explicit terminology.

The DTR registers and the DCC flags, TXfull and RXfull, form a communication channel, with one end operating
asynchronously to the other. Implementations must respect the ordering of accesses to these registers in order to
maintain the correct behavior of the channel.

External reads of, and external writes to DBGDTRRX_EL0 and DBGDTRTX_EL0 are asynchronous to direct
reads of, and direct writes to, DBGDTRRX, DBGDTRTX, and in AArch64 state DBGDTR_EL0, made by software
using System register access instructions. The direct reads and direct writes indirectly write to the DCC flags. The
external reads and external writes indirectly read the DCC flags to check for underrun and overrun.

Throughout this section:

DCC flags Means any or all of the following:

• The EDSCR.{RXfull.TXfull} ready flags.

• The EDSCR.RXO overrun flag.

• The EDSCR.TXU underrun flag.

• The EDSCR.ERR cumulative error flag.

ITR flags Means any or all of the following:

• The EDSCR.ITE ready flag.

• The EDSCR.ITO overrun flag.

• The EDSCR.ERR cumulative error flag.

H4.5.1 Summary of System register accesses to the DCC

System register accesses to the DTR registers are direct reads and writes of those registers, as shown in Table H4-2
on page H4-7414. Several of these instructions access the same registers using different encodings.

DBGDTRRX_EL0 and DBGDTRTX_EL0 are encoded as MRS and MSR accesses respectively to the same System
register, even though they access different underlying register values. DBGDTRRX and DBGDTRTX are similarly
encoded as MRC and MCR accesses respectively to the same System register. The encoding means that direct reads
and writes using these encodings must be ordered with respect to each other. For more information, see
Synchronization requirements for AArch64 System registers on page D13-3041 and Synchronization of changes to
AArch32 System registers on page G8-6443.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H4-7413
ID072021 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.5 Synchronization of DCC and ITR accesses
Table H4-2 on page H4-7414 shows a summary of System register accesses to the DCC.

H4.5.2 DCC accesses in Non-debug state

In Non-debug state DCC accesses are as described in Normal access mode on page H4-7406:

• If a direct read of DCCSR returns RXfull == 1, then a following direct read of DBGDTRRX, or in AArch64
state of DBGDTR_EL0, returns valid data and indirectly writes 0 to DCCSR.RXfull as a side-effect.

• If a direct read of DCCSR returns TXfull == 0, then a following direct write to DBGDTRTX, or in AArch64
state to DBGDTR_EL0, writes the intended value, and indirectly writes 1 to DCCSR.TXfull as a side-effect.

No Context synchronization event is required between these two instructions. Overrun and underrun detection
prevents intervening external reads and external writes affecting the outcome of the second instruction.

The indirect write to the DCC flags as part of the DTR access instruction is made atomically with the DTR access.

Because a direct read of DBGDTRRX is an indirect write to DCCSR.RXfull, it must occur in program order with
respect to the direct read of DCCSR, meaning it must not return a speculative value for DTTRX that predates the
RXfull flag returned by the read of DCCSR. The direct write to DBGDTRTX must not be executed speculatively.

Direct reads of DBGDTRRX, or in AArch64 state DBGDTR_EL0, and DCCSR, must occur in program order with
respect to other direct reads of the same register using the same encoding.

The following accesses have an implied order within the atomic access:

• In the simple sequential execution of the program the indirect write of the DCC flags occurs immediately
after the direct DTR access.

Note
For an access to DBGDTR_EL0, this means the indirect write happens after both DBGDTRRX_EL0 and
DBGDTRTX_EL0 have been accessed.

• In the simple sequential execution model, for an external read of DBGDTRTX_EL0 or an external write of
DBGDTRRX_EL0:

— The check of the DCC flags for overrun or underrun occurs immediately before the access.

Table H4-2 Summary of System register accesses to the DCC

Operation OS Lock
AArch64
(MRS/MSR)

AArch32
(MRC/MCR)

Description

Read - DBGDTRRX_EL0 DBGDTRRXint Direct read of DTRRX

Indirect write to the DCC flags

An STC instruction that reads DBGDTRRXint
makes an indirect write to DBGDSCRint.RXfull

Write - DBGDTRTX_EL0 DBGDTRTXint Direct read of DTRTX

Indirect write to the DCC flags

An LDC instruction that writes to DBGDTRTXint
using a value read from memory is a direct write to
DBGDTRTXint

Read/write - DBGDTR_EL0 - Direct read/write of both DTRRX and DTRTX

Indirect write to the DCC flags

Read - MDCCSR_EL0 DBGDSCRint Direct read of the DCC flags

Read/write - OSDTRRX_EL1 DBGDTRRXext Direct read/write of DTRRX

Read/write - OSDTRTX_EL1 DBGDTRTXext Direct read/write of DTRTX

Read Unlocked MDSCR_EL1 DBGDSCRext Direct read of DCC flags

Read/write Locked MDSCR_EL1 DBGDSCRext Direct read/write of DCC flags
H4-7414 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Debug Communication Channel and Instruction Transfer Register
H4.5 Synchronization of DCC and ITR accesses
— If there is no underrun or overrun, the update of the DCC flags occurs immediately after the access.

— If there is underrun or overrun, the update of the DCC underrun or overrun flags occurs immediately
after the access.

All observers must observe the same order for accesses.

Note

These requirements do not create order where order does not otherwise exist. It applies only for ordered accesses.

Without explicit synchronization following external writes and external reads:

• The value written by the external write to DBGDTRRX_EL0 that does not overrun, must be observable to
direct reads of DBGDTRRX and DBGDTR_EL0 in finite time.

• The DCC flags that are updated as a side-effect of the external write or external read must be observable:

— To subsequent external reads of EDSCR.

— To subsequent external reads of DBGDTRRX_EL0 when checking for underrun.

— To subsequent external writes to DBGDTRTX_EL0 when checking for overrun.

— To direct reads of DCCSR in finite time.

However, explicit synchronization is required to guarantee that a direct read of DCCSR returns up-to-date DCC
flags. This means that if a signal is received from another agent that indicates that DCCSR must be read, an ISB is
required to ensure that the direct read of DCCSR occurs after the signal has been received. This also synchronizes
the value in DBGDTRRX, if applicable. However, if that signal is an interrupt exception triggered by COMMIRQ,
COMMTX, or COMMRX, the exception entry is sufficient synchronization. See Synchronization of DCC
interrupt request signals on page H4-7416.

Explicit synchronization is required following a direct read or direct write:

• To ensure that a value directly written to DBGDTRTX is observable to external reads of DBGDTRTX_EL0.

• To ensure that a value directly written to DBGDTR_EL0 is observable to external reads of
DBGDTRTX_EL0 and DBGDTRRX_EL0.

• To guarantee that the indirect writes to the DCC flags that were a side-effect of the direct read or direct write
have occurred, and therefore that the updated values are:

— Observable to external reads of EDSCR.

— Observable to external reads of DBGDTRRX_EL0 when checking for underrun.

— Observable to external writes of DBGDTRTX_EL0 when checking for overrun.

— Returned by a following direct read of DCCSR.

See also Memory-mapped accesses to the DCC and ITR on page H4-7409 and Synchronization of changes to the
external debug registers on page H8-7462.

Note

These ordering rules mean that software:

• Must not read DBGDTRRX without first checking DCCSR.RXfull or if the previously-read value of
DCCSR.RXfull is 0.

It is not sufficient to read both registers and then later decide whether to discard the read value, as there might
be an intervening write from the external debug interface.

• Must not write DBGDTRTX without first checking DCCSR.TXfull or if the previously-read value of
DCCSR.TXfull is 1.

The write to DBGDTRTX overwrites the value in DTRTX, and the external debugger might or might not
have read this value.

• Must ensure there is an explicit Context synchronization event following a DTR access, even if not
immediately returning to read DCCSR again. This synchronization operation can be an exception return.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H4-7415
ID072021 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.5 Synchronization of DCC and ITR accesses
Derived requirements

The rules for DCC accesses in Non-debug state are as follows:

• Following a direct read of DBGDTRRX when RXfull is 1:

— If an external write to DBGDTRRX checks the RXfull flag for overrun and observes that the value of
RXfull is 0, the value returned by the previous direct read must not be affected by the external write.

— If an external read of EDSCR returns a RXfull value of 0, then the value returned by the previous direct
read must not be affected by a following external write to DBGDTRRX, and the following external
write does not overrun.

• Following a direct read of DBGDTR_EL0, when RXfull is 1:

— If an external write to DBGDTRRX checks the RXfull flag for overrun and observes that the value of
RXfull is 0, the value returned by the previous direct read must not be affected by the external write
nor by a following direct write to DBGDTRTX.

— If an external read of EDSCR returns a RXfull value of 0, then the value returned by the previous direct
read must not be affected by subsequent external writes to DBGDTRRX and DBGDTRTX in any
order, and the following external write of DBGDTRRX will not overrun.

• Following a direct write to DBGDTRTX, when TXfull is 0:

— If an external read of DBGDTRTX checks the TXfull flag for underrun and observes that the value of
TXfull is 1, the value returned by the external read must be the value written by the previous direct
write.

— If an external read of EDSCR returns a TXfull value of 1, then the value returned by a following
external read of DBGDTRRX must be the value written by the previous direct read, and the
subsequent external read will not underrun.

• Following a direct write to DBGDTR_EL0, when TXfull is 0:

— If an external read of DBGDTRTX checks the TXfull flag for underrun and observes that the value of
TXfull is 1, the values returned by the external read and by a subsequent external read of DBGDTRRX
must be the value written by the previous direct write.

— If an external read of EDSCR returns a TXfull value of 1, then the value returned by subsequent
external reads of DBGDTRRX and DBGDTRTX, in any order, must be the value written by the
previous direct read, and the subsequent external read of DBGDTRTX does not underrun.

• Following an external read of DBGDTRTX that does not underrun, if a direct read of DCCSR returns a
TXfull value of 0, then the value returned by the external read must not be affected by a following direct write
to DBGDTRTX.

• Following a first external read DBGDTRRX and a following second external read of DBGDTRTX that does
not underrun, if a direct read of DCCSR returns a TXfull value of 0, then the values returned by the external
reads must not be affected by a following direct write to DBGDTR_EL0.

• Following an external write to DBGDTRRX that does not overrun, if a direct read of DCCSR returns an
RXfull value of 1, then the value returned by a following direct read of DBGDTRRX or DBGDTR_EL0 must
be the value written by the previous external write.

• Following a first external write to DBGDTRTX and a following second external write to DBGDTRRX that
does not overrun, if a direct read of DCCSR returns an RXfull value of 1, then the value returned by a
subsequent direct read of DBGDTR_EL0 must return the values written by the previous external writes.

H4.5.3 Synchronization of DCC interrupt request signals

Following an external read or external write access to the DTR registers, the interrupt request signals, COMMIRQ,
COMMTX, and COMMRX, must be updated in finite time without explicit synchronization.

The updated values must be observable to a direct read of DCCSR or DBGDTRRX, or a direct write of
DBGDTRTX executed after taking an interrupt exception generated by the interrupt request. The updated values
must also be observable to a direct write of DBGDTRTX executed after taking an interrupt exception generated by
the interrupt request.
H4-7416 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Debug Communication Channel and Instruction Transfer Register
H4.5 Synchronization of DCC and ITR accesses
Note

The requirement that indirect writes to registers are observable to direct reads in finite time does not imply that all
observers will observe the indirect write at the same time. For more information, see Synchronization requirements
for AArch64 System registers on page D13-3041 and Synchronization of changes to AArch32 System registers on
page G8-6443.

Following a direct read of DBGDTRRX or a direct write to DBGDTRRX, software must execute a Context
synchronization event to guarantee the interrupt request signals have been updated in finite time. This
synchronization operation can be an exception return.

H4.5.4 DCC and ITR access in Debug state

In Debug state, stricter observability rules apply for instructions issued through the ITR, to maintain communication
between a debugger and the PE, without requiring excessive explicit synchronization.

In Normal access mode, without explicit synchronization:

• A direct read or direct write of the DTR registers by an instruction written to EDITR must be observable to
an external write or an external read in finite time:

— A direct read of DBGDTRRX must be observable to an external write of DBGDTRRX_EL0.

— A direct read of DBGDTR_EL0 must be observable to an external write of DBGDTRRX_EL0 and
DBGDTRTX_EL0.

— A direct write of DBGDTRTX must be observable to an external read of DBGDTRTX_EL0.

— A direct write of DBGDTR_EL0 must be observable to an external read of DBGDTRRX_EL0 and
DBGDTRTX_EL0.

This includes the indirect write to the DCC flags that occurs atomically with the access as described in DCC
accesses in Non-debug state on page H4-7414.

The subsequent external write or external read must observe either the old or the new values of both the DTR
contents and DCC flags. If the old values are observed, this typically results in overrun or underrun, assuming
the old values of the DCC flags indicate an overrun or underrun condition, as would normally be the case.

This means the debugger can observe the direct read or direct write without explicit synchronization and
without explicitly testing the DCC flags in EDSCR, because it can rely on overrun and underrun tests.

• External reads of DBGDTRTX_EL0 that do not underrun and external writes to DBGDTRRX_EL0 that do
not overrun must be observable to an instruction subsequently written to EDITR on completion of the first
external access. This includes the indirect write to the DCC flags.

This means that without explicit synchronization and without the need to first check the DCC flags in
DCCSR:

— If the instruction is a direct read of DBGDTRRX, it observes the external write.

— If the instruction is a direct write of DBGDTRTX, it observes the external read.

• Writes to EDITR that do not overrun commit an instruction for execution immediately. The instruction must
complete execution in finite time without requiring any further operation by the debugger.

• After an external write to the EDITR, the ITR flags that are updated as a side effect of that write must be
observable by:

— An external read of the EDSCR that follows the external write to the EDITR.

— When checking for overrun, another external write to the EDITR that follows the original external
write to the EDITR.

In Memory access mode, these requirements shift to the instructions implicitly executed by external reads and
external writes of the DTR registers, as described in Memory access mode on page H4-7407.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H4-7417
ID072021 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.6 Interrupt-driven use of the DCC
H4.6 Interrupt-driven use of the DCC

Arm recommends implementations provide a level-sensitive DCC interrupt request through the IMPLEMENTATION
DEFINED interrupt controller as a private peripheral interrupt for the originating PE.

Note

• In addition to connection to the interrupt controller Arm also recommends COMMIRQ, COMMTX, and
COMMRX signals that might be implemented for use by any legacy system peripherals.

• GICv3 reserves a private peripheral interrupt number for the COMMIRQ interrupt.

The DCCINT register provides a first level of interrupt masking within the PE, meaning only a single interrupt
source, COMMIRQ, is needed at the interrupt controller.

See also Synchronization of DCC interrupt request signals on page H4-7416.
H4-7418 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Debug Communication Channel and Instruction Transfer Register
H4.7 Pseudocode description of the operation of the DCC and ITR registers
H4.7 Pseudocode description of the operation of the DCC and ITR registers

The basic operation of the DCC and ITR registers is shown by the following pseudocode functions. These functions
do not cover the behavior when OSLSR.OSLK == 1, meaning that the OS Lock is locked:

• DBGDTR_EL0[].

• DBGDTRRX_EL0[].

• DBGDTRTX_EL0[].

• EDITR[].

• CheckForDCCInterrupts().

For the definition of the DTR Registers, see shared/debug/dccanditr/DTR on page J1-8231.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H4-7419
ID072021 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.7 Pseudocode description of the operation of the DCC and ITR registers
H4-7420 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter H5
The Embedded Cross-Trigger Interface

This chapter describes the embedded cross-trigger interface. It contains the following sections:

• About the Embedded Cross-Trigger (ECT) on page H5-7422.

• Basic operation on the ECT on page H5-7424.

• Cross-triggers on a PE in an Armv8 implementation on page H5-7428.

• Description and allocation of CTI triggers on page H5-7429.

• CTI registers programmers’ model on page H5-7433.

• Examples on page H5-7434.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H5-7421
ID072021 Non-Confidential

The Embedded Cross-Trigger Interface
H5.1 About the Embedded Cross-Trigger (ECT)
H5.1 About the Embedded Cross-Trigger (ECT)

The Embedded Cross-Trigger, ECT, allows a debugger to:

• Send trigger events to a PE. For example, this might be done to halt the PE.

• Send a trigger event to one or more PEs, or other system components, when a trigger event occurs on another
PE or system component. For example, this might be done to halt all PEs when one individual PE halts.

Figure H5-1 on page H5-7422 shows the logical structure of an ECT.

Figure H5-1 Structure of an embedded cross-trigger

The ECT can deliver many types of trigger events, which are described in the following sections:

• Debug request trigger event on page H5-7430.

• Restart request trigger event on page H5-7430.

• Cross-halt trigger event on page H5-7430.

• Performance Monitors overflow trigger event on page H5-7430.

• Generic trace external input trigger events on page H5-7431.

• Generic trace external output trigger events on page H5-7431.

• Generic CTI interrupt trigger event on page H5-7431.

An Armv8-A implementation must:

• Include a cross-trigger interface, CTI.

• Implement at least the input and output triggers defined in this architecture.

In addition, see Cross-triggers on a PE in an Armv8 implementation on page H5-7428.

Arm recommends that this cross-trigger interface includes:

• The ability to route trigger events between Trace Units, which typically have advanced event triggering logic.

• An output trigger to the interrupt controller.

Also, Arm recommends that the Embedded Cross-Trigger includes the capability to send and receive
IMPLEMENTATION DEFINED system trigger events to and from other system components, including a system counter,
using a system CTI. See Halt-on-debug on page I2-7666.

Note

The ECT and CTI must only signal trigger events for external debugging. They must not route software events, such
as interrupts. For example, the Performance Monitors overflow input trigger is provided to allow entry to Debug
state on a counter overflow, and the output trigger to the interrupt controller is provided to generally allow events
from the external debug sub-system to be routed to a software agent. However, the combination of the two must not
be used as a mechanism to route Performance Monitors overflows to an interrupt controller.

PE PE PE PE

PE
Cross-Trigger
Interface (CTI)

PE CTI PE CTI PE CTI

Cross-Trigger Matrix (CTM)

Embedded Cross-Trigger

Other system
components

System
CTI
H5-7422 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Embedded Cross-Trigger Interface
H5.1 About the Embedded Cross-Trigger (ECT)
Note

CTI version 1 (CTIv1) is defined by the CoreSight™ SoC Technical Reference Manual. CTIv2 extends CTIv1 with
the addition of the input channel gate. See Implementation with CTIv2 on page H5-7423

H5.1.1 Implementation with a CoreSight CTI

For details of the recommended connections in an Armv8-A implementation, see Appendix K2 Recommended
External Debug Interface. See also CoreSight™ SoC Technical Reference Manual.

H5.1.2 Implementation with CTIv2

If the CTI implemented is CTIv2 then:

• The CTIDEVARCH, CTIDEVAFF0, and CTIDEVAFF1 registers must be implemented.

• If the channel gate function is implemented, it applies to both input and output channels.

• The input channel gate function must be implemented if either of the following is true:

— The CTM is implemented and the architecture variant is Armv8.5 or higher.

— The CTIDEVARCH.REVISION field reads as 0b0001 or higher.

Implementation of CTIv2 features in architecture variants below Armv8.5 is OPTIONAL, but Arm recommends that
CTIv2 is implemented, CTIv2 must be implemented from Armv8.5.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H5-7423
ID072021 Non-Confidential

The Embedded Cross-Trigger Interface
H5.2 Basic operation on the ECT
H5.2 Basic operation on the ECT

The ECT comprises a Cross-Trigger Matrix, CTM, and one Cross-Trigger Interface, CTI, for each PE. The ECT
might also include other CTIs for other system components. The CTM passes events between the CTI blocks over
channels. The CTM can have a maximum of 32 channels.

The main interfaces of the cross-trigger interface, CTI, are:

• The input triggers:

— These are trigger event inputs from the PE to the CTI.

• The output triggers:

— These are trigger event outputs from the CTI to the PE.

• The input channels:

— These are channel event inputs from the cross-trigger matrix, CTM, to the CTI.

• The output channels:

— These are channel event outputs from the CTI to the CTM.

Each CTI block has:

• Up to 32 input triggers that come from the PE:

— The input triggers are numbered 0-31.

• Up to 32 output triggers that go to the PE:

— The output triggers are numbered 0-31.

If the CTI is not powered up when the Core power domain is powered up, the CTI ignores all input triggers and
input channel events, and does not generate any output triggers or output channel events.

Figure H5-2 on page H5-7425 shows the logical internal structure of a CTI.
H5-7424 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Embedded Cross-Trigger Interface
H5.2 Basic operation on the ECT
Figure H5-2 Structure of a cross-trigger interface

Note

• The number of triggers in IMPLEMENTATION DEFINED. Figure H5-2 on page H5-7425 shows eight input and
eight output triggers.

• The number of channels is IMPLEMENTATION DEFINED. Figure H5-2 on page H5-7425 shows four channels.

• In Figure H5-2 on page H5-7425 the input channel gate function is a CTIv2 feature.

When the CTI receives an input trigger event, this generates channel events on one or more internal channels,
according to the mapping function defined by the Input triggeroutput channel mapping registers, CTIINEN<n>.

The CTI also contains an application trigger and channel pulse to allow a debugger to create channel events directly
on internal channels by writing to the CTI control registers.

Gate
enable

Application
trigger

(CTIAPP)

Channel
pulse

CTIGATE

CTIAPPSET

Cross Trigger Interface

Input
channel

to
Output
trigger

mapping

CTIAPPCLEAR

CTITRIGINSTATUS

CTITRIGOUTSTATUS

CTIOUTEN[]

PE CTM

CTIINTACK

Input
trigger

interface

Output
channel
interface

Input
trigger

to
Output
channel
mapping

CTIINEN[]

CTICHINSTATUS

CTICHOUTSTATUS

Input
channel
interface

Output
trigger

interface

GLBEN
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H5-7425
ID072021 Non-Confidential

The Embedded Cross-Trigger Interface
H5.2 Basic operation on the ECT
Channel events on each internal channel are passed to a corresponding output channel that is controlled by a channel
gate. The channel gate can block propagation of channel events from an internal channel to an output channel.

Note

If the CTM is implemented:

• The gate function must be implemented.

• If the CTI is CTIv1, the gate function applies to output triggers only.

The output channels from a CTI are combined, using a logical OR function, with the output channels from all other
CTIs to form the input channels on other CTIs. The input channels of this CTI are the logical OR of the output
channels on all other CTIs. This is the cross-trigger matrix, CTM. Therefore, the number of input channels must
equal the number of output channels.

Note

The number of input triggers and output triggers is not required to be the same.

The internal channels form an internal cross-trigger matrix within the CTI. This delivers events directly from the
input triggers to the output triggers. Therefore the number of internal channels is the same as the number of input
and output channels on the external CTM, and there is a direct mapping between the two.

Channel events received on each input channel are passed to the corresponding internal channel. It is
IMPLEMENTATION DEFINED whether the cross-trigger gate also blocks propagation of channel events from input
channels to internal channels.

Note

If CTIv2 is implemented, the cross-trigger gate also blocks propagation of channel events from input channels to
internal channels.

When the CTI receives a channel event on an internal channel this generates trigger events on one or more output
triggers, according to the mapping function defined by the Input channel output trigger mapping registers,
CTIOUTEN<n>.

The CTI contains the input and output trigger interfaces to the PE and the interface of the cross-trigger matrix. The
architecture does not define the signal protocol used on the trigger interfaces, and:

• It is IMPLEMENTATION DEFINED whether the CTI supports multicycle input trigger events.

• It is IMPLEMENTATION DEFINED whether the CTM supports multicycle channel events.

See Multicycle events on page H5-7426.

However, an output trigger is asserted until acknowledged. The output trigger can be:

• Self-acknowledging. This means that no further action is required from the debugger.

• Acknowledged by the debugger writing 1 to the corresponding bit of CTIINTACK.

The time taken to propagate a trigger event from the first PE, through its CTI, across the CTM to another CTI, and
thereby to a second PE is IMPLEMENTATION DEFINED.

Note

Arm recommends that this path is not longer than the shortest software communication path between those PEs.
This is because if the first PE halts, the Cross-halt trigger event can propagate through the ECT and halt the second
PE without causing software on the second PE to malfunction because the first PE is in Debug state and is not
responding.

H5.2.1 Multicycle events

A multicycle event is one with a continuous state that might persist over many cycles, as opposed to a discrete event.
A typical implementation of a multicycle event is a level-based signal interface, whereas a discrete event might be
implemented as a pulse signal or message.
H5-7426 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Embedded Cross-Trigger Interface
H5.2 Basic operation on the ECT
CTI support for multicycle trigger events is IMPLEMENTATION DEFINED. Use of multicycle trigger events is
deprecated. Of the architecturally defined input trigger events, the Performance Monitors overflow trigger event and
Generic trace external output trigger events can be multicycle input triggers.

CTM support for multicycle channel events is IMPLEMENTATION DEFINED. A CTM that does not support multicycle
channel events cannot propagate a multicycle trigger event between CTIs.

Note

A full ECT might comprise a mix of CTIs, some of which can support multicycle trigger events. In bridging these
components, multicycle channel events become single channel events at the boundary between the CTIs.

An ECT that supports multicycle trigger events

When an ECT supports multicycle trigger events, an input trigger event to the CTI continuously asserts channel
events on all output channels mapped to it until either:

• The input trigger event is removed.

• The channel mapping function is disabled.

This means that an input trigger that is asserted for multiple cycles causes any channels that are mapped to it to
become active for multiple cycles. Consequently, any output triggers mapped from that channel are asserted for
multiple cycles.

Note

The output trigger remains asserted for at least as long as the channel remains active. This means that even if the
output trigger is acknowledged, it remains asserted until the channel deactivates.

The CTI does not guarantee that these events have precisely the same duration, as the triggers and channels can cross
between clock domains.

CTIAPPSET and CTIAPPCLEAR can set a channel active for multiple cycles. CTIAPPPULSE generates a single
channel event. CTICHINSTATUS and CTICHOUTSTATUS can report whether a channel is active.

An ECT that does not support multicycle trigger events

When an ECT does not support multicycle trigger events, an input trigger event to the CTI generates a single
channel event on all output channels mapped to it, regardless of how long the input trigger event is asserted.

This means that an input trigger event that is asserted for multiple cycles generates a single channel event on any
channels mapped to it. Consequently any self-acknowledging output triggers mapped from those channels are single
trigger events.

Note

A single event is typically a single cycle, but there is no guarantee that this is always the case.

CTIAPPSET and CTIAPPCLEAR can only generate a single channel event. CTIAPPPULSE generates a single
channel event. If the ECT does not support multicycle channel events, use of CTIAPPSET and CTIAPPCLEAR is
deprecated, and the debugger must only use CTIAPPPULSE. CTICHINSTATUS and CTICHOUTSTATUS must
be treated as UNKNOWN.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H5-7427
ID072021 Non-Confidential

The Embedded Cross-Trigger Interface
H5.3 Cross-triggers on a PE in an Armv8 implementation
H5.3 Cross-triggers on a PE in an Armv8 implementation

An Armv8 PE must include a cross-trigger interface, and the implementation must include at least the input and
output triggers defined in this architecture. The number of channels in the cross-trigger matrix is IMPLEMENTATION
DEFINED, but there must be a minimum of three. Software can read CTIDEVID.NUMCHAN to discover the number
of implemented channels.

The CTM must connect to all PEs in the same Inner Shareability domain as the Armv8-A PE, but can also connect
to additional PEs. Arm strongly recommends that the CTM connects all PEs implementing a CTI in the system. This
includes Armv7-A PEs and other PEs that can be connected using a CoreSight CTI module.

Note

In a uniprocessor system the CTM is OPTIONAL. In a multiprocessor system the CTM is required. The CTM might
be connected other CTI modules for non-PEs, such as triggers for system visibility components. Arm recommends
that the CTM is implemented.

Any CTI connected to a PE that is not an Armv8-A PE must implement at least:

• The Debug request trigger event.

• The Restart trigger event.

• The Cross-halt trigger event.

For more information about the CTI, see the CoreSight ™ SoC Technical Reference Manual. Armv8-A refines the
generic CTI by defining roles for each of the implemented input and output triggers.
H5-7428 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Embedded Cross-Trigger Interface
H5.4 Description and allocation of CTI triggers
H5.4 Description and allocation of CTI triggers

Table H5-1 on page H5-7429 shows the output trigger events defined by the architecture and the related trigger
numbers.

Note

Output triggers from the CTI are inputs to other blocks.

Table H5-2 on page H5-7429 shows the input trigger events defined by the architecture and the related trigger
numbers.

Note

Input triggers to the CTI are outputs from other blocks.

Table H5-1 on page H5-7429 and Table H5-2 on page H5-7429 show the minimum set of trigger events defined by
the architecture. However:

• The Generic trace external input and output trigger events are required only if the OPTIONAL PE Trace Unit
is implemented. If the OPTIONAL PE Trace Unit is not implemented, these trigger events are reserved.

• Support for the generic CTI interrupt trigger event is IMPLEMENTATION DEFINED because details of interrupt
handling in the system, including any interrupt controllers, are IMPLEMENTATION DEFINED. Details regarding
how the CTI interrupt is connected to an interrupt controller and its allocated interrupt number lie outside the
scope of the architecture. Arm strongly recommends that implementations provide a means to generate
interrupts based on external debug events.

• The other trigger events are required by the architecture.

An Armv8-A implementation can extend the CTI with additional triggers. These start with the number eight.

Table H5-1 Allocation of CTI output trigger events

Number Source Destination Event description

0 CTI PE Debug request trigger event on page H5-7430

1 CTI PE Restart request trigger event on page H5-7430

2 CTI IRQ controller Generic CTI interrupt trigger event on page H5-7431

3 - - Reserved

4 - 7 CTI PE Trace Unit OPTIONAL Generic trace external input trigger events on page H5-7431

Table H5-2 Allocation of CTI input trigger events

Number Source Destination Event description

0 PE CTI Cross-halt trigger event on page H5-7430

1 PE CTI Performance Monitors overflow trigger event on page H5-7430

2 PE CTI Statistical Profiling Extension sample trigger event on page H5-7431

3 - - Reserved

4 - 7 PE Trace Unit CTI OPTIONAL Generic trace external output trigger events on page H5-7431
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H5-7429
ID072021 Non-Confidential

The Embedded Cross-Trigger Interface
H5.4 Description and allocation of CTI triggers
H5.4.1 Debug request trigger event

This is an output trigger event from the CTI, and an input trigger event to the PE, asserted by the CTI to force the
PE into Debug state. The trigger event is asserted until acknowledged by the debugger. The debugger acknowledges
the trigger event by writing 1 to CTIINTACK[0].

Note

A debugger must poll CTITRIGOUTSTATUS[0] until it reads as 0, to confirm that the output trigger has been
deasserted before generating any event that must be ordered after the write to CTIINTACK, such as a write to
CTIAPPPULSE to activate another trigger.

If the PE is already in Debug state, the PE ignores the trigger event, but the CTI continues to assert it until it is
removed by the debugger. See also External Debug Request debug event on page H3-7395.

H5.4.2 Restart request trigger event

This is an output trigger event from the CTI, and an input trigger event to the PE, asserted by the CTI to request the
PE to exit Debug state. If the PE is in Non-debug state, the request is ignored by the PE.

If a Restart request trigger event is received at or about the same time as the PE enters Debug state, it is
CONSTRAINED UNPREDICTABLE whether:

• The request is ignored by the PE. In this case the PE enters Debug state and remains in Debug state.

• The PE enters Debug state and then immediately restarts.

Debuggers must program the CTI to send Restart request trigger events only to PEs that are halted. To enable the
PE to disambiguate discrete Restart request trigger events, after sending a Restart request trigger event, the debugger
must confirm that the PE has restarted and halted before sending another Restart request trigger event. Debuggers
can use EDPRSR.{SDR, HALTED} to determine the Execution state of the PE.

Note

Before generating a Restart request trigger event for a PE, a debugger must ensure any Debug request trigger event
targeting that PE is cleared. Debug request trigger event on page H5-7430 describes how to do this.

The trigger event is self-acknowledging, meaning that the debugger requires no further action to remove the trigger
event. The trigger event is acknowledged even if the request is ignored by the PE. See also Exiting Debug state on
page H2-7375.

H5.4.3 Cross-halt trigger event

This is an input trigger event to the CTI, and an output trigger event from the PE, asserted by a PE when it is entering
Debug state.

Note

To reduce the latency of halting, Arm recommends that an implementation issues the Cross-halt trigger event early
in the committed process of entering Debug state. This means that there is no requirement to wait until all aspects
of entry to Debug state have completed before issuing the trigger event. Speculative emission of Cross-halt trigger
events is not allowed. The Cross-halt trigger event must not be issued early enough for a subsequent Debug request
trigger event, which might be derived from the Cross-halt trigger event, to be recorded in the EDSCR.STATUS field.
This applies to Debug request trigger events that are acting as inputs to the PE.

H5.4.4 Performance Monitors overflow trigger event

This is an input trigger event to the CTI, and an output trigger event from the PE, asserted each time the PE asserts
a new Performance Monitors counter overflow interrupt request. See Chapter D7 The Performance Monitors
Extension.
H5-7430 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Embedded Cross-Trigger Interface
H5.4 Description and allocation of CTI triggers
If the CTI supports multicycle trigger events, then the trigger event remains asserted until the overflow is cleared
by a write to PMOVSCLR_EL0. Otherwise, the trigger event is asserted when the value of PMOVSCLR_EL0
changes from zero to a non-zero value.

Note

• This does not replace the recommended connection of Performance Monitors overflow trigger event to an
interrupt controller. Software must be able to program an interrupt on Performance Monitors overflow
without programming the CTI.

• Events can be counted when ExternalNoninvasiveDebugEnabled()==FALSE, and, in Secure state, when
ExternalSecureNoninvasiveDebugEnabled()==FALSE. Secure software must be aware that overflow trigger
events are nevertheless visible to the CTI.

H5.4.5 Statistical Profiling Extension sample trigger event

If the Statistical Profiling Extension is implemented, and a sample record is written to memory, CTI input trigger 2
is asserted. This trigger might also be directly connected to other IMPLEMENTATION DEFINED debug features.

For more information, see Chapter D9 The Statistical Profiling Extension.

H5.4.6 Generic trace external input trigger events

These are output trigger events from the CTI, and input trigger events to the OPTIONAL PE Trace Unit, that are used
in conjunction with the Generic trace external output trigger events to pass trigger events between:

• The PE and the OPTIONAL PE Trace Unit.

• The OPTIONAL PE Trace Unit and any other component attached to the CTM, including other Trace Units.

There are four Generic trace external input trigger events.

The trigger events are self-acknowledging. This means that the debugger does not have to take any further action to
remove the events.

H5.4.7 Generic trace external output trigger events

These are input trigger events to the CTI, and output trigger events from the OPTIONAL PE Trace Unit, used in
conjunction with the Generic trace external input trigger events to pass trigger events between:

• The PE and the OPTIONAL PE Trace Unit.

• The OPTIONAL PE Trace Unit and any other component attached to the CTM, including other Trace Units.

There are four Generic trace external output trigger events.

H5.4.8 Generic CTI interrupt trigger event

This is an output trigger event from the CTI, and an input to an IMPLEMENTATION DEFINED interrupt controller, and
can transfer trigger events from the PE, PE Trace Units, or any other component attached to the CTI and CTM to
software as an interrupt. The Generic CTI interrupt trigger event must be connected to the interrupt controller as an
interrupt that can target the originating PE.

Note

• Arm recommends that the Generic CTI interrupt trigger event is a private peripheral interrupt, but
implementations might instead make this trigger event available as a shared peripheral interrupt or a local
peripheral interrupt.

• GICv3 reserves a private peripheral interrupt number for this interrupt.

It is IMPLEMENTATION DEFINED whether this trigger event is:

• Self-acknowledging. This means that the debugger is not required to take any further action, and that the
interrupt controller must treat the trigger event as a pulse or edge-sensitive interrupt.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H5-7431
ID072021 Non-Confidential

The Embedded Cross-Trigger Interface
H5.4 Description and allocation of CTI triggers
• Acknowledged by the debugger. The debugger acknowledges the trigger event by writing 1 to
CTIINTACK[2]. This means that the interrupt controller must treat the trigger event as a level-sensitive
interrupt.

Arm recommends that the Generic CTI interrupt trigger event is a self-acknowledging trigger event.
H5-7432 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Embedded Cross-Trigger Interface
H5.5 CTI registers programmers’ model
H5.5 CTI registers programmers’ model

The CTI registers programmers’ model is described in Chapter H8 About the External Debug Registers. The
following sections contain information specific to the CTI:

• External debug register resets on page H8-7481.

• External debug interface register access permissions on page H8-7468.

• Cross-trigger interface registers on page H8-7479.

• The individual register descriptions in Cross-Trigger Interface registers on page H9-7599.

See also Memory-mapped accesses to the external debug interface on page H8-7466.

H5.5.1 CTI reset

An External Debug reset resets the CTI. See External debug register resets on page H8-7481 for details of CTI
register resets. All CTI output triggers and output channels are deasserted on an External Debug reset.

Note

An indirect read of an output trigger might not observe the deasserted state until the processor is Cold reset. For
more information, see Synchronization of changes to the external debug registers on page H8-7462.

H5.5.2 CTI authentication

The CTI ignores the state of the IMPLEMENTATION DEFINED authentication interface. This means that:

• CTITRIGINSTATUS shows the status of the input triggers and CTICHINSTATUS shows the status of the
input channels, regardless of the value of ExternalNoninvasiveDebugEnabled().

Note
The PE does not generate the Cross-halt trigger event and the PE Trace Unit does not generate Generic trace
external output trigger events when ExternalNoninvasiveDebugEnabled()==FALSE. However, the PE can
generate Performance Monitors overflow trigger events.

• The CTI can generate external triggers regardless of the value of ExternalInvasiveDebugEnabled().

Note
The PE ignores Debug request and Restart request trigger events when
ExternalInvasiveDebugEnabled()==FALSE. The PE Trace Unit ignores Generic trace external input trigger
events when ExternalNoninvasiveDebugEnabled()==FALSE. The behavior of Generic CTI interrupt requests
is part of the IMPLEMENTATION DEFINED handling of these interrupts, but it is permissible for an interrupt
controller to receive these requests even when ExternalInvasiveDebugEnabled()==FALSE.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H5-7433
ID072021 Non-Confidential

The Embedded Cross-Trigger Interface
H5.6 Examples
H5.6 Examples

The CTI is fully programmable and allows for flexible cross-triggering of events within a PE and between PEs in a
multiprocessor system. For example:

• The Cross-halt trigger event and the Debug request trigger event can be used for cross-triggering in a
multiprocessor system.

• The Cross-halt trigger event and the Generic interrupt trigger event can be used for event-driven debugging
in a multiprocessor system.

• The Performance Monitors overflow trigger event and the Debug request trigger event can force entry to
Debug state on overflow of a Performance Monitors event counter, for event-driven profiling.

Note
This does not replace the recommended connection of Performance Monitors overflow trigger events to an
interrupt controller. Software must be able to program an interrupt on Performance Monitors overflow
without programming the CTI. Arm recommends that the Performance Monitors overflow signal is directly
available as a local interrupt source.

• The Generic trace external input and Generic trace external output trigger events can pass trace events into
and out of the event logic of the PE Trace Unit. They can do this:

— To pass trace events between Trace Units.

— In conjunction with the Performance Monitors overflow trigger event, to couple the Performance
Monitors to the PE Trace Unit.

— In conjunction with the Debug request trigger event, to trigger entry to Debug state on a trace event.

— In conjunction with other CTIs, to signal a trace trigger event onto a CoreSight trace interconnect.

The following sections describe some examples in more detail:

• Halting a single PE on page H5-7434.

• Halting all PEs in a group when any one PE halts on page H5-7434.

• Synchronously restarting a group of PEs on page H5-7435.

• Halting a single PE on Performance Monitors overflow on page H5-7435.

Example H5-1 Halting a single PE

To halt a single PE, set:

1. CTIGATE[0] to 0, so that the CTI does not pass channel events on internal channel 0 to the CTM.

2. CTIOUTEN0[0] to 1, so that the CTI generates a Debug request trigger event in response to a channel event
on channel 0.

Note
The Cross-halt trigger event is input trigger 0, meaning it is controlled by the instance of CTIOUTEN<n> for
which <n> is 0.

3. CTIAPPPULSE[0] to 1, to generate a channel event on channel 0.

When the PE has entered Debug state, clear the Debug request trigger event by writing 1 to CTIINTACK[0], before
restarting the PE.

Example H5-2 Halting all PEs in a group when any one PE halts

To program a group of PEs so that when one PE in the group halts, all of the PEs in that group halt, set the following
registers for each PE in the group:

1. CTIGATE[2] to 1, so that each CTI passes channel events on internal channel 2 to the CTM.

2. CTIINEN0[2] to 1, so that each CTI generates a channel event on channel 2 in response to a Cross-halt trigger
event.
H5-7434 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The Embedded Cross-Trigger Interface
H5.6 Examples
3. CTIOUTEN0[2] to 1, so that each CTI generates a Debug request trigger event in response to a channel event
on channel 2.

Note
The Cross-halt trigger event is input trigger 0, meaning it is controlled by the instances of CTIINEN<n> and
CTIOUTEN<n> for which <n> is 0.

When a PE has halted, clear the Debug request trigger event by writing a value of 1to CTIINTACK[0], before
restarting the PE.

Example H5-3 Synchronously restarting a group of PEs

To restart a group of PEs, for each PE in the group:

1. If the PE was halted because of a Debug request trigger event, the debugger must ensure the trigger event is
deasserted. It can do this by:

a. Writing 1 to CTIINTACK[0] to clear the Debug request trigger event.

b. Polling CTITRIGOUTSTATUS[0], until it reads as 0, to confirm that the trigger event has been
deasserted.

2. Set CTIGATE[1] to 1, so that each CTI passes channel events on internal channel 1 to the CTM.

3. Set CTIOUTEN1[1] to 1, so that each CTI generates a Restart request trigger event in response to a channel
event on channel 1.

Note
This example must use the instance of CTIOUTEN<n> for which <n> is 1.

4. Set CTIAPPPULSE[1] to 1 on any one PE in the group, to generate a channel event on channel 1.

Example H5-4 Halting a single PE on Performance Monitors overflow

To halt a single PE on a Performance Monitors overflow set:

1. CTIGATE[3] to 0, so that the CTI does not pass channel events on internal channel 3 to the CTM.

2. CTIINEN1[3] to 1, so that the CTI generates a channel event on channel 3 in response to a Performance
Monitors overflow trigger event.

Note
This step of this example must use the instance of CTIINEN<n> for which <n> is 1.

3. CTIOUTEN0[3] to 1, so that the CTI generates a Debug request trigger event in response to a channel event
on channel 3.

Note
This step of this example must use the instance of CTIOUTEN<n> for which <n> is 0.

When the PE has entered Debug state, clear the Debug request trigger event by writing 1 to CTIINTACK[0], before
restarting the PE. Clear the overflow status by writing to PMOVSCLR_EL0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H5-7435
ID072021 Non-Confidential

The Embedded Cross-Trigger Interface
H5.6 Examples
H5-7436 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter H6
Debug Reset and Powerdown Support

This chapter describes the reset and powerdown support in the Debug architecture. It contains the following
sections:

• About Debug over powerdown on page H6-7438.

• Power domains and debug on page H6-7439.

• Core power domain power states on page H6-7440.

• Emulating low-power states on page H6-7444.

• Powerup request mechanism on page H6-7442.

• Debug OS Save and Restore sequences on page H6-7446.

• Reset and debug on page H6-7452.

Note

Where necessary, Table K15-1 on page K15-8602 disambiguates the general register references used in this chapter.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H6-7437
ID072021 Non-Confidential

Debug Reset and Powerdown Support
H6.1 About Debug over powerdown
H6.1 About Debug over powerdown

Armv8 external debug defines a logical model for the hardware on which a PE executes. This hardware is logically
split into the Core power domain and the Debug power domain, and the model contains descriptions of the states of
those domains. See:

• Power domains and debug on page H6-7439.

• Core power domain power states on page H6-7440.

An implementation may allow power domains to be powered up and down independently. Debug over powerdown
provides:

• A facility for software executing on the PE to save and restore the PE state on behalf of a self-hosted or
external debugger or both. See Debug OS Save and Restore sequences on page H6-7446.

• A facility for an external debugger to request power up of the Core power domain. See Powerup request
mechanism on page H6-7442.

• A facility for an external debugger, or software executing on the PE, to request emulation of powerdown of
the Core power domain. See Emulating low-power states on page H6-7444.
H6-7438 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug Reset and Powerdown Support
H6.2 Power domains and debug
H6.2 Power domains and debug

Armv8 external debug has two logical power domains, each with its own reset:

• The Debug power domain contains the interface between the PE and the external debugger, and is powered
up whenever an external debugger is connected to the SoC. It remains powered up while the external
debugger is connected. When the Core power domain is completely off or in a low-power state, a debugger
is permitted to access a register that is implemented in the Debug power domain. Registers in this domain are
reset by an External Debug reset.

• The Core power domain contains the rest of the PE, and might be allowed to power up and power down
independently of the Debug power domain.

Note

• The model of two logical power domains has an impact on the reset and access permission requirements of
the debug programmers’ model.

• The power domains are described as logical because the architecture defines the requirements but does not
require two physical power domains. Any power domain split that meets the requirements of the
programmers’ model is a valid implementation.

The Core power domain contains several types of registers:

• Non-debug logic refers to all registers and logic that are not associated with debug.

• Self-hosted debug logic refers to registers and logic associated solely with the self-hosted debug aspects of
the architecture.

• Shared debug logic refers to registers and logic associated with both the self-hosted and external debug
aspects of the architecture.

• External debug logic refers to registers and logic associated solely with the external debug aspects of the
architecture.

For information about which groups of registers and components are in each power domain, and which registers
change power domain if FEAT_DoPD is implemented, see:

• Access permissions for the External debug interface registers on page H8-7474.

• Cross-trigger interface registers on page H8-7479.

• Management register access permissions on page K2-8433.

• Access permissions for external views of the Performance Monitors on page I3-7675.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H6-7439
ID072021 Non-Confidential

Debug Reset and Powerdown Support
H6.3 Core power domain power states
H6.3 Core power domain power states

The Arm architecture does not define the power states of the PE as these are not normally visible to software.
However, they are visible to the external debugger. Armv8 external debug uses a four logical power states model
for the Core power domain. The four logical power states are as follows:

Normal The Core power domain is fully powered up and the debug registers are accessible.

Standby The Core power domain is on, but there are measures to reduce energy consumption. In a typical
implementation, the PE enters standby by executing a WFI or WFE instruction, and exits on a wake-up
event. There can be other IMPLEMENTATION DEFINED measures the OS can take to enter standby.

The PE preserves the PE state, including the debug logic state. Changing from standby to normal
operation does not involve a reset of the PE.

Standby is the least invasive OS energy saving state. Standby implies only that the PE is unavailable
and does not clear any debug settings. For standby, the Debug architecture requires only the
following:

• An External Debug Request debug event is a wake-up event when halting is allowed. This
means that the PE must exit standby to handle the debug event. If the PE executed a WFE or a
WFI instruction to enter standby, then it retires that instruction.

• If the external debug interface is accessed, the PE must respond to that access. Arm
recommends that, if the PE executed a WFI or WFE instruction to enter standby, then it does not
retire that instruction.

Note

When FEAT_WFxT or FEAT_WFxT2 is implemented, this also applies to the WFET and WFIT
instructions.

Standby is transparent, meaning that to software and to an external debugger it is indistinguishable
from normal operation.

Retention The OS takes some measures, including IMPLEMENTATION DEFINED code sequences and registers,
to reduce energy consumption. The PE state, including debug settings, is preserved in low-power
structures, allowing the Core power domain to be at least partially turned off.

Changing from low-power retention to normal operation does not involve a reset of the PE. The
saved PE state is restored on changing from low-power retention state to normal operation. If
software has to use an IMPLEMENTATION DEFINED code sequence before entering, or after leaving,
a retention state, this is referred to as a software-visible retention state. It is IMPLEMENTATION
DEFINED whether the value of DBGPRCR.CORENPDRQ is set to its Cold reset value on leaving
the software-visible retention state. See the description of DBGPRCR.CORENPDRQ for more
information.

External Debug Request debug events stay pending and registers in the Core power domain cannot
be accessed.

Note

• This model of retention does not include implementations where the PE exits the state in
response to a debug register access. From the Debug architecture perspective,
implementations like this are forms of standby.

Powerdown The OS takes some measures to reduce energy consumption by turning the Core power domain off.
These measures must include the OS saving any PE state, including the debug settings, that must be
preserved over powerdown.

If FEAT_DoubleLock is implemented, it is used during powerdown.

Changing from powerdown to normal operation must include:

• A Cold reset of the PE after the power level has been restored.

• The OS restoring the saved PE state.
H6-7440 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug Reset and Powerdown Support
H6.3 Core power domain power states
External Debug Request debug events stay pending and debug registers in the Core power domain
cannot be accessed.

An implementation might support enabling and disabling threads, either dynamically or once at reset time. Threads
that are disabled in this way must appear to the external debugger as either:

• Powered off, meaning they are either:

— In a powerdown state.

— In a retention state.

• Held in reset state.

Armv8 external debug uses a simpler two states model for the Debug power domain. The two states are:

Off The Debug power domain is turned off.

On The Debug power domain is turned on.

The available power states, including the cross-product of Core power domain and Debug power domain power
states is IMPLEMENTATION DEFINED. Implementations are not required to implement all of these states and might
include additional states. These additional states must appear to the debugger as one of the logical power states
defined by this model. The control of power states is IMPLEMENTATION DEFINED.

Note

As a result, it is IMPLEMENTATION DEFINED whether it is possible for the Debug power domain to be on when the
Core power domain is off.

If the Debug power domain is implemented but is not powered up when the Core power domain is powered up, the
Reset Catch debug event and the OS Unlock Catch debug event are disabled.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H6-7441
ID072021 Non-Confidential

Debug Reset and Powerdown Support
H6.4 Powerup request mechanism
H6.4 Powerup request mechanism

If a powerup request mechanism is implemented, asserting the powerup request requests the power controller to
power up the Core power domain, and to emulate any subsequent powerdown requests, until the powerup request
mechanism is deasserted.

H6.4.1 Powerup request mechanism if FEAT_DoPD is implemented

If FEAT_DoPD is implemented, the external debug component implements an OPTIONAL powerup request
mechanism.

If the powerup request mechanism is implemented, the powerup request must be a CoreSight Class 0x9 ROM table
block that contains both:

• A parent entry for the debug registers of the PE.

• A parent entry for the PMU registers of the PE, if the OPTIONAL PMU with an external debug interface is
implemented.

A parent entry of a component is an entry in a ROM table that either locates the component, or locates another ROM
table that contains the parent entry for the component.

Note

The ROM table and any descendants might describe other debug components, including debug components for
other PEs.

The ROM table might have a parent entry in a second ROM table and that parent entry might also have a powerup
request mechanism in the second ROM table. This applies recursively.

The parent entries for the debug components have the following properties:

For the debug registers and Performance Monitors registers:

These components are in the Core power domain.

The POWERIDVALID bit is 1.

All parent entries must have the same IMPLEMENTATION DEFINED POWERID value.

Note
The IMPLEMENTATION DEFINED POWERID value does not need to be unique for each PE.

For the CTI registers:

This component is in the Debug power domain.

The POWERIDVALID bit is IMPLEMENTATION DEFINED.

If the POWERIDVALID bit is 1, the entries must have a valid POWERID value.

Note
If the Core power domain can be powered down independently of the Debug power domain, Arm
recommends the system implements an external debug component with a powerup request
mechanism which can request the Core power domain to be powered up.

For more information about Coresight Class 0x9 ROM Tables, see ARM® CoreSight™ Architecture Specification.

On reset, if FEAT_DoPD is implemented, DBGPRCR.CORENPDRQ is set to an IMPLEMENTATION DEFINED choice
between 0 and 1 if the powerup request is implemented and asserted, and 0 otherwise

H6.4.2 Powerup request mechanism if FEAT_DoPD is not implemented

If FEAT_DoPD is not implemented, the bit EDPRCR.COREPURQ is the powerup request mechanism.
H6-7442 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug Reset and Powerdown Support
H6.4 Powerup request mechanism
The control registers DBGPRCR.CORENPDRQ and EDPRCR.COREPURQ provide an interface between the
power controller and the PE. They typically map directly to signals in the recommended external debug interface.

On reset, if FEAT_DoPD is not implemented, DBGPRCR.CORENPDRQ is set to the value of
EDPRCR.COREPURQ.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H6-7443
ID072021 Non-Confidential

Debug Reset and Powerdown Support
H6.5 Emulating low-power states
H6.5 Emulating low-power states

DBGPRCR.CORENPDRQ and the powerup request mechanism can request the power controller to emulate states
where the Core power domain is completely off or in a low-power state where the Core power domain registers
cannot be accessed. This simplifies the requirements on software by sacrificing entirely realistic behavior.

If FEAT_DoPD is not implemented, EDPRSR.{SPD, PU} indicates the Core power domain power state. For more
information, see:

• The DBGPRCR_EL1 and DBGPRCR System register descriptions.

• The EDPRCR and EDPRSR external debug register descriptions.

• Appendix K2 Recommended External Debug Interface.

The measures to emulate powerdown are IMPLEMENTATION DEFINED. The ability of the debugger to access the state
of the PE and the system might be limited as a result of the measures adopted.

In an emulated powerdown state, the debugger must be able to access all debug, PMU, CTI, and trace unit registers
that are accessible on the external debug interface and are in one of:

• The Debug power domain.

• The Core power domain.

• When a trace unit with a separate trace unit Core power domain is implemented, and the trace unit Core
power domain is powered on, the trace unit Core power domain.

That is, the debugger must be able to read and write to such registers without receiving errors. This allows an
external debugger to debug the powerup sequence.

Arm recommends that any IMPLEMENTATION DEFINED registers that are on the external debug interface and in either
the Core power domain or the Debug power domain are also accessible in an emulated powerdown state.

If FEAT_DoubleLock is implemented, DoubleLockStatus() == FALSE when DBGPRCR.CORENPDRQ == 1.

Otherwise, the behavior of the PE in emulated powerdown must be similar to that in a real powerdown state. In
particular, the PE must not respond to other system stimuli, such as interrupts.

Example H6-1 on page H6-7444 and Example H6-2 on page H6-7444 are examples of two approaches to emulating
powerdown.

Example H6-1 An example of emulating powerdown

The PE is held in Standby state, isolated from any system stimuli. It is IMPLEMENTATION DEFINED whether the PE
can respond to debug stimuli such as an External Debug Request debug event.

If the PE can enter Debug state, then the external debugger is able to use the ITR to execute instructions, such as
loads and stores. This causes the external debugger to interact with the system. If the external debugger restarts the
PE, the PE leaves Standby state and restarts fetching instructions from memory.

Example H6-2 Another example of emulating powerdown

The PE is held in Warm reset. This limits the ability of an external debugger to access the resources of the PE. For
example, the PE cannot be put into Debug state.

On exit from emulated powerdown the PE is reset. However, the debug registers that are only reset by a Cold reset
must not be reset. Typically this means that a Warm reset is substituted for the Cold reset. As such, the effect of
accessing any register that is reset by a Warm reset while the PE is in the emulated powerdown state will have an
IMPLEMENTATION DEFINED effect on that register.
H6-7444 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug Reset and Powerdown Support
H6.5 Emulating low-power states
Note

• Warm reset and Cold reset have different effects apart from resetting the debug registers. In particular,
RMR_ELx is reset by a Cold reset and controls the reset state on a Warm reset. This means that if a Cold reset
is substituted by a Warm reset, the behavior of the reset code might be different.

• The timing effects of powering down are typically not factored in the powerdown emulation. Examples of
these timing effects are clock and voltage stabilization.

• Emulation does not model the state lost during powerdown, meaning that it might mask errors in the state
storage and recovery routines.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H6-7445
ID072021 Non-Confidential

Debug Reset and Powerdown Support
H6.6 Debug OS Save and Restore sequences
H6.6 Debug OS Save and Restore sequences

In Armv8-A, the following registers provide the OS Save and Restore mechanism:

• The OS Lock Access Register, OSLAR, locks the OS Lock to restrict access to debug registers before starting
an OS Save sequence, and unlocks the OS Lock after an OS Restore sequence.

• The OS Lock Status Register, OSLSR, shows the status of the OS Lock.

• The PE can be configured to generate an OS Unlock Catch debug event on page H3-7396 when the OS Lock
is unlocked.

• If FEAT_DoubleLock is implemented, the OS Double Lock locks out an external debug interface entirely.
This is only used immediately before a powerdown sequence.

See also:

• FEAT_DoubleLock on page A2-70

• Reset and debug on page H6-7452

• Appendix K8 Example OS Save and Restore Sequences

H6.6.1 EDPRSR.{DLK, SPD, PU} and the Core power domain

If FEAT_DoPD is not implemented, a debugger uses EDPRSR.{DLK, SPD, PU} to determine whether registers in
the Core power domain can be accessed, and whether their state has been lost since the last time the register was
read.

If FEAT_DoPD is implemented, accesses to EDPRSR return an error when the Core power domain is off or in a
retention state, meaning successful reads of EDPRSR always return 1 for EDPRSR.PU.

When FEAT_Debugv8p4 is implemented, and whenever FEAT_DoubleLock is not implemented, EDPRSR.DLK
is always 0.

If FEAT_DoubleLock is not implemented, DoubleLockStatus() always returns FALSE.

If the Core power domain is powered up and DoubleLockStatus() == TRUE, then:

• When FEAT_Debugv8p2 is not implemented, EDPRSR.{DLK, SPD, PU} can read either {1, UNKNOWN, 1}
or {UNKNOWN, 0, 0}.

• When FEAT_Debugv8p2 is implemented, and FEAT_Debugv8p4 is not implemented, EDPRSR.{DLK,
SPD, PU} can only read {UNKNOWN, 0, 0}.

Table H6-1 Interpretation of the EDPRSR.{DLK, SPD, PU} bits

EDPRSR Core power domain
Notes

DLK SPD PU Power Accesses State lost

0 0 1 On OK No -

0 1 1 On OK Yes SPD is cleared to 0 following the read.

1 X 1 On Error Not known FEAT_DoubleLock is implemented and DoubleLockStatus() ==
TRUE. Software locks the OS Double Lock before removing power.

X 1 0 Off Error Yes A Cold reset will be asserted on exiting powerdown state, but not on
exiting low-power retention state.

X 0 0 Not
known

Error Not known
H6-7446 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug Reset and Powerdown Support
H6.6 Debug OS Save and Restore sequences
H6.6.2 EDPRSR.SPD when the Core domain is in either retention or powerdown state

If FEAT_DoPD is not implemented, when the Core power domain is in either the retention or powerdown state,
EDPRSR.SPD is not cleared following a read of EDPRSR and it is IMPLEMENTATION DEFINED whether:

• EDPRSR.SPD shows whether the state of the debug registers in the Core power domain has been lost since
the last time that EDPRSR was read. This means that:

— When the Core power domain is in the powerdown state, EDPRSR.SPD is RAO, this indicates that
the state of the debug registers has been lost.

— When the Core power domain is in the retention state, EDPRSR.SPD indicates whether the state of the
debug registers was lost before the Core power domain entered retention state.

• EDPRSR.SPD is RAZ, and:

— On leaving the powerdown state, EDPRSR.SPD is set to 1 which indicates that the state of the debug
registers has been lost.

— On leaving the retention state, EDPRSR.SPD reverts the value it had on entering the retention state.

Note

If FEAT_DoPD is implemented, accesses to EDPRSR return an error when the Core power domain is off or in a
retention state.

H6.6.3 EDPRSR.{DLK, R} and reset state

If FEAT_DoPD is implemented, accesses to EDPRSR return an error when the Core power domain is off or in a
retention state, meaning successful reads of EDPRSR always return 1 for EDPRSR.PU.

When FEAT_Debugv8p4 is implemented, and whenever FEAT_DoubleLock is not implemented, EDPRSR.DLK
is always 0.

If FEAT_DoubleLock is not implemented, DoubleLockStatus() always returns FALSE.

If FEAT_DoubleLock is implemented and enabled, the behavior of all registers and fields except EDPRSR.DLK is
the same as their behavior if FEAT_Debugv8p4 is not implemented.

If FEAT_Debugv8p4 is implemented EDPRSR.DLK is always 0 and does not give any information about the OS
Double Lock.

EDPRSR.R is UNKNOWN when DoubleLockStatus() == TRUE. OSDLR_EL1.DLK is cleared to 0 by a reset. If the
Core power domain is powered up and entered reset state with the OS Double Lock locked, it is CONSTRAINED
UNPREDICTABLE whether a read of EDPRSR while the PE is in reset state returns:

• EDPRSR.{DLK, R, PU} == {1, UNKNOWN, 1} indicating that the OS Double Lock is locked. This is not
permitted from Armv8.2.

• EDPRSR.{DLK, R, PU} == {0, 1, 1} indicating that the PE is in reset state.

• EDPRSR.{DLK, R, PU} == {UNKNOWN, UNKNOWN, 0} indicating that the registers in the Core power
domain cannot be accessed because the OS Double Lock is locked.

If the PE was powered up and the OS Double Lock was unlocked when the PE was reset, then EDPRSR.{DLK, R,
PU} reads as {0, 1, 1} while the PE is in reset state.

On leaving reset state, EDPRSR.{DLK, R} reads as {0, 0}.

H6.6.4 Debug registers to save over powerdown

Table H6-2 on page H6-7448 shows the different requirements for self-hosted debug over powerdown and external
debug over powerdown:

• The column labeled Self-hosted lists registers that software must preserve over powerdown so that it can
support self-hosted debug over powerdown. This does not require use of the OS Save and Restore
mechanism.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H6-7447
ID072021 Non-Confidential

Debug Reset and Powerdown Support
H6.6 Debug OS Save and Restore sequences
• The column labeled External lists registers that software must preserve over powerdown so that it can support
external debug over powerdown. This requires use of the OS Save and Restore mechanism:

— Some external debug registers are not normally accessible to software executing on the PE. Additional
debug registers are provided that give software the required access to save and restore these external
debug registers when OSLSR.OSLK is locked. These registers include OSECCR, OSDTRRX, and
OSDTRTX.

• Some registers might only present in some implementations, or might not be accessible at all Exception levels
or in Non-secure state. DBGVCR32_EL2 and SDER32_EL3 are only required to support AArch32.

Table H6-2 on page H6-7448 does not include registers for the OPTIONAL Trace and Performance Monitor
extensions.

H6.6.5 OS Save sequence

To preserve the debug logic state over a powerdown, the state must be saved to nonvolatile storage. This means the
OS Save sequence must:

1. Lock the OS Lock by:

• Writing the key value 0xC5ACCE55 to the DBGOSLAR in AArch32 state.

• Writing 1 to OSLAR_EL1.OSLK in AArch64 state.

Table H6-2 Debug registers to save over powerdown

Register in AArch64 state Register in AArch32 state Self-hosted External

MDSCR_EL1 DBGDSCRext Yes Yesa

a. The OS Lock must be locked to save and restore for external debug. When the OS Lock is locked,
DSCR is part of the software save and restore mechanism for external debug. It provides a
mechanism for an operating system to access some fields of EDSCR that are otherwise read-only
or not visible to software. This allows the operating system to save and restore these settings over
a powerdown for the external debugger.

DBGBVR<n>_EL1 DBGBVR<n> Yes Yes

DBGBCR<n>_EL1 DBGBCR<n> Yes Yes

DBGWVR<n>_EL1 DBGWVR<n> Yes Yes

DBGWCR<n>_EL1 DBGWCR<n> Yes Yes

DBGVCR32_EL2 DBGVCR Yes -

MDCR_EL2 HDCR Yes -

SDER32_EL3 SDER Yes -

MDCR_EL3 SDCR Yesb

b. This register is new in Armv8-A. Sequences written for Armv7 do not preserve the register over
powerdown.

-

MDCCINT_EL1 DBGDCCINT - Yesb

DBGCLAIMSET_EL1

DBGCLAIMCLR_EL1

DBGCLAIMSET,

DBGCLAIMCLR

- Yesc

c. Read DBGCLAIMCLR to save, write DBGCLAIMSET to restore.

OSECCR_EL1 DBGOSECCR - Yesab

OSDTRRX_EL1

OSDTRTX_EL1

DBGDTRRXext

DBGDTRTXext

- Yes
H6-7448 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug Reset and Powerdown Support
H6.6 Debug OS Save and Restore sequences
2. Execute an ISB instruction.

3. Walk through the debug registers listed in Debug registers to save over powerdown on page H6-7447 and
save the values to the nonvolatile storage.

If the FEAT_DoubleLock is implemented, before removing power from the Core power domain, software must:

1. Lock the OS Double Lock by:

• Writing 1 to DBGOSDLR.DLK in AArch32 state.

• Writing 1 to OSDLR_EL1.DLK in AArch64 state.

If FEAT_DoubleLock is not implemented, OSDLR_EL1 and DBGOSDLR ignore writes.

2. Execute a Context synchronization event.

H6.6.6 OS Restore sequence

After a powerdown, the OS Restore sequence must perform the following steps to restore the debug logic state from
the non-volatile storage:

1. Lock the OS Lock, as described in OS Save sequence on page H6-7448. The OS Lock is generally locked by
the Cold reset, but this step ensures that it is locked.

2. Execute an ISB instruction.

3. To ensure that, if an external debugger clears the OS Lock before the end of this sequence, no debug
exceptions are generated:

• Write 0 to MDSCR_EL1 if executing in AArch64 state.

• Write 0 to DBGDSCRext if executing in AArch32 state.

4. Walk through the debug registers listed in Debug registers to save over powerdown on page H6-7447, and
restore the values from the nonvolatile storage. The last register to be restored must be:

• MDSCR_EL1 if executing in AArch64 state.

• DBGDSCRext if executing in AArch32 state.

5. Execute an ISB instruction.

6. Unlock the OS Lock by:

• Writing any non-key value to DBGOSLAR if executing in AArch32 state.

• Writing 0 to OSLAR_EL1.OSLK if executing in AArch64 state.

7. Execute a Context synchronization event.

Note

The OS Restore sequence overwrites the debug registers with the values that were saved. If there are valid values
in these registers immediately before the restore sequence, then those values are lost.

H6.6.7 Debug behavior when the OS Lock is locked

The main purpose of the OS Lock is to prevent updates to debug registers during an OS Save or OS Restore
operation. The OS Lock is locked on a Cold reset.

When the OS Lock is locked:

• Access to debug registers through the System register interface is mainly unchanged except that:

— Certain registers are read and written without side-effects.

— Fields in DSCR and OSECCR that are normally read-only become read/write.

This allows the state to be saved or restored. For more information, see the relevant register description in
Chapter H9 External Debug Register Descriptions.

• Access to debug registers by the external debug interface is restricted to prevent an external debugger
modifying the registers that are being saved or restored. For more information, see External debug interface
register access permissions summary on page H8-7469.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H6-7449
ID072021 Non-Confidential

Debug Reset and Powerdown Support
H6.6 Debug OS Save and Restore sequences
• Debug exceptions, other than Breakpoint Instruction exceptions are not generated.

• Breakpoint and Watchpoint debug events are not generated. The OS Lock has no effect on Breakpoint
Instruction exceptions and other debug events.

H6.6.8 Debug behavior when the OS Lock is unlocked

When the OS Lock is unlocked, the PE sets EDESR.OSUC to 1 if the OS Unlock Catch debug event is enabled and
the PE is in Non-debug state, meaning the OS Unlock Catch debug event becomes pending. See OS Unlock Catch
debug event on page H3-7396.

H6.6.9 Debug behavior when the OS Double Lock is locked

If the FEAT_DoubleLock is implemented, software locks the OS Double Lock immediately before a powerdown
sequence.

The OS Double Lock ensures that it is safe to remove core power by forcing the debug interfaces to be quiescent.

When DoubleLockStatus() == TRUE:

• The external debug interface has only restricted access to the debug registers, so that it is quiescent before
removing power. See External debug interface register access permissions summary on page H8-7469.

• Debug exceptions, other than Breakpoint Instruction exceptions, are not generated.

• Halting is prohibited. See Halting allowed and halting prohibited on page H2-7339.

Note
Pending Halting debug events might be lost when core power is removed.

• No asynchronous debug events are WF* wake-up events.

If the FEAT_DoubleLock is not implemented, the PE ensures these conditions are met before allowing power to be
removed.

Software must synchronize the update to OSDLR before it indicates to the system that core power can be removed.
The interface between the PE and its power controller is IMPLEMENTATION DEFINED.

Typically software indicates that core power can be removed by entering the Wait For Interrupt state. This means
that software must explicitly synchronize the OSDLR update before issuing the WFI instruction.

OSDLR.DLK is ignored and DoubleLockStatus() == FALSE if either:

• The PE is in Debug state.

• DBGPRCR.CORENPDRQ is set to 1.

Note

It is possible to enter Debug state with OSDLR.DLK set to 1. This is because a Context synchronization event is
required to ensure the OS Double Lock is locked, meaning that Debug state might be entered before the OSDLR
update is synchronized.

Because OSDLR.DLK is ignored when DBGPRCR.CORENPDRQ is set to 1, an external debugger can write to
DBGPRCR.CORENPDRQ, and the FEAT_DoubleLock is not always implemented, software must not rely on
using the OS Double Lock to disable debug exceptions or to prohibit halting, or both. Arm deprecates use of the OS
Double Lock for these purposes, and instead recommends that software:

• Uses the OS Lock to disable debug exceptions during save or restore sequences.

• Uses the debug authentication interface to prohibit halting and external debug access to debug registers at
times other than immediately prior to removing power.
H6-7450 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug Reset and Powerdown Support
H6.6 Debug OS Save and Restore sequences
As the purpose of the OS Double Lock is to ensure that it is safe to remove core power, if the FEAT_DoubleLock
is implemented, it is important to avoid race conditions that defeat this purpose. Arm recommends that:

• Once the write to OSDLR.DLK has been synchronized by a Context synchronization event and
DoubleLockStatus() == TRUE, a PE must:

— Not allow a debug event generated before the Context synchronization event to cause an entry to
Debug state or act as a wake-up event for a WFI or WFE instruction after the Context synchronization
event has completed.

Note
When FEAT_WFxT or FEAT_WFxT2 is implemented, this also applies to the WFET and WFIT
instructions.

— Complete any external debug access started before the Context synchronization event by the time the
Context synchronization event completes.

Note
A debug register access might be in progress when software sets OSDLR.DLK to 1. An
implementation must not permit the synchronization of locking the OS Double Lock to stall
indefinitely while waiting for that access to complete. This means that any debug register access that
is in progress when software sets OSDLR.DLK to 1 must complete or return an error in finite time.

• If a write to DBGPRCR or EDPRCR made when OSDLR.DLK == 1 changes DBGPRCR.CORENPDRQ or
EDPRCR.CORENPDRQ from 1 to 0, meaning DoubleLockStatus() changes from FALSE to TRUE, then
before signaling to the system that the CORENPDRQ field has been cleared and emulation of powerdown is
no longer requested, meaning the system can remove core power, the PE must ensure that all the requirements
for DoubleLockStatus() == TRUE listed in this section are met.

In a standard OS Save sequence, the OS Lock is locked before the OS Double Lock is locked. This means that writes
to CORENPDRQ are ignored by the time the OS Double Lock is locked. However, if DoubleLockStatus() ==
FALSE, an external debugger can clear the OS Lock at any time, and then write to EDPRCR.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H6-7451
ID072021 Non-Confidential

Debug Reset and Powerdown Support
H6.7 Reset and debug
H6.7 Reset and debug

All registers in the Core power domain are either:

• Reset by both a Cold and a Warm reset.

• Reset only by a Cold reset and are not changed by a Warm reset.

For more information, see Reset on page D1-2471.

All registers in the Debug power domain are reset by an External Debug reset.

Figure H6-1 on page H6-7452 shows this reset scheme. The following three reset signals are an example
implementation of the reset scheme:

• CORERESET, which must be asserted for a Warm reset.

• CPUPORESET, which must be asserted for a Cold reset.

• PRESETDBG, which must be asserted for an External Debug reset.

As shown in the figure, the external debug logic is split between the Debug power domain and the Core power
domain.

Figure H6-1 Power and reset domains

For more information about power domains and power states, see Power domains and debug on page H6-7439.

When power is first applied to the Debug power domain, PRESETDBG must be asserted.

When power is first applied to the Core power domain, CPUPORESET must be asserted.

Note

In this scheme, logic in the Warm reset domain is reset by asserting either CORERESET or CPUPORESET. This
implies a particular implementation style that permits these approaches.

CPUPORESET is not normally asserted on moving from a low-power state, where power has not been removed,
to a full-power state. This can occur, for example, on exiting a low-power retention state. See also Emulating
low-power states on page H6-7444 and the EDPRSR register description.

H6.7.1 External debug interface accesses to registers in reset

If a reset signal is asserted and the external debug interface:

• Writes a register, or indirectly writes a register or register field as a side-effect of an access:

— Then, if the register or register field is reset by that reset signal, it is CONSTRAINED UNPREDICTABLE
whether the register or register field takes the reset value or the value written. The reset value might
be UNKNOWN.

External debug logic
(part)

External debug logic
(part, including external

debug registers)

Shared debug logic

Non-debug logic

Self-hosted debug logic

Debug power domain Core power domain

Warm reset

External debug logic
(part)

External debug reset

External debug logic
(part, including external

debug registers)

Shared debug logic

Non-debug logic

Self-hosted debug logicff

Warm resetCold reset

CPUPORESET CORERESET OR
CPUPORESETPRESETDBG
H6-7452 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Debug Reset and Powerdown Support
H6.7 Reset and debug
— Otherwise, the register or register field takes the value that is written.

• Reads a register, or indirectly reads a register or register field, as part of an access:

— Then, if the register or register field is reset by that reset signal, the value returned in UNKNOWN.

— Otherwise, the value of the register or register field is returned.

It is IMPLEMENTATION DEFINED whether any register can be accessed when External Debug reset is being asserted.
The result of these accesses is IMPLEMENTATION DEFINED.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H6-7453
ID072021 Non-Confidential

Debug Reset and Powerdown Support
H6.7 Reset and debug
H6-7454 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter H7
The PC Sample-based Profiling Extension

This chapter describes the OPTIONAL PC Sample-based Profiling Extension that provides a non-invasive external
debug component.

It contains the following section:

• About the PC Sample-based Profiling Extension on page H7-7456.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H7-7455
ID072021 Non-Confidential

The PC Sample-based Profiling Extension
H7.1 About the PC Sample-based Profiling Extension
H7.1 About the PC Sample-based Profiling Extension

The PC Sample-based Profiling Extension is an OPTIONAL extension that provides coarse-grained, non-invasive
profiling by an external debugger. See also Non-invasive behavior on page D7-2853.

PC Sample-based Profiling creates samples so that tools can populate a statistical model of the performance of
software executing on the PE.

Note

Data returned by periodic sampling of PC Sample-based Profiling registers is sufficient to allow tools to estimate
the distribution of time spent executing software on the PE.

The delay between an instruction being executed by the PE and its address appearing in the PC Sample Register is
not defined, and Armv8 does not require that the sampled instruction was recently executed. For example, if a piece
of software executes a load instruction that reads the PC Sample Register of the PE it is running on, there is no
guaranteed relationship between the address of the load instruction and the value read. The PC Sample Register is
intended only for use by an external agent to provide statistical information for software profiling.

It must be possible to sample references to branch targets. It is IMPLEMENTATION DEFINED whether references to
other instructions can be sampled. The branch target for a conditional branch instruction that fails its condition
check is the instruction that follows the conditional branch instruction. The branch target for an exception is the
exception vector address.

To keep the implementation and validation cost low, a reasonable degree of inaccuracy in the sampled data is
acceptable. Arm does not define a reasonable degree of inaccuracy but recommends the following guidelines:

• In exceptional circumstances, such as a change in Security state or other boundary condition, it is acceptable
for the sample to represent an instruction that was not committed for execution.

• Under unusual non-repeating pathological cases, the sample can represent an instruction that was not
committed for execution. These cases are likely to occur as a result of asynchronous exceptions, such as
interrupts, where the chance of a systematic error in sampling is very unlikely.

• Under normal operating conditions, the sample must reference an instruction that was committed for
execution, including its context, and must not reference instructions that are fetched but not committed for
execution.

Note

In the Armv7 PC Sample-based Profiling Extension, an offset was applied to the sampled program counter value
and this offset and the instruction set state indicated in bits [1:0] of the sampled value. In the Armv8 PC
Sample-based Profiling Extension, the sampled value is the address of an instruction that has executed, with no
offset and no indication of the instruction set state.

• Controlling the PC Sample-based Profiling Extension on page H7-7456.

• Registers implemented by the PC Sample-based Profiling Extension on page H7-7457.

• Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN on page H7-7458.

• Pseudocode description of PC Sample-based Profiling on page H7-7458.

H7.1.1 Controlling the PC Sample-based Profiling Extension

PC Sample-based Profiling is controlled by the IMPLEMENTATION DEFINED authentication interface
ExternalNoninvasiveDebugEnabled().

PC Sample-based Profiling is prohibited unless both:

• It is allowed by the IMPLEMENTATION DEFINED authentication interface ExternalNoninvasiveDebugEnabled().

• At least one of the following applies:

— The PE is executing in Non-secure state.

— EL3 is not implemented.

— EL3 is implemented, the PE is executing in Secure state, and non-invasive debug is allowed by the
IMPLEMENTATION DEFINED authentication interface ExternalSecureNoninvasiveDebugEnabled().
H7-7456 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

The PC Sample-based Profiling Extension
H7.1 About the PC Sample-based Profiling Extension
— EL3 is implemented, EL3 or EL1 is using AArch32, the PE is executing at EL0 in Secure state, and
the value of SDER.SUNIDEN is 1.

The state of the IMPLEMENTATION DEFINED authentication interface is visible through DBGAUTHSTATUS_EL1.
See Recommended authentication interface on page K2-8431.

H7.1.2 Registers implemented by the PC Sample-based Profiling Extension

The options for implementing the PC Sample-based Profiling extension are:

• The extension is implemented in the external debug register space. EDDEVID.PCSample and identifies the
implemented level of profiling, and EDDEVID1.PCSROffset also indicates that this option is implemented.

From Armv8.2 this option is not permitted.

• FEAT_PCSRv8p2 is implemented, meaning the PC Sample-based Profiling extension is implemented in the
Performance Monitors memory-mapped register space. PMDEVID.PCSample identifies the implemented
level of profiling.

If PC Sample-based Profiling is implemented in the external debug register space:

• The following external debug registers can be implemented:

— EDCIDSR.

— EDPCSR.

— EDVIDSR.

See External debug interface register map on page H8-7472.

• If FEAT_VHE is implemented, EDSCR.SC2 controls what PC Sample-based Profiling samples.

If FEAT_PCSRv8p2 is implemented, the following registers can be implemented in the Performance Monitors
memory-mapped register space:

• PMCID1SR and PMCID2SR.

• PMPCSR.

• PMVIDSR.

See Performance Monitors external register views on page I5-7686.

If the PC Sample-based Profiling Extension is implemented with FEAT_PCSRv8p2 but the Performance Monitors
Extension is not implemented, then the PC Sample-based Profiling Extension is implemented in its own
memory-mapped register space, within the area that is reserved for the Performance Monitors, see Table H7-1 on
page H7-7457. If CoreSight compliance is required:

• The management registers are defined as in Table K2-3 on page K2-8432.

• The support for PC Sample-based profiling is defined in the following registers:

— PMDEVTYPE.MAJOR has the value 0x0.

— PMDEVARCH.ARCHID has the value 0x0A10.

Table H7-1 PC Sample-based Profiling register map without the Performance Monitors Extension

Offset Description

0x200 PMPCSR[31:0]

0x204 PMPCSR[63:32]

0x208 PMCID1SR

0x20C PMVIDSR

0x220 PMPCSR[31:0] (alias)

0x224 PMPCSR[63:32] (alias)

0x228 PMCID1SR (alias)

0x22C PMCID2SR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H7-7457
ID072021 Non-Confidential

The PC Sample-based Profiling Extension
H7.1 About the PC Sample-based Profiling Extension
H7.1.3 Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN

The architecture permits IMPLEMENTATION DEFINED extensions to external debug to define mechanisms that make
the values of the PC Sample-based profiling registers UNKNOWN. However, it requires that any such mechanism is
disabled by default. This means that powerup or a hard reset of the PE must leave the PE in a state where the PC
Sample-based Profiling Extension, if implemented, exhibits its architecturally-defined behavior.

Note

A mechanism that, when enabled, makes the PC Sample-based profiling registers UNKNOWN might use other
sample-based profiling events that are appropriate for a use that is independent of PC Sample-based Profiling.

If no instruction has been retired since the PE left Debug state, Reset state, or a state where PC Sample-based
profiling is prohibited, the sampled value is UNKNOWN. If an instruction has been retired but this is the first time the
PMPCSR or EDPCSR is read since the PE left Reset state, the sampled value is permitted but not required to return
the value 0xFFFFFFF.

H7.1.4 Pseudocode description of PC Sample-based Profiling

When PC Sample-based Profiling is implemented but not with FEAT_PCSRv8p2, the functionality is described by
the pseudocode functions:

• CreatePCSample(), which populates a variable of type PCSample.

• EDPCSRlo[], which writes a PC sample to the EDPCSR and associated registers.

When FEAT_PCSRv8p2 is implemented, the functionality is described by the pseudocode functions:

• CreatePCSample(), which populates a variable of type PCSample.

• PMPCSR[], which writes a PC Sample to the PMPCSR and associated registers.

0x600-0x6FC IMPLEMENTATION DEFINED

0xE80-0xEFC IMPLEMENTATION DEFINED for CoreSight compliance

0xFF0-0xFFc Management and CoreSight compliance registers

Table H7-1 PC Sample-based Profiling register map without the Performance Monitors Extension

Offset Description
H7-7458 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter H8
About the External Debug Registers

This chapter provides some additional information about the external debug registers. It contains the following
sections:

• Relationship between external debug and System registers on page H8-7460.

• Endianness and supported access sizes on page H8-7461.

• Synchronization of changes to the external debug registers on page H8-7462.

• Memory-mapped accesses to the external debug interface on page H8-7466.

• External debug interface register access permissions on page H8-7468.

• External debug interface registers on page H8-7472.

• Cross-trigger interface registers on page H8-7479.

• External debug register resets on page H8-7481.

Note

Where necessary, Table K15-1 on page K15-8602 disambiguates the general register references used in this chapter.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H8-7459
ID072021 Non-Confidential

About the External Debug Registers
H8.1 Relationship between external debug and System registers
H8.1 Relationship between external debug and System registers

Table H8-1 on page H8-7460 shows the relationship between external debug registers and System registers. Where
no relationship exists, the registers are not listed.

In addition:

• EDSCR.{TXfull, RXfull} are read-only aliases for DCCSR.{TXfull, RXfull}.

• EDPRCR.CORENPDRQ is a read/write alias for DBGPRCR.CORENPDRQ.

• EDPRSR.OSLK is a read-only alias for OSLSR.OSLK.

• If the FEAT_DoubleLock is implemented, EDPRSR.DLK is a read-only function of OSDLR.DLK.

Table H8-1 Equivalence between external debug and System registers

System register

External debug register AArch64 AArch32 Notes

DBGDTRRX_EL0 DBGDTRRX_EL0 DBGDTRRXint See also Summary of System register
accesses to the DCC on page H4-7413

DBGDTRTX_EL0 DBGDTRTX_EL0 DBGDTRTXint

OSLAR_EL1 OSLAR_EL1 DBGOSLAR -

DBGBVR<n>_EL1[31:0]

DBGBVR<n>_EL1[63:32]

DBGBVR<n>_EL1[31:0]

DBGBVR<n>_EL1[63:32]

DBGBVR<n>

DBGBXVR<n>

-

DBGBCR<n>_EL1 DBGBCR<n>_EL1 DBGBCR<n> -

DBGWVR<n>_EL1[31:0]

DBGWVR<n>_EL1[63:32]

DBGWVR<n>_EL1[31:0]

DBGWVR<n>_EL1[63:32]

DBGWVR<n> -

DBGWCR<n>_EL1 DBGWCR<n>_EL1 DBGWCR<n> -

DBGCLAIMSET_EL1 DBGCLAIMSET_EL1 DBGCLAIMSET -

DBGCLAIMCLR_EL1 DBGCLAIMCLR_EL1 DBGCLAIMCLR -

DBGAUTHSTATUS_EL1 DBGAUTHSTATUS_EL1 DBGAUTHSTATUS Read-only

EDSCR MDSCR_EL1 DBGDSCRext Only some fields map

EDECCR OSECCR_EL1 DBGOSECCR Applies when the OS Lock is locked.

MIDR_EL1 MIDR_EL1 MIDR Read-only copies of Processor ID
Registers

EDDEVAFF0

EDDEVAFF1
MPIDR_EL1[31:0]a

MPIDR_EL1[63:32]a

MPIDR Read-only copies of system ID
registers

a. This is a word of a 64-bit register.
H8-7460 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the External Debug Registers
H8.2 Endianness and supported access sizes
H8.2 Endianness and supported access sizes

The debug registers, Performance Monitors registers, and CTI registers are implemented as memory-mapped
peripherals. The Arm architecture requires memory-mapped peripherals to be little-endian.

The memory access sizes supported by any peripheral is IMPLEMENTATION DEFINED by the peripheral. For accesses
to the debug registers, Performance Monitors registers, and CTI registers, implementations must:

• Comply with the requirements of Supported access sizes on page I1-7656.

• Support word-aligned 32-bit accesses to access 32-bit registers or either half of a 64-bit register mapped to a
doubleword-aligned pair of adjacent 32-bit locations, even if no PE in the system implements AArch32.

Note

These requirements mean that a system implementing the debug registers using a 32-bit bus, such as a AMBA
APB3, with a wider system interconnect must implement a bridge between the system and the debug bus that can
split 64-bit accesses.

For accesses from the external debug interface, the size of an access is determined by the interface. For an access
from an ADIv5-compliant Memory Access Port, MEM-AP, this is specified by the MEM-AP CSW register.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H8-7461
ID072021 Non-Confidential

About the External Debug Registers
H8.3 Synchronization of changes to the external debug registers
H8.3 Synchronization of changes to the external debug registers

This section describes the synchronization requirements for the external debug interface.

For more information on how these requirements affect debug, see:

• Synchronization and debug exceptions on page D2-2626 for exceptions taken from AArch64 state.

• Synchronization and debug exceptions on page G2-6217 for exceptions taken from AArch32 state.

• Synchronization and Halting debug events on page H3-7399.

• Synchronization of DCC and ITR accesses on page H4-7413.

This section refers to accesses from the external debug interface as external reads and external writes. It refers to
accesses to System registers as direct reads, direct writes, indirect reads, and indirect writes.

Note

Synchronization requirements for AArch64 System registers on page D13-3041 and Synchronization of changes to
AArch32 System registers on page G8-6443 define direct read, direct write, indirect read, and indirect write, and
classifies external reads as indirect reads, and external writes as indirect writes.

For general information about synchronization, access completion, ordering, and observability, see Synchronization
of memory-mapped registers on page I1-7658.

Writes to the same register are serialized, meaning they are observed in the same order by all observers, although
some observers might not observe all of the writes. With the exception of DBGBCR<n>_EL1, DBGBVR<n>_EL1,
DBGWCR<n>_EL1, and DBGWVR<n>_EL1, external writes to different registers are not necessarily observed in
the same order by all observers as the order in which they complete.

Synchronization of DCC and ITR accesses on page H4-7413 describes the synchronization requirements for the
DCC and ITR.

Changes to the IMPLEMENTATION DEFINED authentication interface are external writes to the authentication status
registers by the Requester of the authentication interface. See Synchronization and the authentication interface on
page H8-7463.

The external agent must be able to guarantee completion of a write. For example by:

• Marking the memory as Device-nGnRnE and executing a DSB barrier, if the system supports this property.

• Reading back the value written.

• Some guaranteed property of the connection between the PE and the external agent.

Note

For an external Debug Access Port, access completion is an IMPLEMENTATION DEFINED property. For a CoreSight
system using APB-AP to access a debug APB, accesses complete in order.

However, the external agent cannot force synchronization of completed writes without halting the PE. Executing an
ISB instruction, either in Debug state or in Non-debug state, and exiting from Debug state forces synchronization.
If the PE is in Debug state, executing an ISB instruction is guaranteed to explicitly synchronize any external reads,
external writes, and changes to the authentication interface that are ordered before the external write to EDITR.

For any given observer, external writes to the following register groups are guaranteed to be observable in the same
order in which they complete:

• The breakpoint registers, DBGBCR<n>_EL1 and DBGBVR<n>_EL1.

• The watchpoint registers, DBGWCR<n>_EL1 and DBGWVR<n>_EL1.

This guarantee applies only to external writes to registers within one of these groups. There is no guarantee
regarding the ordering of the observability of external writes within these groups with respect to external writes to
registers, for example EDSCR, or between breakpoints and watchpoints, including watchpoints linked to context
matching breakpoints.
H8-7462 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the External Debug Registers
H8.3 Synchronization of changes to the external debug registers
Note

This means that a debugger can rely on the external writes to be observed in the same order in which they complete.
It does not mean that a debugger can rely on the external writes being observed in finite time.

In a simple sequential execution an indirect write that occurs as a side-effect of an access happens atomically with
the access, meaning no other accesses are allowed between the register access and its side-effect.

If two or more interfaces simultaneously access a register, the behavior must be as if the accesses occurred
atomically and in any order. This is described in Examples of the synchronization of changes to the external debug
registers on page H8-7463.

Some registers have the property that for certain bits a write of 0 is ignored and a write of 1 has an effect. This means
that simultaneous writes must be merged. Registers that have this property and support both external debug and
System register access include DBGCLAIMSET_EL1, DBGCLAIMCLR_EL1, PMCR_EL0.{C,P},
PMOVSSET_EL0, PMOVSCLR_EL0, PMCNTENSET_EL0, PMCNTENCLR_EL0, PMINTENSET_EL1,
PMINTENCLR_EL1, and PMSWINC_EL0. This last register is OPTIONAL and deprecated in the external debug
interface.

H8.3.1 Synchronization and the authentication interface

Changes to the authentication interface are indirect writes to the state of the PE by the Requester of the
authentication interface.

For an external debug interface read of any Authentication Status register, or an indirect read of the authentication
interface made in determining the response to a subsequent external debug interface access, a change on the
authentication interface must be observable following a subsequent explicit Context synchronization event, and:

• It is IMPLEMENTATION DEFINED whether a change is guaranteed to be observable in finite time.

• It is IMPLEMENTATION DEFINED whether a change is guaranteed to be observable following an entry to Debug
state.

For a System register read of DBGAUTHSTATUS_EL1, a change on the authentication interface is guaranteed to
be observable only after a Context synchronization event.

Note

• In some systems, the authentication interface is fixed by configuration or is changed under the control of
software. These systems can require explicit synchronization for any change to the authentication interface.

• In other systems, the authentication interface is controlled dynamically by an external agent. In these systems,
it is desirable that changes to the authentication interface do not require explicit synchronization by software
executing on the PE to be observable by subsequent external debug interface accesses, and are either
observable in finite time or are synchronized by entry to Debug state. Otherwise, there are scenarios where a
debugger is not able to halt and debug the system.

H8.3.2 Examples of the synchronization of changes to the external debug registers

Example H8-1 on page H8-7463, Example H8-2 on page H8-7464, and Example H8-3 on page H8-7464 show the
synchronization of changes to the external debug registers.

Example H8-1 Order of synchronization of Breakpoint and Watchpoint register writes

Initially DBGBVR<n>_EL1 is 0x8000 and DBGBCR<n>_EL1 is 0x0181. This means that a breakpoint is enabled
on the halfword T32 instruction at address 0x8000.

A sequence of external writes occurs in the following order:

1. 0x0000 is written to DBGBCR<n>_EL1, disabling the breakpoint.

2. 0x9000 is written to DBGBVR<n>_EL1[31:0].

3. 0x0061 is written to DBGBCR<n>_EL1, enabling a breakpoint on the halfword at address 0x9002.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H8-7463
ID072021 Non-Confidential

About the External Debug Registers
H8.3 Synchronization of changes to the external debug registers
The external writes must be observable to indirect reads in the same order as the external writes complete. This
means that at no point is there a breakpoint enabled on either of the halfwords at address 0x8002 and 0x9000.

Similarly a breakpoint or watchpoint must be disabled:

• If both halves of a 64-bit address have to be updated.

• If any of the DBGBCR<n>_EL1 or DBGWCR<n>_EL1 fields are modified at the same time as updating the
address.

Example H8-2 Simultaneous accesses to DTR registers

Initially EDSCR.{TXfull, TXU, ERR} are 0. Then:

• 0x0DCCDA7A is directly written to DBGDTRTX_EL0 by an MSR instruction.

• DBGDTRTX_EL0 is indirectly read by the external debug interface.

These accesses might happen at the same time and in any order.

If the direct write of 0x0DCCDA7A to DBGDTRTX_EL0 is handled first, then:

• The external debug interface read of DBGDTRTX_EL0 clears EDSCR.TXfull to 0.

• EDSCR.{TXU, ERR} are unchanged.

• The external debug interface read returns 0x0DCCDA7A.

If the indirect read of DBGDTRTX_EL0 by the external debug interface is handled first, then:

• The external debug interface read of DBGDTRTX_EL0 causes an underrun and as a result EDSCR.{TXU,
ERR} are both set to 1.

• The external debug interface returns an UNKNOWN value.

• Writing 0x0DCCDA7A to DBGDTRTX_EL0 sets DTRTX to 0x0DCCDA7A and EDSCR.TXfull to 1.

Example H8-3 Simultaneous writes to CLAIM registers

Initially all CLAIM tag bits are 0. Then:

• 0x01 is written to DBGCLAIMSET_EL1 by a direct write, followed by an explicit Context synchronization
event.

• 0x02 is written to DBGCLAIMSET_EL1 by an external write.

These events might happen at the same time and in either order.

After this:

• DBGCLAIMCLR_EL1 is read by a direct read.

• DBGCLAIMCLR_EL1 is read by an external read.

In this case, a direct read can return either 0x01 or 0x03, and the external read can return either 0x02 or 0x03.

The only permitted final result for the CLAIM tags is the value 0x03, because this would be the result regardless of
whether 0x01 or 0x02 is written first. This is because the external write is guaranteed to be observable to a direct read
in finite time. See Synchronization requirements for AArch64 System registers on page D13-3041.

It is not possible for a direct read to return 0x01 and the external read to return 0x02, because the writes to
DBGCLAIMCLR_EL1 are serialized.

In the following scenario, there is only one permitted result. Both observers observe the value 0x03, and then, at the
same time, two writes occur:

• 0x04 is written to DBGCLAIMSET_EL1 by a direct write, followed by an explicit Context synchronization
event.

• 0x01 is written to DBGCLAIMCLR_EL1 by an external write.
H8-7464 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the External Debug Registers
H8.3 Synchronization of changes to the external debug registers
In this case, the only permitted final result for the CLAIM tags is the value 0x06.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H8-7465
ID072021 Non-Confidential

About the External Debug Registers
H8.4 Memory-mapped accesses to the external debug interface
H8.4 Memory-mapped accesses to the external debug interface

Support for memory-mapped access to the external debug interface is OPTIONAL. When memory-mapped access to
the external debug interface is supported, the external debug interface is accessed as a little-endian memory-mapped
peripheral.

If the external debug interface is CoreSight compliant, then an OPTIONAL Software Lock can be implemented for
memory-mapped accesses to each component.

The Software Lock is OPTIONAL and deprecated. If FEAT_Debugv8p4 is implemented, the Software Lock is not
implemented. If it is not implemented, the behavior is as if it is unlocked. The Software Locks are controlled by
EDLSR and EDLAR, PMLSR and PMLAR, and CTILSR and CTILAR. See Management registers and CoreSight
compliance on page K2-8432.

If FEAT_DoPD is implemented, Software Lock is not implemented by the architecturally-defined debug
components in the Core power domain.

With the exception of these registers and the effect of the Software Lock, the behavior of the memory-mapped
accesses is the same as for other accesses to the external debug interface.

Note

The recommended memory-mapped accesses to the external debug interface are not compatible with the
memory-mapped interface defined in Armv7. In particular:

• The memory map is different.

• Memory-mapped accesses do not behave differently to Debug Access Port accesses when
OSLSR.OSLK == 1, meaning that the OS Lock is locked.

The following sections give more information about these memory-mapped accesses:

• Register access permissions for memory-mapped accesses on page H8-7466.

• Synchronization of memory-mapped accesses to external debug registers on page H8-7467.

See also Supported access sizes on page I1-7656.

H8.4.1 Register access permissions for memory-mapped accesses

It is IMPLEMENTATION DEFINED whether unprivileged memory-mapped accesses are allowed. Privileged software
is responsible for controlling memory-mapped accesses using the MMU.

If FEAT_Debugv8p4 is implemented, the Secure view of a debug component is mapped into Secure physical
memory and the Non-secure view is mapped into Non-secure physical memory.

If FEAT_Debugv8p4 is implemented, the access permissions are different in each Security state, but Secure and
Non-secure views of the debug components are identical. Arm recommends the views are located at the same
address in the Secure and Non-secure physical address maps.

If memory-mapped accesses are made through an ADIv5 interface, the Debug Access Port can block the access
using DBGSWENABLE. This is outside the scope of the Armv8-A architecture. See Arm® Debug Interface
Architecture Specification ADIv5.0 to ADIv5.2.

Effect of the OPTIONAL Software Lock on memory-mapped access

For memory-mapped accesses, if other controls permit access to a register, the OPTIONAL Software Lock is
implemented, and EDLSR.SLK, PMLSR.SLK, or CTILSR.SLK is set to 1, meaning the Software Lock is locked,
then with the exception of the LAR itself:

• If other controls permit access to a register, then writes are ignored. That is:

— Read/write (RW) registers become read-only, writes ignored (RO/WI).

— Write-only (WO) registers become writes ignored (WI).

• Reads and writes have no side-effects. A side-effect is where a direct read or a direct write of a register creates
an indirect write of the same or another register. When the Software Lock is locked, the indirect write does
not occur.
H8-7466 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the External Debug Registers
H8.4 Memory-mapped accesses to the external debug interface
• Writes to EDLAR, PMLAR, and CTILAR are unaffected.

This behavior must also apply to all IMPLEMENTATION DEFINED registers.

For example, if EDLSR.SLK is set to 1:

• EDSCR.{TXfull, TXU, ERR} are unchanged by a memory-mapped read from DBGDTRTX_EL0.

• EDSCR.{RXfull, RXO, ERR} are unchanged by a memory-mapped write to DBGDTRRX_EL0 that is
ignored.

• EDSCR.{ITE, ITO, ERR} are unchanged by a memory-mapped write to EDITR that is ignored.

• OSLSR.OSLK is unchanged by a memory-mapped write to OSLAR_EL1 that is ignored.

• EDPCSR[63:32], EDCIDSR, and EDVIDSR are unchanged by a memory-mapped read from
EDPCSR[31:0].

Note
Updating EDVIDSR, EDCIDSR, and EDPCSRhi are side-effects of reading EDPCSRlo, such that these
registers contain the matching context for EDPCSRlo. The process that updates EDPCSRlo with PC samples
is not a side-effect of the access. Reads of EDPCSRlo made when the Software Lock is locked can be used
to profile software.

• PMPCSR[63:32], PMCID1SR/PMCID2SR, and PMVIDSR are unchanged by a memory-mapped read from
PMPCSR[31:0].

Note
Updating PMVIDSR, PMCID1SR/PMCID2SR, and PMPCSR[31:0] are side-effects of reading
PMPCSR[63:32], such that these registers contain the matching context for PMPCSR[63:32]. The process
that updates PMPCSR[63:32] with PC samples is not a side-effect of the access. Reads of PMPCSR[63:32]
made when the Software Lock is locked can be used to profile software.

• EDPRSR.{SDR, SPMAD, SDAD, SR, SPD} are unchanged by a memory-mapped read from EDPRSR.

• EDPRSR.SDAD is not set if an error response is returned due to a memory-mapped read or write of any
debug register as the result of the value of the EDAD field.

• The CLAIM tags are unchanged by memory-mapped writes to DBGCLAIMSET_EL1 and
DBGCLAIMCLR_EL1 which are ignored.

Similarly, if PMLSR.SLK is set to 1, then EDPRSR.SPMAD is not set if an error response is returned to a
memory-mapped read or write of any Performance Monitors register due to the value of the EPMAD field.

Behavior of a not permitted memory-mapped access

Where the architecture requires that an external debug interface access generates an error response, a
memory-mapped access must also generate an error response. However, it is IMPLEMENTATION DEFINED how the
error response is handled, as this depends on the system.

Arm recommends that the error is returned as either:

• A synchronous external Data Abort.

• An SError interrupt.

H8.4.2 Synchronization of memory-mapped accesses to external debug registers

The synchronization requirements for memory-mapped accesses to the external debug interface is described in
Synchronization of changes to the external debug registers on page H8-7462 and Synchronization of
memory-mapped registers on page I1-7658.

The synchronization requirements between different routes to the external debug interface, that is, between Debug
Access Port accesses and memory-mapped accesses are IMPLEMENTATION DEFINED.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H8-7467
ID072021 Non-Confidential

About the External Debug Registers
H8.5 External debug interface register access permissions
H8.5 External debug interface register access permissions

Some external accesses to debug registers and Performance Monitor registers are not permitted and return an error
response if:

• The Core power domain is powered down or is in low-power state where the registers cannot be accessed.

• OSLSR.OSLK == 1. The OS Lock is locked.

• FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE. The OS Double Lock is locked.

• The access is disabled by either the authentication interface or secure monitor.

Not all registers are affected in all of these cases. For more information, see External debug interface register access
permissions summary on page H8-7469.

H8.5.1 External debug over powerdown and locks

Accessing registers using the external debug interface is not possible when the Debug power domain is off. In this
case, all accesses return an error.

External accesses to debug and Performance Monitors registers in the Core power domain are not permitted and
return an error response if:

• The Core power domain is off or in low-power state where the registers cannot be accessed.

• OSLSR.OSLK == 1, meaning that the OS Lock is locked. This allows software to prevent external debugger
modification of the registers while it saves and restores them over powerdown.

• FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE. This means that the OS Double Lock
is locked. The OS Double Lock ensures that it is safe to remove Core power by forcing the debug interface
to be quiescent.

If FEAT_DoubleLock is not implemented, the hardware must provide another method to safely remove Core power.

The OS Lock condition does not apply to the following debug registers:

• OSLAR_EL1. This means that an external debugger can override this lock.

• EDESR. This means that an external debugger can program a debug event for when software unlocks the OS
Lock. See OS Unlock Catch debug event on page H3-7396.

• The ID registers that describe the PE to the debugger.

See also Debug registers to save over powerdown on page H6-7447.

H8.5.2 External access disabled

Accesses are further controlled by the external authentication interface. An untrusted external debugger cannot
program the breakpoint and watchpoint registers to generate spurious debug exceptions. If external invasive
debugging is not enabled, these external accesses to the registers are disabled. If EL3 is implemented, then SDCR
provides additional external access controls for those registers.

The disable applies to:

• The DBGBVR<n>_EL1, DBGBCR<n>_EL1, DBGWVR<n>_EL1, and DBGWCR<n>_EL1 registers.

• From Armv8.2, the OSLAR_EL1 register.

If FEAT_Debugv8p2 is not implemented, it is IMPLEMENTATION DEFINED whether the disable applies to
OSLAR_EL1.

If FEAT_Debugv8p4 is not implemented, the external debug interface cannot access these registers if any of the
following are true:

• ExternalInvasiveDebugEnabled() == FALSE.

• ExternalSecureInvasiveDebugEnabled() == FALSE, EL3 is not implemented, and the PE behaves as if the
Security state is Secure.

• ExternalSecureInvasiveDebugEnabled() == FALSE, EL3 is implemented and SDCR.EDAD == 1.

If FEAT_Debugv8p4 is implemented, Non-secure accesses from the external debug interface to these registers are
not permitted if any of the following are true:

• EL3 is not implemented and the PE behaves as if the Security state is Secure.
H8-7468 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the External Debug Registers
H8.5 External debug interface register access permissions
• EL3 is implemented and SDCR.EDAD == 1.

The AllowExternalDebugAccess() pseudocode function describes these accessibility rules.

PEs might also provide an OPTIONAL external debug interface to the Performance Monitor registers. The
authentication interface and SDCR provide similar external access disable controls for those registers.

If FEAT_Debugv8p4 is not implemented, the external debug interface cannot access the Performance Monitor
registers if any of the following are true:

• ExternalNoninvasiveDebugEnabled() == FALSE.

• ExternalSecureNoninvasiveDebugEnabled() == FALSE, EL3 is not implemented and the PE behaves as if the
Security state is Secure.

• ExternalSecureNoninvasiveDebugEnabled() == FALSE, EL3 is implemented and SDCR.EPMAD == 1.

Note

• Arm recommends that Secure software that is not making use of debug hardware does not lock out the
external debug interface.

• Armv8-A does not provide the equivalent control over access to Trace extension registers, which means if
FEAT_Debugv8p4 is implemented, the Non-secure and Secure views are identical.

If FEAT_Debugv8p4 is implemented, Non-secure accesses from the external debug interface to these registers are
not permitted if any of the following are true:

• EL3 is not implemented and the PE behaves as if the Security state is Secure.

• EL3 is implemented and SDCR.EPMAD == 1.

The AllowExternalPMUAccess() pseudocode function describes these accessibility rules.

H8.5.3 Behavior of a not permitted access

For an external debug interface access by a Debug Access Port, the Debug Access Port receives the error response
and must signal this to the external debugger. For an ADIv5 implementation of a Debug Access Port, the error sets
a sticky error flag in the Debug Access Port that the debugger can poll, and that suppresses further accesses until it
is explicitly cleared.

When an error is returned because external access is disabled, and this is the highest priority error condition, a sticky
error flag in EDPRSR is indirectly written to 1 as a side-effect of the access:

• For a debug register access when AllowExternalDebugAccess() == FALSE, EDPRSR.SDAD is indirectly
written to 1.

• For Performance Monitor register access when AllowExternalPMUAccesss() == FALSE, EDPRSR.SPMAD is
indirectly written to 1.

The indirect write might not occur for a memory-mapped access to the external debug interface. For more
information, see Register access permissions for memory-mapped accesses on page H8-7466.

If no error is returned, or the error is returned because of a higher priority error condition, the flag in EDPRSR is
unchanged.

See also Behavior of a not permitted memory-mapped access on page H8-7467.

For more information, see Arm® Debug Interface Architecture Specification.

H8.5.4 External debug interface register access permissions summary

For accesses to:

• IMPLEMENTATION DEFINED registers, see IMPLEMENTATION DEFINED registers on page H8-7470.

• OPTIONAL registers for CoreSight compliance, see Management registers and CoreSight compliance on
page K2-8432.

• Reserved, unallocated, or unimplemented registers, writes to read-only registers, and reads of write-only
registers, see Reserved and unallocated registers on page H8-7470.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H8-7469
ID072021 Non-Confidential

About the External Debug Registers
H8.5 External debug interface register access permissions
For all other external debug interface, CTI, and Performance Monitor registers, Table H8-3 on page H8-7475,
Table H8-4 on page H8-7476, Table H8-6 on page H8-7480 and Table I3-1 on page I3-7676, show the response of
the PE to accesses by the external debug interface.

H8.5.5 IMPLEMENTATION DEFINED registers

For debug registers, Performance Monitors registers, CTI registers, register access permissions for
IMPLEMENTATION DEFINED registers are IMPLEMENTATION DEFINED.

If OPTIONAL memory-mapped access to the external debug interface is supported, there are additional constraints
on memory-mapped accesses to registers. These constraints must also apply to IMPLEMENTATION DEFINED registers.
For more information, see Register access permissions for memory-mapped accesses on page H8-7466.

If FEAT_DoPD is not implemented, the power domain of these registers in which these registers are implemented
is also IMPLEMENTATION DEFINED. The registers must apply the constraint that if the OPTIONAL Software Lock is
locked, writes are ignored and accesses have no side-effects.

If FEAT_DoPD is implemented, then:

• For debug registers and Performance Monitors registers, IMPLEMENTATION DEFINED registers are
implemented in the Core power domain. Accesses return an error when the Core power domain is off or in a
low-power state.

• For CTI registers, IMPLEMENTATION DEFINED registers are implemented in the Debug power domain.

H8.5.6 Reserved and unallocated registers

The default access requirements for reserved and unallocated registers are described in Access requirements for
reserved and unallocated registers on page I1-7660.

Note

Reads of WO and writes to RO refers to the default access permissions for a register. For example, when the SLK
field is set, meaning that the relevant registers become RO, a memory-mapped write to a RW register is ignored,
and not treated as a reserved access.

The following reserved registers are RES0 in all conditions, other than when debug power is off:

• All reserved CTI registers.

• For the debug registers, and Performance Monitors registers, if the implementation is CoreSight architecture
compliant, and either FEAT_DoPD is not implemented or the Core power domain is on, all reserved registers
in the range 0xF00 - 0xFFC. See Management register access permissions on page K2-8433.

Otherwise, the architecture defines that:

1. If debug power is off, all register accesses, including reserved accesses, return an error.

2. For reserved debug registers and Performance Monitors registers, if FEAT_DoPD is implemented, and the
Core power domain is off or in a low-power state, the response is an error. Otherwise, the response is a
CONSTRAINED UNPREDICTABLE choice of error or RES0, when any of the following hold:

Off The Core power domain is either completely off or in a low-power state in which the Core power
domain registers cannot be accessed.

DLK FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE. The OS Double Lock is
locked.

OSLK OSLSR.OSLK == 1. The OS Lock is locked.

3. In addition, for reserved debug registers in the address ranges 0x400 - 0x4FC and 0x800 - 0x8FC, the response
is a CONSTRAINED UNPREDICTABLE choice of error or RES0 when conditions 1 or 2 do not apply and:

EDAD AllowExternalDebugAccess() == FALSE. External debug is disabled.

Note
See also Behavior of a not permitted access on page H8-7469.
H8-7470 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the External Debug Registers
H8.5 External debug interface register access permissions
4. In addition, for reserved Performance Monitors registers in the address ranges 0x000 - 0xEFC, the response
is a CONSTRAINED UNPREDICTABLE choice of error or RES0 when conditions 1 or 2 do not apply and:

EPMAD AllowExternalPMUAccess() == FALSE. External Performance Monitor access is disabled.

Note
See also Behavior of a not permitted access on page H8-7469.

5. For reads of WO locations, the response is a CONSTRAINED UNPREDICTABLE choice of error or RES0 when the
architecture permits or requires a write to the location to return an error.

6. For writes of RO locations, the response is a CONSTRAINED UNPREDICTABLE choice of error or RES0 when the
architecture permits or requires a read to the location to return an error.

7. For reads and writes of locations for features that are not implemented, the response is a CONSTRAINED
UNPREDICTABLE choice of error or RES0 when the architecture permits or requires an access to the location
to return an error if the feature is implemented.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H8-7471
ID072021 Non-Confidential

About the External Debug Registers
H8.6 External debug interface registers
H8.6 External debug interface registers

The external debug interface register map is described by:

• Performance Monitors external register views on page I5-7686.

• Cross-trigger interface registers on page H8-7479.

• External debug interface register map on page H8-7472.

Table H8-2 External debug interface register map

Offset Mnemonic Register, or additional information

0x020 EDESR EDESR, External Debug Event Status Register on page H9-7545

0x024 EDECR EDECR, External Debug Execution Control Register on page H9-7543

0x030

0x034

EDWAR[31:0]

EDWAR[63:32]

EDWAR, External Debug Watchpoint Address Register on page H9-7593

0x080 DBGDTRRX_EL0 Chapter H4 The Debug Communication Channel and Instruction Transfer Register

0x084 EDITR EDITR, External Debug Instruction Transfer Register on page H9-7549

0x088 EDSCR EDSCR, External Debug Status and Control Register on page H9-7584

0x08C DBGDTRTX_EL0 Chapter H4 The Debug Communication Channel and Instruction Transfer Register

0x090 EDRCR EDRCR, External Debug Reserve Control Register on page H9-7582

0x094 EDACR EDACR, External Debug Auxiliary Control Register on page H9-7516

0x098 EDECCR EDECCR, External Debug Exception Catch Control Register on page H9-7536

0x0A0 EDPCSRloa EDPCSR, External Debug Program Counter Sample Register on page H9-7555

0x0A4 EDCIDSR EDCIDSR, External Debug Context ID Sample Register on page H9-7522

0x0A8 EDVIDSR EDVIDSR, External Debug Virtual Context Sample Register on page H9-7590

0x0AC EDPCSRhi EDPCSR, External Debug Program Counter Sample Register on page H9-7555

0x0300 OSLAR_EL1 OSLAR_EL1, OS Lock Access Register on page H9-7597

0x0310 EDPRCR EDPRCR, External Debug Power/Reset Control Register on page H9-7569

0x0314 EDPRSR EDPRSR, External Debug Processor Status Register on page H9-7573

0x0400+16n

0x0404+16n

DBGBVR<n>_EL1[31:0]bc

DBGBVR<n>_EL1[63:32]bc

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15 on page H9-7494

0x0408+16n DBGBCR<n>_EL1 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15 on
page H9-7490

0x800+16

0x804+16n

DBGWVR<n>_EL1[31:0]bc

DBGWVR<n>_EL1[63:32]bc

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15 on page H9-7511

0x808+16n DBGWCR<n>_EL1c DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15 on
page H9-7507

0xC00-0xCFC IMPLEMENTATION DEFINED -

0xD00 MIDR_EL1 Main ID register

0xD04-0xD1C - Reserved, RES0
H8-7472 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the External Debug Registers
H8.6 External debug interface registers
Note

All other locations are reserved.

0xD20 EDPFR[31:0] External Debug Processor Feature Register 0

0xD24 EDPFR[63:32]

0xD28 EDDFR[31:0] External Debug Feature Register 0

0xD2C EDDFR[63:32]

0xD30 Reserved, see next column Previously defined as Instruction Set Attribute Register 0 bits[31:0]. Behavior is:

Bits[31:20] RES0.

Bits[19:4] UNKNOWN.

Bits[3:0] RES0.

0xD34 RES0 Previously defined as Instruction Set Attribute Register 0 bits[63:32]

0xD38 UNKNOWN Previously defined as Memory Model Feature Register 0

0xD3C RES0

0xD40-0xDFC RES0 Reserved, RES0

0xD60 EDAA32PFR[31:0] External Debug AArch32 Processor Feature Register

0xD64 EDAA32PFR[63:32] External Debug AArch32 Processor Feature Register

0xE80-EFC IMPLEMENTATION DEFINED -

0xF00-E8C Management registers Management registers and CoreSight compliance on page K2-8432

0xFA0 DBGCLAIMSET_EL1 DBGCLAIMSET_EL1, Debug CLAIM Tag Set register on page H9-7501

0xFA4 DBGCLAIMCLR_EL1 DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register on page H9-7499

0xFA8 EDDEVAFF0 EDDEVAFF0, External Debug Device Affinity register 0 on page H9-7524

0xFAC EDDEVAFF1 EDDEVAFF1, External Debug Device Affinity register 1 on page H9-7525

0xFB0-FB4 Management registers Management registers and CoreSight compliance on page K2-8432

0xFB8 DBGAUTHSTATUS_EL1 DBGAUTHSTATUS_EL1, Debug Authentication Status register on page H9-7488

0xFC0 EDDEVID2 EDDEVID, External Debug Device ID register 0 on page H9-7528

0xFC4 EDDEVID1 EDDEVID1, External Debug Device ID register 1 on page H9-7530

0xFC8 EDDEVID EDDEVID2, External Debug Device ID register 2 on page H9-7531

0xFD0-FFC Management registers Management registers and CoreSight compliance on page K2-8432

a. Supported only if the OPTIONAL PC Sample-Based Profiling is implemented but FEAT_PCSRv8p2 is not implemented. See Chapter H7 The
PC Sample-based Profiling Extension.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented.

b. A 64-bit register mapped to a pair of 32-bit locations. Doubleword accesses to this register are not guaranteed to be 64-bit single copy atomic.
See Endianness and supported access sizes on page H8-7461. Software must ensure a breakpoint or watchpoint is disabled before altering
the value register.

c. Implemented breakpoints and watchpoints only. n is the breakpoint or the watchpoint number.

Table H8-2 External debug interface register map (continued)

Offset Mnemonic Register, or additional information
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H8-7473
ID072021 Non-Confidential

About the External Debug Registers
H8.6 External debug interface registers
H8.6.1 Access permissions for the External debug interface registers

Table H8-3 on page H8-7475 and Table H8-4 on page H8-7476 show the access permissions for the external debug
interface registers in an Armv8-A Debug implementation. The terms are defined as follows:

Domain This describes the power domain in which the register is logically implemented. Registers described
as implemented in the Core power domain might be implemented in the Debug power domain, as
long as they exhibit the required behavior.

If FEAT_DoPD is implemented, most External debug interface registers are in the Core power
domain, as shown in Table H8-3 on page H8-7475.

If FEAT_DoPD is not implemented, most of the registers are in the Debug Power Domain, as shown
in Table H8-4 on page H8-7476.

Conditions This lists the conditions under which the access is attempted.

To determine the access permissions for a register, read these columns from left to right, and stop at
first column that lists the condition as being true.

The conditions are:

Off The Core power domain is completely off, or in low-power state. In these cases the Core
power domain registers cannot be accessed, and if FEAT_DoPD is not implemented,
EDPRSR.PU will read as 0.

Note
When the Core power domain is off, or in a low-power state, a debugger is permitted to
access a debug register that is implemented in the external Debug power domain.

When the Debug power domain is off, all accesses to the registers in the external Debug
power domain return an error.

DLK FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE. The OS Double
Lock is locked. If FEAT_DoPD is implemented, FEAT_DoubleLock is not
implemented and so Table H8-3 on page H8-7475 does not include this column.

OSLK OSLSR.OSLK == 1. The OS Lock is locked.

EDAD AllowExternalDebugAccess() == FALSE. External debug access is disabled for the
access. If FEAT_Debugv8p4 is implemented, this applies only for Non-secure accesses
to the register. See also Behavior of a not permitted access on page H8-7469.

EPMAD AllowExternalPMUAccess() == FALSE. Access to the external Performance Monitors is
disabled for the access. If FEAT_Debugv8p4 is implemented, this applies only for
Non-secure accesses to the register. See also Behavior of a not permitted access on
page H8-7469.

SLK The Software Lock is implemented and SoftwareLockStatus() == TRUE. This provides
the modified default access permissions for OPTIONAL memory-mapped accesses to the
external debug interface if the OPTIONAL Software Lock is locked. See Register access
permissions for memory-mapped accesses on page H8-7466. If FEAT_DoPD is
implemented, the Software Lock is not locked or not implemented, this column is
ignored.

Default This provides the default access permissions, if there are no conditions that prevent
access to the register.

The access permissions are:

- This means that the default access permission applies. See the Default column, or the SLK column,
if applicable.

RO This means that the register or field is read-only, and:

• Unless the register description states otherwise, a RO field in an RW register ignores writes.

• Where the SLK control makes a RW register RO, the register ignores writes.
H8-7474 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the External Debug Registers
H8.6 External debug interface registers
RW This means that the register or field is read/write. Individual fields within the register might be RO
or WO. See the relevant register description for details.

RC This means that a read of the register bit clears the field to 0.

WO This means that the register or field is write-only. Unless the register description states otherwise, a
WO field in a RW register returns an UNKNOWN value on a read of the register.

WI This means that the register or field ignores writes.

IMP DEF This means that the access permissions are IMPLEMENTATION DEFINED.

If OPTIONAL memory-mapped access to the external debug interface is supported, there might be additional
constraints on memory-mapped accesses. See Register access permissions for memory-mapped accesses on
page H8-7466.

For the reset values for the external debug interface registers, see Table H8-7 on page H8-7481.

Table H8-3 Access permissions for the external debug interface registers if FEAT_DoPD is implemented

Domain
Conditions (priority from left to right)

Offset Register Off DLK OSLK EDAD Default

0x020 EDESR Core Error - - - RW

0x024 EDECR Core Error - - - RW

0x030

0x034

EDWAR[31:0]

EDWAR[63:32]

Core Error - Error - RO

0x080 DBGDTRRX_EL0 Core Error - Error - RW

0x084 EDITR Core Error - Error - WO

0x088 EDSCR Core Error - Error - RW

0x08C DBGDTRTX_EL0 Core Error - Error - RW

0x090 EDRCR Core Error - Error - WO

0x094 EDACR Core Error - IMP DEF - RW

0x098 EDECCR Core Error - Error - RW

0x0A0 EDPCSR[31:0]a Core Error - Error - RO

0x0A4 EDCIDSRa Core Error - Error - RO

0x0A8 EDVIDSRa Core Error - Error - RO

0x0AC EDPCSR[63:32]a Core Error - Error - RO

0x300 OSLAR_EL1 Core Error - - Error WO

0x310 EDPRCR Core Error - - - RW

0x314 EDPRSR Core Error - - - RO

0x400+16n

0x404+16n

DBGBVR<n>_EL1[31:0]b

DBGBVR<n>_EL1[63:32]b

Core

Core

Error

Error

- Error

Error

Error

Error

RW

RW

0x408+16n DBGBCR<n>_EL1b Core Error - Error Error RW
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H8-7475
ID072021 Non-Confidential

About the External Debug Registers
H8.6 External debug interface registers
0x800+16n

0x804+16n

DBGWVR<n>_EL1[31:0]b

DBGWVR<n>_EL1[63:32]b

Core

Core

Error

Error

- Error

Error

Error

Error

RW

RW

0x808+16n DBGWCR<n>_EL1b Core Error - Error Error RW

0xD00 MIDR_EL1 Core Error - - - RO

0xD20 EDPFR[31:0] Core Error - - - RO

0xD24 EDPFR[63:32] Core Error - - - RO

0xD28 EDDFR[31:0] Core Error - - - RO

0xD2C EDDFR[63:32] Core Error - - - RO

0xD60 EDAA32PFR[31:0] Core Error - - - RO

0xD64 EDAA32PFR[63:32] Core Error - - - RO

0xFA0 DBGCLAIMSET_EL1 Core Error - Error - RW

0xFA4 DBGCLAIMCLR_EL1 Core Error - Error - RW

0xFA8 EDDEVAFF0 Core Error - - - RO

0xFAC EDDEVAFF1 Core Error - - - RO

0xFB8 DBGAUTHSTATUS_EL1 Core Error - - - RO

0xFC0 EDDEVID2 Core Error - - - RO

0xFC4 EDDEVID1 Core Error - - - RO

0xFC8 EDDEVID Core Error - - - RO

a. Implemented only if the PC Sample-based Profiling Extension is implemented and FEAT_PCSRv8p2 is not
implemented.

b. Implemented breakpoints and watchpoints only. n is the breakpoint or watchpoint number.

Table H8-3 Access permissions for the external debug interface registers if FEAT_DoPD is implemented (continued)

Domain
Conditions (priority from left to right)

Offset Register Off DLK OSLK EDAD Default

Table H8-4 Access permissions for the external debug interface registers if FEAT_DoPD is not implemented

Conditions (priority from left to right)

Offset Register Domain Off DLK OSLK EDAD Default SLK

0x020 EDESR Core Error Error - - RW RO

0x024 EDECR Debug - - - - RW RO

0x030

0x034

EDWAR[31:0]

EDWAR[63:32]

Core Error Error Error - RO -

0x080 DBGDTRRX_EL0 Core Error Error Error - RW RO

0x084 EDITR Core Error Error Error - WO WI
H8-7476 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the External Debug Registers
H8.6 External debug interface registers
0x088 EDSCR Core Error Error Error - RW RO

0x08C DBGDTRTX_EL0 Core Error Error Error - RW RO

0x090 EDRCR Core Error Error Error - WO WI

0x094 EDACR IMP DEF IMP DEF IMP DEF IMP DEF - RW RO

0x098 EDECCR Core Error Error Error - RW RO

0x0A0 EDPCSR[31:0]a Core Error Error Error - RO RO

0x0A4 EDCIDSRa Core Error Error Error - RO RO

0x0A8 EDVIDSRa Core Error Error Error - RO RO

0x0AC EDPCSR[63:32] Core Error Error Error - RO RO

0x300 OSLAR_EL1 Core Error Error - IMP DEFb WO WI

0x310 EDPRCR Core and Debug c - - - - RW RO

0x314 EDPRSR Core and Debug c - - - - RO RO

0x400+16n

0x404+16n

DBGBVR<n>_EL1[31:0]d

DBGBVR<n>_EL1[63:32]d

Core

Core

Error

Error

Error

Error

Error

Error

Error

Error

RW

RW

RO

RO

0x408+16n DBGBCR<n>_EL1d Core Error Error Error Error RW RO

0x800+16n

0x804+16n

DBGWVR<n>_EL1[31:0]d

DBGWVR<n>_EL1[63:32]d

Core

Core

Error

Error

Error

Error

Error

Error

Error

Error

RW

RW

RO

RO

0x808+16n DBGWCR<n>_EL1d Core Error Error Error Error RW RO

0xD00 MIDR_EL1 IMP DEF IMP DEFe IMP DEFe - - RO RO

0xD20 EDPFR[31:0] IMP DEF IMP DEFe IMP DEFe - - RO RO

0xD24 EDPFR[63:32] IMP DEF IMP DEFe IMP DEFe - - RO RO

0xD28 EDDFR[31:0] IMP DEF IMP DEFe IMP DEFe - - RO RO

0xD2C EDDFR[63:32] IMP DEF IMP DEFe IMP DEFe - - RO RO

0xD60 EDAA32PFR[31:0] IMP DEF IMP DEFe IMP DEFe - - RO RO

0xD64 EDAA32PFR[63:32] IMP DEF IMP DEFe IMP DEFe - - RO RO

0xFA0 DBGCLAIMSET_EL1 Core Error Error Error - RW RO

0xFA4 DBGCLAIMCLR_EL1 Core Error Error Error - RW RO

0xFA8 EDDEVAFF0 Debug - - - - RO RO

0xFAC EDDEVAFF1 Debug - - - - RO RO

0xFB8 DBGAUTHSTATUS_EL1 Debug - - - - RO RO

Table H8-4 Access permissions for the external debug interface registers if FEAT_DoPD is not implemented

Conditions (priority from left to right)

Offset Register Domain Off DLK OSLK EDAD Default SLK
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H8-7477
ID072021 Non-Confidential

About the External Debug Registers
H8.6 External debug interface registers
0xFC0 EDDEVID2 Debug - - - - RO RO

0xFC4 EDDEVID1 Debug - - - - RO RO

0xFC8 EDDEVID Debug - - - - RO RO

a. Implemented only if the PC Sample-based Profiling Extension is implemented.

b. If FEAT_Debugv8p2 is not implemented, it is IMPLEMENTATION DEFINED whether an error is returned. See External access disabled on
page H8-7468. If no error is returned, the access is permitted.

c. Some bits are in the Debug power domain and some bits are in the Core power domain. See register field descriptions for information.

d. Implemented breakpoints and watchpoints only. n is the breakpoint or watchpoint number.

e. It is IMPLEMENTATION DEFINED whether an error is returned. See External debug over powerdown and locks on page H8-7468. If no error is
returned, the access is permitted.

Table H8-4 Access permissions for the external debug interface registers if FEAT_DoPD is not implemented

Conditions (priority from left to right)

Offset Register Domain Off DLK OSLK EDAD Default SLK
H8-7478 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the External Debug Registers
H8.7 Cross-trigger interface registers
H8.7 Cross-trigger interface registers

The Embedded Cross-Trigger Interface, CTI, is located within its own block of the external debug memory map.
There must be one such block for each PE.

If the CTI of a PE does not implement the CTIDEVAFF0 or CTIDEVAFF1 registers it must be located 64KB above
the debug registers in the external debug interface.

When FEAT_Debugv8p4 is implemented, each debug component has a Secure and Non-secure view. The Secure
view of a debug component is mapped into Secure physical memory and the Non-secure view of a debug component
is mapped into Non-secure memory. Apart from access conditions, the Non-secure and Secure views of the debug
components are identical.

Table H8-5 on page H8-7479 shows the CTI register map.

Table H8-5 Cross-trigger interface map

Offset Mnemonic Location of further details

0x000 CTICONTROL CTICONTROL, CTI Control register on page H9-7619

0x010 CTIINTACK CTIINTACK, CTI Output Trigger Acknowledge register on page H9-7634

0x014 CTIAPPSET CTIAPPSET, CTI Application Trigger Set register on page H9-7605

0x018 CTIAPPCLEAR CTIAPPCLEAR, CTI Application Trigger Clear register on page H9-7601

0x01C CTIAPPPULSE CTIAPPPULSE, CTI Application Pulse register on page H9-7603

0x020+4n CTIINEN<n>a CTIINEN<n>, CTI Input Trigger to Output Channel Enable registers, n = 0 - 31 on
page H9-7632

0x0A0+4n CTIOUTEN<n>a CTIOUTEN<n>, CTI Input Channel to Output Trigger Enable registers, n = 0 - 31 on
page H9-7642

0x130 CTITRIGINSTATUS CTITRIGINSTATUS, CTI Trigger In Status register on page H9-7649

0x134 CTITRIGOUTSTATUS CTITRIGOUTSTATUS, CTI Trigger Out Status register on page H9-7650

0x138 CTICHINSTATUS CTICHINSTATUS, CTI Channel In Status register on page H9-7608

0x13C CTICHOUTSTATUS CTICHOUTSTATUS, CTI Channel Out Status register on page H9-7609

0x140 CTIGATE CTIGATE, CTI Channel Gate Enable register on page H9-7630

0x144 ASICCTL ASICCTL, CTI External Multiplexer Control register on page H9-7600

0xE80 -

0xEFC

IMPLEMENTATION
DEFINED

IMPLEMENTATION DEFINED. See Management registers and CoreSight compliance on
page K2-8432

0xF00 -

0xFBC

Management registers Management registers and CoreSight compliance on page K2-8432

0xFC0 CTIDEVID2 CTIDEVID2, CTI Device ID register 2 on page H9-7628

0xFC4 CTIDEVID1 CTIDEVID1, CTI Device ID register 1 on page H9-7627

0xFC8 CTIDEVID CTIDEVID, CTI Device ID register 0 on page H9-7625

0xFD0 -

0xFFC

Management registers Management registers and CoreSight compliance on page K2-8432

a. Implemented triggers, including triggers that are not connected, only. n is the trigger number.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H8-7479
ID072021 Non-Confidential

About the External Debug Registers
H8.7 Cross-trigger interface registers
Table H8-6 on page H8-7480 shows the access permissions for the CTI registers in an Armv8-A Debug
implementation. For a definition of the terms used, see External debug interface registers on page H8-7472.

For the reset values of the CTI registers, see Table H8-8 on page H8-7483.

Table H8-6 Access permissions for the CTI registers

Conditions (priority from left to right)

Offset Register Domain Off DLK OSLK EDAD Default SLK

0x000 CTICONTROL Debug - - - - RW RO

0x010 CTIINTACK Debug - - - - WO WI

0x014 CTIAPPSET Debug - - - - RW RO

0x018 CTIAPPCLEAR Debug - - - - WO WI

0x01C CTIAPPPULSE Debug - - - - WO WI

0x020+4n CTIINEN<n>a Debug - - - - RW RO

0x0A0+4n CTIOUTEN<n> Debug - - - - RW RO

0x130 CTITRIGINSTATUS Debug - - - - RO RO

0x134 CTITRIGOUTSTATUS Debug - - - - RO RO

0x138 CTICHINSTATUS Debug - - - - RO RO

0x13C CTICHOUTSTATUS Debug - - - - RO RO

0x140 CTIGATE Debug - - - - RW RO

0xFC0 CTIDEVID2 Debug - - - - RO RO

0xFC4 CTIDEVID1 Debug - - - - RO RO

0xFC8 CTIDEVID Debug - - - - RO RO

a. Implemented triggers only (including triggers that are not connected). n is the trigger number.
H8-7480 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the External Debug Registers
H8.8 External debug register resets
H8.8 External debug register resets

Each register or field has a defined reset domain:

• Registers and fields in the Warm reset domain are also reset by a Cold reset and unchanged by an External
Debug reset that is not coincident with a Cold reset or a Warm reset.

• Registers and fields in the Cold reset domain are unchanged by a Warm reset or an External Debug reset that
is not coincident with a Cold reset.

• Registers and fields in the External Debug reset domain are unchanged by a Cold reset or a Warm reset that
is not coincident with an External Debug reset.

A reset might change the value of a register. Specific rules apply to the observability of registers in the External
Debug reset domain by indirect reads from the Core power domain when an External Debug reset is asserted without
a coincident Cold reset. For more information, see Synchronization of changes to the external debug registers on
page H8-7462.

Table H8-7 on page H8-7481 and Table H8-8 on page H8-7483 show the external debug register and CTI register
resets. For other debug registers and Performance Monitors registers, see Management register resets on
page K2-8439 and Power domains and Performance Monitors registers reset on page I3-7677.

Note

By reference to Figure H6-1 on page H6-7452 the power domain can be deduced from the reset domain. Table K2-9
on page K2-8439 also shows reset power domains.

Table H8-7 on page H8-7481 and Table H8-8 on page H8-7483 do not include:

• Read-only identification registers, such as Processor ID Registers and PMCFGR, that have a fixed value from
reset.

• Read-only status registers, such as EDSCR.RW, that are evaluated each time the register is read and that have
no meaningful reset value.

• Write-only registers, such as EDRCR, that only have an effect on writes, and have no meaningful reset value.

• Read/write registers, such as breakpoint and watchpoint registers, and EDPRCR.CORENPDRQ, that alias
other registers. The reset values are described by the descriptions of those other registers.

• IMPLEMENTATION DEFINED registers. The reset values and reset domains of these registers are also
IMPLEMENTATION DEFINED and might be UNKNOWN.

All other fields in the registers are set to an IMPLEMENTATION DEFINED value that can be UNKNOWN. The register is
in the specified reset domain.

Note

An IMPLEMENTATION DEFINED reset value, which can be UNKNOWN, means that hardware is not required to reset
the register on the specified reset, but software must not rely on the register being preserved over reset.

Table H8-7 Summary of external debug register resets, debug registers

Register Reset domain Field Value Description

DBGPRCR_EL1 Cold into
AArch64 state

CORENPDRQ The value of the
powerup request a

Debug Power Control Register.

DBGPRCR Cold into
AArch32 state

CORENPDRQ The value of the
powerup request a

Debug Power Control Register.

EDESR Warm SS EDECR.SS Halting Step debug event pending

RC EDECR.RCE Reset Catch debug event pending

OSUC 0 OS Unlock Catch debug event
pending
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H8-7481
ID072021 Non-Confidential

About the External Debug Registers
H8.8 External debug register resets
EDESR if FEAT_DoPD is
implemented

Cold SS 0 Halting Step debug event pending

Warm RC CTIDEVCTL.RCE Reset Catch debug event pending

EDECR if FEAT_DoPD is
implemented

Cold SS 0 Halting Step debug event enable

EDECR if FEAT_DoPD is
not implemented

External debug SS 0 Halting Step debug event enable

RCE 0 Reset Catch debug event enable

OSUCE 0 OS Unlock Catch debug event enable

EDWAR Cold - - All fields

EDSCR Cold RXfull 0 DTRRX register full

TXfull 0 DTRTX register full

RXO 0 DTRRX overrun

TXU 0 DTRTX underrun

INTdis 0 Interrupt disable

TDA 0 Trap debug register accesses to
Debug state

MA 0 Memory access mode in Debug state

HDE 0 Halting debug mode enable

ERR 0 Cumulative error flag

EDECCR Cold NSE[2:1] 0b00 Coarse-grained Non-secure
Exception Catch

SE[3,1] 0b00 Coarse-grained Secure Exception
Catch

EDPCSR Cold - - All fields

EDCIDSR Cold - - All fields

EDVIDSR Cold - - All fields

EDPRCR if FEAT_DoPD is
implemented

Cold - - -

EDPRCR if FEAT_DoPD is
not implemented

External debug COREPURQb - Core powerup request

EDPRSR Warm SDR - Sticky debug restart

Cold SPMAD 0 Sticky EPMAD error

SDAD 0 Sticky EDAD error

Warm SR 1 Sticky reset status

Cold SPD 1 Sticky powerdown status

a. If FEAT_DoPD is not implemented, the powerup request is the EDPRCR.COREPURQ control bit.

Table H8-7 Summary of external debug register resets, debug registers (continued)

Register Reset domain Field Value Description
H8-7482 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

About the External Debug Registers
H8.8 External debug register resets
Table H8-8 on page H8-7483 shows the reset values for the CTI registers

b. If FEAT_DoPD is not implemented, on a Cold reset into AArch64 state, DBGPRCR_EL1.CORENPDRQ resets to the value of
EDPRCR.COREPURQ. On a Cold reset into AArch32 state, DBGPRCR.CORENPDRQ resets to the value of EDPRCR.COREPURQ. If an
External Debug reset and a Cold reset coincide, both EDPRCR.COREPURQ and the CORENPDRQ field of the appropriate System register
are reset to 0.

Table H8-8 Summary of external debug register resets, CTI registers

Register Reset domain Field Value Description

CTICONTROL External debug GLBEN 0 CTI global enable

CTIDEVCTL External debug RCE 0 If FEAT_DoPD is implemented,
Reset Catch debug event enable

OSUCE 0 If FEAT_DoPD is implemented,
OS Unlock Catch debug event enable

CTIAPPSET External debug - - All fields

CTIINEN<n> External debug - - All fields

CTIOUTEN<n> External debug - - All fields

CTIGATE External debug - - All fields

ASICCTL IMPLEMENTATION
DEFINED

- IMPLEMENTATION
DEFINED

All of register
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H8-7483
ID072021 Non-Confidential

About the External Debug Registers
H8.8 External debug register resets
H8-7484 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter H9
External Debug Register Descriptions

This chapter provides a description of the external debug registers. It contains the following sections:

• About the debug registers on page H9-7486.

• External debug registers on page H9-7487.

• Cross-Trigger Interface registers on page H9-7599.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7485
ID072021 Non-Confidential

External Debug Register Descriptions
H9.1 About the debug registers
H9.1 About the debug registers

The following sections describe the registers that are accessible through the external debug interface:

• External debug registers on page H9-7487.

• Cross-Trigger Interface registers on page H9-7599.
H9-7486 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2 External debug registers

This section describes the debug registers that are accessible through the external debug interface and are used for
external debug.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7487
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.1 DBGAUTHSTATUS_EL1, Debug Authentication Status register

The DBGAUTHSTATUS_EL1 characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for
debug.

Configurations

External register DBGAUTHSTATUS_EL1 bits [31:0] are architecturally mapped to AArch64
System register DBGAUTHSTATUS_EL1[31:0].

External register DBGAUTHSTATUS_EL1 bits [31:0] are architecturally mapped to AArch32
System register DBGAUTHSTATUS[31:0].

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

Attributes

DBGAUTHSTATUS_EL1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SNID, bits [7:6]

When FEAT_Debugv8p4 is implemented:

SNID

Secure non-invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.SID.

Otherwise:

SNID

Secure non-invasive debug.

0b00 Not implemented. EL3 is not implemented and the Effective value of SCR_EL3.NS is 1.

0b10 Implemented and disabled. ExternalSecureNoninvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalSecureNoninvasiveDebugEnabled() == TRUE.

All other values are reserved.

SID, bits [5:4]

Secure invasive debug.

0b00 Not implemented. EL3 is not implemented and the Effective value of SCR_EL3.NS is 1.

0b10 Implemented and disabled. ExternalSecureInvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalSecureInvasiveDebugEnabled() == TRUE.

All other values are reserved.

RES0

31 8

SNID

7 6

SID

5 4 3 2

NSID

1 0

NSNID
H9-7488 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
NSNID, bits [3:2]

When FEAT_Debugv8p4 is implemented:

NSNID

Non-secure non-invasive debug.

0b00 Not implemented. EL3 is not implemented and the Effective value of SCR_EL3.NS is 0.

0b11 Implemented and enabled. ExternalNoninvasiveDebugEnabled() == TRUE.

If the Effective value of SCR_EL3.NS is 1, or if EL3 is implemented and EL2 is not implemented,
this field reads as 0b11.

All other values are reserved.

Otherwise:

NSNID

Non-secure non-invasive debug.

0b00 Not implemented. EL3 is not implemented and the Effective value of SCR_EL3.NS is 0.

0b10 Implemented and disabled. ExternalNoninvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalNoninvasiveDebugEnabled() == TRUE.

All other values are reserved.

NSID, bits [1:0]

Non-secure invasive debug.

0b00 Not implemented. EL3 is not implemented and the Effective value of SCR_EL3.NS is 0.

0b10 Implemented and disabled. ExternalInvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalInvasiveDebugEnabled() == TRUE.

All other values are reserved.

Accessing the DBGAUTHSTATUS_EL1:

DBGAUTHSTATUS_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

Debug 0xFB8 DBGAUTHSTATUS_EL1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7489
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

The DBGBCR<n>_EL1 characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register
DBGBVR<n>_EL1.

Configurations

External register DBGBCR<n>_EL1 bits [31:0] are architecturally mapped to AArch64 System
register DBGBCR<n>_EL1[31:0].

External register DBGBCR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DBGBCR<n>[31:0].

DBGBCR<n>_EL1 is in the Core power domain.

If breakpoint n is not implemented then accesses to this register are:

• RES0 when IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() &&
AllowExternalDebugAccess().

• A CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR otherwise.

Attributes

DBGBCR<n>_EL1 is a 32-bit register.

Field descriptions

When the E field is zero, all the other fields in the register are ignored.

Bits [31:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

0b0000 Unlinked instruction address match. DBGBVR<n>_EL1 is the address of an
instruction.

0b0001 As 0b0000 but linked to a Context matching breakpoint.

0b0010 Unlinked Context ID match. When FEAT_VHE is implemented, EL2 is using
AArch64, and the Effective value of HCR_EL2.E2H is 1, if either the PE is executing
at EL0 with HCR_EL2.TGE set to 1 or the PE is executing at EL2, then
DBGBVR<n>_EL1.ContextID must match the CONTEXTIDR_EL2 value. Otherwise,
DBGBVR<n>_EL1.ContextID must match the CONTEXTIDR_EL1 value.

0b0011 As 0b0010, with linking enabled.

0b0100 Unlinked instruction address mismatch. DBGBVR<n>_EL1 is the address of an
instruction to be stepped.

0b0101 As 0b0100, with linking enabled.

0b0110 Unlinked CONTEXTIDR_EL1 match. DBGBVR<n>_EL1.ContextID is a Context ID
compared against CONTEXTIDR_EL1.

0b0111 As 0b0110, with linking enabled.

0b1000 Unlinked VMID match. DBGBVR<n>_EL1.VMID is a VMID compared against
VTTBR_EL2.VMID.

RES0

31 24

BT

23 20

LBN

19 16

SSC

15 14 13

RES0

12 9

BAS

8 5

RES0

4 3

PMC

2 1

E

0

HMC
H9-7490 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
0b1001 As 0b1000, with linking enabled.

0b1010 Unlinked VMID and Context ID match. DBGBVR<n>_EL1.ContextID is a Context ID
compared against CONTEXTIDR_EL1, and DBGBVR<n>_EL1.VMID is a VMID
compared against VTTBR_EL2.VMID.

0b1011 As 0b1010, with linking enabled.

0b1100 Unlinked CONTEXTIDR_EL2 match. DBGBVR<n>_EL1.ContextID2 is a Context ID
compared against CONTEXTIDR_EL2.

0b1101 As 0b1100, with linking enabled.

0b1110 Unlinked Full Context ID match. DBGBVR<n>_EL1.ContextID is compared against
CONTEXTIDR_EL1, and DBGBVR<n>_EL1.ContextID2 is compared against
CONTEXTIDR_EL2.

0b1111 As 0b1110, with linking enabled.

Constraints on breakpoint programming mean some values are reserved under certain conditions.

For more information on the operation of the SSC, HMC, and PMC fields, and on the effect of
programming this field to a reserved value, see Execution conditions for which a breakpoint
generates Breakpoint exceptions on page D2-2589 and Reserved DBGBCR<n>_EL1.BT values on
page D2-2594.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the
Context-matching breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN
value.

This field is ignored when the value of DBGBCR<n>_EL1.E is 0.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for
breakpoint n is generated. This field must be interpreted along with the HMC and PMC fields, and
there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information, including the effect of programming the fields to a reserved set of values, see Reserved
DBGBCR<n>_EL1.{SSC, HMC, PMC} values on page D2-2594.

For more information on the operation of the SSC, HMC, and PMC fields, see Execution conditions
for which a breakpoint generates Breakpoint exceptions on page D2-2589.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug
event for breakpoint n is generated. This field must be interpreted along with the SSC and PMC
fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information see DBGBCR<n>_EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see Execution conditions
for which a breakpoint generates Breakpoint exceptions on page D2-2589.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [12:9]

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7491
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
BAS, bits [8:5]

When AArch32 is supported at EL0:

BAS

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless
of the instruction set and Execution state.

The permitted values depend on the breakpoint type.

For Address match breakpoints in either AArch32 or AArch64 state, the permitted values are:

All other values are reserved.

For more information, see Using the BAS field in Address Match breakpoints on page G2-6183.

For Address mismatch breakpoints in an AArch32 stage 1 translation regime, the permitted values
are:

For more information, see Using the BAS field in Address Match breakpoints on page G2-6183.

For Context matching breakpoints, this field is RES1 and ignored.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bits [4:3]

Reserved, RES0.

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event
for breakpoint n is generated. This field must be interpreted along with the SSC and HMC fields,
and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information see the DBGBCR<n>_EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see Execution conditions
for which a breakpoint generates Breakpoint exceptions on page D2-2589.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

BAS Match instruction at Constraint for debuggers

0b0011 DBGBVR<n>_EL1 Use for T32 instructions

0b1100 DBGBVR<n>_EL1 + 2 Use for T32 instructions

0b1111 DBGBVR<n>_EL1 Use for A64 and A32 instructions

BAS Match instruction at Constraint for debuggers

0b0000 - Use for a match anywhere breakpoint

0b0011 DBGBVR<n>_EL1 Use for stepping T32 instructions

0b1100 DBGBVR<n>_EL1 + 2 Use for stepping T32 instructions

0b1111 DBGBVR<n>_EL1 Use for stepping A64 and A32 instructions
H9-7492 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
E, bit [0]

Enable breakpoint DBGBVR<n>_EL1. Possible values are:

0b0 Breakpoint disabled.

0b1 Breakpoint enabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGBCR<n>_EL1:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalDebugAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

DBGBCR<n>_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

Debug 0x408 + (16 * n) DBGBCR<n>_EL1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7493
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.3 DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

The DBGBVR<n>_EL1 characteristics are:

Purpose

Holds a virtual address, or a VMID and/or a context ID, for use in breakpoint matching. Forms
breakpoint n together with control register DBGBCR<n>_EL1.

Configurations

External register DBGBVR<n>_EL1 bits [63:0] are architecturally mapped to AArch64 System
register DBGBVR<n>_EL1[63:0].

External register DBGBVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DBGBVR<n>[31:0].

If the breakpoint is context-aware and EL2 is implemented then External register
DBGBVR<n>_EL1[63:32] is architecturally mapped to AArch32 System register DBGBXVR<n>.
Otherwise there is no External register access to DBGBVR<n>_EL1[63:32] from AArch32 state.

External register DBGBVR<n>_EL1 bits [63:32] are architecturally mapped to AArch32 System
register DBGBXVR<n>[31:0].

DBGBVR<n>_EL1 is in the Core power domain.

How this register is interpreted depends on the value of DBGBCR<n>_EL1.BT.

• When DBGBCR<n>_EL1.BT is 0b0x0x, this register holds a virtual address.

• When DBGBCR<n>_EL1.BT is 0b001x, 0b011x, or 0b110x, this register holds a Context ID.

• When DBGBCR<n>_EL1.BT is 0b100x, this register holds a VMID.

• When DBGBCR<n>_EL1.BT is 0b101x, this register holds a VMID and a Context ID.

• When DBGBCR<n>_EL1.BT is 0b111x, this register holds two Context ID values.

For other values of DBGBCR<n>_EL1.BT, this register is RES0.

If breakpoint n is not implemented then accesses to this register are:

• RES0 when IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() &&
AllowExternalDebugAccess().

• A CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR otherwise.

Attributes

DBGBVR<n>_EL1 is a 64-bit register.

Field descriptions

When DBGBCR<n>_EL1.BT == 0b0x0x:

RESS[14:4], bits [63:53]

Reserved, Sign extended. Software must treat this field as RES0 if the most significant bit of VA is
0 or RES0, and as RES1 if the most significant bit of VA is 1.

Hardware always ignores the value of these bits and it is IMPLEMENTATION DEFINED whether:

• The bits are hardwired to a copy of the most significant bit of VA, meaning writes to these
bits are ignored, and reads to the bits always return the hardwired value.

RESS[14:4]

63 53 52 49

VA[48:2]

48 32

VA[52:49]

VA[48:2]

31 2

RES0

1 0
H9-7494 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
• The value in those bits can be written, and reads will return the last value written. The value
held in those bits is ignored by hardware.

Bits[52:49]

When FEAT_LVA is implemented:

VA[52:49]

Extension to VA[48:2]. For more information, see VA[48:2].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RESS[3:0]

Extension to RESS[14:4]. For more information, see RESS[14:4].

VA[48:2], bits [48:2]

If the address is being matched in an AArch64 stage 1 translation regime:

• This field contains bits[48:2] of the address for comparison.

• When FEAT_LVA is implemented, VA[52:49] forms the upper part of the address value.
Otherwise, VA[52:49] are RESS.

If the address is being matched in an AArch32 stage 1 translation regime, the first 20 bits of this
field are RES0, and the rest of the field contains bits[31:2] of the address for comparison.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT == 0b001x:

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison.

The value is compared against CONTEXTIDR_EL2 when (FEAT_VHE is implemented or
FEAT_Debugv8p2 is implemented), EL2 is using AArch64, HCR_EL2.E2H is 1, and either:

• The PE is executing at EL2.

• HCR_EL2.TGE is 1, the PE is executing at EL0, and EL2 is enabled in the current Security
state.

Otherwise, the value is compared against the following:

• CONTEXTIDR when the PE is executing at AArch32.

• CONTEXTIDR_EL1 when the PE is executing at AArch64.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

ContextID

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7495
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
When DBGBCR<n>_EL1.BT == 0b011x, EL2 is implemented and (FEAT_VHE is implemented or
FEAT_Debugv8p2 is implemented):

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>_EL1.BT == 0b100x and EL2 is implemented:

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]

When FEAT_VHE is implemented and VTCR_EL2.VS == 1:

VMID[15:8]

Extension to VMID[7:0]. For more information, see DBGBVR<n>_EL1.VMID[7:0].

If EL2 is using AArch32, this field is RES0.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.

• VTCR_EL2.VS is 0.

• FEAT_VMID16 is not implemented.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

ContextID

31 0

RES0

63 48

VMID[15:8]

47 40

VMID[7:0]

39 32

RES0

31 0
H9-7496 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
Bits [31:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT == 0b101x and EL2 is implemented:

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]

When FEAT_VMID16 is implemented and VTCR_EL2.VS == 1:

VMID[15:8]

Extension to VMID[7:0]. For more information, see DBGBVR<n>_EL1.VMID[7:0].

If EL2 is using AArch32, or if the implementation has an 8-bit VMID, this field is RES0.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.

• VTCR_EL2.VS is 0.

• FEAT_VMID16 is not implemented.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>_EL1.BT == 0b110x, EL2 is implemented and (FEAT_VHE is implemented or
FEAT_Debugv8p2 is implemented):

RES0

63 48

VMID[15:8]

47 40

VMID[7:0]

39 32

ContextID

31 0

ContextID2

63 32

RES0

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7497
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT == 0b111x, EL2 is implemented and (FEAT_VHE is implemented or
FEAT_Debugv8p2 is implemented):

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGBVR<n>_EL1:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalDebugAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

DBGBVR<n>_EL1[63:0] can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

ContextID2

63 32

ContextID

31 0

Component Offset Instance Range

Debug 0x400 + (16 * n) DBGBVR<n>_EL1 63:0
H9-7498 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.4 DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register

The DBGCLAIMCLR_EL1 characteristics are:

Purpose

Used by software to read the values of the CLAIM tag bits, and to clear CLAIM tag bits to 0.

The architecture does not define any functionality for the CLAIM tag bits.

Note
CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMSET_EL1 register.

Configurations

External register DBGCLAIMCLR_EL1 bits [31:0] are architecturally mapped to AArch64 System
register DBGCLAIMCLR_EL1[31:0].

External register DBGCLAIMCLR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DBGCLAIMCLR[31:0].

DBGCLAIMCLR_EL1 is in the Core power domain.

An implementation must include eight CLAIM tag bits.

Attributes

DBGCLAIMCLR_EL1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RAZ/WI.

CLAIM, bits [7:0]

Read or clear CLAIM tag bits. Reading this field returns the current value of the CLAIM tag bits.

Writing a 1 to one of these bits clears the corresponding CLAIM tag bit to 0. This is an indirect write
to the CLAIM tag bits. A single write operation can clear multiple CLAIM tag bits to 0.

Writing 0 to one of these bits has no effect.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing the DBGCLAIMCLR_EL1:

DBGCLAIMCLR_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

RAZ/WI

31 8

CLAIM

7 0

Component Offset Instance

Debug 0xFA4 DBGCLAIMCLR_EL1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7499
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register generate an error response.
H9-7500 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.5 DBGCLAIMSET_EL1, Debug CLAIM Tag Set register

The DBGCLAIMSET_EL1 characteristics are:

Purpose

Used by software to set the CLAIM tag bits to 1.

The architecture does not define any functionality for the CLAIM tag bits.

Note
CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMCLR_EL1 register.

Configurations

External register DBGCLAIMSET_EL1 bits [31:0] are architecturally mapped to AArch64 System
register DBGCLAIMSET_EL1[31:0].

External register DBGCLAIMSET_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DBGCLAIMSET[31:0].

DBGCLAIMSET_EL1 is in the Core power domain.

An implementation must include eight CLAIM tag bits.

Attributes

DBGCLAIMSET_EL1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RAZ/WI.

CLAIM, bits [7:0]

Set CLAIM tag bits.

This field is RAO.

Writing a 1 to one of these bits sets the corresponding CLAIM tag bit to 1. This is an indirect write
to the CLAIM tag bits. A single write operation can set multiple CLAIM tag bits to 1.

Writing 0 to one of these bits has no effect.

Accessing the DBGCLAIMSET_EL1:

DBGCLAIMSET_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

RAZ/WI

31 8

CLAIM

7 0

Component Offset Instance

Debug 0xFA0 DBGCLAIMSET_EL1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7501
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register generate an error response.
H9-7502 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.6 DBGDTRRX_EL0, Debug Data Transfer Register, Receive

The DBGDTRRX_EL0 characteristics are:

Purpose

Transfers data from an external debugger to the PE. For example, it is used by a debugger
transferring commands and data to a debug target. See DBGDTR_EL0 for additional architectural
mappings. It is a component of the Debug Communications Channel.

Configurations

External register DBGDTRRX_EL0 bits [31:0] are architecturally mapped to AArch64 System
register DBGDTRRX_EL0[31:0].

External register DBGDTRRX_EL0 bits [31:0] are architecturally mapped to AArch32 System
register DBGDTRRXint[31:0].

DBGDTRRX_EL0 is in the Core power domain.

Attributes

DBGDTRRX_EL0 is a 32-bit register.

Field descriptions

Bits [31:0]

Update DTRRX.

Writes to this register:

• If RXfull is set to 1, set DTRRX to UNKNOWN.

• If RXfull is set to 0, update the value in DTRRX.

After the write, RXfull is set to 1.

Reads of this register:

• If RXfull is set to 1, return the last value written to DTRRX.

• If RXfull is set to 0, return an UNKNOWN value.

After the read, RXfull remains unchanged.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGDTRRX_EL0:

If EDSCR.ITE == 0 when the PE exits Debug state on receiving a Restart request trigger event, the behavior of any
operation issued by a DTR access in memory access mode that has not completed execution is CONSTRAINED
UNPREDICTABLE, and must do one of the following:

• It must complete execution in Debug state before the PE executes the restart sequence.

• It must complete execution in Non-debug state before the PE executes the restart sequence.

• It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed
by the instruction are left in an UNKNOWN state.

Update DTRRX

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7503
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
DBGDTRRX_EL0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

Debug 0x080 DBGDTRRX_EL0
H9-7504 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.7 DBGDTRTX_EL0, Debug Data Transfer Register, Transmit

The DBGDTRTX_EL0 characteristics are:

Purpose

Transfers data from the PE to an external debugger. For example, it is used by a debug target to
transfer data to the debugger. See DBGDTR_EL0 for additional architectural mappings. It is a
component of the Debug Communication Channel.

Configurations

External register DBGDTRTX_EL0 bits [31:0] are architecturally mapped to AArch64 System
register DBGDTRTX_EL0[31:0].

External register DBGDTRTX_EL0 bits [31:0] are architecturally mapped to AArch32 System
register DBGDTRTXint[31:0].

DBGDTRTX_EL0 is in the Core power domain.

Attributes

DBGDTRTX_EL0 is a 32-bit register.

Field descriptions

Bits [31:0]

Return DTRTX.

Reads of this register:

• If TXfull is set to 1, return the last value written to DTRTX.

• If TXfull is set to 0, return an UNKNOWN value.

After the read, TXfull is cleared to 0.

Writes to this register:

• If TXfull is set to 1, set DTRTX to UNKNOWN.

• If TXfull is set to 0, update the value in DTRTX.

After the write, TXfull remains unchanged.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGDTRTX_EL0:

If EDSCR.ITE == 0 when the PE exits Debug state on receiving a Restart request trigger event, the behavior of any
operation issued by a DTR access in memory access mode that has not completed execution is CONSTRAINED
UNPREDICTABLE, and must do one of the following:

• It must complete execution in Debug state before the PE executes the restart sequence.

• It must complete execution in Non-debug state before the PE executes the restart sequence.

• It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed
by the instruction are left in an UNKNOWN state.

Return DTRTX

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7505
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
DBGDTRTX_EL0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

Debug 0x08C DBGDTRTX_EL0
H9-7506 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.8 DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

The DBGWCR<n>_EL1 characteristics are:

Purpose

Holds control information for a watchpoint. Forms watchpoint n together with value register
DBGWVR<n>_EL1.

Configurations

External register DBGWCR<n>_EL1 bits [31:0] are architecturally mapped to AArch64 System
register DBGWCR<n>_EL1[31:0].

External register DBGWCR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DBGWCR<n>[31:0].

DBGWCR<n>_EL1 is in the Core power domain.

If watchpoint n is not implemented then accesses to this register are:

• When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() &&
AllowExternalDebugAccess(), RES0.

• Otherwise, a CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR.

Attributes

DBGWCR<n>_EL1 is a 32-bit register.

Field descriptions

When the E field is zero, all the other fields in the register are ignored.

Bits [31:29]

Reserved, RES0.

MASK, bits [28:24]

Address mask. Only objects up to 2GB can be watched using a single mask.

0b00000 No mask.

0b00001 Reserved.

0b00010 Reserved.

If programmed with a reserved value, a watchpoint must behave as if either:

• MASK has been programmed with a defined value, which might be 0 (no mask), other than
for a direct read of DBGWCRn_EL1.

• The watchpoint is disabled.

Software must not rely on this property because the behavior of reserved values might change in a
future revision of the architecture.

Other values mask the corresponding number of address bits, from 0b00011 masking 3 address bits
(0x00000007 mask for address) to 0b11111 masking 31 address bits (0x7FFFFFFF mask for address).

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [23:21]

Reserved, RES0.

RES0

31 29

MASK

28 24

RES0

23 21

WT

20

LBN

19 16

SSC

15 14 13

BAS

12 5

LSC

4 3

PAC

2 1

E

0

HMC
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7507
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
WT, bit [20]

Watchpoint type. Possible values are:

0b0 Unlinked data address match.

0b1 Linked data address match.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

LBN, bits [19:16]

Linked breakpoint number. For Linked data address watchpoints, this specifies the index of the
Context-matching breakpoint linked to.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Watchpoint debug event for
watchpoint n is generated. This field must be interpreted along with the HMC and PAC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see Execution conditions
for which a watchpoint generates Watchpoint exceptions on page D2-2600.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Watchpoint debug
event for watchpoint n is generated. This field must be interpreted along with the SSC and PAC
fields.

For more information on the operation of the SSC, HMC, and PAC fields, see Execution conditions
for which a watchpoint generates Watchpoint exceptions on page D2-2600.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

BAS, bits [12:5]

Byte address select. Each bit of this field selects whether a byte from within the word or
double-word addressed by DBGWVR<n>_EL1 is being watched.

In cases where DBGWVR<n>_EL1 addresses a double-word:

BAS Description

xxxxxxx1 Match byte at DBGWVR<n>_EL1

xxxxxx1x Match byte at DBGWVR<n>_EL1 + 1

xxxxx1xx Match byte at DBGWVR<n>_EL1 + 2

xxxx1xxx Match byte at DBGWVR<n>_EL1 + 3

BAS Description, if DBGWVR<n>_EL1[2] == 0

xxx1xxxx Match byte at DBGWVR<n>_EL1 + 4
H9-7508 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
If DBGWVR<n>_EL1[2] == 1, only BAS[3:0] is used. Arm deprecates setting
DBGWVR<n>_EL1[2] == 1.

The valid values for BAS are non-zero binary number all of whose set bits are contiguous. All other
values are reserved and must not be used by software. See Reserved DBGWCR<n>.BAS values on
page G2-6205.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

LSC, bits [4:3]

Load/store control. This field enables watchpoint matching on the type of access being made.
Possible values of this field are:

0b01 Match instructions that load from a watchpointed address.

0b10 Match instructions that store to a watchpointed address.

0b11 Match instructions that load from or store to a watchpointed address.

All other values are reserved, but must behave as if the watchpoint is disabled. Software must not
rely on this property as the behavior of reserved values might change in a future revision of the
architecture.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

PAC, bits [2:1]

Privilege of access control. Determines the Exception level or levels at which a Watchpoint debug
event for watchpoint n is generated. This field must be interpreted along with the SSC and HMC
fields.

For more information on the operation of the SSC, HMC, and PAC fields, see Execution conditions
for which a watchpoint generates Watchpoint exceptions on page D2-2600.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

E, bit [0]

Enable watchpoint n. Possible values are:

0b0 Watchpoint disabled.

0b1 Watchpoint enabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGWCR<n>_EL1:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalDebugAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

xx1xxxxx Match byte at DBGWVR<n>_EL1 + 5

x1xxxxxx Match byte at DBGWVR<n>_EL1 + 6

1xxxxxxx Match byte at DBGWVR<n>_EL1 + 7

BAS Description, if DBGWVR<n>_EL1[2] == 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7509
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
DBGWCR<n>_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

Debug 0x808 + (16 * n) DBGWCR<n>_EL1
H9-7510 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.9 DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

The DBGWVR<n>_EL1 characteristics are:

Purpose

Holds a data address value for use in watchpoint matching. Forms watchpoint n together with
control register DBGWCR<n>_EL1.

Configurations

External register DBGWVR<n>_EL1 bits [63:0] are architecturally mapped to AArch64 System
register DBGWVR<n>_EL1[63:0].

External register DBGWVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DBGWVR<n>[31:0].

DBGWVR<n>_EL1 is in the Core power domain.

If watchpoint n is not implemented then accesses to this register are:

• When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() &&
AllowExternalDebugAccess(), RES0.

• Otherwise, a CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR.

Attributes

DBGWVR<n>_EL1 is a 64-bit register.

Field descriptions

RESS[14:4], bits [63:53]

Reserved, Sign extended. Hardware and software must treat this field as RES0 if the most significant
bit of VA is 0 or RES0, and as RES1 if the most significant bit of VA is 1.

Hardware always ignores the value of these bits and it is IMPLEMENTATION DEFINED whether:

• The bits are hardwired to a copy of the most significant bit of VA, meaning writes to these
bits are ignored, and reads to the bits always return the hardwired value.

• The value in those bits can be written, and reads will return the last value written. The value
held in those bits is ignored by hardware.

VA[52:49], bits [52:49]

When FEAT_LVA is implemented:

VA[52:49]

Extension to VA[48:2]. For more information, see VA[48:2].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RESS[3:0]

Extension to RESS[14:4]. For more information, see RESS[14:4].

RESS[14:4]

63 53 52 49

VA[48:2]

48 32

VA[52:49]

VA[48:2]

31 2

RES0

1 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7511
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
VA[48:2], bits [48:2]

Bits[48:2] of the address value for comparison.

When FEAT_LVA is implemented, VA[52:49] forms the upper part of the address value. Otherwise,
VA[52:49] are RESS.

Arm deprecates setting DBGWVR<n>_EL1[2] == 1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

Accessing the DBGWVR<n>_EL1:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalDebugAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

DBGWVR<n>_EL1[63:0] can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance Range

Debug 0x800 + (16 * n) DBGWVR<n>_EL1 63:0
H9-7512 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.10 EDAA32PFR, External Debug Auxiliary Processor Feature Register

The EDAA32PFR characteristics are:

Purpose

Provides information about implemented PE features.

Note
The register mnemonic, EDAA32PFR, is derived from previous definitions of this register that
defined this register only when AArch64 was not supported.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

It is IMPLEMENTATION DEFINED whether EDAA32PFR is implemented in the Core power domain
or in the Debug power domain.

Attributes

EDAA32PFR is a 64-bit register.

Field descriptions

Bits [63:20]

Reserved, RES0.

MSA_frac, bits [19:16]

When EDAA32PFR.PMSA == 0b0000 and EDAA32PFR.VMSA == 0b1111:

MSA_frac

Memory System Architecture fractional field. This holds the information on additional Memory
System Architectures supported. Defined values are:

0b0001 PMSAv8-64 supported in all translation regimes. VMSAv8-64 not supported.

0b0010 PMSAv8-64 supported in all translation regimes. In addition to PMSAv8-64, stage 1
EL1&0 translation regime also supports VMSAv8-64.

All other values are reserved.

Otherwise:

Reserved, RES0.

EL3, bits [15:12]

When EDPFR.EL3 == 0b0000:

EL3

AArch32 EL3 Exception level handling. Defined values are:

0b0000 EL3 is not implemented or can be executed in AArch64 state.

0b0001 EL3 can be executed in AArch32 state only.

RES0

63 32

RES0

31 20

MSA_frac

19 16

EL3

15 12

EL2

11 8

PMSA

7 4

VMSA

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7513
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
All other values are reserved.

Note

EDPFR.{EL1, EL0} indicate whether EL1 and EL0 can only be executed in AArch32 state.

Otherwise:

Reserved, RAZ.

EL2, bits [11:8]

When EDPFR.EL2 == 0b0000:

EL2

AArch32 EL2 Exception level handling. Defined values are:

0b0000 EL2 is not implemented or can be executed in AArch64 state.

0b0001 EL2 can be executed in AArch32 state only.

All other values are reserved.

Note

EDPFR.{EL1, EL0} indicate whether EL1 and EL0 can only be executed in AArch32 state.

Otherwise:

Reserved, RAZ.

PMSA, bits [7:4]

Indicates support for a 32-bit PMSA. Defined values are:

0b0000 PMSA-32 not supported.

0b0100 PMSAv8-32 supported.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

VMSA, bits [3:0]

When EDAA32PFR.PMSA != 0b0000:

VMSA

Indicates support for a VMSA in addition to a 32-bit PMSA Defined values are:

0b0000 VMSA not supported.

All other values are reserved.

When EDAA32PFR.PMSA == 0b0000:

VMSA

Defined values are:

0b0000 VMSAv8-64 supported.

0b1111 Memory system architecture described by EDAA32PFR.MSA_frac.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Otherwise:

Reserved, RAZ.
H9-7514 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
Accessing the EDAA32PFR:

EDAA32PFR can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are IMPDEF.

Component Offset Instance

Debug 0xD60 EDAA32PFR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7515
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.11 EDACR, External Debug Auxiliary Control Register

The EDACR characteristics are:

Purpose

Allows implementations to support IMPLEMENTATION DEFINED controls.

Configurations

It is IMPLEMENTATION DEFINED whether EDACR is implemented in the Core power domain or in
the Debug power domain.

If FEAT_DoPD is implemented, this register is implemented in the Core power domain.

If FEAT_DoPD is not implemented, the power domain that this register is implemented in is
IMPLEMENTATION DEFINED.

Changing this register from its reset value causes IMPLEMENTATION DEFINED behavior, including
possible deviation from the architecturally-defined behavior.

If the EDACR contains any control bits that must be preserved over power down, then these bits
must be accessible by the external debug interface when the OS Lock is locked,
OSLSR_EL1.OSLK == 1, and when the Core is powered off.

Attributes

EDACR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• The following resets apply:

— If the register is implemented in the Core power domain:

— On a Cold reset, this field resets to an architecturally UNKNOWN value.

— On an External debug reset, the value of this field is unchanged.

— On a Warm reset, the value of this field is unchanged.

— If the register is implemented in the External debug power domain:

— On a Cold reset, the value of this field is unchanged.

— On an External debug reset, this field resets to an architecturally UNKNOWN
value.

— On a Warm reset, the value of this field is unchanged.

Accessing the EDACR:

EDACR can be accessed through the external debug interface:

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

Debug 0x094 EDACR
H9-7516 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register are IMPDEF.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7517
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.12 EDCIDR0, External Debug Component Identification Register 0

The EDCIDR0 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see About the Component Identification scheme on page K2-8443.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

EDCIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble.

Reads as 0x0D.

Access to this field is RO.

Accessing the EDCIDR0:

EDCIDR0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 8

1101

7 0

PRMBL_0

Component Offset Instance

Debug 0xFF0 EDCIDR0
H9-7518 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.13 EDCIDR1, External Debug Component Identification Register 1

The EDCIDR1 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see About the Component Identification scheme on page K2-8443.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

EDCIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

0b1001 CoreSight component.

Other values are defined by the CoreSight Architecture.

This field reads as 0x9.

PRMBL_1, bits [3:0]

Preamble.

Reads as 0b0000.

Access to this field is RO.

Accessing the EDCIDR1:

EDCIDR1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 8

CLASS

7 4

0

3 0

PRMBL_1

Component Offset Instance

Debug 0xFF4 EDCIDR1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7519
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.14 EDCIDR2, External Debug Component Identification Register 2

The EDCIDR2 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see About the Component Identification scheme on page K2-8443.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

EDCIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble.

Reads as 0x05.

Access to this field is RO.

Accessing the EDCIDR2:

EDCIDR2 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 8

101

7 0

PRMBL_2

Component Offset Instance

Debug 0xFF8 EDCIDR2
H9-7520 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.15 EDCIDR3, External Debug Component Identification Register 3

The EDCIDR3 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see About the Component Identification scheme on page K2-8443.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

EDCIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble.

Reads as 0xB1.

Access to this field is RO.

Accessing the EDCIDR3:

EDCIDR3 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 8

1 0 1 1 0 0 0 1

7 0

PRMBL_3

Component Offset Instance

Debug 0xFFC EDCIDR3
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7521
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.16 EDCIDSR, External Debug Context ID Sample Register

The EDCIDSR characteristics are:

Purpose

Contains the sampled value of the Context ID, captured on reading EDPCSR[31:0].

Configurations

EDCIDSR is in the Core power domain.

This register is present only when FEAT_PCSRv8 is implemented and FEAT_PCSRv8p2 is not
implemented. Otherwise, direct accesses to EDCIDSR are RES0.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented in the
external debug registers space.

Note

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance
Monitors registers space.

Attributes

EDCIDSR is a 32-bit register.

Field descriptions

CONTEXTIDR, bits [31:0]

Context ID. The value of FEAT_PCSRv8p2 that is associated with the most recent EDPCSR
sample. When the most recent EDPCSR sample was generated:

• If EL1 is using AArch64, then the Context ID is sampled from CONTEXTIDR_EL1.

• If EL1 is using AArch32, then the Context ID is sampled from CONTEXTIDR.

• If EL3 is implemented and is using AArch32, then CONTEXTIDR is a banked register, and
EDCIDSR samples the current banked copy of CONTEXTIDR for the Security state that is
associated with the most recent EDPCSR sample.

Because the value written to EDCIDSR is an indirect read of FEAT_PCSRv8p2, it is CONSTRAINED
UNPREDICTABLE whether EDCIDSR is set to the original or new value if EDPCSR samples:

• An instruction that writes to FEAT_PCSRv8p2.

• The next Context synchronization event.

• Any instruction executed between these two instructions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the EDCIDSR:

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see
Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN on page H7-7458.

CONTEXTIDR

31 0
H9-7522 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
EDCIDSR can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

Debug 0x0A4 EDCIDSR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7523
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.17 EDDEVAFF0, External Debug Device Affinity register 0

The EDDEVAFF0 characteristics are:

Purpose

Copy of the low half of the PE MPIDR_EL1 register that allows a debugger to determine which PE
in a multiprocessor system the external debug component relates to.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

Attributes

EDDEVAFF0 is a 32-bit register.

Field descriptions

MPIDR_EL1lo, bits [31:0]

MPIDR_EL1 low half. Read-only copy of the low half of MPIDR_EL1, as seen from the highest
implemented Exception level.

Accessing the EDDEVAFF0:

EDDEVAFF0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

MPIDR_EL1lo

31 0

Component Offset Instance

Debug 0xFA8 EDDEVAFF0
H9-7524 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.18 EDDEVAFF1, External Debug Device Affinity register 1

The EDDEVAFF1 characteristics are:

Purpose

Copy of the high half of the PE MPIDR_EL1 register that allows a debugger to determine which PE
in a multiprocessor system the external debug component relates to.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

Attributes

EDDEVAFF1 is a 32-bit register.

Field descriptions

MPIDR_EL1hi, bits [31:0]

MPIDR_EL1 high half. Read-only copy of the high half of MPIDR_EL1, as seen from the highest
implemented Exception level.

Accessing the EDDEVAFF1:

EDDEVAFF1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

MPIDR_EL1hi

31 0

Component Offset Instance

Debug 0xFAC EDDEVAFF1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7525
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.19 EDDEVARCH, External Debug Device Architecture register

The EDDEVARCH characteristics are:

Purpose

Identifies the programmers' model architecture of the external debug component.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

EDDEVARCH is a 32-bit register.

Field descriptions

ARCHITECT, bits [31:21]

Defines the architecture of the component. For debug, this is Arm Limited.

Bits [31:28] are the JEP106 continuation code, 0x4.

Bits [27:21] are the JEP106 ID code, 0x3B.

Reads as 0b01000111011.

Access to this field is RO.

PRESENT, bit [20]

Indicates that the DEVARCH is present.

Reads as 0b1.

Access to this field is RO.

REVISION, bits [19:16]

Defines the architecture revision. For architectures defined by Arm this is the minor revision.

For debug, the revision defined by Armv8-A is 0x0.

All other values are reserved.

Reads as 0b0000.

Access to this field is RO.

ARCHVER, bits [15:12]

Defines the architecture version of the component. This is the same value as
ID_AA64DFR0_EL1.DebugVer and DBGDIDR.Version. The defined values of this field are:

0b0110 Armv8.0 Debug architecture.

0b0111 Armv8.0 Debug architecture with Virtualization Host Extensions.

0b1000 Armv8.2 Debug architecture.

0b1001 Armv8.4 Debug architecture.

1000111011

31 21

1

20

0

19 16

ARCHVER

15 12

1 0 1 0 0 0 0 1 0 1 0 1

11 0

ARCHITECT REVISION
PRESENT

ARCHPART
H9-7526 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
FEAT_Debugv8p4 adds the functionality indicated by the value 0b1001. FEAT_Debugv8p2 adds the
functionality indicated by the value 0b1000. If FEAT_VHE is not implemented, the only permitted
value is 0b0110.

The fields ARCHVER and ARCHPART together form the field ARCHID, so that ARCHVER is
ARCHID[15:12].

ARCHPART, bits [11:0]

The part number of the Armv8-A debug component.

The fields ARCHVER and ARCHPART together form the field ARCHID, so that ARCHPART is
ARCHID[11:0].

Reads as 0xA15.

Access to this field is RO.

Accessing the EDDEVARCH:

EDDEVARCH can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

Debug 0xFBC EDDEVARCH
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7527
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.20 EDDEVID, External Debug Device ID register 0

The EDDEVID characteristics are:

Purpose

Provides extra information for external debuggers about features of the debug implementation.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

EDDEVID is a 32-bit register.

Field descriptions

Bits [31:28]

Reserved, RES0.

AuxRegs, bits [27:24]

Indicates support for Auxiliary registers. Defined values are:

0b0000 None supported.

0b0001 Support for External Debug Auxiliary Control Register, EDACR.

All other values are reserved.

Bits [23:8]

Reserved, RES0.

DebugPower, bits [7:4]

Indicates support for the FEAT_DoPD feature. Defined values are:

0b0000 FEAT_DoPD not implemented. Registers in the external debug interface register map
are implemented in a mix of the Debug and Core power domains.

0b0001 FEAT_DoPD implemented. All registers in the external debug interface register map
are implemented in the Core power domain.

FEAT_DoPD implements the functionality added by the value 0b0001.

All other values are reserved.

PCSample, bits [3:0]

Indicates the level of PC Sample-based Profiling support using external debug registers. Defined
values are:

0b0000 PC Sample-based Profiling Extension is not implemented in the external debug registers
space.

0b0010 Only EDPCSR and EDCIDSR are implemented. This option is only permitted if EL3
and EL2 are not implemented.

0b0011 EDPCSR, EDCIDSR, and EDVIDSR are implemented.

All other values are reserved.

When FEAT_PCSRv8p2 is implemented, the only permitted value is 0b0000.

RES0

31 28

AuxRegs

27 24

RES0

23 8 7 4

PCSample

3 0

DebugPower
H9-7528 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
Note

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance
Monitors register space, as indicated by the value of PMDEVID.PCSample.

Accessing the EDDEVID:

EDDEVID can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

Debug 0xFC8 EDDEVID
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7529
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.21 EDDEVID1, External Debug Device ID register 1

The EDDEVID1 characteristics are:

Purpose

Provides extra information for external debuggers about features of the debug implementation.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

EDDEVID1 is a 32-bit register.

Field descriptions

Bits [31:4]

Reserved, RES0.

PCSROffset, bits [3:0]

This field indicates the offset applied to PC samples returned by reads of EDPCSR. Permitted values
of this field in Armv8 are:

0b0000 EDPCSR not implemented.

0b0010 EDPCSR implemented, and samples have no offset applied and do not sample the
instruction set state in AArch32 state.

When FEAT_PCSRv8p2 is implemented, the only permitted value is 0b0000.

Note

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance
Monitors register space, as indicated by the value of PMDEVID.PCSample.

Accessing the EDDEVID1:

EDDEVID1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 4 3 0

PCSROffset

Component Offset Instance

Debug 0xFC4 EDDEVID1
H9-7530 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.22 EDDEVID2, External Debug Device ID register 2

The EDDEVID2 characteristics are:

Purpose

Reserved for future descriptions of features of the debug implementation.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

Attributes

EDDEVID2 is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing the EDDEVID2:

EDDEVID2 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 0

Component Offset Instance

Debug 0xFC0 EDDEVID2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7531
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.23 EDDEVTYPE, External Debug Device Type register

The EDDEVTYPE characteristics are:

Purpose

Indicates to a debugger that this component is part of a PEs debug logic.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

Attributes

EDDEVTYPE is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Subtype. Indicates this is a component within a PE.

Reads as 0b0001.

Access to this field is RO.

MAJOR, bits [3:0]

Major type. Indicates this is a debug logic component.

Reads as 0b0101.

Access to this field is RO.

Accessing the EDDEVTYPE:

EDDEVTYPE can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 8

1

7 4

101

3 0

SUB MAJOR

Component Offset Instance

Debug 0xFCC EDDEVTYPE
H9-7532 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.24 EDDFR, External Debug Feature Register

The EDDFR characteristics are:

Purpose

Provides top level information about the debug system.

Note
Debuggers must use EDDEVARCH to determine the Debug architecture version.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

It is IMPLEMENTATION DEFINED whether EDDFR is implemented in the Core power domain or in
the Debug power domain.

Attributes

EDDFR is a 64-bit register.

Field descriptions

Bits [63:44]

Reserved, RES0.

TraceFilt, bits [43:40]

Armv8.4 Self-hosted Trace Extension version. Defined values are:

0b0000 Armv8.4 Self-hosted Trace Extension is not implemented.

0b0001 Armv8.4 Self-hosted Trace Extension is implemented.

All other values are reserved.

FEAT_TRF implements the functionality added by 0b0001.

From Armv8.4, the permitted values are 0b0000 and 0b0001.

Bits [39:32]

Reserved, UNKNOWN.

CTX_CMPs, bits [31:28]

Number of breakpoints that are context-aware, minus 1. These are the highest numbered
breakpoints.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64DFR0_EL1.CTX_CMPs.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [27:24]

Reserved, RES0.

RES0

63 44 43 40

UNKNOWN

39 32

TraceFilt

CTX_CMPs

31 28

RES0

27 24

WRPs

23 20

RES0

19 16

BRPs

15 12

PMUVer

11 8

TraceVer

7 4

UNKNOWN

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7533
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
WRPs, bits [23:20]

Number of watchpoints, minus 1. The value of 0b0000 is reserved.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64DFR0_EL1.WRPs.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [19:16]

Reserved, RES0.

BRPs, bits [15:12]

Number of breakpoints, minus 1. The value of 0b0000 is reserved.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64DFR0_EL1.BRPs.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

PMUVer, bits [11:8]

Performance Monitors Extension version.

This field does not follow the standard ID scheme, but uses the alternative ID scheme described in
Alternative ID scheme used for the Performance Monitors Extension version on page D13-3047

Defined values are:

0b0000 Performance Monitors Extension not implemented.

0b0001 Performance Monitors Extension, PMUv3 implemented.

0b0100 PMUv3 for Armv8.1. As 0b0001, and also includes support for:

• Extended 16-bit PMEVTYPER<n>_EL0.evtCount field.

• If EL2 is implemented, the MDCR_EL2.HPMD control bit.

0b0101 PMUv3 for Armv8.4. As 0b0100, and also includes support for the PMMIR_EL1
register.

0b0110 PMUv3 for Armv8.5. As 0b0101, and also includes support for:

• 64-bit event counters.

• If EL2 is implemented, the MDCR_EL2.HCCD control bit.

• If EL3 is implemented, the MDCR_EL3.SCCD control bit.

0b0111 PMUv3 for Armv8.7. As 0b0110, and also includes support for:

• The PMCR_EL0.FZO and, if EL2 is implemented, MDCR_EL2.HPMFZO
control bits.

• If EL3 is implemented, the MDCR_EL3.{MPMX,MCCD} control bits.

0b1111 IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3 not
supported. Arm does not recommend this value for new implementations.

All other values are reserved.

FEAT_PMUv3 implements the functionality identified by the value 0b0001.

FEAT_PMUv3p1 implements the functionality identified by the value 0b0100.

FEAT_PMUv3p4 implements the functionality identified by the value 0b0101.

FEAT_PMUv3p5 implements the functionality identified by the value 0b0110.

FEAT_PMUv3p7 implements the functionality identified by the value 0b0111.

From Armv8.1, if FEAT_PMUv3 is implemented, the value 0b0001 is not permitted.

From Armv8.4, if FEAT_PMUv3 is implemented, the value 0b0100 is not permitted.

From Armv8.5, if FEAT_PMUv3 is implemented, the value 0b0101 is not permitted.
H9-7534 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
From Armv8.7, if FEAT_PMUv3 is implemented, the value 0b0110 is not permitted.

TraceVer, bits [7:4]

Trace support. Indicates whether System register interface to a PE trace unit is implemented.
Defined values are:

0b0000 PE trace unit System registers not implemented.

0b0001 PE trace unit System registers implemented.

All other values are reserved.

A value of 0b0000 only indicates that no System register interface to a PE trace unit is implemented.
A PE trace unit might nevertheless be implemented without a System register interface.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64DFR0_EL1.TraceVer.

Bits [3:0]

Reserved, UNKNOWN.

Accessing the EDDFR:

EDDFR[31:0] can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to EDDFR[31:0] are RO.

• Otherwise accesses to EDDFR[31:0] are IMPDEF.

EDDFR[63:32] can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to EDDFR[63:32] are RO.

• Otherwise accesses to EDDFR[63:32] are IMPDEF.

Component Offset Instance Range

Debug 0xD28 EDDFR 31:0

Component Offset Instance Range

Debug 0xD2C EDDFR 63:32
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7535
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.25 EDECCR, External Debug Exception Catch Control Register

The EDECCR characteristics are:

Purpose

Controls Exception Catch debug events. For more information, see Table H3-5 on page H3-7392.

Configurations

External register EDECCR bits [31:0] are architecturally mapped to AArch64 System register
OSECCR_EL1[31:0].

External register EDECCR bits [31:0] are architecturally mapped to AArch32 System register
DBGOSECCR[31:0].

EDECCR is in the Core power domain.

Attributes

EDECCR is a 32-bit register.

Field descriptions

Bits [31:17]

Reserved, RES0.

RLE0, bit [16]

Access to this field is RES0.

NSR3, bit [15]

Access to this field is RES0.

NSR2, bit [14]

When FEAT_Debugv8p2 is implemented and Non-secure EL2 is implemented:

NSR2

Controls exception catch on exception return to Non-secure EL2 in conjunction with
EDECCR.NSE2.

0b0 If EDECCR.NSE2 is 0, then Exception Catch debug events are disabled for Non-secure
EL2.

If EDECCR.NSE2 is 1, then Exception Catch debug events are enabled for exception
entry, reset entry, and exception return to Non-secure EL2.

0b1 If EDECCR.NSE2 is 0, then Exception Catch debug events are enabled for exception
returns to Non-secure EL2.

If EDECCR.NSE2 is 1, then Exception Catch debug events are enabled for exception
entry and reset entry to Non-secure EL2.

RES0

31 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RLE0
NSR3

NSR2
NSR1

NSR0
SR3

SR2
SR1

SE0
SE1

SE2
SE3

NSE0
NSE1

NSE2
NSE3

SR0
H9-7536 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NSR1, bit [13]

When FEAT_Debugv8p2 is implemented and Non-secure EL1 is implemented:

NSR1

Controls exception catch on exception return to Non-secure EL1 in conjunction with
EDECCR.NSE1.

0b0 If EDECCR.NSE1 is 0, then Exception Catch debug events are disabled for Non-secure
EL1.

If EDECCR.NSE1 is 1, then Exception Catch debug events are enabled for exception
entry, reset entry, and exception return to Non-secure EL1.

0b1 If EDECCR.NSE1 is 0, then Exception Catch debug events are enabled for exception
returns to Non-secure EL1.

If EDECCR.NSE1 is 1, then Exception Catch debug events are enabled for exception
entry and reset entry to Non-secure EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NSR0, bit [12]

When FEAT_Debugv8p2 is implemented and Non-secure EL0 is implemented:

NSR0

Controls exception catch on exception return to Non-secure EL0.

0b0 Exception Catch debug events are disabled for Non-secure EL0.

0b1 Exception Catch debug events are enabled for exception returns to Non-secure EL0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SR3, bit [11]

When FEAT_Debugv8p2 is implemented and EL3 is implemented:

SR3

Controls exception catch on exception return to EL3 in conjunction with EDECCR.SE3.

0b0 If EDECCR.SE3 is 0, then Exception Catch debug events are disabled for EL3.

If EDECCR.SE3 is 1, then Exception Catch debug events are enabled for exception
entry, reset entry, and exception return to EL3.

0b1 If EDECCR.SE3 is 0, then Exception Catch debug events are enabled for exception
returns to EL3.

If EDECCR.SE3 is 1, then Exception Catch debug events are enabled for exception
entry and reset entry to EL3.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7537
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SR2, bit [10]

When FEAT_Debugv8p2 is implemented and FEAT_SEL2 is implemented:

SR2

Controls exception catch on exception return to Secure EL2 in conjunction with EDECCR.SE2.

0b0 If EDECCR.SE2 is 0, then Exception Catch debug events are disabled for Secure EL2.

If EDECCR.SE2 is 1, then Exception Catch debug events are enabled for exception
entry, reset entry, and exception return to Secure EL2.

0b1 If EDECCR.SE2 is 0, then Exception Catch debug events are enabled for exception
returns to Secure EL2.

If EDECCR.SE2 is 1, then Exception Catch debug events are enabled for exception
entry and reset entry to Secure EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SR1, bit [9]

When FEAT_Debugv8p2 is implemented and Secure EL1 is implemented:

SR1

Controls exception catch on exception return to Secure EL1 in conjunction with EDECCR.SE1.

0b0 If EDECCR.SE1 is 0, then Exception Catch debug events are disabled for Secure EL1.

If EDECCR.SE1 is 1, then Exception Catch debug events are enabled for exception
entry, reset entry, and exception return to Secure EL1.

0b1 If EDECCR.SE1 is 0, then Exception Catch debug events are enabled for exception
returns to Secure EL1.

If EDECCR.SE1 is 1, then Exception Catch debug events are enabled for exception
entry and reset entry to Secure EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SR0, bit [8]

When FEAT_Debugv8p2 is implemented and Secure EL0 is implemented:

SR0

Controls exception catch on exception return to Secure EL0.

0b0 Exception Catch debug events are disabled for Secure EL0.

0b1 Exception Catch debug events are enabled for exception returns to Secure EL0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.
H9-7538 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
Otherwise:

Reserved, RES0.

NSE3, bit [7]

Access to this field is RES0.

NSE2, bit [6]

When FEAT_Debugv8p2 is implemented and Non-secure EL2 is implemented:

NSE2

Controls exception catch on exception entry to Non-secure EL2. Also controls exception catch on
exception return to Non-secure EL2 in conjunction with EDECCR.NSR2.

0b0 If EDECCR.NSR2 is 0, then Exception Catch debug events are disabled for Non-secure
EL2.

If EDECCR.NSR2 is 1, then Exception Catch debug events are enabled for exception
returns to Non-secure EL2.

0b1 If EDECCR.NSR2 is 0, then Exception Catch debug events are enabled for exception
entry, reset entry, and exception return to Non-secure EL2.

If EDECCR.NSR2 is 1, then Exception Catch debug events are enabled for exception
entry and reset entry to Non-secure EL2.

Note

It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level will generate an
Exception Catch debug event.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

When Non-secure EL2 is implemented:

NSE2

Coarse-grained exception catch for Non-secure EL2. Controls Exception Catch debug events for
Non-secure EL2.

0b0 Exception Catch debug events are disabled for Non-secure EL2.

0b1 Exception Catch debug events are enabled for Non-secure EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NSE1, bit [5]

When FEAT_Debugv8p2 is implemented and Non-secure EL1 is implemented:

NSE1

Controls exception catch on exception entry to Non-secure EL1. Also controls exception catch on
exception return to Non-secure EL1 in conjunction with EDECCR.NSR1.

0b0 If EDECCR.NSR1 is 0, then Exception Catch debug events are disabled for Non-secure
EL1.

If EDECCR.NSR1 is 1, then Exception Catch debug events are enabled for exception
returns to Non-secure EL1.

0b1 If EDECCR.NSR1 is 0, then Exception Catch debug events are enabled for exception
entry, reset entry, and exception return to Non-secure EL1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7539
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
If EDECCR.NSR1 is 1, then Exception Catch debug events are enabled for exception
entry and reset entry to Non-secure EL1.

Note
It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level will generate an
Exception Catch debug event.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

When Non-secure EL1 is implemented:

NSE1

Coarse-grained exception catch for Non-secure EL1. Controls Exception Catch debug events for
Non-secure EL1.

0b0 Exception Catch debug events are disabled for Non-secure EL1.

0b1 Exception Catch debug events are enabled for Non-secure EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NSE0, bit [4]

Access to this field is RES0.

SE3, bit [3]

When FEAT_Debugv8p2 is implemented and EL3 is implemented:

SE3

Controls exception catch on exception entry to EL3. Also controls exception catch on exception
return to EL3 in conjunction with EDECCR.SR3.

0b0 If EDECCR.SR3 is 0, then Exception Catch debug events are disabled for EL3.

If EDECCR.SR3 is 1, then Exception Catch debug events are enabled for exception
returns to EL3.

0b1 If EDECCR.SR3 is 0, then Exception Catch debug events are enabled for exception
entry, reset entry, and exception return to EL3.

If EDECCR.SR3 is 1, then Exception Catch debug events are enabled for exception
entry and reset entry to EL3.

Note

It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level will generate an
Exception Catch debug event.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

When FEAT_Debugv8p2 is not implemented and EL3 is implemented:

SE3

Coarse-grained exception catch for EL3. Controls Exception Catch debug events for EL3.

0b0 Exception Catch debug events are disabled for EL3.

0b1 Exception Catch debug events are enabled for EL3.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.
H9-7540 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
Otherwise:

Reserved, RES0.

SE2, bit [2]

When FEAT_Debugv8p2 is implemented and FEAT_SEL2 is implemented:

SE2

Controls exception catch on exception entry to Secure EL2. Also controls exception catch on
exception return to Secure EL2 in conjunction with EDECCR.SR2.

0b0 If EDECCR.SR2 is 0, then Exception Catch debug events are disabled for Secure EL2.

If EDECCR.SR2 is 1, then Exception Catch debug events are enabled for exception
returns to Secure EL2.

0b1 If EDECCR.SR2 is 0, then Exception Catch debug events are enabled for exception
entry, reset entry, and exception return to Secure EL2.

If EDECCR.SR2 is 1, then Exception Catch debug events are enabled for exception
entry and reset entry to Secure EL2.

Note

It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level will generate an
Exception Catch debug event.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SE1, bit [1]

When FEAT_Debugv8p2 is implemented and Secure EL1 is implemented:

SE1

Controls exception catch on exception entry to Secure EL1. Also controls exception catch on
exception return to Secure EL1 in conjunction with EDECCR.SR1.

0b0 If EDECCR.SR1 is 0, then Exception Catch debug events are disabled for Secure EL1.

If EDECCR.SR1 is 1, then Exception Catch debug events are enabled for exception
returns to Secure EL1.

0b1 If EDECCR.SR1 is 0, then Exception Catch debug events are enabled for exception
entry, reset entry, and exception return to Secure EL1.

If EDECCR.SR1 is 1, then Exception Catch debug events are enabled for exception
entry and reset entry to Secure EL1.

Note

It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level will generate an
Exception Catch debug event.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

When Secure EL1 is implemented:

SE1

Coarse-grained exception catch for Secure EL1. Controls Exception Catch debug events for Secure
EL1.

0b0 Exception Catch debug events are disabled for Secure EL1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7541
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
0b1 Exception Catch debug events are enabled for Secure EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SE0, bit [0]

Access to this field is RES0.

Accessing the EDECCR:

EDECCR can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

Debug 0x098 EDECCR
H9-7542 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.26 EDECR, External Debug Execution Control Register

The EDECR characteristics are:

Purpose

Controls Halting debug events.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

EDECR is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

SS, bit [2]

Halting step enable. Possible values of this field are:

0b0 Halting step debug event disabled.

0b1 Halting step debug event enabled.

If the value of EDECR.SS is changed when the PE is in Non-debug state, behavior is CONSTRAINED
UNPREDICTABLE as described in Changing the value of EDECR.SS when not in Debug state on
page H3-7387.

The reset behavior of this field is:

• On a Cold reset, when FEAT_DoPD is implemented, this field resets to 0.

• On an External debug reset, when FEAT_DoPD is not implemented, this field resets to 0.

RCE, bit [1]

When FEAT_DoPD is not implemented:

RCE

Reset Catch Enable.

0b0 Reset Catch debug event disabled.

0b1 Reset Catch debug event enabled.

The reset behavior of this field is:

• On an External debug reset, this field resets to 0.

Otherwise:

Reserved, RES0.

OSUCE, bit [0]

When FEAT_DoPD is not implemented:

OSUCE

RES0

31 3

SS

2 1 0

RCE OSUCE
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7543
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
OS Unlock Catch Enable.

0b0 OS Unlock Catch debug event disabled.

0b1 OS Unlock Catch debug event enabled.

The reset behavior of this field is:

• On an External debug reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Accessing the EDECR:

EDECR can be accessed through the external debug interface:

This interface is accessible as follows:

• When (FEAT_DoPD is not implemented or IsCorePowered()) and SoftwareLockStatus() accesses to this
register are RO.

• When (FEAT_DoPD is not implemented or IsCorePowered()) and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

Debug 0x024 EDECR
H9-7544 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.27 EDESR, External Debug Event Status Register

The EDESR characteristics are:

Purpose

Indicates the status of internally pending Halting debug events.

Configurations

EDESR is in the Core power domain.

Attributes

EDESR is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

SS, bit [2]

When FEAT_DoPD is implemented:

SS

Halting step debug event pending. Possible values of this field are:

0b0 Reading this means that a Halting step debug event is not pending. Writing this means
no action.

0b1 Reading this means that a Halting step debug event is pending. Writing this clears the
pending Halting step debug event.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

SS

Halting step debug event pending. Possible values of this field are:

0b0 Reading this means that a Halting step debug event is not pending. Writing this means
no action.

0b1 Reading this means that a Halting step debug event is pending. Writing this clears the
pending Halting step debug event.

The reset behavior of this field is:

• On a Warm reset, this field resets to the value in EDECR.SS.

RC, bit [1]

Reset Catch debug event pending. Possible values of this field are:

0b0 Reading this means that a Reset Catch debug event is not pending. Writing this means
no action.

0b1 Reading this means that a Reset Catch debug event is pending. Writing this clears the
pending Reset Catch debug event.

RES0

31 3

SS

2

RC

1 0

OSUC
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7545
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
The reset behavior of this field is:

• On a Warm reset:

— When FEAT_DoPD is implemented, this field resets to the value in
CTIDEVCTL.RCE.

— When FEAT_DoPD is not implemented, this field resets to the value in EDECR.RCE.

OSUC, bit [0]

OS Unlock Catch debug event pending. Possible values of this field are:

0b0 Reading this means that an OS Unlock Catch debug event is not pending. Writing this
means no action.

0b1 Reading this means that an OS Unlock Catch debug event is pending. Writing this clears
the pending OS Unlock Catch debug event.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing the EDESR:

If a request to clear a pending Halting debug event is received at or about the time when halting becomes allowed,
it is CONSTRAINED UNPREDICTABLE whether the event is taken.

If Core power is removed while a Halting debug event is pending, it is lost. However, it might become pending again
when the Core is powered back on and Cold reset.

EDESR can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus() and !SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

Debug 0x020 EDESR
H9-7546 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.28 EDITCTRL, External Debug Integration mode Control register

The EDITCTRL characteristics are:

Purpose

Enables the external debug to switch from its default mode into integration mode, where test
software can control directly the inputs and outputs of the PE, for integration testing or topology
detection.

Configurations

It is IMPLEMENTATION DEFINED whether EDITCTRL is implemented in the Core power domain or
in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

EDITCTRL is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

IME, bit [0]

Integration mode enable. When IME == 1, the device reverts to an integration mode to enable
integration testing or topology detection. The integration mode behavior is IMPLEMENTATION
DEFINED.

0b0 Normal operation.

0b1 Integration mode enabled.

The reset behavior of this field is:

• The following resets apply:

— Whichever power domain the register is implemented in, this field resets to 0.

— Otherwise, the value of this field is unchanged.

Accessing the EDITCTRL:

EDITCTRL can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

RES0

31 1 0

IME

Component Offset Instance

Debug 0xF00 EDITCTRL
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7547
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
• Otherwise accesses to this register are IMPDEF.
H9-7548 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.29 EDITR, External Debug Instruction Transfer Register

The EDITR characteristics are:

Purpose

Used in Debug state for passing instructions to the PE for execution.

Configurations

EDITR is in the Core power domain.

Attributes

EDITR is a 32-bit register.

Field descriptions

When AArch32 is supported at EL0 and in AArch32 state:

T32Second, bits [31:16]

Second halfword of the T32 instruction to be executed on the PE. When EDITR contains a 16-bit
T32 instruction, this field is ignored. For more information, see Behavior in Debug state on
page H2-7348.

T32First, bits [15:0]

First halfword of the T32 instruction to be executed on the PE.

When AArch64 is supported at the highest implemented Exception level and in AArch64 state:

Bits [31:0]

A64 instruction to be executed on the PE.

Accessing the EDITR:

If EDSCR.ITE == 0 when the PE exits Debug state on receiving a Restart request trigger event, the behavior of any
instruction issued through the ITR in Normal access mode that has not completed execution is CONSTRAINED
UNPREDICTABLE, and must do one of the following:

• It must complete execution in Debug state before the PE executes the restart sequence.

• It must complete execution in Non-debug state before the PE executes the restart sequence.

• It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed
by the instruction are left in an UNKNOWN state.

EDITR ignores writes if the PE is in Non-debug state.

T32Second

31 16

T32First

15 0

A64 instruction to be executed on the PE

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7549
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
EDITR can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are WI.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are WO.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

Debug 0x084 EDITR
H9-7550 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.30 EDLAR, External Debug Lock Access Register

The EDLAR characteristics are:

Purpose

Allows or disallows access to the external debug registers through a memory-mapped interface.

The optional Software Lock provides a lock to prevent memory-mapped writes to the debug
registers. Use of this lock mechanism reduces the risk of accidental damage to the contents of the
debug registers. It does not, and cannot, prevent all accidental or malicious damage.

Configurations

If FEAT_DoPD is implemented, Software Lock is not implemented by the architecturally-defined
debug components of the PE in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Software uses EDLAR to set or clear the lock, and EDLSR to check the current status of the lock.

Attributes

EDLAR is a 32-bit register.

Field descriptions

When Software Lock is implemented:

KEY, bits [31:0]

Lock Access control. Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write
accesses to this component's registers through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to this component's
registers through a memory mapped interface.

Otherwise:

Otherwise

Bits [31:0]

Reserved, RES0.

Accessing the EDLAR:

EDLAR can be accessed through its memory-mapped interface:

KEY

31 0

RES0

31 0

Component Offset Instance

Debug 0xFB0 EDLAR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7551
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are WO.

• Otherwise accesses to this register generate an error response.
H9-7552 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.31 EDLSR, External Debug Lock Status Register

The EDLSR characteristics are:

Purpose

Indicates the current status of the software lock for external debug registers.

The optional Software Lock provides a lock to prevent memory-mapped writes to the debug
registers. Use of this lock mechanism reduces the risk of accidental damage to the contents of the
debug registers. It does not, and cannot, prevent all accidental or malicious damage.

Configurations

If FEAT_DoPD is implemented, Software Lock is not implemented by the architecturally-defined
debug components of the PE in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Software uses EDLAR to set or clear the lock, and EDLSR to check the current status of the lock.

Attributes

EDLSR is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

Not thirty-two bit access required. RAZ.

SLK, bit [1]

When Software Lock is implemented:

SLK

Software Lock status for this component. For an access to LSR that is not a memory-mapped access,
or when Software Lock is not implemented, this field is RES0.

For memory-mapped accesses when Software Lock is implemented, possible values of this field
are:

0b0 Lock clear. Writes are permitted to this component's registers.

0b1 Lock set. Writes to this component's registers are ignored, and reads have no side
effects.

The reset behavior of this field is:

• On a Cold reset, when FEAT_DoPD is implemented, this field resets to 1.

• On an External debug reset, when FEAT_DoPD is not implemented, this field resets to 1.

Otherwise:

Reserved, RAZ.

RES0

31 3 2 1 0

nTT SLI
SLK
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7553
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
SLI, bit [0]

Software Lock implemented. For an access to LSR that is not a memory-mapped access, this field
is RAZ. For memory-mapped accesses, the value of this field is IMPLEMENTATION DEFINED.
Permitted values are:

0b0 Software Lock not implemented or not memory-mapped access.

0b1 Software Lock implemented and memory-mapped access.

Accessing the EDLSR:

EDLSR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

Debug 0xFB4 EDLSR
H9-7554 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.32 EDPCSR, External Debug Program Counter Sample Register

The EDPCSR characteristics are:

Purpose

Holds a sampled instruction address value.

Configurations

EDPCSR is in the Core power domain.

This register is present only when FEAT_PCSRv8 is implemented and FEAT_PCSRv8p2 is not
implemented. Otherwise, direct accesses to EDPCSR are RES0.

EDPCSR[63:32] and EDPCSR[31:0] are accessed at 32-bit memory mapped addresses that are not
contiguous.

If FEAT_VHE is implemented, the format of this register differs depending on the value of
EDSCR.SC2.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented in the
external debug registers space.

Note

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance
Monitors registers space.

Attributes

EDPCSR is a 64-bit register.

Field descriptions

When FEAT_VHE is not implemented or EDSCR.SC2 == 0:

Bits [63:32]

PC Sample high word, EDPCSRhi. If EDVIDSR.HV == 0 then this field is RAZ, otherwise bits
[63:32] of the sampled instruction address value. The translation regime that EDPCSR samples can
be determined from EDVIDSR.{NS,E2,E3}.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

PC Sample low word. EDPCSRlo, bits[31:0] of the sampled instruction address value.

EDPCSRlo reads as 0xFFFFFFFF when any of the following are true:

• The PE is in Debug state.

• PC Sample-based profiling is prohibited.

If an instruction has retired since the PE left Reset state, then the first read of EDPCSR[31:0] is
permitted but not required to return 0xFFFFFFFF.

EDPCSRlo reads as an UNKNOWN value when any of the following are true:

• The PE is in Reset state.

PC Sample high word, EDPCSRhi

63 32

PC Sample low word

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7555
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
• No instruction has retired since the PE left Reset state, Debug state, or a state where PC
Sample-based Profiling is prohibited.

• No instruction has retired since the last read of EDPCSR[31:0].

For the cases where a read of EDPCSR[31:0] returns 0xFFFFFFFF or an UNKNOWN value, the read has
the side-effect of setting EDPCSRhi, EDCIDSR, and EDVIDSR to UNKNOWN values.

Otherwise, a read of EDPCSR[31:0] returns bits [31:0] of the sampled instruction address value and
has the side-effect of indirectly writing to EDPCSRhi, EDCIDSR, and EDVIDSR. The translation
regime that EDPCSR samples can be determined from EDVIDSR.{NS,E2,E3}.

For a read of EDPCSR[31:0] from the memory-mapped interface, if EDLSR.SLK == 1, meaning
the OPTIONAL Software Lock is locked, then the side-effect of the access does not occur and
EDPCSRhi, EDCIDSR, and EDVIDSR are unchanged.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When FEAT_VHE is implemented and EDSCR.SC2 == 1:

NS, bit [63]

Non-secure state sample. Indicates the Security state that is associated with the most recent
EDPCSR sample or, when it is read as a single atomic 64-bit read, the current EDPCSR sample. The
translation regime that EDPCSR samples can be determined from EDPCSR.{NS,EL}.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

0b0 Sample is from Secure state.

0b1 Sample is from Non-secure state.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

EL, bits [62:61]

Exception level status sample. Indicates the Exception level that is associated with the most recent
EDPCSR sample or, when it is read as a single atomic 64-bit read, the current EDPCSR sample. The
translation regime that EDPCSR samples can be determined from EDPCSR.{NS,EL}.

0b00 Sample is from EL0.

0b01 Sample is from EL1.

0b10 Sample is from EL2.

0b11 Sample is from EL3.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [60:56]

Reserved, RES0.

Bits [55:32]

PC Sample high word, EDPCSRhi. Bits [55:32] of the sampled instruction address value. The
translation regime that EDPCSR samples can be determined from EDPCSR.{NS,EL}.

NS

63

EL

62 61

RES0

60 56

PC Sample high word, EDPCSRhi

55 32

PC Sample low word

31 0
H9-7556 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

PC Sample low word. EDPCSRlo, bits[31:0] of the sampled instruction address value.

EDPCSRlo reads as 0xFFFFFFFF when any of the following are true:

• The PE is in Debug state.

• PC Sample-based profiling is prohibited.

If an instruction has retired since the PE left Reset state, then the first read of EDPCSR[31:0] is
permitted but not required to return 0xFFFFFFFF.

EDPCSRlo reads as an UNKNOWN value when any of the following are true:

• The PE is in Reset state.

• No instruction has retired since the PE left Reset state, Debug state, or a state where PC
Sample-based Profiling is prohibited.

• No instruction has retired since the last read of EDPCSR[31:0].

For the cases where a read of EDPCSR[31:0] returns 0xFFFFFFFF or an UNKNOWN value, the read has
the side-effect of setting EDPCSRhi, EDCIDSR, and EDVIDSR to UNKNOWN values.

Otherwise, a read of EDPCSR[31:0] returns bits [31:0] of the sampled instruction address value and
has the side-effect of indirectly writing to EDPCSRhi, EDCIDSR, and EDVIDSR. The translation
regime that EDPCSR samples can be determined from EDPCSR.{NS,EL}.

For a read of EDPCSR[31:0] from the memory-mapped interface, if EDLSR.SLK == 1, meaning
the OPTIONAL Software Lock is locked, then the side-effect of the access does not occur and
EDPCSRhi, EDCIDSR, and EDVIDSR are unchanged.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the EDPCSR:

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see
Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN on page H7-7458

EDPCSR[31:0] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to EDPCSR[31:0] are RO.

• Otherwise accesses to EDPCSR[31:0] generate an error response.

EDPCSR[63:32] can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to EDPCSR[63:32] are RO.

• Otherwise accesses to EDPCSR[63:32] generate an error response.

Component Offset Instance Range

Debug 0x0A0 EDPCSR 31:0

Component Offset Instance Range

Debug 0x0AC EDPCSR 63:32
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7557
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.33 EDPFR, External Debug Processor Feature Register

The EDPFR characteristics are:

Purpose

Provides information about implemented PE features.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers on page D13-3045.

Configurations

It is IMPLEMENTATION DEFINED whether EDPFR is implemented in the Core power domain or in the
Debug power domain.

Attributes

EDPFR is a 64-bit register.

Field descriptions

Bits [63:60]

From Armv8.5:

Reserved, UNKNOWN.

Otherwise:

Reserved, RES0.

Bits [59:56]

From Armv8.5:

Reserved, UNKNOWN.

Otherwise:

Reserved, RES0.

Bits [55:52]

Reserved, RES0.

Bits [51:48]

From Armv8.4:

Reserved, UNKNOWN.

Otherwise:

Reserved, RES0.

UNKNOWN

63 60

UNKNOWN

59 56

RES0

55 52

UNKNOWN

51 48

AMU

47 44

UNKNOWN

43 40

SEL2

39 36

SVE

35 32

UNKNOWN

31 28

GIC

27 24

AdvSIMD

23 20

FP

19 16

EL3

15 12

EL2

11 8

EL1

7 4

EL0

3 0
H9-7558 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
AMU, bits [47:44]

Indicates support for Activity Monitors Extension. Defined values are:

0b0000 Activity Monitors Extension is not implemented.

0b0001 FEAT_AMUv1 is implemented.

0b0010 FEAT_AMUv1p1 is implemented. As 0b0001 and adds support for virtualization of the
activity monitor event counters.

All other values are reserved.

FEAT_AMUv1 implements the functionality identified by the value 0b0001.

FEAT_AMUv1p1 implements the functionality identified by the value 0b0010.

In Armv8.0, the only permitted value is 0b0000.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.6, the permitted values are 0b0000, 0b0001, and 0b0010.

Bits [43:40]

From Armv8.2:

Reserved, UNKNOWN.

Otherwise:

Reserved, RES0.

SEL2, bits [39:36]

Secure EL2. Defined values are:

0b0000 Secure EL2 is not implemented.

0b0001 Secure EL2 is implemented.

All other values are reserved.

SVE, bits [35:32]

Scalable Vector Extension. Defined values are:

0b0000 SVE is not implemented.

0b0001 SVE is implemented.

All other values are reserved.

Bits [31:28]

From Armv8.2:

Reserved, UNKNOWN.

Otherwise:

Reserved, RES0.

GIC, bits [27:24]

System register GIC interface support. Defined values are:

0b0000 GIC CPU interface system registers not implemented.

0b0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is supported.

0b0011 System register interface to version 4.1 of the GIC CPU interface is supported.

All other values are reserved.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7559
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.GIC.

AdvSIMD, bits [23:20]

Advanced SIMD. Defined values are:

0b0000 Advanced SIMD is implemented, including support for the following SISD and SIMD
operations:

• Integer byte, halfword, word and doubleword element operations.

• Single-precision and double-precision floating-point arithmetic.

• Conversions between single-precision and half-precision data types, and
double-precision and half-precision data types.

0b0001 As for 0b0000, and also includes support for half-precision floating-point arithmetic.

0b1111 Advanced SIMD is not implemented.

All other values are reserved.

This field must have the same value as the FP field.

The permitted values are:

• 0b0000 in an implementation with Advanced SIMD support, that does not include the
FEAT_FP16 extension.

• 0b0001 in an implementation with Advanced SIMD support, that includes the FEAT_FP16
extension.

• 0b1111 in an implementation without Advanced SIMD support.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.AdvSIMD.

FP, bits [19:16]

Floating-point. Defined values are:

0b0000 Floating-point is implemented, and includes support for:

• Single-precision and double-precision floating-point types.

• Conversions between single-precision and half-precision data types, and
double-precision and half-precision data types.

0b0001 As for 0b0000, and also includes support for half-precision floating-point arithmetic.

0b1111 Floating-point is not implemented.

All other values are reserved.

This field must have the same value as the AdvSIMD field.

The permitted values are:

• 0b0000 in an implementation with floating-point support, that does not include the
FEAT_FP16 extension.

• 0b0001 in an implementation with floating-point support, that includes the FEAT_FP16
extension.

• 0b1111 in an implementation without floating-point support.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.FP.

EL3, bits [15:12]

AArch64 EL3 Exception level handling. Defined values are:

0b0000 EL3 is not implemented or cannot be executed in AArch64 state.

0b0001 EL3 can be executed in AArch64 state only.

0b0010 EL3 can be executed in both Execution states.

When the value of EDAA32PFR.EL3 is non-zero, this field must be 0b0000.
H9-7560 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
All other values are reserved.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.EL3.

EL2, bits [11:8]

AArch64 EL2 Exception level handling. Defined values are:

0b0000 EL2 is not implemented or cannot be executed in AArch64 state.

0b0001 EL2 can be executed in AArch64 state only.

0b0010 EL2 can be executed in both Execution states.

When the value of EDAA32PFR.EL2 is non-zero, this field must be 0b0000.

All other values are reserved.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.EL2.

EL1, bits [7:4]

AArch64 EL1 Exception level handling. Defined values are:

0b0000 EL1 cannot be executed in AArch64 state.

EL1 can be executed in AArch32 state only.

0b0001 EL1 can be executed in AArch64 state only.

0b0010 EL1 can be executed in both Execution states.

All other values are reserved.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.EL1.

EL0, bits [3:0]

AArch64 EL0 Exception level handling. Defined values are:

0b0000 EL0 cannot be executed in AArch64 state.

EL0 can be executed in AArch32 state only.

0b0001 EL0 can be executed in AArch64 state only.

0b0010 EL0 can be executed in both Execution states.

All other values are reserved.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.EL0.

Accessing the EDPFR:

EDPFR[31:0] can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to EDPFR[31:0] are RO.

• Otherwise accesses to EDPFR[31:0] are IMPDEF.

Component Offset Instance Range

Debug 0xD20 EDPFR 31:0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7561
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
EDPFR[63:32] can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to EDPFR[63:32] are RO.

• Otherwise accesses to EDPFR[63:32] are IMPDEF.

Component Offset Instance Range

Debug 0xD24 EDPFR 63:32
H9-7562 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.34 EDPIDR0, External Debug Peripheral Identification Register 0

The EDPIDR0 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

EDPIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, least significant byte.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the EDPIDR0:

EDPIDR0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 8

PART_0

7 0

Component Offset Instance

Debug 0xFE0 EDPIDR0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7563
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.35 EDPIDR1, External Debug Peripheral Identification Register 1

The EDPIDR1 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

EDPIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, least significant nibble of JEP106 ID code. For Arm Limited, this field is 0b1011.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

PART_1, bits [3:0]

Part number, most significant nibble.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the EDPIDR1:

EDPIDR1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 8

DES_0

7 4

PART_1

3 0

Component Offset Instance

Debug 0xFE4 EDPIDR1
H9-7564 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.36 EDPIDR2, External Debug Peripheral Identification Register 2

The EDPIDR2 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

EDPIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Part major revision. Parts can also use this field to extend Part number to 16-bits.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

JEDEC, bit [3]

Indicates a JEP106 identity code is used.

Reads as 0b1.

Access to this field is RO.

DES_1, bits [2:0]

Designer, most significant bits of JEP106 ID code. For Arm Limited, this field is 0b011.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the EDPIDR2:

EDPIDR2 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

RES0

31 8

REVISION

7 4

1

3

DES_1

2 0

JEDEC

Component Offset Instance

Debug 0xFE8 EDPIDR2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7565
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
• Otherwise accesses to this register generate an error response.
H9-7566 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.37 EDPIDR3, External Debug Peripheral Identification Register 3

The EDPIDR3 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

EDPIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Part minor revision. Parts using EDPIDR2.REVISION as an extension to the Part number must use
this field as a major revision number.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CMOD, bits [3:0]

Customer modified. Indicates someone other than the Designer has modified the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the EDPIDR3:

EDPIDR3 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 8

REVAND

7 4

CMOD

3 0

Component Offset Instance

Debug 0xFEC EDPIDR3
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7567
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.38 EDPIDR4, External Debug Peripheral Identification Register 4

The EDPIDR4 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

EDPIDR4 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component. Log2 of the number of 4KB pages from the start of the component to the end
of the component ID registers.

Reads as 0b0000.

Access to this field is RO.

DES_2, bits [3:0]

Designer, JEP106 continuation code, least significant nibble. For Arm Limited, this field is 0b0100.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the EDPIDR4:

EDPIDR4 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 8

0

7 4

DES_2

3 0

SIZE

Component Offset Instance

Debug 0xFD0 EDPIDR4
H9-7568 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.39 EDPRCR, External Debug Power/Reset Control Register

The EDPRCR characteristics are:

Purpose

Controls the PE functionality related to powerup, reset, and powerdown.

Configurations

EDPRCR contains fields that are in the Core power domain and fields that are in the Debug power
domain.

If FEAT_DoPD is implemented then all fields in this register are in the Core power domain.

CORENPDRQ is the only field that is mapped between the EDPRCR and DBGPRCR and
DBGPRCR_EL1.

Attributes

EDPRCR is a 32-bit register.

Field descriptions

When FEAT_DoPD is implemented:

Bits [31:2]

Reserved, RES0.

CWRR, bit [1]

Warm reset request.

The extent of the reset is IMPLEMENTATION DEFINED, but must be one of:

• The request is ignored.

• Only this PE is Warm reset.

• This PE and other components of the system, possibly including other PEs, are Warm reset.

Arm deprecates use of this bit, and recommends that implementations ignore the request.

0b0 No action.

0b1 Request Warm reset.

This field is in the Core power domain

The PE ignores writes to this bit if any of the following are true:

• ExternalInvasiveDebugEnabled() == FALSE, EL3 is not implemented, and the implemented
Security state is Non-secure state.

• ExternalSecureInvasiveDebugEnabled() == FALSE, EL3 is not implemented, and the
implemented Security state is Secure state.

• ExternalSecureInvasiveDebugEnabled() == FALSE and EL3 is implemented.

In an implementation that includes the recommended external debug interface, this bit drives the
DBGRSTREQ signal.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

RES0

31 2 1 0

CWRR CORENPDRQ
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7569
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
Accessing this field has the following behavior:

• RAZ/WI if any of the following are true:

— OSLockStatus().

— SoftwareLockStatus().

• Otherwise, access to this field is WO/RAZ.

CORENPDRQ, bit [0]

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request
causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power
controller must not allow the Core power domain to switch off while this bit is 1.

0b0 If the system responds to a powerdown request, it powers down Core power domain.

0b1 If the system responds to a powerdown request, it does not powerdown the Core power
domain, but instead emulates a powerdown of that domain.

When this bit reads as UNKNOWN, the PE ignores writes to this bit.

This field is in the Core power domain, and permitted accesses to this field map to the
DBGPRCR.CORENPDRQ and DBGPRCR_EL1.CORENPDRQ fields.

In an implementation that includes the recommended external debug interface, this bit drives the
DBGNOPWRDWN signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to the Cold reset value on exit from an
IMPLEMENTATION DEFINED software-visible retention state. For more information about retention
states, see Core power domain power states on page H6-7440.

Note

Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This
means that a debugger can request emulation of powerdown regardless of whether invasive debug
is permitted.

The reset behavior of this field is:

• On a Cold reset, if the powerup request is implemented and the powerup request has been
asserted, this field is an IMPLEMENTATION DEFINED choice of 0 or 1. If the powerup request
is not asserted, this field is set to 0.

Accessing this field has the following behavior:

• When OSLockStatus(), access to this field is UNKNOWN/WI.

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is RW.

Otherwise:

Bits [31:4]

Reserved, RES0.

COREPURQ, bit [3]

Core powerup request. Allows a debugger to request that the power controller power up the core,
enabling access to the debug register in the Core power domain, and that the power controller
emulates powerdown.

RES0

31 4 3 2 1 0

COREPURQ
RES0

CORENPDRQ
CWRR
H9-7570 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
This request is typically passed to an external power controller. This means that whether a request
causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power
controller must not allow the Core power domain to switch off while this bit is 1.

0b0 Do not request power up of the Core power domain.

0b1 Request power up of the Core power domain, and emulation of powerdown.

In an implementation that includes the recommended external debug interface, this bit drives the
DBGPWRUPREQ signal.

This field is in the Debug power domain and can be read and written when the Core power domain
is powered off.

Note
Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This
means that a debugger can request emulation of powerdown regardless of whether invasive debug
is permitted.

The reset behavior of this field is:

• On an External debug reset, this field resets to 0.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is RW.

Bit [2]

Reserved, RES0.

CWRR, bit [1]

Warm reset request.

The extent of the reset is IMPLEMENTATION DEFINED, but must be one of:

• The request is ignored.

• Only this PE is Warm reset.

• This PE and other components of the system, possibly including other PEs, are Warm reset.

Arm deprecates use of this bit, and recommends that implementations ignore the request.

0b0 No action.

0b1 Request Warm reset.

This field is in the Core power domain

The PE ignores writes to this bit if any of the following are true:

• ExternalInvasiveDebugEnabled() == FALSE, EL3 is not implemented, and the implemented
Security state is Non-secure state.

• ExternalSecureInvasiveDebugEnabled() == FALSE, EL3 is not implemented, and the
implemented Security state is Secure state.

• ExternalSecureInvasiveDebugEnabled() == FALSE and EL3 is implemented.

In an implementation that includes the recommended external debug interface, this bit drives the
DBGRSTREQ signal.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

• RAZ/WI if any of the following are true:

— !IsCorePowered().

— DoubleLockStatus().

— OSLockStatus().

— SoftwareLockStatus().
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7571
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
• Otherwise, access to this field is WO/RAZ.

CORENPDRQ, bit [0]

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request
causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power
controller must not allow the Core power domain to switch off while this bit is 1.

0b0 If the system responds to a powerdown request, it powers down Core power domain.

0b1 If the system responds to a powerdown request, it does not powerdown the Core power
domain, but instead emulates a powerdown of that domain.

When this bit reads as UNKNOWN, the PE ignores writes to this bit.

This field is in the Core power domain, and permitted accesses to this field map to the
DBGPRCR.CORENPDRQ and DBGPRCR_EL1.CORENPDRQ fields.

In an implementation that includes the recommended external debug interface, this bit drives the
DBGNOPWRDWN signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to the value of EDPRCR.COREPURQ on
exit from an IMPLEMENTATION DEFINED software-visible retention state. For more information
about retention states, see Core power domain power states on page H6-7440.

Note

Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This
means that a debugger can request emulation of powerdown regardless of whether invasive debug
is permitted.

The reset behavior of this field is:

• On a Cold reset, this field resets to the value in EDPRCR.COREPURQ.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— !IsCorePowered().

— DoubleLockStatus().

— OSLockStatus().

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is RW.

Accessing the EDPRCR:

On permitted accesses to the register, other access controls affect the behavior of some fields. See the field
descriptions for more information.

EDPRCR can be accessed through the external debug interface:

This interface is accessible as follows:

• When (FEAT_DoPD is not implemented or IsCorePowered()) and SoftwareLockStatus() accesses to this
register are RO.

• When (FEAT_DoPD is not implemented or IsCorePowered()) and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

Debug 0x310 EDPRCR
H9-7572 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.40 EDPRSR, External Debug Processor Status Register

The EDPRSR characteristics are:

Purpose

Holds information about the reset and powerdown state of the PE.

Configurations

EDPRSR contains fields that are in the Core power domain and fields that are in the Debug power
domain.

If FEAT_DoPD is implemented then all fields in this register are in the Core power domain.

Attributes

EDPRSR is a 32-bit register.

Field descriptions

Bits [31:12]

Reserved, RES0.

SDR, bit [11]

Sticky Debug Restart. Set to 1 when the PE exits Debug state.

Permitted values are:

0b0 The PE has not restarted since EDPRSR was last read.

0b1 The PE has restarted since EDPRSR was last read.

Note

If a reset occurs when the PE is in Debug state, the PE exits Debug state. SDR is UNKNOWN on Warm
reset, meaning a debugger must also use the SR bit to determine whether the PE has left Debug state.

If The Core power domain is powered up, then following a read of EDPRSR:

• If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to
0.

• If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is CONSTRAINED
UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— (FEAT_DoPD is not implemented and !IsCorePowered()).

— DoubleLockStatus().

— EDPRSR.R == 1.

• When SoftwareLockStatus(), access to this field is RO.

RES0

31 12 11 10 9 8 7 6 5 4

SR

3

R

2 1

PU

0

SDR
SPMAD

EPMAD
SDAD

SPD
HALTED

OSLK
DLK

EDAD
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7573
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
• Otherwise, access to this field is RC/WI.

SPMAD, bit [10]

When FEAT_Debugv8p4 is implemented:

SPMAD

Sticky EPMAD error. Set to 1 if an external debug interface access to a Performance Monitors
register returns an error because AllowExternalPMUAccess() == FALSE.

Permitted values are:

0b0 No Non-secure external debug interface accesses to the external Performance Monitors
registers have failed because AllowExternalPMUAccess() == FALSE for the access since
EDPRSR was last read.

0b1 At least one Non-secure external debug interface access to the external Performance
Monitors register has failed and returned an error because AllowExternalPMUAccess() ==
FALSE for the access since EDPRSR was last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

• If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE, this bit clears
to 0.

• If FEAT_DoubleLock is implemented, and DoubleLockStatus() == TRUE, it is CONSTRAINED
UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— (FEAT_DoPD is not implemented and !IsCorePowered()).

— DoubleLockStatus().

— EDPRSR.R == 1.

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is RC/WI.

Otherwise:

SPMAD

Sticky EPMAD error.

0b0 No external debug interface accesses to the Performance Monitors registers have failed
because AllowExternalPMUAccess() == FALSE since EDPRSR was last read.

0b1 At least one external debug interface access to the Performance Monitors registers has
failed and returned an error because AllowExternalPMUAccess() == FALSE since
EDPRSR was last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

• If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE, this bit clears
to 0.

• If FEAT_DoubleLock is implemented, and DoubleLockStatus() == TRUE, it is CONSTRAINED
UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— (FEAT_DoPD is not implemented and !IsCorePowered()).

— OSLockStatus().
H9-7574 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
— DoubleLockStatus().

— EDPRSR.R == 1.

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is RC/WI.

EPMAD, bit [9]

When FEAT_Debugv8p4 is implemented and FEAT_PMUv3 is implemented:

EPMAD

External Performance Monitors Non-secure Access Disable status.

0b0 External Non-secure Performance Monitors access enabled. AllowExternalPMUAccess()
== TRUE for a Non-secure access.

0b1 External Non-secure Performance Monitors access disabled. AllowExternalPMUAccess()
== FALSE for a Non-secure access.

This field is in the Core power domain.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— (FEAT_DoPD is not implemented and !IsCorePowered()).

— DoubleLockStatus().

— EDPRSR.R == 1.

• Otherwise, access to this field is RO.

When FEAT_PMUv3 is implemented:

EPMAD

External Performance Monitors access disable status.

0b0 External Performance Monitors access enabled. AllowExternalPMUAccess() == TRUE.

0b1 External Performance Monitors access disabled. AllowExternalPMUAccess() == FALSE.

This field is in the Core power domain.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— (FEAT_DoPD is not implemented and !IsCorePowered()).

— OSLockStatus().

— DoubleLockStatus().

— EDPRSR.R == 1.

• Otherwise, access to this field is RO.

Otherwise:

Reserved, RES0.

SDAD, bit [8]

When FEAT_Debugv8p4 is implemented:

SDAD

Sticky EDAD error. Set to 1 if an external debug interface access to a debug register returns an error
because AllowExternalDebugAccess() == FALSE.

0b0 No Non-secure external debug interface accesses to the debug registers have failed
because AllowExternalDebugAccess() == FALSE for the access since EDPRSR was last
read.

0b1 At least one Non-secure external debug interface access to the debug registers has failed
and returned an error because AllowExternalDebugAccess() == FALSE for the access
since EDPRSR was last read.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7575
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
If the Core power domain is powered up, then, following a read of EDPRSR:

• If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to
0.

• If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is CONSTRAINED
UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— (FEAT_DoPD is not implemented and !IsCorePowered()).

— DoubleLockStatus().

— EDPRSR.R == 1.

• Otherwise, access to this field is RO.

Otherwise:

SDAD

Sticky EDAD error. Set to 1 if an external debug interface access to a debug register returns an error
because AllowExternalDebugAccess() == FALSE.

0b0 No external debug interface accesses to the debug registers have failed because
AllowExternalDebugAccess() == FALSE since EDPRSR was last read.

0b1 At least one external debug interface access to the debug registers has failed and
returned an error because AllowExternalDebugAccess() == FALSE since EDPRSR was
last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

• If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to
0.

• If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is CONSTRAINED
UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This bit is UNKNOWN on reads if OSLockStatus() == TRUE and external debug writes to
OSLAR_EL1 do not return an error when AllowExternalDebugAccess() == FALSE.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— (FEAT_DoPD is not implemented and !IsCorePowered()).

— DoubleLockStatus().

— EDPRSR.R == 1.

• Otherwise, access to this field is RO.

EDAD, bit [7]

When FEAT_Debugv8p4 is implemented:

EDAD

External Debug Access Disable status.

0b0 External Non-secure access to breakpoint registers, watchpoint registers, and
OSLAR_EL1 enabled. AllowExternalDebugAccess() == TRUE for a Non-secure access.

0b1 External Non-secure access to breakpoint registers, watchpoint registers, and
OSLAR_EL1 disabled. AllowExternalDebugAccess() == FALSE for a Non-secure
access.
H9-7576 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
This field is in the Core power domain.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— (FEAT_DoPD is not implemented and !IsCorePowered()).

— DoubleLockStatus().

— EDPRSR.R == 1.

• Otherwise, access to this field is RO.

When FEAT_Debugv8p2 is implemented:

EDAD

External Debug Access Disable status.

0b0 External access to breakpoint registers, watchpoint registers, and OSLAR_EL1
enabled. AllowExternalDebugAccess() == TRUE.

0b1 External access to breakpoint registers, watchpoint registers, and OSLAR_EL1
disabled. AllowExternalDebugAccess() == FALSE.

This bit is not valid and reads UNKNOWN if OSLockStatus() == TRUE and external debug writes to
OSLAR_EL1 do not return an error when AllowExternalDebugAccess() == FALSE.

This field is in the Core power domain.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— (FEAT_DoPD is not implemented and !IsCorePowered()).

— DoubleLockStatus().

— EDPRSR.R == 1.

• Otherwise, access to this field is RO.

Otherwise:

EDAD

External Debug Access Disable status.

0b0 External access to breakpoint registers, watchpoint registers, and OSLAR_EL1
enabled. AllowExternalDebugAccess() == TRUE.

0b1 External access to breakpoint registers, watchpoint registers disabled. It is
IMPLEMENTATION DEFINED whether accesses to OSLAR_EL1 are enabled or disabled.
AllowExternalDebugAccess() == FALSE.

This field is in the Core power domain.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— (FEAT_DoPD is not implemented and !IsCorePowered()).

— DoubleLockStatus().

— EDPRSR.R == 1.

• Otherwise, access to this field is RO.

DLK, bit [6]

When FEAT_Debugv8p4 is implemented:

DLK

This field is RES0.

When FEAT_Debugv8p2 is implemented and FEAT_DoubleLock is implemented:

DLK

Double Lock.

From Armv8.2, this field is deprecated.

This field is in the Core power domain.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7577
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
Accessing this field has the following behavior:

• RAZ/WI if all of the following are true:

— IsCorePowered().

— !DoubleLockStatus().

• Otherwise, access to this field is UNKNOWN/WI.

When FEAT_DoubleLock is implemented:

DLK

Double Lock.

This field returns the result of the pseudocode function DoubleLockStatus().

If the Core power domain is powered up and DoubleLockStatus() == TRUE, it is IMPLEMENTATION
DEFINED whether:

• EDPRSR.PU reads as 1, EDPRSR.DLK reads as 1, and EDPRSR.SPD is UNKNOWN.

• EDPRSR.PU reads as 0, EDPRSR.DLK is UNKNOWN, and EDPRSR.SPD reads as 0.

This field is in the Core power domain.

0b0 DoubleLockStatus() returns FALSE.

0b1 DoubleLockStatus() returns TRUE and the Core power domain is powered up.

Accessing this field has the following behavior:

• UNKNOWN/WI if all of the following are true:

— FEAT_DoPD is not implemented.

— !IsCorePowered().

• Otherwise, access to this field is RO.

Otherwise:

Reserved, RES0.

OSLK, bit [5]

OS Lock status bit.

A read of this bit returns the value of OSLSR_EL1.OSLK.

This field is in the Core power domain.

Accessing this field has the following behavior:

• UNKNOWN/WI if all of the following are true:

— (FEAT_DoPD is not implemented and !IsCorePowered()).

— DoubleLockStatus().

— EDPRSR.R == 1.

• Otherwise, access to this field is RO.

HALTED, bit [4]

Halted status bit.

0b0 PE is in Non-debug state.

0b1 PE is in Debug state.

This field is in the Core power domain.

Accessing this field has the following behavior:

• UNKNOWN/WI if all of the following are true:

— FEAT_DoPD is not implemented.

— !IsCorePowered().

• Otherwise, access to this field is RO.
H9-7578 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
SR, bit [3]

Sticky core Reset status bit.

Permitted values are:

0b0 The non-debug logic of the PE is not in reset state and has not been reset since the last
time EDPRSR was read.

0b1 The non-debug logic of the PE is in reset state or has been reset since the last time
EDPRSR was read.

If EDPRSR.PU reads as 1 and EDPRSR.R reads as 0, which means that the Core power domain is
in a powerup state and that the non-debug logic of the PE is not in reset state, then following a read
of EDPRSR:

• If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to
0.

• If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is
UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— (FEAT_DoPD is not implemented and !IsCorePowered()).

— DoubleLockStatus().

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is RC/WI.

R, bit [2]

PE Reset status bit.

Permitted values are:

0b0 The non-debug logic of the PE is not in reset state.

0b1 The non-debug logic of the PE is in reset state.

If FEAT_DoubleLock is implemented, the PE is in reset state, and the PE entered reset state with
the OS Double Lock locked this bit has a CONSTRAINED UNPREDICTABLE value. For more
information, see EDPRSR.{DLK, R} and reset state on page H6-7447.

This field is in the Core power domain.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— (FEAT_DoPD is not implemented and !IsCorePowered()).

— DoubleLockStatus().

• Otherwise, access to this field is RO.

SPD, bit [1]

Sticky core Powerdown status bit.

If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, then:

• If FEAT_Debugv8p2 is implemented, this bit reads as 0.

• If FEAT_Debugv8p2 is not implemented, this bit might read as 0 or 1.

For more information, see EDPRSR.{DLK, SPD, PU} and the Core power domain on
page H6-7446.

0b0 If EDPRSR.PU is 0, it is not known whether the state of the debug registers in the Core
power domain is lost.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7579
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
If EDPRSR.PU is 1, the state of the debug registers in the Core power domain has not
been lost.

0b1 The state of the debug registers in the Core power domain has been lost.

If the Core power domain is powered up, then, following a read of EDPRSR:

• If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to
0.

• If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is CONSTRAINED
UNPREDICTABLE whether this bit clears to 0 or is unchanged.

When FEAT_DoPD is not implemented and the Core power domain is in either retention or
powerdown state, the value of EDPRSR.SPD is IMPLEMENTATION DEFINED. For more information,
see EDPRSR.SPD when the Core domain is in either retention or powerdown state on
page H6-7447.

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed,
and whether their state has been lost since the last time the register was read. For more information,
see EDPRSR.{DLK, SPD, PU} and the Core power domain on page H6-7446.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Cold reset, this field resets to 1.

Accessing this field has the following behavior:

• RAZ/WI if all of the following are true:

— FEAT_DoPD is not implemented.

— !IsCorePowered().

• UNKNOWN/WI if all of the following are true:

— IsCorePowered().

— DoubleLockStatus().

• Otherwise, access to this field is RO.

PU, bit [0]

When FEAT_DoPD is implemented:

PU

Core powerup status bit.

Access to this field is RAO/WI.

When FEAT_Debugv8p2 is implemented:

PU

Core Powerup status bit. Indicates whether the debug registers in the Core power domain can be
accessed.

0b0 Either the Core power domain is in a low-power or powerdown state, or
FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, meaning the
debug registers in the Core power domain cannot be accessed.

0b1 The Core power domain is in a powerup state, and either FEAT_DoubleLock is not
implemented or DoubleLockStatus() == FALSE, meaning the debug registers in the
Core power domain can be accessed.

If FEAT_DoubleLock is implemented, the PE is in reset state, and the PE entered reset state with
the OS Double Lock locked this bit has a CONSTRAINED UNPREDICTABLE value. For more
information, see EDPRSR.{DLK, R} and reset state on page H6-7447

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed,
and whether their state has been lost since the last time the register was read. For more information,
see EDPRSR.{DLK, SPD, PU} and the Core power domain on page H6-7446

Access to this field is RO.
H9-7580 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
Otherwise:

PU

Core Powerup status bit. Indicates whether the debug registers in the Core power domain can be
accessed.

When the Core power domain is powered-up and DoubleLockStatus() == TRUE, then the value of
EDPRSR.PU is IMPLEMENTATION DEFINED. See the description of the DLK bit for more
information.

Otherwise, permitted values are:

0b0 Core power domain is in a low-power or powerdown state where the debug registers in
the Core power domain cannot be accessed.

0b1 Core power domain is in a powerup state where the debug registers in the Core power
domain can be accessed.

If FEAT_DoubleLock is implemented, the Core power domain is powered up, and
DoubleLockStatus() == TRUE, it is IMPLEMENTATION DEFINED whether this bit reads as 0 or 1.

If FEAT_DoubleLock is implemented, the PE is in reset state, and the PE entered reset state with
the OS Double Lock locked this bit has a CONSTRAINED UNPREDICTABLE value. For more
information see EDPRSR.{DLK, R} and reset state on page H6-7447

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed,
and whether their state has been lost since the last time the register was read. For more information,
see EDPRSR.{DLK, SPD, PU} and the Core power domain on page H6-7446.

Access to this field is RO.

Accessing the EDPRSR:

On permitted accesses to the register, other access controls affect the behavior of some fields. See the field
descriptions for more information.

If the Core power domain is powered up (EDPRSR.PU == 1), then following a read of EDPRSR:

• If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE, then:

— EDPRSR.{SDR, SPMAD, SDAD, SPD} are cleared to 0.

— EDPRSR.SR is cleared to 0 if the non-debug logic of the PE is not in reset state (EDPRSR.R == 0).

• If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is CONSTRAINED
UNPREDICTABLE whether or not this clearing occurs.

If FEAT_DoPD is not implemented and the Core power domain is powered down (EDPRSR.PU == 0), then:

• EDPRSR.{SDR, SPMAD, SDAD, SR} are all UNKNOWN, and are either reset or restored on being powered
up.

• EDPRSR.SPD is not cleared following a read of EDPRSR. See the SPD bit description for more information.

The clearing of bits is an indirect write to EDPRSR.

EDPRSR can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

Debug 0x314 EDPRSR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7581
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.41 EDRCR, External Debug Reserve Control Register

The EDRCR characteristics are:

Purpose

This register is used to allow imprecise entry to Debug state and clear sticky bits in EDSCR.

Configurations

EDRCR is in the Core power domain.

Attributes

EDRCR is a 32-bit register.

Field descriptions

Bits [31:5]

Reserved, RES0.

CBRRQ, bit [4]

Allow imprecise entry to Debug state. The actions on writing to this bit are:

0b0 No action.

0b1 Allow imprecise entry to Debug state, for example by canceling pending bus accesses.

Setting this bit to 1 allows a debugger to request imprecise entry to Debug state. An External Debug
Request debug event must be pending before the debugger sets this bit to 1.

This feature is optional. If this feature is not implemented, writes to this bit are ignored.

CSPA, bit [3]

Clear Sticky Pipeline Advance. This bit is used to clear the EDSCR.PipeAdv bit to 0. The actions
on writing to this bit are:

0b0 No action.

0b1 Clear the EDSCR.PipeAdv bit to 0.

CSE, bit [2]

Clear Sticky Error. Used to clear the EDSCR cumulative error bits to 0. The actions on writing to
this bit are:

0b0 No action.

0b1 Clear the EDSCR.{TXU, RXO, ERR} bits, and, if the PE is in Debug state, the
EDSCR.ITO bit, to 0.

Bits [1:0]

Reserved, RES0.

RES0

31 5 4 3 2

RES0

1 0

CBRRQ CSE
CSPA
H9-7582 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
Accessing the EDRCR:

EDRCR can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are WI.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are WO.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

Debug 0x090 EDRCR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7583
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.42 EDSCR, External Debug Status and Control Register

The EDSCR characteristics are:

Purpose

Main control register for the debug implementation.

Configurations

External register EDSCR bits [30:29] are architecturally mapped to AArch64 System register
MDCCSR_EL0[30:29].

EDSCR is in the Core power domain.

Attributes

EDSCR is a 32-bit register.

Field descriptions

TFO, bit [31]

When FEAT_TRF is implemented:

TFO

Trace Filter Override. Overrides the Trace Filter controls allowing the external debugger to trace
any visible Exception level.

0b0 Trace Filter controls are not affected.

0b1 Trace Filter controls in TRFCR_EL1 and TRFCR_EL2 are ignored.

Trace Filter controls TRFCR and HTRFCR are ignored.

When OSLSR_EL1.OSLK == 1, this bit can be indirectly read and written through the
MDSCR_EL1 and DBGDSCRext System registers.

This bit is ignored by the PE when ExternalSecureNoninvasiveDebugEnabled() == FALSE and the
Effective value of MDCR_EL3.STE == 1.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

RXfull, bit [30]

DTRRX full.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is RO.

31 30 29 28 27 26 25 24 23 22 21

MA

20 19

NS

18 17 16 15 14

RW

13 10

EL

9 8

A

7 6

STATUS

5 0

TFO
RXfull

TXfull
ITO

RXO
TXU

PipeAdv

HDE
RES0

SDD
RES0

SC2
TDA

INTdis
ITE

ERR
H9-7584 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
TXfull, bit [29]

DTRTX full.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is RO.

ITO, bit [28]

ITR overrun.

If the PE is in Non-debug state, this bit is UNKNOWN. ITO is set to 0 on entry to Debug state.

Access to this field is RO.

RXO, bit [27]

DTRRX overrun.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is RO.

TXU, bit [26]

DTRTX underrun.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is RO.

PipeAdv, bit [25]

Pipeline advance. Set to 1 every time the PE pipeline retires one or more instructions. Cleared to 0
by a write to EDRCR.CSPA.

The architecture does not define precisely when this bit is set to 1. It requires only that this happen
periodically in Non-debug state to indicate that software execution is progressing.

Access to this field is RO.

ITE, bit [24]

ITR empty.

If the PE is in Non-debug state, this bit is UNKNOWN. It is always valid in Debug state.

Access to this field is RO.

INTdis, bits [23:22]

When FEAT_Debugv8p4 is implemented:

INTdis

Interrupt disable. Disables taking interrupts in Non-debug state.

0b00 Masking of interrupts is controlled by PSTATE and interrupt routing controls.

0b01 If ExternalInvasiveDebugEnabled() is TRUE, then all interrupts taken to Non-secure
state are masked.

If ExternalSecureInvasiveDebugEnabled() is TRUE, then all interrupts taken to Secure
state are masked.

Note
All interrupts includes virtual and SError interrupts.

When OSLSR_EL1.OSLK is 1, this field can be indirectly read and written through the
MDSCR_EL1 and DBGDSCRext System registers.

The Effective value of this field is 0b00 when ExternalInvasiveDebugEnabled() is FALSE.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7585
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
When FEAT_Debugv8p4 is implemented, bit[23] of this register is RES0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

INTdis

Interrupt disable. Disables taking interrupts in Non-debug state.

0b00 Masking of interrupts is controlled by PSTATE and interrupt routing controls.

0b01 If ExternalInvasiveDebugEnabled() is TRUE, then all interrupts taken to Non-secure
EL1 are masked.

0b10 If ExternalInvasiveDebugEnabled() is TRUE, then all interrupts taken to Non-secure
state are masked.

If ExternalSecureInvasiveDebugEnabled() is TRUE, then all interrupts taken to Secure
EL1 are masked.

0b11 If ExternalInvasiveDebugEnabled() is TRUE, then all interrupts taken to Non-secure
state are masked.

If ExternalSecureInvasiveDebugEnabled() is TRUE, then all interrupts taken to Secure
state are masked.

Note

All interrupts includes virtual and SError interrupts.

When OSLSR_EL1.OSLK is 1, this field can be indirectly read and written through the
MDSCR_EL1 and DBGDSCRext System registers.

The Effective value of this field is 0b00 when ExternalInvasiveDebugEnabled() is FALSE.

Support for the values 0b01 and 0b10 is IMPLEMENTATION DEFINED. If these values are not supported,
they are reserved. If programmed with a reserved value, the PE behaves as if INTdis has been
programmed with a defined value, other than for a direct read of EDSCR, and the value returned by
a read of EDSCR.INTdis is UNKNOWN.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

TDA, bit [21]

Traps accesses to the following debug System registers:

• AArch64: DBGBCR<n>_EL1, DBGBVR<n>_EL1, DBGWCR<n>_EL1,
DBGWVR<n>_EL1.

• AArch32: DBGBCR<n>, DBGBVR<n>, DBGBXVR<n>, DBGWCR<n>, DBGWVR<n>.

The possible values of this field are:

0b0 Accesses to debug System registers do not generate a Software Access Debug event.

0b1 Accesses to debug System registers generate a Software Access Debug event, if
OSLSR_EL1.OSLK is 0 and if halting is allowed.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

MA, bit [20]

Memory access mode. Controls the use of memory-access mode for accessing ITR and the DCC.
This bit is ignored if in Non-debug state and set to zero on entry to Debug state.

Possible values of this field are:

0b0 Normal access mode.

0b1 Memory access mode.
H9-7586 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

SC2, bit [19]

When FEAT_PCSRv8 is implemented, (FEAT_VHE is implemented or FEAT_Debugv8p2 is
implemented) and FEAT_PCSRv8p2 is not implemented:

SC2

Sample CONTEXTIDR_EL2. Controls whether the PC Sample-based Profiling Extension samples
CONTEXTIDR_EL2 or VTTBR_EL2.VMID.

0b0 Sample VTTBR_EL2.VMID.

0b1 Sample CONTEXTIDR_EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NS, bit [18]

Non-secure status. When in Debug state, gives the current Security state:

0b0 Secure state.

0b1 Non-secure state.

In Non-debug state, this bit is UNKNOWN.

Access to this field is RO.

Bit [17]

Reserved, RES0.

SDD, bit [16]

Secure debug disabled.

On entry to Debug state:

• If entering in Secure state, SDD is set to 0.

• If entering in Non-secure state, SDD is set to the inverse of
ExternalSecureInvasiveDebugEnabled ().

In Debug state, the value of the SDD bit does not change, even if
ExternalSecureInvasiveDebugEnabled () changes.

In Non-debug state:

• SDD returns the inverse of ExternalSecureInvasiveDebugEnabled (). If the authentication
signals that control ExternalSecureInvasiveDebugEnabled () change, a context
synchronization event is required to guarantee their effect.

• This bit is unaffected by the Security state of the PE.

If EL3 is not implemented and the implementation is Non-secure, this bit is RES1.

Access to this field is RO.

Bit [15]

Reserved, RES0.

HDE, bit [14]

Halting debug enable. The possible values of this field are:

0b0 Halting disabled for Breakpoint, Watchpoint and Halt Instruction debug events.

0b1 Halting enabled for Breakpoint, Watchpoint and Halt Instruction debug events.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7587
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

RW, bits [13:10]

Exception level Execution state status. In Debug state, each bit gives the current Execution state of
each Exception level.

0b1111 Any of the following:

• The PE is in Non-debug state.

• The PE is at EL0 using AArch64.

• The PE is not at EL0, and EL1, EL2, and EL3 are using AArch64.

0b1110 When AArch32 is supported at EL0:

The PE is in Debug state at EL0. EL0 is using AArch32. EL1, EL2, and EL3 are using
AArch64.

0b110x When AArch32 is supported at EL0 and EL2 is implemented:

The PE is in Debug state. EL0 and EL1 are using AArch32. EL2 is enabled in the current
Security state and is using AArch64. If implemented, EL3 is using AArch64.

0b10xx When AArch32 is supported at EL0 and EL3 is implemented:

The PE is in Debug state. EL0 and EL1 are using AArch32. EL2 is not implemented,
disabled in the current Security state, or using AArch32. EL3 is using AArch64.

0b0xxx When AArch32 is supported at EL0:

The PE is in Debug state. All Exception levels are using AArch32.

In Non-debug state, this field is RAO.

Access to this field is RO.

EL, bits [9:8]

Exception level. In Debug state, this gives the current Exception level of the PE.

In Non-debug state, this field is RAZ.

Access to this field is RO.

A, bit [7]

SError interrupt pending. In Debug state, indicates whether an SError interrupt is pending:

• If HCR_EL2.{AMO, TGE} = {1, 0}, EL2 is enabled in the current Security state, and the PE
is executing at EL0 or EL1, a virtual SError interrupt.

• Otherwise, a physical SError interrupt.

0b0 No SError interrupt pending.

0b1 SError interrupt pending.

A debugger can read EDSCR to check whether an SError interrupt is pending without having to
execute further instructions. A pending SError might indicate data from target memory is corrupted.

UNKNOWN in Non-debug state.

Access to this field is RO.

ERR, bit [6]

Cumulative error flag. This bit is set to 1 following exceptions in Debug state and on any signaled
overrun or underrun on the DTR or EDITR.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is RO.
H9-7588 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
STATUS, bits [5:0]

Debug status flags.

0b000001 PE is restarting, exiting Debug state.

0b000010 PE is in Non-debug state.

0b000111 Breakpoint.

0b010011 External debug request.

0b011011 Halting step, normal.

0b011111 Halting step, exclusive.

0b100011 OS Unlock Catch.

0b100111 Reset Catch.

0b101011 Watchpoint.

0b101111 HLT instruction.

0b110011 Software access to debug register.

0b110111 Exception Catch.

0b111011 Halting step, no syndrome.

All other values of STATUS are reserved.

Access to this field is RO.

Accessing the EDSCR:

EDSCR can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

Debug 0x088 EDSCR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7589
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.43 EDVIDSR, External Debug Virtual Context Sample Register

The EDVIDSR characteristics are:

Purpose

Contains sampled values captured on reading EDPCSR[31:0].

Configurations

EDVIDSR is in the Core power domain.

This register is present only when FEAT_PCSRv8 is implemented and FEAT_PCSRv8p2 is not
implemented. Otherwise, direct accesses to EDVIDSR are RES0.

If FEAT_VHE is implemented, the format of this register differs depending on the value of
EDSCR.SC2.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented in the
external debug registers space.

When the PC Sample-based Profiling Extension is implemented in the external debug registers
space, if EL2 is not implemented and EL3 is not implemented, it is IMPLEMENTATION DEFINED
whether EDVIDSR is implemented.

Note

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance
Monitors registers space.

Attributes

EDVIDSR is a 32-bit register.

Field descriptions

When FEAT_VHE is not implemented or EDSCR.SC2 == 0:

This format applies in all Armv8.0 implementations.

NS, bit [31]

Non-secure state sample. Indicates the Security state associated with the most recent EDPCSR
sample.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

0b0 Sample is from Secure state.

0b1 Sample is from Non-secure state.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

E2, bit [30]

When EL2 is implemented:

E2

Exception level 2 status sample. Indicates whether the most recent EDPCSR sample was associated
with EL2.

0b0 Sample is not from EL2.

0b1 Sample is from EL2.

NS

31

E2

30

E3

29

HV

28

RES0

27 16

VMID[15:8]

15 8

VMID

7 0
H9-7590 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E3, bit [29]

When EL3 is implemented and AArch64 is supported at the highest implemented Exception level:

E3

Exception level 3 status sample. Indicates whether the most recent EDPCSR sample was associated
with EL3 using AArch64.

0b0 Sample is not from EL3 using AArch64.

0b1 Sample is from EL3 using AArch64.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HV, bit [28]

EDPCSRhi (EDPCSR[63:32]) valid. Indicates whether bits [63:32] of the most recent EDPCSR
sample might be nonzero:

0b0 Bits[63:32] of the most recent EDPCSR sample are zero.

0b1 Bits[63:32] of the most recent EDPCSR sample might be nonzero.

An EDVIDSR.HV value of 1 does not mean that the value of EDPCSRhi is nonzero. An
EDVIDSR.HV value of 0 is a hint that EDPCSRhi (EDPCSR[63:32]) does not need to be read.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [27:16]

Reserved, RES0.

VMID[15:8], bits [15:8]

When FEAT_VMID16 is implemented and EL2 is implemented:

VMID[15:8]

Extension to VMID[7:0]. For more information, see VMID[7:0].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID, bits [7:0]

When EL2 is implemented:

VMID
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7591
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
VMID sample. The VMID associated with the most recent EDPCSRlo (EDPCSR[31:0]) sample.
When the most recent EDPCSR sample was generated:

• This field is RES0 if any of the following apply:

— The PE is executing in Secure state.

— The PE is executing at EL2.

• Otherwise:

— If EL2 is using AArch64 and either FEAT_VMID16 is not implemented or
VTCR_EL2.VS is 1, this field is set to VTTBR_EL2.VMID.

— If EL2 is using AArch64, FEAT_VMID16 is implemented, and VTCR_EL2.VS is 0,
PMVIDSR.VMID[7:0] is set to VTTBR_EL2.VMID[7:0] and
PMVIDSR.VMID[15:8] is RES0.

— If EL2 is using AArch32, this field is set to VTTBR.VMID.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

When (FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented) and EDSCR.SC2 == 1:

CONTEXTIDR_EL2, bits [31:0]

Context ID. The value of CONTEXTIDR_EL2 that is associated with the most recent EDPCSR
sample. When the most recent EDPCSR sample was generated:

• If EL2 was using AArch64 and the PE was executing in Non-secure state, then this field is
set to the Context ID sampled from CONTEXTIDR_EL2.

• If EL2 was using AArch32 or the PE was executing in Secure state, then this field is set to an
UNKNOWN value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the EDVIDSR:

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see
Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN on page H7-7458.

EDVIDSR can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

CONTEXTIDR_EL2

31 0

Component Offset Instance

Debug 0x0A8 EDVIDSR
H9-7592 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.44 EDWAR, External Debug Watchpoint Address Register

The EDWAR characteristics are:

Purpose

Returns the virtual data address being accessed when a Watchpoint Debug Event was triggered.

Configurations

EDWAR is in the Core power domain.

Attributes

EDWAR is a 64-bit register.

Field descriptions

Bits [63:0]

Watchpoint address. The data virtual address being accessed when a Watchpoint Debug Event was
triggered and caused entry to Debug state. This address must be within a naturally-aligned block of
memory of power-of-two size no larger than the DC ZVA block size.

The value of this register is UNKNOWN if the PE is in Non-debug state, or if Debug state was entered
other than for a Watchpoint debug event.

The value of EDWAR[63:32] is UNKNOWN if Debug state was entered for a Watchpoint debug event
taken from AArch32 state.

The EDWAR is subject to the same alignment rules as the reporting of a watchpointed address in
the FAR. See Determining the memory location that caused a Watchpoint exception on
page D2-2606.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the EDWAR:

EDWAR[31:0] can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to EDWAR[31:0] are RO.

• Otherwise accesses to EDWAR[31:0] generate an error response.

EDWAR[63:32] can be accessed through the external debug interface:

Watchpoint address

63 32

Watchpoint address

31 0

Component Offset Instance Range

Debug 0x030 EDWAR 31:0

Component Offset Instance Range

Debug 0x034 EDWAR 63:32
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7593
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to EDWAR[63:32] are RO.

• Otherwise accesses to EDWAR[63:32] generate an error response.
H9-7594 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.45 MIDR_EL1, Main ID Register

The MIDR_EL1 characteristics are:

Purpose

Provides identification information for the PE, including an implementer code for the device and a
device ID number.

Configurations

External register MIDR_EL1 bits [31:0] are architecturally mapped to AArch64 System register
MIDR_EL1[31:0].

External register MIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
MIDR[31:0].

It is IMPLEMENTATION DEFINED whether MIDR_EL1 is implemented in the Core power domain or
in the Debug power domain.

Attributes

MIDR_EL1 is a 32-bit register.

Field descriptions

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm.
Assigned codes include the following:

0x00 Reserved for software use.

0x41 Arm Limited.

0x42 Broadcom Corporation.

0x43 Cavium Inc.

0x44 Digital Equipment Corporation.

0x46 Fujitsu Ltd.

0x49 Infineon Technologies AG.

0x4D Motorola or Freescale Semiconductor Inc.

0x4E NVIDIA Corporation.

0x50 Applied Micro Circuits Corporation.

0x51 Qualcomm Inc.

0x56 Marvell International Ltd.

0x69 Intel Corporation.

0xC0 Ampere Computing.

Arm can assign codes that are not published in this manual. All values not assigned by Arm are
reserved and must not be used.

Access to this field is RO.

Variant, bits [23:20]

Variant number. Typically, this field is used to distinguish between different product variants, or
major revisions of a product.

Implementer

31 24

Variant

23 20 19 16

PartNum

15 4

Revision

3 0

Architecture
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7595
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Architecture, bits [19:16]

Architecture version. Defined values are:

0b0001 Armv4.

0b0010 Armv4T.

0b0011 Armv5 (obsolete).

0b0100 Armv5T.

0b0101 Armv5TE.

0b0110 Armv5TEJ.

0b0111 Armv6.

0b1111 Architectural features are individually identified in the ID_* registers.

All other values are reserved.

Access to this field is RO.

PartNum, bits [15:4]

Primary Part Number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7,
the variant and architecture are encoded differently.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [3:0]

Revision number for the device.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the MIDR_EL1:

MIDR_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are IMPDEF.

Component Offset Instance

Debug 0xD00 MIDR_EL1
H9-7596 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.2 External debug registers
H9.2.46 OSLAR_EL1, OS Lock Access Register

The OSLAR_EL1 characteristics are:

Purpose

Used to lock or unlock the OS Lock.

Configurations

External register OSLAR_EL1 bits [31:0] are architecturally mapped to AArch64 System register
OSLAR_EL1[31:0].

OSLAR_EL1 is in the Core power domain.

The OS Lock can also be locked or unlocked using DBGOSLAR.

If FEAT_Debugv8p2 is not implemented, it is IMPLEMENTATION DEFINED whether external debug
accesses to OSLAR_EL1 are ignored and return an error when AllowExternalDebugAccess()
returns FALSE for the access.

If FEAT_Debugv8p2 is implemented, external debug accesses to OSLAR_EL1 are ignored and
return an error when AllowExternalDebugAccess() returns FALSE for the access.

Attributes

OSLAR_EL1 is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

OSLK, bit [0]

On writes to OSLAR_EL1, bit[0] is copied to the OS Lock.

Use EDPRSR.OSLK to check the current status of the lock.

Accessing the OSLAR_EL1:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalDebugAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

OSLAR_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), AllowExternalDebugAccess() and SoftwareLockStatus()
accesses to this register are WI.

• When IsCorePowered(), !DoubleLockStatus(), AllowExternalDebugAccess() and !SoftwareLockStatus()
accesses to this register are WO.

RES0

31 1 0

OSLK

Component Offset Instance

Debug 0x300 OSLAR_EL1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7597
ID072021 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
• When IsCorePowered(), !DoubleLockStatus(), !AllowExternalDebugAccess() and FEAT_Debugv8p2 is not
implemented accesses to this register are IMPDEF.

• Otherwise accesses to this register generate an error response.
H9-7598 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3 Cross-Trigger Interface registers

This section lists the Cross-Trigger Interface registers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7599
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.1 ASICCTL, CTI External Multiplexer Control register

The ASICCTL characteristics are:

Purpose

Can be used to provide IMPLEMENTATION DEFINED controls for the CTI. For example, the register
might be used to control multiplexors for additional IMPLEMENTATION DEFINED triggers. The
IMPLEMENTATION DEFINED controls provided by this register might modify the architecturally
defined behavior of the CTI.

Note
The architecturally-defined triggers must not be multiplexed.

Configurations

It is IMPLEMENTATION DEFINED whether ASICCTL is implemented in the Core power domain or in
the Debug power domain.

If it is implemented in the Core power domain then it is IMPLEMENTATION DEFINED whether it is in
the Cold reset domain or the Warm reset domain.

This register must reset to a value that supports the architecturally-defined behavior of the CTI.
Changing the value of the register from its reset value causes IMPLEMENTATION DEFINED behavior
that might differ from the architecturally-defined behavior of the CTI.

Other than the requirements listed in this register description, all aspects of the reset behavior of the
ASICCTL are IMPLEMENTATION DEFINED.

Attributes

ASICCTL is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ASICCTL:

ASICCTL can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are IMPDEF.

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

CTI 0x144 ASICCTL
H9-7600 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.2 CTIAPPCLEAR, CTI Application Trigger Clear register

The CTIAPPCLEAR characteristics are:

Purpose

Clears bits of the Application Trigger register.

Configurations

CTIAPPCLEAR is in the Debug power domain.

Attributes

CTIAPPCLEAR is a 32-bit register.

Field descriptions

APPCLEAR<x>, bit [x], for x = 31 to 0

Application trigger <x> disable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the
CTIDEVID.NUMCHAN field.

Writing to this bit has the following effect:

0b0 No effect.

0b1 Clear corresponding bit in CTIAPPTRIG to 0 and clear the corresponding channel
event.

If the ECT does not support multicycle channel events, use of CTIAPPCLEAR is deprecated and
the debugger must only use CTIAPPPULSE.

Accessing the CTIAPPCLEAR:

CTIAPPCLEAR can be accessed through the external debug interface:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

APPCLEAR31
APPCLEAR30

APPCLEAR29
APPCLEAR28

APPCLEAR27
APPCLEAR26

APPCLEAR25
APPCLEAR24

APPCLEAR23
APPCLEAR22

APPCLEAR21
APPCLEAR20

APPCLEAR19
APPCLEAR18

APPCLEAR17
APPCLEAR16

APPCLEAR0
APPCLEAR1

APPCLEAR2
APPCLEAR3

APPCLEAR4
APPCLEAR5

APPCLEAR6
APPCLEAR7

APPCLEAR8
APPCLEAR9

APPCLEAR10
APPCLEAR11

APPCLEAR12
APPCLEAR13

APPCLEAR14
APPCLEAR15

Component Offset Instance

CTI 0x018 CTIAPPCLEAR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7601
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are WI.

• When !SoftwareLockStatus() accesses to this register are WO.
H9-7602 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.3 CTIAPPPULSE, CTI Application Pulse register

The CTIAPPPULSE characteristics are:

Purpose

Causes event pulses to be generated on ECT channels.

Configurations

CTIAPPPULSE is in the Debug power domain.

Attributes

CTIAPPPULSE is a 32-bit register.

Field descriptions

APPPULSE<x>, bit [x], for x = 31 to 0

Generate event pulse on ECT channel <x>.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the
CTIDEVID.NUMCHAN field.

Writing to this bit has the following effect:

0b0 No effect.

0b1 Channel <x> event pulse generated.

Note

• The CTIAPPPULSE operation does not affect the state of the Application Trigger register,
CTIAPPTRIG. If the channel is active, either because of an earlier event or from the
application trigger, then the value written to CTIAPPPULSE might have no effect.

• Multiple pulse events that occur close together might be merged into a single pulse event.

Accessing the CTIAPPPULSE:

It is CONSTRAINED UNPREDICTABLE whether a write to CTIAPPPULSE generates an event on a channel if
CTICONTROL.GLBEN is 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

APPPULSE31
APPPULSE30

APPPULSE29
APPPULSE28

APPPULSE27
APPPULSE26

APPPULSE25
APPPULSE24

APPPULSE23
APPPULSE22

APPPULSE21
APPPULSE20

APPPULSE19
APPPULSE18

APPPULSE17
APPPULSE16

APPPULSE0
APPPULSE1

APPPULSE2
APPPULSE3

APPPULSE4
APPPULSE5

APPPULSE6
APPPULSE7

APPPULSE8
APPPULSE9

APPPULSE10
APPPULSE11

APPPULSE12
APPPULSE13

APPPULSE14
APPPULSE15
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7603
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
CTIAPPPULSE can be accessed through the external debug interface:

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are WI.

• When !SoftwareLockStatus() accesses to this register are WO.

Component Offset Instance

CTI 0x01C CTIAPPPULSE
H9-7604 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.4 CTIAPPSET, CTI Application Trigger Set register

The CTIAPPSET characteristics are:

Purpose

Sets bits of the Application Trigger register.

Configurations

CTIAPPSET is in the Debug power domain.

Attributes

CTIAPPSET is a 32-bit register.

Field descriptions

APPSET<x>, bit [x], for x = 31 to 0

Application trigger <x> enable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the
CTIDEVID.NUMCHAN field.

0b0 Reading this means the application trigger is inactive. Writing this has no effect.

0b1 Reading this means the application trigger is active. Writing this sets the corresponding
bit in CTIAPPTRIG to 1 and generates a channel event.

If the ECT does not support multicycle channel events, use of CTIAPPSET is deprecated and the
debugger must only use CTIAPPPULSE.

The reset behavior of this field is:

• On an External debug reset, this field resets to an architecturally UNKNOWN value.

Accessing the CTIAPPSET:

CTIAPPSET can be accessed through the external debug interface:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

APPSET31
APPSET30

APPSET29
APPSET28

APPSET27
APPSET26

APPSET25
APPSET24

APPSET23
APPSET22

APPSET21
APPSET20

APPSET19
APPSET18

APPSET17
APPSET16

APPSET0
APPSET1

APPSET2
APPSET3

APPSET4
APPSET5

APPSET6
APPSET7

APPSET8
APPSET9

APPSET10
APPSET11

APPSET12
APPSET13

APPSET14
APPSET15

Component Offset Instance

CTI 0x014 CTIAPPSET
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7605
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.

• When !SoftwareLockStatus() accesses to this register are RW.
H9-7606 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.5 CTIAUTHSTATUS, CTI Authentication Status register

The CTIAUTHSTATUS characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for
CTI.

Configurations

CTIAUTHSTATUS is in the Debug power domain.

This register is OPTIONAL, and is required for CoreSight compliance.

Attributes

CTIAUTHSTATUS is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

Bits [7:4]

Reserved, RAZ.

NSNID, bits [3:2]

If EL3 is implemented, this field holds the same value as DBGAUTHSTATUS_EL1.NSNID.

If EL3 is not implemented and the implemented Security state is Secure state, this field holds the
same value as DBGAUTHSTATUS_EL1.SNID.

NSID, bits [1:0]

If EL3 is implemented, this field holds the same value as DBGAUTHSTATUS_EL1.NSID.

If EL3 is not implemented and the implemented Security state is Secure state, this field holds the
same value as DBGAUTHSTATUS_EL1.SID.

Accessing the CTIAUTHSTATUS:

CTIAUTHSTATUS can be accessed through the external debug interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

RAZ

7 4 3 2

NSID

1 0

NSNID

Component Offset Instance

CTI 0xFB8 CTIAUTHSTATUS
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7607
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.6 CTICHINSTATUS, CTI Channel In Status register

The CTICHINSTATUS characteristics are:

Purpose

Provides the raw status of the ECT channel inputs to the CTI.

Configurations

CTICHINSTATUS is in the Debug power domain.

Attributes

CTICHINSTATUS is a 32-bit register.

Field descriptions

CHIN<n>, bit [n], for n = 31 to 0

Input channel <n> status.

Bits [31:N] are RAZ. N is the number of ECT channels implemented as defined by the
CTIDEVID.NUMCHAN field.

0b0 Input channel <n> is inactive.

0b1 Input channel <n> is active.

If the ECT channels do not support multicycle events then it is IMPLEMENTATION DEFINED whether
an input channel can be observed as active.

Accessing the CTICHINSTATUS:

CTICHINSTATUS can be accessed through the external debug interface:

This interface is accessible as follows:

• Accesses to this register are RO.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CHIN31
CHIN30

CHIN29
CHIN28

CHIN27
CHIN26

CHIN25
CHIN24

CHIN23
CHIN22

CHIN21
CHIN20

CHIN19
CHIN18

CHIN17
CHIN16

CHIN0
CHIN1

CHIN2
CHIN3

CHIN4
CHIN5

CHIN6
CHIN7

CHIN8
CHIN9

CHIN10
CHIN11

CHIN12
CHIN13

CHIN14
CHIN15

Component Offset Instance

CTI 0x138 CTICHINSTATUS
H9-7608 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.7 CTICHOUTSTATUS, CTI Channel Out Status register

The CTICHOUTSTATUS characteristics are:

Purpose

Provides the status of the ECT channel outputs from the CTI.

Configurations

CTICHOUTSTATUS is in the Debug power domain.

Attributes

CTICHOUTSTATUS is a 32-bit register.

Field descriptions

CHOUT<n>, bit [n], for n = 31 to 0

Output channel <n> status.

Bits [31:N] are RAZ. N is the number of ECT channels implemented as defined by the
CTIDEVID.NUMCHAN field.

Possible values of this bit are:

0b0 Output channel <n> is inactive.

0b1 Output channel <n> is active.

If the ECT channels do not support multicycle events then it is IMPLEMENTATION DEFINED whether
an output channel can be observed as active.

Note
The value in CTICHOUTSTATUS is after gating by the channel gate. For more information, see
CTIGATE.

Accessing the CTICHOUTSTATUS:

CTICHOUTSTATUS can be accessed through the external debug interface:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CHOUT31
CHOUT30

CHOUT29
CHOUT28

CHOUT27
CHOUT26

CHOUT25
CHOUT24

CHOUT23
CHOUT22

CHOUT21
CHOUT20

CHOUT19
CHOUT18

CHOUT17
CHOUT16

CHOUT0
CHOUT1

CHOUT2
CHOUT3

CHOUT4
CHOUT5

CHOUT6
CHOUT7

CHOUT8
CHOUT9

CHOUT10
CHOUT11

CHOUT12
CHOUT13

CHOUT14
CHOUT15

Component Offset Instance

CTI 0x13C CTICHOUTSTATUS
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7609
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
This interface is accessible as follows:

• Accesses to this register are RO.
H9-7610 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.8 CTICIDR0, CTI Component Identification Register 0

The CTICIDR0 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see About the Component Identification scheme on page K2-8443.

Configurations

CTICIDR0 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTICIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble.

Reads as 0x0D.

Access to this field is RO.

Accessing the CTICIDR0:

CTICIDR0 can be accessed through the external debug interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

1101

7 0

PRMBL_0

Component Offset Instance

CTI 0xFF0 CTICIDR0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7611
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.9 CTICIDR1, CTI Component Identification Register 1

The CTICIDR1 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see About the Component Identification scheme on page K2-8443.

Configurations

CTICIDR1 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTICIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

0b1001 CoreSight component.

Other values are defined by the CoreSight Architecture.

This field reads as 0x9.

PRMBL_1, bits [3:0]

Preamble. RAZ.

Reads as 0b0000.

Access to this field is RO.

Accessing the CTICIDR1:

CTICIDR1 can be accessed through the external debug interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

CLASS

7 4

0 0 0 0

3 0

PRMBL_1

Component Offset Instance

CTI 0xFF4 CTICIDR1
H9-7612 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.10 CTICIDR2, CTI Component Identification Register 2

The CTICIDR2 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see About the Component Identification scheme on page K2-8443.

Configurations

CTICIDR2 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTICIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble.

Reads as 0x05.

Access to this field is RO.

Accessing the CTICIDR2:

CTICIDR2 can be accessed through the external debug interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

101

7 0

PRMBL_2

Component Offset Instance

CTI 0xFF8 CTICIDR2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7613
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.11 CTICIDR3, CTI Component Identification Register 3

The CTICIDR3 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see About the Component Identification scheme on page K2-8443.

Configurations

CTICIDR3 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTICIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble.

Reads as 0xB1.

Access to this field is RO.

Accessing the CTICIDR3:

CTICIDR3 can be accessed through the external debug interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

1 0 1 1 0 0 0 1

7 0

PRMBL_3

Component Offset Instance

CTI 0xFFC CTICIDR3
H9-7614 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.12 CTICLAIMCLR, CTI CLAIM Tag Clear register

The CTICLAIMCLR characteristics are:

Purpose

Used by software to read the values of the CLAIM bits, and to clear CLAIM tag bits to 0.

Configurations

CTICLAIMCLR is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

CTICLAIMCLR is a 32-bit register.

Field descriptions

CLAIM<x>, bit [x], for x = 31 to 0

CLAIM tag clear bit.

Reads return the value of CLAIM<x>, writes have the following behavior:

0b0 No action.

0b1 Indirectly clear CLAIM<x> to 0.

A single write to CTICLAIMCLR can clear multiple tags to 0.

If x is greater than or equal to the IMPLEMENTATION DEFINED number of CLAIM tags, this bit is
RAZ/WI.

The reset behavior of this field is:

• An External Debug reset clears the CLAIM tag bits to 0.

Accessing the CTICLAIMCLR:

CTICLAIMCLR can be accessed through the external debug interface:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLAIM31
CLAIM30

CLAIM29
CLAIM28

CLAIM27
CLAIM26

CLAIM25
CLAIM24

CLAIM23
CLAIM22

CLAIM21
CLAIM20

CLAIM19
CLAIM18

CLAIM17
CLAIM16

CLAIM0
CLAIM1

CLAIM2
CLAIM3

CLAIM4
CLAIM5

CLAIM6
CLAIM7

CLAIM8
CLAIM9

CLAIM10
CLAIM11

CLAIM12
CLAIM13

CLAIM14
CLAIM15

Component Offset Instance

CTI 0xFA4 CTICLAIMCLR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7615
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.

• When !SoftwareLockStatus() accesses to this register are RW.
H9-7616 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.13 CTICLAIMSET, CTI CLAIM Tag Set register

The CTICLAIMSET characteristics are:

Purpose

Used by software to set CLAIM bits to 1.

Configurations

CTICLAIMSET is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

CTICLAIMSET is a 32-bit register.

Field descriptions

CLAIM<x>, bit [x], for x = 31 to 0

CLAIM tag set bit.

If x is less than the IMPLEMENTATION DEFINED number of CLAIM tags, this field is RAO and the
behavior on writes is:

0b0 No action.

0b1 Indirectly set CLAIM<x> tag to 1.

A single write to CTICLAIMSET can set multiple tags to 1.

If x is greater than or equal to the IMPLEMENTATION DEFINED number of CLAIM tags, this bit is
RAZ/WI.

The reset behavior of this field is:

• An External Debug reset clears the CLAIM tag bits to 0.

Accessing the CTICLAIMSET:

CTICLAIMSET can be accessed through the external debug interface:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLAIM31
CLAIM30

CLAIM29
CLAIM28

CLAIM27
CLAIM26

CLAIM25
CLAIM24

CLAIM23
CLAIM22

CLAIM21
CLAIM20

CLAIM19
CLAIM18

CLAIM17
CLAIM16

CLAIM0
CLAIM1

CLAIM2
CLAIM3

CLAIM4
CLAIM5

CLAIM6
CLAIM7

CLAIM8
CLAIM9

CLAIM10
CLAIM11

CLAIM12
CLAIM13

CLAIM14
CLAIM15

Component Offset Instance

CTI 0xFA0 CTICLAIMSET
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7617
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.

• When !SoftwareLockStatus() accesses to this register are RW.
H9-7618 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.14 CTICONTROL, CTI Control register

The CTICONTROL characteristics are:

Purpose

Controls whether the CTI is enabled.

Configurations

CTICONTROL is in the Debug power domain.

Attributes

CTICONTROL is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

GLBEN, bit [0]

Enables or disables the CTI mapping functions. Possible values of this field are:

0b0 CTI mapping functions and application trigger disabled.

0b1 CTI mapping functions and application trigger enabled.

When GLBEN is 0, the input channel to output trigger, input trigger to output channel, and
application trigger functions are disabled and do not signal new events on either output triggers or
output channels. If a previously asserted output trigger has not been acknowledged, it is
CONSTRAINED UNPREDICTABLE which of the following occurs:

• The output trigger remains asserted after the mapping functions are disabled.

• The output trigger is deasserted after the mapping functions are disabled.

All output triggers are disabled by CTI reset.

If the ECT supports multicycle channel events any existing output channel events will be
terminated.

The reset behavior of this field is:

• On an External debug reset, this field resets to 0.

Accessing the CTICONTROL:

CTICONTROL can be accessed through the external debug interface:

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.

• When !SoftwareLockStatus() accesses to this register are RW.

RES0

31 1 0

GLBEN

Component Offset Instance

CTI 0x000 CTICONTROL
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7619
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.15 CTIDEVAFF0, CTI Device Affinity register 0

The CTIDEVAFF0 characteristics are:

Purpose

Copy of the low half of the PE MPIDR_EL1 register that allows a debugger to determine which PE
in a multiprocessor system the CTI component relates to.

Configurations

CTIDEVAFF0 is in the Debug power domain.

If the CTI is CTIv1, this register is OPTIONAL. If the CTI is CTIv2, this register is mandatory.

Arm recommends that the CTI is CTIv2.

In an Armv8.5 compliant implementation, the CTI must be CTIv2.

If this register is implemented, then CTIDEVAFF1 must also be implemented. If the CTI of a PE
does not implement the CTI Device Affinity registers, the CTI block of the external debug memory
map must be located 64KB above the debug registers in the external debug interface.

Attributes

CTIDEVAFF0 is a 32-bit register.

Field descriptions

MPIDR_EL1lo, bits [31:0]

MPIDR_EL1 low half. Read-only copy of the low half of MPIDR_EL1, as seen from the highest
implemented Exception level.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the CTIDEVAFF0:

CTIDEVAFF0 can be accessed through the external debug interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPIDR_EL1lo

31 0

Component Offset Instance

CTI 0xFA8 CTIDEVAFF0
H9-7620 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.16 CTIDEVAFF1, CTI Device Affinity register 1

The CTIDEVAFF1 characteristics are:

Purpose

Copy of the high half of the PE MPIDR_EL1 register that allows a debugger to determine which PE
in a multiprocessor system the CTI component relates to.

Configurations

CTIDEVAFF1 is in the Debug power domain.

If the CTI is CTIv1, this register is OPTIONAL. If the CTI is CTIv2, this register is mandatory.

Arm recommends that the CTI is CTIv2.

In an Armv8.5 compliant implementation, the CTI must be CTIv2.

If this register is implemented, then CTIDEVAFF0 must also be implemented. If the CTI of a PE
does not implement the CTI Device Affinity registers, the CTI block of the external debug memory
map must be located 64KB above the debug registers in the external debug interface.

Attributes

CTIDEVAFF1 is a 32-bit register.

Field descriptions

MPIDR_EL1hi, bits [31:0]

MPIDR_EL1 high half. Read-only copy of the high half of MPIDR_EL1, as seen from the highest
implemented Exception level.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the CTIDEVAFF1:

CTIDEVAFF1 can be accessed through the external debug interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPIDR_EL1hi

31 0

Component Offset Instance

CTI 0xFAC CTIDEVAFF1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7621
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.17 CTIDEVARCH, CTI Device Architecture register

The CTIDEVARCH characteristics are:

Purpose

Identifies the programmers' model architecture of the CTI component.

Configurations

CTIDEVARCH is in the Debug power domain.

If the CTI is CTIv1, this register is OPTIONAL. If the CTI is CTIv2, this register is mandatory.

Arm recommends that the CTI is CTIv2.

In an Armv8.5 compliant implementation, the CTI must be CTIv2.

If this register is not implemented, CTIDEVAFF0 and CTIDEVAFF1 are also not implemented.

Attributes

CTIDEVARCH is a 32-bit register.

Field descriptions

ARCHITECT, bits [31:21]

Defines the architecture of the component. For CTI, this is Arm Limited.

Bits [31:28] are the JEP106 continuation code, 0x4.

Bits [27:21] are the JEP106 ID code, 0x3B.

Reads as 0b01000111011.

Access to this field is RO.

PRESENT, bit [20]

Indicates that the DEVARCH is present.

Reads as 0b1.

Access to this field is RO.

REVISION, bits [19:16]

When FEAT_DoPD is implemented:

REVISION

Revision.

Defines the architecture revision of the component.

0b0000 First revision.

0b0001 As 0b0000, and also adds support for CTIDEVCTL.

All other values are reserved.

Access to this field is RO.

Otherwise:

REVISION

Revision.

Defines the architecture revision of the component.

1000111011

31 21

1

20

REVISION

19 16

1101000010100

15 0

ARCHITECT PRESENT ARCHID
H9-7622 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
All other values are reserved.

Reads as 0b0000.

Access to this field is RO.

ARCHID, bits [15:0]

Defines this part to be an Armv8 debug component. For architectures defined by Arm this is further
subdivided.

For CTI:

• Bits [15:12] are the architecture version, 0x1.

• Bits [11:0] are the architecture part number, 0xA14.

This corresponds to CTI architecture version CTIv2.

Reads as 0x1A14.

Access to this field is RO.

Accessing the CTIDEVARCH:

CTIDEVARCH can be accessed through the external debug interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Offset Instance

CTI 0xFBC CTIDEVARCH
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7623
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.18 CTIDEVCTL, CTI Device Control register

The CTIDEVCTL characteristics are:

Purpose

Provides target-specific device controls

Configurations

CTIDEVCTL is in the Debug power domain.

This register is present only when FEAT_DoPD is implemented. Otherwise, direct accesses to
CTIDEVCTL are RES0.

Attributes

CTIDEVCTL is a 32-bit register.

Field descriptions

Bits [31:2]

Reserved, RES0.

RCE, bit [1]

Reset Catch Enable.

0b0 Reset Catch debug event disabled.

0b1 Reset Catch debug event enabled.

The reset behavior of this field is:

• On an External debug reset, this field resets to 0.

OSUCE, bit [0]

OS Unlock Catch Enable

0b0 OS Unlock Catch debug event disabled.

0b1 OS Unlock Catch debug event enabled.

The reset behavior of this field is:

• On an External debug reset, this field resets to 0.

Accessing the CTIDEVCTL:

CTIDEVCTL can be accessed through the external debug interface:

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.

• When !SoftwareLockStatus() accesses to this register are RW.

RES0

31 2 1 0

RCE OSUCE

Component Offset Instance

CTI 0x150 CTIDEVCTL
H9-7624 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.19 CTIDEVID, CTI Device ID register 0

The CTIDEVID characteristics are:

Purpose

Describes the CTI component to the debugger.

Configurations

CTIDEVID is in the Debug power domain.

Attributes

CTIDEVID is a 32-bit register.

Field descriptions

Bits [31:26]

Reserved, RES0.

INOUT, bits [25:24]

Input/output options. Indicates presence of the input gate. If the CTM is not implemented or CTIv2
is not implemented, this field is RAZ.

0b00 CTIGATE does not mask propagation of input events from external channels.

0b01 CTIGATE masks propagation of input events from external channels.

All other values are reserved.

Bits [23:22]

Reserved, RES0.

NUMCHAN, bits [21:16]

Number of ECT channels implemented. For Armv8, valid values are:

• 0b000011 3 channels (0..2) implemented.

• 0b000100 4 channels (0..3) implemented.

• 0b000101 5 channels (0..4) implemented.

• 0b000110 6 channels (0..5) implemented.

and so on up to 0b100000, 32 channels (0..31) implemented.

All other values are reserved.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [15:14]

Reserved, RES0.

NUMTRIG, bits [13:8]

Number of triggers implemented. This is one more than the index of the largest trigger, rather than
the actual number of triggers. For Armv8, valid values are:

• 0b000011 Up to 3 triggers (0..2) implemented.

• 0b001000 Up to 8 triggers (0..7) implemented.

RES0

31 26 25 24

RES0

23 22

NUMCHAN

21 16

RES0

15 14

NUMTRIG

13 8

RES0

7 5

EXTMUXNUM

4 0

INOUT
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7625
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
• 0b001001 Up to 9 triggers (0..8) implemented.

• 0b001010 Up to 10 triggers (0..9) implemented.

and so on up to 0b100000, 32 triggers (0..31) implemented.

All other values are reserved. If the PE contains a Trace extension, this field must be at least
0b001000. There is no guarantee that any of the implemented triggers, including the highest
numbered, are connected to any components.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [7:5]

Reserved, RES0.

EXTMUXNUM, bits [4:0]

Number of multiplexors available on triggers. This value is used in conjunction with External
Control register, ASICCTL.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the CTIDEVID:

CTIDEVID can be accessed through the external debug interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Offset Instance

CTI 0xFC8 CTIDEVID
H9-7626 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.20 CTIDEVID1, CTI Device ID register 1

The CTIDEVID1 characteristics are:

Purpose

Reserved for future information about the CTI component to the debugger.

Configurations

CTIDEVID1 is in the Debug power domain.

Attributes

CTIDEVID1 is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing the CTIDEVID1:

CTIDEVID1 can be accessed through the external debug interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 0

Component Offset Instance

CTI 0xFC4 CTIDEVID1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7627
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.21 CTIDEVID2, CTI Device ID register 2

The CTIDEVID2 characteristics are:

Purpose

Reserved for future information about the CTI component to the debugger.

Configurations

CTIDEVID2 is in the Debug power domain.

Attributes

CTIDEVID2 is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing the CTIDEVID2:

CTIDEVID2 can be accessed through the external debug interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 0

Component Offset Instance

CTI 0xFC0 CTIDEVID2
H9-7628 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.22 CTIDEVTYPE, CTI Device Type register

The CTIDEVTYPE characteristics are:

Purpose

Indicates to a debugger that this component is part of a PEs cross-trigger interface.

Configurations

CTIDEVTYPE is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

CTIDEVTYPE is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Subtype. Indicates this is a component within a PE.

Reads as 0b0001.

Access to this field is RO.

MAJOR, bits [3:0]

Major type. Indicates this is a cross-trigger component.

Reads as 0b0100.

Access to this field is RO.

Accessing the CTIDEVTYPE:

CTIDEVTYPE can be accessed through the external debug interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

1

7 4

100

3 0

SUB MAJOR

Component Offset Instance

CTI 0xFCC CTIDEVTYPE
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7629
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.23 CTIGATE, CTI Channel Gate Enable register

The CTIGATE characteristics are:

Purpose

Determines whether events on channels propagate through the CTM to other ECT components, or
from the CTM into the CTI.

Configurations

CTIGATE is in the Debug power domain.

Attributes

CTIGATE is a 32-bit register.

Field descriptions

GATE<x>, bit [x], for x = 31 to 0

Channel <x> gate enable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the
CTIDEVID.NUMCHAN field.

0b0 Disable output and, if CTIDEVID.INOUT == 0b01, input channel <x> propagation.

0b1 Enable output and, if CTIDEVID.INOUT == 0b01, input channel <x> propagation.

If GATE<x> is set to 0, no new events will be propagated to the ECT, and if the ECT supports
multicycle channel events any existing output channel events will be terminated.

The reset behavior of this field is:

• On an External debug reset, this field resets to an architecturally UNKNOWN value.

Accessing the CTIGATE:

CTIGATE can be accessed through the external debug interface:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GATE31
GATE30

GATE29
GATE28

GATE27
GATE26

GATE25
GATE24

GATE23
GATE22

GATE21
GATE20

GATE19
GATE18

GATE17
GATE16

GATE0
GATE1

GATE2
GATE3

GATE4
GATE5

GATE6
GATE7

GATE8
GATE9

GATE10
GATE11

GATE12
GATE13

GATE14
GATE15

Component Offset Instance

CTI 0x140 CTIGATE
H9-7630 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.

• When !SoftwareLockStatus() accesses to this register are RW.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7631
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.24 CTIINEN<n>, CTI Input Trigger to Output Channel Enable registers, n = 0 - 31

The CTIINEN<n> characteristics are:

Purpose

Enables the signaling of an event on output channels when input trigger event n is received by the
CTI.

Configurations

CTIINEN<n> is in the Debug power domain.

If input trigger n is not connected, the behavior of CTIINEN<n> is IMPLEMENTATION DEFINED.

Attributes

CTIINEN<n> is a 32-bit register.

Field descriptions

INEN<x>, bit [x], for x = 31 to 0

Input trigger <n> to output channel <x> enable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the
CTIDEVID.NUMCHAN field.

0b0 Input trigger <n> will not generate an event on output channel <x>.

0b1 Input trigger <n> will generate an event on output channel <x>.

The reset behavior of this field is:

• On an External debug reset, this field resets to an architecturally UNKNOWN value.

Accessing the CTIINEN<n>:

CTIINEN<n> can be accessed through the external debug interface:

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INEN31
INEN30

INEN29
INEN28

INEN27
INEN26

INEN25
INEN24

INEN23
INEN22

INEN21
INEN20

INEN19
INEN18

INEN17
INEN16

INEN0
INEN1

INEN2
INEN3

INEN4
INEN5

INEN6
INEN7

INEN8
INEN9

INEN10
INEN11

INEN12
INEN13

INEN14
INEN15

Component Offset Instance

CTI 0x020 + (4 * n) CTIINEN<n>
H9-7632 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
• When !SoftwareLockStatus() accesses to this register are RW.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7633
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.25 CTIINTACK, CTI Output Trigger Acknowledge register

The CTIINTACK characteristics are:

Purpose

Can be used to deactivate the output triggers.

Configurations

CTIINTACK is in the Debug power domain.

Attributes

CTIINTACK is a 32-bit register.

Field descriptions

ACK<n>, bit [n], for n = 31 to 0

Acknowledge for output trigger <n>.

Bits [31:N] are RAZ/WI. N is the number of CTI triggers implemented as defined by the
CTIDEVID.NUMTRIG field.

If any of the following is true, writes to ACK<n> are ignored:

• n >= CTIDEVID.NUMTRIG, the number of implemented triggers.

• Output trigger n is not active.

• The channel mapping function output, as controlled by CTIOUTEN<n>, is still active.

Otherwise, if any of the following are true, it is IMPLEMENTATION DEFINED whether writes to
ACK<n> are ignored:

• Output trigger n is not implemented.

• Output trigger n is not connected.

• Output trigger n is self-acknowledging and does not require software acknowledge.

Otherwise, the behavior on writes to ACK<n> is as follows:

0b0 No effect

0b1 Deactivate the trigger.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACK31
ACK30

ACK29
ACK28

ACK27
ACK26

ACK25
ACK24

ACK23
ACK22

ACK21
ACK20

ACK19
ACK18

ACK17
ACK16

ACK0
ACK1

ACK2
ACK3

ACK4
ACK5

ACK6
ACK7

ACK8
ACK9

ACK10
ACK11

ACK12
ACK13

ACK14
ACK15
H9-7634 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
Accessing the CTIINTACK:

A debugger must read CTITRIGOUTSTATUS to confirm that the output trigger has been acknowledged before
generating any event that must be ordered after the write to CTIINTACK, such as a write to CTIAPPPULSE to
activate another trigger.

CTIINTACK can be accessed through the external debug interface:

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are WI.

• When !SoftwareLockStatus() accesses to this register are WO.

Component Offset Instance

CTI 0x010 CTIINTACK
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7635
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.26 CTIITCTRL, CTI Integration mode Control register

The CTIITCTRL characteristics are:

Purpose

Enables the CTI to switch from its default mode into integration mode, where test software can
control directly the inputs and outputs of the PE, for integration testing or topology detection.

Configurations

It is IMPLEMENTATION DEFINED whether CTIITCTRL is implemented in the Core power domain or
in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

CTIITCTRL is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

IME, bit [0]

Integration mode enable. When IME == 1, the device reverts to an integration mode to enable
integration testing or topology detection. The integration mode behavior is IMPLEMENTATION
DEFINED.

0b0 Normal operation.

0b1 Integration mode enabled.

The reset behavior of this field is:

• The following resets apply:

— If the register is implemented in the Core power domain:

— On a Cold reset, this field resets to 0.

— On an External debug reset, the value of this field is unchanged.

— On a Warm reset, the value of this field is unchanged.

— If the register is implemented in the External debug power domain:

— On a Cold reset, the value of this field is unchanged.

— On an External debug reset, this field resets to 0.

— On a Warm reset, the value of this field is unchanged.

Accessing the CTIITCTRL:

CTIITCTRL can be accessed through the external debug interface:

RES0

31 1 0

IME

Component Offset Instance

CTI 0xF00 CTIITCTRL
H9-7636 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register are IMPDEF.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7637
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.27 CTILAR, CTI Lock Access Register

The CTILAR characteristics are:

Purpose

Allows or disallows access to the CTI registers through a memory-mapped interface.

The optional Software Lock provides a lock to prevent memory-mapped writes to the Cross-Trigger
Interface registers. Use of this lock mechanism reduces the risk of accidental damage to the contents
of the Cross-Trigger Interface registers. It does not, and cannot, prevent all accidental or malicious
damage.

Configurations

CTILAR is in the Debug power domain.

If FEAT_Debugv8p4 is implemented, the Software Lock is not implemented.

Software uses CTILAR to set or clear the lock, and CTILSR to check the current status of the lock.

Attributes

CTILAR is a 32-bit register.

Field descriptions

When Software Lock is implemented:

KEY, bits [31:0]

Lock Access control. Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write
accesses to this component's registers through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to this component's
registers through a memory mapped interface.

Otherwise:

Otherwise

Bits [31:0]

Reserved, RES0.

Accessing the CTILAR:

CTILAR can be accessed through a memory-mapped interface access to the external debug interface:

KEY

31 0

RES0

31 0

Component Offset Instance

CTI 0xFB0 CTILAR
H9-7638 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
This interface is accessible as follows:

• Accesses to this register are WO.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7639
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.28 CTILSR, CTI Lock Status Register

The CTILSR characteristics are:

Purpose

Indicates the current status of the Software Lock for CTI registers.

The optional Software Lock provides a lock to prevent memory-mapped writes to the Cross-Trigger
Interface registers. Use of this lock mechanism reduces the risk of accidental damage to the contents
of the Cross-Trigger Interface registers. It does not, and cannot, prevent all accidental or malicious
damage.

Configurations

CTILSR is in the Debug power domain.

If FEAT_Debugv8p4 is implemented, the Software Lock is not implemented.

Software uses CTILAR to set or clear the lock, and CTILSR to check the current status of the lock.

Attributes

CTILSR is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

Not thirty-two bit access required. RAZ.

SLK, bit [1]

When Software Lock is implemented:

SLK

Software Lock status for this component. For an access to LSR that is not a memory-mapped access,
or when the Software Lock is not implemented, this field is RES0.

For memory-mapped accesses when the Software Lock is implemented, possible values of this field
are:

0b0 Lock clear. Writes are permitted to this component's registers.

0b1 Lock set. Writes to this component's registers are ignored, and reads have no side
effects.

The reset behavior of this field is:

• On an External debug reset, this field resets to 1.

Otherwise:

Reserved, RAZ.

RES0

31 3 2 1 0

nTT SLI
SLK
H9-7640 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
SLI, bit [0]

Software Lock implemented. For an access to LSR that is not a memory-mapped access, this field
is RAZ. For memory-mapped accesses, the value of this field is IMPLEMENTATION DEFINED.
Permitted values are:

0b0 Software Lock not implemented or not memory-mapped access.

0b1 Software Lock implemented and memory-mapped access.

Accessing the CTILSR:

CTILSR can be accessed through a memory-mapped interface access to the external debug interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Offset Instance

CTI 0xFB4 CTILSR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7641
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.29 CTIOUTEN<n>, CTI Input Channel to Output Trigger Enable registers, n = 0 - 31

The CTIOUTEN<n> characteristics are:

Purpose

Defines which input channels generate output trigger n.

Configurations

CTIOUTEN<n> is in the Debug power domain.

If output trigger n is not connected, the behavior of CTIOUTEN<n> is IMPLEMENTATION DEFINED.

Attributes

CTIOUTEN<n> is a 32-bit register.

Field descriptions

OUTEN<x>, bit [x], for x = 31 to 0

Input channel <x> to output trigger <n> enable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the
CTIDEVID.NUMCHAN field.

Possible values of this bit are:

0b0 An event on input channel <x> will not cause output trigger <n> to be asserted.

0b1 An event on input channel <x> will cause output trigger <n> to be asserted.

The reset behavior of this field is:

• On an External debug reset, this field resets to an architecturally UNKNOWN value.

Accessing the CTIOUTEN<n>:

CTIOUTEN<n> can be accessed through the external debug interface:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OUTEN31
OUTEN30

OUTEN29
OUTEN28

OUTEN27
OUTEN26

OUTEN25
OUTEN24

OUTEN23
OUTEN22

OUTEN21
OUTEN20

OUTEN19
OUTEN18

OUTEN17
OUTEN16

OUTEN0
OUTEN1

OUTEN2
OUTEN3

OUTEN4
OUTEN5

OUTEN6
OUTEN7

OUTEN8
OUTEN9

OUTEN10
OUTEN11

OUTEN12
OUTEN13

OUTEN14
OUTEN15

Component Offset Instance

CTI 0x0A0 + (4 * n) CTIOUTEN<n>
H9-7642 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.

• When !SoftwareLockStatus() accesses to this register are RW.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7643
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.30 CTIPIDR0, CTI Peripheral Identification Register 0

The CTIPIDR0 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

CTIPIDR0 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTIPIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, least significant byte.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the CTIPIDR0:

CTIPIDR0 can be accessed through the external debug interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

PART_0

7 0

Component Offset Instance

CTI 0xFE0 CTIPIDR0
H9-7644 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.31 CTIPIDR1, CTI Peripheral Identification Register 1

The CTIPIDR1 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

CTIPIDR1 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTIPIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, least significant nibble of JEP106 ID code. For Arm Limited, this field is 0b1011.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

PART_1, bits [3:0]

Part number, most significant nibble.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the CTIPIDR1:

CTIPIDR1 can be accessed through the external debug interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

DES_0

7 4

PART_1

3 0

Component Offset Instance

CTI 0xFE4 CTIPIDR1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7645
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.32 CTIPIDR2, CTI Peripheral Identification Register 2

The CTIPIDR2 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

CTIPIDR2 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTIPIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Part major revision. Parts can also use this field to extend Part number to 16-bits.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

JEDEC, bit [3]

Indicates a JEP106 identity code is used.

Reads as 0b1.

Access to this field is RO.

DES_1, bits [2:0]

Designer, most significant bits of JEP106 ID code. For Arm Limited, this field is 0b011.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the CTIPIDR2:

CTIPIDR2 can be accessed through the external debug interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

REVISION

7 4

1

3

DES_1

2 0

JEDEC

Component Offset Instance

CTI 0xFE8 CTIPIDR2
H9-7646 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.33 CTIPIDR3, CTI Peripheral Identification Register 3

The CTIPIDR3 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

CTIPIDR3 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTIPIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Part minor revision. Parts using CTIPIDR2.REVISION as an extension to the Part number must use
this field as a major revision number.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CMOD, bits [3:0]

Customer modified. Indicates someone other than the Designer has modified the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the CTIPIDR3:

CTIPIDR3 can be accessed through the external debug interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

REVAND

7 4

CMOD

3 0

Component Offset Instance

CTI 0xFEC CTIPIDR3
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7647
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.34 CTIPIDR4, CTI Peripheral Identification Register 4

The CTIPIDR4 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

CTIPIDR4 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTIPIDR4 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component. Log2 of the number of 4KB pages from the start of the component to the end
of the component ID registers.

Reads as 0b0000.

Access to this field is RO.

DES_2, bits [3:0]

Designer, JEP106 continuation code, least significant nibble. For Arm Limited, this field is 0b0100.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the CTIPIDR4:

CTIPIDR4 can be accessed through the external debug interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

0

7 4

DES_2

3 0

SIZE

Component Offset Instance

CTI 0xFD0 CTIPIDR4
H9-7648 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.35 CTITRIGINSTATUS, CTI Trigger In Status register

The CTITRIGINSTATUS characteristics are:

Purpose

Provides the status of the trigger inputs.

Configurations

CTITRIGINSTATUS is in the Debug power domain.

Attributes

CTITRIGINSTATUS is a 32-bit register.

Field descriptions

TRIN<n>, bit [n], for n = 31 to 0

Trigger input <n> status.

Bits [31:N] are RAZ. N is the number of CTI triggers implemented as defined by the
CTIDEVID.NUMTRIG field.

0b0 Input trigger n is inactive.

0b1 Input trigger n is active.

Not implemented and not-connected input triggers are always inactive.

It is IMPLEMENTATION DEFINED whether an input trigger that does not support multicycle events can
be observed as active.

Accessing the CTITRIGINSTATUS:

CTITRIGINSTATUS can be accessed through the external debug interface:

This interface is accessible as follows:

• Accesses to this register are RO.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TRIN31
TRIN30

TRIN29
TRIN28

TRIN27
TRIN26

TRIN25
TRIN24

TRIN23
TRIN22

TRIN21
TRIN20

TRIN19
TRIN18

TRIN17
TRIN16

TRIN0
TRIN1

TRIN2
TRIN3

TRIN4
TRIN5

TRIN6
TRIN7

TRIN8
TRIN9

TRIN10
TRIN11

TRIN12
TRIN13

TRIN14
TRIN15

Component Offset Instance

CTI 0x130 CTITRIGINSTATUS
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7649
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9.3.36 CTITRIGOUTSTATUS, CTI Trigger Out Status register

The CTITRIGOUTSTATUS characteristics are:

Purpose

Provides the raw status of the trigger outputs, after processing by any IMPLEMENTATION DEFINED
trigger interface logic. For output triggers that are self-acknowledging, this is only meaningful if the
CTI implements multicycle channel events.

Configurations

CTITRIGOUTSTATUS is in the Debug power domain.

Attributes

CTITRIGOUTSTATUS is a 32-bit register.

Field descriptions

TROUT<n>, bit [n], for n = 31 to 0

Trigger output <n> status.

Bits [31:N] are RAZ. N is the value in CTIDEVID.NUMTRIG.

If n < N, and output trigger <n> is implemented and connected, and either the trigger is not
self-acknowledging or the CTI implements multicycle channel events, then permitted values for
TROUT<n> are:

0b0 Output trigger n is inactive.

0b1 Output trigger n is active.

Otherwise when n < N it is IMPLEMENTATION DEFINED whether TROUT<n> behaves as described
here or is RAZ.

Accessing the CTITRIGOUTSTATUS:

CTITRIGOUTSTATUS can be accessed through the external debug interface:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TROUT31
TROUT30

TROUT29
TROUT28

TROUT27
TROUT26

TROUT25
TROUT24

TROUT23
TROUT22

TROUT21
TROUT20

TROUT19
TROUT18

TROUT17
TROUT16

TROUT0
TROUT1

TROUT2
TROUT3

TROUT4
TROUT5

TROUT6
TROUT7

TROUT8
TROUT9

TROUT10
TROUT11

TROUT12
TROUT13

TROUT14
TROUT15

Component Offset Instance

CTI 0x134 CTITRIGOUTSTATUS
H9-7650 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
This interface is accessible as follows:

• Accesses to this register are RO.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. H9-7651
ID072021 Non-Confidential

External Debug Register Descriptions
H9.3 Cross-Trigger Interface registers
H9-7652 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Part I
Memory-mapped Components of the Armv8 Architecture

Chapter I1
Requirements for Memory-mapped Components

This chapter provides some additional information about memory-mapped components. It contains the following
sections:

• Supported access sizes on page I1-7656.

• Synchronization of memory-mapped registers on page I1-7658.

• Access requirements for reserved and unallocated registers on page I1-7660.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I1-7655
ID072021 Non-Confidential

Requirements for Memory-mapped Components
I1.1 Supported access sizes
I1.1 Supported access sizes

The information in this section applies to all accesses to memory-mapped components of the Armv8 architecture,
unless a register or component description explicitly states otherwise.

The memory access sizes that are supported by any peripheral are IMPLEMENTATION DEFINED by the peripheral.

When HaveSecureExtDebugView() == TRUE, each debug component has a Secure and Non-secure view. The Secure
view of a debug component is mapped into Secure physical memory and the Non-secure view of a debug component
is mapped into Non-secure memory. Apart from access conditions, the Non-secure and Secure views of the debug
components are identical.

An implementation of a memory-mapped component that is compatible with the Armv8 architecture must support
the following:

• Word-aligned 32-bit accesses to access 32-bit registers.

• If any PE in the system implements AArch32, word-aligned 32-bit accesses to either half of a 64-bit register
that is mapped to a doubleword-aligned pair of adjacent 32-bit locations.

Note
Some memory-mapped components of the Armv8 architecture require support for word-aligned 32-bit
accesses to either half of a 64-bit memory mapped register regardless of whether any PE in the system
implements AArch32. These include:

— The memory-mapped interface to the external debug and CTI registers that are described in
Chapter H9 External Debug Register Descriptions.

— The memory-mapped interfaces to the Generic Timer registers that are described in Chapter I2 System
Level Implementation of the Generic Timer.

— The memory-mapped interfaces to the Performance Monitors registers that are described in Chapter I3
Recommended External Interface to the Performance Monitors.

— The memory-mapped interfaces to the Activity Monitors registers that are described in Chapter I4
Recommended External Interface to the Activity Monitors.

• Doubleword-aligned 64-bit accesses to access 64-bit registers that are mapped to a doubleword-aligned pair
of adjacent 32-bit locations.

All registers are only single-copy atomic at word granularity. This means that for 64-bit accesses to a 64-bit register,
the system might generate a pair of 32-bit accesses. The order in which the two halves are accessed is not specified.

The following accesses are not supported:

• Byte accesses.

• Halfword accesses.

• Unaligned word accesses. These accesses are not word single-copy atomic.

• Unaligned doubleword accesses. These accesses are not doubleword single-copy atomic.

• Doubleword accesses to a pair of 32-bit locations that are not a doubleword-aligned pair that forms a 64-bit
register.

• Quadword accesses or higher accesses.

• Exclusive accesses.

For unsupported accesses, it is CONSTRAINED UNPREDICTABLE whether:

• The access generates an External abort or not.

• The defined side-effects of a read occur or not. A read returns UNKNOWN values.

• A write is ignored or sets the accessed register or registers to UNKNOWN.

• The access generates a fault handling interrupt or not. A read returns UNKNOWN data.

For memory-mapped accesses from a PE that complies with an Arm architecture, the single-copy atomicity rules
for the instruction, the type of instruction, and the type of memory that is accessed, determine the size of the access
that is made by an instruction. Example I1-1 on page I1-7657 shows this.
I1-7656 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Requirements for Memory-mapped Components
I1.1 Supported access sizes
Example I1-1 Access sizes for memory-mapped accesses

Two Load Doubleword instructions that are made to consecutive doubleword-aligned locations generate a pair of
single-copy atomic doubleword reads. However, if the accesses are made to Normal memory or Device-GRE
memory they might appear as a single quadword access that is not supported by the peripheral.

The Armv8 architecture does not require the size of each element that is accessed by a multi-register load or store
instruction to be identifiable by the memory system beyond the PE. Unless otherwise specified by the component,
any access to a memory-mapped component of the Armv8 architecture is defined to be beyond the PE.

Software must use a Device-nGRE or stronger memory type, and only single register load and store instructions, to
create memory accesses that are supported by the peripheral. For more information, see Memory types and attributes
on page B2-165.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I1-7657
ID072021 Non-Confidential

Requirements for Memory-mapped Components
I1.2 Synchronization of memory-mapped registers
I1.2 Synchronization of memory-mapped registers

This section describes the synchronization requirements for the memory-mapped accesses to System registers.

This section refers to accesses to external system control registers as external reads and external writes. It refers to
accesses to System registers as direct reads, direct writes, indirect reads, and indirect writes.

Note

Synchronization requirements for AArch64 System registers on page D13-3041 and Synchronization of changes to
AArch32 System registers on page G8-6443 define direct read, direct write, indirect read, and indirect write, and
classifies external reads as indirect reads and external writes as indirect writes.

Writes to the same register are serialized, meaning they are observed in the same order by all observers, although
some observers might not observe all of the writes. Unless otherwise stated, external writes to different registers are
not necessarily observed in the same order by all observers as the order in which they complete.

Explicit synchronization is not required for an external read or an external write by an external agent to be
observable to a following external read or external write by that agent to the same register using the same address,
and so is never required for registers that are accessible as external system control registers.

Unless required to be observable to all observers in finite time, without explicit synchronization, explicit
synchronization is normally required following an external write to any register for that write to be observable by:

• A direct access.

• An indirect read by an instruction.

• An external read of the register using a different address.

This means that an external write by an external agent is guaranteed to have an effect on subsequent instructions
executed by the PE only if all of the following are true:

• The write has completed.

• The PE has executed a Context synchronization event.

• The Context synchronization event was executed after the write completed.

The order and synchronization of direct reads and direct writes of System registers is defined by:

• Synchronization requirements for AArch64 System registers on page D13-3041

• Synchronization of changes to AArch32 System registers on page G8-6443

The external agent must be able to guarantee completion of a write. For example, the agent can:

• Mark the memory as Device-nGnRnE and executing a DSB barrier, if the system supports this property.

• If the register is read/write and reads are not destructive, read back the value written.

• Use some guaranteed property of the connection between the PE and the external agent.

The external agent and PE can guarantee ordering by, for example, passing messages in an ordered way with respect
to the external write and the Context synchronization event, and relying on the memory ordering rules provided by
the memory model.

External reads and external write complete in the order in which they arrive at the PE. For accesses to different
register locations, the external agent must create this order. The agent can:

• Mark the memory as Device-nGnRnE or Device-nGnRE.

• Use the appropriate memory barriers.

• Rely on some guaranteed property of the connection between the PE and the external agent.

However, the external agent cannot force the synchronization of completed writes.

In a simple sequential execution, an indirect write that occurs as a side-effect of an access happens atomically with
the access, meaning no other accesses are allowed between the register access and its side-effect.

Without explicit synchronization to guarantee the order of the accesses, where the same register is accessed by two
or more of a System register access instruction, and external agent, and autonomous asynchronous event, or as a
result of a memory-mapped access, the behavior must be as if the accesses occurred atomically and in any order.
This applies even if the accesses occur simultaneously.
I1-7658 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Requirements for Memory-mapped Components
I1.2 Synchronization of memory-mapped registers
For example, some registers have the property that for certain bits a write of 0 is ignored and a write of 1 has an
effect. This means the simultaneous writes must be merged.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I1-7659
ID072021 Non-Confidential

Requirements for Memory-mapped Components
I1.3 Access requirements for reserved and unallocated registers
I1.3 Access requirements for reserved and unallocated registers

This section describes the access requirements for reserved and unallocated memory-mapped components.

The following information relates to certain types of reserved accesses:

• Reads and writes of unallocated locations. These accesses are reserved for the architecture.

• Reads and writes of locations for features that are not implemented, including:

— OPTIONAL features that are not implemented.

— Breakpoints and watchpoints that are not implemented.

— Performance Monitors counters that are not implemented.

— CTI triggers that are not implemented.

— Error records that are not implemented.

These accesses are reserved.

• Reads of WO locations. These accesses are reserved for the architecture.

• Writes to RO locations. These accesses are reserved for the architecture.

Reserved accesses are normally RAZ/WI. However, software must not rely on this property as the behavior of
reserved values might change in a future revision of the architecture. Software must treat reserved accesses as RES0.
I1-7660 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter I2
System Level Implementation of the Generic Timer

This chapter defines the system level implementation of the Generic Timer. It contains the following sections:

• About the Generic Timer specification on page I2-7662.

• Memory-mapped counter module on page I2-7664.

• Memory-mapped timer components on page I2-7668.

Note

• Generic Timer memory-mapped register descriptions on page I5-7805 describes the System level Generic
Timer registers. These registers are memory-mapped.

• Appendix K5 Additional Information for Implementations of the Generic Timer gives additional information,
that does not form part of the architectural definition of a system level implementation of the Generic Timer.

• Chapter D11 The Generic Timer in AArch64 state gives a general description of the AArch64 state view of
the Generic Timer, and describes the AArch64 System register interface to the Generic Timer.

• Chapter G6 The Generic Timer in AArch32 state gives a general description of the AArch32 state view of the
Generic Timer, and describes the AArch32 System register interface to the Generic Timer.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I2-7661
ID072021 Non-Confidential

System Level Implementation of the Generic Timer
I2.1 About the Generic Timer specification
I2.1 About the Generic Timer specification

Chapter D11 The Generic Timer in AArch64 state describes the Arm Generic Timer and its implementation as seen
from AArch64 state. Chapter G6 The Generic Timer in AArch32 state describes the Arm Generic Timer and its
implementation as seen from AArch32 state. These chapters include the definition of the low-latency System
register interface to the Generic Timer. However, the Arm Generic Timer architecture also defines a
memory-mapped component, that comprises:

• A memory-mapped counter module, that controls the generation of the Count value used by the Generic
Timer.

This memory-mapped counter module is required in any Arm Generic Timer implementation that requires
software control of the Count value of the Generic Timer.

• Optional memory-mapped timer modules. These give a standardized way of providing timers for
programmable system components other than PEs that implement the Arm architecture.

The full set of Generic Timer components on page D11-3009 summarizes these components as seen from AArch64
state, and The full set of Generic Timer components on page G6-6405 summarizes them as seen from AArch32 state.
The system level components of the Generic Timer on page I2-7663 summarizes the system level components.

I2.1.1 Registers in the system level implementation of the Generic Timer

Registers that control components of the system level implementation of the Generic Timer are grouped into frames.
This specification defines the registers in each frame, and their offsets within the frame. The system defines the
position of each frame in the memory map. This means the base addresses for each frame are IMPLEMENTATION
DEFINED.

Note

The final 12 words of the first or only 4KB block of a register memory frame is an ID block.

Each frame must be in its own memory page, or memory protection region, and must be aligned to the size of the
translation granule or protection granule.

Note

When a system level implementation of the Generic Timer is accessed by a PE:

• Using a VMSA, each frame is in its own memory page, aligned to the size of the translation granule.

• Using a PMSA, each frame is in its own memory protection region, aligned to the size of the memory
protection granule.

The following sections give more information about the requirements for the system level Generic Timer
component:

• Endianness and supported access sizes on page I2-7662.

• Power and reset domains for the system level implementation of the Generic Timer on page I2-7663.

Endianness and supported access sizes

All memory-mapped peripherals defined in the Arm architecture must be little-endian. This means the system-level
Generic Timer registers, and the register frames, are little-endian.

The memory access sizes supported by any peripheral is IMPLEMENTATION DEFINED by the peripheral. For accesses
to the memory-mapped Generic Timer registers implementations must:

• Comply with the requirements of Supported access sizes on page I1-7656.

• Support word-aligned 32-bit accesses to access 32-bit registers or either half of a 64-bit register mapped to a
doubleword-aligned pair of adjacent 32-bit locations, even if no PE in the system implements AArch32.
I2-7662 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

System Level Implementation of the Generic Timer
I2.1 About the Generic Timer specification
Power and reset domains for the system level implementation of the Generic Timer

The power and reset domains of the system level implementation of the Generic Timer are IMPLEMENTATION
DEFINED as part of the system implementation. In register descriptions, they are called Timer resets to indicate they
can be outside the PE power and reset domains defined by the remainder of this manual.

The Arm architecture requires that the CNTCR.{FCREQ, EN} and CNTSR.FCACK fields reset to 0. These Timer
reset values apply only on powerup of the power domain in which the registers are implemented or a reset of the
reset domain in which they are implemented.

Every other register, or register field, of a system level implementation of the Generic Timer resets to a value that
is architecturally UNKNOWN if it has a meaningful reset value. These Timer resets apply on powerup of the power
domain in which the register is implemented, and on a reset of the reset domain in which it is implemented.

I2.1.2 The system level components of the Generic Timer

Each system level component has one or two register frames. The possible system level components are:

The memory-mapped counter module, required

This module controls the system counter. It has two frames:

• A control frame, CNTControlBase.

• A status frame, CNTReadBase.

Memory-mapped counter module on page I2-7664 describes this component.

The memory-mapped timer control module, required

The system level implementation of the Generic Timer can provide up to eight timers, and the
memory-mapped timer control module identifies:

• Which timers are implemented.

• The features of each implemented timer.

This module has a single frame, CNTCTLBase.

The CNTCTLBase frame on page I2-7668 describes this frame.

Memory-mapped timers, optional

An implemented memory-mapped timer:

• Must provide a privileged view of the timer, in the CNTBaseN frame.

• Optionally provides an unprivileged view of the timer in the CNTEL0BaseN frame.

N is the timer number, and the corresponding frame number, in the range 0-7.

The CNTBaseN and CNTEL0BaseN frames on page I2-7669 describes these frames.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I2-7663
ID072021 Non-Confidential

System Level Implementation of the Generic Timer
I2.2 Memory-mapped counter module
I2.2 Memory-mapped counter module

The memory-mapped counter module provides top-level control of the system counter. The CNTControlBase frame
holds the registers for the memory-mapped counter, and provides:

• An RW control register, CNTCR, that provides:

— An enable bit for the system counter.

— An enable bit for Halt-on-debug. For more information, see Halt-on-debug on page I2-7666.

— A field that can be written to request a change to the update frequency of the system counter, with a
corresponding change to the increment made at each update. This mechanism means that, for example,
if the update frequency is halved, the increment at each update is doubled.

For more information, see Control of counter operating frequency and increment on page I2-7665.

Writes to this register are rare. In a system that supports two Security states, this register is writable only by
Secure writes.

• A RO status register, CNTSR, that provides:

— A bit that indicates whether the system counter is halted because of an asserted Halt-on-debug signal.

— A field that indicates the current update frequency of the system counter. This field can be polled to
determine when a requested change to the update frequency has been made.

• Two contiguous 32-bit RW registers that hold the current system counter value, CNTCV. If the system
supports 64-bit atomic accesses, these two registers must be accessible by such accesses.

The system counter must be disabled before writing to these registers, otherwise the effect of the write is
UNPREDICTABLE.

Writes to these registers are rare. In a system that supports two Security states, these registers are writable
only by Secure writes.

• A Frequency modes table of one or more 32-bit entries, where:

— The first entry in the table defines the base frequency of the system counter. This is the maximum
frequency at which the counter updates.

— Each subsequent entry in the table defines an alternative frequency of the system counter, that must be
an exact divisor of the base frequency.

A 32-bit zero entry immediately follows the last table entry.

This table can be RO or RW. For more information, see The Frequency modes table on page I2-7665.

In addition, the CNTReadBase frame includes a read-only copy of the system counter value, CNTCV, as two
contiguous 32-bit RO registers. If the system supports 64-bit atomic accesses, these two registers must be accessible
by such accesses.

Counter module control and status register summary on page I2-7666 describes CNTReadBase and
CNTControlBase memory maps, and the registers in each frame.
I2-7664 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

System Level Implementation of the Generic Timer
I2.2 Memory-mapped counter module
I2.2.1 Control of counter operating frequency and increment

The system counter has a fixed base frequency, and must maintain the required counter accuracy, meaning Arm
recommends that it does not gain or lose more than ten seconds in a 24-hour period, see The system counter on
page D11-3010. However, the counter can increment at a lower frequency than the base frequency, using a
correspondingly larger increment. For example, it can increment by four at a quarter of the base frequency. Any
lower-frequency operation, and any switching between operating frequencies, must not reduce the accuracy of the
counter.

Control of the system counter frequency and increment is provided only through the memory-mapped counter
module. The following sections describe this control:

• The Frequency modes table on page I2-7665.

• Changing the system counter and increment on page I2-7665.

The Frequency modes table

The Frequency modes table starts at offset 0x20 in the CNTControlBase frame.

Table entries are 32-bits, and each entry specifies a system counter update frequency, in Hz.

The first entry in the table specifies the base frequency of the system counter.

When the system timer is operating at a lower frequency than the base frequency, the increment applied at each
counter update is given by:

increment = (base_frequency) / (selected_frequency)

A 32-bit word of zero value marks the end of the table. That is, the word of memory immediately after the last entry
in the table must be zero.

The only required entry in the table is the entry for the base frequency.

Typically, the Frequency modes table is in RO memory. However, a system implementation might use RW memory
for the table, and initialize the table entries as part of its startup sequence. Therefore, the CNTControlBase memory
map shows the table region as RO or RW.

Arm strongly recommends that the Frequency modes table is not updated once the system is running.

The architecture can support up to 1004 entries in the Frequency modes table, including the zero-word end marker,
and the number of entries is IMPLEMENTATION DEFINED, up to this limit.

Note

• Arm considers it likely that implementations will require significantly fewer entries than the architectural
limit.

• In the CNTControlBase frame, the offset range 0x0C0-0x0FC can be used for IMPLEMENTATION DEFINED
registers. If any registers are defined in this space, then the Frequency modes table cannot extend beyond
offset 0x0B8, with a zero word at offset 0x0BC. This means that if any IMPLEMENTATION DEFINED registers are
defined the maximum number of entries in the table is 40, including the zero-word end marker.

Changing the system counter and increment

The value of the CNTCR.FCREQ field specifies which entry in the Frequency modes table specifies the system
counter update frequency.

Changing the value of CNTCR.FCREQ requests a change to the system counter update frequency. To ensure the
frequency change does not affect the overall accuracy of the counter, a change is made as follows:

• When changing from a higher frequency to a lower frequency, the counter:

1. Continues running at the higher frequency until the count reaches an integer multiple of the required
lower frequency.

2. Switches to operating at the lower frequency.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I2-7665
ID072021 Non-Confidential

System Level Implementation of the Generic Timer
I2.2 Memory-mapped counter module
• When changing from a lower frequency to a higher frequency, the counter:

1. Waits until the end of the current lower-frequency cycle.

2. Makes the counter increment required for operation at that lower frequency.

3. Switches to operating at the higher frequency.

When the frequency has changed, CNTSR is updated to indicate the new frequency. Therefore, a system component
that is waiting for a frequency change can poll CNTSR to detect the change.

I2.2.2 Halt-on-debug

The CNTCR register provides an enable bit for an OPTIONAL Halt-on-debug signal.

When the CNTCR.HDBG bit is set to 1, and the Halt-on-debug signal is implemented and asserted, the system
counter is halted. Otherwise, the system counter ignores the state of this signal.

Arm recommends that a system counter implements a Halt-on-debug signal that can be controlled by a debugger
using the Embedded Cross-Trigger (ECT) using a system-level cross-trigger interface that includes:

• A debug request output trigger event that asserts the Halt-on-debug signal.

• A restart request output trigger event that deasserts the Halt-on-debug signal.

For more information, see About the Embedded Cross-Trigger (ECT) on page H5-7422.

Note

Software must use the Halt-on-debug enable bit to ensure that the timers cannot be halted maliciously in an attempt
to prohibit progress.

For more information about Halt-on-debug, contact Arm.

I2.2.3 Counter module control and status register summary

The Counter module control and status registers are memory-mapped registers in the following register memory
frames:

• A control frame, with base address CNTControlBase.

• A status frame, with base address CNTReadBase.

Each of these register memory frames is in its own memory page or memory protection region, and the frame base
address points to the start of this region. Each base address must be aligned to the size of the translation granule or
protection granule.

Note

Each frame of a memory-mapped Generic Timer takes the name of its base address.

In each register memory frame, the memory at offset 0xFD0-0xFFF is reserved for twelve 32-bit IMPLEMENTATION
DEFINED ID registers, see the CounterID<n> register descriptions for more information.

Note

The Arm architecture requires memory-mapped peripherals to be little-endian, and therefore the counter is
little-endian.

In an implementation that supports Secure and Non-secure memory maps, CNTControlBase is accessible only by
Secure accesses.

Table I2-1 on page I2-7667 shows the CNTControlBase control registers, in order of their offsets from the
CNTControlBase base address, for an implementation that includes registers in the IMPLEMENTATION DEFINED
register space 0x0C0-0x0FC, and also has fewer than 39 CNTFID<n> registers. The Frequency modes table on
page I2-7665 describes how this memory map differs if more CNTFID<n> registers are implemented.
I2-7666 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

System Level Implementation of the Generic Timer
I2.2 Memory-mapped counter module
Generic Timer memory-mapped register descriptions on page I5-7805 describes each of these registers.

Table I2-2 on page I2-7667 shows the CNTReadBase control registers, in order of their offsets from the
CNTReadBase base address. Generic Timer memory-mapped register descriptions on page I5-7805 describes each
of these registers.

Table I2-1 CNTControlBase memory map

Offset Name Type Description

0x000 CNTCR RW Counter Control Register.

0x004 CNTSR RO Counter Status Register.

0x008 CNTCV[31:0] RW Counter Count Value register.

0x00C CNTCV[63:32] RW

0x010 CNTSCRa RW Counter Scale Register.

0x014-0x018 - RES0 Reserved.

0x01C CNTIDa RO Counter Identification Register.

0x020 CNTFID0 RO or RW Frequency modes table, and end marker.

For more information, see The Frequency modes table on
page I2-7665.

0x020+4n CNTFID<n> RO or RW

0x024+4n - RO or RW, RAZ

(0x028+4n)-0x0BC - RO, RES0 Reserved.

0x0C0-0x0FC - IMPLEMENTATION
DEFINED

Reserved for IMPLEMENTATION DEFINED registers.

0x100-0xFCC - RO, RES0 Reserved.

0xFD0-0xFFC CounterID<n> RO Counter ID registers 0-11.

a. Implemented only if FEAT_CNTSC is implemented.

Table I2-2 CNTReadBase memory map

Offset Name Type Description

0x000 CNTCV[31:0] RO Counter Count Value register

0x004 CNTCV[63:32] RO

0x008-0xFCC - RES0 Reserved

0xFD0-0xFFC CounterID<n> RO Counter ID registers 0-11
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I2-7667
ID072021 Non-Confidential

System Level Implementation of the Generic Timer
I2.3 Memory-mapped timer components
I2.3 Memory-mapped timer components

This part of the Arm Generic Timer specification defines an optional memory-mapped timer component. This can
be implemented as part of any programmable system component that does not incorporate a System register mapped
Arm Generic Timer, to provide that system component with the timer functionality of an Arm Generic Timer.

The memory map consists of up to eight timer frames. The base address of a frame is CNTBaseN, where N numbers
from 0 up to a maximum permitted value of 7.

Each CNTBaseN timer frame:

• Provides its own set of timers and associated interrupts.

• Is implemented in its own memory page or memory protection region.

• Is implemented at a base address, identified as CNTBaseN, that is aligned to the size of the translation granule
or memory protection region.

For each implemented CNTBaseN frame the system can optionally provide an unprivileged view of the frame,
described as the EL0 view of the frame. The base address of this second view of the CNTBaseN frame is
CNTEL0BaseN.

Note

In the naming of the registers associated with a CNTBaseN or CNTEL0BaseN frame, the value of N is represented
as <n>, for example CNTACR<n>.

If a CNTEL0BaseN frame is implemented:

• Is implemented in its own memory page or memory protection region and is aligned to the size of the
translation granule or memory protection region.

• All registers visible in CNTBaseN, except for CNTVOFF and CNTEL0ACR, can be visible in
CNTEL0BaseN.

— Control fields in CNTEL0ACR determine whether each register is visible.

• The offsets of all visible registers are the same as their offsets in the CNTBaseN frame.

In addition to the implemented CNTBaseN and CNTEL0BaseN frames, the system must provide a single control
frame at base address CNTCTLBase. CNTCTLBase must be implemented in its own memory page or memory
protection region and is aligned to the size of the translation granule or memory protection region.

The system defines the position of each frame in the memory map. This means the values of each of the CNTBaseN,
CNTEL0BaseN, and CNTCTLBase base addresses is IMPLEMENTATION DEFINED.

Note

The Arm architecture requires memory-mapped peripherals to be little-endian, and therefore the memory-mapped
timers are little-endian.

The following sections describe the implementation of a memory-mapped view of the counter and timer:

• The CNTCTLBase frame on page I2-7668.

• The CNTBaseN and CNTEL0BaseN frames on page I2-7669.

Note

Providing a complete set of features in a system level implementation on page K5-8468 gives an implementation
example for a system level Generic Timer implementation that provides equivalent features to a System registers
Generic Timer implementation in a PE that includes all of the Exception levels.

I2.3.1 The CNTCTLBase frame

The CNTCTLBase frame contains:

• An identification register for the features of the memory-mapped counter and timer implementation.

• Access controls for each CNTBaseN frame.

• A virtual offset register for frames that implement a virtual timer.
I2-7668 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

System Level Implementation of the Generic Timer
I2.3 Memory-mapped timer components
Table I2-3 on page I2-7669 shows the CNTCTLBase registers, in order of their offsets from the CNTCTLBase base
address.

Note

CNTFRQ and CNTVOFF registers are also implemented in a System register interface to the Generic Timer.

Generic Timer memory-mapped register descriptions on page I5-7805 describes each of these registers.

All implementations of the Generic Timer include the virtual counter. Therefore, conceptually, all implementations
include the CNTVOFF register that defines the virtual offset between the physical count and the virtual count. If a
memory-mapped Generic Timer component does not distinguish between real time and virtual time, then it can
implement CNTVOFF as RAZ/WI. Otherwise CNTVOFF is an RW register, and Arm strongly recommends that
the system only permits access to CNTVOFF from EL2 or higher.

I2.3.2 The CNTBaseN and CNTEL0BaseN frames

Each CNTBaseN frame, or {CNTBaseN, CNTEL0BaseN} pair of frames, provides a memory-mapped counter and
timer, see:

• The CNTBaseN frame on page I2-7670.

• The CNTEL0BaseN frame on page I2-7670.

• CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I2-7671.

Table I2-3 CNTCTLBase memory map

Offset Register Type Securitya Description

0x000 CNTFRQb RW Secure only Counter Frequency register.

0x004 CNTNSAR RW Secure only Counter Non-Secure Access register.

0x008 CNTTIDR RO Both Counter Timer ID register.

0x00C- 0x03F - RES0 - Reserved.

0x040+4Nc CNTACR<n> RW Configurabled Counter Access Control register N.

0x060- 0x07F - RES0 - Reserved.

0x080+8Nc CNTVOFF<n>[31:0]b RWe Configurabled Virtual Offset register N. If the CNTBaseN frame has
virtual timer capability then CNTVOFFis implemented
as an RW register, otherwise its location is RAZ/WI.0x084+8Nc CNTVOFF<n>[63:32]b RWe

0x0C0-0x0FC - RES0 - Reserved.

0x100-0x7FC - - - IMPLEMENTATION DEFINED.

0x800-0xFBC - RES0 - Reserved.

0xFC0-0xFCF - - - IMPLEMENTATION DEFINED.

0xFD0- 0xFFC CounterID<n> RO Both Counter ID registers 0-11.

a. Access security requirement in an implementation that supports two Security states. In an implementation that does not support
multiple Security states all registers are accessible as shown in the Type column.

b. These registers are also defined in the System register interface to the Generic Timer, and therefore are also described in Generic
Timer registers on page D13-4139 and Generic Timer registers on page G8-7253. The bit assignments of the registers are identical
in the System register interface and in the memory-mapped system level interface.

c. Implemented for each value of N from 0 to 7 for which a CNTBaseN frame is implemented.

d. The CNTNSAR determines the Non-secure accessibility of the CNTACR<n>s and the CNTVOFF<n> in the CNTCTLBase frame.
For more information, see the register descriptions.

e. Address is reserved, RAZ/WI if register not implemented.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I2-7669
ID072021 Non-Confidential

System Level Implementation of the Generic Timer
I2.3 Memory-mapped timer components
The CNTBaseN frame

Table I2-4 on page I2-7670 shows the CNTBaseN registers, in order of their offsets from the CNTBaseN base
address. Whether a frame includes a virtual timer is IMPLEMENTATION DEFINED. If it does not, then memory at
offsets 0x030-0x03C is RAZ/WI. Except for CNTEL0ACR and the CounterID<n> registers, equivalent registers are
also implemented in a System register interface to the timer component of a Generic Timer.

Generic Timer memory-mapped register descriptions on page I5-7805 describes each of these registers.

The CNTEL0BaseN frame

For any value of N, the layout of the registers in the CNTEL0BaseN frame is identical to the CNTBaseN frame,
except that, in the CNTEL0BaseN frame:

• CNTVOFF is never visible, and the memory at 0x018-0x01C is RAZ/WI.

• CNTEL0ACR is never visible, and the memory at 0x014 is RAZ/WI.

Table I2-4 CNTBaseN memory map

Offset Register Type Description

0x000 CNTPCT[31:0]a RO Physical Count register.

0x004 CNTPCT[63:32]a RO

0x008 CNTVCT[31:0]a RO Virtual Count register.

0x00C CNTVCT[63:32]a RO

0x010 CNTFRQa ROc Counter Frequency register.

0x014 CNTEL0ACR RWb Counter EL0 Access Control Register, optional in the CNTBaseN memory
map.

0x018 CNTVOFF[31:0]a ROc Virtual Offset register. If CNTVOFFin the CNTCTLBase frame is an RW
register, a read of this register returns the value of that register. Otherwise is
RAZ.0x01C CNTVOFF[63:32]a ROc

0x020 CNTP_CVAL[31:0]a RW Physical Timer CompareValue register.

0x024 CNTP_CVAL[63:32]a RW

0x028 CNTP_TVALa RW Physical TimerValue register.

0x02C CNTP_CTL a RW Physical Timer Control register.

0x030 CNTV_CVAL[31:0]a RWb Virtual Timer CompareValue register, optional in the CNTBaseN memory
map.

0x034 CNTV_CVAL[63:32]a RWb

0x038 CNTV_TVALa RWb Virtual TimerValue register, optional in the CNTBaseN memory map.

0x03C CNTV_CTLa RWb Virtual Timer Control register, optional in the CNTBaseN memory map.

0x040-0xFCF - RES0 Reserved.

0xFD0-0xFFC CounterID<n> RO Counter ID registers 0-11.

a. These registers are also defined in the System register interface to the Generic Timer, and therefore are also described in Generic
Timer registers on page D13-4139 and Generic Timer registers on page G8-7253. The bit assignments of the registers are identical
in the System register interface and in the memory-mapped system level interface.

b. Address is reserved, RAZ/WI if register not implemented.

c. The CNTCTLBase frame includes an RW view of this register.
I2-7670 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

System Level Implementation of the Generic Timer
I2.3 Memory-mapped timer components
• If implemented in the CNTBaseN frame, CNTEL0ACR controls whether CNTPCT, CNTVCT, CNTFRQ,
the Physical Timer, and the Virtual Timer registers are visible in the CNTEL0BaseN frame.

If CNTEL0ACR is not implemented then these registers are not visible in the CNTEL0BaseN frame, and
their addresses in that frame are RAZ/WI.

If an implementation supports 64-bit atomic accesses, then CNTPCT, CNTVCT, CNTVOFF, CNTP_CVAL, and
CNTV_CVAL must be accessible as atomic 64-bit values.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames

In the CNTCTLBase frame:

CNTTIDR controls:

• Whether each CNTBaseN frame is implemented.

• If a CNTBaseN frame is implemented, whether:

— That CNTBaseN frame has virtual timer capability.

— A corresponding CNTEL0BaseN frame is implemented.

CNTNSAR controls:

In an implementation that recognizes two Security states, determines whether each implemented
CNTBaseN frame, and any corresponding CNTEL0BaseN frame, is accessible by Non-secure
accesses.

This control also determines whether, in the CNTCTLBase frame, the CNTACR<n> and
CNTVOFF<n> registers are accessible by Non-secure accesses.

The CNTACR<n> registers control:

For each implemented CNTBaseN frame, the accessibility of the following registers in that frame:

• CNTP_CTL, CNTP_CVAL, and CNTP_TVAL.

• CNTV_CTL, CNTV_CVAL, and CNTV_TVAL.

• CNTVOFF.

• CNTFRQ.

• CNTPCT.

• CNTVCT.

For CNTACR<n>, the value of <n> corresponds to the value of N for the controlled CNTBaseN
frame.

The CNTVOFF<n> registers provide:

For each implemented CNTBaseN frame that has virtual capability, the RW copy of the CNTVOFF
register for that frame.

Note
In a CNTBaseN frame that has virtual timer capability the CNTVOFF register is RO.

For CNTVOFF<n>, the value of <n> corresponds to the value of N for the controlled CNTBaseN
frame.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I2-7671
ID072021 Non-Confidential

System Level Implementation of the Generic Timer
I2.3 Memory-mapped timer components
I2-7672 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter I3
Recommended External Interface to the
Performance Monitors

This chapter describes the recommended external interface to the Performance Monitors. It contains the following
section:

• About the external interface to the Performance Monitors registers on page I3-7674.

Note

Performance Monitors external register descriptions on page I5-7689 describes the external view of the
Performance Monitors registers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I3-7673
ID072021 Non-Confidential

Recommended External Interface to the Performance Monitors
I3.1 About the external interface to the Performance Monitors registers
I3.1 About the external interface to the Performance Monitors registers

Arm recommends that:

• An implementation provides the OPTIONAL external debug interface to the Performance Monitors registers.

Note

A debugger can use this interface to access counters in the Performance Monitors.

• The implementation includes the OPTIONAL support for memory-mapped access to the External debug
interface.

Note

— Software running on any PE in a system can use this interface to access counters in the Performance
Monitors.

— Privileged software should use the MMU to control access to this interface.

• The external debug interface is implemented as defined in Appendix K2 Recommended External Debug
Interface.

The following sections describe the memory-mapped views of the Performance Monitors registers:

• Differences in the external views of the Performance Monitors registers on page I3-7674.

• Synchronization of changes to the memory-mapped views on page I3-7675.

• Access permissions for external views of the Performance Monitors on page I3-7675.

In this section, unless the context explicitly indicates otherwise, any reference to a memory-mapped view applies
equally to a register view using:

• An access through an external debug interface.

• A memory-mapped access.

I3.1.1 Endianness and supported access sizes

When an implementation supports memory-mapped access to the external debug interface the interface is accessed
as a little-endian memory-mapped peripheral. External Performance Monitors registers summary on page I5-7686
gives the memory map of these registers.

The memory access sizes supported by any peripheral is IMPLEMENTATION DEFINED by the peripheral. For accesses
to the external interface to the Performance Monitors registers implementations must:

• Comply with the requirements of Supported access sizes on page I1-7656.

• Support word-aligned 32-bit accesses to access 32-bit registers or either half of a 64-bit register mapped to a
doubleword-aligned pair of adjacent 32-bit locations, even if no PE in the system implements AArch32.

I3.1.2 Differences in the external views of the Performance Monitors registers

An external view of the Performance Monitors registers accesses the same registers as the System registers interface
described in Performance Monitors Extension registers on page D7-2940, except that:

• The PMSELR is accessible only in the System registers interface.

• The following registers are accessible only in external views:

— PMCFGR

— PMDEVAFF0

— PMDEVAFF1

— PMLAR

— PMLSR

— PMAUTHSTATUS
I3-7674 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommended External Interface to the Performance Monitors
I3.1 About the external interface to the Performance Monitors registers
— PMDEVARCH

— PMDEVTYPE

— PMPIDR0

— PMPIDR1

— PMPIDR2

— PMPIDR3

— PMPIDR4

— PMCIDR0

— PMCIDR1

— PMCIDR2

— PMCIDR3

Performance Monitors external register descriptions on page I5-7689 describes these registers.

• The following controls do not affect the external views:

— PMSELR.

— PMUSERENR.

— HDCR.{TPM, TPMCR, HPMN}.

Instead, see the register descriptions in Chapter I5 External System Control Register Descriptions.

I3.1.3 Synchronization of changes to the memory-mapped views

Synchronization must comply with Synchronization of memory-mapped registers on page I1-7658.

In particular, if a Performance Monitor is visible in both System register and an external view, and is accessed
simultaneously through these two mechanisms, the behavior must be as if the accesses occurred atomically and in
any order. For more information, see Synchronization of changes to the external debug registers on page H8-7462.

I3.1.4 Access permissions for external views of the Performance Monitors

For more information, see External debug interface register access permissions on page H8-7468.

Table I3-1 on page I3-7676 shows the access permissions for the Performance Monitors registers in a v8 Debug
implementation. This table uses the following terms:

DLK When FEAT_DoubleLock is implemented and locked, DoubleLockStatus() == TRUE, accesses to
some registers produce an error. Applies to both interfaces.

EPMAD When AllowExternalPMUAccess() == FALSE, external debug access is disabled for the access. If
FEAT_Debugv8p4 is implemented, this applies only for Non-secure access to the register. See also
Behavior of a not permitted memory-mapped access on page H8-7467.

Error Indicates that the access gives an error response.

Default This shows the default access permissions, if none of the conditions in this list prevent access to the
register.

Off The Core power domain is completely off, or in a low-power state where the Core power domain
registers cannot be accessed, and EDPRSR.PU will read as zero.

Note

If debug power is off, then all external debug interface accesses return an error.

OSLK When the OS Lock is locked, OSLAR_EL1.OSLK == 1, accesses to some registers produces an
error. This column shows the effect of this control on accesses using the external debug interface.

SLK This indicates the modified default access permissions for OPTIONAL memory-mapped accesses to
the external debug interface if the optional Software Lock is locked. See Register access
permissions for memory-mapped accesses on page H8-7466.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I3-7675
ID072021 Non-Confidential

Recommended External Interface to the Performance Monitors
I3.1 About the external interface to the Performance Monitors registers
For all other accesses, this column is ignored.

- Indicates that the control has no effect on the behavior of the access:

• If no other control affects the behavior, the Default access behavior applies.

• However, another control might determine the behavior.

Table I3-1 Access permissions for the Performance Monitors registers

Offset Register Domain Off DLK OSLK EPMAD Default SLK

0x000+8xn PMEVCNTR<n>_EL0a Core Error Error Error Error RW RO

0x0F8 PMCCNTR_EL0[31:0] Core Error Error Error Error RW RO

0x0FC PMCCNTR_EL0[63:32] Core Error Error Error Error RW RO

0x200 PMPCSR[31:0]b Core Error Error Error - RO RO

0x204 PMPCSR[63:32]b Core Error Error Error - RO RO

0x208 PMCID1SRb Core Error Error Error - RO RO

0x20C PMVIDSRb Core Error Error Error - RO RO

0x220 PMPCSR[31:0]b Core Error Error Error - RO RO

0x224 PMPCSR[63:32]b Core Error Error Error - RO RO

0x228 PMCID1SRb Core Error Error Error - RO RO

0x22C PMCID2SRb Core Error Error Error - RO RO

0x400+4xn PMEVTYPER<n>_EL0a Core Error Error Error Error RW RO

0x47C PMCCFILTR_EL0 Core Error Error Error Error RW RO

0x600-0x6FC - - Access is IMPLEMENTATION DEFINED

0xA00-0xBFC - - Access is IMPLEMENTATION DEFINED

0xC00 PMCNTENSET_EL0 Core Error Error Error Error RW RO

0xC20 PMCNTENCLR_EL0 Core Error Error Error Error RW RO

0xC40 PMINTENSET_EL1 Core Error Error Error Error RW RO

0xC60 PMINTENCLR_EL1 Core Error Error Error Error RW RO

0xC80 PMOVSCLR_EL0 Core Error Error Error Error RW RO

0xCA0 PMSWINC_EL0c Core Error Error Error Error WO WI

0xCC0 PMOVSSET_EL0 Core Error Error Error Error RW RO

0xD80-0xDFC - - Access is IMPLEMENTATION DEFINED

0xE00 PMCFGR Core Error Error Error Error RO RO

0xE04 PMCR_EL0 Core Error Error Error Error RW RO

0xE20 PMCEID0 Core Error Error Error Error RO RO

0xE24 PMCEID1 Core Error Error Error Error RO RO

0xE28 PMCEID2 Core Error Error Error Error RO RO
I3-7676 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommended External Interface to the Performance Monitors
I3.1 About the external interface to the Performance Monitors registers
I3.1.5 Power domains and Performance Monitors registers reset

For Armv8-A implementations, Arm recommends that Performance Monitors are implemented as part of the Core
power domain, not as part of a separate Debug power domain. There is no interface to access the Performance
Monitors registers when the Core power domain is powered down.

A Warm or Cold reset sets the Performance Monitors registers to their reset values. An External Debug reset does
not change the values of the Performance Monitors registers.

For more information about the reset scheme recommended for a v8 Debug implementation see Chapter H6 Debug
Reset and Powerdown Support.

Table I3-2 on page I3-7677 shows the Performance Monitors register resets for writable register fields. The column
headings use the following terms:

64 This is the architectural reset value when resetting into AArch64 state.

32 This is the architectural reset value when resetting into AArch32 state.

- This indicates an IMPLEMENTATION DEFINED reset value on the specified reset. This might be
UNKNOWN.

Note

This table does not include:

• Read-only identification registers and fields that have a fixed value. In this case, the reset value is that fixed
value. An example of this is PMCR_EL0.N.

• Write-only registers and fields that only have an effect on writes. These do not have a reset value. An example
of this is PMSWINC_EL0.

• IMPLEMENTATION DEFINED registers. In this case, the reset domains are IMPLEMENTATION DEFINED. The reset
values are IMPLEMENTATION DEFINED and might be UNKNOWN.

0xE2C PMCEID3 Core Error Error Error Error RO RO

0xE40 PMMIR Core Error Error Error Error RO RO

0xE80-0xEFC Integration registers - Access is IMPLEMENTATION DEFINED

0xF00-0xFFC Management registers and CoreSight compliance on page K2-8432

a. Implemented event counters only. n is the counter number.

b. Implemented only if FEAT_PCSRv8p2 is implemented. See Chapter H7 The PC Sample-based Profiling Extension.

c. Only if the OPTIONAL PMSWINC_EL0 register is implemented in the external debug interface.

Table I3-1 Access permissions for the Performance Monitors registers (continued)

Offset Register Domain Off DLK OSLK EPMAD Default SLK

Table I3-2 Performance Monitors System register resets

Register Domain Field 64 32 Description

PMCR_EL0 Warm DP - 0 Disable PMCCNTR_EL0 when prohibited

X - 0 Export enable

D - 0 Clock divider

E 0 0 Performance Monitors enable
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I3-7677
ID072021 Non-Confidential

Recommended External Interface to the Performance Monitors
I3.1 About the external interface to the Performance Monitors registers
PMCNTENSET_EL0

PMCNTENCLR_EL0

Warm - - - All fields in register

PMOVSSET_EL0

PMOVSCLR_EL0

Warm - - - All fields in register

PMSELR_EL0 Warm SEL - - Selected event counter

PMCCNTR_EL0 Warm - - - All fields in register

PMEVTYPER<n>_EL0 Warm - - - All fields in register

PMCCFILTR_EL0 Warm [31:26] - 0x00 PMCCNTR_EL0 filtering controls

PMEVCNTR<n>_EL0 Warm - - - All fields in register

PMUSERENR_EL0 Warm ER - 0 Enable counter read access in EL0

CR - 0 Enable PMCCNTR_EL0 read access in EL0

SW - 0 Enable PMSWINC_EL0 write access in EL0

EN - 0 Enable Performance Monitors access in EL0

PMINTENSET_EL1

PMINTENCLR_EL1

Warm - - - All fields in register

Table I3-2 Performance Monitors System register resets (continued)

Register Domain Field 64 32 Description
I3-7678 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter I4
Recommended External Interface to the Activity
Monitors

This chapter describes the optional external interface to the Activity Monitors Extension registers. It contains the
following section:

• About the external interface to the Activity Monitors Extension registers on page I4-7680

Note

Activity Monitors external register descriptions on page I5-7767 describes the external view of the Activity
Monitors Extension registers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I4-7679
ID072021 Non-Confidential

Recommended External Interface to the Activity Monitors
I4.1 About the external interface to the Activity Monitors Extension registers
I4.1 About the external interface to the Activity Monitors Extension registers

If an implementation supports the Activity Monitors Extension, it may optionally support an external
memory-mapped interface to the Activity Monitors Extension, and, if so, may further optionally support CoreSight
device registers and ID registers.

The memory access sizes supported by the external interface to the Activity Monitors registers:

• Comply with the requirements of Supported access sizes on page I1-7656.

• Include word-aligned 32-bit accesses to access 32-bit registers or either half of a 64-bit register mapped to a
doubleword-aligned pair of adjacent 32-bit locations, even if no PE in the system implements AArch32.

The base address of the memory-mapped view is aligned to a 4KB boundary, but is otherwise IMPLEMENTATION
DEFINED. The address offsets for the memory-mapped view are given in Table I5-2 on page I5-7765.

I4.1.1 Differences in the external views of the Activity Monitors Extension registers

The external memory-mapped interface view of the Activity Monitors Extension registers accesses the same
registers as the System registers interface to the registers, except that:

• The following are accessible only in the System registers interface:.

— AMUSERENR_EL0

— AMEVCNTVOFF0<n>_EL2

— AMEVCNTVOFF1<n>_EL2

— AMCG1IDR_EL0

• If implemented, the following registers are accessible only in the memory-mapped view:

— AMIIDR

— AMDEVAFF0

— AMDEVAFF1

— AMDEVARCH

— AMDEVTYPE

— AMPIDR0

— AMPIDR1

— AMPIDR2

— AMPIDR3

— AMPIDR4

— AMCIDR0

— AMCIDR1

— AMCIDR2

— AMCIDR3

Activity Monitors external register descriptions on page I5-7767 describes these registers.

• If FEAT_AMUv1p1 virtualization of the activity monitors is enabled, the memory-mapped view of the
registers presents the physical view of the counter without any offset. Virtualization of the Activity Monitors
does not affect the memory-mapped view of the registers.

Note

The memory mapped view of the activity monitors is unaffected byAMCR_EL0.CG1RZ and
AMCR.CG1RZ.

I4.1.2 Access during reset and power transitions

As described in Power and reset domains on page D8-2943, the power and reset domains of the activity monitoring
unit are named the AMU domain and AMU reset, and when reset of the AMU power domain occurs, the activity
monitoring unit is reset and the counters are reset to zero.
I4-7680 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommended External Interface to the Activity Monitors
I4.1 About the external interface to the Activity Monitors Extension registers
If the AMU domain is an always-on power domain, while the PE is reset or powered down counter values may be
preserved and might be accessible by memory-mapped access.

If the AMU domain is the Core power domain, while the PE is reset or powered down and when a memory-mapped
access occurs, the access reads as zero and the bus access completes without an error.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I4-7681
ID072021 Non-Confidential

Recommended External Interface to the Activity Monitors
I4.1 About the external interface to the Activity Monitors Extension registers
I4-7682 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Chapter I5
External System Control Register Descriptions

This chapter describes the external system control registers. It excludes the External debug registers that are
described in Chapter H9 External Debug Register Descriptions. It contains the following sections:

• About the external system control register descriptions on page I5-7684.

• External Performance Monitors registers summary on page I5-7686.

• Performance Monitors external register descriptions on page I5-7689.

• External Activity Monitors Extension registers summary on page I5-7765.

• Activity Monitors external register descriptions on page I5-7767.

• Generic Timer memory-mapped registers overview on page I5-7804.

• Generic Timer memory-mapped register descriptions on page I5-7805.

• RAS register descriptions on page I5-7849.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7683
ID072021 Non-Confidential

External System Control Register Descriptions
I5.1 About the external system control register descriptions
I5.1 About the external system control register descriptions

This chapter describes the external system control registers other than the external debug registers. That is, it
describes:

An external view of the Performance Monitors registers

Arm recommends that implementations provide access to the Performance Monitors registers
through the OPTIONAL External debug interface, and provide the OPTIONAL memory-mapped
interface to this interface:

• External Performance Monitors registers summary on page I5-7686 lists the registers that
are accessible in this view of the Performance Monitors, and describes their memory map.

• Performance Monitors external register descriptions on page I5-7689 describes each of the
memory-mapped registers.

Chapter I3 Recommended External Interface to the Performance Monitors describes the
recommended interface to these registers.

Note

Chapter D7 The Performance Monitors Extension describes the Performance Monitors. The
following sections describe the System register interfaces to the Performance Monitors:

• Performance Monitors registers on page D13-3929, for accesses from an Exception level
that is using AArch64.

• Performance Monitors registers on page G8-7074, for accesses from an Exception level that
is using AArch32.

An external view of the Activity Monitors Extension registers

An implementation which supports the Activity Monitors Extension may support an optional
external memory-mapped interface to the Activity Monitors Extension registers.

• External Activity Monitors Extension registers summary on page I5-7765 lists the registers
that are accessible in this view of the Performance Monitors, and describes their memory
map.

• Activity Monitors external register descriptions on page I5-7767 describes each of the
memory-mapped registers.

Chapter I3 Recommended External Interface to the Performance Monitors describes the
recommended interface to these registers.

Note

Chapter D8 The Activity Monitors Extension describes the Activity Monitors. The following
sections describe the System register interfaces to the Activity Monitors:

• Activity Monitors registers on page D13-4001, for accesses from an Exception level that is
using AArch64.

• Activity Monitors registers on page G8-7155, for accesses from an Exception level that is
using AArch32.

The registers for the system level Generic Timer component

Any implementation that includes the Generic Timer must include the memory-mapped system
level component described in Chapter I2 System Level Implementation of the Generic Timer. In this
chapter:

• Generic Timer memory-mapped registers overview on page I5-7804 gives an overview of the
registers, referring to Chapter I2 for more information.

• Generic Timer memory-mapped register descriptions on page I5-7805 describes each of the
memory-mapped registers.
I5-7684 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.1 About the external system control register descriptions
Note

Chapter D11 The Generic Timer in AArch64 state describes the Generic Timer component that is
accessible using the System registers. The following sections describe the System register interfaces
to that component:

• Generic Timer registers on page D13-4139, for accesses from an Exception level that is using
AArch64.

• Generic Timer registers on page G8-7253, for accesses from an Exception level that is using
AArch32.

Note

Chapter H9 External Debug Register Descriptions describes the external debug registers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7685
ID072021 Non-Confidential

External System Control Register Descriptions
I5.2 External Performance Monitors registers summary
I5.2 External Performance Monitors registers summary

When an implementation provides access to the Performance Monitors registers through the External debug
interface, that interface provides access to:

• Performance Monitors System registers.

• A read-only configuration register, PMCFGR.

• The OPTIONAL CoreSight registers for the Performance Monitors, if they are implemented.

The locations of the registers are defined as offsets from a system-defined base address. Performance Monitors
external register views on page I5-7686 defines this memory map.

I5.2.1 Performance Monitors external register views

Table I5-1 on page I5-7686 shows the external view of the Performance Monitors registers. All other entries are
reserved.

Note

• Counters that are reserved because HDCR.HPMN has been changed from its reset value remain visible in
any external view.

• The registers that relate to an implemented event counter, PMNx, are PMEVCNTR<n> and
PMEVTYPER<n>.

• The mapping of the Performance Monitors Event Counter Registers, at offsets 0x000-0x0F4, has changed
compared to the mappings of the equivalent registers in Armv7.

Each entry in the Name column links to the register description in Performance Monitors external register
descriptions on page I5-7689, and:

• If the System register? on page I5-7686 column of the table shows that the register is a System register, the
memory-mapped interface provides a view of the System register described in:

— Performance Monitors registers on page D13-3929, for the AArch64 System register.

— Performance Monitors registers on page G8-7074, for the AArch32 System register.

• Otherwise, the register is accessible only using the external interface.

Table I5-1 Performance Monitors external register views

Name Type Description
System
register?

Offset

PMEVCNTR<n>_EL0 RW Performance Monitors Event Counter Register. Yes 0x000+8n

PMCCNTR_EL0[31:0]

PMCCNTR_EL0[63:32]

RW Performance Monitors Cycle Counter Register a Yes 0x0F8

0x0FC

PMPCSR[31:0]b RW Program Counter Sample Register, bits[31:0] No 0x200

PMPCSR[63:32]b RW Program Counter Sample Register, bits[63:32] No 0x204

PMCID1SRb RW CONTEXTIDR_EL1 Sample Register No 0x208

PMVIDSRb RW VMID Sample Register No 0x20C

PMPCSR[31:0]b RW Program Counter Sample Register, bits[31:0], alias No 0x220

PMPCSR[63:32]b RW Program Counter Sample Register, bits[63:32], alias No 0x224

PMCID1SRb RW CONTEXTIDR_EL1 Sample Register (alias) No 0x228

PMCID2SRb RW CONTEXTIDR_EL2 Sample Register No 0x22C
I5-7686 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.2 External Performance Monitors registers summary
PMEVTYPER<n>_EL0 RW Performance Monitors Event Type and Filter Register. Yes 0x400+4n

PMCCFILTR_EL0 RW Performance Monitors Cycle Counter Filter Register Yes 0x47C

- - IMPLEMENTATION DEFINED - 0x600-0x6FC

- - IMPLEMENTATION DEFINED - 0xA00-0xBFC

PMCNTENSET_EL0 RW Performance Monitors Count Enable Set register Yes 0xC00

PMCNTENCLR_EL0 RW Performance Monitors Count Enable Clear register Yes 0xC20

PMINTENSET_EL1 RW Performance Monitors Interrupt Enable Set register Yes 0xC40

PMINTENCLR_EL1 RW Performance Monitors Interrupt Enable Clear register Yes 0xC60

PMOVSCLR_EL0 RW Performance Monitors Overflow Flag Status Clear register Yes 0xC80

PMSWINC_EL0 WO Performance Monitors Software Increment register Yes 0xCA0

PMOVSSET_EL0 RW Performance Monitors Overflow Flag Status Set register Yes 0xCC0

- - IMPLEMENTATION DEFINED - 0xD80-0xDFC

PMCFGR RO Performance Monitors Configuration Register No 0xE00

PMCR_EL0 RW Performance Monitors Control Register Yes 0xE04

PMCEID0 RO Performance Monitors Common Event Identification register 0 Yes 0xE20

PMCEID1 RO Performance Monitors Common Event Identification register 1 Yes 0xE24

PMCEID2 RO Performance Monitors Common Event Identification register 2 Yes 0xE28

PMCEID3 RO Performance Monitors Common Event Identification register 3 Yes 0xE2C

PMMIR RO Performance Monitors Machine Identification register Yes 0xE40

- - IMPLEMENTATION DEFINED - 0xE80-0xEFC

PMITCTRLc RW Integration Model Control registers No 0xF00

PMDEVAFF0c RO Device Affinity registers No 0xFA8

PMDEVAFF1c RO 0xFAC

PMLARc, d WO Lock Access register No 0xFB0

PMLSRc, d RO Lock Status register No 0xFB4

PMAUTHSTATUSc RO Authentication Status register No 0XFB8

PMDEVARCHc RO Device Architecture register No 0xFBC

PMDEVIDb RO Performance Monitors Device ID register No 0xFC8

PMDEVTYPEc RO Device Type register No 0xFCC

Table I5-1 Performance Monitors external register views (continued)

Name Type Description
System
register?

Offset
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7687
ID072021 Non-Confidential

External System Control Register Descriptions
I5.2 External Performance Monitors registers summary
PMPIDR4c RO Peripheral ID registers No 0xFD0

PMPIDR0c RO 0xFE0

PMPIDR1c RO 0xFE4

PMPIDR2c RO 0xFE8

PMPIDR3c RO 0xFEC

PMCIDR0c RO Component ID registers No 0xFF0

PMCIDR1c RO 0xFF4

PMCIDR2c RO 0xFF8

PMCIDR3c RO 0xFFC

a. The interface must support at least single-copy atomic 32-bit accesses. If single-copy atomic 64-bit access to the registers is not possible,
software must use a high-low-high read access to read the counter value if the counter is enabled.

b. PC Sample-based Profiling Extension registers. Implemented only when FEAT_PCSRv8p2 is implemented, except that from Armv8.2
PMDEVIDt is required regardless of whether FEAT_PCSRv8p2 is implemented.

Before Armv8.2. the PC Sample-based Profiling Extension can, instead, be implemented in the memory-mapped debug registers space,
see Chapter H7 The PC Sample-based Profiling Extension.

c. CoreSight interface registers, see Management registers and CoreSight compliance on page K2-8432.

d. The Software lock registers are defined as part of CoreSight compliance, but their contents depend on the type of access that is made and
whether the OPTIONAL Software lock is implemented. See the register description for details.

Table I5-1 Performance Monitors external register views (continued)

Name Type Description
System
register?

Offset
I5-7688 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3 Performance Monitors external register descriptions

This section describes the external view of the Performance Monitors registers. External Performance Monitors
registers summary on page I5-7686 lists these registers in offset order.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7689
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.1 PMAUTHSTATUS, Performance Monitors Authentication Status register

The PMAUTHSTATUS characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for
Performance Monitors.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is OPTIONAL, and is required for CoreSight compliance. Arm recommends that this
register is implemented.

Attributes

PMAUTHSTATUS is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SNID, bits [7:6]

Holds the same value as DBGAUTHSTATUS_EL1.SNID.

SID, bits [5:4]

Secure invasive debug. Possible values of this field are:

0b00 Not implemented.

All other values are reserved.

NSNID, bits [3:2]

Holds the same value as DBGAUTHSTATUS_EL1.NSNID.

NSID, bits [1:0]

Non-secure invasive debug. Possible values of this field are:

0b00 Not implemented.

All other values are reserved.

Accessing the PMAUTHSTATUS:

PMAUTHSTATUS can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

RES0

31 8

SNID

7 6

SID

5 4 3 2

NSID

1 0

NSNID

Component Offset Instance

PMU 0xFB8 PMAUTHSTATUS
I5-7690 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
• Otherwise accesses to this register generate an error response.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7691
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.2 PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register

The PMCCFILTR_EL0 characteristics are:

Purpose

Determines the modes in which the Cycle Counter, PMCCNTR_EL0, increments.

Configurations

External register PMCCFILTR_EL0 bits [31:0] are architecturally mapped to AArch64 System
register PMCCFILTR_EL0[31:0].

External register PMCCFILTR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMCCFILTR[31:0].

PMCCFILTR_EL0 is in the Core power domain.

On a Warm or Cold reset, RW fields in this register reset to:

• Architecturally UNKNOWN values if the reset is to an Exception level that is using AArch64.

• 0 if the reset is to an Exception level that is using AArch32.

The register is not affected by an External debug reset.

Attributes

PMCCFILTR_EL0 is a 32-bit register.

Field descriptions

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the
PMCCFILTR_EL0.NSK bit.

0b0 Count cycles in EL1.

0b1 Do not count cycles in EL1.

U, bit [30]

User filtering bit. Controls counting in EL0.

If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the
PMCCFILTR_EL0.NSU bit.

0b0 Count cycles in EL0.

0b1 Do not count cycles in EL0.

NSK, bit [29]

When EL3 is implemented:

NSK

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

If the value of this bit is equal to the value of the PMCCFILTR_EL0.P bit, cycles in Non-secure EL1
are counted.

Otherwise, cycles in Non-secure EL1 are not counted.

P

31

U

30 29 28 27

M

26 25

SH

24

RES0

23 0

NSK
NSU

RES0
NSH
I5-7692 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

NSU

Non-secure EL0 (Unprivileged) filtering bit. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of the PMCCFILTR_EL0.U bit, cycles in Non-secure
EL0 are counted.

Otherwise, cycles in Non-secure EL0 are not counted.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

NSH

EL2 (Hypervisor) filtering bit. Controls counting in EL2.

If FEAT_SEL2 and EL3 are implemented, counting in Secure EL2 is further controlled by the
PMCCFILTR_EL0.SH bit.

0b0 Do not count cycles in EL2.

0b1 Count cycles in EL2.

Otherwise:

Reserved, RES0.

M, bit [26]

When EL3 is implemented:

M

Secure EL3 filtering bit.

If the value of this bit is equal to the value of the PMCCFILTR_EL0.P bit, cycles in Secure EL3 are
counted.

Otherwise, cycles in Secure EL3 are not counted.

Most applications can ignore this field and set its value to 0.

Note
This field is not visible in the AArch32 PMCCFILTR System register.

Otherwise:

Reserved, RES0.

Bit [25]

Reserved, RES0.

SH, bit [24]

When FEAT_SEL2 is implemented and EL3 is implemented:

SH
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7693
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
Secure EL2 filtering.

If the value of this bit is not equal to the value of the PMCCFILTR_EL0.NSH bit, cycles in Secure
EL2 are counted.

Otherwise, cycles in Secure EL2 are not counted.

If Secure EL2 is disabled, this field is RES0.

Note
This field is not visible in the AArch32 PMCCFILTR System register.

Otherwise:

Reserved, RES0.

Bits [23:0]

Reserved, RES0.

Accessing the PMCCFILTR_EL0:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMCCFILTR_EL0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0x47C PMCCFILTR_EL0
I5-7694 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.3 PMCCNTR_EL0, Performance Monitors Cycle Counter

The PMCCNTR_EL0 characteristics are:

Purpose

Holds the value of the processor Cycle Counter, CCNT, that counts processor clock cycles. For more
information, see Time as measured by the Performance Monitors cycle counter on page D7-2852.

PMCCFILTR_EL0 determines the modes and states in which the PMCCNTR_EL0 can increment.

Configurations

External register PMCCNTR_EL0 bits [63:0] are architecturally mapped to AArch64 System
register PMCCNTR_EL0[63:0].

External register PMCCNTR_EL0 bits [63:0] are architecturally mapped to AArch32 System
register PMCCNTR[63:0].

PMCCNTR_EL0 is in the Core power domain.

Attributes

PMCCNTR_EL0 is a 64-bit register.

Field descriptions

CCNT, bits [63:0]

Cycle count. Depending on the values of PMCR_EL0.{LC,D}, the cycle count increments in one
of the following ways:

• Every processor clock cycle.

• Every 64th processor clock cycle.

Writing 1 to PMCR_EL0.C sets this field to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMCCNTR_EL0:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMCCNTR_EL0[31:0] can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to PMCCNTR_EL0[31:0] are RO.

CCNT

63 32

CCNT

31 0

Component Offset Instance Range

PMU 0x0F8 PMCCNTR_EL0 31:0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7695
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to PMCCNTR_EL0[31:0] are RW.

• Otherwise accesses to PMCCNTR_EL0[31:0] generate an error response.

PMCCNTR_EL0[63:32] can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to PMCCNTR_EL0[63:32] are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to PMCCNTR_EL0[63:32] are RW.

• Otherwise accesses to PMCCNTR_EL0[63:32] generate an error response.

Component Offset Instance Range

PMU 0x0FC PMCCNTR_EL0 63:32
I5-7696 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.4 PMCEID0, Performance Monitors Common Event Identification register 0

The PMCEID0 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are
implemented, or counted, using PMU events in the range 0x0000 to 0x001F

For more information about the common events and the use of the PMCEIDn registers, see The
PMU event number space and common events on page D7-2875.

Note

This view of the register was previously called PMCEID0_EL0.

Configurations

External register PMCEID0 bits [31:0] are architecturally mapped to AArch64 System register
PMCEID0_EL0[31:0].

External register PMCEID0 bits [31:0] are architecturally mapped to AArch32 System register
PMCEID0[31:0].

PMCEID0 is in the Core power domain.

Attributes

PMCEID0 is a 32-bit register.

Field descriptions

ID<n>, bit [n], for n = 31 to 0

ID[n] corresponds to common event n.

For each bit:

0b0 The common event is not implemented, or not counted.

0b1 The common event is implemented.

When the value of a bit in the field is 1, the corresponding common event is implemented and
counted.

Note

Arm recommends that if a common event is never counted, the value of the corresponding bit is 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID31
ID30

ID29
ID28

ID27
ID26

ID25
ID24

ID23
ID22

ID21
ID20

ID19
ID18

ID17
ID16

ID0
ID1

ID2
ID3

ID4
ID5

ID6
ID7

ID8
ID9

ID10
ID11

ID12
ID13

ID14
ID15
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7697
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional common event.

Note
Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing the PMCEID0:

Note

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more
information.

PMCEID0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and AllowExternalPMUAccess() accesses
to this register are RO.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0xE20 PMCEID0
I5-7698 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.5 PMCEID1, Performance Monitors Common Event Identification register 1

The PMCEID1 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are
implemented, or counted, using PMU events in the range 0x020 to 0x03F.

For more information about the common events and the use of the PMCEIDn registers, see The
PMU event number space and common events on page D7-2875.

Note

This view of the register was previously called PMCEID1_EL0.

Configurations

External register PMCEID1 bits [31:0] are architecturally mapped to AArch64 System register
PMCEID1_EL0[31:0].

External register PMCEID1 bits [31:0] are architecturally mapped to AArch32 System register
PMCEID1[31:0].

PMCEID1 is in the Core power domain.

Attributes

PMCEID1 is a 32-bit register.

Field descriptions

ID<n>, bit [n], for n = 31 to 0

ID[n] corresponds to common event (0x0020 + n).

For each bit:

0b0 The common event is not implemented, or not counted.

0b1 The common event is implemented.

When the value of a bit in the field is 1, the corresponding common event is implemented and
counted.

Note

Arm recommends that if a common event is never counted, the value of the corresponding bit is 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID31
ID30

ID29
ID28

ID27
ID26

ID25
ID24

ID23
ID22

ID21
ID20

ID19
ID18

ID17
ID16

ID0
ID1

ID2
ID3

ID4
ID5

ID6
ID7

ID8
ID9

ID10
ID11

ID12
ID13

ID14
ID15
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7699
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional common event.

Note
Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing the PMCEID1:

Note

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more
information.

PMCEID1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and AllowExternalPMUAccess() accesses
to this register are RO.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0xE24 PMCEID1
I5-7700 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.6 PMCEID2, Performance Monitors Common Event Identification register 2

The PMCEID2 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are
implemented, or counted, using PMU events in the range 0x4000 to 0x401F.

For more information about the common events and the use of the PMCEIDn registers, see The
PMU event number space and common events on page D7-2875.

Configurations

External register PMCEID2 bits [31:0] are architecturally mapped to AArch64 System register
PMCEID0_EL0[63:32].

External register PMCEID2 bits [31:0] are architecturally mapped to AArch32 System register
PMCEID2[31:0].

PMCEID2 is in the Core power domain.

This register is present only when FEAT_PMUv3p1 is implemented. Otherwise, direct accesses to
PMCEID2 are RES0.

Attributes

PMCEID2 is a 32-bit register.

Field descriptions

IDhi<n>, bit [n], for n = 31 to 0

IDhi[n] corresponds to common event (0x4000 + n).

For each bit:

0b0 The common event is not implemented, or not counted.

0b1 The common event is implemented.

When the value of a bit in the field is 1, the corresponding common event is implemented and
counted.

Note

Arm recommends that if a common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional common event.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi31
IDhi30

IDhi29
IDhi28

IDhi27
IDhi26

IDhi25
IDhi24

IDhi23
IDhi22

IDhi21
IDhi20

IDhi19
IDhi18

IDhi17
IDhi16

IDhi0
IDhi1

IDhi2
IDhi3

IDhi4
IDhi5

IDhi6
IDhi7

IDhi8
IDhi9

IDhi10
IDhi11

IDhi12
IDhi13

IDhi14
IDhi15
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7701
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing the PMCEID2:

Note

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more
information.

PMCEID2 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and AllowExternalPMUAccess() accesses
to this register are RO.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0xE28 PMCEID2
I5-7702 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.7 PMCEID3, Performance Monitors Common Event Identification register 3

The PMCEID3 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are
implemented, or counted, using PMU events in the range 0x4020 to 0x403F.

For more information about the common events and the use of the PMCEIDn registers, see The
PMU event number space and common events on page D7-2875.

Configurations

External register PMCEID3 bits [31:0] are architecturally mapped to AArch64 System register
PMCEID1_EL0[63:32].

External register PMCEID3 bits [31:0] are architecturally mapped to AArch32 System register
PMCEID3[31:0].

PMCEID3 is in the Core power domain.

This register is present only when FEAT_PMUv3p1 is implemented. Otherwise, direct accesses to
PMCEID3 are RES0.

Attributes

PMCEID3 is a 32-bit register.

Field descriptions

IDhi<n>, bit [n], for n = 31 to 0

IDhi[n] corresponds to common event (0x4020 + n).

For each bit:

0b0 The common event is not implemented, or not counted.

0b1 The common event is implemented.

When the value of a bit in the field is 1, the corresponding common event is implemented and
counted.

Note

Arm recommends that if a common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional common event.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi31
IDhi30

IDhi29
IDhi28

IDhi27
IDhi26

IDhi25
IDhi24

IDhi23
IDhi22

IDhi21
IDhi20

IDhi19
IDhi18

IDhi17
IDhi16

IDhi0
IDhi1

IDhi2
IDhi3

IDhi4
IDhi5

IDhi6
IDhi7

IDhi8
IDhi9

IDhi10
IDhi11

IDhi12
IDhi13

IDhi14
IDhi15
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7703
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing the PMCEID3:

Note

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more
information.

PMCEID3 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and AllowExternalPMUAccess() accesses
to this register are RO.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0xE2C PMCEID3
I5-7704 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.8 PMCFGR, Performance Monitors Configuration Register

The PMCFGR characteristics are:

Purpose

Contains PMU-specific configuration data.

Configurations

PMCFGR is in the Core power domain.

Attributes

PMCFGR is a 32-bit register.

Field descriptions

NCG, bits [31:28]

This feature is not supported, so this field is RAZ.

Bits [27:22]

Reserved, RES0.

FZO, bit [21]

Freeze-on-overflow supported. Defined values are:

0b0 Freeze-on-overflow mechanism is not supported. PMCR_EL0.FZO is RES0.

0b1 Freeze-on-overflow mechanism is supported. PMCR_EL0.FZO is RW.

FEAT_PMUv3p7 implements the functionality added by the value 0b1.

From Armv8.7, if FEAT_PMUv3 is implemented, the only permitted value is 0b1.

Bit [20]

Reserved, RES0.

UEN, bit [19]

User-mode Enable Register supported. PMUSERENR_EL0 is not visible in the external debug
interface, so this bit is RAZ.

WT, bit [18]

This feature is not supported, so this bit is RAZ.

NA, bit [17]

This feature is not supported, so this bit is RAZ.

EX, bit [16]

Export supported. Value is IMPLEMENTATION DEFINED.

0b0 PMCR_EL0.X is RES0.

0b1 PMCR_EL0.X is read/write.

Access to this field is RO.

NCG

31 28

RES0

27 22 21 20 19

WT

18

NA

17

EX

16 15

CC

14

SIZE

13 8

N

7 0

FZO
RES0

CCD
UEN
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7705
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
CCD, bit [15]

Cycle counter has prescale.

This is RES1 if AArch32 is supported, and RAZ otherwise.

0b0 PMCR_EL0.D is RES0.

0b1 PMCR_EL0.D is read/write.

CC, bit [14]

Dedicated cycle counter (counter 31) supported. This bit is RAO.

SIZE, bits [13:8]

Size of counters, minus one. This field defines the size of the largest counter implemented by the
Performance Monitors Unit.

From Armv8, the largest counter is 64-bits, so the value of this field is 0b111111.

This field is used by software to determine the spacing of the counters in the memory-map. From
Armv8, the counters are a doubleword-aligned addresses.

N, bits [7:0]

Number of counters implemented in addition to the cycle counter, PMCCNTR_EL0. The maximum
number of event counters is 31.

0x00 Only PMCCNTR_EL0 implemented.

0x01 PMCCNTR_EL0 plus one event counter implemented.

and so on up to 0b00011111, which indicates PMCCNTR_EL0 and 31 event counters implemented.

Accessing the PMCFGR:

Note

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more
information.

PMCFGR can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and AllowExternalPMUAccess() accesses
to this register are RO.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0xE00 PMCFGR
I5-7706 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.9 PMCIDR0, Performance Monitors Component Identification Register 0

The PMCIDR0 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see About the Component Identification scheme on page K2-8443.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMCIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble.

Reads as 0x0D.

Access to this field is RO.

Accessing the PMCIDR0:

PMCIDR0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 8

1101

7 0

PRMBL_0

Component Offset Instance

PMU 0xFF0 PMCIDR0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7707
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.10 PMCIDR1, Performance Monitors Component Identification Register 1

The PMCIDR1 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see About the Component Identification scheme on page K2-8443.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMCIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

0b1001 CoreSight component.

Other values are defined by the CoreSight Architecture.

This field reads as 0x9.

PRMBL_1, bits [3:0]

Preamble. RAZ.

Reads as 0b0000.

Access to this field is RO.

Accessing the PMCIDR1:

PMCIDR1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 8

CLASS

7 4

0 0 0 0

3 0

PRMBL_1

Component Offset Instance

PMU 0xFF4 PMCIDR1
I5-7708 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.11 PMCIDR2, Performance Monitors Component Identification Register 2

The PMCIDR2 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see About the Component Identification scheme on page K2-8443.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMCIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble.

Reads as 0x05.

Access to this field is RO.

Accessing the PMCIDR2:

PMCIDR2 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 8

101

7 0

PRMBL_2

Component Offset Instance

PMU 0xFF8 PMCIDR2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7709
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.12 PMCIDR3, Performance Monitors Component Identification Register 3

The PMCIDR3 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see About the Component Identification scheme on page K2-8443.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMCIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble.

Reads as 0xB1.

Access to this field is RO.

Accessing the PMCIDR3:

PMCIDR3 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 8

1 0 1 1 0 0 0 1

7 0

PRMBL_3

Component Offset Instance

PMU 0xFFC PMCIDR3
I5-7710 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.13 PMCID1SR, CONTEXTIDR_EL1 Sample Register

The PMCID1SR characteristics are:

Purpose

Contains the sampled value of CONTEXTIDR_EL1, captured on reading PMPCSR[31:0].

Configurations

PMCID1SR is in the Core power domain.

This register is present only when FEAT_PCSRv8p2 is implemented. Otherwise, direct accesses to
PMCID1SR are RES0.

Note
Before Armv8.2, the PC Sample-based Profiling Extension can be implemented in the external
debug register space, as indicated by the value of EDDEVID.PCSample.

Attributes

PMCID1SR is a 32-bit register.

Field descriptions

CONTEXTIDR_EL1, bits [31:0]

Context ID. The value of FEAT_DoPD that is associated with the most recent PMPCSR sample.
When the most recent PMPCSR sample was generated:

• If EL1 is using AArch64, then the Context ID is sampled from CONTEXTIDR_EL1.

• If EL1 is using AArch32, then the Context ID is sampled from CONTEXTIDR.

• If EL3 is implemented and is using AArch32, then CONTEXTIDR is a banked register and
PMCID1SR samples the current banked copy of CONTEXTIDR for the Security state that is
associated with the most recent PMPCSR sample.

Because the value written to PMCID1SR is an indirect read of FEAT_DoPD, it is CONSTRAINED
UNPREDICTABLE whether PMCID1SR is set to the original or new value if PMPCSR samples:

• An instruction that writes to FEAT_DoPD.

• The next Context synchronization event.

• Any instruction executed between these two instructions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMCID1SR:

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see
Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN on page H7-7458.

PMCID1SR can be accessed through the external debug interface:

CONTEXTIDR_EL1

31 0

Component Offset Instance

PMU 0x208 PMCID1SR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7711
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

PMCID1SR can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0x228 PMCID1SR
I5-7712 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.14 PMCID2SR, CONTEXTIDR_EL2 Sample Register

The PMCID2SR characteristics are:

Purpose

Contains the sampled value of CONTEXTIDR_EL2, captured on reading PMPCSR[31:0].

Configurations

PMCID2SR is in the Core power domain.

This register is present only when FEAT_PCSRv8p2 is implemented and EL2 is implemented.
Otherwise, direct accesses to PMCID2SR are RES0.

Note
If FEAT_PCSRv8p2 is not implemented, the PC Sample-based Profiling Extension can be
implemented in the external debug register space, as indicated by the value of
EDDEVID.PCSample.

Attributes

PMCID2SR is a 32-bit register.

Field descriptions

CONTEXTIDR_EL2, bits [31:0]

Context ID. The value of CONTEXTIDR_EL2 that is associated with the most recent PMPCSR
sample. When the most recent PMPCSR sample was generated:

• If EL2 is using AArch64, then this field is set to the Context ID sampled from
CONTEXTIDR_EL2.

• If EL2 is using AArch32, then this field is set to an UNKNOWN value.

Because the value written to PMCID2SR is an indirect read of CONTEXTIDR_EL2, it is
CONSTRAINED UNPREDICTABLE whether PMCID2SR is set to the original or new value if PMPCSR
samples:

• An instruction that writes to CONTEXTIDR_EL2.

• The next Context synchronization event.

• Any instruction executed between these two instructions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMCID2SR:

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see
Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN on page H7-7458.

PMCID2SR can be accessed through the external debug interface:

CONTEXTIDR_EL2

31 0

Component Offset Instance

PMU 0x22C PMCID2SR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7713
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.
I5-7714 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.15 PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register

The PMCNTENCLR_EL0 characteristics are:

Purpose

Disables the Cycle Count Register, PMCCNTR_EL0, and any implemented event counters
PMEVCNTR<n>. Reading this register shows which counters are enabled.

Configurations

External register PMCNTENCLR_EL0 bits [31:0] are architecturally mapped to AArch64 System
register PMCNTENCLR_EL0[31:0].

External register PMCNTENCLR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMCNTENCLR[31:0].

PMCNTENCLR_EL0 is in the Core power domain.

Attributes

PMCNTENCLR_EL0 is a 32-bit register.

Field descriptions

C, bit [31]

PMCCNTR_EL0 disable bit. Disables the cycle counter register. Possible values are:

0b0 When read, means the cycle counter is disabled. When written, has no effect.

0b1 When read, means the cycle counter is enabled. When written, disables the cycle
counter.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 30 to 0

Event counter disable bit for PMEVCNTR<n>_EL0.

If PMCFGR.N is less than 31, bits [30:PMCFGR.N] are RAZ/WI.

0b0 When read, means that PMEVCNTR<n>_EL0 is disabled. When written, has no effect.

0b1 When read, means that PMEVCNTR<n>_EL0 is enabled. When written, disables
PMEVCNTR<n>_EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7715
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
Accessing the PMCNTENCLR_EL0:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMCNTENCLR_EL0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0xC20 PMCNTENCLR_EL0
I5-7716 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.16 PMCNTENSET_EL0, Performance Monitors Count Enable Set register

The PMCNTENSET_EL0 characteristics are:

Purpose

Enables the Cycle Count Register, PMCCNTR_EL0, and any implemented event counters
PMEVCNTR<n>. Reading this register shows which counters are enabled.

Configurations

External register PMCNTENSET_EL0 bits [31:0] are architecturally mapped to AArch64 System
register PMCNTENSET_EL0[31:0].

External register PMCNTENSET_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMCNTENSET[31:0].

PMCNTENSET_EL0 is in the Core power domain.

Attributes

PMCNTENSET_EL0 is a 32-bit register.

Field descriptions

C, bit [31]

PMCCNTR_EL0 enable bit. Enables the cycle counter register. Possible values are:

0b0 When read, means the cycle counter is disabled. When written, has no effect.

0b1 When read, means the cycle counter is enabled. When written, enables the cycle
counter.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 30 to 0

Event counter enable bit for PMEVCNTR<n>_EL0.

If PMCFGR.N is less than 31, bits [30:PMCFGR.N] are RAZ/WI.

0b0 When read, means that PMEVCNTR<n>_EL0 is disabled. When written, has no effect.

0b1 When read, means that PMEVCNTR<n>_EL0 event counter is enabled. When written,
enables PMEVCNTR<n>_EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7717
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
Accessing the PMCNTENSET_EL0:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMCNTENSET_EL0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0xC00 PMCNTENSET_EL0
I5-7718 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.17 PMCR_EL0, Performance Monitors Control Register

The PMCR_EL0 characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters
implemented, and configures and controls the counters.

Configurations

External register PMCR_EL0 bits [7:0] are architecturally mapped to AArch32 System register
PMCR[7:0].

External register PMCR_EL0 bits [7:0] are architecturally mapped to AArch64 System register
PMCR_EL0[7:0].

PMCR_EL0 is in the Core power domain.

This register is only partially mapped to the internal PMCR System register. An external agent must
use other means to discover the information held in PMCR[31:11], such as accessing PMCFGR and
the ID registers.

Attributes

PMCR_EL0 is a 32-bit register.

Field descriptions

Bits [31:11]

Reserved, RAZ/WI.

Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as
zero, and must use a read-modify-write sequence to write to the register.

Bit [10]

Reserved, RES0.

FZO, bit [9]

When FEAT_PMUv3p7 is implemented:

FZO

Freeze-on-overflow. Stop event counters on overflow.

0b0 Do not freeze on overflow.

0b1 Event counters do not count when PMOVSCLR_EL0[(N-1):0] is nonzero, where N is
the value of MDCR_EL2.HPMN if EL2 is implemented, and PMCR_EL0.N otherwise.

If EL2 is implemented, then:

• This bit affects the operation of event counters in the range [0 .. (MDCR_EL2.HPMN-1)].

• If MDCR_EL2.HPMN is less than PMCR_EL0.N:

— This bit does not affect the operation of event counters in the range
[MDCR_EL2.HPMN .. (PMCR_EL0.N-1)].

— The operation of this bit ignores the values of
PMOVSCLR_EL0[(PMCR_EL0.N-1):MDCR_EL2.HPMN].

• This applies even when EL2 is disabled in the current Security state.

RAZ/WI

31 11 10 9 8

LP

7

LC

6

DP

5

X

4

D

3

C

2

P

1

E

0

RES0 RES0
FZO
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7719
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
This bit does not affect the operation of PMCCNTR_EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [8]

Reserved, RES0.

LP, bit [7]

When FEAT_PMUv3p5 is implemented:

LP

Long event counter enable. Determines when unsigned overflow is recorded by an event counter
overflow bit.

0b0 Event counter overflow on increment that causes unsigned overflow of
PMEVCNTR<n>_EL0[31:0].

0b1 Event counter overflow on increment that causes unsigned overflow of
PMEVCNTR<n>_EL0[63:0].

If EL2 is implemented and MDCR_EL2.HPMN is less than PMCR_EL0.N, this bit does not affect
the operation of event counters in the range [MDCR_EL2.HPMN:(PMCR_EL0.N-1)].

If EL2 is implemented and HDCR.HPMN is less than PMCR_EL0.N, this bit does not affect the
operation of event counters in the range [HDCR.HPMN..(PMCR_EL0.N-1)].

Note

The effect of MDCR_EL2.HPMN or HDCR.HPMN on the operation of this bit always applies if
EL2 is implemented, at all Exception levels including EL2 and EL3, and regardless of whether EL2
is enabled in the current Security state. For more information, see the description of
MDCR_EL2.HPMN or HDCR.HPMN.

If the highest implemented Exception level is using AArch32, it is IMPLEMENTATION DEFINED
whether this bit is RW or RAZ/WI.

Otherwise:

Reserved, RES0.

LC, bit [6]

When AArch32 is supported at EL0:

LC

Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter
overflow bit.

0b0 Cycle counter overflow on increment that causes unsigned overflow of
PMCCNTR_EL0[31:0].

0b1 Cycle counter overflow on increment that causes unsigned overflow of
PMCCNTR_EL0[63:0].

Arm deprecates use of PMCR_EL0.LC = 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
I5-7720 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
Reserved, RES1.

DP, bit [5]

When EL3 is implemented or (FEAT_PMUv3p1 is implemented and EL2 is implemented):

DP

Disable cycle counter when event counting is prohibited. The possible values of this bit are:

0b0 Cycle counting by PMCCNTR_EL0 is not affected by this bit.

0b1 When event counting for counters in the range [0..(MDCR_EL2.HPMN-1)] is
prohibited, cycle counting by PMCCNTR_EL0 is disabled.

For more information, see Controlling the PMU counters on page D7-2859.

The reset behavior of this field is:

• When this register has an architecturally-defined reset value, if this field is implemented as
an RW field it resets to:

— A value that is architecturally UNKNOWN if the reset is into an Exception level that is
using AArch64.

— 0 if the reset is into an Exception level that is using AArch32.

Otherwise:

Reserved, RES0.

X, bit [4]

When the implementation includes a PMU event export bus:

X

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

0b0 Do not export events.

0b1 Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus
to another device, for example to an OPTIONAL PE trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or
signaling to a cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

The reset behavior of this field is:

• When this register has an architecturally-defined reset value, if this field is implemented as
an RW field it resets to:

— A value that is architecturally UNKNOWN if the reset is into an Exception level that is
using AArch64.

— 0 if the reset is into an Exception level that is using AArch32.

Otherwise:

Reserved, RAZ/WI.

D, bit [3]

When AArch32 is supported at EL0:

D

Clock divider.

0b0 When enabled, PMCCNTR_EL0 counts every clock cycle.

0b1 When enabled, PMCCNTR_EL0 counts once every 64 clock cycles.

If PMCR_EL0.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7721
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
Arm deprecates use of PMCR_EL0.D = 1.

The reset behavior of this field is:

• When this register has an architecturally-defined reset value, if this field is implemented as
an RW field it resets to:

— A value that is architecturally UNKNOWN if the reset is into an Exception level that is
using AArch64.

— 0 if the reset is into an Exception level that is using AArch32.

Otherwise:

Reserved, RES0.

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

0b0 No action.

0b1 Reset PMCCNTR_EL0 to zero.

Note

Resetting PMCCNTR_EL0 does not change the cycle counter overflow bit. If FEAT_PMUv3p5 is
implemented, the value of PMCR_EL0.LC is ignored, and bits [63:0] of the cycle counter are reset.

Access to this field is WO/RAZ.

P, bit [1]

Event counter reset. The effects of writing to this bit are:

0b0 No action.

0b1 Reset all event counters, not including PMCCNTR_EL0, to zero.

Note

Resetting the event counters does not change the event counter overflow bits. If FEAT_PMUv3p5
is implemented, the value of MDCR_EL2.HLP, or PMCR_EL0.LP is ignored and bits [63:0] of all
affected event counters are reset.

Access to this field is WO/RAZ.

E, bit [0]

Enable.

0b0 All event counters in the range [0..(PMN-1)] and PMCCNTR_EL0, are disabled.

0b1 All event counters in the range [0..(PMN-1)] and PMCCNTR_EL0, are enabled by
PMCNTENSET_EL0.

If EL2 is implemented then:

• If EL2 is using AArch32, PMN is HDCR.HPMN.

• If EL2 is using AArch64, PMN is MDCR_EL2.HPMN.

• If PMN is less than PMCR_EL0.N, this bit does not affect the operation of event counters in
the range [PMN..(PMCR_EL0.N-1)].

If EL2 is not implemented, PMN is PMCR_EL0.N.

Note
The effect of the following fields on the operation of this bit applies if EL2 is implemented
regardless of whether EL2 is enabled in the current Security state:

• HDCR.HPMN. See the description of HDCR.HPMN for more information.
I5-7722 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
• MDCR_EL2.HPMN. See the description of MDCR_EL2.HPMN for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing the PMCR_EL0:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMCR_EL0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0xE04 PMCR_EL0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7723
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.18 PMDEVAFF0, Performance Monitors Device Affinity register 0

The PMDEVAFF0 characteristics are:

Purpose

Copy of the low half of the PE MPIDR_EL1 register that allows a debugger to determine which PE
in a multiprocessor system the Performance Monitor component relates to.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required if the external interface to the PMU is implemented.

Attributes

PMDEVAFF0 is a 32-bit register.

Field descriptions

MPIDR_EL1lo, bits [31:0]

MPIDR_EL1 low half. Read-only copy of the low half of MPIDR_EL1, as seen from the highest
implemented Exception level.

Accessing the PMDEVAFF0:

PMDEVAFF0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

MPIDR_EL1lo

31 0

Component Offset Instance

PMU 0xFA8 PMDEVAFF0
I5-7724 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.19 PMDEVAFF1, Performance Monitors Device Affinity register 1

The PMDEVAFF1 characteristics are:

Purpose

Copy of the high half of the PE MPIDR_EL1 register that allows a debugger to determine which PE
in a multiprocessor system the Performance Monitor component relates to.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required if the external interface to the PMU is implemented.

Attributes

PMDEVAFF1 is a 32-bit register.

Field descriptions

MPIDR_EL1hi, bits [31:0]

MPIDR_EL1 high half. Read-only copy of the high half of MPIDR_EL1, as seen from the highest
implemented Exception level.

Accessing the PMDEVAFF1:

PMDEVAFF1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

MPIDR_EL1hi

31 0

Component Offset Instance

PMU 0xFAC PMDEVAFF1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7725
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.20 PMDEVARCH, Performance Monitors Device Architecture register

The PMDEVARCH characteristics are:

Purpose

Identifies the programmers' model architecture of the Performance Monitor component.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

Attributes

PMDEVARCH is a 32-bit register.

Field descriptions

ARCHITECT, bits [31:21]

Defines the architecture of the component. For Performance Monitors, this is Arm Limited.

Bits [31:28] are the JEP106 continuation code, 0x4.

Bits [27:21] are the JEP106 ID code, 0x3B.

PRESENT, bit [20]

When set to 1, indicates that the DEVARCH is present.

This field is 1 in Armv8.

REVISION, bits [19:16]

Defines the architecture revision. For architectures defined by Arm this is the minor revision.

For Performance Monitors, the revision defined by Armv8 is 0x0.

All other values are reserved.

ARCHID, bits [15:0]

Defines this part to be an Armv8 debug component. For architectures defined by Arm this is further
subdivided.

For Performance Monitors:

• Bits [15:12] are the architecture version, 0x2.

• Bits [11:0] are the architecture part number, 0xA16.

This corresponds to Performance Monitors architecture version PMUv3.

Note
The PMUv3 memory-mapped programmers' model can be used by devices other than Armv8
processors. Software must determine whether the PMU is attached to an Armv8 processor by using
the PMDEVAFF0 and PMDEVAFF1 registers to discover the affinity of the PMU to any Armv8
processors.

ARCHITECT

31 21 20

REVISION

19 16

ARCHID

15 0

PRESENT
I5-7726 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
Accessing the PMDEVARCH:

PMDEVARCH can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0xFBC PMDEVARCH
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7727
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.21 PMDEVID, Performance Monitors Device ID register

The PMDEVID characteristics are:

Purpose

Provides information about features of the Performance Monitors implementation.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required from Armv8.2 and in any implementation that includes FEAT_PCSRv8p2.
Otherwise, its location is RES0.

Note
Before Armv8.2, the PC Sample-based Profiling Extension can be implemented in the external
debug register space, as indicated by the value of EDDEVID.PCSample.

Attributes

PMDEVID is a 32-bit register.

Field descriptions

Bits [31:4]

Reserved, RES0.

PCSample, bits [3:0]

Indicates the level of PC Sample-based Profiling support using Performance Monitors registers.

0b0000 PC Sample-based Profiling Extension is not implemented in the Performance Monitors
register space.

0b0001 PC Sample-based Profiling Extension is implemented in the Performance Monitors
register space.

All other values are reserved.

FEAT_PCSRv8p2 implements the functionality identified by the value 0b0001.

Accessing the PMDEVID:

PMDEVID can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 4

PCSample

3 0

Component Offset Instance

PMU 0xFC8 PMDEVID
I5-7728 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.22 PMDEVTYPE, Performance Monitors Device Type register

The PMDEVTYPE characteristics are:

Purpose

Indicates to a debugger that this component is part of a PEs performance monitor interface.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

Attributes

PMDEVTYPE is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Subtype. Must read as 0x1 to indicate this is a component within a PE.

MAJOR, bits [3:0]

Major type. Must read as 0x6 to indicate this is a performance monitor component.

Accessing the PMDEVTYPE:

PMDEVTYPE can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 8

SUB

7 4

MAJOR

3 0

Component Offset Instance

PMU 0xFCC PMDEVTYPE
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7729
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.23 PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

The PMEVCNTR<n>_EL0 characteristics are:

Purpose

Holds event counter n, which counts events, where n is 0 to 30.

Configurations

External register PMEVCNTR<n>_EL0 bits [31:0] are architecturally mapped to AArch64 System
register PMEVCNTR<n>_EL0[31:0].

External register PMEVCNTR<n>_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMEVCNTR<n>[31:0].

PMEVCNTR<n>_EL0 is in the Core power domain.

Attributes

PMEVCNTR<n>_EL0 is a:

• 64-bit register when FEAT_PMUv3p5 is implemented

• 32-bit register otherwise

Field descriptions

When FEAT_PMUv3p5 is implemented:

Bits [63:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number
from 0 to 30.

If the highest implemented Exception level is using AArch32, the optional external interface to the
performance monitors is implemented, and the PMCR.LP and HDCR.HLP bits are RAZ/WI, then
locations in the external interface to the performance monitors that map to
PMEVCNTR<n>_EL0[63:32] return UNKNOWN values on reads.

If the implementation does not support AArch64, bits [63:32] of the event counters are not required
to be implemented.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Bits [31:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number
from 0 to 30.

Event counter n

63 32

Event counter n

31 0

Event counter n

31 0
I5-7730 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMEVCNTR<n>_EL0:

External accesses to the performance monitors ignore PMUSERENR_EL0 and, if implemented,
MDCR_EL2.{TPM, TPMCR, HPMN} and MDCR_EL3.TPM. This means that all counters are accessible
regardless of the current Exception level or privilege of the access.

If FEAT_PMUv3p5 is not implemented, when IsCorePowered(), DoubleLockStatus(), OSLockStatus() or
!AllowExternalPMUAccess(), 32-bit accesses to 0x004+8×n have a CONSTRAINED UNPREDICTABLE behavior.

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMEVCNTR<n>_EL0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0x000 + (8 * n) PMEVCNTR<n>_EL0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7731
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.24 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

The PMEVTYPER<n>_EL0 characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

Configurations

External register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to AArch64
System register PMEVTYPER<n>_EL0[31:0].

External register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMEVTYPER<n>[31:0].

PMEVTYPER<n>_EL0 is in the Core power domain.

If event counter n is not implemented:

• When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() &&
AllowExternalPMUAccess(), accesses are RES0.

• Otherwise, it is CONSTRAINED UNPREDICTABLE whether accesses to this register are RES0 or
generate an error response.

Attributes

PMEVTYPER<n>_EL0 is a 32-bit register.

Field descriptions

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the
PMEVTYPER<n>_EL0.NSK bit.

0b0 Count events in EL1.

0b1 Do not count events in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

User filtering bit. Controls counting in EL0.

If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the
PMEVTYPER<n>_EL0.NSU bit.

0b0 Count events in EL0.

0b1 Do not count events in EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]

When EL3 is implemented:

NSK

P

31

U

30 29 28 27

M

26

MT

25

SH

24

RES0

23 16 15 10

evtCount[9:0]

9 0

NSK NSH
NSU

evtCount[15:10]
I5-7732 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in
Non-secure EL1 are counted.

Otherwise, events in Non-secure EL1 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

NSU

Non-secure EL0 (Unprivileged) filtering bit. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.U bit, events in
Non-secure EL0 are counted.

Otherwise, events in Non-secure EL0 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

NSH

EL2 (Hypervisor) filtering bit. Controls counting in EL2.

If FEAT_SEL2 and EL3 are implemented, counting in Secure EL2 is further controlled by the
PMEVTYPER<n>_EL0.SH bit.

0b0 Do not count events in EL2.

0b1 Count events in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M, bit [26]

When EL3 is implemented:

M

EL3 filtering bit.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in EL3 are
counted.

Otherwise, events in EL3 are not counted.

Most applications can ignore this field and set its value to 0b0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7733
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
Note

This field is not visible in the AArch32 PMEVTYPER<n> System register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MT, bit [25]

When (FEAT_MTPMU is implemented and enabled) or an IMPLEMENTATION DEFINED
multi-threaded PMU Extension is implemented:

MT

Multithreading.

0b0 Count events only on controlling PE.

0b1 Count events from any PE with the same affinity at level 1 and above as this PE.

Note

• When the lowest level of affinity consists of logical PEs that are implemented using a
multi-threading type approach, an implementation is described as multi-threaded. That is, the
performance of PEs at the lowest affinity level is highly interdependent.

• Events from a different thread of a multithreaded implementation are not Attributable to the
thread counting the event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SH, bit [24]

When FEAT_SEL2 is implemented and EL3 is implemented:

SH

Secure EL2 filtering.

If the value of this bit is not equal to the value of the PMEVTYPER<n>_EL0.NSH bit, events in
Secure EL2 are counted.

Otherwise, events in Secure EL2 are not counted.

Note

This field is not visible in the AArch32 PMEVTYPER<n> System register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [23:16]

Reserved, RES0.
I5-7734 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
evtCount[15:10], bits [15:10]

When FEAT_PMUv3p1 is implemented:

evtCount[15:10]

Extension to evtCount[9:0]. For more information, see evtCount[9:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter
PMEVCNTR<n>_EL0.

Software must program this field with an event that is supported by the PE being programmed.

The ranges of event numbers allocated to each type of event are shown in Table D7-6 on
page D7-2875.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior
depends on the value written:

• For the range 0x0000 to 0x003F, no events are counted, and the value returned by a direct or
external read of the evtCount field is the value written to the field.

• If FEAT_PMUv3p1 is implemented, for the range 0x4000 to 0x403F, no events are counted,
and the value returned by a direct or external read of the evtCount field is the value written
to the field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted,
and the value returned by a direct or external read of the evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

Arm recommends that the behavior across a family of implementations is defined such that if a
given implementation does not include an event from a set of common IMPLEMENTATION DEFINED
events, then no event is counted and the value read back on evtCount is the value written.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMEVTYPER<n>_EL0:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMEVTYPER<n>_EL0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

Component Offset Instance

PMU 0x400 + (4 * n) PMEVTYPER<n>_EL0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7735
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.
I5-7736 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.25 PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register

The PMINTENCLR_EL1 characteristics are:

Purpose

Disables the generation of interrupt requests on overflows from the Cycle Count Register,
PMCCNTR_EL0, and the event counters PMEVCNTR<n>_EL0. Reading the register shows which
overflow interrupt requests are enabled.

Configurations

External register PMINTENCLR_EL1 bits [31:0] are architecturally mapped to AArch64 System
register PMINTENCLR_EL1[31:0].

External register PMINTENCLR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register PMINTENCLR[31:0].

PMINTENCLR_EL1 is in the Core power domain.

Attributes

PMINTENCLR_EL1 is a 32-bit register.

Field descriptions

C, bit [31]

PMCCNTR_EL0 overflow interrupt request disable bit. Possible values are:

0b0 When read, means the cycle counter overflow interrupt request is disabled. When
written, has no effect.

0b1 When read, means the cycle counter overflow interrupt request is enabled. When
written, disables the cycle count overflow interrupt request.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 30 to 0

Event counter overflow interrupt request disable bit for PMEVCNTR<n>_EL0.

If PMCFGR.N is less than 31, bits [30:PMCFGR.N] are RAZ/WI.

0b0 When read, means that the PMEVCNTR<n>_EL0 event counter interrupt request is
disabled. When written, has no effect.

0b1 When read, means that the PMEVCNTR<n>_EL0 event counter interrupt request is
enabled. When written, disables the PMEVCNTR<n>_EL0 interrupt request.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7737
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
Accessing the PMINTENCLR_EL1:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMINTENCLR_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0xC60 PMINTENCLR_EL1
I5-7738 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.26 PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register

The PMINTENSET_EL1 characteristics are:

Purpose

Enables the generation of interrupt requests on overflows from the Cycle Count Register,
PMCCNTR_EL0, and the event counters PMEVCNTR<n>_EL0. Reading the register shows which
overflow interrupt requests are enabled.

Configurations

External register PMINTENSET_EL1 bits [31:0] are architecturally mapped to AArch64 System
register PMINTENSET_EL1[31:0].

External register PMINTENSET_EL1 bits [31:0] are architecturally mapped to AArch32 System
register PMINTENSET[31:0].

PMINTENSET_EL1 is in the Core power domain.

Attributes

PMINTENSET_EL1 is a 32-bit register.

Field descriptions

C, bit [31]

PMCCNTR_EL0 overflow interrupt request enable bit. Possible values are:

0b0 When read, means the cycle counter overflow interrupt request is disabled. When
written, has no effect.

0b1 When read, means the cycle counter overflow interrupt request is enabled. When
written, enables the cycle count overflow interrupt request.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 30 to 0

Event counter overflow interrupt request enable bit for PMEVCNTR<n>_EL0.

If PMCFGR.N is less than 31, bits [30:PMCFGR.N] are RAZ/WI.

0b0 When read, means that the PMEVCNTR<n>_EL0 event counter interrupt request is
disabled. When written, has no effect.

0b1 When read, means that the PMEVCNTR<n>_EL0 event counter interrupt request is
enabled. When written, enables the PMEVCNTR<n>_EL0 interrupt request.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7739
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
Accessing the PMINTENSET_EL1:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMINTENSET_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0xC40 PMINTENSET_EL1
I5-7740 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.27 PMITCTRL, Performance Monitors Integration mode Control register

The PMITCTRL characteristics are:

Purpose

Enables the Performance Monitors to switch from default mode into integration mode, where test
software can control directly the inputs and outputs of the PE, for integration testing or topology
detection.

Configurations

It is IMPLEMENTATION DEFINED whether PMITCTRL is implemented in the Core power domain or
in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

PMITCTRL is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

IME, bit [0]

Integration mode enable. When IME == 1, the device reverts to an integration mode to enable
integration testing or topology detection. The integration mode behavior is IMPLEMENTATION
DEFINED.

0b0 Normal operation.

0b1 Integration mode enabled.

The reset behavior of this field is:

• The following resets apply:

— If the register is implemented in the Core power domain:

— On a Cold reset, this field resets to 0.

— On an External debug reset, the value of this field is unchanged.

— On a Warm reset, the value of this field is unchanged.

— If the register is implemented in the External debug power domain:

— On a Cold reset, the value of this field is unchanged.

— On an External debug reset, this field resets to 0.

— On a Warm reset, the value of this field is unchanged.

Accessing the PMITCTRL:

PMITCTRL can be accessed through the external debug interface:

RES0

31 1 0

IME

Component Offset Instance

PMU 0xF00 PMITCTRL
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7741
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register are IMPDEF.
I5-7742 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.28 PMLAR, Performance Monitors Lock Access Register

The PMLAR characteristics are:

Purpose

Allows or disallows access to the Performance Monitors registers through a memory-mapped
interface.

The optional Software Lock provides a lock to prevent memory-mapped writes to the Performance
Monitors registers. Use of this lock mechanism reduces the risk of accidental damage to the contents
of the Performance Monitors registers. It does not, and cannot, prevent all accidental or malicious
damage.

Configurations

If FEAT_DoPD is implemented, Software Lock is not implemented by the architecturally-defined
debug components of the PE in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Software uses PMLAR to set or clear the lock, and PMLSR to check the current status of the lock.

Attributes

PMLAR is a 32-bit register.

Field descriptions

When Software Lock is implemented:

KEY, bits [31:0]

Lock Access control. Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write
accesses to this component's registers through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to this component's
registers through a memory mapped interface.

Otherwise:

Otherwise

Bits [31:0]

Reserved, RES0.

Accessing the PMLAR:

PMLAR can be accessed through its memory-mapped interface:

KEY

31 0

RES0

31 0

Component Offset Instance

PMU 0xFB0 PMLAR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7743
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are WO.

• Otherwise accesses to this register generate an error response.
I5-7744 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.29 PMLSR, Performance Monitors Lock Status Register

The PMLSR characteristics are:

Purpose

Indicates the current status of the software lock for Performance Monitors registers.

The optional Software Lock provides a lock to prevent memory-mapped writes to the Performance
Monitors registers. Use of this lock mechanism reduces the risk of accidental damage to the contents
of the Performance Monitors registers. It does not, and cannot, prevent all accidental or malicious
damage.

Configurations

If FEAT_DoPD is implemented, Software Lock is not implemented by the architecturally-defined
debug components of the PE in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Software uses PMLAR to set or clear the lock, and PMLSR to check the current status of the lock.

Attributes

PMLSR is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

Not thirty-two bit access required. RAZ.

SLK, bit [1]

When Software Lock is implemented and FEAT_DoPD is not implemented:

SLK

Software Lock status for this component. For an access to LSR that is not a memory-mapped access,
or when Software Lock is not implemented, this field is RES0.

For memory-mapped accesses when Software Lock is implemented, possible values of this field
are:

0b0 Lock clear. Writes are permitted to this component's registers.

0b1 Lock set. Writes to this component's registers are ignored, and reads have no side
effects.

The reset behavior of this field is:

• On an External debug reset, this field resets to 1.

Otherwise:

Reserved, RAZ.

RES0

31 3 2 1 0

nTT SLI
SLK
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7745
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
SLI, bit [0]

Software Lock implemented. For an access to LSR that is not a memory-mapped access, this field
is RAZ. For memory-mapped accesses, the value of this field is IMPLEMENTATION DEFINED.
Permitted values are:

0b0 Software Lock not implemented or not memory-mapped access.

0b1 Software Lock implemented and memory-mapped access.

Accessing the PMLSR:

PMLSR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0xFB4 PMLSR
I5-7746 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.30 PMMIR, Performance Monitors Machine Identification Register

The PMMIR characteristics are:

Purpose

Describes Performance Monitors parameters specific to the implementation.

Configurations

PMMIR is in the Core power domain.

This register is present only when FEAT_PMUv3p4 is implemented. Otherwise, direct accesses to
PMMIR are RES0.

Attributes

PMMIR is a 32-bit register.

Field descriptions

Bits [31:20]

Reserved, RES0.

BUS_WIDTH, bits [19:16]

Bus width. Indicates the number of bytes each BUS_ACCESS event relates to. Encoded as
Log2(number of bytes), plus one. Defined values are:

0b0000 The information is not available.

0b0011 Four bytes.

0b0100 8 bytes.

0b0101 16 bytes.

0b0110 32 bytes.

0b0111 64 bytes.

0b1000 128 bytes.

0b1001 256 bytes.

0b1010 512 bytes.

0b1011 1024 bytes.

0b1100 2048 bytes.

All other values are reserved.

Each transfer is up to this number of bytes. An access might be smaller than the bus width.

When this field is nonzero, each access counted by BUS_ACCESS is at most BUS_WIDTH bytes.
An implementation might treat a wide bus as multiple narrower buses, such that a wide access on
the bus increments the BUS_ACCESS counter by more than one.

BUS_SLOTS, bits [15:8]

Bus count. The largest value by which the BUS_ACCESS event might increment in a single
BUS_CYCLES cycle.

When this field is nonzero, the largest value by which the BUS_ACCESS event might increment in
a single BUS_CYCLES cycle is BUS_SLOTS.

RES0

31 20 19 16

BUS_SLOTS

15 8

SLOTS

7 0

BUS_WIDTH
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7747
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
SLOTS, bits [7:0]

Operation width. The largest value by which the STALL_SLOT event might increment by in a
single cycle. If the STALL_SLOT event is implemented, this field must not be zero.

Accessing the PMMIR:

If the Core power domain is off or in a low-power state, access on this interface returns an Error.

PMMIR can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsCorePowered(), or DoubleLockStatus(), or OSLockStatus() or !AllowExternalPMUAccess()
accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

PMU 0xE40 PMMIR
I5-7748 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.31 PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear register

The PMOVSCLR_EL0 characteristics are:

Purpose

Contains the state of the overflow bit for the Cycle Count Register, PMCCNTR_EL0, and each of
the implemented event counters PMEVCNTR<n>. Writing to this register clears these bits.

Configurations

External register PMOVSCLR_EL0 bits [31:0] are architecturally mapped to AArch64 System
register PMOVSCLR_EL0[31:0].

External register PMOVSCLR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMOVSR[31:0].

PMOVSCLR_EL0 is in the Core power domain.

Attributes

PMOVSCLR_EL0 is a 32-bit register.

Field descriptions

C, bit [31]

Cycle counter overflow clear bit.

0b0 When read, means the cycle counter has not overflowed since this bit was last cleared.
When written, has no effect.

0b1 When read, means the cycle counter has overflowed since this bit was last cleared.
When written, clears the cycle counter overflow bit to 0.

PMCR_EL0.LC controls whether an overflow is detected from unsigned overflow of
PMCCNTR_EL0[31:0] or unsigned overflow of PMCCNTR_EL0[63:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 30 to 0

Event counter overflow clear bit for PMEVCNTR<n>_EL0.

If PMCFGR.N is less than 31, bits [30:PMCFGR.N] are RAZ/WI.

0b0 When read, means that PMEVCNTR<n>_EL0 has not overflowed since this bit was last
cleared. When written, has no effect.

0b1 When read, means that PMEVCNTR<n>_EL0 has overflowed since this bit was last
cleared. When written, clears the PMEVCNTR<n>_EL0 overflow bit to 0.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7749
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP and PMCR_EL0.LP control whether an
overflow is detected from unsigned overflow of PMEVCNTR<n>_EL0[31:0] or unsigned overflow
of PMEVCNTR<n>_EL0[63:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMOVSCLR_EL0:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMOVSCLR_EL0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0xC80 PMOVSCLR_EL0
I5-7750 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.32 PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register

The PMOVSSET_EL0 characteristics are:

Purpose

Sets the state of the overflow bit for the Cycle Count Register, PMCCNTR_EL0, and each of the
implemented event counters PMEVCNTR<n>.

Configurations

External register PMOVSSET_EL0 bits [31:0] are architecturally mapped to AArch64 System
register PMOVSSET_EL0[31:0].

External register PMOVSSET_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMOVSSET[31:0].

PMOVSSET_EL0 is in the Core power domain.

Attributes

PMOVSSET_EL0 is a 32-bit register.

Field descriptions

C, bit [31]

Cycle counter overflow set bit.

0b0 When read, means the cycle counter has not overflowed since this bit was last cleared.
When written, has no effect.

0b1 When read, means the cycle counter has overflowed since this bit was last cleared.
When written, sets the cycle counter overflow bit to 1.

PMCR_EL0.LC controls whether an overflow is detected from unsigned overflow of
PMCCNTR_EL0[31:0] or unsigned overflow of PMCCNTR_EL0[63:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 30 to 0

Event counter overflow set bit for PMEVCNTR<n>_EL0.

If PMCFGR.N is less than 31, bits [30:PMCFGR.N] are RAZ/WI.

0b0 When read, means that PMEVCNTR<n>_EL0 has not overflowed since this bit was last
cleared. When written, has no effect.

0b1 When read, means that PMEVCNTR<n>_EL0 has overflowed since this bit was last
cleared. When written, sets the PMEVCNTR<n>_EL0 overflow bit to 1.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7751
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP and PMCR_EL0.LP control whether an
overflow is detected from unsigned overflow of PMEVCNTR<n>_EL0[31:0] or unsigned overflow
of PMEVCNTR<n>_EL0[63:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMOVSSET_EL0:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMOVSSET_EL0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0xCC0 PMOVSSET_EL0
I5-7752 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.33 PMPCSR, Program Counter Sample Register

The PMPCSR characteristics are:

Purpose

Holds a sampled instruction address value.

Configurations

PMPCSR is in the Core power domain.

This register is present only when FEAT_PCSRv8p2 is implemented. Otherwise, direct accesses to
PMPCSR are RES0.

Note
Before Armv8.2, the PC Sample-based Profiling Extension can be implemented in the external
debug register space, as indicated by the value of EDDEVID.PCSample.

Support for 64-bit atomic reads is IMPLEMENTATION DEFINED. If 64-bit atomic reads are
implemented, a 64-bit read of PMPCSR has the same side-effect as a 32-bit read of PMCSR[31:0]
followed by a 32-bit read of PMPCSR[63:32], returning the combined value. For example, if the PE
is in Debug state then a 64-bit atomic read returns bits[31:0] == 0xFFFFFFFF and bits[63:32]
UNKNOWN.

Attributes

PMPCSR is a 64-bit register.

Field descriptions

NS, bit [63]

Non-secure state sample. Indicates the Security state that is associated with the most recent
PMPCSR sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

0b0 Sample is from Secure state.

0b1 Sample is from Non-secure state.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

EL, bits [62:61]

Exception level status sample. Indicates the Exception level that is associated with the most recent
PMPCSR sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

0b00 Sample is from EL0.

0b01 Sample is from EL1.

0b10 Sample is from EL2.

0b11 Sample is from EL3.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

NS

63

EL

62 61

RES0

60 56

PCSample[55:32]

55 32

PCSample[31:0]

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7753
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
Bits [60:56]

Reserved, RES0.

PCSample[55:32], bits [55:32]

Bits[55:32] of the sampled instruction address value. The translation regime that PMPCSR samples
can be determined from PMPCSR.{NS,EL}.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

PCSample[31:0], bits [31:0]

Bits[31:0] of the sampled instruction address value.

PMPCSR[31:0] reads as 0xFFFFFFFF when any of the following are true:

• The PE is in Debug state.

• PC Sample-based profiling is prohibited.

If an instruction has retired since the PE left Reset state, then the first read of PMPCSR[31:0] is
permitted but not required to return 0xFFFFFFFF.

PMPCSR[31:0] reads as an UNKNOWN value when any of the following are true:

• The PE is in Reset state.

• No instruction has retired since the PE left Reset state, Debug state, or a state where PC
Sample-based Profiling is prohibited.

• No instruction has retired since the last read of PMPCSR[31:0].

For the cases where a read of PMPCSR[31:0] returns 0xFFFFFFFF or an UNKNOWN value, the read
has the side-effect of setting PMPCSR[63:32], PMCID1SR, PMCID2SR, and PMVIDSR to
UNKNOWN values.

Otherwise, a read of PMPCSR[31:0] returns bits [31:0] of the sampled instruction address value and
has the side-effect of indirectly writing to PMPCSR[63:32], PMCID1SR, PMCID2SR, and
PMVIDSR. The translation regime that PMPCSR samples can be determined from
PMPCSR.{NS,EL}.

For a read of PMPCSR[31:0] from the memory-mapped interface, if PMLSR.SLK == 1, meaning
the OPTIONAL Software Lock is locked, then the side-effect of the access does not occur and
PMPCSR[63:32], PMCID1SR, PMCID2SR, and PMVIDSR are unchanged.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMPCSR:

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see
Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN on page H7-7458.

PMPCSR[31:0] can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to PMPCSR[31:0] are RO.

• Otherwise accesses to PMPCSR[31:0] generate an error response.

Component Offset Instance Range

PMU 0x200 PMPCSR 31:0
I5-7754 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
PMPCSR[31:0] can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to PMPCSR[31:0] are RO.

• Otherwise accesses to PMPCSR[31:0] generate an error response.

PMPCSR[63:32] can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to PMPCSR[63:32] are RO.

• Otherwise accesses to PMPCSR[63:32] generate an error response.

PMPCSR[63:32] can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to PMPCSR[63:32] are RO.

• Otherwise accesses to PMPCSR[63:32] generate an error response.

Component Offset Instance Range

PMU 0x220 PMPCSR 31:0

Component Offset Instance Range

PMU 0x204 PMPCSR 63:32

Component Offset Instance Range

PMU 0x224 PMPCSR 63:32
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7755
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.34 PMPIDR0, Performance Monitors Peripheral Identification Register 0

The PMPIDR0 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMPIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, least significant byte.

Accessing the PMPIDR0:

PMPIDR0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 8

PART_0

7 0

Component Offset Instance

PMU 0xFE0 PMPIDR0
I5-7756 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.35 PMPIDR1, Performance Monitors Peripheral Identification Register 1

The PMPIDR1 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMPIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, least significant nibble of JEP106 ID code. For Arm Limited, this field is 0b1011.

PART_1, bits [3:0]

Part number, most significant nibble.

Accessing the PMPIDR1:

PMPIDR1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 8

DES_0

7 4

PART_1

3 0

Component Offset Instance

PMU 0xFE4 PMPIDR1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7757
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.36 PMPIDR2, Performance Monitors Peripheral Identification Register 2

The PMPIDR2 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMPIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Part major revision. Parts can also use this field to extend Part number to 16-bits.

JEDEC, bit [3]

RAO. Indicates a JEP106 identity code is used.

DES_1, bits [2:0]

Designer, most significant bits of JEP106 ID code. For Arm Limited, this field is 0b011.

Accessing the PMPIDR2:

PMPIDR2 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 8

REVISION

7 4 3

DES_1

2 0

JEDEC

Component Offset Instance

PMU 0xFE8 PMPIDR2
I5-7758 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.37 PMPIDR3, Performance Monitors Peripheral Identification Register 3

The PMPIDR3 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMPIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Part minor revision. Parts using PMPIDR2.REVISION as an extension to the Part number must use
this field as a major revision number.

CMOD, bits [3:0]

Customer modified. Indicates someone other than the Designer has modified the component.

Accessing the PMPIDR3:

PMPIDR3 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 8

REVAND

7 4

CMOD

3 0

Component Offset Instance

PMU 0xFEC PMPIDR3
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7759
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.38 PMPIDR4, Performance Monitors Peripheral Identification Register 4

The PMPIDR4 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMPIDR4 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component. RAZ. Log2 of the number of 4KB pages from the start of the component to
the end of the component ID registers.

DES_2, bits [3:0]

Designer, JEP106 continuation code, least significant nibble. For Arm Limited, this field is 0b0100.

Accessing the PMPIDR4:

PMPIDR4 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

RES0

31 8

SIZE

7 4

DES_2

3 0

Component Offset Instance

PMU 0xFD0 PMPIDR4
I5-7760 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.39 PMSWINC_EL0, Performance Monitors Software Increment register

The PMSWINC_EL0 characteristics are:

Purpose

Increments a counter that is configured to count the Software increment event, event 0x00. For more
information, see SW_INCR.

Configurations

External register PMSWINC_EL0 bits [31:0] are architecturally mapped to AArch64 System
register PMSWINC_EL0[31:0].

External register PMSWINC_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMSWINC[31:0].

PMSWINC_EL0 is in the Core power domain.

Implementation of this register is OPTIONAL.

If this register is implemented, use of it is deprecated.

If 1 is written to bit [n] from the external debug interface, it is CONSTRAINED UNPREDICTABLE
whether or not a SW_INCR event is created for counter n. This is consistent with not implementing
the register in the external debug interface.

Attributes

PMSWINC_EL0 is a 32-bit register.

Field descriptions

Bit [31]

Reserved, RES0.

P<n>, bit [n], for n = 30 to 0

Event counter software increment bit for PMEVCNTR<n>_EL0.

If PMCFGR.N is less than 31, bits [30:PMCFGR.N] are WI.

0b0 No action. The write to this bit is ignored.

0b1 It is CONSTRAINED UNPREDICTABLE whether a SW_INCR event is generated for event
counter n.

Accessing the PMSWINC_EL0:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

RES0
P30

P29
P28

P27
P26

P25
P24

P23
P22

P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7761
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
PMSWINC_EL0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are WI.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are WO.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0xCA0 PMSWINC_EL0
I5-7762 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
I5.3.40 PMVIDSR, VMID Sample Register

The PMVIDSR characteristics are:

Purpose

Contains the sampled VMID value that is captured on reading PMPCSR[31:0].

Configurations

PMVIDSR is in the Core power domain.

This register is present only when FEAT_PCSRv8p2 is implemented and EL2 is implemented.
Otherwise, direct accesses to PMVIDSR are RES0.

Note
Before Armv8.2, the PC Sample-based Profiling Extension can be implemented in the external
debug register space, as indicated by the value of EDDEVID.PCSample.

Attributes

PMVIDSR is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

VMID[15:8], bits [15:8]

When FEAT_VMID16 is implemented:

VMID[15:8]

Extension to VMID[7:0]. For more information, see VMID[7:0].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID, bits [7:0]

VMID sample. The VMID associated with the most recent PMPCSR sample. When the most recent
PMPCSR sample was generated:

• This field is set to an UNKNOWN value if any of the following apply:

— EL2 is disabled in the current Security state.

— The PE is executing at EL2.

— EL2 is enabled in the current Security state, the PE is executing at EL0, EL2 is using
AArch64, HCR_EL2.E2H == 1, and HCR_EL2.TGE == 1.

• Otherwise:

— If EL2 is using AArch64 and either FEAT_VMID16 is not implemented or
VTCR_EL2.VS is 1, this field is set to VTTBR_EL2.VMID.

RES0

31 16

VMID[15:8]

15 8

VMID

7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7763
ID072021 Non-Confidential

External System Control Register Descriptions
I5.3 Performance Monitors external register descriptions
— If EL2 is using AArch64, FEAT_VMID16 is implemented, and VTCR_EL2.VS is 0,
PMVIDSR.VMID[7:0] is set to VTTBR_EL2.VMID[7:0] and
PMVIDSR.VMID[15:8] is RES0.

— If EL2 is using AArch32, this field is set to VTTBR.VMID.

Because the value written to PMVIDR is an indirect read of the VMID value, it is CONSTRAINED
UNPREDICTABLE whether PMVIDSR is set to the original or new value if PMPCSR samples:

• An instruction that writes to the VMID value.

• The next Context synchronization event.

• Any instruction executed between these two instructions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMVIDSR:

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see
Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN on page H7-7458.

PMVIDSR can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0x20C PMVIDSR
I5-7764 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.4 External Activity Monitors Extension registers summary
I5.4 External Activity Monitors Extension registers summary

The memory-mapped interface to the Activity Monitors Extension registers provides read-only access to:

• Read-only copies of the Activity Monitors Extension System registers, with the exception of AMUSERENR.

• An implementation identification register, AMIIDR.

• If they are implemented, the OPTIONAL Activity Monitors CoreSight and ID registers.

The locations of the registers are defined as offsets from a base address. The base address of the memory-mapped
view must be aligned to a 4KB boundary, but is otherwise IMPLEMENTATION DEFINED. Activity Monitors external
register views on page I5-7765 defines this memory map.

I5.4.1 Activity Monitors external register views

Table I5-2 on page I5-7765 shows the external view of the Activity Monitors registers. All implemented registers
are RO. Offsets within the 4KB region not defined in this table are RAZ/WI.

Each entry in the Name column links to the register description in Activity Monitors external register descriptions
on page I5-7767, and:

• If the System register? on page I5-7686 column of the table shows that the register is a System register, the
memory-mapped interface provides a view of the System register described in:

— Activity Monitors registers on page D13-4001, for the AArch64 System register.

— Activity Monitors registers on page G8-7155, for the AArch32 System register.

• Otherwise, the register is accessible only using the external memory-mapped interface.

Table I5-2 Activity Monitors external register views

Name Description System register? Offset

AMEVCNTR0<n>[31:0]

AMEVCNTR0<n>[63:32]

Activity Monitor Event Counter registers 0 Yes 0x000+8n

0x004+8n

AMEVCNTR1<n>[31:0]

AMEVCNTR1<n>[63:32]

Activity Monitor Event Counter registers 1 Yes 0x100+8n

0x104+8n

AMEVTYPER0<n> Activity Monitor Event Type registers 0 Yes 0x400+4n

AMEVTYPER1<n> Activity Monitor Event Type registers 1 Yes 0x480+4n

AMCNTENSET0 Activity Monitors Counter Enable Set register 0 Yes 0xC00

AMCNTENSET1 Activity Monitors Counter Enable Set register 1 Yes 0xC04

AMCNTENCLR0 Activity Monitors Counter Enable Clear register 0 Yes 0xC20

AMCNTENCLR1 Activity Monitors Counter Enable Clear register 1 Yes 0xC24

AMCGCR Activity Monitors Counter Group Configuration Register Yes 0xCE0

AMCFGR Activity Monitors Configuration Register Yes 0xE00

AMCR Activity Monitors Control Register Yes 0xE04

AMIIDR Activity Monitors Implementation Identification Register No 0xE08

AMDEVAFF0a Device Affinity registers No 0xFA8

AMDEVAFF1a No 0xFAC

AMDEVARCHa Device Architecture register No 0xFBC

AMDEVTYPEa Device Type register No 0xFCC
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7765
ID072021 Non-Confidential

External System Control Register Descriptions
I5.4 External Activity Monitors Extension registers summary
AMPIDR4a Peripheral ID registers No 0xFD0

AMPIDR0a No 0xFE0

AMPIDR1a No 0xFE4

AMPIDR2a No 0xFE8

AMPIDR3a No 0xFEC

AMCIDR0a Component ID registers No 0xFF0

AMCIDR1a No 0xFF4

AMCIDR2a No 0xFF8

AMCIDR3a No 0xFFC

a. CoreSight interface registers, see Management registers and CoreSight compliance on page K2-8432.

Table I5-2 Activity Monitors external register views (continued)

Name Description System register? Offset
I5-7766 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5 Activity Monitors external register descriptions

This section lists the external Activity Monitors registers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7767
ID072021 Non-Confidential

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.1 AMCFGR, Activity Monitors Configuration Register

The AMCFGR characteristics are:

Purpose

Global configuration register for the activity monitors.

Provides information on supported features, the number of counter groups implemented, the total
number of activity monitor event counters implemented, and the size of the counters. AMCFGR is
applicable to both the architected and the auxiliary counter groups.

Configurations

External register AMCFGR bits [31:0] are architecturally mapped to AArch64 System register
AMCFGR_EL0[31:0].

External register AMCFGR bits [31:0] are architecturally mapped to AArch32 System register
AMCFGR[31:0].

The power domain of AMCFGR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCFGR are RES0.

Attributes

AMCFGR is a 32-bit register.

Field descriptions

NCG, bits [31:28]

Defines the number of counter groups.

The number of implemented counter groups is [AMCFGR.NCG + 1].

If the number of implemented auxiliary activity monitor event counters is zero, this field has a value
of 0b0000. Otherwise, this field has a value of 0b0001.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [27:25]

Reserved, RES0.

HDBG, bit [24]

Halt-on-debug supported.

This feature must be supported, and so this bit is 0b1.

0b0 AMCR.HDBG is RES0.

0b1 AMCR.HDBG is read/write.

Access to this field is RO.

Bits [23:14]

Reserved, RAZ.

SIZE, bits [13:8]

Defines the size of activity monitor event counters.

NCG

31 28

RES0

27 25 24

RAZ

23 14

1 1 1 1 1 1

13 8

N

7 0

HDBG SIZE
I5-7768 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
The size of the activity monitor event counters implemented by the Activity Monitors Extension is
[AMCFGR.SIZE + 1].

The counters are 64-bit.

Note
Software also uses this field to determine the spacing of counters in the memory-map. The counters
are at doubleword-aligned addresses.

Reads as 0b111111.

Access to this field is RO.

N, bits [7:0]

Defines the number of activity monitor event counters.

The total number of counters implemented in all groups by the Activity Monitors Extension is
[AMCFGR.N + 1].

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the AMCFGR:

AMCFGR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Offset Instance

AMU 0xE00 AMCFGR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7769
ID072021 Non-Confidential

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.2 AMCGCR, Activity Monitors Counter Group Configuration Register

The AMCGCR characteristics are:

Purpose

Provides information on the number of activity monitor event counters implemented within each
counter group.

Configurations

External register AMCGCR bits [31:0] are architecturally mapped to AArch64 System register
AMCGCR_EL0[31:0].

External register AMCGCR bits [31:0] are architecturally mapped to AArch32 System register
AMCGCR[31:0].

The power domain of AMCGCR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCGCR are RES0.

Attributes

AMCGCR is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

CG1NC, bits [15:8]

Counter Group 1 Number of Counters. The number of counters in the auxiliary counter group.

In an implementation that includes FEAT_AMUv1, the permitted range of values is 0 to 16.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CG0NC, bits [7:0]

Counter Group 0 Number of Counters. The number of counters in the architected counter group.

Reads as 0x04.

Access to this field is RO.

Accessing the AMCGCR:

AMCGCR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 16

CG1NC

15 8

100

7 0

CG0NC

Component Offset Instance

AMU 0xCE0 AMCGCR
I5-7770 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.3 AMCIDR0, Activity Monitors Component Identification Register 0

The AMCIDR0 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see About the Component Identification scheme on page K2-8443.

Configurations

The power domain of AMCIDR0 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMCIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble.

Reads as 0x0D.

Access to this field is RO.

Accessing the AMCIDR0:

AMCIDR0 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

1101

7 0

PRMBL_0

Component Offset Instance

AMU 0xFF0 AMCIDR0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7771
ID072021 Non-Confidential

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.4 AMCIDR1, Activity Monitors Component Identification Register 1

The AMCIDR1 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see About the Component Identification scheme on page K2-8443.

Configurations

The power domain of AMCIDR1 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMCIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

0b1001 CoreSight component.

Other values are defined by the CoreSight Architecture.

This field reads as 0x9.

PRMBL_1, bits [3:0]

Preamble.

Reads as 0b0000.

Access to this field is RO.

Accessing the AMCIDR1:

AMCIDR1 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

CLASS

7 4

0

3 0

PRMBL_1

Component Offset Instance

AMU 0xFF4 AMCIDR1
I5-7772 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.5 AMCIDR2, Activity Monitors Component Identification Register 2

The AMCIDR2 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see About the Component Identification scheme on page K2-8443.

Configurations

The power domain of AMCIDR2 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMCIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble.

Reads as 0x05.

Access to this field is RO.

Accessing the AMCIDR2:

AMCIDR2 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

101

7 0

PRMBL_2

Component Offset Instance

AMU 0xFF8 AMCIDR2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7773
ID072021 Non-Confidential

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.6 AMCIDR3, Activity Monitors Component Identification Register 3

The AMCIDR3 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see About the Component Identification scheme on page K2-8443.

Configurations

The power domain of AMCIDR3 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMCIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble.

Reads as 0xB1.

Access to this field is RO.

Accessing the AMCIDR3:

AMCIDR3 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

1 0 1 1 0 0 0 1

7 0

PRMBL_3

Component Offset Instance

AMU 0xFFC AMCIDR3
I5-7774 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.7 AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0

The AMCNTENCLR0 characteristics are:

Purpose

Disable control bits for the architected activity monitors event counters, AMEVCNTR0<n>.

Configurations

External register AMCNTENCLR0 bits [31:0] are architecturally mapped to AArch64 System
register AMCNTENCLR0_EL0[31:0].

External register AMCNTENCLR0 bits [31:0] are architecturally mapped to AArch32 System
register AMCNTENCLR0[31:0].

The power domain of AMCNTENCLR0 is IMPLEMENTATION DEFINED.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENCLR0 are RES0.

Attributes

AMCNTENCLR0 is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

Bits [15:4]

Reserved, RAZ/WI.

This field is reserved for additional architected activity monitor event counters, which Arm might
define in a future version of the Activity Monitors architecture.

P<n>, bit [n], for n = 3 to 0

Activity monitor event counter disable bit for AMEVCNTR0<n>.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters. In an
implementation that includes FEAT_AMUv1, the number of architected activity monitor event
counters is 4.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR0<n> is disabled.

0b1 When read, means that AMEVCNTR0<n> is enabled.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

RES0

31 16

RAZ/WI

15 4

P3

3

P2

2

P1

1

P0

0

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7775
ID072021 Non-Confidential

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
Accessing the AMCNTENCLR0:

AMCNTENCLR0 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Offset Instance

AMU 0xC20 AMCNTENCLR0
I5-7776 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.8 AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1

The AMCNTENCLR1 characteristics are:

Purpose

Disable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>.

Configurations

External register AMCNTENCLR1 bits [31:0] are architecturally mapped to AArch64 System
register AMCNTENCLR1_EL0[31:0].

External register AMCNTENCLR1 bits [31:0] are architecturally mapped to AArch32 System
register AMCNTENCLR1[31:0].

The power domain of AMCNTENCLR1 is IMPLEMENTATION DEFINED.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENCLR1 are RES0.

Attributes

AMCNTENCLR1 is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

P<n>, bit [n], for n = 15 to 0

Activity monitor event counter disable bit for AMEVCNTR1<n>.

When N is less than 16, bits [15:N] are RAZ, where N is the value in AMCGCR.CG1NC.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR1<n> is disabled.

0b1 When read, means that AMEVCNTR1<n> is enabled.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing the AMCNTENCLR1:

If the number of auxiliary activity monitor event counters implemented is zero, reads of AMCNTENCLR1 are RAZ.
Software must treat reserved accesses as RES0. See Access requirements for reserved and unallocated registers on
page I1-7660.

Note

The number of auxiliary activity monitor event counters implemented is zero exactly when AMCFGR.NCG ==
0b0000.

RES0

31 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P15
P14

P13

P10
P11

P12
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7777
ID072021 Non-Confidential

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
AMCNTENCLR1 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Offset Instance

AMU 0xC24 AMCNTENCLR1
I5-7778 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.9 AMCNTENSET0, Activity Monitors Count Enable Set Register 0

The AMCNTENSET0 characteristics are:

Purpose

Enable control bits for the architected activity monitors event counters, AMEVCNTR0<n>.

Configurations

External register AMCNTENSET0 bits [31:0] are architecturally mapped to AArch64 System
register AMCNTENSET0_EL0[31:0].

External register AMCNTENSET0 bits [31:0] are architecturally mapped to AArch32 System
register AMCNTENSET0[31:0].

The power domain of AMCNTENSET0 is IMPLEMENTATION DEFINED.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENSET0 are RES0.

Attributes

AMCNTENSET0 is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

Bits [15:4]

Reserved, RAZ/WI.

This field is reserved for additional architected activity monitor event counters, which Arm might
define in a future version of the Activity Monitors architecture.

P<n>, bit [n], for n = 3 to 0

Activity monitor event counter enable bit for AMEVCNTR0<n>.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters. In an
implementation that includes FEAT_AMUv1, the number of architected activity monitor event
counters is 4.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR0<n> is disabled.

0b1 When read, means that AMEVCNTR0<n> is enabled.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

RES0

31 16

RAZ/WI

15 4

P3

3

P2

2

P1

1

P0

0

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7779
ID072021 Non-Confidential

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
Accessing the AMCNTENSET0:

AMCNTENSET0 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Offset Instance

AMU 0xC00 AMCNTENSET0
I5-7780 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.10 AMCNTENSET1, Activity Monitors Count Enable Set Register 1

The AMCNTENSET1 characteristics are:

Purpose

Enable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>.

Configurations

External register AMCNTENSET1 bits [31:0] are architecturally mapped to AArch64 System
register AMCNTENSET1_EL0[31:0].

External register AMCNTENSET1 bits [31:0] are architecturally mapped to AArch32 System
register AMCNTENSET1[31:0].

The power domain of AMCNTENSET1 is IMPLEMENTATION DEFINED.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENSET1 are RES0.

Attributes

AMCNTENSET1 is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

P<n>, bit [n], for n = 15 to 0

Activity monitor event counter enable bit for AMEVCNTR1<n>.

When N is less than 16, bits [15:N] are RAZ, where N is the value in AMCGCR.CG1NC.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR1<n> is disabled.

0b1 When read, means that AMEVCNTR1<n> is enabled.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing the AMCNTENSET1:

If the number of auxiliary activity monitor event counters implemented is zero, reads of AMCNTENSET1 are RAZ.
Software must treat reserved accesses as RES0. See Access requirements for reserved and unallocated registers on
page I1-7660.

Note

The number of auxiliary activity monitor counters implemented is zero exactly when AMCFGR.NCG == 0b0000.

RES0

31 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P15
P14

P13

P10
P11

P12
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7781
ID072021 Non-Confidential

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
AMCNTENSET1 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Offset Instance

AMU 0xC04 AMCNTENSET1
I5-7782 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.11 AMCR, Activity Monitors Control Register

The AMCR characteristics are:

Purpose

Global control register for the activity monitors implementation. AMCR is applicable to both the
architected and the auxiliary counter groups.

Configurations

External register AMCR bits [31:0] are architecturally mapped to AArch64 System register
AMCR_EL0[31:0].

External register AMCR bits [31:0] are architecturally mapped to AArch32 System register
AMCR[31:0].

The power domain of AMCR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCR are RES0.

Attributes

AMCR is a 32-bit register.

Field descriptions

Bits [31:11]

Reserved, RES0.

HDBG, bit [10]

This bit controls whether activity monitor counting is halted when the PE is halted in Debug state.

0b0 Activity monitors do not halt counting when the PE is halted in Debug state.

0b1 Activity monitors halt counting when the PE is halted in Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [9:0]

Reserved, RES0.

Accessing the AMCR:

AMCR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 11 10

RES0

9 0

HDBG

Component Offset Instance

AMU 0xE04 AMCR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7783
ID072021 Non-Confidential

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.12 AMDEVAFF0, Activity Monitors Device Affinity Register 0

The AMDEVAFF0 characteristics are:

Purpose

Copy of the low half of the PE MPIDR_EL1 register that allows a debugger to determine which PE
in a multiprocessor system the AMU component relates to.

Configurations

The power domain of AMDEVAFF0 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMDEVAFF0 is a 32-bit register.

Field descriptions

MPIDR_EL1lo, bits [31:0]

MPIDR_EL1 low half. Read-only copy of the low half of MPIDR_EL1, as seen from the highest
implemented Exception level.

Accessing the AMDEVAFF0:

AMDEVAFF0 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPIDR_EL1lo

31 0

Component Offset Instance

AMU 0xFA8 AMDEVAFF0
I5-7784 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.13 AMDEVAFF1, Activity Monitors Device Affinity Register 1

The AMDEVAFF1 characteristics are:

Purpose

Copy of the high half of the PE MPIDR_EL1 register that allows a debugger to determine which PE
in a multiprocessor system the AMU component relates to.

Configurations

The power domain of AMDEVAFF1 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMDEVAFF1 is a 32-bit register.

Field descriptions

MPIDR_EL1hi, bits [31:0]

MPIDR_EL1 high half. Read-only copy of the high half of MPIDR_EL1, as seen from the highest
implemented Exception level.

Accessing the AMDEVAFF1:

AMDEVAFF1 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPIDR_EL1hi

31 0

Component Offset Instance

AMU 0xFAC AMDEVAFF1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7785
ID072021 Non-Confidential

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.14 AMDEVARCH, Activity Monitors Device Architecture Register

The AMDEVARCH characteristics are:

Purpose

Identifies the programmers' model architecture of the AMU component.

Configurations

The power domain of AMDEVARCH is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMDEVARCH is a 32-bit register.

Field descriptions

ARCHITECT, bits [31:21]

Defines the architecture of the component. For AMU, this is Arm Limited.

Bits [31:28] are the JEP106 continuation code, 0x4.

Bits [27:21] are the JEP106 ID code, 0x3B.

Reads as 0b01000111011.

Access to this field is RO.

PRESENT, bit [20]

Indicates that the DEVARCH is present.

Reads as 0b1.

Access to this field is RO.

REVISION, bits [19:16]

Defines the architecture revision. For architectures defined by Arm this is the minor revision.

All other values are reserved.

Reads as 0b0000.

Access to this field is RO.

ARCHID, bits [15:0]

Defines this part to be an AMU component. For architectures defined by Arm this is further
subdivided.

For AMU:

• Bits [15:12] are the architecture version, 0x0.

• Bits [11:0] are the architecture part number, 0xA66.

This corresponds to AMU architecture version AMUv1.

Reads as 0x0A66.

Access to this field is RO.

1000111011

31 21

1

20

0 0 0 0

19 16

101001100110

15 0

ARCHITECT REVISION
PRESENT

ARCHID
I5-7786 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
Accessing the AMDEVARCH:

AMDEVARCH can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Offset Instance

AMU 0xFBC AMDEVARCH
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7787
ID072021 Non-Confidential

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.15 AMDEVTYPE, Activity Monitors Device Type Register

The AMDEVTYPE characteristics are:

Purpose

Indicates to a debugger that this component is part of a PE's performance monitor interface.

Configurations

The power domain of AMDEVTYPE is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMDEVTYPE is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Subtype.

Reads as 0b0001.

Access to this field is RO.

MAJOR, bits [3:0]

Major type.

Reads as 0b0110.

Access to this field is RO.

Accessing the AMDEVTYPE:

AMDEVTYPE can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

1

7 4

110

3 0

SUB MAJOR

Component Offset Instance

AMU 0xFCC AMDEVTYPE
I5-7788 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.16 AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 3

The AMEVCNTR0<n> characteristics are:

Purpose

Provides access to the architected activity monitor event counters.

Configurations

External register AMEVCNTR0<n> bits [63:0] are architecturally mapped to AArch64 System
register AMEVCNTR0<n>_EL0[63:0].

External register AMEVCNTR0<n> bits [63:0] are architecturally mapped to AArch32 System
register AMEVCNTR0<n>[63:0].

The power domain of AMEVCNTR0<n> is IMPLEMENTATION DEFINED.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVCNTR0<n> are RES0.

Attributes

AMEVCNTR0<n> is a 64-bit register.

Field descriptions

ACNT, bits [63:0]

Architected activity monitor event counter n.

Value of architected activity monitor event counter n, where n is the number of this register and is
a number from 0 to 3.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing the AMEVCNTR0<n>:

If <n> is greater than or equal to the number of architected activity monitor event counters, reads of
AMEVCNTR0<n> are RAZ. Software must treat reserved accesses as RES0. See Access requirements for reserved
and unallocated registers on page I1-7660.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters.

AMEVCNTR0<n>[31:0] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to AMEVCNTR0<n>[31:0] are RO.

ACNT

63 32

ACNT

31 0

Component Offset Instance Range

AMU 0x000 + (8 * n) AMEVCNTR0<n> 31:0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7789
ID072021 Non-Confidential

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
AMEVCNTR0<n>[63:32] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to AMEVCNTR0<n>[63:32] are RO.

Component Offset Instance Range

AMU 0x004 + (8 * n) AMEVCNTR0<n> 63:32
I5-7790 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.17 AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15

The AMEVCNTR1<n> characteristics are:

Purpose

Provides access to the auxiliary activity monitor event counters.

Configurations

External register AMEVCNTR1<n> bits [63:0] are architecturally mapped to AArch64 System
register AMEVCNTR1<n>_EL0[63:0].

External register AMEVCNTR1<n> bits [63:0] are architecturally mapped to AArch32 System
register AMEVCNTR1<n>[63:0].

The power domain of AMEVCNTR1<n> is IMPLEMENTATION DEFINED.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVCNTR1<n> are RES0.

Attributes

AMEVCNTR1<n> is a 64-bit register.

Field descriptions

ACNT, bits [63:0]

Auxiliary activity monitor event counter n.

Value of auxiliary activity monitor event counter n, where n is the number of this register and is a
number from 0 to 15.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing the AMEVCNTR1<n>:

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads of
AMEVCNTR1<n> are RAZ. Software must treat reserved accesses as RES0. See Access requirements for reserved
and unallocated registers on page I1-7660.

Note

AMCGCR.CG1NC identifies the number of auxiliary activity monitor event counters.

AMEVCNTR1<n>[31:0] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to AMEVCNTR1<n>[31:0] are RO.

ACNT

63 32

ACNT

31 0

Component Offset Instance Range

AMU 0x100 + (8 * n) AMEVCNTR1<n> 31:0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7791
ID072021 Non-Confidential

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
AMEVCNTR1<n>[63:32] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to AMEVCNTR1<n>[63:32] are RO.

Component Offset Instance Range

AMU 0x104 + (8 * n) AMEVCNTR1<n> 63:32
I5-7792 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.18 AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 3

The AMEVTYPER0<n> characteristics are:

Purpose

Provides information on the events that an architected activity monitor event counter
AMEVCNTR0<n> counts.

Configurations

External register AMEVTYPER0<n> bits [31:0] are architecturally mapped to AArch64 System
register AMEVTYPER0<n>_EL0[31:0].

External register AMEVTYPER0<n> bits [31:0] are architecturally mapped to AArch32 System
register AMEVTYPER0<n>[31:0].

The power domain of AMEVTYPER0<n> is IMPLEMENTATION DEFINED.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVTYPER0<n> are RES0.

Attributes

AMEVTYPER0<n> is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the architected activity monitor
event counter AMEVCNTR0<n>. The value of this field is architecturally mandated for each
architected counter.

The following table shows the mapping between required event numbers and the corresponding
counters:

0x0011 When n == 0:

Processor frequency cycles

0x4004 When n == 1:

Constant frequency cycles

0x0008 When n == 2:

Instructions retired

0x4005 When n == 3:

Memory stall cycles

Accessing the AMEVTYPER0<n>:

If <n> is greater than or equal to the number of architected activity monitor event counters, reads of
AMEVTYPER0<n> are RAZ. Software must treat reserved accesses as RES0. See Access requirements for reserved
and unallocated registers on page I1-7660.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters.

RES0

31 16

evtCount

15 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7793
ID072021 Non-Confidential

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
AMEVTYPER0<n> can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Offset Instance

AMU 0x400 + (4 * n) AMEVTYPER0<n>
I5-7794 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.19 AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15

The AMEVTYPER1<n> characteristics are:

Purpose

Provides information on the events that an auxiliary activity monitor event counter
AMEVCNTR1<n> counts.

Configurations

External register AMEVTYPER1<n> bits [31:0] are architecturally mapped to AArch64 System
register AMEVTYPER1<n>_EL0[31:0].

External register AMEVTYPER1<n> bits [31:0] are architecturally mapped to AArch32 System
register AMEVTYPER1<n>[31:0].

The power domain of AMEVTYPER1<n> is IMPLEMENTATION DEFINED.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVTYPER1<n> are RES0.

Attributes

AMEVTYPER1<n> is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the auxiliary activity monitor event
counter AMEVCNTR1<n>.

It is IMPLEMENTATION DEFINED what values are supported by each counter.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the AMEVTYPER1<n>:

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads of
AMEVTYPER1<n> are RAZ. Software must treat reserved accesses as RES0. See Access requirements for reserved
and unallocated registers on page I1-7660.

Note

AMCGCR.CG1NC identifies the number of auxiliary activity monitor event counters.

AMEVTYPER1<n> can be accessed through its memory-mapped interface:

RES0

31 16

evtCount

15 0

Component Offset Instance

AMU 0x480 + (4 * n) AMEVTYPER1<n>
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7795
ID072021 Non-Confidential

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
This interface is accessible as follows:

• Accesses to this register are RO.
I5-7796 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.20 AMIIDR, Activity Monitors Implementation Identification Register

The AMIIDR characteristics are:

Purpose

Defines the implementer and revisions of the AMU.

Configurations

The power domain of AMIIDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMIIDR are RES0.

Attributes

AMIIDR is a 32-bit register.

Field descriptions

ProductID, bits [31:20]

This field is an AMU part identifier.

If AMPIDR0 is implemented, AMPIDR0.PART_0 matches bits [27:20] of this field.

If AMPIDR1 is implemented, AMPIDR1.PART_1 matches bits [31:28] of this field.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Variant, bits [19:16]

This field distinguishes product variants or major revisions of the product.

If AMPIDR2 is implemented, AMPIDR2.REVISION matches AMIIDR.Variant.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [15:12]

This field distinguishes minor revisions of the product.

If AMPIDR3 is implemented, AMPIDR3.REVAND matches AMIIDR.Revision.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the AMU.

For an Arm implementation, this field reads as 0x43B.

Bits [11:8] contain the JEP106 continuation code of the implementer.

Bit 7 is RES0

Bits [6:0] contain the JEP106 identity code of the implementer.

If AMPIDR4 is implemented, AMPIDR4.DES_2 matches bits [11:8] of this field.

If AMPIDR2 is implemented, AMPIDR2.DES_1 matches bits [6:4] of this field.

If AMPIDR1 is implemented, AMPIDR1.DES_0 matches bits [3:0] of this field.

This field has an IMPLEMENTATION DEFINED value.

ProductID

31 20

Variant

19 16

Revision

15 12

Implementer

11 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7797
ID072021 Non-Confidential

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
Access to this field is RO.

Accessing the AMIIDR:

AMIIDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Offset Instance

AMU 0xE08 AMIIDR
I5-7798 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.21 AMPIDR0, Activity Monitors Peripheral Identification Register 0

The AMPIDR0 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

The power domain of AMPIDR0 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMPIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, least significant byte.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the AMPIDR0:

AMPIDR0 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

PART_0

7 0

Component Offset Instance

AMU 0xFE0 AMPIDR0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7799
ID072021 Non-Confidential

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.22 AMPIDR1, Activity Monitors Peripheral Identification Register 1

The AMPIDR1 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

The power domain of AMPIDR1 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMPIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, least significant nibble of JEP106 ID code.

For Arm Limited, this field is 0b1011.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

PART_1, bits [3:0]

Part number, most significant nibble.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the AMPIDR1:

AMPIDR1 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

DES_0

7 4

PART_1

3 0

Component Offset Instance

AMU 0xFE4 AMPIDR1
I5-7800 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.23 AMPIDR2, Activity Monitors Peripheral Identification Register 2

The AMPIDR2 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

The power domain of AMPIDR2 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMPIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Part major revision. Parts can also use this field to extend Part number to 16-bits.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

JEDEC, bit [3]

Indicates a JEP106 identity code is used.

Reads as 0b1.

Access to this field is RO.

DES_1, bits [2:0]

Designer, most significant bits of JEP106 ID code.

For Arm Limited, this field is 0b011.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the AMPIDR2:

AMPIDR2 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

REVISION

7 4

1

3

DES_1

2 0

JEDEC

Component Offset Instance

AMU 0xFE8 AMPIDR2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7801
ID072021 Non-Confidential

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.24 AMPIDR3, Activity Monitors Peripheral Identification Register 3

The AMPIDR3 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

The power domain of AMPIDR3 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMPIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Part minor revision. Parts using AMPIDR2.REVISION as an extension to the Part number must use
this field as a major revision number.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CMOD, bits [3:0]

Customer modified. Indicates someone other than the Designer has modified the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the AMPIDR3:

AMPIDR3 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

REVAND

7 4

CMOD

3 0

Component Offset Instance

AMU 0xFEC AMPIDR3
I5-7802 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.5 Activity Monitors external register descriptions
I5.5.25 AMPIDR4, Activity Monitors Peripheral Identification Register 4

The AMPIDR4 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

The power domain of AMPIDR4 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMPIDR4 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component. Log2 of the number of 4KB pages from the start of the component to the end
of the component ID registers.

Reads as 0b0000.

Access to this field is RO.

DES_2, bits [3:0]

Designer. JEP106 continuation code, least significant nibble.

For Arm Limited, this field is 0b0100.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the AMPIDR4:

AMPIDR4 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

0 0 0 0

7 4

DES_2

3 0

SIZE

Component Offset Instance

AMU 0xFD0 AMPIDR4
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7803
ID072021 Non-Confidential

External System Control Register Descriptions
I5.6 Generic Timer memory-mapped registers overview
I5.6 Generic Timer memory-mapped registers overview

The Generic Timer memory-mapped registers are implemented as multiple register frames, with each register frame
having its own base address, as follows:

• A single CNTCTLBase register frame, at base address CNTCTLBase.

• Between one and seven CNTBaseN register frames, each with its own base address CNTBaseN.

• For each CNTBaseN register frame, if required, a CNTEL0BaseN register frame, at base address
CNTEL0BaseN, that provides an EL0 view of the CNTBaseN register frame.

For more information, see:

• Memory-mapped timer components on page I2-7668.

• The CNTBaseN and CNTEL0BaseN frames on page I2-7669. This section includes the memory map of the
CNTBaseN and CNTBaseN register frames.

• The CNTCTLBase frame on page I2-7668. This section includes the memory map of the CNTCTLBase
register frame.

Note

Providing a complete set of features in a system level implementation on page K5-8468 gives an implementation
example for a system level implementation of the Generic Timer.
I5-7804 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7 Generic Timer memory-mapped register descriptions

This section describes the Generic Timer registers. Generic Timer memory-mapped registers overview on
page I5-7804 gives an overview of these registers, and includes links to their memory maps.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7805
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.1 CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7

The CNTACR<n> characteristics are:

Purpose

Provides top-level access controls for the elements of a timer frame. CNTACR<n> provides the
controls for frame CNTBaseN.

In addition to the CNTACR<n> control:

• CNTNSAR controls whether CNTACR<n> is accessible by Non-secure accesses.

• If frame CNTEL0BaseN is implemented, the CNTEL0ACR in frame CNTBaseN provides
additional control of accesses to frame CNTEL0BaseN.

Configurations

The power domain of CNTACR<n> is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

Implemented only if the value of CNTTIDR.Frame<n> is 1.

An implementation of the counters might not provide configurable access to some or all of the
features. In this case, the associated field in the CNTACR<n> register is:

• RAZ/WI if access is always denied.

• RAO/WI if access is always permitted.

Attributes

CNTACR<n> is a 32-bit register.

Field descriptions

Bits [31:6]

Reserved, RES0.

RWPT, bit [5]

Read/write access to the EL1 Physical Timer registers CNTP_CVAL, CNTP_TVAL, and
CNTP_CTL, in frame <n>. The possible values of this bit are:

0b0 No access to the EL1 Physical Timer registers in frame <n>. The registers are RES0.

0b1 Read/write access to the EL1 Physical Timer registers in frame <n>.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

RWVT, bit [4]

Read/write access to the Virtual Timer register CNTV_CVAL, CNTV_TVAL, and CNTV_CTL, in
frame <n>. The possible values of this bit are:

0b0 No access to the Virtual Timer registers in frame <n>. The registers are RES0.

0b1 Read/write access to the Virtual Timer registers in frame <n>.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

RES0

31 6 5 4 3 2 1 0

RWPT
RWVT
RVOFF

RPCT
RVCT

RFRQ
I5-7806 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
RVOFF, bit [3]

Read-only access to CNTVOFF, in frame <n>. The possible values of this bit are:

0b0 No access to CNTVOFF in frame <n>. The register is RES0.

0b1 Read-only access to CNTVOFF in frame <n>.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

RFRQ, bit [2]

Read-only access to CNTFRQ, in frame <n>. The possible values of this bit are:

0b0 No access to CNTFRQ in frame <n>. The register is RES0.

0b1 Read-only access to CNTFRQ in frame <n>.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

RVCT, bit [1]

Read-only access to CNTVCT, in frame <n>. The possible values of this bit are:

0b0 No access to CNTVCT in frame <n>. The register is RES0.

0b1 Read-only access to CNTVCT in frame <n>.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

RPCT, bit [0]

Read-only access to CNTPCT, in frame <n>. The possible values of this bit are:

0b0 No access to CNTPCT in frame <n>. The register is RES0.

0b1 Read-only access to CNTPCT in frame <n>.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTACR<n>:

In a system that recognizes two Security states:

• CNTACR<n> is always accessible by Secure accesses.

• CNTNSAR.NS<n> determines whether CNTACR<n> is accessible by Non-secure accesses.

CNTACR<n> can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Frame Offset Instance

Timer CNTCTLBase 0x040 + (4 * n) CNTACR<n>
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7807
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.2 CNTCR, Counter Control Register

The CNTCR characteristics are:

Purpose

Enables the counter, controls the counter frequency setting, and controls counter behavior during
debug.

Configurations

The power domain of CNTCR is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

Attributes

CNTCR is a 32-bit register.

Field descriptions

Bits [31:18]

Reserved, RES0.

FCREQ, bits [17:8]

Frequency change request. Indicates the number of the entry in the Frequency modes table to select.

Selecting an unimplemented entry, or an entry that contains 0, has no effect on the counter.

The maximum number of entries in the Frequency modes table is IMPLEMENTATION DEFINED up to
a maximum of 1004 entries, see The Frequency modes table on page I2-7665. An implementation
is only required to implement an FCREQ field that can hold values from 0 to the highest supported
Frequency modes table entry. Any unrequired most-significant bits of FCREQ can be implemented
as RES0.

The reset behavior of this field is:

• On a Timer reset, this field resets to 0.

Bits [7:3]

Reserved, RES0.

SCEN, bit [2]

When FEAT_CNTSC is implemented:

SCEN

Scale Enable.

0b0 Scaling is not enabled. The counter value is incremented by 0x1.0000000 for each
counter tick.

0b1 Scaling is enabled. The counter is incremented by CNTSCR.ScaleVal for each counter
tick.

The SCEN bit can only be changed when the counter is disabled, when CNTCR.EN == 0.

If the value of CNTCR.SCEN changes when CNTCR.EN == 1 then:

• The counter value becomes UNKNOWN.

• The counter value remains UNKNOWN on future ticks of the clock.

RES0

31 18

FCREQ

17 8

RES0

7 3 2 1

EN

0

SCEN HDBG
I5-7808 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
When the CNTCV register in the CNTControlBase frame of the memory mapped counter module
is written to, the accumulated fraction information is reset to zero.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HDBG, bit [1]

Halt-on-debug. Controls whether a Halt-on-debug signal halts the system counter:

0b0 System counter ignores Halt-on-debug.

0b1 Asserted Halt-on-debug signal halts system counter update.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

EN, bit [0]

Enables the counter:

0b0 System counter disabled.

0b1 System counter enabled.

The reset behavior of this field is:

• On a Timer reset, this field resets to 0.

Accessing the CNTCR:

In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes this
register, is implemented only in the Secure memory map.

CNTCR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Frame Offset Instance

Timer CNTControlBase 0x000 CNTCR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7809
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.3 CNTCV, Counter Count Value register

The CNTCV characteristics are:

Purpose

Indicates the current count value.

Configurations

The power domain of CNTCV is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

Attributes

CNTCV is a 64-bit register.

Field descriptions

CountValue, bits [63:0]

Indicates the counter value.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTCV:

A write to CNTCV must be visible in the CNTPCT register of each running processor in a finite time.

For the instance of the register in the CNTControlBase frame:

• In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, and therefore
this register instance, is implemented only in the Secure memory map.

• If the counter is enabled, the effect of writing to the register is UNKNOWN.

In an implementation that supports 64-bit atomic memory accesses, this register must be accessible using a 64-bit
atomic access.

CNTCV[63:0] can be accessed through its memory-mapped interface:

CountValue

63 32

CountValue

31 0

Frame Accessibility

CNTControlBase RW

CNTReadBase RO

Component Frame Offset Instance Range

Timer CNTControlBase 0x008 CNTCV 63:0
I5-7810 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
This interface is accessible as follows:

• Accesses to CNTCV[63:0] are RW.

CNTCV[63:0] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTCV[63:0] are RO.

Component Frame Offset Instance Range

Timer CNTReadBase 0x000 CNTCV 63:0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7811
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.4 CNTEL0ACR, Counter-timer EL0 Access Control Register

The CNTEL0ACR characteristics are:

Purpose

An implementation of CNTEL0ACR in the frame at CNTBaseN controls whether the CNTPCT,
CNTVCT, CNTFRQ, EL1 Physical Timer, and Virtual Timer registers are visible in the frame at
CNTEL0BaseN.

Configurations

The power domain of CNTEL0ACR is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

Attributes

CNTEL0ACR is a 32-bit register.

Field descriptions

Bits [31:10]

Reserved, RES0.

EL0PTEN, bit [9]

Second view read/write access control for the EL1 Physical Timer registers. This bit controls
whether the CNTP_CVAL, CNTP_TVAL, and CNTP_CTL registers in the current CNTBaseN
frame are also accessible in the corresponding CNTEL0BaseN frame. The possible values of this
bit are:

0b0 No access. Registers are RES0 in the second view.

0b1 Access permitted. If the registers are accessible in the current frame then they are
accessible in the second view.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

EL0VTEN, bit [8]

Second view read/write access control for the Virtual Timer registers. This bit controls whether the
CNTV_CVAL, CNTV_TVAL, and CNTV_CTL registers in the current CNTBaseN frame are also
accessible in the corresponding CNTEL0BaseN frame. The possible values of this bit are:

0b0 No access. Registers are RES0 in the second view.

0b1 Access permitted. If the registers are accessible in the current frame then they are
accessible in the second view.

The definition of this bit means that, if the Virtual Timer registers are not implemented in the current
CNTBaseN frame, then the Virtual Timer register addresses are RES0 in the corresponding
CNTEL0BaseN frame, regardless of the value of this bit.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

RES0

31 10 9 8

RES0

7 2 1 0

EL0PTEN
EL0VTEN

EL0PCTEN
EL0VCTEN
I5-7812 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
Bits [7:2]

Reserved, RES0.

EL0VCTEN, bit [1]

Second view read access control for CNTVCT and CNTFRQ. The possible values of this bit are:

0b0 CNTVCT is not visible in the second view.

If EL0PCTEN is set to 0, CNTFRQ is not visible in the second view.

0b1 Access permitted. If CNTVCT and CNTFRQ are visible in the current frame then they
are visible in the second view.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

EL0PCTEN, bit [0]

Second view read access control for CNTPCT and CNTFRQ. The possible values of this bit are:

0b0 CNTPCT is not visible in the second view.

If EL0VCTEN is set to 0, CNTFRQ is not visible in the second view.

0b1 Access permitted. If CNTPCT and CNTFRQ are visible in the current frame then they
are visible in the second view.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTEL0ACR:

CNTEL0ACR can be implemented in any implemented CNTBaseN frame.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I2-7671 describes
the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

If CNTEL0ACR is not implemented in an implemented CNTBaseN frame:

• The register location in that frame is RAZ/WI.

• If the corresponding CNTEL0BaseN frame is implemented, the registers CNTFRQ, CNTP_CTL,
CNTP_CVAL, CNTP_TVAL, CNTPCT, CNTV_CTL, CNTV_CVAL, CNTV_TVAL, and CNTVCT are not
visible in that frame.

CNTEL0ACR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Frame Offset Instance

Timer CNTBaseN 0x014 CNTEL0ACR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7813
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.5 CNTFID0, Counter Frequency ID

The CNTFID0 characteristics are:

Purpose

Indicates the base frequency of the system counter.

Configurations

The power domain of CNTFID0 is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

The possible frequencies for the system counter are stored in the Frequency modes table as 32-bit
words starting with the base frequency, CNTFID0. For more information, see The Frequency modes
table on page I2-7665.

The final entry in the Frequency modes table must be followed by a 32-bit word of zero value, to
mark the end of the table.

Typically, the Frequency modes table will be in read-only memory. However, a system
implementation might use read/write memory for the table, and initialize the table entries as part of
its start-up sequence.

If the Frequency modes table is in read/write memory, Arm strongly recommends that the table is
not updated once the system is running.

Attributes

CNTFID0 is a 32-bit register.

Field descriptions

Frequency, bits [31:0]

The base frequency of the system counter, in Hz.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTFID0:

It is IMPLEMENTATION DEFINED whether this register is RO or RW

In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes this
register, is implemented only in the Secure memory map.

CNTFID0 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO or RW.

Frequency

31 0

Component Frame Offset Instance

Timer CNTControlBase 0x020 CNTFID0
I5-7814 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.6 CNTFID<n>, Counter Frequency IDs, n > 0, n = 1 - 1003

The CNTFID<n> characteristics are:

Purpose

Indicates alternative system counter update frequencies.

Configurations

The power domain of CNTFID<n> is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

The possible frequencies for the system counter are stored in the Frequency modes table as 32-bit
words starting with the base frequency, CNTFID0, see The Frequency modes table on page I2-7665.

The number of CNTFID<n> registers is IMPLEMENTATION DEFINED, and the only required
CNTFID<n> register is CNTFID0.

The final entry in the Frequency modes table must be followed by a 32-bit word of zero value, to
mark the end of the table.

The architecture can support up to 1004 entries in the Frequency modes table, including the
zero-word end marker, and the number of entries is IMPLEMENTATION DEFINED up to this limit. For
an implementation that includes registers in the IMPLEMENTATION DEFINED register space
0x0C0-0x0FC, the maximum number of entries in the Frequency modes table is 40, including the
zero-word end marker.

Typically, the Frequency modes table will be in read-only memory. However, a system
implementation might use read/write memory for the table, and initialize the table entries as part of
its start-up sequence.

If the Frequency modes table is in read/write memory, Arm strongly recommends that the table is
not updated once the system is running.

Attributes

CNTFID<n> is a 32-bit register.

Field descriptions

Frequency, bits [31:0]

A system counter update frequency, in Hz. Must be an exact divisor of the base frequency. Arm
strongly recommends that all frequency values in the Frequency modes table are integer
power-of-two divisors of the base frequency.

When the system timer is operating at a lower frequency than the base frequency, the increment
applied at each counter update is given by:

increment = (base frequency) / (selected frequency)

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTFID<n>:

It is IMPLEMENTATION DEFINED whether this register is RO or RW

In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes these
registers, is implemented only in the Secure memory map.

Frequency

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7815
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
CNTFID<n> can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO or RW.

Component Frame Offset Instance

Timer CNTControlBase 0x020 + (4 * n) CNTFID<n>
I5-7816 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.7 CNTFRQ, Counter-timer Frequency

The CNTFRQ characteristics are:

Purpose

This register is provided so that software can discover the frequency of the system counter. The
instance of the register in the CNTCTLBase frame must be programmed with this value as part of
system initialization. The value of the register is not interpreted by hardware.

Configurations

The power domain of CNTFRQ is IMPLEMENTATION DEFINED.

For more information see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

Attributes

CNTFRQ is a 32-bit register.

Field descriptions

Bits [31:0]

Clock frequency. Indicates the system counter clock frequency, in Hz.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTFRQ:

CNTFRQ must be implemented as an RW register in the CNTCTLBase frame.

In a system that recognizes two Security states, the instance of the register in the CNTCTLBase frame is only
accessible by Secure accesses.

CNTFRQ can be implemented as a RO register in any implemented CNTBaseN frame, and in the corresponding
CNTEL0BaseN frame.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I2-7671 describes
the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTFRQ is accessible in that frame, as a RO register, if the value of CNTACR<n>.RFRQ is 1.

• Otherwise, the CNTFRQ address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTFRQ is accessible as a RO register in that frame if both:

— CNTFRQ is accessible in the corresponding CNTBaseN frame.

— Either the value of CNTEL0ACR.EL0VCTEN is 1 or the value of CNTEL0ACR.EL0PCTEN is 1.

Clock frequency

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7817
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
• Otherwise, the CNTFRQ address in that frame is RAZ/WI.

CNTFRQ can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

CNTFRQ can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

CNTFRQ can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Frame Offset Instance

Timer CNTBaseN 0x010 CNTFRQ

Component Frame Offset Instance

Timer CNTEL0BaseN 0x010 CNTFRQ

Component Frame Offset Instance

Timer CNTCTLBase 0x000 CNTFRQ
I5-7818 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.8 CNTID, Counter Identification Register

The CNTID characteristics are:

Purpose

Indicates whether counter scaling is implemented.

Configurations

The power domain of CNTID is IMPLEMENTATION DEFINED.

This register is present only when FEAT_CNTSC is implemented. Otherwise, direct accesses to
CNTID are RES0.

Attributes

CNTID is a 32-bit register.

Field descriptions

Bits [31:4]

Reserved, RES0.

CNTSC, bits [3:0]

Indicates whether Counter Scaling is implemented

0b0000 Counter scaling is not implemented.

0b0001 Counter scaling is implemented.

All other values are reserved.

Accessing the CNTID:

In a system that supports Secure and Non-secure memory maps, the CNTControlBase frame, that includes this
register, is implemented only in the Secure memory map.

CNTID can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 4

CNTSC

3 0

Component Frame Offset Instance

Timer CNTControlBase 0x1C CNTID
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7819
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.9 CNTNSAR, Counter-timer Non-secure Access Register

The CNTNSAR characteristics are:

Purpose

Provides the highest-level control of whether frames CNTBaseN and CNTEL0BaseN are accessible
by Non-secure accesses.

Configurations

The power domain of CNTNSAR is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

Attributes

CNTNSAR is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

NS<n>, bit [n], for n = 7 to 0

Non-secure access to frame n. The possible values of this bit are:

0b0 Secure access only. Behaves as RES0 to Non-secure accesses.

0b1 Secure and Non-secure accesses permitted.

This bit also determines whether, in the CNTCTLBase frame, CNTACR<n> and CNTVOFF<n> are
accessible to Non-secure accesses.

If frame CNTBase<n>:

• Is not implemented, then NS<n> is RES0.

• Is not Configurable access, and is accessible only by Secure accesses, then NS<n> is RES0.

• Is not Configurable access, and is accessible by both Secure and Non-secure accesses, then
NS<n> is RES1.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTNSAR:

In a system that recognizes two Security states, this register is only accessible by Secure accesses.

CNTNSAR can be accessed through its memory-mapped interface:

RES0

31 8 7 6 5 4 3 2 1 0

NS7
NS6

NS5
NS4

NS0
NS1

NS2
NS3

Component Frame Offset Instance

Timer CNTCTLBase 0x004 CNTNSAR
I5-7820 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
This interface is accessible as follows:

• Accesses to this register are RW.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7821
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.10 CNTP_CTL, Counter-timer Physical Timer Control

The CNTP_CTL characteristics are:

Purpose

Control register for the EL1 physical timer.

Configurations

The power domain of CNTP_CTL is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

Attributes

CNTP_CTL is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTP_TVAL continues to count down.

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
I5-7822 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
Note

Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTP_CTL:

CNTP_CTL can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN
frame.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I2-7671 describes
the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTP_CTL is accessible in that frame if the value of CNTACR<n>.RWPT is 1.

• Otherwise, the CNTP_CTL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTP_CTL is accessible in that frame if both:

— CNTP_CTL is accessible in the corresponding CNTBaseN frame:

— The value of CNTEL0ACR.EL0PTEN is 1.

• Otherwise, the CNTP_CTL address in that frame is RAZ/WI.

CNTP_CTL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

CNTP_CTL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Frame Offset Instance

Timer CNTBaseN 0x02C CNTP_CTL

Component Frame Offset Instance

Timer CNTEL0BaseN 0x02C CNTP_CTL
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7823
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.11 CNTP_CVAL, Counter-timer Physical Timer CompareValue

The CNTP_CVAL characteristics are:

Purpose

Holds the 64-bit compare value for the EL1 physical timer.

Configurations

The power domain of CNTP_CVAL is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

Attributes

CNTP_CVAL is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL1 physical timer CompareValue.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is
greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer.
When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.

• An interrupt is generated if CNTP_CTL.IMASK is 0.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTP_CVAL:

CNTP_CVAL can be implemented in any implemented CNTBaseN frame, and in the corresponding
CNTEL0BaseN frame.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I2-7671 describes
the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTP_CVAL is accessible in that frame if the value of CNTACR<n>.RWPT is 1.

• Otherwise, the CNTP_CVAL address in that frame is RAZ/WI.

CompareValue

63 32

CompareValue

31 0
I5-7824 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
For an implemented CNTEL0BaseN frame:

• CNTP_CVAL is accessible in that frame if both:

— CNTP_CVAL is accessible in the corresponding CNTBaseN frame:

— The value of CNTEL0ACR.EL0PTEN is 1.

• Otherwise, the CNTP_CVAL address in that frame is RAZ/WI.

If the implementation supports 64-bit atomic accesses, then the CNTP_CVAL register must be accessible as an
atomic 64-bit value.

CNTP_CVAL[31:0] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTP_CVAL[31:0] are RW.

CNTP_CVAL[31:0] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTP_CVAL[31:0] are RW.

CNTP_CVAL[63:32] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTP_CVAL[63:32] are RW.

CNTP_CVAL[63:32] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTP_CVAL[63:32] are RW.

Component Frame Offset Instance Range

Timer CNTBaseN 0x020 CNTP_CVAL 31:0

Component Frame Offset Instance Range

Timer CNTEL0BaseN 0x020 CNTP_CVAL 31:0

Component Frame Offset Instance Range

Timer CNTBaseN 0x024 CNTP_CVAL 63:32

Component Frame Offset Instance Range

Timer CNTEL0BaseN 0x024 CNTP_CVAL 63:32
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7825
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.12 CNTP_TVAL, Counter-timer Physical Timer TimerValue

The CNTP_TVAL characteristics are:

Purpose

Holds the timer value for the EL1 physical timer.

Configurations

The power domain of CNTP_TVAL is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

Attributes

CNTP_TVAL is a 32-bit register.

Field descriptions

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.

On a read of this register:

• If CNTP_CTL.ENABLE is 0, the value returned is UNKNOWN.

• If CNTP_CTL.ENABLE is 1, the value returned is (CompareValue - CNTPCT).

On a write of this register, CompareValue is set to (CNTPCT + TimerValue), where TimerValue is
treated as a signed 32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is
greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer.
When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.

• If CNTP_CTL.IMASK is 0, an interrupt is generated.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count,
so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTP_TVAL:

CNTP_TVAL can be implemented in any implemented CNTBaseN frame, and in the corresponding
CNTEL0BaseN frame.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I2-7671 describes
the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

TimerValue

31 0
I5-7826 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
For an implemented CNTBaseN frame:

• CNTP_TVAL is accessible in that frame if the value of CNTACR<n>.RWPT is 1.

• Otherwise, the CNTP_TVAL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTP_TVAL is accessible in that frame if both:

— CNTP_TVAL is accessible in the corresponding CNTBaseN frame:

— The value of CNTEL0ACR.EL0PTEN is 1.

• Otherwise, the CNTP_TVAL address in that frame is RAZ/WI.

CNTP_TVAL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

CNTP_TVAL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Frame Offset Instance

Timer CNTBaseN 0x028 CNTP_TVAL

Component Frame Offset Instance

Timer CNTEL0BaseN 0x028 CNTP_TVAL
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7827
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.13 CNTPCT, Counter-timer Physical Count

The CNTPCT characteristics are:

Purpose

Holds the 64-bit physical count value.

Configurations

The power domain of CNTPCT is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

Attributes

CNTPCT is a 64-bit register.

Field descriptions

Bits [63:0]

Physical count value.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTPCT:

CNTPCT can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN
frame, as a RO register.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I2-7671 describes
the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTPCT is accessible in that frame, as a RO register, if the value of CNTACR<n>.RPCT is 1.

• Otherwise, the CNTPCT address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTPCT is accessible in that frame if both:

— CNTPCT is accessible in the corresponding CNTBaseN frame.

— The value of CNTEL0ACR.EL0PCTEN is 1.

• Otherwise, the CNTPCT address in that frame is RAZ/WI.

Physical count value

63 32

Physical count value

31 0
I5-7828 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
If the implementation supports 64-bit atomic accesses, then the CNTPCT register must be accessible as an atomic
64-bit value.

CNTPCT[31:0] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTPCT[31:0] are RO.

CNTPCT[31:0] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTPCT[31:0] are RO.

CNTPCT[63:32] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTPCT[63:32] are RO.

CNTPCT[63:32] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTPCT[63:32] are RO.

Component Frame Offset Instance Range

Timer CNTBaseN 0x000 CNTPCT 31:0

Component Frame Offset Instance Range

Timer CNTEL0BaseN 0x000 CNTPCT 31:0

Component Frame Offset Instance Range

Timer CNTBaseN 0x004 CNTPCT 63:32

Component Frame Offset Instance Range

Timer CNTEL0BaseN 0x004 CNTPCT 63:32
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7829
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.14 CNTSCR, Counter Scale Register

The CNTSCR characteristics are:

Purpose

Enables the counter, controls the counter frequency setting, and controls counter behavior during
debug.

Configurations

The power domain of CNTSCR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_CNTSC is implemented. Otherwise, direct accesses to
CNTSCR are RES0.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

Attributes

CNTSCR is a 32-bit register.

Field descriptions

ScaleVal, bits [31:0]

Scale Value

When counter scaling is enabled, ScaleVal is the amount added to the counter value for every
counter tick.

Counter tick is defined as one period of the current operating frequency of the Generic counter.

ScaleVal is expressed as an unsigned fixed point number with an 8-bit integer value and a 24-bit
fractional value.

CNTSCR.ScaleVal can only be changed when CNTCR.EN == 0. If the value of this field is changed
when CNTCR.EN == 1:

• The counter value becomes UNKNOWN.

• The counter value remains UNKNOWN on future ticks of the clock.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTSCR:

In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes this
register, is implemented only in the Secure memory map.

CNTSCR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

ScaleVal

31 0

Component Frame Offset Instance

Timer CNTControlBase 0x10 CNTSCR
I5-7830 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.15 CNTSR, Counter Status Register

The CNTSR characteristics are:

Purpose

Provides counter frequency status information.

Configurations

The power domain of CNTSR is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

Attributes

CNTSR is a 32-bit register.

Field descriptions

FCACK, bits [31:8]

Frequency change acknowledge. Indicates the currently selected entry in the Frequency modes
table, see The Frequency modes table on page I2-7665.

The reset behavior of this field is:

• On a Timer reset, this field resets to 0.

Bits [7:2]

Reserved, RES0.

DBGH, bit [1]

Indicates whether the counter is halted because the Halt-on-debug signal is asserted:

0b0 Counter is not halted.

0b1 Counter is halted.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.

Accessing the CNTSR:

In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes this
register, is implemented only in the Secure memory map.

CNTSR can be accessed through its memory-mapped interface:

FCACK

31 8

RES0

7 2 1 0

DBGH RES0

Component Frame Offset Instance

Timer CNTControlBase 0x004 CNTSR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7831
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
This interface is accessible as follows:

• Accesses to this register are RO.
I5-7832 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.16 CNTTIDR, Counter-timer Timer ID Register

The CNTTIDR characteristics are:

Purpose

Indicates the implemented timers in the memory map, and their features. For each value of N from
0 to 7 it indicates whether:

• Frame CNTBaseN is a view of an implemented timer.

• Frame CNTBaseN has a second view, CNTEL0BaseN.

• Frame CNTBaseN has a virtual timer capability.

Configurations

The power domain of CNTTIDR is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

Attributes

CNTTIDR is a 32-bit register.

Field descriptions

Frame<n>, bits [4n+3:4n], for n = 7 to 0

A 4-bit field indicating the features of frame CNTBase<n>.

Bit[3] of the field is RES0.

Bit[2], the FEL0 subfield, indicates whether frame CNTBase<n> has a second view,
CNTEL0Base<n>. The possible values of this bit are:

If bit[0] is 0, bit[2] is RES0.

Bit[1], the FVI subfield, indicates whether both:

• Frame CNTBase<n> implements the virtual timer registers CNTV_CVAL, CNTV_TVAL,
and CNTV_CTL.

• This CNTCTLBase frame implements the virtual timer offset register CNTVOFF<n>.

The possible values of bit[1] are:

If bit[0] is 0, bit[1] is RES0.

Frame7

31 28

Frame6

27 24

Frame5

23 20

Frame4

19 16

Frame3

15 12

Frame2

11 8

Frame1

7 4

Frame0

3 0

Bit[2] Meaning

0b0 Frame<n> does not have a second view. The CNTEL0ACR register in the first view of the frame is RES0

0b1 Frame<n> has a second view, CNTEL0Base<n>.

Bit[1] Meaning

0b0 Frame<n> does not have virtual capability. The virtual time and offset registers are RES0.

0b1 Frame<n> has virtual capability. The virtual time and offset registers are implemented
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7833
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
Bit[0], the FI subfield, indicates whether frame CNTBase<n> is implemented. The possible values
of this bit are:

Accessing the CNTTIDR:

In a system that recognizes two Security states this register is accessible by both Secure and Non-secure accesses.

CNTTIDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Bit[0] Meaning

0b0 Frame<n> is not implemented. All registers associated with the frame are RES0.

0b1 Frame<n> is implemented

Component Frame Offset Instance

Timer CNTCTLBase 0x008 CNTTIDR
I5-7834 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.17 CNTV_CTL, Counter-timer Virtual Timer Control

The CNTV_CTL characteristics are:

Purpose

Control register for the virtual timer.

Configurations

The power domain of CNTV_CTL is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

Attributes

CNTV_CTL is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTV_TVAL continues to count down.

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7835
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
Note

Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTV_CTL:

CNTV_CTL can be implemented in any implemented CNTBaseN frame that has virtual timer capability, and in the
corresponding CNTEL0BaseN frame.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I2-7671 describes
the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame that has virtual timer capability:

• CNTV_CTL is accessible in that frame if the value of CNTACR<n>.RWVT is 1.

• Otherwise, the CNTV_CTL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTV_CTL is accessible in that frame if both:

— CNTV_CTL is accessible in the corresponding CNTBaseN frame:

— The value of CNTEL0ACR.EL0VTEN is 1.

• Otherwise, the CNTV_CTL address in that frame is RAZ/WI.

CNTV_CTL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

CNTV_CTL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Frame Offset Instance

Timer CNTBaseN 0x03C CNTV_CTL

Component Frame Offset Instance

Timer CNTEL0BaseN 0x03C CNTV_CTL
I5-7836 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.18 CNTV_CVAL, Counter-timer Virtual Timer CompareValue

The CNTV_CVAL characteristics are:

Purpose

Holds the 64-bit compare value for the virtual timer.

Configurations

The power domain of CNTV_CVAL is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

Attributes

CNTV_CVAL is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the virtual timer CompareValue.

When CNTV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is
greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer.
When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.

• An interrupt is generated if CNTV_CTL.IMASK is 0.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTV_CVAL:

CNTV_CVAL can be implemented in any implemented CNTBaseN frame that has virtual timer capability, and in
the corresponding CNTEL0BaseN frame.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I2-7671 describes
the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame that has virtual timer capability:

• CNTV_CVAL is accessible in that frame if the value of CNTACR<n>.RWVT is 1.

• Otherwise, the CNTV_CVAL address in that frame is RAZ/WI.

CompareValue

63 32

CompareValue

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7837
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
For an implemented CNTEL0BaseN frame:

• CNTV_CVAL is accessible in that frame if both:

— CNTV_CVAL is accessible in the corresponding CNTBaseN frame:

— The value of CNTEL0ACR.EL0VTEN is 1.

• Otherwise, the CNTV_CVAL address in that frame is RAZ/WI.

If the implementation supports 64-bit atomic accesses, then the CNTV_CVAL register must be accessible as an
atomic 64-bit value.

CNTV_CVAL[31:0] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTV_CVAL[31:0] are RW.

CNTV_CVAL[31:0] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTV_CVAL[31:0] are RW.

CNTV_CVAL[63:32] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTV_CVAL[63:32] are RW.

CNTV_CVAL[63:32] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTV_CVAL[63:32] are RW.

Component Frame Offset Instance Range

Timer CNTBaseN 0x030 CNTV_CVAL 31:0

Component Frame Offset Instance Range

Timer CNTEL0BaseN 0x030 CNTV_CVAL 31:0

Component Frame Offset Instance Range

Timer CNTBaseN 0x034 CNTV_CVAL 63:32

Component Frame Offset Instance Range

Timer CNTEL0BaseN 0x034 CNTV_CVAL 63:32
I5-7838 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.19 CNTV_TVAL, Counter-timer Virtual Timer TimerValue

The CNTV_TVAL characteristics are:

Purpose

Holds the timer value for the virtual timer.

Configurations

The power domain of CNTV_TVAL is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

Attributes

CNTV_TVAL is a 32-bit register.

Field descriptions

TimerValue, bits [31:0]

The TimerValue view of the virtual timer.

On a read of this register:

• If CNTV_CTL.ENABLE is 0, the value returned is UNKNOWN.

• If CNTV_CTL.ENABLE is 1, the value returned is (CompareValue - CNTVCT).

On a write of this register, CompareValue is set to (CNTVCT + TimerValue), where TimerValue is
treated as a signed 32-bit integer.

When CNTV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is
greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer.
When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.

• If CNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count,
so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTV_TVAL:

CNTV_TVAL can be implemented in any implemented CNTBaseN frame that has virtual timer capability, and in
the corresponding CNTEL0BaseN frame.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I2-7671 describes
the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

TimerValue

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7839
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
For an implemented CNTBaseN frame that has virtual timer capability:

• CNTV_TVAL is accessible in that frame if the value of CNTACR<n>.RWVT is 1.

• Otherwise, the CNTV_TVAL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTV_TVAL is accessible in that frame if both:

— CNTV_TVAL is accessible in the corresponding CNTBaseN frame:

— The value of CNTEL0ACR.EL0VTEN is 1.

• Otherwise, the CNTV_TVAL address in that frame is RAZ/WI.

CNTV_TVAL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

CNTV_TVAL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Frame Offset Instance

Timer CNTBaseN 0x038 CNTV_TVAL

Component Frame Offset Instance

Timer CNTEL0BaseN 0x038 CNTV_TVAL
I5-7840 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.20 CNTVCT, Counter-timer Virtual Count

The CNTVCT characteristics are:

Purpose

Holds the 64-bit virtual count value.

Configurations

The power domain of CNTVCT is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

Attributes

CNTVCT is a 64-bit register.

Field descriptions

Bits [63:0]

Virtual count value.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTVCT:

CNTVCT can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN
frame, as a RO register.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I2-7671 describes
the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTVCT is accessible in that frame, as a RO register, if the value of CNTACR<n>.RVCT is 1.

• Otherwise, the CNTVCT address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTVCT is accessible in that frame if both:

— CNTVCT is accessible in the corresponding CNTBaseN frame.

— The value of CNTEL0ACR.EL0VCTEN is 1.

• Otherwise, the CNTVCT address in that frame is RAZ/WI.

Virtual count value

63 32

Virtual count value

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7841
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
If the implementation supports 64-bit atomic accesses, then the CNTVCT register must be accessible as an atomic
64-bit value.

CNTVCT[31:0] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTVCT[31:0] are RO.

CNTVCT[31:0] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTVCT[31:0] are RO.

CNTVCT[63:32] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTVCT[63:32] are RO.

CNTVCT[63:32] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTVCT[63:32] are RO.

Component Frame Offset Instance Range

Timer CNTBaseN 0x008 CNTVCT 31:0

Component Frame Offset Instance Range

Timer CNTEL0BaseN 0x008 CNTVCT 31:0

Component Frame Offset Instance Range

Timer CNTBaseN 0x00C CNTVCT 63:32

Component Frame Offset Instance Range

Timer CNTEL0BaseN 0x00C CNTVCT 63:32
I5-7842 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.21 CNTVOFF, Counter-timer Virtual Offset

The CNTVOFF characteristics are:

Purpose

Holds the 64-bit virtual offset for a CNTBaseN frame that has virtual timer capability. This is the
offset between real time and virtual time.

Configurations

The power domain of CNTVOFF is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

Attributes

CNTVOFF is a 64-bit register.

Field descriptions

Bits [63:0]

Virtual offset.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTVOFF:

CNTVOFF is implemented, as a RO register, in any implemented CNTBaseN frame that has virtual timer capability.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I2-7671 describes
the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame that has virtual timer capability:

• CNTVOFF is accessible in that frame, as a RO register, if the value of CNTACR<n>.RVOFF is 1.

• Otherwise, the CNTVOFF address in that frame is RAZ/WI.

Note

CNTVOFF is never visible in any CNTEL0BaseN frame. This means that the CNTVOFF address in any
implemented CNTEL0BaseN frame is RAZ/WI.

In an implementation that supports 64-bit atomic accesses, a CNTVOFF{<n>} register must be accessible as an
atomic 64-bit value.

Virtual offset

63 32

Virtual offset

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7843
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
CNTVOFF[31:0] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTVOFF[31:0] are RO.

CNTVOFF[63:32] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTVOFF[63:32] are RO.

Component Frame Offset Range

Timer CNTBaseN 0x018 31:0

Component Frame Offset Range

Timer CNTBaseN 0x01C 63:32
I5-7844 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.22 CNTVOFF<n>, Counter-timer Virtual Offsets, n = 0 - 7

The CNTVOFF<n> characteristics are:

Purpose

Holds the 64-bit virtual offset for frame CNTBase<n>. This is the offset between real time and
virtual time.

Configurations

The power domain of CNTVOFF<n> is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

Attributes

CNTVOFF<n> is a 64-bit register.

Field descriptions

Bits [63:0]

Virtual offset.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTVOFF<n>:

In the CNTCTLBase frame a CNTVOFF<n> register must be implemented, as a RW register, for each CNTBaseN
frame that has virtual timer capability. For more information, see CNTCTLBase status and control fields for the
CNTBaseN and CNTEL0BaseN frames on page I2-7671.

Note

The value of <n> in an instance of CNTVOFF<n> specifies the value of N for the associated CNTBaseN frame.

In a system that recognizes two Security states, for any CNTVOFF<n> register in the CNTCTLBase frame:

• CNTVOFF<n> is always accessible by Secure accesses.

• CNTNSAR.NS<n> determines whether CNTVOFF<n> is accessible by Non-secure accesses.

The register location of any unimplemented CNTVOFF<n> register in the CNTCTLBase frame is RAZ/WI.

The CNTVOFF<n> register is accessible in the CNTBaseN frame using CNTVOFF.

In an implementation that supports 64-bit atomic accesses, then the CNTVOFF<n> registers must be accessible as
atomic 64-bit values.

Virtual offset

63 32

Virtual offset

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7845
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
CNTVOFF<n>[31:0] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTVOFF<n>[31:0] are RW.

CNTVOFF<n>[63:32] can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to CNTVOFF<n>[63:32] are RW.

Component Frame Offset Range

Timer CNTCTLBase 0x080 + (8 * n) 31:0

Component Frame Offset Range

Timer CNTCTLBase 0x084 + (8 * n) 63:32
I5-7846 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
I5.7.23 CounterID<n>, Counter ID registers, n = 0 - 11

The CounterID<n> characteristics are:

Purpose

IMPLEMENTATION DEFINED identification registers 0 to 11 for the memory-mapped Generic Timer.

Configurations

The power domain of CounterID<n> is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7663.

These registers are implemented independently in each of the implemented Generic Timer
memory-mapped frames.

If the implementation of the Counter ID registers requires an architecture version, the value for this
version of the Arm Generic Timer is version 0.

The Counter ID registers can be implemented as a set of CoreSight ID registers, comprising
Peripheral ID Registers and Component ID Registers. An implementation of these registers for the
Generic Timer must use a Component class value of 0xF.

Attributes

CounterID<n> is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the CounterID<n>:

These registers must be implemented, as RO registers, in every implemented Generic Timer memory-mapped
frame.

For the CNTCTLBase frame, in a system that recognizes two Security states these registers are accessible by both
Secure and Non-secure accesses.

For the CNTControlBase frame, in a system that supports Secure and Non-secure memory maps the frame is
implemented only in the Secure memory map, meaning these registers are implemented only in the Secure memory
map.

For the CNTBaseN frames, CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames
on page I2-7671 describes the status fields that identify whether a frame is implemented, and for an implemented
frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7847
ID072021 Non-Confidential

External System Control Register Descriptions
I5.7 Generic Timer memory-mapped register descriptions
CounterID<n> can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

CounterID<n> can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

CounterID<n> can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

CounterID<n> can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

CounterID<n> can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Frame Offset Instance

Timer CNTControlBase 0xFD0 + (4 * n) CounterID<n>

Component Frame Offset Instance

Timer CNTReadBase 0xFD0 + (4 * n) CounterID<n>

Component Frame Offset Instance

Timer CNTBaseN 0xFD0 + (4 * n) CounterID<n>

Component Frame Offset Instance

Timer CNTEL0BaseN 0xFD0 + (4 * n) CounterID<n>

Component Frame Offset Instance

Timer CNTCTLBase 0xFD0 + (4 * n) CounterID<n>
I5-7848 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8 RAS register descriptions

This section describes the RAS registers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7849
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.1 ERRCIDR0, Component Identification Register 0

The ERRCIDR0 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

Implementation of this register is OPTIONAL.

ERRCIDR0 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Component identification preamble, segment 0.

Reads as 0x0D.

Access to this field is RO.

Accessing the ERRCIDR0:

ERRCIDR0 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

1101

7 0

PRMBL_0

Component Offset Instance

RAS 0xFF0 ERRCIDR0
I5-7850 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.2 ERRCIDR1, Component Identification Register 1

The ERRCIDR1 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

Implementation of this register is OPTIONAL.

ERRCIDR1 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

0b1111 Generic peripheral with IMPLEMENTATION DEFINED register layout.

Other values are defined by the CoreSight Architecture.

This field reads as 0xF.

PRMBL_1, bits [3:0]

Component identification preamble, segment 1.

Reads as 0b0000.

Access to this field is RO.

Accessing the ERRCIDR1:

ERRCIDR1 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

CLASS

7 4

0 0 0 0

3 0

PRMBL_1

Component Offset Instance

RAS 0xFF4 ERRCIDR1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7851
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.3 ERRCIDR2, Component Identification Register 2

The ERRCIDR2 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

Implementation of this register is OPTIONAL.

ERRCIDR2 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Component identification preamble, segment 2.

Reads as 0x05.

Access to this field is RO.

Accessing the ERRCIDR2:

ERRCIDR2 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

101

7 0

PRMBL_2

Component Offset Instance

RAS 0xFF8 ERRCIDR2
I5-7852 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.4 ERRCIDR3, Component Identification Register 3

The ERRCIDR3 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

Implementation of this register is OPTIONAL.

ERRCIDR3 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Component identification preamble, segment 3.

Reads as 0xB1.

Access to this field is RO.

Accessing the ERRCIDR3:

ERRCIDR3 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

1 0 1 1 0 0 0 1

7 0

PRMBL_3

Component Offset Instance

RAS 0xFFC ERRCIDR3
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7853
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.5 ERRCRICR0, Critical Error Interrupt Configuration Register 0

The ERRCRICR0 characteristics are:

Purpose

Critical Error Interrupt configuration register.

Configurations

This register is present only when (the Critical Error Interrupt is implemented or the implementation
does not use the recommended layout for the ERRIRQCR<n> registers) and interrupt configuration
registers are implemented. Otherwise, direct accesses to ERRCRICR0 are RES0.

ERRCRICR0 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCRICR0 is a 64-bit register.

Field descriptions

When the Critical Error Interrupt is implemented and the implementation uses the recommended
layout for the ERRIRQCR<n> registers:

Bits [63:56]

Reserved, RES0.

ADDR, bits [55:2]

Message Signaled Interrupt address. (ERRCRICR0.ADDR << 2) is the address that the component
writes to when signaling the Critical Error Interrupt. Bits [1:0] of the address are always zero.

The physical address size supported by the component is IMPLEMENTATION DEFINED.
Unimplemented high-order physical address bits are RES0.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

When the implementation does not use the recommended layout for the ERRIRQCR<n> registers:

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

RES0

63 56

ADDR

55 32

ADDR

31 2

RES0

1 0

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0
I5-7854 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
Accessing the ERRCRICR0:

ERRCRICR0 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Offset Instance

RAS 0xEA0 ERRCRICR0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7855
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.6 ERRCRICR1, Critical Error Interrupt Configuration Register 1

The ERRCRICR1 characteristics are:

Purpose

Critical Error Interrupt configuration register.

Configurations

This register is present only when (the Critical Error Interrupt is implemented or the implementation
does not use the recommended layout for the ERRIRQCR<n> registers) and interrupt configuration
registers are implemented. Otherwise, direct accesses to ERRCRICR1 are RES0.

ERRCRICR1 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCRICR1 is a 32-bit register.

Field descriptions

When the Critical Error Interrupt is implemented and the implementation uses the recommended
layout for the ERRIRQCR<n> registers:

DATA, bits [31:0]

Payload for the message signaled interrupt.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

When the implementation does not use the recommended layout for the ERRIRQCR<n> registers:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ERRCRICR1:

ERRCRICR1 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

DATA

31 0

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

RAS 0xEA8 ERRCRICR1
I5-7856 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.7 ERRCRICR2, Critical Error Interrupt Configuration Register 2

The ERRCRICR2 characteristics are:

Purpose

Critical Error Interrupt control and configuration register.

Configurations

This register is present only when (the Critical Error Interrupt is implemented or the implementation
does not use the recommended layout for the ERRIRQCR<n> registers) and interrupt configuration
registers are implemented. Otherwise, direct accesses to ERRCRICR2 are RES0.

ERRCRICR2 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCRICR2 is a 32-bit register.

Field descriptions

When the Critical Error Interrupt is implemented and the implementation uses the recommended
layout for the ERRIRQCR<n> registers:

Bits [31:8]

Reserved, RES0.

IRQEN, bit [7]

When the component supports disabling message signaled interrupts:

IRQEN

Message signaled interrupt enable. Enables generation of message signaled interrupts.

0b0 Disabled.

0b1 Enabled.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Message signaled interrupt enable.

Message signaled interrupts are always enabled.

NSMSI, bit [6]

When the component supports configuring the Security attribute for message signaled interrupts and
the component does not allow Non-secure writes to ERRCRICR2:

NSMSI

Security attribute. Defines the physical address space for message signaled interrupts.

0b0 Secure.

0b1 Non-secure.

RES0

31 8 7 6

SH

5 4

MemAttr

3 0

IRQEN NSMSI
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7857
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
The reset behavior of this field is:

• On a Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.

When the component allows Non-secure writes to ERRCRICR2:

Reserved, RES0.

Security attribute. Defines the physical address space for message signaled interrupts.

The Security attribute used for message signaled interrupts is Non-secure.

Otherwise:

Reserved, RES0.

Security attribute. Defines the physical address space for message signaled interrupts.

The Security attribute for message signaled interrupts is IMPLEMENTATION DEFINED.

SH, bits [5:4]

When the component supports configuring the Shareability domain for message signaled interrupts:

SH

Shareability. Defines the Shareability domain for message signaled interrupts.

0b00 Not shared.

0b10 Outer Shareable.

0b11 Inner Shareable.

All other values are reserved.

This field is ignored when ERRCRICR2.MemAttr specifies any of the following memory types:

• Any Device memory type.

• Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always
treated as Outer Shareable.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Shareability.

The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

MemAttr, bits [3:0]

When the component supports configuring the memory type for message signaled interrupts:

MemAttr

Memory type. Defines the memory type and attributes for message signaled interrupts.

0b0000 Device-nGnRnE memory.

0b0001 Device-nGnRE memory.

0b0010 Device-nGRE memory.

0b0011 Device-GRE memory.

0b0101 Normal memory, Inner Non-cacheable, Outer Non-cacheable.

0b0110 Normal memory, Inner Write-Through, Outer Non-cacheable.

0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.
I5-7858 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
0b1001 Normal memory, Inner Non-cacheable, Outer Write-Through.

0b1010 Normal memory, Inner Write-Through, Outer Write-Through.

0b1011 Normal memory, Inner Write-Back, Outer Write-Through.

0b1101 Normal memory, Inner Non-cacheable, Outer Write-Back.

0b1110 Normal memory, Inner Write-Through, Outer Write-Back.

0b1111 Normal memory, Inner Write-Back, Outer Write-Back.

All other values are reserved.

Note

This is the same format as the VMSAv8-64 stage 2 memory region attributes.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Memory type.

The memory type used for message signaled interrupts is IMPLEMENTATION DEFINED.

When the implementation does not use the recommended layout for the ERRIRQCR<n> registers:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ERRCRICR2:

ERRCRICR2 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

RAS 0xEAC ERRCRICR2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7859
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.8 ERRDEVAFF, Device Affinity Register

The ERRDEVAFF characteristics are:

Purpose

For a group of error records that has affinity with a single PE or a group of PEs, ERRDEVAFF is a
copy of MPIDR_EL1 or part of MPIDR_EL1:

• If the group of error records has affinity with a single PE, the affinity level is 0, ERRDEVAFF
reads the same value as MPIDR_EL1, and ERRDEVAFF.F0V reads-as-one to indicate
affinity level 0.

• If the group of error records has affinity with a group of PEs, the affinity level is 1, 2, or 3,
parts of ERRDEVAFF reads the same value as parts of MPIDR_EL1, and the rest of
ERRDEVAFF indicates the level.

For example, if the group of PEs is a subset of the PEs at affinity level 1 then all of the following
are true:

• All the PEs in the group have the same values in MPIDR_EL1.{Aff3,Aff2}, and these values
are equal to ERRDEVAFF.{Aff3,Aff2}.

• ERRDEVAFF.Aff1 is nonzero and not 0x80, and ERRDEVAFF.{Aff0,F0V} read-as-zero, to
indicate at least affinity level 1. The subset of PEs at level 1 that the group of error records
has affinity with is indicated by the least-significant set bit in ERRDEVAFF.Aff1. In this
example, if ERRDEVAFF.Aff1[2:0] is 0b100, then the group of error records has affinity with
the up-to 8 PEs that have MPIDR_EL1.Aff1[7:3] == ERRDEVAFF.Aff1[7:3].

If RAS System Architecture v1.1 is not implemented, ERRDEVAFF can only describe a group of
error records that is affine with a single PE or all the PEs at an affinity level.

Configurations

This register is present only when the group of error records has affinity with a PE or cluster of PEs.
Otherwise, direct accesses to ERRDEVAFF are RES0.

ERRDEVAFF is implemented only as part of a memory-mapped group of error records.

Attributes

ERRDEVAFF is a 64-bit register.

Field descriptions

Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

PE affinity level 3. The MPIDR_EL1.Aff3 field, viewed from the highest Exception level of the
associated PE or PEs.

F0V, bit [31]

Indicates that the ERRDEVAFF.Aff0 field is valid.

0b0 ERRDEVAFF.Aff0 is not valid, and the PE affinity is above level 0 or a subset of level 0.

0b1 ERRDEVAFF.Aff0 is valid, and the PE affinity is at level 0.

RES0

63 40

Aff3

39 32

31

U

30

RES0

29 25

MT

24

Aff2

23 16

Aff1

15 8

Aff0

7 0

F0V
I5-7860 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
U, bit [30]

When ERRDEVAFF.F0V == 1:

U

Uniprocessor. The MPIDR_EL1.U field, viewed from the highest Exception level of the associated
PE.

Otherwise:

Reserved, UNKNOWN.

Bits [29:25]

Reserved, RES0.

MT, bit [24]

When ERRDEVAFF.F0V == 1:

MT

Multithreaded. The MPIDR_EL1.MT field, viewed from the highest Exception level of the
associated PE.

Otherwise:

Reserved, UNKNOWN.

Aff2, bits [23:16]

When affine with a PE or PEs at affinity level 2 or below:

Aff2

PE affinity level 2. The MPIDR_EL1.Aff2 field, viewed from the highest Exception level of the
associated PE or PEs.

When affine with a sub-set of PEs at affinity level 2:

Aff2

PE affinity level 2. Defines part of the MPIDR_EL1.Aff2 field, viewed from the highest Exception
level of the associated PEs.

0bxxxxxxx1 ERRDEVAFF.Aff2[7:1] is the value of MPIDR_EL1.Aff2[7:1], viewed from the
highest Exception level of the associated PEs.

0bxxxxxx10 ERRDEVAFF.Aff2[7:2] is the value of MPIDR_EL1.Aff2[7:2], viewed from the
highest Exception level of the associated PEs.

0bxxxxx100 ERRDEVAFF.Aff2[7:3] is the value of MPIDR_EL1.Aff2[7:3], viewed from the
highest Exception level of the associated PEs.

0bxxxx1000 ERRDEVAFF.Aff2[7:4] is the value of MPIDR_EL1.Aff2[7:4], viewed from the
highest Exception level of the associated PEs.

0bxxx10000 ERRDEVAFF.Aff2[7:5] is the value of MPIDR_EL1.Aff2[7:5], viewed from the
highest Exception level of the associated PEs.

0bxx100000 ERRDEVAFF.Aff2[7:6] is the value of MPIDR_EL1.Aff2[7:6], viewed from the
highest Exception level of the associated PEs.

0bx1000000 ERRDEVAFF.Aff2[7] is the value of MPIDR_EL1.Aff2[7], viewed from the highest
Exception level of the associated PEs.

Otherwise:

Aff2

PE affinity level 2. Indicates whether the PE affinity is at level 3.

0x80 PE affinity is at level 3.

All other values are reserved.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7861
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
Aff1, bits [15:8]

When affine with a PE or PEs at affinity level 1 or below:

Aff1

PE affinity level 1. The MPIDR_EL1.Aff1 field, viewed from the highest Exception level of the
associated PE or PEs.

When affine with a sub-set of PEs at affinity level 1:

Aff1

PE affinity level 1. Defines part of the MPIDR_EL1.Aff1 field, viewed from the highest Exception
level of the associated PEs.

0bxxxxxxx1 ERRDEVAFF.Aff1[7:1] is the value of MPIDR_EL1.Aff1[7:1], viewed from the
highest Exception level of the associated PEs.

0bxxxxxx10 ERRDEVAFF.Aff1[7:2] is the value of MPIDR_EL1.Aff1[7:2], viewed from the
highest Exception level of the associated PEs.

0bxxxxx100 ERRDEVAFF.Aff1[7:3] is the value of MPIDR_EL1.Aff1[7:3], viewed from the
highest Exception level of the associated PEs.

0bxxxx1000 ERRDEVAFF.Aff1[7:4] is the value of MPIDR_EL1.Aff1[7:4], viewed from the
highest Exception level of the associated PEs.

0bxxx10000 ERRDEVAFF.Aff1[7:5] is the value of MPIDR_EL1.Aff1[7:5], viewed from the
highest Exception level of the associated PEs.

0bxx100000 ERRDEVAFF.Aff1[7:6] is the value of MPIDR_EL1.Aff1[7:6], viewed from the
highest Exception level of the associated PEs.

0bx1000000 ERRDEVAFF.Aff1[7] is the value of MPIDR_EL1.Aff1[7], viewed from the highest
Exception level of the associated PEs.

Otherwise:

Aff1

PE affinity level 1. Indicates whether the PE affinity is at level 2.

0x00 PE affinity is above level 2 or a subset of level 2.

0x80 PE affinity is at level 2.

Aff0, bits [7:0]

When affine with a PE at affinity level 0:

Aff0

PE affinity level 0. The MPIDR_EL1.Aff0 field, viewed from the highest Exception level of the
associated PE.

When affine with a sub-set of PEs at affinity level 0:

Aff0

PE affinity level 0. Defines part of the MPIDR_EL1.Aff0 field, viewed from the highest Exception
level of the associated PEs.

0bxxxxxxx1 ERRDEVAFF.Aff0[7:1] is the value of MPIDR_EL1.Aff0[7:1], viewed from the
highest Exception level of the associated PEs.

0bxxxxxx10 ERRDEVAFF.Aff0[7:2] is the value of MPIDR_EL1.Aff0[7:2], viewed from the
highest Exception level of the associated PEs.

0bxxxxx100 ERRDEVAFF.Aff0[7:3] is the value of MPIDR_EL1.Aff0[7:3], viewed from the
highest Exception level of the associated PEs.

0bxxxx1000 ERRDEVAFF.Aff0[7:4] is the value of MPIDR_EL1.Aff0[7:4], viewed from the
highest Exception level of the associated PEs.

0bxxx10000 ERRDEVAFF.Aff0[7:5] is the value of MPIDR_EL1.Aff0[7:5], viewed from the
highest Exception level of the associated PEs.
I5-7862 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
0bxx100000 ERRDEVAFF.Aff0[7:6] is the value of MPIDR_EL1.Aff0[7:6], viewed from the
highest Exception level of the associated PEs.

0bx1000000 ERRDEVAFF.Aff0[7] is the value of MPIDR_EL1.Aff0[7], viewed from the highest
Exception level of the associated PEs.

Otherwise:

Aff0

PE affinity level 0. Indicates whether the PE affinity is at level 1.

0x00 PE affinity is above level 1 or a subset of level 1.

0x80 PE affinity is at level 1.

Accessing the ERRDEVAFF:

ERRDEVAFF can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Offset Instance

RAS 0xFA8 ERRDEVAFF
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7863
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.9 ERRDEVARCH, Device Architecture Register

The ERRDEVARCH characteristics are:

Purpose

Provides discovery information for the component.

Configurations

ERRDEVARCH is implemented only as part of a memory-mapped group of error records.

Attributes

ERRDEVARCH is a 32-bit register.

Field descriptions

ARCHITECT, bits [31:21]

Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code
(JEP106 bank ID, minus 1) and bits [27:21] are the JEP106 ID code.

0b01000111011 JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

PRESENT, bit [20]

DEVARCH Present. Defines that the DEVARCH register is present.

0b0 Device Architecture information not present.

0b1 Device Architecture information present.

This field reads as 1.

REVISION, bits [19:16]

Revision. Defines the architecture revision of the component.

0b0000 RAS System Architecture v1.0.

0b0001 RAS System Architecture v1.1. As 0b0000 and also:

• Simplifies ERR<n>STATUS.

• Adds support for additional ERR<n>MISC<m> registers.

• Adds support for the optional RAS Timestamp Extension.

• Adds support for the optional Common Fault Injection Model Extension.

All other values are reserved.

ARCHVER, bits [15:12]

Architecture Version. Defines the architecture version of the component.

0b0000 RAS System Architecture v1.

All other values are reserved.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is
ARCHID[15:12].

This field reads as 0b0000.

ARCHITECT

31 21 20

REVISION

19 16

ARCHVER

15 12

ARCHPART

11 0

PRESENT
I5-7864 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
ARCHPART, bits [11:0]

Architecture Part. Defines the architecture of the component.

0xA00 RAS System Architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is
ARCHID[11:0].

This field reads as 0xA00.

Accessing the ERRDEVARCH:

ERRDEVARCH can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Offset Instance

RAS 0xFBC ERRDEVARCH
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7865
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.10 ERRDEVID, Device Configuration Register

The ERRDEVID characteristics are:

Purpose

Provides discovery information for the component.

Configurations

ERRDEVID is implemented only as part of a memory-mapped group of error records.

Attributes

ERRDEVID is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

NUM, bits [15:0]

Highest numbered index of the error records in this group, plus one. Each implemented record is
owned by a node. A node might own multiple records.

This manual describes a group of error records accessed via a standard 4KB memory-mapped
peripheral. For a 4KB peripheral, up to 24 error records can be accessed if the Common Fault
Injection Model is implemented, and up to 56 otherwise.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the ERRDEVID:

ERRDEVID can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 16

NUM

15 0

Component Offset Instance

RAS 0xFC8 ERRDEVID
I5-7866 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.11 ERRERICR0, Error Recovery Interrupt Configuration Register 0

The ERRERICR0 characteristics are:

Purpose

Error Recovery Interrupt configuration register.

Configurations

This register is present only when (the Error Recovery Interrupt is implemented or the
implementation does not use the recommended layout for the ERRIRQCR<n> registers) and
interrupt configuration registers are implemented. Otherwise, direct accesses to ERRERICR0 are
RES0.

ERRERICR0 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRERICR0 is a 64-bit register.

Field descriptions

When the Error Recovery Interrupt is implemented and the implementation uses the
recommended layout for the ERRIRQCR<n> registers:

Bits [63:56]

Reserved, RES0.

ADDR, bits [55:2]

Message Signaled Interrupt address. (ERRERICR0.ADDR << 2) is the address that the component
writes to when signaling the Error Recovery Interrupt. Bits [1:0] of the address are always zero.

The physical address size supported by the component is IMPLEMENTATION DEFINED.
Unimplemented high-order physical address bits are RES0.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

When the implementation does not use the recommended layout for the ERRIRQCR<n> registers:

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

RES0

63 56

ADDR

55 32

ADDR

31 2

RES0

1 0

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7867
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
Accessing the ERRERICR0:

ERRERICR0 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Offset Instance

RAS 0xE90 ERRERICR0
I5-7868 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.12 ERRERICR1, Error Recovery Interrupt Configuration Register 1

The ERRERICR1 characteristics are:

Purpose

Error Recovery Interrupt configuration register.

Configurations

This register is present only when (the Error Recovery Interrupt is implemented or the
implementation does not use the recommended layout for the ERRIRQCR<n> registers) and
interrupt configuration registers are implemented. Otherwise, direct accesses to ERRERICR1 are
RES0.

ERRERICR1 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRERICR1 is a 32-bit register.

Field descriptions

When the Error Recovery Interrupt is implemented and the implementation uses the
recommended layout for the ERRIRQCR<n> registers:

DATA, bits [31:0]

Payload for the message signaled interrupt.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

When the implementation does not use the recommended layout for the ERRIRQCR<n> registers:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ERRERICR1:

ERRERICR1 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

DATA

31 0

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

RAS 0xE98 ERRERICR1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7869
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.13 ERRERICR2, Error Recovery Interrupt Configuration Register 2

The ERRERICR2 characteristics are:

Purpose

Error Recovery Interrupt control and configuration register.

Configurations

This register is present only when (the Error Recovery Interrupt is implemented or the
implementation does not use the recommended layout for the ERRIRQCR<n> registers) and
interrupt configuration registers are implemented. Otherwise, direct accesses to ERRERICR2 are
RES0.

ERRERICR2 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRERICR2 is a 32-bit register.

Field descriptions

When the Error Recovery Interrupt is implemented and the implementation uses the
recommended layout for the ERRIRQCR<n> registers:

Bits [31:8]

Reserved, RES0.

IRQEN, bit [7]

When the component supports disabling message signaled interrupts:

IRQEN

Message signaled interrupt enable. Enables generation of message signaled interrupts.

0b0 Disabled.

0b1 Enabled.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Message signaled interrupt enable.

Message signaled interrupts are always enabled.

NSMSI, bit [6]

When the component supports configuring the Security attribute for message signaled interrupts and
the component does not allow Non-secure writes to ERRERICR2:

NSMSI

Security attribute. Defines the physical address space for message signaled interrupts.

0b0 Secure.

0b1 Non-secure.

RES0

31 8 7 6

SH

5 4

MemAttr

3 0

IRQEN NSMSI
I5-7870 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
The reset behavior of this field is:

• On a Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.

When the component allows Non-secure writes to ERRERICR2:

Reserved, RES0.

Security attribute. Defines the physical address space for message signaled interrupts.

The Security attribute used for message signaled interrupts is Non-secure.

Otherwise:

Reserved, RES0.

Security attribute. Defines the physical address space for message signaled interrupts.

The Security attribute for message signaled interrupts is IMPLEMENTATION DEFINED.

SH, bits [5:4]

When the component supports configuring the Shareability domain for message signaled interrupts:

SH

Shareability. Defines the Shareability domain for message signaled interrupts.

0b00 Not shared.

0b10 Outer Shareable.

0b11 Inner Shareable.

All other values are reserved.

This field is ignored when ERRERICR2.MemAttr specifies any of the following memory types:

• Any Device memory type.

• Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always
treated as Outer Shareable.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Shareability.

The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

MemAttr, bits [3:0]

When the component supports configuring the memory type for message signaled interrupts:

MemAttr

Memory type. Defines the memory type and attributes for message signaled interrupts.

0b0000 Device-nGnRnE memory.

0b0001 Device-nGnRE memory.

0b0010 Device-nGRE memory.

0b0011 Device-GRE memory.

0b0101 Normal memory, Inner Non-cacheable, Outer Non-cacheable.

0b0110 Normal memory, Inner Write-Through, Outer Non-cacheable.

0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7871
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
0b1001 Normal memory, Inner Non-cacheable, Outer Write-Through.

0b1010 Normal memory, Inner Write-Through, Outer Write-Through.

0b1011 Normal memory, Inner Write-Back, Outer Write-Through.

0b1101 Normal memory, Inner Non-cacheable, Outer Write-Back.

0b1110 Normal memory, Inner Write-Through, Outer Write-Back.

0b1111 Normal memory, Inner Write-Back, Outer Write-Back.

All other values are reserved.

Note

This is the same format as the VMSAv8-64 stage 2 memory region attributes.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Memory type.

The memory type used for message signaled interrupts is IMPLEMENTATION DEFINED.

When the implementation does not use the recommended layout for the ERRIRQCR<n> registers:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ERRERICR2:

ERRERICR2 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

RAS 0xE9C ERRERICR2
I5-7872 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.14 ERRFHICR0, Fault Handling Interrupt Configuration Register 0

The ERRFHICR0 characteristics are:

Purpose

Fault Handling Interrupt configuration register.

Configurations

This register is present only when (the Fault Handling Interrupt is implemented or the
implementation does not use the recommended layout for the ERRIRQCR<n> registers) and
interrupt configuration registers are implemented. Otherwise, direct accesses to ERRFHICR0 are
RES0.

ERRFHICR0 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRFHICR0 is a 64-bit register.

Field descriptions

When the Fault Handling Interrupt is implemented and the implementation uses the
recommended layout for the ERRIRQCR<n> registers:

Bits [63:56]

Reserved, RES0.

ADDR, bits [55:2]

Message Signaled Interrupt address. (ERRFHICR0.ADDR << 2) is the address that the component
writes to when signaling the Fault Handling Interrupt. Bits [1:0] of the address are always zero.

The physical address size supported by the component is IMPLEMENTATION DEFINED.
Unimplemented high-order physical address bits are RES0.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

When the implementation does not use the recommended layout for the ERRIRQCR<n> registers:

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

RES0

63 56

ADDR

55 32

ADDR

31 2

RES0

1 0

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7873
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
Accessing the ERRFHICR0:

ERRFHICR0 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Offset Instance

RAS 0xE80 ERRFHICR0
I5-7874 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.15 ERRFHICR1, Fault Handling Interrupt Configuration Register 1

The ERRFHICR1 characteristics are:

Purpose

Fault Handling Interrupt configuration register.

Configurations

This register is present only when (the Fault Handling Interrupt is implemented or the
implementation does not use the recommended layout for the ERRIRQCR<n> registers) and
interrupt configuration registers are implemented. Otherwise, direct accesses to ERRFHICR1 are
RES0.

ERRFHICR1 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRFHICR1 is a 32-bit register.

Field descriptions

When the Fault Handling Interrupt is implemented and the implementation uses the
recommended layout for the ERRIRQCR<n> registers:

DATA, bits [31:0]

Payload for the message signaled interrupt.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

When the implementation does not use the recommended layout for the ERRIRQCR<n> registers:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ERRFHICR1:

ERRFHICR1 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

DATA

31 0

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

RAS 0xE88 ERRFHICR1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7875
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.16 ERRFHICR2, Fault Handling Interrupt Configuration Register 2

The ERRFHICR2 characteristics are:

Purpose

Fault Handling Interrupt control and configuration register.

Configurations

This register is present only when (the Fault Handling Interrupt is implemented or the
implementation does not use the recommended layout for the ERRIRQCR<n> registers) and
interrupt configuration registers are implemented. Otherwise, direct accesses to ERRFHICR2 are
RES0.

ERRFHICR2 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRFHICR2 is a 32-bit register.

Field descriptions

When the Fault Handling Interrupt is implemented and the implementation uses the
recommended layout for the ERRIRQCR<n> registers:

Bits [31:8]

Reserved, RES0.

IRQEN, bit [7]

When the component supports disabling message signaled interrupts:

IRQEN

Message signaled interrupt enable. Enables generation of message signaled interrupts.

0b0 Disabled.

0b1 Enabled.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Message signaled interrupt enable.

Message signaled interrupts are always enabled.

NSMSI, bit [6]

When the component supports configuring the Security attribute for message signaled interrupts and
the component does not allow Non-secure writes to ERRFHICR2:

NSMSI

Security attribute. Defines the physical address space for message signaled interrupts.

0b0 Secure.

0b1 Non-secure.

RES0

31 8 7 6

SH

5 4

MemAttr

3 0

IRQEN NSMSI
I5-7876 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
The reset behavior of this field is:

• On a Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.

When the component allows Non-secure writes to ERRFHICR2:

Reserved, RES0.

Security attribute. Defines the physical address space for message signaled interrupts.

The Security attribute used for message signaled interrupts is Non-secure.

Otherwise:

Reserved, RES0.

Security attribute. Defines the physical address space for message signaled interrupts.

The Security attribute for message signaled interrupts is IMPLEMENTATION DEFINED.

SH, bits [5:4]

When the component supports configuring the Shareability domain for message signaled interrupts:

SH

Shareability. Defines the Shareability domain for message signaled interrupts.

0b00 Not shared.

0b10 Outer Shareable.

0b11 Inner Shareable.

All other values are reserved.

This field is ignored when ERRFHICR2.MemAttr specifies any of the following memory types:

• Any Device memory type.

• Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always
treated as Outer Shareable.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Shareability.

The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

MemAttr, bits [3:0]

When the component supports configuring the memory type for message signaled interrupts:

MemAttr

Memory type. Defines the memory type and attributes for message signaled interrupts.

0b0000 Device-nGnRnE memory.

0b0001 Device-nGnRE memory.

0b0010 Device-nGRE memory.

0b0011 Device-GRE memory.

0b0101 Normal memory, Inner Non-cacheable, Outer Non-cacheable.

0b0110 Normal memory, Inner Write-Through, Outer Non-cacheable.

0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7877
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
0b1001 Normal memory, Inner Non-cacheable, Outer Write-Through.

0b1010 Normal memory, Inner Write-Through, Outer Write-Through.

0b1011 Normal memory, Inner Write-Back, Outer Write-Through.

0b1101 Normal memory, Inner Non-cacheable, Outer Write-Back.

0b1110 Normal memory, Inner Write-Through, Outer Write-Back.

0b1111 Normal memory, Inner Write-Back, Outer Write-Back.

All other values are reserved.

Note

This is the same format as the VMSAv8-64 stage 2 memory region attributes.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Memory type.

The memory type used for message signaled interrupts is IMPLEMENTATION DEFINED.

When the implementation does not use the recommended layout for the ERRIRQCR<n> registers:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ERRFHICR2:

ERRFHICR2 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

RAS 0xE8C ERRFHICR2
I5-7878 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.17 ERRGSR, Error Group Status Register

The ERRGSR characteristics are:

Purpose

Shows the status for the records in the group.

Configurations

ERRGSR is implemented only as part of a memory-mapped group of error records.

This manual describes a group of error records accessed via a standard 4KB memory-mapped
peripheral. For a 4KB peripheral, up to 24 error records can be accessed if the Common Fault
Injection Model is implemented, and up to 56 otherwise.

Attributes

ERRGSR is a 64-bit register.

Field descriptions

Bits [63:56]

Reserved, RES0.

S<m>, bit [m], for m = 55 to 0

When error record <m> is implemented and error record <m> supports this type of reporting:

S<m>

The status for error record <m>. A read-only copy of ERR<n>STATUS.V.

0b0 No error.

0b1 One or more errors.

If the Common Fault Injection Model is implemented, up-to 24 records can be implemented
meaning bits [55:24] are RES0.

Otherwise:

Reserved, RES0.

Accessing the ERRGSR:

ERRGSR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

63 56

S<m>

55 32

S<m>

31 0

Component Offset Instance

RAS 0xE00 ERRGSR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7879
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.18 ERRIIDR, Implementation Identification Register

The ERRIIDR characteristics are:

Purpose

Defines the implementer of the component.

Configurations

Implementation of this register is OPTIONAL.

This register is present only when RAS System Architecture v1.1 is implemented.

Attributes

ERRIIDR is a 32-bit register.

Field descriptions

ProductID, bits [31:20]

Part number, bits [11:0]. The part number is selected by the designer of the component.

If ERRPIDR0 and ERRPIDR1 are implemented, ERRPIDR0.PART_0 matches bits [7:0] of
ERRIIDR.ProductID and ERRPIDR1.PART_1 matches bits [11:8] of ERRIIDR.ProductID.

Variant, bits [19:16]

Component major revision.

This field distinguishes product variants or major revisions of the product.

If ERRPIDR2 is implemented, ERRPIDR2.REVISION matches ERRIIDR.Variant.

Revision, bits [15:12]

Component minor revision.

This field distinguishes minor revisions of the product.

If ERRPIDR3 is implemented, ERRPIDR3.REVAND matches ERRIIDR.Revision.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the RAS component. For an Arm
implementation, this field has the value 0x43B.

Bits [11:8] contain the JEP106 continuation code of the implementer, and bits [6:0] contain the
JEP106 identity code of the implementer. Bit 7 is RES0.

If ERRPIDR4 is implemented, ERRPIDR2 is implemented, and ERRPIDR1 is implemented,
ERRPIDR4.DES_2 matches bits [11:8] of ERRIIDR.Implementer, ERRPIDR2.DES_1 matches
bits [6:4] of ERRIIDR.Implementer, and ERRPIDR1.DES_0 matches bits [3:0] of
ERRIIDR.Implementer.

Accessing the ERRIIDR:

ERRIIDR can be accessed through its memory-mapped interface:

ProductID

31 20

Variant

19 16

Revision

15 12

Implementer

11 0

Component Offset

RAS 0xE10
I5-7880 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
This interface is accessible as follows:

• Accesses to this register are RO.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7881
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.19 ERRIMPDEF<n>, IMPLEMENTATION DEFINED Register <n>, n = 0 - 191

The ERRIMPDEF<n> characteristics are:

Purpose

IMPLEMENTATION DEFINED RAS extensions.

Configurations

This register is present only when the Common Fault Injection Model Extension is not
implemented, ERRDEVID.NUM <= 32 and an implementation implements ERRIMPDEF<n>.
Otherwise, direct accesses to ERRIMPDEF<n> are RES0.

Attributes

ERRIMPDEF<n> is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing the ERRIMPDEF<n>:

ERRIMPDEF<n> can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

RAS 0x800 + (8 * n) ERRIMPDEF<n>
I5-7882 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.20 ERRIRQCR<n>, Generic Error Interrupt Configuration Register, n = 0 - 15

The ERRIRQCR<n> characteristics are:

Purpose

The ERRIRQCR<n> registers are reserved for IMPLEMENTATION DEFINED interrupt configuration
registers.

The architecture provides a recommended layout for the ERRIRQCR<n> registers. These registers
are named:

• ERRFHICR0, ERRFHICR1, and ERRFHICR2 for the fault handling interrupt controls.

• ERRERICR0, ERRERICR1, and ERRERICR2 for the error recovery interrupt controls.

• ERRCRICR0, ERRCRICR1, and ERRCRICR2 for the critical error interrupt controls.

• ERRIRQSR for the status register.

This section describes the generic, IMPLEMENTATION DEFINED, format.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

This register is present only when the interrupt configuration registers are implemented. Otherwise,
direct accesses to ERRIRQCR<n> are RES0.

ERRIRQCR<n> is implemented only as part of a memory-mapped group of error records.

Attributes

ERRIRQCR<n> is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED controls. The content of these registers is IMPLEMENTATION DEFINED.

Accessing the ERRIRQCR<n>:

ERRIRQCR<n> can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

RAS 0xE80 + (8 * n) ERRIRQCR<n>
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7883
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.21 ERRIRQSR, Error Interrupt Status Register

The ERRIRQSR characteristics are:

Purpose

Interrupt status register.

Configurations

This register is present only when interrupt configuration registers are implemented. Otherwise,
direct accesses to ERRIRQSR are RES0.

ERRIRQSR is implemented only as part of a memory-mapped group of error records.

Attributes

ERRIRQSR is a 64-bit register.

Field descriptions

When the implementation uses the recommended layout for the ERRIRQCR<n> registers:

Bits [63:6]

Reserved, RES0.

CRIERR, bit [5]

When the Critical Error Interrupt is implemented:

CRIERR

Critical Error Interrupt Error.

0b0 Critical Error Interrupt write has not returned an error since this field was last cleared to
zero.

0b1 Critical Error Interrupt write has returned an error since this field was last cleared to
zero.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Access to this field is W1C.

Otherwise:

Reserved, RES0.

CRI, bit [4]

When the Critical Error Interrupt is implemented:

CRI

Critical Error Interrupt write in progress.

0b0 Critical Error Interrupt write not in progress.

RES0

63 32

RES0

31 6 5 4 3 2 1 0

CRIERR
CRI
ERIERR

FHI
FHIERR

ERI
I5-7884 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
0b1 Critical Error Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.

Note

This field does not indicate whether an interrupt is active, but rather whether a write triggered by
the interrupt is in progress.

To determine whether an interrupt is active, software must examine the individual ERR<n>STATUS
registers.

Access to this field is RO.

Otherwise:

Reserved, RES0.

ERIERR, bit [3]

When the Error Recovery Interrupt is implemented:

ERIERR

Error Recovery Interrupt Error.

0b0 Error Recovery Interrupt write has not returned an error since this field was last cleared
to zero.

0b1 Error Recovery Interrupt write has returned an error since this field was last cleared to
zero.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Access to this field is W1C.

Otherwise:

Reserved, RES0.

ERI, bit [2]

When the Error Recovery Interrupt is implemented:

ERI

Error Recovery Interrupt write in progress.

0b0 Error Recovery Interrupt write not in progress.

0b1 Error Recovery Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.

Note
This field does not indicate whether an interrupt is active, but rather whether a write triggered by
the interrupt is in progress.

To determine whether an interrupt is active, software must examine the individual ERR<n>STATUS
registers.

Access to this field is RO.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7885
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
FHIERR, bit [1]

When the Fault Handling Interrupt is implemented:

FHIERR

Fault Handling Interrupt Error.

0b0 Fault Handling Interrupt write has not returned an error since this field was last cleared
to zero.

0b1 Fault Handling Interrupt write has returned an error since this field was last cleared to
zero.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Access to this field is W1C.

Otherwise:

Reserved, RES0.

FHI, bit [0]

When the Fault Handling Interrupt is implemented:

FHI

Fault Handling Interrupt write in progress.

0b0 Fault Handling Interrupt write not in progress.

0b1 Fault Handling Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.

Note

This field does not indicate whether an interrupt is active, but rather whether a write triggered by
the interrupt is in progress.

To determine whether an interrupt is active, software must examine the individual ERR<n>STATUS
registers.

Access to this field is RO.

Otherwise:

Reserved, RES0.

When the implementation does not use the recommended layout for the ERRIRQCR<n> registers:

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0
I5-7886 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
Accessing the ERRIRQSR:

ERRIRQSR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Offset Instance

RAS 0xEF8 ERRIRQSR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7887
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.22 ERR<n>ADDR, Error Record Address Register, n = 0 - 65534

The ERR<n>ADDR characteristics are:

Purpose

If an address is associated with a detected error, then it is written to ERR<n>ADDR when the error
is recorded. It is IMPLEMENTATION DEFINED how the recorded address maps to the software-visible
physical address. Software might have to reconstruct the actual physical addresses using the identity
of the node and knowledge of the system.

Configurations

This register is present only when error record <n> is implemented and error record <n> includes
an address associated with an error. Otherwise, direct accesses to ERR<n>ADDR are RES0.

ERR<n>FR describes the features implemented by the node that owns error record <n>. <q> is the
index of the first error record owned by the same node as error record <n>. If the node owns a single
record, then q = n.

Attributes

ERR<n>ADDR is a 64-bit register.

Field descriptions

NS, bit [63]

Non-secure attribute.

0b0 ERR<n>ADDR.PADDR is a Secure address.

0b1 ERR<n>ADDR.PADDR is a Non-secure address.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

SI, bit [62]

Secure Incorrect. Indicates whether ERR<n>ADDR.NS is valid.

0b0 ERR<n>ADDR.NS is correct. That is, it matches the programmers' view of the
Non-secure attribute for the recorded location.

0b1 ERR<n>ADDR.NS might not be correct, and might not match the programmers' view
of the Non-secure attribute for the recorded location.

It is IMPLEMENTATION DEFINED whether this field is read-only or read/write.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

AI, bit [61]

Address Incorrect. Indicates whether ERR<n>ADDR.PADDR is a valid physical address that is
known to match the programmers' view of the physical address for the recorded location.

0b0 ERR<n>ADDR.PADDR is a valid physical address. That is, it matches the
programmers' view of the physical address for the recorded location.

0b1 ERR<n>ADDR.PADDR might not be a valid physical address, and might not match the
programmers' view of the physical address for the recorded location.

NS

63

SI

62

AI

61

VA

60

RES0

59 56

PADDR

55 32

PADDR

31 0
I5-7888 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
It is IMPLEMENTATION DEFINED whether this field is read-only or read/write.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

VA, bit [60]

Virtual Address. Indicates whether ERR<n>ADDR.PADDR field is a virtual address.

0b0 ERR<n>ADDR.PADDR is not a virtual address.

0b1 ERR<n>ADDR.PADDR is a virtual address.

No context information is provided for the virtual address. When ERR<n>ADDR.VA is 1,
ERR<n>ADDR.{NS, SI, AI} read as {0, 1, 1}.

Support for this field is optional. If this field is not implemented and ERR<n>ADDR.PADDR field
is a virtual address, then ERR<n>ADDR.{NS, SI, AI} read as {0, 1, 1}.

It is IMPLEMENTATION DEFINED whether this field is read-only or read/write.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [59:56]

Reserved, RES0.

PADDR, bits [55:0]

Physical Address. Address of the recorded location. If the physical address size implemented by this
component is smaller than the size of this field, then high-order bits are unimplemented and either
RES0 or have a fixed read-only IMPLEMENTATION DEFINED value. Low-order address bits might also
be unimplemented and RES0, for example, if the physical address is always aligned to the size of a
protection granule.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the ERR<n>ADDR:

ERR<n>ADDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When the Common Fault Injection Model Extension is implemented by the node that owns this error record,
ERR<q>PFGF.AV == 0 and ERR<n>STATUS.AV == 1 accesses to this register are RO.

• When the Common Fault Injection Model Extension is not implemented by the node that owns this error
record and ERR<n>STATUS.AV == 1 accesses to this register are RO.

• Otherwise accesses to this register are RW.

Component Offset Instance

RAS 0x018 + (64 * n) ERR<n>ADDR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7889
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.23 ERR<n>CTLR, Error Record Control Register, n = 0 - 65534

The ERR<n>CTLR characteristics are:

Purpose

The error control register contains enable bits for the node that writes to this record:

• Enabling error detection and correction.

• Enabling the critical error, error recovery, and fault handling interrupts.

• Enabling in-band error response for uncorrected errors.

For each bit, if the node does not support the feature, then the bit is RES0. The definition of each
record is IMPLEMENTATION DEFINED.

Configurations

This register is present only when error record <n> is implemented and error record <n> is the first
error record owned by a node. Otherwise, direct accesses to ERR<n>CTLR are RES0.

ERR<n>FR describes the features implemented by the node.

Attributes

ERR<n>CTLR is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:32]

Reserved for IMPLEMENTATION DEFINED controls. Must permit SBZP write policy for software.

Bits [31:14]

Reserved, RES0.

CI, bit [13]

When ERR<n>FR.CI == 0b10:

CI

Critical error interrupt enable. When enabled, the critical error interrupt is generated for a critical
error condition.

0b0 Critical error interrupt not generated for critical errors. Critical errors are treated as
Uncontained errors.

0b1 Critical error interrupt generated for critical errors.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

IMPLEMENTATION DEFINED

63 32

RES0

31 14

CI

13 12 11 10 9 8 7 6 5

UE

4

FI

3

UI

2 1

ED

0

RES0
WDUI

DUI
WCFI

IMPLEMENTATION DEFINED

WUI
WFI

WUE
CFI
I5-7890 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
Reserved, RES0.

Bit [12]

Reserved, RES0.

WDUI, bit [11]

When ERR<n>FR.DUI == 0b11:

WDUI

Error recovery interrupt for Deferred errors on writes enable.

When enabled, the error recovery interrupt is generated for errors recorded as Deferred error on
writes.

0b0 Error recovery interrupt not generated for Deferred errors on writes.

0b1 Error recovery interrupt generated for Deferred errors on writes.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DUI, bit [10]

When ERR<n>FR.DUI == 0b10:

DUI

Error recovery interrupt for Deferred errors enable.

When ERR<n>FR.DUI == 0b10, this control applies to errors arising from both reads and writes.

When enabled, the error recovery interrupt is generated for all errors recorded as Deferred error.

0b0 Error recovery interrupt not generated for Deferred errors.

0b1 Error recovery interrupt generated for Deferred errors.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<n>FR.DUI == 0b11:

RDUI

Error recovery interrupt for Deferred errors on reads enable.

When ERR<n>FR.DUI == 0b11, this field is named RDUI.

When enabled, the error recovery interrupt is generated for errors recorded as Deferred error on
reads.

0b0 Error recovery interrupt not generated for Deferred errors on reads.

0b1 Error recovery interrupt generated for Deferred errors on reads.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7891
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
Reserved, RES0.

WCFI, bit [9]

When ERR<n>FR.CFI == 0b11:

WCFI

Fault handling interrupt for Corrected errors on writes enable.

When enabled:

• If the node implements Corrected error counters for writes, then the fault handling interrupt
is generated when a counter overflows and the overflow bit for the counter is set to 1. For
more information, see ERR<n>MISC0.

• Otherwise, the fault handling interrupt is also generated for errors recorded as Corrected error
on writes.

0b0 Fault handling interrupt not generated for Corrected errors on writes.

0b1 Fault handling interrupt generated for Corrected errors on writes.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CFI, bit [8]

When ERR<n>FR.CFI == 0b10:

CFI

Fault handling interrupt for Corrected errors enable.

When ERR<n>FR.CFI == 0b10, this control applies to errors arising from both reads and writes.

When enabled:

• If the node implements Corrected error counters, then the fault handling interrupt is generated
when a counter overflows and the overflow bit for the counter is set to 1. For more
information, see ERR<n>MISC0.

• Otherwise, the fault handling interrupt is also generated for all errors recorded as Corrected
error.

0b0 Fault handling interrupt not generated for Corrected errors.

0b1 Fault handling interrupt generated for Corrected errors.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<n>FR.CFI == 0b11:

RCFI

Fault handling interrupt for Corrected errors on reads enable.

When ERR<n>FR.CFI == 0b11, this field is named RCFI.

When enabled:

• If the node implements Corrected error counters for reads, then the fault handling interrupt is
generated when a counter overflows and the overflow bit for the counter is set to 1. For more
information, see ERR<n>MISC0.
I5-7892 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
• Otherwise, the fault handling interrupt is also generated for errors recorded as Corrected error
on reads.

0b0 Fault handling interrupt not generated for Corrected errors on reads.

0b1 Fault handling interrupt generated for Corrected errors on reads.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WUE, bit [7]

When ERR<n>FR.UE == 0b11:

WUE

In-band error response on writes enable.

When enabled, responses to writes that detect an error that is not corrected and is not deferred are
signaled with an in-band error response (External Abort).

It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred and recorded as
Deferred error, but is not deferred to the Requester, will signal an in-band error response to the
Requester.

0b0 In-band error response for uncorrected errors on writes disabled.

0b1 In-band error response for uncorrected errors on writes enabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WFI, bit [6]

When ERR<n>FR.FI == 0b11:

WFI

Fault handling interrupt on writes enable.

When enabled:

• The fault handling interrupt is generated for errors recorded as either Deferred error or
Uncorrected error on writes.

• If the corresponding fault handling interrupt for Corrected errors control is not implemented:

— If the node implements Corrected error counters for writes, then the fault handling
interrupt is also generated when a counter overflows and the overflow bit for the
counter is set to 1.

— Otherwise, the fault handling interrupt is also generated for errors recorded as
Corrected error on writes.

0b0 Fault handling interrupt on writes disabled.

0b1 Fault handling interrupt on writes enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7893
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
Otherwise:

Reserved, RES0.

WUI, bit [5]

When ERR<n>FR.UI == 0b11:

WUI

Uncorrected error recovery interrupt on writes enable.

When enabled, the error recovery interrupt is generated for errors recorded as Uncorrected error on
writes.

0b0 Error recovery interrupt on writes disabled.

0b1 Error recovery interrupt on writes enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UE, bit [4]

When ERR<n>FR.UE == 0b10:

UE

In-band error response enable.

When ERR<n>FR.UE == 0b10, this control applies to errors arising from both reads and writes.

When enabled, responses to transactions that detect an error that is not corrected and is not deferred
are signaled with an in-band error response (External Abort).

It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred and recorded as
Deferred error, but is not deferred to the Requester, will signal an in-band error response to the
Requester.

0b0 In-band error response for uncorrected errors disabled.

0b1 In-band error response for uncorrected errors enabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<n>FR.UE == 0b11:

RUE

In-band error response on reads enable.

When ERR<n>FR.UE == 0b11, this field is named RUE.

When enabled, responses to reads that detect an error that is not corrected and is not deferred are
signaled with an in-band error response (External Abort).

It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred and recorded as
Deferred error, but is not deferred to the Requester, will signal an in-band error response to the
Requester.

0b0 In-band error response for uncorrected errors on reads disabled.

0b1 In-band error response for uncorrected errors on reads enabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.
I5-7894 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
Otherwise:

Reserved, RES0.

FI, bit [3]

When ERR<n>FR.FI == 0b10:

FI

Fault handling interrupt enable.

When ERR<n>FR.FI == 0b10, this control applies to errors arising from both reads and writes.

When enabled:

• The fault handling interrupt is generated for all errors recorded as either Deferred error or
Uncorrected error.

• If the fault handling interrupt for Corrected errors control is not implemented:

— If the node implements Corrected error counters, then the fault handling interrupt is
also generated when a counter overflows and the overflow bit for the counter is set to
1.

— Otherwise, the fault handling interrupt is also generated for all errors recorded as
Corrected error.

0b0 Fault handling interrupt disabled.

0b1 Fault handling interrupt enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<n>FR.FI == 0b11:

RFI

Fault handling interrupt on reads enable.

When ERR<n>FR.FI == 0b11, this field is named RFI.

When enabled:

• The fault handling interrupt is generated for errors recorded as either Deferred error or
Uncorrected error on reads.

• If the corresponding fault handling interrupt for Corrected errors control is not implemented:

— If the node implements Corrected error counters for reads, then the fault handling
interrupt is also generated when a counter overflows and the overflow bit for the
counter is set to 1.

— Otherwise, the fault handling interrupt is also generated for errors recorded as
Corrected error on reads.

0b0 Fault handling interrupt on reads disabled.

0b1 Fault handling interrupt on reads enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7895
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
UI, bit [2]

When ERR<n>FR.UI == 0b10:

UI

Uncorrected error recovery interrupt enable.

When ERR<n>FR.UI == 0b10, this control applies to errors arising from both reads and writes.

When enabled, the error recovery interrupt is generated for all errors recorded as Uncorrected error.

0b0 Error recovery interrupt disabled.

0b1 Error recovery interrupt enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<n>FR.UI == 0b11:

RUI

Uncorrected error recovery interrupt on reads enable.

When ERR<n>FR.UI == 0b11, this field is named RUI.

When enabled, the error recovery interrupt is generated for errors recorded as Uncorrected error on
reads.

0b0 Error recovery interrupt on reads disabled.

0b1 Error recovery interrupt on reads enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IMPLEMENTATION DEFINED, bit [1]

Reserved for IMPLEMENTATION DEFINED controls. Must permit SBZP write policy for software.

ED, bit [0]

When ERR<n>FR.ED == 0b10:

ED

Error reporting and logging enable. When disabled, the node behaves as if error detection and
correction are disabled, and no errors are recorded or signaled by the node. Arm recommends that,
when disabled, correct error detection and correction codes are written for writes, unless disabled
by an IMPLEMENTATION DEFINED control for error injection.

0b0 Error reporting disabled.

0b1 Error reporting enabled.

It is IMPLEMENTATION DEFINED whether the node fully disables error detection and correction when
reporting is disabled. That is, even with error reporting disabled, the node might continue to silently
correct errors. Uncorrected errors might result in corrupt data being silently propagated by the node.

Note
If this node requires initialization after Cold reset to prevent signaling false errors, then Arm
recommends this field is set to 0 on Cold reset, meaning errors are not reported from Cold reset. This
allows boot software to initialize a node without signaling errors. Software can enable error
I5-7896 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
reporting after the node is initialized. Otherwise, the Cold reset value is IMPLEMENTATION DEFINED.
If the Cold reset value is 1, the reset values of other controls in this register are also
IMPLEMENTATION DEFINED and should not be UNKNOWN.

The reset behavior of this field is:

• On a Cold reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

Accessing the ERR<n>CTLR:

ERR<n>CTLR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Offset Instance

RAS 0x008 + (64 * n) ERR<n>CTLR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7897
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.24 ERR<n>FR, Error Record Feature Register, n = 0 - 65534

The ERR<n>FR characteristics are:

Purpose

Defines whether <n> is the first record owned by a node:

• If <n> is the first error record owned by a node, then ERR<n>FR.ED is not 0b00.

• If <n> is not the first error record owned by a node, then ERR<n>FR.ED is 0b00.

If <n> is the first record owned by the node, defines which of the common architecturally-defined
features are implemented by the node and, of the implemented features, which are software
programmable.

Configurations

This register is present only when error record <n> is implemented. Otherwise, direct accesses to
ERR<n>FR are RES0.

Attributes

ERR<n>FR is a 64-bit register.

Field descriptions

When error record <n> is not the first error record owned by the node:

Bits [63:2]

Reserved, RES0.

ED, bits [1:0]

Error reporting and logging. Indicates error record <n> is not the first error record owned the node.

0b00 Error record <n> is not the first error record owned by the node.

This field reads as 0b00.

When error record <n> is the first error record owned by the node:

IMPLEMENTATION DEFINED, bits [63:55]

When ERR<n>FR.FRX != 1:

IMPLEMENTATION DEFINED

RES0

63 32

RES0

31 2

ED

1 0

63 55

CE

54 53

DE

52 51 50 49

UC

48

IMPLEMENTATION DEFINED

47 32

IMPLEMENTATION
DEFINED

UEO

UEU
UER

31

RES0

30 26

TS

25 24

CI

23 22

INJ

21 20

CEO

19 18

DUI

17 16

RP

15

CEC

14 12

CFI

11 10

UE

9 8

FI

7 6

UI

5 4 3 2

ED

1 0

FRX IMPLEMENTATION
DEFINED
I5-7898 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
Reserved for identifying IMPLEMENTATION DEFINED controls.

Otherwise:

Reserved, RES0.

CE, bits [54:53]

When ERR<n>FR.FRX == 1:

CE

Corrected Error recording. Describes the types of Corrected errors the node can record, if any.

0b00 Does not record Corrected errors.

0b01 Records only transient or persistent Corrected errors. That is, Corrected errors recorded
by setting ERR<n>STATUS.CE to either 0b01 or 0b11.

0b10 Records only non-specific Corrected errors. That is, Corrected errors recorded by
setting ERR<n>STATUS.CE to 0b10.

0b11 Records all types of Corrected error.

Otherwise:

CE

Reserved for identifying IMPLEMENTATION DEFINED controls.

DE, bit [52]

When ERR<n>FR.FRX == 1:

DE

Deferred Error recording. Describes whether the node supports recording Deferred errors.

0b0 Does not record Deferred errors.

0b1 Records Deferred errors.

Otherwise:

DE

Reserved for identifying IMPLEMENTATION DEFINED controls.

UEO, bit [51]

When ERR<n>FR.FRX == 1:

UEO

Latent or Restartable Error recording. Describes whether the node supports recording Latent or
Restartable errors.

0b0 Does not record Latent or Restartable errors.

0b1 Records Latent or Restartable errors.

Otherwise:

UEO

Reserved for identifying IMPLEMENTATION DEFINED controls.

UER, bit [50]

When ERR<n>FR.FRX == 1:

UER

Signaled or Recoverable Error recording. Describes whether the node supports recording Signaled
or Recoverable errors.

0b0 Does not record Signaled or Recoverable errors.

0b1 Records Signaled or Recoverable errors.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7899
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
Otherwise:

UER

Reserved for identifying IMPLEMENTATION DEFINED controls.

UEU, bit [49]

When ERR<n>FR.FRX == 1:

UEU

Unrecoverable Error recording. Describes whether the node supports recording Unrecoverable
errors.

0b0 Does not record Unrecoverable errors.

0b1 Records Unrecoverable errors.

Otherwise:

UEU

Reserved for identifying IMPLEMENTATION DEFINED controls.

UC, bit [48]

When ERR<n>FR.FRX == 1:

UC

Uncontainable Error recording. Describes whether the node supports recording Uncontainable
errors.

0b0 Does not record Uncontainable errors.

0b1 Records Uncontainable errors.

Otherwise:

UC

Reserved for identifying IMPLEMENTATION DEFINED controls.

IMPLEMENTATION DEFINED, bits [47:32]

Reserved for identifying IMPLEMENTATION DEFINED controls.

FRX, bit [31]

When RAS System Architecture v1.1 is implemented:

FRX

Feature Register extension. Defines whether ERR<n>FR[63:48] are architecturally defined.

0b0 ERR<n>FR[63:48] are IMPLEMENTATION DEFINED.

0b1 ERR<n>FR[63:48] are defined by the architecture.

Otherwise:

Reserved, RES0.

Bits [30:26]

Reserved, RES0.

TS, bits [25:24]

Timestamp Extension. Indicates whether, for each error record <m> owned by this node,
ERR<n>MISC3 is used as the timestamp register, and, if it is, the timebase used by the timestamp.

0b00 Does not support a timestamp register.

0b01 Implements a timestamp register in ERR<n>MISC3 for each error record <m> owned
by the node. The timestamp uses the same timebase as the system Generic Timer.
I5-7900 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
Note
For an error record that has an affinity to a PE, this is the same timer that is visible
through CNTPCT_EL0 at the highest Exception level on that PE.

0b10 Implements a timestamp register in ERR<n>MISC3 for each error record <m> owned
by the node. The timestamp uses an IMPLEMENTATION DEFINED timebase.

All other values are reserved.

CI, bits [23:22]

Critical error interrupt. Indicates whether the critical error interrupt and associated controls are
implemented by the node.

0b00 Does not support the critical error interrupt. ERR<n>CTLR.CI is RES0.

0b01 Critical error interrupt is supported and always enabled. ERR<n>CTLR.CI is RES0.

0b10 Critical error interrupt is supported and controllable using ERR<n>CTLR.CI.

All other values are reserved.

INJ, bits [21:20]

Fault Injection Extension. Indicates whether the Common Fault Injection Model Extension is
implemented by the node.

0b00 Does not support the Common Fault Injection Model Extension.

0b01 Supports the Common Fault Injection Model Extension. See ERR<n>PFGF for more
information.

All other values are reserved.

CEO, bits [19:18]

When ERR<n>FR.CEC != 0b000:

CEO

Corrected Error overwrite. Indicates the behavior of the node when a second or subsequent
Corrected error is recorded and a first Corrected error has previously been recorded by an error
record <m> owned by the node.

0b00 Keeps the previous error syndrome.

0b01 If ERR<n>STATUS.OF is 1 before the Corrected error is counted, then the error record
keeps the previous syndrome. Otherwise the previous syndrome is overwritten.

All other values are reserved.

The second or subsequent Corrected error is counted by the Corrected error counter, regardless of
the value of this field. If counting the error causes unsigned overflow of the counter, then
ERR<n>STATUS.OF is set to 1.

This means that, if no other error is subsequently recorded that overwrites the syndrome:

• If ERR<n>FR.CEO is 0b00, the error record holds the syndrome for the first recorded
Corrected error.

• If ERR<n>FR.CEO is 0b01, the error record holds the syndrome for the most recently
recorded Corrected error before the counter overflows.

Otherwise:

Reserved, RES0.

DUI, bits [17:16]

When ERR<n>FR.UI != 0b00:

DUI
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7901
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
Error recovery interrupt for deferred errors control. Indicates whether the enabling and disabling of
error recovery interrupts on deferred errors is supported by the node.

0b00 Does not support the enabling and disabling of error recovery interrupts on deferred
errors. ERR<n>CTLR.DUI is RES0.

0b10 Enabling and disabling of error recovery interrupts on deferred errors is supported and
controllable using ERR<n>CTLR.DUI.

0b11 Enabling and disabling of error recovery interrupts on deferred errors is supported, and
controllable using ERR<n>CTLR.WDUI for writes and ERR<n>CTLR.RDUI for
reads.

All other values are reserved.

Otherwise:

Reserved, RES0.

RP, bit [15]

When ERR<n>FR.CEC != 0b000:

RP

Repeat counter. Indicates whether the node implements a second Corrected error counter in
ERR<n>MISC0 for each error record <m> owned by the node that can record countable errors.

0b0 Implements a single Corrected error counter in ERR<n>MISC0 for each error record
<m> owned by the node that can record countable errors.

0b1 Implements a first (repeat) counter and a second (other) counter in ERR<n>MISC0 for
each error record <m> owned by the node that can record countable errors. The repeat
counter is the same size as the primary error counter.

Otherwise:

Reserved, RES0.

CEC, bits [14:12]

Corrected Error Counter. Indicates whether the node implements the standard Corrected error
counter mechanisms in ERR<n>MISC0 for each error record <m> owned by the node that can
record countable errors.

0b000 Does not implement the standard Corrected error counter model.

0b010 Implements an 8-bit Corrected error counter in ERR<n>MISC0[39:32] for each error
record <m> owned by the node that can record countable errors.

0b100 Implements a 16-bit Corrected error counter in ERR<n>MISC0[47:32] for each error
record <m> owned by the node that can record countable errors.

All other values are reserved.

Note

Implementations might include other error counter models, or might include the standard model and
not indicate this in ERR<n>FR.

CFI, bits [11:10]

When ERR<n>FR.FI != 0b00:

CFI

Fault handling interrupt for corrected errors control. Indicates whether the enabling and disabling
of fault handling interrupts on corrected errors is supported by the node.

0b00 Does not support the enabling and disabling of fault handling interrupts on corrected
errors. ERR<n>CTLR.CFI is RES0.
I5-7902 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
0b10 Enabling and disabling of fault handling interrupts on corrected errors is supported and
controllable using ERR<n>CTLR.CFI.

0b11 Enabling and disabling of fault handling interrupts on corrected errors is supported, and
controllable using ERR<n>CTLR.WCFI for writes and ERR<n>CTLR.RCFI for reads.

All other values are reserved.

Otherwise:

Reserved, RES0.

UE, bits [9:8]

In-band error response (External Abort). Indicates whether the in-band error response and
associated controls are implemented by the node.

0b00 Does not support the in-band error response. ERR<n>CTLR.UE is RES0.

0b01 In-band error response is supported and always enabled. ERR<n>CTLR.UE is RES0.

0b10 In-band error response is supported and controllable using ERR<n>CTLR.UE.

0b11 In-band error response is supported, and controllable using ERR<n>CTLR.WUE for
writes and ERR<n>CTLR.RUE for reads.

It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred and recorded as
Deferred error, but is not deferred to the Requester, will signal an in-band error response to the
Requester.

FI, bits [7:6]

Fault handling interrupt. Indicates whether the fault handling interrupt and associated controls are
implemented by the node.

0b00 Does not support the fault handling interrupt. ERR<n>CTLR.FI is RES0.

0b01 Fault handling interrupt is supported and always enabled. ERR<n>CTLR.FI is RES0.

0b10 Fault handling interrupt is supported and controllable using ERR<n>CTLR.FI.

0b11 Fault handling interrupt is supported, and controllable using ERR<n>CTLR.WFI for
writes and ERR<n>CTLR.RFI for reads.

UI, bits [5:4]

Error recovery interrupt for uncorrected errors. Indicates whether the error handling interrupt and
associated controls are implemented by the node.

0b00 Does not support the error handling interrupt. ERR<n>CTLR.UI is RES0.

0b01 Error handling interrupt is supported and always enabled. ERR<n>CTLR.UI is RES0.

0b10 Error handling interrupt is supported and controllable using ERR<n>CTLR.UI.

0b11 Error handling interrupt is supported, and controllable using ERR<n>CTLR.WUI for
writes and ERR<n>CTLR.RUI for reads.

IMPLEMENTATION DEFINED, bits [3:2]

IMPLEMENTATION DEFINED.

ED, bits [1:0]

Error reporting and logging. Indicates error record <n> is the first record owned the node, and
whether the node implements the controls for enabling and disabling error reporting and logging.

0b01 Error reporting and logging always enabled. ERR<n>CTLR.ED is RES0.

0b10 Error reporting and logging is controllable using ERR<n>CTLR.ED.

All other values are reserved.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7903
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
Accessing the ERR<n>FR:

ERR<n>FR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Offset Instance

RAS 0x000 + (64 * n) ERR<n>FR
I5-7904 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.25 ERR<n>MISC0, Error Record Miscellaneous Register 0, n = 0 - 65534

The ERR<n>MISC0 characteristics are:

Purpose

IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might
contain:

• Information to locate where the error was detected.

• If the error was detected within a FRU, the identity of the FRU.

• A Corrected error counter or counters.

• Other state information not present in the corresponding status and address registers.

If the node that owns error record <n> implements architecturally-defined Corrected error counters
(ERR<n>FR.CEC != 0b000), and error record <n> can record countable errors, then
ERR<n>MISC0 implements the architecturally-defined Corrected error counter or counters.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

This register is present only when error record <n> is implemented. Otherwise, direct accesses to
ERR<n>MISC0 are RES0.

ERR<n>FR describes the features implemented by the node that owns error record <n>. <q> is the
index of the first error record owned by the same node as error record <n>. If the node owns a single
record, then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC0, writing zero returns the error record to an
initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or
Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault
Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled at
Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value to an
IMPLEMENTATION DEFINED field in ERR<n>CTLR.

Attributes

ERR<n>MISC0 is a 64-bit register.

Field descriptions

When ERR<q>FR.CEC == 0b000:

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED syndrome.

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7905
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
When ERR<q>FR.CEC == 0b100 and ERR<q>FR.RP == 0:

IMPLEMENTATION DEFINED, bits [63:48]

IMPLEMENTATION DEFINED syndrome.

OF, bit [47]

Sticky overflow bit. Set to 1 when ERR<n>MISC0.CEC is incremented and wraps through zero.

0b0 Counter has not overflowed.

0b1 Counter has overflowed.

A direct write that modifies this field might indirectly set ERR<n>STATUS.OF to an UNKNOWN
value and a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this field
to an UNKNOWN value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CEC, bits [46:32]

Corrected error count. Incremented for each Corrected error. It is IMPLEMENTATION DEFINED and
might be UNPREDICTABLE whether Deferred and Uncorrected errors are counted.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED syndrome.

When ERR<q>FR.CEC == 0b010 and ERR<q>FR.RP == 0:

IMPLEMENTATION DEFINED, bits [63:40]

IMPLEMENTATION DEFINED syndrome.

OF, bit [39]

Sticky overflow bit. Set to 1 when ERR<n>MISC0.CEC is incremented and wraps through zero.

0b0 Counter has not overflowed.

0b1 Counter has overflowed.

A direct write that modifies this field might indirectly set ERR<n>STATUS.OF to an UNKNOWN
value and a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this field
to an UNKNOWN value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED

63 48

OF

47

CEC

46 32

IMPLEMENTATION DEFINED

31 0

IMPLEMENTATION DEFINED

63 40

OF

39

CEC

38 32

IMPLEMENTATION DEFINED

31 0
I5-7906 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
CEC, bits [38:32]

Corrected error count. Incremented for each Corrected error. It is IMPLEMENTATION DEFINED and
might be UNPREDICTABLE whether Deferred and Uncorrected errors are counted.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED syndrome.

When ERR<q>FR.CEC == 0b100 and ERR<q>FR.RP == 1:

OFO, bit [63]

Sticky overflow bit, other. Set to 1 when ERR<n>MISC0.CECO is incremented and wraps through
zero.

0b0 Other counter has not overflowed.

0b1 Other counter has overflowed.

A direct write that modifies this field might indirectly set ERR<n>STATUS.OF to an UNKNOWN
value and a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this field
to an UNKNOWN value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CECO, bits [62:48]

Corrected error count, other. Incremented for each countable error that is not accounted for by
incrementing ERR<n>MISC0.CECR.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

OFR, bit [47]

Sticky overflow bit, repeat. Set to 1 when ERR<n>MISC0.CECR is incremented and wraps through
zero.

0b0 Repeat counter has not overflowed.

0b1 Repeat counter has overflowed.

A direct write that modifies this field might indirectly set ERR<n>STATUS.OF to an UNKNOWN
value and a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this field
to an UNKNOWN value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CECR, bits [46:32]

Corrected error count, repeat. Incremented for the first countable error, which also records other
syndrome for the error, and subsequently for each countable error that matches the recorded other
syndrome. Corrected errors are countable errors. It is IMPLEMENTATION DEFINED and might be
UNPREDICTABLE whether Deferred and Uncorrected errors are countable errors.

63

CECO

62 48 47

CECR

46 32

OFO OFR

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7907
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
Note

For example, the other syndrome might include the set and way information for an error detected in
a cache. This might be recorded in the IMPLEMENTATION DEFINED ERR<n>MISC<m> fields on a
first Corrected error. ERR<n>MISC0.CECR is then incremented for each subsequent Corrected
Error in the same set and way.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED syndrome.

When ERR<q>FR.CEC == 0b010 and ERR<q>FR.RP == 1:

IMPLEMENTATION DEFINED, bits [63:48]

IMPLEMENTATION DEFINED syndrome.

OFO, bit [47]

Sticky overflow bit, other. Set to 1 when ERR<n>MISC0.CECO is incremented and wraps through
zero.

0b0 Other counter has not overflowed.

0b1 Other counter has overflowed.

A direct write that modifies this field might indirectly set ERR<n>STATUS.OF to an UNKNOWN
value and a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this field
to an UNKNOWN value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CECO, bits [46:40]

Corrected error count, other. Incremented for each countable error that is not accounted for by
incrementing ERR<n>MISC0.CECR.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

OFR, bit [39]

Sticky overflow bit, repeat. Set to 1 when ERR<n>MISC0.CECR is incremented and wraps through
zero.

0b0 Repeat counter has not overflowed.

0b1 Repeat counter has overflowed.

A direct write that modifies this field might indirectly set ERR<n>STATUS.OF to an UNKNOWN
value and a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this field
to an UNKNOWN value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED

63 48 47

CECO

46 40 39

CECR

38 32

OFO OFR

IMPLEMENTATION DEFINED

31 0
I5-7908 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
CECR, bits [38:32]

Corrected error count, repeat. Incremented for the first countable error, which also records other
syndrome for the error, and subsequently for each countable error that matches the recorded other
syndrome. Corrected errors are countable errors. It is IMPLEMENTATION DEFINED and might be
UNPREDICTABLE whether Deferred and Uncorrected errors are countable errors.

Note

For example, the other syndrome might include the set and way information for an error detected in
a cache. This might be recorded in the IMPLEMENTATION DEFINED ERR<n>MISC<m> fields on a
first Corrected error. ERR<n>MISC0.CECR is then incremented for each subsequent Corrected
Error in the same set and way.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED syndrome.

Accessing the ERR<n>MISC0:

Reads from ERR<n>MISC0 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED
behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERR<n>PFGF.MV is 1, then some parts of this register are read/write when ERR<n>STATUS.MV is 1. See
ERR<n>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm
recommends that:

• Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.

• When ERR<n>STATUS.MV is 1, the miscellaneous syndrome specific to the most recently recorded error
ignores writes.

Note

These recommendations allow a counter to be reset in the presence of a persistent error, while preventing specific
information, such as that identifying a FRU, from being lost if an error is detected while the previous error is being
logged.

ERR<n>MISC0 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Offset Instance

RAS 0x020 + (64 * n) ERR<n>MISC0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7909
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.26 ERR<n>MISC1, Error Record Miscellaneous Register 1, n = 0 - 65534

The ERR<n>MISC1 characteristics are:

Purpose

IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might
contain:

• Information to locate where the error was detected.

• If the error was detected within a FRU, the identity of the FRU.

• A Corrected error counter or counters.

• Other state information not present in the corresponding status and address registers.

Configurations

This register is present only when error record <n> is implemented. Otherwise, direct accesses to
ERR<n>MISC1 are RES0.

ERR<n>FR describes the features implemented by the node that owns error record <n>. <q> is the
index of the first error record owned by the same node as error record <n>. If the node owns a single
record, then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC1, writing zero returns the error record to an
initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or
Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault
Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled at
Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value to an
IMPLEMENTATION DEFINED field in ERR<n>CTLR.

Attributes

ERR<n>MISC1 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED syndrome.

Accessing the ERR<n>MISC1:

Reads from ERR<n>MISC1 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED
behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERR<n>PFGF.MV is 1, then some parts of this register are read/write when ERR<n>STATUS.MV is 1. See
ERR<n>PFGF.MV for more information.

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0
I5-7910 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm
recommends that:

• Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.

• When ERR<n>STATUS.MV is 1, the miscellaneous syndrome specific to the most recently recorded error
ignores writes.

Note

These recommendations allow a counter to be reset in the presence of a persistent error, while preventing specific
information, such as that identifying a FRU, from being lost if an error is detected while the previous error is being
logged.

ERR<n>MISC1 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Offset Instance

RAS 0x028 + (64 * n) ERR<n>MISC1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7911
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.27 ERR<n>MISC2, Error Record Miscellaneous Register 2, n = 0 - 65534

The ERR<n>MISC2 characteristics are:

Purpose

IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might
contain:

• Information to locate where the error was detected.

• If the error was detected within a FRU, the identity of the FRU.

• A Corrected error counter or counters.

• Other state information not present in the corresponding status and address registers.

Configurations

This register is present only when (an implementation implements ERR<n>MISC2 or RAS System
Architecture v1.1 is implemented) and error record <n> is implemented. Otherwise, direct accesses
to ERR<n>MISC2 are RES0.

ERR<n>FR describes the features implemented by the node that owns error record <n>. <q> is the
index of the first error record owned by the same node as error record <n>. If the node owns a single
record, then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC2, writing zero returns the error record to an
initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or
Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

If RAS System Architecture v1.1 is not implemented, Arm recommends that ERR<n>MISC2 does
not require zeroing to return the record to a quiescent state.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault
Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled at
Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value to an
IMPLEMENTATION DEFINED field in ERR<n>CTLR.

Attributes

ERR<n>MISC2 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED syndrome.

Accessing the ERR<n>MISC2:

Reads from ERR<n>MISC2 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED
behavior.

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0
I5-7912 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERR<n>PFGF.MV is 1, then some parts of this register are read/write when ERR<n>STATUS.MV is 1. See
ERR<n>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm
recommends that:

• Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.

• When ERR<n>STATUS.MV is 1, the miscellaneous syndrome specific to the most recently recorded error
ignores writes.

Note

These recommendations allow a counter to be reset in the presence of a persistent error, while preventing specific
information, such as that identifying a FRU, from being lost if an error is detected while the previous error is being
logged.

ERR<n>MISC2 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Offset Instance

RAS 0x030 + (64 * n) ERR<n>MISC2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7913
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.28 ERR<n>MISC3, Error Record Miscellaneous Register 3, n = 0 - 65534

The ERR<n>MISC3 characteristics are:

Purpose

IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might
contain:

• Information to locate where the error was detected.

• If the error was detected within a FRU, the identity of the FRU.

• A Corrected error counter or counters.

• Other state information not present in the corresponding status and address registers.

If the node that owns error record n supports the RAS Timestamp Extension (ERR<n>FR.TS !=
0b00), then ERR<n>MISC3 contains the timestamp value for error record n when the error was
detected. Otherwise the contents of ERR<n>MISC3 are IMPLEMENTATION DEFINED.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

This register is present only when (an implementation implements ERR<n>MISC3 or RAS System
Architecture v1.1 is implemented) and error record <n> is implemented. Otherwise, direct accesses
to ERR<n>MISC3 are RES0.

ERR<n>FR describes the features implemented by the node that owns error record <n>. <q> is the
index of the first error record owned by the same node as error record <n>. If the node owns a single
record, then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC3, writing zero returns the error record to an
initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or
Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

If RAS System Architecture v1.1 is not implemented, Arm recommends that ERR<n>MISC3 does
not require zeroing to return the record to a quiescent state.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault
Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled at
Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value to an
IMPLEMENTATION DEFINED field in ERR<n>CTLR.

Attributes

ERR<n>MISC3 is a 64-bit register.

Field descriptions

When ERR<q>FR.TS != 0b00:

TS

63 32

TS

31 0
I5-7914 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
TS, bits [63:0]

Timestamp. Timestamp value recorded when the error was detected. Valid only if
ERR<n>STATUS.V == 1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO or RW.

When ERR<q>FR.TS == 0b00:

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED syndrome.

Accessing the ERR<n>MISC3:

Reads from ERR<n>MISC3 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED
behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERR<n>PFGF.MV is 1, then some parts of this register are read/write when ERR<n>STATUS.MV is 1. See
ERR<n>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm
recommends that:

• Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.

• When ERR<n>STATUS.MV is 1, the miscellaneous syndrome specific to the most recently recorded error
ignores writes.

Note

These recommendations allow a counter to be reset in the presence of a persistent error, while preventing specific
information, such as that identifying a FRU, from being lost if an error is detected while the previous error is being
logged.

ERR<n>MISC3 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

RAS 0x038 + (64 * n) ERR<n>MISC3
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7915
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.29 ERR<n>PFGCDN, Pseudo-fault Generation Countdown Register, n = 0 - 65534

The ERR<n>PFGCDN characteristics are:

Purpose

Generates one of the errors enabled in the corresponding ERR<n>PFGCTL register.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

This register is present only when error record <n> is implemented, the node implements the
Common Fault Injection Model Extension (ERR<n>FR.INJ != 0b00) and error record <n> is the
first error record owned by a node. Otherwise, direct accesses to ERR<n>PFGCDN are RES0.

ERR<n>FR describes the features implemented by the node.

Attributes

ERR<n>PFGCDN is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

CDN, bits [31:0]

Countdown value.

This field is copied to Error Generation Counter when either:

• Software writes ERR<n>PFGCTL.CDNEN with 1.

• The Error Generation Counter decrements to zero and ERR<n>PFGCTL.R == 1.

While ERR<n>PFGCTL.CDNEN == 1 and the Error Generation Counter is nonzero, the counter
decrements by 1 for each cycle at an IMPLEMENTATION DEFINED clock rate. When the counter
reaches 0, one of the errors enabled in the ERR<n>PFGCTL register is generated.

Note

The current Error Generation Counter value is not visible to software.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the ERR<n>PFGCDN:

ERR<n>PFGCDN can be accessed through its memory-mapped interface:

RES0

63 32

CDN

31 0

Component Offset Instance

RAS 0x810 + (64 * n) ERR<n>PFGCDN
I5-7916 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
This interface is accessible as follows:

• Accesses to this register are RW.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7917
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.30 ERR<n>PFGCTL, Pseudo-fault Generation Control Register, n = 0 - 65534

The ERR<n>PFGCTL characteristics are:

Purpose

Enables controlled fault generation.

Configurations

This register is present only when error record <n> is implemented, the node implements the
Common Fault Injection Model Extension (ERR<n>FR.INJ != 0b00) and error record <n> is the
first error record owned by a node. Otherwise, direct accesses to ERR<n>PFGCTL are RES0.

ERR<n>FR describes the features implemented by the node.

Attributes

ERR<n>PFGCTL is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

CDNEN, bit [31]

Countdown Enable. Controls transfers of the value held in ERR<n>PFGCDN to the Error
Generation Counter and enables this counter.

0b0 The Error Generation Counter is disabled.

0b1 The Error Generation Counter is enabled. On a write of 1 to this field, the Error
Generation Counter is set to ERR<n>PFGCDN.CDN.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

R, bit [30]

When the node supports this control:

R

Restart. Controls whether the Error Generation Counter restarts or stops counting on reaching zero.

0b0 On reaching zero, the Error Generation Counter will stop counting.

0b1 On reaching zero, the Error Generation Counter is set to ERR<n>PFGCDN.CDN.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

63 32

31

R

30

RES0

29 13 12 11

PN

10

ER

9

CI

8

CE

7 6

DE

5 4 3 2

UC

1

OF

0

CDNEN RAO/WI RAO/WI UEO UEU
UER
I5-7918 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
Bits [29:13]

Reserved, RES0.

Bit [12]

When the node always sets ERR<n>STATUS.MV to 0b1 when an injected error is recorded:

Reserved, RAO/WI.

When the node supports this control:

MV

Miscellaneous syndrome. The value written to ERR<n>STATUS.MV when an injected error is
recorded.

0b0 ERR<n>STATUS.MV is set to 0 when an injected error is recorded.

0b1 ERR<n>STATUS.MV is set to 1 when an injected error is recorded.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [11]

When the node always sets ERR<n>STATUS.AV to 0b1 when an injected error is recorded:

Reserved, RAO/WI.

When the node supports this control:

AV

Address syndrome. The value written to ERR<n>STATUS.AV when an injected error is recorded.

0b0 ERR<n>STATUS.AV is set to 0 when an injected error is recorded.

0b1 ERR<n>STATUS.AV is set to 1 when an injected error is recorded.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PN, bit [10]

When the node supports this control:

PN

Poison flag. The value written to ERR<n>STATUS.PN when an injected error is recorded.

0b0 ERR<n>STATUS.PN is set to 0 when an injected error is recorded.

0b1 ERR<n>STATUS.PN is set to 1 when an injected error is recorded.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7919
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
ER, bit [9]

When the node supports this control:

ER

Error Reported flag. The value written to ERR<n>STATUS.ER when an injected error is recorded.

0b0 ERR<n>STATUS.ER is set to 0 when an injected error is recorded.

0b1 ERR<n>STATUS.ER is set to 1 when an injected error is recorded.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CI, bit [8]

When the node supports this control:

CI

Critical Error flag. The value written to ERR<n>STATUS.CI when an injected error is recorded.

0b0 ERR<n>STATUS.CI is set to 0 when an injected error is recorded.

0b1 ERR<n>STATUS.CI is set to 1 when an injected error is recorded.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CE, bits [7:6]

When the node supports this control:

CE

Corrected Error generation enable. Controls the type of injected Corrected error generated by the
fault injection feature of the node.

0b00 An injected Corrected error will not be generated by the fault injection feature of the
node.

0b01 An injected non-specific Corrected error is generated in the fault injection state.
ERR<n>STATUS.CE is set to 0b10 when the injected error is recorded.

0b10 An injected transient Corrected error is generated in the fault injection state.
ERR<n>STATUS.CE is set to 0b01 when the injected error is recorded.

0b11 An injected persistent Corrected error is generated in the fault injection state.
ERR<n>STATUS.CE is set to 0b11 when the injected error is recorded.

The set of permitted values for this field is defined by ERR<n>PFGF.CE.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It
is IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on
an access to the component in the fault injection state and the data is not consumed.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
I5-7920 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
DE, bit [5]

When the node supports this control:

DE

Deferred Error generation enable. Controls whether an injected Deferred error is generated by the
fault injection feature of the node.

0b0 An injected Deferred error will not be generated by the fault generation feature of the
node.

0b1 An injected Deferred error is generated in the fault injection state.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It
is IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on
an access to the component in the fault injection state and the data is not consumed.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UEO, bit [4]

When the node supports this control:

UEO

Latent or Restartable Error generation enable. Controls whether an injected Latent or Restartable
error is generated by the fault injection feature of the node.

0b0 An injected Latent or Restartable error will not be generated by the fault generation
feature of the node.

0b1 An injected Latent or Restartable error is generated in the fault injection state.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It
is IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on
an access to the component in the fault injection state and the data is not consumed.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UER, bit [3]

When the node supports this control:

UER

Signaled or Recoverable Error generation enable. Controls whether an injected Signaled or
Recoverable error is generated by the fault injection feature of the node.

0b0 An injected Signaled or Recoverable error will not be generated by the fault generation
feature of the node.

0b1 An injected Signaled or Recoverable error is generated in the fault injection state.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It
is IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on
an access to the component in the fault injection state and the data is not consumed.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7921
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
Otherwise:

Reserved, RES0.

UEU, bit [2]

When the node supports this control:

UEU

Unrecoverable Error generation enable. Controls whether an injected Unrecoverable error is
generated by the fault injection feature of the node.

0b0 An injected Unrecoverable error will not be generated by the fault generation feature of
the node.

0b1 An injected Unrecoverable error is generated in the fault injection state.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It
is IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on
an access to the component in the fault injection state and the data is not consumed.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UC, bit [1]

When the node supports this control:

UC

Uncontainable Error generation enable. Controls whether an injected Uncontainable error is
generated by the fault injection feature of the node.

0b0 An injected Uncontainable error will not be generated by the fault generation feature of
the node.

0b1 An injected Uncontainable error is generated in the fault injection state.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It
is IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on
an access to the component in the fault injection state and the data is not consumed.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

OF, bit [0]

When the node supports this control:

OF

Overflow flag. The value written to ERR<n>STATUS.OF when an injected error is recorded.

0b0 ERR<n>STATUS.OF is set to 0 when an injected error is recorded.

0b1 ERR<n>STATUS.OF is set to 1 when an injected error is recorded.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
I5-7922 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
Reserved, RES0.

Accessing the ERR<n>PFGCTL:

ERR<n>PFGCTL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Offset Instance

RAS 0x808 + (64 * n) ERR<n>PFGCTL
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7923
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.31 ERR<n>PFGF, Pseudo-fault Generation Feature Register, n = 0 - 65534

The ERR<n>PFGF characteristics are:

Purpose

Defines which common architecturally-defined fault generation features are implemented.

Configurations

This register is present only when error record <n> is implemented, the node implements the
Common Fault Injection Model Extension (ERR<n>FR.INJ != 0b00) and error record <n> is the
first error record owned by a node. Otherwise, direct accesses to ERR<n>PFGF are RES0.

ERR<n>FR describes the features implemented by the node.

Attributes

ERR<n>PFGF is a 64-bit register.

Field descriptions

Bits [63:31]

Reserved, RES0.

R, bit [30]

Restartable. Support for Error Generation Counter restart mode.

0b0 The node does not support this feature. ERR<n>PFGCTL.R is RES0.

0b1 Error Generation Counter restart mode is implemented and is controlled by
ERR<n>PFGCTL.R. ERR<n>PFGCTL.R is a read/write field.

SYN, bit [29]

Syndrome. Fault syndrome injection.

0b0 When an injected error is recorded, the node sets ERR<n>STATUS.{IERR, SERR} to
IMPLEMENTATION DEFINED values. ERR<n>STATUS.{IERR, SERR} are UNKNOWN
when ERR<n>STATUS.V is 0.

0b1 When an injected error is recorded, the node does not update the
ERR<n>STATUS.{IERR, SERR} fields. ERR<n>STATUS.{IERR, SERR} are
writable when ERR<n>STATUS.V is 0.

Note

If ERR<n>PFGF.SYN is 1, software can write specific values into the ERR<n>STATUS.{IERR,
SERR} fields when setting up a fault injection event. The sets of values that can be written to these
fields is IMPLEMENTATION DEFINED.

NA, bit [28]

No access required. Defines whether this component fakes detection of the error on an access to the
component or spontaneously in the fault injection state.

0b0 The component fakes detection of the error on an access to the component.

RES0

63 32

3131

R

30 29

NA

28

RES0

27 13

MV

12

AV

11

PN

10

ER

9

CI

8

CE

7 6

DE

5 4 3 2

UC

1

OF

0

RES0 SYN UEO UEU
UER
I5-7924 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
0b1 The component fakes detection of the error spontaneously in the fault injection state.

Bits [27:13]

Reserved, RES0.

MV, bit [12]

Miscellaneous syndrome.

Additional syndrome injection. Defines whether software can control all or part of the syndrome
recorded in the ERR<n>MISC<m> registers when an injected error is recorded.

0b0 When an injected error is recorded, the node might update ERR<n>MISC<m>. If any
syndrome is recorded by the node in ERR<n>MISC<m>, then ERR<n>STATUS.MV is
set to 1.

ERR<n>PFGCTL.MV is RES0.

0b1 When an injected error is recorded, the node might update some, but not all
ERR<n>MISC<m> syndrome fields, and updates ERR<n>STATUS.MV as follows:

• If any syndrome is recorded by the node in ERR<n>MISC<m>, then
ERR<n>STATUS.MV is set to 1.

• Otherwise, ERR<n>STATUS.MV is set to ERR<n>PFGCTL.MV.

It is IMPLEMENTATION DEFINED which ERR<n>MISC<m> syndrome fields, if any, are
updated. Some syndrome fields might always be updated by the node when an error is
recorded. For example, a corrected error counter might always be updated when any
countable error, including a countable injected error, is recorded. Other
ERR<n>MISC<m> syndrome fields are not updated by the node and are writable when
ERR<n>STATUS.MV is 0.

If the node always sets ERR<n>STATUS.MV to 1 when recording an injected error then
ERR<n>PFGCTL.MV is RAO/WI, otherwise ERR<n>PFGCTL.MV is a read/write
field.

Note

If ERR<n>PFGF.MV is 1, software can write specific additional syndrome values into the
ERR<n>MISC<m> registers when setting up a fault injection event. The values that can be written
to these registers are IMPLEMENTATION DEFINED.

AV, bit [11]

Address syndrome. Address syndrome injection.

0b0 When an injected error is recorded, the node either sets ERR<n>ADDR and
ERR<n>STATUS.AV for the access, or leaves these unchanged. ERR<n>PFGCTL.AV
is RES0.

0b1 When an injected error is recorded, the node does not update ERR<n>ADDR and does
one of:

• Sets ERR<n>STATUS.AV to ERR<n>PFGCTL.AV. ERR<n>PFGCTL.AV is a
read/write field.

• Sets ERR<n>STATUS.AV to 1. ERR<n>PFGCTL.AV is RAO/WI.

ERR<n>ADDR is writable when ERR<n>STATUS.AV is 0.

Note
If ERR<n>PFGF.AV is 1, software can write a specific address value into ERR<n>ADDR when
setting up a fault injection event.

PN, bit [10]

When the node supports this flag:

PN
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7925
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
Poison flag. Describes how the fault generation feature of the node sets the ERR<n>STATUS.PN
status flag.

0b0 When an injected error is recorded, it is IMPLEMENTATION DEFINED whether the node
sets ERR<n>STATUS.PN to 1. ERR<n>PFGCTL.PN is RES0.

0b1 When an injected error is recorded, ERR<n>STATUS.PN is set to
ERR<n>PFGCTL.PN. ERR<n>PFGCTL.PN is a read/write field.

This behavior replaces the architecture-defined rules for setting the ERR<n>STATUS.PN bit.

Otherwise:

Reserved, RAZ.

ER, bit [9]

When the node supports this flag:

ER

Error Reported flag. Describes how the fault generation feature of the node sets the
ERR<n>STATUS.ER status flag.

0b0 When an injected error is recorded, the node sets ERR<n>STATUS.ER according to the
architecture-defined rules for setting the ER field. ERR<n>PFGCTL.ER is RES0.

0b1 When an injected error is recorded, ERR<n>STATUS.ER is set to
ERR<n>PFGCTL.ER. This behavior replaces the architecture-defined rules for setting
the ER bit. ERR<n>PFGCTL.ER is a read/write field.

Otherwise:

Reserved, RAZ.

CI, bit [8]

When the node supports this flag:

CI

Critical Error flag. Describes how the fault generation feature of the node sets the
ERR<n>STATUS.CI status flag.

0b0 When an injected error is recorded, it is IMPLEMENTATION DEFINED whether the node
sets ERR<n>STATUS.CI to 1. ERR<n>PFGCTL.CI is RES0.

0b1 When an injected error is recorded, ERR<n>STATUS.CI is set to ERR<n>PFGCTL.CI.
ERR<n>PFGCTL.CI is a read/write field.

This behavior replaces the architecture-defined rules for setting the ERR<n>STATUS.CI bit.

Otherwise:

Reserved, RAZ.

CE, bits [7:6]

When the node supports this type of error:

CE

Corrected Error generation. Describes the types of Corrected error that the fault generation feature
of the node can generate.

0b00 The fault generation feature of the node does not generate Corrected errors.
ERR<n>PFGCTL.CE is RES0.

0b01 The fault generation feature of the node allows generation of a non-specific Corrected
error, that is, a Corrected error that is recorded by setting ERR<n>STATUS.CE to 0b10.
ERR<n>PFGCTL.CE is a read/write field. The values 0b10 and 0b11 in
ERR<n>PFGCTL.CE are reserved.
I5-7926 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
0b11 The fault generation feature of the node allows generation of transient or persistent
Corrected errors, that is, Corrected errors that are recorded by setting
ERR<n>STATUS.CE to 0b01 or 0b11 respectively. ERR<n>PFGCTL.CE is a read/write
field. The value 0b01 in ERR<n>PFGCTL.CE is reserved.

All other values are reserved.

If ERR<n>FR.FRX is 1, then ERR<n>FR.CE indicates whether the node supports this type of error.

Otherwise:

Reserved, RAZ.

DE, bit [5]

When the node supports this type of error:

DE

Deferred Error generation. Describes whether the fault generation feature of the node can generate
Deferred errors.

0b0 The fault generation feature of the node does not generate Deferred errors.
ERR<n>PFGCTL.DE is RES0.

0b1 The fault generation feature of the node allows generation of Deferred errors.
ERR<n>PFGCTL.DE is a read/write field.

If ERR<n>FR.FRX is 1, then ERR<n>FR.DE indicates whether the node supports this type of error.

Otherwise:

Reserved, RAZ.

UEO, bit [4]

When the node supports this type of error:

UEO

Latent or Restartable Error generation. Describes whether the fault generation feature of the node
can generate Latent or Restartable errors.

0b0 The fault generation feature of the node does not generate Latent or Restartable errors.
ERR<n>PFGCTL.UEO is RES0.

0b1 The fault generation feature of the node allows generation of Latent or Restartable
errors. ERR<n>PFGCTL.UEO is a read/write field.

If ERR<n>FR.FRX is 1, then ERR<n>FR.UEO indicates whether the node supports this type of
error.

Otherwise:

Reserved, RAZ.

UER, bit [3]

When the node supports this type of error:

UER

Signaled or Recoverable Error generation. Describes whether the fault generation feature of the
node can generate Signaled or Recoverable errors.

0b0 The fault generation feature of the node does not generate Signaled or Recoverable
errors. ERR<n>PFGCTL.UER is RES0.

0b1 The fault generation feature of the node allows generation of Signaled or Recoverable
errors. ERR<n>PFGCTL.UER is a read/write field.

If ERR<n>FR.FRX is 1, then ERR<n>FR.UER indicates whether the node supports this type of
error.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7927
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
Otherwise:

Reserved, RAZ.

UEU, bit [2]

When the node supports this type of error:

UEU

Unrecoverable Error generation. Describes whether the fault generation feature of the node can
generate Unrecoverable errors.

0b0 The fault generation feature of the node does not generate Unrecoverable errors.
ERR<n>PFGCTL.UEU is RES0.

0b1 The fault generation feature of the node allows generation of Unrecoverable errors.
ERR<n>PFGCTL.UEU is a read/write field.

If ERR<n>FR.FRX is 1, then ERR<n>FR.UEU indicates whether the node supports this type of
error.

Otherwise:

Reserved, RAZ.

UC, bit [1]

When the node supports this type of error:

UC

Uncontainable Error generation. Describes whether the fault generation feature of the node can
generate Uncontainable errors.

0b0 The fault generation feature of the node does not generate Uncontainable errors.
ERR<n>PFGCTL.UC is RES0.

0b1 The fault generation feature of the node allows generation of Uncontainable errors.
ERR<n>PFGCTL.UC is a read/write field.

If ERR<n>FR.FRX is 1, then ERR<n>FR.UC indicates whether the node supports this type of error.

Otherwise:

Reserved, RAZ.

OF, bit [0]

When the node supports this flag:

OF

Overflow flag. Describes how the fault generation feature of the node sets the ERR<n>STATUS.OF
status flag.

0b0 When an injected error is recorded, the node sets ERR<n>STATUS.OF according to the
architecture-defined rules for setting the OF field. ERR<n>PFGCTL.OF is RES0.

0b1 When an injected error is recorded, ERR<n>STATUS.OF is set to
ERR<n>PFGCTL.OF. This behavior replaces the architecture-defined rules for setting
the OF bit. ERR<n>PFGCTL.OF is a read/write field.

Otherwise:

Reserved, RAZ.
I5-7928 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
Accessing the ERR<n>PFGF:

ERR<n>PFGF can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Offset Instance

RAS 0x800 + (64 * n) ERR<n>PFGF
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7929
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.32 ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

The ERR<n>STATUS characteristics are:

Purpose

Contains status information for error record <n>, including:

• Whether any error has been detected (valid).

• Whether any detected error was not corrected, and returned to a Requester.

• Whether any detected error was not corrected and deferred.

• Whether an error record has been discarded because additional errors have been detected
before the first error was handled by software (overflow).

• Whether any error has been reported.

• Whether the other error record registers contain valid information.

• Whether the error was reported because poison data was detected or because a corrupt value
was detected by an error detection code.

• A primary error code.

• An IMPLEMENTATION DEFINED extended error code.

Within this register:

• ERR<n>STATUS.{AV, V, MV} are valid bits that define whether error record <n> registers
are valid.

• ERR<n>STATUS.{UE, OF, CE, DE, UET} encode the types of error or errors recorded.

• ERR<n>STATUS.{CI, ER, PN, IERR, SERR} are syndrome fields.

Configurations

This register is present only when error record <n> is implemented. Otherwise, direct accesses to
ERR<n>STATUS are RES0.

ERR<n>FR describes the features implemented by the node that owns error record <n>. <q> is the
index of the first error record owned by the same node as error record <n>. If the node owns a single
record, then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>STATUS, writing zero returns the error record to
an initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or
Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault
Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled at
Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value to an
IMPLEMENTATION DEFINED field in ERR<n>CTLR.

Attributes

ERR<n>STATUS is a 64-bit register.
I5-7930 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
Field descriptions

When RAS System Architecture v1.1 is implemented:

Bits [63:32]

Reserved, RES0.

AV, bit [31]

When error record <n> includes an address associated with an error:

AV

Address Valid.

0b0 ERR<n>ADDR not valid.

0b1 ERR<n>ADDR contains an address associated with the highest priority error recorded
by this record.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is W1C.

Otherwise:

Reserved, RES0.

V, bit [30]

Status Register Valid.

0b0 ERR<n>STATUS not valid.

0b1 ERR<n>STATUS valid. At least one error has been recorded.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is W1C.

UE, bit [29]

Uncorrected Error.

0b0 No errors have been detected, or all detected errors have been either corrected or
deferred.

0b1 At least one detected error was not corrected and not deferred.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write 1 to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

• Otherwise, access to this field is W1C.

RES0

63 32

AV

31

V

30

UE

29

ER

28

OF

27

MV

26

CE

25 24

DE

23

PN

22

UET

21 20

CI

19

RES0

18 16

IERR

15 8

SERR

7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7931
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
ER, bit [28]

Error Reported.

0b0 No in-band error response (External Abort) signaled to the Requester making the access
or other transaction.

0b1 An in-band error response was signaled by the component to the Requester making the
access or other transaction. This can be because any of the following are true:

• The applicable one of the ERR<n>CTLR.{WUE, RUE, UE} fields is
implemented and was 1 when an error was detected and not corrected.

• The applicable one of the ERR<n>CTLR.{WUE, RUE, UE} fields is not
implemented and the component always reports errors.

It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred and recorded as a
Deferred error, but is not deferred to the Requester, will signal an in-band error response to the
Requester, causing this field to be set to 1. If no in-band error response to the Requester, this field
is set to 0.

Note

An in-band error response signaled by the component might be masked and not generate any
exception.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write 1 to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if all of the following are true:

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.DE == 0.

— This field can be set to 0b1 by a Deferred error.

• UNKNOWN/WI if all of the following are true:

— ERR<n>STATUS.UE == 0.

— This field is never set to 0b1 by a Deferred error.

• When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

• Otherwise, access to this field is W1C.

OF, bit [27]

Overflow.

Indicates that multiple errors have been detected. This field is set to 1 when one of the following
occurs:

• A Corrected error counter is implemented, an error is counted, and the counter overflows.

• ERR<n>STATUS.V was previously 1, a Corrected error counter is not implemented, and a
Corrected error is recorded.

• ERR<n>STATUS.V was previously 1, and a type of error other than a Corrected error is
recorded.

Otherwise, this field is unchanged when an error is recorded.

If a Corrected error counter is implemented:

• A direct write that modifies the counter overflow flag indirectly might set this field to an
UNKNOWN value.

• A direct write to this field that clears this field to zero might indirectly set the counter
overflow flag to an UNKNOWN value.

0b0 Since this field was last cleared to zero, no error syndrome has been discarded and, if a
Corrected error counter is implemented, it has not overflowed.
I5-7932 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
0b1 Since this field was last cleared to zero, at least one error syndrome has been discarded
or, if a Corrected error counter is implemented, it might have overflowed.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write 1 to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

• Otherwise, access to this field is W1C.

MV, bit [26]

When error record <n> includes an additional information for an error:

MV

Miscellaneous Registers Valid.

0b0 ERR<n>MISC<m> not valid.

0b1 The IMPLEMENTATION DEFINED contents of the ERR<n>MISC<m> registers contains
additional information for an error recorded by this record.

Note

If the ERR<n>MISC<m> registers can contain additional information for a previously recorded
error, then the contents must be self-describing to software or a user. For example, certain fields
might relate only to Corrected errors, and other fields only to the most recent error that was not
discarded.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is W1C.

Otherwise:

Reserved, RES0.

CE, bits [25:24]

Corrected Error.

0b00 No errors were corrected.

0b01 At least one transient error was corrected.

0b10 At least one error was corrected.

0b11 At least one persistent error was corrected.

The mechanism by which a component or node detects whether a Corrected error is transient or
persistent is IMPLEMENTATION DEFINED. If no such mechanism is implemented, then the node sets
this field to 0b10 when a corrected error is recorded.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write ones to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

• Otherwise, access to this field is W1C.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7933
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
DE, bit [23]

Deferred Error.

0b0 No errors were deferred.

0b1 At least one error was not corrected and deferred.

Support for deferring errors is IMPLEMENTATION DEFINED.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write 1 to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

• Otherwise, access to this field is W1C.

PN, bit [22]

Poison.

0b0 Uncorrected error or Deferred error recorded because a corrupt value was detected, for
example, by an error detection code (EDC), or Corrected error recorded.

0b1 Uncorrected error or Deferred error recorded because a poison value was detected.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write 1 to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— ERR<n>STATUS.V == 0.

— (ERR<n>STATUS.DE == 0 and ERR<n>STATUS.UE == 0).

• Otherwise, access to this field is W1C.

UET, bits [21:20]

Uncorrected Error Type. Describes the state of the component after detecting or consuming an
Uncorrected error.

0b00 Uncorrected error, Uncontainable error (UC).

0b01 Uncorrected error, Unrecoverable error (UEU).

0b10 Uncorrected error, Latent or Restartable error (UEO).

0b11 Uncorrected error, Signaled or Recoverable error (UER).

Note

Software might use the information in the error record registers to determine what recovery is
necessary.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write ones to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— ERR<n>STATUS.V == 0.

— ERR<n>STATUS.UE == 0.

• Otherwise, access to this field is W1C.
I5-7934 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
CI, bit [19]

Critical Error. Indicates whether a critical error condition has been recorded.

0b0 No critical error condition.

0b1 Critical error condition.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write 1 to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

• Otherwise, access to this field is W1C.

Bits [18:16]

Reserved, RES0.

IERR, bits [15:8]

IMPLEMENTATION DEFINED error code. Used with any primary error code ERR<n>STATUS.SERR
value. Further IMPLEMENTATION DEFINED information can be placed in the ERR<n>MISC<m>
registers.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any
value not in this set is written to this register, then the value read back from this field is UNKNOWN.

Note

This means that one or more bits of this field might be implemented as fixed read-as-zero or
read-as-one values.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if all of the following are true:

— The Common Fault Injection Model Extension is not implemented by the node that
owns this error record.

— ERR<n>STATUS.V == 0.

• UNKNOWN/WI if all of the following are true:

— ERR<q>PFGF.SYN == 0.

— ERR<n>STATUS.V == 0.

• Otherwise, access to this field is RW.

SERR, bits [7:0]

Architecturally-defined primary error code. The primary error code might be used by a fault
handling agent to triage an error without requiring device-specific code. For example, to count and
threshold corrected errors in software, or generate a short log entry.

0x00 No error.

0x01 IMPLEMENTATION DEFINED error.

0x02 Data value from (non-associative) internal memory. For example, ECC from on-chip
SRAM or buffer.

0x03 IMPLEMENTATION DEFINED pin. For example, nSEI pin.

0x04 Assertion failure. For example, consistency failure.

0x05 Error detected on internal data path. For example, parity on ALU result.

0x06 Data value from associative memory. For example, ECC error on cache data.

0x07 Address/control value from associative memory. For example, ECC error on cache tag.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7935
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
0x08 Data value from a TLB. For example, ECC error on TLB data.

0x09 Address/control value from a TLB. For example, ECC error on TLB tag.

0x0A Data value from producer. For example, parity error on write data bus.

0x0B Address/control value from producer. For example, parity error on address bus.

0x0C Data value from (non-associative) external memory. For example, ECC error in
SDRAM.

0x0D Illegal address (software fault). For example, access to unpopulated memory.

0x0E Illegal access (software fault). For example, byte write to word register.

0x0F Illegal state (software fault). For example, device not ready.

0x10 Internal data register. For example, parity on a SIMD&FP register. For a PE, all
general-purpose, stack pointer, SIMD&FP, and SVE registers are data registers.

0x11 Internal control register. For example, Parity on a System register. For a PE, all registers
other than general-purpose, stack pointer, SIMD&FP, and SVE registers are control
registers.

0x12 Error response from Completer of access. For example, error response from cache
write-back.

0x13 External timeout. For example, timeout on interaction with another component.

0x14 Internal timeout. For example, timeout on interface within the component.

0x15 Deferred error from Completer not supported at Requester. For example, poisoned data
received from the Completer of an access by a Requester that cannot defer the error
further.

0x16 Deferred error from Requester not supported at Completer. For example, poisoned data
received from the Requester of an access by a Completer that cannot defer the error
further.

0x17 Deferred error from Completer passed through. For example, poisoned data received
from the Completer of an access and returned to the Requester.

0x18 Deferred error from Requester passed through. For example, poisoned data received
from the Requester of an access and deferred to the Completer.

0x19 Error recorded by PCIe error logs. Indicates that the component has recorded an error
in a PCIe error log. This might be the PCIe device status register, AER, DVSEC, or
other mechanisms defined by PCIe.

0x1A Other internal error. For example, parity error on internal state of the component that is
not covered by another primary error code.

All other values are reserved.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any
value not in this set is written to this register, then the value read back from this field is UNKNOWN.

Note
This means that one or more bits of this field might be implemented as fixed read-as-zero or
read-as-one values.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if all of the following are true:

— The Common Fault Injection Model Extension is not implemented by the node that
owns this error record.

— ERR<n>STATUS.V == 0.

• UNKNOWN/WI if all of the following are true:

— ERR<q>PFGF.SYN == 0.
I5-7936 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
— ERR<n>STATUS.V == 0.

• Otherwise, access to this field is RW.

When RAS System Architecture v1.0 is implemented:

Bits [63:32]

Reserved, RES0.

AV, bit [31]

When error record <n> includes an address associated with an error:

AV

Address Valid.

0b0 ERR<n>ADDR not valid.

0b1 ERR<n>ADDR contains an address associated with the highest priority error recorded
by this record.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

• RO if all of the following are true:

— ERR<n>STATUS.DE == 0.

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.CE != 0b00.

— ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.DE != 0.

— ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE != 0.

— ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is W1C.

Otherwise:

Reserved, RES0.

V, bit [30]

Status Register Valid.

0b0 ERR<n>STATUS not valid.

0b1 ERR<n>STATUS valid. At least one error has been recorded.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

RES0

63 32

AV

31

V

30

UE

29

ER

28

OF

27

MV

26

CE

25 24

DE

23

PN

22

UET

21 20

RES0

19 16

IERR

15 8

SERR

7 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7937
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
Accessing this field has the following behavior:

• RO if all of the following are true:

— ERR<n>STATUS.CE != 0b00.

— ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.DE != 0.

— ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE != 0.

— ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is W1C.

UE, bit [29]

Uncorrected Error.

0b0 No errors have been detected, or all detected errors have been either corrected or
deferred.

0b1 At least one detected error was not corrected and not deferred.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write 1 to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

• RO if all of the following are true:

— ERR<n>STATUS.OF == 1.

— ERR<n>STATUS.OF is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is W1C.

ER, bit [28]

Error Reported.

0b0 No in-band error response (External Abort) signaled to the Requester making the access
or other transaction.

0b1 An in-band error response was signaled by the component to the Requester making the
access or other transaction. This can be because any of the following are true:

• The applicable one of the ERR<n>CTLR.{WUE, RUE, UE} fields is
implemented and was 1 when an error was detected and not corrected.

• The applicable one of the ERR<n>CTLR.{WUE, RUE, UE} fields is not
implemented and the component always reports errors.

It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred and recorded as a
Deferred error, but is not deferred to the Requester, will signal an in-band error response to the
Requester, causing this field to be set to 1. If no in-band error response to the Requester, this field
is set to 0.

Note

An in-band error response signaled by the component might be masked and not generate any
exception.

If this field is nonzero, then Arm recommends that software write 1 to this field to clear this field to
zero, when any of:

• Clearing ERR<n>STATUS.V to 0.

• Clearing ERR<n>STATUS.UE to 0, if this field is never set to 1 by a Deferred error.
I5-7938 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
• Clearing ERR<n>STATUS.{UE,DE} to {0,0}, if this field can be set to 1 by a Deferred error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if all of the following are true:

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.DE == 0.

— This field can be set to 0b1 by a Deferred error.

• UNKNOWN/WI if all of the following are true:

— ERR<n>STATUS.UE == 0.

— This field is never set to 0b1 by a Deferred error.

• When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

• RO if all of the following are true:

— ERR<n>STATUS.DE == 0.

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.CE != 0b00.

— ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.DE != 0.

— ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE != 0.

— ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is W1C.

OF, bit [27]

Overflow.

Indicates that multiple errors have been detected. This field is set to 1 when one of the following
occurs:

• An Uncorrected error is detected and ERR<n>STATUS.UE == 1.

• A Deferred error is detected, ERR<n>STATUS.UE == 0 and ERR<n>STATUS.DE == 1.

• A Corrected error is detected, no Corrected error counter is implemented,
ERR<n>STATUS.UE == 0, ERR<n>STATUS.DE == 0, and ERR<n>STATUS.CE != 0b00.
ERR<n>STATUS.CE might be updated for the new Corrected error.

• A Corrected error counter is implemented, ERR<n>STATUS.UE == 0,
ERR<n>STATUS.DE == 0, and the counter overflows.

It is IMPLEMENTATION DEFINED whether this field is set to 1 when one of the following occurs:

• A Deferred error is detected and ERR<n>STATUS.UE == 1.

• A Corrected error is detected, no Corrected error counter is implemented, and
ERR<n>STATUS.{UE, DE} != {0, 0}.

• A Corrected error counter is implemented, ERR<n>STATUS.{UE, DE} != {0, 0}, and the
counter overflows.

It is IMPLEMENTATION DEFINED whether this field is cleared to 0 when one of the following occurs:

• An Uncorrected error is detected and ERR<n>STATUS.UE == 0.

• A Deferred error is detected, ERR<n>STATUS.UE == 0, and ERR<n>STATUS.DE == 0.

• A Corrected error is detected, ERR<n>STATUS.UE == 0, ERR<n>STATUS.DE == 0, and
ERR<n>STATUS.CE == 0b00.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7939
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
The IMPLEMENTATION DEFINED clearing of this field might also depend on the value of the other
error status fields.

If a Corrected error counter is implemented:

• A direct write that modifies the counter overflow flag indirectly might set this field to an
UNKNOWN value.

• A direct write to this field that clears this field to 0 might indirectly set the counter overflow
flag to an UNKNOWN value.

0b0 If ERR<n>STATUS.UE == 1, then no error syndrome for an Uncorrected error has been
discarded.

If ERR<n>STATUS.UE == 0 and ERR<n>STATUS.DE == 1, then no error syndrome
for a Deferred error has been discarded.

If ERR<n>STATUS.UE == 0, ERR<n>STATUS.DE == 0, and a Corrected error
counter is implemented, then the counter has not overflowed.

If ERR<n>STATUS.UE == 0, ERR<n>STATUS.DE == 0, ERR<n>STATUS.CE !=
0b00, and no Corrected error counter is implemented, then no error syndrome for a
Corrected error has been discarded.

Note
This field might have been set to 1 when an error syndrome was discarded and later
cleared to 0 when a higher priority syndrome was recorded.

0b1 At least one error syndrome has been discarded or, if a Corrected error counter is
implemented, it might have overflowed.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write 1 to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

• Otherwise, access to this field is W1C.

MV, bit [26]

When error record <n> includes an additional information for an error:

MV

Miscellaneous Registers Valid.

0b0 ERR<n>MISC<m> not valid.

0b1 The IMPLEMENTATION DEFINED contents of the ERR<n>MISC<m> registers contains
additional information for an error recorded by this record.

Note

If the ERR<n>MISC<m> registers can contain additional information for a previously recorded
error, then the contents must be self-describing to software or a user. For example, certain fields
might relate only to Corrected errors, and other fields only to the most recent error that was not
discarded.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

• RO if all of the following are true:

— ERR<n>STATUS.DE == 0.

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.CE != 0b00.
I5-7940 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
— ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.DE != 0.

— ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE != 0.

— ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is W1C.

Otherwise:

Reserved, RES0.

CE, bits [25:24]

Corrected Error.

0b00 No errors were corrected.

0b01 At least one transient error was corrected.

0b10 At least one error was corrected.

0b11 At least one persistent error was corrected.

The mechanism by which a component or node detects whether a Corrected error is transient or
persistent is IMPLEMENTATION DEFINED. If no such mechanism is implemented, then the node sets
this field to 0b10 when a corrected error is recorded.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write ones to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

• RO if all of the following are true:

— ERR<n>STATUS.OF == 1.

— ERR<n>STATUS.OF is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is W1C.

DE, bit [23]

Deferred Error.

0b0 No errors were deferred.

0b1 At least one error was not corrected and deferred.

Support for deferring errors is IMPLEMENTATION DEFINED.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write 1 to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

• RO if all of the following are true:

— ERR<n>STATUS.OF == 1.

— ERR<n>STATUS.OF is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is W1C.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7941
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
PN, bit [22]

Poison.

0b0 Uncorrected error or Deferred error recorded because a corrupt value was detected, for
example, by an error detection code (EDC), or Corrected error recorded.

0b1 Uncorrected error or Deferred error recorded because a poison value was detected.

If this field is nonzero, then Arm recommends that software write 1 to this field to clear this field to
zero, when any of:

• Clearing ERR<n>STATUS.V to 0.

• Clearing both ERR<n>STATUS.{DE, UE} to 0.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— ERR<n>STATUS.V == 0.

— (ERR<n>STATUS.DE == 0 and ERR<n>STATUS.UE == 0).

• RO if all of the following are true:

— ERR<n>STATUS.DE == 0.

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.CE != 0b00.

— ERR<n>STATUS.DE is not being cleared to 0b00 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.DE != 0.

— ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE != 0.

— ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is W1C.

UET, bits [21:20]

Uncorrected Error Type. Describes the state of the component after detecting or consuming an
Uncorrected error.

0b00 Uncorrected error, Uncontainable error (UC).

0b01 Uncorrected error, Unrecoverable error (UEU).

0b10 Uncorrected error, Latent or Restartable error (UEO).

0b11 Uncorrected error, Signaled or Recoverable error (UER).

Note

Software might use the information in the error record registers to determine what recovery is
necessary.

If this field is nonzero, then Arm recommends that software write ones to this field to clear this field
to zero, when any of:

• Clearing ERR<n>STATUS.V to 0.

• Clearing ERR<n>STATUS.UE to 0.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.
I5-7942 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— ERR<n>STATUS.V == 0.

— ERR<n>STATUS.UE == 0.

• RO if all of the following are true:

— ERR<n>STATUS.DE == 0.

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.CE != 0b00.

— ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.DE != 0.

— ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE != 0.

— ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is W1C.

Bits [19:16]

Reserved, RES0.

IERR, bits [15:8]

IMPLEMENTATION DEFINED error code. Used with any primary error code ERR<n>STATUS.SERR
value. Further IMPLEMENTATION DEFINED information can be placed in the ERR<n>MISC<m>
registers.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any
value not in this set is written to this register, then the value read back from this field is UNKNOWN.

Note

This means that one or more bits of this field might be implemented as fixed read-as-zero or
read-as-one values.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if all of the following are true:

— The Common Fault Injection Model Extension is not implemented by the node that
owns this error record.

— ERR<n>STATUS.V == 0.

• UNKNOWN/WI if all of the following are true:

— ERR<q>PFGF.SYN == 0.

— ERR<n>STATUS.V == 0.

• RO if all of the following are true:

— ERR<n>STATUS.DE == 0.

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.CE != 0b00.

— ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.DE != 0.

— ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7943
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
• RO if all of the following are true:

— ERR<n>STATUS.UE != 0.

— ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is RW.

SERR, bits [7:0]

Architecturally-defined primary error code. The primary error code might be used by a fault
handling agent to triage an error without requiring device-specific code. For example, to count and
threshold corrected errors in software, or generate a short log entry.

0x00 No error.

0x01 IMPLEMENTATION DEFINED error.

0x02 Data value from (non-associative) internal memory. For example, ECC from on-chip
SRAM or buffer.

0x03 IMPLEMENTATION DEFINED pin. For example, nSEI pin.

0x04 Assertion failure. For example, consistency failure.

0x05 Error detected on internal data path. For example, parity on ALU result.

0x06 Data value from associative memory. For example, ECC error on cache data.

0x07 Address/control value from associative memory. For example, ECC error on cache tag.

0x08 Data value from a TLB. For example, ECC error on TLB data.

0x09 Address/control value from a TLB. For example, ECC error on TLB tag.

0x0A Data value from producer. For example, parity error on write data bus.

0x0B Address/control value from producer. For example, parity error on address bus.

0x0C Data value from (non-associative) external memory. For example, ECC error in
SDRAM.

0x0D Illegal address (software fault). For example, access to unpopulated memory.

0x0E Illegal access (software fault). For example, byte write to word register.

0x0F Illegal state (software fault). For example, device not ready.

0x10 Internal data register. For example, parity on a SIMD&FP register. For a PE, all
general-purpose, stack pointer, SIMD&FP, and SVE registers are data registers.

0x11 Internal control register. For example, Parity on a System register. For a PE, all registers
other than general-purpose, stack pointer, SIMD&FP, and SVE registers are control
registers.

0x12 Error response from Completer of access. For example, error response from cache
write-back.

0x13 External timeout. For example, timeout on interaction with another component.

0x14 Internal timeout. For example, timeout on interface within the component.

0x15 Deferred error from Completer not supported at Requester. For example, poisoned data
received from the Completer of an access by a Requester that cannot defer the error
further.

0x16 Deferred error from Requester not supported at Completer. For example, poisoned data
received from the Requester of an access by a Completer that cannot defer the error
further.

0x17 Deferred error from Completer passed through. For example, poisoned data received
from the Completer of an access and returned to the Requester.

0x18 Deferred error from Requester passed through. For example, poisoned data received
from the Requester of an access and deferred to the Completer.

0x19 Error recorded by PCIe error logs. Indicates that the component has recorded an error
in a PCIe error log. This might be the PCIe device status register, AER, DVSEC, or
other mechanisms defined by PCIe.
I5-7944 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
0x1A Other internal error. For example, parity error on internal state of the component that is
not covered by another primary error code.

All other values are reserved.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any
value not in this set is written to this register, then the value read back from this field is UNKNOWN.

Note

This means that one or more bits of this field might be implemented as fixed read-as-zero or
read-as-one values.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if all of the following are true:

— The Common Fault Injection Model Extension is not implemented by the node that
owns this error record.

— ERR<n>STATUS.V == 0.

• UNKNOWN/WI if all of the following are true:

— ERR<q>PFGF.SYN == 0.

— ERR<n>STATUS.V == 0.

• RO if all of the following are true:

— ERR<n>STATUS.DE == 0.

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.CE != 0b00.

— ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.DE != 0.

— ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE != 0.

— ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is RW.

Accessing the ERR<n>STATUS:

ERR<n>STATUS.{AV, V, UE, ER, OF, MV, CE, DE, PN, UET, CI} are write-one-to-clear (W1C) fields, meaning
writes of zero are ignored, and a write of one or all-ones to the field clears the field to zero.
ERR<n>STATUS.{IERR, SERR} are read/write (RW) fields, although the set of implemented valid values is
IMPLEMENTATION DEFINED. See also ERR<n>PFGF.SYN.

After reading ERR<n>STATUS, software must clear the valid fields in the register to allow new errors to be
recorded. However, between reading the register and clearing the valid fields, a new error might have overwritten
the register. To prevent this error being lost by software, the register prevents updates to fields that might have been
updated by a new error.

When RAS System Architecture v1.0 is implemented:

• Writes to ERR<n>STATUS.{UE, DE, CE} are ignored if ERR<n>STATUS.OF is 1 and is not being cleared
to 0.

• Writes to ERR<n>STATUS.V are ignored if any of ERR<n>STATUS.{UE, DE, CE} are nonzero and are not
being cleared to zero.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7945
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
• Writes to ERR<n>STATUS.{AV, MV} and the ERR<n>STATUS.{ER, PN, UET, IERR, SERR} syndrome
fields are ignored if the highest priority nonzero error status field is not being cleared to zero. The error status
fields in priority order from highest to lowest, are ERR<n>STATUS.UE, ERR<n>STATUS.DE, and
ERR<n>STATUS.CE.

When RAS System Architecture v1.1 is implemented, a write to the register is ignored if all of:

• Any of ERR<n>STATUS.{V, UE, OF, CE, DE} are nonzero before the write.

• The write does not clear the nonzero ERR<n>STATUS.{V, UE, OF, CE, DE} fields to zero by writing ones
to the applicable field or fields.

Some of the fields in ERR<n>STATUS are also defined as UNKNOWN where certain combinations of
ERR<n>STATUS.{V, DE, UE} are zero. The rules for writes to ERR<n>STATUS allow a node to implement such
a field as a fixed read-only value.

For example, when RAS System Architecture v1.1 is implemented, a write to ERR<n>STATUS when
ERR<n>STATUS.V is 1 results in either ERR<n>STATUS.V field being cleared to zero, or ERR<n>STATUS.V
not changing. Since all fields in ERR<n>STATUS, other than ERR<n>STATUS.{AV, V, MV}, usually read as
UNKNOWN values when ERR<n>STATUS.V is zero, this means those fields can be implemented as read-only if
applicable.

To ensure correct and portable operation, when software is clearing the valid fields in the register to allow new errors
to be recorded, Arm recommends that software:

• Read ERR<n>STATUS and determine which fields need to be cleared to zero.

• Write ones to all the W1C fields that are nonzero in the read value.

• Write zero to all the W1C fields that are zero in the read value.

• Write zero to all the RW fields.

Otherwise, these fields might not have the correct value when a new fault is recorded.

An exception is when the node supports writing to these fields as part of fault injection. See also
ERR<n>PFGF.SYN.

ERR<n>STATUS can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When ERR<n>STATUS.V != 0, ERR<n>STATUS.V is not being cleared to 0b0 in the same write and RAS
System Architecture v1.1 is implemented accesses to this register are RO.

• When ERR<n>STATUS.UE != 0, ERR<n>STATUS.UE is not being cleared to 0b0 in the same write and
RAS System Architecture v1.1 is implemented accesses to this register are RO.

• When ERR<n>STATUS.OF != 0, ERR<n>STATUS.OF is not being cleared to 0b0 in the same write and
RAS System Architecture v1.1 is implemented accesses to this register are RO.

• When ERR<n>STATUS.CE != 0b00, ERR<n>STATUS.CE is not being cleared to 0b00 in the same write
and RAS System Architecture v1.1 is implemented accesses to this register are RO.

• When ERR<n>STATUS.DE != 0, ERR<n>STATUS.DE is not being cleared to 0b0 in the same write and
RAS System Architecture v1.1 is implemented accesses to this register are RO.

• Otherwise accesses to this register are RW.

Component Offset Instance

RAS 0x010 + (64 * n) ERR<n>STATUS
I5-7946 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.33 ERRPIDR0, Peripheral Identification Register 0

The ERRPIDR0 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

Implementation of this register is OPTIONAL.

ERRPIDR0 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRPIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, bits [7:0].

The part number is selected by the designer of the component. The designer chooses whether to use
a 12-bit or a 16-bit part number:

• If a 12-bit part number is used, it is stored in ERRPIDR1.PART_1 and ERRPIDR0.PART_0.
There are 8 bits, ERRPIDR2.REVISION and ERRPIDR3.REVAND, available to define the
revision of the component.

• If a 16-bit part number is used, it is stored in ERRPIDR2.PART_2, ERRPIDR1.PART_1 and
ERRPIDR0.PART_0. There are 4 bits, ERRPIDR3.REVISION, available to define the
revision of the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the ERRPIDR0:

ERRPIDR0 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

PART_0

7 0

Component Offset Instance

RAS 0xFE0 ERRPIDR0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7947
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.34 ERRPIDR1, Peripheral Identification Register 1

The ERRPIDR1 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

Implementation of this register is OPTIONAL.

ERRPIDR1 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRPIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, JEP106 identification code, bits [3:0]. ERRPIDR1.DES_0 and ERRPIDR2.DES_1
together form the JEDEC-assigned JEP106 identification code for the designer of the component.
The parity bit in the JEP106 identification code is not included. The code identifies the designer of
the component, which might not be not the same as the implementer of the device containing the
component. To obtain a number, or to see the assignment of these codes, contact JEDEC
http://www.jedec.org.

Note

For a component designed by Arm Limited, the JEP106 identification code is 0x3B.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

PART_1, bits [3:0]

Part number, bits [11:8].

The part number is selected by the designer of the component. The designer chooses whether to use
a 12-bit or a 16-bit part number:

• If a 12-bit part number is used, it is stored in ERRPIDR1.PART_1 and ERRPIDR0.PART_0.
There are 8 bits, ERRPIDR2.REVISION and ERRPIDR3.REVAND, available to define the
revision of the component.

• If a 16-bit part number is used, it is stored in ERRPIDR2.PART_2, ERRPIDR1.PART_1 and
ERRPIDR0.PART_0. There are 4 bits, ERRPIDR3.REVISION, available to define the
revision of the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RES0

31 8

DES_0

7 4

PART_1

3 0
I5-7948 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
Accessing the ERRPIDR1:

ERRPIDR1 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Offset Instance

RAS 0xFE4 ERRPIDR1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7949
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.35 ERRPIDR2, Peripheral Identification Register 2

The ERRPIDR2 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

Implementation of this register is OPTIONAL.

ERRPIDR2 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRPIDR2 is a 32-bit register.

Field descriptions

When the component uses a 12-bit part number:

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Component major revision. ERRPIDR2.REVISION and ERRPIDR3.REVAND together form the
revision number of the component, with ERRPIDR2.REVISION being the most significant part and
ERRPIDR3.REVAND the least significant part. When a component is changed,
ERRPIDR2.REVISION or ERRPIDR3.REVAND are increased to ensure that software can
differentiate the different revisions of the component. ERRPIDR3.REVAND should be set to 0b0000
when ERRPIDR2.REVISION is increased.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

JEDEC, bit [3]

JEDEC-assigned JEP106 implementer code is used.

Reads as 0b1.

Access to this field is RO.

DES_1, bits [2:0]

Designer, JEP106 identification code, bits [6:4]. ERRPIDR1.DES_0 and ERRPIDR2.DES_1
together form the JEDEC-assigned JEP106 identification code for the designer of the component.
The parity bit in the JEP106 identification code is not included. The code identifies the designer of
the component, which might not be not the same as the implementer of the device containing the
component. To obtain a number, or to see the assignment of these codes, contact JEDEC
http://www.jedec.org.

Note

For a component designed by Arm Limited, the JEP106 identification code is 0x3B.

This field has an IMPLEMENTATION DEFINED value.

RES0

31 8

REVISION

7 4

1

3

DES_1

2 0

JEDEC
I5-7950 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
Access to this field is RO.

When the component uses a 16-bit part number:

Bits [31:8]

Reserved, RES0.

PART_2, bits [7:4]

Part number, bits [15:12].

The part number is selected by the designer of the component. The designer chooses whether to use
a 12-bit or a 16-bit part number:

• If a 12-bit part number is used, it is stored in ERRPIDR1.PART_1 and ERRPIDR0.PART_0.
There are 8 bits, ERRPIDR2.REVISION and ERRPIDR3.REVAND, available to define the
revision of the component.

• If a 16-bit part number is used, it is stored in ERRPIDR2.PART_2, ERRPIDR1.PART_1 and
ERRPIDR0.PART_0. There are 4 bits, ERRPIDR3.REVISION, available to define the
revision of the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

JEDEC, bit [3]

JEDEC-assigned JEP106 implementer code is used.

Reads as 0b1.

Access to this field is RO.

DES_1, bits [2:0]

Designer, JEP106 identification code, bits [6:4]. ERRPIDR1.DES_0 and ERRPIDR2.DES_1
together form the JEDEC-assigned JEP106 identification code for the designer of the component.
The parity bit in the JEP106 identification code is not included. The code identifies the designer of
the component, which might not be not the same as the implementer of the device containing the
component. To obtain a number, or to see the assignment of these codes, contact JEDEC
http://www.jedec.org.

Note
For a component designed by Arm Limited, the JEP106 identification code is 0x3B.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the ERRPIDR2:

ERRPIDR2 can be accessed through its memory-mapped interface:

RES0

31 8

PART_2

7 4

1

3

DES_1

2 0

JEDEC

Component Offset Instance

RAS 0xFE8 ERRPIDR2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7951
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
This interface is accessible as follows:

• Accesses to this register are RO.
I5-7952 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.36 ERRPIDR3, Peripheral Identification Register 3

The ERRPIDR3 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

Implementation of this register is OPTIONAL.

ERRPIDR3 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRPIDR3 is a 32-bit register.

Field descriptions

When the component uses a 12-bit part number:

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Component minor revision. ERRPIDR2.REVISION and ERRPIDR3.REVAND together form the
revision number of the component, with ERRPIDR2.REVISION being the most significant part and
ERRPIDR3.REVAND the least significant part. When a component is changed,
ERRPIDR2.REVISION or ERRPIDR3.REVAND are increased to ensure that software can
differentiate the different revisions of the component. ERRPIDR3.REVAND should be set to 0b0000
when ERRPIDR2.REVISION is increased.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CMOD, bits [3:0]

Customer Modified.

Indicates the component has been modified.

A value of 0b0000 means the component is not modified from the original design.

Any other value means the component has been modified in an IMPLEMENTATION DEFINED way.

For any two components with the same Unique Component Identifier:

• If the value of the CMOD fields of both components equals zero, the components are
identical.

• If the CMOD fields of both components have the same non-zero value, it does not necessarily
mean that they have the same modifications.

• If the value of the CMOD field of either of the two components is non-zero, they might not
be identical, even though they have the same Unique Component Identifier.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RES0

31 8

REVAND

7 4

CMOD

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7953
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
When the component uses a 16-bit part number:

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Component revision. When a component is changed, ERRPIDR3.REVISION is increased to ensure
that software can differentiate the different revisions of the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CMOD, bits [3:0]

Customer Modified.

Indicates the component has been modified.

A value of 0b0000 means the component is not modified from the original design.

Any other value means the component has been modified in an IMPLEMENTATION DEFINED way.

For any two components with the same Unique Component Identifier:

• If the value of the CMOD fields of both components equals zero, the components are
identical.

• If the CMOD fields of both components have the same non-zero value, it does not necessarily
mean that they have the same modifications.

• If the value of the CMOD field of either of the two components is non-zero, they might not
be identical, even though they have the same Unique Component Identifier.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the ERRPIDR3:

ERRPIDR3 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 8

REVISION

7 4

CMOD

3 0

Component Offset Instance

RAS 0xFEC ERRPIDR3
I5-7954 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

External System Control Register Descriptions
I5.8 RAS register descriptions
I5.8.37 ERRPIDR4, Peripheral Identification Register 4

The ERRPIDR4 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Peripheral identification scheme on page K2-8440.

Configurations

Implementation of this register is OPTIONAL.

ERRPIDR4 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRPIDR4 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component.

The distance from the start of the address space used by this component to the end of the component
identification registers.

A value of 0b0000 means one of the following is true:

• The component uses a single 4KB block.

• The component uses an IMPLEMENTATION DEFINED number of 4KB blocks.

Any other value means the component occupies 2ERRPIDR4.SIZE 4KB blocks.

Using this field to indicate the size of the component is deprecated. This field might not correctly
indicate the size of the component. Arm recommends that software determine the size of the
component from the Unique Component Identifier fields, and other IMPLEMENTATION DEFINED
registers in the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

DES_2, bits [3:0]

Designer, JEP106 continuation code. This is the JEDEC-assigned JEP106 bank identifier for the
designer of the component, minus 1. The code identifies the designer of the component, which
might not be not the same as the implementer of the device containing the component. To obtain a
number, or to see the assignment of these codes, contact JEDEC http://www.jedec.org.

Note

For a component designed by Arm Limited, the JEP106 bank is 5, meaning this field has the value
0x4.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RES0

31 8

SIZE

7 4

DES_2

3 0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. I5-7955
ID072021 Non-Confidential

External System Control Register Descriptions
I5.8 RAS register descriptions
Accessing the ERRPIDR4:

ERRPIDR4 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Offset Instance

RAS 0xFD0 ERRPIDR4
I5-7956 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Part J
Architectural Pseudocode

Chapter J1
Armv8 Pseudocode

This chapter contains pseudocode that describes many features of the Armv8 architecture. It contains the following
sections:

• Pseudocode for AArch64 operation on page J1-7960.

• Pseudocode for AArch32 operation on page J1-8134.

• Shared pseudocode on page J1-8221.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7959
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
J1.1 Pseudocode for AArch64 operation

This section holds the pseudocode for execution in AArch64 state. Functions that are listed in this section are
identified as AArch64.FunctionName. Some of these functions have an equivalent AArch32 function,
AArch32.FunctionName. This section is organized by functional groups, with the functional groups being indicated by
hierarchical path names, for example aarch64/debug/breakpoint.

The top-level sections of the AArch64 pseudocode hierarchy are:

• aarch64/debug on page J1-7960.

• aarch64/exceptions on page J1-7973.

• aarch64/functions on page J1-7997.

• aarch64/instrs on page J1-8064.

• aarch64/translation on page J1-8093.

J1.1.1 aarch64/debug

This section includes the following pseudocode functions:

• aarch64/debug/breakpoint/AArch64.BreakpointMatch on page J1-7960.

• aarch64/debug/breakpoint/AArch64.BreakpointValueMatch on page J1-7961.

• aarch64/debug/breakpoint/AArch64.StateMatch on page J1-7963.

• aarch64/debug/enables/AArch64.GenerateDebugExceptions on page J1-7964.

• aarch64/debug/enables/AArch64.GenerateDebugExceptionsFrom on page J1-7964.

• aarch64/debug/pmu/AArch64.CheckForPMUOverflow on page J1-7964.

• aarch64/debug/pmu/AArch64.CountEvents on page J1-7965.

• aarch64/debug/statisticalprofiling/CheckProfilingBufferAccess on page J1-7966.

• aarch64/debug/statisticalprofiling/CheckStatisticalProfilingAccess on page J1-7966.

• aarch64/debug/statisticalprofiling/CollectContextIDR1 on page J1-7967.

• aarch64/debug/statisticalprofiling/CollectContextIDR2 on page J1-7967.

• aarch64/debug/statisticalprofiling/CollectPhysicalAddress on page J1-7967.

• aarch64/debug/statisticalprofiling/CollectTimeStamp on page J1-7967.

• aarch64/debug/statisticalprofiling/OpType on page J1-7968.

• aarch64/debug/statisticalprofiling/ProfilingBufferEnabled on page J1-7968.

• aarch64/debug/statisticalprofiling/ProfilingBufferOwner on page J1-7968.

• aarch64/debug/statisticalprofiling/ProfilingSynchronizationBarrier on page J1-7969.

• aarch64/debug/statisticalprofiling/SPECollectRecord on page J1-7969.

• aarch64/debug/statisticalprofiling/StatisticalProfilingEnabled on page J1-7970.

• aarch64/debug/statisticalprofiling/SysRegAccess on page J1-7970.

• aarch64/debug/statisticalprofiling/TimeStamp on page J1-7970.

• aarch64/debug/takeexceptiondbg/AArch64.TakeExceptionInDebugState on page J1-7970.

• aarch64/debug/watchpoint/AArch64.WatchpointByteMatch on page J1-7971.

• aarch64/debug/watchpoint/AArch64.WatchpointMatch on page J1-7972.

aarch64/debug/breakpoint/AArch64.BreakpointMatch

 // AArch64.BreakpointMatch()
 // =========================
 // Breakpoint matching in an AArch64 translation regime.

 boolean AArch64.BreakpointMatch(integer n, bits(64) vaddress, AccType acctype, integer size)
 assert !ELUsingAArch32(S1TranslationRegime());
 assert n < NumBreakpointsImplemented();

 enabled = DBGBCR_EL1[n].E == '1';
 ispriv = PSTATE.EL != EL0;
 linked = DBGBCR_EL1[n].BT == '0x01';
 isbreakpnt = TRUE;
J1-7960 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 linked_to = FALSE;

 state_match = AArch64.StateMatch(DBGBCR_EL1[n].SSC, DBGBCR_EL1[n].HMC, DBGBCR_EL1[n].PMC,
 linked, DBGBCR_EL1[n].LBN, isbreakpnt, acctype, ispriv);
 value_match = AArch64.BreakpointValueMatch(n, vaddress, linked_to);

 if HaveAArch32() && size == 4 then // Check second halfword
 // If the breakpoint address and BAS of an Address breakpoint match the address of the
 // second halfword of an instruction, but not the address of the first halfword, it is
 // CONSTRAINED UNPREDICTABLE whether or not this breakpoint generates a Breakpoint debug
 // event.
 match_i = AArch64.BreakpointValueMatch(n, vaddress + 2, linked_to);
 if !value_match && match_i then
 value_match = ConstrainUnpredictableBool();
 if vaddress<1> == '1' && DBGBCR_EL1[n].BAS == '1111' then
 // The above notwithstanding, if DBGBCR_EL1[n].BAS == '1111', then it is CONSTRAINED
 // UNPREDICTABLE whether or not a Breakpoint debug event is generated for an instruction
 // at the address DBGBVR_EL1[n]+2.
 if value_match then value_match = ConstrainUnpredictableBool();

 match = value_match && state_match && enabled;

 return match;

aarch64/debug/breakpoint/AArch64.BreakpointValueMatch

 // AArch64.BreakpointValueMatch()
 // ==============================

 boolean AArch64.BreakpointValueMatch(integer n, bits(64) vaddress, boolean linked_to)

 // "n" is the identity of the breakpoint unit to match against.
 // "vaddress" is the current instruction address, ignored if linked_to is TRUE and for Context
 // matching breakpoints.
 // "linked_to" is TRUE if this is a call from StateMatch for linking.

 // If a non-existent breakpoint then it is CONSTRAINED UNPREDICTABLE whether this gives
 // no match or the breakpoint is mapped to another UNKNOWN implemented breakpoint.
 if n >= NumBreakpointsImplemented() then
 (c, n) = ConstrainUnpredictableInteger(0, NumBreakpointsImplemented() - 1);
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then return FALSE;

 // If this breakpoint is not enabled, it cannot generate a match. (This could also happen on a
 // call from StateMatch for linking).
 if DBGBCR_EL1[n].E == '0' then return FALSE;

 context_aware = (n >= (NumBreakpointsImplemented() - NumContextAwareBreakpointsImplemented()));

 // If BT is set to a reserved type, behaves either as disabled or as a not-reserved type.
 dbgtype = DBGBCR_EL1[n].BT;

 if ((dbgtype IN {'011x','11xx'} && !HaveVirtHostExt() && !HaveV82Debug()) || // Context matching
 dbgtype == '010x' || // Reserved
 (dbgtype != '0x0x' && !context_aware) || // Context matching
 (dbgtype == '1xxx' && !HaveEL(EL2))) then // EL2 extension
 (c, dbgtype) = ConstrainUnpredictableBits();
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then return FALSE;
 // Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

 // Determine what to compare against.
 match_addr = (dbgtype == '0x0x');
 match_vmid = (dbgtype == '10xx');
 match_cid = (dbgtype == '001x');
 match_cid1 = (dbgtype IN { '101x', 'x11x'});
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7961
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 match_cid2 = (dbgtype == '11xx');
 linked = (dbgtype == 'xxx1');

 // If this is a call from StateMatch, return FALSE if the breakpoint is not programmed for a
 // VMID and/or context ID match, of if not context-aware. The above assertions mean that the
 // code can just test for match_addr == TRUE to confirm all these things.
 if linked_to && (!linked || match_addr) then return FALSE;

 // If called from BreakpointMatch return FALSE for Linked context ID and/or VMID matches.
 if !linked_to && linked && !match_addr then return FALSE;

 // Do the comparison.
 if match_addr then
 byte = UInt(vaddress<1:0>);
 if HaveAArch32() then
 // T32 instructions can be executed at EL0 in an AArch64 translation regime.
 assert byte IN {0,2}; // "vaddress" is halfword aligned
 byte_select_match = (DBGBCR_EL1[n].BAS<byte> == '1');
 else
 assert byte == 0; // "vaddress" is word aligned
 byte_select_match = TRUE; // DBGBCR_EL1[n].BAS<byte> is RES1
 // If the DBGxVR<n>_EL1.RESS field bits are not a sign extension of the MSB
 // of DBGBVR<n>_EL1.VA, it is UNPREDICTABLE whether they appear to be
 // included in the match.
 // If 'vaddress' is outside of the current virtual address space, then the access
 // generates a Translation fault.
 integer top = AArch64.VAMax();
 if !IsOnes(DBGBVR_EL1[n]<63:top>) && !IsZero(DBGBVR_EL1[n]<63:top>) then
 if ConstrainUnpredictableBool() then
 top = 63;
 BVR_match = (vaddress<top:2> == DBGBVR_EL1[n]<top:2>) && byte_select_match;

 elsif match_cid then
 if IsInHost() then
 BVR_match = (CONTEXTIDR_EL2<31:0> == DBGBVR_EL1[n]<31:0>);
 else
 BVR_match = (PSTATE.EL IN {EL0, EL1} && CONTEXTIDR_EL1<31:0> == DBGBVR_EL1[n]<31:0>);
 elsif match_cid1 then
 BVR_match = (PSTATE.EL IN {EL0, EL1} && !IsInHost() && CONTEXTIDR_EL1<31:0> ==
DBGBVR_EL1[n]<31:0>);
 if match_vmid then
 if !Have16bitVMID() || VTCR_EL2.VS == '0' then
 vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
 bvr_vmid = ZeroExtend(DBGBVR_EL1[n]<39:32>, 16);
 else
 vmid = VTTBR_EL2.VMID;
 bvr_vmid = DBGBVR_EL1[n]<47:32>;
 BXVR_match = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 !IsInHost() &&
 vmid == bvr_vmid);
 elsif match_cid2 then
 BXVR_match = (PSTATE.EL != EL3 && (HaveVirtHostExt() || HaveV82Debug()) &&
 EL2Enabled() &&
 DBGBVR_EL1[n]<63:32> == CONTEXTIDR_EL2<31:0>);

 bvr_match_valid = (match_addr || match_cid || match_cid1);
 bxvr_match_valid = (match_vmid || match_cid2);

 match = (!bxvr_match_valid || BXVR_match) && (!bvr_match_valid || BVR_match);

 return match;
J1-7962 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/debug/breakpoint/AArch64.StateMatch

 // AArch64.StateMatch()
 // ====================
 // Determine whether a breakpoint or watchpoint is enabled in the current mode and state.

 boolean AArch64.StateMatch(bits(2) SSC, bit HMC, bits(2) PxC, boolean linked, bits(4) LBN,
 boolean isbreakpnt, AccType acctype, boolean ispriv)
 // "SSC", "HMC", "PxC" are the control fields from the DBGBCR[n] or DBGWCR[n] register.
 // "linked" is TRUE if this is a linked breakpoint/watchpoint type.
 // "LBN" is the linked breakpoint number from the DBGBCR[n] or DBGWCR[n] register.
 // "isbreakpnt" is TRUE for breakpoints, FALSE for watchpoints.
 // "ispriv" is valid for watchpoints, and selects between privileged and unprivileged accesses.

 // If parameters are set to a reserved type, behaves as either disabled or a defined type
 (c, SSC, HMC, PxC) = CheckValidStateMatch(SSC, HMC, PxC, isbreakpnt);
 if c == Constraint_DISABLED then return FALSE;
 // Otherwise the HMC,SSC,PxC values are either valid or the values returned by
 // CheckValidStateMatch are valid.

 EL3_match = HaveEL(EL3) && HMC == '1' && SSC<0> == '0';
 EL2_match = HaveEL(EL2) && ((HMC == '1' && (SSC:PxC != '1000')) || SSC == '11');
 EL1_match = PxC<0> == '1';
 EL0_match = PxC<1> == '1';

 if HaveNV2Ext() && acctype == AccType_NV2REGISTER && !isbreakpnt then
 priv_match = EL2_match;
 elsif !ispriv && !isbreakpnt then
 priv_match = EL0_match;
 else
 case PSTATE.EL of
 when EL3 priv_match = EL3_match;
 when EL2 priv_match = EL2_match;
 when EL1 priv_match = EL1_match;
 when EL0 priv_match = EL0_match;

 case SSC of
 when '00' security_state_match = TRUE; // Both
 when '01' security_state_match = !IsSecure(); // Non-secure only
 when '10' security_state_match = IsSecure(); // Secure only
 when '11' security_state_match = (HMC == '1' || IsSecure()); // HMC=1 -> Both, 0 -> Secure
only

 if linked then
 // "LBN" must be an enabled context-aware breakpoint unit. If it is not context-aware then
 // it is CONSTRAINED UNPREDICTABLE whether this gives no match, or LBN is mapped to some
 // UNKNOWN breakpoint that is context-aware.
 lbn = UInt(LBN);
 first_ctx_cmp = NumBreakpointsImplemented() - NumContextAwareBreakpointsImplemented();
 last_ctx_cmp = NumBreakpointsImplemented() - 1;
 if (lbn < first_ctx_cmp || lbn > last_ctx_cmp) then
 (c, lbn) = ConstrainUnpredictableInteger(first_ctx_cmp, last_ctx_cmp);
 assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
 case c of
 when Constraint_DISABLED return FALSE; // Disabled
 when Constraint_NONE linked = FALSE; // No linking
 // Otherwise ConstrainUnpredictableInteger returned a context-aware breakpoint

 if linked then
 vaddress = bits(64) UNKNOWN;
 linked_to = TRUE;
 linked_match = AArch64.BreakpointValueMatch(lbn, vaddress, linked_to);

 return priv_match && security_state_match && (!linked || linked_match);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7963
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/debug/enables/AArch64.GenerateDebugExceptions

 // AArch64.GenerateDebugExceptions()
 // =================================

 boolean AArch64.GenerateDebugExceptions()
 return AArch64.GenerateDebugExceptionsFrom(PSTATE.EL, IsSecure(), PSTATE.D);

aarch64/debug/enables/AArch64.GenerateDebugExceptionsFrom

 // AArch64.GenerateDebugExceptionsFrom()
 // =====================================

 boolean AArch64.GenerateDebugExceptionsFrom(bits(2) from, boolean secure, bit mask)

 if OSLSR_EL1.OSLK == '1' || DoubleLockStatus() || Halted() then
 return FALSE;

 route_to_el2 = HaveEL(EL2) && (!secure || IsSecureEL2Enabled()) && (HCR_EL2.TGE == '1' ||
MDCR_EL2.TDE == '1');
 target = (if route_to_el2 then EL2 else EL1);
 if HaveEL(EL3) && secure then
 enabled = MDCR_EL3.SDD == '0';
 if from == EL0 && ELUsingAArch32(EL1) then
 enabled = enabled || SDER32_EL3.SUIDEN == '1';
 else
 enabled = TRUE;

 if from == target then
 enabled = enabled && MDSCR_EL1.KDE == '1' && mask == '0';
 else
 enabled = enabled && UInt(target) > UInt(from);

 return enabled;

aarch64/debug/pmu/AArch64.CheckForPMUOverflow

 // AArch64.CheckForPMUOverflow()
 // =============================
 // Signal Performance Monitors overflow IRQ and CTI overflow events

 boolean AArch64.CheckForPMUOverflow()

 pmuirq = PMCR_EL0.E == '1' && PMINTENSET_EL1<31> == '1' && PMOVSSET_EL0<31> == '1';
 for n = 0 to NumEventCountersImplemented() - 1
 if HaveEL(EL2) then
 E = (if n < UInt(MDCR_EL2.HPMN) then PMCR_EL0.E else MDCR_EL2.HPME);
 else
 E = PMCR_EL0.E;
 if E == '1' && PMINTENSET_EL1<n> == '1' && PMOVSSET_EL0<n> == '1' then pmuirq = TRUE;

 SetInterruptRequestLevel(InterruptID_PMUIRQ, if pmuirq then HIGH else LOW);

 CTI_SetEventLevel(CrossTriggerIn_PMUOverflow, if pmuirq then HIGH else LOW);

 // The request remains set until the condition is cleared. (For example, an interrupt handler
 // or cross-triggered event handler clears the overflow status flag by writing to PMOVSCLR_EL0.)

 return pmuirq;
J1-7964 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/debug/pmu/AArch64.CountEvents

 // AArch64.CountEvents()
 // =====================
 // Return TRUE if counter "n" should count its event. For the cycle counter, n == 31.

 boolean AArch64.CountEvents(integer n)
 assert n == 31 || n < NumEventCountersImplemented();

 // Event counting is disabled in Debug state
 debug = Halted();

 // In Non-secure state, some counters are reserved for EL2
 if HaveEL(EL2) then
 resvd_for_el2 = n >= UInt(MDCR_EL2.HPMN) && n != 31;
 else
 resvd_for_el2 = FALSE;

 // Main enable controls
 E = if resvd_for_el2 then MDCR_EL2.HPME else PMCR_EL0.E;
 enabled = E == '1' && PMCNTENSET_EL0<n> == '1';

 // Event counting is allowed unless it is prohibited by any rule below
 prohibited = FALSE;
 // Event counting in Secure state is prohibited if all of:
 // * EL3 is implemented
 // * MDCR_EL3.SPME == 0, and either:
 // - FEAT_PMUv3p7 is not implemented
 // - MDCR_EL3.MPMX == 0
 if HaveEL(EL3) && IsSecure() then
 if HavePMUv3p7() then
 prohibited = MDCR_EL3.<SPME,MPMX> == '00';
 else
 prohibited = MDCR_EL3.SPME == '0';

 // Event counting at EL3 is prohibited if all of:
 // * FEAT_PMUv3p7 is implemented
 // * One of the following is true:
 // - MDCR_EL3.SPME == 0
 // - PMNx is not reserved for EL2
 // * MDCR_EL3.MPMX == 1
 if !prohibited && PSTATE.EL == EL3 && HavePMUv3p7() then
 prohibited = MDCR_EL3.MPMX == '1' && (MDCR_EL3.SPME == '0' || !resvd_for_el2);

 // Event counting at EL2 is prohibited if all of:
 // * The HPMD Extension is implemented
 // * PMNx is not reserved for EL2
 // * MDCR_EL2.HPMD == 1
 if !prohibited && PSTATE.EL == EL2 && HaveHPMDExt() && !resvd_for_el2 then
 prohibited = MDCR_EL2.HPMD == '1';

 // The IMPLEMENTATION DEFINED authentication interface might override software
 if prohibited && !HaveNoSecurePMUDisableOverride() then
 prohibited = !ExternalSecureNoninvasiveDebugEnabled();

 // PMCR_EL0.DP disables the cycle counter when event counting is prohibited
 if enabled && prohibited && n == 31 then
 enabled = PMCR_EL0.DP == '0';

 // If FEAT_PMUv3p5 is implemented, cycle counting can be prohibited.
 // This is not overridden by PMCR_EL0.DP.
 if Havev85PMU() && n == 31 then
 if HaveEL(EL3) && IsSecure() && MDCR_EL3.SCCD == '1' then
 prohibited = TRUE;
 if PSTATE.EL == EL2 && MDCR_EL2.HCCD == '1' then
 prohibited = TRUE;

 // If FEAT_PMUv3p7 is implemented, cycle counting an be prohibited at EL3.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7965
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // This is not overriden by PMCR_EL0.DP.
 if HavePMUv3p7() && n == 31 then
 if PSTATE.EL == EL3 && MDCR_EL3.MCCD == '1' then
 prohibited = TRUE;

 // Event counting might be frozen
 frozen = FALSE;

 // If FEAT_PMUv3p7 is implemented, event counting can be frozen
 if HavePMUv3p7() && n != 31 then
 ovflw = PMOVSCLR_EL0<NumEventCountersImplemented()-1:0>;
 if resvd_for_el2 then
 FZ = MDCR_EL2.HPMFZO;
 ovflw<UInt(MDCR_EL2.HPMN)-1:0> = Zeros();
 else
 FZ = PMCR_EL0.FZO;
 if HaveEL(EL2) then
 ovflw<NumEventCountersImplemented()-1:UInt(MDCR_EL2.HPMN)> = Zeros();
 frozen = FZ == '1' && !IsZero(ovflw);

 // Event counting can be filtered by the {P, U, NSK, NSU, NSH, M, SH} bits
 filter = if n == 31 then PMCCFILTR_EL0<31:0> else PMEVTYPER_EL0[n]<31:0>;

 P = filter<31>;
 U = filter<30>;
 NSK = if HaveEL(EL3) then filter<29> else '0';
 NSU = if HaveEL(EL3) then filter<28> else '0';
 NSH = if HaveEL(EL2) then filter<27> else '0';
 M = if HaveEL(EL3) then filter<26> else '0';
 SH = if HaveEL(EL3) && HaveSecureEL2Ext() then filter<24> else '0';

 case PSTATE.EL of
 when EL0 filtered = if IsSecure() then U == '1' else U != NSU;
 when EL1 filtered = if IsSecure() then P == '1' else P != NSK;
 when EL2 filtered = if IsSecure() then NSH == SH else NSH == '0';
 when EL3 filtered = M != P;

 return !debug && enabled && !prohibited && !filtered && !frozen;

aarch64/debug/statisticalprofiling/CheckProfilingBufferAccess

 // CheckProfilingBufferAccess()
 // ============================

 SysRegAccess CheckProfilingBufferAccess()
 if !HaveStatisticalProfiling() || PSTATE.EL == EL0 || UsingAArch32() then
 return SysRegAccess_UNDEFINED;

 if PSTATE.EL == EL1 && EL2Enabled() && MDCR_EL2.E2PB<0> != '1' then
 return SysRegAccess_TrapToEL2;

 if HaveEL(EL3) && PSTATE.EL != EL3 && MDCR_EL3.NSPB != SCR_EL3.NS:'1' then
 return SysRegAccess_TrapToEL3;

 return SysRegAccess_OK;

aarch64/debug/statisticalprofiling/CheckStatisticalProfilingAccess

 // CheckStatisticalProfilingAccess()
 // =================================

 SysRegAccess CheckStatisticalProfilingAccess()
 if !HaveStatisticalProfiling() || PSTATE.EL == EL0 || UsingAArch32() then
 return SysRegAccess_UNDEFINED;
J1-7966 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 if PSTATE.EL == EL1 && EL2Enabled() && MDCR_EL2.TPMS == '1' then
 return SysRegAccess_TrapToEL2;

 if HaveEL(EL3) && PSTATE.EL != EL3 && MDCR_EL3.NSPB != SCR_EL3.NS:'1' then
 return SysRegAccess_TrapToEL3;

 return SysRegAccess_OK;

aarch64/debug/statisticalprofiling/CollectContextIDR1

 // CollectContextIDR1()
 // ====================

 boolean CollectContextIDR1()
 if !StatisticalProfilingEnabled() then return FALSE;
 if PSTATE.EL == EL2 then return FALSE;
 if EL2Enabled() && HCR_EL2.TGE == '1' then return FALSE;
 return PMSCR_EL1.CX == '1';

aarch64/debug/statisticalprofiling/CollectContextIDR2

 // CollectContextIDR2()
 // ====================

 boolean CollectContextIDR2()
 if !StatisticalProfilingEnabled() then return FALSE;
 if !EL2Enabled() then return FALSE;
 return PMSCR_EL2.CX == '1';

aarch64/debug/statisticalprofiling/CollectPhysicalAddress

 // CollectPhysicalAddress()
 // ========================

 boolean CollectPhysicalAddress()
 if !StatisticalProfilingEnabled() then return FALSE;
 (secure, el) = ProfilingBufferOwner();
 if ((!secure && HaveEL(EL2)) || IsSecureEL2Enabled()) then
 return PMSCR_EL2.PA == '1' && (el == EL2 || PMSCR_EL1.PA == '1');
 else
 return PMSCR_EL1.PA == '1';

aarch64/debug/statisticalprofiling/CollectTimeStamp

 // CollectTimeStamp()
 // ==================

 TimeStamp CollectTimeStamp()

 if !StatisticalProfilingEnabled() then return TimeStamp_None;
 (-, el) = ProfilingBufferOwner();

 if el == EL2 then
 if PMSCR_EL2.TS == '0' then return TimeStamp_None;
 else
 if PMSCR_EL1.TS == '0' then return TimeStamp_None;

 if !HaveECVExt() then
 PCT_el1 = '0':PMSCR_EL1.PCT<0>; // PCT<1> is RES0
 else
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7967
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 PCT_el1 = PMSCR_EL1.PCT;
 if PCT_el1 == '10' then
 // Reserved value
 (-, PCT_el1) = ConstrainUnpredictableBits();
 if EL2Enabled() then
 if !HaveECVExt() then
 PCT_el2 = '0':PMSCR_EL2.PCT<0>; // PCT<1> is RES0
 else
 PCT_el2 = PMSCR_EL2.PCT;
 if PCT_el2 == '10' then
 // Reserved value
 (-, PCT_el2) = ConstrainUnpredictableBits();
 case PCT_el2 of
 when '00'
 return TimeStamp_Virtual;
 when '01'
 if el == EL2 then return TimeStamp_Physical;
 when '11'
 assert HaveECVExt(); // FEAT_ECV must be implemented
 if el == EL1 && PCT_el1 == '00' then
 return TimeStamp_Virtual;
 else
 return TimeStamp_OffsetPhysical;
 otherwise
 Unreachable();

 case PCT_el1 of
 when '00' return TimeStamp_Virtual;
 when '01' return TimeStamp_Physical;
 when '11'
 assert HaveECVExt(); // FEAT_ECV must be implemented
 return TimeStamp_OffsetPhysical;
 otherwise Unreachable();

aarch64/debug/statisticalprofiling/OpType

 enumeration OpType {
 OpType_Load, // Any memory-read operation other than atomics, compare-and-swap, and
swap
 OpType_Store, // Any memory-write operation, including atomics without return
 OpType_LoadAtomic, // Atomics with return, compare-and-swap and swap
 OpType_Branch, // Software write to the PC
 OpType_Other // Any other class of operation
 };

aarch64/debug/statisticalprofiling/ProfilingBufferEnabled

 // ProfilingBufferEnabled()
 // ========================

 boolean ProfilingBufferEnabled()
 if !HaveStatisticalProfiling() then return FALSE;
 (secure, el) = ProfilingBufferOwner();
 non_secure_bit = if secure then '0' else '1';
 return (!ELUsingAArch32(el) && non_secure_bit == SCR_EL3.NS &&
 PMBLIMITR_EL1.E == '1' && PMBSR_EL1.S == '0');

aarch64/debug/statisticalprofiling/ProfilingBufferOwner

 // ProfilingBufferOwner()
 // ======================

 (boolean, bits(2)) ProfilingBufferOwner()
J1-7968 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 secure = if HaveEL(EL3) then (MDCR_EL3.NSPB<1> == '0') else IsSecure();
 el = if HaveEL(EL2) && (!secure || IsSecureEL2Enabled()) && MDCR_EL2.E2PB == '00' then EL2 else EL1;
 return (secure, el);

aarch64/debug/statisticalprofiling/ProfilingSynchronizationBarrier

 // Barrier to ensure that all existing profiling data has been formatted, and profiling buffer
 // addresses have been translated such that writes to the profiling buffer have been initiated.
 // A following DSB completes when writes to the profiling buffer have completed.
 ProfilingSynchronizationBarrier();

aarch64/debug/statisticalprofiling/SPECollectRecord

 // SPECollectRecord()
 // ==================
 // Returns TRUE if the sampled class of instructions or operations, as
 // determined by PMSFCR_EL1, are recorded and FALSE otherwise.

 boolean SPECollectRecord(bits(64) events, integer total_latency, OpType optype)
 assert StatisticalProfilingEnabled();

 bits(64) mask = 0xAA<63:0>; // Bits [7,5,3,1]
 if HaveSVE() then mask<18:17> = Ones(); // Predicate flags
 if HaveStatisticalProfilingv1p1() then mask<11> = '1'; // Alignment Flag
 if HaveStatisticalProfilingv1p2() then mask<6> = '1'; // Not taken flag
 mask<63:48> = bits(16) IMPLEMENTATION_DEFINED;
 mask<31:24> = bits(8) IMPLEMENTATION_DEFINED;
 mask<15:12> = bits(4) IMPLEMENTATION_DEFINED;

 // Check for UNPREDICTABLE case
 if (HaveStatisticalProfilingv1p2() && PMSFCR_EL1.<FnE,FE> == '11' &&
 !IsZero(PMSEVFR_EL1 AND PMSNEVFR_EL1 AND mask)) then
 if ConstrainUnpredictableBool() then
 return FALSE;
 else
 // Filtering by event
 if PMSFCR_EL1.FE == '1' && !IsZero(PMSEVFR_EL1) then
 e = events AND mask;
 m = PMSEVFR_EL1 AND mask;
 if !IsZero(NOT(e) AND m) then return FALSE;

 // Filtering by inverse event
 if (HaveStatisticalProfilingv1p2() && PMSFCR_EL1.FnE == '1' &&
 !IsZero(PMSNEVFR_EL1)) then
 e = events AND mask;
 m = PMSNEVFR_EL1 AND mask;
 if !IsZero(e AND m) then return FALSE;

 // Filtering by type
 if PMSFCR_EL1.FT == '1' && !IsZero(PMSFCR_EL1.<B,LD,ST>) then
 case optype of
 when OpType_Branch
 if PMSFCR_EL1.B == '0' then return FALSE;
 when OpType_Load
 if PMSFCR_EL1.LD == '0' then return FALSE;
 when OpType_Store
 if PMSFCR_EL1.ST == '0' then return FALSE;
 when OpType_LoadAtomic
 if PMSFCR_EL1.<LD,ST> == '00' then return FALSE;
 otherwise
 return FALSE;

 // Filtering by latency
 if PMSFCR_EL1.FL == '1' && !IsZero(PMSLATFR_EL1.MINLAT) then
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7969
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if total_latency < UInt(PMSLATFR_EL1.MINLAT) then
 return FALSE;

 // Check for UNPREDICTABLE cases
 if ((PMSFCR_EL1.FE == '1' && IsZero(PMSEVFR_EL1 AND mask)) ||
 (PMSFCR_EL1.FT == '1' && IsZero(PMSFCR_EL1.<B,LD,ST>)) ||
 (PMSFCR_EL1.FL == '1' && IsZero(PMSLATFR_EL1.MINLAT))) then
 return ConstrainUnpredictableBool();

 if (HaveStatisticalProfilingv1p2() &&
 ((PMSFCR_EL1.FnE == '1' && IsZero(PMSNEVFR_EL1 AND mask)) ||
 (PMSFCR_EL1.<FnE,FE> == '11' &&
 !IsZero(PMSEVFR_EL1 AND PMSNEVFR_EL1 AND mask)))) then
 return ConstrainUnpredictableBool();

 return TRUE;

aarch64/debug/statisticalprofiling/StatisticalProfilingEnabled

 // StatisticalProfilingEnabled()
 // =============================

 boolean StatisticalProfilingEnabled()
 if !HaveStatisticalProfiling() || UsingAArch32() || !ProfilingBufferEnabled() then
 return FALSE;

 in_host = EL2Enabled() && HCR_EL2.TGE == '1';
 (secure, el) = ProfilingBufferOwner();
 if UInt(el) < UInt(PSTATE.EL) || secure != IsSecure() || (in_host && el == EL1) then
 return FALSE;

 case PSTATE.EL of
 when EL3 Unreachable();
 when EL2 spe_bit = PMSCR_EL2.E2SPE;
 when EL1 spe_bit = PMSCR_EL1.E1SPE;
 when EL0 spe_bit = (if in_host then PMSCR_EL2.E0HSPE else PMSCR_EL1.E0SPE);

 return spe_bit == '1';

aarch64/debug/statisticalprofiling/SysRegAccess

 enumeration SysRegAccess { SysRegAccess_OK,
 SysRegAccess_UNDEFINED,
 SysRegAccess_TrapToEL1,
 SysRegAccess_TrapToEL2,
 SysRegAccess_TrapToEL3 };

aarch64/debug/statisticalprofiling/TimeStamp

 enumeration TimeStamp {
 TimeStamp_None, // No timestamp
 TimeStamp_CoreSight, // CoreSight time (IMPLEMENTATION DEFINED)
 TimeStamp_Physical, // Physical counter value with no offset
 TimeStamp_OffsetPhysical, // Physical counter value minus CNTPOFF_EL2
 TimeStamp_Virtual }; // Physical counter value minus CNTVOFF_EL2

aarch64/debug/takeexceptiondbg/AArch64.TakeExceptionInDebugState

 // AArch64.TakeExceptionInDebugState()
 // ===================================
 // Take an exception in Debug state to an Exception level using AArch64.
J1-7970 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 AArch64.TakeExceptionInDebugState(bits(2) target_el, ExceptionRecord exception)
 assert HaveEL(target_el) && !ELUsingAArch32(target_el) && UInt(target_el) >= UInt(PSTATE.EL);

 if HaveIESB() then
 sync_errors = SCTLR[target_el].IESB == '1';
 if HaveDoubleFaultExt() then
 sync_errors = sync_errors || (SCR_EL3.<EA,NMEA> == '11' && target_el == EL3);
 // SCTLR[].IESB and/or SCR_EL3.NMEA (if applicable) might be ignored in Debug state.
 if !ConstrainUnpredictableBool() then
 sync_errors = FALSE;
 else
 sync_errors = FALSE;

 SynchronizeContext();

 // If coming from AArch32 state, the top parts of the X[] registers might be set to zero
 from_32 = UsingAArch32();
 if from_32 then AArch64.MaybeZeroRegisterUppers();
 MaybeZeroSVEUppers(target_el);

 AArch64.ReportException(exception, target_el);

 PSTATE.EL = target_el;
 PSTATE.nRW = '0';
 PSTATE.SP = '1';

 SPSR[] = bits(64) UNKNOWN;
 ELR[] = bits(64) UNKNOWN;

 // PSTATE.{SS,D,A,I,F} are not observable and ignored in Debug state, so behave as if UNKNOWN.
 PSTATE.<SS,D,A,I,F> = bits(5) UNKNOWN;
 PSTATE.IL = '0';
 if from_32 then // Coming from AArch32
 PSTATE.IT = '00000000';
 PSTATE.T = '0'; // PSTATE.J is RES0
 if (HavePANExt() && (PSTATE.EL == EL1 || (PSTATE.EL == EL2 && ELIsInHost(EL0))) &&
 SCTLR[].SPAN == '0') then
 PSTATE.PAN = '1';
 if HaveUAOExt() then PSTATE.UAO = '0';
 if HaveBTIExt() then PSTATE.BTYPE = '00';
 if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
 if HaveMTEExt() then PSTATE.TCO = '1';

 DLR_EL0 = bits(64) UNKNOWN;
 DSPSR_EL0 = bits(64) UNKNOWN;

 EDSCR.ERR = '1';
 UpdateEDSCRFields(); // Update EDSCR processor state flags.

 if sync_errors then
 SynchronizeErrors();

 EndOfInstruction();

aarch64/debug/watchpoint/AArch64.WatchpointByteMatch

 // AArch64.WatchpointByteMatch()
 // =============================

 boolean AArch64.WatchpointByteMatch(integer n, AccType acctype, bits(64) vaddress)

 integer top = AArch64.VAMax();
 bottom = if DBGWVR_EL1[n]<2> == '1' then 2 else 3; // Word or doubleword
 byte_select_match = (DBGWCR_EL1[n].BAS<UInt(vaddress<bottom-1:0>)> != '0');
 mask = UInt(DBGWCR_EL1[n].MASK);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7971
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 // If DBGWCR_EL1[n].MASK is non-zero value and DBGWCR_EL1[n].BAS is not set to '11111111', or
 // DBGWCR_EL1[n].BAS specifies a non-contiguous set of bytes behavior is CONSTRAINED
 // UNPREDICTABLE.
 if mask > 0 && !IsOnes(DBGWCR_EL1[n].BAS) then
 byte_select_match = ConstrainUnpredictableBool();
 else
 LSB = (DBGWCR_EL1[n].BAS AND NOT(DBGWCR_EL1[n].BAS - 1)); MSB = (DBGWCR_EL1[n].BAS + LSB);
 if !IsZero(MSB AND (MSB - 1)) then // Not contiguous
 byte_select_match = ConstrainUnpredictableBool();
 bottom = 3; // For the whole doubleword

 // If the address mask is set to a reserved value, the behavior is CONSTRAINED UNPREDICTABLE.
 if mask > 0 && mask <= 2 then
 (c, mask) = ConstrainUnpredictableInteger(3, 31);
 assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
 case c of
 when Constraint_DISABLED return FALSE; // Disabled
 when Constraint_NONE mask = 0; // No masking
 // Otherwise the value returned by ConstrainUnpredictableInteger is a not-reserved value

 if mask > bottom then
 // If the DBGxVR<n>_EL1.RESS field bits are not a sign extension of the MSB
 // of DBGBVR<n>_EL1.VA, it is UNPREDICTABLE whether they appear to be
 // included in the match.
 if !IsOnes(DBGBVR_EL1[n]<63:top>) && !IsZero(DBGBVR_EL1[n]<63:top>) then
 if ConstrainUnpredictableBool() then
 top = 63;
 WVR_match = (vaddress<top:mask> == DBGWVR_EL1[n]<top:mask>);
 // If masked bits of DBGWVR_EL1[n] are not zero, the behavior is CONSTRAINED UNPREDICTABLE.
 if WVR_match && !IsZero(DBGWVR_EL1[n]<mask-1:bottom>) then
 WVR_match = ConstrainUnpredictableBool();
 else
 WVR_match = vaddress<top:bottom> == DBGWVR_EL1[n]<top:bottom>;

 return WVR_match && byte_select_match;

aarch64/debug/watchpoint/AArch64.WatchpointMatch

 // AArch64.WatchpointMatch()
 // =========================
 // Watchpoint matching in an AArch64 translation regime.

 boolean AArch64.WatchpointMatch(integer n, bits(64) vaddress, integer size, boolean ispriv,
 AccType acctype, boolean iswrite)
 assert !ELUsingAArch32(S1TranslationRegime());
 assert n < NumWatchpointsImplemented();

 // "ispriv" is:
 // * FALSE for all loads, stores, and atomic operations executed at EL0.
 // * FALSE if the access is unprivileged.
 // * TRUE for all other loads, stores, and atomic operations.

 enabled = DBGWCR_EL1[n].E == '1';
 linked = DBGWCR_EL1[n].WT == '1';
 isbreakpnt = FALSE;

 state_match = AArch64.StateMatch(DBGWCR_EL1[n].SSC, DBGWCR_EL1[n].HMC, DBGWCR_EL1[n].PAC,
 linked, DBGWCR_EL1[n].LBN, isbreakpnt, acctype, ispriv);
 ls_match = FALSE;
 if acctype == AccType_ATOMICRW then
 ls_match = (DBGWCR_EL1[n].LSC != '00');
 else
 ls_match = (DBGWCR_EL1[n].LSC<(if iswrite then 1 else 0)> == '1');

 value_match = FALSE;
J1-7972 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 for byte = 0 to size - 1
 value_match = value_match || AArch64.WatchpointByteMatch(n, acctype, vaddress + byte);

 return value_match && state_match && ls_match && enabled;

J1.1.2 aarch64/exceptions

This section includes the following pseudocode functions:

• aarch64/exceptions/aborts/AArch64.Abort on page J1-7974.

• aarch64/exceptions/aborts/AArch64.AbortSyndrome on page J1-7974.

• aarch64/exceptions/aborts/AArch64.CheckPCAlignment on page J1-7975.

• aarch64/exceptions/aborts/AArch64.DataAbort on page J1-7975.

• aarch64/exceptions/aborts/AArch64.EffectiveTCF on page J1-7975.

• aarch64/exceptions/aborts/AArch64.InstructionAbort on page J1-7976.

• aarch64/exceptions/aborts/AArch64.PCAlignmentFault on page J1-7976.

• aarch64/exceptions/aborts/AArch64.RaiseTagCheckFault on page J1-7976.

• aarch64/exceptions/aborts/AArch64.ReportTagCheckFault on page J1-7977.

• aarch64/exceptions/aborts/AArch64.SPAlignmentFault on page J1-7977.

• aarch64/exceptions/aborts/AArch64.TagCheckFault on page J1-7978.

• aarch64/exceptions/aborts/BranchTargetException on page J1-7978.

• aarch64/exceptions/async/AArch64.TakePhysicalFIQException on page J1-7978.

• aarch64/exceptions/async/AArch64.TakePhysicalIRQException on page J1-7979.

• aarch64/exceptions/async/AArch64.TakePhysicalSErrorException on page J1-7979.

• aarch64/exceptions/async/AArch64.TakeVirtualFIQException on page J1-7980.

• aarch64/exceptions/async/AArch64.TakeVirtualIRQException on page J1-7980.

• aarch64/exceptions/async/AArch64.TakeVirtualSErrorException on page J1-7980.

• aarch64/exceptions/debug/AArch64.BreakpointException on page J1-7980.

• aarch64/exceptions/debug/AArch64.SoftwareBreakpoint on page J1-7981.

• aarch64/exceptions/debug/AArch64.SoftwareStepException on page J1-7981.

• aarch64/exceptions/debug/AArch64.VectorCatchException on page J1-7982.

• aarch64/exceptions/debug/AArch64.WatchpointException on page J1-7982.

• aarch64/exceptions/exceptions/AArch64.ExceptionClass on page J1-7982.

• aarch64/exceptions/exceptions/AArch64.ReportException on page J1-7983.

• aarch64/exceptions/exceptions/AArch64.ResetControlRegisters on page J1-7984.

• aarch64/exceptions/exceptions/AArch64.TakeReset on page J1-7984.

• aarch64/exceptions/ieeefp/AArch64.FPTrappedException on page J1-7985.

• aarch64/exceptions/syscalls/AArch64.CallHypervisor on page J1-7985.

• aarch64/exceptions/syscalls/AArch64.CallSecureMonitor on page J1-7986.

• aarch64/exceptions/syscalls/AArch64.CallSupervisor on page J1-7986.

• aarch64/exceptions/takeexception/AArch64.TakeException on page J1-7986.

• aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrap on page J1-7988.

• aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrapSyndrome on page J1-7988.

• aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap on page J1-7989.

• aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps on page J1-7990.

• aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled on page J1-7990.

• aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap on page J1-7990.

• aarch64/exceptions/traps/AArch64.CheckFPEnabled on page J1-7991.

• aarch64/exceptions/traps/AArch64.CheckForERetTrap on page J1-7991.

• aarch64/exceptions/traps/AArch64.CheckForSMCUndefOrTrap on page J1-7991.

• aarch64/exceptions/traps/AArch64.CheckForSVCTrap on page J1-7992.

• aarch64/exceptions/traps/AArch64.CheckForWFxTrap on page J1-7992.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7973
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/exceptions/traps/AArch64.CheckIllegalState on page J1-7993.

• aarch64/exceptions/traps/AArch64.MonitorModeTrap on page J1-7993.

• aarch64/exceptions/traps/AArch64.SystemAccessTrap on page J1-7993.

• aarch64/exceptions/traps/AArch64.SystemAccessTrapSyndrome on page J1-7993.

• aarch64/exceptions/traps/AArch64.UndefinedFault on page J1-7994.

• aarch64/exceptions/traps/AArch64.WFxTrap on page J1-7994.

• aarch64/exceptions/traps/CheckFPAdvSIMDEnabled64 on page J1-7995.

• aarch64/exceptions/traps/CheckFPEnabled64 on page J1-7995.

• aarch64/exceptions/traps/CheckLDST64BEnabled on page J1-7995.

• aarch64/exceptions/traps/CheckST64BV0Enabled on page J1-7996.

• aarch64/exceptions/traps/CheckST64BVEnabled on page J1-7996.

• aarch64/exceptions/traps/LDST64BTrap on page J1-7997.

• aarch64/exceptions/traps/WFETrapDelay on page J1-7997.

• aarch64/exceptions/traps/WaitForEventUntilDelay on page J1-7997.

aarch64/exceptions/aborts/AArch64.Abort

 // AArch64.Abort()
 // ===============
 // Abort and Debug exception handling in an AArch64 translation regime.

 AArch64.Abort(bits(64) vaddress, FaultRecord fault)

 if IsDebugException(fault) then
 if fault.acctype == AccType_IFETCH then
 if UsingAArch32() && fault.debugmoe == DebugException_VectorCatch then
 AArch64.VectorCatchException(fault);
 else
 AArch64.BreakpointException(fault);
 else
 AArch64.WatchpointException(vaddress, fault);
 elsif fault.acctype == AccType_IFETCH then
 AArch64.InstructionAbort(vaddress, fault);
 else
 AArch64.DataAbort(vaddress, fault);

aarch64/exceptions/aborts/AArch64.AbortSyndrome

 // AArch64.AbortSyndrome()
 // =======================
 // Creates an exception syndrome record for Abort and Watchpoint exceptions
 // from an AArch64 translation regime.

 ExceptionRecord AArch64.AbortSyndrome(Exception exceptype, FaultRecord fault, bits(64) vaddress)
 exception = ExceptionSyndrome(exceptype);

 d_side = exceptype IN {Exception_DataAbort, Exception_NV2DataAbort, Exception_Watchpoint,
Exception_NV2Watchpoint};

 (exception.syndrome, exception.syndrome2) = AArch64.FaultSyndrome(d_side, fault);
 exception.vaddress = ZeroExtend(vaddress);
 if IPAValid(fault) then
 exception.ipavalid = TRUE;
 exception.NS = if fault.ipaddress.paspace == PAS_NonSecure then '1' else '0';
 exception.ipaddress = fault.ipaddress.address;
 else
 exception.ipavalid = FALSE;

 return exception;
J1-7974 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/exceptions/aborts/AArch64.CheckPCAlignment

 // AArch64.CheckPCAlignment()
 // ==========================

 AArch64.CheckPCAlignment()

 bits(64) pc = ThisInstrAddr();
 if pc<1:0> != '00' then
 AArch64.PCAlignmentFault();

aarch64/exceptions/aborts/AArch64.DataAbort

 // AArch64.DataAbort()
 // ===================

 AArch64.DataAbort(bits(64) vaddress, FaultRecord fault)
 route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1' && IsExternalAbort(fault);
 route_to_el2 = (EL2Enabled() && PSTATE.EL IN {EL0, EL1} &&
 (HCR_EL2.TGE == '1' ||
 (HaveRASExt() && HCR_EL2.TEA == '1' && IsExternalAbort(fault)) ||
 (HaveNV2Ext() && fault.acctype == AccType_NV2REGISTER) ||
 IsSecondStage(fault)));

 bits(64) preferred_exception_return = ThisInstrAddr();
 if (HaveDoubleFaultExt() && (PSTATE.EL == EL3 || route_to_el3) &&
 IsExternalAbort(fault) && SCR_EL3.EASE == '1') then
 vect_offset = 0x180;
 else
 vect_offset = 0x0;
 if HaveNV2Ext() && fault.acctype == AccType_NV2REGISTER then
 exception = AArch64.AbortSyndrome(Exception_NV2DataAbort, fault, vaddress);
 else
 exception = AArch64.AbortSyndrome(Exception_DataAbort, fault, vaddress);
 bits(2) target_el = EL1;
 if PSTATE.EL == EL3 || route_to_el3 then
 target_el = EL3;
 elsif PSTATE.EL == EL2 || route_to_el2 then
 target_el = EL2;
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.EffectiveTCF

 // AArch64.EffectiveTCF()
 // ======================
 // Returns the TCF field applied to tag check faults in the given Exception level.

 bits(2) AArch64.EffectiveTCF(AccType acctype)
 bits(2) tcf, el;
 el = S1TranslationRegime();

 if el == EL3 then
 tcf = SCTLR_EL3.TCF;
 elsif el == EL2 then
 if AArch64.AccessUsesEL(acctype) == EL0 then
 tcf = SCTLR_EL2.TCF0;
 else
 tcf = SCTLR_EL2.TCF;
 elsif el == EL1 then
 if AArch64.AccessUsesEL(acctype) == EL0 then
 tcf = SCTLR_EL1.TCF0;
 else
 tcf = SCTLR_EL1.TCF;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7975
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if tcf == '11' then //reserved value
 if !HaveMTE3Ext() then
 (-,tcf) = ConstrainUnpredictableBits();

 return tcf;

aarch64/exceptions/aborts/AArch64.InstructionAbort

 // AArch64.InstructionAbort()
 // ==========================

 AArch64.InstructionAbort(bits(64) vaddress, FaultRecord fault)
 // External aborts on instruction fetch must be taken synchronously
 if HaveDoubleFaultExt() then assert fault.statuscode != Fault_AsyncExternal;
 route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1' && IsExternalAbort(fault);
 route_to_el2 = (EL2Enabled() && PSTATE.EL IN {EL0, EL1} &&
 (HCR_EL2.TGE == '1' ||
 (HaveRASExt() && HCR_EL2.TEA == '1' && IsExternalAbort(fault)) ||
 IsSecondStage(fault)));

 bits(64) preferred_exception_return = ThisInstrAddr();

 if (HaveDoubleFaultExt() && (PSTATE.EL == EL3 || route_to_el3) &&
 IsExternalAbort(fault) && SCR_EL3.EASE == '1') then
 vect_offset = 0x180;
 else
 vect_offset = 0x0;

 exception = AArch64.AbortSyndrome(Exception_InstructionAbort, fault, vaddress);

 bits(2) target_el = EL1;
 if PSTATE.EL == EL3 || route_to_el3 then
 target_el = EL3;
 elsif PSTATE.EL == EL2 || route_to_el2 then
 target_el = EL2;
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.PCAlignmentFault

 // AArch64.PCAlignmentFault()
 // ==========================
 // Called on unaligned program counter in AArch64 state.

 AArch64.PCAlignmentFault()

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_PCAlignment);
 exception.vaddress = ThisInstrAddr();

 bits(2) target_el = EL1;
 if UInt(PSTATE.EL) > UInt(EL1) then
 target_el = PSTATE.EL;
 elsif EL2Enabled() && HCR_EL2.TGE == '1' then
 target_el = EL2;
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.RaiseTagCheckFault

 // AArch64.RaiseTagCheckFault()
 // ============================
 // Raise a tag check fault exception.
J1-7976 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 AArch64.RaiseTagCheckFault(bits(64) va, boolean write)
 bits(64) preferred_exception_return = ThisInstrAddr();
 integer vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_DataAbort);
 exception.syndrome<5:0> = '010001';
 if write then
 exception.syndrome<6> = '1';
 exception.vaddress = bits(4) UNKNOWN : va<59:0>;

 bits(2) target_el = EL1;
 if UInt(PSTATE.EL) > UInt(EL1) then
 target_el = PSTATE.EL;
 elsif PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1' then
 target_el = EL2;
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.ReportTagCheckFault

 // AArch64.ReportTagCheckFault()
 // =============================
 // Records a tag check fault exception into the appropriate TCFR_ELx.

 AArch64.ReportTagCheckFault(bits(2) el, bit ttbr)
 if el == EL3 then
 assert ttbr == '0';
 TFSR_EL3.TF0 = '1';
 elsif el == EL2 then
 if ttbr == '0' then
 TFSR_EL2.TF0 = '1';
 else
 TFSR_EL2.TF1 = '1';
 elsif el == EL1 then
 if ttbr == '0' then
 TFSR_EL1.TF0 = '1';
 else
 TFSR_EL1.TF1 = '1';
 elsif el == EL0 then
 if ttbr == '0' then
 TFSRE0_EL1.TF0 = '1';
 else
 TFSRE0_EL1.TF1 = '1';

aarch64/exceptions/aborts/AArch64.SPAlignmentFault

 // AArch64.SPAlignmentFault()
 // ==========================
 // Called on an unaligned stack pointer in AArch64 state.

 AArch64.SPAlignmentFault()

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_SPAlignment);

 bits(2) target_el = EL1;
 if UInt(PSTATE.EL) > UInt(EL1) then
 target_el = PSTATE.EL;
 elsif EL2Enabled() && HCR_EL2.TGE == '1' then
 target_el = EL2;
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7977
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/exceptions/aborts/AArch64.TagCheckFault

 // AArch64.TagCheckFault()
 // =======================
 // Handle a tag check fault condition.

 AArch64.TagCheckFault(bits(64) vaddress, AccType acctype, boolean iswrite)
 bits(2) tcf, el;
 el = AArch64.AccessUsesEL(acctype);
 tcf = AArch64.EffectiveTCF(acctype);
 case tcf of
 when '00' // Tag Check Faults have no effect on the PE
 return;
 when '01' // Tag Check Faults cause a synchronous exception
 AArch64.RaiseTagCheckFault(vaddress, iswrite);
 when '10' // Tag Check Faults are asynchronously accumulated
 AArch64.ReportTagCheckFault(el, vaddress<55>);
 when '11' // Tag Check Faults cause a synchronous exception on reads or on
 // a read-write access, and are asynchronously accumulated on writes
 // Check for access performing both a read and a write.
 readwrite = acctype IN {AccType_ATOMICRW,
 AccType_ORDEREDATOMICRW,
 AccType_ORDEREDRW};

 if !iswrite || readwrite then
 AArch64.RaiseTagCheckFault(vaddress, iswrite);
 else
 AArch64.ReportTagCheckFault(PSTATE.EL, vaddress<55>);

aarch64/exceptions/aborts/BranchTargetException

 // BranchTargetException()
 // =======================
 // Raise branch target exception.

 AArch64.BranchTargetException(bits(52) vaddress)
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_BranchTarget);
 exception.syndrome<1:0> = PSTATE.BTYPE;
 exception.syndrome<24:2> = Zeros(); // RES0

 bits(2) target_el = EL1;
 if UInt(PSTATE.EL) > UInt(EL1) then
 target_el = PSTATE.EL;
 elsif PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1' then
 target_el = EL2;
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/async/AArch64.TakePhysicalFIQException

 // AArch64.TakePhysicalFIQException()
 // ==================================

 AArch64.TakePhysicalFIQException()

 route_to_el3 = HaveEL(EL3) && SCR_EL3.FIQ == '1';
 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR_EL2.TGE == '1' || HCR_EL2.FMO == '1'));
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x100;
 exception = ExceptionSyndrome(Exception_FIQ);

J1-7978 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if route_to_el3 then
 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_el2 then
 assert PSTATE.EL != EL3;
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 assert PSTATE.EL IN {EL0, EL1};
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/async/AArch64.TakePhysicalIRQException

 // AArch64.TakePhysicalIRQException()
 // ==================================
 // Take an enabled physical IRQ exception.

 AArch64.TakePhysicalIRQException()

 route_to_el3 = HaveEL(EL3) && SCR_EL3.IRQ == '1';
 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR_EL2.TGE == '1' || HCR_EL2.IMO == '1'));
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x80;

 exception = ExceptionSyndrome(Exception_IRQ);

 if route_to_el3 then
 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_el2 then
 assert PSTATE.EL != EL3;
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 assert PSTATE.EL IN {EL0, EL1};
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/async/AArch64.TakePhysicalSErrorException

 // AArch64.TakePhysicalSErrorException()
 // =====================================

 AArch64.TakePhysicalSErrorException(bits(25) syndrome)

 route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1';
 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR_EL2.TGE == '1' || (!IsInHost() && HCR_EL2.AMO == '1')));
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x180;

 bits(2) target_el;
 if PSTATE.EL == EL3 || route_to_el3 then
 target_el = EL3;
 elsif PSTATE.EL == EL2 || route_to_el2 then
 target_el = EL2;
 else
 target_el = EL1;

 if IsSErrorEdgeTriggered(target_el, syndrome) then
 ClearPendingPhysicalSError();

 exception = ExceptionSyndrome(Exception_SError);
 exception.syndrome = syndrome;
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7979
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/exceptions/async/AArch64.TakeVirtualFIQException

 // AArch64.TakeVirtualFIQException()
 // =================================

 AArch64.TakeVirtualFIQException()
 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
 assert HCR_EL2.TGE == '0' && HCR_EL2.FMO == '1'; // Virtual IRQ enabled if TGE==0 and FMO==1

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x100;

 exception = ExceptionSyndrome(Exception_FIQ);

 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/async/AArch64.TakeVirtualIRQException

 // AArch64.TakeVirtualIRQException()
 // =================================

 AArch64.TakeVirtualIRQException()
 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
 assert HCR_EL2.TGE == '0' && HCR_EL2.IMO == '1'; // Virtual IRQ enabled if TGE==0 and IMO==1

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x80;

 exception = ExceptionSyndrome(Exception_IRQ);

 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/async/AArch64.TakeVirtualSErrorException

 // AArch64.TakeVirtualSErrorException()
 // ====================================

 AArch64.TakeVirtualSErrorException(bits(25) syndrome)

 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
 assert HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1'; // Virtual SError enabled if TGE==0 and AMO==1

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x180;
 exception = ExceptionSyndrome(Exception_SError);

 if HaveRASExt() then
 exception.syndrome<24> = VSESR_EL2.IDS;
 exception.syndrome<23:0> = VSESR_EL2.ISS;
 else
 impdef_syndrome = syndrome<24> == '1';
 if impdef_syndrome then exception.syndrome = syndrome;

 ClearPendingVirtualSError();
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.BreakpointException

 // AArch64.BreakpointException()
 // =============================

 AArch64.BreakpointException(FaultRecord fault)
 assert PSTATE.EL != EL3;
J1-7980 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 vaddress = bits(64) UNKNOWN;
 exception = AArch64.AbortSyndrome(Exception_Breakpoint, fault, vaddress);

 if PSTATE.EL == EL2 || route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.SoftwareBreakpoint

 // AArch64.SoftwareBreakpoint()
 // ============================

 AArch64.SoftwareBreakpoint(bits(16) immediate)

 route_to_el2 = (PSTATE.EL IN {EL0, EL1} &&
 EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_SoftwareBreakpoint);
 exception.syndrome<15:0> = immediate;

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.SoftwareStepException

 // AArch64.SoftwareStepException()
 // ===============================

 AArch64.SoftwareStepException()
 assert PSTATE.EL != EL3;

 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_SoftwareStep);
 if SoftwareStep_DidNotStep() then
 exception.syndrome<24> = '0';
 else
 exception.syndrome<24> = '1';
 exception.syndrome<6> = if SoftwareStep_SteppedEX() then '1' else '0';
 exception.syndrome<5:0> = '100010'; // IFSC = Debug Exception

 if PSTATE.EL == EL2 || route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7981
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.VectorCatchException

 // AArch64.VectorCatchException()
 // ==============================
 // Vector Catch taken from EL0 or EL1 to EL2. This can only be called when debug exceptions are
 // being routed to EL2, as Vector Catch is a legacy debug event.

 AArch64.VectorCatchException(FaultRecord fault)
 assert PSTATE.EL != EL2;
 assert EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1');

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 vaddress = bits(64) UNKNOWN;
 exception = AArch64.AbortSyndrome(Exception_VectorCatch, fault, vaddress);

 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.WatchpointException

 // AArch64.WatchpointException()
 // =============================

 AArch64.WatchpointException(bits(64) vaddress, FaultRecord fault)
 assert PSTATE.EL != EL3;

 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 if HaveNV2Ext() && fault.acctype == AccType_NV2REGISTER then
 exception = AArch64.AbortSyndrome(Exception_NV2Watchpoint, fault, vaddress);
 else
 exception = AArch64.AbortSyndrome(Exception_Watchpoint, fault, vaddress);

 if PSTATE.EL == EL2 || route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/exceptions/AArch64.ExceptionClass

 // AArch64.ExceptionClass()
 // ========================
 // Returns the Exception Class and Instruction Length fields to be reported in ESR

 (integer,bit) AArch64.ExceptionClass(Exception exceptype, bits(2) target_el)

 il_is_valid = TRUE;
 from_32 = UsingAArch32();

 case exceptype of
 when Exception_Uncategorized ec = 0x00; il_is_valid = FALSE;
 when Exception_WFxTrap ec = 0x01;
 when Exception_CP15RTTrap ec = 0x03; assert from_32;
 when Exception_CP15RRTTrap ec = 0x04; assert from_32;
 when Exception_CP14RTTrap ec = 0x05; assert from_32;
J1-7982 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when Exception_CP14DTTrap ec = 0x06; assert from_32;
 when Exception_AdvSIMDFPAccessTrap ec = 0x07;
 when Exception_FPIDTrap ec = 0x08;
 when Exception_PACTrap ec = 0x09;
 when Exception_LDST64BTrap ec = 0x0A;
 when Exception_CP14RRTTrap ec = 0x0C; assert from_32;
 when Exception_BranchTarget ec = 0x0D;
 when Exception_IllegalState ec = 0x0E; il_is_valid = FALSE;
 when Exception_SupervisorCall ec = 0x11;
 when Exception_HypervisorCall ec = 0x12;
 when Exception_MonitorCall ec = 0x13;
 when Exception_SystemRegisterTrap ec = 0x18; assert !from_32;
 when Exception_SVEAccessTrap ec = 0x19; assert !from_32;
 when Exception_ERetTrap ec = 0x1A; assert !from_32;
 when Exception_PACFail ec = 0x1C; assert !from_32;
 when Exception_InstructionAbort ec = 0x20; il_is_valid = FALSE;
 when Exception_PCAlignment ec = 0x22; il_is_valid = FALSE;
 when Exception_DataAbort ec = 0x24;
 when Exception_NV2DataAbort ec = 0x25;
 when Exception_SPAlignment ec = 0x26; il_is_valid = FALSE; assert !from_32;
 when Exception_FPTrappedException ec = 0x28;
 when Exception_SError ec = 0x2F; il_is_valid = FALSE;
 when Exception_Breakpoint ec = 0x30; il_is_valid = FALSE;
 when Exception_SoftwareStep ec = 0x32; il_is_valid = FALSE;
 when Exception_Watchpoint ec = 0x34; il_is_valid = FALSE;
 when Exception_NV2Watchpoint ec = 0x35; il_is_valid = FALSE;
 when Exception_SoftwareBreakpoint ec = 0x38;
 when Exception_VectorCatch ec = 0x3A; il_is_valid = FALSE; assert from_32;
 otherwise Unreachable();

 if ec IN {0x20,0x24,0x30,0x32,0x34} && target_el == PSTATE.EL then
 ec = ec + 1;

 if ec IN {0x11,0x12,0x13,0x28,0x38} && !from_32 then
 ec = ec + 4;

 if il_is_valid then
 il = if ThisInstrLength() == 32 then '1' else '0';
 else
 il = '1';
 assert from_32 || il == '1'; // AArch64 instructions always 32-bit

 return (ec,il);

aarch64/exceptions/exceptions/AArch64.ReportException

 // AArch64.ReportException()
 // =========================
 // Report syndrome information for exception taken to AArch64 state.

 AArch64.ReportException(ExceptionRecord exception, bits(2) target_el)

 Exception exceptype = exception.exceptype;

 (ec,il) = AArch64.ExceptionClass(exceptype, target_el);
 iss = exception.syndrome;
 iss2 = exception.syndrome2;

 // IL is not valid for Data Abort exceptions without valid instruction syndrome information
 if ec IN {0x24,0x25} && iss<24> == '0' then
 il = '1';

 ESR[target_el] = (Zeros(27) : // <63:37>
 iss2 : // <36:32>
 ec<5:0> : // <31:26>
 il : // <25>
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7983
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 iss); // <24:0>

 if exceptype IN {
 Exception_InstructionAbort,
 Exception_PCAlignment,
 Exception_DataAbort,
 Exception_NV2DataAbort,
 Exception_NV2Watchpoint,
 Exception_Watchpoint
 } then
 FAR[target_el] = exception.vaddress;
 else
 FAR[target_el] = bits(64) UNKNOWN;

 if exception.ipavalid then
 HPFAR_EL2<43:4> = exception.ipaddress<51:12>;
 if IsSecureEL2Enabled() && IsSecure() then
 HPFAR_EL2.NS = exception.NS;
 else
 HPFAR_EL2.NS = '0';
 elsif target_el == EL2 then
 HPFAR_EL2<43:4> = bits(40) UNKNOWN;

 return;

aarch64/exceptions/exceptions/AArch64.ResetControlRegisters

 // Resets System registers and memory-mapped control registers that have architecturally-defined
 // reset values to those values.
 AArch64.ResetControlRegisters(boolean cold_reset);

aarch64/exceptions/exceptions/AArch64.TakeReset

 // AArch64.TakeReset()
 // ===================
 // Reset into AArch64 state

 AArch64.TakeReset(boolean cold_reset)
 assert HaveAArch64();

 // Enter the highest implemented Exception level in AArch64 state
 PSTATE.nRW = '0';
 if HaveEL(EL3) then
 PSTATE.EL = EL3;
 elsif HaveEL(EL2) then
 PSTATE.EL = EL2;
 else
 PSTATE.EL = EL1;

 // Reset System registers and other system components
 AArch64.ResetControlRegisters(cold_reset);

 // Reset all other PSTATE fields
 PSTATE.SP = '1'; // Select stack pointer
 PSTATE.<D,A,I,F> = '1111'; // All asynchronous exceptions masked
 PSTATE.SS = '0'; // Clear software step bit
 PSTATE.DIT = '0'; // PSTATE.DIT is reset to 0 when resetting into AArch64
 PSTATE.IL = '0'; // Clear Illegal Execution state bit

 // All registers, bits and fields not reset by the above pseudocode or by the BranchTo() call
 // below are UNKNOWN bitstrings after reset. In particular, the return information registers
 // ELR_ELx and SPSR_ELx have UNKNOWN values, so that it
 // is impossible to return from a reset in an architecturally defined way.
 AArch64.ResetGeneralRegisters();
J1-7984 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 AArch64.ResetSIMDFPRegisters();
 AArch64.ResetSpecialRegisters();
 ResetExternalDebugRegisters(cold_reset);

 bits(64) rv; // IMPLEMENTATION DEFINED reset vector

 if HaveEL(EL3) then
 rv = RVBAR_EL3;
 elsif HaveEL(EL2) then
 rv = RVBAR_EL2;
 else
 rv = RVBAR_EL1;

 // The reset vector must be correctly aligned
 assert IsZero(rv<63:AArch64.PAMax()>) && IsZero(rv<1:0>);

 boolean branch_conditional = FALSE;
 BranchTo(rv, BranchType_RESET, branch_conditional);

aarch64/exceptions/ieeefp/AArch64.FPTrappedException

 // AArch64.FPTrappedException()
 // ============================

 AArch64.FPTrappedException(boolean is_ase, bits(8) accumulated_exceptions)
 exception = ExceptionSyndrome(Exception_FPTrappedException);
 if is_ase then
 if boolean IMPLEMENTATION_DEFINED "vector instructions set TFV to 1" then
 exception.syndrome<23> = '1'; // TFV
 else
 exception.syndrome<23> = '0'; // TFV
 else
 exception.syndrome<23> = '1'; // TFV
 exception.syndrome<10:8> = bits(3) UNKNOWN; // VECITR
 if exception.syndrome<23> == '1' then
 exception.syndrome<7,4:0> = accumulated_exceptions<7,4:0>; // IDF,IXF,UFF,OFF,DZF,IOF
 else
 exception.syndrome<7,4:0> = bits(6) UNKNOWN;

 route_to_el2 = EL2Enabled() && HCR_EL2.TGE == '1';

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/syscalls/AArch64.CallHypervisor

 // AArch64.CallHypervisor()
 // ========================
 // Performs a HVC call

 AArch64.CallHypervisor(bits(16) immediate)
 assert HaveEL(EL2);

 if UsingAArch32() then AArch32.ITAdvance();
 SSAdvance();
 bits(64) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x0;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7985
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 exception = ExceptionSyndrome(Exception_HypervisorCall);
 exception.syndrome<15:0> = immediate;

 if PSTATE.EL == EL3 then
 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/syscalls/AArch64.CallSecureMonitor

 // AArch64.CallSecureMonitor()
 // ===========================

 AArch64.CallSecureMonitor(bits(16) immediate)
 assert HaveEL(EL3) && !ELUsingAArch32(EL3);
 if UsingAArch32() then AArch32.ITAdvance();
 SSAdvance();
 bits(64) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_MonitorCall);
 exception.syndrome<15:0> = immediate;

 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/syscalls/AArch64.CallSupervisor

 // AArch64.CallSupervisor()
 // ========================
 // Calls the Supervisor

 AArch64.CallSupervisor(bits(16) immediate)

 if UsingAArch32() then AArch32.ITAdvance();
 SSAdvance();
 route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';

 bits(64) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_SupervisorCall);
 exception.syndrome<15:0> = immediate;

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/takeexception/AArch64.TakeException

 // AArch64.TakeException()
 // =======================
 // Take an exception to an Exception level using AArch64.

 AArch64.TakeException(bits(2) target_el, ExceptionRecord exception,
 bits(64) preferred_exception_return, integer vect_offset)
 assert HaveEL(target_el) && !ELUsingAArch32(target_el) && UInt(target_el) >= UInt(PSTATE.EL);

 if HaveIESB() then
 sync_errors = SCTLR[target_el].IESB == '1';
J1-7986 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if HaveDoubleFaultExt() then
 sync_errors = sync_errors || (SCR_EL3.<EA,NMEA> == '11' && target_el == EL3);
 if sync_errors && InsertIESBBeforeException(target_el) then
 SynchronizeErrors();
 iesb_req = FALSE;
 sync_errors = FALSE;
 TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);
 else
 sync_errors = FALSE;

 SynchronizeContext();

 // If coming from AArch32 state, the top parts of the X[] registers might be set to zero
 from_32 = UsingAArch32();
 if from_32 then AArch64.MaybeZeroRegisterUppers();
 MaybeZeroSVEUppers(target_el);

 if UInt(target_el) > UInt(PSTATE.EL) then
 boolean lower_32;
 if target_el == EL3 then
 if EL2Enabled() then
 lower_32 = ELUsingAArch32(EL2);
 else
 lower_32 = ELUsingAArch32(EL1);
 elsif IsInHost() && PSTATE.EL == EL0 && target_el == EL2 then
 lower_32 = ELUsingAArch32(EL0);
 else
 lower_32 = ELUsingAArch32(target_el - 1);
 vect_offset = vect_offset + (if lower_32 then 0x600 else 0x400);

 elsif PSTATE.SP == '1' then
 vect_offset = vect_offset + 0x200;

 bits(64) spsr = GetPSRFromPSTATE(AArch64_NonDebugState);

 if PSTATE.EL == EL1 && target_el == EL1 && EL2Enabled() then
 if HaveNV2Ext() && (HCR_EL2.<NV,NV1,NV2> == '100' || HCR_EL2.<NV,NV1,NV2> == '111') then
 spsr<3:2> = '10';
 else
 if HaveNVExt() && HCR_EL2.<NV,NV1> == '10' then
 spsr<3:2> = '10';

 if HaveBTIExt() && !UsingAArch32() then
 // SPSR[].BTYPE is only guaranteed valid for these exception types
 if exception.exceptype IN {Exception_SError, Exception_IRQ, Exception_FIQ,
 Exception_SoftwareStep, Exception_PCAlignment,
 Exception_InstructionAbort, Exception_Breakpoint,
 Exception_VectorCatch, Exception_SoftwareBreakpoint,
 Exception_IllegalState, Exception_BranchTarget} then
 zero_btype = FALSE;
 else
 zero_btype = ConstrainUnpredictableBool();
 if zero_btype then spsr<11:10> = '00';

 if HaveNV2Ext() && exception.exceptype == Exception_NV2DataAbort && target_el == EL3 then
 // External aborts are configured to be taken to EL3
 exception.exceptype = Exception_DataAbort;
 if !(exception.exceptype IN {Exception_IRQ, Exception_FIQ}) then
 AArch64.ReportException(exception, target_el);

 PSTATE.EL = target_el;
 PSTATE.nRW = '0';
 PSTATE.SP = '1';

 SPSR[] = spsr;
 ELR[] = preferred_exception_return;

 PSTATE.SS = '0';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7987
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 PSTATE.<D,A,I,F> = '1111';
 PSTATE.IL = '0';
 if from_32 then // Coming from AArch32
 PSTATE.IT = '00000000';
 PSTATE.T = '0'; // PSTATE.J is RES0
 if (HavePANExt() && (PSTATE.EL == EL1 || (PSTATE.EL == EL2 && ELIsInHost(EL0))) &&
 SCTLR[].SPAN == '0') then
 PSTATE.PAN = '1';
 if HaveUAOExt() then PSTATE.UAO = '0';
 if HaveBTIExt() then PSTATE.BTYPE = '00';
 if HaveSSBSExt() then PSTATE.SSBS = SCTLR[].DSSBS;
 if HaveMTEExt() then PSTATE.TCO = '1';

 boolean branch_conditional = FALSE;
 BranchTo(VBAR[]<63:11>:vect_offset<10:0>, BranchType_EXCEPTION, branch_conditional);

 CheckExceptionCatch(TRUE); // Check for debug event on exception entry

 if sync_errors then
 SynchronizeErrors();
 iesb_req = TRUE;
 TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);

 EndOfInstruction();

aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrap

 // AArch64.AArch32SystemAccessTrap()
 // =================================
 // Trapped AARCH32 system register access.

 AArch64.AArch32SystemAccessTrap(bits(2) target_el, integer ec)
 assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = AArch64.AArch32SystemAccessTrapSyndrome(ThisInstr(), ec);
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrapSyndrome

 // AArch64.AArch32SystemAccessTrapSyndrome()
 // ===
 // Returns the syndrome information for traps on AArch32 MCR, MCRR, MRC, MRRC, and VMRS, VMSR
instructions,
 // other than traps that are due to HCPTR or CPACR.

 ExceptionRecord AArch64.AArch32SystemAccessTrapSyndrome(bits(32) instr, integer ec)
 ExceptionRecord exception;

 case ec of
 when 0x0 exception = ExceptionSyndrome(Exception_Uncategorized);
 when 0x3 exception = ExceptionSyndrome(Exception_CP15RTTrap);
 when 0x4 exception = ExceptionSyndrome(Exception_CP15RRTTrap);
 when 0x5 exception = ExceptionSyndrome(Exception_CP14RTTrap);
 when 0x6 exception = ExceptionSyndrome(Exception_CP14DTTrap);
 when 0x7 exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
 when 0x8 exception = ExceptionSyndrome(Exception_FPIDTrap);
 when 0xC exception = ExceptionSyndrome(Exception_CP14RRTTrap);
 otherwise Unreachable();

 bits(20) iss = Zeros();

J1-7988 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if exception.exceptype IN {Exception_FPIDTrap, Exception_CP14RTTrap, Exception_CP15RTTrap} then
 // Trapped MRC/MCR, VMRS on FPSID
 if exception.exceptype != Exception_FPIDTrap then // When trap is not for VMRS
 iss<19:17> = instr<7:5>; // opc2
 iss<16:14> = instr<23:21>; // opc1
 iss<13:10> = instr<19:16>; // CRn
 iss<4:1> = instr<3:0>; // CRm
 else
 iss<19:17> = '000';
 iss<16:14> = '111';
 iss<13:10> = instr<19:16>; // reg
 iss<4:1> = '0000';

 if instr<20> == '1' && instr<15:12> == '1111' then // MRC, Rt==15
 iss<9:5> = '11111';
 elsif instr<20> == '0' && instr<15:12> == '1111' then // MCR, Rt==15
 iss<9:5> = bits(5) UNKNOWN;
 else
 iss<9:5> = LookUpRIndex(UInt(instr<15:12>), PSTATE.M)<4:0>;
 elsif exception.exceptype IN {Exception_CP14RRTTrap, Exception_AdvSIMDFPAccessTrap,
Exception_CP15RRTTrap} then
 // Trapped MRRC/MCRR, VMRS/VMSR
 iss<19:16> = instr<7:4>; // opc1
 if instr<19:16> == '1111' then // Rt2==15
 iss<14:10> = bits(5) UNKNOWN;
 else
 iss<14:10> = LookUpRIndex(UInt(instr<19:16>), PSTATE.M)<4:0>;

 if instr<15:12> == '1111' then // Rt==15
 iss<9:5> = bits(5) UNKNOWN;
 else
 iss<9:5> = LookUpRIndex(UInt(instr<15:12>), PSTATE.M)<4:0>;
 iss<4:1> = instr<3:0>; // CRm
 elsif exception.exceptype == Exception_CP14DTTrap then
 // Trapped LDC/STC
 iss<19:12> = instr<7:0>; // imm8
 iss<4> = instr<23>; // U
 iss<2:1> = instr<24,21>; // P,W
 if instr<19:16> == '1111' then // Rn==15, LDC(Literal addressing)/STC
 iss<9:5> = bits(5) UNKNOWN;
 iss<3> = '1';
 elsif exception.exceptype == Exception_Uncategorized then
 // Trapped for unknown reason
 iss<9:5> = LookUpRIndex(UInt(instr<19:16>), PSTATE.M)<4:0>; // Rn
 iss<3> = '0';

 iss<0> = instr<20>; // Direction

 exception.syndrome<24:20> = ConditionSyndrome();
 exception.syndrome<19:0> = iss;

 return exception;

aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap

 // AArch64.AdvSIMDFPAccessTrap()
 // =============================
 // Trapped access to Advanced SIMD or FP registers due to CPACR[].

 AArch64.AdvSIMDFPAccessTrap(bits(2) target_el)
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 route_to_el2 = (target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1');

 if route_to_el2 then
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7989
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 exception = ExceptionSyndrome(Exception_Uncategorized);
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
 exception.syndrome<24:20> = ConditionSyndrome();
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

 return;

aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps

 // AArch64.CheckCP15InstrCoarseTraps()
 // ===================================
 // Check for coarse-grained AArch32 traps to System registers in the
 // coproc=0b1111 encoding space by HSTR_EL2 and HCR_EL2.

 boolean AArch64.CheckCP15InstrCoarseTraps(integer CRn, integer nreg, integer CRm)

 // Check for coarse-grained Hyp traps
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
 // Check for MCR, MRC, MCRR and MRRC disabled by HSTR_EL2<CRn/CRm>
 major = if nreg == 1 then CRn else CRm;
 if !IsInHost() && !(major IN {4,14}) && HSTR_EL2<major> == '1' then
 return TRUE;

 // Check for MRC and MCR disabled by HCR_EL2.TIDCP
 if (HCR_EL2.TIDCP == '1' && nreg == 1 &&
 ((CRn == 9 && CRm IN {0,1,2, 5,6,7,8 }) ||
 (CRn == 10 && CRm IN {0,1, 4, 8 }) ||
 (CRn == 11 && CRm IN {0,1,2,3,4,5,6,7,8,15}))) then
 return TRUE;

 return FALSE;

aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled

 // AArch64.CheckFPAdvSIMDEnabled()
 // ===============================

 AArch64.CheckFPAdvSIMDEnabled()
 AArch64.CheckFPEnabled();

aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap

 // AArch64.CheckFPAdvSIMDTrap()
 // ============================
 // Check against CPTR_EL2 and CPTR_EL3.

 AArch64.CheckFPAdvSIMDTrap()
 if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
 // Check if access disabled in CPTR_EL2
 if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
 case CPTR_EL2.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
 when '11' disabled = FALSE;
 if disabled then AArch64.AdvSIMDFPAccessTrap(EL2);
 else
 if CPTR_EL2.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL2);

 if HaveEL(EL3) then
 // Check if access disabled in CPTR_EL3
 if CPTR_EL3.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL3);
J1-7990 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 return;

aarch64/exceptions/traps/AArch64.CheckFPEnabled

 // AArch64.CheckFPEnabled()
 // ========================
 // Check against CPACR[]

 AArch64.CheckFPEnabled()
 if PSTATE.EL IN {EL0, EL1} && !IsInHost() then
 // Check if access disabled in CPACR_EL1
 case CPACR_EL1.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0;
 when '11' disabled = FALSE;
 if disabled then AArch64.AdvSIMDFPAccessTrap(EL1);

 AArch64.CheckFPAdvSIMDTrap(); // Also check against CPTR_EL2 and CPTR_EL3

aarch64/exceptions/traps/AArch64.CheckForERetTrap

 // AArch64.CheckForERetTrap()
 // ==========================
 // Check for trap on ERET, ERETAA, ERETAB instruction

 AArch64.CheckForERetTrap(boolean eret_with_pac, boolean pac_uses_key_a)

 route_to_el2 = FALSE;
 // Non-secure EL1 execution of ERET, ERETAA, ERETAB when either HCR_EL2.NV or HFGITR_EL2.ERET is
set,
 // is trapped to EL2
 route_to_el2 = (PSTATE.EL == EL1 && EL2Enabled() &&
 ((HaveNVExt() && HCR_EL2.NV == '1') ||
 (HaveFGTExt() && HCR_EL2.<E2H, TGE> != '11' &&
 (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ERET == '1')));
 if route_to_el2 then
 ExceptionRecord exception;
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;
 exception = ExceptionSyndrome(Exception_ERetTrap);
 if !eret_with_pac then // ERET
 exception.syndrome<1> = '0';
 exception.syndrome<0> = '0'; // RES0
 else
 exception.syndrome<1> = '1';
 if pac_uses_key_a then // ERETAA
 exception.syndrome<0> = '0';
 else // ERETAB
 exception.syndrome<0> = '1';
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.CheckForSMCUndefOrTrap

 // AArch64.CheckForSMCUndefOrTrap()
 // ================================
 // Check for UNDEFINED or trap on SMC instruction

 AArch64.CheckForSMCUndefOrTrap(bits(16) imm)
 if PSTATE.EL == EL0 then UNDEFINED;
 if (!(PSTATE.EL == EL1 && EL2Enabled() && HCR_EL2.TSC == '1') &&
 HaveEL(EL3) && SCR_EL3.SMD == '1') then
 UNDEFINED;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7991
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 route_to_el2 = FALSE;
 if !HaveEL(EL3) then
 if PSTATE.EL == EL1 && EL2Enabled() then
 if HaveNVExt() && HCR_EL2.NV == '1' && HCR_EL2.TSC == '1' then
 route_to_el2 = TRUE;
 else
 UNDEFINED;
 else
 UNDEFINED;
 else
 route_to_el2 = PSTATE.EL == EL1 && EL2Enabled() && HCR_EL2.TSC == '1';
 if route_to_el2 then
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;
 exception = ExceptionSyndrome(Exception_MonitorCall);
 exception.syndrome<15:0> = imm;
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.CheckForSVCTrap

 // AArch64.CheckForSVCTrap()
 // =========================
 // Check for trap on SVC instruction

 AArch64.CheckForSVCTrap(bits(16) immediate)
 if HaveFGTExt() then
 route_to_el2 = FALSE;
 if PSTATE.EL == EL0 then
 route_to_el2 = (!ELUsingAArch32(EL0) && !ELUsingAArch32(EL1) && EL2Enabled() &&
HFGITR_EL2.SVC_EL0 == '1' &&
 (HCR_EL2.<E2H, TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1')));

 elsif PSTATE.EL == EL1 then
 route_to_el2 = (!ELUsingAArch32(EL1) && EL2Enabled() && HFGITR_EL2.SVC_EL1 == '1' &&
 (HCR_EL2.<E2H, TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1')));

 if route_to_el2 then
 exception = ExceptionSyndrome(Exception_SupervisorCall);
 exception.syndrome<15:0> = immediate;
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.CheckForWFxTrap

 // AArch64.CheckForWFxTrap()
 // =========================
 // Check for trap on WFE or WFI instruction

 AArch64.CheckForWFxTrap(bits(2) target_el, WFxType wfxtype)
 assert HaveEL(target_el);

 boolean is_wfe = wfxtype IN {WFxType_WFE, WFxType_WFET};
 case target_el of
 when EL1
 trap = (if is_wfe then SCTLR[].nTWE else SCTLR[].nTWI) == '0';
 when EL2
 trap = (if is_wfe then HCR_EL2.TWE else HCR_EL2.TWI) == '1';
 when EL3
 trap = (if is_wfe then SCR_EL3.TWE else SCR_EL3.TWI) == '1';

J1-7992 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if trap then
 AArch64.WFxTrap(wfxtype, target_el);

aarch64/exceptions/traps/AArch64.CheckIllegalState

 // AArch64.CheckIllegalState()
 // ===========================
 // Check PSTATE.IL bit and generate Illegal Execution state exception if set.

 AArch64.CheckIllegalState()
 if PSTATE.IL == '1' then
 route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_IllegalState);

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.MonitorModeTrap

 // AArch64.MonitorModeTrap()
 // =========================
 // Trapped use of Monitor mode features in a Secure EL1 AArch32 mode

 AArch64.MonitorModeTrap()
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_Uncategorized);

 if IsSecureEL2Enabled() then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.SystemAccessTrap

 // AArch64.SystemAccessTrap()
 // ==========================
 // Trapped access to AArch64 system register or system instruction.

 AArch64.SystemAccessTrap(bits(2) target_el, integer ec)
 assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = AArch64.SystemAccessTrapSyndrome(ThisInstr(), ec);
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.SystemAccessTrapSyndrome

 // AArch64.SystemAccessTrapSyndrome()
 // ==================================
 // Returns the syndrome information for traps on AArch64 MSR/MRS instructions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7993
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 ExceptionRecord AArch64.SystemAccessTrapSyndrome(bits(32) instr, integer ec)
 ExceptionRecord exception;
 case ec of
 when 0x0 // Trapped access due to unknown
reason.
 exception = ExceptionSyndrome(Exception_Uncategorized);
 when 0x7 // Trapped access to SVE, Advance
SIMD&FP system register.
 exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
 exception.syndrome<24:20> = ConditionSyndrome();
 when 0x18 // Trapped access to system
register or system instruction.
 exception = ExceptionSyndrome(Exception_SystemRegisterTrap);
 instr = ThisInstr();
 exception.syndrome<21:20> = instr<20:19>; // Op0
 exception.syndrome<19:17> = instr<7:5>; // Op2
 exception.syndrome<16:14> = instr<18:16>; // Op1
 exception.syndrome<13:10> = instr<15:12>; // CRn
 exception.syndrome<9:5> = instr<4:0>; // Rt
 exception.syndrome<4:1> = instr<11:8>; // CRm
 exception.syndrome<0> = instr<21>; // Direction
 when 0x19 // Trapped access to SVE System
register
 exception = ExceptionSyndrome(Exception_SVEAccessTrap);
 otherwise
 Unreachable();

 return exception;

aarch64/exceptions/traps/AArch64.UndefinedFault

 // AArch64.UndefinedFault()
 // ========================

 AArch64.UndefinedFault()

 route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_Uncategorized);

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.WFxTrap

 // AArch64.WFxTrap()
 // =================

 AArch64.WFxTrap(WFxType wfxtype, bits(2) target_el)
 assert UInt(target_el) > UInt(PSTATE.EL);

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_WFxTrap);
 exception.syndrome<24:20> = ConditionSyndrome();

J1-7994 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 case wfxtype of
 when WFxType_WFI
 exception.syndrome<1:0> = '00';
 when WFxType_WFE
 exception.syndrome<1:0> = '01';
 when WFxType_WFIT
 exception.syndrome<1:0> = '10';
 if HaveFeatWFxT2() then
 exception.syndrome<2> = '1'; // Register field is valid
 exception.syndrome<9:5> = ThisInstr()<4:0>;
 else
 exception.syndrome<2> = '0'; // Register field is invalid
 when WFxType_WFET
 exception.syndrome<1:0> = '11';
 if HaveFeatWFxT2() then
 exception.syndrome<2> = '1'; // Register field is valid
 exception.syndrome<9:5> = ThisInstr()<4:0>;
 else
 exception.syndrome<2> = '0'; // Register field is invalid

 if target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/CheckFPAdvSIMDEnabled64

 // CheckFPAdvSIMDEnabled64()
 // =========================
 // AArch64 instruction wrapper

 CheckFPAdvSIMDEnabled64()
 AArch64.CheckFPAdvSIMDEnabled();

aarch64/exceptions/traps/CheckFPEnabled64

 // CheckFPEnabled64()
 // ==================
 // AArch64 instruction wrapper

 CheckFPEnabled64()
 AArch64.CheckFPEnabled();

aarch64/exceptions/traps/CheckLDST64BEnabled

 // CheckLDST64BEnabled()
 // =====================
 // Checks for trap on ST64B and LD64B instructions

 CheckLDST64BEnabled()
 boolean trap = FALSE;
 bits(25) iss = ZeroExtend('10'); // 0x2

 if PSTATE.EL == EL0 then
 if !IsInHost() then
 trap = SCTLR_EL1.EnALS == '0';
 target_el = if EL2Enabled() && HCR_EL2.TGE == '1' then EL2 else EL1;
 else
 trap = SCTLR_EL2.EnALS == '0';
 target_el = EL2;
 else
 target_el = EL1;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7995
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if (!trap && EL2Enabled() && HaveFeatHCX() &&
 ((PSTATE.EL == EL0 && !IsInHost()) || PSTATE.EL == EL1)) then
 trap = !IsHCRXEL2Enabled() || HCRX_EL2.EnALS == '0';
 target_el = EL2;

 if trap then LDST64BTrap(target_el, iss);

aarch64/exceptions/traps/CheckST64BV0Enabled

 // CheckST64BV0Enabled()
 // =====================
 // Checks for trap on ST64BV0 instruction

 CheckST64BV0Enabled()
 boolean trap = FALSE;
 bits(25) iss = ZeroExtend('1'); // 0x1

 if PSTATE.EL == EL0 then
 if !IsInHost() then
 trap = SCTLR_EL1.EnAS0 == '0';
 target_el = if EL2Enabled() && HCR_EL2.TGE == '1' then EL2 else EL1;
 else
 trap = SCTLR_EL2.EnAS0 == '0';
 target_el = EL2;

 if (!trap && EL2Enabled() && HaveFeatHCX() &&
 ((PSTATE.EL == EL0 && !IsInHost()) || PSTATE.EL == EL1)) then
 trap = !IsHCRXEL2Enabled() || HCRX_EL2.EnAS0 == '0';
 target_el = EL2;

 if !trap && PSTATE.EL != EL3 then
 trap = HaveEL(EL3) && SCR_EL3.EnAS0 == '0';
 target_el = EL3;

 if trap then LDST64BTrap(target_el, iss);

aarch64/exceptions/traps/CheckST64BVEnabled

 // CheckST64BVEnabled()
 // ====================
 // Checks for trap on ST64BV instruction

 CheckST64BVEnabled()
 boolean trap = FALSE;
 bits(25) iss = Zeros();

 if PSTATE.EL == EL0 then
 if !IsInHost() then
 trap = SCTLR_EL1.EnASR == '0';
 target_el = if EL2Enabled() && HCR_EL2.TGE == '1' then EL2 else EL1;
 else
 trap = SCTLR_EL2.EnASR == '0';
 target_el = EL2;

 if (!trap && EL2Enabled() && HaveFeatHCX() &&
 ((PSTATE.EL == EL0 && !IsInHost()) || PSTATE.EL == EL1)) then
 trap = !IsHCRXEL2Enabled() || HCRX_EL2.EnASR == '0';
 target_el = EL2;

 if trap then LDST64BTrap(target_el, iss);
J1-7996 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/exceptions/traps/LDST64BTrap

 // LDST64BTrap()
 // =============
 // Trapped access to LD64B, ST64B, ST64BV and ST64BV0 instructions

 LDST64BTrap(bits(2) target_el, bits(25) iss)
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_LDST64BTrap);
 exception.syndrome = iss;
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

 return;

aarch64/exceptions/traps/WFETrapDelay

 // WFETrapDelay()
 // ==============
 // Returns TRUE when delay in trap to WFE is enabled with value to amount of delay,
 // FALSE otherwise.

 (boolean, integer) WFETrapDelay(bits(2) target_el)
 case target_el of
 when EL1
 if !IsInHost() then
 delay_enabled = SCTLR_EL1.TWEDEn == '1';
 delay = 1 << (UInt(SCTLR_EL1.TWEDEL) + 8);
 else
 delay_enabled = SCTLR_EL2.TWEDEn == '1';
 delay = 1 << (UInt(SCTLR_EL2.TWEDEL) + 8);
 when EL2
 assert EL2Enabled();
 delay_enabled = HCR_EL2.TWEDEn == '1';
 delay = 1 << (UInt(HCR_EL2.TWEDEL) + 8);
 when EL3
 delay_enabled = SCR_EL3.TWEDEn == '1';
 delay = 1 << (UInt(SCR_EL3.TWEDEL) + 8);

 return (delay_enabled, delay);

aarch64/exceptions/traps/WaitForEventUntilDelay

 // Returns TRUE if WaitForEvent() returns before WFE trap delay expires,
 // FALSE otherwise.
 boolean WaitForEventUntilDelay(boolean delay_enabled, integer delay);

J1.1.3 aarch64/functions

This section includes the following pseudocode functions:

• aarch64/functions/aborts/AArch64.FaultSyndrome on page J1-8001.

• aarch64/functions/aborts/LS64InstructionSyndrome on page J1-8001.

• aarch64/functions/cache/AArch64.DataMemZero on page J1-8002.

• aarch64/functions/cache/AArch64.TagMemZero on page J1-8002.

• aarch64/functions/exclusive/AArch64.ExclusiveMonitorsPass on page J1-8002.

• aarch64/functions/exclusive/AArch64.IsExclusiveVA on page J1-8003.

• aarch64/functions/exclusive/AArch64.MarkExclusiveVA on page J1-8003.

• aarch64/functions/exclusive/AArch64.SetExclusiveMonitors on page J1-8003.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7997
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/functions/fusedrstep/FPRSqrtStepFused on page J1-8003.

• aarch64/functions/fusedrstep/FPRecipStepFused on page J1-8004.

• aarch64/functions/memory/AArch64.AccessIsTagChecked on page J1-8005.

• aarch64/functions/memory/AArch64.AddressWithAllocationTag on page J1-8005.

• aarch64/functions/memory/AArch64.AllocationTagFromAddress on page J1-8006.

• aarch64/functions/memory/AArch64.CheckAlignment on page J1-8006.

• aarch64/functions/memory/AArch64.CheckTag on page J1-8006.

• aarch64/functions/memory/AArch64.MemSingle on page J1-8006.

• aarch64/functions/memory/AArch64.MemTag on page J1-8008.

• aarch64/functions/memory/AArch64.PhysicalTag on page J1-8009.

• aarch64/functions/memory/AArch64.TranslateAddressForAtomicAccess on page J1-8010.

• aarch64/functions/memory/AddressSupportsLS64 on page J1-8010.

• aarch64/functions/memory/CheckAllInAlignedQuantity on page J1-8010.

• aarch64/functions/memory/CheckSPAlignment on page J1-8010.

• aarch64/functions/memory/CheckSingleAccessAttributes on page J1-8011.

• aarch64/functions/memory/IsTagCheckedInstruction on page J1-8012.

• aarch64/functions/memory/Mem on page J1-8012.

• aarch64/functions/memory/MemAtomic on page J1-8014.

• aarch64/functions/memory/MemAtomicCompareAndSwap on page J1-8014.

• aarch64/functions/memory/MemLoad64B on page J1-8015.

• aarch64/functions/memory/MemStore64B on page J1-8016.

• aarch64/functions/memory/MemStore64BWithRet on page J1-8016.

• aarch64/functions/memory/MemStore64BWithRetStatus on page J1-8017.

• aarch64/functions/memory/NVMem on page J1-8017.

• aarch64/functions/memory/PhysMemTagRead on page J1-8017.

• aarch64/functions/memory/PhysMemTagWrite on page J1-8018.

• aarch64/functions/memory/SetTagCheckedInstruction on page J1-8018.

• aarch64/functions/pac/addpac/AddPAC on page J1-8018.

• aarch64/functions/pac/addpacda/AddPACDA on page J1-8019.

• aarch64/functions/pac/addpacdb/AddPACDB on page J1-8020.

• aarch64/functions/pac/addpacga/AddPACGA on page J1-8021.

• aarch64/functions/pac/addpacia/AddPACIA on page J1-8021.

• aarch64/functions/pac/addpacib/AddPACIB on page J1-8022.

• aarch64/functions/pac/auth/AArch64.PACFailException on page J1-8022.

• aarch64/functions/pac/auth/Auth on page J1-8023.

• aarch64/functions/pac/authda/AuthDA on page J1-8024.

• aarch64/functions/pac/authdb/AuthDB on page J1-8024.

• aarch64/functions/pac/authia/AuthIA on page J1-8025.

• aarch64/functions/pac/authib/AuthIB on page J1-8026.

• aarch64/functions/pac/calcbottompacbit/CalculateBottomPACBit on page J1-8026.

• aarch64/functions/pac/computepac/ComputePAC on page J1-8027.

• aarch64/functions/pac/computepac/PACCellInvShuffle on page J1-8028.

• aarch64/functions/pac/computepac/PACCellShuffle on page J1-8028.

• aarch64/functions/pac/computepac/PACInvSub on page J1-8028.

• aarch64/functions/pac/computepac/PACMult on page J1-8029.

• aarch64/functions/pac/computepac/PACSub on page J1-8029.

• aarch64/functions/pac/computepac/RC on page J1-8030.

• aarch64/functions/pac/computepac/RotCell on page J1-8030.

• aarch64/functions/pac/computepac/TweakCellInvRot on page J1-8030.

• aarch64/functions/pac/computepac/TweakCellRot on page J1-8030.
J1-7998 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/functions/pac/computepac/TweakInvShuffle on page J1-8030.

• aarch64/functions/pac/computepac/TweakShuffle on page J1-8031.

• aarch64/functions/pac/pac/HaveEnhancedPAC on page J1-8031.

• aarch64/functions/pac/pac/HaveEnhancedPAC2 on page J1-8031.

• aarch64/functions/pac/pac/HaveFPAC on page J1-8032.

• aarch64/functions/pac/pac/HaveFPACCombined on page J1-8032.

• aarch64/functions/pac/pac/HavePACExt on page J1-8032.

• aarch64/functions/pac/pac/PtrHasUpperAndLowerAddRanges on page J1-8032.

• aarch64/functions/pac/strip/Strip on page J1-8032.

• aarch64/functions/pac/trappacuse/TrapPACUse on page J1-8033.

• aarch64/functions/ras/AArch64.ESBOperation on page J1-8033.

• aarch64/functions/ras/AArch64.PhysicalSErrorSyndrome on page J1-8034.

• aarch64/functions/ras/AArch64.ReportDeferredSError on page J1-8034.

• aarch64/functions/ras/AArch64.vESBOperation on page J1-8034.

• aarch64/functions/registers/AArch64.MaybeZeroRegisterUppers on page J1-8034.

• aarch64/functions/registers/AArch64.ResetGeneralRegisters on page J1-8035.

• aarch64/functions/registers/AArch64.ResetSIMDFPRegisters on page J1-8035.

• aarch64/functions/registers/AArch64.ResetSpecialRegisters on page J1-8035.

• aarch64/functions/registers/AArch64.ResetSystemRegisters on page J1-8036.

• aarch64/functions/registers/PC on page J1-8036.

• aarch64/functions/registers/SP on page J1-8036.

• aarch64/functions/registers/V on page J1-8036.

• aarch64/functions/registers/Vpart on page J1-8037.

• aarch64/functions/registers/X on page J1-8037.

• aarch64/functions/sve/AArch32.IsFPEnabled on page J1-8038.

• aarch64/functions/sve/AArch64.IsFPEnabled on page J1-8038.

• aarch64/functions/sve/AnyActiveElement on page J1-8039.

• aarch64/functions/sve/CeilPow2 on page J1-8039.

• aarch64/functions/sve/CheckSVEEnabled on page J1-8039.

• aarch64/functions/sve/DecodePredCount on page J1-8040.

• aarch64/functions/sve/ElemFFR on page J1-8040.

• aarch64/functions/sve/ElemP on page J1-8041.

• aarch64/functions/sve/FFR on page J1-8041.

• aarch64/functions/sve/FPCompareNE on page J1-8041.

• aarch64/functions/sve/FPCompareUN on page J1-8042.

• aarch64/functions/sve/FPConvertSVE on page J1-8042.

• aarch64/functions/sve/FPExpA on page J1-8042.

• aarch64/functions/sve/FPExpCoefficient on page J1-8043.

• aarch64/functions/sve/FPMinNormal on page J1-8045.

• aarch64/functions/sve/FPOne on page J1-8045.

• aarch64/functions/sve/FPPointFive on page J1-8046.

• aarch64/functions/sve/FPProcess on page J1-8046.

• aarch64/functions/sve/FPScale on page J1-8046.

• aarch64/functions/sve/FPTrigMAdd on page J1-8047.

• aarch64/functions/sve/FPTrigMAddCoefficient on page J1-8047.

• aarch64/functions/sve/FPTrigSMul on page J1-8048.

• aarch64/functions/sve/FPTrigSSel on page J1-8048.

• aarch64/functions/sve/FirstActive on page J1-8048.

• aarch64/functions/sve/FloorPow2 on page J1-8049.

• aarch64/functions/sve/HaveSVE on page J1-8049.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-7999
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/functions/sve/HaveSVEFP32MatMulExt on page J1-8049.

• aarch64/functions/sve/HaveSVEFP64MatMulExt on page J1-8049.

• aarch64/functions/sve/ImplementedSVEVectorLength on page J1-8049.

• aarch64/functions/sve/IsEven on page J1-8050.

• aarch64/functions/sve/IsFPEnabled on page J1-8050.

• aarch64/functions/sve/IsSVEEnabled on page J1-8050.

• aarch64/functions/sve/LastActive on page J1-8051.

• aarch64/functions/sve/LastActiveElement on page J1-8051.

• aarch64/functions/sve/MaybeZeroSVEUppers on page J1-8051.

• aarch64/functions/sve/MemNF on page J1-8052.

• aarch64/functions/sve/MemSingleNF on page J1-8052.

• aarch64/functions/sve/NoneActive on page J1-8053.

• aarch64/functions/sve/P on page J1-8053.

• aarch64/functions/sve/PL on page J1-8054.

• aarch64/functions/sve/PredTest on page J1-8054.

• aarch64/functions/sve/ReducePredicated on page J1-8054.

• aarch64/functions/sve/Reverse on page J1-8054.

• aarch64/functions/sve/SVEAccessTrap on page J1-8054.

• aarch64/functions/sve/SVECmp on page J1-8055.

• aarch64/functions/sve/SVEMoveMaskPreferred on page J1-8055.

• aarch64/functions/sve/System on page J1-8056.

• aarch64/functions/sve/VL on page J1-8056.

• aarch64/functions/sve/Z on page J1-8056.

• aarch64/functions/sysregisters/CNTKCTL on page J1-8056.

• aarch64/functions/sysregisters/CNTKCTLType on page J1-8057.

• aarch64/functions/sysregisters/CPACR on page J1-8057.

• aarch64/functions/sysregisters/CPACRType on page J1-8057.

• aarch64/functions/sysregisters/ELR on page J1-8057.

• aarch64/functions/sysregisters/ESR on page J1-8058.

• aarch64/functions/sysregisters/ESRType on page J1-8058.

• aarch64/functions/sysregisters/FAR on page J1-8058.

• aarch64/functions/sysregisters/MAIR on page J1-8059.

• aarch64/functions/sysregisters/MAIRType on page J1-8059.

• aarch64/functions/sysregisters/SCTLR on page J1-8059.

• aarch64/functions/sysregisters/SCTLRType on page J1-8060.

• aarch64/functions/sysregisters/VBAR on page J1-8060.

• aarch64/functions/system/AArch64.AllocationTagAccessIsEnabled on page J1-8060.

• aarch64/functions/system/AArch64.ChooseNonExcludedTag on page J1-8060.

• aarch64/functions/system/AArch64.ExecutingBROrBLROrRetInstr on page J1-8061.

• aarch64/functions/system/AArch64.ExecutingBTIInstr on page J1-8061.

• aarch64/functions/system/AArch64.ExecutingERETInstr on page J1-8061.

• aarch64/functions/system/AArch64.NextRandomTagBit on page J1-8062.

• aarch64/functions/system/AArch64.RandomTag on page J1-8062.

• aarch64/functions/system/AArch64.SysInstr on page J1-8062.

• aarch64/functions/system/AArch64.SysInstrWithResult on page J1-8062.

• aarch64/functions/system/AArch64.SysRegRead on page J1-8062.

• aarch64/functions/system/AArch64.SysRegWrite on page J1-8062.

• aarch64/functions/system/BTypeCompatible on page J1-8062.

• aarch64/functions/system/BTypeCompatible_BTI on page J1-8062.

• aarch64/functions/system/BTypeCompatible_PACIXSP on page J1-8063.
J1-8000 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/functions/system/BTypeNext on page J1-8063.

• aarch64/functions/system/ChooseRandomNonExcludedTag on page J1-8063.

• aarch64/functions/system/InGuardedPage on page J1-8063.

• aarch64/functions/system/IsHCRXEL2Enabled on page J1-8063.

• aarch64/functions/system/SetBTypeCompatible on page J1-8064.

• aarch64/functions/system/SetBTypeNext on page J1-8064.

• aarch64/functions/system/SetInGuardedPage on page J1-8064.

aarch64/functions/aborts/AArch64.FaultSyndrome

 // AArch64.FaultSyndrome()
 // =======================
 // Creates an exception syndrome value for Abort and Watchpoint exceptions taken to
 // an Exception level using AArch64.

 (bits(25), bits(5)) AArch64.FaultSyndrome(boolean d_side, FaultRecord fault)
 assert fault.statuscode != Fault_None;

 bits(25) iss = Zeros();
 bits(5) iss2 = Zeros();

 if !HaveFeatLS64() && HaveRASExt() && IsAsyncAbort(fault) then
 iss<12:11> = fault.errortype; // SET

 if d_side then
 if HaveFeatLS64() && fault.acctype == AccType_ATOMICLS64 then
 if (fault.statuscode IN {Fault_AccessFlag,
 Fault_Translation, Fault_Permission}) then
 (iss2, iss<24:14>, iss<12:11>) = LS64InstructionSyndrome();
 else
 if (IsSecondStage(fault) && !fault.s2fs1walk &&
 (!IsExternalSyncAbort(fault) ||
 (!HaveRASExt() && fault.acctype == AccType_TTW &&
 boolean IMPLEMENTATION_DEFINED "ISV on second stage translation table walk"))) then
 iss<24:14> = LSInstructionSyndrome();

 if HaveNV2Ext() && fault.acctype == AccType_NV2REGISTER then
 iss<13> = '1'; // Fault is generated by use of VNCR_EL2

 if fault.acctype IN {AccType_DC, AccType_IC, AccType_AT, AccType_ATPAN} then
 iss<8> = '1'; iss<6> = '1';
 else
 iss<6> = if fault.write then '1' else '0';

 if IsExternalAbort(fault) then iss<9> = fault.extflag;
 iss<7> = if fault.s2fs1walk then '1' else '0';
 iss<5:0> = EncodeLDFSC(fault.statuscode, fault.level);

 return (iss, iss2);

aarch64/functions/aborts/LS64InstructionSyndrome

 // Returns the syndrome information and LST for a Data Abort by a
 // ST64B, ST64BV, ST64BV0, or LD64B instruction. The syndrome information
 // includes the ISS2, extended syndrome field, and LST.
 (bits(5), bits(11), bits(2)) LS64InstructionSyndrome();
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8001
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/cache/AArch64.DataMemZero

 // AArch64.DataMemZero()
 // =====================
 // Write Zero to data memory

 AArch64.DataMemZero(bits(64) regval, bits(64) vaddress, AddressDescriptor memaddrdesc, integer size)
 iswrite = TRUE;
 for i = 0 to size-1
 accdesc = CreateAccessDescriptor(AccType_DCZVA);
 if HaveMTEExt() then
 if AArch64.AccessIsTagChecked(vaddress, AccType_DCZVA) then
 bits(4) ptag = AArch64.PhysicalTag(vaddress);
 if !AArch64.CheckTag(memaddrdesc, accdesc, ptag, iswrite) then
 if boolean IMPLEMENTATION_DEFINED "DC_ZVA tag fault reported with lowest faulting
address" then
 AArch64.TagCheckFault(vaddress, AccType_DCZVA, iswrite);
 else
 AArch64.TagCheckFault(regval, AccType_DCZVA, iswrite);
 memstatus = PhysMemWrite(memaddrdesc, 1, accdesc, Zeros());
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, 1, accdesc);
 memaddrdesc.paddress.address = memaddrdesc.paddress.address + 1;
 return;

aarch64/functions/cache/AArch64.TagMemZero

 // AArch64.TagMemZero()
 // ====================
 // Write Zero to tag memory

 AArch64.TagMemZero(bits(64) vaddress, integer size)
 integer count = size >> LOG2_TAG_GRANULE;
 bits(4) tag = AArch64.AllocationTagFromAddress(vaddress);
 for i = 0 to count-1
 AArch64.MemTag[vaddress, AccType_NORMAL] = tag;
 vaddress = vaddress + TAG_GRANULE;
 return;

aarch64/functions/exclusive/AArch64.ExclusiveMonitorsPass

 // AArch64.ExclusiveMonitorsPass()
 // ===============================
 // Return TRUE if the Exclusives monitors for the current PE include all of the addresses
 // associated with the virtual address region of size bytes starting at address.
 // The immediately following memory write must be to the same addresses.

 boolean AArch64.ExclusiveMonitorsPass(bits(64) address, integer size)

 // It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
 // before or after the check on the local Exclusives monitor. As a result a failure
 // of the local monitor can occur on some implementations even if the memory
 // access would give an memory abort.

 acctype = AccType_ATOMIC;
 iswrite = TRUE;

 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);

 passed = AArch64.IsExclusiveVA(address, ProcessorID(), size);
 if !passed then
 return FALSE;

 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);
J1-8002 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);
 ClearExclusiveLocal(ProcessorID());

 if passed then
 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 passed = IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

 return passed;

aarch64/functions/exclusive/AArch64.IsExclusiveVA

 // An optional IMPLEMENTATION DEFINED test for an exclusive access to a virtual
 // address region of size bytes starting at address.
 //
 // It is permitted (but not required) for this function to return FALSE and
 // cause a store exclusive to fail if the virtual address region is not
 // totally included within the region recorded by MarkExclusiveVA().
 //
 // It is always safe to return TRUE which will check the physical address only.
 boolean AArch64.IsExclusiveVA(bits(64) address, integer processorid, integer size);

aarch64/functions/exclusive/AArch64.MarkExclusiveVA

 // Optionally record an exclusive access to the virtual address region of size bytes
 // starting at address for processorid.
 AArch64.MarkExclusiveVA(bits(64) address, integer processorid, integer size);

aarch64/functions/exclusive/AArch64.SetExclusiveMonitors

 // AArch64.SetExclusiveMonitors()
 // ==============================
 // Sets the Exclusives monitors for the current PE to record the addresses associated
 // with the virtual address region of size bytes starting at address.

 AArch64.SetExclusiveMonitors(bits(64) address, integer size)
 acctype = AccType_ATOMIC;
 iswrite = FALSE;

 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);

 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);
 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 return;

 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 MarkExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

 MarkExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

 AArch64.MarkExclusiveVA(address, ProcessorID(), size);

aarch64/functions/fusedrstep/FPRSqrtStepFused

 // FPRSqrtStepFused()
 // ==================

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8003
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 bits(N) FPRSqrtStepFused(bits(N) op1, bits(N) op2)
 assert N IN {16, 32, 64};
 bits(N) result;
 FPCRType fpcr = FPCR[];
 op1 = FPNeg(op1);
 boolean altfp = HaveAltFP() && fpcr.AH == '1';
 boolean fpexc = !altfp; // Generate no floating-point exceptions
 if altfp then fpcr.<FIZ,FZ> = '11'; // Flush denormal input and output to zero
 if altfp then fpcr.RMode = '00'; // Use RNE rounding mode

 (type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
 (type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr, FALSE, fpexc);
 FPRounding rounding = FPRoundingMode(fpcr);

 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);

 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPOnePointFive('0');
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2);
 else
 // Fully fused multiply-add and halve
 result_value = (3.0 + (value1 * value2)) / 2.0;
 if result_value == 0.0 then
 // Sign of exact zero result depends on rounding mode
 sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(sign);
 else
 result = FPRound(result_value, fpcr, rounding, fpexc);

 return result;

aarch64/functions/fusedrstep/FPRecipStepFused

 // FPRecipStepFused()
 // ==================

 bits(N) FPRecipStepFused(bits(N) op1, bits(N) op2)
 assert N IN {16, 32, 64};
 bits(N) result;
 FPCRType fpcr = FPCR[];
 op1 = FPNeg(op1);

 boolean altfp = HaveAltFP() && fpcr.AH == '1';
 boolean fpexc = !altfp; // Generate no floating-point exceptions
 if altfp then fpcr.<FIZ,FZ> = '11'; // Flush denormal input and output to zero
 if altfp then fpcr.RMode = '00'; // Use RNE rounding mode

 (type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
 (type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr, FALSE, fpexc);
 FPRounding rounding = FPRoundingMode(fpcr);

 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);

 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPTwo('0');
J1-8004 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2);
 else
 // Fully fused multiply-add
 result_value = 2.0 + (value1 * value2);
 if result_value == 0.0 then
 // Sign of exact zero result depends on rounding mode
 sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(sign);
 else
 result = FPRound(result_value, fpcr, rounding, fpexc);

 return result;

aarch64/functions/memory/AArch64.AccessIsTagChecked

 // AArch64.AccessIsTagChecked()
 // ============================
 // TRUE if a given access is tag-checked, FALSE otherwise.

 boolean AArch64.AccessIsTagChecked(bits(64) vaddr, AccType acctype)
 if PSTATE.M<4> == '1' then return FALSE;

 if EffectiveTBI(vaddr, FALSE, PSTATE.EL) == '0' then
 return FALSE;

 if EffectiveTCMA(vaddr, PSTATE.EL) == '1' && (vaddr<59:55> == '00000' || vaddr<59:55> == '11111')
then
 return FALSE;

 if !AArch64.AllocationTagAccessIsEnabled(acctype) then
 return FALSE;

 if acctype IN {AccType_IFETCH, AccType_TTW, AccType_DC, AccType_IC} then
 return FALSE;

 if acctype == AccType_NV2REGISTER then
 return FALSE;

 if PSTATE.TCO=='1' then
 return FALSE;

 if !IsTagCheckedInstruction() then
 return FALSE;

 return TRUE;

aarch64/functions/memory/AArch64.AddressWithAllocationTag

 // AArch64.AddressWithAllocationTag()
 // ==================================
 // Generate a 64-bit value containing a Logical Address Tag from a 64-bit
 // virtual address and an Allocation Tag.
 // If the extension is disabled, treats the Allocation Tag as '0000'.

 bits(64) AArch64.AddressWithAllocationTag(bits(64) address, AccType acctype, bits(4) allocation_tag)
 bits(64) result = address;
 bits(4) tag;
 if AArch64.AllocationTagAccessIsEnabled(acctype) then
 tag = allocation_tag;
 else
 tag = '0000';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8005
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 result<59:56> = tag;
 return result;

aarch64/functions/memory/AArch64.AllocationTagFromAddress

 // AArch64.AllocationTagFromAddress()
 // ==================================
 // Generate an Allocation Tag from a 64-bit value containing a Logical Address Tag.

 bits(4) AArch64.AllocationTagFromAddress(bits(64) tagged_address)
 return tagged_address<59:56>;

aarch64/functions/memory/AArch64.CheckAlignment

 // AArch64.CheckAlignment()
 // ========================

 boolean AArch64.CheckAlignment(bits(64) address, integer alignment, AccType acctype,
 boolean iswrite)

 aligned = (address == Align(address, alignment));
 atomic = acctype IN { AccType_ATOMIC, AccType_ATOMICRW, AccType_ORDEREDATOMIC,
 AccType_ORDEREDATOMICRW, AccType_ATOMICLS64, AccType_A32LSMD};
 ordered = acctype IN { AccType_ORDERED, AccType_ORDEREDRW, AccType_LIMITEDORDERED,
AccType_ORDEREDATOMIC, AccType_ORDEREDATOMICRW };
 vector = acctype == AccType_VEC;
 if SCTLR[].A == '1' then check = TRUE;
 elsif HaveLSE2Ext() then
 check = (UInt(address<0+:4>) + alignment > 16) && ((ordered && SCTLR[].nAA == '0') || atomic);
 else check = atomic || ordered;

 if check && !aligned then
 secondstage = FALSE;
 AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

 return aligned;

aarch64/functions/memory/AArch64.CheckTag

 // AArch64.CheckTag()
 // ==================
 // Performs a Tag Check operation for a memory access and returns
 // whether the check passed

 boolean AArch64.CheckTag(AddressDescriptor memaddrdesc, AccessDescriptor accdesc, bits(4) ptag, boolean
write)
 if memaddrdesc.memattrs.tagged then
 (memstatus, readtag) = PhysMemTagRead(memaddrdesc, accdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, 1, accdesc);
 return ptag == readtag;
 else
 return TRUE;

aarch64/functions/memory/AArch64.MemSingle

 // AArch64.MemSingle[] - non-assignment (read) form
 // ==
 // Perform an atomic, little-endian read of 'size' bytes.

 bits(size*8) AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean aligned]
J1-8006 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 boolean ispair = FALSE;
 return AArch64.MemSingle[address, size, acctype, aligned, ispair];

 // AArch64.MemSingle[] - non-assignment (read) form
 // ==
 // Perform an atomic, little-endian read of 'size' bytes.

 bits(size*8) AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean aligned, boolean
ispair]
 assert size IN {1, 2, 4, 8, 16};
 if HaveLSE2Ext() then
 assert CheckAllInAlignedQuantity(address, size, 16);
 else
 assert address == Align(address, size);

 AddressDescriptor memaddrdesc;
 bits(size*8) value;
 iswrite = FALSE;

 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);
 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 // Memory array access
 accdesc = CreateAccessDescriptor(acctype);
 if HaveMTE2Ext() then
 if AArch64.AccessIsTagChecked(ZeroExtend(address, 64), acctype) then
 bits(4) ptag = AArch64.PhysicalTag(ZeroExtend(address, 64));
 if !AArch64.CheckTag(memaddrdesc, accdesc, ptag, iswrite) then
 AArch64.TagCheckFault(ZeroExtend(address, 64), acctype, iswrite);

 integer halfsize = size DIV 2;
 (atomic, splitpair) = CheckSingleAccessAttributes(address, memaddrdesc.memattrs, size, acctype,
iswrite, aligned, ispair);
 if atomic then
 (memstatus, value) = PhysMemRead(memaddrdesc, size, accdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, size, accdesc);
 elsif splitpair then
 assert ispair;
 (memstatus, value1) = PhysMemRead(memaddrdesc, halfsize, accdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, halfsize, accdesc);
 memaddrdesc.paddress.address = memaddrdesc.paddress.address + halfsize<52-1:0>;
 (memstatus, value2) = PhysMemRead(memaddrdesc, halfsize, accdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, halfsize, accdesc);

 value = value2<8*(size DIV 2)-1:0>:value1<8*(size DIV 2)-1:0>;
 else
 for i = 0 to size-1
 (memstatus, value<8*i+7:8*i>) = PhysMemRead(memaddrdesc, 1, accdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, 1, accdesc);
 memaddrdesc.paddress.address = memaddrdesc.paddress.address + 1<52-1:0>;
 return value;

 // AArch64.MemSingle[] - assignment (write) form
 // ===

 AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean aligned] = bits(size*8) value
 boolean ispair = FALSE;
 AArch64.MemSingle[address, size, acctype, aligned, ispair] = value;
 return;

 // AArch64.MemSingle[] - assignment (write) form
 // ===
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8007
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // Perform an atomic, little-endian write of 'size' bytes.

 AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean aligned, boolean ispair] =
bits(size*8) value
 assert size IN {1, 2, 4, 8, 16};
 if HaveLSE2Ext() then
 assert CheckAllInAlignedQuantity(address, size, 16);
 else
 assert address == Align(address, size);

 AddressDescriptor memaddrdesc;
 iswrite = TRUE;

 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);
 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 // Effect on exclusives
 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

 // Memory array access
 accdesc = CreateAccessDescriptor(acctype);
 if HaveMTE2Ext() then
 if AArch64.AccessIsTagChecked(ZeroExtend(address, 64), acctype) then
 bits(4) ptag = AArch64.PhysicalTag(ZeroExtend(address, 64));
 if !AArch64.CheckTag(memaddrdesc, accdesc, ptag, iswrite) then
 AArch64.TagCheckFault(ZeroExtend(address, 64), acctype, iswrite);

 (atomic, splitpair) = CheckSingleAccessAttributes(address, memaddrdesc.memattrs, size, acctype,
iswrite, aligned, ispair);
 if atomic then
 memstatus = PhysMemWrite(memaddrdesc, size, accdesc, value);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, size, accdesc);
 elsif splitpair then
 assert ispair;
 integer halfsize = size DIV 2;
 bits(halfsize*8) val1 = value<(8*halfsize)-1:0>;
 bits(halfsize*8) val2 = value<(16*halfsize)-1:(8*halfsize)>;
 memstatus = PhysMemWrite(memaddrdesc, halfsize, accdesc, val1);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, halfsize, accdesc);
 memaddrdesc.paddress.address = memaddrdesc.paddress.address + halfsize<52-1:0>;
 memstatus = PhysMemWrite(memaddrdesc, halfsize, accdesc, val2);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, halfsize, accdesc);
 else
 for i = 0 to size-1
 memstatus = PhysMemWrite(memaddrdesc, 1, accdesc, value<8*i+7:8*i>);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, 1, accdesc);
 memaddrdesc.paddress.address = memaddrdesc.paddress.address + 1<52-1:0>;
 return;

aarch64/functions/memory/AArch64.MemTag

 // AArch64.MemTag[] - non-assignment (read) form
 // ===
 // Load an Allocation Tag from memory.

 bits(4) AArch64.MemTag[bits(64) address, AccType acctype]
 assert acctype == AccType_NORMAL;
 AddressDescriptor memaddrdesc;
 bits(4) value;
J1-8008 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 iswrite = FALSE;
 aligned = TRUE;
 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned,
 TAG_GRANULE);
 accdesc = CreateAccessDescriptor(acctype);
 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 // Return the granule tag if tagging is enabled...
 if AArch64.AllocationTagAccessIsEnabled(acctype) && memaddrdesc.memattrs.tagged then
 (memstatus, tag) = PhysMemTagRead(memaddrdesc, accdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, 1, accdesc);
 return tag;
 else
 // ...otherwise read tag as zero.
 return '0000';

 // AArch64.MemTag[] - assignment (write) form
 // ==
 // Store an Allocation Tag to memory.

 AArch64.MemTag[bits(64) address, AccType acctype] = bits(4) value
 assert acctype == AccType_NORMAL;
 AddressDescriptor memaddrdesc;
 iswrite = TRUE;

 // Stores of allocation tags must be aligned
 if address != Align(address, TAG_GRANULE) then
 boolean secondstage = FALSE;
 AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

 aligned = TRUE;
 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned,
 TAG_GRANULE);
 accdesc = CreateAccessDescriptor(acctype);

 // It is CONSTRAINED UNPREDICTABLE if tags stored to memory locations marked as Device
 // generate an Alignment Fault or store the data to locations.
 if memaddrdesc.memattrs.memtype == MemType_Device then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_NONE, Constraint_FAULT};
 if c == Constraint_FAULT then
 boolean secondstage = FALSE;
 AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 // Memory array access
 if AArch64.AllocationTagAccessIsEnabled(acctype) && memaddrdesc.memattrs.tagged then
 memstatus = PhysMemTagWrite(memaddrdesc, accdesc, value);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, 1, accdesc);

aarch64/functions/memory/AArch64.PhysicalTag

 // AArch64.PhysicalTag()
 // =====================
 // Generate a Physical Tag from a Logical Tag in an address

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8009
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 bits(4) AArch64.PhysicalTag(bits(64) vaddr)
 return vaddr<59:56>;

aarch64/functions/memory/AArch64.TranslateAddressForAtomicAccess

 // AArch64.TranslateAddressForAtomicAccess()
 // ===
 // Performs an alignment check for atomic memory operations.
 // Also translates 64-bit Virtual Address into Physical Address.

 AddressDescriptor AArch64.TranslateAddressForAtomicAccess(bits(64) address, integer sizeinbits)
 boolean iswrite = FALSE;
 size = sizeinbits DIV 8;

 assert size IN {1, 2, 4, 8, 16};

 aligned = AArch64.CheckAlignment(address, size, AccType_ATOMICRW, iswrite);

 // MMU or MPU lookup
 memaddrdesc = AArch64.TranslateAddress(address, AccType_ATOMICRW, iswrite,
 aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 // Effect on exclusives
 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

 if HaveMTE2Ext() && AArch64.AccessIsTagChecked(address, AccType_ATOMICRW) then
 bits(4) ptag = AArch64.PhysicalTag(address);
 accdesc = CreateAccessDescriptor(AccType_ATOMICRW);
 if !AArch64.CheckTag(memaddrdesc, accdesc, ptag, iswrite) then
 AArch64.TagCheckFault(address, AccType_ATOMICRW, iswrite);

 return memaddrdesc;

aarch64/functions/memory/AddressSupportsLS64

 // Returns TRUE if the 64-byte block following the given address supports the
 // LD64B and ST64B instructions, and FALSE otherwise.
 boolean AddressSupportsLS64(bits(64) address);

aarch64/functions/memory/CheckAllInAlignedQuantity

 // CheckAllInAlignedQuantity()
 // ===========================
 // Returns TRUE if all accessed bytes are within one aligned quantity, FALSE otherwise.

 boolean CheckAllInAlignedQuantity(bits(64) address, integer size, integer alignment)
 assert(size <= alignment);
 return Align(address+size-1, alignment) == Align(address, alignment);

aarch64/functions/memory/CheckSPAlignment

 // CheckSPAlignment()
 // ==================
 // Check correct stack pointer alignment for AArch64 state.

 CheckSPAlignment()
J1-8010 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 bits(64) sp = SP[];
 if PSTATE.EL == EL0 then
 stack_align_check = (SCTLR[].SA0 != '0');
 else
 stack_align_check = (SCTLR[].SA != '0');

 if stack_align_check && sp != Align(sp, 16) then
 AArch64.SPAlignmentFault();

 return;

aarch64/functions/memory/CheckSingleAccessAttributes

 // CheckSingleAccessAttributes()
 // =============================
 //
 // When FEAT_LSE2 is implemented, a MemSingle[] access needs to be further assessed once the memory
 // attributes are determined.
 // If it was aligned to access size or targets Normal Inner Write-Back, Outer Write-Back Cacheable
 // memory then it is single copy atomic and there is no alignment fault.
 // If not, for exclusives, atomics and non atomic acquire release instructions - it is CONSTRAINED
UNPREDICTABLE
 // if they generate an alignment fault. If they do not generate an alignement fault - they are
 // single copy atomic.
 // Otherwise it is IMPLEMENTATION DEFINED - if they are single copy atomic.
 //
 // The function returns (atomic, splitpair), where
 // atomic indicates if the access is single copy atomic.
 // splitpair indicates that a load/store pair is split into 2 single copy atomic accesses.
 // when atomic and splitpair are both FALSE - the access is not single copy atomic and may be
treated
 // as byte accesses.

 (boolean, boolean) CheckSingleAccessAttributes(bits(64) address, MemoryAttributes memattrs, integer
size,
 AccType acctype, boolean iswrite, boolean aligned, boolean ispair)
 isnormalwb = (memattrs.memtype == MemType_Normal &&
 memattrs.inner.attrs == MemAttr_WB &&
 memattrs.outer.attrs == MemAttr_WB);

 atomic = TRUE;
 splitpair = FALSE;
 if isnormalwb then return (atomic, splitpair);

 accatomic = acctype IN { AccType_ATOMIC, AccType_ATOMICRW, AccType_ORDEREDATOMIC,
 AccType_ORDEREDATOMICRW, AccType_ATOMICLS64, AccType_A32LSMD};
 ordered = acctype IN { AccType_ORDERED, AccType_ORDEREDRW, AccType_LIMITEDORDERED,
AccType_ORDEREDATOMIC, AccType_ORDEREDATOMICRW };

 if !aligned && (accatomic || ordered) then
 atomic = ConstrainUnpredictableBool();
 if !atomic then
 secondstage = FALSE;
 AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));
 else
 return (atomic, splitpair);

 if ispair && aligned then
 // load / store pair requests that are aligned to each register access are split into 2 single
copy atomic accesses
 atomic = FALSE;
 splitpair = TRUE;
 return (atomic, splitpair);

 if aligned then
 return (atomic, splitpair);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8011
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 atomic = boolean IMPLEMENTATION_DEFINED "Misaligned accesses within 16 byte aligned memory but not
Normal Cacheable Writeback are Atomic";

 return (atomic, splitpair);

aarch64/functions/memory/IsTagCheckedInstruction

 // Returns True if the current instruction uses tag-checked memory access,
 // False otherwise.
 boolean IsTagCheckedInstruction();

aarch64/functions/memory/Mem

 // Mem[] - non-assignment (read) form
 // ==================================
 // Perform a read of 'size' bytes. The access byte order is reversed for a big-endian access.
 // Instruction fetches would call AArch64.MemSingle directly.

 bits(size*8) Mem[bits(64) address, integer size, AccType acctype]
 boolean ispair = FALSE;
 return Mem[address, size, acctype, ispair];

 bits(size*8) Mem[bits(64) address, integer size, AccType acctype, boolean ispair]
 assert size IN {1, 2, 4, 8, 16};
 bits(size*8) value;
 boolean iswrite = FALSE;
 integer halfsize = size DIV 2;

 if ispair then
 // check alignment on size of element accessed, not overall access size
 aligned = AArch64.CheckAlignment(address, halfsize, acctype, iswrite);
 else
 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
 if size != 16 || !(acctype IN {AccType_VEC, AccType_VECSTREAM}) then
 if !HaveLSE2Ext() then
 atomic = aligned;
 else
 atomic = CheckAllInAlignedQuantity(address, size, 16);
 elsif acctype IN {AccType_VEC, AccType_VECSTREAM} then
 // 128-bit SIMD&FP loads are treated as a pair of 64-bit single-copy atomic accesses
 // 64-bit aligned.
 atomic = address == Align(address, 8);
 else
 // 16-byte integer access
 atomic = address == Align(address, 16);

 if !atomic && ispair && address == Align(address, halfsize) then
 single_is_pair = FALSE;
 single_is_aligned = TRUE;
 value1 = AArch64.MemSingle[address, halfsize, acctype, single_is_aligned, single_is_pair];
 value2 = AArch64.MemSingle[address + halfsize, halfsize, acctype, single_is_aligned,
single_is_pair];
 value = value2<8*(size DIV 2)-1:0>:value1<8*(size DIV 2)-1:0>;
 elsif atomic && ispair then
 value = AArch64.MemSingle[address, size, acctype, aligned, ispair];
 elsif !atomic then

 assert size > 1;
 value<7:0> = AArch64.MemSingle[address, 1, acctype, aligned];

 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
 // access will generate an Alignment Fault, as to get this far means the first byte did
 // not, so we must be changing to a new translation page.
J1-8012 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if !aligned then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

 for i = 1 to size-1
 value<8*i+7:8*i> = AArch64.MemSingle[address+i, 1, acctype, aligned];
 elsif size == 16 && acctype IN {AccType_VEC, AccType_VECSTREAM} then
 value<63:0> = AArch64.MemSingle[address, 8, acctype, aligned, ispair];
 value<127:64> = AArch64.MemSingle[address+8, 8, acctype, aligned, ispair];
 else
 value = AArch64.MemSingle[address, size, acctype, aligned, ispair];

 if BigEndian(acctype) then
 value = BigEndianReverse(value);

 return value;

 // Mem[] - assignment (write) form
 // ===============================
 // Perform a write of 'size' bytes. The byte order is reversed for a big-endian access.

 Mem[bits(64) address, integer size, AccType acctype] = bits(size*8) value
 boolean ispair = FALSE;
 Mem[address, size, acctype, ispair] = value;

 Mem[bits(64) address, integer size, AccType acctype, boolean ispair] = bits(size*8) value
 boolean iswrite = TRUE;
 integer halfsize = size DIV 2;

 if BigEndian(acctype) then
 value = BigEndianReverse(value);

 if ispair then
 // check alignment on size of element accessed, not overall access size
 aligned = AArch64.CheckAlignment(address, halfsize, acctype, iswrite);
 else
 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
 if ispair then
 atomic = CheckAllInAlignedQuantity(address, size, 16);
 elsif size != 16 || !(acctype IN {AccType_VEC, AccType_VECSTREAM}) then
 if !HaveLSE2Ext() then
 atomic = aligned;
 else
 atomic = CheckAllInAlignedQuantity(address, size, 16);
 elsif (acctype IN {AccType_VEC, AccType_VECSTREAM}) then
 // 128-bit SIMD&FP stores are treated as a pair of 64-bit single-copy atomic accesses
 // 64-bit aligned.
 atomic = address == Align(address, 8);
 else
 // 16-byte integer access
 atomic = address == Align(address, 16);

 if !atomic && ispair && address == Align(address, halfsize) then
 single_is_aligned = TRUE;
 bits(halfsize*8) val1 = value<(8*halfsize)-1:0>;
 bits(halfsize*8) val2 = value<(16*halfsize)-1:(8*halfsize)>;
 AArch64.MemSingle[address, halfsize, acctype, single_is_aligned, ispair] = val1;
 AArch64.MemSingle[address + halfsize, halfsize, acctype, single_is_aligned, ispair] = val2;
 elsif atomic && ispair then
 AArch64.MemSingle[address, size, acctype, aligned, ispair] = value;
 elsif !atomic then
 assert size > 1;
 AArch64.MemSingle[address, 1, acctype, aligned] = value<7:0>;

 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
 // access will generate an Alignment Fault, as to get this far means the first byte did
 // not, so we must be changing to a new translation page.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8013
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if !aligned then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

 for i = 1 to size-1
 AArch64.MemSingle[address+i, 1, acctype, aligned] = value<8*i+7:8*i>;
 elsif size == 16 && acctype IN {AccType_VEC, AccType_VECSTREAM} then
 AArch64.MemSingle[address, 8, acctype, aligned, ispair] = value<63:0>;
 AArch64.MemSingle[address+8, 8, acctype, aligned, ispair] = value<127:64>;
 else
 AArch64.MemSingle[address, size, acctype, aligned, ispair] = value;
 return;

aarch64/functions/memory/MemAtomic

 // MemAtomic()
 // ===========
 // Performs load and store memory operations for a given virtual address.

 bits(size) MemAtomic(bits(64) address, MemAtomicOp op, bits(size) value, AccType ldacctype, AccType
stacctype)
 bits(size) newvalue;
 memaddrdesc = AArch64.TranslateAddressForAtomicAccess(address, size);
 ldaccdesc = CreateAccessDescriptor(ldacctype);
 staccdesc = CreateAccessDescriptor(stacctype);

 // All observers in the shareability domain observe the
 // following load and store atomically.
 (memstatus, oldvalue) = PhysMemRead(memaddrdesc, size DIV 8, ldaccdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, size DIV 8, ldaccdesc);
 if BigEndian(ldacctype) then
 oldvalue = BigEndianReverse(oldvalue);

 case op of
 when MemAtomicOp_ADD newvalue = oldvalue + value;
 when MemAtomicOp_BIC newvalue = oldvalue AND NOT(value);
 when MemAtomicOp_EOR newvalue = oldvalue EOR value;
 when MemAtomicOp_ORR newvalue = oldvalue OR value;
 when MemAtomicOp_SMAX newvalue = if SInt(oldvalue) > SInt(value) then oldvalue else value;
 when MemAtomicOp_SMIN newvalue = if SInt(oldvalue) > SInt(value) then value else oldvalue;
 when MemAtomicOp_UMAX newvalue = if UInt(oldvalue) > UInt(value) then oldvalue else value;
 when MemAtomicOp_UMIN newvalue = if UInt(oldvalue) > UInt(value) then value else oldvalue;
 when MemAtomicOp_SWP newvalue = value;

 if BigEndian(stacctype) then
 newvalue = BigEndianReverse(newvalue);
 memstatus = PhysMemWrite(memaddrdesc, size DIV 8, staccdesc, newvalue);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, size DIV 8, staccdesc);

 // Load operations return the old (pre-operation) value
 return oldvalue;

aarch64/functions/memory/MemAtomicCompareAndSwap

 // MemAtomicCompareAndSwap()
 // =========================
 // Compares the value stored at the passed-in memory address against the passed-in expected
 // value. If the comparison is successful, the value at the passed-in memory address is swapped
 // with the passed-in new_value.

 bits(size) MemAtomicCompareAndSwap(bits(64) address, bits(size) expectedvalue,
J1-8014 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 bits(size) newvalue, AccType ldacctype, AccType stacctype)
 memaddrdesc = AArch64.TranslateAddressForAtomicAccess(address, size);
 ldaccdesc = CreateAccessDescriptor(ldacctype);
 staccdesc = CreateAccessDescriptor(stacctype);

 // All observers in the shareability domain observe the
 // following load and store atomically.
 (memstatus, oldvalue) = PhysMemRead(memaddrdesc, size DIV 8, ldaccdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, size DIV 8, ldaccdesc);
 if BigEndian(ldacctype) then
 oldvalue = BigEndianReverse(oldvalue);

 if oldvalue == expectedvalue then
 if BigEndian(stacctype) then
 newvalue = BigEndianReverse(newvalue);
 memstatus = PhysMemWrite(memaddrdesc, size DIV 8, staccdesc, newvalue);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, size DIV 8, staccdesc);
 return oldvalue;

aarch64/functions/memory/MemLoad64B

 // MemLoad64B()
 // ============
 // Performs an atomic 64-byte read from a given virtual address.

 bits(512) MemLoad64B(bits(64) address, AccType acctype)
 bits(512) data;
 boolean iswrite = FALSE;
 constant integer size = 64;

 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);

 if !AddressSupportsLS64(address) then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_LIMITED_ATOMICITY, Constraint_FAULT};

 if c == Constraint_FAULT then
 // Generate a stage 1 Data Abort reported using the DFSC code of 110101.
 boolean secondstage = FALSE;
 boolean s2fs1walk = FALSE;
 fault = AArch64.ExclusiveFault(acctype, iswrite, secondstage, s2fs1walk);
 AArch64.Abort(address, fault);
 else
 // Accesses are not single-copy atomic above the byte level
 for i = 0 to 63
 data<7+8*i : 8*i> = AArch64.MemSingle[address+8*i, 1, acctype, aligned];
 return data;

 AddressDescriptor memaddrdesc;
 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 // Effect on exclusives
 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

 // Memory array access
 accdesc = CreateAccessDescriptor(acctype);
 if HaveMTE2Ext() then
 if AArch64.AccessIsTagChecked(ZeroExtend(address, 64), acctype) then
 bits(4) ptag = AArch64.PhysicalTag(ZeroExtend(address, 64));
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8015
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if !AArch64.CheckTag(memaddrdesc, accdesc, ptag, iswrite) then
 AArch64.TagCheckFault(address, acctype, iswrite);

 (memstatus, data) = PhysMemRead(memaddrdesc, size, accdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, size, accdesc);
 return data;

aarch64/functions/memory/MemStore64B

 // MemStore64B()
 // =============
 // Performs an atomic 64-byte store to a given virtual address. Function does
 // not return the status of the store.

 MemStore64B(bits(64) address, bits(512) value, AccType acctype)
 boolean iswrite = TRUE;
 constant integer size = 64;
 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);

 if !AddressSupportsLS64(address) then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_LIMITED_ATOMICITY, Constraint_FAULT};

 if c == Constraint_FAULT then
 // Generate a Data Abort reported using the DFSC code of 110101.
 boolean secondstage = FALSE;
 boolean s2fs1walk = FALSE;
 fault = AArch64.ExclusiveFault(acctype, iswrite, secondstage, s2fs1walk);
 AArch64.Abort(address, fault);
 else
 // Accesses are not single-copy atomic above the byte level.
 for i = 0 to 63
 AArch64.MemSingle[address+8*i, 1, acctype, aligned] = value<7+8*i : 8*i>;
 else
 -= MemStore64BWithRet(address, value, acctype); // Return status is ignored by ST64B
 return;

aarch64/functions/memory/MemStore64BWithRet

 // MemStore64BWithRet()
 // ====================
 // Performs an atomic 64-byte store to a given virtual address returning
 // the status value of the operation.

 bits(64) MemStore64BWithRet(bits(64) address, bits(512) value, AccType acctype)
 AddressDescriptor memaddrdesc;
 boolean iswrite = TRUE;
 constant integer size = 64;

 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);
 return ZeroExtend('1');

 // Effect on exclusives
 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), 64);

 // Memory array access
 accdesc = CreateAccessDescriptor(acctype);
J1-8016 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 if HaveMTE2Ext() then
 if AArch64.AccessIsTagChecked(ZeroExtend(address, 64), acctype) then
 bits(4) ptag = AArch64.PhysicalTag(ZeroExtend(address, 64));
 if !AArch64.CheckTag(memaddrdesc, accdesc, ptag, iswrite) then
 AArch64.TagCheckFault(address, acctype, iswrite);
 return ZeroExtend('1');

 memstatus = PhysMemWrite(memaddrdesc, size, accdesc, value);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, size, accdesc);
 return memstatus.store64bstatus;

aarch64/functions/memory/MemStore64BWithRetStatus

 // Generates the return status of memory write with ST64BV or ST64BV0
 // instructions. The status indicates if the operation succeeded, failed,
 // or was not supported at this memory location.
 bits(64) MemStore64BWithRetStatus();

aarch64/functions/memory/NVMem

 // NVMem[] - non-assignment form
 // =============================
 // This function is the load memory access for the transformed System register read access
 // when Enhanced Nested Virtualisation is enabled with HCR_EL2.NV2 = 1.
 // The address for the load memory access is calculated using
 // the formula SignExtend(VNCR_EL2.BADDR : Offset<11:0>, 64) where,
 // * VNCR_EL2.BADDR holds the base address of the memory location, and
 // * Offset is the unique offset value defined architecturally for each System register that
 // supports transformation of register access to memory access.

 bits(64) NVMem[integer offset]
 assert offset > 0;
 bits(64) address = SignExtend(VNCR_EL2.BADDR:offset<11:0>, 64);
 return Mem[address, 8, AccType_NV2REGISTER];

 // NVMem[] - assignment form
 // =========================
 // This function is the store memory access for the transformed System register write access
 // when Enhanced Nested Virtualisation is enabled with HCR_EL2.NV2 = 1.
 // The address for the store memory access is calculated using
 // the formula SignExtend(VNCR_EL2.BADDR : Offset<11:0>, 64) where,
 // * VNCR_EL2.BADDR holds the base address of the memory location, and
 // * Offset is the unique offset value defined architecturally for each System register that
 // supports transformation of register access to memory access.

 NVMem[integer offset] = bits(64) value
 assert offset > 0;
 bits(64) address = SignExtend(VNCR_EL2.BADDR:offset<11:0>, 64);
 Mem[address, 8, AccType_NV2REGISTER] = value;
 return;

aarch64/functions/memory/PhysMemTagRead

 // This is the hardware operation which perform a single-copy atomic,
 // Allocation Tag granule aligned, memory access from the tag in PA space.
 //
 // The function address the array using desc.paddress which supplies:
 // * A 52-bit physical address
 // * A single NS bit to select between Secure and Non-secure parts of the array.
 //
 // The accdesc descriptor describes the access type: normal, exclusive, ordered, streaming,
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8017
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // etc and other parameters required to access the physical memory or for setting syndrome
 // register in the event of an External abort.
 (PhysMemRetStatus, bits(4)) PhysMemTagRead(AddressDescriptor desc, AccessDescriptor accdesc);

aarch64/functions/memory/PhysMemTagWrite

 // This is the hardware operation which perform a single-copy atomic,
 // Allocation Tag granule aligned, memory access to the tag in PA space.
 //
 // The function address the array using desc.paddress which supplies:
 // * A 52-bit physical address
 // * A single NS bit to select between Secure and Non-secure parts of the array.
 //
 // The accdesc descriptor describes the access type: normal, exclusive, ordered, streaming,
 // etc and other parameters required to access the physical memory or for setting syndrome
 // register in the event of an External abort.
 PhysMemRetStatus PhysMemTagWrite(AddressDescriptor desc, AccessDescriptor accdesc, bits (4) value);

aarch64/functions/memory/SetTagCheckedInstruction

 // Flag the current instruction as using/not using memory tag checking.
 SetTagCheckedInstruction(boolean checked);

aarch64/functions/pac/addpac/AddPAC

 // AddPAC()
 // ========
 // Calculates the pointer authentication code for a 64-bit quantity and then
 // inserts that into pointer authentication code field of that 64-bit quantity.

 bits(64) AddPAC(bits(64) ptr, bits(64) modifier, bits(128) K, boolean data)
 bits(64) PAC;
 bits(64) result;
 bits(64) ext_ptr;
 bits(64) extfield;
 bit selbit;
 boolean tbi = EffectiveTBI(ptr, !data, PSTATE.EL) == '1';
 integer top_bit = if tbi then 55 else 63;

 // If tagged pointers are in use for a regime with two TTBRs, use bit<55> of
 // the pointer to select between upper and lower ranges, and preserve this.
 // This handles the awkward case where there is apparently no correct choice between
 // the upper and lower address range - ie an addr of 1xxxxxxx0... with TBI0=0 and TBI1=1
 // and 0xxxxxxx1 with TBI1=0 and TBI0=1:
 if PtrHasUpperAndLowerAddRanges() then
 assert S1TranslationRegime() IN {EL1, EL2};
 if S1TranslationRegime() == EL1 then
 // EL1 translation regime registers
 if data then
 if TCR_EL1.TBI1 == '1' || TCR_EL1.TBI0 == '1' then
 selbit = ptr<55>;
 else
 selbit = ptr<63>;
 else
 if ((TCR_EL1.TBI1 == '1' && TCR_EL1.TBID1 == '0') ||
 (TCR_EL1.TBI0 == '1' && TCR_EL1.TBID0 == '0')) then
 selbit = ptr<55>;
 else
 selbit = ptr<63>;
 else
 // EL2 translation regime registers
 if data then
 if TCR_EL2.TBI1 == '1' || TCR_EL2.TBI0 == '1' then
J1-8018 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 selbit = ptr<55>;
 else
 selbit = ptr<63>;
 else
 if ((TCR_EL2.TBI1 == '1' && TCR_EL2.TBID1 == '0') ||
 (TCR_EL2.TBI0 == '1' && TCR_EL2.TBID0 == '0')) then
 selbit = ptr<55>;
 else
 selbit = ptr<63>;
 else selbit = if tbi then ptr<55> else ptr<63>;

 integer bottom_PAC_bit = CalculateBottomPACBit(selbit);

 // The pointer authentication code field takes all the available bits in between
 extfield = Replicate(selbit, 64);

 // Compute the pointer authentication code for a ptr with good extension bits
 if tbi then
 ext_ptr = ptr<63:56>:extfield<(56-bottom_PAC_bit)-1:0>:ptr<bottom_PAC_bit-1:0>;
 else
 ext_ptr = extfield<(64-bottom_PAC_bit)-1:0>:ptr<bottom_PAC_bit-1:0>;

 PAC = ComputePAC(ext_ptr, modifier, K<127:64>, K<63:0>);

 // Check if the ptr has good extension bits and corrupt the pointer authentication code if not
 if !IsZero(ptr<top_bit:bottom_PAC_bit>) && !IsOnes(ptr<top_bit:bottom_PAC_bit>) then
 if HaveEnhancedPAC() then
 PAC = 0x0000000000000000<63:0>;
 elsif !HaveEnhancedPAC2() then
 PAC<top_bit-1> = NOT(PAC<top_bit-1>);

 // preserve the determination between upper and lower address at bit<55> and insert PAC
 if !HaveEnhancedPAC2() then
 if tbi then
 result = ptr<63:56>:selbit:PAC<54:bottom_PAC_bit>:ptr<bottom_PAC_bit-1:0>;
 else
 result = PAC<63:56>:selbit:PAC<54:bottom_PAC_bit>:ptr<bottom_PAC_bit-1:0>;
 else
 if tbi then
 result = ptr<63:56>:selbit:(ptr<54:bottom_PAC_bit> EOR
PAC<54:bottom_PAC_bit>):ptr<bottom_PAC_bit-1:0>;
 else
 result = (ptr<63:56> EOR PAC<63:56>):selbit:(ptr<54:bottom_PAC_bit> EOR
 PAC<54:bottom_PAC_bit>):ptr<bottom_PAC_bit-1:0>;
 return result;

aarch64/functions/pac/addpacda/AddPACDA

 // AddPACDA()
 // ==========
 // Returns a 64-bit value containing X, but replacing the pointer authentication code
 // field bits with a pointer authentication code, where the pointer authentication
 // code is derived using a cryptographic algorithm as a combination of X, Y and the
 // APDAKey_EL1.

 bits(64) AddPACDA(bits(64) X, bits(64) Y)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;
 bits(128) APDAKey_EL1;

 APDAKey_EL1 = APDAKeyHi_EL1<63:0> : APDAKeyLo_EL1<63:0>;
 case PSTATE.EL of
 when EL0
 boolean IsEL1Regime = S1TranslationRegime() == EL1;
 Enable = if IsEL1Regime then SCTLR_EL1.EnDA else SCTLR_EL2.EnDA;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8019
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&
 (HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL1
 Enable = SCTLR_EL1.EnDA;
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL2
 Enable = SCTLR_EL2.EnDA;
 TrapEL2 = FALSE;
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL3
 Enable = SCTLR_EL3.EnDA;
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;

 if Enable == '0' then return X;
 elsif TrapEL2 then TrapPACUse(EL2);
 elsif TrapEL3 then TrapPACUse(EL3);
 else return AddPAC(X, Y, APDAKey_EL1, TRUE);

aarch64/functions/pac/addpacdb/AddPACDB

 // AddPACDB()
 // ==========
 // Returns a 64-bit value containing X, but replacing the pointer authentication code
 // field bits with a pointer authentication code, where the pointer authentication
 // code is derived using a cryptographic algorithm as a combination of X, Y and the
 // APDBKey_EL1.

 bits(64) AddPACDB(bits(64) X, bits(64) Y)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;
 bits(128) APDBKey_EL1;

 APDBKey_EL1 = APDBKeyHi_EL1<63:0> : APDBKeyLo_EL1<63:0>;
 case PSTATE.EL of
 when EL0
 boolean IsEL1Regime = S1TranslationRegime() == EL1;
 Enable = if IsEL1Regime then SCTLR_EL1.EnDB else SCTLR_EL2.EnDB;
 TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&
 (HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL1
 Enable = SCTLR_EL1.EnDB;
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL2
 Enable = SCTLR_EL2.EnDB;
 TrapEL2 = FALSE;
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL3
 Enable = SCTLR_EL3.EnDB;
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;

 if Enable == '0' then return X;
 elsif TrapEL2 then TrapPACUse(EL2);
 elsif TrapEL3 then TrapPACUse(EL3);
 else return AddPAC(X, Y, APDBKey_EL1, TRUE);
J1-8020 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/pac/addpacga/AddPACGA

 // AddPACGA()
 // ==========
 // Returns a 64-bit value where the lower 32 bits are 0, and the upper 32 bits contain
 // a 32-bit pointer authentication code which is derived using a cryptographic
 // algorithm as a combination of X, Y and the APGAKey_EL1.

 bits(64) AddPACGA(bits(64) X, bits(64) Y)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(128) APGAKey_EL1;

 APGAKey_EL1 = APGAKeyHi_EL1<63:0> : APGAKeyLo_EL1<63:0>;
 case PSTATE.EL of
 when EL0
 TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&
 (HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL1
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL2
 TrapEL2 = FALSE;
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL3
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;

 if TrapEL2 then TrapPACUse(EL2);
 elsif TrapEL3 then TrapPACUse(EL3);
 else return ComputePAC(X, Y, APGAKey_EL1<127:64>, APGAKey_EL1<63:0>)<63:32>:Zeros(32);

aarch64/functions/pac/addpacia/AddPACIA

 // AddPACIA()
 // ==========
 // Returns a 64-bit value containing X, but replacing the pointer authentication code
 // field bits with a pointer authentication code, where the pointer authentication
 // code is derived using a cryptographic algorithm as a combination of X, Y, and the
 // APIAKey_EL1.

 bits(64) AddPACIA(bits(64) X, bits(64) Y)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;
 bits(128) APIAKey_EL1;

 APIAKey_EL1 = APIAKeyHi_EL1<63:0>:APIAKeyLo_EL1<63:0>;
 case PSTATE.EL of
 when EL0
 boolean IsEL1Regime = S1TranslationRegime() == EL1;
 Enable = if IsEL1Regime then SCTLR_EL1.EnIA else SCTLR_EL2.EnIA;
 TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&
 (HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL1
 Enable = SCTLR_EL1.EnIA;
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL2
 Enable = SCTLR_EL2.EnIA;
 TrapEL2 = FALSE;
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL3
 Enable = SCTLR_EL3.EnIA;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8021
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;

 if Enable == '0' then return X;
 elsif TrapEL2 then TrapPACUse(EL2);
 elsif TrapEL3 then TrapPACUse(EL3);
 else return AddPAC(X, Y, APIAKey_EL1, FALSE);

aarch64/functions/pac/addpacib/AddPACIB

 // AddPACIB()
 // ==========
 // Returns a 64-bit value containing X, but replacing the pointer authentication code
 // field bits with a pointer authentication code, where the pointer authentication
 // code is derived using a cryptographic algorithm as a combination of X, Y and the
 // APIBKey_EL1.

 bits(64) AddPACIB(bits(64) X, bits(64) Y)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;
 bits(128) APIBKey_EL1;

 APIBKey_EL1 = APIBKeyHi_EL1<63:0> : APIBKeyLo_EL1<63:0>;
 case PSTATE.EL of
 when EL0
 boolean IsEL1Regime = S1TranslationRegime() == EL1;
 Enable = if IsEL1Regime then SCTLR_EL1.EnIB else SCTLR_EL2.EnIB;
 TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&
 (HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL1
 Enable = SCTLR_EL1.EnIB;
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL2
 Enable = SCTLR_EL2.EnIB;
 TrapEL2 = FALSE;
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL3
 Enable = SCTLR_EL3.EnIB;
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;

 if Enable == '0' then return X;
 elsif TrapEL2 then TrapPACUse(EL2);
 elsif TrapEL3 then TrapPACUse(EL3);
 else return AddPAC(X, Y, APIBKey_EL1, FALSE);

aarch64/functions/pac/auth/AArch64.PACFailException

 // AArch64.PACFailException()
 // ==========================
 // Generates a PAC Fail Exception

 AArch64.PACFailException(bits(2) syndrome)
 route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_PACFail);
 exception.syndrome<1:0> = syndrome;
 exception.syndrome<24:2> = Zeros(); // RES0

J1-8022 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if UInt(PSTATE.EL) > UInt(EL0) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/functions/pac/auth/Auth

 // Auth()
 // ======
 // Restores the upper bits of the address to be all zeros or all ones (based on the
 // value of bit[55]) and computes and checks the pointer authentication code. If the
 // check passes, then the restored address is returned. If the check fails, the
 // second-top and third-top bits of the extension bits in the pointer authentication code
 // field are corrupted to ensure that accessing the address will give a translation fault.

 bits(64) Auth(bits(64) ptr, bits(64) modifier, bits(128) K, boolean data, bit key_number, boolean
is_combined)
 bits(64) PAC;
 bits(64) result;
 bits(64) original_ptr;
 bits(2) error_code;
 bits(64) extfield;

 // Reconstruct the extension field used of adding the PAC to the pointer
 boolean tbi = EffectiveTBI(ptr, !data, PSTATE.EL) == '1';
 integer bottom_PAC_bit = CalculateBottomPACBit(ptr<55>);
 extfield = Replicate(ptr<55>, 64);

 if tbi then
 original_ptr = ptr<63:56>:extfield<56-bottom_PAC_bit-1:0>:ptr<bottom_PAC_bit-1:0>;
 else
 original_ptr = extfield<64-bottom_PAC_bit-1:0>:ptr<bottom_PAC_bit-1:0>;

 PAC = ComputePAC(original_ptr, modifier, K<127:64>, K<63:0>);
 // Check pointer authentication code
 if tbi then
 if !HaveEnhancedPAC2() then
 if PAC<54:bottom_PAC_bit> == ptr<54:bottom_PAC_bit> then
 result = original_ptr;
 else
 error_code = key_number:NOT(key_number);
 result = original_ptr<63:55>:error_code:original_ptr<52:0>;
 else
 result = ptr;
 result<54:bottom_PAC_bit> = result<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>;
 if HaveFPACCombined() || (HaveFPAC() && !is_combined) then
 if result<54:bottom_PAC_bit> != Replicate(result<55>, (55-bottom_PAC_bit)) then
 error_code = (if data then '1' else '0'):key_number;
 AArch64.PACFailException(error_code);
 else
 if !HaveEnhancedPAC2() then
 if PAC<54:bottom_PAC_bit> == ptr<54:bottom_PAC_bit> && PAC<63:56> == ptr<63:56> then
 result = original_ptr;
 else
 error_code = key_number:NOT(key_number);
 result = original_ptr<63>:error_code:original_ptr<60:0>;
 else
 result = ptr;
 result<54:bottom_PAC_bit> = result<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>;
 result<63:56> = result<63:56> EOR PAC<63:56>;
 if HaveFPACCombined() || (HaveFPAC() && !is_combined) then
 if result<63:bottom_PAC_bit> != Replicate(result<55>, (64-bottom_PAC_bit)) then
 error_code = (if data then '1' else '0'):key_number;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8023
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 AArch64.PACFailException(error_code);
 return result;

aarch64/functions/pac/authda/AuthDA

 // AuthDA()
 // ========
 // Returns a 64-bit value containing X, but replacing the pointer authentication code
 // field bits with the extension of the address bits. The instruction checks a pointer
 // authentication code in the pointer authentication code field bits of X, using the same
 // algorithm and key as AddPACDA().

 bits(64) AuthDA(bits(64) X, bits(64) Y, boolean is_combined)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;
 bits(128) APDAKey_EL1;

 APDAKey_EL1 = APDAKeyHi_EL1<63:0> : APDAKeyLo_EL1<63:0>;
 case PSTATE.EL of
 when EL0
 boolean IsEL1Regime = S1TranslationRegime() == EL1;
 Enable = if IsEL1Regime then SCTLR_EL1.EnDA else SCTLR_EL2.EnDA;
 TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&
 (HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL1
 Enable = SCTLR_EL1.EnDA;
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL2
 Enable = SCTLR_EL2.EnDA;
 TrapEL2 = FALSE;
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL3
 Enable = SCTLR_EL3.EnDA;
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;

 if Enable == '0' then return X;
 elsif TrapEL2 then TrapPACUse(EL2);
 elsif TrapEL3 then TrapPACUse(EL3);
 else return Auth(X, Y, APDAKey_EL1, TRUE, '0', is_combined);

aarch64/functions/pac/authdb/AuthDB

 // AuthDB()
 // ========
 // Returns a 64-bit value containing X, but replacing the pointer authentication code
 // field bits with the extension of the address bits. The instruction checks a
 // pointer authentication code in the pointer authentication code field bits of X, using
 // the same algorithm and key as AddPACDB().

 bits(64) AuthDB(bits(64) X, bits(64) Y, boolean is_combined)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;
 bits(128) APDBKey_EL1;

 APDBKey_EL1 = APDBKeyHi_EL1<63:0> : APDBKeyLo_EL1<63:0>;
 case PSTATE.EL of
 when EL0
 boolean IsEL1Regime = S1TranslationRegime() == EL1;
 Enable = if IsEL1Regime then SCTLR_EL1.EnDB else SCTLR_EL2.EnDB;
J1-8024 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&
 (HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL1
 Enable = SCTLR_EL1.EnDB;
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL2
 Enable = SCTLR_EL2.EnDB;
 TrapEL2 = FALSE;
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL3
 Enable = SCTLR_EL3.EnDB;
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;

 if Enable == '0' then return X;
 elsif TrapEL2 then TrapPACUse(EL2);
 elsif TrapEL3 then TrapPACUse(EL3);
 else return Auth(X, Y, APDBKey_EL1, TRUE, '1', is_combined);

aarch64/functions/pac/authia/AuthIA

 // AuthIA()
 // ========
 // Returns a 64-bit value containing X, but replacing the pointer authentication code
 // field bits with the extension of the address bits. The instruction checks a pointer
 // authentication code in the pointer authentication code field bits of X, using the same
 // algorithm and key as AddPACIA().

 bits(64) AuthIA(bits(64) X, bits(64) Y, boolean is_combined)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;
 bits(128) APIAKey_EL1;

 APIAKey_EL1 = APIAKeyHi_EL1<63:0> : APIAKeyLo_EL1<63:0>;
 case PSTATE.EL of
 when EL0
 boolean IsEL1Regime = S1TranslationRegime() == EL1;
 Enable = if IsEL1Regime then SCTLR_EL1.EnIA else SCTLR_EL2.EnIA;
 TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&
 (HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL1
 Enable = SCTLR_EL1.EnIA;
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL2
 Enable = SCTLR_EL2.EnIA;
 TrapEL2 = FALSE;
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL3
 Enable = SCTLR_EL3.EnIA;
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;

 if Enable == '0' then return X;
 elsif TrapEL2 then TrapPACUse(EL2);
 elsif TrapEL3 then TrapPACUse(EL3);
 else return Auth(X, Y, APIAKey_EL1, FALSE, '0', is_combined);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8025
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/pac/authib/AuthIB

 // AuthIB()
 // ========
 // Returns a 64-bit value containing X, but replacing the pointer authentication code
 // field bits with the extension of the address bits. The instruction checks a pointer
 // authentication code in the pointer authentication code field bits of X, using the same
 // algorithm and key as AddPACIB().

 bits(64) AuthIB(bits(64) X, bits(64) Y, boolean is_combined)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;
 bits(128) APIBKey_EL1;

 APIBKey_EL1 = APIBKeyHi_EL1<63:0> : APIBKeyLo_EL1<63:0>;
 case PSTATE.EL of
 when EL0
 boolean IsEL1Regime = S1TranslationRegime() == EL1;
 Enable = if IsEL1Regime then SCTLR_EL1.EnIB else SCTLR_EL2.EnIB;
 TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&
 (HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL1
 Enable = SCTLR_EL1.EnIB;
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL2
 Enable = SCTLR_EL2.EnIB;
 TrapEL2 = FALSE;
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL3
 Enable = SCTLR_EL3.EnIB;
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;

 if Enable == '0' then return X;
 elsif TrapEL2 then TrapPACUse(EL2);
 elsif TrapEL3 then TrapPACUse(EL3);
 else return Auth(X, Y, APIBKey_EL1, FALSE, '1', is_combined);

aarch64/functions/pac/calcbottompacbit/CalculateBottomPACBit

 // CalculateBottomPACBit()
 // =======================

 integer CalculateBottomPACBit(bit top_bit)
 integer tsz_field;

 if PtrHasUpperAndLowerAddRanges() then
 assert S1TranslationRegime() IN {EL1, EL2};
 if S1TranslationRegime() == EL1 then
 // EL1 translation regime registers
 tsz_field = if top_bit == '1' then UInt(TCR_EL1.T1SZ) else UInt(TCR_EL1.T0SZ);
 using64k = if top_bit == '1' then TCR_EL1.TG1 == '11' else TCR_EL1.TG0 == '01';
 else
 // EL2 translation regime registers
 assert HaveEL(EL2);
 tsz_field = if top_bit == '1' then UInt(TCR_EL2.T1SZ) else UInt(TCR_EL2.T0SZ);
 using64k = if top_bit == '1' then TCR_EL2.TG1 == '11' else TCR_EL2.TG0 == '01';
 else
 tsz_field = if PSTATE.EL == EL2 then UInt(TCR_EL2.T0SZ) else UInt(TCR_EL3.T0SZ);
 using64k = if PSTATE.EL == EL2 then TCR_EL2.TG0 == '01' else TCR_EL3.TG0 == '01';

 max_limit_tsz_field = (if !HaveSmallTranslationTableExt() then 39 else if using64k then 47 else 48);
 if tsz_field > max_limit_tsz_field then
J1-8026 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // TCR_ELx.TySZ is out of range
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FORCE, Constraint_NONE};
 if c == Constraint_FORCE then tsz_field = max_limit_tsz_field;
 tszmin = if using64k && AArch64.VAMax() == 52 then 12 else 16;
 if tsz_field < tszmin then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FORCE, Constraint_NONE};
 if c == Constraint_FORCE then tsz_field = tszmin;
 return (64-tsz_field);

aarch64/functions/pac/computepac/ComputePAC

 // ComputePAC()
 // ============

 bits(64) ComputePAC(bits(64) data, bits(64) modifier, bits(64) key0, bits(64) key1)
 bits(64) workingval;
 bits(64) runningmod;
 bits(64) roundkey;
 bits(64) modk0;
 constant bits(64) Alpha = 0xC0AC29B7C97C50DD<63:0>;

 RC[0] = 0x0000000000000000<63:0>;
 RC[1] = 0x13198A2E03707344<63:0>;
 RC[2] = 0xA4093822299F31D0<63:0>;
 RC[3] = 0x082EFA98EC4E6C89<63:0>;
 RC[4] = 0x452821E638D01377<63:0>;

 modk0 = key0<0>:key0<63:2>:(key0<63> EOR key0<1>);
 runningmod = modifier;
 workingval = data EOR key0;
 for i = 0 to 4
 roundkey = key1 EOR runningmod;
 workingval = workingval EOR roundkey;
 workingval = workingval EOR RC[i];
 if i > 0 then
 workingval = PACCellShuffle(workingval);
 workingval = PACMult(workingval);
 workingval = PACSub(workingval);
 runningmod = TweakShuffle(runningmod<63:0>);
 roundkey = modk0 EOR runningmod;
 workingval = workingval EOR roundkey;
 workingval = PACCellShuffle(workingval);
 workingval = PACMult(workingval);
 workingval = PACSub(workingval);
 workingval = PACCellShuffle(workingval);
 workingval = PACMult(workingval);
 workingval = key1 EOR workingval;
 workingval = PACCellInvShuffle(workingval);
 workingval = PACInvSub(workingval);
 workingval = PACMult(workingval);
 workingval = PACCellInvShuffle(workingval);
 workingval = workingval EOR key0;
 workingval = workingval EOR runningmod;
 for i = 0 to 4
 workingval = PACInvSub(workingval);
 if i < 4 then
 workingval = PACMult(workingval);
 workingval = PACCellInvShuffle(workingval);
 runningmod = TweakInvShuffle(runningmod<63:0>);
 roundkey = key1 EOR runningmod;
 workingval = workingval EOR RC[4-i];
 workingval = workingval EOR roundkey;
 workingval = workingval EOR Alpha;
 workingval = workingval EOR modk0;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8027
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 return workingval;

aarch64/functions/pac/computepac/PACCellInvShuffle

 // PACCellInvShuffle()
 // ===================

 bits(64) PACCellInvShuffle(bits(64) indata)
 bits(64) outdata;
 outdata<3:0> = indata<15:12>;
 outdata<7:4> = indata<27:24>;
 outdata<11:8> = indata<51:48>;
 outdata<15:12> = indata<39:36>;
 outdata<19:16> = indata<59:56>;
 outdata<23:20> = indata<47:44>;
 outdata<27:24> = indata<7:4>;
 outdata<31:28> = indata<19:16>;
 outdata<35:32> = indata<35:32>;
 outdata<39:36> = indata<55:52>;
 outdata<43:40> = indata<31:28>;
 outdata<47:44> = indata<11:8>;
 outdata<51:48> = indata<23:20>;
 outdata<55:52> = indata<3:0>;
 outdata<59:56> = indata<43:40>;
 outdata<63:60> = indata<63:60>;
 return outdata;

aarch64/functions/pac/computepac/PACCellShuffle

 // PACCellShuffle()
 // ================

 bits(64) PACCellShuffle(bits(64) indata)
 bits(64) outdata;
 outdata<3:0> = indata<55:52>;
 outdata<7:4> = indata<27:24>;
 outdata<11:8> = indata<47:44>;
 outdata<15:12> = indata<3:0>;
 outdata<19:16> = indata<31:28>;
 outdata<23:20> = indata<51:48>;
 outdata<27:24> = indata<7:4>;
 outdata<31:28> = indata<43:40>;
 outdata<35:32> = indata<35:32>;
 outdata<39:36> = indata<15:12>;
 outdata<43:40> = indata<59:56>;
 outdata<47:44> = indata<23:20>;
 outdata<51:48> = indata<11:8>;
 outdata<55:52> = indata<39:36>;
 outdata<59:56> = indata<19:16>;
 outdata<63:60> = indata<63:60>;
 return outdata;

aarch64/functions/pac/computepac/PACInvSub

 // PACInvSub()
 // ===========

 bits(64) PACInvSub(bits(64) Tinput)
 // This is a 4-bit substitution from the PRINCE-family cipher
 bits(64) Toutput;
 for i = 0 to 15
 case Tinput<4*i+3:4*i> of
J1-8028 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when '0000' Toutput<4*i+3:4*i> = '0101';
 when '0001' Toutput<4*i+3:4*i> = '1110';
 when '0010' Toutput<4*i+3:4*i> = '1101';
 when '0011' Toutput<4*i+3:4*i> = '1000';
 when '0100' Toutput<4*i+3:4*i> = '1010';
 when '0101' Toutput<4*i+3:4*i> = '1011';
 when '0110' Toutput<4*i+3:4*i> = '0001';
 when '0111' Toutput<4*i+3:4*i> = '1001';
 when '1000' Toutput<4*i+3:4*i> = '0010';
 when '1001' Toutput<4*i+3:4*i> = '0110';
 when '1010' Toutput<4*i+3:4*i> = '1111';
 when '1011' Toutput<4*i+3:4*i> = '0000';
 when '1100' Toutput<4*i+3:4*i> = '0100';
 when '1101' Toutput<4*i+3:4*i> = '1100';
 when '1110' Toutput<4*i+3:4*i> = '0111';
 when '1111' Toutput<4*i+3:4*i> = '0011';
 return Toutput;

aarch64/functions/pac/computepac/PACMult

 // PACMult()
 // =========

 bits(64) PACMult(bits(64) Sinput)
 bits(4) t0;
 bits(4) t1;
 bits(4) t2;
 bits(4) t3;
 bits(64) Soutput;

 for i = 0 to 3
 t0<3:0> = RotCell(Sinput<4*(i+8)+3:4*(i+8)>, 1) EOR RotCell(Sinput<4*(i+4)+3:4*(i+4)>, 2);
 t0<3:0> = t0<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 1);
 t1<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 1) EOR RotCell(Sinput<4*(i+4)+3:4*(i+4)>, 1);
 t1<3:0> = t1<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 2);
 t2<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 2) EOR RotCell(Sinput<4*(i+8)+3:4*(i+8)>, 1);
 t2<3:0> = t2<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 1);
 t3<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 1) EOR RotCell(Sinput<4*(i+8)+3:4*(i+8)>, 2);
 t3<3:0> = t3<3:0> EOR RotCell(Sinput<4*(i+4)+3:4*(i+4)>, 1);
 Soutput<4*i+3:4*i> = t3<3:0>;
 Soutput<4*(i+4)+3:4*(i+4)> = t2<3:0>;
 Soutput<4*(i+8)+3:4*(i+8)> = t1<3:0>;
 Soutput<4*(i+12)+3:4*(i+12)> = t0<3:0>;
 return Soutput;

aarch64/functions/pac/computepac/PACSub

 // PACSub()
 // ========

 bits(64) PACSub(bits(64) Tinput)
 // This is a 4-bit substitution from the PRINCE-family cipher
 bits(64) Toutput;
 for i = 0 to 15
 case Tinput<4*i+3:4*i> of
 when '0000' Toutput<4*i+3:4*i> = '1011';
 when '0001' Toutput<4*i+3:4*i> = '0110';
 when '0010' Toutput<4*i+3:4*i> = '1000';
 when '0011' Toutput<4*i+3:4*i> = '1111';
 when '0100' Toutput<4*i+3:4*i> = '1100';
 when '0101' Toutput<4*i+3:4*i> = '0000';
 when '0110' Toutput<4*i+3:4*i> = '1001';
 when '0111' Toutput<4*i+3:4*i> = '1110';
 when '1000' Toutput<4*i+3:4*i> = '0011';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8029
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when '1001' Toutput<4*i+3:4*i> = '0111';
 when '1010' Toutput<4*i+3:4*i> = '0100';
 when '1011' Toutput<4*i+3:4*i> = '0101';
 when '1100' Toutput<4*i+3:4*i> = '1101';
 when '1101' Toutput<4*i+3:4*i> = '0010';
 when '1110' Toutput<4*i+3:4*i> = '0001';
 when '1111' Toutput<4*i+3:4*i> = '1010';
 return Toutput;

aarch64/functions/pac/computepac/RC

 array bits(64) RC[0..4];

aarch64/functions/pac/computepac/RotCell

 // RotCell()
 // =========

 bits(4) RotCell(bits(4) incell, integer amount)
 bits(8) tmp;
 bits(4) outcell;

 // assert amount>3 || amount<1;
 tmp<7:0> = incell<3:0>:incell<3:0>;
 outcell = tmp<7-amount:4-amount>;
 return outcell;

aarch64/functions/pac/computepac/TweakCellInvRot

 // TweakCellInvRot()
 // =================

 bits(4) TweakCellInvRot(bits(4) incell)
 bits(4) outcell;
 outcell<3> = incell<2>;
 outcell<2> = incell<1>;
 outcell<1> = incell<0>;
 outcell<0> = incell<0> EOR incell<3>;
 return outcell;

aarch64/functions/pac/computepac/TweakCellRot

 // TweakCellRot()
 // ==============

 bits(4) TweakCellRot(bits(4) incell)
 bits(4) outcell;
 outcell<3> = incell<0> EOR incell<1>;
 outcell<2> = incell<3>;
 outcell<1> = incell<2>;
 outcell<0> = incell<1>;
 return outcell;

aarch64/functions/pac/computepac/TweakInvShuffle

 // TweakInvShuffle()
 // =================

 bits(64) TweakInvShuffle(bits(64) indata)
J1-8030 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 bits(64) outdata;
 outdata<3:0> = TweakCellInvRot(indata<51:48>);
 outdata<7:4> = indata<55:52>;
 outdata<11:8> = indata<23:20>;
 outdata<15:12> = indata<27:24>;
 outdata<19:16> = indata<3:0>;
 outdata<23:20> = indata<7:4>;
 outdata<27:24> = TweakCellInvRot(indata<11:8>);
 outdata<31:28> = indata<15:12>;
 outdata<35:32> = TweakCellInvRot(indata<31:28>);
 outdata<39:36> = TweakCellInvRot(indata<63:60>);
 outdata<43:40> = TweakCellInvRot(indata<59:56>);
 outdata<47:44> = TweakCellInvRot(indata<19:16>);
 outdata<51:48> = indata<35:32>;
 outdata<55:52> = indata<39:36>;
 outdata<59:56> = indata<43:40>;
 outdata<63:60> = TweakCellInvRot(indata<47:44>);
 return outdata;

aarch64/functions/pac/computepac/TweakShuffle

 // TweakShuffle()
 // ==============

 bits(64) TweakShuffle(bits(64) indata)
 bits(64) outdata;
 outdata<3:0> = indata<19:16>;
 outdata<7:4> = indata<23:20>;
 outdata<11:8> = TweakCellRot(indata<27:24>);
 outdata<15:12> = indata<31:28>;
 outdata<19:16> = TweakCellRot(indata<47:44>);
 outdata<23:20> = indata<11:8>;
 outdata<27:24> = indata<15:12>;
 outdata<31:28> = TweakCellRot(indata<35:32>);
 outdata<35:32> = indata<51:48>;
 outdata<39:36> = indata<55:52>;
 outdata<43:40> = indata<59:56>;
 outdata<47:44> = TweakCellRot(indata<63:60>);
 outdata<51:48> = TweakCellRot(indata<3:0>);
 outdata<55:52> = indata<7:4>;
 outdata<59:56> = TweakCellRot(indata<43:40>);
 outdata<63:60> = TweakCellRot(indata<39:36>);
 return outdata;

aarch64/functions/pac/pac/HaveEnhancedPAC

 // HaveEnhancedPAC()
 // =================
 // Returns TRUE if support for EnhancedPAC is implemented, FALSE otherwise.

 boolean HaveEnhancedPAC()
 return (HavePACExt()
 && boolean IMPLEMENTATION_DEFINED "Has enhanced PAC functionality");

aarch64/functions/pac/pac/HaveEnhancedPAC2

 // HaveEnhancedPAC2()
 // ==================
 // Returns TRUE if support for EnhancedPAC2 is implemented, FALSE otherwise.

 boolean HaveEnhancedPAC2()
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8031
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 return HasArchVersion(ARMv8p6) || (HasArchVersion(ARMv8p3) && boolean IMPLEMENTATION_DEFINED "Has
enhanced PAC 2 functionality");

aarch64/functions/pac/pac/HaveFPAC

 // HaveFPAC()
 // ==========
 // Returns TRUE if support for FPAC is implemented, FALSE otherwise.

 boolean HaveFPAC()
 return HaveEnhancedPAC2() && boolean IMPLEMENTATION_DEFINED "Has FPAC functionality";

aarch64/functions/pac/pac/HaveFPACCombined

 // HaveFPACCombined()
 // ==================
 // Returns TRUE if support for FPACCombined is implemented, FALSE otherwise.

 boolean HaveFPACCombined()
 return HaveFPAC() && boolean IMPLEMENTATION_DEFINED "Has FPAC Combined functionality";

aarch64/functions/pac/pac/HavePACExt

 // HavePACExt()
 // ============
 // Returns TRUE if support for the PAC extension is implemented, FALSE otherwise.

 boolean HavePACExt()
 return HasArchVersion(ARMv8p3);

aarch64/functions/pac/pac/PtrHasUpperAndLowerAddRanges

 // PtrHasUpperAndLowerAddRanges()
 // ==============================
 // Returns TRUE if the pointer has upper and lower address ranges, FALSE otherwise.

 boolean PtrHasUpperAndLowerAddRanges()
 regime = TranslationRegime(PSTATE.EL, AccType_NORMAL);
 return HasUnprivileged(regime);

aarch64/functions/pac/strip/Strip

 // Strip()
 // =======
 // Strip() returns a 64-bit value containing A, but replacing the pointer authentication
 // code field bits with the extension of the address bits. This can apply to either
 // instructions or data, where, as the use of tagged pointers is distinct, it might be
 // handled differently.

 bits(64) Strip(bits(64) A, boolean data)
 bits(64) original_ptr;
 bits(64) extfield;
 boolean tbi = EffectiveTBI(A, !data, PSTATE.EL) == '1';
 integer bottom_PAC_bit = CalculateBottomPACBit(A<55>);
 extfield = Replicate(A<55>, 64);

 if tbi then
 original_ptr = A<63:56>:extfield< 56-bottom_PAC_bit-1:0>:A<bottom_PAC_bit-1:0>;
 else
J1-8032 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 original_ptr = extfield< 64-bottom_PAC_bit-1:0>:A<bottom_PAC_bit-1:0>;

 return original_ptr;

aarch64/functions/pac/trappacuse/TrapPACUse

 // TrapPACUse()
 // ============
 // Used for the trapping of the pointer authentication functions by higher exception
 // levels.

 TrapPACUse(bits(2) target_el)
 assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

 bits(64) preferred_exception_return = ThisInstrAddr();
 ExceptionRecord exception;
 vect_offset = 0;
 exception = ExceptionSyndrome(Exception_PACTrap);
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/functions/ras/AArch64.ESBOperation

 // AArch64.ESBOperation()
 // ======================
 // Perform the AArch64 ESB operation, either for ESB executed in AArch64 state, or for
 // ESB in AArch32 state when SError interrupts are routed to an Exception level using
 // AArch64

 AArch64.ESBOperation()

 route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1';
 route_to_el2 = (EL2Enabled() &&
 (HCR_EL2.TGE == '1' || HCR_EL2.AMO == '1'));

 target = if route_to_el3 then EL3 elsif route_to_el2 then EL2 else EL1;

 if target == EL1 then
 mask_active = PSTATE.EL IN {EL0, EL1};
 elsif HaveVirtHostExt() && target == EL2 && HCR_EL2.<E2H,TGE> == '11' then
 mask_active = PSTATE.EL IN {EL0, EL2};
 else
 mask_active = PSTATE.EL == target;

 mask_set = (PSTATE.A == '1' && (!HaveDoubleFaultExt() || SCR_EL3.EA == '0' ||
 PSTATE.EL != EL3 || SCR_EL3.NMEA == '0'));
 intdis = Halted() || ExternalDebugInterruptsDisabled(target);
 masked = (UInt(target) < UInt(PSTATE.EL)) || intdis || (mask_active && mask_set);

 // Check for a masked Physical SError pending that can be synchronized
 // by an Error synchronization event.
 if masked && IsSynchronizablePhysicalSErrorPending() then
 // This function might be called for an interworking case, and INTdis is masking
 // the SError interrupt.
 if ELUsingAArch32(S1TranslationRegime()) then
 syndrome32 = AArch32.PhysicalSErrorSyndrome();
 DISR = AArch32.ReportDeferredSError(syndrome32.AET, syndrome32.ExT);
 else
 implicit_esb = FALSE;
 syndrome64 = AArch64.PhysicalSErrorSyndrome(implicit_esb);
 DISR_EL1 = AArch64.ReportDeferredSError(syndrome64);
 ClearPendingPhysicalSError(); // Set ISR_EL1.A to 0

 return;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8033
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/ras/AArch64.PhysicalSErrorSyndrome

 // Return the SError syndrome
 bits(25) AArch64.PhysicalSErrorSyndrome(boolean implicit_esb);

aarch64/functions/ras/AArch64.ReportDeferredSError

 // AArch64.ReportDeferredSError()
 // ==============================
 // Generate deferred SError syndrome

 bits(64) AArch64.ReportDeferredSError(bits(25) syndrome)
 bits(64) target;
 target<31> = '1'; // A
 target<24> = syndrome<24>; // IDS
 target<23:0> = syndrome<23:0>; // ISS
 return target;

aarch64/functions/ras/AArch64.vESBOperation

 // AArch64.vESBOperation()
 // =======================
 // Perform the AArch64 ESB operation for virtual SError interrupts, either for ESB
 // executed in AArch64 state, or for ESB in AArch32 state with EL2 using AArch64 state

 AArch64.vESBOperation()
 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();

 // If physical SError interrupts are routed to EL2, and TGE is not set, then a virtual
 // SError interrupt might be pending
 vSEI_enabled = HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1';
 vSEI_pending = vSEI_enabled && HCR_EL2.VSE == '1';
 vintdis = Halted() || ExternalDebugInterruptsDisabled(EL1);
 vmasked = vintdis || PSTATE.A == '1';

 // Check for a masked virtual SError pending
 if vSEI_pending && vmasked then
 // This function might be called for the interworking case, and INTdis is masking
 // the virtual SError interrupt.
 if ELUsingAArch32(EL1) then
 VDISR = AArch32.ReportDeferredSError(VDFSR<15:14>, VDFSR<12>);
 else
 VDISR_EL2 = AArch64.ReportDeferredSError(VSESR_EL2<24:0>);
 HCR_EL2.VSE = '0'; // Clear pending virtual SError

 return;

aarch64/functions/registers/AArch64.MaybeZeroRegisterUppers

 // AArch64.MaybeZeroRegisterUppers()
 // =================================
 // On taking an exception to AArch64 from AArch32, it is CONSTRAINED UNPREDICTABLE whether the top
 // 32 bits of registers visible at any lower Exception level using AArch32 are set to zero.

 AArch64.MaybeZeroRegisterUppers()
 assert UsingAArch32(); // Always called from AArch32 state before entering AArch64 state

 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then
 first = 0; last = 14; include_R15 = FALSE;
 elsif PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) then
 first = 0; last = 30; include_R15 = FALSE;
 else
 first = 0; last = 30; include_R15 = TRUE;
J1-8034 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 for n = first to last
 if (n != 15 || include_R15) && ConstrainUnpredictableBool() then
 _R[n]<63:32> = Zeros();

 return;

aarch64/functions/registers/AArch64.ResetGeneralRegisters

 // AArch64.ResetGeneralRegisters()
 // ===============================

 AArch64.ResetGeneralRegisters()

 for i = 0 to 30
 X[i] = bits(64) UNKNOWN;

 return;

aarch64/functions/registers/AArch64.ResetSIMDFPRegisters

 // AArch64.ResetSIMDFPRegisters()
 // ==============================

 AArch64.ResetSIMDFPRegisters()

 for i = 0 to 31
 V[i] = bits(128) UNKNOWN;

 return;

aarch64/functions/registers/AArch64.ResetSpecialRegisters

 // AArch64.ResetSpecialRegisters()
 // ===============================

 AArch64.ResetSpecialRegisters()

 // AArch64 special registers
 SP_EL0 = bits(64) UNKNOWN;
 SP_EL1 = bits(64) UNKNOWN;
 SPSR_EL1 = bits(64) UNKNOWN;
 ELR_EL1 = bits(64) UNKNOWN;
 if HaveEL(EL2) then
 SP_EL2 = bits(64) UNKNOWN;
 SPSR_EL2 = bits(64) UNKNOWN;
 ELR_EL2 = bits(64) UNKNOWN;
 if HaveEL(EL3) then
 SP_EL3 = bits(64) UNKNOWN;
 SPSR_EL3 = bits(64) UNKNOWN;
 ELR_EL3 = bits(64) UNKNOWN;

 // AArch32 special registers that are not architecturally mapped to AArch64 registers
 if HaveAArch32EL(EL1) then
 SPSR_fiq<31:0> = bits(32) UNKNOWN;
 SPSR_irq<31:0> = bits(32) UNKNOWN;
 SPSR_abt<31:0> = bits(32) UNKNOWN;
 SPSR_und<31:0> = bits(32) UNKNOWN;

 // External debug special registers
 DLR_EL0 = bits(64) UNKNOWN;
 DSPSR_EL0 = bits(64) UNKNOWN;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8035
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 return;

aarch64/functions/registers/AArch64.ResetSystemRegisters

 AArch64.ResetSystemRegisters(boolean cold_reset);

aarch64/functions/registers/PC

 // PC - non-assignment form
 // ========================
 // Read program counter.

 bits(64) PC[]
 return _PC;

aarch64/functions/registers/SP

 // SP[] - assignment form
 // ======================
 // Write to stack pointer from either a 32-bit or a 64-bit value.

 SP[] = bits(width) value
 assert width IN {32,64};
 if PSTATE.SP == '0' then
 SP_EL0 = ZeroExtend(value);
 else
 case PSTATE.EL of
 when EL0 SP_EL0 = ZeroExtend(value);
 when EL1 SP_EL1 = ZeroExtend(value);
 when EL2 SP_EL2 = ZeroExtend(value);
 when EL3 SP_EL3 = ZeroExtend(value);
 return;

 // SP[] - non-assignment form
 // ==========================
 // Read stack pointer with implicit slice of 8, 16, 32 or 64 bits.

 bits(width) SP[]
 assert width IN {8,16,32,64};
 if PSTATE.SP == '0' then
 return SP_EL0<width-1:0>;
 else
 case PSTATE.EL of
 when EL0 return SP_EL0<width-1:0>;
 when EL1 return SP_EL1<width-1:0>;
 when EL2 return SP_EL2<width-1:0>;
 when EL3 return SP_EL3<width-1:0>;

aarch64/functions/registers/V

 // V[] - assignment form
 // =====================
 // Write to SIMD&FP register with implicit extension from
 // 8, 16, 32, 64 or 128 bits.

 V[integer n] = bits(width) value
 assert n >= 0 && n <= 31;
 assert width IN {8,16,32,64,128};
 integer vlen = if IsSVEEnabled(PSTATE.EL) then VL else 128;
 if ConstrainUnpredictableBool() then
J1-8036 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 _Z[n] = ZeroExtend(value);
 else
 _Z[n]<vlen-1:0> = ZeroExtend(value);

 // V[] - non-assignment form
 // =========================
 // Read from SIMD&FP register with implicit slice of 8, 16
 // 32, 64 or 128 bits.

 bits(width) V[integer n]
 assert n >= 0 && n <= 31;
 assert width IN {8,16,32,64,128};
 return _Z[n]<width-1:0>;

aarch64/functions/registers/Vpart

 // Vpart[] - non-assignment form
 // =============================
 // Reads a 128-bit SIMD&FP register in up to two parts:
 // part 0 returns the bottom 8, 16, 32 or 64 bits of a value held in the register;
 // part 1 returns the top half of the bottom 64 bits or the top half of the 128-bit
 // value held in the register.

 bits(width) Vpart[integer n, integer part]
 assert n >= 0 && n <= 31;
 assert part IN {0, 1};
 if part == 0 then
 assert width < 128;
 return V[n];
 else
 assert width IN {32,64};
 bits(128) vreg = V[n];
 return vreg<(width * 2)-1:width>;

 // Vpart[] - assignment form
 // =========================
 // Writes a 128-bit SIMD&FP register in up to two parts:
 // part 0 zero extends a 8, 16, 32, or 64-bit value to fill the whole register;
 // part 1 inserts a 64-bit value into the top half of the register.

 Vpart[integer n, integer part] = bits(width) value
 assert n >= 0 && n <= 31;
 assert part IN {0, 1};
 if part == 0 then
 assert width < 128;
 V[n] = value;
 else
 assert width == 64;
 bits(64) vreg = V[n];
 V[n] = value<63:0> : vreg;

aarch64/functions/registers/X

 // X[] - assignment form
 // =====================
 // Write to general-purpose register from either a 32-bit or a 64-bit value.

 X[integer n] = bits(width) value
 assert n >= 0 && n <= 31;
 assert width IN {32,64};
 if n != 31 then
 _R[n] = ZeroExtend(value);
 return;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8037
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // X[] - non-assignment form
 // =========================
 // Read from general-purpose register with implicit slice of 8, 16, 32 or 64 bits.

 bits(width) X[integer n]
 assert n >= 0 && n <= 31;
 assert width IN {8,16,32,64};
 if n != 31 then
 return _R[n]<width-1:0>;
 else
 return Zeros(width);

aarch64/functions/sve/AArch32.IsFPEnabled

 // AArch32.IsFPEnabled()
 // =====================
 // Returns TRUE if access to the SIMD&FP instructions or System registers are
 // enabled at the target exception level in AArch32 state and FALSE otherwise.

 boolean AArch32.IsFPEnabled(bits(2) el)
 if el == EL0 && !ELUsingAArch32(EL1) then
 return AArch64.IsFPEnabled(el);

 if HaveEL(EL3) && ELUsingAArch32(EL3) && !IsSecure() then
 // Check if access disabled in NSACR
 if NSACR.cp10 == '0' then return FALSE;

 if el IN {EL0, EL1} then
 // Check if access disabled in CPACR
 case CPACR.cp10 of
 when '00' disabled = TRUE;
 when '01' disabled = el == EL0;
 when '10' disabled = ConstrainUnpredictableBool();
 when '11' disabled = FALSE;
 if disabled then return FALSE;

 if el IN {EL0, EL1, EL2} && EL2Enabled() then
 if !ELUsingAArch32(EL2) then
 return AArch64.IsFPEnabled(EL2);
 if HCPTR.TCP10 == '1' then return FALSE;

 if HaveEL(EL3) && !ELUsingAArch32(EL3) then
 // Check if access disabled in CPTR_EL3
 if CPTR_EL3.TFP == '1' then return FALSE;

 return TRUE;

aarch64/functions/sve/AArch64.IsFPEnabled

 // AArch64.IsFPEnabled()
 // =====================
 // Returns TRUE if access to the SIMD&FP instructions or System registers are
 // enabled at the target exception level in AArch64 state and FALSE otherwise.

 boolean AArch64.IsFPEnabled(bits(2) el)
 // Check if access disabled in CPACR_EL1
 if el IN {EL0, EL1} && !IsInHost() then
 // Check FP&SIMD at EL0/EL1
 case CPACR_EL1.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = el == EL0;
 when '11' disabled = FALSE;
 if disabled then return FALSE;

J1-8038 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // Check if access disabled in CPTR_EL2
 if el IN {EL0, EL1, EL2} && EL2Enabled() then
 if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
 case CPTR_EL2.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = el == EL0 && HCR_EL2.TGE == '1';
 when '11' disabled = FALSE;
 if disabled then return FALSE;
 else
 if CPTR_EL2.TFP == '1' then return FALSE;

 // Check if access disabled in CPTR_EL3
 if HaveEL(EL3) then
 if CPTR_EL3.TFP == '1' then return FALSE;

 return TRUE;

aarch64/functions/sve/AnyActiveElement

 // AnyActiveElement()
 // ==================
 // Return TRUE if there is at least one active element in mask. Otherwise,
 // return FALSE.

 boolean AnyActiveElement(bits(N) mask, integer esize)
 return LastActiveElement(mask, esize) >= 0;

aarch64/functions/sve/CeilPow2

 // CeilPow2()
 // ==========

 // For a positive integer X, return the smallest power of 2 >= X

 integer CeilPow2(integer x)
 if x == 0 then return 0;
 if x == 1 then return 2;
 return FloorPow2(x - 1) * 2;

aarch64/functions/sve/CheckSVEEnabled

 // CheckSVEEnabled()
 // =================
 // Checks for traps on SVE instructions and instructions that
 // access SVE System registers.

 CheckSVEEnabled()
 // Check if access disabled in CPACR_EL1
 if PSTATE.EL IN {EL0, EL1} && !IsInHost() then
 // Check SVE at EL0/EL1
 case CPACR_EL1.ZEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0;
 when '11' disabled = FALSE;
 if disabled then SVEAccessTrap(EL1);

 // Check SIMD&FP at EL0/EL1
 case CPACR_EL1.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0;
 when '11' disabled = FALSE;
 if disabled then AArch64.AdvSIMDFPAccessTrap(EL1);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8039
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // Check if access disabled in CPTR_EL2
 if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
 if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
 // Check SVE at EL2
 case CPTR_EL2.ZEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
 when '11' disabled = FALSE;
 if disabled then SVEAccessTrap(EL2);

 // Check SIMD&FP at EL2
 case CPTR_EL2.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
 when '11' disabled = FALSE;
 if disabled then AArch64.AdvSIMDFPAccessTrap(EL2);
 else
 if CPTR_EL2.TZ == '1' then SVEAccessTrap(EL2);
 if CPTR_EL2.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL2);

 // Check if access disabled in CPTR_EL3
 if HaveEL(EL3) then
 if CPTR_EL3.EZ == '0' then SVEAccessTrap(EL3);
 if CPTR_EL3.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL3);

aarch64/functions/sve/DecodePredCount

 // DecodePredCount()
 // =================

 integer DecodePredCount(bits(5) pattern, integer esize)
 integer elements = VL DIV esize;
 integer numElem;
 case pattern of
 when '00000' numElem = FloorPow2(elements);
 when '00001' numElem = if elements >= 1 then 1 else 0;
 when '00010' numElem = if elements >= 2 then 2 else 0;
 when '00011' numElem = if elements >= 3 then 3 else 0;
 when '00100' numElem = if elements >= 4 then 4 else 0;
 when '00101' numElem = if elements >= 5 then 5 else 0;
 when '00110' numElem = if elements >= 6 then 6 else 0;
 when '00111' numElem = if elements >= 7 then 7 else 0;
 when '01000' numElem = if elements >= 8 then 8 else 0;
 when '01001' numElem = if elements >= 16 then 16 else 0;
 when '01010' numElem = if elements >= 32 then 32 else 0;
 when '01011' numElem = if elements >= 64 then 64 else 0;
 when '01100' numElem = if elements >= 128 then 128 else 0;
 when '01101' numElem = if elements >= 256 then 256 else 0;
 when '11101' numElem = elements - (elements MOD 4);
 when '11110' numElem = elements - (elements MOD 3);
 when '11111' numElem = elements;
 otherwise numElem = 0;
 return numElem;

aarch64/functions/sve/ElemFFR

 // ElemFFR[] - non-assignment form
 // ===============================

 bit ElemFFR[integer e, integer esize]
 return ElemP[_FFR, e, esize];

 // ElemFFR[] - assignment form
 // ===========================
J1-8040 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 ElemFFR[integer e, integer esize] = bit value
 integer psize = esize DIV 8;
 integer n = e * psize;
 assert n >= 0 && (n + psize) <= PL;
 _FFR<n+psize-1:n> = ZeroExtend(value, psize);
 return;

aarch64/functions/sve/ElemP

 // ElemP[] - non-assignment form
 // =============================

 bit ElemP[bits(N) pred, integer e, integer esize]
 integer n = e * (esize DIV 8);
 assert n >= 0 && n < N;
 return pred<n>;

 // ElemP[] - assignment form
 // =========================

 ElemP[bits(N) &pred, integer e, integer esize] = bit value
 integer psize = esize DIV 8;
 integer n = e * psize;
 assert n >= 0 && (n + psize) <= N;
 pred<n+psize-1:n> = ZeroExtend(value, psize);
 return;

aarch64/functions/sve/FFR

 // FFR[] - non-assignment form
 // ===========================

 bits(width) FFR[]
 assert width == PL;
 return _FFR<width-1:0>;

 // FFR[] - assignment form
 // =======================

 FFR[] = bits(width) value
 assert width == PL;
 if ConstrainUnpredictableBool() then
 _FFR = ZeroExtend(value);
 else
 _FFR<width-1:0> = value;

aarch64/functions/sve/FPCompareNE

 // FPCompareNE()
 // =============

 boolean FPCompareNE(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
 op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};

 if op1_nan || op2_nan then
 result = TRUE;
 if type1 == FPType_SNaN || type2 == FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8041
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 else // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 != value2);

 FPProcessDenorms(type1, type2, N, fpcr);

 return result;

aarch64/functions/sve/FPCompareUN

 // FPCompareUN()
 // =============

 boolean FPCompareUN(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 if type1 == FPType_SNaN || type2 == FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);

 result = type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN};

 if !result then
 FPProcessDenorms(type1, type2, N, fpcr);

 return result;

aarch64/functions/sve/FPConvertSVE

 // FPConvertSVE()
 // ==============

 bits(M) FPConvertSVE(bits(N) op, FPCRType fpcr, FPRounding rounding)
 fpcr.AHP = '0';
 return FPConvert(op, fpcr, rounding);

 // FPConvertSVE()
 // ==============

 bits(M) FPConvertSVE(bits(N) op, FPCRType fpcr)
 fpcr.AHP = '0';
 return FPConvert(op, fpcr, FPRoundingMode(fpcr));

aarch64/functions/sve/FPExpA

 // FPExpA()
 // ========

 bits(N) FPExpA(bits(N) op)
 assert N IN {16,32,64};
 bits(N) result;
 bits(N) coeff;
 integer idx = if N == 16 then UInt(op<4:0>) else UInt(op<5:0>);
 coeff = FPExpCoefficient[idx];
 if N == 16 then
 result<15:0> = '0':op<9:5>:coeff<9:0>;
 elsif N == 32 then
 result<31:0> = '0':op<13:6>:coeff<22:0>;
 else // N == 64
 result<63:0> = '0':op<16:6>:coeff<51:0>;

 return result;
J1-8042 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sve/FPExpCoefficient

 // FPExpCoefficient()
 // ==================

 bits(N) FPExpCoefficient[integer index]
 assert N IN {16,32,64};
 integer result;

 if N == 16 then
 case index of
 when 0 result = 0x0000;
 when 1 result = 0x0016;
 when 2 result = 0x002d;
 when 3 result = 0x0045;
 when 4 result = 0x005d;
 when 5 result = 0x0075;
 when 6 result = 0x008e;
 when 7 result = 0x00a8;
 when 8 result = 0x00c2;
 when 9 result = 0x00dc;
 when 10 result = 0x00f8;
 when 11 result = 0x0114;
 when 12 result = 0x0130;
 when 13 result = 0x014d;
 when 14 result = 0x016b;
 when 15 result = 0x0189;
 when 16 result = 0x01a8;
 when 17 result = 0x01c8;
 when 18 result = 0x01e8;
 when 19 result = 0x0209;
 when 20 result = 0x022b;
 when 21 result = 0x024e;
 when 22 result = 0x0271;
 when 23 result = 0x0295;
 when 24 result = 0x02ba;
 when 25 result = 0x02e0;
 when 26 result = 0x0306;
 when 27 result = 0x032e;
 when 28 result = 0x0356;
 when 29 result = 0x037f;
 when 30 result = 0x03a9;
 when 31 result = 0x03d4;

 elsif N == 32 then
 case index of
 when 0 result = 0x000000;
 when 1 result = 0x0164d2;
 when 2 result = 0x02cd87;
 when 3 result = 0x043a29;
 when 4 result = 0x05aac3;
 when 5 result = 0x071f62;
 when 6 result = 0x08980f;
 when 7 result = 0x0a14d5;
 when 8 result = 0x0b95c2;
 when 9 result = 0x0d1adf;
 when 10 result = 0x0ea43a;
 when 11 result = 0x1031dc;
 when 12 result = 0x11c3d3;
 when 13 result = 0x135a2b;
 when 14 result = 0x14f4f0;
 when 15 result = 0x16942d;
 when 16 result = 0x1837f0;
 when 17 result = 0x19e046;
 when 18 result = 0x1b8d3a;
 when 19 result = 0x1d3eda;
 when 20 result = 0x1ef532;
 when 21 result = 0x20b051;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8043
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when 22 result = 0x227043;
 when 23 result = 0x243516;
 when 24 result = 0x25fed7;
 when 25 result = 0x27cd94;
 when 26 result = 0x29a15b;
 when 27 result = 0x2b7a3a;
 when 28 result = 0x2d583f;
 when 29 result = 0x2f3b79;
 when 30 result = 0x3123f6;
 when 31 result = 0x3311c4;
 when 32 result = 0x3504f3;
 when 33 result = 0x36fd92;
 when 34 result = 0x38fbaf;
 when 35 result = 0x3aff5b;
 when 36 result = 0x3d08a4;
 when 37 result = 0x3f179a;
 when 38 result = 0x412c4d;
 when 39 result = 0x4346cd;
 when 40 result = 0x45672a;
 when 41 result = 0x478d75;
 when 42 result = 0x49b9be;
 when 43 result = 0x4bec15;
 when 44 result = 0x4e248c;
 when 45 result = 0x506334;
 when 46 result = 0x52a81e;
 when 47 result = 0x54f35b;
 when 48 result = 0x5744fd;
 when 49 result = 0x599d16;
 when 50 result = 0x5bfbb8;
 when 51 result = 0x5e60f5;
 when 52 result = 0x60ccdf;
 when 53 result = 0x633f89;
 when 54 result = 0x65b907;
 when 55 result = 0x68396a;
 when 56 result = 0x6ac0c7;
 when 57 result = 0x6d4f30;
 when 58 result = 0x6fe4ba;
 when 59 result = 0x728177;
 when 60 result = 0x75257d;
 when 61 result = 0x77d0df;
 when 62 result = 0x7a83b3;
 when 63 result = 0x7d3e0c;

 else // N == 64
 case index of
 when 0 result = 0x0000000000000;
 when 1 result = 0x02C9A3E778061;
 when 2 result = 0x059B0D3158574;
 when 3 result = 0x0874518759BC8;
 when 4 result = 0x0B5586CF9890F;
 when 5 result = 0x0E3EC32D3D1A2;
 when 6 result = 0x11301D0125B51;
 when 7 result = 0x1429AAEA92DE0;
 when 8 result = 0x172B83C7D517B;
 when 9 result = 0x1A35BEB6FCB75;
 when 10 result = 0x1D4873168B9AA;
 when 11 result = 0x2063B88628CD6;
 when 12 result = 0x2387A6E756238;
 when 13 result = 0x26B4565E27CDD;
 when 14 result = 0x29E9DF51FDEE1;
 when 15 result = 0x2D285A6E4030B;
 when 16 result = 0x306FE0A31B715;
 when 17 result = 0x33C08B26416FF;
 when 18 result = 0x371A7373AA9CB;
 when 19 result = 0x3A7DB34E59FF7;
 when 20 result = 0x3DEA64C123422;
 when 21 result = 0x4160A21F72E2A;
 when 22 result = 0x44E086061892D;
J1-8044 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when 23 result = 0x486A2B5C13CD0;
 when 24 result = 0x4BFDAD5362A27;
 when 25 result = 0x4F9B2769D2CA7;
 when 26 result = 0x5342B569D4F82;
 when 27 result = 0x56F4736B527DA;
 when 28 result = 0x5AB07DD485429;
 when 29 result = 0x5E76F15AD2148;
 when 30 result = 0x6247EB03A5585;
 when 31 result = 0x6623882552225;
 when 32 result = 0x6A09E667F3BCD;
 when 33 result = 0x6DFB23C651A2F;
 when 34 result = 0x71F75E8EC5F74;
 when 35 result = 0x75FEB564267C9;
 when 36 result = 0x7A11473EB0187;
 when 37 result = 0x7E2F336CF4E62;
 when 38 result = 0x82589994CCE13;
 when 39 result = 0x868D99B4492ED;
 when 40 result = 0x8ACE5422AA0DB;
 when 41 result = 0x8F1AE99157736;
 when 42 result = 0x93737B0CDC5E5;
 when 43 result = 0x97D829FDE4E50;
 when 44 result = 0x9C49182A3F090;
 when 45 result = 0xA0C667B5DE565;
 when 46 result = 0xA5503B23E255D;
 when 47 result = 0xA9E6B5579FDBF;
 when 48 result = 0xAE89F995AD3AD;
 when 49 result = 0xB33A2B84F15FB;
 when 50 result = 0xB7F76F2FB5E47;
 when 51 result = 0xBCC1E904BC1D2;
 when 52 result = 0xC199BDD85529C;
 when 53 result = 0xC67F12E57D14B;
 when 54 result = 0xCB720DCEF9069;
 when 55 result = 0xD072D4A07897C;
 when 56 result = 0xD5818DCFBA487;
 when 57 result = 0xDA9E603DB3285;
 when 58 result = 0xDFC97337B9B5F;
 when 59 result = 0xE502EE78B3FF6;
 when 60 result = 0xEA4AFA2A490DA;
 when 61 result = 0xEFA1BEE615A27;
 when 62 result = 0xF50765B6E4540;
 when 63 result = 0xFA7C1819E90D8;

 return result<N-1:0>;

aarch64/functions/sve/FPMinNormal

 // FPMinNormal()
 // =============

 bits(N) FPMinNormal(bit sign)
 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = Zeros(E-1):'1';
 frac = Zeros(F);
 return sign : exp : frac;

aarch64/functions/sve/FPOne

 // FPOne()
 // =======

 bits(N) FPOne(bit sign)
 assert N IN {16,32,64};
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8045
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = '0':Ones(E-1);
 frac = Zeros(F);
 return sign : exp : frac;

aarch64/functions/sve/FPPointFive

 // FPPointFive()
 // =============

 bits(N) FPPointFive(bit sign)
 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = '0':Ones(E-2):'0';
 frac = Zeros(F);
 return sign : exp : frac;

aarch64/functions/sve/FPProcess

 // FPProcess()
 // ===========

 bits(N) FPProcess(bits(N) input)
 bits(N) result;
 assert N IN {16,32,64};
 FPCRType fpcr = FPCR[];
 (fptype,sign,value) = FPUnpack(input, fpcr);

 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 result = FPProcessNaN(fptype, input, fpcr);
 elsif fptype == FPType_Infinity then
 result = FPInfinity(sign);
 elsif fptype == FPType_Zero then
 result = FPZero(sign);
 else
 result = FPRound(value, fpcr);

 FPProcessDenorm(fptype, N, fpcr);

 return result;

aarch64/functions/sve/FPScale

 // FPScale()
 // =========

 bits(N) FPScale(bits (N) op, integer scale, FPCRType fpcr)
 assert N IN {16,32,64};
 (fptype,sign,value) = FPUnpack(op, fpcr);

 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 result = FPProcessNaN(fptype, op, fpcr);
 elsif fptype == FPType_Zero then
 result = FPZero(sign);
 elsif fptype == FPType_Infinity then
 result = FPInfinity(sign);
 else
 result = FPRound(value * (2.0^scale), fpcr);

 FPProcessDenorm(fptype, N, fpcr);
J1-8046 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 return result;

aarch64/functions/sve/FPTrigMAdd

 // FPTrigMAdd()
 // ============

 bits(N) FPTrigMAdd(integer x, bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {16,32,64};
 assert x >= 0;
 assert x < 8;
 bits(N) coeff;

 if op2<N-1> == '1' then
 x = x + 8;

 coeff = FPTrigMAddCoefficient[x];
 op2 = FPAbs(op2);
 result = FPMulAdd(coeff, op1, op2, fpcr);
 return result;

aarch64/functions/sve/FPTrigMAddCoefficient

 // FPTrigMAddCoefficient()
 // =======================

 bits(N) FPTrigMAddCoefficient[integer index]
 assert N IN {16,32,64};
 integer result;

 if N == 16 then
 case index of
 when 0 result = 0x3c00;
 when 1 result = 0xb155;
 when 2 result = 0x2030;
 when 3 result = 0x0000;
 when 4 result = 0x0000;
 when 5 result = 0x0000;
 when 6 result = 0x0000;
 when 7 result = 0x0000;
 when 8 result = 0x3c00;
 when 9 result = 0xb800;
 when 10 result = 0x293a;
 when 11 result = 0x0000;
 when 12 result = 0x0000;
 when 13 result = 0x0000;
 when 14 result = 0x0000;
 when 15 result = 0x0000;
 elsif N == 32 then
 case index of
 when 0 result = 0x3f800000;
 when 1 result = 0xbe2aaaab;
 when 2 result = 0x3c088886;
 when 3 result = 0xb95008b9;
 when 4 result = 0x36369d6d;
 when 5 result = 0x00000000;
 when 6 result = 0x00000000;
 when 7 result = 0x00000000;
 when 8 result = 0x3f800000;
 when 9 result = 0xbf000000;
 when 10 result = 0x3d2aaaa6;
 when 11 result = 0xbab60705;
 when 12 result = 0x37cd37cc;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8047
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when 13 result = 0x00000000;
 when 14 result = 0x00000000;
 when 15 result = 0x00000000;
 else // N == 64
 case index of
 when 0 result = 0x3ff0000000000000;
 when 1 result = 0xbfc5555555555543;
 when 2 result = 0x3f8111111110f30c;
 when 3 result = 0xbf2a01a019b92fc6;
 when 4 result = 0x3ec71de351f3d22b;
 when 5 result = 0xbe5ae5e2b60f7b91;
 when 6 result = 0x3de5d8408868552f;
 when 7 result = 0x0000000000000000;
 when 8 result = 0x3ff0000000000000;
 when 9 result = 0xbfe0000000000000;
 when 10 result = 0x3fa5555555555536;
 when 11 result = 0xbf56c16c16c13a0b;
 when 12 result = 0x3efa01a019b1e8d8;
 when 13 result = 0xbe927e4f7282f468;
 when 14 result = 0x3e21ee96d2641b13;
 when 15 result = 0xbda8f76380fbb401;

 return result<N-1:0>;

aarch64/functions/sve/FPTrigSMul

 // FPTrigSMul()
 // ============

 bits(N) FPTrigSMul(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {16,32,64};
 result = FPMul(op1, op1, fpcr);
 fpexc = FALSE;
 (fptype, sign, value) = FPUnpack(result, fpcr, fpexc);

 if !(fptype IN {FPType_QNaN, FPType_SNaN}) then
 result<N-1> = op2<0>;

 return result;

aarch64/functions/sve/FPTrigSSel

 // FPTrigSSel()
 // ============

 bits(N) FPTrigSSel(bits(N) op1, bits(N) op2)
 assert N IN {16,32,64};
 bits(N) result;

 if op2<0> == '1' then
 result = FPOne(op2<1>);
 elsif op2<1> == '1' then
 result = FPNeg(op1);
 else
 result = op1;

 return result;

aarch64/functions/sve/FirstActive

 // FirstActive()
 // =============

J1-8048 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 bit FirstActive(bits(N) mask, bits(N) x, integer esize)
 integer elements = N DIV (esize DIV 8);
 for e = 0 to elements-1
 if ElemP[mask, e, esize] == '1' then return ElemP[x, e, esize];
 return '0';

aarch64/functions/sve/FloorPow2

 // FloorPow2()
 // ===========
 // For a positive integer X, return the largest power of 2 <= X

 integer FloorPow2(integer x)
 assert x >= 0;
 integer n = 1;
 if x == 0 then return 0;
 while x >= 2^n do
 n = n + 1;
 return 2^(n - 1);

aarch64/functions/sve/HaveSVE

 // HaveSVE()
 // =========

 boolean HaveSVE()
 return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Have SVE ISA";

aarch64/functions/sve/HaveSVEFP32MatMulExt

 // HaveSVEFP32MatMulExt()
 // ======================
 // Returns TRUE if single-precision floating-point matrix multiply instruction support implemented and
FALSE otherwise.

 boolean HaveSVEFP32MatMulExt()
 return HaveSVE() && boolean IMPLEMENTATION_DEFINED "Have SVE FP32 Matrix Multiply extension";

aarch64/functions/sve/HaveSVEFP64MatMulExt

 // HaveSVEFP64MatMulExt()
 // ======================
 // Returns TRUE if double-precision floating-point matrix multiply instruction support implemented and
FALSE otherwise.

 boolean HaveSVEFP64MatMulExt()
 return HaveSVE() && boolean IMPLEMENTATION_DEFINED "Have SVE FP64 Matrix Multiply extension";

aarch64/functions/sve/ImplementedSVEVectorLength

 // ImplementedSVEVectorLength()
 // ============================
 // Reduce SVE vector length to a supported value (e.g. power of two)

 integer ImplementedSVEVectorLength(integer nbits)
 return integer IMPLEMENTATION_DEFINED;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8049
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sve/IsEven

 // IsEven()
 // ========

 boolean IsEven(integer val)
 return val MOD 2 == 0;

aarch64/functions/sve/IsFPEnabled

 // IsFPEnabled()
 // =============
 // Returns TRUE if accesses to the Advanced SIMD and floating-point
 // registers are enabled at the target exception level in the current
 // execution state and FALSE otherwise.

 boolean IsFPEnabled(bits(2) el)
 if ELUsingAArch32(el) then
 return AArch32.IsFPEnabled(el);
 else
 return AArch64.IsFPEnabled(el);

aarch64/functions/sve/IsSVEEnabled

 // IsSVEEnabled()
 // ==============
 // Returns TRUE if access to SVE instructions and System registers is
 // enabled at the target exception level and FALSE otherwise.

 boolean IsSVEEnabled(bits(2) el)
 if ELUsingAArch32(el) then
 return FALSE;

 // Check if access disabled in CPACR_EL1
 if el IN {EL0, EL1} && !IsInHost() then
 // Check SVE at EL0/EL1
 case CPACR_EL1.ZEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = el == EL0;
 when '11' disabled = FALSE;
 if disabled then return FALSE;

 // Check if access disabled in CPTR_EL2
 if el IN {EL0, EL1, EL2} && EL2Enabled() then
 if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
 case CPTR_EL2.ZEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = el == EL0 && HCR_EL2.TGE == '1';
 when '11' disabled = FALSE;
 if disabled then return FALSE;
 else
 if CPTR_EL2.TZ == '1' then return FALSE;

 // Check if access disabled in CPTR_EL3
 if HaveEL(EL3) then
 if CPTR_EL3.EZ == '0' then return FALSE;

 return TRUE;
J1-8050 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sve/LastActive

 // LastActive()
 // ============

 bit LastActive(bits(N) mask, bits(N) x, integer esize)
 integer elements = N DIV (esize DIV 8);
 for e = elements-1 downto 0
 if ElemP[mask, e, esize] == '1' then return ElemP[x, e, esize];
 return '0';

aarch64/functions/sve/LastActiveElement

 // LastActiveElement()
 // ===================

 integer LastActiveElement(bits(N) mask, integer esize)
 assert esize IN {8, 16, 32, 64, 128};
 integer elements = VL DIV esize;
 for e = elements-1 downto 0
 if ElemP[mask, e, esize] == '1' then return e;
 return -1;

aarch64/functions/sve/MaybeZeroSVEUppers

 // MaybeZeroSVEUppers()
 // ====================

 MaybeZeroSVEUppers(bits(2) target_el)
 boolean lower_enabled;

 if UInt(target_el) <= UInt(PSTATE.EL) || !IsSVEEnabled(target_el) then
 return;

 if target_el == EL3 then
 if EL2Enabled() then
 lower_enabled = IsFPEnabled(EL2);
 else
 lower_enabled = IsFPEnabled(EL1);
 elsif target_el == EL2 then
 assert !ELUsingAArch32(EL2);
 if HCR_EL2.TGE == '0' then
 lower_enabled = IsFPEnabled(EL1);
 else
 lower_enabled = IsFPEnabled(EL0);
 else
 assert target_el == EL1 && !ELUsingAArch32(EL1);
 lower_enabled = IsFPEnabled(EL0);

 if lower_enabled then
 integer vl = if IsSVEEnabled(PSTATE.EL) then VL else 128;
 integer pl = vl DIV 8;
 for n = 0 to 31
 if ConstrainUnpredictableBool() then
 _Z[n] = ZeroExtend(_Z[n]<vl-1:0>);
 for n = 0 to 15
 if ConstrainUnpredictableBool() then
 _P[n] = ZeroExtend(_P[n]<pl-1:0>);
 if ConstrainUnpredictableBool() then
 _FFR = ZeroExtend(_FFR<pl-1:0>);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8051
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sve/MemNF

 // MemNF[] - non-assignment form
 // =============================

 (bits(8*size), boolean) MemNF[bits(64) address, integer size, AccType acctype]
 assert size IN {1, 2, 4, 8, 16};
 bits(8*size) value;

 aligned = (address == Align(address, size));
 A = SCTLR[].A;

 if !aligned && (A == '1') then
 return (bits(8*size) UNKNOWN, TRUE);

 atomic = aligned || size == 1;

 if !atomic then
 (value<7:0>, bad) = MemSingleNF[address, 1, acctype, aligned];

 if bad then
 return (bits(8*size) UNKNOWN, TRUE);

 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
 // access will generate an Alignment Fault, as to get this far means the first byte did
 // not, so we must be changing to a new translation page.
 if !aligned then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

 for i = 1 to size-1
 (value<8*i+7:8*i>, bad) = MemSingleNF[address+i, 1, acctype, aligned];

 if bad then
 return (bits(8*size) UNKNOWN, TRUE);
 else
 (value, bad) = MemSingleNF[address, size, acctype, aligned];
 if bad then
 return (bits(8*size) UNKNOWN, TRUE);

 if BigEndian(acctype) then
 value = BigEndianReverse(value);

 return (value, FALSE);

aarch64/functions/sve/MemSingleNF

 // MemSingleNF[] - non-assignment form
 // ===================================

 (bits(8*size), boolean) MemSingleNF[bits(64) address, integer size, AccType acctype, boolean aligned]
 assert acctype IN {AccType_CNOTFIRST, AccType_NONFAULT};
 bits(8*size) value;
 boolean iswrite = FALSE;
 AddressDescriptor memaddrdesc;

 // Implementation may suppress NF load for any reason
 if ConstrainUnpredictableBool() then
 return (bits(8*size) UNKNOWN, TRUE);

 // MMU or MPU
 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);

 // Non-fault load from Device memory must not be performed externally
 if memaddrdesc.memattrs.memtype == MemType_Device then
J1-8052 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 return (bits(8*size) UNKNOWN, TRUE);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 return (bits(8*size) UNKNOWN, TRUE);

 // Memory array access
 accdesc = CreateAccessDescriptor(acctype);
 if HaveMTE2Ext() then
 if AArch64.AccessIsTagChecked(address, acctype) then
 bits(4) ptag = AArch64.PhysicalTag(address);
 if !AArch64.CheckTag(memaddrdesc, accdesc, ptag, iswrite) then
 return (bits(8*size) UNKNOWN, TRUE);

 (memstatus, value) = PhysMemRead(memaddrdesc, size, accdesc);
 if IsFault(memstatus) then
 fault = NoFault();
 fault.errortype = memstatus.errortype;
 fault.acctype = memstatus.acctype;
 fault.extflag = memstatus.extflag;
 fault.statuscode = memstatus.statuscode;
 if IsExternalAbortTakenSynchronously(memstatus, iswrite, memaddrdesc,
 size, accdesc) then
 return (bits(8*size) UNKNOWN, TRUE);
 PendSErrorInterrupt(fault);

 return (value, FALSE);

aarch64/functions/sve/NoneActive

 // NoneActive()
 // ============

 bit NoneActive(bits(N) mask, bits(N) x, integer esize)
 integer elements = N DIV (esize DIV 8);
 for e = 0 to elements-1
 if ElemP[mask, e, esize] == '1' && ElemP[x, e, esize] == '1' then return '0';
 return '1';

aarch64/functions/sve/P

 // P[] - non-assignment form
 // =========================

 bits(width) P[integer n]
 assert n >= 0 && n <= 31;
 assert width == PL;
 return _P[n]<width-1:0>;

 // P[] - assignment form
 // =====================

 P[integer n] = bits(width) value
 assert n >= 0 && n <= 31;
 assert width == PL;
 if ConstrainUnpredictableBool() then
 _P[n] = ZeroExtend(value);
 else
 _P[n]<width-1:0> = value;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8053
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sve/PL

 // PL - non-assignment form
 // ========================

 integer PL
 return VL DIV 8;

aarch64/functions/sve/PredTest

 // PredTest()
 // ==========

 bits(4) PredTest(bits(N) mask, bits(N) result, integer esize)
 bit n = FirstActive(mask, result, esize);
 bit z = NoneActive(mask, result, esize);
 bit c = NOT LastActive(mask, result, esize);
 bit v = '0';
 return n:z:c:v;

aarch64/functions/sve/ReducePredicated

 // ReducePredicated()
 // ==================

 bits(esize) ReducePredicated(ReduceOp op, bits(N) input, bits(M) mask, bits(esize) identity)
 assert(N == M * 8);
 integer p2bits = CeilPow2(N);
 bits(p2bits) operand;
 integer elements = p2bits DIV esize;

 for e = 0 to elements-1
 if e * esize < N && ElemP[mask, e, esize] == '1' then
 Elem[operand, e, esize] = Elem[input, e, esize];
 else
 Elem[operand, e, esize] = identity;

 return Reduce(op, operand, esize);

aarch64/functions/sve/Reverse

 // Reverse()
 // =========
 // Reverse subwords of M bits in an N-bit word

 bits(N) Reverse(bits(N) word, integer M)
 bits(N) result;
 integer sw = N DIV M;
 assert N == sw * M;
 for s = 0 to sw-1
 Elem[result, sw - 1 - s, M] = Elem[word, s, M];
 return result;

aarch64/functions/sve/SVEAccessTrap

 // SVEAccessTrap()
 // ===============
 // Trapped access to SVE registers due to CPACR_EL1, CPTR_EL2, or CPTR_EL3.

 SVEAccessTrap(bits(2) target_el)
 assert UInt(target_el) >= UInt(PSTATE.EL) && target_el != EL0 && HaveEL(target_el);
J1-8054 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 route_to_el2 = target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1';

 exception = ExceptionSyndrome(Exception_SVEAccessTrap);
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 if route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/functions/sve/SVECmp

 enumeration SVECmp { Cmp_EQ, Cmp_NE, Cmp_GE, Cmp_GT, Cmp_LT, Cmp_LE, Cmp_UN };

aarch64/functions/sve/SVEMoveMaskPreferred

 // SVEMoveMaskPreferred()
 // ======================
 // Return FALSE if a bitmask immediate encoding would generate an immediate
 // value that could also be represented by a single DUP instruction.
 // Used as a condition for the preferred MOV<-DUPM alias.

 boolean SVEMoveMaskPreferred(bits(13) imm13)
 bits(64) imm;
 (imm, -) = DecodeBitMasks(imm13<12>, imm13<5:0>, imm13<11:6>, TRUE);

 // Check for 8 bit immediates
 if !IsZero(imm<7:0>) then
 // Check for 'ffffffffffffffxy' or '00000000000000xy'
 if IsZero(imm<63:7>) || IsOnes(imm<63:7>) then
 return FALSE;

 // Check for 'ffffffxyffffffxy' or '000000xy000000xy'
 if imm<63:32> == imm<31:0> && (IsZero(imm<31:7>) || IsOnes(imm<31:7>)) then
 return FALSE;

 // Check for 'ffxyffxyffxyffxy' or '00xy00xy00xy00xy'
 if imm<63:32> == imm<31:0> && imm<31:16> == imm<15:0> && (IsZero(imm<15:7>) ||
IsOnes(imm<15:7>)) then
 return FALSE;

 // Check for 'xyxyxyxyxyxyxyxy'
 if imm<63:32> == imm<31:0> && imm<31:16> == imm<15:0> && (imm<15:8> == imm<7:0>) then
 return FALSE;

 // Check for 16 bit immediates
 else
 // Check for 'ffffffffffffxy00' or '000000000000xy00'
 if IsZero(imm<63:15>) || IsOnes(imm<63:15>) then
 return FALSE;

 // Check for 'ffffxy00ffffxy00' or '0000xy000000xy00'
 if imm<63:32> == imm<31:0> && (IsZero(imm<31:7>) || IsOnes(imm<31:7>)) then
 return FALSE;

 // Check for 'xy00xy00xy00xy00'
 if imm<63:32> == imm<31:0> && imm<31:16> == imm<15:0> then
 return FALSE;

 return TRUE;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8055
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sve/System

 constant integer MAX_VL = 2048;
 constant integer MAX_PL = 256;
 array bits(MAX_VL) _Z[0..31];
 array bits(MAX_PL) _P[0..15];
 bits(MAX_PL) _FFR;

aarch64/functions/sve/VL

 // VL - non-assignment form
 // ========================

 integer VL
 integer vl;

 if PSTATE.EL == EL1 || (PSTATE.EL == EL0 && !IsInHost()) then
 vl = UInt(ZCR_EL1.LEN);

 if PSTATE.EL == EL2 || (PSTATE.EL == EL0 && IsInHost()) then
 vl = UInt(ZCR_EL2.LEN);
 elsif PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
 vl = Min(vl, UInt(ZCR_EL2.LEN));

 if PSTATE.EL == EL3 then
 vl = UInt(ZCR_EL3.LEN);
 elsif HaveEL(EL3) then
 vl = Min(vl, UInt(ZCR_EL3.LEN));

 vl = (vl + 1) * 128;
 vl = ImplementedSVEVectorLength(vl);

 return vl;

aarch64/functions/sve/Z

 // Z[] - non-assignment form
 // =========================

 bits(width) Z[integer n]
 assert n >= 0 && n <= 31;
 assert width == VL;
 return _Z[n]<width-1:0>;

 // Z[] - assignment form
 // =====================

 Z[integer n] = bits(width) value
 assert n >= 0 && n <= 31;
 assert width == VL;
 if ConstrainUnpredictableBool() then
 _Z[n] = ZeroExtend(value);
 else
 _Z[n]<width-1:0> = value;

aarch64/functions/sysregisters/CNTKCTL

 // CNTKCTL[] - non-assignment form
 // ===============================

 CNTKCTLType CNTKCTL[]
 bits(64) r;
 if IsInHost() then
J1-8056 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 r = CNTHCTL_EL2;
 return r;
 r = CNTKCTL_EL1;
 return r;

aarch64/functions/sysregisters/CNTKCTLType

 type CNTKCTLType;

aarch64/functions/sysregisters/CPACR

 // CPACR[] - non-assignment form
 // =============================

 CPACRType CPACR[]
 bits(64) r;
 if IsInHost() then
 r = CPTR_EL2;
 return r;
 r = CPACR_EL1;
 return r;

aarch64/functions/sysregisters/CPACRType

 type CPACRType;

aarch64/functions/sysregisters/ELR

 // ELR[] - non-assignment form
 // ===========================

 bits(64) ELR[bits(2) el]
 bits(64) r;
 case el of
 when EL1 r = ELR_EL1;
 when EL2 r = ELR_EL2;
 when EL3 r = ELR_EL3;
 otherwise Unreachable();
 return r;

 // ELR[] - non-assignment form
 // ===========================

 bits(64) ELR[]
 assert PSTATE.EL != EL0;
 return ELR[PSTATE.EL];

 // ELR[] - assignment form
 // =======================

 ELR[bits(2) el] = bits(64) value
 bits(64) r = value;
 case el of
 when EL1 ELR_EL1 = r;
 when EL2 ELR_EL2 = r;
 when EL3 ELR_EL3 = r;
 otherwise Unreachable();
 return;

 // ELR[] - assignment form
 // =======================
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8057
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 ELR[] = bits(64) value
 assert PSTATE.EL != EL0;
 ELR[PSTATE.EL] = value;
 return;

aarch64/functions/sysregisters/ESR

 // ESR[] - non-assignment form
 // ===========================

 ESRType ESR[bits(2) regime]
 bits(64) r;
 case regime of
 when EL1 r = ESR_EL1;
 when EL2 r = ESR_EL2;
 when EL3 r = ESR_EL3;
 otherwise Unreachable();
 return r;

 // ESR[] - non-assignment form
 // ===========================

 ESRType ESR[]
 return ESR[S1TranslationRegime()];

 // ESR[] - assignment form
 // =======================

 ESR[bits(2) regime] = ESRType value
 bits(64) r = value;
 case regime of
 when EL1 ESR_EL1 = r;
 when EL2 ESR_EL2 = r;
 when EL3 ESR_EL3 = r;
 otherwise Unreachable();
 return;

 // ESR[] - assignment form
 // =======================

 ESR[] = ESRType value
 ESR[S1TranslationRegime()] = value;

aarch64/functions/sysregisters/ESRType

 type ESRType;

aarch64/functions/sysregisters/FAR

 // FAR[] - non-assignment form
 // ===========================

 bits(64) FAR[bits(2) regime]
 bits(64) r;
 case regime of
 when EL1 r = FAR_EL1;
 when EL2 r = FAR_EL2;
 when EL3 r = FAR_EL3;
 otherwise Unreachable();
 return r;

 // FAR[] - non-assignment form
J1-8058 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // ===========================

 bits(64) FAR[]
 return FAR[S1TranslationRegime()];

 // FAR[] - assignment form
 // =======================

 FAR[bits(2) regime] = bits(64) value
 bits(64) r = value;
 case regime of
 when EL1 FAR_EL1 = r;
 when EL2 FAR_EL2 = r;
 when EL3 FAR_EL3 = r;
 otherwise Unreachable();
 return;

 // FAR[] - assignment form
 // =======================

 FAR[] = bits(64) value
 FAR[S1TranslationRegime()] = value;
 return;

aarch64/functions/sysregisters/MAIR

 // MAIR[] - non-assignment form
 // ============================

 MAIRType MAIR[bits(2) regime]
 bits(64) r;
 case regime of
 when EL1 r = MAIR_EL1;
 when EL2 r = MAIR_EL2;
 when EL3 r = MAIR_EL3;
 otherwise Unreachable();
 return r;

 // MAIR[] - non-assignment form
 // ============================

 MAIRType MAIR[]
 return MAIR[S1TranslationRegime()];

aarch64/functions/sysregisters/MAIRType

 type MAIRType;

aarch64/functions/sysregisters/SCTLR

 // SCTLR[] - non-assignment form
 // =============================

 SCTLRType SCTLR[bits(2) regime]
 bits(64) r;
 case regime of
 when EL1 r = SCTLR_EL1;
 when EL2 r = SCTLR_EL2;
 when EL3 r = SCTLR_EL3;
 otherwise Unreachable();
 return r;

 // SCTLR[] - non-assignment form
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8059
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // =============================

 SCTLRType SCTLR[]
 return SCTLR[S1TranslationRegime()];

aarch64/functions/sysregisters/SCTLRType

 type SCTLRType;

aarch64/functions/sysregisters/VBAR

 // VBAR[] - non-assignment form
 // ============================

 bits(64) VBAR[bits(2) regime]
 bits(64) r;
 case regime of
 when EL1 r = VBAR_EL1;
 when EL2 r = VBAR_EL2;
 when EL3 r = VBAR_EL3;
 otherwise Unreachable();
 return r;

 // VBAR[] - non-assignment form
 // ============================

 bits(64) VBAR[]
 return VBAR[S1TranslationRegime()];

aarch64/functions/system/AArch64.AllocationTagAccessIsEnabled

 // AArch64.AllocationTagAccessIsEnabled()
 // ======================================
 // Check whether access to Allocation Tags is enabled.

 boolean AArch64.AllocationTagAccessIsEnabled(AccType acctype)
 bits(2) el = AArch64.AccessUsesEL(acctype);

 if SCR_EL3.ATA == '0' && el IN {EL0, EL1, EL2} then
 return FALSE;
 elsif HCR_EL2.ATA == '0' && el IN {EL0, EL1} && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' then
 return FALSE;
 elsif SCTLR_EL3.ATA == '0' && el == EL3 then
 return FALSE;
 elsif SCTLR_EL2.ATA == '0' && el == EL2 then
 return FALSE;
 elsif SCTLR_EL1.ATA == '0' && el == EL1 then
 return FALSE;
 elsif SCTLR_EL2.ATA0 == '0' && el == EL0 && EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' then
 return FALSE;
 elsif SCTLR_EL1.ATA0 == '0' && el == EL0 && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') then
 return FALSE;
 else
 return TRUE;

aarch64/functions/system/AArch64.ChooseNonExcludedTag

 // AArch64.ChooseNonExcludedTag()
 // ==============================
 // Return a tag derived from the start and the offset values, excluding
 // any tags in the given mask.
J1-8060 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 bits(4) AArch64.ChooseNonExcludedTag(bits(4) tag, bits(4) offset, bits(16) exclude)
 if IsOnes(exclude) then
 return '0000';

 if offset == '0000' then
 while exclude<UInt(tag)> == '1' do
 tag = tag + '0001';

 while offset != '0000' do
 offset = offset - '0001';
 tag = tag + '0001';
 while exclude<UInt(tag)> == '1' do
 tag = tag + '0001';

 return tag;

aarch64/functions/system/AArch64.ExecutingBROrBLROrRetInstr

 // AArch64.ExecutingBROrBLROrRetInstr()
 // ====================================
 // Returns TRUE if current instruction is a BR, BLR, RET, B[L]RA[B][Z], or RETA[B].

 boolean AArch64.ExecutingBROrBLROrRetInstr()
 if !HaveBTIExt() then return FALSE;

 instr = ThisInstr();
 if instr<31:25> == '1101011' && instr<20:16> == '11111' then
 opc = instr<24:21>;
 return opc != '0101';
 else
 return FALSE;

aarch64/functions/system/AArch64.ExecutingBTIInstr

 // AArch64.ExecutingBTIInstr()
 // ===========================
 // Returns TRUE if current instruction is a BTI.

 boolean AArch64.ExecutingBTIInstr()
 if !HaveBTIExt() then return FALSE;

 instr = ThisInstr();
 if instr<31:22> == '1101010100' && instr<21:12> == '0000110010' && instr<4:0> == '11111' then
 CRm = instr<11:8>;
 op2 = instr<7:5>;
 return (CRm == '0100' && op2<0> == '0');
 else
 return FALSE;

aarch64/functions/system/AArch64.ExecutingERETInstr

 // AArch64.ExecutingERETInstr()
 // ============================
 // Returns TRUE if current instruction is ERET.

 boolean AArch64.ExecutingERETInstr()
 instr = ThisInstr();
 return instr<31:12> == '11010110100111110000';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8061
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/system/AArch64.NextRandomTagBit

 // AArch64.NextRandomTagBit()
 // ==========================
 // Generate a random bit suitable for generating a random Allocation Tag.

 bit AArch64.NextRandomTagBit()
 bits(16) lfsr = RGSR_EL1.SEED;
 bit top = lfsr<5> EOR lfsr<3> EOR lfsr<2> EOR lfsr<0>;
 RGSR_EL1.SEED = top:lfsr<15:1>;
 return top;

aarch64/functions/system/AArch64.RandomTag

 // AArch64.RandomTag()
 // ===================
 // Generate a random Allocation Tag.

 bits(4) AArch64.RandomTag()
 bits(4) tag;
 for i = 0 to 3
 tag<i> = AArch64.NextRandomTagBit();
 return tag;

aarch64/functions/system/AArch64.SysInstr

 // Execute a system instruction with write (source operand).
 AArch64.SysInstr(integer op0, integer op1, integer crn, integer crm, integer op2, bits(64) val);

aarch64/functions/system/AArch64.SysInstrWithResult

 // Execute a system instruction with read (result operand).
 // Returns the result of the instruction.
 bits(64) AArch64.SysInstrWithResult(integer op0, integer op1, integer crn, integer crm, integer op2);

aarch64/functions/system/AArch64.SysRegRead

 // Read from a system register and return the contents of the register.
 bits(64) AArch64.SysRegRead(integer op0, integer op1, integer crn, integer crm, integer op2);

aarch64/functions/system/AArch64.SysRegWrite

 // Write to a system register.
 AArch64.SysRegWrite(integer op0, integer op1, integer crn, integer crm, integer op2, bits(64) val);

aarch64/functions/system/BTypeCompatible

 boolean BTypeCompatible;

aarch64/functions/system/BTypeCompatible_BTI

 // BTypeCompatible_BTI
 // ===================
 // This function determines whether a given hint encoding is compatible with the current value of
 // PSTATE.BTYPE. A value of TRUE here indicates a valid Branch Target Identification instruction.

J1-8062 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 boolean BTypeCompatible_BTI(bits(2) hintcode)
 case hintcode of
 when '00'
 return FALSE;
 when '01'
 return PSTATE.BTYPE != '11';
 when '10'
 return PSTATE.BTYPE != '10';
 when '11'
 return TRUE;

aarch64/functions/system/BTypeCompatible_PACIXSP

 // BTypeCompatible_PACIXSP()
 // =========================
 // Returns TRUE if PACIASP, PACIBSP instruction is implicit compatible with PSTATE.BTYPE,
 // FALSE otherwise.

 boolean BTypeCompatible_PACIXSP()
 if PSTATE.BTYPE IN {'01', '10'} then
 return TRUE;
 elsif PSTATE.BTYPE == '11' then
 index = if PSTATE.EL == EL0 then 35 else 36;
 return SCTLR[]<index> == '0';
 else
 return FALSE;

aarch64/functions/system/BTypeNext

 bits(2) BTypeNext;

aarch64/functions/system/ChooseRandomNonExcludedTag

 // The ChooseRandomNonExcludedTag function is used when GCR_EL1.RRND == '1' to generate random
 // Allocation Tags.
 //
 // The resulting Allocation Tag is selected from the set [0,15], excluding any Allocation Tag where
 // exclude[tag_value] == 1. If 'exclude' is all Ones, the returned Allocation Tag is '0000'.
 //
 // This function is permitted to generate a non-deterministic selection from the set of non-excluded
 // Allocation Tags. A reasonable implementation is described by the Pseudocode used when
 // GCR_EL1.RRND is 0, but with a non-deterministic implementation of NextRandomTagBit(). Implementations
 // may choose to behave the same as GCR_EL1.RRND=0.
 bits(4) ChooseRandomNonExcludedTag(bits(16) exclude);

aarch64/functions/system/InGuardedPage

 boolean InGuardedPage;

aarch64/functions/system/IsHCRXEL2Enabled

 // IsHCRXEL2Enabled()
 // ==================
 // Returns TRUE if access to HCRX_EL2 register is enabled, and FALSE otherwise.
 // Indirect read of HCRX_EL2 returns 0 when access is not enabled.

 boolean IsHCRXEL2Enabled()
 assert(HaveFeatHCX());
 if HaveEL(EL3) && SCR_EL3.HXEn == '0' then
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8063
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 return FALSE;

 return EL2Enabled();

aarch64/functions/system/SetBTypeCompatible

 // SetBTypeCompatible()
 // ====================
 // Sets the value of BTypeCompatible global variable used by BTI

 SetBTypeCompatible(boolean x)
 BTypeCompatible = x;

aarch64/functions/system/SetBTypeNext

 // SetBTypeNext()
 // ==============
 // Set the value of BTypeNext global variable used by BTI

 SetBTypeNext(bits(2) x)
 BTypeNext = x;

aarch64/functions/system/SetInGuardedPage

 // SetInGuardedPage()
 // ==================
 // Global state updated to denote if memory access is from a guarded page.

 SetInGuardedPage(boolean guardedpage)
 InGuardedPage = guardedpage;

J1.1.4 aarch64/instrs

This section includes the following pseudocode functions:

• aarch64/instrs/branch/eret/AArch64.ExceptionReturn on page J1-8066.

• aarch64/instrs/countop/CountOp on page J1-8066.

• aarch64/instrs/extendreg/DecodeRegExtend on page J1-8067.

• aarch64/instrs/extendreg/ExtendReg on page J1-8067.

• aarch64/instrs/extendreg/ExtendType on page J1-8067.

• aarch64/instrs/float/arithmetic/max-min/fpmaxminop/FPMaxMinOp on page J1-8067.

• aarch64/instrs/float/arithmetic/unary/fpunaryop/FPUnaryOp on page J1-8068.

• aarch64/instrs/float/convert/fpconvop/FPConvOp on page J1-8068.

• aarch64/instrs/integer/bitfield/bfxpreferred/BFXPreferred on page J1-8068.

• aarch64/instrs/integer/bitmasks/DecodeBitMasks on page J1-8068.

• aarch64/instrs/integer/ins-ext/insert/movewide/movewideop/MoveWideOp on page J1-8069.

• aarch64/instrs/integer/logical/movwpreferred/MoveWidePreferred on page J1-8069.

• aarch64/instrs/integer/shiftreg/DecodeShift on page J1-8069.

• aarch64/instrs/integer/shiftreg/ShiftReg on page J1-8070.

• aarch64/instrs/integer/shiftreg/ShiftType on page J1-8070.

• aarch64/instrs/logicalop/LogicalOp on page J1-8070.

• aarch64/instrs/memory/memop/MemAtomicOp on page J1-8070.

• aarch64/instrs/memory/memop/MemOp on page J1-8070.

• aarch64/instrs/memory/prefetch/Prefetch on page J1-8070.

• aarch64/instrs/system/barriers/barrierop/MemBarrierOp on page J1-8071.
J1-8064 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/instrs/system/hints/syshintop/SystemHintOp on page J1-8071.

• aarch64/instrs/system/register/cpsr/pstatefield/PSTATEField on page J1-8071.

• aarch64/instrs/system/sysops/dc/AArch64.DC on page J1-8071.

• aarch64/instrs/system/sysops/dc/AArch64.MemZero on page J1-8072.

• aarch64/instrs/system/sysops/ic/AArch64.IC on page J1-8073.

• aarch64/instrs/system/sysops/sysop/SysOp on page J1-8074.

• aarch64/instrs/system/sysops/sysop/SystemOp on page J1-8075.

• aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_ALL on page J1-8075.

• aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_ASID on page J1-8075.

• aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_VA on page J1-8076.

• aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_ALL on page J1-8076.

• aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_ASID on page J1-8077.

• aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_VA on page J1-8077.

• aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_ALL on page J1-8078.

• aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_ASID on page J1-8078.

• aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_IPAS2 on page J1-8079.

• aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VA on page J1-8079.

• aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VAA on page J1-8080.

• aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VMALL on page J1-8080.

• aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VMALLS12 on page J1-8081.

• aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_ALL on page J1-8081.

• aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_ASID on page J1-8082.

• aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_IPAS2 on page J1-8082.

• aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RIPAS2 on page J1-8083.

• aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RVA on page J1-8084.

• aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RVAA on page J1-8084.

• aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VA on page J1-8085.

• aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VAA on page J1-8085.

• aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VMALL on page J1-8086.

• aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VMALLS12 on page J1-8086.

• aarch64/instrs/system/sysops/tlbi/ASID_NONE on page J1-8087.

• aarch64/instrs/system/sysops/tlbi/Broadcast on page J1-8087.

• aarch64/instrs/system/sysops/tlbi/HasLargeAddress on page J1-8087.

• aarch64/instrs/system/sysops/tlbi/SecurityStateAtEL on page J1-8088.

• aarch64/instrs/system/sysops/tlbi/TLBI on page J1-8088.

• aarch64/instrs/system/sysops/tlbi/TLBILevel on page J1-8088.

• aarch64/instrs/system/sysops/tlbi/TLBIMemAttr on page J1-8088.

• aarch64/instrs/system/sysops/tlbi/TLBIOp on page J1-8088.

• aarch64/instrs/system/sysops/tlbi/TLBIRange on page J1-8089.

• aarch64/instrs/system/sysops/tlbi/TLBIRecord on page J1-8089.

• aarch64/instrs/system/sysops/tlbi/TLBI_ALL on page J1-8090.

• aarch64/instrs/system/sysops/tlbi/TLBI_ASID on page J1-8090.

• aarch64/instrs/system/sysops/tlbi/TLBI_IPAS2 on page J1-8090.

• aarch64/instrs/system/sysops/tlbi/TLBI_RIPAS2 on page J1-8090.

• aarch64/instrs/system/sysops/tlbi/TLBI_RVA on page J1-8091.

• aarch64/instrs/system/sysops/tlbi/TLBI_RVAA on page J1-8091.

• aarch64/instrs/system/sysops/tlbi/TLBI_VA on page J1-8091.

• aarch64/instrs/system/sysops/tlbi/TLBI_VAA on page J1-8091.

• aarch64/instrs/system/sysops/tlbi/TLBI_VMALL on page J1-8092.

• aarch64/instrs/system/sysops/tlbi/TLBI_VMALLS12 on page J1-8092.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8065
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/instrs/system/sysops/tlbi/VMID on page J1-8092.

• aarch64/instrs/system/sysops/tlbi/VMID_NONE on page J1-8092.

• aarch64/instrs/vector/arithmetic/binary/uniform/logical/bsl-eor/vbitop/VBitOp on page J1-8092.

• aarch64/instrs/vector/arithmetic/unary/cmp/compareop/CompareOp on page J1-8092.

• aarch64/instrs/vector/logical/immediateop/ImmediateOp on page J1-8093.

• aarch64/instrs/vector/reduce/reduceop/Reduce on page J1-8093.

• aarch64/instrs/vector/reduce/reduceop/ReduceOp on page J1-8093.

aarch64/instrs/branch/eret/AArch64.ExceptionReturn

 // AArch64.ExceptionReturn()
 // =========================

 AArch64.ExceptionReturn(bits(64) new_pc, bits(64) spsr)

 if HaveIESB() then
 sync_errors = SCTLR[].IESB == '1';
 if HaveDoubleFaultExt() then
 sync_errors = sync_errors || (SCR_EL3.<EA,NMEA> == '11' && PSTATE.EL == EL3);
 if sync_errors then
 SynchronizeErrors();
 iesb_req = TRUE;
 TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);
 SynchronizeContext();

 // Attempts to change to an illegal state will invoke the Illegal Execution state mechanism
 bits(2) source_el = PSTATE.EL;
 SetPSTATEFromPSR(spsr);
 ClearExclusiveLocal(ProcessorID());
 SendEventLocal();

 if PSTATE.IL == '1' && spsr<4> == '1' && spsr<20> == '0' then
 // If the exception return is illegal, PC[63:32,1:0] are UNKNOWN
 new_pc<63:32> = bits(32) UNKNOWN;
 new_pc<1:0> = bits(2) UNKNOWN;
 elsif UsingAArch32() then // Return to AArch32
 // ELR_ELx[1:0] or ELR_ELx[0] are treated as being 0, depending on the target instruction set
state
 if PSTATE.T == '1' then
 new_pc<0> = '0'; // T32
 else
 new_pc<1:0> = '00'; // A32
 else // Return to AArch64
 // ELR_ELx[63:56] might include a tag
 new_pc = AArch64.BranchAddr(new_pc);

 if UsingAArch32() then
 // 32 most significant bits are ignored.
 boolean branch_conditional = FALSE;
 BranchTo(new_pc<31:0>, BranchType_ERET, branch_conditional);
 else
 BranchToAddr(new_pc, BranchType_ERET);

 CheckExceptionCatch(FALSE); // Check for debug event on exception return

aarch64/instrs/countop/CountOp

 enumeration CountOp {CountOp_CLZ, CountOp_CLS, CountOp_CNT};
J1-8066 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/instrs/extendreg/DecodeRegExtend

 // DecodeRegExtend()
 // =================
 // Decode a register extension option

 ExtendType DecodeRegExtend(bits(3) op)
 case op of
 when '000' return ExtendType_UXTB;
 when '001' return ExtendType_UXTH;
 when '010' return ExtendType_UXTW;
 when '011' return ExtendType_UXTX;
 when '100' return ExtendType_SXTB;
 when '101' return ExtendType_SXTH;
 when '110' return ExtendType_SXTW;
 when '111' return ExtendType_SXTX;

aarch64/instrs/extendreg/ExtendReg

 // ExtendReg()
 // ===========
 // Perform a register extension and shift

 bits(N) ExtendReg(integer reg, ExtendType exttype, integer shift)
 assert shift >= 0 && shift <= 4;
 bits(N) val = X[reg];
 boolean unsigned;
 integer len;

 case exttype of
 when ExtendType_SXTB unsigned = FALSE; len = 8;
 when ExtendType_SXTH unsigned = FALSE; len = 16;
 when ExtendType_SXTW unsigned = FALSE; len = 32;
 when ExtendType_SXTX unsigned = FALSE; len = 64;
 when ExtendType_UXTB unsigned = TRUE; len = 8;
 when ExtendType_UXTH unsigned = TRUE; len = 16;
 when ExtendType_UXTW unsigned = TRUE; len = 32;
 when ExtendType_UXTX unsigned = TRUE; len = 64;

 // Note the extended width of the intermediate value and
 // that sign extension occurs from bit <len+shift-1>, not
 // from bit <len-1>. This is equivalent to the instruction
 // [SU]BFIZ Rtmp, Rreg, #shift, #len
 // It may also be seen as a sign/zero extend followed by a shift:
 // LSL(Extend(val<len-1:0>, N, unsigned), shift);

 len = Min(len, N - shift);
 return Extend(val<len-1:0> : Zeros(shift), N, unsigned);

aarch64/instrs/extendreg/ExtendType

 enumeration ExtendType {ExtendType_SXTB, ExtendType_SXTH, ExtendType_SXTW, ExtendType_SXTX,
 ExtendType_UXTB, ExtendType_UXTH, ExtendType_UXTW, ExtendType_UXTX};

aarch64/instrs/float/arithmetic/max-min/fpmaxminop/FPMaxMinOp

 enumeration FPMaxMinOp {FPMaxMinOp_MAX, FPMaxMinOp_MIN,
 FPMaxMinOp_MAXNUM, FPMaxMinOp_MINNUM};
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8067
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/instrs/float/arithmetic/unary/fpunaryop/FPUnaryOp

 enumeration FPUnaryOp {FPUnaryOp_ABS, FPUnaryOp_MOV,
 FPUnaryOp_NEG, FPUnaryOp_SQRT};

aarch64/instrs/float/convert/fpconvop/FPConvOp

 enumeration FPConvOp {FPConvOp_CVT_FtoI, FPConvOp_CVT_ItoF,
 FPConvOp_MOV_FtoI, FPConvOp_MOV_ItoF
 , FPConvOp_CVT_FtoI_JS
 };

aarch64/instrs/integer/bitfield/bfxpreferred/BFXPreferred

 // BFXPreferred()
 // ==============
 //
 // Return TRUE if UBFX or SBFX is the preferred disassembly of a
 // UBFM or SBFM bitfield instruction. Must exclude more specific
 // aliases UBFIZ, SBFIZ, UXT[BH], SXT[BHW], LSL, LSR and ASR.

 boolean BFXPreferred(bit sf, bit uns, bits(6) imms, bits(6) immr)
 integer S = UInt(imms);
 integer R = UInt(immr);

 // must not match UBFIZ/SBFIX alias
 if UInt(imms) < UInt(immr) then
 return FALSE;

 // must not match LSR/ASR/LSL alias (imms == 31 or 63)
 if imms == sf:'11111' then
 return FALSE;

 // must not match UXTx/SXTx alias
 if immr == '000000' then
 // must not match 32-bit UXT[BH] or SXT[BH]
 if sf == '0' && imms IN {'000111', '001111'} then
 return FALSE;
 // must not match 64-bit SXT[BHW]
 if sf:uns == '10' && imms IN {'000111', '001111', '011111'} then
 return FALSE;

 // must be UBFX/SBFX alias
 return TRUE;

aarch64/instrs/integer/bitmasks/DecodeBitMasks

 // DecodeBitMasks()
 // ================

 // Decode AArch64 bitfield and logical immediate masks which use a similar encoding structure

 (bits(M), bits(M)) DecodeBitMasks(bit immN, bits(6) imms, bits(6) immr, boolean immediate)
 bits(M) tmask, wmask;
 bits(6) levels;

 // Compute log2 of element size
 // 2^len must be in range [2, M]
 len = HighestSetBit(immN:NOT(imms));
 if len < 1 then UNDEFINED;
 assert M >= (1 << len);

 // Determine S, R and S - R parameters
J1-8068 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 levels = ZeroExtend(Ones(len), 6);

 // For logical immediates an all-ones value of S is reserved
 // since it would generate a useless all-ones result (many times)
 if immediate && (imms AND levels) == levels then
 UNDEFINED;

 S = UInt(imms AND levels);
 R = UInt(immr AND levels);
 diff = S - R; // 6-bit subtract with borrow

 esize = 1 << len;
 d = UInt(diff<len-1:0>);
 welem = ZeroExtend(Ones(S + 1), esize);
 telem = ZeroExtend(Ones(d + 1), esize);
 wmask = Replicate(ROR(welem, R));
 tmask = Replicate(telem);
 return (wmask, tmask);

aarch64/instrs/integer/ins-ext/insert/movewide/movewideop/MoveWideOp

 enumeration MoveWideOp {MoveWideOp_N, MoveWideOp_Z, MoveWideOp_K};

aarch64/instrs/integer/logical/movwpreferred/MoveWidePreferred

 // MoveWidePreferred()
 // ===================
 //
 // Return TRUE if a bitmask immediate encoding would generate an immediate
 // value that could also be represented by a single MOVZ or MOVN instruction.
 // Used as a condition for the preferred MOV<-ORR alias.

 boolean MoveWidePreferred(bit sf, bit immN, bits(6) imms, bits(6) immr)
 integer S = UInt(imms);
 integer R = UInt(immr);
 integer width = if sf == '1' then 64 else 32;

 // element size must equal total immediate size
 if sf == '1' && immN:imms != '1xxxxxx' then
 return FALSE;
 if sf == '0' && immN:imms != '00xxxxx' then
 return FALSE;

 // for MOVZ must contain no more than 16 ones
 if S < 16 then
 // ones must not span halfword boundary when rotated
 return (-R MOD 16) <= (15 - S);

 // for MOVN must contain no more than 16 zeros
 if S >= width - 15 then
 // zeros must not span halfword boundary when rotated
 return (R MOD 16) <= (S - (width - 15));

 return FALSE;

aarch64/instrs/integer/shiftreg/DecodeShift

 // DecodeShift()
 // =============
 // Decode shift encodings

 ShiftType DecodeShift(bits(2) op)
 case op of
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8069
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when '00' return ShiftType_LSL;
 when '01' return ShiftType_LSR;
 when '10' return ShiftType_ASR;
 when '11' return ShiftType_ROR;

aarch64/instrs/integer/shiftreg/ShiftReg

 // ShiftReg()
 // ==========
 // Perform shift of a register operand

 bits(N) ShiftReg(integer reg, ShiftType shiftype, integer amount)
 bits(N) result = X[reg];
 case shiftype of
 when ShiftType_LSL result = LSL(result, amount);
 when ShiftType_LSR result = LSR(result, amount);
 when ShiftType_ASR result = ASR(result, amount);
 when ShiftType_ROR result = ROR(result, amount);
 return result;

aarch64/instrs/integer/shiftreg/ShiftType

 enumeration ShiftType {ShiftType_LSL, ShiftType_LSR, ShiftType_ASR, ShiftType_ROR};

aarch64/instrs/logicalop/LogicalOp

 enumeration LogicalOp {LogicalOp_AND, LogicalOp_EOR, LogicalOp_ORR};

aarch64/instrs/memory/memop/MemAtomicOp

 enumeration MemAtomicOp {MemAtomicOp_ADD,
 MemAtomicOp_BIC,
 MemAtomicOp_EOR,
 MemAtomicOp_ORR,
 MemAtomicOp_SMAX,
 MemAtomicOp_SMIN,
 MemAtomicOp_UMAX,
 MemAtomicOp_UMIN,
 MemAtomicOp_SWP};

aarch64/instrs/memory/memop/MemOp

 enumeration MemOp {MemOp_LOAD, MemOp_STORE, MemOp_PREFETCH};

aarch64/instrs/memory/prefetch/Prefetch

 // Prefetch()
 // ==========

 // Decode and execute the prefetch hint on ADDRESS specified by PRFOP

 Prefetch(bits(64) address, bits(5) prfop)
 PrefetchHint hint;
 integer target;
 boolean stream;

 case prfop<4:3> of
J1-8070 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when '00' hint = Prefetch_READ; // PLD: prefetch for load
 when '01' hint = Prefetch_EXEC; // PLI: preload instructions
 when '10' hint = Prefetch_WRITE; // PST: prepare for store
 when '11' return; // unallocated hint
 target = UInt(prfop<2:1>); // target cache level
 stream = (prfop<0> != '0'); // streaming (non-temporal)
 Hint_Prefetch(address, hint, target, stream);
 return;

aarch64/instrs/system/barriers/barrierop/MemBarrierOp

 enumeration MemBarrierOp { MemBarrierOp_DSB // Data Synchronization Barrier
 , MemBarrierOp_DMB // Data Memory Barrier
 , MemBarrierOp_ISB // Instruction Synchronization Barrier
 , MemBarrierOp_SSBB // Speculative Synchronization Barrier to VA
 , MemBarrierOp_PSSBB // Speculative Synchronization Barrier to PA
 , MemBarrierOp_SB // Speculation Barrier
 };

aarch64/instrs/system/hints/syshintop/SystemHintOp

 enumeration SystemHintOp {
 SystemHintOp_NOP,
 SystemHintOp_YIELD,
 SystemHintOp_WFE,
 SystemHintOp_WFI,
 SystemHintOp_SEV,
 SystemHintOp_SEVL,
 SystemHintOp_DGH,
 SystemHintOp_ESB,
 SystemHintOp_PSB,
 SystemHintOp_TSB,
 SystemHintOp_BTI,
 SystemHintOp_WFET,
 SystemHintOp_WFIT,
 SystemHintOp_CSDB
 };

aarch64/instrs/system/register/cpsr/pstatefield/PSTATEField

 enumeration PSTATEField {PSTATEField_DAIFSet, PSTATEField_DAIFClr,
 PSTATEField_PAN, // Armv8.1
 PSTATEField_UAO, // Armv8.2
 PSTATEField_DIT, // Armv8.4
 PSTATEField_SSBS,
 PSTATEField_TCO, // Armv8.5
 PSTATEField_SP
 };

aarch64/instrs/system/sysops/dc/AArch64.DC

 // AArch64.DC()
 // ============
 // Perform Data Cache Operation.

 AArch64.DC(bits(64) regval, CacheType cachetype, CacheOp cacheop, CacheOpScope opscope)
 AccType acctype = AccType_DC;
 CacheRecord cache;

 cache.acctype = acctype;
 cache.cachetype = cachetype;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8071
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 cache.cacheop = cacheop;
 cache.opscope = opscope;

 if opscope == CacheOpScope_SetWay then
 cache.shareability = Shareability_NSH;
 (cache.set, cache.way, cache.level) = DecodeSW(regval, cachetype);
 if (cacheop == CacheOp_Invalidate && PSTATE.EL == EL1 && EL2Enabled() &&
 (HCR_EL2.SWIO == '1' || HCR_EL2.<DC,VM> != '00')) then
 cache.cacheop = CacheOp_CleanInvalidate;

 CACHE_OP(cache);
 return;

 if opscope == CacheOpScope_PoDP && boolean IMPLEMENTATION_DEFINED "Memory system does not supports
PoDP" then
 opscope = CacheOpScope_PoP;
 if opscope == CacheOpScope_PoP && boolean IMPLEMENTATION_DEFINED "Memory system does not supports
PoP" then
 opscope = CacheOpScope_PoC;
 need_translate = DCInstNeedsTranslation(opscope);
 iswrite = cacheop == CacheOp_Invalidate;
 vaddress = regval;

 size = 0; // by default no watchpoint address
 if iswrite then
 size = integer IMPLEMENTATION_DEFINED "Data Cache Invalidate Watchpoint Size";
 assert size >= 4*(2^(UInt(CTR_EL0.DminLine))) && size <= 2048;
 assert (size<32:0> AND (size-1)<32:0>) == 0; // size is power of 2
 vaddress = Align(regval, size);

 cache.translated = need_translate;
 cache.vaddress = vaddress;

 if need_translate then
 wasaligned = TRUE;
 memaddrdesc = AArch64.TranslateAddress(vaddress, acctype, iswrite, wasaligned, size);
 if IsFault(memaddrdesc) then
 AArch64.Abort(regval, memaddrdesc.fault);

 memattrs = memaddrdesc.memattrs;
 cache.paddress = memaddrdesc.paddress;
 if opscope IN {CacheOpScope_PoC, CacheOpScope_PoP, CacheOpScope_PoDP} then
 cache.shareability = memattrs.shareability;
 else
 cache.shareability = Shareability_NSH;
 else
 cache.shareability = Shareability UNKNOWN;
 cache.paddress = FullAddress UNKNOWN;

 if cacheop == CacheOp_Invalidate && PSTATE.EL == EL1 && EL2Enabled() && HCR_EL2.<DC,VM> != '00' then
 cache.cacheop = CacheOp_CleanInvalidate;

 CACHE_OP(cache);
 return;

aarch64/instrs/system/sysops/dc/AArch64.MemZero

 // AArch64.MemZero()
 // =================

 AArch64.MemZero(bits(64) regval, CacheType cachetype)

 AccType acctype = AccType_DCZVA;
 boolean iswrite = TRUE;
 boolean wasaligned = TRUE;

J1-8072 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 integer size = 4*(2^(UInt(DCZID_EL0.BS)));
 bits(64) vaddress = Align(regval, size);

 memaddrdesc = AArch64.TranslateAddress(vaddress, acctype, iswrite, wasaligned, size);

 if IsFault(memaddrdesc) then
 if IsDebugException(memaddrdesc.fault) then
 AArch64.Abort(vaddress, memaddrdesc.fault);
 else
 AArch64.Abort(regval, memaddrdesc.fault);
 else
 if cachetype == CacheType_Data then
 AArch64.DataMemZero(regval, vaddress, memaddrdesc, size);
 elsif cachetype == CacheType_Tag then
 if HaveMTEExt() then AArch64.TagMemZero(vaddress, size);
 elsif cachetype == CacheType_Data_Tag then
 if HaveMTEExt() then AArch64.TagMemZero(vaddress, size);
 AArch64.DataMemZero(regval, vaddress, memaddrdesc, size);
 return;

aarch64/instrs/system/sysops/ic/AArch64.IC

 // AArch64.IC()
 // ============
 // Perform Instruction Cache Operation.

 AArch64.IC(CacheOpScope opscope)
 regval = bits(64) UNKNOWN;
 AArch64.IC(regval, opscope);

 // AArch64.IC()
 // ============
 // Perform Instruction Cache Operation.

 AArch64.IC(bits(64) regval, CacheOpScope opscope)
 CacheRecord cache;
 AccType acctype = AccType_IC;

 cache.acctype = acctype;
 cache.cachetype = CacheType_Instruction;
 cache.cacheop = CacheOp_Invalidate;
 cache.opscope = opscope;

 if opscope IN {CacheOpScope_ALLU, CacheOpScope_ALLUIS} then
 if opscope == CacheOpScope_ALLUIS || (opscope == CacheOpScope_ALLU && PSTATE.EL == EL1
 && EL2Enabled() && HCR_EL2.FB == '1') then
 cache.shareability = Shareability_ISH;
 else
 cache.shareability = Shareability_NSH;
 cache.regval = regval;
 CACHE_OP(cache);
 else
 assert opscope == CacheOpScope_PoU;

 bits(64) vaddress = regval;
 need_translate = ICInstNeedsTranslation(opscope);

 cache.vaddress = regval;
 cache.shareability = Shareability_NSH;
 cache.translated = need_translate;

 if !need_translate then
 cache.paddress = FullAddress UNKNOWN;
 CACHE_OP(cache);
 return;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8073
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 iswrite = FALSE;
 wasaligned = TRUE;
 size = 0;
 memaddrdesc = AArch64.TranslateAddress(vaddress, acctype, iswrite, wasaligned, size);

 if IsFault(memaddrdesc) then
 AArch64.Abort(regval, memaddrdesc.fault);

 cache.paddress = memaddrdesc.paddress;
 CACHE_OP(cache);
 return;

aarch64/instrs/system/sysops/sysop/SysOp

 // SysOp()
 // =======

 SystemOp SysOp(bits(3) op1, bits(4) CRn, bits(4) CRm, bits(3) op2)
 case op1:CRn:CRm:op2 of
 when '000 0111 1000 000' return Sys_AT; // S1E1R
 when '100 0111 1000 000' return Sys_AT; // S1E2R
 when '110 0111 1000 000' return Sys_AT; // S1E3R
 when '000 0111 1000 001' return Sys_AT; // S1E1W
 when '100 0111 1000 001' return Sys_AT; // S1E2W
 when '110 0111 1000 001' return Sys_AT; // S1E3W
 when '000 0111 1000 010' return Sys_AT; // S1E0R
 when '000 0111 1000 011' return Sys_AT; // S1E0W
 when '100 0111 1000 100' return Sys_AT; // S12E1R
 when '100 0111 1000 101' return Sys_AT; // S12E1W
 when '100 0111 1000 110' return Sys_AT; // S12E0R
 when '100 0111 1000 111' return Sys_AT; // S12E0W
 when '011 0111 0100 001' return Sys_DC; // ZVA
 when '000 0111 0110 001' return Sys_DC; // IVAC
 when '000 0111 0110 010' return Sys_DC; // ISW
 when '011 0111 1010 001' return Sys_DC; // CVAC
 when '000 0111 1010 010' return Sys_DC; // CSW
 when '011 0111 1011 001' return Sys_DC; // CVAU
 when '011 0111 1110 001' return Sys_DC; // CIVAC
 when '000 0111 1110 010' return Sys_DC; // CISW
 when '011 0111 1101 001' return Sys_DC; // CVADP
 when '000 0111 0001 000' return Sys_IC; // IALLUIS
 when '000 0111 0101 000' return Sys_IC; // IALLU
 when '011 0111 0101 001' return Sys_IC; // IVAU
 when '100 1000 0000 001' return Sys_TLBI; // IPAS2E1IS
 when '100 1000 0000 101' return Sys_TLBI; // IPAS2LE1IS
 when '000 1000 0011 000' return Sys_TLBI; // VMALLE1IS
 when '100 1000 0011 000' return Sys_TLBI; // ALLE2IS
 when '110 1000 0011 000' return Sys_TLBI; // ALLE3IS
 when '000 1000 0011 001' return Sys_TLBI; // VAE1IS
 when '100 1000 0011 001' return Sys_TLBI; // VAE2IS
 when '110 1000 0011 001' return Sys_TLBI; // VAE3IS
 when '000 1000 0011 010' return Sys_TLBI; // ASIDE1IS
 when '000 1000 0011 011' return Sys_TLBI; // VAAE1IS
 when '100 1000 0011 100' return Sys_TLBI; // ALLE1IS
 when '000 1000 0011 101' return Sys_TLBI; // VALE1IS
 when '100 1000 0011 101' return Sys_TLBI; // VALE2IS
 when '110 1000 0011 101' return Sys_TLBI; // VALE3IS
 when '100 1000 0011 110' return Sys_TLBI; // VMALLS12E1IS
 when '000 1000 0011 111' return Sys_TLBI; // VAALE1IS
 when '100 1000 0100 001' return Sys_TLBI; // IPAS2E1
 when '100 1000 0100 101' return Sys_TLBI; // IPAS2LE1
 when '000 1000 0111 000' return Sys_TLBI; // VMALLE1
 when '100 1000 0111 000' return Sys_TLBI; // ALLE2
 when '110 1000 0111 000' return Sys_TLBI; // ALLE3
 when '000 1000 0111 001' return Sys_TLBI; // VAE1
 when '100 1000 0111 001' return Sys_TLBI; // VAE2
J1-8074 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when '110 1000 0111 001' return Sys_TLBI; // VAE3
 when '000 1000 0111 010' return Sys_TLBI; // ASIDE1
 when '000 1000 0111 011' return Sys_TLBI; // VAAE1
 when '100 1000 0111 100' return Sys_TLBI; // ALLE1
 when '000 1000 0111 101' return Sys_TLBI; // VALE1
 when '100 1000 0111 101' return Sys_TLBI; // VALE2
 when '110 1000 0111 101' return Sys_TLBI; // VALE3
 when '100 1000 0111 110' return Sys_TLBI; // VMALLS12E1
 when '000 1000 0111 111' return Sys_TLBI; // VAALE1
 return Sys_SYS;

aarch64/instrs/system/sysops/sysop/SystemOp

 enumeration SystemOp {Sys_AT, Sys_DC, Sys_IC, Sys_TLBI, Sys_SYS};

aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_ALL

 // AArch32.DTLBI_ALL()
 // ===================
 // Invalidate all data TLB entries for the indicated translation regime with the
 // the indicated security state for all TLBs within the indicated shareability domain.
 // Invalidation applies to all applicable stage 1 and stage 2 entries.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.

 AArch32.DTLBI_ALL(SecurityState security, Regime regime, Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_DALL;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_ASID

 // AArch32.DTLBI_ASID()
 // ====================
 // Invalidate all data TLB stage 1 entries matching the indicated VMID (where regime supports)
 // and ASID in the parameter Rt in the indicated translation regime with the
 // indicated security state for all TLBs within the indicated shareability domain.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.DTLBI_ASID(SecurityState security, Regime regime, bits(16) vmid, Shareability shareability,
 TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_DASID;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8075
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 r.level = TLBILevel_Any;
 r.attr = attr;
 r.asid = Zeros(8) : Rt<7:0>;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_VA

 // AArch32.DTLBI_VA()
 // ==================
 // Invalidate by VA all stage 1 data TLB entries in the indicated shareability domain
 // matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
 // with the indicated security state.
 // ASID, VA and related parameters are derived from Rt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.DTLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_DVA;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.asid = Zeros(8) : Rt<7:0>;
 r.address = Zeros(32) : Rt<31:12> : Zeros(12);

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_ALL

 // AArch32.ITLBI_ALL()
 // ===================
 // Invalidate all instruction TLB entries for the indicated translation regime with the
 // the indicated security state for all TLBs within the indicated shareability domain.
 // Invalidation applies to all applicable stage 1 and stage 2 entries.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.

 AArch32.ITLBI_ALL(SecurityState security, Regime regime, Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_IALL;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.attr = attr;
J1-8076 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_ASID

 // AArch32.ITLBI_ASID()
 // ====================
 // Invalidate all instruction TLB stage 1 entries matching the indicated VMID (where regime supports)
 // and ASID in the parameter Rt in the indicated translation regime with the
 // indicated security state for all TLBs within the indicated shareability domain.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.ITLBI_ASID(SecurityState security, Regime regime, bits(16) vmid, Shareability shareability,
 TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_IASID;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = TLBILevel_Any;
 r.attr = attr;
 r.asid = Zeros(8) : Rt<7:0>;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_VA

 // AArch32.ITLBI_VA()
 // ==================
 // Invalidate by VA all stage 1 instruction TLB entries in the indicated shareability domain
 // matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
 // with the indicated security state.
 // ASID, VA and related parameters are derived from Rt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.ITLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_IVA;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8077
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 r.attr = attr;
 r.asid = Zeros(8) : Rt<7:0>;
 r.address = Zeros(32) : Rt<31:12> : Zeros(12);

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_ALL

 // AArch32.TLBI_ALL()
 // ==================
 // Invalidate all entries for the indicated translation regime with the
 // the indicated security state for all TLBs within the indicated shareability domain.
 // Invalidation applies to all applicable stage 1 and stage 2 entries.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.TLBI_ALL(SecurityState security, Regime regime, Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2};

 TLBIRecord r;
 r.op = TLBIOp_ALL;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_ASID

 // AArch32.TLBI_ASID()
 // ===================
 // Invalidate all stage 1 entries matching the indicated VMID (where regime supports)
 // and ASID in the parameter Rt in the indicated translation regime with the
 // indicated security state for all TLBs within the indicated shareability domain.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.TLBI_ASID(SecurityState security, Regime regime, bits(16) vmid, Shareability shareability,
 TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_ASID;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = TLBILevel_Any;
 r.attr = attr;
 r.asid = Zeros(8) : Rt<7:0>;

 TLBI(r);
J1-8078 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_IPAS2

 // AArch32.TLBI_IPAS2()
 // ====================
 // Invalidate by IPA all stage 2 only TLB entries in the indicated shareability
 // domain matching the indicated VMID in the indicated regime with the indicated security state.
 // Note: stage 1 and stage 2 combined entries are not in the scope of this operation.
 // IPA and related parameters of the are derived from Rt.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.TLBI_IPAS2(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2};
 assert security == SS_NonSecure;

 TLBIRecord r;
 r.op = TLBIOp_IPAS2;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.address = Zeros(24) : Rt<27:0> : Zeros(12);
 r.ipaspace = PAS_NonSecure;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VA

 // AArch32.TLBI_VA()
 // =================
 // Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
 // matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
 // with the indicated security state.
 // ASID, VA and related parameters are derived from Rt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.TLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_VA;
 r.from_aarch64 = FALSE;
 r.security = security;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8079
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.asid = Zeros(8) : Rt<7:0>;
 r.address = Zeros(32) : Rt<31:12> : Zeros(12);

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VAA

 // AArch32.TLBI_VAA()
 // ==================
 // Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
 // matching the indicated VMID (where regime supports VMID) and all ASID in the indicated regime
 // with the indicated security state.
 // VA and related parameters are derived from Rt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.TLBI_VAA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_VAA;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.address = Zeros(32) : Rt<31:12> : Zeros(12);

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VMALL

 // AArch32.TLBI_VMALL()
 // ====================
 // Invalidate all stage 1 entries for the indicated translation regime with the
 // the indicated security state for all TLBs within the indicated shareability
 // domain that match the indicated VMID (where applicable).
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // Note: stage 2 only entries are not in the scope of this operation.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.TLBI_VMALL(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2, EL1};

J1-8080 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 TLBIRecord r;
 r.op = TLBIOp_VMALL;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.vmid = vmid;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VMALLS12

 // AArch32.TLBI_VMALLS12()
 // =======================
 // Invalidate all stage 1 and stage 2 entries for the indicated translation
 // regime with the indicated security state for all TLBs within the indicated
 // shareability domain that match the indicated VMID.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.TLBI_VMALLS12(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2};

 TLBIRecord r;
 r.op = TLBIOp_VMALLS12;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.vmid = vmid;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_ALL

 // AArch64.TLBI_ALL()
 // ==================
 // Invalidate all entries for the indicated translation regime with the
 // the indicated security state for all TLBs within the indicated shareability domain.
 // Invalidation applies to all applicable stage 1 and stage 2 entries.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch64.TLBI_ALL(SecurityState security, Regime regime, Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2};

 TLBIRecord r;
 r.op = TLBIOp_ALL;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.attr = attr;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8081
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_ASID

 // AArch64.TLBI_ASID()
 // ===================
 // Invalidate all stage 1 entries matching the indicated VMID (where regime supports)
 // and ASID in the parameter Xt in the indicated translation regime with the
 // indicated security state for all TLBs within the indicated shareability domain.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch64.TLBI_ASID(SecurityState security, Regime regime, bits(16) vmid, Shareability shareability,
 TLBIMemAttr attr, bits(64) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_ASID;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = TLBILevel_Any;
 r.attr = attr;
 r.asid = Xt<63:48>;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_IPAS2

 // AArch64.TLBI_IPAS2()
 // ====================
 // Invalidate by IPA all stage 2 only TLB entries in the indicated shareability
 // domain matching the indicated VMID in the indicated regime with the indicated security state.
 // Note: stage 1 and stage 2 combined entries are not in the scope of this operation.
 // IPA and related parameters of the are derived from Xt.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch64.TLBI_IPAS2(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
 assert PSTATE.EL IN {EL3, EL2};

 TLBIRecord r;
 r.op = TLBIOp_IPAS2;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
J1-8082 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 r.address = ZeroExtend(Xt<39:0> : Zeros(12));

 case security of
 when SS_NonSecure
 r.ipaspace = PAS_NonSecure;
 when SS_Secure
 r.ipaspace = if Xt<63> == '1' then PAS_NonSecure else PAS_Secure;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RIPAS2

 // AArch64.TLBI_RIPAS2()
 // =====================
 // Range invalidate by IPA all stage 2 only TLB entries in the indicated
 // shareability domain matching the indicated VMID in the indicated regime with the indicated
 // security state.
 // Note: stage 1 and stage 2 combined entries are not in the scope of this operation.
 // The range of IPA and related parameters of the are derived from Xt.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch64.TLBI_RIPAS2(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_RIPAS2;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;

 bits(2) tg = Xt<47:46>;
 integer scale = UInt(Xt<45:44>);
 integer num = UInt(Xt<43:39>);
 integer baseaddr = SInt(Xt<36:0>);

 boolean valid;

 (valid, r.tg, r.address, r.end_address) = TLBIRange(regime, Xt);

 if !valid then return;

 case security of
 when SS_NonSecure
 r.ipaspace = PAS_NonSecure;
 when SS_Secure
 r.ipaspace = if Xt<63> == '1' then PAS_NonSecure else PAS_Secure;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8083
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RVA

 // AArch64.TLBI_RVA()
 // ==================
 // Range invalidate by VA range all stage 1 TLB entries in the indicated
 // shareability domain matching the indicated VMID and ASID (where regime
 // supports VMID, ASID) in the indicated regime with the indicated security state.
 // ASID, and range related parameters are derived from Xt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch64.TLBI_RVA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_RVA;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.asid = Xt<63:48>;

 boolean valid;

 (valid, r.tg, r.address, r.end_address) = TLBIRange(regime, Xt);

 if !valid then return;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RVAA

 // AArch64.TLBI_RVAA()
 // ===================
 // Range invalidate by VA range all stage 1 TLB entries in the indicated
 // shareability domain matching the indicated VMID (where regimesupports VMID)
 // and all ASID in the indicated regime with the indicated security state.
 // VA range related parameters are derived from Xt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch64.TLBI_RVAA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_RVAA;
 r.from_aarch64 = TRUE;
 r.security = security;
J1-8084 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;

 bits(2) tg = Xt<47:46>;
 integer scale = UInt(Xt<45:44>);
 integer num = UInt(Xt<43:39>);
 integer baseaddr = SInt(Xt<36:0>);

 boolean valid;

 (valid, r.tg, r.address, r.end_address) = TLBIRange(regime, Xt);

 if !valid then return;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VA

 // AArch64.TLBI_VA()
 // =================
 // Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
 // matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
 // with the indicated security state.
 // ASID, VA and related parameters are derived from Xt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch64.TLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_VA;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.asid = Xt<63:48>;
 r.address = ZeroExtend(Xt<43:0> : Zeros(12));

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VAA

 // AArch64.TLBI_VAA()
 // ==================
 // Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
 // matching the indicated VMID (where regime supports VMID) and all ASID in the indicated regime
 // with the indicated security state.
 // VA and related parameters are derived from Xt.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8085
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch64.TLBI_VAA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_VAA;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.address = ZeroExtend(Xt<43:0> : Zeros(12));

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VMALL

 // AArch64.TLBI_VMALL()
 // ====================
 // Invalidate all stage 1 entries for the indicated translation regime with the
 // the indicated security state for all TLBs within the indicated shareability
 // domain that match the indicated VMID (where applicable).
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // Note: stage 2 only entries are not in the scope of this operation.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch64.TLBI_VMALL(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_VMALL;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.vmid = vmid;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VMALLS12

 // AArch64.TLBI_VMALLS12()
 // =======================
 // Invalidate all stage 1 and stage 2 entries for the indicated translation
 // regime with the indicated security state for all TLBs within the indicated
J1-8086 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // shareability domain that match the indicated VMID.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch64.TLBI_VMALLS12(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2};

 TLBIRecord r;
 r.op = TLBIOp_VMALLS12;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.vmid = vmid;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/ASID_NONE

 constant bits(16) ASID_NONE = Zeros();

aarch64/instrs/system/sysops/tlbi/Broadcast

 // Broadcast()
 // ===========
 // IMPLEMENTATION DEFINED function to broadcast TLBI operation within the indicated shareability
 // domain.

 Broadcast(Shareability shareability, TLBIRecord r)
 IMPLEMENTATION_DEFINED;

aarch64/instrs/system/sysops/tlbi/HasLargeAddress

 // HasLargeAddress()
 // =================
 // Returns TRUE if the regime is configured for 52 bit addresses, FALSE otherwise.

 boolean HasLargeAddress(Regime regime)
 if !Have52BitIPAAndPASpaceExt() then
 return FALSE;
 case regime of
 when Regime_EL3
 return TCR_EL3<32> == '1';
 when Regime_EL2
 return TCR_EL2<32> == '1';
 when Regime_EL20
 return TCR_EL2<59> == '1';
 when Regime_EL10
 return TCR_EL1<59> == '1';
 otherwise
 Unreachable();
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8087
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/instrs/system/sysops/tlbi/SecurityStateAtEL

 // SecurityStateAtEL()
 // ===================
 // Returns the effective security state at the exception level based off current settings.

 SecurityState SecurityStateAtEL(bits(2) EL)
 if !HaveEL(EL3) then
 if boolean IMPLEMENTATION_DEFINED "Secure-only implementation" then
 return SS_Secure;
 else
 return SS_NonSecure;
 elsif EL == EL3 then
 return SS_Secure;
 else
 // For EL2 call only when EL2 is enabled in current security state
 assert(EL != EL2 || EL2Enabled());
 if !ELUsingAArch32(EL3) then
 return if SCR_EL3.NS == '1' then SS_NonSecure else SS_Secure;
 else
 return if SCR.NS == '1' then SS_NonSecure else SS_Secure;

aarch64/instrs/system/sysops/tlbi/TLBI

 // TLBI()
 // ======
 // Performs TLB maintenance of operation on TLB to invalidate the matching transition table entries.

 TLBI(TLBIRecord r)
 IMPLEMENTATION_DEFINED;

aarch64/instrs/system/sysops/tlbi/TLBILevel

 enumeration TLBILevel {
 TLBILevel_Any,
 TLBILevel_Last
 };

aarch64/instrs/system/sysops/tlbi/TLBIMemAttr

 enumeration TLBIMemAttr {
 TLBI_AllAttr,
 TLBI_ExcludeXS
 };

aarch64/instrs/system/sysops/tlbi/TLBIOp

 enumeration TLBIOp {
 TLBIOp_DALL, // AArch32 Data TLBI operations - deprecated
 TLBIOp_DASID,
 TLBIOp_DVA,
 TLBIOp_IALL, // AArch32 Instruction TLBI operations - deprecated
 TLBIOp_IASID,
 TLBIOp_IVA,
 TLBIOp_ALL,
 TLBIOp_ASID,
 TLBIOp_IPAS2,
 TLBIOp_VAA,
 TLBIOp_VA,
 TLBIOp_VMALL,
 TLBIOp_VMALLS12,
J1-8088 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 TLBIOp_RIPAS2,
 TLBIOp_RVAA,
 TLBIOp_RVA,
 };

aarch64/instrs/system/sysops/tlbi/TLBIRange

 // TLBIRange()
 // ===========
 // Extract the input address range information from encoded Xt.

 (boolean, bits(2), bits(64), bits(64)) TLBIRange(Regime regime, bits(64) Xt)
 boolean valid = TRUE;
 bits(64) start = Zeros(64);
 bits(64) end = Zeros(64);

 bits(2) tg = Xt<47:46>;
 integer scale = UInt(Xt<45:44>);
 integer num = UInt(Xt<43:39>);
 integer tg_bits;

 if tg == '00' then
 return (FALSE, tg, start, end);

 case tg of
 when '01' // 4KB
 tg_bits = 12;
 if HasLargeAddress(regime) then
 start<52:16> = Xt<36:0>;
 start<63:53> = Replicate(Xt<36>, 11);
 else
 start<48:12> = Xt<36:0>;
 start<63:49> = Replicate(Xt<36>, 15);
 when '10' // 16KB
 tg_bits = 14;
 if HasLargeAddress(regime) then
 start<52:16> = Xt<36:0>;
 start<63:53> = Replicate(Xt<36>, 11);
 else
 start<50:14> = Xt<36:0>;
 start<63:51> = Replicate(Xt<36>, 13);
 when '11' // 64KB
 tg_bits = 16;
 start<52:16> = Xt<36:0>;
 start<63:53> = Replicate(Xt<36>, 11);
 otherwise
 Unreachable();

 integer range = (num+1) << (5*scale + 1 + tg_bits);
 end = start + range<63:0>;

 if end<52> != start<52> then
 // overflow, saturate it
 end = Replicate(start<52>, 64-52) : Ones(52);

 return (valid, tg, start, end);

aarch64/instrs/system/sysops/tlbi/TLBIRecord

 type TLBIRecord is (
 TLBIOp op,
 boolean from_aarch64, // originated as an AArch64 operation
 SecurityState security,
 Regime regime,
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8089
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 bits(16) vmid,
 bits(16) asid,
 TLBILevel level,
 TLBIMemAttr attr,
 PASpace ipaspace, // For operations that take IPA as input address
 bits(64) address, // input address, for range operations, start address
 bits(64) end_address, // for range operations, end address
 bits(2) tg, // for range operations, translation granule
)

aarch64/instrs/system/sysops/tlbi/TLBI_ALL

 // TLBI_ALL()
 // ==========

 TLBI_ALL(SecurityState security, Regime regime, Shareability shareability, TLBIMemAttr attr)
 if UsingAArch32() then
 AArch32.TLBI_ALL(security, regime, shareability, attr);
 else
 AArch64.TLBI_ALL(security, regime, shareability, attr);
 return;

aarch64/instrs/system/sysops/tlbi/TLBI_ASID

 // TLBI_ASID()
 // ===========

 TLBI_ASID(SecurityState security, Regime regime, bits(16) vmid, Shareability shareability,
 TLBIMemAttr attr, bits(N) reg)
 if UsingAArch32() then
 assert N == 32;
 AArch32.TLBI_ASID(security, regime, vmid, shareability, attr, reg<31:0>);
 else
 assert N == 64;
 AArch64.TLBI_ASID(security, regime, vmid, shareability, attr, reg<63:0>);
 return;

aarch64/instrs/system/sysops/tlbi/TLBI_IPAS2

 // TLBI_IPAS2()
 // ============

 TLBI_IPAS2(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(N) reg)
 if UsingAArch32() then
 assert N == 32;
 AArch32.TLBI_IPAS2(security, regime, vmid, shareability, level, attr, reg<31:0>);
 else
 assert N == 64;
 AArch64.TLBI_IPAS2(security, regime, vmid, shareability, level, attr, reg<63:0>);
 return;

aarch64/instrs/system/sysops/tlbi/TLBI_RIPAS2

 // TLBI_RIPAS2()
 // =============

 TLBI_RIPAS2(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
 assert !UsingAArch32();

J1-8090 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 AArch64.TLBI_RIPAS2(security, regime, vmid, shareability, level, attr, Xt);
 return;

aarch64/instrs/system/sysops/tlbi/TLBI_RVA

 // TLBI_RVA()
 // ==========

 TLBI_RVA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
 assert !UsingAArch32();

 AArch64.TLBI_RVA(security, regime, vmid, shareability, level, attr, Xt);
 return;

aarch64/instrs/system/sysops/tlbi/TLBI_RVAA

 // TLBI_RVAA()
 // ===========

 TLBI_RVAA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
 assert !UsingAArch32();

 AArch64.TLBI_RVAA(security, regime, vmid, shareability, level, attr, Xt);
 return;

aarch64/instrs/system/sysops/tlbi/TLBI_VA

 // TLBI_VA()
 // =========

 TLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(N) reg)
 if UsingAArch32() then
 assert N == 32;
 AArch32.TLBI_VA(security, regime, vmid, shareability, level, attr, reg<31:0>);
 else
 assert N == 64;
 AArch64.TLBI_VA(security, regime, vmid, shareability, level, attr, reg<63:0>);
 return;

aarch64/instrs/system/sysops/tlbi/TLBI_VAA

 // TLBI_VAA()
 // ==========

 TLBI_VAA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(N) reg)
 if UsingAArch32() then
 assert N == 32;
 AArch32.TLBI_VAA(security, regime, vmid, shareability, level, attr, reg<31:0>);
 else
 assert N == 64;
 AArch64.TLBI_VAA(security, regime, vmid, shareability, level, attr, reg<63:0>);
 return;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8091
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/instrs/system/sysops/tlbi/TLBI_VMALL

 // TLBI_VMALL()
 // ============

 TLBI_VMALL(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBIMemAttr attr)
 if UsingAArch32() then
 AArch32.TLBI_VMALL(security, regime, vmid, shareability, attr);
 else
 AArch64.TLBI_VMALL(security, regime, vmid, shareability, attr);
 return;

aarch64/instrs/system/sysops/tlbi/TLBI_VMALLS12

 // TLBI_VMALLS12()
 // ===============

 TLBI_VMALLS12(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBIMemAttr attr)
 if UsingAArch32() then
 AArch32.TLBI_VMALLS12(security, regime, vmid, shareability, attr);
 else
 AArch64.TLBI_VMALLS12(security, regime, vmid, shareability, attr);
 return;

aarch64/instrs/system/sysops/tlbi/VMID

 // VMID[]
 // ======
 // Effective VMID.

 bits(16) VMID[]
 if EL2Enabled() then
 if !ELUsingAArch32(EL2) then
 if Have16bitVMID() && VTCR_EL2.VS == '1' then
 return VTTBR_EL2.VMID;
 else
 return ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
 else
 return ZeroExtend(VTTBR.VMID, 16);
 elsif HaveEL(EL2) && HaveSecureEL2Ext() then
 return Zeros(16);
 else
 return VMID_NONE;

aarch64/instrs/system/sysops/tlbi/VMID_NONE

 constant bits(16) VMID_NONE = Zeros();

aarch64/instrs/vector/arithmetic/binary/uniform/logical/bsl-eor/vbitop/VBitOp

 enumeration VBitOp {VBitOp_VBIF, VBitOp_VBIT, VBitOp_VBSL, VBitOp_VEOR};

aarch64/instrs/vector/arithmetic/unary/cmp/compareop/CompareOp

 enumeration CompareOp {CompareOp_GT, CompareOp_GE, CompareOp_EQ,
 CompareOp_LE, CompareOp_LT};
J1-8092 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/instrs/vector/logical/immediateop/ImmediateOp

 enumeration ImmediateOp {ImmediateOp_MOVI, ImmediateOp_MVNI,
 ImmediateOp_ORR, ImmediateOp_BIC};

aarch64/instrs/vector/reduce/reduceop/Reduce

 // Reduce()
 // ========

 bits(esize) Reduce(ReduceOp op, bits(N) input, integer esize)
 boolean altfp = HaveAltFP() && !UsingAArch32() && FPCR.AH == '1';
 return Reduce(op, input, esize, altfp);

 // Reduce()
 // ========
 // Perform the operation 'op' on pairs of elements from the input vector,
 // reducing the vector to a scalar result. The 'altfp' argument controls
 // alternative floating-point behaviour.

 bits(esize) Reduce(ReduceOp op, bits(N) input, integer esize, boolean altfp)
 integer half;
 bits(esize) hi;
 bits(esize) lo;
 bits(esize) result;

 if N == esize then
 return input<esize-1:0>;

 half = N DIV 2;
 hi = Reduce(op, input<N-1:half>, esize, altfp);
 lo = Reduce(op, input<half-1:0>, esize, altfp);

 case op of
 when ReduceOp_FMINNUM
 result = FPMinNum(lo, hi, FPCR[]);
 when ReduceOp_FMAXNUM
 result = FPMaxNum(lo, hi, FPCR[]);
 when ReduceOp_FMIN
 result = FPMin(lo, hi, FPCR[], altfp);
 when ReduceOp_FMAX
 result = FPMax(lo, hi, FPCR[], altfp);
 when ReduceOp_FADD
 result = FPAdd(lo, hi, FPCR[]);
 when ReduceOp_ADD
 result = lo + hi;

 return result;

aarch64/instrs/vector/reduce/reduceop/ReduceOp

 enumeration ReduceOp {ReduceOp_FMINNUM, ReduceOp_FMAXNUM,
 ReduceOp_FMIN, ReduceOp_FMAX,
 ReduceOp_FADD, ReduceOp_ADD};

J1.1.5 aarch64/translation

This section includes the following pseudocode functions:

• aarch64/translation/debug/AArch64.CheckBreakpoint on page J1-8095.

• aarch64/translation/debug/AArch64.CheckDebug on page J1-8096.

• aarch64/translation/debug/AArch64.CheckWatchpoint on page J1-8096.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8093
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/translation/vmsa_addrcalc/AArch64.BlockBase on page J1-8097.

• aarch64/translation/vmsa_addrcalc/AArch64.IASize on page J1-8097.

• aarch64/translation/vmsa_addrcalc/AArch64.NextTableBase on page J1-8097.

• aarch64/translation/vmsa_addrcalc/AArch64.PageBase on page J1-8098.

• aarch64/translation/vmsa_addrcalc/AArch64.PhysicalAddressSize on page J1-8098.

• aarch64/translation/vmsa_addrcalc/AArch64.S1StartLevel on page J1-8098.

• aarch64/translation/vmsa_addrcalc/AArch64.S2SLTTEntryAddress on page J1-8099.

• aarch64/translation/vmsa_addrcalc/AArch64.S2StartLevel on page J1-8099.

• aarch64/translation/vmsa_addrcalc/AArch64.TTBaseAddress on page J1-8100.

• aarch64/translation/vmsa_addrcalc/AArch64.TTEntryAddress on page J1-8100.

• aarch64/translation/vmsa_faults/AArch64.AddrTop on page J1-8100.

• aarch64/translation/vmsa_faults/AArch64.ContiguousBitFaults on page J1-8101.

• aarch64/translation/vmsa_faults/AArch64.DebugFault on page J1-8101.

• aarch64/translation/vmsa_faults/AArch64.ExclusiveFault on page J1-8101.

• aarch64/translation/vmsa_faults/AArch64.IPAIsOutOfRange on page J1-8102.

• aarch64/translation/vmsa_faults/AArch64.OAOutOfRange on page J1-8102.

• aarch64/translation/vmsa_faults/AArch64.S1HasAlignmentFault on page J1-8102.

• aarch64/translation/vmsa_faults/AArch64.S1HasPermissionsFault on page J1-8102.

• aarch64/translation/vmsa_faults/AArch64.S1InvalidTxSZ on page J1-8104.

• aarch64/translation/vmsa_faults/AArch64.S2HasAlignmentFault on page J1-8104.

• aarch64/translation/vmsa_faults/AArch64.S2HasPermissionsFault on page J1-8104.

• aarch64/translation/vmsa_faults/AArch64.S2InconsistentSL on page J1-8105.

• aarch64/translation/vmsa_faults/AArch64.S2InvalidSL on page J1-8105.

• aarch64/translation/vmsa_faults/AArch64.S2InvalidTxSZ on page J1-8106.

• aarch64/translation/vmsa_faults/AArch64.VAIsOutOfRange on page J1-8106.

• aarch64/translation/vmsa_memattr/AArch64.IsS2ResultTagged on page J1-8106.

• aarch64/translation/vmsa_memattr/AArch64.S2ApplyFWBMemAttrs on page J1-8106.

• aarch64/translation/vmsa_translation/AArch64.AccessUsesEL on page J1-8107.

• aarch64/translation/vmsa_translation/AArch64.FaultAllowsSetAccessFlag on page J1-8108.

• aarch64/translation/vmsa_translation/AArch64.FullTranslate on page J1-8108.

• aarch64/translation/vmsa_translation/AArch64.MemSwapTableDesc on page J1-8108.

• aarch64/translation/vmsa_translation/AArch64.S1DisabledOutput on page J1-8109.

• aarch64/translation/vmsa_translation/AArch64.S1Translate on page J1-8110.

• aarch64/translation/vmsa_translation/AArch64.S2Translate on page J1-8112.

• aarch64/translation/vmsa_translation/AArch64.TranslateAddress on page J1-8114.

• aarch64/translation/vmsa_ttentry/AArch64.BlockDescSupported on page J1-8114.

• aarch64/translation/vmsa_ttentry/AArch64.BlocknTFaults on page J1-8114.

• aarch64/translation/vmsa_ttentry/AArch64.ContiguousBit on page J1-8115.

• aarch64/translation/vmsa_ttentry/AArch64.ContiguousSizeLog2 on page J1-8115.

• aarch64/translation/vmsa_ttentry/AArch64.DecodeDescriptorType on page J1-8115.

• aarch64/translation/vmsa_ttentry/AArch64.S1ApplyOutputPerms on page J1-8115.

• aarch64/translation/vmsa_ttentry/AArch64.S1ApplyTablePerms on page J1-8116.

• aarch64/translation/vmsa_ttentry/AArch64.S2ApplyOutputPerms on page J1-8116.

• aarch64/translation/vmsa_walk/AArch64.S1InitialTTWState on page J1-8117.

• aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateLast on page J1-8117.

• aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateTable on page J1-8118.

• aarch64/translation/vmsa_walk/AArch64.S1Walk on page J1-8118.

• aarch64/translation/vmsa_walk/AArch64.S2InitialTTWState on page J1-8120.

• aarch64/translation/vmsa_walk/AArch64.S2NextWalkStateLast on page J1-8121.

• aarch64/translation/vmsa_walk/AArch64.S2NextWalkStateTable on page J1-8121.
J1-8094 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/translation/vmsa_walk/AArch64.S2Walk on page J1-8122.

• aarch64/translation/vmsa_walk/AArch64.SS2InitialTTWState on page J1-8123.

• aarch64/translation/vmsa_walk/AArch64.SS2OutputPASpace on page J1-8124.

• aarch64/translation/vmsa_walkparams/AArch64.BBMSupportLevel on page J1-8124.

• aarch64/translation/vmsa_walkparams/AArch64.CurrentSecurityState on page J1-8125.

• aarch64/translation/vmsa_walkparams/AArch64.DecodeTG0 on page J1-8125.

• aarch64/translation/vmsa_walkparams/AArch64.DecodeTG1 on page J1-8125.

• aarch64/translation/vmsa_walkparams/AArch64.GetS1TTWParams on page J1-8125.

• aarch64/translation/vmsa_walkparams/AArch64.GetS2TTWParams on page J1-8126.

• aarch64/translation/vmsa_walkparams/AArch64.GetVARange on page J1-8126.

• aarch64/translation/vmsa_walkparams/AArch64.MaxTxSZ on page J1-8126.

• aarch64/translation/vmsa_walkparams/AArch64.NSS2TTWParams on page J1-8127.

• aarch64/translation/vmsa_walkparams/AArch64.PAMax on page J1-8127.

• aarch64/translation/vmsa_walkparams/AArch64.S1DCacheEnabled on page J1-8127.

• aarch64/translation/vmsa_walkparams/AArch64.S1EPD on page J1-8127.

• aarch64/translation/vmsa_walkparams/AArch64.S1Enabled on page J1-8128.

• aarch64/translation/vmsa_walkparams/AArch64.S1ICacheEnabled on page J1-8128.

• aarch64/translation/vmsa_walkparams/AArch64.S1MinTxSZ on page J1-8128.

• aarch64/translation/vmsa_walkparams/AArch64.S1TTBR on page J1-8128.

• aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL10 on page J1-8129.

• aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL2 on page J1-8130.

• aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL20 on page J1-8130.

• aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL3 on page J1-8131.

• aarch64/translation/vmsa_walkparams/AArch64.S2MinTxSZ on page J1-8131.

• aarch64/translation/vmsa_walkparams/AArch64.SS2TTWParams on page J1-8132.

• aarch64/translation/vmsa_walkparams/AArch64.VAMax on page J1-8133.

aarch64/translation/debug/AArch64.CheckBreakpoint

 // AArch64.CheckBreakpoint()
 // =========================
 // Called before executing the instruction of length "size" bytes at "vaddress" in an AArch64
 // translation regime, when either debug exceptions are enabled, or halting debug is enabled
 // and halting is allowed.

 FaultRecord AArch64.CheckBreakpoint(bits(64) vaddress, AccType acctype, integer size)
 assert !ELUsingAArch32(S1TranslationRegime());
 assert (UsingAArch32() && size IN {2,4}) || size == 4;

 match = FALSE;

 for i = 0 to UInt(ID_AA64DFR0_EL1.BRPs)
 match_i = AArch64.BreakpointMatch(i, vaddress, acctype, size);
 match = match || match_i;

 if match && HaltOnBreakpointOrWatchpoint() then
 reason = DebugHalt_Breakpoint;
 Halt(reason);
 elsif match then
 acctype = AccType_IFETCH;
 iswrite = FALSE;
 return AArch64.DebugFault(acctype, iswrite);
 else
 return NoFault();
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8095
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/debug/AArch64.CheckDebug

 // AArch64.CheckDebug()
 // ====================
 // Called on each access to check for a debug exception or entry to Debug state.

 FaultRecord AArch64.CheckDebug(bits(64) vaddress, AccType acctype, boolean iswrite, integer size)

 FaultRecord fault = NoFault();

 d_side = (acctype != AccType_IFETCH);
 if HaveNV2Ext() && acctype == AccType_NV2REGISTER then
 mask = '0';
 generate_exception = AArch64.GenerateDebugExceptionsFrom(EL2, IsSecure(), mask) && MDSCR_EL1.MDE
== '1';
 else
 generate_exception = AArch64.GenerateDebugExceptions() && MDSCR_EL1.MDE == '1';
 halt = HaltOnBreakpointOrWatchpoint();

 if generate_exception || halt then
 if d_side then
 fault = AArch64.CheckWatchpoint(vaddress, acctype, iswrite, size);
 else
 fault = AArch64.CheckBreakpoint(vaddress, acctype, size);

 return fault;

aarch64/translation/debug/AArch64.CheckWatchpoint

 // AArch64.CheckWatchpoint()
 // =========================
 // Called before accessing the memory location of "size" bytes at "address",
 // when either debug exceptions are enabled for the access, or halting debug
 // is enabled and halting is allowed.

 FaultRecord AArch64.CheckWatchpoint(bits(64) vaddress, AccType acctype,
 boolean iswrite, integer size)
 assert !ELUsingAArch32(S1TranslationRegime());

 if acctype IN {AccType_TTW, AccType_IC, AccType_AT, AccType_ATPAN} then
 return NoFault();
 if acctype == AccType_DC then
 if !iswrite then
 return NoFault();

 match = FALSE;
 match_on_read = FALSE;
 ispriv = AArch64.AccessUsesEL(acctype) != EL0;

 for i = 0 to UInt(ID_AA64DFR0_EL1.WRPs)
 if AArch64.WatchpointMatch(i, vaddress, size, ispriv, acctype, iswrite) then
 match = TRUE;
 if DBGWCR_EL1[i].LSC<0> == '1' then
 match_on_read = TRUE;

 if match && acctype == AccType_ATOMICRW then
 iswrite = !match_on_read;

 if match && HaltOnBreakpointOrWatchpoint() then
 if acctype != AccType_NONFAULT && acctype != AccType_CNOTFIRST then
 reason = DebugHalt_Watchpoint;
 EDWAR = vaddress;
 Halt(reason);
 else
 // Fault will be reported and cancelled
 return AArch64.DebugFault(acctype, iswrite);
J1-8096 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 elsif match then
 return AArch64.DebugFault(acctype, iswrite);
 else
 return NoFault();

aarch64/translation/vmsa_addrcalc/AArch64.BlockBase

 // AArch64.BlockBase()
 // ===================
 // Extract the address embedded in a block descriptor pointing to the base of
 // a memory block

 bits(52) AArch64.BlockBase(bits(64) descriptor, bit ds, TGx tgx, integer level)
 bits(52) blockbase = Zeros();

 if tgx == TGx_4KB && level == 2 then
 blockbase<47:21> = descriptor<47:21>;
 elsif tgx == TGx_4KB && level == 1 then
 blockbase<47:30> = descriptor<47:30>;
 elsif tgx == TGx_4KB && level == 0 then
 blockbase<47:39> = descriptor<47:39>;
 elsif tgx == TGx_16KB && level == 2 then
 blockbase<47:25> = descriptor<47:25>;
 elsif tgx == TGx_16KB && level == 1 then
 blockbase<47:36> = descriptor<47:36>;
 elsif tgx == TGx_64KB && level == 2 then
 blockbase<47:29> = descriptor<47:29>;
 elsif tgx == TGx_64KB && level == 1 then
 blockbase<47:42> = descriptor<47:42>;
 else
 Unreachable();

 if Have52BitPAExt() && tgx == TGx_64KB then
 blockbase<51:48> = descriptor<15:12>;
 elsif ds == '1' then
 blockbase<51:48> = descriptor<9:8>:descriptor<49:48>;

 return blockbase;

aarch64/translation/vmsa_addrcalc/AArch64.IASize

 // AArch64.IASize()
 // ================
 // Retrieve the number of bits containing the input address

 integer AArch64.IASize(bits(6) txsz)
 return 64 - UInt(txsz);

aarch64/translation/vmsa_addrcalc/AArch64.NextTableBase

 // AArch64.NextTableBase()
 // =======================
 // Extract the address embedded in a table descriptor pointing to the base of
 // the next level table of descriptors

 bits(52) AArch64.NextTableBase(bits(64) descriptor, bit ds, TGx tgx)
 bits(52) tablebase = Zeros();

 case tgx of
 when TGx_4KB tablebase<47:12> = descriptor<47:12>;
 when TGx_16KB tablebase<47:14> = descriptor<47:14>;
 when TGx_64KB tablebase<47:16> = descriptor<47:16>;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8097
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if Have52BitPAExt() && tgx == TGx_64KB then
 tablebase<51:48> = descriptor<15:12>;
 elsif ds == '1' then
 tablebase<51:48> = descriptor<9:8>:descriptor<49:48>;

 return tablebase;

aarch64/translation/vmsa_addrcalc/AArch64.PageBase

 // AArch64.PageBase()
 // ==================
 // Extract the address embedded in a page descriptor pointing to the base of
 // a memory page

 bits(52) AArch64.PageBase(bits(64) descriptor, bit ds, TGx tgx)
 bits(52) pagebase = Zeros();

 case tgx of
 when TGx_4KB pagebase<47:12> = descriptor<47:12>;
 when TGx_16KB pagebase<47:14> = descriptor<47:14>;
 when TGx_64KB pagebase<47:16> = descriptor<47:16>;

 if Have52BitPAExt() && tgx == TGx_64KB then
 pagebase<51:48> = descriptor<15:12>;
 elsif ds == '1' then
 pagebase<51:48> = descriptor<9:8>:descriptor<49:48>;

 return pagebase;

aarch64/translation/vmsa_addrcalc/AArch64.PhysicalAddressSize

 // AArch64.PhysicalAddressSize()
 // =============================
 // Retrieve the number of bits bounding the physical address

 integer AArch64.PhysicalAddressSize(bits(3) encoded_ps, TGx tgx)
 integer ps;

 case encoded_ps of
 when '000' ps = 32;
 when '001' ps = 36;
 when '010' ps = 40;
 when '011' ps = 42;
 when '100' ps = 44;
 when '101' ps = 48;
 when '110' ps = 52;
 otherwise
 ps = integer IMPLEMENTATION_DEFINED "Reserved Intermediate Physical Address size value";

 if tgx != TGx_64KB && !Have52BitIPAAndPASpaceExt() then
 max_ps = Min(48, AArch64.PAMax());
 else
 max_ps = AArch64.PAMax();

 return Min(ps, max_ps);

aarch64/translation/vmsa_addrcalc/AArch64.S1StartLevel

 // AArch64.S1StartLevel()
 // ======================
 // Compute the initial lookup level when performing a stage 1 translation
 // table walk

J1-8098 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 integer AArch64.S1StartLevel(S1TTWParams walkparams)
 // Input Address size
 iasize = AArch64.IASize(walkparams.txsz);
 granulebits = TGxGranuleBits(walkparams.tgx);
 stride = granulebits - 3;

 return FINAL_LEVEL - (((iasize-1) - granulebits) DIV stride);

aarch64/translation/vmsa_addrcalc/AArch64.S2SLTTEntryAddress

 // AArch64.S2SLTTEntryAddress()
 // ============================
 // Compute the first stage 2 translation table descriptor address within the
 // table pointed to by the base at the start level

 FullAddress AArch64.S2SLTTEntryAddress(S2TTWParams walkparams, bits(52) ipa,
 FullAddress tablebase)
 startlevel = AArch64.S2StartLevel(walkparams);
 iasize = AArch64.IASize(walkparams.txsz);
 granulebits = TGxGranuleBits(walkparams.tgx);
 stride = granulebits - 3;
 levels = FINAL_LEVEL - startlevel;

 bits(52) index;
 lsb = levels*stride + granulebits;
 msb = iasize - 1;
 index = ZeroExtend(ipa<msb:lsb>:Zeros(3));

 FullAddress descaddress;
 descaddress.address = tablebase.address OR index;
 descaddress.paspace = tablebase.paspace;

 return descaddress;

aarch64/translation/vmsa_addrcalc/AArch64.S2StartLevel

 // AArch64.S2StartLevel()
 // ======================
 // Determine the initial lookup level when performing a stage 2 translation
 // table walk

 integer AArch64.S2StartLevel(S2TTWParams walkparams)
 case walkparams.tgx of
 when TGx_4KB
 case walkparams.sl2:walkparams.sl0 of
 when '000' return 2;
 when '001' return 1;
 when '010' return 0;
 when '011' return 3;
 when '100' return -1;
 when TGx_16KB
 case walkparams.sl0 of
 when '00' return 3;
 when '01' return 2;
 when '10' return 1;
 when '11' return 0;
 when TGx_64KB
 case walkparams.sl0 of
 when '00' return 3;
 when '01' return 2;
 when '10' return 1;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8099
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/vmsa_addrcalc/AArch64.TTBaseAddress

 // AArch64.TTBaseAddress()
 // =======================
 // Retrieve the PA/IPA pointing to the base of the initial translation table

 bits(52) AArch64.TTBaseAddress(bits(64) ttb, bits(6) txsz, bits(3) ps,
 bit ds, TGx tgx, integer startlevel)
 bits(52) tablebase = Zeros();

 // Input Address size
 iasize = AArch64.IASize(txsz);
 granulebits = TGxGranuleBits(tgx);
 stride = granulebits - 3;
 levels = FINAL_LEVEL - startlevel;

 // Base address is aligned to size of the initial translation table in bytes
 tsize = iasize - (levels*stride + granulebits) + 3;

 if (Have52BitPAExt() && tgx == TGx_64KB && ps == '110') || (ds == '1') then
 tsize = Max(tsize, 6);
 tablebase<51:6> = ttb<5:2>:ttb<47:6>;
 else
 tablebase<47:1> = ttb<47:1>;

 tablebase = Align(tablebase, 1 << tsize);
 return tablebase;

aarch64/translation/vmsa_addrcalc/AArch64.TTEntryAddress

 // AArch64.TTEntryAddress()
 // ========================
 // Compute translation table descriptor address within the table pointed to by
 // the table base

 FullAddress AArch64.TTEntryAddress(integer level, TGx tgx, bits(6) txsz,
 bits(64) ia, FullAddress tablebase)
 // Input Address size
 iasize = AArch64.IASize(txsz);
 granulebits = TGxGranuleBits(tgx);
 stride = granulebits - 3;
 levels = FINAL_LEVEL - level;

 bits(52) index;
 lsb = levels*stride + granulebits;
 msb = Min(iasize - 1, lsb + stride - 1);
 index = ZeroExtend(ia<msb:lsb>:Zeros(3));

 FullAddress descaddress;
 descaddress.address = tablebase.address OR index;
 descaddress.paspace = tablebase.paspace;

 return descaddress;

aarch64/translation/vmsa_faults/AArch64.AddrTop

 // AArch64.AddrTop()
 // =================
 // Get the top bit position of the virtual address.
 // Bits above are not accounted as part of the translation process.

 integer AArch64.AddrTop(bit tbid, AccType acctype, bit tbi)
 if tbid == '1' && acctype == AccType_IFETCH then
 return 63;
J1-8100 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 if tbi == '1' then
 return 55;
 else
 return 63;

aarch64/translation/vmsa_faults/AArch64.ContiguousBitFaults

 // AArch64.ContiguousBitFaults()
 // =============================
 // If contiguous bit is set, returns whether the translation size exceeds the
 // input address size and if the implementation generates a fault

 boolean AArch64.ContiguousBitFaults(bits(6) txsz, TGx tgx, integer level)
 // Input Address size
 iasize = AArch64.IASize(txsz);
 // Translation size
 tsize = TranslationSize(tgx, level) + AArch64.ContiguousSizeLog2(tgx, level);

 fault = boolean IMPLEMENTATION_DEFINED "Translation fault on misprogrammed contiguous bit";

 return tsize > iasize && fault;

aarch64/translation/vmsa_faults/AArch64.DebugFault

 // AArch64.DebugFault()
 // ====================
 // Return a fault record indicating a hardware watchpoint/breakpoint

 FaultRecord AArch64.DebugFault(AccType acctype, boolean iswrite)
 FaultRecord fault;

 fault.statuscode = Fault_Debug;
 fault.acctype = acctype;
 fault.write = iswrite;
 fault.secondstage = FALSE;
 fault.s2fs1walk = FALSE;

 return fault;

aarch64/translation/vmsa_faults/AArch64.ExclusiveFault

 // AArch64.ExclusiveFault()
 // ========================

 FaultRecord AArch64.ExclusiveFault(AccType acctype, boolean iswrite,
 boolean secondstage, boolean s2fs1walk)
 FaultRecord fault;

 fault.statuscode = Fault_Exclusive;
 fault.acctype = acctype;
 fault.write = iswrite;
 fault.secondstage = secondstage;
 fault.s2fs1walk = s2fs1walk;

 return fault;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8101
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/vmsa_faults/AArch64.IPAIsOutOfRange

 // AArch64.IPAIsOutOfRange()
 // =========================
 // Check bits not resolved by translation are ZERO

 boolean AArch64.IPAIsOutOfRange(bits(52) ipa, S2TTWParams walkparams)
 //Input Address size
 iasize = AArch64.IASize(walkparams.txsz);

 if iasize < 52 then
 return !IsZero(ipa<51:iasize>);
 else
 return FALSE;

aarch64/translation/vmsa_faults/AArch64.OAOutOfRange

 // AArch64.OAOutOfRange()
 // ======================
 // Returns whether output address is expressed in the configured size number of bits

 boolean AArch64.OAOutOfRange(TTWState walkstate, bits(3) ps, TGx tgx)
 // Output Address size
 oasize = AArch64.PhysicalAddressSize(ps, tgx);
 baseaddress = walkstate.baseaddress.address;

 if oasize < 52 then
 return !IsZero(baseaddress<51:oasize>);
 else
 return FALSE;

aarch64/translation/vmsa_faults/AArch64.S1HasAlignmentFault

 // AArch64.S1HasAlignmentFault()
 // =============================
 // Returns whether stage 1 output fails alignment requirement on data accesses
 // to Device memory

 boolean AArch64.S1HasAlignmentFault(AccType acctype, boolean aligned,
 bit ntlsmd, MemoryAttributes memattrs)
 if acctype == AccType_IFETCH || memattrs.memtype != MemType_Device then
 return FALSE;

 if acctype == AccType_A32LSMD && ntlsmd == '0' && memattrs.device != DeviceType_GRE then
 return TRUE;

 return !aligned || acctype == AccType_DCZVA;

aarch64/translation/vmsa_faults/AArch64.S1HasPermissionsFault

 // AArch64.S1HasPermissionsFault()
 // ===============================
 // Returns whether stage 1 access violates permissions of target memory

 boolean AArch64.S1HasPermissionsFault(Regime regime, TTWState walkstate,
 S1TTWParams walkparams, boolean ispriv,
 AccType acctype, boolean iswrite)
 permissions = walkstate.permissions;

 if HasUnprivileged(regime) then
 // Apply leaf permissions
 case permissions.ap<2:1> of
 when '00' (pr,pw,ur,uw) = ('1','1','0','0'); // Privileged access
J1-8102 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when '01' (pr,pw,ur,uw) = ('1','1','1','1'); // No effect
 when '10' (pr,pw,ur,uw) = ('1','0','0','0'); // Read-only, privileged access
 when '11' (pr,pw,ur,uw) = ('1','0','1','0'); // Read-only

 // Apply hierarchical permissions
 case permissions.ap_table of
 when '00' (pr,pw,ur,uw) = (pr, pw, ur, uw); // No effect
 when '01' (pr,pw,ur,uw) = (pr, pw,'0','0'); // Privileged access
 when '10' (pr,pw,ur,uw) = (pr,'0', ur,'0'); // Read-only
 when '11' (pr,pw,ur,uw) = (pr,'0','0','0'); // Read-only, privileged access

 // Locations writable by unprivileged cannot be executed by privileged
 px = NOT(permissions.pxn OR permissions.pxn_table OR uw);
 ux = NOT(permissions.uxn OR permissions.uxn_table);

 pan_access = !(acctype IN {AccType_DC, AccType_IFETCH, AccType_AT, AccType_NV2REGISTER});
 if HavePANExt() && pan_access && !(PSTATE.EL == EL1 && walkparams.nv1 == '1') then
 pan = PSTATE.PAN AND (ur OR uw OR (walkparams.epan AND ux));
 pr = pr AND NOT(pan);
 pw = pw AND NOT(pan);

 (r,w,x) = if ispriv then (pr,pw,px) else (ur,uw,ux);
 else
 // Apply leaf permissions
 case permissions.ap<2> of
 when '0' (r,w) = ('1','1'); // No effect
 when '1' (r,w) = ('1','0'); // Read-only

 // Apply hierarchical permissions
 case permissions.ap_table<1> of
 when '0' (r,w) = (r , w); // No effect
 when '1' (r,w) = (r ,'0'); // Read-only

 x = NOT(permissions.xn OR permissions.xn_table);

 // Prevent execution from writable locations if WXN is set
 x = x AND NOT(walkparams.wxn AND w);

 // Prevent execution from Non-secure space by PE in secure state if SIF is set
 if (AArch64.CurrentSecurityState() == SS_Secure &&
 walkstate.baseaddress.paspace == PAS_NonSecure) then
 x = x AND NOT(walkparams.sif);

 if acctype == AccType_IFETCH then
 if (ConstrainUnpredictable() == Constraint_FAULT &&
 walkstate.memattrs.memtype == MemType_Device) then
 return TRUE;

 return x == '0';
 elsif acctype == AccType_DC then
 if iswrite then
 return w == '0';
 else
 // DC from privileged context which do no write cannot permission fault
 return !ispriv && r == '0';
 elsif acctype == AccType_IC then
 // IC instructions do not write
 assert !iswrite;
 impdef_ic_fault = boolean IMPLEMENTATION_DEFINED "Permission fault on EL0 IC_IVAU execution";

 // IC from privileged context cannot permission fault
 return !ispriv && r == '0' && impdef_ic_fault;
 elsif iswrite then
 return w == '0';
 else
 return r == '0';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8103
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/vmsa_faults/AArch64.S1InvalidTxSZ

 // AArch64.S1InvalidTxSZ()
 // =======================
 // Detect erroneous configuration of stage 1 TxSZ field if the implementation
 // does not constrain the value of TxSZ

 boolean AArch64.S1InvalidTxSZ(S1TTWParams walkparams)
 mintxsz = AArch64.S1MinTxSZ(walkparams.ds, walkparams.tgx);
 maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);

 return UInt(walkparams.txsz) < mintxsz || UInt(walkparams.txsz) > maxtxsz;

aarch64/translation/vmsa_faults/AArch64.S2HasAlignmentFault

 // AArch64.S2HasAlignmentFault()
 // =============================
 // Returns whether stage 2 output fails alignment requirement on data accesses
 // to Device memory

 boolean AArch64.S2HasAlignmentFault(AccType acctype, boolean aligned,
 MemoryAttributes memattrs)
 if acctype == AccType_IFETCH || memattrs.memtype != MemType_Device then
 return FALSE;

 return !aligned || acctype == AccType_DCZVA;

aarch64/translation/vmsa_faults/AArch64.S2HasPermissionsFault

 // AArch64.S2HasPermissionsFault()
 // ===============================
 // Returns whether stage 2 access violates permissions of target memory

 boolean AArch64.S2HasPermissionsFault(boolean s2fs1walk, TTWState walkstate,
 S2TTWParams walkparams, boolean ispriv,
 AccType acctype, boolean iswrite)
 permissions = walkstate.permissions;
 memtype = walkstate.memattrs.memtype;

 r = permissions.s2ap<0>;
 w = permissions.s2ap<1>;

 case (permissions.s2xn:permissions.s2xnx) of
 when '00' (px,ux) = ('1','1');
 when '01' (px,ux) = ('0','1');
 when '10' (px,ux) = ('0','0');
 when '11' (px,ux) = ('1','0');

 x = if ispriv then px else ux;

 if s2fs1walk && walkparams.ptw == '1' && memtype == MemType_Device then
 return TRUE;
 elsif acctype == AccType_IFETCH then
 constraint = ConstrainUnpredictable();
 if constraint == Constraint_FAULT && memtype == MemType_Device then
 return TRUE;
 return x == '0';
 elsif acctype == AccType_DC then
 // AArch32 DC maintenance instructions operating by VA cannot fault.
 if iswrite then
 return !UsingAArch32() && w == '0';
 else
 // DC from privileged context which do no write cannot permission fault
 return !UsingAArch32() && !ispriv && r == '0';
J1-8104 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 elsif acctype == AccType_IC then
 // IC instructions do not write
 assert !iswrite;
 impdef_ic_fault = boolean IMPLEMENTATION_DEFINED "Permission fault on EL0 IC_IVAU execution";

 // AArch32 IC maintenance instructions operating by VA cannot fault.
 // IC from privileged context cannot permission fault
 return !UsingAArch32() && !ispriv && r == '0' && impdef_ic_fault;
 elsif iswrite then
 return w == '0';
 else
 return r == '0';

aarch64/translation/vmsa_faults/AArch64.S2InconsistentSL

 // AArch64.S2InconsistentSL()
 // ==========================
 // Detect inconsistent configuration of stage 2 TxSZ and SL fields

 boolean AArch64.S2InconsistentSL(S2TTWParams walkparams)
 startlevel = AArch64.S2StartLevel(walkparams);
 levels = FINAL_LEVEL - startlevel;
 granulebits = TGxGranuleBits(walkparams.tgx);
 stride = granulebits - 3;

 // Input address size must at least be large enough to be resolved from the start level
 sl_min_iasize = (
 levels * stride // Bits resolved by table walk, except initial level
 + granulebits // Bits directly mapped to output address
 + 1); // At least 1 more bit to be decoded by initial level

 // Can accomodate 1 more stride in the level + concatenation of up to 2^4 tables
 sl_max_iasize = sl_min_iasize + (stride-1) + 4;
 // Configured Input Address size
 iasize = AArch64.IASize(walkparams.txsz);

 return iasize < sl_min_iasize || iasize > sl_max_iasize;

aarch64/translation/vmsa_faults/AArch64.S2InvalidSL

 // AArch64.S2InvalidSL()
 // =====================
 // Detect invalid configuration of SL field

 boolean AArch64.S2InvalidSL(S2TTWParams walkparams)
 case walkparams.tgx of
 when TGx_4KB
 case walkparams.sl2:walkparams.sl0 of
 when '1x1' return TRUE;
 when '11x' return TRUE;
 when '010' return AArch64.PAMax() < 44;
 when '011' return !HaveSmallTranslationTableExt();
 otherwise return FALSE;
 when TGx_16KB
 case walkparams.ds:walkparams.sl0 of
 when '011' return TRUE;
 when '010' return AArch64.PAMax() < 42;
 otherwise return FALSE;
 when TGx_64KB
 case walkparams.sl0 of
 when '11' return TRUE;
 when '10' return AArch64.PAMax() < 44;
 otherwise return FALSE;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8105
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/vmsa_faults/AArch64.S2InvalidTxSZ

 // AArch64.S2InvalidTxSZ()
 // =======================
 // Detect erroneous configuration of stage 2 TxSZ field if the implementation
 // does not constrain the value of TxSZ

 boolean AArch64.S2InvalidTxSZ(S2TTWParams walkparams, boolean s1aarch64)
 mintxsz = AArch64.S2MinTxSZ(walkparams.ds, walkparams.tgx, s1aarch64);
 maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);

 return UInt(walkparams.txsz) < mintxsz || UInt(walkparams.txsz) > maxtxsz;

aarch64/translation/vmsa_faults/AArch64.VAIsOutOfRange

 // AArch64.VAIsOutOfRange()
 // ========================
 // Check bits not resolved by translation are identical and of accepted value

 boolean AArch64.VAIsOutOfRange(bits(64) va, AccType acctype, Regime regime,
 S1TTWParams walkparams)
 addrtop = AArch64.AddrTop(walkparams.tbid, acctype, walkparams.tbi);
 // Input Address size
 iasize = AArch64.IASize(walkparams.txsz);

 if HasUnprivileged(regime) then
 if AArch64.GetVARange(va) == VARange_LOWER then
 return !IsZero(va<addrtop:iasize>);
 else
 return !IsOnes(va<addrtop:iasize>);
 else
 return !IsZero(va<addrtop:iasize>);

aarch64/translation/vmsa_memattr/AArch64.IsS2ResultTagged

 // AArch64.IsS2ResultTagged()
 // ==========================
 // Determine whether the combined output memory attributes of stage 1 and
 // stage 2 indicate tagged memory

 boolean AArch64.IsS2ResultTagged(MemoryAttributes s2_memattrs, boolean s1_tagged)
 return (
 s1_tagged &&
 (s2_memattrs.memtype == MemType_Normal) &&
 (s2_memattrs.inner.attrs == MemAttr_WB) &&
 (s2_memattrs.inner.hints == MemHint_RWA) &&
 (!s2_memattrs.inner.transient) &&
 (s2_memattrs.outer.attrs == MemAttr_WB) &&
 (s2_memattrs.outer.hints == MemHint_RWA) &&
 (!s2_memattrs.outer.transient)
);

aarch64/translation/vmsa_memattr/AArch64.S2ApplyFWBMemAttrs

 // AArch64.S2ApplyFWBMemAttrs()
 // ============================
 // Apply stage 2 forced Write-Back on stage 1 memory attributes.

 MemoryAttributes AArch64.S2ApplyFWBMemAttrs(MemoryAttributes s1_memattrs,
 bits(4) s2_attr, bits(2) s2_sh)
 MemoryAttributes memattrs;

 if s2_attr<2> == '0' then // S2 Device, S1 any
J1-8106 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 s2_device = DecodeDevice(s2_attr<1:0>);
 memattrs.memtype = MemType_Device;
 if s1_memattrs.memtype == MemType_Device then
 memattrs.device = S2CombineS1Device(s1_memattrs.device, s2_device);
 else
 memattrs.device = s2_device;

 elsif s2_attr<1:0> == '11' then // S2 attr = S1 attr
 memattrs = s1_memattrs;

 elsif s2_attr<1:0> == '10' then // Force writeback
 memattrs.memtype = MemType_Normal;
 memattrs.inner.attrs = MemAttr_WB;
 memattrs.outer.attrs = MemAttr_WB;

 if (s1_memattrs.memtype == MemType_Normal &&
 s1_memattrs.inner.attrs != MemAttr_NC) then
 memattrs.inner.hints = s1_memattrs.inner.hints;
 memattrs.inner.transient = s1_memattrs.inner.transient;
 else
 memattrs.inner.hints = MemHint_RWA;
 memattrs.inner.transient = FALSE;

 if (s1_memattrs.memtype == MemType_Normal &&
 s1_memattrs.outer.attrs != MemAttr_NC) then
 memattrs.outer.hints = s1_memattrs.outer.hints;
 memattrs.outer.transient = s1_memattrs.outer.transient;
 else
 memattrs.outer.hints = MemHint_RWA;
 memattrs.outer.transient = FALSE;

 else // Non-cacheable unless S1 is device
 if s1_memattrs.memtype == MemType_Device then
 memattrs = s1_memattrs;
 else
 MemAttrHints cacheability_attr;
 cacheability_attr.attrs = MemAttr_NC;

 memattrs.memtype = MemType_Normal;
 memattrs.inner = cacheability_attr;
 memattrs.outer = cacheability_attr;

 s2_shareability = DecodeShareability(s2_sh);
 memattrs.shareability = S2CombineS1Shareability(s1_memattrs.shareability,
 s2_shareability);
 memattrs.tagged = AArch64.IsS2ResultTagged(memattrs, s1_memattrs.tagged);

 memattrs.shareability = NormaliseShareability(memattrs);
 return memattrs;

aarch64/translation/vmsa_translation/AArch64.AccessUsesEL

 // AArch64.AccessUsesEL()
 // ======================
 // Returns the Exception Level of the regime that will manage the translation for a given access type.

 bits(2) AArch64.AccessUsesEL(AccType acctype)
 if acctype == AccType_UNPRIV then
 return EL0;
 elsif acctype == AccType_NV2REGISTER then
 return EL2;
 else
 return PSTATE.EL;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8107
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/vmsa_translation/AArch64.FaultAllowsSetAccessFlag

 // AArch64.FaultAllowsSetAccessFlag()
 // ==================================
 // Determine whether the access flag could be set by HW given the fault status

 boolean AArch64.FaultAllowsSetAccessFlag(FaultRecord fault)
 if fault.statuscode == Fault_None then
 return TRUE;
 elsif fault.statuscode IN {Fault_Alignment, Fault_Permission} then
 return ConstrainUnpredictable() == Constraint_TRUE;
 else
 return FALSE;

aarch64/translation/vmsa_translation/AArch64.FullTranslate

 // AArch64.FullTranslate()
 // =======================
 // Address translation as specified by VMSA
 // Alignment check NOT due to memory type is expected to be done before translation

 AddressDescriptor AArch64.FullTranslate(bits(64) va, AccType acctype,
 boolean iswrite, boolean aligned)

 fault = NoFault();
 fault.acctype = acctype;
 fault.write = iswrite;

 regime = TranslationRegime(PSTATE.EL, acctype);

 (fault, ipa) = AArch64.S1Translate(fault, regime, va, acctype, aligned, iswrite);

 if fault.statuscode != Fault_None then
 return CreateFaultyAddressDescriptor(va, fault);

 if regime == Regime_EL10 && EL2Enabled() then
 s1aarch64 = TRUE;
 s2fs1walk = FALSE;
 (fault, pa) = AArch64.S2Translate(fault, ipa, s1aarch64, s2fs1walk,
 acctype, aligned, iswrite);

 if fault.statuscode != Fault_None then
 return CreateFaultyAddressDescriptor(va, fault);
 else
 return pa;
 else
 return ipa;

aarch64/translation/vmsa_translation/AArch64.MemSwapTableDesc

 // AArch64.MemSwapTableDesc()
 // ==========================
 // Perform HW update of table descriptor as an atomic operation

 (FaultRecord, bits(64)) AArch64.MemSwapTableDesc(FaultRecord fault,
 bits(64) prev_desc, bits(64) new_desc, bit ee,
 AddressDescriptor descupdateaddress)
 descupdateaccess = CreateAccessDescriptor(AccType_ATOMICRW);

 if ee == '1' then
 new_desc = BigEndianReverse(new_desc);
 prev_desc = BigEndianReverse(prev_desc);

 // All observers in the shareability domain observe the
J1-8108 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // following memory read and write accesses atomically.
 (memstatus, mem_desc) = PhysMemRead(descupdateaddress, 8, descupdateaccess);
 if IsFault(memstatus) then
 iswrite = FALSE;
 fault = HandleExternalTTWAbort(memstatus, iswrite, descupdateaddress,
 descupdateaccess, 8, fault);
 if IsFault(fault.statuscode) then
 fault.acctype = AccType_ATOMICRW;
 return (fault, bits(64) UNKNOWN);
 if mem_desc == prev_desc then
 memstatus = PhysMemWrite(descupdateaddress, 8,
 descupdateaccess, new_desc);
 iswrite = TRUE;
 if IsFault(memstatus) then
 fault = HandleExternalTTWAbort(memstatus, iswrite, descupdateaddress,
 descupdateaccess, 8, fault);
 fault.acctype = memstatus.acctype;
 if IsFault(fault.statuscode) then
 fault.acctype = AccType_ATOMICRW;
 return (fault, bits(64) UNKNOWN);
 mem_desc = new_desc;

 if ee == '1' then
 mem_desc = BigEndianReverse(mem_desc);

 assert mem_desc == new_desc;

 return (fault, mem_desc);

aarch64/translation/vmsa_translation/AArch64.S1DisabledOutput

 // AArch64.S1DisabledOutput()
 // ==========================
 // Map the the VA to IPA/PA and assign default memory attributes

 (FaultRecord, AddressDescriptor) AArch64.S1DisabledOutput(FaultRecord fault,
 Regime regime, bits(64) va, AccType acctype, boolean aligned)

 walkparams = AArch64.GetS1TTWParams(regime, va);

 // No memory page is guarded when stage 1 address translation is disabled
 SetInGuardedPage(FALSE);

 // Output Address
 FullAddress oa;
 oa.address = va<51:0>;
 case AArch64.CurrentSecurityState() of
 when SS_Secure oa.paspace = PAS_Secure;
 when SS_NonSecure oa.paspace = PAS_NonSecure;

 MemoryAttributes memattrs;
 if regime == Regime_EL10 && EL2Enabled() && walkparams.dc == '1' then
 MemAttrHints default_cacheability;
 default_cacheability.attrs = MemAttr_WB;
 default_cacheability.hints = MemHint_RWA;
 default_cacheability.transient = FALSE;

 memattrs.memtype = MemType_Normal;
 memattrs.outer = default_cacheability;
 memattrs.inner = default_cacheability;
 memattrs.shareability = Shareability_NSH;
 memattrs.tagged = walkparams.dct == '1';
 memattrs.xs = '0';
 elsif acctype == AccType_IFETCH then
 MemAttrHints i_cache_attr;
 if AArch64.S1ICacheEnabled(regime) then
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8109
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 i_cache_attr.attrs = MemAttr_WT;
 i_cache_attr.hints = MemHint_RA;
 i_cache_attr.transient = FALSE;
 else
 i_cache_attr.attrs = MemAttr_NC;

 memattrs.memtype = MemType_Normal;
 memattrs.outer = i_cache_attr;
 memattrs.inner = i_cache_attr;
 memattrs.shareability = Shareability_OSH;
 memattrs.tagged = FALSE;
 memattrs.xs = '1';
 else
 memattrs.memtype = MemType_Device;
 memattrs.device = DeviceType_nGnRnE;
 memattrs.shareability = Shareability_OSH;
 memattrs.xs = '1';

 fault.level = 0;
 addrtop = AArch64.AddrTop(walkparams.tbid, acctype, walkparams.tbi);
 if !IsZero(va<addrtop:AArch64.PAMax()>) then
 fault.statuscode = Fault_AddressSize;
 elsif AArch64.S1HasAlignmentFault(acctype, aligned, walkparams.ntlsmd, memattrs) then
 fault.statuscode = Fault_Alignment;

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);
 else
 ipa = CreateAddressDescriptor(va, oa, memattrs);
 return (fault, ipa);

aarch64/translation/vmsa_translation/AArch64.S1Translate

 // AArch64.S1Translate()
 // =====================
 // Translate VA to IPA/PA depending on the regime

 (FaultRecord, AddressDescriptor) AArch64.S1Translate(FaultRecord fault,
 Regime regime, bits(64) va, AccType acctype, boolean aligned,
 boolean iswrite)

 // Prepare fault fields in case a fault is detected
 fault.secondstage = FALSE;
 fault.s2fs1walk = FALSE;

 if !AArch64.S1Enabled(regime) then
 return AArch64.S1DisabledOutput(fault, regime, va, acctype, aligned);

 walkparams = AArch64.GetS1TTWParams(regime, va);

 if (AArch64.VAIsOutOfRange(va, acctype, regime, walkparams) ||
 (AArch64.AccessUsesEL(acctype) == EL0 && walkparams.e0pd == '1')) then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);

 (fault, descaddress, walkstate,
 descriptor) = AArch64.S1Walk(fault, walkparams, va, regime, acctype,
 iswrite);

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);

 ispriv = AArch64.AccessUsesEL(acctype) != EL0;

 if acctype == AccType_IFETCH then
J1-8110 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // Flag the fetched instruction is from a guarded page
 SetInGuardedPage(walkstate.guardedpage == '1');

 if AArch64.S1HasAlignmentFault(acctype, aligned, walkparams.ntlsmd,
 walkstate.memattrs) then
 fault.statuscode = Fault_Alignment;
 elsif IsAtomicRW(acctype) then
 if AArch64.S1HasPermissionsFault(regime, walkstate, walkparams,
 ispriv, acctype, FALSE) then
 // The permission fault was not caused by lack of write permissions
 fault.statuscode = Fault_Permission;
 fault.write = FALSE;
 elsif AArch64.S1HasPermissionsFault(regime, walkstate, walkparams,
 ispriv, acctype, TRUE) then
 // The permission fault _was_ caused by lack of write permissions
 fault.statuscode = Fault_Permission;
 fault.write = TRUE;
 elsif AArch64.S1HasPermissionsFault(regime, walkstate, walkparams,
 ispriv, acctype, iswrite) then
 fault.statuscode = Fault_Permission;

 new_desc = descriptor;
 if walkparams.ha == '1' && AArch64.FaultAllowsSetAccessFlag(fault) then
 // Set descriptor AF bit
 new_desc<10> = '1';

 // If HW update of dirty bit is enabled, the walk state permissions
 // will already reflect a configuration permitting writes.
 // The update of the descriptor occurs only if the descriptor bits in
 // memory do not reflect that and the access instigates a write.
 if (fault.statuscode == Fault_None &&
 walkparams.ha == '1' &&
 walkparams.hd == '1' &&
 descriptor<51> == '1' && // Descriptor DBM bit
 (IsAtomicRW(acctype) || iswrite) &&
 !(acctype IN {AccType_AT, AccType_ATPAN, AccType_IC, AccType_DC})) then
 // Clear descriptor AP[2] bit permitting stage 1 writes
 new_desc<7> = '0';

 // Either the access flag was clear or AP<2> is set
 if new_desc != descriptor then
 if regime == Regime_EL10 && EL2Enabled() then
 s1aarch64 = TRUE;
 s2fs1walk = TRUE;
 aligned = TRUE;
 iswrite = TRUE;
 (s2fault, descupdateaddress) = AArch64.S2Translate(fault, descaddress,
 s1aarch64, s2fs1walk, AccType_ATOMICRW,
 aligned, iswrite);

 if s2fault.statuscode != Fault_None then
 return (s2fault, AddressDescriptor UNKNOWN);
 else
 descupdateaddress = descaddress;

 (fault, mem_desc) = AArch64.MemSwapTableDesc(fault, descriptor, new_desc,
 walkparams.ee, descupdateaddress);

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);

 // Output Address
 oa = StageOA(walkstate.baseaddress, va, walkparams.tgx, walkstate.level);

 if (acctype == AccType_IFETCH &&
 (walkstate.memattrs.memtype == MemType_Device || !AArch64.S1ICacheEnabled(regime))) then
 // Treat memory attributes as Normal Non-Cacheable
 memattrs = NormalNCMemAttr();
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8111
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 memattrs.xs = walkstate.memattrs.xs;
 elsif (acctype != AccType_IFETCH && !AArch64.S1DCacheEnabled(regime) &&
 walkstate.memattrs.memtype == MemType_Normal) then
 // Treat memory attributes as Normal Non-Cacheable
 memattrs = NormalNCMemAttr();
 memattrs.xs = walkstate.memattrs.xs;

 // The effect of SCTLR_ELx.C when '0' is Constrained UNPREDICTABLE
 // on the Tagged attribute
 if HaveMTE2Ext() && walkstate.memattrs.tagged then
 memattrs.tagged = ConstrainUnpredictableBool();
 else
 memattrs = walkstate.memattrs;

 // Shareability of target memory subject to stage 2 translation
 // is maintained as input to stage 2
 if regime == Regime_EL10 && EL2Enabled() && HCR_EL2.VM == '1' then
 memattrs.shareability = walkstate.memattrs.shareability;
 else
 memattrs.shareability = NormaliseShareability(memattrs);

 if acctype == AccType_ATOMICLS64 && memattrs.memtype == MemType_Normal then
 if memattrs.inner.attrs != MemAttr_NC || memattrs.outer.attrs != MemAttr_NC then
 fault.statuscode = Fault_Exclusive;
 return (fault, AddressDescriptor UNKNOWN);

 ipa = CreateAddressDescriptor(va, oa, memattrs);
 return (fault, ipa);

aarch64/translation/vmsa_translation/AArch64.S2Translate

 // AArch64.S2Translate()
 // =====================
 // Translate stage 1 IPA to PA and combine memory attributes

 (FaultRecord, AddressDescriptor) AArch64.S2Translate(FaultRecord fault,
 AddressDescriptor ipa, boolean s1aarch64, boolean s2fs1walk,
 AccType acctype, boolean aligned, boolean iswrite)
 walkparams = AArch64.GetS2TTWParams(ipa.paddress.paspace, s1aarch64);

 // Prepare fault fields in case a fault is detected
 fault.statuscode = Fault_None; // Ignore any faults from stage 1
 fault.secondstage = TRUE;
 fault.s2fs1walk = s2fs1walk;
 fault.ipaddress = ipa.paddress;

 if walkparams.vm != '1' then
 // Stage 2 translation is disabled
 return (fault, ipa);

 if AArch64.IPAIsOutOfRange(ipa.paddress.address, walkparams) then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);

 (fault, descaddress, walkstate,
 descriptor) = AArch64.S2Walk(fault, ipa, walkparams, acctype, iswrite,
 s1aarch64);

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);

 ispriv = AArch64.AccessUsesEL(acctype) != EL0;

 if AArch64.S2HasAlignmentFault(acctype, aligned, walkstate.memattrs) then
 fault.statuscode = Fault_Alignment;
J1-8112 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 elsif IsAtomicRW(acctype) then
 if AArch64.S2HasPermissionsFault(s2fs1walk, walkstate, walkparams,
 ispriv, acctype, FALSE) then
 // The permission fault was not caused by lack of write permissions
 fault.statuscode = Fault_Permission;
 fault.write = FALSE;
 elsif AArch64.S2HasPermissionsFault(s2fs1walk, walkstate, walkparams,
 ispriv, acctype, TRUE) then
 // The permission fault _was_ caused by lack of write permissions.
 // However, HW updates, which are atomic writes for stage 1
 // descriptors, permissions fault reflect the original access.
 fault.statuscode = Fault_Permission;
 if !fault.s2fs1walk then
 fault.write = TRUE;
 elsif AArch64.S2HasPermissionsFault(s2fs1walk, walkstate, walkparams,
 ispriv, acctype, iswrite) then
 fault.statuscode = Fault_Permission;

 new_desc = descriptor;
 if walkparams.ha == '1' && AArch64.FaultAllowsSetAccessFlag(fault) then
 // Set descriptor AF bit
 new_desc<10> = '1';

 // If HW update of dirty bit is enabled, the walk state permissions
 // will already reflect a configuration permitting writes.
 // The update of the descriptor occurs only if the descriptor bits in
 // memory do not reflect that and the access instigates a write.
 if (fault.statuscode == Fault_None &&
 walkparams.ha == '1' &&
 walkparams.hd == '1' &&
 descriptor<51> == '1' && // Descriptor DBM bit
 (IsAtomicRW(acctype) || iswrite) &&
 !(acctype IN {AccType_AT, AccType_ATPAN, AccType_IC, AccType_DC})) then
 // Set descriptor S2AP[1] bit permitting stage 2 writes
 new_desc<7> = '1';

 // Either the access flag was clear or S2AP<1> is clear
 if new_desc != descriptor then
 (fault, mem_desc) = AArch64.MemSwapTableDesc(fault, descriptor, new_desc,
 walkparams.ee, descaddress);

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);

 ipa_64 = ZeroExtend(ipa.paddress.address, 64);
 // Output Address
 oa = StageOA(walkstate.baseaddress, ipa_64, walkparams.tgx, walkstate.level);

 if ((s2fs1walk &&
 walkstate.memattrs.memtype == MemType_Device && walkparams.ptw == '0') ||
 (acctype == AccType_IFETCH &&
 (walkstate.memattrs.memtype == MemType_Device || HCR_EL2.ID == '1')) ||
 (acctype != AccType_IFETCH &&
 walkstate.memattrs.memtype == MemType_Normal && HCR_EL2.CD == '1')) then
 // Treat memory attributes as Normal Non-Cacheable
 s2_memattrs = NormalNCMemAttr();
 s2_memattrs.xs = walkstate.memattrs.xs;
 else
 s2_memattrs = walkstate.memattrs;

 if !s2fs1walk && acctype == AccType_ATOMICLS64 && s2_memattrs.memtype == MemType_Normal then
 if s2_memattrs.inner.attrs != MemAttr_NC || s2_memattrs.outer.attrs != MemAttr_NC then
 fault.statuscode = Fault_Exclusive;
 return (fault, AddressDescriptor UNKNOWN);

 if walkparams.fwb == '0' then
 memattrs = S2CombineS1MemAttrs(ipa.memattrs, s2_memattrs);
 else
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8113
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 memattrs = s2_memattrs;

 pa = CreateAddressDescriptor(ipa.vaddress, oa, memattrs);
 return (fault, pa);

aarch64/translation/vmsa_translation/AArch64.TranslateAddress

 // AArch64.TranslateAddress()
 // ==========================
 // Main entry point for translating an address

 AddressDescriptor AArch64.TranslateAddress(bits(64) va, AccType acctype,
 boolean iswrite, boolean aligned,
 integer size)

 result = AArch64.FullTranslate(va, acctype, iswrite, aligned);

 if !IsFault(result) then
 result.fault = AArch64.CheckDebug(va, acctype, iswrite, size);

 // Update virtual address for abort functions
 result.vaddress = ZeroExtend(va);

 return result;

aarch64/translation/vmsa_ttentry/AArch64.BlockDescSupported

 // AArch64.BlockDescSupported()
 // ============================
 // Determine whether a block descriptor is valid for the given granule size
 // and level

 boolean AArch64.BlockDescSupported(bit ds, TGx tgx, integer level)
 case tgx of
 when TGx_4KB return level == 2 || level == 1 || (level == 0 && ds == '1');
 when TGx_16KB return level == 2 || (level == 1 && ds == '1');
 when TGx_64KB return level == 2 || (level == 1 && AArch64.PAMax() == 52);

 return FALSE;

aarch64/translation/vmsa_ttentry/AArch64.BlocknTFaults

 // AArch64.BlocknTFaults()
 // =======================
 // Identify whether the nT bit in a block descriptor is effectively set
 // causing a translation fault

 boolean AArch64.BlocknTFaults(bits(64) descriptor)
 if !HaveBlockBBM() then
 return FALSE;

 bbm_level = AArch64.BlockBBMSupportLevel();
 nT_faults = boolean IMPLEMENTATION_DEFINED "BBM level 1 or 2 support nT bit causes Translation
Fault";

 return bbm_level IN {1, 2} && descriptor<16> == '1' && nT_faults;
J1-8114 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/vmsa_ttentry/AArch64.ContiguousBit

 // AArch64.ContiguousBit()
 // =======================
 // Get the value of the contiguous bit

 bit AArch64.ContiguousBit(TGx tgx, integer level, bits(64) descriptor)
 if tgx == TGx_64KB && level == 1 && !Have52BitVAExt() then
 return '0'; // RES0
 if tgx == TGx_16KB && level == 1 then
 return '0'; // RES0
 if tgx == TGx_4KB && level == 0 then
 return '0'; // RES0

 return descriptor<52>;

aarch64/translation/vmsa_ttentry/AArch64.ContiguousSizeLog2

 // AArch64.ContiguousSizeLog2()
 // ============================
 // Given the translation granule and level, determine the number of descriptors
 // to the logarithm base 2 that describe a contiguous output space

 integer AArch64.ContiguousSizeLog2(TGx tgx, integer level)
 case tgx of
 when TGx_4KB return 4;
 when TGx_16KB return if level == 2 then 5 else 7;
 when TGx_64KB return 5;

aarch64/translation/vmsa_ttentry/AArch64.DecodeDescriptorType

 // AArch64.DecodeDescriptorType()
 // ==============================
 // Determine whether the descriptor is a page, block or table

 DescriptorType AArch64.DecodeDescriptorType(bits(64) descriptor, bit ds,
 TGx tgx, integer level)
 if descriptor<1:0> == '11' && level == FINAL_LEVEL then
 return DescriptorType_Page;
 elsif descriptor<1:0> == '11' then
 return DescriptorType_Table;
 elsif descriptor<1:0> == '01' then
 if AArch64.BlockDescSupported(ds, tgx, level) then
 return DescriptorType_Block;
 else
 return DescriptorType_Invalid;
 else
 return DescriptorType_Invalid;

aarch64/translation/vmsa_ttentry/AArch64.S1ApplyOutputPerms

 // AArch64.S1ApplyOutputPerms()
 // ============================
 // Apply output permissions encoded in stage 1 page/block descriptors

 Permissions AArch64.S1ApplyOutputPerms(Permissions permissions, bits(64) descriptor,
 Regime regime, S1TTWParams walkparams)
 if regime == Regime_EL10 && EL2Enabled() && walkparams.nv1 == '1' then
 permissions.ap<2:1> = descriptor<7>:'0';
 permissions.pxn = descriptor<54>;

 return permissions;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8115
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if HasUnprivileged(regime) then
 permissions.ap<2:1> = descriptor<7:6>;
 permissions.uxn = descriptor<54>;
 permissions.pxn = descriptor<53>;
 else
 permissions.ap<2:1> = descriptor<7>:'1';
 permissions.xn = descriptor<54>;

 // Descriptors marked with DBM set have the effective value of AP[2] cleared.
 // This implies no permission faults caused by lack of write permissions are
 // reported, and the Dirty bit can be set.
 if walkparams.ha == '1' && walkparams.hd == '1' && descriptor<51> == '1' then
 permissions.ap<2> = '0';

 return permissions;

aarch64/translation/vmsa_ttentry/AArch64.S1ApplyTablePerms

 // AArch64.S1ApplyTablePerms()
 // ===========================
 // Apply hierarchical permissions encoded in stage 1 table descriptors

 Permissions AArch64.S1ApplyTablePerms(Permissions permissions, bits(64) descriptor,
 Regime regime, S1TTWParams walkparams)
 if walkparams.hpd == '1' then
 permissions.ap_table = Zeros();
 if HasUnprivileged(regime) then
 permissions.uxn_table = Zeros();
 permissions.pxn_table = Zeros();
 else
 permissions.xn_table = Zeros();

 return permissions;

 if regime == Regime_EL10 && EL2Enabled() && walkparams.nv1 == '1' then
 ap_table = descriptor<62>:'0';
 pxn_table = descriptor<60>;
 permissions.ap_table = permissions.ap_table OR ap_table;
 permissions.pxn_table = permissions.pxn_table OR pxn_table;

 return permissions;

 if HasUnprivileged(regime) then
 ap_table = descriptor<62:61>;
 uxn_table = descriptor<60>;
 pxn_table = descriptor<59>;
 permissions.ap_table = permissions.ap_table OR ap_table;
 permissions.uxn_table = permissions.uxn_table OR uxn_table;
 permissions.pxn_table = permissions.pxn_table OR pxn_table;
 else
 ap_table = descriptor<62>:'0';
 xn_table = descriptor<60>;
 permissions.ap_table = permissions.ap_table OR ap_table;
 permissions.xn_table = permissions.xn_table OR xn_table;

 return permissions;

aarch64/translation/vmsa_ttentry/AArch64.S2ApplyOutputPerms

 // AArch64.S2ApplyOutputPerms()
 // ============================
 // Apply output permissions encoded in stage 2 page/block descriptors

 Permissions AArch64.S2ApplyOutputPerms(bits(64) descriptor, S2TTWParams walkparams)
J1-8116 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 Permissions permissions;

 permissions.s2ap = descriptor<7:6>;
 permissions.s2xn = descriptor<54>;

 if HaveExtendedExecuteNeverExt() then
 permissions.s2xnx = descriptor<53>;
 else
 permissions.s2xnx = '0';

 // Descriptors marked with DBM set have the effective value of S2AP[1] set.
 // This implies no permission faults caused by lack of write permissions are
 // reported, and the Dirty bit can be set.
 if walkparams.ha == '1' && walkparams.hd == '1' && descriptor<51> == '1' then
 permissions.s2ap<1> = '1';

 return permissions;

aarch64/translation/vmsa_walk/AArch64.S1InitialTTWState

 // AArch64.S1InitialTTWState()
 // ===========================
 // Set properties of first access to translation tables in stage 1

 TTWState AArch64.S1InitialTTWState(S1TTWParams walkparams, bits(64) va,
 Regime regime)
 TTWState walkstate;
 FullAddress tablebase;

 startlevel = AArch64.S1StartLevel(walkparams);
 ttbr = AArch64.S1TTBR(regime, va);
 case AArch64.CurrentSecurityState() of
 when SS_Secure tablebase.paspace = PAS_Secure;
 when SS_NonSecure tablebase.paspace = PAS_NonSecure;

 tablebase.address = AArch64.TTBaseAddress(ttbr, walkparams.txsz,
 walkparams.ps, walkparams.ds,
 walkparams.tgx, startlevel);

 walkstate.baseaddress = tablebase;
 walkstate.level = startlevel;
 walkstate.istable = TRUE;
 walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn,
 walkparams.orgn);

 return walkstate;

aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateLast

 // AArch64.S1NextWalkStateLast()
 // =============================
 // Decode stage 1 page or block descriptor as output to this stage of translation

 TTWState AArch64.S1NextWalkStateLast(TTWState currentstate, Regime regime,
 S1TTWParams walkparams, bits(64) descriptor)
 TTWState nextstate;
 FullAddress baseaddress;

 if currentstate.level == FINAL_LEVEL then
 baseaddress.address = AArch64.PageBase(descriptor, walkparams.ds,
 walkparams.tgx);
 else
 baseaddress.address = AArch64.BlockBase(descriptor, walkparams.ds,
 walkparams.tgx, currentstate.level);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8117
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 if currentstate.baseaddress.paspace == PAS_Secure then
 // Determine PA space of the block from NS bit
 baseaddress.paspace = if descriptor<5> == '0' then PAS_Secure else PAS_NonSecure;
 else
 baseaddress.paspace = PAS_NonSecure;

 nextstate.istable = FALSE;
 nextstate.level = currentstate.level;
 nextstate.baseaddress = baseaddress;

 attrindx = descriptor<4:2>;
 sh = if walkparams.ds == '1' then walkparams.sh else descriptor<9:8>;
 attr = MAIRAttr(UInt(attrindx), walkparams.mair);
 s1aarch64 = TRUE;

 nextstate.memattrs = S1DecodeMemAttrs(attr, sh, s1aarch64);
 nextstate.permissions = AArch64.S1ApplyOutputPerms(currentstate.permissions,
 descriptor, regime, walkparams);
 nextstate.contiguous = AArch64.ContiguousBit(walkparams.tgx, currentstate.level,
 descriptor);
 nextstate.guardedpage = descriptor<50>;

 return nextstate;

aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateTable

 // AArch64.S1NextWalkStateTable()
 // ==============================
 // Decode stage 1 table descriptor to transition to the next level

 TTWState AArch64.S1NextWalkStateTable(TTWState currentstate, Regime regime,
 S1TTWParams walkparams, bits(64) descriptor)
 TTWState nextstate;
 FullAddress tablebase;

 tablebase.address = AArch64.NextTableBase(descriptor, walkparams.ds,
 walkparams.tgx);
 if currentstate.baseaddress.paspace == PAS_Secure then
 // Determine PA space of the next table from NSTable bit
 tablebase.paspace = if descriptor<63> == '0' then PAS_Secure else PAS_NonSecure;
 else
 // Otherwise bit 63 is RES0 and there is no NSTable bit
 tablebase.paspace = currentstate.baseaddress.paspace;

 nextstate.istable = TRUE;
 nextstate.level = currentstate.level + 1;
 nextstate.baseaddress = tablebase;
 nextstate.memattrs = currentstate.memattrs;
 nextstate.permissions = AArch64.S1ApplyTablePerms(currentstate.permissions,
 descriptor, regime,
 walkparams);

 return nextstate;

aarch64/translation/vmsa_walk/AArch64.S1Walk

 // AArch64.S1Walk()
 // ================
 // Traverse stage 1 translation tables obtaining the final descriptor
 // as well as the address leading to that descriptor

 (FaultRecord, AddressDescriptor, TTWState, bits(64)) AArch64.S1Walk(
 FaultRecord fault, S1TTWParams walkparams, bits(64) va, Regime regime,
J1-8118 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 AccType acctype, boolean iswrite)
 if HasUnprivileged(regime) && AArch64.S1EPD(regime, va) == '1' then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(64) UNKNOWN);

 if PSTATE.EL == EL0 && walkparams.nfd == '1' then
 if acctype == AccType_NONFAULT then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(64) UNKNOWN);

 if AArch64.S1InvalidTxSZ(walkparams) then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(64) UNKNOWN);

 walkstate = AArch64.S1InitialTTWState(walkparams, va, regime);

 // Detect Address Size Fault by TTB
 if AArch64.OAOutOfRange(walkstate, walkparams.ps, walkparams.tgx) then
 fault.statuscode = Fault_AddressSize;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(64) UNKNOWN);

 bits(64) descriptor;
 repeat
 fault.level = walkstate.level;

 FullAddress descaddress = AArch64.TTEntryAddress(walkstate.level, walkparams.tgx,
 walkparams.txsz, va,
 walkstate.baseaddress);

 if !AArch64.S1DCacheEnabled(regime) then
 walkmemattrs = NormalNCMemAttr();
 walkmemattrs.xs = walkstate.memattrs.xs;
 else
 walkmemattrs = walkstate.memattrs;

 // Shareability of target memory subject to stage 2 translation
 // is maintained as input to stage 2.
 if regime == Regime_EL10 && EL2Enabled() && HCR_EL2.VM == '1' then
 walkmemattrs.shareability = walkstate.memattrs.shareability;
 else
 walkmemattrs.shareability = NormaliseShareability(walkmemattrs);

 walkaddress = CreateAddressDescriptor(va, descaddress, walkmemattrs);

 if regime == Regime_EL10 && EL2Enabled() then
 s1aarch64 = TRUE;
 s2fs1walk = TRUE;
 aligned = TRUE;
 iswrite = FALSE;
 (s2fault, s2walkaddress) = AArch64.S2Translate(fault, walkaddress,
 s1aarch64, s2fs1walk, AccType_TTW,
 aligned, iswrite);

 if s2fault.statuscode != Fault_None then
 return (s2fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(64) UNKNOWN);

 (fault, descriptor) = FetchDescriptor(walkparams.ee, s2walkaddress, fault);
 else
 (fault, descriptor) = FetchDescriptor(walkparams.ee, walkaddress, fault);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8119
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(64) UNKNOWN);

 desctype = AArch64.DecodeDescriptorType(descriptor, walkparams.ds,
 walkparams.tgx, walkstate.level);

 case desctype of
 when DescriptorType_Table
 walkstate = AArch64.S1NextWalkStateTable(walkstate, regime,
 walkparams, descriptor);

 // Detect Address Size Fault by table descriptor
 if AArch64.OAOutOfRange(walkstate, walkparams.ps, walkparams.tgx) then
 fault.statuscode = Fault_AddressSize;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(64) UNKNOWN);

 when DescriptorType_Page, DescriptorType_Block
 walkstate = AArch64.S1NextWalkStateLast(walkstate, regime,
 walkparams, descriptor);

 when DescriptorType_Invalid
 fault.statuscode = Fault_Translation;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(64) UNKNOWN);

 otherwise
 Unreachable();

 until desctype IN {DescriptorType_Page, DescriptorType_Block};

 if (walkstate.contiguous == '1' &&
 AArch64.ContiguousBitFaults(walkparams.txsz, walkparams.tgx,
 walkstate.level)) then
 fault.statuscode = Fault_Translation;
 elsif desctype == DescriptorType_Block && AArch64.BlocknTFaults(descriptor) then
 fault.statuscode = Fault_Translation;
 // Detect Address Size Fault by final output
 elsif AArch64.OAOutOfRange(walkstate, walkparams.ps, walkparams.tgx) then
 fault.statuscode = Fault_AddressSize;
 // Check descriptor AF bit
 elsif descriptor<10> == '0'
 && walkparams.ha == '0'
 && (!(acctype IN {AccType_IC, AccType_DC})
 || boolean IMPLEMENTATION_DEFINED "Generate access flag fault on IC/DC operations") then
 fault.statuscode = Fault_AccessFlag;
 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(64) UNKNOWN);
 else
 return (fault, walkaddress, walkstate, descriptor);

aarch64/translation/vmsa_walk/AArch64.S2InitialTTWState

 // AArch64.S2InitialTTWState()
 // ===========================
 // Set properties of first access to translation tables in stage 2

 TTWState AArch64.S2InitialTTWState(S2TTWParams walkparams)
 TTWState walkstate;
 FullAddress tablebase;

 ttbr = VTTBR_EL2;
 startlevel = AArch64.S2StartLevel(walkparams);
J1-8120 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 tablebase.paspace = PAS_NonSecure;
 tablebase.address = AArch64.TTBaseAddress(ttbr, walkparams.txsz,
 walkparams.ps, walkparams.ds,
 walkparams.tgx, startlevel);

 walkstate.baseaddress = tablebase;
 walkstate.level = startlevel;
 walkstate.istable = TRUE;
 walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn,
 walkparams.orgn);

 return walkstate;

aarch64/translation/vmsa_walk/AArch64.S2NextWalkStateLast

 // AArch64.S2NextWalkStateLast()
 // =============================
 // Decode stage 2 page or block descriptor as output to this stage of translation

 TTWState AArch64.S2NextWalkStateLast(TTWState currentstate, S2TTWParams walkparams,
 AddressDescriptor ipa, bits(64) descriptor)
 TTWState nextstate;
 FullAddress baseaddress;

 if AArch64.CurrentSecurityState() == SS_Secure then
 baseaddress.paspace = AArch64.SS2OutputPASpace(walkparams,
 ipa.paddress.paspace);
 else
 baseaddress.paspace = PAS_NonSecure;

 if currentstate.level == FINAL_LEVEL then
 baseaddress.address = AArch64.PageBase(descriptor, walkparams.ds,
 walkparams.tgx);
 else
 baseaddress.address = AArch64.BlockBase(descriptor, walkparams.ds,
 walkparams.tgx, currentstate.level);

 nextstate.istable = FALSE;
 nextstate.level = currentstate.level;
 nextstate.baseaddress = baseaddress;
 nextstate.permissions = AArch64.S2ApplyOutputPerms(descriptor, walkparams);

 s2_attr = descriptor<5:2>;
 s2_sh = if walkparams.ds == '1' then walkparams.sh else descriptor<9:8>;
 s2_fnxs = descriptor<11>;
 if walkparams.fwb == '1' then
 nextstate.memattrs = AArch64.S2ApplyFWBMemAttrs(ipa.memattrs, s2_attr, s2_sh);
 if s2_attr<1:0> == '10' then // Force writeback
 nextstate.memattrs.xs = '0';
 else
 nextstate.memattrs.xs = if s2_fnxs == '1' then '0' else ipa.memattrs.xs;
 else
 nextstate.memattrs = S2DecodeMemAttrs(s2_attr, s2_sh);
 nextstate.memattrs.xs = if s2_fnxs == '1' then '0' else ipa.memattrs.xs;
 nextstate.contiguous = AArch64.ContiguousBit(walkparams.tgx, currentstate.level,
 descriptor);

 return nextstate;

aarch64/translation/vmsa_walk/AArch64.S2NextWalkStateTable

 // AArch64.S2NextWalkStateTable()
 // ==============================
 // Decode stage 2 table descriptor to transition to the next level
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8121
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 TTWState AArch64.S2NextWalkStateTable(TTWState currentstate,
 S2TTWParams walkparams,
 bits(64) descriptor)
 TTWState nextstate;
 FullAddress tablebase;

 tablebase.address = AArch64.NextTableBase(descriptor, walkparams.ds,
 walkparams.tgx);
 tablebase.paspace = currentstate.baseaddress.paspace;

 nextstate.istable = TRUE;
 nextstate.level = currentstate.level + 1;
 nextstate.baseaddress = tablebase;
 nextstate.memattrs = currentstate.memattrs;

 return nextstate;

aarch64/translation/vmsa_walk/AArch64.S2Walk

 // AArch64.S2Walk()
 // ================
 // Traverse stage 2 translation tables obtaining the final descriptor
 // as well as the address leading to that descriptor

 (FaultRecord, AddressDescriptor, TTWState, bits(64)) AArch64.S2Walk(
 FaultRecord fault, AddressDescriptor ipa, S2TTWParams walkparams,
 AccType acctype, boolean iswrite, boolean s1aarch64)
 if (AArch64.S2InvalidTxSZ(walkparams, s1aarch64) ||
 AArch64.S2InvalidSL(walkparams) ||
 AArch64.S2InconsistentSL(walkparams)) then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(64) UNKNOWN);

 if AArch64.CurrentSecurityState() == SS_Secure then
 walkstate = AArch64.SS2InitialTTWState(walkparams, ipa.paddress.paspace);
 else
 walkstate = AArch64.S2InitialTTWState(walkparams);

 // Detect Address Size Fault by TTB
 if AArch64.OAOutOfRange(walkstate, walkparams.ps, walkparams.tgx) then
 fault.statuscode = Fault_AddressSize;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(64) UNKNOWN);

 bits(64) descriptor;
 repeat
 fault.level = walkstate.level;

 FullAddress descaddress;
 if walkstate.level == AArch64.S2StartLevel(walkparams) then
 // Initial lookup might index into concatenated tables
 descaddress = AArch64.S2SLTTEntryAddress(walkparams, ipa.paddress.address,
 walkstate.baseaddress);
 else
 ipa_64 = ZeroExtend(ipa.paddress.address, 64);
 descaddress = AArch64.TTEntryAddress(walkstate.level, walkparams.tgx,
 walkparams.txsz, ipa_64,
 walkstate.baseaddress);

 if HCR_EL2.CD == '1' then
 walkmemattrs = NormalNCMemAttr();
 walkmemattrs.xs = walkstate.memattrs.xs;
J1-8122 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 else
 walkmemattrs = walkstate.memattrs;

 // VA parameter is for the Abort() call on the other side of _Mem
 walkaddress = CreateAddressDescriptor(ipa.vaddress, descaddress, walkmemattrs);

 walkaddress.memattrs.shareability = NormaliseShareability(walkaddress.memattrs);
 (fault, descriptor) = FetchDescriptor(walkparams.ee, walkaddress, fault);

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(64) UNKNOWN);

 desctype = AArch64.DecodeDescriptorType(descriptor, walkparams.ds,
 walkparams.tgx, walkstate.level);

 case desctype of
 when DescriptorType_Table
 walkstate = AArch64.S2NextWalkStateTable(walkstate, walkparams,
 descriptor);

 // Detect Address Size Fault by table descriptor
 if AArch64.OAOutOfRange(walkstate, walkparams.ps, walkparams.tgx) then
 fault.statuscode = Fault_AddressSize;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(64) UNKNOWN);

 when DescriptorType_Page, DescriptorType_Block
 walkstate = AArch64.S2NextWalkStateLast(walkstate, walkparams,
 ipa, descriptor);

 when DescriptorType_Invalid
 fault.statuscode = Fault_Translation;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(64) UNKNOWN);

 otherwise
 Unreachable();

 until desctype IN {DescriptorType_Page, DescriptorType_Block};

 if (walkstate.contiguous == '1' &&
 AArch64.ContiguousBitFaults(walkparams.txsz, walkparams.tgx,
 walkstate.level)) then
 fault.statuscode = Fault_Translation;
 elsif desctype == DescriptorType_Block && AArch64.BlocknTFaults(descriptor) then
 fault.statuscode = Fault_Translation;
 // Detect Address Size Fault by final output
 elsif AArch64.OAOutOfRange(walkstate, walkparams.ps, walkparams.tgx) then
 fault.statuscode = Fault_AddressSize;
 // Check descriptor AF bit
 elsif descriptor<10> == '0'
 && walkparams.ha == '0'
 && (!(acctype IN {AccType_IC, AccType_DC})
 || boolean IMPLEMENTATION_DEFINED "Generate access flag fault on IC/DC operations") then
 fault.statuscode = Fault_AccessFlag;
 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(64) UNKNOWN);
 else
 return (fault, walkaddress, walkstate, descriptor);

aarch64/translation/vmsa_walk/AArch64.SS2InitialTTWState

 // AArch64.SS2InitialTTWState()
 // ============================
 // Set properties of first access to translation tables in Secure stage 2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8123
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 TTWState AArch64.SS2InitialTTWState(S2TTWParams walkparams, PASpace ipaspace)
 TTWState walkstate;
 FullAddress tablebase;

 if ipaspace == PAS_Secure then
 ttbr = VSTTBR_EL2;
 else
 ttbr = VTTBR_EL2;

 if ipaspace == PAS_Secure then
 if walkparams.sw == '0' then
 tablebase.paspace = PAS_Secure;
 else
 tablebase.paspace = PAS_NonSecure;
 else
 if walkparams.nsw == '0' then
 tablebase.paspace = PAS_Secure;
 else
 tablebase.paspace = PAS_NonSecure;

 startlevel = AArch64.S2StartLevel(walkparams);
 tablebase.address = AArch64.TTBaseAddress(ttbr, walkparams.txsz,
 walkparams.ps, walkparams.ds,
 walkparams.tgx, startlevel);

 walkstate.baseaddress = tablebase;
 walkstate.level = startlevel;
 walkstate.istable = TRUE;
 walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn,
 walkparams.orgn);

 return walkstate;

aarch64/translation/vmsa_walk/AArch64.SS2OutputPASpace

 // AArch64.SS2OutputPASpace()
 // ==========================
 // Assign PA Space to output of Secure stage 2 translation

 PASpace AArch64.SS2OutputPASpace(S2TTWParams walkparams, PASpace ipaspace)
 if ipaspace == PAS_Secure then
 if walkparams.<sw,sa> == '00' then
 return PAS_Secure;
 else
 return PAS_NonSecure;
 else
 if walkparams.<sw,sa,nsw,nsa> == '0000' then
 return PAS_Secure;
 else
 return PAS_NonSecure;

aarch64/translation/vmsa_walkparams/AArch64.BBMSupportLevel

 // AArch64.BBMSupportLevel()
 // =========================
 // Returns the level of FEAT_BBM supported

 integer AArch64.BlockBBMSupportLevel()
 if !HaveBlockBBM() then
 return integer UNKNOWN;
 else
 return integer IMPLEMENTATION_DEFINED "Block BBM support level";
J1-8124 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/vmsa_walkparams/AArch64.CurrentSecurityState

 // AArch64.CurrentSecurityState()
 // ==============================
 // Return secutity state of current EL

 SecurityState AArch64.CurrentSecurityState()
 return SecurityStateAtEL(PSTATE.EL);

aarch64/translation/vmsa_walkparams/AArch64.DecodeTG0

 // AArch64.DecodeTG0()
 // ===================
 // Decode granule size configuration bits TG0

 TGx AArch64.DecodeTG0(bits(2) tg0)
 if tg0 == '11' then
 tg0 = bits(2) IMPLEMENTATION_DEFINED "Reserved TG0 encoding granule size";

 case tg0 of
 when '00' return TGx_4KB;
 when '01' return TGx_64KB;
 when '10' return TGx_16KB;

aarch64/translation/vmsa_walkparams/AArch64.DecodeTG1

 // AArch64.DecodeTG1()
 // ===================
 // Decode granule size configuration bits TG1

 TGx AArch64.DecodeTG1(bits(2) tg1)
 if tg1 == '00' then
 tg1 = bits(2) IMPLEMENTATION_DEFINED "Reserved TG1 encoding granule size";

 case tg1 of
 when '10' return TGx_4KB;
 when '11' return TGx_64KB;
 when '01' return TGx_16KB;

aarch64/translation/vmsa_walkparams/AArch64.GetS1TTWParams

 // AArch64.GetS1TTWParams()
 // ========================
 // Returns stage 1 translation table walk parameters from respective controlling
 // system registers.

 S1TTWParams AArch64.GetS1TTWParams(Regime regime, bits(64) va)
 S1TTWParams walkparams;

 varange = AArch64.GetVARange(va);

 case regime of
 when Regime_EL3 walkparams = AArch64.S1TTWParamsEL3();
 when Regime_EL2 walkparams = AArch64.S1TTWParamsEL2();
 when Regime_EL20 walkparams = AArch64.S1TTWParamsEL20(varange);
 when Regime_EL10 walkparams = AArch64.S1TTWParamsEL10(varange);

 maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);
 mintxsz = AArch64.S1MinTxSZ(walkparams.ds, walkparams.tgx);
 if UInt(walkparams.txsz) > maxtxsz then
 if !(boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value above maximum") then
 walkparams.txsz = maxtxsz<5:0>;
 elsif !Have52BitVAExt() && UInt(walkparams.txsz) < mintxsz then
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8125
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if !(boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value below minimum") then
 walkparams.txsz = mintxsz<5:0>;

 return walkparams;

aarch64/translation/vmsa_walkparams/AArch64.GetS2TTWParams

 // AArch64.GetS2TTWParams()
 // ========================
 // Gather walk parameters for stage 2 translation

 S2TTWParams AArch64.GetS2TTWParams(PASpace ipaspace, boolean s1aarch64)
 S2TTWParams walkparams;

 ss = AArch64.CurrentSecurityState();
 if ss == SS_NonSecure then
 walkparams = AArch64.NSS2TTWParams(s1aarch64);
 elsif HaveSecureEL2Ext() && ss == SS_Secure then
 walkparams = AArch64.SS2TTWParams(ipaspace, s1aarch64);
 else
 Unreachable();

 maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);
 mintxsz = AArch64.S2MinTxSZ(walkparams.ds, walkparams.tgx, s1aarch64);
 if UInt(walkparams.txsz) > maxtxsz then
 if !(boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value above maximum") then
 walkparams.txsz = maxtxsz<5:0>;
 elsif !Have52BitPAExt() && UInt(walkparams.txsz) < mintxsz then
 if !(boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value below minimum") then
 walkparams.txsz = mintxsz<5:0>;

 return walkparams;

aarch64/translation/vmsa_walkparams/AArch64.GetVARange

 // AArch64.GetVARange()
 // ====================
 // Determines if the VA that is to be translated lies in LOWER or UPPER address range.

 VARange AArch64.GetVARange(bits(64) va)
 if va<55> == '0' then
 return VARange_LOWER;
 else
 return VARange_UPPER;

aarch64/translation/vmsa_walkparams/AArch64.MaxTxSZ

 // AArch64.MaxTxSZ()
 // =================
 // Retrieve the maximum value of TxSZ indicating minimum input address size for both
 // stages of translation

 integer AArch64.MaxTxSZ(TGx tgx)
 if HaveSmallTranslationTableExt() && !UsingAArch32() then
 case tgx of
 when TGx_4KB return 48;
 when TGx_16KB return 48;
 when TGx_64KB return 47;
 return 39;
J1-8126 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/vmsa_walkparams/AArch64.NSS2TTWParams

 // AArch64.NSS2TTWParams()
 // =======================
 // Gather walk parameters specific for Non-secure stage 2 translation

 S2TTWParams AArch64.NSS2TTWParams(boolean s1aarch64)
 S2TTWParams walkparams;

 walkparams.vm = HCR_EL2.VM OR HCR_EL2.DC;
 walkparams.tgx = AArch64.DecodeTG0(VTCR_EL2.TG0);
 walkparams.txsz = VTCR_EL2.T0SZ;
 walkparams.sl0 = VTCR_EL2.SL0;
 walkparams.ps = VTCR_EL2.PS;
 walkparams.irgn = VTCR_EL2.IRGN0;
 walkparams.orgn = VTCR_EL2.ORGN0;
 walkparams.sh = VTCR_EL2.SH0;
 walkparams.ee = SCTLR_EL2.EE;

 walkparams.ptw = if HCR_EL2.TGE == '0' then HCR_EL2.PTW else '0';
 walkparams.fwb = if HaveStage2MemAttrControl() then HCR_EL2.FWB else '0';
 walkparams.ha = if HaveAccessFlagUpdateExt() then VTCR_EL2.HA else '0';
 walkparams.hd = if HaveDirtyBitModifierExt() then VTCR_EL2.HD else '0';
 if walkparams.tgx IN {TGx_4KB, TGx_16KB} && Have52BitIPAAndPASpaceExt() then
 walkparams.ds = VTCR_EL2.DS;
 else
 walkparams.ds = '0';
 if walkparams.tgx == TGx_4KB && Have52BitIPAAndPASpaceExt() then
 walkparams.sl2 = VTCR_EL2.SL2 AND VTCR_EL2.DS;
 else
 walkparams.sl2 = '0';

 return walkparams;

aarch64/translation/vmsa_walkparams/AArch64.PAMax

 // AArch64.PAMax()
 // ===============
 // Returns the IMPLEMENTATION DEFINED maximum number of bits capable of representing
 // physical address for this processor

 integer AArch64.PAMax()
 return integer IMPLEMENTATION_DEFINED "Maximum Physical Address Size";

aarch64/translation/vmsa_walkparams/AArch64.S1DCacheEnabled

 // AArch64.S1DCacheEnabled()
 // =========================
 // Determine cacheability of stage 1 data accesses

 boolean AArch64.S1DCacheEnabled(Regime regime)
 case regime of
 when Regime_EL3 return SCTLR_EL3.C == '1';
 when Regime_EL2 return SCTLR_EL2.C == '1';
 when Regime_EL20 return SCTLR_EL2.C == '1';
 when Regime_EL10 return SCTLR_EL1.C == '1';

aarch64/translation/vmsa_walkparams/AArch64.S1EPD

 // AArch64.S1EPD()
 // ===============
 // Determine whether stage 1 translation table walk is allowed for the VA range

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8127
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 bit AArch64.S1EPD(Regime regime, bits(64) va)
 assert HasUnprivileged(regime);
 varange = AArch64.GetVARange(va);

 case regime of
 when Regime_EL20 return if varange == VARange_LOWER then TCR_EL2.EPD0 else TCR_EL2.EPD1;
 when Regime_EL10 return if varange == VARange_LOWER then TCR_EL1.EPD0 else TCR_EL1.EPD1;

aarch64/translation/vmsa_walkparams/AArch64.S1Enabled

 // AArch64.S1Enabled()
 // ===================
 // Determine if stage 1 for the acting translation regime is enabled

 boolean AArch64.S1Enabled(Regime regime)
 case regime of
 when Regime_EL3 return SCTLR_EL3.M == '1';
 when Regime_EL2 return SCTLR_EL2.M == '1';
 when Regime_EL20 return SCTLR_EL2.M == '1';
 when Regime_EL10 return (!EL2Enabled() || HCR_EL2.<DC,TGE> == '00') && SCTLR_EL1.M == '1';

aarch64/translation/vmsa_walkparams/AArch64.S1ICacheEnabled

 // AArch64.S1ICacheEnabled()
 // =========================
 // Determine cacheability of stage 1 instruction fetches

 boolean AArch64.S1ICacheEnabled(Regime regime)
 case regime of
 when Regime_EL3 return SCTLR_EL3.I == '1';
 when Regime_EL2 return SCTLR_EL2.I == '1';
 when Regime_EL20 return SCTLR_EL2.I == '1';
 when Regime_EL10 return SCTLR_EL1.I == '1';

aarch64/translation/vmsa_walkparams/AArch64.S1MinTxSZ

 // AArch64.S1MinTxSZ()
 // ===================
 // Retrieve the minimum value of TxSZ indicating maximum input address size for stage 1

 integer AArch64.S1MinTxSZ(bit ds, TGx tgx)
 if (Have52BitVAExt() && tgx == TGx_64KB) || ds == '1' then
 return 12;

 return 16;

aarch64/translation/vmsa_walkparams/AArch64.S1TTBR

 // AArch64.S1TTBR()
 // ================
 // Identify stage 1 table base register for the acting translation regime

 bits(64) AArch64.S1TTBR(Regime regime, bits(64) va)
 varange = AArch64.GetVARange(va);

 case regime of
 when Regime_EL3 return TTBR0_EL3;
 when Regime_EL2 return TTBR0_EL2;
 when Regime_EL20 return if varange == VARange_LOWER then TTBR0_EL2 else TTBR1_EL2;
 when Regime_EL10 return if varange == VARange_LOWER then TTBR0_EL1 else TTBR1_EL1;
J1-8128 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL10

 // AArch64.S1TTWParamsEL10()
 // =========================
 // Gather stage 1 translation table walk parameters for EL1&0 regime
 // (with EL2 enabled or disabled)

 S1TTWParams AArch64.S1TTWParamsEL10(VARange varange)
 S1TTWParams walkparams;

 if varange == VARange_LOWER then
 walkparams.tgx = AArch64.DecodeTG0(TCR_EL1.TG0);
 walkparams.txsz = TCR_EL1.T0SZ;
 walkparams.irgn = TCR_EL1.IRGN0;
 walkparams.orgn = TCR_EL1.ORGN0;
 walkparams.sh = TCR_EL1.SH0;
 walkparams.tbi = TCR_EL1.TBI0;

 walkparams.nfd = if HaveSVE() then TCR_EL1.NFD0 else '0';
 walkparams.tbid = if HavePACExt() then TCR_EL1.TBID0 else '0';
 walkparams.e0pd = if HaveE0PDExt() then TCR_EL1.E0PD0 else '0';
 walkparams.hpd = if AArch64.HaveHPDExt() then TCR_EL1.HPD0 else '0';
 else
 walkparams.tgx = AArch64.DecodeTG1(TCR_EL1.TG1);
 walkparams.txsz = TCR_EL1.T1SZ;
 walkparams.irgn = TCR_EL1.IRGN1;
 walkparams.orgn = TCR_EL1.ORGN1;
 walkparams.sh = TCR_EL1.SH1;
 walkparams.tbi = TCR_EL1.TBI1;

 walkparams.nfd = if HaveSVE() then TCR_EL1.NFD1 else '0';
 walkparams.tbid = if HavePACExt() then TCR_EL1.TBID1 else '0';
 walkparams.e0pd = if HaveE0PDExt() then TCR_EL1.E0PD1 else '0';
 walkparams.hpd = if AArch64.HaveHPDExt() then TCR_EL1.HPD1 else '0';

 walkparams.mair = MAIR_EL1;
 walkparams.wxn = SCTLR_EL1.WXN;
 walkparams.ps = TCR_EL1.IPS;
 walkparams.ee = SCTLR_EL1.EE;
 walkparams.sif = SCR_EL3.SIF;

 if EL2Enabled() then
 walkparams.dc = HCR_EL2.DC;
 walkparams.dct = if HaveMTE2Ext() then HCR_EL2.DCT else '0';

 if HaveTrapLoadStoreMultipleDeviceExt() then
 walkparams.ntlsmd = SCTLR_EL1.nTLSMD;
 else
 walkparams.ntlsmd = '1';

 if EL2Enabled() then
 if HCR_EL2.<NV,NV1> == '01' then
 case ConstrainUnpredictable() of
 when Constraint_NVNV1_00 walkparams.nv1 = '0';
 when Constraint_NVNV1_01 walkparams.nv1 = '1';
 when Constraint_NVNV1_11 walkparams.nv1 = '1';
 else
 walkparams.nv1 = HCR_EL2.NV1;
 else
 walkparams.nv1 = '0';

 walkparams.epan = if HavePAN3Ext() then SCTLR_EL1.EPAN else '0';
 walkparams.ha = if HaveAccessFlagUpdateExt() then TCR_EL1.HA else '0';
 walkparams.hd = if HaveDirtyBitModifierExt() then TCR_EL1.HD else '0';
 if walkparams.tgx IN {TGx_4KB, TGx_16KB} && Have52BitIPAAndPASpaceExt() then
 walkparams.ds = TCR_EL1.DS;
 else
 walkparams.ds = '0';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8129
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 return walkparams;

aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL2

 // AArch64.S1TTWParamsEL2()
 // ========================
 // Gather stage 1 translation table walk parameters for EL2 regime

 S1TTWParams AArch64.S1TTWParamsEL2()
 S1TTWParams walkparams;

 walkparams.tgx = AArch64.DecodeTG0(TCR_EL2.TG0);
 walkparams.txsz = TCR_EL2.T0SZ;
 walkparams.ps = TCR_EL2.PS;
 walkparams.irgn = TCR_EL2.IRGN0;
 walkparams.orgn = TCR_EL2.ORGN0;
 walkparams.sh = TCR_EL2.SH0;
 walkparams.tbi = TCR_EL2.TBI;
 walkparams.mair = MAIR_EL2;
 walkparams.wxn = SCTLR_EL2.WXN;
 walkparams.ee = SCTLR_EL2.EE;
 walkparams.sif = SCR_EL3.SIF;

 walkparams.tbid = if HavePACExt() then TCR_EL2.TBID else '0';
 walkparams.hpd = if AArch64.HaveHPDExt() then TCR_EL2.HPD else '0';
 walkparams.ha = if HaveAccessFlagUpdateExt() then TCR_EL2.HA else '0';
 walkparams.hd = if HaveDirtyBitModifierExt() then TCR_EL2.HD else '0';
 if walkparams.tgx IN {TGx_4KB, TGx_16KB} && Have52BitIPAAndPASpaceExt() then
 walkparams.ds = TCR_EL2.DS;
 else
 walkparams.ds = '0';

 return walkparams;

aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL20

 // AArch64.S1TTWParamsEL20()
 // =========================
 // Gather stage 1 translation table walk parameters for EL2&0 regime

 S1TTWParams AArch64.S1TTWParamsEL20(VARange varange)
 S1TTWParams walkparams;

 if varange == VARange_LOWER then
 walkparams.tgx = AArch64.DecodeTG0(TCR_EL2.TG0);
 walkparams.txsz = TCR_EL2.T0SZ;
 walkparams.irgn = TCR_EL2.IRGN0;
 walkparams.orgn = TCR_EL2.ORGN0;
 walkparams.sh = TCR_EL2.SH0;
 walkparams.tbi = TCR_EL2.TBI0;

 walkparams.nfd = if HaveSVE() then TCR_EL2.NFD0 else '0';
 walkparams.tbid = if HavePACExt() then TCR_EL2.TBID0 else '0';
 walkparams.e0pd = if HaveE0PDExt() then TCR_EL2.E0PD0 else '0';
 walkparams.hpd = if AArch64.HaveHPDExt() then TCR_EL2.HPD0 else '0';
 else
 walkparams.tgx = AArch64.DecodeTG1(TCR_EL2.TG1);
 walkparams.txsz = TCR_EL2.T1SZ;
 walkparams.irgn = TCR_EL2.IRGN1;
 walkparams.orgn = TCR_EL2.ORGN1;
 walkparams.sh = TCR_EL2.SH1;
 walkparams.tbi = TCR_EL2.TBI1;

J1-8130 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 walkparams.nfd = if HaveSVE() then TCR_EL2.NFD1 else '0';
 walkparams.tbid = if HavePACExt() then TCR_EL2.TBID1 else '0';
 walkparams.e0pd = if HaveE0PDExt() then TCR_EL2.E0PD1 else '0';
 walkparams.hpd = if AArch64.HaveHPDExt() then TCR_EL2.HPD1 else '0';

 walkparams.mair = MAIR_EL2;
 walkparams.wxn = SCTLR_EL2.WXN;
 walkparams.ps = TCR_EL2.IPS;
 walkparams.ee = SCTLR_EL2.EE;
 walkparams.sif = SCR_EL3.SIF;

 if HaveTrapLoadStoreMultipleDeviceExt() then
 walkparams.ntlsmd = SCTLR_EL2.nTLSMD;
 else
 walkparams.ntlsmd = '1';

 walkparams.epan = if HavePAN3Ext() then SCTLR_EL2.EPAN else '0';
 walkparams.ha = if HaveAccessFlagUpdateExt() then TCR_EL2.HA else '0';
 walkparams.hd = if HaveDirtyBitModifierExt() then TCR_EL2.HD else '0';
 if walkparams.tgx IN {TGx_4KB, TGx_16KB} && Have52BitIPAAndPASpaceExt() then
 walkparams.ds = TCR_EL2.DS;
 else
 walkparams.ds = '0';

 return walkparams;

aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL3

 // AArch64.S1TTWParamsEL3()
 // ========================
 // Gather stage 1 translation table walk parameters for EL3 regime

 S1TTWParams AArch64.S1TTWParamsEL3()
 S1TTWParams walkparams;

 walkparams.tgx = AArch64.DecodeTG0(TCR_EL3.TG0);
 walkparams.txsz = TCR_EL3.T0SZ;
 walkparams.ps = TCR_EL3.PS;
 walkparams.irgn = TCR_EL3.IRGN0;
 walkparams.orgn = TCR_EL3.ORGN0;
 walkparams.sh = TCR_EL3.SH0;
 walkparams.tbi = TCR_EL3.TBI;
 walkparams.mair = MAIR_EL3;
 walkparams.wxn = SCTLR_EL3.WXN;
 walkparams.ee = SCTLR_EL3.EE;
 walkparams.sif = SCR_EL3.SIF;

 walkparams.tbid = if HavePACExt() then TCR_EL3.TBID else '0';
 walkparams.hpd = if AArch64.HaveHPDExt() then TCR_EL3.HPD else '0';
 walkparams.ha = if HaveAccessFlagUpdateExt() then TCR_EL3.HA else '0';
 walkparams.hd = if HaveDirtyBitModifierExt() then TCR_EL3.HD else '0';
 if walkparams.tgx IN {TGx_4KB, TGx_16KB} && Have52BitIPAAndPASpaceExt() then
 walkparams.ds = TCR_EL3.DS;
 else
 walkparams.ds = '0';

 return walkparams;

aarch64/translation/vmsa_walkparams/AArch64.S2MinTxSZ

 // AArch64.S2MinTxSZ()
 // ===================
 // Retrieve the minimum value of TxSZ indicating maximum input address size for stage 2

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8131
ID072021 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 integer AArch64.S2MinTxSZ(bit ds, TGx tgx, boolean s1aarch64)
 ips = AArch64.PAMax();

 if Have52BitPAExt() && tgx != TGx_64KB && ds == '0' then
 ips = Min(48, AArch64.PAMax());

 min_txsz = 64 - ips;
 if !s1aarch64 then
 // EL1 is AArch32
 min_txsz = Min(min_txsz, 24);

 return min_txsz;

aarch64/translation/vmsa_walkparams/AArch64.SS2TTWParams

 // AArch64.SS2TTWParams()
 // ======================
 // Gather walk parameters specific for secure stage 2 translation

 S2TTWParams AArch64.SS2TTWParams(PASpace ipaspace, boolean s1aarch64)
 S2TTWParams walkparams;
 assert AArch64.CurrentSecurityState() == SS_Secure;

 if ipaspace == PAS_Secure then
 walkparams.tgx = AArch64.DecodeTG0(VSTCR_EL2.TG0);
 walkparams.txsz = VSTCR_EL2.T0SZ;
 walkparams.sl0 = VSTCR_EL2.SL0;
 if walkparams.tgx == TGx_4KB && Have52BitIPAAndPASpaceExt() then
 walkparams.sl2 = VSTCR_EL2.SL2 AND VTCR_EL2.DS;
 else
 walkparams.sl2 = '0';
 elsif ipaspace == PAS_NonSecure then
 walkparams.tgx = AArch64.DecodeTG0(VTCR_EL2.TG0);
 walkparams.txsz = VTCR_EL2.T0SZ;
 walkparams.sl0 = VTCR_EL2.SL0;
 if walkparams.tgx == TGx_4KB && Have52BitIPAAndPASpaceExt() then
 walkparams.sl2 = VTCR_EL2.SL2 AND VTCR_EL2.DS;
 else
 walkparams.sl2 = '0';
 else
 Unreachable();

 walkparams.sw = VSTCR_EL2.SW;
 walkparams.nsw = VTCR_EL2.NSW;
 walkparams.sa = VSTCR_EL2.SA;
 walkparams.nsa = VTCR_EL2.NSA;
 walkparams.vm = HCR_EL2.VM OR HCR_EL2.DC;
 walkparams.ps = VTCR_EL2.PS;
 walkparams.irgn = VTCR_EL2.IRGN0;
 walkparams.orgn = VTCR_EL2.ORGN0;
 walkparams.sh = VTCR_EL2.SH0;
 walkparams.ee = SCTLR_EL2.EE;

 walkparams.ptw = if HCR_EL2.TGE == '0' then HCR_EL2.PTW else '0';
 walkparams.fwb = if HaveStage2MemAttrControl() then HCR_EL2.FWB else '0';
 walkparams.ha = if HaveAccessFlagUpdateExt() then VTCR_EL2.HA else '0';
 walkparams.hd = if HaveDirtyBitModifierExt() then VTCR_EL2.HD else '0';
 if walkparams.tgx IN {TGx_4KB, TGx_16KB} && Have52BitIPAAndPASpaceExt() then
 walkparams.ds = VTCR_EL2.DS;
 else
 walkparams.ds = '0';

 return walkparams;
J1-8132 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/vmsa_walkparams/AArch64.VAMax

 // AArch64.VAMax()
 // ===============
 // Returns the IMPLEMENTATION DEFINED maximum number of bits capable of representing
 // the virtual address for this processor

 integer AArch64.VAMax()
 return integer IMPLEMENTATION_DEFINED "Maximum Virtual Address Size";
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8133
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
J1.2 Pseudocode for AArch32 operation

This section holds the pseudocode for execution in AArch32 state. Functions that are listed in this section are
identified as AArch32.FunctionName. Some of these functions have an equivalent AArch64 function,
AArch64.FunctionName. This section is organized by functional groups, with the functional groups being indicated by
hierarchical path names, for example aarch32/debug/breakpoint.

Note

Many AArch32 pseudocode functions have not been updated to show the constraints on the Armv7 UNPREDICTABLE
behaviors that are described in Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors. Where
AArch32 pseudocode shows something to be UNPREDICTABLE, check Appendix K1 for possible constraints on the
permitted behavior.

The top-level sections of the AArch32 pseudocode hierarchy are:

• aarch32/debug on page J1-8134.

• aarch32/exceptions on page J1-8143.

• aarch32/functions on page J1-8164.

• aarch32/translation on page J1-8194.

J1.2.1 aarch32/debug

This section includes the following pseudocode functions:

• aarch32/debug/VCRMatch/AArch32.VCRMatch on page J1-8134.

• aarch32/debug/authentication/AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled on
page J1-8135.

• aarch32/debug/breakpoint/AArch32.BreakpointMatch on page J1-8135.

• aarch32/debug/breakpoint/AArch32.BreakpointValueMatch on page J1-8136.

• aarch32/debug/breakpoint/AArch32.StateMatch on page J1-8137.

• aarch32/debug/enables/AArch32.GenerateDebugExceptions on page J1-8138.

• aarch32/debug/enables/AArch32.GenerateDebugExceptionsFrom on page J1-8138.

• aarch32/debug/pmu/AArch32.CheckForPMUOverflow on page J1-8139.

• aarch32/debug/pmu/AArch32.CountEvents on page J1-8139.

• aarch32/debug/takeexceptiondbg/AArch32.EnterHypModeInDebugState on page J1-8141.

• aarch32/debug/takeexceptiondbg/AArch32.EnterModeInDebugState on page J1-8141.

• aarch32/debug/takeexceptiondbg/AArch32.EnterMonitorModeInDebugState on page J1-8142.

• aarch32/debug/watchpoint/AArch32.WatchpointByteMatch on page J1-8142.

• aarch32/debug/watchpoint/AArch32.WatchpointMatch on page J1-8143.

aarch32/debug/VCRMatch/AArch32.VCRMatch

 // AArch32.VCRMatch()
 // ==================

 boolean AArch32.VCRMatch(bits(32) vaddress)

 if UsingAArch32() && ELUsingAArch32(EL1) && PSTATE.EL != EL2 then
 // Each bit position in this string corresponds to a bit in DBGVCR and an exception vector.
 match_word = Zeros(32);

 if vaddress<31:5> == ExcVectorBase()<31:5> then
 if HaveEL(EL3) && !IsSecure() then
 match_word<UInt(vaddress<4:2>) + 24> = '1'; // Non-secure vectors
 else
 match_word<UInt(vaddress<4:2>) + 0> = '1'; // Secure vectors (or no EL3)

 if HaveEL(EL3) && ELUsingAArch32(EL3) && IsSecure() && vaddress<31:5> == MVBAR<31:5> then
 match_word<UInt(vaddress<4:2>) + 8> = '1'; // Monitor vectors
J1-8134 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation

 // Mask out bits not corresponding to vectors.
 if !HaveEL(EL3) then
 mask = '00000000':'00000000':'00000000':'11011110'; // DBGVCR[31:8] are RES0
 elsif !ELUsingAArch32(EL3) then
 mask = '11011110':'00000000':'00000000':'11011110'; // DBGVCR[15:8] are RES0
 else
 mask = '11011110':'00000000':'11011100':'11011110';

 match_word = match_word AND DBGVCR AND mask;
 match = !IsZero(match_word);

 // Check for UNPREDICTABLE case - match on Prefetch Abort and Data Abort vectors
 if !IsZero(match_word<28:27,12:11,4:3>) && DebugTarget() == PSTATE.EL then
 match = ConstrainUnpredictableBool();

 if !IsZero(vaddress<1:0>) && match then
 match = ConstrainUnpredictableBool();
 else
 match = FALSE;

 return match;

aarch32/debug/authentication/AArch32.SelfHostedSecurePrivilegedInvasiveDebugEna
bled

 // AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled()
 // ==

 boolean AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled()
 // The definition of this function is IMPLEMENTATION DEFINED.
 // In the recommended interface, AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled returns
 // the state of the (DBGEN AND SPIDEN) signal.
 if !HaveEL(EL3) && !IsSecure() then return FALSE;
 return DBGEN == HIGH && SPIDEN == HIGH;

aarch32/debug/breakpoint/AArch32.BreakpointMatch

 // AArch32.BreakpointMatch()
 // =========================
 // Breakpoint matching in an AArch32 translation regime.

 (boolean,boolean) AArch32.BreakpointMatch(integer n, bits(32) vaddress, integer size)
 assert ELUsingAArch32(S1TranslationRegime());
 assert n < NumBreakpointsImplemented();

 enabled = DBGBCR[n].E == '1';
 ispriv = PSTATE.EL != EL0;
 linked = DBGBCR[n].BT == '0x01';
 isbreakpnt = TRUE;
 linked_to = FALSE;

 state_match = AArch32.StateMatch(DBGBCR[n].SSC, DBGBCR[n].HMC, DBGBCR[n].PMC,
 linked, DBGBCR[n].LBN, isbreakpnt, ispriv);
 (value_match, value_mismatch) = AArch32.BreakpointValueMatch(n, vaddress, linked_to);

 if size == 4 then // Check second halfword
 // If the breakpoint address and BAS of an Address breakpoint match the address of the
 // second halfword of an instruction, but not the address of the first halfword, it is
 // CONSTRAINED UNPREDICTABLE whether or not this breakpoint generates a Breakpoint debug
 // event.
 (match_i, mismatch_i) = AArch32.BreakpointValueMatch(n, vaddress + 2, linked_to);
 if !value_match && match_i then
 value_match = ConstrainUnpredictableBool();
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8135
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 if value_mismatch && !mismatch_i then
 value_mismatch = ConstrainUnpredictableBool();
 if vaddress<1> == '1' && DBGBCR[n].BAS == '1111' then
 // The above notwithstanding, if DBGBCR[n].BAS == '1111', then it is CONSTRAINED
 // UNPREDICTABLE whether or not a Breakpoint debug event is generated for an instruction
 // at the address DBGBVR[n]+2.
 if value_match then value_match = ConstrainUnpredictableBool();
 if !value_mismatch then value_mismatch = ConstrainUnpredictableBool();

 match = value_match && state_match && enabled;
 mismatch = value_mismatch && state_match && enabled;

 return (match, mismatch);

aarch32/debug/breakpoint/AArch32.BreakpointValueMatch

 // AArch32.BreakpointValueMatch()
 // ==============================
 // The first result is whether an Address Match or Context breakpoint is programmed on the
 // instruction at "address". The second result is whether an Address Mismatch breakpoint is
 // programmed on the instruction, that is, whether the instruction should be stepped.

 (boolean,boolean) AArch32.BreakpointValueMatch(integer n, bits(32) vaddress, boolean linked_to)

 // "n" is the identity of the breakpoint unit to match against.
 // "vaddress" is the current instruction address, ignored if linked_to is TRUE and for Context
 // matching breakpoints.
 // "linked_to" is TRUE if this is a call from StateMatch for linking.

 // If a non-existent breakpoint then it is CONSTRAINED UNPREDICTABLE whether this gives
 // no match or the breakpoint is mapped to another UNKNOWN implemented breakpoint.
 if n >= NumBreakpointsImplemented() then
 (c, n) = ConstrainUnpredictableInteger(0, NumBreakpointsImplemented() - 1);
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then return (FALSE,FALSE);

 // If this breakpoint is not enabled, it cannot generate a match. (This could also happen on a
 // call from StateMatch for linking).
 if DBGBCR[n].E == '0' then return (FALSE,FALSE);

 context_aware = (n >= (NumBreakpointsImplemented() - NumContextAwareBreakpointsImplemented()));

 // If BT is set to a reserved type, behaves either as disabled or as a not-reserved type.
 dbgtype = DBGBCR[n].BT;

 if ((dbgtype IN {'011x','11xx'} && !HaveVirtHostExt() && !HaveV82Debug()) || // Context matching
 (dbgtype == '010x' && HaltOnBreakpointOrWatchpoint()) || // Address mismatch
 (dbgtype != '0x0x' && !context_aware) || // Context matching
 (dbgtype == '1xxx' && !HaveEL(EL2))) then // EL2 extension
 (c, dbgtype) = ConstrainUnpredictableBits();
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then return (FALSE,FALSE);
 // Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

 // Determine what to compare against.
 match_addr = (dbgtype == '0x0x');
 mismatch = (dbgtype == '010x');
 match_vmid = (dbgtype == '10xx');
 match_cid1 = (dbgtype == 'xx1x');
 match_cid2 = (dbgtype == '11xx');
 linked = (dbgtype == 'xxx1');

 // If this is a call from StateMatch, return FALSE if the breakpoint is not programmed for a
 // VMID and/or context ID match, of if not context-aware. The above assertions mean that the
 // code can just test for match_addr == TRUE to confirm all these things.
 if linked_to && (!linked || match_addr) then return (FALSE,FALSE);
J1-8136 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation

 // If called from BreakpointMatch return FALSE for Linked context ID and/or VMID matches.
 if !linked_to && linked && !match_addr then return (FALSE,FALSE);

 // Do the comparison.
 if match_addr then
 byte = UInt(vaddress<1:0>);
 assert byte IN {0,2}; // "vaddress" is halfword aligned
 byte_select_match = (DBGBCR[n].BAS<byte> == '1');
 integer top = 31;
 BVR_match = (vaddress<top:2> == DBGBVR[n]<top:2>) && byte_select_match;

 elsif match_cid1 then
 BVR_match = (PSTATE.EL != EL2 && CONTEXTIDR == DBGBVR[n]<31:0>);
 if match_vmid then
 if ELUsingAArch32(EL2) then
 vmid = ZeroExtend(VTTBR.VMID, 16);
 bvr_vmid = ZeroExtend(DBGBXVR[n]<7:0>, 16);
 elsif !Have16bitVMID() || VTCR_EL2.VS == '0' then
 vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
 bvr_vmid = ZeroExtend(DBGBXVR[n]<7:0>, 16);
 else
 vmid = VTTBR_EL2.VMID;
 bvr_vmid = DBGBXVR[n]<15:0>;
 BXVR_match = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 vmid == bvr_vmid);
 elsif match_cid2 then
 BXVR_match = (PSTATE.EL != EL3 && (HaveVirtHostExt() || HaveV82Debug()) &&
 EL2Enabled() &&
 !ELUsingAArch32(EL2) &&
 DBGBXVR[n]<31:0> == CONTEXTIDR_EL2<31:0>);

 bvr_match_valid = (match_addr || match_cid1);
 bxvr_match_valid = (match_vmid || match_cid2);

 match = (!bxvr_match_valid || BXVR_match) && (!bvr_match_valid || BVR_match);

 return (match && !mismatch, !match && mismatch);

aarch32/debug/breakpoint/AArch32.StateMatch

 // AArch32.StateMatch()
 // ====================
 // Determine whether a breakpoint or watchpoint is enabled in the current mode and state.

 boolean AArch32.StateMatch(bits(2) SSC, bit HMC, bits(2) PxC, boolean linked, bits(4) LBN,
 boolean isbreakpnt, boolean ispriv)
 // "SSC", "HMC", "PxC" are the control fields from the DBGBCR[n] or DBGWCR[n] register.
 // "linked" is TRUE if this is a linked breakpoint/watchpoint type.
 // "LBN" is the linked breakpoint number from the DBGBCR[n] or DBGWCR[n] register.
 // "isbreakpnt" is TRUE for breakpoints, FALSE for watchpoints.
 // "ispriv" is valid for watchpoints, and selects between privileged and unprivileged accesses.

 // If parameters are set to a reserved type, behaves as either disabled or a defined type
 (c, SSC, HMC, PxC) = CheckValidStateMatch(SSC, HMC, PxC, isbreakpnt);
 if c == Constraint_DISABLED then return FALSE;
 // Otherwise the HMC,SSC,PxC values are either valid or the values returned by
 // CheckValidStateMatch are valid.

 PL2_match = HaveEL(EL2) && ((HMC == '1' && (SSC:PxC != '1000')) || SSC == '11');
 PL1_match = PxC<0> == '1';
 PL0_match = PxC<1> == '1';
 SSU_match = isbreakpnt && HMC == '0' && PxC == '00' && SSC != '11';

 if !ispriv && !isbreakpnt then
 priv_match = PL0_match;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8137
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 elsif SSU_match then
 priv_match = PSTATE.M IN {M32_User,M32_Svc,M32_System};
 else
 case PSTATE.EL of
 when EL3 priv_match = PL1_match; // EL3 and EL1 are both PL1
 when EL2 priv_match = PL2_match;
 when EL1 priv_match = PL1_match;
 when EL0 priv_match = PL0_match;

 case SSC of
 when '00' security_state_match = TRUE; // Both
 when '01' security_state_match = !IsSecure(); // Non-secure only
 when '10' security_state_match = IsSecure(); // Secure only
 when '11' security_state_match = (HMC == '1' || IsSecure()); // HMC=1 -> Both, 0 -> Secure
only

 if linked then
 // "LBN" must be an enabled context-aware breakpoint unit. If it is not context-aware then
 // it is CONSTRAINED UNPREDICTABLE whether this gives no match, or LBN is mapped to some
 // UNKNOWN breakpoint that is context-aware.
 lbn = UInt(LBN);
 first_ctx_cmp = NumBreakpointsImplemented() - NumContextAwareBreakpointsImplemented();
 last_ctx_cmp = NumBreakpointsImplemented() - 1;
 if (lbn < first_ctx_cmp || lbn > last_ctx_cmp) then
 (c, lbn) = ConstrainUnpredictableInteger(first_ctx_cmp, last_ctx_cmp);
 assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
 case c of
 when Constraint_DISABLED return FALSE; // Disabled
 when Constraint_NONE linked = FALSE; // No linking
 // Otherwise ConstrainUnpredictableInteger returned a context-aware breakpoint

 if linked then
 vaddress = bits(32) UNKNOWN;
 linked_to = TRUE;
 (linked_match,-) = AArch32.BreakpointValueMatch(lbn, vaddress, linked_to);

 return priv_match && security_state_match && (!linked || linked_match);

aarch32/debug/enables/AArch32.GenerateDebugExceptions

 // AArch32.GenerateDebugExceptions()
 // =================================

 boolean AArch32.GenerateDebugExceptions()
 return AArch32.GenerateDebugExceptionsFrom(PSTATE.EL, IsSecure());

aarch32/debug/enables/AArch32.GenerateDebugExceptionsFrom

 // AArch32.GenerateDebugExceptionsFrom()
 // =====================================

 boolean AArch32.GenerateDebugExceptionsFrom(bits(2) from, boolean secure)

 if !ELUsingAArch32(DebugTargetFrom(secure)) then
 mask = '0'; // No PSTATE.D in AArch32 state
 return AArch64.GenerateDebugExceptionsFrom(from, secure, mask);

 if DBGOSLSR.OSLK == '1' || DoubleLockStatus() || Halted() then
 return FALSE;

 if HaveEL(EL3) && secure then
 assert from != EL2; // Secure EL2 always uses AArch64
 if IsSecureEL2Enabled() then
 // Implies that EL3 and EL2 both using AArch64
J1-8138 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 enabled = MDCR_EL3.SDD == '0';
 else
 spd = if ELUsingAArch32(EL3) then SDCR.SPD else MDCR_EL3.SPD32;
 if spd<1> == '1' then
 enabled = spd<0> == '1';
 else
 // SPD == 0b01 is reserved, but behaves the same as 0b00.
 enabled = AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled();
 if from == EL0 then enabled = enabled || SDER.SUIDEN == '1';
 else
 enabled = from != EL2;

 return enabled;

aarch32/debug/pmu/AArch32.CheckForPMUOverflow

 // AArch32.CheckForPMUOverflow()
 // =============================
 // Signal Performance Monitors overflow IRQ and CTI overflow events

 boolean AArch32.CheckForPMUOverflow()

 if !ELUsingAArch32(EL1) then return AArch64.CheckForPMUOverflow();
 pmuirq = PMCR.E == '1' && PMINTENSET<31> == '1' && PMOVSSET<31> == '1';
 for n = 0 to NumEventCountersImplemented() - 1
 if HaveEL(EL2) then
 hpmn = if !ELUsingAArch32(EL2) then MDCR_EL2.HPMN else HDCR.HPMN;
 hpme = if !ELUsingAArch32(EL2) then MDCR_EL2.HPME else HDCR.HPME;
 E = (if n < UInt(hpmn) then PMCR.E else hpme);
 else
 E = PMCR.E;
 if E == '1' && PMINTENSET<n> == '1' && PMOVSSET<n> == '1' then pmuirq = TRUE;

 SetInterruptRequestLevel(InterruptID_PMUIRQ, if pmuirq then HIGH else LOW);

 CTI_SetEventLevel(CrossTriggerIn_PMUOverflow, if pmuirq then HIGH else LOW);

 // The request remains set until the condition is cleared. (For example, an interrupt handler
 // or cross-triggered event handler clears the overflow status flag by writing to PMOVSCLR_EL0.)

 return pmuirq;

aarch32/debug/pmu/AArch32.CountEvents

 // AArch32.CountEvents()
 // =====================
 // Return TRUE if counter "n" should count its event. For the cycle counter, n == 31.

 boolean AArch32.CountEvents(integer n)
 assert n == 31 || n < NumEventCountersImplemented();

 if !ELUsingAArch32(EL1) then return AArch64.CountEvents(n);

 // Event counting is disabled in Debug state
 debug = Halted();

 // In Non-secure state, some counters are reserved for EL2
 if HaveEL(EL2) then
 hpmn = if !ELUsingAArch32(EL2) then MDCR_EL2.HPMN else HDCR.HPMN;
 hpme = if !ELUsingAArch32(EL2) then MDCR_EL2.HPME else HDCR.HPME;
 resvd_for_el2 = n >= UInt(hpmn) && n != 31;
 else
 resvd_for_el2 = FALSE;

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8139
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 // Main enable controls
 if resvd_for_el2 then
 E = if ELUsingAArch32(EL2) then HDCR.HPME else MDCR_EL2.HPME;
 else
 E = PMCR.E;
 enabled = E == '1' && PMCNTENSET<n> == '1';

 // Event counting is allowed unless it is prohibited by any rule below
 prohibited = FALSE;
 // Event counting in Secure state is prohibited if all of:
 // * EL3 is implemented
 // * One of the following is true:
 // - EL3 is using AArch64, MDCR_EL3.SPME == 0, and either:
 // - FEAT_PMUv3p7 is not implemented
 // - MDCR_EL3.MPMX == 0
 // - EL3 is using AArch32 and SDCR.SPME == 0
 // * Not executing at EL0, or SDER.SUNIDEN == 0
 if HaveEL(EL3) && IsSecure() then
 spme = if ELUsingAArch32(EL3) then SDCR.SPME else MDCR_EL3.SPME;
 if !ELUsingAArch32(EL3) && HavePMUv3p7() then
 prohibited = spme == '0' && MDCR_EL3.MPMX == '0';
 else
 prohibited = spme == '0';
 if prohibited && PSTATE.EL == EL0 then
 prohibited = SDER.SUNIDEN == '0';

 // Event counting at EL2 is prohibited if all of:
 // * The HPMD Extension is implemented
 // * PMNx is not reserved for EL2
 // * HDCR.HPMD == 1
 if !prohibited && PSTATE.EL == EL2 && HaveHPMDExt() && !resvd_for_el2 then
 prohibited = HDCR.HPMD == '1';

 // The IMPLEMENTATION DEFINED authentication interface might override software
 if prohibited && !HaveNoSecurePMUDisableOverride() then
 prohibited = !ExternalSecureNoninvasiveDebugEnabled();

 // PMCR.DP disables the cycle counter when event counting is prohibited
 if enabled && prohibited && n == 31 then
 enabled = PMCR.DP == '0';

 // If FEAT_PMUv3p5 is implemented, cycle counting can be prohibited.
 // This is not overridden by PMCR.DP.
 if Havev85PMU() && n == 31 then
 if HaveEL(EL3) && IsSecure() then
 sccd = if ELUsingAArch32(EL3) then SDCR.SCCD else MDCR_EL3.SCCD;
 if sccd == '1' then prohibited = TRUE;
 if PSTATE.EL == EL2 && HDCR.HCCD == '1' then
 prohibited = TRUE;

 // Event counting might be frozen
 frozen = FALSE;

 // If FEAT_PMUv3p7 is implemented, event counting can be frozen
 if HavePMUv3p7() && n != 31 then
 ovflw = PMOVSR<NumEventCountersImplemented()-1:0>;
 if resvd_for_el2 then
 FZ = if ELUsingAArch32(EL2) then HDCR.HPMFZO else MDCR_EL2.HPMFZO;
 ovflw<UInt(hpmn)-1:0> = Zeros();
 else
 FZ = PMCR.FZO;
 if HaveEL(EL2) then
 ovflw<NumEventCountersImplemented()-1:UInt(hpmn)> = Zeros();
 frozen = FZ == '1' && !IsZero(ovflw);

 // Event counting can be filtered by the {P, U, NSK, NSU, NSH} bits
 filter = if n == 31 then PMCCFILTR else PMEVTYPER[n];

J1-8140 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 P = filter<31>;
 U = filter<30>;
 NSK = if HaveEL(EL3) then filter<29> else '0';
 NSU = if HaveEL(EL3) then filter<28> else '0';
 NSH = if HaveEL(EL2) then filter<27> else '0';

 case PSTATE.EL of
 when EL0 filtered = if IsSecure() then U == '1' else U != NSU;
 when EL1 filtered = if IsSecure() then P == '1' else P != NSK;
 when EL2 filtered = NSH == '0';
 when EL3 filtered = P == '1';

 return !debug && enabled && !prohibited && !filtered && !frozen;

aarch32/debug/takeexceptiondbg/AArch32.EnterHypModeInDebugState

 // AArch32.EnterHypModeInDebugState()
 // ==================================
 // Take an exception in Debug state to Hyp mode.

 AArch32.EnterHypModeInDebugState(ExceptionRecord exception)
 SynchronizeContext();
 assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2);

 AArch32.ReportHypEntry(exception);
 AArch32.WriteMode(M32_Hyp);
 SPSR[] = bits(32) UNKNOWN;
 ELR_hyp = bits(32) UNKNOWN;
 // In Debug state, the PE always execute T32 instructions when in AArch32 state, and
 // PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
 PSTATE.T = '1'; // PSTATE.J is RES0
 PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;
 PSTATE.E = HSCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
 EDSCR.ERR = '1';
 UpdateEDSCRFields();

 EndOfInstruction();

aarch32/debug/takeexceptiondbg/AArch32.EnterModeInDebugState

 // AArch32.EnterModeInDebugState()
 // ===============================
 // Take an exception in Debug state to a mode other than Monitor and Hyp mode.

 AArch32.EnterModeInDebugState(bits(5) target_mode)
 SynchronizeContext();
 assert ELUsingAArch32(EL1) && PSTATE.EL != EL2;

 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 AArch32.WriteMode(target_mode);
 SPSR[] = bits(32) UNKNOWN;
 R[14] = bits(32) UNKNOWN;
 // In Debug state, the PE always execute T32 instructions when in AArch32 state, and
 // PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
 PSTATE.T = '1'; // PSTATE.J is RES0
 PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;
 PSTATE.E = SCTLR.EE;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8141
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 if HavePANExt() && SCTLR.SPAN == '0' then PSTATE.PAN = '1';
 if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
 EDSCR.ERR = '1';
 UpdateEDSCRFields(); // Update EDSCR processor state flags.

 EndOfInstruction();

aarch32/debug/takeexceptiondbg/AArch32.EnterMonitorModeInDebugState

 // AArch32.EnterMonitorModeInDebugState()
 // ======================================
 // Take an exception in Debug state to Monitor mode.

 AArch32.EnterMonitorModeInDebugState()
 SynchronizeContext();
 assert HaveEL(EL3) && ELUsingAArch32(EL3);
 from_secure = IsSecure();
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 AArch32.WriteMode(M32_Monitor);
 SPSR[] = bits(32) UNKNOWN;
 R[14] = bits(32) UNKNOWN;
 // In Debug state, the PE always execute T32 instructions when in AArch32 state, and
 // PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
 PSTATE.T = '1'; // PSTATE.J is RES0
 PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
 PSTATE.E = SCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 if HavePANExt() then
 if !from_secure then
 PSTATE.PAN = '0';
 elsif SCTLR.SPAN == '0' then
 PSTATE.PAN = '1';
 if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;
 EDSCR.ERR = '1';
 UpdateEDSCRFields(); // Update EDSCR processor state flags.

 EndOfInstruction();

aarch32/debug/watchpoint/AArch32.WatchpointByteMatch

 // AArch32.WatchpointByteMatch()
 // =============================

 boolean AArch32.WatchpointByteMatch(integer n, bits(32) vaddress)

 integer top = 31;
 bottom = if DBGWVR[n]<2> == '1' then 2 else 3; // Word or doubleword
 byte_select_match = (DBGWCR[n].BAS<UInt(vaddress<bottom-1:0>)> != '0');
 mask = UInt(DBGWCR[n].MASK);

 // If DBGWCR[n].MASK is non-zero value and DBGWCR[n].BAS is not set to '11111111', or
 // DBGWCR[n].BAS specifies a non-contiguous set of bytes behavior is CONSTRAINED
 // UNPREDICTABLE.
 if mask > 0 && !IsOnes(DBGWCR[n].BAS) then
 byte_select_match = ConstrainUnpredictableBool();
 else
 LSB = (DBGWCR[n].BAS AND NOT(DBGWCR[n].BAS - 1)); MSB = (DBGWCR[n].BAS + LSB);
 if !IsZero(MSB AND (MSB - 1)) then // Not contiguous
 byte_select_match = ConstrainUnpredictableBool();
J1-8142 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 bottom = 3; // For the whole doubleword

 // If the address mask is set to a reserved value, the behavior is CONSTRAINED UNPREDICTABLE.
 if mask > 0 && mask <= 2 then
 (c, mask) = ConstrainUnpredictableInteger(3, 31);
 assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
 case c of
 when Constraint_DISABLED return FALSE; // Disabled
 when Constraint_NONE mask = 0; // No masking
 // Otherwise the value returned by ConstrainUnpredictableInteger is a not-reserved value

 if mask > bottom then
 // If the DBGxVR<n>_EL1.RESS field bits are not a sign extension of the MSB
 // of DBGBVR<n>_EL1.VA, it is UNPREDICTABLE whether they appear to be
 // included in the match.
 if !IsOnes(DBGBVR_EL1[n]<63:top>) && !IsZero(DBGBVR_EL1[n]<63:top>) then
 if ConstrainUnpredictableBool() then
 top = 63;
 WVR_match = (vaddress<top:mask> == DBGWVR[n]<top:mask>);
 // If masked bits of DBGWVR_EL1[n] are not zero, the behavior is CONSTRAINED UNPREDICTABLE.
 if WVR_match && !IsZero(DBGWVR[n]<mask-1:bottom>) then
 WVR_match = ConstrainUnpredictableBool();
 else
 WVR_match = vaddress<top:bottom> == DBGWVR[n]<top:bottom>;

 return WVR_match && byte_select_match;

aarch32/debug/watchpoint/AArch32.WatchpointMatch

 // AArch32.WatchpointMatch()
 // =========================
 // Watchpoint matching in an AArch32 translation regime.

 boolean AArch32.WatchpointMatch(integer n, bits(32) vaddress, integer size, boolean ispriv,
 AccType acctype, boolean iswrite)
 assert ELUsingAArch32(S1TranslationRegime());
 assert n < NumWatchpointsImplemented();

 // "ispriv" is:
 // * FALSE for all loads, stores, and atomic operations executed at EL0.
 // * FALSE if the access is unprivileged.
 // * TRUE for all other loads, stores, and atomic operations.

 enabled = DBGWCR[n].E == '1';
 linked = DBGWCR[n].WT == '1';
 isbreakpnt = FALSE;

 state_match = AArch32.StateMatch(DBGWCR[n].SSC, DBGWCR[n].HMC, DBGWCR[n].PAC,
 linked, DBGWCR[n].LBN, isbreakpnt, ispriv);
 ls_match = FALSE;
 ls_match = (DBGWCR[n].LSC<(if iswrite then 1 else 0)> == '1');

 value_match = FALSE;
 for byte = 0 to size - 1
 value_match = value_match || AArch32.WatchpointByteMatch(n, vaddress + byte);

 return value_match && state_match && ls_match && enabled;

J1.2.2 aarch32/exceptions

This section includes the following pseudocode functions:

• aarch32/exceptions/aborts/AArch32.Abort on page J1-8144.

• aarch32/exceptions/aborts/AArch32.AbortSyndrome on page J1-8145.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8143
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
• aarch32/exceptions/aborts/AArch32.CheckPCAlignment on page J1-8145.

• aarch32/exceptions/aborts/AArch32.ReportDataAbort on page J1-8146.

• aarch32/exceptions/aborts/AArch32.ReportPrefetchAbort on page J1-8146.

• aarch32/exceptions/aborts/AArch32.TakeDataAbortException on page J1-8147.

• aarch32/exceptions/aborts/AArch32.TakePrefetchAbortException on page J1-8147.

• aarch32/exceptions/async/AArch32.TakePhysicalFIQException on page J1-8148.

• aarch32/exceptions/async/AArch32.TakePhysicalIRQException on page J1-8148.

• aarch32/exceptions/async/AArch32.TakePhysicalSErrorException on page J1-8149.

• aarch32/exceptions/async/AArch32.TakeVirtualFIQException on page J1-8150.

• aarch32/exceptions/async/AArch32.TakeVirtualIRQException on page J1-8150.

• aarch32/exceptions/async/AArch32.TakeVirtualSErrorException on page J1-8150.

• aarch32/exceptions/debug/AArch32.SoftwareBreakpoint on page J1-8151.

• aarch32/exceptions/debug/DebugException on page J1-8151.

• aarch32/exceptions/exceptions/AArch32.CheckAdvSIMDOrFPRegisterTraps on page J1-8151.

• aarch32/exceptions/exceptions/AArch32.ExceptionClass on page J1-8152.

• aarch32/exceptions/exceptions/AArch32.GeneralExceptionsToAArch64 on page J1-8152.

• aarch32/exceptions/exceptions/AArch32.ReportHypEntry on page J1-8152.

• aarch32/exceptions/exceptions/AArch32.ResetControlRegisters on page J1-8153.

• aarch32/exceptions/exceptions/AArch32.TakeReset on page J1-8153.

• aarch32/exceptions/exceptions/ExcVectorBase on page J1-8154.

• aarch32/exceptions/ieeefp/AArch32.FPTrappedException on page J1-8154.

• aarch32/exceptions/syscalls/AArch32.CallHypervisor on page J1-8154.

• aarch32/exceptions/syscalls/AArch32.CallSupervisor on page J1-8155.

• aarch32/exceptions/syscalls/AArch32.TakeHVCException on page J1-8155.

• aarch32/exceptions/syscalls/AArch32.TakeSMCException on page J1-8155.

• aarch32/exceptions/syscalls/AArch32.TakeSVCException on page J1-8155.

• aarch32/exceptions/takeexception/AArch32.EnterHypMode on page J1-8156.

• aarch32/exceptions/takeexception/AArch32.EnterMode on page J1-8156.

• aarch32/exceptions/takeexception/AArch32.EnterMonitorMode on page J1-8157.

• aarch32/exceptions/traps/AArch32.CheckAdvSIMDOrFPEnabled on page J1-8157.

• aarch32/exceptions/traps/AArch32.CheckFPAdvSIMDTrap on page J1-8158.

• aarch32/exceptions/traps/AArch32.CheckForSMCUndefOrTrap on page J1-8159.

• aarch32/exceptions/traps/AArch32.CheckForSVCTrap on page J1-8159.

• aarch32/exceptions/traps/AArch32.CheckForWFxTrap on page J1-8159.

• aarch32/exceptions/traps/AArch32.CheckITEnabled on page J1-8160.

• aarch32/exceptions/traps/AArch32.CheckIllegalState on page J1-8160.

• aarch32/exceptions/traps/AArch32.CheckSETENDEnabled on page J1-8161.

• aarch32/exceptions/traps/AArch32.SystemAccessTrap on page J1-8161.

• aarch32/exceptions/traps/AArch32.SystemAccessTrapSyndrome on page J1-8161.

• aarch32/exceptions/traps/AArch32.TakeHypTrapException on page J1-8162.

• aarch32/exceptions/traps/AArch32.TakeMonitorTrapException on page J1-8163.

• aarch32/exceptions/traps/AArch32.TakeUndefInstrException on page J1-8163.

• aarch32/exceptions/traps/AArch32.UndefinedFault on page J1-8163.

aarch32/exceptions/aborts/AArch32.Abort

 // AArch32.Abort()
 // ===============
 // Abort and Debug exception handling in an AArch32 translation regime.

 AArch32.Abort(bits(32) vaddress, FaultRecord fault)

J1-8144 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 // Check if routed to AArch64 state
 route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);

 if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then
 route_to_aarch64 = (HCR_EL2.TGE == '1' || IsSecondStage(fault) ||
 (HaveRASExt() && HCR_EL2.TEA == '1' && IsExternalAbort(fault)) ||
 (IsDebugException(fault) && MDCR_EL2.TDE == '1'));

 if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
 route_to_aarch64 = SCR_EL3.EA == '1' && IsExternalAbort(fault);

 if route_to_aarch64 then
 AArch64.Abort(ZeroExtend(vaddress), fault);
 elsif fault.acctype == AccType_IFETCH then
 AArch32.TakePrefetchAbortException(vaddress, fault);
 else
 AArch32.TakeDataAbortException(vaddress, fault);

aarch32/exceptions/aborts/AArch32.AbortSyndrome

 // AArch32.AbortSyndrome()
 // =======================
 // Creates an exception syndrome record for Abort exceptions taken to Hyp mode
 // from an AArch32 translation regime.

 ExceptionRecord AArch32.AbortSyndrome(Exception exceptype, FaultRecord fault, bits(32) vaddress)
 exception = ExceptionSyndrome(exceptype);

 d_side = exceptype == Exception_DataAbort;

 exception.syndrome = AArch32.FaultSyndrome(d_side, fault);
 exception.vaddress = ZeroExtend(vaddress);
 if IPAValid(fault) then
 exception.ipavalid = TRUE;
 exception.NS = if fault.ipaddress.paspace == PAS_NonSecure then '1' else '0';
 exception.ipaddress = ZeroExtend(fault.ipaddress.address);
 else
 exception.ipavalid = FALSE;

 return exception;

aarch32/exceptions/aborts/AArch32.CheckPCAlignment

 // AArch32.CheckPCAlignment()
 // ==========================

 AArch32.CheckPCAlignment()

 bits(32) pc = ThisInstrAddr();
 if (CurrentInstrSet() == InstrSet_A32 && pc<1> == '1') || pc<0> == '1' then
 if AArch32.GeneralExceptionsToAArch64() then AArch64.PCAlignmentFault();

 // Generate an Alignment fault Prefetch Abort exception
 vaddress = pc;
 acctype = AccType_IFETCH;
 iswrite = FALSE;
 secondstage = FALSE;
 AArch32.Abort(vaddress, AlignmentFault(acctype, iswrite, secondstage));
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8145
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/exceptions/aborts/AArch32.ReportDataAbort

 // AArch32.ReportDataAbort()
 // =========================
 // Report syndrome information for aborts taken to modes other than Hyp mode.

 AArch32.ReportDataAbort(boolean route_to_monitor, FaultRecord fault, bits(32) vaddress)
 long_format = FALSE;
 if route_to_monitor && !IsSecure() then
 long_format = ((TTBCR_S.EAE == '1') ||
 (IsExternalSyncAbort(fault) && ((PSTATE.EL == EL2 || TTBCR.EAE == '1') ||
 (fault.secondstage && boolean IMPLEMENTATION_DEFINED "Stage 2 synchronous
external abort reports using Long-descriptor format when TTBCR_S.EAE is 0b0"))));
 else
 long_format = TTBCR.EAE == '1';
 d_side = TRUE;
 if long_format then
 syndrome = AArch32.FaultStatusLD(d_side, fault);
 else
 syndrome = AArch32.FaultStatusSD(d_side, fault);

 if fault.acctype == AccType_IC then
 if (!long_format &&
 boolean IMPLEMENTATION_DEFINED "Report I-cache maintenance fault in IFSR") then
 i_syndrome = syndrome;
 syndrome<10,3:0> = EncodeSDFSC(Fault_ICacheMaint, 1);
 else
 i_syndrome = bits(32) UNKNOWN;
 if route_to_monitor then
 IFSR_S = i_syndrome;
 else
 IFSR = i_syndrome;

 if route_to_monitor then
 DFSR_S = syndrome;
 DFAR_S = vaddress;
 else
 DFSR = syndrome;
 DFAR = vaddress;

 return;

aarch32/exceptions/aborts/AArch32.ReportPrefetchAbort

 // AArch32.ReportPrefetchAbort()
 // =============================
 // Report syndrome information for aborts taken to modes other than Hyp mode.

 AArch32.ReportPrefetchAbort(boolean route_to_monitor, FaultRecord fault, bits(32) vaddress)
 // The encoding used in the IFSR can be Long-descriptor format or Short-descriptor format.
 // Normally, the current translation table format determines the format. For an abort from
 // Non-secure state to Monitor mode, the IFSR uses the Long-descriptor format if any of the
 // following applies:
 // * The Secure TTBCR.EAE is set to 1.
 // * It is taken from Hyp mode.
 // * It is taken from EL1 or EL0, and the Non-secure TTBCR.EAE is set to 1.
 long_format = FALSE;
 if route_to_monitor && !IsSecure() then
 long_format = TTBCR_S.EAE == '1' || PSTATE.EL == EL2 || TTBCR.EAE == '1';
 else
 long_format = TTBCR.EAE == '1';

 d_side = FALSE;
 if long_format then
 fsr = AArch32.FaultStatusLD(d_side, fault);
 else
J1-8146 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 fsr = AArch32.FaultStatusSD(d_side, fault);

 if route_to_monitor then
 IFSR_S = fsr;
 IFAR_S = vaddress;
 else
 IFSR = fsr;
 IFAR = vaddress;

 return;

aarch32/exceptions/aborts/AArch32.TakeDataAbortException

 // AArch32.TakeDataAbortException()
 // ================================

 AArch32.TakeDataAbortException(bits(32) vaddress, FaultRecord fault)
 route_to_monitor = HaveEL(EL3) && SCR.EA == '1' && IsExternalAbort(fault);
 route_to_hyp = (EL2Enabled() && PSTATE.EL IN {EL0, EL1} &&
 (HCR.TGE == '1' ||
 (HaveRASExt() && HCR2.TEA == '1' && IsExternalAbort(fault)) ||
 (IsDebugException(fault) && HDCR.TDE == '1') ||
 IsSecondStage(fault)));

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x10;
 lr_offset = 8;

 if IsDebugException(fault) then DBGDSCRext.MOE = fault.debugmoe;
 if route_to_monitor then
 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_hyp then
 exception = AArch32.AbortSyndrome(Exception_DataAbort, fault, vaddress);
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 else
 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/aborts/AArch32.TakePrefetchAbortException

 // AArch32.TakePrefetchAbortException()
 // ====================================

 AArch32.TakePrefetchAbortException(bits(32) vaddress, FaultRecord fault)
 route_to_monitor = HaveEL(EL3) && SCR.EA == '1' && IsExternalAbort(fault);
 route_to_hyp = (EL2Enabled() && PSTATE.EL IN {EL0, EL1} &&
 (HCR.TGE == '1' ||
 (HaveRASExt() && HCR2.TEA == '1' && IsExternalAbort(fault)) ||
 (IsDebugException(fault) && HDCR.TDE == '1') ||
 IsSecondStage(fault)));

 bits(32) preferred_exception_return = ThisInstrAddr();

 vect_offset = 0x0C;

 lr_offset = 4;

 if IsDebugException(fault) then DBGDSCRext.MOE = fault.debugmoe;
 if route_to_monitor then
 AArch32.ReportPrefetchAbort(route_to_monitor, fault, vaddress);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8147
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_hyp then
 if fault.statuscode == Fault_Alignment then // PC Alignment fault
 exception = ExceptionSyndrome(Exception_PCAlignment);
 exception.vaddress = ThisInstrAddr();
 else
 exception = AArch32.AbortSyndrome(Exception_InstructionAbort, fault, vaddress);
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 else
 AArch32.ReportPrefetchAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/async/AArch32.TakePhysicalFIQException

 // AArch32.TakePhysicalFIQException()
 // ==================================

 AArch32.TakePhysicalFIQException()

 // Check if routed to AArch64 state
 route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);
 if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then
 route_to_aarch64 = HCR_EL2.TGE == '1' || (HCR_EL2.FMO == '1' && !IsInHost());

 if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
 route_to_aarch64 = SCR_EL3.FIQ == '1';

 if route_to_aarch64 then AArch64.TakePhysicalFIQException();
 route_to_monitor = HaveEL(EL3) && SCR.FIQ == '1';
 route_to_hyp = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR.TGE == '1' || HCR.FMO == '1'));
 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x1C;
 lr_offset = 4;
 if route_to_monitor then
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_hyp then
 exception = ExceptionSyndrome(Exception_FIQ);
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterMode(M32_FIQ, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/async/AArch32.TakePhysicalIRQException

 // AArch32.TakePhysicalIRQException()
 // ==================================
 // Take an enabled physical IRQ exception.

 AArch32.TakePhysicalIRQException()

 // Check if routed to AArch64 state
 route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);
 if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then
 route_to_aarch64 = HCR_EL2.TGE == '1' || (HCR_EL2.IMO == '1' && !IsInHost());
 if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
 route_to_aarch64 = SCR_EL3.IRQ == '1';

 if route_to_aarch64 then AArch64.TakePhysicalIRQException();

 route_to_monitor = HaveEL(EL3) && SCR.IRQ == '1';
 route_to_hyp = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
J1-8148 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 (HCR.TGE == '1' || HCR.IMO == '1'));
 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x18;
 lr_offset = 4;
 if route_to_monitor then
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_hyp then
 exception = ExceptionSyndrome(Exception_IRQ);
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterMode(M32_IRQ, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/async/AArch32.TakePhysicalSErrorException

 // AArch32.TakePhysicalSErrorException()
 // =====================================

 AArch32.TakePhysicalSErrorException(boolean parity, bit extflag, bits(2) pe_error_state,
 bits(25) full_syndrome)
 // Check if routed to AArch64 state
 route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);

 if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then
 route_to_aarch64 = (HCR_EL2.TGE == '1' || (!IsInHost() && HCR_EL2.AMO == '1'));
 if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
 route_to_aarch64 = SCR_EL3.EA == '1';

 if route_to_aarch64 then
 AArch64.TakePhysicalSErrorException(full_syndrome);

 route_to_monitor = HaveEL(EL3) && SCR.EA == '1';
 route_to_hyp = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR.TGE == '1' || HCR.AMO == '1'));
 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x10;
 lr_offset = 8;

 bits(2) target_el;
 if route_to_monitor then
 target_el = EL3;
 elsif PSTATE.EL == EL2 || route_to_hyp then
 target_el = EL2;
 else
 target_el = EL1;

 if IsSErrorEdgeTriggered(target_el, full_syndrome) then
 ClearPendingPhysicalSError();

 fault = AsyncExternalAbort(parity, pe_error_state, extflag);
 vaddress = bits(32) UNKNOWN;

 case target_el of
 when EL3
 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
 when EL2
 exception = AArch32.AbortSyndrome(Exception_DataAbort, fault, vaddress);
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 when EL1
 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8149
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 otherwise
 Unreachable();

aarch32/exceptions/async/AArch32.TakeVirtualFIQException

 // AArch32.TakeVirtualFIQException()
 // =================================

 AArch32.TakeVirtualFIQException()
 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
 if ELUsingAArch32(EL2) then // Virtual IRQ enabled if TGE==0 and FMO==1
 assert HCR.TGE == '0' && HCR.FMO == '1';
 else
 assert HCR_EL2.TGE == '0' && HCR_EL2.FMO == '1';
 // Check if routed to AArch64 state
 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then AArch64.TakeVirtualFIQException();

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x1C;
 lr_offset = 4;

 AArch32.EnterMode(M32_FIQ, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/async/AArch32.TakeVirtualIRQException

 // AArch32.TakeVirtualIRQException()
 // =================================

 AArch32.TakeVirtualIRQException()
 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();

 if ELUsingAArch32(EL2) then // Virtual IRQs enabled if TGE==0 and IMO==1
 assert HCR.TGE == '0' && HCR.IMO == '1';
 else
 assert HCR_EL2.TGE == '0' && HCR_EL2.IMO == '1';

 // Check if routed to AArch64 state
 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then AArch64.TakeVirtualIRQException();

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x18;
 lr_offset = 4;

 AArch32.EnterMode(M32_IRQ, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/async/AArch32.TakeVirtualSErrorException

 // AArch32.TakeVirtualSErrorException()
 // ====================================

 AArch32.TakeVirtualSErrorException(bit extflag, bits(2) pe_error_state, bits(25) full_syndrome)

 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
 if ELUsingAArch32(EL2) then // Virtual SError enabled if TGE==0 and AMO==1
 assert HCR.TGE == '0' && HCR.AMO == '1';
 else
 assert HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1';
 // Check if routed to AArch64 state
 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then AArch64.TakeVirtualSErrorException(full_syndrome);

 route_to_monitor = FALSE;

 bits(32) preferred_exception_return = ThisInstrAddr();
J1-8150 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 vect_offset = 0x10;
 lr_offset = 8;

 vaddress = bits(32) UNKNOWN;
 parity = FALSE;
 if HaveRASExt() then
 if ELUsingAArch32(EL2) then
 fault = AsyncExternalAbort(FALSE, VDFSR.AET, VDFSR.ExT);
 else
 fault = AsyncExternalAbort(FALSE, VSESR_EL2.AET, VSESR_EL2.ExT);
 else
 fault = AsyncExternalAbort(parity, pe_error_state, extflag);

 ClearPendingVirtualSError();
 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/debug/AArch32.SoftwareBreakpoint

 // AArch32.SoftwareBreakpoint()
 // ============================

 AArch32.SoftwareBreakpoint(bits(16) immediate)

 if (EL2Enabled() && !ELUsingAArch32(EL2) &&
 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1')) || !ELUsingAArch32(EL1) then
 AArch64.SoftwareBreakpoint(immediate);
 vaddress = bits(32) UNKNOWN;
 acctype = AccType_IFETCH; // Take as a Prefetch Abort
 iswrite = FALSE;
 entry = DebugException_BKPT;

 fault = AArch32.DebugFault(acctype, iswrite, entry);
 AArch32.Abort(vaddress, fault);

aarch32/exceptions/debug/DebugException

 constant bits(4) DebugException_Breakpoint = '0001';
 constant bits(4) DebugException_BKPT = '0011';
 constant bits(4) DebugException_VectorCatch = '0101';
 constant bits(4) DebugException_Watchpoint = '1010';

aarch32/exceptions/exceptions/AArch32.CheckAdvSIMDOrFPRegisterTraps

 // AArch32.CheckAdvSIMDOrFPRegisterTraps()
 // =======================================
 // Check if an instruction that accesses an Advanced SIMD and
 // floating-point System register is trapped by an appropriate HCR.TIDx
 // ID group trap control.

 AArch32.CheckAdvSIMDOrFPRegisterTraps(bits(4) reg)

 if PSTATE.EL == EL1 && EL2Enabled() then
 tid0 = if ELUsingAArch32(EL2) then HCR.TID0 else HCR_EL2.TID0;
 tid3 = if ELUsingAArch32(EL2) then HCR.TID3 else HCR_EL2.TID3;

 if (tid0 == '1' && reg == '0000') // FPSID
 || (tid3 == '1' && reg IN {'0101', '0110', '0111'}) then // MVFRx
 if ELUsingAArch32(EL2) then
 AArch32.SystemAccessTrap(M32_Hyp, 0x8); // Exception_AdvSIMDFPAccessTrap
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x8); // Exception_AdvSIMDFPAccessTrap
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8151
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/exceptions/exceptions/AArch32.ExceptionClass

 // AArch32.ExceptionClass()
 // ========================
 // Returns the Exception Class and Instruction Length fields to be reported in HSR

 (integer,bit) AArch32.ExceptionClass(Exception exceptype)

 il_is_valid = TRUE;

 case exceptype of
 when Exception_Uncategorized ec = 0x00; il_is_valid = FALSE;
 when Exception_WFxTrap ec = 0x01;
 when Exception_CP15RTTrap ec = 0x03;
 when Exception_CP15RRTTrap ec = 0x04;
 when Exception_CP14RTTrap ec = 0x05;
 when Exception_CP14DTTrap ec = 0x06;
 when Exception_AdvSIMDFPAccessTrap ec = 0x07;
 when Exception_FPIDTrap ec = 0x08;
 when Exception_PACTrap ec = 0x09;
 when Exception_LDST64BTrap ec = 0x0A;
 when Exception_CP14RRTTrap ec = 0x0C;
 when Exception_BranchTarget ec = 0x0D;
 when Exception_IllegalState ec = 0x0E; il_is_valid = FALSE;
 when Exception_SupervisorCall ec = 0x11;
 when Exception_HypervisorCall ec = 0x12;
 when Exception_MonitorCall ec = 0x13;
 when Exception_InstructionAbort ec = 0x20; il_is_valid = FALSE;
 when Exception_PCAlignment ec = 0x22; il_is_valid = FALSE;
 when Exception_DataAbort ec = 0x24;
 when Exception_NV2DataAbort ec = 0x25;
 when Exception_FPTrappedException ec = 0x28;
 otherwise Unreachable();

 if ec IN {0x20,0x24} && PSTATE.EL == EL2 then
 ec = ec + 1;

 if il_is_valid then
 il = if ThisInstrLength() == 32 then '1' else '0';
 else
 il = '1';

 return (ec,il);

aarch32/exceptions/exceptions/AArch32.GeneralExceptionsToAArch64

 // AArch32.GeneralExceptionsToAArch64()
 // ====================================
 // Returns TRUE if exceptions normally routed to EL1 are being handled at an Exception
 // level using AArch64, because either EL1 is using AArch64 or TGE is in force and EL2
 // is using AArch64.

 boolean AArch32.GeneralExceptionsToAArch64()
 return ((PSTATE.EL == EL0 && !ELUsingAArch32(EL1)) ||
 (EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1'));

aarch32/exceptions/exceptions/AArch32.ReportHypEntry

 // AArch32.ReportHypEntry()
 // ========================
 // Report syndrome information to Hyp mode registers.

 AArch32.ReportHypEntry(ExceptionRecord exception)

J1-8152 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 Exception exceptype = exception.exceptype;

 (ec,il) = AArch32.ExceptionClass(exceptype);
 iss = exception.syndrome;

 // IL is not valid for Data Abort exceptions without valid instruction syndrome information
 if ec IN {0x24,0x25} && iss<24> == '0' then
 il = '1';

 HSR = ec<5:0>:il:iss;

 if exceptype IN {Exception_InstructionAbort, Exception_PCAlignment} then
 HIFAR = exception.vaddress<31:0>;
 HDFAR = bits(32) UNKNOWN;
 elsif exceptype == Exception_DataAbort then
 HIFAR = bits(32) UNKNOWN;
 HDFAR = exception.vaddress<31:0>;

 if exception.ipavalid then
 HPFAR<31:4> = exception.ipaddress<39:12>;
 else
 HPFAR<31:4> = bits(28) UNKNOWN;

 return;

aarch32/exceptions/exceptions/AArch32.ResetControlRegisters

 // Resets System registers and memory-mapped control registers that have architecturally-defined
 // reset values to those values.
 AArch32.ResetControlRegisters(boolean cold_reset);

aarch32/exceptions/exceptions/AArch32.TakeReset

 // AArch32.TakeReset()
 // ===================
 // Reset into AArch32 state

 AArch32.TakeReset(boolean cold_reset)
 assert !HaveAArch64();

 // Enter the highest implemented Exception level in AArch32 state
 if HaveEL(EL3) then
 AArch32.WriteMode(M32_Svc);
 SCR.NS = '0'; // Secure state
 elsif HaveEL(EL2) then
 AArch32.WriteMode(M32_Hyp);
 else
 AArch32.WriteMode(M32_Svc);

 // Reset System registers in the coproc=0b111x encoding space and other system components
 AArch32.ResetControlRegisters(cold_reset);
 FPEXC.EN = '0';

 // Reset all other PSTATE fields, including instruction set and endianness according to the
 // SCTLR values produced by the above call to ResetControlRegisters()
 PSTATE.<A,I,F> = '111'; // All asynchronous exceptions masked
 PSTATE.IT = '00000000'; // IT block state reset
 PSTATE.T = SCTLR.TE; // Instruction set: TE=0: A32, TE=1: T32. PSTATE.J is RES0.
 PSTATE.E = SCTLR.EE; // Endianness: EE=0: little-endian, EE=1: big-endian
 PSTATE.IL = '0'; // Clear Illegal Execution state bit

 // All registers, bits and fields not reset by the above pseudocode or by the BranchTo() call
 // below are UNKNOWN bitstrings after reset. In particular, the return information registers
 // R14 or ELR_hyp and SPSR have UNKNOWN values, so that it
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8153
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 // is impossible to return from a reset in an architecturally defined way.
 AArch32.ResetGeneralRegisters();
 AArch32.ResetSIMDFPRegisters();
 AArch32.ResetSpecialRegisters();
 ResetExternalDebugRegisters(cold_reset);

 bits(32) rv; // IMPLEMENTATION DEFINED reset vector

 if HaveEL(EL3) then
 if MVBAR<0> == '1' then // Reset vector in MVBAR
 rv = MVBAR<31:1>:'0';
 else
 rv = bits(32) IMPLEMENTATION_DEFINED "reset vector address";
 else
 rv = RVBAR<31:1>:'0';

 // The reset vector must be correctly aligned
 assert rv<0> == '0' && (PSTATE.T == '1' || rv<1> == '0');

 boolean branch_conditional = FALSE;
 BranchTo(rv, BranchType_RESET, branch_conditional);

aarch32/exceptions/exceptions/ExcVectorBase

 // ExcVectorBase()
 // ===============

 bits(32) ExcVectorBase()
 if SCTLR.V == '1' then // Hivecs selected, base = 0xFFFF0000
 return Ones(16):Zeros(16);
 else
 return VBAR<31:5>:Zeros(5);

aarch32/exceptions/ieeefp/AArch32.FPTrappedException

 // AArch32.FPTrappedException()
 // ============================

 AArch32.FPTrappedException(bits(8) accumulated_exceptions)
 if AArch32.GeneralExceptionsToAArch64() then
 is_ase = FALSE;
 element = 0;
 AArch64.FPTrappedException(is_ase, accumulated_exceptions);
 FPEXC.DEX = '1';
 FPEXC.TFV = '1';
 FPEXC<7,4:0> = accumulated_exceptions<7,4:0>; // IDF,IXF,UFF,OFF,DZF,IOF
 FPEXC<10:8> = '111'; // VECITR is RES1

 AArch32.TakeUndefInstrException();

aarch32/exceptions/syscalls/AArch32.CallHypervisor

 // AArch32.CallHypervisor()
 // ========================
 // Performs a HVC call

 AArch32.CallHypervisor(bits(16) immediate)
 assert HaveEL(EL2);

 if !ELUsingAArch32(EL2) then
 AArch64.CallHypervisor(immediate);
J1-8154 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 else
 AArch32.TakeHVCException(immediate);

aarch32/exceptions/syscalls/AArch32.CallSupervisor

 // AArch32.CallSupervisor()
 // ========================
 // Calls the Supervisor

 AArch32.CallSupervisor(bits(16) immediate)

 if AArch32.CurrentCond() != '1110' then
 immediate = bits(16) UNKNOWN;
 if AArch32.GeneralExceptionsToAArch64() then
 AArch64.CallSupervisor(immediate);
 else
 AArch32.TakeSVCException(immediate);

aarch32/exceptions/syscalls/AArch32.TakeHVCException

 // AArch32.TakeHVCException()
 // ==========================

 AArch32.TakeHVCException(bits(16) immediate)
 assert HaveEL(EL2) && ELUsingAArch32(EL2);

 AArch32.ITAdvance();
 SSAdvance();
 bits(32) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x08;

 exception = ExceptionSyndrome(Exception_HypervisorCall);
 exception.syndrome<15:0> = immediate;

 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);

aarch32/exceptions/syscalls/AArch32.TakeSMCException

 // AArch32.TakeSMCException()
 // ==========================

 AArch32.TakeSMCException()
 assert HaveEL(EL3) && ELUsingAArch32(EL3);
 AArch32.ITAdvance();
 SSAdvance();
 bits(32) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x08;
 lr_offset = 0;

 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/syscalls/AArch32.TakeSVCException

 // AArch32.TakeSVCException()
 // ==========================

 AArch32.TakeSVCException(bits(16) immediate)

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8155
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 AArch32.ITAdvance();
 SSAdvance();
 route_to_hyp = PSTATE.EL == EL0 && EL2Enabled() && HCR.TGE == '1';

 bits(32) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x08;
 lr_offset = 0;

 if PSTATE.EL == EL2 || route_to_hyp then
 exception = ExceptionSyndrome(Exception_SupervisorCall);
 exception.syndrome<15:0> = immediate;
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 else
 AArch32.EnterMode(M32_Svc, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/takeexception/AArch32.EnterHypMode

 // AArch32.EnterHypMode()
 // ======================
 // Take an exception to Hyp mode.

 AArch32.EnterHypMode(ExceptionRecord exception, bits(32) preferred_exception_return,
 integer vect_offset)
 SynchronizeContext();
 assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2);

 bits(32) spsr = GetPSRFromPSTATE(AArch32_NonDebugState);
 if !(exception.exceptype IN {Exception_IRQ, Exception_FIQ}) then
 AArch32.ReportHypEntry(exception);
 AArch32.WriteMode(M32_Hyp);
 SPSR[] = spsr;
 ELR_hyp = preferred_exception_return;
 PSTATE.T = HSCTLR.TE; // PSTATE.J is RES0
 PSTATE.SS = '0';
 if !HaveEL(EL3) || SCR_GEN[].EA == '0' then PSTATE.A = '1';
 if !HaveEL(EL3) || SCR_GEN[].IRQ == '0' then PSTATE.I = '1';
 if !HaveEL(EL3) || SCR_GEN[].FIQ == '0' then PSTATE.F = '1';
 PSTATE.E = HSCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 if HaveSSBSExt() then PSTATE.SSBS = HSCTLR.DSSBS;
 boolean branch_conditional = FALSE;
 BranchTo(HVBAR<31:5>:vect_offset<4:0>, BranchType_EXCEPTION, branch_conditional);

 CheckExceptionCatch(TRUE); // Check for debug event on exception entry

 EndOfInstruction();

aarch32/exceptions/takeexception/AArch32.EnterMode

 // AArch32.EnterMode()
 // ===================
 // Take an exception to a mode other than Monitor and Hyp mode.

 AArch32.EnterMode(bits(5) target_mode, bits(32) preferred_exception_return, integer lr_offset,
 integer vect_offset)
 SynchronizeContext();
 assert ELUsingAArch32(EL1) && PSTATE.EL != EL2;

 bits(32) spsr = GetPSRFromPSTATE(AArch32_NonDebugState);
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
J1-8156 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 AArch32.WriteMode(target_mode);
 SPSR[] = spsr;
 R[14] = preferred_exception_return + lr_offset;
 PSTATE.T = SCTLR.TE; // PSTATE.J is RES0
 PSTATE.SS = '0';
 if target_mode == M32_FIQ then
 PSTATE.<A,I,F> = '111';
 elsif target_mode IN {M32_Abort, M32_IRQ} then
 PSTATE.<A,I> = '11';
 else
 PSTATE.I = '1';
 PSTATE.E = SCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 if HavePANExt() && SCTLR.SPAN == '0' then PSTATE.PAN = '1';
 if HaveSSBSExt() then PSTATE.SSBS = SCTLR.DSSBS;
 boolean branch_conditional = FALSE;
 BranchTo(ExcVectorBase()<31:5>:vect_offset<4:0>, BranchType_EXCEPTION, branch_conditional);

 CheckExceptionCatch(TRUE); // Check for debug event on exception entry

 EndOfInstruction();

aarch32/exceptions/takeexception/AArch32.EnterMonitorMode

 // AArch32.EnterMonitorMode()
 // ==========================
 // Take an exception to Monitor mode.

 AArch32.EnterMonitorMode(bits(32) preferred_exception_return, integer lr_offset,
 integer vect_offset)
 SynchronizeContext();
 assert HaveEL(EL3) && ELUsingAArch32(EL3);
 from_secure = IsSecure();
 bits(32) spsr = GetPSRFromPSTATE(AArch32_NonDebugState);
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 AArch32.WriteMode(M32_Monitor);
 SPSR[] = spsr;
 R[14] = preferred_exception_return + lr_offset;
 PSTATE.T = SCTLR.TE; // PSTATE.J is RES0
 PSTATE.SS = '0';
 PSTATE.<A,I,F> = '111';
 PSTATE.E = SCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 if HavePANExt() then
 if !from_secure then
 PSTATE.PAN = '0';
 elsif SCTLR.SPAN == '0' then
 PSTATE.PAN = '1';
 if HaveSSBSExt() then PSTATE.SSBS = SCTLR.DSSBS;
 boolean branch_conditional = FALSE;
 BranchTo(MVBAR<31:5>:vect_offset<4:0>, BranchType_EXCEPTION, branch_conditional);

 CheckExceptionCatch(TRUE); // Check for debug event on exception entry

 EndOfInstruction();

aarch32/exceptions/traps/AArch32.CheckAdvSIMDOrFPEnabled

 // AArch32.CheckAdvSIMDOrFPEnabled()
 // =================================
 // Check against CPACR, FPEXC, HCPTR, NSACR, and CPTR_EL3.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8157
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 AArch32.CheckAdvSIMDOrFPEnabled(boolean fpexc_check, boolean advsimd)
 if PSTATE.EL == EL0 && (!EL2Enabled() || (!ELUsingAArch32(EL2) && HCR_EL2.TGE == '0')) &&
!ELUsingAArch32(EL1) then
 // The PE behaves as if FPEXC.EN is 1
 AArch64.CheckFPEnabled();
 AArch64.CheckFPAdvSIMDEnabled();
 elsif PSTATE.EL == EL0 && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' &&
!ELUsingAArch32(EL1) then
 if fpexc_check && HCR_EL2.RW == '0' then
 fpexc_en = bits(1) IMPLEMENTATION_DEFINED "FPEXC.EN value when TGE==1 and RW==0";
 if fpexc_en == '0' then UNDEFINED;
 AArch64.CheckFPEnabled();
 else
 cpacr_asedis = CPACR.ASEDIS;
 cpacr_cp10 = CPACR.cp10;

 if HaveEL(EL3) && ELUsingAArch32(EL3) && !IsSecure() then
 // Check if access disabled in NSACR
 if NSACR.NSASEDIS == '1' then cpacr_asedis = '1';
 if NSACR.cp10 == '0' then cpacr_cp10 = '00';

 if PSTATE.EL != EL2 then
 // Check if Advanced SIMD disabled in CPACR
 if advsimd && cpacr_asedis == '1' then UNDEFINED;

 // Check if access disabled in CPACR
 case cpacr_cp10 of
 when '00' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0;
 when '10' disabled = ConstrainUnpredictableBool();
 when '11' disabled = FALSE;
 if disabled then UNDEFINED;

 // If required, check FPEXC enabled bit.
 if fpexc_check && FPEXC.EN == '0' then UNDEFINED;

 AArch32.CheckFPAdvSIMDTrap(advsimd); // Also check against HCPTR and CPTR_EL3

aarch32/exceptions/traps/AArch32.CheckFPAdvSIMDTrap

 // AArch32.CheckFPAdvSIMDTrap()
 // ============================
 // Check against CPTR_EL2 and CPTR_EL3.

 AArch32.CheckFPAdvSIMDTrap(boolean advsimd)
 if EL2Enabled() && !ELUsingAArch32(EL2) then
 AArch64.CheckFPAdvSIMDTrap();
 else
 if HaveEL(EL2) && !IsSecure() then
 hcptr_tase = HCPTR.TASE;
 hcptr_cp10 = HCPTR.TCP10;

 if HaveEL(EL3) && ELUsingAArch32(EL3) && !IsSecure() then
 // Check if access disabled in NSACR
 if NSACR.NSASEDIS == '1' then hcptr_tase = '1';
 if NSACR.cp10 == '0' then hcptr_cp10 = '1';

 // Check if access disabled in HCPTR
 if (advsimd && hcptr_tase == '1') || hcptr_cp10 == '1' then
 exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
 exception.syndrome<24:20> = ConditionSyndrome();

 if advsimd then
 exception.syndrome<5> = '1';
 else
 exception.syndrome<5> = '0';
J1-8158 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 exception.syndrome<3:0> = '1010'; // coproc field, always 0xA

 if PSTATE.EL == EL2 then
 AArch32.TakeUndefInstrException(exception);
 else
 AArch32.TakeHypTrapException(exception);

 if HaveEL(EL3) && !ELUsingAArch32(EL3) then
 // Check if access disabled in CPTR_EL3
 if CPTR_EL3.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL3);
 return;

aarch32/exceptions/traps/AArch32.CheckForSMCUndefOrTrap

 // AArch32.CheckForSMCUndefOrTrap()
 // ================================
 // Check for UNDEFINED or trap on SMC instruction

 AArch32.CheckForSMCUndefOrTrap()
 if !HaveEL(EL3) || PSTATE.EL == EL0 then
 UNDEFINED;

 if EL2Enabled() && !ELUsingAArch32(EL2) then
 AArch64.CheckForSMCUndefOrTrap(Zeros(16));
 else
 route_to_hyp = EL2Enabled() && PSTATE.EL == EL1 && HCR.TSC == '1';
 if route_to_hyp then
 exception = ExceptionSyndrome(Exception_MonitorCall);
 AArch32.TakeHypTrapException(exception);

aarch32/exceptions/traps/AArch32.CheckForSVCTrap

 // AArch32.CheckForSVCTrap()
 // =========================
 // Check for trap on SVC instruction

 AArch32.CheckForSVCTrap(bits(16) immediate)
 if HaveFGTExt() then
 route_to_el2 = FALSE;
 if PSTATE.EL == EL0 then
 route_to_el2 = (!ELUsingAArch32(EL1) && EL2Enabled() && HFGITR_EL2.SVC_EL0 == '1' &&
 (HCR_EL2.<E2H, TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1')));

 if route_to_el2 then
 exception = ExceptionSyndrome(Exception_SupervisorCall);
 exception.syndrome<15:0> = immediate;
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

aarch32/exceptions/traps/AArch32.CheckForWFxTrap

 // AArch32.CheckForWFxTrap()
 // =========================
 // Check for trap on WFE or WFI instruction

 AArch32.CheckForWFxTrap(bits(2) target_el, WFxType wfxtype)
 assert HaveEL(target_el);

 // Check for routing to AArch64
 if !ELUsingAArch32(target_el) then
 AArch64.CheckForWFxTrap(target_el, wfxtype);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8159
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 return;

 boolean is_wfe = wfxtype IN {WFxType_WFE, WFxType_WFET};
 case target_el of
 when EL1
 trap = (if is_wfe then SCTLR.nTWE else SCTLR.nTWI) == '0';
 when EL2
 trap = (if is_wfe then HCR.TWE else HCR.TWI) == '1';
 when EL3
 trap = (if is_wfe then SCR.TWE else SCR.TWI) == '1';

 if trap then
 if target_el == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.WFxTrap(wfxtype, target_el);

 if target_el == EL3 then
 AArch32.TakeMonitorTrapException();
 elsif target_el == EL2 then
 exception = ExceptionSyndrome(Exception_WFxTrap);
 exception.syndrome<24:20> = ConditionSyndrome();

 case wfxtype of
 when WFxType_WFI
 exception.syndrome<0> = '0';
 when WFxType_WFE
 exception.syndrome<0> = '1';

 AArch32.TakeHypTrapException(exception);
 else
 AArch32.TakeUndefInstrException();

aarch32/exceptions/traps/AArch32.CheckITEnabled

 // AArch32.CheckITEnabled()
 // ========================
 // Check whether the T32 IT instruction is disabled.

 AArch32.CheckITEnabled(bits(4) mask)
 if PSTATE.EL == EL2 then
 it_disabled = HSCTLR.ITD;
 else
 it_disabled = (if ELUsingAArch32(EL1) then SCTLR.ITD else SCTLR[].ITD);
 if it_disabled == '1' then
 if mask != '1000' then UNDEFINED;

 // Otherwise whether the IT block is allowed depends on hw1 of the next instruction.
 next_instr = AArch32.MemSingle[NextInstrAddr(), 2, AccType_IFETCH, TRUE];

 if next_instr IN {'11xxxxxxxxxxxxxx', '1011xxxxxxxxxxxx', '10100xxxxxxxxxxx',
 '01001xxxxxxxxxxx', '010001xxx1111xxx', '010001xx1xxxx111'} then
 // It is IMPLEMENTATION DEFINED whether the Undefined Instruction exception is
 // taken on the IT instruction or the next instruction. This is not reflected in
 // the pseudocode, which always takes the exception on the IT instruction. This
 // also does not take into account cases where the next instruction is UNPREDICTABLE.
 UNDEFINED;

 return;

aarch32/exceptions/traps/AArch32.CheckIllegalState

 // AArch32.CheckIllegalState()
 // ===========================
 // Check PSTATE.IL bit and generate Illegal Execution state exception if set.

J1-8160 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 AArch32.CheckIllegalState()
 if AArch32.GeneralExceptionsToAArch64() then
 AArch64.CheckIllegalState();
 elsif PSTATE.IL == '1' then
 route_to_hyp = PSTATE.EL == EL0 && EL2Enabled() && HCR.TGE == '1';

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x04;

 if PSTATE.EL == EL2 || route_to_hyp then
 exception = ExceptionSyndrome(Exception_IllegalState);
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 else
 AArch32.TakeUndefInstrException();

aarch32/exceptions/traps/AArch32.CheckSETENDEnabled

 // AArch32.CheckSETENDEnabled()
 // ============================
 // Check whether the AArch32 SETEND instruction is disabled.

 AArch32.CheckSETENDEnabled()
 if PSTATE.EL == EL2 then
 setend_disabled = HSCTLR.SED;
 else
 setend_disabled = (if ELUsingAArch32(EL1) then SCTLR.SED else SCTLR[].SED);
 if setend_disabled == '1' then
 UNDEFINED;

 return;

aarch32/exceptions/traps/AArch32.SystemAccessTrap

 // AArch32.SystemAccessTrap()
 // ==========================
 // Trapped system register access.

 AArch32.SystemAccessTrap(bits(5) mode, integer ec)
 (valid, target_el) = ELFromM32(mode);
 assert valid && HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

 if target_el == EL2 then
 exception = AArch32.SystemAccessTrapSyndrome(ThisInstr(), ec);
 AArch32.TakeHypTrapException(exception);
 else
 AArch32.TakeUndefInstrException();

aarch32/exceptions/traps/AArch32.SystemAccessTrapSyndrome

 // AArch32.SystemAccessTrapSyndrome()
 // ==================================
 // Returns the syndrome information for traps on AArch32 MCR, MCRR, MRC, MRRC, and VMRS, VMSR
instructions,
 // other than traps that are due to HCPTR or CPACR.

 ExceptionRecord AArch32.SystemAccessTrapSyndrome(bits(32) instr, integer ec)
 ExceptionRecord exception;

 case ec of
 when 0x0 exception = ExceptionSyndrome(Exception_Uncategorized);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8161
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 when 0x3 exception = ExceptionSyndrome(Exception_CP15RTTrap);
 when 0x4 exception = ExceptionSyndrome(Exception_CP15RRTTrap);
 when 0x5 exception = ExceptionSyndrome(Exception_CP14RTTrap);
 when 0x6 exception = ExceptionSyndrome(Exception_CP14DTTrap);
 when 0x7 exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
 when 0x8 exception = ExceptionSyndrome(Exception_FPIDTrap);
 when 0xC exception = ExceptionSyndrome(Exception_CP14RRTTrap);
 otherwise Unreachable();

 bits(20) iss = Zeros();

 if exception.exceptype IN {Exception_FPIDTrap, Exception_CP14RTTrap, Exception_CP15RTTrap} then
 // Trapped MRC/MCR, VMRS on FPSID
 iss<13:10> = instr<19:16>; // CRn, Reg in case of VMRS
 iss<8:5> = instr<15:12>; // Rt
 iss<9> = '0'; // RES0

 if exception.exceptype != Exception_FPIDTrap then // When trap is not for VMRS
 iss<19:17> = instr<7:5>; // opc2
 iss<16:14> = instr<23:21>; // opc1
 iss<4:1> = instr<3:0>; //CRm
 else //VMRS Access
 iss<19:17> = '000'; //opc2 - Hardcoded for VMRS
 iss<16:14> = '111'; //opc1 - Hardcoded for VMRS
 iss<4:1> = '0000'; //CRm - Hardcoded for VMRS
 elsif exception.exceptype IN {Exception_CP14RRTTrap, Exception_AdvSIMDFPAccessTrap,
Exception_CP15RRTTrap} then
 // Trapped MRRC/MCRR, VMRS/VMSR
 iss<19:16> = instr<7:4>; // opc1
 iss<13:10> = instr<19:16>; // Rt2
 iss<8:5> = instr<15:12>; // Rt
 iss<4:1> = instr<3:0>; // CRm
 elsif exception.exceptype == Exception_CP14DTTrap then
 // Trapped LDC/STC
 iss<19:12> = instr<7:0>; // imm8
 iss<4> = instr<23>; // U
 iss<2:1> = instr<24,21>; // P,W
 if instr<19:16> == '1111' then // Rn==15, LDC(Literal addressing)/STC
 iss<8:5> = bits(4) UNKNOWN;
 iss<3> = '1';
 elsif exception.exceptype == Exception_Uncategorized then
 // Trapped for unknown reason
 iss<8:5> = instr<19:16>; // Rn
 iss<3> = '0';

 iss<0> = instr<20>; // Direction

 exception.syndrome<24:20> = ConditionSyndrome();
 exception.syndrome<19:0> = iss;

 return exception;

aarch32/exceptions/traps/AArch32.TakeHypTrapException

 // AArch32.TakeHypTrapException()
 // ==============================
 // Exceptions routed to Hyp mode as a Hyp Trap exception.

 AArch32.TakeHypTrapException(integer ec)
 exception = AArch32.SystemAccessTrapSyndrome(ThisInstr(), ec);
 AArch32.TakeHypTrapException(exception);

 // AArch32.TakeHypTrapException()
 // ==============================
 // Exceptions routed to Hyp mode as a Hyp Trap exception.

J1-8162 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 AArch32.TakeHypTrapException(ExceptionRecord exception)
 assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2);

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x14;

 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);

aarch32/exceptions/traps/AArch32.TakeMonitorTrapException

 // AArch32.TakeMonitorTrapException()
 // ==================================
 // Exceptions routed to Monitor mode as a Monitor Trap exception.

 AArch32.TakeMonitorTrapException()
 assert HaveEL(EL3) && ELUsingAArch32(EL3);

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x04;
 lr_offset = if CurrentInstrSet() == InstrSet_A32 then 4 else 2;

 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/traps/AArch32.TakeUndefInstrException

 // AArch32.TakeUndefInstrException()
 // =================================

 AArch32.TakeUndefInstrException()
 exception = ExceptionSyndrome(Exception_Uncategorized);
 AArch32.TakeUndefInstrException(exception);

 // AArch32.TakeUndefInstrException()
 // =================================

 AArch32.TakeUndefInstrException(ExceptionRecord exception)

 route_to_hyp = PSTATE.EL == EL0 && EL2Enabled() && HCR.TGE == '1';
 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x04;
 lr_offset = if CurrentInstrSet() == InstrSet_A32 then 4 else 2;

 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 elsif route_to_hyp then
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 else
 AArch32.EnterMode(M32_Undef, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/traps/AArch32.UndefinedFault

 // AArch32.UndefinedFault()
 // ========================

 AArch32.UndefinedFault()

 if AArch32.GeneralExceptionsToAArch64() then AArch64.UndefinedFault();
 AArch32.TakeUndefInstrException();
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8163
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
J1.2.3 aarch32/functions

This section includes the following pseudocode functions:

• aarch32/functions/aborts/AArch32.DomainValid on page J1-8166.

• aarch32/functions/aborts/AArch32.FaultStatusLD on page J1-8166.

• aarch32/functions/aborts/AArch32.FaultStatusSD on page J1-8166.

• aarch32/functions/aborts/AArch32.FaultSyndrome on page J1-8167.

• aarch32/functions/aborts/EncodeSDFSC on page J1-8167.

• aarch32/functions/common/A32ExpandImm on page J1-8168.

• aarch32/functions/common/A32ExpandImm_C on page J1-8168.

• aarch32/functions/common/DecodeImmShift on page J1-8168.

• aarch32/functions/common/DecodeRegShift on page J1-8169.

• aarch32/functions/common/RRX on page J1-8169.

• aarch32/functions/common/RRX_C on page J1-8169.

• aarch32/functions/common/SRType on page J1-8169.

• aarch32/functions/common/Shift on page J1-8169.

• aarch32/functions/common/Shift_C on page J1-8170.

• aarch32/functions/common/T32ExpandImm on page J1-8170.

• aarch32/functions/common/T32ExpandImm_C on page J1-8170.

• aarch32/functions/common/VCGEType on page J1-8171.

• aarch32/functions/common/VFPNegMul on page J1-8171.

• aarch32/functions/coproc/AArch32.CheckCP15InstrCoarseTraps on page J1-8171.

• aarch32/functions/exclusive/AArch32.ExclusiveMonitorsPass on page J1-8171.

• aarch32/functions/exclusive/AArch32.IsExclusiveVA on page J1-8172.

• aarch32/functions/exclusive/AArch32.MarkExclusiveVA on page J1-8172.

• aarch32/functions/exclusive/AArch32.SetExclusiveMonitors on page J1-8172.

• aarch32/functions/float/CheckAdvSIMDEnabled on page J1-8172.

• aarch32/functions/float/CheckAdvSIMDOrVFPEnabled on page J1-8173.

• aarch32/functions/float/CheckCryptoEnabled32 on page J1-8173.

• aarch32/functions/float/CheckVFPEnabled on page J1-8173.

• aarch32/functions/float/FPHalvedSub on page J1-8173.

• aarch32/functions/float/FPRSqrtStep on page J1-8174.

• aarch32/functions/float/FPRecipStep on page J1-8174.

• aarch32/functions/float/StandardFPSCRValue on page J1-8175.

• aarch32/functions/memory/AArch32.CheckAlignment on page J1-8175.

• aarch32/functions/memory/AArch32.MemSingle on page J1-8175.

• aarch32/functions/memory/Hint_PreloadData on page J1-8176.

• aarch32/functions/memory/Hint_PreloadDataForWrite on page J1-8176.

• aarch32/functions/memory/Hint_PreloadInstr on page J1-8176.

• aarch32/functions/memory/MemA on page J1-8177.

• aarch32/functions/memory/MemO on page J1-8177.

• aarch32/functions/memory/MemS on page J1-8177.

• aarch32/functions/memory/MemU on page J1-8177.

• aarch32/functions/memory/MemU_unpriv on page J1-8178.

• aarch32/functions/memory/Mem_with_type on page J1-8178.

• aarch32/functions/ras/AArch32.ESBOperation on page J1-8179.

• aarch32/functions/ras/AArch32.PhysicalSErrorSyndrome on page J1-8180.

• aarch32/functions/ras/AArch32.ReportDeferredSError on page J1-8180.

• aarch32/functions/ras/AArch32.SErrorSyndrome on page J1-8181.

• aarch32/functions/ras/AArch32.vESBOperation on page J1-8181.

• aarch32/functions/registers/AArch32.ResetGeneralRegisters on page J1-8181.
J1-8164 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
• aarch32/functions/registers/AArch32.ResetSIMDFPRegisters on page J1-8182.

• aarch32/functions/registers/AArch32.ResetSpecialRegisters on page J1-8182.

• aarch32/functions/registers/AArch32.ResetSystemRegisters on page J1-8182.

• aarch32/functions/registers/ALUExceptionReturn on page J1-8182.

• aarch32/functions/registers/ALUWritePC on page J1-8183.

• aarch32/functions/registers/BXWritePC on page J1-8183.

• aarch32/functions/registers/BranchWritePC on page J1-8183.

• aarch32/functions/registers/CBWritePC on page J1-8183.

• aarch32/functions/registers/D on page J1-8183.

• aarch32/functions/registers/Din on page J1-8184.

• aarch32/functions/registers/LR on page J1-8184.

• aarch32/functions/registers/LoadWritePC on page J1-8184.

• aarch32/functions/registers/LookUpRIndex on page J1-8184.

• aarch32/functions/registers/Monitor_mode_registers on page J1-8185.

• aarch32/functions/registers/PC on page J1-8185.

• aarch32/functions/registers/PCStoreValue on page J1-8185.

• aarch32/functions/registers/Q on page J1-8185.

• aarch32/functions/registers/Qin on page J1-8185.

• aarch32/functions/registers/R on page J1-8186.

• aarch32/functions/registers/RBankSelect on page J1-8186.

• aarch32/functions/registers/Rmode on page J1-8186.

• aarch32/functions/registers/S on page J1-8187.

• aarch32/functions/registers/SP on page J1-8187.

• aarch32/functions/registers/_Dclone on page J1-8187.

• aarch32/functions/system/AArch32.ExceptionReturn on page J1-8188.

• aarch32/functions/system/AArch32.ExecutingCP10or11Instr on page J1-8188.

• aarch32/functions/system/AArch32.ITAdvance on page J1-8188.

• aarch32/functions/system/AArch32.SysRegRead on page J1-8188.

• aarch32/functions/system/AArch32.SysRegRead64 on page J1-8189.

• aarch32/functions/system/AArch32.SysRegReadCanWriteAPSR on page J1-8189.

• aarch32/functions/system/AArch32.SysRegWrite on page J1-8189.

• aarch32/functions/system/AArch32.SysRegWrite64 on page J1-8189.

• aarch32/functions/system/AArch32.SysRegWriteM on page J1-8189.

• aarch32/functions/system/AArch32.WriteMode on page J1-8189.

• aarch32/functions/system/AArch32.WriteModeByInstr on page J1-8190.

• aarch32/functions/system/BadMode on page J1-8190.

• aarch32/functions/system/BankedRegisterAccessValid on page J1-8190.

• aarch32/functions/system/CPSRWriteByInstr on page J1-8191.

• aarch32/functions/system/ConditionPassed on page J1-8192.

• aarch32/functions/system/CurrentCond on page J1-8192.

• aarch32/functions/system/InITBlock on page J1-8192.

• aarch32/functions/system/LastInITBlock on page J1-8192.

• aarch32/functions/system/SPSRWriteByInstr on page J1-8192.

• aarch32/functions/system/SPSRaccessValid on page J1-8193.

• aarch32/functions/system/SelectInstrSet on page J1-8193.

• aarch32/functions/v6simd/Sat on page J1-8193.

• aarch32/functions/v6simd/SignedSat on page J1-8193.

• aarch32/functions/v6simd/UnsignedSat on page J1-8194.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8165
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/aborts/AArch32.DomainValid

 // AArch32.DomainValid()
 // =====================
 // Returns TRUE if the Domain is valid for a Short-descriptor translation scheme.

 boolean AArch32.DomainValid(Fault statuscode, integer level)
 assert statuscode != Fault_None;

 case statuscode of
 when Fault_Domain
 return TRUE;
 when Fault_Translation, Fault_AccessFlag, Fault_SyncExternalOnWalk, Fault_SyncParityOnWalk
 return level == 2;
 otherwise
 return FALSE;

aarch32/functions/aborts/AArch32.FaultStatusLD

 // AArch32.FaultStatusLD()
 // =======================
 // Creates an exception fault status value for Abort and Watchpoint exceptions taken
 // to Abort mode using AArch32 and Long-descriptor format.

 bits(32) AArch32.FaultStatusLD(boolean d_side, FaultRecord fault)
 assert fault.statuscode != Fault_None;

 bits(32) fsr = Zeros();
 if HaveRASExt() && IsAsyncAbort(fault) then fsr<15:14> = fault.errortype;
 if d_side then
 if fault.acctype IN {AccType_DC, AccType_IC,
 AccType_AT, AccType_ATPAN} then
 fsr<13> = '1'; fsr<11> = '1';
 else
 fsr<11> = if fault.write then '1' else '0';
 if IsExternalAbort(fault) then fsr<12> = fault.extflag;
 fsr<9> = '1';
 fsr<5:0> = EncodeLDFSC(fault.statuscode, fault.level);

 return fsr;

aarch32/functions/aborts/AArch32.FaultStatusSD

 // AArch32.FaultStatusSD()
 // =======================
 // Creates an exception fault status value for Abort and Watchpoint exceptions taken
 // to Abort mode using AArch32 and Short-descriptor format.

 bits(32) AArch32.FaultStatusSD(boolean d_side, FaultRecord fault)
 assert fault.statuscode != Fault_None;

 bits(32) fsr = Zeros();
 if HaveRASExt() && IsAsyncAbort(fault) then fsr<15:14> = fault.errortype;
 if d_side then
 if fault.acctype IN {AccType_DC, AccType_IC,
 AccType_AT, AccType_ATPAN} then
 fsr<13> = '1'; fsr<11> = '1';
 else
 fsr<11> = if fault.write then '1' else '0';
 if IsExternalAbort(fault) then fsr<12> = fault.extflag;
 fsr<9> = '0';
 fsr<10,3:0> = EncodeSDFSC(fault.statuscode, fault.level);
 if d_side then
 fsr<7:4> = fault.domain; // Domain field (data fault only)
J1-8166 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation

 return fsr;

aarch32/functions/aborts/AArch32.FaultSyndrome

 // AArch32.FaultSyndrome()
 // =======================
 // Creates an exception syndrome value for Abort and Watchpoint exceptions taken to
 // AArch32 Hyp mode.

 bits(25) AArch32.FaultSyndrome(boolean d_side, FaultRecord fault)
 assert fault.statuscode != Fault_None;

 bits(25) iss = Zeros();

 if HaveRASExt() && IsAsyncAbort(fault) then
 iss<11:10> = fault.errortype; // AET

 if d_side then
 if (IsSecondStage(fault) && !fault.s2fs1walk &&
 (!IsExternalSyncAbort(fault) ||
 (!HaveRASExt() && fault.acctype == AccType_TTW &&
 boolean IMPLEMENTATION_DEFINED "ISV on second stage translation table walk"))) then
 iss<24:14> = LSInstructionSyndrome();

 if fault.acctype IN {AccType_DC, AccType_IC, AccType_AT, AccType_ATPAN} then
 iss<8> = '1'; iss<6> = '1';
 else
 iss<6> = if fault.write then '1' else '0';

 if IsExternalAbort(fault) then iss<9> = fault.extflag;
 iss<7> = if fault.s2fs1walk then '1' else '0';
 iss<5:0> = EncodeLDFSC(fault.statuscode, fault.level);

 return iss;

aarch32/functions/aborts/EncodeSDFSC

 // EncodeSDFSC()
 // =============
 // Function that gives the Short-descriptor FSR code for different types of Fault

 bits(5) EncodeSDFSC(Fault statuscode, integer level)

 bits(5) result;
 case statuscode of
 when Fault_AccessFlag
 assert level IN {1,2};
 result = if level == 1 then '00011' else '00110';
 when Fault_Alignment
 result = '00001';
 when Fault_Permission
 assert level IN {1,2};
 result = if level == 1 then '01101' else '01111';
 when Fault_Domain
 assert level IN {1,2};
 result = if level == 1 then '01001' else '01011';
 when Fault_Translation
 assert level IN {1,2};
 result = if level == 1 then '00101' else '00111';
 when Fault_SyncExternal
 result = '01000';
 when Fault_SyncExternalOnWalk
 assert level IN {1,2};
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8167
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 result = if level == 1 then '01100' else '01110';
 when Fault_SyncParity
 result = '11001';
 when Fault_SyncParityOnWalk
 assert level IN {1,2};
 result = if level == 1 then '11100' else '11110';
 when Fault_AsyncParity
 result = '11000';
 when Fault_AsyncExternal
 result = '10110';
 when Fault_Debug
 result = '00010';
 when Fault_TLBConflict
 result = '10000';
 when Fault_Lockdown
 result = '10100'; // IMPLEMENTATION DEFINED
 when Fault_Exclusive
 result = '10101'; // IMPLEMENTATION DEFINED
 when Fault_ICacheMaint
 result = '00100';
 otherwise
 Unreachable();

 return result;

aarch32/functions/common/A32ExpandImm

 // A32ExpandImm()
 // ==============

 bits(32) A32ExpandImm(bits(12) imm12)

 // PSTATE.C argument to following function call does not affect the imm32 result.
 (imm32, -) = A32ExpandImm_C(imm12, PSTATE.C);

 return imm32;

aarch32/functions/common/A32ExpandImm_C

 // A32ExpandImm_C()
 // ================

 (bits(32), bit) A32ExpandImm_C(bits(12) imm12, bit carry_in)

 unrotated_value = ZeroExtend(imm12<7:0>, 32);
 (imm32, carry_out) = Shift_C(unrotated_value, SRType_ROR, 2*UInt(imm12<11:8>), carry_in);

 return (imm32, carry_out);

aarch32/functions/common/DecodeImmShift

 // DecodeImmShift()
 // ================

 (SRType, integer) DecodeImmShift(bits(2) srtype, bits(5) imm5)

 case srtype of
 when '00'
 shift_t = SRType_LSL; shift_n = UInt(imm5);
 when '01'
 shift_t = SRType_LSR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);
 when '10'
 shift_t = SRType_ASR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);
J1-8168 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 when '11'
 if imm5 == '00000' then
 shift_t = SRType_RRX; shift_n = 1;
 else
 shift_t = SRType_ROR; shift_n = UInt(imm5);

 return (shift_t, shift_n);

aarch32/functions/common/DecodeRegShift

 // DecodeRegShift()
 // ================

 SRType DecodeRegShift(bits(2) srtype)
 case srtype of
 when '00' shift_t = SRType_LSL;
 when '01' shift_t = SRType_LSR;
 when '10' shift_t = SRType_ASR;
 when '11' shift_t = SRType_ROR;
 return shift_t;

aarch32/functions/common/RRX

 // RRX()
 // =====

 bits(N) RRX(bits(N) x, bit carry_in)
 (result, -) = RRX_C(x, carry_in);
 return result;

aarch32/functions/common/RRX_C

 // RRX_C()
 // =======

 (bits(N), bit) RRX_C(bits(N) x, bit carry_in)
 result = carry_in : x<N-1:1>;
 carry_out = x<0>;
 return (result, carry_out);

aarch32/functions/common/SRType

 enumeration SRType {SRType_LSL, SRType_LSR, SRType_ASR, SRType_ROR, SRType_RRX};

aarch32/functions/common/Shift

 // Shift()
 // =======

 bits(N) Shift(bits(N) value, SRType srtype, integer amount, bit carry_in)
 (result, -) = Shift_C(value, srtype, amount, carry_in);
 return result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8169
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/common/Shift_C

 // Shift_C()
 // =========

 (bits(N), bit) Shift_C(bits(N) value, SRType srtype, integer amount, bit carry_in)
 assert !(srtype == SRType_RRX && amount != 1);

 if amount == 0 then
 (result, carry_out) = (value, carry_in);
 else
 case srtype of
 when SRType_LSL
 (result, carry_out) = LSL_C(value, amount);
 when SRType_LSR
 (result, carry_out) = LSR_C(value, amount);
 when SRType_ASR
 (result, carry_out) = ASR_C(value, amount);
 when SRType_ROR
 (result, carry_out) = ROR_C(value, amount);
 when SRType_RRX
 (result, carry_out) = RRX_C(value, carry_in);

 return (result, carry_out);

aarch32/functions/common/T32ExpandImm

 // T32ExpandImm()
 // ==============

 bits(32) T32ExpandImm(bits(12) imm12)

 // PSTATE.C argument to following function call does not affect the imm32 result.
 (imm32, -) = T32ExpandImm_C(imm12, PSTATE.C);

 return imm32;

aarch32/functions/common/T32ExpandImm_C

 // T32ExpandImm_C()
 // ================

 (bits(32), bit) T32ExpandImm_C(bits(12) imm12, bit carry_in)

 if imm12<11:10> == '00' then
 case imm12<9:8> of
 when '00'
 imm32 = ZeroExtend(imm12<7:0>, 32);
 when '01'
 imm32 = '00000000' : imm12<7:0> : '00000000' : imm12<7:0>;
 when '10'
 imm32 = imm12<7:0> : '00000000' : imm12<7:0> : '00000000';
 when '11'
 imm32 = imm12<7:0> : imm12<7:0> : imm12<7:0> : imm12<7:0>;
 carry_out = carry_in;
 else
 unrotated_value = ZeroExtend('1':imm12<6:0>, 32);
 (imm32, carry_out) = ROR_C(unrotated_value, UInt(imm12<11:7>));

 return (imm32, carry_out);
J1-8170 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/common/VCGEType

 enumeration VCGEType {VCGEType_signed, VCGEType_unsigned, VCGEType_fp};

aarch32/functions/common/VFPNegMul

 enumeration VFPNegMul {VFPNegMul_VNMLA, VFPNegMul_VNMLS, VFPNegMul_VNMUL};

aarch32/functions/coproc/AArch32.CheckCP15InstrCoarseTraps

 // AArch32.CheckCP15InstrCoarseTraps()
 // ===================================
 // Check for coarse-grained traps to System registers in the
 // coproc=0b1111 encoding space by HSTR and HCR.

 boolean AArch32.CheckCP15InstrCoarseTraps(integer CRn, integer nreg, integer CRm)

 // Check for coarse-grained Hyp traps
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
 if PSTATE.EL == EL0 && !ELUsingAArch32(EL2) then
 return AArch64.CheckCP15InstrCoarseTraps(CRn, nreg, CRm);
 // Check for MCR, MRC, MCRR and MRRC disabled by HSTR<CRn/CRm>
 major = if nreg == 1 then CRn else CRm;
 if !(major IN {4,14}) && HSTR<major> == '1' then
 return TRUE;

 // Check for MRC and MCR disabled by HCR.TIDCP
 if (HCR.TIDCP == '1' && nreg == 1 &&
 ((CRn == 9 && CRm IN {0,1,2, 5,6,7,8 }) ||
 (CRn == 10 && CRm IN {0,1, 4, 8 }) ||
 (CRn == 11 && CRm IN {0,1,2,3,4,5,6,7,8,15}))) then
 return TRUE;

 return FALSE;

aarch32/functions/exclusive/AArch32.ExclusiveMonitorsPass

 // AArch32.ExclusiveMonitorsPass()
 // ===============================
 // Return TRUE if the Exclusives monitors for the current PE include all of the addresses
 // associated with the virtual address region of size bytes starting at address.
 // The immediately following memory write must be to the same addresses.

 boolean AArch32.ExclusiveMonitorsPass(bits(32) address, integer size)

 // It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
 // before or after the check on the local Exclusives monitor. As a result a failure
 // of the local monitor can occur on some implementations even if the memory
 // access would give an memory abort.

 acctype = AccType_ATOMIC;
 iswrite = TRUE;

 aligned = AArch32.CheckAlignment(address, size, acctype, iswrite);

 passed = AArch32.IsExclusiveVA(address, ProcessorID(), size);
 if !passed then
 return FALSE;

 memaddrdesc = AArch32.TranslateAddress(address, acctype, iswrite, aligned, size);
 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch32.Abort(address, memaddrdesc.fault);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8171
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation

 passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);
 ClearExclusiveLocal(ProcessorID());

 if passed then
 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 passed = IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

 return passed;

aarch32/functions/exclusive/AArch32.IsExclusiveVA

 // An optional IMPLEMENTATION DEFINED test for an exclusive access to a virtual
 // address region of size bytes starting at address.
 //
 // It is permitted (but not required) for this function to return FALSE and
 // cause a store exclusive to fail if the virtual address region is not
 // totally included within the region recorded by MarkExclusiveVA().
 //
 // It is always safe to return TRUE which will check the physical address only.
 boolean AArch32.IsExclusiveVA(bits(32) address, integer processorid, integer size);

aarch32/functions/exclusive/AArch32.MarkExclusiveVA

 // Optionally record an exclusive access to the virtual address region of size bytes
 // starting at address for processorid.
 AArch32.MarkExclusiveVA(bits(32) address, integer processorid, integer size);

aarch32/functions/exclusive/AArch32.SetExclusiveMonitors

 // AArch32.SetExclusiveMonitors()
 // ==============================
 // Sets the Exclusives monitors for the current PE to record the addresses associated
 // with the virtual address region of size bytes starting at address.

 AArch32.SetExclusiveMonitors(bits(32) address, integer size)
 acctype = AccType_ATOMIC;
 iswrite = FALSE;

 aligned = AArch32.CheckAlignment(address, size, acctype, iswrite);

 memaddrdesc = AArch32.TranslateAddress(address, acctype, iswrite, aligned, size);
 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 return;

 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 MarkExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

 MarkExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

 AArch32.MarkExclusiveVA(address, ProcessorID(), size);

aarch32/functions/float/CheckAdvSIMDEnabled

 // CheckAdvSIMDEnabled()
 // =====================

 CheckAdvSIMDEnabled()

 fpexc_check = TRUE;
J1-8172 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 advsimd = TRUE;

 AArch32.CheckAdvSIMDOrFPEnabled(fpexc_check, advsimd);
 // Return from CheckAdvSIMDOrFPEnabled() occurs only if Advanced SIMD access is permitted

 // Make temporary copy of D registers
 // _Dclone[] is used as input data for instruction pseudocode
 for i = 0 to 31
 _Dclone[i] = D[i];

 return;

aarch32/functions/float/CheckAdvSIMDOrVFPEnabled

 // CheckAdvSIMDOrVFPEnabled()
 // ==========================

 CheckAdvSIMDOrVFPEnabled(boolean include_fpexc_check, boolean advsimd)
 AArch32.CheckAdvSIMDOrFPEnabled(include_fpexc_check, advsimd);
 // Return from CheckAdvSIMDOrFPEnabled() occurs only if VFP access is permitted
 return;

aarch32/functions/float/CheckCryptoEnabled32

 // CheckCryptoEnabled32()
 // ======================

 CheckCryptoEnabled32()
 CheckAdvSIMDEnabled();
 // Return from CheckAdvSIMDEnabled() occurs only if access is permitted
 return;

aarch32/functions/float/CheckVFPEnabled

 // CheckVFPEnabled()
 // =================

 CheckVFPEnabled(boolean include_fpexc_check)
 advsimd = FALSE;
 AArch32.CheckAdvSIMDOrFPEnabled(include_fpexc_check, advsimd);
 // Return from CheckAdvSIMDOrFPEnabled() occurs only if VFP access is permitted
 return;

aarch32/functions/float/FPHalvedSub

 // FPHalvedSub()
 // =============

 bits(N) FPHalvedSub(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {16,32,64};
 rounding = FPRoundingMode(fpcr);
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 if inf1 && inf2 && sign1 == sign2 then
 result = FPDefaultNaN(fpcr);
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8173
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 result = FPInfinity('0');
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
 result = FPInfinity('1');
 elsif zero1 && zero2 && sign1 != sign2 then
 result = FPZero(sign1);
 else
 result_value = (value1 - value2) / 2.0;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr);
 return result;

aarch32/functions/float/FPRSqrtStep

 // FPRSqrtStep()
 // =============

 bits(N) FPRSqrtStep(bits(N) op1, bits(N) op2)
 assert N IN {16,32};
 FPCRType fpcr = StandardFPSCRValue();
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 bits(N) product;
 if (inf1 && zero2) || (zero1 && inf2) then
 product = FPZero('0');
 else
 product = FPMul(op1, op2, fpcr);
 bits(N) three = FPThree('0');
 result = FPHalvedSub(three, product, fpcr);
 return result;

aarch32/functions/float/FPRecipStep

 // FPRecipStep()
 // =============

 bits(N) FPRecipStep(bits(N) op1, bits(N) op2)
 assert N IN {16,32};
 FPCRType fpcr = StandardFPSCRValue();
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 bits(N) product;
 if (inf1 && zero2) || (zero1 && inf2) then
 product = FPZero('0');
 else
 product = FPMul(op1, op2, fpcr);
 bits(N) two = FPTwo('0');
 result = FPSub(two, product, fpcr);
 return result;
J1-8174 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/float/StandardFPSCRValue

 // StandardFPSCRValue()
 // ====================

 FPCRType StandardFPSCRValue()
 return '00000' : FPSCR.AHP : '110000' : FPSCR.FZ16 : '0000000000000000000';

aarch32/functions/memory/AArch32.CheckAlignment

 // AArch32.CheckAlignment()
 // ========================

 boolean AArch32.CheckAlignment(bits(32) address, integer alignment, AccType acctype,
 boolean iswrite)

 if PSTATE.EL == EL0 && !ELUsingAArch32(S1TranslationRegime()) then
 A = SCTLR[].A; //use AArch64 register, when higher Exception level is using AArch64
 elsif PSTATE.EL == EL2 then
 A = HSCTLR.A;
 else
 A = SCTLR.A;
 aligned = (address == Align(address, alignment));
 atomic = acctype IN { AccType_ATOMIC, AccType_ATOMICRW, AccType_ORDEREDATOMIC,
 AccType_ORDEREDATOMICRW, AccType_ATOMICLS64, AccType_A32LSMD};
 ordered = acctype IN { AccType_ORDERED, AccType_ORDEREDRW, AccType_LIMITEDORDERED,
AccType_ORDEREDATOMIC, AccType_ORDEREDATOMICRW };
 vector = acctype == AccType_VEC;

 // AccType_VEC is used for SIMD element alignment checks only
 check = (atomic || ordered || vector || A == '1');

 if check && !aligned then
 secondstage = FALSE;
 AArch32.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

 return aligned;

aarch32/functions/memory/AArch32.MemSingle

 // AArch32.MemSingle[] - non-assignment (read) form
 // ==
 // Perform an atomic, little-endian read of 'size' bytes.

 bits(size*8) AArch32.MemSingle[bits(32) address, integer size, AccType acctype, boolean aligned]
 boolean ispair = FALSE;
 return AArch32.MemSingle[address, size, acctype, aligned, ispair];

 // AArch32.MemSingle[] - non-assignment (read) form
 // ==
 // Perform an atomic, little-endian read of 'size' bytes.

 bits(size*8) AArch32.MemSingle[bits(32) address, integer size, AccType acctype, boolean aligned, boolean
ispair]
 assert size IN {1, 2, 4, 8, 16};
 assert address == Align(address, size);

 AddressDescriptor memaddrdesc;
 bits(size*8) value;
 iswrite = FALSE;

 memaddrdesc = AArch32.TranslateAddress(address, acctype, iswrite, aligned, size);
 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8175
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 AArch32.Abort(address, memaddrdesc.fault);

 // Memory array access
 accdesc = CreateAccessDescriptor(acctype);

 (memstatus, value) = PhysMemRead(memaddrdesc, size, accdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, size, accdesc);
 return value;

 // AArch32.MemSingle[] - assignment (write) form
 // ===

 AArch32.MemSingle[bits(32) address, integer size, AccType acctype, boolean aligned] = bits(size*8) value
 boolean ispair = FALSE;
 AArch32.MemSingle[address, size, acctype, aligned, ispair] = value;
 return;

 // AArch32.MemSingle[] - assignment (write) form
 // ===
 // Perform an atomic, little-endian write of 'size' bytes.

 AArch32.MemSingle[bits(32) address, integer size, AccType acctype, boolean aligned, boolean ispair] =
bits(size*8) value
 assert size IN {1, 2, 4, 8, 16};
 assert address == Align(address, size);

 AddressDescriptor memaddrdesc;
 iswrite = TRUE;

 memaddrdesc = AArch32.TranslateAddress(address, acctype, iswrite, aligned, size);
 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch32.Abort(address, memaddrdesc.fault);

 // Effect on exclusives
 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

 // Memory array access
 accdesc = CreateAccessDescriptor(acctype);

 memstatus = PhysMemWrite(memaddrdesc, size, accdesc, value);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, size, accdesc);
 return;

aarch32/functions/memory/Hint_PreloadData

 Hint_PreloadData(bits(32) address);

aarch32/functions/memory/Hint_PreloadDataForWrite

 Hint_PreloadDataForWrite(bits(32) address);

aarch32/functions/memory/Hint_PreloadInstr

 Hint_PreloadInstr(bits(32) address);
J1-8176 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/memory/MemA

 // MemA[] - non-assignment form
 // ============================

 bits(8*size) MemA[bits(32) address, integer size]
 acctype = AccType_ATOMIC;
 return Mem_with_type[address, size, acctype];

 // MemA[] - assignment form
 // ========================

 MemA[bits(32) address, integer size] = bits(8*size) value
 acctype = AccType_ATOMIC;
 Mem_with_type[address, size, acctype] = value;
 return;

aarch32/functions/memory/MemO

 // MemO[] - non-assignment form
 // ============================

 bits(8*size) MemO[bits(32) address, integer size]
 acctype = AccType_ORDERED;
 return Mem_with_type[address, size, acctype];

 // MemO[] - assignment form
 // ========================

 MemO[bits(32) address, integer size] = bits(8*size) value
 acctype = AccType_ORDERED;
 Mem_with_type[address, size, acctype] = value;
 return;

aarch32/functions/memory/MemS

 // MemS[] - non-assignment form
 // ============================
 // Memory accessor for streaming load multiple instructions

 bits(8*size) MemS[bits(32) address, integer size]
 acctype = AccType_A32LSMD;
 return Mem_with_type[address, size, acctype];

 // MemS[] - assignment form
 // ========================
 // Memory accessor for streaming store multiple instructions

 MemS[bits(32) address, integer size] = bits(8*size) value
 acctype = AccType_A32LSMD;
 Mem_with_type[address, size, acctype] = value;
 return;

aarch32/functions/memory/MemU

 // MemU[] - non-assignment form
 // ============================

 bits(8*size) MemU[bits(32) address, integer size]
 acctype = AccType_NORMAL;
 return Mem_with_type[address, size, acctype];

 // MemU[] - assignment form
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8177
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 // ========================

 MemU[bits(32) address, integer size] = bits(8*size) value
 acctype = AccType_NORMAL;
 Mem_with_type[address, size, acctype] = value;
 return;

aarch32/functions/memory/MemU_unpriv

 // MemU_unpriv[] - non-assignment form
 // ===================================

 bits(8*size) MemU_unpriv[bits(32) address, integer size]
 acctype = AccType_UNPRIV;
 return Mem_with_type[address, size, acctype];

 // MemU_unpriv[] - assignment form
 // ===============================

 MemU_unpriv[bits(32) address, integer size] = bits(8*size) value
 acctype = AccType_UNPRIV;
 Mem_with_type[address, size, acctype] = value;
 return;

aarch32/functions/memory/Mem_with_type

 // Mem_with_type[] - non-assignment (read) form
 // ==
 // Perform a read of 'size' bytes. The access byte order is reversed for a big-endian access.
 // Instruction fetches would call AArch32.MemSingle directly.

 bits(size*8) Mem_with_type[bits(32) address, integer size, AccType acctype]
 boolean ispair = FALSE;
 return Mem_with_type[address, size, acctype, ispair];

 bits(size*8) Mem_with_type[bits(32) address, integer size, AccType acctype, boolean ispair]
 assert size IN {1, 2, 4, 8, 16};
 bits(size*8) value;
 boolean iswrite = FALSE;
 integer halfsize = size DIV 2;

 if ispair then
 // check alignment on size of element accessed, not overall access size
 aligned = AArch32.CheckAlignment(address, halfsize, acctype, iswrite);
 else
 aligned = AArch32.CheckAlignment(address, size, acctype, iswrite);

 if !aligned then

 assert size > 1;
 value<7:0> = AArch32.MemSingle[address, 1, acctype, aligned];

 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
 // access will generate an Alignment Fault, as to get this far means the first byte did
 // not, so we must be changing to a new translation page.
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

 for i = 1 to size-1
 value<8*i+7:8*i> = AArch32.MemSingle[address+i, 1, acctype, aligned];
 else
 value = AArch32.MemSingle[address, size, acctype, aligned, ispair];

J1-8178 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 if BigEndian(acctype) then
 value = BigEndianReverse(value);

 return value;

 // Mem_with_type[] - assignment (write) form
 // ===
 // Perform a write of 'size' bytes. The byte order is reversed for a big-endian access.

 Mem_with_type[bits(32) address, integer size, AccType acctype] = bits(size*8) value
 boolean ispair = FALSE;
 Mem_with_type[address, size, acctype, ispair] = value;

 Mem_with_type[bits(32) address, integer size, AccType acctype, boolean ispair] = bits(size*8) value
 boolean iswrite = TRUE;
 integer halfsize = size DIV 2;

 if BigEndian(acctype) then
 value = BigEndianReverse(value);

 if ispair then
 // check alignment on size of element accessed, not overall access size
 aligned = AArch32.CheckAlignment(address, halfsize, acctype, iswrite);
 else
 aligned = AArch32.CheckAlignment(address, size, acctype, iswrite);

 if !aligned then
 assert size > 1;
 AArch32.MemSingle[address, 1, acctype, aligned] = value<7:0>;

 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
 // access will generate an Alignment Fault, as to get this far means the first byte did
 // not, so we must be changing to a new translation page.
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

 for i = 1 to size-1
 AArch32.MemSingle[address+i, 1, acctype, aligned] = value<8*i+7:8*i>;
 else
 AArch32.MemSingle[address, size, acctype, aligned, ispair] = value;
 return;

aarch32/functions/ras/AArch32.ESBOperation

 // AArch32.ESBOperation()
 // ======================
 // Perform the AArch32 ESB operation for ESB executed in AArch32 state

 AArch32.ESBOperation()

 // Check if routed to AArch64 state
 route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);
 if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then
 route_to_aarch64 = HCR_EL2.TGE == '1' || HCR_EL2.AMO == '1';
 if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
 route_to_aarch64 = SCR_EL3.EA == '1';

 if route_to_aarch64 then
 AArch64.ESBOperation();
 return;

 route_to_monitor = HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.EA == '1';
 route_to_hyp = PSTATE.EL IN {EL0, EL1} && EL2Enabled() && (HCR.TGE == '1' || HCR.AMO == '1');

 if route_to_monitor then
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8179
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 target = M32_Monitor;
 elsif route_to_hyp || PSTATE.M == M32_Hyp then
 target = M32_Hyp;
 else
 target = M32_Abort;

 if IsSecure() then
 mask_active = TRUE;
 elsif target == M32_Monitor then
 mask_active = SCR.AW == '1' && (!HaveEL(EL2) || (HCR.TGE == '0' && HCR.AMO == '0'));
 else
 mask_active = target == M32_Abort || PSTATE.M == M32_Hyp;

 mask_set = PSTATE.A == '1';
 (-, el) = ELFromM32(target);
 intdis = Halted() || ExternalDebugInterruptsDisabled(el);
 masked = intdis || (mask_active && mask_set);

 // Check for a masked Physical SError pending that can be synchronized
 // by an Error synchronization event.
 if masked && IsSynchronizablePhysicalSErrorPending() then
 syndrome32 = AArch32.PhysicalSErrorSyndrome();
 DISR = AArch32.ReportDeferredSError(syndrome32.AET, syndrome32.ExT);
 ClearPendingPhysicalSError();

 return;

aarch32/functions/ras/AArch32.PhysicalSErrorSyndrome

 // Return the SError syndrome
 AArch32.SErrorSyndrome AArch32.PhysicalSErrorSyndrome();

aarch32/functions/ras/AArch32.ReportDeferredSError

 // AArch32.ReportDeferredSError()
 // ==============================
 // Return deferred SError syndrome

 bits(32) AArch32.ReportDeferredSError(bits(2) AET, bit ExT)
 bits(32) target;
 target<31> = '1'; // A
 syndrome = Zeros(16);
 if PSTATE.EL == EL2 then
 syndrome<11:10> = AET; // AET
 syndrome<9> = ExT; // EA
 syndrome<5:0> = '010001'; // DFSC
 else
 syndrome<15:14> = AET; // AET
 syndrome<12> = ExT; // ExT
 syndrome<9> = TTBCR.EAE; // LPAE
 if TTBCR.EAE == '1' then // Long-descriptor format
 syndrome<5:0> = '010001'; // STATUS
 else // Short-descriptor format
 syndrome<10,3:0> = '10110'; // FS
 if HaveAArch64() then
 target<24:0> = ZeroExtend(syndrome);// Any RES0 fields must be set to zero
 else
 target<15:0> = syndrome;
 return target;
J1-8180 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/ras/AArch32.SErrorSyndrome

 type AArch32.SErrorSyndrome is (
 bits(2) AET,
 bit ExT
)

aarch32/functions/ras/AArch32.vESBOperation

 // AArch32.vESBOperation()
 // =======================
 // Perform the ESB operation for virtual SError interrupts executed in AArch32 state

 AArch32.vESBOperation()
 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();

 // Check for EL2 using AArch64 state
 if !ELUsingAArch32(EL2) then
 AArch64.vESBOperation();
 return;

 // If physical SError interrupts are routed to Hyp mode, and TGE is not set, then a
 // virtual SError interrupt might be pending
 vSEI_enabled = HCR.TGE == '0' && HCR.AMO == '1';
 vSEI_pending = vSEI_enabled && HCR.VA == '1';
 vintdis = Halted() || ExternalDebugInterruptsDisabled(EL1);
 vmasked = vintdis || PSTATE.A == '1';

 // Check for a masked virtual SError pending
 if vSEI_pending && vmasked then
 VDISR = AArch32.ReportDeferredSError(VDFSR<15:14>, VDFSR<12>);
 HCR.VA = '0'; // Clear pending virtual SError

 return;

aarch32/functions/registers/AArch32.ResetGeneralRegisters

 // AArch32.ResetGeneralRegisters()
 // ===============================

 AArch32.ResetGeneralRegisters()

 for i = 0 to 7
 R[i] = bits(32) UNKNOWN;
 for i = 8 to 12
 Rmode[i, M32_User] = bits(32) UNKNOWN;
 Rmode[i, M32_FIQ] = bits(32) UNKNOWN;
 if HaveEL(EL2) then Rmode[13, M32_Hyp] = bits(32) UNKNOWN; // No R14_hyp
 for i = 13 to 14
 Rmode[i, M32_User] = bits(32) UNKNOWN;
 Rmode[i, M32_FIQ] = bits(32) UNKNOWN;
 Rmode[i, M32_IRQ] = bits(32) UNKNOWN;
 Rmode[i, M32_Svc] = bits(32) UNKNOWN;
 Rmode[i, M32_Abort] = bits(32) UNKNOWN;
 Rmode[i, M32_Undef] = bits(32) UNKNOWN;
 if HaveEL(EL3) then Rmode[i, M32_Monitor] = bits(32) UNKNOWN;

 return;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8181
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/registers/AArch32.ResetSIMDFPRegisters

 // AArch32.ResetSIMDFPRegisters()
 // ==============================

 AArch32.ResetSIMDFPRegisters()

 for i = 0 to 15
 Q[i] = bits(128) UNKNOWN;

 return;

aarch32/functions/registers/AArch32.ResetSpecialRegisters

 // AArch32.ResetSpecialRegisters()
 // ===============================

 AArch32.ResetSpecialRegisters()

 // AArch32 special registers
 SPSR_fiq<31:0> = bits(32) UNKNOWN;
 SPSR_irq<31:0> = bits(32) UNKNOWN;
 SPSR_svc<31:0> = bits(32) UNKNOWN;
 SPSR_abt<31:0> = bits(32) UNKNOWN;
 SPSR_und<31:0> = bits(32) UNKNOWN;
 if HaveEL(EL2) then
 SPSR_hyp = bits(32) UNKNOWN;
 ELR_hyp = bits(32) UNKNOWN;
 if HaveEL(EL3) then
 SPSR_mon = bits(32) UNKNOWN;

 // External debug special registers
 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;

 return;

aarch32/functions/registers/AArch32.ResetSystemRegisters

 AArch32.ResetSystemRegisters(boolean cold_reset);

aarch32/functions/registers/ALUExceptionReturn

 // ALUExceptionReturn()
 // ====================

 ALUExceptionReturn(bits(32) address)
 if PSTATE.EL == EL2 then
 UNDEFINED;
 elsif PSTATE.M IN {M32_User,M32_System} then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF
 UNDEFINED;
 when Constraint_NOP
 EndOfInstruction();
 else
 AArch32.ExceptionReturn(address, SPSR[]);
J1-8182 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/registers/ALUWritePC

 // ALUWritePC()
 // ============

 ALUWritePC(bits(32) address)
 if CurrentInstrSet() == InstrSet_A32 then
 BXWritePC(address, BranchType_INDIR);
 else
 BranchWritePC(address, BranchType_INDIR);

aarch32/functions/registers/BXWritePC

 // BXWritePC()
 // ===========

 BXWritePC(bits(32) address, BranchType branch_type)
 if address<0> == '1' then
 SelectInstrSet(InstrSet_T32);
 address<0> = '0';
 else
 SelectInstrSet(InstrSet_A32);
 // For branches to an unaligned PC counter in A32 state, the processor takes the branch
 // and does one of:
 // * Forces the address to be aligned
 // * Leaves the PC unaligned, meaning the target generates a PC Alignment fault.
 if address<1> == '1' && ConstrainUnpredictableBool() then
 address<1> = '0';
 boolean branch_conditional = AArch32.CurrentCond() != '111x';
 BranchTo(address, branch_type, branch_conditional);

aarch32/functions/registers/BranchWritePC

 // BranchWritePC()
 // ===============

 BranchWritePC(bits(32) address, BranchType branch_type)
 if CurrentInstrSet() == InstrSet_A32 then
 address<1:0> = '00';
 else
 address<0> = '0';
 boolean branch_conditional = AArch32.CurrentCond() != '111x';
 BranchTo(address, branch_type, branch_conditional);

aarch32/functions/registers/CBWritePC

 // CBWritePC()
 // ===========
 // Takes a branch from a CBNZ/CBZ instruction.

 CBWritePC(bits(32) address)
 assert CurrentInstrSet() == InstrSet_T32;
 address<0> = '0';
 boolean branch_conditional = TRUE;
 BranchTo(address, BranchType_DIR, branch_conditional);

aarch32/functions/registers/D

 // D[] - non-assignment form
 // =========================

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8183
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 bits(64) D[integer n]
 assert n >= 0 && n <= 31;
 base = (n MOD 2) * 64;
 bits(128) vreg = V[n DIV 2];
 return vreg<base+63:base>;

 // D[] - assignment form
 // =====================

 D[integer n] = bits(64) value
 assert n >= 0 && n <= 31;
 base = (n MOD 2) * 64;
 bits(128) vreg = V[n DIV 2];
 vreg<base+63:base> = value;
 V[n DIV 2] = vreg;
 return;

aarch32/functions/registers/Din

 // Din[] - non-assignment form
 // ===========================

 bits(64) Din[integer n]
 assert n >= 0 && n <= 31;
 return _Dclone[n];

aarch32/functions/registers/LR

 // LR - assignment form
 // ====================

 LR = bits(32) value
 R[14] = value;
 return;

 // LR - non-assignment form
 // ========================

 bits(32) LR
 return R[14];

aarch32/functions/registers/LoadWritePC

 // LoadWritePC()
 // =============

 LoadWritePC(bits(32) address)
 BXWritePC(address, BranchType_INDIR);

aarch32/functions/registers/LookUpRIndex

 // LookUpRIndex()
 // ==============

 integer LookUpRIndex(integer n, bits(5) mode)
 assert n >= 0 && n <= 14;

 case n of // Select index by mode: usr fiq irq svc abt und hyp
 when 8 result = RBankSelect(mode, 8, 24, 8, 8, 8, 8, 8);
 when 9 result = RBankSelect(mode, 9, 25, 9, 9, 9, 9, 9);
 when 10 result = RBankSelect(mode, 10, 26, 10, 10, 10, 10, 10);
J1-8184 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 when 11 result = RBankSelect(mode, 11, 27, 11, 11, 11, 11, 11);
 when 12 result = RBankSelect(mode, 12, 28, 12, 12, 12, 12, 12);
 when 13 result = RBankSelect(mode, 13, 29, 17, 19, 21, 23, 15);
 when 14 result = RBankSelect(mode, 14, 30, 16, 18, 20, 22, 14);
 otherwise result = n;

 return result;

aarch32/functions/registers/Monitor_mode_registers

 bits(32) SP_mon;
 bits(32) LR_mon;

aarch32/functions/registers/PC

 // PC - non-assignment form
 // ========================

 bits(32) PC
 return R[15]; // This includes the offset from AArch32 state

aarch32/functions/registers/PCStoreValue

 // PCStoreValue()
 // ==============

 bits(32) PCStoreValue()
 // This function returns the PC value. On architecture versions before Armv7, it
 // is permitted to instead return PC+4, provided it does so consistently. It is
 // used only to describe A32 instructions, so it returns the address of the current
 // instruction plus 8 (normally) or 12 (when the alternative is permitted).
 return PC;

aarch32/functions/registers/Q

 // Q[] - non-assignment form
 // =========================

 bits(128) Q[integer n]
 assert n >= 0 && n <= 15;
 return V[n];

 // Q[] - assignment form
 // =====================

 Q[integer n] = bits(128) value
 assert n >= 0 && n <= 15;
 V[n] = value;
 return;

aarch32/functions/registers/Qin

 // Qin[] - non-assignment form
 // ===========================

 bits(128) Qin[integer n]
 assert n >= 0 && n <= 15;
 return Din[2*n+1]:Din[2*n];
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8185
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/registers/R

 // R[] - assignment form
 // =====================

 R[integer n] = bits(32) value
 Rmode[n, PSTATE.M] = value;
 return;

 // R[] - non-assignment form
 // =========================

 bits(32) R[integer n]
 if n == 15 then
 offset = (if CurrentInstrSet() == InstrSet_A32 then 8 else 4);
 return _PC<31:0> + offset;
 else
 return Rmode[n, PSTATE.M];

aarch32/functions/registers/RBankSelect

 // RBankSelect()
 // =============

 integer RBankSelect(bits(5) mode, integer usr, integer fiq, integer irq,
 integer svc, integer abt, integer und, integer hyp)

 case mode of
 when M32_User result = usr; // User mode
 when M32_FIQ result = fiq; // FIQ mode
 when M32_IRQ result = irq; // IRQ mode
 when M32_Svc result = svc; // Supervisor mode
 when M32_Abort result = abt; // Abort mode
 when M32_Hyp result = hyp; // Hyp mode
 when M32_Undef result = und; // Undefined mode
 when M32_System result = usr; // System mode uses User mode registers
 otherwise Unreachable(); // Monitor mode

 return result;

aarch32/functions/registers/Rmode

 // Rmode[] - non-assignment form
 // =============================

 bits(32) Rmode[integer n, bits(5) mode]
 assert n >= 0 && n <= 14;

 // Check for attempted use of Monitor mode in Non-secure state.
 if !IsSecure() then assert mode != M32_Monitor;
 assert !BadMode(mode);

 if mode == M32_Monitor then
 if n == 13 then return SP_mon;
 elsif n == 14 then return LR_mon;
 else return _R[n]<31:0>;
 else
 return _R[LookUpRIndex(n, mode)]<31:0>;

 // Rmode[] - assignment form
 // =========================

 Rmode[integer n, bits(5) mode] = bits(32) value
 assert n >= 0 && n <= 14;
J1-8186 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation

 // Check for attempted use of Monitor mode in Non-secure state.
 if !IsSecure() then assert mode != M32_Monitor;
 assert !BadMode(mode);

 if mode == M32_Monitor then
 if n == 13 then SP_mon = value;
 elsif n == 14 then LR_mon = value;
 else _R[n]<31:0> = value;
 else
 // It is CONSTRAINED UNPREDICTABLE whether the upper 32 bits of the X
 // register are unchanged or set to zero. This is also tested for on
 // exception entry, as this applies to all AArch32 registers.
 if HaveAArch64() && ConstrainUnpredictableBool() then
 _R[LookUpRIndex(n, mode)] = ZeroExtend(value);
 else
 _R[LookUpRIndex(n, mode)]<31:0> = value;

 return;

aarch32/functions/registers/S

 // S[] - non-assignment form
 // =========================

 bits(32) S[integer n]
 assert n >= 0 && n <= 31;
 base = (n MOD 4) * 32;
 bits(128) vreg = V[n DIV 4];
 return vreg<base+31:base>;

 // S[] - assignment form
 // =====================

 S[integer n] = bits(32) value
 assert n >= 0 && n <= 31;
 base = (n MOD 4) * 32;
 bits(128) vreg = V[n DIV 4];
 vreg<base+31:base> = value;
 V[n DIV 4] = vreg;
 return;

aarch32/functions/registers/SP

 // SP - assignment form
 // ====================

 SP = bits(32) value
 R[13] = value;
 return;

 // SP - non-assignment form
 // ========================

 bits(32) SP
 return R[13];

aarch32/functions/registers/_Dclone

 array bits(64) _Dclone[0..31];
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8187
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/system/AArch32.ExceptionReturn

 // AArch32.ExceptionReturn()
 // =========================

 AArch32.ExceptionReturn(bits(32) new_pc, bits(32) spsr)

 SynchronizeContext();
 // Attempts to change to an illegal mode or state will invoke the Illegal Execution state
 // mechanism
 SetPSTATEFromPSR(spsr);
 ClearExclusiveLocal(ProcessorID());
 SendEventLocal();

 if PSTATE.IL == '1' then
 // If the exception return is illegal, PC[1:0] are UNKNOWN
 new_pc<1:0> = bits(2) UNKNOWN;
 else
 // LR[1:0] or LR[0] are treated as being 0, depending on the target instruction set state
 if PSTATE.T == '1' then
 new_pc<0> = '0'; // T32
 else
 new_pc<1:0> = '00'; // A32

 boolean branch_conditional = AArch32.CurrentCond() != '111x';
 BranchTo(new_pc, BranchType_ERET, branch_conditional);

 CheckExceptionCatch(FALSE); // Check for debug event on exception return

aarch32/functions/system/AArch32.ExecutingCP10or11Instr

 // AArch32.ExecutingCP10or11Instr()
 // ================================

 boolean AArch32.ExecutingCP10or11Instr()
 instr = ThisInstr();
 instr_set = CurrentInstrSet();
 assert instr_set IN {InstrSet_A32, InstrSet_T32};

 if instr_set == InstrSet_A32 then
 return ((instr<27:24> == '1110' || instr<27:25> == '110') && instr<11:8> == '101x');
 else // InstrSet_T32
 return (instr<31:28> == '111x' && (instr<27:24> == '1110' || instr<27:25> == '110') &&
instr<11:8> == '101x');

aarch32/functions/system/AArch32.ITAdvance

 // AArch32.ITAdvance()
 // ===================

 AArch32.ITAdvance()
 if PSTATE.IT<2:0> == '000' then
 PSTATE.IT = '00000000';
 else
 PSTATE.IT<4:0> = LSL(PSTATE.IT<4:0>, 1);
 return;

aarch32/functions/system/AArch32.SysRegRead

 // Read from a 32-bit AArch32 System register and return the register's contents.
 bits(32) AArch32.SysRegRead(integer cp_num, bits(32) instr);
J1-8188 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/system/AArch32.SysRegRead64

 // Read from a 64-bit AArch32 System register and return the register's contents.
 bits(64) AArch32.SysRegRead64(integer cp_num, bits(32) instr);

aarch32/functions/system/AArch32.SysRegReadCanWriteAPSR

 // AArch32.SysRegReadCanWriteAPSR()
 // ================================
 // Determines whether the AArch32 System register read instruction can write to APSR flags.

 boolean AArch32.SysRegReadCanWriteAPSR(integer cp_num, bits(32) instr)
 assert UsingAArch32();
 assert (cp_num IN {14,15});
 assert cp_num == UInt(instr<11:8>);

 opc1 = UInt(instr<23:21>);
 opc2 = UInt(instr<7:5>);
 CRn = UInt(instr<19:16>);
 CRm = UInt(instr<3:0>);

 if cp_num == 14 && opc1 == 0 && CRn == 0 && CRm == 1 && opc2 == 0 then // DBGDSCRint
 return TRUE;

 return FALSE;

aarch32/functions/system/AArch32.SysRegWrite

 // Write to a 32-bit AArch32 System register.
 AArch32.SysRegWrite(integer cp_num, bits(32) instr, bits(32) val);

aarch32/functions/system/AArch32.SysRegWrite64

 // Write to a 64-bit AArch32 System register.
 AArch32.SysRegWrite64(integer cp_num, bits(32) instr, bits(64) val);

aarch32/functions/system/AArch32.SysRegWriteM

 // Read a value from a virtual address and write it to an AArch32 System register.
 AArch32.SysRegWriteM(integer cp_num, bits(32) instr, bits(32) address);

aarch32/functions/system/AArch32.WriteMode

 // AArch32.WriteMode()
 // ===================
 // Function for dealing with writes to PSTATE.M from AArch32 state only.
 // This ensures that PSTATE.EL and PSTATE.SP are always valid.

 AArch32.WriteMode(bits(5) mode)
 (valid,el) = ELFromM32(mode);
 assert valid;
 PSTATE.M = mode;
 PSTATE.EL = el;
 PSTATE.nRW = '1';
 PSTATE.SP = (if mode IN {M32_User,M32_System} then '0' else '1');
 return;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8189
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/system/AArch32.WriteModeByInstr

 // AArch32.WriteModeByInstr()
 // ==========================
 // Function for dealing with writes to PSTATE.M from an AArch32 instruction, and ensuring that
 // illegal state changes are correctly flagged in PSTATE.IL.

 AArch32.WriteModeByInstr(bits(5) mode)
 (valid,el) = ELFromM32(mode);

 // 'valid' is set to FALSE if' mode' is invalid for this implementation or the current value
 // of SCR.NS/SCR_EL3.NS. Additionally, it is illegal for an instruction to write 'mode' to
 // PSTATE.EL if it would result in any of:
 // * A change to a mode that would cause entry to a higher Exception level.
 if UInt(el) > UInt(PSTATE.EL) then
 valid = FALSE;

 // * A change to or from Hyp mode.
 if (PSTATE.M == M32_Hyp || mode == M32_Hyp) && PSTATE.M != mode then
 valid = FALSE;

 // * When EL2 is implemented, the value of HCR.TGE is '1', a change to a Non-secure EL1 mode.
 if PSTATE.M == M32_Monitor && HaveEL(EL2) && el == EL1 && SCR.NS == '1' && HCR.TGE == '1' then
 valid = FALSE;

 if !valid then
 PSTATE.IL = '1';
 else
 AArch32.WriteMode(mode);

aarch32/functions/system/BadMode

 // BadMode()
 // =========

 boolean BadMode(bits(5) mode)
 // Return TRUE if 'mode' encodes a mode that is not valid for this implementation
 case mode of
 when M32_Monitor
 valid = HaveAArch32EL(EL3);
 when M32_Hyp
 valid = HaveAArch32EL(EL2);
 when M32_FIQ, M32_IRQ, M32_Svc, M32_Abort, M32_Undef, M32_System
 // If EL3 is implemented and using AArch32, then these modes are EL3 modes in Secure
 // state, and EL1 modes in Non-secure state. If EL3 is not implemented or is using
 // AArch64, then these modes are EL1 modes.
 // Therefore it is sufficient to test this implementation supports EL1 using AArch32.
 valid = HaveAArch32EL(EL1);
 when M32_User
 valid = HaveAArch32EL(EL0);
 otherwise
 valid = FALSE; // Passed an illegal mode value
 return !valid;

aarch32/functions/system/BankedRegisterAccessValid

 // BankedRegisterAccessValid()
 // ===========================
 // Checks for MRS (Banked register) or MSR (Banked register) accesses to registers
 // other than the SPSRs that are invalid. This includes ELR_hyp accesses.

 BankedRegisterAccessValid(bits(5) SYSm, bits(5) mode)

 case SYSm of
J1-8190 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 when '000xx', '00100' // R8_usr to R12_usr
 if mode != M32_FIQ then UNPREDICTABLE;
 when '00101' // SP_usr
 if mode == M32_System then UNPREDICTABLE;
 when '00110' // LR_usr
 if mode IN {M32_Hyp,M32_System} then UNPREDICTABLE;
 when '010xx', '0110x', '01110' // R8_fiq to R12_fiq, SP_fiq, LR_fiq
 if mode == M32_FIQ then UNPREDICTABLE;
 when '1000x' // LR_irq, SP_irq
 if mode == M32_IRQ then UNPREDICTABLE;
 when '1001x' // LR_svc, SP_svc
 if mode == M32_Svc then UNPREDICTABLE;
 when '1010x' // LR_abt, SP_abt
 if mode == M32_Abort then UNPREDICTABLE;
 when '1011x' // LR_und, SP_und
 if mode == M32_Undef then UNPREDICTABLE;
 when '1110x' // LR_mon, SP_mon
 if !HaveEL(EL3) || !IsSecure() || mode == M32_Monitor then UNPREDICTABLE;
 when '11110' // ELR_hyp, only from Monitor or Hyp mode
 if !HaveEL(EL2) || !(mode IN {M32_Monitor,M32_Hyp}) then UNPREDICTABLE;
 when '11111' // SP_hyp, only from Monitor mode
 if !HaveEL(EL2) || mode != M32_Monitor then UNPREDICTABLE;
 otherwise
 UNPREDICTABLE;

 return;

aarch32/functions/system/CPSRWriteByInstr

 // CPSRWriteByInstr()
 // ==================
 // Update PSTATE.<N,Z,C,V,Q,GE,E,A,I,F,M> from a CPSR value written by an MSR instruction.

 CPSRWriteByInstr(bits(32) value, bits(4) bytemask)
 privileged = PSTATE.EL != EL0; // PSTATE.<A,I,F,M> are not writable at EL0

 // Write PSTATE from 'value', ignoring bytes masked by 'bytemask'
 if bytemask<3> == '1' then
 PSTATE.<N,Z,C,V,Q> = value<31:27>;
 // Bits <26:24> are ignored

 if bytemask<2> == '1' then
 if HaveSSBSExt() then
 PSTATE.SSBS = value<23>;
 if privileged then
 PSTATE.PAN = value<22>;
 if HaveDITExt() then
 PSTATE.DIT = value<21>;
 // Bit <20> is RES0
 PSTATE.GE = value<19:16>;

 if bytemask<1> == '1' then
 // Bits <15:10> are RES0
 PSTATE.E = value<9>; // PSTATE.E is writable at EL0
 if privileged then
 PSTATE.A = value<8>;

 if bytemask<0> == '1' then
 if privileged then
 PSTATE.<I,F> = value<7:6>;
 // Bit <5> is RES0
 // AArch32.WriteModeByInstr() sets PSTATE.IL to 1 if this is an illegal mode change.
 AArch32.WriteModeByInstr(value<4:0>);
 return;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8191
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/system/ConditionPassed

 // ConditionPassed()
 // =================

 boolean ConditionPassed()
 return ConditionHolds(AArch32.CurrentCond());

aarch32/functions/system/CurrentCond

 bits(4) AArch32.CurrentCond();

aarch32/functions/system/InITBlock

 // InITBlock()
 // ===========

 boolean InITBlock()
 if CurrentInstrSet() == InstrSet_T32 then
 return PSTATE.IT<3:0> != '0000';
 else
 return FALSE;

aarch32/functions/system/LastInITBlock

 // LastInITBlock()
 // ===============

 boolean LastInITBlock()
 return (PSTATE.IT<3:0> == '1000');

aarch32/functions/system/SPSRWriteByInstr

 // SPSRWriteByInstr()
 // ==================

 SPSRWriteByInstr(bits(32) value, bits(4) bytemask)

 bits(32) new_spsr = SPSR[];

 if bytemask<3> == '1' then
 new_spsr<31:24> = value<31:24>; // N,Z,C,V,Q flags, IT[1:0],J bits

 if bytemask<2> == '1' then
 new_spsr<23:16> = value<23:16>; // IL bit, GE[3:0] flags

 if bytemask<1> == '1' then
 new_spsr<15:8> = value<15:8>; // IT[7:2] bits, E bit, A interrupt mask

 if bytemask<0> == '1' then
 new_spsr<7:0> = value<7:0>; // I,F interrupt masks, T bit, Mode bits

 SPSR[] = new_spsr; // UNPREDICTABLE if User or System mode

 return;
J1-8192 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/system/SPSRaccessValid

 // SPSRaccessValid()
 // =================
 // Checks for MRS (Banked register) or MSR (Banked register) accesses to the SPSRs
 // that are UNPREDICTABLE

 SPSRaccessValid(bits(5) SYSm, bits(5) mode)
 case SYSm of
 when '01110' // SPSR_fiq
 if mode == M32_FIQ then UNPREDICTABLE;
 when '10000' // SPSR_irq
 if mode == M32_IRQ then UNPREDICTABLE;
 when '10010' // SPSR_svc
 if mode == M32_Svc then UNPREDICTABLE;
 when '10100' // SPSR_abt
 if mode == M32_Abort then UNPREDICTABLE;
 when '10110' // SPSR_und
 if mode == M32_Undef then UNPREDICTABLE;
 when '11100' // SPSR_mon
 if !HaveEL(EL3) || mode == M32_Monitor || !IsSecure() then UNPREDICTABLE;
 when '11110' // SPSR_hyp
 if !HaveEL(EL2) || mode != M32_Monitor then UNPREDICTABLE;
 otherwise
 UNPREDICTABLE;

 return;

aarch32/functions/system/SelectInstrSet

 // SelectInstrSet()
 // ================

 SelectInstrSet(InstrSet iset)
 assert CurrentInstrSet() IN {InstrSet_A32, InstrSet_T32};
 assert iset IN {InstrSet_A32, InstrSet_T32};

 PSTATE.T = if iset == InstrSet_A32 then '0' else '1';

 return;

aarch32/functions/v6simd/Sat

 // Sat()
 // =====

 bits(N) Sat(integer i, integer N, boolean unsigned)
 result = if unsigned then UnsignedSat(i, N) else SignedSat(i, N);
 return result;

aarch32/functions/v6simd/SignedSat

 // SignedSat()
 // ===========

 bits(N) SignedSat(integer i, integer N)
 (result, -) = SignedSatQ(i, N);
 return result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8193
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/v6simd/UnsignedSat

 // UnsignedSat()
 // =============

 bits(N) UnsignedSat(integer i, integer N)
 (result, -) = UnsignedSatQ(i, N);
 return result;

J1.2.4 aarch32/translation

This section includes the following pseudocode functions:

• aarch32/translation/attrs/AArch32.DefaultTEXDecode on page J1-8195.

• aarch32/translation/attrs/AArch32.RemappedTEXDecode on page J1-8196.

• aarch32/translation/debug/AArch32.CheckBreakpoint on page J1-8197.

• aarch32/translation/debug/AArch32.CheckDebug on page J1-8197.

• aarch32/translation/debug/AArch32.CheckVectorCatch on page J1-8198.

• aarch32/translation/debug/AArch32.CheckWatchpoint on page J1-8198.

• aarch32/translation/faults/AArch32.DebugFault on page J1-8199.

• aarch32/translation/faults/AArch32.IPAIsOutOfRange on page J1-8199.

• aarch32/translation/faults/AArch32.S1HasAlignmentFault on page J1-8199.

• aarch32/translation/faults/AArch32.S1LDHasPermissionsFault on page J1-8199.

• aarch32/translation/faults/AArch32.S1SDHasPermissionsFault on page J1-8200.

• aarch32/translation/faults/AArch32.S2HasAlignmentFault on page J1-8201.

• aarch32/translation/faults/AArch32.S2HasPermissionsFault on page J1-8202.

• aarch32/translation/faults/AArch32.S2InconsistentSL on page J1-8202.

• aarch32/translation/faults/AArch32.VAIsOutOfRange on page J1-8203.

• aarch32/translation/translation/AArch32.AccessUsesEL on page J1-8203.

• aarch32/translation/translation/AArch32.FullTranslate on page J1-8203.

• aarch32/translation/translation/AArch32.OutputDomain on page J1-8204.

• aarch32/translation/translation/AArch32.S1DisabledOutput on page J1-8204.

• aarch32/translation/translation/AArch32.S1Enabled on page J1-8205.

• aarch32/translation/translation/AArch32.S1TranslateLD on page J1-8205.

• aarch32/translation/translation/AArch32.S1TranslateSD on page J1-8207.

• aarch32/translation/translation/AArch32.S2Translate on page J1-8208.

• aarch32/translation/translation/AArch32.SDStageOA on page J1-8209.

• aarch32/translation/translation/AArch32.TranslateAddress on page J1-8210.

• aarch32/translation/walk/AArch32.DecodeDescriptorTypeLD on page J1-8210.

• aarch32/translation/walk/AArch32.DecodeDescriptorTypeSD on page J1-8210.

• aarch32/translation/walk/AArch32.S1IASize on page J1-8211.

• aarch32/translation/walk/AArch32.S1WalkLD on page J1-8211.

• aarch32/translation/walk/AArch32.S1WalkSD on page J1-8213.

• aarch32/translation/walk/AArch32.S2IASize on page J1-8216.

• aarch32/translation/walk/AArch32.S2StartLevel on page J1-8216.

• aarch32/translation/walk/AArch32.S2Walk on page J1-8216.

• aarch32/translation/walk/AArch32.TranslationSizeSD on page J1-8218.

• aarch32/translation/walk/RemapRegsHaveResetValues on page J1-8218.

• aarch32/translation/walkparams/AArch32.GetS1TTWParams on page J1-8218.

• aarch32/translation/walkparams/AArch32.GetS2TTWParams on page J1-8219.

• aarch32/translation/walkparams/AArch32.GetVARange on page J1-8219.

• aarch32/translation/walkparams/AArch32.S1TTWParamsEL2 on page J1-8219.

• aarch32/translation/walkparams/AArch32.S1TTWParamsPL10 on page J1-8220.
J1-8194 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/translation/attrs/AArch32.DefaultTEXDecode

 // AArch32.DefaultTEXDecode()
 // ==========================
 // Apply short-descriptor format memory region attributes, without TEX remap

 MemoryAttributes AArch32.DefaultTEXDecode(bits(3) TEX, bit C, bit B, bit S)
 MemoryAttributes memattrs;

 // Reserved values map to allocated values
 if (TEX == '001' && C:B == '01') || (TEX == '010' && C:B != '00') || TEX == '011' then
 bits(5) texcb;
 (-, texcb) = ConstrainUnpredictableBits();
 TEX = texcb<4:2>; C = texcb<1>; B = texcb<0>;

 // Distinction between Inner Shareable and Outer Shareable is not supported in this format
 // A memory region is either Non-shareable or Outer Shareable
 case TEX:C:B of
 when '00000'
 // Device-nGnRnE
 memattrs.memtype = MemType_Device;
 memattrs.device = DeviceType_nGnRnE;
 memattrs.shareability = Shareability_OSH;
 when '00001', '01000'
 // Device-nGnRE
 memattrs.memtype = MemType_Device;
 memattrs.device = DeviceType_nGnRE;
 memattrs.shareability = Shareability_OSH;
 when '00010'
 // Write-through Read allocate
 memattrs.memtype = MemType_Normal;
 memattrs.inner.attrs = MemAttr_WT;
 memattrs.inner.hints = MemHint_RA;
 memattrs.outer.attrs = MemAttr_WT;
 memattrs.outer.hints = MemHint_RA;
 memattrs.shareability = if S == '1' then Shareability_OSH else Shareability_NSH;
 when '00011'
 // Write-back Read allocate
 memattrs.memtype = MemType_Normal;
 memattrs.inner.attrs = MemAttr_WB;
 memattrs.inner.hints = MemHint_RA;
 memattrs.outer.attrs = MemAttr_WB;
 memattrs.outer.hints = MemHint_RA;
 memattrs.shareability = if S == '1' then Shareability_OSH else Shareability_NSH;
 when '00100'
 // Non-cacheable
 memattrs.memtype = MemType_Normal;
 memattrs.inner.attrs = MemAttr_NC;
 memattrs.outer.attrs = MemAttr_NC;
 memattrs.shareability = Shareability_OSH;
 when '00110'
 memattrs = MemoryAttributes IMPLEMENTATION_DEFINED;
 when '00111'
 // Write-back Read and Write allocate
 memattrs.memtype = MemType_Normal;
 memattrs.inner.attrs = MemAttr_WB;
 memattrs.inner.hints = MemHint_RWA;
 memattrs.outer.attrs = MemAttr_WB;
 memattrs.outer.hints = MemHint_RWA;
 memattrs.shareability = if S == '1' then Shareability_OSH else Shareability_NSH;
 when '1xxxx'
 // Cacheable, TEX<1:0> = Outer attrs, {C,B} = Inner attrs
 memattrs.memtype = MemType_Normal;
 memattrs.inner = DecodeSDFAttr(C:B);
 memattrs.outer = DecodeSDFAttr(TEX<1:0>);

 if memattrs.inner.attrs == MemAttr_NC && memattrs.outer.attrs == MemAttr_NC then
 memattrs.shareability = Shareability_OSH;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8195
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 else
 memattrs.shareability = if S == '1' then Shareability_OSH else Shareability_NSH;
 otherwise
 // Reserved, handled above
 Unreachable();

 // The Transient hint is not supported in this format
 memattrs.inner.transient = FALSE;
 memattrs.outer.transient = FALSE;
 memattrs.tagged = FALSE;

 if memattrs.inner.attrs == MemAttr_WB && memattrs.outer.attrs == MemAttr_WB then
 memattrs.xs = '0';
 else
 memattrs.xs = '1';

 return memattrs;

aarch32/translation/attrs/AArch32.RemappedTEXDecode

 // AArch32.RemappedTEXDecode()
 // ===========================
 // Apply short-descriptor format memory region attributes, with TEX remap

 MemoryAttributes AArch32.RemappedTEXDecode(bits(3) TEX, bit C, bit B, bit S)

 MemoryAttributes memattrs;

 region = UInt(TEX<0>:C:B); // TEX<2:1> are ignored in this mapping scheme
 if region == 6 then
 return MemoryAttributes IMPLEMENTATION_DEFINED;

 base = 2 * region;
 attrfield = PRRR<base+1:base>;

 if attrfield == '11' then // Reserved, maps to allocated value
 (-, attrfield) = ConstrainUnpredictableBits();

 case attrfield of
 when '00' // Device-nGnRnE
 memattrs.memtype = MemType_Device;
 memattrs.device = DeviceType_nGnRnE;
 memattrs.shareability = Shareability_OSH;
 when '01' // Device-nGnRE
 memattrs.memtype = MemType_Device;
 memattrs.device = DeviceType_nGnRE;
 memattrs.shareability = Shareability_OSH;
 when '10'
 NSn = if S == '0' then PRRR.NS0 else PRRR.NS1;
 NOSm = PRRR<region+24> AND NSn;
 IRn = NMRR<base+1:base>;
 ORn = NMRR<base+17:base+16>;

 memattrs.memtype = MemType_Normal;
 memattrs.inner = DecodeSDFAttr(IRn);
 memattrs.outer = DecodeSDFAttr(ORn);
 if memattrs.inner.attrs == MemAttr_NC && memattrs.outer.attrs == MemAttr_NC then
 memattrs.shareability = Shareability_OSH;
 else
 bits(2) sh = NSn:NOSm;
 memattrs.shareability = DecodeShareability(sh);
 when '11'
 Unreachable();

 // The Transient hint is not supported in this format
 memattrs.inner.transient = FALSE;
J1-8196 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 memattrs.outer.transient = FALSE;
 memattrs.tagged = FALSE;

 if memattrs.inner.attrs == MemAttr_WB && memattrs.outer.attrs == MemAttr_WB then
 memattrs.xs = '0';
 else
 memattrs.xs = '1';

 return memattrs;

aarch32/translation/debug/AArch32.CheckBreakpoint

 // AArch32.CheckBreakpoint()
 // =========================
 // Called before executing the instruction of length "size" bytes at "vaddress" in an AArch32
 // translation regime, when either debug exceptions are enabled, or halting debug is enabled
 // and halting is allowed.

 FaultRecord AArch32.CheckBreakpoint(bits(32) vaddress, integer size)
 assert ELUsingAArch32(S1TranslationRegime());
 assert size IN {2,4};

 match = FALSE;
 mismatch = FALSE;

 for i = 0 to UInt(DBGDIDR.BRPs)
 (match_i, mismatch_i) = AArch32.BreakpointMatch(i, vaddress, size);
 match = match || match_i;
 mismatch = mismatch || mismatch_i;

 if match && HaltOnBreakpointOrWatchpoint() then
 reason = DebugHalt_Breakpoint;
 Halt(reason);
 elsif (match || mismatch) then
 acctype = AccType_IFETCH;
 iswrite = FALSE;
 debugmoe = DebugException_Breakpoint;
 return AArch32.DebugFault(acctype, iswrite, debugmoe);
 else
 return NoFault();

aarch32/translation/debug/AArch32.CheckDebug

 // AArch32.CheckDebug()
 // ====================
 // Called on each access to check for a debug exception or entry to Debug state.

 FaultRecord AArch32.CheckDebug(bits(32) vaddress, AccType acctype, boolean iswrite, integer size)

 FaultRecord fault = NoFault();

 d_side = (acctype != AccType_IFETCH);
 generate_exception = AArch32.GenerateDebugExceptions() && DBGDSCRext.MDBGen == '1';
 halt = HaltOnBreakpointOrWatchpoint();
 // Relative priority of Vector Catch and Breakpoint exceptions not defined in the architecture
 vector_catch_first = ConstrainUnpredictableBool();

 if !d_side && vector_catch_first && generate_exception then
 fault = AArch32.CheckVectorCatch(vaddress, size);

 if fault.statuscode == Fault_None && (generate_exception || halt) then
 if d_side then
 fault = AArch32.CheckWatchpoint(vaddress, acctype, iswrite, size);
 else
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8197
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 fault = AArch32.CheckBreakpoint(vaddress, size);

 if fault.statuscode == Fault_None && !d_side && !vector_catch_first && generate_exception then
 return AArch32.CheckVectorCatch(vaddress, size);

 return fault;

aarch32/translation/debug/AArch32.CheckVectorCatch

 // AArch32.CheckVectorCatch()
 // ==========================
 // Called before executing the instruction of length "size" bytes at "vaddress" in an AArch32
 // translation regime, when debug exceptions are enabled.

 FaultRecord AArch32.CheckVectorCatch(bits(32) vaddress, integer size)
 assert ELUsingAArch32(S1TranslationRegime());

 match = AArch32.VCRMatch(vaddress);
 if size == 4 && !match && AArch32.VCRMatch(vaddress + 2) then
 match = ConstrainUnpredictableBool();

 if match then
 acctype = AccType_IFETCH;
 iswrite = FALSE;
 debugmoe = DebugException_VectorCatch;
 return AArch32.DebugFault(acctype, iswrite, debugmoe);
 else
 return NoFault();

aarch32/translation/debug/AArch32.CheckWatchpoint

 // AArch32.CheckWatchpoint()
 // =========================
 // Called before accessing the memory location of "size" bytes at "address",
 // when either debug exceptions are enabled for the access, or halting debug
 // is enabled and halting is allowed.

 FaultRecord AArch32.CheckWatchpoint(bits(32) vaddress, AccType acctype,
 boolean iswrite, integer size)
 assert ELUsingAArch32(S1TranslationRegime());

 if acctype IN {AccType_TTW, AccType_IC, AccType_AT, AccType_ATPAN} then
 return NoFault();
 if acctype == AccType_DC then
 if !iswrite then
 return NoFault();
 elsif !(boolean IMPLEMENTATION_DEFINED "DCIMVAC generates watchpoint") then
 return NoFault();

 match = FALSE;
 ispriv = AArch32.AccessUsesEL(acctype) != EL0;

 for i = 0 to UInt(DBGDIDR.WRPs)
 if AArch32.WatchpointMatch(i, vaddress, size, ispriv, acctype, iswrite) then
 match = TRUE;

 if match && HaltOnBreakpointOrWatchpoint() then
 reason = DebugHalt_Watchpoint;
 EDWAR = ZeroExtend(vaddress);
 Halt(reason);
 elsif match then
 debugmoe = DebugException_Watchpoint;
 return AArch32.DebugFault(acctype, iswrite, debugmoe);
J1-8198 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 else
 return NoFault();

aarch32/translation/faults/AArch32.DebugFault

 // AArch32.DebugFault()
 // ====================
 // Return a fault record indicating a hardware watchpoint/breakpoint

 FaultRecord AArch32.DebugFault(AccType acctype, boolean iswrite, bits(4) debugmoe)
 FaultRecord fault;

 fault.statuscode = Fault_Debug;
 fault.acctype = acctype;
 fault.write = iswrite;
 fault.debugmoe = debugmoe;
 fault.secondstage = FALSE;
 fault.s2fs1walk = FALSE;

 return fault;

aarch32/translation/faults/AArch32.IPAIsOutOfRange

 // AArch32.IPAIsOutOfRange()
 // =========================
 // Check intermediate physical address bits not resolved by translation are ZERO

 boolean AArch32.IPAIsOutOfRange(S2TTWParams walkparams, bits(40) ipa)
 // Input Address size
 iasize = AArch32.S2IASize(walkparams.t0sz);

 return iasize < 40 && !IsZero(ipa<39:iasize>);

aarch32/translation/faults/AArch32.S1HasAlignmentFault

 // AArch32.S1HasAlignmentFault()
 // =============================
 // Returns whether stage 1 output fails alignment requirement on data accesses
 // to Device memory

 boolean AArch32.S1HasAlignmentFault(AccType acctype, boolean aligned,
 bit ntlsmd, MemoryAttributes memattrs)
 if acctype == AccType_IFETCH || memattrs.memtype != MemType_Device then
 return FALSE;

 if acctype == AccType_A32LSMD && ntlsmd == '0' && memattrs.device != DeviceType_GRE then
 return TRUE;

 return !aligned || acctype == AccType_DCZVA;

aarch32/translation/faults/AArch32.S1LDHasPermissionsFault

 // AArch32.S1LDHasPermissionsFault()
 // =================================
 // Returns whether an access using stage 1 long-descriptor translation
 // violates permissions of target memory

 boolean AArch32.S1LDHasPermissionsFault(Regime regime, S1TTWParams walkparams,
 Permissions perms, MemType memtype,
 PASpace paspace, boolean ispriv,
 AccType acctype, boolean iswrite)
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8199
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 if HasUnprivileged(regime) then
 // Apply leaf permissions
 case perms.ap<2:1> of
 when '00' (pr,pw,ur,uw) = ('1','1','0','0'); // R/W at PL1 only
 when '01' (pr,pw,ur,uw) = ('1','1','1','1'); // R/W at any PL
 when '10' (pr,pw,ur,uw) = ('1','0','0','0'); // RO at PL1 only
 when '11' (pr,pw,ur,uw) = ('1','0','1','0'); // RO at any PL

 // Apply hierarchical permissions
 case perms.ap_table of
 when '00' (pr,pw,ur,uw) = (pr, pw, ur, uw); // No effect
 when '01' (pr,pw,ur,uw) = (pr, pw,'0','0'); // Privileged access
 when '10' (pr,pw,ur,uw) = (pr,'0', ur,'0'); // Read-only
 when '11' (pr,pw,ur,uw) = (pr,'0','0','0'); // Read-only, privileged access

 wxn = walkparams.wxn;
 uwxn = walkparams.uwxn;
 xn = perms.xn OR perms.xn_table;
 pxn = perms.pxn OR perms.pxn_table;

 ux = ur AND NOT(xn OR (uw AND wxn));
 px = pr AND NOT(xn OR pxn OR (pw AND wxn) OR (uw AND uwxn));

 pan_access = !(acctype IN {AccType_DC, AccType_IFETCH, AccType_AT});
 if HavePANExt() && pan_access then
 pan = PSTATE.PAN AND (ur OR uw);
 pr = pr AND NOT(pan);
 pw = pw AND NOT(pan);

 (r,w,x) = if ispriv then (pr,pw,px) else (ur,uw,ux);

 // Prevent execution from Non-secure space by PE in Secure state if SIF is set
 if IsSecure() && paspace == PAS_NonSecure then
 x = x AND NOT(walkparams.sif);
 else
 // Apply leaf permissions
 case perms.ap<2> of
 when '0' (r,w) = ('1','1'); // No effect
 when '1' (r,w) = ('1','0'); // Read-only

 // Apply hierarchical permissions
 case perms.ap_table<1> of
 when '0' (r,w) = (r , w); // No effect
 when '1' (r,w) = (r ,'0'); // Read-only

 xn = perms.xn OR perms.xn_table;
 x = NOT(xn OR (w AND walkparams.wxn));

 if acctype == AccType_IFETCH then
 constraint = ConstrainUnpredictable();
 if constraint == Constraint_FAULT && memtype == MemType_Device then
 return TRUE;
 else
 return x == '0';
 elsif acctype IN {AccType_IC, AccType_DC} then
 return FALSE;
 elsif iswrite then
 return w == '0';
 else
 return r == '0';

aarch32/translation/faults/AArch32.S1SDHasPermissionsFault

 // AArch32.S1SDHasPermissionsFault()
 // =================================
 // Returns whether an access using stage 1 short-descriptor translation
J1-8200 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 // violates permissions of target memory

 boolean AArch32.S1SDHasPermissionsFault(Permissions perms, MemType memtype,
 PASpace paspace, boolean ispriv,
 AccType acctype, boolean iswrite)
 wxn = SCTLR.WXN;
 uwxn = SCTLR.UWXN;
 if SCTLR.AFE == '0' then
 // Map Reserved encoding '100'
 if perms.ap == '100' then
 perms.ap = bits(3) IMPLEMENTATION_DEFINED "Reserved short descriptor AP encoding";

 case perms.ap of
 when '000' (pr,pw,ur,uw) = ('0','0','0','0'); // No access
 when '001' (pr,pw,ur,uw) = ('1','1','0','0'); // R/W at PL1 only
 when '010' (pr,pw,ur,uw) = ('1','1','1','0'); // R/W at PL1, RO at PL0
 when '011' (pr,pw,ur,uw) = ('1','1','1','1'); // R/W at any PL
 // '100' is reserved
 when '101' (pr,pw,ur,uw) = ('1','0','0','0'); // RO at PL1 only
 when '110' (pr,pw,ur,uw) = ('1','0','1','0'); // RO at any PL (deprecated)
 when '111' (pr,pw,ur,uw) = ('1','0','1','0'); // RO at any PL
 else // Simplified access permissions model
 case perms.ap<2:1> of
 when '00' (pr,pw,ur,uw) = ('1','1','0','0'); // R/W at PL1 only
 when '01' (pr,pw,ur,uw) = ('1','1','1','1'); // R/W at any PL
 when '10' (pr,pw,ur,uw) = ('1','0','0','0'); // RO at PL1 only
 when '11' (pr,pw,ur,uw) = ('1','0','1','0'); // RO at any PL

 ux = ur AND NOT(perms.xn OR (uw AND wxn));
 px = pr AND NOT(perms.xn OR perms.pxn OR (pw AND wxn) OR (uw AND uwxn));

 pan_access = !(acctype IN {AccType_DC, AccType_IFETCH, AccType_AT});
 if HavePANExt() && pan_access then
 pan = PSTATE.PAN AND (ur OR uw);
 pr = pr AND NOT(pan);
 pw = pw AND NOT(pan);

 (r,w,x) = if ispriv then (pr,pw,px) else (ur,uw,ux);

 // Prevent execution from Non-secure space by PE in Secure state if SIF is set
 if IsSecure() && paspace == PAS_NonSecure then
 x = x AND NOT(if ELUsingAArch32(EL3) then SCR.SIF else SCR_EL3.SIF);

 if acctype == AccType_IFETCH then
 constraint = ConstrainUnpredictable();
 if constraint == Constraint_FAULT && memtype == MemType_Device then
 return TRUE;
 else
 return x == '0';
 elsif acctype IN {AccType_IC, AccType_DC} then
 return FALSE;
 elsif iswrite then
 return w == '0';
 else
 return r == '0';

aarch32/translation/faults/AArch32.S2HasAlignmentFault

 // AArch32.S2HasAlignmentFault()
 // =============================
 // Returns whether stage 2 output fails alignment requirement on data accesses
 // to Device memory

 boolean AArch32.S2HasAlignmentFault(AccType acctype, boolean aligned,
 MemoryAttributes memattrs)
 if acctype == AccType_IFETCH || memattrs.memtype != MemType_Device then
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8201
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 return FALSE;

 return !aligned || acctype == AccType_DCZVA;

aarch32/translation/faults/AArch32.S2HasPermissionsFault

 // AArch32.S2HasPermissionsFault()
 // ===============================
 // Returns whether stage 2 access violates permissions of target memory

 boolean AArch32.S2HasPermissionsFault(boolean s2fs1walk, S2TTWParams walkparams,
 Permissions perms, MemType memtype,
 boolean ispriv, AccType acctype,
 boolean iswrite)
 r = perms.s2ap<0>;
 w = perms.s2ap<1>;
 if HaveExtendedExecuteNeverExt() then
 case perms.s2xn:perms.s2xnx of
 when '00' (px, ux) = (r , r);
 when '01' (px, ux) = ('0', r);
 when '10' (px, ux) = ('0','0');
 when '11' (px, ux) = (r ,'0');

 x = if ispriv then px else ux;
 else
 x = r AND NOT(perms.s2xn);

 if s2fs1walk && walkparams.ptw == '1' && memtype == MemType_Device then
 return TRUE;
 elsif acctype == AccType_IFETCH then
 constraint = ConstrainUnpredictable();
 if constraint == Constraint_FAULT && memtype == MemType_Device then
 return TRUE;
 else
 return x == '0';
 elsif acctype IN {AccType_IC, AccType_DC} then
 return FALSE;
 elsif iswrite then
 return w == '0';
 else
 return r == '0';

aarch32/translation/faults/AArch32.S2InconsistentSL

 // AArch32.S2InconsistentSL()
 // ==========================
 // Detect inconsistent configuration of stage 2 T0SZ and SL fields

 boolean AArch32.S2InconsistentSL(S2TTWParams walkparams)
 startlevel = AArch32.S2StartLevel(walkparams.sl0);
 levels = FINAL_LEVEL - startlevel;
 granulebits = TGxGranuleBits(walkparams.tgx);
 stride = granulebits - 3;

 // Input address size must at least be large enough to be resolved from the start level
 sl_min_iasize = (
 levels * stride // Bits resolved by table walk, except initial level
 + granulebits // Bits directly mapped to output address
 + 1); // At least 1 more bit to be decoded by initial level

 // Can accomodate 1 more stride in the level + concatenation of up to 2^4 tables
 sl_max_iasize = sl_min_iasize + (stride-1) + 4;
 // Configured Input Address size
 iasize = AArch32.S2IASize(walkparams.t0sz);
J1-8202 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation

 return iasize < sl_min_iasize || iasize > sl_max_iasize;

aarch32/translation/faults/AArch32.VAIsOutOfRange

 // AArch32.VAIsOutOfRange()
 // ========================
 // Check virtual address bits not resolved by translation are identical
 // and of accepted value

 boolean AArch32.VAIsOutOfRange(Regime regime, S1TTWParams walkparams, bits(32) va)
 if regime == Regime_EL2 then
 // Input Address size
 iasize = AArch32.S1IASize(walkparams.t0sz);
 return walkparams.t0sz != '000' && !IsZero(va<31:iasize>);
 elsif walkparams.t1sz != '000' && walkparams.t0sz != '000' then
 // Lower range Input Address size
 lo_iasize = AArch32.S1IASize(walkparams.t0sz);
 // Upper range Input Address size
 up_iasize = AArch32.S1IASize(walkparams.t1sz);
 return !IsZero(va<31:lo_iasize>) && !IsOnes(va<31:up_iasize>);
 else
 return FALSE;

aarch32/translation/translation/AArch32.AccessUsesEL

 // AArch32.AccessUsesEL()
 // ======================
 // Determine the privilege associated with the access

 bits(2) AArch32.AccessUsesEL(AccType acctype)
 if acctype == AccType_UNPRIV then
 return EL0;
 else
 return PSTATE.EL;

aarch32/translation/translation/AArch32.FullTranslate

 // AArch32.FullTranslate()
 // =======================
 // Perform address translation as specified by VMSA-A32

 AddressDescriptor AArch32.FullTranslate(bits(32) va, AccType acctype,
 boolean iswrite, boolean aligned)

 // Prepare fault fields in case a fault is detected
 fault = NoFault();
 fault.acctype = acctype;
 fault.write = iswrite;

 regime = TranslationRegime(PSTATE.EL, acctype);

 // First Stage Translation

 if regime == Regime_EL2 || TTBCR.EAE == '1' then
 (fault, ipa) = AArch32.S1TranslateLD(fault, regime, va, acctype,
 aligned, iswrite);
 else
 (fault, ipa, -) = AArch32.S1TranslateSD(fault, regime, va, acctype,
 aligned, iswrite);

 if fault.statuscode != Fault_None then
 return CreateFaultyAddressDescriptor(ZeroExtend(va), fault);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8203
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation

 if regime == Regime_EL10 && EL2Enabled() then
 ipa.vaddress = ZeroExtend(va);
 s2fs1walk = FALSE;
 (fault, pa) = AArch32.S2Translate(fault, ipa, s2fs1walk, acctype,
 aligned, iswrite);

 if fault.statuscode != Fault_None then
 return CreateFaultyAddressDescriptor(ZeroExtend(va), fault);
 else
 return pa;
 else
 return ipa;

aarch32/translation/translation/AArch32.OutputDomain

 // AArch32.OutputDomain()
 // ======================
 // Determine the domain the translated output address

 bits(2) AArch32.OutputDomain(bits(4) domain)
 index = 2 * UInt(domain);
 Dn = DACR<index+1:index>;

 if Dn == '10' then
 // Reserved value maps to an allocated value
 (-, Dn) = ConstrainUnpredictableBits();

 return Dn;

aarch32/translation/translation/AArch32.S1DisabledOutput

 // AArch32.S1DisabledOutput()
 // ==========================
 // Flat map the VA to IPA/PA, depending on the regime, assigning default memory attributes

 (FaultRecord, AddressDescriptor) AArch32.S1DisabledOutput(FaultRecord fault,
 Regime regime, bits(32) va, AccType acctype, boolean aligned)

 // No memory page is guarded when stage 1 address translation is disabled
 SetInGuardedPage(FALSE);

 MemoryAttributes memattrs;
 if regime == Regime_EL10 && EL2Enabled() then
 default_cacheable = if ELUsingAArch32(EL2) then HCR.DC else HCR_EL2.DC;
 else
 default_cacheable = '0';

 if default_cacheable == '1' then
 // Use default cacheable settings
 memattrs.memtype = MemType_Normal;
 memattrs.inner.attrs = MemAttr_WB;
 memattrs.inner.hints = MemHint_RWA;
 memattrs.outer.attrs = MemAttr_WB;
 memattrs.outer.hints = MemHint_RWA;
 memattrs.shareability = Shareability_NSH;
 if !ELUsingAArch32(EL2) && HaveMTE2Ext() then
 memattrs.tagged = HCR_EL2.DCT == '1';
 else
 memattrs.tagged = FALSE;
 elsif acctype == AccType_IFETCH then
 // Instruction cacheability controlled by SCTLR/HSCTLR.I
 icache_en = if regime == Regime_EL2 then HSCTLR.I else SCTLR.I;

J1-8204 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 memattrs.memtype = MemType_Normal;
 memattrs.shareability = Shareability_OSH;
 memattrs.tagged = FALSE;
 if icache_en == '1' then
 memattrs.inner.attrs = MemAttr_WT;
 memattrs.inner.hints = MemHint_RA;
 memattrs.outer.attrs = MemAttr_WT;
 memattrs.outer.hints = MemHint_RA;
 else
 memattrs.inner.attrs = MemAttr_NC;
 memattrs.outer.attrs = MemAttr_NC;
 else
 // Treat memory region as Device
 memattrs.memtype = MemType_Device;
 memattrs.device = DeviceType_nGnRnE;
 memattrs.shareability = Shareability_OSH;
 memattrs.tagged = FALSE;

 if HaveTrapLoadStoreMultipleDeviceExt() then
 ntlsmd = if regime == Regime_EL2 then HSCTLR.nTLSMD else SCTLR.nTLSMD;
 else
 ntlsmd = '1';

 if AArch32.S1HasAlignmentFault(acctype, aligned, ntlsmd, memattrs) then
 fault.statuscode = Fault_Alignment;
 return (fault, AddressDescriptor UNKNOWN);

 FullAddress oa;
 oa.address = ZeroExtend(va);
 oa.paspace = if IsSecure() then PAS_Secure else PAS_NonSecure;
 ipa = CreateAddressDescriptor(ZeroExtend(va), oa, memattrs);

 return (fault, ipa);

aarch32/translation/translation/AArch32.S1Enabled

 // AArch32.S1Enabled()
 // ===================
 // Returns whether stage 1 translation is enabled for the active translation regime

 boolean AArch32.S1Enabled(Regime regime)
 if regime == Regime_EL2 then
 return HSCTLR.M == '1';
 elsif regime == Regime_EL30 || !EL2Enabled() then
 return SCTLR.M == '1';
 elsif ELUsingAArch32(EL2) then
 return HCR.<TGE,DC> == '00' && SCTLR.M == '1';
 else
 return HCR_EL2.<TGE,DC> == '00' && SCTLR.M == '1';

aarch32/translation/translation/AArch32.S1TranslateLD

 // AArch32.S1TranslateLD()
 // =======================
 // Perform a stage 1 translation using long-descriptor format mapping VA to IPA/PA
 // depending on the regime

 (FaultRecord, AddressDescriptor) AArch32.S1TranslateLD(FaultRecord fault,
 Regime regime, bits(32) va, AccType acctype, boolean aligned, boolean iswrite)

 fault.secondstage = FALSE;
 fault.s2fs1walk = FALSE;

 if !AArch32.S1Enabled(regime) then
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8205
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 return AArch32.S1DisabledOutput(fault, regime, va, acctype, aligned);

 walkparams = AArch32.GetS1TTWParams(regime, va);

 if AArch32.VAIsOutOfRange(regime, walkparams, va) then
 fault.level = 1;
 fault.statuscode = Fault_Translation;
 return (fault, AddressDescriptor UNKNOWN);

 (fault, walkstate) = AArch32.S1WalkLD(fault, regime, walkparams, va);

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);

 ispriv = AArch32.AccessUsesEL(acctype) != EL0;
 SetInGuardedPage(FALSE); // AArch32-VMSA does not guard any pages

 if AArch32.S1HasAlignmentFault(acctype, aligned, walkparams.ntlsmd,
 walkstate.memattrs) then
 fault.statuscode = Fault_Alignment;
 elsif IsAtomicRW(acctype) then
 if AArch32.S1LDHasPermissionsFault(regime, walkparams,
 walkstate.permissions,
 walkstate.memattrs.memtype,
 walkstate.baseaddress.paspace,
 ispriv, acctype, FALSE) then
 // The permission fault was not caused by lack of write permissions
 fault.statuscode = Fault_Permission;
 fault.write = FALSE;
 elsif AArch32.S1LDHasPermissionsFault(regime, walkparams,
 walkstate.permissions,
 walkstate.memattrs.memtype,
 walkstate.baseaddress.paspace,
 ispriv, acctype, TRUE) then
 // The permission fault _was_ caused by lack of write permissions
 fault.statuscode = Fault_Permission;
 fault.write = TRUE;
 elsif AArch32.S1LDHasPermissionsFault(regime, walkparams,
 walkstate.permissions,
 walkstate.memattrs.memtype,
 walkstate.baseaddress.paspace,
 ispriv, acctype, iswrite) then
 fault.statuscode = Fault_Permission;

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);

 icache_en = if regime == Regime_EL2 then HSCTLR.I else SCTLR.I;
 dcache_en = if regime == Regime_EL2 then HSCTLR.C else SCTLR.C;

 if ((acctype == AccType_IFETCH &&
 (walkstate.memattrs.memtype == MemType_Device || icache_en == '0')) ||
 (acctype != AccType_IFETCH &&
 walkstate.memattrs.memtype == MemType_Normal && dcache_en == '0')) then
 // Treat memory attributes as Normal Non-Cacheable
 memattrs = NormalNCMemAttr();
 memattrs.xs = walkstate.memattrs.xs;
 else
 memattrs = walkstate.memattrs;

 if (regime == Regime_EL10 && EL2Enabled() &&
 (if ELUsingAArch32(EL2) then HCR.VM else HCR_EL2.VM) == '1') then
 // Shareability of target memory subject to stage 2 translation
 // is maintained as input to stage 2
 memattrs.shareability = walkstate.memattrs.shareability;
 else
 memattrs.shareability = NormaliseShareability(memattrs);

J1-8206 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 // Output Address
 oa = StageOA(walkstate.baseaddress, ZeroExtend(va), walkparams.tgx, walkstate.level);
 ipa = CreateAddressDescriptor(ZeroExtend(va), oa, memattrs);

 return (fault, ipa);

aarch32/translation/translation/AArch32.S1TranslateSD

 // AArch32.S1TranslateSD()
 // =======================
 // Perform a stage 1 translation using short-descriptor format mapping VA to IPA/PA
 // depending on the regime

 (FaultRecord, AddressDescriptor, SDFType) AArch32.S1TranslateSD(FaultRecord fault,
 Regime regime, bits(32) va, AccType acctype, boolean aligned, boolean iswrite)

 fault.secondstage = FALSE;
 fault.s2fs1walk = FALSE;

 if !AArch32.S1Enabled(regime) then
 (fault, ipa) = AArch32.S1DisabledOutput(fault, regime, va, acctype, aligned);
 return (fault, ipa, SDFType UNKNOWN);

 (fault, walkstate) = AArch32.S1WalkSD(fault, regime, va);

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN, SDFType UNKNOWN);

 ispriv = AArch32.AccessUsesEL(acctype) != EL0;
 domain = AArch32.OutputDomain(walkstate.domain);
 SetInGuardedPage(FALSE); // AArch32-VMSA does not guard any pages

 ntlsmd = if HaveTrapLoadStoreMultipleDeviceExt() then SCTLR.nTLSMD else '1';

 if AArch32.S1HasAlignmentFault(acctype, aligned, ntlsmd, walkstate.memattrs) then
 fault.statuscode = Fault_Alignment;
 elsif !(acctype IN {AccType_IC, AccType_DC}) && domain == Domain_NoAccess then
 fault.statuscode = Fault_Domain;
 elsif domain == Domain_Client then
 if IsAtomicRW(acctype) then
 if AArch32.S1SDHasPermissionsFault(walkstate.permissions,
 walkstate.memattrs.memtype,
 walkstate.baseaddress.paspace,
 ispriv, acctype, FALSE) then
 // The permission fault was not caused by lack of write permissions
 fault.statuscode = Fault_Permission;
 fault.write = FALSE;
 elsif AArch32.S1SDHasPermissionsFault(walkstate.permissions,
 walkstate.memattrs.memtype,
 walkstate.baseaddress.paspace,
 ispriv, acctype, TRUE) then
 // The permission fault _was_ caused by lack of write permissions
 fault.statuscode = Fault_Permission;
 fault.write = TRUE;
 elsif AArch32.S1SDHasPermissionsFault(walkstate.permissions,
 walkstate.memattrs.memtype,
 walkstate.baseaddress.paspace,
 ispriv, acctype, iswrite) then
 fault.statuscode = Fault_Permission;

 if fault.statuscode != Fault_None then
 fault.domain = walkstate.domain;
 return (fault, AddressDescriptor UNKNOWN, walkstate.sdftype);

 if ((acctype == AccType_IFETCH &&
 (walkstate.memattrs.memtype == MemType_Device || SCTLR.I == '0')) ||
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8207
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 (acctype != AccType_IFETCH &&
 walkstate.memattrs.memtype == MemType_Normal && SCTLR.C == '0')) then
 // Treat memory attributes as Normal Non-Cacheable
 memattrs = NormalNCMemAttr();
 memattrs.xs = walkstate.memattrs.xs;
 else
 memattrs = walkstate.memattrs;

 if (regime == Regime_EL10 && EL2Enabled() &&
 (if ELUsingAArch32(EL2) then HCR.VM else HCR_EL2.VM) == '1') then
 // Shareability of target memory subject to stage 2 translation
 // is maintained as input to stage 2
 memattrs.shareability = walkstate.memattrs.shareability;
 else
 memattrs.shareability = NormaliseShareability(memattrs);

 // Output Address
 oa = AArch32.SDStageOA(walkstate.baseaddress, va, walkstate.sdftype);
 ipa = CreateAddressDescriptor(ZeroExtend(va), oa, memattrs);

 return (fault, ipa, walkstate.sdftype);

aarch32/translation/translation/AArch32.S2Translate

 // AArch32.S2Translate()
 // =====================
 // Perform a stage 2 translation mapping an IPA to a PA

 (FaultRecord, AddressDescriptor) AArch32.S2Translate(FaultRecord fault,
 AddressDescriptor ipa, boolean s2fs1walk, AccType acctype,
 boolean aligned, boolean iswrite)

 assert IsZero(ipa.paddress.address<51:40>);

 if !ELUsingAArch32(EL2) then
 s1aarch64 = FALSE;
 return AArch64.S2Translate(fault, ipa, s1aarch64, s2fs1walk, acctype,
 aligned, iswrite);

 // Prepare fault fields in case a fault is detected
 fault.statuscode = Fault_None;
 fault.secondstage = TRUE;
 fault.s2fs1walk = s2fs1walk;
 fault.ipaddress = ipa.paddress;

 walkparams = AArch32.GetS2TTWParams();

 if walkparams.vm == '0' then
 // Stage 2 is disabled
 return (fault, ipa);

 if AArch32.IPAIsOutOfRange(walkparams, ipa.paddress.address<39:0>) then
 fault.statuscode = Fault_Translation;
 fault.level = 1;
 return (fault, AddressDescriptor UNKNOWN);

 (fault, walkstate) = AArch32.S2Walk(fault, walkparams, ipa);

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);

 ispriv = AArch32.AccessUsesEL(acctype) != EL0;

 if AArch32.S2HasAlignmentFault(acctype, aligned, walkstate.memattrs) then
 fault.statuscode = Fault_Alignment;
 elsif IsAtomicRW(acctype) then
J1-8208 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 assert !s2fs1walk; // AArch32 does not support HW update of TT
 if AArch32.S2HasPermissionsFault(s2fs1walk, walkparams,
 walkstate.permissions,
 walkstate.memattrs.memtype,
 ispriv, acctype, FALSE) then
 // The permission fault was not caused by lack of write permissions
 fault.statuscode = Fault_Permission;
 fault.write = FALSE;
 elsif AArch32.S2HasPermissionsFault(s2fs1walk, walkparams,
 walkstate.permissions,
 walkstate.memattrs.memtype,
 ispriv, acctype, TRUE) then
 // The permission fault _was_ caused by lack of write permissions
 fault.statuscode = Fault_Permission;
 fault.write = TRUE;
 elsif AArch32.S2HasPermissionsFault(s2fs1walk, walkparams,
 walkstate.permissions,
 walkstate.memattrs.memtype,
 ispriv, acctype, iswrite) then
 fault.statuscode = Fault_Permission;

 if ((s2fs1walk &&
 walkstate.memattrs.memtype == MemType_Device) ||
 (acctype == AccType_IFETCH &&
 (walkstate.memattrs.memtype == MemType_Device || HCR2.ID == '1')) ||
 (acctype != AccType_IFETCH &&
 walkstate.memattrs.memtype == MemType_Normal && HCR2.CD == '1')) then
 // Treat memory attributes as Normal Non-Cacheable
 s2_memattrs = NormalNCMemAttr();
 s2_memattrs.xs = walkstate.memattrs.xs;
 else
 s2_memattrs = walkstate.memattrs;

 memattrs = S2CombineS1MemAttrs(ipa.memattrs, s2_memattrs);
 ipa_64 = ZeroExtend(ipa.paddress.address<39:0>, 64);
 // Output Address
 oa = StageOA(walkstate.baseaddress, ipa_64, walkparams.tgx, walkstate.level);
 pa = CreateAddressDescriptor(ipa.vaddress, oa, memattrs);

 return (fault, pa);

aarch32/translation/translation/AArch32.SDStageOA

 // AArch32.SDStageOA()
 // ===================
 // Given the final walk state of a short-descriptor translation walk,
 // map the untranslated input address bits to the base output address

 FullAddress AArch32.SDStageOA(FullAddress baseaddress, bits(32) va, SDFType sdftype)
 case sdftype of
 when SDFType_SmallPage tsize = 12;
 when SDFType_LargePage tsize = 16;
 when SDFType_Section tsize = 20;
 when SDFType_Supersection tsize = 24;

 // Output Address
 FullAddress oa;
 oa.address = baseaddress.address<51:tsize>:va<tsize-1:0>;
 oa.paspace = baseaddress.paspace;
 return oa;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8209
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/translation/translation/AArch32.TranslateAddress

 // AArch32.TranslateAddress()
 // ==========================
 // Main entry point for translating an address

 AddressDescriptor AArch32.TranslateAddress(bits(32) va, AccType acctype,
 boolean iswrite, boolean aligned,
 integer size)

 regime = TranslationRegime(PSTATE.EL, acctype);
 if !RegimeUsingAArch32(regime) then
 return AArch64.TranslateAddress(ZeroExtend(va, 64), acctype, iswrite,
 aligned, size);
 result = AArch32.FullTranslate(va, acctype, iswrite, aligned);
 if !IsFault(result) then
 result.fault = AArch32.CheckDebug(va, acctype, iswrite, size);

 // Update virtual address for abort functions
 result.vaddress = ZeroExtend(va);

 return result;

aarch32/translation/walk/AArch32.DecodeDescriptorTypeLD

 // AArch32.DecodeDescriptorTypeLD()
 // ================================
 // Determine whether the long-descriptor is a page, block or table

 DescriptorType AArch32.DecodeDescriptorTypeLD(bits(64) descriptor, integer level)
 if descriptor<1:0> == '11' && level == FINAL_LEVEL then
 return DescriptorType_Page;
 elsif descriptor<1:0> == '11' then
 return DescriptorType_Table;
 elsif descriptor<1:0> == '01' && level != FINAL_LEVEL then
 return DescriptorType_Block;
 else
 return DescriptorType_Invalid;

aarch32/translation/walk/AArch32.DecodeDescriptorTypeSD

 // AArch32.DecodeDescriptorTypeSD()
 // ================================
 // Determine the type of the short-descriptor

 SDFType AArch32.DecodeDescriptorTypeSD(bits(32) descriptor, integer level)
 if level == 1 && descriptor<1:0> == '01' then
 return SDFType_Table;
 elsif level == 1 && descriptor<18,1> == '01' then
 return SDFType_Section;
 elsif level == 1 && descriptor<18,1> == '11' then
 return SDFType_Supersection;
 elsif level == 2 && descriptor<1:0> == '01' then
 return SDFType_LargePage;
 elsif level == 2 && descriptor<1:0> == '1x' then
 return SDFType_SmallPage;
 else
 return SDFType_Invalid;
J1-8210 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/translation/walk/AArch32.S1IASize

 // AArch32.S1IASize()
 // ==================
 // Retrieve the number of bits containing the input address for stage 1 translation

 integer AArch32.S1IASize(bits(3) txsz)
 return 32 - UInt(txsz);

aarch32/translation/walk/AArch32.S1WalkLD

 // AArch32.S1WalkLD()
 // ==================
 // Traverse stage 1 translation tables in long format to obtain the final descriptor

 (FaultRecord, TTWState) AArch32.S1WalkLD(FaultRecord fault, Regime regime,
 S1TTWParams walkparams, bits(32) va)
 if regime == Regime_EL2 then
 ttbr = HTTBR;
 txsz = walkparams.t0sz;
 else
 assert TTBCR.EAE == '1';
 varange = AArch32.GetVARange(va, walkparams.t0sz, walkparams.t1sz);
 if varange == VARange_LOWER then
 ttbr = TTBR0;
 epd = TTBCR.EPD0;
 txsz = walkparams.t0sz;
 else
 ttbr = TTBR1;
 epd = TTBCR.EPD1;
 txsz = walkparams.t1sz;

 if regime != Regime_EL2 && epd == '1' then
 fault.level = 1;
 fault.statuscode = Fault_Translation;
 return (fault, TTWState UNKNOWN);

 // Input Address size
 iasize = AArch32.S1IASize(txsz);
 granulebits = TGxGranuleBits(walkparams.tgx);
 stride = granulebits - 3;
 startlevel = FINAL_LEVEL - (((iasize-1) - granulebits) DIV stride);
 levels = FINAL_LEVEL - startlevel;

 if !IsZero(ttbr<47:40>) then
 fault.statuscode = Fault_AddressSize;
 fault.level = 0;
 return (fault, TTWState UNKNOWN);

 FullAddress baseaddress;
 baselsb = iasize - (levels*stride + granulebits) + 3;
 baseaddress.paspace = if IsSecure() then PAS_Secure else PAS_NonSecure;
 baseaddress.address = ZeroExtend(ttbr<39:baselsb>:Zeros(baselsb));

 TTWState walkstate;
 walkstate.baseaddress = baseaddress;
 walkstate.level = startlevel;
 walkstate.istable = TRUE;
 walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn, walkparams.orgn);
 walkstate.permissions.ap_table = '00';
 walkstate.permissions.xn_table = '0';
 walkstate.permissions.pxn_table = '0';

 indexmsb = iasize - 1;
 bits(64) descriptor;
 AddressDescriptor walkaddress;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8211
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 repeat
 fault.level = walkstate.level;
 indexlsb = (FINAL_LEVEL - walkstate.level)*stride + granulebits;
 bits(40) index = ZeroExtend(va<indexmsb:indexlsb>:'000');

 // VA is needed in the case of reporting an external abort
 walkaddress.vaddress = ZeroExtend(va);
 walkaddress.paddress.address = walkstate.baseaddress.address OR ZeroExtend(index);
 walkaddress.paddress.paspace = walkstate.baseaddress.paspace;

 disablecache = (if regime == Regime_EL2 then HSCTLR.C else SCTLR.C) == '0';
 if disablecache then
 walkaddress.memattrs = NormalNCMemAttr();
 walkaddress.memattrs.xs = walkstate.memattrs.xs;
 else
 walkaddress.memattrs = walkstate.memattrs;

 // Shareability of target memory subject to stage 2 translation
 // is maintained as input to stage 2.
 if (regime == Regime_EL10 && EL2Enabled() &&
 (if ELUsingAArch32(EL2) then HCR.VM else HCR_EL2.VM) == '1') then
 walkaddress.memattrs.shareability = walkstate.memattrs.shareability;
 else
 walkaddress.memattrs.shareability = NormaliseShareability(walkaddress.memattrs);

 // If there are two stages of translation, then the first stage table walk addresses
 // are themselves subject to translation
 if regime == Regime_EL10 && EL2Enabled() then
 s2fs1walk = TRUE;
 s2acctype = AccType_TTW;
 s2aligned = TRUE;
 s2write = FALSE;
 (s2fault, s2walkaddress) = AArch32.S2Translate(fault, walkaddress, s2fs1walk,
 s2acctype, s2aligned, s2write);
 // Check for a fault on the stage 2 walk
 if s2fault.statuscode != Fault_None then
 return (s2fault, TTWState UNKNOWN);

 (fault, descriptor) = FetchDescriptor(walkparams.ee, s2walkaddress, fault);
 else
 (fault, descriptor) = FetchDescriptor(walkparams.ee, walkaddress, fault);

 if fault.statuscode != Fault_None then
 return (fault, TTWState UNKNOWN);

 desctype = AArch32.DecodeDescriptorTypeLD(descriptor, walkstate.level);

 case desctype of
 when DescriptorType_Table
 if !IsZero(descriptor<47:40>) then
 fault.statuscode = Fault_AddressSize;
 return (fault, TTWState UNKNOWN);

 walkstate.baseaddress.address = ZeroExtend(descriptor<39:12>:Zeros(12));
 if walkstate.baseaddress.paspace == PAS_Secure && descriptor<63> == '1' then
 walkstate.baseaddress.paspace = PAS_NonSecure;

 if walkparams.hpd == '0' then
 walkstate.permissions.xn_table = (walkstate.permissions.xn_table OR
 descriptor<60>);
 walkstate.permissions.ap_table = (walkstate.permissions.ap_table OR
 descriptor<62:61>);
 walkstate.permissions.pxn_table = (walkstate.permissions.pxn_table OR
 descriptor<59>);

 walkstate.level = walkstate.level + 1;
 indexmsb = indexlsb - 1;

J1-8212 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 when DescriptorType_Invalid
 fault.statuscode = Fault_Translation;
 return (fault, TTWState UNKNOWN);

 when DescriptorType_Page, DescriptorType_Block
 walkstate.istable = FALSE;

 until desctype IN {DescriptorType_Page, DescriptorType_Block};

 // Check the output address is inside the supported range
 if !IsZero(descriptor<47:40>) then
 fault.statuscode = Fault_AddressSize;
 return (fault, TTWState UNKNOWN);

 // Check the access flag
 if descriptor<10> == '0' then
 fault.statuscode = Fault_AccessFlag;
 return (fault, TTWState UNKNOWN);

 walkstate.permissions.xn = descriptor<54>;
 walkstate.permissions.pxn = descriptor<53>;
 walkstate.permissions.ap = descriptor<7:6>:'1';
 walkstate.contiguous = descriptor<52>;

 walkstate.baseaddress.address = ZeroExtend(descriptor<39:indexlsb>:Zeros(indexlsb));
 if walkstate.baseaddress.paspace == PAS_Secure && descriptor<5> == '1' then
 walkstate.baseaddress.paspace = PAS_NonSecure;

 memattr = descriptor<4:2>;
 sh = descriptor<9:8>;
 attr = MAIRAttr(UInt(memattr), walkparams.mair);
 s1aarch64 = FALSE;
 walkstate.memattrs = S1DecodeMemAttrs(attr, sh, s1aarch64);

 return (fault, walkstate);

aarch32/translation/walk/AArch32.S1WalkSD

 // AArch32.S1WalkSD()
 // ==================
 // Traverse stage 1 translation tables in short format to obtain the final descriptor

 (FaultRecord, TTWState) AArch32.S1WalkSD(FaultRecord fault, Regime regime, bits(32) va)
 assert TTBCR.EAE == '0';

 // Determine correct Translation Table Base Register to use.
 n = UInt(TTBCR.N);
 if n == 0 || IsZero(va<31:(32-n)>) then
 ttb = TTBR0.TTB0:Zeros(7);
 pd = TTBCR.PD0;
 irgn = TTBR0.IRGN;
 rgn = TTBR0.RGN;
 s = TTBR0.S;
 nos = TTBR0.NOS;
 else
 n = 0; // TTBR1 translation always treats N as 0
 ttb = TTBR1.TTB1:Zeros(7);
 pd = TTBCR.PD1;
 irgn = TTBR1.IRGN;
 rgn = TTBR1.RGN;
 s = TTBR1.S;
 nos = TTBR1.NOS;

 // Check if Translation table walk disabled for translations with this Base register.
 if pd == '1' then
 fault.level = 1;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8213
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 fault.statuscode = Fault_Translation;
 return (fault, TTWState UNKNOWN);

 FullAddress baseaddress;
 baseaddress.paspace = if IsSecure() then PAS_Secure else PAS_NonSecure;
 baseaddress.address = ZeroExtend(ttb<31:14-n>:Zeros(14-n));

 TTWState walkstate;
 walkstate.baseaddress = baseaddress;
 walkstate.memattrs = WalkMemAttrs(s:nos, irgn, rgn);
 walkstate.level = 1;
 walkstate.istable = TRUE;

 bits(4) domain;
 bits(32) descriptor;
 AddressDescriptor walkaddress;
 repeat
 fault.level = walkstate.level;

 bits(32) index;
 if walkstate.level == 1 then
 index = ZeroExtend(va<31-n:20>:'00');
 else
 index = ZeroExtend(va<19:12>:'00');

 walkaddress.vaddress = ZeroExtend(va);
 walkaddress.paddress.address = walkstate.baseaddress.address OR ZeroExtend(index);
 walkaddress.paddress.paspace = walkstate.baseaddress.paspace;

 if SCTLR.C == '0' then
 walkaddress.memattrs = NormalNCMemAttr();
 walkaddress.memattrs.xs = walkstate.memattrs.xs;
 else
 walkaddress.memattrs = walkstate.memattrs;

 // Shareability of target memory subject to stage 2 translation
 // is maintained as input to stage 2.
 if (regime == Regime_EL10 && EL2Enabled() &&
 (if ELUsingAArch32(EL2) then HCR.VM else HCR_EL2.VM) == '1') then
 walkaddress.memattrs.shareability = walkstate.memattrs.shareability;
 else
 walkaddress.memattrs.shareability = NormaliseShareability(walkaddress.memattrs);

 if regime == Regime_EL10 && EL2Enabled() then
 s2fs1walk = TRUE;
 s2acctype = AccType_TTW;
 s2aligned = TRUE;
 s2write = FALSE;
 (s2fault, s2walkaddress) = AArch32.S2Translate(fault, walkaddress, s2fs1walk,
 s2acctype, s2aligned, s2write);

 if s2fault.statuscode != Fault_None then
 return (s2fault, TTWState UNKNOWN);

 (fault, descriptor) = FetchDescriptor(SCTLR.EE, s2walkaddress, fault);
 else
 (fault, descriptor) = FetchDescriptor(SCTLR.EE, walkaddress, fault);

 if fault.statuscode != Fault_None then
 return (fault, TTWState UNKNOWN);

 walkstate.sdftype = AArch32.DecodeDescriptorTypeSD(descriptor, walkstate.level);

 case walkstate.sdftype of
 when SDFType_Invalid
 fault.domain = domain;
 fault.statuscode = Fault_Translation;
 return (fault, TTWState UNKNOWN);
J1-8214 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation

 when SDFType_Table
 domain = descriptor<8:5>;
 ns = descriptor<3>;
 pxn = descriptor<2>;

 walkstate.baseaddress.address = ZeroExtend(descriptor<31:10>:Zeros(10));
 walkstate.level = 2;

 when SDFType_SmallPage
 nG = descriptor<11>;
 s = descriptor<10>;
 ap = descriptor<9,5:4>;
 tex = descriptor<8:6>;
 c = descriptor<3>;
 b = descriptor<2>;
 xn = descriptor<0>;

 walkstate.baseaddress.address = ZeroExtend(descriptor<31:12>:Zeros(12));
 walkstate.istable = FALSE;

 when SDFType_LargePage
 xn = descriptor<15>;
 tex = descriptor<14:12>;
 nG = descriptor<11>;
 s = descriptor<10>;
 ap = descriptor<9,5:4>;
 c = descriptor<3>;
 b = descriptor<2>;

 walkstate.baseaddress.address = ZeroExtend(descriptor<31:16>:Zeros(16));
 walkstate.istable = FALSE;

 when SDFType_Section
 ns = descriptor<19>;
 nG = descriptor<17>;
 s = descriptor<16>;
 ap = descriptor<15,11:10>;
 tex = descriptor<14:12>;
 domain = descriptor<8:5>;
 xn = descriptor<4>;
 c = descriptor<3>;
 b = descriptor<2>;
 pxn = descriptor<0>;

 walkstate.baseaddress.address = ZeroExtend(descriptor<31:20>:Zeros(20));
 walkstate.istable = FALSE;

 when SDFType_Supersection
 ns = descriptor<19>;
 nG = descriptor<17>;
 s = descriptor<16>;
 ap = descriptor<15,11:10>;
 tex = descriptor<14:12>;
 xn = descriptor<4>;
 c = descriptor<3>;
 b = descriptor<2>;
 pxn = descriptor<0>;
 domain = '0000';

 walkstate.baseaddress.address = ZeroExtend(descriptor<8:5,23:20,31:24>:Zeros(24));
 walkstate.istable = FALSE;

 until walkstate.sdftype != SDFType_Table;

 if SCTLR.AFE == '1' && ap<0> == '0' then
 fault.domain = domain;
 fault.statuscode = Fault_AccessFlag;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8215
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 return (fault, TTWState UNKNOWN);

 // Decode the TEX, C, B and S bits to produce target memory attributes
 if SCTLR.TRE == '1' then
 walkstate.memattrs = AArch32.RemappedTEXDecode(tex, c, b, s);
 elsif RemapRegsHaveResetValues() then
 walkstate.memattrs = AArch32.DefaultTEXDecode(tex, c, b, s);
 else
 walkstate.memattrs = MemoryAttributes IMPLEMENTATION_DEFINED;

 walkstate.permissions.ap = ap;
 walkstate.permissions.xn = xn;
 walkstate.permissions.pxn = pxn;
 walkstate.domain = domain;

 if IsSecure() && ns == '0' then
 walkstate.baseaddress.paspace = PAS_Secure;
 else
 walkstate.baseaddress.paspace = PAS_NonSecure;

 return (fault, walkstate);

aarch32/translation/walk/AArch32.S2IASize

 // AArch32.S2IASize()
 // ==================
 // Retrieve the number of bits containing the input address for stage 2 translation

 integer AArch32.S2IASize(bits(4) t0sz)
 return 32 - SInt(t0sz);

aarch32/translation/walk/AArch32.S2StartLevel

 // AArch32.S2StartLevel()
 // ======================
 // Determine the initial lookup level when performing a stage 2 translation
 // table walk

 integer AArch32.S2StartLevel(bits(2) sl0)
 return 2 - UInt(sl0);

aarch32/translation/walk/AArch32.S2Walk

 // AArch32.S2Walk()
 // ================
 // Traverse stage 2 translation tables in long format to obtain the final descriptor

 (FaultRecord, TTWState) AArch32.S2Walk(FaultRecord fault, S2TTWParams walkparams,
 AddressDescriptor ipa)

 if walkparams.sl0 == '1x' || AArch32.S2InconsistentSL(walkparams) then
 fault.statuscode = Fault_Translation;
 fault.level = 1;
 return (fault, TTWState UNKNOWN);

 // Input Address size
 iasize = AArch32.S2IASize(walkparams.t0sz);
 startlevel = AArch32.S2StartLevel(walkparams.sl0);
 levels = FINAL_LEVEL - startlevel;
 granulebits = TGxGranuleBits(walkparams.tgx);
 stride = granulebits - 3;

 if !IsZero(VTTBR<47:40>) then
J1-8216 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 fault.statuscode = Fault_AddressSize;
 fault.level = 0;
 return (fault, TTWState UNKNOWN);

 FullAddress baseaddress;
 baselsb = iasize - (levels*stride + granulebits) + 3;
 baseaddress.paspace = PAS_NonSecure;
 baseaddress.address = ZeroExtend(VTTBR<39:baselsb>:Zeros(baselsb));

 TTWState walkstate;
 walkstate.baseaddress = baseaddress;
 walkstate.level = startlevel;
 walkstate.istable = TRUE;
 walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn,
 walkparams.orgn);

 indexmsb = iasize - 1;
 bits(64) descriptor;
 AddressDescriptor walkaddress;
 repeat
 fault.level = walkstate.level;

 indexlsb = (FINAL_LEVEL - walkstate.level)*stride + granulebits;
 bits(40) index = ZeroExtend(ipa.paddress.address<indexmsb:indexlsb>:'000');

 // Update virtual address for abort functions
 walkaddress.vaddress = ipa.vaddress;
 walkaddress.paddress.address = walkstate.baseaddress.address OR ZeroExtend(index);
 walkaddress.paddress.paspace = walkstate.baseaddress.paspace;
 if HCR2.CD == '1' then
 walkaddress.memattrs = NormalNCMemAttr();
 walkaddress.memattrs.xs = walkstate.memattrs.xs;
 else
 walkaddress.memattrs = walkstate.memattrs;

 walkaddress.memattrs.shareability = NormaliseShareability(walkaddress.memattrs);

 (fault, descriptor) = FetchDescriptor(walkparams.ee, walkaddress, fault);

 if fault.statuscode != Fault_None then
 return (fault, TTWState UNKNOWN);

 desctype = AArch32.DecodeDescriptorTypeLD(descriptor, walkstate.level);

 case desctype of
 when DescriptorType_Table
 if !IsZero(descriptor<47:40>) then
 fault.statuscode = Fault_AddressSize;
 return (fault, TTWState UNKNOWN);

 walkstate.baseaddress.address = ZeroExtend(descriptor<39:12>:Zeros(12));
 walkstate.level = walkstate.level + 1;
 indexmsb = indexlsb - 1;

 when DescriptorType_Invalid
 fault.statuscode = Fault_Translation;
 return (fault, TTWState UNKNOWN);

 when DescriptorType_Page, DescriptorType_Block
 walkstate.istable = FALSE;

 until desctype IN {DescriptorType_Page, DescriptorType_Block};

 // Check the output address is inside the supported range
 if !IsZero(descriptor<47:40>) then
 fault.statuscode = Fault_AddressSize;
 return (fault, TTWState UNKNOWN);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8217
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 // Check the access flag
 if descriptor<10> == '0' then
 fault.statuscode = Fault_AccessFlag;
 return (fault, TTWState UNKNOWN);

 // Unpack the descriptor into address and upper and lower block attributes
 walkstate.baseaddress.address = ZeroExtend(descriptor<39:indexlsb>:Zeros(indexlsb));

 walkstate.permissions.s2ap = descriptor<7:6>;
 walkstate.permissions.s2xn = descriptor<54>;
 if HaveExtendedExecuteNeverExt() then
 walkstate.permissions.s2xnx = descriptor<53>;
 else
 walkstate.permissions.s2xnx = '0';

 memattr = descriptor<5:2>;
 sh = descriptor<9:8>;
 walkstate.memattrs = S2DecodeMemAttrs(memattr, sh);
 walkstate.contiguous = descriptor<52>;

 return (fault, walkstate);

aarch32/translation/walk/AArch32.TranslationSizeSD

 // AArch32.TranslationSizeSD()
 // ===========================
 // Determine the size of the translation

 integer AArch32.TranslationSizeSD(SDFType sdftype)
 case sdftype of
 when SDFType_SmallPage tsize = 12;
 when SDFType_LargePage tsize = 16;
 when SDFType_Section tsize = 20;
 when SDFType_Supersection tsize = 24;

 return tsize;

aarch32/translation/walk/RemapRegsHaveResetValues

 boolean RemapRegsHaveResetValues();

aarch32/translation/walkparams/AArch32.GetS1TTWParams

 // AArch32.GetS1TTWParams()
 // ========================
 // Returns stage 1 translation table walk parameters from respective controlling
 // system registers.

 S1TTWParams AArch32.GetS1TTWParams(Regime regime, bits(32) va)
 S1TTWParams walkparams;

 case regime of
 when Regime_EL2 walkparams = AArch32.S1TTWParamsPL2();
 when Regime_EL10 walkparams = AArch32.S1TTWParamsPL10(va);
 when Regime_EL30 walkparams = AArch32.S1TTWParamsPL10(va);

 return walkparams;
J1-8218 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/translation/walkparams/AArch32.GetS2TTWParams

 // AArch32.GetS2TTWParams()
 // ========================
 // Gather walk parameters for stage 2 translation

 S2TTWParams AArch32.GetS2TTWParams()
 S2TTWParams walkparams;

 walkparams.tgx = TGx_4KB;
 walkparams.s = VTCR.S;
 walkparams.t0sz = VTCR.T0SZ;
 walkparams.sl0 = VTCR.SL0;
 walkparams.irgn = VTCR.IRGN0;
 walkparams.orgn = VTCR.ORGN0;
 walkparams.sh = VTCR.SH0;
 walkparams.ee = HSCTLR.EE;
 walkparams.ptw = HCR.PTW;
 walkparams.vm = HCR.VM OR HCR.DC;

 // VTCR.S must match VTCR.T0SZ[3]
 if walkparams.s != walkparams.t0sz<3> then
 (-, walkparams.t0sz) = ConstrainUnpredictableBits();

 return walkparams;

aarch32/translation/walkparams/AArch32.GetVARange

 // AArch32.GetVARange()
 // ====================
 // Select the translation base address for stage 1 long-descriptor walks

 VARange AArch32.GetVARange(bits(32) va, bits(3) t0sz, bits(3) t1sz)
 // Lower range Input Address size
 lo_iasize = AArch32.S1IASize(t0sz);
 // Upper range Input Address size
 up_iasize = AArch32.S1IASize(t1sz);

 if t1sz == '000' && t0sz == '000' then
 return VARange_LOWER;
 elsif t1sz == '000' then
 return if IsZero(va<31:lo_iasize>) then VARange_LOWER else VARange_UPPER;
 elsif t0sz == '000' then
 return if IsOnes(va<31:up_iasize>) then VARange_UPPER else VARange_LOWER;
 elsif IsZero(va<31:lo_iasize>) then
 return VARange_LOWER;
 elsif IsOnes(va<31:up_iasize>) then
 return VARange_UPPER;
 else
 // Will be reported as a Translation Fault
 return VARange UNKNOWN;

aarch32/translation/walkparams/AArch32.S1TTWParamsEL2

 // AArch32.S1TTWParamsEL2()
 // ========================
 // Gather stage 1 translation table walk parameters for EL2 regime

 S1TTWParams AArch32.S1TTWParamsPL2()
 S1TTWParams walkparams;

 walkparams.tgx = TGx_4KB;
 walkparams.t0sz = HTCR.T0SZ;
 walkparams.irgn = HTCR.SH0;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8219
ID072021 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 walkparams.orgn = HTCR.IRGN0;
 walkparams.sh = HTCR.ORGN0;
 walkparams.hpd = if AArch32.HaveHPDExt() then HTCR.HPD else '0';
 walkparams.ee = HSCTLR.EE;
 walkparams.wxn = HSCTLR.WXN;
 if HaveTrapLoadStoreMultipleDeviceExt() then
 walkparams.ntlsmd = HSCTLR.nTLSMD;
 else
 walkparams.ntlsmd = '1';

 walkparams.mair = HMAIR1:HMAIR0;

 return walkparams;

aarch32/translation/walkparams/AArch32.S1TTWParamsPL10

 // AArch32.S1TTWParamsPL10()
 // =========================
 // Gather stage 1 translation table walk parameters for EL3&0 regime as well as
 // EL1&0 regime (with EL2 enabled or disabled)

 S1TTWParams AArch32.S1TTWParamsPL10(bits(32) va)
 assert TTBCR.EAE == '1';
 S1TTWParams walkparams;

 walkparams.t0sz = TTBCR.T0SZ;
 walkparams.t1sz = TTBCR.T1SZ;
 walkparams.ee = SCTLR.EE;
 walkparams.wxn = SCTLR.WXN;
 walkparams.uwxn = SCTLR.UWXN;
 if HaveTrapLoadStoreMultipleDeviceExt() then
 walkparams.ntlsmd = SCTLR.nTLSMD;
 else
 walkparams.ntlsmd = '1';

 walkparams.mair = MAIR1:MAIR0;
 walkparams.sif = if ELUsingAArch32(EL3) then SCR.SIF else SCR_EL3.SIF;

 varange = AArch32.GetVARange(va, walkparams.t0sz, walkparams.t1sz);
 if varange == VARange_LOWER then
 walkparams.sh = TTBCR.SH0;
 walkparams.irgn = TTBCR.IRGN0;
 walkparams.orgn = TTBCR.ORGN0;
 if AArch32.HaveHPDExt() then
 walkparams.hpd = TTBCR.T2E AND TTBCR2.HPD0;
 else
 walkparams.hpd = '0';
 else
 walkparams.sh = TTBCR.SH1;
 walkparams.irgn = TTBCR.IRGN1;
 walkparams.orgn = TTBCR.ORGN1;
 if AArch32.HaveHPDExt() then
 walkparams.hpd = TTBCR.T2E AND TTBCR2.HPD1;
 else
 walkparams.hpd = '0';

 return walkparams;
J1-8220 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
J1.3 Shared pseudocode

This section holds the pseudocode that is common to execution in AArch64 state and in AArch32 state. Functions
listed in this section are identified only by a FunctionName, without an AArch64. or AArch32. prefix. This section is
organized by functional groups, with the functional groups being indicated by hierarchical path names, for example
shared/debug/DebugTarget.

The top-level sections of the shared pseudocode hierarchy are:

• shared/debug on page J1-8221.

• shared/exceptions on page J1-8244.

• shared/functions on page J1-8246.

• shared/trace on page J1-8366.

• shared/translation on page J1-8368.

J1.3.1 shared/debug

This section includes the following pseudocode functions:

• shared/debug/ClearStickyErrors/ClearStickyErrors on page J1-8222.

• shared/debug/DebugTarget/DebugTarget on page J1-8223.

• shared/debug/DebugTarget/DebugTargetFrom on page J1-8223.

• shared/debug/DoubleLockStatus/DoubleLockStatus on page J1-8223.

• shared/debug/OSLockStatus/OSLockStatus on page J1-8223.

• shared/debug/SoftwareLockStatus/Component on page J1-8224.

• shared/debug/SoftwareLockStatus/GetAccessComponent on page J1-8224.

• shared/debug/SoftwareLockStatus/SoftwareLockStatus on page J1-8224.

• shared/debug/authentication/AllowExternalDebugAccess on page J1-8224.

• shared/debug/authentication/AllowExternalPMUAccess on page J1-8225.

• shared/debug/authentication/Debug_authentication on page J1-8225.

• shared/debug/authentication/ExternalInvasiveDebugEnabled on page J1-8225.

• shared/debug/authentication/ExternalNoninvasiveDebugAllowed on page J1-8225.

• shared/debug/authentication/ExternalNoninvasiveDebugEnabled on page J1-8226.

• shared/debug/authentication/ExternalSecureInvasiveDebugEnabled on page J1-8226.

• shared/debug/authentication/ExternalSecureNoninvasiveDebugEnabled on page J1-8226.

• shared/debug/authentication/IsAccessSecure on page J1-8226.

• shared/debug/authentication/IsCorePowered on page J1-8226.

• shared/debug/breakpoint/CheckValidStateMatch on page J1-8227.

• shared/debug/breakpoint/NumBreakpointsImplemented on page J1-8227.

• shared/debug/breakpoint/NumContextAwareBreakpointsImplemented on page J1-8227.

• shared/debug/breakpoint/NumWatchpointsImplemented on page J1-8228.

• shared/debug/cti/CTI_SetEventLevel on page J1-8228.

• shared/debug/cti/CTI_SignalEvent on page J1-8228.

• shared/debug/cti/CrossTrigger on page J1-8228.

• shared/debug/dccanditr/CheckForDCCInterrupts on page J1-8228.

• shared/debug/dccanditr/DBGDTRRX_EL0 on page J1-8229.

• shared/debug/dccanditr/DBGDTRTX_EL0 on page J1-8229.

• shared/debug/dccanditr/DBGDTR_EL0 on page J1-8230.

• shared/debug/dccanditr/DTR on page J1-8231.

• shared/debug/dccanditr/EDITR on page J1-8231.

• shared/debug/halting/DCPSInstruction on page J1-8232.

• shared/debug/halting/DRPSInstruction on page J1-8233.

• shared/debug/halting/DebugHalt on page J1-8233.

• shared/debug/halting/DisableITRAndResumeInstructionPrefetch on page J1-8234.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8221
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/debug/halting/ExecuteA64 on page J1-8234.

• shared/debug/halting/ExecuteT32 on page J1-8234.

• shared/debug/halting/ExitDebugState on page J1-8234.

• shared/debug/halting/Halt on page J1-8235.

• shared/debug/halting/HaltOnBreakpointOrWatchpoint on page J1-8236.

• shared/debug/halting/Halted on page J1-8236.

• shared/debug/halting/HaltingAllowed on page J1-8236.

• shared/debug/halting/Restarting on page J1-8236.

• shared/debug/halting/StopInstructionPrefetchAndEnableITR on page J1-8236.

• shared/debug/halting/UpdateEDSCRFields on page J1-8236.

• shared/debug/haltingevents/CheckExceptionCatch on page J1-8237.

• shared/debug/haltingevents/CheckHaltingStep on page J1-8237.

• shared/debug/haltingevents/CheckOSUnlockCatch on page J1-8238.

• shared/debug/haltingevents/CheckPendingOSUnlockCatch on page J1-8238.

• shared/debug/haltingevents/CheckPendingResetCatch on page J1-8238.

• shared/debug/haltingevents/CheckResetCatch on page J1-8238.

• shared/debug/haltingevents/CheckSoftwareAccessToDebugRegisters on page J1-8238.

• shared/debug/haltingevents/ExternalDebugRequest on page J1-8239.

• shared/debug/haltingevents/HaltingStep_DidNotStep on page J1-8239.

• shared/debug/haltingevents/HaltingStep_SteppedEX on page J1-8239.

• shared/debug/haltingevents/RunHaltingStep on page J1-8239.

• shared/debug/interrupts/ExternalDebugInterruptsDisabled on page J1-8240.

• shared/debug/interrupts/InterruptID on page J1-8240.

• shared/debug/interrupts/SetInterruptRequestLevel on page J1-8240.

• shared/debug/pmu/NumEventCountersImplemented on page J1-8240.

• shared/debug/samplebasedprofiling/CreatePCSample on page J1-8240.

• shared/debug/samplebasedprofiling/EDPCSRlo on page J1-8241.

• shared/debug/samplebasedprofiling/PCSample on page J1-8242.

• shared/debug/samplebasedprofiling/PMPCSR on page J1-8242.

• shared/debug/softwarestep/CheckSoftwareStep on page J1-8242.

• shared/debug/softwarestep/DebugExceptionReturnSS on page J1-8243.

• shared/debug/softwarestep/SSAdvance on page J1-8243.

• shared/debug/softwarestep/SoftwareStep_DidNotStep on page J1-8244.

• shared/debug/softwarestep/SoftwareStep_SteppedEX on page J1-8244.

shared/debug/ClearStickyErrors/ClearStickyErrors

 // ClearStickyErrors()
 // ===================

 ClearStickyErrors()
 EDSCR.TXU = '0'; // Clear TX underrun flag
 EDSCR.RXO = '0'; // Clear RX overrun flag

 if Halted() then // in Debug state
 EDSCR.ITO = '0'; // Clear ITR overrun flag

 // If halted and the ITR is not empty then it is UNPREDICTABLE whether the EDSCR.ERR is cleared.
 // The UNPREDICTABLE behavior also affects the instructions in flight, but this is not described
 // in the pseudocode.
 if Halted() && EDSCR.ITE == '0' && ConstrainUnpredictableBool() then
 return;
 EDSCR.ERR = '0'; // Clear cumulative error flag

 return;
J1-8222 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/debug/DebugTarget/DebugTarget

 // DebugTarget()
 // =============
 // Returns the debug exception target Exception level

 bits(2) DebugTarget()
 secure = IsSecure();
 return DebugTargetFrom(secure);

shared/debug/DebugTarget/DebugTargetFrom

 // DebugTargetFrom()
 // =================

 bits(2) DebugTargetFrom(boolean secure)
 if HaveEL(EL2) && (!secure || (HaveSecureEL2Ext() &&
 (!HaveEL(EL3) ||SCR_EL3.EEL2 == '1'))) then
 if ELUsingAArch32(EL2) then
 route_to_el2 = (HDCR.TDE == '1' || HCR.TGE == '1');
 else
 route_to_el2 = (MDCR_EL2.TDE == '1' || HCR_EL2.TGE == '1');
 else
 route_to_el2 = FALSE;

 if route_to_el2 then
 target = EL2;
 elsif HaveEL(EL3) && !HaveAArch64() && secure then
 target = EL3;
 else
 target = EL1;

 return target;

shared/debug/DoubleLockStatus/DoubleLockStatus

 // DoubleLockStatus()
 // ==================
 // Returns the state of the OS Double Lock.
 // FALSE if OSDLR_EL1.DLK == 0 or DBGPRCR_EL1.CORENPDRQ == 1 or the PE is in Debug state.
 // TRUE if OSDLR_EL1.DLK == 1 and DBGPRCR_EL1.CORENPDRQ == 0 and the PE is in Non-debug state.

 boolean DoubleLockStatus()
 if !HaveDoubleLock() then
 return FALSE;
 elsif ELUsingAArch32(EL1) then
 return DBGOSDLR.DLK == '1' && DBGPRCR.CORENPDRQ == '0' && !Halted();
 else
 return OSDLR_EL1.DLK == '1' && DBGPRCR_EL1.CORENPDRQ == '0' && !Halted();

shared/debug/OSLockStatus/OSLockStatus

 // OSLockStatus()
 // ==============
 // Returns the state of the OS Lock.

 boolean OSLockStatus()
 return (if ELUsingAArch32(EL1) then DBGOSLSR.OSLK else OSLSR_EL1.OSLK) == '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8223
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/debug/SoftwareLockStatus/Component

 enumeration Component {
 Component_PMU,
 Component_Debug,
 Component_CTI
 };

shared/debug/SoftwareLockStatus/GetAccessComponent

 // Returns the accessed component.
 Component GetAccessComponent();

shared/debug/SoftwareLockStatus/SoftwareLockStatus

 // SoftwareLockStatus()
 // ====================
 // Returns the state of the Software Lock.

 boolean SoftwareLockStatus()
 Component component = GetAccessComponent();
 if !HaveSoftwareLock(component) then
 return FALSE;
 case component of
 when Component_Debug
 return EDLSR.SLK == '1';
 when Component_PMU
 return PMLSR.SLK == '1';
 when Component_CTI
 return CTILSR.SLK == '1';
 otherwise
 Unreachable();

shared/debug/authentication/AllowExternalDebugAccess

 // AllowExternalDebugAccess()
 // ==========================
 // Returns TRUE if an external debug interface access to the External debug registers
 // is allowed, FALSE otherwise.

 boolean AllowExternalDebugAccess()
 // The access may also be subject to OS Lock, power-down, etc.
 if HaveSecureExtDebugView() then
 return AllowExternalDebugAccess(IsAccessSecure());
 else
 return AllowExternalDebugAccess(ExternalSecureInvasiveDebugEnabled());

 // AllowExternalDebugAccess()
 // ==========================
 // Returns TRUE if an external debug interface access to the External debug registers
 // is allowed for the given Security state, FALSE otherwise.

 boolean AllowExternalDebugAccess(boolean allow_secure)
 // The access may also be subject to OS Lock, power-down, etc.
 if HaveSecureExtDebugView() || ExternalInvasiveDebugEnabled() then
 if allow_secure then
 return TRUE;
 elsif HaveEL(EL3) then
 if ELUsingAArch32(EL3) then
 return SDCR.EDAD == '0';
 else
 return MDCR_EL3.EDAD == '0';
 else
J1-8224 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 return !IsSecure();
 else
 return FALSE;

shared/debug/authentication/AllowExternalPMUAccess

 // AllowExternalPMUAccess()
 // ========================
 // Returns TRUE if an external debug interface access to the PMU registers is allowed, FALSE otherwise.

 boolean AllowExternalPMUAccess()
 // The access may also be subject to OS Lock, power-down, etc.
 if HaveSecureExtDebugView() then
 return AllowExternalPMUAccess(IsAccessSecure());
 else
 return AllowExternalPMUAccess(ExternalSecureNoninvasiveDebugEnabled());

 // AllowExternalPMUAccess()
 // ========================
 // Returns TRUE if an external debug interface access to the PMU registers is allowed for the given
 // Security state, FALSE otherwise.

 boolean AllowExternalPMUAccess(boolean allow_secure)
 // The access may also be subject to OS Lock, power-down, etc.
 if HaveSecureExtDebugView() || ExternalNoninvasiveDebugEnabled() then
 if allow_secure then
 return TRUE;
 elsif HaveEL(EL3) then
 if ELUsingAArch32(EL3) then
 return SDCR.EPMAD == '0';
 else
 return MDCR_EL3.EPMAD == '0';
 else
 return !IsSecure();
 else
 return FALSE;

shared/debug/authentication/Debug_authentication

 signal DBGEN;
 signal NIDEN;
 signal SPIDEN;
 signal SPNIDEN;

shared/debug/authentication/ExternalInvasiveDebugEnabled

 // ExternalInvasiveDebugEnabled()
 // ==============================
 // The definition of this function is IMPLEMENTATION DEFINED.
 // In the recommended interface, this function returns the state of the DBGEN signal.

 boolean ExternalInvasiveDebugEnabled()
 return DBGEN == HIGH;

shared/debug/authentication/ExternalNoninvasiveDebugAllowed

 // ExternalNoninvasiveDebugAllowed()
 // =================================
 // Returns TRUE if Trace and PC Sample-based Profiling are allowed

 boolean ExternalNoninvasiveDebugAllowed()
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8225
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 return (ExternalNoninvasiveDebugEnabled() &&
 (!IsSecure() || ExternalSecureNoninvasiveDebugEnabled() ||
 (ELUsingAArch32(EL1) && PSTATE.EL == EL0 && SDER.SUNIDEN == '1')));

shared/debug/authentication/ExternalNoninvasiveDebugEnabled

 // ExternalNoninvasiveDebugEnabled()
 // =================================
 // This function returns TRUE if the FEAT_Debugv8p4 is implemented, otherwise this
 // function is IMPLEMENTATION DEFINED.
 // In the recommended interface, ExternalNoninvasiveDebugEnabled returns the state of the (DBGEN
 // OR NIDEN) signal.

 boolean ExternalNoninvasiveDebugEnabled()
 return !HaveNoninvasiveDebugAuth() || ExternalInvasiveDebugEnabled() || NIDEN == HIGH;

shared/debug/authentication/ExternalSecureInvasiveDebugEnabled

 // ExternalSecureInvasiveDebugEnabled()
 // ====================================
 // The definition of this function is IMPLEMENTATION DEFINED.
 // In the recommended interface, this function returns the state of the (DBGEN AND SPIDEN) signal.
 // CoreSight allows asserting SPIDEN without also asserting DBGEN, but this is not recommended.

 boolean ExternalSecureInvasiveDebugEnabled()
 if !HaveEL(EL3) && !IsSecure() then return FALSE;
 return ExternalInvasiveDebugEnabled() && SPIDEN == HIGH;

shared/debug/authentication/ExternalSecureNoninvasiveDebugEnabled

 // ExternalSecureNoninvasiveDebugEnabled()
 // =======================================
 // This function returns the value of ExternalSecureInvasiveDebugEnabled() when FEAT_Debugv8p4
 // is implemented. Otherwise, the definition of this function is IMPLEMENTATION DEFINED.
 // In the recommended interface, this function returns the state of the (DBGEN OR NIDEN) AND
 // (SPIDEN OR SPNIDEN) signal.

 boolean ExternalSecureNoninvasiveDebugEnabled()
 if !HaveEL(EL3) && !IsSecure() then return FALSE;
 if HaveNoninvasiveDebugAuth() then
 return ExternalNoninvasiveDebugEnabled() && (SPIDEN == HIGH || SPNIDEN == HIGH);
 else
 return ExternalSecureInvasiveDebugEnabled();

shared/debug/authentication/IsAccessSecure

 // Returns TRUE when an access is Secure
 boolean IsAccessSecure();

shared/debug/authentication/IsCorePowered

 // Returns TRUE if the Core power domain is powered on, FALSE otherwise.
 boolean IsCorePowered();
J1-8226 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/debug/breakpoint/CheckValidStateMatch

 // CheckValidStateMatch()
 // ======================
 // Checks for an invalid state match that will generate Constrained Unpredictable behaviour, otherwise
 // returns Constraint_NONE.

 (Constraint, bits(2), bit, bits(2)) CheckValidStateMatch(bits(2) SSC, bit HMC, bits(2) PxC, boolean
isbreakpnt)
 boolean reserved = FALSE;

 // Match 'Usr/Sys/Svc' only valid for AArch32 breakpoints
 if (!isbreakpnt || !HaveAArch32EL(EL1)) && HMC:PxC == '000' && SSC != '11' then
 reserved = TRUE;

 // Both EL3 and EL2 are not implemented
 if !HaveEL(EL3) && !HaveEL(EL2) && (HMC != '0' || SSC != '00') then
 reserved = TRUE;

 // EL3 is not implemented
 if !HaveEL(EL3) && SSC IN {'01','10'} && HMC:SSC:PxC != '10100' then
 reserved = TRUE;

 // EL3 using AArch64 only
 if (!HaveEL(EL3) || !HaveAArch64()) && HMC:SSC:PxC == '11000' then
 reserved = TRUE;

 // EL2 is not implemented
 if !HaveEL(EL2) && HMC:SSC:PxC == '11100' then
 reserved = TRUE;

 // Secure EL2 is not implemented
 if !HaveSecureEL2Ext() && (HMC:SSC:PxC) IN {'01100','10100','x11x1'} then
 reserved = TRUE;

 // Values that are not allocated in any architecture version
 if (HMC:SSC:PxC) IN {'01110','100x0','10110','11x10'} then
 reserved = TRUE;

 if reserved then
 // If parameters are set to a reserved type, behaves as either disabled or a defined type
 (c, <HMC,SSC,PxC>) = ConstrainUnpredictableBits();
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then
 return (c, bits(2) UNKNOWN, bit UNKNOWN, bits(2) UNKNOWN);
 // Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

 return (Constraint_NONE, SSC, HMC, PxC);

shared/debug/breakpoint/NumBreakpointsImplemented

 // NumBreakpointsImplemented()
 // ===========================
 // Returns the number of breakpoints implemented. This is indicated to software by
 // DBGDIDR.BRPs in AArch32 state, and ID_AA64DFR0_EL1.BRPs in AArch64 state.

 integer NumBreakpointsImplemented()
 return integer IMPLEMENTATION_DEFINED "Number of breakpoints";

shared/debug/breakpoint/NumContextAwareBreakpointsImplemented

 // NumContextAwareBreakpointsImplemented()
 // =======================================
 // Returns the number of context-aware breakpoints implemented. This is indicated to software by
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8227
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 // DBGDIDR.CTX_CMPs in AArch32 state, and ID_AA64DFR0_EL1.CTX_CMPs in AArch64 state.

 integer NumContextAwareBreakpointsImplemented()
 return integer IMPLEMENTATION_DEFINED "Number of context-aware breakpoints";

shared/debug/breakpoint/NumWatchpointsImplemented

 // NumWatchpointsImplemented()
 // ===========================
 // Returns the number of watchpoints implemented. This is indicated to software by
 // DBGDIDR.WRPs in AArch32 state, and ID_AA64DFR0_EL1.WRPs in AArch64 state.

 integer NumWatchpointsImplemented()
 return integer IMPLEMENTATION_DEFINED "Number of watchpoints";

shared/debug/cti/CTI_SetEventLevel

 // Set a Cross Trigger multi-cycle input event trigger to the specified level.
 CTI_SetEventLevel(CrossTriggerIn id, signal level);

shared/debug/cti/CTI_SignalEvent

 // Signal a discrete event on a Cross Trigger input event trigger.
 CTI_SignalEvent(CrossTriggerIn id);

shared/debug/cti/CrossTrigger

 enumeration CrossTriggerOut {CrossTriggerOut_DebugRequest, CrossTriggerOut_RestartRequest,
 CrossTriggerOut_IRQ, CrossTriggerOut_RSVD3,
 CrossTriggerOut_TraceExtIn0, CrossTriggerOut_TraceExtIn1,
 CrossTriggerOut_TraceExtIn2, CrossTriggerOut_TraceExtIn3};

 enumeration CrossTriggerIn {CrossTriggerIn_CrossHalt, CrossTriggerIn_PMUOverflow,
 CrossTriggerIn_RSVD2, CrossTriggerIn_RSVD3,
 CrossTriggerIn_TraceExtOut0, CrossTriggerIn_TraceExtOut1,
 CrossTriggerIn_TraceExtOut2, CrossTriggerIn_TraceExtOut3};

shared/debug/dccanditr/CheckForDCCInterrupts

 // CheckForDCCInterrupts()
 // =======================

 CheckForDCCInterrupts()
 commrx = (EDSCR.RXfull == '1');
 commtx = (EDSCR.TXfull == '0');

 // COMMRX and COMMTX support is optional and not recommended for new designs.
 // SetInterruptRequestLevel(InterruptID_COMMRX, if commrx then HIGH else LOW);
 // SetInterruptRequestLevel(InterruptID_COMMTX, if commtx then HIGH else LOW);

 // The value to be driven onto the common COMMIRQ signal.
 if ELUsingAArch32(EL1) then
 commirq = ((commrx && DBGDCCINT.RX == '1') ||
 (commtx && DBGDCCINT.TX == '1'));
 else
 commirq = ((commrx && MDCCINT_EL1.RX == '1') ||
 (commtx && MDCCINT_EL1.TX == '1'));
 SetInterruptRequestLevel(InterruptID_COMMIRQ, if commirq then HIGH else LOW);
J1-8228 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode

 return;

shared/debug/dccanditr/DBGDTRRX_EL0

 // DBGDTRRX_EL0[] (external write)
 // ===============================
 // Called on writes to debug register 0x08C.

 DBGDTRRX_EL0[boolean memory_mapped] = bits(32) value

 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "generate error response";
 return;

 if EDSCR.ERR == '1' then return; // Error flag set: ignore write

 // The Software lock is OPTIONAL.
 if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write

 if EDSCR.RXfull == '1' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0') then
 EDSCR.RXO = '1'; EDSCR.ERR = '1'; // Overrun condition: ignore write
 return;

 EDSCR.RXfull = '1';
 DTRRX = value;

 if Halted() && EDSCR.MA == '1' then
 EDSCR.ITE = '0'; // See comments in EDITR[] (external write)
 if !UsingAArch32() then
 ExecuteA64(0xD5330501<31:0>); // A64 "MRS X1,DBGDTRRX_EL0"
 ExecuteA64(0xB8004401<31:0>); // A64 "STR W1,[X0],#4"
 X[1] = bits(64) UNKNOWN;
 else
 ExecuteT32(0xEE10<15:0> /*hw1*/, 0x1E15<15:0> /*hw2*/); // T32 "MRS R1,DBGDTRRXint"
 ExecuteT32(0xF840<15:0> /*hw1*/, 0x1B04<15:0> /*hw2*/); // T32 "STR R1,[R0],#4"
 R[1] = bits(32) UNKNOWN;
 // If the store aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
 if EDSCR.ERR == '1' then
 EDSCR.RXfull = bit UNKNOWN;
 DBGDTRRX_EL0 = bits(64) UNKNOWN;
 else
 // "MRS X1,DBGDTRRX_EL0" calls DBGDTR_EL0[] (read) which clears RXfull.
 assert EDSCR.RXfull == '0';

 EDSCR.ITE = '1'; // See comments in EDITR[] (external write)
 return;

 // DBGDTRRX_EL0[] (external read)
 // ==============================

 bits(32) DBGDTRRX_EL0[boolean memory_mapped]
 return DTRRX;

shared/debug/dccanditr/DBGDTRTX_EL0

 // DBGDTRTX_EL0[] (external read)
 // ==============================
 // Called on reads of debug register 0x080.

 bits(32) DBGDTRTX_EL0[boolean memory_mapped]

 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "generate error response";
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8229
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 return bits(32) UNKNOWN;

 underrun = EDSCR.TXfull == '0' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0');
 value = if underrun then bits(32) UNKNOWN else DTRTX;

 if EDSCR.ERR == '1' then return value; // Error flag set: no side-effects

 // The Software lock is OPTIONAL.
 if memory_mapped && EDLSR.SLK == '1' then // Software lock locked: no side-effects
 return value;

 if underrun then
 EDSCR.TXU = '1'; EDSCR.ERR = '1'; // Underrun condition: block side-effects
 return value; // Return UNKNOWN

 EDSCR.TXfull = '0';
 if Halted() && EDSCR.MA == '1' then
 EDSCR.ITE = '0'; // See comments in EDITR[] (external write)

 if !UsingAArch32() then
 ExecuteA64(0xB8404401<31:0>); // A64 "LDR W1,[X0],#4"
 else
 ExecuteT32(0xF850<15:0> /*hw1*/, 0x1B04<15:0> /*hw2*/); // T32 "LDR R1,[R0],#4"
 // If the load aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
 if EDSCR.ERR == '1' then
 EDSCR.TXfull = bit UNKNOWN;
 DBGDTRTX_EL0 = bits(64) UNKNOWN;
 else
 if !UsingAArch32() then
 ExecuteA64(0xD5130501<31:0>); // A64 "MSR DBGDTRTX_EL0,X1"
 else
 ExecuteT32(0xEE00<15:0> /*hw1*/, 0x1E15<15:0> /*hw2*/); // T32 "MSR DBGDTRTXint,R1"
 // "MSR DBGDTRTX_EL0,X1" calls DBGDTR_EL0[] (write) which sets TXfull.
 assert EDSCR.TXfull == '1';
 if !UsingAArch32() then
 X[1] = bits(64) UNKNOWN;
 else
 R[1] = bits(32) UNKNOWN;
 EDSCR.ITE = '1'; // See comments in EDITR[] (external write)

 return value;

 // DBGDTRTX_EL0[] (external write)
 // ===============================

 DBGDTRTX_EL0[boolean memory_mapped] = bits(32) value
 // The Software lock is OPTIONAL.
 if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write
 DTRTX = value;
 return;

shared/debug/dccanditr/DBGDTR_EL0

 // DBGDTR_EL0[] (write)
 // ====================
 // System register writes to DBGDTR_EL0, DBGDTRTX_EL0 (AArch64) and DBGDTRTXint (AArch32)

 DBGDTR_EL0[] = bits(N) value
 // For MSR DBGDTRTX_EL0,<Rt> N=32, value=X[t]<31:0>, X[t]<63:32> is ignored
 // For MSR DBGDTR_EL0,<Xt> N=64, value=X[t]<63:0>
 assert N IN {32,64};
 if EDSCR.TXfull == '1' then
 value = bits(N) UNKNOWN;
 // On a 64-bit write, implement a half-duplex channel
 if N == 64 then DTRRX = value<63:32>;
 DTRTX = value<31:0>; // 32-bit or 64-bit write
J1-8230 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 EDSCR.TXfull = '1';
 return;

 // DBGDTR_EL0[] (read)
 // ===================
 // System register reads of DBGDTR_EL0, DBGDTRRX_EL0 (AArch64) and DBGDTRRXint (AArch32)

 bits(N) DBGDTR_EL0[]
 // For MRS <Rt>,DBGDTRTX_EL0 N=32, X[t]=Zeros(32):result
 // For MRS <Xt>,DBGDTR_EL0 N=64, X[t]=result
 assert N IN {32,64};
 bits(N) result;
 if EDSCR.RXfull == '0' then
 result = bits(N) UNKNOWN;
 else
 // On a 64-bit read, implement a half-duplex channel
 // NOTE: the word order is reversed on reads with regards to writes
 if N == 64 then result<63:32> = DTRTX;
 result<31:0> = DTRRX;
 EDSCR.RXfull = '0';
 return result;

shared/debug/dccanditr/DTR

 bits(32) DTRRX;
 bits(32) DTRTX;

shared/debug/dccanditr/EDITR

 // EDITR[] (external write)
 // ========================
 // Called on writes to debug register 0x084.

 EDITR[boolean memory_mapped] = bits(32) value
 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "generate error response";
 return;

 if EDSCR.ERR == '1' then return; // Error flag set: ignore write

 // The Software lock is OPTIONAL.
 if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write

 if !Halted() then return; // Non-debug state: ignore write

 if EDSCR.ITE == '0' || EDSCR.MA == '1' then
 EDSCR.ITO = '1'; EDSCR.ERR = '1'; // Overrun condition: block write
 return;

 // ITE indicates whether the processor is ready to accept another instruction; the processor
 // may support multiple outstanding instructions. Unlike the "InstrCompl" flag in [v7A] there
 // is no indication that the pipeline is empty (all instructions have completed). In this
 // pseudocode, the assumption is that only one instruction can be executed at a time,
 // meaning ITE acts like "InstrCompl".
 EDSCR.ITE = '0';

 if !UsingAArch32() then
 ExecuteA64(value);
 else
 ExecuteT32(value<15:0>/*hw1*/, value<31:16> /*hw2*/);

 EDSCR.ITE = '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8231
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 return;

shared/debug/halting/DCPSInstruction

 // DCPSInstruction()
 // =================
 // Operation of the DCPS instruction in Debug state

 DCPSInstruction(bits(2) target_el)

 SynchronizeContext();

 case target_el of
 when EL1
 if PSTATE.EL == EL2 || (PSTATE.EL == EL3 && !UsingAArch32()) then handle_el = PSTATE.EL;
 elsif EL2Enabled() && HCR_EL2.TGE == '1' then UNDEFINED;
 else handle_el = EL1;

 when EL2
 if !HaveEL(EL2) then UNDEFINED;
 elsif PSTATE.EL == EL3 && !UsingAArch32() then handle_el = EL3;
 elsif !IsSecureEL2Enabled() && IsSecure() then UNDEFINED;
 else handle_el = EL2;
 when EL3
 if EDSCR.SDD == '1' || !HaveEL(EL3) then UNDEFINED;
 handle_el = EL3;
 otherwise
 Unreachable();

 from_secure = IsSecure();
 if ELUsingAArch32(handle_el) then
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 assert UsingAArch32(); // Cannot move from AArch64 to AArch32
 case handle_el of
 when EL1
 AArch32.WriteMode(M32_Svc);
 if HavePANExt() && SCTLR.SPAN == '0' then
 PSTATE.PAN = '1';
 when EL2 AArch32.WriteMode(M32_Hyp);
 when EL3
 AArch32.WriteMode(M32_Monitor);
 if HavePANExt() then
 if !from_secure then
 PSTATE.PAN = '0';
 elsif SCTLR.SPAN == '0' then
 PSTATE.PAN = '1';
 if handle_el == EL2 then
 ELR_hyp = bits(32) UNKNOWN; HSR = bits(32) UNKNOWN;
 else
 LR = bits(32) UNKNOWN;
 SPSR[] = bits(32) UNKNOWN;
 PSTATE.E = SCTLR[].EE;
 DLR = bits(32) UNKNOWN; DSPSR = bits(32) UNKNOWN;

 else // Targeting AArch64
 if UsingAArch32() then
 AArch64.MaybeZeroRegisterUppers();
 MaybeZeroSVEUppers(target_el);
 PSTATE.nRW = '0'; PSTATE.SP = '1'; PSTATE.EL = handle_el;
 if HavePANExt() && ((handle_el == EL1 && SCTLR_EL1.SPAN == '0') ||
 (handle_el == EL2 && HCR_EL2.E2H == '1' &&
 HCR_EL2.TGE == '1' && SCTLR_EL2.SPAN == '0')) then
 PSTATE.PAN = '1';
 ELR[] = bits(64) UNKNOWN; SPSR[] = bits(64) UNKNOWN; ESR[] = bits(64) UNKNOWN;
 DLR_EL0 = bits(64) UNKNOWN; DSPSR_EL0 = bits(64) UNKNOWN;
J1-8232 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 if HaveUAOExt() then PSTATE.UAO = '0';
 if HaveMTEExt() then PSTATE.TCO = '1';

 UpdateEDSCRFields(); // Update EDSCR PE state flags
 sync_errors = HaveIESB() && SCTLR[].IESB == '1';
 if HaveDoubleFaultExt() && !UsingAArch32() then
 sync_errors = sync_errors || (SCR_EL3.EA == '1' && SCR_EL3.NMEA == '1' && PSTATE.EL == EL3);
 // SCTLR[].IESB might be ignored in Debug state.
 if !ConstrainUnpredictableBool() then
 sync_errors = FALSE;
 if sync_errors then
 SynchronizeErrors();
 return;

shared/debug/halting/DRPSInstruction

 // DRPSInstruction()
 // =================
 // Operation of the A64 DRPS and T32 ERET instructions in Debug state

 DRPSInstruction()

 SynchronizeContext();

 sync_errors = HaveIESB() && SCTLR[].IESB == '1';
 if HaveDoubleFaultExt() && !UsingAArch32() then
 sync_errors = sync_errors || (SCR_EL3.EA == '1' && SCR_EL3.NMEA == '1' && PSTATE.EL == EL3);
 // SCTLR[].IESB might be ignored in Debug state.
 if !ConstrainUnpredictableBool() then
 sync_errors = FALSE;
 if sync_errors then
 SynchronizeErrors();

 bits(64) spsr = SPSR[];
 SetPSTATEFromPSR(spsr);

 // PSTATE.{N,Z,C,V,Q,GE,SS,D,A,I,F} are not observable and ignored in Debug state, so
 // behave as if UNKNOWN.
 if UsingAArch32() then
 PSTATE.<N,Z,C,V,Q,GE,SS,A,I,F> = bits(13) UNKNOWN;
 // In AArch32, all instructions are T32 and unconditional.
 PSTATE.IT = '00000000'; PSTATE.T = '1'; // PSTATE.J is RES0
 DLR = bits(32) UNKNOWN; DSPSR = bits(32) UNKNOWN;
 else
 PSTATE.<N,Z,C,V,SS,D,A,I,F> = bits(9) UNKNOWN;
 DLR_EL0 = bits(64) UNKNOWN; DSPSR_EL0 = bits(64) UNKNOWN;

 UpdateEDSCRFields(); // Update EDSCR PE state flags

 return;

shared/debug/halting/DebugHalt

 constant bits(6) DebugHalt_Breakpoint = '000111';
 constant bits(6) DebugHalt_EDBGRQ = '010011';
 constant bits(6) DebugHalt_Step_Normal = '011011';
 constant bits(6) DebugHalt_Step_Exclusive = '011111';
 constant bits(6) DebugHalt_OSUnlockCatch = '100011';
 constant bits(6) DebugHalt_ResetCatch = '100111';
 constant bits(6) DebugHalt_Watchpoint = '101011';
 constant bits(6) DebugHalt_HaltInstruction = '101111';
 constant bits(6) DebugHalt_SoftwareAccess = '110011';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8233
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 constant bits(6) DebugHalt_ExceptionCatch = '110111';
 constant bits(6) DebugHalt_Step_NoSyndrome = '111011';

shared/debug/halting/DisableITRAndResumeInstructionPrefetch

 DisableITRAndResumeInstructionPrefetch();

shared/debug/halting/ExecuteA64

 // Execute an A64 instruction in Debug state.
 ExecuteA64(bits(32) instr);

shared/debug/halting/ExecuteT32

 // Execute a T32 instruction in Debug state.
 ExecuteT32(bits(16) hw1, bits(16) hw2);

shared/debug/halting/ExitDebugState

 // ExitDebugState()
 // ================

 ExitDebugState()
 assert Halted();
 SynchronizeContext();

 // Although EDSCR.STATUS signals that the PE is restarting, debuggers must use EDPRSR.SDR to
 // detect that the PE has restarted.
 EDSCR.STATUS = '000001'; // Signal restarting
 EDESR<2:0> = '000'; // Clear any pending Halting debug events

 bits(64) new_pc;
 bits(64) spsr;

 if UsingAArch32() then
 new_pc = ZeroExtend(DLR);
 spsr = ZeroExtend(DSPSR);
 else
 new_pc = DLR_EL0;
 spsr = DSPSR_EL0;
 // If this is an illegal return, SetPSTATEFromPSR() will set PSTATE.IL.
 if UsingAArch32() then
 SetPSTATEFromPSR(spsr<31:0>); // Can update privileged bits, even at EL0
 else
 SetPSTATEFromPSR(spsr); // Can update privileged bits, even at EL0

 boolean branch_conditional = FALSE;
 if UsingAArch32() then
 if ConstrainUnpredictableBool() then new_pc<0> = '0';
 // AArch32 branch
 BranchTo(new_pc<31:0>, BranchType_DBGEXIT, branch_conditional);
 else
 // If targeting AArch32 then possibly zero the 32 most significant bits of the target PC
 if spsr<4> == '1' && ConstrainUnpredictableBool() then
 new_pc<63:32> = Zeros();
 // A type of branch that is never predicted
 BranchTo(new_pc, BranchType_DBGEXIT, branch_conditional);

 (EDSCR.STATUS,EDPRSR.SDR) = ('000010','1'); // Atomically signal restarted
 UpdateEDSCRFields(); // Stop signalling PE state
 DisableITRAndResumeInstructionPrefetch();
J1-8234 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode

 return;

shared/debug/halting/Halt

 // Halt()
 // ======

 Halt(bits(6) reason)

 CTI_SignalEvent(CrossTriggerIn_CrossHalt); // Trigger other cores to halt

 bits(64) preferred_restart_address = ThisInstrAddr();
 bits(32) spsr_32;
 bits(64) spsr_64;
 if UsingAArch32() then
 spsr_32 = GetPSRFromPSTATE(DebugState);
 else
 spsr_64 = GetPSRFromPSTATE(DebugState);

 if (HaveBTIExt() &&
 !(reason IN {DebugHalt_Step_Normal, DebugHalt_Step_Exclusive, DebugHalt_Step_NoSyndrome,
 DebugHalt_Breakpoint, DebugHalt_HaltInstruction}) &&
 ConstrainUnpredictableBool()) then
 if UsingAArch32() then
 spsr_32<11:10> = '00';
 else
 spsr_64<11:10> = '00';

 if UsingAArch32() then
 DLR = preferred_restart_address<31:0>;
 DSPSR = spsr_32;
 else
 DLR_EL0 = preferred_restart_address;
 DSPSR_EL0 = spsr_64;

 EDSCR.ITE = '1';
 EDSCR.ITO = '0';
 if IsSecure() then
 EDSCR.SDD = '0'; // If entered in Secure state, allow debug
 elsif HaveEL(EL3) then
 EDSCR.SDD = if ExternalSecureInvasiveDebugEnabled() then '0' else '1';
 else
 assert EDSCR.SDD == '1'; // Otherwise EDSCR.SDD is RES1
 EDSCR.MA = '0';

 // In Debug state:
 // * PSTATE.{SS,SSBS,D,A,I,F} are not observable and ignored so behave-as-if UNKNOWN.
 // * PSTATE.{N,Z,C,V,Q,GE,E,M,nRW,EL,SP,DIT} are also not observable, but since these
 // are not changed on exception entry, this function also leaves them unchanged.
 // * PSTATE.{IT,T} are ignored.
 // * PSTATE.IL is ignored and behave-as-if 0.
 // * PSTATE.BTYPE is ignored and behave-as-if 0.
 // * PSTATE.TCO is set 1.
 // * PSTATE.{UAO,PAN} are observable and not changed on entry into Debug state.
 if UsingAArch32() then
 PSTATE.<IT,SS,SSBS,A,I,F,T> = bits(14) UNKNOWN;
 else
 PSTATE.<SS,SSBS,D,A,I,F> = bits(6) UNKNOWN;
 PSTATE.TCO = '1';
 PSTATE.BTYPE = '00';
 PSTATE.IL = '0';

 StopInstructionPrefetchAndEnableITR();
 EDSCR.STATUS = reason; // Signal entered Debug state
 UpdateEDSCRFields(); // Update EDSCR PE state flags.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8235
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 return;

shared/debug/halting/HaltOnBreakpointOrWatchpoint

 // HaltOnBreakpointOrWatchpoint()
 // ==============================
 // Returns TRUE if the Breakpoint and Watchpoint debug events should be considered for Debug
 // state entry, FALSE if they should be considered for a debug exception.

 boolean HaltOnBreakpointOrWatchpoint()
 return HaltingAllowed() && EDSCR.HDE == '1' && OSLSR_EL1.OSLK == '0';

shared/debug/halting/Halted

 // Halted()
 // ========

 boolean Halted()
 return !(EDSCR.STATUS IN {'000001', '000010'}); // Halted

shared/debug/halting/HaltingAllowed

 // HaltingAllowed()
 // ================
 // Returns TRUE if halting is currently allowed, FALSE if halting is prohibited.

 boolean HaltingAllowed()
 if Halted() || DoubleLockStatus() then
 return FALSE;
 elsif IsSecure() then
 return ExternalSecureInvasiveDebugEnabled();
 else
 return ExternalInvasiveDebugEnabled();

shared/debug/halting/Restarting

 // Restarting()
 // ============

 boolean Restarting()
 return EDSCR.STATUS == '000001'; // Restarting

shared/debug/halting/StopInstructionPrefetchAndEnableITR

 StopInstructionPrefetchAndEnableITR();

shared/debug/halting/UpdateEDSCRFields

 // UpdateEDSCRFields()
 // ===================
 // Update EDSCR PE state fields

 UpdateEDSCRFields()

 if !Halted() then
 EDSCR.EL = '00';
J1-8236 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 EDSCR.NS = bit UNKNOWN;
 EDSCR.RW = '1111';
 else
 EDSCR.EL = PSTATE.EL;
 EDSCR.NS = if IsSecure() then '0' else '1';

 bits(4) RW;
 RW<1> = if ELUsingAArch32(EL1) then '0' else '1';
 if PSTATE.EL != EL0 then
 RW<0> = RW<1>;
 else
 RW<0> = if UsingAArch32() then '0' else '1';
 if !HaveEL(EL2) || (HaveEL(EL3) && SCR_GEN[].NS == '0' && !IsSecureEL2Enabled()) then
 RW<2> = RW<1>;
 else
 RW<2> = if ELUsingAArch32(EL2) then '0' else '1';
 if !HaveEL(EL3) then
 RW<3> = RW<2>;
 else
 RW<3> = if ELUsingAArch32(EL3) then '0' else '1';

 // The least-significant bits of EDSCR.RW are UNKNOWN if any higher EL is using AArch32.
 if RW<3> == '0' then RW<2:0> = bits(3) UNKNOWN;
 elsif RW<2> == '0' then RW<1:0> = bits(2) UNKNOWN;
 elsif RW<1> == '0' then RW<0> = bit UNKNOWN;
 EDSCR.RW = RW;
 return;

shared/debug/haltingevents/CheckExceptionCatch

 // CheckExceptionCatch()
 // =====================
 // Check whether an Exception Catch debug event is set on the current Exception level

 CheckExceptionCatch(boolean exception_entry)
 // Called after an exception entry or exit, that is, such that IsSecure() and PSTATE.EL are correct
 // for the exception target. When FEAT_Debugv8p2 is not implemented, this function might also be
called
 // at any time.
 base = if IsSecure() then 0 else 4;
 if HaltingAllowed() then
 if HaveExtendedECDebugEvents() then
 exception_exit = !exception_entry;
 ctrl = EDECCR<UInt(PSTATE.EL) + base + 8>:EDECCR<UInt(PSTATE.EL) + base>;
 case ctrl of
 when '00' halt = FALSE;
 when '01' halt = TRUE;
 when '10' halt = (exception_exit == TRUE);
 when '11' halt = (exception_entry == TRUE);
 else
 halt = (EDECCR<UInt(PSTATE.EL) + base> == '1');
 if halt then Halt(DebugHalt_ExceptionCatch);

shared/debug/haltingevents/CheckHaltingStep

 // CheckHaltingStep()
 // ==================
 // Check whether EDESR.SS has been set by Halting Step

 CheckHaltingStep()
 if HaltingAllowed() && EDESR.SS == '1' then
 // The STATUS code depends on how we arrived at the state where EDESR.SS == 1.
 if HaltingStep_DidNotStep() then
 Halt(DebugHalt_Step_NoSyndrome);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8237
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 elsif HaltingStep_SteppedEX() then
 Halt(DebugHalt_Step_Exclusive);
 else
 Halt(DebugHalt_Step_Normal);

shared/debug/haltingevents/CheckOSUnlockCatch

 // CheckOSUnlockCatch()
 // ====================
 // Called on unlocking the OS Lock to pend an OS Unlock Catch debug event

 CheckOSUnlockCatch()

 if (HaveDoPD() && CTIDEVCTL.OSUCE == '1')
 || (!HaveDoPD() && EDECR.OSUCE == '1')
 then
 if !Halted() then EDESR.OSUC = '1';

shared/debug/haltingevents/CheckPendingOSUnlockCatch

 // CheckPendingOSUnlockCatch()
 // ===========================
 // Check whether EDESR.OSUC has been set by an OS Unlock Catch debug event

 CheckPendingOSUnlockCatch()
 if HaltingAllowed() && EDESR.OSUC == '1' then
 Halt(DebugHalt_OSUnlockCatch);

shared/debug/haltingevents/CheckPendingResetCatch

 // CheckPendingResetCatch()
 // ========================
 // Check whether EDESR.RC has been set by a Reset Catch debug event

 CheckPendingResetCatch()
 if HaltingAllowed() && EDESR.RC == '1' then
 Halt(DebugHalt_ResetCatch);

shared/debug/haltingevents/CheckResetCatch

 // CheckResetCatch()
 // =================
 // Called after reset

 CheckResetCatch()
 if (HaveDoPD() && CTIDEVCTL.RCE == '1') || (!HaveDoPD() && EDECR.RCE == '1') then
 EDESR.RC = '1';
 // If halting is allowed then halt immediately
 if HaltingAllowed() then Halt(DebugHalt_ResetCatch);

shared/debug/haltingevents/CheckSoftwareAccessToDebugRegisters

 // CheckSoftwareAccessToDebugRegisters()
 // =====================================
 // Check for access to Breakpoint and Watchpoint registers.

 CheckSoftwareAccessToDebugRegisters()
 os_lock = (if ELUsingAArch32(EL1) then DBGOSLSR.OSLK else OSLSR_EL1.OSLK);
J1-8238 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 if HaltingAllowed() && EDSCR.TDA == '1' && os_lock == '0' then
 Halt(DebugHalt_SoftwareAccess);

shared/debug/haltingevents/ExternalDebugRequest

 // ExternalDebugRequest()
 // ======================

 ExternalDebugRequest()
 if HaltingAllowed() then
 Halt(DebugHalt_EDBGRQ);
 // Otherwise the CTI continues to assert the debug request until it is taken.

shared/debug/haltingevents/HaltingStep_DidNotStep

 // Returns TRUE if the previously executed instruction was executed in the inactive state, that is,
 // if it was not itself stepped.
 boolean HaltingStep_DidNotStep();

shared/debug/haltingevents/HaltingStep_SteppedEX

 // Returns TRUE if the previously executed instruction was a Load-Exclusive class instruction
 // executed in the active-not-pending state.
 boolean HaltingStep_SteppedEX();

shared/debug/haltingevents/RunHaltingStep

 // RunHaltingStep()
 // ================

 RunHaltingStep(boolean exception_generated, bits(2) exception_target, boolean syscall,
 boolean reset)
 // "exception_generated" is TRUE if the previous instruction generated a synchronous exception
 // or was cancelled by an asynchronous exception.
 //
 // if "exception_generated" is TRUE then "exception_target" is the target of the exception, and
 // "syscall" is TRUE if the exception is a synchronous exception where the preferred return
 // address is the instruction following that which generated the exception.
 //
 // "reset" is TRUE if exiting reset state into the highest EL.

 if reset then assert !Halted(); // Cannot come out of reset halted
 active = EDECR.SS == '1' && !Halted();

 if active && reset then // Coming out of reset with EDECR.SS set
 EDESR.SS = '1';
 elsif active && HaltingAllowed() then
 if exception_generated && exception_target == EL3 then
 advance = syscall || ExternalSecureInvasiveDebugEnabled();
 else
 advance = TRUE;
 if advance then EDESR.SS = '1';

 return;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8239
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/debug/interrupts/ExternalDebugInterruptsDisabled

 // ExternalDebugInterruptsDisabled()
 // =================================
 // Determine whether EDSCR disables interrupts routed to 'target'.

 boolean ExternalDebugInterruptsDisabled(bits(2) target)
 if Havev8p4Debug() then
 if target == EL3 || IsSecure() then
 int_dis = (EDSCR.INTdis[0] == '1' && ExternalSecureInvasiveDebugEnabled());
 else
 int_dis = (EDSCR.INTdis[0] == '1');
 else
 case target of
 when EL3
 int_dis = (EDSCR.INTdis == '11' && ExternalSecureInvasiveDebugEnabled());
 when EL2
 int_dis = (EDSCR.INTdis == '1x' && ExternalInvasiveDebugEnabled());
 when EL1
 if IsSecure() then
 int_dis = (EDSCR.INTdis == '1x' && ExternalSecureInvasiveDebugEnabled());
 else
 int_dis = (EDSCR.INTdis != '00' && ExternalInvasiveDebugEnabled());
 return int_dis;

shared/debug/interrupts/InterruptID

 enumeration InterruptID {InterruptID_PMUIRQ, InterruptID_COMMIRQ, InterruptID_CTIIRQ,
 InterruptID_COMMRX, InterruptID_COMMTX};

shared/debug/interrupts/SetInterruptRequestLevel

 // Set a level-sensitive interrupt to the specified level.
 SetInterruptRequestLevel(InterruptID id, signal level);

shared/debug/pmu/NumEventCountersImplemented

 // NumEventCountersImplemented()
 // =============================
 // Returns the number of event counters implemented. This is indicated to software at the
 // highest Exception level by PMCR.N in AArch32 state, and PMCR_EL0.N in AArch64 state.

 integer NumEventCountersImplemented()
 return integer IMPLEMENTATION_DEFINED "Number of event counters";

shared/debug/samplebasedprofiling/CreatePCSample

 // CreatePCSample()
 // ================

 CreatePCSample()
 // In a simple sequential execution of the program, CreatePCSample is executed each time the PE
 // executes an instruction that can be sampled. An implementation is not constrained such that
 // reads of EDPCSRlo return the current values of PC, etc.

 pc_sample.valid = ExternalNoninvasiveDebugAllowed() && !Halted();
 pc_sample.pc = ThisInstrAddr();
 pc_sample.el = PSTATE.EL;
 pc_sample.rw = if UsingAArch32() then '0' else '1';
 pc_sample.ns = if IsSecure() then '0' else '1';
 pc_sample.contextidr = if ELUsingAArch32(EL1) then CONTEXTIDR else CONTEXTIDR_EL1<31:0>;
J1-8240 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 pc_sample.has_el2 = EL2Enabled();

 if EL2Enabled() then
 if ELUsingAArch32(EL2) then
 pc_sample.vmid = ZeroExtend(VTTBR.VMID, 16);
 elsif !Have16bitVMID() || VTCR_EL2.VS == '0' then
 pc_sample.vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
 else
 pc_sample.vmid = VTTBR_EL2.VMID;
 if (HaveVirtHostExt() || HaveV82Debug()) && !ELUsingAArch32(EL2) then
 pc_sample.contextidr_el2 = CONTEXTIDR_EL2<31:0>;
 else
 pc_sample.contextidr_el2 = bits(32) UNKNOWN;
 pc_sample.el0h = PSTATE.EL == EL0 && IsInHost();
 return;

shared/debug/samplebasedprofiling/EDPCSRlo

 // EDPCSRlo[] (read)
 // =================

 bits(32) EDPCSRlo[boolean memory_mapped]

 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "generate error response";
 return bits(32) UNKNOWN;

 // The Software lock is OPTIONAL.
 update = !memory_mapped || EDLSR.SLK == '0'; // Software locked: no side-effects

 if pc_sample.valid then
 sample = pc_sample.pc<31:0>;
 if update then
 if HaveVirtHostExt() && EDSCR.SC2 == '1' then
 EDPCSRhi.PC = (if pc_sample.rw == '0' then Zeros(24) else pc_sample.pc<55:32>);
 EDPCSRhi.EL = pc_sample.el;
 EDPCSRhi.NS = pc_sample.ns;
 else
 EDPCSRhi = (if pc_sample.rw == '0' then Zeros(32) else pc_sample.pc<63:32>);
 EDCIDSR = pc_sample.contextidr;
 if (HaveVirtHostExt() || HaveV82Debug()) && EDSCR.SC2 == '1' then
 EDVIDSR = (if HaveEL(EL2) && pc_sample.ns == '1' then pc_sample.contextidr_el2
 else bits(32) UNKNOWN);
 else
 if HaveEL(EL2) && pc_sample.ns == '1' && pc_sample.el IN {EL1,EL0} then
 EDVIDSR.VMID = pc_sample.vmid;
 else
 EDVIDSR.VMID = Zeros();
 EDVIDSR.NS = pc_sample.ns;
 EDVIDSR.E2 = (if pc_sample.el == EL2 then '1' else '0');
 EDVIDSR.E3 = (if pc_sample.el == EL3 then '1' else '0') AND pc_sample.rw;
 // The conditions for setting HV are not specified if PCSRhi is zero.
 // An example implementation may be "pc_sample.rw".
 EDVIDSR.HV = (if !IsZero(EDPCSRhi) then '1' else bit IMPLEMENTATION_DEFINED "0 or 1");
 else
 sample = Ones(32);
 if update then
 EDPCSRhi = bits(32) UNKNOWN;
 EDCIDSR = bits(32) UNKNOWN;
 EDVIDSR = bits(32) UNKNOWN;

 return sample;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8241
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/debug/samplebasedprofiling/PCSample

 type PCSample is (
 boolean valid,
 bits(64) pc,
 bits(2) el,
 bit rw,
 bit ns,
 boolean has_el2,
 bits(32) contextidr,
 bits(32) contextidr_el2,
 boolean el0h,
 bits(16) vmid
)

 PCSample pc_sample;

shared/debug/samplebasedprofiling/PMPCSR

 // PMPCSR[] (read)
 // ===============

 bits(32) PMPCSR[boolean memory_mapped]

 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "generate error response";
 return bits(32) UNKNOWN;

 // The Software lock is OPTIONAL.
 update = !memory_mapped || PMLSR.SLK == '0'; // Software locked: no side-effects

 if pc_sample.valid then
 sample = pc_sample.pc<31:0>;
 if update then
 PMPCSR<55:32> = (if pc_sample.rw == '0' then Zeros(24) else pc_sample.pc<55:32>);
 PMPCSR.EL = pc_sample.el;
 PMPCSR.NS = pc_sample.ns;

 PMCID1SR = pc_sample.contextidr;
 PMCID2SR = if pc_sample.has_el2 then pc_sample.contextidr_el2 else bits(32) UNKNOWN;

 PMVIDSR.VMID = (if pc_sample.has_el2 && pc_sample.el IN {EL1,EL0} && !pc_sample.el0h
 then pc_sample.vmid else bits(16) UNKNOWN);
 else
 sample = Ones(32);
 if update then
 PMPCSR<55:32> = bits(24) UNKNOWN;
 PMPCSR.EL = bits(2) UNKNOWN;
 PMPCSR.NS = bit UNKNOWN;

 PMCID1SR = bits(32) UNKNOWN;
 PMCID2SR = bits(32) UNKNOWN;

 PMVIDSR.VMID = bits(16) UNKNOWN;

 return sample;

shared/debug/softwarestep/CheckSoftwareStep

 // CheckSoftwareStep()
 // ===================
 // Take a Software Step exception if in the active-pending state

 CheckSoftwareStep()
J1-8242 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode

 // Other self-hosted debug functions will call AArch32.GenerateDebugExceptions() if called from
 // AArch32 state. However, because Software Step is only active when the debug target Exception
 // level is using AArch64, CheckSoftwareStep only calls AArch64.GenerateDebugExceptions().
 step_enabled = !ELUsingAArch32(DebugTarget()) && AArch64.GenerateDebugExceptions() && MDSCR_EL1.SS
== '1';
 if step_enabled && PSTATE.SS == '0' then
 AArch64.SoftwareStepException();

shared/debug/softwarestep/DebugExceptionReturnSS

 // DebugExceptionReturnSS()
 // ========================
 // Returns value to write to PSTATE.SS on an exception return or Debug state exit.

 bit DebugExceptionReturnSS(bits(N) spsr)
 if UsingAArch32() then
 assert N == 32;
 else
 assert N == 64;

 assert Halted() || Restarting() || PSTATE.EL != EL0;

 if Restarting() then
 enabled_at_source = FALSE;
 elsif UsingAArch32() then
 enabled_at_source = AArch32.GenerateDebugExceptions();
 else
 enabled_at_source = AArch64.GenerateDebugExceptions();

 if IllegalExceptionReturn(spsr) then
 dest = PSTATE.EL;
 else
 (valid, dest) = ELFromSPSR(spsr); assert valid;

 dest_is_secure = IsSecureBelowEL3() || dest == EL3;
 dest_using_32 = (if dest == EL0 then spsr<4> == '1' else ELUsingAArch32(dest));
 if dest_using_32 then
 enabled_at_dest = AArch32.GenerateDebugExceptionsFrom(dest, dest_is_secure);
 else
 mask = spsr<9>;
 enabled_at_dest = AArch64.GenerateDebugExceptionsFrom(dest, dest_is_secure, mask);

 ELd = DebugTargetFrom(dest_is_secure);
 if !ELUsingAArch32(ELd) && MDSCR_EL1.SS == '1' && !enabled_at_source && enabled_at_dest then
 SS_bit = spsr<21>;
 else
 SS_bit = '0';

 return SS_bit;

shared/debug/softwarestep/SSAdvance

 // SSAdvance()
 // ===========
 // Advance the Software Step state machine.

 SSAdvance()

 // A simpler implementation of this function just clears PSTATE.SS to zero regardless of the
 // current Software Step state machine. However, this check is made to illustrate that the
 // processor only needs to consider advancing the state machine from the active-not-pending
 // state.
 target = DebugTarget();
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8243
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 step_enabled = !ELUsingAArch32(target) && MDSCR_EL1.SS == '1';
 active_not_pending = step_enabled && PSTATE.SS == '1';

 if active_not_pending then PSTATE.SS = '0';

 return;

shared/debug/softwarestep/SoftwareStep_DidNotStep

 // Returns TRUE if the previously executed instruction was executed in the inactive state, that is,
 // if it was not itself stepped.
 // Might return TRUE or FALSE if the previously executed instruction was an ISB or ERET executed
 // in the active-not-pending state, or if another exception was taken before the Software Step
exception.
 // Returns FALSE otherwise, indicating that the previously executed instruction was executed in the
 // active-not-pending state, that is, the instruction was stepped.
 boolean SoftwareStep_DidNotStep();

shared/debug/softwarestep/SoftwareStep_SteppedEX

 // Returns a value that describes the previously executed instruction. The result is valid only if
 // SoftwareStep_DidNotStep() returns FALSE.
 // Might return TRUE or FALSE if the instruction was an AArch32 LDREX or LDAEX that failed its condition
code test.
 // Otherwise returns TRUE if the instruction was a Load-Exclusive class instruction, and FALSE if the
 // instruction was not a Load-Exclusive class instruction.
 boolean SoftwareStep_SteppedEX();

J1.3.2 shared/exceptions

This section includes the following pseudocode functions:

• shared/exceptions/exceptions/ConditionSyndrome on page J1-8244.

• shared/exceptions/exceptions/Exception on page J1-8245.

• shared/exceptions/exceptions/ExceptionRecord on page J1-8245.

• shared/exceptions/exceptions/ExceptionSyndrome on page J1-8246.

shared/exceptions/exceptions/ConditionSyndrome

 // ConditionSyndrome()
 // ===================
 // Return CV and COND fields of instruction syndrome

 bits(5) ConditionSyndrome()

 bits(5) syndrome;

 if UsingAArch32() then
 cond = AArch32.CurrentCond();
 if PSTATE.T == '0' then // A32
 syndrome<4> = '1';
 // A conditional A32 instruction that is known to pass its condition code check
 // can be presented either with COND set to 0xE, the value for unconditional, or
 // the COND value held in the instruction.
 if ConditionHolds(cond) && ConstrainUnpredictableBool() then
 syndrome<3:0> = '1110';
 else
 syndrome<3:0> = cond;
 else // T32
 // When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
 // * CV set to 0 and COND is set to an UNKNOWN value
J1-8244 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 // * CV set to 1 and COND is set to the condition code for the condition that
 // applied to the instruction.
 if boolean IMPLEMENTATION_DEFINED "Condition valid for trapped T32" then
 syndrome<4> = '1';
 syndrome<3:0> = cond;
 else
 syndrome<4> = '0';
 syndrome<3:0> = bits(4) UNKNOWN;
 else
 syndrome<4> = '1';
 syndrome<3:0> = '1110';

 return syndrome;

shared/exceptions/exceptions/Exception

 enumeration Exception {Exception_Uncategorized, // Uncategorized or unknown reason
 Exception_WFxTrap, // Trapped WFI or WFE instruction
 Exception_CP15RTTrap, // Trapped AArch32 MCR or MRC access,
coproc=0b1111
 Exception_CP15RRTTrap, // Trapped AArch32 MCRR or MRRC access,
coproc=0b1111
 Exception_CP14RTTrap, // Trapped AArch32 MCR or MRC access,
coproc=0b1110
 Exception_CP14DTTrap, // Trapped AArch32 LDC or STC access,
coproc=0b1110
 Exception_CP14RRTTrap, // Trapped AArch32 MRRC access, coproc=0b1110
 Exception_AdvSIMDFPAccessTrap, // HCPTR-trapped access to SIMD or FP
 Exception_FPIDTrap, // Trapped access to SIMD or FP ID register
 Exception_LDST64BTrap, // Trapped access to ST64BV, ST64BV0, ST64B and
LD64B
 // Trapped BXJ instruction not supported in Armv8
 Exception_PACTrap, // Trapped invalid PAC use
 Exception_IllegalState, // Illegal Execution state
 Exception_SupervisorCall, // Supervisor Call
 Exception_HypervisorCall, // Hypervisor Call
 Exception_MonitorCall, // Monitor Call or Trapped SMC instruction
 Exception_SystemRegisterTrap, // Trapped MRS or MSR system register access
 Exception_ERetTrap, // Trapped invalid ERET use
 Exception_InstructionAbort, // Instruction Abort or Prefetch Abort
 Exception_PCAlignment, // PC alignment fault
 Exception_DataAbort, // Data Abort
 Exception_NV2DataAbort, // Data abort at EL1 reported as being from EL2
 Exception_PACFail, // PAC Authentication failure
 Exception_SPAlignment, // SP alignment fault
 Exception_FPTrappedException, // IEEE trapped FP exception
 Exception_SError, // SError interrupt
 Exception_Breakpoint, // (Hardware) Breakpoint
 Exception_SoftwareStep, // Software Step
 Exception_Watchpoint, // Watchpoint
 Exception_NV2Watchpoint, // Watchpoint at EL1 reported as being from EL2
 Exception_SoftwareBreakpoint, // Software Breakpoint Instruction
 Exception_VectorCatch, // AArch32 Vector Catch
 Exception_IRQ, // IRQ interrupt
 Exception_SVEAccessTrap, // HCPTR trapped access to SVE
 Exception_BranchTarget, // Branch Target Identification
 Exception_FIQ}; // FIQ interrupt

shared/exceptions/exceptions/ExceptionRecord

 type ExceptionRecord is (
 Exception exceptype, // Exception class
 bits(25) syndrome, // Syndrome record
 bits(5) syndrome2, // ST64BV(0) return value register specifier
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8245
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 bits(64) vaddress, // Virtual fault address
 boolean ipavalid, // Validity of Intermediate Physical fault address
 bit NS, // Intermediate Physical fault address space
 bits(52) ipaddress) // Intermediate Physical fault address

shared/exceptions/exceptions/ExceptionSyndrome

 // ExceptionSyndrome()
 // ===================
 // Return a blank exception syndrome record for an exception of the given type.

 ExceptionRecord ExceptionSyndrome(Exception exceptype)

 ExceptionRecord r;

 r.exceptype = exceptype;

 // Initialize all other fields
 r.syndrome = Zeros();
 r.syndrome2 = Zeros();
 r.vaddress = Zeros();
 r.ipavalid = FALSE;
 r.NS = '0';
 r.ipaddress = Zeros();
 return r;

J1.3.3 shared/functions

This section includes the following pseudocode functions:

• shared/functions/aborts/EncodeLDFSC on page J1-8254.

• shared/functions/aborts/IPAValid on page J1-8255.

• shared/functions/aborts/IsAsyncAbort on page J1-8255.

• shared/functions/aborts/IsDebugException on page J1-8256.

• shared/functions/aborts/IsExternalAbort on page J1-8256.

• shared/functions/aborts/IsExternalSyncAbort on page J1-8256.

• shared/functions/aborts/IsFault on page J1-8256.

• shared/functions/aborts/IsSErrorInterrupt on page J1-8257.

• shared/functions/aborts/IsSecondStage on page J1-8257.

• shared/functions/aborts/LSInstructionSyndrome on page J1-8257.

• shared/functions/cache/CACHE_OP on page J1-8257.

• shared/functions/cache/CacheOp on page J1-8258.

• shared/functions/cache/CacheOpScope on page J1-8258.

• shared/functions/cache/CacheRecord on page J1-8258.

• shared/functions/cache/CacheType on page J1-8258.

• shared/functions/cache/DCInstNeedsTranslation on page J1-8258.

• shared/functions/cache/DecodeSW on page J1-8259.

• shared/functions/cache/GetCacheInfo on page J1-8259.

• shared/functions/cache/ICInstNeedsTranslation on page J1-8259.

• shared/functions/common/ASR on page J1-8259.

• shared/functions/common/ASR_C on page J1-8259.

• shared/functions/common/Abs on page J1-8260.

• shared/functions/common/Align on page J1-8260.

• shared/functions/common/BitCount on page J1-8260.

• shared/functions/common/CountLeadingSignBits on page J1-8260.

• shared/functions/common/CountLeadingZeroBits on page J1-8260.
J1-8246 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/functions/common/Elem on page J1-8261.

• shared/functions/common/Extend on page J1-8261.

• shared/functions/common/HighestSetBit on page J1-8261.

• shared/functions/common/Int on page J1-8261.

• shared/functions/common/IsOnes on page J1-8262.

• shared/functions/common/IsZero on page J1-8262.

• shared/functions/common/IsZeroBit on page J1-8262.

• shared/functions/common/LSL on page J1-8262.

• shared/functions/common/LSL_C on page J1-8262.

• shared/functions/common/LSR on page J1-8262.

• shared/functions/common/LSR_C on page J1-8263.

• shared/functions/common/LowestSetBit on page J1-8263.

• shared/functions/common/Max on page J1-8263.

• shared/functions/common/Min on page J1-8263.

• shared/functions/common/Ones on page J1-8263.

• shared/functions/common/ROR on page J1-8264.

• shared/functions/common/ROR_C on page J1-8264.

• shared/functions/common/Replicate on page J1-8264.

• shared/functions/common/RoundDown on page J1-8264.

• shared/functions/common/RoundTowardsZero on page J1-8264.

• shared/functions/common/RoundUp on page J1-8265.

• shared/functions/common/SInt on page J1-8265.

• shared/functions/common/SignExtend on page J1-8265.

• shared/functions/common/UInt on page J1-8265.

• shared/functions/common/ZeroExtend on page J1-8265.

• shared/functions/common/Zeros on page J1-8266.

• shared/functions/counters/GenericCounterTick on page J1-8266.

• shared/functions/counters/PhysicalCount on page J1-8266.

• shared/functions/crc/BitReverse on page J1-8266.

• shared/functions/crc/HaveCRCExt on page J1-8266.

• shared/functions/crc/Poly32Mod2 on page J1-8266.

• shared/functions/crypto/AESInvMixColumns on page J1-8267.

• shared/functions/crypto/AESInvShiftRows on page J1-8267.

• shared/functions/crypto/AESInvSubBytes on page J1-8267.

• shared/functions/crypto/AESMixColumns on page J1-8268.

• shared/functions/crypto/AESShiftRows on page J1-8268.

• shared/functions/crypto/AESSubBytes on page J1-8269.

• shared/functions/crypto/FFmul02 on page J1-8269.

• shared/functions/crypto/FFmul03 on page J1-8270.

• shared/functions/crypto/FFmul09 on page J1-8270.

• shared/functions/crypto/FFmul0B on page J1-8271.

• shared/functions/crypto/FFmul0D on page J1-8271.

• shared/functions/crypto/FFmul0E on page J1-8271.

• shared/functions/crypto/HaveAESExt on page J1-8272.

• shared/functions/crypto/HaveBit128PMULLExt on page J1-8272.

• shared/functions/crypto/HaveSHA1Ext on page J1-8272.

• shared/functions/crypto/HaveSHA256Ext on page J1-8272.

• shared/functions/crypto/HaveSHA3Ext on page J1-8273.

• shared/functions/crypto/HaveSHA512Ext on page J1-8273.

• shared/functions/crypto/HaveSM3Ext on page J1-8273.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8247
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/functions/crypto/HaveSM4Ext on page J1-8273.

• shared/functions/crypto/ROL on page J1-8273.

• shared/functions/crypto/SHA256hash on page J1-8274.

• shared/functions/crypto/SHAchoose on page J1-8274.

• shared/functions/crypto/SHAhashSIGMA0 on page J1-8274.

• shared/functions/crypto/SHAhashSIGMA1 on page J1-8274.

• shared/functions/crypto/SHAmajority on page J1-8274.

• shared/functions/crypto/SHAparity on page J1-8274.

• shared/functions/crypto/Sbox on page J1-8275.

• shared/functions/exclusive/ClearExclusiveByAddress on page J1-8275.

• shared/functions/exclusive/ClearExclusiveLocal on page J1-8275.

• shared/functions/exclusive/ClearExclusiveMonitors on page J1-8275.

• shared/functions/exclusive/ExclusiveMonitorsStatus on page J1-8275.

• shared/functions/exclusive/IsExclusiveGlobal on page J1-8275.

• shared/functions/exclusive/IsExclusiveLocal on page J1-8276.

• shared/functions/exclusive/MarkExclusiveGlobal on page J1-8276.

• shared/functions/exclusive/MarkExclusiveLocal on page J1-8276.

• shared/functions/exclusive/ProcessorID on page J1-8276.

• shared/functions/extension/AArch32.HaveHPDExt on page J1-8276.

• shared/functions/extension/AArch64.HaveHPDExt on page J1-8276.

• shared/functions/extension/Have52BitIPAAndPASpaceExt on page J1-8276.

• shared/functions/extension/Have52BitPAExt on page J1-8276.

• shared/functions/extension/Have52BitVAExt on page J1-8277.

• shared/functions/extension/HaveAArch32BF16Ext on page J1-8277.

• shared/functions/extension/HaveAArch32Int8MatMulExt on page J1-8277.

• shared/functions/extension/HaveAltFP on page J1-8277.

• shared/functions/extension/HaveAtomicExt on page J1-8277.

• shared/functions/extension/HaveBF16Ext on page J1-8278.

• shared/functions/extension/HaveBTIExt on page J1-8278.

• shared/functions/extension/HaveBlockBBM on page J1-8278.

• shared/functions/extension/HaveCNTSCExt on page J1-8278.

• shared/functions/extension/HaveCommonNotPrivateTransExt on page J1-8278.

• shared/functions/extension/HaveDGHExt on page J1-8278.

• shared/functions/extension/HaveDITExt on page J1-8279.

• shared/functions/extension/HaveDOTPExt on page J1-8279.

• shared/functions/extension/HaveDoPD on page J1-8279.

• shared/functions/extension/HaveDoubleFaultExt on page J1-8279.

• shared/functions/extension/HaveDoubleLock on page J1-8279.

• shared/functions/extension/HaveE0PDExt on page J1-8279.

• shared/functions/extension/HaveECVExt on page J1-8280.

• shared/functions/extension/HaveEMPAMExt on page J1-8280.

• shared/functions/extension/HaveExtendedCacheSets on page J1-8280.

• shared/functions/extension/HaveExtendedECDebugEvents on page J1-8280.

• shared/functions/extension/HaveExtendedExecuteNeverExt on page J1-8280.

• shared/functions/extension/HaveFCADDExt on page J1-8280.

• shared/functions/extension/HaveFGTExt on page J1-8281.

• shared/functions/extension/HaveFJCVTZSExt on page J1-8281.

• shared/functions/extension/HaveFP16MulNoRoundingToFP32Ext on page J1-8281.

• shared/functions/extension/HaveFeatHCX on page J1-8281.

• shared/functions/extension/HaveFeatLS64 on page J1-8281.
J1-8248 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/functions/extension/HaveFeatRPRES on page J1-8281.

• shared/functions/extension/HaveFeatWFxT on page J1-8282.

• shared/functions/extension/HaveFeatWFxT2 on page J1-8282.

• shared/functions/extension/HaveFeatXS on page J1-8282.

• shared/functions/extension/HaveFlagFormatExt on page J1-8282.

• shared/functions/extension/HaveFlagManipulateExt on page J1-8282.

• shared/functions/extension/HaveFrintExt on page J1-8283.

• shared/functions/extension/HaveHPMDExt on page J1-8283.

• shared/functions/extension/HaveIDSExt on page J1-8283.

• shared/functions/extension/HaveIESB on page J1-8283.

• shared/functions/extension/HaveInt8MatMulExt on page J1-8283.

• shared/functions/extension/HaveLSE2Ext on page J1-8283.

• shared/functions/extension/HaveMPAMExt on page J1-8284.

• shared/functions/extension/HaveMTE2Ext on page J1-8284.

• shared/functions/extension/HaveMTE3Ext on page J1-8284.

• shared/functions/extension/HaveMTEExt on page J1-8284.

• shared/functions/extension/HaveNV2Ext on page J1-8284.

• shared/functions/extension/HaveNVExt on page J1-8285.

• shared/functions/extension/HaveNoSecurePMUDisableOverride on page J1-8285.

• shared/functions/extension/HaveNoninvasiveDebugAuth on page J1-8285.

• shared/functions/extension/HavePAN3Ext on page J1-8285.

• shared/functions/extension/HavePANExt on page J1-8285.

• shared/functions/extension/HavePMUv3p7 on page J1-8285.

• shared/functions/extension/HavePageBasedHardwareAttributes on page J1-8286.

• shared/functions/extension/HavePrivATExt on page J1-8286.

• shared/functions/extension/HaveQRDMLAHExt on page J1-8286.

• shared/functions/extension/HaveRASExt on page J1-8286.

• shared/functions/extension/HaveRNG on page J1-8286.

• shared/functions/extension/HaveSBExt on page J1-8286.

• shared/functions/extension/HaveSSBSExt on page J1-8287.

• shared/functions/extension/HaveSecureEL2Ext on page J1-8287.

• shared/functions/extension/HaveSecureExtDebugView on page J1-8287.

• shared/functions/extension/HaveSelfHostedTrace on page J1-8287.

• shared/functions/extension/HaveSmallTranslationTblExt on page J1-8287.

• shared/functions/extension/HaveSoftwareLock on page J1-8287.

• shared/functions/extension/HaveStage2MemAttrControl on page J1-8288.

• shared/functions/extension/HaveStatisticalProfiling on page J1-8288.

• shared/functions/extension/HaveStatisticalProfilingv1p1 on page J1-8288.

• shared/functions/extension/HaveStatisticalProfilingv1p2 on page J1-8288.

• shared/functions/extension/HaveTWEDExt on page J1-8288.

• shared/functions/extension/HaveTraceExt on page J1-8289.

• shared/functions/extension/HaveTrapLoadStoreMultipleDeviceExt on page J1-8289.

• shared/functions/extension/HaveUAOExt on page J1-8289.

• shared/functions/extension/HaveV82Debug on page J1-8289.

• shared/functions/extension/HaveVirtHostExt on page J1-8289.

• shared/functions/extension/Havev85PMU on page J1-8289.

• shared/functions/extension/Havev8p4Debug on page J1-8289.

• shared/functions/extension/InsertIESBBeforeException on page J1-8290.

• shared/functions/externalaborts/HandleExternalAbort on page J1-8290.

• shared/functions/externalaborts/HandleExternalReadAbort on page J1-8290.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8249
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/functions/externalaborts/HandleExternalTTWAbort on page J1-8291.

• shared/functions/externalaborts/HandleExternalWriteAbort on page J1-8291.

• shared/functions/externalaborts/IsExternalAbortTakenSynchronously on page J1-8291.

• shared/functions/externalaborts/PEErrorState on page J1-8292.

• shared/functions/externalaborts/PendSErrorInterrupt on page J1-8292.

• shared/functions/float/bfloat/BFAdd on page J1-8292.

• shared/functions/float/bfloat/BFDotAdd on page J1-8293.

• shared/functions/float/bfloat/BFMatMulAdd on page J1-8293.

• shared/functions/float/bfloat/BFMul on page J1-8293.

• shared/functions/float/bfloat/BFMulAdd on page J1-8294.

• shared/functions/float/bfloat/BFNeg on page J1-8294.

• shared/functions/float/bfloat/BFRound on page J1-8294.

• shared/functions/float/bfloat/BFUnpack on page J1-8295.

• shared/functions/float/bfloat/FPConvertBF on page J1-8296.

• shared/functions/float/bfloat/FPRoundCVBF on page J1-8296.

• shared/functions/float/fixedtofp/FixedToFP on page J1-8296.

• shared/functions/float/fpabs/FPAbs on page J1-8297.

• shared/functions/float/fpadd/FPAdd on page J1-8297.

• shared/functions/float/fpcompare/FPCompare on page J1-8298.

• shared/functions/float/fpcompareeq/FPCompareEQ on page J1-8298.

• shared/functions/float/fpcomparege/FPCompareGE on page J1-8299.

• shared/functions/float/fpcomparegt/FPCompareGT on page J1-8299.

• shared/functions/float/fpconvert/FPConvert on page J1-8299.

• shared/functions/float/fpconvertnan/FPConvertNaN on page J1-8300.

• shared/functions/float/fpcrtype/FPCRType on page J1-8301.

• shared/functions/float/fpdecoderm/FPDecodeRM on page J1-8301.

• shared/functions/float/fpdecoderounding/FPDecodeRounding on page J1-8301.

• shared/functions/float/fpdefaultnan/FPDefaultNaN on page J1-8301.

• shared/functions/float/fpdiv/FPDiv on page J1-8302.

• shared/functions/float/fpexc/FPExc on page J1-8302.

• shared/functions/float/fpinfinity/FPInfinity on page J1-8302.

• shared/functions/float/fpmatmul/FPMatMulAdd on page J1-8302.

• shared/functions/float/fpmax/FPMax on page J1-8303.

• shared/functions/float/fpmaxnormal/FPMaxNormal on page J1-8304.

• shared/functions/float/fpmaxnum/FPMaxNum on page J1-8304.

• shared/functions/float/fpmerge/IsMerging on page J1-8304.

• shared/functions/float/fpmin/FPMin on page J1-8304.

• shared/functions/float/fpminnum/FPMinNum on page J1-8305.

• shared/functions/float/fpmul/FPMul on page J1-8306.

• shared/functions/float/fpmuladd/FPMulAdd on page J1-8306.

• shared/functions/float/fpmuladdh/FPMulAddH on page J1-8307.

• shared/functions/float/fpmuladdh/FPProcessNaNs3H on page J1-8308.

• shared/functions/float/fpmulx/FPMulX on page J1-8309.

• shared/functions/float/fpneg/FPNeg on page J1-8310.

• shared/functions/float/fponepointfive/FPOnePointFive on page J1-8310.

• shared/functions/float/fpprocessdenorms/FPProcessDenorm on page J1-8310.

• shared/functions/float/fpprocessdenorms/FPProcessDenorms on page J1-8310.

• shared/functions/float/fpprocessdenorms/FPProcessDenorms3 on page J1-8311.

• shared/functions/float/fpprocessdenorms/FPProcessDenorms4 on page J1-8311.

• shared/functions/float/fpprocessexception/FPProcessException on page J1-8311.
J1-8250 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/functions/float/fpprocessnan/FPProcessNaN on page J1-8312.

• shared/functions/float/fpprocessnans/FPProcessNaNs on page J1-8312.

• shared/functions/float/fpprocessnans3/FPProcessNaNs3 on page J1-8313.

• shared/functions/float/fprecipestimate/FPRecipEstimate on page J1-8314.

• shared/functions/float/fprecipestimate/RecipEstimate on page J1-8316.

• shared/functions/float/fprecpx/FPRecpX on page J1-8316.

• shared/functions/float/fpround/FPRound on page J1-8317.

• shared/functions/float/fpround/FPRoundBase on page J1-8317.

• shared/functions/float/fpround/FPRoundCV on page J1-8320.

• shared/functions/float/fprounding/FPRounding on page J1-8320.

• shared/functions/float/fproundingmode/FPRoundingMode on page J1-8320.

• shared/functions/float/fproundint/FPRoundInt on page J1-8320.

• shared/functions/float/fproundintn/FPRoundIntN on page J1-8321.

• shared/functions/float/fprsqrtestimate/FPRSqrtEstimate on page J1-8322.

• shared/functions/float/fprsqrtestimate/RecipSqrtEstimate on page J1-8324.

• shared/functions/float/fpsqrt/FPSqrt on page J1-8325.

• shared/functions/float/fpsub/FPSub on page J1-8325.

• shared/functions/float/fpthree/FPThree on page J1-8326.

• shared/functions/float/fptofixed/FPToFixed on page J1-8326.

• shared/functions/float/fptofixedjs/FPToFixedJS on page J1-8327.

• shared/functions/float/fptwo/FPTwo on page J1-8328.

• shared/functions/float/fptype/FPType on page J1-8328.

• shared/functions/float/fpunpack/FPUnpack on page J1-8328.

• shared/functions/float/fpunpack/FPUnpackBase on page J1-8328.

• shared/functions/float/fpunpack/FPUnpackCV on page J1-8330.

• shared/functions/float/fpzero/FPZero on page J1-8330.

• shared/functions/float/vfpexpandimm/VFPExpandImm on page J1-8330.

• shared/functions/integer/AddWithCarry on page J1-8331.

• shared/functions/memory/AArch64.BranchAddr on page J1-8331.

• shared/functions/memory/AccType on page J1-8331.

• shared/functions/memory/AccessDescriptor on page J1-8332.

• shared/functions/memory/AddrTop on page J1-8332.

• shared/functions/memory/AddressDescriptor on page J1-8332.

• shared/functions/memory/Allocation on page J1-8332.

• shared/functions/memory/BigEndian on page J1-8332.

• shared/functions/memory/BigEndianReverse on page J1-8333.

• shared/functions/memory/Cacheability on page J1-8333.

• shared/functions/memory/CreateAccessDescriptor on page J1-8333.

• shared/functions/memory/DataMemoryBarrier on page J1-8333.

• shared/functions/memory/DataSynchronizationBarrier on page J1-8333.

• shared/functions/memory/DeviceType on page J1-8333.

• shared/functions/memory/EffectiveTBI on page J1-8333.

• shared/functions/memory/EffectiveTCMA on page J1-8334.

• shared/functions/memory/Fault on page J1-8334.

• shared/functions/memory/FaultRecord on page J1-8335.

• shared/functions/memory/FullAddress on page J1-8335.

• shared/functions/memory/Hint_Prefetch on page J1-8335.

• shared/functions/memory/MBReqDomain on page J1-8335.

• shared/functions/memory/MBReqTypes on page J1-8335.

• shared/functions/memory/MPAM on page J1-8335.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8251
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/functions/memory/MemAttrHints on page J1-8336.

• shared/functions/memory/MemType on page J1-8336.

• shared/functions/memory/MemoryAttributes on page J1-8336.

• shared/functions/memory/PASpace on page J1-8336.

• shared/functions/memory/Permissions on page J1-8336.

• shared/functions/memory/PhysMemRead on page J1-8337.

• shared/functions/memory/PhysMemRetStatus on page J1-8337.

• shared/functions/memory/PhysMemWrite on page J1-8337.

• shared/functions/memory/PrefetchHint on page J1-8337.

• shared/functions/memory/Shareability on page J1-8337.

• shared/functions/memory/SpeculativeStoreBypassBarrierToPA on page J1-8337.

• shared/functions/memory/SpeculativeStoreBypassBarrierToVA on page J1-8337.

• shared/functions/memory/Tag on page J1-8337.

• shared/functions/mpam/DefaultMPAMinfo on page J1-8338.

• shared/functions/mpam/DefaultPARTID on page J1-8338.

• shared/functions/mpam/DefaultPMG on page J1-8338.

• shared/functions/mpam/GenMPAMcurEL on page J1-8338.

• shared/functions/mpam/MAP_vPARTID on page J1-8339.

• shared/functions/mpam/MPAMisEnabled on page J1-8339.

• shared/functions/mpam/MPAMisVirtual on page J1-8340.

• shared/functions/mpam/PARTIDspaceFromSS on page J1-8340.

• shared/functions/mpam/genMPAM on page J1-8340.

• shared/functions/mpam/genMPAMel on page J1-8341.

• shared/functions/mpam/genPARTID on page J1-8341.

• shared/functions/mpam/genPMG on page J1-8341.

• shared/functions/mpam/getMPAM_PARTID on page J1-8341.

• shared/functions/mpam/getMPAM_PMG on page J1-8342.

• shared/functions/mpam/mapvpmw on page J1-8342.

• shared/functions/registers/BranchTo on page J1-8343.

• shared/functions/registers/BranchToAddr on page J1-8343.

• shared/functions/registers/BranchType on page J1-8343.

• shared/functions/registers/Hint_Branch on page J1-8344.

• shared/functions/registers/NextInstrAddr on page J1-8344.

• shared/functions/registers/ResetExternalDebugRegisters on page J1-8344.

• shared/functions/registers/ThisInstrAddr on page J1-8344.

• shared/functions/registers/_PC on page J1-8344.

• shared/functions/registers/_R on page J1-8344.

• shared/functions/sysregisters/SPSR on page J1-8344.

• shared/functions/system/ArchVersion on page J1-8345.

• shared/functions/system/BranchTargetCheck on page J1-8345.

• shared/functions/system/ClearEventRegister on page J1-8346.

• shared/functions/system/ClearPendingPhysicalSError on page J1-8346.

• shared/functions/system/ClearPendingVirtualSError on page J1-8346.

• shared/functions/system/ConditionHolds on page J1-8346.

• shared/functions/system/ConsumptionOfSpeculativeDataBarrier on page J1-8346.

• shared/functions/system/CurrentInstrSet on page J1-8347.

• shared/functions/system/CurrentPL on page J1-8347.

• shared/functions/system/DSBAlias on page J1-8347.

• shared/functions/system/EL0 on page J1-8347.

• shared/functions/system/EL2Enabled on page J1-8347.
J1-8252 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/functions/system/ELFromM32 on page J1-8347.

• shared/functions/system/ELFromSPSR on page J1-8348.

• shared/functions/system/ELIsInHost on page J1-8348.

• shared/functions/system/ELStateUsingAArch32 on page J1-8349.

• shared/functions/system/ELStateUsingAArch32K on page J1-8349.

• shared/functions/system/ELUsingAArch32 on page J1-8350.

• shared/functions/system/ELUsingAArch32K on page J1-8350.

• shared/functions/system/EndOfInstruction on page J1-8350.

• shared/functions/system/EnterLowPowerState on page J1-8350.

• shared/functions/system/EventRegister on page J1-8350.

• shared/functions/system/ExceptionalOccurrenceTargetState on page J1-8350.

• shared/functions/system/FIQPending on page J1-8350.

• shared/functions/system/GetPSRFromPSTATE on page J1-8350.

• shared/functions/system/HasArchVersion on page J1-8351.

• shared/functions/system/HaveAArch32 on page J1-8351.

• shared/functions/system/HaveAArch32EL on page J1-8351.

• shared/functions/system/HaveAArch64 on page J1-8352.

• shared/functions/system/HaveEL on page J1-8352.

• shared/functions/system/HaveELUsingSecurityState on page J1-8352.

• shared/functions/system/HaveFP16Ext on page J1-8352.

• shared/functions/system/HighestEL on page J1-8353.

• shared/functions/system/Hint_DGH on page J1-8353.

• shared/functions/system/Hint_WFE on page J1-8353.

• shared/functions/system/Hint_WFI on page J1-8354.

• shared/functions/system/Hint_Yield on page J1-8354.

• shared/functions/system/IRQPending on page J1-8354.

• shared/functions/system/IllegalExceptionReturn on page J1-8354.

• shared/functions/system/InstrSet on page J1-8355.

• shared/functions/system/InstructionSynchronizationBarrier on page J1-8355.

• shared/functions/system/InterruptPending on page J1-8355.

• shared/functions/system/IsEventRegisterSet on page J1-8355.

• shared/functions/system/IsHighestEL on page J1-8355.

• shared/functions/system/IsInHost on page J1-8356.

• shared/functions/system/IsPhysicalSErrorPending on page J1-8356.

• shared/functions/system/IsSErrorEdgeTriggered on page J1-8356.

• shared/functions/system/IsSecure on page J1-8356.

• shared/functions/system/IsSecureBelowEL3 on page J1-8356.

• shared/functions/system/IsSecureEL2Enabled on page J1-8357.

• shared/functions/system/IsSynchronizablePhysicalSErrorPending on page J1-8357.

• shared/functions/system/IsVirtualSErrorPending on page J1-8357.

• shared/functions/system/LocalTimeoutEvent on page J1-8357.

• shared/functions/system/Mode_Bits on page J1-8357.

• shared/functions/system/PLOfEL on page J1-8358.

• shared/functions/system/PSTATE on page J1-8358.

• shared/functions/system/PhysicalCountInt on page J1-8358.

• shared/functions/system/PrivilegeLevel on page J1-8358.

• shared/functions/system/ProcState on page J1-8358.

• shared/functions/system/RestoredITBits on page J1-8359.

• shared/functions/system/SCRType on page J1-8359.

• shared/functions/system/SCR_GEN on page J1-8359.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8253
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/functions/system/SecurityState on page J1-8359.

• shared/functions/system/SendEvent on page J1-8360.

• shared/functions/system/SendEventLocal on page J1-8360.

• shared/functions/system/SetPSTATEFromPSR on page J1-8360.

• shared/functions/system/ShouldAdvanceIT on page J1-8361.

• shared/functions/system/ShouldAdvanceSS on page J1-8361.

• shared/functions/system/SpeculationBarrier on page J1-8361.

• shared/functions/system/SynchronizeContext on page J1-8361.

• shared/functions/system/SynchronizeErrors on page J1-8361.

• shared/functions/system/TakeUnmaskedPhysicalSErrorInterrupts on page J1-8361.

• shared/functions/system/TakeUnmaskedSErrorInterrupts on page J1-8361.

• shared/functions/system/ThisInstr on page J1-8361.

• shared/functions/system/ThisInstrLength on page J1-8361.

• shared/functions/system/Unreachable on page J1-8362.

• shared/functions/system/UsingAArch32 on page J1-8362.

• shared/functions/system/VirtualFIQPending on page J1-8362.

• shared/functions/system/VirtualIRQPending on page J1-8362.

• shared/functions/system/WFxType on page J1-8362.

• shared/functions/system/WaitForEvent on page J1-8362.

• shared/functions/system/WaitForInterrupt on page J1-8362.

• shared/functions/unpredictable/ConstrainUnpredictable on page J1-8363.

• shared/functions/unpredictable/ConstrainUnpredictableBits on page J1-8363.

• shared/functions/unpredictable/ConstrainUnpredictableBool on page J1-8363.

• shared/functions/unpredictable/ConstrainUnpredictableInteger on page J1-8363.

• shared/functions/unpredictable/Constraint on page J1-8363.

• shared/functions/vector/AdvSIMDExpandImm on page J1-8364.

• shared/functions/vector/MatMulAdd on page J1-8365.

• shared/functions/vector/PolynomialMult on page J1-8365.

• shared/functions/vector/SatQ on page J1-8365.

• shared/functions/vector/SignedSatQ on page J1-8365.

• shared/functions/vector/UnsignedRSqrtEstimate on page J1-8366.

• shared/functions/vector/UnsignedRecipEstimate on page J1-8366.

• shared/functions/vector/UnsignedSatQ on page J1-8366.

shared/functions/aborts/EncodeLDFSC

 // EncodeLDFSC()
 // =============
 // Function that gives the Long-descriptor FSC code for types of Fault

 bits(6) EncodeLDFSC(Fault statuscode, integer level)
 bits(6) result;

 if level == -1 then
 assert Have52BitIPAAndPASpaceExt();
 case statuscode of
 when Fault_AddressSize result = '101001';
 when Fault_Translation result = '101011';
 when Fault_SyncExternalOnWalk result = '010011';
 when Fault_SyncParityOnWalk result = '011011'; assert !HaveRASExt();
 otherwise Unreachable();

 return result;
 case statuscode of
 when Fault_AddressSize result = '0000':level<1:0>; assert level IN {0,1,2,3};
 when Fault_AccessFlag result = '0010':level<1:0>; assert level IN {0,1,2,3};
J1-8254 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 when Fault_Permission result = '0011':level<1:0>; assert level IN {0,1,2,3};
 when Fault_Translation result = '0001':level<1:0>; assert level IN {0,1,2,3};
 when Fault_SyncExternal result = '010000';
 when Fault_SyncExternalOnWalk result = '0101':level<1:0>; assert level IN {0,1,2,3};
 when Fault_SyncParity result = '011000';
 when Fault_SyncParityOnWalk result = '0111':level<1:0>; assert level IN {0,1,2,3};
 when Fault_AsyncParity result = '011001';
 when Fault_AsyncExternal result = '010001';
 when Fault_Alignment result = '100001';
 when Fault_Debug result = '100010';
 when Fault_TLBConflict result = '110000';
 when Fault_HWUpdateAccessFlag result = '110001';
 when Fault_Lockdown result = '110100'; // IMPLEMENTATION DEFINED
 when Fault_Exclusive result = '110101'; // IMPLEMENTATION DEFINED
 otherwise Unreachable();

 return result;

shared/functions/aborts/IPAValid

 // IPAValid()
 // ==========
 // Return TRUE if the IPA is reported for the abort

 boolean IPAValid(FaultRecord fault)
 assert fault.statuscode != Fault_None;

 if fault.s2fs1walk then
 return fault.statuscode IN {
 Fault_AccessFlag,
 Fault_Permission,
 Fault_Translation,
 Fault_AddressSize
 };
 elsif fault.secondstage then
 return fault.statuscode IN {
 Fault_AccessFlag,
 Fault_Translation,
 Fault_AddressSize
 };
 else
 return FALSE;

shared/functions/aborts/IsAsyncAbort

 // IsAsyncAbort()
 // ==============
 // Returns TRUE if the abort currently being processed is an asynchronous abort, and FALSE
 // otherwise.

 boolean IsAsyncAbort(Fault statuscode)
 assert statuscode != Fault_None;

 return (statuscode IN {Fault_AsyncExternal, Fault_AsyncParity});

 // IsAsyncAbort()
 // ==============

 boolean IsAsyncAbort(FaultRecord fault)
 return IsAsyncAbort(fault.statuscode);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8255
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/aborts/IsDebugException

 // IsDebugException()
 // ==================

 boolean IsDebugException(FaultRecord fault)
 assert fault.statuscode != Fault_None;
 return fault.statuscode == Fault_Debug;

shared/functions/aborts/IsExternalAbort

 // IsExternalAbort()
 // =================
 // Returns TRUE if the abort currently being processed is an External abort and FALSE otherwise.

 boolean IsExternalAbort(Fault statuscode)
 assert statuscode != Fault_None;

 return (statuscode IN {
 Fault_SyncExternal,
 Fault_SyncParity,
 Fault_SyncExternalOnWalk,
 Fault_SyncParityOnWalk,
 Fault_AsyncExternal,
 Fault_AsyncParity
 });

 // IsExternalAbort()
 // =================

 boolean IsExternalAbort(FaultRecord fault)
 return IsExternalAbort(fault.statuscode);

shared/functions/aborts/IsExternalSyncAbort

 // IsExternalSyncAbort()
 // =====================
 // Returns TRUE if the abort currently being processed is an external synchronous abort and FALSE
otherwise.

 boolean IsExternalSyncAbort(Fault statuscode)
 assert statuscode != Fault_None;

 return (statuscode IN {
 Fault_SyncExternal,
 Fault_SyncParity,
 Fault_SyncExternalOnWalk,
 Fault_SyncParityOnWalk
 });

 // IsExternalSyncAbort()
 // =====================

 boolean IsExternalSyncAbort(FaultRecord fault)
 return IsExternalSyncAbort(fault.statuscode);

shared/functions/aborts/IsFault

 // IsFault()
 // =========
 // Return TRUE if a fault is associated with an address descriptor

 boolean IsFault(AddressDescriptor addrdesc)
J1-8256 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 return addrdesc.fault.statuscode != Fault_None;

 // IsFault()
 // =========

 boolean IsFault(Fault fault)
 return fault != Fault_None;

 // IsFault()
 // =========

 boolean IsFault(PhysMemRetStatus retstatus)
 return retstatus.statuscode != Fault_None;

shared/functions/aborts/IsSErrorInterrupt

 // IsSErrorInterrupt()
 // ===================
 // Returns TRUE if the abort currently being processed is an SError interrupt, and FALSE
 // otherwise.

 boolean IsSErrorInterrupt(Fault statuscode)
 assert statuscode != Fault_None;

 return (statuscode IN {Fault_AsyncExternal, Fault_AsyncParity});

 // IsSErrorInterrupt()
 // ===================

 boolean IsSErrorInterrupt(FaultRecord fault)
 return IsSErrorInterrupt(fault.statuscode);

shared/functions/aborts/IsSecondStage

 // IsSecondStage()
 // ===============

 boolean IsSecondStage(FaultRecord fault)
 assert fault.statuscode != Fault_None;

 return fault.secondstage;

shared/functions/aborts/LSInstructionSyndrome

 // Returns the extended syndrome information for a second stage fault.
 // <10> - Syndrome valid bit. The syndrome is only valid for certain types of access instruction.
 // <9:8> - Access size.
 // <7> - Sign extended (for loads).
 // <6:2> - Transfer register.
 // <1> - Transfer register is 64-bit.
 // <0> - Instruction has acquire/release semantics.
 bits(11) LSInstructionSyndrome();

shared/functions/cache/CACHE_OP

 // CACHE_OP()
 // ==========
 // Performs Cache maintenance operations as per CacheRecord.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8257
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 CACHE_OP(CacheRecord cache)
 IMPLEMENTATION_DEFINED;

shared/functions/cache/CacheOp

 enumeration CacheOp {
 CacheOp_Clean,
 CacheOp_Invalidate,
 CacheOp_CleanInvalidate
 };

shared/functions/cache/CacheOpScope

 enumeration CacheOpScope {
 CacheOpScope_SetWay,
 CacheOpScope_PoU,
 CacheOpScope_PoC,
 CacheOpScope_PoP,
 CacheOpScope_PoDP,
 CacheOpScope_ALLU,
 CacheOpScope_ALLUIS
 };

shared/functions/cache/CacheRecord

 type CacheRecord is (
 AccType acctype, // Access type
 CacheOp cacheop, // Cache operation
 CacheOpScope opscope, // Cache operation type
 CacheType cachetype, // Cache type
 bits(64) regval,
 FullAddress paddress,
 bits(64) vaddress, // For VA operations
 integer set, // For SW operations
 integer way, // For SW operations
 integer level, // For SW operations
 Shareability shareability,
 boolean translated
)

shared/functions/cache/CacheType

 enumeration CacheType {
 CacheType_Data,
 CacheType_Tag,
 CacheType_Data_Tag,
 CacheType_Instruction
 };

shared/functions/cache/DCInstNeedsTranslation

 // DCInstNeedsTranslation()
 // ========================
 // Check whether Data Cache operation needs translation.

 boolean DCInstNeedsTranslation(CacheOpScope opscope)
 if CLIDR_EL1.LoC == '000' then
 return !boolean IMPLEMENTATION_DEFINED "No fault generated for DC operations if PoC is before
any level of cache";
J1-8258 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode

 if CLIDR_EL1.LoUU == '000' && opscope == CacheOpScope_PoU then
 return !boolean IMPLEMENTATION_DEFINED "No fault generated for DC operations if PoU is before
any level of cache";

 return TRUE;

shared/functions/cache/DecodeSW

 // DecodeSW()
 // ==========
 // Decode input value into set, way and level for SW instructions.

 (integer, integer, integer) DecodeSW(bits(64) regval, CacheType cachetype)
 level = UInt(regval[3:1]);
 (set, way, linesize) = GetCacheInfo(level, cachetype);
 return (set, way, level);

shared/functions/cache/GetCacheInfo

 // Returns numsets, assosciativity & linesize.
 (integer, integer, integer) GetCacheInfo(integer level, CacheType cachetype);

shared/functions/cache/ICInstNeedsTranslation

 // ICInstNeedsTranslation()
 // ========================
 // Check whether Instruction Cache operation needs translation.

 boolean ICInstNeedsTranslation(CacheOpScope opscope)
 return boolean IMPLEMENTATION_DEFINED "Instruction Cache needs translation";

shared/functions/common/ASR

 // ASR()
 // =====

 bits(N) ASR(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = ASR_C(x, shift);
 return result;

shared/functions/common/ASR_C

 // ASR_C()
 // =======

 (bits(N), bit) ASR_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = SignExtend(x, shift+N);
 result = extended_x<shift+N-1:shift>;
 carry_out = extended_x<shift-1>;
 return (result, carry_out);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8259
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/common/Abs

 // Abs()
 // =====

 integer Abs(integer x)
 return if x >= 0 then x else -x;

 // Abs()
 // =====

 real Abs(real x)
 return if x >= 0.0 then x else -x;

shared/functions/common/Align

 // Align()
 // =======

 integer Align(integer x, integer y)
 return y * (x DIV y);

 // Align()
 // =======

 bits(N) Align(bits(N) x, integer y)
 return Align(UInt(x), y)<N-1:0>;

shared/functions/common/BitCount

 // BitCount()
 // ==========

 integer BitCount(bits(N) x)
 integer result = 0;
 for i = 0 to N-1
 if x<i> == '1' then
 result = result + 1;
 return result;

shared/functions/common/CountLeadingSignBits

 // CountLeadingSignBits()
 // ======================

 integer CountLeadingSignBits(bits(N) x)
 return CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>);

shared/functions/common/CountLeadingZeroBits

 // CountLeadingZeroBits()
 // ======================

 integer CountLeadingZeroBits(bits(N) x)
 return N - (HighestSetBit(x) + 1);
J1-8260 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/common/Elem

 // Elem[] - non-assignment form
 // ============================

 bits(size) Elem[bits(N) vector, integer e, integer size]
 assert e >= 0 && (e+1)*size <= N;
 return vector<e*size+size-1 : e*size>;

 // Elem[] - non-assignment form
 // ============================

 bits(size) Elem[bits(N) vector, integer e]
 return Elem[vector, e, size];

 // Elem[] - assignment form
 // ========================

 Elem[bits(N) &vector, integer e, integer size] = bits(size) value
 assert e >= 0 && (e+1)*size <= N;
 vector<(e+1)*size-1:e*size> = value;
 return;

 // Elem[] - assignment form
 // ========================

 Elem[bits(N) &vector, integer e] = bits(size) value
 Elem[vector, e, size] = value;
 return;

shared/functions/common/Extend

 // Extend()
 // ========

 bits(N) Extend(bits(M) x, integer N, boolean unsigned)
 return if unsigned then ZeroExtend(x, N) else SignExtend(x, N);

 // Extend()
 // ========

 bits(N) Extend(bits(M) x, boolean unsigned)
 return Extend(x, N, unsigned);

shared/functions/common/HighestSetBit

 // HighestSetBit()
 // ===============

 integer HighestSetBit(bits(N) x)
 for i = N-1 downto 0
 if x<i> == '1' then return i;
 return -1;

shared/functions/common/Int

 // Int()
 // =====

 integer Int(bits(N) x, boolean unsigned)
 result = if unsigned then UInt(x) else SInt(x);
 return result;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8261
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/common/IsOnes

 // IsOnes()
 // ========

 boolean IsOnes(bits(N) x)
 return x == Ones(N);

shared/functions/common/IsZero

 // IsZero()
 // ========

 boolean IsZero(bits(N) x)
 return x == Zeros(N);

shared/functions/common/IsZeroBit

 // IsZeroBit()
 // ===========

 bit IsZeroBit(bits(N) x)
 return if IsZero(x) then '1' else '0';

shared/functions/common/LSL

 // LSL()
 // =====

 bits(N) LSL(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = LSL_C(x, shift);
 return result;

shared/functions/common/LSL_C

 // LSL_C()
 // =======

 (bits(N), bit) LSL_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = x : Zeros(shift);
 result = extended_x<N-1:0>;
 carry_out = extended_x<N>;
 return (result, carry_out);

shared/functions/common/LSR

 // LSR()
 // =====

 bits(N) LSR(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
J1-8262 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 (result, -) = LSR_C(x, shift);
 return result;

shared/functions/common/LSR_C

 // LSR_C()
 // =======

 (bits(N), bit) LSR_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = ZeroExtend(x, shift+N);
 result = extended_x<shift+N-1:shift>;
 carry_out = extended_x<shift-1>;
 return (result, carry_out);

shared/functions/common/LowestSetBit

 // LowestSetBit()
 // ==============

 integer LowestSetBit(bits(N) x)
 for i = 0 to N-1
 if x<i> == '1' then return i;
 return N;

shared/functions/common/Max

 // Max()
 // =====

 integer Max(integer a, integer b)
 return if a >= b then a else b;

 // Max()
 // =====

 real Max(real a, real b)
 return if a >= b then a else b;

shared/functions/common/Min

 // Min()
 // =====

 integer Min(integer a, integer b)
 return if a <= b then a else b;

 // Min()
 // =====

 real Min(real a, real b)
 return if a <= b then a else b;

shared/functions/common/Ones

 // Ones()
 // ======

 bits(N) Ones(integer N)
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8263
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 return Replicate('1',N);

 // Ones()
 // ======

 bits(N) Ones()
 return Ones(N);

shared/functions/common/ROR

 // ROR()
 // =====

 bits(N) ROR(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = ROR_C(x, shift);
 return result;

shared/functions/common/ROR_C

 // ROR_C()
 // =======

 (bits(N), bit) ROR_C(bits(N) x, integer shift)
 assert shift != 0;
 m = shift MOD N;
 result = LSR(x,m) OR LSL(x,N-m);
 carry_out = result<N-1>;
 return (result, carry_out);

shared/functions/common/Replicate

 // Replicate()
 // ===========

 bits(N) Replicate(bits(M) x)
 assert N MOD M == 0;
 return Replicate(x, N DIV M);

 bits(M*N) Replicate(bits(M) x, integer N);

shared/functions/common/RoundDown

 integer RoundDown(real x);

shared/functions/common/RoundTowardsZero

 // RoundTowardsZero()
 // ==================

 integer RoundTowardsZero(real x)
 return if x == 0.0 then 0 else if x >= 0.0 then RoundDown(x) else RoundUp(x);
J1-8264 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/common/RoundUp

 integer RoundUp(real x);

shared/functions/common/SInt

 // SInt()
 // ======

 integer SInt(bits(N) x)
 result = 0;
 for i = 0 to N-1
 if x<i> == '1' then result = result + 2^i;
 if x<N-1> == '1' then result = result - 2^N;
 return result;

shared/functions/common/SignExtend

 // SignExtend()
 // ============

 bits(N) SignExtend(bits(M) x, integer N)
 assert N >= M;
 return Replicate(x<M-1>, N-M) : x;

 // SignExtend()
 // ============

 bits(N) SignExtend(bits(M) x)
 return SignExtend(x, N);

shared/functions/common/UInt

 // UInt()
 // ======

 integer UInt(bits(N) x)
 result = 0;
 for i = 0 to N-1
 if x<i> == '1' then result = result + 2^i;
 return result;

shared/functions/common/ZeroExtend

 // ZeroExtend()
 // ============

 bits(N) ZeroExtend(bits(M) x, integer N)
 assert N >= M;
 return Zeros(N-M) : x;

 // ZeroExtend()
 // ============

 bits(N) ZeroExtend(bits(M) x)
 return ZeroExtend(x, N);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8265
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/common/Zeros

 // Zeros()
 // =======

 bits(N) Zeros(integer N)
 return Replicate('0',N);

 // Zeros()
 // =======

 bits(N) Zeros()
 return Zeros(N);

shared/functions/counters/GenericCounterTick

 // GenericCounterTick()
 // ====================
 // Increments PhysicalCount value for every clock tick.

 GenericCounterTick()
 if CNTCR.EN == '0' then
 return;
 if HaveCNTSCExt() && CNTCR.SCEN == '1' then
 PhysicalCount = PhysicalCount + ZeroExtend(CNTSCR);
 else
 PhysicalCount<87:24> = PhysicalCount<87:24> + 1;

shared/functions/counters/PhysicalCount

 bits(88) PhysicalCount;

shared/functions/crc/BitReverse

 // BitReverse()
 // ============

 bits(N) BitReverse(bits(N) data)
 bits(N) result;
 for i = 0 to N-1
 result<N-i-1> = data<i>;
 return result;

shared/functions/crc/HaveCRCExt

 // HaveCRCExt()
 // ============

 boolean HaveCRCExt()
 return HasArchVersion(ARMv8p1) || boolean IMPLEMENTATION_DEFINED "Have CRC extension";

shared/functions/crc/Poly32Mod2

 // Poly32Mod2()
 // ============

 // Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation

 bits(32) Poly32Mod2(bits(N) data, bits(32) poly)
J1-8266 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 assert N > 32;
 for i = N-1 downto 32
 if data<i> == '1' then
 data<i-1:0> = data<i-1:0> EOR (poly:Zeros(i-32));
 return data<31:0>;

shared/functions/crypto/AESInvMixColumns

 // AESInvMixColumns()
 // ==================
 // Transformation in the Inverse Cipher that is the inverse of AESMixColumns.

 bits(128) AESInvMixColumns(bits (128) op)
 bits(4*8) in0 = op< 96+:8> : op< 64+:8> : op< 32+:8> : op< 0+:8>;
 bits(4*8) in1 = op<104+:8> : op< 72+:8> : op< 40+:8> : op< 8+:8>;
 bits(4*8) in2 = op<112+:8> : op< 80+:8> : op< 48+:8> : op< 16+:8>;
 bits(4*8) in3 = op<120+:8> : op< 88+:8> : op< 56+:8> : op< 24+:8>;

 bits(4*8) out0;
 bits(4*8) out1;
 bits(4*8) out2;
 bits(4*8) out3;

 for c = 0 to 3
 out0<c*8+:8> = FFmul0E(in0<c*8+:8>) EOR FFmul0B(in1<c*8+:8>) EOR FFmul0D(in2<c*8+:8>) EOR
FFmul09(in3<c*8+:8>);
 out1<c*8+:8> = FFmul09(in0<c*8+:8>) EOR FFmul0E(in1<c*8+:8>) EOR FFmul0B(in2<c*8+:8>) EOR
FFmul0D(in3<c*8+:8>);
 out2<c*8+:8> = FFmul0D(in0<c*8+:8>) EOR FFmul09(in1<c*8+:8>) EOR FFmul0E(in2<c*8+:8>) EOR
FFmul0B(in3<c*8+:8>);
 out3<c*8+:8> = FFmul0B(in0<c*8+:8>) EOR FFmul0D(in1<c*8+:8>) EOR FFmul09(in2<c*8+:8>) EOR
FFmul0E(in3<c*8+:8>);

 return (
 out3<3*8+:8> : out2<3*8+:8> : out1<3*8+:8> : out0<3*8+:8> :
 out3<2*8+:8> : out2<2*8+:8> : out1<2*8+:8> : out0<2*8+:8> :
 out3<1*8+:8> : out2<1*8+:8> : out1<1*8+:8> : out0<1*8+:8> :
 out3<0*8+:8> : out2<0*8+:8> : out1<0*8+:8> : out0<0*8+:8>
);

shared/functions/crypto/AESInvShiftRows

 // AESInvShiftRows()
 // =================
 // Transformation in the Inverse Cipher that is inverse of AESShiftRows.

 bits(128) AESInvShiftRows(bits(128) op)
 return (
 op< 24+:8> : op< 48+:8> : op< 72+:8> : op< 96+:8> :
 op<120+:8> : op< 16+:8> : op< 40+:8> : op< 64+:8> :
 op< 88+:8> : op<112+:8> : op< 8+:8> : op< 32+:8> :
 op< 56+:8> : op< 80+:8> : op<104+:8> : op< 0+:8>
);

shared/functions/crypto/AESInvSubBytes

 // AESInvSubBytes()
 // ================
 // Transformation in the Inverse Cipher that is the inverse of AESSubBytes.

 bits(128) AESInvSubBytes(bits(128) op)
 // Inverse S-box values
 bits(16*16*8) GF2_inv = (
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8267
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x7d0c2155631469e126d677ba7e042b17<127:0> :
 /*E*/ 0x619953833cbbebc8b0f52aae4d3be0a0<127:0> :
 /*D*/ 0xef9cc9939f7ae52d0d4ab519a97f5160<127:0> :
 /*C*/ 0x5fec8027591012b131c7078833a8dd1f<127:0> :
 /*B*/ 0xf45acd78fec0db9a2079d2c64b3e56fc<127:0> :
 /*A*/ 0x1bbe18aa0e62b76f89c5291d711af147<127:0> :
 /*9*/ 0x6edf751ce837f9e28535ade72274ac96<127:0> :
 /*8*/ 0x73e6b4f0cecff297eadc674f4111913a<127:0> :
 /*7*/ 0x6b8a130103bdafc1020f3fca8f1e2cd0<127:0> :
 /*6*/ 0x0645b3b80558e4f70ad3bc8c00abd890<127:0> :
 /*5*/ 0x849d8da75746155edab9edfd5048706c<127:0> :
 /*4*/ 0x92b6655dcc5ca4d41698688664f6f872<127:0> :
 /*3*/ 0x25d18b6d49a25b76b224d92866a12e08<127:0> :
 /*2*/ 0x4ec3fa420b954cee3d23c2a632947b54<127:0> :
 /*1*/ 0xcbe9dec444438e3487ff2f9b8239e37c<127:0> :
 /*0*/ 0xfbd7f3819ea340bf38a53630d56a0952<127:0>
);
 bits(128) out;
 for i = 0 to 15
 out<i*8+:8> = GF2_inv<UInt(op<i*8+:8>)*8+:8>;
 return out;

shared/functions/crypto/AESMixColumns

 // AESMixColumns()
 // ===============
 // Transformation in the Cipher that takes all of the columns of the
 // State and mixes their data (independently of one another) to
 // produce new columns.

 bits(128) AESMixColumns(bits (128) op)
 bits(4*8) in0 = op< 96+:8> : op< 64+:8> : op< 32+:8> : op< 0+:8>;
 bits(4*8) in1 = op<104+:8> : op< 72+:8> : op< 40+:8> : op< 8+:8>;
 bits(4*8) in2 = op<112+:8> : op< 80+:8> : op< 48+:8> : op< 16+:8>;
 bits(4*8) in3 = op<120+:8> : op< 88+:8> : op< 56+:8> : op< 24+:8>;

 bits(4*8) out0;
 bits(4*8) out1;
 bits(4*8) out2;
 bits(4*8) out3;

 for c = 0 to 3
 out0<c*8+:8> = FFmul02(in0<c*8+:8>) EOR FFmul03(in1<c*8+:8>) EOR in2<c*8+:8> EOR
in3<c*8+:8>;
 out1<c*8+:8> = in0<c*8+:8> EOR FFmul02(in1<c*8+:8>) EOR FFmul03(in2<c*8+:8>) EOR
in3<c*8+:8>;
 out2<c*8+:8> = in0<c*8+:8> EOR in1<c*8+:8> EOR FFmul02(in2<c*8+:8>) EOR
FFmul03(in3<c*8+:8>);
 out3<c*8+:8> = FFmul03(in0<c*8+:8>) EOR in1<c*8+:8> EOR in2<c*8+:8> EOR
FFmul02(in3<c*8+:8>);

 return (
 out3<3*8+:8> : out2<3*8+:8> : out1<3*8+:8> : out0<3*8+:8> :
 out3<2*8+:8> : out2<2*8+:8> : out1<2*8+:8> : out0<2*8+:8> :
 out3<1*8+:8> : out2<1*8+:8> : out1<1*8+:8> : out0<1*8+:8> :
 out3<0*8+:8> : out2<0*8+:8> : out1<0*8+:8> : out0<0*8+:8>
);

shared/functions/crypto/AESShiftRows

 // AESShiftRows()
 // ==============
 // Transformation in the Cipher that processes the State by cyclically
J1-8268 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 // shifting the last three rows of the State by different offsets.

 bits(128) AESShiftRows(bits(128) op)
 return (
 op< 88+:8> : op< 48+:8> : op< 8+:8> : op< 96+:8> :
 op< 56+:8> : op< 16+:8> : op<104+:8> : op< 64+:8> :
 op< 24+:8> : op<112+:8> : op< 72+:8> : op< 32+:8> :
 op<120+:8> : op< 80+:8> : op< 40+:8> : op< 0+:8>
);

shared/functions/crypto/AESSubBytes

 // AESSubBytes()
 // =============
 // Transformation in the Cipher that processes the State using a nonlinear
 // byte substitution table (S-box) that operates on each of the State bytes
 // independently.

 bits(128) AESSubBytes(bits(128) op)
 // S-box values
 bits(16*16*8) GF2 = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x16bb54b00f2d99416842e6bf0d89a18c<127:0> :
 /*E*/ 0xdf2855cee9871e9b948ed9691198f8e1<127:0> :
 /*D*/ 0x9e1dc186b95735610ef6034866b53e70<127:0> :
 /*C*/ 0x8a8bbd4b1f74dde8c6b4a61c2e2578ba<127:0> :
 /*B*/ 0x08ae7a65eaf4566ca94ed58d6d37c8e7<127:0> :
 /*A*/ 0x79e4959162acd3c25c2406490a3a32e0<127:0> :
 /*9*/ 0xdb0b5ede14b8ee4688902a22dc4f8160<127:0> :
 /*8*/ 0x73195d643d7ea7c41744975fec130ccd<127:0> :
 /*7*/ 0xd2f3ff1021dab6bcf5389d928f40a351<127:0> :
 /*6*/ 0xa89f3c507f02f94585334d43fbaaefd0<127:0> :
 /*5*/ 0xcf584c4a39becb6a5bb1fc20ed00d153<127:0> :
 /*4*/ 0x842fe329b3d63b52a05a6e1b1a2c8309<127:0> :
 /*3*/ 0x75b227ebe28012079a059618c323c704<127:0> :
 /*2*/ 0x1531d871f1e5a534ccf73f362693fdb7<127:0> :
 /*1*/ 0xc072a49cafa2d4adf04759fa7dc982ca<127:0> :
 /*0*/ 0x76abd7fe2b670130c56f6bf27b777c63<127:0>
);
 bits(128) out;
 for i = 0 to 15
 out<i*8+:8> = GF2<UInt(op<i*8+:8>)*8+:8>;
 return out;

shared/functions/crypto/FFmul02

 // FFmul02()
 // =========

 bits(8) FFmul02(bits(8) b)
 bits(256*8) FFmul_02 = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0xE5E7E1E3EDEFE9EBF5F7F1F3FDFFF9FB<127:0> :
 /*E*/ 0xC5C7C1C3CDCFC9CBD5D7D1D3DDDFD9DB<127:0> :
 /*D*/ 0xA5A7A1A3ADAFA9ABB5B7B1B3BDBFB9BB<127:0> :
 /*C*/ 0x858781838D8F898B959791939D9F999B<127:0> :
 /*B*/ 0x656761636D6F696B757771737D7F797B<127:0> :
 /*A*/ 0x454741434D4F494B555751535D5F595B<127:0> :
 /*9*/ 0x252721232D2F292B353731333D3F393B<127:0> :
 /*8*/ 0x050701030D0F090B151711131D1F191B<127:0> :
 /*7*/ 0xFEFCFAF8F6F4F2F0EEECEAE8E6E4E2E0<127:0> :
 /*6*/ 0xDEDCDAD8D6D4D2D0CECCCAC8C6C4C2C0<127:0> :
 /*5*/ 0xBEBCBAB8B6B4B2B0AEACAAA8A6A4A2A0<127:0> :
 /*4*/ 0x9E9C9A98969492908E8C8A8886848280<127:0> :
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8269
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 /*3*/ 0x7E7C7A78767472706E6C6A6866646260<127:0> :
 /*2*/ 0x5E5C5A58565452504E4C4A4846444240<127:0> :
 /*1*/ 0x3E3C3A38363432302E2C2A2826242220<127:0> :
 /*0*/ 0x1E1C1A18161412100E0C0A0806040200<127:0>
);
 return FFmul_02<UInt(b)*8+:8>;

shared/functions/crypto/FFmul03

 // FFmul03()
 // =========

 bits(8) FFmul03(bits(8) b)
 bits(256*8) FFmul_03 = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x1A191C1F16151013020104070E0D080B<127:0> :
 /*E*/ 0x2A292C2F26252023323134373E3D383B<127:0> :
 /*D*/ 0x7A797C7F76757073626164676E6D686B<127:0> :
 /*C*/ 0x4A494C4F46454043525154575E5D585B<127:0> :
 /*B*/ 0xDAD9DCDFD6D5D0D3C2C1C4C7CECDC8CB<127:0> :
 /*A*/ 0xEAE9ECEFE6E5E0E3F2F1F4F7FEFDF8FB<127:0> :
 /*9*/ 0xBAB9BCBFB6B5B0B3A2A1A4A7AEADA8AB<127:0> :
 /*8*/ 0x8A898C8F86858083929194979E9D989B<127:0> :
 /*7*/ 0x818287848D8E8B88999A9F9C95969390<127:0> :
 /*6*/ 0xB1B2B7B4BDBEBBB8A9AAAFACA5A6A3A0<127:0> :
 /*5*/ 0xE1E2E7E4EDEEEBE8F9FAFFFCF5F6F3F0<127:0> :
 /*4*/ 0xD1D2D7D4DDDEDBD8C9CACFCCC5C6C3C0<127:0> :
 /*3*/ 0x414247444D4E4B48595A5F5C55565350<127:0> :
 /*2*/ 0x717277747D7E7B78696A6F6C65666360<127:0> :
 /*1*/ 0x212227242D2E2B28393A3F3C35363330<127:0> :
 /*0*/ 0x111217141D1E1B18090A0F0C05060300<127:0>
);
 return FFmul_03<UInt(b)*8+:8>;

shared/functions/crypto/FFmul09

 // FFmul09()
 // =========

 bits(8) FFmul09(bits(8) b)
 bits(256*8) FFmul_09 = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x464F545D626B70790E071C152A233831<127:0> :
 /*E*/ 0xD6DFC4CDF2FBE0E99E978C85BAB3A8A1<127:0> :
 /*D*/ 0x7D746F6659504B42353C272E1118030A<127:0> :
 /*C*/ 0xEDE4FFF6C9C0DBD2A5ACB7BE8188939A<127:0> :
 /*B*/ 0x3039222B141D060F78716A635C554E47<127:0> :
 /*A*/ 0xA0A9B2BB848D969FE8E1FAF3CCC5DED7<127:0> :
 /*9*/ 0x0B0219102F263D34434A5158676E757C<127:0> :
 /*8*/ 0x9B928980BFB6ADA4D3DAC1C8F7FEE5EC<127:0> :
 /*7*/ 0xAAA3B8B18E879C95E2EBF0F9C6CFD4DD<127:0> :
 /*6*/ 0x3A3328211E170C05727B6069565F444D<127:0> :
 /*5*/ 0x9198838AB5BCA7AED9D0CBC2FDF4EFE6<127:0> :
 /*4*/ 0x0108131A252C373E49405B526D647F76<127:0> :
 /*3*/ 0xDCD5CEC7F8F1EAE3949D868FB0B9A2AB<127:0> :
 /*2*/ 0x4C455E5768617A73040D161F2029323B<127:0> :
 /*1*/ 0xE7EEF5FCC3CAD1D8AFA6BDB48B829990<127:0> :
 /*0*/ 0x777E656C535A41483F362D241B120900<127:0>
);
 return FFmul_09<UInt(b)*8+:8>;
J1-8270 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/crypto/FFmul0B

 // FFmul0B()
 // =========

 bits(8) FFmul0B(bits(8) b)
 bits(256*8) FFmul_0B = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0xA3A8B5BE8F849992FBF0EDE6D7DCC1CA<127:0> :
 /*E*/ 0x1318050E3F3429224B405D56676C717A<127:0> :
 /*D*/ 0xD8D3CEC5F4FFE2E9808B969DACA7BAB1<127:0> :
 /*C*/ 0x68637E75444F5259303B262D1C170A01<127:0> :
 /*B*/ 0x555E434879726F640D061B10212A373C<127:0> :
 /*A*/ 0xE5EEF3F8C9C2DFD4BDB6ABA0919A878C<127:0> :
 /*9*/ 0x2E2538330209141F767D606B5A514C47<127:0> :
 /*8*/ 0x9E958883B2B9A4AFC6CDD0DBEAE1FCF7<127:0> :
 /*7*/ 0x545F424978736E650C071A11202B363D<127:0> :
 /*6*/ 0xE4EFF2F9C8C3DED5BCB7AAA1909B868D<127:0> :
 /*5*/ 0x2F2439320308151E777C616A5B504D46<127:0> :
 /*4*/ 0x9F948982B3B8A5AEC7CCD1DAEBE0FDF6<127:0> :
 /*3*/ 0xA2A9B4BF8E859893FAF1ECE7D6DDC0CB<127:0> :
 /*2*/ 0x1219040F3E3528234A415C57666D707B<127:0> :
 /*1*/ 0xD9D2CFC4F5FEE3E8818A979CADA6BBB0<127:0> :
 /*0*/ 0x69627F74454E5358313A272C1D160B00<127:0>
);
 return FFmul_0B<UInt(b)*8+:8>;

shared/functions/crypto/FFmul0D

 // FFmul0D()
 // =========

 bits(8) FFmul0D(bits(8) b)
 bits(256*8) FFmul_0D = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x979A8D80A3AEB9B4FFF2E5E8CBC6D1DC<127:0> :
 /*E*/ 0x474A5D50737E69642F2235381B16010C<127:0> :
 /*D*/ 0x2C21363B1815020F44495E53707D6A67<127:0> :
 /*C*/ 0xFCF1E6EBC8C5D2DF94998E83A0ADBAB7<127:0> :
 /*B*/ 0xFAF7E0EDCEC3D4D9929F8885A6ABBCB1<127:0> :
 /*A*/ 0x2A27303D1E130409424F5855767B6C61<127:0> :
 /*9*/ 0x414C5B5675786F622924333E1D10070A<127:0> :
 /*8*/ 0x919C8B86A5A8BFB2F9F4E3EECDC0D7DA<127:0> :
 /*7*/ 0x4D40575A7974636E25283F32111C0B06<127:0> :
 /*6*/ 0x9D90878AA9A4B3BEF5F8EFE2C1CCDBD6<127:0> :
 /*5*/ 0xF6FBECE1C2CFD8D59E938489AAA7B0BD<127:0> :
 /*4*/ 0x262B3C31121F08054E4354597A77606D<127:0> :
 /*3*/ 0x202D3A3714190E034845525F7C71666B<127:0> :
 /*2*/ 0xF0FDEAE7C4C9DED39895828FACA1B6BB<127:0> :
 /*1*/ 0x9B96818CAFA2B5B8F3FEE9E4C7CADDD0<127:0> :
 /*0*/ 0x4B46515C7F726568232E3934171A0D00<127:0>
);
 return FFmul_0D<UInt(b)*8+:8>;

shared/functions/crypto/FFmul0E

 // FFmul0E()
 // =========

 bits(8) FFmul0E(bits(8) b)
 bits(256*8) FFmul_0E = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x8D83919FB5BBA9A7FDF3E1EFC5CBD9D7<127:0> :
 /*E*/ 0x6D63717F555B49471D13010F252B3937<127:0> :
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8271
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 /*D*/ 0x56584A446E60727C26283A341E10020C<127:0> :
 /*C*/ 0xB6B8AAA48E80929CC6C8DAD4FEF0E2EC<127:0> :
 /*B*/ 0x202E3C321816040A505E4C426866747A<127:0> :
 /*A*/ 0xC0CEDCD2F8F6E4EAB0BEACA28886949A<127:0> :
 /*9*/ 0xFBF5E7E9C3CDDFD18B859799B3BDAFA1<127:0> :
 /*8*/ 0x1B150709232D3F316B657779535D4F41<127:0> :
 /*7*/ 0xCCC2D0DEF4FAE8E6BCB2A0AE848A9896<127:0> :
 /*6*/ 0x2C22303E141A08065C52404E646A7876<127:0> :
 /*5*/ 0x17190B052F21333D67697B755F51434D<127:0> :
 /*4*/ 0xF7F9EBE5CFC1D3DD87899B95BFB1A3AD<127:0> :
 /*3*/ 0x616F7D735957454B111F0D032927353B<127:0> :
 /*2*/ 0x818F9D93B9B7A5ABF1FFEDE3C9C7D5DB<127:0> :
 /*1*/ 0xBAB4A6A8828C9E90CAC4D6D8F2FCEEE0<127:0> :
 /*0*/ 0x5A544648626C7E702A243638121C0E00<127:0>
);
 return FFmul_0E<UInt(b)*8+:8>;

shared/functions/crypto/HaveAESExt

 // HaveAESExt()
 // ============
 // TRUE if AES cryptographic instructions support is implemented,
 // FALSE otherwise.

 boolean HaveAESExt()
 return boolean IMPLEMENTATION_DEFINED "Has AES Crypto instructions";

shared/functions/crypto/HaveBit128PMULLExt

 // HaveBit128PMULLExt()
 // ====================
 // TRUE if 128 bit form of PMULL instructions support is implemented,
 // FALSE otherwise.

 boolean HaveBit128PMULLExt()
 return boolean IMPLEMENTATION_DEFINED "Has 128-bit form of PMULL instructions";

shared/functions/crypto/HaveSHA1Ext

 // HaveSHA1Ext()
 // =============
 // TRUE if SHA1 cryptographic instructions support is implemented,
 // FALSE otherwise.

 boolean HaveSHA1Ext()
 return boolean IMPLEMENTATION_DEFINED "Has SHA1 Crypto instructions";

shared/functions/crypto/HaveSHA256Ext

 // HaveSHA256Ext()
 // ===============
 // TRUE if SHA256 cryptographic instructions support is implemented,
 // FALSE otherwise.

 boolean HaveSHA256Ext()
 return boolean IMPLEMENTATION_DEFINED "Has SHA256 Crypto instructions";
J1-8272 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/crypto/HaveSHA3Ext

 // HaveSHA3Ext()
 // =============
 // TRUE if SHA3 cryptographic instructions support is implemented,
 // and when SHA1 and SHA2 basic cryptographic instructions support is implemented,
 // FALSE otherwise.

 boolean HaveSHA3Ext()
 if !HasArchVersion(ARMv8p2) || !(HaveSHA1Ext() && HaveSHA256Ext()) then
 return FALSE;
 return boolean IMPLEMENTATION_DEFINED "Has SHA3 Crypto instructions";

shared/functions/crypto/HaveSHA512Ext

 // HaveSHA512Ext()
 // ===============
 // TRUE if SHA512 cryptographic instructions support is implemented,
 // and when SHA1 and SHA2 basic cryptographic instructions support is implemented,
 // FALSE otherwise.

 boolean HaveSHA512Ext()
 if !HasArchVersion(ARMv8p2) || !(HaveSHA1Ext() && HaveSHA256Ext()) then
 return FALSE;
 return boolean IMPLEMENTATION_DEFINED "Has SHA512 Crypto instructions";

shared/functions/crypto/HaveSM3Ext

 // HaveSM3Ext()
 // ============
 // TRUE if SM3 cryptographic instructions support is implemented,
 // FALSE otherwise.

 boolean HaveSM3Ext()
 if !HasArchVersion(ARMv8p2) then
 return FALSE;
 return boolean IMPLEMENTATION_DEFINED "Has SM3 Crypto instructions";

shared/functions/crypto/HaveSM4Ext

 // HaveSM4Ext()
 // ============
 // TRUE if SM4 cryptographic instructions support is implemented,
 // FALSE otherwise.

 boolean HaveSM4Ext()
 if !HasArchVersion(ARMv8p2) then
 return FALSE;
 return boolean IMPLEMENTATION_DEFINED "Has SM4 Crypto instructions";

shared/functions/crypto/ROL

 // ROL()
 // =====

 bits(N) ROL(bits(N) x, integer shift)
 assert shift >= 0 && shift <= N;
 if (shift == 0) then
 return x;
 return ROR(x, N-shift);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8273
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/crypto/SHA256hash

 // SHA256hash()
 // ============

 bits(128) SHA256hash(bits (128) X, bits(128) Y, bits(128) W, boolean part1)
 bits(32) chs, maj, t;

 for e = 0 to 3
 chs = SHAchoose(Y<31:0>, Y<63:32>, Y<95:64>);
 maj = SHAmajority(X<31:0>, X<63:32>, X<95:64>);
 t = Y<127:96> + SHAhashSIGMA1(Y<31:0>) + chs + Elem[W, e, 32];
 X<127:96> = t + X<127:96>;
 Y<127:96> = t + SHAhashSIGMA0(X<31:0>) + maj;
 <Y, X> = ROL(Y : X, 32);
 return (if part1 then X else Y);

shared/functions/crypto/SHAchoose

 // SHAchoose()
 // ===========

 bits(32) SHAchoose(bits(32) x, bits(32) y, bits(32) z)
 return (((y EOR z) AND x) EOR z);

shared/functions/crypto/SHAhashSIGMA0

 // SHAhashSIGMA0()
 // ===============

 bits(32) SHAhashSIGMA0(bits(32) x)
 return ROR(x, 2) EOR ROR(x, 13) EOR ROR(x, 22);

shared/functions/crypto/SHAhashSIGMA1

 // SHAhashSIGMA1()
 // ===============

 bits(32) SHAhashSIGMA1(bits(32) x)
 return ROR(x, 6) EOR ROR(x, 11) EOR ROR(x, 25);

shared/functions/crypto/SHAmajority

 // SHAmajority()
 // =============

 bits(32) SHAmajority(bits(32) x, bits(32) y, bits(32) z)
 return ((x AND y) OR ((x OR y) AND z));

shared/functions/crypto/SHAparity

 // SHAparity()
 // ===========

 bits(32) SHAparity(bits(32) x, bits(32) y, bits(32) z)
 return (x EOR y EOR z);
J1-8274 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/crypto/Sbox

 // Sbox()
 // ======
 // Used in SM4E crypto instruction

 bits(8) Sbox(bits(8) sboxin)
 bits(8) sboxout;
 bits(2048) sboxstring =
0xd690e9fecce13db716b614c228fb2c052b679a762abe04c3aa441326498606999c4250f491ef987a33540b43edcfac62e4b31ca
9c908e89580df94fa758f3fa64707a7fcf37317ba83593c19e6854fa8686b81b27164da8bf8eb0f4b70569d351e240e5e6358d1a2
25227c3b01217887d40046579fd327524c3602e7a0c4c89eeabf8ad240c738b5a3f7f2cef96115a1e0ae5da49b341a55ad933230f
58cb1e31df6e22e8266ca60c02923ab0d534e6fd5db3745defd8e2f03ff6a726d6c5b518d1baf92bbddbc7f11d95c411f105ad80a
c13188a5cd7bbd2d74d012b8e5b4b08969974a0c96777e65b9f109c56ec68418f07dec3adc4d2079ee5f3ed7cb3948<2047:0>;

 sboxout = sboxstring<(255-UInt(sboxin))*8+7:(255-UInt(sboxin))*8>;
 return sboxout;

shared/functions/exclusive/ClearExclusiveByAddress

 // Clear the global Exclusives monitors for all PEs EXCEPT processorid if they
 // record any part of the physical address region of size bytes starting at paddress.
 // It is IMPLEMENTATION DEFINED whether the global Exclusives monitor for processorid
 // is also cleared if it records any part of the address region.
 ClearExclusiveByAddress(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/ClearExclusiveLocal

 // Clear the local Exclusives monitor for the specified processorid.
 ClearExclusiveLocal(integer processorid);

shared/functions/exclusive/ClearExclusiveMonitors

 // ClearExclusiveMonitors()
 // ========================
 // Clear the local Exclusives monitor for the executing PE.

 ClearExclusiveMonitors()
 ClearExclusiveLocal(ProcessorID());

shared/functions/exclusive/ExclusiveMonitorsStatus

 // Returns '0' to indicate success if the last memory write by this PE was to
 // the same physical address region endorsed by ExclusiveMonitorsPass().
 // Returns '1' to indicate failure if address translation resulted in a different
 // physical address.
 bit ExclusiveMonitorsStatus();

shared/functions/exclusive/IsExclusiveGlobal

 // Return TRUE if the global Exclusives monitor for processorid includes all of
 // the physical address region of size bytes starting at paddress.
 boolean IsExclusiveGlobal(FullAddress paddress, integer processorid, integer size);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8275
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/exclusive/IsExclusiveLocal

 // Return TRUE if the local Exclusives monitor for processorid includes all of
 // the physical address region of size bytes starting at paddress.
 boolean IsExclusiveLocal(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/MarkExclusiveGlobal

 // Record the physical address region of size bytes starting at paddress in
 // the global Exclusives monitor for processorid.
 MarkExclusiveGlobal(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/MarkExclusiveLocal

 // Record the physical address region of size bytes starting at paddress in
 // the local Exclusives monitor for processorid.
 MarkExclusiveLocal(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/ProcessorID

 // Return the ID of the currently executing PE.
 integer ProcessorID();

shared/functions/extension/AArch32.HaveHPDExt

 // AArch32.HaveHPDExt()
 // ====================

 boolean AArch32.HaveHPDExt()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/AArch64.HaveHPDExt

 // AArch64.HaveHPDExt()
 // ====================

 boolean AArch64.HaveHPDExt()
 return HasArchVersion(ARMv8p1);

shared/functions/extension/Have52BitIPAAndPASpaceExt

 // Have52BitIPAAndPASpaceExt()
 // ===========================
 // Returns TRUE if 52-bit IPA and PA extension support
 // is implemented, and FALSE otherwise.

 boolean Have52BitIPAAndPASpaceExt()
 return (HasArchVersion(ARMv8p7) &&
 boolean IMPLEMENTATION_DEFINED "Has 52-bit IPA and PA support" &&
 Have52BitVAExt() && Have52BitPAExt());

shared/functions/extension/Have52BitPAExt

 // Have52BitPAExt()
 // ================
 // Returns TRUE if Large Physical Address extension
J1-8276 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 // support is implemented and FALSE otherwise.

 boolean Have52BitPAExt()
 return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has large 52-bit PA/IPA support";

shared/functions/extension/Have52BitVAExt

 // Have52BitVAExt()
 // ================
 // Returns TRUE if Large Virtual Address extension
 // support is implemented and FALSE otherwise.

 boolean Have52BitVAExt()
 return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has large 52-bit VA support";

shared/functions/extension/HaveAArch32BF16Ext

 // HaveAArch32BF16Ext()
 // ====================
 // Returns TRUE if AArch32 BFloat16 instruction support is implemented, and FALSE otherwise.

 boolean HaveAArch32BF16Ext()
 return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has AArch32 BFloat16 extension";

shared/functions/extension/HaveAArch32Int8MatMulExt

 // HaveAArch32Int8MatMulExt()
 // ==========================
 // Returns TRUE if AArch32 8-bit integer matrix multiply instruction support
 // implemented, and FALSE otherwise.

 boolean HaveAArch32Int8MatMulExt()
 return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has AArch32 Int8 Mat Mul
extension";

shared/functions/extension/HaveAltFP

 // HaveAltFP()
 // ===========
 // Returns TRUE if alternative Floating-point extension support
 // is implemented, and FALSE otherwise.

 boolean HaveAltFP()
 return HasArchVersion(ARMv8p7);

shared/functions/extension/HaveAtomicExt

 // HaveAtomicExt()
 // ===============

 boolean HaveAtomicExt()
 return HasArchVersion(ARMv8p1);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8277
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/extension/HaveBF16Ext

 // HaveBF16Ext()
 // =============
 // Returns TRUE if AArch64 BFloat16 instruction support is implemented, and FALSE otherwise.

 boolean HaveBF16Ext()
 return HasArchVersion(ARMv8p6) || (HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has
AArch64 BFloat16 extension");

shared/functions/extension/HaveBTIExt

 // HaveBTIExt()
 // ============
 // Returns TRUE if support for Branch Target Indentification is implemented.

 boolean HaveBTIExt()
 return HasArchVersion(ARMv8p5);

shared/functions/extension/HaveBlockBBM

 // HaveBlockBBM()
 // ==============
 // Returns TRUE if support for changing block size without requring break-before-make is implemented.

 boolean HaveBlockBBM()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveCNTSCExt

 // HaveCNTSCExt()
 // ==============
 // Returns TRUE if the Generic Counter Scaling is implemented, and FALSE
 // otherwise.

 boolean HaveCNTSCExt()
 return (HasArchVersion(ARMv8p4) &&
 boolean IMPLEMENTATION_DEFINED "Has Generic Counter Scaling support");

shared/functions/extension/HaveCommonNotPrivateTransExt

 // HaveCommonNotPrivateTransExt()
 // ==============================

 boolean HaveCommonNotPrivateTransExt()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveDGHExt

 // HaveDGHExt()
 // ============
 // Returns TRUE if Data Gathering Hint instruction support is implemented, and FALSE otherwise.

 boolean HaveDGHExt()
 return boolean IMPLEMENTATION_DEFINED "Has AArch64 DGH extension";
J1-8278 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/extension/HaveDITExt

 // HaveDITExt()
 // ============

 boolean HaveDITExt()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveDOTPExt

 // HaveDOTPExt()
 // =============
 // Returns TRUE if Dot Product feature support is implemented, and FALSE otherwise.

 boolean HaveDOTPExt()
 return HasArchVersion(ARMv8p4) || (HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has
Dot Product extension");

shared/functions/extension/HaveDoPD

 // HaveDoPD()
 // ==========
 // Returns TRUE if Debug Over Power Down extension
 // support is implemented and FALSE otherwise.

 boolean HaveDoPD()
 return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has DoPD extension";

shared/functions/extension/HaveDoubleFaultExt

 // HaveDoubleFaultExt()
 // ====================

 boolean HaveDoubleFaultExt()
 return (HasArchVersion(ARMv8p4) && HaveEL(EL3) && !ELUsingAArch32(EL3) && HaveIESB());

shared/functions/extension/HaveDoubleLock

 // HaveDoubleLock()
 // ================
 // Returns TRUE if support for the OS Double Lock is implemented.

 boolean HaveDoubleLock()
 return !HasArchVersion(ARMv8p4) || boolean IMPLEMENTATION_DEFINED "OS Double Lock is implemented";

shared/functions/extension/HaveE0PDExt

 // HaveE0PDExt()
 // =============
 // Returns TRUE if support for constant fault times for unprivileged accesses
 // to the memory map is implemented.

 boolean HaveE0PDExt()
 return HasArchVersion(ARMv8p5);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8279
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/extension/HaveECVExt

 // HaveECVExt()
 // ============
 // Returns TRUE if Enhanced Counter Virtualization extension
 // support is implemented, and FALSE otherwise.

 boolean HaveECVExt()
 return HasArchVersion(ARMv8p6);

shared/functions/extension/HaveEMPAMExt

 // HaveEMPAMExt()
 // ==============
 // Returns TRUE if Enhanced MPAM is implemented, and FALSE otherwise.

 boolean HaveEMPAMExt()
 return (HasArchVersion(ARMv8p6) &&
 HaveMPAMExt() &&
 boolean IMPLEMENTATION_DEFINED "Has enhanced MPAM extension");

shared/functions/extension/HaveExtendedCacheSets

 // HaveExtendedCacheSets()
 // =======================

 boolean HaveExtendedCacheSets()
 return HasArchVersion(ARMv8p3);

shared/functions/extension/HaveExtendedECDebugEvents

 // HaveExtendedECDebugEvents()
 // ===========================

 boolean HaveExtendedECDebugEvents()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveExtendedExecuteNeverExt

 // HaveExtendedExecuteNeverExt()
 // =============================

 boolean HaveExtendedExecuteNeverExt()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveFCADDExt

 // HaveFCADDExt()
 // ==============

 boolean HaveFCADDExt()
 return HasArchVersion(ARMv8p3);
J1-8280 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/extension/HaveFGTExt

 // HaveFGTExt()
 // ============
 // Returns TRUE if Fine Grained Trap is implemented, and FALSE otherwise.

 boolean HaveFGTExt()
 return HasArchVersion(ARMv8p6) && !ELUsingAArch32(EL2);

shared/functions/extension/HaveFJCVTZSExt

 // HaveFJCVTZSExt()
 // ================

 boolean HaveFJCVTZSExt()
 return HasArchVersion(ARMv8p3);

shared/functions/extension/HaveFP16MulNoRoundingToFP32Ext

 // HaveFP16MulNoRoundingToFP32Ext()
 // ================================
 // Returns TRUE if has FP16 multiply with no intermediate rounding accumulate to FP32 instructions,
 // and FALSE otherwise

 boolean HaveFP16MulNoRoundingToFP32Ext()
 if !HaveFP16Ext() then return FALSE;
 if HasArchVersion(ARMv8p4) then return TRUE;
 return (HasArchVersion(ARMv8p2) &&
 boolean IMPLEMENTATION_DEFINED "Has accumulate FP16 product into FP32 extension");

shared/functions/extension/HaveFeatHCX

 // HaveFeatHCX()
 // =============
 // Returns TRUE if HCRX_EL2 Trap Control register is implemented,
 // and FALSE otherwise.

 boolean HaveFeatHCX()
 return HasArchVersion(ARMv8p7);

shared/functions/extension/HaveFeatLS64

 // HaveFeatLS64()
 // ==============
 // Returns TRUE if the LD64B, ST64B, ST64BV, and ST64BV0 instructions are
 // supported, and FALSE otherwise.

 boolean HaveFeatLS64()
 return (HasArchVersion(ARMv8p7) &&
 boolean IMPLEMENTATION_DEFINED "Has Load Store 64-Byte instruction support");

shared/functions/extension/HaveFeatRPRES

 // HaveFeatRPRES()
 // ===============
 // Returns TRUE if reciprocal estimate implements 12-bit precision
 // when FPCR.AH=1, and FALSE otherwise.

 boolean HaveFeatRPRES()
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8281
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 return (HasArchVersion(ARMv8p7) &&
 (boolean IMPLEMENTATION_DEFINED "Has increased Reciprocal Estimate and Square Root Estimate
precision support") &&
 HaveAltFP());

shared/functions/extension/HaveFeatWFxT

 // HaveFeatWFxT()
 // ==============
 // Returns TRUE if WFET and WFIT instruction support is implemented,
 // and FALSE otherwise.

 boolean HaveFeatWFxT()
 return HasArchVersion(ARMv8p7);

shared/functions/extension/HaveFeatWFxT2

 // HaveFeatWFxT2()
 // ===============
 // Returns TRUE if the register number is reported in the ESR_ELx
 // on exceptions to WFIT and WFET.

 boolean HaveFeatWFxT2()
 return HaveFeatWFxT() && boolean IMPLEMENTATION_DEFINED "Has feature WFxT2";

shared/functions/extension/HaveFeatXS

 // HaveFeatXS()
 // ============
 // Returns TRUE if XS attribute and the TLBI and DSB instructions with nXS qualifier
 // are supported, and FALSE otherwise.

 boolean HaveFeatXS()
 return HasArchVersion(ARMv8p7);

shared/functions/extension/HaveFlagFormatExt

 // HaveFlagFormatExt()
 // ===================
 // Returns TRUE if flag format conversion instructions implemented.

 boolean HaveFlagFormatExt()
 return HasArchVersion(ARMv8p5);

shared/functions/extension/HaveFlagManipulateExt

 // HaveFlagManipulateExt()
 // =======================
 // Returns TRUE if flag manipulate instructions are implemented.

 boolean HaveFlagManipulateExt()
 return HasArchVersion(ARMv8p4);
J1-8282 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/extension/HaveFrintExt

 // HaveFrintExt()
 // ==============
 // Returns TRUE if FRINT instructions are implemented.

 boolean HaveFrintExt()
 return HasArchVersion(ARMv8p5);

shared/functions/extension/HaveHPMDExt

 // HaveHPMDExt()
 // =============

 boolean HaveHPMDExt()
 return HasArchVersion(ARMv8p1);

shared/functions/extension/HaveIDSExt

 // HaveIDSExt()
 // ============
 // Returns TRUE if ID register handling feature is implemented.

 boolean HaveIDSExt()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveIESB

 // HaveIESB()
 // ==========

 boolean HaveIESB()
 return (HaveRASExt() &&
 boolean IMPLEMENTATION_DEFINED "Has Implicit Error Synchronization Barrier");

shared/functions/extension/HaveInt8MatMulExt

 // HaveInt8MatMulExt()
 // ===================
 // Returns TRUE if AArch64 8-bit integer matrix multiply instruction support
 // implemented, and FALSE otherwise.

 boolean HaveInt8MatMulExt()
 return HasArchVersion(ARMv8p6) || (HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has
AArch64 Int8 Mat Mul extension");

shared/functions/extension/HaveLSE2Ext

 // HaveLSE2Ext()
 // =============
 // Returns TRUE if LSE2 is implemented, and FALSE otherwise.

 boolean HaveLSE2Ext()
 return HasArchVersion(ARMv8p4);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8283
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/extension/HaveMPAMExt

 // HaveMPAMExt()
 // =============
 // Returns TRUE if MPAM is implemented, and FALSE otherwise.

 boolean HaveMPAMExt()
 return (HasArchVersion(ARMv8p2) &&
 boolean IMPLEMENTATION_DEFINED "Has MPAM extension");

shared/functions/extension/HaveMTE2Ext

 // HaveMTE2Ext()
 // =============
 // Returns TRUE if MTE support is beyond EL0, and FALSE otherwise.

 boolean HaveMTE2Ext()
 if !HasArchVersion(ARMv8p5) then
 return FALSE;
 return boolean IMPLEMENTATION_DEFINED "Has MTE2 extension";

shared/functions/extension/HaveMTE3Ext

 // HaveMTE3Ext()
 // =============
 // Returns TRUE if MTE Asymmetric Fault Handling support is
 // implemented, and FALSE otherwise.

 boolean HaveMTE3Ext()
 return ((HasArchVersion(ARMv8p7) && HaveMTE2Ext()) || (HasArchVersion(ARMv8p5) &&
 boolean IMPLEMENTATION_DEFINED "Has MTE3 extension"));

shared/functions/extension/HaveMTEExt

 // HaveMTEExt()
 // ============
 // Returns TRUE if MTE implemented, and FALSE otherwise.

 boolean HaveMTEExt()
 if !HasArchVersion(ARMv8p5) then
 return FALSE;
 if HaveMTE2Ext() then
 return TRUE;
 return boolean IMPLEMENTATION_DEFINED "Has MTE extension";

shared/functions/extension/HaveNV2Ext

 // HaveNV2Ext()
 // ============
 // Returns TRUE if Enhanced Nested Virtualization is implemented.

 boolean HaveNV2Ext()
 return (HasArchVersion(ARMv8p4) && HaveNVExt()
 && boolean IMPLEMENTATION_DEFINED "Has support for Enhanced Nested Virtualization");
J1-8284 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/extension/HaveNVExt

 // HaveNVExt()
 // ===========
 // Returns TRUE if Nested Virtualization is implemented.

 boolean HaveNVExt()
 return HasArchVersion(ARMv8p3) && boolean IMPLEMENTATION_DEFINED "Has Nested Virtualization";

shared/functions/extension/HaveNoSecurePMUDisableOverride

 // HaveNoSecurePMUDisableOverride()
 // ================================

 boolean HaveNoSecurePMUDisableOverride()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveNoninvasiveDebugAuth

 // HaveNoninvasiveDebugAuth()
 // ==========================
 // Returns TRUE if the Non-invasive debug controls are implemented.

 boolean HaveNoninvasiveDebugAuth()
 return !HasArchVersion(ARMv8p4);

shared/functions/extension/HavePAN3Ext

 // HavePAN3Ext()
 // =============
 // Returns TRUE if SCTLR_EL1.EPAN and SCTLR_EL2.EPAN support is implemented,
 // and FALSE otherwise.

 boolean HavePAN3Ext()
 return HasArchVersion(ARMv8p7) || (HasArchVersion(ARMv8p1) &&
 boolean IMPLEMENTATION_DEFINED "Has PAN3 extension");

shared/functions/extension/HavePANExt

 // HavePANExt()
 // ============

 boolean HavePANExt()
 return HasArchVersion(ARMv8p1);

shared/functions/extension/HavePMUv3p7

 // HavePMUv3p7()
 // =============
 // Returns TRUE if the PMUv3p7 extension is implemented, and FALSE otherwise.

 boolean HavePMUv3p7()
 return (HasArchVersion(ARMv8p7) && Havev85PMU() &&
 boolean IMPLEMENTATION_DEFINED "Has PMUv3p7 extension");
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8285
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/extension/HavePageBasedHardwareAttributes

 // HavePageBasedHardwareAttributes()
 // =================================

 boolean HavePageBasedHardwareAttributes()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HavePrivATExt

 // HavePrivATExt()
 // ===============

 boolean HavePrivATExt()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveQRDMLAHExt

 // HaveQRDMLAHExt()
 // ================

 boolean HaveQRDMLAHExt()
 return HasArchVersion(ARMv8p1);

 boolean HaveAccessFlagUpdateExt()
 return HasArchVersion(ARMv8p1);

 boolean HaveDirtyBitModifierExt()
 return HasArchVersion(ARMv8p1);

shared/functions/extension/HaveRASExt

 // HaveRASExt()
 // ============

 boolean HaveRASExt()
 return (HasArchVersion(ARMv8p2) ||
 boolean IMPLEMENTATION_DEFINED "Has RAS extension");

shared/functions/extension/HaveRNG

 // HaveRNG()
 // =========
 // Returns TRUE if Random Number Generator extension
 // support is implemented and FALSE otherwise.

 boolean HaveRNG()
 return HasArchVersion(ARMv8p5) && boolean IMPLEMENTATION_DEFINED "Has RNG extension";

shared/functions/extension/HaveSBExt

 // HaveSBExt()
 // ===========
 // Returns TRUE if support for SB is implemented, and FALSE otherwise.

 boolean HaveSBExt()
 return HasArchVersion(ARMv8p5) || boolean IMPLEMENTATION_DEFINED "Has SB extension";
J1-8286 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/extension/HaveSSBSExt

 // HaveSSBSExt()
 // =============
 // Returns TRUE if support for SSBS is implemented, and FALSE otherwise.

 boolean HaveSSBSExt()
 return HasArchVersion(ARMv8p5) || boolean IMPLEMENTATION_DEFINED "Has SSBS extension";

shared/functions/extension/HaveSecureEL2Ext

 // HaveSecureEL2Ext()
 // ==================
 // Returns TRUE if Secure EL2 is implemented.

 boolean HaveSecureEL2Ext()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveSecureExtDebugView

 // HaveSecureExtDebugView()
 // ========================
 // Returns TRUE if support for Secure and Non-secure views of debug peripherals is implemented.

 boolean HaveSecureExtDebugView()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveSelfHostedTrace

 // HaveSelfHostedTrace()
 // =====================

 boolean HaveSelfHostedTrace()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveSmallTranslationTblExt

 // HaveSmallTranslationTblExt()
 // ============================
 // Returns TRUE if Small Translation Table Support is implemented.

 boolean HaveSmallTranslationTableExt()
 return HasArchVersion(ARMv8p4) && boolean IMPLEMENTATION_DEFINED "Has Small Translation Table
extension";

shared/functions/extension/HaveSoftwareLock

 // HaveSoftwareLock()
 // ==================
 // Returns TRUE if Software Lock is implemented.

 boolean HaveSoftwareLock(Component component)
 if Havev8p4Debug() then
 return FALSE;
 if HaveDoPD() && component != Component_CTI then
 return FALSE;
 case component of
 when Component_Debug
 return boolean IMPLEMENTATION_DEFINED "Debug has Software Lock";
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8287
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 when Component_PMU
 return boolean IMPLEMENTATION_DEFINED "PMU has Software Lock";
 when Component_CTI
 return boolean IMPLEMENTATION_DEFINED "CTI has Software Lock";
 otherwise
 Unreachable();

shared/functions/extension/HaveStage2MemAttrControl

 // HaveStage2MemAttrControl()
 // ==========================
 // Returns TRUE if support for Stage2 control of memory types and cacheability attributes is
implemented.

 boolean HaveStage2MemAttrControl()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveStatisticalProfiling

 // HaveStatisticalProfiling()
 // ==========================
 // Returns TRUE if Statistical Profiling Extension is implemented,
 // and FALSE otherwise.

 boolean HaveStatisticalProfiling()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveStatisticalProfilingv1p1

 // HaveStatisticalProfilingv1p1()
 // ==============================
 // Returns TRUE if the SPEv1p1 extension is implemented, and FALSE otherwise.

 boolean HaveStatisticalProfilingv1p1()
 return (HasArchVersion(ARMv8p3) &&
 boolean IMPLEMENTATION_DEFINED "Has SPEv1p1 extension");

shared/functions/extension/HaveStatisticalProfilingv1p2

 // HaveStatisticalProfilingv1p2()
 // ==============================
 // Returns TRUE if the SPEv1p2 extension is implemented, and FALSE otherwise.

 boolean HaveStatisticalProfilingv1p2()
 return (HasArchVersion(ARMv8p7) && HaveStatisticalProfiling() &&
 boolean IMPLEMENTATION_DEFINED "Has SPEv1p2 extension");

shared/functions/extension/HaveTWEDExt

 // HaveTWEDExt()
 // =============
 // Returns TRUE if Delayed Trapping of WFE instruction support is implemented, and FALSE otherwise.

 boolean HaveTWEDExt()
 return boolean IMPLEMENTATION_DEFINED "Has TWED extension";
J1-8288 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/extension/HaveTraceExt

 // HaveTraceExt()
 // ==============
 // Returns TRUE if Trace functionality as described by the Trace Architecture
 // is implemented.

 boolean HaveTraceExt()
 return boolean IMPLEMENTATION_DEFINED "Has Trace Architecture functionality";

shared/functions/extension/HaveTrapLoadStoreMultipleDeviceExt

 // HaveTrapLoadStoreMultipleDeviceExt()
 // ====================================

 boolean HaveTrapLoadStoreMultipleDeviceExt()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveUAOExt

 // HaveUAOExt()
 // ============

 boolean HaveUAOExt()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveV82Debug

 // HaveV82Debug()
 // ==============

 boolean HaveV82Debug()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveVirtHostExt

 // HaveVirtHostExt()
 // =================

 boolean HaveVirtHostExt()
 return HasArchVersion(ARMv8p1);

shared/functions/extension/Havev85PMU

 // Havev85PMU()
 // ============
 // Returns TRUE if v8.5-Performance Monitor Unit extension
 // support is implemented, and FALSE otherwise.

 boolean Havev85PMU()
 return HasArchVersion(ARMv8p5) && boolean IMPLEMENTATION_DEFINED "Has PMUv3p5 extension";

shared/functions/extension/Havev8p4Debug

 // Havev8p4Debug()
 // ===============
 // Returns TRUE if support for the Debugv8p4 feature is implemented and FALSE otherwise.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8289
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 boolean Havev8p4Debug()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/InsertIESBBeforeException

 // If SCTLR_ELx.IESB is 1 when an exception is generated to ELx, any pending Unrecoverable
 // SError interrupt must be taken before executing any instructions in the exception handler.
 // However, this can be before the branch to the exception handler is made.
 boolean InsertIESBBeforeException(bits(2) el);

shared/functions/externalaborts/HandleExternalAbort

 // HandleExternalAbort()
 // =====================
 // Takes a Synchronous/Asynchronous abort based on fault.

 HandleExternalAbort(PhysMemRetStatus memretstatus, boolean iswrite,
 AddressDescriptor memaddrdesc, integer size,
 AccessDescriptor accdesc)
 assert (memretstatus.statuscode IN {Fault_SyncExternal, Fault_AsyncExternal} ||
 (!HaveRASExt() && memretstatus.statuscode IN {Fault_SyncParity,
 Fault_AsyncParity}));
 fault = NoFault();
 fault.statuscode = memretstatus.statuscode;
 fault.write = iswrite;
 fault.extflag = memretstatus.extflag;
 fault.acctype = memretstatus.acctype;
 // It is implementation specific whether external aborts signaled
 // in-band synchronously are taken synchronously or asynchronously
 if (IsExternalSyncAbort(fault) &&
 !IsExternalAbortTakenSynchronously(memretstatus, iswrite, memaddrdesc,
 size, accdesc)) then
 if fault.statuscode == Fault_SyncParity then
 fault.statuscode = Fault_AsyncParity;
 else
 fault.statuscode = Fault_AsyncExternal;

 if HaveRASExt() then
 fault.errortype = PEErrorState(memretstatus);
 else
 fault.errortype = bits(2) UNKNOWN;

 if IsExternalSyncAbort(fault) then
 if UsingAArch32() then
 AArch32.Abort(memaddrdesc.vaddress<31:0>, fault);
 else
 AArch64.Abort(memaddrdesc.vaddress, fault);

 else
 PendSErrorInterrupt(fault);

shared/functions/externalaborts/HandleExternalReadAbort

 // HandleExternalReadAbort()
 // =========================
 // Wrapper function for HandleExternalAbort function in case of an External
 // Abort on memory read.

 HandleExternalReadAbort(PhysMemRetStatus memstatus, AddressDescriptor memaddrdesc,
 integer size, AccessDescriptor accdesc)
J1-8290 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 iswrite = FALSE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, size, accdesc);

shared/functions/externalaborts/HandleExternalTTWAbort

 // HandleExternalTTWAbort()
 // ========================
 // Take Asynchronous abort or update FaultRecord for Translation Walk
 // based on PhysMemRetStatus.

 FaultRecord HandleExternalTTWAbort(PhysMemRetStatus memretstatus, boolean iswrite,
 AddressDescriptor memaddrdesc,
 AccessDescriptor accdesc, integer size,
 FaultRecord input_fault)
 output_fault = input_fault;
 output_fault.extflag = memretstatus.extflag;
 output_fault.statuscode = memretstatus.statuscode;
 if (IsExternalSyncAbort(output_fault) &&
 !IsExternalAbortTakenSynchronously(memretstatus, iswrite,
 memaddrdesc,
 size, accdesc)) then
 if output_fault.statuscode == Fault_SyncParity then
 output_fault.statuscode = Fault_AsyncParity;
 else
 output_fault.statuscode = Fault_AsyncExternal;

 // If a synchronous fault is on a translation table walk, then update
 // the fault type
 if IsExternalSyncAbort(output_fault) then
 if output_fault.statuscode == Fault_SyncParity then
 output_fault.statuscode = Fault_SyncParityOnWalk;
 else
 output_fault.statuscode = Fault_SyncExternalOnWalk;
 if HaveRASExt() then
 output_fault.errortype = PEErrorState(memretstatus);
 else
 output_fault.errortype = bits(2) UNKNOWN;
 if !IsExternalSyncAbort(output_fault) then
 PendSErrorInterrupt(output_fault);
 output_fault.statuscode = Fault_None;
 return output_fault;

shared/functions/externalaborts/HandleExternalWriteAbort

 // HandleExternalWriteAbort()
 // ==========================
 // Wrapper function for HandleExternalAbort function in case of an External
 // Abort on memory write.

 HandleExternalWriteAbort(PhysMemRetStatus memstatus, AddressDescriptor memaddrdesc,
 integer size, AccessDescriptor accdesc)
 iswrite = TRUE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, size, accdesc);

shared/functions/externalaborts/IsExternalAbortTakenSynchronously

 // Return an implementation specific value:
 // TRUE if the fault returned for the access can be taken synchronously,
 // FALSE otherwise.
 // This might vary between accesses, for example depending on the error type
 // or memory type being accessed.
 // External aborts on data accesses and translation table walks on data accesses
 // can be either synchronous or asynchronous.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8291
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 // When FEAT_DoubleFault is not implemented, External aborts on instruction
 // fetches and translation table walks on instruction fetches can be either
 // synchronous or asynchronous.
 // When FEAT_DoubleFault is implemented, all External abort exceptions on
 // instruction fetches and translation table walks on instruction fetches
 // must be synchronous.
 boolean IsExternalAbortTakenSynchronously(PhysMemRetStatus memstatus,
 boolean iswrite,
 AddressDescriptor desc,
 integer size,
 AccessDescriptor accdesc);

shared/functions/externalaborts/PEErrorState

 // Return the implementation specific PE error state.
 // memstatus is the response returned from the system.
 // It is implementation specific whether this is used or ignored.
 bits(2) PEErrorState(PhysMemRetStatus memstatus);

shared/functions/externalaborts/PendSErrorInterrupt

 // Pend the SError.
 PendSErrorInterrupt(FaultRecord fault);

shared/functions/float/bfloat/BFAdd

 // BFAdd()
 // =======
 // Single-precision add following BFloat16 computation behaviors.

 bits(32) BFAdd(bits(32) op1, bits(32) op2)

 bits(32) result;

 FPCRType fpcr = FPCR[];
 (type1,sign1,value1) = BFUnpack(op1);
 (type2,sign2,value2) = BFUnpack(op2);
 if type1 == FPType_QNaN || type2 == FPType_QNaN then
 result = FPDefaultNaN(fpcr);
 else
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);
 if inf1 && inf2 && sign1 == NOT(sign2) then
 result = FPDefaultNaN(fpcr);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then
 result = FPInfinity('0');
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then
 result = FPInfinity('1');
 elsif zero1 && zero2 && sign1 == sign2 then
 result = FPZero(sign1);
 else
 result_value = value1 + value2;
 if result_value == 0.0 then
 result = FPZero('0'); // Positive sign when Round to Odd
 else
 result = BFRound(result_value);

 return result;
J1-8292 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/float/bfloat/BFDotAdd

 // BFDotAdd()
 // ==========
 // BFloat16 2-way dot-product and add to single-precision
 // result = addend + op1_a*op2_a + op1_b*op2_b

 bits(32) BFDotAdd(bits(32) addend, bits(16) op1_a, bits(16) op1_b,
 bits(16) op2_a, bits(16) op2_b, FPCRType fpcr)

 bits(32) prod;

 prod = BFAdd(BFMul(op1_a, op2_a), BFMul(op1_b, op2_b));
 result = BFAdd(addend, prod);

 return result;

shared/functions/float/bfloat/BFMatMulAdd

 // BFMatMulAdd()
 // =============
 // BFloat16 matrix multiply and add to single-precision matrix
 // result[2, 2] = addend[2, 2] + (op1[2, 4] * op2[4, 2])

 bits(N) BFMatMulAdd(bits(N) addend, bits(N) op1, bits(N) op2)

 assert N == 128;

 bits(N) result;
 bits(32) sum;

 for i = 0 to 1
 for j = 0 to 1
 sum = Elem[addend, 2*i + j, 32];
 for k = 0 to 1
 bits(16) elt1_a = Elem[op1, 4*i + 2*k + 0, 16];
 bits(16) elt1_b = Elem[op1, 4*i + 2*k + 1, 16];
 bits(16) elt2_a = Elem[op2, 4*j + 2*k + 0, 16];
 bits(16) elt2_b = Elem[op2, 4*j + 2*k + 1, 16];
 sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR[]);
 Elem[result, 2*i + j, 32] = sum;

 return result;

shared/functions/float/bfloat/BFMul

 // BFMul()
 // =======
 // BFloat16 widening multiply to single-precision following BFloat16
 // computation behaviors.

 bits(32) BFMul(bits(16) op1, bits(16) op2)

 bits(32) result;

 FPCRType fpcr = FPCR[];
 (type1,sign1,value1) = BFUnpack(op1);
 (type2,sign2,value2) = BFUnpack(op2);
 if type1 == FPType_QNaN || type2 == FPType_QNaN then
 result = FPDefaultNaN(fpcr);
 else
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8293
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 zero2 = (type2 == FPType_Zero);
 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPDefaultNaN(fpcr);
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2);
 elsif zero1 || zero2 then
 result = FPZero(sign1 EOR sign2);
 else
 result = BFRound(value1*value2);

 return result;

shared/functions/float/bfloat/BFMulAdd

 // BFMulAdd()
 // ==========
 // Used by BFMLALB and BFMLALT instructions.

 bits(N) BFMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, FPCRType fpcr)
 boolean altfp = HaveAltFP() && fpcr.AH == '1'; // When TRUE:
 boolean fpexc = !altfp; // Do not generate floating point exceptions
 if altfp then fpcr.<FIZ,FZ> = '11'; // Flush denormal input and output to zero
 if altfp then fpcr.RMode = '00'; // Use RNE rounding mode
 return FPMulAdd(addend, op1, op2, fpcr, fpexc);

shared/functions/float/bfloat/BFNeg

 // BFNeg()
 // =======

 bits(16) BFNeg(bits(16) op)
 return NOT(op<15>) : op<14:0>;

shared/functions/float/bfloat/BFRound

 // BFRound()
 // =========
 // Converts a real number OP into a single-precision value using the
 // Round to Odd rounding mode and following BFloat16 computation behaviors.

 bits(32) BFRound(real op)

 assert op != 0.0;
 bits(32) result;

 // Format parameters - minimum exponent, numbers of exponent and fraction bits.
 minimum_exp = -126; E = 8; F = 23;

 // Split value into sign, unrounded mantissa and exponent.
 if op < 0.0 then
 sign = '1'; mantissa = -op;
 else
 sign = '0'; mantissa = op;
 exponent = 0;
 while mantissa < 1.0 do
 mantissa = mantissa * 2.0; exponent = exponent - 1;
 while mantissa >= 2.0 do
 mantissa = mantissa / 2.0; exponent = exponent + 1;

 // Fixed Flush-to-zero.
 if exponent < minimum_exp then
 return FPZero(sign);

J1-8294 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 // Start creating the exponent value for the result. Start by biasing the actual exponent
 // so that the minimum exponent becomes 1, lower values 0 (indicating possible underflow).
 biased_exp = Max(exponent - minimum_exp + 1, 0);
 if biased_exp == 0 then mantissa = mantissa / 2.0^(minimum_exp - exponent);

 // Get the unrounded mantissa as an integer, and the "units in last place" rounding error.
 int_mant = RoundDown(mantissa * 2.0^F); // < 2.0^F if biased_exp == 0, >= 2.0^F if not
 error = mantissa * 2.0^F - Real(int_mant);

 // Round to Odd
 if error != 0.0 then
 int_mant<0> = '1';

 // Deal with overflow and generate result.
 if biased_exp >= 2^E - 1 then
 result = FPInfinity(sign); // Overflows generate appropriately-signed Infinity
 else
 result = sign : biased_exp<30-F:0> : int_mant<F-1:0>;

 return result;

shared/functions/float/bfloat/BFUnpack

 // BFUnpack()
 // ==========
 // Unpacks a BFloat16 or single-precision value into its type,
 // sign bit and real number that it represents.
 // The real number result has the correct sign for numbers and infinities,
 // is very large in magnitude for infinities, and is 0.0 for NaNs.
 // (These values are chosen to simplify the description of
 // comparisons and conversions.)

 (FPType, bit, real) BFUnpack(bits(N) fpval)

 assert N IN {16,32};

 if N == 16 then
 sign = fpval<15>;
 exp = fpval<14:7>;
 frac = fpval<6:0> : Zeros(16);
 else // N == 32
 sign = fpval<31>;
 exp = fpval<30:23>;
 frac = fpval<22:0>;

 if IsZero(exp) then
 fptype = FPType_Zero; value = 0.0; // Fixed Flush to Zero
 elsif IsOnes(exp) then
 if IsZero(frac) then
 fptype = FPType_Infinity; value = 2.0^1000000;
 else // no SNaN for BF16 arithmetic
 fptype = FPType_QNaN; value = 0.0;
 else
 fptype = FPType_Nonzero;
 value = 2.0^(UInt(exp)-127) * (1.0 + Real(UInt(frac)) * 2.0^-23);

 if sign == '1' then value = -value;

 return (fptype, sign, value);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8295
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/float/bfloat/FPConvertBF

 // FPConvertBF()
 // =============
 // Converts a single-precision OP to BFloat16 value with using rounding mode of
 // Round to Nearest Even when executed from AArch64 state and
 // FPCR.AH == '1', otherwise rounding is controlled by FPCR/FPSCR.

 bits(16) FPConvertBF(bits(32) op, FPCRType fpcr, FPRounding rounding)

 bits(32) result; // BF16 value in top 16 bits
 boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
 boolean fpexc = !altfp; // Generate no floating-point exceptions
 if altfp then fpcr.<FIZ,FZ> = '11'; // Flush denormal input and output to zero
 if altfp then rounding = FPRounding_TIEEVEN; // Use RNE rounding mode

 // Unpack floating-point operand, with always flush-to-zero if fpcr.AH == '1'.
 (fptype,sign,value) = FPUnpack(op, fpcr, fpexc);

 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 if fpcr.DN == '1' then
 result = FPDefaultNaN(fpcr);
 else
 result = FPConvertNaN(op);
 if fptype == FPType_SNaN then
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
 elsif fptype == FPType_Infinity then
 result = FPInfinity(sign);
 elsif fptype == FPType_Zero then
 result = FPZero(sign);
 else
 result = FPRoundCVBF(value, fpcr, rounding, fpexc);

 // Returns correctly rounded BF16 value from top 16 bits
 return result<31:16>;

 // FPConvertBF()
 // =============
 // Converts a single-precision operand to BFloat16 value.

 bits(16) FPConvertBF(bits(32) op, FPCRType fpcr)
 return FPConvertBF(op, fpcr, FPRoundingMode(fpcr));

shared/functions/float/bfloat/FPRoundCVBF

 // FPRoundCVBF()
 // =============
 // Converts a real number OP into a BFloat16 value using the supplied
 // rounding mode RMODE. The 'fpexc' argument controls the generation of
 // floating-point exceptions.

 bits(32) FPRoundCVBF(real op, FPCRType fpcr, FPRounding rounding, boolean fpexc)
 boolean isbfloat16 = TRUE;
 return FPRoundBase(op, fpcr, rounding, isbfloat16, fpexc);

shared/functions/float/fixedtofp/FixedToFP

 // FixedToFP()
 // ===========

 // Convert M-bit fixed point OP with FBITS fractional bits to
 // N-bit precision floating point, controlled by UNSIGNED and ROUNDING.

 bits(N) FixedToFP(bits(M) op, integer fbits, boolean unsigned, FPCRType fpcr, FPRounding rounding)
J1-8296 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode

 assert N IN {16,32,64};
 assert M IN {16,32,64};
 bits(N) result;
 assert fbits >= 0;
 assert rounding != FPRounding_ODD;

 // Correct signed-ness
 int_operand = Int(op, unsigned);

 // Scale by fractional bits and generate a real value
 real_operand = Real(int_operand) / 2.0^fbits;

 if real_operand == 0.0 then
 result = FPZero('0');
 else
 result = FPRound(real_operand, fpcr, rounding);

 return result;

shared/functions/float/fpabs/FPAbs

 // FPAbs()
 // =======

 bits(N) FPAbs(bits(N) op)

 assert N IN {16,32,64};
 if !UsingAArch32() && HaveAltFP() then
 FPCRType fpcr = FPCR[];
 if fpcr.AH == '1' then
 (fptype, -, -) = FPUnpack(op, fpcr, FALSE);
 if fptype IN {FPType_SNaN, FPType_QNaN} then
 return op; // When fpcr.AH=1, sign of NaN has no consequence

 return '0' : op<N-2:0>;

shared/functions/float/fpadd/FPAdd

 // FPAdd()
 // =======

 bits(N) FPAdd(bits(N) op1, bits(N) op2, FPCRType fpcr)
 boolean fpexc = TRUE; // Generate floating-point exceptions
 return FPAdd(op1, op2, fpcr, fpexc);

 // FPAdd()
 // =======

 bits(N) FPAdd(bits(N) op1, bits(N) op2, FPCRType fpcr, boolean fpexc)

 assert N IN {16,32,64};
 rounding = FPRoundingMode(fpcr);

 (type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
 (type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);

 boolean altfmaxfmin = FALSE; // Do not use altfp mode for FMIN, FMAX and variants
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr, altfmaxfmin, fpexc);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 if inf1 && inf2 && sign1 == NOT(sign2) then
 result = FPDefaultNaN(fpcr);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8297
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then
 result = FPInfinity('0');
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then
 result = FPInfinity('1');
 elsif zero1 && zero2 && sign1 == sign2 then
 result = FPZero(sign1);
 else
 result_value = value1 + value2;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr, rounding, fpexc);

 if fpexc then FPProcessDenorms(type1, type2, N, fpcr);

 return result;

shared/functions/float/fpcompare/FPCompare

 // FPCompare()
 // ===========

 bits(4) FPCompare(bits(N) op1, bits(N) op2, boolean signal_nans, FPCRType fpcr)

 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 if type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN} then
 result = '0011';
 if type1 == FPType_SNaN || type2 == FPType_SNaN || signal_nans then
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 if value1 == value2 then
 result = '0110';
 elsif value1 < value2 then
 result = '1000';
 else // value1 > value2
 result = '0010';

 FPProcessDenorms(type1, type2, N, fpcr);

 return result;

shared/functions/float/fpcompareeq/FPCompareEQ

 // FPCompareEQ()
 // =============

 boolean FPCompareEQ(bits(N) op1, bits(N) op2, FPCRType fpcr)

 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 if type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN} then
 result = FALSE;
 if type1 == FPType_SNaN || type2 == FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
J1-8298 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 result = (value1 == value2);

 FPProcessDenorms(type1, type2, N, fpcr);

 return result;

shared/functions/float/fpcomparege/FPCompareGE

 // FPCompareGE()
 // =============

 boolean FPCompareGE(bits(N) op1, bits(N) op2, FPCRType fpcr)

 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 if type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN} then
 result = FALSE;
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 >= value2);
 FPProcessDenorms(type1, type2, N, fpcr);

 return result;

shared/functions/float/fpcomparegt/FPCompareGT

 // FPCompareGT()
 // =============

 boolean FPCompareGT(bits(N) op1, bits(N) op2, FPCRType fpcr)

 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 if type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN} then
 result = FALSE;
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 > value2);

 FPProcessDenorms(type1, type2, N, fpcr);

 return result;

shared/functions/float/fpconvert/FPConvert

 // FPConvert()
 // ===========

 // Convert floating point OP with N-bit precision to M-bit precision,
 // with rounding controlled by ROUNDING.
 // This is used by the FP-to-FP conversion instructions and so for
 // half-precision data ignores FZ16, but observes AHP.

 bits(M) FPConvert(bits(N) op, FPCRType fpcr, FPRounding rounding)

 assert M IN {16,32,64};
 assert N IN {16,32,64};
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8299
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 bits(M) result;

 // Unpack floating-point operand optionally with flush-to-zero.
 (fptype,sign,value) = FPUnpackCV(op, fpcr);

 alt_hp = (M == 16) && (fpcr.AHP == '1');

 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 if alt_hp then
 result = FPZero(sign);
 elsif fpcr.DN == '1' then
 result = FPDefaultNaN(fpcr);
 else
 result = FPConvertNaN(op);
 if fptype == FPType_SNaN || alt_hp then
 FPProcessException(FPExc_InvalidOp,fpcr);
 elsif fptype == FPType_Infinity then
 if alt_hp then
 result = sign:Ones(M-1);
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 result = FPInfinity(sign);
 elsif fptype == FPType_Zero then
 result = FPZero(sign);
 else
 result = FPRoundCV(value, fpcr, rounding);

 FPProcessDenorm(fptype, N, fpcr);

 return result;

 // FPConvert()
 // ===========

 bits(M) FPConvert(bits(N) op, FPCRType fpcr)
 return FPConvert(op, fpcr, FPRoundingMode(fpcr));

shared/functions/float/fpconvertnan/FPConvertNaN

 // FPConvertNaN()
 // ==============
 // Converts a NaN of one floating-point type to another

 bits(M) FPConvertNaN(bits(N) op)

 assert N IN {16,32,64};
 assert M IN {16,32,64};
 bits(M) result;
 bits(51) frac;

 sign = op<N-1>;

 // Unpack payload from input NaN
 case N of
 when 64 frac = op<50:0>;
 when 32 frac = op<21:0>:Zeros(29);
 when 16 frac = op<8:0>:Zeros(42);

 // Repack payload into output NaN, while
 // converting an SNaN to a QNaN.
 case M of
 when 64 result = sign:Ones(M-52):frac;
 when 32 result = sign:Ones(M-23):frac<50:29>;
 when 16 result = sign:Ones(M-10):frac<50:42>;
J1-8300 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode

 return result;

shared/functions/float/fpcrtype/FPCRType

 type FPCRType;

shared/functions/float/fpdecoderm/FPDecodeRM

 // FPDecodeRM()
 // ============

 // Decode most common AArch32 floating-point rounding encoding.

 FPRounding FPDecodeRM(bits(2) rm)

 case rm of
 when '00' result = FPRounding_TIEAWAY; // A
 when '01' result = FPRounding_TIEEVEN; // N
 when '10' result = FPRounding_POSINF; // P
 when '11' result = FPRounding_NEGINF; // M

 return result;

shared/functions/float/fpdecoderounding/FPDecodeRounding

 // FPDecodeRounding()
 // ==================

 // Decode floating-point rounding mode and common AArch64 encoding.

 FPRounding FPDecodeRounding(bits(2) rmode)
 case rmode of
 when '00' return FPRounding_TIEEVEN; // N
 when '01' return FPRounding_POSINF; // P
 when '10' return FPRounding_NEGINF; // M
 when '11' return FPRounding_ZERO; // Z

shared/functions/float/fpdefaultnan/FPDefaultNaN

 // FPDefaultNaN()
 // ==============

 bits(N) FPDefaultNaN()
 FPCRType fpcr = FPCR[];
 return FPDefaultNaN(fpcr);

 bits(N) FPDefaultNaN(FPCRType fpcr)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 bit sign = if HaveAltFP() && !UsingAArch32() then fpcr.AH else '0';

 bits(E) exp = Ones(E);
 bits(F) frac = '1':Zeros(F-1);

 return sign : exp : frac;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8301
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/float/fpdiv/FPDiv

 // FPDiv()
 // =======

 bits(N) FPDiv(bits(N) op1, bits(N) op2, FPCRType fpcr)

 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);

 if !done then
 inf1 = type1 == FPType_Infinity;
 inf2 = type2 == FPType_Infinity;
 zero1 = type1 == FPType_Zero;
 zero2 = type2 == FPType_Zero;

 if (inf1 && inf2) || (zero1 && zero2) then
 result = FPDefaultNaN(fpcr);
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif inf1 || zero2 then
 result = FPInfinity(sign1 EOR sign2);
 if !inf1 then FPProcessException(FPExc_DivideByZero, fpcr);
 elsif zero1 || inf2 then
 result = FPZero(sign1 EOR sign2);
 else
 result = FPRound(value1/value2, fpcr);

 if !zero2 then
 FPProcessDenorms(type1, type2, N, fpcr);

 return result;

shared/functions/float/fpexc/FPExc

 enumeration FPExc {FPExc_InvalidOp, FPExc_DivideByZero, FPExc_Overflow,
 FPExc_Underflow, FPExc_Inexact, FPExc_InputDenorm};

shared/functions/float/fpinfinity/FPInfinity

 // FPInfinity()
 // ============

 bits(N) FPInfinity(bit sign)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 bits(E) exp = Ones(E);
 bits(F) frac = Zeros(F);

 return sign : exp : frac;

shared/functions/float/fpmatmul/FPMatMulAdd

 // FPMatMulAdd()
 // =============
 //
 // Floating point matrix multiply and add to same precision matrix
 // result[2, 2] = addend[2, 2] + (op1[2, 2] * op2[2, 2])

 bits(N) FPMatMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, integer esize, FPCRType fpcr)
J1-8302 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode

 assert N == esize * 2 * 2;
 bits(N) result;
 bits(esize) prod0, prod1, sum;

 for i = 0 to 1
 for j = 0 to 1
 sum = Elem[addend, 2*i + j, esize];
 prod0 = FPMul(Elem[op1, 2*i + 0, esize],
 Elem[op2, 2*j + 0, esize], fpcr);
 prod1 = FPMul(Elem[op1, 2*i + 1, esize],
 Elem[op2, 2*j + 1, esize], fpcr);
 sum = FPAdd(sum, FPAdd(prod0, prod1, fpcr), fpcr);
 Elem[result, 2*i + j, esize] = sum;

 return result;

shared/functions/float/fpmax/FPMax

 // FPMax()
 // =======

 bits(N) FPMax(bits(N) op1, bits(N) op2, FPCRType fpcr)
 boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
 return FPMax(op1, op2, fpcr, altfp);

 // FPMax()
 // =======
 // Compare two inputs and return the larger value after rounding. The
 // 'fpcr' argument supplies the FPCR control bits and 'altfp' determines
 // if the function should use alternative floating-point behaviour.

 bits(N) FPMax(bits(N) op1, bits(N) op2, FPCRType fpcr, boolean altfp)

 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 if (altfp && type1 == FPType_Zero && type2 == FPType_Zero &&
 ((sign1 == '0' && sign2 == '1') || (sign1 == '1' && sign2 == '0'))) then
 return FPZero(sign2);

 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr, altfp, TRUE);

 if !done then
 if value1 > value2 then
 (fptype,sign,value) = (type1,sign1,value1);
 else
 (fptype,sign,value) = (type2,sign2,value2);
 if fptype == FPType_Infinity then
 result = FPInfinity(sign);
 elsif fptype == FPType_Zero then
 sign = sign1 AND sign2; // Use most positive sign
 result = FPZero(sign);
 else
 // The use of FPRound() covers the case where there is a trapped underflow exception
 // for a denormalized number even though the result is exact.
 rounding = FPRoundingMode(fpcr);
 if altfp then // Denormal output is not flushed to zero
 fpcr.FZ = '0';
 fpcr.FZ16 = '0';

 result = FPRound(value, fpcr, rounding, TRUE);

 FPProcessDenorms(type1, type2, N, fpcr);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8303
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 return result;

shared/functions/float/fpmaxnormal/FPMaxNormal

 // FPMaxNormal()
 // =============

 bits(N) FPMaxNormal(bit sign)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = Ones(E-1):'0';
 frac = Ones(F);

 return sign : exp : frac;

shared/functions/float/fpmaxnum/FPMaxNum

 // FPMaxNum()
 // ==========

 bits(N) FPMaxNum(bits(N) op1, bits(N) op2, FPCRType fpcr)

 assert N IN {16,32,64};
 (type1,-,-) = FPUnpack(op1, fpcr);
 (type2,-,-) = FPUnpack(op2, fpcr);

 boolean type1_nan = type1 IN {FPType_QNaN, FPType_SNaN};
 boolean type2_nan = type2 IN {FPType_QNaN, FPType_SNaN};
 boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';

 if !(altfp && type1_nan && type2_nan) then
 // Treat a single quiet-NaN as -Infinity.
 if type1 == FPType_QNaN && type2 != FPType_QNaN then
 op1 = FPInfinity('1');
 elsif type1 != FPType_QNaN && type2 == FPType_QNaN then
 op2 = FPInfinity('1');

 altfmaxfmin = FALSE; // Restrict use of FMAX/FMIN NaN propagation rules
 result = FPMax(op1, op2, fpcr, altfmaxfmin);

 return result;

shared/functions/float/fpmerge/IsMerging

 // IsMerging()
 // ===========
 // Returns TRUE if the output elements other than the lowest are taken from
 // the destination register.

 boolean IsMerging(FPCRType fpcr)
 boolean merge = HaveAltFP() && !UsingAArch32() && fpcr.NEP == '1';
 return merge;

shared/functions/float/fpmin/FPMin

 // FPMin()
 // =======

J1-8304 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 bits(N) FPMin(bits(N) op1, bits(N) op2, FPCRType fpcr)
 boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
 return FPMin(op1, op2, fpcr, altfp);

 // FPMin()
 // =======
 // Compare two operands and return the smaller operand after rounding. The
 // 'fpcr' argument supplies the FPCR control bits and 'altfp' determines
 // if the function should use alternative behaviour.

 bits(N) FPMin(bits(N) op1, bits(N) op2, FPCRType fpcr, boolean altfp)

 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 if (altfp && type1 == FPType_Zero && type2 == FPType_Zero &&
 ((sign1 == '0' && sign2 == '1') || (sign1 == '1' && sign2 == '0'))) then
 return FPZero(sign2);

 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr, altfp, TRUE);

 if !done then
 if value1 < value2 then
 (fptype,sign,value) = (type1,sign1,value1);
 else
 (fptype,sign,value) = (type2,sign2,value2);
 if fptype == FPType_Infinity then
 result = FPInfinity(sign);
 elsif fptype == FPType_Zero then
 sign = sign1 OR sign2; // Use most negative sign
 result = FPZero(sign);
 else
 // The use of FPRound() covers the case where there is a trapped underflow exception
 // for a denormalized number even though the result is exact.
 rounding = FPRoundingMode(fpcr);
 if altfp then // Denormal output is not flushed to zero
 fpcr.FZ = '0';
 fpcr.FZ16 = '0';

 result = FPRound(value, fpcr, rounding, TRUE);

 FPProcessDenorms(type1, type2, N, fpcr);

 return result;

shared/functions/float/fpminnum/FPMinNum

 // FPMinNum()
 // ==========

 bits(N) FPMinNum(bits(N) op1, bits(N) op2, FPCRType fpcr)

 assert N IN {16,32,64};
 (type1,-,-) = FPUnpack(op1, fpcr);
 (type2,-,-) = FPUnpack(op2, fpcr);

 boolean type1_nan = type1 IN {FPType_QNaN, FPType_SNaN};
 boolean type2_nan = type2 IN {FPType_QNaN, FPType_SNaN};
 boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';

 if !(altfp && type1_nan && type2_nan) then
 // Treat a single quiet-NaN as +Infinity.
 if type1 == FPType_QNaN && type2 != FPType_QNaN then
 op1 = FPInfinity('0');
 elsif type1 != FPType_QNaN && type2 == FPType_QNaN then
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8305
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 op2 = FPInfinity('0');

 altfmaxfmin = FALSE; // Restrict use of FMAX/FMIN NaN propagation rules
 result = FPMin(op1, op2, fpcr, altfmaxfmin);

 return result;

shared/functions/float/fpmul/FPMul

 // FPMul()
 // =======

 bits(N) FPMul(bits(N) op1, bits(N) op2, FPCRType fpcr)

 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);

 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPDefaultNaN(fpcr);
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2);
 elsif zero1 || zero2 then
 result = FPZero(sign1 EOR sign2);
 else
 result = FPRound(value1*value2, fpcr);

 FPProcessDenorms(type1, type2, N, fpcr);

 return result;

shared/functions/float/fpmuladd/FPMulAdd

 // FPMulAdd()
 // ==========

 bits(N) FPMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, FPCRType fpcr)
 boolean fpexc = TRUE; // Generate floating-point exceptions
 return FPMulAdd(addend, op1, op2, fpcr, fpexc);

 // FPMulAdd()
 // ==========
 //
 // Calculates addend + op1*op2 with a single rounding. The 'fpcr' argument
 // supplies the FPCR control bits, and 'fpexc' controls the generation of
 // floating-point exceptions.

 bits(N) FPMulAdd(bits(N) addend, bits(N) op1, bits(N) op2,
 FPCRType fpcr, boolean fpexc)

 assert N IN {16,32,64};

 (typeA,signA,valueA) = FPUnpack(addend, fpcr, fpexc);
 (type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
 (type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);
 rounding = FPRoundingMode(fpcr);
 inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
J1-8306 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);

 (done,result) = FPProcessNaNs3(typeA, type1, type2, addend, op1, op2, fpcr, fpexc);

 if !(HaveAltFP() && !UsingAArch32() && fpcr.AH == '1') then
 if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then
 result = FPDefaultNaN(fpcr);
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

 if !done then
 infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

 // Determine sign and type product will have if it does not cause an
 // Invalid Operation.
 signP = sign1 EOR sign2;
 infP = inf1 || inf2;
 zeroP = zero1 || zero2;

 // Non SNaN-generated Invalid Operation cases are multiplies of zero
 // by infinity and additions of opposite-signed infinities.
 invalidop = (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP);

 if invalidop then
 result = FPDefaultNaN(fpcr);
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
 // Other cases involving infinities produce an infinity of the same sign.
 elsif (infA && signA == '0') || (infP && signP == '0') then
 result = FPInfinity('0');
 elsif (infA && signA == '1') || (infP && signP == '1') then
 result = FPInfinity('1');

 // Cases where the result is exactly zero and its sign is not determined by the
 // rounding mode are additions of same-signed zeros.
 elsif zeroA && zeroP && signA == signP then
 result = FPZero(signA);

 // Otherwise calculate numerical result and round it.
 else
 result_value = valueA + (value1 * value2);
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr, rounding, fpexc);

 if !invalidop && fpexc then
 FPProcessDenorms3(typeA, type1, type2, N, fpcr);

 return result;

shared/functions/float/fpmuladdh/FPMulAddH

 // FPMulAddH()
 // ===========
 // Calculates addend + op1*op2.

 bits(N) FPMulAddH(bits(N) addend, bits(N DIV 2) op1, bits(N DIV 2) op2, FPCRType fpcr)
 boolean fpexc = TRUE; // Generate floating-point exceptions
 return FPMulAddH(addend, op1, op2, fpcr, fpexc);

 // FPMulAddH()
 // ===========
 // Calculates addend + op1*op2.

 bits(N) FPMulAddH(bits(N) addend, bits(N DIV 2) op1, bits(N DIV 2) op2,
 FPCRType fpcr, boolean fpexc)
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8307
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 assert N == 32;
 rounding = FPRoundingMode(fpcr);
 (typeA,signA,valueA) = FPUnpack(addend, fpcr, fpexc);
 (type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
 (type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);
 inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
 inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);

 (done,result) = FPProcessNaNs3H(typeA, type1, type2, addend, op1, op2, fpcr, fpexc);

 if !(HaveAltFP() && !UsingAArch32() && fpcr.AH == '1') then
 if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then
 result = FPDefaultNaN(fpcr);
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

 if !done then
 infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

 // Determine sign and type product will have if it does not cause an
 // Invalid Operation.
 signP = sign1 EOR sign2;
 infP = inf1 || inf2;
 zeroP = zero1 || zero2;

 // Non SNaN-generated Invalid Operation cases are multiplies of zero by infinity and
 // additions of opposite-signed infinities.
 invalidop = (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP);

 if invalidop then
 result = FPDefaultNaN(fpcr);
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

 // Other cases involving infinities produce an infinity of the same sign.
 elsif (infA && signA == '0') || (infP && signP == '0') then
 result = FPInfinity('0');
 elsif (infA && signA == '1') || (infP && signP == '1') then
 result = FPInfinity('1');

 // Cases where the result is exactly zero and its sign is not determined by the
 // rounding mode are additions of same-signed zeros.
 elsif zeroA && zeroP && signA == signP then
 result = FPZero(signA);

 // Otherwise calculate numerical result and round it.
 else
 result_value = valueA + (value1 * value2);
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr, rounding, fpexc);

 if !invalidop && fpexc then
 FPProcessDenorm(typeA, N, fpcr);

 return result;

shared/functions/float/fpmuladdh/FPProcessNaNs3H

 // FPProcessNaNs3H()
 // =================

 (boolean, bits(N)) FPProcessNaNs3H(FPType type1, FPType type2, FPType type3,
 bits(N) op1, bits(N DIV 2) op2, bits(N DIV 2) op3,
 FPCRType fpcr, boolean fpexc)
J1-8308 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode

 assert N IN {32,64};

 bits(N) result;
 // When TRUE, use alternative NaN propagation rules.
 boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
 boolean op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
 boolean op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};
 boolean op3_nan = type3 IN {FPType_SNaN, FPType_QNaN};
 if altfp then
 if (type1 == FPType_SNaN || type2 == FPType_SNaN || type3 == FPType_SNaN) then
 type_nan = FPType_SNaN;
 else
 type_nan = FPType_QNaN;

 if altfp && op1_nan && op2_nan && op3_nan then // <n> register NaN selected
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type_nan, op2, fpcr, fpexc));
 elsif altfp && op2_nan && (op1_nan || op3_nan) then // <n> register NaN selected
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type_nan, op2, fpcr, fpexc));
 elsif altfp && op3_nan && op1_nan then // <m> register NaN selected
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type_nan, op3, fpcr, fpexc));
 elsif type1 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);
 elsif type2 == FPType_SNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr, fpexc));
 elsif type3 == FPType_SNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr, fpexc));
 elsif type1 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);
 elsif type2 == FPType_QNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr, fpexc));
 elsif type3 == FPType_QNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr, fpexc));
 else
 done = FALSE; result = Zeros(); // 'Don't care' result
 return (done, result);

shared/functions/float/fpmulx/FPMulX

 // FPMulX()
 // ========

 bits(N) FPMulX(bits(N) op1, bits(N) op2, FPCRType fpcr)

 assert N IN {16,32,64};
 bits(N) result;
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);

 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPTwo(sign1 EOR sign2);
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2);
 elsif zero1 || zero2 then
 result = FPZero(sign1 EOR sign2);
 else
 result = FPRound(value1*value2, fpcr);

 FPProcessDenorms(type1, type2, N, fpcr);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8309
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 return result;

shared/functions/float/fpneg/FPNeg

 // FPNeg()
 // =======

 bits(N) FPNeg(bits(N) op)

 assert N IN {16,32,64};
 if !UsingAArch32() && HaveAltFP() then
 FPCRType fpcr = FPCR[];
 if fpcr.AH == '1' then
 (fptype, -, -) = FPUnpack(op, fpcr, FALSE);
 if fptype IN {FPType_SNaN, FPType_QNaN} then

 return op; // When fpcr.AH=1, sign of NaN has no consequence

 return NOT(op<N-1>) : op<N-2:0>;

shared/functions/float/fponepointfive/FPOnePointFive

 // FPOnePointFive()
 // ================

 bits(N) FPOnePointFive(bit sign)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = '0':Ones(E-1);
 frac = '1':Zeros(F-1);
 result = sign : exp : frac;

 return result;

shared/functions/float/fpprocessdenorms/FPProcessDenorm

 // FPProcessDenorm()
 // =================
 // Handles denormal input in case of single-precision or double-precision
 // when using alternative floating-point mode.

 FPProcessDenorm(FPType fptype, integer N, FPCRType fpcr)
 boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
 if altfp && N != 16 && fptype == FPType_Denormal then
 FPProcessException(FPExc_InputDenorm, fpcr);

shared/functions/float/fpprocessdenorms/FPProcessDenorms

 // FPProcessDenorms()
 // ==================
 // Handles denormal input in case of single-precision or double-precision
 // when using alternative floating-point mode.

 FPProcessDenorms(FPType type1, FPType type2, integer N, FPCRType fpcr)
 boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
 if altfp && N != 16 && (type1 == FPType_Denormal || type2 == FPType_Denormal) then
 FPProcessException(FPExc_InputDenorm, fpcr);
J1-8310 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/float/fpprocessdenorms/FPProcessDenorms3

 // FPProcessDenorms3()
 // ===================
 // Handles denormal input in case of single-precision or double-precision
 // when using alternative floating-point mode.

 FPProcessDenorms3(FPType type1, FPType type2, FPType type3, integer N, FPCRType fpcr)
 boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
 if altfp && N != 16 && (type1 == FPType_Denormal || type2 == FPType_Denormal ||
 type3 == FPType_Denormal) then
 FPProcessException(FPExc_InputDenorm, fpcr);

shared/functions/float/fpprocessdenorms/FPProcessDenorms4

 // FPProcessDenorms4()
 // ===================
 // Handles denormal input in case of single-precision or double-precision
 // when using alternative floating-point mode.

 FPProcessDenorms4(FPType type1, FPType type2, FPType type3, FPType type4, integer N, FPCRType fpcr)
 boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
 if altfp && N != 16 && (type1 == FPType_Denormal || type2 == FPType_Denormal ||
 type3 == FPType_Denormal || type4 == FPType_Denormal) then
 FPProcessException(FPExc_InputDenorm, fpcr);

shared/functions/float/fpprocessexception/FPProcessException

 // FPProcessException()
 // ====================
 //
 // The 'fpcr' argument supplies FPCR control bits. Status information is
 // updated directly in the FPSR where appropriate.

 FPProcessException(FPExc exception, FPCRType fpcr)

 // Determine the cumulative exception bit number
 case exception of
 when FPExc_InvalidOp cumul = 0;
 when FPExc_DivideByZero cumul = 1;
 when FPExc_Overflow cumul = 2;
 when FPExc_Underflow cumul = 3;
 when FPExc_Inexact cumul = 4;
 when FPExc_InputDenorm cumul = 7;
 enable = cumul + 8;
 if fpcr<enable> == '1' then
 // Trapping of the exception enabled.
 // It is IMPLEMENTATION DEFINED whether the enable bit may be set at all, and
 // if so then how exceptions may be accumulated before calling FPTrappedException()
 IMPLEMENTATION_DEFINED "floating-point trap handling";
 elsif UsingAArch32() then
 // Set the cumulative exception bit
 FPSCR<cumul> = '1';
 else
 // Set the cumulative exception bit
 FPSR<cumul> = '1';

 return;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8311
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/float/fpprocessnan/FPProcessNaN

 // FPProcessNaN()
 // ==============

 bits(N) FPProcessNaN(FPType fptype, bits(N) op, FPCRType fpcr)
 boolean fpexc = TRUE; // Generate floating-point exceptions
 return FPProcessNaN(fptype, op, fpcr, fpexc);

 // FPProcessNaN()
 // ==============
 // Handle NaN input operands, returning the operand or default NaN value
 // if fpcr.DN is selected. The 'fpcr' argument supplies the FPCR control bits.
 // The 'fpexc' argument controls the generation of exceptions, regardless of
 // whether 'fptype' is a signalling NaN or a quiet NaN.

 bits(N) FPProcessNaN(FPType fptype, bits(N) op, FPCRType fpcr, boolean fpexc)

 assert N IN {16,32,64};
 assert fptype IN {FPType_QNaN, FPType_SNaN};

 case N of
 when 16 topfrac = 9;
 when 32 topfrac = 22;
 when 64 topfrac = 51;

 result = op;
 if fptype == FPType_SNaN then
 result<topfrac> = '1';
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
 if fpcr.DN == '1' then // DefaultNaN requested
 result = FPDefaultNaN(fpcr);

 return result;

shared/functions/float/fpprocessnans/FPProcessNaNs

 // FPProcessNaNs()
 // ===============

 (boolean, bits(N)) FPProcessNaNs(FPType type1, FPType type2, bits(N) op1,
 bits(N) op2, FPCRType fpcr)
 boolean altfmaxfmin = FALSE; // Do not use alfp mode for FMIN, FMAX and variants
 boolean fpexc = TRUE; // Generate floating-point exceptions
 return FPProcessNaNs(type1, type2, op1, op2, fpcr, altfmaxfmin, fpexc);

 // FPProcessNaNs()
 // ===============
 //
 // The boolean part of the return value says whether a NaN has been found and
 // processed. The bits(N) part is only relevant if it has and supplies the
 // result of the operation.
 //
 // The 'fpcr' argument supplies FPCR control bits and 'altfmaxfmin' controls
 // alternative floating-point behaviour for FMAX, FMIN and variants. 'fpexc'
 // controls the generation of floating-point exceptions. Status information
 // is updated directly in the FPSR where appropriate.

 (boolean, bits(N)) FPProcessNaNs(FPType type1, FPType type2, bits(N) op1, bits(N) op2,
 FPCRType fpcr, boolean altfmaxfmin, boolean fpexc)

 assert N IN {16,32,64};
 boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
 boolean op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
 boolean op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};
 boolean any_snan = type1 == FPType_SNaN || type2 == FPType_SNaN;
J1-8312 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 FPType type_nan = if any_snan then FPType_SNaN else FPType_QNaN;

 if altfmaxfmin && (op1_nan || op2_nan) then
 FPProcessException(FPExc_InvalidOp, fpcr);
 done = TRUE; sign2 = op2<N-1>;
 result = if type2 == FPType_Zero then FPZero(sign2) else op2;
 elsif altfp && op1_nan && op2_nan then
 done = TRUE; result = FPProcessNaN(type_nan, op1, fpcr, fpexc); // <n> register NaN selected
 elsif type1 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);
 elsif type2 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpcr, fpexc);
 elsif type1 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);
 elsif type2 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpcr, fpexc);
 else
 done = FALSE; result = Zeros(); // 'Don't care' result

 return (done, result);

shared/functions/float/fpprocessnans3/FPProcessNaNs3

 // FPProcessNaNs3()
 // ================

 (boolean, bits(N)) FPProcessNaNs3(FPType type1, FPType type2, FPType type3,
 bits(N) op1, bits(N) op2, bits(N) op3,
 FPCRType fpcr)
 boolean fpexc = TRUE; // Generate floating-point exceptions
 return FPProcessNaNs3(type1, type2, type3, op1, op2, op3, fpcr, fpexc);

 // FPProcessNaNs3()
 // ================
 // The boolean part of the return value says whether a NaN has been found and
 // processed. The bits(N) part is only relevant if it has and supplies the
 // result of the operation.
 //
 // The 'fpcr' argument supplies FPCR control bits and 'fpexc' controls the
 // generation of floating-point exceptions. Status information is updated
 // directly in the FPSR where appropriate.

 (boolean, bits(N)) FPProcessNaNs3(FPType type1, FPType type2, FPType type3,
 bits(N) op1, bits(N) op2, bits(N) op3,
 FPCRType fpcr, boolean fpexc)

 assert N IN {16,32,64};
 boolean op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
 boolean op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};
 boolean op3_nan = type3 IN {FPType_SNaN, FPType_QNaN};

 boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
 if altfp then
 if type1 == FPType_SNaN || type2 == FPType_SNaN || type3 == FPType_SNaN then
 type_nan = FPType_SNaN;
 else
 type_nan = FPType_QNaN;

 if altfp && op1_nan && op2_nan && op3_nan then
 done = TRUE; result = FPProcessNaN(type_nan, op2, fpcr, fpexc); // <n> register NaN selected
 elsif altfp && op2_nan && (op1_nan || op3_nan) then
 done = TRUE; result = FPProcessNaN(type_nan, op2, fpcr, fpexc); // <n> register NaN selected
 elsif altfp && op3_nan && op1_nan then
 done = TRUE; result = FPProcessNaN(type_nan, op3, fpcr, fpexc); // <m> register NaN selected
 elsif type1 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8313
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 elsif type2 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpcr, fpexc);
 elsif type3 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type3, op3, fpcr, fpexc);
 elsif type1 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);
 elsif type2 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpcr, fpexc);
 elsif type3 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type3, op3, fpcr, fpexc);
 else
 done = FALSE; result = Zeros(); // 'Don't care' result

 return (done, result);

shared/functions/float/fprecipestimate/FPRecipEstimate

 // FPRecipEstimate()
 // =================

 bits(N) FPRecipEstimate(bits(N) operand, FPCRType fpcr)

 assert N IN {16,32,64};

 // When using alternative floating-point behaviour, do not generate
 // floating-point exceptions, flush denormal input and output to zero,
 // and use RNE rounding mode.
 boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
 boolean fpexc = !altfp;
 if altfp then fpcr.<FIZ,FZ> = '11';
 if altfp then fpcr.RMode = '00';

 (fptype,sign,value) = FPUnpack(operand, fpcr, fpexc);

 FPRounding rounding = FPRoundingMode(fpcr);
 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 result = FPProcessNaN(fptype, operand, fpcr, fpexc);
 elsif fptype == FPType_Infinity then
 result = FPZero(sign);
 elsif fptype == FPType_Zero then
 result = FPInfinity(sign);
 if fpexc then FPProcessException(FPExc_DivideByZero, fpcr);
 elsif (
 (N == 16 && Abs(value) < 2.0^-16) ||
 (N == 32 && Abs(value) < 2.0^-128) ||
 (N == 64 && Abs(value) < 2.0^-1024)
) then
 case rounding of
 when FPRounding_TIEEVEN
 overflow_to_inf = TRUE;
 when FPRounding_POSINF
 overflow_to_inf = (sign == '0');
 when FPRounding_NEGINF
 overflow_to_inf = (sign == '1');
 when FPRounding_ZERO
 overflow_to_inf = FALSE;
 result = if overflow_to_inf then FPInfinity(sign) else FPMaxNormal(sign);
 if fpexc then
 FPProcessException(FPExc_Overflow, fpcr);
 FPProcessException(FPExc_Inexact, fpcr);
 elsif ((fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16))
 && (
 (N == 16 && Abs(value) >= 2.0^14) ||
 (N == 32 && Abs(value) >= 2.0^126) ||
 (N == 64 && Abs(value) >= 2.0^1022)
) then
J1-8314 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 // Result flushed to zero of correct sign
 result = FPZero(sign);

 // Flush-to-zero never generates a trapped exception.
 if UsingAArch32() then
 FPSCR.UFC = '1';
 else
 if fpexc then FPSR.UFC = '1';
 else
 // Scale to a fixed point value in the range 0.5 <= x < 1.0 in steps of 1/512, and
 // calculate result exponent. Scaled value has copied sign bit,
 // exponent = 1022 = double-precision biased version of -1,
 // fraction = original fraction
 case N of
 when 16
 fraction = operand<9:0> : Zeros(42);
 exp = UInt(operand<14:10>);
 when 32
 fraction = operand<22:0> : Zeros(29);
 exp = UInt(operand<30:23>);
 when 64
 fraction = operand<51:0>;
 exp = UInt(operand<62:52>);

 if exp == 0 then
 if fraction<51> == '0' then
 exp = -1;
 fraction = fraction<49:0>:'00';
 else
 fraction = fraction<50:0>:'0';

 integer scaled;
 boolean increasedprecision = N==32 && HaveFeatRPRES() && altfp;

 if !increasedprecision then
 scaled = UInt('1':fraction<51:44>);
 else
 scaled = UInt('1':fraction<51:41>);

 case N of
 when 16 result_exp = 29 - exp; // In range 29-30 = -1 to 29+1 = 30
 when 32 result_exp = 253 - exp; // In range 253-254 = -1 to 253+1 = 254
 when 64 result_exp = 2045 - exp; // In range 2045-2046 = -1 to 2045+1 = 2046

 // Scaled is in range 256 .. 511 or 2048 .. 4095 range representing a
 // fixed-point number in range [0.5 .. 1.0].
 estimate = RecipEstimate(scaled, increasedprecision);

 // Estimate is in the range 256 .. 511 or 4096 .. 8191 representing a
 // fixed-point result in the range [1.0 .. 2.0].
 // Convert to scaled floating point result with copied sign bit,
 // high-order bits from estimate, and exponent calculated above.
 if !increasedprecision then
 fraction = estimate<7:0> : Zeros(44);
 else
 fraction = estimate<11:0> : Zeros(40);

 if result_exp == 0 then
 fraction = '1' : fraction<51:1>;
 elsif result_exp == -1 then
 fraction = '01' : fraction<51:2>;
 result_exp = 0;

 case N of
 when 16 result = sign : result_exp<N-12:0> : fraction<51:42>;
 when 32 result = sign : result_exp<N-25:0> : fraction<51:29>;
 when 64 result = sign : result_exp<N-54:0> : fraction<51:0>;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8315
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 return result;

shared/functions/float/fprecipestimate/RecipEstimate

 // RecipEstimate()
 // ===============
 // Compute estimate of reciprocal of 9-bit fixed-point number.
 //
 // a is in range 256 .. 511 or 2048 .. 4096 representing a number in
 // the range 0.5 <= x < 1.0.
 // increasedprecision determines if the mantissa is 8-bit or 12-bit.
 // result is in the range 256 .. 511 or 4096 .. 8191 representing a
 // number in the range 1.0 to 511/256 or 1.00 to 8191/4096.

 integer RecipEstimate(integer a, boolean increasedprecision)

 integer r;
 if !increasedprecision then
 assert 256 <= a && a < 512;
 a = a*2+1; // Round to nearest
 integer b = (2 ^ 19) DIV a;
 r = (b+1) DIV 2; // Round to nearest
 assert 256 <= r && r < 512;
 else
 assert 2048 <= a && a < 4096;
 a = a*2+1; // Round to nearest
 real real_val = Real(2^25)/Real(a);
 r = RoundDown(real_val);
 real error = real_val - Real(r);
 boolean round_up = error > 0.5; // Error cannot be exactly 0.5 so do not need tie case
 if round_up then r = r+1;
 assert 4096 <= r && r < 8192;

 return r;

shared/functions/float/fprecpx/FPRecpX

 // FPRecpX()
 // =========

 bits(N) FPRecpX(bits(N) op, FPCRType fpcr)

 assert N IN {16,32,64};

 case N of
 when 16 esize = 5;
 when 32 esize = 8;
 when 64 esize = 11;

 bits(N) result;
 bits(esize) exp;
 bits(esize) max_exp;
 bits(N-(esize+1)) frac = Zeros();

 boolean altfp = HaveAltFP() && fpcr.AH == '1';
 boolean fpexc = !altfp; // Generate no floating-point exceptions
 if altfp then fpcr.<FIZ,FZ> = '11'; // Flush denormal input and output to zero
 (fptype,sign,value) = FPUnpack(op, fpcr, fpexc);

 case N of
 when 16 exp = op<10+esize-1:10>;
 when 32 exp = op<23+esize-1:23>;
 when 64 exp = op<52+esize-1:52>;
J1-8316 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode

 max_exp = Ones(esize) - 1;

 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 result = FPProcessNaN(fptype, op, fpcr, fpexc);
 else
 if IsZero(exp) then // Zero and denormals
 result = sign:max_exp:frac;
 else // Infinities and normals
 result = sign:NOT(exp):frac;

 return result;

shared/functions/float/fpround/FPRound

 // FPRound()
 // =========
 // Used by data processing and int/fixed <-> FP conversion instructions.
 // For half-precision data it ignores AHP, and observes FZ16.

 bits(N) FPRound(real op, FPCRType fpcr, FPRounding rounding)
 fpcr.AHP = '0';
 boolean fpexc = TRUE; // Generate floating-point exceptions
 boolean isbfloat16 = FALSE;
 return FPRoundBase(op, fpcr, rounding, isbfloat16, fpexc);

 // FPRound()
 // =========
 // Used by data processing and int/fixed <-> FP conversion instructions.
 // For half-precision data it ignores AHP, and observes FZ16.
 //
 // The 'fpcr' argument supplies FPCR control bits and 'fpexc' controls the
 // generation of floating-point exceptions. Status information is updated
 // directly in the FPSR where appropriate.

 bits(N) FPRound(real op, FPCRType fpcr, FPRounding rounding, boolean fpexc)
 fpcr.AHP = '0';
 boolean isbfloat16 = FALSE;
 return FPRoundBase(op, fpcr, rounding, isbfloat16, fpexc);

 // FPRound()
 // =========

 bits(N) FPRound(real op, FPCRType fpcr)
 return FPRound(op, fpcr, FPRoundingMode(fpcr));

shared/functions/float/fpround/FPRoundBase

 // FPRoundBase()
 // =============

 bits(N) FPRoundBase(real op, FPCRType fpcr, FPRounding rounding, boolean isbfloat16)
 boolean fpexc = TRUE; // Generate floating-point exceptions
 return FPRoundBase(op, fpcr, rounding, isbfloat16, fpexc);

 // FPRoundBase()
 // =============
 // Convert a real number OP into an N-bit floating-point value using the
 // supplied rounding mode RMODE.
 //
 // The 'fpcr' argument supplies FPCR control bits and 'fpexc' controls the
 // generation of floating-point exceptions. Status information is updated
 // directly in the FPSR where appropriate.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8317
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 bits(N) FPRoundBase(real op, FPCRType fpcr, FPRounding rounding,
 boolean isbfloat16, boolean fpexc)

 assert N IN {16,32,64};
 assert op != 0.0;
 assert rounding != FPRounding_TIEAWAY;
 bits(N) result;

 // Obtain format parameters - minimum exponent, numbers of exponent and fraction bits.
 if N == 16 then
 minimum_exp = -14; E = 5; F = 10;
 elsif N == 32 && isbfloat16 then
 minimum_exp = -126; E = 8; F = 7;
 elsif N == 32 then
 minimum_exp = -126; E = 8; F = 23;
 else // N == 64
 minimum_exp = -1022; E = 11; F = 52;

 // Split value into sign, unrounded mantissa and exponent.
 if op < 0.0 then
 sign = '1'; mantissa = -op;
 else
 sign = '0'; mantissa = op;
 exponent = 0;
 while mantissa < 1.0 do
 mantissa = mantissa * 2.0; exponent = exponent - 1;
 while mantissa >= 2.0 do
 mantissa = mantissa / 2.0; exponent = exponent + 1;

 // When TRUE, detection of underflow occurs after rounding and the test for a
 // denormalized number for single and double precision values occurs after rounding.
 altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';

 // Deal with flush-to-zero before rounding if FPCR.AH != '1'.
 if (!altfp && ((fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16)) &&
 exponent < minimum_exp) then
 // Flush-to-zero never generates a trapped exception.
 if UsingAArch32() then
 FPSCR.UFC = '1';
 else
 if fpexc then FPSR.UFC = '1';
 return FPZero(sign);

 biased_exp_unconstrained = exponent - minimum_exp + 1;
 int_mant_unconstrained = RoundDown(mantissa * 2.0^F);
 error_unconstrained = mantissa * 2.0^F - Real(int_mant_unconstrained);

 // Start creating the exponent value for the result. Start by biasing the actual exponent
 // so that the minimum exponent becomes 1, lower values 0 (indicating possible underflow).
 biased_exp = Max(exponent - minimum_exp + 1, 0);
 if biased_exp == 0 then mantissa = mantissa / 2.0^(minimum_exp - exponent);

 // Get the unrounded mantissa as an integer, and the "units in last place" rounding error.
 int_mant = RoundDown(mantissa * 2.0^F); // < 2.0^F if biased_exp == 0, >= 2.0^F if not
 error = mantissa * 2.0^F - Real(int_mant);

 // Underflow occurs if exponent is too small before rounding, and result is inexact or
 // the Underflow exception is trapped. This applies before rounding if FPCR.AH != '1'.
 if !altfp && biased_exp == 0 && (error != 0.0 || fpcr.UFE == '1') then
 if fpexc then FPProcessException(FPExc_Underflow, fpcr);

 // Round result according to rounding mode.
 if altfp then
 case rounding of
 when FPRounding_TIEEVEN
 round_up_unconstrained = (error_unconstrained > 0.5 ||
 (error_unconstrained == 0.5 && int_mant_unconstrained<0> == '1'));
 round_up = (error > 0.5 || (error == 0.5 && int_mant<0> == '1'));
J1-8318 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 overflow_to_inf = TRUE;
 when FPRounding_POSINF
 round_up_unconstrained = (error_unconstrained != 0.0 && sign == '0');
 round_up = (error != 0.0 && sign == '0');
 overflow_to_inf = (sign == '0');
 when FPRounding_NEGINF
 round_up_unconstrained = (error_unconstrained != 0.0 && sign == '1');
 round_up = (error != 0.0 && sign == '1');
 overflow_to_inf = (sign == '1');
 when FPRounding_ZERO, FPRounding_ODD
 round_up_unconstrained = FALSE;
 round_up = FALSE;
 overflow_to_inf = FALSE;

 if round_up_unconstrained then
 int_mant_unconstrained = int_mant_unconstrained + 1;
 if int_mant_unconstrained == 2^(F+1) then // Rounded up to next exponent
 biased_exp_unconstrained = biased_exp_unconstrained + 1;
 int_mant_unconstrained = int_mant_unconstrained DIV 2;

 // Deal with flush-to-zero and underflow after rounding if FPCR.AH == '1'.
 if biased_exp_unconstrained < 1 && int_mant_unconstrained != 0 then
 // the result of unconstrained rounding is less than the minimum normalized number
 if (fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16) then // Flush-to-zero
 if fpexc then
 FPSR.UFC = '1';
 FPProcessException(FPExc_Inexact, fpcr);
 return FPZero(sign);
 elsif error != 0.0 || fpcr.UFE == '1' then
 if fpexc then FPProcessException(FPExc_Underflow, fpcr);
 else // altfp == FALSE
 case rounding of
 when FPRounding_TIEEVEN
 round_up = (error > 0.5 || (error == 0.5 && int_mant<0> == '1'));
 overflow_to_inf = TRUE;
 when FPRounding_POSINF
 round_up = (error != 0.0 && sign == '0');
 overflow_to_inf = (sign == '0');
 when FPRounding_NEGINF
 round_up = (error != 0.0 && sign == '1');
 overflow_to_inf = (sign == '1');
 when FPRounding_ZERO, FPRounding_ODD
 round_up = FALSE;
 overflow_to_inf = FALSE;

 if round_up then
 int_mant = int_mant + 1;
 if int_mant == 2^F then // Rounded up from denormalized to normalized
 biased_exp = 1;
 if int_mant == 2^(F+1) then // Rounded up to next exponent
 biased_exp = biased_exp + 1;
 int_mant = int_mant DIV 2;

 // Handle rounding to odd
 if error != 0.0 && rounding == FPRounding_ODD then
 int_mant<0> = '1';

 // Deal with overflow and generate result.
 if N != 16 || fpcr.AHP == '0' then // Single, double or IEEE half precision
 if biased_exp >= 2^E - 1 then
 result = if overflow_to_inf then FPInfinity(sign) else FPMaxNormal(sign);
 if fpexc then FPProcessException(FPExc_Overflow, fpcr);
 error = 1.0; // Ensure that an Inexact exception occurs
 else
 result = sign : biased_exp<E-1:0> : int_mant<F-1:0> : Zeros(N-(E+F+1));
 else // Alternative half precision
 if biased_exp >= 2^E then
 result = sign : Ones(N-1);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8319
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
 error = 0.0; // Ensure that an Inexact exception does not occur
 else
 result = sign : biased_exp<E-1:0> : int_mant<F-1:0> : Zeros(N-(E+F+1));

 // Deal with Inexact exception.
 if error != 0.0 then
 if fpexc then FPProcessException(FPExc_Inexact, fpcr);

 return result;

shared/functions/float/fpround/FPRoundCV

 // FPRoundCV()
 // ===========
 // Used for FP <-> FP conversion instructions.
 // For half-precision data ignores FZ16 and observes AHP.

 bits(N) FPRoundCV(real op, FPCRType fpcr, FPRounding rounding)
 fpcr.FZ16 = '0';
 boolean fpexc = TRUE; // Generate floating-point exceptions
 boolean isbfloat16 = FALSE;
 return FPRoundBase(op, fpcr, rounding, isbfloat16, fpexc);

shared/functions/float/fprounding/FPRounding

 enumeration FPRounding {FPRounding_TIEEVEN, FPRounding_POSINF,
 FPRounding_NEGINF, FPRounding_ZERO,
 FPRounding_TIEAWAY, FPRounding_ODD};

shared/functions/float/fproundingmode/FPRoundingMode

 // FPRoundingMode()
 // ================
 // Return the current floating-point rounding mode.

 FPRounding FPRoundingMode(FPCRType fpcr)
 return FPDecodeRounding(fpcr.RMode);

shared/functions/float/fproundint/FPRoundInt

 // FPRoundInt()
 // ============

 // Round op to nearest integral floating point value using rounding mode in FPCR/FPSCR.
 // If EXACT is TRUE, set FPSR.IXC if result is not numerically equal to op.

 bits(N) FPRoundInt(bits(N) op, FPCRType fpcr, FPRounding rounding, boolean exact)

 assert rounding != FPRounding_ODD;
 assert N IN {16,32,64};

 // When alternative floating-point support is TRUE, do not generate
 // Input Denormal floating-point exceptions.
 altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
 fpexc = !altfp;

 // Unpack using FPCR to determine if subnormals are flushed-to-zero.
 (fptype,sign,value) = FPUnpack(op, fpcr, fpexc);

 if fptype == FPType_SNaN || fptype == FPType_QNaN then
J1-8320 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 result = FPProcessNaN(fptype, op, fpcr);
 elsif fptype == FPType_Infinity then
 result = FPInfinity(sign);
 elsif fptype == FPType_Zero then
 result = FPZero(sign);
 else
 // Extract integer component.
 int_result = RoundDown(value);
 error = value - Real(int_result);

 // Determine whether supplied rounding mode requires an increment.
 case rounding of
 when FPRounding_TIEEVEN
 round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));
 when FPRounding_POSINF
 round_up = (error != 0.0);
 when FPRounding_NEGINF
 round_up = FALSE;
 when FPRounding_ZERO
 round_up = (error != 0.0 && int_result < 0);
 when FPRounding_TIEAWAY
 round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));

 if round_up then int_result = int_result + 1;

 // Convert integer value into an equivalent real value.
 real_result = Real(int_result);

 // Re-encode as a floating-point value, result is always exact.
 if real_result == 0.0 then
 result = FPZero(sign);
 else
 result = FPRound(real_result, fpcr, FPRounding_ZERO);

 // Generate inexact exceptions.
 if error != 0.0 && exact then
 FPProcessException(FPExc_Inexact, fpcr);

 return result;

shared/functions/float/fproundintn/FPRoundIntN

 // FPRoundIntN()
 // =============

 bits(N) FPRoundIntN(bits(N) op, FPCRType fpcr, FPRounding rounding, integer intsize)
 assert rounding != FPRounding_ODD;
 assert N IN {32,64};
 assert intsize IN {32, 64};
 integer exp;
 constant integer E = (if N == 32 then 8 else 11);
 constant integer F = N - (E + 1);

 // When alternative floating-point support is TRUE, do not generate
 // Input Denormal floating-point exceptions.
 altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
 fpexc = !altfp;

 // Unpack using FPCR to determine if subnormals are flushed-to-zero.
 (fptype,sign,value) = FPUnpack(op, fpcr, fpexc);

 if fptype IN {FPType_SNaN, FPType_QNaN, FPType_Infinity} then
 if N == 32 then
 exp = 126 + intsize;
 result = '1':exp<(E-1):0>:Zeros(F);
 else
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8321
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 exp = 1022+intsize;
 result = '1':exp<(E-1):0>:Zeros(F);
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif fptype == FPType_Zero then
 result = FPZero(sign);
 else
 // Extract integer component.
 int_result = RoundDown(value);
 error = value - Real(int_result);

 // Determine whether supplied rounding mode requires an increment.
 case rounding of
 when FPRounding_TIEEVEN
 round_up = error > 0.5 || (error == 0.5 && int_result<0> == '1');
 when FPRounding_POSINF
 round_up = error != 0.0;
 when FPRounding_NEGINF
 round_up = FALSE;
 when FPRounding_ZERO
 round_up = error != 0.0 && int_result < 0;
 when FPRounding_TIEAWAY
 round_up = error > 0.5 || (error == 0.5 && int_result >= 0);

 if round_up then int_result = int_result + 1;
 overflow = int_result > 2^(intsize-1)-1 || int_result < -1*2^(intsize-1);

 if overflow then
 if N == 32 then
 exp = 126 + intsize;
 result = '1':exp<(E-1):0>:Zeros(F);
 else
 exp = 1022 + intsize;
 result = '1':exp<(E-1):0>:Zeros(F);
 FPProcessException(FPExc_InvalidOp, fpcr);
 // This case shouldn't set Inexact.
 error = 0.0;

 else
 // Convert integer value into an equivalent real value.
 real_result = Real(int_result);

 // Re-encode as a floating-point value, result is always exact.
 if real_result == 0.0 then
 result = FPZero(sign);
 else
 result = FPRound(real_result, fpcr, FPRounding_ZERO);

 // Generate inexact exceptions.
 if error != 0.0 then
 FPProcessException(FPExc_Inexact, fpcr);

 return result;

shared/functions/float/fprsqrtestimate/FPRSqrtEstimate

 // FPRSqrtEstimate()
 // =================

 bits(N) FPRSqrtEstimate(bits(N) operand, FPCRType fpcr)

 assert N IN {16,32,64};

 // When using alternative floating-point behaviour, do not generate
 // floating-point exceptions and flush denormal input to zero.
 boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
 boolean fpexc = !altfp;
J1-8322 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 if altfp then fpcr.<FIZ,FZ> = '11';

 (fptype,sign,value) = FPUnpack(operand, fpcr, fpexc);

 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 result = FPProcessNaN(fptype, operand, fpcr, fpexc);
 elsif fptype == FPType_Zero then
 result = FPInfinity(sign);
 if fpexc then FPProcessException(FPExc_DivideByZero, fpcr);
 elsif sign == '1' then
 result = FPDefaultNaN(fpcr);
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
 elsif fptype == FPType_Infinity then
 result = FPZero('0');
 else
 // Scale to a fixed-point value in the range 0.25 <= x < 1.0 in steps of 512, with the
 // evenness or oddness of the exponent unchanged, and calculate result exponent.
 // Scaled value has copied sign bit, exponent = 1022 or 1021 = double-precision
 // biased version of -1 or -2, fraction = original fraction extended with zeros.

 case N of
 when 16
 fraction = operand<9:0> : Zeros(42);
 exp = UInt(operand<14:10>);
 when 32
 fraction = operand<22:0> : Zeros(29);
 exp = UInt(operand<30:23>);
 when 64
 fraction = operand<51:0>;
 exp = UInt(operand<62:52>);

 if exp == 0 then
 while fraction<51> == '0' do
 fraction = fraction<50:0> : '0';
 exp = exp - 1;
 fraction = fraction<50:0> : '0';

 integer scaled;
 boolean increasedprecision = N==32 && HaveFeatRPRES() && altfp;

 if !increasedprecision then
 if exp<0> == '0' then
 scaled = UInt('1':fraction<51:44>);
 else
 scaled = UInt('01':fraction<51:45>);
 else
 if exp<0> == '0' then
 scaled = UInt('1':fraction<51:41>);
 else
 scaled = UInt('01':fraction<51:42>);

 case N of
 when 16 result_exp = (44 - exp) DIV 2;
 when 32 result_exp = (380 - exp) DIV 2;
 when 64 result_exp = (3068 - exp) DIV 2;

 estimate = RecipSqrtEstimate(scaled, increasedprecision);

 // Estimate is in the range 256 .. 511 or 4096 .. 8191 representing a
 // fixed-point result in the range [1.0 .. 2.0].
 // Convert to scaled floating point result with copied sign bit and high-order
 // fraction bits, and exponent calculated above.
 case N of
 when 16 result = '0' : result_exp<N-12:0> : estimate<7:0>:Zeros(2);
 when 32
 if !increasedprecision then
 result = '0' : result_exp<N-25:0> : estimate<7:0>:Zeros(15);
 else
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8323
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 result = '0' : result_exp<N-25:0> : estimate<11:0>:Zeros(11);
 when 64 result = '0' : result_exp<N-54:0> : estimate<7:0>:Zeros(44);

 return result;

shared/functions/float/fprsqrtestimate/RecipSqrtEstimate

 // RecipSqrtEstimate()
 // ===================
 // Compute estimate of reciprocal square root of 9-bit fixed-point number.
 //
 // a is in range 128 .. 511 or 1024 .. 4095, with increased precision,
 // representing a number in the range 0.25 <= x < 1.0.
 // increasedprecision determines if the mantissa is 8-bit or 12-bit.
 // result is in the range 256 .. 511 or 4096 .. 8191, with increased precision,
 // representing a number in the range 1.0 to 511/256 or 8191/4096.

 integer RecipSqrtEstimate(integer a, boolean increasedprecision)

 integer r;
 if !increasedprecision then
 assert 128 <= a && a < 512;
 if a < 256 then // 0.25 .. 0.5
 a = a*2+1; // a in units of 1/512 rounded to nearest
 else // 0.5 .. 1.0
 a = (a >> 1) << 1; // Discard bottom bit
 a = (a+1)*2; // a in units of 1/256 rounded to nearest
 integer b = 512;
 while a*(b+1)*(b+1) < 2^28 do
 b = b+1;
 // b = largest b such that b < 2^14 / sqrt(a)
 r = (b+1) DIV 2; // Round to nearest
 assert 256 <= r && r < 512;
 else
 assert 1024 <= a && a < 4096;
 real real_val;
 real error;
 integer int_val;

 if a < 2048 then // 0.25... 0.5
 a = a*2 + 1; // Take 10 bits of fraction and force a 1 at the bottom
 real_val = Real(a)/2.0;
 else // 0.5..1.0
 a = (a >> 1) << 1; // Discard bottom bit
 a = a+1; // Taking 10 bits of the fraction and force a 1 at the
bottom
 real_val = Real(a);

 real_val = Sqrt(real_val); // This number will lie in the range of 32 to 64
 // Round to nearest even for a DP float number
 real_val = real_val * Real(2^47); // The integer is the size of the whole DP mantissa
 int_val = RoundDown(real_val); // Calculate rounding value
 error = real_val - Real(int_val);
 round_up = error > 0.5; // Error cannot be exactly 0.5 so do not need tie case
 if round_up then int_val = int_val+1;

 real_val = Real(2^65)/Real(int_val); // Lies in the range 4096 <= real_val < 8192
 int_val = RoundDown(real_val); // Round that (to nearest even) to give integer
 error = real_val - Real(int_val);
 round_up = (error > 0.5 || (error == 0.5 && int_val<0> == '1'));
 if round_up then int_val = int_val+1;

 r = int_val;
 assert 4096 <= r && r < 8192;
J1-8324 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode

 return r;

shared/functions/float/fpsqrt/FPSqrt

 // FPSqrt()
 // ========

 bits(N) FPSqrt(bits(N) op, FPCRType fpcr)

 assert N IN {16,32,64};
 (fptype,sign,value) = FPUnpack(op, fpcr);

 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 result = FPProcessNaN(fptype, op, fpcr);
 elsif fptype == FPType_Zero then
 result = FPZero(sign);
 elsif fptype == FPType_Infinity && sign == '0' then
 result = FPInfinity(sign);
 elsif sign == '1' then
 result = FPDefaultNaN(fpcr);
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 result = FPRound(Sqrt(value), fpcr);

 FPProcessDenorm(fptype, N, fpcr);

 return result;

shared/functions/float/fpsub/FPSub

 // FPSub()
 // =======

 bits(N) FPSub(bits(N) op1, bits(N) op2, FPCRType fpcr)

 assert N IN {16,32,64};
 rounding = FPRoundingMode(fpcr);
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);

 if inf1 && inf2 && sign1 == sign2 then
 result = FPDefaultNaN(fpcr);
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
 result = FPInfinity('0');
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
 result = FPInfinity('1');
 elsif zero1 && zero2 && sign1 == NOT(sign2) then
 result = FPZero(sign1);
 else
 result_value = value1 - value2;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr, rounding);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8325
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 FPProcessDenorms(type1, type2, N, fpcr);

 return result;

shared/functions/float/fpthree/FPThree

 // FPThree()
 // =========

 bits(N) FPThree(bit sign)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = '1':Zeros(E-1);
 frac = '1':Zeros(F-1);
 result = sign : exp : frac;

 return result;

shared/functions/float/fptofixed/FPToFixed

 // FPToFixed()
 // ===========

 // Convert N-bit precision floating point OP to M-bit fixed point with
 // FBITS fractional bits, controlled by UNSIGNED and ROUNDING.

 bits(M) FPToFixed(bits(N) op, integer fbits, boolean unsigned, FPCRType fpcr, FPRounding rounding)

 assert N IN {16,32,64};
 assert M IN {16,32,64};
 assert fbits >= 0;
 assert rounding != FPRounding_ODD;

 // When alternative floating-point support is TRUE, do not generate
 // Input Denormal floating-point exceptions.
 altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
 fpexc = !altfp;

 // Unpack using fpcr to determine if subnormals are flushed-to-zero.
 (fptype,sign,value) = FPUnpack(op, fpcr, fpexc);

 // If NaN, set cumulative flag or take exception.
 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);

 // Scale by fractional bits and produce integer rounded towards minus-infinity.
 value = value * 2.0^fbits;
 int_result = RoundDown(value);
 error = value - Real(int_result);

 // Determine whether supplied rounding mode requires an increment.
 case rounding of
 when FPRounding_TIEEVEN
 round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));
 when FPRounding_POSINF
 round_up = (error != 0.0);
 when FPRounding_NEGINF
 round_up = FALSE;
 when FPRounding_ZERO
 round_up = (error != 0.0 && int_result < 0);
 when FPRounding_TIEAWAY
 round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));
J1-8326 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode

 if round_up then int_result = int_result + 1;

 // Generate saturated result and exceptions.
 (result, overflow) = SatQ(int_result, M, unsigned);
 if overflow then
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif error != 0.0 then
 FPProcessException(FPExc_Inexact, fpcr);

 return result;

shared/functions/float/fptofixedjs/FPToFixedJS

 // FPToFixedJS()
 // =============

 // Converts a double precision floating point input value
 // to a signed integer, with rounding to zero.

 (bits(N), bit) FPToFixedJS(bits(M) op, FPCRType fpcr, boolean Is64)

 assert M == 64 && N == 32;

 // If FALSE, never generate Input Denormal floating-point exceptions.
 fpexc_idenorm = !(HaveAltFP() && !UsingAArch32() && fpcr.AH == '1');

 // Unpack using fpcr to determine if subnormals are flushed-to-zero.
 (fptype,sign,value) = FPUnpack(op, fpcr, fpexc_idenorm);

 Z = '1';
 // If NaN, set cumulative flag or take exception.
 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);
 Z = '0';

 int_result = RoundDown(value);
 error = value - Real(int_result);

 // Determine whether supplied rounding mode requires an increment.

 round_it_up = (error != 0.0 && int_result < 0);
 if round_it_up then int_result = int_result + 1;

 if int_result < 0 then
 result = int_result - 2^32*RoundUp(Real(int_result)/Real(2^32));
 else
 result = int_result - 2^32*RoundDown(Real(int_result)/Real(2^32));

 // Generate exceptions.
 if int_result < -(2^31) || int_result > (2^31)-1 then
 FPProcessException(FPExc_InvalidOp, fpcr);
 Z = '0';
 elsif error != 0.0 then
 FPProcessException(FPExc_Inexact, fpcr);
 Z = '0';
 elsif sign == '1' && value == 0.0 then
 Z = '0';
 elsif sign == '0' && value == 0.0 && !IsZero(op<51:0>) then
 Z = '0';

 if fptype == FPType_Infinity then result = 0;

 return (result<N-1:0>, Z);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8327
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/float/fptwo/FPTwo

 // FPTwo()
 // =======

 bits(N) FPTwo(bit sign)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = '1':Zeros(E-1);
 frac = Zeros(F);
 result = sign : exp : frac;

 return result;

shared/functions/float/fptype/FPType

 enumeration FPType {FPType_Zero,
 FPType_Denormal,
 FPType_Nonzero,
 FPType_Infinity,
 FPType_QNaN,
 FPType_SNaN};

shared/functions/float/fpunpack/FPUnpack

 // FPUnpack()
 // ==========

 (FPType, bit, real) FPUnpack(bits(N) fpval, FPCRType fpcr)
 fpcr.AHP = '0';
 boolean fpexc = TRUE; // Generate floating-point exceptions
 (fp_type, sign, value) = FPUnpackBase(fpval, fpcr, fpexc);
 return (fp_type, sign, value);

 // FPUnpack()
 // ==========
 //
 // Used by data processing and int/fixed <-> FP conversion instructions.
 // For half-precision data it ignores AHP, and observes FZ16.

 (FPType, bit, real) FPUnpack(bits(N) fpval, FPCRType fpcr, boolean fpexc)
 fpcr.AHP = '0';
 (fp_type, sign, value) = FPUnpackBase(fpval, fpcr, fpexc);
 return (fp_type, sign, value);

shared/functions/float/fpunpack/FPUnpackBase

 // FPUnpackBase()
 // ==============

 (FPType, bit, real) FPUnpackBase(bits(N) fpval, FPCRType fpcr)
 boolean fpexc = TRUE; // Generate floating-point exceptions
 (fp_type, sign, value) = FPUnpackBase(fpval, fpcr, fpexc);
 return (fp_type, sign, value);

 // FPUnpackBase()
 // ==============
 //
 // Unpack a floating-point number into its type, sign bit and the real number
 // that it represents. The real number result has the correct sign for numbers
 // and infinities, is very large in magnitude for infinities, and is 0.0 for
J1-8328 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 // NaNs. (These values are chosen to simplify the description of comparisons
 // and conversions.)
 //
 // The 'fpcr' argument supplies FPCR control bits and 'fpexc' controls the
 // generation of floating-point exceptions. Status information is updated
 // directly in the FPSR where appropriate.

 (FPType, bit, real) FPUnpackBase(bits(N) fpval, FPCRType fpcr, boolean fpexc)

 assert N IN {16,32,64};

 boolean altfp = HaveAltFP() && !UsingAArch32();
 boolean fiz = altfp && fpcr.FIZ == '1';
 boolean fz = fpcr.FZ == '1' && !(altfp && fpcr.AH == '1');

 if N == 16 then
 sign = fpval<15>;
 exp16 = fpval<14:10>;
 frac16 = fpval<9:0>;
 if IsZero(exp16) then
 if IsZero(frac16) || fpcr.FZ16 == '1' then
 fptype = FPType_Zero; value = 0.0;
 else
 fptype = FPType_Denormal; value = 2.0^-14 * (Real(UInt(frac16)) * 2.0^-10);
 elsif IsOnes(exp16) && fpcr.AHP == '0' then // Infinity or NaN in IEEE format
 if IsZero(frac16) then
 fptype = FPType_Infinity; value = 2.0^1000000;
 else
 fptype = if frac16<9> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 fptype = FPType_Nonzero;
 value = 2.0^(UInt(exp16)-15) * (1.0 + Real(UInt(frac16)) * 2.0^-10);

 elsif N == 32 then
 sign = fpval<31>;
 exp32 = fpval<30:23>;
 frac32 = fpval<22:0>;

 if IsZero(exp32) then
 if IsZero(frac32) then
 // Produce zero if value is zero.
 fptype = FPType_Zero; value = 0.0;
 elsif fz || fiz then // Flush-to-zero if FIZ==1 or AH,FZ==01
 fptype = FPType_Zero; value = 0.0;
 // Check whether to raise Input Denormal floating-point exception.
 // fpcr.FIZ==1 does not raise Input Denormal exception.
 if fz then
 // Denormalized input flushed to zero
 if fpexc then FPProcessException(FPExc_InputDenorm, fpcr);
 else
 fptype = FPType_Denormal; value = 2.0^-126 * (Real(UInt(frac32)) * 2.0^-23);
 elsif IsOnes(exp32) then
 if IsZero(frac32) then
 fptype = FPType_Infinity; value = 2.0^1000000;
 else
 fptype = if frac32<22> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 fptype = FPType_Nonzero;
 value = 2.0^(UInt(exp32)-127) * (1.0 + Real(UInt(frac32)) * 2.0^-23);

 else // N == 64
 sign = fpval<63>;
 exp64 = fpval<62:52>;
 frac64 = fpval<51:0>;

 if IsZero(exp64) then
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8329
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 if IsZero(frac64) then
 // Produce zero if value is zero.
 fptype = FPType_Zero; value = 0.0;
 elsif fz || fiz then // Flush-to-zero if FIZ==1 or AH,FZ==01
 fptype = FPType_Zero; value = 0.0;
 // Check whether to raise Input Denormal floating-point exception.
 // fpcr.FIZ==1 does not raise Input Denormal exception.
 if fz then
 // Denormalized input flushed to zero
 if fpexc then FPProcessException(FPExc_InputDenorm, fpcr);
 else
 fptype = FPType_Denormal; value = 2.0^-1022 * (Real(UInt(frac64)) * 2.0^-52);
 elsif IsOnes(exp64) then
 if IsZero(frac64) then
 fptype = FPType_Infinity; value = 2.0^1000000;
 else
 fptype = if frac64<51> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 fptype = FPType_Nonzero;
 value = 2.0^(UInt(exp64)-1023) * (1.0 + Real(UInt(frac64)) * 2.0^-52);

 if sign == '1' then value = -value;

 return (fptype, sign, value);

shared/functions/float/fpunpack/FPUnpackCV

 // FPUnpackCV()
 // ============
 //
 // Used for FP <-> FP conversion instructions.
 // For half-precision data ignores FZ16 and observes AHP.

 (FPType, bit, real) FPUnpackCV(bits(N) fpval, FPCRType fpcr)
 fpcr.FZ16 = '0';
 boolean fpexc = TRUE; // Generate floating-point exceptions
 (fp_type, sign, value) = FPUnpackBase(fpval, fpcr, fpexc);
 return (fp_type, sign, value);

shared/functions/float/fpzero/FPZero

 // FPZero()
 // ========

 bits(N) FPZero(bit sign)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = Zeros(E);
 frac = Zeros(F);
 result = sign : exp : frac;

 return result;

shared/functions/float/vfpexpandimm/VFPExpandImm

 // VFPExpandImm()
 // ==============

 bits(N) VFPExpandImm(bits(8) imm8)

J1-8330 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - E - 1;
 sign = imm8<7>;
 exp = NOT(imm8<6>):Replicate(imm8<6>,E-3):imm8<5:4>;
 frac = imm8<3:0>:Zeros(F-4);
 result = sign : exp : frac;

 return result;

shared/functions/integer/AddWithCarry

 // AddWithCarry()
 // ==============
 // Integer addition with carry input, returning result and NZCV flags

 (bits(N), bits(4)) AddWithCarry(bits(N) x, bits(N) y, bit carry_in)
 integer unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
 integer signed_sum = SInt(x) + SInt(y) + UInt(carry_in);
 bits(N) result = unsigned_sum<N-1:0>; // same value as signed_sum<N-1:0>
 bit n = result<N-1>;
 bit z = if IsZero(result) then '1' else '0';
 bit c = if UInt(result) == unsigned_sum then '0' else '1';
 bit v = if SInt(result) == signed_sum then '0' else '1';
 return (result, n:z:c:v);

shared/functions/memory/AArch64.BranchAddr

 // AArch64.BranchAddr()
 // ====================
 // Return the virtual address with tag bits removed for storing to the program counter.

 bits(64) AArch64.BranchAddr(bits(64) vaddress)
 assert !UsingAArch32();
 msbit = AddrTop(vaddress, TRUE, PSTATE.EL);
 if msbit == 63 then
 return vaddress;
 elsif (PSTATE.EL IN {EL0, EL1} || IsInHost()) && vaddress<msbit> == '1' then
 return SignExtend(vaddress<msbit:0>);
 else
 return ZeroExtend(vaddress<msbit:0>);

shared/functions/memory/AccType

 enumeration AccType {AccType_NORMAL, AccType_VEC, // Normal loads and stores
 AccType_STREAM, AccType_VECSTREAM, // Streaming loads and stores
 AccType_A32LSMD, // Load and store multiple
 AccType_ATOMIC, AccType_ATOMICRW, // Atomic loads and stores
 AccType_ORDERED, AccType_ORDEREDRW, // Load-Acquire and Store-Release
 AccType_ORDEREDATOMIC, // Load-Acquire and Store-Release with atomic
access
 AccType_ORDEREDATOMICRW,
 AccType_ATOMICLS64, // Atomic 64-byte loads and stores
 AccType_LIMITEDORDERED, // Load-LOAcquire and Store-LORelease
 AccType_UNPRIV, // Load and store unprivileged
 AccType_IFETCH, // Instruction fetch
 AccType_TTW, // Translation table walk
 AccType_NONFAULT, // Non-faulting loads
 AccType_CNOTFIRST, // Contiguous FF load, not first element
 AccType_NV2REGISTER, // MRS/MSR instruction used at EL1 and which is
converted
 // to a memory access that uses the EL2
translation regime
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8331
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 // Other operations
 AccType_DC, // Data cache maintenance
 AccType_IC, // Instruction cache maintenance
 AccType_DCZVA, // DC ZVA instructions
 AccType_ATPAN, // Address translation with PAN permission
checks
 AccType_AT}; // Address translation

shared/functions/memory/AccessDescriptor

 type AccessDescriptor is (
 MPAMinfo mpam,
 AccType acctype)

shared/functions/memory/AddrTop

 // AddrTop()
 // =========
 // Return the MSB number of a virtual address in the stage 1 translation regime for "el".
 // If EL1 is using AArch64 then addresses from EL0 using AArch32 are zero-extended to 64 bits.

 integer AddrTop(bits(64) address, boolean IsInstr, bits(2) el)
 assert HaveEL(el);
 regime = S1TranslationRegime(el);
 if ELUsingAArch32(regime) then
 // AArch32 translation regime.
 return 31;
 else
 if EffectiveTBI(address, IsInstr, el) == '1' then
 return 55;
 else
 return 63;

shared/functions/memory/AddressDescriptor

 type AddressDescriptor is (
 FaultRecord fault, // fault.statuscode indicates whether the address is valid
 MemoryAttributes memattrs,
 FullAddress paddress,
 bits(64) vaddress
)

shared/functions/memory/Allocation

 constant bits(2) MemHint_No = '00'; // No Read-Allocate, No Write-Allocate
 constant bits(2) MemHint_WA = '01'; // No Read-Allocate, Write-Allocate
 constant bits(2) MemHint_RA = '10'; // Read-Allocate, No Write-Allocate
 constant bits(2) MemHint_RWA = '11'; // Read-Allocate, Write-Allocate

shared/functions/memory/BigEndian

 // BigEndian()
 // ===========

 boolean BigEndian(AccType acctype)
 boolean bigend;
 if HaveNV2Ext() && acctype == AccType_NV2REGISTER then
 return SCTLR_EL2.EE == '1';

J1-8332 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 if UsingAArch32() then
 bigend = (PSTATE.E != '0');
 elsif PSTATE.EL == EL0 then
 bigend = (SCTLR[].E0E != '0');
 else
 bigend = (SCTLR[].EE != '0');
 return bigend;

shared/functions/memory/BigEndianReverse

 // BigEndianReverse()
 // ==================

 bits(width) BigEndianReverse (bits(width) value)
 assert width IN {8, 16, 32, 64, 128};
 integer half = width DIV 2;
 if width == 8 then return value;
 return BigEndianReverse(value<half-1:0>) : BigEndianReverse(value<width-1:half>);

shared/functions/memory/Cacheability

 constant bits(2) MemAttr_NC = '00'; // Non-cacheable
 constant bits(2) MemAttr_WT = '10'; // Write-through
 constant bits(2) MemAttr_WB = '11'; // Write-back

shared/functions/memory/CreateAccessDescriptor

 // CreateAccessDescriptor()
 // ========================

 AccessDescriptor CreateAccessDescriptor(AccType acctype)
 AccessDescriptor accdesc;
 accdesc.acctype = acctype;
 accdesc.mpam = GenMPAMcurEL(acctype);
 return accdesc;

shared/functions/memory/DataMemoryBarrier

 DataMemoryBarrier(MBReqDomain domain, MBReqTypes types);

shared/functions/memory/DataSynchronizationBarrier

 DataSynchronizationBarrier(MBReqDomain domain, MBReqTypes types, boolean nXS);

shared/functions/memory/DeviceType

 enumeration DeviceType {DeviceType_GRE, DeviceType_nGRE, DeviceType_nGnRE, DeviceType_nGnRnE};

shared/functions/memory/EffectiveTBI

 // EffectiveTBI()
 // ==============
 // Returns the effective TBI in the AArch64 stage 1 translation regime for "el".

 bit EffectiveTBI(bits(64) address, boolean IsInstr, bits(2) el)
 assert HaveEL(el);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8333
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 regime = S1TranslationRegime(el);
 assert(!ELUsingAArch32(regime));

 case regime of
 when EL1
 tbi = if address<55> == '1' then TCR_EL1.TBI1 else TCR_EL1.TBI0;
 if HavePACExt() then
 tbid = if address<55> == '1' then TCR_EL1.TBID1 else TCR_EL1.TBID0;
 when EL2
 if HaveVirtHostExt() && ELIsInHost(el) then
 tbi = if address<55> == '1' then TCR_EL2.TBI1 else TCR_EL2.TBI0;
 if HavePACExt() then
 tbid = if address<55> == '1' then TCR_EL2.TBID1 else TCR_EL2.TBID0;
 else
 tbi = TCR_EL2.TBI;
 if HavePACExt() then tbid = TCR_EL2.TBID;
 when EL3
 tbi = TCR_EL3.TBI;
 if HavePACExt() then tbid = TCR_EL3.TBID;

 return (if tbi == '1' && (!HavePACExt() || tbid == '0' || !IsInstr) then '1' else '0');

shared/functions/memory/EffectiveTCMA

 // EffectiveTCMA()
 // ===============
 // Returns the effective TCMA of a virtual address in the stage 1 translation regime for "el".

 bit EffectiveTCMA(bits(64) address, bits(2) el)
 assert HaveEL(el);
 regime = S1TranslationRegime(el);
 assert(!ELUsingAArch32(regime));

 case regime of
 when EL1
 tcma = if address<55> == '1' then TCR_EL1.TCMA1 else TCR_EL1.TCMA0;
 when EL2
 if HaveVirtHostExt() && ELIsInHost(el) then
 tcma = if address<55> == '1' then TCR_EL2.TCMA1 else TCR_EL2.TCMA0;
 else
 tcma = TCR_EL2.TCMA;
 when EL3
 tcma = TCR_EL3.TCMA;

 return tcma;

shared/functions/memory/Fault

 enumeration Fault {Fault_None,
 Fault_AccessFlag,
 Fault_Alignment,
 Fault_Background,
 Fault_Domain,
 Fault_Permission,
 Fault_Translation,
 Fault_AddressSize,
 Fault_SyncExternal,
 Fault_SyncExternalOnWalk,
 Fault_SyncParity,
 Fault_SyncParityOnWalk,
 Fault_AsyncParity,
 Fault_AsyncExternal,
 Fault_Debug,
 Fault_TLBConflict,
J1-8334 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 Fault_BranchTarget,
 Fault_HWUpdateAccessFlag,
 Fault_Lockdown,
 Fault_Exclusive,
 Fault_ICacheMaint};

shared/functions/memory/FaultRecord

 type FaultRecord is (Fault statuscode, // Fault Status
 AccType acctype, // Type of access that faulted
 FullAddress ipaddress, // Intermediate physical address
 boolean s2fs1walk, // Is on a Stage 1 translation table walk
 boolean write, // TRUE for a write, FALSE for a read
 integer level, // For translation, access flag and permission faults
 bit extflag, // IMPLEMENTATION DEFINED syndrome for External aborts
 boolean secondstage, // Is a Stage 2 abort
 bits(4) domain, // Domain number, AArch32 only
 bits(2) errortype, // [Armv8.2 RAS] AArch32 AET or AArch64 SET
 bits(4) debugmoe) // Debug method of entry, from AArch32 only

shared/functions/memory/FullAddress

 type FullAddress is (
 PASpace paspace,
 bits(52) address
)

shared/functions/memory/Hint_Prefetch

 // Signals the memory system that memory accesses of type HINT to or from the specified address are
 // likely in the near future. The memory system may take some action to speed up the memory
 // accesses when they do occur, such as pre-loading the the specified address into one or more
 // caches as indicated by the innermost cache level target (0=L1, 1=L2, etc) and non-temporal hint
 // stream. Any or all prefetch hints may be treated as a NOP. A prefetch hint must not cause a
 // synchronous abort due to Alignment or Translation faults and the like. Its only effect on
 // software-visible state should be on caches and TLBs associated with address, which must be
 // accessible by reads, writes or execution, as defined in the translation regime of the current
 // Exception level. It is guaranteed not to access Device memory.
 // A Prefetch_EXEC hint must not result in an access that could not be performed by a speculative
 // instruction fetch, therefore if all associated MMUs are disabled, then it cannot access any
 // memory location that cannot be accessed by instruction fetches.
 Hint_Prefetch(bits(64) address, PrefetchHint hint, integer target, boolean stream);

shared/functions/memory/MBReqDomain

 enumeration MBReqDomain {MBReqDomain_Nonshareable, MBReqDomain_InnerShareable,
 MBReqDomain_OuterShareable, MBReqDomain_FullSystem};

shared/functions/memory/MBReqTypes

 enumeration MBReqTypes {MBReqTypes_Reads, MBReqTypes_Writes, MBReqTypes_All};

shared/functions/memory/MPAM

 type PARTIDtype = bits(16);
 type PMGtype = bits(8);
 type PARTIDspaceType = bit;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8335
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 constant PARTIDspaceType PIdSpace_Secure = '0';
 constant PARTIDspaceType PIdSpace_NonSecure = '1';

 type MPAMinfo is (
 PARTIDspaceType mpam_ns,
 PARTIDtype partid,
 PMGtype pmg
)

shared/functions/memory/MemAttrHints

 type MemAttrHints is (
 bits(2) attrs, // See MemAttr_*, Cacheability attributes
 bits(2) hints, // See MemHint_*, Allocation hints
 boolean transient
)

shared/functions/memory/MemType

 enumeration MemType {MemType_Normal, MemType_Device};

shared/functions/memory/MemoryAttributes

 type MemoryAttributes is (
 MemType memtype,
 DeviceType device, // For Device memory types
 MemAttrHints inner, // Inner hints and attributes
 MemAttrHints outer, // Outer hints and attributes
 Shareability shareability, // Shareability attribute
 boolean tagged, // Tagged access
 bit xs // XS attribute
)

shared/functions/memory/PASpace

 enumeration PASpace {
 PAS_NonSecure,
 PAS_Secure,
 };

shared/functions/memory/Permissions

 type Permissions is (
 bits(2) ap_table, // Stage 1 hierarchical access permissions
 bit xn_table, // Stage 1 hierarchical execute-never for single EL regimes
 bit pxn_table, // Stage 1 hierarchical privileged execute-never
 bit uxn_table, // Stage 1 hierarchical unprivileged execute-never
 bits(3) ap, // Stage 1 access permissions
 bit xn, // Stage 1 execute-never for single EL regimes
 bit uxn, // Stage 1 unprivileged execute-never
 bit pxn, // Stage 1 privileged execute-never
 bits(2) s2ap, // Stage 2 access permissions
 bit s2xnx, // Stage 2 extended execute-never
 bit s2xn // Stage 2 execute-never
)
J1-8336 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/memory/PhysMemRead

 // Returns the value read from memory, and a PhysMemRetStatus.
 // If there is an external abort on the read, the PhysMemRetStatus indicates this
 // and the value is UNKNOWN.
 // Otherwise the PhysMemRetStatus statuscode is Fault_None.
 (PhysMemRetStatus, bits(8*size)) PhysMemRead(AddressDescriptor desc, integer size, AccessDescriptor
accdesc);

shared/functions/memory/PhysMemRetStatus

 type PhysMemRetStatus is (Fault statuscode, // Fault Status
 bit extflag, // IMPLEMENTATION DEFINED
 // syndrome for External aborts
 bits(2) errortype, // optional error state
 // returned on a physical
 // memory access
 bits(64) store64bstatus, // status of 64B store
 AccType acctype) // Type of access that faulted

shared/functions/memory/PhysMemWrite

 // Writes the value to memory, and returns a PhysMemRetStatus.
 // If there is an external abort on the write, the PhysMemRetStatus indicates this.
 // Otherwise the statuscode of PhysMemRetStatus is Fault_None.
 PhysMemRetStatus PhysMemWrite(AddressDescriptor desc, integer size, AccessDescriptor accdesc,
bits(8*size) value);

shared/functions/memory/PrefetchHint

 enumeration PrefetchHint {Prefetch_READ, Prefetch_WRITE, Prefetch_EXEC};

shared/functions/memory/Shareability

 enumeration Shareability {
 Shareability_NSH,
 Shareability_ISH,
 Shareability_OSH
 };

shared/functions/memory/SpeculativeStoreBypassBarrierToPA

 SpeculativeStoreBypassBarrierToPA();

shared/functions/memory/SpeculativeStoreBypassBarrierToVA

 SpeculativeStoreBypassBarrierToVA();

shared/functions/memory/Tag

 constant integer LOG2_TAG_GRANULE = 4;

 constant integer TAG_GRANULE = 1 << LOG2_TAG_GRANULE;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8337
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/mpam/DefaultMPAMinfo

 // DefaultMPAMinfo()
 // =================
 // Returns default MPAM info. The partidspace argument sets
 // the PARTID space of the default MPAM information returned.

 MPAMinfo DefaultMPAMinfo(PARTIDspaceType partidspace)
 MPAMinfo DefaultInfo;
 DefaultInfo.mpam_ns = partidspace;
 DefaultInfo.partid = DefaultPARTID;
 DefaultInfo.pmg = DefaultPMG;
 return DefaultInfo;

shared/functions/mpam/DefaultPARTID

 constant PARTIDtype DefaultPARTID = 0<15:0>;

shared/functions/mpam/DefaultPMG

 constant PMGtype DefaultPMG = 0<7:0>;

shared/functions/mpam/GenMPAMcurEL

 // GenMPAMcurEL()
 // ==============
 // Returns MPAMinfo for the current EL and security state.
 // May be called if MPAM is not implemented (but in an version that supports
 // MPAM), MPAM is disabled, or in AArch32. In AArch32, convert the mode to
 // EL if can and use that to drive MPAM information generation. If mode
 // cannot be converted, MPAM is not implemented, or MPAM is disabled return
 // default MPAM information for the current security state.

 MPAMinfo GenMPAMcurEL(AccType acctype)
 bits(2) mpamEL;
 boolean validEL = FALSE;
 SecurityState security = if IsSecure() then SS_Secure else SS_NonSecure;
 boolean InD = FALSE;
 PARTIDspaceType pspace = PARTIDspaceFromSS(security);
 if pspace == PIdSpace_NonSecure && !MPAMisEnabled() then
 return DefaultMPAMinfo(pspace);
 if UsingAArch32() then
 (validEL, mpamEL) = ELFromM32(PSTATE.M);
 else
 mpamEL = PSTATE.EL;
 validEL = TRUE;
 case acctype of
 when AccType_IFETCH, AccType_IC
 InD = TRUE;
 otherwise
 // other access types are DATA accesses
 InD = FALSE;
 if !validEL then
 return DefaultMPAMinfo(pspace);
 if HaveEMPAMExt() && pspace == PIdSpace_Secure then
 if MPAM3_EL3.FORCE_NS == '1' then
 pspace = PIdSpace_NonSecure;
 if MPAM3_EL3.SDEFLT == '1' then
 return DefaultMPAMinfo(pspace);
 if !MPAMisEnabled() then
 return DefaultMPAMinfo(pspace);
J1-8338 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 else
 return genMPAM(mpamEL, InD, pspace);

shared/functions/mpam/MAP_vPARTID

 // MAP_vPARTID()
 // =============
 // Performs conversion of virtual PARTID into physical PARTID
 // Contains all of the error checking and implementation
 // choices for the conversion.

 (PARTIDtype, boolean) MAP_vPARTID(PARTIDtype vpartid)
 // should not ever be called if EL2 is not implemented
 // or is implemented but not enabled in the current
 // security state.
 PARTIDtype ret;
 boolean err;
 integer virt = UInt(vpartid);
 integer vpmrmax = UInt(MPAMIDR_EL1.VPMR_MAX);

 // vpartid_max is largest vpartid supported
 integer vpartid_max = (vpmrmax << 2) + 3;

 // One of many ways to reduce vpartid to value less than vpartid_max.
 if UInt(vpartid) > vpartid_max then
 virt = virt MOD (vpartid_max+1);

 // Check for valid mapping entry.
 if MPAMVPMV_EL2<virt> == '1' then
 // vpartid has a valid mapping so access the map.
 ret = mapvpmw(virt);
 err = FALSE;

 // Is the default virtual PARTID valid?
 elsif MPAMVPMV_EL2<0> == '1' then
 // Yes, so use default mapping for vpartid == 0.
 ret = MPAMVPM0_EL2<0 +: 16>;
 err = FALSE;

 // Neither is valid so use default physical PARTID.
 else
 ret = DefaultPARTID;
 err = TRUE;

 // Check that the physical PARTID is in-range.
 // This physical PARTID came from a virtual mapping entry.
 integer partid_max = UInt(MPAMIDR_EL1.PARTID_MAX);
 if UInt(ret) > partid_max then
 // Out of range, so return default physical PARTID
 ret = DefaultPARTID;
 err = TRUE;
 return (ret, err);

shared/functions/mpam/MPAMisEnabled

 // MPAMisEnabled()
 // ===============
 // Returns TRUE if MPAMisEnabled.

 boolean MPAMisEnabled()
 el = HighestEL();
 case el of
 when EL3 return MPAM3_EL3.MPAMEN == '1';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8339
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 when EL2 return MPAM2_EL2.MPAMEN == '1';
 when EL1 return MPAM1_EL1.MPAMEN == '1';

shared/functions/mpam/MPAMisVirtual

 // MPAMisVirtual()
 // ===============
 // Returns TRUE if MPAM is configured to be virtual at EL.

 boolean MPAMisVirtual(bits(2) el)
 return (MPAMIDR_EL1.HAS_HCR == '1' && EL2Enabled() &&
 ((el == EL0 && MPAMHCR_EL2.EL0_VPMEN == '1' &&
 (HCR_EL2.E2H == '0' || HCR_EL2.TGE == '0')) ||
 (el == EL1 && MPAMHCR_EL2.EL1_VPMEN == '1')));

shared/functions/mpam/PARTIDspaceFromSS

 // PARTIDspaceFromSS()
 // ===================
 // Returns the primary PARTID space from the Security State.

 PARTIDspaceType PARTIDspaceFromSS(SecurityState security)
 case security of
 when SS_NonSecure
 return PIdSpace_NonSecure;
 when SS_Secure
 if HaveEMPAMExt() && MPAM3_EL3.FORCE_NS == '1' then
 return PIdSpace_NonSecure;
 else
 return PIdSpace_Secure;
 otherwise
 Unreachable();

shared/functions/mpam/genMPAM

 // genMPAM()
 // =========
 // Returns MPAMinfo for exception level el.
 // If InD is TRUE returns MPAM information using PARTID_I and PMG_I fields
 // of MPAMel_ELx register and otherwise using PARTID_D and PMG_D fields.
 // Produces a PARTID in PARTID space pspace.

 MPAMinfo genMPAM(bits(2) el, boolean InD, PARTIDspaceType pspace)
 MPAMinfo returninfo;
 PARTIDtype partidel;
 boolean perr;
 // gstplk is guest OS application locked by the EL2 hypervisor to
 // only use EL1 the virtual machine's PARTIDs.
 boolean gstplk = (el == EL0 && EL2Enabled() &&
 MPAMHCR_EL2.GSTAPP_PLK == '1' &&
 HCR_EL2.TGE == '0');
 bits(2) eff_el = if gstplk then EL1 else el;
 (partidel, perr) = genPARTID(eff_el, InD);
 PMGtype groupel = genPMG(eff_el, InD, perr);
 returninfo.mpam_ns = pspace;
 returninfo.partid = partidel;
 returninfo.pmg = groupel;
 return returninfo;
J1-8340 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/mpam/genMPAMel

 // genMPAMel()
 // ===========
 // Returns MPAMinfo for specified EL in the current security state.
 // InD is TRUE for instruction access and FALSE otherwise.

 MPAMinfo genMPAMel(bits(2) el, boolean InD)
 SecurityState security = SecurityStateAtEL(el);
 PARTIDspaceType space = PARTIDspaceFromSS(security);
 boolean use_default = !(HaveMPAMExt() && MPAMisEnabled());
 if HaveEMPAMExt() && space == PIdSpace_Secure then
 if MPAM3_EL3.FORCE_NS == '1' then
 space = PIdSpace_NonSecure;
 if MPAM3_EL3.SDEFLT == '1' then
 use_default = TRUE;
 if !use_default then
 return genMPAM(el, InD, space);
 else
 return DefaultMPAMinfo(space);

shared/functions/mpam/genPARTID

 // genPARTID()
 // ===========
 // Returns physical PARTID and error boolean for exception level el.
 // If InD is TRUE then PARTID is from MPAMel_ELx.PARTID_I and
 // otherwise from MPAMel_ELx.PARTID_D.

 (PARTIDtype, boolean) genPARTID(bits(2) el, boolean InD)
 PARTIDtype partidel = getMPAM_PARTID(el, InD);
 PARTIDtype partid_max = MPAMIDR_EL1.PARTID_MAX;
 if UInt(partidel) > UInt(partid_max) then
 return (DefaultPARTID, TRUE);
 if MPAMisVirtual(el) then
 return MAP_vPARTID(partidel);
 else
 return (partidel, FALSE);

shared/functions/mpam/genPMG

 // genPMG()
 // ========
 // Returns PMG for exception level el and I- or D-side (InD).
 // If PARTID generation (genPARTID) encountered an error, genPMG() should be
 // called with partid_err as TRUE.

 PMGtype genPMG(bits(2) el, boolean InD, boolean partid_err)
 integer pmg_max = UInt(MPAMIDR_EL1.PMG_MAX);
 // It is CONSTRAINED UNPREDICTABLE whether partid_err forces PMG to
 // use the default or if it uses the PMG from getMPAM_PMG.
 if partid_err then
 return DefaultPMG;
 PMGtype groupel = getMPAM_PMG(el, InD);
 if UInt(groupel) <= pmg_max then
 return groupel;
 return DefaultPMG;

shared/functions/mpam/getMPAM_PARTID

 // getMPAM_PARTID()
 // ================
 // Returns a PARTID from one of the MPAMn_ELx registers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8341
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 // MPAMn selects the MPAMn_ELx register used.
 // If InD is TRUE, selects the PARTID_I field of that
 // register. Otherwise, selects the PARTID_D field.

 PARTIDtype getMPAM_PARTID(bits(2) MPAMn, boolean InD)
 PARTIDtype partid;
 boolean el2avail = EL2Enabled();

 if InD then
 case MPAMn of
 when '11' partid = MPAM3_EL3.PARTID_I;
 when '10' partid = if el2avail then MPAM2_EL2.PARTID_I else Zeros();
 when '01' partid = MPAM1_EL1.PARTID_I;
 when '00' partid = MPAM0_EL1.PARTID_I;
 otherwise partid = PARTIDtype UNKNOWN;
 else
 case MPAMn of
 when '11' partid = MPAM3_EL3.PARTID_D;
 when '10' partid = if el2avail then MPAM2_EL2.PARTID_D else Zeros();
 when '01' partid = MPAM1_EL1.PARTID_D;
 when '00' partid = MPAM0_EL1.PARTID_D;
 otherwise partid = PARTIDtype UNKNOWN;
 return partid;

shared/functions/mpam/getMPAM_PMG

 // getMPAM_PMG()
 // =============
 // Returns a PMG from one of the MPAMn_ELx registers.
 // MPAMn selects the MPAMn_ELx register used.
 // If InD is TRUE, selects the PMG_I field of that
 // register. Otherwise, selects the PMG_D field.

 PMGtype getMPAM_PMG(bits(2) MPAMn, boolean InD)
 PMGtype pmg;
 boolean el2avail = EL2Enabled();

 if InD then
 case MPAMn of
 when '11' pmg = MPAM3_EL3.PMG_I;
 when '10' pmg = if el2avail then MPAM2_EL2.PMG_I else Zeros();
 when '01' pmg = MPAM1_EL1.PMG_I;
 when '00' pmg = MPAM0_EL1.PMG_I;
 otherwise pmg = PMGtype UNKNOWN;
 else
 case MPAMn of
 when '11' pmg = MPAM3_EL3.PMG_D;
 when '10' pmg = if el2avail then MPAM2_EL2.PMG_D else Zeros();
 when '01' pmg = MPAM1_EL1.PMG_D;
 when '00' pmg = MPAM0_EL1.PMG_D;
 otherwise pmg = PMGtype UNKNOWN;
 return pmg;

shared/functions/mpam/mapvpmw

 // mapvpmw()
 // =========
 // Map a virtual PARTID into a physical PARTID using
 // the MPAMVPMn_EL2 registers.
 // vpartid is now assumed in-range and valid (checked by caller)
 // returns physical PARTID from mapping entry.

 PARTIDtype mapvpmw(integer vpartid)
 bits(64) vpmw;
J1-8342 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 integer wd = vpartid DIV 4;
 case wd of
 when 0 vpmw = MPAMVPM0_EL2;
 when 1 vpmw = MPAMVPM1_EL2;
 when 2 vpmw = MPAMVPM2_EL2;
 when 3 vpmw = MPAMVPM3_EL2;
 when 4 vpmw = MPAMVPM4_EL2;
 when 5 vpmw = MPAMVPM5_EL2;
 when 6 vpmw = MPAMVPM6_EL2;
 when 7 vpmw = MPAMVPM7_EL2;
 otherwise vpmw = Zeros(64);
 // vpme_lsb selects LSB of field within register
 integer vpme_lsb = (vpartid MOD 4) * 16;
 return vpmw<vpme_lsb +: 16>;

shared/functions/registers/BranchTo

 // BranchTo()
 // ==========
 // Set program counter to a new address, with a branch type.
 // Parameter branch_conditional indicates whether the executed branch has a conditional encoding.
 // In AArch64 state the address might include a tag in the top eight bits.

 BranchTo(bits(N) target, BranchType branch_type, boolean branch_conditional)
 Hint_Branch(branch_type);
 if N == 32 then
 assert UsingAArch32();
 _PC = ZeroExtend(target);
 else
 assert N == 64 && !UsingAArch32();
 bits(64) target_vaddress = AArch64.BranchAddr(target<63:0>);
 _PC = target_vaddress;
 return;

shared/functions/registers/BranchToAddr

 // BranchToAddr()
 // ==============
 // Set program counter to a new address, with a branch type.
 // In AArch64 state the address does not include a tag in the top eight bits.

 BranchToAddr(bits(N) target, BranchType branch_type)
 Hint_Branch(branch_type);
 if N == 32 then
 assert UsingAArch32();
 _PC = ZeroExtend(target);
 else
 assert N == 64 && !UsingAArch32();
 _PC = target<63:0>;
 return;

shared/functions/registers/BranchType

 enumeration BranchType {
 BranchType_DIRCALL, // Direct Branch with link
 BranchType_INDCALL, // Indirect Branch with link
 BranchType_ERET, // Exception return (indirect)
 BranchType_DBGEXIT, // Exit from Debug state
 BranchType_RET, // Indirect branch with function return hint
 BranchType_DIR, // Direct branch
 BranchType_INDIR, // Indirect branch
 BranchType_EXCEPTION, // Exception entry
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8343
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 BranchType_RESET, // Reset
 BranchType_UNKNOWN}; // Other

shared/functions/registers/Hint_Branch

 // Report the hint passed to BranchTo() and BranchToAddr(), for consideration when processing
 // the next instruction.
 Hint_Branch(BranchType hint);

shared/functions/registers/NextInstrAddr

 // Return address of the sequentially next instruction.
 bits(N) NextInstrAddr();

shared/functions/registers/ResetExternalDebugRegisters

 // Reset the External Debug registers in the Core power domain.
 ResetExternalDebugRegisters(boolean cold_reset);

shared/functions/registers/ThisInstrAddr

 // ThisInstrAddr()
 // ===============
 // Return address of the current instruction.

 bits(N) ThisInstrAddr()
 assert N == 64 || (N == 32 && UsingAArch32());
 return _PC<N-1:0>;

shared/functions/registers/_PC

 bits(64) _PC;

shared/functions/registers/_R

 array bits(64) _R[0..30];

shared/functions/sysregisters/SPSR

 // SPSR[] - non-assignment form
 // ============================

 bits(N) SPSR[]
 bits(N) result;
 if UsingAArch32() then
 assert N == 32;
 case PSTATE.M of
 when M32_FIQ result = SPSR_fiq<N-1:0>;
 when M32_IRQ result = SPSR_irq<N-1:0>;
 when M32_Svc result = SPSR_svc<N-1:0>;
 when M32_Monitor result = SPSR_mon<N-1:0>;
 when M32_Abort result = SPSR_abt<N-1:0>;
 when M32_Hyp result = SPSR_hyp<N-1:0>;
 when M32_Undef result = SPSR_und<N-1:0>;
 otherwise Unreachable();
 else
J1-8344 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 assert N == 64;
 case PSTATE.EL of
 when EL1 result = SPSR_EL1<N-1:0>;
 when EL2 result = SPSR_EL2<N-1:0>;
 when EL3 result = SPSR_EL3<N-1:0>;
 otherwise Unreachable();
 return result;

 // SPSR[] - assignment form
 // ========================

 SPSR[] = bits(N) value
 if UsingAArch32() then
 assert N == 32;
 case PSTATE.M of
 when M32_FIQ SPSR_fiq = ZeroExtend(value);
 when M32_IRQ SPSR_irq = ZeroExtend(value);
 when M32_Svc SPSR_svc = ZeroExtend(value);
 when M32_Monitor SPSR_mon = ZeroExtend(value);
 when M32_Abort SPSR_abt = ZeroExtend(value);
 when M32_Hyp SPSR_hyp = ZeroExtend(value);
 when M32_Undef SPSR_und = ZeroExtend(value);
 otherwise Unreachable();
 else
 assert N == 64;
 case PSTATE.EL of
 when EL1 SPSR_EL1 = ZeroExtend(value);
 when EL2 SPSR_EL2 = ZeroExtend(value);
 when EL3 SPSR_EL3 = ZeroExtend(value);
 otherwise Unreachable();
 return;

shared/functions/system/ArchVersion

 enumeration ArchVersion {
 ARMv8p0
 , ARMv8p1
 , ARMv8p2
 , ARMv8p3
 , ARMv8p4
 , ARMv8p5
 , ARMv8p6
 , ARMv8p7
 };

shared/functions/system/BranchTargetCheck

 // BranchTargetCheck()
 // ===================
 // This function is executed checks if the current instruction is a valid target for a branch
 // taken into, or inside, a guarded page. It is executed on every cycle once the current
 // instruction has been decoded and the values of InGuardedPage and BTypeCompatible have been
 // determined for the current instruction.

 BranchTargetCheck()
 assert HaveBTIExt() && !UsingAArch32();

 // The branch target check considers two state variables:
 // * InGuardedPage, which is evaluated during instruction fetch.
 // * BTypeCompatible, which is evaluated during instruction decode.
 if InGuardedPage && PSTATE.BTYPE != '00' && !BTypeCompatible && !Halted() then
 bits(64) pc = ThisInstrAddr();
 AArch64.BranchTargetException(pc<51:0>);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8345
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 boolean branch_instr = AArch64.ExecutingBROrBLROrRetInstr();
 boolean bti_instr = AArch64.ExecutingBTIInstr();

 // PSTATE.BTYPE defaults to 00 for instructions that do not explictly set BTYPE.
 if !(branch_instr || bti_instr) then
 BTypeNext = '00';

shared/functions/system/ClearEventRegister

 // ClearEventRegister()
 // ====================
 // Clear the Event Register of this PE.

 ClearEventRegister()
 EventRegister = '0';
 return;

shared/functions/system/ClearPendingPhysicalSError

 // Clear a pending physical SError interrupt.
 ClearPendingPhysicalSError();

shared/functions/system/ClearPendingVirtualSError

 // Clear a pending virtual SError interrupt.
 ClearPendingVirtualSError();

shared/functions/system/ConditionHolds

 // ConditionHolds()
 // ================
 // Return TRUE iff COND currently holds

 boolean ConditionHolds(bits(4) cond)
 // Evaluate base condition.
 case cond<3:1> of
 when '000' result = (PSTATE.Z == '1'); // EQ or NE
 when '001' result = (PSTATE.C == '1'); // CS or CC
 when '010' result = (PSTATE.N == '1'); // MI or PL
 when '011' result = (PSTATE.V == '1'); // VS or VC
 when '100' result = (PSTATE.C == '1' && PSTATE.Z == '0'); // HI or LS
 when '101' result = (PSTATE.N == PSTATE.V); // GE or LT
 when '110' result = (PSTATE.N == PSTATE.V && PSTATE.Z == '0'); // GT or LE
 when '111' result = TRUE; // AL

 // Condition flag values in the set '111x' indicate always true
 // Otherwise, invert condition if necessary.
 if cond<0> == '1' && cond != '1111' then
 result = !result;

 return result;

shared/functions/system/ConsumptionOfSpeculativeDataBarrier

 ConsumptionOfSpeculativeDataBarrier();
J1-8346 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/system/CurrentInstrSet

 // CurrentInstrSet()
 // =================

 InstrSet CurrentInstrSet()

 if UsingAArch32() then
 result = if PSTATE.T == '0' then InstrSet_A32 else InstrSet_T32;
 // PSTATE.J is RES0. Implementation of T32EE or Jazelle state not permitted.
 else
 result = InstrSet_A64;
 return result;

shared/functions/system/CurrentPL

 // CurrentPL()
 // ===========

 PrivilegeLevel CurrentPL()
 return PLOfEL(PSTATE.EL);

shared/functions/system/DSBAlias

 enumeration DSBAlias {DSBAlias_SSBB, DSBAlias_PSSBB, DSBAlias_DSB};

shared/functions/system/EL0

 constant bits(2) EL3 = '11';
 constant bits(2) EL2 = '10';
 constant bits(2) EL1 = '01';
 constant bits(2) EL0 = '00';

shared/functions/system/EL2Enabled

 // EL2Enabled()
 // ============
 // Returns TRUE if EL2 is present and executing
 // - with SCR_EL3.NS==1 when Non-secure EL2 is implemented, or
 // - with SCR_EL3.NS==0 when Secure EL2 is implemented and enabled, or
 // - when EL3 is not implemented.

 boolean EL2Enabled()
 return HaveEL(EL2) && (!HaveEL(EL3) || SCR_EL3.NS == '1' || IsSecureEL2Enabled());

shared/functions/system/ELFromM32

 // ELFromM32()
 // ===========

 (boolean,bits(2)) ELFromM32(bits(5) mode)
 // Convert an AArch32 mode encoding to an Exception level.
 // Returns (valid,EL):
 // 'valid' is TRUE if 'mode<4:0>' encodes a mode that is both valid for this implementation
 // and the current value of SCR.NS/SCR_EL3.NS.
 // 'EL' is the Exception level decoded from 'mode'.
 bits(2) el;
 boolean valid = !BadMode(mode); // Check for modes that are not valid for this implementation
 case mode of
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8347
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 when M32_Monitor
 el = EL3;
 when M32_Hyp
 el = EL2;
 valid = valid && (!HaveEL(EL3) || SCR_GEN[].NS == '1');
 when M32_FIQ, M32_IRQ, M32_Svc, M32_Abort, M32_Undef, M32_System
 // If EL3 is implemented and using AArch32, then these modes are EL3 modes in Secure
 // state, and EL1 modes in Non-secure state. If EL3 is not implemented or is using
 // AArch64, then these modes are EL1 modes.
 el = (if HaveEL(EL3) && !HaveAArch64() && SCR.NS == '0' then EL3 else EL1);
 when M32_User
 el = EL0;
 otherwise
 valid = FALSE; // Passed an illegal mode value
 if !valid then el = bits(2) UNKNOWN;
 return (valid, el);

shared/functions/system/ELFromSPSR

 // ELFromSPSR()
 // ============

 // Convert an SPSR value encoding to an Exception level.
 // Returns (valid,EL):
 // 'valid' is TRUE if 'spsr<4:0>' encodes a valid mode for the current state.
 // 'EL' is the Exception level decoded from 'spsr'.

 (boolean,bits(2)) ELFromSPSR(bits(N) spsr)
 if spsr<4> == '0' then // AArch64 state
 el = spsr<3:2>;
 if !HaveAArch64() then // No AArch64 support
 valid = FALSE;
 elsif !HaveEL(el) then // Exception level not implemented
 valid = FALSE;
 elsif spsr<1> == '1' then // M[1] must be 0
 valid = FALSE;
 elsif el == EL0 && spsr<0> == '1' then // for EL0, M[0] must be 0
 valid = FALSE;
 elsif el == EL2 && HaveEL(EL3) && !IsSecureEL2Enabled() && SCR_EL3.NS == '0' then
 valid = FALSE; // Unless Secure EL2 is enabled, EL2 only valid in
Non-secure state
 else
 valid = TRUE;
 elsif HaveAArch32() then // AArch32 state
 (valid, el) = ELFromM32(spsr<4:0>);
 else
 valid = FALSE;

 if !valid then el = bits(2) UNKNOWN;
 return (valid,el);

shared/functions/system/ELIsInHost

 // ELIsInHost()
 // ============

 boolean ELIsInHost(bits(2) el)
 if !HaveVirtHostExt() || ELUsingAArch32(EL2) then
 return FALSE;
 case el of
 when EL3
 return FALSE;
 when EL2
 return EL2Enabled() && HCR_EL2.E2H == '1';
J1-8348 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 when EL1
 return FALSE;
 when EL0
 return EL2Enabled() && HCR_EL2.<E2H,TGE> == '11';
 otherwise
 Unreachable();

shared/functions/system/ELStateUsingAArch32

 // ELStateUsingAArch32()
 // =====================

 boolean ELStateUsingAArch32(bits(2) el, boolean secure)
 // See ELStateUsingAArch32K() for description. Must only be called in circumstances where
 // result is valid (typically, that means 'el IN {EL1,EL2,EL3}').
 (known, aarch32) = ELStateUsingAArch32K(el, secure);
 assert known;
 return aarch32;

shared/functions/system/ELStateUsingAArch32K

 // ELStateUsingAArch32K()
 // ======================

 (boolean,boolean) ELStateUsingAArch32K(bits(2) el, boolean secure)
 // Returns (known, aarch32):
 // 'known' is FALSE for EL0 if the current Exception level is not EL0 and EL1 is
 // using AArch64, since it cannot determine the state of EL0; TRUE otherwise.
 // 'aarch32' is TRUE if the specified Exception level is using AArch32; FALSE otherwise.
 if !HaveAArch32EL(el) then
 return (TRUE, FALSE); // Exception level is using AArch64
 elsif secure && el == EL2 then
 return (TRUE, FALSE); // Secure EL2 is using AArch64
 elsif !HaveAArch64() then
 return (TRUE, TRUE); // Highest Exception level, and therefore all levels
are using AArch32
 elsif el == HighestEL() then
 return (TRUE, FALSE); // This is highest Exception level, so is using
AArch64

 // Remainder of function deals with the interprocessing cases when highest Exception level is using
AArch64

 boolean aarch32 = boolean UNKNOWN;
 boolean known = TRUE;

 aarch32_below_el3 = HaveEL(EL3) && SCR_EL3.RW == '0' && (!secure || !HaveSecureEL2Ext() ||
SCR_EL3.EEL2 == '0');
 aarch32_at_el1 = (aarch32_below_el3 || (HaveEL(EL2) &&
 ((HaveSecureEL2Ext() && SCR_EL3.EEL2 == '1') || !secure) &&
HCR_EL2.RW == '0' &&
 !(HCR_EL2.E2H == '1' && HCR_EL2.TGE == '1' &&
HaveVirtHostExt())));
 if el == EL0 && !aarch32_at_el1 then // Only know if EL0 using AArch32 from PSTATE
 if PSTATE.EL == EL0 then
 aarch32 = PSTATE.nRW == '1'; // EL0 controlled by PSTATE
 else
 known = FALSE; // EL0 state is UNKNOWN
 else
 aarch32 = (aarch32_below_el3 && el != EL3) || (aarch32_at_el1 && el IN {EL1,EL0});

 if !known then aarch32 = boolean UNKNOWN;
 return (known, aarch32);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8349
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/system/ELUsingAArch32

 // ELUsingAArch32()
 // ================

 boolean ELUsingAArch32(bits(2) el)
 return ELStateUsingAArch32(el, IsSecureBelowEL3());

shared/functions/system/ELUsingAArch32K

 // ELUsingAArch32K()
 // =================

 (boolean,boolean) ELUsingAArch32K(bits(2) el)
 return ELStateUsingAArch32K(el, IsSecureBelowEL3());

shared/functions/system/EndOfInstruction

 // Terminate processing of the current instruction.
 EndOfInstruction();

shared/functions/system/EnterLowPowerState

 // PE enters a low-power state.
 EnterLowPowerState();

shared/functions/system/EventRegister

 bits(1) EventRegister;

shared/functions/system/ExceptionalOccurrenceTargetState

 enumeration ExceptionalOccurrenceTargetState {
 AArch32_NonDebugState,
 AArch64_NonDebugState,
 DebugState
 };

shared/functions/system/FIQPending

 // Returns TRUE if there is any pending physical FIQ.
 boolean FIQPending();

shared/functions/system/GetPSRFromPSTATE

 // GetPSRFromPSTATE()
 // ==================
 // Return a PSR value which represents the current PSTATE

 bits(N) GetPSRFromPSTATE(ExceptionalOccurrenceTargetState targetELState)
 if UsingAArch32() && (targetELState IN {AArch32_NonDebugState, DebugState}) then
 assert N == 32;
 else
 assert N == 64;
 bits(N) spsr = Zeros();
 spsr<31:28> = PSTATE.<N,Z,C,V>;
J1-8350 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 if HavePANExt() then spsr<22> = PSTATE.PAN;
 spsr<20> = PSTATE.IL;
 if PSTATE.nRW == '1' then // AArch32 state
 spsr<27> = PSTATE.Q;
 spsr<26:25> = PSTATE.IT<1:0>;
 if HaveSSBSExt() then spsr<23> = PSTATE.SSBS;
 if HaveDITExt() then
 if targetELState == AArch32_NonDebugState then
 spsr<21> = PSTATE.DIT;
 else //AArch64_NonDebugState or DebugState
 spsr<24> = PSTATE.DIT;
 if targetELState IN {AArch64_NonDebugState, DebugState} then
 spsr<21> = PSTATE.SS;
 spsr<19:16> = PSTATE.GE;
 spsr<15:10> = PSTATE.IT<7:2>;
 spsr<9> = PSTATE.E;
 spsr<8:6> = PSTATE.<A,I,F>; // No PSTATE.D in AArch32 state
 spsr<5> = PSTATE.T;
 assert PSTATE.M<4> == PSTATE.nRW; // bit [4] is the discriminator
 spsr<4:0> = PSTATE.M;
 else // AArch64 state
 if HaveMTEExt() then spsr<25> = PSTATE.TCO;
 if HaveDITExt() then spsr<24> = PSTATE.DIT;
 if HaveUAOExt() then spsr<23> = PSTATE.UAO;
 spsr<21> = PSTATE.SS;
 if HaveSSBSExt() then spsr<12> = PSTATE.SSBS;
 if HaveBTIExt() then spsr<11:10> = PSTATE.BTYPE;
 spsr<9:6> = PSTATE.<D,A,I,F>;
 spsr<4> = PSTATE.nRW;
 spsr<3:2> = PSTATE.EL;
 spsr<0> = PSTATE.SP;
 return spsr;

shared/functions/system/HasArchVersion

 // HasArchVersion()
 // ================
 // Returns TRUE if the implemented architecture includes the extensions defined in the specified
 // architecture version.

 boolean HasArchVersion(ArchVersion version)
 return version == ARMv8p0 || boolean IMPLEMENTATION_DEFINED;

shared/functions/system/HaveAArch32

 // HaveAArch32()
 // =============
 // Return TRUE if AArch32 state is supported at at least EL0.

 boolean HaveAArch32()
 return boolean IMPLEMENTATION_DEFINED;

shared/functions/system/HaveAArch32EL

 // HaveAArch32EL()
 // ===============

 boolean HaveAArch32EL(bits(2) el)
 // Return TRUE if Exception level 'el' supports AArch32 in this implementation
 if !HaveEL(el) then
 return FALSE; // The Exception level is not implemented
 elsif !HaveAArch32() then
 return FALSE; // No Exception level can use AArch32
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8351
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 elsif !HaveAArch64() then
 return TRUE; // All Exception levels are using AArch32
 elsif el == HighestEL() then
 return FALSE; // The highest Exception level is using AArch64
 elsif el == EL0 then
 return TRUE; // EL0 must support using AArch32 if any AArch32
 return boolean IMPLEMENTATION_DEFINED;

shared/functions/system/HaveAArch64

 // HaveAArch64()
 // =============
 // Return TRUE if AArch64 state is supported at the highest Exception level.

 boolean HaveAArch64()
 return boolean IMPLEMENTATION_DEFINED "Highest EL using AArch64";

shared/functions/system/HaveEL

 // HaveEL()
 // ========
 // Return TRUE if Exception level 'el' is supported

 boolean HaveEL(bits(2) el)
 if el IN {EL1,EL0} then
 return TRUE; // EL1 and EL0 must exist
 return boolean IMPLEMENTATION_DEFINED;

shared/functions/system/HaveELUsingSecurityState

 // HaveELUsingSecurityState()
 // ==========================
 // Returns TRUE if Exception level 'el' with Security state 'secure' is supported,
 // FALSE otherwise.

 boolean HaveELUsingSecurityState(bits(2) el, boolean secure)

 case el of
 when EL3
 assert secure;
 return HaveEL(EL3);
 when EL2
 if secure then
 return HaveEL(EL2) && HaveSecureEL2Ext();
 else
 return HaveEL(EL2);
 otherwise
 return (HaveEL(EL3) ||
 (secure == boolean IMPLEMENTATION_DEFINED "Secure-only implementation"));

shared/functions/system/HaveFP16Ext

 // HaveFP16Ext()
 // =============
 // Return TRUE if FP16 extension is supported

 boolean HaveFP16Ext()
 return boolean IMPLEMENTATION_DEFINED;
J1-8352 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/system/HighestEL

 // HighestEL()
 // ===========
 // Returns the highest implemented Exception level.

 bits(2) HighestEL()
 if HaveEL(EL3) then
 return EL3;
 elsif HaveEL(EL2) then
 return EL2;
 else
 return EL1;

shared/functions/system/Hint_DGH

 // Provides a hint to close any gathering occurring within the micro-architecture.
 Hint_DGH();

shared/functions/system/Hint_WFE

 // Hint_WFE()
 // ==========
 // Provides a hint indicating that the PE can enter a low-power state
 // and remain there until a wakeup event occurs or, for WFET, a local
 // timeout event is generated when the virtual timer value equals or
 // exceeds the supplied threshold value.

 Hint_WFE(integer localtimeout, WFxType wfxtype)
 if IsEventRegisterSet() then
 ClearEventRegister();
 else
 trap = FALSE;
 if PSTATE.EL == EL0 then
 // Check for traps described by the OS which may be EL1 or EL2.
 if HaveTWEDExt() then
 sctlr = SCTLR[];
 trap = sctlr.nTWE == '0';
 target_el = EL1;
 else
 AArch64.CheckForWFxTrap(EL1, wfxtype);
 if !trap && PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() then
 // Check for traps described by the Hypervisor.
 if HaveTWEDExt() then
 trap = HCR_EL2.TWE == '1';
 target_el = EL2;
 else
 AArch64.CheckForWFxTrap(EL2, wfxtype);

 if !trap && HaveEL(EL3) && PSTATE.EL != EL3 then
 // Check for traps described by the Secure Monitor.
 if HaveTWEDExt() then
 trap = SCR_EL3.TWE == '1';
 target_el = EL3;
 else
 AArch64.CheckForWFxTrap(EL3, wfxtype);

 if trap && PSTATE.EL != EL3 then
 (delay_enabled, delay) = WFETrapDelay(target_el); // (If trap delay is enabled, Delay
amount)
 if !WaitForEventUntilDelay(delay_enabled, delay) then
 // Event did not arrive before delay expired
 AArch64.WFxTrap(wfxtype, target_el); // Trap WFE
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8353
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 else
 WaitForEvent(localtimeout);

shared/functions/system/Hint_WFI

 // Hint_WFI()
 // ==========
 // Provides a hint indicating that the PE can enter a low-power state and
 // remain there until a wakeup event occurs or, for WFIT, a local timeout
 // event is generated when the virtual timer value equals or exceeds the
 // supplied threshold value.

 Hint_WFI(integer localtimeout, WFxType wfxtype)
 if !InterruptPending() then
 if PSTATE.EL == EL0 then
 // Check for traps described by the OS.
 AArch64.CheckForWFxTrap(EL1, wfxtype);
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() then
 // Check for traps described by the Hypervisor.
 AArch64.CheckForWFxTrap(EL2, wfxtype);
 if HaveEL(EL3) && PSTATE.EL != EL3 then
 // Check for traps described by the Secure Monitor.
 AArch64.CheckForWFxTrap(EL3, wfxtype);
 WaitForInterrupt(localtimeout);

shared/functions/system/Hint_Yield

 // Provides a hint that the task performed by a thread is of low
 // importance so that it could yield to improve overall performance.
 Hint_Yield();

shared/functions/system/IRQPending

 // Returns TRUE if there is any pending physical IRQ.
 boolean IRQPending();

shared/functions/system/IllegalExceptionReturn

 // IllegalExceptionReturn()
 // ========================

 boolean IllegalExceptionReturn(bits(N) spsr)

 // Check for illegal return:
 // * To an unimplemented Exception level.
 // * To EL2 in Secure state, when SecureEL2 is not enabled.
 // * To EL0 using AArch64 state, with SPSR.M[0]==1.
 // * To AArch64 state with SPSR.M[1]==1.
 // * To AArch32 state with an illegal value of SPSR.M.
 (valid, target) = ELFromSPSR(spsr);
 if !valid then return TRUE;

 // Check for return to higher Exception level
 if UInt(target) > UInt(PSTATE.EL) then return TRUE;

 spsr_mode_is_aarch32 = (spsr<4> == '1');

 // Check for illegal return:
 // * To EL1, EL2 or EL3 with register width specified in the SPSR different from the
 // Execution state used in the Exception level being returned to, as determined by
 // the SCR_EL3.RW or HCR_EL2.RW bits, or as configured from reset.
J1-8354 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 // * To EL0 using AArch64 state when EL1 is using AArch32 state as determined by the
 // SCR_EL3.RW or HCR_EL2.RW bits or as configured from reset.
 // * To AArch64 state from AArch32 state (should be caught by above)
 (known, target_el_is_aarch32) = ELUsingAArch32K(target);
 assert known || (target == EL0 && !ELUsingAArch32(EL1));
 if known && spsr_mode_is_aarch32 != target_el_is_aarch32 then return TRUE;

 // Check for illegal return from AArch32 to AArch64
 if UsingAArch32() && !spsr_mode_is_aarch32 then return TRUE;

 // Check for illegal return to EL1 when HCR.TGE is set and when either of
 // * SecureEL2 is enabled.
 // * SecureEL2 is not enabled and EL1 is in Non-secure state.
 if HaveEL(EL2) && target == EL1 && HCR_EL2.TGE == '1' then
 if (!IsSecureBelowEL3() || IsSecureEL2Enabled()) then return TRUE;
 return FALSE;

shared/functions/system/InstrSet

 enumeration InstrSet {InstrSet_A64, InstrSet_A32, InstrSet_T32};

shared/functions/system/InstructionSynchronizationBarrier

 InstructionSynchronizationBarrier();

shared/functions/system/InterruptPending

 // InterruptPending()
 // ==================
 // Returns TRUE if there are any pending physical or virtual
 // interrupts, and FALSE otherwise.

 boolean InterruptPending()
 boolean pending_virtual_interrupt = FALSE;
 boolean pending_physical_interrupt = (IRQPending() || FIQPending() ||
 IsPhysicalSErrorPending());

 if EL2Enabled() && PSTATE.EL IN {EL0, EL1} && HCR_EL2.TGE == '0' then
 boolean virq_pending = HCR_EL2.IMO == '1' && (VirtualIRQPending() || HCR_EL2.VI == '1') ;
 boolean vfiq_pending = HCR_EL2.FMO == '1' && (VirtualFIQPending() || HCR_EL2.VF == '1');
 boolean vsei_pending = HCR_EL2.AMO == '1' && (IsVirtualSErrorPending() || HCR_EL2.VSE == '1');
 pending_virtual_interrupt = vsei_pending || virq_pending || vfiq_pending;

 return pending_physical_interrupt || pending_virtual_interrupt;

shared/functions/system/IsEventRegisterSet

 // IsEventRegisterSet()
 // ====================
 // Return TRUE if the Event Register of this PE is set, and FALSE if it is clear.

 boolean IsEventRegisterSet()
 return EventRegister == '1';

shared/functions/system/IsHighestEL

 // IsHighestEL()
 // =============
 // Returns TRUE if given exception level is the highest exception level implemented
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8355
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 boolean IsHighestEL(bits(2) el)
 return HighestEL() == el;

shared/functions/system/IsInHost

 // IsInHost()
 // ==========

 boolean IsInHost()
 return ELIsInHost(PSTATE.EL);

shared/functions/system/IsPhysicalSErrorPending

 // Returns TRUE if a physical SError interrupt is pending.
 boolean IsPhysicalSErrorPending();

shared/functions/system/IsSErrorEdgeTriggered

 // IsSErrorEdgeTriggered()
 // =======================
 // Returns TRUE if the physical SError interrupt is edge-triggered
 // and FALSE otherwise.

 boolean IsSErrorEdgeTriggered(bits(2) target_el, bits(25) syndrome)
 if HaveRASExt() then
 if HaveDoubleFaultExt() then
 return TRUE;

 if ELUsingAArch32(target_el) then
 if syndrome<11:10> != '00' then
 // AArch32 and not Uncontainable.
 return TRUE;
 else
 if syndrome<24> == '0' && syndrome<5:0> != '000000' then
 // AArch64 and neither IMPLEMENTATION DEFINED syndrome nor Uncategorized.
 return TRUE;
 return boolean IMPLEMENTATION_DEFINED "Edge-triggered SError";

shared/functions/system/IsSecure

 // IsSecure()
 // ==========
 // Returns TRUE if current Exception level is in Secure state.

 boolean IsSecure()
 if HaveEL(EL3) && !UsingAArch32() && PSTATE.EL == EL3 then
 return TRUE;
 elsif HaveEL(EL3) && UsingAArch32() && PSTATE.M == M32_Monitor then
 return TRUE;
 return IsSecureBelowEL3();

shared/functions/system/IsSecureBelowEL3

 // IsSecureBelowEL3()
 // ==================
 // Return TRUE if an Exception level below EL3 is in Secure state
 // or would be following an exception return to that level.
 //
J1-8356 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 // Differs from IsSecure in that it ignores the current EL or Mode
 // in considering security state.
 // That is, if at AArch64 EL3 or in AArch32 Monitor mode, whether an
 // exception return would pass to Secure or Non-secure state.

 boolean IsSecureBelowEL3()
 if HaveEL(EL3) then
 return SCR_GEN[].NS == '0';
 elsif HaveEL(EL2) && (!HaveSecureEL2Ext() || !HaveAArch64()) then
 // If Secure EL2 is not an architecture option then we must be Non-secure.
 return FALSE;
 else
 // TRUE if processor is Secure or FALSE if Non-secure.
 return boolean IMPLEMENTATION_DEFINED "Secure-only implementation";

shared/functions/system/IsSecureEL2Enabled

 // IsSecureEL2Enabled()
 // ====================
 // Returns TRUE if Secure EL2 is enabled, FALSE otherwise.

 boolean IsSecureEL2Enabled()
 if HaveEL(EL2) && HaveSecureEL2Ext() then
 if HaveEL(EL3) then
 if !ELUsingAArch32(EL3) && SCR_EL3.EEL2 == '1' then
 return TRUE;
 else
 return FALSE;
 else
 return IsSecure();
 else
 return FALSE;

shared/functions/system/IsSynchronizablePhysicalSErrorPending

 // Returns TRUE if a synchronizable physical SError interrupt is pending.
 boolean IsSynchronizablePhysicalSErrorPending();

shared/functions/system/IsVirtualSErrorPending

 // Returns TRUE if a virtual SError interrupt is pending.
 boolean IsVirtualSErrorPending();

shared/functions/system/LocalTimeoutEvent

 // Returns TRUE if a local timeout event is generated when the value of
 // CNTVCT_EL0 equals or exceeds the threshold value for the first time.
 // If the threshold value is less than zero a local timeout event will
 // not be generated.
 boolean LocalTimeoutEvent(integer localtimeout);

shared/functions/system/Mode_Bits

 constant bits(5) M32_User = '10000';
 constant bits(5) M32_FIQ = '10001';
 constant bits(5) M32_IRQ = '10010';
 constant bits(5) M32_Svc = '10011';
 constant bits(5) M32_Monitor = '10110';
 constant bits(5) M32_Abort = '10111';
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8357
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 constant bits(5) M32_Hyp = '11010';
 constant bits(5) M32_Undef = '11011';
 constant bits(5) M32_System = '11111';

shared/functions/system/PLOfEL

 // PLOfEL()
 // ========

 PrivilegeLevel PLOfEL(bits(2) el)
 case el of
 when EL3 return if !HaveAArch64() then PL1 else PL3;
 when EL2 return PL2;
 when EL1 return PL1;
 when EL0 return PL0;

shared/functions/system/PSTATE

 ProcState PSTATE;

shared/functions/system/PhysicalCountInt

 // PhysicalCountInt()
 // ==================
 // Returns the integral part of physical count value of the System counter.

 bits(64) PhysicalCountInt()
 return PhysicalCount<87:24>;

shared/functions/system/PrivilegeLevel

 enumeration PrivilegeLevel {PL3, PL2, PL1, PL0};

shared/functions/system/ProcState

 type ProcState is (
 bits (1) N, // Negative condition flag
 bits (1) Z, // Zero condition flag
 bits (1) C, // Carry condition flag
 bits (1) V, // oVerflow condition flag
 bits (1) D, // Debug mask bit [AArch64 only]
 bits (1) A, // SError interrupt mask bit
 bits (1) I, // IRQ mask bit
 bits (1) F, // FIQ mask bit
 bits (1) PAN, // Privileged Access Never Bit [v8.1]
 bits (1) UAO, // User Access Override [v8.2]
 bits (1) DIT, // Data Independent Timing [v8.4]
 bits (1) TCO, // Tag Check Override [v8.5, AArch64 only]
 bits (2) BTYPE, // Branch Type [v8.5]
 bits (1) SS, // Software step bit
 bits (1) IL, // Illegal Execution state bit
 bits (2) EL, // Exception level
 bits (1) nRW, // not Register Width: 0=64, 1=32
 bits (1) SP, // Stack pointer select: 0=SP0, 1=SPx [AArch64 only]
 bits (1) Q, // Cumulative saturation flag [AArch32 only]
 bits (4) GE, // Greater than or Equal flags [AArch32 only]
 bits (1) SSBS, // Speculative Store Bypass Safe
 bits (8) IT, // If-then bits, RES0 in CPSR [AArch32 only]
 bits (1) J, // J bit, RES0 [AArch32 only, RES0 in SPSR and CPSR]
J1-8358 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 bits (1) T, // T32 bit, RES0 in CPSR [AArch32 only]
 bits (1) E, // Endianness bit [AArch32 only]
 bits (5) M // Mode field [AArch32 only]
)

shared/functions/system/RestoredITBits

 // RestoredITBits()
 // ================
 // Get the value of PSTATE.IT to be restored on this exception return.

 bits(8) RestoredITBits(bits(N) spsr)
 it = spsr<15:10,26:25>;

 // When PSTATE.IL is set, it is CONSTRAINED UNPREDICTABLE whether the IT bits are each set
 // to zero or copied from the SPSR.
 if PSTATE.IL == '1' then
 if ConstrainUnpredictableBool() then return '00000000';
 else return it;

 // The IT bits are forced to zero when they are set to a reserved value.
 if !IsZero(it<7:4>) && IsZero(it<3:0>) then
 return '00000000';

 // The IT bits are forced to zero when returning to A32 state, or when returning to an EL
 // with the ITD bit set to 1, and the IT bits are describing a multi-instruction block.
 itd = if PSTATE.EL == EL2 then HSCTLR.ITD else SCTLR.ITD;
 if (spsr<5> == '0' && !IsZero(it)) || (itd == '1' && !IsZero(it<2:0>)) then
 return '00000000';
 else
 return it;

shared/functions/system/SCRType

 type SCRType;

shared/functions/system/SCR_GEN

 // SCR_GEN[]
 // =========

 SCRType SCR_GEN[]
 // AArch32 secure & AArch64 EL3 registers are not architecturally mapped
 assert HaveEL(EL3);
 bits(64) r;
 if !HaveAArch64() then
 r = ZeroExtend(SCR);
 else
 r = SCR_EL3;
 return r;

shared/functions/system/SecurityState

 enumeration SecurityState {
 SS_NonSecure,
 SS_Secure
 };
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8359
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/system/SendEvent

 // Signal an event to all PEs in a multiprocessor system to set their Event Registers.
 // When a PE executes the SEV instruction, it causes this function to be executed.
 SendEvent();

shared/functions/system/SendEventLocal

 // SendEventLocal()
 // ================
 // Set the local Event Register of this PE.
 // When a PE executes the SEVL instruction, it causes this function to be executed.

 SendEventLocal()
 EventRegister = '1';
 return;

shared/functions/system/SetPSTATEFromPSR

 // SetPSTATEFromPSR()
 // ==================
 // Set PSTATE based on a PSR value

 SetPSTATEFromPSR(bits(N) spsr)
 boolean from_aarch64 = !UsingAArch32();
 assert N == (if from_aarch64 then 64 else 32);
 PSTATE.SS = DebugExceptionReturnSS(spsr);
 ShouldAdvanceSS = FALSE;
 if IllegalExceptionReturn(spsr) then
 PSTATE.IL = '1';
 if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
 if HaveBTIExt() then PSTATE.BTYPE = bits(2) UNKNOWN;
 if HaveUAOExt() then PSTATE.UAO = bit UNKNOWN;
 if HaveDITExt() then PSTATE.DIT = bit UNKNOWN;
 if HaveMTEExt() then PSTATE.TCO = bit UNKNOWN;
 else
 // State that is reinstated only on a legal exception return
 PSTATE.IL = spsr<20>;
 if spsr<4> == '1' then // AArch32 state
 AArch32.WriteMode(spsr<4:0>); // Sets PSTATE.EL correctly
 if HaveSSBSExt() then PSTATE.SSBS = spsr<23>;
 else // AArch64 state
 PSTATE.nRW = '0';
 PSTATE.EL = spsr<3:2>;
 PSTATE.SP = spsr<0>;
 if HaveBTIExt() then PSTATE.BTYPE = spsr<11:10>;
 if HaveSSBSExt() then PSTATE.SSBS = spsr<12>;
 if HaveUAOExt() then PSTATE.UAO = spsr<23>;
 if HaveDITExt() then PSTATE.DIT = spsr<24>;
 if HaveMTEExt() then PSTATE.TCO = spsr<25>;

 // If PSTATE.IL is set and returning to AArch32 state, it is CONSTRAINED UNPREDICTABLE whether
 // the T bit is set to zero or copied from SPSR.
 if PSTATE.IL == '1' && PSTATE.nRW == '1' then
 if ConstrainUnpredictableBool() then spsr<5> = '0';

 // State that is reinstated regardless of illegal exception return
 PSTATE.<N,Z,C,V> = spsr<31:28>;
 if HavePANExt() then PSTATE.PAN = spsr<22>;
 if PSTATE.nRW == '1' then // AArch32 state
 PSTATE.Q = spsr<27>;
 PSTATE.IT = RestoredITBits(spsr);
 ShouldAdvanceIT = FALSE;
 if HaveDITExt() then PSTATE.DIT = (if (Restarting() || from_aarch64) then spsr<24> else
J1-8360 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
spsr<21>);
 PSTATE.GE = spsr<19:16>;
 PSTATE.E = spsr<9>;
 PSTATE.<A,I,F> = spsr<8:6>; // No PSTATE.D in AArch32 state
 PSTATE.T = spsr<5>; // PSTATE.J is RES0
 else // AArch64 state
 PSTATE.<D,A,I,F> = spsr<9:6>; // No PSTATE.<Q,IT,GE,E,T> in AArch64 state
 return;

shared/functions/system/ShouldAdvanceIT

 boolean ShouldAdvanceIT;

shared/functions/system/ShouldAdvanceSS

 boolean ShouldAdvanceSS;

shared/functions/system/SpeculationBarrier

 SpeculationBarrier();

shared/functions/system/SynchronizeContext

 SynchronizeContext();

shared/functions/system/SynchronizeErrors

 // Implements the error synchronization event.
 SynchronizeErrors();

shared/functions/system/TakeUnmaskedPhysicalSErrorInterrupts

 // Take any pending unmasked physical SError interrupt.
 TakeUnmaskedPhysicalSErrorInterrupts(boolean iesb_req);

shared/functions/system/TakeUnmaskedSErrorInterrupts

 // Take any pending unmasked physical SError interrupt or unmasked virtual SError
 // interrupt.
 TakeUnmaskedSErrorInterrupts();

shared/functions/system/ThisInstr

 bits(32) ThisInstr();

shared/functions/system/ThisInstrLength

 integer ThisInstrLength();
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8361
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/system/Unreachable

 Unreachable()
 assert FALSE;

shared/functions/system/UsingAArch32

 // UsingAArch32()
 // ==============
 // Return TRUE if the current Exception level is using AArch32, FALSE if using AArch64.

 boolean UsingAArch32()
 boolean aarch32 = (PSTATE.nRW == '1');
 if !HaveAArch32() then assert !aarch32;
 if !HaveAArch64() then assert aarch32;
 return aarch32;

shared/functions/system/VirtualFIQPending

 // Returns TRUE if there is any pending virtual FIQ.
 boolean VirtualFIQPending();

shared/functions/system/VirtualIRQPending

 // Returns TRUE if there is any pending virtual IRQ.
 boolean VirtualIRQPending();

shared/functions/system/WFxType

 enumeration WFxType {WFxType_WFE, WFxType_WFI, WFxType_WFET, WFxType_WFIT};

shared/functions/system/WaitForEvent

 // WaitForEvent()
 // ==============
 // PE optionally suspends execution until one of the following occurs:
 // - A WFE wake-up event.
 // - A reset.
 // - The implementation chooses to resume execution.
 // - A Wait for Event with Timeout (WFET) is executing, and a local timeout event occurs
 // It is IMPLEMENTATION DEFINED whether restarting execution after the period of
 // suspension causes the Event Register to be cleared.

 WaitForEvent(integer localtimeout)
 if !(IsEventRegisterSet() || LocalTimeoutEvent(localtimeout)) then
 EnterLowPowerState();
 return;

shared/functions/system/WaitForInterrupt

 // WaitForInterrupt()
 // ==================
 // PE optionally suspends execution until one of the following occurs:
 // - A WFI wake-up event.
 // - A reset.
 // - The implementation chooses to resume execution.
 // - A Wait for Interrupt with Timeout (WFIT) is executing, and a local timeout event occurs.
J1-8362 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode

 WaitForInterrupt(integer localtimeout)
 if localtimeout < 0 then
 EnterLowPowerState();
 else
 if !LocalTimeoutEvent(localtimeout) then
 EnterLowPowerState();
 return;

shared/functions/unpredictable/ConstrainUnpredictable

 // Return the appropriate Constraint result to control the caller's behavior. The return value
 // is IMPLEMENTATION DEFINED within a permitted list for each UNPREDICTABLE case.
 // (The permitted list is determined by an assert or case statement at the call site.)
 Constraint ConstrainUnpredictable();

shared/functions/unpredictable/ConstrainUnpredictableBits

 // This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN.
 // If the result is Constraint_UNKNOWN then the function also returns UNKNOWN value, but that
 // value is always an allocated value; that is, one for which the behavior is not itself
 // CONSTRAINED.
 (Constraint,bits(width)) ConstrainUnpredictableBits();

shared/functions/unpredictable/ConstrainUnpredictableBool

 // ConstrainUnpredictableBool()
 // ============================

 // This is a simple wrapper function for cases where the constrained result is either TRUE or FALSE.

 boolean ConstrainUnpredictableBool()

 c = ConstrainUnpredictable();
 assert c IN {Constraint_TRUE, Constraint_FALSE};
 return (c == Constraint_TRUE);

shared/functions/unpredictable/ConstrainUnpredictableInteger

 // This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN. If
 // the result is Constraint_UNKNOWN then the function also returns an UNKNOWN value in the range
 // low to high, inclusive.
 (Constraint,integer) ConstrainUnpredictableInteger(integer low, integer high);

shared/functions/unpredictable/Constraint

 enumeration Constraint {// General
 Constraint_NONE, // Instruction executes with
 // no change or side-effect to its described
behavior
 Constraint_UNKNOWN, // Destination register has UNKNOWN value
 Constraint_UNDEF, // Instruction is UNDEFINED
 Constraint_UNDEFEL0, // Instruction is UNDEFINED at EL0 only
 Constraint_NOP, // Instruction executes as NOP
 Constraint_TRUE,
 Constraint_FALSE,
 Constraint_DISABLED,
 Constraint_UNCOND, // Instruction executes unconditionally
 Constraint_COND, // Instruction executes conditionally
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8363
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 Constraint_ADDITIONAL_DECODE, // Instruction executes with additional decode
 // Load-store
 Constraint_WBSUPPRESS,
 Constraint_FAULT,
 Constraint_LIMITED_ATOMICITY, // Accesses are not single-copy atomic above
the byte level
 Constraint_NVNV1_00,
 Constraint_NVNV1_01,
 Constraint_NVNV1_11,
 Constraint_OSH, // Constrain to Outer shareable
 Constraint_ISH, // Constrain to Inner shareable
 Constraint_NSH, // Constrain to Nonshareable

 Constraint_NC, // Constrain to Noncacheable
 Constraint_WT, // Constrain to Writethrough
 Constraint_WB, // Constrain to Writeback

 // IPA too large
 Constraint_FORCE, Constraint_FORCENOSLCHECK,
 // PMSCR_PCT reserved values select Virtual timestamp
 Constraint_PMSCR_PCT_VIRT};

shared/functions/vector/AdvSIMDExpandImm

 // AdvSIMDExpandImm()
 // ==================

 bits(64) AdvSIMDExpandImm(bit op, bits(4) cmode, bits(8) imm8)
 case cmode<3:1> of
 when '000'
 imm64 = Replicate(Zeros(24):imm8, 2);
 when '001'
 imm64 = Replicate(Zeros(16):imm8:Zeros(8), 2);
 when '010'
 imm64 = Replicate(Zeros(8):imm8:Zeros(16), 2);
 when '011'
 imm64 = Replicate(imm8:Zeros(24), 2);
 when '100'
 imm64 = Replicate(Zeros(8):imm8, 4);
 when '101'
 imm64 = Replicate(imm8:Zeros(8), 4);
 when '110'
 if cmode<0> == '0' then
 imm64 = Replicate(Zeros(16):imm8:Ones(8), 2);
 else
 imm64 = Replicate(Zeros(8):imm8:Ones(16), 2);
 when '111'
 if cmode<0> == '0' && op == '0' then
 imm64 = Replicate(imm8, 8);
 if cmode<0> == '0' && op == '1' then
 imm8a = Replicate(imm8<7>, 8); imm8b = Replicate(imm8<6>, 8);
 imm8c = Replicate(imm8<5>, 8); imm8d = Replicate(imm8<4>, 8);
 imm8e = Replicate(imm8<3>, 8); imm8f = Replicate(imm8<2>, 8);
 imm8g = Replicate(imm8<1>, 8); imm8h = Replicate(imm8<0>, 8);
 imm64 = imm8a:imm8b:imm8c:imm8d:imm8e:imm8f:imm8g:imm8h;
 if cmode<0> == '1' && op == '0' then
 imm32 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,5):imm8<5:0>:Zeros(19);
 imm64 = Replicate(imm32, 2);
 if cmode<0> == '1' && op == '1' then
 if UsingAArch32() then ReservedEncoding();
 imm64 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,8):imm8<5:0>:Zeros(48);

 return imm64;
J1-8364 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/vector/MatMulAdd

 // MatMulAdd()
 // ===========
 //
 // Signed or unsigned 8-bit integer matrix multiply and add to 32-bit integer matrix
 // result[2, 2] = addend[2, 2] + (op1[2, 8] * op2[8, 2])

 bits(N) MatMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, boolean op1_unsigned, boolean op2_unsigned)
 assert N == 128;

 bits(N) result;
 bits(32) sum;
 integer prod;

 for i = 0 to 1
 for j = 0 to 1
 sum = Elem[addend, 2*i + j, 32];
 for k = 0 to 7
 prod = Int(Elem[op1, 8*i + k, 8], op1_unsigned) * Int(Elem[op2, 8*j + k, 8],
op2_unsigned);
 sum = sum + prod;
 Elem[result, 2*i + j, 32] = sum;

 return result;

shared/functions/vector/PolynomialMult

 // PolynomialMult()
 // ================

 bits(M+N) PolynomialMult(bits(M) op1, bits(N) op2)
 result = Zeros(M+N);
 extended_op2 = ZeroExtend(op2, M+N);
 for i=0 to M-1
 if op1<i> == '1' then
 result = result EOR LSL(extended_op2, i);
 return result;

shared/functions/vector/SatQ

 // SatQ()
 // ======

 (bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
 (result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
 return (result, sat);

shared/functions/vector/SignedSatQ

 // SignedSatQ()
 // ============

 (bits(N), boolean) SignedSatQ(integer i, integer N)
 if i > 2^(N-1) - 1 then
 result = 2^(N-1) - 1; saturated = TRUE;
 elsif i < -(2^(N-1)) then
 result = -(2^(N-1)); saturated = TRUE;
 else
 result = i; saturated = FALSE;
 return (result<N-1:0>, saturated);
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8365
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/vector/UnsignedRSqrtEstimate

 // UnsignedRSqrtEstimate()
 // =======================

 bits(N) UnsignedRSqrtEstimate(bits(N) operand)
 assert N == 32;
 if operand<N-1:N-2> == '00' then // Operands <= 0x3FFFFFFF produce 0xFFFFFFFF
 result = Ones(N);
 else
 // input is in the range 0x40000000 .. 0xffffffff representing [0.25 .. 1.0)
 // estimate is in the range 256 .. 511 representing [1.0 .. 2.0)
 increasedprecision = FALSE;
 estimate = RecipSqrtEstimate(UInt(operand<31:23>), increasedprecision);
 // result is in the range 0x80000000 .. 0xff800000 representing [1.0 .. 2.0)
 result = estimate<8:0> : Zeros(N-9);

 return result;

shared/functions/vector/UnsignedRecipEstimate

 // UnsignedRecipEstimate()
 // =======================

 bits(N) UnsignedRecipEstimate(bits(N) operand)
 assert N == 32;
 if operand<N-1> == '0' then // Operands <= 0x7FFFFFFF produce 0xFFFFFFFF
 result = Ones(N);
 else
 // input is in the range 0x80000000 .. 0xffffffff representing [0.5 .. 1.0)

 // estimate is in the range 256 to 511 representing [1.0 .. 2.0)
 increasedprecision = FALSE;
 estimate = RecipEstimate(UInt(operand<31:23>), increasedprecision);

 // result is in the range 0x80000000 .. 0xff800000 representing [1.0 .. 2.0)
 result = estimate<8:0> : Zeros(N-9);

 return result;

shared/functions/vector/UnsignedSatQ

 // UnsignedSatQ()
 // ==============

 (bits(N), boolean) UnsignedSatQ(integer i, integer N)
 if i > 2^N - 1 then
 result = 2^N - 1; saturated = TRUE;
 elsif i < 0 then
 result = 0; saturated = TRUE;
 else
 result = i; saturated = FALSE;
 return (result<N-1:0>, saturated);

J1.3.4 shared/trace

This section includes the following pseudocode functions:

• shared/trace/selfhosted/SelfHostedTraceEnabled on page J1-8367.

• shared/trace/selfhosted/TraceAllowed on page J1-8367.

• shared/trace/selfhosted/TraceContextIDR2 on page J1-8367.

• shared/trace/selfhosted/TraceSynchronizationBarrier on page J1-8367.
J1-8366 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/trace/selfhosted/TraceTimeStamp on page J1-8367.

shared/trace/selfhosted/SelfHostedTraceEnabled

 // SelfHostedTraceEnabled()
 // ========================
 // Returns TRUE if Self-hosted Trace is enabled.

 boolean SelfHostedTraceEnabled()
 if !HaveTraceExt() || !HaveSelfHostedTrace() then return FALSE;
 if HaveEL(EL3) then
 secure_trace_enable = (if ELUsingAArch32(EL3) then SDCR.STE else MDCR_EL3.STE);
 niden = (secure_trace_enable == '0' || ExternalSecureNoninvasiveDebugEnabled());
 else
 // If no EL3, IsSecure() returns the Effective value of (SCR_EL3.NS == '0')
 niden = (!IsSecure() || ExternalSecureNoninvasiveDebugEnabled());
 return (EDSCR.TFO == '0' || !niden);

shared/trace/selfhosted/TraceAllowed

 // TraceAllowed()
 // ==============
 // Returns TRUE if Self-hosted Trace is allowed in the current Security state and Exception level

 boolean TraceAllowed()
 if !HaveTraceExt() then return FALSE;
 if SelfHostedTraceEnabled() then
 if IsSecure() && HaveEL(EL3) then
 secure_trace_enable = (if ELUsingAArch32(EL3) then SDCR.STE else MDCR_EL3.STE);
 if secure_trace_enable == '0' then return FALSE;
 TGE_bit = if EL2Enabled() then HCR_EL2.TGE else '0';
 case PSTATE.EL of
 when EL3 TRE_bit = if !HaveAArch64() then TRFCR.E1TRE else '0';
 when EL2 TRE_bit = TRFCR_EL2.E2TRE;
 when EL1 TRE_bit = TRFCR_EL1.E1TRE;
 when EL0 TRE_bit = if TGE_bit == '1' then TRFCR_EL2.E0HTRE else TRFCR_EL1.E0TRE;
 return TRE_bit == '1';
 else
 return (!IsSecure() || ExternalSecureNoninvasiveDebugEnabled());

shared/trace/selfhosted/TraceContextIDR2

 // TraceContextIDR2()
 // ==================

 boolean TraceContextIDR2()
 if !TraceAllowed()|| !HaveEL(EL2) then return FALSE;
 return (!SelfHostedTraceEnabled() || TRFCR_EL2.CX == '1');

shared/trace/selfhosted/TraceSynchronizationBarrier

 // Memory barrier instruction that preserves the relative order of memory accesses to System
 // registers due to trace operations and other memory accesses to the same registers
 TraceSynchronizationBarrier();

shared/trace/selfhosted/TraceTimeStamp

 // TraceTimeStamp()
 // ================

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8367
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 TimeStamp TraceTimeStamp()
 if SelfHostedTraceEnabled() then
 if HaveEL(EL2) then
 TS_el2 = TRFCR_EL2.TS;
 if !HaveECVExt() && TS_el2 == '10' then
 // Reserved value
 (-, TS_el2) = ConstrainUnpredictableBits();

 case TS_el2 of
 when '00'
 // Falls out to check TRFCR_EL1.TS
 when '01'
 return TimeStamp_Virtual;
 when '10'
 assert HaveECVExt(); // Otherwise ConstrainUnpredictableBits removes this case
 return TimeStamp_OffsetPhysical;
 when '11'
 return TimeStamp_Physical;

 TS_el1 = TRFCR_EL1.TS;
 if TS_el1 == '00' || (!HaveECVExt() && TS_el1 == '10') then
 // Reserved value
 (-, TS_el1) = ConstrainUnpredictableBits();

 case TS_el1 of
 when '01'
 return TimeStamp_Virtual;
 when '10'
 assert HaveECVExt();
 return TimeStamp_OffsetPhysical;
 when '11'
 return TimeStamp_Physical;
 otherwise
 Unreachable(); // ConstrainUnpredictableBits removes this case
 else
 return TimeStamp_CoreSight;

J1.3.5 shared/translation

This section includes the following pseudocode functions:

• shared/translation/attrs/DecodeDevice on page J1-8369.

• shared/translation/attrs/DecodeLDFAttr on page J1-8369.

• shared/translation/attrs/DecodeSDFAttr on page J1-8370.

• shared/translation/attrs/DecodeShareability on page J1-8370.

• shared/translation/attrs/MAIRAttr on page J1-8370.

• shared/translation/attrs/NormalNCMemAttr on page J1-8371.

• shared/translation/attrs/NormaliseShareability on page J1-8371.

• shared/translation/attrs/S1ConstrainUnpredictableRESMAIR on page J1-8371.

• shared/translation/attrs/S1DecodeMemAttrs on page J1-8371.

• shared/translation/attrs/S2CombineS1AttrHints on page J1-8372.

• shared/translation/attrs/S2CombineS1Device on page J1-8373.

• shared/translation/attrs/S2CombineS1MemAttrs on page J1-8373.

• shared/translation/attrs/S2CombineS1Shareability on page J1-8374.

• shared/translation/attrs/S2DecodeCacheability on page J1-8374.

• shared/translation/attrs/S2DecodeMemAttrs on page J1-8374.

• shared/translation/attrs/WalkMemAttrs on page J1-8375.

• shared/translation/faults/AlignmentFault on page J1-8375.

• shared/translation/faults/AsyncExternalAbort on page J1-8375.

• shared/translation/faults/NoFault on page J1-8376.
J1-8368 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/translation/translation/HasS2Translation on page J1-8376.

• shared/translation/translation/Have16bitVMID on page J1-8376.

• shared/translation/translation/S1TranslationRegime on page J1-8376.

• shared/translation/vmsa/CreateAddressDescriptor on page J1-8376.

• shared/translation/vmsa/CreateFaultyAddressDescriptor on page J1-8377.

• shared/translation/vmsa/DescriptorType on page J1-8377.

• shared/translation/vmsa/Domains on page J1-8377.

• shared/translation/vmsa/FetchDescriptor on page J1-8377.

• shared/translation/vmsa/HasUnprivileged on page J1-8378.

• shared/translation/vmsa/IsAtomicRW on page J1-8378.

• shared/translation/vmsa/Regime on page J1-8378.

• shared/translation/vmsa/RegimeUsingAArch32 on page J1-8378.

• shared/translation/vmsa/S1TTWParams on page J1-8379.

• shared/translation/vmsa/S2TTWParams on page J1-8379.

• shared/translation/vmsa/SDFType on page J1-8380.

• shared/translation/vmsa/SecurityStateForRegime on page J1-8380.

• shared/translation/vmsa/StageOA on page J1-8380.

• shared/translation/vmsa/TGx on page J1-8380.

• shared/translation/vmsa/TGxGranuleBits on page J1-8380.

• shared/translation/vmsa/TTWState on page J1-8381.

• shared/translation/vmsa/TranslationRegime on page J1-8381.

• shared/translation/vmsa/TranslationSize on page J1-8381.

• shared/translation/vmsa/VARange on page J1-8382.

shared/translation/attrs/DecodeDevice

 // DecodeDevice()
 // ==============
 // Decode output Device type

 DeviceType DecodeDevice(bits(2) device)
 case device of
 when '00' return DeviceType_nGnRnE;
 when '01' return DeviceType_nGnRE;
 when '10' return DeviceType_nGRE;
 when '11' return DeviceType_GRE;

shared/translation/attrs/DecodeLDFAttr

 // DecodeLDFAttr()
 // ===============
 // Decode memory attributes using LDF (Long Descriptor Format) mapping

 MemAttrHints DecodeLDFAttr(bits(4) attr)
 MemAttrHints ldfattr;

 if attr == 'x0xx' then ldfattr.attrs = MemAttr_WT; // Write-through
 elsif attr == '0100' then ldfattr.attrs = MemAttr_NC; // Non-cacheable
 elsif attr == 'x1xx' then ldfattr.attrs = MemAttr_WB; // Write-back
 else Unreachable();

 // Allocation hints are applicable only to cacheable memory.
 if ldfattr.attrs != MemAttr_NC then
 case attr<1:0> of
 when '00' ldfattr.hints = MemHint_No; // No allocation hints
 when '01' ldfattr.hints = MemHint_WA; // Write-allocate
 when '10' ldfattr.hints = MemHint_RA; // Read-allocate
 when '11' ldfattr.hints = MemHint_RWA; // Read/Write allocate
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8369
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 // The Transient hint applies only to cacheable memory with some allocation hints.
 if ldfattr.attrs != MemAttr_NC && ldfattr.hints != MemHint_No then
 ldfattr.transient = attr<3> == '0';

 return ldfattr;

shared/translation/attrs/DecodeSDFAttr

 // DecodeSDFAttr()
 // ===============
 // Decode memory attributes using SDF (Short Descriptor Format) mapping

 MemAttrHints DecodeSDFAttr(bits(2) rgn)
 MemAttrHints sdfattr;

 case rgn of
 when '00' // Non-cacheable (no allocate)
 sdfattr.attrs = MemAttr_NC;
 when '01' // Write-back, Read and Write allocate
 sdfattr.attrs = MemAttr_WB;
 sdfattr.hints = MemHint_RWA;
 when '10' // Write-through, Read allocate
 sdfattr.attrs = MemAttr_WT;
 sdfattr.hints = MemHint_RA;
 when '11' // Write-back, Read allocate
 sdfattr.attrs = MemAttr_WB;
 sdfattr.hints = MemHint_RA;

 sdfattr.transient = FALSE;

 return sdfattr;

shared/translation/attrs/DecodeShareability

 // DecodeShareability()
 // ====================
 // Decode shareability of target memory region

 Shareability DecodeShareability(bits(2) sh)
 case sh of
 when '10' return Shareability_OSH;
 when '11' return Shareability_ISH;
 when '00' return Shareability_NSH;
 otherwise
 case ConstrainUnpredictable() of
 when Constraint_OSH return Shareability_OSH;
 when Constraint_ISH return Shareability_ISH;
 when Constraint_NSH return Shareability_NSH;

shared/translation/attrs/MAIRAttr

 // MAIRAttr()
 // ==========
 // Retrieve the memory attribute encoding indexed in the given MAIR

 bits(8) MAIRAttr(integer index, MAIRType mair)
 bit_index = 8 * index;
 return mair<bit_index+7:bit_index>;
J1-8370 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/translation/attrs/NormalNCMemAttr

 // NormalNCMemAttr()
 // =================
 // Normal Non-cacheable memory attributes

 MemoryAttributes NormalNCMemAttr()
 MemAttrHints non_cacheable;
 non_cacheable.attrs = MemAttr_NC;

 MemoryAttributes nc_memattrs;
 nc_memattrs.memtype = MemType_Normal;
 nc_memattrs.outer = non_cacheable;
 nc_memattrs.inner = non_cacheable;
 nc_memattrs.shareability = Shareability_OSH;
 nc_memattrs.tagged = FALSE;

 return nc_memattrs;

shared/translation/attrs/NormaliseShareability

 // NormaliseShareability()
 // =======================
 // Force Outer Shareability on Device and Normal iNCoNC memory

 Shareability NormaliseShareability(MemoryAttributes memattrs)
 if (memattrs.memtype == MemType_Device ||
 (memattrs.inner.attrs == MemAttr_NC &&
 memattrs.outer.attrs == MemAttr_NC)) then
 return Shareability_OSH;
 else
 return memattrs.shareability;

shared/translation/attrs/S1ConstrainUnpredictableRESMAIR

 // S1ConstrainUnpredictableRESMAIR()
 // =================================
 // Determine whether a reserved value occupies MAIR_ELx.AttrN

 boolean S1ConstrainUnpredictableRESMAIR(bits(8) attr, boolean s1aarch64)
 case attr of
 when '0000xx01' return !(s1aarch64 && HaveFeatXS());
 when '0000xxxx' return attr<1:0> != '00';
 when '01000000' return !(s1aarch64 && HaveFeatXS());
 when '10100000' return !(s1aarch64 && HaveFeatXS());
 when '11110000' return !(s1aarch64 && HaveMTE2Ext());
 when 'xxxx0000' return TRUE;
 otherwise return FALSE;

shared/translation/attrs/S1DecodeMemAttrs

 // S1DecodeMemAttrs()
 // ==================
 // Decode MAIR-format memory attributes assigned in stage 1

 MemoryAttributes S1DecodeMemAttrs(bits(8) attr, bits(2) sh, boolean s1aarch64)
 if S1ConstrainUnpredictableRESMAIR(attr, s1aarch64) then
 (-, attr) = ConstrainUnpredictableBits();

 MemoryAttributes memattrs;
 case attr of
 when '0000xxxx' // Device memory
 memattrs.memtype = MemType_Device;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8371
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 memattrs.device = DecodeDevice(attr<3:2>);
 memattrs.tagged = FALSE;
 memattrs.xs = if s1aarch64 then NOT attr<0> else '1';
 when '01000000'
 assert s1aarch64 && HaveFeatXS();
 memattrs.memtype = MemType_Normal;
 memattrs.tagged = FALSE;
 memattrs.outer.attrs = MemAttr_NC;
 memattrs.inner.attrs = MemAttr_NC;
 memattrs.xs = '0';

 when '10100000'
 assert s1aarch64 && HaveFeatXS();
 memattrs.memtype = MemType_Normal;
 memattrs.tagged = FALSE;
 memattrs.outer.attrs = MemAttr_WT;
 memattrs.outer.hints = MemHint_RA;
 memattrs.outer.transient = FALSE;
 memattrs.inner.attrs = MemAttr_WT;
 memattrs.inner.hints = MemHint_RA;
 memattrs.inner.transient = FALSE;
 memattrs.xs = '0';
 when '11110000' // Tagged memory
 assert s1aarch64 && HaveMTE2Ext();
 memattrs.memtype = MemType_Normal;
 memattrs.tagged = TRUE;
 memattrs.outer.attrs = MemAttr_WB;
 memattrs.outer.hints = MemHint_RWA;
 memattrs.outer.transient = FALSE;
 memattrs.inner.attrs = MemAttr_WB;
 memattrs.inner.hints = MemHint_RWA;
 memattrs.inner.transient = FALSE;
 memattrs.xs = '0';
 otherwise
 memattrs.memtype = MemType_Normal;
 memattrs.outer = DecodeLDFAttr(attr<7:4>);
 memattrs.inner = DecodeLDFAttr(attr<3:0>);
 memattrs.tagged = FALSE;

 if (memattrs.inner.attrs == MemAttr_WB &&
 memattrs.outer.attrs == MemAttr_WB) then
 memattrs.xs = '0';
 else
 memattrs.xs = '1';

 memattrs.shareability = DecodeShareability(sh);

 return memattrs;

shared/translation/attrs/S2CombineS1AttrHints

 // S2CombineS1AttrHints()
 // ======================
 // Determine resultant Normal memory cacheability and allocation hints from
 // combining stage 1 Normal memory attributes and stage 2 cacheability attributes.

 MemAttrHints S2CombineS1AttrHints(MemAttrHints s1_attrhints, MemAttrHints s2_attrhints)
 MemAttrHints attrhints;

 if s1_attrhints.attrs == MemAttr_NC || s2_attrhints.attrs == MemAttr_NC then
 attrhints.attrs = MemAttr_NC;
 elsif s1_attrhints.attrs == MemAttr_WT || s2_attrhints.attrs == MemAttr_WT then
 attrhints.attrs = MemAttr_WT;
 else
 attrhints.attrs = MemAttr_WB;

J1-8372 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 // Stage 2 does not assign any allocation hints
 // Instead, they are inherited from stage 1
 if attrhints.attrs != MemAttr_NC then
 attrhints.hints = s1_attrhints.hints;
 attrhints.transient = s1_attrhints.transient;

 return attrhints;

shared/translation/attrs/S2CombineS1Device

 // S2CombineS1Device()
 // ===================
 // Determine resultant Device type from combining output memory attributes
 // in stage 1 and Device attributes in stage 2

 DeviceType S2CombineS1Device(DeviceType s1_device, DeviceType s2_device)
 if s1_device == DeviceType_nGnRnE || s2_device == DeviceType_nGnRnE then
 return DeviceType_nGnRnE;
 elsif s1_device == DeviceType_nGnRE || s2_device == DeviceType_nGnRE then
 return DeviceType_nGnRE;
 elsif s1_device == DeviceType_nGRE || s2_device == DeviceType_nGRE then
 return DeviceType_nGRE;
 else
 return DeviceType_GRE;

shared/translation/attrs/S2CombineS1MemAttrs

 // S2CombineS1MemAttrs()
 // =====================
 // Combine stage 2 with stage 1 memory attributes

 MemoryAttributes S2CombineS1MemAttrs(MemoryAttributes s1_memattrs,
 MemoryAttributes s2_memattrs)
 MemoryAttributes memattrs;

 if s1_memattrs.memtype == MemType_Device && s2_memattrs.memtype == MemType_Device then
 memattrs.memtype = MemType_Device;
 memattrs.device = S2CombineS1Device(s1_memattrs.device, s2_memattrs.device);
 elsif s1_memattrs.memtype == MemType_Device then // S2 Normal, S1 Device
 memattrs = s1_memattrs;
 elsif s2_memattrs.memtype == MemType_Device then // S2 Device, S1 Normal
 memattrs = s2_memattrs;
 else // S2 Normal, S1 Normal
 memattrs.memtype = MemType_Normal;
 memattrs.inner = S2CombineS1AttrHints(s1_memattrs.inner, s2_memattrs.inner);
 memattrs.outer = S2CombineS1AttrHints(s1_memattrs.outer, s2_memattrs.outer);

 if ELUsingAArch32(EL2) || !HaveMTE2Ext() then
 memattrs.tagged = FALSE;
 else
 memattrs.tagged = AArch64.IsS2ResultTagged(memattrs, s1_memattrs.tagged);

 memattrs.shareability = S2CombineS1Shareability(s1_memattrs.shareability,
 s2_memattrs.shareability);
 memattrs.xs = s2_memattrs.xs;

 memattrs.shareability = NormaliseShareability(memattrs);
 return memattrs;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8373
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/translation/attrs/S2CombineS1Shareability

 // S2CombineS1Shareability()
 // =========================
 // Combine stage 2 shareability with stage 1

 Shareability S2CombineS1Shareability(Shareability s1_shareability,
 Shareability s2_shareability)

 if (s1_shareability == Shareability_OSH ||
 s2_shareability == Shareability_OSH) then
 return Shareability_OSH;
 elsif (s1_shareability == Shareability_ISH ||
 s2_shareability == Shareability_ISH) then
 return Shareability_ISH;
 else
 return Shareability_NSH;

shared/translation/attrs/S2DecodeCacheability

 // S2DecodeCacheability()
 // ======================
 // Determine the stage 2 cacheability for Normal memory

 MemAttrHints S2DecodeCacheability(bits(2) attr)
 MemAttrHints s2attr;

 case attr of
 when '01' s2attr.attrs = MemAttr_NC; // Non-cacheable
 when '10' s2attr.attrs = MemAttr_WT; // Write-through
 when '11' s2attr.attrs = MemAttr_WB; // Write-back
 otherwise // Constrained unpredictable
 case ConstrainUnpredictable() of
 when Constraint_NC s2attr.attrs = MemAttr_NC;
 when Constraint_WT s2attr.attrs = MemAttr_WT;
 when Constraint_WB s2attr.attrs = MemAttr_WB;

 // Stage 2 does not assign hints or the transient property
 // They are inherited from stage 1 if the result of the combination allows it
 s2attr.hints = bits(2) UNKNOWN;
 s2attr.transient = boolean UNKNOWN;

 return s2attr;

shared/translation/attrs/S2DecodeMemAttrs

 // S2DecodeMemAttrs()
 // ==================
 // Decode stage 2 memory attributes

 MemoryAttributes S2DecodeMemAttrs(bits(4) attr, bits(2) sh)
 MemoryAttributes memattrs;

 case attr of
 when '00xx' // Device memory
 memattrs.memtype = MemType_Device;
 memattrs.device = DecodeDevice(attr<1:0>);
 otherwise // Normal memory
 memattrs.memtype = MemType_Normal;
 memattrs.outer = S2DecodeCacheability(attr<3:2>);
 memattrs.inner = S2DecodeCacheability(attr<1:0>);

 memattrs.shareability = DecodeShareability(sh);
J1-8374 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode

 return memattrs;

shared/translation/attrs/WalkMemAttrs

 // WalkMemAttrs()
 // ==============
 // Retrieve memory attributes of translation table walk

 MemoryAttributes WalkMemAttrs(bits(2) sh, bits(2) irgn, bits(2) orgn)
 MemoryAttributes walkmemattrs;

 walkmemattrs.memtype = MemType_Normal;
 walkmemattrs.shareability = DecodeShareability(sh);
 walkmemattrs.inner = DecodeSDFAttr(irgn);
 walkmemattrs.outer = DecodeSDFAttr(orgn);
 walkmemattrs.tagged = FALSE;
 if (walkmemattrs.inner.attrs == MemAttr_WB &&
 walkmemattrs.outer.attrs == MemAttr_WB) then
 walkmemattrs.xs = '0';
 else
 walkmemattrs.xs = '1';

 return walkmemattrs;

shared/translation/faults/AlignmentFault

 // AlignmentFault()
 // ================

 FaultRecord AlignmentFault(AccType acctype, boolean iswrite, boolean secondstage)
 FaultRecord fault;

 fault.statuscode = Fault_Alignment;
 fault.acctype = acctype;
 fault.write = iswrite;
 fault.secondstage = secondstage;

 return fault;

shared/translation/faults/AsyncExternalAbort

 // AsyncExternalAbort()
 // ====================
 // Return a fault record indicating an asynchronous external abort

 FaultRecord AsyncExternalAbort(boolean parity, bits(2) errortype, bit extflag)
 FaultRecord fault;

 fault.statuscode = if parity then Fault_AsyncParity else Fault_AsyncExternal;
 fault.extflag = extflag;
 fault.errortype = errortype;
 fault.acctype = AccType_NORMAL;
 fault.secondstage = FALSE;
 fault.s2fs1walk = FALSE;

 return fault;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8375
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/translation/faults/NoFault

 // NoFault()
 // =========
 // Return a clear fault record indicating no faults have occured

 FaultRecord NoFault()
 FaultRecord fault;

 fault.statuscode = Fault_None;
 fault.acctype = AccType_NORMAL;
 fault.secondstage = FALSE;
 fault.s2fs1walk = FALSE;

 return fault;

shared/translation/translation/HasS2Translation

 // HasS2Translation()
 // ==================
 // Returns TRUE if stage 2 translation is present for the current translation regime

 boolean HasS2Translation()
 return (EL2Enabled() && !IsInHost() && PSTATE.EL IN {EL0,EL1});

shared/translation/translation/Have16bitVMID

 // Returns TRUE if EL2 and support for a 16-bit VMID are implemented.
 boolean Have16bitVMID();

shared/translation/translation/S1TranslationRegime

 // S1TranslationRegime()
 // =====================
 // Stage 1 translation regime for the given Exception level

 bits(2) S1TranslationRegime(bits(2) el)
 if el != EL0 then
 return el;
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.NS == '0' then
 return EL3;
 elsif HaveVirtHostExt() && ELIsInHost(el) then
 return EL2;
 else
 return EL1;

 // S1TranslationRegime()
 // =====================
 // Returns the Exception level controlling the current Stage 1 translation regime. For the most
 // part this is unused in code because the system register accessors (SCTLR[], etc.) implicitly
 // return the correct value.

 bits(2) S1TranslationRegime()
 return S1TranslationRegime(PSTATE.EL);

shared/translation/vmsa/CreateAddressDescriptor

 // CreateAddressDescriptor()
 // =========================
 // Set internal members for address descriptor type to valid values

J1-8376 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
 AddressDescriptor CreateAddressDescriptor(bits(64) va, FullAddress pa,
 MemoryAttributes memattrs)
 AddressDescriptor addrdesc;

 addrdesc.paddress = pa;
 addrdesc.vaddress = va;
 addrdesc.memattrs = memattrs;
 addrdesc.fault = NoFault();

 return addrdesc;

shared/translation/vmsa/CreateFaultyAddressDescriptor

 // CreateFaultyAddressDescriptor()
 // ===============================
 // Set internal members for address descriptor type with values indicating error

 AddressDescriptor CreateFaultyAddressDescriptor(bits(64) va, FaultRecord fault)
 AddressDescriptor addrdesc;

 addrdesc.vaddress = va;
 addrdesc.fault = fault;

 return addrdesc;

shared/translation/vmsa/DescriptorType

 enumeration DescriptorType {
 DescriptorType_Table,
 DescriptorType_Block,
 DescriptorType_Page,
 DescriptorType_Invalid
 };

shared/translation/vmsa/Domains

 constant bits(2) Domain_NoAccess = '00';
 constant bits(2) Domain_Client = '01';
 constant bits(2) Domain_Manager = '11';

shared/translation/vmsa/FetchDescriptor

 // FetchDescriptor()
 // =================
 // Fetch a translation table descriptor

 (FaultRecord, bits(N)) FetchDescriptor(bit ee, AddressDescriptor walkaddress,
 FaultRecord fault)
 // 32-bit descriptors for AArch32 Short-descriptor format
 // 64-bit descriptors for AArch64 or AArch32 Long-descriptor format
 assert N == 32 || N == 64;
 bits(N) descriptor;

 walkacc = CreateAccessDescriptor(AccType_TTW);
 (memstatus, descriptor) = PhysMemRead(walkaddress, N DIV 8, walkacc);
 if IsFault(memstatus) then
 fault = HandleExternalTTWAbort(memstatus, fault.write, walkaddress,
 walkacc, N DIV 8, fault);
 if IsFault(fault.statuscode) then
 return (fault, bits(N) UNKNOWN);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8377
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 if ee == '1' then
 descriptor = BigEndianReverse(descriptor);

 return (fault, descriptor);

shared/translation/vmsa/HasUnprivileged

 // HasUnprivileged()
 // =================
 // Returns whether a translation regime serves EL0 as well as a higher EL

 boolean HasUnprivileged(Regime regime)
 return (regime IN {
 Regime_EL20,
 Regime_EL30,
 Regime_EL10
 });

shared/translation/vmsa/IsAtomicRW

 // IsAtomicRW()
 // ============
 // Is the access an atomic operation?

 boolean IsAtomicRW(AccType acctype)
 return acctype IN {
 AccType_ATOMICRW,
 AccType_ORDEREDRW,
 AccType_ORDEREDATOMICRW
 };

shared/translation/vmsa/Regime

 enumeration Regime {
 Regime_EL3, // EL3
 Regime_EL30, // EL3&0 (PL1&0 when EL3 is AArch32)
 Regime_EL2, // EL2
 Regime_EL20, // EL2&0
 Regime_EL10 // EL1&0
 };

shared/translation/vmsa/RegimeUsingAArch32

 // RegimeUsingAArch32()
 // ====================
 // Determine if the EL controlling the regime executes in AArch32 state

 boolean RegimeUsingAArch32(Regime regime)
 case regime of
 when Regime_EL10 return ELUsingAArch32(EL1);
 when Regime_EL30 return TRUE;
 when Regime_EL20 return FALSE;
 when Regime_EL2 return ELUsingAArch32(EL2);
 when Regime_EL3 return FALSE;
J1-8378 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/translation/vmsa/S1TTWParams

 type S1TTWParams is (
 // A64-VMSA exclusive parameters
 bit ha, // TCR_ELx.HA
 bit hd, // TCR_ELx.HD
 bit tbi, // TCR_ELx.TBI{x}
 bit tbid, // TCR_ELx.TBID{x}
 bit nfd, // TCR_EL1.NFDx or TCR_EL2.NFDx when HCR_EL2.E2H == '1'
 bit e0pd, // TCR_EL1.E0PDx or TCR_EL2.E0PDx when HCR_EL2.E2H == '1'
 bit ds, // TCR_ELx.DS
 bits(3) ps, // TCR_ELx.{I}PS
 bits(6) txsz, // TCR_ELx.TxSZ
 bit epan, // SCTLR_EL1.EPAN or SCTLR_EL2.EPAN when HCR_EL2.E2H == '1'
 bit dct, // HCR_EL2.DCT
 bit nv1, // HCR_EL2.NV1

 // A32-VMSA exclusive parameters
 bits(3) t0sz, // TTBCR.T0SZ
 bits(3) t1sz, // TTBCR.T1SZ
 bit uwxn, // SCTLR.UWXN

 // Parameters common to both A64-VMSA & A32-VMSA (A64/A32)
 TGx tgx, // TCR_ELx.TGx / Always TGx_4KB
 bits(2) irgn, // TCR_ELx.IRGNx / TTBCR.IRGNx or HTCR.IRGN0
 bits(2) orgn, // TCR_ELx.ORGNx / TTBCR.ORGNx or HTCR.ORGN0
 bits(2) sh, // TCR_ELx.SHx / TTBCR.SHx or HTCR.SH0
 bit hpd, // TCR_ELx.HPD{x} / TTBCR2.HPDx or HTCR.HPD
 bit ee, // SCTLR_ELx.EE / SCTLR.EE or HSCTLR.EE
 bit wxn, // SCTLR_ELx.WXN / SCTLR.WXN or HSCTLR.WXN
 bit ntlsmd, // SCTLR_ELx.nTLSMD / SCTLR.nTLSMD or HSCTLR.nTLSMD
 bit dc, // HCR_EL2.DC / HCR.DC
 bit sif, // SCR_EL3.SIF / SCR.SIF
 MAIRType mair // MAIR_ELx / MAIR1:MAIR0 or HMAIR1:HMAIR0
)

shared/translation/vmsa/S2TTWParams

 type S2TTWParams is (
 // A64-VMSA exclusive parameters
 bit ha, // VTCR_EL2.HA
 bit hd, // VTCR_EL2.HD
 bit sl2, // V{S}TCR_EL2.SL2
 bit ds, // VTCR_EL2.DS
 bit sw, // VSTCR_EL2.SW
 bit nsw, // VTCR_EL2.NSW
 bit sa, // VSTCR_EL2.SA
 bit nsa, // VTCR_EL2.NSA
 bits(3) ps, // VTCR_EL2.PS
 bits(6) txsz, // V{S}TCR_EL2.T0SZ
 bit fwb, // HCR_EL2.PTW

 // A32-VMSA exclusive parameters
 bit s, // VTCR.S
 bits(4) t0sz, // VTCR.T0SZ

 // Parameters common to both A64-VMSA & A32-VMSA if implemented (A64/A32)
 TGx tgx, // V{S}TCR_EL2.TG0 / Always TGx_4KB
 bits(2) sl0, // V{S}TCR_EL2.SL0 / VTCR.SL0
 bits(2) irgn, // VTCR_EL2.IRGN0 / VTCR.IRGN0
 bits(2) orgn, // VTCR_EL2.ORGN0 / VTCR.ORGN0
 bits(2) sh, // VTCR_EL2.SH0 / VTCR.SH0
 bit ee, // SCTLR_EL2.EE / HSCTLR.EE
 bit ptw, // HCR_EL2.PTW / HCR.PTW
 bit vm // HCR_EL2.VM / HCR.VM
)
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8379
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 constant integer FINAL_LEVEL = 3;

shared/translation/vmsa/SDFType

 enumeration SDFType {
 SDFType_Table,
 SDFType_Invalid,
 SDFType_Supersection,
 SDFType_Section,
 SDFType_LargePage,
 SDFType_SmallPage
 };

shared/translation/vmsa/SecurityStateForRegime

 // SecurityStateForRegime()
 // ========================
 // Return the Security State of the given translation regime

 SecurityState SecurityStateForRegime(Regime regime)
 case regime of
 when Regime_EL3 return SecurityStateAtEL(EL3);
 when Regime_EL30 return SS_Secure; // A32 EL3 is always Secure
 when Regime_EL2 return SecurityStateAtEL(EL2);
 when Regime_EL20 return SecurityStateAtEL(EL2);
 when Regime_EL10 return SecurityStateAtEL(EL1);

shared/translation/vmsa/StageOA

 // StageOA()
 // =========
 // Given the final walk state (a page or block descriptor), map the untranslated
 // input address bits to the output address

 FullAddress StageOA(FullAddress outputbase, bits(64) ia, TGx tgx, integer level)
 // Output Address
 FullAddress oa;

 tsize = TranslationSize(tgx, level);

 oa.paspace = outputbase.paspace;
 oa.address = outputbase.address<51:tsize>:ia<tsize-1:0>;

 return oa;

shared/translation/vmsa/TGx

 enumeration TGx {
 TGx_4KB,
 TGx_16KB,
 TGx_64KB
 };

shared/translation/vmsa/TGxGranuleBits

 // TGxGranuleBits()
 // ================
 // Retrieve the address size, in bits, of a granule
J1-8380 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Armv8 Pseudocode
J1.3 Shared pseudocode

 integer TGxGranuleBits(TGx tgx)
 case tgx of
 when TGx_4KB return 12;
 when TGx_16KB return 14;
 when TGx_64KB return 16;

shared/translation/vmsa/TTWState

 type TTWState is (
 boolean istable,
 integer level,
 FullAddress baseaddress,
 bit contiguous,
 bit guardedpage,
 SDFType sdftype, // AArch32 Short-descriptor format walk only
 bits(4) domain, // AArch32 Short-descriptor format walk only
 MemoryAttributes memattrs,
 Permissions permissions
)

shared/translation/vmsa/TranslationRegime

 // TranslationRegime()
 // ===================
 // Select the translation regime given the target EL and PE state

 Regime TranslationRegime(bits(2) el, AccType acctype)
 if el == EL3 then
 return if ELUsingAArch32(EL3) then Regime_EL30 else Regime_EL3;
 elsif el == EL2 then
 return if ELIsInHost(EL2) then Regime_EL20 else Regime_EL2;
 elsif el == EL1 then
 if acctype == AccType_NV2REGISTER then
 assert EL2Enabled();
 return if ELIsInHost(EL2) then Regime_EL20 else Regime_EL2;
 else
 return Regime_EL10;
 elsif el == EL0 then
 if IsSecure() && ELUsingAArch32(EL3) then
 return Regime_EL30;
 elsif ELIsInHost(EL0) then
 return Regime_EL20;
 else
 return Regime_EL10;
 else
 Unreachable();

shared/translation/vmsa/TranslationSize

 // TranslationSize()
 // =================
 // Compute the number of bits directly mapped from the input address
 // to the output address

 integer TranslationSize(TGx tgx, integer level)
 granulebits = TGxGranuleBits(tgx);
 blockbits = (FINAL_LEVEL - level) * (granulebits - 3);

 return granulebits + blockbits;
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. J1-8381
ID072021 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/translation/vmsa/VARange

 enumeration VARange {
 VARange_LOWER,
 VARange_UPPER
 };
J1-8382 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Part K
Appendixes

Appendix K1
Architectural Constraints on UNPREDICTABLE
Behaviors

This chapter describes the architectural constraints on UNPREDICTABLE behaviors in the Armv8 architecture. It
contains the following sections:

• AArch32 CONSTRAINED UNPREDICTABLE behaviors on page K1-8386.

• AArch64 CONSTRAINED UNPREDICTABLE behaviors on page K1-8408.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K1-8385
ID072021 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors

Armv8 defines architecturally required constraints on many behaviors that are UNPREDICTABLE in Armv7. The
following sections define those constraints:

• Overview of the constraints on Armv7 UNPREDICTABLE behaviors on page K1-8387.

• Using R13 by instruction on page K1-8387.

• Using R15 by instruction on page K1-8387.

• Branching into an IT block on page K1-8388.

• Branching to an unaligned PC on page K1-8388.

• Loads and Stores to unaligned locations on page K1-8388.

• CONSTRAINED UNPREDICTABLE behavior associated with IT instructions and PSTATE.IT on
page K1-8388.

• Unallocated System register access instructions on page K1-8389.

• SBZ or SBO fields T32 and A32 in instructions on page K1-8390.

• UNPREDICTABLE cases in immediate constants in T32 data-processing instructions on page K1-8390.

• UNPREDICTABLE cases in immediate constants in Advanced SIMD instructions on page K1-8390.

• CONSTRAINED UNPREDICTABLE behaviors due to caching of System register control or data values on
page K1-8391.

• CONSTRAINED UNPREDICTABLE behavior due to inadequate context synchronization on page K1-8391

• Translation Table Base Address alignment on page K1-8392.

• Handling of System register control fields for Advanced SIMD and floating-point operation on
page K1-8392.

• Mapping of non-idempotent memory locations using the Normal memory type on page K1-8393.

• The Performance Monitors Extension on page K1-8393.

• The Activity Monitors Extension on page K1-8395.

• Syndrome register handling for CONSTRAINED UNPREDICTABLE instructions treated as UNDEFINED
on page K1-8396.

• Out of range VA on page K1-8396.

• Instruction fetches from Device memory on page K1-8396.

• Multi-access instructions that load the PC from Device memory on page K1-8396.

• Programming CSSELR.Level for a cache level that is not implemented on page K1-8396.

• Crossing a page boundary with different memory types or Shareability attributes on page K1-8397.

• Crossing a 4KB boundary with a Device access on page K1-8397.

• UNPREDICTABLE behaviors with Load-Exclusive/Store-Exclusive pairs on page K1-8397.

• CONSTRAINED UNPREDICTABLE behavior for A32 and T32 instruction encodings on page K1-8398.

• Out of range values of the Set/Way/Index fields in cache maintenance instructions on page K1-8398.

• CONSTRAINED UNPREDICTABLE behavior for A32 and T32 System instructions in the base instruction
set on page K1-8399.

• CONSTRAINED UNPREDICTABLE behavior, A32 and T32 Advanced SIMD and floating-point instructions
on page K1-8401.

• CONSTRAINED UNPREDICTABLE behaviors associated with the VTCR on page K1-8405.

• CONSTRAINED UNPREDICTABLE behavior of EL2 features on page K1-8405.

• Reserved values in System and memory-mapped registers and translation table entries on page K1-8407.

• CONSTRAINED UNPREDICTABLE behavior in Debug state on page K1-8407.
K1-8386 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1.1 Overview of the constraints on Armv7 UNPREDICTABLE behaviors

The term UNPREDICTABLE describes a number of cases where the architecture has a feature that software must not
use. For execution in AArch32 state, where previous versions of the architecture define behavior as
UNPREDICTABLE, the Armv8-A architecture specifies a narrow range of permitted behaviors. This range is the range
of CONSTRAINED UNPREDICTABLE behavior. All implementations that are compliant with the architecture must
follow the CONSTRAINED UNPREDICTABLE behavior.

Note

Software designed to be compatible with the Armv8-A architecture must not rely on these CONSTRAINED
UNPREDICTABLE cases.

K1.1.2 Using R13 by instruction

In prior versions of the architecture, the use of R13 by instruction as a named register specifier was described as
UNPREDICTABLE in the pseudocode. In the Armv8-A architecture, the use of R13 as a named register specifier is not
UNPREDICTABLE, unless this is specifically stated, and R13 can be used in the regular form. Bits[1:0] of R13 are not
treated as SBZP in the Armv7 architecture or RES0 in the Armv8 architecture, but can hold any values programmed
into them.

K1.1.3 Using R15 by instruction

All uses of R15 by instruction as a named register specifier for a source register that are described as CONSTRAINED
UNPREDICTABLE in the pseudocode or in other places in this Manual must do one of the following:

• Cause the instruction to be treated as UNDEFINED.

• Cause the instruction to execute as a NOP.

• Read the program counter with the standard offset that applies for the current instruction set.

• Read the program counter with the standard offset that applies for the current instruction set with alignment
to a word boundary.

• Read 0. This is Arm preferred behavior.

• Read or return an UNKNOWN value for the source register specified as R15.

All uses of R15 as a named register specifier for a destination register that are described as CONSTRAINED
UNPREDICTABLE in the pseudocode or in other places in this reference manual must do one of the following:

• Cause the instruction to be treated as UNDEFINED.

• Cause the instruction to execute as a NOP.

• Ignore the write.

• Branch to an UNKNOWN location in either A32 or T32 state.

Instructions that are CONSTRAINED UNPREDICTABLE when the base register is R15 and the instruction specifies a
writeback of the base register, are treated as having R15 as both a source register and a destination register.

For instructions that have two destination registers, for example LDRD, MRRC, and many of the multiply instructions,
if Rt, Rt2, RdLo, or RdHi is R15, then the other destination register of the pair is UNKNOWN if the CONSTRAINED
UNPREDICTABLE behavior for the write to R15 is either to ignore the write or to branch to an UNKNOWN location.

For instructions that affect any or all of PSTATE.{N, Z, C, V}, PSTATE.Q, and PSTATE.GE when the register
specifier is not R15, any flags affected by an instruction that is CONSTRAINED UNPREDICTABLE when the register
specifier is R15 become UNKNOWN.

In addition, for MRC instructions that use R15 as the destination register descriptor, and therefore target APSR_nzcv
where these are described as being CONSTRAINED UNPREDICTABLE, PSTATE.{N, Z, C, V} becomes UNKNOWN.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K1-8387
ID072021 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1.4 Branching into an IT block

Branching into an IT block leads to CONSTRAINED UNPREDICTABLE behavior. Execution starts from the address
determined by the branch, but each instruction in the IT block is:

• Executed as if it were not in an IT block. This means that it is executed unconditionally.

• Executed as if it had passed its Condition code check within an IT block.

• Executed as a NOP. That is, it behaves as if it had failed the Condition code check.

K1.1.5 Branching to an unaligned PC

In A32 state, when branching to an address that is not word aligned and is defined to be CONSTRAINED
UNPREDICTABLE, one of the following behaviors must occur:

• The unaligned location is forced to be aligned.

• The unaligned address generates a Prefetch Abort on the first instruction using the unaligned PC value.

If that instruction is executed at EL0 and either of the following applies, the exception is taken to EL2:

— EL2 is using AArch32 and the value of HCR.TGE is 1.

— EL2 is using AArch64 and the value of HCR_EL2.TGE is 1.

If the instruction is executed at EL0 when the applicable TGE bit is 0 the exception is taken to EL1.

If the instruction is executed at an Exception level that is higher than EL0 the exception is taken to the
Exception level at which the instruction was executed.

In all cases, the exception is generated only if the first instruction using the unaligned PC value is
architecturally executed.

If the exception that results from a branch to an unaligned PC value:

• Is taken to an Exception level that is using AArch64, it is reported as a PC alignment fault exception, see ISS
encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault on page D13-3163.

• Is taken to an Exception level that is using AArch32, it is reported as a Prefetch Abort exception, see Prefetch
Abort exception reporting a PC alignment fault exception on page G1-6086.

Note

Because bit[0] is used for interworking, it is impossible to specify a branch to A32 state when the bottom bit of the
target address is 1. Therefore the bottom bit of IFAR, HIFAR, or FAR_ELx is 0 for all these cases.

K1.1.6 Loads and Stores to unaligned locations

Some unaligned loads and stores in the Armv8-A architecture are described as CONSTRAINED UNPREDICTABLE to do
one of the following:

• Take an alignment fault.

• Perform the specified load or store to the unaligned memory location.

K1.1.7 CONSTRAINED UNPREDICTABLE behavior associated with IT instructions and PSTATE.IT

A number of instructions in the architecture are described as being CONSTRAINED UNPREDICTABLE either:

• Anywhere within an IT block.

• As an instruction within an IT block, other than the last instruction within an IT block.

Unless otherwise stated in this manual, when these instructions are committed for execution, one of the following
occurs:

• An UNDEFINED exception results.

• The instructions are executed as if they had passed the Condition code check.

• The instructions execute as NOPs. This means that they behave as if they had failed the Condition code
check.

The behavior might in some implementations vary from instruction to instruction, or between different instances of
the same instruction.
K1-8388 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
Many instructions that are CONSTRAINED UNPREDICTABLE in an IT block are branch instructions or other
non-sequential instructions that change the PC. Where these instructions are not treated as UNDEFINED within an IT
block, the remaining iterations of the PSTATE.IT state machine must be treated in one of the following ways:

• PSTATE.IT is cleared to 0.

• PSTATE.IT advances for either a sequential or a nonsequential change of the PC in the same way as it does
for instructions that are not CONSTRAINED UNPREDICTABLE that cause a sequential change of the PC.

Note

This does not apply to an instruction that is the last instruction in an IT block.

The instructions addressed by the updated PC must do one of the following:

• Execute as if they had passed the Condition code check for the remaining iterations of the PSTATE.IT state
machine.

• Execute as NOPs. That is, they behave as if they had failed the Condition code check for the remaining
iterations of the PSTATE.IT state machine.

• Execute as if they were unconditional, or, if the instructions are part of another IT block, in accordance with
the behavior described in Branching into an IT block on page K1-8388.

The behavior might in some implementations vary from instruction to instruction, or between different instances of
the same instruction.

For exception returns or Debug state exits that cause PSTATE.IT to be set to a reserved value in T32 state or that
return to A32 state with a nonzero value in PSTATE.IT, the PSTATE.IT bits are forced to ‘00000000’. The reserved
values are:

PSTATE.IT[7:4] != ‘0000’ && PSTATE.IT[3:0] == ‘0000’
PSTATE.IT[2:0] != ‘000’ when SCTLR/SCTLR_EL_1.ITD == ‘1’

Exception returns or Debug state exits that set PSTATE.IT to a non-reserved value in T32 state can occur when the
flow of execution returns to a point:

• Outside an IT block, but with the PSTATE.IT bits set to a value other than ‘00000000’.

• Inside an IT block, but with a different value of the PSTATE.IT bits than if the IT block had been executed
without an exception return or Debug state exit.

In this case, the instructions at the target of the exception return or Debug state exit must do one of the following:

• Execute as if they passed the Condition code check for the remaining iterations of the PSTATE.IT state
machine.

• Execute as NOPs. That is, they behave as if they failed the Condition code check for the remaining iterations
of the PSTATE.IT state machine.

• Execute as if they were unconditional, or as if the instruction were part of another IT block, in accordance
with the behavior in Branching into an IT block on page K1-8388.

The remaining iterations of the PSTATE.IT state machine must behave in one of the following ways:

• The PSTATE.IT state machine advances as if it were in an IT block.

• The PSTATE.IT bits are ignored.

• The PSTATE.IT bits are forced to ‘00000000’.

K1.1.8 Unallocated System register access instructions

In Armv8-A, accesses to unallocated System register encodings are UNDEFINED.

This includes:

• Reads using encodings that are defined as WO.

• Writes using encodings that are defined as RO.

• MCR or MRC accesses to using a set of {coproc, CRn, opc1, CRm, opc2} values that the Armv7 architecture defined
as UNPREDICTABLE.

• MCRR and MRRC instructions with unallocated values of opc1 or CRm that are described as UNPREDICTABLE are
UNDEFINED in the Armv8-A architecture.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K1-8389
ID072021 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1.9 SBZ or SBO fields T32 and A32 in instructions

Many of the A32 and T32 instructions have (0) or (1) in the instruction decode to indicate should-be-zero, SBZ, or
should-be-one, SBO. If the instruction bit pattern of an instruction is executed with these fields not having the
should be values, one of the following must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction operates as if the bit had the should-be value.

• Any destination registers of the instruction become UNKNOWN.

The exceptions to this rule are:

• LDM, LDMIA, LDMFD on page F5-4722.

• LDMDB, LDMEA on page F5-4732.

• LDR (literal) on page F5-4741.

• LDRB (literal) on page F5-4751.

• LDRD (immediate) on page F5-4759.

• LDRD (register) on page F5-4765.

• LDRD (literal) on page F5-4762.

• LDRH (literal) on page F5-4780.

• LDRSB (literal) on page F5-4791.

• LDRSH (literal) on page F5-4802.

• POP on page F5-4911.

• PUSH on page F5-4919.

• SDIV on page F5-5000.

• STM, STMIA, STMEA on page F5-5094.

• STMDB, STMFD on page F5-5102.

• UDIV on page F5-5218.

K1.1.10 UNPREDICTABLE cases in immediate constants in T32 data-processing instructions

The description of immediate constants in T32 data processing Modified immediate constants in T32 instructions
on page F1-4362 include constant values that were UNPREDICTABLE in Armv7. Instruction encodings on
page F1-4344 describes 32-bit T32 instructions as {hw1, hw2}, where hw1 is the left-hand halfword in the 32-bit
encoding diagram for the instruction. The UNPREDICTABLE cases are those where both:

• hw2[7:0] == 0b0000000.

• hw1[10] == 0 and either:

— hw2[14:12] == 0b001.

— hw2[14:12] == 0b010.

— hw2[14:12] == 0b011.

In Armv8 the CONSTRAINED UNPREDICTABLE behavior is that these encodings produce the value 0b0000000.

K1.1.11 UNPREDICTABLE cases in immediate constants in Advanced SIMD instructions

The description of immediate constants in Modified immediate constants in T32 and A32 Advanced SIMD
instructions on page F1-4365 include constant values that were UNPREDICTABLE in Armv7. The UNPREDICTABLE
cases are those where:

• The bits that the encoding diagram shows as abcd are all 0.

In the A32 encoding these are bits[24, 18:6, 3:0]. In the T32 encoding they are bits {hw1[12, 2:0], hw2[3:0]}.

• The bits that the encoding diagram shows as cmode[3:1] are one of {0b001, 0b010, 0b011, 0b101, 0b110}.

In the A32 encoding these are bits[11:9]. In the T32 encoding they are bits hw2[11:9].

In Armv8 the CONSTRAINED UNPREDICTABLE behavior is that these encodings produce an immediate constant value
of zero.
K1-8390 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1.12 CONSTRAINED UNPREDICTABLE behaviors due to caching of System register control or
data values

The Arm architecture allows copies of System register control or data values to be cached in a cache or TLB. This
can lead to CONSTRAINED UNPREDICTABLE behavior if the cache or TLB has not been correctly invalidated
following a change of the control or data values.

Unless explicitly stated otherwise, the behavior of the PE is consistent with one of:

• The old data or control value.

• The new data or control value.

• An amalgamation of the old and new data or control values.

In an implementation that includes FEAT_TTCNP, this CONSTRAINED UNPREDICTABLE case can arise from
misprogramming when setting TTBR.CnP to 1, as identified in the descriptions of the TTBR.CnP field. In this case,
for a particular TTBR, the behavior of the PE is consistent with one of:

• The value of the translation table entry pointed to by that TTBR on one of the PEs within the Inner Shareable
domain for which both the value of TTBR.CnP is 1 and the other conditions for sharing translation table
entries pointed to by that TTBR are met.

• An amalgamation of the values of the translation table entries pointed to by that TTBR on two or more of the
PEs within the Inner Shareable domain for which both the value of TTBR.CnP is 1 and the other conditions
for sharing translation table entries pointed to by that TTBR are met.

Note

If the Effective value of a control or data value that determines the behavior of the PE results from the amalgamation
of two or more values, then that Effective value must not generate a privilege violation. So, for example:

• Where the CONSTRAINED UNPREDICTABLE behavior occurs because inadequate invalidation of the TLB
causes multiple hits in the TLB, the failure to invalidate the TLB by software executing at a given Exception
level and Security state must not make it possible to access regions of memory with permissions or attributes
that could not be accessed at that Exception level and Security state.

• Where the CONSTRAINED UNPREDICTABLE behavior occurs because of a programming error, on one or more
PEs in the Inner Shareable domain, when using a TTBR.CnP value of 1 to share translation table entries, the
misprogramming must not make it possible to access regions of memory with permissions or attributes that
could not be accessed at the Exception level of that TTBR and the Security state corresponding to the
translation table entries being shared.

Alternatively to this CONSTRAINED UNPREDICTABLE behavior, an implementation detecting multiple hits within a
TLB might generate an exception, reporting the exception using the TLB Conflict fault code, see TLB conflict
aborts on page G5-6334.

The choice between the behaviors might, in some implementations, vary for each use of a control or data value.

K1.1.13 CONSTRAINED UNPREDICTABLE behavior due to inadequate context synchronization

The Arm architecture requires that changes to System registers must be synchronized before they take effect. This
can lead to CONSTRAINED UNPREDICTABLE behavior if the synchronization has not been performed.

In these cases, the behavior of the PE is consistent with the unsynchronized control value being either the old value
or the new value.

Where multiple control values are updated but not yet synchronized, each control value might independently be the
old value or the new value.

In addition, where the unsynchronized control value applies to different areas of functionality, or what an
implementation has constructed as different areas of functionality, those areas might independently treat the control
value as being either the old value or the new value.

The choice between these behaviors might, in some implementations, vary for each use of a control value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K1-8391
ID072021 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1.14 Unallocated values with register fields of CP15 registers and Translation Table entries

Unless stated elsewhere, all unallocated or reserved values of fields with allocated values within CP15 registers and
Translation Table entries be have in one in one of the following ways:

• The encoding maps onto any of the allocated values but otherwise does not cause UNPREDICTABLE behavior.

• The encodings cause effects that could be achieved by a combination of more than one of the allocated
encodings.

• The encodings cause the field to have no functional effect.

K1.1.15 Translation Table Base Address alignment

A misaligned Translation Table Base Address can occur if:

• The VMSAv8-32 Short-descriptor translation table format is enabled and TTBR0[13-N:7], which is defined
to be RES0, contains a nonzero value.

• The VMSAv8-32 Long-descriptor translation table format is enabled, and TTBR0[x-1:3], TTBR1[x-1:3],
HTTBR[x-1:3], or VTTBR[x-1:3], which are defined to be RES0, contains a nonzero value.

In the event of a misaligned Translation Table Base Address, one of the following behaviors must occur:

• The field that is defined to be RES0 is treated as if all bits were zero:

— The value that is read back might be the value written or it might be zero.

• The calculation of an address for a translation table walk using that register might be corrupted in those bits
that are nonzero.

K1.1.16 Handling of System register control fields for Advanced SIMD and floating-point operation

For historical reasons described in Background to the System register interface on page G1-6110, each of the
CPACR, HCPTR, and NSACR has a pair of control fields that were defined to have identical functionality for
controlling Advanced SIMD and floating-point operation. These fields are:

• CPACR.{cp10, cp11}.

• HCPTR.{TCP10, TCP11}.

• NSACR.{cp10, cp11}.

The architecture requires that both fields in one of these pairs are programmed to the same value. If this is not done,
then the CONSTRAINED UNPREDICTABLE behavior is that behavior is the same as if the cp11 or TCP11 control field
was equal to the cp10 or TCP10 field.This is in all respects except for the value read back by a direct read of the
register. After a register write that writes different values to the two fields of a pair, a direct read of the register might
return an UNKNOWN value for the cp11 or TCP11 field.

Note

This means that, when different values are written to the {cp10, cp11} fields in a single register, the architecture
permits but does not require that a read of that register returns the value written to the cp11 field.

CONSTRAINED UNPREDICTABLE CPACR and NSACR settings

If CPACR.cp<n> contains the encoding ‘10’, then one of the following behaviors must occur:

• The encoding maps onto any of the allocated values, but otherwise does not cause UNPREDICTABLE behavior.

• The encoding causes effects that could be achieved by a combination of more than one of the allocated
encodings.

Note

In Armv7, CPACR had a D32DIS bit, and NSACR had an NSD32DIS bit. There is no CPACR.D32DIS or
NSACR.NSD32DIS in Armv8-A, and the corresponding bits in the two registers are RES0.
K1-8392 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1.17 Mapping of non-idempotent memory locations using the Normal memory type

If non-idempotent memory locations are mapped using the Normal memory type, the state of the non-idempotent
memory location may become corrupted in the following circumstances:

• Speculative read accesses may cause accesses to the non-idempotent memory locations that would not occur
as part of a simple sequential execution.

• Writes to non-idempotent memory locations might be merged or split. In this case, the number and size of
writes seen by the memory location might not be the number and size that occur as part of a simple sequential
execution.

K1.1.18 The Performance Monitors Extension

The following subsections describe CONSTRAINED UNPREDICTABLE behaviors when accessing the Performance
Monitors Extension in AArch32 state:

• CONSTRAINED UNPREDICTABLE accesses to PMXEVTYPER or PMXEVCNTR on page K1-8393.

• CONSTRAINED UNPREDICTABLE accesses to PMEVCNTR<n> and PMEVTYPER<n> on
page K1-8394.

• CONSTRAINED UNPREDICTABLE behavior caused by HDCR.HPMN on page K1-8394.

CONSTRAINED UNPREDICTABLE accesses to PMXEVTYPER or PMXEVCNTR

If FEAT_FGT is implemented, and EL2 is implemented in the current Security state, and EL1 is using AArch64,
permitted access to PMXEVCNTR and PMXEVTYPER are not CONSTRAINED UNPREDICTABLE.

Otherwise, if PMSELR.SEL is greater than the number of event counters accessible at this Exception level, accesses
to PMXEVTYPER or PMXEVCNTR can cause CONSTRAINED UNPREDICTABLE behavior. This occurs when one of
the following is true:

• If PMSELR.SEL is not equal to 31, and PMSELR.SEL is greater than or equal to PMCR.N, and the PE is
executing in EL2 or EL3.

• If FEAT_SEL2 is disabled or is not implemented, PMSELR.SEL is not 31, and PMSELR.SEL is greater than
or equal to PMCR.N, and the PE is executing in Secure EL1 or Secure EL0.

• If PMSELR.SEL is not 31, and PMSELR.SEL is greater than or equal to HDCR.HPMN, and the PE is
executing in EL1 or EL0.

In these UNPREDICTABLE cases, one of the following behaviors must occur:

• Accesses to PMXEVTYPER or PMXEVCNTR from that mode are UNDEFINED.

• Accesses to PMXEVTYPER or PMXEVCNTR from that mode behave as RAZ/WI.

• Accesses to PMXEVTYPER or PMXEVCNTR from that mode execute as NOPs.

• Accesses to PMXEVTYPER or PMXEVCNTR from that mode behave as if PMSELR.SEL contains an
UNKNOWN value that is less than the number of counters accessible at the current Exception level and
Security state.

• Accesses to PMXEVTYPER or PMXEVCNTR behave as if PMSELR.SEL is 31.

• If EL2 is implemented and enabled in the current Security state, and PMSELR.SEL is less than the number
of accessible event counters but greater than the number of accessible counters at this Exception level, access
to PMXEVTYPER or PMXEVCNTR from EL1 or permitted access from EL0 is trapped to EL2.

If PMSELR.SEL is equal to 31, then one of the following behaviors must occur:

• Accesses to PMXEVCNTR are UNDEFINED.

• Accesses to PMXEVCNTR behave as RAZ/WI.

• Accesses to PMXEVCNTR execute as NOPs.

• Accesses to PMXEVCNTR behave as if PMSELR.SEL contains an UNKNOWN value that is less than the
number of counters accessible at the current Exception level and Security state.

• If EL2 is implemented and enabled in the current Security state, for an access to PMXEVCNTR from EL1
or a permitted access from EL0, if the counter is implemented but not accessible at the current Exception
level, the register access is trapped to EL2.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K1-8393
ID072021 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
Note

If EL2 is implemented and enabled in the current Security state, HDCR.HPMN, or MDCR_EL2.HPMN, identifies
the number of accessible counters at EL0 or EL1. Otherwise, the number of accessible counters is the number of
accessible event counters.

Accesses from EL0 to PMXEVCNTR are permitted when:

• EL1 is using AArch32 and the values of PMUSERENR.{ER, EN} are both 1.

• EL1 is using AArch64 and the values of PMUSERENR_EL0.{ER, EN} are both 1.

Accesses from EL0 to PMXEVTYPER are permitted when:

• EL1 is using AArch32 and the value of PMUSERENR.EN is 1.

• EL1 is using AArch64 and the value of PMUSERENR_EL0.EN is 1.

CONSTRAINED UNPREDICTABLE accesses to PMEVCNTR<n> and PMEVTYPER<n>

If FEAT_FGT is implemented, and EL2 is implemented in the current Security state, and EL1 is using AArch64,
permitted access to PMEVCNTR<n> and PMEVTYPER<n> are not CONSTRAINED UNPREDICTABLE.

Otherwise, if <n> is greater than the number of event counters available in the current Exception level and state,
reads and writes of PMEVCNTR<n> and PMEVTYPER<n> are CONSTRAINED UNPREDICTABLE, and the following
behaviors are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

• If EL2 is implemented and enabled in the current Security state, for an access to PMEVCNTR<n> or
PMEVTYPER<n> from EL1 or a permitted access from EL0, if the counter is implemented but not
accessible at the current Exception level, the register access is trapped to EL2.

Accesses from EL0 are permitted to PMEVCNTR<n> when:

— EL1 is using AArch32 and the values of PMUSERENR.{ER, EN} are both 1.

— EL1 is using AArch64 and the values of PMUSERENR_EL0.{ER, EN} are both 1.

Accesses from EL0 are permitted to PMEVTYPER<n> when:

— EL1 is using AArch32 and the value of PMUSERENR.EN is 1.

— EL1 is using AArch64 and the value of PMUSERENR_EL0.EN is 1.

Note

If EL2 is implemented and enabled in the current Security state, at EL0 and EL1, HDCR.HPMN, or
MDCR_EL2.HPMN, identifies the number of accessible counters. Otherwise, the number of accessible counters is
the number of accessible event counters.

CONSTRAINED UNPREDICTABLE behavior caused by HDCR.HPMN

If PMCR.N is nonzero, and HDCR.HPMN is set to 0 or to a value greater than PMCR.N, then the CONSTRAINED
UNPREDICTABLE behavior is:

• The value returned by a direct read of HDCR.HPMN is UNKNOWN.

• Either:

— An UNKNOWN number of counters are reserved for EL2 use. That is, the PE behaves as if
HDCR.HPMN is set to an UNKNOWN non-zero value less than PMCR.N.

— All counters are reserved for EL2 and EL3 use, meaning no counters are accessible from EL1 and EL0.
K1-8394 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1.19 The Activity Monitors Extension

The following subsections describe CONSTRAINED UNPREDICTABLE behaviors when accessing the Activity Monitors
registers in AArch32 state:

• CONSTRAINED UNPREDICTABLE accesses to AMEVCNTR0<n> and AMEVTYPER0<n> on
page K1-8395.

• CONSTRAINED UNPREDICTABLE accesses to AMEVCNTR1<n> and AMEVTYPER1<n> on
page K1-8395.

• CONSTRAINED UNPREDICTABLE accesses to AMCNTENCLR1 and AMCNTENSET1 on page K1-8395.

CONSTRAINED UNPREDICTABLE accesses to AMEVCNTR0<n> and AMEVTYPER0<n>

If <n> is greater than the number of architected activity monitor event counters, reads and writes of
AMEVCNTR0<n> and AMEVTYPER0<n> are CONSTRAINED UNPREDICTABLE, and the following behaviors are
permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters.

CONSTRAINED UNPREDICTABLE accesses to AMEVCNTR1<n> and AMEVTYPER1<n>

If <n> is greater than the number of auxiliary activity monitor event counters, reads and writes of
AMEVCNTR1<n> and AMEVTYPER1<n> are CONSTRAINED UNPREDICTABLE, and the following behaviors are
permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

Note

AMCGCR.CG1NC identifies the number of auxiliary activity monitor event counters.

CONSTRAINED UNPREDICTABLE accesses to AMCNTENCLR1 and AMCNTENSET1

If the number of auxiliary activity monitor event counters that are implemented is zero, reads and writes of
AMCNTENCLR1 and AMCNTENSET1 are CONSTRAINED UNPREDICTABLE, and the following behaviors are
permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

Note

The number of auxiliary activity monitor event counters that are implemented is zero exactly when AMCFGR.NCG
is 0b0000.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K1-8395
ID072021 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1.20 Syndrome register handling for CONSTRAINED UNPREDICTABLE instructions treated as
UNDEFINED

When a CONSTRAINED UNPREDICTABLE instruction is treated as UNDEFINED, this generates an exception:

• If this exception is taken to an Exception level that is using AArch64, then ESR_ELx is UNKNOWN.

• If this exception is taken to EL2 and EL2 is using AArch32, then the HSR is unknown.

Note

The value written to ESR or HSR must be consistent with a value that could be created as the result of an exception
from the same Exception level that generated the exception, but resulted from a situation that is not CONSTRAINED
UNPREDICTABLE at that Exception level. This is to avoid a possible privilege violation.

K1.1.21 Out of range VA

If the PE executes an instruction for which the instruction address, size, and alignment mean it contains the bytes
0xFFFF FFFF and 0x0000 0000, then the bytes that wrap around and appear to be from 0x0000 0000 onwards come from
an UNKNOWN address.

If the PE executes a load or store instruction for which the computed address, total access size, and alignment mean
it accesses bytes 0xFFFF FFFF and 0x0000 0000, then the bytes that wrap around and appear to be from 0x0000 0000
onwards come from an UNKNOWN address.

K1.1.22 Instruction fetches from Device memory

Instruction fetches from Device memory are CONSTRAINED UNPREDICTABLE.

If a location in memory has the Device attribute and is not marked as execute-never, then an implementation might
perform speculative instruction accesses to this memory location when address translation is enabled.

If a branch causes the program counter to point to a location in memory with the Device attribute that is not marked
as execute-never for the current Exception level for instruction fetches, then an implementation must perform one
of the following behaviors:

• It treats the instruction fetch as if it were to a memory location with the Normal, Non-cacheable attribute.

• It generates a Permission fault.

K1.1.23 Multi-access instructions that load the PC from Device memory

Multi-access instructions that load the PC from Device memory when address translation is enabled are
UNPREDICTABLE in AArch32 state. In the Armv8-A architecture in AArch32 state an implementation must perform
one of the following behaviors:

• It loads the PC from the memory location as if the memory location had the Normal Non-cacheable attribute.

• It generates a Permission fault.

K1.1.24 Programming CSSELR.Level for a cache level that is not implemented

If CSSELR.Level is programmed to a cache level that is not implemented, then a read of CSSELR returns an
UNKNOWN value in CSSELR.Level.

If CSSELR.Level is programmed to a cache level that is not implemented, then on a read of CCSIDR an
implementation must perform one of the following behaviors:

• The CCSIDR read is treated as a NOP.

• The CCSIDR read is UNDEFINED.

• The CCSIDR read returns an UNKNOWN value.
K1-8396 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
When FEAT_CCIDX is implemented, CCSIDR2 is implemented. If CSSELR.Level is programmed to a cache level
that is not implemented, then on a read of CCSIDR2 an implementation must perform one of the following
behaviors:

• The CCSIDR2 read is treated as a NOP.

• The CCSIDR2 read is UNDEFINED.

• The CCSIDR2 read returns an UNKNOWN value.

K1.1.25 Crossing a page boundary with different memory types or Shareability attributes

A memory access from a load or store instruction that crosses a page boundary to a memory location that has a
different memory type or Shareability attribute results in CONSTRAINED UNPREDICTABLE behavior. In this case, the
implementation must perform one of the following behaviors:

• Each memory access generated by the instruction uses the memory type and Shareability attribute associated
with its own address.

• The instruction generates an alignment fault caused by the memory type.

For the Non-secure PL1&0 translation regime:

— If the stage 1 translation causes the mismatch, the resulting exception is taken to PL1.

— If the stage 2 translation causes the mismatch, the resulting exception is taken to PL2.

— If both stages of translation cause the mismatch, the resulting exception can be taken to either PL1 or
PL2.

• The instruction executes as a NOP.

K1.1.26 Crossing a 4KB boundary with a Device access

A memory access from a load or store instruction to Device memory that crosses a 4KB boundary results in
CONSTRAINED UNPREDICTABLE behavior. In this case, the implementation must perform one of the following
behaviors:

• All memory accesses generated by the instruction are performed as if the presence of the boundary had no
effect on the memory accesses.

• All memory accesses generated by the instruction are performed as if the presence of the boundary had no
effect on the memory accesses, except that there is no guarantee of ordering between memory accesses.

• The instruction generates an Alignment fault caused by the memory type.

For the Non-secure PL1&0 translation regime:

— If the stage 1 translation causes the boundary to be crossed, the resulting exception is taken to PL1.

— If the stage 2 translation causes the boundary to be crossed, the resulting exception is taken to PL2.

— If both stages of translation cause the boundary to be crossed, the resulting exception can be taken to
either PL1 or PL2.

• The instruction executes as a NOP.

Note

The boundary referred to is between two Device memory regions that are both of 4KB and aligned to 4KB.

K1.1.27 UNPREDICTABLE behaviors with Load-Exclusive/Store-Exclusive pairs

Load-Exclusive and Store-Exclusive instruction usage restrictions on page E2-4337 defines a
Load-Exclusive/Store-Exclusive pair, and identifies various CONSTRAINED UNPREDICTABLE behaviors associated
with using Load-Exclusive/Store-Exclusive pairs. These cases were UNPREDICTABLE in Armv7. In summary, these
cases are:

• The target virtual address of a StoreExcl instruction is different from the virtual address of the preceding
LoadExcl instruction in the same thread of execution.

• The transaction size of a StoreExcl instruction is different from the transaction size of the preceding LoadExcl
instruction in the same thread of execution.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K1-8397
ID072021 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
• The memory attributes for a StoreExcl instruction are different from the memory attributes for the preceding
LoadExcl instruction in the same thread of execution, either:

— Because the translation of the accessed address changes between the LoadExcl instruction and the
StoreExcl instruction.

— Because the LoadExcl instruction and the StoreExcl instruction use different virtual addresses, with
different attributes, that point to the same physical address.

In addition, the effect of a data or unified cache invalidate, clean, or clean and invalidate instruction on a local or
global Exclusives monitor that is in the Exclusive Access state is CONSTRAINED UNPREDICTABLE.

See the descriptions in Load-Exclusive and Store-Exclusive instruction usage restrictions on page E2-4337 for the
permitted behavior in each of these cases, and any constraints that might apply to whether the case is CONSTRAINED
UNPREDICTABLE.

Note

Additional CONSTRAINED UNPREDICTABLE cases can apply to Load-Exclusive and Store-Exclusive instructions, see
CONSTRAINED UNPREDICTABLE behavior for A32 and T32 System instructions in the base instruction set on
page K1-8399.

K1.1.28 CONSTRAINED UNPREDICTABLE behavior for A32 and T32 instruction encodings

The A32 and T32 instruction sets include encodings that result in CONSTRAINED UNPREDICTABLE behavior when
they are decoded.

CONSTRAINED UNPREDICTABLE behavior of CRC32 instruction encodings

In the A32 and T32 instruction sets, there are encodings of the CRC32 and CRC32C instructions that result in
CONSTRAINED UNPREDICTABLE behavior. These encodings are listed in the following places in the A32 and T32
instruction sets:

• Cyclic Redundancy Check on page F4-4503 for the A32 instruction set, with sz = 11.

• Data-processing (two source registers) on page F3-4488 for the T32 instruction set, with op1 = 10x and op2
= 11.

The CONSTRAINED UNPREDICTABLE behavior for these encodings is described in CRC32 on page F5-4662 and
CRC32C on page F5-4665.

CONSTRAINED UNPREDICTABLE behavior of other A32 instruction encodings

In the A32 instruction set, there are encodings that result in CONSTRAINED UNPREDICTABLE behavior. These
encodings are listed in:

• Miscellaneous on page F4-4542.

• Memory hints and barriers on page F4-4553.

• Barriers on page F4-4553.

The CONSTRAINED UNPREDICTABLE behavior is that an implementation must treat the encodings in one of the
following ways:

• The instruction encoding is UNDEFINED.

• The instruction encoding executes as a NOP.

K1.1.29 Out of range values of the Set/Way/Index fields in cache maintenance instructions

In the cache maintenance by set/way instructions DCCISW, DCCSW, and DCISW, if any set/way/index argument
is larger than the value supported by the implementation, then the behavior is CONSTRAINED UNPREDICTABLE and
one of the following occurs:

• The instruction is UNDEFINED.
K1-8398 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

Note

This CONSTRAINED UNPREDICTABLE behavior applies, also, to the A64 cache maintenance by set/way instructions
DC CISW, DC CSW, and DC ISW.

K1.1.30 CONSTRAINED UNPREDICTABLE behavior for A32 and T32 System instructions in the base
instruction set

This section lists the CONSTRAINED UNPREDICTABLE behavior for the different A32 and T32 System instructions.

Note

If an instruction can result in CONSTRAINED UNPREDICTABLE behavior that is not specific to that particular
instruction, see the relevant section in this appendix for a description of the CONSTRAINED UNPREDICTABLE
behavior.

SRS (T32)

For a description of this instruction and the encoding, see SRS, SRSDA, SRSDB, SRSIA, SRSIB on page F5-5058.

CONSTRAINED UNPREDICTABLE behavior

For all encodings:

• If the instruction specifies an illegal mode field, then one of the following behaviors must occur:

— The instruction is UNDEFINED.

— The instruction executes as a NOP.

— R13 of the current mode is used.

— The store occurs to an UNKNOWN address, and if the instruction specifies writeback, any
general-purpose register that can be accessed without privilege violation from the current Exception
level become UNKNOWN.

SRS (A32)

For a description of this instruction and the encoding, see SRS, SRSDA, SRSDB, SRSIA, SRSIB on page F5-5058.

CONSTRAINED UNPREDICTABLE behavior

For all encodings:

• If the instruction specifies an illegal mode field, then one of the following behaviors must occur:

— The instruction is UNDEFINED.

— The instruction executes as a NOP.

— R13 of the current mode is used.

— The store occurs to an UNKNOWN address, and if the instruction specifies writeback, any
general-purpose register that can be accessed without privilege violation from the current Exception
level become UNKNOWN.

SUBS PC, LR and related instructions (T32)

For a description of this instruction and the encoding, see the exception return form of SUB, SUBS (immediate) on
page F5-5161.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K1-8399
ID072021 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
CONSTRAINED UNPREDICTABLE behavior

For all encodings:

• If this instruction is executed in User mode or in System mode, then one of the following behaviors must
occur:

— The instruction is UNDEFINED.

— The instruction executes as a NOP.

• If the instruction transfers an illegal mode encoding to PSTATE.M, then this invokes the illegal exception
return.

Note
An illegal mode encoding is either an unallocated mode encoding or one that is not accessible at the current
Exception level.

For encoding T5:

• If hw1[3:0] are not 0b1110, and the instruction is executed when not in Hyp mode, System mode, or User mode,
then one of the following behaviors must occur:

— The instruction is UNDEFINED.

— The instruction is treated as a NOP.

— The instruction is treated as if hw1[3:0] are 0b1110.

— The program counter is set using the value in the register specified by hw1[3:0].

SUBS PC. LR and related instructions (A32)

For a description of this instruction and the encoding, see the exception return forms of MOV, MOVS (register) on
page F5-4841 and SUB, SUBS (immediate) on page F5-5161.

CONSTRAINED UNPREDICTABLE behavior

For all encodings:

• If this instruction is executed in User mode or in System mode, then one of the following behaviors must
occur:

— The instruction is UNDEFINED.

— The instruction executes as a NOP.

• If the instruction transfers an illegal mode encoding to PSTATE.M, then this invokes the illegal exception
return.

Note
An illegal mode encoding is either an unallocated mode encoding or one that is not accessible at the current
Exception level.
K1-8400 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1.31 CONSTRAINED UNPREDICTABLE behavior, A32 and T32 Advanced SIMD and floating-point
instructions

This section lists the CONSTRAINED UNPREDICTABLE behavior for the different A32 and T32 Advanced SIMD and
floating-point instructions listed in Alphabetical list of Advanced SIMD and floating-point instructions on
page F6-5288.

Note

• The pseudocode used in this section to describe cases that can result in CONSTRAINED UNPREDICTABLE
behavior does not necessarily match the encoding specific pseudocode for a specific instruction.

• If an instruction can result in CONSTRAINED UNPREDICTABLE behavior that is not specific to that particular
instruction, see the relevant section in this appendix for a description of the CONSTRAINED UNPREDICTABLE
behavior.

VCVT (between floating-point and fixed-point)

For a description of this instruction and the encoding, see VCVT (between floating-point and fixed-point,
floating-point) on page F6-5448.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VLD1 (multiple single elements)

For a description of this instruction and the encoding, see VLD1 (multiple single elements) on page F6-5548.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VLD1 (single element to all lanes)

For a description of this instruction and the encoding, see VLD1 (single element to all lanes) on page F6-5545.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VLD2 (multiple 2-element structures)

For a description of this instruction and the encoding, see VLD2 (multiple 2-element structures) on page F6-5564.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VLD2 (single 2-element structure to one lane)

For a description of this instruction and the encoding, see VLD2 (single 2-element structure to one lane) on
page F6-5555.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K1-8401
ID072021 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VLD2 (single 2-element structure to all lanes)

For a description of this instruction and the encoding, see VLD2 (single 2-element structure to all lanes) on
page F6-5561.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VLD3 (multiple 3-element structures)

For a description of this instruction and the encoding, see VLD3 (multiple 3-element structures) on page F6-5578.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VLD3 (single 3-element structure to one lane)

For a description of this instruction and the encoding, see VLD3 (single 3-element structure to one lane) on
page F6-5569.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VLD3 (single 3-element structure to all lanes)

For a description of this instruction and the encoding, see VLD3 (single 3-element structure to all lanes) on
page F6-5575.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VLD4 (multiple 4-element structures)

For a description of this instruction and the encoding, see VLD4 (multiple 4-element structures) on page F6-5590.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VLD4 (single 4-element structure to one lane)

For a description of this instruction and the encoding, see VLD4 (single 4-element structure to one lane) on
page F6-5581.
K1-8402 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VLD4 (single 4-element structure to all lanes)

For a description of this instruction and the encoding, see VLD4 (single 4-element structure to all lanes) on
page F6-5587.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VLDM

For a description of this instruction and the encoding, see VLDM, VLDMDB, VLDMIA on page F6-5593.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VMOV (between two general-purpose registers and two single-precision registers)

For a description of this instruction and the encoding, see VMOV (between two general-purpose registers and two
single-precision registers) on page F6-5675.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VMOV (between two general-purpose registers and a doubleword floating-point
register)

For a description of this instruction and the encoding, see VMOV (between two general-purpose registers and a
doubleword floating-point register) on page F6-5654.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VST1 (multiple single elements)

For a description of this instruction and the encoding, see VST1 (multiple single elements) on page F6-5919.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VST2 (multiple 2-element structures)

For a description of this instruction and the encoding, see VST2 (multiple 2-element structures) on page F6-5932.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K1-8403
ID072021 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VST2 (single 2-element structure from one lane)

For a description of this instruction and the encoding, see VST2 (single 2-element structure from one lane) on
page F6-5926.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VST3 (multiple 3-element structures)

For a description of this instruction and the encoding, see VST3 (multiple 3-element structures) on page F6-5943.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VST3 (single 3-element structure from one lane)

For a description of this instruction and the encoding, see VST3 (single 3-element structure from one lane) on
page F6-5937.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VST4 (multiple 4-element structures)

For a description of this instruction and the encoding, see VST4 (multiple 4-element structures) on page F6-5953.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VST4 (single 4-element structure from one lane)

For a description of this instruction and the encoding, see VST4 (single 4-element structure from one lane) on
page F6-5946.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VSTM

For a description of this instruction and the encoding, see VSTM, VSTMDB, VSTMIA on page F6-5956.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.
K1-8404 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1.32 CONSTRAINED UNPREDICTABLE behaviors associated with the VTCR

The following subsections describe the CONSTRAINED UNPREDICTABLE behavior associated with programming the
VTCR:

• Misprogramming VTCR.S on page K1-8405.

• Misprogramming VTCR.{SL0, T0SZ} on page K1-8405.

Misprogramming VTCR.S

VTCR.S must be programmed to the value of T0SZ[3], or the effect is CONSTRAINED UNPREDICTABLE. For the
Armv8-A architecture, if VTCR.S is not programmed correctly, then the VTCR.T0SZ value is treated as an
UNKNOWN value.

Note

The CONSTRAINED UNPREDICTABLE behavior described in Misprogramming VTCR.{SL0, T0SZ} on page K1-8405
means the UNKNOWN VTCR.T0SZ value might generate a Translation fault.

Misprogramming VTCR.{SL0, T0SZ}

If the stage 2 input address size, as programmed in VTCR.T0SZ, is out of range with respect to the starting level,
as programmed in the VTCR.SL0 field, or the VTCR.SL0 field is programmed to a reserved value, then at the time
of a translation walk that uses the stage 2 translation, a stage 2 level 1 Translation Fault is generated.

K1.1.33 CONSTRAINED UNPREDICTABLE behavior of EL2 features

The following sections, and the instruction descriptions, describe CONSTRAINED UNPREDICTABLE behavior that can
occur in an implementation that includes EL2 where EL2 can use AArch32:

• ERET in User mode or System mode on page K1-8405.

• Accessing Hyp mode from outside Hyp mode on page K1-8405.

• Modifying PSTATE.M when in Hyp mode on page K1-8405

• Use of Hyp mode in Secure state on page K1-8406.

• Exception return to Hyp mode on page K1-8406.

• Stage 1 default memory type on page K1-8406.

• Trapping of general exceptions to Hyp mode on page K1-8406.

• MSR (banked register) and MRS (banked register) on page K1-8406.

ERET in User mode or System mode

If ERET is executed in User mode or System mode, it behaves as described in SUBS PC, LR and related instructions
(T32) on page K1-8399.

Accessing Hyp mode from outside Hyp mode

Attempting to change into Hyp mode or out of Hyp mode using the MSR or CPS instruction invokes the Armv8 illegal
exception return by not changing the mode, and setting PSTATE.IL to 1.

SRS using the Hyp mode SP from Non-secure modes other than Hyp mode, or from Secure state, is handled as
described in SRS (T32) on page K1-8399 and SRS (A32) on page K1-8399.

Modifying PSTATE.M when in Hyp mode

Attempting to change into Hyp mode or out of Hyp mode using the MSR or CPS instruction invokes the Armv8 illegal
exception return by not changing the mode, and setting PSTATE.IL to 1.

SRS using the Hyp mode SP from Non-secure modes other than Hyp mode, or from Secure state, is handled as
described in SRS (T32) on page K1-8399 and SRS (A32) on page K1-8399.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K1-8405
ID072021 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
Use of Hyp mode in Secure state

Attempting to change into Hyp mode or out of Hyp mode using the MSR or CPS instruction invokes the Armv8 illegal
exception return by not changing the mode, and setting PSTATE.IL to 1.

SRS using the Hyp mode SP from Non-secure modes other than Hyp mode, or from Secure state, is handled as
described in SRS (T32) on page K1-8399 and SRS (A32) on page K1-8399.

Exception return to Hyp mode

Exception returns to Hyp mode when SCR.NS == 0 or from a Non-secure PL1 mode invokes the Armv8 illegal
exception return.

Stage 1 default memory type

If HCR.DC == 1, then the behavior of the PE when executing in a Non-secure mode other than Hyp mode is
consistent with:

• SCTLR.M == 0, regardless of the actual value of SCTLR.M, other than for the value returned by an explicit
read of SCTLR.M.

• HCR.VM == 1, regardless of the actual value of HCR.VM, other than for an explicit read of this bit.

Trapping of general exceptions to Hyp mode

Attempting to perform an exception return to a Non-secure PL1 mode when HCR.TGE == 1 invokes an illegal
exception return.

Attempting to change from Monitor mode to a Non-secure PL1 mode when HCR.TGE == 1 by executing a CPS or
MSR instruction generates an Illegal Execution state exception, by not changing the mode, and setting PSTATE.IL
to 1.

When EL3 is using AArch32, attempting to change from a Secure PL1 mode to a Non-secure PL1 mode when
HCR.TGE is set, by changing SCR.NS from 0 to 1, results in no change of SCR.NS.

Because taking an exception into Non-secure PL1 modes leads to a CONSTRAINED UNPREDICTABLE situation, the
following additional properties apply when HCR.TGE == 1:

• All exceptions that would be routed to EL1 are routed to EL2.

• Non-secure SCTLR.M is treated as being 0, regardless of its actual value, other than for an explicit read of
this bit.

• HCR.FMO, HCR.IMO, and HCR.AMO are treated as being 1, regardless of their actual value, other than for
an explicit read of these bits.

• All virtual interrupts are disabled.

• Any IMPLEMENTATION DEFINED mechanisms for signaling virtual interrupts are disabled.

MSR (banked register) and MRS (banked register)

If the target register specified by the {R, SYSm} fields of the instruction encoding is not accessible from the PE mode
in which the instruction was executed (see Usage restrictions on the banked register transfer instructions on
page F5-5283), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• For MRS (banked register) instructions, the destination general-purpose register becomes UNKNOWN.

• For MSR (banked register) instructions, if the register specified could be accessed from the current mode by
other mechanisms, then this register is UNKNOWN. Otherwise, the instruction is a NOP.

If the instruction was executed specifying an unallocated {R, SYSm} field value or an unimplemented register (see
Encoding the register argument in the banked register transfer instructions on page F5-5284), then one of the
following behaviors must occur:

• The instruction is UNDEFINED.
K1-8406 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
• The instruction executes as a NOP.

• An allocated MRS (banked register) or MSR (banked register) instruction is executed.

K1.1.34 Reserved values in System and memory-mapped registers and translation table entries

Unless otherwise stated, all unallocated or reserved values of fields with allocated values within the AArch32
System registers, memory-mapped registers, and translation table entries behave in one of the following ways:

• The encoding maps onto any of the allocated values, but otherwise does not cause CONSTRAINED
UNPREDICTABLE behavior.

• The encoding causes effects that could be achieved by a combination of more than one of the allocated
encodings.

• The encoding causes the field to have no functional effect.

Note

These constraints are identical to those for the equivalent AArch64 definitions, as given in Reserved values in
System and memory-mapped registers and translation table entries on page K1-8423.

K1.1.35 CONSTRAINED UNPREDICTABLE behavior in Debug state

Behavior in Debug state on page H2-7348 of this manual describes the CONSTRAINED UNPREDICTABLE behaviors
that are specifically associated with Debug state.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K1-8407
ID072021 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors

It contains the following sections:

• Overview of the constraints on AArch64 UNPREDICTABLE behaviors on page K1-8408.

• SBZ or SBO fields in A64 instructions on page K1-8408.

• CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on page K1-8409.

• CONSTRAINED UNPREDICTABLE behavior due to inadequate context synchronization on page K1-8409.

• Translation table base address alignment on page K1-8410.

• The Performance Monitors Extension on page K1-8410.

• The Activity Monitors Extension on page K1-8412.

• Syndrome register handling for CONSTRAINED UNPREDICTABLE instructions treated as UNDEFINED
on page K1-8412.

• Out of range virtual address on page K1-8412.

• Mapping of non-idempotent memory locations using the Normal memory type on page K1-8413.

• Instruction fetches from Device memory on page K1-8413.

• Programming the CSSELR_EL1.Level for a cache level that is not implemented on page K1-8413.

• Crossing a page boundary with different memory types or Shareability attributes on page K1-8413.

• Crossing a peripheral boundary with a Device access on page K1-8414.

• CONSTRAINED UNPREDICTABLE behaviors with Load-Exclusive/Store-Exclusive pairs on
page K1-8414.

• CONSTRAINED UNPREDICTABLE behavior for A64 instructions on page K1-8415.

• Out of range values of the Set/Way/Index fields in cache maintenance instructions on page K1-8423.

• Reserved values in System and memory-mapped registers and translation table entries on page K1-8423.

• CONSTRAINED UNPREDICTABLE behavior in Debug state on page K1-8424.

K1.2.1 Overview of the constraints on AArch64 UNPREDICTABLE behaviors

The term UNPREDICTABLE describes a number of cases where the architecture has a feature that software must not
use. For execution in AArch64 state, the Armv8-A architecture specifies a narrow range of permitted behaviors.
This range is the range of CONSTRAINED UNPREDICTABLE behavior. All implementations that are compliant with the
architecture must follow the CONSTRAINED UNPREDICTABLE behavior.

Note

Software designed to be compatible with the Armv8-A architecture must not rely on these CONSTRAINED
UNPREDICTABLE cases being handled in any way other than those listed under the heading CONSTRAINED
UNPREDICTABLE.

K1.2.2 SBZ or SBO fields in A64 instructions

Some A64 instructions have (0) or (1) in the instruction decode to indicate should-be-zero, SBZ, or should-be-one,
SBO, as described in Fixed values in AArch64 instruction and System register descriptions on page C2-211. Except
for specific cases identified in CONSTRAINED UNPREDICTABLE behaviors with Load-Exclusive/Store-Exclusive
pairs on page K1-8414, if the instruction bit pattern of an instruction is executed with these fields not having the
should be values, one of the following must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction operates as if the bit had the should-be value.

• Any destination registers of the instruction become UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.
K1-8408 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
K1.2.3 CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values

The Arm architecture allows copies of control values or data values to be cached in a cache or TLB. This can lead
to UNPREDICTABLE behavior if the cache or TLB has not been correctly invalidated following a change of the control
or data values.

Unless explicitly stated otherwise, the behavior of the PE is consistent with one of:

• The old data or control value.

• The new data or control value.

• An amalgamation of the old and new data or control values.

In an implementation that includes FEAT_TTCNP, this CONSTRAINED UNPREDICTABLE case can arise from
misprogramming when setting TTBR.CnP to 1, as identified in the descriptions of the TTBR.CnP field. In this case,
for a particular TTBR, the behavior of the PE is consistent with one of:

• The value of the translation table entry pointed to by that TTBR on one of the PEs within the Inner Shareable
domain for which both the value of TTBR.CnP is 1 and the other conditions for sharing translation table
entries pointed to by that TTBR are met.

• An amalgamation of the values of the translation table entries pointed to by that TTBR on two or more of the
PEs within the Inner Shareable domain for which both the value of TTBR.CnP is 1 and the other conditions
for sharing translation table entries pointed to by that TTBR are met.

Note

If the Effective value of a control or data value that determines the behavior of the PE results from the amalgamation
of two or more values, then that Effective value must not generate a privilege violation. So, for example:

• Where the CONSTRAINED UNPREDICTABLE behavior occurs because inadequate invalidation of the TLB
causes multiple hits in the TLB, the failure to invalidate the TLB by software executing at a given Exception
level and Security state must not make it possible to access regions of memory with permissions or attributes
that could not be accessed at that Exception level and Security state.

• Where the CONSTRAINED UNPREDICTABLE behavior occurs because of a programming error, on one or more
PEs in the Inner Shareable domain, when using a TTBR.CnP value of 1 to share translation table entries, the
misprogramming must not make it possible to access regions of memory with permissions or attributes that
could not be accessed at the Exception level of that TTBR and the Security state corresponding to the
translation table entries being shared.

Alternatively to this CONSTRAINED UNPREDICTABLE behavior, an implementation detecting multiple hits in a TLB
might generate an exception, reporting the exception using the TLB conflict fault code, see TLB conflict aborts on
page D5-2814.

The choice between the behaviors might, in some implementations, vary for each use of a control or data value.

K1.2.4 CONSTRAINED UNPREDICTABLE behavior due to inadequate context synchronization

The Arm architecture requires that changes to System registers must be synchronized before they take effect. This
can lead to UNPREDICTABLE behavior if the synchronization has not been performed.

In these cases, the behavior of the PE is consistent with the unsynchronized control value being either the old value
or the new value.

Where multiple control values are updated but not yet synchronized, each control value might independently be the
old value or the new value.

In addition, where the unsynchronized control value applies to different areas of functionality, or what an
implementation has constructed as different areas of functionality, those areas might independently treat the control
value as being either the old value or the new value.

The choice between these behaviors might, in some implementations, vary for each use of a control value.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K1-8409
ID072021 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
K1.2.5 Translation table base address alignment

In the translation table base registers TTBR0_EL1, TTBR1_EL1, TTBR0_EL2, VTTBR_EL2, and TTBR0_EL3,
register bits[48:x] hold the translation table base address, where x depends on the translation table granule size and
the size of the addressed translation table, as described in Memory translation granule size on page D5-2698.
Register bits[(x-1):0], unless redefined for another purpose, correspond to bits[(x-1):0] of the translation table base
address and therefore are RES0.

Note

• When FEAT_LPA is implemented and the 64KB granule size is used, register bits[5:2] are redefined to hold
bits[51:48] of the translation table base address.

• When FEAT_TTCNP is implemented register bit[0] is redefined as the CnP bit.

For these registers, if one or more RES0 bits in register bits [(x-1):0] does not have a value of 0, this can result in a
misaligned translation table base address. In this case, one of the following behaviors must occur:

• The field that is defined to be RES0 is treated as if all the bits had a value of 0:

— The value read back might be the value written or it might be zero.

• The calculation of an address for a translation table walk using those registers might be corrupted in those
bits that are nonzero.

For more information, see the appropriate TTBR.BADDR field description.

K1.2.6 The Performance Monitors Extension

The following subsections describe CONSTRAINED UNPREDICTABLE behaviors when accessing the Performance
Monitors Extension in AArch64 state:

• CONSTRAINED UNPREDICTABLE accesses to PMXEVTYPER_EL0 or PMXEVETYPER_EL0 on
page K1-8410.

• CONSTRAINED UNPREDICTABLE accesses to PMEVCNTR<n>_EL0 and PMEVTYPER<n>_EL0 on
page K1-8411.

• CONSTRAINED UNPREDICTABLE behavior caused by MDCR_EL2.HPMN on page K1-8411.

CONSTRAINED UNPREDICTABLE accesses to PMXEVTYPER_EL0 or
PMXEVETYPER_EL0

If FEAT_FGT is implemented, and EL2 is implemented in the current Security state, and EL1 is using AArch64,
permitted access to PMXEVTYPER_EL0 and PMXEVCNTR_EL0 are not CONSTRAINED UNPREDICTABLE.

Otherwise, if PMSELR_EL0.SEL is greater than the number of event counters accessible at this Exception level,
accesses to PMXEVTYPER_EL0 and PMXEVCNTR_EL0 can cause CONSTRAINED UNPREDICTABLE behavior.
This occurs when one of the following is true:

• If PMSELR_EL0.SEL is not equal to 31, and PMSELR_EL0.SEL is greater than or equal to PMCR_EL0.N,
and the PE is executing in EL2 or EL3.

• If FEAT_SEL2 is disabled or is not implemented, PMSELR_EL0.SEL is not 31, and PMSELR_EL0.SEL is
greater than or equal to PMCR_EL0.N, and the PE is executing in Secure EL1 or Secure EL0.

• If PMSELR_EL0.SEL is not 31, and PMSELR_EL0.SEL is greater than or equal to MDCR_EL2.HPMN,
and the PE is executing in EL0 or EL1.

In these cases, one of the following behaviors must occur:

• Accesses to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 from that state are UNDEFINED.

• Accesses to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 from that state behave as RAZ/WI.

• Accesses to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 from that state execute as NOPs.

• Accesses to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 from that state behave as if PMSELR_EL0.SEL
contains an UNKNOWN value that is less than the number of counters accessible at the current Exception level
and Security state.
K1-8410 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
• Accesses to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 from that state behave as if PMSELR_EL0.SEL
is 31.

• If EL2 is implemented and enabled in the current Security state, and PMSELR_EL0.SEL is less than the
number of accessible event counters but greater than or equal to the number of accessible counters at this
Exception level, access to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 from EL1 or a permitted access
from EL0 is trapped to EL2.

Note
If EL2 is implemented and enabled in the current Security state, MDCR_EL2.HPMN identifies the number
of accessible counters at EL0 or EL1. Otherwise, the number of accessible counters is the number of
accessible event counters.

Accesses from EL0 to PMXEVCNTR_EL0 are permitted when:

— EL1 is using AArch32 and the values of PMUSERENR.{ER, EN} are both 1.

— EL1 is using AArch64 and the values of PMUSERENR_EL0.{ER, EN} are both 1.

Accesses from EL0 to PMXEVTYPER_EL0 are permitted when:

— EL1 is using AArch32 and the value of PMUSERENR.EN is 1.

— EL1 is using AArch64 and the value of PMUSERENR_EL0.EN is 1.

If PMSELR_EL0.SEL is equal to 31, then one of the following behaviors must occur:

• Accesses to PMXEVCNTR_EL0 are UNDEFINED.

• Accesses to PMXEVCNTR_EL0 behave as RAZ/WI.

• Accesses to PMXEVCNTR_EL0 execute as NOPs.

• Accesses to PMXEVCNTR_EL0 behave as if PMSELR_EL0.SEL contains an unknown value that is less
than the number of counters accessible at the current Exception level and Security state.

CONSTRAINED UNPREDICTABLE accesses to PMEVCNTR<n>_EL0 and
PMEVTYPER<n>_EL0

If FEAT_FGT is implemented, and EL2 is implemented in the current Security state, and EL1 is using AArch64,
permitted access to PMEVCNTR<n>_EL0 and PMEVTYPER<n>_EL0 are not CONSTRAINED UNPREDICTABLE.

Otherwise, if <n> is greater than the number of event counters available in the current Exception level and state,
reads and writes of PMEVCNTR<n>_EL0 and PMEVTYPER<n>_EL0 are CONSTRAINED UNPREDICTABLE, the
following behaviors are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

• If EL2 is implemented and enabled in the current Security state, for an access to PMEVCNTR<n>_EL0 or
PMEVTYPER<n>_EL0 from EL1 or a permitted access from EL0, if the counter is implemented but not
accessible at the current Exception level, the register access is trapped to EL2.

Accesses from EL0 to PMEVCNTR<n>_EL0 are permitted when:

— EL1 is using AArch32 and the value of PMUSERENR.{ER, EN} are both 1.

— EL1 is using AArch64 and the value of PMUSERENR_EL0.{ER, EN} are both 1.

Accesses from EL0 to PMEVTYPER<n>_EL0 are permitted when:

— EL1 is using AArch32 and the value of PMUSERENR.EN is 1.

— EL1 is using AArch64 and the value of PMUSERENR_EL0.EN is 1.

CONSTRAINED UNPREDICTABLE behavior caused by MDCR_EL2.HPMN

If PMCR_EL0.N is nonzero, and MDCR_EL2.HPMN is set to 0, or to a value larger than PMCR_EL0.N, then the
following CONSTRAINED UNPREDICTABLE behavior applies:

• The value returned by a direct read of MDCR_EL2.HPMN is UNKNOWN.

• Either:

— An UNKNOWN number of counters are reserved for EL2 use. That is, the PE behaves as if
MDCR_EL2.HPMN is set to an UNKNOWN non-zero value less than PMCR_EL0.N.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K1-8411
ID072021 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
— All counters are reserved for EL2 and EL3 use, meaning no counters are accessible from EL1 and EL0.

K1.2.7 The Activity Monitors Extension

If <n> is greater than the number of architected activity monitor event counters, reads and writes of
AMEVCNTR0<n>_EL0 and AMEVTYPER0<n>_EL0 are CONSTRAINED UNPREDICTABLE, and the following
behaviors are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

Note

AMCGCR_EL0.CG0NC identifies the number of architected activity monitor event counters.

If <n> is greater than the number of auxiliary activity monitor event counters, reads and writes of
AMEVCNTR1<n>_EL0and AMEVTYPER1<n>_EL0 are CONSTRAINED UNPREDICTABLE, and the following
behaviors are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

Note

AMCGCR_EL0.CG1NC identifies the number of auxiliary activity monitor event counters.

If the number of auxiliary activity monitor event counters that are implemented is zero, reads and writes of
AMCNTENCLR1_EL0 and AMCNTENSET0_EL0 are CONSTRAINED UNPREDICTABLE, and the following
behaviors are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

Note

The number of auxiliary activity monitor event counters that are implemented is zero exactly when
AMCFGR_EL0.NCG is 0b0000.

K1.2.8 Syndrome register handling for CONSTRAINED UNPREDICTABLE instructions treated as
UNDEFINED

When a CONSTRAINED UNPREDICTABLE instruction is treated as UNDEFINED, ESR_ELx is UNKNOWN.

Note

The value written to ESR_ELx must be consistent with a value that could be created as the result of an exception
from the same Exception level that generated the exception, but was the result of a situation that is not CONSTRAINED
UNPREDICTABLE at that Exception level. This is to avoid a possible privilege violation.

K1.2.9 Out of range virtual address

If the PE executes a load or store instruction with tagged addressing disabled in the current translation regime, and
where the computed virtual address, total access size, and alignment mean that it accesses the bytes at 0xFFFF FFFF
FFFF FFFF and 0x0000 0000 0000 0000, then the bytes that appear to be from 0x0000 0000 0000 0000 onwards are
accessed at an UNKNOWN address.
K1-8412 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
If the PE executes a load or store instruction with tagged addressing enabled in the current translation regime, and
where the computed address, total access size, and alignment mean that it accesses the bytes at 0xFFFF FFFF FFFF
FFFF and 0x0000 0000 0000 0000, then the bytes that appear to be from 0x0000 0000 0000 0000 onwards are accessed
at an unknown address and the tags associated with address also become unknown.

Note

Because of program counter alignment constraints, it is impossible for a PE to fetch an A64 instruction that includes
both the byte at virtual address 0xFFFF FFFF FFFF FFFF and the byte at virtual address 0x0000 0000 0000 0000.

K1.2.10 Mapping of non-idempotent memory locations using the Normal memory type

If non-idempotent memory locations are mapped using the Normal memory type, the state of the non-idempotent
memory location may become corrupted in following circumstances:

• Speculative read accesses may cause accesses to the non-idempotent memory locations that would not occur
as part of a simple sequential execution.

• Writes to non-idempotent memory locations might be merged or split. In this case, the number and size of
writes seen by the memory location might not be the number and size that occur as part of a simple sequential
execution.

K1.2.11 Instruction fetches from Device memory

Instruction fetches from Device memory are CONSTRAINED UNPREDICTABLE.

If a location in memory has the Device attribute and is not marked as execute-never, then an implementation might
perform speculative instruction accesses to this memory location at times when address translation is enabled.

If a branch causes the program counter to point to an area of memory with the Device attribute that is not marked
as execute-never for the current Exception level for instruction fetches, then an implementation must perform one
of the following behaviors:

• It treats the instruction fetch as if it were to a memory location with the Normal, Non-cacheable attribute.

• It generates a Permission fault.

K1.2.12 Programming the CSSELR_EL1.Level for a cache level that is not implemented

If the CSSELR_EL1.Level is programmed to a cache level that is not implemented, then a read of CSSELR_EL1
returns an UNKNOWN value in CSSELR_EL1.Level.

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then on a read of CCSIDR_EL1 an
implementation must perform one of the following behaviors:

• The CCSIDR_EL1 read is treated as a NOP.

• The CCSIDR_EL1 read is UNDEFINED.

• The CCSIDR_EL1 read returns an UNKNOWN value.

When FEAT_CCIDX is implemented, CCSIDR2_EL1 is implemented. If CSSELR_EL1.Level is programmed to
a cache level that is not implemented, then on a read of CCSIDR2_EL1 an implementation must perform one of the
following behaviors:

• The CCSIDR2_EL1 read is treated as a NOP.

• The CCSIDR2_EL1 read is UNDEFINED.

• The CCSIDR2_EL1 read returns an UNKNOWN value.

K1.2.13 Crossing a page boundary with different memory types or Shareability attributes

A memory access from a load or store instruction that crosses a page boundary to a memory location that has a
different memory type or Shareability attribute results in CONSTRAINED UNPREDICTABLE behavior. In this case, the
implementation must perform one of the following behaviors:

• Each memory access generated by the instruction uses the memory type and Shareability attribute associated
with its own address.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K1-8413
ID072021 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
• The instruction generates an Alignment fault caused by the memory type.

For the EL1&0 translation regime, when EL2 is enabled in the current Security state:

— If the stage 1 translation generated the mismatch, the resulting exception is taken to EL1.

— If the stage 2 translation generated the mismatch, the resulting exception is taken to EL2.

— If both stages of translation generate the mismatch, the exception can be taken to either EL1 or EL2.

• The instruction executes as a NOP.

K1.2.14 Crossing a peripheral boundary with a Device access

Performing memory accesses from one load or store instruction to Device memory that crosses a boundary
corresponding to the smallest translation granule size of the implementation causes CONSTRAINED UNPREDICTABLE
behavior. In this case, the implementation performs one of the following behaviors:

• All memory accesses generated by the instruction are performed as if the boundary has no effect on the
memory accesses.

• All memory accesses generated by the instruction are performed as if the boundary has no effect on the
memory accesses except that there is no guarantee of ordering between memory accesses.

• The instruction generates an alignment fault caused by the memory type.

For the EL1&0 translation regime, when EL2 is enabled in the current Security state:

— If the stage 1 translation causes the boundary to be crossed, the resulting exception is taken to EL1.

— If the stage 2 translation causes the boundary to be crossed, the resulting exception is taken to EL2.

— If both stages of translation cause the boundary to be crossed, the resulting exception can be taken to
either EL1 or EL2.

• The instruction executes as a NOP.

Note

The boundary referred to is between two Device memory regions that are both:

• Of the size of the smallest implemented translation granule.

• Aligned to the size of the smallest implemented translation granule.

K1.2.15 CONSTRAINED UNPREDICTABLE behaviors with Load-Exclusive/Store-Exclusive pairs

Load-Exclusive and Store-Exclusive instruction usage restrictions on page B2-186 defines a
Load-Exclusive/Store-Exclusive pair, and identifies various CONSTRAINED UNPREDICTABLE behaviors associated
with using Load-Exclusive/Store-Exclusive pairs. In summary, these cases are:

• The target virtual address of a StoreExcl instruction is different from the virtual address of the preceding
LoadExcl instruction in the same thread of execution.

• The transaction size of a StoreExcl instruction is different from the transaction size of the preceding LoadExcl
instruction in the same thread of execution.

• The StoreExcl instruction accesses a different number of registers than the preceding LoadExcl instruction in
the same thread of execution.

• The memory attributes for a StoreExcl instruction are different from the memory attributes for the preceding
LoadExcl instruction in the same thread of execution, either:

— Because the translation of the accessed address changes between the LoadExcl instruction and the
StoreExcl instruction.

— Because the LoadExcl instruction and the StoreExcl instruction use different virtual addresses, with
different attributes, that point to the same physical address.

In addition, the effect of a data or unified cache invalidate, clean, or clean and invalidate instruction on a local or
global Exclusives monitor that is in the Exclusive Access state is CONSTRAINED UNPREDICTABLE.

See the descriptions in Load-Exclusive and Store-Exclusive instruction usage restrictions on page B2-186 for the
permitted behavior in each of these cases, and any constraints that might apply to whether the case is CONSTRAINED
UNPREDICTABLE.
K1-8414 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
K1.2.16 CONSTRAINED UNPREDICTABLE behavior for A64 instructions

This section lists the CONSTRAINED UNPREDICTABLE behavior for the different A64 instructions listed in Chapter C6
A64 Base Instruction Descriptions and Chapter C7 A64 Advanced SIMD and Floating-point Instruction
Descriptions.

LDAXP

For a description of this instruction and the encoding, see LDAXP on page C6-1070.

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a load using the specified addressing mode, and the transfer register is set to an
UNKNOWN value.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

LDNP

For a description of this instruction and the encoding, see LDNP on page C6-1097.

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a load using the specified addressing mode, and the transfer register is set to an
UNKNOWN value.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

LDNP (SIMD&FP)

For a description of this instruction and the encoding, see LDNP (SIMD&FP) on page C7-1964.

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a load using the specified addressing mode, and the transfer register is set to an
UNKNOWN value.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

LDP

For a description of this instruction and the encoding, see LDP on page C6-1099.

CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and (t == n || t2 == n)
&& n != 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K1-8415
ID072021 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
• The instruction performs a load using the specified addressing mode, and the base register is set to an
UNKNOWN value. In addition, if an exception occurs during such an instruction, the base register might be
corrupted so that the instruction cannot be repeated.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs all of the loads using the specified addressing mode, and the transfer register is set
to an UNKNOWN value.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

LDP (SIMD&FP)

For a description of this instruction and the encoding, see LDP (SIMD&FP) on page C7-1966.

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a load using the specified addressing mode, and the transfer register is set to an
UNKNOWN value.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

LDPSW

For a description of this instruction and the encoding, see LDPSW on page C6-1103.

CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and (t == n || t2 == n)
&& n != 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a load using the specified addressing mode, and the base register is set to an
UNKNOWN value. In addition, if an exception occurs during such an instruction, the base register might be
corrupted so that the instruction cannot be repeated.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs all of the loads using the specified addressing mode, and the register loaded is set
to an UNKNOWN value.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.
K1-8416 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
Note

Pre-indexed addressing and post-indexed addressing imply writeback.

LDR (immediate)

For a description of this instruction and the encoding, see LDR (immediate) on page C6-1106.

CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and n == t && n != 31, then
one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the load using the specified addressing mode, and the base register is set to an
UNKNOWN value. In addition, if an exception occurs during such an instruction, the base register might be
corrupted so that the instruction cannot be repeated.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

LDRB (immediate)

For a description of this instruction and the encoding, see LDRB (immediate) on page C6-1115.

CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and n == t && n != 31, then
one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the load using the specified addressing mode, and the base register is set to an
UNKNOWN value. In addition, if an exception occurs during such an instruction, the base register might be
corrupted so that the instruction cannot be repeated.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

LDRH (immediate)

For a description of this instruction and the encoding, see LDRH (immediate) on page C6-1120.

CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and n == t && n != 31, then
one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the load using the specified addressing mode, and the base register is set to an
UNKNOWN value. In addition, if an exception occurs during such an instruction, the base register might be
corrupted so that the instruction cannot be repeated.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K1-8417
ID072021 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

LDRSB (immediate)

For a description of this instruction and the encoding, see LDRSB (immediate) on page C6-1125.

CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and n == t && n != 31, then
one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the load using the specified addressing mode, and the base register is set to an
UNKNOWN value. In addition, if an exception occurs during such an instruction, the base register might be
corrupted so that the instruction cannot be repeated.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

LDRSH (immediate)

For a description of this instruction and the encoding, see LDRSH (immediate) on page C6-1131.

CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and n == t && n != 31, then
one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the load using the specified addressing mode, and the base register is set to an
UNKNOWN value. In addition, if an exception occurs during such an instruction, the base register might be
corrupted so that the instruction cannot be repeated.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

LDRSW (immediate)

For a description of this instruction and the encoding, see LDRSW (immediate) on page C6-1137.

CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and n == t && n != 31, then
one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.
K1-8418 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
• The instruction performs the load using the specified addressing mode, and the base register is set to an
UNKNOWN value. In addition, if an exception occurs during such an instruction, the base register might be
corrupted so that the instruction cannot be repeated.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

LDXP

For a description of this instruction and the encoding, see LDXP on page C6-1199.

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a load using the specified addressing mode, and the transfer register is set to an
UNKNOWN value.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

STP

For a description of this instruction and the encoding, see STP on page C6-1380.

CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and (t == n || t2 == n)
&& n != 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a store using the specified addressing mode but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

STLXP

For a description of this instruction and the encoding, see STLXP on page C6-1368.

CONSTRAINED UNPREDICTABLE behavior

If s == t || (s == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to the specified address, but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

If s == n && n != 31 then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K1-8419
ID072021 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
• The instruction performs the store to an UNKNOWN address.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

STLXR

For a description of this instruction and the encoding, see STLXR on page C6-1371.

CONSTRAINED UNPREDICTABLE behavior

If s == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to the specified address, but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

If s == n && n != 31 then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to an UNKNOWN address.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

STLXRB

For a description of this instruction and the encoding, see STLXRB on page C6-1374.

CONSTRAINED UNPREDICTABLE behavior

If s == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to the specified address, but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

If s == n && n != 31 then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to an UNKNOWN address.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

STLXRH

For a description of this instruction and the encoding, see STLXRH on page C6-1376.

CONSTRAINED UNPREDICTABLE behavior

If s == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to the specified address, but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.
K1-8420 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
If s == n && n != 31 then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to an UNKNOWN address.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

STR (immediate)

For a description of this instruction and the encoding, see STR (immediate) on page C6-1383.

CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and n == t && n != 31, then
one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a store using the specified addressing mode but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

STRB (immediate)

For a description of this instruction and the encoding, see STRB (immediate) on page C6-1388.

CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and n == t && n != 31, then
one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a store using the specified addressing mode but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

STRH (immediate)

For a description of this instruction and the encoding, see STRH (immediate) on page C6-1393.

CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and n == t && n != 31, then
one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a store using the specified addressing mode but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K1-8421
ID072021 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
Note

Pre-indexed addressing and post-indexed addressing imply writeback.

STXP

For a description of this instruction and the encoding, see STXP on page C6-1438.

CONSTRAINED UNPREDICTABLE behavior

If s == t || (s == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to the specified address, but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

If s == n && n != 31 then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to an UNKNOWN address.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

STXR

For a description of this instruction and the encoding, see STXR on page C6-1441.

CONSTRAINED UNPREDICTABLE behavior

If s == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to the specified address, but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

If s == n && n != 31 then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to an UNKNOWN address.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

STXRB

For a description of this instruction and the encoding, see STXRB on page C6-1443.

CONSTRAINED UNPREDICTABLE behavior

If s == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to the specified address, but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.
K1-8422 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
If s == n && n != 31 then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to an UNKNOWN address.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

STXRH

For a description of this instruction and the encoding, see STXRH on page C6-1445.

CONSTRAINED UNPREDICTABLE behavior

If s == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to the specified address, but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

If s == n && n != 31 then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to an UNKNOWN address.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

K1.2.17 Out of range values of the Set/Way/Index fields in cache maintenance instructions

In the cache maintenance by set/way instructions DC CISW, DC CSW, and DC ISW, if any set/way/index argument
is larger than the value supported by the implementation, then the behavior is CONSTRAINED UNPREDICTABLE and
one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

Note

This CONSTRAINED UNPREDICTABLE behavior applies, also, to the AArch32 cache maintenance by set/way
instructions DCCISW, DCCSW, and DCISW.

K1.2.18 Reserved values in System and memory-mapped registers and translation table entries

Unless otherwise stated in this manual, all unallocated or reserved values of fields with allocated values within
AArch64 System registers, memory-mapped registers, and translation table entries behave in one of the following
ways:

• The unallocated value maps onto any of the allocated values, but otherwise does not cause CONSTRAINED
UNPREDICTABLE behavior.

• The unallocated value causes effects that could be achieved by a combination of more than one of the
allocated values.

• The unallocated value causes the field to have no functional effect.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K1-8423
ID072021 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
Note

These constraints are identical to those for the equivalent AArch32 definitions, as given in Reserved values in
System and memory-mapped registers and translation table entries on page K1-8407.

K1.2.19 CONSTRAINED UNPREDICTABLE behavior in Debug state

Behavior in Debug state on page H2-7348 of this manual describes the CONSTRAINED UNPREDICTABLE behaviors
that are specifically associated with Debug state.
K1-8424 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Appendix K2
Recommended External Debug Interface

This appendix describes the recommended external debug interface. It contains the following sections:

• About the recommended external debug interface on page K2-8426.

• PMUEVENT bus on page K2-8430.

• Recommended authentication interface on page K2-8431.

• Management registers and CoreSight compliance on page K2-8432.

Note

This recommended external debug interface specification is not part of the Arm architecture specification.
Implementers and users of the Armv8 architecture must not consider this appendix as a requirement of the
architecture. It is included as an appendix to this manual only:

• As reference material for users of Arm products that implement this interface.

• As an example of how an external debug interface might be implemented.

The inclusion of this appendix is no indication of whether any Arm products might, or might not, implement this
external debug interface. For details of the implemented external debug interface, you must always see the
appropriate product documentation.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K2-8425
ID072021 Non-Confidential

Recommended External Debug Interface
K2.1 About the recommended external debug interface
K2.1 About the recommended external debug interface

See the Note on the first page of this appendix for information about the architectural status of this recommended
debug interface.

This specification provides a recommended external debug interface for Armv8 to define a standard set of
connections for validation environments. In general, the connection between components, such as between the PE
and Trace extension, is not described here, although the table does include the signals for the CTI connection.
Table K2-1 on page K2-8426 shows the signals in the recommended interface.

Table K2-1 Recommended debug interface signals

Name Direction Description Notes

DBGEN In External debug enable -

SPIDEN In Secure privileged external debug enable -

Secure privileged self-hosted debug
enable

Only in Secure AArch32 modes when
enabled by MDCR_EL3.SPD32

NIDEN In External profiling and trace enable If FEAT_Debugv8p4 is implemented, this
signal is not implemented.

SPNIDEN In Secure external profiling and trace enable If FEAT_Debugv8p4 is implemented, this
signal is not implemented.

EDBGRQ In External halt request IMPLEMENTATION DEFINED mechanism to
halt the PE. See EDBGRQ and DBGACK on
page K2-8429.

DBGACK Out Debug Acknowledge Indicate to the system that a PE is in Debug
state. See EDBGRQ and DBGACK on
page K2-8429.

COMMIRQ Out DCC interrupt Interface to an interrupt controller. See
Interrupt-driven use of the DCC on
page H4-7418 and the pseudocode for
function CheckForDCCInterrupts().

PMUIRQ Out Performance Monitor overflow Interface to an interrupt controller. See
Behavior on overflow on page D7-2855.

COMMRX Out DTRRX is full Provided for legacy connection to an
interrupt controller only. See
Interrupt-driven use of the DCC on
page H4-7418 and the pseudocode for
function CheckForDCCInterrupts().

COMMTX Out DTRTX is empty

PMUEVENT[n:0] Out Performance Monitors event bus See PMUEVENT bus on page K2-8430.

DBGNOPWRDWN Out Emulate low-power state request Interface to a power controller.

See Emulating low-power states on
page H6-7444.

DBGPWRUPREQ Out Core powerup request Interface to a power controller.

See Powerup request mechanism on
page H6-7442.

DBGRSTREQ Out Warm reset request Interface to a power controller.

See EDPRCR.CWRR.
K2-8426 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommended External Debug Interface
K2.1 About the recommended external debug interface
DBGBUSCANCELREQ Out Allow asynchronous entry to Debug state Extension to the bus interface.

See EDRCR.CBRRQ.

DBGPWRDUP In Core powerup status Interface to a power controller.

See EDPRSR.PU.

DBGROMADDR[n:12] In MDRAR_EL1.ROMADDR n depends on the size of the physical address
space. Arm recommends these signals are
tied LOW.

DBGROMADDRV In MDRAR_EL1.Valid Arm recommends these signals are tied
LOW.

PRESETDBG In External debug reset -

CPUPORESET In Cold reset -

CORERESET In Warm reset -

PSELDBG In

Debug APB interfacea

For details, see AMBA APB3. Arm
recommends a single port for all integrated
debug components.

PADDRDBG31 distinguishes
memory-mapped and Debug Access Port
accesses:

0 Memory-mapped access

1 Debug Access Port access

If FEAT_Debugv8p4 is implemented,
PPROTDBG[1] distinguishes between
Secure and Non-secure accesses.

PENABLEDBG In

PWRITEDBG In

PRDATADBG[31:0] Out

PWDATADBG[31:0] In

PADDRDBG[n:2]b In

PREADYDBG Out

PSLVERRDBG Out

PCLKDBG In

PCLKENDBG In

PPROTDBG[1] In

CTICHIN In CoreSight channel interface For details, see the Arm® CoreSight™
Architecture Specification. The ACK signals
are not required if the channel interface is
synchronous.

CTICHOUTACK In

CTICHOUT Out

CTICHINACK Out

CTIIRQ Out CTI interrupt, see Description and
allocation of CTI triggers on
page H5-7429

Implements a handshake for an
edge-sensitive interrupt.

CTIIRQACK In

ATDATA[nx8-1:0] Out AMBA 4 ATB interfacec For details, see the AMBA 4 ATB Protocol
Specification, ATBv1.0 and ATBv1.1. Only
available if the OPTIONAL Trace extension is
implemented.

ATBYTES[n-1:0] Out

ATID[6:0] Out

ATREADY In

Table K2-1 Recommended debug interface signals (continued)

Name Direction Description Notes
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K2-8427
ID072021 Non-Confidential

Recommended External Debug Interface
K2.1 About the recommended external debug interface
Figure K2-1 on page K2-8428 shows the recommended debug interface.

Figure K2-1 Recommended external debug interface, including the APB4 Completer port

ATVALID Out AMBA 4 ATB interfacec For details, see the AMBA 4 ATB Protocol
Specification, ATBv1.0 and ATBv1.1. Only
available if the OPTIONAL Trace extension is
implemented.

AFREADY Out

AFVALID Out

SYNCREQ In

ATCLK In

ATCLKEN In

ATRESET In

a. This is the port where the PE completes debug APB transactions. Arm recommends a single port for all integrated debug components.

b. The value of n depends on the size of the address space occupied by the Debug port.

c. This is the port where the PE outputs trace.

Table K2-1 Recommended debug interface signals (continued)

Name Direction Description Notes

Processing
element

DCC
handshake

PSELDBG
PADDRDBG

PRDATADBG
PWDATADBG
PENABLEDBG
PREADYDBG
PSLVERRDBG
PWRITEDBG

PCLKDBG
PCLKENDBG

Debug port,
APB4

ConfigurationDBGROMADDR
DBGROMADDRV

DBGBUSCANCELREQ

DBGEN

NIDEN
SPNIDEN

COMMTX
COMMRX
COMMIRQ

DBGNOPWRDWN
DBGPWRDUP

Power and reset
controller
interface

DBGPWRUPREQ
DBGRSTREQ

CPUPORESET
CORERESET
PRESETDBG

DBGACK
EDBGRQ

Run-control
interface

PMUEVENT
PMUIRQ

Performance
Monitor
Interface

Trace port,
AMBA ATBCross-trigger

channel interface

CTICHIN
CTICHOUTACK

CTICHOUT
CTICHINACK

CTIIRQ
CTIIRQACK

ATRESET

ATREADY

ATCLK
AFVALID

ATCLKEN

ATID
ATDATA

ATBYTES

ATVALID
AFREADY

SYNCREQ

PPROTDBG

SPIDENAuthentication
interface
K2-8428 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommended External Debug Interface
K2.1 About the recommended external debug interface
K2.1.1 EDBGRQ and DBGACK

EDBGRQ is an IMPLEMENTATION DEFINED means of generating the External Debug Request debug event described
in External Debug Request debug event on page H3-7395.

The PE asserts DBGACK when the PE is in Debug state. The PE might also include variants of this signal:

DBGTRIGGER

Asserted by the PE when it commits to entering Debug state.

DBGCPUDONE

Asserted by the PE when it has completed all Non-debug state memory accesses and Debug state
entry is complete. DBGCPUDONE indicates that memory accesses issued by the PE result from
operations originating from debugger commands.

In previous architecture versions, these signals provide an interface between the PE and cross-trigger logic. In
Armv8, the architectural Cross-Trigger Interface provides this functionality for external debuggers.

K2.1.2 Secure and Non-secure views of the debug registers

If FEAT_Debugv8p4 is implemented, the external debug interface has views of Secure and Non-secure debug
registers. The DAP is must ensure that accesses are made only when permitted. The Arm debug interface describes
a standard APB-AP programmers model for APB4 which signals Secure and Non-secure accesses on the
PPROTDBG[1] signal, and is recommended for new designs.

If FEAT_Debugv8p4 is implemented, and an APB-AP implements an APB3 Requester port, which does not support
Secure and Non-secure views, Arm recommends that the following is implemented:

• If SPIDEN is HIGH and DBGEN is HIGH, all external debug accesses area treated as Secure.

• If either SPIDEN is LOW or DBGEN is LOW, all external debug accesses are treated as Non-secure.

If the PE APB Completer port is APB4, this might be implemented by, for example, fixing PPROTDBG[1] to the
inverse of (SPIDEN & DBGEN) when bridging from APB3 to APB4.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K2-8429
ID072021 Non-Confidential

Recommended External Debug Interface
K2.2 PMUEVENT bus
K2.2 PMUEVENT bus

The PMUEVENT bus exports Performance Monitor events from the PE to an on-chip agent. Arm recommends that
it has the following characteristics:

• The bus is synchronous.

• The width of the bus is IMPLEMENTATION DEFINED.

• It is IMPLEMENTATION DEFINED which events are exported on the bus.

• Each exported event occupies a contiguous sub-field of the bus. Arm recommends that the sub-fields of the
bus are occupied in the same order as the event numbers.

• If the event can only occur once per cycle, it occupies a single bit. If the event can occur more than once per
cycle, it is IMPLEMENTATION DEFINED how the event is encoded. The encoding depends on constraints such
as the designated use of the event bus and the number of pins available. For example, the event can be
encoded:

— As a count, using a plain binary number. This is the most useful encoding when exporting to an
external counter. It is not a useful encoding for exporting to a Trace extension external input.

— As a count, using thermometer encoding. This is the most useful encoding when exporting to a Trace
extension.

— Using a single bit encoding to indicate whether the event count is zero or nonzero. This is useful for
exporting to an activity monitor where the number of pins is constrained.

If a Trace extension is implemented, the PMUEVENT bus is normally connected to the Trace extension using the
external inputs. TRCEXTINSELR multiplexes a wide PMUEVENT bus to a narrow set of inputs. An external
PMUEVENT bus might also be provided. For more information, contact Arm.
K2-8430 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommended External Debug Interface
K2.3 Recommended authentication interface
K2.3 Recommended authentication interface

An implementation of the Armv8 architecture must support debug authentication described in Required debug
authentication on page H1-7336.

The details of the debug authentication interface are IMPLEMENTATION DEFINED, but Arm recommends the use of
the CoreSight interface, which includes the following signals for external debug authentication:

• DBGEN.

• SPIDEN.

If FEAT_Debugv8p4 is not implemented, Arm also recommends using the following signals:

• NIDEN.

• SPNIDEN.

Arm recommends an interface in which DBGEN and SPIDEN are also used for self-hosted Secure debug
authentication if either:

• EL3 is using AArch32 and SDCR.SPD == 0b00.

• Secure EL1 is using AArch32 and MDCR_EL3.SPD32 == 0b00.

If EL3 is not implemented and the PE is in Non-secure state, SPIDEN and SPNIDEN are not implemented, and the
PE behaves as if these signals were tied LOW.

If EL3 is not implemented and the PE is in Secure state, SPIDEN is usually connected to DBGEN and SPNIDEN
is connected to NIDEN, but this is not required. The recommended interface is defined as if all four signals are
implemented.

How the authentication signals are driven is IMPLEMENTATION DEFINED. For example, the signals might be
hard-wired, connected to fuses, or to an authentication module. The architecture permits PEs within a cluster to have
independent authentication interfaces, but this is not required. Arm recommends that any Trace extension has the
same authentication interface as the PE it is connected to.

If FEAT_Debugv8p4 and CoreSight ETR are both implemented, the ETR has an independent DBGEN signal that
must be tied HIGH to enable self-hosted use of trace.

Table K2-2 on page K2-8431 shows the debug authentication pseudocode functions and the recommended
implementations.

The Debug_authentication() pseudocode function on shared/debug on page J1-8221 defines the authentication
signals DBGEN, SPIDEN, NIDEN, and SPNIDEN.

Table K2-2 Recommended implementation of debug enable pseudocode functions

Pseudocode function Description Implementation

AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled() Secure invasive self-hosted debug
enabled in AArch32 state (legacy)

(DBGEN AND SPIDEN)

ExternalSecureNoninvasiveDebugEnabled()a Secure non-invasive debug enabled (DBGEN OR NIDENb)
AND (SPIDEN OR
SPNIDENc)

ExternalSecureInvasiveDebugEnabled() Secure invasive debug enabled (DBGEN AND SPIDEN)

ExternalNoninvasiveDebugEnabled()d Non-secure non-invasive debug
enabled

(DBGEN OR NIDENb)

ExternalInvasiveDebugEnabled() Non-secure invasive debug enabled DBGEN

a. If FEAT_Debugv8p4 is implemented, ExternalSecureNoninvasiveDebugEnabled() == ExternalSecureInvasiveDebugEnabled().

b. If FEAT_Debugv8p4 is implemented, the NIDEN signal is not implemented.

c. If FEAT_Debugv8p4 is implemented, the SPNIDEN signal is not implemented.

d. If FEAT_Debugv8p4 is implemented, ExternalNoninvasiveDebugEnabled() == TRUE.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K2-8431
ID072021 Non-Confidential

Recommended External Debug Interface
K2.4 Management registers and CoreSight compliance
K2.4 Management registers and CoreSight compliance

The CoreSight architecture requires the implementation of a set of management registers that occupy the memory
map from 0xF00 upwards in each of the debug components.

CoreSight compliance and complete implementation of the management registers is OPTIONAL, but Arm
recommends that the registers are implemented.

The CoreSight architecture specification recommends that any integration test registers are implemented starting
from 0xEFC downwards. Each of the debug components has an IMPLEMENTATION DEFINED region from 0xE80 to
0xEFC for this purpose.

K2.4.1 CoreSight interface register map

Table K2-3 on page K2-8432 shows the external management register maps for the following registers:

ED These are the external debug register.

CTI These are the Cross-trigger interface registers.

PMU These are the Performance Monitors registers.

Table K2-3 CoreSight interface register map

Offset
Mnemonic

Name
ED CTI PMU

0xF00 EDITCTRL CTIITCTRL PMITCTRL Integration Model Control registers

0xF04-0xF9C - - - Reserved, RES0

0xFA0 DBGCLAIMSET_EL1a CTICLAIMSETb - CLAIM Tag Set registers

0xFA4 DBGCLAIMCLR_EL1a CTICLAIMCLRb - CLAIM Tag Clear registers

0xFA8 EDDEVAFF0a CTIDEVAFF0c PMDEVAFF0 Device Affinity registers

0xFAC EDDEVAFF1a CTIDEVAFF1c PMDEVAFF1

0xFB0 EDLARd CTILARd PMLARd Lock Access register

0xFB4 EDLSRd CTILSRd PMLSRd Lock Status register

0XFB8 DBGAUTHSTATUS_EL1a CTIAUTHSTATUS PMAUTHSTATUS Authentication Status register

0xFBC EDDEVARCH CTIDEVARCH PMDEVARCH Device Architecture register

0xFC0 EDDEVID2a CTIDEVID2a - Device ID register

0xFC4 EDDEVID1a CTIDEVID1a -

0xFC8 EDDEVIDa CTIDEVIDa PMDEVIDa, e

0xFCC EDDEVTYPE CTIDEVTYPE PMDEVTYPE Device Type register

0xFD0 EDPIDR4 CTIPIDR4 PMPIDR4 Peripheral ID registers

0xFD4-0xFDC - - - Reserved, RES0

0xFE0 EDPIDR0 CTIPIDR0 PMPIDR0 Peripheral ID registers

0xFE4 EDPIDR1 CTIPIDR1 PMPIDR1

0xFE8 EDPIDR2 CTIPIDR2 PMPIDR2

0xFEC EDPIDR3 CTIPIDR3 PMPIDR3
K2-8432 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommended External Debug Interface
K2.4 Management registers and CoreSight compliance
K2.4.2 Management register access permissions

Access to the OPTIONAL Integration Control register (ITCTRL) is IMPLEMENTATION DEFINED.

Table K2-4 on page K2-8434, Table K2-5 on page K2-8435, Table K2-6 on page K2-8436, Table K2-7 on
page K2-8437, and Table K2-8 on page K2-8438 show the response to accesses by the external debug interface to
the CoreSight management registers.

Note

Access to the CoreSight management registers is not affected by the values of EDAD and EPMAD.

Table K2-4 on page K2-8434, Table K2-5 on page K2-8435, Table K2-6 on page K2-8436, Table K2-7 on
page K2-8437, and Table K2-8 on page K2-8438 include reserved management registers, because the CoreSight
architecture requires that these registers are always RES0. The descriptions in Reserved and unallocated registers
on page H8-7470 do not apply to reserved management registers if the implementation is CoreSight compliant.

If OPTIONAL memory-mapped access to the external debug interface is supported, there are additional constraints
on memory-mapped accesses. See Register access permissions for memory-mapped accesses on page H8-7466.

When HaveSecureExtDebugView() == TRUE, each debug component has a Secure and Non-secure view. The Secure
view of a debug component is mapped into Secure physical memory and the Non-secure view of a debug component
is mapped into Non-secure memory. Apart from access conditions, the Non-secure and Secure views of the debug
components are identical.

The terms in Table K2-4 on page K2-8434, Table K2-5 on page K2-8435, Table K2-6 on page K2-8436, Table K2-7
on page K2-8437, and Table K2-8 on page K2-8438 are defined as follows:

Domain This describes the power domain in which the register is logically implemented. Registers described
as implemented in the Core power domain might be implemented in the Debug power domain, as
long as they exhibit the required behavior.

If FEAT_DoPD is implemented, most External debug interface registers are in the Core power
domain, as shown in Table K2-4 on page K2-8434 and Table K2-7 on page K2-8437.

If FEAT_DoPD is not implemented, most of the registers are in the Debug Power Domain, as shown
in Table K2-5 on page K2-8435 and Table K2-8 on page K2-8438.

Conditions This lists the conditions under which the access is attempted.

To determine the access permissions for a register, read these columns from left to right, and stop at
first column that lists the condition as being true.

0xFF0 EDCIDR0 CTICIDR0 PMCIDR0 Component ID registers

0xFF4 EDCIDR1 CTICIDR1 PMCIDR1

0xFF8 EDCIDR2 CTICIDR2 PMCIDR2

0xFFC EDCIDR3 CTICIDR3 PMCIDR3

a. This register must always be implemented, regardless of whether the component is CoreSight compliant.

b. If implemented, the number of CLAIM bits is IMPLEMENTATION DEFINED and can be discovered by reading CLAIMSET.

c. If the CTI implements CTIv1, this register is not implemented. See the register description for details.

d. The Software lock registers are defined as part of CoreSight compliance, but their contents depend on the type of access that is made and
whether the OPTIONAL Software lock is implemented. See the register description for details.

e. PMDEVID is implemented only from Armv8.2 or if FEAT_PCSRv8p2 is implemented, otherwise its offset is RES0.

Table K2-3 CoreSight interface register map (continued)

Offset
Mnemonic

Name
ED CTI PMU
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K2-8433
ID072021 Non-Confidential

Recommended External Debug Interface
K2.4 Management registers and CoreSight compliance
The conditions are:

Off EDPRSR.PU == 0. The Core power domain is completely off, or in low-power state. In
these cases, the Core power domain registers cannot be accessed.

Note
When the Debug power domain is off, all accesses to the registers in the external Debug
power domain return an error.

DLK If the OS Double Lock is implemented and DoubleLockStatus() == TRUE. The OS
Double Lock is locked.

OSLK OSLSR.OSLK == 1. The OS Lock is locked.

Default This provides the default access permissions, if there are no conditions that prevent access to the
register.

SLK This provides the modified default access permissions for OPTIONAL memory-mapped accesses to
the external debug interface if the OPTIONAL Software Lock is locked. See Register access
permissions for memory-mapped accesses on page H8-7466. If FEAT_DoPD is implemented, the
Software Lock is not locked, or not implemented, this column is ignored.

The access permissions are:

- This means that the default access permission applies. See the Default column, or the SLK column,
if applicable.

RO This means that the register or field is read-only.

RW This means that the register or field is read/write. Individual fields within the register might be RO.
See the relevant register description for details.

RC This means that the bit clears to 0 after a read.

(SE) This means that accesses to this register have indirect write side effects. A side effect occurs when
a direct read or a direct write of a register creates an indirect write to the same register or to another
register.

WO This means that the register or field is write-only.

WI This means that the register or field ignores writes.

IMP DEF This means that the access permissions are IMPLEMENTATION DEFINED.

Table K2-4 External debug interface access permissions, CoreSight registers (debug) if
FEAT_DoPD is implemented

Offset Register Domain

Conditions
(priority left to right)

Default

Off DLK OSLK

0xF00 EDITCTRL IMP DEF IMPLEMENTATION DEFINED IMP DEF

0xF04-0xF8C Reserved - - - RES0

0xFA0 DBGCLAIMSET_EL1 Core Error Error Error RW (SE)

0xFA4 DBGCLAIMCLR_EL1 Core Error Error Error RW (SE)

0xFA8 EDDEVAFF0 Core Error - - RO

0xFAC EDDEVAFF1 Core Error - - RO

0xFB0 EDLAR Core Error - - WO (SE)
K2-8434 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommended External Debug Interface
K2.4 Management registers and CoreSight compliance
0xFB4 EDLSR Core Error - - RO

0xFB8 DBGAUTHSTATUS_EL1 Core Error - - RO

0xFBC EDDEVARCH Core Error - - RO

0xFC0 EDDEVID2 Core Error - - RO

0xFC4 EDDEVID1 Core Error - - RO

0xFC8 EDDEVID Core Error - - RO

0xFCC EDDEVTYPE Core Error - - RO

0xFD0 EDPIDR4 Core Error - - RO

0xFD4-0xFDC Reserved - - - RES0

0xFE0-0xFEC EDPIDR0 Core Error - - RO

0xFE4 EDPIDR1 Core Error - - RO

0xFE8 EDPIDR2 Core Error - - RO

0xFEC EDPIDR3 Core Error - - RO

0xFF0 EDCIDR0 Core Error - - RO

0xFF4 EDCIDR1 Core Error - - RO

0xFF8 EDCIDR2 Core Error - - RO

0xFFC EDCIDR3 Core Error - - RO

Table K2-5 External debug interface access permissions, CoreSight registers (debug) if
FEAT_DoPD is not implemented

Offset Register Domain

Conditions
(priority left to right)

Default SLK

Off DLK OSLK

0xF00 EDITCTRL IMP DEF IMPLEMENTATION DEFINED IMP DEF RO/WI

0xF04-0xF8C Reserved Debug - - - RES0 -

0xFA0 DBGCLAIMSET_EL1 Core Error Error Error RW (SE) RO

0xFA4 DBGCLAIMCLR_EL1 Core Error Error Error RW (SE) RO

0xFA8 EDDEVAFF0 Debug - - - RO -

0xFAC EDDEVAFF1 Debug - - - RO -

0xFB0 EDLAR Debug - - - WO (SE) -

Table K2-4 External debug interface access permissions, CoreSight registers (debug) if
FEAT_DoPD is implemented (continued)

Offset Register Domain

Conditions
(priority left to right)

Default

Off DLK OSLK
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K2-8435
ID072021 Non-Confidential

Recommended External Debug Interface
K2.4 Management registers and CoreSight compliance
0xFB4 EDLSR Debug - - - RO -

0xFB8 DBGAUTHSTATUS_EL1 Debug - - - RO -

0xFBC EDDEVARCH Debug - - - RO -

0xFC0 EDDEVID2 Debug - - - RO -

0xFC4 EDDEVID1 Debug - - - RO -

0xFC8 EDDEVID Debug - - - RO -

0xFCC EDDEVTYPE Debug - - - RO -

0xFD0 EDPIDR4 Debug - - - RO -

0xFD4-0xFDC Reserved Debug - - - RES0 -

0xFE0-0xFEC EDPIDR0 Debug - - - RO -

0xFE4 EDPIDR1 Debug - - - RO -

0xFE8 EDPIDR2 Debug - - - RO -

0xFEC EDPIDR3 Debug - - - RO -

0xFF0 EDCIDR0 Debug - - - RO -

0xFF4 EDCIDR1 Debug - - - RO -

0xFF8 EDCIDR2 Debug - - - RO -

0xFFC EDCIDR3 Debug - - - RO -

Table K2-6 External debug interface access permissions, CoreSight registers (CTI)

Offset Register Domain

Conditions
(priority left to right)

Default SLK

Off DLK OSLK

0xF00 CTIITCTRL IMP DEF IMPLEMENTATION DEFINED IMP DEF RO/WI

0xF04-0xF8C Reserved Debug - - - RES0 -

0xFA0 CTICLAIMSET Debug - - - RW (SE) RO

0xFA4 CTICLAIMCLR Debug - - - RW (SE) RO

0xFA8 CTIDEVAFF0 Debug - - - RO -

0xFAC CTIDEVAFF1 Debug - - - RO -

0xFB0 CTILAR Debug - - - WO (SE) -

Table K2-5 External debug interface access permissions, CoreSight registers (debug) if
FEAT_DoPD is not implemented (continued)

Offset Register Domain

Conditions
(priority left to right)

Default SLK

Off DLK OSLK
K2-8436 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommended External Debug Interface
K2.4 Management registers and CoreSight compliance
0xFB4 CTILSR Debug - - - RO -

0xFB8 CTIAUTHSTATUS Debug - - - RO -

0xFBC CTIDEVARCH Debug - - - RO -

0xFC0 CTIDEVID2 Debug - - - RO -

0xFC4 CTIDEVID1 Debug - - - RO -

0xFC8 CTIDEVID Debug - - - RO -

0xFCC CTIDEVTYPE Debug - - - RO -

0xFD0 CTIPIDR4 Debug - - - RO -

0xFD4-0xFDC Reserved Debug - - - RES0 -

0xFE0 CTIPIDR0 Debug - - - RO -

0xFE4 CTIPIDR1 Debug - - - RO -

0xFE8 CTIPIDR2 Debug - - - RO -

0xFEC CTIPIDR3 Debug - - - RO -

0xFF0 CTICIDR0 Debug - - - RO -

0xFF4 CTICIDR1 Debug - - - RO -

0xFF8 CTICIDR2 Debug - - - RO -

0xFFC CTICIDR3 Debug - - - RO -

Table K2-7 External debug interface access permissions, CoreSight registers (PMU) if
FEAT_DoPD is implemented

Offset Register Domain

Conditions
(priority left to right)

Default

Off DLK OSLK

0xF00 PMITCTRL IMP DEF IMPLEMENTATION DEFINED IMP DEF

0xF04-0xFA4 Reserved - - - RES0

0xFA8 PMDEVAFF0 Core Error - - RO

0xFAC PMDEVAFF1 Core Error - - RO

0xFB0 PMLAR Core Error - - WO (SE)

0xFB4 PMLSR Core Error - - RO

0xFB8 PMAUTHSTATUS Core Error - - RO

Table K2-6 External debug interface access permissions, CoreSight registers (CTI) (continued)

Offset Register Domain

Conditions
(priority left to right)

Default SLK

Off DLK OSLK
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K2-8437
ID072021 Non-Confidential

Recommended External Debug Interface
K2.4 Management registers and CoreSight compliance
0xFBC PMDEVARCH Core Error - - RO

0xFC0-0xFC4 Reserved - - - RES0

0xFC8 PMDEVIDa Core Error - - RO

0xFCC PMDEVTYPE Core Error - - RO

0xFD0 PMPIDR4 Core Error - - RO

0xFD4-0xFDC Reserved - - - RES0

0xFE0 PMPIDR0 Core Error - - RO

0xFE4 PMPIDR1 Core Error - - RO

0xFE8 PMPIDR2 Core Error - - RO

0xFEC PMPIDR3 Core Error - - RO

0xFF0 PMCIDR0 Core Error - - RO

0xFF4 PMCIDR1 Core Error - - RO

0xFF8 PMCIDR2 Core Error - - RO

0xFFC PMCIDR3 Core Error - - RO

a. Implemented from Armv8.2, or if FEAT_PCSRv8p2 is implemented. Otherwise this
location is RES0.

Table K2-8 External debug interface access permissions, CoreSight registers (PMU) if
FEAT_DoPD is not implemented

Offset Register Domain

Conditions
(priority left to right)

Default SLK

Off DLK OSLK

0xF00 PMITCTRL IMP DEF IMPLEMENTATION DEFINED IMP DEF RO/WI

0xF04-0xFA4 Reserved Debug - - - RES0 -

0xFA8 PMDEVAFF0 Debug - - - RO -

0xFAC PMDEVAFF1 Debug - - - RO -

0xFB0 PMLAR Debug - - - WO (SE) -

0xFB4 PMLSR Debug - - - RO -

0xFB8 PMAUTHSTATUS Debug - - - RO -

0xFBC PMDEVARCH Debug - - - RO -

0xFC0-0xFC4 Reserved Debug - - - RES0 -

Table K2-7 External debug interface access permissions, CoreSight registers (PMU) if
FEAT_DoPD is implemented (continued)

Offset Register Domain

Conditions
(priority left to right)

Default

Off DLK OSLK
K2-8438 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommended External Debug Interface
K2.4 Management registers and CoreSight compliance
K2.4.3 Management register resets

Table K2-9 on page K2-8439 shows the management register resets. This table does not include:

• Read-only identification registers that have a fixed value from reset. These registers include those with the
DEVAFFn, DEVARCH, DEVID{n}, DEVTYPE, PIDRn, and CIDRn mnemonics.

• Registers that have the AUTHSTATUS mnemonic. This is a read-only status register that reflects the status
outside of the reset domain of the register.

• Registers that have the LAR mnemonic. These are write-only registers that only have an effect on writes.

All other fields in the management registers are reset to an IMPLEMENTATION DEFINED value which can be
UNKNOWN. The registers are in the reset domain specified in the table.

Table K2-9 on page K2-8439 shows a summary of the management register resets.

0xFC8 PMDEVIDa Debug - - - RO -

0xFCC PMDEVTYPE Debug - - - RO -

0xFD0 PMPIDR4 Debug - - - RO -

0xFD4-0xFDC Reserved Debug - - - RES0 -

0xFE0 PMPIDR0 Debug - - - RO -

0xFE4 PMPIDR1 Debug - - - RO -

0xFE8 PMPIDR2 Debug - - - RO -

0xFEC PMPIDR3 Debug - - - RO -

0xFF0 PMCIDR0 Debug - - - RO -

0xFF4 PMCIDR1 Debug - - - RO -

0xFF8 PMCIDR2 Debug - - - RO -

0xFFC PMCIDR3 Debug - - - RO -

a. Implemented from Armv8.2, or if FEAT_PCSRv8p2 is implemented. Otherwise this location is RES0.

Table K2-8 External debug interface access permissions, CoreSight registers (PMU) if
FEAT_DoPD is not implemented (continued)

Offset Register Domain

Conditions
(priority left to right)

Default SLK

Off DLK OSLK

Table K2-9 Management register resets

Register Reset domain Field Value Description

CTIITCTRL

EDITCTRL

PMITCTRL

IMPLEMENTATION DEFINED IME 0 Integration mode enable
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K2-8439
ID072021 Non-Confidential

Recommended External Debug Interface
K2.4 Management registers and CoreSight compliance
K2.4.4 About the Peripheral identification scheme

The Peripheral Identification scheme provides the standard information required by all components that conform to
the Arm® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2, that implements the CoreSight
identification scheme. They identify a peripheral in a particular namespace. For more information, see the Arm®
CoreSight™ Architecture Specification.

Table K2-10 on page K2-8440 lists the Peripheral ID Registers that make up the Peripheral Identification scheme
for each component.

Figure K2-2 on page K2-8440 shows the register field allocation scheme for the Peripheral ID Registers.

Figure K2-2 Peripheral ID register format

DBGCLAIMCLR_EL1 Cold reset CLAIM 0x00 CLAIM tags

CTICLAIMCLR External debug CLAIM 0x00000000

CTILSRa

EDLSRa

PMLSRa

If FEAT_DoPD is
implemented, reset by Cold
reset, otherwise External
debug.

SLK 1 Software Lock

a. Only if the OPTIONAL Software Lock is implemented

Table K2-9 Management register resets (continued)

Register Reset domain Field Value Description

Table K2-10 Peripheral Identification Registers

Reference

Register offset Description External Debug CTI Performance Monitors

0xFD0 Peripheral ID4 EDPIDR4 CTIPIDR4 PMPIDR4

0xFD4 Reserved for Peripheral ID5 - - -

0xFD8 Reserved for Peripheral ID6 - - -

0xFDC Reserved for Peripheral ID7 - - -

0xFE0 Peripheral ID0 EDPIDR0 CTIPIDR0 PMPIDR0

0xFE4 Peripheral ID1 EDPIDR1 CTIPIDR1 PMPIDR1

0xFE8 Peripheral ID2 EDPIDR2 CTIPIDR2 PMPIDR2

0xFEC Peripheral ID3 EDPIDR3 CTIPIDR3 PMPIDR3

RES0

31 8

Peripheral ID data

7 0
K2-8440 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommended External Debug Interface
K2.4 Management registers and CoreSight compliance
Software can consider the eight Peripheral ID Registers as defining a single 64-bit Peripheral ID, as shown in
Figure K2-3 on page K2-8441.

Figure K2-3 Mapping between Peripheral ID Registers and a 64-bit Peripheral ID Value

Figure K2-3 on page K2-8441 shows the fields in the 64-bit Peripheral ID value, and includes the field values for
fields that:

• Have fixed values, including the bits that are reserved.

• Have fixed values in an implementation that is designed by Arm.

For more information about the fields and their values, see Table K2-11 on page K2-8441.

Figure K2-4 Peripheral ID fields, with values for a implementation designed by ARM

Table K2-11 on page K2-8441 shows the fields in the Peripheral ID.

0

Actual Peripheral ID Register fields

EDPIDR0

7 07 07 07 07 07 07 07

EDPIDR1EDPIDR2EDPIDR3EDPIDR4EDPIDR5EDPIDR6EDPIDR7

63 16 15 8 0724 2332 3140 3948 4756 55

Conceptual 64-bit Peripheral ID

0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 1 0 0 1 0 1 1 11 0 1

Conceptual 64-bit Peripheral ID

7 0 07

Reserved, RES0

EDPIDR7EDPIDR7EDPIDR7EDPIDR7EDPIDR7EDPIDR7EDPIDR7EDPIDR7

Part numberJEP106
ID code

4KB
count

RevAnd

JEP106
Continuation code

Customer
modified

Revision

63 0

4 3070707070707 2343434

Uses JEP106 ID code

Table K2-11 Fields in the Peripheral Identification Registers

Name Size Description Registers

4KB count 4 bits Log2 of the number of 4KB blocks occupied by the implementation. EDPIDR4

CTIPIDR4

PMPIDR4

JEP106 code 4+7

bits

Identifies the designer of the implementation. This value consists of:

• A 4-bit continuation code, also described as the bank number.

• A 7-bit identification code.

For implementations designed by Arm, the continuation code is 0x4, indicating
bank 5, and the identity code is 0x3B.

EDPIDR1, EDPIDR2,
EDPIDR4

CTIPIDR1,
CTIPIDR2, CTIPIDR4

PMPIDR1, PMPIDR2,
PMPIDR4

RevAnd 4 bits Manufacturing revision number. Indicates a late modification to the
implementation, usually as a result of an Engineering Change Order (ECO).
This field starts at 0x0 and is incremented by the integrated circuit manufacturer
on metal fixes.

EDPIDR3

CTIPIDR3

PMPIDR3

Customer

modified

4 bits Indicates an endorsed modification to the implementation.

If the system designer cannot modify the implementation supplied by the
implementation designer, then this field is RES0.

EDPIDR3

CTIPIDR3

PMPIDR3
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K2-8441
ID072021 Non-Confidential

Recommended External Debug Interface
K2.4 Management registers and CoreSight compliance
A component is identified uniquely by the combination of the following fields:

• JEP106 continuation code.

• JEP106 identity code.

• Part number.

• Revision.

• Customer Modified.

• RevAnd.

For components with a Component class of 0x9, Debug component, indicated by the Component Identification
Registers, multiple components can have the same Part number, provided each component has a different CoreSight
Device type. However, Arm strongly recommends that each device has a unique Part number. For more information:

• About the Component Identification Registers, see About the Component Identification scheme on
page K2-8443.

• About the CoreSight Device type, see EDDEVTYPE, CTIDEVTYPE, or PMDEVTYPE.

• About CoreSight components and their identification, see the Arm® Debug Interface Architecture
Specification.

Allocating revisions and part numbers

Within the Peripheral Identification registers, the allocation of major and minor revisions, part numbers, and
customer-modified fields is IMPLEMENTATION DEFINED, with the following set of restrictions so that:

• The REVISION field must increase monotonically with revisions.

Note
Arm recommends that the REVISION field is updated for each update to the RTL, regardless of whether this
is a major or minor update.

• The REVAND field should increase monotonically with revisions.

Note
Arm recommends that the REVAND field is used only for post-release changes. For example, those due to
engineering change order (ECO) fixes related to the debug component of the processor.

• The PART field must have a degree of uniqueness:

— Two component designs can have the same part number so long as they are sub-components of the
same part and the programmers’ model for the part has the means to disambiguate sub-components.

— Otherwise, two component designs must have unique part numbers.

The DEVARCH (if implemented) or DEVTYPE (otherwise) register provides the means to disambiguate
sub-components of the Debug Architecture.

Revision 4 bits Revision number for the implementation.

Starts at 0x0 and increments by 1 at both major and minor revisions.

EDPIDR2

CTIPIDR2

PMPIDR2

Uses JEP106

ID code

1 bit This bit is set to 1 when a JEP106 identification code is used.

This bit must be 1 on all Armv8 implementations.

EDPIDR2

CTIPIDR2

PMPIDR2

Part number 12 bits Part number for the implementation. Each organization designing to the Arm
Debug architecture specification keeps its own part number list.

EDPIDR0, EDPIDR1

CTIPIDR0, CTIPIDR1

PMPIDR0, PMPIDR1

Table K2-11 Fields in the Peripheral Identification Registers (continued)

Name Size Description Registers
K2-8442 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommended External Debug Interface
K2.4 Management registers and CoreSight compliance
A ROM table has no DEVTYPE or DEVARCH register. However, if it is the only CLASS 0x1 component in a
processor cluster, it can still be disambiguated.

Multiple instances of the same component design have the same part number.

K2.4.5 About the Component Identification scheme

The Component Identification Registers identify the processor as an Arm Debug Interface v5 component. For more
information, see the Arm® Debug Interface Architecture Specification and the Arm® CoreSight™ Architecture
Specification.

The Component Identification Registers occupy the last four words of the 4KB block of debug registers.

Figure K2-5 on page K2-8443 shows the register field allocation scheme for the Component ID Registers.

Figure K2-5 Component ID Register format

Software can consider the eight Component ID Registers as defining a single 32-bit Component ID, as shown in
Figure K2-6 on page K2-8443.

Figure K2-6 Mapping between Component ID Registers and a 32-bit Component ID Value

Table K2-12 Component Identification Registers

Register offset Description External debug CTI Performance Monitors

0xFF0 Component ID0 EDCIDR0 CTICIDR0 PMCIDR0

0xFF0 Component ID1 EDCIDR1 CTICIDR1 PMCIDR1

0xFF0 Component ID2 EDCIDR2 CTICIDR2 PMCIDR2

0xFF0 Component ID3 EDCIDR3 CTICIDR3 PMCIDR3

RES0

31 8

Component ID Data

7 0

EDCIDR3

Conceptual 32-bit component ID

Actual ComponentID register fields
EDCIDR2 EDCIDR1 EDCIDR0

Component ID

Preamble

1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1

7 0 7 0 7 0 7 0

31 2423 1615 8 7 01211

Preamble

34

Component
class
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K2-8443
ID072021 Non-Confidential

Recommended External Debug Interface
K2.4 Management registers and CoreSight compliance
K2-8444 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Appendix K3
Recommendations for Performance Monitors Event
Numbers for IMPLEMENTATION DEFINED Events

This appendix describes the Arm recommendations for the use of the IMPLEMENTATION DEFINED event numbers. It
contains the following sections:

• Arm recommendations for IMPLEMENTATION DEFINED event numbers on page K3-8446.

• Summary of events for exceptions taken to an Exception level using AArch64 on page K3-8462.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K3-8445
ID072021 Non-Confidential

Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers
K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers

These are the Arm recommendations for the use of the IMPLEMENTATION DEFINED event numbers. Arm does not
define these events as rigorously as those in the architectural and microarchitectural event lists, and an
implementation might:

• Modify the definition of an event to better correspond to the implementation.

• Not use some, or many, of these event numbers.

Table K3-1 on page K3-8446 lists the PMU IMPLEMENTATION DEFINED event numbers in event number order.

Table K3-1 PMU IMPLEMENTATION DEFINED event numbers

Event number Event mnemonic Description

0x0040 L1D_CACHE_RD Attributable Level 1 data cache access, read

0x0041 L1D_CACHE_WR Attributable Level 1 data cache access, write

0x0042 L1D_CACHE_REFILL_RDa Attributable Level 1 data cache refill, read

0x0043 L1D_CACHE_REFILL_WRa Attributable Level 1 data cache refill, write

0x0044 L1D_CACHE_REFILL_INNER Attributable Level 1 data cache refill, inner

0x0045 L1D_CACHE_REFILL_OUTER Attributable Level 1 data cache refill, outer

0x0046 L1D_CACHE_WB_VICTIM Attributable Level 1 data cache Write-Back, victim

0x0047 L1D_CACHE_WB_CLEAN Level 1 data cache Write-Back, cleaning and coherency

0x0048 L1D_CACHE_INVAL Attributable Level 1 data cache invalidate

0x0049-0x004B - Reserved

0x004C L1D_TLB_REFILL_RDa Attributable Level 1 data TLB refill, read

0x004D L1D_TLB_REFILL_WRa Attributable Level 1 data TLB refill, write

0x004E L1D_TLB_RD Attributable Level 1 data or unified TLB access, read

0x004F L1D_TLB_WR Attributable Level 1 data or unified TLB access, write

0x0050 L2D_CACHE_RD Attributable Level 2 data cache access, read

0x0051 L2D_CACHE_WR Attributable Level 2 data cache access, write

0x0052 L2D_CACHE_REFILL_RDa Attributable Level 2 data cache refill, read

0x0053 L2D_CACHE_REFILL_WRa Attributable Level 2 data cache refill, write

0x0054-0x0055 - Reserved

0x0056 L2D_CACHE_WB_VICTIM Attributable Level 2 data cache Write-Back, victim

0x0057 L2D_CACHE_WB_CLEAN Level 2 data cache Write-Back, cleaning and coherency

0x0058 L2D_CACHE_INVAL Attributable Level 2 data cache invalidate

0x0059-0x005B - Reserved

0x005C L2D_TLB_REFILL_RDa Attributable Level 2 data or unified TLB refill, read

0x005D L2D_TLB_REFILL_WRa Attributable Level 2 data or unified TLB refill, write
K3-8446 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers
0x005E L2D_TLB_RD Attributable Level 2 data or unified TLB access, read

0x005F L2D_TLB_WR Attributable Level 2 data or unified TLB access, write

0x0060 BUS_ACCESS_RD Bus access, read

0x0061 BUS_ACCESS_WR Bus access, write

0x0062 BUS_ACCESS_SHARED Bus access, Normal, Cacheable, Shareable

0x0063 BUS_ACCESS_NOT_SHARED Bus access, not Normal, Cacheable, Shareable

0x0064 BUS_ACCESS_NORMAL Bus access, normal

0x0065 BUS_ACCESS_PERIPH Bus access, peripheral

0x0066 MEM_ACCESS_RD Data memory access, read

0x0067 MEM_ACCESS_WR Data memory access, write

0x0068 UNALIGNED_LD_SPEC Unaligned access, read

0x0069 UNALIGNED_ST_SPEC Unaligned access, write

0x006A UNALIGNED_LDST_SPEC Unaligned access

0x006B - Reserved

0x006C LDREX_SPEC Exclusive operation speculatively executed, LDREX or LDX

0x006D STREX_PASS_SPEC Exclusive operation speculatively executed, STREX or STX pass

0x006E STREX_FAIL_SPEC Exclusive operation speculatively executed, STREX or STX fail

0x006F STREX_SPEC Exclusive operation speculatively executed, STREX or STX

0x0070 LD_SPEC Operation speculatively executed, load

0x0071 ST_SPEC Operation speculatively executed, store

0x0072 LDST_SPEC Operation speculatively executed, load or store

0x0073 DP_SPEC Operation speculatively executed, integer data processing

0x0074 ASE_SPEC Operation speculatively executed, Advanced SIMD instruction

0x0075 VFP_SPEC Operation speculatively executed, floating-point instruction

0x0076 PC_WRITE_SPEC Operation speculatively executed, software change of the PC

0x0077 CRYPTO_SPEC Operation speculatively executed, Cryptographic instruction

0x0078 BR_IMMED_SPEC Branch speculatively executed, immediate branch

0x0079 BR_RETURN_SPEC Branch speculatively executed, procedure return

0x007A BR_INDIRECT_SPEC Branch speculatively executed, indirect branch

0x007B - Reserved

0x007C ISB_SPEC Barrier speculatively executed, ISB

0x007D DSB_SPEC Barrier speculatively executed, DSB

Table K3-1 PMU IMPLEMENTATION DEFINED event numbers (continued)

Event number Event mnemonic Description
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K3-8447
ID072021 Non-Confidential

Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers
0x007E DMB_SPEC Barrier speculatively executed, DMB

0x007F CSDB_SPEC Barrier speculatively executed, CSDB

0x0080 - Reserved

0x0081 EXC_UNDEF Exception taken, Other synchronous

0x0082 EXC_SVC Exception taken, Supervisor Call

0x0083 EXC_PABORT Exception taken, Instruction Abort

0x0084 EXC_DABORT Exception taken, Data Abort and SError

0x0085 - Reserved

0x0086 EXC_IRQ Exception taken, IRQ

0x0087 EXC_FIQ Exception taken, FIQ

0x0088 EXC_SMC Exception taken, Secure Monitor Call

0x0089 - Reserved

0x008A EXC_HVC Exception taken, Hypervisor Call

0x008B EXC_TRAP_PABORT Exception taken, Instruction Abort not Taken locallyb

0x008C EXC_TRAP_DABORT Exception taken, Data Abort or SError not Taken locallyb

0x008D EXC_TRAP_OTHER Exception taken, Other traps not Taken locallyb

0x008E EXC_TRAP_IRQ Exception taken, IRQ not Taken locallyb

0x008F EXC_TRAP_FIQ Exception taken, FIQ not Taken locallyb

0x0090 RC_LD_SPEC Release consistency operation speculatively executed, Load-Acquire

0x0091 RC_ST_SPEC Release consistency operation speculatively executed, Store-Release

0x0092-0x009F - Reserved

0x00A0 L3D_CACHE_RD Attributable Level 3 data or unified cache access, read

0x00A1 L3D_CACHE_WR Attributable Level 3 data or unified cache access, write

0x00A2 L3D_CACHE_REFILL_RDa Attributable Level 3 data or unified cache refill, read

0x00A3 L3D_CACHE_REFILL_WRa Attributable Level 3 data or unified cache refill, write

0x00A4-0x00A5 - Reserved

0x00A6 L3D_CACHE_WB_VICTIM Attributable Level 3 data or unified cache Write-Back, victim

0x00A7 L3D_CACHE_WB_CLEAN Attributable Level 3 data or unified cache Write-Back, cache clean

0x00A8 L3D_CACHE_INVAL Attributable Level 3 data or unified cache access, invalidate

a. For more information, see Relationship between REFILL events and associated access events on page K3-8460.

b. The Glossary defines the term Taken locally. See also Exception levels on page D1-2454 for more information.

Table K3-1 PMU IMPLEMENTATION DEFINED event numbers (continued)

Event number Event mnemonic Description
K3-8448 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers
0x0040, L1D_CACHE_RD, Attributable Level 1 data cache access, read

If the L1D_CACHE_RW event is implemented, the counter counts each access counted by
L1D_CACHE_RW that is a Memory-read operation.

If the L1D_CACHE_RW event is not implemented, the counter counts each access counted by
L1D_CACHE that is a Memory-read operation.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted.

This event must be implemented if L1D_CACHE_RW is implemented.

See also:

• Attributability on page D7-2857.

• Meaningful ratios between common microarchitectural events on page D7-2937.

0x0041, L1D_CACHE_WR, Attributable Level 1 data cache access, write

If the L1D_CACHE_RW event is implemented, the counter counts each access counted by
L1D_CACHE_RW that is a Memory-write operation.

If the L1D_CACHE_RW event is not implemented, the counter counts each access counted by
L1D_CACHE that is a Memory-write operation.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted.

This event must be implemented if L1D_CACHE_RW is implemented.

See also Attributability on page D7-2857.

0x0042, L1D_CACHE_REFILL_RD, Attributable Level 1 data cache refill, read

This event is similar to Level 1 data cache refill, L1D_CACHE_REFILL, but the counter counts
only memory-read operations that cause a refill of at least the Level 1 data or unified cache.

See also Relationship between REFILL events and associated access events. on page K3-8460.

0x0043, L1D_CACHE_REFILL_WR, Attributable Level 1 data cache refill, write

This event is similar to Level 1 data cache refill, L1D_CACHE_REFILL, but the counter counts
only memory-write operations that cause a refill of at least the Level 1 data or unified cache.

The counter counts DC ZVA as a store instruction.

See also Relationship between REFILL events and associated access events. on page K3-8460.

0x0044, L1D_CACHE_REFILL_INNER, Attributable Level 1 data cache refill, inner

This event is similar to Level 1 data cache refill, L1D_CACHE_REFILL, but the counter counts
only memory-read and memory-write operations that generate refills satisfied by transfer from
another cache inside of the immediate cluster.

Note

The boundary between inner and outer is IMPLEMENTATION DEFINED, and it is not necessarily linked
to other similar boundaries, such as the boundary between Inner Cacheable and Outer Cacheable or
the boundary between Inner Shareable and Outer Shareable.

0x0045, L1D_CACHE_REFILL_OUTER, Attributable Level 1 data cache refill, outer

This event is similar to Level 1 data cache refill, L1D_CACHE_REFILL, but the counter counts
only memory-read and memory-write operations that generate refills satisfied from outside of the
immediate cluster.

0x0046, L1D_CACHE_WB_VICTIM, Attributable Level 1 data cache Write-Back, victim

This event is similar to Level 1 data cache Write-Back, L1D_CACHE_WB, but the counter counts
only Write-Backs that are a result of the line being allocated for an access made by the PE.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K3-8449
ID072021 Non-Confidential

Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers
If FEAT_PMUv3p4 is not implemented, Write-Backs caused by the execution of a cache
maintenance instruction are not counted. If FEAT_PMUv3p4 is implemented, it is
IMPLEMENTATION DEFINED whether Write-Backs caused by the execution of a cache maintenance
instruction are counted.

It is IMPLEMENTATION DEFINED whether a write of a whole cache line that is not the result of the
eviction of a line from the cache is counted. For example, this might occur if the PE detects
streaming writes to memory and does not allocate lines to the cache, or as the result of a DC ZVA.

0x0047, L1D_CACHE_WB_CLEAN, Level 1 data cache Write-Back, cleaning and coherency

This event is similar to Attributable Level 1 data cache Write-Back, L1D_CACHE_WB, but the
counter counts only Write-Backs that are a result of a coherency operation made by another PE or
are caused by the execution of a cache maintenance instruction. Whether Write-Backs caused by the
execution of a cache maintenance instruction are counted is IMPLEMENTATION DEFINED.

If a coherency request from a requestor outside the PE results in a Write-Back, it is an Unattributable
event.

Note

The transfer of a dirty cache line from the Level 1 data cache of this PE to the Level 1 data cache of
another PE due to a hardware coherency operation is not counted unless the dirty cache line is also
written back to a Level 2 cache or memory.

0x0048, L1D_CACHE_INVAL, Attributable Level 1 data cache invalidate

The counter counts each invalidation of a cache line in the Level 1 data or unified cache.

The counter does not count events if a cache refill invalidates a line.

If FEAT_PMUv3p4 is not implemented, the counter does not count locally-executed cache
maintenance instructions that operate by set/way. If FEAT_PMUv3p4 is implemented, it is
IMPLEMENTATION DEFINED whether the counter counts locally-executed cache maintenance
instructions that operate by set/way.

If a coherency request from a requestor outside the PE results in a Write-Back, it is an Unattributable
event.

0x004C, L1D_TLB_REFILL_RD, Attributable Level 1 data TLB refill, read

This event is similar to Level 1 data TLB refill, L1D_TLB_REFILL, but the counter counts only
memory-read operations that cause a data TLB refill of a least the Level 1 data or unified TLB.

See also Relationship between REFILL events and associated access events. on page K3-8460.

0x004D, L1D_TLB_REFILL_WR, Attributable Level 1 data TLB refill, write

This event is similar to Level 1 data TLB refill, L1D_TLB_REFILL, but the counter counts only
memory-write operations that cause a data TLB refill of a least the Level 1 data or unified TLB.

The counter counts DC ZVA as a store instruction.

See also Relationship between REFILL events and associated access events. on page K3-8460.

0x004E, L1D_TLB_RD, Attributable Level 1 data or unified TLB access, read

If the L1D_TLB_RW event is implemented, the counter counts each access counted by
L1D_TLB_RW that is a Memory-read operation.

If the L1D_TLB_RW event is not implemented, the counter counts each access counted by
L1D_TLB that is a Memory-read operation.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

See also Attributability on page D7-2857.

0x004F, L1D_TLB_WR, Attributable Level 1 data or unified TLB access, write

If the L1D_TLB_RW event is implemented, the counter counts each access counted by
L1D_TLB_RW that is a Memory-write operation.
K3-8450 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers
If the L1D_TLB_RW event is not implemented, the counter counts each access counted by
L1D_TLB that is a Memory-write operation.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

See also Attributability on page D7-2857.

0x0050, L2D_CACHE_RD, Attributable Level 2 data cache access, read

If the L2D_CACHE_RW event is implemented, the counter counts each access counted by
L2D_CACHE_RW that is a Memory-read operation.

If the L2D_CACHE_RW event is not implemented, the counter counts each access counted by
L2D_CACHE that is a Memory-read operation.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted.

This event must be implemented if L2D_CACHE_RW is implemented.

See also Attributability on page D7-2857.

0x0051, L2D_CACHE_WR, Attributable Level 2 data cache access, write

If the L2D_CACHE_RW event is implemented, the counter counts each access counted by
L2D_CACHE_RW that is a Memory-write operation.

If the L2D_CACHE_RW event is not implemented, the counter counts each access counted by
L2D_CACHE that is a Memory-write operation.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted.

This event must be implemented if L2D_CACHE_RW is implemented.

See also Attributability on page D7-2857.

0x0052, L2D_CACHE_REFILL_RD, Attributable Level 2 data cache refill, read

This event is similar to Attributable Level 2 data cache refill, L2D_CACHE_REFILL, but the
counter counts only memory-read operations that cause a refill of at least the Level 2 data or unified
cache.

See also Relationship between REFILL events and associated access events. on page K3-8460.

0x0053, L2D_CACHE_REFILL_WR, Attributable Level 2 data cache refill, write

This event is similar to Attributable Level 2 data cache refill, L2D_CACHE_REFILL, but the
counter counts only memory-write operations that cause a refill of at least the Level 2 data or unified
cache.

The counter counts DC ZVA as a store instruction.

See also Relationship between REFILL events and associated access events. on page K3-8460.

0x0056, L2D_CACHE_WB_VICTIM, Attributable Level 2 data cache Write-Back, victim

This event is similar to Attributable Level 2 data cache Write-Back, L2D_CACHE_WB, but the
counter counts only Write-Backs that are a result of the line being allocated for an access made by
the PE.

If FEAT_PMUv3p4 is not implemented, Write-Backs caused by the execution of a cache
maintenance instruction are not counted. If FEAT_PMUv3p4 is implemented, it is
IMPLEMENTATION DEFINED whether Write-Backs caused by the execution of a cache maintenance
instruction are counted.

It is IMPLEMENTATION DEFINED whether a write of a whole cache line that is not the result of the
eviction of a line from the cache is counted. For example, this might occur if the PE detects
streaming writes to memory and does not allocate lines to the cache, or as the result of a DC ZVA.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K3-8451
ID072021 Non-Confidential

Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers
0x0057, L2D_CACHE_WB_CLEAN, Level 2 data cache Write-Back, cleaning and coherency

This event is similar to Attributable Level 2 data cache Write-Back, L2D_CACHE_WB, but the
counter counts only Write-Backs that are a result of a coherency operation made by another PE or
are caused by the execution of a cache maintenance instruction. Whether Write-Backs caused by the
execution of a cache maintenance instruction are counted as IMPLEMENTATION DEFINED.

Note

The transfer of a dirty cache line from the Level 2 data cache of this PE to the Level 2 data cache of
another PE due to a hardware coherency operation is not counted unless the dirty cache line is also
written back to a Level 3 cache or memory.

If a coherency request from a requestor outside the PE results in a Write-Back, it is an Unattributable
event.

0x0058, L2D_CACHE_INVAL, Attributable Level 2 data cache invalidate

The counter counts each invalidation of a cache line in the Level 2 data or unified cache.

The counter does not count events if a cache refill invalidates a line.

If FEAT_PMUv3p4 is not implemented, the counter does not count locally-executed cache
maintenance instructions that operate by set/way. If FEAT_PMUv3p4 is implemented, it is
IMPLEMENTATION DEFINED whether the counter counts locally-executed cache maintenance
instructions that operate by set/way.

Note

Software that uses this event must know whether the Level 2 data cache is shared with other PEs.
This event does not follow the general rule of Level 2 data cache events of only counting events that
directly affect this PE.

If a coherency request from a requestor outside the PE results in a Write-Back, it is an Unattributable
event.

0x005C, L2D_TLB_REFILL_RD, Attributable Level 2 data or unified TLB refill, read

This event is similar to Attributable Level 2 data or unified TLB refill, L2D_TLB_REFILL, but the
counter counts only Attributable memory read operations that cause a TLB refill of at least the Level
2 data or unified TLB. See also Relationship between REFILL events and associated access events.
on page K3-8460.

0x005D, L2D_TLB_REFILL_WR, Attributable Level 2 data or unified TLB refill, write

This event is similar to Attributable Level 2 data or unified TLB refill, L2D_TLB_REFILL, but the
counter counts only Attributable memory write operations that cause a TLB refill of at least the
Level 2 data or unified TLB. See also Relationship between REFILL events and associated access
events. on page K3-8460.

0x005E, L2D_TLB_RD, Attributable Level 2 data or unified TLB access, read

The counter counts each access counted by L2D_TLB that is a Memory-read operation.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

See also Attributability on page D7-2857.

0x005F, L2D_TLB_WR, Attributable Level 2 data or unified TLB access, write

The counter counts each access counted by L2D_TLB that is a Memory-write operation.

If the TLB is shared, only events Attributable to this PE are counted. If the TLB is not shared, all
events are counted.

See also Attributability on page D7-2857.
K3-8452 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers
0x0060, BUS_ACCESS_RD, Bus access, read

This event is similar to Bus access, BUS_ACCESS, but the counter counts only memory-read
operations that access outside the boundary of the PE and its closely-coupled caches.

0x0061, BUS_ACCESS_WR, Bus access, write

This event is similar to Bus access, BUS_ACCESS, but the counter counts only memory-write
operations that access outside the boundary of the PE and its closely-coupled caches.

0x0062, BUS_ACCESS_SHARED, Bus access, Normal, Cacheable, Shareable

This event is similar to Bus access, BUS_ACCESS, but the counter counts only memory-read and
memory-write operations that make Normal, Cacheable, Shareable accesses outside the boundary
of the PE and its closely-coupled caches.

Note

It is IMPLEMENTATION DEFINED how the PE translates the attributes from the translation table entry
for a region to the attributes on the bus.

In particular, a region of memory designated as Normal, Cacheable, Inner Shareable, Not Outer
Shareable by a translation table entry, might be marked as either shareable or Non-shareable at the
boundary of the PE and its closely-coupled caches. This depends on where the IMPLEMENTATION
DEFINED boundary lies, between Inner and Outer Shareable.

If the Inner Shareable extends beyond the PE boundary, and the bus indicates the distinction
between Inner and Outer Shareable, then either is counted as shareable for the purposes of defining
this event.

0x0063, BUS_ACCESS_NOT_SHARED, Bus access, not Normal, Cacheable, Shareable

This event is similar to Bus access, BUS_ACCESS, but the counter counts only memory-read and
memory-write operations that make accesses outside the boundary of the PE and its closely-coupled
caches that are not Normal, Cacheable, Shareable. For example, the counter counts accesses marked
as:

• Normal, Cacheable, Non-shareable.

• Normal, Non-cacheable.

• Device.

Note

It is IMPLEMENTATION DEFINED, how the PE translates the attributes from the translation table
entries for a region to the attributes on the bus.

In particular, a region of memory designated as Normal, Cacheable, Inner Shareable, Not Outer
Shareable by a translation table entry, might be marked as either shareable or Non-shareable at the
boundary of the PE and its closely-coupled caches. This depends on where the IMPLEMENTATION
DEFINED boundary lies, between Inner and Outer Shareable.

If the Inner Shareable extends beyond the PE boundary, and the bus indicates the distinction
between Inner and Outer Shareable, then either is counted as shareable for the purposes of defining
this event.

0x0064, BUS_ACCESS_NORMAL, Bus access, normal

This event is similar to Bus access, BUS_ACCESS, but the counter counts only memory-read and
memory-write operations that make Normal accesses outside the boundary of the PE and its
closely-coupled caches. For example, the counter counts Normal, Cacheable and Normal,
Non-cacheable accesses but does not count Device accesses.

0x0065, BUS_ACCESS_PERIPH, Bus access, peripheral

This event is similar to Bus access, BUS_ACCESS, but the counter counts only memory-read and
memory-write operations that make Device accesses outside the boundary of the PE and its
closely-coupled caches.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K3-8453
ID072021 Non-Confidential

Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers
0x0066, MEM_ACCESS_RD, Data memory access, read

This event is similar to Data memory access, MEM_ACCESS, but the counter counts only
memory-read operations and SVE memory-read operations that the PE made.

0x0067, MEM_ACCESS_WR, Data memory access, write

This event is similar to Data memory access, MEM_ACCESS, but the counter counts only
memory-write operations and SVE memory-write operations made by the PE.

0x0068, UNALIGNED_LD_SPEC. Unaligned access, read

This event is similar to Data memory access, MEM_ACCESS, but the counter counts only
unaligned memory-read operations and unaligned memory-read SVE operations that the PE made.
It also counts unaligned accesses if they are subsequently transposed into multiple aligned accesses.

0x0069, UNALIGNED_ST_SPEC, Unaligned access, write

This event is similar to Data memory access, MEM_ACCESS, but the counter counts only
unaligned memory-write operations and unaligned SVE memory-write operations that the PE made.
It also counts unaligned accesses if they are subsequently transposed into multiple aligned accesses.

0x006A, UNALIGNED_LDST_SPEC, Unaligned access

This event is similar to Data memory access, MEM_ACCESS, but the counter counts only
unaligned memory-read operations, unaligned memory-write operations, unaligned memory-read
SVE operations, and unaligned memory-write SVE operations that the PE made. It also counts
unaligned accesses if they are subsequently transposed into multiple aligned accesses.

0x006C, LDREX_SPEC, Exclusive operation speculatively executed, Load-Exclusive

The counter counts Load-Exclusive instructions speculatively executed.

The definition of speculatively executed is IMPLEMENTATION DEFINED.

0x006D, STREX_PASS_SPEC, Exclusive operation speculatively executed, Store-Exclusive pass

The counter counts Store-Exclusive instructions speculatively executed that completed a write.

The definition of speculatively executed is IMPLEMENTATION DEFINED but must be the same as for
the LDREX_SPEC event.

0x006E, STREX_FAIL_SPEC, Exclusive operation speculatively executed, Store-Exclusive fail

The counter counts Store-Exclusive instructions speculatively executed that fail to complete a write.
It is within the IMPLEMENTATION DEFINED definition of speculatively executed whether this
includes conditional instructions that fail the condition code check.

The definition of speculatively executed is IMPLEMENTATION DEFINED but must be the same as for
the LDREX_SPEC event.

0x006F, STREX_SPEC, Exclusive operation speculatively executed, Store-Exclusive

The counter counts Store-Exclusive instructions speculatively executed.

The definition of speculatively executed is IMPLEMENTATION DEFINED but it must be the same as for
the LDREX_SPEC event.

Arm recommends that this event is implemented if it is not possible to implement the exclusive
operation speculatively executed, Store-Exclusive pass, and exclusive operation speculatively
executed, Store-Exclusive fail, events with the same degree of speculation as the LDREX_SPEC
event.

0x0070, LD_SPEC, Operation speculatively executed, load

This event is similar to Operation speculatively executed, INST_SPEC, but the counter counts only
operations due to memory-reading instructions and operations due to memory-reading SVE
instructions, as defined by the LD_RETIRED event.

The definition of Speculatively executed is IMPLEMENTATION DEFINED but must be the same as for
the INST_SPEC event.
K3-8454 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers
0x0071, ST_SPEC, Operation speculatively executed, store

This event is similar to Operation speculatively executed, INST_SPEC, but the counter counts only
operations due to memory-writing instructions and operations due to memory-writing SVE
instructions, as defined by the ST_RETIRED event.

The counter counts DC ZVA as a store operation.

The definition of Speculatively executed is IMPLEMENTATION DEFINED but must be the same as for
the INST_SPEC event.

0x0072, LDST_SPEC, Operation speculatively executed, load or store

This event is similar to Operation speculatively executed, INST_SPEC, but the counter counts only
operations due to memory-reading instructions, operations due to memory-writing instructions,
operations due to memory-reading SVE instructions and operations due to memory-writing SVE
instructions as defined by the LD_RETIRED and ST_RETIRED events.

The definition of Speculatively executed is IMPLEMENTATION DEFINED but must be the same as for
the INST_SPEC event.

0x0073, DP_SPEC, Operation speculatively executed, integer data processing

This event is similar to Operation speculatively executed, INST_SPEC, but counts only operations
due to integer data-processing instructions. It counts the following operations that operate on the
general-purpose registers:

• In AArch64 state, Data processing - immediate on page C3-242 and Data processing -
register on page C3-247.

• In AArch32 state, Data-processing instructions on page F2-4380.

This includes MOV and MVN operations.

This event also counts the following miscellaneous instructions:

• In AArch64 state, System register instructions on page C3-218, System instructions on
page C3-218, and Hint instructions on page C3-219.

• In AArch32 state, PSTATE and banked register access instructions on page F2-4388, Banked
register access instructions on page F2-4388, Miscellaneous instructions on page F2-4393,
other than ISB and preloads, and System register access instructions on page F2-4397, other
than LDC and STC instructions.

If the preload instructions PRFM, PLD, PLDW, and PLI, do not count as memory-reading instructions
then they must count as integer data-processing instructions.

If ISBs do not count as software change of the PC then they must count as integer data-processing
instructions.

The definition of Speculatively executed is IMPLEMENTATION DEFINED, but must be the same as for
the INST_SPEC event.

It is IMPLEMENTATION DEFINED whether the following instructions are counted as integer
data-processing operations, SIMD operations, or floating-point operations, but Arm recommends
that the instructions are all counted as integer data-processing operations:

• For AArch64 state, from the A64 floating-point convert to integer class, operations that move
a value between a general-purpose register and a SIMD and floating-point register without
type conversion:

— FMOV (general).

• For AArch64 state, from the SIMD Move group, operations that move a values between a
general-purpose register and an element or elements in a SIMD and floating-point register:

— DUP (general).

— SMOV.

— UMOV.

— INS (general).
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K3-8455
ID072021 Non-Confidential

Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers
• For AArch32 state:

— VDUP (general-purpose register) and all VMOV instructions that transfer data between a
general-purpose register and a SIMD and floating-point register.

— VMRS.

— VMSR.

0x0074, ASE_SPEC, Operation speculatively executed, Advanced SIMD

This event is similar to Operation speculatively executed, INST_SPEC, but the counter counts only
operations due to Advanced SIMD data-processing instructions, see:

• For AArch64 state, the SIMD operations listed in Data processing - SIMD and floating-point
on page C3-255.

• For AArch32 state, Advanced SIMD data-processing instructions on page F2-4401.

This includes all operations that operate on the SIMD and floating-point registers, except those that
are counted as:

• Integer data-processing operations.

• Floating-point data-processing operations.

• Memory-reading operations.

• Memory-writing operations.

• Cryptographic operations other than PMULL, in AArch64 state.

• VMULL, in AArch32 state.

Advanced SIMD scalar operations are counted as Advanced SIMD operations, including those
which operate on floating-point values. In AArch64 state, PMULL, and in AArch32 state, VMULL are
counted as Advanced SIMD operations.

The definition of Speculatively executed is IMPLEMENTATION DEFINED, but must be the same as for
the INST_SPEC event.

0x0075, VFP_SPEC, Operation speculatively executed, floating-point

This event is similar to Operation speculatively executed, INST_SPEC, but the counter counts only
operations due to floating-point data-processing instructions, see:

• In AArch64 state, only the scalar floating-point operations listed in Data processing - SIMD
and floating-point on page C3-255.

Note
This event does not count the SIMD floating-point operations listed in Data processing -
SIMD and floating-point on page C3-255.

• In AArch32 state, Floating-point data-processing instructions on page F2-4412.

This includes all operations that operate on the SIMD and floating-point registers as floating-point
values, except for SIMD scalar operations and those that are counted as one of:

• Integer data processing.

• Memory-reading operations.

• Memory-writing operations.

The following instructions that take both an integer register and a floating-point register argument
and perform a type conversion (to/from integer or to/from fixed-point), are counted as floating-point
data-processing operations:

• In AArch64 state, FCVT{<mode>}, UCVTF, and SCVTF.

• In AArch32 state, VCVT<mode>(floating-point), VCVT, VCVTT, and VCVTB.

The definition of Speculatively executed is IMPLEMENTATION DEFINED, but must be the same as for
the INST_SPEC event.
K3-8456 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers
0x0076, PC_WRITE_SPEC, Operation speculatively executed, software change of the PC

This event is similar to Operation speculatively executed, INST_SPEC, but the counter counts only
operations due to software changes of the PC. Defined by the instruction architecturally executed,
condition code check pass, software change of the PC event, see Common event numbers on
page D7-2876.

The definition of Speculatively executed is IMPLEMENTATION DEFINED but must be the same as for
the INST_SPEC event.

See also PC_WRITE_RETIRED.

0x0077, CRYPTO_SPEC, Operation speculatively executed, Cryptographic instruction

This event is similar to Operation speculatively executed, INST_SPEC, but the counter counts only
operations due to Cryptographic instructions, except PMULL and VMULL, see The Cryptographic
Extension on page C3-278.

The definition of Speculatively executed is IMPLEMENTATION DEFINED but must be the same as for
the INST_SPEC event.

0x0078, BR_IMMED_SPEC, Branch speculatively executed, immediate branch

The counter counts immediate branch instructions speculatively executed. Defined by the
instruction architecturally executed, immediate branch event, see Common event numbers on
page D7-2876.

The definition of Speculatively executed is IMPLEMENTATION DEFINED.

See also BR_IMMED_RETIRED.

0x0079, BR_RETURN_SPEC, Branch speculatively executed, procedure return

The counter counts procedure return instructions speculatively executed. Defined by the
BR_RETURN_RETIRED event.

The definition of Speculatively executed is IMPLEMENTATION DEFINED.

See also BR_RETURN_RETIRED.

0x007A, BR_INDIRECT_SPEC, Branch speculatively executed, indirect branch

The counter counts indirect branch instructions speculatively executed. This includes software
change of the PC other than exception-generating instructions and immediate branch instructions.

The definition of Speculatively executed is IMPLEMENTATION DEFINED.

0x007C, ISB_SPEC, Barrier speculatively executed, ISB

The counter counts Instruction Synchronization Barrier instructions speculatively executed,
including CP15ISB.

The definition of Speculatively executed is IMPLEMENTATION DEFINED.

0x007D, DSB_SPEC, Barrier speculatively executed, DSB

The counter counts data synchronization barrier instructions speculatively executed, including
CP15DSB, PSSBB, and SSBB.

The definition of Speculatively executed is IMPLEMENTATION DEFINED.

0x007E, DMB_SPEC, Barrier speculatively executed, DMB

The counter counts data memory barrier instructions speculatively executed, including CP15DSB.
It does not include the implied barrier operations of load/store operations with release consistency
semantics.

The definition of Speculatively executed is IMPLEMENTATION DEFINED.

007F, CSDB_SPEC, Barrier speculatively executed, CSDB

If FEAT_PMUv3p5 is implemented, the counter counts control speculation barrier instructions
speculatively executed.

The definition of Speculatively executed is IMPLEMENTATION DEFINED.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K3-8457
ID072021 Non-Confidential

Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers
0x0081, EXC_UNDEF, Exception taken, other synchronous

This event is similar to Exception taken, EXC_TAKEN, but the counter counts only those
exceptions Taken locally that are not counted as:

• Exception taken, Supervisor Call (EXC_SVC).

• Exception taken, Secure Monitor Call (EXC_SMC).

• Exception taken, Hypervisor Call (EXC_HVC).

• Exception taken, Instruction Abort (EXC_PABORT).

• Exception taken, Data Abort or SError (EXC_DABORT).

• Exception taken, IRQ (EXC_IRQ).

• Exception taken, FIQ (EXC_FIQ).

0x0082, EXC_SVC, Exception taken, Supervisor Call

This event is similar to Exception taken, EXC_TAKEN, but the counter counts only Supervisor Call
exceptions that are Taken locally.

0x0083, EXC_PABORT, Exception taken, Instruction Abort

This event is similar to Exception taken, EXC_TAKEN, but the counter counts only Instruction
Abort exceptions that are Taken locally.

0x0084, EXC_DABORT, Exception taken, Data Abort or SError

This event is similar to Exception taken, EXC_TAKEN, but the counter counts only Data Abort or
SError interrupt exceptions. The counter counts only exceptions Taken locally.

0x0086, EXC_IRQ, Exception taken, IRQ

This event is similar to Exception taken, EXC_TAKEN, but the counter counts only IRQ exceptions
that are Taken locally, including Virtual IRQ exceptions.

0x0087, EXC_FIQ, Exception taken, FIQ

This event is similar to Exception taken, EXC_TAKEN, but the counter counts only FIQ exceptions
that are Taken locally, including Virtual FIQ exceptions.

0x0088, EXC_SMC, Exception taken, Secure Monitor Call

This event is similar to Exception taken, EXC_TAKEN, but the counter counts only Secure Monitor
Call exceptions. The counter does not increment on SMC instructions trapped as a Hyp Trap
exception.

0x008A, EXC_HVC, Exception taken, Hypervisor Call

This event is similar to Exception taken, EXC_TAKEN, but the counter counts only Hypervisor Call
exceptions. The counter counts for both Hypervisor Call exceptions Taken locally in the hypervisor
and those taken as an exception from Non-secure EL1.

0x008B, EXC_TRAP_PABORT, Exception taken, Instruction Abort not Taken locally

This event is similar to Exception taken, EXC_TAKEN, but the counter counts only Instruction
Abort exceptions not Taken locally.

0x008C, EXC_TRAP_DABORT, Exception taken, Data Abort or SError not Taken locally

This event is similar to Exception taken, EXC_TAKEN, but the counter counts only Data Abort or
SError interrupt exceptions not Taken locally.

0x008D, EXC_TRAP_OTHER, Exception taken, other traps not Taken locally

This event is similar to Exception taken, EXC_TAKEN, but the counter counts only those traps that
are not counted as:

• Exception taken, Secure Monitor Call (EXC_SMC).

• Exception taken, Hypervisor Call (EXC_HVC).

• Exception taken, Instruction Abort not Taken locally (EXC_TRAP_PABORT).

• Exception taken, Data Abort or SError not Taken locally (EXC_TRAP_DABORT).
K3-8458 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers
• Exception taken, IRQ not Taken locally (EXC_TRAP_IRQ).

• Exception taken, FIQ not Taken locally (EXC_TRAP_FIQ).

0x008E, EXC_TRAP_IRQ, Exception taken, IRQ not Taken locally

This event is similar to Exception taken, EXC_TAKEN, but the counter counts only IRQ exceptions
not Taken locally.

0x008F, EXC_TRAP_FIQ, Exception taken, FIQ not Taken locally

This event is similar to Exception taken, EXC_TAKEN, but the counter counts only FIQ exceptions
not Taken locally.

0x0090, RC_LD_SPEC, Release consistency operation speculatively executed, Load-Acquire

The counter counts memory-read operations with acquire or acquirepc semantics that are
speculatively executed.

0x0091, RC_ST_SPEC, Release consistency operation speculatively executed, Store-Release

The counter counts memory-write operations with release semantics that are speculatively executed.

0x00A0, L3D_CACHE_RD, Attributable Level 3 data or unified cache access, read

If the L3D_CACHE_RW event is implemented, the counter counts each access counted by
L3D_CACHE_RW that is a Memory-read operation.

If the L3D_CACHE_RW event is not implemented, the counter counts each access counted by
L3D_CACHE that is a Memory-read operation.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted.

This event must be implemented if L3D_CACHE_RW is implemented.

0x00A1, L3D_CACHE_WR, Attributable Level 3 data or unified cache access, write

If the L3D_CACHE_RW event is implemented, the counter counts each access counted by
L3D_CACHE_RW that is a Memory-write operation.

If the L3D_CACHE_RW event is not implemented, the counter counts each access counted by
L3D_CACHE that is a Memory-write operation.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all
events are counted.

This event must be implemented if L3D_CACHE_RW is implemented.

0x00A2, L3D_CACHE_REFILL_RD, Attributable Level 3 data or unified cache refill, read

This event is similar to Attributable Level 3 data or unified cache refill, L3D_CACHE_REFILL,
but the counter counts only attributable memory read operations that cause a refill of at least the
Level 3 data or unified cache from outside the Level 3cache. See also Relationship between REFILL
events and associated access events. on page K3-8460

0x00A3, L3D_CACHE_REFILL_WR, Attributable Level 3 data or unified cache refill, write

This event is similar to Attributable Level 3 data or unified cache refill, L3D_CACHE_REFILL,
but the counter counts only attributable memory write operations that cause a refill of at least the
Level 3 data or unified cache from outside the Level 3cache. See also Relationship between REFILL
events and associated access events. on page K3-8460

0x00A6, L3D_CACHE_WB_VICTIM, Attributable Level 3 data or unified cache Write-Back, victim

This event is similar to Attributable Level 3 data cache Write-Back, L3D_CACHE_WB, but the
counter counts only Write-Backs that are a result of the line being allocated for an access made by
the PE.

If FEAT_PMUv3p4 is not implemented, Write-Backs caused by the execution of a cache
maintenance instruction are not counted. If FEAT_PMUv3p4 is implemented, it is
IMPLEMENTATION DEFINED whether Write-Backs caused by the execution of a cache maintenance
instruction are counted.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K3-8459
ID072021 Non-Confidential

Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers
It is IMPLEMENTATION DEFINED whether a write of a whole cache line that is not the result of the
eviction of a line from the cache is counted. For example, this might occur if the PE detects
streaming writes to memory and does not allocate lines to the cache, or as the result of a DC ZVA.

0x00A7, L3D_CACHE_WB_CLEAN, Level 3 data or unified cache Write-Back, cache clean

This event is similar to Attributable Level 3 data cache Write-Back, L3D_CACHE_WB, but the
counter counts only Write-Backs that are a result of a coherency operation made by another PE or
are caused by the execution of a cache maintenance instruction. Whether Write-Backs that are
caused by the execution of a cache maintenance instruction are counted is IMPLEMENTATION
DEFINED.

Note

The transfer of a dirty cache line from the Level 3 data cache of this PE to the Level 3 data cache of
another PE due to a hardware coherency operation is not counted unless the dirty cache line is also
written back to a Level 3 cache or memory.

If a coherency request from a requestor outside the PE results in a Write-Back, it is an Unattributable
event.

0x00A8, L3D_CACHE_INVAL, Attributable Level 3 data or unified cache access, invalidate

The counter counts each invalidation of a cache line in the Level 3 data or unified cache.

The counter does not count events if a cache refill invalidates a line.

If FEAT_PMUv3p4 is not implemented, the counter does not count locally-executed cache
maintenance instructions that operate by set/way. If FEAT_PMUv3p4 is implemented, it is
IMPLEMENTATION DEFINED whether the counter counts locally-executed cache maintenance
instructions that operate by set/way.

Note

Software that uses this event must know whether the Level 3 data cache is shared with other PEs.
This event does not follow the general rule of Level 3 data cache events of only counting
Attributable events.

K3.1.1 Relationship between REFILL events and associated access events.

CACHE_REFILL and TLB_REFILL events count the refills for accesses that are counted by the corresponding
CACHE or TLB event. Table K3-2 on page K3-8460 shows this correspondence.

Table K3-2 Relationship between REFILL events and associated access events

REFILL event Access event Ratio REFILL/Access

0x0042 L1D_CACHE_REFILL_RD 0x0040 L1D_CACHE_RD Attributable Level 1 cache refill rate, read

0x0043 L1D_CACHE_REFILL_WR 0x0041 L1D_CACHE_WR Attributable Level 1 cache refill rate, write

0x004C L1D_TLB_REFILL_RD 0x004E L1D_TLB_RD Attributable Level 1 TLB refill rate, read

0x004D L1D_TLB_REFILL_WR 0x004F L1D_TLB_WR Attributable Level 1 TLB refill rate, write

0x0052 L2D_CACHE_REFILL_RD 0x0050 L2D_CACHE_RD Attributable Level 2 data cache refill rate, read

0x0053 L2D_CACHE_REFILL_WR 0x0051 L2D_CACHE_WR Attributable Level 2 data cache refill rate, write

0x005C L2D_TLB_REFILL_RD 0x005E L2D_TLB_RD Attributable Level 2 data TLB refill rate, read
K3-8460 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers
0x005D L2D_TLB_REFILL_WR 0x005F L2D_TLB_WR Attributable Level 2 data TLB refill rate, write

0x00A2 L3D_CACHE_REFILL_RD 0x00A0 L3D_CACHE_RD Attributable Level 3 data cache refill rate, read

0x00A3 L3D_CACHE_REFILL_WR 0x00A1 L3D_CACHE_WR Attributable Level 3 data cache refill rate, write

Table K3-2 Relationship between REFILL events and associated access events (continued)

REFILL event Access event Ratio REFILL/Access
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K3-8461
ID072021 Non-Confidential

Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
K3.2 Summary of events for exceptions taken to an Exception level using AArch64
K3.2 Summary of events for exceptions taken to an Exception level using AArch64

Table K3-3 on page K3-8462 shows the events for exceptions taken to an Exception level using AArch64.

Table K3-3 Events for exceptions taken to an Exception level using AArch64

ESR.EC Description
Event number and classification for exceptions

Taken locally Not Taken locally

0x00 Unknown or uncategorized 0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x01 WFE/WFI traps 0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x03 AArch32 MCR/MRC traps on
(coproc==0b1111) accesses

0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x04 AArch32 MCRR/MRRC traps on
(coproc==0b1111) accesses

0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x05 AArch32 MCR/MRC traps on
(coproc==0b1110) accesses

0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x06 AArch32 LDC/STC traps on
(coproc==0b1110) accesses

0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x07 Advanced SIMD or FP traps 0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x08 AArch32 MVFR* and FPSID traps - 0x008D, EXC_TRAP_OTHER

0x0C AArch32 MCRR/MRRC traps on
(coproc==0b1110) accesses

0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x0E Illegal instruction set state 0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x11 AArch32 SVC 0x0082, EXC_SVC 0x008D, EXC_TRAP_OTHER

0x12 AArch32 HVC that is not disabled - 0x008A, EXC_HVC

0x13 AArch32 SMC that is not disabled
to EL2 - 0x008D, EXC_TRAP_OTHER

to EL3 - 0x0088, EXC_SMC

0x15 AArch64 SVC 0x0082, EXC_SVC 0x008D, EXC_TRAP_OTHER

0x16 AArch64 HVC that is not disabled 0x008A, EXC_HVC 0x008A, EXC_HVC

0x17 AArch64 SMC that is not disabled
to EL2 - 0x008D, EXC_TRAP_OTHER

to EL3 0x0088, EXC_SMC 0x0088, EXC_SMC

0x18 AArch64 MSR, MRS and System instruction
traps

0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x19 SVE traps 0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x1F IMPLEMENTATION DEFINED exception
taken to EL3

IMPLEMENTATION
DEFINEDa

IMPLEMENTATION DEFINEDa

0x20 Instruction Abort from below 0x0083, EXC_PABORT 0x008B, EXC_TRAP_PABORT

0x21 Instruction Abort from current Exception
level

0x0083, EXC_PABORT -

0x22 PC alignment 0x0083, EXC_PABORT 0x008B, EXC_TRAP_PABORT
K3-8462 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
K3.2 Summary of events for exceptions taken to an Exception level using AArch64
Note

The Glossary defines the term Taken locally, that is used in event definitions in this chapter. See also Exception
levels on page D1-2454 for more information.

0x24 Data Abort from below 0x0084, EXC_DABORT 0x008C, EXC_TRAP_DABORT

0x25 Data Abort from current Exception level 0x0084, EXC_DABORT -

0x26 SP alignment fault exception 0x0084, EXC_DABORT 0x008C, EXC_TRAP_DABORT

0x28 AArch32 FP exception 0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x2C AArch64 FP exception 0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x2F SError interrupt 0x0084, EXC_DABORT 0x008C, EXC_TRAP_DABORT

0x30 Breakpoint from below 0x0083, EXC_PABORT 0x008B, EXC_TRAP_PABORT

0x31 Breakpoint from current Exception level 0x0083, EXC_PABORT -

0x32 Software step from below 0x0083, EXC_PABORT 0x008B, EXC_TRAP_PABORT

0x33 Software step from current Exception
level

0x0083, EXC_PABORT -

0x34 Watchpoint from below 0x0084, EXC_DABORT 0x008C, EXC_TRAP_DABORT

0x35 Watchpoint from current Exception level 0x0084, EXC_DABORT -

0x38 AArch32 BKPT instruction 0x0083, EXC_PABORT 0x008B, EXC_TRAP_PABORT

0x3A AArch32 Vector Catch debug event 0x0083, EXC_PABORT 0x008B, EXC_TRAP_PABORT

0x3C AArch64 BRK instruction 0x0083, EXC_PABORT 0x008B, EXC_TRAP_PABORT

- IRQ interrupt 0x0086, EXC_IRQ 0x008E, EXC_TRAP_IRQ

- FIQ interrupt 0x0087, EXC_FIQ 0x008F, EXC_TRAP_FIQ

- All other values - 0x008D, EXC_TRAP_OTHER

a. The exception reported with EC 0x1F is IMPLEMENTATION DEFINED, and therefore it is IMPLEMENTATION DEFINED which event counts
the exception, except that the event that counts the exception must correctly indicate whether the exception was Taken locally.

Table K3-3 Events for exceptions taken to an Exception level using AArch64 (continued)

ESR.EC Description
Event number and classification for exceptions

Taken locally Not Taken locally
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K3-8463
ID072021 Non-Confidential

Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
K3.2 Summary of events for exceptions taken to an Exception level using AArch64
K3-8464 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Appendix K4
Recommendations for Reporting Memory Attributes
on an Interconnect

This appendix describes the Arm recommendations for reporting the memory attributes that are assigned by the PE.
It contains the following section:

• Arm recommendations for reporting memory attributes on an interconnect on page K4-8466.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K4-8465
ID072021 Non-Confidential

Recommendations for Reporting Memory Attributes on an Interconnect
K4.1 Arm recommendations for reporting memory attributes on an interconnect
K4.1 Arm recommendations for reporting memory attributes on an interconnect

The Arm architecture defines the architectural interface between software and the PE hardware. This means the
mechanisms by which different memory type and Cacheability attributes are presented on an interface to an
interconnect fabric such as AMBA® AXI are, strictly, outside the scope of the architecture. This appendix describes
an approach for the interface between a PE implementation and an interconnect fabric that Arm strongly
recommends, but these recommendations do not form part of the Armv8 architecture.

K4.1.1 Effect of microarchitectural choices on memory attributes

Implementations of the Arm architecture permit considerable variability in the presentation of memory attributes
on the interconnect fabric, particularly in cases where the PE implementation does not provide optimized support
for a memory type. For example, an implementation might treat Write-Through locations as Non-cacheable at some
level of cache, because functionally this is consistent with the definition of Write-Through, but for the particular
implementation the performance trade-off does not merit the hardware directly providing Write-Through capability.
However, in such implementations, the assigned memory attributes are not changed by the microarchitectural
choices. The microarchitecture simply implements different ways of handling some memory attributes.

Therefore, Arm strongly recommended that where any or all of the following memory attributes are presented on
the interface between a PE and an interconnect fabric, the attributes that are presented are completely consistent
with the attributes defined by the translation system:

• The memory type, Normal or Device.

• The Early write acknowledgement attribute.

• The ordering requirements.

• The Shareability.

• The Cacheability, including where practicable, the allocation hints.

Effect when memory accesses are forced to be Non-cacheable

Arm also strongly recommends that the effects of forcing accesses to Normal memory to be Non-cacheable, as
described in Enabling and disabling the caching of memory accesses on page D4-2641 for AArch64 and in
Enabling and disabling the caching of memory accesses in AArch32 state on page G4-6233 for AArch32, are
reflected on the interconnect by the memory type and attributes used for memory transactions generated while the
cache is disabled.
K4-8466 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Appendix K5
Additional Information for Implementations of the
Generic Timer

This appendix gives additional information about implementations of the Generic Timer. It contains the following
sections:

• Providing a complete set of features in a system level implementation on page K5-8468.

• Gray-count scheme for timer distribution scheme on page K5-8470.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K5-8467
ID072021 Non-Confidential

Additional Information for Implementations of the Generic Timer
K5.1 Providing a complete set of features in a system level implementation
K5.1 Providing a complete set of features in a system level implementation

As an example system design, using memory-mapped Generic Timer components as described in Chapter I2 System
Level Implementation of the Generic Timer, the feature set of a System registers counter and timer, in an
implementation that includes Non-secure EL2 and EL3, can be implemented using the following set of timer
frames:

• A CNTCTLBase control frame.

• The following CNTBaseNN timer frames:

Frame 0 Accessible by Non-secure accesses, with second view and virtual capability. This provides the
Non-secure EL1&0 timers.

Frame 1 Accessible by Non-secure accesses, with no second view and no virtual capability. This provides
the Non-secure EL2 timers.

Frame 2 Accessible only by Secure accesses, with a second view but no virtual capability. This provides
the Secure PL1&0 timers, meaning:

• Compared to a PE where EL3 is using AArch32, it provides the only Secure state timer.

• Compared to a PE where EL3 is using AArch64, it provides the Secure EL1&0 timer.

Frame 3 Accessible only by Secure accesses, with no second view and no virtual capability. This provides
the Secure EL3 timers.

Note
This frame is not required for a memory-mapped timer that provides only the feature set of a PE
for which EL3 is using AArch32.

In this implementation, the full set of implemented frames, and accessibility as memory pages in the different
translation regimes, is as follows:

CNTCTLBase

The control frame. This frame is accessible in both the Secure and Non-secure memory maps, and:

• In the Secure EL1&0 translation regime, this frame is accessible only at EL1.

• In the Non-secure EL2 translation regime, this frame is accessible.

• In the Non-secure EL1&0 translation regime, this frame is not accessible.

CNTBase0 The first view of the Non-secure EL1&0 timers. This frame is accessible only in the Non-secure
memory map, and:

• In the Secure EL1&0 translation regime, this frame is accessible only at EL1.

• In the Non-secure EL2 translation regime, this frame is accessible.

• In the Non-secure EL1&0 translation regime, this frame is accessible only at EL1.

CNTEL0Base0

The second view of CNTBase0, meaning it is the EL0 view of the Non-secure EL1&0 timers. This
frame is accessible only in the Non-secure memory map, and:

• In the Secure EL1&0 translation regime, the architecture permits this frame to be accessible
at EL1, or at EL1 and EL0, but does not require either of these options.

• In the Non-secure EL2 translation regime, this frame is accessible.

• In the Non-secure EL1&0 translation regime, this frame is accessible at EL1 and EL0.

CNTBase1 The first and only view of the Non-secure EL2 timers. This frame is accessible only in Non-secure
memory map, and:

• When EL3 is using AArch64:

— In the Secure EL1&0 translation regime, this frame is accessible only at EL1.

— In the Secure EL3 translation regime, this frame is accessible.

• When EL3 is using AArch32, in the Secure PL1&0 translation regime, this frame is
accessible only at PL1 (EL3).

• In the Non-secure EL2 translation regime, this frame is accessible.
K5-8468 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Additional Information for Implementations of the Generic Timer
K5.1 Providing a complete set of features in a system level implementation
• In the Non-secure EL1&0 translation regime, this frame is not accessible.

CNTBase2 The first view of the Secure EL1&0, or PL1&0 timers.

Note

In AArch64 state, these timers are always called the Secure EL1&0 timers. In AArch32 state they
are usually called the Secure PL1&0 timers because, in AArch32 Secure state, whether some of the
PE modes map to EL1 or to EL3 depends on whether EL3 is using AArch64 or is using AArch32,
see Security state, Exception levels, and AArch32 execution privilege on page G1-6022.

This frame is accessible only in the Secure memory map, and:

• When EL3 is using AArch64:

— In the Secure EL1&0 translation regime, this frame is accessible only at EL1.

— In the Secure EL3 translation regime, this frame is accessible.

• When EL3 is using AArch32, in the Secure PL1&0 translation regime, this frame is
accessible only at PL1 (EL3).

• Because the frame is in Secure memory, it is not accessible in any Non-secure translation
regime.

CNTEL0Base2

The second view of CNTBase2, meaning it is the EL0 view of the Secure EL1&0, or PL1&0, timers.

Note

See the Note in the description of the CNTBase2 frame for more information about the naming of
these timers.

This frame is accessible only in the Secure memory map, and:

• When EL3 is using AArch64:

— In the Secure EL1&0 translation regime, this frame is accessible at EL1 and EL0.

— In the Secure EL3 translation regime, this frame is accessible.

• When EL3 is using AArch32, in the Secure PL1&0 translation regime, this frame is
accessible at PL1 (EL3) and EL0.

• Because the frame is in Secure memory, it is not accessible in any Non-secure translation
regime.

CNTBase3 The first and only view of the EL3 timers. This frame is accessible only in the Secure memory map,
and:

• When EL3 is using AArch64:

— In the Secure EL1&0 translation regime, this frame is not accessible.

— In the Secure EL3 translation regime, this frame is accessible.

• When EL3 is using AArch32, this frame is not accessible.

• Because the frame is in Secure memory, it is not accessible in any Non-secure translation
regime.

Note

About the Virtual Memory System Architecture (VMSA) on page D5-2674 describes the VMSAv8-64 translation
regimes, and About VMSAv8-32 on page G5-6262 describes the VMSAv8-32 translation regimes.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K5-8469
ID072021 Non-Confidential

Additional Information for Implementations of the Generic Timer
K5.2 Gray-count scheme for timer distribution scheme
K5.2 Gray-count scheme for timer distribution scheme

The distribution of the Counter value using a Gray-code provides a relatively simple mechanism to avoid any danger
of the count being sampled with an intermediate value even if the clocking is asynchronous. It has a further
advantage that the distribution is relatively low power, since only one bit changes on the main distribution wires for
each clock tick.

A suitable Gray-coding scheme can be achieved with the following logic:

Gray[N] = Count[N]
Gray[i] = (XOR(Gray[N:i+1])) XOR Count[i] for N–1 >= i >= 0
Count[i] = XOR(Gray[N:i]) for N >= i >= 0

This is for an N+1 bit counter, where Count is a conventional binary count value, and Gray is the corresponding
Gray count value.

Note

This scheme has the advantage of being relatively simple to switch, in either direction, between operating with
low-frequency and low-precision, and operating with high-frequency and high-precision. To achieve this, the ratio
of the frequencies must be 2n, where n is an integer. A switch-over can occur only on the 2n+1 boundary to avoid
losing the Gray-coding property on a switch-over.
K5-8470 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Appendix K6
Legacy Instruction Syntax for AArch32 Instruction
Sets

This appendix describes the legacy instruction syntax in the Arm instruction sets, and their Unified Assembler
Language (UAL) equivalents. It contains the following section:

• Legacy Instruction Syntax on page K6-8472.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K6-8471
ID072021 Non-Confidential

Legacy Instruction Syntax for AArch32 Instruction Sets
K6.1 Legacy Instruction Syntax
K6.1 Legacy Instruction Syntax

Early versions of the Arm Architecture defined an assembly language for A32 (ARM) instructions, and a separate
assembly language for T32 (Thumb) instructions. UAL is based on the A32 assembly language, with some changes
to the instruction syntax. The appendix describes those changes. The pre-UAL mnemonics are compatible with
UAL, and might be supported by an assembler.

The original T32 assembly language is not compatible with UAL, and is not described in the manual.

K6.1.1 Pre-UAL instruction syntax for the A32 base instructions

Table K6-1 on page K6-8472 lists the syntax for the A32 base instructions that have changed after UAL was
introduced.

Table K6-1 Pre-UAL instruction syntax for the A32 base instructions

Pre-UAL syntax UAL equivalent See

ADC<c>S ADCS<c> ADC, ADCS (immediate) on page F5-4565,

ADC, ADCS (register) on page F5-4568,

ADC, ADCS (register-shifted register) on page F5-4572

ADD<c>S ADDS<c> ADD, ADDS (immediate) on page F5-4574,

ADD, ADDS (register) on page F5-4578,

ADD, ADDS (register-shifted register) on page F5-4582,

ADD, ADDS (SP plus immediate) on page F5-4584,

ADD, ADDS (SP plus register) on page F5-4587

AND<c>S ANDS<c> AND, ANDS (immediate) on page F5-4596,

AND, ANDS (register) on page F5-4599,

AND, ANDS (register-shifted register) on page F5-4603

BIC<c>S BICS<c> BIC, BICS (immediate) on page F5-4620,

BIC, BICS (register) on page F5-4623,

BIC, BICS (register-shifted register) on page F5-4627

EOR<c>S EORS<c> EOR, EORS (immediate) on page F5-4683,

EOR, EORS (register) on page F5-4686,

EOR, EORS (register-shifted register) on page F5-4690

LDC<c>L LDCL<c> LDC (immediate) on page F5-4718,

LDC (literal) on page F5-4720

LDM<c>IA, LDM<c>FD LDM<c> LDM, LDMIA, LDMFD on page F5-4722

LDM<c>DA, LDM<c>FA LDMDA<c> LDMDA, LDMFA on page F5-4730

LDM<c>DB, LDM<c>EA LDMDB<c> LDMDB, LDMEA on page F5-4732

LDM<c>IB, LDM<c>ED LDMIB<c> LDMIB, LDMED on page F5-4735

LDR<c>B LDRB<c> LDRB (immediate) on page F5-4747,

LDRB (literal) on page F5-4751,

LDRB (register) on page F5-4753

LDR<c>BT LDRBT<c> LDRBT on page F5-4756

LDR<c>D LDRD<c> LDRD (immediate) on page F5-4759,

LDRD (literal) on page F5-4762,

LDRD (register) on page F5-4765
K6-8472 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Legacy Instruction Syntax for AArch32 Instruction Sets
K6.1 Legacy Instruction Syntax
LDR<c>H LDRH<c> LDRH (immediate) on page F5-4776,

LDRH (literal) on page F5-4780,

LDRH (register) on page F5-4782

LDR<c>SB LDRSB<c> LDRSB (immediate) on page F5-4788.

LDRSB (literal) on page F5-4791,

LDRSB (register) on page F5-4793

LDR<c>SH LDRSH<c> LDRSH (immediate) on page F5-4799,

LDRSH (literal) on page F5-4802,

LDRSH (register) on page F5-4804

LDR<c>T LDRT<c> LDRT on page F5-4810

MLA<c>S MLAS<c> MLA, MLAS on page F5-4833

LSLS <Rd>, <Rn>, #0 MOVS <Rd>, <Rm> MOV, MOVS (immediate) on page F5-4837,

MOV, MOVS (register) on page F5-4841
MOV<c>S MOVS<c>

MUL<c>S MULS<c> MUL, MULS on page F5-4871

MVN<c>S MVNS<c> MVN, MVNS (immediate) on page F5-4873,

MVN, MVNS (register) on page F5-4875,

MVN, MVNS (register-shifted register) on page F5-4878

ORR<c>S ORRS<C> ORR, ORRS (immediate) on page F5-4886,

ORR, ORRS (register) on page F5-4889,

ORR, ORRS (register-shifted register) on page F5-4893

QADDSUBX QASX QASX on page F5-4930

QSUBADDX QSAX QSAX on page F5-4936

RSB<c>S RSBS<c> RSB, RSBS (immediate) on page F5-4967,

RSB, RSBS (register) on page F5-4970,

RSB, RSBS (register-shifted register) on page F5-4973

RSC<c>S RSCS<c> RSC, RSCS (immediate) on page F5-4975,

RSC, RSCS (register) on page F5-4977,

RSC, RSCS (register-shifted register) on page F5-4979

SADDSUBX SASX SASX on page F5-4985

SBC<c>S SBCS<c> SBC, SBCS (immediate) on page F5-4989,

SBC, SBCS (register),

SBC, SBCS (register-shifted register) on page F5-4996

SHADDSUBX SHASX SHASX on page F5-5014

SHSUBADDX SHSAX SHSAX on page F5-5016

SMI<c> SMC<c> SMC on page F5-5022

SMLAL<c>S SMLALS<c> SMLAL, SMLALS on page F5-5028

SMULL<c>S SMULLS<c> SMULL, SMULLS on page F5-5052

Table K6-1 Pre-UAL instruction syntax for the A32 base instructions (continued)

Pre-UAL syntax UAL equivalent See
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K6-8473
ID072021 Non-Confidential

Legacy Instruction Syntax for AArch32 Instruction Sets
K6.1 Legacy Instruction Syntax
SSUBADDX<c> SSAX<c> SSAX on page F5-5066

STC<c>L STCL<c> STC on page F5-5074

STM<c>EA, STM<c>IA STM<c> STM, STMIA, STMEA on page F5-5094

STM<c>DA, STM<c>ED STMDA<c> STMDA, STMED on page F5-5100

STM<c>DB, STM<c>FD STMDB<c> STMDB, STMFD on page F5-5102

STM<c>IB, STM<c>FA STMIB<c> STMIB, STMFA on page F5-5105

STR<c>B STRB<c> STRB (immediate) on page F5-5115,

STRB (register) on page F5-5119

STR<c>BT STRBT<c> STRBT on page F5-5122

STR<c>D STRD<c> STRD (immediate) on page F5-5126,

STRD (register) on page F5-5130

STR<c>H STRH<c> STRH (immediate) on page F5-5144,

STRH (register) on page F5-5148

STR<c>T STRT<c> STRT on page F5-5155

SUB<c>S SUBS<c> SUB, SUBS (immediate) on page F5-5161,

SUB, SUBS (register) on page F5-5165,

SUB, SUBS (register-shifted register) on page F5-5169,

SUB, SUBS (SP minus immediate) on page F5-5171,

SUB, SUBS (SP minus register) on page F5-5174

SWI SVC SVC on page F5-5177

UADDSUBX UASX UASX on page F5-5212

UHADDSUBX UHASX UHASX on page F5-5224

UHSUBADDX UHSAX UHSAX on page F5-5226

UMLAL<c>S UMLALS<c> UMLAL, UMLALS on page F5-5234

UMULL<c>S UMULLS<c> UMULL, UMULLS on page F5-5236

UQADDSUBX UQASX UQASX on page F5-5242

UQSUBADDX UQSAX UQSAX on page F5-5244

USUBADDX USAX USAX on page F5-5258

UEXT8 UXTB UXTB on page F5-5270

UEXT16 UXTH UXTH on page F5-5274

Table K6-1 Pre-UAL instruction syntax for the A32 base instructions (continued)

Pre-UAL syntax UAL equivalent See
K6-8474 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Legacy Instruction Syntax for AArch32 Instruction Sets
K6.1 Legacy Instruction Syntax
K6.1.2 Pre-UAL instruction syntax for the A32 floating-point instructions

Table K6-2 on page K6-8475 lists the syntax for A32 floating-point instructions that have changed after UAL was
introduced.

Table K6-2 Pre-UAL instruction syntax for A32 floating-point instructions

Pre-UAL syntax UAL equivalent See

FABSD VABS.F64 VABS on page F6-5335

FABSS VABS.F32

FADDD VADD.F64 VADD (floating-point) on page F6-5347

FADDS VADD.F32

FCMPEZD VCMPE.F64 VCMPE on page F6-5423

FCMPEZS VCMPE.F32

FCMPZD VCMP.F64 VCMP on page F6-5419,

FCMPZS VCMP.F32

FCONSTD <Dd>, #<imm8> VMOV.F64 <Dd>, #<fpimm> VMOV (immediate) on page F6-5658

For more information, see FCONST on page K6-8478.
FCONSTS <Sd>, #<imm8> VMOV.F32 <Sd>, #<fpimm>

FCPYD VMOV.F64 VMOV (register) on page F6-5665

FCPYS VMOV.F32

FCVTDS VCVT.F64.F32 VCVT (between double-precision and single-precision) on
page F6-5431

FCVTSD VCVT.F32.F64

FDIVD VDIV.F64 VDIV on page F6-5482

FDIVS VDIV.F32

FLDD VLDR.F64 VLDR (immediate) on page F6-5598

VLDR (literal) on page F6-5601

FLDMD, FLDMIAD VLDM.F64 VLDM, VLDMDB, VLDMIA on page F6-5593

FLDMS VLDM.F32

FLDS VLDR.F32 VLDR (immediate) on page F6-5598

VLDR (literal) on page F6-5601

FMACD VMLA.F64 VMLA (floating-point) on page F6-5624

FMACS VMLA.F32

FMDHR <Dd>, <Rt> VMOV <Dd[1]>, <Rt> VMOV (general-purpose register to scalar) on page F6-5669

FMDLR <Dd>, <Rt> VMOV <Dd[0]>, <Rt>

FMDRR VMOV VMOV (between two general-purpose registers and a doubleword
floating-point register) on page F6-5654

FMRDH <Rt>, <Dd> VMOV <Rt>, <Dd[1]> VMOV (scalar to general-purpose register) on page F6-5673

FMRDL <Rt>, <Dd> VMOV <Rt>, <Dd[0]>
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K6-8475
ID072021 Non-Confidential

Legacy Instruction Syntax for AArch32 Instruction Sets
K6.1 Legacy Instruction Syntax
FMRRD VMOV VMOV (between two general-purpose registers and a doubleword
floating-point register) on page F6-5654

FMRRS VMOV VMOV (between two general-purpose registers and two
single-precision registers) on page F6-5675

FMRS VMOV VMOV (between general-purpose register and single-precision) on
page F6-5671

FMRX VMRS VMRS on page F6-5684

FMSCD VNMLS.F64 VNMLS on page F6-5718

FMSCS VNMLS.F32

FMSR VMOV VMOV (between general-purpose register and single-precision) on
page F6-5671

FMSRR VMOV VMOV (between two general-purpose registers and two
single-precision registers) on page F6-5675

FMSTAT VMRS APSR_nzcv, FPSCR VMRS on page F6-5684

FMULD VMUL.F64 VMUL (floating-point) on page F6-5690

FMULS VMUL.F32

FMXR VMSR VMSR on page F6-5687

FNEGD VNEG.F64 VNEG on page F6-5711

FNEGS VNEG.F32

FNMACD VMLS.F64 VNMLS on page F6-5718

FNMACS VMLS.F32

FNMSCD VNMLA.F64 VNMLA on page F6-5715

FNMSCS VNMLA.F32

FNMULD VNMUL.F64 VNMUL on page F6-5721

FNMULS VNMUL.F32

FSHTOD VCVT.F64.S16 VCVT (between floating-point and fixed-point, floating-point) on
page F6-5448

FSHTOS VCVT.F32.S16

FSITOD VCVT.F64.S32 VCVT (between floating-point and integer, Advanced SIMD) on
page F6-5435, VCVTR on page F6-5473

FSITOS VCVT.F32.S32

FSLTOD VCVT.F64.S32 VCVT (between floating-point and fixed-point, floating-point) on
page F6-5448

FSLTOS VCVT.F32.S32

FSQRTD VSQRT.F64 VSQRT on page F6-5906

FSQRTS VSQRT.F32

FSTD VSTR VSTR on page F6-5961

Table K6-2 Pre-UAL instruction syntax for A32 floating-point instructions (continued)

Pre-UAL syntax UAL equivalent See
K6-8476 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Legacy Instruction Syntax for AArch32 Instruction Sets
K6.1 Legacy Instruction Syntax
FSTMD, FSTMIAS VSTM.F64 VSTM, VSTMDB, VSTMIA on page F6-5956

FSTMS VSTM.F32

FSTS VSTR VSTR on page F6-5961

FSUBD VSUB.F64 VSUB (floating-point) on page F6-5964

FSUBS VSUB.F32

FTOSHD VCVT.S16.F64 VCVT (between floating-point and fixed-point, floating-point) on
page F6-5448

FTOSHS VCVT.S16.F23

FTOSID VCVT.S32.F64 VCVT (between floating-point and integer, Advanced SIMD) on
page F6-5435

FTOSIS VCVT.S32.F32

FTOSIZD VCVTR.S32.F64 VCVTR on page F6-5473

FTOSIZS VCVTR.S32.F32

FTOSLD VCVT.S32.F64 VCVT (between floating-point and fixed-point, floating-point) on
page F6-5448

FTOSLS VCVT.S32.F32

FTOUHD VCVT.U16.F64

FTOUHS VCVT.U16.F32

FTOUID VCVT.U32.F64 VCVT (between floating-point and integer, Advanced SIMD) on
page F6-5435

FTOUIS VCVT.U32.F32

FTOUIZD VCVTR.U32.F64 VCVTR on page F6-5473

FTOUIZS VCVTR.U32.F32

FTOULD VCVT.U32.F64 VCVT (between floating-point and fixed-point, floating-point) on
page F6-5448

FTOULS VCVT.U32.F32

FUHTOD, VCVT.F64.U16

FUHTOS VCVT.F64.U16

FUITOD VCVT.F64.U32 VCVT (between floating-point and integer, Advanced SIMD) on
page F6-5435

FUITOS VCVT.F32.U32

FULTOD VCVT.F64.U32 VCVT (between floating-point and fixed-point, floating-point) on
page F6-5448

FULTOS VCVT.F32.U32

Table K6-2 Pre-UAL instruction syntax for A32 floating-point instructions (continued)

Pre-UAL syntax UAL equivalent See
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K6-8477
ID072021 Non-Confidential

Legacy Instruction Syntax for AArch32 Instruction Sets
K6.1 Legacy Instruction Syntax
K6.1.3 FCONST

The syntax of FCONST is

FCONST<dest>{<c>} <Fd>, #<imm8>

where:

<dest> Specifies the destination data type. It must be one of:

S Single-precision floating-point.

D Double-precision floating-point.

<c> This is an optional field. It specifies the condition under which the instruction is executed. See
Conditional execution on page F1-4349 for the range of available conditions and their encoding. If
<c> is omitted, it defaults to always (AL).

<Fd> Specifies the destination register. It must be one of:

<Dd> 64-bit name of the SIMD&FP destination register.

<Sd> 32-bit name of the SMID&FP destination register.

<imm8> Specifies the immediate value used to generate the floating-point constant.

FCONSTD{<c>} <Dd>, #<imm8> maps to VMOV.F64 <Dd>, #<fpimm>

FCONSTS{<c>} <Sd>, #<imm8> maps to VMOV.F32 <Sd>, #<fpimm>
K6-8478 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Appendix K7
Address Translation Examples

This appendix gives examples of address translations using the translation regimes described in Chapter D5 The
AArch64 Virtual Memory System Architecture and Chapter G5 The AArch32 Virtual Memory System Architecture.
It contains the following sections:

• AArch64 Address translation examples on page K7-8480.

• AArch32 Address translation examples on page K7-8492.

Note

This chapter gives examples of translation table lookups for the Armv8 address translation stages. It does not define
any part of the address translation mechanism. If any information in this appendix appears to contradict the
information in Chapter D5 The AArch64 Virtual Memory System Architecture or Chapter G5 The AArch32 Virtual
Memory System Architecture then the information in Chapter D5 or Chapter G5 must be taken as the definition of
the required behavior.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K7-8479
ID072021 Non-Confidential

Address Translation Examples
K7.1 AArch64 Address translation examples
K7.1 AArch64 Address translation examples

Figure D5-1 on page D5-2684 shows the VMSAv8 address translation stages that are controlled by an Exception
level that is using AArch64. The VMSAv8-64 address translation system on page D5-2682 describes the
VMSAv8-64 address translation scheme. This section gives examples of the use of that scheme, for common
translation requirements.

System registers relevant to MMU operation on page D5-2689 specifies the relevant registers, including the
TCR_ELx and TTBR_ELx, or TTBR_ELxs, for each stage of address translation.

For any stage of translation, a TCR_ELx.TnSZ field indicates the supported input address size. For a stage of
address translation controlled from an Exception level using AArch64, the supported input address size is 2(64-TnSZ).

This section describes:

• Performing the initial lookup, for an address for which the initial lookup is either:

— At the highest lookup level used for the appropriate translation granule size.

— Because of the concatenation of translation tables at the initial lookup level, one level down from the
highest level used for the translation granule size.

These descriptions take account of the following cases:

— The IA size is smaller than the largest size for the translation level, see Reduced IA width on
page D5-2703.

— For a stage 2 translation, translation tables are concatenated, to move the initial lookup level down by
one level, see Concatenated translation tables on page D5-2703.

For examples of performing the initial lookup, see Examples of performing the initial lookup on
page K7-8480.

• The full translation flow for resolving a page of memory. These examples describe resolving the largest IA
size supported by the initial lookup level. For these examples, see Full translation flows for VMSAv8-64
address translation on page K7-8486.

K7.1.1 Examples of performing the initial lookup

The address ranges used for the initial translation table lookup depend on the translation granule, as described in:

• Performing the initial lookup using the 4KB translation granule on page K7-8480.

• Performing the initial lookup using the 16KB granule on page K7-8482.

• Performing the initial lookup using the 64KB translation granule on page K7-8484.

Performing the initial lookup using the 4KB translation granule

This subsection describes examples of the initial lookup when using the 4KB translation granule that Table D5-14
on page D5-2709 shows as starting at level 0 or at level 1. It includes those stage 2 translations where concatenation
of translation tables is required for the lookup to start at level 1. This means that it gives specific examples of the
mechanisms described in The VMSAv8-64 address translation system on page D5-2682.

Note

For stage 2 translations, the same principles apply to an initial lookup that Table D5-14 on page D5-2709 shows as
starting at level 1. In this case, for some IA sizes concatenation of translation tables means the lookup can, instead,
start at level 2.

The following subsections describe these examples of the initial lookup:

• Initial lookup at level 0, 4KB translation granule on page K7-8481.

• Initial lookup at level 1, 4KB translation granule on page K7-8481.

In all cases, for a stage 2 translation, the VTCR_EL2.SL0 field must indicate the required initial lookup level, and
this level must be consistent with the value of the VTCR_EL2.T0SZ field, see Overview of stage 2 translations,
4KB granule on page D5-2709.
K7-8480 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Address Translation Examples
K7.1 AArch64 Address translation examples
Initial lookup at level 0, 4KB translation granule

This subsection describes initial lookups with an input address width of (n+1) bits, meaning the input address is
IA[n:0]. As Table D5-14 on page D5-2709 shows, a stage 1 or stage 2 initial lookup at level 0 is required when
39n47. For these lookups:

• TTBR_ELx[47:(n-35)] specify the translation table base address.

• Bits[n:39] of the input address are bits[(n-36):3] of the descriptor offset in the translation table.

Note

This means that, when the input address width is less than 48 bits:

• The size of the translation table is reduced.

• More low-order bits of the TTBR_ELx are required to specify the translation table base
address.

• Fewer input address bit are used to specify the descriptor offset in the translation table.

For example, if the input address width is 46 bits:

• The translation table size is 1KB.

• TTBR_ELx bits[47:10] specify the translation table base address.

• Input address bits[45:39] specify bits[9:3] of the descriptor offset.

Figure K7-1 on page K7-8481 shows this lookup.

Figure K7-1 Initial lookup for VMSAv8-64 using the 4KB granule, starting at level 0

Initial lookup at level 1, 4KB translation granule

This subsection describes initial lookups with an input address width of (n+1) bits, meaning the input address is
IA[n:0].

For a stage 1 or stage 2 initial lookup at level 1, without use of concatenated translation tables

As Table D5-14 on page D5-2709 shows, this applies to IA[n:0], where 30  n  38. For these
lookups:

• There is a single translation table at this level.

• TTBR_ELx[47:(n-26)] specify the translation table base address.

• Bits[n:30] of the input address are bits[(n-27):3] of the descriptor offset in the translation
table.

Translation table base address[47:x]
63 48 47 0

Register-defined RES0* TTBR
x x-1

Input address‡
47 y 39 038

47 x x-1 3 2 0

0 0 0 Descriptor address†

Supported input address range is IA[y x y = x + 35. When y is 47 the field marked ‡ is absent.
† For an EL1&0 stage 1 translation, when EL2 is implemented and enabled in the current Security state, the IPA of the descriptor.
Otherwise, the PA of the descriptor.
* Field has additional properties to the default RES0 definition, see the register description for more information.

y+1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K7-8481
ID072021 Non-Confidential

Address Translation Examples
K7.1 AArch64 Address translation examples
Figure K7-2 on page K7-8482 shows this lookup.

Figure K7-2 Initial lookup for VMSAv8-64 using the 4KB granule, starting at level 1, without concatenation

For a stage 2 initial lookup at level 1, with concatenated translation tables

As Table D5-14 on page D5-2709 shows, this applies to IA[n:0], where 39  n  42. For these
lookups:

• There are 2(n-38) concatenated translation tables at this level.

• These concatenated translation tables must be aligned to 2(n-38)4KB. This means
TTBR_ELx[(n-27):12] must be zero.

• TTBR_ELx[47:(n-26)] specify the base address of the block of concatenated translation
tables.

• Bits[n:30] of the input address are bits[(n-27):3] of the descriptor offset from the base address
of the block of concatenated translation tables.

Figure K7-3 on page K7-8482 shows this lookup.

Figure K7-3 Initial lookup for VMSAv8-64 using the 4KB granule, starting at level 1, with concatenation

Performing the initial lookup using the 16KB granule

This subsection describes examples of the initial lookup when using the 16KB translation granule that Table D5-16
on page D5-2714 shows as starting at level 0 or at level 1. It includes those stage 2 translations where concatenation
of translation tables is required for the lookup to start at level 1. This means that it gives specific examples of the
mechanisms described in The VMSAv8-64 address translation system on page D5-2682.

TTBR

Input addressRES0
47 029y 30

47 3 2 0

0 0 0

Supported input address range is IA[y x y = x + 26.

Translation table base address[47:x]
63 48 47 0

Register-defined RES0*
x x-

x x-

y+1

Descriptor address†

RES

‡Translation table base address[47:x]
63 48 47 0

Register-defined RES0* TTBR

Input addressRES0
47 02930

y+1
y

47 3 2 0

0 0 0 Descriptor PA

Supported input address range is IPA[y x y = x + 26. The field marked ‡ must be zero.

x
x-1

x
x-1

12 11

* Field has additional properties to the default RES0 definition, see the register description for more information.
K7-8482 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Address Translation Examples
K7.1 AArch64 Address translation examples
Note

For stage 2 translations, the same principles apply to an initial lookup that Table D5-16 on page D5-2714 shows as
starting at level 1. In this case, for some IA sizes concatenation of translation tables means the lookup can, instead,
start at level 2.

The following subsections describe these examples of the initial lookup:

• Initial lookup at level 0, 16KB translation granule on page K7-8483.

• Initial lookup at level 1, 16KB translation granule on page K7-8483.

In all cases, for a stage 2 translation, the VTCR_EL2.SL0 field must indicate the required initial lookup level, and
this level must be consistent with the value of the VTCR_EL2.T0SZ field, see Overview of stage 2 translations,
16KB granule on page D5-2713.

Initial lookup at level 0, 16KB translation granule

This subsection describes initial lookups with an input address width of (n+1) bits, meaning the input address is
IA[n:0]. As Table D5-15 on page D5-2712 shows, the only case where an address translation using the 16KB
granule starts at level 0 is a stage 1 translation of a 48-bit input address, IA[47:0]. For this lookup:

• The required translation table has only two entries, meaning its size is 16bytes, and it must be aligned to 16
bytes.

• TTBR_ELx[47:4] specify the translation table base address.

• Bit[47] of the input address is bit[3] of the descriptor offset in the translation table.

Figure K7-4 on page K7-8483 shows this lookup.

Figure K7-4 Initial lookup for VMSAv8-64 using the 16KB granule, starting at level 0

Initial lookup at level 1, 16KB translation granule

This subsection describes initial lookups with an input address width of (n+1) bits, meaning the input address is
IA[n:0].

For a stage 1 or stage 2 initial lookup at level 1, without use of concatenated translation tables

As Table D5-16 on page D5-2714 shows, this applies to IA[n:0], where 36  n  46. For these
lookups:

• There is a single translation table at this level.

• TTBR_ELx[47:(n-32)] specify the translation table base address.

• Bits[n:36] of the input address are bits[(n-33):3] of the descriptor offset in the translation
table.

Translation table base address[47:4]
63 48 47 0

Register-defined ‡ TTBR
4 3

Input address
47 46 0

47 4 3 2 0

0 0 0 Descriptor address†

Supported input address range is IA[47:0]. The field marked ‡ is RES0*.
† For an EL1&0 stage 1 translation, when EL2 is implemented and enabled in the current Security state, the IPA of the descriptor.
Otherwise, the PA of the descriptor.
* Field has additional properties to the default RES0 definition, see the register description for more information.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K7-8483
ID072021 Non-Confidential

Address Translation Examples
K7.1 AArch64 Address translation examples
Figure K7-5 on page K7-8484 shows this lookup.

Figure K7-5 Initial lookup for VMSAv8-64 using the 16KB granule, starting at level 1, without concatenation

For a stage 2 initial lookup at level 1, with concatenated translation tables

As Table D5-16 on page D5-2714 shows, the only case where an address translation using the 16KB
granule starts at level 1 because of concatenation of translation tables is a stage 2 translation of a
48-bit input address, IA[47:0]. For this lookup:

• There are two concatenated translation tables at this level.

• These concatenated translation tables must be aligned to 216KB. This means
TTBR_ELx[14] must be zero.

• TTBR_ELx[47:15] specify the base address of the block of two concatenated translation
tables.

• Bits[47:36] of the input address are bits[14:3] of the descriptor offset from the base address
of the block of concatenated translation tables.

Figure K7-6 on page K7-8484 shows this lookup.

Figure K7-6 Initial lookup for VMSAv8-64 using the 16KB granule, starting at level 1, with concatenation

Performing the initial lookup using the 64KB translation granule

This subsection describes examples of the initial lookup when using the 64KB translation granule that Table D5-18
on page D5-2717 shows as starting at level 1 or at level 2. It includes those stage 2 translations where concatenation
of translation tables is required for the lookup to start at level 2. This means that it gives specific examples of the
mechanisms described in The VMSAv8-64 address translation system on page D5-2682.

TTBR

Input addressRES0
47 035y 36

47 3 2 0

0 0 0

Supported input address range is IA[y x y = x + 32.

Translation table base address[47:x]
63 48 47 0

Register-defined RES0*
x x-

x x-

y+1

Descriptor address†

RES

‡Translation table base address[47:15]
63 48 47 0

Register-defined RES0* TTBR

47 3 2 0

0 0 0 Descriptor PA

Supported input address range is IPA[47:0]. The bit marked ‡ must be zero.

15 14

15 14 13

Input address
47 03536

* Field has additional properties to the default RES0 definition, see the register description for more information.
K7-8484 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Address Translation Examples
K7.1 AArch64 Address translation examples
Note

For stage 2 translations, the same principles apply to an initial lookup that Table D5-18 on page D5-2717 shows as
starting at level 2. In this case, for some IA sizes concatenation of translation tables means the lookup can, instead,
start at level 3.

The following subsections describe these examples of the initial lookup:

• Initial lookup at level 1, 64KB translation granule on page K7-8485.

• Initial lookup at level 2, 64KB translation granule on page K7-8485.

In all cases, for a stage 2 translation, the VTCR_EL2.SL0 field must indicate the required initial lookup level, and
this level must be consistent with the value of the VTCR_EL2.T0SZ field, see Overview of stage 2 translations,
64KB granule on page D5-2717.

Initial lookup at level 1, 64KB translation granule

This subsection describes initial lookups with an input address width of (n+1) bits, meaning the input address is
IA[n:0]. As Table D5-18 on page D5-2717 shows, a stage 1 or stage 2 initial lookup at level 1 is required when 42
 n  47. For these lookups:

• The size of the translation table is 2(n-39) bytes. This means the size of the translation table, at this level, is
always less than the granule size. The address of this translation table must align to the size of the table.

• Bits[n:42] of the input address are bits[(n-39):3] of the descriptor offset in the translation table.

• Bits[47:(n-38)] of the TTBR_ELx specify the translation table base address.

Figure K7-7 on page K7-8485 shows this lookup.

Figure K7-7 Initial lookup for VMSAv8-64 using the 64KB granule, starting at level 1

Initial lookup at level 2, 64KB translation granule

This subsection describes initial lookups with an input address width of (n+1) bits, meaning the input address is
IA[n:0].

For a stage 1 or stage 2 initial lookup at level 2, without the use of concatenated translation tables

As Table D5-18 on page D5-2717 shows, this applies to IA[n:0], where 29  n  41. For these
lookups:

• There is a single translation table at this level.

• TTBR_ELx[47:(n-25)] of the specify the translation table base address.

• Bits[n:29] of the input address are bits[(n-26):3] of the descriptor offset in the translation
table.

Input address‡
47 y 0

Translation table base address[47:x]
63 48 47 0

Register-defined RES0* TTBR

42 41

x-1
x

y+1

Supported input address range is IA[y x 9, y = x + 38. When y is 47 the field marked ‡ is absent.

47 3 2 0

0 0 0 Descriptor address†

x-1
x

† For an EL1&0 stage 1 translation, when EL2 is implemented and enabled in the current Security state, the IPA of the descriptor.
Otherwise, the PA of the descriptor.
* Field has additional properties to the default RES0 definition, see the register description for more information.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K7-8485
ID072021 Non-Confidential

Address Translation Examples
K7.1 AArch64 Address translation examples
Figure K7-8 on page K7-8486 shows this lookup.

Figure K7-8 Initial lookup for VMSAv8-64 using the 64KB granule, starting at level 2, without concatenation

For a stage 2 initial lookup at level 2, with concatenated translation tables

As Table D5-18 on page D5-2717 shows, this applies to IA[n:0], where 42  n  45. For these
lookups:

• There are 2(m-41) concatenated translation tables at this level.

• These concatenated translation tables must be aligned to 2(m-41)64KB. This means
TTBR_ELx[(n-26):16] must be zero.

• TTBR_ELx[47:(n-25)] specify the base address of the block of translation tables.

• Bits[n:42] of the input address are bits[(n-26):16] of the descriptor offset from the base
address of the block of translation tables.

Figure K7-9 on page K7-8486 shows this lookup.

Figure K7-9 Initial lookup for VMSAv8-64 using the 64KB granule, starting at level 2, with concatenation

K7.1.2 Full translation flows for VMSAv8-64 address translation

In a translation table walk, only the first lookup uses the translation table base address from the appropriate
TTBR_ELx. Subsequent lookups use a combination of address information from:

• The table descriptor read in the previous lookup.

• The input address.

Base address[47:x]
63 48 47 0

Register-defined RES0* TTBR

47 3 2 0

0 0 0

Supported input address range is IA[y x y = x + 25.

Input address
47 029 28

y
y

x
x-

RES0

x
x-

Descriptor address†

RES

47 3 2 0

0 0 0 Descriptor PA

Input address
47 029 28

y+1
y

RES0

Supported input address range is IPA[y x y = x + 25.

Base address[47:x]
63 48 47 0

Register-defined RES0* TTBR
x

x-1

x
x-1

* Field has additional properties to the default RES0 definition, see the register description for more information.
K7-8486 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Address Translation Examples
K7.1 AArch64 Address translation examples
This section describes example full translation flows, from the initial lookup to the address of a memory page. The
example flows:

• Resolve the maximum-sized IA range supported by the initial lookup level.

• Do not have any concatenation of translation tables.

• Cover only the 4KB and the 64KB translation granules.

Examples of performing the initial lookup on page K7-8480 described how either reducing the IA range or
concatenating translation tables affects the initial lookup.

Note

Reducing the IA range or concatenating translation tables affects only the initial lookup.

The following sections describe full VMSAv8-64 translation flows, down to an entry for a memory page:

• The address and properties fields shown in the translation flows on page K7-8487.

• Full translation flow using the 4KB granule and starting at level 0 on page K7-8488.

• Full translation flow using the 4KB granule and starting at level 1 on page K7-8489.

• Full translation flow using the 64KB granule and starting at level 1 on page K7-8490.

• Full translation flow using the 64KB granule and starting at level 2 on page K7-8491.

The address and properties fields shown in the translation flows

For an EL1&0 stage 1 translation, when EL2 is implemented and enabled in the current Security state:

• Any descriptor address is the IPA of the required descriptor.

• The final output address is the IPA of the block or page.

In these cases, an EL1&0 stage 2 translation is performed to translate the IPA to the required PA.

For all other translations, the final output address is the PA of the block or page, and any descriptor address is the
PA of the descriptor.

Properties indicates register or translation table fields that return information, other than address information, about
the translation or the targeted memory region. For more information, see Memory attribute fields in the VMSAv8-64
Translation Table format descriptors on page D5-2746.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K7-8487
ID072021 Non-Confidential

Address Translation Examples
K7.1 AArch64 Address translation examples
Full translation flow using the 4KB granule and starting at level 0

Figure K7-10 on page K7-8488 shows the complete translation flow for a stage 1 translation table walk for a 48-bit
input address. This lookup must start with a level 0 lookup. For more information about the fields shown in the
figure, see The address and properties fields shown in the translation flows on page K7-8487.

Figure K7-10 Complete stage 1 translation of a 48-bit address using the 4KB translation granule

Descriptor
address

Input address

Level 0 lookup

Descriptor
address

TTBR

Level 0
Table descriptor

Level 2
Table descriptor

Level 3
Page descriptor

47 30 29 021 20 12 1139 38

Translation table base address[47:12]
63 48 47 0

Register-defined RES0*
12 11

47 3 2 0

0 0 0
12 11

Descriptor
address

Level 1
Table descriptor

Descriptor
address

Ignored 11SBZ
48 47

Level 1 table address[47:12]Properties
63 59 58 52 51 0

Ignored
2 112 11

IGNORED 11RES0
48 47

Properties
63 59 58 52 51 0

IGNORED

2 112 11

47 3 2 0

0 0 0
12 11

Level 1 lookup

IGNORED 11RES0
48 47

Level 2 table address[47:12]Properties
63 59 58 52 51 0

IGNORED

2 112 11

47 3 2 0

0 0 0
12 11

Level 2 lookup

IGNORED 11RES0
48 47

Level 3 table address[47:12]Properties
63 59 58 52 51 0

IGNORED

2 112 11

47 3 2 0

0 0 0
12 11

Level 3 lookup

For details of Properties fields, see the register or descriptor description.

Properties 11RES0
48 47

Output address[47:12]Properties
63 52 51 02 112 11

* Field has additional properties to the default RES0 definition, see the register description for more information.
K7-8488 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Address Translation Examples
K7.1 AArch64 Address translation examples
If the level 1 lookup or level 2 lookup returns a block descriptor then the translation table walk completes at that
level.

Figure K7-10 on page K7-8488 shows a stage 1 translation. The only difference for a stage 2 translation is that
bits[63:58] of the Table descriptors are SBZ.

Full translation flow using the 4KB granule and starting at level 1

Figure K7-11 on page K7-8489 shows the complete translation flow for a stage 1 translation table walk for a 39-bit
input address. This lookup must start with a level 1 lookup. For more information about the fields shown in the
figure, see The address and properties fields shown in the translation flows on page K7-8487.

Figure K7-11 Complete stage 1 translation of a 39-bit address using the 4KB translation granule

If the level 1 lookup or the level 2 lookup returns a block descriptor then the translation table walk completes at that
level.

Figure K7-11 on page K7-8489 shows a stage 1 translation. The only difference for a stage 2 translation is that
bits[63:58] of the Table descriptors are SBZ.

Level 2 table address[47:12]

Descriptor
address

Input address

Level 1 lookup

For details of Properties fields, see the register or descriptor description.

TTBR

Level 1
Table descriptor

Level 3
Page descriptor

Translation table base address[47:12]
63 48 47 0

Register-defined RES0*
12 11

47 3 2 0

0 0 0
12 11

Ignored 11SBZ
48 47

Properties
63 59 58 52 51 0

Ignored
2 112 11

47 3 2 0

0 0 0
12 11

Descriptor
address

Level 2 lookup

IGNORED 11RES0
48 47

Properties
63 59 58 52 51 0

IGNORED

2 112 11

IGNORED 11RES0
48 47

Level 3 table address[47:12]Properties
63 59 58 52 51 0

IGNORED

2 112 11
Level 2
Table descriptor

47 3 2 0

0 0 0
12 11

Descriptor
address

Level 3 lookup

Properties 11RES0
48 47

Output address[47:12]Properties
63 52 51 02 112 11

30 29 021 20 12 1138

* Field has additional properties to the default RES0 definition, see the register description for more information.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K7-8489
ID072021 Non-Confidential

Address Translation Examples
K7.1 AArch64 Address translation examples
Comparing this translation with the translation for a 48-bit address, shown in Figure K7-10 on page K7-8488, shows
how the translation for the 42-bit address start the same lookup process one stage later.

Full translation flow using the 64KB granule and starting at level 1

Figure K7-12 on page K7-8490 shows the complete translation flow for a stage 1 translation table walk for a 48-bit
input address. This lookup must start with a level 1 lookup. For more information about the fields shown in the
figure, see The address and properties fields shown in the translation flows on page K7-8487.

Figure K7-12 Complete stage 1 translation of a 48-bit address using the 64KB translation granule

If the level 2 lookup returns a block descriptor then the translation table walk completes at that level.

Figure K7-12 on page K7-8490 shows a stage 1 translation. The only difference for a stage 2 translation is that
bits[63:58] of the Table descriptors are SBZ.

Descriptor
address

Input address

Level 1 lookup

For details of Properties fields, see the register or descriptor description.

TTBR

Level 1
Table descriptor

Level 3
Page descriptor

Translation table base address[47:9]
63 48 47 0

Register-defined RES0*
9 8

47 3 2 0

0 0 0
9 8

IGNORED 11SBZ
48 47

Properties
63 59 58 52 51 0

Ignored
2 1

47 3 2 0

0 0 0
16 15

Descriptor
address

Level 2 lookup

11RES0
48 47

Level 2 table address[47:16]Properties
63 59 58 52 51 0

IGNORED

2 116 15

IGNORED 11RES0
48 47

Level 3 table address[47:16]Properties
63 59 58 52 51 0

IGNORED

2 116 15
Level 2
Table descriptor

47 3 2 0

0 0 0
16 15

Descriptor
address

Level 3 lookup

Properties 11RES0
48 47

Output address[47:16]Properties
63 52 51 02 112 11

47 29 28 016 1542 41

16 15

RES0
* Field has additional properties to the default RES0 definition, see the register description for more information.
K7-8490 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Address Translation Examples
K7.1 AArch64 Address translation examples
The level 1 lookup resolves only 6 bits of the input address. As described in Performing the initial lookup using the
64KB translation granule on page K7-8484, this means:

• The translation table size for this level is only 512 bytes.

• The required translation table alignment for this level is 512 bytes.

• The Base address field in the TTBR_ELx is extended, at the low-order end, to be bits[47:9].

Full translation flow using the 64KB granule and starting at level 2

Figure K7-13 on page K7-8491 shows the complete translation flow for a stage 1 translation table walk for a 42-bit
input address. This lookup must start with a level 2 lookup. For more information about the fields shown in the
figure, see The address and properties fields shown in the translation flows on page K7-8487.

Figure K7-13 Complete stage 1 translation of a 42-bit address using the 64KB translation granule

If the level 2 lookup returns a block descriptor then the translation table walk completes at that level.

Figure K7-13 on page K7-8491 shows a stage 1 translation. The only difference for a stage 2 translation is that
bits[63:58] of the Table descriptors are SBZ.

Comparing this translation with the translation for a 48-bit address, shown in Figure K7-12 on page K7-8490,
shows:

• The translation for the 42-bit address starts the same lookup process one stage later.

• Because the initial lookup resolves 13 bits of address:

— The translation table size for this level is 64KB.

— The required translation table alignment for this level is 64KB.

— The Base address field in the TTBR_ELx is bits[47:16].

Descriptor
address

Input address

Level 2 lookup

For details of Properties fields, see the register or descriptor description.

TTBR

Level 3
Page descriptor

Translation table base address[47:16]
63 48 47 0

Register-defined RES0*
16 15

47 3 2 0

0 0 0
16 15

IGNORED 11SBZ
48 47

Properties
63 59 58 52 51 0

Ignored
2 1

47 3 2 0

0 0 0
16 15

Descriptor
address

Level 3 lookup

11RES0
48 47

Level 3 table address[47:16]Properties
63 59 58 52 51 0

IGNORED

2 116 15
Level 2
Table descriptor

Properties 11RES0
48 47

Output address[47:16]Properties
63 52 51 02 112 11

29 28 016 1541

* Field has additional properties to the default RES0 definition, see the register description for more information.

16 15

RES0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K7-8491
ID072021 Non-Confidential

Address Translation Examples
K7.2 AArch32 Address translation examples
K7.2 AArch32 Address translation examples

The following sections give address translation examples for the VMSAv8-32 address translation formats:

• Address translation examples using the VMSAv8-32 Short descriptor translation table format on
page K7-8492.

• Address translation examples using the VMSAv8-32 Long descriptor translation table format on
page K7-8497.

K7.2.1 Address translation examples using the VMSAv8-32 Short descriptor translation table format

VMSAv8-32 Short-descriptor Translation Table format descriptors on page G5-6280 describes the memory section
and page option for a single VMSAv8-32 address translation. The following sections show the full translation flow
for each of these options:

• Translation flow for a Supersection on page K7-8492.

• Translation flow for a Section on page K7-8494.

• Translation flow for a Large page on page K7-8495.

• Translation flow for a Small page on page K7-8496.

The address and Properties fields shown in the translation flows on page K7-8496 summarizes the information
returned by the lookup.

Translation flow for a Supersection

Figure K7-14 on page K7-8493 shows the complete translation flow for a Supersection. For more information about
the fields shown in this figure, see The address and Properties fields shown in the translation flows on
page K7-8496.
K7-8492 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Address Translation Examples
K7.2 AArch32 Address translation examples
Figure K7-14 VMSAv8-32 Short-descriptor Supersection address translation

Note

Figure K7-14 on page K7-8493 shows how, when the input address, the VA, addresses a Supersection, the top four
bits of the Supersection index bits of the address overlap the bottom four bits of the Table index bits. For more
information, see Additional requirements for Short-descriptor format translation tables on page G5-6283.

0 0 0 0 0 0 0 0

For a translation based on TTBR0, N is the value of TTBCR.N.
For a translation based on TTBR1, N is 0.

RES0Translation base

31 14-N 13-N 0

Level 1
Supersection descriptor

Level 1 descriptor address

Supersection index
Table index

Bits[8:5,23:20]

Supersection index
31 24 23 0

Supersection BAExtended BA
39 32

TTBR

Input address

7 6

Properties

Output address, A[39:0]

‡ This field is absent if N is 0.
BA = Base address.

For details of Properties fields, see the register or descriptor description.

31 2 1 0

xExtended Supersection BA and Properties fieldsSupersection BA
24 23

1

Level 1 lookup

0 0Translation base
31 0

Table index
2 114-N 13-N39 32

24 2331 20 19 032-N 31-N

‡

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K7-8493
ID072021 Non-Confidential

Address Translation Examples
K7.2 AArch32 Address translation examples
Translation flow for a Section

Figure K7-15 on page K7-8494 shows the complete translation flow for a Section. For more information about the
fields shown in this figure, see The address and Properties fields shown in the translation flows on page K7-8496.

Figure K7-15 VMSAv8-32 Short-descriptor Section address translation

0 0 0 0 0 0 0 0
39 32

‡ This field is absent if N is 0.
 For a translation based on TTBR0, N is the value of TTBCR.N.
 For a translation based on TTBR1, N is 0.

31 20 19 0

Section base address Section index

0 0Translation base
31 0

Table index
2 114-N 13-N

Table index
31 20 19 032-N 31-N

‡ Section index

For details of Properties fields, see the register or descriptor description.

0 0 0 0 0 0 0 0
39 32

Output address, A[39:0]

Level 1 Section descriptorProperties
31 20 19 2 1 0

Section base address x1

Level 1 lookup

Level 1 descriptor address

TTBRRES0Translation base

31 14-N 13-N 07 6

Properties

Input address
K7-8494 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Address Translation Examples
K7.2 AArch32 Address translation examples
Translation flow for a Large page

Figure K7-16 on page K7-8495 shows the complete translation flow for a Large page. For more information about
the fields shown in this figure, see The address and Properties fields shown in the translation flows on
page K7-8496.

Figure K7-16 VMSAv8-32 Short-descriptor Large page address translation

Note

Figure K7-16 on page K7-8495 shows how, when the input address, the VA, addresses a Large page, the top four
bits of the page index bits of the address overlap the bottom four bits of the level 1 table index bits. For more
information, see Additional requirements for Short-descriptor format translation tables on page G5-6283.

0 0 0 0 0 0 0 0
39 32

Page index

For a translation based on TTBR0, N is the value of TTBCR.N.
For a translation based on TTBR1, N is 0.

Level 2 descriptor

L2 table index

Page index
31 16 15 0

Large page base address

0 0Translation table base address
31 0

L2 table index
2 110 9

Properties
31 10 9 2 1 0

Translation table base address 10

0 0Translation base
31 0

L1 table index
2 114-N 13-N

L1 table index
31 20 19 032-N 31-N

‡
12 1116 15

TTBR

L1 = Level 1, L2 = Level 2.
‡ This field is absent if N is 0.

For details of Properties fields, see the register or descriptor description.

Output address, A[39:0]0 0 0 0 0 0 0 0
39 32

1Properties
31 16 15 2 1 0

Large page base address 0

Level 2 lookup

Level 2 descriptor
address

Level 1 descriptor

Level 1 lookup

Level 1 descriptor
address0 0 0 0 0 0 0 0

39 32

RES0Translation base

31 14-N 13-N 07 6

Properties

Input address
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K7-8495
ID072021 Non-Confidential

Address Translation Examples
K7.2 AArch32 Address translation examples
Translation flow for a Small page

Figure K7-17 on page K7-8496 shows the complete translation flow for a Small page. For more information about
the fields shown in this figure, see The address and Properties fields shown in the translation flows on
page K7-8496.

Figure K7-17 VMSAv8-32 Short-descriptor Small page address translation

The address and Properties fields shown in the translation flows

For the Non-secure PL1&0 stage 1 translation tables:

• Any descriptor address is the IPA of the required descriptor.

• The final output address is the IPA of the Section, Supersection, Large page, or Small page.

In these cases, a PL1&0 stage 2 translation is performed to translate the IPA to the required PA.

Page index
31 12 11 0

Small page base address

0 0Translation table base address
31 0

L2 table index
2 110 9

0 0Translation base
31 0

L1 table index
2 114-N 13-N

L1 table index
31 20 19 032-N 31-N

‡ Page index
12 11

L2 table index

For a translation based on TTBR0, N is the value of TTBCR.N.
For a translation based on TTBR1, N is 0.

L1 = Level 1, L2 = Level 2.
‡ This field is absent if N is 0.

For details of Properties fields, see the register or descriptor description.

Output address, A[39:0]0 0 0 0 0 0 0 0
39 32

Properties
31 12 11 2 1 0

Small page base address 1 x Level 2 descriptor

Level 2 lookup

Level 2
descriptor address0 0 0 0 0 0 0 0

39 32

Level 1 descriptorProperties
31 10 9 2 1 0

Translation table base address 10

Level 1 lookup

Level 1
descriptor address0 0 0 0 0 0 0 0

39 32

RES0Translation base

31 14-N 13-N 07 6

Properties TTBR

Input address
K7-8496 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Address Translation Examples
K7.2 AArch32 Address translation examples
Otherwise, the address is the PA of the descriptor, Section, Supersection, Large page, or Small page.

Properties indicates register or translation table fields that return information, other than address information, about
the translation or the targeted memory region. For more information, see Information returned by a translation table
lookup on page G5-6275, and the description of the register or translation table descriptor.

For translations using the Short-descriptor translation table format, VMSAv8-32 Short-descriptor Translation Table
format descriptors on page G5-6280 describes the descriptors formats.

K7.2.2 Address translation examples using the VMSAv8-32 Long descriptor translation table format

As described in Translation table walks, when using the VMSAv8-32 Long-descriptor translation table format on
page G5-6303, in a translation table walk, only the first lookup uses the translation table base address from the
appropriate TTBR. Subsequent lookups use a combination of address information from:

• The table descriptor read in the previous lookup.

• The input address.

The following sections give examples of full VMSAv8-32 Long-descriptor format address translation flows, down
to an entry for a 4KB page:

• Full translation flow, starting at level 1 lookup on page K7-8497.

• Full translation flow, starting at level 2 lookup on page K7-8499.

The address and Properties fields shown in the translation flows on page K7-8496 summarizes the information
returned by the lookup.

Full translation flow, starting at level 1 lookup

Figure K7-18 on page K7-8498 shows the complete translation flow for a VMSAv8-32 Long-descriptor stage 1
translation table walk that starts with a level 1 lookup. For more information about the fields shown in the figure,
see The address and Properties fields shown in the translation flows on page K7-8496.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K7-8497
ID072021 Non-Confidential

Address Translation Examples
K7.2 AArch32 Address translation examples
Figure K7-18 Complete VMSAv8-32 Long-descriptor format stage 1 translation, starting at level 1

If the level 1 lookup or the level 2 lookup returns a block descriptor then the translation table walk completes at that
level.

If bits[47:40] of the TTBR or the descriptor are not zero then the lookup will generate an Address size fault, see
Address size fault on page G5-6356.

A stage 2 translation that starts at a level 1 lookup differs from the translation shown in Figure K7-18 on
page K7-8498 only as follows:

• The possible values of n are 4-13, to support an input address of between 31 and 40 bits.

• A descriptor and output addresses are always PAs.

SBZ‡

SBZ‡

SBZ‡

SBZ‡

12 1139 3 2 0

0 0 0

n-1
39 n 3 2 0

0 0 0 Descriptor
address

Input address

Level 1 lookup

Descriptor
address

Descriptor
address

For details of Properties fields, see the register or descriptor description.

Translation table base address[39:n]RES0
63 56 55 40 39 n n-1 0

Properties RES0 TTBR

IGNORED 11RES0
48 47

Level 2 table address[39:12]Properties
63 59 58 52 51 0

IGNORED

2 112 11
Level 1
table descriptor

Level 2 lookup

IGNORED 11RES0
48 47

Level 3 table address[39:12]Properties
63 59 58 52 51 0

IGNORED

2 112 11
Level 2
table descriptor

12 1139 3 2 0

0 0 0

Level 3 lookup

Properties 11RES0
48 47

Output address[39:12]Properties
63 52 51 02 112 11

Level 3
page descriptor

n is {4, 5}
39

n+27 n+26
30 29 021 20 12 11

40 39

40 39

40 39

48 47

‡ See the lookup description for more information about bits[40:47] of the TTBR and descriptors
K7-8498 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Address Translation Examples
K7.2 AArch32 Address translation examples
Full translation flow, starting at level 2 lookup

Figure K7-19 on page K7-8499 shows the complete translation flow for a stage 1 VMSAv8-32 Long-descriptor
translation table walk that starts at a level 2 lookup. For more information about the fields shown in the figure, see
The address and Properties fields shown in the translation flows on page K7-8496.

Figure K7-19 Complete VMSAv8-32 Long-descriptor format stage 1 translation, starting at level 2

If the level 2 lookup returns a block descriptor then the translation table walk completes at that level.

If bits[47:40] of the TTBR or the descriptor are not zero then the lookup will generate an Address size fault, see
Address size fault on page G5-6356.

A stage 2 translation that starts at a level 2 lookup differs from the translation shown in Figure K7-19 on
page K7-8499 only as follows:

• The possible values of n are 7-16, to support an input address of up to 34 bits.

• The descriptor and output addresses are always PAs.

The address and Properties fields shown in the translation flows

For the Non-secure PL1&0 stage 1 translation:

• Any descriptor address is the IPA of the required descriptor.

• The final output address is the IPA of the block or page.

In these cases, a PL1&0 stage 2 translation is performed to translate the IPA to the required PA.

SBZ‡

SBZ‡

SBZ‡

12 1139 3 2 0

0 0 0

39 n n-1 3 2 0

0 0 0 Descriptor
address

Descriptor
address

For details of Properties fields, see the register or descriptor description.

Level 2 lookup

Translation table base address[39:n]RES0
63 56 55 48 47 n n-1 0

Properties RES0 TTBR

IGNORED 11RES0
48 47

Level 3 table address[39:12]Properties
63 59 58 52 51 0

IGNORED

2 112 11
Level 2
table descriptor

Level 3 lookup

Properties 11RES0
48 47

Output address[39:12]Properties
63 52 51 02 112 11

Level 3
page descriptor

Input address

n is {7, …, 12}
39

n+18 n+17
021 20 12 113132

40 39

40 39

40 39

‡ See the lookup description for more information about bits[40:47] of the TTBR and descriptors
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K7-8499
ID072021 Non-Confidential

Address Translation Examples
K7.2 AArch32 Address translation examples
For all other translations, the final output address is the PA of the block or page, and any descriptor address is the
PA of the descriptor.

Properties indicates register or translation table fields that return information, other than address information, about
the translation or the targeted memory region. For more information, see Information returned by a translation table
lookup on page G5-6275, and the description of the register or translation table descriptor.

For translations using the Long-descriptor translation table format, VMSAv8-32 Long-descriptor Translation Table
format descriptors on page G5-6289 describes the descriptors formats.
K7-8500 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Appendix K8
Example OS Save and Restore Sequences

This appendix provides possible OS Save and Restore sequences for a v8A Debug implementation. It contains the
following sections:

• Save Debug registers on page K8-8502.

• Restore Debug registers on page K8-8504.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K8-8501
ID072021 Non-Confidential

Example OS Save and Restore Sequences
K8.1 Save Debug registers
K8.1 Save Debug registers

This section shows how to save the registers that are used by an external debugger.

; On entry, X0 points to a block to save the debug registers in.
; Returns the pointer beyond the block and corrupts X1-X3

SaveDebugRegisters
 ; (1) Set OS Lock.
 MOV X2,#1 ; Set the OS Lock. In AArch64 state, the OS Lock
 MSR OSLAR_EL1,X2 ; is writable via OSLAR.
 ISB ; Context synchronization event

 ; (2) Walk through the registers, saving them
 MRS X1,OSDTRRX_EL1 ; Read DTRRX
 MRS X2,OSDTRTX_EL1 ; Read DTRTX
 STP W1,W2,[X0],#8 ; Save { DTRRX, DTRTX }
 MRS X1,OSECCR_EL1 ; Read ECCR
 MRS X2,MDSCR_EL1 ; Read DSCR
 STP W1,W2,[X0],#8 ; Save { ECCR, DSCR }
 [AARCH32_SUPPORTED
 MRS X1,DBGVCR32_EL2 ; Read DBGVCR
 MRS X2,DBGCLAIMCLR_EL1 ; Read CLAIM - note, have to read via CLAIMCLR
 STP W1,W2,[X0],#8 ; Save { VCR, CLAIM }
]

 ;; Macros for saving off a "register pair"
 ;; $WB is W for watchpoint, B for breakpoint
 ;; $num is the pair’s number
 ;; X0 contains a pointer for the value words
 ;; X1 contains a pointer for the control words
 ;; W2 contains the max index
 MACRO
 SaveRP $WB,$num, $exit
 MRS X3,DBG$WB.VR$num._EL1 ; Read DBGxVRn
 STR X3,[X0],#8 ; Save { xVRn }
 MRS X3,DBG$WB.CR$num._EL1 ; Read DBGxCRn
 STR W3,[X0],#4 ; Save { xCRn }.
 [$num > 1 :LAND: $num < 15
 CMP W1,#$num
 BEQ $exit
]
 MEND

 ; (3) Breakpoints
 MRS X1,ID_AA64DFR0_EL1
 UBFX W1,W1,#12,#4 ; Extract BRPs field
 MACRO
 SaveBRP $num ; Save a Breakpoint Register Pair
 SaveRP B,$num,SaveDebugRegisters_Watchpoints
 MEND
 SaveBRP 0
 SaveBRP 1
 SaveBRP 2
 ;; and so on to ...
 SaveBRP 15

SaveDebugRegisters_Watchpoints
 ; (4) Watchpoints
 MRS X1,ID_AA64DFR0_EL1 ; Read DBGDIDR
 UBFX W1,W1,#20,#4 ; Extract WRPs field
 MACRO
 SaveWRP $num ; Save a Watchpoint Register Pair
 SaveRP W,$num,SaveDebugRegisters_Exit
 MEND
 SaveWRP 0
 SaveWRP 1
 SaveWRP 2
K8-8502 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Example OS Save and Restore Sequences
K8.1 Save Debug registers
 ;; and so on to ...
 SaveWRP 15

SaveDebugRegisters_Exit
 ; (5) Return the pointer to first word not read. This pointer is already in X0, so
 ; all that is needed is to return from this function. The OS double-lock (OSDLR_EL1.DLK) is
 ; locked later, just before the final entry to WFI state.
 RET
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K8-8503
ID072021 Non-Confidential

Example OS Save and Restore Sequences
K8.2 Restore Debug registers
K8.2 Restore Debug registers

This section shows how to restore the registers that are used by an external debugger.

; On entry, X0 points to a block of saved debug registers.
; Returns the pointer beyond the block and corrupts R1-R3,R12.

RestoreDebugRegisters
 ; (1) Lock OS Lock. The lock will already be set, but this write is included to ensure it
 ; is locked.
 MOV X2,#1 ; Lock the OS Lock. In AArch64 state, the OS Lock
 MSR OSLAR_EL1,X2 ; is writable via OSLAR.
 ISB ; Context synchronization event

 MSR MDSCR_EL1, XZR ; Initialize MDSCR_EL1

 ; (2) Walk through the registers, restoring them
 LDP W1,W2,[X0],#8 ; Read { DTRRX,DTRTX }
 MSR OSDTRRX_EL1,X1 ; Restore DTRRX
 MSR OSDTRTX_EL1,X2 ; Restore DTRTX
 LDP W1,W3,[X0],#8 ; Read { DSCR, ECCR }
 MSR OSECCR_EL1,X2 ; Restore ECCR
 [AARCH32_SUPPORTED
 LDP W1,W2,[X0],#8 ; Read { VCR,CLAIM }
 MSR DBGVCR32_EL2,X1 ; Restore DBGVCR
 MSR DBGCLAIMSET_EL1,X2 ; Restore CLAIM – note, writes CLAIMSET
]

 ;; Macro for restoring a "register pair"
 MACRO
 RestoreRP $WB,$num,$exit
 LDR X3,[X0],#8 ; Read { xVRn }
 MSR DBG$WB.VR$num._EL1,X3 ; Restore DBGxVRn
 LDR W3,[X0],#4 ; Read { xCRn }
 MSR DBG$WB.CR$num._EL1,X3 ; Restore DBGxCRn
 [$num >= 1 :LAND: $num < 15
 CMP W1,#$num
 BEQ $exit
]
 MEND

 ; (3) Breakpoints
 MRS X1,ID_AA64DFR0_EL1
 UBFX W1,W1,#12,#4 ; Extract BRPs field
 MACRO
 RestoreBRP $num ; Restore a Breakpoint Register Pair
 RestoreRP B,$num,RestoreDebugRegisters_Watchpoints
 MEND
 RestoreBRP 0
 RestoreBRP 1
 RestoreBRP 2
 ;; and so on until ...
 RestoreBRP 15

RestoreDebugRegisters_Watchpoints
 ; (4) Watchpoints
 MRS X1,ID_AA64DFR0_EL1 ; Read DBGDIDR
 UBFX W1,W1,#20,#4 ; Extract WRPs field
 MACRO
 RestoreWRP $num ; Restore a Watchpoint Register Pair
 RestoreRP W,$num,RestoreDebugRegisters_Exit
 MEND
 RestoreWRP 0
 RestoreWRP 1
 RestoreWRP 2
 ;; and so on until ...
 RestoreWRP 15
K8-8504 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Example OS Save and Restore Sequences
K8.2 Restore Debug registers
RestoreDebugRegisters_Exit
 MSR MDSCR_EL1, X3 ; Restore DSCR

 ; (5) Clear the OS Lock.
 ISB
 MOV X2,#0 ; Clear the OS Lock. In AArch64 state, the OS Lock
 MSR OSLAR_EL1,X2 ; is writable via OSLAR.

 ; (6) A final ISB guarantees the restored register values are visible to subsequent
 ; instructions.
 ISB

 ; (7) Return the pointer to first word not read. This pointer is already in X0, so
 ; all that is needed is to return from this function.
 RET
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K8-8505
ID072021 Non-Confidential

Example OS Save and Restore Sequences
K8.2 Restore Debug registers
K8-8506 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Appendix K9
Recommended Upload and Download Processes for
External Debug

This appendix contains the following section:

• Using memory access mode in AArch64 state on page K9-8508.

Note

This description is not part of the Arm architecture specification. It is included here as supplementary information,
for the convenience of developers and users who might find this information useful.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K9-8507
ID072021 Non-Confidential

Recommended Upload and Download Processes for External Debug
K9.1 Using memory access mode in AArch64 state
K9.1 Using memory access mode in AArch64 state

Figure K9-1 on page K9-8508 and Figure K9-2 on page K9-8509 show the processes for using memory access
mode to implement a download (external host to target) and an upload (target to external host).

To transfer n words of data:

• The download sequence needs n+6 accesses by the external debug interface.

• The upload sequence needs n+8 accesses by the external debug interface.

In both cases, in the innermost loop the debugger can make an external access to a DTR without polling EDSCR
after each write as underrun and overrun detection prevent failure. Normally external accesses from the debugger
are outpaced by the memory accesses of the PE, making underruns and overruns unlikely. If this is not the case, the
EDSCR.ERR flag is set to 1. This is checked once at the end of the sequence, although a debugger can check it more
often, for example once for each page. If the EDSCR.ERR flag is set to 1 because of overrun or underrun, the
debugger can restart. The address to restart from is frozen in X0. EDSCR.ERR might also be set because of a Data
abort.

If underruns and overruns are common, the debugger can pace itself accordingly.

Note
• The base address must be a multiple of 4.

• The order of the writes that set up the address does not matter in Debug state.

Figure K9-1 Fast code download in AArch64 state (external host to target)

i = i + 1
i == n

AArch64
Write D[n] to A

1. DBGDTRTX = A[63:32]
2. DBGDTRRX = A[31:0]

3. EDITR=“MRS X0,DBGDTR_EL0”

4. EDSCR.MA == 1
Set i = 0

DBGDTRRX = D[i]
Issues store through ITR

Sets ERR to 1 if there is an overrun or abort

5. EDSCR.MA = 0

Error
recovery6. ERR == 0

Yes

End

No

No

Yes
K9-8508 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Recommended Upload and Download Processes for External Debug
K9.1 Using memory access mode in AArch64 state
In Figure K9-1 on page K9-8508, the sequence for the fast code download is as follows:

1. Setup. From the external debug interface:

a. Write address [31:0] to DBGDTRRX_EL0.

b. Write address [63:32] to DBGDTRTX_EL0.

c. Write MRS X0, DBGDTR_EL0 to EDITR. The PE executes this instruction.

d. Set EDSCR.MA to 1.

2. Loop n times. From the external debug interface:

a. Write to DBGDTRRX_EL0. The PE reads the word from DTRRX and stores it to memory. It
increments X0 by 4.

3. Epilogue. From the external debug interface:

a. Clear EDSCR.MA to 0.

b. Read EDSCR to check for overruns or Data Aborts during download.

Figure K9-2 Fast data upload in AArch64 state (target to external host)

In Figure K9-2 on page K9-8509, the sequence for the fast code download is as follows:

1. Setup. From the external debug interface:

a. Write address [31:0] to DBGDTRRX_EL0.

i = i + 1
i == n

AArch64
Read D[n] from A

1. DBGDTRTX = A[63:32]
2. DBGDTRRX = A[31:0]

3. EDITR=“MRS X0,DBGDTR_EL0”

4. EDITR = “MSR, DBGDTR_EL0,X0” (sets TXfull to 1)
5. EDSCR.MA = 1

Set i = 0

6. Discard DBGDTRTX
Sets ERR to 1 in the case of an underrrun or abort

Issues a load through ITR

7. EDSCR.MA = 0
8. D[n-1] = DBGDTRTX

Sets ERR to 1 if there is an underrun

Error
recovery

D[i-1] = DBGDTRTX
Sets ERR to 1 if there is an underrun or abort

Issues a load through ITR

9. ERR == 0

End

No

No

Yes

Yes
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K9-8509
ID072021 Non-Confidential

Recommended Upload and Download Processes for External Debug
K9.1 Using memory access mode in AArch64 state
b. Write address [63:32] to DBGDTRTX_EL0.

c. Write MRS X0, DBGDTR_EL0 to EDITR.

d. Write MSR DBGDTR_EL0, X0 to EDITR. This dummy operation ensures EDSCR.TXfull == 1.

e. Set EDSCR.MA to 1.

f. Read DBGDTRTX_EL0 and discard the value. The PE returns the previous DTR value, loads the first
word, and writes it to DTR. It increments X0 by 4.

2. Loop n-1 times. From the external debug interface:

a. Read DBGDTRTX_EL0. The PE returns the previous DTRTX value, loads a new word, and writes it
to DTRTX. It increments X0 by 4.

3. Epilogue. From the external debug interface:

a. Clear EDSCR.MA to 0.

b. Read DBGDTRTX_EL0 for the nth value.

c. Read EDSCR to check for underruns, overruns or Data Aborts during upload.
K9-8510 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Appendix K10
Software Usage Examples

This appendix gives software usage examples, for cases where these are likely to contribute significantly to an
understanding of the Arm architecture.

It contains the following sections:

• Use of the Advanced SIMD complex number instructions on page K10-8512.

• Use of the Armv8.2 extensions to the Cryptographic Extension on page K10-8514.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K10-8511
ID072021 Non-Confidential

Software Usage Examples
K10.1 Use of the Advanced SIMD complex number instructions
K10.1 Use of the Advanced SIMD complex number instructions

FEAT_FCMA provides instructions to aid floating-point computations of complex numbers. This section illustrates
the use of these instructions for complex arithmetic. It is not part of the Arm architecture definition.

This section uses the AArch64 instructions FCADD and FCMLA - usage of the AArch32 instructions VCADD and VCMLA is
similar.

When using the instructions implemented by FEAT_FCMA, a complex numbers is represented in a SIMD&FP
register as a pair of adjacent elements, each holding a floating-point number, with the more significant element
holding the imaginary part of the number and the less significant element holding the real part of the number.

K10.1.1 Complex addition

Simple complex addition on a vector of complex numbers is already provided by the vector form of the FADD
instruction.

The functionality that FCADD adds is to rotate each complex number in the second vector by 90 degrees or 270 degrees
counterclockwise (considering the complex numbers on an Argand diagram) before performing the addition.
Mathematically, this is equivalent to multiplying the second complex number by i or -i before addition.

This means, given a complex number z stored in a pair of elements in one vector, and a complex number w stored
in the corresponding element pair in another vector:

• FADD calculates z + w.

• FCADD calculates z ± iw.

K10.1.2 Complex multiplication

The FCMLA instruction does not provide functionality for complex multiplication directly. However, a pair of FCMLA
instructions can provide this function.

The FCMLA instruction operates on corresponding pairs of complex numbers stored in SIMD&FP vector registers,
and adds the result to the corresponding complex number in the destination SIMD&FP vector register. This
computation is as follows:

1. The second complex number is rotated by 0, 90, 180 or 270 degrees counterclockwise.

2. That complex number is multiplied by either the real or imaginary part of the first complex number:

• When the rotation is 0 or 180 degrees, the real part is used.

• When the rotation is 90 or 270 degrees, the imaginary part is used.

3. The resulting complex number is added to the corresponding complex number in the destination register.

Mathematically, considering the complex numbers on an Argand diagram:

• Rotation by 180 degrees is equivalent to negation.

• Rotation by 90 degrees is equivalent to multiplying by i.

• Rotation by 270 degrees is equivalent to multiplying by -i.

This means that, for a first complex number z, where z = a+bi, and a second complex number w, if initially the
corresponding complex number in the destination register is zero:

• When the rotation is 0 degrees the result of the multiply-add is aw.

• When the rotation is 180 degrees, the result is -aw.

• When the rotation is 90 degrees, the result is biw.

• When the rotation is 270 degrees, the result is -biw.

This means that, if the destination register is zeroed and an FCMLA instruction is executed with a rotation parameter
of 0, and then the same instruction is executed with a rotation parameter of 90:

• The first execution returns aw in the destination register.

• The second execution accumulates biw to this, meaning the result is aw+biw.

• This result is the product of (a+bi)w, which is the product zw.
K10-8512 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Software Usage Examples
K10.1 Use of the Advanced SIMD complex number instructions
So, this pair of instructions can be used to implement complex multiplication.

After zeroing V0, the syntax of a pair of instructions to perform this complex number multiplication might be:

FCMLA V0.4S, V1.4S, V2.4S, #0
FCMLA V0.4S, V1.4S, V2.4S, #90

Other simple pairs of FCMLA instructions perform useful computations. For example, considering a first complex
number z and second complex number w, defined as before, and a destination register that has been zeroed before
the first FCMLA instruction is executed:

1. The following pair of instructions calculates the complex conjugate of z multiplied by w.

FCMLA V0.4S, V1.4S, V2.4S, #0
FCMLA V0.4S, V1.4S, V2.4S, #270

2. The following pair of instructions calculates the negation of z multiplied by w.

FCMLA V0.4S, V1.4S, V2.4S, #180
FCMLA V0.4S, V1.4S, V2.4S, #270

3. The following pair of instructions calculates the negation of the complex conjugate of z multiplied by w.

FCMLA V0.4S, V1.4S, V2.4S, #180
FCMLA V0.4S, V1.4S, V2.4S, #90

Note

For these examples, the following caveats must be considered:

• FCMLA performs a fused multiply-add, meaning there is no intermediate rounding. This lack of intermediate
rounding can give unexpected results in some cases. Arm expects that these instructions are only used in
situations where the effect of the rounding of these results is not material to the calculation.

• When using the FCMLA instructions, the behavior of (∞+∞i) multiplied by (0+i) is (NaN+NaNi), rather than
the result expected by ISO C, which is complex ∞.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K10-8513
ID072021 Non-Confidential

Software Usage Examples
K10.2 Use of the Armv8.2 extensions to the Cryptographic Extension
K10.2 Use of the Armv8.2 extensions to the Cryptographic Extension

K10.2.1 Use of the SHA512 instructions

These instructions are implemented when FEAT_SHA512 is implemented.

The following code sequence shows the use of the SHA512 instructions to calculate a SHA512 hash iteration of 80
rounds. This code is not fully optimized.

// X0 contains the pointer to the bottom of the (padded) 16*64 bytes of message to be
// hashed, with space above the that message to hold a further 64 * 64 bytes of working
// data
// X1 contains the pointer to the 0th element of 80 64-bit constants (in ascending addresses) defined in
the SHA2 specification
// X2 contains a loop variable
// V4,V5,V6, V7 hold VS0 to VS3 respectively
// V8 holds running hash V1
// V9 holds running hash V0
 MOV X2, #0
loop1:
 LD1 {V0.2D}, [X0] // Data
 LD1 {V1.2D}, [X1] // K values
 ADD X1, X1, #16
 ADD X0, X0, #16
 ADD X2, X2, #16
 ADD V2.2D, V0.2D, V1.2D
 EXT V2.16B, V2.16B, V2.16B, #8
 EXT V8.16B, V6.16B, V7.16B, #8
 EXT V9.16B, V5.16B, V6.16B, #8
 ADD V7.2D, V7.2D, V2.2D
 SHA512H Q7, Q8, V9.2D
 ADD V10.2D, V5.2D, V7.2D
 SHA512H2 Q7, Q5, V4.2D
 MOV V5.16B, V4.16B
 MOV V4.16B, V7.16B
 MOV V7.16B, V6.16B
 MOV V6.16B, V10.16B
 CMP X2, #128
 BLT loop1

 // work out pointers to previous words in the data
 SUB X3, X0, #128
 SUB X4, X0, #112
 SUB X5, X0, #16
 SUB X6, X0, #56
loop2:
 LD1 {V11.2D}, [X3]
 LD1 {V12.2D}, [X4]
 LD1 {V13.2D}, [X5]
 LD1 {V14.2D}, [X6]
 SHA512SU0 V11.2D, V12.2D
 SHA512SU1 V11.2D, V13.2D, V14.2D
 ST1 {V11.2D}, [X0]
 LD1 {V1.2D}, [X1] // K values
 ADD X0, X0, #16
 ADD X1, X1, #16
 ADD X3, X3, #16
 ADD X4, X4, #16
 ADD X5, X5, #16
 ADD X6, X6, #16
 ADD X2, X2, #16
 ADD V2.2D, V11.2D, V1.2D
 EXT V2.16B, V2.16B, V2.16B, #8
 EXT V8.16B, V6.16B, V7.16B, #8
 EXT V9.16B, V5.16B, V6.16B, #8
 ADD V7.2D, V7.2D, V2.2D
 SHA512H Q7, Q8, V9.2D
K10-8514 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Software Usage Examples
K10.2 Use of the Armv8.2 extensions to the Cryptographic Extension
 ADD V10.2D, V5.2D, V7.2D
 SHA512H2 Q7, Q5, V4.2D
 MOV V5.16B, V4.16B
 MOV V4.16B, V7.16B
 MOV V7.16B, V6.16B
 MOV V6.16B, V10.16B
 CMP X2, #320
 BLT loop2

K10.2.2 Use of the SHA3 instructions

These instructions are implemented when FEAT_SHA3 is implemented.

The following code sequence shows the use of the SHA3 instructions to obtain the combined theta, phi, rho and chi
operations of a SHA3 iteration. Arm expects the iota operation to be performed using a lookup table.

This code is not fully optimized for multiple iterations.

// Input State:
 // x=0 x=1 x=2 x=3 x=4
 // y=0 v12 v13 v14 v10 v11
 // y=1 v7 v8 v9 v5 v6
 // y=2 v2 v3 v4 v0 v1
 // y=3 v22 v23 v24 v20 v21
 // y=4 v17 v18 v19 v15 v16

 //- Theta Calculations -//
 eor3 v25.16B, v12.16B, v7.16B, v2.16B
 eor3 v25.16B, v25.16B, v22.16B, v17.16B
 eor3 v26.16B, v13.16B, v8.16B, v3.16B
 eor3 v26.16B, v26.16B, v23.16B, v18.16B
 eor3 v27.16B, v14.16B, v9.16B, v4.16B
 eor3 v27.16B, v27.16B, v24.16B, v19.16B
 eor3 v28.16B, v10.16B, v5.16B, v0.16B
 eor3 v28.16B, v28.16B, v20.16B, v15.16B
 eor3 v29.16B, v11.16B, v6.16B, v1.16B
 eor3 v29.16B, v29.16B, v21.16B, v16.16B

 rax1 v30.2D, v29.2D, v26.2D
 rax1 v31.2D, v27.2D, v29.2D
 rax1 v29.2D, v25.2D, v27.2D
 rax1 v27.2D, v28.2D, v25.2D
 rax1 v25.2D, v26.2D, v28.2D

 //- Phi\rho Stage -//
 eor v12.8B, v12.8B, v30.8B
 xar v26.2D, v21.2D, v27.2D, #56
 xar v21.2D, v15.2D, v31.2D, #8
 xar v15.2D, v22.2D, v30.2D, #23
 xar v22.2D, v11.2D, v27.2D, #37
 xar v11.2D, v16.2D, v27.2D, #50
 xar v16.2D, v18.2D, v29.2D, #62
 xar v18.2D, v5.2D, v31.2D, #9
 xar v5.2D, v23.2D, v29.2D, #19
 xar v23.2D, v7.2D, v30.2D, #28
 xar v7.2D, v10.2D, v31.2D, #36
 xar v10.2D, v20.2D, v31.2D, #43
 xar v20.2D, v24.2D, v25.2D, #49
 xar v24.2D, v3.2D, v29.2D, #54
 xar v3.2D, v9.2D, v25.2D, #58
 xar v9.2D, v2.2D, v30.2D, #61
 xar v2.2D, v13.2D, v29.2D, #63
 xar v13.2D, v8.2D, v29.2D, #20
 xar v8.2D, v6.2D, v27.2D, #44
 xar v6.2D, v19.2D, v25.2D, #3
 xar v19.2D, v1.2D, v27.2D, #25
 xar v1.2D, v17.2D, v30.2D, #46
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K10-8515
ID072021 Non-Confidential

Software Usage Examples
K10.2 Use of the Armv8.2 extensions to the Cryptographic Extension
 xar v17.2D, v14.2D, v25.2D, #2
 xar v14.2D, v4.2D, v25.2D, #21
 xar v4.2D, v0.2D, v31.2D, #39

 // XAR Output:
 //
 // v12 v2 v17 v7 v22
 // v23 v13 v3 v18 v8
 // v9 v24 v14 v4 v19
 // v15 v5 v20 v10 v26
 // v1 v16 v6 v21 v11
 //
 // temp: v0, v25, v27, v28, v29, v30, v31

 // Phi Output:
 //
 // v12 v13 v14 v10 v11
 // v7 v8 v9 v5 v6
 // v2 v3 v4 v26 v1
 // v22 v23 v24 v20 v21
 // v17 v18 v19 v15 v16

 //- Chi transformations -//
 bcax v31.16B, v26.16B, v2.16B, v1.16B
 bcax v27.16B, v1.16B, v3.16B, v2.16B
 bcax v28.16B, v2.16B, v4.16B, v3.16B
 bcax v29.16B, v3.16B, v26.16B, v4.16B
 bcax v30.16B, v4.16B, v1.16B, v26.16B
 bcax v0.16B, v5.16B, v7.16B, v6.16B
 bcax v1.16B, v6.16B, v8.16B, v7.16B
 bcax v2.16B, v7.16B, v9.16B, v8.16B
 bcax v3.16B, v8.16B, v5.16B, v9.16B
 bcax v4.16B, v9.16B, v6.16B, v5.16B
 bcax v5.16B, v10.16B, v12.16B, v11.16B
 bcax v6.16B, v11.16B, v13.16B, v12.16B
 bcax v7.16B, v12.16B, v14.16B, v13.16B
 bcax v8.16B, v13.16B, v10.16B, v14.16B
 bcax v9.16B, v14.16B, v11.16B, v10.16B
 bcax v10.16B, v15.16B, v17.16B, v16.16B
 bcax v11.16B, v16.16B, v18.16B, v17.16B
 bcax v12.16B, v17.16B, v19.16B, v18.16B
 bcax v13.16B, v18.16B, v15.16B, v19.16B
 bcax v14.16B, v19.16B, v16.16B, v15.16B
 bcax v15.16B, v20.16B, v22.16B, v21.16B
 bcax v16.16B, v21.16B, v23.16B, v22.16B
 bcax v17.16B, v22.16B, v24.16B, v23.16B
 bcax v18.16B, v23.16B, v20.16B, v24.16B
 bcax v19.16B, v24.16B, v21.16B, v20.16B

 // Output State from Chi:
 //
 // x=0 x=1 x=2 x=3 x=4
 // y=0 v7 v8 v9 v5 v6
 // y=1 v2 v3 v4 v0 v1
 // y=2 v28 v29 v30 v31 v27
 // y=3 v17 v18 v19 v15 v16
 // y=4 v12 v13 v14 v10 v11

K10.2.3 Use of the SM3 instructions

These instructions are implemented when FEAT_SM3 is implemented.

The following code sequence shows the use of the SM3 instructions to generate a SM3 hash.

.macro MessageExpand VA, VB, VC, VD, VOUT
 EXT \VOUT().16B, \VB().16B, \VC().16B, #12
 SM3PARTW1 \VOUT().4S, \VA().4S, \VD().4S
K10-8516 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Software Usage Examples
K10.2 Use of the Armv8.2 extensions to the Cryptographic Extension
 EXT V17.16B, \VA().16B, \VB().16B, #12
 EXT V18.16B, \VC().16B, \VD().16B, #8
 SM3PARTW2 \VOUT().4S, V18.4S, V17.4S
 .endm

.macro HashPt1 VA, VB, Number SM3SS1 V23.4S, V20.4S, V22.4S, V19.4S
 EOR V21.16B, \VA().16B, \VB().16B
 SM3TT1a V20.4S, V23.4S, V21.S[\Number]
 SM3TT2a V19.4S, V23.4S, \VA().S[\Number]
 SHL V24.4S, V22.4S, #1
 SRI V24.4S, V22.4S, #31
 MOV V22.16B, V24.16B
 .endm

.macro HashPt2 VA, VB, Number SM3SS1 V23.4S, V20.4S, V25.4S, V19.4S
 EOR V21.16B, \VA().16B, \VB().16B
 SM3TT1b V20.4S, V23.4S, V21.S[\Number]
 SM3TT2b V19.4S, V23.4S, \VA().S[\Number]
 SHL V26.4S, V25.4S, #1
 SRI V26.4S, V25.4S, #31
 MOV V25.16B, V26.16B
 .endm

// V0-V3 holds the initial message
// V19 holds EFGH which is the lower half of the input hash
// V20 holds ABCD which is the upper half of the input hash
// V21 = current VPrime
// V22 holds T in bits[127:96] = 0x79cc4519
// V25 holds second value of T in bits[127:96] = 0x9d8a7a87<31:0>;

MessageExpand V0, V1, V2, V3, V4
MessageExpand V1, V2, V3, V4, V5
MessageExpand V2, V3, V4, V5, V6
MessageExpand V3, V4, V5, V6, V7
MessageExpand V4, V5, V6, V7, V8
MessageExpand V5, V6, V7, V8, V9
MessageExpand V6, V7, V8, V9, V10
MessageExpand V7, V8, V9, V10, V11
MessageExpand V8, V9, V10, V11, V12
MessageExpand V9, V10, V11, V12, V13
MessageExpand V10, V11, V12, V13, V14
MessageExpand V11, V12, V13, V14, V15
MessageExpand V12, V13, V14, V15, V16

MOV V29.16B, V19.16B
MOV V30.16B, V20.16B

HashPt1 V0,V1, 0
HashPt1 V0,V1, 1
HashPt1 V0,V1, 2
HashPt1 V0,V1, 3
HashPt1 V1,V2, 0
HashPt1 V1,V2, 1
HashPt1 V1,V2, 2
HashPt1 V1,V2, 3
HashPt1 V2,V3, 0
HashPt1 V2,V3, 1
HashPt1 V2,V3, 2
HashPt1 V2,V3, 3
HashPt1 V3,V4, 0
HashPt1 V3,V4, 1
HashPt1 V3,V4, 2
HashPt1 V3,V4, 3

HashPt2 V4,V5, 0
HashPt2 V4,V5, 1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K10-8517
ID072021 Non-Confidential

Software Usage Examples
K10.2 Use of the Armv8.2 extensions to the Cryptographic Extension
HashPt2 V4,V5, 2
HashPt2 V4,V5, 3
HashPt2 V5,V6, 0
HashPt2 V5,V6, 1
HashPt2 V5,V6, 2
HashPt2 V5,V6, 3
HashPt2 V6,V7, 0
HashPt2 V6,V7, 1
HashPt2 V6,V7, 2
HashPt2 V6,V7, 3
HashPt2 V7,V8, 0
HashPt2 V7,V8, 1
HashPt2 V7,V8, 2
HashPt2 V7,V8, 3
HashPt2 V8,V9, 0
HashPt2 V8,V9, 1
HashPt2 V8,V9, 2
HashPt2 V8,V9, 3
HashPt2 V9,V10, 0
HashPt2 V9,V10, 1
HashPt2 V9,V10, 2
HashPt2 V9,V10, 3
HashPt2 V10,V11, 0
HashPt2 V10,V11, 1
HashPt2 V10,V11, 2
HashPt2 V10,V11, 3
HashPt2 V11,V12, 0
HashPt2 V11,V12, 1
HashPt2 V11,V12, 2
HashPt2 V11,V12, 3
HashPt2 V12,V13, 0
HashPt2 V12,V13, 1
HashPt2 V12,V13, 2
HashPt2 V12,V13, 3
HashPt2 V13,V14, 0
HashPt2 V13,V14, 1
HashPt2 V13,V14, 2
HashPt2 V13,V14, 3
HashPt2 V14,V15, 0
HashPt2 V14,V15, 1
HashPt2 V14,V15, 2
HashPt2 V14,V15, 3
HashPt2 V15,V16, 0
HashPt2 V15,V16, 1
HashPt2 V15,V16, 2
HashPt2 V15,V16, 3

EOR V19.16B, V29.16B, V19.16B
EOR V20.16B, V30.16B, V20.16B

// V19 holds EFGH which is the lower half of the output hash
// V20 holds ABCD which is the upper half of the output hash

K10.2.4 Use of the SM4 instructions

These instructions are implemented when FEAT_SM4 is implemented.

The following code sequences show the use of the SM4 instructions to perform SM4 encryption and decryption:

Encryption

// Encryption
// V0 contains 0xb27022dc677d919756aa3350a3b1bac6<127:0>;
// V8 contains the Key
// V2 contains the data to be encrypted
// V16 contains: 0x545b6269383f464d1c232a3100070e15;
// V17 contains: 0xc4cbd2d9a8afb6bd8c939aa170777e85;
K10-8518 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Software Usage Examples
K10.2 Use of the Armv8.2 extensions to the Cryptographic Extension
// V18 contains: 0x343b4249181f262dfc030a11e0e7eef5;
// V19 contains: 0xa4abb2b9888f969d6c737a8150575e65;
// V20 contains: 0x141b2229f8ff060ddce3eaf1c0c7ced5;
// V21 contains: 0x848b9299686f767d4c535a6130373e45;
// V22 contains: 0xf4fb0209d8dfe6edbcc3cad1a0a7aeb5;
// V23 contains: 0x646b7279484f565d2c333a4110171e25;

EOR V8.16b, V8.16b, V0.16b;
SM4EKEY V8.4S, V8.4S, V16.4S
SM4EKEY V9.4S, V8.4S, V17.4S
SM4EKEY V10.4S, V9.4S, V18.4S
SM4EKEY V11.4S, V10.4S, V19.4S
SM4EKEY V12.4S, V11.4S, V20.4S
SM4EKEY V13.4S, V12.4S, V21.4S
SM4EKEY V14.4S, V13.4S, V22.4S
SM4EKEY V15.4S, V14.4S, V23.4S

SM4E V2.4S, V8.4S
SM4E V2.4S, V9.4S
SM4E V2.4S, V10.4S
SM4E V2.4S, V11.4S
SM4E V2.4S, V12.4S
SM4E V2.4S, V13.4S
SM4E V2.4S, V14.4S
SM4E V2.4S, V15.4S

// need to reverse the order of the words at the end of the operation
REV64 v2.4S, v2.4S
EXT V2.16B, V2.16B, V2.16B, #8

Decryption

// Decryption
// V0 contains 0xb27022dc677d919756aa3350a3b1bac6<127:0>;
// V8 contains the Key
// V2 contains the data to be decrypted
// V16 contains: 0x545b6269383f464d1c232a3100070e15;
// V17 contains: 0xc4cbd2d9a8afb6bd8c939aa170777e85;
// V18 contains: 0x343b4249181f262dfc030a11e0e7eef5;
// V19 contains: 0xa4abb2b9888f969d6c737a8150575e65;
// V20 contains: 0x141b2229f8ff060ddce3eaf1c0c7ced5;
// V21 contains: 0x848b9299686f767d4c535a6130373e45;
// V22 contains: 0xf4fb0209d8dfe6edbcc3cad1a0a7aeb5;
// V23 contains: 0x646b7279484f565d2c333a4110171e25;

// need to reverse the order of the keys to do a decryption:

EOR V8.16b, V8.16b, V0.16b;
SM4EKEY V8.4S, V8.4S, V16.4S
SM4EKEY V9.4S, V8.4S, V17.4S
SM4EKEY V10.4S, V9.4S, V18.4S
SM4EKEY V11.4S, V10.4S, V19.4S
SM4EKEY V12.4S, V11.4S, V20.4S
SM4EKEY V13.4S, V12.4S, V21.4S
SM4EKEY V14.4S, V13.4S, V22.4S
SM4EKEY V15.4S, V14.4S, V23.4S

REV64 V8.4S, V8.4S
EXT V8.16B, V8.16B, V8.16B, #8
REV64 V9.4S, V9.4S
EXT V9.16B, V9.16B, V9.16B, #8
REV64 V10.4S, V10.4S
EXT V10.16B, V10.16B, V10.16B, #8
REV64 V11.4S, V11.4S
EXT V11.16B, V11.16B, V11.16B, #8
REV64 V12.4S, V12.4S
EXT V12.16B, V12.16B, V12.16B, #8
REV64 V13.4S, V13.4S
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K10-8519
ID072021 Non-Confidential

Software Usage Examples
K10.2 Use of the Armv8.2 extensions to the Cryptographic Extension
EXT V13.16B, V13.16B, V13.16B, #8
REV64 V14.4S, V14.4S
EXT V14.16B, V14.16B, V14.16B, #8
REV64 V15.4S, V15.4S
EXT V15.16B, V15.16B, V15.16B, #8

SM4E V2.4S, V15.4S
SM4E V2.4S, V14.4S
SM4E V2.4S, V13.4S
SM4E V2.4S, V12.4S
SM4E V2.4S, V11.4S
SM4E V2.4S, V10.4S
SM4E V2.4S, V9.4S
SM4E V2.4S, V8.4S

// final reversal of the order of the words in the result:
REV64 V2.4S, V2.4S
EXT V2.16B, V2.16B, V2.16B, #8
K10-8520 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Appendix K11
Barrier Litmus Tests

This appendix gives examples of the use of the barrier instructions provided by the Armv8 architecture. It contains
the following sections:

• Introduction on page K11-8522.

• Load-Acquire, Store-Release and barriers on page K11-8525.

• Load-Acquire Exclusive, Store-Release Exclusive and barriers on page K11-8529.

• Using a mailbox to send an interrupt on page K11-8534.

• Cache and TLB maintenance instructions and barriers on page K11-8535.

• Armv7 compatible approaches for ordering, using DMB and DSB barriers on page K11-8547.

Note

This information is not part of the Arm architecture specification. It is included here as supplementary information,
for the convenience of developers and users who might require this information.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K11-8521
ID072021 Non-Confidential

Barrier Litmus Tests
K11.1 Introduction
K11.1 Introduction

The exact rules for the insertion of barriers into code sequences is a very complicated subject, and this appendix
describes many of the corner cases and behaviors that are possible in an implementation of the Armv8 architecture.

This appendix is to help programmers, hardware design engineers, and validation engineers understand the need for
the different kinds of barriers.

K11.1.1 Overview of memory consistency

Early generations of microprocessors were relatively simple processing engines that executed each instruction in
program order. In such processors, the effective behavior was that each instruction was executed in its entirety
before a subsequent instruction started to be executed. This behavior is sometimes referred to as the Sequential
Execution Model (SEM), and in this Manual it is described as Simple sequential execution of the program.

In later processor generations, the needs to increase processor performance, both in terms of the frequency of
operation and the number of instructions executed each cycle, mean that such a simple form of execution is
abandoned. Many techniques, such as pipelining, write buffering, caching, speculation, and out-of-order execution,
are introduced to provide improved performance.

For general purpose PEs, such as Arm, these microarchitectural innovations are largely hidden from the programmer
by a number of microarchitectural techniques. These techniques ensure that, within an individual PE, the behavior
of the PE largely remains the same as the SEM. There are some exceptions to this where explicit synchronization
is required. In the Arm architecture, these are limited to cases such as:

• Synchronization of changes to the instruction stream.

• Synchronization of changes to System registers.

In both these cases, the ISB instruction provides the necessary synchronization.

While the effect of ordering is largely hidden from the programmer within a single PE, the microarchitectural
innovations have a profound impact on the ordering of memory accesses. Write buffering, speculation, and cache
coherency protocols, in particular, can all mean that the order in which memory accesses occur, as seen by an
external observer, differs significantly from the order of accesses that would appear in the SEM. This is usually
invisible in a uniprocessor environment, but the effect becomes much more significant when multiple PEs are trying
to communicate with memory. In reality, these effects are often only significant at particular synchronization
boundaries between the different threads of execution.

The problems that arise from memory ordering considerations are sometimes described as the problem of memory
consistency. Processor architectures have adopted one or more memory consistency models, or memory models, that
describe the permitted limits of the memory re-ordering that can be performed by an implementation of the
architecture. The comparison and categorization of these has generated significant research and comment in
academic circles, and Arm recommends the Memory Consistency Models for Shared Memory-Multiprocessors
paper as an excellent detailed treatment of this subject.

This appendix does not reproduce such a work, but instead concentrates on some cases that demonstrate the features
of the weakly-ordered memory model of the Arm architecture from Armv6. In particular, the examples show how
the use of the DMB and DSB memory barrier instructions can provide the necessary safeguards to limit memory
ordering effects at the required synchronization points.

K11.1.2 Barrier operation definitions

The following reference, or provide, definitions of terms used in this appendix:

DMB See Data Memory Barrier (DMB) on page B2-147.

DSB See Data Synchronization Barrier (DSB) on page B2-150.

ISB See Instruction Synchronization Barrier (ISB) on page B2-147.

Observer, Completion

See Definition of the Armv8 memory model on page B2-133.

See Completion and endpoint ordering on page B2-141.
K11-8522 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Barrier Litmus Tests
K11.1 Introduction
Program order

The order of instructions as they appear in an assembly language program. This appendix does not
attempt to describe or define the legal transformations from a program written in a higher level
programming language, such as C or C++, into the machine language that can then be disassembled
to give an equivalent assembly language program. Such transformations are a function of the
semantics of the higher level language and the capabilities and options on the compiler.

K11.1.3 Conventions

Many of the examples are written in a stylized extension to Arm assembler, to avoid confusing the examples with
unnecessary code sequences.

AArch32

The construct WAIT([Rx]==1) describes the following sequence:

loop
 LDR R12, [Rx]
 CMP R12, #1
 BNE loop

Also, the construct WAIT_ACQ([Rx]==1) describes the following sequence:

loop
 LDA R12, [Rx] ; load acquire ensures it is ordered before subsequent loads/stores
 CMP R12, #1
 BNE loop

R12 is chosen as an arbitrary temporary register that is not in use. It is named to permit the generation of a false
dependency to ensure ordering.

AArch64

The construct WAIT([Xx]==1) describes the following sequence:

loop
 LDR W12, [Xx]
 CMP W12, #1
 B.NE loop

Also, the construct WAIT_ACQ([Xx]==1) and describes the following sequence:

loop
 LDAR W12, [Xx] ; load acquire ensures it is ordered before subsequent loads/stores
 CMP W12, #1
 B.NE loop

For each example, a code sequence is preceded by an identifier of the observer running it:

• P0, P1…Px refer to caching coherent PEs that implement the Armv8 architecture and are in the same
shareability domain.

• E0, E1…Ex refer to non-caching observers that do not participate in the coherency protocol, but execute
Armv8 instructions and have a weakly ordered memory model. This does not preclude these observers being
different objects, such as DMA engines or other system Requesters.

These observers are unsynchronized other than as required by the documented code sequence.

Note

Throughout this appendix, Armv8 instruction and instruction refer to instructions from the A64, A32, or T32
instruction set, provided by Armv8 implementations.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K11-8523
ID072021 Non-Confidential

Barrier Litmus Tests
K11.1 Introduction
Results are expressed in terms of <agent>:<register>, such as P0:R5. The results can be described as:

Permissible This does not imply that the results expressed are required or are the only possible results.
In most cases they are results that would not be possible under a sequentially consistent
running of the code sequences on the agents involved. In general terms, this means that these
results might be unexpected to anyone unfamiliar with memory consistency issues.

Not permissible Results that the architecture expressly forbids.

Required Results that the architecture expressly requires.

The examples omit the required shareability domain arguments of DMB and DSB instructions. The arguments are
assumed to be selected appropriately for the shareability domains of the observers.

In AArch32 state, where the barrier function in the litmus test can be achieved by a DMB ST, that is a barrier to stores
only, this is shown by the use of DMB [ST]. This indicates that the ST qualifier can be omitted without affecting the
result of the test. In some implementations DMB ST is faster than DMB.

For AArch64 code, the shareability domain of the DMB or DSB must be included. This is shown in this manual using
the notation DMB <domain> and DSB <domain> respectively.

Except where otherwise stated, other conventions are:

• All memory initializes to 0.

• R0 and W0 contain the value 1.

• R1 - R4 and W1 - W4 contain arbitrary independent addresses that initialize to the same value on all PEs.
The addresses held in these registers are shareable and:

— The addresses held in R1 and R2 are in Write-Back Cacheable Normal memory.

— The address held in R3 is in Write-Through Cacheable Normal memory.

— The address held in R4 is in Non-cacheable Normal memory.

• R5 - R8 and W5 - W8 contain:

— When used with an STR instruction, 0x55, 0x66, 0x77, and 0x88 respectively.

— When used with an LDR instruction, the value 0.

• R11 and W11 contain a new instruction or new translation table entry, as appropriate, and R10 contains the
virtual address and the ASID, for use in this change of translation table entry.

• Memory locations are Normal memory locations unless otherwise stated.

The examples use mnemonics for the cache maintenance and TLB maintenance instructions. The following tables
describe the mnemonics:

• Cache maintenance system instructions on page K15-8657.

• TLB maintenance system instructions on page K15-8658.
K11-8524 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Barrier Litmus Tests
K11.2 Load-Acquire, Store-Release and barriers
K11.2 Load-Acquire, Store-Release and barriers

The Load-Acquire and Store-Release instructions are described in Load-Acquire, Load-AcquirePC, and
Store-Release on page B2-152.

The following sections show that most of the examples in sections Simple ordering and barrier cases on
page K11-8547 and Load-Exclusive, Store-Exclusive and barriers on page K11-8551 can be achieved using the
Load-Acquire and Store-Release instructions without the need for additional barriers.

K11.2.1 Message passing

The following sections describe:

• Resolving weakly-ordered message passing by using Acquire and Release on page K11-8525.

• Resolving message passing by the use of Store-Release and address dependency on page K11-8526.

Resolving weakly-ordered message passing by using Acquire and Release

The message passing problem described in Weakly-ordered message passing problem on page K11-8547 can be
solved by the use of Load-Acquire and Store-Release instructions when accessing the communications flag:

AArch32

P1

 STR R5, [R1] ; sets new data
 STL R0, [R2] ; sends flag indicating data ready, which is ordered after the STR

P2

 WAIT_ACQ([R2]==1) ; waits on flag
 LDR R5, [R1]

AArch64

P1

 STR W5, [X1] ; sets new data
 STLR W0, [X2] ; sends flag indicating data ready, which is ordered after the STR

P2

 WAIT_ACQ([X2]==1) ; waits on flag
 LDR W5, [X1]

This ensures the observed order of both the reads and the writes allows transfer of data such that the result
P2:R5==0x55 is guaranteed.

This approach also works with multiple observers, in a way that further observers use the same sequence as P2 uses:

AArch32

P3

 WAIT_ACQ([R2]==1) ; waits on flag
 LDR R5, [R1]

AArch64

P3

 WAIT_ACQ([X2]==1) ; waits on flag
 LDR W5, [X1]
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K11-8525
ID072021 Non-Confidential

Barrier Litmus Tests
K11.2 Load-Acquire, Store-Release and barriers
Resolving message passing by the use of Store-Release and address dependency

The lack of ordering of stores discussed in Message passing with multiple observers on page K11-8548 can be
resolved by the use of Store-Release for the store of the valid flag by P1, even when the observers are using an
address dependency:

AArch32

P1

 STR R5, [R1] ; sets new data
 STL R0, [R2] ; sends flag indicating data ready using a Store-Release

P2

 WAIT([R2]==1)
 AND R12, R12, #0 ; R12 is the destination of LDR in the WAIT macro
 LDR R5, [R1, R12] ; the load has an address dependency on R12
 : and so is ordered after the flag has been seen

AArch64

P1

 STR W5, [X1] ; sets new data
 STLR W0, [X2] ; sends flag indicating data ready using a Store-Release

P2

 WAIT([X2]==1)
 AND W12, W12, WZR ; W12 is the destination of LDR in the WAIT macro
 LDR W5, [X1, X12] ; the load has an address dependency on W12
 : and so is ordered after the flag has been seen

This ensures the observed order of the writes allows transfer of data such that P2:R5 and P3:R5 contain the same
value of 0x55.

This approach also works with multiple observers, in a way that further observers use the same sequence as P2 uses:

AArch32

P3

 WAIT([R2]==1)
 AND R12, R12, #0 ; R12 is the destination of LDR in the WAIT macro
 LDR R5, [R1, R12] ; the load has an address dependency on R12
 : and so is ordered after the flag has been seen

AArch64

P3

 WAIT([X2]==1)
 AND W12, W12, WZR ; R12 is the destination of LDR in the WAIT macro
 LDR W5, [X1, X12] ; the load has an address dependency on W12
 : and so is ordered after the flag has been seen
K11-8526 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Barrier Litmus Tests
K11.2 Load-Acquire, Store-Release and barriers
K11.2.2 Address dependency with object construction

When accessing an object-oriented data structure, the address dependency rule means that barriers are not required,
even when initializing the object. A Store-Release can be used to ensure the order of the update of the base address:

AArch32

P1

STR R5, [R1, #offset] ; sets new data in a field
STL R1, [R2] ; updates base address

P2

LDR R1, [R2] ; reads base address
CMP R1, #0 ; checks if it is valid
BEQ null_trap
LDR R5, [R1, #offset] ; uses base address to read field

AArch64

P1

STR W5, [X1, #offset] ; sets new data in a field
STLR X1, [X2] ; updates base address

P2

LDR X1, [X2] ; reads base address
CMP X1, #0 ; check if it is valid
B.EQ null_trap
LDR W5, [X1, #offset] ; uses base address to read field

It is required that P2:R5==0x55 if the null_trap is not taken. This avoids P2 observing a partially constructed object
from P1. Significantly, P2 does not need a barrier to ensure this behavior.

The read of the base address in P2 could be a Load-Acquire, but it is not necessary in this case.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K11-8527
ID072021 Non-Confidential

Barrier Litmus Tests
K11.2 Load-Acquire, Store-Release and barriers
K11.2.3 WFE and WFI and barriers

The Wait For Event and Wait For Interrupt instructions permit the PE to suspend execution and enter a low-power
state. An explicit DSB barrier instruction is required if it is necessary to ensure memory accesses made before the WFI
or WFE are visible to other observers, unless some other mechanism has ensured this visibility. Examples of other
mechanism that would guarantee the required visibility are the DMB described in Posting a store before polling for
acknowledgement on page K11-8550, or a dependency on a load.

The following example requires the DSB to ensure that the store is visible:

AArch32

P1

STR R0, [R2]
DSB

Loop
WFI
B Loop

AArch64

P1

STR W0, [X2]
DSB <domain>

Loop
WFI
B Loop

This requirement is unchanged in Armv8 by the presence of Load-Acquire or Store-Release.
K11-8528 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Barrier Litmus Tests
K11.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers
K11.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers

The Armv8 architecture adds the acquire and release semantics to Load-Exclusive and Store-Exclusive instructions,
which allows them to gain ordering acquire and/or release semantics.

The Load-Exclusive instruction can be specified to have acquire semantics, and the Store-Exclusive instruction can
be specified to have release semantics. These can be arbitrarily combined to allow the atomic update created by a
successful Load-Exclusive and Store-Exclusive pair to have any of:

• No Ordering semantics (using LDREX and STREX).

• Acquire only semantics (using LDAEX and STREX).

• Release only semantics (using LDREX and STLEX).

• Sequentially consistent semantics (using LDAEX and STLEX).

In addition, the Armv8 specification requires that the clearing of a global monitor will generate an event for the PE
associated with the global monitor, which can simplify the use of WFE, by removing the need for a DSB barrier and
SEV instruction.

K11.3.1 Acquiring a lock

A common use of Load-Exclusive and Store-Exclusive instructions is to claim a lock to permit entry into a critical
region. This is typically performed by testing a lock variable that indicates 0 for a free lock and some other value,
commonly 1 or an identifier of the process holding the lock, for a taken lock.

Note

The inclusion of AArch32 PLDW instructions or AArch64 PFRM PST* instructions in these examples is not a functional
requirement, but will improve performance on many implementations. The performance benefit of adding these
instructions will vary between different implementations of the architecture.

For a critical region, the requirement on taking a lock is usually for acquire semantics, while the clearing of a lock
requires release semantics:

AArch32

Px

 PLDW[R1] ; preload into cache in unique state
Loop
 LDAEX R5, [R1] ; read lock with acquire
 CMP R5, #0 ; check if 0
 STREXEQ R5, R0, [R1] ; attempt to store new value
 CMPEQ R5, #0 ; test if store suceeded
 BNE Loop ; retry if not

 ; loads and stores in the critical region can now be performed

AArch64

Px

 PRFM PSTL1KEEP, [X1] ; preload into cache in unique state
Loop
 LDAXR W5, [X1] ; read lock with acquire
 CBNZ W5, Loop ; check if 0
 STXR W5, W0, [X1] ; attempt to store new value
 CBNZ W5, Loop ; test if store succeeded and retry if not

 ; loads and stores in the critical region can now be performed

The acquire associated with the load is sufficient to ensure the required ordering in a lock situation. The
Store-Exclusive will fail (and so be retried) if there is a store to the location being monitored between the
Load-Exclusive and the Store-Exclusive.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K11-8529
ID072021 Non-Confidential

Barrier Litmus Tests
K11.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers
K11.3.2 Releasing a lock

The converse operation of releasing a lock does not require the use of Load-Exclusive and Store-Exclusive
instructions, because only a single observer is able to write to the lock. However, often it is necessary for any
observer to observe any memory updates, or any values that are loaded into memory, before they observe the release
of the lock. Therefore, the lock release needs release semantics:

AArch32

Px

 ; loads and stores in the critical region
 MOV R0, #0
 STL R0, [R1] ; clear the lock with release semantics

AArch64

Px

 ; loads and stores in the critical region
 STLR WZR, [X1] ; clear the lock with release semantics

K11.3.3 Ticket locks

When a lock is free, in order to avoid a rush to get the lock by many PEs, the use of ticket locks is common in more
advanced systems. When the use is requested, the ticket locks determine the order of the users of the critical
sections, in order to avoid starvation that can occur with a simple contention based spin lock.

A ticket lock allocates each thread a ticket number when it first requests the lock, and then compares that number
with the current number for the lock. If they are the same, then the critical section can be entered. Otherwise the
thread waits until the current number is equal to the ticket number for that thread.

The reading of the current number of the lock needs acquire semantics for the lock to be acquired.

Note

• The code in this section is little-endian code, as it views the combined current and next values as a single
combined quantity. The addresses of the current and next ticket values need to be adjusted for a big-endian
system.

• The inclusion of AArch32 PLDW instructions or AArch64 PFRM PST* instructions in these examples is not a
functional requirement, but will improve performance on many implementations. The performance benefit
of adding these instructions will vary between different implementations of the architecture.

This is shown in the implementation below:

AArch32

Px

 ; R1 holds two 16 bit quantities
 ; the lower halfword holds the current ticket number
 ; the higher halfword holds the next ticket number

 PLDW[R1] ; preload into cache in unique state
Loop1
 LDAEX R5, [R1] ; read current and next
 ADD R5, R5, #0x10000 ; increment the next number
 STREX R6, R5, [R1] ; and update the value
 CMP R6, #0 ; did the exclusive pass
 BNE Loop1 ; retry if not
 CMP R5, R5, ROR #16 ; is the current ticket ours
 BEQ block_start
Loop2
 LDAH R6, [R1] ; read current value
 CMP R6, R5, LSR #16 ; compare it with our allocated ticket
K11-8530 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Barrier Litmus Tests
K11.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers
 BNE Loop2 ; retry (spin) if it is not the same
block_start

AArch64

Px

 ; X1 holds 2 16 bit quantities
 ; the lower halfword holds the current ticket number
 ; the higher halfword holds the next ticket number

 PRFM PSTL1KEEP, [X1] ; preload into cache in unique state
Loop1
 LDAXR W5, [X1] ; read current and next
 ADD W5, W5, #0x10000 ; increment the next number
 STXR W6, W5, [X1] ; and update the value
 CBNZ W6, Loop1 ; did the exclusive pass – retry if not

 AND W6, W5, #0xFFFF
 CMP W6, W5, LSR #16 ; is the current ticket ours
 B.EQ block_start
Loop2
 LDARH W6, [X1] ; read current value
 CMP W6, W5, LSR #16 ; compare it with the our allocated ticket
 B.NE Loop2 ; retry (spin) if it isn’t the same
block_start

Releasing the ticket lock simply involves incrementing the current ticket number, that is still assumed to be in R3,
and doing a Store-Release:

AArch32

 ADD R6, R6, #1
 STLH R6, [R1]

AArch64

 ADD W6, W6, #1
 STLRH W6, [X1]

K11.3.4 Use of Wait For Event (WFE) and Send Event (SEV) with locks

The Armv8 architecture can use the Wait For Event mechanism to minimise the energy cost of polling variables by
putting the PE into a low power state, suspending execution, until an asynchronous exception or an explicit event
is seen by that PE. In Armv8, the event can be generated as a result of clearing the global monitor, so removing the
need for a DSB barrier or an explicit send event message.

This can be used with simple locks or with ticket locks.

Note

The inclusion of AArch32 PLDW instructions or AArch64 PFRM PST* instructions in these examples is not a functional
requirement, but will improve performance on many implementations. The performance benefit of adding these
instructions will vary between different implementations of the architecture.

Simple lock

The following is an example of lock acquire code using WFE:

AArch32

Px

 PLDW[R1] ; preload into cache in unique state
Loop
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K11-8531
ID072021 Non-Confidential

Barrier Litmus Tests
K11.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers
 LDAEX R5, [R1] ; read lock with acquire
 CMP R5, #0 ; check if 0
 WFENE ; sleep if the lock is held
 STREXEQ R5, R0, [R1] ; attempt to store new value
 CMPEQ R5, #0 ; test if store succeeded
 BNE Loop ; retry if not

AArch64

Px

 SEVL ; invalidates the WFE on the first loop iteration
 PRFM PSTL1KEEP, [X1] ; allocate into cache in unique state
Loop
 WFE
 LDAXR W5, [X1] ; read lock with acquire
 CBNZ W5, Loop ; check if 0
 STXR W5, W0, [X1] ; attempt to store new value
 CBNZ W5, Loop ; test if store succeeded and retry if not

 ; loads and stores in the critical region can now be performed

And the following is an example of lock release code:

AArch32

Px

 ; loads and stores in the critical region
 MOV R0, #0
 STL R0, [R1] ; clear the lock

AArch64

Px

 ; loads and stores in the critical region
 STLR WZR, [X1] ; clear the lock

Ticket lock

In the Ticket lock case, the Load-Exclusive instruction can be used to move the monitor into the exclusive state for
the express purpose of creating an event when the monitor changes state:

AArch32

Px

 ; R1 holds 2 16 bit quantities
 ; the lower halfword holds the current ticket number
 ; the higher halfword holds the next ticket number

 PLDW[R1] ; preload into cache in unique state
Loop1
 LDAEX R5, [R1] ; read current and next
 ADD R5, R5, #0x10000 ; increment the next number
 STREX R6, R5, [R1] ; and update the value
 CMP R6, #0 ; did the exclusive pass
 BNE Loop ; retry if not
 CMP R5, R5, ROR #16 ; is the current ticket ours
 BEQ block_start
 SEVL
Loop2
 WFE ; wait if there has not been a change to the count since last
 ; read
 LDAEXH R6, [R1] ; check the current count
K11-8532 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Barrier Litmus Tests
K11.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers
 CMP R6, R5, LSR #16 ; check if it is equal
 BNE Loop2
block_start

AArch64

Px

 ; X1 holds 2 16 bit quantities
 ; the lower halfword holds the current ticket number
 ; the higher halfword holds the next ticket number

 PRFM PSTL1KEEP, [X1] ; preload into cache in unique state
Loop1
 LDAXR W5, [X1] ; read current and next
 ADD W5, W5, #0x10000 ; increment the next number
 STXR W6, W5, [X1] ; and update the value
 CBNZ W6, Loop1 ; did the exclusive pass – retry if not

 AND W6, W5, 0xFFFF
 CMP W6, W5, LSR #16 ; is the current ticket ours
 B.EQ block_start
 SEVL
Loop2
 WFE
 LDAXRH W6, [X1] ; read current value
 CMP W6, W5, LSR #16 ; compare it with our allocated ticket
 B.NE Loop2 ; retry (spin) if it is not the same
block_start
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K11-8533
ID072021 Non-Confidential

Barrier Litmus Tests
K11.4 Using a mailbox to send an interrupt
K11.4 Using a mailbox to send an interrupt

In some message passing systems, it is common for one observer to update memory and then notify a second
observer of the update by sending an interrupt, using a mailbox.

Although a memory access might be made to initiate the sending of the mailbox interrupt, a DSB instruction is
required to ensure the completion of previous memory accesses.

Therefore, the following sequence is required to ensure that P2 observes the updated value:

AArch32

P1

 STR R5, [R1] ; message stored to shared memory location
 DSB ST
 STR R0, [R4] ; R4 contains the address of a mailbox

P2

 ; interrupt service routine
 LDR R5, [R1]

AArch64

P1

 STR W5, [X1] ; message stored to shared memory location
 DSB ST
 STR W0, [X4] ; R4 contains the address of a mailbox

P2

 ; interrupt service routine
 LDR W5, [X1]
K11-8534 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Barrier Litmus Tests
K11.5 Cache and TLB maintenance instructions and barriers
K11.5 Cache and TLB maintenance instructions and barriers

The following sections describe the use of barriers with cache and TLB maintenance instructions:

• Data cache maintenance instructions on page K11-8535.

• Instruction cache maintenance instructions on page K11-8539.

• TLB maintenance instructions and barriers on page K11-8542.

K11.5.1 Data cache maintenance instructions

The following sections describe the use of barriers with data cache maintenance instructions:

• Message passing to non-caching observers on page K11-8535.

• Multiprocessing message passing to non-caching observers on page K11-8535.

• Invalidating DMA buffers, non-functional example on page K11-8536.

• Invalidating DMA buffers, functional example with single PE on page K11-8537.

• Invalidating DMA buffers, functional example with multiple coherent PEs on page K11-8538.

Message passing to non-caching observers

The Armv8 architecture requires the use of DMB instructions to ensure the ordering of data cache maintenance
instructions and their effects. The Load-Acquire and Store-Release instructions have no effect on cache
maintenance instruction. This means the following message passing approaches can be used when communicating
between caching observers and non-caching observers:

AArch32

P1

 STR R5, [R1] ; updates data (assumed to be in P1 cache)
 DCCMVAC R1 ; cleans cache to point of coherency
 DMB ; ensures effects of the clean will be observed before the
 ; flag is set
 STR R0, [R4] ; sends flag to external agent (Non-cacheable location)

E1

 WAIT_ACQ ([R4] == 1) ; waits for the flag (with order)
 LDR R5, [R1] ; reads the data

AArch64

P1

 STR W5, [X1] ; updates data (assumed to be in P1 cache)
 DC CVAC, X1 ; cleans cache to point of coherency
 DMB ISH ; ensures effects of the clean will be observed before the
 ; flag is set
 STR W0, [X4] ; sends flag to external agent (Non-cacheable location)

E1

 WAIT_ACQ ([X4] == 1) ; waits for the flag (with order)
 LDR W5, [X1] ; reads the data

In this example, it is required that E1:R5==0x55.

Multiprocessing message passing to non-caching observers

The broadcast nature of the cache maintenance instructions combined with properties of barriers, means that the
message passing principle for non-caching observers is:

AArch32

P1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K11-8535
ID072021 Non-Confidential

Barrier Litmus Tests
K11.5 Cache and TLB maintenance instructions and barriers
 STR R5, [R1] ; updates data (assumed to be in P1 cache)
 STL R0, [R2] ; sends a flag for P2 (ordered by the store release)

P2

 WAIT ([R2] == 1) ; waits for P1 flag
 DMB ; ensures cache clean is observed after P1 flag is observed
 DCCMVAC R1 ; cleans cache to point of coherency – will clean P1 cache
 DMB ; ensures effects of the clean will be observed before the
 ; flag to E1 is set
 STR R0, [R4] ; sends flag to E1

E1

 WAIT_ACQ ([R4] == 1) ; waits for P2 flag (ordered)
 LDR R5, [R1] ; reads data

AArch64

P1

 STR W5, [X1] ; updates data (assumed to be in P1 cache)
 STLR W0, [X2] ; sends a flag for P2 (ordered)

P2

 WAIT ([X2] == 1) ; waits sfor P1 flag
 DMB SY ; ensure cache clean is observed after P1 flag is observed
 DC CVAC, X1 ; cleans cache to point of coherency, will clean P1 cache
 DMB SY ; ensures effects of the clean will be observed before the
 ; flag to E1 is set
 STR W0, [X4] ; sends flag to E1

E1

 WAIT_ACQ ([X4] == 1) ; waits for P2 flag
 LDR W5, [X1] ; reads data

In this example, it is required that E1:R5==0x55. The clean operation executed by P2 affects the data location in the
P1 cache. The cast-out from the P1 cache is guaranteed to be observed before P2 updates [R4].

Note

The cache maintenance instructions are not ordered by the Load-Acquire and Store-Release instructions.

Invalidating DMA buffers, non-functional example

The basic scheme for communicating with an external observer that is a process that passes data in to a Cacheable
memory region must take account of the architectural requirement that regions with a Normal Cacheable attribute
can be allocated into a cache at any time, for example as a result of speculation. The following example shows this
possibility:

AArch32

P1

 DCIMVAC R1 ; ensures cache is not dirty. A clean operation could be used
 ; but as the DMA will subsequently overwrite this region an
 ; invalidate operation is sufficient and usually more efficient
 DMB ; ensures cache invalidation is observed before the next store
 ; is observed
 STR R0, [R3] ; sends flag to external agent
 WAIT_ACQ ([R4]==1) ; waits for a different flag from an external agent
 LDR R5, [R1]
K11-8536 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Barrier Litmus Tests
K11.5 Cache and TLB maintenance instructions and barriers
E1

 WAIT ([R3] == 1) ; waits for flag
 STR R5, [R1] ; stores new data
 STL R0, [R4] ; sends a flag

AArch64

P1

 DC IVAC, X1 ; ensure cache is not dirty. A clean operation could be used
 ; but as the DMA will subsequently overwrite this region an
 ; invalidate operation is sufficient and usually more efficient
 DMB SY ; ensures cache invalidation is observed before the next store
 ; is observed
 STR W0, [X3] ; sends flag to external agent
 WAIT_ACQ ([X4]==1) ; waits for a different flag from an external agent
 LDR W5, [X1]

E1

 WAIT ([X3] == 1) ; waits for flag
 STR W5, [X1] ; stores new data
 STLR W0, [X4] ; sends a flag

If a speculative access occurs, there is no guarantee that the cache line containing [R1] is not brought back into the
cache after the cache invalidation, but before [R1] is written by E1. Therefore, the result P1:R5=0 is permissible.

Invalidating DMA buffers, functional example with single PE

AArch32

P1

 DCIMVAC R1 ; ensures cache is not dirty. A clean operation could be used
 ; but as the DMA will subsequently overwrite this region an
 ; invalidate operation is sufficient and usually more efficient
 DMB ; ensures cache invalidation is observed before the next store
 ; is observed
 STR R0, [R3] ; sends flag to external agent
 WAIT ([R4]==1) ; waits for a different flag from an external agent
 DMB ; ensures that cache invalidate is observed after the flag
 ; from external agent is observed
 DCIMVAC R1 ; ensures cache discards stale copies before use
 LDR R5, [R1]

E1

 WAIT ([R3] == 1) ; waits for flag
 STR R5, [R1] ; stores new data
 STL R0, [R4] ; sends a flag

AArch64

P1

 DC IVAC, X1 ; ensures cache is not dirty. A clean operation could be used
 ; but as the DMA will subsequently overwrite this region an
 ; invalidate operation is sufficient and usually more efficient
 DMB SY ; ensures cache invalidation is observed before the next store
 ; is observed
 STR W0, [X3] ; sends flag to external agent
 WAIT ([X4]==1) ; waits for a different flag from an external agent
 DMB SY ; ensures that cache invalidate is observed after the flag
 ; from external agent is observed
 DC IVAC, X1 ; ensures cache discards stale copies before use
 LDR W5, [X1]

E1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K11-8537
ID072021 Non-Confidential

Barrier Litmus Tests
K11.5 Cache and TLB maintenance instructions and barriers
 WAIT ([X3] == 1) ; waits for flag
 STR W5, [X1] ; stores new data
 STLR W0, [X4] ; sends a flag

In this example, the result P1:R5 == 0x55 is required. Including a cache invalidation after the store by E1 to [R1] is
observed ensures that the line is fetched from external memory after it has been updated.

Invalidating DMA buffers, functional example with multiple coherent PEs

The broadcasting of cache maintenance instructions, and the use of DMB instructions to ensure their observability,
means that the previous example extends naturally to a multiprocessor system. Typically this requires a transfer of
ownership of the region that the external observer is updating.

AArch32

P0

 (Use data from [R1], potentially using [R1] as scratch space)
 STL R0, [R2] ; signals release of [R1]
 WAIT_ACQ ([R2] == 0) ; waits for new value from DMA
 LDR R5, [R1]

P1

 WAIT ([R2] == 1) ; waits for release of [R1] by P0
 DCIMVAC R1 ; ensures caches are not dirty, an invalidate is sufficient
 DMB
 STR R0, [R3] ; requests new data for [R1]
 WAIT ([R4] == 1) ; waits for new data
 DMB
 DCIMVAC R1 ; ensures caches discard stale copies before use
 DMB
 MOV R0, #0
 STR R0, [R2] ; signals availability of new [R1]

E1

 WAIT ([R3] == 1) ; waits for new data request
 STR R5, [R1] ; sends new [R1]
 DMB [ST]
 STR R0, [R4] ; indicates that new data is available to P1

AArch64

P0

 (Use data from [X1], potentially using [X1] as scratch space)
 STLR W0, [X2] ; signals release of [X1]
 WAIT_ACQ ([X2] == 0) ; waits for new value from DMA
 LDR W5, [X1]

P1

 WAIT ([X2] == 1) ; waits for release of [R1] by P0
 DC IVAC, X1 ; ensures caches are not dirty, an invalidate is sufficient
 DMB SY
 STR W0, [X3] ; requests new data for [R1]
 WAIT ([X4] == 1) ; waits for new data
 DMB SY
 DCIMVAC X1 ; ensures caches discard stale copies before use
 DMB SY
 STR WZR, [X2] ; signals availability of new [R1]

E1

 WAIT ([X3] == 1) ; waits for new data request
 STR W5, [X1] ; sends new [R1]
 STR W0, [X4] ; indicates new data is available to P1
K11-8538 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Barrier Litmus Tests
K11.5 Cache and TLB maintenance instructions and barriers
In this example, the result P0:R5 == 0x55 is required. The DMB issued by P1 after the first data cache invalidation
ensures that effect of the cache invalidation on P0 is seen by E1 before the store by E1 to [R1]. The DMB issued by
P1 after the second data cache invalidation ensures that its effects are seen before the store of 0 to the semaphore
location in [R2].

K11.5.2 Instruction cache maintenance instructions

The following sections describe the use of barriers with instruction cache maintenance instructions:

• Ensuring the visibility of updates to instructions for a uniprocessor on page K11-8539.

• Ensuring the visibility of updates to instructions for a multiprocessor on page K11-8539.

Ensuring the visibility of updates to instructions for a uniprocessor

On a single PE, the agent that causes instruction fetches, or instruction cache linefills, is a separate memory system
observer from the agent that causes data accesses. Therefore, any operations to invalidate the instruction cache can
rely only on seeing updates to memory that are complete. This must be ensured by the use of a DSB instruction.

Also, instruction cache maintenance instructions are only guaranteed to complete after the execution of a DSB, and
an ISB is required to discard any instructions that might have been prefetched before the instruction cache
invalidation completed. Therefore, on a uniprocessor, to ensure the visibility of an update to code and to branch to
it, the following sequence is required:

AArch32

P1

 STR R11, [R1] ; R11 contains a new instruction to be stored in program memory
 DCCMVAU R1 ; clean to PoU makes the new instruction visible to the instruction cache
 DSB
 ICIMVAU R1 ; ensures instruction cache/branch predictor discards stale data
 BPIMVA R1
 DSB ; ensures completion of the invalidation
 ISB ; ensures instruction fetch path sees new instruction cache state
 BX R1

In AArch64 state, the branch predictor maintenance is not required.

AArch64

P1

 STR W11, [X1] ; W11 contains a new instruction to be stored in program memory
 DC CVAU, X1 ; clean to PoU makes the new instruction visible to instruction cache
 DSB ISH
 IC IVAU, X1 ; ensures instruction cache/branch predictor discards stale data
 DSB ISH ; ensures completion of the invalidation
 ISB ; ensures instruction fetch path sees new instruction cache state
 BR X1

Note

Where the changes to the instructions span multiple cache lines, then the data cache and instruction cache
maintenance instructions can be duplicated to cover each of the lines to be cleaned and to be invalidated.

Ensuring the visibility of updates to instructions for a multiprocessor

The Armv8 architecture requires a PE that executes an instruction cache maintenance instruction to execute a DSB
instruction to ensure completion of the maintenance operation. This ensures that the cache maintenance instruction
is complete on all PEs in the Inner Shareable shareability domain.

An ISB is not broadcast, and so does not affect other PEs. This means that any other PE must perform its own ISB
synchronization after it knows that the update is visible, if it is necessary to ensure its synchronization with the
update. The following example shows how this might be done:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K11-8539
ID072021 Non-Confidential

Barrier Litmus Tests
K11.5 Cache and TLB maintenance instructions and barriers
AArch32

P1

 STR R11, [R1] ; R11 contains a new instruction to be stored in program memory
 DCCMVAU R1 ; clean to PoU makes the new instruction visible to the instruction cache
 DSB ; ensures completion of the clean on all PEs
 ICIMVAU R1 ; ensures instruction cache discards stale data
 BPIMVA R ; ensures branch predictor discards stale data
 DSB ; ensures completion of the instruction cache and branch predictor
 ; invalidation on all PEs
 STR R0, [R2] ; sets flag to signal completion
 ISB ; synchronizes context on this PE
 BX R1 ; branches to new code

P2-Px

 WAIT ([R2] == 1) ; waits for flag signalling completion
 ISB ; synchronizes context on this PE
 BX R1 ; branches to new code

AArch64

P1

 STR X11, [X1] ; X11 contains a new instruction to be stored in program memory
 DC CVAU, X1 ; clean to PoU makes the new instruction visible to the instruction cache
 DSB ISH ; ensures completion of the clean on all PEs
 IC IVAU, X1 ; ensures instruction cache/branch predictor discards stale data
 DSB ISH ; ensures completion of the instruction cache/branch predictor
 ; invalidation on all PEs
 STR W0, [X2] ; sets flag to signal completion
 ISB ; synchronizes context on this PE
 BR R1 ; branches to new code

P2-Px

 WAIT ([X2] == 1) ; waits for flag signalling completion
 ISB ; synchronizes context on this PE
 BR X1 ; branches to new code

Nonfunctional approach

The following sequence does not have the same effect, because a DSB is not required to complete the instruction
cache maintenance instructions that other PEs issue:

AArch32

P1

 STR R11, [R1] ; R11 contains a new instruction to be stored in program memory
 DCCMVAU R1 ; clean to PoU makes the new instruction visible to the instruction cache
 DSB ; ensures completion of the clean on all PEs
 ICIMVAU R1 ; ensures instruction cache discards stale data
 BPIMVA R1 : ensures branch predictor discards stale data
 DMB ; ensures ordering of the store after the invalidation
 ; DOES NOT guarantee completion of instruction cache/branch
 ; predictor on other PEs
 STR R0, [R2] ; sets flag to signal completion
 DSB ; ensures completion of the invalidation on all PEs
 ISB ; synchronizes context on this PE
 BX R1 ; branches to new code

P2-Px

 WAIT ([R2] == 1) ; waits for flag signalling completion
 DSB ; this DSB does not guarantee completion of P1
 ; ICIMVAU/BPIMVA
 ISB
 BX R1
K11-8540 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Barrier Litmus Tests
K11.5 Cache and TLB maintenance instructions and barriers
AArch64

P1

 STR W11, [X1] ; W11 contains a new instruction to be stored in program memory
 DC CVAU, X1 ; clean to PoU makes the new instruction visible to instruction cache
 DSB ISH ; ensures completion of the clean on all PEs
 IC IVAU, X1 ; ensures instruction cache/branch predictor discards stale data
 DMB ISH ; ensures ordering of the store after the invalidation
 ; DOES NOT guarantee completion of instruction cache/branch
 ; predictor on other PEs
 STR W0, [X2] ; sets flag to signal completion
 DSB ISH ; ensures completion of the invalidation on all PEs
 ISB ; synchronizes context on this PE
 BR X1 ; branches to new code

P2-Px

 WAIT ([X2] == 1) ; waits for flag signalling completion
 DSB ISH ; this DSB does not guarantee completion of P1
 ; ICIMVAU/BPIMVA
 ISB
 BR X1

In this example, P2…Px might not see the updated region of code at R1.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K11-8541
ID072021 Non-Confidential

Barrier Litmus Tests
K11.5 Cache and TLB maintenance instructions and barriers
K11.5.3 TLB maintenance instructions and barriers

The following sections describe the use of barriers with TLB maintenance instructions:

• Ensuring the visibility of updates to translation tables for a uniprocessor on page K11-8542.

• Ensuring the visibility of updates to translation tables for a multiprocessor on page K11-8542.

• Paging memory in and out on page K11-8543.

• Using break-before-make when updating translation table entries on page K11-8544.

Ensuring the visibility of updates to translation tables for a uniprocessor

On a single PE, the agent that causes translation table walks is a separate memory system observer from the agent
that causes data accesses. Therefore, any operations to invalidate the TLB can only rely on seeing updates to
memory that are complete. This must be ensured by the use of a DSB instruction.

The Armv8 architecture requires that translation table walks look in the data or unified caches at L1, so such systems
do not require data cache cleaning.

After the translation tables update, any old copies of entries that might be held in the TLBs must be invalidated. This
operation is only guaranteed to affect all instructions, including instruction fetches and data accesses, after the
execution of a DSB and an ISB. Therefore, the code for updating a translation table entry is:

AArch32

P1

 STR R11, [R1] ; updates the translation table entry
 DSB ; ensures visibility of the update to translation table walks
 TLBIMVA R10
 BPIALL
 DSB ; ensures completion of the BP and TLB invalidation
 ISB ; synchronises context on this PE
 ; new translation table entry can be relied upon at this point and all accesses
 ; generated by this observer using
 ; the old mapping have been completed

AArch64

P1

 STR X11, [X1] ; updates the translation table entry
 DSB ISH ; ensures visibility of the update to translation table walks
 TLBI VAE1, X10 ; assumes we are in the EL1
 DSB ISH ; ensures completion of the TLB invalidation
 ISB ; synchronise context on this PE
 ; new translation table entry can be relied upon at this point and all accesses
 ; generated by this observer using
 ; the old mapping have been completed

Importantly, by the end of this sequence, all accesses that used the old translation table mappings have been
observed by all observers.

An example of this is where a translation table entry is marked as invalid. Such a system must provide a mechanism
to ensure that any access to a region of memory being marked as invalid has completed before any action is taken
as a result of the region being marked as invalid.

Ensuring the visibility of updates to translation tables for a multiprocessor

The same code sequence can be used in a multiprocessing system. The Armv8 architecture requires a PE that
executes a TLB maintenance instruction to execute a DSB instruction to ensure completion of the maintenance
operation. This ensures that the TLB maintenance instruction is complete on all PEs in the Inner Shareable
shareability domain.

The completion of a DSB that completes a TLB maintenance instruction ensures that all accesses that used the old
mapping have completed.
K11-8542 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Barrier Litmus Tests
K11.5 Cache and TLB maintenance instructions and barriers
AArch32

P1

 STR R11, [R1] ; updates the translation table entry
 DSB ; ensures visibility of the update to translation table walks
 TLBIMVAIS R10
 BPIALLIS
 DSB ; ensures completion of the BP and TLB invalidation
 ISB ; Note ISB is not broadcast and must be executed locally
 ; on other PEs
 ; new translation table entry can be relied upon at this point and all accesses
 ; generated by any observers affected by the broadcast TLBIMVAIS operation using
 ; the old mapping have been completed

AArch64

P1

 STR X11, [X1] ; updates the translation table entry
 DSB ISH ; ensures visibility of the update to translation table walks
 TLBI VAE1IS, X10
 DSB ISH ; ensures completion of the TLB invalidation
 ISB ; Note ISB is not broadcast and must be executed locally
 ; on other PEs
 ; new translation table entry can be relied upon at this point and all accesses
 ; generated by any observers affected by the broadcast TLBIMVAIS operation using
 ; the old mapping have been completed

The completion of the TLB maintenance instruction is guaranteed only by the execution of a DSB by the observer
that performed the TLB maintenance instruction. The execution of a DSB by a different observer does not have this
effect, even if the DSB is known to be executed after the TLB maintenance instruction is observed by that different
observer.

Paging memory in and out

In a multiprocessor system there is a requirement to ensure the visibility of translation table updates when paging
regions of memory into RAM from a backing store. This might, or might not, also involve paging existing locations
in memory from RAM to a backing store. In such situations, the operating system selects one or more pages of
memory that might be in use but are suitable to discard, with or without copying to a backing store, depending on
whether or not the region of memory is writable. Disabling the translation table mappings for a page, and ensuring
the visibility of that update to the translation tables, prevents agents accessing the page.

For this reason, it is important that the DSB that is performed after the TLB invalidation ensures that no other updates
to memory using those mappings are possible.

An example sequence for the paging out of an updated region of memory, and the subsequent paging in of memory,
is as follows:

AArch32

P1

 STR R11, [R1] ; updates the translation table for the region being paged out
 DSB ; ensures visibility of the update to translation table walks
 TLBIMVAIS R10 ; invalidates the old entry
 DSB ; ensures completion of the invalidation on all PEs
 ISB ; ensures visibility of the invalidation
 BL SaveMemoryPageToBackingStore
 BL LoadMemoryFromBackingStore
 DSB ; ensures completion of the memory transfer (this could be part of
 ; LoadMemoryFromBackingStore)
 ICIALLUIS ; also invalidates the branch predictor
 DSB ; ensures completion of the instruction cache
 ; and branch predictor invalidation
 STR R9, [R1] ; creates a new translation table entry with a new mapping
 DSB ; ensures visibility of the new translation table mapping
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K11-8543
ID072021 Non-Confidential

Barrier Litmus Tests
K11.5 Cache and TLB maintenance instructions and barriers
 ISB ; ensures synchronisation of this instruction stream

AArch64

P1

 STR X11, [X1] ; updates the translation table for the region being paged out
 DSB ISH ; ensures visibility of the update to translation table walks
 TLBI VAE1IS, X10 ; invalidates the old entry
 DSB ISH ; ensures completion of the invalidation on all PEs
 ISB ; ensures visibility of the invalidation
 BL SaveMemoryPageToBackingStore
 BL LoadMemoryFromBackingStore
 DSB ISH ; ensures completion of the memory transfer (this could be part of
 ; LoadMemoryFromBackingStore)
 IC IALLUIS ; also invalidates the branch predictor
 DSB ISH ; ensures completion of the instruction cache
 ; and branch predictor invalidation
 STR X9, [X1] ; creates a new translation table entry with a new mapping
 DSB ISH ; ensures visibility of the new translation table mapping
 ISB ; ensures synchronisation of this instruction stream

This example assumes the memory copies are performed by an observer that is coherent with the caches of PE P1.
This observer might be P1 itself, using a specific paging mapping. For clarity, the example omits the functional
descriptions of SaveMemoryPageToBackingStore and LoadMemoryFromBackingStore. LoadMemoryFromBackingStore is
required to ensure that the memory updates that it makes are visible to instruction fetches.

In this example, the use of ICIALLUIS in AArch32 state and IC IALLUIS in AArch64 state to invalidate the entire
instruction cache is a simplification that might not be optimal for performance. An alternative approach involves
invalidating all of the lines in the caches using ICIMVAU in AArch32 state and IC IVAU operations in AArch64
state. This invalidation must be done when the mapping used for the ICIMVAU and IC IVAU operations is valid
but not executable.

Using break-before-make when updating translation table entries

The Arm Architecture requires that reads to the same location are observed in order, and since application level
software relies on this behavior, the operating system needs to maintain this illusion when it is changing a virtual to
physical address mapping for a location, as is the case with copy on write or other memory management techniques.
This illusion can be maintained provided that the software uses a break-before-make sequence when updating
translation table entries whenever multiple threads of execution can use the same translation tables and the change
to the translation entries involves any of:

• Changing the memory type.

• Changing the cacheability attributes

• Changing the output address (OA), if the OA of at least one of the old translation table entry and the new
translation table entry is writable.

The architecture requires use of a break-before make sequence in these situations, see Using break-before-make
when updating translation table entries on page D5-2818 for more information. However, if software did not use a
break-before-make approach, an implementation might give a result that would occur if the two reads to the same
virtual address did not occur in program order. An example of such an occurrence would be an implementation of
copy-on-write, where one PE is performing two reads to the same virtual address at the same time as a second PE,
running code associated with the operating system, is copying the data from one physical location that is mapped to
by that virtual address, where the page was mapped as read-only, to a different physical location which will be
mapped as read-write.

If the operating system changed the address mapping without going through an invalid entry, then it would be
possible for a third PE to perform a write to the location that would be seen by the first load by the first PE, and not
seen by the second load by the same PE.

The required break-before-make code sequence in this case is:

AArch32
K11-8544 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Barrier Litmus Tests
K11.5 Cache and TLB maintenance instructions and barriers
P1

 ; R1, R2 contain an invalid translation table entry (that is, one with bit[0] == 0)
 ; R3 contains the address of the translation table entry
 ; R4 contains the Virtual Address and ASID of the VA being remapped
 ; R5, R6 contain the new valid translation table entry
 STRD R1, R2, [R3] ; stores invalid entry
 DSB ISH ; ensures visibility of the update to translation table walks
 TLBIMVAIS R4 ; invalidates the old entry
 DSB ISH ; ensures completion of the invalidation on all PEs
 ICIALLUIS ; also invalidates the branch predictor
 STRD R5, R6, [R3] ; store new mapping
 DSB ISH ; ensures visibility of the update to translation table walks
 ISB ; ensures synchronisation of this instruction stream

Note

This example shows an update to an entry in a translation table that is using the long-descriptor format.

AArch64

P1

 ; X1 contains an invalid translation table entry (that is, one with bit[0] == 0)
 ; X2 contains the address of the translation table entry
 ; X3 contains the Virtual Address and ASID of the VA being remapped
 ; X4 contains the new valid translation table entry
 STR X1, [X2] ; stores invalid entry
 DSB ISH ; ensures visibility of the update to translation table walks
 TLBI VAE1IS, X3 ; invalidates the old entry
 DSB ISH ; ensures completion of the invalidation on all PEs
 IC IALLUIS ; also invalidates the branch predictor
 STR X4, [X2] ; store new mapping
 DSB ISH ; ensures visibility of the update to translation table walks
 ISB ; ensures synchronisation of this instruction stream

If this sequence is correctly followed, then the architecture guarantees that the loads to a virtual address being
remapped will be seen in the correct order.

The instruction cache maintenance is only required if the mapping from input address to output address has been
changed as part of the change of the translation table entries, and the memory being moved is executable. In this
example, the use of ICIALLUIS in AArch32 state and IC IALLUIS in AArch64 state to invalidate the entire instruction
cache is a simplification that might not be optimal for performance. An alternative approach involves invalidating
all of the lines in the caches using ICIMVAU in AArch32 state, and IC IVAU in AArch64 state. This invalidation must
be done when the mapping used for the ICIMVAU and IC IVAU operations is valid but not executable.

K11.5.4 Ordering of Memory-mapped device control with payloads

With a Memory-mapped peripheral, such as a DMA, which can also access memory for its own use, it is common
to have control or status registers which are Memory-mapped. These registers need to be accessed in an ordered
manner with respect to the data that the Memory-mapped peripheral is handling.

Two simple examples of this are:

• When a processing element is writing a buffer of data, and then writing to a control register in the DMA
peripheral to start that peripheral to access the buffer of data.

• When a DMA peripheral has written to a buffer of data in memory, and the processing element is reading a
status register to determine that the DMA transfer has completed, and then is reading the data.

For the case of the processing element writing a buffer of data, before starting the DMA peripheral, the ordering
requirements between the stores to the data buffer and the stores to the Memory-mapped a to the DMA peripheral
can be met by the insertion of a DSB <domain> instruction between these sets of accesses as this ensures the global
observation of the stores before the DMA is started. this is shown by the following code:

AArch32
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K11-8545
ID072021 Non-Confidential

Barrier Litmus Tests
K11.5 Cache and TLB maintenance instructions and barriers
P1

 STR R5, [R2] ; data written to the data buffer
 DSB
 STR R0, [R4] ; R4 contains the address of the DMA control register

AArch64

P1

 STR W5, [X2] ; data written to the data buffer
 DSB <domain>
 STR W0, [X4] ; X4 contains the address of the DMA control register

For the case of DMA peripheral writing the data buffer and then setting a status register when those stores are
complete (and so globally observed) and then having this status register polled by the processing element before the
processing element reads the data buffer, the processing element must insert a DSB <domain> between the load that
reads the status register, and the read of the buffer. A DMB, or load-acquire, is not sufficient as this problem is not
solely concerned with observation order, since the polling read is actually a read of a status register at a Completer,
not the polling a data value that has been written by an observer.

For this case, the code is therefore:

AArch32

P1

 WAIT ([R4] == 1) ; R4 contains the address of the status register,
 ; and the value '1' indicates completion of the DMA transfer
 DSB
 LDR R5, [R2] ; reads data from the data buffer

AArch64

P1

 WAIT ([X4] == 1) ; X4 contains the address of the status register,
 ; and the value '1' indicates completion of the DMA transfer
 DSB <domain>
 LDR W5, [X2] ; reads data from the data buffer
K11-8546 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Barrier Litmus Tests
K11.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
K11.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers

The following sections describe the Armv7 compatible approaches for ordering, using DMB and DSB barriers:

• Simple ordering and barrier cases on page K11-8547.

• Load-Exclusive, Store-Exclusive and barriers on page K11-8551.

• Using a mailbox to send an interrupt on page K11-8553.

• Cache and TLB maintenance instructions and barriers on page K11-8553.

K11.6.1 Simple ordering and barrier cases

Arm implements a weakly consistent memory model for Normal memory. In general terms, this means that the order
of memory accesses observed by other observers might not be the order that appears in the program, for either loads
or stores.

This section includes examples of this.

Simple weakly consistent ordering example

P1

 STR R5, [R1]
 LDR R6, [R2]

P2

 STR R6, [R2]
 LDR R5, [R1]

In the absence of barriers, the result of P1: R6=0, P2: R5=0 is permissible.

Message passing

The following sections describe:

• Weakly-ordered message passing problem on page K11-8547.

• Message passing with multiple observers on page K11-8548.

Weakly-ordered message passing problem

P1

 STR R5, [R1] ; sets new data
 STR R0, [R2] ; sends flag indicating data ready

P2

 WAIT([R2]==1) ; waits on flag
 LDR R5, [R1] ; reads new data

In the absence of barriers, an end result of P2: R5=0 is permissible.

Resolving by the addition of barriers

The addition of barriers, to ensure the observed order of the reads and the writes, ensures that data is transferred so
that the result P2:R5==0x55 is guaranteed, as follows:

P1

 STR R5, [R1] ; sets new data
 DMB [ST] ; ensures all observers observe data before the flag
 STR R0, [R2] ; sends flag indicating data ready

P2

 WAIT([R2]==1) ; waits on flag
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K11-8547
ID072021 Non-Confidential

Barrier Litmus Tests
K11.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
 DMB ; ensures that the load of data is after the flag has been observed
 LDR R5, [R1]

Resolving by the use of barriers and address dependency

There is a rule within the Arm architecture that:

• Where the value returned by a read is used for computation of the virtual address of a subsequent read or
write, then these two memory accesses are observed in program order.

Where the value returned by a read is used for computation of the virtual address of a subsequent read or
write, this is called an address dependency. An address dependency exists even if the value returned by the
first read has no effect on the virtual address. This might occur if the value returned is masked off before it
is used, or if it confirms a predicted address value that it might have changed.

This restriction applies only when the data value returned by a read is used as a data value to calculate the
address of a subsequent read or write. It does not apply if the data value returned by a read determines the
condition flags values, and the values of the flags are used for condition code evaluation to determine the
address of a subsequent read, either through conditional execution or the evaluation of a branch. This is called
a control dependency.

Where both a control and address dependency exist, the ordering behavior is consistent with the address
dependency.

Table K11-1 on page K11-8548 shows examples of address dependencies, control dependencies, and an address and
control dependency.

This means that the data transfer example of Weakly-ordered message passing problem on page K11-8547 can also
be satisfied as shown in the following example:

P1

 STR R5, [R1] ; sets new data
 DMB [ST] ; ensures all observers observe data before the flag
 STR R0, [R2] ; sends flag indicating data ready

P2

 WAIT([R2]==1)
 AND R12, R12, #0 ; R12 is destination of LDR in WAIT macro
 LDR R5, [R1, R12] ; the load has an address dependency on R12
 ; and so is ordered after the flag has been seen

The load of R5 by P2 is ordered with respect to the load from [R2] because there is an address dependency using
R12. P1 uses a DMB to ensure that P2 does not observe the write of [R2] before the write of [R1].

Message passing with multiple observers

Where the ordering of Normal memory accesses is not resolved by the use of barriers or dependencies, then different
observers might observe the accesses in a different order, as shown in the following example:

Table K11-1 Dependency examples

Address dependency Control dependency Address and control dependencya

(a) (b) (c) (d) (e)

LDR r1, [r0] LDR r1, [r0] LDR r1, [r0] LDR r1, [r0] LDR r1, [r0]

LDR r2, [r1] AND r1, r1, #0 CMP r1, #55 CMP r1, #55 CMP r1, #0

LDR r2, [r3, r1] LDRNE r2, [r3] MOVNE r4, #22 LDRNE r2, [r1]

LDR r2, [r3, r4]

a. The address dependency takes priority.
K11-8548 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Barrier Litmus Tests
K11.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
P1

 STR R5, [R1] ; sets new data
 STR R0, [R2] ; sends flag indicating data ready

P2

 WAIT([R2]==1)
 AND R12, R12, #0 ; R12 is destination of LDR in WAIT macro
 LDR R5, [R1, R12] ; the load has an address dependency on R12
 ; and so is ordered after the flag has been seen

P3

 WAIT([R2]==1)
 AND R12, R12, #0 ; R12 is destination of LDR in WAIT macro
 LDR R5, [R1, R12] ; the load is address depndent on R12
 ; and so is ordered after the flag has been seen

In this case, it is permissible for P2:R5 and P3:R5 to contain different values, because there is no order guaranteed
between the two stores performed by P1.

Resolving by the addition of barriers

The addition of a barrier by P1, as shown in the following example, ensures the observed order of the writes,
transferring data so that P2:R5 and P3:R5 both contain the value 0x55:

P1

 STR R5, [R1] ; sets new data
 DMB [ST] ; ensures all observers observe data before the flag
 STR R0, [R2] ; sends flag indicating data ready

P2

 WAIT([R2]==1)
 AND R12, R12, #0 ; R12 is the destination of LDR in WAIT macro
 LDR R5, [R1, R12] ; the load has an address dependency on R12
 ; and so is ordered after the flag has been seen

P3

 WAIT([R2]==1)
 AND R12, R12, #0 ; R12 is the destination of LDR in WAIT macro
 LDR R5, [R1, R12] ; the load has an address dependency on R12
 ; and so is ordered after the flag has been seen

Address dependency with object construction

When accessing an object-oriented data structure, the address dependency rule means that barriers are not required,
even when initializing the object:

P1

 STR R5, [R1, #offset] ; sets new data in a field
 DMB [ST] ; ensures all observers observe data before base address is updated
 STR R1, [R2] ; updates base address

P2

 LDR R1, [R2] ; reads for base address
 CMP R1, #0 ; checks if it is valid
 BEQ null_trap
 LDR R5, [R1, #offset] ; uses base address to read field

If the null_trap is not taken, it is required that P2:R5==0x55. This avoids P2 observing a partially constructed object
from P1. Significantly, P2 does not require a barrier to ensure this behavior.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K11-8549
ID072021 Non-Confidential

Barrier Litmus Tests
K11.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
P1 requires a barrier to ensure the observed order of the writes by P1. In general, the impact of requiring a barrier
during the construction phase is much less than the impact of requiring a barrier for every read access.

Posting a store before polling for acknowledgement

In the case where an observer stores to a location, and then polls for an acknowledge from a different observer, the
weak ordering of the memory model can lead to a deadlock, as the following example shows:

P1

 STR R0, [R2]
 WAIT ([R3]==1)

P2

 WAIT ([R2]==1)
 STR R0, [R3]

In Armv7 implementations that do not include the Multiprocessing Extensions, then this can deadlock because P2
might not observe the store by P1 in finite time. For Armv7 implementations with the Multiprocessing Extensions
and for Armv8, this is not an issue as all stores must be observed by all observers within their shareability domain
in finite time.

The addition of a DMB instruction prevents this deadlock in Armv7 implementations that do not include the
Multiprocessing Extensions:

P1

 STR R0, [R2]
 DMB
 WAIT ([R3]==1)

P2

 WAIT ([R2]==1)
 STR R0, [R3]

The DMB executed by P1 ensures that P2 observes the store by P1 before it observes the load by P1. This ensures a
timely completion.

The following example is a variant of the previous example, where the two observers poll the same memory
location:

P1

 STR R0, [R2]
 WAIT ([R2]==2)

P2

 WAIT ([R2]==1)
 LDR R0, [R2]
 ADD R0, R0, #1
 STR R0, [R2]

In this example, the same deadlock can occur in Armv7 implementations that do not include the Multiprocessing
Extensions, because the architecture permits P1 to read the result of its own store to [R2] early, and continue doing
so for an indefinite amount of time. The addition of a DMB instruction prevents this deadlock:

P1

 STR R0, [R2]
 DMB
 WAIT ([R2]==2)

P2

 WAIT ([R2]==1)
 LDR R0, [R2]
K11-8550 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Barrier Litmus Tests
K11.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
 ADD R0, R0, #1
 STR R0, [R2]

WFE and WFI and barriers

The Wait For Event and Wait For Interrupt instructions permit the PE to suspend execution and enter a low-power
state. A DSB barrier instruction is required if it is necessary to ensure that memory accesses made before the WFI or
WFE are visible to other observers, unless some other mechanism has ensured this visibility. Examples of other
mechanism that would guarantee the required visibility are the DMB described in Posting a store before polling for
acknowledgement on page K11-8550, or a dependency on a load.

The following example requires the DSB to ensure that the store is visible:

P1

 STR R0, [R2]
 DSB
Loop
 WFI
 B Loop

However, if the example in Posting a store before polling for acknowledgement on page K11-8550 is extended to
include a WFE, there is no risk of a deadlock. The extended example is:

P1

 STR R0, [R2]
 DMB
Loop
 LDR R12, [R3]
 CMP R12, #1
 WFENE
 BNE Loop

P2

 WAIT ([R2]==1)
 STR R0, [R3]
 DSB
 SEV

In this example:

• The DMB by P1 ensures that P2 observes the store by P1 before it observes the load by P1.

• The dependency of the WFE on the result of the load by P1 means that this load must complete before P1
executes the WFE.

For more information about SEV, see Use of Wait For Event (WFE) and Send Event (SEV) with locks on
page K11-8552.

K11.6.2 Load-Exclusive, Store-Exclusive and barriers

The Load-Exclusive and Store-Exclusive instructions, described in Synchronization and semaphores on
page B2-179, are predictable only with Normal memory. These instructions do not have any implicit barrier
functionality. Therefore, any use of these instructions to implement locks of any type requires the addition of explicit
barriers.

Acquiring a lock

A common use of Load-Exclusive and Store-Exclusive instructions is to claim a lock to permit entry into a critical
region. This is typically performed by testing a lock variable that indicates 0 for a free lock and some other value,
commonly 1 or an identifier of the process holding the lock, for a taken lock.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K11-8551
ID072021 Non-Confidential

Barrier Litmus Tests
K11.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
The lack of implicit barriers in the Load-Exclusive and Store-Exclusive instructions means that the mechanism
requires a DMB instruction between acquiring a lock and making the first access to the critical region, to ensure that
all observers observe the successful claim of the lock before they observe any subsequent loads or stores to the
region. This example shows Px acquiring a lock:

Px

Loop
 LDREX R5, [R1] ; reads lock
 CMP R5, #0 ; checks if 0
 STREXEQ R5, R0, [R1] ; attempts to store new value
 CMPEQ R5, #0 ; tests if store succeeded
 BNE Loop ; retries if not
 DMB ; ensures that all subsequent accesses are observed after the
 ; gaining of the lock is observed
 ; loads and stores in the critical region can now be performed

Releasing a lock

The converse operation of releasing a lock does not require the use of Load-Exclusive and Store-Exclusive
instructions, because only a single observer is able to write to the lock. However, often it is necessary for any
observer to observe any memory updates, or any values that are loaded into memory, before they observe the release
of the lock. Therefore, a DMB usually precedes the lock release, as the following example shows.

Px

 ; loads and stores in the critical region
 MOV R0, #0
 DMB ; ensures all previous accesses are observed before the lock is cleared
 STR R0, [R1] ; clears the lock

Use of Wait For Event (WFE) and Send Event (SEV) with locks

The Armv8 architecture includes Wait For Event and Send Event instructions, that can be executed to reduce the
required number of iterations of a lock-acquire loop, or spinlock, to reduce power. The basic mechanism involves
an observer that is in a spinlock executing a WFE instruction that suspends execution on that observer until an
asynchronous exception or an explicit event, sent by some other observer using the SEV instruction, is seen by the
suspended observer. An observer that holds the lock executes an SEV instruction to send an event after it has released
the lock.

The Event signal is a non-memory communication, and therefore the memory update that releases the lock must be
observable by all observers before the SEV instruction is executed and the event is sent. This requires the use of DSB
instruction, rather than DMB.

Therefore, the following is an example of lock acquire code using WFE:

Px

Loop
 LDREX R5, [R1] ; reads lock
 CMP R5, #0 ; checks if 0
 WFENE ; sleeps if the lock is held
 STREXEQ R5, R0, [R1] ; attempts to store new value
 CMPEQ R5, #0 ; tests if store succeeded
 BNE Loop ; retries if not
 DMB ; ensures that all subsequent accesses are observed after the
 ; gaining of the lock is observed
 ; loads and stores in the critical region can now be performed

And the following is an example of lock release code using SEV:

Px

 ; loads and stores in the critical region
 MOV R0, #0
 DMB ; ensures all previous accesses are observed before the lock is cleared
K11-8552 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Barrier Litmus Tests
K11.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
 STR R0, [R1] ; clears the lock
 DSB ; ensures completion of the store that cleared the lock before
 ; sending the event
 SEV

K11.6.3 Using a mailbox to send an interrupt

In some message passing systems, it is common for one observer to update memory and then notify a second
observer of the update by sending an interrupt, using a mailbox.

Although a memory access might be made to initiate the sending of the mailbox interrupt, a DSB instruction is
required to ensure the completion of previous memory accesses.

Therefore, the following sequence is required to ensure that P2 observes the updated value:

P1

 STR R5, [R1] ; message stored to shared memory location
 DSB [ST]
 STR R1, [R4] ; R4 contains the address of a mailbox

P2

 ; interrupt service routine
 LDR R5, [R1]

Note

The DSB executed by P1 ensures global observation of the store to [R1].The interrupt timing ensures that the code
executed by P2 is executed after the global observation of the update to [R1], and therefore must see this update. In
some implementations, this might be implemented by requiring that interrupts flush non-coherent buffers that hold
speculatively loaded data.

K11.6.4 Cache and TLB maintenance instructions and barriers

The following sections describe the use of barriers with cache and TLB maintenance instructions:

• Data cache maintenance instructions on page K11-8553.

• Instruction cache maintenance instructions on page K11-8556.

• TLB maintenance instructions and barriers on page K11-8557.

Data cache maintenance instructions

The following sections describe the use of barriers with data cache maintenance instructions:

• Message passing to non-caching observers on page K11-8553.

• Multiprocessing message passing to non-caching observers on page K11-8554.

• Invalidating DMA buffers, non-functional example on page K11-8554.

• Invalidating DMA buffers, functional example with single PE on page K11-8555.

• Invalidating DMA buffers, functional example with multiple coherent PEs on page K11-8555.

Message passing to non-caching observers

The Armv8 architecture requires the use of DMB instructions to ensure the ordering of data cache maintenance
instructions and their effects. This means the following message passing approaches can be used when
communicating between caching observers and non-caching observers:

P1

 STR R5, [R1] ; updates data (assumed to be in P1's cache)
 DCCMVAC R1 ; cleans cache to point of coherency
 DMB ; ensures effects of the clean will be observed before the flag is set
 STR R0, [R4] ; sends flag to external agent (Non-cacheable location)
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K11-8553
ID072021 Non-Confidential

Barrier Litmus Tests
K11.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
E1

 WAIT ([R4] == 1) ; waits for the flag
 DMB ; ensures that flag has been seen before reading data
 LDR R5, [R1] ; reads the data

In this example, it is required that E1:R5==0x55.

Multiprocessing message passing to non-caching observers

The broadcast nature of the cache maintenance instructions in Armv8, and in Armv7 implementations that include
the Multiprocessing Extensions, combined with properties of barriers, means that the message passing principle for
non-caching observers is:

P1

 STR R5, [R1] ; updates data (assumed to be in P1's cache)
 DMB [ST] ; ensures new data is observed before the flag to P2 is set
 STR R0, [R2] ; sends flag to P2

P2

 WAIT ([R2] == 1) ; waits for flag from P1
 DMB ; ensures cache clean is observed after P1 flag is observed
 DCCMVAC R1 ; cleans cache to point of coherency - this cleans the cache of P1
 DMB ; ensures effects of the clean are observed before the flag to E1 is set
 STR R0, [R4] ; sends flag to E1

E1

 WAIT ([R4] == 1) ; waits for flag from P2
 DMB ; ensures that flag has been observed before reading the data
 LDR R5, [R1] ; reads the data

In this example, it is required that E1:R5==0x55. The clean operation executed by P2 affects the data location in the
P1 cache. The cast-out from the P1 cache is guaranteed to be observed before P2 updates [R4].

Invalidating DMA buffers, non-functional example

The basic scheme for communicating with an external observer that is a process that passes data in to a Cacheable
memory region must take account of the architectural requirement that regions with a Normal Cacheable attribute
can be allocated into a cache at any time, for example as a result of speculation. The following example shows this
possibility:

P1

 DCIMVAC R1 ; ensures caches are not dirty. A clean operation could be
 ; used but the DMA overwrites this region so an invalidate operation
 ; is sufficient and usually more efficient
 DMB ; ensures cache invalidation is observed before the next store is observed
 STR R0, [R3] ; sends flag to external agent
 WAIT ([R4]==1) ; waits for a different flag from an external agent
 DMB ; observes flag from external agent before reading new data. However [R1]
 ; could have been brought into cache earlier
 LDR R5, [R1]

E1

 WAIT ([R3] == 1) ; waits for flag
 STR R5, [R1] ; stores new data
 DMB
 STR R0, [R4] ; sends a flag

If a speculative access occurs, there is no guarantee that the cache line containing [R1] is not brought back into the
cache after the cache invalidation, but before [R1] is written by E1. Therefore, the result P1:R5=0 is permissible.
K11-8554 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Barrier Litmus Tests
K11.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
Invalidating DMA buffers, functional example with single PE

P1

 DCIMVAC R1 ; ensures cache is not dirty. A clean operation could be
 ; used but the DMA overwrites this region so an invalidate operation
 ; is sufficient and usually more efficient
 DMB ; ensures cache invalidation is observed before the next store is observed
 STR R0, [R3] ; sends flag to external agent
 WAIT ([R4]==1) ; waits for a different flag from an external agent
 DMB ; ensures that cache invalidate is observed after the flag
 ; from external agent is observed
 DCIMVAC R1 ; ensures cache discards stale copies before use
 LDR R5, [R1]

E1

 WAIT ([R3] == 1) ; waits for flag
 STR R5, [R1] ; stores new data
 DMB [ST]
 STR R0, [R4] ; sends a flag

In this example, the result P1:R5 == 0x55 is required. Including a cache invalidation after the store by E1 to [R1] is
observed ensures that the line is fetched from external memory after it has been updated.

Invalidating DMA buffers, functional example with multiple coherent PEs

The broadcasting of cache maintenance instructions, and the use of DMB instructions to ensure their observability,
means that the previous example extends naturally to a multiprocessor system. Typically this requires a transfer of
ownership of the region that the external observer is updating.

P0

 (Use data from [R1], potentially using [R1] as scratch space)
 DMB
 STR R0, [R2] ; signals release of [R1]
 WAIT ([R2] == 0) ; waits for new value from DMA
 DMB
 LDR R5, [R1]

P1

 WAIT ([R2] == 1) ; waits for release of [R1] by P0
 DCIMVAC R1 ; ensures caches are not dirty, invalidate is sufficient
 DMB
 STR R0, [R3] ; requests new data for [R1]
 WAIT ([R4] == 1) ; waits for new data
 DMB
 DCIMVAC R1 ; ensures caches discard stale copies before use
 DMB
 MOV R0, #0
 STR R0, [R2] ; signals availability of new [R1]

E1

 WAIT ([R3] == 1) ; waits for new data request
 STR R5, [R1] ; sends new [R1]
 DMB [ST]
 STR R0, [R4] ; indicates new data available to P1

In this example, the result P0:R5 == 0x55 is required. The DMB issued by P1 after the first data cache invalidation
ensures that effect of the cache invalidation on P0 is seen by E1 before the store by E1 to [R1]. The DMB issued by
P1 after the second data cache invalidation ensures that its effects are seen before the store of 0 to the semaphore
location in [R2].
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K11-8555
ID072021 Non-Confidential

Barrier Litmus Tests
K11.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
Instruction cache maintenance instructions

The following sections describe the use of barriers with instruction cache maintenance instructions:

• Ensuring the visibility of updates to instructions for a uniprocessor on page K11-8556.

• Ensuring the visibility of updates to instructions for a multiprocessor on page K11-8556.

Ensuring the visibility of updates to instructions for a uniprocessor

On a single PE, the agent that causes instruction fetches, or instruction cache linefills, is a separate memory system
observer from the agent that causes data accesses. Therefore, any operations to invalidate the instruction cache can
rely only on seeing updates to memory that are complete. This must be ensured by the use of a DSB instruction.

Also, instruction cache maintenance instructions are only guaranteed to complete after the execution of a DSB, and
an ISB is required to discard any instructions that might have been prefetched before the instruction cache
invalidation completed. Therefore, on a uniprocessor, to ensure the visibility of an update to code and to branch to
it, the following sequence is required:

P1

 STR R11, [R1] ; R11 contains a new instruction to store in program memory
 DCCMVAU R1 ; clean to PoU makes new instructions visible to instruction cache
 DSB
 ICIMVAU R1 ; ensures instruction cache and branch predictor discard stale data
 BPIMVA R1
 DSB ; ensures completion of the invalidation
 ISB ; ensures instruction fetch path observes new instruction cache state
 BX R1

Ensuring the visibility of updates to instructions for a multiprocessor

Armv8, and an Armv7 implementation that includes the Multiprocessing Extensions, requires a PE that executes an
instruction cache maintenance instruction to execute a DSB instruction to ensure completion of the maintenance
operation. This ensures that the cache maintenance instruction is complete on all PEs in the Inner Shareable
shareability domain.

An ISB is not broadcast, and so does not affect other PEs. This means that any other PE must perform its own ISB
synchronization after it knows that the update is visible, if it is necessary to ensure its synchronization with the
update. The following example shows how this might be done:

P1

 STR R11, [R1] ; R11 contains a new instruction to store in program memory
 DCCMVAU R1 ; clean to PoU makes new instructions visible to instruction cache
 DSB ; ensures completion of the clean on all processors
 ICIMVAU R1 ; ensures instruction cache/branch predictor discards stale data
 BPIMVA R1
 DSB ; ensures completion of the instruction cache and branch predictor
 ; invalidation on all PEs
 STR R0, [R2] ; sets flag to signal completion
 ISB ; synchronizes context on this PE
 BX R1 ; branches to new code

P2-Px

 WAIT ([R2] == 1) ; waits for flag signaling completion
 ISB ; synchronizes context on this processor
 BX R1 ; branches to new code

Nonfunctional approach

The following sequence does not have the same effect, because a DSB is not required to complete the instruction
cache maintenance instructions that other PEs issue:

P1

 STR R11, [R1] ; R11 contains a new instruction to store in program memory
 DCCMVAU R1 ; clean to PoU makes new instructions visible to instruction cache
K11-8556 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Barrier Litmus Tests
K11.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
 DSB ; ensure completion of the clean on all PEs
 ICIMVAU R1 ; ensure instruction cache/branch predictor discards stale data
 BPIMVA R1
 DMB ; ensure ordering of the store after the invalidation
 ; DOES NOT guarantee completion of instruction cache/branch
 ; predictor on other PEs
 STR R0, [R2] ; sets flag to signal completion
 DSB ; ensures completion of the invalidation on all PEs
 ISB ; synchronizes context on this PE
 BX R1 ; branches to new code

P2-Px

 WAIT ([R2] == 1) ; waits for flag signaling completion
 DSB ; this DSB does not guarantee completion of P1's ICIMVAU/BPIMVA
 ISB
 BX R1

In this example, P2…Px might not see the updated region of code at R1.

TLB maintenance instructions and barriers

The following sections describe the use of barriers with TLB maintenance instructions:

• Ensuring the visibility of updates to translation tables for a uniprocessor on page K11-8557.

• Ensuring the visibility of updates to translation tables for a multiprocessor on page K11-8558.

• Paging memory in and out on page K11-8558.

Ensuring the visibility of updates to translation tables for a uniprocessor

On a single PE, the agent that causes translation table walks is a separate memory system observer from the agent
that causes data accesses. Therefore, any operations to invalidate the TLB can only rely on seeing updates to
memory that are complete. This must be ensured by the use of a DSB instruction.

In the Armv8 architecture, and in an Armv7 implementation that includes the Multiprocessing Extensions,
translation table walks must look in the data or unified caches at L1, so such systems do not require data cache
cleaning.

After the translation tables update, any old copies of entries that might be held in the TLBs must be invalidated. This
operation is only guaranteed to affect all instructions, including instruction fetches and data accesses, after the
execution of a DSB and an ISB. Therefore, the code for updating a translation table entry is:

P1

 STR R11, [R1] ; updates the translation table entry
 DSB ; ensures visibility of the update to translation table walks
 TLBIMVA R10
 BPIALL
 DSB ; ensures completion of the BP and TLB invalidation
 ISB ; synchronizes context on this PE
 ;
 ; new translation table entry can be relied upon at this point and all accesses
 ; generated by this observer using the old mapping have been completed

Importantly, by the end of this sequence, all accesses that used the old translation table mappings have been
observed by all observers.

An example of this is where a translation table entry is marked as invalid. Such a system must provide a mechanism
to ensure that any access to a region of memory being marked as invalid has completed before any action is taken
as a result of the region being marked as invalid.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K11-8557
ID072021 Non-Confidential

Barrier Litmus Tests
K11.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
Ensuring the visibility of updates to translation tables for a multiprocessor

The same code sequence can be used in a multiprocessing system. In the Armv8 architecture, and in an Armv7
implementation that includes the Multiprocessing Extensions, a PE that executes a TLB maintenance instruction
must execute a DSB instruction to ensure completion of the maintenance operation. This ensures that the TLB
maintenance instruction is complete on all PEs in the Inner Shareable shareability domain.

The completion of a DSB that completes a TLB maintenance instruction ensures that all accesses that used the old
mapping have completed.

P1

 STR R11, [R1] ; updates the translation table entry
 DSB ; ensures visibility of the update to translation table walks
 TLBIMVAIS R10
 BPIALLIS
 DSB ; ensures completion of the BP and TLB invalidation
 ISB ; Note ISB is not broadcast and must be executed locally on other PEs
 ;
 ; new translation table entry can be relied upon at this point and all accesses generated by any
 ; observers affected by the broadcast TLBIMVAIS operation using the old mapping have completed

The completion of the TLB maintenance instruction is guaranteed only by the execution of a DSB by the observer
that performed the TLB maintenance instruction. The execution of a DSB by a different observer does not have this
effect, even if the DSB is known to be executed after the TLB maintenance instruction is observed by that different
observer.

Paging memory in and out

In a multiprocessor system there is a requirement to ensure the visibility of translation table updates when paging
regions of memory into RAM from a backing store. This might, or might not, also involve paging existing locations
in memory from RAM to a backing store. In such situations, the operating system selects one or more pages of
memory that might be in use but are suitable to discard, with or without copying to a backing store, depending on
whether or not the region of memory is writable. Disabling the translation table mappings for a page, and ensuring
the visibility of that update to the translation tables, prevents agents accessing the page.

For this reason, it is important that the DSB that is performed after the TLB invalidation ensures that no other updates
to memory using those mappings are possible.

An example sequence for the paging out of an updated region of memory, and the subsequent paging in of memory,
is as follows:

P1

 STR R11, [R1] ; updates the translation table for the region being paged out
 DSB ; ensures visibility of the update to translation table walks
 TLBIMVAIS R10 ; invalidates the old entry
 DSB ; ensures completion of the invalidation on all processors
 ISB ; ensures visibility of the invalidation
 BL SaveMemoryPageToBackingStore
 BL LoadMemoryFromBackingStore
 DSB ; ensures completion of the memory transfer (this could be part of
 ; LoadMemoryFromBackingStore
 ICIALLUIS ; also invalidates the branch predictor

DSB ; ensures completion of the instruction cache
 ; and branch predictor invalidation

 STR R9, [R1] ; creates a new translation table entry with a new mapping
 DSB ; ensures visibility of the new translation table mapping
 ISB ; ensures synchronization of this instruction stream

This example assumes the memory copies are performed by an observer that is coherent with the caches of PE P1.
This observer might be P1 itself, using a specific paging mapping. For clarity, the example omits the functional
descriptions of SaveMemoryPageToBackingStore and LoadMemoryFromBackingStore. LoadMemoryFromBackingStore is
required to ensure that the memory updates that it makes are visible to instruction fetches.
K11-8558 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Barrier Litmus Tests
K11.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
In this example, the use of ICIALLUIS to invalidate the entire instruction cache is a simplification that might not
be optimal for performance. An alternative approach involves invalidating all of the lines in the caches using
ICIMVAU operations. This invalidation must be done when the mapping used for the ICIMVAU operations is valid
but not executable.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K11-8559
ID072021 Non-Confidential

Barrier Litmus Tests
K11.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
K11-8560 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Appendix K12
Random Number Generation

This appendix provides further information on the generation of random numbers using FEAT_RNG. It contains the
following sections:

• Properties of the generated random number on page K12-8562.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K12-8561
ID072021 Non-Confidential

Random Number Generation
K12.1 Properties of the generated random number
K12.1 Properties of the generated random number

When FEAT_RNG is implemented, reads to the RNDR and RNDRRS registers return a 64-bit random number. The
random numbers must meet the properties and conform to the standards that are detailed in this section.

The output random number is from a Deterministic Random Bit Generator (DRBG), which is seeded from a True
Random Number Generator (TRNG).

The TRNG provides entropy in the form of random numbers, from the sampled output of an unpredictable physical
process.

The TRNG should conform to:

• The NIST SP800-90B standard.

• The NIST SP800-22 standard.

• The FIPS 140-2 standard.

• The BSI AIS-31 standard.

The DRBG produces random numbers from a cryptographically secure algorithm.

The DRBG is seeded from the TRNG.

The DRBG algorithm should conform to the NIST SP800-90A Rev 1 standard.

The DRBG is reseeded after an IMPLEMENTATION DEFINED number of random numbers has been generated and read
using the RNDR register.

The DRBG is reseeded immediately before the random number is generated and read using the RNDRRS register.

The entire random number generation should conform to the NIST SP800-90C standard.

Note

Since a TRNG can only generate random bits at a limited rate, the random number bits are commonly collected in
an “entropy pool” until needed. An implementation should ensure that lower privileged software cannot impact the
performance of higher privileged software by entirely draining this “entropy pool”. The refill time cost of the
“entropy pool” should be paid for by the persistent caller.
K12-8562 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Appendix K13
Legacy Feature Naming Convention

This appendix maps the legacy feature names for the Armv8.x extensions. It contains the following sections:

• The Armv8.0 architecture on page K13-8564.

• The Armv8.1 architecture extension on page K13-8565.

• The Armv8.2 architecture extension on page K13-8566.

• The Armv8.3 architecture extension on page K13-8568.

• The Armv8.4 architecture extension on page K13-8569.

• The Armv8.5 architecture extension on page K13-8570.

• The Armv8.6 architecture extension on page K13-8571.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K13-8563
ID072021 Non-Confidential

Legacy Feature Naming Convention
K13.1 The Armv8.0 architecture
K13.1 The Armv8.0 architecture

Table K13-1 on page K13-8564 provides details of the mapping of the legacy names of Armv8.0 features to their
current names.

Table K13-1 Mapping of legacy names of Armv8.0 features to current names

Feature name Legacy feature name Short description

FEAT_AES ARMv8.0-AES Advanced SIMD AES instructions

FEAT_PMULL Advanced SIMD PMULL instructions

FEAT_CP15SDISABLE2 ARMv8.0-CP15SDISABLE2 CP15SDISABLE2

FEAT_CSV2 ARMv8.0-CSV2 Cache Speculation Variant 2

FEAT_CSV3 ARMv8.0-CSV3 Cache Speculation Variant 3

FEAT_DGH ARMv8.0-DGH Data Gathering Hint

FEAT_DoubleLock ARMv8.0-DoubleLock Double Lock

FEAT_ETS ARMv8.0-ETS Enhanced Translation Synchronization

FEAT_PCSRv8 ARMv8.0-PCSample PC Sample-based Profiling Extension

FEAT_PMUv3 PMUv3 PMU Extensions

FEAT_RAS RAS The Reliability, Availability, and Serviceability Extension

FEAT_SB ARMv8.0-SB Speculation Barrier

FEAT_SHA1 ARMv8.0-SHA Advanced SIMD SHA1 instructions

FEAT_SPECRES ARMv8.0-PredInv Speculation restriction instructions

FEAT_SSBS ARMv8.0-SSBS Speculative Store Bypass Safe
K13-8564 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Legacy Feature Naming Convention
K13.2 The Armv8.1 architecture extension
K13.2 The Armv8.1 architecture extension

Table K13-2 on page K13-8565 provides details of the mapping of the legacy names of Armv8.1 features to their
current names.

Table K13-2 Mapping of legacy names of Armv8.1 features to current names

Feature name Legacy feature name Short description

FEAT_HAFDBS ARMv8.1-TTHM Hardware management of the Access flag and dirty state

FEAT_HPDS ARMv8.1-HPD Hierarchical permission disables

FEAT_LOR ARMv8.1-LOR Limited ordering regions

FEAT_LSE ARMv8.1-LSE Large System Extensions

FEAT_PAN ARMv8.1-PAN Privileged access never

FEAT_PMUv3p1 ARMv8.1-PMU PMU Extensions v3.1

FEAT_RDM ARMv8.1-RDMA Advanced SIMD rounding double multiply accumulate instructions

FEAT_VHE ARMv8.1-VHE Virtualization Host Extensions

FEAT_VMID16 ARMv8.1-VMID16 16-bit VMID
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K13-8565
ID072021 Non-Confidential

Legacy Feature Naming Convention
K13.3 The Armv8.2 architecture extension
K13.3 The Armv8.2 architecture extension

Table K13-3 on page K13-8566 provides details of the mapping of the legacy names of Armv8.2 features to their
current names.

Table K13-3 Mapping of legacy names of Armv8.2 features to current names

Feature name Legacy feature name Short description

FEAT_AA32BF16 ARMv8.2-AA32BF16 AArch32 BFloat16 instructions

FEAT_AA32HPD ARMv8.2-AA32HPD AArch32 hierarchical permission disables

FEAT_AA32I8MM ARMv8.2-AA32I8MM AArch32 Int8 matrix multiplication instructions

FEAT_ASMv8p2 ARMv8.2-A64ISA Armv8.2 changes to the A64 ISA

FEAT_BF16 ARMv8.2-BF16 AArch64 BFloat16 instructions

FEAT_Debugv8p2 ARMv8.2-Debug Debug v8.2

FEAT_DotProd ARMv8.2-DotProd Advanced SIMD dot product instructions

FEAT_DPB ARMv8.2-DCPoP DC CVAP instruction

FEAT_DPB2 ARMv8.2-DCCVADP DC CVADP instruction

FEAT_EVT ARMv8.2-EVT Enhanced Virtualization Traps

FEAT_FHM ARMv8.2-FHM Floating-point half-precision multiplication instructions

FEAT_FP16 ARMv8.2-FP16 Half-precision floating-point data processing

FEAT_HPDS2 ARMv8.2-TTPBHA Translation table page-based hardware attributes

FEAT_I8MM ARMv8.2-I8MM AArch64 Int8 matrix multiplication instructions

FEAT_IESB ARMv8.2-IESB Implicit Error Synchronization event

FEAT_LPA ARMv8.2-LPA Large PA and IPA support

FEAT_LSMAOC ARMv8.2-LSMAOC AArch32 Load/Store Multiple instruction atomicity and ordering controls

FEAT_LVA ARMv8.2-LVA Large VA support

FEAT_PAN2 ARMv8.2-ATS1E1 AT S1E1R and AT S1E1W instruction variants affected by PSTATE.PAN

FEAT_PCSRv8p2 ARMv8.2-PCSample PC Sample-based profiling

FEAT_SHA256 ARMv8.0-SHA Advanced SIMD SHA256 instructions

FEAT_SHA3 ARMv8.2-SHA Advanced SIMD SHA3 instructions

FEAT_SHA512 Advanced SIMD SHA512 instructions

FEAT_SM3 ARMv8.2-SM Advanced SIMD SM3 instructions

FEAT_SM4 Advanced SIMD SM4 instructions

FEAT_SPE SPE The Statistical Profiling Extension (SPE)

FEAT_SVE SVE The Scalable Vector Extension (SVE)

FEAT_TTCNP ARMv8.2-TTCNP Translation table Common not private translations
K13-8566 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Legacy Feature Naming Convention
K13.3 The Armv8.2 architecture extension
FEAT_UAO ARMv8.2-UAO Unprivileged Access Override control

FEAT_VPIPT ARMv8.2-VPIPT VMID-aware PIPT instruction cache

FEAT_XNX ARMv8.2-TTS2UXN Translation table stage 2 Unprivileged Execute-never

Table K13-3 Mapping of legacy names of Armv8.2 features to current names (continued)

Feature name Legacy feature name Short description
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K13-8567
ID072021 Non-Confidential

Legacy Feature Naming Convention
K13.4 The Armv8.3 architecture extension
K13.4 The Armv8.3 architecture extension

Table K13-4 on page K13-8568 provides details of the mapping of the legacy names of Armv8.3 features to their
current names.

Table K13-4 Mapping of legacy names of Armv8.3 features to current names

Feature name Legacy feature name Short description

FEAT_CCIDX ARMv8.3-CCIDX Extended cache index

FEAT_DoPD ARMv8.3-DoPD Debug over Powerdown

FEAT_FCMA ARMv8.3-CompNum Floating-point complex number instructions

FEAT_JSCVT ARMv8.3-JSconv JavaScript conversion instructions

FEAT_LRCPC ARMv8.3-RCpc Load-acquire RCpc instructions

FEAT_NV ARMv8.3-NV Nested virtualization support

FEAT_PAuth ARMv8.3-PAuth Pointer authentication

FEAT_SPEv1p1 ARMv8.3-SPE Armv8.3 Statistical Profiling Extensions
K13-8568 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Legacy Feature Naming Convention
K13.5 The Armv8.4 architecture extension
K13.5 The Armv8.4 architecture extension

Table K13-5 on page K13-8569 provides details of the mapping of the legacy names of Armv8.4 features to their
current names.

Table K13-5 Mapping of legacy names of Armv8.4 features to current names

Feature name Legacy feature name Short description

FEAT_AMUv1 AMUv1 Activity Monitors Extensions v1

FEAT_BBM ARMv8.4-TTRem Translation table break-before-make levels

FEAT_CNTSC ARMv8.4-CNTSC Generic Counter Scaling

FEAT_Debugv8p4 ARMv8.4-Debug Debug v8.4

FEAT_DIT ARMv8.4-DIT Data Independent Timing instructions

FEAT_DoubleFault ARMv8.4-DFE Double Fault Extension

FEAT_FlagM ARMv8.4-CondM Flag manipulation instructions v2

FEAT_IDST ARMv8.4-IDST ID space trap handling

FEAT_LRCPC2 ARMv8.4-RCpc Load-acquire RCpc instructions v2

FEAT_LSE2 ARMv8.4-LSE Large System Extensions v2

FEAT_MPAM MPAM The Memory Partitioning and Monitoring (MPAM) Extension

FEAT_NV2 ARMv8.4-NV Enhanced nested virtualization support

FEAT_PMUv3p4 ARMv8.4-PMU PMU Extensions v3.4

FEAT_RASv1p1 ARMv8.4-RAS RAS Extension v1.1

FEAT_S2FWB ARMv8.4-S2FWB Stage 2 forced Write-Back

FEAT_SEL2 ARMv8.4-SecEL2 Secure EL2

FEAT_TLBIOS ARMv8.4-TLBI TLB invalidate instructions in Outer Shareable domain

FEAT_TLBIRANGE TLB invalidate range instructions

FEAT_TRF ARMv8.4-Trace Self-hosted Trace Extensions

FEAT_TTL ARMv8.4-TTL Translation Table Level

FEAT_TTST ARMv8.4-TTST Small translation tables
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K13-8569
ID072021 Non-Confidential

Legacy Feature Naming Convention
K13.6 The Armv8.5 architecture extension
K13.6 The Armv8.5 architecture extension

Table K13-6 on page K13-8570 provides details of the mapping of the legacy names of Armv8.5 features to their
current names.

Table K13-6 Mapping of legacy names of Armv8.5 features to current names

Feature name Legacy feature name Short description

FEAT_BTI ARMv8.5-BTI Branch Target Identification

FEAT_E0PD ARMv8.5-E0PD Preventing EL0 access to halves of address maps

FEAT_ExS ARMv8.5-CSEH Context synchronization and exception handling

FEAT_FlagM2 ARMv8.5-CondM Enhancements to flag manipulation instructions

FEAT_FRINTTS ARMv8.5-FRINT Floating-point to integer instructions

FEAT_GTG ARMv8.5-GTG Guest translation granule size

FEAT_MTE ARMv8.5-MemTag Memory Tagging Extension

FEAT_MTE2

FEAT_PMUv3p5 ARMv8.5-PMU PMU Extensions v3.5

FEAT_RNG ARMv8.5-RNG Random number generator
K13-8570 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Legacy Feature Naming Convention
K13.7 The Armv8.6 architecture extension
K13.7 The Armv8.6 architecture extension

Table K13-7 on page K13-8571 provides details of the mapping of the legacy names of Armv8.6 features to their
current names.

Table K13-7 Mapping of legacy names of Armv8.6 features to current names

Feature name Legacy feature name Short description

FEAT_AMUv1p1 ARMv8.6-AMU AMU Extensions v1.1

FEAT_ECV ARMv8.6-ECV Enhanced Counter Virtualization

FEAT_FGT ARMv8.6-FGT Fine Grain Traps

FEAT_FPAC ARMv8.3-FPAC Faulting on AUT* instructions

FEAT_MPAMv0p1 ARMv8.6-MPAM Memory Partitioning and Monitoring Extension v0.1

FEAT_MPAMv1p1 Memory Partitioning and Monitoring Extension v1.1

FEAT_MTPMU ARMv8.6-MTPMU Multi-threaded PMU Extensions

FEAT_PAuth2 ARMv8.3-PAuth2 Enhancements to pointer authentication

FEAT_TWED ARMv8.6-TWED Delayed Trapping of WFE
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K13-8571
ID072021 Non-Confidential

Legacy Feature Naming Convention
K13.7 The Armv8.6 architecture extension
K13-8572 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Appendix K14
Arm Pseudocode Definition

This appendix provides a definition of the pseudocode that is used in this manual, and defines some helper
procedures and functions that are used by pseudocode. It contains the following sections:

• About the Arm pseudocode on page K14-8574.

• Pseudocode for instruction descriptions on page K14-8575.

• Data types on page K14-8577.

• Operators on page K14-8582.

• Statements and control structures on page K14-8588.

• Built-in functions on page K14-8593.

• Miscellaneous helper procedures and functions on page K14-8596.

• Arm pseudocode definition index on page K14-8598.

Note

This appendix is not a formal language definition for the pseudocode. It is a guide to help understand the use of Arm
pseudocode. This appendix is not complete. Changes are planned for future releases.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K14-8573
ID072021 Non-Confidential

Arm Pseudocode Definition
K14.1 About the Arm pseudocode
K14.1 About the Arm pseudocode

The Arm pseudocode provides precise descriptions of some areas of the Arm architecture. This includes description
of the decoding and operation of all valid instructions. Pseudocode for instruction descriptions on page K14-8575
gives general information about this instruction pseudocode, including its limitations.

The following sections describe the Arm pseudocode in detail:

• Data types on page K14-8577.

• Operators on page K14-8582.

• Statements and control structures on page K14-8588.

Built-in functions on page K14-8593 and Miscellaneous helper procedures and functions on page K14-8596
describe some built-in functions and pseudocode helper functions that are used by the pseudocode functions that are
described elsewhere in this manual. Arm pseudocode definition index on page K14-8598 contains the indexes to the
pseudocode.

K14.1.1 General limitations of Arm pseudocode

The pseudocode statements IMPLEMENTATION_DEFINED, SEE, UNDEFINED, and UNPREDICTABLE indicate behavior that
differs from that indicated by the pseudocode being executed. If one of them is encountered:

• Earlier behavior indicated by the pseudocode is only specified as occurring to the extent required to
determine that the statement is executed.

• No subsequent behavior indicated by the pseudocode occurs.

For more information, see Special statements on page K14-8592.
K14-8574 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Arm Pseudocode Definition
K14.2 Pseudocode for instruction descriptions
K14.2 Pseudocode for instruction descriptions

Each instruction description includes pseudocode that provides a precise description of what the instruction does,
subject to the limitations described in General limitations of Arm pseudocode on page K14-8574 and Limitations of
the instruction pseudocode on page K14-8576.

In the instruction pseudocode, instruction fields are referred to by the names shown in the encoding diagram for the
instruction. Instruction encoding diagrams and instruction pseudocode on page K14-8575 gives more information
about the pseudocode provided for each instruction.

K14.2.1 Instruction encoding diagrams and instruction pseudocode

Instruction descriptions in this manual contain:

• An Encoding section, containing one or more encoding diagrams, each followed by some encoding-specific
pseudocode that translates the fields of the encoding into inputs for the common pseudocode of the
instruction, and picks out any encoding-specific special cases.

• An Operation section, containing common pseudocode that applies to all of the encodings being described.
The Operation section pseudocode contains a call to the EncodingSpecificOperations() function, either at its
start or only after a condition code check performed by if ConditionPassed() then.

An encoding diagram specifies each bit of the instruction as one of the following:

• An obligatory 0 or 1, represented in the diagram as 0 or 1. If this bit does not have this value, the encoding
corresponds to a different instruction.

• A should be 0 or 1, represented in the diagram as (0) or (1). If this bit does not have this value, the instruction
is CONSTRAINED UNPREDICTABLE. For more information, see SBZ or SBO fields T32 and A32 in instructions
on page K1-8390.

• A named single bit or a bit in a named multi-bit field. The cond field in bits[31:28] of many A32/T32
instructions has some special rules associated with it.

An encoding diagram matches an instruction if all obligatory bits are identical in the encoding diagram and the
instruction, and one of the following is true:

• The encoding diagram is not for an A32/T32 instruction.

• The encoding diagram is for an A32/T32 instruction that does not have a cond field in bits[31:28].

• The encoding diagram is for an A32/T32 instruction that has a cond field in bits[31:28], and bits[31:28] of
the instruction are not 0b1111.

In the context of the instruction pseudocode, the execution model for an instruction is:

1. Find all encoding diagrams that match the instruction. It is possible that no encoding diagram matches. In
that case, abandon this execution model and consult the relevant instruction set chapter instead to find out
how the instruction is to be treated. The bit pattern of such an instruction is usually reserved and UNDEFINED,
though there are some other possibilities. For example, unallocated hint instructions are documented as being
reserved and executed as NOPs.

2. If the operation pseudocode for the matching encoding diagrams starts with a condition code check, perform
that check. If the condition code check fails, abandon this execution model and treat the instruction as a NOP.
If there are multiple matching encoding diagrams, either all or none of their corresponding pieces of common
pseudocode start with a condition code check.

3. Perform the encoding-specific pseudocode for each of the matching encoding diagrams independently and in
parallel. Each such piece of encoding-specific pseudocode starts with a bitstring variable for each named bit
or multi-bit field in its corresponding encoding diagram, named the same as the bit or multi-bit field and
initialized with the values of the corresponding bit or bits from the bit pattern of the instruction.

In a few cases, the encoding diagram contains more than one bit or field with same name. In these cases, the
values of the different instances of those bits or fields must be identical. The encoding-specific pseudocode
contains a special case using the Consistent() function to specify what happens if they are not identical.
Consistent() returns TRUE if all instruction bits or fields with the same name as its argument have the same
value, and FALSE otherwise.

If there are multiple matching encoding diagrams, all but one of the corresponding pieces of pseudocode must
contain a special case that indicates that it does not apply. Discard the results of all such pieces of pseudocode
and their corresponding encoding diagrams.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K14-8575
ID072021 Non-Confidential

Arm Pseudocode Definition
K14.2 Pseudocode for instruction descriptions
There is now one remaining piece of pseudocode and its corresponding encoding diagram left to consider.
This pseudocode might also contain a special case, most commonly one indicating that it is CONSTRAINED
UNPREDICTABLE. If so, abandon this execution model and treat the instruction according to the special case.

4. Check the should be bits of the encoding diagram against the corresponding bits of the bit pattern of the
instruction. If any of them do not match, abandon this execution model and treat the instruction as
CONSTRAINED UNPREDICTABLE, see SBZ or SBO fields T32 and A32 in instructions on page K1-8390.

5. Perform the rest of the operation pseudocode for the instruction description that contains the encoding
diagram. That pseudocode starts with all variables set to the values they were left with by the
encoding-specific pseudocode.

The ConditionPassed() call in the common pseudocode, if present, performs step 2, and the
EncodingSpecificOperations() call performs steps 3 and 4.

K14.2.2 Limitations of the instruction pseudocode

The pseudocode descriptions of instruction functionality have a number of limitations. These are mainly due to the
fact that, for clarity and brevity, the pseudocode is a sequential and mostly deterministic language.

These limitations include:

• Pseudocode does not describe the ordering requirements when an instruction generates multiple memory
accesses. For a description of the ordering requirements on memory accesses, see Ordering constraints on
page E2-4293.

• Pseudocode does not describe the exact rules when an instruction that generates any of the following fails its
condition code check:

— UNDEFINED instruction.

— Hyp trap.

— Monitor trap.

— Trap to AArch64 exception.

In such cases, the UNDEFINED pseudocode statement or call to the applicable trap function lies inside the if
ConditionPassed() then … structure, either directly or in the EncodingSpecificOperations() function call, and
so the pseudocode indicates that the instruction executes as a NOP. For the exact rules, see:

— Conditional execution of undefined instructions on page G1-6080.

— EL2 configurable controls on page G1-6126.

— EL3 configurable controls on page G1-6146.

— Traps on instructions on page D1-2511.

• Pseudocode does not describe the exact ordering requirements when a single floating-point instruction
generates more than one floating-point exception and one or more of those floating-point exceptions is
trapped. Combinations of floating-point exceptions on page E1-4271 describes the exact rules.

Note
There is no limitation in the case where all the floating-point exceptions are untrapped, because the
pseudocode specifies the same behavior as the cross-referenced section.

• An exception can be taken during execution of the pseudocode for an instruction, either explicitly as a result
of the execution of a pseudocode function such as Abort(), or implicitly, for example if an interrupt is taken
during execution of an LDM instruction. If this happens, the pseudocode does not describe the extent to which
the normal behavior of the instruction occurs. To determine that, see the descriptions of the exceptions in
Handling exceptions that are taken to an Exception level using AArch32 on page G1-6043.
K14-8576 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Arm Pseudocode Definition
K14.3 Data types
K14.3 Data types

This section describes:

• General data type rules on page K14-8577.

• Bitstrings on page K14-8577.

• Integers on page K14-8578.

• Reals on page K14-8578.

• Booleans on page K14-8578.

• Enumerations on page K14-8579.

• Structures on page K14-8579.

• Tuples on page K14-8580.

• Arrays on page K14-8581.

K14.3.1 General data type rules

Arm architecture pseudocode is a strongly typed language. Every literal and variable is of one of the following
types:

• Bitstring.

• Integer.

• Boolean.

• Real.

• Enumeration.

• Tuple.

• Struct.

• Array.

The type of a literal is determined by its syntax. A variable can be assigned to without an explicit declaration. The
variable implicitly has the type of the assigned value. For example, the following assignments implicitly declare the
variables x, y and z to have types integer, bitstring of length 1, and Boolean, respectively.

x = 1;
y = '1';
z = TRUE;

Variables can also have their types declared explicitly by preceding the variable name with the name of the type.
The following example declares explicitly that a variable named count is an integer.

integer count;

This is most often done in function definitions for the arguments and the result of the function.

The remaining subsections describe each data type in more detail.

K14.3.2 Bitstrings

This section describes the bitstring data type.

Syntax
bits(N) The type name of a bitstring of length N.

bit A synonym of bits(1).

Description

A bitstring is a finite-length string of 0s and 1s. Each length of bitstring is a different type. The minimum permitted
length of a bitstring is 0.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K14-8577
ID072021 Non-Confidential

Arm Pseudocode Definition
K14.3 Data types
Bitstring constants literals are written as a single quotation mark, followed by the string of 0s and 1s, followed by
another single quotation mark. For example, the two constants literals of type bit are '0' and '1'. Spaces can be
included in bitstrings for clarity.

The bits in a bitstring are numbered from left to right N-1 to 0. This numbering is used when accessing the bitstring
using bitslices. In conversions to and from integers, bit N-1 is the MSByte and bit 0 is the LSByte. This order
matches the order in which bitstrings derived from encoding diagrams are printed.

Every bitstring value has a left-to-right order, with the bits being numbered in standard little-endian order. That is,
the leftmost bit of a bitstring of length N is bit (N–1) and its right-most bit is bit 0. This order is used as the
most-significant-to-least-significant bit order in conversions to and from integers. For bitstring constants and
bitstrings that are derived from encoding diagrams, this order matches the way that they are printed.

Bitstrings are the only concrete data type in pseudocode, corresponding directly to the contents values that are
manipulated in registers, memory locations, and instructions. All other data types are abstract.

K14.3.3 Integers

This section describes the data type for integer numbers.

Syntax

integer The type name for the integer data type.

Description

Pseudocode integers are unbounded in size and can be either positive or negative. That is, they are mathematical
integers rather than what computer languages and architectures commonly call integers. Computer integers are
represented in pseudocode as bitstrings of the appropriate length, and the pseudocode provides functions to interpret
those bitstrings as integers.

Integer literals are normally written in decimal form, such as 0, 15, -1234. They can also be written in C-style
hexadecimal form, such as 0x55 or 0x80000000. Hexadecimal integer literals are treated as positive unless they have
a preceding minus sign. For example, 0x80000000 is the integer +231. If -231 needs to be written in hexadecimal, it
must be written as -0x80000000.

K14.3.4 Reals

This section describes the data type for real numbers.

Syntax

real The type name for the real data type.

Description

Pseudocode reals are unbounded in size and precision. That is, they are mathematical real numbers, not computer
floating-point numbers. Computer floating-point numbers are represented in pseudocode as bitstrings of the
appropriate length, and the pseudocode provides functions to interpret those bitstrings as reals.

Real constant literals are written in decimal form with a decimal point. This means 0 is an integer constant literal,
but 0.0 is a real constant literal.

K14.3.5 Booleans

This section describes the Boolean data type.

Syntax

boolean The type name for the Boolean data type.
K14-8578 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Arm Pseudocode Definition
K14.3 Data types
TRUE The two values a Boolean variable can take.

Description

A Boolean is a logical TRUE or FALSE value.

Note

This is not the same type as bit, which is a bitstring of length 1. A Boolean can only take on one of two values: TRUE
or FALSE.

K14.3.6 Enumerations

This section describes the enumeration data type.

Syntax and examples

enumeration Keyword to defined a new enumeration type.

enumeration Example {Example_One, Example_Two, Example_Three};

A definition of a new enumeration called Example, which can take on the values Example_One,
Example_Two, Example_Three.

Description

An enumeration is a defined set of named values.

An enumeration must contain at least one named value. A named value must not be shared between enumerations.

Enumerations must be defined explicitly, although a variable of an enumeration type can be declared implicitly by
assigning one of the named values to it. By convention, each named value starts with the name of the enumeration
followed by an underscore. The name of the enumeration is its type name, or type, and the named values are its
possible values.

K14.3.7 Structures

This section describes the structure data type.

Syntax and examples

type The keyword used to declare the structure data type.

type ShiftSpec is (bits(2) shift, integer amount)

An example definition for a new structure called ShiftSpec that contains an bitstring member called
shift and a integer member named amount. Structure definitions must not be terminated with a
semicolon.

ShiftSpec abc;

A declaration of a variable named abc of type ShiftSpec.

abc.shift

Syntax to refer to the individual members within the structure variable.

Description

A structure is a compound data type composed of one or more data items. The data items can be of different data
types. This can include compound data types. The data items of a structure are called its members and are named.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K14-8579
ID072021 Non-Confidential

Arm Pseudocode Definition
K14.3 Data types
In the syntax section, the example defines a structure called ShiftSpec with two members. The first is a bitstring of
length 2 named shift and the second is an integer named amount. After declaring a variable of that type named abc,
the members of this structure are referred to as abc.shift and abc.amount.

Every definition of a structure creates a different type, even if the number and type of their members are identical.
For example:

type ShiftSpec1 is (bits(2) shift, integer amount)
type ShiftSpec2 is (bits(2) shift, integer amount)

ShiftSpec1 and ShiftSpec2 are two different types despite having identical definitions. This means that the value in
a variable of type ShiftSpec1 cannot be assigned to variable of type ShiftSpec2.

K14.3.8 Tuples

This section describes the tuple data type.

Examples

(bits(32) shifter_result, bit shifter_carry_out)

An example of the tuple syntax.

(shift_t, shift_n) = ('00', 0);

An example of assigning values to a tuple.

Description

A tuple is an ordered set of data items, separated by commas and enclosed in parentheses. The items can be of
different types and a tuple must contain at least one data item.

Tuples are often used as the return type for functions that return multiple results. For example, in the syntax section,
the example tuple is the return type of the function Shift_C(), which performs a standard A32/T32 shift or rotation.
Its return type is a tuple containing two data items, with the first of type bits(32) and the second of type bit.

Each tuple is a separate compound data type. The compound data type is represented as a comma-separated list of
ordered data types between parentheses. This means that the example tuple at the start of this section is of type
(bits(32), bit). The general principle that types can be implied by an assignment extends to implying the type of
the elements in the tuple. For example, in the syntax section, the example assignment implicitly declares:

• shift_t to be of type bits(2).

• shift_n to be of type integer.

• (shift_t, shift_n) to be a tuple of type (bits(2), integer).
K14-8580 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Arm Pseudocode Definition
K14.3 Data types
K14.3.9 Arrays

This section describes the array data type.

Syntax

array The type name for the array data type.

array data_type array_name[A..B];

Declaration of an array of type data_type, which might be compound data type. It is named
array_name and is indexed with an integer range from A to B.

Description

An array is an ordered set of fixed size containing items of a single data type. This can include compound data types.
Pseudocode arrays are indexed by either enumerations or integer ranges. An integer range is represented by the
lower inclusive end of the range, then .., then the upper inclusive end of the range.

For example:

The following example declares an array of 31 bitstrings of length 64, indexed from 0 to 30.

array bits(64) _R[0..30];

Arrays are always explicitly declared, and there is no notation for a constant literal array. Arrays always contain at
least one element data item, because:

• Enumerations always contain at least one symbolic constant named value.

• Integer ranges always contain at least one integer.

An array declared with an enumeration type as the index must be accessed using enumeration values of that
enumeration type. An array declared with an integer range type as the index must be accessed using integer values
from that inclusive range. Accessing such an array with an integer value outside of the range is a coding error.

Arrays do not usually appear directly in pseudocode. The items that syntactically look like arrays in pseudocode are
usually array-like functions such as R[i], MemU[address, size] or Elem[vector, i, size]. These functions package
up and abstract additional operations normally performed on accesses to the underlying arrays, such as register
banking, memory protection, endian-dependent byte ordering, exclusive-access housekeeping and Advanced SIMD
element processing. See Function and procedure calls on page K14-8588.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K14-8581
ID072021 Non-Confidential

Arm Pseudocode Definition
K14.4 Operators
K14.4 Operators

This section describes:

• Relational operators on page K14-8582.

• Boolean operators on page K14-8582.

• Bitstring operators on page K14-8583.

• Arithmetic operators on page K14-8583.

• The assignment operator on page K14-8584.

• Precedence rules on page K14-8586.

• Conditional expressions on page K14-8586.

• Operator polymorphism on page K14-8586.

K14.4.1 Relational operators

The following operations yield results of type boolean.

Equality and non-equality

If two variables x and y are of the same type, their values can be tested for equality by using the expression x == y
and for non-equality by using the expression x != y. In both cases, the result is of type boolean.

Both x and y must be of type bits(N), real, enumeration, boolean, or integer. Named values from an enumeration
can only be compared if they are both from the same enumeration. An exception is that a bitstring can be tested for
equality with an integer to allow a d==15 test.

A special form of comparison is defined with a bitstring literal that can contain bit values '0', '1', and 'x'. Any bit
with value 'x' is ignored in determining the result of the comparison. For example, if opcode is a 4-bit bitstring, the
expression opcode == '1x0x' matches the values ‘1000’, ‘1100’, ‘1001’, and ‘1101’. This is known as a bitmask.

Note

This special form is permitted in the implied equality comparisons in the when parts of case … of … structures.

Comparisons

If x and y are integers or reals, then x < y, x <= y, x > y, and x >= y are less than, less than or equal, greater than,
and greater than or equal comparisons between them, producing Boolean results.

Set membership with IN

<expression> IN {<set>} produces TRUE if <expression> is a member of <set>. Otherwise, it is FALSE. <set> must be
a list of expressions separated by commas.

K14.4.2 Boolean operators

If x is a Boolean expression, then !x is its logical inverse.

If x and y are Boolean expressions, then x && y is the result of ANDing them together. As in the C language, if x is
FALSE, the result is determined to be FALSE without evaluating y.

Note

This is known as short circuit evaluation.

If x and y are booleans, then x || y is the result of ORing them together. As in the C language, if x is TRUE, the result
is determined to be TRUE without evaluating y.
K14-8582 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Arm Pseudocode Definition
K14.4 Operators
Note

If x and y are booleans or Boolean expressions, then the result of x != y is the same as the result of exclusive-ORing
x and y together. The operator EOR only accepts bitstring arguments.

K14.4.3 Bitstring operators

The following operations can be applied only to bitstrings.

Logical operations on bitstrings

If x is a bitstring, NOT(x) is the bitstring of the same length obtained by logically inverting every bit of x.

If x and y are bitstrings of the same length, x AND y, x OR y, and x EOR y are the bitstrings of that same length obtained
by logically ANDing, logically ORing, and exclusive-ORing corresponding bits of x and y together.

Bitstring concatenation and slicing

If x and y are bitstrings of lengths N and M respectively, then x:y is the bitstring of length N+M constructed by
concatenating x and y in left-to-right order.

The bitstring slicing operator addresses specific bits in a bitstring. This can be used to create a new bitstring from
extracted bits or to set the value of specific bits. Its syntax is x<integer_list>, where x is the integer or bitstring
being sliced, and <integer_list> is a comma-separated list of integers enclosed in angle brackets. The length of the
resulting bitstring is equal to the number of integers in <integer_list>. In x<integer_list>, each of the integers in
<integer_list> must be:

• >= 0.

• < Len(x) if x is a bitstring.

The definition of x<integer_list> depends on whether integer_list contains more than one integer:

• If integer_list contains more than one integer, x<i, j, k,…, n> is defined to be the concatenation:

x<i> : x<j> : x<k> : … : x<n>.

• If integer_list consists of just one integer i, x<i> is defined to be:

— If x is a bitstring, '0' if bit i of x is a zero and '1' if bit i of x is a one.

— If x is an integer, and y is the unique integer in the range 0 to 2^(i+1)-1 that is congruent to x modulo
2^(i+1). Then x<i> is '0' if y < 2^i and '1' if y >= 2^i.

Loosely, this definition treats an integer as equivalent to a sufficiently long two’s complement
representation of it as a bitstring.

The notation for a range expression is i:j with i >= j is shorthand for the integers in order from i down to j, with
both end values included. For example, instr<31:28> represents instr<31, 30, 29, 28>.

x<integer_list> is assignable provided x is an assignable bitstring and no integer appears more than once in
<integer_list>. In particular, x<i> is assignable if x is an assignable bitstring and 0 <= i < Len(x).

Encoding diagrams for registers frequently show named bits or multi-bit fields. For example, the encoding diagram
for the APSR shows its bit<31> as N. In such cases, the syntax APSR.N is used as a more readable synonym for
APSR<31> as named bits can be referred to with the same syntax as referring to members of a struct. A
comma-separated list of named bits enclosed in angle brackets following the register name allows multiple bits to
be addressed simultaneously. For example, APSR.<N, C, Q> is synonymous with APSR <31, 29, 27>.

K14.4.4 Arithmetic operators

Most pseudocode arithmetic is performed on integer or real values, with operands obtained by conversions from
bitstrings and results converted back to bitstrings. As these data types are the unbounded mathematical types, no
issues arise about overflow or similar errors.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K14-8583
ID072021 Non-Confidential

Arm Pseudocode Definition
K14.4 Operators
Unary plus and minus

If x is an integer or real, then +x is x unchanged, -x is x with its sign reversed. Both are of the same type as x.

Addition and subtraction

If x and y are integers or reals, x+y and x-y are their sum and difference. Both are of type integer if x and y are both
of type integer, and real otherwise.

There are two cases where the types of x and y can be different. A bitstring and an integer can be added together to
allow the operation PC + 4. An integer can be subtracted from a bitstring to allow the operation PC - 2.

If x and y are bitstrings of the same length N, so that N = Len(x) = Len(y), then x+y and x-y are the least significant
N bits of the results of converting x and y to integers and adding or subtracting them. Signed and unsigned
conversions produce the same result:

x+y = (SInt(x) + SInt(y))<N-1:0>
= (UInt(x) + UInt(y))<N-1:0>

x-y = (SInt(x) - SInt(y))<N-1:0>
= (UInt(x) - UInt(y))<N-1:0>

If x is a bitstring of length N and y is an integer, x+y and x-y are the bitstrings of length N defined by x+y = x + y<N-1:0>
and x-y = x - y<N-1:0>. Similarly, if x is an integer and y is a bitstring of length M, x+y and x-y are the bitstrings of
length M defined by x+y = x<M-1:0> + y and x-y = x<M-1:0> - y.

Multiplication

If x and y are integers or reals, then x * y is the product of x and y. It is of type integer if x and y are both of type
integer, and real otherwise.

Division and modulo

If x and y are reals, then x/y is the result of dividing x by y, and is always of type real.

If x and y are integers, then x DIV y and x MOD y are defined by:

x DIV y = RoundDown(x/y)
x MOD y = x - y * (x DIV y)

It is a pseudocode error to use any of x/y, x MOD y, or x DIV y in any context where y can be zero.

Scaling

If x and n are of type integer, then:

• x << n = RoundDown(x * 2^n).

• x >> n = RoundDown(x * 2^(-n)).

Raising to a power

If x is an integer or a real and n is an integer, then x^n is the result of raising x to the power of n, and:

• If x is of type integer, then x^n is of type integer.

• If x is of type real, then x^n is of type real.

K14.4.5 The assignment operator

The assignment operator is the = character, which assigns the value of the right-hand side to the left-hand side. An
assignment statement takes the form:

<assignable_expression> = <expression>;

This following subsection defines valid expression syntax.
K14-8584 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Arm Pseudocode Definition
K14.4 Operators
General expression syntax

An expression is one of the following:

• A literal.

• A variable, optionally preceded by a data type name to declare its type.

• The word UNKNOWN preceded by a data type name to declare its type.

• The result of applying a language-defined operator to other expressions.

• The result of applying a function to other expressions.

Variable names normally consist of alphanumeric and underscore characters, starting with an alphabetic or
underscore character.

Each register defined in an Arm architecture specification defines a correspondingly named pseudocode bitstring
variable, and that variable has the stated behavior of the register. For example, if a bit of a register is defined as
RAZ/WI, then the corresponding bit of its variable reads as '0' and ignore writes.

An expression like bits(32) UNKNOWN indicates that the result of the expression is a value of the given type, but the
architecture does not specify what value it is and software must not rely on such values. The value produced must
not:

• Return information that cannot be accessed at the current or a lower level of privilege using instructions that
are not UNPREDICTABLE or CONSTRAINED UNPREDICTABLE and do not return UNKNOWN values,

• Be promoted as providing any useful information to software.

Note

UNKNOWN values are similar to the definition of UNPREDICTABLE, but do not indicate that the entire architectural
state becomes unspecified.

Only the following expressions are assignable. This means that these are the only expressions that can be placed on
the left-hand side of an assignment.

• Variables.

• The results of applying some operators to other expressions.

The description of each language-defined operator that can generate an assignable expression specifies the
circumstances under which it does so. For example, those circumstances might require that one or more of
the expressions the operator operates on is an assignable expression.

• The results of applying array-like functions to other expressions. The description of an array-like function
specifies the circumstances under which it can generate an assignable expression.

Note

If the right-hand side in an assignment is a function returning a tuple, an item in the assignment destination can be
written as - to indicate that the corresponding item of the assigned tuple value is discarded. For example:

(shifted, -) = LSL_C(operand, amount);

The expression on the right-hand side itself can be a tuple. For example:

(x, y) = (function_1(), function_2());

Every expression has a data type.

• For a literal, this data type is determined by the syntax of the literal.

• For a variable, there are the following possible sources for the data type

— An optional preceding data type name.

— A data type the variable was given earlier in the pseudocode by recursive application of this rule.

— A data type the variable is being given by assignment, either by direct assignment to the variable, or
by assignment to a list of which the variable is a member.

It is a pseudocode error if none of these data type sources exists for a variable, or if more than one of them
exists and they do not agree about the type.

• For a language-defined operator, the definition of the operator determines the data type.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K14-8585
ID072021 Non-Confidential

Arm Pseudocode Definition
K14.4 Operators
• For a function, the definition of the function determines the data type.

K14.4.6 Precedence rules

The precedence rules for expressions are:

1. Literals, variables and function invocations are evaluated with higher priority than any operators using their
results, but see Boolean operators on page K14-8582.

2. Operators on integers follow the normal operator precedence rules of exponentiation before multiply/divide
before add/subtract, with sequences of multiply/divides or add/subtracts evaluated left-to-right.

3. Other expressions must be parenthesized to indicate operator precedence if ambiguity is possible, but need
not be if all permitted precedence orders under the type rules necessarily lead to the same result. For example,
if i, j and k are integer variables, i > 0 && j > 0 && k > 0 is acceptable, but i > 0 && j > 0 || k > 0 is not.

K14.4.7 Conditional expressions

If x and y are two values of the same type and t is a value of type boolean, then if t then x else y is an expression
of the same type as x and y that produces x if t is TRUE and y if t is FALSE.

K14.4.8 Operator polymorphism

Operators in pseudocode can be polymorphic, with different functionality when applied to different data types. Each
resulting form of an operator has a different prototype definition. For example, the operator + has forms that act on
various combinations of integers, reals and bitstrings.

Table K14-1 on page K14-8586 summarizes the operand types valid for each unary operator and the result type.
Table K14-2 on page K14-8586 summarizes the operand types valid for each binary operator and the result type.

Table K14-1 Result and operand types permitted for unary operators

Operator Operand Type Result Type

-
integer integer

real real

NOT bits(N) bits(N)

! boolean boolean

Table K14-2 Result and operand types permitted for binary operators

Operator First operand type Second operand type Result type

==

bits(N)
integer

boolean

bits(N)

integer integer

real real

enumeration enumeration

boolean boolean

!=

bits(N) bits(N)

booleaninteger integer

real real
K14-8586 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Arm Pseudocode Definition
K14.4 Operators
<, >

<= , >=

integer integer
boolean

real real

+, -

integer integer integer

real real real

bits(N)
bits(N)

bits(N)
integer

<<, >> integer integer integer

*

integer integer integer

real real real

bits(N) bits(N) bits(N)

/ real real real

DIV integer integer integer

MOD
integer integer

integer
bits(N) integer

&&, || boolean boolean boolean

AND, OR, EOR bits(N) bits(N) bits(N)

^
integer integer integer

real integer real

Table K14-2 Result and operand types permitted for binary operators (continued)

Operator First operand type Second operand type Result type
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K14-8587
ID072021 Non-Confidential

Arm Pseudocode Definition
K14.5 Statements and control structures
K14.5 Statements and control structures

This section describes the statements and program structures available in the pseudocode:

• Statements and Indentation on page K14-8588.

• Function and procedure calls on page K14-8588.

• Conditional control structures on page K14-8590.

• Loop control structures on page K14-8591.

• Special statements on page K14-8592.

• Comments on page K14-8592.

K14.5.1 Statements and Indentation

A simple statement is either an assignment, a function call, or a procedure call. Each statement must be terminated
with a semicolon.

Indentation normally indicates the structure in compound statements. The statements contained in structures such
as if … then … else … or procedure and function definitions are indented more deeply than the statement structure
itself. The end of a compound statement structure and their end is indicated by returning to the original indentation
level or less.

Indentation is normally done by four spaces for each level. Standard indentation uses four spaces for each level of
indent.

K14.5.2 Function and procedure calls

This section describes how functions and procedures are defined and called in the pseudocode.
K14-8588 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Arm Pseudocode Definition
K14.5 Statements and control structures
Procedure and function definitions

A procedure definition has the form:

<procedure name>(<argument prototypes>)
<statement 1>;
<statement 2>;
…
<statement n>;

where <argument prototypes> consists of zero or more argument definitions, separated by commas. Each argument
definition consists of a type name followed by the name of the argument.

Note

This first definition line is not terminated by a semicolon. This distinguishes it from a procedure call.

A function definition is similar, but also declares the return type of the function:

<return type> <function name>(<argument prototypes>)
<statement 1>;
<statement 2>;
…
<statement n>;

Note

A function or procedure name can include a ".". This is a convention used for functions that have similar but
different behaviors in AArch32 and AArch64 states.

Array-like functions are similar, but are written with square brackets and have two forms. These two forms exist
because reading from and writing to an array element require different functions. They are frequently used in
memory operations. An array-like function definition with a return type is equivalent to reading from an array. For
example:

<return type> <function name>[<argument prototypes>]
<statement 1>;
<statement 2>;
…
<statement n>;

Its related function definition with no return type is equivalent to writing to an array. For example:

<function name>[<argument prototypes>] = <value prototype>
<statement 1>;
<statement 2>;
…
<statement n>;

The value prototype determines what data type can be written to the array. The two related functions must share the
same name, but the value prototype and return type can be different.

Procedure calls

A procedure call has the form:

<procedure_name>(<arguments>);

Return statements

A procedure return has the form:

return;

A function return has the form:
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K14-8589
ID072021 Non-Confidential

Arm Pseudocode Definition
K14.5 Statements and control structures
return <expression>;

where <expression> is of the type declared in the function prototype line.

K14.5.3 Conditional control structures

This section describes how conditional control structures are used in the pseudocode.

if … then … else …

In addition to being a ternary operator, a multi-line if … then … else … structure can act as a control structure and
has the form:

if <boolean_expression> then
<statement 1>;
<statement 2>;
…
<statement n>;

elsif <boolean_expression> then
<statement a>;
<statement b>;
…
<statement z>;

else
<statement A>;
<statement B>;
…
<statement Z>;

The block of lines consisting of elsif and its indented statements is optional, and multiple elsif blocks can be used.

The block of lines consisting of else and its indented statements is optional.

Abbreviated one-line forms can be used when the then part, and in the else part if it is present, contain only simple
statements such as:

if <boolean_expression> then <statement 1>;
if <boolean_expression> then <statement 1>; else <statement A>;
if <boolean_expression> then <statement 1>; <statement 2>; else <statement A>;

Note

In these forms, <statement 1>, <statement 2>, and <statement A> must be terminated by semicolons. This, and the
fact that the else part is optional, distinguish its use as a control structure from its use as a ternary operator.

case … of …

A case … of … structure has the form:

case <expression> of
when <literal values1>

<statement 1>;
<statement 2>;
…
<statement n>;

when <literal values2>
<statement 1>;
<statement 2>;
…
<statement n>;

… more "when" groups if required …

otherwise
K14-8590 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Arm Pseudocode Definition
K14.5 Statements and control structures
<statement A>;
<statement B>;
…
<statement Z>;

In this structure, <literal values1> and <literal values2> consist of literal values of the same type as <expression>,
separated by commas. There can be additional when groups in the structure. Abbreviated one line forms of when and
otherwise parts can be used when they contain only simple statements.

If <expression> has a bitstring type, the literal values can also include bitstring literals containing 'x' bits, known
as bitmasks. For details, see Equality and non-equality on page K14-8582.

K14.5.4 Loop control structures

This section describes the three loop control structures used in the pseudocode.

repeat … until …

A repeat … until … structure has the form:

repeat
<statement 1>;
<statement 2>;
…
<statement n>;

until <boolean_expression>;

It executes the statement block at least once, and the loop repeats until <boolean expression> evaluates to TRUE.
Variables explicitly declared inside the loop body have scope local to that loop and might not be accessed outside
the loop body.

while … do

A while … do structure has the form:

while <boolean_expression> do
<statement 1>;
<statement 2>;
…
<statement n>;

It begins executing the statement block only if the Boolean expression is true. The loop then runs until the
expression is false.

for …

A for … structure has the form:

for <assignable_expression> = <integer_expr1> to <integer_expr2>
<statement 1>;
<statement 2>;
…
<statement n>;

The <assignable_expression> is initialized to <integer_expr1> and compared to <integer_expr2>. If <integer_expr1>
is less than <integer_expr2>, the loop body is executed and the <assignable_expression> incremented by one. This
repeats until <assignable expression> is more than or equal to <integer_expr2>.

There is an alternate form:

for <assignable_expression> = <integer_expr1> downto <integer_expr2>

where <integer_expr1> is decremented after the loop body executes and continues until <assignable expression> is
less than or equal than <integer_expr2>.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K14-8591
ID072021 Non-Confidential

Arm Pseudocode Definition
K14.5 Statements and control structures
K14.5.5 Special statements

This section describes statements with particular architecturally defined behaviors.

UNDEFINED

This subsection describes the statement:

UNDEFINED;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is that the Undefined
Instruction exception is taken.

UNPREDICTABLE

This subsection describes the statement:

UNPREDICTABLE;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is UNPREDICTABLE.

SEE…

This subsection describes the statement:

SEE <reference>;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is that nothing occurs as a
result of the current pseudocode because some other piece of pseudocode defines the required behavior. The
<reference> indicates where that other pseudocode can be found.

It usually refers to another instruction, but can also refer to another encoding or note of the same instruction.

IMPLEMENTATION_DEFINED

This subsection describes the statement:

IMPLEMENTATION_DEFINED {"<text>"};

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is IMPLEMENTATION
DEFINED. An optional <text> field can give more information.

K14.5.6 Comments

The pseudocode supports two styles of comments:

• // starts a comment that is terminated by the end of the line.

• /* starts a comment that is terminated by */.

 /**/ statements might not be nested, and the first */ ends the comment.

Note

Comment lines do not require a terminating semicolon.
K14-8592 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Arm Pseudocode Definition
K14.6 Built-in functions
K14.6 Built-in functions

This section describes:

• Bitstring manipulation functions on page K14-8593.

• Arithmetic functions on page K14-8594.

K14.6.1 Bitstring manipulation functions

The following bitstring manipulation functions are defined:

Bitstring length and most significant bit

If x is a bitstring:

• The bitstring length function Len(x) returns the length of x as an integer.

Bitstring concatenation and replication

If x is a bitstring and n is an integer with n >= 0:

• Replicate(x, n) is the bitstring of length n*Len(x) consisting of n copies of x concatenated together.

• Zeros(n) = Replicate('0', n).

• Ones(n) = Replicate('1', n).

Bitstring count

If x is a bitstring, BitCount(x) is an integer result equal to the number of bits of x that are ones.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K14-8593
ID072021 Non-Confidential

Arm Pseudocode Definition
K14.6 Built-in functions
Testing a bitstring for being all zero or all ones

If x is a bitstring:

• IsZero(x) produces TRUE if all of the bits of x are zeros and FALSE if any of them are ones

• IsZeroBit(x) produces '1' if all of the bits of x are zeros and '0' if any of them are ones.

IsOnes(x) and IsOnesBit(x) work in the corresponding ways. This means:

IsZero(x) = (BitCount(x) == 0)
IsOnes(x) = (BitCount(x) == Len(x))
IsZeroBit(x) = if IsZero(x) then '1' else '0'
IsOnesBit(x) = if IsOnes(x) then '1' else '0'

Lowest and highest set bits of a bitstring

If x is a bitstring, and N = Len(x):

• LowestSetBit(x) is the minimum bit number of any of the bits of x that are ones. If all of its bits are zeros,
LowestSetBit(x) = N.

• HighestSetBit(x) is the maximum bit number of any of the bits of x that are ones. If all of its bits are zeros,
HighestSetBit(x) = -1.

• CountLeadingZeroBits(x) is the number of zero bits at the left end of x, in the range 0 to N. This means:

CountLeadingZeroBits(x) = N - 1 - HighestSetBit(x).

• CountLeadingSignBits(x) is the number of copies of the sign bit of x at the left end of x, excluding the sign
bit itself, and is in the range 0 to N-1. This means:

CountLeadingSignBits(x) = CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>).

Zero-extension and sign-extension of bitstrings

If x is a bitstring and i is an integer, then ZeroExtend(x, i) is x extended to a length of i bits, by adding sufficient
zero bits to its left. That is, if i == Len(x), then ZeroExtend(x, i) = x, and if i > Len(x), then:

ZeroExtend(x, i) = Replicate('0', i-Len(x)) : x

If x is a bitstring and i is an integer, then SignExtend(x, i) is x extended to a length of i bits, by adding sufficient
copies of its leftmost bit to its left. That is, if i == Len(x), then SignExtend(x, i) = x, and if i > Len(x), then:

SignExtend(x, i) = Replicate(TopBit(x), i-Len(x)) : x

It is a pseudocode error to use either ZeroExtend(x, i) or SignExtend(x, i) in a context where it is possible that
i < Len(x).

Converting bitstrings to integers

If x is a bitstring, SInt() is the integer whose two’s complement representation is x.

UInt() is the integer whose unsigned representation is x.

Int(x, unsigned) returns either SInt(x) or UInt(x) depending on the value of its second argument.

K14.6.2 Arithmetic functions

This section defines built-in arithmetic functions.

Absolute value

If x is either of type real or integer, Abs(x) returns the absolute value of x. The result is the same type as x.
K14-8594 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Arm Pseudocode Definition
K14.6 Built-in functions
Rounding and aligning

If x is a real:

• RoundDown(x) produces the largest integer n such that n <= x.

• RoundUp(x) produces the smallest integer n such that n >= x.

• RoundTowardsZero(x) produces:

— RoundDown(x) if x > 0.0.

— 0 if x == 0.0.

— RoundUp(x) if x < 0.0.

If x and y are both of type integer, Align(x, y) = y * (x DIV y), and is of type integer.

If x is of type bitstring and y is of type integer, Align(x, y) = (Align(UInt(x), y))<Len(x)-1:0>, and is a bitstring
of the same length as x.

It is a pseudocode error to use either form of Align(x, y) in any context where y can be 0. In practice, Align(x, y)
is only used with y a constant power of two, and the bitstring form used with y = 2^n has the effect of producing its
argument with its n low-order bits forced to zero.

Maximum and minimum

If x and y are integers or reals, then Max(x, y) and Min(x, y) are their maximum and minimum respectively. x and
y must both be of type integer or of type real. The function returns a value of the same type as its operands.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K14-8595
ID072021 Non-Confidential

Arm Pseudocode Definition
K14.7 Miscellaneous helper procedures and functions
K14.7 Miscellaneous helper procedures and functions

This section lists the prototypes of miscellaneous helper procedures and functions used by the pseudocode, together
with a brief description of the effect of the procedure or function. The pseudocode does not define the operation of
these helper procedures and functions.

Note

Chapter J1 Armv8 Pseudocode also has an entry for each of these functions, but currently these entries do not say
anything about the effect of the function. When this information is added in Chapter J1, this section will be removed
from the manual.

K14.7.1 EndOfInstruction()

This procedure terminates processing of the current instruction.

EndOfInstruction();

K14.7.2 Hint_Debug()

This procedure supplies a hint to the debug system.

Hint_Debug(bits(4) option);

K14.7.3 Hint_PreloadData()

This procedure performs a preload data hint.

Hint_PreloadData(bits(32) address);

K14.7.4 Hint_PreloadDataForWrite()

This procedure performs a preload data hint with a probability that the use will be for a write.

Hint_PreloadDataForWrite(bits(32) address);

K14.7.5 Hint_PreloadInstr()

This procedure performs a preload instructions hint.

Hint_PreloadInstr(bits(32) address);

K14.7.6 Hint_Yield()

This procedure performs a Yield hint.

Hint_Yield();

K14.7.7 IsExternalAbort()

This function returns TRUE if the abort currently being processed is an External abort and FALSE otherwise. It is used
only in exception entry pseudocode.

boolean IsExternalAbort(Fault type)
 assert type != Fault_None;

boolean IsExternalAbort(FaultRecord fault);
K14-8596 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Arm Pseudocode Definition
K14.7 Miscellaneous helper procedures and functions
K14.7.8 IsAsyncAbort()

This function returns TRUE if the abort currently being processed is an asynchronous abort, and FALSE otherwise. It
is used only in exception entry pseudocode.

boolean IsAsyncAbort(Fault type)
 assert type != Fault_None;

boolean IsAsyncAbort(FaultRecord fault);

K14.7.9 LSInstructionSyndrome()

This function returns the extended syndrome information for a fault reported in the HSR.

bits(11) LSInstructionSyndrome();

K14.7.10 ProcessorID()

This function returns an integer that uniquely identifies the executing PE in the system.

integer ProcessorID();

K14.7.11 RemapRegsHaveResetValues()

This function returns TRUE if the remap registers PRRR and NMRR have their IMPLEMENTATION DEFINED reset
values, and FALSE otherwise.

boolean RemapRegsHaveResetValues();

K14.7.12 ResetControlRegisters()

This function resets the System registers and memory-mapped control registers that have architecturally defined
reset values to those values. For more information about the affected registers, see:

• PE state on reset to AArch64 state on page D1-2472.

• PE state on reset into AArch32 state on page G1-6100.

AArch64.ResetControlRegisters(boolean ResetIsCold)
AArch32.ResetControlRegisters(boolean ResetIsCold)

K14.7.13 ThisInstr()

This function returns the bitstring encoding of the currently executing instruction.

bits(32) ThisInstr();

Note

Currently, this function is used only on 32-bit instruction encodings.

K14.7.14 ThisInstrLength()

This function returns the length, in bits, of the current instruction. This means it returns 32 or 16:

integer ThisInstrLength();
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K14-8597
ID072021 Non-Confidential

Arm Pseudocode Definition
K14.8 Arm pseudocode definition index
K14.8 Arm pseudocode definition index

This section contains the following tables:

• Table K14-3 on page K14-8598 which contains the pseudocode data types.

• Table K14-4 on page K14-8598 which contains the pseudocode operators.

• Table K14-5 on page K14-8599 which contains the pseudocode keywords and control structures.

• Table K14-6 on page K14-8600 which contains the statements with special behaviors.

Table K14-3 Index of pseudocode data types

Keyword Meaning

array Type name for the array type

bit Keyword equivalent to bits(1)

bits(N) Type name for the bitstring of length N data type

boolean Type name for the Boolean data type

enumeration Keyword to define a new enumeration type

integer Type name for the integer data type

real Type name for the real data type

type Keyword to define a new structure

Table K14-4 Index of pseudocode operators

Operator Meaning

- Unary minus on integers or reals

Subtraction of integers, reals, and bitstrings

Used in the left-hand side of an assignment or a tuple to discard
the result

+ Unary plus on integers or reals

Addition of integers, reals, and bitstrings

. Extract named member from a list

Extract named bit or field from a register

: Bitstring concatenation

Integer range in bitstring extraction operator

! Boolean NOT

!= Comparison for inequality

(…) Around arguments of procedure or function

[…] Around array index

Around arguments of array-like function

* Multiplication of integers, reals, and bitstrings

/ Division of reals
K14-8598 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Arm Pseudocode Definition
K14.8 Arm pseudocode definition index
&& Boolean AND

< Less than comparison of integers and reals

<…> Slicing of specified bits of bitstring or integer

<< Multiply integer by power of 2

<= Less than or equal comparison of integers and reals

= Assignment operator

== Comparison for equality

> Greater than comparison of integers and reals

>= Greater than or equal comparison of integers and reals

>> Divide integer by power of 2

|| Boolean OR

^ Exponential operator

AND Bitwise AND of bitstrings

DIV Quotient from integer division

EOR Bitwise EOR of bitstrings

IN Tests membership of a certain expression in a set of values

MOD Remainder from integer division

NOT Bitwise inversion of bitstrings

OR Bitwise OR of bitstrings

case … of … Control structure for the

if … then … else … Condition expression selecting between two values

Table K14-5 Index of pseudocode keywords and control structures

Operator Meaning

/*…*/ Comment delimiters

// Introduces comment terminated by end of line

FALSE One of two values a Boolean can take (other than TRUE)

for … = …to … Loop control structure, counting up from the initial value to the
upper limit

for … = … downto … Loop control structure, counting down from the initial value to
the lower limit

if … then … else … Conditional control structure

otherwise Introduces default case in case … of … control structure

Table K14-4 Index of pseudocode operators (continued)

Operator Meaning
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K14-8599
ID072021 Non-Confidential

Arm Pseudocode Definition
K14.8 Arm pseudocode definition index
repeat … until … Loop control structure that runs at least once until the
termination condition is satisfied

return Procedure or function return

TRUE One of two values a Boolean can take (other than FALSE)

when Introduces specific case in case … of … control structure

while … do … Loop control structure that runs until the termination condition
is satisfied

Table K14-6 Index of special statements

Keyword Meaning

IMPLEMENTATION_DEFINED Describes IMPLEMENTATION DEFINED behavior

SEE Points to other pseudocode to use instead

UNDEFINED Cause Undefined Instruction exception

UNKNOWN Unspecified value

UNPREDICTABLE Unspecified behavior

Table K14-5 Index of pseudocode keywords and control structures (continued)

Operator Meaning
K14-8600 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Appendix K15
Registers Index

This appendix provides indexes to the register descriptions in this manual. It contains the following sections:

• Introduction and register disambiguation on page K15-8602.

• Alphabetical index of AArch64 registers and System instructions on page K15-8607.

• Functional index of AArch64 registers and System instructions on page K15-8624.

• Alphabetical index of AArch32 registers and System instructions on page K15-8640.

• Functional index of AArch32 registers and System instructions on page K15-8650.

• Alphabetical index of memory-mapped registers on page K15-8662.

• Functional index of memory-mapped registers on page K15-8669.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8601
ID072021 Non-Confidential

Registers Index
K15.1 Introduction and register disambiguation
K15.1 Introduction and register disambiguation

In some sections of this manual, registers are referred to by a general name, where the description applies to more
than one context. Generally, this is one of the following:

• The description applies to both AArch32 state and AArch64 state, and therefore the register names could
apply to either AArch32 System registers or AArch64 System registers.

• The description applies to multiple Exception levels, and therefore at a particular Exception level the register
names need to take the appropriate Exception. level suffix, _EL0, _EL1, _EL2, or _EL3.

The following sections disambiguate the general register names:

• Register name disambiguation by Execution state on page K15-8602.

• Register name disambiguation by Exception level on page K15-8606.

K15.1.1 Register name disambiguation by Execution state

Table K15-1 on page K15-8602 disambiguates the general names of the registers by Execution state.

Table K15-1 Disambiguation of general names of registers by Execution state

General name Short description AArch64 register AArch32 register

CONTEXTIDR Context ID CONTEXTIDR_EL1 CONTEXTIDR

DBGAUTHSTATUS Debug Authentication Status DBGAUTHSTATUS_EL1 DBGAUTHSTATUS

DBGBCR Debug Breakpoint Control Registers DBGBCR<n>_EL1 DBGBCR<n>

DBGBVR Debug Breakpoint Value Registers DBGBVR<n>_EL1 DBGBVR<n>

DBGBXVR<n>

DBGCLAIMCLR Debug CLAIM Tag Clear register DBGCLAIMCLR_EL1 DBGCLAIMCLR

DBGCLAIMSET Debug CLAIM Tag Set register DBGCLAIMSET_EL1 DBGCLAIMSET

DBGDTRRX Debug Data Transfer Register, Receive DBGDTRRX_EL0 DBGDTRRXint

DBGDTRTX Debug Data Transfer Register, Transmit DBGDTRTX_EL0 DBGDTRTXint

DBGPRCR Debug Power Control Register DBGPRCR_EL1 DBGPRCR

DBGVCR Debug Vector Catch Register DBGVCR32_EL2 DBGVCR

DBGWCR Debug Watchpoint Control Registers DBGWCR<n>_EL1 DBGWCR<n>

DBGWVR Debug Watchpoint Value Registers DBGWVR<n>_EL1 DBGWVR<n>

DCCINT Debug Comms Channel Interrupt Enable
Register

MDCCINT_EL1 DBGDCCINT

DCCSR Debug Comms Channel Status Register MDCCSR_EL0 DBGDSCRint

DLR Debug Link Register DLR_EL0[31:0] DLR

DSCR Debug System Control Register MDSCR_EL1 DBGDSCRext

DSPSR Debug Saved PE State Register DSPSR_EL0 DSPSR

FAR Fault Address Register FAR_EL1

FAR_EL2

FAR_EL3

HPFAR_EL2

DFAR, IFAR

HDFAR, HIFAR

FAR_EL3

HPFAR
K15-8602 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.1 Introduction and register disambiguation
HCR Hypervisor Configuration Register HCR_EL2 HCR

HCR2

HDCR Hyp or EL2 Debug Control Register MDCR_EL2 HDCR

HSCTLR Hypervisor System Control Register SCTLR_EL2 HSCTLR

HTTBR EL2 Translation Table Base Register TTBR0_EL2 HTTBR

ISR Interrupt Status Register ISR_EL1 ISR

MPIDR Multiprocessor Affinity Register MPIDR_EL1 MPIDR

OSDLR OS Double-Lock Register OSDLR_EL1 DBGOSDLR

OSDTRRX OS Lock Data Transfer Register, Receive OSDTRRX_EL1 DBGDTRRXext

OSDTRTX OS Lock Data Transfer Register, Transmit OSDTRTX_EL1 DBGDTRTXext

OSECCR OS Lock Exception Catch Control Register OSECCR_EL1 DBGOSECCR

OSLAR OS Lock Access Register OSLAR_EL1 DBGOSLAR

OSLSR OS Lock Status Register OSLSR_EL1 DBGOSLSR

PMMIR Performance Monitors Machine Identification
Register

PMMIR_EL1 PMMIR

SCR Secure Configuration Register SCR_EL3 SCR

SCTLR System Control Register SCTLR_EL1

SCTLR_EL2

SCTLR_EL3

SCTLR (NS)

HSCTLR

SCTLR (S)

SDCR Secure or EL3 Debug Configuration Register MDCR_EL3 SDCR

SDER Secure Debug Enable Register SDER32_EL3 SDER

SPSR Saved Program Status Register SPSR_EL1

SPSR_EL2

SPSR_EL3

SPSR (general description)

SPSR_abt

SPSR_fiq

SPSR_hyp

SPSR_irq

SPSR_mon

SPSR_svc

SPSR_und

TCR Translation Control Register TCR_EL1

TCR_EL2

TCR_EL3

VTCR_EL2

TTBCR(NS)

HTCR

TTBCR(S)

VTCR

TTBR Translation Table Base Register TTBR0_EL1

TTBR0_EL2

TTBR0_EL3

TTBR1_EL1

VTTBR_EL2

TTBR0

TTBR1

HTTBR

VTTBR

Table K15-1 Disambiguation of general names of registers by Execution state (continued)

General name Short description AArch64 register AArch32 register
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8603
ID072021 Non-Confidential

Registers Index
K15.1 Introduction and register disambiguation
Table K15-2 on page K15-8604 disambiguates the general names of the System registers that provide access to the
Performance Monitors by Execution state.

VBAR Vector Base Address Register VBAR_EL1

VBAR_EL2

VBAR_EL3

VBAR

HVBAR

MVBAR

VCR PL1&0 stage 2 Translation Control Register VTCR_EL2 VTCR

VTTBR PL1&0 stage 2 Translation Table Base Register VTTBR_EL2 VTTBR

Table K15-1 Disambiguation of general names of registers by Execution state (continued)

General name Short description AArch64 register AArch32 register

Table K15-2 Disambiguation of general names of the Performance Monitors System registers by Execution state

General name Short description AArch64 register AArch32 register

PMCCFILTR Cycle Count Filter Register PMCCFILTR_EL0 PMCCFILTR

PMCCNTR Cycle Count Register PMCCNTR_EL0 PMCCNTR

PMCEID0 Performance Monitors Cycle Count Filter Register 0 PMCEID0_EL0 PMCEID0

PMCEID1 Performance Monitors Cycle Count Filter Register 1 PMCEID1_EL0 PMCEID1

PMCNTENCLR Performance Monitors Count Enable Clear register PMCNTENCLR_EL0 PMCNTENCLR

PMCNTENSET Performance Monitors Count Enable Set register PMCNTENSET_EL0 PMCNTENSET

PMCR Performance Monitors Control Register PMCR_EL0 PMCR

PMEVCNTR<n> Performance Monitors Event Count Registers, n = 0-30 PMEVCNTR<n>_EL0 PMEVCNTR<n>

PMEVTYPER<n> Performance Monitors Event Type Registers, n = 0-30 PMEVTYPER<n>_EL0 PMEVTYPER<n>

PMINTENCLR Performance Monitors Interrupt Enable Clear register PMINTENCLR_EL1 PMINTENCLR

PMINTENSET Performance Monitors Interrupt Enable Set register PMINTENSET_EL1 PMINTENSET

PMMIR Performance Monitors Machine Identification Register PMMIR_EL1 PMMIR

PMOVSCLR Performance Monitors Overflow Flag Status Register PMOVSCLR_EL0 PMOVSR

PMOVSSET Performance Monitors Overflow Flag Status Set register PMOVSSET_EL0 PMOVSSET

PMSELR Performance Monitors Event Counter Selection Register PMSELR_EL0 PMSELR

PMSWINC Performance Monitors Software Increment register PMSWINC_EL0 PMSWINC

PMUSERENR Performance Monitors User Enable Register PMUSERENR_EL0 PMUSERENR

PMXEVCNTR Performance Monitors Selected Event Count Register PMXEVCNTR_EL0 PMXEVCNTR

PMXEVTYPER Performance Monitors Selected Event Type Register PMXEVTYPER_EL0 PMXEVTYPER
K15-8604 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.1 Introduction and register disambiguation
Table K15-3 on page K15-8605 disambiguates the general names of the System registers that provide access to the
Activity Monitors by Execution state.

Table K15-4 on page K15-8605 disambiguates the general names of the System registers that provide access to the
Generic Timer System by Execution state.

Table K15-3 Disambiguation of general names of the Activity Monitors System registers by Execution state

General name Short description AArch64 register AArch32 register

AMCFGR Activity Monitors Configuration Register AMCFGR_EL0 AMCFGR

AMCGCR Activity Monitors Counter Group Configuration
Register

AMCGCR_EL0 AMCGCR

AMCNTENCLR0 Activity Monitors Count Enable Clear Register 0 AMCNTENCLR0_EL0 AMCNTENCLR0

AMCNTENCLR1 Activity Monitors Count Enable Clear Register 1 AMCNTENCLR1_EL0 AMCNTENCLR1

AMCNTENSET0 Activity Monitors Count Enable Set Register 0 AMCNTENSET0_EL0 AMCNTENSET0

AMCNTENSET1 Activity Monitors Count Enable Set Register 1 AMCNTENSET1_EL0 AMCNTENSET1

AMCR Activity Monitors Control Register AMCR_EL0 AMCR

AMEVCNTR0<n> Activity Monitors Event Counter Registers 0, n = 0-15 AMEVCNTR0<n>_EL0 AMEVCNTR0<n>

AMEVCNTR1<n> Activity Monitors Event Counter Registers 1, n = 0-15 AMEVCNTR1<n>_EL0 AMEVCNTR1<n>

AMEVTYPER0<n> Activity Monitors Event Type Registers 0, n = 0-15 AMEVTYPER0<n>_EL0 AMEVTYPER0<n>

AMEVTYPER1<n> Activity Monitors Event Type Registers 1, n = 0-15 AMEVTYPER1<n>_EL0 AMEVTYPER1<n>

AMUSERENR Activity Monitors User Enable Register AMUSERENR_EL0 AMUSERENR

Table K15-4 Disambiguation of general names of the Generic Timer System registers by Execution state

General name Short description AArch64 register AArch32 register

CNTFRQ Counter-timer Frequency register CNTFRQ_EL0 CNTFRQ

CNTHCTL Counter-timer Hypervisor Control register CNTHCTL_EL2 CNTHCTL

CNTHP_CTL Counter-timer Hypervisor Physical Timer Control register CNTHP_CTL_EL2 CNTHP_CTL

CNTHP_CVAL Counter-timer Hypervisor Physical Timer CompareValue
register

CNTHP_CVAL_EL2 CNTHP_CVAL

CNTHP_TVAL Counter-timer Hypervisor Physical Timer TimerValue register CNTHP_TVAL_EL2 CNTHP_TVAL

CNTKCTL Counter-timer Kernel Control register CNTKCTL_EL1 CNTKCTL

CNTP_CTL Counter-timer Physical Timer Control register CNTP_CTL_EL0 CNTP_CTL

CNTP_CVAL Counter-timer Physical Timer CompareValue register CNTP_CVAL_EL0 CNTP_CVAL

CNTP_TVAL Counter-timer Physical Timer TimerValue register CNTP_TVAL_EL0 CNTP_TVAL

CNTPCT Counter-timer Physical Count register CNTPCT_EL0 CNTPCT

CNTPS_CTL Counter-timer Physical Secure Timer Control register CNTPS_CTL_EL1 -

CNTPS_CVAL Counter-timer Physical Secure Timer CompareValue register CNTPS_CVAL_EL1 -

CNTPS_TVAL Counter-timer Physical Secure Timer TimerValue register CNTPS_TVAL_EL1 -
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8605
ID072021 Non-Confidential

Registers Index
K15.1 Introduction and register disambiguation
K15.1.2 Register name disambiguation by Exception level

Table K15-5 on page K15-8606 disambiguates the general names of the AArch64 System registers by Exception
level.

CNTV_CTL Counter-timer Virtual Timer Control register CNTV_CTL_EL0 CNTV_CTL

CNTV_CVAL Counter-timer Virtual Timer CompareValue register CNTV_CVAL_EL0 CNTV_CVAL

CNTV_TVAL Counter-timer Virtual Timer TimerValue register CNTV_TVAL_EL0 CNTV_TVAL

CNTVCT Counter-timer Virtual Count register CNTVCT_EL0 CNTVCT

CNTVOFF Counter-timer Virtual Offset register CNTVOFF_EL2 CNTVOFF

Table K15-4 Disambiguation of general names of the Generic Timer System registers by Execution state (continued)

General name Short description AArch64 register AArch32 register

Table K15-5 Disambiguation of AArch64 System registers by Exception level

General form EL0 EL1 EL2 EL3

AFSR0_ELx - AFSR0_EL1 AFSR0_EL2 AFSR0_EL3

AFSR1_ELx - AFSR1_EL1 AFSR1_EL2 AFSR1_EL3

CONTEXTIDR_ELx - CONTEXTIDR_EL1 CONTEXTIDR_EL2 -

CPTR_ELx - - CPTR_EL2 CPTR_EL3

ELR_ELx - ELR_EL1 ELR_EL2 ELR_EL3

ESR_ELx - ESR_EL1 ESR_EL2 ESR_EL3

FAR_ELx - FAR_EL1 FAR_EL2 FAR_EL3

MAIR_ELx - MAIR_EL1 MAIR_EL2 MAIR_EL3

RMR_ELx - RMR_EL1 RMR_EL2 RMR_EL3

RVBAR_ELx - RVBAR_EL1 RVBAR_EL2 RVBAR_EL3

SCTLR_ELx - SCTLR_EL1 SCTLR_EL2 SCTLR_EL3

SCXTNUM_ELx SCXTNUM_EL0 SCXTNUM_EL1 SCXTNUM_EL2 SCXTNUM_EL3

SP_ELx SP_EL0 SP_EL1 SP_EL2 SP_EL3

SPSR_ELx - SPSR_EL1 SPSR_EL2 SPSR_EL3

TCR_ELx - TCR_EL1 TCR_EL2 TCR_EL3

TFSR_ELx TFSRE0_EL1 TFSR_EL1 TFSR_EL2 TFSR_EL3

TTBR0_ELx - TTBR0_EL1 TTBR0_EL2 TTBR0_EL3

TTBR1_ELx - TTBR1_EL1 - -

VBAR_ELx - VBAR_EL1 VBAR_EL2 VBAR_EL3
K15-8606 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.2 Alphabetical index of AArch64 registers and System instructions
K15.2 Alphabetical index of AArch64 registers and System instructions

This section is an index of AArch64 registers and System instructions in alphabetical order.

Table K15-6 Alphabetical index of AArch64 registers and System instructions

Register Description, see

ACCDATA_EL1 ACCDATA_EL1, Accelerator Data on page D13-3050

ACTLR_EL1 ACTLR_EL1, Auxiliary Control Register (EL1) on page D13-3052

ACTLR_EL2 ACTLR_EL2, Auxiliary Control Register (EL2) on page D13-3054

ACTLR_EL3 ACTLR_EL3, Auxiliary Control Register (EL3) on page D13-3056

AFSR0_EL1 AFSR0_EL1, Auxiliary Fault Status Register 0 (EL1) on page D13-3058

AFSR0_EL2 AFSR0_EL2, Auxiliary Fault Status Register 0 (EL2) on page D13-3061

AFSR0_EL3 AFSR0_EL3, Auxiliary Fault Status Register 0 (EL3) on page D13-3064

AFSR1_EL1 AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1) on page D13-3066

AFSR1_EL2 AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2) on page D13-3069

AFSR1_EL3 AFSR1_EL3, Auxiliary Fault Status Register 1 (EL3) on page D13-3072

AIDR_EL1 AIDR_EL1, Auxiliary ID Register on page D13-3074

AMAIR_EL1 AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1) on
page D13-3075

AMAIR_EL2 AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2) on
page D13-3078

AMAIR_EL3 AMAIR_EL3, Auxiliary Memory Attribute Indirection Register (EL3) on
page D13-3081

AMCFGR_EL0 AMCFGR_EL0, Activity Monitors Configuration Register on page D13-4002

AMCG1IDR_EL0 AMCG1IDR_EL0, Activity Monitors Counter Group 1 Identification Register on
page D13-4005

AMCGCR_EL0 AMCGCR_EL0, Activity Monitors Counter Group Configuration Register on
page D13-4007

AMCNTENCLR0_EL0 AMCNTENCLR0_EL0, Activity Monitors Count Enable Clear Register 0 on
page D13-4009

AMCNTENCLR1_EL0 AMCNTENCLR1_EL0, Activity Monitors Count Enable Clear Register 1 on
page D13-4012

AMCNTENSET0_EL0 AMCNTENSET0_EL0, Activity Monitors Count Enable Set Register 0 on
page D13-4015

AMCNTENSET1_EL0 AMCNTENSET1_EL0, Activity Monitors Count Enable Set Register 1 on
page D13-4018

AMCR_EL0 AMCR_EL0, Activity Monitors Control Register on page D13-4021

AMEVCNTR0<n>_EL0 AMEVCNTR0<n>_EL0, Activity Monitors Event Counter Registers 0, n = 0 - 3 on
page D13-4024

AMEVCNTR1<n>_EL0 AMEVCNTR1<n>_EL0, Activity Monitors Event Counter Registers 1, n = 0 - 15
on page D13-4027
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8607
ID072021 Non-Confidential

Registers Index
K15.2 Alphabetical index of AArch64 registers and System instructions
AMEVCNTVOFF0<n>_EL2 AMEVCNTVOFF0<n>_EL2, Activity Monitors Event Counter Virtual Offset
Registers 0, n = 0 - 15 on page D13-4030

AMEVCNTVOFF1<n>_EL2 AMEVCNTVOFF1<n>_EL2, Activity Monitors Event Counter Virtual Offset
Registers 1, n = 0 - 15 on page D13-4032

AMEVTYPER0<n>_EL0 AMEVTYPER0<n>_EL0, Activity Monitors Event Type Registers 0, n = 0 - 3 on
page D13-4034

AMEVTYPER1<n>_EL0 AMEVTYPER1<n>_EL0, Activity Monitors Event Type Registers 1, n = 0 - 15 on
page D13-4036

AMUSERENR_EL0 AMUSERENR_EL0, Activity Monitors User Enable Register on page D13-4039

APDAKeyHi_EL1 APDAKeyHi_EL1, Pointer Authentication Key A for Data (bits[127:64]) on
page D13-3083

APDAKeyLo_EL1 APDAKeyLo_EL1, Pointer Authentication Key A for Data (bits[63:0]) on
page D13-3085

APDBKeyHi_EL1 APDBKeyHi_EL1, Pointer Authentication Key B for Data (bits[127:64]) on
page D13-3087

APDBKeyLo_EL1 APDBKeyLo_EL1, Pointer Authentication Key B for Data (bits[63:0]) on
page D13-3089

APGAKeyHi_EL1 APGAKeyHi_EL1, Pointer Authentication Key A for Code (bits[127:64]) on
page D13-3091

APGAKeyLo_EL1 APGAKeyLo_EL1, Pointer Authentication Key A for Code (bits[63:0]) on
page D13-3093

APIAKeyHi_EL1 APIAKeyHi_EL1, Pointer Authentication Key A for Instruction (bits[127:64]) on
page D13-3095

APIAKeyLo_EL1 APIAKeyLo_EL1, Pointer Authentication Key A for Instruction (bits[63:0]) on
page D13-3097

APIBKeyHi_EL1 APIBKeyHi_EL1, Pointer Authentication Key B for Instruction (bits[127:64]) on
page D13-3099

APIBKeyLo_EL1 APIBKeyLo_EL1, Pointer Authentication Key B for Instruction (bits[63:0]) on
page D13-3101

AT S12E0R AT S12E0R, Address Translate Stages 1 and 2 EL0 Read on page C5-568

AT S12E0W AT S12E0W, Address Translate Stages 1 and 2 EL0 Write on page C5-570

AT S12E1R AT S12E1R, Address Translate Stages 1 and 2 EL1 Read on page C5-572

AT S12E1W AT S12E1W, Address Translate Stages 1 and 2 EL1 Write on page C5-574

AT S1E0R AT S1E0R, Address Translate Stage 1 EL0 Read on page C5-576

AT S1E0W AT S1E0W, Address Translate Stage 1 EL0 Write on page C5-578

AT S1E1R AT S1E1R, Address Translate Stage 1 EL1 Read on page C5-580

AT S1E1RP AT S1E1RP, Address Translate Stage 1 EL1 Read PAN on page C5-582

AT S1E1W AT S1E1W, Address Translate Stage 1 EL1 Write on page C5-584

Table K15-6 Alphabetical index of AArch64 registers and System instructions (continued)

Register Description, see
K15-8608 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.2 Alphabetical index of AArch64 registers and System instructions
AT S1E1WP AT S1E1WP, Address Translate Stage 1 EL1 Write PAN on page C5-586

AT S1E2R AT S1E2R, Address Translate Stage 1 EL2 Read on page C5-588

AT S1E2W AT S1E2W, Address Translate Stage 1 EL2 Write on page C5-589

AT S1E3R AT S1E3R, Address Translate Stage 1 EL3 Read on page C5-590

AT S1E3W AT S1E3W, Address Translate Stage 1 EL3 Write on page C5-591

CCSIDR2_EL1 CCSIDR2_EL1, Current Cache Size ID Register 2 on page D13-3103

CCSIDR_EL1 CCSIDR_EL1, Current Cache Size ID Register on page D13-3105

CFP RCTX CFP RCTX, Control Flow Prediction Restriction by Context on page C5-861

CLIDR_EL1 CLIDR_EL1, Cache Level ID Register on page D13-3108

CNTFRQ_EL0 CNTFRQ_EL0, Counter-timer Frequency register on page D13-4140

CNTHCTL_EL2 CNTHCTL_EL2, Counter-timer Hypervisor Control register on page D13-4142

CNTHP_CTL_EL2 CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register on
page D13-4153

CNTHP_CVAL_EL2 CNTHP_CVAL_EL2, Counter-timer Physical Timer CompareValue register (EL2)
on page D13-4157

CNTHP_TVAL_EL2 CNTHP_TVAL_EL2, Counter-timer Physical Timer TimerValue register (EL2) on
page D13-4161

CNTHPS_CTL_EL2 CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2)
on page D13-4164

CNTHPS_CVAL_EL2 CNTHPS_CVAL_EL2, Counter-timer Secure Physical Timer CompareValue
register (EL2) on page D13-4168

CNTHPS_TVAL_EL2 CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register
(EL2) on page D13-4172

CNTHV_CTL_EL2 CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2) on
page D13-4176

CNTHV_CVAL_EL2 CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)
on page D13-4180

CNTHV_TVAL_EL2 CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue Register (EL2) on
page D13-4183

CNTHVS_CTL_EL2 CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2) on
page D13-4186

CNTHVS_CVAL_EL2 CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register
(EL2) on page D13-4190

CNTHVS_TVAL_EL2 CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register
(EL2) on page D13-4193

CNTKCTL_EL1 CNTKCTL_EL1, Counter-timer Kernel Control register on page D13-4197

CNTP_CTL_EL0 CNTP_CTL_EL0, Counter-timer Physical Timer Control register on
page D13-4202

Table K15-6 Alphabetical index of AArch64 registers and System instructions (continued)

Register Description, see
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8609
ID072021 Non-Confidential

Registers Index
K15.2 Alphabetical index of AArch64 registers and System instructions
CNTP_CVAL_EL0 CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue register on
page D13-4206

CNTP_TVAL_EL0 CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register on
page D13-4210

CNTPCT_EL0 CNTPCT_EL0, Counter-timer Physical Count register on page D13-4216

CNTPCTSS_EL0 CNTPCTSS_EL0, Counter-timer Self-Synchronized Physical Count register on
page D13-4214

CNTPOFF_EL2 CNTPOFF_EL2, Counter-timer Physical Offset register on page D13-4221

CNTPS_CTL_EL1 CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control register on
page D13-4218

CNTPS_CVAL_EL1 CNTPS_CVAL_EL1, Counter-timer Physical Secure Timer CompareValue register
on page D13-4223

CNTPS_TVAL_EL1 CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue register on
page D13-4225

CNTV_CTL_EL0 CNTV_CTL_EL0, Counter-timer Virtual Timer Control register on page D13-4227

CNTV_CVAL_EL0 CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue register on
page D13-4231

CNTV_TVAL_EL0 CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register on
page D13-4235

CNTVCT_EL0 CNTVCT_EL0, Counter-timer Virtual Count register on page D13-4241

CNTVCTSS_EL0 CNTVCTSS_EL0, Counter-timer Self-Synchronized Virtual Count register on
page D13-4239

CNTVOFF_EL2 CNTVOFF_EL2, Counter-timer Virtual Offset register on page D13-4243

CONTEXTIDR_EL1 CONTEXTIDR_EL1, Context ID Register (EL1) on page D13-3111

CONTEXTIDR_EL2 CONTEXTIDR_EL2, Context ID Register (EL2) on page D13-3114

CPACR_EL1 CPACR_EL1, Architectural Feature Access Control Register on page D13-3117

CPP RCTX CPP RCTX, Cache Prefetch Prediction Restriction by Context on page C5-864

CPTR_EL2 CPTR_EL2, Architectural Feature Trap Register (EL2) on page D13-3122

CPTR_EL3 CPTR_EL3, Architectural Feature Trap Register (EL3) on page D13-3131

CSSELR_EL1 CSSELR_EL1, Cache Size Selection Register on page D13-3135

CTR_EL0 CTR_EL0, Cache Type Register on page D13-3138

CurrentEL CurrentEL, Current Exception Level on page C5-409

DACR32_EL2 DACR32_EL2, Domain Access Control Register on page D13-3141

DAIF DAIF, Interrupt Mask Bits on page C5-411

DBGAUTHSTATUS_EL1 DBGAUTHSTATUS_EL1, Debug Authentication Status register on page D13-3811

Table K15-6 Alphabetical index of AArch64 registers and System instructions (continued)

Register Description, see
K15-8610 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.2 Alphabetical index of AArch64 registers and System instructions
DBGBCR<n>_EL1 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15 on
page D13-3814

DBGBVR<n>_EL1 DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15 on
page D13-3819

DBGCLAIMCLR_EL1 DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register on page D13-3825

DBGCLAIMSET_EL1 DBGCLAIMSET_EL1, Debug CLAIM Tag Set register on page D13-3828

DBGDTR_EL0 DBGDTR_EL0, Debug Data Transfer Register, half-duplex on page D13-3831

DBGDTRRX_EL0 DBGDTRRX_EL0, Debug Data Transfer Register, Receive on page D13-3834

DBGDTRTX_EL0 DBGDTRTX_EL0, Debug Data Transfer Register, Transmit on page D13-3836

DBGPRCR_EL1 DBGPRCR_EL1, Debug Power Control Register on page D13-3838

DBGVCR32_EL2 DBGVCR32_EL2, Debug Vector Catch Register on page D13-3841

DBGWCR<n>_EL1 DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15 on
page D13-3846

DBGWVR<n>_EL1 DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15 on
page D13-3851

DC CGDSW DC CGDSW, Clean of Data and Allocation Tags by Set/Way on page C5-507

DC CGDVAC DC CGDVAC, Clean of Data and Allocation Tags by VA to PoC on page C5-509

DC CGDVADP DC CGDVADP, Clean of Data and Allocation Tags by VA to PoDP on page C5-511

DC CGDVAP DC CGDVAP, Clean of Data and Allocation Tags by VA to PoP on page C5-513

DC CGSW DC CGSW, Clean of Allocation Tags by Set/Way on page C5-515

DC CGVAC DC CGVAC, Clean of Allocation Tags by VA to PoC on page C5-517

DC CGVADP DC CGVADP, Clean of Allocation Tags by VA to PoDP on page C5-519

DC CGVAP DC CGVAP, Clean of Allocation Tags by VA to PoP on page C5-521

DC CIGDSW DC CIGDSW, Clean and Invalidate of Data and Allocation Tags by Set/Way on
page C5-523

DC CIGDVAC DC CIGDVAC, Clean and Invalidate of Data and Allocation Tags by VA to PoC on
page C5-525

DC CIGSW DC CIGSW, Clean and Invalidate of Allocation Tags by Set/Way on page C5-527

DC CIGVAC DC CIGVAC, Clean and Invalidate of Allocation Tags by VA to PoC on
page C5-529

DC CISW DC CISW, Data or unified Cache line Clean and Invalidate by Set/Way on
page C5-531

DC CIVAC DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC on
page C5-533

DC CSW DC CSW, Data or unified Cache line Clean by Set/Way on page C5-535

DC CVAC DC CVAC, Data or unified Cache line Clean by VA to PoC on page C5-537

Table K15-6 Alphabetical index of AArch64 registers and System instructions (continued)

Register Description, see
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8611
ID072021 Non-Confidential

Registers Index
K15.2 Alphabetical index of AArch64 registers and System instructions
DC CVADP DC CVADP, Data or unified Cache line Clean by VA to PoDP on page C5-539

DC CVAP DC CVAP, Data or unified Cache line Clean by VA to PoP on page C5-541

DC CVAU DC CVAU, Data or unified Cache line Clean by VA to PoU on page C5-543

DC GVA DC GVA, Data Cache set Allocation Tag by VA on page C5-545

DC GZVA DC GZVA, Data Cache set Allocation Tags and Zero by VA on page C5-547

DC IGDSW DC IGDSW, Invalidate of Data and Allocation Tags by Set/Way on page C5-549

DC IGDVAC DC IGDVAC, Invalidate of Data and Allocation Tags by VA to PoC on page C5-551

DC IGSW DC IGSW, Invalidate of Allocation Tags by Set/Way on page C5-553

DC IGVAC DC IGVAC, Invalidate of Allocation Tags by VA to PoC on page C5-555

DC ISW DC ISW, Data or unified Cache line Invalidate by Set/Way on page C5-557

DC IVAC DC IVAC, Data or unified Cache line Invalidate by VA to PoC on page C5-559

DC ZVA DC ZVA, Data Cache Zero by VA on page C5-561

DCZID_EL0 DCZID_EL0, Data Cache Zero ID register on page D13-3143

DISR_EL1 DISR_EL1, Deferred Interrupt Status Register on page D13-4092

DIT DIT, Data Independent Timing on page C5-414

DLR_EL0 DLR_EL0, Debug Link Register on page D13-3854

DSPSR_EL0 DSPSR_EL0, Debug Saved Program Status Register on page D13-3855

DVP RCTX DVP RCTX, Data Value Prediction Restriction by Context on page C5-867

ELR_EL1 ELR_EL1, Exception Link Register (EL1) on page C5-417

ELR_EL2 ELR_EL2, Exception Link Register (EL2) on page C5-421

ELR_EL3 ELR_EL3, Exception Link Register (EL3) on page C5-424

ERRIDR_EL1 ERRIDR_EL1, Error Record ID Register on page D13-4095

ERRSELR_EL1 ERRSELR_EL1, Error Record Select Register on page D13-4097

ERXADDR_EL1 ERXADDR_EL1, Selected Error Record Address Register on page D13-4100

ERXCTLR_EL1 ERXCTLR_EL1, Selected Error Record Control Register on page D13-4103

ERXFR_EL1 ERXFR_EL1, Selected Error Record Feature Register on page D13-4106

ERXMISC0_EL1 ERXMISC0_EL1, Selected Error Record Miscellaneous Register 0 on
page D13-4108

ERXMISC1_EL1 ERXMISC1_EL1, Selected Error Record Miscellaneous Register 1 on
page D13-4111

ERXMISC2_EL1 ERXMISC2_EL1, Selected Error Record Miscellaneous Register 2 on
page D13-4114

ERXMISC3_EL1 ERXMISC3_EL1, Selected Error Record Miscellaneous Register 3 on
page D13-4117

Table K15-6 Alphabetical index of AArch64 registers and System instructions (continued)

Register Description, see
K15-8612 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.2 Alphabetical index of AArch64 registers and System instructions
ERXPFGCDN_EL1 ERXPFGCDN_EL1, Selected Pseudo-fault Generation Countdown register on
page D13-4120

ERXPFGCTL_EL1 ERXPFGCTL_EL1, Selected Pseudo-fault Generation Control register on
page D13-4123

ERXPFGF_EL1 ERXPFGF_EL1, Selected Pseudo-fault Generation Feature register on
page D13-4126

ERXSTATUS_EL1 ERXSTATUS_EL1, Selected Error Record Primary Status Register on
page D13-4128

ESR_EL1 ESR_EL1, Exception Syndrome Register (EL1) on page D13-3145

ESR_EL2 ESR_EL2, Exception Syndrome Register (EL2) on page D13-3191

ESR_EL3 ESR_EL3, Exception Syndrome Register (EL3) on page D13-3237

FAR_EL1 FAR_EL1, Fault Address Register (EL1) on page D13-3281

FAR_EL2 FAR_EL2, Fault Address Register (EL2) on page D13-3286

FAR_EL3 FAR_EL3, Fault Address Register (EL3) on page D13-3290

FPCR FPCR, Floating-point Control Register on page C5-426

FPEXC32_EL2 FPEXC32_EL2, Floating-Point Exception Control register on page D13-3292

FPSR FPSR, Floating-point Status Register on page C5-434

GCR_EL1 GCR_EL1, Tag Control Register. on page D13-3298

GMID_EL1 GMID_EL1, Multiple tag transfer ID register on page D13-3300

HACR_EL2 HACR_EL2, Hypervisor Auxiliary Control Register on page D13-3301

HAFGRTR_EL2 HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register
on page D13-3303

HCR_EL2 HCR_EL2, Hypervisor Configuration Register on page D13-3307

HCRX_EL2 HCRX_EL2, Extended Hypervisor Configuration Register on page D13-3339

HDFGRTR_EL2 HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register on
page D13-3343

HDFGWTR_EL2 HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register on
page D13-3362

HFGITR_EL2 HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register on
page D13-3380

HFGRTR_EL2 HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register on page D13-3399

HFGWTR_EL2 HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register on page D13-3415

HPFAR_EL2 HPFAR_EL2, Hypervisor IPA Fault Address Register on page D13-3428

HSTR_EL2 HSTR_EL2, Hypervisor System Trap Register on page D13-3431

IC IALLU IC IALLU, Instruction Cache Invalidate All to PoU on page C5-563

Table K15-6 Alphabetical index of AArch64 registers and System instructions (continued)

Register Description, see
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8613
ID072021 Non-Confidential

Registers Index
K15.2 Alphabetical index of AArch64 registers and System instructions
IC IALLUIS IC IALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable on
page C5-564

IC IVAU IC IVAU, Instruction Cache line Invalidate by VA to PoU on page C5-565

ID_AA64AFR0_EL1 ID_AA64AFR0_EL1, AArch64 Auxiliary Feature Register 0 on page D13-3434

ID_AA64AFR1_EL1 ID_AA64AFR1_EL1, AArch64 Auxiliary Feature Register 1 on page D13-3436

ID_AA64DFR0_EL1 ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0 on page D13-3437

ID_AA64DFR1_EL1 ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1 on page D13-3441

ID_AA64ISAR0_EL1 ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0 on
page D13-3442

ID_AA64ISAR1_EL1 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1 on
page D13-3446

ID_AA64ISAR2_EL1 ID_AA64ISAR2_EL1, AArch64 Instruction Set Attribute Register 2 on
page D13-3452

ID_AA64MMFR0_EL1 ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0 on
page D13-3454

ID_AA64MMFR1_EL1 ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1 on
page D13-3458

ID_AA64MMFR2_EL1 ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2 on
page D13-3462

ID_AA64PFR0_EL1 ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0 on page D13-3467

ID_AA64PFR1_EL1 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1 on page D13-3472

ID_AFR0_EL1 ID_AFR0_EL1, AArch32 Auxiliary Feature Register 0 on page D13-3475

ID_DFR0_EL1 ID_DFR0_EL1, AArch32 Debug Feature Register 0 on page D13-3477

ID_DFR1_EL1 ID_DFR1_EL1, Debug Feature Register 1 on page D13-3481

ID_ISAR0_EL1 ID_ISAR0_EL1, AArch32 Instruction Set Attribute Register 0 on page D13-3483

ID_ISAR1_EL1 ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1 on page D13-3486

ID_ISAR2_EL1 ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2 on page D13-3489

ID_ISAR3_EL1 ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3 on page D13-3492

ID_ISAR4_EL1 ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4 on page D13-3495

ID_ISAR5_EL1 ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5 on page D13-3498

ID_ISAR6_EL1 ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6 on page D13-3501

ID_MMFR0_EL1 ID_MMFR0_EL1, AArch32 Memory Model Feature Register 0 on page D13-3504

ID_MMFR1_EL1 ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1 on page D13-3507

ID_MMFR2_EL1 ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2 on page D13-3511

ID_MMFR3_EL1 ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3 on page D13-3515

Table K15-6 Alphabetical index of AArch64 registers and System instructions (continued)

Register Description, see
K15-8614 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.2 Alphabetical index of AArch64 registers and System instructions
ID_MMFR4_EL1 ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4 on page D13-3519

ID_MMFR5_EL1 ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5 on page D13-3523

ID_PFR0_EL1 ID_PFR0_EL1, AArch32 Processor Feature Register 0 on page D13-3525

ID_PFR1_EL1 ID_PFR1_EL1, AArch32 Processor Feature Register 1 on page D13-3529

ID_PFR2_EL1 ID_PFR2_EL1, AArch32 Processor Feature Register 2 on page D13-3533

IFSR32_EL2 IFSR32_EL2, Instruction Fault Status Register (EL2) on page D13-3535

ISR_EL1 ISR_EL1, Interrupt Status Register on page D13-3540

LORC_EL1 LORC_EL1, LORegion Control (EL1) on page D13-3542

LOREA_EL1 LOREA_EL1, LORegion End Address (EL1) on page D13-3545

LORID_EL1 LORID_EL1, LORegionID (EL1) on page D13-3548

LORN_EL1 LORN_EL1, LORegion Number (EL1) on page D13-3550

LORSA_EL1 LORSA_EL1, LORegion Start Address (EL1) on page D13-3553

MAIR_EL1 MAIR_EL1, Memory Attribute Indirection Register (EL1) on page D13-3557

MAIR_EL2 MAIR_EL2, Memory Attribute Indirection Register (EL2) on page D13-3562

MAIR_EL3 MAIR_EL3, Memory Attribute Indirection Register (EL3) on page D13-3566

MDCCINT_EL1 MDCCINT_EL1, Monitor DCC Interrupt Enable Register on page D13-3863

MDCCSR_EL0 MDCCSR_EL0, Monitor DCC Status Register on page D13-3866

MDCR_EL2 MDCR_EL2, Monitor Debug Configuration Register (EL2) on page D13-3869

MDCR_EL3 MDCR_EL3, Monitor Debug Configuration Register (EL3) on page D13-3881

MDRAR_EL1 MDRAR_EL1, Monitor Debug ROM Address Register on page D13-3892

MDSCR_EL1 MDSCR_EL1, Monitor Debug System Control Register on page D13-3895

MIDR_EL1 MIDR_EL1, Main ID Register on page D13-3569

MPIDR_EL1 MPIDR_EL1, Multiprocessor Affinity Register on page D13-3572

MVFR0_EL1 MVFR0_EL1, AArch32 Media and VFP Feature Register 0 on page D13-3574

MVFR1_EL1 MVFR1_EL1, AArch32 Media and VFP Feature Register 1 on page D13-3578

MVFR2_EL1 MVFR2_EL1, AArch32 Media and VFP Feature Register 2 on page D13-3582

NZCV NZCV, Condition Flags on page C5-440

OSDLR_EL1 OSDLR_EL1, OS Double Lock Register on page D13-3901

OSDTRRX_EL1 OSDTRRX_EL1, OS Lock Data Transfer Register, Receive on page D13-3904

OSDTRTX_EL1 OSDTRTX_EL1, OS Lock Data Transfer Register, Transmit on page D13-3907

OSECCR_EL1 OSECCR_EL1, OS Lock Exception Catch Control Register on page D13-3910

OSLAR_EL1 OSLAR_EL1, OS Lock Access Register on page D13-3913

Table K15-6 Alphabetical index of AArch64 registers and System instructions (continued)

Register Description, see
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8615
ID072021 Non-Confidential

Registers Index
K15.2 Alphabetical index of AArch64 registers and System instructions
OSLSR_EL1 OSLSR_EL1, OS Lock Status Register on page D13-3915

PAN PAN, Privileged Access Never on page C5-442

PAR_EL1 PAR_EL1, Physical Address Register on page D13-3584

PMBIDR_EL1 PMBIDR_EL1, Profiling Buffer ID Register on page D13-4043

PMBLIMITR_EL1 PMBLIMITR_EL1, Profiling Buffer Limit Address Register on page D13-4045

PMBPTR_EL1 PMBPTR_EL1, Profiling Buffer Write Pointer Register on page D13-4048

PMBSR_EL1 PMBSR_EL1, Profiling Buffer Status/syndrome Register on page D13-4050

PMCCFILTR_EL0 PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register on
page D13-3930

PMCCNTR_EL0 PMCCNTR_EL0, Performance Monitors Cycle Count Register on page D13-3935

PMCEID0_EL0 PMCEID0_EL0, Performance Monitors Common Event Identification register 0
on page D13-3938

PMCEID1_EL0 PMCEID1_EL0, Performance Monitors Common Event Identification register 1
on page D13-3941

PMCNTENCLR_EL0 PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register on
page D13-3944

PMCNTENSET_EL0 PMCNTENSET_EL0, Performance Monitors Count Enable Set register on
page D13-3947

PMCR_EL0 PMCR_EL0, Performance Monitors Control Register on page D13-3950

PMEVCNTR<n>_EL0 PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30
on page D13-3958

PMEVTYPER<n>_EL0 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30
on page D13-3962

PMINTENCLR_EL1 PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register on
page D13-3968

PMINTENSET_EL1 PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register on
page D13-3971

PMMIR_EL1 PMMIR_EL1, Performance Monitors Machine Identification Register on
page D13-3974

PMOVSCLR_EL0 PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear Register on
page D13-3976

PMOVSSET_EL0 PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register on
page D13-3980

PMSCR_EL1 PMSCR_EL1, Statistical Profiling Control Register (EL1) on page D13-4056

PMSCR_EL2 PMSCR_EL2, Statistical Profiling Control Register (EL2) on page D13-4061

PMSELR_EL0 PMSELR_EL0, Performance Monitors Event Counter Selection Register on
page D13-3984

PMSEVFR_EL1 PMSEVFR_EL1, Sampling Event Filter Register on page D13-4066

Table K15-6 Alphabetical index of AArch64 registers and System instructions (continued)

Register Description, see
K15-8616 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.2 Alphabetical index of AArch64 registers and System instructions
PMSFCR_EL1 PMSFCR_EL1, Sampling Filter Control Register on page D13-4071

PMSICR_EL1 PMSICR_EL1, Sampling Interval Counter Register on page D13-4075

PMSIDR_EL1 PMSIDR_EL1, Sampling Profiling ID Register on page D13-4078

PMSIRR_EL1 PMSIRR_EL1, Sampling Interval Reload Register on page D13-4081

PMSLATFR_EL1 PMSLATFR_EL1, Sampling Latency Filter Register on page D13-4084

PMSNEVFR_EL1 PMSNEVFR_EL1, Sampling Inverted Event Filter Register on page D13-4086

PMSWINC_EL0 PMSWINC_EL0, Performance Monitors Software Increment register on
page D13-3987

PMUSERENR_EL0 PMUSERENR_EL0, Performance Monitors User Enable Register on
page D13-3989

PMXEVCNTR_EL0 PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register on
page D13-3993

PMXEVTYPER_EL0 PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register on
page D13-3997

REVIDR_EL1 REVIDR_EL1, Revision ID Register on page D13-3590

RGSR_EL1 RGSR_EL1, Random Allocation Tag Seed Register. on page D13-3591

RMR_EL1 RMR_EL1, Reset Management Register (EL1) on page D13-3593

RMR_EL2 RMR_EL2, Reset Management Register (EL2) on page D13-3595

RMR_EL3 RMR_EL3, Reset Management Register (EL3) on page D13-3597

RNDR RNDR, Random Number on page D13-3599

RNDRRS RNDRRS, Reseeded Random Number on page D13-3601

RVBAR_EL1 RVBAR_EL1, Reset Vector Base Address Register (if EL2 and EL3 not
implemented) on page D13-3603

RVBAR_EL2 RVBAR_EL2, Reset Vector Base Address Register (if EL3 not implemented) on
page D13-3604

RVBAR_EL3 RVBAR_EL3, Reset Vector Base Address Register (if EL3 implemented) on
page D13-3605

S3_<op1>_<Cn>_<Cm>_<op2> S3_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED registers on
page D13-3606

SCR_EL3 SCR_EL3, Secure Configuration Register on page D13-3608

SCTLR_EL1 SCTLR_EL1, System Control Register (EL1) on page D13-3621

SCTLR_EL2 SCTLR_EL2, System Control Register (EL2) on page D13-3641

SCTLR_EL3 SCTLR_EL3, System Control Register (EL3) on page D13-3661

SCXTNUM_EL0 SCXTNUM_EL0, EL0 Read/Write Software Context Number on page D13-3671

SCXTNUM_EL1 SCXTNUM_EL1, EL1 Read/Write Software Context Number on page D13-3674

Table K15-6 Alphabetical index of AArch64 registers and System instructions (continued)

Register Description, see
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8617
ID072021 Non-Confidential

Registers Index
K15.2 Alphabetical index of AArch64 registers and System instructions
SCXTNUM_EL2 SCXTNUM_EL2, EL2 Read/Write Software Context Number on page D13-3678

SCXTNUM_EL3 SCXTNUM_EL3, EL3 Read/Write Software Context Number on page D13-3681

SDER32_EL2 SDER32_EL2, AArch32 Secure Debug Enable Register on page D13-3917

SDER32_EL3 SDER32_EL3, AArch32 Secure Debug Enable Register on page D13-3919

SP_EL0 SP_EL0, Stack Pointer (EL0) on page C5-444

SP_EL1 SP_EL1, Stack Pointer (EL1) on page C5-446

SP_EL2 SP_EL2, Stack Pointer (EL2) on page C5-448

SP_EL3 SP_EL3, Stack Pointer (EL3) on page C5-450

SPSel SPSel, Stack Pointer Select on page C5-451

SPSR_abt SPSR_abt, Saved Program Status Register (Abort mode) on page C5-453

SPSR_EL1 SPSR_EL1, Saved Program Status Register (EL1) on page C5-458

SPSR_EL2 SPSR_EL2, Saved Program Status Register (EL2) on page C5-468

SPSR_EL3 SPSR_EL3, Saved Program Status Register (EL3) on page C5-477

SPSR_fiq SPSR_fiq, Saved Program Status Register (FIQ mode) on page C5-485

SPSR_irq SPSR_irq, Saved Program Status Register (IRQ mode) on page C5-490

SPSR_und SPSR_und, Saved Program Status Register (Undefined mode) on page C5-495

SSBS SSBS, Speculative Store Bypass Safe on page C5-500

TCO TCO, Tag Check Override on page C5-502

TCR_EL1 TCR_EL1, Translation Control Register (EL1) on page D13-3683

TCR_EL2 TCR_EL2, Translation Control Register (EL2) on page D13-3698

TCR_EL3 TCR_EL3, Translation Control Register (EL3) on page D13-3720

TFSR_EL1 TFSR_EL1, Tag Fault Status Register (EL1) on page D13-3730

TFSR_EL2 TFSR_EL2, Tag Fault Status Register (EL2) on page D13-3735

TFSR_EL3 TFSR_EL3, Tag Fault Status Register (EL3) on page D13-3739

TFSRE0_EL1 TFSRE0_EL1, Tag Fault Status Register (EL0). on page D13-3728

TLBI ALLE1, TLBI ALLE1NXS TLBI ALLE1, TLBI ALLE1NXS, TLB Invalidate All, EL1 on page C5-593

TLBI ALLE1IS, TLBI ALLE1ISNXS TLBI ALLE1IS, TLBI ALLE1ISNXS, TLB Invalidate All, EL1, Inner Shareable on
page C5-595

TLBI ALLE1OS, TLBI ALLE1OSNXS TLBI ALLE1OS, TLBI ALLE1OSNXS, TLB Invalidate All, EL1, Outer Shareable
on page C5-597

TLBI ALLE2, TLBI ALLE2NXS TLBI ALLE2, TLBI ALLE2NXS, TLB Invalidate All, EL2 on page C5-599

TLBI ALLE2IS, TLBI ALLE2ISNXS TLBI ALLE2IS, TLBI ALLE2ISNXS, TLB Invalidate All, EL2, Inner Shareable on
page C5-601

Table K15-6 Alphabetical index of AArch64 registers and System instructions (continued)

Register Description, see
K15-8618 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.2 Alphabetical index of AArch64 registers and System instructions
TLBI ALLE2OS, TLBI ALLE2OSNXS TLBI ALLE2OS, TLBI ALLE2OSNXS, TLB Invalidate All, EL2, Outer Shareable
on page C5-603

TLBI ALLE3, TLBI ALLE3NXS TLBI ALLE3, TLBI ALLE3NXS, TLB Invalidate All, EL3 on page C5-605

TLBI ALLE3IS, TLBI ALLE3ISNXS TLBI ALLE3IS, TLBI ALLE3ISNXS, TLB Invalidate All, EL3, Inner Shareable on
page C5-607

TLBI ALLE3OS, TLBI ALLE3OSNXS TLBI ALLE3OS, TLBI ALLE3OSNXS, TLB Invalidate All, EL3, Outer Shareable
on page C5-609

TLBI ASIDE1, TLBI ASIDE1NXS TLBI ASIDE1, TLBI ASIDE1NXS, TLB Invalidate by ASID, EL1 on page C5-611

TLBI ASIDE1IS, TLBI ASIDE1ISNXS TLBI ASIDE1IS, TLBI ASIDE1ISNXS, TLB Invalidate by ASID, EL1, Inner
Shareable on page C5-614

TLBI ASIDE1OS, TLBI ASIDE1OSNXS TLBI ASIDE1OS, TLBI ASIDE1OSNXS, TLB Invalidate by ASID, EL1, Outer
Shareable on page C5-617

TLBI IPAS2E1, TLBI IPAS2E1NXS TLBI IPAS2E1, TLBI IPAS2E1NXS, TLB Invalidate by Intermediate Physical
Address, Stage 2, EL1 on page C5-620

TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS, TLB Invalidate by Intermediate Physical
Address, Stage 2, EL1, Inner Shareable on page C5-623

TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS, TLB Invalidate by Intermediate Physical
Address, Stage 2, EL1, Outer Shareable on page C5-626

TLBI IPAS2LE1, TLBI IPAS2LE1NXS TLBI IPAS2LE1, TLBI IPAS2LE1NXS, TLB Invalidate by Intermediate Physical
Address, Stage 2, Last level, EL1 on page C5-629

TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS, TLB Invalidate by Intermediate
Physical Address, Stage 2, Last level, EL1, Inner Shareable on page C5-632

TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS, TLB Invalidate by Intermediate
Physical Address, Stage 2, Last level, EL1, Outer Shareable on page C5-636

TLBI RIPAS2E1, TLBI RIPAS2E1NXS TLBI RIPAS2E1, TLBI RIPAS2E1NXS, TLB Range Invalidate by Intermediate
Physical Address, Stage 2, EL1 on page C5-639

TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS, TLB Range Invalidate by Intermediate
Physical Address, Stage 2, EL1, Inner Shareable on page C5-643

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, TLB Range Invalidate by
Intermediate Physical Address, Stage 2, EL1, Outer Shareable on page C5-647

TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS, TLB Range Invalidate by Intermediate
Physical Address, Stage 2, Last level, EL1 on page C5-651

TLBI RIPAS2LE1IS, TLBI
RIPAS2LE1ISNXS

 TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, TLB Range Invalidate by
Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable on
page C5-655

TLBI RIPAS2LE1OS, TLBI
RIPAS2LE1OSNXS

 TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, TLB Range Invalidate by
Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable on
page C5-659

TLBI RVAAE1, TLBI RVAAE1NXS TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1 on
page C5-663

Table K15-6 Alphabetical index of AArch64 registers and System instructions (continued)

Register Description, see
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8619
ID072021 Non-Confidential

Registers Index
K15.2 Alphabetical index of AArch64 registers and System instructions
TLBI RVAAE1IS, TLBI RVAAE1ISNXS TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID,
EL1, Inner Shareable on page C5-667

TLBI RVAAE1OS, TLBI RVAAE1OSNXS TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID,
EL1, Outer Shareable on page C5-671

TLBI RVAALE1, TLBI RVAALE1NXS TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last
level, EL1 on page C5-675

TLBI RVAALE1IS, TLBI RVAALE1ISNXS TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID,
Last Level, EL1, Inner Shareable on page C5-679

TLBI RVAALE1OS, TLBI RVAALE1OSNXS TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range Invalidate by VA, All
ASID, Last Level, EL1, Outer Shareable on page C5-683

TLBI RVAE1, TLBI RVAE1NXS TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by VA, EL1 on page C5-687

TLBI RVAE1IS, TLBI RVAE1ISNXS TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner
Shareable on page C5-691

TLBI RVAE1OS, TLBI RVAE1OSNXS TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer
Shareable on page C5-695

TLBI RVAE2, TLBI RVAE2NXS TLBI RVAE2, TLBI RVAE2NXS, TLB Range Invalidate by VA, EL2 on page C5-699

TLBI RVAE2IS, TLBI RVAE2ISNXS TLBI RVAE2IS, TLBI RVAE2ISNXS, TLB Range Invalidate by VA, EL2, Inner
Shareable on page C5-703

TLBI RVAE2OS, TLBI RVAE2OSNXS TLBI RVAE2OS, TLBI RVAE2OSNXS, TLB Range Invalidate by VA, EL2, Outer
Shareable on page C5-707

TLBI RVAE3, TLBI RVAE3NXS TLBI RVAE3, TLBI RVAE3NXS, TLB Range Invalidate by VA, EL3 on page C5-711

TLBI RVAE3IS, TLBI RVAE3ISNXS TLBI RVAE3IS, TLBI RVAE3ISNXS, TLB Range Invalidate by VA, EL3, Inner
Shareable on page C5-714

TLBI RVAE3OS, TLBI RVAE3OSNXS TLBI RVAE3OS, TLBI RVAE3OSNXS, TLB Range Invalidate by VA, EL3, Outer
Shareable on page C5-717

TLBI RVALE1, TLBI RVALE1NXS TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1 on
page C5-720

TLBI RVALE1IS, TLBI RVALE1ISNXS TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range Invalidate by VA, Last level,
EL1, Inner Shareable on page C5-724

TLBI RVALE1OS, TLBI RVALE1OSNXS TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range Invalidate by VA, Last level,
EL1, Outer Shareable on page C5-728

TLBI RVALE2, TLBI RVALE2NXS TLBI RVALE2, TLBI RVALE2NXS, TLB Range Invalidate by VA, Last level, EL2 on
page C5-732

TLBI RVALE2IS, TLBI RVALE2ISNXS TLBI RVALE2IS, TLBI RVALE2ISNXS, TLB Range Invalidate by VA, Last level,
EL2, Inner Shareable on page C5-736

TLBI RVALE2OS, TLBI RVALE2OSNXS TLBI RVALE2OS, TLBI RVALE2OSNXS, TLB Range Invalidate by VA, Last level,
EL2, Outer Shareable on page C5-740

TLBI RVALE3, TLBI RVALE3NXS TLBI RVALE3, TLBI RVALE3NXS, TLB Range Invalidate by VA, Last level, EL3 on
page C5-744

Table K15-6 Alphabetical index of AArch64 registers and System instructions (continued)

Register Description, see
K15-8620 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.2 Alphabetical index of AArch64 registers and System instructions
TLBI RVALE3IS, TLBI RVALE3ISNXS TLBI RVALE3IS, TLBI RVALE3ISNXS, TLB Range Invalidate by VA, Last level,
EL3, Inner Shareable on page C5-747

TLBI RVALE3OS, TLBI RVALE3OSNXS TLBI RVALE3OS, TLBI RVALE3OSNXS, TLB Range Invalidate by VA, Last level,
EL3, Outer Shareable on page C5-750

TLBI VAAE1, TLBI VAAE1NXS TLBI VAAE1, TLBI VAAE1NXS, TLB Invalidate by VA, All ASID, EL1 on
page C5-753

TLBI VAAE1IS, TLBI VAAE1ISNXS TLBI VAAE1IS, TLBI VAAE1ISNXS, TLB Invalidate by VA, All ASID, EL1, Inner
Shareable on page C5-757

TLBI VAAE1OS, TLBI VAAE1OSNXS TLBI VAAE1OS, TLBI VAAE1OSNXS, TLB Invalidate by VA, All ASID, EL1, Outer
Shareable on page C5-761

TLBI VAALE1, TLBI VAALE1NXS TLBI VAALE1, TLBI VAALE1NXS, TLB Invalidate by VA, All ASID, Last level, EL1
on page C5-765

TLBI VAALE1IS, TLBI VAALE1ISNXS TLBI VAALE1IS, TLBI VAALE1ISNXS, TLB Invalidate by VA, All ASID, Last Level,
EL1, Inner Shareable on page C5-769

TLBI VAALE1OS, TLBI VAALE1OSNXS TLBI VAALE1OS, TLBI VAALE1OSNXS, TLB Invalidate by VA, All ASID, Last
Level, EL1, Outer Shareable on page C5-773

TLBI VAE1, TLBI VAE1NXS TLBI VAE1, TLBI VAE1NXS, TLB Invalidate by VA, EL1 on page C5-777

TLBI VAE1IS, TLBI VAE1ISNXS TLBI VAE1IS, TLBI VAE1ISNXS, TLB Invalidate by VA, EL1, Inner Shareable on
page C5-781

TLBI VAE1OS, TLBI VAE1OSNXS TLBI VAE1OS, TLBI VAE1OSNXS, TLB Invalidate by VA, EL1, Outer Shareable
on page C5-785

TLBI VAE2, TLBI VAE2NXS TLBI VAE2, TLBI VAE2NXS, TLB Invalidate by VA, EL2 on page C5-789

TLBI VAE2IS, TLBI VAE2ISNXS TLBI VAE2IS, TLBI VAE2ISNXS, TLB Invalidate by VA, EL2, Inner Shareable on
page C5-793

TLBI VAE2OS, TLBI VAE2OSNXS TLBI VAE2OS, TLBI VAE2OSNXS, TLB Invalidate by VA, EL2, Outer Shareable
on page C5-797

TLBI VAE3, TLBI VAE3NXS TLBI VAE3, TLBI VAE3NXS, TLB Invalidate by VA, EL3 on page C5-801

TLBI VAE3IS, TLBI VAE3ISNXS TLBI VAE3IS, TLBI VAE3ISNXS, TLB Invalidate by VA, EL3, Inner Shareable on
page C5-804

TLBI VAE3OS, TLBI VAE3OSNXS TLBI VAE3OS, TLBI VAE3OSNXS, TLB Invalidate by VA, EL3, Outer Shareable
on page C5-807

TLBI VALE1, TLBI VALE1NXS TLBI VALE1, TLBI VALE1NXS, TLB Invalidate by VA, Last level, EL1 on
page C5-810

TLBI VALE1IS, TLBI VALE1ISNXS TLBI VALE1IS, TLBI VALE1ISNXS, TLB Invalidate by VA, Last level, EL1, Inner
Shareable on page C5-814

TLBI VALE1OS, TLBI VALE1OSNXS TLBI VALE1OS, TLBI VALE1OSNXS, TLB Invalidate by VA, Last level, EL1, Outer
Shareable on page C5-818

TLBI VALE2, TLBI VALE2NXS TLBI VALE2, TLBI VALE2NXS, TLB Invalidate by VA, Last level, EL2 on
page C5-822

Table K15-6 Alphabetical index of AArch64 registers and System instructions (continued)

Register Description, see
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8621
ID072021 Non-Confidential

Registers Index
K15.2 Alphabetical index of AArch64 registers and System instructions
TLBI VALE2IS, TLBI VALE2ISNXS TLBI VALE2IS, TLBI VALE2ISNXS, TLB Invalidate by VA, Last level, EL2, Inner
Shareable on page C5-826

TLBI VALE2OS, TLBI VALE2OSNXS TLBI VALE2OS, TLBI VALE2OSNXS, TLB Invalidate by VA, Last level, EL2, Outer
Shareable on page C5-830

TLBI VALE3, TLBI VALE3NXS TLBI VALE3, TLBI VALE3NXS, TLB Invalidate by VA, Last level, EL3 on
page C5-834

TLBI VALE3IS, TLBI VALE3ISNXS TLBI VALE3IS, TLBI VALE3ISNXS, TLB Invalidate by VA, Last level, EL3, Inner
Shareable on page C5-837

TLBI VALE3OS, TLBI VALE3OSNXS TLBI VALE3OS, TLBI VALE3OSNXS, TLB Invalidate by VA, Last level, EL3, Outer
Shareable on page C5-840

TLBI VMALLE1, TLBI VMALLE1NXS TLBI VMALLE1, TLBI VMALLE1NXS, TLB Invalidate by VMID, All at stage 1,
EL1 on page C5-843

TLBI VMALLE1IS, TLBI VMALLE1ISNXS TLBI VMALLE1IS, TLBI VMALLE1ISNXS, TLB Invalidate by VMID, All at stage
1, EL1, Inner Shareable on page C5-846

TLBI VMALLE1OS, TLBI
VMALLE1OSNXS

 TLBI VMALLE1OS, TLBI VMALLE1OSNXS, TLB Invalidate by VMID, All at stage
1, EL1, Outer Shareable on page C5-849

TLBI VMALLS12E1, TLBI
VMALLS12E1NXS

 TLBI VMALLS12E1, TLBI VMALLS12E1NXS, TLB Invalidate by VMID, All at
Stage 1 and 2, EL1 on page C5-852

TLBI VMALLS12E1IS, TLBI
VMALLS12E1ISNXS

 TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS, TLB Invalidate by VMID, All at
Stage 1 and 2, EL1, Inner Shareable on page C5-854

TLBI VMALLS12E1OS, TLBI
VMALLS12E1OSNXS

 TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS, TLB Invalidate by VMID, All
at Stage 1 and 2, EL1, Outer Shareable on page C5-857

TPIDR_EL0 TPIDR_EL0, EL0 Read/Write Software Thread ID Register on page D13-3741

TPIDR_EL1 TPIDR_EL1, EL1 Software Thread ID Register on page D13-3743

TPIDR_EL2 TPIDR_EL2, EL2 Software Thread ID Register on page D13-3745

TPIDR_EL3 TPIDR_EL3, EL3 Software Thread ID Register on page D13-3747

TPIDRRO_EL0 TPIDRRO_EL0, EL0 Read-Only Software Thread ID Register on page D13-3749

TRFCR_EL1 TRFCR_EL1, Trace Filter Control Register (EL1) on page D13-3921

TRFCR_EL2 TRFCR_EL2, Trace Filter Control Register (EL2) on page D13-3925

TTBR0_EL1 TTBR0_EL1, Translation Table Base Register 0 (EL1) on page D13-3751

TTBR0_EL2 TTBR0_EL2, Translation Table Base Register 0 (EL2) on page D13-3756

TTBR0_EL3 TTBR0_EL3, Translation Table Base Register 0 (EL3) on page D13-3761

TTBR1_EL1 TTBR1_EL1, Translation Table Base Register 1 (EL1) on page D13-3764

TTBR1_EL2 TTBR1_EL2, Translation Table Base Register 1 (EL2) on page D13-3769

UAO UAO, User Access Override on page C5-504

VBAR_EL1 VBAR_EL1, Vector Base Address Register (EL1) on page D13-3773

VBAR_EL2 VBAR_EL2, Vector Base Address Register (EL2) on page D13-3776

Table K15-6 Alphabetical index of AArch64 registers and System instructions (continued)

Register Description, see
K15-8622 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.2 Alphabetical index of AArch64 registers and System instructions
VBAR_EL3 VBAR_EL3, Vector Base Address Register (EL3) on page D13-3779

VDISR_EL2 VDISR_EL2, Virtual Deferred Interrupt Status Register on page D13-4131

VMPIDR_EL2 VMPIDR_EL2, Virtualization Multiprocessor ID Register on page D13-3781

VNCR_EL2 VNCR_EL2, Virtual Nested Control Register on page D13-3784

VPIDR_EL2 VPIDR_EL2, Virtualization Processor ID Register on page D13-3786

VSESR_EL2 VSESR_EL2, Virtual SError Exception Syndrome Register on page D13-4136

VSTCR_EL2 VSTCR_EL2, Virtualization Secure Translation Control Register on
page D13-3789

VSTTBR_EL2 VSTTBR_EL2, Virtualization Secure Translation Table Base Register on
page D13-3794

VTCR_EL2 VTCR_EL2, Virtualization Translation Control Register on page D13-3797

VTTBR_EL2 VTTBR_EL2, Virtualization Translation Table Base Register on page D13-3806

Table K15-6 Alphabetical index of AArch64 registers and System instructions (continued)

Register Description, see
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8623
ID072021 Non-Confidential

Registers Index
K15.3 Functional index of AArch64 registers and System instructions
K15.3 Functional index of AArch64 registers and System instructions

This section is an index of the AArch64 registers and System instructions, divided by functional group. Each of the
following sections lists the registers for a functional group:

• Special-purpose registers on page K15-8624.

• VMSA-specific registers on page K15-8625.

• ID registers on page K15-8626.

• Performance monitors registers on page K15-8627.

• Activity monitors registers on page K15-8628.

• Debug registers on page K15-8628.

• RAS registers on page K15-8629.

• Generic timer registers on page K15-8630.

• Cache maintenance system instructions on page K15-8631.

• Address translation system instructions on page K15-8632.

• TLB maintenance system instructions on page K15-8633.

• Prediction restriction System instructions on page K15-8635.

• Base system registers on page K15-8635.

K15.3.1 Special-purpose registers

This section is an index to the registers in the Special-purpose registers functional group.

Table K15-7 Special-purpose registers

Register Description, see

ELR_EL1 ELR_EL1

ELR_EL2 ELR_EL2

ELR_EL3 ELR_EL3

SP_EL0 SP_EL0

SP_EL1 SP_EL1

SP_EL2 SP_EL2

SP_EL3 SP_EL3

SPSR_abt SPSR_abt

SPSR_EL1 SPSR_EL1

SPSR_EL2 SPSR_EL2

SPSR_EL3 SPSR_EL3

SPSR_fiq SPSR_fiq

SPSR_irq SPSR_irq

SPSR_und SPSR_und
K15-8624 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.3 Functional index of AArch64 registers and System instructions
K15.3.2 VMSA-specific registers

This section is an index to the registers in the Virtual memory control registers functional group.

Table K15-8 VMSA-specific registers

Register Description, see

AMAIR_EL1 AMAIR_EL1

AMAIR_EL2 AMAIR_EL2

AMAIR_EL3 AMAIR_EL3

CONTEXTIDR_EL1 CONTEXTIDR_EL1

CONTEXTIDR_EL2 CONTEXTIDR_EL2

DACR32_EL2 DACR32_EL2

LORC_EL1 LORC_EL1

LOREA_EL1 LOREA_EL1

LORID_EL1 LORID_EL1

LORN_EL1 LORN_EL1

LORSA_EL1 LORSA_EL1

MAIR_EL1 MAIR_EL1

MAIR_EL2 MAIR_EL2

MAIR_EL3 MAIR_EL3

TCR_EL1 TCR_EL1

TCR_EL2 TCR_EL2

TCR_EL3 TCR_EL3

TTBR0_EL1 TTBR0_EL1

TTBR0_EL2 TTBR0_EL2

TTBR0_EL3 TTBR0_EL3

TTBR1_EL1 TTBR1_EL1

TTBR1_EL2 TTBR1_EL2

VTCR_EL2 VTCR_EL2

VTTBR_EL2 VTTBR_EL2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8625
ID072021 Non-Confidential

Registers Index
K15.3 Functional index of AArch64 registers and System instructions
K15.3.3 ID registers

This section is an index to the registers in the Identification registers functional group.

Table K15-9 ID registers

Register Description, see

CCSIDR2_EL1 CCSIDR2_EL1

CCSIDR_EL1 CCSIDR_EL1

CLIDR_EL1 CLIDR_EL1

CSSELR_EL1 CSSELR_EL1

CTR_EL0 CTR_EL0

DCZID_EL0 DCZID_EL0

GMID_EL1 GMID_EL1

ID_AA64AFR0_EL1 ID_AA64AFR0_EL1

ID_AA64AFR1_EL1 ID_AA64AFR1_EL1

ID_AA64DFR0_EL1 ID_AA64DFR0_EL1

ID_AA64DFR1_EL1 ID_AA64DFR1_EL1

ID_AA64ISAR0_EL1 ID_AA64ISAR0_EL1

ID_AA64ISAR1_EL1 ID_AA64ISAR1_EL1

ID_AA64ISAR2_EL1 ID_AA64ISAR2_EL1

ID_AA64MMFR0_EL1 ID_AA64MMFR0_EL1

ID_AA64MMFR1_EL1 ID_AA64MMFR1_EL1

ID_AA64MMFR2_EL1 ID_AA64MMFR2_EL1

ID_AA64PFR0_EL1 ID_AA64PFR0_EL1

ID_AA64PFR1_EL1 ID_AA64PFR1_EL1

ID_AFR0_EL1 ID_AFR0_EL1

ID_DFR0_EL1 ID_DFR0_EL1

ID_DFR1_EL1 ID_DFR1_EL1

ID_ISAR0_EL1 ID_ISAR0_EL1

ID_ISAR1_EL1 ID_ISAR1_EL1

ID_ISAR2_EL1 ID_ISAR2_EL1

ID_ISAR3_EL1 ID_ISAR3_EL1

ID_ISAR4_EL1 ID_ISAR4_EL1

ID_ISAR5_EL1 ID_ISAR5_EL1

ID_ISAR6_EL1 ID_ISAR6_EL1

ID_MMFR0_EL1 ID_MMFR0_EL1
K15-8626 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.3 Functional index of AArch64 registers and System instructions
K15.3.4 Performance monitors registers

This section is an index to the registers in the Performance Monitors registers functional group.

ID_MMFR1_EL1 ID_MMFR1_EL1

ID_MMFR2_EL1 ID_MMFR2_EL1

ID_MMFR3_EL1 ID_MMFR3_EL1

ID_MMFR4_EL1 ID_MMFR4_EL1

ID_MMFR5_EL1 ID_MMFR5_EL1

ID_PFR0_EL1 ID_PFR0_EL1

ID_PFR1_EL1 ID_PFR1_EL1

ID_PFR2_EL1 ID_PFR2_EL1

MIDR_EL1 MIDR_EL1

MPIDR_EL1 MPIDR_EL1

REVIDR_EL1 REVIDR_EL1

Table K15-9 ID registers (continued)

Register Description, see

Table K15-10 Performance monitors registers

Register Description, see

PMCCFILTR_EL0 PMCCFILTR_EL0

PMCCNTR_EL0 PMCCNTR_EL0

PMCEID0_EL0 PMCEID0_EL0

PMCEID1_EL0 PMCEID1_EL0

PMCNTENCLR_EL0 PMCNTENCLR_EL0

PMCNTENSET_EL0 PMCNTENSET_EL0

PMCR_EL0 PMCR_EL0

PMEVCNTR<n>_EL0 PMEVCNTR<n>_EL0

PMEVTYPER<n>_EL0 PMEVTYPER<n>_EL0

PMINTENCLR_EL1 PMINTENCLR_EL1

PMINTENSET_EL1 PMINTENSET_EL1

PMMIR_EL1 PMMIR_EL1

PMOVSCLR_EL0 PMOVSCLR_EL0

PMOVSSET_EL0 PMOVSSET_EL0

PMSELR_EL0 PMSELR_EL0

PMSWINC_EL0 PMSWINC_EL0
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8627
ID072021 Non-Confidential

Registers Index
K15.3 Functional index of AArch64 registers and System instructions
K15.3.5 Activity monitors registers

This section is an index to the registers in the Activity Monitors registers functional group.

K15.3.6 Debug registers

This section is an index to the registers in the Debug registers functional group.

PMUSERENR_EL0 PMUSERENR_EL0

PMXEVCNTR_EL0 PMXEVCNTR_EL0

PMXEVTYPER_EL0 PMXEVTYPER_EL0

Table K15-10 Performance monitors registers (continued)

Register Description, see

Table K15-11 Activity monitors registers

Register Description, see

AMCFGR_EL0 AMCFGR_EL0

AMCG1IDR_EL0 AMCG1IDR_EL0

AMCGCR_EL0 AMCGCR_EL0

AMCNTENCLR0_EL0 AMCNTENCLR0_EL0

AMCNTENCLR1_EL0 AMCNTENCLR1_EL0

AMCNTENSET0_EL0 AMCNTENSET0_EL0

AMCNTENSET1_EL0 AMCNTENSET1_EL0

AMCR_EL0 AMCR_EL0

AMEVCNTR0<n>_EL0 AMEVCNTR0<n>_EL0

AMEVCNTR1<n>_EL0 AMEVCNTR1<n>_EL0

AMEVCNTVOFF0<n>_EL2 AMEVCNTVOFF0<n>_EL2

AMEVCNTVOFF1<n>_EL2 AMEVCNTVOFF1<n>_EL2

AMEVTYPER0<n>_EL0 AMEVTYPER0<n>_EL0

AMEVTYPER1<n>_EL0 AMEVTYPER1<n>_EL0

AMUSERENR_EL0 AMUSERENR_EL0

Table K15-12 Debug registers

Register Description, see

DBGAUTHSTATUS_EL1 DBGAUTHSTATUS_EL1

DBGBCR<n>_EL1 DBGBCR<n>_EL1

DBGBVR<n>_EL1 DBGBVR<n>_EL1

DBGCLAIMCLR_EL1 DBGCLAIMCLR_EL1
K15-8628 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.3 Functional index of AArch64 registers and System instructions
K15.3.7 RAS registers

This section is an index to the registers in the RAS registers functional group.

DBGCLAIMSET_EL1 DBGCLAIMSET_EL1

DBGDTR_EL0 DBGDTR_EL0

DBGDTRRX_EL0 DBGDTRRX_EL0

DBGDTRTX_EL0 DBGDTRTX_EL0

DBGPRCR_EL1 DBGPRCR_EL1

DBGVCR32_EL2 DBGVCR32_EL2

DBGWCR<n>_EL1 DBGWCR<n>_EL1

DBGWVR<n>_EL1 DBGWVR<n>_EL1

DLR_EL0 DLR_EL0

DSPSR_EL0 DSPSR_EL0

MDCCINT_EL1 MDCCINT_EL1

MDCCSR_EL0 MDCCSR_EL0

MDRAR_EL1 MDRAR_EL1

MDSCR_EL1 MDSCR_EL1

OSDLR_EL1 OSDLR_EL1

OSDTRRX_EL1 OSDTRRX_EL1

OSDTRTX_EL1 OSDTRTX_EL1

OSECCR_EL1 OSECCR_EL1

OSLAR_EL1 OSLAR_EL1

OSLSR_EL1 OSLSR_EL1

TRFCR_EL1 TRFCR_EL1

TRFCR_EL2 TRFCR_EL2

Table K15-12 Debug registers (continued)

Register Description, see

Table K15-13 RAS registers

Register Description, see

DISR_EL1 DISR_EL1

ERRIDR_EL1 ERRIDR_EL1

ERRSELR_EL1 ERRSELR_EL1

ERXADDR_EL1 ERXADDR_EL1

ERXCTLR_EL1 ERXCTLR_EL1
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8629
ID072021 Non-Confidential

Registers Index
K15.3 Functional index of AArch64 registers and System instructions
K15.3.8 Generic timer registers

This section is an index to the registers in the Generic Timer registers functional group.

ERXFR_EL1 ERXFR_EL1

ERXMISC0_EL1 ERXMISC0_EL1

ERXMISC1_EL1 ERXMISC1_EL1

ERXMISC2_EL1 ERXMISC2_EL1

ERXMISC3_EL1 ERXMISC3_EL1

ERXPFGCDN_EL1 ERXPFGCDN_EL1

ERXPFGCTL_EL1 ERXPFGCTL_EL1

ERXPFGF_EL1 ERXPFGF_EL1

ERXSTATUS_EL1 ERXSTATUS_EL1

VDISR_EL2 VDISR_EL2

VSESR_EL2 VSESR_EL2

Table K15-13 RAS registers (continued)

Register Description, see

Table K15-14 Generic timer registers

Register Description, see

CNTFRQ_EL0 CNTFRQ_EL0

CNTHV_CTL_EL2 CNTHV_CTL_EL2

CNTHV_CVAL_EL2 CNTHV_CVAL_EL2

CNTHV_TVAL_EL2 CNTHV_TVAL_EL2

CNTHVS_CTL_EL2 CNTHVS_CTL_EL2

CNTHVS_CVAL_EL2 CNTHVS_CVAL_EL2

CNTHVS_TVAL_EL2 CNTHVS_TVAL_EL2

CNTKCTL_EL1 CNTKCTL_EL1

CNTP_CTL_EL0 CNTP_CTL_EL0

CNTP_CVAL_EL0 CNTP_CVAL_EL0

CNTP_TVAL_EL0 CNTP_TVAL_EL0

CNTPCT_EL0 CNTPCT_EL0

CNTPCTSS_EL0 CNTPCTSS_EL0

CNTPOFF_EL2 CNTPOFF_EL2

CNTPS_CTL_EL1 CNTPS_CTL_EL1

CNTPS_CVAL_EL1 CNTPS_CVAL_EL1
K15-8630 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.3 Functional index of AArch64 registers and System instructions
K15.3.9 Cache maintenance system instructions

This section is an index to the registers in the Cache maintenance instructions functional group.

CNTPS_TVAL_EL1 CNTPS_TVAL_EL1

CNTV_CTL_EL0 CNTV_CTL_EL0

CNTV_CVAL_EL0 CNTV_CVAL_EL0

CNTV_TVAL_EL0 CNTV_TVAL_EL0

CNTVCT_EL0 CNTVCT_EL0

CNTVCTSS_EL0 CNTVCTSS_EL0

Table K15-14 Generic timer registers (continued)

Register Description, see

Table K15-15 Cache maintenance system instructions

Register Description, see

DC CGDSW DC CGDSW

DC CGDVAC DC CGDVAC

DC CGDVADP DC CGDVADP

DC CGDVAP DC CGDVAP

DC CGSW DC CGSW

DC CGVAC DC CGVAC

DC CGVADP DC CGVADP

DC CGVAP DC CGVAP

DC CIGDSW DC CIGDSW

DC CIGDVAC DC CIGDVAC

DC CIGSW DC CIGSW

DC CIGVAC DC CIGVAC

DC CISW DC CISW

DC CIVAC DC CIVAC

DC CSW DC CSW

DC CVAC DC CVAC

DC CVADP DC CVADP

DC CVAP DC CVAP

DC CVAU DC CVAU

DC GVA DC GVA

DC GZVA DC GZVA
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8631
ID072021 Non-Confidential

Registers Index
K15.3 Functional index of AArch64 registers and System instructions
K15.3.10 Address translation system instructions

This section is an index to the registers in the Address translation instructions functional group.

DC IGDSW DC IGDSW

DC IGDVAC DC IGDVAC

DC IGSW DC IGSW

DC IGVAC DC IGVAC

DC ISW DC ISW

DC IVAC DC IVAC

DC ZVA DC ZVA

IC IALLU IC IALLU

IC IALLUIS IC IALLUIS

IC IVAU IC IVAU

Table K15-15 Cache maintenance system instructions (continued)

Register Description, see

Table K15-16 Address translation system instructions

Register Description, see

AT S12E0R AT S12E0R

AT S12E0W AT S12E0W

AT S12E1R AT S12E1R

AT S12E1W AT S12E1W

AT S1E0R AT S1E0R

AT S1E0W AT S1E0W

AT S1E1R AT S1E1R

AT S1E1RP AT S1E1RP

AT S1E1W AT S1E1W

AT S1E1WP AT S1E1WP

AT S1E2R AT S1E2R

AT S1E2W AT S1E2W

AT S1E3R AT S1E3R

AT S1E3W AT S1E3W
K15-8632 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.3 Functional index of AArch64 registers and System instructions
K15.3.11 TLB maintenance system instructions

This section is an index to the registers in the TLB maintenance instructions functional group.

Table K15-17 TLB maintenance system instructions

Register Description, see

TLBI ALLE1, TLBI ALLE1NXS TLBI ALLE1, TLBI ALLE1NXS

TLBI ALLE1IS, TLBI ALLE1ISNXS TLBI ALLE1IS, TLBI ALLE1ISNXS

TLBI ALLE1OS, TLBI ALLE1OSNXS TLBI ALLE1OS, TLBI ALLE1OSNXS

TLBI ALLE2, TLBI ALLE2NXS TLBI ALLE2, TLBI ALLE2NXS

TLBI ALLE2IS, TLBI ALLE2ISNXS TLBI ALLE2IS, TLBI ALLE2ISNXS

TLBI ALLE2OS, TLBI ALLE2OSNXS TLBI ALLE2OS, TLBI ALLE2OSNXS

TLBI ALLE3, TLBI ALLE3NXS TLBI ALLE3, TLBI ALLE3NXS

TLBI ALLE3IS, TLBI ALLE3ISNXS TLBI ALLE3IS, TLBI ALLE3ISNXS

TLBI ALLE3OS, TLBI ALLE3OSNXS TLBI ALLE3OS, TLBI ALLE3OSNXS

TLBI ASIDE1, TLBI ASIDE1NXS TLBI ASIDE1, TLBI ASIDE1NXS

TLBI ASIDE1IS, TLBI ASIDE1ISNXS TLBI ASIDE1IS, TLBI ASIDE1ISNXS

TLBI ASIDE1OS, TLBI ASIDE1OSNXS TLBI ASIDE1OS, TLBI ASIDE1OSNXS

TLBI IPAS2E1, TLBI IPAS2E1NXS TLBI IPAS2E1, TLBI IPAS2E1NXS

TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS

TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS

TLBI IPAS2LE1, TLBI IPAS2LE1NXS TLBI IPAS2LE1, TLBI IPAS2LE1NXS

TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS

TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS

TLBI RIPAS2E1, TLBI RIPAS2E1NXS TLBI RIPAS2E1, TLBI RIPAS2E1NXS

TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS

TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS

TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS

TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS

TLBI RVAAE1, TLBI RVAAE1NXS TLBI RVAAE1, TLBI RVAAE1NXS

TLBI RVAAE1IS, TLBI RVAAE1ISNXS TLBI RVAAE1IS, TLBI RVAAE1ISNXS

TLBI RVAAE1OS, TLBI RVAAE1OSNXS TLBI RVAAE1OS, TLBI RVAAE1OSNXS

TLBI RVAALE1, TLBI RVAALE1NXS TLBI RVAALE1, TLBI RVAALE1NXS

TLBI RVAALE1IS, TLBI RVAALE1ISNXS TLBI RVAALE1IS, TLBI RVAALE1ISNXS

TLBI RVAALE1OS, TLBI RVAALE1OSNXS TLBI RVAALE1OS, TLBI RVAALE1OSNXS
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8633
ID072021 Non-Confidential

Registers Index
K15.3 Functional index of AArch64 registers and System instructions
TLBI RVAE1, TLBI RVAE1NXS TLBI RVAE1, TLBI RVAE1NXS

TLBI RVAE1IS, TLBI RVAE1ISNXS TLBI RVAE1IS, TLBI RVAE1ISNXS

TLBI RVAE1OS, TLBI RVAE1OSNXS TLBI RVAE1OS, TLBI RVAE1OSNXS

TLBI RVAE2, TLBI RVAE2NXS TLBI RVAE2, TLBI RVAE2NXS

TLBI RVAE2IS, TLBI RVAE2ISNXS TLBI RVAE2IS, TLBI RVAE2ISNXS

TLBI RVAE2OS, TLBI RVAE2OSNXS TLBI RVAE2OS, TLBI RVAE2OSNXS

TLBI RVAE3, TLBI RVAE3NXS TLBI RVAE3, TLBI RVAE3NXS

TLBI RVAE3IS, TLBI RVAE3ISNXS TLBI RVAE3IS, TLBI RVAE3ISNXS

TLBI RVAE3OS, TLBI RVAE3OSNXS TLBI RVAE3OS, TLBI RVAE3OSNXS

TLBI RVALE1, TLBI RVALE1NXS TLBI RVALE1, TLBI RVALE1NXS

TLBI RVALE1IS, TLBI RVALE1ISNXS TLBI RVALE1IS, TLBI RVALE1ISNXS

TLBI RVALE1OS, TLBI RVALE1OSNXS TLBI RVALE1OS, TLBI RVALE1OSNXS

TLBI RVALE2, TLBI RVALE2NXS TLBI RVALE2, TLBI RVALE2NXS

TLBI RVALE2IS, TLBI RVALE2ISNXS TLBI RVALE2IS, TLBI RVALE2ISNXS

TLBI RVALE2OS, TLBI RVALE2OSNXS TLBI RVALE2OS, TLBI RVALE2OSNXS

TLBI RVALE3, TLBI RVALE3NXS TLBI RVALE3, TLBI RVALE3NXS

TLBI RVALE3IS, TLBI RVALE3ISNXS TLBI RVALE3IS, TLBI RVALE3ISNXS

TLBI RVALE3OS, TLBI RVALE3OSNXS TLBI RVALE3OS, TLBI RVALE3OSNXS

TLBI VAAE1, TLBI VAAE1NXS TLBI VAAE1, TLBI VAAE1NXS

TLBI VAAE1IS, TLBI VAAE1ISNXS TLBI VAAE1IS, TLBI VAAE1ISNXS

TLBI VAAE1OS, TLBI VAAE1OSNXS TLBI VAAE1OS, TLBI VAAE1OSNXS

TLBI VAALE1, TLBI VAALE1NXS TLBI VAALE1, TLBI VAALE1NXS

TLBI VAALE1IS, TLBI VAALE1ISNXS TLBI VAALE1IS, TLBI VAALE1ISNXS

TLBI VAALE1OS, TLBI VAALE1OSNXS TLBI VAALE1OS, TLBI VAALE1OSNXS

TLBI VAE1, TLBI VAE1NXS TLBI VAE1, TLBI VAE1NXS

TLBI VAE1IS, TLBI VAE1ISNXS TLBI VAE1IS, TLBI VAE1ISNXS

TLBI VAE1OS, TLBI VAE1OSNXS TLBI VAE1OS, TLBI VAE1OSNXS

TLBI VAE2, TLBI VAE2NXS TLBI VAE2, TLBI VAE2NXS

TLBI VAE2IS, TLBI VAE2ISNXS TLBI VAE2IS, TLBI VAE2ISNXS

TLBI VAE2OS, TLBI VAE2OSNXS TLBI VAE2OS, TLBI VAE2OSNXS

TLBI VAE3, TLBI VAE3NXS TLBI VAE3, TLBI VAE3NXS

TLBI VAE3IS, TLBI VAE3ISNXS TLBI VAE3IS, TLBI VAE3ISNXS

Table K15-17 TLB maintenance system instructions (continued)

Register Description, see
K15-8634 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.3 Functional index of AArch64 registers and System instructions
K15.3.12 Prediction restriction System instructions

This section is an index to the registers in the prediction restriction instructions functional group.

K15.3.13 Base system registers

This section is an index to the registers in the Base System registers functional group.

TLBI VAE3OS, TLBI VAE3OSNXS TLBI VAE3OS, TLBI VAE3OSNXS

TLBI VALE1, TLBI VALE1NXS TLBI VALE1, TLBI VALE1NXS

TLBI VALE1IS, TLBI VALE1ISNXS TLBI VALE1IS, TLBI VALE1ISNXS

TLBI VALE1OS, TLBI VALE1OSNXS TLBI VALE1OS, TLBI VALE1OSNXS

TLBI VALE2, TLBI VALE2NXS TLBI VALE2, TLBI VALE2NXS

TLBI VALE2IS, TLBI VALE2ISNXS TLBI VALE2IS, TLBI VALE2ISNXS

TLBI VALE2OS, TLBI VALE2OSNXS TLBI VALE2OS, TLBI VALE2OSNXS

TLBI VALE3, TLBI VALE3NXS TLBI VALE3, TLBI VALE3NXS

TLBI VALE3IS, TLBI VALE3ISNXS TLBI VALE3IS, TLBI VALE3ISNXS

TLBI VALE3OS, TLBI VALE3OSNXS TLBI VALE3OS, TLBI VALE3OSNXS

TLBI VMALLE1, TLBI VMALLE1NXS TLBI VMALLE1, TLBI VMALLE1NXS

TLBI VMALLE1IS, TLBI VMALLE1ISNXS TLBI VMALLE1IS, TLBI VMALLE1ISNXS

TLBI VMALLE1OS, TLBI VMALLE1OSNXS TLBI VMALLE1OS, TLBI VMALLE1OSNXS

TLBI VMALLS12E1, TLBI VMALLS12E1NXS TLBI VMALLS12E1, TLBI VMALLS12E1NXS

TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS

TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS

Table K15-17 TLB maintenance system instructions (continued)

Register Description, see

Table K15-18 Prediction restriction System instructions

System instruction Description, see

CFP RCTX CFP RCTX

CPP RCTX CPP RCTX

DVP RCTX DVP RCTX

Table K15-19 Base system registers

Register Description, see

ACCDATA_EL1 ACCDATA_EL1

ACTLR_EL1 ACTLR_EL1

ACTLR_EL2 ACTLR_EL2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8635
ID072021 Non-Confidential

Registers Index
K15.3 Functional index of AArch64 registers and System instructions
ACTLR_EL3 ACTLR_EL3

AFSR0_EL1 AFSR0_EL1

AFSR0_EL2 AFSR0_EL2

AFSR0_EL3 AFSR0_EL3

AFSR1_EL1 AFSR1_EL1

AFSR1_EL2 AFSR1_EL2

AFSR1_EL3 AFSR1_EL3

AIDR_EL1 AIDR_EL1

APDAKeyHi_EL1 APDAKeyHi_EL1

APDAKeyLo_EL1 APDAKeyLo_EL1

APDBKeyHi_EL1 APDBKeyHi_EL1

APDBKeyLo_EL1 APDBKeyLo_EL1

APGAKeyHi_EL1 APGAKeyHi_EL1

APGAKeyLo_EL1 APGAKeyLo_EL1

APIAKeyHi_EL1 APIAKeyHi_EL1

APIAKeyLo_EL1 APIAKeyLo_EL1

APIBKeyHi_EL1 APIBKeyHi_EL1

APIBKeyLo_EL1 APIBKeyLo_EL1

CNTHCTL_EL2 CNTHCTL_EL2

CNTHP_CTL_EL2 CNTHP_CTL_EL2

CNTHP_CVAL_EL2 CNTHP_CVAL_EL2

CNTHP_TVAL_EL2 CNTHP_TVAL_EL2

CNTHPS_CTL_EL2 CNTHPS_CTL_EL2

CNTHPS_CVAL_EL2 CNTHPS_CVAL_EL2

CNTHPS_TVAL_EL2 CNTHPS_TVAL_EL2

CNTVOFF_EL2 CNTVOFF_EL2

CPACR_EL1 CPACR_EL1

CPTR_EL2 CPTR_EL2

CPTR_EL3 CPTR_EL3

CurrentEL CurrentEL

DAIF DAIF

DIT DIT

Table K15-19 Base system registers (continued)

Register Description, see
K15-8636 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.3 Functional index of AArch64 registers and System instructions
ESR_EL1 ESR_EL1

ESR_EL2 ESR_EL2

ESR_EL3 ESR_EL3

FAR_EL1 FAR_EL1

FAR_EL2 FAR_EL2

FAR_EL3 FAR_EL3

FPCR FPCR

FPEXC32_EL2 FPEXC32_EL2

FPSR FPSR

GCR_EL1 GCR_EL1

HACR_EL2 HACR_EL2

HAFGRTR_EL2 HAFGRTR_EL2

HCR_EL2 HCR_EL2

HCRX_EL2 HCRX_EL2

HDFGRTR_EL2 HDFGRTR_EL2

HDFGWTR_EL2 HDFGWTR_EL2

HFGITR_EL2 HFGITR_EL2

HFGRTR_EL2 HFGRTR_EL2

HFGWTR_EL2 HFGWTR_EL2

HPFAR_EL2 HPFAR_EL2

HSTR_EL2 HSTR_EL2

IFSR32_EL2 IFSR32_EL2

ISR_EL1 ISR_EL1

MDCR_EL2 MDCR_EL2

MDCR_EL3 MDCR_EL3

MVFR0_EL1 MVFR0_EL1

MVFR1_EL1 MVFR1_EL1

MVFR2_EL1 MVFR2_EL1

NZCV NZCV

PAN PAN

PAR_EL1 PAR_EL1

PMBIDR_EL1 PMBIDR_EL1

Table K15-19 Base system registers (continued)

Register Description, see
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8637
ID072021 Non-Confidential

Registers Index
K15.3 Functional index of AArch64 registers and System instructions
PMBLIMITR_EL1 PMBLIMITR_EL1

PMBPTR_EL1 PMBPTR_EL1

PMBSR_EL1 PMBSR_EL1

PMSCR_EL1 PMSCR_EL1

PMSCR_EL2 PMSCR_EL2

PMSEVFR_EL1 PMSEVFR_EL1

PMSFCR_EL1 PMSFCR_EL1

PMSICR_EL1 PMSICR_EL1

PMSIDR_EL1 PMSIDR_EL1

PMSIRR_EL1 PMSIRR_EL1

PMSLATFR_EL1 PMSLATFR_EL1

PMSNEVFR_EL1 PMSNEVFR_EL1

RGSR_EL1 RGSR_EL1

RMR_EL1 RMR_EL1

RMR_EL2 RMR_EL2

RMR_EL3 RMR_EL3

RNDR RNDR

RNDRRS RNDRRS

RVBAR_EL1 RVBAR_EL1

RVBAR_EL2 RVBAR_EL2

RVBAR_EL3 RVBAR_EL3

S3_<op1>_<Cn>_<Cm>_<op2> S3_<op1>_<Cn>_<Cm>_<op2>

SCR_EL3 SCR_EL3

SCTLR_EL1 SCTLR_EL1

SCTLR_EL2 SCTLR_EL2

SCTLR_EL3 SCTLR_EL3

SCXTNUM_EL0 SCXTNUM_EL0

SCXTNUM_EL1 SCXTNUM_EL1

SCXTNUM_EL2 SCXTNUM_EL2

SCXTNUM_EL3 SCXTNUM_EL3

SDER32_EL2 SDER32_EL2

SDER32_EL3 SDER32_EL3

Table K15-19 Base system registers (continued)

Register Description, see
K15-8638 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.3 Functional index of AArch64 registers and System instructions
SPSel SPSel

SSBS SSBS

TCO TCO

TFSR_EL1 TFSR_EL1

TFSR_EL2 TFSR_EL2

TFSR_EL3 TFSR_EL3

TFSRE0_EL1 TFSRE0_EL1

TPIDR_EL0 TPIDR_EL0

TPIDR_EL1 TPIDR_EL1

TPIDR_EL2 TPIDR_EL2

TPIDR_EL3 TPIDR_EL3

TPIDRRO_EL0 TPIDRRO_EL0

UAO UAO

VBAR_EL1 VBAR_EL1

VBAR_EL2 VBAR_EL2

VBAR_EL3 VBAR_EL3

VMPIDR_EL2 VMPIDR_EL2

VNCR_EL2 VNCR_EL2

VPIDR_EL2 VPIDR_EL2

VSTCR_EL2 VSTCR_EL2

VSTTBR_EL2 VSTTBR_EL2

Table K15-19 Base system registers (continued)

Register Description, see
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8639
ID072021 Non-Confidential

Registers Index
K15.4 Alphabetical index of AArch32 registers and System instructions
K15.4 Alphabetical index of AArch32 registers and System instructions

This section is an index of AArch32 registers and System instructions in alphabetical order.

Table K15-20 Alphabetical index of AArch32 registers and System instructions

Register Description, see

ACTLR ACTLR, Auxiliary Control Register on page G8-6455

ACTLR2 ACTLR2, Auxiliary Control Register 2 on page G8-6457

ADFSR ADFSR, Auxiliary Data Fault Status Register on page G8-6459

AIDR AIDR, Auxiliary ID Register on page G8-6461

AIFSR AIFSR, Auxiliary Instruction Fault Status Register on page G8-6462

AMAIR0 AMAIR0, Auxiliary Memory Attribute Indirection Register 0 on page G8-6464

AMAIR1 AMAIR1, Auxiliary Memory Attribute Indirection Register 1 on page G8-6467

AMCFGR AMCFGR, Activity Monitors Configuration Register on page G8-7156

AMCGCR AMCGCR, Activity Monitors Counter Group Configuration Register on page G8-7159

AMCNTENCLR0 AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0 on page G8-7161

AMCNTENCLR1 AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1 on page G8-7164

AMCNTENSET0 AMCNTENSET0, Activity Monitors Count Enable Set Register 0 on page G8-7167

AMCNTENSET1 AMCNTENSET1, Activity Monitors Count Enable Set Register 1 on page G8-7170

AMCR AMCR, Activity Monitors Control Register on page G8-7173

AMEVCNTR0<n> AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 3 on page G8-7176

AMEVCNTR1<n> AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15 on page G8-7179

AMEVTYPER0<n> AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 3 on page G8-7183

AMEVTYPER1<n> AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15 on page G8-7186

AMUSERENR AMUSERENR, Activity Monitors User Enable Register on page G8-7189

APSR APSR, Application Program Status Register on page G8-6470

ATS12NSOPR ATS12NSOPR, Address Translate Stages 1 and 2 Non-secure Only PL1 Read on page G8-6472

ATS12NSOPW ATS12NSOPW, Address Translate Stages 1 and 2 Non-secure Only PL1 Write on page G8-6473

ATS12NSOUR ATS12NSOUR, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read on
page G8-6474

ATS12NSOUW ATS12NSOUW, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write on
page G8-6475

ATS1CPR ATS1CPR, Address Translate Stage 1 Current state PL1 Read on page G8-6476

ATS1CPRP ATS1CPRP, Address Translate Stage 1 Current state PL1 Read PAN on page G8-6477

ATS1CPW ATS1CPW, Address Translate Stage 1 Current state PL1 Write on page G8-6478

ATS1CPWP ATS1CPWP, Address Translate Stage 1 Current state PL1 Write PAN on page G8-6479

ATS1CUR ATS1CUR, Address Translate Stage 1 Current state Unprivileged Read on page G8-6480
K15-8640 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.4 Alphabetical index of AArch32 registers and System instructions
ATS1CUW ATS1CUW, Address Translate Stage 1 Current state Unprivileged Write on page G8-6481

ATS1HR ATS1HR, Address Translate Stage 1 Hyp mode Read on page G8-6482

ATS1HW ATS1HW, Address Translate Stage 1 Hyp mode Write on page G8-6484

BPIALL BPIALL, Branch Predictor Invalidate All on page G8-6486

BPIALLIS BPIALLIS, Branch Predictor Invalidate All, Inner Shareable on page G8-6487

BPIMVA BPIMVA, Branch Predictor Invalidate by VA on page G8-6488

CCSIDR CCSIDR, Current Cache Size ID Register on page G8-6489

CCSIDR2 CCSIDR2, Current Cache Size ID Register 2 on page G8-6492

CFPRCTX CFPRCTX, Control Flow Prediction Restriction by Context on page G8-6494

CLIDR CLIDR, Cache Level ID Register on page G8-6497

CNTFRQ CNTFRQ, Counter-timer Frequency register on page G8-7254

CNTHCTL CNTHCTL, Counter-timer Hyp Control register on page G8-7256

CNTHP_CTL CNTHP_CTL, Counter-timer Hyp Physical Timer Control register on page G8-7259

CNTHP_CVAL CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register on page G8-7263

CNTHP_TVAL CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register on page G8-7267

CNTHPS_CTL CNTHPS_CTL, Counter-timer Secure Physical Timer Control Register (EL2) on page G8-7271

CNTHPS_CVAL CNTHPS_CVAL, Counter-timer Secure Physical Timer CompareValue Register (EL2) on
page G8-7275

CNTHPS_TVAL CNTHPS_TVAL, Counter-timer Secure Physical Timer TimerValue Register (EL2) on
page G8-7278

CNTHV_CTL CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2) on page G8-7281

CNTHV_CVAL CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2) on page G8-7284

CNTHV_TVAL CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2) on page G8-7287

CNTHVS_CTL CNTHVS_CTL, Counter-timer Secure Virtual Timer Control Register (EL2) on page G8-7290

CNTHVS_CVAL CNTHVS_CVAL, Counter-timer Secure Virtual Timer CompareValue Register (EL2) on
page G8-7293

CNTHVS_TVAL CNTHVS_TVAL, Counter-timer Secure Virtual Timer TimerValue Register (EL2) on
page G8-7296

CNTKCTL CNTKCTL, Counter-timer Kernel Control register on page G8-7299

CNTP_CTL CNTP_CTL, Counter-timer Physical Timer Control register on page G8-7302

CNTP_CVAL CNTP_CVAL, Counter-timer Physical Timer CompareValue register on page G8-7306

CNTP_TVAL CNTP_TVAL, Counter-timer Physical Timer TimerValue register on page G8-7309

CNTPCT CNTPCT, Counter-timer Physical Count register on page G8-7312

CNTPCTSS CNTPCTSS, Counter-timer Self-Synchronized Physical Count register on page G8-7314

Table K15-20 Alphabetical index of AArch32 registers and System instructions (continued)

Register Description, see
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8641
ID072021 Non-Confidential

Registers Index
K15.4 Alphabetical index of AArch32 registers and System instructions
CNTV_CTL CNTV_CTL, Counter-timer Virtual Timer Control register on page G8-7316

CNTV_CVAL CNTV_CVAL, Counter-timer Virtual Timer CompareValue register on page G8-7319

CNTV_TVAL CNTV_TVAL, Counter-timer Virtual Timer TimerValue register on page G8-7322

CNTVCT CNTVCT, Counter-timer Virtual Count register on page G8-7325

CNTVCTSS CNTVCTSS, Counter-timer Self-Synchronized Virtual Count register on page G8-7327

CNTVOFF CNTVOFF, Counter-timer Virtual Offset register on page G8-7329

CONTEXTIDR CONTEXTIDR, Context ID Register on page G8-6499

CP15DMB CP15DMB, Data Memory Barrier System instruction on page G8-6502

CP15DSB CP15DSB, Data Synchronization Barrier System instruction on page G8-6504

CP15ISB CP15ISB, Instruction Synchronization Barrier System instruction on page G8-6506

CPACR CPACR, Architectural Feature Access Control Register on page G8-6508

CPPRCTX CPPRCTX, Cache Prefetch Prediction Restriction by Context on page G8-6517

CPSR CPSR, Current Program Status Register on page G8-6512

CSSELR CSSELR, Cache Size Selection Register on page G8-6520

CTR CTR, Cache Type Register on page G8-6523

DACR DACR, Domain Access Control Register on page G8-6526

DBGAUTHSTATUS DBGAUTHSTATUS, Debug Authentication Status register on page G8-6946

DBGBCR<n> DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15 on page G8-6949

DBGBVR<n> DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15 on page G8-6954

DBGBXVR<n> DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15 on page G8-6958

DBGCLAIMCLR DBGCLAIMCLR, Debug CLAIM Tag Clear register on page G8-6962

DBGCLAIMSET DBGCLAIMSET, Debug CLAIM Tag Set register on page G8-6965

DBGDCCINT DBGDCCINT, DCC Interrupt Enable Register on page G8-6968

DBGDEVID DBGDEVID, Debug Device ID register 0 on page G8-6972

DBGDEVID1 DBGDEVID1, Debug Device ID register 1 on page G8-6975

DBGDEVID2 DBGDEVID2, Debug Device ID register 2 on page G8-6977

DBGDIDR DBGDIDR, Debug ID Register on page G8-6979

DBGDRAR DBGDRAR, Debug ROM Address Register on page G8-6982

DBGDSAR DBGDSAR, Debug Self Address Register on page G8-6986

DBGDSCRext DBGDSCRext, Debug Status and Control Register, External View on page G8-6989

DBGDSCRint DBGDSCRint, Debug Status and Control Register, Internal View on page G8-6996

DBGDTRRXext DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View on
page G8-7000

Table K15-20 Alphabetical index of AArch32 registers and System instructions (continued)

Register Description, see
K15-8642 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.4 Alphabetical index of AArch32 registers and System instructions
DBGDTRRXint DBGDTRRXint, Debug Data Transfer Register, Receive on page G8-7004

DBGDTRTXext DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit on page G8-7006

DBGDTRTXint DBGDTRTXint, Debug Data Transfer Register, Transmit on page G8-7010

DBGOSDLR DBGOSDLR, Debug OS Double Lock Register on page G8-7012

DBGOSECCR DBGOSECCR, Debug OS Lock Exception Catch Control Register on page G8-7015

DBGOSLAR DBGOSLAR, Debug OS Lock Access Register on page G8-7018

DBGOSLSR DBGOSLSR, Debug OS Lock Status Register on page G8-7020

DBGPRCR DBGPRCR, Debug Power Control Register on page G8-7022

DBGVCR DBGVCR, Debug Vector Catch Register on page G8-7025

DBGWCR<n> DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15 on page G8-7033

DBGWFAR DBGWFAR, Debug Watchpoint Fault Address Register on page G8-7038

DBGWVR<n> DBGWVR<n>, Debug Watchpoint Value Registers, n = 0 - 15 on page G8-7040

DCCIMVAC DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC on page G8-6528

DCCISW DCCISW, Data Cache line Clean and Invalidate by Set/Way on page G8-6529

DCCMVAC DCCMVAC, Data Cache line Clean by VA to PoC on page G8-6531

DCCMVAU DCCMVAU, Data Cache line Clean by VA to PoU on page G8-6532

DCCSW DCCSW, Data Cache line Clean by Set/Way on page G8-6534

DCIMVAC DCIMVAC, Data Cache line Invalidate by VA to PoC on page G8-6536

DCISW DCISW, Data Cache line Invalidate by Set/Way on page G8-6538

DFAR DFAR, Data Fault Address Register on page G8-6540

DFSR DFSR, Data Fault Status Register on page G8-6542

DISR DISR, Deferred Interrupt Status Register on page G8-7193

DLR DLR, Debug Link Register on page G8-7043

DSPSR DSPSR, Debug Saved Program Status Register on page G8-7044

DTLBIALL DTLBIALL, Data TLB Invalidate All on page G8-6549

DTLBIASID DTLBIASID, Data TLB Invalidate by ASID match on page G8-6551

DTLBIMVA DTLBIMVA, Data TLB Invalidate by VA on page G8-6553

DVPRCTX DVPRCTX, Data Value Prediction Restriction by Context on page G8-6555

ELR_hyp ELR_hyp, Exception Link Register (Hyp mode) on page G8-6558

ERRIDR ERRIDR, Error Record ID Register on page G8-7198

ERRSELR ERRSELR, Error Record Select Register on page G8-7200

ERXADDR ERXADDR, Selected Error Record Address Register on page G8-7203

Table K15-20 Alphabetical index of AArch32 registers and System instructions (continued)

Register Description, see
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8643
ID072021 Non-Confidential

Registers Index
K15.4 Alphabetical index of AArch32 registers and System instructions
ERXADDR2 ERXADDR2, Selected Error Record Address Register 2 on page G8-7206

ERXCTLR ERXCTLR, Selected Error Record Control Register on page G8-7209

ERXCTLR2 ERXCTLR2, Selected Error Record Control Register 2 on page G8-7212

ERXFR ERXFR, Selected Error Record Feature Register on page G8-7215

ERXFR2 ERXFR2, Selected Error Record Feature Register 2 on page G8-7217

ERXMISC0 ERXMISC0, Selected Error Record Miscellaneous Register 0 on page G8-7219

ERXMISC1 ERXMISC1, Selected Error Record Miscellaneous Register 1 on page G8-7222

ERXMISC2 ERXMISC2, Selected Error Record Miscellaneous Register 2 on page G8-7225

ERXMISC3 ERXMISC3, Selected Error Record Miscellaneous Register 3 on page G8-7228

ERXMISC4 ERXMISC4, Selected Error Record Miscellaneous Register 4 on page G8-7231

ERXMISC5 ERXMISC5, Selected Error Record Miscellaneous Register 5 on page G8-7234

ERXMISC6 ERXMISC6, Selected Error Record Miscellaneous Register 6 on page G8-7237

ERXMISC7 ERXMISC7, Selected Error Record Miscellaneous Register 7 on page G8-7240

ERXSTATUS ERXSTATUS, Selected Error Record Primary Status Register on page G8-7243

FCSEIDR FCSEIDR, FCSE Process ID register on page G8-6559

FPEXC FPEXC, Floating-Point Exception Control register on page G8-6561

FPSCR FPSCR, Floating-Point Status and Control Register on page G8-6567

FPSID FPSID, Floating-Point System ID register on page G8-6576

HACR HACR, Hyp Auxiliary Configuration Register on page G8-6580

HACTLR HACTLR, Hyp Auxiliary Control Register on page G8-6582

HACTLR2 HACTLR2, Hyp Auxiliary Control Register 2 on page G8-6584

HADFSR HADFSR, Hyp Auxiliary Data Fault Status Register on page G8-6586

HAIFSR HAIFSR, Hyp Auxiliary Instruction Fault Status Register on page G8-6588

HAMAIR0 HAMAIR0, Hyp Auxiliary Memory Attribute Indirection Register 0 on page G8-6590

HAMAIR1 HAMAIR1, Hyp Auxiliary Memory Attribute Indirection Register 1 on page G8-6592

HCPTR HCPTR, Hyp Architectural Feature Trap Register on page G8-6594

HCR HCR, Hyp Configuration Register on page G8-6599

HCR2 HCR2, Hyp Configuration Register 2 on page G8-6610

HDCR HDCR, Hyp Debug Control Register on page G8-7048

HDFAR HDFAR, Hyp Data Fault Address Register on page G8-6615

HIFAR HIFAR, Hyp Instruction Fault Address Register on page G8-6617

HMAIR0 HMAIR0, Hyp Memory Attribute Indirection Register 0 on page G8-6619

Table K15-20 Alphabetical index of AArch32 registers and System instructions (continued)

Register Description, see
K15-8644 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.4 Alphabetical index of AArch32 registers and System instructions
HMAIR1 HMAIR1, Hyp Memory Attribute Indirection Register 1 on page G8-6622

HPFAR HPFAR, Hyp IPA Fault Address Register on page G8-6625

HRMR HRMR, Hyp Reset Management Register on page G8-6627

HSCTLR HSCTLR, Hyp System Control Register on page G8-6629

HSR HSR, Hyp Syndrome Register on page G8-6635

HSTR HSTR, Hyp System Trap Register on page G8-6657

HTCR HTCR, Hyp Translation Control Register on page G8-6659

HTPIDR HTPIDR, Hyp Software Thread ID Register on page G8-6664

HTRFCR HTRFCR, Hyp Trace Filter Control Register on page G8-7057

HTTBR HTTBR, Hyp Translation Table Base Register on page G8-6666

HVBAR HVBAR, Hyp Vector Base Address Register on page G8-6669

ICIALLU ICIALLU, Instruction Cache Invalidate All to PoU on page G8-6671

ICIALLUIS ICIALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable on page G8-6673

ICIMVAU ICIMVAU, Instruction Cache line Invalidate by VA to PoU on page G8-6674

ID_AFR0 ID_AFR0, Auxiliary Feature Register 0 on page G8-6676

ID_DFR0 ID_DFR0, Debug Feature Register 0 on page G8-6678

ID_DFR1 ID_DFR1, Debug Feature Register 1 on page G8-6682

ID_ISAR0 ID_ISAR0, Instruction Set Attribute Register 0 on page G8-6684

ID_ISAR1 ID_ISAR1, Instruction Set Attribute Register 1 on page G8-6687

ID_ISAR2 ID_ISAR2, Instruction Set Attribute Register 2 on page G8-6690

ID_ISAR3 ID_ISAR3, Instruction Set Attribute Register 3 on page G8-6693

ID_ISAR4 ID_ISAR4, Instruction Set Attribute Register 4 on page G8-6696

ID_ISAR5 ID_ISAR5, Instruction Set Attribute Register 5 on page G8-6699

ID_ISAR6 ID_ISAR6, Instruction Set Attribute Register 6 on page G8-6702

ID_MMFR0 ID_MMFR0, Memory Model Feature Register 0 on page G8-6705

ID_MMFR1 ID_MMFR1, Memory Model Feature Register 1 on page G8-6708

ID_MMFR2 ID_MMFR2, Memory Model Feature Register 2 on page G8-6712

ID_MMFR3 ID_MMFR3, Memory Model Feature Register 3 on page G8-6715

ID_MMFR4 ID_MMFR4, Memory Model Feature Register 4 on page G8-6718

ID_MMFR5 ID_MMFR5, Memory Model Feature Register 5 on page G8-6721

ID_PFR0 ID_PFR0, Processor Feature Register 0 on page G8-6723

ID_PFR1 ID_PFR1, Processor Feature Register 1 on page G8-6726

Table K15-20 Alphabetical index of AArch32 registers and System instructions (continued)

Register Description, see
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8645
ID072021 Non-Confidential

Registers Index
K15.4 Alphabetical index of AArch32 registers and System instructions
ID_PFR2 ID_PFR2, Processor Feature Register 2 on page G8-6730

IFAR IFAR, Instruction Fault Address Register on page G8-6732

IFSR IFSR, Instruction Fault Status Register on page G8-6734

ISR ISR, Interrupt Status Register on page G8-6739

ITLBIALL ITLBIALL, Instruction TLB Invalidate All on page G8-6741

ITLBIASID ITLBIASID, Instruction TLB Invalidate by ASID match on page G8-6743

ITLBIMVA ITLBIMVA, Instruction TLB Invalidate by VA on page G8-6745

JIDR JIDR, Jazelle ID Register on page G8-6747

JMCR JMCR, Jazelle Main Configuration Register on page G8-6748

JOSCR JOSCR, Jazelle OS Control Register on page G8-6750

MAIR0 MAIR0, Memory Attribute Indirection Register 0 on page G8-6752

MAIR1 MAIR1, Memory Attribute Indirection Register 1 on page G8-6756

MIDR MIDR, Main ID Register on page G8-6760

MPIDR MPIDR, Multiprocessor Affinity Register on page G8-6763

MVBAR MVBAR, Monitor Vector Base Address Register on page G8-6765

MVFR0 MVFR0, Media and VFP Feature Register 0 on page G8-6767

MVFR1 MVFR1, Media and VFP Feature Register 1 on page G8-6771

MVFR2 MVFR2, Media and VFP Feature Register 2 on page G8-6775

NMRR NMRR, Normal Memory Remap Register on page G8-6777

NSACR NSACR, Non-Secure Access Control Register on page G8-6781

PAR PAR, Physical Address Register on page G8-6785

PMCCFILTR PMCCFILTR, Performance Monitors Cycle Count Filter Register on page G8-7075

PMCCNTR PMCCNTR, Performance Monitors Cycle Count Register on page G8-7079

PMCEID0 PMCEID0, Performance Monitors Common Event Identification register 0 on page G8-7085

PMCEID1 PMCEID1, Performance Monitors Common Event Identification register 1 on page G8-7088

PMCEID2 PMCEID2, Performance Monitors Common Event Identification register 2 on page G8-7091

PMCEID3 PMCEID3, Performance Monitors Common Event Identification register 3 on page G8-7094

PMCNTENCLR PMCNTENCLR, Performance Monitors Count Enable Clear register on page G8-7097

PMCNTENSET PMCNTENSET, Performance Monitors Count Enable Set register on page G8-7101

PMCR PMCR, Performance Monitors Control Register on page G8-7105

PMEVCNTR<n> PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30 on page G8-7113

PMEVTYPER<n> PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30 on page G8-7117

Table K15-20 Alphabetical index of AArch32 registers and System instructions (continued)

Register Description, see
K15-8646 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.4 Alphabetical index of AArch32 registers and System instructions
PMINTENCLR PMINTENCLR, Performance Monitors Interrupt Enable Clear register on page G8-7123

PMINTENSET PMINTENSET, Performance Monitors Interrupt Enable Set register on page G8-7126

PMMIR PMMIR, Performance Monitors Machine Identification Register on page G8-7060

PMOVSR PMOVSR, Performance Monitors Overflow Flag Status Register on page G8-7129

PMOVSSET PMOVSSET, Performance Monitors Overflow Flag Status Set register on page G8-7133

PMSELR PMSELR, Performance Monitors Event Counter Selection Register on page G8-7137

PMSWINC PMSWINC, Performance Monitors Software Increment register on page G8-7141

PMUSERENR PMUSERENR, Performance Monitors User Enable Register on page G8-7144

PMXEVCNTR PMXEVCNTR, Performance Monitors Selected Event Count Register on page G8-7147

PMXEVTYPER PMXEVTYPER, Performance Monitors Selected Event Type Register on page G8-7151

PRRR PRRR, Primary Region Remap Register on page G8-6796

REVIDR REVIDR, Revision ID Register on page G8-6800

RMR RMR, Reset Management Register on page G8-6801

RVBAR RVBAR, Reset Vector Base Address Register on page G8-6803

SCR SCR, Secure Configuration Register on page G8-6805

SCTLR SCTLR, System Control Register on page G8-6810

SDCR SDCR, Secure Debug Control Register on page G8-7062

SDER SDER, Secure Debug Enable Register on page G8-7068

SPSR SPSR, Saved Program Status Register on page G8-6819

SPSR_abt SPSR_abt, Saved Program Status Register (Abort mode) on page G8-6823

SPSR_fiq SPSR_fiq, Saved Program Status Register (FIQ mode) on page G8-6827

SPSR_hyp SPSR_hyp, Saved Program Status Register (Hyp mode) on page G8-6831

SPSR_irq SPSR_irq, Saved Program Status Register (IRQ mode) on page G8-6835

SPSR_mon SPSR_mon, Saved Program Status Register (Monitor mode) on page G8-6839

SPSR_svc SPSR_svc, Saved Program Status Register (Supervisor mode) on page G8-6843

SPSR_und SPSR_und, Saved Program Status Register (Undefined mode) on page G8-6847

TCMTR TCMTR, TCM Type Register on page G8-6851

TLBIALL TLBIALL, TLB Invalidate All on page G8-6852

TLBIALLH TLBIALLH, TLB Invalidate All, Hyp mode on page G8-6854

TLBIALLHIS TLBIALLHIS, TLB Invalidate All, Hyp mode, Inner Shareable on page G8-6855

TLBIALLIS TLBIALLIS, TLB Invalidate All, Inner Shareable on page G8-6856

TLBIALLNSNH TLBIALLNSNH, TLB Invalidate All, Non-Secure Non-Hyp on page G8-6858

Table K15-20 Alphabetical index of AArch32 registers and System instructions (continued)

Register Description, see
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8647
ID072021 Non-Confidential

Registers Index
K15.4 Alphabetical index of AArch32 registers and System instructions
TLBIALLNSNHIS TLBIALLNSNHIS, TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable on page G8-6859

TLBIASID TLBIASID, TLB Invalidate by ASID match on page G8-6860

TLBIASIDIS TLBIASIDIS, TLB Invalidate by ASID match, Inner Shareable on page G8-6862

TLBIIPAS2 TLBIIPAS2, TLB Invalidate by Intermediate Physical Address, Stage 2 on page G8-6864

TLBIIPAS2IS TLBIIPAS2IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable on
page G8-6866

TLBIIPAS2L TLBIIPAS2L, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level on
page G8-6868

TLBIIPAS2LIS TLBIIPAS2LIS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner
Shareable on page G8-6870

TLBIMVA TLBIMVA, TLB Invalidate by VA on page G8-6872

TLBIMVAA TLBIMVAA, TLB Invalidate by VA, All ASID on page G8-6874

TLBIMVAAIS TLBIMVAAIS, TLB Invalidate by VA, All ASID, Inner Shareable on page G8-6876

TLBIMVAAL TLBIMVAAL, TLB Invalidate by VA, All ASID, Last level on page G8-6878

TLBIMVAALIS TLBIMVAALIS, TLB Invalidate by VA, All ASID, Last level, Inner Shareable on page G8-6880

TLBIMVAH TLBIMVAH, TLB Invalidate by VA, Hyp mode on page G8-6882

TLBIMVAHIS TLBIMVAHIS, TLB Invalidate by VA, Hyp mode, Inner Shareable on page G8-6884

TLBIMVAIS TLBIMVAIS, TLB Invalidate by VA, Inner Shareable on page G8-6886

TLBIMVAL TLBIMVAL, TLB Invalidate by VA, Last level on page G8-6888

TLBIMVALH TLBIMVALH, TLB Invalidate by VA, Last level, Hyp mode on page G8-6890

TLBIMVALHIS TLBIMVALHIS, TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable on page G8-6892

TLBIMVALIS TLBIMVALIS, TLB Invalidate by VA, Last level, Inner Shareable on page G8-6894

TLBTR TLBTR, TLB Type Register on page G8-6896

TPIDRPRW TPIDRPRW, PL1 Software Thread ID Register on page G8-6898

TPIDRURO TPIDRURO, PL0 Read-Only Software Thread ID Register on page G8-6900

TPIDRURW TPIDRURW, PL0 Read/Write Software Thread ID Register on page G8-6902

TRFCR TRFCR, Trace Filter Control Register on page G8-7070

TTBCR TTBCR, Translation Table Base Control Register on page G8-6904

TTBCR2 TTBCR2, Translation Table Base Control Register 2 on page G8-6910

TTBR0 TTBR0, Translation Table Base Register 0 on page G8-6916

TTBR1 TTBR1, Translation Table Base Register 1 on page G8-6922

VBAR VBAR, Vector Base Address Register on page G8-6928

VDFSR VDFSR, Virtual SError Exception Syndrome Register on page G8-7246

Table K15-20 Alphabetical index of AArch32 registers and System instructions (continued)

Register Description, see
K15-8648 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.4 Alphabetical index of AArch32 registers and System instructions
VDISR VDISR, Virtual Deferred Interrupt Status Register on page G8-7248

VMPIDR VMPIDR, Virtualization Multiprocessor ID Register on page G8-6930

VPIDR VPIDR, Virtualization Processor ID Register on page G8-6933

VTCR VTCR, Virtualization Translation Control Register on page G8-6937

VTTBR VTTBR, Virtualization Translation Table Base Register on page G8-6942

Table K15-20 Alphabetical index of AArch32 registers and System instructions (continued)

Register Description, see
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8649
ID072021 Non-Confidential

Registers Index
K15.5 Functional index of AArch32 registers and System instructions
K15.5 Functional index of AArch32 registers and System instructions

This section is an index of the AArch32 registers and System instructions, divided by functional group. Each of the
following sections lists the registers for a functional group:

• Special-purpose registers on page K15-8650.

• VMSA-specific registers on page K15-8651.

• ID registers on page K15-8651.

• Performance monitors registers on page K15-8652.

• Activity Monitors registers on page K15-8653.

• Debug registers on page K15-8654.

• RAS registers on page K15-8655.

• Generic timer registers on page K15-8656.

• Cache maintenance system instructions on page K15-8657.

• Address translation system instructions on page K15-8657.

• TLB maintenance system instructions on page K15-8658.

• Legacy feature registers and system instructions on page K15-8659.

• Base system registers on page K15-8660.

K15.5.1 Special-purpose registers

This section is an index to the registers in the Processor state registers functional group.

Table K15-21 Special-purpose registers

Register Description, see

DLR DLR

DSPSR DSPSR

ELR_hyp ELR_hyp

SPSR SPSR

SPSR_abt SPSR_abt

SPSR_fiq SPSR_fiq

SPSR_hyp SPSR_hyp

SPSR_irq SPSR_irq

SPSR_mon SPSR_mon

SPSR_svc SPSR_svc

SPSR_und SPSR_und
K15-8650 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.5 Functional index of AArch32 registers and System instructions
K15.5.2 VMSA-specific registers

This section is an index to the registers in the Virtual memory control registers functional group.

K15.5.3 ID registers

This section is an index to the registers in the Identification registers functional group.

Table K15-22 VMSA-specific registers

Register Description, see

AMAIR0 AMAIR0

AMAIR1 AMAIR1

CONTEXTIDR CONTEXTIDR

DACR DACR

HAMAIR0 HAMAIR0

HAMAIR1 HAMAIR1

HMAIR0 HMAIR0

HMAIR1 HMAIR1

HTCR HTCR

HTTBR HTTBR

MAIR0 MAIR0

MAIR1 MAIR1

NMRR NMRR

PRRR PRRR

TTBCR TTBCR

TTBCR2 TTBCR2

TTBR0 TTBR0

TTBR1 TTBR1

VTCR VTCR

VTTBR VTTBR

Table K15-23 ID registers

Register Description, see

CCSIDR CCSIDR

CCSIDR2 CCSIDR2

CLIDR CLIDR

CSSELR CSSELR

CTR CTR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8651
ID072021 Non-Confidential

Registers Index
K15.5 Functional index of AArch32 registers and System instructions
K15.5.4 Performance monitors registers

This section is an index to the registers in the Performance Monitors registers functional group.

ID_AFR0 ID_AFR0

ID_DFR0 ID_DFR0

ID_DFR1 ID_DFR1

ID_ISAR0 ID_ISAR0

ID_ISAR1 ID_ISAR1

ID_ISAR2 ID_ISAR2

ID_ISAR3 ID_ISAR3

ID_ISAR4 ID_ISAR4

ID_ISAR5 ID_ISAR5

ID_ISAR6 ID_ISAR6

ID_MMFR0 ID_MMFR0

ID_MMFR1 ID_MMFR1

ID_MMFR2 ID_MMFR2

ID_MMFR3 ID_MMFR3

ID_MMFR4 ID_MMFR4

ID_MMFR5 ID_MMFR5

ID_PFR0 ID_PFR0

ID_PFR1 ID_PFR1

ID_PFR2 ID_PFR2

MIDR MIDR

MPIDR MPIDR

REVIDR REVIDR

TCMTR TCMTR

TLBTR TLBTR

Table K15-23 ID registers (continued)

Register Description, see

Table K15-24 Performance monitors registers

Register Description, see

PMCCFILTR PMCCFILTR

PMCCNTR PMCCNTR

PMCEID0 PMCEID0
K15-8652 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.5 Functional index of AArch32 registers and System instructions
K15.5.5 Activity Monitors registers

This section is an index to the registers in the Activity Monitors registers functional group.

PMCEID1 PMCEID1

PMCEID2 PMCEID2

PMCEID3 PMCEID3

PMCNTENCLR PMCNTENCLR

PMCNTENSET PMCNTENSET

PMCR PMCR

PMEVCNTR<n> PMEVCNTR<n>

PMEVTYPER<n> PMEVTYPER<n>

PMINTENCLR PMINTENCLR

PMINTENSET PMINTENSET

PMMIR PMMIR

PMOVSR PMOVSR

PMOVSSET PMOVSSET

PMSELR PMSELR

PMSWINC PMSWINC

PMUSERENR PMUSERENR

PMXEVCNTR PMXEVCNTR

PMXEVTYPER PMXEVTYPER

Table K15-24 Performance monitors registers (continued)

Register Description, see

Table K15-25 Activity monitors registers

Register Description, see

AMCFGR AMCFGR

AMCGCR AMCGCR

AMCNTENCLR0 AMCNTENCLR0

AMCNTENCLR1 AMCNTENCLR1

AMCNTENSET0 AMCNTENSET0

AMCNTENSET1 AMCNTENSET1

AMCR AMCR

AMEVCNTR0<n> AMEVCNTR0<n>

AMEVCNTR1<n> AMEVCNTR1<n>
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8653
ID072021 Non-Confidential

Registers Index
K15.5 Functional index of AArch32 registers and System instructions
K15.5.6 Debug registers

This section is an index to the registers in the Debug registers functional group.

AMEVTYPER0<n> AMEVTYPER0<n>

AMEVTYPER1<n> AMEVTYPER1<n>

AMUSERENR AMUSERENR

Table K15-25 Activity monitors registers (continued)

Register Description, see

Table K15-26 Debug registers

Register Description, see

DBGAUTHSTATUS DBGAUTHSTATUS

DBGBCR<n> DBGBCR<n>

DBGBVR<n> DBGBVR<n>

DBGBXVR<n> DBGBXVR<n>

DBGCLAIMCLR DBGCLAIMCLR

DBGCLAIMSET DBGCLAIMSET

DBGDCCINT DBGDCCINT

DBGDEVID DBGDEVID

DBGDEVID1 DBGDEVID1

DBGDEVID2 DBGDEVID2

DBGDIDR DBGDIDR

DBGDRAR DBGDRAR

DBGDSAR DBGDSAR

DBGDSCRext DBGDSCRext

DBGDSCRint DBGDSCRint

DBGDTRRXext DBGDTRRXext

DBGDTRRXint DBGDTRRXint

DBGDTRTXext DBGDTRTXext

DBGDTRTXint DBGDTRTXint

DBGOSDLR DBGOSDLR

DBGOSECCR DBGOSECCR

DBGOSLAR DBGOSLAR

DBGOSLSR DBGOSLSR

DBGPRCR DBGPRCR
K15-8654 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.5 Functional index of AArch32 registers and System instructions
K15.5.7 RAS registers

This section is an index to the registers in the RAS registers functional group.

DBGVCR DBGVCR

DBGWCR<n> DBGWCR<n>

DBGWFAR DBGWFAR

DBGWVR<n> DBGWVR<n>

TRFCR TRFCR

Table K15-26 Debug registers (continued)

Register Description, see

Table K15-27 RAS registers

Register Description, see

DISR DISR

ERRIDR ERRIDR

ERRSELR ERRSELR

ERXADDR ERXADDR

ERXADDR2 ERXADDR2

ERXCTLR ERXCTLR

ERXCTLR2 ERXCTLR2

ERXFR ERXFR

ERXFR2 ERXFR2

ERXMISC0 ERXMISC0

ERXMISC1 ERXMISC1

ERXMISC2 ERXMISC2

ERXMISC3 ERXMISC3

ERXMISC4 ERXMISC4

ERXMISC5 ERXMISC5

ERXMISC6 ERXMISC6

ERXMISC7 ERXMISC7

ERXSTATUS ERXSTATUS

VDFSR VDFSR

VDISR VDISR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8655
ID072021 Non-Confidential

Registers Index
K15.5 Functional index of AArch32 registers and System instructions
K15.5.8 Generic timer registers

This section is an index to the registers in the Generic Timer registers functional group.

K15.5.9 Cache maintenance system instructions

This section is an index to the registers in the Cache maintenance instructions functional group.

Table K15-28 Generic timer registers

Register Description, see

CNTFRQ CNTFRQ

CNTHP_CTL CNTHP_CTL

CNTHPS_CTL CNTHPS_CTL

CNTHPS_CVAL CNTHPS_CVAL

CNTHPS_TVAL CNTHPS_TVAL

CNTHV_CTL CNTHV_CTL

CNTHV_CVAL CNTHV_CVAL

CNTHV_TVAL CNTHV_TVAL

CNTHVS_CTL CNTHVS_CTL

CNTHVS_CVAL CNTHVS_CVAL

CNTHVS_TVAL CNTHVS_TVAL

CNTKCTL CNTKCTL

CNTP_CTL CNTP_CTL

CNTP_CVAL CNTP_CVAL

CNTP_TVAL CNTP_TVAL

CNTPCT CNTPCT

CNTPCTSS CNTPCTSS

CNTV_CTL CNTV_CTL

CNTV_CVAL CNTV_CVAL

CNTV_TVAL CNTV_TVAL

CNTVCT CNTVCT

CNTVCTSS CNTVCTSS

Table K15-29 Cache maintenance system instructions

Register Description, see

BPIALL BPIALL

BPIALLIS BPIALLIS

BPIMVA BPIMVA
K15-8656 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.5 Functional index of AArch32 registers and System instructions
K15.5.10 Address translation system instructions

This section is an index to the registers in the Address translation instructions functional group.

DCCIMVAC DCCIMVAC

DCCISW DCCISW

DCCMVAC DCCMVAC

DCCMVAU DCCMVAU

DCCSW DCCSW

DCIMVAC DCIMVAC

DCISW DCISW

ICIALLU ICIALLU

ICIALLUIS ICIALLUIS

ICIMVAU ICIMVAU

Table K15-29 Cache maintenance system instructions (continued)

Register Description, see

Table K15-30 Address translation system instructions

Register Description, see

ATS12NSOPR ATS12NSOPR

ATS12NSOPW ATS12NSOPW

ATS12NSOUR ATS12NSOUR

ATS12NSOUW ATS12NSOUW

ATS1CPR ATS1CPR

ATS1CPRP ATS1CPRP

ATS1CPW ATS1CPW

ATS1CPWP ATS1CPWP

ATS1CUR ATS1CUR

ATS1CUW ATS1CUW

ATS1HR ATS1HR

ATS1HW ATS1HW
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8657
ID072021 Non-Confidential

Registers Index
K15.5 Functional index of AArch32 registers and System instructions
K15.5.11 TLB maintenance system instructions

This section is an index to the registers in the TLB maintenance instructions functional group.

Table K15-31 TLB maintenance system instructions

Register Description, see

CFPRCTX CFPRCTX

CPPRCTX CPPRCTX

DTLBIALL DTLBIALL

DTLBIASID DTLBIASID

DTLBIMVA DTLBIMVA

DVPRCTX DVPRCTX

ITLBIALL ITLBIALL

ITLBIASID ITLBIASID

ITLBIMVA ITLBIMVA

TLBIALL TLBIALL

TLBIALLH TLBIALLH

TLBIALLHIS TLBIALLHIS

TLBIALLIS TLBIALLIS

TLBIALLNSNH TLBIALLNSNH

TLBIALLNSNHIS TLBIALLNSNHIS

TLBIASID TLBIASID

TLBIASIDIS TLBIASIDIS

TLBIIPAS2 TLBIIPAS2

TLBIIPAS2IS TLBIIPAS2IS

TLBIIPAS2L TLBIIPAS2L

TLBIIPAS2LIS TLBIIPAS2LIS

TLBIMVA TLBIMVA

TLBIMVAA TLBIMVAA

TLBIMVAAIS TLBIMVAAIS

TLBIMVAAL TLBIMVAAL

TLBIMVAALIS TLBIMVAALIS

TLBIMVAH TLBIMVAH

TLBIMVAHIS TLBIMVAHIS

TLBIMVAIS TLBIMVAIS

TLBIMVAL TLBIMVAL
K15-8658 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.5 Functional index of AArch32 registers and System instructions
K15.5.12 Prediction restriction instructions

This section is an index to the registers in the Prediction restriction instructions functional group.

K15.5.13 Legacy feature registers and system instructions

This section is an index to the registers in the Legacy feature registers functional group.

K15.5.14 Base system registers

This section is an index to the registers in the Base System registers functional group.

TLBIMVALH TLBIMVALH

TLBIMVALHIS TLBIMVALHIS

TLBIMVALIS TLBIMVALIS

Table K15-31 TLB maintenance system instructions (continued)

Register Description, see

Table K15-32 Prediction restriction System instructions

System instruction Description, see

CFPRCTX CFPRCTX

CPPRCTX CPPRCTX

DVPRCTX DVPRCTX

Table K15-33 Legacy feature registers and system instructions

Register Description, see

CP15DMB CP15DMB

CP15DSB CP15DSB

CP15ISB CP15ISB

FCSEIDR FCSEIDR

JIDR JIDR

JMCR JMCR

JOSCR JOSCR

Table K15-34 Base system registers

Register Description, see

ACTLR ACTLR

ACTLR2 ACTLR2

ADFSR ADFSR

AIDR AIDR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8659
ID072021 Non-Confidential

Registers Index
K15.5 Functional index of AArch32 registers and System instructions
AIFSR AIFSR

APSR APSR

CNTHCTL CNTHCTL

CNTHP_CVAL CNTHP_CVAL

CNTHP_TVAL CNTHP_TVAL

CNTVOFF CNTVOFF

CPACR CPACR

CPSR CPSR

DFAR DFAR

DFSR DFSR

FPEXC FPEXC

FPSCR FPSCR

FPSID FPSID

HACR HACR

HACTLR HACTLR

HACTLR2 HACTLR2

HADFSR HADFSR

HAIFSR HAIFSR

HCPTR HCPTR

HCR HCR

HCR2 HCR2

HDCR HDCR

HDFAR HDFAR

HIFAR HIFAR

HPFAR HPFAR

HRMR HRMR

HSCTLR HSCTLR

HSR HSR

HSTR HSTR

HTPIDR HTPIDR

HTRFCR HTRFCR

HVBAR HVBAR

Table K15-34 Base system registers (continued)

Register Description, see
K15-8660 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.5 Functional index of AArch32 registers and System instructions
IFAR IFAR

IFSR IFSR

ISR ISR

MVBAR MVBAR

MVFR0 MVFR0

MVFR1 MVFR1

MVFR2 MVFR2

NSACR NSACR

PAR PAR

RMR RMR

RVBAR RVBAR

SCR SCR

SCTLR SCTLR

SDCR SDCR

SDER SDER

TPIDRPRW TPIDRPRW

TPIDRURO TPIDRURO

TPIDRURW TPIDRURW

VBAR VBAR

VMPIDR VMPIDR

VPIDR VPIDR

Table K15-34 Base system registers (continued)

Register Description, see
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8661
ID072021 Non-Confidential

Registers Index
K15.6 Alphabetical index of memory-mapped registers
K15.6 Alphabetical index of memory-mapped registers

This section is an index of memory-mapped registers in alphabetical order.

Table K15-35 Alphabetical index of Memory-Mapped Registers

Register Description, see

AMCFGR AMCFGR, Activity Monitors Configuration Register on page I5-7768

AMCGCR AMCGCR, Activity Monitors Counter Group Configuration Register on page I5-7770

AMCIDR0 AMCIDR0, Activity Monitors Component Identification Register 0 on page I5-7771

AMCIDR1 AMCIDR1, Activity Monitors Component Identification Register 1 on page I5-7772

AMCIDR2 AMCIDR2, Activity Monitors Component Identification Register 2 on page I5-7773

AMCIDR3 AMCIDR3, Activity Monitors Component Identification Register 3 on page I5-7774

AMCNTENCLR0 AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0 on page I5-7775

AMCNTENCLR1 AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1 on page I5-7777

AMCNTENSET0 AMCNTENSET0, Activity Monitors Count Enable Set Register 0 on page I5-7779

AMCNTENSET1 AMCNTENSET1, Activity Monitors Count Enable Set Register 1 on page I5-7781

AMCR AMCR, Activity Monitors Control Register on page I5-7783

AMDEVAFF0 AMDEVAFF0, Activity Monitors Device Affinity Register 0 on page I5-7784

AMDEVAFF1 AMDEVAFF1, Activity Monitors Device Affinity Register 1 on page I5-7785

AMDEVARCH AMDEVARCH, Activity Monitors Device Architecture Register on page I5-7786

AMDEVTYPE AMDEVTYPE, Activity Monitors Device Type Register on page I5-7788

AMEVCNTR0<n> AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 3 on page I5-7789

AMEVCNTR1<n> AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15 on page I5-7791

AMEVTYPER0<n> AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 3 on page I5-7793

AMEVTYPER1<n> AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15 on page I5-7795

AMIIDR AMIIDR, Activity Monitors Implementation Identification Register on page I5-7797

AMPIDR0 AMPIDR0, Activity Monitors Peripheral Identification Register 0 on page I5-7799

AMPIDR1 AMPIDR1, Activity Monitors Peripheral Identification Register 1 on page I5-7800

AMPIDR2 AMPIDR2, Activity Monitors Peripheral Identification Register 2 on page I5-7801

AMPIDR3 AMPIDR3, Activity Monitors Peripheral Identification Register 3 on page I5-7802

AMPIDR4 AMPIDR4, Activity Monitors Peripheral Identification Register 4 on page I5-7803

ASICCTL ASICCTL, CTI External Multiplexer Control register on page H9-7600

CNTACR<n> CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7 on page I5-7806

CNTCR CNTCR, Counter Control Register on page I5-7808

CNTCV CNTCV, Counter Count Value register on page I5-7810

CNTEL0ACR CNTEL0ACR, Counter-timer EL0 Access Control Register on page I5-7812
K15-8662 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.6 Alphabetical index of memory-mapped registers
CNTFID0 CNTFID0, Counter Frequency ID on page I5-7814

CNTFID<n> CNTFID<n>, Counter Frequency IDs, n > 0, n = 1 - 1003 on page I5-7815

CNTFRQ CNTFRQ, Counter-timer Frequency on page I5-7817

CNTID CNTID, Counter Identification Register on page I5-7819

CNTNSAR CNTNSAR, Counter-timer Non-secure Access Register on page I5-7820

CNTP_CTL CNTP_CTL, Counter-timer Physical Timer Control on page I5-7822

CNTP_CVAL CNTP_CVAL, Counter-timer Physical Timer CompareValue on page I5-7824

CNTP_TVAL CNTP_TVAL, Counter-timer Physical Timer TimerValue on page I5-7826

CNTPCT CNTPCT, Counter-timer Physical Count on page I5-7828

CNTSCR CNTSCR, Counter Scale Register on page I5-7830

CNTSR CNTSR, Counter Status Register on page I5-7831

CNTTIDR CNTTIDR, Counter-timer Timer ID Register on page I5-7833

CNTV_CTL CNTV_CTL, Counter-timer Virtual Timer Control on page I5-7835

CNTV_CVAL CNTV_CVAL, Counter-timer Virtual Timer CompareValue on page I5-7837

CNTV_TVAL CNTV_TVAL, Counter-timer Virtual Timer TimerValue on page I5-7839

CNTVCT CNTVCT, Counter-timer Virtual Count on page I5-7841

CNTVOFF CNTVOFF, Counter-timer Virtual Offset on page I5-7843

CNTVOFF<n> CNTVOFF<n>, Counter-timer Virtual Offsets, n = 0 - 7 on page I5-7845

CounterID<n> CounterID<n>, Counter ID registers, n = 0 - 11 on page I5-7847

CTIAPPCLEAR CTIAPPCLEAR, CTI Application Trigger Clear register on page H9-7601

CTIAPPPULSE CTIAPPPULSE, CTI Application Pulse register on page H9-7603

CTIAPPSET CTIAPPSET, CTI Application Trigger Set register on page H9-7605

CTIAUTHSTATUS CTIAUTHSTATUS, CTI Authentication Status register on page H9-7607

CTICHINSTATUS CTICHINSTATUS, CTI Channel In Status register on page H9-7608

CTICHOUTSTATUS CTICHOUTSTATUS, CTI Channel Out Status register on page H9-7609

CTICIDR0 CTICIDR0, CTI Component Identification Register 0 on page H9-7611

CTICIDR1 CTICIDR1, CTI Component Identification Register 1 on page H9-7612

CTICIDR2 CTICIDR2, CTI Component Identification Register 2 on page H9-7613

CTICIDR3 CTICIDR3, CTI Component Identification Register 3 on page H9-7614

CTICLAIMCLR CTICLAIMCLR, CTI CLAIM Tag Clear register on page H9-7615

CTICLAIMSET CTICLAIMSET, CTI CLAIM Tag Set register on page H9-7617

CTICONTROL CTICONTROL, CTI Control register on page H9-7619

Table K15-35 Alphabetical index of Memory-Mapped Registers (continued)

Register Description, see
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8663
ID072021 Non-Confidential

Registers Index
K15.6 Alphabetical index of memory-mapped registers
CTIDEVAFF0 CTIDEVAFF0, CTI Device Affinity register 0 on page H9-7620

CTIDEVAFF1 CTIDEVAFF1, CTI Device Affinity register 1 on page H9-7621

CTIDEVARCH CTIDEVARCH, CTI Device Architecture register on page H9-7622

CTIDEVCTL CTIDEVCTL, CTI Device Control register on page H9-7624

CTIDEVID CTIDEVID, CTI Device ID register 0 on page H9-7625

CTIDEVID1 CTIDEVID1, CTI Device ID register 1 on page H9-7627

CTIDEVID2 CTIDEVID2, CTI Device ID register 2 on page H9-7628

CTIDEVTYPE CTIDEVTYPE, CTI Device Type register on page H9-7629

CTIGATE CTIGATE, CTI Channel Gate Enable register on page H9-7630

CTIINEN<n> CTIINEN<n>, CTI Input Trigger to Output Channel Enable registers, n = 0 - 31 on
page H9-7632

CTIINTACK CTIINTACK, CTI Output Trigger Acknowledge register on page H9-7634

CTIITCTRL CTIITCTRL, CTI Integration mode Control register on page H9-7636

CTILAR CTILAR, CTI Lock Access Register on page H9-7638

CTILSR CTILSR, CTI Lock Status Register on page H9-7640

CTIOUTEN<n> CTIOUTEN<n>, CTI Input Channel to Output Trigger Enable registers, n = 0 - 31 on
page H9-7642

CTIPIDR0 CTIPIDR0, CTI Peripheral Identification Register 0 on page H9-7644

CTIPIDR1 CTIPIDR1, CTI Peripheral Identification Register 1 on page H9-7645

CTIPIDR2 CTIPIDR2, CTI Peripheral Identification Register 2 on page H9-7646

CTIPIDR3 CTIPIDR3, CTI Peripheral Identification Register 3 on page H9-7647

CTIPIDR4 CTIPIDR4, CTI Peripheral Identification Register 4 on page H9-7648

CTITRIGINSTATUS CTITRIGINSTATUS, CTI Trigger In Status register on page H9-7649

CTITRIGOUTSTATUS CTITRIGOUTSTATUS, CTI Trigger Out Status register on page H9-7650

DBGAUTHSTATUS_EL1 DBGAUTHSTATUS_EL1, Debug Authentication Status register on page H9-7488

DBGBCR<n>_EL1 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15 on page H9-7490

DBGBVR<n>_EL1 DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15 on page H9-7494

DBGCLAIMCLR_EL1 DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register on page H9-7499

DBGCLAIMSET_EL1 DBGCLAIMSET_EL1, Debug CLAIM Tag Set register on page H9-7501

DBGDTRRX_EL0 DBGDTRRX_EL0, Debug Data Transfer Register, Receive on page H9-7503

DBGDTRTX_EL0 DBGDTRTX_EL0, Debug Data Transfer Register, Transmit on page H9-7505

DBGWCR<n>_EL1 DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15 on page H9-7507

DBGWVR<n>_EL1 DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15 on page H9-7511

Table K15-35 Alphabetical index of Memory-Mapped Registers (continued)

Register Description, see
K15-8664 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.6 Alphabetical index of memory-mapped registers
EDAA32PFR EDAA32PFR, External Debug Auxiliary Processor Feature Register on page H9-7513

EDACR EDACR, External Debug Auxiliary Control Register on page H9-7516

EDCIDR0 EDCIDR0, External Debug Component Identification Register 0 on page H9-7518

EDCIDR1 EDCIDR1, External Debug Component Identification Register 1 on page H9-7519

EDCIDR2 EDCIDR2, External Debug Component Identification Register 2 on page H9-7520

EDCIDR3 EDCIDR3, External Debug Component Identification Register 3 on page H9-7521

EDCIDSR EDCIDSR, External Debug Context ID Sample Register on page H9-7522

EDDEVAFF0 EDDEVAFF0, External Debug Device Affinity register 0 on page H9-7524

EDDEVAFF1 EDDEVAFF1, External Debug Device Affinity register 1 on page H9-7525

EDDEVARCH EDDEVARCH, External Debug Device Architecture register on page H9-7526

EDDEVID EDDEVID, External Debug Device ID register 0 on page H9-7528

EDDEVID1 EDDEVID1, External Debug Device ID register 1 on page H9-7530

EDDEVID2 EDDEVID2, External Debug Device ID register 2 on page H9-7531

EDDEVTYPE EDDEVTYPE, External Debug Device Type register on page H9-7532

EDDFR EDDFR, External Debug Feature Register on page H9-7533

EDECCR EDECCR, External Debug Exception Catch Control Register on page H9-7536

EDECR EDECR, External Debug Execution Control Register on page H9-7543

EDESR EDESR, External Debug Event Status Register on page H9-7545

EDITCTRL EDITCTRL, External Debug Integration mode Control register on page H9-7547

EDITR EDITR, External Debug Instruction Transfer Register on page H9-7549

EDLAR EDLAR, External Debug Lock Access Register on page H9-7551

EDLSR EDLSR, External Debug Lock Status Register on page H9-7553

EDPCSR EDPCSR, External Debug Program Counter Sample Register on page H9-7555

EDPFR EDPFR, External Debug Processor Feature Register on page H9-7558

EDPIDR0 EDPIDR0, External Debug Peripheral Identification Register 0 on page H9-7563

EDPIDR1 EDPIDR1, External Debug Peripheral Identification Register 1 on page H9-7564

EDPIDR2 EDPIDR2, External Debug Peripheral Identification Register 2 on page H9-7565

EDPIDR3 EDPIDR3, External Debug Peripheral Identification Register 3 on page H9-7567

EDPIDR4 EDPIDR4, External Debug Peripheral Identification Register 4 on page H9-7568

EDPRCR EDPRCR, External Debug Power/Reset Control Register on page H9-7569

EDPRSR EDPRSR, External Debug Processor Status Register on page H9-7573

EDRCR EDRCR, External Debug Reserve Control Register on page H9-7582

Table K15-35 Alphabetical index of Memory-Mapped Registers (continued)

Register Description, see
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8665
ID072021 Non-Confidential

Registers Index
K15.6 Alphabetical index of memory-mapped registers
EDSCR EDSCR, External Debug Status and Control Register on page H9-7584

EDVIDSR EDVIDSR, External Debug Virtual Context Sample Register on page H9-7590

EDWAR EDWAR, External Debug Watchpoint Address Register on page H9-7593

ERRCIDR0 ERRCIDR0, Component Identification Register 0 on page I5-7850

ERRCIDR1 ERRCIDR1, Component Identification Register 1 on page I5-7851

ERRCIDR2 ERRCIDR2, Component Identification Register 2 on page I5-7852

ERRCIDR3 ERRCIDR3, Component Identification Register 3 on page I5-7853

ERRCRICR0 ERRCRICR0, Critical Error Interrupt Configuration Register 0 on page I5-7854

ERRCRICR1 ERRCRICR1, Critical Error Interrupt Configuration Register 1 on page I5-7856

ERRCRICR2 ERRCRICR2, Critical Error Interrupt Configuration Register 2 on page I5-7857

ERRDEVAFF ERRDEVAFF, Device Affinity Register on page I5-7860

ERRDEVARCH ERRDEVARCH, Device Architecture Register on page I5-7864

ERRDEVID ERRDEVID, Device Configuration Register on page I5-7866

ERRERICR0 ERRERICR0, Error Recovery Interrupt Configuration Register 0 on page I5-7867

ERRERICR1 ERRERICR1, Error Recovery Interrupt Configuration Register 1 on page I5-7869

ERRERICR2 ERRERICR2, Error Recovery Interrupt Configuration Register 2 on page I5-7870

ERRFHICR0 ERRFHICR0, Fault Handling Interrupt Configuration Register 0 on page I5-7873

ERRFHICR1 ERRFHICR1, Fault Handling Interrupt Configuration Register 1 on page I5-7875

ERRFHICR2 ERRFHICR2, Fault Handling Interrupt Configuration Register 2 on page I5-7876

ERRGSR ERRGSR, Error Group Status Register on page I5-7879

ERRIIDR ERRIIDR, Implementation Identification Register on page I5-7880

ERRIMPDEF<n> ERRIMPDEF<n>, IMPLEMENTATION DEFINED Register <n>, n = 0 - 191 on page I5-7882

ERRIRQCR<n> ERRIRQCR<n>, Generic Error Interrupt Configuration Register, n = 0 - 15 on page I5-7883

ERRIRQSR ERRIRQSR, Error Interrupt Status Register on page I5-7884

ERR<n>ADDR ERR<n>ADDR, Error Record Address Register, n = 0 - 65534 on page I5-7888

ERR<n>CTLR ERR<n>CTLR, Error Record Control Register, n = 0 - 65534 on page I5-7890

ERR<n>FR ERR<n>FR, Error Record Feature Register, n = 0 - 65534 on page I5-7898

ERR<n>MISC0 ERR<n>MISC0, Error Record Miscellaneous Register 0, n = 0 - 65534 on page I5-7905

ERR<n>MISC1 ERR<n>MISC1, Error Record Miscellaneous Register 1, n = 0 - 65534 on page I5-7910

ERR<n>MISC2 ERR<n>MISC2, Error Record Miscellaneous Register 2, n = 0 - 65534 on page I5-7912

ERR<n>MISC3 ERR<n>MISC3, Error Record Miscellaneous Register 3, n = 0 - 65534 on page I5-7914

ERR<n>PFGCDN ERR<n>PFGCDN, Pseudo-fault Generation Countdown Register, n = 0 - 65534 on
page I5-7916

Table K15-35 Alphabetical index of Memory-Mapped Registers (continued)

Register Description, see
K15-8666 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.6 Alphabetical index of memory-mapped registers
ERR<n>PFGCTL ERR<n>PFGCTL, Pseudo-fault Generation Control Register, n = 0 - 65534 on page I5-7918

ERR<n>PFGF ERR<n>PFGF, Pseudo-fault Generation Feature Register, n = 0 - 65534 on page I5-7924

ERR<n>STATUS ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534 on page I5-7930

ERRPIDR0 ERRPIDR0, Peripheral Identification Register 0 on page I5-7947

ERRPIDR1 ERRPIDR1, Peripheral Identification Register 1 on page I5-7948

ERRPIDR2 ERRPIDR2, Peripheral Identification Register 2 on page I5-7950

ERRPIDR3 ERRPIDR3, Peripheral Identification Register 3 on page I5-7953

ERRPIDR4 ERRPIDR4, Peripheral Identification Register 4 on page I5-7955

MIDR_EL1 MIDR_EL1, Main ID Register on page H9-7595

OSLAR_EL1 OSLAR_EL1, OS Lock Access Register on page H9-7597

PMAUTHSTATUS PMAUTHSTATUS, Performance Monitors Authentication Status register on page I5-7690

PMCCFILTR_EL0 PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register on page I5-7692

PMCCNTR_EL0 PMCCNTR_EL0, Performance Monitors Cycle Counter on page I5-7695

PMCEID0 PMCEID0, Performance Monitors Common Event Identification register 0 on page I5-7697

PMCEID1 PMCEID1, Performance Monitors Common Event Identification register 1 on page I5-7699

PMCEID2 PMCEID2, Performance Monitors Common Event Identification register 2 on page I5-7701

PMCEID3 PMCEID3, Performance Monitors Common Event Identification register 3 on page I5-7703

PMCFGR PMCFGR, Performance Monitors Configuration Register on page I5-7705

PMCID1SR PMCID1SR, CONTEXTIDR_EL1 Sample Register on page I5-7711

PMCID2SR PMCID2SR, CONTEXTIDR_EL2 Sample Register on page I5-7713

PMCIDR0 PMCIDR0, Performance Monitors Component Identification Register 0 on page I5-7707

PMCIDR1 PMCIDR1, Performance Monitors Component Identification Register 1 on page I5-7708

PMCIDR2 PMCIDR2, Performance Monitors Component Identification Register 2 on page I5-7709

PMCIDR3 PMCIDR3, Performance Monitors Component Identification Register 3 on page I5-7710

PMCNTENCLR_EL0 PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register on page I5-7715

PMCNTENSET_EL0 PMCNTENSET_EL0, Performance Monitors Count Enable Set register on page I5-7717

PMCR_EL0 PMCR_EL0, Performance Monitors Control Register on page I5-7719

PMDEVAFF0 PMDEVAFF0, Performance Monitors Device Affinity register 0 on page I5-7724

PMDEVAFF1 PMDEVAFF1, Performance Monitors Device Affinity register 1 on page I5-7725

PMDEVARCH PMDEVARCH, Performance Monitors Device Architecture register on page I5-7726

PMDEVID PMDEVID, Performance Monitors Device ID register on page I5-7728

PMDEVTYPE PMDEVTYPE, Performance Monitors Device Type register on page I5-7729

Table K15-35 Alphabetical index of Memory-Mapped Registers (continued)

Register Description, see
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8667
ID072021 Non-Confidential

Registers Index
K15.6 Alphabetical index of memory-mapped registers
PMEVCNTR<n>_EL0 PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30 on
page I5-7730

PMEVTYPER<n>_EL0 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30 on page I5-7732

PMINTENCLR_EL1 PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register on page I5-7737

PMINTENSET_EL1 PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register on page I5-7739

PMITCTRL PMITCTRL, Performance Monitors Integration mode Control register on page I5-7741

PMLAR PMLAR, Performance Monitors Lock Access Register on page I5-7743

PMLSR PMLSR, Performance Monitors Lock Status Register on page I5-7745

PMMIR PMMIR, Performance Monitors Machine Identification Register on page I5-7747

PMOVSCLR_EL0 PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear register on page I5-7749

PMOVSSET_EL0 PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register on page I5-7751

PMPCSR PMPCSR, Program Counter Sample Register on page I5-7753

PMPIDR0 PMPIDR0, Performance Monitors Peripheral Identification Register 0 on page I5-7756

PMPIDR1 PMPIDR1, Performance Monitors Peripheral Identification Register 1 on page I5-7757

PMPIDR2 PMPIDR2, Performance Monitors Peripheral Identification Register 2 on page I5-7758

PMPIDR3 PMPIDR3, Performance Monitors Peripheral Identification Register 3 on page I5-7759

PMPIDR4 PMPIDR4, Performance Monitors Peripheral Identification Register 4 on page I5-7760

PMSWINC_EL0 PMSWINC_EL0, Performance Monitors Software Increment register on page I5-7761

PMVIDSR PMVIDSR, VMID Sample Register on page I5-7763

Table K15-35 Alphabetical index of Memory-Mapped Registers (continued)

Register Description, see
K15-8668 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.7 Functional index of memory-mapped registers
K15.7 Functional index of memory-mapped registers

This section is an index of the memory-mapped registers, divided by functional group. Each of the following
sections lists the registers for a functional group:

• ID registers on page K15-8669.

• Performance monitors registers on page K15-8669.

• Debug registers on page K15-8671.

• RAS registers on page K15-8672.

• Cross-trigger interface registers on page K15-8673.

K15.7.1 ID registers

This section is an index to the registers in the Identification registers functional group.

K15.7.2 Performance monitors registers

This section is an index to the registers in the Performance Monitors registers functional group.

Table K15-36 ID registers

Register Description, see

EDAA32PFR EDAA32PFR

EDDFR EDDFR

EDPFR EDPFR

MIDR_EL1 MIDR_EL1

Table K15-37 Performance monitors registers

Register Description, see

PMAUTHSTATUS PMAUTHSTATUS

PMCCFILTR_EL0 PMCCFILTR_EL0

PMCCNTR_EL0 PMCCNTR_EL0

PMCEID0 PMCEID0

PMCEID1 PMCEID1

PMCEID2 PMCEID2

PMCEID3 PMCEID3

PMCFGR PMCFGR

PMCID1SR PMCID1SR

PMCID2SR PMCID2SR

PMCIDR0 PMCIDR0

PMCIDR1 PMCIDR1

PMCIDR2 PMCIDR2

PMCIDR3 PMCIDR3
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8669
ID072021 Non-Confidential

Registers Index
K15.7 Functional index of memory-mapped registers
PMCNTENCLR_EL0 PMCNTENCLR_EL0

PMCNTENSET_EL0 PMCNTENSET_EL0

PMCR_EL0 PMCR_EL0

PMDEVAFF0 PMDEVAFF0

PMDEVAFF1 PMDEVAFF1

PMDEVARCH PMDEVARCH

PMDEVID PMDEVID

PMDEVTYPE PMDEVTYPE

PMEVCNTR<n>_EL0 PMEVCNTR<n>_EL0

PMEVTYPER<n>_EL0 PMEVTYPER<n>_EL0

PMINTENCLR_EL1 PMINTENCLR_EL1

PMINTENSET_EL1 PMINTENSET_EL1

PMITCTRL PMITCTRL

PMLAR PMLAR

PMLSR PMLSR

PMMIR PMMIR

PMOVSCLR_EL0 PMOVSCLR_EL0

PMOVSSET_EL0 PMOVSSET_EL0

PMPCSR PMPCSR

PMPIDR0 PMPIDR0

PMPIDR1 PMPIDR1

PMPIDR2 PMPIDR2

PMPIDR3 PMPIDR3

PMPIDR4 PMPIDR4

PMSWINC_EL0 PMSWINC_EL0

PMVIDSR PMVIDSR

Table K15-37 Performance monitors registers (continued)

Register Description, see
K15-8670 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.7 Functional index of memory-mapped registers
K15.7.3 Debug registers

This section is an index to the registers in the Debug registers functional group.

Table K15-38 Debug registers

Register Description, see

DBGAUTHSTATUS_EL1 DBGAUTHSTATUS_EL1

DBGBCR<n>_EL1 DBGBCR<n>_EL1

DBGBVR<n>_EL1 DBGBVR<n>_EL1

DBGCLAIMCLR_EL1 DBGCLAIMCLR_EL1

DBGCLAIMSET_EL1 DBGCLAIMSET_EL1

DBGDTRRX_EL0 DBGDTRRX_EL0

DBGDTRTX_EL0 DBGDTRTX_EL0

DBGWCR<n>_EL1 DBGWCR<n>_EL1

DBGWVR<n>_EL1 DBGWVR<n>_EL1

EDACR EDACR

EDCIDR0 EDCIDR0

EDCIDR1 EDCIDR1

EDCIDR2 EDCIDR2

EDCIDR3 EDCIDR3

EDCIDSR EDCIDSR

EDDEVAFF0 EDDEVAFF0

EDDEVAFF1 EDDEVAFF1

EDDEVARCH EDDEVARCH

EDDEVID EDDEVID

EDDEVID1 EDDEVID1

EDDEVID2 EDDEVID2

EDDEVTYPE EDDEVTYPE

EDECCR EDECCR

EDECR EDECR

EDESR EDESR

EDITCTRL EDITCTRL

EDITR EDITR

EDLAR EDLAR

EDLSR EDLSR

EDPCSR EDPCSR
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8671
ID072021 Non-Confidential

Registers Index
K15.7 Functional index of memory-mapped registers
K15.7.4 RAS registers

This section is an index to the registers in the RAS registers functional group.

EDPIDR0 EDPIDR0

EDPIDR1 EDPIDR1

EDPIDR2 EDPIDR2

EDPIDR3 EDPIDR3

EDPIDR4 EDPIDR4

EDPRCR EDPRCR

EDPRSR EDPRSR

EDRCR EDRCR

EDSCR EDSCR

EDVIDSR EDVIDSR

EDWAR EDWAR

OSLAR_EL1 OSLAR_EL1

Table K15-38 Debug registers (continued)

Register Description, see

Table K15-39 RAS registers

Register Description, see

ERRCIDR0 ERRCIDR0

ERRCIDR1 ERRCIDR1

ERRCIDR2 ERRCIDR2

ERRCIDR3 ERRCIDR3

ERRCRICR0 ERRCRICR0

ERRCRICR1 ERRCRICR1

ERRCRICR2 ERRCRICR2

ERRDEVAFF ERRDEVAFF

ERRDEVARCH ERRDEVARCH

ERRDEVID ERRDEVID

ERRERICR0 ERRERICR0

ERRERICR1 ERRERICR1

ERRERICR2 ERRERICR2

ERRFHICR0 ERRFHICR0

ERRFHICR1 ERRFHICR1
K15-8672 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Registers Index
K15.7 Functional index of memory-mapped registers
K15.7.5 Cross-trigger interface registers

This section is an index to the registers in the Cross-Trigger Interface registers functional group.

ERRFHICR2 ERRFHICR2

ERRGSR ERRGSR

ERRIIDR ERRIIDR

ERRIMPDEF<n> ERRIMPDEF<n>

ERRIRQCR<n> ERRIRQCR<n>

ERRIRQSR ERRIRQSR

ERR<n>ADDR ERR<n>ADDR

ERR<n>CTLR ERR<n>CTLR

ERR<n>FR ERR<n>FR

ERR<n>MISC0 ERR<n>MISC0

ERR<n>MISC1 ERR<n>MISC1

ERR<n>MISC2 ERR<n>MISC2

ERR<n>MISC3 ERR<n>MISC3

ERR<n>PFGCDN ERR<n>PFGCDN

ERR<n>PFGCTL ERR<n>PFGCTL

ERR<n>PFGF ERR<n>PFGF

ERR<n>STATUS ERR<n>STATUS

ERRPIDR0 ERRPIDR0

ERRPIDR1 ERRPIDR1

ERRPIDR2 ERRPIDR2

ERRPIDR3 ERRPIDR3

ERRPIDR4 ERRPIDR4

Table K15-39 RAS registers (continued)

Register Description, see

Table K15-40 Cross-trigger interface registers

Register Description, see

ASICCTL ASICCTL

CTIAPPCLEAR CTIAPPCLEAR

CTIAPPPULSE CTIAPPPULSE

CTIAPPSET CTIAPPSET

CTIAUTHSTATUS CTIAUTHSTATUS
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. K15-8673
ID072021 Non-Confidential

Registers Index
K15.7 Functional index of memory-mapped registers
CTICHINSTATUS CTICHINSTATUS

CTICHOUTSTATUS CTICHOUTSTATUS

CTICIDR0 CTICIDR0

CTICIDR1 CTICIDR1

CTICIDR2 CTICIDR2

CTICIDR3 CTICIDR3

CTICLAIMCLR CTICLAIMCLR

CTICLAIMSET CTICLAIMSET

CTICONTROL CTICONTROL

CTIDEVAFF0 CTIDEVAFF0

CTIDEVAFF1 CTIDEVAFF1

CTIDEVARCH CTIDEVARCH

CTIDEVCTL CTIDEVCTL

CTIDEVID CTIDEVID

CTIDEVID1 CTIDEVID1

CTIDEVID2 CTIDEVID2

CTIDEVTYPE CTIDEVTYPE

CTIGATE CTIGATE

CTIINEN<n> CTIINEN<n>

CTIINTACK CTIINTACK

CTIITCTRL CTIITCTRL

CTILAR CTILAR

CTILSR CTILSR

CTIOUTEN<n> CTIOUTEN<n>

CTIPIDR0 CTIPIDR0

CTIPIDR1 CTIPIDR1

CTIPIDR2 CTIPIDR2

CTIPIDR3 CTIPIDR3

CTIPIDR4 CTIPIDR4

CTITRIGINSTATUS CTITRIGINSTATUS

CTITRIGOUTSTATUS CTITRIGOUTSTATUS

Table K15-40 Cross-trigger interface registers (continued)

Register Description, see
K15-8674 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Glossary

A32 instruction A word that specifies an operation to be performed by a PE that is executing in an Exception level that is using
AArch32 and is in A32 state. A32 instructions must be word-aligned.

A32 instructions were previously called ARM instructions.

See also A32 state, A64 instruction, T32 instruction.

A32 state The AArch32 Instruction set state in which the PE executes A32 instructions.

A32 state was previously called ARM state.

See also T32 instruction, T32 state.

A64 instruction A word that specifies an operation to be performed by a PE that is executing in an Exception level that is using
AArch64. A64 instructions must be word-aligned.

See also A32 instruction, T32 instruction.

AArch32 The 32-bit Execution state. In AArch32 state, addresses are held in 32-bit registers, and instructions in the base
instruction sets use 32-bit registers for their processing. AArch32 state supports the T32 and A32 instruction sets

See also AArch64, A32 instruction, T32 instruction.

AArch64 The 64-bit Execution state. In AArch64 state, addresses are held in 64-bit registers, and instructions in the base
instruction set can use 64-bit registers for their processing. AArch64 state supports the A64 instruction set.

See also AArch32, A64 instruction.

Abort An exception caused by an illegal memory access. Aborts can be caused by the external memory system or the
MMU.

Addressing mode
Means a method for generating the memory address used by a load/store instruction.

Advanced SIMD A feature of the Arm architecture that provides SIMD operations on a register file of SIMD and floating-point
registers. Where an implementation supports both Advanced SIMD and floating-point instructions, these
instructions operate on the same register file.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. Glossary-8675
ID072021 Non-Confidential

Glossary

Aligned A data item stored at an address that is exactly divisible by the highest power of 2 that divides exactly into its size
in bytes. Aligned halfwords, words and doublewords therefore have addresses that are divisible by 2, 4 and 8
respectively.

An aligned access is one where the address of the access is aligned to the size of each element of the access.

Architecturally executed
An instruction is architecturally executed only if it would be executed in a simple sequential execution of the
program. When such an instruction has been executed and retired it has been architecturally executed. Any
instruction that, in a simple sequential execution of a program, is treated as a NOP because it fails its condition code
check, is an architecturally executed instruction.

In a PE that performs speculative execution, an instruction is not architecturally executed if the PE discards the
results of a speculative execution.

See also Condition code check, Simple sequential execution.

Architecturally mapped
Where this manual describes a register as being architecturally mapped to another register, this indicates that, in an
implementation that supports both of the registers, the two registers access the same state.

Architecturally UNKNOWN
An architecturally UNKNOWN value is a value that is not defined by the architecture but must meet the requirements
of the definition of UNKNOWN. Implementations can define the value of the field, but are not required to do so.

See also IMPLEMENTATION DEFINED.

ARM core registers
Some older documentation uses ARM core registers to refer to the following set of registers for execution in
AArch32 state:

• The 13 general-purpose registers, R0-R12, that software can use for processing.

• SP, the stack pointer, that can also be referred to as R13.

• LR, the link register, that can also be referred to as R14.

• PC, the program counter, that can also be referred to as R15.

See also General-purpose registers.

ARM instruction
See A32 instruction.

Associativity See Cache associativity.

Asynchronous accumulation
Faults that are accumulated in a status register, where the update to the register is asynchronous to the instruction
that causes the fault.

Atomicity Describes either single-copy atomicity or multi-copy atomicity. Atomicity in the Arm architecture on page B2-128
defines these forms of atomicity for the Arm architecture.

See also Multi-copy atomicity, Single-copy atomicity.

Banked register A register that has multiple instances, with the instance that is in use depending on the PE mode, Security state, or
other PE state.

Base register A register specified by a load/store instruction that is used as the base value for the address calculation for the
instruction. Depending on the instruction and its addressing mode, an offset can be added to or subtracted from the
base register value to form the virtual address that is sent to memory.

Base register writeback
Describes writing back a modified value to the base register used in an address calculation.

Behaves as if Where this manual indicates that a PE behaves as if a certain condition applies, all descriptions of the operation of
the PE must be re-evaluated taking account of that condition, together with any other conditions that affect
operation.
Glossary-8676 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Glossary

Big-endian memory
Means that, for example:

• A byte or halfword at a word-aligned address is the most significant byte or halfword in the word at that
address.

• A byte at a halfword-aligned address is the most significant byte in the halfword at that address.

See also Endianness, Little-endian memory.

Blocking Describes an operation that does not permit following instructions to be executed before the operation completes.

A non-blocking operation can permit following instructions to be executed before the operation completes, and in
the event of encountering an exception does not signal an exception to the PE. This enables implementations to retire
following instructions while the non-blocking operation is executing, without the need to retain precise PE state.

Branch prediction
Is where a PE selects a future execution path to fetch along. For example, after a branch instruction, the PE can
choose to speculatively fetch either the instruction following the branch or the instruction at the branch target.

See also Prefetching.

Breakpoint A debug event triggered by the execution of a particular instruction, specified by one or both of the address of the
instruction and the state of the PE when the instruction is executed.

Byte An 8-bit data item.

Cache associativity
The number of locations in a cache set to which an address can be assigned. Each location is identified by its way
value.

Cache level The position of a cache in the cache hierarchy. In the Arm architecture, the lower numbered levels are those closest
to the PE. For more information, see Terms used in describing the cache maintenance instructions on page D4-2644.

Cache line The basic unit of storage in a cache. Its size in words is always a power of two, usually 4 or 8 words. A cache line
must be aligned to a suitable memory boundary. A memory cache line is a block of memory locations with the same
size and alignment as a cache line. Memory cache lines are sometimes loosely called cache lines.

Cache lockdown
Enables critical software and data to be loaded into the cache so that the cache lines containing them are not
subsequently reallocated. It alleviates the delays caused by accessing a cache in a worst-case situation. This ensures
that all subsequent accesses to the software and data concerned are cache hits and so complete quickly.

Cache miss A memory access that cannot be processed at high speed because the data it addresses is not in the cache.

Cache sets Areas of a cache, divided up to simplify and speed up the process of determining whether a cache hit occurs. The
number of cache sets is always a power of two.

Cache way A cache way consists of one cache line from each cache set. The cache ways are indexed from 0 to (Associativity-1).
Each cache line in a cache way is chosen to have the same index as the cache way. For example, cache way n consists
of the cache line with index n from each cache set.

Coherence order
See Coherent.

Coherent Data accesses from a set of observers to a byte in memory are coherent if accesses to that byte in memory by the
members of that set of observers are consistent with there being a single total order of all writes to that byte in
memory by all members of the set of observers. This single total order of all to writes to that memory location is the
coherence order for that byte in memory.

Completer An agent in a computing system that responds to and completes a memory transaction that was initiated by a
Requester.

See also Requester.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. Glossary-8677
ID072021 Non-Confidential

Glossary

Condition code check
The process of determining whether a conditional instruction executes normally or is treated as a NOP. For an
instruction that includes a condition code field, that field is compared with the condition flags to determine whether
the instruction is executed normally. For a T32 instruction in an IT block, the value of PSTATE.IT determines
whether the instruction is executed normally.

See also Condition code field, Condition flags, Conditional execution.

Condition code field
A 4-bit field in an instruction that specifies the condition under which the instruction executes.

See also Condition code check.

Condition flags The N, Z, C, and V bits of PSTATE, an SPSR, or FPSCR. See the register descriptions for more information.

See also Condition code check, PSTATE.

Conditional execution
When a conditional instruction starts executing, if the condition code check returns TRUE, the instruction executes
normally. Otherwise, it is treated as a NOP.

See also Condition code check.

CONSTRAINED UNPREDICTABLE
Where an instruction can result in UNPREDICTABLE behavior, the Armv8 architecture specifies a narrow range of
permitted behaviors. This range is the range of CONSTRAINED UNPREDICTABLE behavior. All implementations that
are compliant with the architecture must follow the CONSTRAINED UNPREDICTABLE behavior.

Execution at Non-secure EL1 or EL0 of an instruction that is CONSTRAINED UNPREDICTABLE can be implemented
as generating a trap exception that is taken to EL2, provided that at least one instruction that is not UNPREDICTABLE
and is not CONSTRAINED UNPREDICTABLE causes a trap exception that is taken to EL2.

In body text, the term CONSTRAINED UNPREDICTABLE is shown in SMALL CAPITALS.

See also UNPREDICTABLE.

Context switch The saving and restoring of computational state when switching between different threads or processes. In this
manual, the term context switch describes any situation where the context is switched by an operating system and
might or might not include changes to the address space.

Context synchronization event
One of:

• Performing an ISB operation. An ISB operation is performed when an ISB instruction is executed and does
not fail its condition code check.

• Exception entry, if FEAT_ExS is not implemented or the exception is taken to AArch32 or if FEAT_ExS is
implemented and the appropriate SCTLR_ELx.EIS bit is set.

• Return from an exception, if FEAT_ExS is not implemented, or the exception is returning from AArch32 or
if FEAT_ExS is implemented and the appropriate SCTLR_ELx.EOS bit is set.

• Exit from Debug state.

• Executing a DCPS instruction.

• Executing a DRPS instruction.

The effects of a Context synchronization event are:

• All unmasked interrupts that are pending at the time of the Context synchronization event are taken before
the first instruction after the Context synchronization event.

• If halting is allowed, all Halting debug events that are pending at the time of the Context synchronization
event are taken before the first instruction after the Context synchronization event.

• No instructions appearing in program order after an instruction that causes a Context synchronization event
will have performed any part of their functionality until the Context synchronization event has occurred.
Glossary-8678 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Glossary

• All direct and indirect writes to System registers that are made before the Context synchronization event
affect any instruction, including a direct read, that appears in program order after the instruction causing the
Context synchronization event.

• All completed changes to the translation tables for entries that, before the change, were not permitted to be
cached in a TLB, affect all instruction fetches that appear in program order after the instruction causing the
Context synchronization event.

• All invalidations of TLBs, instruction caches, and, in AArch32 state, branch predictors, that are completed
before the Context synchronization event affect all instructions that appear in program order after an
instruction causing a Context synchronization event.

• In AArch32 state, all Non-cacheable writes that are completed before the Context synchronization event
affect all instructions that appear in program order after an instruction causing a Context synchronization
event.

• Changes to the Debug external authentication interfaces that are made before the Context synchronization
event affect any instruction that appears in program order after the instruction causing the Context
synchronization event.

Note

• The architecture requires that instructions that generate Context synchronization events do not appear to be
executed speculatively, except that the performance monitor counters are permitted to reveal such
speculation.

• Context synchronization events were previously described as context synchronization operations.

Conventional memory
Memory locations from which generic OSs and application run-times will expect to create allocations for general
software use.

Data independent timing (DIT)
The time that it takes to execute a piece of code where the time is not a function of the data being operated on. For
more information, see About PSTATE.DIT on page B1-123 and About the DIT bit on page E1-4259.

Debugger In most of this manual, debugger refers to any agent that is performing debug. However, some chapters or parts of
this manual require a more rigorous definition, and define debugger locally. See:

• Definition of a debugger in the context of self-hosted debug on page D2-2564.

• Definition of a debugger in the context of self-hosted debug on page G2-6154.

• Definition and constraints of a debugger in the context of external debug on page H1-7334.

Deprecated Something that is present in the Arm architecture for backwards compatibility. Whenever possible software must
avoid using deprecated features. Features that are deprecated but are not optional are present in current
implementations of the Arm architecture, but might not be present, or might be deprecated and OPTIONAL, in future
versions of the Arm architecture.

See also OPTIONAL.

Digital signal processing (DSP)
Algorithms for processing signals that have been sampled and converted to digital form. DSP algorithms often use
saturated arithmetic.

Direct Memory Access (DMA)
An operation that accesses main memory directly, without the PE performing any accesses to the data concerned.

Direct read A direct read of a System register is a read performed by a System register access instruction.

For more information, see Direct read on page D13-3043.

See also Direct write, Indirect read, Indirect write.

Direct write A direct write of a System register is a write performed by a System register access instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. Glossary-8679
ID072021 Non-Confidential

Glossary

For more information, see Direct write on page D13-3043.

See also Direct read, Indirect read, Indirect write.

DMA See Direct Memory Access (DMA).

DNM See Do-Not-Modify (DNM).

Domain In the Arm architecture, domain is used in the following contexts.

Shareability domain Defines a set of observers for which the shareability attributes make the data or unified
caches transparent for data accesses.

Power domain Defines a block of logic with a single, common, power supply.

Memory regions domain

When using the Short-descriptor translation table format, defines a collection of Sections,
Large pages and Small pages of memory, that can have their access permissions switched
rapidly by writing to the Domain Access Control Register (DACR). Arm deprecates any use
of memory regions domains.

Do-Not-Modify (DNM)
Means the value must not be altered by software. DNM fields read as UNKNOWN values, and must only be written
with the value read from the same field on the same PE.

Double-precision value
Consists of two consecutive 32-bit words that are interpreted as a basic double-precision floating-point number
according to the IEEE Standard for Floating-point Arithmetic.

Doubleword A 64-bit data item. Doublewords are normally at least word-aligned in Arm systems.

Doubleword-aligned
Means that the address is divisible by 8.

DSP See Digital signal processing (DSP).

Effective value A register control field, meaning a field in a register that controls some aspect of the behavior, can be described as
having an Effective value:

• In some cases, the description of a control a specifies that when control a is active it causes a register control
field b to be treated as having a fixed value for all purposes other than direct reads, or direct reads and direct
writes, of the register containing control field b. When control a is active that fixed value is described as the
Effective value of register control field b. For example, when the value of HCR.DC is 1, the Effective value
of HCR.VM is 1, regardless of its actual value.

In other cases, in some contexts a register control field b is not implemented or is not accessible, but behavior
of the PE is as if control field b was implemented and accessible, and had a particular value. In this case, that
value is the Effective value of register control field b.

Note
Where a register control field is introduced in a particular version of the architecture, and is not implemented
in an earlier version of the architecture, typically it will have an Effective value in that earlier version of the
architecture.

• Otherwise, the Effective value of a register control field is the value of that field.

Endianness An aspect of the system memory mapping.

See also Big-endian memory and Little-endian memory.

Exception Handles an event. For example, an exception could handle an external interrupt or an undefined instruction.

Exception vector
A fixed address that contains the address of the first instruction of the corresponding exception handler.
Glossary-8680 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Glossary

Execution stream
The stream of instructions that would have been executed by sequential execution of the program.

Explicit access A read from memory, or a write to memory, generated by a load or store instruction executed by the PE. Reads and
writes generated by hardware translation table accesses, as well as instruction fetches and SPE writes to the profiling
buffer, are not explicit accesses.

Explicit
memory effect

A read from memory, or a write to memory, generated by a load or store instruction executed by the PE. Reads and
writes generated by hardware translation table accesses, as well as instruction fetches and Statistical Profiling Unit
writes to the profiling buffer, are not explicit memory effects.

External abort An abort that is generated by the external memory system.

Fast Context Switch Extension (FCSE)
Modifies the behavior of an Arm memory system to enable multiple programs running on the Arm PE to use
identical address ranges, while ensuring that the addresses they present to the rest of the memory system differ. From
Armv6, Arm deprecates any use of the FCSE. The FCSE is:

• Optional in an Armv7 implementation that does not include the Multiprocessing Extensions.

• Obsolete from the introduction of the Multiprocessing Extensions.

FCSE See Fast Context Switch Extension (FCSE).

Flat address mapping
Is where the physical address for every access is equal to its virtual address.

Flush-to-zero mode
A processing mode that optimizes the performance of some floating-point algorithms by replacing the denormalized
operands and Intermediate results with zeros, without significantly affecting the accuracy of their final results.

General-purpose registers
The registers that the base instructions use for processing:

• In AArch32 state the general-purpose registers are R0-R14, that can also be described as R0-R12, SP, LR.

Note

Older documentation defines the AArch32 general-purpose registers as R0-R12, and the Arm core registers
as R0-R12, SP, LR, and PC.

• In AArch64 state the general-purpose registers are:

— W0-W30 when accessed as 32-bit registers.

— X0-X30 when accessed as 64-bit registers.

See also High registers, Low registers.

Generated by The memory model is written in terms of reads from memory and writes to memory. These reads and writes:

• Are generated by instructions such as loads, stores, and atomic memory accesses.

• Correspond to the memory accesses, other than translation table walks, that are defined in the instruction
pseudocode.

Some instructions generate more than one read or write.

Halfword A 16-bit data item. Halfwords are normally halfword-aligned in Arm systems.

Halfword-aligned
Means that the address is divisible by 2.

High registers In AArch32 state, the general-purpose registers R8-R14. Most 16-bit T32 instructions cannot access the high
registers.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. Glossary-8681
ID072021 Non-Confidential

Glossary

Note

In some contexts, high registers refers to R8-R15, meaning R8-R14 and the PC.

See also General-purpose registers, Low registers.

High vectors An alternative location for the exception vectors. The high vector address range is near the top of the address space,
rather than at the bottom.

IGNORED Indicates that the architecture guarantees that the bit or field is not interpreted or modified by hardware.

In body text, the term IGNORED is shown in SMALL CAPITALS.

Immediate and offset fields
Are unsigned unless otherwise stated.

Immediate value
A value that is encoded directly in the instruction and used as numeric data when the instruction is executed. Many
A64, A32, and T32 instructions can be used with an immediate argument.

IMP An abbreviation used in diagrams to indicate that one or more bits have IMPLEMENTATION DEFINED behavior.

IMPLEMENTATION DEFINED
Means that the behavior is not architecturally defined, but must be defined and documented by individual
implementations.

In body text, the term IMPLEMENTATION DEFINED is shown in SMALL CAPITALS.

Index register A register specified in some load and store instructions. The value of this register is used as an offset to be added to
or subtracted from the base register value to form the virtual address that is sent to memory. Some instruction forms
permit the index register value to be shifted before the addition or subtraction.

Indirect read When an instruction uses a System register value to establish operating conditions, that use of the System register
is an indirect read of the System register.

For more information, including additional examples of indirect reads, see Indirect read on page D13-3043.

See also Direct read, Direct write, Indirect write.

Indirect write An indirect write of a System register occurs when the contents of a register are updated by some mechanism other
than a Direct write to that register. For example, an indirect write to a register might occur as a side-effect of
executing an instruction that does not perform a direct write to the register, or because of some operation performed
by an external agent.

For more information, see Indirect write on page D13-3043.

See also Direct read, Direct write, Indirect read.

Inline literals These are constant addresses and other data items held in the same area as the software itself. They are automatically
generated by compilers, and can also appear in assembler code.

Intermediate physical address (IPA)
An implementation of virtualization, the address to which a Guest OS maps a VA. A hypervisor might then map the
IPA to a PA. Typically, the Guest OS is unaware of the translation from IPA to PA.

See also Physical address (PA), Virtual address (VA).

Interworking A method of working that permits branches between software using the A32 and T32 instruction sets.

IPA See Intermediate physical address (IPA).

Level See Cache level.

Level of Coherence (LoC)
The last level of cache that must be cleaned or invalidated when cleaning or invalidating to the point of coherency.
For more information, see Terms used in describing the cache maintenance instructions on page D4-2644.

See also Cache level, Point of coherency (PoC).
Glossary-8682 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Glossary

Level of Unification, Inner Shareable (LoUIS)
The last level of cache that must be cleaned or invalidated when cleaning or invalidating to the point of unification
for the Inner Shareable shareability domain. For more information, see Terms used in describing the cache
maintenance instructions on page D4-2644.

See also Cache level, Point of unification (PoU).

Level of Unification, uniprocessor (LoUU)
For a PE, the last level of cache that must be cleaned or invalidated when cleaning or invalidating to the point of
unification for that PE. For more information, see Terms used in describing the cache maintenance instructions on
page D4-2644.

See also Cache level, Point of unification (PoU).

Line See Cache line.

Little-endian memory
Means that, for example:

• A byte or halfword at a word-aligned address is the least significant byte or halfword in the word at that
address.

• A byte at a halfword-aligned address is the least significant byte in the halfword at that address.

See also Big-endian memory, Endianness.

Load/Store architecture
An architecture where data-processing operations only operate on register contents, not directly on memory
contents.

LoC See Level of Coherence (LoC).

LoUIS See Level of Unification, Inner Shareable (LoUIS).

LoUU See Level of Unification, uniprocessor (LoUU).

Lockdown See Cache lockdown.

Low registers In AArch32 state, general-purpose registers R0-R7. Unlike the high registers, all T32 instructions can access the
Low registers.

See also General-purpose registers, High registers.

Memory barrier See Memory barriers on page B2-146.

Memory coherency
The problem of ensuring that when a memory location is read, either by a data read or an instruction fetch, the value
actually obtained is always the value that was most recently written to the location. This can be difficult when there
are multiple possible physical locations, such as main memory and at least one of a write buffer and one or more
levels of cache.

Memory Management Unit (MMU)
Provides detailed control of the part of a memory system that provides a single stage of address translation. Most of
the control is provided using translation tables that are held in memory, and define the attributes of different regions
of the physical memory map.

Memory Protection Unit (MPU)
A hardware unit whose registers provide simple control of a limited number of protection regions in memory.

Miss See Cache miss.

MMU See Memory Management Unit (MMU).

MPU See Memory Protection Unit (MPU).
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. Glossary-8683
ID072021 Non-Confidential

Glossary

Multi-copy atomicity
The form of atomicity described in Requirements for multi-copy atomicity on page B2-130.

See also Atomicity, Single-copy atomicity.

NaN Not a Number. A floating-point value that can be used when neither a numeric value nor an infinity is appropriate.
A NaN can be a quiet NaN, that propagate through most floating-point operations, or a signaling NaN, that causes
an Invalid Operation floating-point exception when used. For more information, see the IEEE Standard for
Floating-point Arithmetic.

See also Quiet NaN, Signaling NaN.

Natural eviction A natural eviction is an eviction that occurs in the course of the normal operation of the memory system, rather than
because of an operation that explicitly causes an eviction from the cache, such as the execution of a cache
maintenance instruction. Typically, a natural eviction occurs when the caching algorithm requires data to be cached
but the cache does not have room for that data.

Observer A PE or mechanism in the system, such as a peripheral device, that can generate reads from or writes to memory.

Obsolete Obsolete indicates something that is no longer supported by Arm. When an architectural feature is described as
obsolete, this indicates that the architecture has no support for that feature, although an earlier version of the
architecture did support it.

Offset addressing
Means that the memory address is formed by adding or subtracting an offset to or from the base register value.

OPTIONAL When applied to a feature of the architecture, OPTIONAL indicates a feature that is not required in an implementation
of the Arm architecture:

• If a feature is OPTIONAL and deprecated, this indicates that the feature is being phased out of the architecture.
Arm expects such a features to be included in a new implementation only if there is a known
backwards-compatibility reason for the inclusion of the feature.

A feature that is OPTIONAL and deprecated might not be present in future versions of the architecture.

• A feature that is OPTIONAL but not deprecated is, typically, a feature added to a version of the Arm
architecture after the initial release of that version of the architecture. Arm recommends that such features
are included in all new implementations of the architecture.

In body text, these meanings of the term OPTIONAL are shown in SMALL CAPITALS.

Note

Do not confuse these Arm-specific uses of OPTIONAL with other uses of optional, where it has its usual meaning.
These include:

• Optional arguments in the syntax of many instructions.

• Behavior determined by an implementation choice, for example the optional byte order reversal in an
Armv7-R implementation, where the SCTLR.IE bit indicates the implemented option.

See also Deprecated.

PA See Physical address (PA).

PE See Processing element (PE).

Physical address (PA)
An address that identifies a location in the physical memory map.

See also Intermediate physical address (IPA), Virtual address (VA).

PoC See Point of coherency (PoC).

PoP See Point of persistence (PoP).

PoU See Point of unification (PoU).
Glossary-8684 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Glossary

Point of coherency (PoC)
For a particular VA, the point at which all agents that can access memory are guaranteed to see the same copy of a
memory location. For more information, see Terms used in describing the cache maintenance instructions on
page D4-2644.

Point of persistence (PoP)
The point in a memory system where there is a system guarantee that there is sufficient energy within the system to
ensure that a write to memory will be persistent if system power is removed. For more information, see Terms used
in describing the cache maintenance instructions on page D4-2644.

Point of unification (PoU)
For a particular PE, the point by which the instruction and data caches and the translation table walks of that PE are
guaranteed to see the same copy of a memory location. For more information, see Terms used in describing the
cache maintenance instructions on page D4-2644.

Post-indexed addressing
Means that the memory address is the base register value, but an offset is added to or subtracted from the base
register value and the result is written back to the base register.

Prefetching Prefetching refers to speculatively fetching instructions or data from the memory system. In particular, instruction
prefetching is the process of fetching instructions from memory before the instructions that precede them, in simple
sequential execution of the program, have finished executing. Prefetching an instruction does not mean that the
instruction has to be executed.

In this manual, references to instruction or data fetching apply also to prefetching, unless the context explicitly
indicates otherwise.

Note

The Prefetch Abort exception can be generated on any instruction fetch, and is not limited to speculative instruction
fetches.

See also Simple sequential execution.

Pre-indexed addressing
Means that the memory address is formed in the same way as for offset addressing, but the memory address is also
written back to the base register.

Processing element (PE)
The abstract machine defined in the Arm architecture, as documented in an Arm Architecture Reference Manual. A
PE implementation compliant with the Arm architecture must conform with the behaviors described in the
corresponding Arm Architecture Reference Manual.

Protection region
A memory region whose position, size, and other properties are defined by Memory Protection Unit registers.

Protection Unit See Memory Protection Unit (MPU).

Pseudo-instruction
UAL assembler syntax that assembles to an instruction encoding that is expected to disassemble to a different
assembler syntax, and is described in this manual under that other syntax. For example, MOV <Rd>, <Rm>, LSL #<n>
is a pseudo-instruction that is expected to disassemble as LSL <Rd>, <Rm>, #<n>.

PSTATE An abstraction of process state information. All of the instruction sets provide instructions that operate on elements
of PSTATE.

See also Condition flags.

Quadword A 128-bit data item. Quadwords are normally at least word-aligned in Arm systems.

Quadword-aligned
Means that the address is divisible by 16.

Quiet NaN A NaN that propagates unchanged through most floating-point operations.

See also NaN, Signaling NaN.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. Glossary-8685
ID072021 Non-Confidential

Glossary

RAO See Read-As-One (RAO).

RAZ See Read-As-Zero (RAZ).

RAO/SBOP In versions of the Arm architecture before Armv8, Read-As-One, Should-Be-One-or-Preserved on writes.

In Armv8, RES1 replaces this description.

See also UNK/SBOP, Read-As-One (RAO), RES1, Should-Be-One-or-Preserved (SBOP).

RAO/WI Read-As-One, Writes Ignored.

Hardware must implement the field as Read-as-One, and must ignore writes to the field.

Software can rely on the field reading as all 1s, and on writes being ignored.

This description can apply to a single bit that reads as 1, or to a field that reads as all 1s.

See also Read-As-One (RAO).

RAZ/SBZP In versions of the Arm architecture before Armv8, Read-As-Zero, Should-Be-Zero-or-Preserved on writes.

In Armv8, RES0 replaces this description.

See also UNK/SBZP, Read-As-Zero (RAZ), RES0, Should-Be-Zero-or-Preserved (SBZP).

RAZ/WI Read-As-Zero, Writes Ignored.

Hardware must implement the field as Read-as-Zero, and must ignore writes to the field.

Software can rely on the field reading as all 0s, and on writes being ignored.

This description can apply to a single bit that reads as 0, or to a field that reads as all 0s.

See also Read-As-Zero (RAZ).

Read-allocate cache
A cache in which a cache miss on reading data causes a cache line to be allocated into the cache.

Read-As-One (RAO)
Hardware must implement the field as reading as all 1s.

Software:

• Can rely on the field reading as all 1s.

• Must use a SBOP policy to write to the field.

This description can apply to a single bit that reads as 1, or to a field that reads as all 1s.

See also RAO/SBOP, RAO/WI, RES1.

Read-As-Zero (RAZ)
Hardware must implement the field as reading as all 0s.

Software:

• Can rely on the field reading as all 0s

• Must use a SBZP policy to write to the field.

This description can apply to a single bit that reads as 0, or to a field that reads as all 0s.

See also RAZ/SBZP, RAZ/WI, RES0.

Read, modify, write
In a read, modify, write instruction sequence, a value is read to a general-purpose register, the relevant fields updated
in that register, and the new value written back.

Requester An agent in a computing system that is capable of initiating memory transactions.

See also Completer.
Glossary-8686 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Glossary

RES0 A reserved bit. Used for fields in register descriptions, and for fields in architecturally-defined data structures that
are held in memory, for example in translation table descriptors.

Within the architecture, there are some cases where a register bit or field:

• Is RES0 in some defined architectural context.

• Has different defined behavior in a different architectural context.

Note

• RES0 is not used in descriptions of instruction encodings.

• Where an AArch32 System register is Architecturally mapped to an AArch64 System register, and a bit or
field in that register is RES0 in one Execution state and has defined behavior in the other Execution state, this
is an example of a bit or field with behavior that depends on the architectural context.

This means the definition of RES0 for fields in read/write registers is:

If a bit is RES0 in all contexts

For a bit in a read/write register, it is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 0. In this case:

• Reads of the bit always return 0.

• Writes to the bit are ignored.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 0.

• A read of the bit returns the last value successfully written, by either a direct or an
indirect write, to the bit.

If the bit has not been successfully written since reset, then the read of the bit returns
the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• The value of the bit must have no effect on the operation of the PE, other than
determining the value read back from the bit, unless this Manual explicitly defines
additional properties for the bit.

Whether RES0 bits or fields follow behavior 1 or behavior 2 is IMPLEMENTATION DEFINED on a
bit-by-bit basis.

If a bit is RES0 only in some contexts

For a bit in a read/write register, when the bit is described as RES0:

• An indirect write to the register sets the bit to 0.

• A read of the bit must return the value last successfully written to the bit, by either a direct or
an indirect write, regardless of the use of the register when the bit was written.

If the bit has not been successfully written since reset, then the read of the bit returns the reset
value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• While the use of the register is such that the bit is described as RES0, the value of the bit must
have no effect on the operation of the PE, other than determining the value read back from
that bit, unless this Manual explicitly defines additional properties for the bit.

Considering only contexts that apply to a particular implementation, if there is a context in which a
bit is defined as RES0, another context in which the same bit is defined as RES1, and no context in
which the bit is defined as a functional bit, then it is IMPLEMENTATION DEFINED whether:

• Writes to the bit are ignored, and reads of the bit return an UNKNOWN value.

• The value of the bit can be written, and a read returns the last value written to the bit.

The RES0 description can apply to bits or fields that are read-only, or are write-only:

• For a read-only bit, RES0 indicates that the bit reads as 0, but software must treat the bit as UNKNOWN.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. Glossary-8687
ID072021 Non-Confidential

Glossary

• For a write-only bit, RES0 indicates that software must treat the bit as SBZ.

A bit that is RES0 in a context is reserved for possible future use in that context. To preserve forward compatibility,
software:

• Must not rely on the bit reading as 0.

• Must use an SBZP policy to write to the bit.

This RES0 description can apply to a single bit, or to a field for which each bit of the field must be treated as RES0.

In body text, the term RES0 is shown in SMALL CAPITALS.

See also Read-As-Zero (RAZ), RES1, Should-Be-Zero-or-Preserved (SBZP), UNKNOWN.

RES1 A reserved bit. Used for fields in register descriptions, and for fields in architecturally-defined data structures that
are held in memory, for example in translation table descriptors.

Within the architecture, there are some cases where a register bit or field:

• Is RES1 in some defined architectural context.

• Has different defined behavior in a different architectural context.

Note

• RES1 is not used in descriptions of instruction encodings.

• Where an AArch32 System register is Architecturally mapped to an AArch64 System register, and a bit or
field in that register is RES1 in one Execution state and has defined behavior in the other Execution state, this
is an example of a bit or field with behavior that depends on the architectural context.

This means the definition of RES1 for fields in read/write registers is:

If a bit is RES1 in all contexts

For a bit in a read/write register, it is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 1. In this case:

• Reads of the bit always return 1.

• Writes to the bit are ignored.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 1.

• A read of the bit returns the last value successfully written, by either a direct or an
indirect write, to the bit.

If the bit has not been successfully written since reset, then the read of the bit returns
the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• The value of the bit must have no effect on the operation of the PE, other than
determining the value read back from the bit, unless this Manual explicitly defines
additional properties for the bit.

Whether RES1 bits or fields follow behavior 1 or behavior 2 is IMPLEMENTATION DEFINED on a
bit-by-bit basis.

If a bit is RES1 only in some contexts

For a bit in a read/write register, when the bit is described as RES1:

• An indirect write to the register sets the bit to 1.

• A read of the bit must return the value last successfully written to the bit, regardless of the
use of the register when the bit was written.

Note
As indicated in this list, this value might be written by an indirect write to the register.
Glossary-8688 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Glossary

If the bit has not been successfully written since reset, then the read of the bit returns the reset
value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• While the use of the register is such that the bit is described as RES1, the value of the bit must
have no effect on the operation of the PE, other than determining the value read back from
that bit, unless this Manual explicitly defines additional properties for the bit.

Considering only contexts that apply to a particular implementation, if there is a context in which a
bit is defined as RES0, another context in which the same bit is defined as RES1, and no context in
which the bit is defined as a functional bit, then it is IMPLEMENTATION DEFINED whether:

• Writes to the bit are ignored, and reads of the bit return an UNKNOWN value.

• The value of the bit can be written, and a read returns the last value written to the bit.

The RES1 description can apply to bits or fields that are read-only, or are write-only:

• For a read-only bit, RES1 indicates that the bit reads as 1, but software must treat the bit as UNKNOWN.

• For a write-only bit, RES1 indicates that software must treat the bit as SBO.

A bit that is RES1 in a context is reserved for possible future use in that context. To preserve forward compatibility,
software:

• Must not rely on the bit reading as 1.

• Must use an SBOP policy to write to the bit.

This RES1 description can apply to a single bit, or to a field for which each bit of the field must be treated as RES1.

In body text, the term RES1 is shown in SMALL CAPITALS.

See also Read-As-One (RAO), RES0, Should-Be-One-or-Preserved (SBOP), UNKNOWN.

Reserved Unless otherwise stated:

• Instructions that are reserved or that access reserved registers have UNPREDICTABLE or CONSTRAINED
UNPREDICTABLE behavior.

• Bit positions described as reserved are:

— In an RW or WO register, RES0.

— In an RO register, UNK.

See also CONSTRAINED UNPREDICTABLE, RES0, RES1, UNDEFINED, UNK, UNPREDICTABLE.

RESS Reserved, Sign extended. A register value is extended by copying the sign bit into all of the reserved bits to the left
of the most significant bit of the field. The values of these bits are identical to the most significant bit of the value
being extended.

Within the architecture, a register bit or field can be treated:

• As RESS in few defined architectural contexts.

• In a different defined behavior in other architectural contexts.

RISC Reduced Instruction Set Computer.

Rounding error The value of the rounded result of an arithmetic operation minus the exact result of the operation.

Rounding mode Specifies how the exact result of a floating-point operation is rounded to a value that is representable in the
destination format. The rounding modes are defined by the IEEE Standard for Floating-point Arithmetic, see
Floating-point standards, and terminology on page A1-53.

Saturated arithmetic
Integer arithmetic in which a result that would be greater than the largest representable number is set to the largest
representable number, and a result that would be less than the smallest representable number is set to the smallest
representable number. Signed saturated arithmetic is often used in DSP algorithms. It contrasts with the normal
signed integer arithmetic used in Arm processors, in which overflowing results wrap around from +231–1 to –231 or
vice versa.

SBO See Should-Be-One (SBO).

SBOP See Should-Be-One-or-Preserved (SBOP).
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. Glossary-8689
ID072021 Non-Confidential

Glossary

SBZ See Should-Be-Zero (SBZ).

SBZP See Should-Be-Zero-or-Preserved (SBZP).

Security hole A mechanism by which execution at the current level of privilege can achieve an outcome that cannot be achieved
at the current or a lower level of privilege using instructions that are not UNPREDICTABLE and are not CONSTRAINED
UNPREDICTABLE. The Arm architecture forbids security holes.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Self-modifying code
Code that writes one or more instructions to memory and then executes them. When using self-modifying code, you
must use cache maintenance and barrier instructions to ensure synchronization. For more information, see Caches
and memory hierarchy on page B2-155.

Set See Cache sets.

Should-Be-One (SBO)
Hardware must ignore writes to the field.

Arm strongly recommends that software writes the field as all 1s. If software writes a value that is not all 1s, it must
expect an UNPREDICTABLE or CONSTRAINED UNPREDICTABLE result.

This description can apply to a single bit that should be written as 1, or to a field that should be written as all 1s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Should-Be-One-or-Preserved (SBOP)
From the introduction of the Armv8 architecture, the description Should-Be-One-or-Preserved (SBOP) is
superseded by RES1.

Note

The Armv7 Large Physical Address Extension modified the definition of SBOP for register bits that are SBOP in
some but not all contexts. The behavior of these bits is covered by the RES1 definition, but not by the generic
definition of SBOP given here.

Hardware must ignore writes to the field.

When writing this field, software must either write all 1s to this field or, if the register is being restored from a
previously read state, write the previously read value to this field. If this is not done, then the result is unpredictable.

This description can apply to a single bit that should be written as its preserved value or as 1, or to a field that should
be written as its preserved value or as all 1s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Should-Be-Zero (SBZ)
Hardware must ignore writes to the field.

Arm strongly recommends that software writes the field as all 0s. If software writes a value that is not all 0s, it must
expect an UNPREDICTABLE or CONSTRAINED UNPREDICTABLE result.

This description can apply to a single bit that should be written as 0, or to a field that should be written as all 0s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Should-Be-Zero-or-Preserved (SBZP)
From the introduction of the Armv8 architecture, the description Should-Be-Zero-or-Preserved (SBZP) is
superseded by RES0.

Note

The Armv7 Large Physical Address Extension modified the definition of SBZP for register bits that are SBZP in
some but not all contexts. The behavior of these bits is covered by the RES0 definition, but not by the generic
definition of SBZP given here.
Glossary-8690 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Glossary

Hardware must ignore writes to the field.

When writing this field, software must either write all 0s to this field or, if the register is being restored from a
previously read state, write the previously read value to this field. If this is not done, then the result is unpredictable.

This description can apply to a single bit that should be written as its preserved value or as 0, or to a field that should
be written as its preserved value or as all 0s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Signaling NaN An Invalid Operation floating-point exception occurs whenever any floating-point operation receives a signaling
NaN as an operand. Signaling NaNs can be used in debugging, to track down some uses of uninitialized variables.

See also NaN, Quiet NaN.

Signed immediate and offset fields
Are encoded in two’s complement notation unless otherwise stated.

SIMD Single-Instruction, Multiple-Data.

The SIMD instructions in AArch32 state are:

• The instructions summarized in Parallel addition and subtraction instructions on page F2-4386.

• The Advanced SIMD instructions summarized in Advanced SIMD and floating-point instructions on
page E1-4260, when operating on vectors.

Note

In Armv7, some VFP instructions can operate on vectors. However, Arm deprecates those instruction uses,
and strongly recommends that Advanced SIMD instructions are always used for vector operations.

Simple sequential execution
The behavior of an implementation that fetches, decodes and completely executes each instruction before
proceeding to the next instruction. Such an implementation performs no speculative accesses to memory, including
to instruction memory. The implementation does not pipeline any phase of execution. In practice, this is the
theoretical execution model that the architecture is based on, and Arm does not expect this model to correspond to
a realistic implementation of the architecture.

Single-copy atomicity
The form of atomicity described in Properties of single-copy atomic accesses on page B2-130.

See also Atomicity, Multi-copy atomicity.

Single-precision value
A 32-bit word that is interpreted as a basic single-precision floating-point number according to the IEEE Standard
for Floating-point Arithmetic.

Spatial locality The observed effect that after a program has accessed a memory location, it is likely to also access nearby memory
locations in the near future. Caches with multi-word cache lines exploit this effect to improve performance.

Special-purpose register
One of a specified set of registers for which all direct and indirect reads and writes to the register appear to occur in
program order relative to other instructions, without the need for any explicit synchronization:

• Special-purpose registers on page C5-408 specifies the AArch64 Special-purpose registers.

• AArch32 Special-purpose registers on page G1-6032 lists the AArch32 Special-purpose registers.

Speculative
Speculative operations are:

• Operations that are generated by instructions that appear in the Execution stream after a branch that is not
architecturally resolved.

• Operations that are generated by instructions that appear in the Execution stream after an instruction where
a synchronous exception condition has not been architecturally resolved.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. Glossary-8691
ID072021 Non-Confidential

Glossary

• Operations that are generated by conditional instructions for which the conditions for the instruction have not
been architecturally resolved.

• Operations that are generated by instructions that appear in the Execution stream after the point at which a
precise asynchronous exception will be taken.

• Reads or writes generated by load or store instructions for which the data being written or the address being
accessed comes from a register that has not been architecturally resolved.

• Operations generated by the hardware that are not directly generated by any instructions appearing in the
Execution stream.

• Memory effects (M2) generated by load, store, or barrier instructions (LSB2) appearing in program order
after load, store, or barrier instructions (LSB1) that generate memory effects (M1) where all of the following
apply:

— M1 is locally-ordered-before M2.

— LSB1 has not been executed before LSB2.

See also Execution stream.

T32 instruction One or two halfwords that specify an operation to be performed by a PE that is executing in an Exception level that
is using AArch32 and is in T32 state. T32 instructions must be halfword-aligned.

T32 instructions were previously called Thumb instructions.

See also A32 instruction, A64 instruction, T32 state.

T32 state The AArch32 Instruction set state in which the PE executes T32 instructions.

T32 state was previously called Thumb state.

See also A32 state, T32 instruction.

Taken locally Taken locally is a qualifier that determines which instances of an exception are counted by particular PMU events.
See, in particular, Arm recommendations for IMPLEMENTATION DEFINED event numbers on page K3-8446.

In this context, an exception that is Taken locally means an exception that is one of:

• Taken to the current Exception level.

Note
This is not possible when the current Exception level is EL0.

• Taken from EL0 to EL1.

• Taken from EL0 to EL2 because the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Note
An exception taken from EL0 to EL2 because the Effective value of HCR_EL2.{E2H, TGE} is {0, 1} is not
Taken locally. This includes exceptions taken to EL2 using AArch32 when HCR.TGE is 1.

Temporal locality
The observed effect that after a program has accesses a memory location, it is likely to access the same memory
location again in the near future. Caches exploit this effect to improve performance.

Thumb instruction
See T32 instruction.

TLB See Translation Lookaside Buffer (TLB).

TLB lockdown A way to prevent specific translation table walk results being accessed. This ensures that accesses to the associated
memory areas never cause a translation table walk.

Translation Lookaside Buffer (TLB)
A memory structure containing the results of translation table walks. They help to reduce the average cost of a
memory access. Usually, there is a TLB for each memory interface of the Arm implementation.
Glossary-8692 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Glossary

Translation table
A table held in memory that defines the properties of memory areas of various sizes from 1KB to 1MB.

Translation table walk
The process of doing a full translation table lookup. It is performed automatically by hardware.

Trap enable bits In VFPv2, VFPv3U, and VFPv4U, determine whether trapped or untrapped exception handling is selected. If
trapped exception handling is selected, the way it is carried out is IMPLEMENTATION DEFINED.

Unaligned An unaligned access is an access where the address of the access is not aligned to the size of an element of the access.

Unaligned memory accesses
Are memory accesses that are not, or might not be, appropriately halfword-aligned, word-aligned, or
doubleword-aligned.

Unallocated Except where otherwise stated in this manual, an instruction encoding is unallocated if the architecture does not
assign a specific function to the entire bit pattern of the instruction, but instead describes it as CONSTRAINED
UNPREDICTABLE, UNDEFINED, UNPREDICTABLE, or as an unallocated hint instruction.

A bit in a register is unallocated if the architecture does not assign a function to that bit.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED, UNPREDICTABLE.

UNDEFINED Indicates cases where an attempt to execute a particular encoding bit pattern generates an exception, that is taken to
the current Exception level, or to the default Exception level for taking exceptions if the UNDEFINED encoding was
executed at EL0. This applies to:

• Any encoding that is not allocated to any instruction.

• Any encoding that is defined as never accessible at the current Exception level.

• Some cases where an enable, disable, or trap control means an encoding is not accessible at the current
Exception level.

If the generated exception is taken to an Exception level that is using AArch32 then it is taken as an Undefined
Instruction exception.

Note

On reset, the default Exception level for taking exceptions from EL0 is EL1. However, an implementation might
include controls that can change this, effectively making EL1 inactive. See the description of the Exception model
for more information

In body text, the term UNDEFINED is shown in SMALL CAPITALS.

See also Undefined Instruction exception on page G1-6078.

Unified cache Is a cache used for both processing instruction fetches and processing data loads and stores.

Unindexed addressing
Means addressing in which the base register value is used directly as the virtual address to send to memory, without
adding or subtracting an offset. In most types of load/store instruction, unindexed addressing is performed by using
offset addressing with an immediate offset of 0.

In Armv7 and earlier versions of the Arm architecture, and in the M-profile, the LDC, LDC2, STC, and STC2 instructions
have an explicit unindexed addressing mode that permits the offset field in the instruction to specify additional
coprocessor options.

UNK An abbreviation indicating that software must treat a field as containing an UNKNOWN value.

Hardware must implement the bit as read as 0, or all 0s for a multi-bit field. Software must not rely on the field
reading as zero.

See also UNKNOWN.

UNK/SBOP Hardware must implement the field as Read-As-One, and must ignore writes to the field.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. Glossary-8693
ID072021 Non-Confidential

Glossary

Software must not rely on the field reading as all 1s, and except for writing back to the register it must treat the value
as if it is UNKNOWN. Software must use an SBOP policy to write to the field.

This description can apply to a single bit that should be written as its preserved value or as 1, or to a field that should
be written as its preserved value or as all 1s.

See also Read-As-One (RAO), Should-Be-One-or-Preserved (SBOP), UNKNOWN.

UNK/SBZP Hardware must implement the bit as Read-As-Zero, and must ignore writes to the field.

Software must not rely on the field reading as all 0s, and except for writing back to the register must treat the value
as if it is UNKNOWN. Software must use an SBZP policy to write to the field.

This description can apply to a single bit that should be written as its preserved value or as 0, or to a field that should
be written as its preserved value or as all 0s.

See also Read-As-Zero (RAZ), Should-Be-Zero-or-Preserved (SBZP), UNKNOWN.

UNKNOWN An UNKNOWN value does not contain valid data, and can vary from implementation to implementation. An
UNKNOWN value must not return information that cannot be accessed at the current or a lower level of privilege using
instructions that are not UNPREDICTABLE, are not CONSTRAINED UNPREDICTABLE, and do not return UNKNOWN
values.

An UNKNOWN value can vary from moment to moment, and instruction to instruction, unless it has previously been
assigned, other than at reset, to one of the following registers:

• Any of the general-purpose registers.

• Any of the Advanced SIMD and floating-point registers.

• Any of the Scalable Vector Extension registers.

• Any of the PSTATE N, Z, C, or V flags.

An UNKNOWN value must not be documented or promoted as having a defined value or effect.

In body text, the term UNKNOWN is shown in SMALL CAPITALS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED, UNK, UNPREDICTABLE.

UNPREDICTABLE
Means the behavior cannot be relied upon. UNPREDICTABLE behavior must not perform any function that cannot be
performed at the current or a lower level of privilege using instructions that are not UNPREDICTABLE.

UNPREDICTABLE behavior must not be documented or promoted as having a defined effect.

An instruction that is UNPREDICTABLE can be implemented as UNDEFINED.

Execution at Non-secure EL1 or EL0 of an instruction that is UNPREDICTABLE can be implemented as generating a
trap exception that is taken to EL2, provided that at least one instruction that is not UNPREDICTABLE and is not
CONSTRAINED UNPREDICTABLE causes a trap exception that is taken to EL2.

In body text, the term UNPREDICTABLE is shown in SMALL CAPITALS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED.

VA See Virtual address (VA).

VFP In Armv7, an extension to the Arm architecture, that provides single-precision and double-precision floating-point
arithmetic.

Virtual address (VA)
An address generated by an Arm PE. This means it is an address that might be held in the program counter of the
PE. For a PMSA implementation, the virtual address is identical to the physical address.

See also Intermediate physical address (IPA), Physical address (PA).

Watchpoint A debug event triggered by an access to memory, specified in terms of the address of the location in memory being
accessed.

Way See Cache way.
Glossary-8694 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

Glossary

WI Writes Ignored. In a register that software can write to, a WI attribute applied to a bit or field indicates that the bit
or field ignores the value written by software and retains the value it had before that write.

See also RAO/WI, RAZ/WI, RES0, RES1.

Word A 32-bit data item. Words are normally word-aligned in Arm systems.

Word-aligned Means that the address is divisible by 4.

Write-allocate cache
A cache in which a cache miss on storing data causes a cache line to be allocated into the cache.

Write-back cache
A cache in which when a cache hit occurs on a store access, the data is only written to the cache. Data in the cache
can therefore be more up-to-date than data in main memory. Any such data is written back to main memory when
the cache line is cleaned or reallocated. Another common term for a write-back cache is a copy-back cache.

Write-through cache
A cache in which when a cache hit occurs on a store access, the data is written both to the cache and to main memory.
This is normally done via a write buffer, to avoid slowing down the PE.

Write buffer A block of high-speed memory that optimizes stores to main memory.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. Glossary-8695
ID072021 Non-Confidential

Glossary

Glossary-8696 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential ID072021

	Arm Architecture Reference Manual Armv8, for A-profile architecture
	Contents
	Preface
	About this Manual
	Using this Manual
	Part A, Introduction and Architecture Overview
	Part B, The AArch64 Application Level Architecture
	Part C, The A64 Instruction Set
	Part D, The AArch64 System Level Architecture
	Part E, The AArch32 Application Level Architecture
	Part F, The AArch32 Instruction Sets
	Part G, The AArch32 System Level Architecture
	Part H, External Debug
	Part I, Memory-mapped Components of the Armv8 Architecture
	Part J, Architectural Pseudocode
	Part K, Appendixes
	Glossary

	Conventions
	Typographic conventions
	Signals
	Numbers
	Pseudocode descriptions
	Assembler syntax descriptions

	Additional reading
	Arm publications
	Other publications

	Feedback
	Feedback on this Manual
	Progressive Terminology Commitment

	Part A: Armv8 Architecture Introduction and Overview�
	A1: Introduction to the Armv8 Architecture�
	A1.1 About the Arm architecture
	A1.2 Architecture profiles
	A1.3 Armv8 architectural concepts
	A1.3.1 Execution state
	A1.3.2 The Armv8 instruction sets
	A1.3.3 System registers
	The Arm Generic Interrupt Controller System registers

	A1.3.4 Armv8 Debug

	A1.4 Supported data types
	A1.4.1 Vector formats
	Vector formats in AArch64 state
	Vector formats in AArch32 state

	A1.4.2 Half-precision floating-point formats
	A1.4.3 Single-precision floating-point format
	A1.4.4 Double-precision floating-point format
	A1.4.5 BFloat16 floating-point format
	A1.4.6 Fixed-point format
	A1.4.7 Conversion between floating-point and fixed-point values
	A1.4.8 Polynomial arithmetic over {0, 1}
	Pseudocode description of polynomial multiplication

	A1.5 Advanced SIMD and floating-point support
	A1.5.1 Instruction support
	A1.5.2 Floating-point standards, and terminology
	A1.5.3 Arm standard floating-point input and output values
	A1.5.4 Flushing denormalized numbers to zero
	Flushing denormalized inputs to zero
	Flushing to zero of denormalized numbers as Intermediate results of some BF16 instructions
	Flushing denormalized outputs to zero

	A1.5.5 NaN handling and the Default NaN
	The Default NaN
	NaN handling
	NaN propagation

	A1.5.6 Rounding
	Round to Nearest mode
	Round towards Plus Infinity mode
	Round towards Minus Infinity mode
	Round towards Zero mode
	Round to Nearest with Ties to Away
	Round to Odd mode

	A1.6 The Arm memory model

	A2: Armv8-A Architecture Extensions�
	A2.1 Armv8.0 architecture extensions
	A2.1.1 Permitted implementation of subsets of Armv8.x and Armv8.(x+1) architectural features

	A2.2 Architectural features within Armv8.0 architecture
	A2.2.1 Additional functionality added to Armv8.0 in later releases
	A2.2.2 Architectural requirements within Armv8.0 architecture

	A2.3 The Armv8 Cryptographic Extension
	A2.3.1 Armv8.2 extensions to the Cryptographic Extension

	A2.4 The Armv8.1 architecture extension
	A2.4.1 Architectural features added by Armv8.1
	A2.4.2 Additional requirements of Armv8.1
	A2.4.3 Features added to the Armv8.1 extension in later releases
	A2.4.4 Features made optional in Armv8.1 implementations

	A2.5 The Armv8.2 architecture extension
	A2.5.1 Architectural features added by Armv8.2
	A2.5.2 Additional requirements of Armv8.2
	A2.5.3 Features added to the Armv8.2 extension in later releases
	A2.5.4 Features made optional in Armv8.2 implementations

	A2.6 The Armv8.3 architecture extension
	A2.6.1 Architectural features added by Armv8.3
	A2.6.2 Additional requirements of Armv8.3
	A2.6.3 Features added to the Armv8.3 extension in later releases

	A2.7 The Armv8.4 architecture extension
	A2.7.1 Architectural features added by Armv8.4
	A2.7.2 Features added to earlier extensions

	A2.8 The Armv8.5 architecture extension
	A2.8.1 Architectural features added by Armv8.5
	A2.8.2 Additional requirements of Armv8.5
	A2.8.3 Features added to earlier extensions
	A2.8.4 Architectural requirements added to earlier extensions
	A2.8.5 Features added to the Armv8.5 extension in later releases

	A2.9 The Armv8.6 architecture extension
	A2.9.1 Architectural features added by Armv8.6
	A2.9.2 Additional requirements of Armv8.6
	A2.9.3 Features added to earlier extensions

	A2.10 The Armv8.7 architecture extension
	A2.10.1 Architectural features added by Armv8.7
	A2.10.2 Additional requirements of Armv8.7
	A2.10.3 Features added to earlier extensions

	A2.11 The Performance Monitors Extension
	A2.12 The Reliability, Availability, and Serviceability Extension
	A2.13 The Statistical Profiling Extension (SPE)
	A2.14 The Scalable Vector Extension (SVE)
	A2.15 The Activity Monitors Extension (AMU)
	A2.16 The Memory Partitioning and Monitoring (MPAM) Extension

	Part B: The AArch64 Application Level Architecture�
	B1: The AArch64 Application Level Programmers’ Model�
	B1.1 About the Application level programmers’ model
	B1.2 Registers in AArch64 Execution state
	B1.2.1 Registers in AArch64 state
	Pseudocode description of registers in AArch64 state

	B1.2.2 Process state, PSTATE
	Accessing PSTATE fields at EL0

	B1.2.3 System registers

	B1.3 Software control features and EL0
	B1.3.1 Exception handling
	B1.3.2 Wait for Interrupt and Wait for Event
	B1.3.3 The YIELD instruction
	B1.3.4 Application level cache management
	B1.3.5 Instructions relating to Debug
	B1.3.6 About PSTATE.DIT

	B2: The AArch64 Application Level Memory Model�
	B2.1 About the Arm memory model
	B2.1.1 Address space
	B2.1.2 Memory type overview

	B2.2 Atomicity in the Arm architecture
	B2.2.1 Requirements for single-copy atomicity
	Changes to single-copy atomicity in Armv8.4

	B2.2.2 Properties of single-copy atomic accesses
	B2.2.3 Multi-copy atomicity
	B2.2.4 Requirements for multi-copy atomicity
	B2.2.5 Concurrent modification and execution of instructions
	B2.2.6 Possible implementation restrictions on using atomic instructions

	B2.3 Definition of the Armv8 memory model
	B2.3.1 Basic definitions
	B2.3.2 Dependency definitions
	B2.3.3 Ordering relations
	B2.3.4 Ordering constraints
	B2.3.5 Internal visibility requirement
	B2.3.6 External ordering constraints
	External visibility requirement
	Completes-before order
	Globally-completes-before order

	B2.3.7 Completion and endpoint ordering
	Peripherals

	B2.3.8 Ordering of instruction fetches
	B2.3.9 Restrictions on the effects of speculation
	Restrictions on the effects of speculation
	Speculative Store Bypass Safe (SSBS)
	Restrictions on exploitative control of speculative execution
	Restrictions on the effects of speculation from Armv8.5

	B2.3.10 Memory barriers
	Instruction Synchronization Barrier (ISB)
	Data Memory Barrier (DMB)
	Speculation Barrier (SB)
	Consumption of Speculative Data Barrier (CSDB)
	Speculative Store Bypass Barrier (SSBB)
	Profiling Synchronization Barrier (PSB CSYNC)
	Physical Speculative Store Bypass Barrier (PSSBB)
	Trace Synchronization Barrier (TSB CSYNC)
	Data Synchronization Barrier (DSB)
	Shareability and access limitations on the data barrier operations
	Load-Acquire, Load-AcquirePC, and Store-Release
	LoadLOAcquire, StoreLORelease

	B2.3.11 Limited ordering regions
	Specification of the LORegions

	B2.4 Caches and memory hierarchy
	B2.4.1 Introduction to caches
	B2.4.2 Memory hierarchy
	The cacheability and shareability memory attributes

	B2.4.3 Application level access to functionality related to caches
	B2.4.4 Implication of caches for the application programmer
	Data coherency issues
	Synchronization and coherency issues between data and instruction accesses

	B2.4.5 Preloading caches

	B2.5 Alignment support
	B2.5.1 Instruction alignment
	B2.5.2 Alignment of data accesses
	Unaligned accesses to Normal memory

	B2.6 Endian support
	B2.6.1 General description of endianness in the Arm architecture
	B2.6.2 Instruction endianness
	B2.6.3 Data endianness
	Instructions to reverse bytes in a general-purpose register or a SIMD and floating-point register
	Endianness in SIMD operations

	B2.6.4 Endianness of memory-mapped peripherals

	B2.7 Memory types and attributes
	B2.7.1 Normal memory
	Shareable Normal memory
	Non-shareable Normal memory
	Cacheability attributes for Normal memory
	Multi-register loads and stores that access Normal memory

	B2.7.2 Device memory
	Gathering
	Reordering
	Early Write Acknowledgement
	Multi-register loads and stores that access Device memory

	B2.7.3 Memory access restrictions

	B2.8 Mismatched memory attributes
	B2.9 Synchronization and semaphores
	B2.9.1 Exclusive access instructions and Non-shareable memory locations
	Changes to the local monitor state resulting from speculative execution

	B2.9.2 Exclusive access instructions and Shareable memory locations
	Operation of the global Exclusives monitor

	B2.9.3 Marking and the size of the marked memory block
	B2.9.4 Context switch support
	B2.9.5 Load-Exclusive and Store-Exclusive instruction usage restrictions
	CONSTRAINED UNPREDICTABLE behavior when Load-Exclusive/Store-Exclusive access a different number of registers

	B2.9.6 Use of WFE and SEV instructions by spin-locks

	Part C: The AArch64 Instruction Set�
	C1: The A64 Instruction Set �
	C1.1 About the A64 instruction set
	C1.2 Structure of the A64 assembler language
	C1.2.1 General requirements
	C1.2.2 Common syntax terms
	C1.2.3 Instruction Mnemonics
	C1.2.4 Condition code
	C1.2.5 Register names
	General-purpose register file and zero register and stack pointer
	SIMD and floating-point register file
	SIMD and floating-point scalar register names
	SIMD vector register names
	SIMD vector element names

	C1.3 Address generation
	C1.3.1 Register indexed addressing
	C1.3.2 PC-relative addressing
	C1.3.3 Load/store addressing modes
	Address calculation

	C1.4 Instruction aliases

	C2: About the A64 Instruction Descriptions�
	C2.1 Understanding the A64 instruction descriptions
	C2.1.1 The title
	C2.1.2 An introduction to the instruction
	C2.1.3 The instruction encoding or encodings
	C2.1.4 Any alias conditions, if applicable
	C2.1.5 A list of the assembler symbols for the instruction
	C2.1.6 Pseudocode describing how the instruction operates
	C2.1.7 Notes, if applicable

	C2.2 General information about the A64 instruction descriptions
	C2.2.1 Execution of instructions in debug state
	C2.2.2 Fixed values in AArch64 instruction and System register descriptions
	C2.2.3 Modified immediate constants in A64 instructions
	Modified immediate constants in A64 floating-point instructions

	C3: A64 Instruction Set Overview�
	C3.1 Branches, Exception generating, and System instructions
	C3.1.1 Conditional branch
	C3.1.2 Unconditional branch (immediate)
	C3.1.3 Unconditional branch (register)
	C3.1.4 Exception generation and return
	Exception generating
	Exception return
	Debug state

	C3.1.5 System register instructions
	C3.1.6 Instructions with register argument
	C3.1.7 System instructions
	C3.1.8 Hint instructions
	C3.1.9 Barriers and CLREX instructions
	C3.1.10 Pointer authentication instructions
	Basic pointer authentication instructions
	Combined instructions that include pointer authentication

	C3.2 Loads and stores
	C3.2.1 Load/store register
	C3.2.2 Load/store register (unscaled offset)
	C3.2.3 Load/store pair
	C3.2.4 Load/store non-temporal pair
	C3.2.5 Load/store unprivileged
	C3.2.6 Load-Exclusive/Store-Exclusive
	C3.2.7 Load-Acquire/Store-Release
	C3.2.8 LoadLOAcquire/StoreLORelease
	C3.2.9 Load/store scalar SIMD and floating-point
	Load/store scalar SIMD and floating-point register
	Load/store scalar SIMD and floating-point register (unscaled offset)
	Load/store SIMD and floating-point register pair
	Load/store SIMD and floating-point non-temporal pair

	C3.2.10 Load/store Vector
	Load/store structures
	Load single structure and replicate

	C3.2.11 Prefetch memory
	C3.2.12 Atomic instructions
	Atomic memory operations
	Single-copy atomic 64-byte load/store
	Swap
	Compare and Swap

	C3.2.13 Memory Tagging instructions

	C3.3 Data processing - immediate
	C3.3.1 Arithmetic (immediate)
	C3.3.2 Logical (immediate)
	C3.3.3 Move (wide immediate)
	C3.3.4 Move (immediate)
	C3.3.5 PC-relative address calculation
	C3.3.6 Bitfield move
	C3.3.7 Bitfield insert and extract
	C3.3.8 Extract register
	C3.3.9 Shift (immediate)
	C3.3.10 Sign-extend and Zero-extend

	C3.4 Data processing - register
	C3.4.1 Arithmetic (shifted register)
	C3.4.2 Arithmetic (extended register)
	C3.4.3 Arithmetic with carry
	C3.4.4 Flag manipulation instructions
	C3.4.5 Logical (shifted register)
	C3.4.6 Move (register)
	C3.4.7 Shift (register)
	C3.4.8 Multiply and divide
	Multiply
	Divide

	C3.4.9 CRC32
	C3.4.10 Bit operation
	C3.4.11 Conditional select
	C3.4.12 Conditional comparison

	C3.5 Data processing - SIMD and floating-point
	C3.5.1 Common features of SIMD instructions
	C3.5.2 Floating-point move (register)
	C3.5.3 Floating-point move (immediate)
	C3.5.4 Floating-point conversion
	Convert floating-point precision
	Convert between floating-point and integer or fixed-point

	C3.5.5 Floating-point round to integral value
	Floating-point round to an integer of the same size as the register
	Floating-point round to 32-bit or 64-bit integer

	C3.5.6 Floating-point multiply-add
	C3.5.7 Floating-point arithmetic (one source)
	C3.5.8 Floating-point arithmetic (two sources)
	C3.5.9 Floating-point minimum and maximum
	C3.5.10 Floating-point comparison
	C3.5.11 Floating-point conditional select
	C3.5.12 BFloat16 floating-point instructions
	C3.5.13 SIMD move
	C3.5.14 SIMD arithmetic
	C3.5.15 SIMD compare
	C3.5.16 SIMD widening and narrowing arithmetic
	C3.5.17 SIMD unary arithmetic
	C3.5.18 SIMD by element arithmetic
	C3.5.19 SIMD permute
	C3.5.20 SIMD immediate
	C3.5.21 SIMD shift (immediate)
	C3.5.22 SIMD floating-point and integer conversion
	C3.5.23 SIMD reduce (across vector lanes)
	C3.5.24 SIMD pairwise arithmetic
	C3.5.25 SIMD dot product
	C3.5.26 SIMD table lookup
	C3.5.27 SIMD complex number arithmetic
	C3.5.28 SIMD BFloat16
	C3.5.29 SIMD matrix multiplication
	C3.5.30 The Cryptographic Extension
	Armv8.2 extensions to the Cryptographic Extension

	C4: A64 Instruction Set Encoding�
	C4.1 A64 instruction set encoding
	C4.1.1 Reserved
	C4.1.2 Data Processing -- Immediate
	PC-rel. addressing
	Add/subtract (immediate)
	Add/subtract (immediate, with tags)
	Logical (immediate)
	Move wide (immediate)
	Bitfield
	Extract

	C4.1.3 Branches, Exception Generating and System instructions
	Conditional branch (immediate)
	Exception generation
	System instructions with register argument
	Hints
	Barriers
	PSTATE
	System instructions
	System register move
	Unconditional branch (register)
	Unconditional branch (immediate)
	Compare and branch (immediate)
	Test and branch (immediate)

	C4.1.4 Loads and Stores
	Compare and swap pair
	Advanced SIMD load/store multiple structures
	Advanced SIMD load/store multiple structures (post-indexed)
	Advanced SIMD load/store single structure
	Advanced SIMD load/store single structure (post-indexed)
	Load/store memory tags
	Load/store exclusive pair
	Load/store exclusive register
	Load/store ordered
	Compare and swap
	LDAPR/STLR (unscaled immediate)
	Load register (literal)
	Load/store no-allocate pair (offset)
	Load/store register pair (post-indexed)
	Load/store register pair (offset)
	Load/store register pair (pre-indexed)
	Load/store register (unscaled immediate)
	Load/store register (immediate post-indexed)
	Load/store register (unprivileged)
	Load/store register (immediate pre-indexed)
	Atomic memory operations
	Load/store register (register offset)
	Load/store register (pac)
	Load/store register (unsigned immediate)

	C4.1.5 Data Processing -- Register
	Data-processing (2 source)
	Data-processing (1 source)
	Logical (shifted register)
	Add/subtract (shifted register)
	Add/subtract (extended register)
	Add/subtract (with carry)
	Rotate right into flags
	Evaluate into flags
	Conditional compare (register)
	Conditional compare (immediate)
	Conditional select
	Data-processing (3 source)

	C4.1.6 Data Processing -- Scalar Floating-Point and Advanced SIMD
	Cryptographic AES
	Cryptographic three-register SHA
	Cryptographic two-register SHA
	Advanced SIMD scalar copy
	Advanced SIMD scalar three same FP16
	Advanced SIMD scalar two-register miscellaneous FP16
	Advanced SIMD scalar three same extra
	Advanced SIMD scalar two-register miscellaneous
	Advanced SIMD scalar pairwise
	Advanced SIMD scalar three different
	Advanced SIMD scalar three same
	Advanced SIMD scalar shift by immediate
	Advanced SIMD scalar x indexed element
	Advanced SIMD table lookup
	Advanced SIMD permute
	Advanced SIMD extract
	Advanced SIMD copy
	Advanced SIMD three same (FP16)
	Advanced SIMD two-register miscellaneous (FP16)
	Advanced SIMD three-register extension
	Advanced SIMD two-register miscellaneous
	Advanced SIMD across lanes
	Advanced SIMD three different
	Advanced SIMD three same
	Advanced SIMD modified immediate
	Advanced SIMD shift by immediate
	Advanced SIMD vector x indexed element
	Cryptographic three-register, imm2
	Cryptographic three-register SHA 512
	Cryptographic four-register
	Cryptographic two-register SHA 512
	Conversion between floating-point and fixed-point
	Conversion between floating-point and integer
	Floating-point data-processing (1 source)
	Floating-point compare
	Floating-point immediate
	Floating-point conditional compare
	Floating-point data-processing (2 source)
	Floating-point conditional select
	Floating-point data-processing (3 source)

	C5: The A64 System Instruction Class�
	C5.1 The System instruction class encoding space
	C5.1.1 Principles of the System instruction class encoding
	C5.1.2 System instruction class encoding overview
	UNDEFINED behaviors

	C5.1.3 op0==0b00, architectural hints, barriers and CLREX, and PSTATE access
	Architectural hint instructions
	Barriers and CLREX
	Instructions for accessing the PSTATE fields

	C5.1.4 op0==0b01, cache maintenance, TLB maintenance, and address translation instructions
	Cache maintenance instructions, and data cache zero operation
	Prediction restriction instructions
	Address translation instructions
	TLB maintenance instructions
	Reserved encoding space for IMPLEMENTATION DEFINED instructions

	C5.1.5 op0==0b11, Moves to and from Special-purpose registers
	Instructions for accessing Special-purpose registers

	C5.2 Special-purpose registers
	C5.2.1 CurrentEL, Current Exception Level
	Field descriptions
	Accessing CurrentEL

	C5.2.2 DAIF, Interrupt Mask Bits
	Field descriptions
	Accessing DAIF

	C5.2.3 DIT, Data Independent Timing
	Field descriptions
	Accessing DIT

	C5.2.4 ELR_EL1, Exception Link Register (EL1)
	Field descriptions
	Accessing ELR_EL1

	C5.2.5 ELR_EL2, Exception Link Register (EL2)
	Field descriptions
	Accessing ELR_EL2

	C5.2.6 ELR_EL3, Exception Link Register (EL3)
	Field descriptions
	Accessing ELR_EL3

	C5.2.7 FPCR, Floating-point Control Register
	Field descriptions
	Accessing FPCR

	C5.2.8 FPSR, Floating-point Status Register
	Field descriptions
	Accessing FPSR

	C5.2.9 NZCV, Condition Flags
	Field descriptions
	Accessing NZCV

	C5.2.10 PAN, Privileged Access Never
	Field descriptions
	Accessing PAN

	C5.2.11 SP_EL0, Stack Pointer (EL0)
	Field descriptions
	Accessing SP_EL0

	C5.2.12 SP_EL1, Stack Pointer (EL1)
	Field descriptions
	Accessing SP_EL1

	C5.2.13 SP_EL2, Stack Pointer (EL2)
	Field descriptions
	Accessing SP_EL2

	C5.2.14 SP_EL3, Stack Pointer (EL3)
	Field descriptions

	C5.2.15 SPSel, Stack Pointer Select
	Field descriptions
	Accessing SPSel

	C5.2.16 SPSR_abt, Saved Program Status Register (Abort mode)
	Field descriptions
	Accessing SPSR_abt

	C5.2.17 SPSR_EL1, Saved Program Status Register (EL1)
	Field descriptions
	Accessing SPSR_EL1

	C5.2.18 SPSR_EL2, Saved Program Status Register (EL2)
	Field descriptions
	Accessing SPSR_EL2

	C5.2.19 SPSR_EL3, Saved Program Status Register (EL3)
	Field descriptions
	Accessing SPSR_EL3

	C5.2.20 SPSR_fiq, Saved Program Status Register (FIQ mode)
	Field descriptions
	Accessing SPSR_fiq

	C5.2.21 SPSR_irq, Saved Program Status Register (IRQ mode)
	Field descriptions
	Accessing SPSR_irq

	C5.2.22 SPSR_und, Saved Program Status Register (Undefined mode)
	Field descriptions
	Accessing SPSR_und

	C5.2.23 SSBS, Speculative Store Bypass Safe
	Field descriptions
	Accessing SSBS

	C5.2.24 TCO, Tag Check Override
	Field descriptions
	Accessing TCO

	C5.2.25 UAO, User Access Override
	Field descriptions
	Accessing UAO

	C5.3 A64 System instructions for cache maintenance
	C5.3.1 DC CGDSW, Clean of Data and Allocation Tags by Set/Way
	Field descriptions
	Executing DC CGDSW instruction

	C5.3.2 DC CGDVAC, Clean of Data and Allocation Tags by VA to PoC
	Field descriptions
	Executing DC CGDVAC instruction

	C5.3.3 DC CGDVADP, Clean of Data and Allocation Tags by VA to PoDP
	Field descriptions
	Executing DC CGDVADP instruction

	C5.3.4 DC CGDVAP, Clean of Data and Allocation Tags by VA to PoP
	Field descriptions
	Executing DC CGDVAP instruction

	C5.3.5 DC CGSW, Clean of Allocation Tags by Set/Way
	Field descriptions
	Executing DC CGSW instruction

	C5.3.6 DC CGVAC, Clean of Allocation Tags by VA to PoC
	Field descriptions
	Executing DC CGVAC instruction

	C5.3.7 DC CGVADP, Clean of Allocation Tags by VA to PoDP
	Field descriptions
	Executing DC CGVADP instruction

	C5.3.8 DC CGVAP, Clean of Allocation Tags by VA to PoP
	Field descriptions
	Executing DC CGVAP instruction

	C5.3.9 DC CIGDSW, Clean and Invalidate of Data and Allocation Tags by Set/Way
	Field descriptions
	Executing DC CIGDSW instruction

	C5.3.10 DC CIGDVAC, Clean and Invalidate of Data and Allocation Tags by VA to PoC
	Field descriptions
	Executing DC CIGDVAC instruction

	C5.3.11 DC CIGSW, Clean and Invalidate of Allocation Tags by Set/Way
	Field descriptions
	Executing DC CIGSW instruction

	C5.3.12 DC CIGVAC, Clean and Invalidate of Allocation Tags by VA to PoC
	Field descriptions
	Executing DC CIGVAC instruction

	C5.3.13 DC CISW, Data or unified Cache line Clean and Invalidate by Set/Way
	Field descriptions
	Executing DC CISW instruction

	C5.3.14 DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC
	Field descriptions
	Executing DC CIVAC instruction

	C5.3.15 DC CSW, Data or unified Cache line Clean by Set/Way
	Field descriptions
	Executing DC CSW instruction

	C5.3.16 DC CVAC, Data or unified Cache line Clean by VA to PoC
	Field descriptions
	Executing DC CVAC instruction

	C5.3.17 DC CVADP, Data or unified Cache line Clean by VA to PoDP
	Field descriptions
	Executing DC CVADP instruction

	C5.3.18 DC CVAP, Data or unified Cache line Clean by VA to PoP
	Field descriptions
	Executing DC CVAP instruction

	C5.3.19 DC CVAU, Data or unified Cache line Clean by VA to PoU
	Field descriptions
	Executing DC CVAU instruction

	C5.3.20 DC GVA, Data Cache set Allocation Tag by VA
	Field descriptions
	Executing DC GVA instruction

	C5.3.21 DC GZVA, Data Cache set Allocation Tags and Zero by VA
	Field descriptions
	Executing DC GZVA instruction

	C5.3.22 DC IGDSW, Invalidate of Data and Allocation Tags by Set/Way
	Field descriptions
	Executing DC IGDSW instruction

	C5.3.23 DC IGDVAC, Invalidate of Data and Allocation Tags by VA to PoC
	Field descriptions
	Executing DC IGDVAC instruction

	C5.3.24 DC IGSW, Invalidate of Allocation Tags by Set/Way
	Field descriptions
	Executing DC IGSW instruction

	C5.3.25 DC IGVAC, Invalidate of Allocation Tags by VA to PoC
	Field descriptions
	Executing DC IGVAC instruction

	C5.3.26 DC ISW, Data or unified Cache line Invalidate by Set/Way
	Field descriptions
	Executing DC ISW instruction

	C5.3.27 DC IVAC, Data or unified Cache line Invalidate by VA to PoC
	Field descriptions
	Executing DC IVAC instruction

	C5.3.28 DC ZVA, Data Cache Zero by VA
	Field descriptions
	Executing DC ZVA instruction

	C5.3.29 IC IALLU, Instruction Cache Invalidate All to PoU
	Field descriptions
	Executing IC IALLU instruction

	C5.3.30 IC IALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable
	Field descriptions
	Executing IC IALLUIS instruction

	C5.3.31 IC IVAU, Instruction Cache line Invalidate by VA to PoU
	Field descriptions
	Executing IC IVAU instruction

	C5.4 A64 System instructions for address translation
	C5.4.1 AT S12E0R, Address Translate Stages 1 and 2 EL0 Read
	Field descriptions
	Executing AT S12E0R instruction

	C5.4.2 AT S12E0W, Address Translate Stages 1 and 2 EL0 Write
	Field descriptions
	Executing AT S12E0W instruction

	C5.4.3 AT S12E1R, Address Translate Stages 1 and 2 EL1 Read
	Field descriptions
	Executing AT S12E1R instruction

	C5.4.4 AT S12E1W, Address Translate Stages 1 and 2 EL1 Write
	Field descriptions
	Executing AT S12E1W instruction

	C5.4.5 AT S1E0R, Address Translate Stage 1 EL0 Read
	Field descriptions
	Executing AT S1E0R instruction

	C5.4.6 AT S1E0W, Address Translate Stage 1 EL0 Write
	Field descriptions
	Executing AT S1E0W instruction

	C5.4.7 AT S1E1R, Address Translate Stage 1 EL1 Read
	Field descriptions
	Executing AT S1E1R instruction

	C5.4.8 AT S1E1RP, Address Translate Stage 1 EL1 Read PAN
	Field descriptions
	Executing AT S1E1RP instruction

	C5.4.9 AT S1E1W, Address Translate Stage 1 EL1 Write
	Field descriptions
	Executing AT S1E1W instruction

	C5.4.10 AT S1E1WP, Address Translate Stage 1 EL1 Write PAN
	Field descriptions
	Executing AT S1E1WP instruction

	C5.4.11 AT S1E2R, Address Translate Stage 1 EL2 Read
	Field descriptions
	Executing AT S1E2R instruction

	C5.4.12 AT S1E2W, Address Translate Stage 1 EL2 Write
	Field descriptions
	Executing AT S1E2W instruction

	C5.4.13 AT S1E3R, Address Translate Stage 1 EL3 Read
	Field descriptions
	Executing AT S1E3R instruction

	C5.4.14 AT S1E3W, Address Translate Stage 1 EL3 Write
	Field descriptions
	Executing AT S1E3W instruction

	C5.5 A64 System instructions for TLB maintenance
	C5.5.1 TLBI ALLE1, TLBI ALLE1NXS, TLB Invalidate All, EL1
	Field descriptions
	Executing TLBI ALLE1, TLBI ALLE1NXS instruction

	C5.5.2 TLBI ALLE1IS, TLBI ALLE1ISNXS, TLB Invalidate All, EL1, Inner Shareable
	Field descriptions
	Executing TLBI ALLE1IS, TLBI ALLE1ISNXS instruction

	C5.5.3 TLBI ALLE1OS, TLBI ALLE1OSNXS, TLB Invalidate All, EL1, Outer Shareable
	Field descriptions
	Executing TLBI ALLE1OS, TLBI ALLE1OSNXS instruction

	C5.5.4 TLBI ALLE2, TLBI ALLE2NXS, TLB Invalidate All, EL2
	Field descriptions
	Executing TLBI ALLE2, TLBI ALLE2NXS instruction

	C5.5.5 TLBI ALLE2IS, TLBI ALLE2ISNXS, TLB Invalidate All, EL2, Inner Shareable
	Field descriptions
	Executing TLBI ALLE2IS, TLBI ALLE2ISNXS instruction

	C5.5.6 TLBI ALLE2OS, TLBI ALLE2OSNXS, TLB Invalidate All, EL2, Outer Shareable
	Field descriptions
	Executing TLBI ALLE2OS, TLBI ALLE2OSNXS instruction

	C5.5.7 TLBI ALLE3, TLBI ALLE3NXS, TLB Invalidate All, EL3
	Field descriptions
	Executing TLBI ALLE3, TLBI ALLE3NXS instruction

	C5.5.8 TLBI ALLE3IS, TLBI ALLE3ISNXS, TLB Invalidate All, EL3, Inner Shareable
	Field descriptions
	Executing TLBI ALLE3IS, TLBI ALLE3ISNXS instruction

	C5.5.9 TLBI ALLE3OS, TLBI ALLE3OSNXS, TLB Invalidate All, EL3, Outer Shareable
	Field descriptions
	Executing TLBI ALLE3OS, TLBI ALLE3OSNXS instruction

	C5.5.10 TLBI ASIDE1, TLBI ASIDE1NXS, TLB Invalidate by ASID, EL1
	Field descriptions
	Executing TLBI ASIDE1, TLBI ASIDE1NXS instruction

	C5.5.11 TLBI ASIDE1IS, TLBI ASIDE1ISNXS, TLB Invalidate by ASID, EL1, Inner Shareable
	Field descriptions
	Executing TLBI ASIDE1IS, TLBI ASIDE1ISNXS instruction

	C5.5.12 TLBI ASIDE1OS, TLBI ASIDE1OSNXS, TLB Invalidate by ASID, EL1, Outer Shareable
	Field descriptions
	Executing TLBI ASIDE1OS, TLBI ASIDE1OSNXS instruction

	C5.5.13 TLBI IPAS2E1, TLBI IPAS2E1NXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1
	Field descriptions
	Executing TLBI IPAS2E1, TLBI IPAS2E1NXS instruction

	C5.5.14 TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable
	Field descriptions
	Executing TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS instruction

	C5.5.15 TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable
	Field descriptions
	Executing TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS instruction

	C5.5.16 TLBI IPAS2LE1, TLBI IPAS2LE1NXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1
	Field descriptions
	Executing TLBI IPAS2LE1, TLBI IPAS2LE1NXS instruction

	C5.5.17 TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable
	Field descriptions
	Executing TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS instruction

	C5.5.18 TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable
	Field descriptions
	Executing TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS instruction

	C5.5.19 TLBI RIPAS2E1, TLBI RIPAS2E1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1
	Field descriptions
	Executing TLBI RIPAS2E1, TLBI RIPAS2E1NXS instruction

	C5.5.20 TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable
	Field descriptions
	Executing TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS instruction

	C5.5.21 TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable
	Field descriptions
	Executing TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS instruction

	C5.5.22 TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1
	Field descriptions
	Executing TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS instruction

	C5.5.23 TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable
	Field descriptions
	Executing TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS instruction

	C5.5.24 TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable
	Field descriptions
	Executing TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS instruction

	C5.5.25 TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1
	Field descriptions
	Executing TLBI RVAAE1, TLBI RVAAE1NXS instruction

	C5.5.26 TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable
	Field descriptions
	Executing TLBI RVAAE1IS, TLBI RVAAE1ISNXS instruction

	C5.5.27 TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable
	Field descriptions
	Executing TLBI RVAAE1OS, TLBI RVAAE1OSNXS instruction

	C5.5.28 TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last level, EL1
	Field descriptions
	Executing TLBI RVAALE1, TLBI RVAALE1NXS instruction

	C5.5.29 TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable
	Field descriptions
	Executing TLBI RVAALE1IS, TLBI RVAALE1ISNXS instruction

	C5.5.30 TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable
	Field descriptions
	Executing TLBI RVAALE1OS, TLBI RVAALE1OSNXS instruction

	C5.5.31 TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by VA, EL1
	Field descriptions
	Executing TLBI RVAE1, TLBI RVAE1NXS instruction

	C5.5.32 TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner Shareable
	Field descriptions
	Executing TLBI RVAE1IS, TLBI RVAE1ISNXS instruction

	C5.5.33 TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer Shareable
	Field descriptions
	Executing TLBI RVAE1OS, TLBI RVAE1OSNXS instruction

	C5.5.34 TLBI RVAE2, TLBI RVAE2NXS, TLB Range Invalidate by VA, EL2
	Field descriptions
	Executing TLBI RVAE2, TLBI RVAE2NXS instruction

	C5.5.35 TLBI RVAE2IS, TLBI RVAE2ISNXS, TLB Range Invalidate by VA, EL2, Inner Shareable
	Field descriptions
	Executing TLBI RVAE2IS, TLBI RVAE2ISNXS instruction

	C5.5.36 TLBI RVAE2OS, TLBI RVAE2OSNXS, TLB Range Invalidate by VA, EL2, Outer Shareable
	Field descriptions
	Executing TLBI RVAE2OS, TLBI RVAE2OSNXS instruction

	C5.5.37 TLBI RVAE3, TLBI RVAE3NXS, TLB Range Invalidate by VA, EL3
	Field descriptions
	Executing TLBI RVAE3, TLBI RVAE3NXS instruction

	C5.5.38 TLBI RVAE3IS, TLBI RVAE3ISNXS, TLB Range Invalidate by VA, EL3, Inner Shareable
	Field descriptions
	Executing TLBI RVAE3IS, TLBI RVAE3ISNXS instruction

	C5.5.39 TLBI RVAE3OS, TLBI RVAE3OSNXS, TLB Range Invalidate by VA, EL3, Outer Shareable
	Field descriptions
	Executing TLBI RVAE3OS, TLBI RVAE3OSNXS instruction

	C5.5.40 TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1
	Field descriptions
	Executing TLBI RVALE1, TLBI RVALE1NXS instruction

	C5.5.41 TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable
	Field descriptions
	Executing TLBI RVALE1IS, TLBI RVALE1ISNXS instruction

	C5.5.42 TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable
	Field descriptions
	Executing TLBI RVALE1OS, TLBI RVALE1OSNXS instruction

	C5.5.43 TLBI RVALE2, TLBI RVALE2NXS, TLB Range Invalidate by VA, Last level, EL2
	Field descriptions
	Executing TLBI RVALE2, TLBI RVALE2NXS instruction

	C5.5.44 TLBI RVALE2IS, TLBI RVALE2ISNXS, TLB Range Invalidate by VA, Last level, EL2, Inner Shareable
	Field descriptions
	Executing TLBI RVALE2IS, TLBI RVALE2ISNXS instruction

	C5.5.45 TLBI RVALE2OS, TLBI RVALE2OSNXS, TLB Range Invalidate by VA, Last level, EL2, Outer Shareable
	Field descriptions
	Executing TLBI RVALE2OS, TLBI RVALE2OSNXS instruction

	C5.5.46 TLBI RVALE3, TLBI RVALE3NXS, TLB Range Invalidate by VA, Last level, EL3
	Field descriptions
	Executing TLBI RVALE3, TLBI RVALE3NXS instruction

	C5.5.47 TLBI RVALE3IS, TLBI RVALE3ISNXS, TLB Range Invalidate by VA, Last level, EL3, Inner Shareable
	Field descriptions
	Executing TLBI RVALE3IS, TLBI RVALE3ISNXS instruction

	C5.5.48 TLBI RVALE3OS, TLBI RVALE3OSNXS, TLB Range Invalidate by VA, Last level, EL3, Outer Shareable
	Field descriptions
	Executing TLBI RVALE3OS, TLBI RVALE3OSNXS instruction

	C5.5.49 TLBI VAAE1, TLBI VAAE1NXS, TLB Invalidate by VA, All ASID, EL1
	Field descriptions
	Executing TLBI VAAE1, TLBI VAAE1NXS instruction

	C5.5.50 TLBI VAAE1IS, TLBI VAAE1ISNXS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable
	Field descriptions
	Executing TLBI VAAE1IS, TLBI VAAE1ISNXS instruction

	C5.5.51 TLBI VAAE1OS, TLBI VAAE1OSNXS, TLB Invalidate by VA, All ASID, EL1, Outer Shareable
	Field descriptions
	Executing TLBI VAAE1OS, TLBI VAAE1OSNXS instruction

	C5.5.52 TLBI VAALE1, TLBI VAALE1NXS, TLB Invalidate by VA, All ASID, Last level, EL1
	Field descriptions
	Executing TLBI VAALE1, TLBI VAALE1NXS instruction

	C5.5.53 TLBI VAALE1IS, TLBI VAALE1ISNXS, TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable
	Field descriptions
	Executing TLBI VAALE1IS, TLBI VAALE1ISNXS instruction

	C5.5.54 TLBI VAALE1OS, TLBI VAALE1OSNXS, TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable
	Field descriptions
	Executing TLBI VAALE1OS, TLBI VAALE1OSNXS instruction

	C5.5.55 TLBI VAE1, TLBI VAE1NXS, TLB Invalidate by VA, EL1
	Field descriptions
	Executing TLBI VAE1, TLBI VAE1NXS instruction

	C5.5.56 TLBI VAE1IS, TLBI VAE1ISNXS, TLB Invalidate by VA, EL1, Inner Shareable
	Field descriptions
	Executing TLBI VAE1IS, TLBI VAE1ISNXS instruction

	C5.5.57 TLBI VAE1OS, TLBI VAE1OSNXS, TLB Invalidate by VA, EL1, Outer Shareable
	Field descriptions
	Executing TLBI VAE1OS, TLBI VAE1OSNXS instruction

	C5.5.58 TLBI VAE2, TLBI VAE2NXS, TLB Invalidate by VA, EL2
	Field descriptions
	Executing TLBI VAE2, TLBI VAE2NXS instruction

	C5.5.59 TLBI VAE2IS, TLBI VAE2ISNXS, TLB Invalidate by VA, EL2, Inner Shareable
	Field descriptions
	Executing TLBI VAE2IS, TLBI VAE2ISNXS instruction

	C5.5.60 TLBI VAE2OS, TLBI VAE2OSNXS, TLB Invalidate by VA, EL2, Outer Shareable
	Field descriptions
	Executing TLBI VAE2OS, TLBI VAE2OSNXS instruction

	C5.5.61 TLBI VAE3, TLBI VAE3NXS, TLB Invalidate by VA, EL3
	Field descriptions
	Executing TLBI VAE3, TLBI VAE3NXS instruction

	C5.5.62 TLBI VAE3IS, TLBI VAE3ISNXS, TLB Invalidate by VA, EL3, Inner Shareable
	Field descriptions
	Executing TLBI VAE3IS, TLBI VAE3ISNXS instruction

	C5.5.63 TLBI VAE3OS, TLBI VAE3OSNXS, TLB Invalidate by VA, EL3, Outer Shareable
	Field descriptions
	Executing TLBI VAE3OS, TLBI VAE3OSNXS instruction

	C5.5.64 TLBI VALE1, TLBI VALE1NXS, TLB Invalidate by VA, Last level, EL1
	Field descriptions
	Executing TLBI VALE1, TLBI VALE1NXS instruction

	C5.5.65 TLBI VALE1IS, TLBI VALE1ISNXS, TLB Invalidate by VA, Last level, EL1, Inner Shareable
	Field descriptions
	Executing TLBI VALE1IS, TLBI VALE1ISNXS instruction

	C5.5.66 TLBI VALE1OS, TLBI VALE1OSNXS, TLB Invalidate by VA, Last level, EL1, Outer Shareable
	Field descriptions
	Executing TLBI VALE1OS, TLBI VALE1OSNXS instruction

	C5.5.67 TLBI VALE2, TLBI VALE2NXS, TLB Invalidate by VA, Last level, EL2
	Field descriptions
	Executing TLBI VALE2, TLBI VALE2NXS instruction

	C5.5.68 TLBI VALE2IS, TLBI VALE2ISNXS, TLB Invalidate by VA, Last level, EL2, Inner Shareable
	Field descriptions
	Executing TLBI VALE2IS, TLBI VALE2ISNXS instruction

	C5.5.69 TLBI VALE2OS, TLBI VALE2OSNXS, TLB Invalidate by VA, Last level, EL2, Outer Shareable
	Field descriptions
	Executing TLBI VALE2OS, TLBI VALE2OSNXS instruction

	C5.5.70 TLBI VALE3, TLBI VALE3NXS, TLB Invalidate by VA, Last level, EL3
	Field descriptions
	Executing TLBI VALE3, TLBI VALE3NXS instruction

	C5.5.71 TLBI VALE3IS, TLBI VALE3ISNXS, TLB Invalidate by VA, Last level, EL3, Inner Shareable
	Field descriptions
	Executing TLBI VALE3IS, TLBI VALE3ISNXS instruction

	C5.5.72 TLBI VALE3OS, TLBI VALE3OSNXS, TLB Invalidate by VA, Last level, EL3, Outer Shareable
	Field descriptions
	Executing TLBI VALE3OS, TLBI VALE3OSNXS instruction

	C5.5.73 TLBI VMALLE1, TLBI VMALLE1NXS, TLB Invalidate by VMID, All at stage 1, EL1
	Field descriptions
	Executing TLBI VMALLE1, TLBI VMALLE1NXS instruction

	C5.5.74 TLBI VMALLE1IS, TLBI VMALLE1ISNXS, TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable
	Field descriptions
	Executing TLBI VMALLE1IS, TLBI VMALLE1ISNXS instruction

	C5.5.75 TLBI VMALLE1OS, TLBI VMALLE1OSNXS, TLB Invalidate by VMID, All at stage 1, EL1, Outer Shareable
	Field descriptions
	Executing TLBI VMALLE1OS, TLBI VMALLE1OSNXS instruction

	C5.5.76 TLBI VMALLS12E1, TLBI VMALLS12E1NXS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1
	Field descriptions
	Executing TLBI VMALLS12E1, TLBI VMALLS12E1NXS instruction

	C5.5.77 TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable
	Field descriptions
	Executing TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS instruction

	C5.5.78 TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Outer Shareable
	Field descriptions
	Executing TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS instruction

	C5.6 A64 System instructions for prediction restriction
	C5.6.1 CFP RCTX, Control Flow Prediction Restriction by Context
	Field descriptions
	Executing CFP RCTX instruction

	C5.6.2 CPP RCTX, Cache Prefetch Prediction Restriction by Context
	Field descriptions
	Executing CPP RCTX instruction

	C5.6.3 DVP RCTX, Data Value Prediction Restriction by Context
	Field descriptions
	Executing DVP RCTX instruction

	C6: A64 Base Instruction Descriptions�
	C6.1 About the A64 base instructions
	C6.1.1 Register size
	C6.1.2 Use of the PC
	C6.1.3 Use of the stack pointer
	C6.1.4 Condition flags and related instructions
	Effect of random number generation instructions on Condition flags

	C6.2 Alphabetical list of A64 base instructions
	C6.2.1 ADC
	Assembler symbols
	Operation
	Operational information

	C6.2.2 ADCS
	Assembler symbols
	Operation
	Operational information

	C6.2.3 ADD (extended register)
	Assembler symbols
	Operation
	Operational information

	C6.2.4 ADD (immediate)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.5 ADD (shifted register)
	Assembler symbols
	Operation
	Operational information

	C6.2.6 ADDG
	Integer
	Assembler symbols
	Operation

	C6.2.7 ADDS (extended register)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.8 ADDS (immediate)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.9 ADDS (shifted register)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.10 ADR
	Assembler symbols
	Operation

	C6.2.11 ADRP
	Assembler symbols
	Operation

	C6.2.12 AND (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.13 AND (shifted register)
	Assembler symbols
	Operation
	Operational information

	C6.2.14 ANDS (immediate)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.15 ANDS (shifted register)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.16 ASR (register)
	Assembler symbols
	Operation
	Operational information

	C6.2.17 ASR (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.18 ASRV
	Assembler symbols
	Operation
	Operational information

	C6.2.19 AT
	Assembler symbols
	Operation

	C6.2.20 AUTDA, AUTDZA
	Integer
	Assembler symbols
	Operation

	C6.2.21 AUTDB, AUTDZB
	Integer
	Assembler symbols
	Operation

	C6.2.22 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA
	Integer
	System
	Assembler symbols
	Operation for all encodings

	C6.2.23 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB
	Integer
	System
	Assembler symbols
	Operation for all encodings

	C6.2.24 AXFLAG
	System
	Operation

	C6.2.25 B.cond
	Assembler symbols
	Operation

	C6.2.26 B
	Assembler symbols
	Operation

	C6.2.27 BFC
	Leaving other bits unchanged
	Assembler symbols
	Operation
	Operational information

	C6.2.28 BFI
	Assembler symbols
	Operation
	Operational information

	C6.2.29 BFM
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.30 BFXIL
	Assembler symbols
	Operation
	Operational information

	C6.2.31 BIC (shifted register)
	Assembler symbols
	Operation
	Operational information

	C6.2.32 BICS (shifted register)
	Assembler symbols
	Operation
	Operational information

	C6.2.33 BL
	Assembler symbols
	Operation

	C6.2.34 BLR
	Assembler symbols
	Operation

	C6.2.35 BLRAA, BLRAAZ, BLRAB, BLRABZ
	Integer
	Assembler symbols
	Operation

	C6.2.36 BR
	Assembler symbols
	Operation

	C6.2.37 BRAA, BRAAZ, BRAB, BRABZ
	Integer
	Assembler symbols
	Operation

	C6.2.38 BRK
	Assembler symbols
	Operation

	C6.2.39 BTI
	System
	Assembler symbols
	Operation

	C6.2.40 CASB, CASAB, CASALB, CASLB
	No offset
	Assembler symbols
	Operation

	C6.2.41 CASH, CASAH, CASALH, CASLH
	No offset
	Assembler symbols
	Operation

	C6.2.42 CASP, CASPA, CASPAL, CASPL
	No offset
	Assembler symbols
	Operation

	C6.2.43 CAS, CASA, CASAL, CASL
	No offset
	Assembler symbols
	Operation

	C6.2.44 CBNZ
	Assembler symbols
	Operation

	C6.2.45 CBZ
	Assembler symbols
	Operation

	C6.2.46 CCMN (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.47 CCMN (register)
	Assembler symbols
	Operation
	Operational information

	C6.2.48 CCMP (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.49 CCMP (register)
	Assembler symbols
	Operation
	Operational information

	C6.2.50 CFINV
	System
	Operation
	Operational information

	C6.2.51 CFP
	System
	Assembler symbols
	Operation

	C6.2.52 CINC
	Assembler symbols
	Operation
	Operational information

	C6.2.53 CINV
	Assembler symbols
	Operation
	Operational information

	C6.2.54 CLREX
	Assembler symbols
	Operation

	C6.2.55 CLS
	Assembler symbols
	Operation
	Operational information

	C6.2.56 CLZ
	Assembler symbols
	Operation
	Operational information

	C6.2.57 CMN (extended register)
	Assembler symbols
	Operation
	Operational information

	C6.2.58 CMN (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.59 CMN (shifted register)
	Assembler symbols
	Operation
	Operational information

	C6.2.60 CMP (extended register)
	Assembler symbols
	Operation
	Operational information

	C6.2.61 CMP (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.62 CMP (shifted register)
	Assembler symbols
	Operation
	Operational information

	C6.2.63 CMPP
	Integer
	Assembler symbols
	Operation

	C6.2.64 CNEG
	Assembler symbols
	Operation
	Operational information

	C6.2.65 CPP
	System
	Assembler symbols
	Operation

	C6.2.66 CRC32B, CRC32H, CRC32W, CRC32X
	Assembler symbols
	Operation
	Operational information

	C6.2.67 CRC32CB, CRC32CH, CRC32CW, CRC32CX
	Assembler symbols
	Operation
	Operational information

	C6.2.68 CSDB
	Operation

	C6.2.69 CSEL
	Assembler symbols
	Operation
	Operational information

	C6.2.70 CSET
	Assembler symbols
	Operation
	Operational information

	C6.2.71 CSETM
	Assembler symbols
	Operation
	Operational information

	C6.2.72 CSINC
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.73 CSINV
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.74 CSNEG
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.75 DC
	Assembler symbols
	Operation

	C6.2.76 DCPS1
	Assembler symbols
	Operation

	C6.2.77 DCPS2
	Assembler symbols
	Operation

	C6.2.78 DCPS3
	Assembler symbols
	Operation

	C6.2.79 DGH
	System
	Operation

	C6.2.80 DMB
	Assembler symbols
	Operation

	C6.2.81 DRPS
	Operation

	C6.2.82 DSB
	Memory barrier
	Memory nXS barrier
	Alias conditions
	Assembler symbols
	Operation for all encodings

	C6.2.83 DVP
	System
	Assembler symbols
	Operation

	C6.2.84 EON (shifted register)
	Assembler symbols
	Operation
	Operational information

	C6.2.85 EOR (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.86 EOR (shifted register)
	Assembler symbols
	Operation
	Operational information

	C6.2.87 ERET
	Operation

	C6.2.88 ERETAA, ERETAB
	Integer
	Operation

	C6.2.89 ESB
	System
	Operation

	C6.2.90 EXTR
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.91 GMI
	Integer
	Assembler symbols
	Operation

	C6.2.92 HINT
	Assembler symbols
	Operation

	C6.2.93 HLT
	Assembler symbols
	Operation

	C6.2.94 HVC
	Assembler symbols
	Operation

	C6.2.95 IC
	Assembler symbols
	Operation

	C6.2.96 IRG
	Integer
	Assembler symbols
	Operation

	C6.2.97 ISB
	Assembler symbols
	Operation

	C6.2.98 LD64B
	Integer
	Assembler symbols
	Operation

	C6.2.99 LDADDB, LDADDAB, LDADDALB, LDADDLB
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.100 LDADDH, LDADDAH, LDADDALH, LDADDLH
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.101 LDADD, LDADDA, LDADDAL, LDADDL
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.102 LDAPR
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.103 LDAPRB
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.104 LDAPRH
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.105 LDAPUR
	Unscaled offset
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.106 LDAPURB
	Unscaled offset
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.107 LDAPURH
	Unscaled offset
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.108 LDAPURSB
	Unscaled offset
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.109 LDAPURSH
	Unscaled offset
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.110 LDAPURSW
	Unscaled offset
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.111 LDAR
	Assembler symbols
	Operation
	Operational information

	C6.2.112 LDARB
	Assembler symbols
	Operation
	Operational information

	C6.2.113 LDARH
	Assembler symbols
	Operation
	Operational information

	C6.2.114 LDAXP
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.115 LDAXR
	Assembler symbols
	Operation
	Operational information

	C6.2.116 LDAXRB
	Assembler symbols
	Operation
	Operational information

	C6.2.117 LDAXRH
	Assembler symbols
	Operation
	Operational information

	C6.2.118 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.119 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.120 LDCLR, LDCLRA, LDCLRAL, LDCLRL
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.121 LDEORB, LDEORAB, LDEORALB, LDEORLB
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.122 LDEORH, LDEORAH, LDEORALH, LDEORLH
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.123 LDEOR, LDEORA, LDEORAL, LDEORL
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.124 LDG
	Integer
	Assembler symbols
	Operation

	C6.2.125 LDGM
	Integer
	Assembler symbols
	Operation

	C6.2.126 LDLARB
	No offset
	Assembler symbols
	Operation
	Operational information

	C6.2.127 LDLARH
	No offset
	Assembler symbols
	Operation
	Operational information

	C6.2.128 LDLAR
	No offset
	Assembler symbols
	Operation
	Operational information

	C6.2.129 LDNP
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.130 LDP
	Post-index
	Pre-index
	Signed offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.131 LDPSW
	Post-index
	Pre-index
	Signed offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.132 LDR (immediate)
	Post-index
	Pre-index
	Unsigned offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.133 LDR (literal)
	Assembler symbols
	Operation
	Operational information

	C6.2.134 LDR (register)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.135 LDRAA, LDRAB
	Unscaled offset
	Assembler symbols
	Operation
	Operational information

	C6.2.136 LDRB (immediate)
	Post-index
	Pre-index
	Unsigned offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.137 LDRB (register)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.138 LDRH (immediate)
	Post-index
	Pre-index
	Unsigned offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.139 LDRH (register)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.140 LDRSB (immediate)
	Post-index
	Pre-index
	Unsigned offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.141 LDRSB (register)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.142 LDRSH (immediate)
	Post-index
	Pre-index
	Unsigned offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.143 LDRSH (register)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.144 LDRSW (immediate)
	Post-index
	Pre-index
	Unsigned offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.145 LDRSW (literal)
	Assembler symbols
	Operation
	Operational information

	C6.2.146 LDRSW (register)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.147 LDSETB, LDSETAB, LDSETALB, LDSETLB
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.148 LDSETH, LDSETAH, LDSETALH, LDSETLH
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.149 LDSET, LDSETA, LDSETAL, LDSETL
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.150 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.151 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.152 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.153 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.154 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.155 LDSMIN, LDSMINA, LDSMINAL, LDSMINL
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.156 LDTR
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.157 LDTRB
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.158 LDTRH
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.159 LDTRSB
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.160 LDTRSH
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.161 LDTRSW
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.162 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.163 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.164 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.165 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.166 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.167 LDUMIN, LDUMINA, LDUMINAL, LDUMINL
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.168 LDUR
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.169 LDURB
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.170 LDURH
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.171 LDURSB
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.172 LDURSH
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.173 LDURSW
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.174 LDXP
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.175 LDXR
	Assembler symbols
	Operation
	Operational information

	C6.2.176 LDXRB
	Assembler symbols
	Operation
	Operational information

	C6.2.177 LDXRH
	Assembler symbols
	Operation
	Operational information

	C6.2.178 LSL (register)
	Assembler symbols
	Operation
	Operational information

	C6.2.179 LSL (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.180 LSLV
	Assembler symbols
	Operation
	Operational information

	C6.2.181 LSR (register)
	Assembler symbols
	Operation
	Operational information

	C6.2.182 LSR (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.183 LSRV
	Assembler symbols
	Operation
	Operational information

	C6.2.184 MADD
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.185 MNEG
	Assembler symbols
	Operation
	Operational information

	C6.2.186 MOV (to/from SP)
	Assembler symbols
	Operation

	C6.2.187 MOV (inverted wide immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.188 MOV (wide immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.189 MOV (bitmask immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.190 MOV (register)
	Assembler symbols
	Operation
	Operational information

	C6.2.191 MOVK
	Assembler symbols
	Operation
	Operational information

	C6.2.192 MOVN
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.193 MOVZ
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.194 MRS
	Assembler symbols
	Operation

	C6.2.195 MSR (immediate)
	Assembler symbols
	Operation

	C6.2.196 MSR (register)
	Assembler symbols
	Operation

	C6.2.197 MSUB
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.198 MUL
	Assembler symbols
	Operation

	C6.2.199 MVN
	Assembler symbols
	Operation
	Operational information

	C6.2.200 NEG (shifted register)
	Assembler symbols
	Operation
	Operational information

	C6.2.201 NEGS
	Assembler symbols
	Operation
	Operational information

	C6.2.202 NGC
	Assembler symbols
	Operation
	Operational information

	C6.2.203 NGCS
	Assembler symbols
	Operation
	Operational information

	C6.2.204 NOP
	Operation
	Operational information

	C6.2.205 ORN (shifted register)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.206 ORR (immediate)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.207 ORR (shifted register)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.208 PACDA, PACDZA
	Integer
	Assembler symbols
	Operation

	C6.2.209 PACDB, PACDZB
	Integer
	Assembler symbols
	Operation

	C6.2.210 PACGA
	Integer
	Assembler symbols
	Operation

	C6.2.211 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA
	Integer
	System
	Assembler symbols
	Operation for all encodings

	C6.2.212 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB
	Integer
	System
	Assembler symbols
	Operation for all encodings

	C6.2.213 PRFM (immediate)
	Assembler symbols
	Shared decode for all encodings
	Operation

	C6.2.214 PRFM (literal)
	Assembler symbols
	Operation

	C6.2.215 PRFM (register)
	Assembler symbols
	Shared decode for all encodings
	Operation

	C6.2.216 PRFUM
	Assembler symbols
	Shared decode for all encodings
	Operation

	C6.2.217 PSB CSYNC
	System
	Operation

	C6.2.218 PSSBB
	Operation

	C6.2.219 RBIT
	Assembler symbols
	Operation
	Operational information

	C6.2.220 RET
	Assembler symbols
	Operation
	Operational information

	C6.2.221 RETAA, RETAB
	Integer
	Operation

	C6.2.222 REV
	Assembler symbols
	Operation
	Operational information

	C6.2.223 REV16
	Assembler symbols
	Operation
	Operational information

	C6.2.224 REV32
	Assembler symbols
	Operation
	Operational information

	C6.2.225 REV64
	Assembler symbols
	Operation
	Operational information

	C6.2.226 RMIF
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.227 ROR (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.228 ROR (register)
	Assembler symbols
	Operation
	Operational information

	C6.2.229 RORV
	Assembler symbols
	Operation
	Operational information

	C6.2.230 SB
	Operation

	C6.2.231 SBC
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.232 SBCS
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.233 SBFIZ
	Assembler symbols
	Operation
	Operational information

	C6.2.234 SBFM
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.235 SBFX
	Assembler symbols
	Operation
	Operational information

	C6.2.236 SDIV
	Assembler symbols
	Operation

	C6.2.237 SETF8, SETF16
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.238 SEV
	Operation

	C6.2.239 SEVL
	Operation

	C6.2.240 SMADDL
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.241 SMC
	Assembler symbols
	Operation

	C6.2.242 SMNEGL
	Assembler symbols
	Operation
	Operational information

	C6.2.243 SMSUBL
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.244 SMULH
	Assembler symbols
	Operation
	Operational information

	C6.2.245 SMULL
	Assembler symbols
	Operation
	Operational information

	C6.2.246 SSBB
	Operation

	C6.2.247 ST2G
	Post-index
	Pre-index
	Signed offset
	Assembler symbols
	Operation for all encodings

	C6.2.248 ST64B
	Integer
	Assembler symbols
	Operation

	C6.2.249 ST64BV
	Integer
	Assembler symbols
	Operation

	C6.2.250 ST64BV0
	Integer
	Assembler symbols
	Operation

	C6.2.251 STADDB, STADDLB
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.252 STADDH, STADDLH
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.253 STADD, STADDL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.254 STCLRB, STCLRLB
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.255 STCLRH, STCLRLH
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.256 STCLR, STCLRL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.257 STEORB, STEORLB
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.258 STEORH, STEORLH
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.259 STEOR, STEORL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.260 STG
	Post-index
	Pre-index
	Signed offset
	Assembler symbols
	Operation for all encodings

	C6.2.261 STGM
	Integer
	Assembler symbols
	Operation

	C6.2.262 STGP
	Post-index
	Pre-index
	Signed offset
	Assembler symbols
	Operation for all encodings

	C6.2.263 STLLRB
	No offset
	Assembler symbols
	Operation
	Operational information

	C6.2.264 STLLRH
	No offset
	Assembler symbols
	Operation
	Operational information

	C6.2.265 STLLR
	No offset
	Assembler symbols
	Operation
	Operational information

	C6.2.266 STLR
	Assembler symbols
	Operation
	Operational information

	C6.2.267 STLRB
	Assembler symbols
	Operation
	Operational information

	C6.2.268 STLRH
	Assembler symbols
	Operation
	Operational information

	C6.2.269 STLUR
	Unscaled offset
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.270 STLURB
	Unscaled offset
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.271 STLURH
	Unscaled offset
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.272 STLXP
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.273 STLXR
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.274 STLXRB
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.275 STLXRH
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.276 STNP
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.277 STP
	Post-index
	Pre-index
	Signed offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.278 STR (immediate)
	Post-index
	Pre-index
	Unsigned offset
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.279 STR (register)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.280 STRB (immediate)
	Post-index
	Pre-index
	Unsigned offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.281 STRB (register)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.282 STRH (immediate)
	Post-index
	Pre-index
	Unsigned offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.283 STRH (register)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.284 STSETB, STSETLB
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.285 STSETH, STSETLH
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.286 STSET, STSETL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.287 STSMAXB, STSMAXLB
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.288 STSMAXH, STSMAXLH
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.289 STSMAX, STSMAXL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.290 STSMINB, STSMINLB
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.291 STSMINH, STSMINLH
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.292 STSMIN, STSMINL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.293 STTR
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.294 STTRB
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.295 STTRH
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.296 STUMAXB, STUMAXLB
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.297 STUMAXH, STUMAXLH
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.298 STUMAX, STUMAXL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.299 STUMINB, STUMINLB
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.300 STUMINH, STUMINLH
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.301 STUMIN, STUMINL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.302 STUR
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.303 STURB
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.304 STURH
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.305 STXP
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.306 STXR
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.307 STXRB
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.308 STXRH
	Assembler symbols
	Operation
	Operational information

	C6.2.309 STZ2G
	Post-index
	Pre-index
	Signed offset
	Assembler symbols
	Operation for all encodings

	C6.2.310 STZG
	Post-index
	Pre-index
	Signed offset
	Assembler symbols
	Operation for all encodings

	C6.2.311 STZGM
	Integer
	Assembler symbols
	Operation

	C6.2.312 SUB (extended register)
	Assembler symbols
	Operation
	Operational information

	C6.2.313 SUB (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.314 SUB (shifted register)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.315 SUBG
	Integer
	Assembler symbols
	Operation

	C6.2.316 SUBP
	Integer
	Assembler symbols
	Operation

	C6.2.317 SUBPS
	Integer
	Alias conditions
	Assembler symbols
	Operation

	C6.2.318 SUBS (extended register)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.319 SUBS (immediate)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.320 SUBS (shifted register)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.321 SVC
	Assembler symbols
	Operation

	C6.2.322 SWPB, SWPAB, SWPALB, SWPLB
	Integer
	Assembler symbols
	Operation

	C6.2.323 SWPH, SWPAH, SWPALH, SWPLH
	Integer
	Assembler symbols
	Operation

	C6.2.324 SWP, SWPA, SWPAL, SWPL
	Integer
	Assembler symbols
	Operation

	C6.2.325 SXTB
	Assembler symbols
	Operation
	Operational information

	C6.2.326 SXTH
	Assembler symbols
	Operation
	Operational information

	C6.2.327 SXTW
	Assembler symbols
	Operation
	Operational information

	C6.2.328 SYS
	Alias conditions
	Assembler symbols
	Operation

	C6.2.329 SYSL
	Assembler symbols
	Operation

	C6.2.330 TBNZ
	Assembler symbols
	Operation

	C6.2.331 TBZ
	Assembler symbols
	Operation

	C6.2.332 TLBI
	Assembler symbols
	Operation

	C6.2.333 TSB CSYNC
	System
	Operation

	C6.2.334 TST (immediate)
	Assembler symbols
	Operation

	C6.2.335 TST (shifted register)
	Assembler symbols
	Operation
	Operational information

	C6.2.336 UBFIZ
	Assembler symbols
	Operation
	Operational information

	C6.2.337 UBFM
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.338 UBFX
	Assembler symbols
	Operation
	Operational information

	C6.2.339 UDF
	Assembler symbols
	Operation

	C6.2.340 UDIV
	Assembler symbols
	Operation

	C6.2.341 UMADDL
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.342 UMNEGL
	Assembler symbols
	Operation
	Operational information

	C6.2.343 UMSUBL
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.344 UMULH
	Assembler symbols
	Operation
	Operational information

	C6.2.345 UMULL
	Assembler symbols
	Operation
	Operational information

	C6.2.346 UXTB
	Assembler symbols
	Operation
	Operational information

	C6.2.347 UXTH
	Assembler symbols
	Operation
	Operational information

	C6.2.348 WFE
	Operation

	C6.2.349 WFET
	System
	Assembler symbols
	Operation

	C6.2.350 WFI
	Operation

	C6.2.351 WFIT
	System
	Assembler symbols
	Operation

	C6.2.352 XAFLAG
	System
	Operation

	C6.2.353 XPACD, XPACI, XPACLRI
	Integer
	System
	Assembler symbols
	Operation for all encodings

	C6.2.354 YIELD
	Operation

	C7: A64 Advanced SIMD and Floating-point Instruction Descriptions�
	C7.1 About the A64 SIMD and floating-point instructions
	C7.1.1 Register size
	C7.1.2 Output element control
	C7.1.3 Data types
	C7.1.4 Condition flags and related instructions

	C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
	C7.2.1 ABS
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.2 ADD (vector)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.3 ADDHN, ADDHN2
	Assembler symbols
	Operation
	Operational information

	C7.2.4 ADDP (scalar)
	Assembler symbols
	Operation
	Operational information

	C7.2.5 ADDP (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.6 ADDV
	Assembler symbols
	Operation
	Operational information

	C7.2.7 AESD
	Assembler symbols
	Operation
	Operational information

	C7.2.8 AESE
	Assembler symbols
	Operation
	Operational information

	C7.2.9 AESIMC
	Assembler symbols
	Operation
	Operational information

	C7.2.10 AESMC
	Assembler symbols
	Operation
	Operational information

	C7.2.11 AND (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.12 BCAX
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.13 BFCVT
	Single-precision to BFloat16
	Assembler symbols
	Operation

	C7.2.14 BFCVTN, BFCVTN2
	Vector single-precision to BFloat16
	Assembler symbols
	Operation

	C7.2.15 BFDOT (by element)
	Vector
	Assembler symbols
	Operation

	C7.2.16 BFDOT (vector)
	Vector
	Assembler symbols
	Operation

	C7.2.17 BFMLALB, BFMLALT (by element)
	Vector
	Assembler symbols
	Operation

	C7.2.18 BFMLALB, BFMLALT (vector)
	Vector
	Assembler symbols
	Operation

	C7.2.19 BFMMLA
	Vector
	Assembler symbols
	Operation

	C7.2.20 BIC (vector, immediate)
	Assembler symbols
	Operation
	Operational information

	C7.2.21 BIC (vector, register)
	Assembler symbols
	Operation
	Operational information

	C7.2.22 BIF
	Assembler symbols
	Operation
	Operational information

	C7.2.23 BIT
	Assembler symbols
	Operation
	Operational information

	C7.2.24 BSL
	Assembler symbols
	Operation
	Operational information

	C7.2.25 CLS (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.26 CLZ (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.27 CMEQ (register)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.28 CMEQ (zero)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.29 CMGE (register)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.30 CMGE (zero)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.31 CMGT (register)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.32 CMGT (zero)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.33 CMHI (register)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.34 CMHS (register)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.35 CMLE (zero)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.36 CMLT (zero)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.37 CMTST
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.38 CNT
	Assembler symbols
	Operation
	Operational information

	C7.2.39 DUP (element)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.40 DUP (general)
	Assembler symbols
	Operation
	Operational information

	C7.2.41 EOR (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.42 EOR3
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.43 EXT
	Assembler symbols
	Operation
	Operational information

	C7.2.44 FABD
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.45 FABS (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.46 FABS (scalar)
	Assembler symbols
	Operation

	C7.2.47 FACGE
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.48 FACGT
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.49 FADD (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.50 FADD (scalar)
	Assembler symbols
	Operation

	C7.2.51 FADDP (scalar)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.52 FADDP (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.53 FCADD
	Vector
	Assembler symbols
	Operation

	C7.2.54 FCCMP
	Assembler symbols
	Operation
	Operational information

	C7.2.55 FCCMPE
	Assembler symbols
	Operation
	Operational information

	C7.2.56 FCMEQ (register)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.57 FCMEQ (zero)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.58 FCMGE (register)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.59 FCMGE (zero)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.60 FCMGT (register)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.61 FCMGT (zero)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.62 FCMLA (by element)
	Vector
	Assembler symbols
	Operation

	C7.2.63 FCMLA
	Vector
	Assembler symbols
	Operation

	C7.2.64 FCMLE (zero)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.65 FCMLT (zero)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.66 FCMP
	Assembler symbols
	Operation
	Operational information

	C7.2.67 FCMPE
	Assembler symbols
	Operation
	Operational information

	C7.2.68 FCSEL
	Assembler symbols
	Operation
	Operational information

	C7.2.69 FCVT
	Assembler symbols
	Operation

	C7.2.70 FCVTAS (vector)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.71 FCVTAS (scalar)
	Assembler symbols
	Operation

	C7.2.72 FCVTAU (vector)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.73 FCVTAU (scalar)
	Assembler symbols
	Operation

	C7.2.74 FCVTL, FCVTL2
	Assembler symbols
	Operation

	C7.2.75 FCVTMS (vector)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.76 FCVTMS (scalar)
	Assembler symbols
	Operation

	C7.2.77 FCVTMU (vector)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.78 FCVTMU (scalar)
	Assembler symbols
	Operation

	C7.2.79 FCVTN, FCVTN2
	Assembler symbols
	Operation

	C7.2.80 FCVTNS (vector)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.81 FCVTNS (scalar)
	Assembler symbols
	Operation

	C7.2.82 FCVTNU (vector)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.83 FCVTNU (scalar)
	Assembler symbols
	Operation

	C7.2.84 FCVTPS (vector)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.85 FCVTPS (scalar)
	Assembler symbols
	Operation

	C7.2.86 FCVTPU (vector)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.87 FCVTPU (scalar)
	Assembler symbols
	Operation

	C7.2.88 FCVTXN, FCVTXN2
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.89 FCVTZS (vector, fixed-point)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.90 FCVTZS (vector, integer)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.91 FCVTZS (scalar, fixed-point)
	Assembler symbols
	Operation

	C7.2.92 FCVTZS (scalar, integer)
	Assembler symbols
	Operation

	C7.2.93 FCVTZU (vector, fixed-point)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.94 FCVTZU (vector, integer)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.95 FCVTZU (scalar, fixed-point)
	Assembler symbols
	Operation

	C7.2.96 FCVTZU (scalar, integer)
	Assembler symbols
	Operation

	C7.2.97 FDIV (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.98 FDIV (scalar)
	Assembler symbols
	Operation

	C7.2.99 FJCVTZS
	Double-precision to 32-bit
	Assembler symbols
	Operation

	C7.2.100 FMADD
	Assembler symbols
	Operation

	C7.2.101 FMAX (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.102 FMAX (scalar)
	Assembler symbols
	Operation

	C7.2.103 FMAXNM (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.104 FMAXNM (scalar)
	Assembler symbols
	Operation

	C7.2.105 FMAXNMP (scalar)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.106 FMAXNMP (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.107 FMAXNMV
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.108 FMAXP (scalar)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.109 FMAXP (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.110 FMAXV
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.111 FMIN (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.112 FMIN (scalar)
	Assembler symbols
	Operation

	C7.2.113 FMINNM (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.114 FMINNM (scalar)
	Assembler symbols
	Operation

	C7.2.115 FMINNMP (scalar)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.116 FMINNMP (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.117 FMINNMV
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.118 FMINP (scalar)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.119 FMINP (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.120 FMINV
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.121 FMLA (by element)
	Scalar, half-precision
	Scalar, single-precision and double-precision
	Vector, half-precision
	Vector, single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.122 FMLA (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.123 FMLAL, FMLAL2 (by element)
	FMLAL
	FMLAL2
	Assembler symbols
	Operation for all encodings

	C7.2.124 FMLAL, FMLAL2 (vector)
	FMLAL
	FMLAL2
	Assembler symbols
	Operation for all encodings

	C7.2.125 FMLS (by element)
	Scalar, half-precision
	Scalar, single-precision and double-precision
	Vector, half-precision
	Vector, single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.126 FMLS (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.127 FMLSL, FMLSL2 (by element)
	FMLSL
	FMLSL2
	Assembler symbols
	Operation for all encodings

	C7.2.128 FMLSL, FMLSL2 (vector)
	FMLSL
	FMLSL2
	Assembler symbols
	Operation for all encodings

	C7.2.129 FMOV (vector, immediate)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.130 FMOV (register)
	Assembler symbols
	Operation

	C7.2.131 FMOV (general)
	Assembler symbols
	Operation

	C7.2.132 FMOV (scalar, immediate)
	Assembler symbols
	Operation

	C7.2.133 FMSUB
	Assembler symbols
	Operation

	C7.2.134 FMUL (by element)
	Scalar, half-precision
	Scalar, single-precision and double-precision
	Vector, half-precision
	Vector, single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.135 FMUL (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.136 FMUL (scalar)
	Assembler symbols
	Operation

	C7.2.137 FMULX (by element)
	Scalar, half-precision
	Scalar, single-precision and double-precision
	Vector, half-precision
	Vector, single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.138 FMULX
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.139 FNEG (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.140 FNEG (scalar)
	Assembler symbols
	Operation

	C7.2.141 FNMADD
	Assembler symbols
	Operation

	C7.2.142 FNMSUB
	Assembler symbols
	Operation

	C7.2.143 FNMUL (scalar)
	Assembler symbols
	Operation

	C7.2.144 FRECPE
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.145 FRECPS
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.146 FRECPX
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.147 FRINT32X (vector)
	Vector single-precision and double-precision
	Assembler symbols
	Operation

	C7.2.148 FRINT32X (scalar)
	Floating-point
	Assembler symbols
	Operation

	C7.2.149 FRINT32Z (vector)
	Vector single-precision and double-precision
	Assembler symbols
	Operation

	C7.2.150 FRINT32Z (scalar)
	Floating-point
	Assembler symbols
	Operation

	C7.2.151 FRINT64X (vector)
	Vector single-precision and double-precision
	Assembler symbols
	Operation

	C7.2.152 FRINT64X (scalar)
	Floating-point
	Assembler symbols
	Operation

	C7.2.153 FRINT64Z (vector)
	Vector single-precision and double-precision
	Assembler symbols
	Operation

	C7.2.154 FRINT64Z (scalar)
	Floating-point
	Assembler symbols
	Operation

	C7.2.155 FRINTA (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.156 FRINTA (scalar)
	Assembler symbols
	Operation

	C7.2.157 FRINTI (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.158 FRINTI (scalar)
	Assembler symbols
	Operation

	C7.2.159 FRINTM (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.160 FRINTM (scalar)
	Assembler symbols
	Operation

	C7.2.161 FRINTN (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.162 FRINTN (scalar)
	Assembler symbols
	Operation

	C7.2.163 FRINTP (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.164 FRINTP (scalar)
	Assembler symbols
	Operation

	C7.2.165 FRINTX (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.166 FRINTX (scalar)
	Assembler symbols
	Operation

	C7.2.167 FRINTZ (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.168 FRINTZ (scalar)
	Assembler symbols
	Operation

	C7.2.169 FRSQRTE
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.170 FRSQRTS
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.171 FSQRT (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.172 FSQRT (scalar)
	Assembler symbols
	Operation

	C7.2.173 FSUB (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.174 FSUB (scalar)
	Assembler symbols
	Operation

	C7.2.175 INS (element)
	Assembler symbols
	Operation
	Operational information

	C7.2.176 INS (general)
	Assembler symbols
	Operation
	Operational information

	C7.2.177 LD1 (multiple structures)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.178 LD1 (single structure)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.179 LD1R
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.180 LD2 (multiple structures)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.181 LD2 (single structure)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.182 LD2R
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.183 LD3 (multiple structures)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.184 LD3 (single structure)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.185 LD3R
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.186 LD4 (multiple structures)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.187 LD4 (single structure)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.188 LD4R
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.189 LDNP (SIMD&FP)
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C7.2.190 LDP (SIMD&FP)
	Post-index
	Pre-index
	Signed offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.191 LDR (immediate, SIMD&FP)
	Post-index
	Pre-index
	Unsigned offset
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.192 LDR (literal, SIMD&FP)
	Assembler symbols
	Operation
	Operational information

	C7.2.193 LDR (register, SIMD&FP)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C7.2.194 LDUR (SIMD&FP)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C7.2.195 MLA (by element)
	Assembler symbols
	Operation
	Operational information

	C7.2.196 MLA (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.197 MLS (by element)
	Assembler symbols
	Operation
	Operational information

	C7.2.198 MLS (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.199 MOV (scalar)
	Assembler symbols
	Operation
	Operational information

	C7.2.200 MOV (element)
	Assembler symbols
	Operation
	Operational information

	C7.2.201 MOV (from general)
	Assembler symbols
	Operation
	Operational information

	C7.2.202 MOV (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.203 MOV (to general)
	Assembler symbols
	Operation
	Operational information

	C7.2.204 MOVI
	Assembler symbols
	Operation
	Operational information

	C7.2.205 MUL (by element)
	Assembler symbols
	Operation
	Operational information

	C7.2.206 MUL (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.207 MVN
	Assembler symbols
	Operation
	Operational information

	C7.2.208 MVNI
	Assembler symbols
	Operation
	Operational information

	C7.2.209 NEG (vector)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.210 NOT
	Assembler symbols
	Operation
	Operational information

	C7.2.211 ORN (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.212 ORR (vector, immediate)
	Assembler symbols
	Operation
	Operational information

	C7.2.213 ORR (vector, register)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C7.2.214 PMUL
	Assembler symbols
	Operation
	Operational information

	C7.2.215 PMULL, PMULL2
	Assembler symbols
	Operation
	Operational information

	C7.2.216 RADDHN, RADDHN2
	Assembler symbols
	Operation
	Operational information

	C7.2.217 RAX1
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.218 RBIT (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.219 REV16 (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.220 REV32 (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.221 REV64
	Assembler symbols
	Operation
	Operational information

	C7.2.222 RSHRN, RSHRN2
	Assembler symbols
	Operation
	Operational information

	C7.2.223 RSUBHN, RSUBHN2
	Assembler symbols
	Operation
	Operational information

	C7.2.224 SABA
	Assembler symbols
	Operation
	Operational information

	C7.2.225 SABAL, SABAL2
	Assembler symbols
	Operation
	Operational information

	C7.2.226 SABD
	Assembler symbols
	Operation
	Operational information

	C7.2.227 SABDL, SABDL2
	Assembler symbols
	Operation
	Operational information

	C7.2.228 SADALP
	Assembler symbols
	Operation
	Operational information

	C7.2.229 SADDL, SADDL2
	Assembler symbols
	Operation
	Operational information

	C7.2.230 SADDLP
	Assembler symbols
	Operation
	Operational information

	C7.2.231 SADDLV
	Assembler symbols
	Operation
	Operational information

	C7.2.232 SADDW, SADDW2
	Assembler symbols
	Operation
	Operational information

	C7.2.233 SCVTF (vector, fixed-point)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.234 SCVTF (vector, integer)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.235 SCVTF (scalar, fixed-point)
	Assembler symbols
	Operation

	C7.2.236 SCVTF (scalar, integer)
	Assembler symbols
	Operation

	C7.2.237 SDOT (by element)
	Vector
	Assembler symbols
	Operation

	C7.2.238 SDOT (vector)
	Vector
	Assembler symbols
	Operation

	C7.2.239 SHA1C
	Assembler symbols
	Operation
	Operational information

	C7.2.240 SHA1H
	Assembler symbols
	Operation
	Operational information

	C7.2.241 SHA1M
	Assembler symbols
	Operation
	Operational information

	C7.2.242 SHA1P
	Assembler symbols
	Operation
	Operational information

	C7.2.243 SHA1SU0
	Assembler symbols
	Operation
	Operational information

	C7.2.244 SHA1SU1
	Assembler symbols
	Operation
	Operational information

	C7.2.245 SHA256H2
	Assembler symbols
	Operation
	Operational information

	C7.2.246 SHA256H
	Assembler symbols
	Operation
	Operational information

	C7.2.247 SHA256SU0
	Assembler symbols
	Operation
	Operational information

	C7.2.248 SHA256SU1
	Assembler symbols
	Operation
	Operational information

	C7.2.249 SHA512H
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.250 SHA512H2
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.251 SHA512SU0
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.252 SHA512SU1
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.253 SHADD
	Assembler symbols
	Operation
	Operational information

	C7.2.254 SHL
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.255 SHLL, SHLL2
	Assembler symbols
	Operation
	Operational information

	C7.2.256 SHRN, SHRN2
	Assembler symbols
	Operation
	Operational information

	C7.2.257 SHSUB
	Assembler symbols
	Operation
	Operational information

	C7.2.258 SLI
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.259 SM3PARTW1
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.260 SM3PARTW2
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.261 SM3SS1
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.262 SM3TT1A
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.263 SM3TT1B
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.264 SM3TT2A
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.265 SM3TT2B
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.266 SM4E
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.267 SM4EKEY
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.268 SMAX
	Assembler symbols
	Operation
	Operational information

	C7.2.269 SMAXP
	Assembler symbols
	Operation
	Operational information

	C7.2.270 SMAXV
	Assembler symbols
	Operation
	Operational information

	C7.2.271 SMIN
	Assembler symbols
	Operation
	Operational information

	C7.2.272 SMINP
	Assembler symbols
	Operation
	Operational information

	C7.2.273 SMINV
	Assembler symbols
	Operation
	Operational information

	C7.2.274 SMLAL, SMLAL2 (by element)
	Assembler symbols
	Operation
	Operational information

	C7.2.275 SMLAL, SMLAL2 (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.276 SMLSL, SMLSL2 (by element)
	Assembler symbols
	Operation
	Operational information

	C7.2.277 SMLSL, SMLSL2 (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.278 SMMLA (vector)
	Vector
	Assembler symbols
	Operation

	C7.2.279 SMOV
	Assembler symbols
	Operation
	Operational information

	C7.2.280 SMULL, SMULL2 (by element)
	Assembler symbols
	Operation
	Operational information

	C7.2.281 SMULL, SMULL2 (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.282 SQABS
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.283 SQADD
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.284 SQDMLAL, SQDMLAL2 (by element)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.285 SQDMLAL, SQDMLAL2 (vector)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.286 SQDMLSL, SQDMLSL2 (by element)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.287 SQDMLSL, SQDMLSL2 (vector)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.288 SQDMULH (by element)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.289 SQDMULH (vector)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.290 SQDMULL, SQDMULL2 (by element)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.291 SQDMULL, SQDMULL2 (vector)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.292 SQNEG
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.293 SQRDMLAH (by element)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.294 SQRDMLAH (vector)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.295 SQRDMLSH (by element)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.296 SQRDMLSH (vector)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.297 SQRDMULH (by element)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.298 SQRDMULH (vector)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.299 SQRSHL
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.300 SQRSHRN, SQRSHRN2
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.301 SQRSHRUN, SQRSHRUN2
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.302 SQSHL (immediate)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.303 SQSHL (register)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.304 SQSHLU
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.305 SQSHRN, SQSHRN2
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.306 SQSHRUN, SQSHRUN2
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.307 SQSUB
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.308 SQXTN, SQXTN2
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.309 SQXTUN, SQXTUN2
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.310 SRHADD
	Assembler symbols
	Operation

	C7.2.311 SRI
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.312 SRSHL
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.313 SRSHR
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.314 SRSRA
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.315 SSHL
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.316 SSHLL, SSHLL2
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C7.2.317 SSHR
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.318 SSRA
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.319 SSUBL, SSUBL2
	Assembler symbols
	Operation
	Operational information

	C7.2.320 SSUBW, SSUBW2
	Assembler symbols
	Operation
	Operational information

	C7.2.321 ST1 (multiple structures)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.322 ST1 (single structure)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.323 ST2 (multiple structures)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.324 ST2 (single structure)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.325 ST3 (multiple structures)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.326 ST3 (single structure)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.327 ST4 (multiple structures)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.328 ST4 (single structure)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.329 STNP (SIMD&FP)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C7.2.330 STP (SIMD&FP)
	Post-index
	Pre-index
	Signed offset
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.331 STR (immediate, SIMD&FP)
	Post-index
	Pre-index
	Unsigned offset
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.332 STR (register, SIMD&FP)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C7.2.333 STUR (SIMD&FP)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C7.2.334 SUB (vector)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.335 SUBHN, SUBHN2
	Assembler symbols
	Operation
	Operational information

	C7.2.336 SUDOT (by element)
	Vector
	Assembler symbols
	Operation

	C7.2.337 SUQADD
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.338 SXTL, SXTL2
	Assembler symbols
	Operation
	Operational information

	C7.2.339 TBL
	Assembler symbols
	Operation
	Operational information

	C7.2.340 TBX
	Assembler symbols
	Operation
	Operational information

	C7.2.341 TRN1
	Assembler symbols
	Operation
	Operational information

	C7.2.342 TRN2
	Assembler symbols
	Operation
	Operational information

	C7.2.343 UABA
	Assembler symbols
	Operation
	Operational information

	C7.2.344 UABAL, UABAL2
	Assembler symbols
	Operation
	Operational information

	C7.2.345 UABD
	Assembler symbols
	Operation
	Operational information

	C7.2.346 UABDL, UABDL2
	Assembler symbols
	Operation
	Operational information

	C7.2.347 UADALP
	Assembler symbols
	Operation
	Operational information

	C7.2.348 UADDL, UADDL2
	Assembler symbols
	Operation
	Operational information

	C7.2.349 UADDLP
	Assembler symbols
	Operation
	Operational information

	C7.2.350 UADDLV
	Assembler symbols
	Operation
	Operational information

	C7.2.351 UADDW, UADDW2
	Assembler symbols
	Operation
	Operational information

	C7.2.352 UCVTF (vector, fixed-point)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.353 UCVTF (vector, integer)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.354 UCVTF (scalar, fixed-point)
	Assembler symbols
	Operation

	C7.2.355 UCVTF (scalar, integer)
	Assembler symbols
	Operation

	C7.2.356 UDOT (by element)
	Vector
	Assembler symbols
	Operation

	C7.2.357 UDOT (vector)
	Vector
	Assembler symbols
	Operation

	C7.2.358 UHADD
	Assembler symbols
	Operation
	Operational information

	C7.2.359 UHSUB
	Assembler symbols
	Operation
	Operational information

	C7.2.360 UMAX
	Assembler symbols
	Operation
	Operational information

	C7.2.361 UMAXP
	Assembler symbols
	Operation
	Operational information

	C7.2.362 UMAXV
	Assembler symbols
	Operation
	Operational information

	C7.2.363 UMIN
	Assembler symbols
	Operation
	Operational information

	C7.2.364 UMINP
	Assembler symbols
	Operation
	Operational information

	C7.2.365 UMINV
	Assembler symbols
	Operation
	Operational information

	C7.2.366 UMLAL, UMLAL2 (by element)
	Assembler symbols
	Operation
	Operational information

	C7.2.367 UMLAL, UMLAL2 (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.368 UMLSL, UMLSL2 (by element)
	Assembler symbols
	Operation
	Operational information

	C7.2.369 UMLSL, UMLSL2 (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.370 UMMLA (vector)
	Vector
	Assembler symbols
	Operation

	C7.2.371 UMOV
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C7.2.372 UMULL, UMULL2 (by element)
	Assembler symbols
	Operation
	Operational information

	C7.2.373 UMULL, UMULL2 (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.374 UQADD
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.375 UQRSHL
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.376 UQRSHRN, UQRSHRN2
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.377 UQSHL (immediate)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.378 UQSHL (register)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.379 UQSHRN, UQSHRN2
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.380 UQSUB
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.381 UQXTN, UQXTN2
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.382 URECPE
	Assembler symbols
	Operation

	C7.2.383 URHADD
	Assembler symbols
	Operation

	C7.2.384 URSHL
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.385 URSHR
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.386 URSQRTE
	Assembler symbols
	Operation

	C7.2.387 URSRA
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.388 USDOT (vector)
	Vector
	Assembler symbols
	Operation

	C7.2.389 USDOT (by element)
	Vector
	Assembler symbols
	Operation

	C7.2.390 USHL
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.391 USHLL, USHLL2
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C7.2.392 USHR
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.393 USMMLA (vector)
	Vector
	Assembler symbols
	Operation

	C7.2.394 USQADD
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.395 USRA
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.396 USUBL, USUBL2
	Assembler symbols
	Operation
	Operational information

	C7.2.397 USUBW, USUBW2
	Assembler symbols
	Operation
	Operational information

	C7.2.398 UXTL, UXTL2
	Assembler symbols
	Operation
	Operational information

	C7.2.399 UZP1
	Assembler symbols
	Operation
	Operational information

	C7.2.400 UZP2
	Assembler symbols
	Operation
	Operational information

	C7.2.401 XAR
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.402 XTN, XTN2
	Assembler symbols
	Operation
	Operational information

	C7.2.403 ZIP1
	Assembler symbols
	Operation
	Operational information

	C7.2.404 ZIP2
	Assembler symbols
	Operation
	Operational information

	Part D: The AArch64 System Level Architecture�
	D1: The AArch64 System Level Programmers’ Model�
	D1.1 Exception levels
	D1.1.1 Typical Exception level usage model

	D1.2 Exception terminology
	D1.2.1 Terminology for taking an exception
	D1.2.2 Terminology for returning from an exception
	D1.2.3 Exception levels
	D1.2.4 Definition of a precise exception
	D1.2.5 Definitions of synchronous and asynchronous exceptions

	D1.3 Execution state
	D1.4 Security state
	D1.4.1 The Armv8-A security model
	Security model when EL3 is using AArch64 state

	D1.5 Virtualization
	D1.5.1 The effect of implementing EL2 on the Exception model
	Virtual interrupts

	D1.6 Registers for instruction processing and exception handling
	D1.6.1 The general-purpose registers, R0-R30
	D1.6.2 The stack pointer registers
	Stack pointer register selection

	D1.6.3 The SIMD and floating-point registers, V0-V31
	D1.6.4 Saved Program Status Registers (SPSRs)
	Pseudocode description of SPSR operations

	D1.6.5 Exception Link Registers (ELRs)

	D1.7 Process state, PSTATE
	D1.7.1 Accessing PSTATE fields
	D1.7.2 The Saved Program Status Registers (SPSRs)

	D1.8 Program counter and stack pointer alignment
	D1.8.1 PC alignment checking
	D1.8.2 SP alignment checking

	D1.9 Reset
	D1.9.1 PE state on reset to AArch64 state
	D1.9.2 Code sequence to use RMR_ELx.RR to request a Warm reset
	D1.9.3 Pseudocode description of reset

	D1.10 Exception entry
	D1.10.1 Preferred exception return address
	D1.10.2 Exception vectors
	D1.10.3 Pseudocode description of exception entry to AArch64 state
	D1.10.4 Exception classes and the ESR_ELx syndrome registers
	Use of the ESR_EL1, ESR_EL2, and ESR_EL3
	The EC used to report an exception routed to EL2 because HCR_EL2.TGE is 1
	Reporting AArch32 synchronous exceptions taken to an Exception level using AArch64

	D1.10.5 Summary of register updates on faults taken to an Exception level that is using AArch64
	Validity of FAR_ELx
	Validity of HPFAR_EL2

	D1.11 Exception return
	D1.11.1 Exception return and PC alignment
	D1.11.2 Illegal return events from AArch64 state
	D1.11.3 Legal returns that set PSTATE.IL to 1
	D1.11.4 The Illegal Execution state exception
	D1.11.5 Pseudocode description of exception return

	D1.12 Synchronous exception types, routing and priorities
	D1.12.1 Routing exceptions from EL0 to EL2
	D1.12.2 Routing debug exceptions to EL2
	D1.12.3 Routing synchronous External aborts
	D1.12.4 Synchronous exception prioritization for exceptions taken to AArch64 state
	D1.12.5 Effect of Data Aborts and watchpoints
	D1.12.6 Floating-point exceptions and exception traps
	Input Denormal exceptions
	Inexact exceptions
	Underflow exceptions
	Overflow exceptions
	Divide by Zero exceptions
	Invalid Operation exceptions
	Operations that do not generate floating point exceptions
	Handling floating-point exceptions
	Combinations of floating-point exceptions

	D1.13 Asynchronous exception types, routing, masking and priorities
	D1.13.1 Asynchronous exception routing
	D1.13.2 Asynchronous exception masking
	D1.13.3 Virtual interrupts
	D1.13.4 Prioritization and recognition of interrupts
	D1.13.5 Taking an interrupt or other exception during a multi-access load or store

	D1.14 Configurable instruction enables and disables, and trap controls
	D1.14.1 Traps on instructions
	D1.14.2 EL1 configurable controls
	Traps to EL1 of EL0 accesses to Activity Monitors registers
	Traps to EL1 of EL0 accesses to the Generic Timer registers
	Traps to EL1 of EL0 and EL1 System register accesses to the trace registers
	Traps to EL1 of EL0 and EL1 accesses to SIMD and floating-point functionality
	Traps to EL1 of EL0 accesses to the Debug Communications Channel (DCC) registers
	Traps to EL1 of EL0 accesses to Performance Monitors registers
	Traps to EL1 of EL0 execution of single-copy atomic 64-byte instructions
	Enabling use of the Pointer authentication instructions, EL1&0 translation regime
	Traps to EL1 of EL0 execution of cache maintenance instructions
	Traps to EL1 of EL0 execution of WFE, WFI, WFET, and WFIT instructions
	Traps to EL1 of EL0 accesses to the CTR_EL0
	Traps to EL1 of EL0 execution of DC ZVA instructions
	Traps to EL1 of EL0 accesses to the PSTATE.{D, A, I, F} interrupt masks
	Disabling or enabling EL0 use of AArch32 optional functionality
	Disabling Address tagging for instruction accesses, EL1&0 translation regime

	D1.14.3 EL2 configurable controls
	Traps to EL2 of EL0 and EL1 accesses to the Generic Timer registers
	Trapping to EL2 of EL1 accesses to the CPACR_EL1 or CPACR
	Traps to EL2 of EL1 and EL0 accesses to Activity Monitors registers
	Traps to EL2 of EL2, EL1, and EL0 System register accesses to the trace registers
	Traps to EL2 of EL2, EL1, and EL0 accesses to SIMD and floating-point functionality
	General trapping to EL2 of accesses to the SIMD and floating-point registers
	Fine-grained traps to EL2 of EL0 and EL1 read accesses to Activity Monitors registers
	Traps to EL2 of EL1 accesses to the RAS error record registers
	Trap to EL2 of EL1 accesses to AT S1E* instructions
	Traps to EL2 for nested virtualization
	Trap to EL2 of EL0 accesses to Pointer authentication instructions
	Trap to EL2 of EL1 accesses to Pointer authentication key registers
	Traps to EL2 of EL1 accesses to virtual memory control registers
	Disabling execution of HVC instructions
	Traps to EL2 of EL0 and EL1 execution of DC ZVA instructions
	Traps to EL2 of EL1 execution of TLB maintenance instructions
	Traps to EL2 of EL0 and EL1 execution of cache maintenance instructions
	Traps to EL2 of EL1 accesses to the Auxiliary Control Register
	Traps to EL2 of EL0 and EL1 accesses to lockdown, DMA, and TCM operations
	Traps to EL2 of EL1 execution of SMC instructions
	Traps to EL2 of EL0 and EL1 accesses to the ID registers
	Traps to EL2 of EL0 and EL1 execution of WFE, WFI, WFET, and WFIT instructions
	Traps to EL2 of EL0 and EL1 execution of single-copy atomic 64-byte instructions
	Fine-grained traps to EL2 of EL0 and EL1 accesses to the debug, trace, and PMU registers
	Fine-grained traps to EL2 of EL0 and EL1 accesses to System registers
	Fine-grained Traps to EL2 of EL0 and EL1 accesses to instructions
	General trapping to EL2 of EL0 and EL1 accesses to System registers, from AArch32 state only
	Traps to EL2 of System register accesses to the trace filter control registers
	Traps to EL2 of EL0 and EL1 System register accesses to debug registers
	Traps to EL2 of EL0 and EL1 accesses to the Debug Communications Channel registers
	Traps to EL2 of EL0 and EL1 accesses to Performance Monitors registers
	Enabling use of the Pointer authentication instructions, EL2 translation regime
	Traps to EL2 of EL0 execution of cache maintenance instructions
	Traps to EL2 of EL0 accesses to the CTR_EL0
	Traps to EL2 of EL0 execution of DC ZVA instructions
	Disabling or enabling EL0 use of AArch32 optional functionality
	Disabling Address tagging for instruction accesses, EL2 translation regime

	D1.14.4 EL3 configurable controls
	Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32
	Trapping to EL3 of EL2 accesses to the CPTR_EL2 or HCPTR, and EL2 and EL1 accesses to the CPACR_EL1 or CPACR
	Traps to EL3 of EL2, EL1, and EL0 accesses to Activity Monitors registers
	Traps to EL3 of System register accesses to the trace registers
	Traps to EL3 of all accesses to the SIMD and floating-point registers
	Traps to EL3 of EL2, EL1, and EL0 accesses to Debug Communication Channel registers
	Traps to EL3 of EL2 and EL1 System register accesses to the trace filter control registers
	Traps to EL3 of EL2, EL1, and EL0 System register accesses to debug registers
	Traps to EL3 of EL2, EL1, and EL0 accesses to Performance Monitors registers
	Traps to EL3 of EL2, EL1, and EL0 execution of single-copy atomic 64-byte EL0 store with return instruction
	Traps to EL3 of EL2 accesses to fine-grained trap registers
	Traps to EL3 of EL1 and EL2 accesses to the RAS error record registers
	Trap to EL3 accesses to Pointer authentication instructions
	Trap to EL3 accesses to Pointer authentication key registers
	Traps to EL3 of EL2, EL1, and EL0 execution of WFE, WFI, WFET, and WFIT instructions
	Traps to EL3 of Secure EL1 accesses to the Counter-timer Physical Secure timer registers
	Enabling EL3, EL2, and EL1 execution of HVC instructions
	Disabling EL3, EL2, and EL1 execution of SMC instructions
	Enabling use of the Pointer authentication instructions, EL3 translation regime
	Disabling Address tagging for instruction accesses, EL3 translation regime

	D1.15 System calls
	D1.15.1 Pseudocode description of system calls

	D1.16 Mechanisms for entering a low-power state
	D1.16.1 Wait for Event mechanism and Send event
	The Event Register
	The Wait For Event and Wait for Event with Timeout instructions
	WFE wake-up events in AArch64 state
	The Send Event instructions
	Pseudocode description of the Wait For Event mechanism

	D1.16.2 Wait For Interrupt
	WFI wake-up events
	Using WFI to indicate an idle state on bus interfaces
	Pseudocode description of Wait For Interrupt

	D1.17 Self-hosted debug
	D1.17.1 Debug exceptions
	D1.17.2 The PSTATE debug mask bit, D

	D1.18 Event monitors
	D1.18.1 The Performance Monitors Extension
	D1.18.2 The Activity Monitors Extension

	D1.19 Interprocessing
	D1.19.1 Register mappings between AArch32 state and AArch64 state
	Mapping of the general-purpose registers between the Execution states
	Mapping of the SIMD and floating-point registers between the Execution states
	Mapping of the System registers between the Execution states

	D1.19.2 State of the general-purpose registers on taking an exception to AArch64 state
	D1.19.3 SPSR, ELR, and AArch64 SP relationships on changing Execution state

	D1.20 The effect of implementation choices on the programmers’ model
	D1.20.1 Implication of Exception levels implemented
	D1.20.2 Support for Exception levels and Execution states
	D1.20.3 Implementations not including Advanced SIMD and floating-point instructions
	D1.20.4 The effects of supporting fewer than four Exception levels
	Behavior when EL3 is not implemented
	Behavior when EL2 is not implemented
	Behavior when only EL1 and EL0 are implemented

	D2: AArch64 Self-hosted Debug�
	D2.1 About self-hosted debug
	D2.1.1 Definition of a debugger in the context of self-hosted debug
	D2.1.2 Context ID and Process ID
	D2.1.3 About debug exceptions

	D2.2 The debug exception enable controls
	D2.3 Routing debug exceptions
	D2.3.1 Pseudocode description of routing debug exceptions

	D2.4 Enabling debug exceptions from the current Exception level
	D2.4.1 Disabling debug exceptions from Secure state
	D2.4.2 Pseudocode description of enabling debug exceptions

	D2.5 The effect of powerdown on debug exceptions
	D2.6 Summary of the routing and enabling of debug exceptions
	D2.7 Pseudocode description of debug exceptions
	D2.8 Breakpoint Instruction exceptions
	D2.8.1 About Breakpoint Instruction exceptions
	D2.8.2 Breakpoint instructions
	D2.8.3 Exception syndrome information and preferred return address
	Exception syndrome information
	Preferred return address

	D2.8.4 Pseudocode description of Breakpoint Instruction exceptions

	D2.9 Breakpoint exceptions
	D2.9.1 About Breakpoint exceptions
	D2.9.2 Breakpoint types and linking of breakpoints
	Rules for linking breakpoints
	Breakpoint types defined by DBGBCRn_EL1.BT

	D2.9.3 Execution conditions for which a breakpoint generates Breakpoint exceptions
	D2.9.4 Breakpoint instruction address comparisons
	Specifying the halfword-aligned address that an Address breakpoint matches on

	D2.9.5 Breakpoint context comparisons
	D2.9.6 Breakpoint usage constraints
	Reserved DBGBCR<n>_EL1.BT values
	Reserved DBGBCR<n>_EL1.{SSC, HMC, PMC} values
	Reserved DBGBCR<n>_EL1.BAS values
	Reserved DBGBCR<n>_EL1.LBN values
	Other usage constraints for Address breakpoints
	Other usage constraints for Context breakpoints

	D2.9.7 Preferred return address
	D2.9.8 Pseudocode description of Breakpoint exceptions taken from AArch64 state

	D2.10 Watchpoint exceptions
	D2.10.1 About Watchpoint exceptions
	D2.10.2 Watchpoint types and linking of watchpoints
	Rules for linking watchpoints

	D2.10.3 Execution conditions for which a watchpoint generates Watchpoint exceptions
	D2.10.4 Watchpoint data address comparisons
	Size of the data access
	Programming a watchpoint with eight bytes or fewer
	Programming a watchpoint with eight or more bytes

	D2.10.5 Determining the memory location that caused a Watchpoint exception
	Address recorded for Watchpoint exceptions generated by instructions other than data cache maintenance instructions
	Address recorded for Watchpoint exceptions generated by data cache maintenance instructions

	D2.10.6 Watchpoint behavior on other instructions
	Watchpoint behavior on accesses by Store-Exclusive instructions
	Watchpoint behavior on accesses by the DC IVAC instruction and the DC ZVA, DC GVA, and DC GZVA instructions

	D2.10.7 Watchpoint usage constraints
	Reserved DBGWCR<n>_EL1.{SSC, HMC, PAC} values
	Reserved DBGWCR<n>_EL1.LBN values
	Programming dependencies of the BAS and MASK fields
	Reserved DBGWCR<n>_EL1.BAS values
	Reserved DBGWCR<n>_EL1.MASK values
	Other usage constraints

	D2.10.8 Exception syndrome information and preferred return address
	Exception syndrome information
	Preferred return address

	D2.10.9 Pseudocode description of Watchpoint exceptions taken from AArch64 state

	D2.11 Vector Catch exceptions
	D2.12 Software Step exceptions
	D2.12.1 About Software Step exceptions
	D2.12.2 Rules for setting MDSCR_EL1.SS to 1
	D2.12.3 The software step state machine
	D2.12.4 Entering the active-not-pending state
	D2.12.5 Behavior in the active-not-pending state
	If the PE takes an exception to an Exception level that is using AArch64
	If the PE takes an exception to an Exception level that is using AArch32
	Summary of behavior in the active-not-pending state

	D2.12.6 Entering the active-pending state
	D2.12.7 Behavior in the active-pending state
	D2.12.8 Stepping T32 IT instructions
	D2.12.9 Exception syndrome information and preferred return address
	Exception syndrome information
	Preferred return address

	D2.12.10 Additional considerations
	Behavior when an Exception return instruction is an illegal exception return
	Behavior when the instruction stepped writes a misaligned PC value
	Stepping code that uses Exclusives monitors
	Synchronization and the software step state machine

	D2.12.11 Pseudocode description of Software Step exceptions

	D2.13 Synchronization and debug exceptions

	D3: AArch64 Self-hosted Trace�
	D3.1 About self-hosted trace
	D3.1.1 Trace sinks
	D3.1.2 Register controls to enable self-hosted trace

	D3.2 Prohibited regions in self-hosted trace
	D3.2.1 Controls to prohibit trace at Exception levels
	D3.2.2 Self-hosted trace and visibility of virtual data

	D3.3 Self-hosted trace timestamps
	D3.4 Synchronization in self-hosted trace

	D4: The AArch64 System Level Memory Model�
	D4.1 About the memory system architecture
	D4.1.1 Form of the memory system architecture
	D4.1.2 Memory attributes

	D4.2 Address space
	D4.2.1 Virtual address space overflow

	D4.3 Mixed-endian support
	D4.4 Cache support
	D4.4.1 General behavior of the caches
	D4.4.2 Cache identification
	Possible formats of the Cache Size Identification Register, CCSIDR_EL1

	D4.4.3 Cacheability, cache allocation hints, and cache transient hints
	Transient cacheability hint

	D4.4.4 Enabling and disabling the caching of memory accesses
	D4.4.5 Behavior of caches at reset
	D4.4.6 Non-cacheable accesses and instruction caches
	D4.4.7 About cache maintenance in AArch64 state
	Terms used in describing the cache maintenance instructions
	The Armv8 abstraction of the cache hierarchy

	D4.4.8 A64 Cache maintenance instructions
	The instruction cache maintenance instruction (IC)
	The data cache maintenance instruction (DC)
	EL0 accessibility of cache maintenance instructions
	General requirements for the scope of maintenance instructions
	Effects of instructions that operate by VA to the PoC
	Effects of instructions that operate by VA to the PoP
	Effects of instructions that operate by VA to the PoU
	Effects of All and set/way maintenance instructions
	Effects of virtualization and Security state on the cache maintenance instructions
	Boundary conditions for cache maintenance instructions
	Ordering and completion of data and instruction cache instructions
	Performing cache maintenance instructions

	D4.4.9 Data cache zero instruction
	D4.4.10 Cache lockdown
	The interaction of cache lockdown with cache maintenance instructions

	D4.4.11 System level caches
	D4.4.12 Branch prediction
	D4.4.13 Execution and data prediction restriction System instructions

	D4.5 External aborts
	D4.5.1 Provision for the classification of External aborts
	D4.5.2 Parity or ECC error reporting, RAS Extension not implemented

	D4.6 Memory barrier instructions
	D4.6.1 EL2 control of the shareability of data barrier instructions executed at EL0 or EL1

	D4.7 Pseudocode description of general memory System instructions
	D4.7.1 Memory data type definitions
	D4.7.2 Basic memory access
	D4.7.3 Aligned memory access
	D4.7.4 Unaligned memory access
	D4.7.5 Exclusives monitors operations
	D4.7.6 Access permission checking
	D4.7.7 Abort exceptions
	D4.7.8 Memory barriers

	D5: The AArch64 Virtual Memory System Architecture�
	D5.1 About the Virtual Memory System Architecture (VMSA)
	D5.1.1 Armv8 VMSA naming
	D5.1.2 The Armv8 VMSA when some Exception levels are using AArch32
	D5.1.3 VMSA address types and address spaces
	D5.1.4 Address tagging in AArch64 state
	D5.1.5 Pointer authentication in AArch64 state
	Supported PAC field and relation to the use of address tagging
	Keys for PAC generation and verification
	System register control of pointer authentication
	Faulting on pointer authentication

	D5.2 The VMSAv8-64 address translation system
	D5.2.1 About the VMSAv8-64 address translation system
	The AArch64 translation regimes
	About address translation and supported input address ranges
	The VMSAv8-64 translation table format

	D5.2.2 The implemented Exception levels and the resulting translation stages and regimes
	D5.2.3 Controlling address translation stages
	System registers relevant to MMU operation
	Address size configuration
	Extending addressing above 48 bits
	Atomicity of register changes on changing virtual machine
	Use of out-of-context translation regimes

	D5.2.4 Memory translation granule size
	How the granule size affects the address translation process
	Effect of granule size on translation table addressing and indexing

	D5.2.5 Translation tables and the translation process
	Translation table walks
	Ordering of memory accesses from translation table walks
	Security state of translation table lookups
	Control of translation table walks

	D5.2.6 Overview of the VMSAv8-64 address translation stages
	Overview of VMSAv8-64 address translation using the 4KB translation granule
	Overview of VMSAv8-64 address translation using the 16KB translation granule
	Overview of VMSAv8-64 address translation using the 64KB translation granule

	D5.2.7 The VMSAv8-64 translation table format
	Translation granule size and associated block and page sizes
	Selection between TTBR0_ELx and TTBR1_ELx when two VA ranges are supported
	Use of concatenated translation tables for the initial stage 2 lookup
	Possible errors in programming the translation table registers

	D5.2.8 The algorithm for finding the Translation Table descriptors
	Finding the Translation Table descriptor when using the 4KB translation granule
	Finding the Translation Table descriptor when using the 16KB translation granule
	Finding the Translation Table descriptor when using the 64KB translation granule

	D5.2.9 The effects of disabling a stage of address translation
	Behavior when stage 1 address translation is disabled
	Behavior when stage 2 address translation is disabled
	Behavior of instruction fetches when all associated stages of translation are disabled

	D5.2.10 Pseudocode description of VMSAv8-64 address translation
	Full Physical Address
	Address translation
	Translation table walk
	Hardware update of Translation Table descriptors
	Address decoding and calculation
	Memory attribute decoding
	Fault detection

	D5.2.11 Address translation instructions
	Address translation instructions, AT*

	D5.3 VMSAv8-64 Translation Table format descriptors
	D5.3.1 VMSAv8-64 translation table level -1, level 0, level 1, and level 2 descriptor formats
	Descriptor encodings, Armv8 level 0, level 1, and level 2 formats

	D5.3.2 Armv8 translation table level 3 descriptor formats
	D5.3.3 Memory attribute fields in the VMSAv8-64 Translation Table format descriptors
	Next-level attributes in stage 1 VMSAv8-64 Table descriptors
	Attribute fields in stage 1 VMSAv8-64 Block and Page descriptors
	Attribute fields in stage 2 VMSAv8-64 Block and Page descriptors

	D5.3.4 Control of Secure or Non-secure memory access
	Hierarchical control of Secure or Non-secure memory accesses

	D5.4 Memory access control
	D5.4.1 About access permissions
	D5.4.2 About PSTATE.PAN
	D5.4.3 About PSTATE.UAO
	D5.4.4 About PSTATE.BTYPE
	D5.4.5 Data access permission controls
	Preventing EL0 access to halves of the address map
	The AP[2:1] data access permissions, for stage 1 translations
	The S2AP data access permissions, Secure or Non-secure EL1&0, when EL2 is enabled, translation regime
	Hierarchical control of data access permissions

	D5.4.6 Access permissions for instruction execution
	Stage 1 instruction access and execution permissions
	Stage 2 instruction execution permissions
	Hierarchical control of instruction fetching
	Preventing execution from writable locations
	Restriction on Secure instruction fetch

	D5.4.7 The Access flag
	D5.4.8 The dirty state
	D5.4.9 Block translation entry
	D5.4.10 XS attribute modifier
	D5.4.11 Software management of the Access flag
	D5.4.12 Hardware management of the Access flag and dirty state
	Hardware management of the Access flag
	Hardware management of dirty state
	Implications of enabling the dirty state management mechanism

	D5.4.13 Ordering of hardware updates to the translation tables
	D5.4.14 Restriction on memory types for hardware updates on translation tables
	D5.4.15 Use of the Contiguous bit with hardware updates of the translation table entries

	D5.5 Memory region attributes
	D5.5.1 The stage 1 memory region attributes
	Stage 1 memory region type and Cacheability attributes
	Stage 1 definition of the XS attribute
	Stage 1 Shareability attribute, for Normal memory
	Stage 1 Shareability when FEAT_LPA2 is implemented

	D5.5.2 The stage 2 memory region attributes, EL1&0 translation regime
	D5.5.3 Stage 2 memory region type and Cacheability attributes
	D5.5.4 Stage 2 Shareability attribute, for Normal memory
	D5.5.5 Stage 2 memory region type and Cacheability attributes when FEAT_S2FWB is implemented
	D5.5.6 Other fields in the VMSAv8-64 Translation Table format descriptors
	The Contiguous bit
	IGNORED fields
	Field reserved for software use

	D5.5.7 Combining the stage 1 and stage 2 attributes, EL1&0 translation regime
	Combining the stage 1 and stage 2 data access permissions
	Combining the stage 1 and stage 2 instruction execution permissions
	Combining the stage 1 and stage 2 memory type attributes
	Combining the stage 1 and stage 2 cacheability attributes for Normal memory
	Combining the stage 1 and stage 2 shareability attributes for Normal memory

	D5.6 Virtualization Host Extensions
	D5.6.1 State added by the Virtualization Host Extensions
	D5.6.2 Behavior of HCR_EL2.E2H
	D5.6.3 System and Special-purpose register redirection
	D5.6.4 System and Special-purpose register aliasing

	D5.7 Nested virtualization
	D5.7.1 Armv8.3 nested virtualization functionality
	Effect of HCR_EL2.{NV, NV1}
	Effect of HCR_EL2.AT

	D5.7.2 Enhanced support for nested virtualization
	Redirection of register accesses from EL2 to EL1
	Loads and stores generated by transforming register accesses
	Exceptions from transformed register accesses
	Interaction with self-hosted and External debug

	D5.8 VMSAv8-64 memory aborts
	D5.8.1 Types of MMU faults
	Permission fault
	Translation fault
	Address size fault
	External abort on a translation table walk
	Access flag fault

	D5.8.2 The MMU fault-checking sequence
	Stage 2 fault on a stage 1 translation table walk
	The level associated with MMU faults

	D5.8.3 AArch64 state prioritization of synchronous aborts from a single stage of address translation
	Synchronous External aborts from address translation caching structures

	D5.9 Translation Lookaside Buffers (TLBs)
	D5.9.1 Use of ASIDs and VMIDs to reduce TLB maintenance requirements
	Common not private translations
	ASID size
	VMID size

	D5.9.2 About Armv8 Translation Lookaside Buffers (TLBs)
	Global and process-specific translation table entries
	TLB matching
	TLB behavior at reset
	TLB lockdown
	TLB conflict aborts

	D5.10 TLB maintenance requirements and the TLB maintenance instructions
	D5.10.1 General TLB maintenance requirements
	Using break-before-make when updating translation table entries
	Support levels for changing block size

	D5.10.2 TLB maintenance instructions
	TLB maintenance instruction syntax
	Operation of the TLB maintenance instructions
	Scope of the A64 TLB maintenance instructions
	TLB range maintenance instructions
	Invalidation of TLB entries from stage 2 translations
	Broadcast TLB maintenance between AArch32 and AArch64
	Broadcast TLB maintenance with different translation granule sizes
	Ordering and completion of TLB maintenance instructions
	TLB maintenance in the event of TLB conflict
	The interaction of TLB lockdown with TLB maintenance instructions

	D5.11 Caches in a VMSAv8-64 implementation
	D5.11.1 Data and unified caches
	D5.11.2 Instruction caches
	PIPT (Physically-indexed, physically-tagged) instruction caches
	VPIPT (VMID-aware PIPT) instruction caches
	VIPT (Virtually-indexed, physically-tagged) instruction caches
	The IVIPT Extension

	D5.11.3 Cache maintenance requirement created by changing translation table attributes

	D6: Memory Tagging Extension�
	D6.1 Introduction
	D6.2 Allocation Tags
	D6.2.1 Cache activity and Allocation Tags

	D6.3 Tag checking
	D6.3.1 Tag Check Faults

	D6.4 Tagged and Untagged Addresses
	D6.4.1 Virtual address translation

	D6.5 PE access to Allocation Tags
	D6.6 Enabling the Memory Tagging Extension
	D6.7 PE handling of Tag Check Fault
	D6.8 PE generation of Tag Checked and Tag Unchecked accesses
	D6.8.1 Tag Unchecked accesses
	D6.8.2 Constrained Unpredictable behavior

	D7: The Performance Monitors Extension�
	D7.1 About the Performance Monitors
	D7.1.1 Interaction with EL3
	D7.1.2 Interaction with EL2
	D7.1.3 Time as measured by the Performance Monitors cycle counter
	D7.1.4 Interaction with trace

	D7.2 Accuracy of the Performance Monitors
	D7.2.1 Non-invasive behavior
	D7.2.2 A reasonable degree of inaccuracy

	D7.3 Behavior on overflow
	D7.3.1 Generating overflow interrupt requests
	Pseudocode description of overflow interrupt requests

	D7.4 Attributability
	D7.5 Controlling the PMU counters
	D7.5.1 Enabling event counters
	D7.5.2 Freezing event counters
	D7.5.3 Prohibiting event and cycle counting

	D7.6 Multithreaded implementations
	D7.7 Event filtering
	D7.7.1 Filtering by Exception level and Security state
	D7.7.2 Accuracy of event filtering
	Exception-related events
	Software increment events

	D7.7.3 Pseudocode description of event filtering

	D7.8 Performance Monitors and Debug state
	D7.9 Counter access
	D7.9.1 PMEVCNTR<n> event counters
	D7.9.2 Cycle counter

	D7.10 PMU events and event numbers
	D7.10.1 Definitions
	Definition of terms
	Levels of caches and TLBs
	Shared caches and buses

	D7.10.2 The PMU event number space and common events
	D7.10.3 Common event numbers
	Common architectural events
	Common microarchitectural events

	D7.10.4 Cycle event counting
	Multithreaded implementations

	D7.10.5 Meaningful ratios between common microarchitectural events
	D7.10.6 Required events
	D7.10.7 IMPLEMENTATION DEFINED event numbers

	D7.11 Performance Monitors Extension registers

	D8: The Activity Monitors Extension�
	D8.1 About the Activity Monitors Extension
	D8.2 Properties and behavior of the activity monitors
	D8.2.1 Basic characteristics of the activity monitor event counters
	D8.2.2 Counter configuration and controls
	D8.2.3 Power and reset domains
	D8.2.4 Accuracy and non-invasive behavior
	D8.2.5 Virtualization

	D8.3 AMU events and event numbers
	D8.3.1 Architected event counters
	D8.3.2 Auxiliary event counters

	D9: The Statistical Profiling Extension�
	D9.1 About the Statistical Profiling Extension
	D9.1.1 Non-invasive behavior
	D9.1.2 PMU extensions
	D9.1.3 Multithreaded implementations

	D9.2 Defining the sample population
	D9.2.1 Operations that might be excluded from the sample population

	D9.3 Controlling when an operation is sampled
	D9.3.1 Operation sampling
	D9.3.2 Generating random numbers for sampling
	D9.3.3 Initializing the sample interval counters
	D9.3.4 Behavior of the sample interval counter while profiling is enabled
	If PMSIRR_EL1.RND is 0:
	If PMSIRR_EL1.RND is 1 and PMSIDR_EL1.ERnd is 0
	If PMSIRR_EL1.RND is 1 and PMSIDR_EL1.ERnd is 1

	D9.3.5 Behavior of the sample interval counter while profiling is disabled
	D9.3.6 Where operations are sampled
	D9.3.7 Sample collisions

	D9.4 Enabling profiling
	D9.5 Filtering sample records
	D9.5.1 Discard mode

	D9.6 The profiling data
	D9.6.1 Information collected for micro-ops
	D9.6.2 Additional information for each profiled branch or exception return
	Last branch target

	D9.6.3 Additional information for each profiled memory access operation
	Data Alignment Flag

	D9.6.4 Additional information for each profiled conditional instruction
	D9.6.5 Additional information for each profiled Scalable Vector Extension operation
	D9.6.6 Sample operation records for misspeculated and non-architectural operations
	D9.6.7 Additional information for other operations
	D9.6.8 Controlling the data that is collected
	D9.6.9 Exceptions
	Non-architectural exceptions

	D9.7 The Profiling Buffer
	D9.7.1 Restrictions on the current write pointer
	D9.7.2 The owning Exception level
	Summary of the owning translation regime

	D9.7.3 Memory access types and coherency
	D9.7.4 Memory access and crossing page boundaries
	D9.7.5 Cache and TLB operations
	D9.7.6 Effect on the exclusive monitors

	D9.8 Profiling Buffer management
	D9.8.1 Prioritization of Profiling Buffer management events
	D9.8.2 Buffer full event
	D9.8.3 Faults and watchpoints
	Hardware management of dirty state and the Access flag by the Statistical Profiling Extension

	D9.8.4 External aborts

	D9.9 Synchronization and Statistical Profiling
	D9.9.1 unpredictable behavior

	D10: Statistical Profiling Extension Sample Record Specification�
	D10.1 About the Statistical Profiling Extension Sample Records
	D10.1.1 Headers
	D10.1.2 Records
	D10.1.3 Protocol framing packets and forwards compatibility
	D10.1.4 Statistical Profiling Extension protocol packet headers
	8-bit headers
	16-bit headers

	D10.2 Alphabetical list of Statistical Profiling Extension packets
	D10.2.1 Address packet
	Address packet header
	Address packet payload

	D10.2.2 Context packet
	Context packet header
	Context packet payload

	D10.2.3 Counter packet
	Counter packet header
	Counter packet payload

	D10.2.4 Data Source packet
	Data Source packet header
	Data Source packet payload

	D10.2.5 End packet
	Field descriptions

	D10.2.6 Events packet
	Events packet header
	Events packet payload

	D10.2.7 Operation Type packet
	Operation Type packet header
	Operation Type packet payload (Other)
	Operation Type packet payload (Branch)
	Operation Type packet payload (load/store)

	D10.2.8 Padding
	Field descriptions

	D10.2.9 Timestamp packet
	Timestamp packet header
	Timestamp packet payload

	D11: The Generic Timer in AArch64 state�
	D11.1 About the Generic Timer
	D11.1.1 The full set of Generic Timer components
	D11.1.2 The system counter
	Initializing and reading the system counter frequency
	Memory-mapped controls of the system counter

	D11.2 The AArch64 view of the Generic Timer
	D11.2.1 The physical counter
	The self-synchronized view of the physical counter
	The physical offset register

	D11.2.2 The virtual counter
	The self-synchronized view of the virtual counter
	The virtual offset register

	D11.2.3 Event streams
	D11.2.4 Timers
	Operation of the CompareValue views of the timers
	Operation of the TimerValue views of the timers

	D12: AArch64 System Register Encoding�
	D12.1 The System register encoding space
	D12.2 op0==0b10, Moves to and from debug and trace System registers
	D12.2.1 Instructions for accessing debug System registers

	D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose registers
	D12.3.1 Instructions for accessing non-debug System registers
	About the GIC System registers

	D12.3.2 Reserved encodings for IMPLEMENTATION DEFINED registers

	D13: AArch64 System Register Descriptions�
	D13.1 About the AArch64 System registers
	D13.1.1 Fixed values in the System register descriptions
	D13.1.2 General behavior of accesses to the AArch64 System registers
	Reset behavior of AArch64 System registers
	Synchronization requirements for AArch64 System registers

	D13.1.3 Principles of the ID scheme for fields in ID registers
	ID registers to which this scheme applies
	Alternative ID scheme used for the Performance Monitors Extension version
	Alternative ID scheme used for ID_AA64MMFR0_EL1 stage 2 granule sizes

	D13.2 General system control registers
	D13.2.1 ACCDATA_EL1, Accelerator Data
	Field descriptions
	Accessing ACCDATA_EL1

	D13.2.2 ACTLR_EL1, Auxiliary Control Register (EL1)
	Field descriptions
	Accessing ACTLR_EL1

	D13.2.3 ACTLR_EL2, Auxiliary Control Register (EL2)
	Field descriptions
	Accessing ACTLR_EL2

	D13.2.4 ACTLR_EL3, Auxiliary Control Register (EL3)
	Field descriptions
	Accessing ACTLR_EL3

	D13.2.5 AFSR0_EL1, Auxiliary Fault Status Register 0 (EL1)
	Field descriptions
	Accessing AFSR0_EL1

	D13.2.6 AFSR0_EL2, Auxiliary Fault Status Register 0 (EL2)
	Field descriptions
	Accessing AFSR0_EL2

	D13.2.7 AFSR0_EL3, Auxiliary Fault Status Register 0 (EL3)
	Field descriptions
	Accessing AFSR0_EL3

	D13.2.8 AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)
	Field descriptions
	Accessing AFSR1_EL1

	D13.2.9 AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)
	Field descriptions
	Accessing AFSR1_EL2

	D13.2.10 AFSR1_EL3, Auxiliary Fault Status Register 1 (EL3)
	Field descriptions
	Accessing AFSR1_EL3

	D13.2.11 AIDR_EL1, Auxiliary ID Register
	Field descriptions
	Accessing AIDR_EL1

	D13.2.12 AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1)
	Field descriptions
	Accessing AMAIR_EL1

	D13.2.13 AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2)
	Field descriptions
	Accessing AMAIR_EL2

	D13.2.14 AMAIR_EL3, Auxiliary Memory Attribute Indirection Register (EL3)
	Field descriptions
	Accessing AMAIR_EL3

	D13.2.15 APDAKeyHi_EL1, Pointer Authentication Key A for Data (bits[127:64])
	Field descriptions
	Accessing APDAKeyHi_EL1

	D13.2.16 APDAKeyLo_EL1, Pointer Authentication Key A for Data (bits[63:0])
	Field descriptions
	Accessing APDAKeyLo_EL1

	D13.2.17 APDBKeyHi_EL1, Pointer Authentication Key B for Data (bits[127:64])
	Field descriptions
	Accessing APDBKeyHi_EL1

	D13.2.18 APDBKeyLo_EL1, Pointer Authentication Key B for Data (bits[63:0])
	Field descriptions
	Accessing APDBKeyLo_EL1

	D13.2.19 APGAKeyHi_EL1, Pointer Authentication Key A for Code (bits[127:64])
	Field descriptions
	Accessing APGAKeyHi_EL1

	D13.2.20 APGAKeyLo_EL1, Pointer Authentication Key A for Code (bits[63:0])
	Field descriptions
	Accessing APGAKeyLo_EL1

	D13.2.21 APIAKeyHi_EL1, Pointer Authentication Key A for Instruction (bits[127:64])
	Field descriptions
	Accessing APIAKeyHi_EL1

	D13.2.22 APIAKeyLo_EL1, Pointer Authentication Key A for Instruction (bits[63:0])
	Field descriptions
	Accessing APIAKeyLo_EL1

	D13.2.23 APIBKeyHi_EL1, Pointer Authentication Key B for Instruction (bits[127:64])
	Field descriptions
	Accessing APIBKeyHi_EL1

	D13.2.24 APIBKeyLo_EL1, Pointer Authentication Key B for Instruction (bits[63:0])
	Field descriptions
	Accessing APIBKeyLo_EL1

	D13.2.25 CCSIDR2_EL1, Current Cache Size ID Register 2
	Field descriptions
	Accessing CCSIDR2_EL1

	D13.2.26 CCSIDR_EL1, Current Cache Size ID Register
	Field descriptions
	Accessing CCSIDR_EL1

	D13.2.27 CLIDR_EL1, Cache Level ID Register
	Field descriptions
	Accessing CLIDR_EL1

	D13.2.28 CONTEXTIDR_EL1, Context ID Register (EL1)
	Field descriptions
	Accessing CONTEXTIDR_EL1

	D13.2.29 CONTEXTIDR_EL2, Context ID Register (EL2)
	Field descriptions
	Accessing CONTEXTIDR_EL2

	D13.2.30 CPACR_EL1, Architectural Feature Access Control Register
	Field descriptions
	Accessing CPACR_EL1

	D13.2.31 CPTR_EL2, Architectural Feature Trap Register (EL2)
	Field descriptions
	Accessing CPTR_EL2

	D13.2.32 CPTR_EL3, Architectural Feature Trap Register (EL3)
	Field descriptions
	Accessing CPTR_EL3

	D13.2.33 CSSELR_EL1, Cache Size Selection Register
	Field descriptions
	Accessing CSSELR_EL1

	D13.2.34 CTR_EL0, Cache Type Register
	Field descriptions
	Accessing CTR_EL0

	D13.2.35 DACR32_EL2, Domain Access Control Register
	Field descriptions
	Accessing DACR32_EL2

	D13.2.36 DCZID_EL0, Data Cache Zero ID register
	Field descriptions
	Accessing DCZID_EL0

	D13.2.37 ESR_EL1, Exception Syndrome Register (EL1)
	Field descriptions
	Accessing ESR_EL1

	D13.2.38 ESR_EL2, Exception Syndrome Register (EL2)
	Field descriptions
	Accessing ESR_EL2

	D13.2.39 ESR_EL3, Exception Syndrome Register (EL3)
	Field descriptions
	Accessing ESR_EL3

	D13.2.40 FAR_EL1, Fault Address Register (EL1)
	Field descriptions
	Accessing FAR_EL1

	D13.2.41 FAR_EL2, Fault Address Register (EL2)
	Field descriptions
	Accessing FAR_EL2

	D13.2.42 FAR_EL3, Fault Address Register (EL3)
	Field descriptions
	Accessing FAR_EL3

	D13.2.43 FPEXC32_EL2, Floating-Point Exception Control register
	Field descriptions
	Accessing FPEXC32_EL2

	D13.2.44 GCR_EL1, Tag Control Register.
	Field descriptions
	Accessing GCR_EL1

	D13.2.45 GMID_EL1, Multiple tag transfer ID register
	Field descriptions
	Accessing GMID_EL1

	D13.2.46 HACR_EL2, Hypervisor Auxiliary Control Register
	Field descriptions
	Accessing HACR_EL2

	D13.2.47 HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register
	Field descriptions
	Accessing HAFGRTR_EL2

	D13.2.48 HCR_EL2, Hypervisor Configuration Register
	Field descriptions
	Accessing HCR_EL2

	D13.2.49 HCRX_EL2, Extended Hypervisor Configuration Register
	Field descriptions
	Accessing HCRX_EL2

	D13.2.50 HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register
	Field descriptions
	Accessing HDFGRTR_EL2

	D13.2.51 HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register
	Field descriptions
	Accessing HDFGWTR_EL2

	D13.2.52 HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register
	Field descriptions
	Accessing HFGITR_EL2

	D13.2.53 HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register
	Field descriptions
	Accessing HFGRTR_EL2

	D13.2.54 HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register
	Field descriptions
	Accessing HFGWTR_EL2

	D13.2.55 HPFAR_EL2, Hypervisor IPA Fault Address Register
	Field descriptions
	Accessing HPFAR_EL2

	D13.2.56 HSTR_EL2, Hypervisor System Trap Register
	Field descriptions
	Accessing HSTR_EL2

	D13.2.57 ID_AA64AFR0_EL1, AArch64 Auxiliary Feature Register 0
	Field descriptions
	Accessing ID_AA64AFR0_EL1

	D13.2.58 ID_AA64AFR1_EL1, AArch64 Auxiliary Feature Register 1
	Field descriptions
	Accessing ID_AA64AFR1_EL1

	D13.2.59 ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0
	Field descriptions
	Accessing ID_AA64DFR0_EL1

	D13.2.60 ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1
	Field descriptions
	Accessing ID_AA64DFR1_EL1

	D13.2.61 ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0
	Field descriptions
	Accessing ID_AA64ISAR0_EL1

	D13.2.62 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1
	Field descriptions
	Accessing ID_AA64ISAR1_EL1

	D13.2.63 ID_AA64ISAR2_EL1, AArch64 Instruction Set Attribute Register 2
	Field descriptions
	Accessing ID_AA64ISAR2_EL1

	D13.2.64 ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0
	Field descriptions
	Accessing ID_AA64MMFR0_EL1

	D13.2.65 ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1
	Field descriptions
	Accessing ID_AA64MMFR1_EL1

	D13.2.66 ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2
	Field descriptions
	Accessing ID_AA64MMFR2_EL1

	D13.2.67 ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0
	Field descriptions
	Accessing ID_AA64PFR0_EL1

	D13.2.68 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1
	Field descriptions
	Accessing ID_AA64PFR1_EL1

	D13.2.69 ID_AFR0_EL1, AArch32 Auxiliary Feature Register 0
	Field descriptions
	Accessing ID_AFR0_EL1

	D13.2.70 ID_DFR0_EL1, AArch32 Debug Feature Register 0
	Field descriptions
	Accessing ID_DFR0_EL1

	D13.2.71 ID_DFR1_EL1, Debug Feature Register 1
	Field descriptions
	Accessing ID_DFR1_EL1

	D13.2.72 ID_ISAR0_EL1, AArch32 Instruction Set Attribute Register 0
	Field descriptions
	Accessing ID_ISAR0_EL1

	D13.2.73 ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1
	Field descriptions
	Accessing ID_ISAR1_EL1

	D13.2.74 ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2
	Field descriptions
	Accessing ID_ISAR2_EL1

	D13.2.75 ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3
	Field descriptions
	Accessing ID_ISAR3_EL1

	D13.2.76 ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4
	Field descriptions
	Accessing ID_ISAR4_EL1

	D13.2.77 ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5
	Field descriptions
	Accessing ID_ISAR5_EL1

	D13.2.78 ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6
	Field descriptions
	Accessing ID_ISAR6_EL1

	D13.2.79 ID_MMFR0_EL1, AArch32 Memory Model Feature Register 0
	Field descriptions
	Accessing ID_MMFR0_EL1

	D13.2.80 ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1
	Field descriptions
	Accessing ID_MMFR1_EL1

	D13.2.81 ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2
	Field descriptions
	Accessing ID_MMFR2_EL1

	D13.2.82 ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3
	Field descriptions
	Accessing ID_MMFR3_EL1

	D13.2.83 ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4
	Field descriptions
	Accessing ID_MMFR4_EL1

	D13.2.84 ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5
	Field descriptions
	Accessing ID_MMFR5_EL1

	D13.2.85 ID_PFR0_EL1, AArch32 Processor Feature Register 0
	Field descriptions
	Accessing ID_PFR0_EL1

	D13.2.86 ID_PFR1_EL1, AArch32 Processor Feature Register 1
	Field descriptions
	Accessing ID_PFR1_EL1

	D13.2.87 ID_PFR2_EL1, AArch32 Processor Feature Register 2
	Field descriptions
	Accessing ID_PFR2_EL1

	D13.2.88 IFSR32_EL2, Instruction Fault Status Register (EL2)
	Field descriptions
	Accessing IFSR32_EL2

	D13.2.89 ISR_EL1, Interrupt Status Register
	Field descriptions
	Accessing ISR_EL1

	D13.2.90 LORC_EL1, LORegion Control (EL1)
	Field descriptions
	Accessing LORC_EL1

	D13.2.91 LOREA_EL1, LORegion End Address (EL1)
	Field descriptions
	Accessing LOREA_EL1

	D13.2.92 LORID_EL1, LORegionID (EL1)
	Field descriptions
	Accessing LORID_EL1

	D13.2.93 LORN_EL1, LORegion Number (EL1)
	Field descriptions
	Accessing LORN_EL1

	D13.2.94 LORSA_EL1, LORegion Start Address (EL1)
	Field descriptions
	Accessing LORSA_EL1

	D13.2.95 MAIR_EL1, Memory Attribute Indirection Register (EL1)
	Field descriptions
	Accessing MAIR_EL1

	D13.2.96 MAIR_EL2, Memory Attribute Indirection Register (EL2)
	Field descriptions
	Accessing MAIR_EL2

	D13.2.97 MAIR_EL3, Memory Attribute Indirection Register (EL3)
	Field descriptions
	Accessing MAIR_EL3

	D13.2.98 MIDR_EL1, Main ID Register
	Field descriptions
	Accessing MIDR_EL1

	D13.2.99 MPIDR_EL1, Multiprocessor Affinity Register
	Field descriptions
	Accessing MPIDR_EL1

	D13.2.100 MVFR0_EL1, AArch32 Media and VFP Feature Register 0
	Field descriptions
	Accessing MVFR0_EL1

	D13.2.101 MVFR1_EL1, AArch32 Media and VFP Feature Register 1
	Field descriptions
	Accessing MVFR1_EL1

	D13.2.102 MVFR2_EL1, AArch32 Media and VFP Feature Register 2
	Field descriptions
	Accessing MVFR2_EL1

	D13.2.103 PAR_EL1, Physical Address Register
	Field descriptions
	Accessing PAR_EL1

	D13.2.104 REVIDR_EL1, Revision ID Register
	Field descriptions
	Accessing REVIDR_EL1

	D13.2.105 RGSR_EL1, Random Allocation Tag Seed Register.
	Field descriptions
	Accessing RGSR_EL1

	D13.2.106 RMR_EL1, Reset Management Register (EL1)
	Field descriptions
	Accessing RMR_EL1

	D13.2.107 RMR_EL2, Reset Management Register (EL2)
	Field descriptions
	Accessing RMR_EL2

	D13.2.108 RMR_EL3, Reset Management Register (EL3)
	Field descriptions
	Accessing RMR_EL3

	D13.2.109 RNDR, Random Number
	Field descriptions
	Accessing RNDR

	D13.2.110 RNDRRS, Reseeded Random Number
	Field descriptions
	Accessing RNDRRS

	D13.2.111 RVBAR_EL1, Reset Vector Base Address Register (if EL2 and EL3 not implemented)
	Field descriptions
	Accessing RVBAR_EL1

	D13.2.112 RVBAR_EL2, Reset Vector Base Address Register (if EL3 not implemented)
	Field descriptions
	Accessing RVBAR_EL2

	D13.2.113 RVBAR_EL3, Reset Vector Base Address Register (if EL3 implemented)
	Field descriptions
	Accessing RVBAR_EL3

	D13.2.114 S3_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED registers
	Field descriptions
	Accessing S3_<op1>_<Cn>_<Cm>_<op2>

	D13.2.115 SCR_EL3, Secure Configuration Register
	Field descriptions
	Accessing SCR_EL3

	D13.2.116 SCTLR_EL1, System Control Register (EL1)
	Field descriptions
	Accessing SCTLR_EL1

	D13.2.117 SCTLR_EL2, System Control Register (EL2)
	Field descriptions
	Accessing SCTLR_EL2

	D13.2.118 SCTLR_EL3, System Control Register (EL3)
	Field descriptions
	Accessing SCTLR_EL3

	D13.2.119 SCXTNUM_EL0, EL0 Read/Write Software Context Number
	Field descriptions
	Accessing SCXTNUM_EL0

	D13.2.120 SCXTNUM_EL1, EL1 Read/Write Software Context Number
	Field descriptions
	Accessing SCXTNUM_EL1

	D13.2.121 SCXTNUM_EL2, EL2 Read/Write Software Context Number
	Field descriptions
	Accessing SCXTNUM_EL2

	D13.2.122 SCXTNUM_EL3, EL3 Read/Write Software Context Number
	Field descriptions
	Accessing SCXTNUM_EL3

	D13.2.123 TCR_EL1, Translation Control Register (EL1)
	Field descriptions
	Accessing TCR_EL1

	D13.2.124 TCR_EL2, Translation Control Register (EL2)
	Field descriptions
	Accessing TCR_EL2

	D13.2.125 TCR_EL3, Translation Control Register (EL3)
	Field descriptions
	Accessing TCR_EL3

	D13.2.126 TFSRE0_EL1, Tag Fault Status Register (EL0).
	Field descriptions
	Accessing TFSRE0_EL1

	D13.2.127 TFSR_EL1, Tag Fault Status Register (EL1)
	Field descriptions
	Accessing TFSR_EL1

	D13.2.128 TFSR_EL2, Tag Fault Status Register (EL2)
	Field descriptions
	Accessing TFSR_EL2

	D13.2.129 TFSR_EL3, Tag Fault Status Register (EL3)
	Field descriptions
	Accessing TFSR_EL3

	D13.2.130 TPIDR_EL0, EL0 Read/Write Software Thread ID Register
	Field descriptions
	Accessing TPIDR_EL0

	D13.2.131 TPIDR_EL1, EL1 Software Thread ID Register
	Field descriptions
	Accessing TPIDR_EL1

	D13.2.132 TPIDR_EL2, EL2 Software Thread ID Register
	Field descriptions
	Accessing TPIDR_EL2

	D13.2.133 TPIDR_EL3, EL3 Software Thread ID Register
	Field descriptions
	Accessing TPIDR_EL3

	D13.2.134 TPIDRRO_EL0, EL0 Read-Only Software Thread ID Register
	Field descriptions
	Accessing TPIDRRO_EL0

	D13.2.135 TTBR0_EL1, Translation Table Base Register 0 (EL1)
	Field descriptions
	Accessing TTBR0_EL1

	D13.2.136 TTBR0_EL2, Translation Table Base Register 0 (EL2)
	Field descriptions
	Accessing TTBR0_EL2

	D13.2.137 TTBR0_EL3, Translation Table Base Register 0 (EL3)
	Field descriptions
	Accessing TTBR0_EL3

	D13.2.138 TTBR1_EL1, Translation Table Base Register 1 (EL1)
	Field descriptions
	Accessing TTBR1_EL1

	D13.2.139 TTBR1_EL2, Translation Table Base Register 1 (EL2)
	Field descriptions
	Accessing TTBR1_EL2

	D13.2.140 VBAR_EL1, Vector Base Address Register (EL1)
	Field descriptions
	Accessing VBAR_EL1

	D13.2.141 VBAR_EL2, Vector Base Address Register (EL2)
	Field descriptions
	Accessing VBAR_EL2

	D13.2.142 VBAR_EL3, Vector Base Address Register (EL3)
	Field descriptions
	Accessing VBAR_EL3

	D13.2.143 VMPIDR_EL2, Virtualization Multiprocessor ID Register
	Field descriptions
	Accessing VMPIDR_EL2

	D13.2.144 VNCR_EL2, Virtual Nested Control Register
	Field descriptions
	Accessing VNCR_EL2

	D13.2.145 VPIDR_EL2, Virtualization Processor ID Register
	Field descriptions
	Accessing VPIDR_EL2

	D13.2.146 VSTCR_EL2, Virtualization Secure Translation Control Register
	Field descriptions
	Accessing VSTCR_EL2

	D13.2.147 VSTTBR_EL2, Virtualization Secure Translation Table Base Register
	Field descriptions
	Accessing VSTTBR_EL2

	D13.2.148 VTCR_EL2, Virtualization Translation Control Register
	Field descriptions
	Accessing VTCR_EL2

	D13.2.149 VTTBR_EL2, Virtualization Translation Table Base Register
	Field descriptions
	Accessing VTTBR_EL2

	D13.3 Debug registers
	D13.3.1 DBGAUTHSTATUS_EL1, Debug Authentication Status register
	Field descriptions
	Accessing DBGAUTHSTATUS_EL1

	D13.3.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15
	Field descriptions
	Accessing DBGBCR<n>_EL1

	D13.3.3 DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15
	Field descriptions
	Accessing DBGBVR<n>_EL1

	D13.3.4 DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register
	Field descriptions
	Accessing DBGCLAIMCLR_EL1

	D13.3.5 DBGCLAIMSET_EL1, Debug CLAIM Tag Set register
	Field descriptions
	Accessing DBGCLAIMSET_EL1

	D13.3.6 DBGDTR_EL0, Debug Data Transfer Register, half-duplex
	Field descriptions
	Accessing DBGDTR_EL0

	D13.3.7 DBGDTRRX_EL0, Debug Data Transfer Register, Receive
	Field descriptions
	Accessing DBGDTRRX_EL0

	D13.3.8 DBGDTRTX_EL0, Debug Data Transfer Register, Transmit
	Field descriptions
	Accessing DBGDTRTX_EL0

	D13.3.9 DBGPRCR_EL1, Debug Power Control Register
	Field descriptions
	Accessing DBGPRCR_EL1

	D13.3.10 DBGVCR32_EL2, Debug Vector Catch Register
	Field descriptions
	Accessing DBGVCR32_EL2

	D13.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15
	Field descriptions
	Accessing DBGWCR<n>_EL1

	D13.3.12 DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15
	Field descriptions
	Accessing DBGWVR<n>_EL1

	D13.3.13 DLR_EL0, Debug Link Register
	Field descriptions
	Accessing DLR_EL0

	D13.3.14 DSPSR_EL0, Debug Saved Program Status Register
	Field descriptions
	Accessing DSPSR_EL0

	D13.3.15 MDCCINT_EL1, Monitor DCC Interrupt Enable Register
	Field descriptions
	Accessing MDCCINT_EL1

	D13.3.16 MDCCSR_EL0, Monitor DCC Status Register
	Field descriptions
	Accessing MDCCSR_EL0

	D13.3.17 MDCR_EL2, Monitor Debug Configuration Register (EL2)
	Field descriptions
	Accessing MDCR_EL2

	D13.3.18 MDCR_EL3, Monitor Debug Configuration Register (EL3)
	Field descriptions
	Accessing MDCR_EL3

	D13.3.19 MDRAR_EL1, Monitor Debug ROM Address Register
	Field descriptions
	Accessing MDRAR_EL1

	D13.3.20 MDSCR_EL1, Monitor Debug System Control Register
	Field descriptions
	Accessing MDSCR_EL1

	D13.3.21 OSDLR_EL1, OS Double Lock Register
	Field descriptions
	Accessing OSDLR_EL1

	D13.3.22 OSDTRRX_EL1, OS Lock Data Transfer Register, Receive
	Field descriptions
	Accessing OSDTRRX_EL1

	D13.3.23 OSDTRTX_EL1, OS Lock Data Transfer Register, Transmit
	Field descriptions
	Accessing OSDTRTX_EL1

	D13.3.24 OSECCR_EL1, OS Lock Exception Catch Control Register
	Field descriptions
	Accessing OSECCR_EL1

	D13.3.25 OSLAR_EL1, OS Lock Access Register
	Field descriptions
	Accessing OSLAR_EL1

	D13.3.26 OSLSR_EL1, OS Lock Status Register
	Field descriptions
	Accessing OSLSR_EL1

	D13.3.27 SDER32_EL2, AArch32 Secure Debug Enable Register
	Field descriptions
	Accessing SDER32_EL2

	D13.3.28 SDER32_EL3, AArch32 Secure Debug Enable Register
	Field descriptions
	Accessing SDER32_EL3

	D13.3.29 TRFCR_EL1, Trace Filter Control Register (EL1)
	Field descriptions
	Accessing TRFCR_EL1

	D13.3.30 TRFCR_EL2, Trace Filter Control Register (EL2)
	Field descriptions
	Accessing TRFCR_EL2

	D13.4 Performance Monitors registers
	D13.4.1 PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register
	Field descriptions
	Accessing PMCCFILTR_EL0

	D13.4.2 PMCCNTR_EL0, Performance Monitors Cycle Count Register
	Field descriptions
	Accessing PMCCNTR_EL0

	D13.4.3 PMCEID0_EL0, Performance Monitors Common Event Identification register 0
	Field descriptions
	Accessing PMCEID0_EL0

	D13.4.4 PMCEID1_EL0, Performance Monitors Common Event Identification register 1
	Field descriptions
	Accessing PMCEID1_EL0

	D13.4.5 PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register
	Field descriptions
	Accessing PMCNTENCLR_EL0

	D13.4.6 PMCNTENSET_EL0, Performance Monitors Count Enable Set register
	Field descriptions
	Accessing PMCNTENSET_EL0

	D13.4.7 PMCR_EL0, Performance Monitors Control Register
	Field descriptions
	Accessing PMCR_EL0

	D13.4.8 PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30
	Field descriptions
	Accessing PMEVCNTR<n>_EL0

	D13.4.9 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30
	Field descriptions
	Accessing PMEVTYPER<n>_EL0

	D13.4.10 PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register
	Field descriptions
	Accessing PMINTENCLR_EL1

	D13.4.11 PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register
	Field descriptions
	Accessing PMINTENSET_EL1

	D13.4.12 PMMIR_EL1, Performance Monitors Machine Identification Register
	Field descriptions
	Accessing PMMIR_EL1

	D13.4.13 PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear Register
	Field descriptions
	Accessing PMOVSCLR_EL0

	D13.4.14 PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register
	Field descriptions
	Accessing PMOVSSET_EL0

	D13.4.15 PMSELR_EL0, Performance Monitors Event Counter Selection Register
	Field descriptions
	Accessing PMSELR_EL0

	D13.4.16 PMSWINC_EL0, Performance Monitors Software Increment register
	Field descriptions
	Accessing PMSWINC_EL0

	D13.4.17 PMUSERENR_EL0, Performance Monitors User Enable Register
	Field descriptions
	Accessing PMUSERENR_EL0

	D13.4.18 PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register
	Field descriptions
	Accessing PMXEVCNTR_EL0

	D13.4.19 PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register
	Field descriptions
	Accessing PMXEVTYPER_EL0

	D13.5 Activity Monitors registers
	D13.5.1 AMCFGR_EL0, Activity Monitors Configuration Register
	Field descriptions
	Accessing AMCFGR_EL0

	D13.5.2 AMCG1IDR_EL0, Activity Monitors Counter Group 1 Identification Register
	Field descriptions
	Accessing AMCG1IDR_EL0

	D13.5.3 AMCGCR_EL0, Activity Monitors Counter Group Configuration Register
	Field descriptions
	Accessing AMCGCR_EL0

	D13.5.4 AMCNTENCLR0_EL0, Activity Monitors Count Enable Clear Register 0
	Field descriptions
	Accessing AMCNTENCLR0_EL0

	D13.5.5 AMCNTENCLR1_EL0, Activity Monitors Count Enable Clear Register 1
	Field descriptions
	Accessing AMCNTENCLR1_EL0

	D13.5.6 AMCNTENSET0_EL0, Activity Monitors Count Enable Set Register 0
	Field descriptions
	Accessing AMCNTENSET0_EL0

	D13.5.7 AMCNTENSET1_EL0, Activity Monitors Count Enable Set Register 1
	Field descriptions
	Accessing AMCNTENSET1_EL0

	D13.5.8 AMCR_EL0, Activity Monitors Control Register
	Field descriptions
	Accessing AMCR_EL0

	D13.5.9 AMEVCNTR0<n>_EL0, Activity Monitors Event Counter Registers 0, n = 0 - 3
	Field descriptions
	Accessing AMEVCNTR0<n>_EL0

	D13.5.10 AMEVCNTR1<n>_EL0, Activity Monitors Event Counter Registers 1, n = 0 - 15
	Field descriptions
	Accessing AMEVCNTR1<n>_EL0

	D13.5.11 AMEVCNTVOFF0<n>_EL2, Activity Monitors Event Counter Virtual Offset Registers 0, n = 0 - 15
	Field descriptions
	Accessing AMEVCNTVOFF0<n>_EL2

	D13.5.12 AMEVCNTVOFF1<n>_EL2, Activity Monitors Event Counter Virtual Offset Registers 1, n = 0 - 15
	Field descriptions
	Accessing AMEVCNTVOFF1<n>_EL2

	D13.5.13 AMEVTYPER0<n>_EL0, Activity Monitors Event Type Registers 0, n = 0 - 3
	Field descriptions
	Accessing AMEVTYPER0<n>_EL0

	D13.5.14 AMEVTYPER1<n>_EL0, Activity Monitors Event Type Registers 1, n = 0 - 15
	Field descriptions
	Accessing AMEVTYPER1<n>_EL0

	D13.5.15 AMUSERENR_EL0, Activity Monitors User Enable Register
	Field descriptions
	Accessing AMUSERENR_EL0

	D13.6 Statistical Profiling Extension registers
	D13.6.1 PMBIDR_EL1, Profiling Buffer ID Register
	Field descriptions
	Accessing PMBIDR_EL1

	D13.6.2 PMBLIMITR_EL1, Profiling Buffer Limit Address Register
	Field descriptions
	Accessing PMBLIMITR_EL1

	D13.6.3 PMBPTR_EL1, Profiling Buffer Write Pointer Register
	Field descriptions
	Accessing PMBPTR_EL1

	D13.6.4 PMBSR_EL1, Profiling Buffer Status/syndrome Register
	Field descriptions
	Accessing PMBSR_EL1

	D13.6.5 PMSCR_EL1, Statistical Profiling Control Register (EL1)
	Field descriptions
	Accessing PMSCR_EL1

	D13.6.6 PMSCR_EL2, Statistical Profiling Control Register (EL2)
	Field descriptions
	Accessing PMSCR_EL2

	D13.6.7 PMSEVFR_EL1, Sampling Event Filter Register
	Field descriptions
	Accessing PMSEVFR_EL1

	D13.6.8 PMSFCR_EL1, Sampling Filter Control Register
	Field descriptions
	Accessing PMSFCR_EL1

	D13.6.9 PMSICR_EL1, Sampling Interval Counter Register
	Field descriptions
	Accessing PMSICR_EL1

	D13.6.10 PMSIDR_EL1, Sampling Profiling ID Register
	Field descriptions
	Accessing PMSIDR_EL1

	D13.6.11 PMSIRR_EL1, Sampling Interval Reload Register
	Field descriptions
	Accessing PMSIRR_EL1

	D13.6.12 PMSLATFR_EL1, Sampling Latency Filter Register
	Field descriptions
	Accessing PMSLATFR_EL1

	D13.6.13 PMSNEVFR_EL1, Sampling Inverted Event Filter Register
	Field descriptions
	Accessing PMSNEVFR_EL1

	D13.7 RAS registers
	D13.7.1 DISR_EL1, Deferred Interrupt Status Register
	Field descriptions
	Accessing DISR_EL1

	D13.7.2 ERRIDR_EL1, Error Record ID Register
	Field descriptions
	Accessing ERRIDR_EL1

	D13.7.3 ERRSELR_EL1, Error Record Select Register
	Field descriptions
	Accessing ERRSELR_EL1

	D13.7.4 ERXADDR_EL1, Selected Error Record Address Register
	Field descriptions
	Accessing ERXADDR_EL1

	D13.7.5 ERXCTLR_EL1, Selected Error Record Control Register
	Field descriptions
	Accessing ERXCTLR_EL1

	D13.7.6 ERXFR_EL1, Selected Error Record Feature Register
	Field descriptions
	Accessing ERXFR_EL1

	D13.7.7 ERXMISC0_EL1, Selected Error Record Miscellaneous Register 0
	Field descriptions
	Accessing ERXMISC0_EL1

	D13.7.8 ERXMISC1_EL1, Selected Error Record Miscellaneous Register 1
	Field descriptions
	Accessing ERXMISC1_EL1

	D13.7.9 ERXMISC2_EL1, Selected Error Record Miscellaneous Register 2
	Field descriptions
	Accessing ERXMISC2_EL1

	D13.7.10 ERXMISC3_EL1, Selected Error Record Miscellaneous Register 3
	Field descriptions
	Accessing ERXMISC3_EL1

	D13.7.11 ERXPFGCDN_EL1, Selected Pseudo-fault Generation Countdown register
	Field descriptions
	Accessing ERXPFGCDN_EL1

	D13.7.12 ERXPFGCTL_EL1, Selected Pseudo-fault Generation Control register
	Field descriptions
	Accessing ERXPFGCTL_EL1

	D13.7.13 ERXPFGF_EL1, Selected Pseudo-fault Generation Feature register
	Field descriptions
	Accessing ERXPFGF_EL1

	D13.7.14 ERXSTATUS_EL1, Selected Error Record Primary Status Register
	Field descriptions
	Accessing ERXSTATUS_EL1

	D13.7.15 VDISR_EL2, Virtual Deferred Interrupt Status Register
	Field descriptions
	Accessing VDISR_EL2

	D13.7.16 VSESR_EL2, Virtual SError Exception Syndrome Register
	Field descriptions
	Accessing VSESR_EL2

	D13.8 Generic Timer registers
	D13.8.1 CNTFRQ_EL0, Counter-timer Frequency register
	Field descriptions
	Accessing CNTFRQ_EL0

	D13.8.2 CNTHCTL_EL2, Counter-timer Hypervisor Control register
	Field descriptions
	Accessing CNTHCTL_EL2

	D13.8.3 CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register
	Field descriptions
	Accessing CNTHP_CTL_EL2

	D13.8.4 CNTHP_CVAL_EL2, Counter-timer Physical Timer CompareValue register (EL2)
	Field descriptions
	Accessing CNTHP_CVAL_EL2

	D13.8.5 CNTHP_TVAL_EL2, Counter-timer Physical Timer TimerValue register (EL2)
	Field descriptions
	Accessing CNTHP_TVAL_EL2

	D13.8.6 CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2)
	Field descriptions
	Accessing CNTHPS_CTL_EL2

	D13.8.7 CNTHPS_CVAL_EL2, Counter-timer Secure Physical Timer CompareValue register (EL2)
	Field descriptions
	Accessing CNTHPS_CVAL_EL2

	D13.8.8 CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2)
	Field descriptions
	Accessing CNTHPS_TVAL_EL2

	D13.8.9 CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)
	Field descriptions
	Accessing CNTHV_CTL_EL2

	D13.8.10 CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)
	Field descriptions
	Accessing CNTHV_CVAL_EL2

	D13.8.11 CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue Register (EL2)
	Field descriptions
	Accessing CNTHV_TVAL_EL2

	D13.8.12 CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)
	Field descriptions
	Accessing CNTHVS_CTL_EL2

	D13.8.13 CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register (EL2)
	Field descriptions
	Accessing CNTHVS_CVAL_EL2

	D13.8.14 CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2)
	Field descriptions
	Accessing CNTHVS_TVAL_EL2

	D13.8.15 CNTKCTL_EL1, Counter-timer Kernel Control register
	Field descriptions
	Accessing CNTKCTL_EL1

	D13.8.16 CNTP_CTL_EL0, Counter-timer Physical Timer Control register
	Field descriptions
	Accessing CNTP_CTL_EL0

	D13.8.17 CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue register
	Field descriptions
	Accessing CNTP_CVAL_EL0

	D13.8.18 CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register
	Field descriptions
	Accessing CNTP_TVAL_EL0

	D13.8.19 CNTPCTSS_EL0, Counter-timer Self-Synchronized Physical Count register
	Field descriptions
	Accessing CNTPCTSS_EL0

	D13.8.20 CNTPCT_EL0, Counter-timer Physical Count register
	Field descriptions
	Accessing CNTPCT_EL0

	D13.8.21 CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control register
	Field descriptions
	Accessing CNTPS_CTL_EL1

	D13.8.22 CNTPOFF_EL2, Counter-timer Physical Offset register
	Field descriptions
	Accessing CNTPOFF_EL2

	D13.8.23 CNTPS_CVAL_EL1, Counter-timer Physical Secure Timer CompareValue register
	Field descriptions
	Accessing CNTPS_CVAL_EL1

	D13.8.24 CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue register
	Field descriptions
	Accessing CNTPS_TVAL_EL1

	D13.8.25 CNTV_CTL_EL0, Counter-timer Virtual Timer Control register
	Field descriptions
	Accessing CNTV_CTL_EL0

	D13.8.26 CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue register
	Field descriptions
	Accessing CNTV_CVAL_EL0

	D13.8.27 CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register
	Field descriptions
	Accessing CNTV_TVAL_EL0

	D13.8.28 CNTVCTSS_EL0, Counter-timer Self-Synchronized Virtual Count register
	Field descriptions
	Accessing CNTVCTSS_EL0

	D13.8.29 CNTVCT_EL0, Counter-timer Virtual Count register
	Field descriptions
	Accessing CNTVCT_EL0

	D13.8.30 CNTVOFF_EL2, Counter-timer Virtual Offset register
	Field descriptions
	Accessing CNTVOFF_EL2

	Part E: The AArch32 Application Level Architecture�
	E1: The AArch32 Application Level Programmers’ Model�
	E1.1 About the Application level programmers’ model
	E1.2 The Application level programmers’ model in AArch32 state
	E1.2.1 Instruction sets, arithmetic operations, and register files
	E1.2.2 Core data types and arithmetic in AArch32 state
	Integer arithmetic

	E1.2.3 The general-purpose registers, and the PC, in AArch32 state
	Writing to the PC
	Pseudocode description of operations on the AArch32 general-purpose registers and the PC

	E1.2.4 Process state, PSTATE
	Accessing PSTATE fields at EL0
	Use of PSTATE.IT
	Pseudocode description of PSTATE PE state fields

	E1.2.5 About the DIT bit
	E1.2.6 Jazelle support

	E1.3 Advanced SIMD and floating-point instructions
	E1.3.1 The SIMD and floating-point register file
	Advanced SIMD views of the register file
	Floating-point views of the register file
	SIMD and Floating-point register file mapping onto registers
	Pseudocode description of the SIMD and Floating-point register file

	E1.3.2 Data types supported by the Advanced SIMD implementation
	Advanced SIMD vectors

	E1.3.3 Advanced SIMD and floating-point System registers
	E1.3.4 Floating-point data types and arithmetic
	E1.3.5 Flushing denormalized numbers to zero
	Flushing denormalized inputs to zero
	Flushing to zero of denormalized numbers as Intermediate results of some BF16 instructions
	Flushing denormalized outputs to zero

	E1.3.6 NaN handling and the Default NaN
	The Default NaN
	NaN handling
	NaN propagation

	E1.3.7 Rounding
	Round to Nearest mode
	Round towards Plus Infinity mode
	Round towards Minus Infinity mode
	Round towards Zero mode
	Round to Nearest with Ties to Away
	Round to Odd mode

	E1.3.8 Floating-point exceptions and exception traps
	Input Denormal exceptions
	Inexact exceptions
	Underflow exceptions
	Overflow exceptions
	Divide by Zero exceptions
	Invalid Operation exceptions
	Floating-point exception traps
	Combinations of floating-point exceptions

	E1.3.9 Controls of Advanced SIMD operation that do not apply to floating-point operation
	E1.3.10 Implications of not including Advanced SIMD and floating-point support
	E1.3.11 Pseudocode description of floating-point operations
	Generation of specific floating-point values
	Floating-point negation and absolute value
	Floating-point value unpacking
	Floating-point exception and NaN handling
	Floating-point rounding
	Selection of Arm standard floating-point arithmetic
	Floating-point comparisons
	Floating-point maximum and minimum
	Floating-point addition and subtraction
	Floating-point multiplication and division
	Floating-point fused multiply-add
	Floating-point reciprocal estimate and step
	Floating-point square root
	Floating-point reciprocal square root estimate and step
	Floating-point conversions

	E1.4 About the AArch32 System register interface
	E1.5 Exceptions

	E2: The AArch32 Application Level Memory Model�
	E2.1 About the Arm memory model
	E2.1.1 Address space
	E2.1.2 Memory type overview

	E2.2 Atomicity in the Arm architecture
	E2.2.1 Requirements for single-copy atomicity
	E2.2.2 Properties of single-copy atomic accesses
	E2.2.3 Multi-copy atomicity
	E2.2.4 Requirements for multi-copy atomicity
	E2.2.5 Concurrent modification and execution of instructions

	E2.3 Definition of the Armv8 memory model
	E2.3.1 Basic definitions
	E2.3.2 Dependency definitions
	E2.3.3 Ordering relations
	E2.3.4 Ordering constraints
	E2.3.5 Internal visibility requirement
	E2.3.6 External ordering constraints
	External visibility requirement
	Completes-before order
	Globally-completes-before order

	E2.3.7 Completion and endpoint ordering
	Peripherals

	E2.3.8 Ordering of instruction fetches
	E2.3.9 Restrictions on the effects of speculation
	Restrictions on the effects of speculation
	Speculative Store Bypass Safe (SSBS)
	Further restrictions on the effects of speculation from Armv8.5

	E2.3.10 Memory barriers
	Instruction Synchronization Barrier (ISB)
	Data Memory Barrier (DMB)
	Data Synchronization Barrier (DSB)
	Speculation Barrier (SB)
	Consumption of Speculative Data Barrier (CSDB)
	Speculative Store Bypass Barrier (SSBB)
	Physical Speculative Store Bypass Barrier (PSSBB)
	Trace Synchronization Barrier (TSB CSYNC)
	Shareability and access limitations on the data barrier operations
	Load-Acquire, Store-Release

	E2.4 Ordering of translation table walks
	E2.5 Caches and memory hierarchy
	E2.5.1 Introduction to caches
	E2.5.2 Memory hierarchy
	The Cacheability and Shareability memory attributes

	E2.5.3 Implication of caches for the application programmer
	Data coherency issues
	Synchronization and coherency issues between data and instruction accesses

	E2.5.4 Preloading caches

	E2.6 Alignment support
	E2.6.1 Instruction alignment
	E2.6.2 Unaligned data access
	E2.6.3 Cases where unaligned accesses are CONSTRAINED UNPREDICTABLE
	E2.6.4 Unaligned data access restrictions
	E2.6.5 Generation of Alignment faults by load/store multiple accesses to Device memory

	E2.7 Endian support
	E2.7.1 General description of endianness in the Arm architecture
	E2.7.2 Instruction endianness
	E2.7.3 Data endianness
	Instructions to reverse bytes in registers
	Endianness in Advanced SIMD

	E2.7.4 Endianness of memory-mapped peripherals

	E2.8 Memory types and attributes
	E2.8.1 Normal memory
	Shareable Normal memory
	Non-shareable Normal memory
	Cacheability attributes for Normal memory
	Multi-register loads and stores that access Normal memory

	E2.8.2 Device memory
	Gathering
	Reordering
	Early Write Acknowledgement
	Multi-register loads and stores that access Device memory

	E2.8.3 Memory access restrictions

	E2.9 Mismatched memory attributes
	E2.10 Synchronization and semaphores
	E2.10.1 Exclusive access instructions and Non-shareable memory locations
	Changes to the local monitor state resulting from speculative execution

	E2.10.2 Exclusive access instructions and shareable memory locations
	Operation of the global Exclusives monitor

	E2.10.3 Marking and the size of the marked memory block
	E2.10.4 Context switch support
	E2.10.5 Load-Exclusive and Store-Exclusive instruction usage restrictions
	E2.10.6 Use of WFE and SEV instructions by spin-locks

	Part F: The AArch32 Instruction Sets�
	F1: About the T32 and A32 Instruction Descriptions�
	F1.1 Format of instruction descriptions
	F1.1.1 Instruction section title
	F1.1.2 Introduction to the instruction
	F1.1.3 Instruction encodings
	F1.1.4 Assembler symbols
	Assembler syntax prototype line conventions

	F1.1.5 Pseudocode describing how the instruction operates

	F1.2 Standard assembler syntax fields
	F1.3 Conditional execution
	F1.3.1 The Condition code field in A32 instruction encodings
	F1.3.2 Pseudocode description of conditional execution

	F1.4 Shifts applied to a register
	F1.4.1 Constant shifts
	Encoding

	F1.4.2 Register controlled shifts
	F1.4.3 Pseudocode description of instruction-specified shifts and rotates

	F1.5 Memory accesses
	F1.6 Encoding of lists of general-purpose registers and the PC
	F1.7 General information about the T32 and A32 instruction descriptions
	F1.7.1 Execution of instructions in debug state
	F1.7.2 Fixed values in AArch32 instruction and System register descriptions
	F1.7.3 UNDEFINED, UNPREDICTABLE, and CONSTRAINED UNPREDICTABLE instruction set space
	F1.7.4 T32 and A32 Advanced SIMD and floating-point instruction encodings
	Advanced SIMD data-processing
	Advanced SIMD element or structure load/store
	Advanced SIMD and floating-point load/store and 64-bit register moves
	Advanced SIMD and floating-point 32-bit register moves
	Floating-point data-processing

	F1.7.5 The PC and the use of 0b1111 as a register specifier in T32 and A32 instructions
	T32 restrictions on the use of the PC, and use of 0b1111 as a register specifier
	A32 restrictions on the use of PC or 0b1111 as a register specifier

	F1.7.6 The SP and the use of 0b1101 as a register specifier in T32 and A32 instructions
	F1.7.7 Modified immediate constants in T32 and A32 instructions
	Modified immediate constants in T32 instructions
	Modified immediate constants in A32 instructions
	Modified immediate constants in T32 and A32 Advanced SIMD instructions
	Modified immediate constants in T32 and A32 floating-point instructions

	F1.8 Additional pseudocode support for instruction descriptions
	F1.8.1 Pseudocode description of operations for System register access instructions
	F1.8.2 Pseudocode details of system calls

	F1.9 Additional information about Advanced SIMD and floating-point instructions
	F1.9.1 Advanced SIMD and floating-point instruction syntax
	F1.9.2 The Advanced SIMD addressing mode
	F1.9.3 Advanced SIMD instruction modifiers
	F1.9.4 Advanced SIMD operand shapes
	F1.9.5 Data type specifiers
	Syntax flexibility

	F1.9.6 Register specifiers
	F1.9.7 Register lists
	Syntax flexibility

	F1.9.8 Register encoding
	F1.9.9 Advanced SIMD scalars

	F2: The AArch32 Instruction Sets Overview�
	F2.1 Support for instructions in different versions of the Arm architecture
	F2.2 Unified Assembler Language
	F2.2.1 Conditional instructions
	F2.2.2 Use of labels in UAL instruction syntax

	F2.3 Branch instructions
	F2.4 Data-processing instructions
	F2.4.1 Standard data-processing instructions
	F2.4.2 Shift instructions
	F2.4.3 Multiply instructions
	F2.4.4 Saturating instructions
	F2.4.5 Saturating addition and subtraction instructions
	F2.4.6 Packing and unpacking instructions
	F2.4.7 Parallel addition and subtraction instructions
	F2.4.8 Divide instructions
	F2.4.9 Miscellaneous data-processing instructions

	F2.5 PSTATE and banked register access instructions
	F2.5.1 PSTATE access instructions
	F2.5.2 Banked register access instructions

	F2.6 Load/store instructions
	F2.6.1 Loads to the PC
	F2.6.2 Halfword and byte loads and stores
	F2.6.3 Load unprivileged and Store unprivileged
	F2.6.4 Load-Exclusive and Store-Exclusive
	F2.6.5 Load-Acquire and Store-Release
	F2.6.6 Addressing modes

	F2.7 Load/store multiple instructions
	F2.7.1 Loads to the PC

	F2.8 Miscellaneous instructions
	F2.8.1 The Yield instruction

	F2.9 Exception-generating and exception-handling instructions
	F2.9.1 Debug state

	F2.10 System register access instructions
	F2.11 Advanced SIMD and floating-point load/store instructions
	F2.11.1 Element and structure load/store instructions

	F2.12 Advanced SIMD and floating-point register transfer instructions
	F2.13 Advanced SIMD data-processing instructions
	F2.13.1 Advanced SIMD parallel addition and subtraction
	F2.13.2 Bitwise Advanced SIMD data-processing instructions
	F2.13.3 Advanced SIMD comparison instructions
	F2.13.4 Advanced SIMD shift instructions
	F2.13.5 Advanced SIMD multiply instructions
	F2.13.6 Advanced SIMD dot product instructions
	F2.13.7 Advanced SIMD complex number arithmetic instructions
	F2.13.8 Advanced SIMD BFloat16 instructions
	F2.13.9 Advanced SIMD matrix multiply instructions
	F2.13.10 Miscellaneous Advanced SIMD data-processing instructions
	F2.13.11 The Cryptographic Extension in AArch32 state

	F2.14 Floating-point data-processing instructions

	F3: T32 Instruction Set Encoding�
	F3.1 T32 instruction set encoding
	F3.1.1 16-bit
	Data-processing (two low registers)
	Load/store (register offset)
	Load/store word/byte (immediate offset)
	Load/store halfword (immediate offset)
	Load/store (SP-relative)
	Add PC/SP (immediate)
	Load/store multiple

	F3.1.2 Shift (immediate), add, subtract, move, and compare
	Add, subtract (three low registers)
	Add, subtract (two low registers and immediate)
	Add, subtract, compare, move (one low register and immediate)

	F3.1.3 Special data instructions and branch and exchange
	Branch and exchange
	Add, subtract, compare, move (two high registers)

	F3.1.4 Miscellaneous 16-bit instructions
	Adjust SP (immediate)
	Extend
	Change Processor State
	Reverse bytes
	Hints
	Push and Pop

	F3.1.5 Conditional branch, and Supervisor Call
	Exception generation

	F3.1.6 32-bit
	Load/store multiple
	Data-processing (shifted register)
	Data-processing (modified immediate)
	Long multiply and divide

	F3.1.7 System register access, Advanced SIMD, and floating-point
	F3.1.8 Advanced SIMD data-processing
	Advanced SIMD three registers of the same length

	F3.1.9 Advanced SIMD two registers, or three registers of different lengths
	Advanced SIMD two registers misc
	Advanced SIMD duplicate (scalar)
	Advanced SIMD three registers of different lengths
	Advanced SIMD two registers and a scalar

	F3.1.10 Advanced SIMD shifts and immediate generation
	Advanced SIMD one register and modified immediate
	Advanced SIMD two registers and shift amount

	F3.1.11 Advanced SIMD and System register load/store and 64-bit move
	Advanced SIMD and floating-point 64-bit move
	System register 64-bit move
	Advanced SIMD and floating-point load/store
	System register Load/Store

	F3.1.12 Advanced SIMD and System register 32-bit move
	Floating-point move special register
	Advanced SIMD 8/16/32-bit element move/duplicate
	System register 32-bit move

	F3.1.13 Floating-point data-processing
	Floating-point data-processing (two registers)
	Floating-point move immediate
	Floating-point data-processing (three registers)

	F3.1.14 Additional Advanced SIMD and floating-point instructions
	Advanced SIMD three registers of the same length extension
	Floating-point conditional select
	Floating-point minNum/maxNum
	Floating-point extraction and insertion
	Floating-point directed convert to integer
	Advanced SIMD and floating-point multiply with accumulate
	Advanced SIMD and floating-point dot product

	F3.1.15 Load/store dual, load/store exclusive, load-acquire/store-release, and table branch
	Load/store exclusive
	Load/store exclusive byte/half/dual
	Load-acquire / Store-release
	Load/store dual (immediate, post-indexed)
	Load/store dual (immediate)
	Load/store dual (immediate, pre-indexed)

	F3.1.16 Branches and miscellaneous control
	Hints
	Change processor state
	Miscellaneous system
	Exception return
	DCPS
	Exception generation

	F3.1.17 Data-processing (plain binary immediate)
	Data-processing (simple immediate)
	Move Wide (16-bit immediate)
	Saturate, Bitfield

	F3.1.18 Advanced SIMD element or structure load/store
	Advanced SIMD load/store multiple structures
	Advanced SIMD load single structure to all lanes
	Advanced SIMD load/store single structure to one lane

	F3.1.19 Load/store single
	Load/store, unsigned (register offset)
	Load/store, unsigned (immediate, post-indexed)
	Load/store, unsigned (negative immediate)
	Load/store, unsigned (unprivileged)
	Load/store, unsigned (immediate, pre-indexed)
	Load/store, unsigned (positive immediate)
	Load, unsigned (literal)
	Load/store, signed (register offset)
	Load/store, signed (immediate, post-indexed)
	Load/store, signed (negative immediate)
	Load/store, signed (unprivileged)
	Load/store, signed (immediate, pre-indexed)
	Load/store, signed (positive immediate)
	Load, signed (literal)

	F3.1.20 Data-processing (register)
	Register extends
	Parallel add-subtract
	Data-processing (two source registers)

	F3.1.21 Multiply, multiply accumulate, and absolute difference
	Multiply and absolute difference

	F3.2 About the T32 Advanced SIMD and floating-point instructions and their encoding

	F4: A32 Instruction Set Encoding�
	F4.1 A32 instruction set encoding
	F4.1.1 Data-processing and miscellaneous instructions
	Multiply and Accumulate
	Halfword Multiply and Accumulate

	F4.1.2 Extra load/store
	Load/Store Dual, Half, Signed Byte (register)
	Load/Store Dual, Half, Signed Byte (immediate, literal)

	F4.1.3 Synchronization primitives and Load-Acquire/Store-Release
	Load/Store Exclusive and Load-Acquire/Store-Release

	F4.1.4 Miscellaneous
	Exception Generation
	Move special register (register)
	Cyclic Redundancy Check
	Integer Saturating Arithmetic

	F4.1.5 Data-processing register (immediate shift)
	Integer Data Processing (three register, immediate shift)
	Integer Test and Compare (two register, immediate shift)
	Logical Arithmetic (three register, immediate shift)

	F4.1.6 Data-processing register (register shift)
	Integer Data Processing (three register, register shift)
	Integer Test and Compare (two register, register shift)
	Logical Arithmetic (three register, register shift)

	F4.1.7 Data-processing immediate
	Integer Data Processing (two register and immediate)
	Move Halfword (immediate)
	Move Special Register and Hints (immediate)
	Integer Test and Compare (one register and immediate)
	Logical Arithmetic (two register and immediate)

	F4.1.8 Load/Store Word, Unsigned Byte (immediate, literal)
	F4.1.9 Load/Store Word, Unsigned Byte (register)
	F4.1.10 Media instructions
	Parallel Arithmetic
	Saturate 16-bit
	Reverse Bit/Byte
	Saturate 32-bit
	Extend and Add
	Signed multiply, Divide
	Unsigned Sum of Absolute Differences
	Bitfield Insert
	Permanently UNDEFINED
	Bitfield Extract

	F4.1.11 Branch, branch with link, and block data transfer
	Exception Save/Restore
	Load/Store Multiple
	Branch (immediate)

	F4.1.12 System register access, Advanced SIMD, floating-point, and Supervisor call
	F4.1.13 Supervisor call
	F4.1.14 Unconditional Advanced SIMD and floating-point instructions
	Advanced SIMD three registers of the same length extension
	Floating-point conditional select
	Floating-point minNum/maxNum
	Floating-point extraction and insertion
	Floating-point directed convert to integer
	Advanced SIMD and floating-point multiply with accumulate
	Advanced SIMD and floating-point dot product

	F4.1.15 Advanced SIMD and System register load/store and 64-bit move
	Advanced SIMD and floating-point 64-bit move
	System register 64-bit move
	Advanced SIMD and floating-point load/store
	System register load/store

	F4.1.16 Advanced SIMD and System register 32-bit move
	Floating-point move special register
	Advanced SIMD 8/16/32-bit element move/duplicate
	System register 32-bit move

	F4.1.17 Floating-point data-processing
	Floating-point data-processing (two registers)
	Floating-point move immediate
	Floating-point data-processing (three registers)

	F4.1.18 Unconditional instructions
	F4.1.19 Miscellaneous
	Change Process State

	F4.1.20 Advanced SIMD data-processing
	Advanced SIMD three registers of the same length

	F4.1.21 Advanced SIMD two registers, or three registers of different lengths
	Advanced SIMD two registers misc
	Advanced SIMD duplicate (scalar)
	Advanced SIMD three registers of different lengths
	Advanced SIMD two registers and a scalar

	F4.1.22 Advanced SIMD shifts and immediate generation
	Advanced SIMD one register and modified immediate
	Advanced SIMD two registers and shift amount

	F4.1.23 Memory hints and barriers
	Barriers
	Preload (immediate)
	Preload (register)

	F4.1.24 Advanced SIMD element or structure load/store
	Advanced SIMD load/store multiple structures
	Advanced SIMD load single structure to all lanes
	Advanced SIMD load/store single structure to one lane

	F4.2 About the A32 Advanced SIMD and floating-point instructions and their encoding

	F5: T32 and A32 Base Instruction Set Instruction Descriptions�
	F5.1 Alphabetical list of T32 and A32 base instruction set instructions
	F5.1.1 ADC, ADCS (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.2 ADC, ADCS (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.3 ADC, ADCS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.4 ADD, ADDS (immediate)
	A1
	T1
	T2
	T3
	T4
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.5 ADD, ADDS (register)
	A1
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.6 ADD, ADDS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.7 ADD, ADDS (SP plus immediate)
	A1
	T1
	T2
	T3
	T4
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.8 ADD, ADDS (SP plus register)
	A1
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.9 ADD (immediate, to PC)
	A1
	T1
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.10 ADR
	A1
	A2
	T1
	T2
	T3
	Notes for all encodings
	Alias conditions
	Assembler symbols
	Operation for all encodings

	F5.1.11 AND, ANDS (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.12 AND, ANDS (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.13 AND, ANDS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.14 ASR (immediate)
	A1
	T2
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.15 ASR (register)
	A1
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.16 ASRS (immediate)
	A1
	T2
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.17 ASRS (register)
	A1
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.18 B
	A1
	T1
	T2
	T3
	T4
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.19 BFC
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.20 BFI
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.21 BIC, BICS (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.22 BIC, BICS (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.23 BIC, BICS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.24 BKPT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.25 BL, BLX (immediate)
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.26 BLX (register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.27 BX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.28 BXJ
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.29 CBNZ, CBZ
	T1
	Notes for all encodings
	Assembler symbols
	Operation

	F5.1.30 CLREX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.31 CLZ
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.32 CMN (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.33 CMN (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.34 CMN (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.35 CMP (immediate)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.36 CMP (register)
	A1
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.37 CMP (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.38 CPS, CPSID, CPSIE
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.39 CRC32
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.40 CRC32C
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.41 CSDB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.42 DBG
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.43 DCPS1
	T1
	Operation

	F5.1.44 DCPS2
	T1
	Operation

	F5.1.45 DCPS3
	T1
	Operation

	F5.1.46 DMB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.47 DSB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.48 EOR, EORS (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.49 EOR, EORS (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.50 EOR, EORS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.51 ERET
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior

	F5.1.52 ESB
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F5.1.53 HLT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.54 HVC
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior

	F5.1.55 ISB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.56 IT
	T1
	Notes for all encodings
	Assembler symbols
	Operation

	F5.1.57 LDA
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.58 LDAB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.59 LDAEX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.60 LDAEXB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.61 LDAEXD
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.62 LDAEXH
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.63 LDAH
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.64 LDC (immediate)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.65 LDC (literal)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.66 LDM, LDMIA, LDMFD
	A1
	T1
	T2
	Notes for all encodings
	Alias conditions
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.67 LDM (exception return)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.68 LDM (User registers)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.69 LDMDA, LDMFA
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.70 LDMDB, LDMEA
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.71 LDMIB, LDMED
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.72 LDR (immediate)
	A1
	T1
	T2
	T3
	T4
	Notes for all encodings
	Alias conditions
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.73 LDR (literal)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.74 LDR (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.75 LDRB (immediate)
	A1
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.76 LDRB (literal)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.77 LDRB (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.78 LDRBT
	A1
	A2
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.79 LDRD (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.80 LDRD (literal)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.81 LDRD (register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.82 LDREX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.83 LDREXB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.84 LDREXD
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.85 LDREXH
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.86 LDRH (immediate)
	A1
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.87 LDRH (literal)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.88 LDRH (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.89 LDRHT
	A1
	A2
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.90 LDRSB (immediate)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.91 LDRSB (literal)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.92 LDRSB (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.93 LDRSBT
	A1
	A2
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.94 LDRSH (immediate)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.95 LDRSH (literal)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.96 LDRSH (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.97 LDRSHT
	A1
	A2
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.98 LDRT
	A1
	A2
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.99 LSL (immediate)
	A1
	T2
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.100 LSL (register)
	A1
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.101 LSLS (immediate)
	A1
	T2
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.102 LSLS (register)
	A1
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.103 LSR (immediate)
	A1
	T2
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.104 LSR (register)
	A1
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.105 LSRS (immediate)
	A1
	T2
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.106 LSRS (register)
	A1
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.107 MCR
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.108 MCRR
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.109 MLA, MLAS
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.110 MLS
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.111 MOV, MOVS (immediate)
	A1
	A2
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.112 MOV, MOVS (register)
	A1
	T1
	T2
	T3
	Notes for all encodings
	Alias conditions
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.113 MOV, MOVS (register-shifted register)
	A1
	T1
	T2
	Notes for all encodings
	Alias conditions
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.114 MOVT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.115 MRC
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F5.1.116 MRRC
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.117 MRS
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior

	F5.1.118 MRS (Banked register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior

	F5.1.119 MSR (Banked register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior

	F5.1.120 MSR (immediate)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	CONSTRAINED UNPREDICTABLE behavior

	F5.1.121 MSR (register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior

	F5.1.122 MUL, MULS
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.123 MVN, MVNS (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.124 MVN, MVNS (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.125 MVN, MVNS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation

	F5.1.126 NOP
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.127 ORN, ORNS (immediate)
	T1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.128 ORN, ORNS (register)
	T1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.129 ORR, ORRS (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.130 ORR, ORRS (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.131 ORR, ORRS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.132 PKHBT, PKHTB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.133 PLD, PLDW (immediate)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.134 PLD (literal)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.135 PLD, PLDW (register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.136 PLI (immediate, literal)
	A1
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.137 PLI (register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.138 POP
	T1
	Notes for all encodings
	Assembler symbols
	Operation

	F5.1.139 POP (multiple registers)
	A1
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.140 POP (single register)
	A1
	T4
	Assembler symbols
	Operation for all encodings

	F5.1.141 PSSBB
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F5.1.142 PUSH
	T1
	Notes for all encodings
	Assembler symbols
	Operation

	F5.1.143 PUSH (multiple registers)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F5.1.144 PUSH (single register)
	A1
	T4
	Assembler symbols
	Operation for all encodings

	F5.1.145 QADD
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.146 QADD16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.147 QADD8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.148 QASX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.149 QDADD
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.150 QDSUB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.151 QSAX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.152 QSUB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.153 QSUB16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.154 QSUB8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.155 RBIT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.156 REV
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.157 REV16
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.158 REVSH
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.159 RFE, RFEDA, RFEDB, RFEIA, RFEIB
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior

	F5.1.160 ROR (immediate)
	A1
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.161 ROR (register)
	A1
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.162 RORS (immediate)
	A1
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.163 RORS (register)
	A1
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.164 RRX
	A1
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.165 RRXS
	A1
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.166 RSB, RSBS (immediate)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.167 RSB, RSBS (register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.168 RSB, RSBS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.169 RSC, RSCS (immediate)
	A1
	Assembler symbols
	Operation
	Operational information

	F5.1.170 RSC, RSCS (register)
	A1
	Assembler symbols
	Operation
	Operational information

	F5.1.171 RSC, RSCS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.172 SADD16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.173 SADD8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.174 SASX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.175 SB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.176 SBC, SBCS (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.177 SBC, SBCS (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.178 SBC, SBCS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.179 SBFX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.180 SDIV
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.181 SEL
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.182 SETEND
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.183 SETPAN
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F5.1.184 SEV
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.185 SEVL
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.186 SHADD16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.187 SHADD8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.188 SHASX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.189 SHSAX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.190 SHSUB16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.191 SHSUB8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.192 SMC
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior

	F5.1.193 SMLABB, SMLABT, SMLATB, SMLATT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.194 SMLAD, SMLADX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.195 SMLAL, SMLALS
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.196 SMLALBB, SMLALBT, SMLALTB, SMLALTT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.197 SMLALD, SMLALDX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.198 SMLAWB, SMLAWT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.199 SMLSD, SMLSDX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.200 SMLSLD, SMLSLDX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.201 SMMLA, SMMLAR
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.202 SMMLS, SMMLSR
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.203 SMMUL, SMMULR
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.204 SMUAD, SMUADX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.205 SMULBB, SMULBT, SMULTB, SMULTT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.206 SMULL, SMULLS
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.207 SMULWB, SMULWT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.208 SMUSD, SMUSDX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.209 SRS, SRSDA, SRSDB, SRSIA, SRSIB
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior

	F5.1.210 SSAT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.211 SSAT16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.212 SSAX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.213 SSBB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.214 SSUB16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.215 SSUB8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.216 STC
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.217 STL
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.218 STLB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.219 STLEX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.220 STLEXB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.221 STLEXD
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.222 STLEXH
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.223 STLH
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.224 STM, STMIA, STMEA
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.225 STM (User registers)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.226 STMDA, STMED
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.227 STMDB, STMFD
	A1
	T1
	Notes for all encodings
	Alias conditions
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.228 STMIB, STMFA
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.229 STR (immediate)
	A1
	T1
	T2
	T3
	T4
	Notes for all encodings
	Alias conditions
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.230 STR (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.231 STRB (immediate)
	A1
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.232 STRB (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.233 STRBT
	A1
	A2
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.234 STRD (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.235 STRD (register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.236 STREX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.237 STREXB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.238 STREXD
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.239 STREXH
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.240 STRH (immediate)
	A1
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.241 STRH (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.242 STRHT
	A1
	A2
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.243 STRT
	A1
	A2
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.244 SUB (immediate, from PC)
	A2
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.245 SUB, SUBS (immediate)
	A1
	T1
	T2
	T3
	T4
	T5
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.246 SUB, SUBS (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.247 SUB, SUBS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.248 SUB, SUBS (SP minus immediate)
	A1
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.249 SUB, SUBS (SP minus register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.250 SVC
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F5.1.251 SXTAB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.252 SXTAB16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.253 SXTAH
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.254 SXTB
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.255 SXTB16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.256 SXTH
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.257 TBB, TBH
	T1
	Notes for all encodings
	Assembler symbols
	Operation

	F5.1.258 TEQ (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.259 TEQ (register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.260 TEQ (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.261 TSB CSYNC
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F5.1.262 TST (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.263 TST (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.264 TST (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.265 UADD16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.266 UADD8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.267 UASX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.268 UBFX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.269 UDF
	A1
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.270 UDIV
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.271 UHADD16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.272 UHADD8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.273 UHASX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.274 UHSAX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.275 UHSUB16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.276 UHSUB8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.277 UMAAL
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.278 UMLAL, UMLALS
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.279 UMULL, UMULLS
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.280 UQADD16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.281 UQADD8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.282 UQASX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.283 UQSAX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.284 UQSUB16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.285 UQSUB8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.286 USAD8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.287 USADA8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.288 USAT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.289 USAT16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.290 USAX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.291 USUB16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.292 USUB8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.293 UXTAB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.294 UXTAB16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.295 UXTAH
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.296 UXTB
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.297 UXTB16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.298 UXTH
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.299 WFE
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.300 WFI
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.301 YIELD
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.2 Encoding and use of banked register transfer instructions
	F5.2.1 Register arguments in the banked register transfer instructions
	F5.2.2 Usage restrictions on the banked register transfer instructions
	F5.2.3 Encoding the register argument in the banked register transfer instructions
	F5.2.4 Pseudocode support for the banked register transfer instructions

	F6: T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions�
	F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
	F6.1.1 AESD
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.2 AESE
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.3 AESIMC
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.4 AESMC
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.5 FLDM*X (FLDMDBX, FLDMIAX)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.6 FSTMDBX, FSTMIAX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.7 SHA1C
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.8 SHA1H
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.9 SHA1M
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.10 SHA1P
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.11 SHA1SU0
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.12 SHA1SU1
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.13 SHA256H
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.14 SHA256H2
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.15 SHA256SU0
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.16 SHA256SU1
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.17 VABA
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.18 VABAL
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.19 VABD (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.20 VABD (integer)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.21 VABDL (integer)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.22 VABS
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.23 VACGE
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.24 VACLE
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.25 VACGT
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.26 VACLT
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.27 VADD (floating-point)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.28 VADD (integer)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.29 VADDHN
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.30 VADDL
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.31 VADDW
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.32 VAND (immediate)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.33 VAND (register)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.34 VBIC (immediate)
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.35 VBIC (register)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.36 VBIF
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.37 VBIT
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.38 VBSL
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.39 VCADD
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.40 VCEQ (immediate #0)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.41 VCEQ (register)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.42 VCGE (immediate #0)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.43 VCGE (register)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.44 VCGT (immediate #0)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.45 VCGT (register)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.46 VCLE (immediate #0)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.47 VCLE (register)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.48 VCLS
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.49 VCLT (immediate #0)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.50 VCLT (register)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.51 VCLZ
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.52 VCMLA
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.53 VCMLA (by element)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.54 VCMP
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.55 VCMPE
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.56 VCNT
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.57 VCVT (from single-precision to BFloat16, Advanced SIMD)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.58 VCVT (between double-precision and single-precision)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.59 VCVT (between half-precision and single-precision, Advanced SIMD)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.60 VCVT (between floating-point and integer, Advanced SIMD)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.61 VCVT (floating-point to integer, floating-point)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.62 VCVT (integer to floating-point, floating-point)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.63 VCVT (between floating-point and fixed-point, Advanced SIMD)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.64 VCVT (between floating-point and fixed-point, floating-point)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.65 VCVTA (Advanced SIMD)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.66 VCVTA (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.67 VCVTB
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.68 VCVTB (BFloat16)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.69 VCVTM (Advanced SIMD)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.70 VCVTM (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.71 VCVTN (Advanced SIMD)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.72 VCVTN (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.73 VCVTP (Advanced SIMD)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.74 VCVTP (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.75 VCVTR
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.76 VCVTT
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.77 VCVTT (BFloat16)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.78 VDIV
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.79 VDOT (vector)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.80 VDOT (by element)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.81 VDUP (general-purpose register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.82 VDUP (scalar)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.83 VEOR
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.84 VEXT (byte elements)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.85 VEXT (multibyte elements)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.86 VFMA
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.87 VFMAB, VFMAT (BFloat16, vector)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.88 VFMAB, VFMAT (BFloat16, by scalar)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.89 VFMAL (vector)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.90 VFMAL (by scalar)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.91 VFMS
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.92 VFMSL (vector)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.93 VFMSL (by scalar)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.94 VFNMA
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.95 VFNMS
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.96 VHADD
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.97 VHSUB
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.98 VINS
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.99 VJCVT
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.100 VLD1 (single element to one lane)
	A1
	A2
	A3
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.101 VLD1 (single element to all lanes)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.102 VLD1 (multiple single elements)
	A1
	A2
	A3
	A4
	T1
	T2
	T3
	T4
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.103 VLD2 (single 2-element structure to one lane)
	A1
	A2
	A3
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.104 VLD2 (single 2-element structure to all lanes)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.105 VLD2 (multiple 2-element structures)
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.106 VLD3 (single 3-element structure to one lane)
	A1
	A2
	A3
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.107 VLD3 (single 3-element structure to all lanes)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.108 VLD3 (multiple 3-element structures)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.109 VLD4 (single 4-element structure to one lane)
	A1
	A2
	A3
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.110 VLD4 (single 4-element structure to all lanes)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.111 VLD4 (multiple 4-element structures)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.112 VLDM, VLDMDB, VLDMIA
	A1
	A2
	T1
	T2
	Notes for all encodings
	Alias conditions
	Assembler symbols
	Operation for all encodings

	F6.1.113 VLDR (immediate)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.114 VLDR (literal)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.115 VMAX (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.116 VMAX (integer)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.117 VMAXNM
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.118 VMIN (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.119 VMIN (integer)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.120 VMINNM
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.121 VMLA (floating-point)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.122 VMLA (integer)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.123 VMLA (by scalar)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.124 VMLAL (integer)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.125 VMLAL (by scalar)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.126 VMLS (floating-point)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.127 VMLS (integer)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.128 VMLS (by scalar)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.129 VMLSL (integer)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.130 VMLSL (by scalar)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.131 VMMLA
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.132 VMOV (between two general-purpose registers and a doubleword floating-point register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.133 VMOV (between general-purpose register and half-precision)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.134 VMOV (immediate)
	A1
	A2
	A3
	A4
	A5
	T1
	T2
	T3
	T4
	T5
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.135 VMOV (register)
	A2
	T2
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.136 VMOV (register, SIMD)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.137 VMOV (general-purpose register to scalar)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.138 VMOV (between general-purpose register and single-precision)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.139 VMOV (scalar to general-purpose register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.140 VMOV (between two general-purpose registers and two single-precision registers)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.141 VMOVL
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.142 VMOVN
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.143 VMOVX
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.144 VMRS
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.145 VMSR
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.146 VMUL (floating-point)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.147 VMUL (integer and polynomial)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.148 VMUL (by scalar)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.149 VMULL (integer and polynomial)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.150 VMULL (by scalar)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.151 VMVN (immediate)
	A1
	A2
	A3
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.152 VMVN (register)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.153 VNEG
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.154 VNMLA
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.155 VNMLS
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.156 VNMUL
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.157 VORN (immediate)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.158 VORN (register)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.159 VORR (immediate)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.160 VORR (register)
	A1
	T1
	Alias conditions
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.161 VPADAL
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.162 VPADD (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.163 VPADD (integer)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.164 VPADDL
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.165 VPMAX (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.166 VPMAX (integer)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.167 VPMIN (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.168 VPMIN (integer)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.169 VPOP
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.170 VPUSH
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.171 VQABS
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.172 VQADD
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.173 VQDMLAL
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.174 VQDMLSL
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.175 VQDMULH
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.176 VQDMULL
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.177 VQMOVN, VQMOVUN
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.178 VQNEG
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.179 VQRDMLAH
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.180 VQRDMLSH
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.181 VQRDMULH
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.182 VQRSHL
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.183 VQRSHRN (zero)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.184 VQRSHRN, VQRSHRUN
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.185 VQRSHRUN (zero)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.186 VQSHL, VQSHLU (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.187 VQSHL (register)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.188 VQSHRN (zero)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.189 VQSHRN, VQSHRUN
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.190 VQSHRUN (zero)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.191 VQSUB
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.192 VRADDHN
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.193 VRECPE
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.194 VRECPS
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.195 VREV16
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.196 VREV32
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.197 VREV64
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.198 VRHADD
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.199 VRINTA (Advanced SIMD)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.200 VRINTA (floating-point)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.201 VRINTM (Advanced SIMD)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.202 VRINTM (floating-point)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.203 VRINTN (Advanced SIMD)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.204 VRINTN (floating-point)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.205 VRINTP (Advanced SIMD)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.206 VRINTP (floating-point)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.207 VRINTR
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.208 VRINTX (Advanced SIMD)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.209 VRINTX (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.210 VRINTZ (Advanced SIMD)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.211 VRINTZ (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.212 VRSHL
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.213 VRSHR
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.214 VRSHR (zero)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.215 VRSHRN
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.216 VRSHRN (zero)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.217 VRSQRTE
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.218 VRSQRTS
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.219 VRSRA
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.220 VRSUBHN
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.221 VSDOT (by element)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.222 VSDOT (vector)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.223 VSELEQ, VSELGE, VSELGT, VSELVS
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.224 VSHL (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.225 VSHL (register)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.226 VSHLL
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.227 VSHR
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.228 VSHR (zero)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.229 VSHRN
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.230 VSHRN (zero)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.231 VSLI
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.232 VSMMLA
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.233 VSQRT
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.234 VSRA
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.235 VSRI
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.236 VST1 (single element from one lane)
	A1
	A2
	A3
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.237 VST1 (multiple single elements)
	A1
	A2
	A3
	A4
	T1
	T2
	T3
	T4
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.238 VST2 (single 2-element structure from one lane)
	A1
	A2
	A3
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.239 VST2 (multiple 2-element structures)
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.240 VST3 (single 3-element structure from one lane)
	A1
	A2
	A3
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.241 VST3 (multiple 3-element structures)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.242 VST4 (single 4-element structure from one lane)
	A1
	A2
	A3
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.243 VST4 (multiple 4-element structures)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.244 VSTM, VSTMDB, VSTMIA
	A1
	A2
	T1
	T2
	Notes for all encodings
	Alias conditions
	Assembler symbols
	Operation for all encodings

	F6.1.245 VSTR
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.246 VSUB (floating-point)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.247 VSUB (integer)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.248 VSUBHN
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.249 VSUBL
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.250 VSUBW
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.251 VSUDOT (by element)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.252 VSWP
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.253 VTBL, VTBX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.254 VTRN
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.255 VTST
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.256 VUDOT (by element)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.257 VUDOT (vector)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.258 VUMMLA
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.259 VUSDOT (by element)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.260 VUSDOT (vector)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.261 VUSMMLA
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.262 VUZP
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.263 VUZP (alias)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.264 VZIP
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.265 VZIP (alias)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	Part G: The AArch32 System Level Architecture�
	G1: The AArch32 System Level Programmers’ Model�
	G1.1 About the AArch32 System level programmers’ model
	G1.2 Exception levels
	G1.2.1 Typical Exception level usage model

	G1.3 Exception terminology
	G1.3.1 Terminology for taking an exception
	G1.3.2 Terminology for returning from an exception
	G1.3.3 Exception levels
	G1.3.4 Definition of a precise exception
	G1.3.5 Definitions of synchronous and asynchronous exceptions

	G1.4 Execution state
	G1.4.1 About the AArch32 PE modes

	G1.5 Instruction Set state
	G1.6 Security state
	G1.6.1 The Armv8-A security model
	The AArch32 security model, and execution privilege
	Changing from Secure state to Non-secure state

	G1.7 Security state, Exception levels, and AArch32 execution privilege
	G1.7.1 Limited use of Privilege level in Armv8 AArch32 state

	G1.8 Virtualization
	G1.8.1 The effect of implementing EL2 on the Exception model
	Virtual interrupts

	G1.9 AArch32 state PE modes, and general-purpose and Special-purpose registers
	G1.9.1 AArch32 state PE mode descriptions
	Notes on the AArch32 PE modes
	Hyp mode
	Pseudocode description of mode operations

	G1.9.2 AArch32 general-purpose registers, the PC, and the Special-purpose registers
	AArch32 Special-purpose registers
	Pseudocode description of general-purpose register and PC operations

	G1.9.3 Saved Program Status Registers (SPSRs)
	Pseudocode description of SPSR operations

	G1.9.4 ELR_hyp

	G1.10 Process state, PSTATE
	G1.10.1 Accessing PSTATE fields
	The Current Program Status Register, CPSR
	Accessing the PE state controls and the Execution state bit
	The CPS instruction
	The SETEND instruction
	The SETPAN instruction

	G1.10.2 The Saved Program Status Registers (SPSRs)
	G1.10.3 Illegal changes to PSTATE.M
	G1.10.4 Pseudocode description of PSTATE operations

	G1.11 Instruction set states
	G1.11.1 Exceptions and instruction set state
	G1.11.2 Unimplemented instruction sets
	Trivial implementation of the Jazelle extension

	G1.12 Handling exceptions that are taken to an Exception level using AArch32
	G1.12.1 Exception vectors and the exception base address
	The vector tables and exception offsets

	G1.12.2 Exception prioritization for exceptions taken to AArch32 state
	Synchronous exception prioritization for exceptions taken to AArch32 state
	Architectural requirements for taking asynchronous exceptions

	G1.12.3 Overview of exception entry
	Link values saved on exception entry

	G1.12.4 PE mode for taking exceptions
	Exceptions taken to Hyp mode
	Security behavior in Exception levels using AArch32 when EL2 or EL3 are using AArch64
	The possible modes for taking each exception

	G1.12.5 PE state on exception entry
	Instruction set state on exception entry
	PSTATE.E value on exception entry
	PSTATE.{A, I, F, M} values on exception entry

	G1.12.6 Routing exceptions from Non-secure EL0 to EL2
	Exception reporting when HCR.TGE routes an exception to EL2 using AArch32

	G1.12.7 Routing debug exceptions to EL2 using AArch32

	G1.13 Routing of aborts taken to AArch32 state
	G1.14 Exception return to an Exception level using AArch32
	G1.14.1 Exception return instructions
	Return from an exception taken to a PE mode other than Hyp mode
	Return from an exception taken to Hyp mode

	G1.14.2 Alignment of exception returns
	G1.14.3 Illegal return events from AArch32 state
	G1.14.4 Legal returns that set PSTATE.IL to 1
	G1.14.5 The Illegal Execution state exception
	Pseudocode description of exception return

	G1.15 Asynchronous exception behavior for exceptions taken from AArch32 state
	G1.15.1 Virtual exceptions when an implementation includes EL2
	Effects of the HCR.{AMO, IMO, FMO} bits

	G1.15.2 Asynchronous exception routing controls
	G1.15.3 Asynchronous exception masking controls
	Asynchronous exception masking in an implementation that includes EL2 but not EL3
	Asynchronous exception masking in an implementation that includes EL3 but not EL2
	Asynchronous exception masking in an implementation that includes both EL2 and EL3
	Summary of the asynchronous exception masking controls

	G1.15.4 Asynchronous exception routing and masking with higher Exception levels using AArch64
	Summary of physical interrupt routing
	Summary of physical interrupt masking

	G1.15.5 Taking an interrupt or other exception during a multiple-register load or store

	G1.16 AArch32 state exception descriptions
	G1.16.1 Undefined Instruction exception
	The PE mode to which the Undefined Instruction exception is taken
	Pseudocode description of taking the Undefined Instruction exception
	Conditional execution of undefined instructions
	Interaction of UNDEFINED instruction behavior with UNPREDICTABLE or CONSTRAINED UNPREDICTABLE instruction behavior

	G1.16.2 Monitor Trap exception
	The PE mode to which the Monitor Trap exception is taken
	Pseudocode description of taking the Monitor Trap exception

	G1.16.3 Hyp Trap exception
	The PE mode to which the Hyp Trap exception is taken
	Pseudocode description of taking the Hyp Trap exception

	G1.16.4 Supervisor Call (SVC) exception
	The PE mode to which the Supervisor Call exception is taken
	Pseudocode description of taking the Supervisor Call exception

	G1.16.5 Secure Monitor Call (SMC) exception
	The PE mode to which the Secure Monitor Call exception is taken
	Pseudocode description of taking the Secure Monitor Call exception

	G1.16.6 Hypervisor Call (HVC) exception
	The PE mode to which the Hypervisor Call exception is taken
	Pseudocode description of taking the Hypervisor Call exception

	G1.16.7 Prefetch Abort exception
	Prefetch Abort exception reporting a PC alignment fault exception
	The PE mode to which the Prefetch Abort exception is taken
	Pseudocode description of taking the Prefetch Abort exception

	G1.16.8 Data Abort exception
	The PE mode to which the Data Abort exception is taken
	Pseudocode description of taking the Data Abort exception
	Effects of data-aborted instructions
	The Arm abort model

	G1.16.9 Virtual SError interrupt exception
	The PE mode to which the Virtual SError interrupt exception is taken
	Pseudocode description of taking the Virtual SError interrupt exception

	G1.16.10 IRQ exception
	The PE mode to which the physical IRQ exception is taken
	Pseudocode description of taking the physical IRQ exception

	G1.16.11 Virtual IRQ exception
	The PE mode to which the Virtual IRQ exception is taken
	Pseudocode description of taking the Virtual IRQ exception

	G1.16.12 FIQ exception
	The PE mode to which the physical FIQ exception is taken
	Pseudocode description of taking the FIQ exception

	G1.16.13 Virtual FIQ exception
	The PE mode to which the Virtual FIQ exception is taken
	Pseudocode description of taking the Virtual FIQ exception

	G1.16.14 Additional pseudocode functions for exception handling

	G1.17 Reset into AArch32 state
	G1.17.1 PE state on reset into AArch32 state
	G1.17.2 Pseudocode descriptions of reset

	G1.18 Mechanisms for entering a low-power state
	G1.18.1 Wait For Event and Send Event
	The Event Register
	The Wait For Event instruction
	WFE wake-up events
	The Send Event instructions
	Pseudocode description of the Wait For Event mechanism

	G1.18.2 Wait For Interrupt
	WFI wake-up events
	Using WFI to indicate an idle state on bus interfaces
	Pseudocode description of Wait For Interrupt

	G1.19 The AArch32 System register interface
	G1.19.1 System registers in the coproc == 0b111x encoding space
	G1.19.2 Access to System registers
	G1.19.3 Access controls for Advanced SIMD and floating-point functionality
	G1.19.4 Background to the System register interface

	G1.20 Advanced SIMD and floating-point support
	G1.20.1 AArch32 implications of not including support for Advanced SIMD and floating-point
	G1.20.2 Enabling Advanced SIMD and floating-point support
	FPEXC control of access to Advanced SIMD and floating-point functionality
	EL0 access to Advanced SIMD and floating-point functionality

	G1.20.3 Advanced SIMD and floating-point System registers
	Register map of the Advanced SIMD and floating-point System registers
	Accessing the Advanced SIMD and floating-point System registers

	G1.20.4 Context switching when using Advanced SIMD and floating-point functionality

	G1.21 Configurable instruction enables and disables, and trap controls
	G1.21.1 Register access instructions
	G1.21.2 PL1 configurable controls
	Instructions that fail their Condition code check
	Trapping to PL1 of instructions that are UNPREDICTABLE
	Traps to Undefined mode of EL0 execution of WFE and WFI instructions
	Disabling or enabling PL0 and PL1 use of AArch32 optional functionality
	Traps to Undefined mode of PL0 and PL1 System register accesses to trace registers
	Enabling use of Advanced SIMD and floating-point functionality
	Traps to Undefined mode of EL0 accesses to the Debug Communications Channel (DCC) registers
	Traps to Undefined mode of EL0 accesses to the Generic Timer registers
	Traps to Undefined mode of EL0 accesses to Performance Monitors registers
	Traps to Undefined mode of EL0 accesses to Activity Monitors registers

	G1.21.3 EL2 configurable controls
	Instructions that fail their Condition code check
	Trapping to EL2 of instructions that are UNPREDICTABLE
	Disabling or enabling EL2 use of AArch32 optional functionality
	Traps to Hyp mode of Non-secure EL1 accesses to virtual memory control registers
	Disabling Non-secure state execution of HVC instructions
	Traps to Hyp mode of Non-secure EL1 execution of TLB maintenance instructions
	Traps to Hyp mode of Non-secure EL1 execution of cache maintenance instructions
	Traps to Hyp mode of Non-secure EL1 accesses to the Auxiliary Control Register
	Traps to Hyp mode of Non-secure EL0 and EL1 accesses to lockdown, DMA, and TCM operations
	Traps to Hyp mode of Non-secure EL1 execution of SMC instructions
	Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the ID registers
	Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions
	Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Activity Monitors registers
	General trapping to Hyp mode of Non-secure accesses to the SIMD and floating-point registers
	Enabling access to the SIMD and floating-point registers
	Traps to Hyp mode of Non-secure accesses to Advanced SIMD functionality
	Traps to Hyp mode of Non-secure EL1 accesses to the CPACR
	Traps to Hyp mode of Non-secure System register accesses to trace registers
	Traps to Hyp mode of Non-secure System register accesses to trace filter control registers
	General trapping to Hyp mode of Non-secure EL0 and EL1 accesses to System registers in the (coproc == 0b1111) encoding space
	Traps to Hyp mode of Non-secure System register accesses to debug registers
	Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the Generic Timer registers
	Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Performance Monitors registers
	Traps to Hyp mode of Non-secure EL1 accesses to the RAS error record registers

	G1.21.4 EL3 configurable controls
	Instructions that fail their Condition code check
	Trapping to EL3 of instructions that are UNPREDICTABLE
	Traps to Monitor mode of the execution of WFE and WFI instructions in modes other than Monitor mode
	Traps to Monitor mode of accesses to RAS error record registers
	Enabling EL2 and Non-secure EL1 execution of HVC instructions
	Disabling SMC instructions
	Disabling Non-secure System register access to the trace registers
	Traps to Monitor mode of System register accesses to the trace filter control registers
	Enabling Non-secure access to SIMD and floating-point functionality
	Disabling Non-secure access to Advanced SIMD functionality

	G1.21.5 Pseudocode description of configurable instruction enables, disables, and traps
	Pseudocode description of enabling SIMD and floating-point functionality

	G2: AArch32 Self-hosted Debug�
	G2.1 About self-hosted debug
	G2.1.1 Definition of a debugger in the context of self-hosted debug
	G2.1.2 Context ID and Process ID
	G2.1.3 About debug exceptions

	G2.2 The debug exception enable controls
	G2.3 Routing debug exceptions
	G2.3.1 Pseudocode description of routing debug exceptions

	G2.4 Enabling debug exceptions from the current Privilege level and Security state
	G2.4.1 Disabling debug exceptions from Secure state
	G2.4.2 Pseudocode description of enabling debug exceptions

	G2.5 The effect of powerdown on debug exceptions
	G2.6 Summary of permitted routing and enabling of debug exceptions
	G2.7 Pseudocode description of debug exceptions
	G2.8 Breakpoint Instruction exceptions
	G2.8.1 About Breakpoint Instruction exceptions
	G2.8.2 Breakpoint instruction in the A32 and T32 instruction sets
	About whether the BKPT instruction is conditional

	G2.8.3 BKPT instructions as the first instruction in an IT block
	G2.8.4 Exception syndrome information and preferred return address for a BKPT instruction
	Exception syndrome information for a Breakpoint Instruction exception
	Preferred return address for a Breakpoint Instruction exception

	G2.8.5 Pseudocode description of Breakpoint Instruction exceptions

	G2.9 Breakpoint exceptions
	G2.9.1 About Breakpoint exceptions
	G2.9.2 Breakpoint types and linking of breakpoints
	Rules for linking breakpoints
	Breakpoint types defined by DBGBCRn.BT

	G2.9.3 Execution conditions for which a breakpoint generates Breakpoint exceptions
	G2.9.4 Breakpoint instruction address comparisons
	Address Match breakpoints
	Address Mismatch breakpoints
	Specifying the halfword-aligned address that an Address breakpoint matches on

	G2.9.5 Breakpoint context comparisons
	G2.9.6 Using breakpoints
	Using an Address Mismatch breakpoint to single-step an instruction
	ITD control effects on address breakpoints on the first instruction in an IT block
	Breakpoint usage constraints

	G2.9.7 Exception syndrome information and preferred return address for a Breakpoint exception
	Exception syndrome information for a Breakpoint exception
	Preferred return address for a Breakpoint exception

	G2.9.8 Pseudocode description of Breakpoint exceptions taken from AArch32 state

	G2.10 Watchpoint exceptions
	G2.10.1 About Watchpoint exceptions
	G2.10.2 Watchpoint types and linking of watchpoints
	Rules for linking watchpoints

	G2.10.3 Execution conditions for which a watchpoint generates Watchpoint exceptions
	G2.10.4 Watchpoint data address comparisons
	Size of the data access
	Programming a watchpoint with eight bytes or fewer
	Programming a watchpoint with eight or more bytes

	G2.10.5 Determining the memory location that caused a Watchpoint exception
	Address recorded for Watchpoint exceptions generated by instructions other than data cache maintenance instructions
	Address recorded for Watchpoint exceptions generated by data cache maintenance instructions

	G2.10.6 Watchpoint behavior on other instructions
	Watchpoint behavior on accesses by Store-Exclusive instructions
	Watchpoint behavior on accesses by DCIMVAC instructions

	G2.10.7 Usage constraints
	Reserved DBGWCR<n>.{SSC, HMC, PAC} values
	Reserved DBGWCR<n>.LBN values
	Programming dependencies of the BAS and MASK fields
	Reserved DBGWCR<n>.BAS values
	Reserved DBGWCR<n>.MASK values
	Other usage constraints

	G2.10.8 Exception syndrome information and preferred return address
	Exception syndrome information
	Preferred return address

	G2.10.9 Pseudocode description of Watchpoint exceptions taken from AArch32 state

	G2.11 Vector Catch exceptions
	G2.11.1 About Vector Catch exceptions
	G2.11.2 Exception vectors that Vector Catch exceptions can be enabled for
	G2.11.3 Generation of Vector Catch exceptions
	Address-matching form
	Exception-trapping form

	G2.11.4 Usage constraints
	Usage constraints that apply to both forms of vector catch
	Usage constraints that apply only to the address-matching form

	G2.11.5 Exception syndrome information and preferred return address for a Vector Catch exception
	Exception syndrome information for a Vector Catch exception
	Preferred return address for a Vector Catch exception

	G2.11.6 Pseudocode description of Vector Catch exceptions

	G2.12 Synchronization and debug exceptions
	G2.12.1 State and mode changes without explicit context synchronization events

	G3: AArch32 Self-hosted Trace�
	G3.1 About self-hosted trace
	G3.1.1 Trace Sinks
	G3.1.2 Register controls to enable self-hosted trace

	G3.2 Prohibited regions in self-hosted trace
	G3.2.1 Controls to prohibit trace at Exception levels
	G3.2.2 Self-hosted trace and address translation

	G3.3 Self-hosted trace timestamps
	G3.4 Synchronization in self-hosted trace

	G4: The AArch32 System Level Memory Model�
	G4.1 About the memory system architecture
	G4.1.1 Form of the memory system architecture
	G4.1.2 Memory attributes

	G4.2 Address space
	G4.2.1 Address space overflow or underflow
	Instruction address space overflow
	Data address space overflow and underflow

	G4.3 Mixed-endian support
	G4.4 AArch32 cache and branch predictor support
	G4.4.1 General behavior of the caches
	G4.4.2 Cache identification
	Possible formats of the Cache Size Identification Registers, CCSIDR and CCSIDR2

	G4.4.3 Cacheability, cache allocation hints, and cache transient hints
	Transient cacheability hint

	G4.4.4 Enabling and disabling the caching of memory accesses in AArch32 state
	G4.4.5 Behavior of caches at reset
	G4.4.6 About cache maintenance in AArch32 state
	Terms used in describing the cache maintenance instructions
	The Armv8 abstraction of the cache hierarchy

	G4.4.7 AArch32 cache and branch predictor maintenance instructions
	AArch32 instruction cache maintenance instructions (IC*)
	AArch32 data cache maintenance instructions (DC*)
	Branch predictors
	General requirements for the scope of cache and branch predictor maintenance instructions
	Effects of instructions that operate by VA to the Point of Coherency
	Effects of instructions that operate by VA but not to the Point of Coherency
	Effects of All and set/way maintenance instructions
	Effects of virtualization and security on the AArch32 cache maintenance instructions
	Boundary conditions for cache maintenance instructions
	Ordering of cache and branch predictor maintenance instructions
	Performing cache maintenance instructions

	G4.4.8 Execution and data prediction restriction System instructions
	G4.4.9 Cache lockdown
	The interaction of cache lockdown with cache maintenance instructions

	G4.4.10 System level caches

	G4.5 System register support for IMPLEMENTATION DEFINED memory features
	G4.6 External aborts
	G4.6.1 Provision for classification of External aborts
	G4.6.2 Parity or ECC error reporting, RAS Extension not implemented

	G4.7 Memory barrier instructions
	G4.7.1 EL2 control of the Shareability of data barrier instructions executed at EL0 or EL1

	G4.8 Pseudocode description of general memory System instructions
	G4.8.1 Memory data type definitions
	G4.8.2 Basic memory access
	G4.8.3 Aligned memory access
	G4.8.4 Unaligned memory access
	G4.8.5 Exclusives monitors operations
	G4.8.6 Access permission checking
	G4.8.7 Abort exceptions
	G4.8.8 Memory barriers

	G5: The AArch32 Virtual Memory System Architecture�
	G5.1 About VMSAv8-32
	G5.1.1 The VMSAv8-32 translation regimes
	Alternative descriptions of the PL1&0 translation regime

	G5.1.2 Address types used in a VMSAv8-32 description
	G5.1.3 Address spaces in VMSAv8-32
	G5.1.4 About address translation for VMSAv8-32
	Atomicity of register changes on changing virtual machine
	Use of out-of-context translation regimes

	G5.1.5 Organization of the remainder of this chapter

	G5.2 The effects of disabling address translation stages on VMSAv8-32 behavior
	G5.2.1 VMSAv8-32 behavior when stage 1 address translation is disabled
	Effect of the HCR.DC field
	Effect of disabling translation on maintenance and address translation instructions

	G5.2.2 VMSAv8-32 behavior when stage 2 address translation is disabled
	G5.2.3 Behavior of instruction fetches when all associated address translations are disabled
	G5.2.4 Enabling stages of address translation

	G5.3 Translation tables
	G5.3.1 Translation table walks for memory accesses using VMSAv8-32 translation regimes
	G5.3.2 Information returned by a translation table lookup
	G5.3.3 Determining the translation table base address in the VMSAv8-32 translation regimes
	G5.3.4 Control of translation table walks on a TLB miss
	G5.3.5 Access to the Secure or Non-secure PA map
	Secure and Non-secure address spaces

	G5.4 The VMSAv8-32 Short-descriptor translation table format
	G5.4.1 VMSAv8-32 Short-descriptor Translation Table format descriptors
	Short-descriptor Translation Table level 1 descriptor formats
	Short-descriptor Translation Table level 2 descriptor formats
	Additional requirements for Short-descriptor format translation tables

	G5.4.2 Memory attributes in the VMSAv8-32 Short-descriptor Translation Table format descriptors
	G5.4.3 Control of Secure or Non-secure memory access, VMSAv8-32 Short-descriptor format
	G5.4.4 Selecting between TTBR0 and TTBR1, VMSAv8-32 Short-descriptor translation table format
	G5.4.5 Translation table walks, when using the VMSAv8-32 Short-descriptor translation table format
	Reading a level 1 translation table
	The full translation flow for Sections, Supersections, Small pages and Large pages

	G5.5 The VMSAv8-32 Long-descriptor translation table format
	G5.5.1 Overview of VMSAv8-32 address translation using Long-descriptor translation tables
	G5.5.2 VMSAv8-32 Long-descriptor Translation Table format descriptors
	VMSAv8-32 Long-descriptor level 1 and level 2 descriptor formats
	VMSAv8-32 Long-descriptor translation table level 3 descriptor formats

	G5.5.3 Attribute fields in VMSAv8-32 Long-descriptor translation table format descriptors
	Next-level attributes in VMSAv8-32 Long-descriptor stage 1 Table descriptors
	Attribute fields in VMSAv8-32 Long-descriptor stage 1 Block and Page descriptors
	Attribute fields in VMSAv8-32 Long-descriptor stage 2 Block and Page descriptors

	G5.5.4 Control of Secure or Non-secure memory access, VMSAv8-32 Long-descriptor format
	Hierarchical control of Secure or Non-secure memory accesses, Long-descriptor format

	G5.5.5 Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format
	Possible errors in programming the translation table registers

	G5.5.6 VMSAv8-32 Long-descriptor translation table format address lookup levels
	Use of concatenated translation tables for the initial stage 2 lookup

	G5.5.7 Translation table walks, when using the VMSAv8-32 Long-descriptor translation table format
	Determining the required initial lookup level for stage 1 translations
	Determining the required initial lookup level for stage 2 translations

	G5.5.8 The algorithm for finding the translation table entries, VMSAv8-32 Long-descriptor format

	G5.6 Memory access control
	G5.6.1 About access permissions
	AP[2:1] access permissions model
	AP[2:0] access permissions control, Short-descriptor format only

	G5.6.2 About the PAN bit
	G5.6.3 Access permissions for instruction execution
	Hierarchical control of instruction fetching, Long-descriptor format
	Preventing execution from writable locations
	Restriction on Secure instruction fetch

	G5.6.4 Domains, Short-descriptor format only
	G5.6.5 The Access flag
	Software management of the Access flag

	G5.6.6 Hyp mode control of Non-secure access permissions

	G5.7 Memory region attributes
	G5.7.1 Overview of memory region attributes for stage 1 translations
	Stage 1 definition of the XS attribute

	G5.7.2 Short-descriptor format memory region attributes, without TEX remap
	Cacheability attributes, without TEX remap
	Shareability and the S bit, without TEX remap

	G5.7.3 Short-descriptor format memory region attributes, with TEX remap
	Determining the Shareability, with TEX remap
	SCTLR.TRE, SCTLR.M, and the effect of the TEX remap registers
	The OS managed translation table bits
	The effect of EL3 on TEX remap

	G5.7.4 VMSAv8-32 Long-descriptor format memory region attributes
	Shareability, Long-descriptor format
	Other fields in the Long-descriptor translation table format descriptors

	G5.7.5 EL2 control of Non-secure memory region attributes
	Combining the memory type attribute
	Combining the Cacheability attribute
	Combining the Shareability attribute

	G5.8 Translation Lookaside Buffers (TLBs)
	G5.8.1 Global and process-specific translation table entries
	G5.8.2 TLB matching
	G5.8.3 TLB behavior at reset
	G5.8.4 TLB lockdown
	G5.8.5 TLB conflict aborts

	G5.9 TLB maintenance requirements
	G5.9.1 General TLB maintenance requirements
	Using break-before-make when updating translation table entries
	The interaction of TLB lockdown with TLB maintenance instructions
	Ordering and completion of TLB maintenance instructions
	Use of ASIDs and VMIDs to reduce TLB maintenance requirements

	G5.9.2 Maintenance requirements on changing System register values
	Changing the Access flag enable
	Changing HCR.PTW
	Changing the current Translation table format

	G5.9.3 Atomicity of register changes on changing virtual machine
	G5.9.4 Synchronization of changes of ASID and TTBR
	G5.9.5 The scope of TLB maintenance instructions
	EL2 forced broadcasting of TLB maintenance instructions
	TLB maintenance with different translation granule sizes

	G5.10 Caches in VMSAv8-32
	G5.10.1 Data and unified caches
	G5.10.2 Instruction caches
	PIPT (Physically-indexed, physically-tagged) instruction caches
	VPIPT (VMID-aware PIPT) instruction caches
	VIPT (Virtually-indexed, physically-tagged) instruction caches
	The IVIPT architecture Extension

	G5.10.3 Cache maintenance requirement created by changing translation table attributes

	G5.11 VMSAv8-32 memory aborts
	G5.11.1 Types of MMU faults
	Permission fault
	Translation fault
	Address size fault
	Access flag fault
	Domain fault, Short-descriptor format translation tables only

	G5.11.2 VMSAv8-32 MMU fault terminology
	G5.11.3 The MMU fault-checking sequence
	Stage 2 fault on a stage 1 translation table walk

	G5.11.4 Alignment faults
	G5.11.5 External abort on a translation table walk
	Behavior of External aborts on a translation table walk caused by address translation instructions

	G5.11.6 AArch32 state prioritization of synchronous aborts from a single stage of address translation
	Synchronous External abort errors from address translation caching structures

	G5.12 Exception reporting in a VMSAv8-32 implementation
	G5.12.1 About exception reporting
	Fault address reporting on synchronous External aborts

	G5.12.2 Reporting exceptions taken to PL1 modes
	Registers used for reporting exceptions taken to PL1 modes
	Data Abort exceptions, taken to a PL1 mode
	Prefetch Abort exceptions, taken to a PL1 mode

	G5.12.3 Fault reporting in PL1 modes
	Reporting of External aborts taken from Non-secure state to Monitor mode
	PL1 fault reporting with the Short-descriptor translation table format
	PL1 fault reporting with the Long-descriptor translation table format
	Reserved encoding in the IFSR and DFSR encodings tables

	G5.12.4 Summary of register updates on faults taken to PL1 modes
	G5.12.5 Reporting exceptions taken to Hyp mode
	Registers used for reporting exceptions taken to Hyp mode
	Memory fault reporting in Hyp mode
	Use of the HSR

	G5.12.6 Summary of register updates on exceptions taken to Hyp mode
	Classification of MMU faults taken to Hyp mode

	G5.13 Address translation instructions
	G5.13.1 Address translation instruction naming and operation summary
	ATS1C**, Address translation stage 1, current security state
	ATS12NSO**, Address translation stages 1 and 2, Non-secure state only
	ATS1H*, Address translation stage 1, Hyp mode

	G5.13.2 Encoding and availability of the address translation instructions
	G5.13.3 Determining the PAR format
	G5.13.4 Handling of faults and aborts during an address translation instruction
	MMU fault on an address translation instruction
	External abort during an address translation instruction
	Stage 2 fault on a current state address translation instruction

	G5.14 Pseudocode description of VMSAv8-32 memory system operations
	G5.14.1 Full Physical Address
	G5.14.2 Translation regime
	G5.14.3 Address translation
	G5.14.4 Long-descriptor Translation table walk
	G5.14.5 Short-descriptor Translation table walk
	G5.14.6 Memory attribute decoding
	G5.14.7 Fault detection

	G5.15 About the System registers for VMSAv8-32
	G5.15.1 Classification of System registers
	Banked System registers
	Restricted access System registers
	Configurable access System registers
	EL2-mode System registers
	Common System registers
	Secure System registers for the (coproc == 0b1111) encoding space
	Access to registers from Monitor mode
	The CP15SDISABLE and CP15SDISABLE2 input signals

	G5.16 Functional grouping of VMSAv8-32 System registers

	G6: The Generic Timer in AArch32 state�
	G6.1 About the Generic Timer in AArch32 state
	G6.1.1 The full set of Generic Timer components
	G6.1.2 The system counter
	Initializing and reading the system counter frequency
	Memory-mapped controls of the system counter

	G6.2 The AArch32 view of the Generic Timer
	G6.2.1 The physical counter
	The self-synchronized view of the physical counter

	G6.2.2 The virtual counter
	The self-synchronized view of the virtual counter
	The virtual offset register

	G6.2.3 Event streams
	G6.2.4 Timers
	Operation of the CompareValue views of the timers
	Operation of the TimerValue views of the timers

	G7: AArch32 System register Encoding�
	G7.1 The AArch32 System register encoding space
	G7.2 VMSAv8-32 organization of registers in the (coproc == 0b1110) encoding space
	G7.2.1 Register access instruction arguments, (coproc == 0b1110) registers

	G7.3 VMSAv8-32 organization of registers in the (coproc == 0b1111) encoding space
	G7.3.1 System register summary for (coproc == 0b1111) encodings by CRn value
	The HSTR.Tn trap on (coproc == 0b1111) System registers
	Behavior of VMSAv8-32 32-bit System registers with (coproc == 0b1111, CRn == c0)
	Reserved encodings in the VMSAv8-32 System register (coproc == 0b1111) space

	G7.3.2 Full list of VMSAv8-32 System registers in the (coproc == 0b1111) encoding space
	About the GIC System registers

	G8: AArch32 System Register Descriptions�
	G8.1 About the AArch32 System registers
	G8.1.1 Fixed values in the System register descriptions
	G8.1.2 General behavior of System registers
	Register names
	Read-only bits in read/write registers
	The CPUID identification scheme
	IMPLEMENTATION DEFINED performance monitors
	UNPREDICTABLE, CONSTRAINED UNPREDICTABLE, and UNDEFINED behavior for AArch32 System register accesses
	Read-only and write-only register encodings
	Reset behavior of AArch32 System registers
	Synchronization of changes to AArch32 System registers

	G8.1.3 Principles of the ID scheme for fields in ID registers
	AArch32 ID registers to which this scheme applies
	Alternative ID scheme used for the Performance Monitors Extension version

	G8.1.4 About AArch32 System register accesses
	Ordering of reads of System registers
	Accessing 32-bit System registers
	Accessing 64-bit System registers

	G8.2 General system control registers
	G8.2.1 ACTLR, Auxiliary Control Register
	Field descriptions
	Accessing ACTLR

	G8.2.2 ACTLR2, Auxiliary Control Register 2
	Field descriptions
	Accessing ACTLR2

	G8.2.3 ADFSR, Auxiliary Data Fault Status Register
	Field descriptions
	Accessing ADFSR

	G8.2.4 AIDR, Auxiliary ID Register
	Field descriptions
	Accessing AIDR

	G8.2.5 AIFSR, Auxiliary Instruction Fault Status Register
	Field descriptions
	Accessing AIFSR

	G8.2.6 AMAIR0, Auxiliary Memory Attribute Indirection Register 0
	Field descriptions
	Accessing AMAIR0

	G8.2.7 AMAIR1, Auxiliary Memory Attribute Indirection Register 1
	Field descriptions
	Accessing AMAIR1

	G8.2.8 APSR, Application Program Status Register
	Field descriptions

	G8.2.9 ATS12NSOPR, Address Translate Stages 1 and 2 Non-secure Only PL1 Read
	Field descriptions
	Executing ATS12NSOPR instruction

	G8.2.10 ATS12NSOPW, Address Translate Stages 1 and 2 Non-secure Only PL1 Write
	Field descriptions
	Executing ATS12NSOPW instruction

	G8.2.11 ATS12NSOUR, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read
	Field descriptions
	Executing ATS12NSOUR instruction

	G8.2.12 ATS12NSOUW, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write
	Field descriptions
	Executing ATS12NSOUW instruction

	G8.2.13 ATS1CPR, Address Translate Stage 1 Current state PL1 Read
	Field descriptions
	Executing ATS1CPR instruction

	G8.2.14 ATS1CPRP, Address Translate Stage 1 Current state PL1 Read PAN
	Field descriptions
	Executing ATS1CPRP instruction

	G8.2.15 ATS1CPW, Address Translate Stage 1 Current state PL1 Write
	Field descriptions
	Executing ATS1CPW instruction

	G8.2.16 ATS1CPWP, Address Translate Stage 1 Current state PL1 Write PAN
	Field descriptions
	Executing ATS1CPWP instruction

	G8.2.17 ATS1CUR, Address Translate Stage 1 Current state Unprivileged Read
	Field descriptions
	Executing ATS1CUR instruction

	G8.2.18 ATS1CUW, Address Translate Stage 1 Current state Unprivileged Write
	Field descriptions
	Executing ATS1CUW instruction

	G8.2.19 ATS1HR, Address Translate Stage 1 Hyp mode Read
	Field descriptions
	Executing ATS1HR instruction

	G8.2.20 ATS1HW, Address Translate Stage 1 Hyp mode Write
	Field descriptions
	Executing ATS1HW instruction

	G8.2.21 BPIALL, Branch Predictor Invalidate All
	Field descriptions
	Executing BPIALL instruction

	G8.2.22 BPIALLIS, Branch Predictor Invalidate All, Inner Shareable
	Field descriptions
	Executing BPIALLIS instruction

	G8.2.23 BPIMVA, Branch Predictor Invalidate by VA
	Field descriptions
	Executing BPIMVA instruction

	G8.2.24 CCSIDR, Current Cache Size ID Register
	Field descriptions
	Accessing CCSIDR

	G8.2.25 CCSIDR2, Current Cache Size ID Register 2
	Field descriptions
	Accessing CCSIDR2

	G8.2.26 CFPRCTX, Control Flow Prediction Restriction by Context
	Field descriptions
	Executing CFPRCTX instruction

	G8.2.27 CLIDR, Cache Level ID Register
	Field descriptions
	Accessing CLIDR

	G8.2.28 CONTEXTIDR, Context ID Register
	Field descriptions
	Accessing CONTEXTIDR

	G8.2.29 CP15DMB, Data Memory Barrier System instruction
	Field descriptions
	Executing CP15DMB instruction

	G8.2.30 CP15DSB, Data Synchronization Barrier System instruction
	Field descriptions
	Executing CP15DSB instruction

	G8.2.31 CP15ISB, Instruction Synchronization Barrier System instruction
	Field descriptions
	Executing CP15ISB instruction

	G8.2.32 CPACR, Architectural Feature Access Control Register
	Field descriptions
	Accessing CPACR

	G8.2.33 CPSR, Current Program Status Register
	Field descriptions

	G8.2.34 CPPRCTX, Cache Prefetch Prediction Restriction by Context
	Field descriptions
	Executing CPPRCTX instruction

	G8.2.35 CSSELR, Cache Size Selection Register
	Field descriptions
	Accessing CSSELR

	G8.2.36 CTR, Cache Type Register
	Field descriptions
	Accessing CTR

	G8.2.37 DACR, Domain Access Control Register
	Field descriptions
	Accessing DACR

	G8.2.38 DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC
	Field descriptions
	Executing DCCIMVAC instruction

	G8.2.39 DCCISW, Data Cache line Clean and Invalidate by Set/Way
	Field descriptions
	Executing DCCISW instruction

	G8.2.40 DCCMVAC, Data Cache line Clean by VA to PoC
	Field descriptions
	Executing DCCMVAC instruction

	G8.2.41 DCCMVAU, Data Cache line Clean by VA to PoU
	Field descriptions
	Executing DCCMVAU instruction

	G8.2.42 DCCSW, Data Cache line Clean by Set/Way
	Field descriptions
	Executing DCCSW instruction

	G8.2.43 DCIMVAC, Data Cache line Invalidate by VA to PoC
	Field descriptions
	Executing DCIMVAC instruction

	G8.2.44 DCISW, Data Cache line Invalidate by Set/Way
	Field descriptions
	Executing DCISW instruction

	G8.2.45 DFAR, Data Fault Address Register
	Field descriptions
	Accessing DFAR

	G8.2.46 DFSR, Data Fault Status Register
	Field descriptions
	Accessing DFSR

	G8.2.47 DTLBIALL, Data TLB Invalidate All
	Field descriptions
	Executing DTLBIALL instruction

	G8.2.48 DTLBIASID, Data TLB Invalidate by ASID match
	Field descriptions
	Executing DTLBIASID instruction

	G8.2.49 DTLBIMVA, Data TLB Invalidate by VA
	Field descriptions
	Executing DTLBIMVA instruction

	G8.2.50 DVPRCTX, Data Value Prediction Restriction by Context
	Field descriptions
	Executing DVPRCTX instruction

	G8.2.51 ELR_hyp, Exception Link Register (Hyp mode)
	Field descriptions
	Accessing ELR_hyp

	G8.2.52 FCSEIDR, FCSE Process ID register
	Field descriptions
	Accessing FCSEIDR

	G8.2.53 FPEXC, Floating-Point Exception Control register
	Field descriptions
	Accessing FPEXC

	G8.2.54 FPSCR, Floating-Point Status and Control Register
	Field descriptions
	Accessing FPSCR

	G8.2.55 FPSID, Floating-Point System ID register
	Field descriptions
	Accessing FPSID

	G8.2.56 HACR, Hyp Auxiliary Configuration Register
	Field descriptions
	Accessing HACR

	G8.2.57 HACTLR, Hyp Auxiliary Control Register
	Field descriptions
	Accessing HACTLR

	G8.2.58 HACTLR2, Hyp Auxiliary Control Register 2
	Field descriptions
	Accessing HACTLR2

	G8.2.59 HADFSR, Hyp Auxiliary Data Fault Status Register
	Field descriptions
	Accessing HADFSR

	G8.2.60 HAIFSR, Hyp Auxiliary Instruction Fault Status Register
	Field descriptions
	Accessing HAIFSR

	G8.2.61 HAMAIR0, Hyp Auxiliary Memory Attribute Indirection Register 0
	Field descriptions
	Accessing HAMAIR0

	G8.2.62 HAMAIR1, Hyp Auxiliary Memory Attribute Indirection Register 1
	Field descriptions
	Accessing HAMAIR1

	G8.2.63 HCPTR, Hyp Architectural Feature Trap Register
	Field descriptions
	Accessing HCPTR

	G8.2.64 HCR, Hyp Configuration Register
	Field descriptions
	Accessing HCR

	G8.2.65 HCR2, Hyp Configuration Register 2
	Field descriptions
	Accessing HCR2

	G8.2.66 HDFAR, Hyp Data Fault Address Register
	Field descriptions
	Accessing HDFAR

	G8.2.67 HIFAR, Hyp Instruction Fault Address Register
	Field descriptions
	Accessing HIFAR

	G8.2.68 HMAIR0, Hyp Memory Attribute Indirection Register 0
	Field descriptions
	Accessing HMAIR0

	G8.2.69 HMAIR1, Hyp Memory Attribute Indirection Register 1
	Field descriptions
	Accessing HMAIR1

	G8.2.70 HPFAR, Hyp IPA Fault Address Register
	Field descriptions
	Accessing HPFAR

	G8.2.71 HRMR, Hyp Reset Management Register
	Field descriptions
	Accessing HRMR

	G8.2.72 HSCTLR, Hyp System Control Register
	Field descriptions
	Accessing HSCTLR

	G8.2.73 HSR, Hyp Syndrome Register
	Field descriptions
	Accessing HSR

	G8.2.74 HSTR, Hyp System Trap Register
	Field descriptions
	Accessing HSTR

	G8.2.75 HTCR, Hyp Translation Control Register
	Field descriptions
	Accessing HTCR

	G8.2.76 HTPIDR, Hyp Software Thread ID Register
	Field descriptions
	Accessing HTPIDR

	G8.2.77 HTTBR, Hyp Translation Table Base Register
	Field descriptions
	Accessing HTTBR

	G8.2.78 HVBAR, Hyp Vector Base Address Register
	Field descriptions
	Accessing HVBAR

	G8.2.79 ICIALLU, Instruction Cache Invalidate All to PoU
	Field descriptions
	Executing ICIALLU instruction

	G8.2.80 ICIALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable
	Field descriptions
	Executing ICIALLUIS instruction

	G8.2.81 ICIMVAU, Instruction Cache line Invalidate by VA to PoU
	Field descriptions
	Executing ICIMVAU instruction

	G8.2.82 ID_AFR0, Auxiliary Feature Register 0
	Field descriptions
	Accessing ID_AFR0

	G8.2.83 ID_DFR0, Debug Feature Register 0
	Field descriptions
	Accessing ID_DFR0

	G8.2.84 ID_DFR1, Debug Feature Register 1
	Field descriptions
	Accessing ID_DFR1

	G8.2.85 ID_ISAR0, Instruction Set Attribute Register 0
	Field descriptions
	Accessing ID_ISAR0

	G8.2.86 ID_ISAR1, Instruction Set Attribute Register 1
	Field descriptions
	Accessing ID_ISAR1

	G8.2.87 ID_ISAR2, Instruction Set Attribute Register 2
	Field descriptions
	Accessing ID_ISAR2

	G8.2.88 ID_ISAR3, Instruction Set Attribute Register 3
	Field descriptions
	Accessing ID_ISAR3

	G8.2.89 ID_ISAR4, Instruction Set Attribute Register 4
	Field descriptions
	Accessing ID_ISAR4

	G8.2.90 ID_ISAR5, Instruction Set Attribute Register 5
	Field descriptions
	Accessing ID_ISAR5

	G8.2.91 ID_ISAR6, Instruction Set Attribute Register 6
	Field descriptions
	Accessing ID_ISAR6

	G8.2.92 ID_MMFR0, Memory Model Feature Register 0
	Field descriptions
	Accessing ID_MMFR0

	G8.2.93 ID_MMFR1, Memory Model Feature Register 1
	Field descriptions
	Accessing ID_MMFR1

	G8.2.94 ID_MMFR2, Memory Model Feature Register 2
	Field descriptions
	Accessing ID_MMFR2

	G8.2.95 ID_MMFR3, Memory Model Feature Register 3
	Field descriptions
	Accessing ID_MMFR3

	G8.2.96 ID_MMFR4, Memory Model Feature Register 4
	Field descriptions
	Accessing ID_MMFR4

	G8.2.97 ID_MMFR5, Memory Model Feature Register 5
	Field descriptions
	Accessing ID_MMFR5

	G8.2.98 ID_PFR0, Processor Feature Register 0
	Field descriptions
	Accessing ID_PFR0

	G8.2.99 ID_PFR1, Processor Feature Register 1
	Field descriptions
	Accessing ID_PFR1

	G8.2.100 ID_PFR2, Processor Feature Register 2
	Field descriptions
	Accessing ID_PFR2

	G8.2.101 IFAR, Instruction Fault Address Register
	Field descriptions
	Accessing IFAR

	G8.2.102 IFSR, Instruction Fault Status Register
	Field descriptions
	Accessing IFSR

	G8.2.103 ISR, Interrupt Status Register
	Field descriptions
	Accessing ISR

	G8.2.104 ITLBIALL, Instruction TLB Invalidate All
	Field descriptions
	Executing ITLBIALL instruction

	G8.2.105 ITLBIASID, Instruction TLB Invalidate by ASID match
	Field descriptions
	Executing ITLBIASID instruction

	G8.2.106 ITLBIMVA, Instruction TLB Invalidate by VA
	Field descriptions
	Executing ITLBIMVA instruction

	G8.2.107 JIDR, Jazelle ID Register
	Field descriptions
	Accessing JIDR

	G8.2.108 JMCR, Jazelle Main Configuration Register
	Field descriptions
	Accessing JMCR

	G8.2.109 JOSCR, Jazelle OS Control Register
	Field descriptions
	Accessing JOSCR

	G8.2.110 MAIR0, Memory Attribute Indirection Register 0
	Field descriptions
	Accessing MAIR0

	G8.2.111 MAIR1, Memory Attribute Indirection Register 1
	Field descriptions
	Accessing MAIR1

	G8.2.112 MIDR, Main ID Register
	Field descriptions
	Accessing MIDR

	G8.2.113 MPIDR, Multiprocessor Affinity Register
	Field descriptions
	Accessing MPIDR

	G8.2.114 MVBAR, Monitor Vector Base Address Register
	Field descriptions
	Accessing MVBAR

	G8.2.115 MVFR0, Media and VFP Feature Register 0
	Field descriptions
	Accessing MVFR0

	G8.2.116 MVFR1, Media and VFP Feature Register 1
	Field descriptions
	Accessing MVFR1

	G8.2.117 MVFR2, Media and VFP Feature Register 2
	Field descriptions
	Accessing MVFR2

	G8.2.118 NMRR, Normal Memory Remap Register
	Field descriptions
	Accessing NMRR

	G8.2.119 NSACR, Non-Secure Access Control Register
	Field descriptions
	Accessing NSACR

	G8.2.120 PAR, Physical Address Register
	Field descriptions
	Accessing PAR

	G8.2.121 PRRR, Primary Region Remap Register
	Field descriptions
	Accessing PRRR

	G8.2.122 REVIDR, Revision ID Register
	Field descriptions
	Accessing REVIDR

	G8.2.123 RMR, Reset Management Register
	Field descriptions
	Accessing RMR

	G8.2.124 RVBAR, Reset Vector Base Address Register
	Field descriptions
	Accessing RVBAR

	G8.2.125 SCR, Secure Configuration Register
	Field descriptions
	Accessing SCR

	G8.2.126 SCTLR, System Control Register
	Field descriptions
	Accessing SCTLR

	G8.2.127 SPSR, Saved Program Status Register
	Field descriptions

	G8.2.128 SPSR_abt, Saved Program Status Register (Abort mode)
	Field descriptions
	Accessing SPSR_abt

	G8.2.129 SPSR_fiq, Saved Program Status Register (FIQ mode)
	Field descriptions
	Accessing SPSR_fiq

	G8.2.130 SPSR_hyp, Saved Program Status Register (Hyp mode)
	Field descriptions
	Accessing SPSR_hyp

	G8.2.131 SPSR_irq, Saved Program Status Register (IRQ mode)
	Field descriptions
	Accessing SPSR_irq

	G8.2.132 SPSR_mon, Saved Program Status Register (Monitor mode)
	Field descriptions
	Accessing SPSR_mon

	G8.2.133 SPSR_svc, Saved Program Status Register (Supervisor mode)
	Field descriptions
	Accessing SPSR_svc

	G8.2.134 SPSR_und, Saved Program Status Register (Undefined mode)
	Field descriptions
	Accessing SPSR_und

	G8.2.135 TCMTR, TCM Type Register
	Field descriptions
	Accessing TCMTR

	G8.2.136 TLBIALL, TLB Invalidate All
	Field descriptions
	Executing TLBIALL instruction

	G8.2.137 TLBIALLH, TLB Invalidate All, Hyp mode
	Field descriptions
	Executing TLBIALLH instruction

	G8.2.138 TLBIALLHIS, TLB Invalidate All, Hyp mode, Inner Shareable
	Field descriptions
	Executing TLBIALLHIS instruction

	G8.2.139 TLBIALLIS, TLB Invalidate All, Inner Shareable
	Field descriptions
	Executing TLBIALLIS instruction

	G8.2.140 TLBIALLNSNH, TLB Invalidate All, Non-Secure Non-Hyp
	Field descriptions
	Executing TLBIALLNSNH instruction

	G8.2.141 TLBIALLNSNHIS, TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
	Field descriptions
	Executing TLBIALLNSNHIS instruction

	G8.2.142 TLBIASID, TLB Invalidate by ASID match
	Field descriptions
	Executing TLBIASID instruction

	G8.2.143 TLBIASIDIS, TLB Invalidate by ASID match, Inner Shareable
	Field descriptions
	Executing TLBIASIDIS instruction

	G8.2.144 TLBIIPAS2, TLB Invalidate by Intermediate Physical Address, Stage 2
	Field descriptions
	Executing TLBIIPAS2 instruction

	G8.2.145 TLBIIPAS2IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable
	Field descriptions
	Executing TLBIIPAS2IS instruction

	G8.2.146 TLBIIPAS2L, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level
	Field descriptions
	Executing TLBIIPAS2L instruction

	G8.2.147 TLBIIPAS2LIS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable
	Field descriptions
	Executing TLBIIPAS2LIS instruction

	G8.2.148 TLBIMVA, TLB Invalidate by VA
	Field descriptions
	Executing TLBIMVA instruction

	G8.2.149 TLBIMVAA, TLB Invalidate by VA, All ASID
	Field descriptions
	Executing TLBIMVAA instruction

	G8.2.150 TLBIMVAAIS, TLB Invalidate by VA, All ASID, Inner Shareable
	Field descriptions
	Executing TLBIMVAAIS instruction

	G8.2.151 TLBIMVAAL, TLB Invalidate by VA, All ASID, Last level
	Field descriptions
	Executing TLBIMVAAL instruction

	G8.2.152 TLBIMVAALIS, TLB Invalidate by VA, All ASID, Last level, Inner Shareable
	Field descriptions
	Executing TLBIMVAALIS instruction

	G8.2.153 TLBIMVAH, TLB Invalidate by VA, Hyp mode
	Field descriptions
	Executing TLBIMVAH instruction

	G8.2.154 TLBIMVAHIS, TLB Invalidate by VA, Hyp mode, Inner Shareable
	Field descriptions
	Executing TLBIMVAHIS instruction

	G8.2.155 TLBIMVAIS, TLB Invalidate by VA, Inner Shareable
	Field descriptions
	Executing TLBIMVAIS instruction

	G8.2.156 TLBIMVAL, TLB Invalidate by VA, Last level
	Field descriptions
	Executing TLBIMVAL instruction

	G8.2.157 TLBIMVALH, TLB Invalidate by VA, Last level, Hyp mode
	Field descriptions
	Executing TLBIMVALH instruction

	G8.2.158 TLBIMVALHIS, TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable
	Field descriptions
	Executing TLBIMVALHIS instruction

	G8.2.159 TLBIMVALIS, TLB Invalidate by VA, Last level, Inner Shareable
	Field descriptions
	Executing TLBIMVALIS instruction

	G8.2.160 TLBTR, TLB Type Register
	Field descriptions
	Accessing TLBTR

	G8.2.161 TPIDRPRW, PL1 Software Thread ID Register
	Field descriptions
	Accessing TPIDRPRW

	G8.2.162 TPIDRURO, PL0 Read-Only Software Thread ID Register
	Field descriptions
	Accessing TPIDRURO

	G8.2.163 TPIDRURW, PL0 Read/Write Software Thread ID Register
	Field descriptions
	Accessing TPIDRURW

	G8.2.164 TTBCR, Translation Table Base Control Register
	Field descriptions
	Accessing TTBCR

	G8.2.165 TTBCR2, Translation Table Base Control Register 2
	Field descriptions
	Accessing TTBCR2

	G8.2.166 TTBR0, Translation Table Base Register 0
	Field descriptions
	Accessing TTBR0

	G8.2.167 TTBR1, Translation Table Base Register 1
	Field descriptions
	Accessing TTBR1

	G8.2.168 VBAR, Vector Base Address Register
	Field descriptions
	Accessing VBAR

	G8.2.169 VMPIDR, Virtualization Multiprocessor ID Register
	Field descriptions
	Accessing VMPIDR

	G8.2.170 VPIDR, Virtualization Processor ID Register
	Field descriptions
	Accessing VPIDR

	G8.2.171 VTCR, Virtualization Translation Control Register
	Field descriptions
	Accessing VTCR

	G8.2.172 VTTBR, Virtualization Translation Table Base Register
	Field descriptions
	Accessing VTTBR

	G8.3 Debug registers
	G8.3.1 DBGAUTHSTATUS, Debug Authentication Status register
	Field descriptions
	Accessing DBGAUTHSTATUS

	G8.3.2 DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15
	Field descriptions
	Accessing DBGBCR<n>

	G8.3.3 DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15
	Field descriptions
	Accessing DBGBVR<n>

	G8.3.4 DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15
	Field descriptions
	Accessing DBGBXVR<n>

	G8.3.5 DBGCLAIMCLR, Debug CLAIM Tag Clear register
	Field descriptions
	Accessing DBGCLAIMCLR

	G8.3.6 DBGCLAIMSET, Debug CLAIM Tag Set register
	Field descriptions
	Accessing DBGCLAIMSET

	G8.3.7 DBGDCCINT, DCC Interrupt Enable Register
	Field descriptions
	Accessing DBGDCCINT

	G8.3.8 DBGDEVID, Debug Device ID register 0
	Field descriptions
	Accessing DBGDEVID

	G8.3.9 DBGDEVID1, Debug Device ID register 1
	Field descriptions
	Accessing DBGDEVID1

	G8.3.10 DBGDEVID2, Debug Device ID register 2
	Field descriptions
	Accessing DBGDEVID2

	G8.3.11 DBGDIDR, Debug ID Register
	Field descriptions
	Accessing DBGDIDR

	G8.3.12 DBGDRAR, Debug ROM Address Register
	Field descriptions
	Accessing DBGDRAR

	G8.3.13 DBGDSAR, Debug Self Address Register
	Field descriptions
	Accessing DBGDSAR

	G8.3.14 DBGDSCRext, Debug Status and Control Register, External View
	Field descriptions
	Accessing DBGDSCRext

	G8.3.15 DBGDSCRint, Debug Status and Control Register, Internal View
	Field descriptions
	Accessing DBGDSCRint

	G8.3.16 DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View
	Field descriptions
	Accessing DBGDTRRXext

	G8.3.17 DBGDTRRXint, Debug Data Transfer Register, Receive
	Field descriptions
	Accessing DBGDTRRXint

	G8.3.18 DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit
	Field descriptions
	Accessing DBGDTRTXext

	G8.3.19 DBGDTRTXint, Debug Data Transfer Register, Transmit
	Field descriptions
	Accessing DBGDTRTXint

	G8.3.20 DBGOSDLR, Debug OS Double Lock Register
	Field descriptions
	Accessing DBGOSDLR

	G8.3.21 DBGOSECCR, Debug OS Lock Exception Catch Control Register
	Field descriptions
	Accessing DBGOSECCR

	G8.3.22 DBGOSLAR, Debug OS Lock Access Register
	Field descriptions
	Accessing DBGOSLAR

	G8.3.23 DBGOSLSR, Debug OS Lock Status Register
	Field descriptions
	Accessing DBGOSLSR

	G8.3.24 DBGPRCR, Debug Power Control Register
	Field descriptions
	Accessing DBGPRCR

	G8.3.25 DBGVCR, Debug Vector Catch Register
	Field descriptions
	Accessing DBGVCR

	G8.3.26 DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15
	Field descriptions
	Accessing DBGWCR<n>

	G8.3.27 DBGWFAR, Debug Watchpoint Fault Address Register
	Field descriptions
	Accessing DBGWFAR

	G8.3.28 DBGWVR<n>, Debug Watchpoint Value Registers, n = 0 - 15
	Field descriptions
	Accessing DBGWVR<n>

	G8.3.29 DLR, Debug Link Register
	Field descriptions
	Accessing DLR

	G8.3.30 DSPSR, Debug Saved Program Status Register
	Field descriptions
	Accessing DSPSR

	G8.3.31 HDCR, Hyp Debug Control Register
	Field descriptions
	Accessing HDCR

	G8.3.32 HTRFCR, Hyp Trace Filter Control Register
	Field descriptions
	Accessing HTRFCR

	G8.3.33 PMMIR, Performance Monitors Machine Identification Register
	Field descriptions
	Accessing PMMIR

	G8.3.34 SDCR, Secure Debug Control Register
	Field descriptions
	Accessing SDCR

	G8.3.35 SDER, Secure Debug Enable Register
	Field descriptions
	Accessing SDER

	G8.3.36 TRFCR, Trace Filter Control Register
	Field descriptions
	Accessing TRFCR

	G8.4 Performance Monitors registers
	G8.4.1 PMCCFILTR, Performance Monitors Cycle Count Filter Register
	Field descriptions
	Accessing PMCCFILTR

	G8.4.2 PMCCNTR, Performance Monitors Cycle Count Register
	Field descriptions
	Accessing PMCCNTR

	G8.4.3 PMCEID0, Performance Monitors Common Event Identification register 0
	Field descriptions
	Accessing PMCEID0

	G8.4.4 PMCEID1, Performance Monitors Common Event Identification register 1
	Field descriptions
	Accessing PMCEID1

	G8.4.5 PMCEID2, Performance Monitors Common Event Identification register 2
	Field descriptions
	Accessing PMCEID2

	G8.4.6 PMCEID3, Performance Monitors Common Event Identification register 3
	Field descriptions
	Accessing PMCEID3

	G8.4.7 PMCNTENCLR, Performance Monitors Count Enable Clear register
	Field descriptions
	Accessing PMCNTENCLR

	G8.4.8 PMCNTENSET, Performance Monitors Count Enable Set register
	Field descriptions
	Accessing PMCNTENSET

	G8.4.9 PMCR, Performance Monitors Control Register
	Field descriptions
	Accessing PMCR

	G8.4.10 PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30
	Field descriptions
	Accessing PMEVCNTR<n>

	G8.4.11 PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30
	Field descriptions
	Accessing PMEVTYPER<n>

	G8.4.12 PMINTENCLR, Performance Monitors Interrupt Enable Clear register
	Field descriptions
	Accessing PMINTENCLR

	G8.4.13 PMINTENSET, Performance Monitors Interrupt Enable Set register
	Field descriptions
	Accessing PMINTENSET

	G8.4.14 PMOVSR, Performance Monitors Overflow Flag Status Register
	Field descriptions
	Accessing PMOVSR

	G8.4.15 PMOVSSET, Performance Monitors Overflow Flag Status Set register
	Field descriptions
	Accessing PMOVSSET

	G8.4.16 PMSELR, Performance Monitors Event Counter Selection Register
	Field descriptions
	Accessing PMSELR

	G8.4.17 PMSWINC, Performance Monitors Software Increment register
	Field descriptions
	Accessing PMSWINC

	G8.4.18 PMUSERENR, Performance Monitors User Enable Register
	Field descriptions
	Accessing PMUSERENR

	G8.4.19 PMXEVCNTR, Performance Monitors Selected Event Count Register
	Field descriptions
	Accessing PMXEVCNTR

	G8.4.20 PMXEVTYPER, Performance Monitors Selected Event Type Register
	Field descriptions
	Accessing PMXEVTYPER

	G8.5 Activity Monitors registers
	G8.5.1 AMCFGR, Activity Monitors Configuration Register
	Field descriptions
	Accessing AMCFGR

	G8.5.2 AMCGCR, Activity Monitors Counter Group Configuration Register
	Field descriptions
	Accessing AMCGCR

	G8.5.3 AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0
	Field descriptions
	Accessing AMCNTENCLR0

	G8.5.4 AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1
	Field descriptions
	Accessing AMCNTENCLR1

	G8.5.5 AMCNTENSET0, Activity Monitors Count Enable Set Register 0
	Field descriptions
	Accessing AMCNTENSET0

	G8.5.6 AMCNTENSET1, Activity Monitors Count Enable Set Register 1
	Field descriptions
	Accessing AMCNTENSET1

	G8.5.7 AMCR, Activity Monitors Control Register
	Field descriptions
	Accessing AMCR

	G8.5.8 AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 3
	Field descriptions
	Accessing AMEVCNTR0<n>

	G8.5.9 AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15
	Field descriptions
	Accessing AMEVCNTR1<n>

	G8.5.10 AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 3
	Field descriptions
	Accessing AMEVTYPER0<n>

	G8.5.11 AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15
	Field descriptions
	Accessing AMEVTYPER1<n>

	G8.5.12 AMUSERENR, Activity Monitors User Enable Register
	Field descriptions
	Accessing AMUSERENR

	G8.6 RAS registers
	G8.6.1 DISR, Deferred Interrupt Status Register
	Field descriptions
	Accessing DISR

	G8.6.2 ERRIDR, Error Record ID Register
	Field descriptions
	Accessing ERRIDR

	G8.6.3 ERRSELR, Error Record Select Register
	Field descriptions
	Accessing ERRSELR

	G8.6.4 ERXADDR, Selected Error Record Address Register
	Field descriptions
	Accessing ERXADDR

	G8.6.5 ERXADDR2, Selected Error Record Address Register 2
	Field descriptions
	Accessing ERXADDR2

	G8.6.6 ERXCTLR, Selected Error Record Control Register
	Field descriptions
	Accessing ERXCTLR

	G8.6.7 ERXCTLR2, Selected Error Record Control Register 2
	Field descriptions
	Accessing ERXCTLR2

	G8.6.8 ERXFR, Selected Error Record Feature Register
	Field descriptions
	Accessing ERXFR

	G8.6.9 ERXFR2, Selected Error Record Feature Register 2
	Field descriptions
	Accessing ERXFR2

	G8.6.10 ERXMISC0, Selected Error Record Miscellaneous Register 0
	Field descriptions
	Accessing ERXMISC0

	G8.6.11 ERXMISC1, Selected Error Record Miscellaneous Register 1
	Field descriptions
	Accessing ERXMISC1

	G8.6.12 ERXMISC2, Selected Error Record Miscellaneous Register 2
	Field descriptions
	Accessing ERXMISC2

	G8.6.13 ERXMISC3, Selected Error Record Miscellaneous Register 3
	Field descriptions
	Accessing ERXMISC3

	G8.6.14 ERXMISC4, Selected Error Record Miscellaneous Register 4
	Field descriptions
	Accessing ERXMISC4

	G8.6.15 ERXMISC5, Selected Error Record Miscellaneous Register 5
	Field descriptions
	Accessing ERXMISC5

	G8.6.16 ERXMISC6, Selected Error Record Miscellaneous Register 6
	Field descriptions
	Accessing ERXMISC6

	G8.6.17 ERXMISC7, Selected Error Record Miscellaneous Register 7
	Field descriptions
	Accessing ERXMISC7

	G8.6.18 ERXSTATUS, Selected Error Record Primary Status Register
	Field descriptions
	Accessing ERXSTATUS

	G8.6.19 VDFSR, Virtual SError Exception Syndrome Register
	Field descriptions
	Accessing VDFSR

	G8.6.20 VDISR, Virtual Deferred Interrupt Status Register
	Field descriptions
	Accessing VDISR

	G8.7 Generic Timer registers
	G8.7.1 CNTFRQ, Counter-timer Frequency register
	Field descriptions
	Accessing CNTFRQ

	G8.7.2 CNTHCTL, Counter-timer Hyp Control register
	Field descriptions
	Accessing CNTHCTL

	G8.7.3 CNTHP_CTL, Counter-timer Hyp Physical Timer Control register
	Field descriptions
	Accessing CNTHP_CTL

	G8.7.4 CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register
	Field descriptions
	Accessing CNTHP_CVAL

	G8.7.5 CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register
	Field descriptions
	Accessing CNTHP_TVAL

	G8.7.6 CNTHPS_CTL, Counter-timer Secure Physical Timer Control Register (EL2)
	Field descriptions
	Accessing CNTHPS_CTL

	G8.7.7 CNTHPS_CVAL, Counter-timer Secure Physical Timer CompareValue Register (EL2)
	Field descriptions
	Accessing CNTHPS_CVAL

	G8.7.8 CNTHPS_TVAL, Counter-timer Secure Physical Timer TimerValue Register (EL2)
	Field descriptions
	Accessing CNTHPS_TVAL

	G8.7.9 CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)
	Field descriptions
	Accessing CNTHV_CTL

	G8.7.10 CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2)
	Field descriptions
	Accessing CNTHV_CVAL

	G8.7.11 CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)
	Field descriptions
	Accessing CNTHV_TVAL

	G8.7.12 CNTHVS_CTL, Counter-timer Secure Virtual Timer Control Register (EL2)
	Field descriptions
	Accessing CNTHVS_CTL

	G8.7.13 CNTHVS_CVAL, Counter-timer Secure Virtual Timer CompareValue Register (EL2)
	Field descriptions
	Accessing CNTHVS_CVAL

	G8.7.14 CNTHVS_TVAL, Counter-timer Secure Virtual Timer TimerValue Register (EL2)
	Field descriptions
	Accessing CNTHVS_TVAL

	G8.7.15 CNTKCTL, Counter-timer Kernel Control register
	Field descriptions
	Accessing CNTKCTL

	G8.7.16 CNTP_CTL, Counter-timer Physical Timer Control register
	Field descriptions
	Accessing CNTP_CTL

	G8.7.17 CNTP_CVAL, Counter-timer Physical Timer CompareValue register
	Field descriptions
	Accessing CNTP_CVAL

	G8.7.18 CNTP_TVAL, Counter-timer Physical Timer TimerValue register
	Field descriptions
	Accessing CNTP_TVAL

	G8.7.19 CNTPCT, Counter-timer Physical Count register
	Field descriptions
	Accessing CNTPCT

	G8.7.20 CNTPCTSS, Counter-timer Self-Synchronized Physical Count register
	Field descriptions
	Accessing CNTPCTSS

	G8.7.21 CNTV_CTL, Counter-timer Virtual Timer Control register
	Field descriptions
	Accessing CNTV_CTL

	G8.7.22 CNTV_CVAL, Counter-timer Virtual Timer CompareValue register
	Field descriptions
	Accessing CNTV_CVAL

	G8.7.23 CNTV_TVAL, Counter-timer Virtual Timer TimerValue register
	Field descriptions
	Accessing CNTV_TVAL

	G8.7.24 CNTVCT, Counter-timer Virtual Count register
	Field descriptions
	Accessing CNTVCT

	G8.7.25 CNTVCTSS, Counter-timer Self-Synchronized Virtual Count register
	Field descriptions
	Accessing CNTVCTSS

	G8.7.26 CNTVOFF, Counter-timer Virtual Offset register
	Field descriptions
	Accessing CNTVOFF

	Part H: External Debug�
	H1: About External Debug�
	H1.1 Introduction to external debug
	H1.1.1 Definition and constraints of a debugger in the context of external debug

	H1.2 External debug
	H1.3 Required debug authentication

	H2: Debug State�
	H2.1 About Debug state
	H2.2 Halting the PE on debug events
	H2.2.1 Halting allowed and halting prohibited
	H2.2.2 Halting debug events
	H2.2.3 Breakpoint and Watchpoint debug events
	H2.2.4 Other debug exceptions
	H2.2.5 Debug state entry and debug event prioritization
	Breakpoint debug events and Vector Catch exception

	H2.2.6 Imprecise entry to Debug state
	H2.2.7 Summary of actions from debug events
	H2.2.8 Pseudocode description of Halting on debug events

	H2.3 Entering Debug state
	H2.3.1 Entering Debug state from AArch32 state
	H2.3.2 Effect of Debug state entry on DLR and DSPSR
	H2.3.3 Effect of Debug state entry on System registers, the Event register, and Exclusives monitors
	H2.3.4 Effect of entering Debug state on PSTATE
	H2.3.5 Entering Debug state during loads and stores
	H2.3.6 Entering Debug state and Software Step
	H2.3.7 Pseudocode description of entering Debug state

	H2.4 Behavior in Debug state
	H2.4.1 PSTATE in Debug state
	H2.4.2 Executing instructions in Debug state
	Executing A64 instructions in Debug state
	Executing T32 instructions in Debug state

	H2.4.3 Decode tables
	H2.4.4 Security in Debug state
	H2.4.5 Privilege in Debug state
	H2.4.6 Debug state operations, DCPS, DRPS, MRS, MSR
	DCPS<n>
	DRPS
	MRS and MSR

	H2.4.7 Exceptions in Debug state
	Generating exceptions when in Debug state
	Taking exceptions when in Debug state
	Pseudocode description of taking exceptions in Debug state
	Reset in Debug state

	H2.4.8 Accessing registers in Debug state
	General-purpose register access, other than AArch64 state SP access
	SIMD and floating-point register, System register, and AArch64 state SP accesses
	PC and PSTATE access

	H2.4.9 Accessing memory in Debug state
	Simple memory transfers
	Bulk memory transfers

	H2.5 Exiting Debug state

	H3: Halting Debug Events�
	H3.1 Introduction to Halting debug events
	H3.2 Halting Step debug events
	H3.2.1 Overview of a Halting Step debug event
	H3.2.2 The Halting Step state machine
	H3.2.3 Using Halting Step
	H3.2.4 Detailed Halting Step state machine behavior
	Entering the active-not-pending state
	PE behavior in the active-not-pending state
	Entering the active-pending state
	PE behavior in the active-pending state
	PE behavior in the inactive state when in Non-debug state
	PE behavior in Debug state

	H3.2.5 Synchronization and the Halting Step state machine
	Changing the value of EDECR.SS when not in Debug state

	H3.2.6 Stepping T32 IT instructions
	H3.2.7 Disabling interrupts while stepping
	H3.2.8 Syndrome information on Halting Step
	H3.2.9 Pseudocode description of Halting Step debug events

	H3.3 Halt Instruction debug event
	H3.3.1 HLT instructions as the first instruction in a T32 IT block

	H3.4 Exception Catch debug event
	H3.4.1 Exception Catch debug events when FEAT_Debugv8p2 is implemented
	H3.4.2 Exception Catch debug events when FEAT_Debugv8p2 is not implemented
	H3.4.3 Examples of Exception Catch debug events
	H3.4.4 Pseudocode description of Exception Catch debug events

	H3.5 External Debug Request debug event
	H3.5.1 Synchronization and External Debug Request debug events
	H3.5.2 Pseudocode description of External Debug Request debug events

	H3.6 OS Unlock Catch debug event
	H3.6.1 Using the OS Unlock Catch debug event
	H3.6.2 Pseudocode description of OS Unlock Catch debug event

	H3.7 Reset Catch debug events
	H3.7.1 Pseudocode description of Reset Catch debug event

	H3.8 Software Access debug event
	H3.8.1 Pseudocode description of Software Access debug event

	H3.9 Synchronization and Halting debug events
	H3.9.1 Pending Halting debug events

	H4: The Debug Communication Channel and Instruction Transfer Register�
	H4.1 Introduction
	H4.2 DCC and ITR registers
	H4.3 DCC and ITR access modes
	H4.3.1 Normal access mode
	H4.3.2 Memory access mode
	Ordering, access sizes and effect on Exclusives monitors
	Data Aborts in Memory access mode
	Illegal Execution state exception
	Alignment constraints

	H4.3.3 Memory-mapped accesses to the DCC and ITR

	H4.4 Flow control of the DCC and ITR registers
	H4.4.1 Ready flags
	H4.4.2 Buffering writes to EDITR
	H4.4.3 Overrun and underrun flags
	Accessing 64-bit data

	H4.4.4 Cumulative error flag
	Pseudocode description of clearing the error flag

	H4.5 Synchronization of DCC and ITR accesses
	H4.5.1 Summary of System register accesses to the DCC
	H4.5.2 DCC accesses in Non-debug state
	Derived requirements

	H4.5.3 Synchronization of DCC interrupt request signals
	H4.5.4 DCC and ITR access in Debug state

	H4.6 Interrupt-driven use of the DCC
	H4.7 Pseudocode description of the operation of the DCC and ITR registers

	H5: The Embedded Cross-Trigger Interface�
	H5.1 About the Embedded Cross-Trigger (ECT)
	H5.1.1 Implementation with a CoreSight CTI
	H5.1.2 Implementation with CTIv2

	H5.2 Basic operation on the ECT
	H5.2.1 Multicycle events
	An ECT that supports multicycle trigger events
	An ECT that does not support multicycle trigger events

	H5.3 Cross-triggers on a PE in an Armv8 implementation
	H5.4 Description and allocation of CTI triggers
	H5.4.1 Debug request trigger event
	H5.4.2 Restart request trigger event
	H5.4.3 Cross-halt trigger event
	H5.4.4 Performance Monitors overflow trigger event
	H5.4.5 Statistical Profiling Extension sample trigger event
	H5.4.6 Generic trace external input trigger events
	H5.4.7 Generic trace external output trigger events
	H5.4.8 Generic CTI interrupt trigger event

	H5.5 CTI registers programmers’ model
	H5.5.1 CTI reset
	H5.5.2 CTI authentication

	H5.6 Examples

	H6: Debug Reset and Powerdown Support�
	H6.1 About Debug over powerdown
	H6.2 Power domains and debug
	H6.3 Core power domain power states
	H6.4 Powerup request mechanism
	H6.4.1 Powerup request mechanism if FEAT_DoPD is implemented
	H6.4.2 Powerup request mechanism if FEAT_DoPD is not implemented

	H6.5 Emulating low-power states
	H6.6 Debug OS Save and Restore sequences
	H6.6.1 EDPRSR.{DLK, SPD, PU} and the Core power domain
	H6.6.2 EDPRSR.SPD when the Core domain is in either retention or powerdown state
	H6.6.3 EDPRSR.{DLK, R} and reset state
	H6.6.4 Debug registers to save over powerdown
	H6.6.5 OS Save sequence
	H6.6.6 OS Restore sequence
	H6.6.7 Debug behavior when the OS Lock is locked
	H6.6.8 Debug behavior when the OS Lock is unlocked
	H6.6.9 Debug behavior when the OS Double Lock is locked

	H6.7 Reset and debug
	H6.7.1 External debug interface accesses to registers in reset

	H7: The PC Sample-based Profiling Extension�
	H7.1 About the PC Sample-based Profiling Extension
	H7.1.1 Controlling the PC Sample-based Profiling Extension
	H7.1.2 Registers implemented by the PC Sample-based Profiling Extension
	H7.1.3 Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN
	H7.1.4 Pseudocode description of PC Sample-based Profiling

	H8: About the External Debug Registers�
	H8.1 Relationship between external debug and System registers
	H8.2 Endianness and supported access sizes
	H8.3 Synchronization of changes to the external debug registers
	H8.3.1 Synchronization and the authentication interface
	H8.3.2 Examples of the synchronization of changes to the external debug registers

	H8.4 Memory-mapped accesses to the external debug interface
	H8.4.1 Register access permissions for memory-mapped accesses
	Effect of the optional Software Lock on memory-mapped access
	Behavior of a not permitted memory-mapped access

	H8.4.2 Synchronization of memory-mapped accesses to external debug registers

	H8.5 External debug interface register access permissions
	H8.5.1 External debug over powerdown and locks
	H8.5.2 External access disabled
	H8.5.3 Behavior of a not permitted access
	H8.5.4 External debug interface register access permissions summary
	H8.5.5 IMPLEMENTATION DEFINED registers
	H8.5.6 Reserved and unallocated registers

	H8.6 External debug interface registers
	H8.6.1 Access permissions for the External debug interface registers

	H8.7 Cross-trigger interface registers
	H8.8 External debug register resets

	H9: External Debug Register Descriptions�
	H9.1 About the debug registers
	H9.2 External debug registers
	H9.2.1 DBGAUTHSTATUS_EL1, Debug Authentication Status register
	Field descriptions
	Accessing the DBGAUTHSTATUS_EL1:

	H9.2.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15
	Field descriptions
	Accessing the DBGBCR<n>_EL1:

	H9.2.3 DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15
	Field descriptions
	Accessing the DBGBVR<n>_EL1:

	H9.2.4 DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register
	Field descriptions
	Accessing the DBGCLAIMCLR_EL1:

	H9.2.5 DBGCLAIMSET_EL1, Debug CLAIM Tag Set register
	Field descriptions
	Accessing the DBGCLAIMSET_EL1:

	H9.2.6 DBGDTRRX_EL0, Debug Data Transfer Register, Receive
	Field descriptions
	Accessing the DBGDTRRX_EL0:

	H9.2.7 DBGDTRTX_EL0, Debug Data Transfer Register, Transmit
	Field descriptions
	Accessing the DBGDTRTX_EL0:

	H9.2.8 DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15
	Field descriptions
	Accessing the DBGWCR<n>_EL1:

	H9.2.9 DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15
	Field descriptions
	Accessing the DBGWVR<n>_EL1:

	H9.2.10 EDAA32PFR, External Debug Auxiliary Processor Feature Register
	Field descriptions
	Accessing the EDAA32PFR:

	H9.2.11 EDACR, External Debug Auxiliary Control Register
	Field descriptions
	Accessing the EDACR:

	H9.2.12 EDCIDR0, External Debug Component Identification Register 0
	Field descriptions
	Accessing the EDCIDR0:

	H9.2.13 EDCIDR1, External Debug Component Identification Register 1
	Field descriptions
	Accessing the EDCIDR1:

	H9.2.14 EDCIDR2, External Debug Component Identification Register 2
	Field descriptions
	Accessing the EDCIDR2:

	H9.2.15 EDCIDR3, External Debug Component Identification Register 3
	Field descriptions
	Accessing the EDCIDR3:

	H9.2.16 EDCIDSR, External Debug Context ID Sample Register
	Field descriptions
	Accessing the EDCIDSR:

	H9.2.17 EDDEVAFF0, External Debug Device Affinity register 0
	Field descriptions
	Accessing the EDDEVAFF0:

	H9.2.18 EDDEVAFF1, External Debug Device Affinity register 1
	Field descriptions
	Accessing the EDDEVAFF1:

	H9.2.19 EDDEVARCH, External Debug Device Architecture register
	Field descriptions
	Accessing the EDDEVARCH:

	H9.2.20 EDDEVID, External Debug Device ID register 0
	Field descriptions
	Accessing the EDDEVID:

	H9.2.21 EDDEVID1, External Debug Device ID register 1
	Field descriptions
	Accessing the EDDEVID1:

	H9.2.22 EDDEVID2, External Debug Device ID register 2
	Field descriptions
	Accessing the EDDEVID2:

	H9.2.23 EDDEVTYPE, External Debug Device Type register
	Field descriptions
	Accessing the EDDEVTYPE:

	H9.2.24 EDDFR, External Debug Feature Register
	Field descriptions
	Accessing the EDDFR:

	H9.2.25 EDECCR, External Debug Exception Catch Control Register
	Field descriptions
	Accessing the EDECCR:

	H9.2.26 EDECR, External Debug Execution Control Register
	Field descriptions
	Accessing the EDECR:

	H9.2.27 EDESR, External Debug Event Status Register
	Field descriptions
	Accessing the EDESR:

	H9.2.28 EDITCTRL, External Debug Integration mode Control register
	Field descriptions
	Accessing the EDITCTRL:

	H9.2.29 EDITR, External Debug Instruction Transfer Register
	Field descriptions
	Accessing the EDITR:

	H9.2.30 EDLAR, External Debug Lock Access Register
	Field descriptions
	Accessing the EDLAR:

	H9.2.31 EDLSR, External Debug Lock Status Register
	Field descriptions
	Accessing the EDLSR:

	H9.2.32 EDPCSR, External Debug Program Counter Sample Register
	Field descriptions
	Accessing the EDPCSR:

	H9.2.33 EDPFR, External Debug Processor Feature Register
	Field descriptions
	Accessing the EDPFR:

	H9.2.34 EDPIDR0, External Debug Peripheral Identification Register 0
	Field descriptions
	Accessing the EDPIDR0:

	H9.2.35 EDPIDR1, External Debug Peripheral Identification Register 1
	Field descriptions
	Accessing the EDPIDR1:

	H9.2.36 EDPIDR2, External Debug Peripheral Identification Register 2
	Field descriptions
	Accessing the EDPIDR2:

	H9.2.37 EDPIDR3, External Debug Peripheral Identification Register 3
	Field descriptions
	Accessing the EDPIDR3:

	H9.2.38 EDPIDR4, External Debug Peripheral Identification Register 4
	Field descriptions
	Accessing the EDPIDR4:

	H9.2.39 EDPRCR, External Debug Power/Reset Control Register
	Field descriptions
	Accessing the EDPRCR:

	H9.2.40 EDPRSR, External Debug Processor Status Register
	Field descriptions
	Accessing the EDPRSR:

	H9.2.41 EDRCR, External Debug Reserve Control Register
	Field descriptions
	Accessing the EDRCR:

	H9.2.42 EDSCR, External Debug Status and Control Register
	Field descriptions
	Accessing the EDSCR:

	H9.2.43 EDVIDSR, External Debug Virtual Context Sample Register
	Field descriptions
	Accessing the EDVIDSR:

	H9.2.44 EDWAR, External Debug Watchpoint Address Register
	Field descriptions
	Accessing the EDWAR:

	H9.2.45 MIDR_EL1, Main ID Register
	Field descriptions
	Accessing the MIDR_EL1:

	H9.2.46 OSLAR_EL1, OS Lock Access Register
	Field descriptions
	Accessing the OSLAR_EL1:

	H9.3 Cross-Trigger Interface registers
	H9.3.1 ASICCTL, CTI External Multiplexer Control register
	Field descriptions
	Accessing the ASICCTL:

	H9.3.2 CTIAPPCLEAR, CTI Application Trigger Clear register
	Field descriptions
	Accessing the CTIAPPCLEAR:

	H9.3.3 CTIAPPPULSE, CTI Application Pulse register
	Field descriptions
	Accessing the CTIAPPPULSE:

	H9.3.4 CTIAPPSET, CTI Application Trigger Set register
	Field descriptions
	Accessing the CTIAPPSET:

	H9.3.5 CTIAUTHSTATUS, CTI Authentication Status register
	Field descriptions
	Accessing the CTIAUTHSTATUS:

	H9.3.6 CTICHINSTATUS, CTI Channel In Status register
	Field descriptions
	Accessing the CTICHINSTATUS:

	H9.3.7 CTICHOUTSTATUS, CTI Channel Out Status register
	Field descriptions
	Accessing the CTICHOUTSTATUS:

	H9.3.8 CTICIDR0, CTI Component Identification Register 0
	Field descriptions
	Accessing the CTICIDR0:

	H9.3.9 CTICIDR1, CTI Component Identification Register 1
	Field descriptions
	Accessing the CTICIDR1:

	H9.3.10 CTICIDR2, CTI Component Identification Register 2
	Field descriptions
	Accessing the CTICIDR2:

	H9.3.11 CTICIDR3, CTI Component Identification Register 3
	Field descriptions
	Accessing the CTICIDR3:

	H9.3.12 CTICLAIMCLR, CTI CLAIM Tag Clear register
	Field descriptions
	Accessing the CTICLAIMCLR:

	H9.3.13 CTICLAIMSET, CTI CLAIM Tag Set register
	Field descriptions
	Accessing the CTICLAIMSET:

	H9.3.14 CTICONTROL, CTI Control register
	Field descriptions
	Accessing the CTICONTROL:

	H9.3.15 CTIDEVAFF0, CTI Device Affinity register 0
	Field descriptions
	Accessing the CTIDEVAFF0:

	H9.3.16 CTIDEVAFF1, CTI Device Affinity register 1
	Field descriptions
	Accessing the CTIDEVAFF1:

	H9.3.17 CTIDEVARCH, CTI Device Architecture register
	Field descriptions
	Accessing the CTIDEVARCH:

	H9.3.18 CTIDEVCTL, CTI Device Control register
	Field descriptions
	Accessing the CTIDEVCTL:

	H9.3.19 CTIDEVID, CTI Device ID register 0
	Field descriptions
	Accessing the CTIDEVID:

	H9.3.20 CTIDEVID1, CTI Device ID register 1
	Field descriptions
	Accessing the CTIDEVID1:

	H9.3.21 CTIDEVID2, CTI Device ID register 2
	Field descriptions
	Accessing the CTIDEVID2:

	H9.3.22 CTIDEVTYPE, CTI Device Type register
	Field descriptions
	Accessing the CTIDEVTYPE:

	H9.3.23 CTIGATE, CTI Channel Gate Enable register
	Field descriptions
	Accessing the CTIGATE:

	H9.3.24 CTIINEN<n>, CTI Input Trigger to Output Channel Enable registers, n = 0 - 31
	Field descriptions
	Accessing the CTIINEN<n>:

	H9.3.25 CTIINTACK, CTI Output Trigger Acknowledge register
	Field descriptions
	Accessing the CTIINTACK:

	H9.3.26 CTIITCTRL, CTI Integration mode Control register
	Field descriptions
	Accessing the CTIITCTRL:

	H9.3.27 CTILAR, CTI Lock Access Register
	Field descriptions
	Accessing the CTILAR:

	H9.3.28 CTILSR, CTI Lock Status Register
	Field descriptions
	Accessing the CTILSR:

	H9.3.29 CTIOUTEN<n>, CTI Input Channel to Output Trigger Enable registers, n = 0 - 31
	Field descriptions
	Accessing the CTIOUTEN<n>:

	H9.3.30 CTIPIDR0, CTI Peripheral Identification Register 0
	Field descriptions
	Accessing the CTIPIDR0:

	H9.3.31 CTIPIDR1, CTI Peripheral Identification Register 1
	Field descriptions
	Accessing the CTIPIDR1:

	H9.3.32 CTIPIDR2, CTI Peripheral Identification Register 2
	Field descriptions
	Accessing the CTIPIDR2:

	H9.3.33 CTIPIDR3, CTI Peripheral Identification Register 3
	Field descriptions
	Accessing the CTIPIDR3:

	H9.3.34 CTIPIDR4, CTI Peripheral Identification Register 4
	Field descriptions
	Accessing the CTIPIDR4:

	H9.3.35 CTITRIGINSTATUS, CTI Trigger In Status register
	Field descriptions
	Accessing the CTITRIGINSTATUS:

	H9.3.36 CTITRIGOUTSTATUS, CTI Trigger Out Status register
	Field descriptions
	Accessing the CTITRIGOUTSTATUS:

	Part I: Memory-mapped Components of the Armv8 Architecture�
	I1: Requirements for Memory-mapped Components�
	I1.1 Supported access sizes
	I1.2 Synchronization of memory-mapped registers
	I1.3 Access requirements for reserved and unallocated registers

	I2: System Level Implementation of the Generic Timer�
	I2.1 About the Generic Timer specification
	I2.1.1 Registers in the system level implementation of the Generic Timer
	Endianness and supported access sizes
	Power and reset domains for the system level implementation of the Generic Timer

	I2.1.2 The system level components of the Generic Timer

	I2.2 Memory-mapped counter module
	I2.2.1 Control of counter operating frequency and increment
	The Frequency modes table
	Changing the system counter and increment

	I2.2.2 Halt-on-debug
	I2.2.3 Counter module control and status register summary

	I2.3 Memory-mapped timer components
	I2.3.1 The CNTCTLBase frame
	I2.3.2 The CNTBaseN and CNTEL0BaseN frames
	The
	The
	CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames

	I3: Recommended External Interface to the Performance Monitors�
	I3.1 About the external interface to the Performance Monitors registers
	I3.1.1 Endianness and supported access sizes
	I3.1.2 Differences in the external views of the Performance Monitors registers
	I3.1.3 Synchronization of changes to the memory-mapped views
	I3.1.4 Access permissions for external views of the Performance Monitors
	I3.1.5 Power domains and Performance Monitors registers reset

	I4: Recommended External Interface to the Activity Monitors�
	I4.1 About the external interface to the Activity Monitors Extension registers
	I4.1.1 Differences in the external views of the Activity Monitors Extension registers
	I4.1.2 Access during reset and power transitions

	I5: External System Control Register Descriptions�
	I5.1 About the external system control register descriptions
	I5.2 External Performance Monitors registers summary
	I5.2.1 Performance Monitors external register views

	I5.3 Performance Monitors external register descriptions
	I5.3.1 PMAUTHSTATUS, Performance Monitors Authentication Status register
	Field descriptions
	Accessing the PMAUTHSTATUS:

	I5.3.2 PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register
	Field descriptions
	Accessing the PMCCFILTR_EL0:

	I5.3.3 PMCCNTR_EL0, Performance Monitors Cycle Counter
	Field descriptions
	Accessing the PMCCNTR_EL0:

	I5.3.4 PMCEID0, Performance Monitors Common Event Identification register 0
	Field descriptions
	Accessing the PMCEID0:

	I5.3.5 PMCEID1, Performance Monitors Common Event Identification register 1
	Field descriptions
	Accessing the PMCEID1:

	I5.3.6 PMCEID2, Performance Monitors Common Event Identification register 2
	Field descriptions
	Accessing the PMCEID2:

	I5.3.7 PMCEID3, Performance Monitors Common Event Identification register 3
	Field descriptions
	Accessing the PMCEID3:

	I5.3.8 PMCFGR, Performance Monitors Configuration Register
	Field descriptions
	Accessing the PMCFGR:

	I5.3.9 PMCIDR0, Performance Monitors Component Identification Register 0
	Field descriptions
	Accessing the PMCIDR0:

	I5.3.10 PMCIDR1, Performance Monitors Component Identification Register 1
	Field descriptions
	Accessing the PMCIDR1:

	I5.3.11 PMCIDR2, Performance Monitors Component Identification Register 2
	Field descriptions
	Accessing the PMCIDR2:

	I5.3.12 PMCIDR3, Performance Monitors Component Identification Register 3
	Field descriptions
	Accessing the PMCIDR3:

	I5.3.13 PMCID1SR, CONTEXTIDR_EL1 Sample Register
	Field descriptions
	Accessing the PMCID1SR:

	I5.3.14 PMCID2SR, CONTEXTIDR_EL2 Sample Register
	Field descriptions
	Accessing the PMCID2SR:

	I5.3.15 PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register
	Field descriptions
	Accessing the PMCNTENCLR_EL0:

	I5.3.16 PMCNTENSET_EL0, Performance Monitors Count Enable Set register
	Field descriptions
	Accessing the PMCNTENSET_EL0:

	I5.3.17 PMCR_EL0, Performance Monitors Control Register
	Field descriptions
	Accessing the PMCR_EL0:

	I5.3.18 PMDEVAFF0, Performance Monitors Device Affinity register 0
	Field descriptions
	Accessing the PMDEVAFF0:

	I5.3.19 PMDEVAFF1, Performance Monitors Device Affinity register 1
	Field descriptions
	Accessing the PMDEVAFF1:

	I5.3.20 PMDEVARCH, Performance Monitors Device Architecture register
	Field descriptions
	Accessing the PMDEVARCH:

	I5.3.21 PMDEVID, Performance Monitors Device ID register
	Field descriptions
	Accessing the PMDEVID:

	I5.3.22 PMDEVTYPE, Performance Monitors Device Type register
	Field descriptions
	Accessing the PMDEVTYPE:

	I5.3.23 PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30
	Field descriptions
	Accessing the PMEVCNTR<n>_EL0:

	I5.3.24 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30
	Field descriptions
	Accessing the PMEVTYPER<n>_EL0:

	I5.3.25 PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register
	Field descriptions
	Accessing the PMINTENCLR_EL1:

	I5.3.26 PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register
	Field descriptions
	Accessing the PMINTENSET_EL1:

	I5.3.27 PMITCTRL, Performance Monitors Integration mode Control register
	Field descriptions
	Accessing the PMITCTRL:

	I5.3.28 PMLAR, Performance Monitors Lock Access Register
	Field descriptions
	Accessing the PMLAR:

	I5.3.29 PMLSR, Performance Monitors Lock Status Register
	Field descriptions
	Accessing the PMLSR:

	I5.3.30 PMMIR, Performance Monitors Machine Identification Register
	Field descriptions
	Accessing the PMMIR:

	I5.3.31 PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear register
	Field descriptions
	Accessing the PMOVSCLR_EL0:

	I5.3.32 PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register
	Field descriptions
	Accessing the PMOVSSET_EL0:

	I5.3.33 PMPCSR, Program Counter Sample Register
	Field descriptions
	Accessing the PMPCSR:

	I5.3.34 PMPIDR0, Performance Monitors Peripheral Identification Register 0
	Field descriptions
	Accessing the PMPIDR0:

	I5.3.35 PMPIDR1, Performance Monitors Peripheral Identification Register 1
	Field descriptions
	Accessing the PMPIDR1:

	I5.3.36 PMPIDR2, Performance Monitors Peripheral Identification Register 2
	Field descriptions
	Accessing the PMPIDR2:

	I5.3.37 PMPIDR3, Performance Monitors Peripheral Identification Register 3
	Field descriptions
	Accessing the PMPIDR3:

	I5.3.38 PMPIDR4, Performance Monitors Peripheral Identification Register 4
	Field descriptions
	Accessing the PMPIDR4:

	I5.3.39 PMSWINC_EL0, Performance Monitors Software Increment register
	Field descriptions
	Accessing the PMSWINC_EL0:

	I5.3.40 PMVIDSR, VMID Sample Register
	Field descriptions
	Accessing the PMVIDSR:

	I5.4 External Activity Monitors Extension registers summary
	I5.4.1 Activity Monitors external register views

	I5.5 Activity Monitors external register descriptions
	I5.5.1 AMCFGR, Activity Monitors Configuration Register
	Field descriptions
	Accessing the AMCFGR:

	I5.5.2 AMCGCR, Activity Monitors Counter Group Configuration Register
	Field descriptions
	Accessing the AMCGCR:

	I5.5.3 AMCIDR0, Activity Monitors Component Identification Register 0
	Field descriptions
	Accessing the AMCIDR0:

	I5.5.4 AMCIDR1, Activity Monitors Component Identification Register 1
	Field descriptions
	Accessing the AMCIDR1:

	I5.5.5 AMCIDR2, Activity Monitors Component Identification Register 2
	Field descriptions
	Accessing the AMCIDR2:

	I5.5.6 AMCIDR3, Activity Monitors Component Identification Register 3
	Field descriptions
	Accessing the AMCIDR3:

	I5.5.7 AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0
	Field descriptions
	Accessing the AMCNTENCLR0:

	I5.5.8 AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1
	Field descriptions
	Accessing the AMCNTENCLR1:

	I5.5.9 AMCNTENSET0, Activity Monitors Count Enable Set Register 0
	Field descriptions
	Accessing the AMCNTENSET0:

	I5.5.10 AMCNTENSET1, Activity Monitors Count Enable Set Register 1
	Field descriptions
	Accessing the AMCNTENSET1:

	I5.5.11 AMCR, Activity Monitors Control Register
	Field descriptions
	Accessing the AMCR:

	I5.5.12 AMDEVAFF0, Activity Monitors Device Affinity Register 0
	Field descriptions
	Accessing the AMDEVAFF0:

	I5.5.13 AMDEVAFF1, Activity Monitors Device Affinity Register 1
	Field descriptions
	Accessing the AMDEVAFF1:

	I5.5.14 AMDEVARCH, Activity Monitors Device Architecture Register
	Field descriptions
	Accessing the AMDEVARCH:

	I5.5.15 AMDEVTYPE, Activity Monitors Device Type Register
	Field descriptions
	Accessing the AMDEVTYPE:

	I5.5.16 AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 3
	Field descriptions
	Accessing the AMEVCNTR0<n>:

	I5.5.17 AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15
	Field descriptions
	Accessing the AMEVCNTR1<n>:

	I5.5.18 AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 3
	Field descriptions
	Accessing the AMEVTYPER0<n>:

	I5.5.19 AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15
	Field descriptions
	Accessing the AMEVTYPER1<n>:

	I5.5.20 AMIIDR, Activity Monitors Implementation Identification Register
	Field descriptions
	Accessing the AMIIDR:

	I5.5.21 AMPIDR0, Activity Monitors Peripheral Identification Register 0
	Field descriptions
	Accessing the AMPIDR0:

	I5.5.22 AMPIDR1, Activity Monitors Peripheral Identification Register 1
	Field descriptions
	Accessing the AMPIDR1:

	I5.5.23 AMPIDR2, Activity Monitors Peripheral Identification Register 2
	Field descriptions
	Accessing the AMPIDR2:

	I5.5.24 AMPIDR3, Activity Monitors Peripheral Identification Register 3
	Field descriptions
	Accessing the AMPIDR3:

	I5.5.25 AMPIDR4, Activity Monitors Peripheral Identification Register 4
	Field descriptions
	Accessing the AMPIDR4:

	I5.6 Generic Timer memory-mapped registers overview
	I5.7 Generic Timer memory-mapped register descriptions
	I5.7.1 CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7
	Field descriptions
	Accessing the CNTACR<n>:

	I5.7.2 CNTCR, Counter Control Register
	Field descriptions
	Accessing the CNTCR:

	I5.7.3 CNTCV, Counter Count Value register
	Field descriptions
	Accessing the CNTCV:

	I5.7.4 CNTEL0ACR, Counter-timer EL0 Access Control Register
	Field descriptions
	Accessing the CNTEL0ACR:

	I5.7.5 CNTFID0, Counter Frequency ID
	Field descriptions
	Accessing the CNTFID0:

	I5.7.6 CNTFID<n>, Counter Frequency IDs, n > 0, n = 1 - 1003
	Field descriptions
	Accessing the CNTFID<n>:

	I5.7.7 CNTFRQ, Counter-timer Frequency
	Field descriptions
	Accessing the CNTFRQ:

	I5.7.8 CNTID, Counter Identification Register
	Field descriptions
	Accessing the CNTID:

	I5.7.9 CNTNSAR, Counter-timer Non-secure Access Register
	Field descriptions
	Accessing the CNTNSAR:

	I5.7.10 CNTP_CTL, Counter-timer Physical Timer Control
	Field descriptions
	Accessing the CNTP_CTL:

	I5.7.11 CNTP_CVAL, Counter-timer Physical Timer CompareValue
	Field descriptions
	Accessing the CNTP_CVAL:

	I5.7.12 CNTP_TVAL, Counter-timer Physical Timer TimerValue
	Field descriptions
	Accessing the CNTP_TVAL:

	I5.7.13 CNTPCT, Counter-timer Physical Count
	Field descriptions
	Accessing the CNTPCT:

	I5.7.14 CNTSCR, Counter Scale Register
	Field descriptions
	Accessing the CNTSCR:

	I5.7.15 CNTSR, Counter Status Register
	Field descriptions
	Accessing the CNTSR:

	I5.7.16 CNTTIDR, Counter-timer Timer ID Register
	Field descriptions
	Accessing the CNTTIDR:

	I5.7.17 CNTV_CTL, Counter-timer Virtual Timer Control
	Field descriptions
	Accessing the CNTV_CTL:

	I5.7.18 CNTV_CVAL, Counter-timer Virtual Timer CompareValue
	Field descriptions
	Accessing the CNTV_CVAL:

	I5.7.19 CNTV_TVAL, Counter-timer Virtual Timer TimerValue
	Field descriptions
	Accessing the CNTV_TVAL:

	I5.7.20 CNTVCT, Counter-timer Virtual Count
	Field descriptions
	Accessing the CNTVCT:

	I5.7.21 CNTVOFF, Counter-timer Virtual Offset
	Field descriptions
	Accessing the CNTVOFF:

	I5.7.22 CNTVOFF<n>, Counter-timer Virtual Offsets, n = 0 - 7
	Field descriptions
	Accessing the CNTVOFF<n>:

	I5.7.23 CounterID<n>, Counter ID registers, n = 0 - 11
	Field descriptions
	Accessing the CounterID<n>:

	I5.8 RAS register descriptions
	I5.8.1 ERRCIDR0, Component Identification Register 0
	Field descriptions
	Accessing the ERRCIDR0:

	I5.8.2 ERRCIDR1, Component Identification Register 1
	Field descriptions
	Accessing the ERRCIDR1:

	I5.8.3 ERRCIDR2, Component Identification Register 2
	Field descriptions
	Accessing the ERRCIDR2:

	I5.8.4 ERRCIDR3, Component Identification Register 3
	Field descriptions
	Accessing the ERRCIDR3:

	I5.8.5 ERRCRICR0, Critical Error Interrupt Configuration Register 0
	Field descriptions
	Accessing the ERRCRICR0:

	I5.8.6 ERRCRICR1, Critical Error Interrupt Configuration Register 1
	Field descriptions
	Accessing the ERRCRICR1:

	I5.8.7 ERRCRICR2, Critical Error Interrupt Configuration Register 2
	Field descriptions
	Accessing the ERRCRICR2:

	I5.8.8 ERRDEVAFF, Device Affinity Register
	Field descriptions
	Accessing the ERRDEVAFF:

	I5.8.9 ERRDEVARCH, Device Architecture Register
	Field descriptions
	Accessing the ERRDEVARCH:

	I5.8.10 ERRDEVID, Device Configuration Register
	Field descriptions
	Accessing the ERRDEVID:

	I5.8.11 ERRERICR0, Error Recovery Interrupt Configuration Register 0
	Field descriptions
	Accessing the ERRERICR0:

	I5.8.12 ERRERICR1, Error Recovery Interrupt Configuration Register 1
	Field descriptions
	Accessing the ERRERICR1:

	I5.8.13 ERRERICR2, Error Recovery Interrupt Configuration Register 2
	Field descriptions
	Accessing the ERRERICR2:

	I5.8.14 ERRFHICR0, Fault Handling Interrupt Configuration Register 0
	Field descriptions
	Accessing the ERRFHICR0:

	I5.8.15 ERRFHICR1, Fault Handling Interrupt Configuration Register 1
	Field descriptions
	Accessing the ERRFHICR1:

	I5.8.16 ERRFHICR2, Fault Handling Interrupt Configuration Register 2
	Field descriptions
	Accessing the ERRFHICR2:

	I5.8.17 ERRGSR, Error Group Status Register
	Field descriptions
	Accessing the ERRGSR:

	I5.8.18 ERRIIDR, Implementation Identification Register
	Field descriptions
	Accessing the ERRIIDR:

	I5.8.19 ERRIMPDEF<n>, IMPLEMENTATION DEFINED Register <n>, n = 0 - 191
	Field descriptions
	Accessing the ERRIMPDEF<n>:

	I5.8.20 ERRIRQCR<n>, Generic Error Interrupt Configuration Register, n = 0 - 15
	Field descriptions
	Accessing the ERRIRQCR<n>:

	I5.8.21 ERRIRQSR, Error Interrupt Status Register
	Field descriptions
	Accessing the ERRIRQSR:

	I5.8.22 ERR<n>ADDR, Error Record Address Register, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>ADDR:

	I5.8.23 ERR<n>CTLR, Error Record Control Register, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>CTLR:

	I5.8.24 ERR<n>FR, Error Record Feature Register, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>FR:

	I5.8.25 ERR<n>MISC0, Error Record Miscellaneous Register 0, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>MISC0:

	I5.8.26 ERR<n>MISC1, Error Record Miscellaneous Register 1, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>MISC1:

	I5.8.27 ERR<n>MISC2, Error Record Miscellaneous Register 2, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>MISC2:

	I5.8.28 ERR<n>MISC3, Error Record Miscellaneous Register 3, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>MISC3:

	I5.8.29 ERR<n>PFGCDN, Pseudo-fault Generation Countdown Register, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>PFGCDN:

	I5.8.30 ERR<n>PFGCTL, Pseudo-fault Generation Control Register, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>PFGCTL:

	I5.8.31 ERR<n>PFGF, Pseudo-fault Generation Feature Register, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>PFGF:

	I5.8.32 ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>STATUS:

	I5.8.33 ERRPIDR0, Peripheral Identification Register 0
	Field descriptions
	Accessing the ERRPIDR0:

	I5.8.34 ERRPIDR1, Peripheral Identification Register 1
	Field descriptions
	Accessing the ERRPIDR1:

	I5.8.35 ERRPIDR2, Peripheral Identification Register 2
	Field descriptions
	Accessing the ERRPIDR2:

	I5.8.36 ERRPIDR3, Peripheral Identification Register 3
	Field descriptions
	Accessing the ERRPIDR3:

	I5.8.37 ERRPIDR4, Peripheral Identification Register 4
	Field descriptions
	Accessing the ERRPIDR4:

	Part J: Architectural Pseudocode�
	J1: Armv8 Pseudocode�
	J1.1 Pseudocode for AArch64 operation
	J1.1.1 aarch64/debug
	aarch64/debug/breakpoint/AArch64.BreakpointMatch
	aarch64/debug/breakpoint/AArch64.BreakpointValueMatch
	aarch64/debug/breakpoint/AArch64.StateMatch
	aarch64/debug/enables/AArch64.GenerateDebugExceptions
	aarch64/debug/enables/AArch64.GenerateDebugExceptionsFrom
	aarch64/debug/pmu/AArch64.CheckForPMUOverflow
	aarch64/debug/pmu/AArch64.CountEvents
	aarch64/debug/statisticalprofiling/CheckProfilingBufferAccess
	aarch64/debug/statisticalprofiling/CheckStatisticalProfilingAccess
	aarch64/debug/statisticalprofiling/CollectContextIDR1
	aarch64/debug/statisticalprofiling/CollectContextIDR2
	aarch64/debug/statisticalprofiling/CollectPhysicalAddress
	aarch64/debug/statisticalprofiling/CollectTimeStamp
	aarch64/debug/statisticalprofiling/OpType
	aarch64/debug/statisticalprofiling/ProfilingBufferEnabled
	aarch64/debug/statisticalprofiling/ProfilingBufferOwner
	aarch64/debug/statisticalprofiling/ProfilingSynchronizationBarrier
	aarch64/debug/statisticalprofiling/SPECollectRecord
	aarch64/debug/statisticalprofiling/StatisticalProfilingEnabled
	aarch64/debug/statisticalprofiling/SysRegAccess
	aarch64/debug/statisticalprofiling/TimeStamp
	aarch64/debug/takeexceptiondbg/AArch64.TakeExceptionInDebugState
	aarch64/debug/watchpoint/AArch64.WatchpointByteMatch
	aarch64/debug/watchpoint/AArch64.WatchpointMatch

	J1.1.2 aarch64/exceptions
	aarch64/exceptions/aborts/AArch64.Abort
	aarch64/exceptions/aborts/AArch64.AbortSyndrome
	aarch64/exceptions/aborts/AArch64.CheckPCAlignment
	aarch64/exceptions/aborts/AArch64.DataAbort
	aarch64/exceptions/aborts/AArch64.EffectiveTCF
	aarch64/exceptions/aborts/AArch64.InstructionAbort
	aarch64/exceptions/aborts/AArch64.PCAlignmentFault
	aarch64/exceptions/aborts/AArch64.RaiseTagCheckFault
	aarch64/exceptions/aborts/AArch64.ReportTagCheckFault
	aarch64/exceptions/aborts/AArch64.SPAlignmentFault
	aarch64/exceptions/aborts/AArch64.TagCheckFault
	aarch64/exceptions/aborts/BranchTargetException
	aarch64/exceptions/async/AArch64.TakePhysicalFIQException
	aarch64/exceptions/async/AArch64.TakePhysicalIRQException
	aarch64/exceptions/async/AArch64.TakePhysicalSErrorException
	aarch64/exceptions/async/AArch64.TakeVirtualFIQException
	aarch64/exceptions/async/AArch64.TakeVirtualIRQException
	aarch64/exceptions/async/AArch64.TakeVirtualSErrorException
	aarch64/exceptions/debug/AArch64.BreakpointException
	aarch64/exceptions/debug/AArch64.SoftwareBreakpoint
	aarch64/exceptions/debug/AArch64.SoftwareStepException
	aarch64/exceptions/debug/AArch64.VectorCatchException
	aarch64/exceptions/debug/AArch64.WatchpointException
	aarch64/exceptions/exceptions/AArch64.ExceptionClass
	aarch64/exceptions/exceptions/AArch64.ReportException
	aarch64/exceptions/exceptions/AArch64.ResetControlRegisters
	aarch64/exceptions/exceptions/AArch64.TakeReset
	aarch64/exceptions/ieeefp/AArch64.FPTrappedException
	aarch64/exceptions/syscalls/AArch64.CallHypervisor
	aarch64/exceptions/syscalls/AArch64.CallSecureMonitor
	aarch64/exceptions/syscalls/AArch64.CallSupervisor
	aarch64/exceptions/takeexception/AArch64.TakeException
	aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrap
	aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrapSyndrome
	aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap
	aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps
	aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled
	aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap
	aarch64/exceptions/traps/AArch64.CheckFPEnabled
	aarch64/exceptions/traps/AArch64.CheckForERetTrap
	aarch64/exceptions/traps/AArch64.CheckForSMCUndefOrTrap
	aarch64/exceptions/traps/AArch64.CheckForSVCTrap
	aarch64/exceptions/traps/AArch64.CheckForWFxTrap
	aarch64/exceptions/traps/AArch64.CheckIllegalState
	aarch64/exceptions/traps/AArch64.MonitorModeTrap
	aarch64/exceptions/traps/AArch64.SystemAccessTrap
	aarch64/exceptions/traps/AArch64.SystemAccessTrapSyndrome
	aarch64/exceptions/traps/AArch64.UndefinedFault
	aarch64/exceptions/traps/AArch64.WFxTrap
	aarch64/exceptions/traps/CheckFPAdvSIMDEnabled64
	aarch64/exceptions/traps/CheckFPEnabled64
	aarch64/exceptions/traps/CheckLDST64BEnabled
	aarch64/exceptions/traps/CheckST64BV0Enabled
	aarch64/exceptions/traps/CheckST64BVEnabled
	aarch64/exceptions/traps/LDST64BTrap
	aarch64/exceptions/traps/WFETrapDelay
	aarch64/exceptions/traps/WaitForEventUntilDelay

	J1.1.3 aarch64/functions
	aarch64/functions/aborts/AArch64.FaultSyndrome
	aarch64/functions/aborts/LS64InstructionSyndrome
	aarch64/functions/cache/AArch64.DataMemZero
	aarch64/functions/cache/AArch64.TagMemZero
	aarch64/functions/exclusive/AArch64.ExclusiveMonitorsPass
	aarch64/functions/exclusive/AArch64.IsExclusiveVA
	aarch64/functions/exclusive/AArch64.MarkExclusiveVA
	aarch64/functions/exclusive/AArch64.SetExclusiveMonitors
	aarch64/functions/fusedrstep/FPRSqrtStepFused
	aarch64/functions/fusedrstep/FPRecipStepFused
	aarch64/functions/memory/AArch64.AccessIsTagChecked
	aarch64/functions/memory/AArch64.AddressWithAllocationTag
	aarch64/functions/memory/AArch64.AllocationTagFromAddress
	aarch64/functions/memory/AArch64.CheckAlignment
	aarch64/functions/memory/AArch64.CheckTag
	aarch64/functions/memory/AArch64.MemSingle
	aarch64/functions/memory/AArch64.MemTag
	aarch64/functions/memory/AArch64.PhysicalTag
	aarch64/functions/memory/AArch64.TranslateAddressForAtomicAccess
	aarch64/functions/memory/AddressSupportsLS64
	aarch64/functions/memory/CheckAllInAlignedQuantity
	aarch64/functions/memory/CheckSPAlignment
	aarch64/functions/memory/CheckSingleAccessAttributes
	aarch64/functions/memory/IsTagCheckedInstruction
	aarch64/functions/memory/Mem
	aarch64/functions/memory/MemAtomic
	aarch64/functions/memory/MemAtomicCompareAndSwap
	aarch64/functions/memory/MemLoad64B
	aarch64/functions/memory/MemStore64B
	aarch64/functions/memory/MemStore64BWithRet
	aarch64/functions/memory/MemStore64BWithRetStatus
	aarch64/functions/memory/NVMem
	aarch64/functions/memory/PhysMemTagRead
	aarch64/functions/memory/PhysMemTagWrite
	aarch64/functions/memory/SetTagCheckedInstruction
	aarch64/functions/pac/addpac/AddPAC
	aarch64/functions/pac/addpacda/AddPACDA
	aarch64/functions/pac/addpacdb/AddPACDB
	aarch64/functions/pac/addpacga/AddPACGA
	aarch64/functions/pac/addpacia/AddPACIA
	aarch64/functions/pac/addpacib/AddPACIB
	aarch64/functions/pac/auth/AArch64.PACFailException
	aarch64/functions/pac/auth/Auth
	aarch64/functions/pac/authda/AuthDA
	aarch64/functions/pac/authdb/AuthDB
	aarch64/functions/pac/authia/AuthIA
	aarch64/functions/pac/authib/AuthIB
	aarch64/functions/pac/calcbottompacbit/CalculateBottomPACBit
	aarch64/functions/pac/computepac/ComputePAC
	aarch64/functions/pac/computepac/PACCellInvShuffle
	aarch64/functions/pac/computepac/PACCellShuffle
	aarch64/functions/pac/computepac/PACInvSub
	aarch64/functions/pac/computepac/PACMult
	aarch64/functions/pac/computepac/PACSub
	aarch64/functions/pac/computepac/RC
	aarch64/functions/pac/computepac/RotCell
	aarch64/functions/pac/computepac/TweakCellInvRot
	aarch64/functions/pac/computepac/TweakCellRot
	aarch64/functions/pac/computepac/TweakInvShuffle
	aarch64/functions/pac/computepac/TweakShuffle
	aarch64/functions/pac/pac/HaveEnhancedPAC
	aarch64/functions/pac/pac/HaveEnhancedPAC2
	aarch64/functions/pac/pac/HaveFPAC
	aarch64/functions/pac/pac/HaveFPACCombined
	aarch64/functions/pac/pac/HavePACExt
	aarch64/functions/pac/pac/PtrHasUpperAndLowerAddRanges
	aarch64/functions/pac/strip/Strip
	aarch64/functions/pac/trappacuse/TrapPACUse
	aarch64/functions/ras/AArch64.ESBOperation
	aarch64/functions/ras/AArch64.PhysicalSErrorSyndrome
	aarch64/functions/ras/AArch64.ReportDeferredSError
	aarch64/functions/ras/AArch64.vESBOperation
	aarch64/functions/registers/AArch64.MaybeZeroRegisterUppers
	aarch64/functions/registers/AArch64.ResetGeneralRegisters
	aarch64/functions/registers/AArch64.ResetSIMDFPRegisters
	aarch64/functions/registers/AArch64.ResetSpecialRegisters
	aarch64/functions/registers/AArch64.ResetSystemRegisters
	aarch64/functions/registers/PC
	aarch64/functions/registers/SP
	aarch64/functions/registers/V
	aarch64/functions/registers/Vpart
	aarch64/functions/registers/X
	aarch64/functions/sve/AArch32.IsFPEnabled
	aarch64/functions/sve/AArch64.IsFPEnabled
	aarch64/functions/sve/AnyActiveElement
	aarch64/functions/sve/CeilPow2
	aarch64/functions/sve/CheckSVEEnabled
	aarch64/functions/sve/DecodePredCount
	aarch64/functions/sve/ElemFFR
	aarch64/functions/sve/ElemP
	aarch64/functions/sve/FFR
	aarch64/functions/sve/FPCompareNE
	aarch64/functions/sve/FPCompareUN
	aarch64/functions/sve/FPConvertSVE
	aarch64/functions/sve/FPExpA
	aarch64/functions/sve/FPExpCoefficient
	aarch64/functions/sve/FPMinNormal
	aarch64/functions/sve/FPOne
	aarch64/functions/sve/FPPointFive
	aarch64/functions/sve/FPProcess
	aarch64/functions/sve/FPScale
	aarch64/functions/sve/FPTrigMAdd
	aarch64/functions/sve/FPTrigMAddCoefficient
	aarch64/functions/sve/FPTrigSMul
	aarch64/functions/sve/FPTrigSSel
	aarch64/functions/sve/FirstActive
	aarch64/functions/sve/FloorPow2
	aarch64/functions/sve/HaveSVE
	aarch64/functions/sve/HaveSVEFP32MatMulExt
	aarch64/functions/sve/HaveSVEFP64MatMulExt
	aarch64/functions/sve/ImplementedSVEVectorLength
	aarch64/functions/sve/IsEven
	aarch64/functions/sve/IsFPEnabled
	aarch64/functions/sve/IsSVEEnabled
	aarch64/functions/sve/LastActive
	aarch64/functions/sve/LastActiveElement
	aarch64/functions/sve/MaybeZeroSVEUppers
	aarch64/functions/sve/MemNF
	aarch64/functions/sve/MemSingleNF
	aarch64/functions/sve/NoneActive
	aarch64/functions/sve/P
	aarch64/functions/sve/PL
	aarch64/functions/sve/PredTest
	aarch64/functions/sve/ReducePredicated
	aarch64/functions/sve/Reverse
	aarch64/functions/sve/SVEAccessTrap
	aarch64/functions/sve/SVECmp
	aarch64/functions/sve/SVEMoveMaskPreferred
	aarch64/functions/sve/System
	aarch64/functions/sve/VL
	aarch64/functions/sve/Z
	aarch64/functions/sysregisters/CNTKCTL
	aarch64/functions/sysregisters/CNTKCTLType
	aarch64/functions/sysregisters/CPACR
	aarch64/functions/sysregisters/CPACRType
	aarch64/functions/sysregisters/ELR
	aarch64/functions/sysregisters/ESR
	aarch64/functions/sysregisters/ESRType
	aarch64/functions/sysregisters/FAR
	aarch64/functions/sysregisters/MAIR
	aarch64/functions/sysregisters/MAIRType
	aarch64/functions/sysregisters/SCTLR
	aarch64/functions/sysregisters/SCTLRType
	aarch64/functions/sysregisters/VBAR
	aarch64/functions/system/AArch64.AllocationTagAccessIsEnabled
	aarch64/functions/system/AArch64.ChooseNonExcludedTag
	aarch64/functions/system/AArch64.ExecutingBROrBLROrRetInstr
	aarch64/functions/system/AArch64.ExecutingBTIInstr
	aarch64/functions/system/AArch64.ExecutingERETInstr
	aarch64/functions/system/AArch64.NextRandomTagBit
	aarch64/functions/system/AArch64.RandomTag
	aarch64/functions/system/AArch64.SysInstr
	aarch64/functions/system/AArch64.SysInstrWithResult
	aarch64/functions/system/AArch64.SysRegRead
	aarch64/functions/system/AArch64.SysRegWrite
	aarch64/functions/system/BTypeCompatible
	aarch64/functions/system/BTypeCompatible_BTI
	aarch64/functions/system/BTypeCompatible_PACIXSP
	aarch64/functions/system/BTypeNext
	aarch64/functions/system/ChooseRandomNonExcludedTag
	aarch64/functions/system/InGuardedPage
	aarch64/functions/system/IsHCRXEL2Enabled
	aarch64/functions/system/SetBTypeCompatible
	aarch64/functions/system/SetBTypeNext
	aarch64/functions/system/SetInGuardedPage

	J1.1.4 aarch64/instrs
	aarch64/instrs/branch/eret/AArch64.ExceptionReturn
	aarch64/instrs/countop/CountOp
	aarch64/instrs/extendreg/DecodeRegExtend
	aarch64/instrs/extendreg/ExtendReg
	aarch64/instrs/extendreg/ExtendType
	aarch64/instrs/float/arithmetic/max-min/fpmaxminop/FPMaxMinOp
	aarch64/instrs/float/arithmetic/unary/fpunaryop/FPUnaryOp
	aarch64/instrs/float/convert/fpconvop/FPConvOp
	aarch64/instrs/integer/bitfield/bfxpreferred/BFXPreferred
	aarch64/instrs/integer/bitmasks/DecodeBitMasks
	aarch64/instrs/integer/ins-ext/insert/movewide/movewideop/MoveWideOp
	aarch64/instrs/integer/logical/movwpreferred/MoveWidePreferred
	aarch64/instrs/integer/shiftreg/DecodeShift
	aarch64/instrs/integer/shiftreg/ShiftReg
	aarch64/instrs/integer/shiftreg/ShiftType
	aarch64/instrs/logicalop/LogicalOp
	aarch64/instrs/memory/memop/MemAtomicOp
	aarch64/instrs/memory/memop/MemOp
	aarch64/instrs/memory/prefetch/Prefetch
	aarch64/instrs/system/barriers/barrierop/MemBarrierOp
	aarch64/instrs/system/hints/syshintop/SystemHintOp
	aarch64/instrs/system/register/cpsr/pstatefield/PSTATEField
	aarch64/instrs/system/sysops/dc/AArch64.DC
	aarch64/instrs/system/sysops/dc/AArch64.MemZero
	aarch64/instrs/system/sysops/ic/AArch64.IC
	aarch64/instrs/system/sysops/sysop/SysOp
	aarch64/instrs/system/sysops/sysop/SystemOp
	aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_ALL
	aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_ASID
	aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_VA
	aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_ALL
	aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_ASID
	aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_VA
	aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_ALL
	aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_ASID
	aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_IPAS2
	aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VA
	aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VAA
	aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VMALL
	aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VMALLS12
	aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_ALL
	aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_ASID
	aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_IPAS2
	aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RIPAS2
	aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RVA
	aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RVAA
	aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VA
	aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VAA
	aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VMALL
	aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VMALLS12
	aarch64/instrs/system/sysops/tlbi/ASID_NONE
	aarch64/instrs/system/sysops/tlbi/Broadcast
	aarch64/instrs/system/sysops/tlbi/HasLargeAddress
	aarch64/instrs/system/sysops/tlbi/SecurityStateAtEL
	aarch64/instrs/system/sysops/tlbi/TLBI
	aarch64/instrs/system/sysops/tlbi/TLBILevel
	aarch64/instrs/system/sysops/tlbi/TLBIMemAttr
	aarch64/instrs/system/sysops/tlbi/TLBIOp
	aarch64/instrs/system/sysops/tlbi/TLBIRange
	aarch64/instrs/system/sysops/tlbi/TLBIRecord
	aarch64/instrs/system/sysops/tlbi/TLBI_ALL
	aarch64/instrs/system/sysops/tlbi/TLBI_ASID
	aarch64/instrs/system/sysops/tlbi/TLBI_IPAS2
	aarch64/instrs/system/sysops/tlbi/TLBI_RIPAS2
	aarch64/instrs/system/sysops/tlbi/TLBI_RVA
	aarch64/instrs/system/sysops/tlbi/TLBI_RVAA
	aarch64/instrs/system/sysops/tlbi/TLBI_VA
	aarch64/instrs/system/sysops/tlbi/TLBI_VAA
	aarch64/instrs/system/sysops/tlbi/TLBI_VMALL
	aarch64/instrs/system/sysops/tlbi/TLBI_VMALLS12
	aarch64/instrs/system/sysops/tlbi/VMID
	aarch64/instrs/system/sysops/tlbi/VMID_NONE
	aarch64/instrs/vector/arithmetic/binary/uniform/logical/bsl-eor/vbitop/VBitOp
	aarch64/instrs/vector/arithmetic/unary/cmp/compareop/CompareOp
	aarch64/instrs/vector/logical/immediateop/ImmediateOp
	aarch64/instrs/vector/reduce/reduceop/Reduce
	aarch64/instrs/vector/reduce/reduceop/ReduceOp

	J1.1.5 aarch64/translation
	aarch64/translation/debug/AArch64.CheckBreakpoint
	aarch64/translation/debug/AArch64.CheckDebug
	aarch64/translation/debug/AArch64.CheckWatchpoint
	aarch64/translation/vmsa_addrcalc/AArch64.BlockBase
	aarch64/translation/vmsa_addrcalc/AArch64.IASize
	aarch64/translation/vmsa_addrcalc/AArch64.NextTableBase
	aarch64/translation/vmsa_addrcalc/AArch64.PageBase
	aarch64/translation/vmsa_addrcalc/AArch64.PhysicalAddressSize
	aarch64/translation/vmsa_addrcalc/AArch64.S1StartLevel
	aarch64/translation/vmsa_addrcalc/AArch64.S2SLTTEntryAddress
	aarch64/translation/vmsa_addrcalc/AArch64.S2StartLevel
	aarch64/translation/vmsa_addrcalc/AArch64.TTBaseAddress
	aarch64/translation/vmsa_addrcalc/AArch64.TTEntryAddress
	aarch64/translation/vmsa_faults/AArch64.AddrTop
	aarch64/translation/vmsa_faults/AArch64.ContiguousBitFaults
	aarch64/translation/vmsa_faults/AArch64.DebugFault
	aarch64/translation/vmsa_faults/AArch64.ExclusiveFault
	aarch64/translation/vmsa_faults/AArch64.IPAIsOutOfRange
	aarch64/translation/vmsa_faults/AArch64.OAOutOfRange
	aarch64/translation/vmsa_faults/AArch64.S1HasAlignmentFault
	aarch64/translation/vmsa_faults/AArch64.S1HasPermissionsFault
	aarch64/translation/vmsa_faults/AArch64.S1InvalidTxSZ
	aarch64/translation/vmsa_faults/AArch64.S2HasAlignmentFault
	aarch64/translation/vmsa_faults/AArch64.S2HasPermissionsFault
	aarch64/translation/vmsa_faults/AArch64.S2InconsistentSL
	aarch64/translation/vmsa_faults/AArch64.S2InvalidSL
	aarch64/translation/vmsa_faults/AArch64.S2InvalidTxSZ
	aarch64/translation/vmsa_faults/AArch64.VAIsOutOfRange
	aarch64/translation/vmsa_memattr/AArch64.IsS2ResultTagged
	aarch64/translation/vmsa_memattr/AArch64.S2ApplyFWBMemAttrs
	aarch64/translation/vmsa_translation/AArch64.AccessUsesEL
	aarch64/translation/vmsa_translation/AArch64.FaultAllowsSetAccessFlag
	aarch64/translation/vmsa_translation/AArch64.FullTranslate
	aarch64/translation/vmsa_translation/AArch64.MemSwapTableDesc
	aarch64/translation/vmsa_translation/AArch64.S1DisabledOutput
	aarch64/translation/vmsa_translation/AArch64.S1Translate
	aarch64/translation/vmsa_translation/AArch64.S2Translate
	aarch64/translation/vmsa_translation/AArch64.TranslateAddress
	aarch64/translation/vmsa_ttentry/AArch64.BlockDescSupported
	aarch64/translation/vmsa_ttentry/AArch64.BlocknTFaults
	aarch64/translation/vmsa_ttentry/AArch64.ContiguousBit
	aarch64/translation/vmsa_ttentry/AArch64.ContiguousSizeLog2
	aarch64/translation/vmsa_ttentry/AArch64.DecodeDescriptorType
	aarch64/translation/vmsa_ttentry/AArch64.S1ApplyOutputPerms
	aarch64/translation/vmsa_ttentry/AArch64.S1ApplyTablePerms
	aarch64/translation/vmsa_ttentry/AArch64.S2ApplyOutputPerms
	aarch64/translation/vmsa_walk/AArch64.S1InitialTTWState
	aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateLast
	aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateTable
	aarch64/translation/vmsa_walk/AArch64.S1Walk
	aarch64/translation/vmsa_walk/AArch64.S2InitialTTWState
	aarch64/translation/vmsa_walk/AArch64.S2NextWalkStateLast
	aarch64/translation/vmsa_walk/AArch64.S2NextWalkStateTable
	aarch64/translation/vmsa_walk/AArch64.S2Walk
	aarch64/translation/vmsa_walk/AArch64.SS2InitialTTWState
	aarch64/translation/vmsa_walk/AArch64.SS2OutputPASpace
	aarch64/translation/vmsa_walkparams/AArch64.BBMSupportLevel
	aarch64/translation/vmsa_walkparams/AArch64.CurrentSecurityState
	aarch64/translation/vmsa_walkparams/AArch64.DecodeTG0
	aarch64/translation/vmsa_walkparams/AArch64.DecodeTG1
	aarch64/translation/vmsa_walkparams/AArch64.GetS1TTWParams
	aarch64/translation/vmsa_walkparams/AArch64.GetS2TTWParams
	aarch64/translation/vmsa_walkparams/AArch64.GetVARange
	aarch64/translation/vmsa_walkparams/AArch64.MaxTxSZ
	aarch64/translation/vmsa_walkparams/AArch64.NSS2TTWParams
	aarch64/translation/vmsa_walkparams/AArch64.PAMax
	aarch64/translation/vmsa_walkparams/AArch64.S1DCacheEnabled
	aarch64/translation/vmsa_walkparams/AArch64.S1EPD
	aarch64/translation/vmsa_walkparams/AArch64.S1Enabled
	aarch64/translation/vmsa_walkparams/AArch64.S1ICacheEnabled
	aarch64/translation/vmsa_walkparams/AArch64.S1MinTxSZ
	aarch64/translation/vmsa_walkparams/AArch64.S1TTBR
	aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL10
	aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL2
	aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL20
	aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL3
	aarch64/translation/vmsa_walkparams/AArch64.S2MinTxSZ
	aarch64/translation/vmsa_walkparams/AArch64.SS2TTWParams
	aarch64/translation/vmsa_walkparams/AArch64.VAMax

	J1.2 Pseudocode for AArch32 operation
	J1.2.1 aarch32/debug
	aarch32/debug/VCRMatch/AArch32.VCRMatch
	aarch32/debug/authentication/AArch32.SelfHostedSecurePrivilegedInvasiveDebugEna bled
	aarch32/debug/breakpoint/AArch32.BreakpointMatch
	aarch32/debug/breakpoint/AArch32.BreakpointValueMatch
	aarch32/debug/breakpoint/AArch32.StateMatch
	aarch32/debug/enables/AArch32.GenerateDebugExceptions
	aarch32/debug/enables/AArch32.GenerateDebugExceptionsFrom
	aarch32/debug/pmu/AArch32.CheckForPMUOverflow
	aarch32/debug/pmu/AArch32.CountEvents
	aarch32/debug/takeexceptiondbg/AArch32.EnterHypModeInDebugState
	aarch32/debug/takeexceptiondbg/AArch32.EnterModeInDebugState
	aarch32/debug/takeexceptiondbg/AArch32.EnterMonitorModeInDebugState
	aarch32/debug/watchpoint/AArch32.WatchpointByteMatch
	aarch32/debug/watchpoint/AArch32.WatchpointMatch

	J1.2.2 aarch32/exceptions
	aarch32/exceptions/aborts/AArch32.Abort
	aarch32/exceptions/aborts/AArch32.AbortSyndrome
	aarch32/exceptions/aborts/AArch32.CheckPCAlignment
	aarch32/exceptions/aborts/AArch32.ReportDataAbort
	aarch32/exceptions/aborts/AArch32.ReportPrefetchAbort
	aarch32/exceptions/aborts/AArch32.TakeDataAbortException
	aarch32/exceptions/aborts/AArch32.TakePrefetchAbortException
	aarch32/exceptions/async/AArch32.TakePhysicalFIQException
	aarch32/exceptions/async/AArch32.TakePhysicalIRQException
	aarch32/exceptions/async/AArch32.TakePhysicalSErrorException
	aarch32/exceptions/async/AArch32.TakeVirtualFIQException
	aarch32/exceptions/async/AArch32.TakeVirtualIRQException
	aarch32/exceptions/async/AArch32.TakeVirtualSErrorException
	aarch32/exceptions/debug/AArch32.SoftwareBreakpoint
	aarch32/exceptions/debug/DebugException
	aarch32/exceptions/exceptions/AArch32.CheckAdvSIMDOrFPRegisterTraps
	aarch32/exceptions/exceptions/AArch32.ExceptionClass
	aarch32/exceptions/exceptions/AArch32.GeneralExceptionsToAArch64
	aarch32/exceptions/exceptions/AArch32.ReportHypEntry
	aarch32/exceptions/exceptions/AArch32.ResetControlRegisters
	aarch32/exceptions/exceptions/AArch32.TakeReset
	aarch32/exceptions/exceptions/ExcVectorBase
	aarch32/exceptions/ieeefp/AArch32.FPTrappedException
	aarch32/exceptions/syscalls/AArch32.CallHypervisor
	aarch32/exceptions/syscalls/AArch32.CallSupervisor
	aarch32/exceptions/syscalls/AArch32.TakeHVCException
	aarch32/exceptions/syscalls/AArch32.TakeSMCException
	aarch32/exceptions/syscalls/AArch32.TakeSVCException
	aarch32/exceptions/takeexception/AArch32.EnterHypMode
	aarch32/exceptions/takeexception/AArch32.EnterMode
	aarch32/exceptions/takeexception/AArch32.EnterMonitorMode
	aarch32/exceptions/traps/AArch32.CheckAdvSIMDOrFPEnabled
	aarch32/exceptions/traps/AArch32.CheckFPAdvSIMDTrap
	aarch32/exceptions/traps/AArch32.CheckForSMCUndefOrTrap
	aarch32/exceptions/traps/AArch32.CheckForSVCTrap
	aarch32/exceptions/traps/AArch32.CheckForWFxTrap
	aarch32/exceptions/traps/AArch32.CheckITEnabled
	aarch32/exceptions/traps/AArch32.CheckIllegalState
	aarch32/exceptions/traps/AArch32.CheckSETENDEnabled
	aarch32/exceptions/traps/AArch32.SystemAccessTrap
	aarch32/exceptions/traps/AArch32.SystemAccessTrapSyndrome
	aarch32/exceptions/traps/AArch32.TakeHypTrapException
	aarch32/exceptions/traps/AArch32.TakeMonitorTrapException
	aarch32/exceptions/traps/AArch32.TakeUndefInstrException
	aarch32/exceptions/traps/AArch32.UndefinedFault

	J1.2.3 aarch32/functions
	aarch32/functions/aborts/AArch32.DomainValid
	aarch32/functions/aborts/AArch32.FaultStatusLD
	aarch32/functions/aborts/AArch32.FaultStatusSD
	aarch32/functions/aborts/AArch32.FaultSyndrome
	aarch32/functions/aborts/EncodeSDFSC
	aarch32/functions/common/A32ExpandImm
	aarch32/functions/common/A32ExpandImm_C
	aarch32/functions/common/DecodeImmShift
	aarch32/functions/common/DecodeRegShift
	aarch32/functions/common/RRX
	aarch32/functions/common/RRX_C
	aarch32/functions/common/SRType
	aarch32/functions/common/Shift
	aarch32/functions/common/Shift_C
	aarch32/functions/common/T32ExpandImm
	aarch32/functions/common/T32ExpandImm_C
	aarch32/functions/common/VCGEType
	aarch32/functions/common/VFPNegMul
	aarch32/functions/coproc/AArch32.CheckCP15InstrCoarseTraps
	aarch32/functions/exclusive/AArch32.ExclusiveMonitorsPass
	aarch32/functions/exclusive/AArch32.IsExclusiveVA
	aarch32/functions/exclusive/AArch32.MarkExclusiveVA
	aarch32/functions/exclusive/AArch32.SetExclusiveMonitors
	aarch32/functions/float/CheckAdvSIMDEnabled
	aarch32/functions/float/CheckAdvSIMDOrVFPEnabled
	aarch32/functions/float/CheckCryptoEnabled32
	aarch32/functions/float/CheckVFPEnabled
	aarch32/functions/float/FPHalvedSub
	aarch32/functions/float/FPRSqrtStep
	aarch32/functions/float/FPRecipStep
	aarch32/functions/float/StandardFPSCRValue
	aarch32/functions/memory/AArch32.CheckAlignment
	aarch32/functions/memory/AArch32.MemSingle
	aarch32/functions/memory/Hint_PreloadData
	aarch32/functions/memory/Hint_PreloadDataForWrite
	aarch32/functions/memory/Hint_PreloadInstr
	aarch32/functions/memory/MemA
	aarch32/functions/memory/MemO
	aarch32/functions/memory/MemS
	aarch32/functions/memory/MemU
	aarch32/functions/memory/MemU_unpriv
	aarch32/functions/memory/Mem_with_type
	aarch32/functions/ras/AArch32.ESBOperation
	aarch32/functions/ras/AArch32.PhysicalSErrorSyndrome
	aarch32/functions/ras/AArch32.ReportDeferredSError
	aarch32/functions/ras/AArch32.SErrorSyndrome
	aarch32/functions/ras/AArch32.vESBOperation
	aarch32/functions/registers/AArch32.ResetGeneralRegisters
	aarch32/functions/registers/AArch32.ResetSIMDFPRegisters
	aarch32/functions/registers/AArch32.ResetSpecialRegisters
	aarch32/functions/registers/AArch32.ResetSystemRegisters
	aarch32/functions/registers/ALUExceptionReturn
	aarch32/functions/registers/ALUWritePC
	aarch32/functions/registers/BXWritePC
	aarch32/functions/registers/BranchWritePC
	aarch32/functions/registers/CBWritePC
	aarch32/functions/registers/D
	aarch32/functions/registers/Din
	aarch32/functions/registers/LR
	aarch32/functions/registers/LoadWritePC
	aarch32/functions/registers/LookUpRIndex
	aarch32/functions/registers/Monitor_mode_registers
	aarch32/functions/registers/PC
	aarch32/functions/registers/PCStoreValue
	aarch32/functions/registers/Q
	aarch32/functions/registers/Qin
	aarch32/functions/registers/R
	aarch32/functions/registers/RBankSelect
	aarch32/functions/registers/Rmode
	aarch32/functions/registers/S
	aarch32/functions/registers/SP
	aarch32/functions/registers/_Dclone
	aarch32/functions/system/AArch32.ExceptionReturn
	aarch32/functions/system/AArch32.ExecutingCP10or11Instr
	aarch32/functions/system/AArch32.ITAdvance
	aarch32/functions/system/AArch32.SysRegRead
	aarch32/functions/system/AArch32.SysRegRead64
	aarch32/functions/system/AArch32.SysRegReadCanWriteAPSR
	aarch32/functions/system/AArch32.SysRegWrite
	aarch32/functions/system/AArch32.SysRegWrite64
	aarch32/functions/system/AArch32.SysRegWriteM
	aarch32/functions/system/AArch32.WriteMode
	aarch32/functions/system/AArch32.WriteModeByInstr
	aarch32/functions/system/BadMode
	aarch32/functions/system/BankedRegisterAccessValid
	aarch32/functions/system/CPSRWriteByInstr
	aarch32/functions/system/ConditionPassed
	aarch32/functions/system/CurrentCond
	aarch32/functions/system/InITBlock
	aarch32/functions/system/LastInITBlock
	aarch32/functions/system/SPSRWriteByInstr
	aarch32/functions/system/SPSRaccessValid
	aarch32/functions/system/SelectInstrSet
	aarch32/functions/v6simd/Sat
	aarch32/functions/v6simd/SignedSat
	aarch32/functions/v6simd/UnsignedSat

	J1.2.4 aarch32/translation
	aarch32/translation/attrs/AArch32.DefaultTEXDecode
	aarch32/translation/attrs/AArch32.RemappedTEXDecode
	aarch32/translation/debug/AArch32.CheckBreakpoint
	aarch32/translation/debug/AArch32.CheckDebug
	aarch32/translation/debug/AArch32.CheckVectorCatch
	aarch32/translation/debug/AArch32.CheckWatchpoint
	aarch32/translation/faults/AArch32.DebugFault
	aarch32/translation/faults/AArch32.IPAIsOutOfRange
	aarch32/translation/faults/AArch32.S1HasAlignmentFault
	aarch32/translation/faults/AArch32.S1LDHasPermissionsFault
	aarch32/translation/faults/AArch32.S1SDHasPermissionsFault
	aarch32/translation/faults/AArch32.S2HasAlignmentFault
	aarch32/translation/faults/AArch32.S2HasPermissionsFault
	aarch32/translation/faults/AArch32.S2InconsistentSL
	aarch32/translation/faults/AArch32.VAIsOutOfRange
	aarch32/translation/translation/AArch32.AccessUsesEL
	aarch32/translation/translation/AArch32.FullTranslate
	aarch32/translation/translation/AArch32.OutputDomain
	aarch32/translation/translation/AArch32.S1DisabledOutput
	aarch32/translation/translation/AArch32.S1Enabled
	aarch32/translation/translation/AArch32.S1TranslateLD
	aarch32/translation/translation/AArch32.S1TranslateSD
	aarch32/translation/translation/AArch32.S2Translate
	aarch32/translation/translation/AArch32.SDStageOA
	aarch32/translation/translation/AArch32.TranslateAddress
	aarch32/translation/walk/AArch32.DecodeDescriptorTypeLD
	aarch32/translation/walk/AArch32.DecodeDescriptorTypeSD
	aarch32/translation/walk/AArch32.S1IASize
	aarch32/translation/walk/AArch32.S1WalkLD
	aarch32/translation/walk/AArch32.S1WalkSD
	aarch32/translation/walk/AArch32.S2IASize
	aarch32/translation/walk/AArch32.S2StartLevel
	aarch32/translation/walk/AArch32.S2Walk
	aarch32/translation/walk/AArch32.TranslationSizeSD
	aarch32/translation/walk/RemapRegsHaveResetValues
	aarch32/translation/walkparams/AArch32.GetS1TTWParams
	aarch32/translation/walkparams/AArch32.GetS2TTWParams
	aarch32/translation/walkparams/AArch32.GetVARange
	aarch32/translation/walkparams/AArch32.S1TTWParamsEL2
	aarch32/translation/walkparams/AArch32.S1TTWParamsPL10

	J1.3 Shared pseudocode
	J1.3.1 shared/debug
	shared/debug/ClearStickyErrors/ClearStickyErrors
	shared/debug/DebugTarget/DebugTarget
	shared/debug/DebugTarget/DebugTargetFrom
	shared/debug/DoubleLockStatus/DoubleLockStatus
	shared/debug/OSLockStatus/OSLockStatus
	shared/debug/SoftwareLockStatus/Component
	shared/debug/SoftwareLockStatus/GetAccessComponent
	shared/debug/SoftwareLockStatus/SoftwareLockStatus
	shared/debug/authentication/AllowExternalDebugAccess
	shared/debug/authentication/AllowExternalPMUAccess
	shared/debug/authentication/Debug_authentication
	shared/debug/authentication/ExternalInvasiveDebugEnabled
	shared/debug/authentication/ExternalNoninvasiveDebugAllowed
	shared/debug/authentication/ExternalNoninvasiveDebugEnabled
	shared/debug/authentication/ExternalSecureInvasiveDebugEnabled
	shared/debug/authentication/ExternalSecureNoninvasiveDebugEnabled
	shared/debug/authentication/IsAccessSecure
	shared/debug/authentication/IsCorePowered
	shared/debug/breakpoint/CheckValidStateMatch
	shared/debug/breakpoint/NumBreakpointsImplemented
	shared/debug/breakpoint/NumContextAwareBreakpointsImplemented
	shared/debug/breakpoint/NumWatchpointsImplemented
	shared/debug/cti/CTI_SetEventLevel
	shared/debug/cti/CTI_SignalEvent
	shared/debug/cti/CrossTrigger
	shared/debug/dccanditr/CheckForDCCInterrupts
	shared/debug/dccanditr/DBGDTRRX_EL0
	shared/debug/dccanditr/DBGDTRTX_EL0
	shared/debug/dccanditr/DBGDTR_EL0
	shared/debug/dccanditr/DTR
	shared/debug/dccanditr/EDITR
	shared/debug/halting/DCPSInstruction
	shared/debug/halting/DRPSInstruction
	shared/debug/halting/DebugHalt
	shared/debug/halting/DisableITRAndResumeInstructionPrefetch
	shared/debug/halting/ExecuteA64
	shared/debug/halting/ExecuteT32
	shared/debug/halting/ExitDebugState
	shared/debug/halting/Halt
	shared/debug/halting/HaltOnBreakpointOrWatchpoint
	shared/debug/halting/Halted
	shared/debug/halting/HaltingAllowed
	shared/debug/halting/Restarting
	shared/debug/halting/StopInstructionPrefetchAndEnableITR
	shared/debug/halting/UpdateEDSCRFields
	shared/debug/haltingevents/CheckExceptionCatch
	shared/debug/haltingevents/CheckHaltingStep
	shared/debug/haltingevents/CheckOSUnlockCatch
	shared/debug/haltingevents/CheckPendingOSUnlockCatch
	shared/debug/haltingevents/CheckPendingResetCatch
	shared/debug/haltingevents/CheckResetCatch
	shared/debug/haltingevents/CheckSoftwareAccessToDebugRegisters
	shared/debug/haltingevents/ExternalDebugRequest
	shared/debug/haltingevents/HaltingStep_DidNotStep
	shared/debug/haltingevents/HaltingStep_SteppedEX
	shared/debug/haltingevents/RunHaltingStep
	shared/debug/interrupts/ExternalDebugInterruptsDisabled
	shared/debug/interrupts/InterruptID
	shared/debug/interrupts/SetInterruptRequestLevel
	shared/debug/pmu/NumEventCountersImplemented
	shared/debug/samplebasedprofiling/CreatePCSample
	shared/debug/samplebasedprofiling/EDPCSRlo
	shared/debug/samplebasedprofiling/PCSample
	shared/debug/samplebasedprofiling/PMPCSR
	shared/debug/softwarestep/CheckSoftwareStep
	shared/debug/softwarestep/DebugExceptionReturnSS
	shared/debug/softwarestep/SSAdvance
	shared/debug/softwarestep/SoftwareStep_DidNotStep
	shared/debug/softwarestep/SoftwareStep_SteppedEX

	J1.3.2 shared/exceptions
	shared/exceptions/exceptions/ConditionSyndrome
	shared/exceptions/exceptions/Exception
	shared/exceptions/exceptions/ExceptionRecord
	shared/exceptions/exceptions/ExceptionSyndrome

	J1.3.3 shared/functions
	shared/functions/aborts/EncodeLDFSC
	shared/functions/aborts/IPAValid
	shared/functions/aborts/IsAsyncAbort
	shared/functions/aborts/IsDebugException
	shared/functions/aborts/IsExternalAbort
	shared/functions/aborts/IsExternalSyncAbort
	shared/functions/aborts/IsFault
	shared/functions/aborts/IsSErrorInterrupt
	shared/functions/aborts/IsSecondStage
	shared/functions/aborts/LSInstructionSyndrome
	shared/functions/cache/CACHE_OP
	shared/functions/cache/CacheOp
	shared/functions/cache/CacheOpScope
	shared/functions/cache/CacheRecord
	shared/functions/cache/CacheType
	shared/functions/cache/DCInstNeedsTranslation
	shared/functions/cache/DecodeSW
	shared/functions/cache/GetCacheInfo
	shared/functions/cache/ICInstNeedsTranslation
	shared/functions/common/ASR
	shared/functions/common/ASR_C
	shared/functions/common/Abs
	shared/functions/common/Align
	shared/functions/common/BitCount
	shared/functions/common/CountLeadingSignBits
	shared/functions/common/CountLeadingZeroBits
	shared/functions/common/Elem
	shared/functions/common/Extend
	shared/functions/common/HighestSetBit
	shared/functions/common/Int
	shared/functions/common/IsOnes
	shared/functions/common/IsZero
	shared/functions/common/IsZeroBit
	shared/functions/common/LSL
	shared/functions/common/LSL_C
	shared/functions/common/LSR
	shared/functions/common/LSR_C
	shared/functions/common/LowestSetBit
	shared/functions/common/Max
	shared/functions/common/Min
	shared/functions/common/Ones
	shared/functions/common/ROR
	shared/functions/common/ROR_C
	shared/functions/common/Replicate
	shared/functions/common/RoundDown
	shared/functions/common/RoundTowardsZero
	shared/functions/common/RoundUp
	shared/functions/common/SInt
	shared/functions/common/SignExtend
	shared/functions/common/UInt
	shared/functions/common/ZeroExtend
	shared/functions/common/Zeros
	shared/functions/counters/GenericCounterTick
	shared/functions/counters/PhysicalCount
	shared/functions/crc/BitReverse
	shared/functions/crc/HaveCRCExt
	shared/functions/crc/Poly32Mod2
	shared/functions/crypto/AESInvMixColumns
	shared/functions/crypto/AESInvShiftRows
	shared/functions/crypto/AESInvSubBytes
	shared/functions/crypto/AESMixColumns
	shared/functions/crypto/AESShiftRows
	shared/functions/crypto/AESSubBytes
	shared/functions/crypto/FFmul02
	shared/functions/crypto/FFmul03
	shared/functions/crypto/FFmul09
	shared/functions/crypto/FFmul0B
	shared/functions/crypto/FFmul0D
	shared/functions/crypto/FFmul0E
	shared/functions/crypto/HaveAESExt
	shared/functions/crypto/HaveBit128PMULLExt
	shared/functions/crypto/HaveSHA1Ext
	shared/functions/crypto/HaveSHA256Ext
	shared/functions/crypto/HaveSHA3Ext
	shared/functions/crypto/HaveSHA512Ext
	shared/functions/crypto/HaveSM3Ext
	shared/functions/crypto/HaveSM4Ext
	shared/functions/crypto/ROL
	shared/functions/crypto/SHA256hash
	shared/functions/crypto/SHAchoose
	shared/functions/crypto/SHAhashSIGMA0
	shared/functions/crypto/SHAhashSIGMA1
	shared/functions/crypto/SHAmajority
	shared/functions/crypto/SHAparity
	shared/functions/crypto/Sbox
	shared/functions/exclusive/ClearExclusiveByAddress
	shared/functions/exclusive/ClearExclusiveLocal
	shared/functions/exclusive/ClearExclusiveMonitors
	shared/functions/exclusive/ExclusiveMonitorsStatus
	shared/functions/exclusive/IsExclusiveGlobal
	shared/functions/exclusive/IsExclusiveLocal
	shared/functions/exclusive/MarkExclusiveGlobal
	shared/functions/exclusive/MarkExclusiveLocal
	shared/functions/exclusive/ProcessorID
	shared/functions/extension/AArch32.HaveHPDExt
	shared/functions/extension/AArch64.HaveHPDExt
	shared/functions/extension/Have52BitIPAAndPASpaceExt
	shared/functions/extension/Have52BitPAExt
	shared/functions/extension/Have52BitVAExt
	shared/functions/extension/HaveAArch32BF16Ext
	shared/functions/extension/HaveAArch32Int8MatMulExt
	shared/functions/extension/HaveAltFP
	shared/functions/extension/HaveAtomicExt
	shared/functions/extension/HaveBF16Ext
	shared/functions/extension/HaveBTIExt
	shared/functions/extension/HaveBlockBBM
	shared/functions/extension/HaveCNTSCExt
	shared/functions/extension/HaveCommonNotPrivateTransExt
	shared/functions/extension/HaveDGHExt
	shared/functions/extension/HaveDITExt
	shared/functions/extension/HaveDOTPExt
	shared/functions/extension/HaveDoPD
	shared/functions/extension/HaveDoubleFaultExt
	shared/functions/extension/HaveDoubleLock
	shared/functions/extension/HaveE0PDExt
	shared/functions/extension/HaveECVExt
	shared/functions/extension/HaveEMPAMExt
	shared/functions/extension/HaveExtendedCacheSets
	shared/functions/extension/HaveExtendedECDebugEvents
	shared/functions/extension/HaveExtendedExecuteNeverExt
	shared/functions/extension/HaveFCADDExt
	shared/functions/extension/HaveFGTExt
	shared/functions/extension/HaveFJCVTZSExt
	shared/functions/extension/HaveFP16MulNoRoundingToFP32Ext
	shared/functions/extension/HaveFeatHCX
	shared/functions/extension/HaveFeatLS64
	shared/functions/extension/HaveFeatRPRES
	shared/functions/extension/HaveFeatWFxT
	shared/functions/extension/HaveFeatWFxT2
	shared/functions/extension/HaveFeatXS
	shared/functions/extension/HaveFlagFormatExt
	shared/functions/extension/HaveFlagManipulateExt
	shared/functions/extension/HaveFrintExt
	shared/functions/extension/HaveHPMDExt
	shared/functions/extension/HaveIDSExt
	shared/functions/extension/HaveIESB
	shared/functions/extension/HaveInt8MatMulExt
	shared/functions/extension/HaveLSE2Ext
	shared/functions/extension/HaveMPAMExt
	shared/functions/extension/HaveMTE2Ext
	shared/functions/extension/HaveMTE3Ext
	shared/functions/extension/HaveMTEExt
	shared/functions/extension/HaveNV2Ext
	shared/functions/extension/HaveNVExt
	shared/functions/extension/HaveNoSecurePMUDisableOverride
	shared/functions/extension/HaveNoninvasiveDebugAuth
	shared/functions/extension/HavePAN3Ext
	shared/functions/extension/HavePANExt
	shared/functions/extension/HavePMUv3p7
	shared/functions/extension/HavePageBasedHardwareAttributes
	shared/functions/extension/HavePrivATExt
	shared/functions/extension/HaveQRDMLAHExt
	shared/functions/extension/HaveRASExt
	shared/functions/extension/HaveRNG
	shared/functions/extension/HaveSBExt
	shared/functions/extension/HaveSSBSExt
	shared/functions/extension/HaveSecureEL2Ext
	shared/functions/extension/HaveSecureExtDebugView
	shared/functions/extension/HaveSelfHostedTrace
	shared/functions/extension/HaveSmallTranslationTblExt
	shared/functions/extension/HaveSoftwareLock
	shared/functions/extension/HaveStage2MemAttrControl
	shared/functions/extension/HaveStatisticalProfiling
	shared/functions/extension/HaveStatisticalProfilingv1p1
	shared/functions/extension/HaveStatisticalProfilingv1p2
	shared/functions/extension/HaveTWEDExt
	shared/functions/extension/HaveTraceExt
	shared/functions/extension/HaveTrapLoadStoreMultipleDeviceExt
	shared/functions/extension/HaveUAOExt
	shared/functions/extension/HaveV82Debug
	shared/functions/extension/HaveVirtHostExt
	shared/functions/extension/Havev85PMU
	shared/functions/extension/Havev8p4Debug
	shared/functions/extension/InsertIESBBeforeException
	shared/functions/externalaborts/HandleExternalAbort
	shared/functions/externalaborts/HandleExternalReadAbort
	shared/functions/externalaborts/HandleExternalTTWAbort
	shared/functions/externalaborts/HandleExternalWriteAbort
	shared/functions/externalaborts/IsExternalAbortTakenSynchronously
	shared/functions/externalaborts/PEErrorState
	shared/functions/externalaborts/PendSErrorInterrupt
	shared/functions/float/bfloat/BFAdd
	shared/functions/float/bfloat/BFDotAdd
	shared/functions/float/bfloat/BFMatMulAdd
	shared/functions/float/bfloat/BFMul
	shared/functions/float/bfloat/BFMulAdd
	shared/functions/float/bfloat/BFNeg
	shared/functions/float/bfloat/BFRound
	shared/functions/float/bfloat/BFUnpack
	shared/functions/float/bfloat/FPConvertBF
	shared/functions/float/bfloat/FPRoundCVBF
	shared/functions/float/fixedtofp/FixedToFP
	shared/functions/float/fpabs/FPAbs
	shared/functions/float/fpadd/FPAdd
	shared/functions/float/fpcompare/FPCompare
	shared/functions/float/fpcompareeq/FPCompareEQ
	shared/functions/float/fpcomparege/FPCompareGE
	shared/functions/float/fpcomparegt/FPCompareGT
	shared/functions/float/fpconvert/FPConvert
	shared/functions/float/fpconvertnan/FPConvertNaN
	shared/functions/float/fpcrtype/FPCRType
	shared/functions/float/fpdecoderm/FPDecodeRM
	shared/functions/float/fpdecoderounding/FPDecodeRounding
	shared/functions/float/fpdefaultnan/FPDefaultNaN
	shared/functions/float/fpdiv/FPDiv
	shared/functions/float/fpexc/FPExc
	shared/functions/float/fpinfinity/FPInfinity
	shared/functions/float/fpmatmul/FPMatMulAdd
	shared/functions/float/fpmax/FPMax
	shared/functions/float/fpmaxnormal/FPMaxNormal
	shared/functions/float/fpmaxnum/FPMaxNum
	shared/functions/float/fpmerge/IsMerging
	shared/functions/float/fpmin/FPMin
	shared/functions/float/fpminnum/FPMinNum
	shared/functions/float/fpmul/FPMul
	shared/functions/float/fpmuladd/FPMulAdd
	shared/functions/float/fpmuladdh/FPMulAddH
	shared/functions/float/fpmuladdh/FPProcessNaNs3H
	shared/functions/float/fpmulx/FPMulX
	shared/functions/float/fpneg/FPNeg
	shared/functions/float/fponepointfive/FPOnePointFive
	shared/functions/float/fpprocessdenorms/FPProcessDenorm
	shared/functions/float/fpprocessdenorms/FPProcessDenorms
	shared/functions/float/fpprocessdenorms/FPProcessDenorms3
	shared/functions/float/fpprocessdenorms/FPProcessDenorms4
	shared/functions/float/fpprocessexception/FPProcessException
	shared/functions/float/fpprocessnan/FPProcessNaN
	shared/functions/float/fpprocessnans/FPProcessNaNs
	shared/functions/float/fpprocessnans3/FPProcessNaNs3
	shared/functions/float/fprecipestimate/FPRecipEstimate
	shared/functions/float/fprecipestimate/RecipEstimate
	shared/functions/float/fprecpx/FPRecpX
	shared/functions/float/fpround/FPRound
	shared/functions/float/fpround/FPRoundBase
	shared/functions/float/fpround/FPRoundCV
	shared/functions/float/fprounding/FPRounding
	shared/functions/float/fproundingmode/FPRoundingMode
	shared/functions/float/fproundint/FPRoundInt
	shared/functions/float/fproundintn/FPRoundIntN
	shared/functions/float/fprsqrtestimate/FPRSqrtEstimate
	shared/functions/float/fprsqrtestimate/RecipSqrtEstimate
	shared/functions/float/fpsqrt/FPSqrt
	shared/functions/float/fpsub/FPSub
	shared/functions/float/fpthree/FPThree
	shared/functions/float/fptofixed/FPToFixed
	shared/functions/float/fptofixedjs/FPToFixedJS
	shared/functions/float/fptwo/FPTwo
	shared/functions/float/fptype/FPType
	shared/functions/float/fpunpack/FPUnpack
	shared/functions/float/fpunpack/FPUnpackBase
	shared/functions/float/fpunpack/FPUnpackCV
	shared/functions/float/fpzero/FPZero
	shared/functions/float/vfpexpandimm/VFPExpandImm
	shared/functions/integer/AddWithCarry
	shared/functions/memory/AArch64.BranchAddr
	shared/functions/memory/AccType
	shared/functions/memory/AccessDescriptor
	shared/functions/memory/AddrTop
	shared/functions/memory/AddressDescriptor
	shared/functions/memory/Allocation
	shared/functions/memory/BigEndian
	shared/functions/memory/BigEndianReverse
	shared/functions/memory/Cacheability
	shared/functions/memory/CreateAccessDescriptor
	shared/functions/memory/DataMemoryBarrier
	shared/functions/memory/DataSynchronizationBarrier
	shared/functions/memory/DeviceType
	shared/functions/memory/EffectiveTBI
	shared/functions/memory/EffectiveTCMA
	shared/functions/memory/Fault
	shared/functions/memory/FaultRecord
	shared/functions/memory/FullAddress
	shared/functions/memory/Hint_Prefetch
	shared/functions/memory/MBReqDomain
	shared/functions/memory/MBReqTypes
	shared/functions/memory/MPAM
	shared/functions/memory/MemAttrHints
	shared/functions/memory/MemType
	shared/functions/memory/MemoryAttributes
	shared/functions/memory/PASpace
	shared/functions/memory/Permissions
	shared/functions/memory/PhysMemRead
	shared/functions/memory/PhysMemRetStatus
	shared/functions/memory/PhysMemWrite
	shared/functions/memory/PrefetchHint
	shared/functions/memory/Shareability
	shared/functions/memory/SpeculativeStoreBypassBarrierToPA
	shared/functions/memory/SpeculativeStoreBypassBarrierToVA
	shared/functions/memory/Tag
	shared/functions/mpam/DefaultMPAMinfo
	shared/functions/mpam/DefaultPARTID
	shared/functions/mpam/DefaultPMG
	shared/functions/mpam/GenMPAMcurEL
	shared/functions/mpam/MAP_vPARTID
	shared/functions/mpam/MPAMisEnabled
	shared/functions/mpam/MPAMisVirtual
	shared/functions/mpam/PARTIDspaceFromSS
	shared/functions/mpam/genMPAM
	shared/functions/mpam/genMPAMel
	shared/functions/mpam/genPARTID
	shared/functions/mpam/genPMG
	shared/functions/mpam/getMPAM_PARTID
	shared/functions/mpam/getMPAM_PMG
	shared/functions/mpam/mapvpmw
	shared/functions/registers/BranchTo
	shared/functions/registers/BranchToAddr
	shared/functions/registers/BranchType
	shared/functions/registers/Hint_Branch
	shared/functions/registers/NextInstrAddr
	shared/functions/registers/ResetExternalDebugRegisters
	shared/functions/registers/ThisInstrAddr
	shared/functions/registers/_PC
	shared/functions/registers/_R
	shared/functions/sysregisters/SPSR
	shared/functions/system/ArchVersion
	shared/functions/system/BranchTargetCheck
	shared/functions/system/ClearEventRegister
	shared/functions/system/ClearPendingPhysicalSError
	shared/functions/system/ClearPendingVirtualSError
	shared/functions/system/ConditionHolds
	shared/functions/system/ConsumptionOfSpeculativeDataBarrier
	shared/functions/system/CurrentInstrSet
	shared/functions/system/CurrentPL
	shared/functions/system/DSBAlias
	shared/functions/system/EL0
	shared/functions/system/EL2Enabled
	shared/functions/system/ELFromM32
	shared/functions/system/ELFromSPSR
	shared/functions/system/ELIsInHost
	shared/functions/system/ELStateUsingAArch32
	shared/functions/system/ELStateUsingAArch32K
	shared/functions/system/ELUsingAArch32
	shared/functions/system/ELUsingAArch32K
	shared/functions/system/EndOfInstruction
	shared/functions/system/EnterLowPowerState
	shared/functions/system/EventRegister
	shared/functions/system/ExceptionalOccurrenceTargetState
	shared/functions/system/FIQPending
	shared/functions/system/GetPSRFromPSTATE
	shared/functions/system/HasArchVersion
	shared/functions/system/HaveAArch32
	shared/functions/system/HaveAArch32EL
	shared/functions/system/HaveAArch64
	shared/functions/system/HaveEL
	shared/functions/system/HaveELUsingSecurityState
	shared/functions/system/HaveFP16Ext
	shared/functions/system/HighestEL
	shared/functions/system/Hint_DGH
	shared/functions/system/Hint_WFE
	shared/functions/system/Hint_WFI
	shared/functions/system/Hint_Yield
	shared/functions/system/IRQPending
	shared/functions/system/IllegalExceptionReturn
	shared/functions/system/InstrSet
	shared/functions/system/InstructionSynchronizationBarrier
	shared/functions/system/InterruptPending
	shared/functions/system/IsEventRegisterSet
	shared/functions/system/IsHighestEL
	shared/functions/system/IsInHost
	shared/functions/system/IsPhysicalSErrorPending
	shared/functions/system/IsSErrorEdgeTriggered
	shared/functions/system/IsSecure
	shared/functions/system/IsSecureBelowEL3
	shared/functions/system/IsSecureEL2Enabled
	shared/functions/system/IsSynchronizablePhysicalSErrorPending
	shared/functions/system/IsVirtualSErrorPending
	shared/functions/system/LocalTimeoutEvent
	shared/functions/system/Mode_Bits
	shared/functions/system/PLOfEL
	shared/functions/system/PSTATE
	shared/functions/system/PhysicalCountInt
	shared/functions/system/PrivilegeLevel
	shared/functions/system/ProcState
	shared/functions/system/RestoredITBits
	shared/functions/system/SCRType
	shared/functions/system/SCR_GEN
	shared/functions/system/SecurityState
	shared/functions/system/SendEvent
	shared/functions/system/SendEventLocal
	shared/functions/system/SetPSTATEFromPSR
	shared/functions/system/ShouldAdvanceIT
	shared/functions/system/ShouldAdvanceSS
	shared/functions/system/SpeculationBarrier
	shared/functions/system/SynchronizeContext
	shared/functions/system/SynchronizeErrors
	shared/functions/system/TakeUnmaskedPhysicalSErrorInterrupts
	shared/functions/system/TakeUnmaskedSErrorInterrupts
	shared/functions/system/ThisInstr
	shared/functions/system/ThisInstrLength
	shared/functions/system/Unreachable
	shared/functions/system/UsingAArch32
	shared/functions/system/VirtualFIQPending
	shared/functions/system/VirtualIRQPending
	shared/functions/system/WFxType
	shared/functions/system/WaitForEvent
	shared/functions/system/WaitForInterrupt
	shared/functions/unpredictable/ConstrainUnpredictable
	shared/functions/unpredictable/ConstrainUnpredictableBits
	shared/functions/unpredictable/ConstrainUnpredictableBool
	shared/functions/unpredictable/ConstrainUnpredictableInteger
	shared/functions/unpredictable/Constraint
	shared/functions/vector/AdvSIMDExpandImm
	shared/functions/vector/MatMulAdd
	shared/functions/vector/PolynomialMult
	shared/functions/vector/SatQ
	shared/functions/vector/SignedSatQ
	shared/functions/vector/UnsignedRSqrtEstimate
	shared/functions/vector/UnsignedRecipEstimate
	shared/functions/vector/UnsignedSatQ

	J1.3.4 shared/trace
	shared/trace/selfhosted/SelfHostedTraceEnabled
	shared/trace/selfhosted/TraceAllowed
	shared/trace/selfhosted/TraceContextIDR2
	shared/trace/selfhosted/TraceSynchronizationBarrier
	shared/trace/selfhosted/TraceTimeStamp

	J1.3.5 shared/translation
	shared/translation/attrs/DecodeDevice
	shared/translation/attrs/DecodeLDFAttr
	shared/translation/attrs/DecodeSDFAttr
	shared/translation/attrs/DecodeShareability
	shared/translation/attrs/MAIRAttr
	shared/translation/attrs/NormalNCMemAttr
	shared/translation/attrs/NormaliseShareability
	shared/translation/attrs/S1ConstrainUnpredictableRESMAIR
	shared/translation/attrs/S1DecodeMemAttrs
	shared/translation/attrs/S2CombineS1AttrHints
	shared/translation/attrs/S2CombineS1Device
	shared/translation/attrs/S2CombineS1MemAttrs
	shared/translation/attrs/S2CombineS1Shareability
	shared/translation/attrs/S2DecodeCacheability
	shared/translation/attrs/S2DecodeMemAttrs
	shared/translation/attrs/WalkMemAttrs
	shared/translation/faults/AlignmentFault
	shared/translation/faults/AsyncExternalAbort
	shared/translation/faults/NoFault
	shared/translation/translation/HasS2Translation
	shared/translation/translation/Have16bitVMID
	shared/translation/translation/S1TranslationRegime
	shared/translation/vmsa/CreateAddressDescriptor
	shared/translation/vmsa/CreateFaultyAddressDescriptor
	shared/translation/vmsa/DescriptorType
	shared/translation/vmsa/Domains
	shared/translation/vmsa/FetchDescriptor
	shared/translation/vmsa/HasUnprivileged
	shared/translation/vmsa/IsAtomicRW
	shared/translation/vmsa/Regime
	shared/translation/vmsa/RegimeUsingAArch32
	shared/translation/vmsa/S1TTWParams
	shared/translation/vmsa/S2TTWParams
	shared/translation/vmsa/SDFType
	shared/translation/vmsa/SecurityStateForRegime
	shared/translation/vmsa/StageOA
	shared/translation/vmsa/TGx
	shared/translation/vmsa/TGxGranuleBits
	shared/translation/vmsa/TTWState
	shared/translation/vmsa/TranslationRegime
	shared/translation/vmsa/TranslationSize
	shared/translation/vmsa/VARange

	Part K: Appendixes�
	K1: Architectural Constraints on UNPREDICTABLE Behaviors�
	K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
	K1.1.1 Overview of the constraints on Armv7 UNPREDICTABLE behaviors
	K1.1.2 Using R13 by instruction
	K1.1.3 Using R15 by instruction
	K1.1.4 Branching into an IT block
	K1.1.5 Branching to an unaligned PC
	K1.1.6 Loads and Stores to unaligned locations
	K1.1.7 CONSTRAINED UNPREDICTABLE behavior associated with IT instructions and PSTATE.IT
	K1.1.8 Unallocated System register access instructions
	K1.1.9 SBZ or SBO fields T32 and A32 in instructions
	K1.1.10 UNPREDICTABLE cases in immediate constants in T32 data-processing instructions
	K1.1.11 UNPREDICTABLE cases in immediate constants in Advanced SIMD instructions
	K1.1.12 CONSTRAINED UNPREDICTABLE behaviors due to caching of System register control or data values
	K1.1.13 CONSTRAINED UNPREDICTABLE behavior due to inadequate context synchronization
	K1.1.14 Unallocated values with register fields of CP15 registers and Translation Table entries
	K1.1.15 Translation Table Base Address alignment
	K1.1.16 Handling of System register control fields for Advanced SIMD and floating-point operation
	CONSTRAINED UNPREDICTABLE CPACR and NSACR settings

	K1.1.17 Mapping of non-idempotent memory locations using the Normal memory type
	K1.1.18 The Performance Monitors Extension
	CONSTRAINED UNPREDICTABLE accesses to PMXEVTYPER or PMXEVCNTR
	CONSTRAINED UNPREDICTABLE accesses to PMEVCNTR<n> and PMEVTYPER<n>
	CONSTRAINED UNPREDICTABLE behavior caused by HDCR.HPMN

	K1.1.19 The Activity Monitors Extension
	CONSTRAINED UNPREDICTABLE accesses to AMEVCNTR0<n> and AMEVTYPER0<n>
	CONSTRAINED UNPREDICTABLE accesses to AMEVCNTR1<n> and AMEVTYPER1<n>
	CONSTRAINED UNPREDICTABLE accesses to AMCNTENCLR1 and AMCNTENSET1

	K1.1.20 Syndrome register handling for CONSTRAINED UNPREDICTABLE instructions treated as UNDEFINED
	K1.1.21 Out of range VA
	K1.1.22 Instruction fetches from Device memory
	K1.1.23 Multi-access instructions that load the PC from Device memory
	K1.1.24 Programming CSSELR.Level for a cache level that is not implemented
	K1.1.25 Crossing a page boundary with different memory types or Shareability attributes
	K1.1.26 Crossing a 4KB boundary with a Device access
	K1.1.27 UNPREDICTABLE behaviors with Load-Exclusive/Store-Exclusive pairs
	K1.1.28 CONSTRAINED UNPREDICTABLE behavior for A32 and T32 instruction encodings
	CONSTRAINED UNPREDICTABLE behavior of CRC32 instruction encodings
	CONSTRAINED UNPREDICTABLE behavior of other A32 instruction encodings

	K1.1.29 Out of range values of the Set/Way/Index fields in cache maintenance instructions
	K1.1.30 CONSTRAINED UNPREDICTABLE behavior for A32 and T32 System instructions in the base instruction set
	SRS (T32)
	SRS (A32)
	SUBS PC, LR and related instructions (T32)
	SUBS PC. LR and related instructions (A32)

	K1.1.31 CONSTRAINED UNPREDICTABLE behavior, A32 and T32 Advanced SIMD and floating-point instructions
	VCVT (between floating-point and fixed-point)
	VLD1 (multiple single elements)
	VLD1 (single element to all lanes)
	VLD2 (multiple 2-element structures)
	VLD2 (single 2-element structure to one lane)
	VLD2 (single 2-element structure to all lanes)
	VLD3 (multiple 3-element structures)
	VLD3 (single 3-element structure to one lane)
	VLD3 (single 3-element structure to all lanes)
	VLD4 (multiple 4-element structures)
	VLD4 (single 4-element structure to one lane)
	VLD4 (single 4-element structure to all lanes)
	VLDM
	VMOV (between two general-purpose registers and two single-precision registers)
	VMOV (between two general-purpose registers and a doubleword floating-point register)
	VST1 (multiple single elements)
	VST2 (multiple 2-element structures)
	VST2 (single 2-element structure from one lane)
	VST3 (multiple 3-element structures)
	VST3 (single 3-element structure from one lane)
	VST4 (multiple 4-element structures)
	VST4 (single 4-element structure from one lane)
	VSTM

	K1.1.32 CONSTRAINED UNPREDICTABLE behaviors associated with the VTCR
	Misprogramming VTCR.S
	Misprogramming VTCR.{SL0, T0SZ}

	K1.1.33 CONSTRAINED UNPREDICTABLE behavior of EL2 features
	ERET in User mode or System mode
	Accessing Hyp mode from outside Hyp mode
	Modifying PSTATE.M when in Hyp mode
	Use of Hyp mode in Secure state
	Exception return to Hyp mode
	Stage 1 default memory type
	Trapping of general exceptions to Hyp mode
	MSR (banked register) and MRS (banked register)

	K1.1.34 Reserved values in System and memory-mapped registers and translation table entries
	K1.1.35 CONSTRAINED UNPREDICTABLE behavior in Debug state

	K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
	K1.2.1 Overview of the constraints on AArch64 UNPREDICTABLE behaviors
	K1.2.2 SBZ or SBO fields in A64 instructions
	K1.2.3 CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values
	K1.2.4 CONSTRAINED UNPREDICTABLE behavior due to inadequate context synchronization
	K1.2.5 Translation table base address alignment
	K1.2.6 The Performance Monitors Extension
	CONSTRAINED UNPREDICTABLE accesses to PMXEVTYPER_EL0 or PMXEVETYPER_EL0
	CONSTRAINED UNPREDICTABLE accesses to PMEVCNTR<n>_EL0 and PMEVTYPER<n>_EL0
	CONSTRAINED UNPREDICTABLE behavior caused by MDCR_EL2.HPMN

	K1.2.7 The Activity Monitors Extension
	K1.2.8 Syndrome register handling for CONSTRAINED UNPREDICTABLE instructions treated as UNDEFINED
	K1.2.9 Out of range virtual address
	K1.2.10 Mapping of non-idempotent memory locations using the Normal memory type
	K1.2.11 Instruction fetches from Device memory
	K1.2.12 Programming the CSSELR_EL1.Level for a cache level that is not implemented
	K1.2.13 Crossing a page boundary with different memory types or Shareability attributes
	K1.2.14 Crossing a peripheral boundary with a Device access
	K1.2.15 CONSTRAINED UNPREDICTABLE behaviors with Load-Exclusive/Store-Exclusive pairs
	K1.2.16 CONSTRAINED UNPREDICTABLE behavior for A64 instructions
	LDAXP
	LDNP
	LDNP (SIMD&FP)
	LDP
	LDP (SIMD&FP)
	LDPSW
	LDR (immediate)
	LDRB (immediate)
	LDRH (immediate)
	LDRSB (immediate)
	LDRSH (immediate)
	LDRSW (immediate)
	LDXP
	STP
	STLXP
	STLXR
	STLXRB
	STLXRH
	STR (immediate)
	STRB (immediate)
	STRH (immediate)
	STXP
	STXR
	STXRB
	STXRH

	K1.2.17 Out of range values of the Set/Way/Index fields in cache maintenance instructions
	K1.2.18 Reserved values in System and memory-mapped registers and translation table entries
	K1.2.19 CONSTRAINED UNPREDICTABLE behavior in Debug state

	K2: Recommended External Debug Interface�
	K2.1 About the recommended external debug interface
	K2.1.1 EDBGRQ and DBGACK
	K2.1.2 Secure and Non-secure views of the debug registers

	K2.2 PMUEVENT bus
	K2.3 Recommended authentication interface
	K2.4 Management registers and CoreSight compliance
	K2.4.1 CoreSight interface register map
	K2.4.2 Management register access permissions
	K2.4.3 Management register resets
	K2.4.4 About the Peripheral identification scheme
	Allocating revisions and part numbers

	K2.4.5 About the Component Identification scheme

	K3: Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events�
	K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers
	K3.1.1 Relationship between REFILL events and associated access events.

	K3.2 Summary of events for exceptions taken to an Exception level using AArch64

	K4: Recommendations for Reporting Memory Attributes on an Interconnect�
	K4.1 Arm recommendations for reporting memory attributes on an interconnect
	K4.1.1 Effect of microarchitectural choices on memory attributes
	Effect when memory accesses are forced to be Non-cacheable

	K5: Additional Information for Implementations of the Generic Timer�
	K5.1 Providing a complete set of features in a system level implementation
	K5.2 Gray-count scheme for timer distribution scheme

	K6: Legacy Instruction Syntax for AArch32 Instruction Sets�
	K6.1 Legacy Instruction Syntax
	K6.1.1 Pre-UAL instruction syntax for the A32 base instructions
	K6.1.2 Pre-UAL instruction syntax for the A32 floating-point instructions
	K6.1.3 FCONST

	K7: Address Translation Examples�
	K7.1 AArch64 Address translation examples
	K7.1.1 Examples of performing the initial lookup
	Performing the initial lookup using the 4KB translation granule
	Performing the initial lookup using the 16KB granule
	Performing the initial lookup using the 64KB translation granule

	K7.1.2 Full translation flows for VMSAv8-64 address translation
	The address and properties fields shown in the translation flows
	Full translation flow using the 4KB granule and starting at level 0
	Full translation flow using the 4KB granule and starting at level 1
	Full translation flow using the 64KB granule and starting at level 1
	Full translation flow using the 64KB granule and starting at level 2

	K7.2 AArch32 Address translation examples
	K7.2.1 Address translation examples using the VMSAv8-32 Short descriptor translation table format
	Translation flow for a Supersection
	Translation flow for a Section
	Translation flow for a Large page
	Translation flow for a Small page
	The address and Properties fields shown in the translation flows

	K7.2.2 Address translation examples using the VMSAv8-32 Long descriptor translation table format
	Full translation flow, starting at level 1 lookup
	Full translation flow, starting at level 2 lookup
	The address and Properties fields shown in the translation flows

	K8: Example OS Save and Restore Sequences�
	K8.1 Save Debug registers
	K8.2 Restore Debug registers

	K9: Recommended Upload and Download Processes for External Debug�
	K9.1 Using memory access mode in AArch64 state

	K10: Software Usage Examples�
	K10.1 Use of the Advanced SIMD complex number instructions
	K10.1.1 Complex addition
	K10.1.2 Complex multiplication

	K10.2 Use of the Armv8.2 extensions to the Cryptographic Extension
	K10.2.1 Use of the SHA512 instructions
	K10.2.2 Use of the SHA3 instructions
	K10.2.3 Use of the SM3 instructions
	K10.2.4 Use of the SM4 instructions

	K11: Barrier Litmus Tests�
	K11.1 Introduction
	K11.1.1 Overview of memory consistency
	K11.1.2 Barrier operation definitions
	K11.1.3 Conventions

	K11.2 Load-Acquire, Store-Release and barriers
	K11.2.1 Message passing
	Resolving weakly-ordered message passing by using Acquire and Release
	Resolving message passing by the use of Store-Release and address dependency

	K11.2.2 Address dependency with object construction
	K11.2.3 WFE and WFI and barriers

	K11.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers
	K11.3.1 Acquiring a lock
	K11.3.2 Releasing a lock
	K11.3.3 Ticket locks
	K11.3.4 Use of Wait For Event (WFE) and Send Event (SEV) with locks
	Simple lock
	Ticket lock

	K11.4 Using a mailbox to send an interrupt
	K11.5 Cache and TLB maintenance instructions and barriers
	K11.5.1 Data cache maintenance instructions
	Message passing to non-caching observers
	Multiprocessing message passing to non-caching observers
	Invalidating DMA buffers, non-functional example
	Invalidating DMA buffers, functional example with single PE
	Invalidating DMA buffers, functional example with multiple coherent PEs

	K11.5.2 Instruction cache maintenance instructions
	Ensuring the visibility of updates to instructions for a uniprocessor
	Ensuring the visibility of updates to instructions for a multiprocessor

	K11.5.3 TLB maintenance instructions and barriers
	Ensuring the visibility of updates to translation tables for a uniprocessor
	Ensuring the visibility of updates to translation tables for a multiprocessor
	Paging memory in and out
	Using break-before-make when updating translation table entries

	K11.5.4 Ordering of Memory-mapped device control with payloads

	K11.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
	K11.6.1 Simple ordering and barrier cases
	Simple weakly consistent ordering example
	Message passing
	Address dependency with object construction
	Posting a store before polling for acknowledgement
	WFE and WFI and barriers

	K11.6.2 Load-Exclusive, Store-Exclusive and barriers
	Acquiring a lock
	Releasing a lock
	Use of Wait For Event (WFE) and Send Event (SEV) with locks

	K11.6.3 Using a mailbox to send an interrupt
	K11.6.4 Cache and TLB maintenance instructions and barriers
	Data cache maintenance instructions
	Instruction cache maintenance instructions
	TLB maintenance instructions and barriers

	K12: Random Number Generation�
	K12.1 Properties of the generated random number

	K13: Legacy Feature Naming Convention�
	K13.1 The Armv8.0 architecture
	K13.2 The Armv8.1 architecture extension
	K13.3 The Armv8.2 architecture extension
	K13.4 The Armv8.3 architecture extension
	K13.5 The Armv8.4 architecture extension
	K13.6 The Armv8.5 architecture extension
	K13.7 The Armv8.6 architecture extension

	K14: Arm Pseudocode Definition�
	K14.1 About the Arm pseudocode
	K14.1.1 General limitations of Arm pseudocode

	K14.2 Pseudocode for instruction descriptions
	K14.2.1 Instruction encoding diagrams and instruction pseudocode
	K14.2.2 Limitations of the instruction pseudocode

	K14.3 Data types
	K14.3.1 General data type rules
	K14.3.2 Bitstrings
	Syntax
	Description

	K14.3.3 Integers
	Syntax
	Description

	K14.3.4 Reals
	Syntax
	Description

	K14.3.5 Booleans
	Syntax
	Description

	K14.3.6 Enumerations
	Syntax and examples
	Description

	K14.3.7 Structures
	Syntax and examples
	Description

	K14.3.8 Tuples
	Examples
	Description

	K14.3.9 Arrays
	Syntax
	Description

	K14.4 Operators
	K14.4.1 Relational operators
	Equality and non-equality
	Comparisons
	Set membership with IN

	K14.4.2 Boolean operators
	K14.4.3 Bitstring operators
	Logical operations on bitstrings
	Bitstring concatenation and slicing

	K14.4.4 Arithmetic operators
	Unary plus and minus
	Addition and subtraction
	Multiplication
	Division and modulo
	Scaling
	Raising to a power

	K14.4.5 The assignment operator
	General expression syntax

	K14.4.6 Precedence rules
	K14.4.7 Conditional expressions
	K14.4.8 Operator polymorphism

	K14.5 Statements and control structures
	K14.5.1 Statements and Indentation
	K14.5.2 Function and procedure calls
	Procedure and function definitions
	Procedure calls
	Return statements

	K14.5.3 Conditional control structures
	if … then … else …
	case … of …

	K14.5.4 Loop control structures
	repeat … until …
	while … do
	for …

	K14.5.5 Special statements
	UNDEFINED
	UNPREDICTABLE
	SEE…
	IMPLEMENTATION_DEFINED

	K14.5.6 Comments

	K14.6 Built-in functions
	K14.6.1 Bitstring manipulation functions
	Bitstring length and most significant bit
	Bitstring concatenation and replication
	Bitstring count
	Testing a bitstring for being all zero or all ones
	Lowest and highest set bits of a bitstring
	Zero-extension and sign-extension of bitstrings
	Converting bitstrings to integers

	K14.6.2 Arithmetic functions
	Absolute value
	Rounding and aligning
	Maximum and minimum

	K14.7 Miscellaneous helper procedures and functions
	K14.7.1 EndOfInstruction()
	K14.7.2 Hint_Debug()
	K14.7.3 Hint_PreloadData()
	K14.7.4 Hint_PreloadDataForWrite()
	K14.7.5 Hint_PreloadInstr()
	K14.7.6 Hint_Yield()
	K14.7.7 IsExternalAbort()
	K14.7.8 IsAsyncAbort()
	K14.7.9 LSInstructionSyndrome()
	K14.7.10 ProcessorID()
	K14.7.11 RemapRegsHaveResetValues()
	K14.7.12 ResetControlRegisters()
	K14.7.13 ThisInstr()
	K14.7.14 ThisInstrLength()

	K14.8 Arm pseudocode definition index

	K15: Registers Index�
	K15.1 Introduction and register disambiguation
	K15.1.1 Register name disambiguation by Execution state
	K15.1.2 Register name disambiguation by Exception level

	K15.2 Alphabetical index of AArch64 registers and System instructions
	K15.3 Functional index of AArch64 registers and System instructions
	K15.3.1 Special-purpose registers
	K15.3.2 VMSA-specific registers
	K15.3.3 ID registers
	K15.3.4 Performance monitors registers
	K15.3.5 Activity monitors registers
	K15.3.6 Debug registers
	K15.3.7 RAS registers
	K15.3.8 Generic timer registers
	K15.3.9 Cache maintenance system instructions
	K15.3.10 Address translation system instructions
	K15.3.11 TLB maintenance system instructions
	K15.3.12 Prediction restriction System instructions
	K15.3.13 Base system registers

	K15.4 Alphabetical index of AArch32 registers and System instructions
	K15.5 Functional index of AArch32 registers and System instructions
	K15.5.1 Special-purpose registers
	K15.5.2 VMSA-specific registers
	K15.5.3 ID registers
	K15.5.4 Performance monitors registers
	K15.5.5 Activity Monitors registers
	K15.5.6 Debug registers
	K15.5.7 RAS registers
	K15.5.8 Generic timer registers
	K15.5.9 Cache maintenance system instructions
	K15.5.10 Address translation system instructions
	K15.5.11 TLB maintenance system instructions
	K15.5.12 Prediction restriction instructions
	K15.5.13 Legacy feature registers and system instructions
	K15.5.14 Base system registers

	K15.6 Alphabetical index of memory-mapped registers
	K15.7 Functional index of memory-mapped registers
	K15.7.1 ID registers
	K15.7.2 Performance monitors registers
	K15.7.3 Debug registers
	K15.7.4 RAS registers
	K15.7.5 Cross-trigger interface registers

	Glossary

